
Abstract

MASON, SARAH BETH. Conjugacy Classes of Maximal k-split Tori Invariant Under an Involution of SL(n, k). (Under the direction of Dr. Aloysius Helminck.)

Given an involution θ and a reductive algebraic group G, we define a symmetric space as the space G / H, where H is the fixed point group of θ. One can extend the applications of symmetric spaces to symmetric k-varieties over an arbitrary field k. To study the representation theory of symmetric k-varieties, it is important to first understand their structure. The action of minimal parabolic k-subgroups on symmetric k-varieties helps in identifying the structure of these symmetric k-varieties. Maximal k-split tori invariant under an involution are of fundamental importance in the characterization of minimal parabolic k-subgroups acting on symmetric k-varieties. In this dissertation, symmetric k-varieties for the special linear group $\operatorname{SL}(n, k)$ are considered and a classification of standard tori is given. From the standard tori, one can study the H - and H_{k}-conjugacy classes where H_{k} is the set of k-rational points of H.

(C) Copyright 2015 by Sarah Beth Mason

All Rights Reserved

Conjugacy Classes of Maximal k-split Tori Invariant Under an Involution of SL(n,k)
by Sarah Beth Mason

A dissertation submitted to the Graduate Faculty of North Carolina State University
in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Mathematics

Raleigh, North Carolina
2015

APPROVED BY:

Dr. Ernest Stitzinger

Dr. Bojko Bakalov

Dr. Tom Lada

Dr. Aloysius Helminck Chair of Advisory Committee

DEDICATION

To my parents.

BIOGRAPHY

Sarah Beth Mason was born on March 17th, 1986 in Newport News, Virginia. When she was very young, her family moved to North Carolina and she has lived here ever since. In 2004, she started her undergraduate studies at Western Carolina University. She completed her B.S. at WCU in 2008 and went on to receive her M.S. in applied mathematics from WCU in 2010. She started her studies at North Carolina State University in 2011.

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Symmetric Spaces 1
1.2 Orbits of Parabolic Subgroups on Symmetric Spaces 3
$1.3 \quad H_{k}$-conjugacy classes of θ-stable maximal k-split tori 5
1.4 Summary of Results for $\operatorname{SL}(2, k)$ 8
1.4.3 Summary of Results for $\operatorname{SL}(n, k)$ 9
Chapter 2 Preliminaries 12
2.1 Preliminaries 12
2.2 Generalized Symmetric Spaces 14
2.3 Algebraically Closed vs. Non-algebraically Closed 18
2.4 Lie Algebras 21
$2.5 \quad P_{k} \backslash G_{k} / H_{k}$ 22
Chapter 3 Standard Tori 24
3.1 Standard k-split tori 24
3.2 Standard Quasi k-split tori 28
3.3 Standard H-Quasi k-split tori 31
Chapter 4 SL $(2, k)$ 32
4.1 Introduction to $\mathrm{SL}(2, k)$ 32
4.1.2 $\quad k=\mathbb{C}$ 33
4.1.4 $\quad k=\mathbb{R}$ 34
4.1.6 $\quad k=\mathbb{F}_{p}$ 34
4.2 Orbit Decompositions of $\operatorname{SL}(2, k)$ 35
Chapter 5 Building the Poset of Tori 37
5.1 Computing the maximal (θ, k)-split tori 37
$5.2 \quad H_{k}$-conjugacy classes of (θ, k)-split maximal tori 40
5.3 Restricting θ to G_{α} 41
Chapter $6(\theta, k)$-singular roots of Involutions of $\operatorname{SL}(n, k)$ 46
6.1 Outer Involutions 46
6.1.1 $\left(A^{T}\right)^{-1}$ 46
6.1.5 $\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$ 52
6.1.7 $\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$ 52
6.2 Inner Involutions 56
6.2.1 $\operatorname{Inn}\left(I_{n-i, i}\right)$ 56
6.2.5 $\operatorname{Inn}\left(L_{n,-1}\right)$ 61
Chapter 7 Conjugacy Classes of Maximal θ-stable, k-split Tori 63
7.1 Quasi k-split tori 63
$7.2 \quad H_{k}$-Conjugacy 64
References 71

LIST OF TABLES

Table 6.1 Outer Involutions of G over $k=\bar{k}, \mathbb{R}$ and \mathbb{F}_{p} with $p \neq 2 \ldots . \ldots 47$
Table 6.2 Outer Involutions of G over $k=\mathbb{Q}_{2}$. 48
Table 6.3 Outer Involutions of SL $\left(n, \mathbb{Q}_{p}\right)(p \neq 2) \ldots \ldots 49$
Table 6.4 Isomorphism Classes of Inner Involution of G 57

LIST OF FIGURES

Figure 1.1 Poset of H_{k}-conjugacy classes of θ-stable maximal k-split tori 6
Figure 1.2 Posets of tori related to $G=\mathrm{SL}(4, \mathbb{C})$ with $\theta(A)=\left(A^{T}\right)^{-1}$ 7
Figure 2.1 Illustration of k-split and θ-split parts of tori 13
Figure 5.1 Flipping one dimension of a torus 45
Figure 6.1 Standard Poset for $G=\operatorname{SL}(4, \mathbb{C}), \theta=\left(A^{T}\right)^{-1}$ 50
Figure 6.2 Poset of standard tori related to $G=\operatorname{SL}(4, \mathbb{R})$ with $\theta(A)=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}$55
Figure 6.3 Poset of standard tori for $\operatorname{SL}(4, k)$ and $\theta=\operatorname{Inn}\left(I_{2,2}\right)$ 61
Figure 7.1 Poset of standard tori forSL $(3, \mathbb{R})$ 64
Figure 7.2 Poset of quasi k-split tori forSL $(3, \mathbb{R})$ 65
Figure 7.3 Graph demonstrating how to check for conjugacy 66
Figure 7.4 Poset of Standard tori for $\operatorname{SL}\left(3, \mathbb{F}_{3}, \theta=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}\right.$ 68
Figure 7.5 Poset of H_{k}-conjugacy classes of θ-stable, maximal k-split tori for $\operatorname{SL}\left(3, \mathbb{F}_{3}, \theta=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}\right.$ 69
Figure 7.6 Poset of standard θ-stable, maximal k-split tori for $\operatorname{SL}(4, \mathbb{C}), \theta(X)=$$\left(X^{T}\right)^{-1}$70
Figure 7.7 Poset of H_{k} conjugacy classes of θ-stable, maximal k-split tori for $\operatorname{SL}(4, \mathbb{C}), \theta(X)=\left(X^{T}\right)^{-1}$ 70

Chapter 1

Introduction

1.1 Symmetric Spaces

Given an involution θ and a reductive algebraic group G, we define a symmetric space as the space G / H, where H is the fixed point group of θ. A symmetric space is also known as a symmetric variety. Symmetric spaces were originally studied by Cartan and arose in the context of Riemannian manifolds and Lie groups. The globally Riemannian symmetric spaces of differential geometry are a special case of the algebraic definition common in Lie theory.

One can also consider a more generalized version of a symmetric space. When considering a symmetric space over a non-algebraically closed field k, we call this a symmetric k-variety, and it is defined by G_{k} / H_{k}, where G_{k} and H_{k} are the k-rational points of G and H, respectively. Real symmetric k-varieties are also called real reductive symmetric spaces. The p-adic symmetric k-varieties are also known as reductive p-adic symmetric spaces or as simply p-adic symmetric spaces.

Symmetric k-varieties over fields other than the real numbers occur in a number of areas of mathematics. These areas include representation theory (see [6], [37] and [38], geometry $([10],[11],[3])$, singularity theory $([28],[24])$, the study of character sheaves ([14], [29]), and the study of cohomology of arithmetic subgroups ([36]). These symmetric k varieties are most well known in the area of representation theory.

Example 1.1.1. Let $M_{n}(k)$ denote the set of $n \times n$ matrices with entries in k. Then

$$
\operatorname{GL}(n, k)=\left\{A \in M_{n}(k) \mid \operatorname{det}(A) \neq 0\right\}
$$

is the general linear group. Let $G=\mathrm{GL}(n, k)$ and define an involution $\theta: G \rightarrow G$ by $\theta(g)=\left(g^{T}\right)^{-1}$. Then $H=\left\{g \in G \mid g^{T}=g^{-1}\right\}$, the set of $n \times n$ orthogonal matrices. The quotient G / H is then contained within the set of symmetric matrices, giving the motivation for the name symmetric space. If $k=\bar{k}$, then G / H is the set of symmetric matrices. When $k \neq \bar{k}$, then the extended symmetric space $\tilde{Q}=\{A \in \mathrm{GL}(n, k) \mid \theta(A)=$ $\left.A^{-1}\right\}$ is the set of symmetric matrices.

Representations associated with real reductive symmetric spaces have been studied by many people over the past few decades. Much of the early work was done by HarishChandra. Symmetric k-varieties were first introduced in the late 1980's as a way of generalizing the concept of these real reductive symmetric spaces to similar spaces over the p-adic numbers and as a way to study the representations that are associated with these spaces. A number of interesting results have arisen from this research (see [17], [27], [33]). Another case of interest is the representations associated with symmetric k-varieties defined over a finite field (see [29] and [14]).

Expanding on Harish-Chandra's ideas, the representation theory for the general real reductive symmetric spaces has been carried out by a number of mathematicians including Flensted-Jensen, Ōshima, Sekiguchi, Matsuki, Brylinski, Delorme, Schlichtkrul, and van den Ban (see [5], [9], [12],[13], [15], [31], [32]).

For \mathbb{Q}_{p}, the p-adic numbers, it is natural to study the harmonic analysis of these p-adic symmetric spaces. The main aim of harmonic analysis is to decompose unitary representations as explicitly as possible into irreducible components, which is called finding the Plancherel decomposition. Most of the representations occurring in this decomposition are representations induced from a parabolic k-subgroup. This means that the one essential tool in the study of symmetric k-varieties and their representations is a description of the geometry of the orbits of a minimal parabolic k-subgroup acting on the symmetric k-variety. A description of these orbits naturally leads to a description of most of the fine structure of these symmetric k-varieties including the restricted root system of the symmetric k-variety.

1.2 Orbits of Parabolic Subgroups on Symmetric Spaces

There are several ways of classifying the orbits of a minimal parabolic k-subgroup P_{k} on a symmetric k-variety. One way of classifying these orbits is to consider the P_{k}-orbits acting on the symmetric k-variety G_{k} / H_{k} by a process called θ-twisted conjugation. For $x, g \in G_{k}$, we define $g * x:=g x \theta(g)^{-1}$. Another way of viewing these orbits is to identify G_{k} / P_{k} with the set of parabolic k-subgroups of G that are G_{k}-conjugate with P, i.e. $G_{k} / P_{k}=\left\{x P x^{-1} \mid x \in G_{k}\right\}$, and look at the H_{k}-orbits on this. Here H_{k} acts by conjugation. Lastly, we can consider these orbits as the set $P_{k} \backslash G_{k} / H_{k}$ of $\left(P_{k}, H_{k}\right)$-double cosets in G_{k}. This last characterization is the same as the set of $P_{k} \times H_{k}$-orbits on the set G_{k}.

When we have that $k=\bar{k}$, we use a Borel subgroup B in place of a minimal parabolic k-subgroup, because in the case of algebraic closure we have that $P=B$. For this case, these orbits were characterized by Springer [35]. Several characterizations of the double cosets $B \backslash G / H$ were proven by Springer, including the orbits of H, B, and $B \times H$. For details, see [35]. For algebraically closed k and P a general parabolic subgroup, these orbits were characterized by Brion and Helminck in [8] and [21]. For $k=\mathbb{R}$ and P a minimal parabolic k-subgroup, characterizations were given by Matsuki [30] and Rossmann [34]. For general fields, these orbits were characterized by Helminck and Wang [22].

Let P_{k} be a minimal parabolic k-subgroup of G. The double coset $P_{k} \backslash G_{k} / H_{k}$ has been characterized in several ways by Helminck and Wang [22], including the orbits of H_{k}, P_{k}, and $P_{k} \times H_{k}$.

We will first consider the H_{k}-orbits on G_{k} / P_{k}. If we let A be a torus of G_{k}, then we can denote by $N_{G_{k}}(A)$ the normalizer of A in $G_{k}, Z_{G_{k}}(A)$ denotes the centralizer of A in $G_{k}, W_{G_{k}}(A)=N_{G_{k}}(A) / Z_{G_{k}}(A)$ the Weyl group of A in G_{k}, and $W_{H_{k}}(A)=$ $N_{H_{k}}(A) / Z_{H_{k}}(A)=\left\{w \in W_{G_{k}}(A) \mid w\right.$ has a representative in $\left.N_{H_{k}}(A)\right\}$, the Weyl group of A in H_{k}. All of the above sets are θ-stable if A is θ-stable.

Let A^{\prime} be a θ-stable maximal k-split torus of G_{k} which is contained in the minimal parabolic k-subgroup P^{\prime}. Then we will denote by C_{k} the set of pairs of $\left(P^{\prime}, A^{\prime}\right) . \mathcal{P}_{k}$ will be the space of all minimal parabolic k-subgroups of G. The fixed point group H_{k} acts on C_{k} and \mathcal{P}_{k} by conjugation. We will denote the set of H_{k}-orbits in C_{k} (respectively \mathcal{P}_{k})
by $H_{k} \backslash C_{k}$ (respectively $H_{k} \backslash \mathcal{P}_{k}$).
The H_{k}-orbits in C_{k} can be broken up into two parts. We can first consider the $H_{k^{-}}$ conjugacy classes of θ-stable maximal k-split tori in G_{k}. For each θ-stable maximal k-split torus that is a representative of these conjugacy classes, we can determine the minimal parabolic k-subgroups containing this torus that are not H_{k}-conjugate. Thus, if we define the set $\left\{A_{i} \mid i \in I\right\}$ as the set of representatives of the H_{k}-conjugacy classes of θ-stable maximal k-split tori in G_{k}, then the H_{k}-orbits in C_{k} can be identified with the union of Weyl group quotients $\bigcup_{i \in I} W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right)$.

For the P_{k}-orbits, we identify G_{k} / H_{k} with $Q_{k}=\left\{g \theta(g)^{-1} \mid g \in G_{k}\right\} . P_{k}$ acts on Q_{k} by the θ-twisted action previously described. We will denote the set of θ-twisted P_{k}-orbits on Q_{k} by $P_{k} \backslash Q_{k}$.

In the characterization of the $P_{k} \times H_{k}$-orbits in G_{k}, let A be a θ-stable maximal k-split torus of P_{k} and $\mathcal{V}_{k}=\left\{x \in G_{k} \mid \tau(x) \in N_{G_{k}}(A)\right\}$, where $\tau(x)$ is defined as follows.

$$
\tau(x)=x \theta(x)^{-1}
$$

The group $Z_{G_{k}}(A) \times H_{k}$ acts on \mathcal{V}_{k} by $(x, z) \cdot y=x y z^{-1},(x, z) \in Z_{G_{k}}(A) \times H_{k}, y \in \mathcal{V}_{k}$. Let V_{k} be the set of $\left(Z_{G_{k}}(A) \times H_{k}\right)$-orbits on \mathcal{V}_{k}.

Theorem 1.2.1. [22] Let P be a minimal parabolic k-subgroup of G and let $\left\{A_{i} \mid i \in I\right\}$ be representatives of the H_{k}-conjugacy classes of θ-stable maximal k-split tori in G_{k}. Then

$$
P_{k} \backslash G_{k} / H_{k} \simeq H_{k} \backslash \mathcal{P}_{k} \simeq \bigcup_{A_{i} \in I} W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right) \simeq H_{k} \backslash C_{k} \simeq P_{k} \backslash Q_{k} \simeq V_{k}
$$

From the previous theorem, we can see that there are several ways to classify the double cosets $P_{k} \backslash G_{k} / H_{k}$. Throughout this thesis, we will be interested in the classification

$$
P_{k} \backslash G_{k} / H_{k} \simeq \bigcup_{A_{i} \in I} W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right)
$$

This classificiation will help us in studying the orbits of minimal parabolic k-subgroups acting on the symmetric k-variety. From this classification, we see that in order to classify the double coset $P_{k} \backslash G_{k} / H_{k}$, we will first need to classify the set of H_{k}-conjugacy classes of θ-stable, maximal k-split tori. This will give us the set $\left\{A_{i} \mid i \in I\right\}$. Once we have done this, we will need to determine the coset $W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right)$ for each θ-stable, maximal
k-split tori representative A_{i}.
In an algebraically closed field, i.e. $k=\bar{k}$, we have the double cosets $B \backslash G / H$. When considering G over a non-algebraically closed field, we look at minimal parabolic k-subgroups instead of Borels and we get $P_{k} \backslash G_{k} / H_{k}$. One method of classifying these double cosets is to consider $P \backslash G / H$ and determining how the algebraically closed orbits break up over the k-rational points. An alternate method is to instead reverse this process via an embedding map $P_{k} \backslash G_{k} / H_{k} \hookrightarrow P \backslash G / H$ which we call generalized complexification. The surjectivity of the generalized complexification map is then equivalent to all orbits over the algebraic closure contributing to the k-orbits. Given a group N, k-rank (N) denotes the dimension of a maximal k-split torus of N. When the group G is k-split we have a characterization of the surjectivity:

Theorem 1.2.2. [26] Let G be a k-split group, H the set of fixed points of an involution θ and P a minimal parabolic k-subgroup. Then the generalized complexification map

$$
\varphi: P_{k} \backslash G_{k} / H_{k} \rightarrow P \backslash G / H, \varphi\left(P_{k} x H_{k}\right)=P x H
$$

is surjective if and only if $k-\operatorname{rank}(H)=k-\operatorname{rank}(G)$.
This embedding process will be the motivation for considering the H-conjugacy classes of θ-stable, maximal k-split tori as well as the H_{k}-conjugacy classes of θ-stable, maximal k-split tori.

1.3 $\quad H_{k}$-conjugacy classes of θ-stable maximal k-split tori

The classification that we are interested in centers around tori, so we will use the following definitions and results. If we have a torus T of G that is defined over the field k, then there are subtori T_{a} and T_{s} of T, where T_{a} is the largest anisotropic subtorus of T and T_{s} is the largest k-split subtorus of T defined over k. We have that $T=T_{a} \cdot T_{s}$ and $T_{a} \cap T_{s}$ is finite.

Given an involution θ of G, we have similar definitions and results for θ-stable tori. Let T be a maximal k-split torus. We call $T \theta$-stable if $\theta(T)=(T)$. If we let $T^{+}=\{t \in$ $T \mid \theta(t)=t\}^{\circ}$ and $T^{-}=\left\{t \in T \mid \theta(t)=t^{-1}\right\}^{\circ}$, then we have that $T=T^{+} T^{-}$and
$T^{+} \cap T^{-}$is finite. We call the torus $T^{-} \theta$-split. A torus T is called (θ, k)-split if it is both k-split and θ-split.

Figure 1.1: The poset of H_{k}-conjugacy classes of θ-stable maximal k-split tori

As we are classifying the H_{k}-conjugacy classes of θ-stable, maximal k-split tori, we will obtain a poset of tori. Each node in the poset will represent one of the H_{k}-conjugacy classes of θ-stable, maximal k-split tori. As we have stated previously, each of these representatives T_{i} can be written as the product of two subtori, $T_{i}=T_{i}^{+} T_{i}^{-}$. As we look across each level of the poset, the dimension of T_{i}^{+}for each torus T_{i} on that level will be equivalent. The same is true for the dimension of T_{i}^{-}across each level of the poset. We construct the poset in such a way that the top level has tori with a maximal θ-split part, i.e. T^{-}is maximal. Also, we will have the tori with a maximal T^{+}part at the bottom level of the poset. As we move down the poset, we decrease the dimension of the θ-split portion of the torus by one and increase the dimension of the T^{+}part by one. A representation of this poset can be seen in Figure 1.1.

Once we have constructed the poset of H_{k}-conjugacy classes of θ-stable, maximal k split tori, we can get a second poset by expanding each node. Our motivation for creating the first poset is to classify the Weyl group quotients $W_{G_{k}}\left(T_{i}\right) / W_{H_{k}}\left(T_{i}\right)$. Since each node represents one of our T_{i} 's, we can expand the poset to give us this quotient. The number of nodes in this second lattice will give us $\left|P_{k} \backslash G_{k} / H_{k}\right|$. Additionally, the lines connecting the nodes in the second lattice correspond to the Bruhat ordering.

Figure 1.2: Posets of tori related to $G=\mathrm{SL}(4, \mathbb{C})$ with $\theta(A)=\left(A^{T}\right)^{-1}$

Example 1.3.1. Let $G=\operatorname{SL}(4, \mathbb{C})$ with $\theta(A)=\left(A^{T}\right)^{-1}$. Then the first poset has three levels with one H_{k}-conjugacy class of θ-stable k-split tori in each level. In the top and bottom levels, we have that $\left|W_{G_{k}}\left(T_{i}\right) / W_{H_{k}}\left(T_{i}\right)\right|=2$. Then $\left|P_{k} \backslash G_{k} / H_{k}\right|=4$. This is shown graphically in Figure 1.2.

