
ABSTRACT

FREGOSI, ANNA. Calibration of Thermal Soil Properties in the Shallow Subsurface. (Under
the direction of Carl Kelley.)

We use nonlinear least squares methods and Bayesian inference to calibrate soil properties

using models for heat and groundwater transport in the shallow subsurface. We first assume

a constant saturation in our domain and use the analytic solution to the heat equation as

a model for heat transport. We compare our results to those using the finite element code,

Adaptive Hydrology (ADH). We then use ADH to simulate heat and groundwater transport in

an unsaturated domain. We use the Model-Independent Parameter Estimation (PEST) software

to solve the least squares problem with ADH as our model. In using Bayesian inference,

we employ the Delayed Rejection Adaptive Metropolis (DRAM) Markov chain Monte Carlo

algorithm to sample from the posterior densities of parameters in both models. We find our

results are consistent with those found using soil samples with empirical methods.
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Chapter 1

Introduction

In this work, we use both optimization and Bayesian statistics to perform parameter calibration

for heat transport models in the shallow subsurface. We first consider the constant saturation

case and then proceed to model heat transport in the variably saturated case. The Bayesian

approach to parameter calibration allows us to quantify uncertainty in our problem.

1.1 Background/motivation

Models of soil temperature are valuable in disciplines including weather and climate modeling,

soil science, civil engineering and remote sensing [36, 66, 78]. We find [11, 18, 51, 96] and [75]

particularly useful for gaining an understanding of the thermal properties of soil.

Common models for heat transport in the shallow subsurface are based on the heat equation

in one dimension [36, 43, 53, 97]. We detail the heat equation for this context in Chapter 2.

Thermal properties of soil are the thermal conductivity, volumetric heat capacity and thermal

diffusivity, k. Since k is quotient of the conductivity and the volumetric heat capacity, analysis

is often focused on one of either the conductivity or diffusivity [32, 43]. Water content plays a

significant role in the temperature of the soil, so to have an accurate model for heat transport

we must couple our temperature model with a moisture model [35,36,66]. Our first results are
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based on the assumption of constant water content and are computed with precipitation-free

data. In this case, we consider the thermal diffusivity of soils. This property describes the

rate at which heat travels through the soil and has units of area over time [75]. By simplifying

the subsurface transport processes to conduction only and incorporating thermal effects of the

vapor phase, we consider the apparent thermal diffusivity [32,53,57,100].

Many estimates for thermal diffusivity are based on harmonics of the heat equation. Pearce

and Gold [76] consider the annual component of the solution and determine diffusivity estimates

based on the slopes of the amplitude and phase of variations plotted against depth. Carson [29]

estimates diffusivity for the annual and daily temperature cycles based on the amplitude and

phase of variations as well. Carson concluded the amplitude and phase methods were unreliable

for the diurnal cycle. However, in [100], Wierenga et al. found the methods appropriate under

the assumption of a constant water content and clear weather. Results using a finite difference

scheme to solve the heat equation together with a simple optimization scheme for estimating k

are presented in [100].

Horton et al. in [53] compares six methods for estimating the apparent thermal diffusivity.

The amplitude and phase methods are considered along with two analogous methods using mul-

tiple harmonics of the solution to the heat equation: the arctangent and logarithmic methods.

The last two methods are the harmonic method, which uses a harmonic expansion of sine terms,

and the finite difference methods for solving the heat equation [53]. Horton et al. concludes

the amplitude and phase methods are insufficient for estimating k under cloudy conditions, the

numerical method is appropriate when a large amount of data is available, and the harmonic

method produces the most reliable estimates given the least amount of data [53]. Methods for

using the Laplace transform to estimate k are discussed in [95] and [32]. Different forms of

boundary conditions for the heat equation are evaluated in [86], with the conclusion that the

choice of boundary condition is important. Finally, methods for empirical estimates for the

thermal conductivity are developed in [57] and [66].

In this work we also consider the specific heat of the soil. The volumetric heat capacity is
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the product of the density and specific heat of the soil. The specific heat may also be referred

to as the heat capacity. Early methods for estimating the specific heat of a soil involved heating

combinations of water and soil and using a calorimeter to determine changes in temperature [19,

41,62,85,90]. In [41], Fritton analyzes error in these methods. Kersten [62] performs a thorough

analysis of soil properties using a calorimeter and determines that the methods for estimating

specific heat using mixtures of soil and water is appropriate. Kersten [62] also determines

a proportional relationship between specific heat and temperature. This relationship is also

determined in [60], describing a way to determine specific heat using temperature measurements

and known values for specific heat.

Methods for estimating the specific heat using heat-pulse probes are described in [20,22,23,

27,63,64,73,74,83,89]. Least squares and maximum likelihood estimate methods for estimating

the specific heat using heat-pulse data are described in [17,21,99]

The effect of surface fires on thermal properties of soil are explored in [26, 69, 70]. Finally,

Yadav, in [103], found that specific heat is independent of compaction of soils.

1.2 Our contributions

We collaborate with the U.S. Army Engineer Research and Development Center (ERDC) in this

work. We use data from three different locations to calibrate our model and parameters. The

data was collected over a 40-day period and includes measurements of temperature above and

below the surface, precipitation, radiation, wind speed and direction, humidity, pressure, and

subsurface heat flux. In addition, we utilize soil samples collected from each site to determine

estimates for k. My specific contributions are listed below.

• The Adaptive Hydrology (AdH) model, created at ERDC, is a 3-D finite element simula-

tion for heat transport. I determine scalar estimates for k using AdH coupled with PEST

parameter estimation software. We find these estimates to be consistent with estimates

using other methods. In the variably saturated case, I use the same methods to determine

3



an estimate for the specific heat of the soil.

• I use the framework of Bayesian inference to analyze the probability densities for the

apparent thermal diffusivity and specific heat in varied domains. This contribution allows

uncertainty quantification of the heat transport model. Using the Bayesian approach, I

compare scalar estimates for k with those found using other methods as well as compute

prediction intervals for future observations.

There are several differences between the two calibration methods listed above. The first

calibration method, using PEST, stems from the frequentist view of statistics. The parameters

are considered fixed and unknown. We optimize to produce scalar values for individual parame-

ters. The second calibration method reflects the Bayesian view of statistics. The parameters are

considered unknown and random. We describe the parameters, given data, by their probability

distributions.

1.3 Organization

In Chapter 2 we describe the models we use for heat transport and groundwater in the shallow

subsurface. In Chapter 3 we describe the least squares and Bayesian inference calibration

methods. We detail Markov Chain Monte Carlo methods in Chapter 4. In Chapters 5 and

6 we present and discuss our results for the domains with constant and variable saturation,

respectively.
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Chapter 2

Models

In this chapter we describe two models for heat transport in the shallow subsurface. The first

model is the analytic solution to the heat equation, assuming a constant water content, with

Dirichlet boundary conditions. The Dirichlet boundary condition at the surface accommodates

the diurnal temperature cycle. We assume the temperature approaches a constant average

temperature as depth increases. The second model is the numerical solution to a more general

form of the heat equation with a Neumann boundary condition at the surface. In this model the

Neumann boundary condition at the surface accounts for shortwave and longwave radiation,

sensible heat exchange, latent heat exchange and precipitation [35]. This more general boundary

condition provides a more realistic model. In Section 2.3, we mention similar models to which

we will later compare our results.

2.1 An Analytic Model

We use Fourier’s law of heat conduction to develop our model for heat transport. The amount

of heat conducted across a unit area for a unit amount of time is the heat flux density, q (J m−2

s−1) [11, 97]. Fourier’s law says that the heat flux q in a homogeneous medium is proportional
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to the temperature gradient ∇u (K m−1)and opposite in direction [18,50,97]:

q = −κ∇u. (2.1)

The constant of proportionality κ (J m−1 s−1 K−1) in (2.1) is the thermal conductivity of the

medium. It is the quantity of heat conducted per unit time, per unit area [11]. The thermal

conductivity of water is about 0.6 J m−1 s−1 K−1 [66, 78] and the thermal conductivity of soil

is O(1) J m−1 s−1 K−1 [66].

The specific heat cp (J kg−1 K−1) per unit mass is the rate of change of amount of heat in

a unit mass of soil with respect to temperature change of one unit [50, 97]. The product of cp

and the mass per unit volume or density, ρ (kg m−3), is the volumetric heat capacity. It is the

amount of heat per unit volume needed to change temperature by one unit. The rate of change

of the quantity of heat in a unit volume with respect to time is thus

(cpρ)
∂u

∂t
(2.2)

The principle of the conservation of energy gives us the form of the heat equation for a

homogenous soil [50,97]. For soil with volumetric heat capacity (cpρ) and thermal conductivity

κ, we write the heat equation in a homogeneous domain Ω:

(cpρ)ut = ∇ · (κ∇u), (2.3)

where u is temperature as a function of time t and space [35].

The homogeneity assumption implies (cpρ) and κ do not depend on space or time. Thus we

can combine them to form the equation

ut = k∇2u, (2.4)

6



where k = κ
cpρ

(m2 s−1) is the thermal diffusivity. Values for soil thermal diffusivity are O(10−7)

m2 s−1 [53].

We now focus on the 1-D heat conduction equation in a seminfinte domain:

ut = kuzz, (t, z) ∈ (0, T ]× [0,∞), (2.5)

where z is depth from the surface z = 0.

We assume the temperature oscillates with frequency ϕ about an average value Ĉ at all

depths [50,97]. Thus, at the surface, the temperature is [97]

u(t, 0) = C sin(2πϕt+ ω) + Ĉ, (2.6)

where C is the amplitude of the temperature oscillations at the surface and ω is a phase shift.

We assume the temperature approaches the constant Ĉ as z → ∞ [97]. The assumption of

the harmonic behavior of the temperature with time implies that we do not need to specify an

initial condition for t = 0 [97].

The solution to (2.5) for the given boundary conditions and assumptions is [36,97]:

u(t, z) = Ce−αzsin
(
2πϕt− αz + ω

)
+ Ĉ, (2.7)

where α > 0 is a damping parameter.

We only consider the diurnal oscillations and fix ϕ = 1/24 hours. Thus our analytic model

for heat transport in the subsurface is

u(t, z) = Ce−αzsin
( π
12
t− αz + ω

)
+ Ĉ. (2.8)

We relate α to the soil thermal diffusivity through

α =

√
π

24k
. (2.9)
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We will often denote θ =
(
C,α, ω, Ĉ

)
as our set of model parameters.

2.2 A Numerical Model

The Adaptive Hydrology (AdH) model produced by the US Army Corps of Engineers (USACE)

simulates both heat transport and subsurface flow by simulating the solution to a more general

form of the heat equation using finite elements.

2.2.1 Constant Saturation Model

For a 3-D soil domain with constant saturation the equation for heat transport, as seen in (2.3),

is

(cpρ)ut −∇ · (κ∇u) = 0. (2.10)

We explain the numerical model in terms of a heterogenous domain. The soil is composed

of a solid phase, liquid phase (water) and gaseous phase (air) [33]. In practice, the domain

may be divided into multiple materials with different properties, where heat transport in each

material is governed by the equations in this section.

We define the volumetric heat capacity (cpρ) by the volumetric heat capacities of the domain

components. Letting the subscripts s, w and g denote soil, water and air, respectively and

letting ηi be the volume fraction for each component, we have [33]

(cpρ) = ηscp,sρs + ηwcp,wρw + ηgcp,gρg. (2.11)

The pore space is the space between particles or aggregates of the solid phase. The fraction

of pore space volume in the total medium volume is the porosity, ϕ [18, 80, 98]. If water

completely fills the pore space, we say the soil is saturated. Otherwise, the pore space is filled

with a mixture of air and water and is unsaturated. The fraction of water volume present with

respect to the volume of the pore space is the degree of saturation or normalized water content
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Sw [51]. In terms of water content and porosity we have [35]:

(cpρ) = (1− ϕ)cp,sρs + ϕ(Swcp,wρw + (1− Sw)cp,gρg). (2.12)

We also define the thermal conductivity with a mixture model. Johansen in [57] defines the

dimensionless Kersten numberKe as a normalized conductivity that depends only on saturation.

If κd is the thermal conductivity of dry soil and κs is the thermal conductivity of saturated soil,

then [35,66]

κ = (κs − κd)Ke + κd. (2.13)

Details regarding Equation (2.13) are in Subsection 2.3.

The thermal diffusivity is thus

k =
(κs − κd)Ke + κd

(1− ϕ)cp,sρs + ϕ(Swcp,wρw + (1− Sw)cp,gρg)
. (2.14)

2.2.2 Variable Saturation Model

For unsaturated domains, the equation for heat transport must be coupled with the equation

for moisture transport through the saturation Sw. We again use the heat equation (2.10):

(cpρ)ut −∇ · (κ∇u) = 0.

Now, however, the volumetric heat capacity cpρ depends on the changing saturation Sw in the

following way (as seen in Equation (2.12)):

(cpρ) = (1− ϕ)cp,sρs + ϕ(Swcp,wρw + (1− Sw)cp,gρg). (2.15)

Thus, we first solve for the saturation Sw and then use Sw in (2.15) to determine the volumetric

heat capacity.

9



The saturation is a function of the pressure head ψ [35, 54, 92], which is the height of a

column of water relative to some reference point [52, 98]. We use the van Genuchten model

[24,35,59,92,94] to relate saturation and pressure head

Sw(ψ) = Sr +
(1− Sr)

[1 + (α|ψ|)n]m
, ψ ≤ 0, (2.16)

where Sr is residual saturation and α, m, n depend on the domain. We note that m = 1− 1
n .

The parameters m and α depend on the slope of the saturation-pressure head curve [94]. The

parameter n relates to the pore-size distribution.

Soil moisture transport also depends upon the hydraulic conductivity, K of the soil. The

hydraulic conductivity describes the flow rate of a liquid through a porous medium [35,52,102].

If the soil is saturated, we describe Ks, the saturated hydraulic conductivity. The relative

permeability kr(ψ) is related to the soil structure and also describes flow through the soil [35,37].

We use the Mualem and van Genuchten models to describe the relationship [35,59,94] between

relative permeability and pressure head:

kr(ψ) =
[1− (α|ψ|)n−1[1 + (α|ψ|)n]−m]2

[1 + (α|ψ|)n]m/2
, ψ ≤ 0. (2.17)

We use the mixed form of Richards’ equation for moisture transport [35,54,92]

SsSw(ψ)
∂ψ

∂t
+ ϕ

∂Sw(ψ)

∂t
= ∇[Kskr(ψ)∇(ψ + z)], (2.18)

where the specific storage Ss describes the fluid compressibility [92], z is depth and t is time.

2.2.3 Boundary Conditions

We specify boundary conditions for (2.10) which depend on shortwave and longwave radia-

tion, sensible heat exchange, latent heat exchange and precipitation [35]. For our numerical

simulations, we incorporate data into these boundary conditions.
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• Radiation We first explain a few concepts of solar radiation. A black body is an object

which absorbs all radiation it receives [13, 80]. The amount of energy F a black body at

temperature T emits is given by the Stefan-Boltzmann Law [13,18,35]:

F = σT 4, (2.19)

where σ = 5.67× 10−8 (W m−2 K−4) is the Stefan-Boltzmann constant [13].

Energy from the sun, which acts as a black body [13], reaches the earth in the form of

shortwave solar radiation [13]. There are two types of solar irradiance: direct and diffuse.

Direct irradiance is not scattered or absorbed before it reaches the surface of the earth,

while diffuse irradiance has been scattered by the atmosphere [13, 80]. The total global

solar radiation is the sum of both the direct and diffuse radiation.

Now we describe the interaction between solar radiation and the earth. The earth absorbs

some of the shortwave solar radiation and re-emits some of it in the form of longwave

radiation [13, 80], because the temperature of the earth is much lower than that of the

sun. The shortwave radiation not absorbed by the ground surface is reflected [13]. The

albedo αg of the ground surface is the fraction of shortwave radiation reflected [13,35,80].

Thus the amount of shortwave radiation absorbed by the surface is [35]

SW ↓ = (1− αg)SWtotal. (2.20)

We use SWtotal = SWmeasured, the measured shortwave radiation (data). There is no

shortwave solar radiation at night.

Nonblack bodies emit energy at a rate [18]

F = ϵσT 4, (2.21)

where 0 < ϵ < 1 is a property of the material called the emissivity and T is the temperature
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of the nonblack body. For a soil with emissivity ϵg and ground temperature Tg, the total

longwave radiation emitted is [35]

LW ↑ = ϵgσT
4
g . (2.22)

We use measured temperature values for T . Values of ϵg are usually between 0.9 and

0.95 [13].

Longwave radiation emitted from the atmosphere and clouds is also absorbed by the

surface [35]:

LW ↓ = ϵgLW, (2.23)

We use LW = LWmeasured, the measured longwave radiation (data). The earth continues

to absorb and emit longwave energy at night.

• Sensible Heat Exchange Sensible heat exchange is the exchange of heat between the

surface and the air which does not include chemical processes [35]. The sensible heat flux

is proportional to the product of the temperature difference, air density ρa and air specific

heat cp,a [75]:

H ∝ ρacp,a(Tg − Ta), (2.24)

where Ta is air temperature at a height Z above the ground and Tg is ground temperature

[35]. The thermal resistance to the sensible heat flux depends on the wind speed, Ws and

the surface aerodynamic roughness [35,75]. We use the logarithmic wind profile equation

in our formulation [75] and define the sensible heat exchange at the surface by

H =

(
W0 + (

ρacp,a
Sc

)(
K

log( Z
Z0

)
)2Ws

)
(Tg − Ta), (2.25)

with constants: windless coefficient W0, Schmidt number Sc, von Karman constant K

and roughness coefficient Zo [35].
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• Latent Heat Exchange Latent heat is absorbed or released during phase changes such

as evaporation, condensation, freezing and melting [13, 35, 56]. The latent heat of water

vaporization, λ (J kg−1), is the energy released or absorbed during condensation or evap-

oration [35,75]. The latent heat flux at the surface is the product of the mass flux, E (kg

m−2 s−1), due to evaporation and the latent heat of water vaporization [75]:

LE = λE. (2.26)

The mass flux E is related to the change in specific humidity, ∆qh [75]:

E ∝ ρa∆qh. (2.27)

The specific humidity depends on the vapor pressure e (kPa) and atmospheric pressure

P (kPa) [75]. We define qh (kg kg−1) by [75]

qh ≈ 0.622e

P
, (2.28)

where we use the ratio of the molecular mass of water to the molecular mass of dry air,

0.622, [10, 12]. Thus for vapor pressures at the surface e0 and at some height above the

surface, ea, [75]

E ∝ −ρa
0.622

P
(e0 − ea). (2.29)

For soil surface resistance r0 [35]:

LE =
(0.622)ρaλ

r0P
(e0 − ea). (2.30)

Precipitation Precipitation, Precip, also plays a role in the exchange of heat at the

surface [35]. We express the thermal effects of precipitation as the product of the measured

precipitation, specific heat of air, and air temperature [15,35,58].
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PH = (Precip)cp,aTa (2.31)

The preceding terms all contribute to the heat flux at the surface of our domain. Our flux

boundary condition is [35]

Flux = SW ↓ + LW ↓ − LW ↑ +H + LE + PH. (2.32)

For the numerical simulations, we specify a Dirichlet boundary condition at the bottom of

our domain. This boundary condition may be the output of a previous simulation or a value

chosen by the analyst.

