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BOCK, BRANDON WILLIAM. Algebraic and Combinatorial Properties of Statistical Models for Ranked
Data. (Under the direction of Seth Sullivant.)

Statistical models involving the ranking of items have been around for over a century. These

models can be somewhat cumbersome to use in practice. A total ranking on a list of n items has a

natural correspondence with a permutation in Sn . This can be problematic when using models, as

the number of permutations increase with size n !, which will also increase the necessary amount of

observed data to yield accurate results. These models must also address the matter of contradictions

within observations as well as provide methods for computing expected values of random variables

when the observed data is a permutation. Models using partially ranked data alleviate some of these

problems but create some new problems of their own. Both of these types of models can be sensitive

to noise, another problem which makes using them in practice somewhat difficult. In, this paper, we

seek to examine the algebraic and combinatorial of a few models which fall into these categories.

In Chapter 2 we examine the Mallows Model. The Mallows model is a discrete log-linear model

which assigns a probability to every permutation in Sn , where n is the number of items being ranked.

This probability corresponds to the probability of observing a given ranking. We analyze the algebraic

and combinatorial aspects of this model. We then propose a Mallows mixture model, a simple mixture

model with two underlying distributions, both of which are Mallows models. First we develop the tools

necessary to analyze this model from an algebraic standpoint. We then analyze the combinatorial and

algebraic aspects of this model, enabling us to compute a vanishing ideal on the model and greatly

reduce Gröbner basis calculation time by eliminating extraneous equations which will always be true

for this model. In the mixture model, we find the probability of observing a permutation depends on

the distance of this permutation from the two “centers" of the underlying Mallows models.

In Chapter 3, we look at a generating function which will count the number of permutations which

are distance i from a fixed permutation π and distance j from a fixed permutationσ. The generating

function is necessary for any practical application of the Mallows mixture model introduced in

Chapter 2. We analyze this generating function, which we call the bi-distance polynomial, and provide

a closed form equation for calculating the number of permutations in Sn which are distance i from a

fixed permutation π and distance j from a fixed permutation σ. We also discuss exactly when this

bi-distance polynomial is factorable and give a set of guidelines which allow us to predict exactly how

factorable the bi-distance polynomial is based on which permutations it is centered around.

In Chapter 4, we introduce a Thurstonian type model which has been adapted to be used in

cases where the observed data is partially ranked data, as opposed to the traditional fully ranked data.

After introducing the model and the underlying assumptions, we lay out how to implement different

statistical methods–such as Maximum Likelihood Estimation and Bayesian posterior distribution



calculation via the EM algorithm and a Gibbs sampler respectively–on the model. We use the model

and apply two different methods of parameter estimation to two different data sets and analyze the

results.
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CHAPTER

1

INTRODUCTION

In this thesis, we examine statistical models where the observed data are rankings or partial rankings.

Throughout the thesis, we we will refer to such models as statistical models for ranked data (or

partially ranked data, though context should make clear which we mean). Examples of these models

exist in many different fields of study. This is because there are many different situations in which

studying ranked data is useful. As an example from the field of cognitive science, Steyvers et al. gave

participants a list of 10 former U.S. presidents and asked them to order the presidents according to

when they served [40]. They then attempted to reconstruct the most likely order based on all the

participants responses and compared the reconstruction to the true ranking. The authors looked

at different reconstruction methods to evaluate which performed best and most consistently. Or

consider the model proposed by Beerenwinkel and Sullivant to predict mutation accumulation on a

cellular level [3]. In this model, a cell was observed and tested to see which mutations is a specific set

had occurred and which had not occurred, but there was no way to determine the order in which the

mutations occurred. The first example is one that uses a statistical model for ranked data while the

second is an example of a model for partially ranked data. These examples are just two out of many

conceivable potential scenarios. While it is not hard to think of where models for ranked or partially

ranked data can be used, such models present and interesting and unique set of complications. In this

thesis, we seek to address some of the different aspects which can make these models difficult to work

1



1.1. BACKGROUND IN ALGEBRAIC GEOMETRY CHAPTER 1. INTRODUCTION

with as well as examine their underlying structure from an algebraic and combinatorial perspective.

Before we do, we examine the aspects of statistical models for ranked and partially ranked data in

greater detail.

In this chapter, we introduce the underpinnings from algebraic geometry, combinatorics, and

statistics which are used throughout the thesis. In Section 1.1, we will define the pertinent constructs

from algebraic geometry, establish notation, and remind the reader of a few basic theorems from the

field which will be used in this thesis. In Section 1.2, we provide the definitions from Combinatorics

which will prove useful in this thesis. Furthermore, we explain the connection between ranked data

and permutations, introduce theorems which will be useful while working with permutations and

generating functions, and establish the notational conventions used for these concepts. In Section

1.3, we examine concepts from statistics to acquire the necessary background to understand the

entirety of the thesis. This section is in no way intended to provide a comprehensive overview of all

of statistics; as this is a thesis in Mathematics (as opposed to Statistics), we will be focusing only on

the areas of statistics which will be relevant to the topics presented in this thesis. In Section 1.4, we

will introduce some well known statistical models for ranked and partially ranked data and highlight

some of the ways they have been used throughout various disciplines.

1.1 Background in Algebraic Geometry

In this thesis, we will make liberal use of the many tools afforded to us by algebraic geometry. We will

cover some basic concepts of algebraic geometry which will be necessary for understanding the thesis.

In order to do this, we first make explicit some of the notation we use as well as remind the reader

of some important concepts in Algebraic Geometry. We let k denote a field, k [x1, . . . ,xn ] denote the

polynomials in variables x1, . . . ,xn with coefficients in k . We will often refer to k as the base field and

shorten the notation k [x1, . . . ,xn ] to k [x] in the places where it is clear that x is short form of x1, . . . ,xn .

A nonzero polynomial

f =
∑

α1,...,αn

cα1,...,αn xα1
1 · · ·x

αn
n cα1,...,αn ∈ k

which we say has degree (or total degree) d if cα1,...,αn = 0 whenever α1+ · · ·+αn > d and cα1,...,αn 6= 0

for some index α1+ · · ·+αn = d . We will frequently denote the degree of a polynomial f as deg( f ). We

can then define the polynomial as homogeneous if cα1,...,αn = 0 for all α1+ · · ·+αn 6= d . Whenever it is

convenient to do so, we will use the multi-index notation

f =
∑

α

cαxα

2



1.1. BACKGROUND IN ALGEBRAIC GEOMETRY CHAPTER 1. INTRODUCTION

with α= (α1, . . . ,αn ), cα = cα1,...,αn ∈ k and xα = xα1
1 · · ·x

αn
n and |α|=α1+ · · ·+αn .

We will let Pn ,d ⊂ k [x1, . . . ,xn ] denote the vector subspace of polynomials of degree ≤ d . We know

the monomials

xα = xα1
1 · · ·x

αn
n

form a basis for Pn ,d . Thus, we know

dim Pn ,d =
�

n +d

n

�

.

Furthermore, given distinct points p1, . . . , pN ∈ An (k ), we let Id (p1, . . . , pN ) be the vector space of

polynomials of degree ≤ d which vanish at each of the points p1, . . . , pN . We will also make use of

some basic definitions found throughout the algebraic geometry literature. First, we define an affine

space.

Definition 1.1.1. Given a field k and a positive integer n , we define the n-dimensional affine space

over k to be the set

An (k ) := {(a 1, . . . , a n ) | a i ∈ k } .

We will sometimes denote An (k ) simply as k n .

The classic example of an affine space is the case where k =R, in which case the n-dimensional

affine space would simply be Rn .

Definition 1.1.2. Given S ⊂An (k ), the number of conditions imposed by S on polynomials of degree

≤ d is defined as

Cd (S) := dim Pn ,d −dim Id (S) .

S is said to impose independent conditions on Pn ,d if Cd (S) = |S|. Otherwise, we say it fails to impose

independent conditions.

Next we can define a hypersurface.

Definition 1.1.3. Given a field k and a polynomial f ∈ k [x1, . . . ,xm ]where deg( f ) = d . We define the

hypersurface of degree d as

V ( f ) :=
�

(a 1, . . . , a m )∈Am | f (a 1, . . . , a m ) = 0
	

⊂Am (k ) .

This is highly reminiscent of our definition of a variety.

3



1.1. BACKGROUND IN ALGEBRAIC GEOMETRY CHAPTER 1. INTRODUCTION

Figure 1.1 Graph of the variety V (y −x 3) in R2

Definition 1.1.4. Let k be a field and f 1, . . . , f s ∈ k [x1, . . . ,xn ]. Then the affine variety defined by

f 1, . . . , f s is the set

V ( f 1, . . . , f s ) :=
�

(a 1, . . . , a n )∈ k n | f i (a 1, . . . , a n ) = 0 for all 1≤ i ≤ s
	

.

We consider two basic examples.

Example 1.1.5. Consider the variety in R2 given by the single polynomial V (y −x 3). We can use any

computer algebra system to plot this variety. Here, we use Mathematica.

Note that if we were to consider the same variety in R3 rather than R2, the variety would look very

different.

Figure 1.2 Graph of the variety V (y −x 3) in R3

4
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We assume the reader is familiar with ideals and monomial orderings and begin by defining the

leading term of a polynomial.

Definition 1.1.6. Fix a monomial order on k [x1, . . . ,xn ] and consider any nonzero polynomial

f =
∑

α

cαxα .

The leading term of f , denoted LT( f ), is the term cαxα such that xα is the largest monomial such that

cα 6= 0.

Recall that an ideal is called homogeneous if it is generated entirely by homogeneous polynomials.

Definition 1.1.7. Given I ⊂ k [x1, . . . ,xn ] an ideal, we define the ideal of leading terms

LT(I ) := 〈LT(g ) | g ∈ I 〉

In a slight abuse of notation, if given a set of polynomials G = {g 1, . . . , g s }, we let

LT(G ) :=
�

LT(g i ) | g i ∈G
	

This definition allows us to define the idea of a Gröbner basis.

Definition 1.1.8. Fix a monomial order and let I ⊂ k [x1, . . . ,xn ] be an ideal. A Gröbner basis for I is a

set of nonzero polynomials { f 1, . . . , f s } ⊂ I such that LT( f 1), . . . , LT( f s ) generate LT(I ).

We know the following is true about Gröbner basis.

Theorem 1.1.9. Fix a monomial order and let I ⊂ k [x1, . . . ,xn ] be an ideal. Let f 1, . . . , f s be a Gröbner

basis for I . Then I = 〈 f 1, . . . , f s 〉.

This well known result is just part of why Gröbner bases are such a powerful tool of algebraic

geometry. It is also known that multivariate polynomial division using a Gröbner basis yields a unique

remainder, thus answering the question posed by the ideal membership problem. It is well known

that a Gröbner basis is not unique and depends largely on the choice of the monomial order.

We have already seen that an ideal can define a variety. We can also define the ideal defined by an

affine variety.

Definition 1.1.10. Let V ⊂An (k ) be an affine variety. Then we define the set I(V ) to be

I(V ) :=
�

f ∈ k [x1, . . . ,xn ] | f (a 1, . . . , a n ) = 0 for all (a 1, . . . , a n )∈V
	

5
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More importantly, I(V ) is an ideal (see, for example [10]). It is also true that an ideal is contained

in the ideal of its variety.

Theorem 1.1.11. If f 1, . . . , f s ∈ k [x1, . . . , ,xn ], then 〈 f 1, . . . , f s 〉 ⊂ I(V ( f 1, . . . , f s )).

It should be noted that this containment is an equality only when 〈 f 1, . . . , f s 〉 is a radical ideal. The

following propositions found in Hassett [22] are useful for understanding the relationship between a

varieties generated by ideals and the ideals generated by that varieties.

Proposition 1.1.12. For every collection of polynomials F = { f j }j∈J ⊂ k [x1, . . . ,xn ] and each subset

F ′ ⊂ F , we have that V (F ′)⊃V (F ).

Proposition 1.1.13. Given a collection of polynomials F = { f j }j∈J ⊂ k [x1, . . . ,xn ] generating an ideal

I = 〈 f j 〉j∈J , we have V (F ) =V (I ).

Proposition 1.1.14. For any subsets S′ ⊂S ⊂An (k )we have I(S′)⊂ I(S).

We also know that an arbitrary intersection of varieties is a variety and a finite union of varieties is

a variety.

Because we will make use of the pull-back of morphisms, we will define it here.

Definition 1.1.15. Choose coordinates x1, . . . ,xn and y1, . . . , ym on An (k ) and Am (k ) respectively. Let

φ :An (k )→Am (k ) be a morphism given by the rule

φ(x1, . . . ,xn ) =
�

φ1(x1, . . .xn ), . . . ,φm (x1, . . . ,xn )
�

whereφj ∈ k [x1, . . . ,xn ]. Then for each f ∈ k [y1, . . . , ym ], the pull-back byφ is defined

φ∗ f = f ◦φ = f
�

φ1(x1, . . .xn ), . . . ,φm (x1, . . . ,xn )
�

.

We then have the ring homomorphism

φ∗ : k [y1, . . . , ym ] −→ k [x1, . . . ,xn ]

y j 7→ φj (x1, . . . ,xn ).

Furthermore, φ∗ has the property φ∗(c ) = c for all constants c ∈ k and is therefore a k -algebra

homomorphism.

It is true that there is a natural correspondence between morphisms and k -algebra homomor-

phisms (see, for instance, [22]).

Recall the definition of the sum of two ideals.

6
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Definition 1.1.16. Given a ring R and a collection of ideals {I j }j∈J in R . The sum of these ideals is the

ideal
∑

j∈J

I j :=
¦

f 1+ · · ·+ f s | f j ∈ I j for some j
©

In other words, the ideal consisting of all finite sums of elements each taken from one of the I j

Before we define the join of ideals and the join of varieties, we will introduce some notation. We

will let∆N denote the variety

∆N := {(t1, . . . , tN ) | t1+ · · ·+ tN = 1} ⊂AN (k )

We also know that for every finite set of points S = {p1, . . . , pN } ⊂An (k ), there is a morphism

σS : ∆N →An

(t1, . . . , tN ) 7→ t1p1+ . . . , tN pN

where we add the p j as vectors in k n . The image is called the affine span of S in An (k ) and is denoted

affspan(S). The following proposition can be found in [22].

Proposition 1.1.17. The set S = {p1, . . . , pN } imposes independent conditions on polynomials of degree

≤ 1 if and only ifσS is injective. We say that S is in linear general position.

We will use the definition presented by Sidman and Sullivant in [38].

Definition 1.1.18. Given a collection of ideals I1, . . . , Ir ⊂ k [x1, . . . ,xn ]. The join of I1, . . . , Ir is the ideal

I1 ∗ · · · ∗ Ir :=
�

I1(y1)+ · · ·+ Ir (yr )+ 〈x j −
∑

yi j | j ∈ [n ]〉
�
⋂

k [x]

where yi is a new set of variables yi = (yi 1, . . . , yi n ) and I i (yi ) denotes the ideal obtained from I i

by substituting the variable yi j for the variable x j . It should be noted that the large ideal in the

parentheses is contained in the ring k [x, y1, . . . , ym ].

Definition 1.1.19. Let V1, . . . , VN ⊂An be affine varieties. The join of these varieties, denoted Join(V1, . . . , , VN )⊂
An , is defined as the closure of the image

V1× · · ·×VN ×∆N →An

(v (1), . . . , v (N ), (t1, . . . , tN )) 7→ t1v (1)+ . . .+ tN v (N ) .

7
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There is a nice relationship between the join of two varieties and the variety of the join of those

two ideals. In short, given to ideals I , J and considering their varieties V (I ), V (J ), we know that the

variety V (I ∗ J ) is the join of the varieties V (I ) and V (J ). Geometrically, the join of two varieties V, W

is the union of all points which lie on a line which contains a point in V and a point in W . In other

words, it is the union of all lines which pass through V and W .

1.2 Background in Combinatorics

Throughout the thesis, we will make us of the notation [n ] to denote the set {1, . . . , n}.
Because we will be dealing extensively with partially ordered data, it will make sense to define a

poset.

Definition 1.2.1. A partially ordered set (or poset) P is a set on which there is some binary relation ≤
which satisfies the following properties:

1. For all x ∈ P , x ≤ x (reflexivity)

2. If x ≤ y and y ≤ x , then x = y (anti-symmetry)

3. If x ≤ y and y ≤ z , then x ≤ z (transitivity)

Within a poset P , we say that two items x and y are comparable if either x ≤ y or y ≤ x . If neither

of these is true, we say the items x , y are incomparable. We will say that a poset P has an element 0̂ if

there exists an element 0̂∈ P such that for all x ∈ P , 0̂≤ x . Similarly P has an element 1̂ if there exists

an element 1̂∈ P such that for all x ∈ P , x ≤ 1̂. If s , t ∈ P , then we say t covers s (or s is covered by t ) if

s < t and there does not exists an element r ∈ P such that s < r < t . It is known that a locally finite

poset is completely determined by such cover relations. The Hasse diagram of a finite poset P is the

graph whose vertices are elements of P and whose edges are cover relations, where if s < t then the

vertex t is drawn with higher vertical coordinate than that of the vertex s .

Example 1.2.2. As a standard example, we can create a poset out of the 2[n ] subsets of any set [n ]with

the order relation being the standard set inclusion (i.e., S ≤ T in the poset if S ⊂ T ). We consider the

set {x , y , z } and the poset consisting of all subsets of this set. We can visualize this poset by creating a

Hasse diagram. The Hasse diagram for this poset can be found in Figure 1.3.

We see that any two distinct elements in our poset which have the same set cardinality are

incomparable. These are not the only pairs of incomparable elements; we know the elements {x } and

{y , z } are also incomparable, for instance.
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Figure 1.3 Hasse diagram of the poset defined by all subsets of {x , y , z } ordered by set inclusion.

When dealing with ranked data, we will work with permutations rather than posets. We will now

define the aspects of permutations we will use in this thesis. Recall that a permutation π ∈ Sn is a

bijective map from [n ] to [n ]. While there are different ways to denote a permutation, we will use one

line notation exclusively. To remind the reader, any permutation π∈Sn can be written as π=π1 · · ·πn

which indicates the permutation maps i to πi (again, both i ,πi ∈ [n ]). We can define an inversion of a

permutation π=π1 · · ·πn to be a pair (i , j )∈ [n ]× [n ] such that i < j and πi >πj . Then we have the

following

Definition 1.2.3. We denote the number of inversions of a permutation π∈Sn as inv(π) and therefore

inv(π) := #
�

(i , j )∈ [n ]× [n ] | i < j and π(i )>π(j )
	

.

We know that for any π∈Sn , 0≤ inv(π)≤
�n

2

�

. We know that the symmetric group Sn is completely

generated by the adjacent transpositions, and that the minimum number of adjacent transpositions

required to generate an element π ∈ Sn is the same as inv(π). Let π−1 denote the inverse of π in Sn

(i.e. ππ−1 = π−1π= id). Then for any π ∈ Sn it is fairly simple to demonstrate that inv(π) = inv(π−1)

(as π can be minimally generated by a line of adjacent transpositions, reading these transpositions in

9
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reverse would yield π−1).

While we will denote a permutation in one line notation throughout the thesis, we will make use

of permutation matrices. Given a permutation π∈Sn with π=π1 · · ·πn , the permutation matrix of π,

denoted Mπ, will be the n×n matrix with M i ,j = 1 ifπj = i (i.e.π(j ) = i ) and 0 otherwise. Permutation

matrices always have exactly one 1 entry in every row and column (i.e. they are elementary matrices),

and are therefore always of full rank.

Example 1.2.4. Consider the permutation π= 2431 ∈S4. The permutation sends 1 to 2, 2 to 4, 3 to

itself, and 4 to one, as demonstrated in Figure 1.4. Furthermore, we we can find the permutation

matrix of 2431 and it will have the form

M 2431 =Mπ =















0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0















.

We know that a composition of permutations is the composition of the two bijective functions, so we

examine a composition of permutations. Now suppose we consider the permutationσ= 3241 with

permutation matrix

M 3241 =Mσ =















0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0















.

We know that the composition πσ will apply the mappingσ first and then apply the mapping π. The

result is that first 1 will map to 3 (viaσ) which will map to 3 (via π), 2 will map to 2 which will map to

4, etc., and the resulting composition will be the permutation 3412, as shown in Figure 1.5. The result

can also be achieved by multiplying the permutation matrices:

MπMσ =















0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0





























0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0















=















0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0















.

We know the symmetric group Sn can be generated by the n −1 adjacent transpositions, those

permutations which swap a pair of adjacent numbers. Any permutation can be written as a product of

10
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1

2

3

4

1

2

3

4

π(1)=2

Figure 1.4 Visualization of permutation 2431 in S4

1

2

3

4

1

2

3

4

1

2

3

4

σ π

Figure 1.5 Visualization of composition of the permutation 2431on the left with 3241 in S4

permutations which have one line notation εi = 1 · · · i +1 i · · ·n . For all permutations π∈Sn , we can

write π as a product of adjacent transpositions,
∏

i εj i . If we were to think of permutation matrices,

these adjacent transpositions would correspond to permutation matrices of the form

































1 0 · · · · · · 0

0
...

... 0 1
...

1 0
... 1

... 0

0 · · · · · · 0 1

































.
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The sign of a permutation can be defined in terms of the number of adjacent transpositions required

to generate that permutations. If we let ε1, . . . ,εn−1 be the n−1 adjacent transpositions which generate

Sn . Then for any π∈Sn , π= εi 1 · · ·εi k and we define the sign of π is defined as

sgn(π) := (−1)k .

Permutations in Sn can generally be thought of as a specific ordering of the set [n ]. While every

element of [n ] is unique, we can extend the idea a permutation to be an ordering of a multiset. Recall

that a multiset behaves in many ways like a set, with the exception that there can be repeated elements

and elements that are repeated are indistinguishable from one another. For example, M = {1, 1, 2, 3} is

a multiset where both of the elements 1 are treated as identical.

Definition 1.2.5. Let M be any multiset. Let SM denote the set of permutations of the multiset M .

Example 1.2.6. Consider the multiset M = {1, 1, 2}. Then we can list all the permutations of M :

SM = {112, 121, 211} .

If we instead let M = {1, 1, 2, 3}, we will have

SM = {1123, 1213, 1231, 1132, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211} .

Definition 1.2.7. The polynomial

1+q +q 2+ · · ·+q n−1 =
1−q n

1−q

is denoted (n) and is called the q-analogue of n .

Then we can define the q-analogue of n ! as

(n)!= (1)(2) · · · (n) = 1(1+q )(1+q +q 2) · · · (1+q + · · ·+q n−1) .

Similarly, the q-analogue of n choose k is

�

n

k

�

=
(n)!

(n−k)!(k)!