In order to determine the poset of H_{k}-conjugacy classes of θ-stable, maximal k-split tori and the expansion at each node to $W_{G_{k}}\left(T_{i}\right) / W_{H_{k}}\left(T_{i}\right)$, we will need to consider each algebraic group G and its involutions individually. Throughout this thesis, we will be considering the group $G=\operatorname{SL}(n, k)$ and the involutions associated with it. We will break up our problem into various subproblems in order to help classify $P_{k} \backslash G_{k} / H_{k}$.

1. Classify the H_{k}-conjugacy classes of the maximal (θ, k)-split tori.
2. Classify the H_{k}-conjugacy classes of maximal k-split tori containing a maximal (θ, k)-split torus. These tori are θ-stable and the number of conjugacy classes will tell us the number of nodes in the top level of the first poset, whose nodes correspond to the H_{k}-conjugacy classes of θ-stable, maximal k-split tori.
3. Determine the maximal k-split tori in H_{k} and classify the H_{k}-conjugacy classes of θ-stable maximal k-split tori which contain a maximal k-split torus in H_{k}. This will give us the bottom level of the first poset, whose nodes are the H_{k}-conjugacy classes of θ-stable maximal k-split tori.
4. Classify the H_{k}-conjugacy classes of θ-stable maximal k-split tori. This is where we will determine all of the middle levels of the first poset, whose nodes are the H_{k}-conjugacy classes of θ-stable maximal k-split tori.

In order to determine the middle levels of our poset, we will first consider the poset
of standard tori and see how this poset collapses down under H-conjugacy and then how it expands when we consider H_{k}-conjugacy.

Once the poset of H_{k}-conjugacy classes of θ-stable, maximal k-split tori has been constructed, we are able to started classifying the Weyl group quotients $W_{G_{k}}\left(T_{i}\right) / W_{H_{k}}\left(T_{i}\right)$ in order to characterize the double cosets $P_{k} \backslash G_{k} / H_{k}$.

1.4 Summary of Results for $\operatorname{SL}(2, k)$

When looking to classify the H_{k}-conjugacy classes of θ-stable, maximal k-split tori for $G=\mathrm{SL}(n, k)$, it is natural to start with the case $n=2$. For $G=\mathrm{SL}(2, k)$, we have that tori of G are one-dimensional; thus, $T_{i}=T_{i}^{+}$or $T_{i}=T_{i}^{-}$. There are at most two levels to the poset for $\operatorname{SL}(2, k)$.

Remark 1.4.1. $\mathrm{SL}(2, k)$ is a k-split group. This means that $\mathrm{SL}(2, k)$ contains a maximal torus that is also maximal k-split, namely $T=\{$ diagonal matrices $\}=\{\operatorname{diag}\}=$ $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$. In this case, minimal parabolic k-subgroups are also Borel subgroups. Thus, if we let B be a Borel subgroup, $T \subseteq B$, the classification of $B_{k} \backslash G_{k} / H_{k}$ is identical to the classification of $P_{k} \backslash G_{k} / H_{k}$.

The classification of involutions of $\mathrm{SL}(2, k)$ is given by Helminck and Wu. They show all involutions come from bilinear forms. In particular, we have the following theorem for involutions of $\mathrm{SL}(2, k)$. Note that $\theta(X)=\operatorname{Inn}_{A}(X)=A^{-1} X A$ for any $X \in G$.

Theorem 4.1.1 [23] The number of isomorphy classes of involutions over $G=\mathrm{SL}(2, k)$ equals the order of $k^{*} /\left(k^{*}\right)^{2}$. Furthermore, the involutions over G are of the form $\theta=$ $\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ m & 0\end{array}\right)$ for all $m \in k^{*} /\left(k^{*}\right)^{2}$. Additionally, if m and q are in the same square class, then $\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ m & 0\end{array}\right)$ is isomorphic to the involution $\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ q & 0\end{array}\right)$.

Since all involutions of $\operatorname{SL}(2, k)$ come from bilinear forms, the orbits of minimal parabolic k-subgroups acting on the symmetric k-variety related to the involution can be classified using quadratic forms.

A summary of the main results for $\operatorname{SL}(2, k)$ is found in the following theorem. Note that we use \bar{m} to denote the entire square class of m and we use $m \in k^{*} /\left(k^{*}\right)^{2}$ to denote that m is the representative of the square class \bar{m} of k. Also, T is the set of diagonal matrices in $\operatorname{SL}(2, k)$.

Theorem 1.4.2. [1] Let $G_{k}=\operatorname{SL}(2, k)$ and let $\theta=\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ m & 0\end{array}\right)$.

1. H_{k} is k-anisotropic if and only if $m \notin \overline{1}$. If $m \in \overline{1}$, then H_{k} is a maximal k-split torus.
2. Let $U=\left\{q \in k^{*} /\left(k^{*}\right)^{2} \mid x_{1}^{2}-m^{-1} x_{2}^{2}=q^{-1}\right.$ has a solution in $\left.k\right\}$. Then the number of H_{k}-conjugacy classes of (θ, k)-split maximal tori is $|U /\{1,-m\}|$.
3. For $y \in U$, let $r, s \in k$ such that $r^{2}-m^{-1}=y^{-1}$ and let $g=\left(\begin{array}{c}r \\ s \\ s y m m_{r y}^{-1}\end{array}\right)$. Then $\left\{T_{y}=g^{-1} T g \mid y \in U\right\}$ is a set of representatives of the H_{k}-conjugacy classes of maximal (θ, k)-split tori in G_{k}.
4. Let T_{i} be a (θ, k)-split maximal torus. Then
(a) $\left|W_{H_{k}}\left(T_{i}\right)\right|=2$ when $m \in \overline{1}$ and $-1 \in\left(k^{*}\right)^{2}$.
(b) $\left|W_{H_{k}}\left(T_{i}\right)\right|=2$ when $m \in \overline{-1}$ and $-1 \notin\left(k^{*}\right)^{2}$.
(c) $\left|W_{H_{k}}\left(T_{i}\right)\right|=1$ otherwise.

Parts (1) and (2) give the means of counting the H_{k}-conjugacy classes of θ-stable maximal k-split tori. Additionally, part (3) provides the necessary information to find the tori representatives of each H_{k}-conjugacy class, allowing the calculation of $W_{H_{k}}\left(T_{i}\right)$ in part (4). In the cases that H_{k} is a maximal k-split torus, we clearly have $W_{H_{k}}=\mathrm{id}$, thus $\left|W_{G_{k}}\left(H_{k}\right) / W_{H_{k}}\left(H_{k}\right)\right|=2$.

The above results give us a detailed description of the double cosets $B_{k} \backslash G_{k} / H_{k}$ for $G=\operatorname{SL}(2, k)$. Our goal is to do this in general for $\operatorname{SL}(n, k)$. The following chapters will help us in this classification.

1.4.3 Summary of Results for $\operatorname{SL}(n, k)$

When classifying the H_{k}-conjugacy classes of θ-stable maximal k-split tori of $\operatorname{SL}(n, k)$ for various involutions, we will consider $\mathrm{SL}(2, k)$ blocks inside of the larger $n \times n$ matrices. This will reduce the problem to something we have already considered and make our calculations simpler.

The involutions of G are separated into two groups-the inner involutions and the outer involutions. We will start with outer involutions, specifically $\theta(X)=\left(X^{T}\right)^{-1}$. All outer involutions can be written as $\theta(X)=\operatorname{Inn}_{M}\left(X^{T}\right)^{-1}=M^{-1}\left(X^{T}\right)^{-1} M$ for all X in G,
where M comes from a bilinear form. Depending on the field k and the size of the matrices we are considering, this could give us a large number of involutions to characterize. For example, if $k=\mathbb{Q}_{p}$ with $p \cong 1 \bmod 4$ and n is even, then there are a total of $\frac{n}{2}+9$ isomorphism classes of involutions.

Remark 1.4.4. Like $\mathrm{SL}(2, k), \mathrm{SL}(n, k)$ is a k-split group, meaning that $\operatorname{SL}(n, k)$ contains a maximal torus that is also maximal k-split, namely the set of diagonal matrices T. In this case, minimal parabolic k-subgroups are Borel subgroups. Therefore, if we let B be a Borel subgroup containing T, the classification of $B_{k} \backslash G_{k} / H_{k}$ is the exact same as $P_{k} \backslash G_{k} / H_{k}$.

We will build posets of standard tori in order to classify the conjugacy classes of θ-stable, maximal k-split tori. We will first need to consider the H_{k}-conjugacy classes of maximal (θ, k)-split tori. This will tell us the number of tori on the top level of our poset. The results for this are found in Chapter 5. A summary of the results is below.

Theorem 5.2.1 Let $\theta=\operatorname{Inn}_{I_{n-i, i}}^{*}$ such that $i<n / 2$. Then there exists only one H_{k} conjugacy class of maximal (θ, k)-split tori with representative

$$
A_{1}=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{i}, a_{i}^{-1}, \ldots, a_{1}^{-1}, 1, \ldots, 1\right) \mid a_{i} \in k^{*}\right\}
$$

Theorem 5.2.2 Let $\theta=\operatorname{Inn}_{I_{n-i, i}}^{*}$ such that $i=n / 2$. Note that n must be even. Then the number of H_{k}-conjugacy classes of maximal (θ, k)-split tori is at most $\left|\frac{k^{*} /\left(k^{*}\right)^{2}}{ \pm 1}\right|$.

Corollary 5.2.3 Let $\theta=\operatorname{Inn}_{I_{n-i, i}}^{*}$ such that $i=n / 2$. Note that n must be even. Additionally, let k be $\mathbb{C}, \mathbb{R}, \mathbb{F}_{p}$ with $p \neq 2$, or \mathbb{Q}_{p}. Then the number of H_{k}-conjugacy classes of maximal (θ, k)-split tori equals $\left|\frac{k^{*} /\left(k^{*}\right)^{2}}{ \pm 1}\right|$.

Theorem 5.2.4 Let $\theta=\operatorname{Inn}_{n, x}$. Not that n must be even and $x \in k^{*} /\left(k^{*}\right)^{2}, x \neq$ $1 \bmod \left(k^{*}\right)^{2}$. Then the number of H_{k}-conjugacy classes of maximal (θ, k)-split tori is at most $\left|\frac{k^{*} /\left(k^{*}\right)^{2}}{ \pm 1}\right|$.

Theorem 5.2.5 Let $\theta=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$ for all $A \in G$. Then there exists one H_{k}-conjugacy class of maximal (θ, k)-split tori with representative

$$
A_{2}=\left\{\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i} \in k \text { and } a_{1}=a_{n / 2+1}, a_{2}=a_{n / 2+2}, \ldots, a_{n / 2}=a_{n}\right\}
$$

Chapter 6 gives the results of classifying the (θ, k)-singular roots for each involution θ of $\operatorname{SL}(n, k)$. The set of (θ, k)-singular roots will help in constructing the poset of standard tori that are θ-stable and maximal k-split. A summary of results for this follows.

Theorem 6.1.4 Let $G=\operatorname{SL}(n, k)$ and $\theta=\left(A^{T}\right)^{-1}$. Then Φ_{θ}^{+}, the set of positive (θ, k) singular roots, is the set of all positive roots if $-1 \in\left(k^{*}\right)^{2}$ and Φ_{θ}^{+}is the empty set if $-1 \notin\left(k^{*}\right)^{2}$.

Theorem 6.1.6 Let $G=\operatorname{SL}(n, k)$ and $\theta(A)=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$. Then $\Phi_{\theta}^{+}=\emptyset$.
Theorem 6.1.9 Let $G=\operatorname{SL}(n, \mathbb{R})$ and $\theta=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$. Then $\Phi_{\theta}^{+}=\left\{\alpha_{n-i}\right.$, roots containing α_{n-i} in their sum $\}$.

Theorem 6.1.13 Let $G=\operatorname{SL}\left(n, \mathbb{F}_{p}\right)$ and $\theta=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$. Then $\Phi_{\theta}^{+}=\left\{\alpha_{n-i}\right.$, roots containing α_{n-i} in their sum $\}$.

Theorem 6.2.4 Let $G=\operatorname{SL}(n, k)$ and $\tilde{\theta}=\operatorname{Inn}\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & . & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$. Then $\Phi_{\theta}^{+}=\Phi_{\tilde{A}_{n-i, i}}$.
Theorem 6.2.6 Let $G=\operatorname{SL}(n, k)$ and $\theta=\operatorname{Inn}\left(L_{n,-1}\right)$. Then $\Phi_{\theta}^{+}=\Phi\left(\tilde{A}_{n-i, i}\right)$.
From there, we will check for H_{k}-conjugacy and H-conjugacy among the rows of the poset to help in obtaining representatives of the conjugacy classes. This will get us one step closer to classifying the Weyl group quotients $W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right)$ and thus the double cosets $P_{k} \backslash G_{k} / H_{k}$. We will use the following result to help in checking for conjugacy.

Theorem 7.2.3 For $\theta=\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we have

$$
\left(\begin{array}{cc}
a+b & 0 \\
0 & a-b
\end{array}\right)=\operatorname{Inn}\left(\begin{array}{cc}
x & -y \\
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

where $a, b, x \in k$ and $a^{2}+b^{2}=1,2 x^{2}=1$.

Chapter 2

Preliminaries

2.1 Preliminaries

Throughout this thesis, we will let k be a field with $\operatorname{char}(k) \neq 0 . G$ will be a reductive algebraic group defined over k. In particular, we will be interested in the special linear group $\operatorname{SL}(n, k)$.

Definition 2.1.1. Let $M_{n}(k)$ denote the set of $n \times n$ matrices with entries in k. Then

$$
\mathrm{SL}(n, k)=\left\{A \in M_{n}(k) \mid \operatorname{det}(A)=1\right\}
$$

is the special linear group.
Let θ be an involution, i.e. $\theta \in \operatorname{Aut}(G)$ and $\theta^{2}=\mathrm{Id}$. When $k=\bar{k}$, we denote by T_{i} the tori of G. When $k \neq \bar{k}$, we denote by A_{i} the tori of G_{k}.

Definition 2.1.2. $T \subset G$ is a torus if it is connected, abelian, and consists of semisimple elements.

The set $\Phi(T)$ (respectively $\Phi(A))$ is the set of roots of T in G (respectively A in G). When $T=\{\operatorname{diag}\}$, then $\Phi(T)$ is the set of all positive roots.

Definition 2.1.3. T is θ-stable if $\theta(T)=T$. Then we have $T=T^{+} T^{-}$, where

1. $T^{+}=\{t \in T \mid \theta(t)=t\}^{\circ}$
2. $T^{-}=\left\{t \in T \mid \theta(t)=t^{-1}\right\}^{\circ} . T^{-}$is called θ-split.

Moreover, $T^{+} \cap T^{-}$is finite.
For the case when $n=2$, we have that all maximal tori in G are one-dimensional. Thus, for a θ-stable maximal torus T in $G=\operatorname{SL}(2, k), T=T^{+}$or $T=T^{-}$.

We call a torus k-split if the torus is able to be diagonalized over the field k. For $k=\bar{k}$, all tori are k-split.

Definition 2.1.4. T a torus is called (θ, k)-split if T is k-split and θ-split.
We are interested in two types of splitting of a torus T. The first type of splitting involves the involution θ and will split the torus T into $T_{\theta}^{+}=\{t \in T \mid \theta(t)=t\}^{\circ}$ and $T_{\theta}^{-}=\left\{t \in T \mid \theta(t)=t^{-1}\right\}^{\circ}$. The second type of splitting involves the field k and will divide the torus T into T_{s} and T_{a}, the k-split part of T and the k-anisotropic part of T, respectively. Note that if $k=\bar{k}$, then $T=T_{s}$. Given a maximal (θ, k)-split torus A, we can find a maximal torus T containing A in which T_{θ}^{-}is maximal θ-split and T_{s} is maximal k-split.

Figure 2.1: Illustration of k-split and θ-split parts of tori

Figure 2.1 illustrates the k-split and θ-split parts of tori. The top two boxes represent
T_{s}. The two boxes on the right represent T_{θ}^{-}. A torus A that is (θ, k)-split is represented by the upper right box.

It is interesting to look at how H_{k} acts on all of these different tori. There are several questions to consider.

1. H_{k}-conjugacy classes of maximal (θ, k)-split tori.
2. H_{k}-conjugacy classes of k-split tori.
3. H_{k}-conjugacy classes of θ-split tori.

Note that if $k=\bar{k}$, then the H-conjugacy classes and H_{k}-conjugacy classes are equivalent and all tori are k-split. Our interest lies in the first two questions.

2.2 Generalized Symmetric Spaces

We will now cover some basics of symmetric spaces. We will let $V=\mathbb{R}^{n}$ be a Euclidean vector space. $\mathrm{GL}(V)$ is the space of invertible matrices and $\mathrm{GL}(V) \simeq \mathrm{GL}(n, \mathbb{R})$. We define a symmetric bilinear form $B(x, y)=x^{T} M y$ where M is an $n \times n$ matrix and $M=M^{T}$. If $M=\mathrm{Id}$, then $B(x, y)=x^{T} y$ is called the dot product. By one of the conditions of the bilinear form, we have that $B(x, x)>0$ if $x \neq 0$. We denote by A^{\prime} the adjoint of $A \in \mathrm{GL}(V)$ with respect to B. Then

$$
B(A(x), y)=B\left(x, A^{\prime}(y)\right) \forall x, y \in V
$$

Remark 2.2.1. If $M=\mathrm{Id}$, then $A^{\prime}=A^{T}$.
This can be seen as follows.

$$
\begin{gathered}
B(A(x), y)=B\left(x, A^{\prime}(y)\right) \\
(A(x))^{T} M y=x^{T} A^{T} M y=x^{T} M A^{\prime} y \\
\Rightarrow A^{T} M=M A^{\prime}
\end{gathered}
$$

Thus, if $M=\mathrm{Id}$, then $A^{T}=A^{\prime}$.
Let $\theta(A)=\left(A^{\prime}\right)^{-1}, \theta: \mathrm{GL}(V) \rightarrow \mathrm{GL}(V)$ and $\theta^{2}=\mathrm{Id}$. Then θ is an involution. Let $H=\{A \in \mathrm{GL}(V) \mid B(A(x), A(y))=B(x, y)\}$. Then $H=\mathrm{O}(V, B)=\{A \in \mathrm{GL}(V) \mid$ $\theta(A)=A\}$, the set of orthogonal transformations.

Definition 2.2.2. Let the set $Q=\left\{A \theta(A)^{-1} \mid A \in \mathrm{GL}(V)\right\}=\left\{A A^{\prime} \mid A \in \mathrm{GL}(V)\right\}$. Then Q is a symmetric space.

If $M=\mathrm{Id}$, then $Q=\left\{A A^{T}\right\} \subsetneq\{$ symmetric matrices $\}$.
Definition 2.2.3. Let $\tilde{Q}=\left\{A \in \mathrm{GL}(V) \mid \theta(A)=A^{-1}\right\}$. Then \tilde{Q} is called the extended symmetric space.

Lemma 2.2.4. Let Q be a symmetric space and \tilde{Q} the extended symmetric space, as defined above. Then $Q \subset \tilde{Q}$.

Proof. Let $A A^{\prime} \in Q$. Then

$$
\theta\left(A A^{\prime}\right)=\left(A^{\prime}\right)^{-1}\left(\left(A^{\prime}\right)^{\prime}\right)^{-1}=\left(A^{\prime}\right)^{-1}\left(A^{-1}\right)=\left(A A^{\prime}\right)^{-1}
$$

Thus $A A^{\prime} \in \tilde{Q}$ and $Q \subset \tilde{Q}$.
A torus A is defined to be a subgroup consisting of commuting semisimple elements. As stated previously, we call a torus $A \subset G \theta$-split if $\theta(a)=a^{-1}$ for all $a \in A$. In fact, all maximal θ-split tori are conjugate under the fixed point group $H=G^{\theta}$.

Definition 2.2.5. Let G be a real group. Then $\theta \in \operatorname{Aut}(G)$ is a Cartan involution if

1. $\theta^{2}=\mathrm{id}$
2. $H=G^{\theta}=\{x \in G \mid \theta(x)=x\}$ is a (maximal) compact subgroup.

Remark 2.2.6. In this case, compact implies maximal compact, so compact is sufficient.
Any reductive real Lie group has a unique (up to conjugation) Cartan involution. For our cases, in $\mathrm{SL}(n, k)$, the Cartan involution is $\theta=\left(A^{T}\right)^{-1}$.

In the study of symmetric spaces, the two most important questions are

1. What is the action of the fixed point group H_{k} on G_{k} / H_{k} ? What kind of orbits do we get?
2. What is the action of the parabolic k-subgroup on G_{k} / H_{k} ?

We are interested in the second question. For this, we first need to define Borel subgroups and parabolic subgroups.

Definition 2.2.7. A subgroup $B \subset G$ is called a Borel subgroup if

1. B is a maximal solvable subgroup.
2. B is connected.

Example 2.2.8. Let $G=\mathrm{GL}(n, k)$. Then B is the set of upper triangular matrices.
For $H \subset G$ with H solvable, we have that H can be triangularized simultaneously. In other words, there exists $x \in G$ such that $x H x^{-1} \subset$ \{upper triangular matrices $\}$.

Definition 2.2.9. A closed subgroup P of G is a parabolic subgroup if the quotient variety G / P is complete.

A closed subgroup of G is parabolic if and only if it contains a Borel subgroup B. Moreover, parabolic subgroups are connected and self-normalizing: $N_{G}(P)=P$.