For the groundwater portion of the numerical model, we specify a Neumann flow boundary

condition of precipitation rate at the surface and a Dirichlet boundary condition of total head

at the bottom of our domain.

2.2.4 Numerical Solution

The ADaptive Hydrology (ADH) numerical model for heat and groundwater transport in the

shallow subsurface is produced by the US Army Corps of Engineers [14,15,36,79]. ADH is a finite

element code for saturated and unsaturated flow in 2-D and 3-D [15]. For 3-D simulations, ADH

uses linear tetrahedral elements on an unstructured conforming mesh with continuous linear

Lagrange basis functions [15, 35]. ADH also features a mesh refinement scheme [15, 35, 79].

Time integration is performed using implicit Euler with an adaptive step size [84]. The user

may select a maximum step size. ADH may be implemented in serial or parallel [79].

For details regarding the implementation of ADH, see Appendix B. We refer to [45] for a

details of the finite element method.

14



2.3 Other Models

As mentioned in Chapter 1, there are other ways to determine estimates for k. We later compare

our results using the methods in Sections 2.1 and 2.2 to some of these other methods. Here

we briefly explain the amplitude and phase methods, the two empirical methods of Lu and

Johansen, and the use of the discrete Fourier transform in modeling heat transport.

2.3.1 Amplitude and Phase Methods

Many estimates for thermal diffusivity are based on harmonics of the heat equation. Consider

the amplitude, Ci, of the temperature fluctuations at depth zi over a period P . For data

at depths z1 and z2 with amplitudes C1 and C2, respectively, the thermal diffusivity can be

estimated by the amplitude method [29]:

k =
π(z1 − z2)

2

P
(
ln
(
C1
C2

))2 . (2.33)

Consider also the maxima of temperature fluctuations over a period P . The phase method

requires the times t1 and t2 of maxima at depths z1 and z2 [29,36]:

k =
P (z2 − z1)

2

4π(t2 − t1)2
. (2.34)

2.3.2 Johansen and Lu

Our estimates of k from experiments depend on data from the meteorological station, soil

samples and expert opinion. Here we detail the two approaches we use in determining these

experimental estimates. We first describe the formulation of both the Johansen [57] and Lu [66]

models for soil thermal conductivity. Then we describe our use of these models to determine

estimates for k.
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Formulation

As explained before, the thermal diffusivity

k =
κ

cpρ
(2.35)

is the quotient of the thermal conductivity κ and volumetric heat capacity cpρ.

We use the methods of Lu [66] and Johansen [57] to estimate the thermal conductivity κ.

Both models have the form

κ = (κsat − κdry)Ke + κdry, (2.36)

where κsat and κdry are the saturated and dry thermal conductivities, respectively, and the

Kersten number Ke depends on saturation and soil texture.

The saturated thermal conductivity

κsat = κ1−ϕ
s κϕw (2.37)

is determined by the thermal conductivity of the solid, κs, the thermal conductivity of water,

κw, and porosity ϕ [57, 66,78]. The thermal conductivity of the solids

κs = κqqκ
1−q
o , (2.38)

where

κo =


2.0Wm−1K−1, q > 0.2

3.0Wm−1K−1, q ≤ 0.2.

(2.39)

is determined by the thermal conductivity of quartz κq = 7.7 Wm−1K−1, quartz fraction, q,

and thermal conductivity of other materials, κo [57, 66].

Lu and Johansen have different models for Ke and κdry.
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Johansen

For the Johansen model, Ke depends on the saturation Sw:

Ke =


0.7 logSw + 1.0, (Sw > 0.05), coarse soils

logSw + 1.0, (Sw > 0.1), fine soils.

(2.40)

Our soils are classified as coarse soils.

The dry thermal conductivity

κdry =
0.135ρb + 64.7

2700− 0.947ρb
(2.41)

depends on the bulk soil density ρb [57].

Lu

For the Lu model, the Kersten number

Ke = exp{αs[1− S(αs−1.33)
w ]} (2.42)

depends on saturation and a soil texture parameter αs [66]. If the the percentage of sand and

gravel is greater than 0.4 then the soil is coarse textured [66]. Following [66], we define αs as

αs =


0.96, coarse-textured soils

0.27, fine-textured soils.

(2.43)

The dry thermal conductivity is given by the model [66]

κdry = −aϕ+ b, (2.44)

where a = 0.56 and b = 0.51 are found empirically for values of porosity between 0.2 and 0.6.
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Experiments

The values we use in calculating k are compiled in Tables 2.1 and 2.2. Table 2.1 contains values

derived from the met station data, soil samples and expert opinion. Known physical constants

are compiled in Table 2.2.

Core soil samples were analyzed in an ERDC lab as well as by Daniel B. Stephens &

Associates, Inc. (DBS&A). DBS&A took measurements at a range of depths. The cores were

also flooded, air dried and oven dried in order to obtain measurements at different saturation

values.
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Table 2.1: Parameters in thermal conductivity term.

Symbol Description Source

ϕ Porosity DBS&A (Highlands); average from

DBS&A over all samples and depths

(Desert); DBS&A or ERDC lab (Tropi-

cal)

q Quartz Fraction Expert (Tropical, Desert); Median value

of range given by expert (Highlands [35])

Sw Saturation Probe data water content rounded

to nearest whole number percentage,

multiplied by lab porosity (Tropical);

DBS&A (Desert and Highlands)

ρs Specific Gravity (Density) of Solid Calibrated using DBS&A data (Tropi-

cal, Highlands); average from ERDC or

DBS&A (Desert)

cp,s Specific Heat of Solid Calibrated using DBS&A data (Tropi-

cal, Desert, Highlands)

Percentage of Sand and Gravel Median value of range given by ex-

pert (Highlands [35]), DBS&A (Desert),

ERDC lab (Tropical)

Ke Kersten number Depends on Sw, q, αs [66]

κdry Dry Thermal Conductivity Depends on density ρb [57] or porosity

ϕ [66]

κsat Saturated Thermal Conductivity Depends on ϕ, q

ρb Dry/bulk density Depends on ϕ and ρs

αs Soil texture Coarse (from percentage of sand and

gravel) value of 0.96 [66]
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Table 2.2: Known constants in equation for k.

Symbol Description Units Value/Source

κw Thermal Conductivity of

Water

(W/m-K) (0.58) [25]

cp,w Specific Heat of Water (W-hr/g-K) (0.001161472) [48]

ρw Specific Gravity (Density)

of Water

(g/cm3) (106) [33]

cp,g Specific Heat of Gas (W-hr/g-K) (0.000281111) [9]

ρg Specific Gravity (Density)

of Gas

(g/cm3) (1000) Value from [33] rounded

to one significant figure

We estimate k using Equations 2.35-2.44 and the values in Tables 2.1 and 2.2. The results

are in Section 5.3.2, Tables 5.16-5.18. The results for the Lu and Johansen models are labelled

Experiments A and B, respectively.

2.3.3 Discrete Fourier Transform

We also compare our results to those found in [36] using a discrete Fourier transform to deter-

mine estimates for k. In this approach, we again consider the 1-D heat conduction equation in

a semi-infinite domain, Equation (2.5). We assume the boundary condition at the surface is a

sum of sinusoids and

lim
z→∞

u(t, z) = 0. (2.45)

With these boundary conditions, the solution becomes [36]

u(t, z) =
N∑
j=0

uj , (2.46)
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for

uj(t, z) = Cje
(−αjz) sin(2πϕjt− αjz + ωj). (2.47)

We only consider frequencies ϕj that can be written ϕj = jϕ, where ϕ is 1
24 hours. Using

trigonometric identities, we can write

uj(t, z) = Cje
(−αjz) sin(−αjz + ωj) cos(2πϕjt) (2.48)

+ Cje
(−αjz) cos(−αjz + ωj) sin(2πϕjt).

We set

Aj = Cje
(−αjz) sin(−αjz + ωj) (2.49)

Bj = Cje
(−αjz) cos(−αjz + ωj) (2.50)

so that (2.48) becomes

uj(t, z) = Aj cos(2πϕjt) +Bj sin(2πϕjt). (2.51)

At each depth zi, we use the data and a discrete Fourier transform to determine the Fourier

coefficients Ai,j and Bi,j . With the new coefficients Ai,j and Bi,j , (2.46) for a fixed depth zi

becomes

u(t, zi) =

N∑
j=0

(
Ai,j cos(2πϕjt) +Bi,j sin(2πϕjt)

)
. (2.52)

To compute estimates for k, we use

Ai,j

Bi,j
=

sin(−αjzi + ωj)

cos(−αjzi + ωj)
= tan(−αjzi + ωj), (2.53)
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to define γi,j = arctan
(
Ai,j

Bi,j

)
= −αjzi + ωj . Then, we compute

Ei,j =
Ai,j

sin(γi,j)
= Cje

(−αjzi). (2.54)

Using the natural logarithm, Equation (2.54) becomes

ln(Ei,j) = ln(Cje
(−αjzi)) = ln(Cj) + ln(e(−αjzi)) = ln(Cj) + (−αjzi). (2.55)

We use linear regression to approximate αj and the relation

αj =

√
πϕj
k

(2.56)

to determine estimates for k [36].

We compare our results to the results in [36], where ϕj is fixed at 1
24 .

Resampling

We later compare our results to those in [36] determined by resampling each dataset.

To compute an estimate using amplitude and phase methods, Equations (2.33) and (2.34)

respectively, we use data at two depths. We have temperature probe data at seven depths,

allowing 7C2 possible pairs of depths. We only consider 24-hour time periods. If the dataset

contains N days, we generate N estimates for k for a fixed pair of depths. Overall, we compute

N(7C2) estimates for k.

To compute an estimate using the DFT-based method, we use data from 2-7 depths. Thus,

in this case, the number of possible combinations of depths is

7C2 +
7 C3 +

7 C4 +
7 C5 +

7 C6 +
7 C7. (2.57)

We also use between 1 and N days of data to compute an estimate. Thus, the number of
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consecutive 24-periods is

(∑N
j=1 j

)
. The total number of estimates of k using the DFT-based

method for each dataset is [36]

( N∑
j=1

j

)(
7C2 +

7C3 +
7C4 +

7C5 +
7C6 +

7C7

)
. (2.58)

Resampling with the DFT-based method produces more estimates for k than does resam-

pling with the amplitude and phase methods.
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Chapter 3

Calibration Methods

In this chapter we discuss two methods for calibrating our model parameters: nonlinear least

squares and Bayesian inference. The first approach uses traditional least squares methods

to find parameter values that minimize the residual sum of squares. The Bayesian approach

involves constructing a distribution for the parameters themselves.

3.1 Nonlinear Least Squares

With the nonlinear least squares approach to parameter calibration, we use deterministic meth-

ods to obtain fixed scalar or vector solutions to the nonlinear least squares problem. The

nonlinear least squares problem is to minimize the objective function [61]:

f(θ) =
1

2

n∑
i=1

(ri(θ))
2 =

1

2
R(θ)TR(θ), (3.1)

where R(θ) is the residual vector ri(θ) = yi − ui(θ) and n is the number of observations. We

say p is the number of parameters and write the gradient of f as [61]

∇f(θ) = (∂f/∂θ1, . . . , ∂f/∂θp) = R′(θ)TR(θ), (3.2)
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where R′(θ) is the n x p Jacobian of R [61]:

(R′(θ))ij =
∂ri
∂θj

, 1 ≤ i ≤ n, 1 ≤ j ≤ p. (3.3)

The Hessian of f is the p x p matrix [61]

∇2f(θ) =
( ∂2f

∂θi∂θj

)
= R′(θ)TR′(θ) +R′′(θ)TR(θ). (3.4)

We note that a matrix A is positive semidefinite if

θTAθ ≥ 0 for all θ ∈ Rp, (3.5)

positive definite if

θTAθ > 0 for all θ ∈ Rp, θ ̸= 0 (3.6)

and symmetric if A = AT .

The necessary conditions for optimality say that at a local minimizer θ∗ of f [61]

∇f(θ∗) = R′(θ∗)TR(θ∗) = 0 (3.7)

and ∇2f(θ∗) is positive semidefinite.

3.1.1 Iterative Methods

We might use an iterative method like Newton’s method to find a local solution of (3.7), which

is a local minimizer of f . For Newton’s method to converge, our initial iterate θ0 must be

sufficiently close to θ∗ [61]. We update the current iterate, θc with a new iterate θ+ by

θ+ = θc − (∇2f(θc))
−1∇f(θc) (3.8)
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or, in terms of the residual,

θ+ = θc − [R′(θc)
TR′(θc) +R′′(θc)

TR(θc)]
−1(R′(θc)

TR(θc)). (3.9)

Since the term R′′(θc)
TR(θc) is computationally expensive, we consider the Gauss-Newton

update [61]:

θ+ = θc − (R′(θc)
TR′(θc))

−1R′(θc)
TR(θc). (3.10)

The limitations of the Gauss-Newton method are that we must have a good initial iterate,

a small residual at the true solution, R(θ∗), and R′(θc)
TR′(θc) must be nonsingular, meaning

n ≥ p [61].

Line Search Methods

We can accommodate for the initial iterate limitation of the Gauss-Newton method using line

search algorithms. These methods update the iterations in descent directions d using the Armijo

rule to determine the step size. The general form of the iteration is

θ+ = θc + λd, (3.11)

where λ is called the steplength [61].

Definition 3.1 A vector d ∈ Rp is a descent direction for f at θ if [61]

df(θ + td)

dt
|t=0 = ∇f(θ)Td < 0. (3.12)

For example, the steepest descent direction is d = −∇f(θ) and the method of steepest

descent is defined by the update:

θ+ = θc − λ∇f(θc). (3.13)

We tune λ to adjust for sufficient decrease throughout the simulation. We define sufficient
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decrease in the steepest descent method by the Armijo rule:

f(θc − λ∇f(θc))− f(θc) < −αλ||∇f(θc)||2, (3.14)

where α is a parameter such that α ∈ (0, 1).

More generally, we find a descent direction d = θ−θc that minimizes m(θ) for the quadratic

model

m(θ) = f(θc) +∇f(θc)T (θ − θc) +
1

2
(θ − θc)

THc(θ − θc), (3.15)

where Hc is a symmetric positive definite matrix we call the model Hessian [61]. The descent

direction d = θ − θc is then [61]

d = −H−1
c ∇f(θc). (3.16)

Note that if Hc = I, where I is the p x p identity matrix, d is the steepest descent direction.

For general line search algorithms we define sufficient decrease as

f(θc + λd)− f(θc) < −αλ∇f(θc)Td. (3.17)

In the context of nonlinear least squares, the Gauss-Newton direction is [61]

dGS = −(R′(θc)
TR′(θc))

−1R′(θc)
TR(θc). (3.18)

We note that ∇f(θ)TdGS < 0 and the Gauss-Newton direction is a descent direction when R

has full column rank [61]. Using the Gauss-Newton direction together with the Armijo rule

results in the damped Gauss-Newton method:

θ+ = θc + λdGS = θc − λ(R′(θc)
TR′(θc))

−1R′(θc)
TR(θc). (3.19)

In order for the convergence theory for line search methods to hold, R′(θc)
TR′(θc) must be

uniformly bounded and well-conditioned [61]. We ensure this is the case with the use of the
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Levenberg-Marquardt method:

θ+ = θc − (νcI +R′(θc)
TR′(θc))

−1R′(θc)
TR(θc), (3.20)

where ν > 0 is a regularization parameter called the Levenberg-Marquardt parameter and I is

the p x p identity matrix [61]. The Levenberg-Marquardt method paired with a line search is:

θ+ = θc − λ(νcI +R′(θc)
TR′(θc))

−1R′(θc)
TR(θc). (3.21)

We solve the nonlinear least squares problem for k using the Model-Independent Parameter

Estimation (PEST) optimizer [34]. PEST uses the Gauss-Marquardt-Levenberg algorithm [34].

3.2 Bayesian Inference

With the Bayesian approach to parameter calibration, we consider the parameters as unknown

random quantities [28] and express our knowledge about the parameters in the form of probabil-

ity distributions. Bayesian inference is the use of Bayes’ Theorem and data to draw conclusions

about our parameters. For observations Y and parameters θ, we form the likelihood f(Y |θ)

which expresses the probability of obtaining Y given θ. We express our prior knowledge about

the parameters, independent from Y , in the prior density p(θ). Using Bayes’ Theorem, we form

the posterior density of the parameters given our observations, p(θ|Y ).

Theorem 1 (Bayes’ Theorem)

p(θ|Y ) =
f(Y |θ)p(θ)∫
f(Y |θ)p(θ)dθ

. (3.22)

This is the form of Bayes’ Theorem for Bayesian inference.
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3.2.1 Likelihood

The likelihood f(Y |θ) expresses the probability of obtaining observations Y given model pa-

rameters θ.

We determine the form of this density by assuming, for simplicity, a perfect model u(θ):

yi = u(θ)i + ϵi, (3.23)

where yi is the observation at spatiotemporal point i, u(θ)i is the model evaluated with pa-

rameters θ at spatiotemporal point i and ϵi is the measurement error at spatiotemporal point

i.

We also assume that the errors in our data are independent and normally distributed, with

mean 0 and weighted variance:

ϵi∼N
(
0,
σ2

w2
i

)
, (3.24)

where σ2 is the unweighted variance in our data and ϵi is the error at data point i for i = 1, . . . , n.

