
ABSTRACT

MASON, SARAH BETH. Conjugacy Classes of Maximal k-split Tori Invariant Under an
Involution of SL(n,k). (Under the direction of Dr. Aloysius Helminck.)

Given an involution θ and a reductive algebraic group G, we define a symmetric space

as the space G/H, where H is the fixed point group of θ. One can extend the applications

of symmetric spaces to symmetric k-varieties over an arbitrary field k. To study the

representation theory of symmetric k-varieties, it is important to first understand their

structure. The action of minimal parabolic k-subgroups on symmetric k-varieties helps

in identifying the structure of these symmetric k-varieties. Maximal k-split tori invariant

under an involution are of fundamental importance in the characterization of minimal

parabolic k-subgroups acting on symmetric k-varieties. In this dissertation, symmetric

k-varieties for the special linear group SL(n, k) are considered and a classification of

standard tori is given. From the standard tori, one can study the H- and Hk-conjugacy

classes where Hk is the set of k-rational points of H.
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Chapter 1

Introduction

1.1 Symmetric Spaces

Given an involution θ and a reductive algebraic group G, we define a symmetric space

as the space G/H, where H is the fixed point group of θ. A symmetric space is also

known as a symmetric variety. Symmetric spaces were originally studied by Cartan and

arose in the context of Riemannian manifolds and Lie groups. The globally Riemannian

symmetric spaces of differential geometry are a special case of the algebraic definition

common in Lie theory.

One can also consider a more generalized version of a symmetric space. When consid-

ering a symmetric space over a non-algebraically closed field k, we call this a symmetric

k-variety, and it is defined by Gk/Hk, where Gk and Hk are the k-rational points of G

and H, respectively. Real symmetric k-varieties are also called real reductive symmetric

spaces. The p-adic symmetric k-varieties are also known as reductive p-adic symmetric

spaces or as simply p-adic symmetric spaces.

Symmetric k-varieties over fields other than the real numbers occur in a number of

areas of mathematics. These areas include representation theory (see [6], [37] and [38],

geometry ([10],[11],[3]), singularity theory ([28],[24]), the study of character sheaves ([14],

[29]), and the study of cohomology of arithmetic subgroups ([36]). These symmetric k-

varieties are most well known in the area of representation theory.

Example 1.1.1. Let Mn(k) denote the set of n× n matrices with entries in k. Then

GL(n, k) = {A ∈Mn(k) | det(A) 6= 0}
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is the general linear group. Let G = GL(n, k) and define an involution θ : G → G

by θ(g) = (gT )−1. Then H = {g ∈ G | gT = g−1}, the set of n × n orthogonal matrices.

The quotient G/H is then contained within the set of symmetric matrices, giving the

motivation for the name symmetric space. If k = k̄, then G/H is the set of symmetric

matrices. When k 6= k̄, then the extended symmetric space Q̃ = {A ∈ GL(n, k) | θ(A) =

A−1} is the set of symmetric matrices.

Representations associated with real reductive symmetric spaces have been studied

by many people over the past few decades. Much of the early work was done by Harish-

Chandra. Symmetric k-varieties were first introduced in the late 1980’s as a way of

generalizing the concept of these real reductive symmetric spaces to similar spaces over

the p-adic numbers and as a way to study the representations that are associated with

these spaces. A number of interesting results have arisen from this research (see [17], [27],

[33]). Another case of interest is the representations associated with symmetric k-varieties

defined over a finite field (see [29] and [14]).

Expanding on Harish-Chandra’s ideas, the representation theory for the general real

reductive symmetric spaces has been carried out by a number of mathematicians including

Flensted-Jensen, Ōshima, Sekiguchi, Matsuki, Brylinski, Delorme, Schlichtkrul, and van

den Ban (see [5], [9], [12],[13], [15], [31], [32]).

For Qp, the p-adic numbers, it is natural to study the harmonic analysis of these p-adic

symmetric spaces. The main aim of harmonic analysis is to decompose unitary represen-

tations as explicitly as possible into irreducible components, which is called finding the

Plancherel decomposition. Most of the representations occurring in this decomposition

are representations induced from a parabolic k-subgroup. This means that the one essen-

tial tool in the study of symmetric k-varieties and their representations is a description

of the geometry of the orbits of a minimal parabolic k-subgroup acting on the symmetric

k-variety. A description of these orbits naturally leads to a description of most of the

fine structure of these symmetric k-varieties including the restricted root system of the

symmetric k-variety.
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1.2 Orbits of Parabolic Subgroups

on Symmetric Spaces

There are several ways of classifying the orbits of a minimal parabolic k-subgroup Pk on

a symmetric k-variety. One way of classifying these orbits is to consider the Pk-orbits

acting on the symmetric k-variety Gk/Hk by a process called θ-twisted conjugation.

For x, g ∈ Gk, we define g ∗ x := gxθ(g)−1. Another way of viewing these orbits is to

identify Gk/Pk with the set of parabolic k-subgroups of G that are Gk-conjugate with

P , i.e. Gk/Pk = {xPx−1 | x ∈ Gk}, and look at the Hk-orbits on this. Here Hk acts by

conjugation. Lastly, we can consider these orbits as the set Pk \Gk/Hk of (Pk, Hk)-double

cosets in Gk. This last characterization is the same as the set of Pk × Hk-orbits on the

set Gk.

When we have that k = k, we use a Borel subgroup B in place of a minimal parabolic

k-subgroup, because in the case of algebraic closure we have that P = B. For this case,

these orbits were characterized by Springer [35]. Several characterizations of the double

cosets B \ G/H were proven by Springer, including the orbits of H,B, and B × H.

For details, see [35]. For algebraically closed k and P a general parabolic subgroup,

these orbits were characterized by Brion and Helminck in [8] and [21]. For k = R and

P a minimal parabolic k-subgroup, characterizations were given by Matsuki [30] and

Rossmann [34]. For general fields, these orbits were characterized by Helminck and Wang

[22].

Let Pk be a minimal parabolic k-subgroup of G. The double coset Pk \ Gk/Hk has

been characterized in several ways by Helminck and Wang [22], including the orbits of

Hk, Pk, and Pk ×Hk.

We will first consider the Hk-orbits on Gk/Pk. If we let A be a torus of Gk, then

we can denote by NGk(A) the normalizer of A in Gk, ZGk(A) denotes the centralizer

of A in Gk, WGk(A) = NGk(A)/ZGk(A) the Weyl group of A in Gk, and WHk(A) =

NHk(A)/ZHk(A) = {w ∈ WGk(A) | w has a representative in NHk(A)}, the Weyl group

of A in Hk. All of the above sets are θ-stable if A is θ-stable.

Let A′ be a θ-stable maximal k-split torus of Gk which is contained in the minimal

parabolic k-subgroup P ′. Then we will denote by Ck the set of pairs of (P ′, A′). Pk will

be the space of all minimal parabolic k-subgroups of G. The fixed point group Hk acts

on Ck and Pk by conjugation. We will denote the set of Hk-orbits in Ck (respectively Pk)
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by Hk \ Ck (respectively Hk \ Pk ).

The Hk-orbits in Ck can be broken up into two parts. We can first consider the Hk-

conjugacy classes of θ-stable maximal k-split tori in Gk. For each θ-stable maximal k-split

torus that is a representative of these conjugacy classes, we can determine the minimal

parabolic k-subgroups containing this torus that are not Hk-conjugate. Thus, if we define

the set {Ai | i ∈ I} as the set of representatives of the Hk-conjugacy classes of θ-stable

maximal k-split tori in Gk, then the Hk-orbits in Ck can be identified with the union of

Weyl group quotients
⋃
i∈IWGk(Ai)/WHk(Ai).

For the Pk-orbits, we identify Gk/Hk with Qk = {gθ(g)−1 | g ∈ Gk}. Pk acts on Qk by

the θ-twisted action previously described. We will denote the set of θ-twisted Pk-orbits

on Qk by Pk \Qk.

In the characterization of the Pk×Hk-orbits in Gk, let A be a θ-stable maximal k-split

torus of Pk and Vk = {x ∈ Gk | τ(x) ∈ NGk(A)}, where τ(x) is defined as follows.

τ(x) = xθ(x)−1

The group ZGk(A)×Hk acts on Vk by (x, z) ·y = xyz−1, (x, z) ∈ ZGk(A)×Hk, y ∈ Vk.

Let Vk be the set of (ZGk(A)×Hk)-orbits on Vk.

Theorem 1.2.1. [22] Let P be a minimal parabolic k-subgroup of G and let {Ai | i ∈ I}
be representatives of the Hk-conjugacy classes of θ-stable maximal k-split tori in Gk. Then

Pk\Gk/Hk ' Hk \ Pk '
⋃
Ai∈I

WGk(Ai)/WHk(Ai) ' Hk \ Ck ' Pk \Qk ' Vk.

From the previous theorem, we can see that there are several ways to classify the

double cosets Pk\Gk/Hk. Throughout this thesis, we will be interested in the classification

Pk\Gk/Hk '
⋃
Ai∈I

WGk(Ai)/WHk(Ai).

This classificiation will help us in studying the orbits of minimal parabolic k-subgroups

acting on the symmetric k-variety. From this classification, we see that in order to classify

the double coset Pk\Gk/Hk, we will first need to classify the set of Hk-conjugacy classes

of θ-stable, maximal k-split tori. This will give us the set {Ai | i ∈ I}. Once we have done

this, we will need to determine the coset WGk(Ai)/WHk(Ai) for each θ-stable, maximal
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k-split tori representative Ai.

In an algebraically closed field, i.e. k = k̄, we have the double cosets B \ G/H.

When considering G over a non-algebraically closed field, we look at minimal parabolic

k-subgroups instead of Borels and we get Pk \ Gk/Hk. One method of classifying these

double cosets is to consider P \G/H and determining how the algebraically closed orbits

break up over the k-rational points. An alternate method is to instead reverse this process

via an embedding map Pk\Gk/Hk ↪→ P \G/H which we call generalized complexification.

The surjectivity of the generalized complexification map is then equivalent to all orbits

over the algebraic closure contributing to the k-orbits. Given a group N , k-rank(N)

denotes the dimension of a maximal k-split torus of N . When the group G is k-split we

have a characterization of the surjectivity:

Theorem 1.2.2. [26] Let G be a k-split group, H the set of fixed points of an involution

θ and P a minimal parabolic k-subgroup. Then the generalized complexification map

ϕ : Pk \Gk/Hk → P \G/H, ϕ(PkxHk) = PxH

is surjective if and only if k-rank(H) = k-rank(G).

This embedding process will be the motivation for considering theH-conjugacy classes

of θ-stable, maximal k-split tori as well as the Hk-conjugacy classes of θ-stable, maximal

k-split tori.

1.3 Hk-conjugacy classes of θ-stable maximal k-split

tori

The classification that we are interested in centers around tori, so we will use the following

definitions and results. If we have a torus T of G that is defined over the field k, then

there are subtori Ta and Ts of T , where Ta is the largest anisotropic subtorus of T and Ts

is the largest k-split subtorus of T defined over k. We have that T = Ta · Ts and Ta ∩ Ts
is finite.

Given an involution θ of G, we have similar definitions and results for θ-stable tori.

Let T be a maximal k-split torus. We call T θ-stable if θ(T ) = (T ). If we let T+ = {t ∈
T | θ(t) = t}◦ and T− = {t ∈ T | θ(t) = t−1}◦ , then we have that T = T+T− and
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T+ ∩T− is finite. We call the torus T− θ-split. A torus T is called (θ, k)-split if it is both

k-split and θ-split.

Figure 1.1: The poset of Hk-conjugacy classes of θ-stable maximal k-split tori

As we are classifying the Hk-conjugacy classes of θ-stable, maximal k-split tori, we

will obtain a poset of tori. Each node in the poset will represent one of the Hk-conjugacy

classes of θ-stable, maximal k-split tori. As we have stated previously, each of these

representatives Ti can be written as the product of two subtori, Ti = T+
i T

−
i . As we look

across each level of the poset, the dimension of T+
i for each torus Ti on that level will

be equivalent. The same is true for the dimension of T−i across each level of the poset.

We construct the poset in such a way that the top level has tori with a maximal θ-split

part, i.e. T− is maximal. Also, we will have the tori with a maximal T+ part at the

bottom level of the poset. As we move down the poset, we decrease the dimension of the

θ-split portion of the torus by one and increase the dimension of the T+ part by one. A

representation of this poset can be seen in Figure 1.1.

Once we have constructed the poset of Hk-conjugacy classes of θ-stable, maximal k-

split tori, we can get a second poset by expanding each node. Our motivation for creating

the first poset is to classify the Weyl group quotients WGk(Ti)/WHk(Ti). Since each node

represents one of our Ti’s, we can expand the poset to give us this quotient. The number

of nodes in this second lattice will give us | Pk\Gk/Hk |. Additionally, the lines connecting

the nodes in the second lattice correspond to the Bruhat ordering.

6



Figure 1.2: Posets of tori related to G = SL(4,C) with θ(A) = (AT )−1

Example 1.3.1. Let G = SL(4,C) with θ(A) = (AT )−1. Then the first poset has three

levels with one Hk-conjugacy class of θ-stable k-split tori in each level. In the top and

bottom levels, we have that | WGk(Ti)/WHk(Ti) | = 2. Then | Pk \ Gk/Hk | = 4. This is

shown graphically in Figure 1.2.

In order to determine the poset of Hk-conjugacy classes of θ-stable, maximal k-split

tori and the expansion at each node to WGk(Ti)/WHk(Ti), we will need to consider each

algebraic group G and its involutions individually. Throughout this thesis, we will be

considering the group G = SL(n, k) and the involutions associated with it. We will break

up our problem into various subproblems in order to help classify Pk \Gk/Hk.

1. Classify the Hk-conjugacy classes of the maximal (θ, k)-split tori.

2. Classify the Hk-conjugacy classes of maximal k-split tori containing a maximal

(θ, k)-split torus. These tori are θ-stable and the number of conjugacy classes will

tell us the number of nodes in the top level of the first poset, whose nodes correspond

to the Hk-conjugacy classes of θ-stable, maximal k-split tori.

3. Determine the maximal k-split tori in Hk and classify the Hk-conjugacy classes of

θ-stable maximal k-split tori which contain a maximal k-split torus in Hk. This

will give us the bottom level of the first poset, whose nodes are the Hk-conjugacy

classes of θ-stable maximal k-split tori.

4. Classify the Hk-conjugacy classes of θ-stable maximal k-split tori. This is where

we will determine all of the middle levels of the first poset, whose nodes are the

Hk-conjugacy classes of θ-stable maximal k-split tori.

In order to determine the middle levels of our poset, we will first consider the poset

7



of standard tori and see how this poset collapses down under H-conjugacy and then how

it expands when we consider Hk-conjugacy.