Example 2.2.10. Let $G=\mathrm{GL}(2, \mathbb{R})$. Then we have $G \supset H=\mathrm{O}(2, \mathbb{R})$ is not a connected subgroup and thus not parabolic. If we take the connected component of $H, H^{\circ}=$ $\mathrm{SO}(2, \mathbb{R})$, then we have a parabolic subgroup of G.

Example 2.2.11. We have stated that for $G=\mathrm{GL}(n, k), B$ is the group of upper triangular matrices. P the group of matrices with blocks on the diagonal and zeros beneath the blocks. The following matrix is an example of a matrix in the parabolic subgroup but not in the Borel subgroup.

$$
\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

For the case where $k=\bar{k}$, we instead look at the action of the Borel subgroups on G / H, since $B=P$ in the algebraically closed case.

We have that $A \subset B \subset P \subset G$, where G is an algebraic group defined over the field k, P is a minimal parabolic k-subgroup of G, B is the Borel contained in P and A is a maximal k-split torus.

We will define the centralizer of A in G in the following way:

$$
Z_{G}(A)=\{g \in G \mid a g=g a \forall a \in A\}
$$

We will define the normalizer of A in G in the following way:

$$
N_{G}(A)=\{g \in G \mid A g=g A\} .
$$

We have the following facts about Borels and parabolics:

1. $N_{G}(P)=P$ and $N_{G}(B)=B$.
2. For $B \subset G$ a Borel, then there exists a maximal torus $T \subset B$.
3. B determines the positive roots.
4. Let $\Phi(T)$ denote the root system of T and let $\Delta \subset \Phi(T)$ be a basis determined by B. Then there exists a one-to-one correspondence between subsets of Δ and parabolic subgroups $P \supset B$.
5. For $B \subset G, B$ a Borel subgroup, then we have the Bruhat decomposition $G=$ $\bigcup_{w \in W(T)} B w B$. Also, $B \backslash G / B \simeq W(T)$.

From the second fact above, it follows that there is a one-to-one correspondence between Borel subgroups containing T and $W(T)=N_{G}(T) / Z_{G}(T)=N_{G}(T) / T$.

If θ is the Cartan involution and $P \subset G$ is a minimal parabolic \mathbb{R}-subgroup, then we get

$$
\left|P_{\mathbb{R}} \backslash G_{\mathbb{R}} / H_{\mathbb{R}}\right|=1
$$

Let $\tau: G \rightarrow G, g \mapsto g \theta(g)^{-1}$. Then $\operatorname{Im}(\tau)=Q \simeq G / H$. We have $\mathcal{V}=\{g \in G \mid \tau(g) \in$ $\left.N_{G}(A)\right\} . Z_{G}(A) \times H$ acts on \mathcal{V} in the following way: $(a, h) * g=a g h$. Note that $a g h \in \mathcal{V}$:

$$
\begin{gathered}
\operatorname{agh} \theta(a g h)^{-1}=a g h \theta(h)^{-1} \theta(g)^{-1} \theta(a)^{-1} \\
=a g h h^{-1} \theta(g)^{-1} \theta(a)^{-1} \\
=a g \theta(a)^{-1} \theta(t)^{-1}
\end{gathered}
$$

Since $g \theta(g)^{-1} \in N_{G}(A)$, by definition of \mathcal{V}, we have that $\tau($ agh $) \in N_{G}(A)$ and thus $a g h \in \mathcal{V}$.

We will denote by V the set of $Z_{G}(A) \times H$-orbits in \mathcal{V}.
If the torus A is θ-stable, then $Z_{G}(A)$ and $N_{G}(A)$ are also θ-stable.

Definition 2.2.12. Let $w \in W(A)$. We call w a twisted involution if $\theta(w)=w^{-1}$. We denote by \mathcal{J} the set of twisted involutions.

2.3 Algebraically Closed vs. Non-algebraically Closed

There are some important differences between the cases of $k=\bar{k}$ and $k \neq \bar{k}$.
When $k=\bar{k}$, all maximal tori are conjugate. When $k \neq \bar{k}$, we get two types of tori: those that are diagonalizable over k and those that are not diagonalizable over k.

Example 2.3.1. Let $G=\operatorname{SL}(2, \mathbb{C})$ and $G_{\mathbb{R}}=\operatorname{SL}(2, \mathbb{R})$. We have T_{1} and T_{2} defined in the following way:

$$
\begin{gathered}
T_{1}=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \in k^{*}\right\} \\
T_{2}=\left\{\left.\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right) \right\rvert\, x^{2}+y^{2}=1\right\}
\end{gathered}
$$

T_{1} is \mathbb{R}-split and T_{2} is \mathbb{R}-anisotropic. When we calculate the eigenvalues for T_{2}, we get $x \pm i y$, which is not in \mathbb{R}.

If we consider a different field, it is possible that T_{2} will not be k-anisotropic. For example, when $k=\mathbb{F}_{5}$, we have that -1 is a square because $-1=4=2^{2}$. Thus, we do not get imaginary eigenvalues and we are able to diagonalize T_{2}, making T_{2} a k-split torus. When considering \mathbb{F}_{p}, we have that -1 is a square when $p \equiv 1 \bmod 4$ and -1 is not a square when $p \equiv 3 \bmod 4$.

When $k=\bar{k}$, we have a reductive group G, involution θ, fixed point group H, and a Borel subgroup B that contains a torus T. We will let \mathcal{T}^{θ} be the set of θ-stable maximal tori, $\mathcal{V}=\left\{g \mid g \theta(g)^{-1} \in N_{G}(T)\right\}$, and $V=\{T \times H$ orbits on $\mathcal{V}\} \simeq B \backslash G / H$. We have the map $\varphi: V \rightarrow \mathcal{T}^{\theta} / H$. We are interested in characterizing \mathcal{T}^{θ} / H in order to classify the double cosets $B \backslash G / H$.

Lemma 2.3.2. [18] Assume $T_{1}, T_{2} \in \mathcal{T}^{\theta}$ with T_{i}^{+}maximal, i.e. T_{i}^{+}is a maximal torus of H. Then there exists an $h \in H$ such that $h T_{1} h^{-1}=T_{2}$.

Lemma 2.3.3. [18] Assume $T_{1}, T_{2} \in \mathcal{T}^{\theta}$ with T_{i}^{-}maximal, i.e. T_{i}^{-}is a maximal θ-split torus. Then there exists an $h \in H$ such that $h T_{1} h^{-1}=T_{2}$.

When $k \neq \bar{k}$, we have a reductive group G_{k}, involution θ, fixed point group H_{k}, and a minimal parabolic subgroup P_{k} that contains a torus A. We will let \mathcal{A}^{θ} be the set of θ-stable maximal k-split tori, $\mathcal{V}=\left\{g \mid g \theta(g)^{-1} \in N_{G}(A)\right\}$, and $V=\left\{Z_{G}(A) \times\right.$ H orbits on $\mathcal{V}\} \simeq P_{k} \backslash G_{k} / H_{k}$. We have the map $\varphi: V \rightarrow \mathcal{A}^{\theta} / H_{k}$. We are interested in characterizing $\mathcal{A}^{\theta} / H_{k}$ in order to classify the double cosets $P_{k} \backslash G_{k} / H_{k}$.

We have the following modified lemmas for the non-algebraically closed case.
Lemma 2.3.4. [18] Assume $A_{1}, A_{2} \in \mathcal{A}^{\theta}$ with A_{i}^{+}maximal, i.e. A_{i}^{+}is a maximal torus of H. Then there exists an $h \in H$ such that $h T_{1} h^{-1}=T_{2}$. Thus A_{1} and A_{2} are H-conjugate but not necessarily H_{k}-conjugate.

Lemma 2.3.5. [18] Assume $A_{1}, A_{2} \in \mathcal{A}^{\theta}$ with A_{i}^{-}maximal, i.e. A_{i}^{-}is a maximal (θ, k) split torus. Then there exists an $x \in\left(H . Z_{G}\left(A_{1}\right)\right)_{k}$ such that $x T_{1} x^{-1}=T_{2}$.

From Lemma 2.3.5, we have that there are usually infinitely many (θ, k)-split tori but in some cases there is only one H_{k}-conjugacy class of (θ, k)-split tori. If there is only one H_{k}-conjugacy class of (θ, k)-split tori, then the lemma for $k=\bar{k}$ holds for $k \neq \bar{k}$.

For algebraically closed $G, B \subset G$ a Borel subgroup, $\theta \in \operatorname{Aut}(G), \theta^{2}=\mathrm{id}$, and $H=G^{\theta}$ the fixed point group, we can classify $B \backslash G / H$ in the following ways:

1. H-orbits on $G / B \simeq \mathcal{B}=\left\{g B g^{-1} \mid g \in G\right\}$. Then $B \backslash G / H \simeq \bigcup_{i \in I} W_{G}\left(T_{i}\right) / W_{H}\left(T_{i}\right)$ where $\left\{T_{i} \mid i \in I\right\}$ are the H-conjugacy classes of θ-stable maximal tori.
2. $B \times H$-orbits on G.
3. B-orbits on $G / H \simeq Q=\left\{x \theta(x)^{-1} \mid x \in G\right\}$

If we consider G defined over k with $k \neq \bar{k}$, we have G_{k} the k-rational points on G, P_{k} the minimal parabolic subgroup defined over $k, P_{k} \subset G_{k}$, and A a θ-stable maximal k-split torus with $A \subset P_{k}$. Then we can classify the double cosets $P_{k} \backslash G_{k} / H_{k}$ in the following way:

$$
P_{k} \backslash G_{k} / H_{k} \simeq \bigcup_{i \in I} W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right)
$$

with $\left\{A_{i} \mid i \in I\right\}$ the set of representatives of H_{k}-conjugacy classes of θ-stable maximal k-split tori.

Example 2.3.6. Let $G=\mathrm{SL}(2, \mathbb{C}), \theta(g)=\left(g^{T}\right)^{-1}, H=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}$. Then $G_{\mathbb{R}}=\mathrm{SL}(2, \mathbb{R})$. We have that $P_{k}=B=\{$ upper triangular matrices $\}$ is the minimal parabolic \mathbb{R}-subgroup. Then

$$
\begin{aligned}
B \backslash G / H & \simeq \bigcup_{i \in I} W_{G}\left(T_{i}\right) / W_{H}\left(T_{i}\right) \\
B_{\mathbb{R}} \backslash G_{\mathbb{R}} / H_{\mathbb{R}} & \simeq \bigcup_{i \in I} W_{G_{\mathbb{R}}}\left(A_{i}\right) / W_{H_{\mathbb{R}}}\left(A_{i}\right)
\end{aligned}
$$

The set $\left\{T_{i} \mid i \in I\right\}=\left\{T_{1}, T_{2}\right\}$ and $\left\{A_{i} \mid i \in I\right\}=\left\{T_{1}\right\}$. The set $\left\{A_{i} \mid i \in I\right\}$ does not contain T_{2} because T_{2} cannot be diagonalized over \mathbb{R} and thus is not \mathbb{R}-split. The Weyl group $W_{G}\left(T_{1}\right)$ has representatives in $H_{\mathbb{R}}$ and since $H=T_{2}$, the group $W_{H}\left(T_{2}\right)=\{\mathrm{id}\}$. So we have

$$
\begin{gathered}
B \backslash G / H \simeq\left\{W_{H}\left(T_{1}\right) / W_{H}\left(T_{1}\right), W_{G}\left(T_{2}\right)\right\} \\
B_{\mathbb{R}} \backslash G_{\mathbb{R}} / H_{\mathbb{R}} \simeq\{\mathrm{id}\}
\end{gathered}
$$

We get three orbits in the algebraically closed case and only one orbit in the nonalgebraically closed case.

If we consider $k=\mathbb{Q}$ in the previous example, we have that

$$
B_{\mathbb{Q}} \backslash G_{\mathbb{Q}} / H_{\mathbb{Q}} \simeq \bigcup_{i \in I} W_{G_{\mathbb{Q}}}\left(A_{i}\right) / W_{H_{\mathbb{Q}}}\left(A_{i}\right)
$$

There are infinitely many $H_{\mathbb{Q}}$-conjugacy classes of θ-split tori. This can be seen in the following example.
Example 2.3.7. Let $G=\operatorname{SL}(2, \mathbb{Q}), \theta(x)=\left(x^{T}\right)^{-1}, B=$ the Borel subgroup of upper triangular matrices and A the group of diagonal matrices. In this case the computations work out nicer if we let $H=G^{\theta}$ act from the left and define $\tau(g)=g^{-1} \theta(g)$ and $\mathcal{V}_{\mathbb{Q}}=\left\{g \in G_{\mathbb{Q}} \mid \tau(g) \in N_{G_{\mathbb{Q}}}(A)\right\}$. If $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Q})$, then

$$
g^{-1} \theta(g)=\left(\begin{array}{cc}
b^{2}+d^{2} & -a b-c d \\
-a b-c d & a^{2}+c^{2}
\end{array}\right) \in N_{G_{\mathbb{Q}}}(A)
$$

if and only if $a b+c d=0$. So $\tau\left(\mathcal{V}_{\mathbb{Q}}\right) \subset A_{\mathbb{Q}}$ and it coincides with the set consisting of $\left(\begin{array}{cc}r & 0 \\ 0 & r^{-1}\end{array}\right)$ with $r=x^{2}+y^{2},(x, y) \in \mathbb{Q}^{2}-\{(0,0)\}$. If $z=\left(\begin{array}{cc}v & u \\ 0 & v^{-1}\end{array}\right) \in B$ and $\tau(g)=\left(\begin{array}{cc}r & 0 \\ 0 & r^{-1}\end{array}\right)$, then

$$
z^{-1} \tau(g) \theta(z)=\left(\begin{array}{cc}
r v^{-2}+u^{2} r^{-1} & -u v r^{-1} \\
-u v r^{-1} & v^{2} r^{-1}
\end{array}\right) \in A_{\mathbb{Q}}
$$

if and only if $u=0$. It follows that $\left(\begin{array}{cc}r & 0 \\ 0 & r^{-1}\end{array}\right)$ and $\left(\begin{array}{cc}s & 0 \\ 0 & s^{-1}\end{array}\right)$ are in the same twisted $B_{\mathbb{Q}}$ orbit if and only if $r^{-1} s \in\left(\mathbb{Q}^{*}\right)^{2}$. Hence $V_{\mathbb{Q}} \cong \oplus_{\substack{p \equiv 1(4) \\ \text { prime }}} \mathbb{Z} / 2 \mathbb{Z}$ and the set $H_{\mathbb{Q}} \backslash G_{\mathbb{Q}} / B_{\mathbb{Q}}$ is infinite.

2.4 Lie Algebras

The work done throughout this thesis focuses on Lie groups. It is possible to do similar work with Lie algebras with some adjustments. In fact, some of the calculations are easier when dealing with Lie algebras so it can be beneficial to go between the two.

Let \mathfrak{g} be a Lie algebra. We will denote by \mathfrak{t} a maximal toral subalgebra and \mathfrak{b} a Borel subalgebra, i.e. \mathfrak{b} is a maximal solvable subalgebra. To go between the Lie algebras and the Lie groups, we take the exponential of the Lie algebra. Note that for tori the exponential map Exp is surjective, $T=\operatorname{Exp}(\mathfrak{t})$, but for most semisimple Lie groups Exp is not surjective.

Since the operation used in the Lie algebra is addition, we will use the additive inverse in place of the multiplicative inverse used in the Lie group. For example, if we let θ be an involution of \mathfrak{g}, we call $\mathfrak{t} \theta$-split if $\theta(t)=-t$ for all $t \in \mathfrak{t}$. This change will apply to all definitions and involutions.

Example 2.4.1. Let $\theta(A)=\left(A^{T}\right)^{-1}$ be an involution of G. Then for $\mathfrak{g}, \theta(A)=-A^{T}$. Thus, we have that $\mathfrak{h}=\left\{X \in \mathfrak{g} \mid-X=X^{T}\right\}$. This fixed point group is much easier to calculate than the fixed point group $H=\left\{X \in G \mid A^{-1}=A^{T}\right\}$.

Many of the results from the Lie group hold for the Lie algebra as well. We have that $\mathfrak{t}=\mathfrak{t}_{s} \oplus \mathfrak{t}_{a}$, where \mathfrak{t}_{s} is the k-split part of \mathfrak{t} and \mathfrak{t}_{a} is the k-anisotropic part of \mathfrak{t}. We also
have similar definitions for \mathfrak{t}^{+}and \mathfrak{t}^{-}.

$2.5 \quad P_{k} \backslash G_{k} / H_{k}$

The motivation behind this thesis focuses on classifying the double cosets $P_{k} \backslash G_{k} / H_{k}$. We have the following definitions.

Definition 2.5.1. Given a group G and an involution θ, we define the fixed point group H as the group $H=G^{\theta}=\{g \in G \mid \theta(g)=g\}$.

We will let G_{k} and H_{k} denote the k-rational points of G and H, respectively. We let $N_{G}(H)$ (respectively $\left.N_{G_{k}}\left(H_{k}\right)\right)$ denote the normalizer of H in G (respectively H_{k} in G_{k}) and $Z_{G}(H)$ (respectively $Z_{G_{k}}\left(H_{k}\right)$) denote the centralizer of H in G (respectively H_{k} in G_{k}).

Example 2.5.2. If $G=\operatorname{SL}(2, \mathbb{C})$, then $G_{\mathbb{R}}$ will be the 2×2 matrices of determinant one with entries in \mathbb{R}.

Now that we have established a group G, an involution θ of G, and the fixed point group $H=G^{\theta}$ associated with this involution, we can define a symmetric variety.

Definition 2.5.3. A symmetric variety (or symmetric space) is the set $Q=\left\{g \theta(g)^{-1} \mid\right.$ $g \in G\} \simeq G / H$. A symmetric k-variety is the set $Q_{k}=\left\{g \theta(g)^{-1} \mid g \in G_{k}\right\} \simeq G_{k} / H_{k}$.

Helminck and Wang gave the following characterization of $P_{k} \backslash G_{k} / H_{k}$:
Theorem 2.5.4. [22] $P_{k} \backslash G_{k} / H_{k} \simeq \bigcup_{A_{i} \in I} W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right)$, where I is the set of $H_{k^{-}}$ conjugacy classes of θ-stable maximal \mathbb{k}-split tori and the A_{i} are representatives of these $H_{\mathbb{k}}$-conjugacy classes.

Thus, to classify $P_{k} \backslash G_{k} / H_{k}$, we first need to classify the H_{k}-conjugacy classes of θ-stable maximal k-split tori.

For maximal (θ, k)-split tori, Helminck and Wang gave the following result:
Theorem 2.5.5. [22] Let A_{1} and A_{2} be maximal (θ, \mathbb{k})-split tori. Let $T \supset A_{1}$ be maximal $\mathbb{k}_{\mathbf{k}}$-split. Then there exists a $g \in\left(\bar{H} \cdot \overline{Z_{G}(T)}\right)_{\mathfrak{k}}$ such that $g A_{1} g^{-1}=A_{2}$.

Example 2.5.6. Let $G=\operatorname{SL}(2, k), k=\bar{k}, \theta(g)=\left(g^{T}\right)^{-1}$. Then

$$
H=G^{\theta}=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}=S O(2, k)
$$

Let $T_{1}=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$. We have that T_{1} is θ-split; for $t \in T_{1}, \theta(t)=\left(t^{T}\right)^{-1}=t^{-1}$. Thus $T_{1}=\left(T_{1}\right)_{\theta}^{-}$. Let $T_{2}=H=\operatorname{SO}(2)$. Then for $t \in T_{2}$, we have that $\theta(t)=t$ since T_{2} is the fixed point group. This means that $T_{2}=\left(T_{2}\right)_{\theta}^{+}$. Any θ-stable maximal torus is H-conjugate to either T_{1} or T_{2}. Then

$$
B \backslash G / H \simeq W_{G}\left(T_{1}\right) / W_{H}\left(T_{1}\right) \cup W_{G}\left(T_{2}\right) / W_{H}\left(T_{2}\right)
$$

and we have the following:

$$
\begin{gathered}
W_{G}\left(T_{1}\right)=\left\{\mathrm{id},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\}=W_{H}\left(T_{1}\right) \\
\{\mathrm{id}\}=W_{H}(H) \subsetneq W_{G}\left(T_{2}\right)
\end{gathered}
$$

Chapter 3

Standard Tori

In the process of classifying the H_{k}-conjugacy classes of θ-stable maximal k-split tori, it is sufficient to consider only standard tori. We will first consider standard k-split tori and then look at quasi k-split tori and H-quasi k-split tori.

3.1 Standard k-split tori

Let G be a connected reductive algebraic group, θ an involution of G defined over k and $H=G^{\theta}$, the fixed point group. Given a θ-stable torus A, we will let $A^{+}=A_{\theta}^{+}=\{X \in$ $A \mid \theta(X)=X\}$ and $A^{-}=A_{\theta}^{-}=\left\{X \in A \mid \theta(X)=X^{-1}\right\}$. Let \mathcal{A}_{k}^{θ} denote the set of θ-stable maximal k-split tori of G, \mathcal{A}^{θ} denote the set of θ-stable maximal tori of G and \mathcal{A}_{0}^{θ} the set of θ-stable quasi k-split tori of G, which are H-conjugate to a θ-stable maximal k-split torus.