We weight our data because the temperature fluctuations at the surface of our domain are much

greater than those at the bottom of our domain.

These two assumptions give us the form of the likelihood:

yi|θ, σ2∼N
(
u(θ)i,

σ2

w2
i

)
. (3.25)

If we were to make different assumptions about the distribution of errors in our observations

or the accuracy of our model, our sampling distribution would have a different form.

We can write the likelihood as

f(yi|θ, σ2) =
1√
2πσ2

w2
i

exp

{
−1
2σ2

w2
i

(yi − u(θ)i)
2

}
. (3.26)
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Since we assume our errors are independent, we can write the joint likelihood:

f(Y |θ, σ2) =
n∏

i=1

[
1√
2πσ2

w2
i

exp

{
−1
2σ2

w2
i

(yi − u(θ)i)
2

}]
(3.27)

=

n∏
i=1

[ √
w2
i√

2πσ2

]
exp

{
n∑

i=1

−w2
i

2σ2
(yi − u(θ)i)

2

}
(3.28)

3.2.2 Prior Density

Our prior density expresses the information we have about our parameters before we consider

the data. Prior densities fall into two categories: conjugate and non-conjugate. A conjugate

prior leads to a posterior density in the same family of distributions (or conjugate family of

distributions) as the prior [31]. A non-conjugate prior leads to a posterior density with no known

form. We choose a conjugate or non-conjugate prior by considering the form of the likelihood.

If the product of the likelihood and the prior has a known form, the prior is conjugate.

Consider the following example from [31]. Suppose θ = (µ, σ2) and we have the likelihood

y1, . . . , yn|µ, σ2
iid∼ N(µ, σ2) (3.29)

so,

f(Y |µ, σ2) =
n∏

i=1

[
1√
2πσ2

exp

{
−1

2σ2
(yi − µ)2

}]
(3.30)

∝ 1

(σ2)n/2
exp

{
−1

2σ2

n∑
i=1

(yi − µ)2

}
. (3.31)

(3.32)

In Equation (3.31) we use the proportional form as we are focused on the kernel of the

product f(Y |θ)p(θ) [31].

Suppose also that we have the priors p(µ) ∼ N(a, b2) and p(σ2) ∼ InvGamma(c, d) and

30



that µ and σ2 are independent. Then we have the joint posterior density

p(µ, σ2|Y ) ∝

(
1

(σ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

})
(3.33)

. . .

(
exp{− 1

2b2
(µ− a)2}

)(
(σ2)−(c+1)e−d/σ2

)
. (3.34)

The form of p(µ, σ2|Y ) is not recognizable as a known distribution, so in the bivariate sense

these priors are not conjugate. However, since µ and σ2 are independent, we are able find

recognizable forms for each of their full conditional densities. First we consider p(µ|Y, σ2) and

let ȳ = 1
n

∑n
i=1 yi:

p(µ|Y, σ2) ∝

(
exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

})(
exp{− 1

2b2
(µ− a)2}

)
(3.35)

∝ exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2 − 1

2b2
(µ− a)2

}
(3.36)

∝ exp

{
− 1

2σ2

n∑
i=1

(
y2i − 2µyi + µ2

)
− 1

2b2

(
µ2 − 2aµ+ a2

)}
(3.37)

∝ exp

{
1

σ2

n∑
i=1

(µyi)−
1

2σ2
nµ2 − 1

2b2
µ2 +

1

b2
aµ

}
(3.38)

∝ exp

{
1

σ2
µnȳ − 1

2σ2
nµ2 − 1

2b2
µ2 +

1

b2
aµ

}
(3.39)

∝ exp

{(
− 1

2σ2
n− 1

2b2

)
µ2 +

(
1

σ2
nȳ +

1

b2
a

)
µ

}
. (3.40)

(3.41)

In order to complete the square to find the form of a normal distribution, we let

A = − n

2σ2
− 1

2b2
and B =

nȳ
σ2 + a

b2

− n
2σ2 − 1

2b2

. (3.42)
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Then

p(µ|Y, σ2) ∝ exp
{
A
(
µ2 +Bµ

)}
(3.43)

∝ exp

{
A

(
µ2 +Bµ+

B2

4
− B2

4

)}
(3.44)

∝ exp

{
A

((
µ+

B

2

)2

− B2

4

)}
(3.45)

∝ exp

{
A

(
µ+

B

2

)2}
. (3.46)

(3.47)

Note that if µ ∼ N(M,S2), then

A =
−1

2S2
=
(
− n

2σ2
− 1

2b2

)
=

−1

2

( n
σ2

+
1

b2

)
, (3.48)

and

S2 =
1(

n
σ2 + 1

b2

) . (3.49)

For the posterior mean M ,

−M =
B

2
=

1

2

nȳ
σ2 + a

b2

− n
2σ2 − 1

2b2

=
nȳ
σ2 + a

b2

− n
σ2 − 1

b2

= −
nȳ
σ2 + a

b2

n
σ2 + 1

b2

, (3.50)

so

M =
nȳ
σ2 + a

b2

n
σ2 + 1

b2

. (3.51)

Thus we have the full conditional density

µ|σ2, Y ∼ N

(
nȳ
σ2 + a

b2

n
σ2 + 1

b2

,
1

n
σ2 + 1

b2

)
. (3.52)

The derivation of p(σ2|µ, Y ) is simpler. We multiply the prior density and likelihood to find
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the form of an inverse gamma distribution:

p(σ2|µ, Y ) ∝

(
1

(σ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

})(
(σ2)−(c+1)e−d/σ2

)
(3.53)

∝ (σ2)−
n
2
−(c+1)exp

{
− d

σ2
− 1

2σ2

n∑
i=1

(yi − µ)2

}
(3.54)

∝ (σ2)−((n
2
+c)+1)exp

{
− 1

σ2

(
d+

1

2

n∑
i=1

(yi − µ)2

)}
. (3.55)

Thus,

σ2|µ, Y ∼ InvGamma

(
n

2
+ c, d+

1

2

n∑
i=1

(yi − µ)2

)
. (3.56)

So, we are able to use conjugate priors for µ and σ2 to find known forms of their full

conditional posterior densities.

For complicated models u(θ), it may impossible to choose a conjugate prior for the model

parameters θ given the likelihood (3.25). However, σ2 ∼ InvGamma(a, b) is a conjugate prior

for σ2 with likelihood (3.25).

3.2.3 Posterior Density

The likelihood and prior density are the two terms we need to compute the posterior density

using Bayes’ Theorem. This computation can be done analytically or numerically by using

quadrature or sampling methods like Markov Chain Monte Carlo.

We note that the denominator pY (Y ) =
∫
f(Y |θ)p(θ)dθ in Equation (3.22) is the marginal

distribution of Y and serves as a normalizing constant for the posterior density. Since pY (Y )

does not depend on θ, we may obtain the same information about θ using the proportional

relation [16]

p(θ|Y ) ∝ f(Y |θ)p(θ). (3.57)
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Posterior Summaries

From the posterior density we may compute posterior statistics.

We often consider the expectation or posterior mean,

θ̂ = E[θ|Y ] =

∫
θp(θ|Y )dθ (3.58)

and posterior variance,

V ar θ = E[
(
θ − θ̂

)2
] =

∫ (
θ − θ̂

)2
p(θ|Y )dθ =

∫ (
θ −

[ ∫
θp(θ|Y )dθ

])2

p(θ|Y )dθ. (3.59)

If θ is a vector θ = (θ1, . . . , θp), we take the expectation elementwise [31]:

E[θ|Y ] =


E[θ1|Y ]

...

E[θp|Y ],

 (3.60)

and consider the covariance matrix instead of the scalar variance.

The posterior median for a scalar θ is the value θ̃ such that

0.5 =

∫ θ̃

−∞
p(θ|Y )dθ. (3.61)

We may find, for example, a 95% probability interval [a, b] for θ by solving for a and b:

0.95 =

∫ b

a
p(θ|Y )dθ. (3.62)

It is common [31] to choose a and b such that

0.025 =

∫ a

−∞
p(θ|Y )dθ (3.63)
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0.975 =

∫ b

−∞
p(θ|Y )dθ. (3.64)

All of the above quantities involve integration over the parameter space and may be difficult

or impossible if the parameter space has high dimension. In this case, simulation methods for

sampling from the posterior density can be used to approximate the posterior summaries using

sample statistics.
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Chapter 4

Sampling from the Posterior

Distribution: Markov Chain Monte

Carlo

Evaluating Bayes’ Thoerem can be impossible for high dimensional parameter spaces. In using

Markov Chain Monte Carlo (MCMC) methods, we construct a Markov chain whose stationary

distribution is the posterior distribution and then sample it. With this sample we are able to

approximate posterior summaries and the kernel density of the posterior without integrating

over the parameter space.

We begin this chapter with a discussion of Monte Carlo integration and then consider the

theory behind Markov chains. Next we explain how the two ideas are combined for Markov

Chain Monte Carlo simulations and discuss Gibbs Sampling, the Metropolis-Hastings algorithm

and the Delayed Rejection Adaptive Metropolis algorithm.
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4.1 Monte Carlo Integration

Suppose we want to evaluate the expected value of a random variable θ with density p(θ). That

is, we want

E(θ) =

∫
θp(θ)dθ. (4.1)

Monte Carlo integration is an alternative to evaluating this integral analytically, which may be

difficult if θ has high dimension. With Monte Carlo integration, we use a random sample from

p(θ) to approximate E(θ) by the sample mean, θm. This approximation is justified by the Law

of Large Numbers.

Theorem 2 Law of Large Numbers (LLN). Let θ1, θ2, . . . be independent and identically

distributed random variables with density p(θ). Then,

θm ≡ 1

m

m∑
i=1

θi
p−→ E(θ) ≡

∫
θp(θ)dθ. (4.2)

The arrow superscripted with p indicates convergence in probability, or, for every ϵ > 0, [30,31]

lim
m→∞

P

( ∣∣θm − E(θ)
∣∣ < ϵ

)
= 1. (4.3)

Furthermore, we know the error, θm−E(θ), approaches the normal distribution with mean

zero. This idea is expressed in the Central Limit Theorem.

Theorem 3 Central Limit Theorem. Let θ1, θ2, . . . be independent and identically dis-

tributed random variables with Eθi = µ and 0 < V ar θi = σ2 < ∞. Define θm = 1
m

∑m
i=1 θ

i.

Let gm(θ) denote the cdf of
√
m(θm − µ)/σ. Then, for any θ, −∞ < θ <∞,

lim
m→∞

gm(θ) =

∫ θ

−∞

1√
2π
e−y2/2dy; (4.4)
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that is,
√
m(θm − µ)/σ has a limiting standard normal distribution [30].

The central limit theorem tells us that the estimate of the mean converges to the true mean

at a rate O( 1√
m
) [87,88]. That is, V ar(θm − µ) = σ2

m → 0 as m→ ∞.

Furthermore, we can approximate other summaries of p(θ) with a random sample from p(θ).

For example, the (biased) sample variance, S2
m converges in probability to σ2, the variance of

p(θ) [31], where

S2
m =

1

m

m∑
i=1

(θi − θm)2. (4.5)

Similarly, the (biased) sample standard deviation converges in probability to the true standard

deviation [31], √√√√ 1

m

m∑
i=1

(θi − θm)2
p−→ sd(θ) = σ. (4.6)

We can approximate the probability that θ is in the interval [1,∞) by [31]

1

m

m∑
i=1

I[1,∞)(θ
i)

p−→ E(I[1,∞)(θ)), (4.7)

where I[a,b] is an indicator function such that

I[a,b] =


1, if θ ∈ [a, b]

0, if θ ̸∈ [a, b].

(4.8)

Similar results hold for the median and interval approximations, though they cannot be written

explicitly in terms of integrals [31]. For the median,

med{θi : i = 1, 2, . . . ,m} p−→ med(θ) ≡ θ̃, (4.9)
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where θ̃ is the number such that

0.5 =

∫ θ̃

−∞
p(θ)dθ =

∫ ∞

θ̃
p(θ)dθ. (4.10)

For probability intervals, say θ̂0.025, θ̂0.975 are the 95% sample percentiles and θ0.025, θ0.975 are

the true percentiles. We have [31],

0.95 = P (θ0.025 < θ < θ0.975) =

∫ θ0.975

θ0.025

p(θ)dθ ≈
∫ θ̂0.975

θ̂0.025

p(θ)dθ. (4.11)

By plotting a histogram of the sample, we get an idea of the shape of the density. We can

also use the sample to approximate the density itself using kernel density estimation [31, 87].

Kernel density estimation is a process of smoothing the histogram by using a basis of kernel

densities [31,87].

We have yet to discuss how we obtain a random sample from the density p(θ).

4.2 Markov Chains

We first define a Markov chain and discuss notation. Then we consider properties of Markov

chains and convergence to stationary distributions.

4.2.1 Definitions

A sequence of random variables θ0, θ1, θ2, . . . is a Markov chain if

Pr
(
θk ∈ A|θ0, θ1, . . . , θk−1

)
= Pr

(
θk ∈ A|θk−1

)
, (4.12)

for an arbitrary set A [31].

This definition is also true for random vectors. The idea is that the distribution of θk

depends only on the distribution of θk−1 [30, 87]. This is known as the Markov property [31].
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Following the notation in [31], let

qk|k−1

(
θk|θ0, θ1, . . . , θk−1

)
= qk|k−1

(
θk|θk−1

)
(4.13)

be the conditional density of θk and qk
(
θk
)
be the marginal density of θk.

As in [31], we see:

Pr
(
θk ∈ A

)
=

∫
A
qk
(
θ
)
dθ (4.14)

=

∫
A

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
qk|k−1

(
θk|θk−1

)
qk−1|k−2

(
θk−1|θk−2

)
(4.15)

· · · q1|0
(
θ1|θ0

)
q0
(
θ0
)
dθ0 · · · dθk−2dθk−1dθk, (4.16)

where q0
(
θ0
)
is the initial density of θ0.

If Pr
(
θk ∈ A|θk−1

)
is independent of k, we say the Markov chain is homogeneous and drop

the subscript for q:

qk|k−1

(
θk|θk−1

)
= q
(
θk|θk−1

)
. (4.17)

We call the density q(·|·) the transition kernel. For example, if k = 2 we can write:

Pr
(
θ2 ∈ A

)
=

∫
A

∫ ∞

−∞

∫ ∞

−∞
q
(
θ2|θ1

)
q
(
θ1|θ0

)
q0
(
θ0
)
dθ0dθ1dθ2. (4.18)

In this work we assume the Markov chains are homogeneous. Note that [31], even if the chain

is homogeneous and the transition kernel does not depend on k, the marginal densities of the

θk still may depend on k.

4.2.2 Properties

The distribution p(·) is a stationary distribution if, for any k, [31]

Pr(θk ∈ A) =

∫
A
p(θ)dθ. (4.19)
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Markov chains with certain properties have unique stationary distributions. The following

definitions provide the framework for the convergence theory.

Irreducibility

Let p be a stationary distribution of a Markov chain and A be a set such that
∫
A p(θ)dθ > 0. If

for any initial state the probability of reaching A at some point is positive, the Markov chain

is p-irreducible [31,91].

Recurrence

Let A be any set such that
∫
A p(θ)dθ > 0. If a chain is p-irreducible with stationary distribution

p and the probability of revisiting A at some time is one, then the Markov chain is recurrent.

The chain is positive recurrent if the expected value of the time it takes for the chain to return

to A is finite [31,42,88].

If for all initial states

Pr(θk ∈ A infinitely often) = 1 (4.20)

the Markov chain is Harris recurrent [31,91].

Detailed Balance Condition

For a distribution p(·) and transition kernel q(·|·) we define the detailed balance condition:

p(θ∗)q(θk|θ∗) = p(θk)q(θ∗|θk). (4.21)

If a Markov chain is p-irreducible and (4.21) is satisfied, then p(·) is the unique stationary

distribution of the Markov chain and the chain is positive recurrent [42,91].
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Aperiodicity

If states in the Markov chain are visited only at regular intervals, the chain is said to be periodic.

Otherwise, the chain is aperiodic [31,91].

Ergodicity

A Markov chain is ergodic if it is aperiodic and positive Harris recurrent [31,42,91].

4.2.3 Convergence Theorems

We can now state the following theorem from [31,42,87,91]:

Theorem 4 If a Markov chain with stationary distribution p is ergodic, then p is the unique

stationary distribution and

lim
k→∞

Pr(θk ∈ A) =

∫
A
p(θ)dθ. (4.22)

The next two theorems involve a sample from an ergodic Markov chain.

Assumption 5 Let θ0, θ1, · · · , θm be a sample from an ergodic Markov chain with stationary

distribution p, h(θ) be a real-valued function such that

∫
h(θ)p(θ)dθ <∞ (4.23)

and hm = 1
m+1

∑m
j=0 h(θ

j).

The Ergodic Theorem is similar Law of Large Numbers, Theorem 2, except the sample is

no longer random.

Theorem 6 Ergodic Theorem. Let Assumption 5 hold. Then for every ϵ > 0, [30,31,42,91],

Pr

(
lim

m→∞

∣∣∣∣∣hm −
∫
h(θ)p(θ)dθ

∣∣∣∣∣ < ϵ

)
= 1. (4.24)
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The implication of the Ergodic Theorem is that we can use a sample from an ergodic Markov

chain to approximate expectations under the stationary distribution. We also have a version of

the Central Limit Theorem for Markov Chains. First, we define the notion of convergence in

distribution.

Definition 4.1 A sequence of random variables θ0, θ1, · · · , with cumulative distribution func-

tions Fθi, respectively, converges in distribution to a random variable θ∗ with cumulative distri-

bution function Fθ∗(θ) if

lim
m→∞

Fθm(θ) = Fθ∗(θ) (4.25)

at all points θ where Fθ∗(θ) is continuous. [30]

Theorem 7 Central Limit Theorem for Markov Chains. Let Assumption 5 hold. Then

there exists a real number σ2(h) such that

√
m

(
hm −

∫
h(θ)p(θ)dθ

)
→ N

(
0, σ2(h)

)
, (4.26)

in distribution, for any initial distribution [88,91].