Once the poset of Hk-conjugacy classes of θ-stable, maximal k-split tori has been

constructed, we are able to started classifying the Weyl group quotients WGk(Ti)/WHk(Ti)

in order to characterize the double cosets Pk \Gk/Hk.

1.4 Summary of Results for SL(2, k)

When looking to classify the Hk-conjugacy classes of θ-stable, maximal k-split tori for

G = SL(n, k), it is natural to start with the case n = 2. For G = SL(2, k), we have that

tori of G are one-dimensional; thus, Ti = T+
i or Ti = T−i . There are at most two levels to

the poset for SL(2, k).

Remark 1.4.1. SL(2, k) is a k-split group. This means that SL(2, k) contains a maxi-

mal torus that is also maximal k-split, namely T = {diagonal matrices} = {diag} =(
a 0

0 a−1

)
. In this case, minimal parabolic k-subgroups are also Borel subgroups. Thus,

if we let B be a Borel subgroup, T ⊆ B, the classification of Bk \ Gk/Hk is identical to

the classification of Pk \Gk/Hk.

The classification of involutions of SL(2, k) is given by Helminck and Wu. They show

all involutions come from bilinear forms. In particular, we have the following theorem for

involutions of SL(2, k). Note that θ(X) = InnA(X) = A−1XA for any X ∈ G.

Theorem 4.1.1 [23] The number of isomorphy classes of involutions over G = SL(2, k)

equals the order of k∗/(k∗)2. Furthermore, the involutions over G are of the form θ =

Inn ( 0 1
m 0 ) for all m ∈ k∗/(k∗)2. Additionally, if m and q are in the same square class,

then Inn ( 0 1
m 0 ) is isomorphic to the involution Inn

(
0 1
q 0

)
.

Since all involutions of SL(2, k) come from bilinear forms, the orbits of minimal

parabolic k-subgroups acting on the symmetric k-variety related to the involution can be

classified using quadratic forms.

A summary of the main results for SL(2, k) is found in the following theorem. Note

that we use m̄ to denote the entire square class of m and we use m ∈ k∗/(k∗)2 to denote

that m is the representative of the square class m̄ of k. Also, T is the set of diagonal

matrices in SL(2, k).
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Theorem 1.4.2. [1] Let Gk = SL(2, k) and let θ = Inn ( 0 1
m 0 ).

1. Hk is k-anisotropic if and only if m 6∈ 1̄. If m ∈ 1̄, then Hk is a maximal k-split

torus.

2. Let U = {q ∈ k∗/(k∗)2 | x21 −m−1x22 = q−1 has a solution in k }. Then the number

of Hk-conjugacy classes of (θ, k)-split maximal tori is | U/{1,−m} |.

3. For y ∈ U , let r, s ∈ k such that r2 − m−1 = y−1 and let g =
(
r sym−1
s ry

)
. Then

{Ty = g−1Tg | y ∈ U} is a set of representatives of the Hk-conjugacy classes of

maximal (θ, k)-split tori in Gk.

4. Let Ti be a (θ, k)-split maximal torus. Then

(a) | WHk(Ti) |= 2 when m ∈ 1 and −1 ∈ (k∗)2.

(b) | WHk(Ti) |= 2 when m ∈ −1 and −1 6∈ (k∗)2.

(c) | WHk(Ti) |= 1 otherwise.

Parts (1) and (2) give the means of counting the Hk-conjugacy classes of θ-stable

maximal k-split tori. Additionally, part (3) provides the necessary information to find

the tori representatives of each Hk-conjugacy class, allowing the calculation of WHk(Ti)

in part (4). In the cases that Hk is a maximal k-split torus, we clearly have WHk = id,

thus | WGk(Hk)/WHk(Hk) |= 2.

The above results give us a detailed description of the double cosets Bk \Gk/Hk for

G = SL(2, k). Our goal is to do this in general for SL(n, k). The following chapters will

help us in this classification.

1.4.3 Summary of Results for SL(n, k)

When classifying the Hk-conjugacy classes of θ-stable maximal k-split tori of SL(n, k) for

various involutions, we will consider SL(2, k) blocks inside of the larger n × n matrices.

This will reduce the problem to something we have already considered and make our

calculations simpler.

The involutions of G are separated into two groups-the inner involutions and the

outer involutions. We will start with outer involutions, specifically θ(X) = (XT )−1. All

outer involutions can be written as θ(X) = InnM(XT )−1 = M−1(XT )−1M for all X in G,
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where M comes from a bilinear form. Depending on the field k and the size of the matrices

we are considering, this could give us a large number of involutions to characterize. For

example, if k = Qp with p ∼= 1 mod 4 and n is even, then there are a total of n
2

+ 9

isomorphism classes of involutions.

Remark 1.4.4. Like SL(2, k), SL(n, k) is a k-split group, meaning that SL(n, k) contains

a maximal torus that is also maximal k-split, namely the set of diagonal matrices T .

In this case, minimal parabolic k-subgroups are Borel subgroups. Therefore, if we let B

be a Borel subgroup containing T , the classification of Bk \Gk/Hk is the exact same as

Pk \Gk/Hk.

We will build posets of standard tori in order to classify the conjugacy classes of

θ-stable, maximal k-split tori. We will first need to consider the Hk-conjugacy classes of

maximal (θ, k)-split tori. This will tell us the number of tori on the top level of our poset.

The results for this are found in Chapter 5. A summary of the results is below.

Theorem 5.2.1 Let θ = Inn∗In−i,i such that i < n/2. Then there exists only one Hk-

conjugacy class of maximal (θ, k)-split tori with representative

A1 = {diag(a1, . . . , ai, a
−1
i , . . . , a−11 , 1, . . . , 1) | ai ∈ k∗}.

Theorem 5.2.2 Let θ = Inn∗In−i,i such that i = n/2. Note that n must be even. Then the

number of Hk-conjugacy classes of maximal (θ, k)-split tori is at most | k
∗/(k∗)2

±1 |.

Corollary 5.2.3 Let θ = Inn∗In−i,i such that i = n/2. Note that n must be even. Addi-

tionally, let k be C,R,Fp with p 6= 2, or Qp. Then the number of Hk-conjugacy classes of

maximal (θ, k)-split tori equals | k
∗/(k∗)2

±1 |.

Theorem 5.2.4 Let θ = Innn,x. Not that n must be even and x ∈ k∗/(k∗)2, x 6=
1mod(k∗)2. Then the number of Hk-conjugacy classes of maximal (θ, k)-split tori is at

most | k
∗/(k∗)2

±1 |.

Theorem 5.2.5 Let θ = InnJ2m(AT )−1 for all A ∈ G. Then there exists one Hk-conjugacy

class of maximal (θ, k)-split tori with representative

A2 = {diag(a1, a2, · · · , an) | ai ∈ k and a1 = an/2+1, a2 = an/2+2, . . . , an/2 = an}.
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Chapter 6 gives the results of classifying the (θ, k)-singular roots for each involution θ

of SL(n, k). The set of (θ, k)-singular roots will help in constructing the poset of standard

tori that are θ-stable and maximal k-split. A summary of results for this follows.

Theorem 6.1.4 Let G = SL(n, k) and θ = (AT )−1. Then Φ+
θ , the set of positive (θ, k)-

singular roots, is the set of all positive roots if −1 ∈ (k∗)2 and Φ+
θ is the empty set if

−1 6∈ (k∗)2.

Theorem 6.1.6 Let G = SL(n, k) and θ(A) = InnJ2m(AT )−1. Then Φ+
θ = ∅.

Theorem 6.1.9 Let G = SL(n,R) and θ = InnMi
(AT )−1. Then Φ+

θ = {αn−i,
roots containing αn−i in their sum }.

Theorem 6.1.13 Let G = SL(n,Fp) and θ = InnMi
(AT )−1. Then Φ+

θ = {αn−i,
roots containing αn−i in their sum }.

Theorem 6.2.4 Let G = SL(n, k) and θ̃ = Inn


0 0 0 1

0 0 1 0

0 . .
.

0 0

1 0 0 0

. Then Φ+
θ = ΦÃn−i,i

.

Theorem 6.2.6 Let G = SL(n, k) and θ = Inn(Ln,−1). Then Φ+
θ = Φ(Ãn−i,i).

From there, we will check for Hk-conjugacy and H-conjugacy among the rows of the

poset to help in obtaining representatives of the conjugacy classes. This will get us one

step closer to classifying the Weyl group quotients WGk(Ai)/WHk(Ai) and thus the double

cosets Pk \Gk/Hk. We will use the following result to help in checking for conjugacy.

Theorem 7.2.3 For θ = Inn

(
0 1

1 0

)
, we have

(
a+ b 0

0 a− b

)
= Inn

(
x −y
x y

)(
a b

b a

)

where a, b, x ∈ k and a2 + b2 = 1, 2x2 = 1.
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Chapter 2

Preliminaries

2.1 Preliminaries

Throughout this thesis, we will let k be a field with char(k) 6= 0. G will be a reductive

algebraic group defined over k. In particular, we will be interested in the special linear

group SL(n, k).

Definition 2.1.1. Let Mn(k) denote the set of n× n matrices with entries in k. Then

SL(n, k) = {A ∈Mn(k) | det(A) = 1}

is the special linear group.

Let θ be an involution, i.e. θ ∈ Aut(G) and θ2 = Id. When k = k̄, we denote by Ti

the tori of G. When k 6= k̄, we denote by Ai the tori of Gk.

Definition 2.1.2. T ⊂ G is a torus if it is connected, abelian, and consists of semisimple

elements.

The set Φ(T ) (respectively Φ(A)) is the set of roots of T in G (respectively A in G).

When T = {diag}, then Φ(T ) is the set of all positive roots.

Definition 2.1.3. T is θ-stable if θ(T ) = T . Then we have T = T+T−, where

1. T+ = {t ∈ T | θ(t) = t}◦

2. T− = {t ∈ T | θ(t) = t−1}◦. T− is called θ-split.
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Moreover, T+ ∩ T− is finite.

For the case when n = 2, we have that all maximal tori in G are one-dimensional.

Thus, for a θ-stable maximal torus T in G = SL(2, k), T = T+ or T = T−.

We call a torus k-split if the torus is able to be diagonalized over the field k. For

k = k̄, all tori are k-split.

Definition 2.1.4. T a torus is called (θ, k)-split if T is k-split and θ-split.

We are interested in two types of splitting of a torus T . The first type of splitting

involves the involution θ and will split the torus T into T+
θ = {t ∈ T | θ(t) = t}◦ and

T−θ = {t ∈ T | θ(t) = t−1}◦. The second type of splitting involves the field k and will

divide the torus T into Ts and Ta, the k-split part of T and the k-anisotropic part of

T , respectively. Note that if k = k̄, then T = Ts. Given a maximal (θ, k)-split torus A,

we can find a maximal torus T containing A in which T−θ is maximal θ-split and Ts is

maximal k-split.

Figure 2.1: Illustration of k-split and θ-split parts of tori

Figure 2.1 illustrates the k-split and θ-split parts of tori. The top two boxes represent
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Ts. The two boxes on the right represent T−θ . A torus A that is (θ, k)-split is represented

by the upper right box.

It is interesting to look at how Hk acts on all of these different tori. There are several

questions to consider.

1. Hk-conjugacy classes of maximal (θ, k)-split tori.

2. Hk-conjugacy classes of k-split tori.

3. Hk-conjugacy classes of θ-split tori.

Note that if k = k̄, then the H-conjugacy classes and Hk-conjugacy classes are equiv-

alent and all tori are k-split. Our interest lies in the first two questions.

2.2 Generalized Symmetric Spaces

We will now cover some basics of symmetric spaces. We will let V = Rn be a Euclidean

vector space. GL(V ) is the space of invertible matrices and GL(V ) ' GL(n,R). We define

a symmetric bilinear form B(x, y) = xTMy where M is an n× n matrix and M = MT .

If M = Id, then B(x, y) = xTy is called the dot product. By one of the conditions of

the bilinear form, we have that B(x, x) > 0 if x 6= 0. We denote by A′ the adjoint of

A ∈ GL(V ) with respect to B. Then

B(A(x), y) = B(x,A′(y)) ∀ x, y ∈ V

Remark 2.2.1. If M = Id, then A′ = AT .

This can be seen as follows.

B(A(x), y) = B(x,A′(y))

(A(x))TMy = xTATMy = xTMA′y

⇒ ATM = MA′

Thus, if M = Id, then AT = A′.

Let θ(A) = (A′)−1, θ : GL(V ) → GL(V ) and θ2 = Id. Then θ is an involution. Let

H = {A ∈ GL(V ) | B(A(x), A(y)) = B(x, y)}. Then H = O(V,B) = {A ∈ GL(V ) |
θ(A) = A}, the set of orthogonal transformations.
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Definition 2.2.2. Let the set Q = {Aθ(A)−1 | A ∈ GL(V )} = {AA′ | A ∈ GL(V )}.
Then Q is a symmetric space.

If M = Id, then Q = {AAT} ( {symmetric matrices}.

Definition 2.2.3. Let Q̃ = {A ∈ GL(V ) | θ(A) = A−1}. Then Q̃ is called the extended

symmetric space.

Lemma 2.2.4. Let Q be a symmetric space and Q̃ the extended symmetric space, as

defined above. Then Q ⊂ Q̃.

Proof. Let AA′ ∈ Q. Then

θ(AA′) = (A′)−1((A′)′)−1 = (A′)−1(A−1) = (AA′)−1

Thus AA′ ∈ Q̃ and Q ⊂ Q̃.

A torus A is defined to be a subgroup consisting of commuting semisimple elements.

As stated previously, we call a torus A ⊂ G θ-split if θ(a) = a−1 for all a ∈ A. In fact,

all maximal θ-split tori are conjugate under the fixed point group H = Gθ.

Definition 2.2.5. Let G be a real group. Then θ ∈ Aut(G) is a Cartan involution if

1. θ2 = id

2. H = Gθ = {x ∈ G | θ(x) = x} is a (maximal) compact subgroup.

Remark 2.2.6. In this case, compact implies maximal compact, so compact is sufficient.

Any reductive real Lie group has a unique (up to conjugation) Cartan involution. For

our cases, in SL(n, k), the Cartan involution is θ = (AT )−1.

In the study of symmetric spaces, the two most important questions are

1. What is the action of the fixed point group Hk on Gk/Hk? What kind of orbits do

we get?

2. What is the action of the parabolic k-subgroup on Gk/Hk?

We are interested in the second question. For this, we first need to define Borel

subgroups and parabolic subgroups.
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Definition 2.2.7. A subgroup B ⊂ G is called a Borel subgroup if

1. B is a maximal solvable subgroup.

2. B is connected.

Example 2.2.8. Let G = GL(n, k). Then B is the set of upper triangular matrices.

For H ⊂ G with H solvable, we have that H can be triangularized simultaneously. In

other words, there exists x ∈ G such that xHx−1 ⊂ {upper triangular matrices}.