Finally, we can consider the q-analogue of n ! evaluated at a function g (x). If we let f (q ) = (n)!,
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then we let (n)!g (x) be the q-analogue of n ! evaluated when q = g (x). That is

(n)!g (x) = f
�

g (x)
�

.

Of course, we can extend this definition to the q-analogue of n choose k . That is

�

n

k

�

g (x)
=

(n)!g (x)

(n−k)!g(x)(k)!g(x)

Stanley shows that that q-analogue of n ! can be thought of as a generating function [39].

Proposition 1.2.8 (Stanley 2012). Let inv(ω) denote the number of inversions of the permutation

ω∈Sn . Then
∑

ω∈Sn

q inv(ω) = (1+q )(1+q +q 2) · · · (1+q +q 2+ · · ·+q n−1) = (n)! .

A similar result works for permutations of a multiset.

Proposition 1.2.9 (Stanley 2012). Let M = {1a 1 , . . . , m a m } be a multiset with cardinality n = a 1+ · · ·+
a m . Then

∑

π∈SM

q inv(π) =
�

n

a1, . . . am

�

.

We will also make use of a metric on Sn called Kendall’s tau metric. First, as we have mentioned,

Sn can be generated by the adjacent transpositions ε1, . . . ,εn−1. That is, all permutations π∈Sn can

be written as a product of adjacent transpositions,
∏

i εj i . We define the metric in the following way:

given any two permutations π,σ ∈Sn , the distance between π,σ is given by

d(π,σ) = inv(πσ−1) .

We will also make use of the fact that the symmetric group Sn is a Coxeter group. We will assume

the reader is familiar with Coxeter groups. We will define those concepts we will use in this thesis. One

of the things we will use is a Bruhat order on the symmetric group. We will define the terms we will

use when thinking of Sn as a Coxeter group.

Definition 1.2.10. Let Sn be the set of all permutations of the set [n ] and consider any ω ∈ Sn . We

know that Sn is generated by the adjacent transpositions s1, . . . , sn−1, where s i is the permutation 1 2

· · · i +1 i · · ·n which switches i and i +1 (alternatively, this is the permutation (i i +1) in cycle notation).

We can representω as a word byω= s i 1 · · ·s i k . We say the word is a reduced expression forω if there

does not exist ` < k such thatω= s j1 · · ·s j` . That is, this is a reduce expression provided there is no

13
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way to writeω as a product of fewer than k adjacent transpositions. In this case, we say the length of

ω is k . It is true for all π∈Sn that the length of π is the equal to d(π, id). Note that reduced expression

are not in general unique.

We can now define the weak left Bruhat order on Sn .

Definition 1.2.11. Consider the symmetric group Sn and recall that it is generated by the adjacent

transpositions s1, . . . , sn−1 as defined above. The weak left (Bruhat) order on Sn is the partial order on

the group Sn with the relation ≤ which. for any two elements π,σ ∈ Sn , is defined as π≤σ if there

exists a reduced expressionσ= s i 1 · · ·s i k such that s i `s i `+1 · · ·s i k =πwhere ` is the length of π. That is,

there is a reduced expression of forσ whose final substring is a reduced word for π.

Finally, we know that Sn with generators {s1, . . . , sn−1} is a Coxeter group as well as a braid group.

We will define braid moves here.

Definition 1.2.12. Consider Sn generated by the adjacent transpositions {s1, . . . , sn−1}. The relations

s i s j = s j s i for with |i − j | > 1 and s i s i+1s i = s i+1s i s i+1 for i , j ∈ [n − 1] hold in any Coxeter group,

including Sn , and a substitution of these forms in a word is called braid moves (or sometimes braid

transformations). Not that because these are equalities, the word itself will not change due to a braid

move; while the arrangement and frequency of the letters may change, the overall word will not.

Note that these relationships hold for any Coxeter group, including Sn .

1.3 Background in Statistics

Finally, we provide the background necessary to understand the majority of the statistical methods

we use in this thesis. As a form of shorthand, we will denote Pr(A) to denote the probability of an

event A. We will use Pr(A B ) to denote the probability of the intersection of two events A and B , i.e.

Pr(A ∩ B ) = Pr(A B ).

First, we assume the reader is acquainted with basic probability theory, including the concepts of

a sample space, events, and outcomes. We will also assume that the reader has a basic understanding

of the axioms of a probability measure as well some of the more basic concepts of the concept of

two events being disjoint within a space and partitions of a sample space. For a more complete

background on statistics and probability, the reader can consult [43].

We remind the reader that in statistics, random variables are usually divided into two classes:

discrete random variables and continuous random variables. We will work with both in this thesis. At

the risk of being pedantic, we take the time to define a random variable. Recall that a random variable

14
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is a mapping

X :Ω−→R

that assigns a real number X (ω) to each outcome ω in the state space Ω. We also must add that a

random variable must be measurable in some way.

Example 1.3.1. If we flip a fair coin 5 times, we can let X (ω) denote the number of heads we observe

in the sequenceω. Thus, forω=HHT HT , X (ω) = 3.

We will stick to the convention that using a capital letter X will denote a random variable, whereas

a lower case x denotes a particular sample or value of the random variable X .

Now we remind the reader of a probability function and a probability density function.

Definition 1.3.2. Given X a discrete random variable (i.e. X can take on countably many values

{x1,x2, . . .}). We define the probability function (or sometimes a probability mass function) for X by

f X (x ) = Pr(X = x ).

This is exactly what we would hope it would be: a function whose input is an outcome and whose

output is the probability of observing said outcome. When the random variable in question is discrete,

this is a perfectly good definition. The analogue for continuous random variables is a probability

density function:

Definition 1.3.3. For a continuous random variable X , there exists a function f X such that:

1. f X (x )≥ 0 for all x .

2.

∫ ∞

−∞
f X (x ) d x = 1.

3. For every a ≤b , Pr(a <X <b ) =

∫ b

a

f X (x ) d x .

The function f X is called the probability density function.

As shorthand, we will generally use f (x ) to denote the probability density function, and it should

be clear from context which probability density function we are referring to. We may sometimes write
∫

f (x ) d x to denote
∫∞
−∞ f (x ) d x . It is important to remember that for continuous random variables,

we rely on integrals to obtain probabilities.

Recall the definition of independence of events in a sample space:
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Definition 1.3.4. Given two events A, B on a sample space Ωwith any probability distribution. Then

the two events A and B are said to be independent if

Pr(A B ) = Pr(A)Pr(B )

and we write A ⊥⊥ B . A set of events {A i | i ∈ I } is independent if

Pr







⋂

i∈J

A i






=
∏

i∈J

Pr(A i )

for every finite subset J of I .

For the most part, we will assume two (or more) events are independent. Returning to our coin

toss example, we usually would assume the two coin tosses are independent, which would reflect

the fact that the coin has no memory of the first toss. We can also derive independence by verifying

the definition and confirming that in fact Pr(A B ) = Pr(A)Pr(B ). For example, if we roll a fair 6-sided

die twice, and let the event A = {2,4,6} represent the event we roll an even number and the event

B = {1,2,3,4} represent that you roll a number less than 5. The we know that A B = {2,4} and can

compute Pr(A B ) = 2/6 = 1/3, as we know all outcomes are equally likely. We can also compute

Pr(A) = 3/6 = 1/2 and the Pr(B ) = 4/6 = 2/3 and verify that Pr(A)Pr(B ) = 1/2× 2/3 = 1/3 and so

Pr(A B ) = Pr(A)Pr(B ) and conclude A ⊥⊥ B . In this thesis, we will assume events are independent

rather than derive they are independent. Note that disjoint events with positive probability are not

independent (as Pr(A B ) = Pr(;) = 0 and Pr(A), Pr(B )> 0).

Independence of events can also be conditional on other events. Given an event B with Pr(B )> 0,

we can define the conditional probability of an event A given B .

Definition 1.3.5. If Pr(B )> 0, then the conditional probability of A given B is defined as

Pr(A |B ) =
Pr(A B )
Pr(B )

Pr(A |B ) is the fraction of times that A occurs among those times in which B occurs. In other words,

knowing that B has occurred, it is the fraction of times that A occurs, and thus we are restricting our

sample space to the space in which B occurs. While it is true that Pr(·|B ) satisfies all three axioms

of a probability (provided Pr(B ) > 0), it is not true in general that Pr(A |B
⋃

C ) = Pr(A |B ) + Pr(A |C ).
In general, the rules of probability apply to things on the left side of the condition bars, but not

necessarily on the right. Another example is that, in general, Pr(A |B ) 6= Pr(B |A). As an example, the

probability that you ate something cold given that you have a brain freeze is 1, whereas the probability
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that you have a brain freeze given you ate something cold is not 1.

Before we examine the statistical techniques we will use in the thesis, we define a statistical model:

Definition 1.3.6. Given a sample space Ω, a statistical model is a setP of probability distributions on

the sample space Ω.

In practice, a statistical model incorporates the set of assumptions germane to the generation the

observed data from a larger population. A model represents the data-generating process, usually in

extremely idealized forms.

Most statistical models that are used in practice are parametric models. A parametric model is a

set of probability distributionsP that can be parameterized by a finite number of parameters. We

introduce one of the most famous parametric models in the following example:

Example 1.3.7. If we assume that the gathered data comes from a univariate Gaussian (or Normal)

distribution, then the model is

P =
�

f (x |µ,σ) =
1

σ
p

2π
exp

�

−
1

2

�x −µ
σ

�2�

; µ∈R , σ2 > 0

�

.

Here, we refer to µ as the mean andσ as the standard deviation. When a random variable follows this

distribution, we refer to it as a Gaussian random variable (or Normal random variable). We denote

that a random variable X follows a Gaussian distribution with mean µ and standard deviationσ by

X ∼N (µ,σ2). The graph for the probability density function for a Gaussian random variable with

µ= 0 andσ= 1 is shown in Figure 1.6.

Figure 1.6 The graph of the probability density function for a Gaussian random variable X with µ= 0,σ= 1
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While it is true that there is a more general multivariate normal distribution, we will not use it

within the scope of this thesis. In general, we denote that a random variable X is distributed to some

parametric statistical model P with parameters θ with the notation X ∼ P(θ ).

Statisticians use statistical inferences to analyze data. The two most dominant types of statistical

inference: frequentist inference and Bayesian inference. In this thesis, we are interested in recovering

(or estimating) the parameters of a statistical model (as opposed to a probability density function or

cumulative density function, for example). We will use both Bayesian and frequentist inference in

Chapter 4 to do this. We will introduce the main idea of frequentist inference first.

Frequentist inference draws conclusions from sample data based on the frequency of that data.

Statistical hypothesis testing and computation of confidence intervals are both frequentist techniques.

We will make extensive use of maximum likelihood estimation throughout the thesis, which is another

common frequentist technique.

Maximum likelihood estimation is a technique for estimating the parameters of a model when

we do not have direct access to them. Since it is often the parameters of a statistical model that we

are interested in sampling, this technique is rather common. During the general discussion of MLE

techniques, we will refer to the set of parameters of a model as θ which comes from a parameter space

Θ. In later sections, we will refer to parameters by their names rather than the general θ .

Before we can truly talk about MLE, we must first introduce the likelihood function. This requires

us to have some knowledge of random variables being independent and identically distributed (iid).

This concept is basically summed up in its name: given random variables X1, . . . , Xn , we say X1, . . . , Xn

are independent and identically distributed (or iid) if X i ⊥⊥X j for all i 6= j and each of the X i follows a

single distribution with parameter set θi . Furthermore, for each i , individual sample of the random

variable X i are independent of one another.

Example 1.3.8. Consider a fair or unfair six-sided die. Rolls of that die are iid, regardless of whether it

is fair, as each roll is independent of the others. That is, even if you roll a 6 five times in a row, rolling a

6 on the next roll has the same probability as it did on all the previous rolls. The same would apply for

rolling multiple fair or unfair dice, provided there is a way to denote which die is which.

We remind the reader of the expected value of a random variable. The mathematical definition of

expected value of a random variable will be different depending on whether it is a discrete random

variable or a continuous random variable, but in both cases, the general idea is that the expected

value is, intuitively, the long-run average value the variable takes on with increasing repetitions of an

experiment. We will only be using the expected value of continuous random variables in this thesis so

we will only define the expected value for a continuous random variable. For a more general definition

of the expected random variable, see [32, 43].
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For a continuous random variable, we have the following:

Definition 1.3.9. Given a random variable X with probability spaceΩ and probability density function

f (x ). The expected value (or mean or first moment) of X is given by

E[X ] =
∫

Ω

x f (x ) d x

assuming the integral is well defined.

Note that the expected value of a function requires integrating over the entire sample space. In

cases where the sample space is more complicated, computing the expected value becomes more

difficult. Later in this thesis, we will examine different methods to estimate the expected value of a

random variable when computing the above integral is not straight-forward.

One fact worth noting at this point is if we have g (X ) a measurable function of X , we can compute

E[g (x )] =
∫

Ω

g (x ) f (x ) d x .

This fact is sometimes referred to as the Rule of the Lazy Statistician [43].

We are now ready to define the likelihood function:

Definition 1.3.10. Let X1, . . . , Xn be iid with probability density function f i (A i |θi ). The likelihood

function is defined by

Ln (θ |X ) =
n
∏

i=1

f i (X i |θi )

The log-likelihood function is given by `n (θ ) = logLn (θ |X ).

In this thesis, we will only use the log-likelihood function. We note that the log-likelihood function

is just the log of the joint density function, but we are treating it as a function of the parameter θ , as

indicated by the notation. Sometimes, to make this even more explicit, we denote the log-likelihood

function as `(θ |X )where X = (X1, . . . , Xn ). It is worth noting that the log-likelihood function is not a

density function, and therefore will not integrate to 1 (with respect to θ ).

The definition of the MLE follows naturally

Definition 1.3.11. Let X1, . . . , Xn be iid with probability density function f i (x i ;θi ). The maximum

likelihood estimator MLE, denoted θ̂ = (θ̂1, . . . , θ̂n ), is the value of θ ∈Θ that maximizesLn (θ ).

It should be clear that any value of θ which maximizesLn (θ ) will also be the value of θ which

maximizes `n (θ ). Note that by this definition, the MLE is not necessarily unique, although in practice
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it usually is. A few notes about the MLE are that it is consistent–which means that it will converge to

the true value of the parameter as sample sizes get larger and larger–and it is asymptotically normal.

These results are contingent upon the model following certain well defined criteria; in this thesis, we

will only use MLE in cases where the model meets the criteria necessary to guarantee that it is both

consistent and asymptotically normal. We mention one theorem of note, which can be found in [43]:

Theorem 1.3.12. Let τ= g (θ ) be a function of θ . Let θ̂n be the MLE of θ . Then τ̂= g (θ̂n ) is the MLE of

τ.

Now we look at a simple example.

Example 1.3.13. Suppose we have a Gaussian random variable X whose mean and standard deviation

are unknown. We wish to find the values of µ,σ which maximize the log-likelihood function. Say we

have n observations. Let f (x |µ,σ) =
1

σ
p

2π
exp

�

−
1

2

�x −µ
σ

�2�

. The log-likelihood function is

`(µ,σ | X ) =
n
∑

i=1

log

�

1

σ
p

2π

�

+ log

 

e
− 1

2

�

x (i )−µ
σ

�2
!

=−n log(σ
p

2π)+
n
∑

i=1

−
1

2

�

x (i )−µ
σ

�2

If we differentiate this equation with respect to µwe get

d

dµ



−n log(σ
p

2π)+
n
∑

i=1

−
1

2

�

x (i )−µ
σ

�2


=
n
∑

i=1

x (i )−µ
σ2

When we set this equal to 0 we have

n
∑

i=1

x (i )−µ
σ2 = 0

 

n
∑

i=1

x (i )
!

−nµ= 0

1

n

n
∑

i=1

x (i ) =µ

which means the value of µwhich maximizes the log-likelihood function is the average value of the

observed X (i ).
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Similarly, if we were to differentiate with respect toσ:

d

dσ



−n log(σ
p

2π)+
n
∑

i=1

−
1

2

�

x (i )−µ
σ

�2


= 0

n
∑

i=1

(x (i )−µ)2

σ3 =
n

σ

1

n

n
∑

i=1

(x (i )−µ)2 =σ2

and again we see that by definition, value ofσ which maximizes the log-likelihood function is exactly

the standard deviation of the sampled X (i ). Thus, regardless of the number of samples taken, the

maximum likelihood estimates for a univariate Gaussian random variable will be exactly the mean

and the variance of the samples.

The Expectation-Maximization (EM) algorithm is an iterative method which inputs observed data

to obtain the maximum a posteriori estimate for the parameters of a statistical model which has

hidden (or latent or unobserved) variables. The algorithm has two steps, an Expectation step (E-step)

and a Maximization step (M-step), hence its name. The EM algorithm has been applied to many

different data sets and many different scenarios. We will focus on a rather straightforward application

of the EM algorithm; we will assume the data is iid.

Before we give a formal outline for the EM algorithm, we will lay out the steps intuitively. First,

we have observed data Y (1), . . . , Y (N ) which we collect, which will be associated with hidden variables

X (1), . . . , X (N ). We will assume some initial estimate θ 0 for the true parameters θ . In the E step, we use

the observed data to create a function for the expectation for the log-likelihood function `(θ |Y (·), X (·))

using the current estimate for the parameters. The M step then computes the value of the parameters

that will maximize the function created in the E step. Then we repeat the E step using the new

parameter estimation computed in the previous M step. The algorithm will produce a sequence of

estimates for the parameters θ i which converge to locally maximum likelihood parameters.

Before we formally give the EM algorithm, we will introduce some shorthand notation. When

working with models where we have observed values of a random variable X , we will let X (i ) denote the

i th observation. If we want to refer to all observations of the variable, we use X (·). If our X = (X1, . . . , Xn ),

then X (i ) = (X (i )1 , . . . , X (i )n ) and we can refer to all observations of the i th entry of X as X (·)i . We will

sometimes refer to all observations of X = (X1, . . . , Xn ) as simply X.

Consider the following scenario: we are given a statistical model which generates a set of observed
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data Y = (Y (1), . . . , Y (N )) as well as unobserved data X = (X (1), . . . , X (N )) with a vector of unknown

parameters θ and a log-likelihood function `(θ | Y, X) = p (Y, X | θ ). The maximum likelihood estimate

of the parameters is determined by the marginal likelihood of the observed data

`(θ | Y, X) = p (Y | θ ) =
∑

X

p (Y, X | θ ).

But because the hidden variable X cannot be observed, this quantity is almost always insoluble. This

is where the EM algorithm can be used to recover a maximum likelihood estimate for the parameter.

Formally, the EM algorithm can be written as follows:

Algorithm 1.3.14. Given a statistical model which generates a set of observed data Y= (Y (1), . . . , Y (N ))

as well as unobserved data X = (X (1), . . . , X (N )) with a vector of unknown parameters θ and a log-

likelihood function `(θ | Y, X)we initialize the algortihm with an initial value for the parameter vector

θ 0. Then for i = 1, 2, . . ., repeat steps one and two below

1. (The E Step) Calculate the function:

K (θ |θ i ) =EX|Y,θ i[`(θ | Y, X)]

where the θ i and the observed Y are fixed (θ is a variable).

2. Find the value of θ i+1 which maximizes K (θ |θ i ). i.e.

θ i+1 = arg max
θ
{K (θ |θ i )}

The EM algorithm obtains an maximum likelihood estimate for the parameters of a model without

computing `(θ | Y, X), but computing the expected value EX|Y,θ i [`(θ | Y, X)] can be equally difficult. We

will see in Chapter 4 that we will need a way to estimate this expected value in order to make use

of the EM algorithm. Still, the EM algorithm is a very powerful method for estimating parameters,

especially in cases where the statistical model in question has hidden variables.

In the thesis which introduces the EM algorithm, Dempster, Laird, and Rubin modified the EM

method to compute the maximum a posteriori estimates for Bayesian inference [11], making it a

versatile tool in parameter estimation in both frequentist and Bayesian inference. For the model

introduced in Chapter 4, we will be using the original EM algorithm along with methods for estimating

the expected value in step 1 of Algorithm 1.3.14 to estimate the parameters of our model.

We also make use of Bayesian methods in Chapter 4. Bayesian inference is a kind of statistical

inference which uses Bayes’ Theorem to update the probability for a hypothesis as evidence (or data)
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is collected. Because we are constantly updating the hypothesis, all Bayesian inference starts with

a prior distribution on the value in question and seeks sample from the posterior distribution of

that same value. This value is usually the true value of a parameter. Thus, we begin with an initial

idea of that parameter might be by sampling from a prior distribution on that parameter. Then, we

observe data, and finally, using that data and our parameter, we seek to sample from the posterior

distribution on that parameter. We think of sampling from this posterior distribution as sampling

from a distribution on the parameter of interest in light of the observed data.

We remind the reader of Bayes’ Theorem:

Theorem 1.3.15 (Bayes’ Theorem). Let A, B be events in the sample space where Pr(B )> 0. Then

Pr(A |B ) =
Pr(A) Pr(B |A)

Pr(B )

This formulation of Bayes’ Theorem is for events in a sample space. If we have, instead, a sample

space generated from random variables, we need to modify Bayes’ theorem in order for it to be useful.

The modification for random variables follows from the original statement of Bayes’ theorem. We

note that there are multiple formulations for Bayes’ theorem as regarded to random variables based

on whether the random variables are continuous or discrete. We present the formulation which will

be used most frequently in this thesis.

Theorem 1.3.16 (Bayes’ Theorem for Random Variables). Given continuous random variables X , Y

which generate a sample space. Let f X , f Y denote the probability density functions of X , Y respectively.

Then we have

f X (x | Y = y ) =
f Y (y | X = x ) f X (x )

f Y (y )

We know from the law of total probability that

f Y (y ) =

∫ ∞

−∞
f Y (y | X = ξ) f X (ξ) dξ

Bayesian techniques frequently employ Markov chain Monte Carlo algorithms. The reason for this

is straight forward: Bayesian inference starts with a prior distribution on the parameters and seeks to

find the posterior distribution on those parameters, given a sample of some sort. Sampling directly

from this posterior distribution is often difficult if not impossible. Markov chain Monte Carlo (MCMC)

methods are a class of algorithms used for sampling from a probability distributions by construction

a Markov chain with the desired distribution as its equilibrium state. The state of the chain after

some number of steps is used to sample the desired distribution; the quality of the sample obtained
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improves as the number of steps increases. This is why MCMC algorithms are frequently employed in

Bayesian techniques. Sampling from the posterior distribution is done by using a Markov chain, and

taking enough of these samples allows for an accurate sampling from the posterior distribution of the

parameters.