4.3 Markov Chain Monte Carlo

By forming a Markov chain whose stationary distribution is the posterior density p(θ|Y ) in

(3.57), we can obtain a sample from p(θ|Y ). We can then use the theory of Monte Carlo

integration to approximate posterior summaries using our sample. This is the idea of MCMC

methods.

We will discuss three MCMC methods: Gibbs sampling, the Metropolis-Hastings algorithm,

and the Delayed Rejection Adaptive Metropolis algorithm.
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4.3.1 Gibbs Sampling

Gibbs sampling relies on the form of the full conditional (posterior) densities of the parameters

θi in our parameter vector θ = (θ1, . . . , θp). That is, we need to know the form of the posterior

densities, p(θi|Y, θ1, . . . , θi−1, θi+1, . . . , θp) of the θi, which are generally not the same as the

marginal posterior densities, p(θi|Y ). This means we need conjugate prior densities (see Section

3.2.2 for details).

The Gibbs scheme also works if we update the parameters as vectors, as long as we knew their

joint full conditional densities. This idea, called blocking, is especially useful when parameters

are highly correlated.

Note that in subsection 3.2.2 we give an example of deriving the full conditional posterior

densities when conjugate priors are available. For the general problem with arbitrary θ and Y ,

we follow the notation in [31] and assume the densities depend on the data, p(θ|Y ) = p(θ).

Say we have the parameters θ = (θ1, . . . , θp) and we know their full conditional densities:

p1|2,···p(θ1|θ2, . . . , θp)

p2|1,3,···p(θ2|θ1, θ3, . . . , θp)
...

pp−1|1,2,···p−2,p(θp−1|θ1, . . . , θp−2, θp)

pp|1,2,···p−1(θp|θ1, . . . , θp−1).

To begin the Gibbs sampler, we choose initial parameter values, θ0 = (θ01, . . . , θ
0
p), and

update these values iteratively by sampling from their respective full conditional densities:
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θ11 ∼ p1|2,···p(θ1|θ02, . . . , θ0p)

θ12 ∼ p2|1,3,···p(θ2|θ11, θ03, . . . , θ0p)

θ13 ∼ p3|1,2,4,··· ,p(θ3|θ11, θ12, θ04, . . . , θ0p)
...

θ1p−1 ∼ pp−1|1,2,···p−2,p(θp−1|θ11, . . . , θ1p−2, θ
0
p)

θ1p ∼ pp|1,2,···p−1(θp|θ11, . . . , θ1p−1).

Note how each parameter is updated in all subsequent densities. The stationary transition

probabilities, independent of k, are defined as:

θk1 ∼ p1|2,···p(θ1|θk−1
2 , . . . , θk−1

p )

θk2 ∼ p2|1,3,···p(θ2|θk1 , θ
k−1
3 , . . . , θk−1

p )

θk3 ∼ p3|1,2,4,··· ,p(θ3|θk1 , θk2 , θ
k−1
4 , . . . , θk−1

p )

...

θkp−1 ∼ pp−1|1,2,···p−2,p(θp−1|θk1 , . . . , θkp−2, θ
k−1
p )

θkp ∼ pp|1,2,···p−1(θp|θk1 , . . . , θkp−1).

Thus, adopting the notation from [31], we obtain the stationary transition density [31]

q(θk|θk−1) = q(θk1 , θ
k
2 , . . . , θ

k
p |θk−1

1 , θk−1
2 , . . . , θk−1

p ) (4.27)

= p1|2,···p(θ
k
1 |θk−1

2 , . . . , θk−1
p )p2|1,3,···p(θ

k
2 |θk1 , θk−1

3 , . . . , θk−1
p ) (4.28)

· · · pp|1,2,···p−1(θ
k
p |θk1 , . . . , θkp−1). (4.29)

The Gibbs algorithm is easy to implement but requires conjugate prior distributions, which
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are often difficult or impossible to obtain when considering the densities of parameters in a

nonlinear model. An additional disadvantage of the Gibbs algorithm is that we are unable to

update all of the parameters at once, which can lead to a slower convergence due to correlated

parameters.

Algorithm 8 (Gibbs Sampling)

1. Choose Ns, the number of samples to draw from the posterior density, and initial pa-

rameter values θ0 = (θ01, . . . , θ
0
d), where components θ0i are blocks: either scalars or vec-

tors [31,42].

2. For k = 1 : Ns

(a) For i = 1 : d

• Sample θki from pi|1,2,··· ,i−1,i+1,··· ,d(θi|Y, θk1 , . . . , θki−1, θ
k−1
i+1 , . . . , θ

k−1
d ).

4.3.2 Metropolis-Hastings

The Metropolis-Hastings algorithm is useful for sampling the posterior density when conjugate

priors are unavailable. One of the benefits of the Metropolis-Hastings algorithm is that we

can update the entire parameter vector in one iteration. We could also use it to evaluate

unrecognizable full conditional distributions within the Gibbs Sampler. This idea is called

Metropolis-within-Gibbs [31].

Metropolis-Hastings is an accept-reject algorithm, meaning candidate parameter values are

selected from a proposal density and accepted or rejected according to their value under the

posterior density relative to that of the current parameter value. The Metropolis algorithm was

developed by Metropolis [71] and then generalized by Hastings [49].

We begin by considering the parameters θ = (θ1, . . . , θp) and their posterior density p(θ),

which in our notation we again assume as in [31] depends on the data, p(θ|Y ) = p(θ). We also

consider the proposal density h(θ∗|θk), which generates a sample θ∗ given the current state of

the Markov chain, θk. We call θ∗ the candidate parameter value.
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The normal distribution is a common choice for the proposal density h(θ∗|θk). An example

of this choice is seen in [87]. In this case, the mean of the proposal is often the current parameter

value, θk, and the variance of the density may be tuned so the proposal density better reflects

the posterior density.

We define

α(θ∗, θk) = min

{
1,
p(θ∗)h(θk|θ∗)
p(θk)h(θ∗|θk)

}
(4.30)

as the acceptance probability [31]. We then sample U ∼ U [0, 1] and accept θk+1 = θ∗ if U ≤ α.

If U > α, we keep the current parameter value and set θk+1 = θk [31].

This is the idea of the Metropolis-Hastings algorithm. We note that in (4.30) any constants

in the posterior density will cancel in the fraction, so we are only required to know the kernel

of the posterior density [31]. Also, if the proposal density is symmetric, h(θk|θ∗) = h(θ∗|θk),

then we have

αM (θ∗, θk) = min

{
1,
p(θ∗)

p(θk)

}
, (4.31)

the acceptance probability for the Metropolis algorithm [31]. We reason as in [31] that in this

case, if p(θ∗) > p(θk), we accept θ∗. Otherwise, we accept θ∗ with probability αM .

It is important that the proposal density h(θ∗|θk) generates values throughout the parameter

space as well as parameter values with a high probability of acceptance [42]. Ideally, the proposal

density will be similar to the posterior density, but this is not a requirement [31, 47]. We may

tune the proposal density as the simulation progresses in order to improve the acceptance rate.

An acceptance rate between 20% and 50% is desirable [42]. To accomplish this tuning, we may

use a normal proposal density and adjust the variance or covariance throughout the simulation

based on the acceptance rate up to that point [31].

Algorithm 9 (Metropolis-Hastings)

1. Choose Ns the number of samples to draw from the posterior density, and initial parameter

values θ0 such that p(θ0) > 0 [87].
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2. For k = 1 : Ns

(a) Sample θ∗ from proposal density h(θ∗|θk−1).

(b) Compute

α(θ∗, θk−1) = min

{
1,

p(θ∗)h(θk−1|θ∗)
p(θk−1)h(θ∗|θk−1)

}
. (4.32)

(c) Sample U from U [0, 1].

(d) If U ≤ α set θk = θ∗, Else set θk = θk−1.

4.3.3 Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm [47] builds upon the Metropolis-

Hastings algorithm by using multiple proposal densities and tuning the proposal covariance with

a recursive formula. Matlab code written by Marko Laine for this algorithm is available here:

http://helios.fmi.fi/~lainema/mcmc.

Delayed Rejection

The delayed rejection (DR) aspect of DRAM is implemented when a candidate value θ1∗ at step

k is rejected. Instead of retaining the current value θk as the new value θk+1, a new candidate

value θ2∗ is selected from a second stage proposal density [47]. This delayed rejection scheme

may be repeated for an arbitrary number of stages, i, ultimately drawing a candidate value

from the ith-stage proposal density and deciding to accept θk+1 = θi∗ or retain our current

value, θk+1 = θk.

We explain the scheme in terms of the acceptance probabilities, α. First, consider the

acceptance probability α1 of accepting θ1∗, simulated from proposal density h1(θ
1∗|θk), given

the current state of the chain θk:

α1(θ
1∗, θk) = min

{
1,
p(θ1∗)h1(θ

k|θ1∗)
p(θk)h1(θ1∗|θk)

}
= min

{
1,
N1

D1

}
. (4.33)
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If θ1∗ is rejected, we propose another value θ2∗ from the second stage proposal density

h2(θ
2∗|θk, θ1∗) and accept it with probability [47]:

α2(θ
2∗, θ1∗, θk) = min

{
1,
p(θ2∗)h1(θ

1∗|θ2∗)h2(θk|θ2∗, θ1∗)[1− α1(θ
1∗, θ2∗)]

p(θk)h1(θ1∗|θk)h2(θ2∗|θk, θ1∗)[1− α1(θ1∗, θk)]

}
(4.34)

= min

{
1,
N2

D2

}
. (4.35)

We can consider any number of proposal densities, making this an iterative process [47].

The acceptance probability at stage i is [47] [72]:

αi(θ
i∗, . . . , θ1∗, θk) =

min

{
1,
p(θi∗)h1(θ

i−1∗|θi∗)h2(θi−2∗|θi∗, θi−1∗) · · ·hi(θk|θi∗, θi−1∗, . . .)

p(θk)h1(θ1∗|θk)h2(θ2∗|θk, θ1∗) · · ·hi(θi∗|θk, θ1∗, . . .)

[1− α1(θ
i−1∗, θi∗)][1− α2(θ

i−2∗, θi−1∗, θi∗)] · · · [1− αi−1(θ
1∗, . . . , θi∗)]

[1− α1(θ1∗, θk)][1− α2(θ2∗, θ1∗, θk)] · · · [1− αi−1(θi−1∗, . . . , θ1∗, θk)]

}

= min

{
1,
Ni

Di

}
,

where qi is the ith-stage proposal density. Each time that a candidate value θi∗ is rejected, it

means that αi =
Ni
Di

as well as that α1, . . . , αi−1 are N1
D1
, . . . , Ni−1

Di−1
, respectively. Thus we have

the formulas [47]

Di = hi(θ
i∗|θk, . . . , θi−1∗)(Di−1 −Ni−1), (4.36)

and

Di = hi(θ
i∗|θk, . . . , θi−1∗)[hi−1(θ

i−1∗|θk, . . . , θi−2∗)[hi−2(θ
i−2∗|θk, . . . , θi−3∗) · · · (4.37)

[h3[h2(θ
2∗|θk, θ1∗)[p(θk)h1(θ1∗|θk)−N1]−N2]−N3]−N4] · · · −Ni−1]. (4.38)
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We explain the benefit of the delayed rejection scheme in terms of asymptotic variance.

Consider an estimate computed using the sample from DRAM. As the sample size grows, the

variance of this estimate decreases. The benefit of using the delayed rejection scheme is that

the variance of the estimate decreases more quickly than the variance of an estimate computed

with a Metropolis-Hastings generated sample. In this sense, the delayed rejection scheme is

more efficient [47,88].

Adaptive Metropolis

The adaptive aspect of DRAM uses the previous sampled values from the Markov chain to

compute the covariance matrix of a normal proposal density. After a certain non-adaptation

period in which we use the initial covariance, we begin the adaptation phase [47]. We fix the

length of the non-adaptation period as k0, meaning we draw samples θ0, . . . , θk0 using the initial

proposal covariance C0. For samples after this point, we update the proposal covariance matrix

Ck using the sample up to the current point. For small ϵ > 0, scaling parameter sp which

depends only on the dimension of the parameter space and p−dimensional identity matrix

Ip [47],

Ck =


C0, k ≤ k0

spCov(θ
0, . . . , θk−1) + spϵIp, k > k0

. (4.39)

Letting θk = 1
k+1

∑k
i=0 θ

i, the formula for the covariance is [47]:

Cov(θ0, . . . , θk) =
1

k

(
k∑

i=0

θi
(
θi
)T

− (k + 1)θk
(
θk
)T)

. (4.40)

The proposal covariance can be updated with a recursive formula [47]:

Ck+1 =
k − 1

k
Ck +

sp
k

(
kθk−1

(
θk−1

)T
− (k + 1)θk

(
θk
)T

+ θk
(
θk
)T

+ ϵIp

)
. (4.41)
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The adaptive scheme makes the overall simulation more efficient [47] by increasing the ability

of the proposal density to reflect the variances of and covariances between the parameters.

We would like for our proposal density to be similar to the posterior density. The delayed

rejection strategy of DRAM uses multiple proposal densities, some of which may be similar

to the posterior. Meanwhile, the adaptive strategy tunes the proposal densities based on the

previous samples. Together, these two strategies lead the proposal to become more like the

posterior so that we obtain samples from the posterior more efficiently.

As described in [47], one choice for the first stage proposal density is the normal distribution.

Thus, the covariance is tuned following the adaptive Metropolis theory. The higher stage

proposal densities are of the same form, but the covariance of each density is a constant multiple

of the stage one covariance [47].

Below is the DRAM algorithm. We follow [87] and show only the case for a second stage

proposal.

Algorithm 10 (DRAM)

1. Choose Ns the number of samples to draw from the posterior density, initial covariance

C0, initial parameter values θ0 and the length of the adaptation interval, k0.

2. For k = 1 : Ns

(a) Sample θ1∗ from proposal density h1(θ
1∗|θk−1) ∼ N(θk−1, Ck).

(b) Compute

α1(θ
1∗, θk−1) = min

{
1,

p(θ1∗)h1(θ
k−1|θ1∗)

p(θk−1)h1(θ1∗|θk−1)

}

(c) Sample U from U [0, 1].

(d) If U ≤ α1 set θk = θ1∗.

(e) Else sample θ2∗ from h2(θ
2∗|θk−1, θ1∗)

• Compute α2(θ
2∗, θ1∗, θk−1) (See Equation (4.34)).
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• Sample U from U [0, 1].

• If U ≤ α2 set θk = θ2∗

• Else set θk = θk−1

3. If k ≥ k0, update Ck by (4.41).

We note that this algorithm could be adapted slightly to allow for non-adaptation periods

throughout the simulation, instead of just at the beginning [47].

4.3.4 Convergence Diagnostics

The theory for MCMC methods establishes that the distribution from which we sample will

converge to the posterior distribution, eventually. At the beginning of our simulation, our

samples may be from a distribution far from the desired posterior distribution. Thus, we discard

the first portion of samples before we perform our analysis. The first part of the simulation

which we discard is called the burn-in period [31]. The problem is deciding the length of the

burn-in period. There are many convergence diagnostics to determine if we have performed a

sufficient number of iterations in order to consider our sample an approximate random sample

from the posterior density [31, 42]. Here we consider diagnostics based on plots of the chain

histories, the autocorrelation function and the Monte Carlo error.

Chain Histories

A simple way to assess the convergence of the Markov chain is to plot the history of the chain.

The plot of a chain that has settled down [31] to the stationary distribution has noticeable

characteristics. For one, it will not contain long flat periods in which several consecutive

candidate values have been rejected. The chain will no longer follow trajectories exploring the

parameter space but will be focused on an interval. It will appear to be rapidly and randomly

oscillating between values with a consistent amplitude.
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To guard against sampling from local maxima, a test is to run multiple chains with different

initial values. The plots of the chains should all converge to the same distribution [31].
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Figure 4.1: Example of Markov chain following a trajectory through the parameter space.
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Figure 4.2: Example of Markov chain rejecting too many values.
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Figure 4.3: Example of Markov chain convergence to stationary distribution.
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Autocorrelation Function

Because we use a Markov chain to draw samples from the posterior distribution, consecutive

samples are not independent. It is important to sample enough values to accommodate for

this inherent correlation [31]. We use the autocorrelation function to estimate the correlation

between draws that are m integers apart.

If we let θk = 1
k+1

∑k
i=0 θ

i, the empirical lag m ≥ 0 autocovariance for scalar θ is [40,42,44]:

γ(m) =
1

k + 1

k−m∑
i=0

(θi − θk)(θi+m − θk). (4.42)

We use the sample variance γ(0) = 1
k

∑k
i=0(θ

i − θk)2 [30] to compute the lag m autocorre-

lation [16,42]:

ρ(m) =
γ(m)

γ(0)
=

1
k+1

∑k−m
i=0 (θi − θk)(θi+m − θk)

1
k

∑k
i=0(θ

i − θk)2
. (4.43)

The integrated autocorrelation time, τ , is a scalar summary of the autocorrelation [42]:

τ = 1 + 2

∞∑
m=1

ρ(m). (4.44)

The autocorrelation function should decrease as m increases. A satisfactory plot of ρ(m)

is in Figure 4.4, while an unsatisfactory plot is in Figure 4.5. If the autocorrelation does not

decrease rapidly, we must draw more samples or use thinning to create a random sample [31].
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Figure 4.4: Example of autocorrelation plot with satisfactory rate of decrease.
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Figure 4.5: Example of autocorrelation plot with high autocorrelation (unsatisfactory).
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Monte Carlo Standard Error

From the Central Limit Theorem, Theorem 3, and the Ergodic Theorem, Theorem 6, we know

that
√
m(θm − µ) → N(0, σ2) as m→ ∞. (4.45)

The Monte Carlo Standard Error, σ̂√
m
, relates the sample size m to the Monte Carlo Error

θm−µ [38,40]. We compute the estimate σ̂ using batch means [40,65]. That is [40], for n = anbn

and

θk =
1

bn

bn∑
i=1

θkbn+i, (4.46)

σ̂2 =
bn

an − 1

an−1∑
k=0

(θk − θm)2. (4.47)

The number of batches, an, and the number of samples in each batch, bn, may depend on

n [38]. The default values in R are
√
n = an = bn and in DRAM are bn = max(10, fix(n/20))

[39,40,65,82].