The H_{k}-conjugacy classes of θ-stable maximal k-split tori are determined by the image and fibers of the $\operatorname{map} \zeta: \mathcal{A}_{k}^{\theta} / H_{k} \rightarrow \mathcal{A}^{\theta} / H$. The image of ζ consists of the H-conjugacy classes of θ-stable maximal k-split tori.

To be able to give a characterization of these in terms of conjugacy classes of involutions in a Weyl group, we will first show in this section that every conjugacy class contains a standard torus. We will first start with some definitions.

Definition 3.1.1. A quasi k-split torus is a torus that is conjugate under G to a k-split torus, i.e. A is quasi k-split if

$$
A=g T g^{-1}
$$

with $g \in G$ and T a k-split torus.
For quasi k-split tori we define singular roots with respect to the involution. Note that k-split tori are also quasi k-split tori, with $g=\mathrm{id}$. If A is a quasi k-split torus and $\alpha \in \Phi(A)$, then we write $G_{\alpha}=Z_{G}\left(\operatorname{ker}(\alpha)^{\circ}\right)$.

Definition 3.1.2. The roots of $\Phi(A)$ can be divided in four subsets, related to the action of θ, as follows.
(a) $\theta(\alpha) \neq \pm \alpha$. Then α is called complex (relative to θ).
(b) $\theta(\alpha)=-\alpha$. Then α is called real (relative to θ).
(c) $\theta(\alpha)=\alpha$ and $\theta \mid G_{\alpha} \neq$ id. Then α is called non-compact imaginary (relative to θ).
(d) $\theta(\alpha)=\alpha$ and $\theta \mid G_{\alpha}=\mathrm{id}$. Then α is called compact imaginary (relative to θ).

Definition 3.1.3. If α is either a real or non-compact imaginary root, then we call it a θ-singular root.

For k-split tori we have to combine the idea of θ-singular with the k-structure of the group itself. The θ-singular roots can be divided in those which are singular with respect to the k-structure and those which are not. These are defined as follows.

Definition 3.1.4. A real θ-singular root $\alpha \in \Phi(A)$ is called (θ, k)-singular (respectively θ-singular anisotropic) if $\bar{G}_{\alpha} \cap H$ is isotropic (respectively $\bar{G}_{\alpha} \cap H$ is anisotropic).

Similarly an imaginary θ-singular root is called (θ, k)-singular (respectively θ-singular anisotropic) if \bar{G}_{α} has a non-trivial (θ, k)-split torus (respectively \bar{G}_{α} has no non-trivial (θ, k)-split tori).

Similar as for quasi k-split tori we have the following result.
Proposition 3.1.5. [19] Let A be a θ-stable maximal k-split torus of G. Then we have the following.
(1) A^{+}is a maximal k-split torus of H if and only if $\Phi(A)$ has no (θ, k)-singular real roots.
(2) A^{-}is a maximal (θ, k)-split torus of G if and only if $\Phi(A)$ has no (θ, k)-singular imaginary roots.

Let \mathcal{A}^{θ} be the set of θ-stable maximal tori of G.
Definition 3.1.6. For $A_{1}, A_{2} \in \mathcal{A}^{\theta}$, the pair $\left(A_{1}, A_{2}\right)$ is called standard if $A_{1}^{-} \subset A_{2}^{-}$and $A_{1}^{+} \supset A_{2}^{+}$. In this case, we also say that A_{1} is standard with respect to A_{2}.

The θ-stable maximal tori of G can be put into standard position. Since every conjugacy class contains a standard torus, it suffices to look at the θ-stable, maximal k-split standard tori.

Lemma 3.1.7. Let $A_{1}, A_{2} \in \mathcal{A}$ such that $A_{1}^{+} \supset A_{2}^{+}$(respectively $A_{1}^{-} \subset A_{2}^{-}$). Then there exists $x \in Z_{H}\left(A_{2}^{+}\right)$(respectively $Z_{H}\left(A_{1}^{-}\right)$) such that $\left(A_{1}, x A_{2} x^{-} 1\right)$ is standard. In particular, if A_{1}^{+}and A_{2}^{+}(respectively A_{1}^{-}and A_{2}^{-}) are H-conjugate, so are A_{1} and A_{2}.

Proof. Let $M Z_{G}\left(A_{2}^{+}\right)$. Then A_{1}^{-}and A_{2}^{-}are θ-split tori of M. Let $A \subset M$ be a maximal θ-split torus with $A \supset A_{1}^{-}$. Since A_{2}^{-}is a maximal θ-split torus of M, there exists an $x \in(M \cap H)^{\circ}$ such that $x A x^{-1}=A_{2}^{-}$and hence $x A_{1}^{-} x^{-1} \subset A_{2}^{-}$. The proof for the second statement is similar.

Any θ-stable maximal k-split torus is standard with respect to one containing a maximal (θ, k)-split torus (respectively a maximal k-split torus of H).

Lemma 3.1.8. [19] Let A_{1} be a θ-stable maximal k-split torus. Then there exists a standard pair (A, S) of θ-stable maximal k-split tori, with A^{-}maximal (θ, k)-split, $S^{+} a$ maximal k-split torus of H and A_{1} is standard with respect to A and S.

Notation 3.1.9. Let $A_{0} \in \mathcal{A}_{0}^{\theta}$ (respectively $S_{0} \in \mathcal{A}_{0}^{\theta}$) be θ-stable maximal k-split tori of G, such that A_{0}^{-}(respectively S_{0}^{+}) is a maximal (θ, k)-split torus of G (respectively a maximal k-split torus of H). We can choose S_{0} to be standard with respect to A_{0}. In the following we fix such a standard pair $\left(S_{0}, A_{0}\right)$.

It remains to show that any θ-stable maximal k-split torus is H-conjugate with a θ-stable maximal k-split torus standard with respect to A_{0} and S_{0}.

Proposition 3.1.10. [19] Let $\left(S_{0}, A_{0}\right)$ be a standard pair as above and let $A_{1} \in \mathcal{A}_{0}^{\theta}$. Then A_{1} is H-conjugate with a θ-stable maximal k-split torus, which is standard with respect to A_{0} and S_{0}.

A standard pair $\left(A_{1}, A_{2}\right)$ of θ-stable maximal tori of G gives rise to an involution in $W\left(T_{1}\right)$ (respectively $W\left(T_{2}\right)$).

Lemma 3.1.11. Let $\left(A_{1}, A_{2}\right)$ be a standard pair of θ-stable maximal k-split tori of G. Then we have the following conditions:
(i) There exists $g \in Z_{G}\left(A_{1}^{-} A_{2}^{+}\right)$such that $g A_{1} g^{-1}=A_{2}$.
(ii) If $n_{1}=\theta(g)^{-1} g$ and $n_{2}=\theta(g) g^{-1}$, then $n_{1} \in N_{G}\left(A_{1}\right)$ and $n_{2} \in N_{G}\left(A_{2}\right)$.
(iii) Let w_{1} and w_{2} be the images of n_{1} and n_{2} in $W\left(A_{1}\right)$ and $W\left(A_{2}\right)$ respectively. Then $w_{1}^{2}=\mathrm{id}, w_{2}^{2}=\mathrm{id}$, and $\left(A_{1}\right)_{w_{1}}^{+}=\left(A_{2}\right)_{w_{2}}^{+}=A_{1}^{-} A_{2}^{+}$, which characterizes w_{1} and w_{2}.

Proof. Since A_{1} and A_{2} are maximal k-split tori of $Z_{G}\left(A_{1}^{-} A_{2}^{+}\right)$, the first statement is clear. For (ii) and (iii), consider first n_{1}. Since $g \in Z_{G}\left(A_{1}^{-} A_{2}^{+}\right)$and $A_{1}=A_{1}^{-} A_{2}^{+}\left(A_{1}^{+} \cap g^{-1} A_{2}^{-} g\right)$ it suffices to look at $A_{1}^{+} \cap g^{-1} A_{2}^{-} g$. So let $x \in A_{1}^{+} \cap g^{-1} A_{2}^{-} g$ and write $x=g^{-1} t g$ with $t \in A_{2}^{-}$. Then $n_{1} x n_{1}^{-1}=\theta\left(g^{-1} t^{-1} g\right)=\theta(x)^{-1}=x^{-1}$. It follows that

$$
\operatorname{Inn}\left(n_{1}\right)\left|A_{1}^{-} A_{2}^{+}=\mathrm{id}, \operatorname{Inn}\left(n_{1}\right)\right| A_{1}^{+} \cap g^{-1} A_{2}^{-} g=-\mathrm{id}
$$

which implies that $n_{1} \in N_{G}\left(A_{1}\right), w_{1}^{2}=\mathrm{id}$ and $\left(A_{1}\right)_{w_{1}}^{+}=A_{1}^{-} A_{2}^{+}$.
The assertion for n_{2} and w_{2} follows with a similar argument.
Remark 3.1.12. By (iii) of Lemma 3.1.11, w_{1} and w_{2} are independent of the choice of the element $g \in Z_{G}\left(A_{1}^{-} A_{1}^{+}\right)$with $g A_{1} g^{-1}=A_{2}$.

The above leads to the following definition of standard involutions:
Definition 3.1.13. Let $A_{1}, A_{2}, w_{1} \in W\left(A_{1}\right)$ and $w_{2} \in W\left(A_{2}\right)$ be as in Lemma 3.1.11. We call w_{1} (respectively w_{2}) the A_{2}-standard involution (respectively A_{1}-standard involution) of $W\left(A_{1}\right)$ (resp. $W\left(A_{2}\right)$). Moreover we will call an involution $w \in W\left(A_{2}\right)$ a k-standard involution, if there exists a θ-stable maximal k-split torus A_{3} standard with respect to A_{2} such that w is the A_{3}-standard involution in $W\left(A_{2}\right)$.

In practice, standard involutions are written as the product of Weyl group elements s_{α} 's, as we will see in Chapter 7.

Remark 3.1.14. To show that the H-conjugacy classes in \mathcal{A}_{0}^{θ} correspond to conjugacy classes of the k-standard involutions, we need to prove first a similar result for \mathcal{A}^{θ} / H, the H-conjugacy classes of θ-stable maximal quasi k-split tori. Namely if $A_{1}, A_{2} \in \mathcal{A}_{0}^{\theta}$ standard with respect to A_{0} and $h \in H$ such that $h A_{1} h^{-1}=A_{2}$, then $A_{3}=h A_{0} h^{-1}$ and A_{0} are θ-stable maximal quasi k-split tori with A_{3}^{-}and A_{0}^{-}maximal. To prove that the
A_{1}-standard involution and the A_{2}-standard involution are conjugate under $W\left(A_{0}\right)$ we will need to show that A_{3} and A_{0} are actually maximal quasi k-split tori of $Z_{G}\left(A_{2}^{-}\right)$. This will be shown in the next section, where we have a closer look at the H-conjugacy classes of θ-stable maximal quasi k-split tori.

3.2 Standard Quasi k-split tori

In this section we show that, similar as in the case of k-split tori, every H-conjugacy class of θ-stable maximal quasi k-split tori contains a standard torus. The conjugacy classes in \mathcal{A}^{θ} / H are not only of importance for a characterization of the double cosets $P \backslash G / H$, but also for a classification of the subset $\mathcal{A}_{0}^{\theta} / H$ of \mathcal{A}^{θ} / H. The characterization of \mathcal{A}^{θ} / H is more complicated then that of $\mathcal{A}_{0}^{\theta} / H$.

Let G be a connected reductive algebraic group, θ an involution of G defined over k. Let $H=G^{\theta}$ be the fixed point group. Let \mathcal{A}^{θ} denote the set of θ-stable maximal quasi k-split tori of G. Let A_{0} denote a θ-stable maximal k-split torus with A_{0}^{-}a maximal (θ, k)-split torus of G and $T \supset A_{0}$ a maximal torus of G, such that T_{θ}^{-}is a maximal θ-split torus of G. We write \mathcal{V} for $\tau^{-1}\left(N_{G}\left(A_{0}\right)\right)$.

For k-split tori, we had the concept of two tori being standard with respect to one another. When dealing with quasi k-split tori, we must introduce the idea of almost standard.

Definition 3.2.1. For $A_{1}, A_{2} \in \mathcal{A}^{\theta}$, the pair $\left(A_{1}, A_{2}\right)$ is called almost standard if $A_{1}^{-} \subset$ A_{2}^{-}. An almost standard pair $\left(A_{1}, A_{2}\right)$ is called standard if $A_{1}^{+} \supset A_{2}^{+}$. In these cases, we also say that A_{1} is almost standard (respectively standard) with respect to A_{2}.

Only the -1 eigenspace is able to be put in standard position when we have that two tori are almost standard. We only get standard if we take the maximal quasi k-split tori in H to be conjugate.

All θ-stable maximal quasi k-split tori of G with A^{-}maximal are conjugate under H^{0}. This conjugacy of the θ-stable maximal quasi k-split tori A with A^{-}maximal enables us to show that any θ-stable maximal quasi k-split torus is conjugate to one almost standard with respect to A_{0}.

Proposition 3.2.2. Let A_{1} be a θ-stable maximal quasi k-split torus of G. Then there exists $h \in H^{0}$ such that $h A_{1}^{-} h^{-1} \subset A_{0}^{-}$.

Proof. We use induction with respect to $\operatorname{dim} A_{0}^{-}-\operatorname{dim} A_{1}^{-}$. If $\operatorname{dim} A_{0}^{-}-\operatorname{dim} A_{1}^{-}=1$, then since A_{1}^{-}is not maximal there exists $\lambda \in \Phi\left(A_{1}\right)$ a θ-singular imaginary root. There exists $g \in Z_{G}\left((\operatorname{ker} \lambda)^{0}\right)$ such that $A_{2}=g A_{1} g^{-1}$ is θ-stable and $\operatorname{dim} A_{2}^{-}=\operatorname{dim} A_{1}^{-}+1=\operatorname{dim} A_{0}^{-}$. But then A_{2}^{-}is maximal, thus there exists $h \in H^{0}$ such that $h A_{2} h^{-1}=A_{0}$. Since $A_{1}^{-} \subset(\operatorname{ker} \lambda)^{0} \subset A_{2}$ it follows that $h A_{1}^{-} h^{-1} \subset A_{0}^{-}$.

Assume now that $\operatorname{dim} A_{0}^{-}-\operatorname{dim} A_{1}^{-}=k>0$. Let $\lambda \in \Phi\left(A_{1}\right)$ be a θ-singular imaginary root and $g \in Z_{G}\left((\operatorname{ker} \lambda)^{0}\right)$ such that $A_{2}=g A_{1} g^{-1}$ is θ-stable and $\operatorname{dim} A_{2}^{-}=\operatorname{dim} A_{1}^{-}+1=$ $\operatorname{dim} A_{0}^{-}$. Since $\operatorname{dim} A_{0}^{-}-\operatorname{dim} A_{2}^{-}=k-1$ it follows from the induction hypothesis that there exists $h \in H^{0}$ such that $h A_{2}^{-} \subset A_{0}^{-}$. Since $A_{1}^{-} \subset A_{2}^{-}$the result follows.

Lemma 3.2.3. [19] Let A_{1} be a θ-stable maximal quasi k-split torus almost standard with respect to A_{0}. There exists an involution $w \in W\left(A_{0}\right)$ with $\left(A_{0}\right)_{w}^{-} \subset A_{0}^{-}$and such that $A_{1}^{-}=\left(\left(A_{0}\right)_{w}^{-} \cap A_{0}^{-}\right)^{0}$.

The above Lemma enables us to obtain the following result.
Proposition 3.2.4. [19] Let A_{0} be as above and let $A_{1} \in \mathcal{A}^{\theta}$ be a θ-stable maximal quasi k-split torus, almost standard with respect to A_{0}. Then we have the following conditions:
(i) There exists $g \in Z_{G}\left(A_{1}^{-}\right)$such that $g A_{1} g^{-1}=A_{0}$.
(ii) If A_{1} is standard with respect to A_{0}, then there exists $g \in Z_{G}\left(A_{1}^{-} A_{0}^{+}\right)$such that $g A_{1} g^{-1}=A_{0}$.

Corollary 3.2.5. Any θ-stable maximal quasi k-split torus is H^{0}-conjugate to one standard with respect to A_{0}.

Proof. Let A_{1} be a θ-stable maximal quasi k-split torus of G. From Proposition 3.2.2 it follows that we may assume that A_{1} is almost standard with respect to A_{0}. Similar as in the proof of Lemma 3.2.3 there exist strongly orthogonal θ-singular imaginary roots $\alpha_{1}, \ldots, \alpha_{n} \in \Phi\left(A_{1}\right)\left(n=\operatorname{dim} A_{0}^{-}-\operatorname{dim} A_{1}^{-}\right)$and $x \in Z_{G}\left(\left(A_{1}\right)_{w}^{+}\right)$such that $A_{2}=x A_{1} x^{-1}$ is θ-stable and $\operatorname{dim} A_{2}^{-}=\operatorname{dim} A_{1}^{-}+n=\operatorname{dim} A_{0}^{-}$. Here $w=s_{\alpha_{1}} \cdots s_{\alpha_{n}}$. By Corollary ?? there exists $h \in H^{0}$ such that $h A_{2} h^{-1}=A_{0}$. Let $A_{3}=h A_{1} h^{-1}$. Since $A_{1}^{-} \subset\left(A_{1}\right)_{w}^{+} \subset A_{2}^{-}$ and $A_{2}^{+} \subset A_{1}^{+}$it follows that $A_{3}^{-}=h A_{1}^{-} h^{-1} \subset A_{0}^{-}$and $A_{3}^{+}=h A_{1}^{+} h^{-1} \supset h A_{2}^{+} h^{-1}=A_{0}^{+}$. This proves the result.

This result reduces the study of H^{0}-conjugacy classes of θ-stable maximal quasi k-split tori to H^{0}-conjugacy classes of θ-stable maximal quasi k-split tori standard with respect
to A_{0}. As in Lemma 3.1.11 we can associate an involution with a θ-stable maximal quasi k-split torus, standard with respect to A_{0}.

Lemma 3.2.6. [19] Let A_{0} be as above and let $A_{1} \in \mathcal{A}^{\theta}$ be a θ-stable maximal quasi k-split torus, standard with respect to A_{0} and $g \in Z_{G}\left(A_{1}^{-} A_{0}^{+}\right)$such that $g A_{1} g^{-1}=A_{0}$. Then we have the following conditions:
(i) If $n=\theta(g) g^{-1}$, then $n \in N_{G}\left(A_{0}\right)$.
(ii) Let w be the image of n in $W\left(A_{0}\right)$. Then $w^{2}=e$ and $\left(A_{0}\right)_{w}^{+}=A_{1}^{-} A_{0}^{+}$, which characterizes w.

This result follows using a similar argument as in Lemma 3.1.11.
Remark 3.2.7. By (ii) of Lemma 3.2.6, w is independent of the choice of the element $g \in Z_{G}\left(A_{1}^{-} A_{0}^{+}\right)$such that $g A_{1} g^{-1}=A_{0}$.

This leads to the following definition of standard involutions for the θ-stable maximal quasi k-split torus, standard with respect to A_{0} :

Definition 3.2.8. Let $A_{1} \in \mathcal{A}^{\theta}$ and $w \in W\left(A_{0}\right)$ be as in Lemma 3.2.6. We call w the A_{1}-standard involution of $W\left(A_{0}\right)$. Moreover we will call an involution $w_{0} \in W\left(A_{0}\right)$ a standard involution, if there exists a θ-stable maximal quasi k-split torus A_{1} standard with respect to A_{0} such that w_{0} is the A_{1}-standard involution in $W\left(A_{0}\right)$.

For a θ-stable k-torus A_{0} of G, write $W\left(A_{0}, H\right)$ for $N_{H}\left(A_{0}\right) / Z_{H}\left(A_{0}\right)$. We have now the following result.

Proposition 3.2.9. Assume that $A_{1}, A_{2} \in \mathcal{A}^{\theta}$ such that they are standard with respect to A_{0}. Let w_{1} and w_{2} be the A_{1}-standard and A_{2}-standard involutions in $W\left(A_{0}\right)$ respectively. If A_{1} and A_{2} are conjugate under H, then w_{1} and w_{2} are conjugate under $W\left(A_{0}, H\right)$.

Proof. Assume $h \in H^{0}$ such that $h A_{1} h^{-1}=A_{2}$. Then $A_{3}=h A_{0} h^{-1}$ is θ-stable with A_{3}^{-} maximal. It suffices to show that A_{3} and A_{0} are conjugate under $H^{0} \cap Z_{G}\left(A_{1}^{-} A_{0}^{+}\right)$.

Let $\alpha \in \Phi\left(A_{1}\right)$ with $\theta(\alpha)=-\alpha$ and β the corresponding root in $\Phi\left(A_{2}\right)$. If A_{1}^{-}does not contain any real roots, then $A_{i}^{+}(i=1,2)$ is maximal and in this case both w_{1} and w_{2} are maximal involutions in $\Phi_{1}=\left\{\alpha \in \Phi\left(A_{0}\right) \mid \theta(\alpha)=-\alpha\right\}$ and hence conjugate under $W\left(\Phi_{1}\right) \subset W\left(A_{0}, H\right)$.