In Chapter 4, we will use a Bayesian technique known as a Gibbs sampler. Gibbs sampling is

an MCMC algorithm used to obtain a sequence of observations which are approximated from the

joint probability distribution of two or more random variables when direct sampling is difficult (or

impossible). The sequence can be used to approximate the joint distribution, the marginal distribution

of a single variable or a subset of the variables–including unknown parameters or hidden variables–or

to compute integrals such as expected values. It is frequently used when the values of some of the

variables are known, and therefore do not need to be sampled. It is a randomized algorithm, meaning

it can be an alternative to deterministic algorithms, such as the EM algorithm. In its most basic form,

Gibbs sampling is a special case of the Metropolis-Hastings algorithm.

Gibbs sampling is used in situations where the joint distribution of the random variables is not

explicitly known or is difficult to sample directly, but the conditional distribution of each variable

is known and is simple (or at the very least, easier) to sample from. The Gibbs sampling algorithm

generates a sample from the distribution of each variable in turn, conditional on the current value

of all the other variables. It has been shown that this sequence of samples is a Markov chain and the

stationary distribution of this Markov chain is the joint distribution we are interested in.

The key idea behind Gibbs sampling is that if we are given a multivariate distribution, it is easier to

sample from the conditional distribution than to marginalize by integrating over a joint distribution.

The goal of a Gibbs sampler is to obtain a large number of samples of a random variable coming from

a given joint distribution. The joint distribution, however, is either not explicitly known or not difficult

to sample directly, so what a Gibbs sampler actually does is generate samples that approximate a joint

distribution of all variables. Consider the most basic incarnation of the Gibbs sampler.

Algorithm 1.3.17 (Gibbs Sampler). Given a random variable X = (x1, . . . ,xn ). We wish to obtain k

samples of X from a joint distribution p (x1, . . . ,xn ); denote the i th sample as X(i ) = (x (i )1 , . . . ,x (i )n ). Select

some value of X (0) as an initial value of X. Then

1. To obtain the i +1st sample, sample each component variable x i+1
j (for j = 1, . . . , n) from the

distribution of that variable conditional on all other variables using the most recent value of

each of the other variables. In other words, if we are updating the j th component, we update it

according to the distribution p (x j | x (i+1)
1 , . . . ,x (i+1)

j−1 ,x (i )j+1, . . . ,x (i )n )

2. Repeat k times
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When this kind of sampling takes place, we know that the samples approximate the joint distribu-

tion on the variables, the expected value of any variable can be approximated by taking the average

over all samples, and the marginal distribution over a subset of variables can be approximated by

considering the samples for that subset of variables and ignoring variables not in the subset. The

initial value can be determined randomly or by another algorithm, such as the EM algorithm.

When using Gibbs sampling, it is fairly common to ignore a number of samples taken from the

beginning of the algorithm. This is commonly referred to as a burn in period. It is also common to only

“observe" every n samples after the burn in period. This prevents consecutive samples from being

“trapped" in a particular part of the sample space, as well as ensures that each sample is sufficiently

random. As an example, when running the Gibbs sampler in Chapter 4, we use a burn in value of

1000 (we discard the first 1000 full iterations of the Gibbs sampler) with 200 iterations between each

sample afterward. In the context we use the Gibbs sampler in this paper, we know it converges to a

true sampling of the posterior distribution [35].

Example 1.3.18. Suppose we have two Gaussian random variables, X , Y and our model dictates

that both are distributed with µ= 0,σ= 1 with the added stipulation that X ≤ Y . We can use Gibbs

sampling to sample points from this space. Start with initial values X = Y = 0. We first sample X ,

noting that X ∼N (0, 1). We know, however, that X ≤ Y so we must preserve that relationship. There

is any number of ways we could do this, but for now let’s use a truncated normal distribution (a

distribution which behaves like a normal distribution but does not allow us to sample any X > 00).

With a random sample we get X (1) =−1.2. Then we need to sample Y while preserving that X ≤ Y .

Mathematically, we look for Pr(y | X =−1.2). Again we can use a truncated normal to do this, and

might see that we get Y (1) = −.45. When we look to sample X (2), we use the value of Y (1) to ensure

that we preserve the relationship X ≤ Y . Therefore, when we find p (x | Y =−.45)we might see that

X (2) =−.82. We continue in this manner until we get the desired number of samples.

As mentioned before, the Gibbs sampler can also be used to estimate expected values and param-

eter values. We will see more on this in Chapter 4.

1.4 Statistical Models for Ranked and Partially Ranked Data

A statistical model for ranked data is a model is a family of probability distributions on the symmetric

group Sn . Such models are used in many different disciplines. Before we examine previously proposed

statistical models for ranked data, we will use the convention of letting n be the number of items

being ranked in our statistical model. It should be clear from context whether each model assigns

a discrete probability function to Sn or whether the observed data is a ranking on n items. The first
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model we consider in this thesis is based on the Mallows model. The Mallows model was originally

proposed by Mallows in [29] in 1957. The paper contains many variations of statistical models for

ranked data which come from different assumptions placed on the general model. The Mallows model

is a location-scale model which assigns a probability to each permutation in Sn . The probability the

model assigns each permutation is based on two parameters: a center permutation κ ∈ Sn (which

functions much like the mean of a normal distribution) and a parameter c ∈ R+ encoding spread

(which behaves very similarly to the standard deviation of a normal distribution). If we let pκ(π)

represent the probability of observing a permutation π∈Sn where κ is the center permutation, we

have

pκ(π) = e−c d(π,κ)−log(ψ(c ))

where c ∈R+, e− logψ(c ) behaves as a normalizing constant, and d(π,σ) is Kendall’s tau metric on Sn ,

defined by

d(π,σ) = inv(πσ−1) .

We will talk more about this metric as well as the Mallows model itself in Chapter 2.

A ranking can arise through a series of sequential comparisons where a single item is preferred to

all remaining items and, after it is selected, is removed from all future comparisons. This concept lies

at the core of the Plackett-Luce model. The Plackett-Luce model (P-L model) is a statistical model for

ranked data which has been adapted for partially ranked data as well. The model stems from the idea

that For fully ranked data, we have n items to be ranked by k judges and assume no ties, we have a set

of k observed rankings

{y (i ) = (y (i )1 , . . . , y (i )n ) | i = 1, . . . , k }

where y (i )j is the position (or rank) assigned to item j by judge i . In other words, judge i ranks item j in

position y (i )j . This ranking is naturally associated with a permutation π(i ) =Sn where π(i ) = y (i )1 · · ·y
(i )
n .

The Plackett-Luce model (P-L model) is a distribution over all rankings which can be described entirely

by a permutation σ. Thus, the probability assigned to σ is not the probability of the permutation

associated directly with a ranking y = (y1, . . . , yn ), but rather the probability assigned to the inverse of

the permutation associated with y . The model has parameter vector θ = (θ1, . . . ,θn ) with θi ≥ 0 where

θi is associated with item i . This model assigns probability

Pr(σ | θ ) =
∏

i=1,...,n

θσi
∑n

j=i θσj

.

Note that this is not the only formulation of this model.

The Plackett-Luce model can be used as a model for partially ranked data as well. In this case,
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the model has a posetP associated with it. If i < j is a relation of the posetP , then item i is always

ranked before item j in the corresponding model. Let Q be the maximal chains of the posetP . The

state space of this model is the setL (P ) are the permutations π∈Sn that respect the relations ofP ,

i.e. they are the permutations which are linear extensions ofP . Note that this model’s state space is

not all of Sn . The probability function can be obtained from the Plackett-Luce model for fully ranked

data by normalizing over a subset of Sn (for more on this, see [41]. Then we see that for any π∈L (P ),
the probability of observing π is given by

Pr(π | θ ) =
n−1
∏

i=1

1
∑i

j=1θπ(j )
for π∈L (P ) .

While we will not make use of the P-L model in this paper, several well known statistical tools can

be used with the P-L model. The authors of [1] demonstrate how to use regression in a P-L model.

Microsoft researchers Guiver and Snelson give an efficient method for inferring the parameters of

P-L model in [21]. Mollica and Tardella develop methods for efficiently running the EM algorithm

and a Gibbs sampler on a mixture of Plackett-Luce models [30] and use a mixture of P-L models to

model epitope profiling [31]. The authors of [7] propose a Bayesian nonparametric extension of the

P-L choice model capable of handling an infinite number of choice items.

Thurstonian models are a third class of statistical models for ranked data. Proposed in 1927, the

Thurstonian model assumes that every item being ranked has an inherent, unobservable true value

[42]. The model observes rankings on n items by a judge (or judges). The Thurstonian model assumes

the each item is given a value X i where X i ∼N (µi ,σ2
i ). The mean µi is the true value of that item and

σi is an unobservable parameter associated with the item. The ranking a judge assigns to the items

depends entirely on the value of X i ’s–the ranking assigned to an item i will be #{j | X j <X i wherej 6= i}.
Within the framework of this model, it is possible for the same judge to rank the same items in different

ways. The notable aspects of this model assumes the value assigned during each ranking by each judge

(where there are potentially multiple judges and multiple rankings from each judge) are continuous

real number values which cannot be observed and these values are distributed according to a normal

distribution.

Unlike the previous two models, Thurstonian models do not have a closed form for the probability

of observing a ranking π ∈ Sn . This is in part due to the unobservable values of the X i , the hidden

variable which represents the value the judge assigns item i . As a result, estimating the most likely

ranking order as well as the means of these normal distributions is not straight-forward. This makes

working with this model somewhat more difficult than working with a Mallows or P-L model. This

does not, however, mean it is avoided in practice. Thurstonian models are becoming more widely
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used as methods for parameter estimation are developed and are made more efficient. In the sensory

field, authors Bi and Kuesten claim that Torgerson’s method of triads has been avoided due to the

fact that the Thurstonian model that is a part of the method and “there are no published tables

or available computer software for applications of the method[4]." In their paper, the propose a

Thurstonian model for a special case of Torgeson’s method of triads. Ennis and Rousseau develop a

Thurstonian model for degree of differences methodology, a methodology where subjects are given

pairs of samples and must indicate how different the are on a t -point scale [16]. The model can be

used in many discrimination, rating, and ranking methodologies. The authors of [9] propose and

alternative to the two-Alternative Forced Choice (2-AFC) model in which participants are presented a

pair of items and asked which is preferred where the response of “no preference" is allowed. They then

detail ways to extract estimates and standard error of the parameters in this two-alternative choice

model. Gianola and Simianer introduce a fully Bayesian method for quantitative genetic analysis of

data consisting of ranks which are scored at a series of events or experiments [20]. The rank observed

is assumed to reflect the order of values of some unobserved variable which is distributed normally,

and is therefore another application of the Thurstonian model. We will talk about more applications

of Thurstonian models as well as methods for estimating values of interest in a Thurstonian model in

Chapter 4.

These are some of the more well known statistical models for ranked data. As we mentioned before,

statistical models for ranked and partially ranked data are used in many different disciplines. In the

cognitive sciences, we mentioned Steyvers et al. proposed a model for reconstructing the true ranking

of a series of events, such order of historical events or listing cities in the US from easternmost to

westernmost, based on the responses (or guesses) of participants [40]. The authors of [27]models for

ranked data to estimate the degree to which the responder is an expert, assigning a level of how much

of an expert and therefore how likely their response is accurate a participant is based on the way they

rank a number of different sets of events (again, including order of US presidents, rivers or the world

from longest to shortest, etc.). We have seen a Thurstonian model for ranked data used in genetics to

model the behavior of different biological and genetic processes, such as genotypes [20]. Beerenwinkel

and Sullivant propose a model for partially ranked data which describes mutation accumulation in an

organism [3]. The authors of [18] introduce a model for longitudinal partially ranked data and apply it

to survey data recording the top two political concerns of citizens of the United Kingdom. This model

takes more into account than simple paired-comparison tests. Models for ranked and partially ranked

data have been proposed, adapted and used in signal detection [24, 25], food science [9, 16], sensory

studies [4, 24, 25] and many other fields. The pervasiveness of these models is due to the myriad of

conceivable instances where items can be ranked or partially ordered. Therefore studying statistical

models for ranked or partially ranked data can have an impact on any number of academic disciplines.
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We seek to study these models from an algebraic and combinatorial point of view.

1.5 Outline of Thesis

Statistical models for ranked data are studied and analyzed for many different reasons; they have

been studied to compare their performance to other models, to test or improve their computational

efficiency, to measure their tolerance to noise, and for many other reasons. In this thesis, we study

these models from an algebraic perspective and look at the combinatorics associated with a vanishing

ideal which describes the model. Sturmfels and Welker examined the algebraic properties of four

different models for ranked data [41]. We will be examining the algebraic and combinatorial properties

of statistical models for ranked data. In Chapter 2, we will examine the algebraic properties of the

Mallows model and introduce a mixture of Mallows models. After describing the mixture model, we

use combinatorial tools to simplify it and then develop the algebraic tools necessary to describe

its vanishing ideal. In Chapter 3, we define a generating function which will count the number of

permutations in Sn which are an equal distance from two fixed permutations π,σ. This function is

necessary for any practical application of the Mallows mixture model developed in Chapter 2. Using

the generating function, we give a closed form for the number of permutations in Sn which are an

equal distance from two fixed permutations π,σ. In Chapter 4, we propose a Thurstonian model for

partially ranked data. We then show how to use the EM algorithm and a Gibbs sampler to estimate the

parameters of the model. Finally, we apply the model and the methods described to two different data

sets and compare our results to other models in the literature.

29



CHAPTER

2

THE MALLOWS MIXTURE MODEL

The Mallows model is a statistical model for ranked data which gives a closed form for computing

the probability of observing a particular permutation in Sn . It is a location scale model, much like

the normal distribution, meaning the probability assigned to each permutation will decrease the

further away it is from the “center" permutation. The Mallows model has been used in a number of

different disciplines. Lebanon and Mao set up the framework for using the Mallows model specifically

on permutations which are partition-preserving [26]. In this chapter, we build on this framework

and examine a mixture of Mallows model. The interest in doing so comes in part from the work of

Lebanon and Mao.

In this chapter, we introduce a mixture model based on a classic statistical model for ranked data,

the Mallows model. The original model, proposed by Mallows[29], makes use of paired comparison

techniques as well as Kendall’s tau metric on the symmetric group. The model is designed to be used

for ranked data. That is, the observations are entire rankings on a set of n items. Because of this, it is

natural to think of the observations as permutations in Sn . In Section 2.1 we introduce and examine

the vanishing ideal of the original Mallows model. In Section 2.2 we will introduce the Mallows mixture

model which we analyze and characterize in later sections. In Section 2.3 we introduce theorems to

completely describe all (i , j ) pairs in {0, . . . ,
�n

2

�

}2 for which there exists a permutation π∈Sn such that

d(π,κ1) = i and d(π,κ2) = j . We then develop theorems which characterize the joins of ideals by their
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degree in Section 2.4. Using the theorems for Section 2.3 and Section 2.4, we look at the vanishing

ideal of the map of the Mallows mixture model in Section 2.5. In Section 2.6 we look at the number of

generators of various degrees.

2.1 The Mallows Model

The original Mallows model was proposed by Mallows in 1957[29]. It is a location-scale model for

ranked data for which uses paired comparisons to assign a probability to every possible ranking.

Because the observed data points in this model are rankings on n items, it is natural to think of these

observations as permutations in Sn . Thus, if we were to rank 4 items {1, 2, 3, 4}, the permutation 4132

is equivalent to the ranking where item 4 is ranked first, item 1 is ranked second, etc. The model has

a center, much like a mean. That is, the closer a permutation is to the center, the more likely it will

be observed. A well defined concept of “closeness" requires a metric on Sn . We choose Kendall’s tau

distance as our metric. Recall the symmetric group is generated by the n −1 adjacent transposition of

Sn . Under Kendall’s tau metric, the distance between any two permutations is the minimum number

of adjacent transpositions necessary to compose with one of the permutations to transform it into the

second. That is, d(π,σ) = inv(πσ−1). For instance, the distance between 3142 and 1243 is 2, as seen in

Figure 2.1. The Cayley graph is a visualization of distance between elements of Sn .

This is just one way to describe Kendall’s tau distance, but it is the one we will use for the remainder

of the paper. It should be noted that this is a right invariant metric. That is,

d(π,σ) = d(πτ,στ) ∀π,σ,τ∈Sn

Furthermore, for all π,σ ∈Sn , we know that 0≤ d(π,σ)≤
�n

2

�

Under the Mallows model which is centered about the permutation κ, the probability of observing

any probability π is exactly

pκ(π) = e−c d(π,κ)−log(ψ(c ))

where π,κ ∈ Sn , c ∈ R+, and ψ(c ) is the normalizing constant with ψ(c ) =
∑

π∈Sn
e−c d(π,κ). It will

be useful to us to clean up this notation with a few simple substitutions. First, we note that since

Kendall’s tau distance is right invariant, we have that d(π,κ) = d(πκ−1,κκ−1) = d(πκ−1, id). We know

that d(πκ−1, id) = inv(πκ−1) where inv(πκ−1) is the number of inversions of the permutation πκ−1.

Recall that

inv(πκ−1) = #
¦

(i , j )∈ [n ]× [n ] | i < j and πκ−1(i )>πκ−1(j )
©

.
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Figure 2.1 The Cayley graph of S4

We can then rewrite

pκ(π) = e−c d(π,κ)−log(ψ(c )) = e−c inv(πκ−1)−log(ψ(c ))

To further simplify notation, we can set e−c =q . Then we have

pκ(π) = e−c inv(πκ−1)−log(ψ(c )) =
�

e−c
�d(π,κ)

e− log(ψ(c )) =
1

ψ(c )
q inv(πκ−1)

Finally, we let t =
1

ψ(c )
and write that

pκ(π) = t q inv(πκ−1)

We will use this simplified notation throughout the paper.

One way to think of this model is a sort of “normal" distribution on the discrete set Sn . It has a

center, much like the mean of a normal distribution, and permutations closer to this center will have

higher probability. The parameter c encodes some information about the spread of this distribution,

i.e. how quickly probabilities decrease as we move further from the center. The normalizing constant

just makes everything sum to 1, making it a probability distribution. Thus, in many ways, this model
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behaves somewhat like a normal distribution (as both are location-scale models) on a discrete set.

There are a few things to note here. First, while this is a discrete statistical model, and normally

computing finitely many things is relatively simple, the number of permutations (and therefore the

number of probabilities to compute) grows by n !. We might think this would hinder practical applica-

tion of this model. But a closer examination shows that we need not do that many computations in

order to make use of the model. Notice that every permutation that is a fixed distance from the center

κ is assigned the same probability. That is, for every β1,β2 ∈Sn such that d(β1,κ) = d(β2,κ), we have

pβ1 = pβ2 identically. Thus, in practice the number of probabilities necessary to compute in order

to use the model is
�n

2

�

, and therefore can be computed in polynomial time. To compute these
�n

2

�

probabilities we need to compute the normalizing constantψ(c ). We note that while computingψ(c )

may appear to have a non-trivial computation time, it is worth mentioning that by using the notation

where q = e−c ,ψ(c ) is the q-analogue of n ! as we saw earlier in Proposition 1.2.8.

This same property of the Mallows model can be used to simplify other calculations involved with

the Mallows model. Suppose we were to consider the map

φ :R[pπ |π∈Sn ]→R[t ,q ]

pπ 7→ t q inv(πκ−1)

When seeking to understand the underlying structure of the Mallows model, we can ask about the

underlying algebraic structure of this map. This would tell us something about the inter-relationships

of the pπ. This mapφ is actually the pullback of the ring homomorphism of the parameterization of

this model. In other words, the mapφ is the pullback of

ψ :K2→Kn !

and we know that I
�

im(ψ)
�

= ker(φ).

We can simplify the Gröbner basis calculation of this kernel by considering a ring in fewer variables,

by taking the quotient of the ideal with the ideal defined by the relationships pβ1 = pβ2 when d(β1,κ) =

d(β2,κ). Specifically, we consider a polynomial ring in fewer variables, say p i where i ∈
¦

0, . . . ,
�n

2

�

©

and let p i be the probability of observing a permutation that is distance i from the center. By doing

this, we would greatly reduce the number of variables, simplifying the actual calculation of the kernel

ofφ.

We can easily classify this ideal.
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Theorem 2.1.1. Consider the map

φ̂ :R[p i | i ∈ {0, . . . , m }]→R[t ,q ]

p i 7→ t q i

where m =
�n

2

�

. Then the kernel of φ̂ is a toric ideal generated by

G =
¦

p i p j −pk p` | i , j , k ,`∈ {0, . . . , m } and i + j = k + `
©

.

Furthermore, under the lexicographic monomial ordering where p i � p j for any i < j , G is a Gröbner

basis for ker(φ̂).

Proof. We begin by showing that G ⊂ ker(φ̂). Consider any polynomial of the form p i p j −pk p` with

i , j , k ,`∈ {0, . . . , m } and i + j = k + `. Then we have that

φ̂(p i p j −pk p`) = (t q i )(t q j )− (t q k )(t q `)

= t 2q i+j − t 2q k+`

= t 2q i+j − t 2q i+j

= 0

and therefore any polynomial p i p j −pk p` with i + j = k + ` is in the kernel of φ̂.

Before we show G is a generating set, first we note that ker(φ̂) is a homogeneous ideal. This can

be seen by considering any non-homogeneous polynomial f in the ideal ker(φ̂). Now consider the

degree 2 part of f . We can see that this must be in the ideal ker(φ̂)with the following argument. Every

degree 2 monomial will map to a monomial where the exponent of the t variable is 2. The only way

for this monomial (after mapping) to sum to zero is if another monomial whose degree of t is also

2 to cancel it out. We know that the only way a monomial can contain a t 2 is to have come from a

monomial of degree 2 prior to applying φ̂. Thus, if φ̂( f ) = 0, we know that all the terms containing

a t 2 cancel out, and thus all the degree 2 monomials of f , or the degree 2 part of f , must be in the

ideal ker(φ̂). This technique can be applied for any degree which appears in f and therefor ker(φ̂) is a

homogeneous ideal.

Now, consider any polynomial f ∈ ker(φ̂)⊂K[p i | i ∈ {0, . . . , m }]. Then we can write f as

f (p) = r (p)+
∑

g i∈G

h i (p)g i (p)

where r (p)∈ ker(φ̂) and no term of r is divisible by any monomial in Lt(G ). But the only monomials
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which do not appear in Lt(G ) are monomials of the form c i p a i
i pb i

i+1. Thus, in general, r has the form

r (p) =
∑

i

c i p a i
i pb i

i+1

Because r ∈ ker(φ̂), we also have that

φ̂(r ) = 0=
∑

i

c i t a i j +b i j q i a i+(i+1)b i

where a i ,b i ∈ Z≥0 and not simultaneously zero (as no constant will be in the kernel of φ̂). Now,

suppose, without loss of generality, that the monomial p a
i pb

i+1 appears in r . Then there exists a

monomial p d
j p e

j+1 such that

φ̂(p a
i pb

i+1−p d
j p e

j+1) = 0= t a+b q i a+(i+1)b − t d+e q j d+(j+1)e .