Definition 2.2.9. A closed subgroup P of G is a parabolic subgroup if the quotient

variety G/P is complete.

A closed subgroup of G is parabolic if and only if it contains a Borel subgroup B.

Moreover, parabolic subgroups are connected and self-normalizing: NG(P ) = P .

Example 2.2.10. Let G = GL(2,R). Then we have G ⊃ H = O(2,R) is not a connected

subgroup and thus not parabolic. If we take the connected component of H, H◦ =

SO(2,R), then we have a parabolic subgroup of G.

Example 2.2.11. We have stated that for G = GL(n, k), B is the group of upper triangular

matrices. P the group of matrices with blocks on the diagonal and zeros beneath the

blocks. The following matrix is an example of a matrix in the parabolic subgroup but

not in the Borel subgroup. 
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


For the case where k = k̄, we instead look at the action of the Borel subgroups on

G/H, since B = P in the algebraically closed case.

We have that A ⊂ B ⊂ P ⊂ G, where G is an algebraic group defined over the field

k, P is a minimal parabolic k-subgroup of G, B is the Borel contained in P and A is a

maximal k-split torus.

We will define the centralizer of A in G in the following way:

ZG(A) = {g ∈ G | ag = ga ∀ a ∈ A}.
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We will define the normalizer of A in G in the following way:

NG(A) = {g ∈ G | Ag = gA}.

We have the following facts about Borels and parabolics:

1. NG(P ) = P and NG(B) = B.

2. For B ⊂ G a Borel, then there exists a maximal torus T ⊂ B.

3. B determines the positive roots.

4. Let Φ(T ) denote the root system of T and let ∆ ⊂ Φ(T ) be a basis determined

by B. Then there exists a one-to-one correspondence between subsets of ∆ and

parabolic subgroups P ⊃ B.

5. For B ⊂ G, B a Borel subgroup, then we have the Bruhat decomposition G =⋃
w∈W (T )BwB. Also, B \G/B ' W (T ).

From the second fact above, it follows that there is a one-to-one correspondence

between Borel subgroups containing T and W (T ) = NG(T )/ZG(T ) = NG(T )/T .

If θ is the Cartan involution and P ⊂ G is a minimal parabolic R-subgroup, then we

get

| PR \GR/HR |= 1.

Let τ : G→ G, g 7→ gθ(g)−1. Then Im(τ) = Q ' G/H. We have V = {g ∈ G | τ(g) ∈
NG(A)}. ZG(A)×H acts on V in the following way: (a, h) ∗ g = agh. Note that agh ∈ V:

aghθ(agh)−1 = aghθ(h)−1θ(g)−1θ(a)−1

= aghh−1θ(g)−1θ(a)−1

= agθ(a)−1θ(t)−1

Since gθ(g)−1 ∈ NG(A), by definition of V, we have that τ(agh) ∈ NG(A) and thus

agh ∈ V.

We will denote by V the set of ZG(A)×H -orbits in V.

If the torus A is θ-stable, then ZG(A) and NG(A) are also θ-stable.
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Definition 2.2.12. Let w ∈ W (A). We call w a twisted involution if θ(w) = w−1. We

denote by I the set of twisted involutions.

2.3 Algebraically Closed vs. Non-algebraically Closed

There are some important differences between the cases of k = k̄ and k 6= k̄.

When k = k̄, all maximal tori are conjugate. When k 6= k̄, we get two types of tori:

those that are diagonalizable over k and those that are not diagonalizable over k.

Example 2.3.1. Let G = SL(2,C) and GR = SL(2,R). We have T1 and T2 defined in the

following way:

T1 = {

(
a 0

0 a−1

)
| a ∈ k∗}

T2 = {

(
x y

−y x

)
| x2 + y2 = 1}

T1 is R-split and T2 is R-anisotropic. When we calculate the eigenvalues for T2, we

get x± iy, which is not in R.

If we consider a different field, it is possible that T2 will not be k-anisotropic. For

example, when k = F5, we have that −1 is a square because −1 = 4 = 22. Thus, we

do not get imaginary eigenvalues and we are able to diagonalize T2, making T2 a k-split

torus. When considering Fp, we have that −1 is a square when p ≡ 1 mod 4 and −1 is

not a square when p ≡ 3 mod 4.

When k = k̄, we have a reductive group G, involution θ, fixed point group H, and a

Borel subgroup B that contains a torus T . We will let Tθ be the set of θ-stable maximal

tori, V = {g | gθ(g)−1 ∈ NG(T )}, and V = {T × H orbits on V} ' B \ G/H. We have

the map ϕ : V → Tθ/H. We are interested in characterizing Tθ/H in order to classify

the double cosets B \G/H.

Lemma 2.3.2. [18] Assume T1, T2 ∈ Tθ with T+
i maximal, i.e. T+

i is a maximal torus

of H. Then there exists an h ∈ H such that hT1h
−1 = T2.

Lemma 2.3.3. [18] Assume T1, T2 ∈ Tθ with T−i maximal, i.e. T−i is a maximal θ-split

torus. Then there exists an h ∈ H such that hT1h
−1 = T2.
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When k 6= k̄, we have a reductive group Gk, involution θ, fixed point group Hk,

and a minimal parabolic subgroup Pk that contains a torus A. We will let Aθ be the

set of θ-stable maximal k-split tori, V = {g | gθ(g)−1 ∈ NG(A)}, and V = {ZG(A) ×
H orbits on V} ' Pk \ Gk/Hk. We have the map ϕ : V → Aθ/Hk. We are interested in

characterizing Aθ/Hk in order to classify the double cosets Pk \Gk/Hk.

We have the following modified lemmas for the non-algebraically closed case.

Lemma 2.3.4. [18] Assume A1, A2 ∈ Aθ with A+
i maximal, i.e. A+

i is a maximal torus of

H. Then there exists an h ∈ H such that hT1h
−1 = T2. Thus A1 and A2 are H-conjugate

but not necessarily Hk-conjugate.

Lemma 2.3.5. [18] Assume A1, A2 ∈ Aθ with A−i maximal, i.e. A−i is a maximal (θ, k)-

split torus. Then there exists an x ∈ (H.ZG(A1))k such that xT1x
−1 = T2.

From Lemma 2.3.5, we have that there are usually infinitely many (θ, k)-split tori but

in some cases there is only one Hk-conjugacy class of (θ, k)-split tori. If there is only one

Hk-conjugacy class of (θ, k)-split tori, then the lemma for k = k̄ holds for k 6= k̄.

For algebraically closed G, B ⊂ G a Borel subgroup, θ ∈ Aut(G), θ2 = id, and

H = Gθ the fixed point group, we can classify B \G/H in the following ways:

1. H-orbits on G/B ' B = {gBg−1 | g ∈ G}. Then B \G/H '
⋃
i∈IWG(Ti)/WH(Ti)

where {Ti | i ∈ I} are the H-conjugacy classes of θ-stable maximal tori.

2. B ×H-orbits on G.

3. B-orbits on G/H ' Q = {xθ(x)−1 | x ∈ G}

If we consider G defined over k with k 6= k̄, we have Gk the k-rational points on G,

Pk the minimal parabolic subgroup defined over k, Pk ⊂ Gk, and A a θ-stable maximal

k-split torus with A ⊂ Pk. Then we can classify the double cosets Pk \ Gk/Hk in the

following way:

Pk \Gk/Hk '
⋃
i∈I

WGk(Ai)/WHk(Ai)

with {Ai | i ∈ I} the set of representatives ofHk-conjugacy classes of θ-stable maximal

k-split tori.
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Example 2.3.6. Let G = SL(2,C), θ(g) = (gT )−1, H = {

(
a b

−b a

)
| a2 + b2 = 1}. Then

GR = SL(2,R). We have that Pk = B = {upper triangular matrices} is the minimal

parabolic R-subgroup. Then

B \G/H '
⋃
i∈I

WG(Ti)/WH(Ti)

BR \GR/HR '
⋃
i∈I

WGR(Ai)/WHR(Ai)

The set {Ti | i ∈ I} = {T1, T2} and {Ai | i ∈ I} = {T1}. The set {Ai | i ∈ I} does not

contain T2 because T2 cannot be diagonalized over R and thus is not R-split. The Weyl

group WG(T1) has representatives in HR and since H = T2, the group WH(T2) = {id}.
So we have

B \G/H ' {WH(T1)/WH(T1),WG(T2)}

BR \GR/HR ' {id}

We get three orbits in the algebraically closed case and only one orbit in the non-

algebraically closed case.

If we consider k = Q in the previous example, we have that

BQ \GQ/HQ '
⋃
i∈I

WGQ(Ai)/WHQ(Ai).

There are infinitely many HQ-conjugacy classes of θ-split tori. This can be seen in the

following example.

Example 2.3.7. Let G = SL(2,Q), θ(x) = (xT )−1, B = the Borel subgroup of upper

triangular matrices and A the group of diagonal matrices. In this case the computations

work out nicer if we let H = Gθ act from the left and define τ(g) = g−1θ(g) and

VQ = {g ∈ GQ | τ(g) ∈ NGQ(A)}. If g =

(
a b

c d

)
∈ SL(2,Q), then

g−1θ(g) =

(
b2 + d2 −ab− cd
−ab− cd a2 + c2

)
∈ NGQ(A)
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if and only if ab + cd = 0. So τ(VQ) ⊂ AQ and it coincides with the set consisting

of

(
r 0

0 r−1

)
with r = x2 + y2, (x, y) ∈ Q2 − {(0, 0)}. If z =

(
v u

0 v−1

)
∈ B and

τ(g) =

(
r 0

0 r−1

)
, then

z−1τ(g)θ(z) =

(
rv−2 + u2r−1 −uvr−1

−uvr−1 v2r−1

)
∈ AQ

if and only if u = 0. It follows that

(
r 0

0 r−1

)
and

(
s 0

0 s−1

)
are in the same twisted

BQ orbit if and only if r−1s ∈ (Q∗)2. Hence VQ ∼= ⊕p≡1(4)
prime

Z/2Z and the set HQ\GQ/BQ is

infinite.

2.4 Lie Algebras

The work done throughout this thesis focuses on Lie groups. It is possible to do similar

work with Lie algebras with some adjustments. In fact, some of the calculations are easier

when dealing with Lie algebras so it can be beneficial to go between the two.

Let g be a Lie algebra. We will denote by t a maximal toral subalgebra and b a

Borel subalgebra, i.e. b is a maximal solvable subalgebra. To go between the Lie algebras

and the Lie groups, we take the exponential of the Lie algebra. Note that for tori the

exponential map Exp is surjective, T = Exp(t), but for most semisimple Lie groups Exp

is not surjective.

Since the operation used in the Lie algebra is addition, we will use the additive inverse

in place of the multiplicative inverse used in the Lie group. For example, if we let θ be

an involution of g, we call t θ-split if θ(t) = −t for all t ∈ t. This change will apply to all

definitions and involutions.

Example 2.4.1. Let θ(A) = (AT )−1 be an involution of G. Then for g, θ(A) = −AT .

Thus, we have that h = {X ∈ g | −X = XT}. This fixed point group is much easier to

calculate than the fixed point group H = {X ∈ G | A−1 = AT}.

Many of the results from the Lie group hold for the Lie algebra as well. We have that

t = ts ⊕ ta, where ts is the k-split part of t and ta is the k-anisotropic part of t. We also
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have similar definitions for t+ and t−.

2.5 Pk \Gk/Hk

The motivation behind this thesis focuses on classifying the double cosets Pk \ Gk/Hk.

We have the following definitions.

Definition 2.5.1. Given a group G and an involution θ, we define the fixed point group

H as the group H = Gθ = {g ∈ G | θ(g) = g}.

We will let Gk and Hk denote the k-rational points of G and H, respectively. We let

NG(H) (respectively NGk(Hk)) denote the normalizer of H in G (respectively Hk in Gk)

and ZG(H) (respectively ZGk(Hk)) denote the centralizer of H in G (respectively Hk in

Gk).

Example 2.5.2. If G = SL(2,C), then GR will be the 2 × 2 matrices of determinant one

with entries in R.

Now that we have established a group G, an involution θ of G, and the fixed point

group H = Gθ associated with this involution, we can define a symmetric variety.

Definition 2.5.3. A symmetric variety (or symmetric space) is the set Q = {gθ(g)−1 |
g ∈ G} ' G/H. A symmetric k-variety is the set Qk = {gθ(g)−1 | g ∈ Gk} ' Gk/Hk.

Helminck and Wang gave the following characterization of Pk\Gk/Hk:

Theorem 2.5.4. [22] Pk\Gk/Hk '
⋃
Ai∈IWGk(Ai)/WHk(Ai), where I is the set of Hk-

conjugacy classes of θ-stable maximal k-split tori and the Ai are representatives of these

Hk-conjugacy classes.

Thus, to classify Pk\Gk/Hk, we first need to classify the Hk-conjugacy classes of

θ-stable maximal k-split tori.

For maximal (θ, k)-split tori, Helminck and Wang gave the following result:

Theorem 2.5.5. [22] Let A1 and A2 be maximal (θ, k)-split tori. Let T ⊃ A1 be maximal

k-split. Then there exists a g ∈ (H · ZG(T ))k such that gA1g
−1 = A2.
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Example 2.5.6. Let G = SL(2, k), k = k̄, θ(g) = (gT )−1. Then

H = Gθ = {

(
a b

−b a

)
| a2 + b2 = 1} = SO(2, k).

Let T1 =

(
a 0

0 a−1

)
. We have that T1 is θ-split; for t ∈ T1, θ(t) = (tT )−1 = t−1. Thus

T1 = (T1)
−
θ . Let T2 = H = SO(2). Then for t ∈ T2, we have that θ(t) = t since T2

is the fixed point group. This means that T2 = (T2)
+
θ . Any θ-stable maximal torus is

H-conjugate to either T1 or T2. Then

B \G/H ' WG(T1)/WH(T1) ∪WG(T2)/WH(T2)

and we have the following:

WG(T1) = {id,

(
0 1

−1 0

)
} = WH(T1)

{id} = WH(H) ( WG(T2)
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Chapter 3

Standard Tori

In the process of classifying the Hk-conjugacy classes of θ-stable maximal k-split tori, it

is sufficient to consider only standard tori. We will first consider standard k-split tori and

then look at quasi k-split tori and H-quasi k-split tori.

3.1 Standard k-split tori

Let G be a connected reductive algebraic group, θ an involution of G defined over k and

H = Gθ, the fixed point group. Given a θ-stable torus A, we will let A+ = A+
θ = {X ∈

A | θ(X) = X} and A− = A−θ = {X ∈ A | θ(X) = X−1}. Let Aθ
k denote the set of

θ-stable maximal k-split tori of G, Aθ denote the set of θ-stable maximal tori of G and

Aθ
0 the set of θ-stable quasi k-split tori of G, which are H-conjugate to a θ-stable maximal

k-split torus.