If the Monte Carlo Standard Error is large, we should continue to sample from the posterior

[31]. Consider the interval θm ± 2 σ̂√
m
. We use an example from [31] to illustrate satisfactory

and unsatisfactory Monte Carlo Standard Errors: A satisfactory interval is

θm ± 2
σ̂√
m

= 10± 0.00001, (4.48)

while unsatisfactory intervals are 10± 0.5 and 0.37± 0.1.

4.3.5 Prediction Intervals

One of the advantages of using Bayesian inference is the theoretical framework for propagating

uncertainty in parameters through the model. In this section we describe the use of prediction

intervals for future observations.

Prediction intervals are a type of interval estimate, as are confidence and credible intervals.
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However, each of these types of interval estimates is interpreted differently. Confidence intervals

are common in the frequentist approach to statistical inference and quantify variability in

repeating the experiment. A 95% confidence interval means that if an experiment is repeated

many times, 95% of the confidence intervals will contain the true value of the quantity of

interest. In this sense, the quantity of interest is fixed and unknown, but not random.

We find credible, or probability, intervals using the posterior density of parameters or pre-

dictions, whichever is our quantity of interest. A 95% credible interval means that we believe

the quantity of interest is in the interval with 95% probability. Here, we consider the quantity

of interest a random variable, making this a product of Bayesian inference.

When we discuss credible intervals in the context of predictions, again a Bayesian idea, we

consider the expected value of future observations E(ynew), not the observations themselves,

yi [87]. Prediction intervals, however, quantify the value and variability of future observations

yi and incorporate measurement error. A 95% prediction interval means we believe that future

observations are within the interval with a probability of 95%.

In practice, we compute prediction intervals by sampling θ1, · · · , θm from the posterior

density p(θ|Y ) and computing model values at each spatiotemporal point u(θi) = ui at the

sample values. That is, for each spatiotemporal point we have m function values. We also

sample the error variance σ2 at the same points in the chain so that we have m values for the

error variance. We perturb the ui by adding piσi, where pi ∼ N(0, 1), to compute [65]

û = u+ piσi = ui + ϵ̂i.

Thus we have a sample of m values: û = u+ ϵ̂ for each spatiotemporal point [88]. We compute

the sample percentile values to approximate the distribution percentile values [31, 47, 65], or

prediction intervals
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Chapter 5

Results: Calibration of the

Apparent Thermal Diffusivity

In this chapter we discuss the results of using ADH with PEST to determine a scalar estimate

for k as well as the analytical model with DRAM to sample the posterior density of k. We first

describe the data we use in the calibration process.

5.1 Data

We use data collected by the US Army Corps of Engineers to calibrate our model and param-

eters. The data is from three locations in North America representing three different climatic

zones under the Köppen climate classification system [36], [35]. The Köppen system classifies

the earth’s landmass into five regions depending on temperature and precipitation, Types A-

E [77]. An additional high-altitude region is specified Type H [77]. We consider data from

tropical, Type A; desert, Type B; and undifferentiated highlands, Type H; climactic zones. We

refer to these datasets as Dataset A, Dataset B and Dataset H, respectively. A meteorological

(met) station at each location was used to collect the data over 5-minute intervals for a period

of 40 days. Since we are considering data with a constant water content, we only consider
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data for consecutive days when there was no precipitation. Thus, each dataset has a different

temporal length [36].

The met stations served to collect subsurface, surface and air temperatures, shortwave and

longwave radiation measurements, wind speed and direction, soil moisture content, relative

humidity, barometric pressure, subsurface heat flux and precipitation. For our calibration

efforts we only use data from the temperature probes buried below the surface but note that

additional data is used in the ADH boundary condition. Thermocouples located on the probes

at depths of 1, 5, 10, 15, 20, 25 and 30cm are accurate to ±0.1 degrees Celsius [35]. Additional

details regarding the data are in Appendix A.

In addition to the met station data, we have soil samples from each location in order to

perform lab measurements. The lab analysis leads to the empirical estimates for k [36] of Lu

and Johansen [57,66]

Our measurements for the shortwave and longwave radiation give us insight into variations

in the surface and subsurface temperatures. We collect the shortwave data using the Eppley

Laboratory Precision Spectral Pyranometer (PSP) which corresponds to a wavelength range of

0.285-2.8 um, including ultraviolet, visible and near-infrared radiation [35] [13]. This shortwave

data is the amount of shortwave solar radiation reaching the earth’s surface inW/m2 . Radiation

emitted by the earth and atmosphere is terrestrial radiation. This longwave or infrared radiation

falls into a range of 4-100um [13], the far infrared spectrum [56]. We use the Eppley Laboratory

Precision Infrared Radiometer to measure longwave radiation in a wavelength range of 3.5-

50um [35].

We illustrate the effects of solar and terrestrial radiation on ground temperature in Figures

5.1 and 5.2, where we plot the shortwave and longwave radiation as well as the temperature at

1cm depth for Datasets A and H.

In Figure 5.1, we see spikes in the shortwave radiation up to nearly 1000 W/m-2 in the first

two days and the fourth day of our data. However, on days 2 and 5 shortwave radiation peaks

closer to 200 W/m-2. Longwave radiation remains near 400 W/m-2 both day and night. Since
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Dataset A is from a tropical rainforest, both cloud cover and vegetation prevent much of the

shortwave radiation from reaching the ground surface. Small breaks in cloud cover allowing the

shortwave radiation to reach the surface cause spikes in the ground temperature, as seen in the

temperature plot in Figure 5.1.
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Figure 5.1: Shortwave radiation, longwave radiation and temperature at 1cm depth for Dataset
A. The effects of spikes in shortwave radiation are visible in the plot of temperature at 1cm
depth.

In Figure 5.2 we see daily peaks in shortwave radiation around 700-900 W/m-2, a contrast
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to the large variations seen in Figure 5.1. The ground temperature again reflects the amount

of shortwave radiation reaching the surface. The relative difference between temperature peaks

is less for Dataset H than for Dataset A.
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Figure 5.2: Shortwave radiation, longwave radiation and temperature at 1cm depth for Dataset
H.

We will see the effects discussed here when we discuss our results.

For further details on the met station, see Appendix A.
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5.2 Least Squares (PEST) with Numerical Model (ADH)

We optimize over soil parameters using PEST with ADH as the model. Specifically, we are

interested in the six thermal soil material parameters in Table 5.1.

Table 5.1: Six thermal material parameters of interest.

Parameter Symbol

Specific Heat of Solid cp,s

Dry Thermal Conductivity κd

Saturated Thermal Conductivity κs

Emissivity ϵg

Porosity ϕ

Albedo αg

For Dataset H, we narrow down a subset of the parameters as detailed in [35] and Subsection

5.2.3. For Datasets A and B, we use subset selection to reduce the number of parameters. Doing

so reduces the computation time for our calibration problem as well as the condition number

of the Jacobian matrix. We select a subset of columns corresponding to a well-conditioned

Jacobian matrix [55] using the strong rank revealing QR factorization algorithm [46] using the

code implemented in [55]. These columns correspond to an identifiable subset of our parameters

which we will keep for the calibration process [55, 81]. We set the rest of the parameters to

nominal values [55,81].

We use the constants in Table 5.2 in our simulation and to calculate the diffusivity k from

the PEST results.

63



Table 5.2: Additional values used in ADH or to calculate k.

Parameter (ADH Card,

Units)

Symbol Value/Source

Thermal Conductivity of Wa-

ter (TKW, W/m-K)

κw (0.58) [25]

Specific Heat of Water (SHW,

W-hr/g-K)

cp,w (0.001161472) [48]

Specific Gravity (Density) of

Water (SGW, g/cm3)

ρw (106) [33]

Specific Heat of Gas (SHG,

W-hr/g-K)

cp,g (0.000281111) [9]

Specific Gravity (Density) of

Gas (SGG, g/cm3)

ρg (1000) Value from [33] rounded

to one significant figure

Thermal Conductivity of Gas

(TKG, W/m-K)

κg (0.025) [93]

The start and end times of the precipitation-free data from each location are detailed in

Table 5.3, as well as the initial time specified for the ADH simulation. We compare the output

of ADH to the data every 15 minutes and set the maximum time step at 15 minutes.
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Table 5.3: Date of ADH simulation for each dataset.

Dataset Initial Time (Julian day, hour) Start, End Time of Data

(Julian day, hour)

A 125 0:00 126 6:00 - 130 6:00

B 219 0:00 220 1:00 - 230 1:00

H 260 0:00 261 12:00 - 274 12:00

We must run the groundwater portion of ADH, even though we have a constant saturation,

so we must specify an initial hydraulic head. A vertical column of water exerts a pressure

directly related to its height [98]. The hydraulic head is described by the height of the column

in meters, relative to some reference point. In our case, setting an initial hydraulic head of -25

meters means the water table is 25 meters below the bottom of our domain, which is 1m depth.

We determine the initial temperature by computing the average temperature at 30cm depth

over the necessary ramp-up period. We either round the temperature to three decimal places or

to the nearest whole number. We choose the initial total head by first determining the average

saturation over the ramp-up period. To do this we divide the average water content by the

initial porosity. Once we have the average saturation over the ramp-up period, we set the initial

total head so that the initial saturation values ADH computes are as close as possible to the

values we have determined. We use only increments of meters to fix the initial total head.

We perform our simulations on a 4x4x200 mesh. We use ADH svn revision number 8832M,

PEST version 11.3. (Watermark Numerical Computing), a MacPro with two Quad-Core Intel

Xeon processors and OS X 10.6.8.

65



5.2.1 Results: Dataset A

Initial Conditions

The optimization routine requires a set of subsurface data, the calibration data, to measure

against the simulation (ADH) output. We also must inform ADH of the surface data, the

simulation data, in order to implement the Neumann boundary condition. For Datasets B and

H, our simulation data begins at least 24 hours before our calibration data, allowing constant

initial conditions [35]. However, for Dataset A, our simulation data begins just 6 hours before

our calibration data. We choose to use the output of a previous simulation as an initial condition

since we do not have the necessary time interval (24 hours) to accommodate a constant initial

condition.

We choose the initial condition in the following way, noting that the results here are for the

post-subset selection initial case. The precipitation-free probe data begins at 6:00 on Julian

day 125 while the boundary condition data for ADH begins at 0:00 on Julian day 125. We

begin a simulation at 0:00 on day 125 with a constant initial condition and use the output after

48 hours (at 24:00 on day 126) as our new initial condition. We compare the following two

simulations to evaluate this choice:

Table 5.4: Test cases for Dataset A initial conditions.

Case Description

A Begin simulation at 0:00 Julian day 125 with constant initial

condition. Measure against probe data for hours 30-54 (al-

lowing 30 hours for the initial condition to be incorporated).

B Begin simulation at 0:00 Julian day 126 with initial condition

from previous simulation. Measure against probe data for

hours 6-30 (same comparison window as A).
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Case A will be the standard of comparison as we compare ADH output to data after running

ADH for 24 hours. Case B is the proposed initial condition for our simulations. We set the

initial conditions for both hydraulic head and temperature, obtaining them

The weighted relative residual sum-of-squares for Case A is 114.5 and for Case B is 123.1.

Plot 5.3 is Case A, Case B and the data at 6:00 on Julian day 125. Plot 5.4 is Case A, Case B

and the data at 12:00 on Julian day 125. We find that the initial condition used in Case B is

sufficient and proceed with the simulation.
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Figure 5.3: Temperature data and ADH output for Cases A and B, 6:00 on Julian day 125.
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Figure 5.4: Temperature data and ADH output for Cases A and B, 12:00 on Julian day 125.

Optimization Details

We weight the data for Dataset A in the following way:

Table 5.5: Weights for Dataset A.

Weight Depth

0.0800 1 cm

0.1000 5 cm

0.1250 10 cm

0.2100 15 cm

0.3125 20 cm

0.5000 25 cm

0.7140 30 cm
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We first compute the Jacobian using all six parameters in Table 5.1 using a ramped-up

initial condition similar to the one described above. The singular values of the Jacobian matrix

computed with the initial parameter values are in Table 5.6. These values indicate the Jacobian

has a condition number on the order of 107.

Table 5.6: Singular values of Jacobian computed with all initial parameters for Dataset A.

3.6493e+05

2.5037e+02

3.2584e+01

6.5330e+00

2.0259e+00

5.5485e-02

We perform subset selection and fix the dry thermal conductivity κd at 0.2, porosity ϕ at

0.5 and saturated thermal conductivity κs at 1.4. Table 5.7 contains the fixed and initial values

used in our simulations.
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Table 5.7: Fixed values and initial values for PEST optimization, Dataset A constant satura-
tion.

Parameter (ADH Card) Symbol Value Source

Porosity (POR) ϕ 0.5 DBS&A or ERDC lab

Quartz Fraction (QTZ) q 0.45 Expert

Percentage of Sand and

Gravel (FSG)

0.875 ERDC lab

Specific Gravity (Density) of

Solid (SGS)

ρs 2.6 Calculated using DBS&A

data

Dry Thermal Conductivity

(TKD)

κd 0.2 Depends on bulk soil density

ρb [57] or porosity ϕ [66]

Saturated Thermal Conduc-

tivity (TKS)

κs 1.4 Depends on ϕ, q

Specific Heat of Solid (SHS) cp,s 3.240 E-06 (Initial value)

Emissivity (EMS) ϵg 0.941152 (Initial value)

Albedo (ALB) αg 0.399762 (Initial value)

The results of the PEST optimization for the remaining three parameters are in Table 5.8.

The weighted residual sum-of-squares for the optimized values was 10.03.

Table 5.8: Results of PEST optimization for Dataset A.

Parameter Symbol Value

Specific Heat of Solid cp,s 1.99 E-04

Emissivity ϵg 0.380492

Albedo αg 0.701515
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ADH calculates a final saturation of 38.7% at a depth of 15cm. We use the values in Tables

5.2, 5.7, and 5.8 to calculate k: 2.071E-03.

We plot ADH temperature output using the optimized parameters against our data to

evaluate the PEST results. The ADH simulations are run on a column corresponding to 2m

depth. Figure 5.5 is the output at 1cm and 30cm depth over the calibration period.
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Figure 5.5: Dataset A model and temperature data at 1cm and 30cm depth over calibration
period.

For a plot of the temperature output at all depths, see Appendix D.
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5.2.2 Results: Dataset B

For Dataset B, we set a constant initial temperature of 32.837 degrees Celsius for all depths.

This is the average temperature at 30cm depth using the available data from the ramp-up

period. We set a constant initial hydraulic head of -8m, corresponding to an average saturation

of about 14% at 15cm depth over the ramp-up period. Please note that we only have probe

data beginning Julian day 219 at time 16:05 through Julian day 220 0:55 to use to determine

these initial conditions.

Optimization Details

We weight the data for Dataset B in the same way as Dataset A. We again compute the Jacobian

of the parameters in Table 5.1. The singular values of the Jacobian matrix computed with initial

parameter values are in Table 5.9. These values indicate the Jacobian has a condition number

on the order of 108.

Table 5.9: Singular values of Jacobian computed with all initial parameters for Dataset B.

1.0229e+07

1.4038e+03

2.1444e+02

5.6277e+01

1.3927e+01

6.0764e-01

We perform subset selection and fix the dry thermal conductivity κd at 0.33, porosity ϕ at

0.311 and saturated thermal conductivity κs at 1.7. The values used in ADH are listed in Table

5.10
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Table 5.10: Fixed values and initial values for PEST optimization, Dataset B constant satu-
ration.

Parameter (ADH Card) Symbol Value Source

Porosity (POR) ϕ 0.311 Average from DBS&A over all

samples and depths

Quartz Fraction (QTZ) q 0.3 Expert

Percentage of Sand and

Gravel (FSG)

0.95 DBS&A

Specific Gravity (Density) of

Solid (SGS)

ρs 2.675 Average from ERDC or

DBS&A

Dry Thermal Conductivity

(TKD)

κd 0.33 Depends on bulk soil density

ρb [57] or porosity ϕ [66]

Saturated Thermal Conduc-

tivity (TKS)

κs 1.7 Depends on ϕ, q

Emissivity (EMS) ϵg 0.694223 (Initial value)

Albedo (ALB) αg 0.306232 (Initial value)

Specific Heat of Solid (SHS) cp,s 3.240E-06 (Initial value)

The results PEST optimization for the remaining three parameters are in Table 5.11. The

weighted residual sum-of-squares for the optimized values was 214.5.

Table 5.11: Results of PEST optimization for Dataset B.

Parameter Symbol Value

Specific Heat of Solid cp,s 4.52 E-04

Emissivity ϵg 0.952783

Albedo αg 0.142241
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Simulation Details and Results

ADH calculates a final saturation of 13.1% at a depth of 15 cm. We use the values in Tables

5.2, 5.10, and 5.11 to calculate k: 9.277E-04.

Figure 5.6 contains the ADH output and data at 1cm and 30cm depth.
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Figure 5.6: Dataset B model and temperature data at 1cm and 30cm depth over calibration
period.

For a plot of the temperature output at all depths, see Appendix D.
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5.2.3 Results: Dataset H

In [35], extensive care is taken to calibrate ADH to match Dataset H. We refer to [35] for many

details justifying the fit but make a few points here. The domain in Dataset H is treated as

two materials because simulations using one material did not fit the data for the entire domain,

but only for portions [35]. We specify a 1cm insulating layer at the surface of the soil and

estimate the diffusivity of the deeper soil below the gravel layer [35]. At the suggestion of our

collaborators, we shift the ADH output up 2cm before comparing with the data.

For Dataset H, we set a constant initial temperature of 5.830 degrees Celsius for all depths

and a constant initial hydraulic head of -6m, corresponding to a saturation of ≈37%.

Optimization Details

We use the following weights for this dataset:

Table 5.12: Weights for Dataset H [35].

Weight Depth

0.0750 1 cm

0.1000 5 cm

0.1250 10 cm

0.2100 15 cm

0.3125 20 cm

0.5000 25 cm

0.7140 30 cm

Instead of using subset selection for this dataset, we follow [35] in fixing and varying pa-

rameters. We begin with the six thermal parameters in Table 5.1, but we actually have twelve

parameters because we divide the domain into two materials. We fix porosity at 37.7% in both
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materials using DBS&A lab results. The dry and saturated thermal conductivities of the deeper

soil are fixed at 0.28 and 1.9, respectively, at the suggestion of our collaborators, based on lab

measurements. We follow [35] in setting the dry thermal conductivity equal to the saturated

thermal conductivity of the gravel layer. In [35], a consistent value of 0.2 W/m-K is found

for the dry/saturated thermal conductivity in the gravel layer, and we use this value in our

simulations. We fix the albedo and emissivity of the deeper soil because these properties only

relate to temperature changes at the surface. We use arbitrary vales of 0.625 and 0.575 for the

deeper soil albedo and emissivity, respectively. Finally, we fix the albedo in the gravel layer at

0.35, a value determined using calibration with the radiometer data in [35].