We know this will only be true if the following conditions hold

a +b = d + e

i a +(i +1)b = j d +(j +1)e

a ,b , d , e ∈Z≥0

where again the pairs a ,b and d , e cannot be simultaneously equally to zero. We note that if i = j ,

then we have b = e and a = d and therefore these two monomials would cancel prior to mapping by

φ̂.

We will manipulate the second equation by using the first in the following way:

i a +(i +1)b = j d +(j +1)e

(a +b )i +b = (d + e )j + e

(a +b )i +b = (a +b )j + e

(a +b )(i − j )+b = e

Now we consider

(a +b )(i − j )+b = e (2.1)

and use the original equation to do further manipulation in two ways. First, to simplify things, let

a +b = A and d + e =D . We note that then A, D are the degrees of the monomial and therefore A =D .
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Without loss of generality, assume i ≥ j . We can rewrite 2.1 as

A(i − j )+b = e (2.2)

Then we see that

A(i − j )+b = e

A(i − j ) = e −b ≤ e ≤D = A

A(i − j )≤ A

Because A ∈Z>0, we conclude that i − j ≤ 1. Because i − j ∈Z, and we have assumed i ≥ j , we have

only two possibilities: either i − j = 0 or i − j = 1.

We have seen that i − j = 0 implies that we would have two copies of the same monomial in r

which would cancel each other out prior to mapping. We consider the remaining case: if i − j = 1, we

would have that

φ̂(p a
j+1pb

j+2−p d
j p e

j+1) = 0= t a+b q (j+1)a+(j+2)b − t d+e q j d+(j+1)e .

This yields the following two equations

a +b = d + e

(j +1)a +(j +2)b = j d +(j +1)e

and we can again manipulate the second of this two equations using the first to see that

(j +1)a +(j +2)b = j d +(j +1)e

(j +1)a +(j +2)b +d = j d +(j +1)e +d

(j +1)(a +b )+b +d = (j +1)(e +d )

d +b = 0

b =−d
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and since b , d ∈Z≥0 we have that b = d = 0 which implies that a = e . Thus we have

(p a
j+1pb

j+2−p d
j p e

j+1) = (p
a
j+1−p a

j+1) = 0

and is therefore identically zero prior to mapping via φ̂.

Thus, we conclude that r (p) = 0 and therefore every polynomial in the kernel of φ̂ can be written

as the polynomial combination of polynomial in G and G is a generating set for ker(φ̂).

Corollary 2.1.2. Consider the map

φ :R[pπ |π∈Sn ]→R[t ,q ]

pπ 7→ t q inv(πκ−1)

Then the kernel ofφ is the ideal generated by the union of the two sets

�

pπ1 pπ2 −pσ1 pσ2 | π1,π2,σ1,σ2 ∈Sn and d(π1,κ)+d(π2,κ) = d(σ1,κ)+d(σ2,κ)
	

∪
�

pπ−pσ | π,σ ∈Sn and d(π,κ) = d(σ,κ)
	

.

2.2 The Mallows Mixture Model

Mixture models are very common when modeling the behavior of a population. In this chapter, we

will examine a model for a population whose behavior is described by the mixture of two Mallows

models. The main goal in this section is to introduce this model and describe its vanishing ideal. We

saw in the previous section that the vanishing ideal of the Mallows model could be simplified by

simply using a single variable to represent the probability of observing any permutation which is

distance i from the center of the first model and distance j from the center of the second.

Before we examine the Mallows mixture model and its characteristics, we recall some things about

mixture models. Mixture models are used to describe populations which have one or more notable

subpopulations, particularly when the subpopulations tend to behave in different ways. Formally, a

mixture model has k base models each with parameter vector θ (i ) for i = 1, . . . , k . If we letωi represent

the weight of the i th model where 0≤ωi ≤ 1 and
∑k

i=1ωi = 1, the probability assigned to an event A

in the mixture model is given by

Pr(X = A | θ (1), . . . ,θ (k )) =
k
∑

i=1

ωi Pr(X = A | θ (i ))
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Random samples of the population of interest will have roughly the same proportions of the respective

subpopulations as the population considered as a whole. Each subpopulation follows a particular

distribution. The distribution of the overall population is a weighted sum of the distributions of the

individual subpopulations. Because of their appeal and simplicity, mixture models are common in

many different disciplines.

In general, if a population follows a mixture of k Mallows models with centers κ1, . . . ,κk which

have scale parameters c1, . . . , ck , then if we let pπ denote the probability assigned to a permutation π

by the mixture model, pπ will have the form

pπ =
k
∑

i=1

ωi

ψ(c i )
e−c i d(π,κi )

where 0≤ωi ≤ 1 and c i ∈R+ for i = 1, . . . , k , and
∑k

i=1ωi = 1.

In this chapter, we assume that the overall population we wish to model consists of two different

sub-populations, each of which follows a Mallows model. As a result, the probability of observing a

particular ranking will be the weighted sum of the probabilities of the ranking assigned by the two

sub-distributions.

Definition 2.2.1. Given permutations κ1,κ2 ∈ Sn , then the mixture of two Mallows models with

centers κ1,κ2 is the family of distributions given by

Mκ1,κ2 =
�

P ∈Rn ! | pπ =
ω1

ψ(c1)
e−c1d(π,κ1)+

ω2

ψ(c2)
e−c2d(π,κ2) where c1, c2 ∈R+, 0≤ω1,ω2 ≤ 1, andω1+ω2 = 1

�

where 0 ≤ ω1,ω2 ≤ 1 and ω1 +ω2 = 1, c1, c2 ∈ R+. We say ω1,ω2 are the weights of the two sub-

distributions and c1, c2 are the spreads associated with the two sub-distributions.

We can again simplify the notation by letting q1 = e−c1 , q2 = e−c2 and then lumping the weight in

with the normalizing constant to let t1 =
ω1

ψ(c1)
, t2 =

ω2

ψ(c2)
. Then we have

pπ = t1q d(π,κ1)
1 + t2q d(π,κ2)

2 = t1q
inv(πκ−1

1 )
1 + t2q

inv(πκ−1
2 )

2 .

Similar to what we did with the Mallows model in the previous section, we examine the underlying

algebraic structure of the mixture model. To do this, we look at the map
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φ :R[pπ |π∈Sn ]→R[t1, t2,q1,q2]

pπ 7→ t1q
inv(πκ−1

1 )
1 + t2q

inv(πκ−1
2 )

2

and consider the kernel of this map. The kernel ofφ is the homogeneous vanishing ideal of the of the

Mallows mixture model.

We can again simplify any calculations we may wish to do by noticing a relationship to those in

the original Mallows model. We notice that any permutations β1,β2 ∈Sn such that d(β1,κ1) = d(β2,κ1)

and d(β1,κ2) = d(β2,κ2) satisfy that pβ1 = pβ2 by definition. Thus, instead of using a variable for

each of the n ! permutations, we consider all possible pairs (i , j ) such that there exists a β ∈Sn with

d(β ,κ1) = i and d(β ,κ2) = j . We do this by using the following definition:

Definition 2.2.2. Given any two permutations κ1,κ2 ∈Sn . Define the set of bi-distance pairs of the

permutations κ1,κ2, denoted G (κ1,κ2), as follows:

G (κ1,κ2) =
¦

(i , j )∈ {0, 1, . . . m }2 | ∃ β ∈Sn such that d (β ,κ1) = i and d (β ,κ2) = j
©

.

where m =
�n

2

�

.

We can then simplify our calculations by considering the pairs (i , j ) ∈ G (κ1,κ2) instead of all

the permutations in Sn . So, instead of considering the polynomial ring R[pπ |π ∈ Sn ], we can

use the polynomial ring R[p i ,j | (i , j ) ∈ G (κ1,κ2)]. If we let m =
�n

2

�

and ψ1 : R[pπ |π ∈ Sn ] −→
R[p i ,j | (i , j )∈G (κ1,κ2)] be the projection mapψ1(pπ) = p i ,j where i = d(π,κ1) and j = d(π,κ2) and

ψ2 :R[p i ,j | (i , j )∈∈G (κ1,κ2)]−→R[t1, t2,q1,q2] defined byψ2(p i ,j ) = t1q i
1+ t2q

j
2 , then the mapφ is

the composition of mapsφ =ψ2 ◦ψ1. We can think ofφ as:

φ :R[pπ |π∈Sn ]
ψ1−→R

�

p i ,j | (i , j )∈G (κ1,κ2)
� ψ2−→R[t1, t2,q1,q2]

This polynomial ring has significantly fewer variables than the ringR[pπ | π∈Sn ]. Note thatψ1(ker(φ)) =

ker(ψ2) and therefore we have that ker(ψ2) is isomorphic to the quotient of ker(φ) by




pπ−pσ | π,σ ∈Sn and d(π,κ1) = d(σ,κ1) and d(π,κ2) = d(σ,κ2)
�

.

The mapφ is not the vanishing ideal of a statistical model, as p i ,j do not satisfy
∑

(i ,j )p i ,j 6= 1. If we

were to know exactly, how many permutations have bi-distance (i , j ) from a particular permutation,

we could create a probability distribution using these p i ,j . We look at such a generating function in
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Chapter 3.

2.3 The Set of Bi-Distance Pairs of Two Permutations

In the previous section, we defined G (κ1,κ2) as the set of bi-distance pairs of two permutations κ1,κ2.

This set consists of all pairs (i , j ) such that there exists a permutation in Sn which is distance i from

κ1 and distance j from κ2. We have seen how this is may be able to simplify the computation of the

vanishing ideal of the model. In this section, we will characterize exactly which (i , j ) pairs will appear

in G (κ1,κ2) ⊂ {0, . . . , m }2, where m =
�n

2

�

. We will fix the notation m =
�n

2

�

and use it throughout

this section. Before we can make use of the simplified computations available to us by considering

φ =ψ2 ◦φ1, we need to fully characterize G (κ1,κ2). We do this by using properties of the sign of a

permutation, the triangle inequality (as Kendall’s tau metric is a metric and therefore is subject to the

triangle inequality), and Braid relations. We will need to introduce some new concepts which will be

used in the section in order to facilitate the characterization of G (κ1,κ2). We will start by using the

right-invariant property of Kendall’s tau metric to show the relationship between the set of bi-distance

pairs G (κ1,κ2)with the set of bi-distance paris G (κ1κ
−1
2 , id).

Consider the symmetric group Sn for some fixed n with Kendall’s tau distance d (π,σ) as a metric.

Recall this metric is right invariant, and therefore d(π,σ) = d(πσ−1, id) (see Lebanon and Mao [26]).

The maximum value for d(π,σ) is
�n

2

�

for any π,σ ∈ Sn . The following lemma will prove useful for

simplifying the proofs in this section:

Lemma 2.3.1. For any κ1,κ2 ∈Sn , we have that G (κ1,κ2) =G (κ1κ
−1
2 , id)

Proof. Consider any element (x , y )∈G (κ1κ
−1
2 , id); there exists a β ∈Sn such that d(κ1κ

−1
2 ,β ) = x and

d(id,β ) = y . The elementβκ2 satisfies the same relationship inG (κ1,κ2) as d(π,βκ2) = d(κ1κ
−1
2 ,β ) = x

and d(κ2,βκ−1
2 ) = d(id,β ) = y . So (x , y )∈G (κ1,κ2). The converse is also true; if (x , y )∈G (κ1,κ2), then

there exists β ∈Sn such that d(κ1,β ) = x and d(κ2,β ) = y which implies d(κ1,β ) = d(κ1κ
−1
2 ,βκ−1

2 ) = x

and d(κ2,β ) = d(id,βκ−1
2 ) = y so (x , y )∈G (κ1κ

−1
2 , id). Thus G (κ1,κ2) =G (κ1κ

−1
2 , id).

Because the sets G (κ1,κ2) and G (κ1κ
−1
2 , id) are identical, we work to characterize G (κ1κ

−1
2 , id),

as it is easier to do a number of computations in G (κ1κ
−1
2 , id). For instance, since Sn is a Coxeter

group, we will use our knowledge of Coxeter groups to help characterize G (κ1κ
−1
2 , id). It is easier to

consider G (κ1κ
−1
2 , id)when working with the idea of a longest word and a reduced expressions for a

permutation in terms of the adjacent transpositions. We will use this result to tell us exactly how to

find all of the pairs (i , j )∈G (κ1,κ2) in Theorem 2.3.7.

We next define the reversal of a permutation.
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Definition 2.3.2. For any permutation π = π(1) π(2) . . .π(n) given in one line notation, define the

reversal of π as the permutation given by rev(π) =π(n ) . . .π(2) π(1). In the simplest terms, if you are

given π in one line notation, reading π backwards will give you rev(π) in one line notation.

The reversal of the identity is significant as it corresponds to the longest word in Sn when consid-

ered as a Coxeter group. We denote rev(id) =w0. We can then show that rev(π) =πw0 =π ◦n . . .1=

π(n ) · · ·π(1).
Recall that Sn is generated by the adjacent transpositions s1, . . . , sm and we saw in Definition

1.2.10 that all elements of Sn can be represented as a product of these s i . Definition 1.2.10 tells us

that a word was reduced if it is written as a product s i 1 · · ·s i ` if there does not exist k < ` such that

s i 1 · · ·s i ` = s j1 · · ·s jk . Every element of Sn can be represented as a reduced word, though in general this

representation is not unique. The minimal number of adjacent transpositions required to represent

an element (i.e., if s i 1 · · ·s i ` , the `) is unique, and is defined as a the length of the word (or element).

It is also true that the length of a permutation π when considered as a word is the same as d(id,π).

We can also define a maximal chain in Sn , when it is considered as a Coxeter group. A maximal chain

in Sn has the form s i 1 . . . s i m where d(s i 1 . . . s i j , s i 1 . . . s i j+1 ) = 1 for all j = 1, . . . , n −1, and s i 1 . . . s i m =w0

where again m =
�n

2

�

. Because w0 functions as the 1̂ element in Sn under the weak (Bruhat) left order

from Definition 1.2.11 (see for instance [5, 37]), all maximal chains are a reduced expression of w0

when considered as a word.

Lemma 2.3.3. For any τ ∈ Sn , if we let m =
�n

2

�

, there exists a sequence of adjacent transpositions

s i 1 · · ·s i m such that s i 1 · · ·s i m =w0 and s i m−k · · ·s i m =τwhere k is the length of τ (i.e. d(id,τ) = k ).

Proof. Take any τ ∈ Sn where d(id,τ) = ` and let w0 be the longest word. In Definition 1.2.11, we

introduced the weak (Bruhat) left order on Sn , and we know w0 functions as 1̂ in this poset. Then

we have that τ≤w0 under the weak Bruhat left order, which means that by definition there exists

a reduced expression s i 1 · · ·s i m = w0 such that s i k · · ·s i m = τ for some k which is also a reduced

expression. Because the length of a reduced expression for a fixed word is unique, we know that k = `

and we have shown that for every element τ∈Sn , there exists a maximal chain which passes through

τ.

Lemma 2.3.4. For any σ ∈ Sn with d(id,σ) = k with α1 · · ·αk = σ and β1 · · ·βk = σ distinct reduced

expressions ofσ ( αi ,βi ∈ {s1, . . . , sn−1} adjacent transpositions for all i ∈ [k ]), there exists a sequence of

braid moves which transforms α1 · · ·αk to β1 · · ·βk .

Proof. Recall in 1.2.12 that a braid move of a braid group generated by {s1, . . . , sn−1} is a substitution

of the form s i s j = s j s i where |i − j | > 1 or s i s i+1s i = s i+1s i s i+1. This theorem is central to all work
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done in Coxeter groups and the proof can be found in many places, including [5] (labeled as Word

Property Theorem and Theorem 3.3.1).

Using the relations on Sn as a Coxeter group, we will get a concrete relationship between d(id,β )

and d(β , w0).

Lemma 2.3.5. For any β ∈Sn , we have that d(β , w0) = d(id, w0)−d(id,β ) =m −d(id,β ).

Proof. Take any β ∈ Sn . We will continue to denote w0 as the reversal of the identity element, the

element furthest from the identity. Lemma2.3.3 tells us that for any β , there is a reduced expression

s i 1 . . . s i m for w0 such that s i m−`+1 . . . s i m =β for `=d(id,β ). Any initial (or final) substring of a reduced

word is itself reduced, meaning that

d(id, w0) = d(id, s i m−`+1 . . . s i m )+d(s i m−`+1 . . . s i m , s i 1 . . . s i m ) .

Similarly, d(β , w0)will be found by the exact m − ` adjacent transpositions s i 1 . . . s i m−` . Again, this is a

reduced expression so we see that d(β , w0) =m − `= d(id, w0)−d(id,β ).

As a direct result of this, we can see that:

d(β , w0) = d(id, w0)−d(id,β ) ⇒ d(βτ, w0τ) =m −d(τ,βτ) ∀τ,β ∈Sn .

If we call βτ= β ′, we see that d(β ′, w0τ) =m −d(τ,β ′) for all τ,β ′ ∈Sn . With these definitions and

lemmas, we are able to enumerate all pairs (i , j )∈G (κ1,κ2).

Because we are interested in characterizing exactly the (i , j ) pairs which can be found in G (κ1,κ2),

we introduce a function which will help us find all the (i , j )which arise from all the substrings of the

reduced expression for an element of Sn .

Definition 2.3.6. Fix a permutation τ ∈ Sn and let d(id,τ) = k . Then for any reduced expression

α1 · · ·α` of a word in Sn (where here the αi ∈ {s1, . . . , sn−1} for i ∈ [k ] are adjacent transpositions),

define the function Fτ(α1 · · ·α`) as

Fτ(α1 · · ·α`) :=
��

d(id, id), d(id,τ)
�

,
�

d(α`, id), d(α`,τ)
�

,
�

d(α`−1α`, id), d(α`−1α`,τ)
�

, . . . ,
�

d(α1 · · ·α`, id), d(α1 · · ·α`,τ)
�	

.

In other words, this is the function that recovers all paired distances from final substrings of a reduced

word to id,τ. We refer to it as the paired distance function.

The first element of Fτ(α1 · · ·αk )will be (0, r )where d(id,τ) = r , regardless of the length k of the

reduced word α1 · · ·αk . Furthermore, if we consider elements of Fτ(α1 · · ·αk ) as moves along a lattice,
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we know that there are only two possible moves between elements: (1, 1) and (1,−1). It should be clear

that the first coordinate will always increase by one as all final substrings of a reduced word must

themselves be reduced, and therefore the length of the word will correspond to its distance from the

identity. Since the length of the word increases by one letter between elements of Fτ(α1 · · ·αk ), the first

coordinate will increase by one between each two consecutive elements by definition. To see that the

second coordinate of any move must be either -1 or 1, we note that the coordinate must change by an

odd number due to the sign of a permutation (for more on this, see the proof of Proposition 2.3.9).

Intuitively, if we add a single adjacent transposition to our word, we are either moving one step

close to τ or one step further away from it. To see that it can only be a -1 or 1 step, consider the

second coordinate of two consecutive elements of Fτ(α1 · · ·αk ), d(αk−i · · ·αk ,τ) = d(τ,αk−i · · ·αk ) and

d(αk−i+1 · · ·αk ,τ) = d(τ,αk−i+1 · · ·αk ). The triangle inequality tell us

d(τ,αk−i · · ·αk )≤ d(τ,αk−i+1 · · ·αk )+d(αk−i+1 · · ·αk ,αk−i · · ·αk )

d(τ,αk−i · · ·αk )≤ d(τ,αk−i+1 · · ·αk )+1

d(τ,αk−i · · ·αk )−d(τ,αk−i+1 · · ·αk )≤ 1

and the distance between the second coordinate of two consecutive elements of Fτ(α1 · · ·αk ) is less

than 1. We can get that −1 ≤ d(τ,αk−i · · ·αk )− d(τ,αk−i+1 · · ·αk ) by using a similar approach, and

therefore we can conclude that the change in the second coordinate of two consecutive elements

of Fτ(α1 · · ·αk ) is either 1 or -1. When a reduced expression for the longest word is plugged into the

paired distance function, Fτ(α1 · · ·αm )will have (m , m − r ) as its final element.

Theorem 2.3.7. Let κ1,κ2 ∈Sn be any permutations in the symmetric group of size n. Let r = d(κ1,κ2)

then

G (κ1,κ2) =
�

(i , j ) | (i + j )≡ r mod 2 and r ≤ i + j ≤ 2m − r and |i − j | ≤ r
	

.

We define a set related to G (κ1,κ2) as follows

Definition 2.3.8. Let r, m ∈Z such that 0≤ r <m . Define the setH (r, m ) as

H (r, m ) := {(i , j )∈ {0, . . . , m }2 | (i + j )≡ r mod 2 and r ≤ i + j ≤ 2m − r and |i − j | ≤ r } .

We refer to this set as the set of Coxeter relations imposed by r, m .

This definition will simply be used to ease the proofs of the Theorems which follow. The proof of

this theorem is somewhat complex. We break the proof up into smaller, more manageable pieces.
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Proposition 2.3.9. Let κ1,κ2 ∈Sn and m =
�n

2

�

. Then

G (κ1,κ2)⊆H
�

d(κ1,κ2), m
�

.

Proof. Take any κ1,κ2 ∈Sn and call r = d(κ1,κ2) = d(κ1κ
−1
2 , id). For the sake of simplicity, letτ= κ1κ

−1
2 .

Let d(id,τ) = r . By the definition of Kendall’s tau distance and the reduced expression of a word, there

exists a string of r adjacent transpositions α1, . . . ,αr such that τ= α1 · · ·αr is a reduced expression.

Note that due to the large number of instances of strings of adjacent transpositions, we will not

denote the adjacent transpositions exclusively as s1, . . . , sn−1. This will allow us to avoid instances

where we need very elaborate subscripts. As shown above, G (κ1,κ2) =G (κ1κ
−1
2 , id) =G (τ, id). Take

any (i , j )∈G (τ, id). Suppose (i + j ) 6≡ r mod 2. We know there exists a β ∈Sn such that d(τ,β ) = i and

d(id,β ) = j . This means there are adjacent transpositions γ1, . . . ,γi and ρ1, . . . ,ρj such that

τ= γ1 . . .γiβ and id=ρ1 . . .ρjβ .

Using the second equation, we see that β = ρj . . .ρ1. Upon substituting, we see that sgn(τ) =

sgn(γ1 . . .γiρj . . .ρ1) = (−1)(i+j ). We know that τ = α1 . . .αr and therefore sgn(τ) = (−1)r . Since we

assumed (i + j ) 6≡ r mod 2, we get that the sign of τ is both positive and negative, which is a contra-

diction as the sign function is well defined on Sn . Thus, we conclude that (i + j ) ≡ r mod 2 for all

(i , j )∈G (τ, id).