Since both α and β correspond to roots in $\Phi\left(A_{0}\right)$, there exists $w \in W\left(A_{0}, H^{0}\right)$ such that $w(\alpha)=\beta$. Let $h_{1} \in H^{0}$ be a representative of w and $A_{4}=h_{1} A_{1} h_{1}^{-1}$. Then $h h_{1}^{-1} A_{4} h_{1} h^{-1}=h A_{1} h^{-1}=A_{2}, h h_{1}^{-1} A_{0} h_{1} h^{-1}=A_{3}$ and $h h_{1}^{-1} \in Z_{H}\left(\beta^{\vee}\right)$. Using induction it follows that there exists $h_{2} \in Z_{G}\left(A_{2}^{-} A_{0}^{+}\right) \cap H^{0}$ such that $h_{2} A_{3} h_{2}^{-1}=A_{0}$. Then $g=h_{2} h \in N_{H}\left(A_{0}\right)$ maps w_{1} to w_{2}.

Remark 3.2.10. The θ-stable maximal quasi k-split tori A_{1} with A_{1}^{+}maximal are not necessarily conjugate under H can be seen as follows. If T is a θ-stable maximal torus with T^{+}a maximal torus of H, then $N_{G}(T) \neq N_{H}(T)$. This means that T can contain several H-conjugacy classes of θ-stable maximal quasi k-split tori. These are basically conjugates of the A_{0}^{+}part of these tori.

A consequence of this is that there is not a unique minimal element in the set of H-conjugacy classes of θ-stable maximal quasi k-split tori. For the minimal element all we can show is the following:

Lemma 3.2.11. [19] Let S be a θ-stable maximal quasi k-split torus with S^{+}maximal. There exists a θ-stable maximal torus T of G with $T \supset S$ and T^{+}is a maximal torus of H.

3.3 Standard H-Quasi k-split tori

Many of the results for quasi k-split tori are also true for H-quasi k-split tori.
Definition 3.3.1. An H-quasi k-split torus is a torus that is H-conjugate to a k-split torus, i.e. A is H-quasi k-split if

$$
A=h T h^{-1}
$$

with $h \in H$ and T a k-split torus.
When dealing with maximal H-quasi k-split tori, we no longer have to use the definition for almost standard. This is because all maximal H-quasi tori A with A^{+}maximal are conjugate. This gives us a unique bottom to the poset of standard tori.

Since we have a unique top and a unique bottom in the poset of θ-stable, maximal H-quasi k-split standard tori, we are in a much simpler case than in the maximal quasi k-split tori case, where we are not guaranteed a unique bottom to the poset.

Chapter 4

SL $(2, k)$

4.1 Introduction to $\operatorname{SL}(2, k)$

In order to help us understand what happens in $\operatorname{SL}(n, k)$, we will first work on fully understanding $\operatorname{SL}(2, k)$. Since $\operatorname{SL}(n, k)$ is made up of multiple blocks of $\operatorname{SL}(2, k)$, our understanding of the $\mathrm{SL}(2, k)$ case will be very beneficial. We have the following theorem to classify the involutions of $\mathrm{SL}(2, k)$.

We will let $\operatorname{Inn}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be conjugation by the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, i.e.

$$
\operatorname{Inn}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(X)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(X)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}
$$

Theorem 4.1.1. [23] The number of isomorphy classes of involutions over G equals the order of $k^{*} /\left(k^{*}\right)^{2}$. Furthermore, the involutions of G are of the form $\theta=\operatorname{Inn}\left(\begin{array}{cc}0 \\ m & 1 \\ 0\end{array}\right)$ for all $m \in k^{*} /\left(k^{*}\right)^{2}$. Additionally, if m and q are in the same square class, then $\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ m & 0\end{array}\right)$ is isomorphic to the involution $\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ q & 0\end{array}\right)$.

For $k=\mathbb{C}$, we have that there is exactly one involution for $\operatorname{SL}(2, k)$, which is $\theta=$ $\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. For $k=\mathbb{R}$, we have that there are two involutions for $\operatorname{SL}(2, k)$, namely $\theta_{1}=$ $\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\theta_{2}=\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. For $k=\mathbb{F}_{p}$, we will have two cases. If $-1 \in\left(k^{*}\right)^{2}$, then for $k=\mathbb{F}_{p}$, there is exactly one involution for $\operatorname{SL}(2, k)$, which is $\theta=\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. If $-1 \notin$ $\left(k^{*}\right)^{2}$, then for $k=\mathbb{F}_{p}$, we have that there are two involutions for $\operatorname{SL}(2, k)$, namely $\theta_{1}=\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ s_{p} & 0\end{array}\right)$ where s_{p} is the smallest nonsquare in F_{p} and $\theta_{2}=\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Note that if -1 is not a square in F_{p}, we can use $s_{p}=-1$ because they are in the same square class.

4.1.2 $k=\mathbb{C}$

Let us first consider $k=\mathbb{C}$. Note that $\theta(A)=\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)(A) \simeq\left(A^{T}\right)^{-1}$. We have that the maximal (θ, k)-split torus for this involution is $T=\{\operatorname{diag}\}=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$.

Theorem 4.1.3. Let $G=\operatorname{SL}(2, k)$, $\theta=\left(A^{T}\right)^{-1}$. If $-1 \in\left(k^{*}\right)^{2}$, then $T_{1}=\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right)$ and $T_{2}=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ are the two H_{k}-conjugacy classes of θ-stable, maximal k-split tori. If $-1 \notin\left(k^{*}\right)^{2}$, then T_{1} is the only H_{k}-conjugacy class of θ-stable, maximal k-split tori.

Proof. For $\theta=\left(A^{T}\right)^{-1}$, the maximum (θ, k)-split torus is $T_{1}=\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right) \cdot T_{2}=H_{k}=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ is a θ-stable torus, but we need to check to see if T_{2} is k-split. To check to see if T_{2} is diagonalizable, we find its eigenvalues. We get the characteristic equation

$$
\begin{gathered}
(a-\lambda)^{2}+b^{2}=0 \\
a^{2}-2 a \lambda+\lambda^{2}+b^{2}=0 \\
\lambda^{2}-2 a \lambda+1=0 \\
\lambda=a \pm \sqrt{a^{2}-1} \\
\lambda=a \pm \sqrt{-b^{2}} \\
\lambda=a \pm b \sqrt{-1}
\end{gathered}
$$

If -1 $\in\left(k^{*}\right)^{2}$, we have that T_{2} is k-split. If $-1 \notin\left(k^{*}\right)^{2}$, then we are not able to go from T_{1} to T_{2} because T_{2} would not be k-split.

From this theorem, we have that there are two H_{k}-conjugacy classes of θ-stable, k-split tori for $k=\mathbb{C}$. The two representatives are T_{1} and T_{2}.

The process of going from T_{1} to T_{2} is called flipping down the poset. When we move one level down the poset, we are increasing the dimension of the T^{+}part of the torus by one and decreasing the dimension of the T^{-}part of the torus by one. In the $\mathrm{SL}(2, k)$ case, we are only able to flip a maximum of one time, since there is only one possible root to flip over, namely α_{1}. When flipping from T_{1} to T_{2}, we are flipping over the α_{1} position. This terminology will help in future examples. In cases of $\operatorname{SL}(n, k)$ where n is larger than two, it could be possible to flip down the poset more than once. This will be seen in later chapters. For now, we will move on to the case for $\operatorname{SL}(2, \mathbb{R})$.

4.1.4 $k=\mathbb{R}$

If we consider $k=\mathbb{R}$, then we have two involutions because there are two square classes for the real numbers. Our two involutions are $\theta_{1}=\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\theta_{2}=\operatorname{Inn}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array} 0\right)$. Note that $\theta_{1} \simeq\left(A^{T}\right)^{-1}$. From Theorem 4.1.3, we have that there is one H_{k}-conjugacy class of θ_{1}-stable, k-split tori for $k=\mathbb{R}$ with representative T_{1} because -1 is not a square in \mathbb{R}.

For θ_{2}, we have that there are two H_{k}-conjugacy classes of θ-stable, k-split tori for $k=\mathbb{R}$. The two representatives are $T=\{\operatorname{diag}\}$ and $H=G^{\theta_{2}}$. If we work through the characteristic equation, we get the following, noting that $a^{2}-b^{2}=1$:

$$
\begin{gathered}
(a-\lambda)^{2}-b^{2}=0 \\
a^{2}-2 a \lambda+\lambda^{2}-b^{2}=0 \\
\lambda^{2}-2 a \lambda+1=0 \\
\lambda=a \pm \sqrt{a^{2}-1} \\
\lambda=a \pm \sqrt{b^{2}} \\
\lambda=a \pm b
\end{gathered}
$$

Thus we get eigenvalues $a+b$ and $a-b$, both contained in \mathbb{R}, so H is \mathbb{R}-split.
For $k=\mathbb{R}$, we see that for θ_{1}, we are not able to flip down the poset and for θ_{2} we are able to flip. If we are unable to flip, then we get that H_{k} is k-anisotropic.

Definition 4.1.5. H_{k} is k-anisotropic if it does not contain any non-trivial k-split tori.
For $\theta=\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ m & 0\end{array}\right)$, we have that H_{k} is k-anisotropic if and only if $m \notin \overline{1}$. If $m \in \overline{1}$, then H_{k} contains a maximal k-split torus.

4.1.6 $k=\mathbb{F}_{p}$

When considering $\operatorname{SL}\left(2, \mathbb{F}_{p}\right)$, we have two cases. If -1 is a square, then $\operatorname{SL}\left(2, \mathbb{F}_{p}\right)$ is similar to the case of $\operatorname{SL}(2, \mathbb{C})$. If -1 is not a square, then we are in a similar case to $\operatorname{SL}(2, \mathbb{R})$. We have that -1 is a square when $p=1 \bmod 4$ and -1 is not a square when $p=3$ $\bmod 4$.

Example 4.1.7. For $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$, we have that $-1 \in\left(\mathbb{F}_{5}^{*}\right)^{2}$. This gives us only one involution and we are able to flip down the poset for $\theta(A)=\left(A^{T}\right)^{-1}$. For $\operatorname{SL}\left(2, \mathbb{F}_{3}\right)$, we have that
$-1 \notin\left(\mathbb{F}_{3}^{*}\right)^{2}$. This will give us two involutions. We are not able to flip down the poset for $\theta(A)=\left(A^{T}\right)^{-1}$, but we are able to flip down the poset when $\theta=\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ s_{p} & 0\end{array}\right)$.

From these results, we get an idea of what the poset of θ-stable, H_{k}-conjugate tori looks like for $\mathrm{SL}(2, k)$ given an involution. For $k=\mathbb{C}$, the poset will contain two levels, with $T=\{\operatorname{diag}\}$ at the top and $H=G^{\theta}$ at the bottom. For $k=\mathbb{R}$, for θ_{1}, we have that there is only one level to the poset, with $T=\{\operatorname{diag}\}$ the only torus in the poset. For θ_{2}, we have two levels to the poset, with $T=\{\operatorname{diag}\}$ at the top and $H=G^{\theta}$ at the bottom. For $k=\mathbb{F}_{p}$, we get a similar situation to either $k=\mathbb{C}$ or $k=\mathbb{R}$, depending on whether or not -1 is a square.

4.2 Orbit Decompositions of $\operatorname{SL}(2, k)$

We have considered three fields for $\operatorname{SL}(2, k)$. The full classification of the double cosets $P_{k} \backslash G_{k} / H_{k}$ for $G=\operatorname{SL}(2, k)$ is given in [16]. Since the dimension of a maximal torus is one, any θ-stable maximal k-split torus is either contained in H or is (θ, k)-split. Before we characterize the (θ, k)-split tori we need some more notation. For $m \in k$ we will use \bar{m} to denote the entire square class of m in $k^{*} /\left(k^{*}\right)^{2}$. By abuse of notation, we will use $m \in k^{*} /\left(k^{*}\right)^{2}$ to denote that m is the representative of the square class \bar{m} of k. Recall from Theorem 4.1.1 that we may assume that $\theta=\operatorname{Inn}(A)$ with $A=\left(\begin{array}{cc}0 & 1 \\ m & 0\end{array}\right)$.

Theorem 4.2.1. [16] Let $G=\operatorname{SL}(2, k)$, T the diagonal matrices in G, and $U=\{q \in$ $k^{*} /\left(k^{*}\right)^{2} \mid x_{1}^{2}-m^{-1} x_{2}^{2}=q^{-1}$ has a solution in $\left.k\right\}$. Then we have the following.

1. The number of H_{k}-conjugacy classes of (θ, k)-split maximal tori is $|U /\{1,-m\}|$.
2. For $y \in U$, let $r, s \in k$ such that $r^{2}-m^{-1} s^{2}=y^{-1}$ and let $g=\left(\begin{array}{c}r \\ s\end{array} \underset{r y}{s_{r}^{-1}}\right)$. Then $\left\{T_{y}=g^{-1} T g \mid y \in U\right\}$ is a set of representatives of the H_{k}-conjugacy classes of maximal (θ, k)-split tori in G.

As for the maximal k-split tori contained in H we have:
Proposition 4.2.2. [1] Let G, θ be as above. Then H_{k} is k-anisotropic if and only if $m \notin \overline{1}$. If $m \in \overline{1}$, then H is a maximal k-split torus of G.

It remains to determine which Weyl group elements of θ-stable maximal k-split tori have representatives in H_{k}. For this we have the following results.

Lemma 4.2.3. [1] Let T_{i} be a (θ, k)-split maximal torus. Then,

1. $\left|W_{H_{k}}\left(T_{i}\right)\right|=2$ when $m \in \overline{1}$ and $-1 \in\left(k^{*}\right)^{2}$.
2. $\left|W_{H_{k}}\left(T_{i}\right)\right|=2$ when $m \in \overline{-1}$ and $-1 \notin\left(k^{*}\right)^{2}$.
3. $\left|W_{H_{k}}\left(T_{i}\right)\right|=1$ otherwise.

Finally in the case that H is a maximal k-split torus we clearly have $W_{H_{k}}(H)=\{\mathrm{id}\}$, thus $\left|W_{G_{k}}(H) / W_{H_{k}}(H)\right|=2$. The above results give us a detailed description of the double cosets $P_{k} \backslash G_{k} / H_{k}$ for $G=\mathrm{SL}(2, k)$. We illustrate the results with the following example.

Example 4.2.4. Let $G_{k}=\operatorname{SL}(2, k)$ with $k=\mathbb{Q}_{p}, p \neq 2$. Then $\mathbb{Q}_{p}^{*} /\left(\mathbb{Q}_{p}^{*}\right)^{2}=\left\{1, s_{p}, p, p s_{p}\right\}$ where s_{p} is the smallest nonsquare in \mathbb{F}_{p}. Let $m \in k^{*} /\left(k^{*}\right)^{2}$ such that $\theta=\operatorname{Inn}(A)$ with $A=\left(\begin{array}{cc}0 & 1 \\ m & 0\end{array}\right)$. The number of H_{k}-conjugacy classes of (θ, k)-split maximal tori is equal to

1. 1 for $m=p, p s_{p}$.
2. 1 for $p \cong 1 \bmod 4$ and $m=s_{p}$.
3. 2 for $p \cong 3 \bmod 4$ and $m=s_{p}$.
4. 2 for $p \cong 3 \bmod 4$ and $m=1$.
5. 4 for $p \cong 1 \bmod 4$ and $m=1$.

Moreover for $m=1$ we also have a maximal k-split torus in H. So this leads to either 2 or 6 orbits:

1. $\left|P_{k} \backslash G_{k} / H_{k}\right|=2$ for $m=s_{p}, m=p$, and $m=p s_{p}$.
2. $\left|P_{k} \backslash G_{k} / H_{k}\right|=6$ for $m=1$.

This example illustrates that maximal (θ, k)-split tori in G do not need to be conjugate under H_{k} and that for the open orbit $H P$ in G the set of k-rational points $(H P)_{k}$ consist of multiple k-orbits.

We have now considered the tori of $\mathrm{SL}(2, k)$ of various involutions and over various fields as well as calculating the orbits of parabolic subgroups on the symmetric k-variety G_{k} / H_{k}. Using this information, we can now consider what will happen in $\operatorname{SL}(n, k)$ in cases where $n>2$.

Chapter 5

Building the Poset of Tori

We will now start the process of building the posets of standard tori. In order to build our standard posets, we will need to find the maximal (θ, k)-split tori that will make up the top of our poset.

5.1 Computing the maximal (θ, k)-split tori

For each of the different types of involutions over the algebraically closed field \bar{k} we will compute the maximal (θ, k)-split torus A. In the following let T be the maximal k-split torus consisting of all the diagonal matrices. Since T is a nice torus to work with, we would like our representative maximal (θ, k)-split torus to be contained in T for each involution θ.

We will first need to define the following matrices. $J_{2 m}$ is the $(2 m) \times(2 m)$ matrix, where $n=2 m$ and

$$
J_{2 m}=\left(\begin{array}{cc}
0 & I_{m \times m} \\
-I_{m \times m} & 0
\end{array}\right) .
$$

We will denote by $I_{n-i, i}$ the matrix

$$
I_{n-i, i}=\left(\begin{array}{cc}
I_{n-i \times n-i} & 0 \\
0 & -I_{i \times i}
\end{array}\right) .
$$

We will denote by $\operatorname{diag} a_{1}, a_{2}, \cdots a_{n}$ the matrix

$$
\left(\begin{array}{cccc}
a_{1} & & & \\
& a_{2} & & \\
& & \ddots & \\
& & & a_{n}
\end{array}\right)
$$

We have the following results from [2].

1. If σ is the Cartan involution, then the maximal (σ, k)-split torus is $S_{1}=T_{\sigma}^{-}=\{t \in$ $\left.T \mid \sigma(t)=t^{-1}\right\}=T$.
2. If $\theta=\sigma \operatorname{Inn}_{J_{2 m}}$, where σ is the Cartan involution, then let $T^{\prime}=B^{-1} T B$ with $B \in$ $\mathrm{SL}(n, k)$. We need to choose B such that $S_{2}=T_{\theta}^{-}=\left\{B^{-1} t B \mid t \in T, \theta\left(B^{-1} t B\right)=\right.$ $\left.\left(B^{-1} t B\right)^{-1}\right\}^{\circ}$ has maximal dimension. Note that

$$
\begin{aligned}
\theta\left(B^{-1} t B\right)=\left(B^{-1} t B\right)^{-1} & \Rightarrow \theta \operatorname{Inn}_{J_{2 m}}\left(B^{-1} t B\right)=B^{-1} t^{-1} B \\
& \Rightarrow J_{2 m}^{-1}\left(B^{-1} t B\right) J_{2 m}=\theta\left(B^{-1} t^{-1} B\right)=B^{T} t\left(B^{T}\right)^{-1} \\
& \Rightarrow B J_{2 m} B^{T} t=t B J_{2 m} B^{T}
\end{aligned}
$$

For $B=I$, the dimension of A_{2} is maximal and equal to $\frac{n}{2}$. In particular the maximal (θ, k)-split torus is:

$$
A_{2}=\left\{\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}=a_{2}, a_{3}=a_{4}, \ldots a_{n-1}=a_{n}\right\}
$$

3. If $\theta=\operatorname{Inn}_{A}$ with A one of $I_{n-i, i}, i=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil$, then let $T^{\prime}=B^{-1} T B$ with $B \in \mathrm{SL}(n, k)$. We need to choose B such that $S_{n-i, i}=T_{\sigma}^{-}=\left\{B^{-1} t B \mid t \in\right.$ $\left.T, \theta\left(B^{-1} t B\right)=\left(B^{-1} t B\right)^{-1}\right\}^{0}$ has maximal dimension.

For the maximal (θ, k)-split torus and their dimensions, we have
Lemma 5.1.1. [2]
The maximal (θ, k)-split torus for $I_{n-i, i}, i=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil$ can be chosen as:

$$
A_{n-i, i}=\left\{B^{-1} \operatorname{diag}\left(a_{1}, \ldots, a_{i}, a_{i}^{-1}, \ldots, a_{1}^{-1}, 1, \ldots, 1\right) B\right\}
$$

where B satisfies $B A B^{-1}=\left(\begin{array}{cc}J & 0 \\ 0 & I_{n-2 i}\end{array}\right)$. The dimension of the maximal (θ, k)-split torus is of course i.

For the Cartan involution σ and $\theta=\sigma \operatorname{Inn}_{J_{2 m}}$, we have that the maximal (θ, k)-split torus for these involutions is contained in $T=\{\operatorname{diag}\}$, the torus of diagonal matrices.

For the third category of involutions mentioned above, we will modify the involution in order to change the maximal (θ, k)-split torus into something contained within $T=$ \{diag\}.

Proposition 5.1.2. [1] Let $I_{n-i, i}^{*}=\left(\begin{array}{cc}A & 0 \\ 0 & I_{(n-2 i) \times(n-2 i)}\end{array}\right)$, where

$$
A=\left(\begin{array}{ccccc}
0 & \cdots & 0 & 0 & 1 \\
0 & \cdots & 0 & 1 & 0 \\
\vdots & & & & \vdots \\
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right) \text {, a } 2 i \times 2 i \text { matrix }
$$

Let $\theta=\operatorname{Inn}_{I_{n-i, i}}$ and $\tilde{\theta}=\operatorname{Inn}_{I_{n-i, i}}^{*}$. Then $\theta \approx \tilde{\theta}$. Moreover,

$$
A_{1}=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{i}, a_{i}^{-1}, \ldots, a_{1}^{-1}, 1, \ldots, 1\right) \mid a_{i} \in k^{*}\right\}
$$

is a maximal $(\tilde{\theta}, k)$-split torus.
We will now use $\tilde{\theta}=\operatorname{Inn}_{I_{n-i, i}}^{*}$ in place of $\theta=\operatorname{Inn}_{I_{n-i, i}}$ since it gives a representative maximal $(\tilde{\theta}, k)$-split torus contained in $T=\{\operatorname{diag}\}$.