The Hk-conjugacy classes of θ-stable maximal k-split tori are determined by the image

and fibers of the map ζ : Aθ
k/Hk → Aθ/H. The image of ζ consists of the H-conjugacy

classes of θ-stable maximal k-split tori.

To be able to give a characterization of these in terms of conjugacy classes of in-

volutions in a Weyl group, we will first show in this section that every conjugacy class

contains a standard torus. We will first start with some definitions.

Definition 3.1.1. A quasi k-split torus is a torus that is conjugate under G to a k-split

torus, i.e. A is quasi k-split if

A = gTg−1
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with g ∈ G and T a k-split torus.

For quasi k-split tori we define singular roots with respect to the involution. Note

that k-split tori are also quasi k-split tori, with g = id. If A is a quasi k-split torus and

α ∈ Φ(A), then we write Gα = ZG(ker(α)◦).

Definition 3.1.2. The roots of Φ(A) can be divided in four subsets, related to the action

of θ, as follows.

(a) θ(α) 6= ±α. Then α is called complex (relative to θ).

(b) θ(α) = −α. Then α is called real (relative to θ).

(c) θ(α) = α and θ|Gα 6= id. Then α is called non-compact imaginary (relative to θ).

(d) θ(α) = α and θ|Gα = id. Then α is called compact imaginary (relative to θ).

Definition 3.1.3. If α is either a real or non-compact imaginary root, then we call it a

θ-singular root.

For k-split tori we have to combine the idea of θ-singular with the k-structure of the

group itself. The θ-singular roots can be divided in those which are singular with respect

to the k-structure and those which are not. These are defined as follows.

Definition 3.1.4. A real θ-singular root α ∈ Φ(A) is called (θ, k)-singular (respectively

θ-singular anisotropic) if Gα ∩H is isotropic (respectively Gα ∩H is anisotropic).

Similarly an imaginary θ-singular root is called (θ, k)-singular (respectively θ-singular

anisotropic) if Gα has a non-trivial (θ, k)-split torus (respectively Gα has no non-trivial

(θ, k)-split tori).

Similar as for quasi k-split tori we have the following result.

Proposition 3.1.5. [19] Let A be a θ-stable maximal k-split torus of G. Then we have

the following.

(1) A+ is a maximal k-split torus of H if and only if Φ(A) has no (θ, k)-singular real

roots.

(2) A− is a maximal (θ, k)-split torus of G if and only if Φ(A) has no (θ, k)-singular

imaginary roots.
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Let Aθ be the set of θ-stable maximal tori of G.

Definition 3.1.6. For A1, A2 ∈ Aθ, the pair (A1, A2) is called standard if A−1 ⊂ A−2 and

A+
1 ⊃ A+

2 . In this case, we also say that A1 is standard with respect to A2.

The θ-stable maximal tori of G can be put into standard position. Since every conju-

gacy class contains a standard torus, it suffices to look at the θ-stable, maximal k-split

standard tori.

Lemma 3.1.7. Let A1, A2 ∈ A such that A+
1 ⊃ A+

2 (respectively A−1 ⊂ A−2 ). Then

there exists x ∈ ZH(A+
2 ) (respectively ZH(A−1 )) such that (A1, xA2x

−1) is standard. In

particular, if A+
1 and A+

2 (respectively A−1 and A−2 ) are H-conjugate, so are A1 and A2.

Proof. Let M ZG(A+
2 ). Then A−1 and A−2 are θ-split tori of M . Let A ⊂M be a maximal

θ-split torus with A ⊃ A−1 . Since A−2 is a maximal θ-split torus of M , there exists an

x ∈ (M ∩H)◦ such that xAx−1 = A−2 and hence xA−1 x
−1 ⊂ A−2 . The proof for the second

statement is similar.

Any θ-stable maximal k-split torus is standard with respect to one containing a max-

imal (θ, k)-split torus (respectively a maximal k-split torus of H).

Lemma 3.1.8. [19] Let A1 be a θ-stable maximal k-split torus. Then there exists a

standard pair (A, S) of θ-stable maximal k-split tori, with A− maximal (θ, k)-split, S+ a

maximal k-split torus of H and A1 is standard with respect to A and S.

Notation 3.1.9. Let A0 ∈ Aθ
0 (respectively S0 ∈ Aθ

0) be θ-stable maximal k-split tori of

G, such that A−0 (respectively S+
0 ) is a maximal (θ, k)-split torus of G (respectively a

maximal k-split torus of H). We can choose S0 to be standard with respect to A0. In the

following we fix such a standard pair (S0, A0).

It remains to show that any θ-stable maximal k-split torus is H-conjugate with a

θ-stable maximal k-split torus standard with respect to A0 and S0.

Proposition 3.1.10. [19] Let (S0, A0) be a standard pair as above and let A1 ∈ Aθ
0. Then

A1 is H-conjugate with a θ-stable maximal k-split torus, which is standard with respect

to A0 and S0.

A standard pair (A1, A2) of θ-stable maximal tori of G gives rise to an involution in

W (T1) (respectively W (T2)).
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Lemma 3.1.11. Let (A1, A2) be a standard pair of θ-stable maximal k-split tori of G.

Then we have the following conditions:

(i) There exists g ∈ ZG(A−1 A
+
2 ) such that gA1g

−1 = A2.

(ii) If n1 = θ(g)−1g and n2 = θ(g)g−1, then n1 ∈ NG(A1) and n2 ∈ NG(A2).

(iii) Let w1 and w2 be the images of n1 and n2 in W (A1) and W (A2) respectively. Then

w2
1 = id, w2

2 = id, and (A1)
+
w1

= (A2)
+
w2

= A−1 A
+
2 , which characterizes w1 and w2.

Proof. Since A1 and A2 are maximal k-split tori of ZG(A−1 A
+
2 ), the first statement is clear.

For (ii) and (iii), consider first n1. Since g ∈ ZG(A−1 A
+
2 ) and A1 = A−1 A

+
2 (A+

1 ∩ g−1A−2 g)

it suffices to look at A+
1 ∩ g−1A−2 g. So let x ∈ A+

1 ∩ g−1A−2 g and write x = g−1tg with

t ∈ A−2 . Then n1xn
−1
1 = θ(g−1t−1g) = θ(x)−1 = x−1. It follows that

Inn(n1)|A−1 A+
2 = id, Inn(n1)|A+

1 ∩ g−1A−2 g = − id

which implies that n1 ∈ NG(A1), w
2
1 = id and (A1)

+
w1

= A−1 A
+
2 .

The assertion for n2 and w2 follows with a similar argument.

Remark 3.1.12. By (iii) of Lemma 3.1.11, w1 and w2 are independent of the choice of

the element g ∈ ZG(A−1 A
+
1 ) with gA1g

−1 = A2.

The above leads to the following definition of standard involutions:

Definition 3.1.13. Let A1, A2, w1 ∈ W (A1) and w2 ∈ W (A2) be as in Lemma 3.1.11. We

call w1 (respectively w2) the A2-standard involution (respectively A1-standard involution)

of W (A1) (resp. W (A2)). Moreover we will call an involution w ∈ W (A2) a k-standard

involution, if there exists a θ-stable maximal k-split torus A3 standard with respect to

A2 such that w is the A3-standard involution in W (A2).

In practice, standard involutions are written as the product of Weyl group elements

sα’s, as we will see in Chapter 7.

Remark 3.1.14. To show that the H-conjugacy classes in Aθ
0 correspond to conjugacy

classes of the k-standard involutions, we need to prove first a similar result for Aθ/H,

the H-conjugacy classes of θ-stable maximal quasi k-split tori. Namely if A1, A2 ∈ Aθ
0

standard with respect to A0 and h ∈ H such that hA1h
−1 = A2, then A3 = hA0h

−1 and

A0 are θ-stable maximal quasi k-split tori with A−3 and A−0 maximal. To prove that the
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A1-standard involution and the A2-standard involution are conjugate under W (A0) we

will need to show that A3 and A0 are actually maximal quasi k-split tori of ZG(A−2 ). This

will be shown in the next section, where we have a closer look at the H-conjugacy classes

of θ-stable maximal quasi k-split tori.

3.2 Standard Quasi k-split tori

In this section we show that, similar as in the case of k-split tori, every H-conjugacy class

of θ-stable maximal quasi k-split tori contains a standard torus. The conjugacy classes

in Aθ/H are not only of importance for a characterization of the double cosets P\G/H,

but also for a classification of the subset Aθ
0/H of Aθ/H. The characterization of Aθ/H

is more complicated then that of Aθ
0/H.

Let G be a connected reductive algebraic group, θ an involution of G defined over k.

Let H = Gθ be the fixed point group. Let Aθ denote the set of θ-stable maximal quasi

k-split tori of G. Let A0 denote a θ-stable maximal k-split torus with A−0 a maximal

(θ, k)-split torus of G and T ⊃ A0 a maximal torus of G, such that T−θ is a maximal

θ-split torus of G. We write V for τ−1(NG(A0)).

For k-split tori, we had the concept of two tori being standard with respect to one

another. When dealing with quasi k-split tori, we must introduce the idea of almost

standard.

Definition 3.2.1. For A1, A2 ∈ Aθ, the pair (A1, A2) is called almost standard if A−1 ⊂
A−2 . An almost standard pair (A1, A2) is called standard if A+

1 ⊃ A+
2 . In these cases, we

also say that A1 is almost standard (respectively standard) with respect to A2.

Only the −1 eigenspace is able to be put in standard position when we have that two

tori are almost standard. We only get standard if we take the maximal quasi k-split tori

in H to be conjugate.

All θ-stable maximal quasi k-split tori of G with A− maximal are conjugate under H0.

This conjugacy of the θ-stable maximal quasi k-split tori A with A− maximal enables us

to show that any θ-stable maximal quasi k-split torus is conjugate to one almost standard

with respect to A0.

Proposition 3.2.2. Let A1 be a θ-stable maximal quasi k-split torus of G. Then there

exists h ∈ H0 such that hA−1 h
−1 ⊂ A−0 .
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Proof. We use induction with respect to dimA−0 −dimA−1 . If dimA−0 −dimA−1 = 1, then

since A−1 is not maximal there exists λ ∈ Φ(A1) a θ-singular imaginary root. There exists

g ∈ ZG((kerλ)0) such that A2 = gA1g
−1 is θ-stable and dimA−2 = dimA−1 + 1 = dimA−0 .

But then A−2 is maximal, thus there exists h ∈ H0 such that hA2h
−1 = A0. Since

A−1 ⊂ (kerλ)0 ⊂ A2 it follows that hA−1 h
−1 ⊂ A−0 .

Assume now that dimA−0 −dimA−1 = k > 0. Let λ ∈ Φ(A1) be a θ-singular imaginary

root and g ∈ ZG((kerλ)0) such that A2 = gA1g
−1 is θ-stable and dimA−2 = dimA−1 +1 =

dimA−0 . Since dimA−0 − dimA−2 = k − 1 it follows from the induction hypothesis that

there exists h ∈ H0 such that hA−2 ⊂ A−0 . Since A−1 ⊂ A−2 the result follows.

Lemma 3.2.3. [19] Let A1 be a θ-stable maximal quasi k-split torus almost standard

with respect to A0. There exists an involution w ∈ W (A0) with (A0)
−
w ⊂ A−0 and such

that A−1 = ((A0)
−
w ∩ A−0 )0.

The above Lemma enables us to obtain the following result.

Proposition 3.2.4. [19] Let A0 be as above and let A1 ∈ Aθ be a θ-stable maximal quasi

k-split torus, almost standard with respect to A0. Then we have the following conditions:

(i) There exists g ∈ ZG(A−1 ) such that gA1g
−1 = A0.

(ii) If A1 is standard with respect to A0, then there exists g ∈ ZG(A−1 A
+
0 ) such that

gA1g
−1 = A0.

Corollary 3.2.5. Any θ-stable maximal quasi k-split torus is H0-conjugate to one stan-

dard with respect to A0.

Proof. Let A1 be a θ-stable maximal quasi k-split torus of G. From Proposition 3.2.2 it

follows that we may assume that A1 is almost standard with respect to A0. Similar as

in the proof of Lemma 3.2.3 there exist strongly orthogonal θ-singular imaginary roots

α1, . . . , αn ∈ Φ(A1) (n = dimA−0 − dimA−1 ) and x ∈ ZG((A1)
+
w) such that A2 = xA1x

−1

is θ-stable and dimA−2 = dimA−1 + n = dimA−0 . Here w = sα1 · · · sαn . By Corollary ??

there exists h ∈ H0 such that hA2h
−1 = A0. Let A3 = hA1h

−1. Since A−1 ⊂ (A1)
+
w ⊂ A−2

and A+
2 ⊂ A+

1 it follows that A−3 = hA−1 h
−1 ⊂ A−0 and A+

3 = hA+
1 h
−1 ⊃ hA+

2 h
−1 = A+

0 .

This proves the result.

This result reduces the study of H0-conjugacy classes of θ-stable maximal quasi k-split

tori to H0-conjugacy classes of θ-stable maximal quasi k-split tori standard with respect
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to A0. As in Lemma 3.1.11 we can associate an involution with a θ-stable maximal quasi

k-split torus, standard with respect to A0.

Lemma 3.2.6. [19] Let A0 be as above and let A1 ∈ Aθ be a θ-stable maximal quasi

k-split torus, standard with respect to A0 and g ∈ ZG(A−1 A
+
0 ) such that gA1g

−1 = A0.

Then we have the following conditions:

(i) If n = θ(g)g−1, then n ∈ NG(A0).

(ii) Let w be the image of n in W (A0). Then w2 = e and (A0)
+
w = A−1 A

+
0 , which

characterizes w.

This result follows using a similar argument as in Lemma 3.1.11.

Remark 3.2.7. By (ii) of Lemma 3.2.6, w is independent of the choice of the element

g ∈ ZG(A−1 A
+
0 ) such that gA1g

−1 = A0.

This leads to the following definition of standard involutions for the θ-stable maximal

quasi k-split torus, standard with respect to A0:

Definition 3.2.8. Let A1 ∈ Aθ and w ∈ W (A0) be as in Lemma 3.2.6. We call w the

A1-standard involution of W (A0). Moreover we will call an involution w0 ∈ W (A0) a

standard involution, if there exists a θ-stable maximal quasi k-split torus A1 standard

with respect to A0 such that w0 is the A1-standard involution in W (A0).

For a θ-stable k-torus A0 of G, write W (A0, H) for NH(A0)/ZH(A0). We have now

the following result.

Proposition 3.2.9. Assume that A1, A2 ∈ Aθ such that they are standard with respect to

A0. Let w1 and w2 be the A1-standard and A2-standard involutions in W (A0) respectively.