The values used in ADH are listed in Table 5.13.

76



Table 5.13: Fixed values and initial values for PEST optimization, Dataset H constant satu-
ration.

Parameter (ADH Card) Symbol Value Source

Porosity (POR 1, POR 2) ϕ 0.377 DBS&A

Quartz Fraction (QTZ 1, QTZ 2) q 0.45 Median value of range given

by expert [35]

Percentage of Sand and Gravel

(FSG 1, FSG 2)

0.925 Median value of range given

by expert [35]

Specific Gravity (Density) of

Soilds (SGS 1, SGS 2)

ρs 2.69 Calibrated using DBS&A

data

Dry Thermal Conductivity,

Deeper Soil (TKD 1)

κd 0.28 Depends on bulk soil density

ρb [57] or porosity ϕ [66]

Saturated Thermal Conductivity,

Deeper Soil (TKS 1)

κs 1.9 Depends on ϕ, q

Dry Thermal Conductivity,

Gravel Layer (TKD 2)

κd 0.2 Depends on bulk soil density

ρb [57] or porosity ϕ [66]

Saturated Thermal Conductivity,

Gravel Layer (TKS 2)

κs 0.2 Depends on ϕ, q

Albedo, Deeper Soil (ALB 1) αg 0.625 Arbitrary

Emissivity, Deeper Soil (EMS 1) ϵg 0.575 Arbitrary

Albedo, Gravel Layer (ALB 2) αg 0.350 Determined using calibration

with the radiometer data in

[35]

Specific Heat of Solid, Deep Soil

(SHS 1)

cp,s 2.084 E-4 (Initial value)

Specific Heat of Solid, Gravel

Layer (SHS 2)

cp,s 9.861 E-5 (Initial value)

Emissivity, Gravel Layer (EMS 2) ϵg 0.92 (Initial value)
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Simulation Details and Results

The results of the PEST optimization for the three parameters are in Table 5.14. The final

weighted residual sum-of-squares was 818.20.

Table 5.14: Results of PEST optimization for Dataset H.

Parameter Symbol Value

Specific Heat of Solid, Deep Soil cp,s 1.890000E-04

Specific Heat of Solid, Gravel Layer cp,s 5.332000E-04

Emissivity, Gravel Layer ϵg 0.808947

ADH calculates a final saturation of 37.1% at a depth of 15cm. We calculate k: 2.793E-03.

Figure 5.7 contains the ADH output and temperature data at 1cm and 30cm depth.
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Figure 5.7: Dataset H model and temperature data at 1cm and 30cm depth over calibration
period.

For a plot of the temperature output at all depths, see Appendix D.

5.3 Bayesian Inference (DRAM) with Analytic Model

For calibration using Bayesian inference, we use DRAM with the analytic model described

in Chapter 2, Equation (2.8). We begin by presenting diagnostic results from our simulation

and conclude that we achieve convergence. We then present results for the apparent thermal
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diffusivity and prediction intervals for future observations.

5.3.1 Diagnostics

We use several diagnostics to determine if the Markov chains have converged to their stationary

distributions. We choose to show the diagnostics for Dataset A since it is representative of all

three datasets. For diagnostics for Datasets B and H, see Appendix D. Figures 5.8-5.10 contain

the chain history for three different sets of samples. Figure 5.8 contains the first 3000 samples

from the chain. The first 500 samples appear to have some direction, but after that the path

of the chain is centered around a mean value.
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Figure 5.8: Chain history from 1 to 3,000 samples.

Figure 5.9 contains the first 10,000 samples from the Markov chain. The burn-in period is

barely visible in these plots, indicating that the chains have converged in the first 1000-3000

iterations.
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Figure 5.9: Chain history from 1 to 10,000 samples.

Figure 5.10 contains the history from 10,000 to 100,000 samples. It is clear that the chains

have converged to their stationary distributions from these plots. For the purposes of this work,

we consider the sample from iteration 3000 to iteration 10,000.
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Figure 5.10: Chain history from 10,000 to 100,000 samples.

We plot the autocorrelation function for Dataset A in Figure 5.11 for the sample from

iteration 3000 to iteration 10,000. This property indicates a sufficiently large sample size.
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Figure 5.11: Autocorrelation for burned-in portion of chain.

In Table 5.15 we report the mean, standard deviation and Monte Carlo standard error

(MCSE) for parameter α for Dataset A. The MCSE is several orders of magnitude less than the

mean of the sample, so each of these is a sufficiently large sample from the posterior density.

Table 5.15: Mean, standard deviation and Monte Carlo standard error (MCSE) for α from
Dataset A.

Sample Mean St. Dev. MCSE

1:3000 8.813 E-2 6.635 E-4 4.538 E-5

1:10,000 8.819 E-2 6.623 E-4 2.528 E-5

10,000:100,000 8.823 E-2 6.871 E-4 7.576 E-6

3000:10,000 8.822 E-2 6.597 E-4 2.626 E-5
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5.3.2 Values for Apparent Thermal Diffusivity

We summarize our results for each dataset in Tables 5.16-5.18. The values for k in Section 5.2

are included as well as results for k using the methods of Lu, Johansen, DFT, amplitude and

phase methods. See Section 2.3 for details on these methods including the resampling strategy.

We choose a sample of size 7001 for each dataset using MCMC. The statistics here are with

respect to the marginal posterior density for k [47, 87].

In Table 5.17, we see that the Lu estimate is larger than the Johansen estimate. Eslinger,

in [36], attributes this difference in the empirical estimates of Lu and Johansen to the dry soil

in the desert region. These estimates depend on the water content of the soil in different ways

and this difference is especially apparent for low water content.

The statistics for the amplitude, phase and DFT-based methods are the sample statistics

from the estimates computed with resampled data.

The values for k found using MCMC are consistent with the values found using the exper-

iments, optimization, amplitude, phase and DFT methods. Furthermore, we obtain statistics

about the variance of k using MCMC.

Table 5.16: Statistics of k estimates for Dataset A. Units are in m2/hr [36].

Method Estimates Median Mean St. Dev.

Lu 1 1.250 E-3 - -

Johansen 1 1.292 E-3 - -

FEM-PEST 1 2.071 E-3 - -

DFT 1800 1.511 E-3 1.480 E-3 3.826 E-4

Amplitude 105 1.173 E-3 1.284 E-3 4.362 E-4

Phase 105 2.668 E-3 5.838 E-3 1.724 E-3

MCMC 7001 1.682 E-3 1.682 E-3 2.515 E-5
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Table 5.17: Statistics of k estimates for Dataset B. Units are in m2/hr [36].

Method Estimates Median Mean St. Dev.

Lu 1 1.239 E-3 - -

Johansen 1 9.308 E-4 - -

FEM-PEST 1 9.277 E-4 - -

DFT 6600 9.437 E-4 9.518 E-4 6.669 E-5

Amplitude 210 9.271 E-4 9.248 E-4 1.077 E-4

Phase 209 1.100 E-3 1.099 E-3 2.555 E-4

MCMC 7001 1.010 E-3 1.011 E-3 5.135 E-6

Table 5.18: Statistics of k estimates for Dataset H. Units are in m2/hr [36].

Method Estimates Median Mean St. Dev.

Lu 1 2.770 E-3 - -

Johansen 1 2.911 E-3 - -

FEM-PEST 1 2.793 E-3 - -

DFT 10920 3.075 E-3 3.120 E-3 3.648 E-4

Amplitude 273 2.568 E-3 2.681 E-3 6.635 E-4

Phase 273 4.400 E-3 5.069 E-3 3.007 E-3

MCMC 7001 3.059 E-3 3.060 E-3 5.647 E-5

5.3.3 Pairwise Scatterplots

In Figure 5.12, we display pairwise joint scatterplots of the four model parameters for Dataset

A. The shape of these joint posterior densities indicates the correlation between parameters.

Parameter Ĉ has little correlation with the other parameters, while the correlations for pairs

(α, C) and (α, ω) are 0.6687 and 0.6352, respectively. We also observe a correlation of 0.424

between C and ω.
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Ĉ

0.087

0.088

0.089

0.09

α

C

23.11523.1223.12523.13

5.88

5.9

5.92

5.94

ω

2.45 2.5 2.55 2.6 2.65 0.088 0.09

α

Figure 5.12: Pairwise marginal posterior densities for the model parameters, Dataset A.

Figures 5.13 and 5.14 are the pairwise scatterplots for Datasets B and H, respectively. We

again see little correlation between Ĉ and the other parameters. The correlations for the pairs

(α, C) and (α, ω) are 0.5988 and 0.5815, respectively, for Dataset B and 0.7883 and 0.7927,

respectively, for Dataset H. The correlations between C and ω are 0.3744 and 0.618 for Datasets

B and H, respectively.
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5.3.4 Prediction Intervals

For further analysis, we produce prediction intervals for future observations ynew given our

posterior density.

In Figures 5.15-5.17, we plot the prediction intervals over time for each dataset at depths

1cm and 30cm. The computations and plots are created using DRAM [65] with a random

sample of 1000 from the 7001 samples from the posterior.

Figure 5.15 contains our model, data and 95% prediction intervals for Dataset A. Despite

the data points outside of the prediction interval seen in the 1cm depth, over 95% of our data is

within the prediction intervals for the entire dataset. The temperature spikes seen in our data
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near the surface during the first two days is likely the result of a break in cloud cover in the

rainforest. Measurements of the shortwave and longwave radiation support this conclusion, as

discussed in Section 5.1. Even though our model does not capture this phenomenon near the

surface, we are able to generate prediction intervals that contain the correct percentage of data

and estimates for k that are consistent with estimates found using other methods.
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Prediction Interval Model Data

Figure 5.15: Model, data and prediction intervals for Dataset A.

Figure 5.16 contains the same information for Dataset B. The data appears to fall generally

within the prediction intervals, though the actual percentage of data points within the intervals

is 94.75%. Since the computation of the prediction intervals is not deterministic, we consider

the prediction intervals for Dataset B satisfactory. The model seems unable to capture a trend

visible at 30cm depth but still captures over 86% of the data at 30cm depth.
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Figure 5.16: Model, data and prediction intervals for Dataset B.

The results for Dataset H are shown in Figure 5.17. Here, nearly 95% (94.9%) of the data

is within the prediction intervals. The least amount of data falls within the intervals at 30 cm

depth, again apparently the result of an inadequate model.
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Figure 5.17: Model, data and prediction intervals for Dataset H.

We superimpose the least squares results using ADH as a model in Figures 5.18-5.20. We

note that the results using PEST with ADH as a model are a much better match to the data.
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Figure 5.18: Model, data, prediction intervals, and PEST+ADH results for Dataset A.
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Figure 5.19: Model, data, prediction intervals, and PEST+ADH results for Dataset B.
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Figure 5.20: Model, data, prediction intervals, and PEST+ADH results for Dataset H.
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Chapter 6

Results: Calibration of the Thermal

Soil Parameters in a Variably

Saturated Domain

In this chapter we describe our use of Bayesian inference to calibrate thermal properties of

variably saturated soil with the Adaptive Hydrology simulation. Recall the model for a variably

saturated domain from Section 2.2.2. We solve the equations

(cpρ)ut −∇ · (κ∇u) = 0, (6.1)

and

SsSw(ψ)
∂ψ

∂t
+ ϕ

∂Sw(ψ)

∂t
= ∇[Kskr(ψ)∇(ψ + z)], (6.2)

which are coupled by the dependence of the volumetric heat capacity cpρ in Equation (6.1)

upon the saturation Sw through Equation (6.3):

(cpρ) = (1− ϕ)cp,sρs + ϕ(Swcp,wρw + (1− Sw)cp,gρg). (6.3)
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For the domains with a constant saturation, we calibrated the apparent thermal diffusivity,

k. However, k is no longer constant for variably saturated domains. Thus, in these unsaturated

domains with rain events, we study the specific heat of the soil, cp,s.

We first describe the variably saturated datasets, then we discuss the results of using a

traditional least squares method to calibrate the thermal parameters. For Bayesian inference,

we first perform our analysis on the data from Chapter 5 in order to test our methods. Then,

in Section 6.3.2, we perform and describe the analysis with the variably saturated data.

6.1 Data

The variably saturated data is also from the data collection described in Section 5.1. We now

select a 24-hour period during the data collection containing a rain event for our calibration.

We also ensure that the 48-hour period preceding the calibration period does not contain a rain

event. We find a 48-hour ramp-up period necessary for the variably saturated ADH simulations.

Dataset B is from the desert and contains no precipitation, so we do not perform the variably

saturated analysis for this dataset.

We do not have saturation measurements, so we take the measured water content and divide

it by the porosity. For Dataset A, we note that the water content plateaus as a result of the rain

event, so we assume the soil is fully saturated during this time of constant saturation. Thus,

we are able to determine a porosity of 0.576 for Dataset A. For Dataset H, we use the porosity

from the DBS&A lab results: 0.377.

6.1.1 Dataset A

For Dataset A, we ramp up our simulations over Julian days 128 and 129 and use day 130 as

our calibration data. This dataset contained missing values. We selected this portion of the

data as it was complete.
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Figure 6.1: Dataset A precipitation and saturation over the ramp-up and calibration periods.
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Figure 6.2: Dataset A temperature at 1cm and 15cm depth over the ramp-up and calibration
periods.
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6.1.2 Dataset H

For Dataset H, we ramp up our simulations over Julian days 247 and 248 and then use day 249

as the calibration data.
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Figure 6.3: Dataset H precipitation and saturation over the ramp-up and calibration periods.
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Figure 6.4: Dataset H temperature at 1cm and 15cm depth over the ramp-up and calibration
periods.

6.2 Least Squares (PEST) with Numerical Model (ADH)

We first determine the least squares solution to our problem using PEST and ADH. We must

supply ADH with initial conditions for temperature and total head. We determine the initial

temperature by computing the average temperature at 30cm depth over the 48-hour ramp-up

period.

We choose the initial total head by first determining the average saturation over the 48-hour

ramp-up period. We divide the average water content by the porosity, thus we fix the porosity

throughout our simulations. For Dataset A, we notice that the water content plateaus over a

period of time during the data comparison period so that the soil must fully saturated during

this interval. We divide the maximum measured water content by 100 to determine the porosity

for Dataset A. Then we compute the average saturation over the ramp-up period using this

value for porosity and fix porosity throughout our analysis. For Dataset H, we fix the porosity

at 0.377, the value determined by the DBS&A lab. Once we have the average saturation over
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the ramp-up period, we set the initial total head so that the initial saturation values ADH

computes are as close as possible to the values we have determined. We use only increments of

meters to fix the initial total head.

We then compute the Jacobian matrix using all of the heat and groundwater parameters

and use subset selection to determine an appropriate set of parameters to fit.

6.2.1 Dataset A

For this dataset, the soil measurements were inadequate to perform the intended analysis. We

tried fixing and fitting numerous combinations of parameters, fitting only the saturation, and

fitting the initial head and were unable to make progress. Thus, we have determined fitting

Dataset A in the unsaturated case is beyond the scope of this work.

6.2.2 Dataset H

For Dataset H, we use an initial temperature of 11.746 degrees Celsius and an initial total head

of -10.0 meters, corresponding to a saturation of ≈29%. We use the same temperature weights

for Dataset H as in Section 5.2.3 and weight each saturation value 1000. We use the same

constant values as in Table 5.2.

The seven largest singular values are listed in Table 6.1.
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Table 6.1: Singular values of Jacobian computed with all initial parameters for Dataset H,
unsaturated case.

1.1908e+05

5.2852e+03

1.3640e+02

9.1177e+01

2.7599e+01

1.7573e+01

1.1366e+01

We again use the subset selection algorithm [46] and code implemented in [55] to determine

three parameters to fit: the specific heats of the gravel layer and deep soil as well as the albedo

of the gravel layer. We find the specific heat in the gravel layer is difficult to fit using PEST and

determine that our model is not adequate in modeling some physics at the surface, likely due

to radiation. Thus, we fix the specific heat in the gravel layer. We also note that the remaining

two parameters are heat parameters only and have no affect on the groundwater physics. Thus,

we only use the temperature probe data to fit the specific heat of the deep soil and the albedo

of the gravel layer.

We use the same initial values for the specific heat of the deep soil and the albedo of the

gravel layer that we used in the dry case. We fix the specific heat in the gravel layer at 5.332

E-4, the value determined using PEST and ADH in the dry case, see Section 5.2.3. We also fix

the emissivity in the gravel layer at 0.808947, the value determined using PEST and ADH in

the dry case, see Section 5.2.3. We fix all other heat parameters as before, listed in Table 5.13.

Additionally, we fix the same groundwater parameters as before using the values in Table 6.2.
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Table 6.2: Fixed groundwater parameters for unsaturated case, Dataset H. These values are
for both the gravel and deep soil layers.

Parameter (ADH Card, symbol) Value

Hydraulic conductivity (K, Ks) 0.0657

Residual saturation (RSD, Sr) 0.01

van Genuchten alpha (VGA, α) 0.75

van Genuchten N (VGN, n) 1.6

van Genuchten max capillary pressure for curve (VGP) 40

Specific storage (SS, Ss) 0.0001

Tortuosity (TOR) 0.5

Longitudinal dispersivity (DPL) 1

Transverse dispersivity (DPT) 0.1

The optimization results are in Table 6.3.

Table 6.3: Results of PEST optimization for Dataset H, unsaturated case.

Parameter Symbol Value

Specific Heat of Solid, Deep Soil cp,s 1.696 E-4

Albedo, Gravel Layer αg 0.378328

We are most interested in fitting the specific heat of the deep soil. We see that our values

for the specific heat of the deep soil are consistent with those found in the constant saturation

(dry) case. These values are in Table 6.4.

102



Table 6.4: Specific heat optimization results for Dataset H (Fraser/Highlands), unsaturated
and dry cases (PEST + ADH).