We will define the matrix $L_{n, x}$ as follows:

$$
L_{n, x}=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
x & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & x & 0
\end{array}\right)
$$

Proposition 5.1.3. [1] Let $\theta=\operatorname{Inn}_{L_{n, x}}$. Then

$$
A_{1}=\left\{\operatorname{diag}\left(a_{1}, a_{1}^{-1}, \cdots, a_{n / 2}, a_{n / 2}^{-1}\right) \mid a_{i} \in k^{*}\right\}
$$

is a maximal (θ, k)-split torus.

Let $M_{n, x, y, z}$ be the following matrix.

$$
M_{n, x, y, z}=\left(\begin{array}{cccc}
I_{n-3 \times n-3} & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & 0 \\
0 & 0 & 0 & z
\end{array}\right)
$$

Proposition 5.1.4. [1] Let θ be one of the following:

1. $\theta(A)=\left(A^{T}\right)^{-1}$ for all $A \in G$
2. $\theta(A)=\operatorname{Inn}_{I_{n-i, i}}\left(A^{T}\right)^{-1}$ for all $A \in G$
3. $\theta(A)=\operatorname{Inn}_{M_{n, x, y, z}}\left(A^{T}\right)^{-1}$ for all $A \in G$

Then T is a maximal (θ, k)-split torus.
Theorem 5.1.5. [1] Let $\theta=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$ for all $A \in G$. Then a maximal (θ, k)-split torus is

$$
A_{2}=\left\{\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i} \in k \text { and } a_{1}=a_{n / 2+1}, a_{2}=a_{n / 2+2}, \ldots, a_{n / 2}=a_{n}\right\}
$$

5.2 $\quad H_{k}$-conjugacy classes of (θ, k)-split maximal tori

Now that we know how to find the maximal (θ, k)-split tori for each involution of $S L(n, k)$, we can consider the H_{k}-conjugacy classes for each of these maximal (θ, k)-split tori. We have the following results from [1].

Theorem 5.2.1. [1] Let $\theta=\operatorname{Inn}_{I_{n-i, i}}^{*}$ such that $i<n / 2$. Then there exists only one H_{k}-conjugacy class of maximal (θ, k)-split tori with representative

$$
A_{1}=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{i}, a_{i}^{-1}, \ldots, a_{1}^{-1}, 1, \ldots, 1\right) \mid a_{i} \in k^{*}\right\}
$$

Theorem 5.2.2. [1] Let $\theta=\operatorname{Inn}_{I_{n-i, i}}^{*}$ such that $i=n / 2$. Note that n must be even. Then the number of H_{k}-conjugacy classes of maximal (θ, k)-split tori is at most $\left|\frac{k^{*} /\left(k^{*}\right)^{2}}{ \pm 1}\right|$.

Corollary 5.2.3. [1] Let $\theta=\operatorname{Inn}_{I_{n-i, i}}^{*}$ such that $i=n / 2$. Note that n must be even. Additionally, let k be $\mathbb{C}, \mathbb{R}, \mathbb{F}_{p}$ with $p \neq 2$, or \mathbb{Q}_{p}. Then the number of H_{k}-conjugacy classes of maximal (θ, k)-split tori equals $\left|\frac{k^{*} /\left(k^{*}\right)^{2}}{ \pm 1}\right|$.

Theorem 5.2.4. [1] Let $\theta=\operatorname{Inn}_{L_{n, x}}$. Note that n must be even and $x \in k^{*} /\left(k^{*}\right)^{2}, x \neq 1$ $\bmod \left(k^{*}\right)^{2}$. Then the number of H_{k}-conjugacy classes of maximal (θ, k)-split tori is at most $\left|\frac{k^{*} /\left(k^{*}\right)^{2}}{ \pm 1}\right|$.

Theorem 5.2.5. [1] Let $\theta=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$ for all $A \in G$. Then there exists one H_{k} conjugacy class of maximal (θ, k)-split tori with representative

$$
A_{2}=\left\{\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i} \in k \text { and } a_{1}=a_{n / 2+1}, a_{2}=a_{n / 2+2}, \ldots, a_{n / 2}=a_{n}\right\} .
$$

Knowing the number of H_{k}-conjugacy classes of maximal (θ, k)-split tori will tell us the number of tori in the top level of the poset.

5.3 Restricting θ to G_{α}

Now that we know what happens in the $\mathrm{SL}(2, k)$ case, we can use that information to help us understand $\operatorname{SL}(n, k)$. We will do this by restricting the involution to blocks of $\mathrm{SL}(2, k)$ inside of $\operatorname{SL}(n, k)$ and seeing how these blocks behave. We will also make use of our knowledge of the maximal (θ, k)-split tori for each involution and their conjugacy classes.

First, we will need to define the matrix G_{α}.
For $\alpha \in \Phi$, let $A_{\alpha}=\left\{a \in A \mid s_{\alpha}(a)=a\right\}^{\circ}$. Then we have the following definition.
Definition 5.3.1. $G_{\alpha}=Z_{G}\left(A_{\alpha}\right)$ and $\bar{G}_{\alpha}=\left[G_{\alpha}, G_{\alpha}\right]$.
If α is either real or imaginary, then G_{α} is θ-stable.
When applying this definition to $G=\operatorname{SL}(n, k)$ for the root α_{i}, we have that $G_{\alpha_{i}}$ is the $n \times n$ matrix with an $\operatorname{SL}(n, k)$ block in the α_{i} position along the diagonal and all other diagonal entries equal to 1 . All non-diagonal entries equal 0 . When considering $G_{\alpha_{i}+\alpha_{j}}$, we will again have an $\operatorname{SL}(2, k)$ block, but it will be more broken up. We can see this more explicitly in the following example.

Example 5.3.2. $G=\operatorname{SL}(3, k), \Phi=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. Then we have

$$
G_{\alpha_{1}}=\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right), G_{\alpha_{2}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right), \text { and } G_{\alpha_{1}+\alpha_{2}}=\left(\begin{array}{ccc}
a & 0 & b \\
0 & 1 & 0 \\
c & 0 & d
\end{array}\right)
$$

Example 5.3.3. $G=\operatorname{SL}(4, k), \Phi=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$. Then
we have $G_{\alpha_{1}}=\left(\begin{array}{llll}a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), G_{\alpha_{2}}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & c & d & 0 \\ 0 & 0 & 0 & 1\end{array}\right), G_{\alpha_{3}}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d\end{array}\right)$,

$$
G_{\alpha_{1}+\alpha_{2}}=\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & 1 & 0 & 0 \\
c & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right), G_{\alpha_{2}+\alpha_{3}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a & 0 & b \\
0 & 0 & 1 & 0 \\
0 & c & 0 & d
\end{array}\right) \text {, and } G_{\alpha_{1}+\alpha_{2}+\alpha_{3}}=\left(\begin{array}{cccc}
a & 0 & 0 & b \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
c & 0 & 0 & d
\end{array}\right) .
$$

Restricting θ to these matrices will help us determine if α is a (θ, k)-singular root. Once we determine the set of (θ, k)-singular roots, Φ_{θ}^{+}, we will be one step closer to constructing the poset of standard tori.

We will only consider roots that are in $\Phi(A) \cap \Phi\left(A_{1}\right)$, where A is the maximal (θ, k) split torus and A_{1} is the maximal k-split torus. In the case where $A=\{\operatorname{diag}\}$, we have that $\Phi(A) \cap \Phi\left(A_{1}\right)$ is the set of all positive roots.

Example 5.3.4. For

$$
A=\left(\begin{array}{llll}
a & & & \\
& b & & \\
& & c & \\
& & & d
\end{array}\right)
$$

we have that $\Phi(A) \cap \Phi\left(A_{1}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$.
For

$$
A=\left(\begin{array}{llll}
a & & & \\
& b & & \\
& & b^{-1} & \\
& & & a^{-1}
\end{array}\right)
$$

we have that $\Phi(A) \cap \Phi\left(A_{1}\right)=\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$.
From the set $\Phi(A) \cap \Phi\left(A_{1}\right)$, we will only be interested in the (θ, k)-singular roots.
The roots of $\Phi(A)$ can be divided in four subsets, related to the action of θ, as follows.
(a) $\theta(\alpha) \neq \pm \alpha$. Then α is called complex (relative to θ).
(b) $\theta(\alpha)=-\alpha$. Then α is called real (relative to θ).
(c) $\theta(\alpha)=\alpha$ and $\theta \mid G_{\alpha} \neq$ id. Then α is called non-compact imaginary (relative to θ).
(d) $\theta(\alpha)=\alpha$ and $\theta \mid G_{\alpha}=\mathrm{id}$. Then α is called compact imaginary (relative to θ).

If α is either a real or non-compact imaginary, then G_{α} is θ-stable and we call α a θ-singular root.

Definition 5.3.5. Let A be a θ-stable maximal k-split torus of G. For $\alpha \in \Phi(A)$ let $A_{\alpha}=\left\{a \in A \mid s_{\alpha}(a)=a\right\}^{0}, G_{\alpha}=Z_{G}\left(A_{\alpha}\right)$ and $\bar{G}_{\alpha}=\left[G_{\alpha}, G_{\alpha}\right]$. A root $\alpha \in \Phi(A)$ with $\theta(\alpha)= \pm \alpha$ is called θ-singular (respectively θ-compact) if $\bar{G}_{\alpha} \not \subset H$ (respectively $\left.\bar{G}_{\alpha} \subset H\right)$.

If α is a complex root, then we have that $\left.\theta\right|_{G_{\alpha}} \simeq \mathrm{id}$.
The set of θ-singular roots can be divided into two subsets: those that are singular with respect to the k-structure and those that are not.

Definition 5.3.6. A real θ-singular root $\alpha \in \Phi(A)$ is called (θ, k)-singular (respectively θ-singular anisotropic) if $\bar{G}_{\alpha} \cap H$ is isotropic (respectively $\bar{G}_{\alpha} \cap H$ is anisotropic).

Similarly an imaginary θ-singular root is called (θ, k)-singular (respectively θ-singular anisotropic) if \bar{G}_{α} has a non-trivial (θ, k)-split torus (respectively \bar{G}_{α} has no non-trivial (θ, k)-split tori).

What we get from this definition is that if α is a (θ, k)-singular root, then the torus that results after flipping over the $\mathrm{SL}(2, k)$ block in the α position will be a k-split torus. Flipping over roots that are only θ-singular but not k-singular will result in a torus that does not split over k.

Corollary 5.3.7. For $G_{k}=\operatorname{SL}(n, k)$, if $\left.\theta\right|_{G_{\alpha}} \simeq\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, then $T_{1}=\{\operatorname{diag}\}$ can not be flipped over α unless $-1 \in\left(k^{*}\right)^{2}$. For $G_{k}=\operatorname{SL}(n, k)$, if $\left.\theta\right|_{G_{\alpha}} \simeq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then $T_{1}=\{\operatorname{diag}\}$ can be flipped over α.

Proof. This follows from the $\operatorname{SL}(2, k)$ case. If -1 is not a square, once we flip down the poset, we get a torus that is not k-split. If -1 is a square, then the new torus obtained by flipping is k-split.

Theorem 5.3.8. For $G=\operatorname{SL}(n, k), \theta=\left(A^{T}\right)^{-1}$, if -1 is a square, then $T_{1}=\{\operatorname{diag}\}$ can be flipped over each root α_{i} to obtain a torus with a T^{+}part that is one dimension larger than T_{1}^{+}. If -1 is not a square, then T_{1} cannot be flipped.

Proof. Because $\left.\theta\right|_{G_{\alpha}} \simeq\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, this fact follows from the previous corollary.
By examining the $\mathrm{SL}(2, k)$ blocks inside of $\operatorname{SL}(n, k)$ and comparing how they behave to what happened in the previous chapter, we can get an idea of which roots we can flip over and which roots do not allow us to move down the poset. We call the set of roots that we can flip over Φ_{θ}^{+}, the (θ, k)-singular roots.

We have that the (θ, k)-singular roots are precisely the roots α such that $\left.\theta\right|_{G_{\alpha}} \simeq$ $\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Once we have the set of (θ, k)-singular roots Φ_{θ}^{+}, we need to find the maximal orthogonal subset of $\Phi_{\theta}^{+},\left(\Phi_{\theta}^{+}\right)^{\perp}$. This will tell us how many levels there are in the poset of tori. For example, if there is one root in $\left(\Phi_{\theta}^{+}\right)^{\perp}$, then we can flip one time and there will be two levels to the poset. If there are n roots in $\left(\Phi_{\theta}^{+}\right)^{\perp}$, then we can flip n times and there will be $n+1$ levels to the poset.

In Figure 5.1, we can see an illustration of what is happening when we flip down the poset. Note that A is standard with respect to A_{j}. We wish to take a one-dimensional slice of A_{j}^{-}and flip it down to A^{+}. In this way, as we move down the poset, the dimension of the θ-split part of the torus will decrease by one while the dimension of the A_{j}^{+}part will increase by one. We continue to flip down the poset until we get a torus with a maximal A_{i}^{+}part.

Figure 5.1: Flipping one dimension of a torus

Chapter 6

(θ, k)-singular roots of Involutions of SL (n, k)

We will now start our classification of (θ, k)-singular roots of involutions of $\mathrm{SL}(n, k)$. Using our knowledge of the behavior of $\mathrm{SL}(2, k)$, we will be able to create posets of standard tori for each involution.

6.1 Outer Involutions

We will first consider outer involutions of $\operatorname{SL}(n, k)$ with $n>2$. The tables for outer involutions over various fields are included in the following pages for completeness.

6.1.1 $\left(A^{T}\right)^{-1}$

The first involution we will consider is $\theta=\left(A^{T}\right)^{-1}$, which is the Cartan involution for $\mathrm{SL}(n, k)$. All other outer involutions are based around $\left(A^{T}\right)^{-1}$, so it is logical to start with this involution.

We will first consider the case where $k=\mathbb{C}$. Our maximal (θ, k)-split torus is the diagonal matrix T. To create our set Φ_{θ}^{+}, we will restrict θ to each root and see how the involution behaves, as explained in the previous chapter.

Example 6.1.2. Let $G=\operatorname{SL}(3, \mathbb{C}), \theta=\left(A^{T}\right)^{-1}$. If we restrict θ to $G_{\alpha_{1}}$, we have that $\left.\theta\right|_{G_{\alpha_{1}}} \simeq \operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Since we are in the field $k=\mathbb{C}$, we know that we are able to flip down the poset over α_{1}. Similarly, we get that we are able to flip over α_{2} and $\alpha_{1}+\alpha_{2}$.

Table 6.1: Outer Involutions of G over $k=\bar{k}, \mathbb{R}$ and \mathbb{F}_{p} with $p \neq 2$.

Field	Semi-Congruence Class M	Involution Class on G
$k=k$		
n odd	$M=I_{n \times n}$	$\theta(A)=\left(A^{T}\right)^{-1}$
n even	$\begin{gathered} M_{1}=I_{n \times n} \\ M_{2}=J_{2 m}(n=2 m) \end{gathered}$	$\begin{gathered} \theta_{1}(A)=\left(A^{T}\right)^{-1} \\ \theta_{2}(A)=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1} \end{gathered}$
$k=\mathbb{R}$		
n odd	$\begin{gathered} M_{i}=I_{n-i, i} \\ i=0,1,2, \ldots, \frac{n-1}{2} \\ \hline \end{gathered}$	$\theta_{i}(A)=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$
n even	$\begin{gathered} M_{i}=I_{n-i, i} \\ i=0,1,2, \ldots, \frac{n}{2} \\ M_{\frac{n}{2}+1}=J_{2 m} \\ \hline \hline \end{gathered}$	$\begin{gathered} \theta_{i}(A)=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1} \\ \theta_{\frac{n}{2}+1}(A)=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1} \end{gathered}$
$k=\mathbb{F}_{p} \quad p \neq 2$		
n odd	$\begin{gathered} M_{1}=I_{n \times n} \\ M_{2}=\left(\begin{array}{cc} I_{(n-1) \times(n-1)} & 0 \\ 0 & S_{p} \end{array}\right) \end{gathered}$	$\begin{gathered} \theta_{1}(A)=\left(A^{T}\right)^{-1} \\ \theta_{2}(A)=\operatorname{Inn}_{M_{2}}\left(A^{T}\right)^{-1} \end{gathered}$
n even	$\begin{gathered} M_{1}=I_{n \times n} \\ M_{2}=\left(\begin{array}{cc} I_{(n-1) \times(n-1)} & 0 \\ 0 & S_{p} \end{array}\right) \\ M_{3}=J_{2 m} \end{gathered}$	$\begin{gathered} \theta_{1}(A)=\left(A^{T}\right)^{-1} \\ \theta_{2}(A)=\operatorname{Inn}_{M_{2}}\left(A^{T}\right)^{-1} \\ \theta_{3}(A)=\operatorname{Inn}_{M_{3}}\left(A^{T}\right)^{-1} \end{gathered}$

Table 6.2: Outer Involutions of G over $k=\mathbb{Q}_{2}$

$\operatorname{dim}(V)$	Dual Value $d_{\alpha, c}$ of the Semi-Congruence Class	Matrix M such that $\theta(A)=\operatorname{Inn}_{M}\left(A^{T}\right)^{-1}$
	$d_{1,1}$	$M_{1}=I_{n \times n}$
	$d_{1,-1}$	$M_{n, 2,3,6}$
$n=4 k$	$d_{-1,1}$	$M_{n, 1,1,-1}$
	$d_{2,1}$	$M_{n, 1,1,2}$
	$d_{-2,1}$	$M_{n, 1,1,-2}$
	$d_{3,1}$	$M_{n, 1,1,3}$
	$d_{-3,1}$	$M_{n, 1,1,-3}$
	$d_{6,1}$	$M_{n, 1,1,6}$
	$d_{-6,1}$	$M=J_{n, 1,-6}$
	$d_{1,1}$	$M=I_{n \times n}$
$n=4 k+1$	$d_{1,1}$	$M_{1}=I_{n \times n}$
	$d_{-1,1}$	$M_{n, 1,1,-1}$
	$d_{-1,-1}$	$M_{n, 2,3,-6}$
	$d_{2,1}$	$M_{n, 1,1,2}$
$n=4 k+2$	$d_{-2,1}$	$M_{n, 1,1,-2}$
	$d_{3,1}$	$M_{n, 1,1,3}$
	$d_{-3,1}$	$M_{n, 1,1,-3}$
	$d_{6,1}$	$M_{n, 1,1,6}$
	$d_{-6,1}$	$M_{n, 1,1,-6}$
		$M=J_{2 m}$
	$d_{1,1}$	$M=I_{n \times n}$
	$d_{1,-1}$	$M_{n, 2,3,6}$

Table 6.3: Outer Involutions of $\operatorname{SL}\left(n, \mathbb{Q}_{p}\right)(p \neq 2)$

	$\operatorname{dim}(V)$	Dual Value $d_{\alpha, c}$ of the Semi-Congruence Class	$\begin{gathered} \text { Matrix Ms.t. } \\ \theta(A)=\operatorname{Inn}_{M}\left(A^{T}\right)^{-1} \end{gathered}$
$\underline{-1 \notin\left(\mathbb{Q}_{p}^{*}\right)^{2}}$			
	$n=4 k$	$d_{1,1}$	$M_{1}=I_{n \times n}$
		$d_{1,-1}$	$M_{n, p, S_{p}, p S_{p}}$
		$d_{p, 1}$	$M_{n, 1,1, p}$
		$d_{S_{p}, 1}$	$M_{n, 1,1, S_{p}}$
		$d_{p S_{p}, 1}$	$M_{n, 1,1, p S_{p}}$
			$M=J_{2 m}$
	$n=4 k+1$	$d_{1,1}$	$M=I_{n \times n}$
	$n=4 k+2$	$d_{1,1}$	$M_{1}=I_{n \times n}$
		$d_{p, 1}$	$M_{n, 1,1, p}$
		$d_{S_{p, 1}}$	$M_{n, 1, p, p S_{p}}$
		$d_{S_{p},-1}$	$M_{n, 1,1, S_{p}}$
		$d_{p S_{p}, 1}$	$M_{n, 1,1, p S_{p}}$
			$M=J_{2 m}$
	$n=4 k+3$	$d_{1,1}$	$M=I_{n \times n}$
		$d_{1,-1}$	$M_{n, p, S_{p}, p S_{p}}$
-1 $\in\left(\mathbb{Q}_{p}^{*}\right)^{2}$			
	$n=4 k$	$d_{1,1}$	$M_{1}=I_{n \times n}$
		$d_{1,-1}$	$M_{n, 1, p, p}$
		$d_{p, 1}$	$M_{n, 1,1, p}$
		$d_{S_{p}, 1}$	$M_{n, 1,1, S_{p}}$
		$d_{p S_{p}, 1}$	$\begin{aligned} & M_{n, 1,1, p S_{p}} \\ & M=J_{2 m} \end{aligned}$
	$n=4 k+2$	$d_{1,1}$	$M_{1}=I_{n \times n}$
		$d_{1,-1}$	$M_{n, p, S_{p}, p S_{p}}$
		$d_{p, 1}$	$M_{n, 1,1, p}$
		$d_{S_{p}, 1}$	$M_{n, 1,1, S_{p}}$
		$d_{p S_{p}, 1}$	$M_{n, 1,1, p S_{p}}$
			$M=J_{2 m}$
	n odd	$d_{1,1}$	$M=I_{n \times n}$
		$d_{1,-1}$	$M_{n, p, S_{p}, p S_{p}}$

Thus, $\Phi_{\theta}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. The largest orthogonal subset of Φ_{θ}^{+}contains only one root, so we are only able to flip down the poset one time, giving us two levels. Thus, the standard poset for $G=\mathrm{SL}(3, \mathbb{C}), \theta=\left(A^{T}\right)^{-1}$ has two levels with $T=\{\operatorname{diag}\}$ as the top level and three posets on the second level obtained from flipping over α_{1}, α_{2}, and $\alpha_{1}+\alpha_{2}$, respectively.