If A1 and A2 are conjugate under H, then w1 and w2 are conjugate under W (A0, H).

Proof. Assume h ∈ H0 such that hA1h
−1 = A2. Then A3 = hA0h

−1 is θ-stable with A−3

maximal. It suffices to show that A3 and A0 are conjugate under H0 ∩ ZG(A−1 A
+
0 ).

Let α ∈ Φ(A1) with θ(α) = −α and β the corresponding root in Φ(A2). If A−1 does

not contain any real roots, then A+
i (i = 1, 2) is maximal and in this case both w1 and w2

are maximal involutions in Φ1 = {α ∈ Φ(A0) | θ(α) = −α} and hence conjugate under

W (Φ1) ⊂ W (A0, H).
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Since both α and β correspond to roots in Φ(A0), there exists w ∈ W (A0, H
0)

such that w(α) = β. Let h1 ∈ H0 be a representative of w and A4 = h1A1h
−1
1 . Then

hh−11 A4h1h
−1 = hA1h

−1 = A2, hh
−1
1 A0h1h

−1 = A3 and hh−11 ∈ ZH(β∨). Using induc-

tion it follows that there exists h2 ∈ ZG(A−2 A
+
0 ) ∩ H0 such that h2A3h

−1
2 = A0. Then

g = h2h ∈ NH(A0) maps w1 to w2.

Remark 3.2.10. The θ-stable maximal quasi k-split tori A1 with A+
1 maximal are not

necessarily conjugate under H can be seen as follows. If T is a θ-stable maximal torus

with T+ a maximal torus of H, then NG(T ) 6= NH(T ). This means that T can contain

several H-conjugacy classes of θ-stable maximal quasi k-split tori. These are basically

conjugates of the A+
0 part of these tori.

A consequence of this is that there is not a unique minimal element in the set of

H-conjugacy classes of θ-stable maximal quasi k-split tori. For the minimal element all

we can show is the following:

Lemma 3.2.11. [19] Let S be a θ-stable maximal quasi k-split torus with S+ maximal.

There exists a θ-stable maximal torus T of G with T ⊃ S and T+ is a maximal torus of

H.

3.3 Standard H-Quasi k-split tori

Many of the results for quasi k-split tori are also true for H-quasi k-split tori.

Definition 3.3.1. An H-quasi k-split torus is a torus that is H-conjugate to a k-split

torus, i.e. A is H-quasi k-split if

A = hTh−1

with h ∈ H and T a k-split torus.

When dealing with maximal H-quasi k-split tori, we no longer have to use the defini-

tion for almost standard. This is because all maximal H-quasi tori A with A+ maximal

are conjugate. This gives us a unique bottom to the poset of standard tori.

Since we have a unique top and a unique bottom in the poset of θ-stable, maximal

H-quasi k-split standard tori, we are in a much simpler case than in the maximal quasi

k-split tori case, where we are not guaranteed a unique bottom to the poset.
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Chapter 4

SL(2, k)

4.1 Introduction to SL(2, k)

In order to help us understand what happens in SL(n, k), we will first work on fully

understanding SL(2, k). Since SL(n, k) is made up of multiple blocks of SL(2, k), our

understanding of the SL(2, k) case will be very beneficial. We have the following theorem

to classify the involutions of SL(2, k).

We will let Inn ( a bc d ) be conjugation by the matrix ( a bc d ), i.e.

Inn

(
a b

c d

)
(X) =

(
a b

c d

)
(X)

(
a b

c d

)−1
.

Theorem 4.1.1. [23] The number of isomorphy classes of involutions over G equals the

order of k∗/(k∗)2. Furthermore, the involutions of G are of the form θ = Inn ( 0 1
m 0 ) for

all m ∈ k∗/(k∗)2. Additionally, if m and q are in the same square class, then Inn ( 0 1
m 0 )

is isomorphic to the involution Inn
(
0 1
q 0

)
.

For k = C, we have that there is exactly one involution for SL(2, k), which is θ =

Inn ( 0 1
1 0 ). For k = R, we have that there are two involutions for SL(2, k), namely θ1 =

Inn ( 0 1
−1 0 ) and θ2 = Inn ( 0 1

1 0 ). For k = Fp, we will have two cases. If −1 ∈ (k∗)2, then

for k = Fp, there is exactly one involution for SL(2, k), which is θ = Inn ( 0 1
1 0 ). If −1 6∈

(k∗)2, then for k = Fp, we have that there are two involutions for SL(2, k), namely

θ1 = Inn
(

0 1
sp 0

)
where sp is the smallest nonsquare in Fp and θ2 = Inn ( 0 1

1 0 ). Note that if

−1 is not a square in Fp, we can use sp = −1 because they are in the same square class.
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4.1.2 k = C

Let us first consider k = C. Note that θ(A) = Inn ( 0 1
1 0 ) (A) ' (AT )−1. We have that the

maximal (θ, k)-split torus for this involution is T = {diag} =
(
a 0
0 a−1

)
.

Theorem 4.1.3. Let G = SL(2, k), θ = (AT )−1. If −1 ∈ (k∗)2, then T1 =
(
x 0
0 x−1

)
and T2 =

(
a b
−b a

)
are the two Hk-conjugacy classes of θ-stable, maximal k-split tori. If

−1 6∈ (k∗)2, then T1 is the only Hk-conjugacy class of θ-stable, maximal k-split tori.

Proof. For θ = (AT )−1, the maximum (θ, k)-split torus is T1 =
(
x 0
0 x−1

)
. T2 = Hk =

(
a b
−b a

)
is a θ-stable torus, but we need to check to see if T2 is k-split. To check to see if T2 is

diagonalizable, we find its eigenvalues. We get the characteristic equation

(a− λ)2 + b2 = 0

a2 − 2aλ+ λ2 + b2 = 0

λ2 − 2aλ+ 1 = 0

λ = a±
√
a2 − 1

λ = a±
√
−b2

λ = a± b
√
−1

If −1 ∈ (k∗)2 , we have that T2 is k-split. If −1 6∈ (k∗)2, then we are not able to go

from T1 to T2 because T2 would not be k-split.

From this theorem, we have that there are two Hk-conjugacy classes of θ -stable,

k-split tori for k = C. The two representatives are T1 and T2.

The process of going from T1 to T2 is called flipping down the poset. When we move

one level down the poset, we are increasing the dimension of the T+ part of the torus

by one and decreasing the dimension of the T− part of the torus by one. In the SL(2, k)

case, we are only able to flip a maximum of one time, since there is only one possible

root to flip over, namely α1. When flipping from T1 to T2, we are flipping over the α1

position. This terminology will help in future examples. In cases of SL(n, k) where n is

larger than two, it could be possible to flip down the poset more than once. This will be

seen in later chapters. For now, we will move on to the case for SL(2,R).
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4.1.4 k = R

If we consider k = R, then we have two involutions because there are two square classes

for the real numbers. Our two involutions are θ1 = Inn ( 0 1
−1 0 ) and θ2 = Inn ( 0 1

1 0 ). Note

that θ1 ' (AT )−1. From Theorem 4.1.3, we have that there is one Hk-conjugacy class of

θ1 -stable, k-split tori for k = R with representative T1 because −1 is not a square in R.

For θ2, we have that there are two Hk-conjugacy classes of θ -stable, k-split tori for

k = R. The two representatives are T = {diag} and H = Gθ2 . If we work through the

characteristic equation, we get the following, noting that a2 − b2 = 1:

(a− λ)2 − b2 = 0

a2 − 2aλ+ λ2 − b2 = 0

λ2 − 2aλ+ 1 = 0

λ = a±
√
a2 − 1

λ = a±
√
b2

λ = a± b

Thus we get eigenvalues a+ b and a− b, both contained in R, so H is R-split.

For k = R, we see that for θ1, we are not able to flip down the poset and for θ2 we

are able to flip. If we are unable to flip, then we get that Hk is k-anisotropic.

Definition 4.1.5. Hk is k-anisotropic if it does not contain any non-trivial k-split tori.

For θ = Inn ( 0 1
m 0 ), we have that Hk is k-anisotropic if and only if m 6∈ 1̄. If m ∈ 1̄,

then Hk contains a maximal k-split torus.

4.1.6 k = Fp

When considering SL(2,Fp), we have two cases. If −1 is a square, then SL(2,Fp) is similar

to the case of SL(2,C). If −1 is not a square, then we are in a similar case to SL(2,R).

We have that −1 is a square when p = 1 mod 4 and −1 is not a square when p = 3

mod 4.

Example 4.1.7. For SL(2,F5), we have that −1 ∈ (F∗5)2. This gives us only one involution

and we are able to flip down the poset for θ(A) = (AT )−1. For SL(2,F3), we have that
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−1 6∈ (F∗3)2. This will give us two involutions. We are not able to flip down the poset for

θ(A) = (AT )−1, but we are able to flip down the poset when θ = Inn
(

0 1
sp 0

)
.

From these results, we get an idea of what the poset of θ-stable, Hk-conjugate tori

looks like for SL(2, k) given an involution. For k = C, the poset will contain two levels,

with T = {diag} at the top and H = Gθ at the bottom. For k = R, for θ1, we have that

there is only one level to the poset, with T = {diag} the only torus in the poset. For θ2,

we have two levels to the poset, with T = {diag} at the top and H = Gθ at the bottom.

For k = Fp, we get a similar situation to either k = C or k = R, depending on whether

or not −1 is a square.

4.2 Orbit Decompositions of SL(2, k)

We have considered three fields for SL(2, k). The full classification of the double cosets

Pk\Gk/Hk for G = SL(2, k) is given in [16]. Since the dimension of a maximal torus is

one, any θ-stable maximal k-split torus is either contained in H or is (θ, k)-split. Before

we characterize the (θ, k)-split tori we need some more notation. For m ∈ k we will use

m to denote the entire square class of m in k∗/(k∗)2. By abuse of notation, we will use

m ∈ k∗/(k∗)2 to denote that m is the representative of the square class m of k. Recall

from Theorem 4.1.1 that we may assume that θ = Inn(A) with A = ( 0 1
m 0 ).

Theorem 4.2.1. [16] Let G = SL(2, k), T the diagonal matrices in G, and U = {q ∈
k∗/(k∗)2 | x21 −m−1x22 = q−1 has a solution in k}. Then we have the following.

1. The number of Hk-conjugacy classes of (θ, k)-split maximal tori is |U/{1,−m}|.

2. For y ∈ U , let r, s ∈ k such that r2 − m−1s2 = y−1 and let g =
(
r sym−1

s ry

)
. Then

{Ty = g−1Tg | y ∈ U} is a set of representatives of the Hk-conjugacy classes of

maximal (θ, k)-split tori in G.

As for the maximal k-split tori contained in H we have:

Proposition 4.2.2. [1] Let G, θ be as above. Then Hk is k-anisotropic if and only if

m 6∈ 1. If m ∈ 1, then H is a maximal k-split torus of G.

It remains to determine which Weyl group elements of θ-stable maximal k-split tori

have representatives in Hk. For this we have the following results.
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Lemma 4.2.3. [1] Let Ti be a (θ, k)-split maximal torus. Then,

1. |WHk(Ti)| = 2 when m ∈ 1 and −1 ∈ (k∗)2.

2. |WHk(Ti)| = 2 when m ∈ −1 and −1 6∈ (k∗)2.

3. |WHk(Ti)| = 1 otherwise.

Finally in the case that H is a maximal k-split torus we clearly have WHk(H) = {id},
thus |WGk(H)/WHk(H)| = 2. The above results give us a detailed description of the

double cosets Pk\Gk/Hk for G = SL(2, k). We illustrate the results with the following

example.

Example 4.2.4. Let Gk = SL(2, k) with k = Qp, p 6= 2. Then Q∗p/(Q∗p)2 = {1, sp, p, psp}
where sp is the smallest nonsquare in Fp. Let m ∈ k∗/(k∗)2 such that θ = Inn(A) with

A = ( 0 1
m 0 ). The number of Hk-conjugacy classes of (θ, k)-split maximal tori is equal to

1. 1 for m = p, psp.

2. 1 for p ∼= 1 mod 4 and m = sp.

3. 2 for p ∼= 3 mod 4 and m = sp.

4. 2 for p ∼= 3 mod 4 and m = 1.

5. 4 for p ∼= 1 mod 4 and m = 1.

Moreover for m = 1 we also have a maximal k-split torus in H. So this leads to either 2

or 6 orbits:

1. |Pk\Gk/Hk| = 2 for m = sp, m = p, and m = psp.

2. |Pk\Gk/Hk| = 6 for m = 1.

This example illustrates that maximal (θ, k)-split tori in G do not need to be conjugate

under Hk and that for the open orbit HP in G the set of k-rational points (HP )k consist

of multiple k-orbits.

We have now considered the tori of SL(2, k) of various involutions and over various

fields as well as calculating the orbits of parabolic subgroups on the symmetric k-variety

Gk/Hk. Using this information, we can now consider what will happen in SL(n, k) in

cases where n > 2.
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Chapter 5

Building the Poset of Tori

We will now start the process of building the posets of standard tori. In order to build

our standard posets, we will need to find the maximal (θ, k)-split tori that will make up

the top of our poset.

5.1 Computing the maximal (θ, k)-split tori

For each of the different types of involutions over the algebraically closed field k̄ we will

compute the maximal (θ, k)-split torus A. In the following let T be the maximal k-split

torus consisting of all the diagonal matrices. Since T is a nice torus to work with, we

would like our representative maximal (θ, k)-split torus to be contained in T for each

involution θ.

We will first need to define the following matrices. J2m is the (2m) × (2m) matrix,

where n = 2m and

J2m =

(
0 Im×m

−Im×m 0

)
.

We will denote by In−i,i the matrix

In−i,i =

(
In−i×n−i 0

0 −Ii×i

)
.

We will denote by diag a1, a2, · · · an the matrix
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
a1

a2
. . .

an

 .

We have the following results from [2].

1. If σ is the Cartan involution, then the maximal (σ, k)-split torus is S1 = T−σ = {t ∈
T | σ(t) = t−1} = T .

2. If θ = σ InnJ2m , where σ is the Cartan involution, then let T ′ = B−1TB with B ∈
SL(n, k). We need to choose B such that S2 = T−θ = {B−1tB | t ∈ T, θ(B−1tB) =

(B−1tB)−1}◦ has maximal dimension. Note that

θ(B−1tB) = (B−1tB)−1 ⇒ θ InnJ2m(B−1tB) = B−1t−1B

⇒ J−12m(B−1tB)J2m = θ(B−1t−1B) = BT t(BT )−1

⇒ BJ2mB
T t = tBJ2mB

T .

For B = I, the dimension of A2 is maximal and equal to n
2
. In particular the

maximal (θ, k)-split torus is:

A2 = {diag(a1, a2, . . . , an) | a1 = a2, a3 = a4, . . . an−1 = an} .