Parameter Unsat Value Dry Value

Specific Heat of Solid, Deep Soil 1.696 E-4 1.890 E-4

Figure 6.5 is ADH evaluated with the optimal parameter values plotted with the temperature

data at two depths. We see good agreement between the model output and the data. A plot

with all depths is included in Appendix D
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Figure 6.5: Dataset H model and temperature data at 1cm and 30cm depth over calibration
period.

Figure 6.6 is the ADH evaluated with the optimal parameter values plotted with the satu-

ration data at 15cm depth. We see that ADH does not capture the spike in saturation around

15 hours, but this does not significantly affect fit to the temperature data.
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Figure 6.6: Dataset H saturation 15cm depth over calibration period.

6.3 Bayesian Inference (DRAM) with Numerical Model (ADH)

We now perform Bayesian inference with ADH as our model for heat transport. First we use

the data with constant saturation and then move on to the unsaturated case. For both cases,

we only use a 24-hour calibration period as the DRAM simulations require many function

evaluations and a smaller time interval will reduce computational time.

We compute the least squares solution using PEST and use the results to generate initial

values for the DRAM simulations as well as to validate our results.

6.3.1 Simulations with Constant Saturation

We choose a 24-hour calibration period to reduce ADH computation time. The days we use

are Julian days 126, 222, and 268 for Datasets A, B, and H, respectively. A 24-hour ramp-up

period is sufficient for the datasets with no precipitation, so our total simulations are for a
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48-hour time period.

The initial conditions we use are in Table 6.5.

Table 6.5: Initial conditions for constant saturation 24-hour simulations.

Dataset Initial Temp (deg C) Initial Head Corresponding Saturation

A 23.013 -215.0 ≈39%

B 33.017 -8.0 ≈14%

H 8.396 -8.0 ≈32%

PEST Results

We optimize over the same parameters as in Chapter 5 for each dataset.

For Dataset A, we calibrate the specific heat of the solid cp,s, emissivity ϵg, and albedo αg.

The remaining fixed thermal parameters and initial values for the calibrated parameters are

the same as in Table 5.7.

For Dataset B, we calibrate the specific heat of the solid cp,s, emissivity ϵg, and albedo αg.

The remaining fixed thermal parameters and initial values for the calibrated parameters are as

in Table 5.10.

For Dataset H, we calibrate the specific heats of both the gravel and deep soil layers as well

as the emissivity of the gravel layer. The remaining fixed thermal parameters and initial values

for the calibrated parameters are as in Table 5.13.

The PEST optimization results for each dataset are in Tables 6.6-6.8, and temperature plots

for the results at two depths are in Figures 6.7-6.9. Plots of the results at all depths are in

Appendix D.
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Table 6.6: Results from PEST optimization, Dataset A constant saturation 24-hour case.

Parameter Symbol Value

Specific Heat of Solid cp,s 2.650 E-4

Emissivity ϵg 0.840188

Albedo αg 0.509577

Table 6.7: Results from PEST optimization, Dataset B constant saturation 24-hour case.

Parameter Symbol Value

Specific Heat of Solid cp,s 4.260 E-04

Emissivity ϵg 0.937750

Albedo αg 0.137470

Table 6.8: Results from PEST optimization, Dataset H constant saturation 24-hour case.

Parameter Symbol Value

Specific Heat of Solid, Deep Soil cp,s 1.693 E-4

Specific Heat of Solid, Gravel Layer cp,s 8.508 E-4

Emissivity, Gravel Layer ϵg 0.979113
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Figure 6.7: Dataset A model and temperature data at 1cm and 30cm depth over calibration
period.
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Figure 6.8: Dataset B model and temperature data at 1cm and 30cm depth over calibration
period.
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Figure 6.9: Dataset H model and temperature data at 1cm and 30cm depth over calibration
period.

DRAM

Because of the substantial computation time of the ADH simulations, we must run our DRAM

simulations in parallel. We choose to run 8 independent, parallel MCMC chains each of length

2500 samples [101] because we have 8 processors available. We discard the first 999 samples of

each chain as burn-in and thus have a sample of 8× 1501 = 12008 from each posterior density.

We use the results from the least squares PEST optimizations to generate random initial

values for each chain. For the model parameters, we generate initial values from the multivariate

normal distribution with the PEST optimal values as the mean and the PEST output covariance

matrix as the covariance. If the initial values generated are negative, we multiply the covariance

matrix by 0.01 to encourage the choice of positive values.

For the error variance, we generate random initial values from the gamma distribution with

shape parameter 0.1 and scale parameter 0.1. This distribution has mean 0.01 and variance

0.001 [31]. Since the specifications of the thermocouples give a variance of 0.01, we believe this

is an appropriate distribution for selecting initial values of the error variance.
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We are careful to create an independent random stream of numbers on each processor

to ensure independence between chains. We use the Matlab Multiplicative lagged Fibonacci

generator, keyword mlfg6331 64, as it is appropriate for parallel random number generation

[67,68]. Details for the implementation are in Appendix C.

Diagnostics As in Chapter 5, we show diagnostics for Dataset A as they are representative of

all three datasets. Again, diagnostics for the other two datasets are in Appendix C. Figure 6.10

is the first 10 samples from each chain. Here we can see the different initial values. Figure 6.11

is the entire history of all of the chains plotted together for each parameter. It appears that the

burn-in period is very small but it is difficult to discern because the chains are layered on top

of one another. We plot the history for an individual chain in Figure 6.12 to show that there

is indeed little burn in period. We take a conservative approach and use samples 1000 to 2500

from each chain to ensure we obtain a sample from the stationary, or posterior, distribution.
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Figure 6.10: Dataset A chain histories for the first 10 samples of each individual chain.
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Figure 6.11: Dataset A chain histories for all eight chains.
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Figure 6.12: Dataset A chain history for one individual chain.

Figure 6.13 is the autocorrelation function showing the correlation between successive sam-
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ples of the burned-in portion of the chain. We note that the autocorrelation decreases rapidly

as the lag between samples increases, indicative of a sufficiently independent sample size.
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Figure 6.13: Autocorrelation function for Dataset A.

In Table 6.9, we provide the mean, standard deviation, and Monte Carlo standard error

for each parameter from the sample from the posterior. The Monte Carlo standard errors are

several orders of magnitude less than the sample means, which indicates a sufficiently large

sample size.

Table 6.9: Mean, standard deviation and Monte Carlo standard error (MCSE) for each pa-
rameter from Dataset A.

Parameter Mean St. Dev. MCSE

Specific Heat 2.650 E-04 4.400 E-06 1.416 E-07

Emissivity 8.415 E-01 2.142 E-02 8.287 E-04

Albedo 5.091 E-01 8.457 E-03 3.371 E-04
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Results In Figures 6.14-6.16 we plot the model, data, and prediction intervals at depths of

1cm and 30cm for each dataset. Prediction intervals for all depths are in Appendix C. Overall,

the model evaluated with values from the posterior density for our parameters matches the

data. At 1cm depth in Datasets A and H, we see jagged peaks that the model does not capture.

These are likely the result of shadows or cloud cover. This fit is an improvement over the fit in

Chapter 5 with the analytic solution to the heat equation as a model.

Despite the data outside the prediction intervals at 1cm depth in Figure 6.14, over 97% of

the data is within the prediction intervals over all depths.
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Figure 6.14: 95% Prediction intervals for Dataset A.

In Figure 6.15 we have the prediction intervals at two depths for Dataset B. Over all depths,

91.31% of the data is within the prediction intervals.
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Figure 6.15: 95% Prediction intervals for Dataset B.

The prediction intervals for Dataset H, seen in Figure 6.16, contain over 92% of the data.
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Figure 6.16: 95% Prediction intervals for Dataset H.

Figures 6.17 and 6.19 contain the pairwise scatterplots of the (burned-in) results for Datasets A

and H, respectively. We see the strongest correlation between the albedo and emissivity for

Datasets A and B, likely because they both influence the heat flux at the surface of our do-

main.
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Figure 6.17: Pairwise scatterplots from burned-in portion of chain for Dataset A.
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Figure 6.18: Pairwise scatterplots from burned-in portion of chain for Dataset B.
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Figure 6.19: Dataset H pairwise plots, constant 24-hour case.

Finally, in Tables 6.10-6.12 we display the results statistics of our analysis. Here we include

some results from the tables from Chapter 5 with our new results using a 24-hour time period

for the constant saturation case. We see that our results are again consistent with those from

the empirical methods as well as our previous results. The results on the 24-hour dataset using

ADH with PEST and DRAM are very similar, seen in the last two rows of each table.
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Table 6.10: Statistics of k estimates for Dataset A. Units are in m2/hr [36].

Method Estimates Median Mean St. Dev.

Lu 1 1.250 E-3 - -

Johansen 1 1.292 E-3 - -

FEM-PEST (all dry data) 1 2.071 E-3 - -

MCMC (all dry data) 7001 1.682 E-3 1.682 E-3 2.515 E-5

FEM-PEST (24-hour dry data) 1 1.759 E-3 - -

MCMC - ADH (24-hour dry data) 12008 1.759 E-3 1.759 E-3 1.761 E-5

Table 6.11: Statistics of k estimates for Dataset B. Units are in m2/hr [36].

Method Estimates Median Mean St. Dev.

Lu 1 1.239 E-3 - -

Johansen 1 9.308 E-4 - -

FEM-PEST (all dry data) 1 9.277 E-4 - -

MCMC (all dry data) 7001 1.010 E-3 1.011 E-3 5.135 E-6

FEM-PEST (24-hour dry data) 1 9.809 E-4 - -

MCMC - ADH (24-hour dry data) 12008 9.801 E-04 9.801 E-04 6.539 E-06
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Table 6.12: Statistics of k estimates for Dataset H. Units are in m2/hr [36].

Method Estimates Median Mean St. Dev.

Lu 1 2.770 E-3 - -

Johansen 1 2.911 E-3 - -

FEM-PEST (all dry data) 1 2.793 E-3 - -

MCMC (all dry data) 7001 3.059 E-3 3.060 E-3 5.647 E-5

FEM-PEST (24-hour dry data) 1 2.974 E-3 - -

MCMC - ADH (24-hour dry data) 12008 2.973 E-3 2.974 E-3 1.927 E-5

In Figure 6.20 we plot all values of k found in Tables 6.10-6.12. We are able to distinguish

three different groups of values corresponding to the three datasets. There is some overlap

between Datasets A and B due to the high estimate for k from Lu. As stated in Chapter 5, we

believe this is because of the dependence of this estimate on the saturation, which is very low

in this case.
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Figure 6.20: Estimates for k from all methods for all datasets.
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Figure 6.21 is the same plot but with the log scale on the y-axis. The three groups are

perhaps even more distinct in this plot.
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Figure 6.21: Estimates for k from all methods for all datasets with log scale on y-axis.

6.3.2 Variable Saturation

We now discuss the DRAM results for Dataset H in the unsaturated case. Recall from Section

6.2.2 the implementation details and results of using PEST to optimize over the specific heat

cp,s of the deep soil and the albedo αg of the gravel layer. Here we repeat the process in Section

6.3.1 of using ADH as a model for heat transport in the DRAM simulations.

Diagnostics

We plot the first 5 samples from each chain in Figure 6.22. Here we show that each chain had

a different initial value, though they are close together.
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Figure 6.22: Dataset H chain histories for the first 5 samples of each individual chain.

In Figure 6.23 we plot the entire chain histories of all eight chains. See Figure 6.24 for the

form of a chain history for an individual chain.
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Figure 6.23: Dataset H chain histories for all eight chains.

120



0 500 1000 1500 2000 2500
1.5

1.6

1.7

1.8

1.9
x 10

−4

IterationS
pe

ci
fic

 H
ea

t D
ee

p 
S

oi
l

0 500 1000 1500 2000 2500
0.37

0.375

0.38

0.385

0.39

0.395

Iteration

A
lb

ed
o 

in
 G

ra
ve

l L
ay

er

Figure 6.24: Dataset H chain history for one individual chain.

Figure 6.25 is the autocorrelation function showing the correlation between successive sam-

ples of the burned-in portion of the chain. We note that the autocorrelation decreases rapidly

as the lag between samples increases, indicative of a sufficiently independent sample size.
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Figure 6.25: Autocorrelation function for Dataset H.

In Table 6.13 we show the mean, standard deviation, and Monte Carlo standard error for

the samples for each parameter. Again, because the MCSE is several magnitudes less than the

mean, we conclude we have obtained a sufficiently large sample from the posterior density.

Table 6.13: Mean, standard deviation and Monte Carlo standard error (MCSE) for each pa-
rameter from Dataset H.

Parameter Mean St. Dev. MCSE

Specific Heat (Deep soil) 1.699 E-4 4.597 E-6 9.604 E-8

Albedo (Gravel layer) 3.783 E-1 2.513 E-3 7.598 E-5

Prediction intervals

In Figures 6.26 and 6.27 we have the prediction intervals at depths of 1cm and 30cm and

all depths, respectively. Near the surface, the prediction intervals contain 100% of the data.

However, as the depth increases the model was unable to capture the drop in temperature due
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to the rain event. Since the prediction intervals are centered around the model, they likewise

fail to capture the data at increasing depth. This is a violation of the assumption that the

errors are normally distributed with mean zero. Overall, however, these prediction intervals

capture over 93% of the data.
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Figure 6.26: 95% Prediction intervals for Dataset H. Depths of 1 and 30cm.

Figure 6.27 is the prediction intervals at all depths.
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Figure 6.27: 95% Prediction intervals for Dataset H. All depths shown.
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Pairwise scatterplots

In Figure 6.28 we have the pairwise scatterplot of the specific heat of the deep soil and the

albedo of the gravel layer. The correlation between these parameters is 0.636.
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Figure 6.28: Pairwise scatterplots from burned-in portion of chain for Dataset H.

Results for Parameter Values

In Table 6.14 we show estimates for the specific heat of the deep soil from several sources. First,

we include the estimate derived from lab measurements [35]. We include the estimates for the

specific heat from using ADH as our model and PEST optimization software for the entire set

of dry data (see Chapter 5), PEST and DRAM for the 24-hour dry dataset (see Sections 6.3.1

and 6.3.1 for PEST and DRAM results, respectively), and the new results using PEST and

DRAM for the unsaturated dataset. We see good agreement between the estimates for all of

the calibration methods as well as a reasonable match to the lab-derived estimate. Thus, we

are satisfied with these results.
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Table 6.14: Statistics of specific heat estimates for Dataset H. Units are in (W-hr/g-K) [35].

Method Estimates Median Mean St. Dev.

Estimate derived from lab mea-

surements

1 2.23 E-4 - -

FEM-PEST (all dry data) 1 1.890 E-4 - -

FEM-PEST (24-hour dry data) 1 1.693 E-4 - -

MCMC-ADH (24-hour dry data) 16008 1.692 E-4 1.692 E-4 1.642 E-6

FEM-PEST (24-hour unsatu-

rated data)

1 1.696 E-4 - -

MCMC - ADH (24-hour unsatu-

rated data)

16008 1.698 E-4 1.699 E-4 4.597 E-6
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Chapter 7

Conclusions

We consider the soil thermal parameters for three datasets using both optimization and Bayesian

inference. For the optimization method, we use PEST optimization software with the ADH

model for heat transport. These simulations give us scalar values for parameters for each

dataset. For the Bayesian approach, we use the DRAM simulation and both an analytic model

derived from the heat equation in 1-D and ADH. The DRAM simulations give us a sample from

the posterior density of parameters given each dataset.

For both approaches, we find values for the parameters that are consistent with values

estimated for the same dataset using other methods. Moreover, the output of DRAM allows us

to quantify uncertainty by constructing prediction intervals for future observations.

One of the benefits of the least squares optimization approach is the convergence theory.

The benefits of the Bayesian approach are that it allows us to estimate the densities of param-

eters, predict future observations and incorporate prior knowledge about the problem into our

analysis. The limitations of the Bayesian approach are the proper use of DRAM in determin-

ing convergence of the simulation and incorporating prior knowledge, and the computational

burden to obtain a sufficiently large sample from the posterior density.

ADH models many physical processes but increases the computational expense of the sim-

ulation. The analytic model is simple but fails to capture physical processes such as variable
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saturation and some effects of heat flux at the surface.
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Appendix A

Data

In this appendix we include pictures of a meteorological (met) station, pictures of instruments

on the met station, and details about the instruments.

A.1 Instruments

Below is a picture of an entire met station located in Vicksburg, Mississippi.

Figure A.1: Met Station in Vicksburg
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A.1.1 Subsurface Instruments

Three instruments are buried near the met station to measure quantities below the surface: the

temperature probe, flux plate, and soil moisture probe. The soil moisture probe is a Campbell

Figure A.2: Layout of Instruments

Scientific, Model CS-616. To measure the water content of the soil, a signal is sent down the

two 30 cm stainless rods [8]. The dielectric properties of the soil determine the deviation of

the return signal, which is measured every second and averaged over the five minute output

interval [35]. The units of output are per cent of volumetric water content and the accuracy of

this device is ± 2% [35]. The temperature probe gives the temperature of the soil at locations

1, 5, 10, 15, 20, 25, and 30 cm below the surface. We use a Type T Thermocouple Junction

manufactured by Omega Engineering, Inc [1]. The output is the average temperature in degrees

Celsius of one second samples over the output interval of five minutes [35]. The accuracy of this

device is less than ±0.1 degrees Celsius [35]. There are two temperature probes on each met

station. The soil thermal flux is measured by the Hukseflux Model HFP01 heat flux plate [2].

This sensor is buried at a depth of 15 cm and gives the average heat flux for samples every

second over an interval of five minutes. The output is in units of Watts per square meter [35].

141



Figure A.3: Temperature Probe

Figure A.4: Flux Plate

Because flux carries a positive or negative sign based on the direction of the movement, the

plate is labelled to indicate which side must be placed up. There are two flux plates on each

met station.

A.1.2 Radiometer

The radiometer reports the radiated surface temperature of the soil. It is located above the

surface and gives the temperature in degrees Celsius of the soil at a desired location [35]. The

radiometer is pointed at this location. It is not reasonable to assume that the radiometer is
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pointed at the location of the buried temperature probe, but in some cases this may be true. In

Figure A.5 we have a picture where the radiometer is indeed pointed at the temperature probe.