Example 6.1.3. In Figure 6.1, we have the poset of standard tori for $G=\operatorname{SL}(4, \mathbb{C}), \theta=$ $\left(A^{T}\right)^{-1}$. We are able to flip over each positive root because $-1 \in\left(k^{*}\right)^{2}$ in \mathbb{C}. Each subset $\left(\Phi_{\theta}^{+}\right)^{\perp}$ of perpendicular (θ, k)-singular roots has cardinality two. Therefore, we are able to flip twice down the poset and we have three levels to the poset. The numbers in the poset correspond to the roots we are flipping over, with the poset at the top of the poset $T=\{\operatorname{diag}\}$. For example, the 1 signifies the torus obtained by flipping over $\alpha_{1}, 12$ signifies the torus obtained by flipping over $\alpha_{1}+\alpha_{2}$, and so on.

Figure 6.1: \quad Standard Poset for $G=\operatorname{SL}(4, \mathbb{C}), \theta=\left(A^{T}\right)^{-1}$

As seen in the previous example, we are able to flip over every root for $G=\mathrm{SL}(n, \mathbb{C})$
and $\theta=\left(A^{T}\right)^{-1}$. This is because $-1 \in\left(k^{*}\right)^{2}$ when $k=\mathbb{C}$. As we saw in the chapter on $\mathrm{SL}(2, k)$, when $-1 \in\left(k^{*}\right)^{2}$ and $\theta=\left(A^{T}\right)^{-1}$, we are able to flip down the poset. This will hold true for any n. Thus, for $\operatorname{SL}(n, \mathbb{C})$ and $\theta=\left(A^{T}\right)^{-1}$, every positive root is contained within Φ_{θ}^{+}.

When we consider the field $k=\mathbb{R}$, then we have that -1 is not a square. Thus, we are unable to flip down the poset over any root, since all G_{α} 's restricted to θ will be isomorphic to $\left(A^{T}\right)^{-1}$. Posets of standard tori for $\operatorname{SL}(n, \mathbb{R})$ will only contain one torus, the maximal (θ, k)-split torus $T=\{\operatorname{diag}\}$.

When considering $k=\mathbb{F}_{p}$, we have a similar situation to our previous two cases. If -1 is a square, then we are able to flip over all positive roots, so we would have a situation similar to $k=\mathbb{C}$. If -1 is not a square, then we are in a situation like $k=\mathbb{R}$ and we are unable to flip over any roots, leaving us with a poset of only one torus. Recall that for \mathbb{F}_{p}, if $p \equiv 1 \bmod 4$, then $-1 \in\left(k^{*}\right)^{2}$ and if $p \equiv 3 \bmod 4$, then $-1 \notin\left(k^{*}\right)^{2}$.

Theorem 6.1.4. Let $G=\operatorname{SL}(n, k)$ and $\theta=\left(A^{T}\right)^{-1}$. Then Φ_{θ}^{+}is the set of all positive roots if $-1 \in\left(k^{*}\right)^{2}$ and Φ_{θ}^{+}is the empty set if $-1 \notin\left(k^{*}\right)^{2}$.

Let us first define the matrix X_{α}. Let X_{α} be the $n \times n$ matrix with the 2×2 matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ in the α position, all other diagonal entries $=1$ and all other non-diagonal entries $=0$.
Proof. We will consider $\left.\theta\right|_{G_{\alpha}}$. We have that $\left(A^{T}\right)^{-1} \simeq \operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ for $\operatorname{SL}(2, k)$. If we first consider α_{1}, we have

$$
\left.\theta\right|_{G_{\alpha_{1}}} \simeq \operatorname{Inn}\left(\begin{array}{ccccc}
0 & 1 & & & \\
-1 & 0 & & & \\
& & \ddots & & \\
& & & 1 & \\
& & & & 1
\end{array}\right)
$$

Thus, $\left.\theta\right|_{G_{\alpha_{1}}}$ is conjugation by the matrix $X_{\alpha_{1}}$, where $X_{\alpha_{1}}$ is the $n \times n$ matrix with the 2×2 matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ in the α_{1} position, all other diagonal entries $=1$ and all other
non-diagonal entries $=0$. From this, it is clear to see that

$$
\left.\theta\right|_{G_{\alpha_{1}}} \simeq \operatorname{Inn}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Applying this to all positive roots α, we see that $\left.\theta\right|_{G_{\alpha}} \simeq \operatorname{Inn} X_{\alpha} \simeq \operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Thus, as stated in the $\operatorname{SL}(2, k)$ case, we have that α is (θ, k)-singular if $-1 \in\left(k^{*}\right)^{2}$ and α is not (θ, k)-singular if $-1 \notin\left(k^{*}\right)^{2}$. Therefore, Φ_{θ}^{+}is the set of all positive roots if $-1 \in\left(k^{*}\right)^{2}$ and Φ_{θ}^{+}is the empty set if $-1 \notin\left(k^{*}\right)^{2}$.

6.1.5 $\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$

We will now consider the involution $\theta(A)=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$ where $J_{2 m}$ is the $(2 m) \times(2 m)$ matrix, where $n=2 m$ and

$$
J_{2 m}=\left(\begin{array}{cc}
0 & I_{m \times m} \\
-I_{m \times m} & 0
\end{array}\right) .
$$

We will first look at the maximal (θ, k)-split torus for this involution. In a result from [2], we have that the maximal (θ, k)-split torus A is defined as

$$
A=\left\{\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{1}=a_{2}, a_{3}=a_{4}, \cdots a_{n-1}=a_{n}\right\} .
$$

This torus has dimension $\frac{n}{2}$. If we consider $\Phi(A)$, we have that there are no roots contained within this torus. Thus $\Phi(A) \cap \Phi(T)=\emptyset$. Since there are no roots in this intersection, we do not have any roots available to restrict θ to. Thus, we are unable to flip down the poset with this involution for any field.

Theorem 6.1.6. Let $G=\operatorname{SL}(n, k)$ and $\theta(A)=\operatorname{Inn}_{J_{2 m}}\left(A^{T}\right)^{-1}$. Then $\Phi_{\theta}^{+}=\emptyset$.
Proof. Since $\Phi(A)=\emptyset$, there are no roots to consider for Φ_{θ}^{+}. Thus $\Phi_{\theta}^{+}=\emptyset$.

6.1.7 $\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$

We will define $M_{i}=I_{n-i, i}$, with

$$
I_{n-i, i}=\left(\begin{array}{cc}
I_{n-i \times n-i} & 0 \\
0 & -I_{i \times i}
\end{array}\right)
$$

We will first consider $\theta=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$ over \mathbb{R}. When restricting θ to G_{α}, we will use the fact that $\left(A^{T}\right)^{-1}=\operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ in the $\operatorname{SL}(2, k)$ case, as we did previously. Let us start with an example.

Example 6.1.8. Let $G=\operatorname{SL}(3, k), \theta=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}$. Then $A=T=\{\operatorname{diag}\}$ and $\Phi(T)^{+}=$ $\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. First we will consider α_{1} as a possible (θ, k)-singular root.

$$
\left.\theta\right|_{G_{\alpha_{1}}}=\operatorname{Inn}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\operatorname{Inn}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \simeq\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Therefore, $\alpha_{1} \notin \Phi_{\theta}^{+}$. We can do a similar calculation for the remaining positive roots to see that $\Phi_{\theta}^{+}=\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. Since conjugating by $\left(\begin{array}{llc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ will only affect the last row and last column, it will only affect the root α_{2} and any roots that contain α_{2} in its sum.

The roots α_{2} and $\alpha_{1}+\alpha_{2}$ are not orthogonal, so there will only be two levels to the standard poset, the top containing T and the bottom containing the two tori obtained by flipping over α_{2} and $\alpha_{1}+\alpha_{2}$.

We can extend this process to larger n to see that for $\theta=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$, the (θ, k) singular roots will be α_{n-i} and any roots containing α_{n-i} in its sum.

Theorem 6.1.9. Let $G=\operatorname{SL}(n, \mathbb{R})$ and $\theta=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$. Then $\Phi_{\theta}^{+}=\left\{\alpha_{n-i}\right.$, roots containing α_{n-i} in their sum $\}$.

Proof. Let us first note that $\Phi(A)=\Phi$, all positive roots. We will first consider $\theta=$
$\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}$. Then

$$
\left.\theta\right|_{G_{\alpha_{1}}}=\operatorname{Inn}\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 1 & \\
& & & & -1
\end{array}\right)\left(\begin{array}{ccccc}
0 & 1 & & & \\
-1 & 0 & & & \\
& & \ddots & & \\
& & & 1 & \\
& & & & 1
\end{array}\right)=\operatorname{Inn}\left(\begin{array}{ccccc}
0 & 1 & & & \\
-1 & 0 & & & \\
& & \ddots & & \\
& & & 1 & \\
& & & & -1
\end{array}\right)
$$

Thus, we have that $\left.\theta\right|_{G_{\alpha_{1}}} \simeq \operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. It is easy to see that $\left.\theta\right|_{G_{\alpha}} \simeq \operatorname{Inn}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ for any root α that is not in the lower right position. Let us consider α_{n-1}.

$$
\begin{aligned}
\left.\theta\right|_{G_{\alpha_{n-1}}} & =\operatorname{Inn}\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 1 & \\
& & & & -1
\end{array}\right)\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 0 & 1 \\
& & & -1 & 0
\end{array}\right) \\
& =\operatorname{Inn}\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 0 & 1 \\
& & & 1 & 0
\end{array}\right) \simeq \operatorname{Inn}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Because the α_{n-1} block is in a position that is affected by the -1 in the n, n entry, we get that $\left.\theta\right|_{G_{\alpha_{n-1}}} \simeq \operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Thus, we have that α_{n-1} is a (θ, k)-singular root.

Any other root that has a component in the lower right position will also be affected. This will include α_{n-1} and all roots that contain α_{n-1} in their sum. Thus, the set of (θ, k)-singular roots will be α_{n-1} and all roots that contain α_{n-1} in their sum.

We can easily extend this to $\theta=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$. The root α that is in the position affected by the $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ block will be a (θ, k)-singular root, as well as all roots containing α
in their sum.

$$
\begin{aligned}
& \left(\begin{array}{llll}
a & & & \\
& b & & \\
& & c & \\
& & & d
\end{array}\right) \\
& \left(\begin{array}{llll}
a & & & \\
& b & & \\
& & c & d \\
& & d & c
\end{array}\right) \quad\left(\begin{array}{llll}
a & & & \\
& b & 0 & d \\
& 0 & c & 0 \\
& d & 0 & b
\end{array}\right) \quad\left(\begin{array}{llll}
a & & & d \\
& b & 0 & \\
& 0 & c & \\
d & & & a
\end{array}\right)
\end{aligned}
$$

Figure 6.2: Poset of standard tori related to $G=\mathrm{SL}(4, \mathbb{R})$ with $\theta(A)=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}$

Example 6.1.10. For $\operatorname{SL}(5, \mathbb{R}), \operatorname{Inn}\left(M_{1}\right)\left(A^{T}\right)^{-1}$, we have $\Phi_{s}^{\theta}=\left\{\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{2}+\alpha_{3}+\right.$ $\left.\alpha_{4}, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right\}$.

Example 6.1.11. For $\operatorname{SL}(5, \mathbb{R}), \operatorname{Inn}\left(M_{2}\right)\left(A^{T}\right)^{-1}$, we have $\Phi_{s}^{\theta}=\left\{\alpha_{3}, \alpha_{3}+\alpha_{4}, \alpha_{2}+\alpha_{3}, \alpha_{2}+\right.$ $\left.\alpha_{3}+\alpha_{4}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right\}$.

Let us now consider $k=\mathbb{F}_{p}$. For $k=\mathbb{F}_{p}$, we will look at two cases. First, we redefine $M_{i}=I_{n-i, i}$, as

$$
I_{n-i, i}=\left(\begin{array}{cc}
I_{n-i \times n-i} & 0 \\
0 & s_{p} I_{i \times i}
\end{array}\right)
$$

where s_{p} is the smallest nonsquare in \mathbb{F}_{p}. If -1 is not a square, then we can let $s_{p}=-1$. This gives us a similar case to $k=\mathbb{R}$ and have $\Phi_{\theta}^{+}=\left\{\alpha_{n-i}\right.$, roots containing α_{n-i} in their sum $\}$.

If -1 is a square, then we have to consider what happens with the s_{p}.
Example 6.1.12. Let $G=\operatorname{SL}\left(4, F_{p}\right), \theta=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}$. Then we have

$$
\left.\theta\right|_{G_{\alpha_{1}}}=\operatorname{Inn}\left(\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & s_{p}
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
s_{p} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
s_{p} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & s_{p}
\end{array}\right) \simeq \operatorname{Inn}\left(\begin{array}{ll}
0 & 1 \\
s_{p} & 0
\end{array}\right)
$$

Thus, we are unable to flip over the positive root α_{1} because s_{p} is not a square.
If we consider the root α_{3}, we get

$$
\left.\theta\right|_{G_{\alpha_{3}}}=\operatorname{Inn}\left(\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & s_{p}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & s_{p} & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \left(s_{p}\right)^{2} & 0
\end{array}\right) \simeq \operatorname{Inn}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

because $\left(s_{p}\right)^{2}$ is a square. Thus, we are able to flip over the root α_{3}.
Through similar calculations, we will see that the (θ, k)-singular roots are $\alpha_{3}, \alpha_{2}+\alpha_{3}$, and $\alpha_{1}+\alpha_{2}+\alpha_{3}$.

From the previous example, we see that we get similar results for $\mathbb{F}_{\text {, }}$ when -1 is not a square as we get for \mathbb{R}.

Theorem 6.1.13. Let $G=\operatorname{SL}\left(n, \mathbb{F}_{p}\right)$ and $\theta=\operatorname{Inn}_{M_{i}}\left(A^{T}\right)^{-1}$. Then $\Phi_{\theta}^{+}=\left\{\alpha_{n-i}\right.$, roots containing α_{n-i} in their sum $\}$.

Proof. The proof is similar to the \mathbb{R} case.

6.2 Inner Involutions

We will now classify (θ, k)-singular roots for inner involutions of $\operatorname{SL}(n, k)$. A table containing the list of inner involutions for $\operatorname{SL}(n, k)$ over various fields is shown in Figure 6.4. There are two inner involutions to consider.

6.2.1 $\operatorname{Inn}\left(I_{n-i, i}\right)$

When considering $\theta=\operatorname{Inn}\left(I_{n-i, i}\right)$, we first need to find the maximal (θ, k)-split torus.

Table 6.4: Isomorphism Classes of Inner Involution of G

Field	Number of Inner Involutions	Representative Matrix Y such that $\theta=\operatorname{Inn}_{Y}$
$\begin{gathered} n \text { odd, } \\ k=\text { any field } \end{gathered}$	$\frac{n-1}{2}$	$Y=I_{n-i, i} \quad i=1,2, \ldots, \frac{n-1}{2}$
n even		
$k=\bar{k}$	$\frac{n}{2}$	$Y=I_{n-i, i} \quad i=1,2, \ldots, \frac{n}{2}$
$k=\mathbb{R}$	$\frac{n}{2}+1$	$\begin{gathered} Y=I_{n-i, i} \quad i=1,2, \ldots, \frac{n}{2} \\ Y=L_{n,-1} \end{gathered}$
$k=\mathbb{Q}$	∞	$\begin{gathered} Y=I_{n-i, i} \quad i=1,2, \ldots, \frac{n}{2} \\ Y=L_{n, \alpha} \quad \alpha \neq 1 \bmod \left(\mathbb{Q}^{*}\right)^{2} \end{gathered}$
$k=\mathbb{F}_{p} p \neq 2$	$\frac{n}{2}+1$	$\begin{gathered} Y=I_{n-i, i} \quad i=1,2, \ldots, \frac{n}{2} \\ Y=L_{n, S_{p}} \end{gathered}$
$k=\mathbb{Q}_{2}$	$\frac{n}{2}+7$	$\begin{gathered} Y=I_{n-i, i} \quad i=1,2, \ldots, \frac{n}{2} \\ Y=L_{n, \alpha} \quad \alpha \in\{-1, \pm 2, \pm 3, \pm 6\} \end{gathered}$
$k=\mathbb{Q}_{p} p \neq 2$	$\frac{n}{2}+3$	$\begin{gathered} Y=I_{n-i, i} \quad i=1,2, \ldots, \frac{n}{2} \\ Y=L_{n, \alpha} \quad \alpha \in\left\{p, S_{p}, p S_{p}\right\} \end{gathered}$

Lemma 6.2.2. [[2]] The maximal (θ, k)-split torus for $I_{n-i, i}, i=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil$ can be chosen as:

$$
A_{n-i, i}=\left\{B^{-1} \operatorname{diag}\left(a_{1}, \ldots, a_{i}, a_{i}^{-1}, \ldots, a_{1}^{-1}, 1, \ldots, 1\right) B\right\}
$$

where B satisfies $B A B^{-1}=\left(\begin{array}{cc}J & 0 \\ 0 & I_{n-2 i}\end{array}\right)$. The dimension of the maximal (θ, k)-split torus is of course i.

Proof. Note that

$$
\begin{aligned}
\theta\left(B^{-1} t B\right)=\left(B^{-1} t B\right)^{-1} & \Rightarrow \operatorname{Inn}_{A}\left(B^{-1} t B\right)=B^{-1} t^{-1} B \\
& \Rightarrow A^{-1}\left(B^{-1} t B\right) A=B^{-1} t^{-1} B \\
& \Rightarrow t B A B^{-1}=B A B^{-1} t^{-1}
\end{aligned}
$$

Since t is conjugate to t^{-1}, then highest possible dimension can only be less or equal to $\frac{n}{2}$. Also, if $t=\operatorname{diag}\left(a_{1}, \ldots, a_{i}, a_{i}^{-1}, \ldots, a_{1}^{-1}, 1, \ldots, 1\right)$, and $t Y=Y t^{-1}$, then we have
$Y=\left(\begin{array}{cc}J & 0 \\ 0 & Y_{n-2 i}\end{array}\right)$, therefore, if the (θ, k)-split tori has dimension of i, the corresponding $I_{n-j, j}$ has to be conjugate to $\left(\begin{array}{cc}J & 0 \\ 0 & Y_{n-2 i}\end{array}\right)$. Hence a (θ, k)-split torus has dimension i if and only if the corresponding $I_{n-j, j}$ such that $j \geq i$, i.e. the maximal (θ, k)-split tori has dimension j for $I_{n-j, j}$.

We will consider the maximal (θ, k)-split torus $\tilde{A}_{n-i, i}$ as defined below:

$$
\tilde{A}_{n-i, i}=\operatorname{diag}\left(a_{1}, \ldots, a_{i}, a_{i}^{-1}, \ldots, a_{1}^{-1}, 1, \ldots, 1\right)
$$

Then our new involution, $\tilde{\theta}$ becomes $\operatorname{Inn}\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & . & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$, i.e. the matrix with 1's on the reverse diagonal and all other entries equaling zero. This will make our calculations simpler.

When considering the maximal (θ, k)-split torus $\tilde{A}_{n-i, i}$, we have that $\Phi\left(\tilde{A}_{n-i, i}\right)=$ $\left\{\alpha_{i}, \alpha_{i-1}+\alpha_{i}+\alpha_{i+1}, \cdots \alpha_{1}+\alpha_{2}+\ldots+\alpha_{i}+\ldots \alpha_{n-1}\right\}$. Essentially, $\Phi\left(\tilde{A}_{n-i, i}\right)$ contains the positive root α_{i} and all roots with α_{i} in the center of the sum.