Using the triangle inequality, we deduce the lower bound on i + j . Suppose there exists a pair

(i , j ) ∈ G (τ, id) such that i + j < r . Then there exists a β ∈ Sn such that d(τ,β ) = i and d(id,β ) = j .

Since d(π,σ) is a metric, we use the triangle inequality to see

d(τ, id)≤ d(τ,β )+d(id,β ) ⇒ r ≤ i + j .

This is a contradiction to i + j < r so we conclude that r ≤ i + j for all (i , j )∈G (τ, id).

Next we look at the upper bound for i + j . Using the above lemma, we see:

d(τw0,β ) =
�n

2

�

−d(β ,τ) =
�n

2

�

− i , d(β , w0) =
�n

2

�

−d(β , id) =
�n

2

�

− j

⇒ d(τw0, w0)≤ d(τw0,β )+d(β , w0) = 2
�n

2

�

− (i + j )⇒ i + j ≤ 2m −d(τw0, w0) = 2m −d(τ, id)

Finally, we will look at the bounds for i − j . Take any (i , j )∈G (τ, id). Then there exists an element

β ∈Sn such that d (τ,β ) = i and d (id,β ) = j . Using the triangle inequality we see:

d(τ,β )≤ d(τ, id)+d(id,β ) ⇒ i ≤ r + j ⇒ i − j ≤ r

44



2.3. SET OF BI-DISTANCE PAIRS CHAPTER 2. MALLOWS MIXTURE MODEL

d(id,β )≤ d(τ, id)+d(τ,β ) ⇒ j ≤ r + i ⇒ −r ≤ i − j .

Combining these two inequalities, we see |i − j | ≤ r . Thus, the bounds for the entries (i , j )∈G (τ, id)

are accurate.

It remains to show that every combination of (i , j )∈H (r.m ) is realized in G (τ, id). We introduce

the one more lemma before proving Theorem 2.3.7.

Lemma 2.3.10. Let n ≥ 4 and let α1 · · ·αm and β1 · · ·βm be reduced expressions for w0 ∈ Sn which

differ by a single braid move (where αi ,βi ∈ {s1, . . . , sn−1} adjacent transpositions with m =
�n

2

�

). Then

Fτ(α1 · · ·αm ) and Fτ(β1 · · ·βm ) differ by at most two elements.

Proof. We have already seen that we can view elements of Fτ(α1 · · ·αm ) as coordinates along a lattice

path starting at (0, r )with steps (1,1) or (1,−1) (where d(id,τ) = r and m =
�n

2

�

). Furthermore, since

α1 · · ·αm is a reduced expression for w0, we know that Fτ(α1 · · ·αm )will be such a path from (0, r ) to

(m , m − r ). We know α1 · · ·αm and β1 · · ·βm are bot reduced expressions for w0 and they differ by a

single braid move. Recall from Definition 1.2.12 that braid moves involve making a substitution of the

form s i s j = s j s i or s i s i+1s1 = s i+1s i s i+1 where |i − j |> 1(i ∈ [n −2] and j ∈ [n −1]). We know that as a

word, α1 · · ·αm = β1 · · ·βm =w0. Because the differ by s ingle braid move, we have two cases. In the

first case, α1 · · ·αm and β1 · · ·βm differ by a braid move of the form s i s j = s j s i where |i − j > 1. Then

we have that

α1 · · ·α`s i s jα`+3 · · ·αm =β1 · · ·β`s j s iβ`+3 · · ·βm

and αt =βt for all t ∈ [m ]with t 6= `+1,`+2. Then the only final substrings of α1 · · ·αm and β1 · · ·βm

which will be different will be s jα`+3 · · ·αm and s iβ`+3 · · ·βm , since s i s jα`+3 · · ·αm = s j s iβ`+3 · · ·βm ac-

cording to our braid relations. Since only one final substring is different, Fτ(α1 · · ·αm ) and Fτ(β1 · · ·βm )

differ by at most 1 element.

Consider the case where α1 · · ·αm and β1 · · ·βm differ by a braid move of the form s i s i+1s1 =

s i+1s i s i+1. Similar to before, we have that

α1 · · ·α`s i s i+1s iα`+4 · · ·αm =β1 · · ·β`s i+1s i s i+1β`+4 · · ·βm

and in this case there are at most two final substrings which differ in α1 · · ·αm and β1 · · ·βm , namely

s iα`+4 · · ·αm differs from s i+1β`+4 · · ·βm and s i+1s iα`+4 · · ·αm differs from s i s i+1β`+4 · · ·βm (as, again,

due to the equality of braid relationships, s i s i+1s iα`+4 · · ·αm = s i+1s i s i+1β`+4 · · ·βm ). Thus, because

only 2 final substrings of α1 · · ·αm and β1 · · ·βm differ, Fτ(α1 · · ·αm ) and Fτ(β1 · · ·βm ) differ by at most

2 elements. In both cases, Fτ(α1 · · ·αm ) and Fτ(β1 · · ·βm ) differ by at most 2 elements and we are

done.
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Table 2.1 Substrings of R1 of the form α(1)j · · ·α
(1)
m with j = 1, . . . , m and their corresponding element in G (id,τ)

Element in Sn Element in G (τ, id)
id (0, r )
α
(1)
m (1, r −1)
α
(1)
m−1α

(1)
m (2, r −2)

...
...

α
(1)
m−r · · ·α

(1)
m (r, 0)

α
(1)
m−r−1 · · ·α

(1)
m−1 α

(1)
m (r +1, 1)

...
...

α
(1)
1 · · ·α

(1)
m (m , m − r )

The following proposition will be the last part of proving Theorem 2.3.7.

Proposition 2.3.11. Let n ≥ 4 with τ∈Sn , d(id,τ) = r , and m =
�n

2

�

. Then

G (id,τ)⊇H (r, m ) .

Proof. By Lemma 2.3.3, there exist reduced expressionsα1 · · ·αm ,β1 · · ·βm for w0 such thatαm−r · · ·αm =

τ and βr · · ·βm =τw0 are reduced expressions. To see that the length of τw0 is in fact m − r , we use

Lemma 2.3.5 to see that d(τw0, w0) =m −d(id,τw0) and since d(τw0, w0)= d(τ, id) = r (recall w0 is

self inverse), we have that d(id,τw0) =m− r. Note that d(τ,τw0)= d(τ−1τ,τ−1τw0)= d(id, w0) =m .

Thus, τw0 is the element of Sn which is furthest from the element τ.

If we consider these reduced expressions as a path, we see that

Fτ(α1 · · ·αm ) = {(0, r ), (1, r −1), . . . , (r −1, 1), (r, 0), (r +1, 1), . . . , (m , m − r )}

Fτ(β1 · · ·βm ) = {(0, r ), (1, r +1), . . . , (m − r −1, m −1), (m − r, m ), (m − r +1, m −1), . . . , (m , m − r )}

which, when considered together, form the boundaries of the setG (id,τ). By Lemma 2.3.4 there exists a

series of braid moves which transforms α1 · · ·αm to β1 · · ·βm . Let R1, . . . , Rp be the sequence of reduced

words for w0 where Ri differs from Ri+1 by a single braid move, R1 =α1 · · ·αm and Rp =β1 · · ·βm . We

claim that
k
⋃

i=1

Fτ(Ri ) =H (r, m ) .

We see in Table 2.1 the (i , j ) pairs of Fτ(α1 · · ·αm ) and the final substrings they correspond to.

Lemma 2.3.10 tells us that performing a single braid move on Rk changes at most two elements of
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Fτ(Rk ). Because we have the outermost extremes as our first and last reduced word, and we are allowed

to change at most 2 elements of Fτ(Rk ) for each braid transformation, and Fτ(Rk ) can only make

moves (1, 1) and (1,−1), for a fixed i we must hit every j which satisfies the inequalities described by

H (r, m ). If we were to think of a braid move as deforming a lattice path (which indeed is an accurate

way to describe a braid move), the a single braid move changes at most 2 points on the path. Since the

path must start at (0, r ) and end at (m , r −m ), it is impossible for this series of braid moves to miss a

single j which is in the bounds ofH (r, m ) for a fixed i . Any sequence of braid moves that takes R1 to

Rp must hit every (i , j )∈H (r, m ).

While the proof of Theorem 2.3.7 is very technical, the actual concept is very easy to follow. We

demonstrate this with an example.

Example 2.3.12. Let n = 4 and let τ = 1432 ∈ S4. We can calculate d(τ, id) = 3, and in this case

m =
�n

2

�

= 6 and w0 = 4321. For any β ∈S4, there exists a sequence of reduced expressions R1, . . . , Rp

where R j = s
i
(j )
1
· · ·s

i
(j )
m

for j = 1, . . . , p , Ri+1 comes from applying a single braid transformation to

the expression Ri for all i = 1, . . . , p −1, s i (1)m−r
· · ·s i (1)m

=τwhere d(τ, id) = r and s
i
(p )
m−b
· · ·s i (1)m

=β where

d(β , id) =b . For the purposes of this example, choose β = 4 1 2 3.

We know there exists a reduced expression for the longest word w0 which passes through τ. In

fact, there are multiple such expressions. We choose the expression R1 = s3 s2 s1 s3 s2 s3 which is a

reduced expression for w0 and see that s3 s2 s3 =τ. If we apply the braid transformation s1s3 = s3s1 to

this path, we obtain the word R2 = s3 s2 s3 s1 s2 s3. Similar to what we did in Table 2.1, in Table 2.2 we

compare each of the substrings obtained by successively adding adjacent transpositions on the left.

We see that this corresponds to walking along the path from the identity, through τ, to the longest

word w0. It should be noted that computing the distance from each element in both Table 2.2a and

Table 2.2b to the identity element as simple as counting the number of s i in the expression. Note that

there is only one permutation which differs in the two paths, and therefore there is only one new

point (i , j )∈G (1432, id), namely the pair (2, 3).

We can also visualize this process using a matrix. First, define

SRk := {s (k )j · · ·s
(k )
m | j = 1, . . . , p}

the set of all permutations are vertices of Rk when Rk is considered as a path from id to w0 in Sn .

Let Mτ,Rk be the matrix given by

�

Mτ,Rk

�

i ,j =







X if (i −1, j −1)∈ Fτ(Rk )

0 otherwise
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We can then describe the braid transformation which takes W1 to W2 and see

Mτ,R1 =





























0 0 0 X 0 0 0

0 0 X 0 0 0 0

0 X 0 0 0 0 0

X 0 0 0 0 0 0

0 X 0 0 0 0 0

0 0 X 0 0 0 0

0 0 0 X 0 0 0





























s1s3=s3s1−−−−−→Mτ,R2 =





























0 0 0 X 0 0 0

0 0 X 0 0 0 0

0 X 0 0 0 0 0

0 0 X 0 0 0 0

0 X 0 0 0 0 0

0 0 X 0 0 0 0

0 0 0 X 0 0 0





























.

Table 2.3 shows the sequence R1, . . . , R8 along with the braid transformations and the associated

Fτ(R1), . . . , Fτ(R8). The reader may observe that, in fact, R7 is a reduced expression through β =4 1 2 3.

We choose to make one final braid move to create R8 as doing so allows us to say that ∪8
i=1SRi =S4,

and therefore we have hit every permutation and can say that G (1 4 3 2, id) =∪8
i=1Fτ(Ri ). Using Table

2.3, we can see

G (1 4 3 2, id) =

{(0,3), (1,2), (1,4), (2,1), (2,3), (2,5), (3,0), (3,2), (3,4), (3,6), (4,1), (4,3), (4,5), (5,2), (5,4), (6,3)}

We see that any (i , j ) ∈ {0, . . . ,6}2 which satisfy the conditions that (i + j ) ≡ 3 mod 2 and 3 ≤ i + j ≤
12−3= 9 and |i − j | ≤ 3 is in fact an element of G ( 1 4 3 2, id).

Table 2.2 Comparing each point of the paths R1, R2 where R2 is obtained by performing the braid transforma-
tion s1s3 = s3s1 to the word R1.

Table 2.2a The elements of S4 along the
path described by R1 and their distance
from τ

π∈Sn π as product of s i d(τ,π)
1234 id 3
1243 s3 2
1342 s2 s3 1
1432=τ s3 s2 s3 0
2431 s1 s3 s2 s3 1
3421 s2 s1 s3 s2 s3 2
4321 s3 s2 s1 s3 s2 s3 3

Table 2.2b The elements of S4 along the
path described by R2 and their distance
from τ

π∈Sn π as product of s i d(τ,π)
1234 id 3
1243 s3 2
1342 s2 s3 1
2341 s1 s2 s3 2
2431 s3 s1 s2 s3 1
3421 s2 s3 s1 s2 s3 2
4321 s3 s2 s3 s1 s2 s3 3
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Table 2.3 Sequence of braid transformations from R1, . . . , R8 and the (i , j ) pairs found in each Fτ(Rk ).

Rk−1 Braid Transfor-
mation

Rk Fτ(Rk )

R1 = s3s2s1s3s2s3 {(0,3), (1,2), (2,1), (3,0), (4,1), (5,2), (6,3)}
s3s2s1s3s2s3

s1s3=s3s1−−−−−→ R2 = s3s2s3s1s2s3 {(0,3), (1,2), (2,1), (3,2), (4,1), (5,2), (6,3)}
s3s2s3s1s2s3

s3s2s3=s2s3s2−−−−−−−→ R3 = s2s3s2s1s2s3 {(0,3), (1,2), (2,1), (3,2), (4,3), (5,4), (6,3)}
s2s3s2s1s2s3

s2s1s2=s1s2s1−−−−−−−→ R4 = s2s3s1s2s1s3 {(0,3), (1,2), (2,3), (3,4), (4,3), (5,4), (6,3)}
s2s3s1s2s1s3

s1s3=s3s1−−−−−→ R5 = s2s3s1s2s3s1 {(0,3), (1,4), (2,3), (3,4), (4,3), (5,4), (6,3)}
s2s3s1s2s3s1

s3s1=s1s3−−−−−→ R6 = s2s1s3s2s3s1 {(0,3), (1,4), (2,3), (3,4), (4,5), (5,4), (6,3)}
s2s1s3s2s3s1

s3s2s3=s2s3s2−−−−−−−→ R7 = s2s1s2s3s2s1 {(0,3), (1,4), (2,5), (3,6), (4,5), (5,4), (6,3)}
s2s1s2s3s2s1

s2s1s2=s1s2s1−−−−−−−→ R8 = s1s2s1s3s2s1 {(0,3), (1,4), (2,5), (3,6), (4,5), (5,4), (6,3)}

2.4 Properties of Joins of Ideals

The vanishing ideal of a mixture model can be written as the join of the vanishing ideals of the

underlying models (see, for instance [14]). As such, we can characterize the vanishing ideal of the

mixture of two Mallows models introduced in Section 2.2 as the join of the vanishing ideals for two

Mallows models. We have characterized the vanishing ideal of a Mallows model in Corollary 2.1.2

and Theorem 2.1.1. At this point, the reader may notice in Theorem 2.1.1 the vanishing ideal of the

individual Mallows model is the kernel of φ̂ :R[p i | i ∈ {0, . . . , m }]−→R[t ,q ]whereas the vanishing

ideal of the mixture model defined in Section 2.2 is the kernel ofφ :R[pπ |π∈Sn ]−→R[t1, t2,q1,q2].

We recall from Definition 1.1.18 that the join of two ideals is defined only when the ideals live in the

same polynomial ring, but φ̂ andφ are maps on different polynomial rings. This is easily remedied by

considering the vanishing ideals of the Mallows model to be the kernel of a map analogous to that of

the one introduced in Theorem 2.1.1 but in higher dimension. Specifically, letφ1.φ2 be the maps

φ1 :R[p i ,j | (i , j )∈G (κ1,κ2)]−→R[t1, t2,q1,q2]

p i ,j 7→ t1q i
1

φ2 :R[p i ,j | (i , j )∈G (κ1,κ2)]−→R[t1, t2,q1,q2]

p i ,j 7→ t2q
j
2

each of which describes the vanishing ideal of a Mallows model where now ker(φ1), ker(φ2) ⊂
R[p i ,j | (i , j ) ∈ G (κ1,κ2)] are in the same polynomial ring, allowing us to consider the join of the

two ideals.
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We conjecture that the reduced Gröbner basis of the vanishing ideal of the mixture of two Mallows

models is generated entirely by degree 1, degree 2, and degree 3 polynomials (for n ≥ 4). As such, in

this section, we will develop the theorems to characterize the degree 1, degree 2, and degree 3 parts of

the join of two ideals. Results of the computations of some of these vanishing ideals can be found in

Section 2.6.

We will be looking at the joins of varieties in our analysis of the ideals generated from two separate

maps. Because the ideals (as we will show in Section 2.5) are homogeneous, the join of the varieties

will be the variety of the join of the ideals (see [38]). That being said, it will be useful for us to first

examine the properties of joins of general homogeneous ideals. We start with the following definition:

Definition 2.4.1. Let J be a homogeneous ideal. Define

(J )k =
�

f ∈ J | f is homogeneous with deg( f ) = k
	

.

Our goal is to characterize the degree one and degree two parts of the join of two ideals. Using

Definition 1.1.18, the join of two ideals I , J ⊂K[x] =K[x1, . . . ,x t ] is

I ∗ J =
�

I (r)+ J (s)+ 〈x j − s j − rj | 1≤ j ≤ t 〉
�

∩K[x] .

Now let us consider the degree one part of the join of two ideals (I ∗ J ).

Lemma 2.4.2. Let I , J ⊂K[x1, . . . ,x t ] be homogeneous ideals. Then

(I ∗ J )1 = I1 ∩ J1 .

Proof. We want to consider

(I ∗ J )1 =
��

I (r)+ J (s)+ 〈x j − s j − rj | 1≤ j ≤ t 〉
�

∩K[x]
�

1
.

The degree one part of the join will be exactly the part of the sum of the three ideals which is linear

after intersection withK[x] =K[x1, . . . ,x t ]. We need the sum to be linear in x, which means whatever

comes from 〈x j − s j − rj | 1≤ j ≤ t 〉 will be a linear polynomial. We also need it to be a polynomial

in just the x terms, which means that any polynomial with some ri or some s j in any term of the

polynomial will not be in the degree one part of the join. The only way for this to happen is for all

of the ri and s j to cancel out within the sum. Now suppose the sum looks like f (r)+ g (s)+h(x, r, s)

where f ∈ I , g ∈ J , and h ∈ 〈x j − s j − rj | 1≤ j ≤ t 〉 and suppose furthermore that the sum contains

no ri and no s j . Since g (s) cannot contain any terms ri , this means that if the sum of the ri terms is
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zero, we have that if f =
∑t

i=1 b i ri , then we see that

h(x, r, s) =
t
∑

i=1

b i (x i − ri − s i ) .

But now, we also assumed that the sum of the s j is zero, so we have that if g =
∑t

j=1 c j s j , this forces

h(x, r, s) =
t
∑

i=j

c j (x j − rj − s j )

by similar constraints. This is only possible if b i = c i for all 1≤ i ≤ t . If this is the case, then f (x) = g (x)

and then f ∈ I1 ∩ J1 as it is a polynomial with degree one in both I and J .

The reverse implication holds as well: if there is a linear polynomial f ∈ I1 ∩ J1, then it is clear that

f ∈ (I ∗ J )1 as it can be expressed as f (r)+ f (s)+ f (x− r− s)where

f (x− r− s) = f (x1− r1− s1, . . . ,x t − rt − s t ) .

Thus, we have that (I ∗ J )1 = I1 ∩ J1.

To characterize the degree 2 part of the join of two ideals we will make use of the polarization of a

polynomial, which will be defined as follows:

Definition 2.4.3. Let f ∈K[x] be a homogeneous polynomial of degree d where x= (x1, . . . ,xn ). For

each i = 1, . . . , d introduce a new set of variables xi = (x i 1, . . . ,x i n ) and variables t= (t1, . . . , td ). The

polarization of f , denoted f(x1, . . . , xd ) is the coefficient of t1 in the expansion of f (t1x1+ · · ·+ td xd ) as

a polynomial in t.

Example 2.4.4. Consider the polynomial f (x , y , z ) = x 2 + y z where f (x , y , z ) ∈ K[x , y , z ]. Let x1 =

(x1, y1, z 1) and x2 = (x2, y2, z 2). Then the polarization of f , f(x1, x2) is the coefficient of t1t2 in the

expression f (t1x1+ t2x2, t1y1+ t2y2, t1z 1+ t2z 2). We see

f (t1x1+ t2x2) = (t1x1+ t2x2)2+(t1y1+ t2y2)(t1z 1+ t2z 2)

= t 2
1 x 2

1 +2t1t2x1x2+ t 2
2 x 2

2 + t 2
1 y1z 1+ t1t2y1z 2+ t1t2y2z 1+ t 2

2 y2z 2

and therefore f(x1, x2) = 2x1x2+ y1z 2+ y2z 1.

Using the concept of a polarization, we have the following theorem:
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Theorem 2.4.5. Let f be a homogenous polynomial and I , J ∈K[x1, . . . ,xn ] homogeneous ideals. Then

f ∈ (I ∗ J )2 if and only if the following three conditions are true:

1. f ∈ I

2. f ∈ J

3. f(r, s)∈ I (r)+ J (s)

where f(r, s) is the polarization of f and I (r) is the ideal I after replacing the variables x i with ri and

similarly J (s) is the ideal J after replacing the variables x j with s j .

Proof. We know (I ∗ J ) =
�

I (r)+ J (s)+ 〈x j − s j − rj | 1≤ j ≤ n〉
�

∩K[x]. If we assume f (x) ∈ I ∗ J , we

want to consider

f (r+ s) = f (r1+ s1, r2+ s2, . . . , rn + sn )

as f ∈ I ∗ J ⇔ f (r+ s)∈ I (r)+ J (s). From Lemma 2.5 of [38], we have:

f (r+ s) =
∑

|β |=2

1

β !
f(rβ1 , sβ2 )

where β !=β1! ·β2! and f is the polarization of of f . Then

f (r+ s) =
1

2
f(r, r)+ f(r, s)+

1

2
f(s, s)

According to [38], we know f(r, r) = 2! f (r), and similarly for f(s, s). So we have

f (r+ s) =
1

2
f(r, r)+ f(r, s)+

1

2
f(s, s) = f (r)+ f(r, s)+ f (s) .

Clearly, f (r)+ f (s)∈ I (r)+ J (s) implies f ∈ I and f ∈ J . Then we know f (r+s)∈ I ∗ J if f(r, s)∈ I (r)+ J (s).