3. If θ = InnA with A one of In−i,i, i = 1, 2, . . . , dn−1
2
e, then let T ′ = B−1TB with

B ∈ SL(n, k). We need to choose B such that Sn−i,i = T−σ = {B−1tB | t ∈
T, θ(B−1tB) = (B−1tB)−1}0 has maximal dimension.

For the maximal (θ, k)-split torus and their dimensions, we have

Lemma 5.1.1. [2]

The maximal (θ, k)-split torus for In−i,i, i = 1, 2, . . . , dn−1
2
e can be chosen as:

An−i,i = {B−1 diag(a1, . . . , ai, a
−1
i , . . . , a−11 , 1, . . . , 1)B},

where B satisfies BAB−1 =

(
J 0

0 In−2i

)
. The dimension of the maximal (θ, k)-split torus

is of course i.
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For the Cartan involution σ and θ = σ InnJ2m , we have that the maximal (θ, k)-split

torus for these involutions is contained in T = {diag}, the torus of diagonal matrices.

For the third category of involutions mentioned above, we will modify the involution

in order to change the maximal (θ, k)-split torus into something contained within T =

{diag}.

Proposition 5.1.2. [1] Let I∗n−i,i =

(
A 0

0 I(n−2i)×(n−2i)

)
, where

A =



0 · · · 0 0 1

0 · · · 0 1 0
...

...

0 1 0 · · · 0

1 0 0 · · · 0


, a 2i × 2i matrix.

Let θ = InnIn−i,i and θ̃ = Inn∗In−i,i . Then θ ≈ θ̃. Moreover,

A1 = {diag(a1, . . . , ai, a
−1
i , . . . , a−11 , 1, . . . , 1) | ai ∈ k∗}

is a maximal (θ̃, k)-split torus.

We will now use θ̃ = Inn∗In−i,i in place of θ = InnIn−i,i since it gives a representative

maximal (θ̃, k)-split torus contained in T = {diag}.
We will define the matrix Ln,x as follows:

Ln,x =



0 1 . . . 0 0

x 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . x 0


.

Proposition 5.1.3. [1] Let θ = InnLn,x . Then

A1 = {diag(a1, a
−1
1 , · · · , an/2, a−1n/2) | ai ∈ k

∗}

is a maximal (θ, k)-split torus.
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Let Mn,x,y,z be the following matrix.

Mn,x,y,z =


In−3×n−3 0 0 0

0 x 0 0

0 0 y 0

0 0 0 z


Proposition 5.1.4. [1] Let θ be one of the following:

1. θ(A) = (AT )−1 for all A ∈ G

2. θ(A) = InnIn−i,i(A
T )−1 for all A ∈ G

3. θ(A) = InnMn,x,y,z(A
T )−1 for all A ∈ G

Then T is a maximal (θ, k)-split torus.

Theorem 5.1.5. [1] Let θ = InnJ2m(AT )−1 for all A ∈ G. Then a maximal (θ, k)-split

torus is

A2 = {diag(a1, a2, · · · , an) | ai ∈ k and a1 = an/2+1, a2 = an/2+2, . . . , an/2 = an}.

5.2 Hk-conjugacy classes of (θ, k)-split maximal tori

Now that we know how to find the maximal (θ, k)-split tori for each involution of SL(n, k),

we can consider the Hk-conjugacy classes for each of these maximal (θ, k)-split tori. We

have the following results from [1].

Theorem 5.2.1. [1] Let θ = Inn∗In−i,i such that i < n/2. Then there exists only one

Hk-conjugacy class of maximal (θ, k)-split tori with representative

A1 = {diag(a1, . . . , ai, a
−1
i , . . . , a−11 , 1, . . . , 1) | ai ∈ k∗}.

Theorem 5.2.2. [1] Let θ = Inn∗In−i,i such that i = n/2. Note that n must be even. Then

the number of Hk-conjugacy classes of maximal (θ, k)-split tori is at most | k
∗/(k∗)2

±1 |.

Corollary 5.2.3. [1] Let θ = Inn∗In−i,i such that i = n/2. Note that n must be even.

Additionally, let k be C,R,Fp with p 6= 2, or Qp. Then the number of Hk-conjugacy

classes of maximal (θ, k)-split tori equals | k
∗/(k∗)2

±1 |.
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Theorem 5.2.4. [1] Let θ = InnLn,x. Note that n must be even and x ∈ k∗/(k∗)2, x 6= 1

mod (k∗)2. Then the number of Hk-conjugacy classes of maximal (θ, k)-split tori is at

most | k
∗/(k∗)2

±1 |.

Theorem 5.2.5. [1] Let θ = InnJ2m(AT )−1 for all A ∈ G. Then there exists one Hk-

conjugacy class of maximal (θ, k)-split tori with representative

A2 = {diag(a1, a2, · · · , an) | ai ∈ k and a1 = an/2+1, a2 = an/2+2, . . . , an/2 = an}.

Knowing the number of Hk-conjugacy classes of maximal (θ, k)-split tori will tell us

the number of tori in the top level of the poset.

5.3 Restricting θ to Gα

Now that we know what happens in the SL(2, k) case, we can use that information to

help us understand SL(n, k). We will do this by restricting the involution to blocks of

SL(2, k) inside of SL(n, k) and seeing how these blocks behave. We will also make use

of our knowledge of the maximal (θ, k)-split tori for each involution and their conjugacy

classes.

First, we will need to define the matrix Gα.

For α ∈ Φ, let Aα = {a ∈ A | sα(a) = a}◦. Then we have the following definition.

Definition 5.3.1. Gα = ZG(Aα) and Ḡα = [Gα, Gα].

If α is either real or imaginary, then Gα is θ-stable.

When applying this definition to G = SL(n, k) for the root αi, we have that Gαi is the

n× n matrix with an SL(n, k) block in the αi position along the diagonal and all other

diagonal entries equal to 1. All non-diagonal entries equal 0. When considering Gαi+αj ,

we will again have an SL(2, k) block, but it will be more broken up. We can see this more

explicitly in the following example.

Example 5.3.2. G = SL(3, k), Φ = {α1, α2, α1 + α2}. Then we have

Gα1 =

a b 0

c d 0

0 0 1

 , Gα2 =

1 0 0

0 a b

0 c d

 , and Gα1+α2 =

a 0 b

0 1 0

c 0 d

 .
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Example 5.3.3. G = SL(4, k), Φ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}. Then

we have Gα1 =


a b 0 0

c d 0 0

0 0 1 0

0 0 0 1

, Gα2 =


1 0 0 0

0 a b 0

0 c d 0

0 0 0 1

, Gα3 =


1 0 0 0

0 1 0 0

0 0 a b

0 0 c d

,

Gα1+α2 =


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

, Gα2+α3 =


1 0 0 0

0 a 0 b

0 0 1 0

0 c 0 d

, and Gα1+α2+α3 =


a 0 0 b

0 1 0 0

0 0 1 0

c 0 0 d

.

Restricting θ to these matrices will help us determine if α is a (θ, k)-singular root.

Once we determine the set of (θ, k)-singular roots, Φ+
θ , we will be one step closer to

constructing the poset of standard tori.

We will only consider roots that are in Φ(A)∩Φ(A1), where A is the maximal (θ, k)-

split torus and A1 is the maximal k-split torus. In the case where A = {diag}, we have

that Φ(A) ∩ Φ(A1) is the set of all positive roots.

Example 5.3.4. For

A =


a

b

c

d


we have that Φ(A) ∩ Φ(A1) = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}.

For

A =


a

b

b−1

a−1


we have that Φ(A) ∩ Φ(A1) = {α2, α1 + α2 + α3}.

From the set Φ(A) ∩ Φ(A1), we will only be interested in the (θ, k)-singular roots.

The roots of Φ(A) can be divided in four subsets, related to the action of θ, as follows.

(a) θ(α) 6= ±α. Then α is called complex (relative to θ).
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(b) θ(α) = −α. Then α is called real (relative to θ).

(c) θ(α) = α and θ|Gα 6= id. Then α is called non-compact imaginary (relative to θ).

(d) θ(α) = α and θ|Gα = id. Then α is called compact imaginary (relative to θ).

If α is either a real or non-compact imaginary, then Gα is θ-stable and we call α a

θ-singular root.

Definition 5.3.5. Let A be a θ-stable maximal k-split torus of G. For α ∈ Φ(A) let

Aα = {a ∈ A | sα(a) = a}0, Gα = ZG(Aα) and Gα = [Gα, Gα]. A root α ∈ Φ(A)

with θ(α) = ±α is called θ-singular (respectively θ-compact) if Gα 6⊂ H (respectively

Gα ⊂ H).

If α is a complex root, then we have that θ |Gα' id.

The set of θ-singular roots can be divided into two subsets: those that are singular

with respect to the k-structure and those that are not.

Definition 5.3.6. A real θ-singular root α ∈ Φ(A) is called (θ, k)-singular (respectively

θ-singular anisotropic) if Gα ∩H is isotropic (respectively Gα ∩H is anisotropic).

Similarly an imaginary θ-singular root is called (θ, k)-singular (respectively θ-singular

anisotropic) if Gα has a non-trivial (θ, k)-split torus (respectively Gα has no non-trivial

(θ, k)-split tori).

What we get from this definition is that if α is a (θ, k)-singular root, then the torus

that results after flipping over the SL(2, k) block in the α position will be a k-split torus.

Flipping over roots that are only θ-singular but not k-singular will result in a torus that

does not split over k.

Corollary 5.3.7. For Gk = SL(n, k), if θ |Gα' ( 0 1
−1 0 ), then T1 = {diag} can not be

flipped over α unless −1 ∈ (k∗)2. For Gk = SL(n, k), if θ |Gα' ( 0 1
1 0 ), then T1 = {diag}

can be flipped over α.

Proof. This follows from the SL(2, k) case. If −1 is not a square, once we flip down the

poset, we get a torus that is not k-split. If −1 is a square, then the new torus obtained

by flipping is k-split.

Theorem 5.3.8. For G = SL(n, k), θ = (AT )−1, if −1 is a square, then T1 = {diag}
can be flipped over each root αi to obtain a torus with a T+ part that is one dimension

larger than T+
1 . If −1 is not a square, then T1 cannot be flipped.
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Proof. Because θ |Gα' ( 0 1
−1 0 ), this fact follows from the previous corollary.

By examining the SL(2, k) blocks inside of SL(n, k) and comparing how they behave

to what happened in the previous chapter, we can get an idea of which roots we can flip

over and which roots do not allow us to move down the poset. We call the set of roots

that we can flip over Φ+
θ , the (θ, k)-singular roots.

We have that the (θ, k)-singular roots are precisely the roots α such that θ |Gα'
Inn ( 0 1

1 0 ).

Once we have the set of (θ, k)-singular roots Φ+
θ , we need to find the maximal orthog-

onal subset of Φ+
θ , (Φ+

θ )⊥. This will tell us how many levels there are in the poset of tori.

For example, if there is one root in (Φ+
θ )⊥, then we can flip one time and there will be

two levels to the poset. If there are n roots in (Φ+
θ )⊥, then we can flip n times and there

will be n+ 1 levels to the poset.

In Figure 5.1, we can see an illustration of what is happening when we flip down the

poset. Note that A is standard with respect to Aj. We wish to take a one-dimensional

slice of A−j and flip it down to A+. In this way, as we move down the poset, the dimension

of the θ-split part of the torus will decrease by one while the dimension of the A+
j part

will increase by one. We continue to flip down the poset until we get a torus with a

maximal A+
i part.
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Figure 5.1: Flipping one dimension of a torus
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Chapter 6

(θ, k)-singular roots of Involutions of

SL(n, k)

We will now start our classification of (θ, k)-singular roots of involutions of SL(n, k).

Using our knowledge of the behavior of SL(2, k), we will be able to create posets of

standard tori for each involution.

6.1 Outer Involutions

We will first consider outer involutions of SL(n, k) with n > 2. The tables for outer

involutions over various fields are included in the following pages for completeness.

6.1.1 (AT )−1

The first involution we will consider is θ = (AT )−1, which is the Cartan involution for

SL(n, k). All other outer involutions are based around (AT )−1, so it is logical to start

with this involution.

We will first consider the case where k = C. Our maximal (θ, k)-split torus is the

diagonal matrix T . To create our set Φ+
θ , we will restrict θ to each root and see how the

involution behaves, as explained in the previous chapter.

Example 6.1.2. Let G = SL(3,C), θ = (AT )−1. If we restrict θ to Gα1 , we have that

θ |Gα1' Inn ( 0 1
−1 0 ). Since we are in the field k = C, we know that we are able to flip

down the poset over α1. Similarly, we get that we are able to flip over α2 and α1 + α2.
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Table 6.1: Outer Involutions of G over k = k̄, R and Fp with p 6= 2.

Field Semi-Congruence Class M Involution Class on G

k = k̄
n odd M = In×n θ(A) = (AT )−1

n even
M1 = In×n

M2 = J2m (n = 2m)
θ1(A) = (AT )−1

θ2(A) = InnJ2m(AT )−1

k = R

n odd
Mi = In−i,i

i = 0, 1, 2, . . . , n−1
2

θi(A) = InnMi
(AT )−1

n even
Mi = In−i,i

i = 0, 1, 2, . . . , n
2

Mn
2
+1 = J2m

θi(A) = InnMi
(AT )−1

θn
2
+1(A) = InnJ2m(AT )−1

k = Fp p 6= 2

n odd
M1 = In×n

M2 =

(
I(n−1)×(n−1) 0

0 Sp

) θ1(A) = (AT )−1

θ2(A) = InnM2(A
T )−1

n even

M1 = In×n

M2 =

(
I(n−1)×(n−1) 0

0 Sp

)
M3 = J2m

θ1(A) = (AT )−1

θ2(A) = InnM2(A
T )−1

θ3(A) = InnM3(A
T )−1
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Table 6.2: Outer Involutions of G over k = Q2

dim(V )
Dual Value dα,c of the

Semi-Congruence Class
Matrix M such

that θ(A) = InnM(AT )−1

n = 4k

d1,1
d1,−1
d−1,1
d2,1
d−2,1
d3,1
d−3,1
d6,1
d−6,1

M1 = In×n
Mn,2,3,6

Mn,1,1,−1
Mn,1,1,2

Mn,1,1,−2
Mn,1,1,3

Mn,1,1,−3
Mn,1,1,6

Mn,1,1,−6
M = J2m

n = 4k + 1 d1,1 M = In×n

n = 4k + 2

d1,1
d−1,1
d−1,−1
d2,1
d−2,1
d3,1
d−3,1
d6,1
d−6,1

M1 = In×n
Mn,1,1,−1
Mn,2,3,−6
Mn,1,1,2

Mn,1,1,−2
Mn,1,1,3

Mn,1,1,−3
Mn,1,1,6

Mn,1,1,−6
M = J2m

n = 4k + 3
d1,1
d1,−1

M = In×n
Mn,2,3,6

48



Table 6.3: Outer Involutions of SL(n,Qp) (p 6= 2)

dim(V )
Dual Value dα,cof the

Semi-Congruence Class
Matrix Ms.t.