The radiometer and the surface location of the temperature probe are circled. There are two

radiometers on each met station, giving the target temperature, or temperature at a desired

location on the surface of the ground.

Figure A.5: Radiometer

A.1.3 Air Temperature and Relative Humidity

The Type 1 Vaisala HMP45C temperature and relative humidity probe records the temperature

in degrees Celsius and per cent relative humidity, respectively, at 0.5 M and 2.3 M above the

surface. The temperature accuracy is ± 0.2 degrees C from -40 to 60 degrees [35]. The relative

humidity accuracy is ± 2% in the range 0 to 90 % RH and ± 3% in the range 90 to 100% RH [5].

As before, the data is collected every second and the average over five minutes is recorded.
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A.1.4 Barometric Pressure

The barometric pressure is measured by the Vaisala Model PTB110 1BoAA Pressure Transmit-

ter at about 0.25 M above the surface [4]. With units of milliBars, its accuracy is ± 6 milliBars

in the range -40 C to 60 C [35]. Again, the output is the average of measurements every second

for a period of five minutes.

A.1.5 Radiation

We have data for both shortwave and longwave radiation. The Eppley Laboratory Model

Precision Spectral Pyranometer [3] measures the shortwave radiation while the Model Precision

Infrared Radiometer measures the longwave, or infrared, radiation [35]. These devices are about

2 M above the surface and give output in units of Watts per square meter [35].

A.1.6 Wind Speed and Direction

The Windsonic 2D Sonic Anemometers measure wind speed and wind direction at 0.5 M and 2.3

M above the surface. The wind speed is accurate to ± 2% of the reading, in a range of 0 to 60

meters per second [7]. The output is the mean horizontal wind speed over five minutes in units

of meters per second [35]. The wind direction is accurate to ± 3 Degrees with a resolution of 1

Degree [7]. The wind direction output is the unit vector mean wind direction over 5 minutes,

in units of Degrees from North [35].

A.1.7 Precipitation

We use the Texas Electronics, Model TE525MM rain gage to measure precipitation. It is

calibrated for millimeter output and accurate for rainfall rates [6]:

Up to 10 mm/hr ± 1 %
10 to 20 mm/hr +0, -3 %
20 to 30 mm/hr +0, -5 %
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The output is the total millimeters of rainfall over a 5 minute interval [35].

A.1.8 Storage of Data

A Garmin GPS on the met station maintains accurate datalogger time. Power supply for the

station comes from a Campbell Scientific, Inc. Model CH100 Charging Regulator, Yuasa NP24-

12 battery and BP Solar Panel Model SX10M. Data is stored on a Silicon Systems Compact

Flash Card with capacity 1 GB, allowing over 4 months of data collection. This data is retrieved

with Campbell Scientific software [35].
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Appendix B

Adaptive Hydrology

In Chapter 2 we mention using ADH to simulate heat transport in the soil. We now describe

the model in more detail and give instructions for implementing ADH.

B.1 Implementation

ADH requires six input files. A file with extension .sup contains the paths and names of the

other input files for the boundary conditions, domain, initial conditions, and data. These

are called the boundary condition, mesh, hotstart, and met files with extensions .bc, .3dm,

.hot, and .met, respectively. The boundary condition file also contains information about all

other parameters used in the model. The data stored in the met file is used in calculating the

boundary condition. To run ADH from the command line, the user must type:

\pathname\adh basename

where the .sup file is basename.sup.

B.1.1 Boundary Condition File

The boundary condition file contains most of the information a user may want to change in

ADH. The output specifications, initial and final times, maximum allowed time step size, and
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all values for parameters are contained in this file. Control cards are character strings which

specify values in the boundary condition file [15].

For example, the line

TC JUL 220

tells ADH the start Julian day of the simulation is 220. The first two characters in the line, TC,

indicate the control card is time control. The letters JUL specify Julian day and the integer

220 is the value of the day. Another example of a specification in the boundary condition file

is:

MP TKS 1 1.451

which indicates the saturated thermal conductivity is 1.451. Here, the control card MP stands

for material properties and the letters TKS represent saturated thermal conductivity. The

first number, 1, indicates that this is the value for material 1 when working in a domain with

multiple materials. The second number is the value of the material parameter. Comments in

the boundary condition file begin with an exclamation point. Thus, an example of an entire

line may be:

MP TKS 1 1.451 ! Saturated Thermal Conductivity (W) / (m K)

The ADH manual as well as [35] document the control cards and values in the boundary

condition file [15].

B.1.2 Mesh File

The mesh file contains the locations of the nodes, edges, and faces of the tetrahedral mesh. It

must have extension .3dm for a 3-D domain.

B.1.3 Hotstart Files

The initial conditions for the model are stored in the hotstart files. A constant initial condition

across the domain is an easy way to begin the simulation. Another option is to specify the
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initial condition as the solution at the final time of a previous AdH run. The initial conditions

for the heat and groundwater portions of the model are stored in the heat and groundwater

hotstart files, respectively.

B.1.4 Met File

The met file contains data from a meteorological station. The column headers include: date,

hour, minute, pressure, temperature, humidity, wind speed, wind direction, visibility, precip-

itation, shortwave, and longwave radiation. ADH extracts information from the met file to

formulate the boundary conditions in the model.

B.1.5 Sup File

For an example of a sup file, the contents of the file basename.sup are below:

GEO domain_mesh.3dm

BC boundary_conditions.bc

HT HOT initial_heat.hot

GW HOT initial_groundwater.hot

MET met_data.met
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Appendix C

Diagram of Simulations

C.1 PEST + ADH

The details for running PEST with any model are extensively described in [34]. For the dry

simulations, we use the model command line:

(PATH TO ADH/adh base name > Screen output.txt) >& Error ouput.err; /usr/bin/python go through list.py

> python out tmp.dat; sleep 5;

to call ADH and extract the output at the appropriate nodes and times. For the unsaturated

simulations, we call ADH and extract the temperature and saturation output using a bash

script:

#!/bin/bash

(PATH_TO_ADH/adh base_name > Screen_output.txt) >& Error_output.err

/usr/bin/python go_through_list_tmp.py > python_out_tmp.dat

/usr/bin/python go_through_list_sat.py > python_out_sat.dat

cat python_out_tmp.dat python_out_sat.dat > merged_out.dat

sleep 5
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C.2 DRAM + ADH

The DRAM code is written in Matlab. It can be downloaded from

http://helios.fmi.fi/~lainema/mcmc.

To run simulations from the command line, we use a bash script containing the following two

lines:

#!/bin/bash

matlab -nodisplay -r "run DRAM Desert; quit;" > Screen output.txt

We use, for example, a Matlab script run DRAM Desert, which contains the instructions

and input to DRAM. Additionally, functions model prior.m and model ssq.m are needed to

evaluated the prior distribution and model, respectively. We discuss these three files in sections

C.2.1 -C.2.3.

C.2.1 run DRAM Desert

At the beginning of this script, we include the path to the DRAM package. We then specify

inputs to DRAM: initial parameter values, parameter names, number of data points, upper and

lower bounds for parameters, function names for model prior.m and model ssq.m, update of

error variance, initial proposal covariance matrix, and number of DRAM simulations. We also

include details for running in parallel, initialize random number streams, and save our results.

We call DRAM with the line:

[results,chain,s2chain,sschain] = mcmcrun(model,data,PARAMS,options);

C.2.2 model prior.m

We use noninformative uniform priors. Thus, our prior distributions are just the product of the ranges

of the parameters.

C.2.3 model ssq.m

The function model ssq.m has the following header:

function [ssq]=model ssq highlands(theta,CARDLIST)
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It takes as inputs the parameter values, theta, and list of parameter names, CARDLIST. Its output is the

weighted residual sum-of-squares. See Figure C.1 for a diagram of this function.

model ssq.m

1. Create

candidate file

2. Call

ADH script

4. Generate

ADH input file

5. Run ADH
3. Extract data

from pst file

6. Format

ADH output

7. Compute

weighted sum-

of-squares,

print to file

Figure C.1: Diagram of model ssq.m.

1. Create candidate file

Use the following code from model ssq.m:

cd(‘./Desert_files’)

fileID=fopen(‘candidate.txt’,‘w’);

formatSpec=’%-5s %10.6e \r\n’;

151



for i=1:length(CARDLIST)

fprintf(fileID,formatSpec,CARDLIST{i},theta(i));

end

fclose(fileID);

2. Call ADH script

Make a system call in model ssq.m from Matlab to the script get ssq.csh. Additional argu-

ments are the candidate parameter file, candidate.txt, the base name for the ADH simulation

Desert col (in this example), and the data file data Desert.pst (in this example).

system(‘csh get ssq.csh candidate.txt Desert col data Desert.pst’)

The file get ssq.csh defines the system arguments:

set input file = $1

set base name = $2

set pest file = $3

3. Extract data from pst file

Use a python script to extract data and weights from the data file. We use the PEST data file as

it contains the necessary information.

python pst data grab.py $pest file > data weights.txt

4. Generate ADH input file

Use a python script to change the parameter values in the ADH input file, the boundary condition

file.

python input grab.py $input file

5. Run ADH

Call ADH using the command line format:

(path to adh/adh $base name > adh output.out) >& adh errors warnings.err

6. Format ADH output

Use a python script to extract output at the appropriate nodes and times:

python go through list.py $base name‘ tmp.dat’ > adh output formatted.txt
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7. Compute weighted sum-of-squares and print to file

First, paste the values from ADH, the data, and the weights in one file:

paste -d ‘ ’ data weights.txt adh output formatted.txt > merged file.txt

Then, use a python script to calculate the weighted sum-of-squares residual. Print scalar value to

file Final sum.txt:

python pst calculation.py merged file.txt > Final sum.txt

At the end of the ADH script, get ssq.csh, we remove the files generated in computing the sum-

of-squares. The Matlab function model ssq.m uses system calls and Matlab functions to extract the

sum-of-squares:

system(‘cp Final_sum.txt ..’)

ssq=textread(‘Final_sum.txt’,‘%f’);

cd(‘../’)

C.2.4 Prediction Intervals

To compute prediction intervals, we run ADH with numerous parameter values sampled with DRAM.

We generally choose to obtain a sample of 1000 from the posterior values generated by DRAM. The

process is similar to the one described above.

First, we call the Matlab script with a bash script at the command line:

!/bin/bash matlab -nodisplay -r "get pred out; quit;" > Screen output.txt

In the Matlab script, get pred out.m, we add the path to the DRAM package. We also load the

results from a previous DRAM run and specify parameter names. If we ran DRAM in parallel, we take

extra steps to ensure we include the results from all chains. Then, we call a variation of the DRAM

function for generating prediction intervals with the line:

out = mcmcpred anna adh(results, chain, s2chain, [],‘get adh’, 1000 ,PARAMS);

Finally, in this script we save the output, out.

We edited the DRAM function mcmcpred.m in order to accommodate our weighting of the data by

depth. We include the following vector of weights
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weights=[0.08 0.1 0.125 0.21 0.3125 0.5 0.7140]’;

w here=1./weights;

tell ADH which parameters to change by including extra input arguments

y = feval(modelfun,datai,th,varargin{:});

and include weighting in generating the prediction intervals

y + randn(size(y))∗diag(w here)∗diag(sqrt(s2chain(isample(iisample),:)));

The function mcmcpred anna adh calls get adh.m to evaluate ADH. The process is very similar to

that in section C.2.3 except that we do not compute the weighted sum-of-squares residual and must

be careful that the ADH output is in matrix form. We get the ADH output in matrix form using the

Matlab reshape function:

adh out orig= dlmread( ‘adh output.txt’,‘%f’);

adh out=reshape(adh out orig,[],7);

C.2.5 Parallel Simulations

In the Matlab script run DRAM Desert, we make the necessary changes to run our simulations in parallel.

First, we start a Matlab parallel pool and determine the number of workers:

poolobj = parpool;

if isempty(poolobj)

poolsize = 0;

else

poolsize = poolobj.NumWorkers

end

Then, we initialize a different stream of random numbers on each worker

spmd

s = RandStream.create(‘mlfg6331_64’,‘NumStreams’,numlabs,‘StreamIndices’,labindex);

RandStream.setGlobalStream(s);

end
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We call DRAM with an SPMD block and create a temporary directory for each worker:

spmd

currDir = pwd;

addpath(currDir);

addpath(strcat(currDir,‘/Desert_files’));

tmpDir = tempname;

mkdir(tmpDir);

copyfile(‘*’,tmpDir)

cd(tmpDir);

pwd

%%% run dram

p0 = mvnrnd(theta, pestcov)

PARAMS= { {CARDLIST{1},p0(1),pr_low(1),pr_up(1)} };

model.sigma2 = gamrnd( 0.1, 0.1 );

[results,chain,s2chain,sschain] = mcmcrun(model,data,PARAMS,options);

cd(currDir);

rmdir(tmpDir,‘s’);

rmpath(currDir);

end

Finally, we save our results from all workers and close the Matlab parallel pool.

dsave file_name results chain s2chain sschain options PARAMS data model

delete(poolobj)
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Appendix D

Additional Diagnostics

D.1 Constant Saturation

D.1.1 Least Squares (PEST) with Numerical Model (ADH)

Below are the plots of the ADH with optimal parameter values found using PEST for the constant

saturation full datasets.
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Figure D.1: Dataset A model and data over all depths for the constant saturation case
(PEST+ADH).
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Figure D.2: Dataset B model and data over all depths for the constant saturation case
(PEST+ADH).
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Figure D.3: Dataset H model and data over all depths for the constant saturation case
(PEST+ADH).

D.1.2 DRAM

Below are the additional diagnostics for Datasets B and H using DRAM with the analytic solution to

the heat equation as a model.
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Figure D.4: Chain history from 1 to 3,000 samples, Dataset B.
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Figure D.5: Chain history from 1 to 10,000 samples, Dataset B.
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Figure D.6: Chain history from 10,000 to 100,000 samples, Dataset B.
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Figure D.7: Autocorrelation for burned-in portion of chain, Dataset B.
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Table D.1: Mean, standard deviation and Monte Carlo standard error (MCSE) for α from
Dataset B.

Sample Mean St. Dev. MCSE

1:3000 1.138 E-01 2.693 E-04 1.500 E-05

1:10,000 1.138 E-01 2.832 E-04 8.822 E-06

10,000:100,000 1.138 E-01 2.901 E-04 3.509 E-06

3000:10,000 1.138 E-01 2.890 E-04 1.006 E-05
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Figure D.8: Chain history from 1 to 3,000 samples, Dataset H.
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Figure D.9: Chain history from 1 to 10,000 samples, Dataset H.
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Figure D.10: Chain history from 10,000 to 100,000 samples, Dataset H.
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Figure D.11: Autocorrelation for burned-in portion of chain, Dataset H.

Table D.2: Mean, standard deviation and Monte Carlo standard error (MCSE) for α from
Dataset H.

Sample Mean St. Dev. MCSE

1:3000 6.539 E-02 5.915 E-04 4.231 E-05

1:10,000 6.540 E-02 5.999 E-04 2.504 E-05

10,000:100,000 6.540 E-02 5.959 E-04 6.316 E-06

3000:10,000 6.541 E-02 6.033 E-04 2.500 E-05

D.2 Variable Saturation

The following are supplementary plots for the results in Chapter 6.
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D.2.1 PEST

Below is the plot of the ADH output and data for Dataset H in the variably saturated domain. ADH

was run with the optimized parameter values found using PEST.
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Figure D.12: Dataset H model and temperature data all depths over calibration period, un-
saturated case.

D.2.2 24-hour Constant Saturation Results

Below are plots of ADH evaluated with optimal parameter values found using PEST.
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Figure D.13: Dataset A model and temperature data all depths over calibration period, con-
stant 24-hour case.
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Figure D.14: Dataset B model and temperature data all depths over calibration period, con-
stant 24-hour case.
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Figure D.15: Dataset H model and temperature data all depths over calibration period, con-
stant 24-hour case.

D.2.3 DRAM

Below are additional diagnostics for Datasets B and H using DRAM with ADH as a model for the

24-hour constant saturation case.
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Figure D.16: Dataset B entire simulation for all chains, constant saturation 24-hour case.
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Figure D.17: Dataset B first few iterations across all chains, constant saturation 24-hour case.
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Figure D.18: Dataset B autocorrelation function, constant saturation 24-hour case.

Table D.3: Mean, standard deviation and Monte Carlo standard error (MCSE) for each pa-
rameter from Dataset B.

Parameter Mean St. Dev. MCSE

Specific Heat 4.264 E-04 3.028 E-06 8.264 E-08

Emissivity 9.382 E-01 1.497 E-02 4.167 E-04

Albedo 1.371 E-01 9.492 E-03 2.563 E-04
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0 1000 2000 3000
1.6

1.65

1.7

1.75

1.8
x 10

−4

IterationS
pe

ci
fic

 H
ea

t (
D

ee
p 

S
oi

l)

0 1000 2000 3000
6

7

8

9

10
x 10

−4

Iteration

S
pe

ci
fic

 H
ea

t (
G

ra
ve

l)

0 1000 2000 3000
0.97

0.975

0.98

0.985

0.99

0.995

Iteration

E
m

is
si

vi
ty

 (
G

ra
ve

l)

Figure D.19: Dataset H entire simulation for all chains, constant saturation 24-hour case.
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Figure D.20: Dataset H first few iterations across all chains, constant saturation 24-hour case.
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Figure D.21: Dataset H autocorrelation function, constant saturation 24-hour case.

Table D.4: Mean, standard deviation and Monte Carlo standard error (MCSE) for each pa-
rameter from Dataset H.

Parameter Mean St. Dev. MCSE

Specific Heat (Deep Soil) 1.692 E-04 1.642 E-06 3.767 E-08

Specific Heat (Gravel) 8.510 E-04 3.330 E-05 8.173 E-07

Emissivity (Gravel) 9.792 E-01 1.877 E-03 2.964 E-05

Prediction Intervals

Below are plots of the prediction intervals at all depths from using DRAM with ADH in the constant

saturation 24-hour case.
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Figure D.22: 95% Prediction intervals for Dataset A, constant saturation 24-hour case with
ADH as model.
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Figure D.23: 95% Prediction intervals for Dataset B, constant saturation 24-hour case with
ADH as model.
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Figure D.24: 95% Prediction intervals for Dataset H, constant saturation 24-hour case with
ADH as model.
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