Thus, whenever f ∈ I ∗ J , f ∈ I ∩ J and f(r, s)∈ I (r)+ J (s).

Since I (r)+ J (s) is bihomogeneous, g (r, s)∈ I (r)+ J (s) if and only if all the bihomogeneous pieces

of g (r, s) are in I (r) + J (s). Since all the bihomogenous pieces of f (r+ s) are in I (r) + J (s), then the

theorem holds.

Without too much effort, we can construct a very similar proof for the degree three case.

Theorem 2.4.6. Given a homogenous polynomial f and homogeneous ideals I , J ∈K[x1, . . . ,xn ]. Then

f ∈ (I ∗ J )3 if and only if the following conditions are true:

1. f ∈ I
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2. f ∈ J

3. f(r, r, s)∈ I (r)+ J (s)

4. f(r, s, s)∈ I (r)+ J (s)

where f(r, r, s), f(r, s, s) are the polarizations of f and I (r), J (s) are defined as before.

Proof. As we did in Theorem 2.4.5, we will consider f (r+ s). Recall in the proof of Theorem 2.4.5 we

saw that f ∈ I ∗ J if and only if f (r+ s)∈ I (r)+ J (s). Again, from Lemma 2.5 of [38], we have:

f (r+ s) =
∑

|β |=2

1

β !
f(rβ1 , sβ2 )

where β !=β1! ·β2! and f is the polarization of of f . Know that f has degree 3, we can expand this to get

f (r+ s) =
1

6
f(r, r, r)+

1

2
f(r, r, s)+

1

2
f(r, s, s)+

1

6
f(s, s, s)

= f (r)+ f (s)+
1

2

�

f(r, r, s)+ f(r, s, s)
�

As previously stated, I (r)+ J (s) is bihomogenous, so f ∈ I (r)+ J (s) if and only if all the bihomogeneous

parts of f are in I (r)+ J (s). Thus, we know that if f ∈ (I ∗ J )3, then f ∈ I and f ∈ J and f(r, r, s), f(r, s, s)∈
I (r)+ J (s). The reverse implication is straight forward, so we have that f ∈ (I ∗ J )3 if and only if f ∈ I

and f ∈ J and f(r, r, s), f(r, s, s)∈ I (r)+ J (s).

We can obtain a more specific result for degree 2 part of the join of homogeneous ideals. We restrict

ourselves to ideals whose linear part is generated by monomials, i.e. the linear part is simply generated

by single variables. After the proof, we will explain why this “restriction" is easily circumnavigated.

Theorem 2.4.7. Let I , J ∈K[x1, . . . ,xn ] be homogeneous ideals such that (I )1 = 〈x i 1 , . . . ,x i t 〉 and (J )1 =

〈x j1 , . . . ,x j`〉 where {x i 1 , . . . ,x i t } ∩ {x j1 , . . . ,x i `} = ;. Then the degree 2 part of the join is given by the

formula

(I ∗ J )2 =
�

(I )2 ∩K[x j1 , . . . ,x j` ]
�

+
�

(J )2 ∩K[x i 1 , . . . ,x i t ]
�

.

Proof. Let f be a polynomial with deg( f ) = 2. We know

f ∈
�

(I )2 ∩K[x j1 , . . . ,x j` ]
�

+
�

(J )2 ∩K[x i 1 , . . . ,x i t ]
�

if and only if f ∈ I and f ∈ J (as the first intersection requires f ∈ I and f ∈K[x j1 , . . . ,x j` ]which implies

that f ∈ J since (J )1 = 〈x j1 , . . . ,x j`〉). Similarly, the second intersection in the sum requires f ∈ J and
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f ∈ I . If we knew that f (r, s)∈ I (r)+ J (s), then by Theorem 2.4.5, f ∈ (I ∗ J )2. Then all that needs to be

shown is that f ∈
�

(I )2∩K[x j1 , . . . ,x j` ]
�

+
�

(J )2∩K[x i 1 , . . . ,x i t ]
�

implies that f(x(1), x(2))∈ I (x(1))+ J (x(2))

where we have new sets of variables x(1) = (x (1)1 , . . . ,x (1)n ) and x(2) = (x (2)1 , . . . ,x (2)n ) in the polarization.

Note that we use the variables x(1), x(2) (as opposed to r, s) to highlight these variables relation to the

variables in our polynomial ringK[x1, . . . ,xn ].

Given the disjoint sets {x i 1 , . . . ,x i t } and {x j1 , . . . ,x i `}, let {xk1 , . . . ,xkp } be the pairwise disjoint

subset of {x1, . . . ,xn} such that:

{x i 1 , . . . ,x i m }∪ {x j1 , . . . ,x i `}∪ {xk1 , . . . ,xkp }= {x1, . . .xn} .

We want to consider f (x(1), x(2)), so let x(1) be the first set of variables and x(2) the second as described

in Lemma 2.6 of [38].

The polynomials f ∈ (I ∗ J )2 will have a polarization of the form

f(x(1), x(2)) =
∑

i ,j

c i ,j (x
(1)
i x (2)j +x (1)j x (2)i )

because the polarization is symmetric and the f(x(1), x(2)) is bihomogeneous with bi-degree (1,1).

Because f(x(1), x(2))must have bi-degree (1, 1) and the i , j can only appear if i , j ∈ {i 1, . . . , i m , j1, . . . , j`},
we see that none of the terms containing any of {xk1 , . . . ,xkp } can appear, so we have already filled in

the corresponding columns and rows with zeroes. We consider the coefficient matrix of f (x(1), x(2)):

x (2)i 1
. . . x (2)i m

x (2)j1
. . . x (2)j`

x (2)k1
. . . x (2)kp





















































































x (1)i 1

0...

x (1)i m

x (1)j1

0...

x (1)j`

x (1)k1

0 0 0...

x (1)kp

.

Now, if f ∈ I and f ∈ J where f is bihomogeneous of bi-degree (1,1), we see that every monomial

term of f(x(1), x(2))must contain either a coefficient from {x i 1 , . . . ,x i m } or {x j1 , . . . ,x i `}. Then we get the
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coefficient matrix

x (2)i 1
. . . x (2)i m

x (2)j1
. . . x (2)j`

x (2)k1
. . . x (2)kp





















































































x (1)i 1

0...

x (1)i m

x (1)j1

0 0...

x (1)j`

x (1)k1

0 0 0...

x (1)kp

.

Finally, the polarization is symmetric, which forces the coefficient matrix to be symmetric as well,

leaving us with

x (2)i 1
. . . x (2)i m

x (2)j1
. . . x (2)j`

x (2)k1
. . . x (2)kp





















































































x (1)i 1

0 0...

x (1)i m

x (1)j1

0 0...

x (1)j`

x (1)k1

0 0 0...

x (1)kp

.

Notice that the matrix forces that for every monomial, either both terms come from the variables

{x i 1 , . . . ,x i m } or both terms come from the variables {x j1 , . . . ,x i `}. Now when we consider

�

(I )2 ∩K[x j1 , . . . ,x j` ]
�

+
�

(J )2 ∩K[x i 1 , . . . ,x i m ]
�

we see that a polynomial is in this sum if and only if both terms come from the variables {x i 1 , . . . ,x i m }
or both terms come from the variables {x j1 , . . . ,x i `}. Suppose they did not; then we would have
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a monomial with one term from the variables {x i 1 , . . . ,x i m } and one from {x j1 , . . . ,x i `}. But this is

impossible for a single monomial as the intersection forces each monomial that appears to lie either

completely inK[x i 1 , . . . ,x i m ] or completely inK[x j1 , . . . ,x i ` ]. Thus, we have that

f ∈
�

(I )2 ∩K[x j1 , . . . ,x j` ]
�

+
�

(J )2 ∩K[x i 1 , . . . ,x i m ]
�

if and only if the coefficient matrix of f(r+ s) is of the form:

x (2)i 1
. . . x (2)i m

x (2)j1
. . . x (2)j`

x (2)k1
. . . x (2)kp





















































































x (1)i 1

0 0...

x (1)i m

x (1)j1

0 0...

x (1)j`

x (1)k1

0 0 0...

x (1)kp

.

Since the coefficient matrix in this case is the same as in the case as when f ∈ (I ∗ J )2, we know

that

f ∈ (I ∗ J )2 ⇐⇒ f ∈
�

(I )2 ∩K[x j1 , . . . ,x j` ]
�

+
�

(J )2 ∩K[x i 1 , . . . ,x i t ]
�

.

While this theorem is stated in a way such that the ideals I , J must be homogeneous with their

degree 1 parts generated by disjoint monomials, it is possible to use Theorem 2.4.7 to help characterize

the degree 2 part of the join of any two homogeneous ideals. The degree 1 part of ideals can always be

written as monomials after a change of variables. It is not true that doing this for two ideals (where

both are written using the same change of variables) ensures that the degree 1 part of the two ideals

will have an empty intersection. However, we can simply consider a subset of the variables which do

not overlap, knowing that the monomials which do overlap will then be identical. Thus, the monomials

(or variables) which are in the intersection of the degree 1 part of the two ideals are removed and

considered separately, allowing us to apply Theorem 2.4.7 twice and thereby characterizing the degree

2 part of the join of any two homogeneous ideals.
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Knowing these properties about the join of two homogeneous ideals will allow us to easily charac-

terize the ideals which will be introduced in Section 2.5.

2.5 The Vanishing Ideal of the Mixture of Two Mallows Models

The vanishing ideal of the mixture of two Mallows models is an ideal in the polynomial ring with

the variables p i ,j such that (i , j ) ∈ G (π,σ) for a given π,σ ∈ Sn for some n . As we showed before,

G (π,σ) does not depend on the specific π orσ, but on d(π,σ) and n . We can work in a more general

environment in which this polynomial ring is a special case. Recall in Proposition 2.3.9 and Proposition

2.3.11 tell us that G (κ1,κ2) =H (r, m ) in the specific care where m =
�n

2

�

and r = d(π,σ). If we remove

the restriction that m =
�n

2

�

,H (r, m ) is still a well defined set. We would like a polynomial ring with

variables coming from the (i , j ) pairs in this more generalH (r, m ) with the knowledge that in the

special case when we can write m =
�n

2

�

, we can consider this as a polynomial ring from which the

vanishing ideal of our Mallows mixture model might originate. Using this as inspiration, define the

ring

Pm ,r =Q[p i ,j | (i , j )∈H (r, m )] ,

and consider the map

Φm ,r : Pm ,r −→Q[t1, t2,q1,q2]

p i ,j 7→ t1q i
1 + t2q

j
2 .

We are interested in characterizing the kernel of this map. More specifically, we would like to be

able to give an exact method for determining all the generators of ker(Φm ,r ). In this section, we will

characterize the degree 1 generators of ker(Φm ,r ) for general m , r . Then, we will look at the specific

case where we restrict ourselves to cases where r = 1 and describe the degree 2 generators for Φm ,1.

In the case where r = 1, we see certain desirable properties which arise, so we look at Φm ,1 in

closer detail. First, we look at the structure ofH (r, m ). Recall that

H (1, m ) =
�

(i , j ) | (i + j )≡ 1 mod 2 and 1≤ i + j ≤ (2m −1) and |i − j | ≤ 1
	

.

Using this, we notice that all the p i ,j in our particular Pm ,1 will have either form p i ,i+1 or p i+1,i ,

regardless of the size n . Define I = kerΦm ,1. We will show I has a number of nice properties and its

generators are easy to characterize. First, we claim there are no linear generators of I . Next, we will

show the exact number of quadratic generators of I to be 2
�m−2

2

�

= (m −2)(m −3). Finally, we aim to

show exactly what these generators will be in the case where r = 1.
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In order to do this, we will first define the maps:

φm ,r : Pm ,r −→Q[t1, t2,q1,q2] ψm ,r : Pm ,r −→Q[t1, t2,q1,q2]

p i ,j 7→ t1q i
1 p i ,j 7→ t2q

j
2 .

Again, we will be particularly interested in the case where r = 1. The kernels of these maps form an

ideal. Define I1 = ker(φm ,1) and I2 = ker(ψm ,1). When r = 1, we have that every variables of Pm ,1 will

be all variables of the form p i ,i+1 and p i+1,i where i = 0, . . . , m −1. Then Theorem 2.1.1 tells us that

I1 = ker(φm ,1) = 〈p i ,i+1−p i ,i−1 , pk ,k+1p j+1,j −pk+1,k p j ,j+1 | 0 ≤ k < j ≤m −1 and 0≤ i ≤m −1〉

I2 = ker(ψm ,1) = 〈p i+1,i −p i−1,i , pk ,k+1p j+1,j −pk+1,k p j ,j+1 | 0 ≤ k < j ≤m −1 and 0≤ i ≤m −1〉 .

We can characterize all linear generators of ker(Φm ,r ) for any r , and we need not restrict ourselves

to ker(Φm ,1).

Theorem 2.5.1. The linear part of ker(Φm ,r ) is generated by polynomials of the form

p i ,j +p i+2,j+2−p i+2,j −p i ,j+2

where 0≤ i , j ≤m −2 and (i , j ), (i , j +2), (i +2, j ), (i +2, j +2)∈H (r, m ). These equations are linearly

independent and there are (m − r −1)(r −1) of them.

Proof. Consider any linear polynomial f ∈ ker(Φm ,r ). Then f has the form

f =
∑

(i ,j )∈H (r,m )

c i ,j p i ,j .

First we observe that f ∈ ker(Φm ,r ) implies thatΦm ,r ( f ) =
∑

(i ,j )∈H (r,m ) c i ,j (t1q i
1+t2q

j
2 ) = 0. This implies

that all the t1q i
1 terms and all the t2q

j
2 terms must sum to zero. Now consider span{p i ,j +p i+2,j+2−

p i+2,j −p i ,j+2 | 0≤ i , j ≤m −2} and for ease of notation denote Bi ,j = p i ,j +p i+2,j+2−p i+2,j −p i ,j+2.

It is clear that each Bi ,j ∈ ker(Φm ,r ) for all 0≤ i , j ≤m −2, so any linear combination of the Bi ,j is also

in ker(Φm ,r ). Now suppose f /∈ span{Bi ,j | 0≤ i , j ≤m −2}. Then we can rewrite

f =
∑

(i ,j )∈H (r,m )

c i ,j p i j =
∑

(i ,j )∈H (r,m )

αi ,j Bi ,j +
∑

(i ,j )∈H (r,m )

βi ,j p i ,j

where
∑

(i ,j )∈H (r,m )βi ,j p i ,j is not divisible by any of the Bi ,j for 0 ≤ i , j ≤m − 2. We apply a lexico-

graphic monomial ordering where p i 1,j1 < p i 2,j2 is i 1 > i 2 or i 1 = i 2 and j1 > j2. Doing so, we see that
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∑

(i ,j )∈H (r,m )βi ,j p i ,j will not have any leading terms which look like p i 0,j0 where i 0+ j0 = r unless

i = r or j = r . If we apply Φm ,r to f we get:

Φm ,r ( f ) =
∑

(i ,j )∈H (r,m )

αi ,jΦm ,r (Bi ,j )+
∑

(i ,j )∈H (r,m )

βi ,jΦm ,r (p i ,j )

=
∑

(i ,j )∈H (r,m )

0+
∑

(i ,j )∈H (r,m )

βi ,j (t1q i
1 + t2q

j
2 ) = 0 .

Again, the t1q i
1 and the t2q

j
2 must sum to zero. By definition (0, r ), (r,0)∈H (r, m ). We know β0,r = 0

as the Φm ,r (β0,r p0,r ) = β0,r (t1+ t2q r
2 ) since there are no other terms which could possibly contain a

t1q 0
1 = t1. In fact, it can be shown that for each 0≤ i 0 < r , there is only one j0 such that p i 0,j0 is not a

leading term of the Bi ,j . Since this is the only term which can appear in
∑

(i ,j )∈H (r,m )βi ,j (t1q i
1 + t2q

j
2 )

with that particular power of q1 and we know the q1 terms must sum to zero, we see that βi ,j = 0 for

all j where 0≤ i < r . After knowing that these terms are zero, we can repeat the process until you get

to 2m − r −1≤ i + j . That is, you can continue until you get to the i , j where either i + j = 2m − r −1

or 2m − r = i + j . Again, (m , m − r ), (m − r, m )∈H (r, m ) by the definition ofH (r, m ). We know that

none to these terms can be a leading term of the Bi ,j due to the monomial order and bounds on i , j .

We see that pm ,m−r is the only term which can contain any q m
1 so βm ,m−r = 0. In a similar fashion, we

know βm−r,m = 0. Then for pn−1,n−r−1, we see that any other pn−1,j would be a leading term of some

Bm−1,j for all j <m − r −1 such that (m −1, j ) ∈H (r, m ). Since this is the case, then pm−1,m−r−1 is

the only term which maps to βm−1,m−r−1q m−1
1 so βm−1,m−r−1 = 0. Similarly βm−r−1,m−1 = 0. In this

way we continue until we see that all βi ,j = 0 which means

f =
∑

(i ,j )∈H (r,m )

c i ,j p i j =
∑

(i ,j )∈H (r,m )

αi ,j Bi ,j +
∑

(i ,j )∈H (r,m )

βi ,j p i ,j =
∑

(i ,j )∈H (r,m )

αi ,j Bi ,j .

Thus, for all f ∈ ker(Φm ,r )where f is linear, we have

f ∈ span{Bi ,j | 0≤ i , j ≤ n −2 and (i , j )∈H (r, m )} .

Then the linear part of ker(Φm ,r ) is generated by

span{Bi ,j | 0≤ i , j ≤ n −2 and (i , j )∈H (r, m )} =
span{p i ,j +p i+2,j+2−p i+2,j −p i ,j+2 | 0≤ i , j ≤m −2 and (i , j )∈H (r, m )} .

Corollary 2.5.2. The ideal I = ker(Φm ,1) contains no linear polynomials.
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Proof. From Theorem 2.5.1 we see that in the case of I = ker(Φm ,1), for all (i , j )∈H (r, m ) Theorem

2.3.7 shows (i +2, j ) 6∈ H (r, m ). Then we know that p i ,j +p i+2,j+2−p i+2,j −p i ,j+2 is not something

which can appear as at least one of the variables would not be an element of Pm ,1. Thus, the space

span{p i ,j +p i+2,j+2−p i+2,j −p i ,j+2 | 0≤ i , j ≤ 2m −2 and (i , j )∈H (r, m )}= {;}

and I = ker(Φm ,1) contains no linear polynomials.

Next we look at (I1∗I2)2. To describe (I1∗I2)2, we wish to employ 2.4.7. To do so, we need the degree

one parts of I1, I2 to be generated by disjoint monomials. Consider the linear change of variables

X i = p i ,i+1−p i ,i−1 and Yi = p i+1,i −p i−1,i . After the change of variables, we consider

I1, I2 ⊂K[p0,1, p1,0, X1, . . . , Xm−1, Y1, . . . , Ym−1]

We then observe that (I1)1 = 〈X i | 1≤ i ≤m −1〉 and (I2)1 = 〈Yi | 1≤ i ≤m −1〉 according to Theorem

2.1.1 and Corollary 2.1.2.

Because p0,1 and p1,0 do not appear in the linear part of either I1 or I2, they will not appear in

(I1 ∗ I2)2. Following directly from the proof of Theorem 2.4.7, since I1 and I2 both have linear parts

which are generated by a set of monomials, we can create the coefficient matrix of the prolongation

for any candidate degree two polynomial f ∈ (I1 ∗ I2)2 which must have the following form:

p (2)0,1 p (2)1,0 X (2)1 . . . X (2)n−1 Y (2)1 . . . Y (2)n−1




































































p (1)0,1 0 0
0 0

p (1)1,0 0 0

X (1)1 0 0

0... 0 0

X (1)n−1 0 0

Y (1)1 0 0

0... 0 0

Y (1)n−1 0 0

.

Now if we restrict ourselves to polynomials which have a good polarization, we observe that

(I1)2 ∩K[X1, . . . , Xm−1Y1, . . . , Ym−1] = spanK{X i X j , Yi Yj −Yb i+j
2 c

Yd i+j
2 e

| 1≤ i , j ≤m −1}
(I2)2 ∩K[X1, . . . , Xm−1Y1, . . . , Ym−1] = spanK{Yi Yj , X i X j −X b i+j

2 c
X d i+j

2 e
| 1≤ i , j ≤m −1}.

Since (I1)1 is generated entirely by the X ’s and (I2)1 is generated entirely by the Y ’s, Theorem 2.4.7
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tells us to consider the ideals

�

(I1)2 ∩K[Y1, . . . , Ym−1]
�

= spanK{Yi Yj −Yb i+j
2 c

Yd i+j
2 e

| 1≤ i , j ≤m −1}
�

(I2)2 ∩K[X1, . . . , Xm−1]
�

= spanK{X i X j −X b i+j
2 c

X d i+j
2 e

| 1≤ i , j ≤m −1}.

Then we have that

(I1 ∗ I2)2 = spanK

§

X i X j −X b i+j
2 c

X d i+j
2 e

, Yi Yj −Yb i+j
2 c

Yd i+j
2 e
| 1≤ i , j ≤m −1

ª

.

by Theorem 2.4.7. We summarize these results in the following theorem:

Theorem 2.5.3. Let m > 3 and Φm ,1 as defined above. Then the degree two part of ker(Φm ,1) is

§

X i X j −X b i+j
2 c

X d i+j
2 e

, Yi Yj −Yb i+j
2 c

Yd i+j
2
| 1≤ i , j ≤m −1 and i +1< j

ª

.

Furthermore, there are (m −2)(m −3) polynomials of this form and they are linearly independent.

Proof. The proof of this follows directly from the computations above. To see that there are exactly

(m −2)(m −3) (non-trivial) polynomials of this form, consider first the number of polynomials only

in X i ’s. There are
�m−1

2

�

choices for grabbing a distinct X i , X j . However, if j = i +1, the polynomial

X i X j −X b i+j
2 c

X d i+j
2 e

is X i X i+1 −X i X i+1 and is trivial. There are m − 2 possible cases where j = i + 1.

When we subtract
�m−1

2

�

− (m −2) and find a common denominator we are left with
(m −2)(m −3)

2

nontrivial polynomials in just the X i ’s. Similarly, there will be
(m −2)(m −3)

2
polynomials in just the

Yj ’s, giving us a total of (m −2)(m −3) degree two polynomials which generate the degree two part of

ker(Φm ,1).

2.6 Computations and Conjectures on the Number of Generators of Each

Degree

In this section, we examine the computational data acquired from finding a minimal generating

set for ker(Φm ,r ), specifically the number of generators of each degree for ker(Φm ,r ) for different values

of m , r . We then propose conjectures regarding specific patterns observed in this data.