θ(A) = InnM(AT )−1

−1 6∈ (Q∗p)2

n = 4k

d1,1
d1,−1
dp,1
dSp,1
dpSp,1

M1 = In×n
Mn,p,Sp,pSp

Mn,1,1,p

Mn,1,1,Sp

Mn,1,1,pSp

M = J2m
n = 4k + 1 d1,1 M = In×n

n = 4k + 2

d1,1
dp,1
dSp,1
dSp,−1
dpSp,1

M1 = In×n
Mn,1,1,p

Mn,1,p,pSp

Mn,1,1,Sp

Mn,1,1,pSp

M = J2m

n = 4k + 3
d1,1
d1,−1

M = In×n
Mn,p,Sp,pSp

−1 ∈ (Q∗p)2

n = 4k

d1,1
d1,−1
dp,1
dSp,1
dpSp,1

M1 = In×n
Mn,1,p,p

Mn,1,1,p

Mn,1,1,Sp

Mn,1,1,pSp

M = J2m

n = 4k + 2

d1,1
d1,−1
dp,1
dSp,1
dpSp,1

M1 = In×n
Mn,p,Sp,pSp

Mn,1,1,p

Mn,1,1,Sp

Mn,1,1,pSp

M = J2m

n odd
d1,1
d1,−1

M = In×n
Mn,p,Sp,pSp
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Thus, Φ+
θ = {α1, α2, α1 + α2}. The largest orthogonal subset of Φ+

θ contains only one

root, so we are only able to flip down the poset one time, giving us two levels. Thus, the

standard poset for G = SL(3,C), θ = (AT )−1 has two levels with T = {diag} as the top

level and three posets on the second level obtained from flipping over α1, α2, and α1 +α2,

respectively.

Example 6.1.3. In Figure 6.1, we have the poset of standard tori for G = SL(4,C), θ =

(AT )−1. We are able to flip over each positive root because −1 ∈ (k∗)2 in C. Each subset

(Φ+
θ )⊥ of perpendicular (θ, k)−singular roots has cardinality two. Therefore, we are able

to flip twice down the poset and we have three levels to the poset. The numbers in

the poset correspond to the roots we are flipping over, with the poset at the top of the

poset T = {diag}. For example, the 1 signifies the torus obtained by flipping over α1, 12

signifies the torus obtained by flipping over α1 + α2, and so on.

Figure 6.1: Standard Poset for G = SL(4,C), θ = (AT )−1

As seen in the previous example, we are able to flip over every root for G = SL(n,C)
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and θ = (AT )−1. This is because −1 ∈ (k∗)2 when k = C. As we saw in the chapter on

SL(2, k), when −1 ∈ (k∗)2 and θ = (AT )−1, we are able to flip down the poset. This will

hold true for any n. Thus, for SL(n,C) and θ = (AT )−1, every positive root is contained

within Φ+
θ .

When we consider the field k = R, then we have that −1 is not a square. Thus, we

are unable to flip down the poset over any root, since all Gα’s restricted to θ will be

isomorphic to (AT )−1. Posets of standard tori for SL(n,R) will only contain one torus,

the maximal (θ, k)-split torus T = {diag}.
When considering k = Fp, we have a similar situation to our previous two cases. If −1

is a square, then we are able to flip over all positive roots, so we would have a situation

similar to k = C. If −1 is not a square, then we are in a situation like k = R and we are

unable to flip over any roots, leaving us with a poset of only one torus. Recall that for

Fp, if p ≡ 1 mod 4, then −1 ∈ (k∗)2 and if p ≡ 3 mod 4, then −1 6∈ (k∗)2.

Theorem 6.1.4. Let G = SL(n, k) and θ = (AT )−1. Then Φ+
θ is the set of all positive

roots if −1 ∈ (k∗)2 and Φ+
θ is the empty set if −1 6∈ (k∗)2.

Let us first define the matrix Xα. Let Xα be the n× n matrix with the 2× 2 matrix(
0 1

−1 0

)
in the α position, all other diagonal entries = 1 and all other non-diagonal

entries = 0.

Proof. We will consider θ |Gα . We have that (AT )−1 ' Inn

(
0 1

−1 0

)
for SL(2, k). If we

first consider α1, we have

θ |Gα1' Inn



0 1

−1 0
. . .

1

1


Thus, θ |Gα1 is conjugation by the matrix Xα1 , where Xα1 is the n × n matrix with

the 2×2 matrix

(
0 1

−1 0

)
in the α1 position, all other diagonal entries = 1 and all other
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non-diagonal entries = 0. From this, it is clear to see that

θ |Gα1' Inn

(
0 1

−1 0

)
.

Applying this to all positive roots α, we see that θ |Gα' InnXα ' Inn

(
0 1

−1 0

)
.

Thus, as stated in the SL(2, k) case, we have that α is (θ, k)-singular if −1 ∈ (k∗)2 and

α is not (θ, k)-singular if −1 6∈ (k∗)2. Therefore, Φ+
θ is the set of all positive roots if

−1 ∈ (k∗)2 and Φ+
θ is the empty set if −1 6∈ (k∗)2.

6.1.5 InnJ2m(AT )−1

We will now consider the involution θ(A) = InnJ2m(AT )−1 where J2m is the (2m)× (2m)

matrix, where n = 2m and

J2m =

(
0 Im×m

−Im×m 0

)
.

We will first look at the maximal (θ, k)-split torus for this involution. In a result from

[2], we have that the maximal (θ, k)-split torus A is defined as

A = {diag(a1, a2, · · · , an) | a1 = a2, a3 = a4, · · · an−1 = an}.

This torus has dimension n
2
. If we consider Φ(A), we have that there are no roots

contained within this torus. Thus Φ(A) ∩ Φ(T ) = ∅. Since there are no roots in this

intersection, we do not have any roots available to restrict θ to. Thus, we are unable to

flip down the poset with this involution for any field.

Theorem 6.1.6. Let G = SL(n, k) and θ(A) = InnJ2m(AT )−1. Then Φ+
θ = ∅.

Proof. Since Φ(A) = ∅, there are no roots to consider for Φ+
θ . Thus Φ+

θ = ∅.

6.1.7 InnMi
(AT )−1

We will define Mi = In−i,i, with
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In−i,i =

(
In−i×n−i 0

0 −Ii×i

)
.

We will first consider θ = InnMi
(AT )−1 over R. When restricting θ to Gα, we will use

the fact that (AT )−1 = Inn

(
0 1

−1 0

)
in the SL(2, k) case, as we did previously. Let us

start with an example.

Example 6.1.8. Let G = SL(3, k), θ = InnM1(A
T )−1. Then A = T = {diag} and Φ(T )+ =

{α1, α2, α1 + α2}. First we will consider α1 as a possible (θ, k)-singular root.

θ |Gα1= Inn

1 0 0

0 1 0

0 0 −1


 0 1 0

−1 0 0

0 0 1

 = Inn

 0 1 0

−1 0 0

0 0 −1

 '
 0 1 0

−1 0 0

0 0 1


Therefore, α1 6∈ Φ+

θ . We can do a similar calculation for the remaining positive roots

to see that Φ+
θ = {α2, α1 + α2}. Since conjugating by

1 0 0

0 1 0

0 0 −1

 will only affect the

last row and last column, it will only affect the root α2 and any roots that contain α2 in

its sum.

The roots α2 and α1 + α2 are not orthogonal, so there will only be two levels to the

standard poset, the top containing T and the bottom containing the two tori obtained

by flipping over α2 and α1 + α2.

We can extend this process to larger n to see that for θ = InnMi
(AT )−1, the (θ, k)-

singular roots will be αn−i and any roots containing αn−i in its sum.

Theorem 6.1.9. Let G = SL(n,R) and θ = InnMi
(AT )−1. Then Φ+

θ = {αn−i,
roots containing αn−i in their sum }.

Proof. Let us first note that Φ(A) = Φ, all positive roots. We will first consider θ =
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InnM1(A
T )−1. Then

θ |Gα1= Inn



1

1
. . .

1

−1





0 1

−1 0
. . .

1

1


= Inn



0 1

−1 0
. . .

1

−1


.

Thus, we have that θ |Gα1' Inn

(
0 1

−1 0

)
. It is easy to see that θ |Gα' Inn

(
0 1

−1 0

)
for any root α that is not in the lower right position. Let us consider αn−1.

θ |Gαn−1
= Inn



1

1
. . .

1

−1





1

1
. . .

0 1

−1 0



= Inn



1

1
. . .

0 1

1 0


' Inn

(
0 1

1 0

)
.

Because the αn−1 block is in a position that is affected by the −1 in the n, n entry,

we get that θ |Gαn−1
' Inn

(
0 1

1 0

)
. Thus, we have that αn−1 is a (θ, k)−singular root.

Any other root that has a component in the lower right position will also be affected.

This will include αn−1 and all roots that contain αn−1 in their sum. Thus, the set of

(θ, k)−singular roots will be αn−1 and all roots that contain αn−1 in their sum.

We can easily extend this to θ = InnMi
(AT )−1. The root α that is in the position

affected by the

(
1 0

0 −1

)
block will be a (θ, k)−singular root, as well as all roots con-

taining α
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in their sum.

Figure 6.2: Poset of standard tori related to G = SL(4,R) with θ(A) = InnM1(A
T )−1

Example 6.1.10. For SL(5,R), Inn(M1)(A
T )−1, we have Φθ

s = {α4, α3 + α4, α2 + α3 +

α4, α1 + α2 + α3 + α4}.

Example 6.1.11. For SL(5,R), Inn(M2)(A
T )−1, we have Φθ

s = {α3, α3 + α4, α2 + α3, α2 +

α3 + α4, α1 + α2 + α3, α1 + α2 + α3 + α4}.

Let us now consider k = Fp. For k = Fp, we will look at two cases. First, we redefine

Mi = In−i,i, as

In−i,i =

(
In−i×n−i 0

0 spIi×i

)
where sp is the smallest nonsquare in Fp. If−1 is not a square, then we can let sp = −1.

This gives us a similar case to k = R and have Φ+
θ = {αn−i, roots containing αn−i in their sum }.

If −1 is a square, then we have to consider what happens with the sp.

Example 6.1.12. Let G = SL(4, Fp), θ = InnM1(A
T )−1. Then we have
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θ |Gα1= Inn




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 sp




0 1 0 0

sp 0 0 0

0 0 1 0

0 0 0 1


 =


0 1 0 0

sp 0 0 0

0 0 1 0

0 0 0 sp

 ' Inn

(
0 1

sp 0

)

Thus, we are unable to flip over the positive root α1 because sp is not a square.

If we consider the root α3, we get

θ |Gα3= Inn




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 sp




1 0 0 0

0 1 0 0

0 0 0 1

0 0 sp 0


 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 (sp)
2 0

 ' Inn

(
0 1

1 0

)

because (sp)
2 is a square. Thus, we are able to flip over the root α3.

Through similar calculations, we will see that the (θ, k)-singular roots are α3, α2 +α3,

and α1 + α2 + α3.

From the previous example, we see that we get similar results for Fp when −1 is not

a square as we get for R.

Theorem 6.1.13. Let G = SL(n,Fp) and θ = InnMi
(AT )−1. Then Φ+

θ = {αn−i,
roots containing αn−i in their sum }.

Proof. The proof is similar to the R case.

6.2 Inner Involutions

We will now classify (θ, k)-singular roots for inner involutions of SL(n, k). A table con-

taining the list of inner involutions for SL(n, k) over various fields is shown in Figure 6.4.

There are two inner involutions to consider.

6.2.1 Inn(In−i,i)

When considering θ = Inn(In−i,i), we first need to find the maximal (θ, k)-split torus.
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Table 6.4: Isomorphism Classes of Inner Involution of G

Field
Number of

Inner Involutions
Representative Matrix Y

such that θ = InnY

n odd,
k = any field

n−1
2

Y = In−i,i i = 1, 2, . . . , n−1
2

n even
k = k̄ n

2
Y = In−i,i i = 1, 2, . . . , n

2

k = R n
2

+ 1
Y = In−i,i i = 1, 2, . . . , n

2

Y = Ln,−1

k = Q ∞ Y = In−i,i i = 1, 2, . . . , n
2

Y = Ln,α α 6= 1 mod (Q∗)2

k = Fp p 6= 2 n
2

+ 1
Y = In−i,i i = 1, 2, . . . , n

2

Y = Ln,Sp

k = Q2
n
2

+ 7
Y = In−i,i i = 1, 2, . . . , n

2

Y = Ln,α α ∈ {−1, +2, +3, +6}

k = Qp p 6= 2 n
2

+ 3
Y = In−i,i i = 1, 2, . . . , n

2

Y = Ln,α α ∈ {p, Sp, pSp}

Lemma 6.2.2. [[2]] The maximal (θ, k)-split torus for In−i,i, i = 1, 2, . . . , dn−1
2
e can be

chosen as:

An−i,i = {B−1 diag(a1, . . . , ai, a
−1
i , . . . , a−11 , 1, . . . , 1)B},

where B satisfies BAB−1 =

(
J 0

0 In−2i

)
. The dimension of the maximal (θ, k)-split torus

is of course i.

Proof. Note that

θ(B−1tB) = (B−1tB)−1 ⇒ InnA(B−1tB) = B−1t−1B

⇒ A−1(B−1tB)A = B−1t−1B

⇒ tBAB−1 = BAB−1t−1.

Since t is conjugate to t−1, then highest possible dimension can only be less or equal

to n
2
. Also, if t = diag(a1, . . . , ai, a

−1
i , . . . , a−11 , 1, . . . , 1), and tY = Y t−1, then we have
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Y =

(
J 0

0 Yn−2i

)
, therefore, if the (θ, k)-split tori has dimension of i, the corresponding

In−j,j has to be conjugate to

(
J 0

0 Yn−2i

)
. Hence a (θ, k)-split torus has dimension i if

and only if the corresponding In−j,j such that j ≥ i, i.e. the maximal (θ, k)-split tori has

dimension j for In−j,j.

We will consider the maximal (θ, k)-split torus Ãn−i,i as defined below:

Ãn−i,i = diag(a1, . . . , ai, a
−1
i , . . . , a−11 , 1, . . . , 1)

Then our new involution, θ̃ becomes Inn


0 0 0 1

0 0 1 0

0 . .
.

0 0

1 0 0 0

, i.e. the matrix with 1’s on

the reverse diagonal and all other entries equaling zero. This will make our calculations

simpler.