When we restrict G_{α} with $\alpha \in \Phi\left(\tilde{A}_{n-i, i}\right)$ to $\tilde{\theta}$, we see that all roots in $\Phi\left(\tilde{A}_{n-i, i}\right)$ are (θ, k)-singular. We get the following result

$$
\left.\tilde{\theta}\right|_{G_{\alpha}} \simeq \operatorname{Inn}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

for all $\alpha \in \Phi\left(\tilde{A}_{n-i, i}\right)$. Thus we are able to flip over all positive roots in $\Phi\left(\tilde{A}_{n-i, i}\right)$. Example 6.2.3. Let $G=\mathrm{SL}(4, k)$ and $\theta=\operatorname{Inn}\left(I_{2,2}\right)$. We will consider

$$
\tilde{\theta}=\operatorname{Inn}\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Our maximal (θ, k)-split torus is

$$
\tilde{A}_{2,2}=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & b^{-1} & 0 \\
0 & 0 & 0 & a^{-1}
\end{array}\right)
$$

Thus, the only roots in $\Phi\left(\tilde{A}_{2,2}\right)$ are α_{2} and $\alpha_{1}+\alpha_{2}+\alpha_{3}$.
For $G_{\alpha_{2}}$, we have

$$
\begin{aligned}
& \tilde{\theta}\left(G_{\alpha_{2}}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & a & b & 0 \\
0 & c & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
&=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & d & c & 0 \\
0 & b & a & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \simeq \operatorname{Inn}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Thus we are able to flip over the $\operatorname{SL}(2, k)$ block in the α_{2} position. We get similar results when we consider $\alpha_{1}+\alpha_{2}+\alpha_{3}$:

$$
\begin{aligned}
\tilde{\theta}\left(G_{\alpha_{1}+\alpha_{2}+\alpha_{3}}\right) & =\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
a & 0 & 0 & b \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
c & 0 & 0 & d
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
d & 0 & 0 & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
d & 0 & 0 & a
\end{array}\right) \simeq \operatorname{Inn}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

From this, we see that we are able to flip over both of the roots in $\Phi\left(\tilde{A_{2,2}}\right)$. Since the two roots α_{2} and $\alpha_{1}+\alpha_{2}+\alpha_{3}$ are perpendicular to each other, we are able to flip down the poset twice, obtaining 3 levels to the poset of standard tori.

An illustration of the poset from the previous example can be seen in Figure 6.3.

Theorem 6.2.4. Let $G=\operatorname{SL}(n, k)$ and $\tilde{\theta}=\operatorname{Inn}\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & . & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$. Then $\Phi_{\theta}^{+}=\Phi\left(\tilde{A}_{n-i, i}\right)$.
Proof. We have that $\Phi\left(\tilde{A}_{n-i, i}\right)$ is the set of positive roots α_{i} and all positive roots containing α_{i} at the center of its sum. This is easy to compute since we have that

$$
\tilde{A}_{n-i, i}=\left(\begin{array}{lllll}
a & & & & \\
& b & & & \\
& & \ddots & & \\
& & & b^{-1} & \\
& & & & a^{-1}
\end{array}\right)
$$

The $\operatorname{SL}(2, k)$ block in the α position, with $\alpha \in \Phi\left(\tilde{A}_{n-i, i}\right)$, will be a square block that shares a center with the center of the larger $n \times n$ matrix. When we restrict $\tilde{\theta}$ to G_{α} with $\alpha \in \Phi\left(\tilde{A}_{n-i, i}\right)$, we have

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & . \cdot & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) G_{\alpha}\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & . \cdot & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

The matrix G_{α} will have an $\operatorname{SL}(2, k)$ block in a central position, as stated previously. Thus

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & . & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) G_{\alpha}\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & . & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \simeq\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \simeq \operatorname{Inn}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Figure 6.3: Poset of standard tori for $\operatorname{SL}(4, k)$ and $\theta=\operatorname{Inn}\left(I_{2,2}\right)$

6.2.5 $\operatorname{Inn}\left(L_{n,-1}\right)$

We will define the matrix $L_{n, x}$ as follows:

$$
L_{n, x}=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
x & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & x & 0
\end{array}\right) .
$$

For $x=-1$, we have that $\operatorname{Inn}\left(J_{2 m}\right) \simeq \operatorname{Inn}\left(L_{n,-1}\right)$. (Similarly, if $x=s_{p}$, we have that $\operatorname{Inn}\left(J_{2 m}\right) \simeq \operatorname{Inn}\left(L_{n, s_{p}}\right)$. If we consider the case $n=2$, we have that $n=2 m$ and $m=1$. Thus we have

$$
\begin{aligned}
J_{2} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
L_{2,-1} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

If we diagonalize J_{2}, we get eigenvalues $\lambda= \pm i$. Thus $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \simeq\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$. When we consider $\operatorname{Inn}\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, this is equivalent to $\operatorname{Inn}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ because the scalar i will cancel out.

From the previous calculations, we have that $\operatorname{Inn}\left(L_{2,-1}\right) \simeq \operatorname{Inn}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \simeq \operatorname{Inn}_{I_{1,1}}$. We can expand this from $n=2$ to a general n and obtain

$$
\operatorname{Inn}_{L_{n,-1}}=\operatorname{Inn}_{J_{2 m}} \simeq \operatorname{Inn}_{I_{n-i, i}}
$$

We have previously done the calculations for $\operatorname{Inn}_{I_{n-i, i}}$. We get the same results for $\operatorname{Inn}_{L_{n,-1}}$. We will again be able to flip over all positive roots in $\Phi\left(\tilde{A}_{n-i, i}\right)$.

Theorem 6.2.6. Let $G=\mathrm{SL}(n, k)$ and $\theta=\operatorname{Inn}\left(L_{n,-1}\right)$. Then $\Phi_{\theta}^{+}=\Phi\left(\tilde{A}_{n-i, i}\right)$.
Proof. This follows from the fact that $\operatorname{Inn}_{L_{n,-1}}=\operatorname{Inn}_{J_{2 m}} \simeq \operatorname{Inn}_{I_{n-i, i}}$.

Chapter 7

Conjugacy Classes of Maximal θ-stable, k-split Tori

Now that we have a method for buildling the posets of standard tori for each of the involutions of $\operatorname{SL}(n, k)$ over various fields, we can now check for conjugacy among the rows of the poset. We can check for H-conjugacy first to see how the poset collapses and then we can check for H_{k}-conjugacy to see how the collapsed poset expands.

7.1 Quasi k-split tori

Given a maximal (θ, k)-split torus A, we have a maximal k-split torus A_{1} such that $A \subset A_{1}$. We also have T, a maximal torus, with $A_{1} \subset T$. We have been considering positive roots $\alpha \in \Phi(A) \cap \Phi\left(A_{1}\right)$ and determining if α is a $\left.\theta, k\right)$-singular root. If α is a (θ, k)-singular root, we are able to flip down the poset over α and obtain a new torus with a + -part that is one dimension larger. If α is not a (θ, k)-singular root, we are unable to flip down the poset over α.

If we consider the roots $\alpha \in \Phi(A) \cap \Phi\left(A_{1}\right)$ which are not (θ, k)-singular, we are able to flip over the algebraic closure of k. The resulting torus will not be k-split. In fact, it will contain a one-dimensional anisotropic subtorus. The process of flipping over a non- (θ, k)-singular root will result in a quasi k-split torus.

Definition 7.1.1. A quasi k-split torus is a torus that is G-conjugate to a k-split torus, i.e. A is quasi k-split if

$$
A=g T g^{-1}
$$

Figure 7.1: Poset of standard tori for $\operatorname{SL}(3, \mathbb{R})$
with $g \in G$ and T a k-split torus.
Quasi k-split tori split over G but not over G_{k} with $k \neq \bar{k}$. If we consider quasi k-split tori, we will be able to flip down the poset more than if we only consider k-split tori, obtaining more tori for our poset.
Example 7.1.2. Let $G=\operatorname{SL}(3, \mathbb{R}), \theta=\operatorname{Inn}\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & 1 & \\ & & -1\end{array}\right)\left(A^{T}\right)^{-1}$. We have that $\Phi^{+}=$ $\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. From previous calculations, we know that the set of (θ, k)-singular roots are $\Phi_{\theta}^{+}=\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. Thus we get the poset as seen in Figure 7.1.

If we want to create a poset of quasi k-split tori, then we are able to flip over all three roots in Φ^{+}. Thus we get the poset as seen in Figure 7.2. As we can see from these two posets, we are able to get more tori when allowing quasi k-split tori.

$7.2 \quad H_{k}$-Conjugacy

We already discused the H_{k} conjugacy classes of maximal (θ, k)-split tori, which will make up the top of the poset. For tori A_{1} and A_{2} with A_{i}^{-}maximal (θ, k)-split, there exists $g \in\left(H . Z_{G}\left(A_{1}\right)\right)_{k}$ such that

$$
g A_{1} g^{-1}=A_{2}
$$

Figure 7.2: Poset of quasi k-split tori for $\operatorname{SL}(3, \mathbb{R})$

Corollary 7.2.1. Let $g=h . z$ such that $g A_{1} g^{-1}=A_{2}$. Then $h A_{1} h^{-1}=A_{2}$.
Proof. Since $z \in Z_{G}\left(A_{1}\right)$, we have

$$
g A_{1} g^{-1}=h . z A_{1} z^{-1} h^{-1}=h A_{1} h^{-1}=A_{2}
$$

Thus, all maximal (θ, k)-split tori are H-conjugate, which gives us a single element at the top of our poset of H-conjugacy classes of tori.

Given the above, we now have the following result when considering the bottom level of the H-conjugate poset:

Theorem 7.2.2. Let A_{1} and A_{2} be θ-stable, k-split tori with A_{i}^{+}maximal. Then A_{1} and A_{2} are H-conjugate, i.e. the bottom of the poset of standard tori collapses to one H-conjugacy class.

Proof. A_{1}^{+}and A_{2}^{+}are maximal k-split in H. Then $\exists h \in H_{k}$ such that

$$
h A_{1}^{+} h^{-1}=A_{2}^{+}
$$

because all maximal k-split tori are H-conjugate. In $Z_{G}\left(A_{1}^{+}\right)$, both A_{1}^{-}and A_{2}^{-}are maximal (θ, k)-split. Thus A_{1}^{-}and A_{2}^{-}are conjugate under $H \cap Z_{G}\left(A_{1}^{+}\right)$, which implies A_{1} and A_{2} are H-conjugate.

Our process of checking for conjugacy among each row of the poset is shown graphically in Figure 7.3. If we wish to check for conjugacy among $T_{\alpha_{1}}$ and $T_{\alpha_{2}}$, we will look at the matrix $\left(c_{1}\right)^{-1} h c_{2}$. If this matrix is an element of H, then $T_{\alpha_{1}}$ and $T_{\alpha_{2}}$ is H-conjugate. If $\left(c_{1}\right)^{-1} h c_{2}$ is an element of H_{k}, then $T_{\alpha_{1}}$ and $T_{\alpha_{2}}$ is H_{k}-conjugate. We use the following theorem to help us identify c_{i}.

Figure 7.3: Graph demonstrating how to check for conjugacy

Theorem 7.2.3. For $\theta=\operatorname{Inn}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we have

$$
\left(\begin{array}{cc}
a-b & 0 \\
0 & a+b
\end{array}\right)=\operatorname{Inn}\left(\begin{array}{cc}
x & -x \\
x & x
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

with $a^{2}-b^{2}=1$ and $2 x^{2}=1$ and $a, b, x \in k$.
Proof. Since $2 x^{2}=1$, we have the following:

$$
\operatorname{Inn}\left(\begin{array}{cc}
x & -x \\
x & x
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)=\left(\begin{array}{cc}
x & -x \\
x & x
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
x & x \\
-x & x
\end{array}\right)
$$

$$
\begin{gathered}
=\left(\begin{array}{cc}
\left(a x^{2}-b x^{2}-b x^{2}+a x^{2}\right) & \left(a x^{2}-b x^{2}+b x^{2}-a x^{2}\right) \\
\left(a x^{2}+b x^{2}-b x^{2}-a x^{2}\right) & \left(a x^{2}+b x^{2}+b x^{2}+a x^{2}\right)
\end{array}\right) \\
=\left(\begin{array}{cc}
a-b & 0 \\
0 & a+b
\end{array}\right)
\end{gathered}
$$

We can choose the matrix $\left(\begin{array}{cc}x & -x \\ x & x\end{array}\right)$ depending on our field.
For example, if $k=\mathbb{R}$, we choose the matrix $\frac{\sqrt{2}}{2}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$.
Theorem 7.2.4 ([19]). If A is standard with respect to A_{j}, then there exists an involution $\omega \in W\left(A_{j}\right)$ that is (θ, k)-singular such that

$$
\left(A_{j}\right)_{\omega}^{-} \cdot A^{-}=A_{j}^{-}
$$

Moreover, we can move from A to A_{j} in r-steps if

$$
\begin{gathered}
\omega=s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{r}} \\
\alpha_{1} \perp \alpha_{2} \perp \ldots \perp \alpha_{r}
\end{gathered}
$$

where α_{i} are perpendicular (θ, k)-singular roots.
The previous theorem gives us an explicit method for checking for conjugacy.
Example 7.2.5. Let $G=\operatorname{SL}\left(3, \mathbb{F}_{3}\right), \theta=\operatorname{Inn}\left(\begin{array}{ll}1 & \\ & 1 \\ & 2\end{array}\right)\left(A^{T}\right)^{-1}$. Then we have that $\Phi_{\theta}^{+}=$ $\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. We get the poset of standard tori as seen in Figure 7.4.

Now we need to check for conjugacy among the two tori on the bottom level of the poset. We will consider $\operatorname{Inn}\left(c_{2} N_{\alpha_{1}} c_{1}^{-1}\right)$. From Theorem 7.2.3, we will choose the matrix c_{1} and c_{2} as follows.

$$
c_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right), c_{2}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Figure 7.4: Poset of Standard tori for $\operatorname{SL}\left(3, \mathbb{F}_{3}\right), \theta=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}$

The matrix c_{1} takes the diagonal matrix T to the matrix $\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & a & b \\ 0 & c & d\end{array}\right)$ and c_{2} takes T to the matrix $\left(\begin{array}{lll}a & 0 & b \\ 0 & x & 0 \\ c & 0 & d\end{array}\right)$.

We find $N_{\alpha_{1}}$ by first noting that $s_{\alpha_{1}}\left(\alpha_{2}\right)=\alpha_{1}+\alpha_{2}$. Then we have the matrix $N_{\alpha_{1}}$ as follows

$$
N_{\alpha_{1}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

From this, we have that

$$
\operatorname{Inn}\left(c_{2} N_{\alpha_{1}} c_{1}^{-1}\right)=\operatorname{Inn}\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Through simple calculations, we can see that the matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ is in H_{k} (and thus in H). Thus the bottom of the poset collapses to a single torus and we get two conjugacy classes for $G=\operatorname{SL}\left(3, \mathbb{F}_{3}\right), \theta=\operatorname{Inn}\left(\begin{array}{cc}{ }^{1} & \\ & 1 \\ & 2\end{array}\right)\left(A^{T}\right)^{-1}$. This can be seen in Figure 7.5.

Figure 7.5: Poset of H_{k}-conjugacy classes of θ-stable, maximal k-split tori for $\operatorname{SL}\left(3, \mathbb{F}_{3}\right), \theta=\operatorname{Inn}_{M_{1}}\left(A^{T}\right)^{-1}$

Example 7.2.6. Let $G=\operatorname{SL}(4, \mathbb{C}), \theta(X)=\left(X^{T}\right)^{-1}$. We have $A=\{\operatorname{diag}\}$. Then $\Phi_{\theta}^{+}=$ $\Phi(A)$, all positive roots. We get the poset of standard tori seen in Figure 7.6. When we check for H_{k}-conjugacy among the rows of the poset, through similar calculations from the previous example, this poset collapses down to the poset seen in Figure 7.7. Thus we have three H_{k}-conjugacy classes of θ-stable, maximal k-split tori.

It is not always the case that the poset of standard tori will collapse completely. Sometimes the poset of standard tori will collapse and sometimes it will not. Once we have checked for conjugacy, we are able to compute the Weyl group quotients $W_{G_{k}}\left(A_{i}\right) / W_{H_{k}}\left(A_{i}\right)$ in order to classify the double cosets $P_{k} \backslash G_{k} / H_{k}$.

Figure 7.6: Poset of standard θ-stable, maximal k-split tori for $\operatorname{SL}(4, \mathbb{C}), \theta(X)=\left(X^{T}\right)^{-1}$

Figure 7.7: Poset of conjugacy classes of θ-stable, maximal k-split tori for $\operatorname{SL}(4, \mathbb{C}), \theta(X)=\left(X^{T}\right)^{-1}$

REFERENCES

[1] Stacy Beun, On the Classification of Orbits of Minimal Parabolic k-Subgroups Acting on Symmetric k-Varieties of $\operatorname{SL}(n, k)$. PhD thesis, North Carolina State University, 2008
[2] A. G. Helminck, Ling Wu and Christopher Dometrius, Involutions of $\operatorname{SL}(n, k),(n>$ 2). Acta Appl. Math, Vol. 90, No. 1-2, 91-119, 2006.
[3] Silvana Abeasis, On a remarkable class of subvarieties of a symmetric variety, Adv. in Math, Vol. 71, no. 1, 113-129, 1988.
[4] Michael Artin, Algebra, Prentice Hall Inc., Englewood Cliffs, NJ, 1991.
[5] E. O. van den Ban and H. Schlichtkrull, The most continuous part of the Plancherel decomposition for a reductive symmetric space, Ann. of Math. (2) 145 (1997), no. 2, 267-364.
[6] Alexandre Beilinson and Joseph Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris Ser. I Math. 292 (1981), no. 1, 15-18.
[7] Armand Borel, Linear algebraic groups, Second, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.
[8] Michel Brion and A. G. Helminck, On orbit closures of symmetric subgroups in flag varieties, Canad. J. Math. 52 (2000), no. 2, 265-292.
[9] Jean-Luc Brylinski and Patrick Delorme, Vecteurs distributions H-invariants pour les séries principales généralisées d'espaces symétriques réductifs et prolongement méremorphe d'intégrales d'Eisenstein, Invent. Math. 109 (1992), no. 3, 619-664.
[10] C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (montecatini, 1982), 1983, p. 1-44.
[11] Complete symmetric varieties. II. Intersection theory, Algebraic groups and related topics (kyoto/nagoya, 1983), 1985, p. 481-513.
[12] Patrick Delorme, Formule de Plancnerel pour les espaces symétriques réductifs, Ann. of Math. (2) 147 (1998), no. 2, 417-452.
[13] Mogens Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), no. 2, 253-311.
[14] I. Grojnowski, Character sheaves on symmetric spaces, Ph.D. Thesis, 1992.
[15] Harish-Chandra, Collected papers, Vol. I-IV, Springer-Verlag, New York, 1984. 19701983, Edited by V. S. Varadarajan.
[16] A. G. Helminck and Stacy Beun, On the classification of orbits of symmetric varieties acting on flag varieties of $\operatorname{SL}(2, k)$, Comm. Algebra 37 (2009), no. 4, 1334-1352.
[17] A. G. Helminck and G. F. Helminck, H_{k}-fixed distribution vectors for representations related to p-adic symmetric varieties. In preparation.
[18] A. G. Helminck, Tori invariant under an involutorial automorphism. I. Adv. Math, 85, 1991.
[19] A. G. Helminck, Tori invariant under an involutorial automorphism. II. Adv. Math, 131, 1997.
[20] A. G. Helminck, On the classification of k-involutions. Adv. Math, 153, 2000.
[21] A. G. Helminck, Combinatorics related to orbit closures of symmetric subgroups in flag varieties, Invariant theory in all characteristics, 2004, p. 71-90.
[22] A. G. Helminck and S. P. Wang, On rationality properties of involutions of reductive groups, Adv. Math. 99 (1993), no. 1, 26-96.
[23] A. G. Helminck and Ling Wu, Classification of involutions of $\mathrm{SL}(2, k)$, Comm. Algebra Vol. 30, no. 1, 193-203, 2002.
[24] F. Hirzebruch and P. Slodowy, Elliptic genera, involutions, and homogeneous spin manifolds, Geom. Dedicata 35 (1990), no. 1-3, 309-343.
[25] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21
[26] Mark Hunnell, Orbits of Minimal Parabolic k-subgroups on Symmetric k-varieties, PhD Thesis, North Carolina State University, 2015.
[27] Hervé Jacquet, King F. Lai, and Stephen Rallis, A trace formula for symmetric spaces, Duke Math. J. 70 (1993), no. 2, 305-372.
[28] George Lusztig and David A. Vogan Jr., Singularities of closures of K-orbits on flag manifolds, Invent. Math. 71 (1983), no. 2, 365-379.
[29] George Lusztig, Symmetric spaces over a finite field, The grothendieck festschrift, vol, iii, 1990, p. 57-81.
[30] Toshihiko Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), no. 2, 331-357.
[31] Toshio Ōshima and Toshihiko Matsuki, A description of discrete series for semisimple symmetric spaces, Group representation and systems of differential equations (Tokyo, 1982), 1984, p. 331-390.
[32] Toshio Ōshima and Jirō Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980), no. 1, 1-81.
[33] Cary Rader and Steve Rallis, Spherical characters on p-adic symmetric spaces, Amer. J. Math. 118 (1996), no. 1, 91-178.
[34] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), no. 1, 157-180.
[35] Some results on algebraic groups with involutions, Algebraic groups and related topics (kyoto/nagoya, 1983), 1985, p. 525-543.
[36] Y. L. Tong and S. P. Wang, Geometric realization of discrete series for semisimple symmetric spaces, Invent. Math. 96 (1989), no. 2, 425-458.
[37] David A. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), no. 2, 381-417.
[38] David A. Vogan Jr., Irreducible characters of semisimple Lie groups. IV. Charactermultiplicity duality, Duke Math. J. 49 (1982), no. 4, 943-1073.