We saw in Theorem 2.5.1 exactly what the linear generators of ker(Φm ,r )would be and there are

exactly (m − r −1)(r −1) of them. We saw in Theorem 2.5.3 that there will be exactly (m −2)(m −3)

degree two generators. It should be noted that due to symmetry, the (i , j ) ∈ H (r, m ) if and only if
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Table 2.4 The number of degree 1, 2, 3, and 4 generators for m , r

m r 1 2 3 4
3 0 0 0 0 0
3 1 0 0 2 2
4 0 0 0 1 0
4 1 0 2 10 0
4 2 1 2 10 0
5 0 0 0 4 0
5 1 0 6 22 0
5 2 2 6 22 0
6 0 0 0 10 0
6 1 0 12 38 0
6 2 2 12 38 0
6 3 4 12 38 0
7 0 0 0 20 0
7 1 0 20 58 0
7 2 4 20 58 0
7 3 6 20 58 0
8 0 0 0 35 0
8 1 0 30 82 0
8 2 5 30 82 0
8 3 8 30 82 0
8 4 9 30 82 0

(m − i , j ) ∈ H (m − r, m ). Thus, we only need to consider values of r from 0, . . . ,
�

m
2

�

. Note that in

the case where r = 0, we can say that ker(Φm ,r ) will be a secant ideal, and therefore the number of

generators will be
�m−1

3

�

(see, for instance, [34]).

Apart from the linear generators of ker(Φm ,r ), we do not prove the number of generators of each

degree is fixed. However, we do conjecture the number of degree 2 and degree 3 generators of ker(Φm ,r )

based on computational evidence. In Table 2.4, we see the number of degree 1, degree 2, degree 3,

and degree 4 generators for m = 3, . . . ,8 for all r = 0, . . . ,
�

m
2

�

. We notice that there are no degree 4

generators for and m > 3. Based on these computations, we propose the following conjectures.

Conjecture 2.6.1. Let r, m ∈Z. Then:

1. If m > 3 is fixed and 0< r <m then the number of generators of ker(Φm ,r ) of degree two and three

does not depend on r .

2. If m > 3 and 0< r <m the number of degree 2 generators of ker(Φm ,r ) is given by (m −2)(m −3).
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For r = 1, this number is worked out previously in the chapter.

3. If m > 3 and 0< r <m the number of degree 2 generators of ker(Φm ,r ) is given by 2(m −1)(m −
2)−2.

4. If m > 3, there are no minimum generators of degree ≥ 4.
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CHAPTER

3

CHARACTERIZING THE BI-DISTANCE

POLYNOMIAL Fτ

In Chapter 2, we introduced a statistical model which was the mixture of two Mallows models. In

this model, the probability of observing a permutation depends on the distance that permutation is

from the centers of the two individual Mallows models. To effectively use such a model in practice, we

would need a method to count the number permutations that are a fixed bi-distance from these two

centers. In this chapter, we define a generating function which counts the number of permutations

that are distance i from one fixed permutation and distance j from a second fixed permutation.

As we shall see, our choice of the fixed permutations greatly affects the the form of this generating

function. In Section 3.1, we introduce the generating function we will study in the chapter. We examine

how this generating function will factor when it is centered around a permutation which can be written

as the direct sum or the skew sum of two permutations in Section 3.2. Finally, in Section 3.3 we will

look at how this generating function factors when centered around more general permutations.
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3.1 fτ as a Generating Function

In Chapter 2, we examined a mixture model based on the Mallows Model. In this model, the probability

of observing a particular permutation (or ranking) was dependent on both its distance from first

“center" and its distance from the second “center". We will change the notation used in Chapter 2 using

π,σ to denote the centers of the two Mallows models as opposed to κ1,κ2. Recall in the model we

described in Chapter 2, we defined the p i ,j as the probability of observing any permutation that was

distance i from the first center (π) and distance j from the second center (σ). That is, for any β ∈Sn

such that d(π,β ) = i and d(σ,β ) = j , pβ = p i ,j . Suppose instead that we knew the marginal probability

of observing any permutation β ∈Sn which satisfies d(π,β ) = i and d(σ,β ) = j . Because the model

assigns the same probability to all such permutations, the probability of observing a specific β is the

probability of observing any permutation which is distance i from π and distance j fromσ. If we let

Qi ,j =
n

γ∈Sn | d(π,γ) = i and d(σ,γ) = j
o

then we have that the marginal probability of observing a permutation which is distance i from π and

distance j fromσ is given by |Qi ,j | ·p i ,j .

In order to be able to use this for general i , j , we propose a generating function. Consider the

following function:

fτ(t , u ) =
∑

γ∈Sn

t d(id,γ)u d(τ,γ)

=
∑

γ∈Sn

t d(id,γ)u d(τγ−1,id)

=
∑

γ∈Sn

t inv(γ)u inv(τγ−1)

In this function, the coefficient in front of t i u j is exactly the number of permutations γ that are

distance i from the identity permutation and distance j from the permutation τ. We can see how

this relates to our two centers π,σ from our Mallows mixture model: we saw before that Kendall’s tau

metric is right invariant. Furthermore, it is easy to verify that a permutation has the same number of

inversions as its inverse. We know Sn is generated by adjacent transpositions, so if we list the product

of adjacent transpositions which make up any element of Sn , its inverse will be the product of these

adjacent transpositions in the reverse order. Kendall’s tau metric counts the minimum transpositions
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in this product, we know that inv(γ) = inv(γ−1) for all γ∈Sn . Using these two facts, we see that

t d(π,γ̂)u d(σ,γ̂) = t d(id,γ̂π−1)u d(σπ−1,γ̂π−1)

Since we are summing up over all permutations γ̂, we let τ=σπ−1 and γ= γ̂π−1 and see that this is in

fact the sum we want to consider.

We saw in Proposition 1.2.8 that
∑

γ∈Sn

q inv(γ) = (n)!

is the q-analogue of n !. This is a very well studied combinatorial object and has a nice factorization.

Thus, when we let u = 1, our polynomial fτ(t , u ) is exactly the (n)!t and therefore has a nice factoriza-

tion. Does this hold true when u is not fixed? If it does not hold true in general, can we find exactly

when fτ(t , u ) does have a nice factorization.

As described above, this factorization would be useful for counting how many permutations are

distance i from the identity and distance j from τ. We saw earlier that this generating function would

be necessary to create a probability distribution using the p i ,j described in Section 2.2. While such a

factorization would certainly be important if ever we were to try and use the Mallows mixture model in

practice, fτ(t , u ) is an interesting object from a combinatorial perspective. As we described in Section

2.1, in the original Mallows model, the normalizing constant is the q-analogue of n !. That is, if we let

Pr(π) be probability of observing a permutation π in the original Mallows model with center κ, then

Pr(π)∝q d(κ,π). Just as when Pr(π)∝q d(κ,π), the normalizing constant depends on the q-analogue of

n !, if we were to look at a model where Pr(π)∝ t d(κ,π)u d(γ,π), the normalizing constant would depend

on the polynomial fτ(t , u ) (where τ= γκ−1). Though we do not examine such a model, it is certainly

one that may be of interest.

Question 3.1.1. How does fτ(t , u ) factor, if at all? When is it irreducible? Are there cases where we

can explicitly write the factorization of fτ(t , u )?

Because τ plays a pivotal role in the structure of fτ(t , u ), it is natural to ask whether the structure

of the permutation τ plays a role in whether this polynomial has a nice factorization.

Consider the following two examples. First we consider the permutation 23451 ∈ S5. When we

compute the bi-distance polynomial f 23451(t , u ) in Mathematica, we see it has the following factoriza-

tion

f 23451(t , u ) = (1+ t u )2(1+ t 2u 2)(1+ t u + t 2u 2)(t 4+ t 3u + t 2u 2+ t u 3+u 4)

In contrast, f 3142 is irreducible and is of the form
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f 3142(t , u ) = t 3+ t 2u +2t 4u +2t u 2+2t 3u 2+ t 5u 2+u 3+2t 2u 3+2t 4u 3+ t 6u 3+ t u 4+2t 3u 4+

2t 5u 4+2t 2u 5+ t 4u 5+ t 3u 6

Why does the first bi-distance polynomial factor so neatly, while the second cannot be factored at

all? Computations show that of all the permutations in S4, only the permutations 2413 and 3142 have

bi-distance polynomials that are irreducible. These are, in fact, the only two permutations of S4 which

are not separable. Computations suggest that any permutation that is not separable will have a very

large irreducible component. To better understand the way the bi-distance polynomial factors for a

given τ, we will examine the properties of the particular τ.

In the next two sections, we examine how imposing various structures on the permutation τ leads

to specific factorizations of the polynomial fτ.

3.2 Factoring fτ when τ=π⊕σ and τ=π	σ

In this section we will examine specific structure of the permutation τwhich make factoring fτ(t , u )

easy. In particular, we characterize the particular kind of factorization we are interested in with the

following definition:

Definition 3.2.1. Given any permutation τ ∈ Sn , the bi-distance polynomial fτ(t , u ) of τ is called

collapsable if fτ(t , u ) can be written as a product containing two or more bi-distance polynomials

from symmetric groups with size strictly less than n . In other words,

fτ(t , u ) = g (t , u ) ·
k
∏

i=1

fπi (t , u )

where πi ∈Sa i (with a i < n for all i ∈ [k ]), k ≥ 2 and g (t , u )∈R[t , u ] any polynomial in t and u . We

call fτ(t , u ) completely collapsable if fτ(t , u ) can be written factored as

fτ(t , u ) =





`1
∏

i=1

�

ni

ki

�

t u











`2
∏

j=1

u k j (n j−k j )
�

nj

kj

�

t /u







With this definition, we can restate the earlier question:

Question 3.2.2. For which τ∈Sn is fτ(t , u ) collapsable? For which τ is fτ(t , u ) not collapsable?

To answer these questions, we start with two different kinds of permutation classes, both of which

act on the subsets {1, . . . , k } and {k +1, . . . , n} disjointly. We will need the following definition:
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Definition 3.2.3. Letσ ∈Sn and π∈Sm elements of the symmetric groups of sizes n , m respectively.

Then we can define two operations on π and σ. Let Mπ, Mσ be the permutation matrices of π,σ

respectively. The direct sum of the permutations lies in Sn+m , π⊕σ ∈Sm+n has permutation matrix

Mπ⊕σ =

 

Mπ 0

0 Mσ

!

.

The skew sum lies in Sm+n , π	σ ∈Sm+n , with permutation matrix

Mπ	σ =

 

0 Mπ

Mσ 0

!

.

Any permutation β which can be written as a string of direct sums and skew sums of the trivial

permutation in S1 is called separable.

Based on this definition, it is clear that any permutation that can be written as a direct sum or

skew sum of permutations will act on the subsets {1, . . . , k } and {k+1, . . . , n} disjointly (or {1, . . . , n−k }
and {n − k + 1, . . . , n} disjointly, if it is the skew sum). That is, given τ ∈ Sn , π ∈ Sk , and σ ∈ Sn−k

with τ=π⊕σ, then tau would send items {1, . . . , k } to ranks {1, . . . , k } and items {k +1, . . . , n} to the

rankings {k +1, . . . , n}. Similarly, if τ=π	σ, τwould send items {1, . . . , k } to ranks {n −k +1, . . . , n}
and items {k +1, . . . , n} to the rankings {1, . . . , n −k }. Thus, if τ can be written either as a direct sum

or a skew sum of two permutations, it will act disjointly on two disjoint subsets of [n ].

In order to make use of this disjoint action of τ, we will define a map to split any permutation

into two permutations, one of size k and one of size n −k . To ensure we have a bijection, we will also

need to include a multiset {1k , 2n−k }. We introduce a map from the symmetric group of size n to the

Cartesian product of the symmetric group of size k (with 1 < k < n), the symmetric group of size

n −k , and the multiset with k 1’s and n −k 2’s. This map will be very similar to the map defined in

Stanley’s proof of Proposition 1.7.1 in [39]. Define the map

φk ,n−k : Sn −→Sk × Sn−k ×S{1k ,2n−k }

τ−→ (τ1,τ2,τ3)

τ=w1w2 · · ·wn

τ1 =w`1 · · ·w`k such that w`r ≤ k for r ∈ [k ] and `i ≤ `i+1 for i ∈ [k −1]

τ2 =w j1 · · ·w jn−k such that w jr > k for r ∈ [n −k ] and j i ≤ j i+1 for i ∈ [n −k −1]
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τ3 = v1 · · ·vn where vi =







1 if w i ≤ k

2 if w i > k

We will refer toφk ,n−k simply asφk when it is clear that its domain is the symmetric group of size

n . We see that τ1 will be the permutation with permutation pattern of the first k elements of [n ] (i.e.

the permutation pattern of numbers 1 through k in τ if we write τ in one line notation), τ2 will be

the permutation which has permutation pattern of the last n −k elements of [n ] (the permutation

pattern of numbers k +1 to n in τwhen τ is in one line notation), and τ3i will tell you whether the i th

letter in the word τ is less than or equal to k , or greater than k .

We would like to consider the mapping of a particular class of permutations τ. Consider the action

of φ on a permutation τ ∈ Sn which is the direct sum of two permutations π ∈ Sk ,σ ∈ Sn−k . As we

mentioned above, the definition of τ=π⊕σ tells us that τ permutes items {1, . . . , k } and {k +1, . . . , n}
in disjoint manner, i.e. τ sends elements {1, . . . , k } to positions {1, . . . , k } and elements {k +1, . . . , n} to

positions {k +1, . . . , n}.
Then by the definition of our map φk , the permutation pattern of 1, . . . , k in τ = π⊕σ is π, as

we know that τ sends elements {1, . . . , k } to positions {1, . . . , k }. Similarly, the permutation pattern of

k +1, . . . , n in τ=π⊕σ isσ. Thus, when π∈Sk ,σ ∈Sn−k and τ=π⊕σ

φ(τ) = (π,σ, 1 · · ·12 · · ·2)

We can also say something about the number of inversions of τwhen it is the direct sum of two

permutations. Recall from Definition 1.2.3, if β =β1β2 · · ·βn ∈Sn then

inv(β ) = #
n

(i , j )∈ [n ]× [n ] | i < j and βi >βj

o

This definition tells us that a pair (i , j ) is an inversion of a permutation β if i < j and β (i )>β (j )

where β (i ) is the action of the permutation on the element i . In the case where we have τ=w1 · · ·wn =

π⊕σ, since τ must permute items {1, . . . , k } and {k + 1, . . . , n} disjointly and it sends {1, . . . , k } to

positions {1, . . . , k}, we know

inv(τ) = inv({w1 · · ·wk })+ inv({wk+1 · · ·wn}) = inv(π)+ inv(σ)

(where π∈Sk andσ ∈Sn−k ).

Suppose we consider how φk acts on the product of two permutations τγ for any γ ∈ Sn with

τ = π⊕σ (with π ∈ Sk ,σ ∈ Sn−k ). Because we know τ will permute elements {γ(1), . . . ,γ(k )} and

{γ(k +1), . . . ,γ(n )} disjointly, we can describe the action ofφk on τγ.
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Theorem 3.2.4. Let τ,γ∈Sn where γ is any permutation in Sn and τ=π⊕σwithπ∈Sk andσ ∈Sn−k .

Define the mapφk as above. Letφk (γ) =
�

γ1,γ2,γ3
�

. Then

φk (τγ) =
�

πγ1,σγ2,γ3
�

Proof. We know that τ permutes the items {1, . . . , k } and {k +1, . . . , n} disjointly.

Let γ= v1v2 · · ·vn . By definition we have that:

γ1 = v`1 · · ·v`k such that v`r ≤ k for r ∈ [k ] and `i ≤ `i+1 for i ∈ [k −1]

γ2 = v j1 · · ·v jn−k such that v jr > k for r ∈ [n −k ] and j i ≤ j i+1 for i ∈ [n −k −1]

γ3 = u 1 · · ·u n where u i =







1 if vi ≤ k

2 if vi > k

Using this, it is clear that γ(i ) ≤ k ⇔ i ∈ {`1, . . . ,`k }. Similarly for γ(i ) > k . Furthermore, τ per-

muting items {1, . . . , k } and {k + 1, . . . , n} disjointly means τ permutes the letters {v`1 , . . . , v`k } and

{v j1 , . . . , v jn−k } of γ disjointly. Since vi = γ(i ), if vi ≤ k then τ(vi ) = τγ(i ) ≤ k , and similarly if vi > k

then τ(vi ) = τγ(i )> k . Then by definition of the map φk , if φk (τγ) =
�

β1,β2,β3
�

, then we have just

shown that β3 = γ3.

Not only do we know τ permutes {v`1 · · ·v`k } and {v j1 · · ·v jn−k } disjointly, we know that it applies

the permutation π to v`1 · · ·v`k = γ1 and applies the permutationσ to v j1 · · ·v jn−k = γ2. By definition

of our mapφk we know that β1 is the permutation with permutation pattern of 1, . . . , k in τγwhen

τγ is written in one line notation. But this must be exactly π(v`1 · · ·v`k ) =πγ1 as γwill act on 1, . . . , k

according to the permutation v`1 · · ·v`k = γ1 and then τ will permute these according to π. Thus,

β1 =πγ1. By similar argument, β2 =σγ2.

Thus,φk (τγ) =
�

πγ1,σγ2,γ3
�

.

To better understand the proof, we look at a specific example.

Example 3.2.5. Let τ = 3125647 = 312⊕ 2314. We can take any other permutation as our γ, so let

γ = 5361274. We see that φ3,4(γ) = (312,2341,2121122). We compute τγ = 6273145 and see that

φ3.4(τγ) = (231, 3412, 2121122). It is immediately clear that the mutliset permutation associated with

φ3,4(γ) is the same as the multiset permutation ofφ3,4(τγ). Furthermore, as we see in Figure 3.1, we

know that this pattern will hold for any τwhich can be written as the direct sum of two permutations.

We use Mathematica to compute the bi-distance polynomial

f 3125647(t , u ) = (1+ t u )3(t 2+ t u +u 2)2(1+ t 2u 2)(1− t u + t 2u 2)(1+ t u + t 2u 2+ t 3u 3+ t 4u 4)

(1+ t u + t 2u 2+ t 3u 3+ t 4u 4+ t 5u 5+ t 6u 6)
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Figure 3.1 The composition of τγwhen τ is a direct sum, with disjoint subsets highlighted

Corollary 3.2.6. Let τ,γ∈Sn where γ is any permutation in Sn and τ=π⊕σwithπ∈Sk andσ ∈Sn−k .

Define the mapφk as above. Letφk (γ) =
�

γ1,γ2,γ3
�

. Then

inv(τγ) = inv(πγ1)+ inv(σγ2)+ inv(γ3)

Proof. In his proof of Proposition 1.7.1 in of Enumerative Combinatorics [39], Stanley showed that if

φk (α) = (α1,α2,α3), then inv(α) = inv(α1)+ inv(α2)+ inv(α3). Using this fact, this result follows directly

from 3.2.4.

Using this fact, we can simplify the expression for fτ(t , u ).

Corollary 3.2.7. Let τ∈Sn , π∈Sk andσ ∈Sn−k with τ=π⊕σ. Then τ is collapsable. Moreover,

fτ(t , u ) = fπ(t , u ) fσ(t , u )
�

n

k

�

t u

where fπ(t , u ), fσ(t , u ) are polynomials considered in the symmetric group of size k , n −k respectively

and
�n

k

�

t u
is the q-analogue of

�n
k

�

evaluated at t u .

Proof. Recall

fτ(t , u ) =
∑

γ∈Sn

t inv(γ)u inv(τγ)
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Using Corollary 3.2.7 we can rewrite this to be

fτ(t , u ) =
∑

(γ1,γ2,γ3)∈Sk×Sn−k×S{1k ,2n−k }

t inv(γ1)+inv(γ2)+inv(γ3)u inv(πγ1)+inv(σγ2)+inv(γ3)

=
� ∑

γ1∈Sk

t inv(γ1)u inv(πγ1)
�� ∑

γ2∈Sn−k

t inv(γ2)u inv(σγ2)
�� ∑

γ3∈S{1k ,2n−k }

(t u )inv(γ3)
�

=
�

fπ(t , u )
��

fσ(t , u )
�

�

n

k

�

t u

where
�n

k

�

t u
is the q-analogue of

�n
k

�

evaluated at q = t u .

We have shown the polynomial fτ(t , u ) has a nice factorization when τ can be written as the

direct sum of two permutations.

A similar technique is used when τ can be written as the skew sum of two permutations.

Theorem 3.2.8. Given τ,γ∈Sn where τ=π	σ and π∈Sk ,σ ∈Sn−k . Letφk (γ) = (γ1,γ2,γ3). Then

φn−k (τγ) = (σγ2,πγ1, γ̂3)

where γ̂3 is the permutation of the multiset {1n−k , 2k } obtained by reversing the roles of 1 and 2 in γ3.

Proof. Recall that if τ=π	σ withσ ∈Sn−k and π∈Sk , then τwill send items {1, . . . , k } to positions

{n−k+1, . . . , n} and items {k+1, . . . , n} to positions {1, . . . , n−k }. Thus,φn−k (τ) = (σ,π,{2, . . . , 2, 1, . . . , 1}).
If we letφn−k ,k (τγ) = (β1,β2,β3), β1 will be the permutation in Sn−k with permutation pattern of

the elements {1, . . . , n − k } of the composition τγ. We know γ2 is the permutation of Sn−k with the

permutation pattern of {k +1, . . . , n} assigned by γ, and τwill send this set to the set {1, . . . , n −k } and

permute them according toσ. Thus it follows that β1 =σγ2. Similarly, β2 =πγ1.

Consider β3 =w1 · · ·wn where w i = 1 if τγ(i )≤ n −k and w i = 2 if τγ(i )> n −k . By definition of

the mapφk we know that if we let γ3 = u 1 · · ·u n , then

u i =







1 if γ(i )≤ k

2 if γ(i )> k
.

Now, if w i = 1 we have that τγ(i ) ≤ n − k . Then we know γ(i ) > k , as τ will sends {1, . . . , k } to

{n −k +1, . . . , n} and sends {k +1, . . . , n} to {1, . . . , n −k }. This implies u i = 2 by the above definition.
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Therefore

w i =







1 if u i = 2

2 if u i = 1

and we have that β3 = γ̂3 where γ̂3 is the permutation of the multiset {1n−k , 2k } obtained by reversing

the roles of 1 and 2 in γ3.