When considering the maximal (θ, k)-split torus Ãn−i,i, we have that Φ(Ãn−i,i) =

{αi, αi−1 +αi +αi+1, · · ·α1 +α2 + . . .+αi + . . . αn−1}. Essentially, Φ(Ãn−i,i) contains the

positive root αi and all roots with αi in the center of the sum.

When we restrict Gα with α ∈ Φ(Ãn−i,i) to θ̃, we see that all roots in Φ(Ãn−i,i) are

(θ, k)-singular. We get the following result

θ̃ |Gα' Inn

(
0 1

1 0

)
for all α ∈ Φ(Ãn−i,i). Thus we are able to flip over all positive roots in Φ(Ãn−i,i).

Example 6.2.3. Let G = SL(4, k) and θ = Inn(I2,2). We will consider

θ̃ = Inn


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .

Our maximal (θ, k)-split torus is
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Ã2,2 =


a 0 0 0

0 b 0 0

0 0 b−1 0

0 0 0 a−1


Thus, the only roots in Φ(Ã2,2) are α2 and α1 + α2 + α3.

For Gα2 , we have

θ̃(Gα2) =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




1 0 0 0

0 a b 0

0 c d 0

0 0 0 1




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



=


1 0 0 0

0 d c 0

0 b a 0

0 0 0 1

 ' Inn

(
0 1

1 0

)

Thus we are able to flip over the SL(2, k) block in the α2 position. We get similar

results when we consider α1 + α2 + α3 :

θ̃(Gα1+α2+α3) =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



a 0 0 b

0 1 0 0

0 0 1 0

c 0 0 d




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



=


d 0 0 c

0 1 0 0

0 0 1 0

d 0 0 a

 ' Inn

(
0 1

1 0

)

From this, we see that we are able to flip over both of the roots in Φ(Ã2,2). Since the

two roots α2 and α1 + α2 + α3 are perpendicular to each other, we are able to flip down

the poset twice, obtaining 3 levels to the poset of standard tori.

An illustration of the poset from the previous example can be seen in Figure 6.3 .
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Theorem 6.2.4. Let G = SL(n, k) and θ̃ = Inn


0 0 0 1

0 0 1 0

0 . .
.

0 0

1 0 0 0

. Then Φ+
θ = Φ(Ãn−i,i).

Proof. We have that Φ(Ãn−i,i) is the set of positive roots αi and all positive roots con-

taining αi at the center of its sum. This is easy to compute since we have that

Ãn−i,i =



a

b
. . .

b−1

a−1


.

The SL(2, k) block in the α position, with α ∈ Φ(Ãn−i,i), will be a square block that

shares a center with the center of the larger n×n matrix. When we restrict θ̃ to Gα with

α ∈ Φ(Ãn−i,i), we have 
0 0 0 1

0 0 1 0

0 . .
.

0 0

1 0 0 0

Gα


0 0 0 1

0 0 1 0

0 . .
.

0 0

1 0 0 0

 .

The matrix Gα will have an SL(2, k) block in a central position, as stated previously.

Thus


0 0 0 1

0 0 1 0

0 . .
.

0 0

1 0 0 0

Gα


0 0 0 1

0 0 1 0

0 . .
.

0 0

1 0 0 0

 '
(

0 1

1 0

)(
a b

c d

)(
0 1

1 0

)
' Inn

(
0 1

1 0

)(
a b

c d

)
.
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Figure 6.3: Poset of standard tori for SL(4, k) and θ = Inn(I2,2)

6.2.5 Inn(Ln,−1)

We will define the matrix Ln,x as follows:

Ln,x =



0 1 . . . 0 0

x 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . x 0


.

For x = −1, we have that Inn(J2m) ' Inn(Ln,−1). (Similarly, if x = sp, we have that

Inn(J2m) ' Inn(Ln,sp). If we consider the case n = 2, we have that n = 2m and m = 1.

Thus we have
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J2 =

(
0 1

−1 0

)

L2,−1 =

(
0 1

−1 0

)

If we diagonalize J2, we get eigenvalues λ = ±i. Thus

(
0 1

−1 0

)
'

(
i 0

0 −i

)
. When

we consider Inn

(
i 0

0 −i

)
, this is equivalent to Inn

(
1 0

0 −1

)
because the scalar i will

cancel out.

From the previous calculations, we have that Inn(L2,−1) ' Inn

(
1 0

0 −1

)
' InnI1,1 .

We can expand this from n = 2 to a general n and obtain

InnLn,−1 = InnJ2m ' InnIn−i,i

We have previously done the calculations for InnIn−i,i . We get the same results for

InnLn,−1 . We will again be able to flip over all positive roots in Φ(Ãn−i,i).

Theorem 6.2.6. Let G = SL(n, k) and θ = Inn(Ln,−1). Then Φ+
θ = Φ(Ãn−i,i).

Proof. This follows from the fact that InnLn,−1 = InnJ2m ' InnIn−i,i .
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Chapter 7

Conjugacy Classes of Maximal

θ-stable, k-split Tori

Now that we have a method for buildling the posets of standard tori for each of the

involutions of SL(n, k) over various fields, we can now check for conjugacy among the

rows of the poset. We can check for H-conjugacy first to see how the poset collapses and

then we can check for Hk-conjugacy to see how the collapsed poset expands.

7.1 Quasi k-split tori

Given a maximal (θ, k)-split torus A, we have a maximal k-split torus A1 such that

A ⊂ A1. We also have T , a maximal torus, with A1 ⊂ T . We have been considering

positive roots α ∈ Φ(A) ∩ Φ(A1) and determining if α is a (θ, k)-singular root. If α is a

(θ, k)-singular root, we are able to flip down the poset over α and obtain a new torus with

a +-part that is one dimension larger. If α is not a (θ, k)-singular root, we are unable to

flip down the poset over α.

If we consider the roots α ∈ Φ(A) ∩ Φ(A1) which are not (θ, k)-singular, we are able

to flip over the algebraic closure of k. The resulting torus will not be k-split. In fact,

it will contain a one-dimensional anisotropic subtorus. The process of flipping over a

non-(θ, k)-singular root will result in a quasi k-split torus.

Definition 7.1.1. A quasi k-split torus is a torus that is G-conjugate to a k-split torus,

i.e. A is quasi k-split if

A = gTg−1
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Figure 7.1: Poset of standard tori for SL(3,R)

with g ∈ G and T a k-split torus.

Quasi k-split tori split over G but not over Gk with k 6= k̄. If we consider quasi k-split

tori, we will be able to flip down the poset more than if we only consider k-split tori,

obtaining more tori for our poset.

Example 7.1.2. Let G = SL(3,R), θ = Inn

1

1

−1

 (AT )−1. We have that Φ+ =

{α1, α2, α1 + α2}. From previous calculations, we know that the set of (θ, k)−singular

roots are Φ+
θ = {α2, α1 + α2}. Thus we get the poset as seen in Figure 7.1.

If we want to create a poset of quasi k-split tori, then we are able to flip over all three

roots in Φ+. Thus we get the poset as seen in Figure 7.2. As we can see from these two

posets, we are able to get more tori when allowing quasi k-split tori.

7.2 Hk-Conjugacy

We already discused the Hk conjugacy classes of maximal (θ, k)-split tori, which will

make up the top of the poset. For tori A1 and A2 with A−i maximal (θ, k)-split, there

exists g ∈ (H.ZG(A1))k such that

gA1g
−1 = A2
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Figure 7.2: Poset of quasi k-split tori for SL(3,R)

.

Corollary 7.2.1. Let g = h.z such that gA1g
−1 = A2. Then hA1h

−1 = A2.

Proof. Since z ∈ ZG(A1), we have

gA1g
−1 = h.zA1z

−1h−1 = hA1h
−1 = A2

.

Thus, all maximal (θ, k)-split tori are H-conjugate, which gives us a single element

at the top of our poset of H-conjugacy classes of tori.

Given the above, we now have the following result when considering the bottom level

of the H-conjugate poset:

Theorem 7.2.2. Let A1 and A2 be θ-stable, k-split tori with A+
i maximal. Then A1

and A2 are H-conjugate, i.e. the bottom of the poset of standard tori collapses to one

H-conjugacy class.

Proof. A+
1 and A+

2 are maximal k-split in H. Then ∃ h ∈ Hk such that

hA+
1 h
−1 = A+

2
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because all maximal k-split tori are H-conjugate. In ZG(A+
1 ), both A−1 and A−2 are max-

imal (θ, k)-split. Thus A−1 and A−2 are conjugate under H ∩ ZG(A+
1 ), which implies A1

and A2 are H-conjugate.

Our process of checking for conjugacy among each row of the poset is shown graphi-

cally in Figure 7.3. If we wish to check for conjugacy among Tα1 and Tα2 , we will look at

the matrix (c1)
−1hc2. If this matrix is an element of H, then Tα1 and Tα2 is H-conjugate.

If (c1)
−1hc2is an element of Hk, then Tα1 and Tα2 is Hk-conjugate. We use the following

theorem to help us identify ci.

Figure 7.3: Graph demonstrating how to check for conjugacy

Theorem 7.2.3. For θ = Inn

(
0 1

1 0

)
, we have

(
a− b 0

0 a+ b

)
= Inn

(
x −x
x x

)(
a b

b a

)

with a2 − b2 = 1 and 2x2 = 1 and a, b, x ∈ k.

Proof. Since 2x2 = 1, we have the following:

Inn

(
x −x
x x

)(
a b

b a

)
=

(
x −x
x x

)(
a b

b a

)(
x x

−x x

)
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=

(
(ax2 − bx2 − bx2 + ax2) (ax2 − bx2 + bx2 − ax2)
(ax2 + bx2 − bx2 − ax2) (ax2 + bx2 + bx2 + ax2)

)

=

(
a− b 0

0 a+ b

)

We can choose the matrix

(
x −x
x x

)
depending on our field.

For example, if k = R, we choose the matrix
√
2
2

(
1 −1

1 1

)
.

Theorem 7.2.4 ([19]). If A is standard with respect to Aj, then there exists an involution

ω ∈ W (Aj) that is (θ, k)-singular such that

(Aj)
−
ω � A− = A−j

Moreover, we can move from A to Aj in r-steps if

ω = sα1sα2 ...sαr

α1 ⊥ α2 ⊥ ... ⊥ αr

where αi are perpendicular (θ, k)-singular roots.

The previous theorem gives us an explicit method for checking for conjugacy.

Example 7.2.5. Let G = SL(3,F3), θ = Inn
(

1
1
2

)
(AT )−1. Then we have that Φ+

θ =

{α2, α1 + α2}. We get the poset of standard tori as seen in Figure 7.4.

Now we need to check for conjugacy among the two tori on the bottom level of the

poset. We will consider Inn(c2Nα1c
−1
1 ). From Theorem 7.2.3, we will choose the matrix

c1 and c2 as follows.

c1 =

−1 0 0

0 1 2

0 1 1

 , c2 =

1 0 2

0 −1 0

1 0 1


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Figure 7.4: Poset of Standard tori for SL(3,F3), θ = InnM1(A
T )−1

The matrix c1 takes the diagonal matrix T to the matrix

x 0 0

0 a b

0 c d

 and c2 takes T

to the matrix

a 0 b

0 x 0

c 0 d

.

We find Nα1 by first noting that sα1(α2) = α1 + α2. Then we have the matrix Nα1 as

follows

Nα1 =

0 1 0

2 0 0

0 0 1

 .

From this, we have that

Inn(c2Nα1c
−1
1 ) = Inn

0 1 0

2 0 0

0 0 1

 .
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Through simple calculations, we can see that the matrix

0 1 0

2 0 0

0 0 1

 is in Hk (and

thus in H). Thus the bottom of the poset collapses to a single torus and we get two

conjugacy classes for G = SL(3,F3), θ = Inn
(

1
1
2

)
(AT )−1. This can be seen in Figure

7.5.

Figure 7.5: Poset of Hk-conjugacy classes of θ-stable, maximal k-split tori for
SL(3,F3), θ = InnM1(A

T )−1

Example 7.2.6. Let G = SL(4,C), θ(X) = (XT )−1. We have A = {diag}. Then Φ+
θ =

Φ(A), all positive roots. We get the poset of standard tori seen in Figure 7.6. When we

check for Hk-conjugacy among the rows of the poset, through similar calculations from

the previous example, this poset collapses down to the poset seen in Figure 7.7. Thus we

have three Hk-conjugacy classes of θ-stable, maximal k-split tori.

It is not always the case that the poset of standard tori will collapse completely. Some-

times the poset of standard tori will collapse and sometimes it will not. Once we have

checked for conjugacy, we are able to compute the Weyl group quotientsWGk(Ai)/WHk(Ai)

in order to classify the double cosets Pk \Gk/Hk.
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Figure 7.6: Poset of standard θ-stable, maximal k-split tori for SL(4,C), θ(X) = (XT )−1

Figure 7.7: Poset of conjugacy classes of θ-stable, maximal k-split tori for
SL(4,C), θ(X) = (XT )−1
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of Math. (2) 147 (1998), no. 2, 417-452.

[13] Mogens Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of

Math. (2) 111 (1980), no. 2, 253-311.

[14] I. Grojnowski, Character sheaves on symmetric spaces, Ph.D. Thesis, 1992.

[15] Harish-Chandra, Collected papers, Vol. I-IV, Springer-Verlag, New York, 1984. 1970-

1983, Edited by V. S. Varadarajan.

[16] A. G. Helminck and Stacy Beun, On the classification of orbits of symmetric varieties

acting on flag varieties of SL(2, k), Comm. Algebra 37 (2009), no. 4, 1334-1352.

[17] A. G. Helminck and G. F. Helminck, Hk-fixed distribution vectors for representations

related to p-adic symmetric varieties. In preparation.

[18] A. G. Helminck, Tori invariant under an involutorial automorphism. I. Adv. Math,

85, 1991.

[19] A. G. Helminck, Tori invariant under an involutorial automorphism. II. Adv. Math,

131, 1997.

[20] A. G. Helminck, On the classification of k-involutions. Adv. Math, 153, 2000.

72



[21] A. G. Helminck, Combinatorics related to orbit closures of symmetric subgroups in

flag varieties, Invariant theory in all characteristics, 2004, p. 71-90.

[22] A. G. Helminck and S. P. Wang, On rationality properties of involutions of reductive

groups, Adv. Math. 99 (1993), no. 1, 26-96.

[23] A. G. Helminck and Ling Wu, Classification of involutions of SL(2, k), Comm.

Algebra Vol. 30, no. 1, 193-203, 2002.

[24] F. Hirzebruch and P. Slodowy, Elliptic genera, involutions, and homogeneous spin

manifolds, Geom. Dedicata 35 (1990), no. 1-3, 309-343.

[25] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975.

Graduate Texts in Mathematics, No. 21

[26] Mark Hunnell, Orbits of Minimal Parabolic k-subgroups on Symmetric k-varieties,

PhD Thesis, North Carolina State University, 2015.
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