Again, the proof is more easily understood by looking at an example. Consider the following:

Example 3.2.9. Let τ= 6573241= 213	3241. We can again, choose any permutation γ at random,

but we will use γ= 5361274 from the previous example. We knowφ3,4(γ) = (312,2341,2121122) and

when we compute τγ= 2746513, we seeφ4,3(τγ) = (2413, 321, 1212211). This is exactly as we described

it above. As we can see in Figure 3.2, this is exactly what we would expect to happen for any such τ,γ

when τ is a skew sum.
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Figure 3.2 The composition of τγwhen τ is a skew sum, with disjoint subsets highlighted

Corollary 3.2.10. Given τ,γ∈Sn where τ=π	σ and π∈Sk ,σ ∈Sn−k . Letφk (γ) = (γ1,γ2,γ3). Then

inv(τγ) = inv(σγ2)+ inv(πγ1)+ inv(γ̂3)
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where γ̂3 is the permutation of the multiset {1n−k ,2k } obtained by reversing the roles of 1 and 2 in γ3.

Therefore, when τ can be written as the skew sum of permutations, τ is collapsable.

Corollary 3.2.11. Given τ,γ∈Sn where τ=π	σ and π∈Sk ,σ ∈Sn−k . Letφk (γ) = (γ1,γ2,γ3). Then

fτ(t , u ) = fπ(t , u ) fσ(t , u )

�

u k (n−k )
�

n

k

�

t /u

�

Proof. We know from the above theorem that φn−k (τγ) = (σγ2,πγ1, γ̂3). We first need to see the

relationship between the number of inversions of γ3 and the inversions of γ̂3. Any pair that is an

inversion in γ3 will not be an inversion in γ̂3, and vice versa. We also know that the maximum number

of inversions of a permutation in S{1k ,2n−k } is k (n −k ). We can verify this quite quickly: we know that

the permutation with the most inversions will be 2 · · ·21 · · ·1. Each 2 in this permutation has exactly k

1’s after it, corresponding to k inversions. If there are n −k 2’s and each has k inversions, there is a

total of k (n −k ) inversions. Thus, we can say that inv(γ̂3) = k (n −k )− inv(γ3).

When we let

fτ(t , u ) =
∑

(γ1,γ2,γ3)∈Sk×Sn−k×S{1k ,2n−k }

t inv(γ1)+inv(γ2)+inv(γ3)u inv(πγ1)+inv(σγ2)+inv(γ̂3)

=
� ∑

γ1∈Sk

t inv(γ1)u inv(πγ1)
�� ∑

γ2∈Sn−k

t inv(γ2)u inv(σγ2)
�� ∑

γ3∈S{1k ,2n−k }

t inv(γ3)u inv(γ̂3)
�

=
� ∑

γ1∈Sk

t inv(γ1)u inv(πγ1)
�� ∑

γ2∈Sn−k

t inv(γ2)u inv(σγ2)
�� ∑

γ3∈S{1k ,2n−k }

t inv(γ3)u k (n−k )−inv(γ3)
�

=
� ∑

γ1∈Sk

t inv(γ1)u inv(πγ1)
�� ∑

γ2∈Sn−k

t inv(γ2)u inv(σγ2)
�� ∑

γ3∈S{1k ,2n−k }

� t

u

�inv(γ3)
u k (n−k )

�

=
�

fπ(t , u )
��

fσ(t , u )
�

�

u k (n−k )
�

n

k

�

t /u

�

We know that a permutation is separable if it can be written as a sequence of direct and skew sums

of the trivial permutation in S1. The following is a result of all that has been shown above

Corollary 3.2.12. Let τ∈Sn be a separable permutation. Then fτ(t , u ) is completely collapsable.

Proof. We know τ is separable. Then without loss of generality, τ=π1⊕π2 where π1,π2 are in Sn 1 ,Sn 2

respectively. Then fτ(t , u ) = fπ1 (t , u ) fπ2 (t , u )
� n

n1

�

t u
by Corollary 3.2.11. But then we know that π1,π2

can both be written as the direct sum or the skew sum of two permutations. We can then split up
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fπ1(t , u ), fπ2(t , u ) into the product of two bi-distance polynomials and the appropriate remainder

(depending on whether they are written as a direct sum or a skew sum). We continue in this manner

until we have πi 1 . . .πi k which are all the trivial permutation. Since f 1(t , u ) = 1, we see that

fτ(t , u ) =





k1
∏

i=1

�

ni

ki

�

t u











k2
∏

j=1

u k j (n j−k j )
�

nj

kj

�

t /u







and thus fτ(t , u ) is completely collapsable.

Based on computational evidence, we propose the following conjecture.

Conjecture 3.2.13. For any permutation τ ∈ Sn , the bi-distance polynomial fτ(t , u ) is completely

collapsable if and only if τ is a separable permutation.

As we know, if a permutation is separable, then it is completely collapsable. We do not show the

reverse implication, but rather consider the following computational evidence. We start by creating a

function in Mathematica to find the bi-distance polynomial of any given permutation. When we run

this function on every permutation, we see that the number of polynomials which are completely

collapsable is the same as the number of permutations which are separable (that is, the number

of completely collapsable bi-distance polynomials with permutations of size n is exactly a (n), the

large Schröder number, which is exactly the number of separable permutations in Sn [6]). This is

true through S10. Furthermore, it is true that, through S8 every completely collapsable bi-distance

polynomial comes from a separable permutation.

Next, we consider more general forms of permutations which permute subsets of [n ] in a disjoint

manner.

3.3 Permutations with Contiguous Blocks

In this section, we consider permutations τ that are not necessarily a direct sum of skew sum of

permutations, but can be separated into contiguous blocks. In other words, the permutation τ (when

written in one line notation) can be separated into parts whose elements are a span of consecutive

numbers. For instance, consider the permutation τ= 3 4 5 9 10 2 1 8 7 6. We see that we can separate τ

in as τ= 345 |910 |21 |876. While this τ cannot be written as a series of skew and direct sums, we take

advantage of its blocked structure. Notice that this particular τwill send elements {1, 2, 3} to positions

{3, 4, 5}. Similarly, we can see it sends {4, 5}, {6, 7}, and {8, 9, 10} to positions {9, 10}, {1, 2}, and {6, 7, 8}
respectively. Thus, τ still acts disjointly on certain subsets of elements, although it does permute these

subsets. Before we can take advantage of this structure, we need the following definition. We can define
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a more generalize version of theφ we defined earlier. Letφα1,...,αk : Sn −→Sa 1 × · · ·×Sa k ×S{1a 1 ,...,k a k }

where
∑k

i=1 a i = n be defined byφα1,...,αk (τ) = (τ1, . . . ,τk ,τM )where τi is the permutation pattern of

{a 1+ . . .+a i−1+1, . . . a 1+ . . .+a i−1+a i } in τ for i = 1, . . . , k and τM is the multiset whose j th element

will be (τM )j = i if a 1+ . . .+a i−1+1≤τ(j )≤ a 1+ . . .+a i−1+a i . This is a logical extension of the map

φk defined previously and is again reminiscent of the map defined in [39].

We can apply this map to the previous example where τ= 3 4 5 9 10 2 1 8 7 6. Considerφ2,3,3,2(τ).

The first entry will be the permutation pattern of {1,2} in τ, namely 2 1. The second entry will be 1

2 3, etc. We get that φ2,3,3,2(τ) = (21,123,321,12,2224411333). We see the multiset here is of a very

particular form due to the contiguous block configuration of τ. The multiset can be any element of

S{1a 1 ,...,k a k } in general (as this is a bijection), and in general will not have this nice form (for instance,

φ1,3,2(263415) = (1, 123, 21, 232213)).

We would like to examine τ permute subsets of [n ] disjointly. To accomplish this, we introduce

the following definition.

Definition 3.3.1. Given any τ ∈ Sn that satisfies φa 1,...,a k (τ) = (τ1, . . . ,τk ,τM ) in Sa 1 × . . .× Sa k ×
S{1a 1 ,...,k a k } with

∑k
i=1 a i = n where τM has the form i 1 · · · i 1i 2 · · · i 2 · · · i k · · · i k . Then τ is called a con-

tiguous block permutation. Furthermore, the permutation π= i 1i 2 · · · i k ∈Sk is the order permutation

associated with τ.

This characterizes permutations that cannot be written as a series of skew sums and direct sums,

but still permute subsets of [n ] disjointly. We take advantage of this block structure in the following

theorem.

Theorem 3.3.2. Given anyτ∈Sn that is a contiguous block permutation withφa 1,...,a k (τ) = (τ1, . . . ,τk ,τM )

with
∑k

i=1 a i = n, τM = i 1 · · · i 1i 2 · · · i 2 · · · i k · · · i k , and τ having order permutation π= i 1 · · · i k . Take any

γ∈Sn whereφa i 1 ,...,a i k
(γ) = (γ1, . . . ,γk ,γM ). Then

φa 1,...,a k (τγ) = (τ1γπ−1(1), . . . ,τkγπ−1(k ),π(γM ))

where π(γM )will be the multiset permutation in S{1a 1 ,...,k a k } obtained by applying the permutation π

to the multiset permutation γM (i.e., the i t h entry of π(γM )will be π applied to the i t h entry of γM ).

Proof. To see this is true, we again take advantage of the block structure of our permutation τ. Note

that τ will send the elements {1, . . . , a 1} to the subset {a i 1 + · · ·+ a i j−1 + 1, . . . , a i 1 + · · ·+ a i j } where

j =π−1(1), and so on. Thus, when looking at the permutation pattern of {1, . . . , a 1} in the product τγ,

we will need to look at the elements that τ sends to items {1, . . . , a 1}, which is exactly τ1. But we know

that τ1 will be in the π−1(1) block of τ. Thus, we will want to find the permutation pattern of γwhich
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maps to the π−1(1) block of τ, which will be precisely γπ−1(1) as defined by the mapφa i 1 ,...,a i k
(γ). Then

the permutation pattern of {1, . . . , a 1} in the permutation τγwill be precisely τ1γπ−1(1). Similarly for

the remaining permutation patterns τiγπ−1(i ).

To see that the multiset permutation of φa 1,...,a k (τγ) is in fact π(γM ), let βM = β1 · · ·βn be the

multiset permutation of φa 1,...,a k (τγ) and γM = α1 · · ·αn . Then αi = j implies that a i 1 + · · ·+a i j−1 <

γ(i ) ≤ a i 1 + · · ·a i j . This means γ(i ) is sent to the j th block of τ, so it will be sent to the π(j ) block

in τγ. In other words, when γM has a αi = j , βi = π(j ). Thus, π(αi ) = βi for all i and therefore

β1 · · ·βn =π(γM ).

We look at the following example to get a “pictorial" idea of the proof of this theorem. Because

this theorem is actually a generalization of the case where τ is either a direct sum or a skew sum, we

will go into more detail.

Example 3.3.3. Consider τ= 4 7 5 6 10 2 1 3 9 8. We see that we can group τ= 4756 | 10 | 213 | 98.

Then by definition, we see that φ3,4,2,1(τ) = (213,1423,21,1,2222411133) = (τ1,τ2,τ3,τ4,τM ). The

order permutation of associated with τ is π= 2413 Now we can take any γ∈S10, so we just choose γ=

6 9 1 4 10 8 2 5 7 3. We see thatφa 2,a 4,a 1,a 3 (γ) =φ4,1,3,2(γ) = (1423, 1, 132, 12, 3411431231) = (γ1,γ2,γ3,γ4,γM ).

We can see that the productτγ= 2 9 4 6 8 3 7 10 1 5. Then we see thatφ3,4,2,1(τγ) = (231, 1342, 21, 1, 1322312412).

We see that in fact 231=τ1γπ−1(1) =τ1γ3 and similarly for 1342, 21, and 1. Furthermore, we see that

1322312412 is in fact π(γM ) =π(3411431231). This is shown in Figure 3.3.

In this example, there is only one matching of the various τiγj which results in defined permuta-

tion products, as τ1, . . . ,τ4 are four different permutations from four symmetric groups of distinct

sizes and similarly for γ1, . . . ,γ4 (and a product of permutations is only defined between two permuta-

tions of the same size). Thus, there is only one way to match these two sets together which makes

sense. To see this proof is true in general, consider Figure 3.4. Suppose we would like to know what

the permutation pattern of {1,2,3} in τγ. Because π= 2413, we know π−1(1) = 3, which means that

τwill send the its third contiguous block to the first contiguous block of τγ (i.e., it sends {6,7,8} to

{1,2,3} after applying the permutation τ3 = 213). Thus whatever γ sends to {6,7,8}, τ will map to

{1, 2, 3} after applying 213. We know what elements γwill send to {6, 7, 8} and the order the will appear

in. It is exactly the permutation pattern of {6, 7, 8} in γ, which we know from our mapφ4,1,3,2 is exactly

γ3. Thus, there permutation pattern of {1, 2, 3}will be exactly τ1 applied to γ3. In general, if we want

to know what is in the i th block of τγ, we find π−1(i ) to see which block of τ is sent to the i th block of

τγ. Then, we know that the i th block of τγwill be whatever τi applied to whatever is sent to the i th

block of τ, namely γπ−1(i ).
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Figure 3.3 The composition of τγwhen τ is a permutation consisting of contiguous blocks, with disjoint
subsets highlighted

As we said above, τ being a direct or skew sum actually falls into this category, and thus this theo-

rem is a generalization of the Theorem 3.2.4 and Theorem 3.2.8. However, as this is a generalization, it

does not yield a nice, closed form factorization of fτ(t , u ). Still, we can say the following.

Theorem 3.3.4. Suppose we have thatτ∈Sn is a contiguous block permutation with order permutation

π andφa 1,...,a k (τ) = (τ1, . . . ,τk ,τM )where τ1, . . .τk lie in Sa 1 , . . .Sa k respectively. Then the bi-distance

polynomial of τ factors

fτ(t , u ) = g (t , u )
k
∏

j=1

fτj (t , u )

where fτj (t , u ) is the bi-distance polynomial of τj ∈Sa j and g (t , u )∈R[t , u ] is some polynomial.
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Figure 3.4 The composition of τγwhen τ is a permutation consisting of contiguous blocks, highlighting the
permutation pattern of 123 in τγ

Proof. The proof is similar to the cases where τ is a direct or a skew sum. By definition we have

fτ(t , u ) =
∑

(γ1,...,γk ,γM )∈
Sa i 1

×···×Sa i 1
×S{1a 1 ,...,k a k }

t inv(γ1)+···+inv(γk )+inv(γM )u inv(τ1γπ−1(1))+...+inv(τk γπ−1(k ))+inv(πγM )

Knowing that we there is some j such that π−1 j = i , we can rearrange this sum in a similar manner as

before. We simply need to note that for any i ∈ [k ], we know that γi will be matched with τπ(i ) after

applyingφa 1,...,a k to the composition τγ. In other words, if we wanted to know which τj will act on γi

after applying φa 1,...,a k to the composition τγ, it is equivalent to asking which τj will act on the i th

contiguous block, which will be exactly τπ(i ) as we saw before. Therefore
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fτ(t , u ) =
∑

(γ1,...,γk ,γM )∈
Sa i 1

×···×Sa i 1
×S{1a 1 ,...,k a k }

t inv(γ1)+···+inv(γk )+inv(γM )u inv(τ1γπ−1(1))+...+inv(τk γπ−1(k ))+inv(πγM )

=
� ∑

γM∈S{1a 1 ,...,k a k }

t inv(γM )u inv(πγM )
��

k
∏

i=1

∑

γi∈Sa i

t inv(γi )u inv(τπ(i )γi )
�

=
� ∑

γM∈S{1a 1 ,...,k a k }

t inv(γM )u inv(πγM )
��

k
∏

i=1

fτπ(i ) (t , u )
�

= g (t , u )
�

k
∏

i=1

fτπ(i ) (t , u )
�

and because we know
k
∏

i=1

fτπ(i ) (t , u ) =
k
∏

i=1

fτ(i ) (t , u )

by the commutative nature of multiplication in the polynomial ring, we have

fτ(t , u ) = g (t , u )
k
∏

j=1

fτj (t , u )
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CHAPTER

4

A THURSTONIAN MODEL FOR PARTIALLY

RANKED DATA

4.1 Introduction

Thurstonian models are used to recover a ranking of items from many different incompatible rankings.

Introduced by Thurstone in 1927, the Thurstonian model was originally used in studies of human

psychology and cognitive science [42]. The model assumes there are n items to be ranked, such as

children’s drawings or handwriting samples, and someone(s) ranking these items, say a judge. The

model is based on the principle that the judge(s) may not always rank things in the same order every

time, but rather ranks the items according to some normal distribution based on some underlying

“true" psychological construct. The Thurstonian model is still used today in psychological studies;

in [40], the authors attempt to reconstruct the true order of certain events, such on the order of the

presidents, based on “the wisdom of the crowds" (rankings assigned by a large group of individuals).

In this paper, we apply the tenants of a Thurstonian model to biology, specifically to the mutations of

the Human Immunodeficiency Virus (HIV) and prostate cancer cells.

When taking samples of a cell or virus that can have mutations at multiple sites, there are two

natural groups to divide the mutations for each sample: those that have occurred and those that have
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not. We wish to recover a global ordering that the mutations occur in. The global ranking we seek

to recover is inherent in all Thurstonian models. The fact that we observe a partial order is different,

however, than many applications of Thurstonian models. Most variations of the original Thurstonian

model observe totally ranked data. We propose a way to adapt the standard Thurstonian model for

use with partially ranked data.

The data we will examine will be 0-1 vectors called mutation vectors. For each observation, we

have a mutation vector whose i th entry will be 1 if the mutation has occurred at the time of observation

and 0 if it has not yet occurred. We take many such observations from different individuals. The goal is

to use this data to gain better understanding of global mutation order. By recovering global orderings,

we hope to find the most likely (or unlikely) mutation orders, the mutation most likely to occur first,

the total time for all mutations to occur, and any mutations which have prerequisite mutations. In

studying these specific traits of the global ordering of the mutations, we could have a better idea of

how far the disease has progressed and, potentially, be able to see which steps to take in order to

prevent it from progressing further.

We seek to add our Thurstonian model to the many statistical models using partially ranked data

are present in the literature. In [2], the authors examine discrete probability distributions that separate

a set of events and prove there is both a closed form for the maximum likelihood estimate of the

probability for each event occurring as well as a unique maximum likelihood poset for each such

probability distribution. The authors of [3] use a Markov model which utilizes 0-1 mutation vectors to

find the most likely poset dictating mutation order. The model in [3] assumes that mutation time is

exponentially distributed. In [26], the authors use a more general kind of partially ranked data with a

form of the Mallows model to make conclusions about the discrete probability distribution over all

partial rankings. While this more general model is ideal for a general setting, we propose a new model

designed specifically for datasets which are 0-1 vectors and where mutation times are assumed to be

distributed normally.

In this chapter, we propose a new model and then analyze it from both a Bayesian and a frequentist

perspective. In Section 4.2, we will introduce a new model we will refer to as the partially ranked

Thurstonian model or the Thurstonian mutation model which we use throughout the remainder of

the chapter. Next, we examine how we can use a Bayesian technique called a Gibbs sampler within

this new model. In Section 4.3, we propose a method for parameter estimation of the parameters

of the Thurstonian model for partial rankings by means of a Gibbs sampler. In the Section 4.4, we

derive a method to compute the maximum likelihood estimate for the parameters of the Thurstonian

mutation model. In Section 4.5 we use these techniques to analyze two different datasets, one with

mutation vectors for HIV cells and one with mutation vectors of prostate cancer cells. For each of these

datasets, we use the Gibbs sampler technique and maximum likelihood estimation–introduced in
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Sections 4.3 and 4.4 respectively–to analyze each of these datasets in light of this model. By analyzing

the datasets with these techniques, we hope to learn about global trends for mutation order as well as

the mutation order which is most likely to occur and the relative timeframes each mutation might

occur.

4.2 Partially Ranked Thurstonian Model

Thurstonian models, as mentioned above, traditionally deal with totally ranked data [42]. Because

the data we seek to examine is partially ranked, we adapt the traditional Thurstonian model to use

partially ranked data to recover a global ordering on all mutations while keeping our latent random

variables normally distributed.

We propose the following Thurstonian model for partially ranked data, which we dub the partially

ranked Thurstonian model, to describe our system of mutations. Let X = (X1, . . . , Xk ) be a k -vector

of hidden random variables (we think of k as the number of mutations tested for). We will take N

samples of our variable X , each of the form X (i ) = (X (i )1 , . . . , X (i )k )where i = 1, . . . , N . Let µ be a k -vector

where µj is the expected value of X j and σ a k -vector where σj the standard deviation of X j . The

distribution of X j will be X j ∼N(µj ,σ2
j ), making X (i ) distributed i.i.d.

Next, let T be a Gaussian random variable with T ∼N(µt ,σt ). Later, we assume µt = 0 andσt = 1,

allowing us to circumvent identifiability issues. We will take N observations T (1), . . . , T (N ). Then T (i ) is

distributed i.i.d. Furthermore, when considered as a vector, (X (i ), T (i ))will be a hidden variable that is

independently identically distributed (i.d.d.).

Our observed variable will be Y (i ), a k -vector of values determined by (X (i ), T (i )) by

Y (i )j =







0 if X (i )j > T (i )

1 if X (i )j < T (i )
.

In the case of our own data, T (i ) serves as a random cutoff time in sample i . We observe the entries

of Y (i ) as either having occurred, in which case that entry is a 1, or having not occurred by time T (i ), in

which case that entry is 0. Then the Y (i )j will be 1 if and only if X (i )j < T (i ), which is to say X (i )j occurred

before our random cutoff time T (i ).

Because we will be doing Bayesian analysis with this model, we will need prior distributions

on µ,σ. This assumption will not be included when we find Maximum Likelihood Estimates using

the EM Algorithm, but it is necessary for any Bayesian technique. We will say that µ is uniformly
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distributed and the prior on all normal distributions on the parameters is p (µ,σ)∝ 1/σ2 when we do

the Bayesian analysis. This is an improper prior distribution. This will serve as a good conjugate prior

(as stated in [40]), making the posterior distribution easier to calculate.

In the partially ranked Thurstonian model, we do not have direct access to the variables (X (i ), T (i )).

These are hidden variables. The only variables that are observed are the Y (i ). The parameters of the

Thurstonian mutation model, µ andσ, are not known. The presence of latent variables along with

the discrete nature of the observed data coming from continuous random variables makes this a

Thurstonian model. The goal is to deduce information about µ,σ and use this information to make

conclusions about ranking order.

This partially ranked Thurstonian model differs from a traditional Thurstonian model in a few key

ways. All Thurstonian models have latent variables which are normally distributed and seek to recover

a “true" ordering on N items. What is observed are judge(s) total rankings of these N items in the form

of a permutation. It is assumed that any given judge may not rank the N items in the same way every

time he orders them. The fact that the data we observed is not a total ranking but a partial ranking

make the partially ranked Thurstonian model different from its traditional counterpart. A second

key difference is the partially ranked Thurstonian model considers time as a random variable. The

traditional Thurstonian model has no concept of a time variable, as it was assumed that the time the

rankings occur should not affect the judge(s) rankings of the N items. From a biological standpoint, it

makes sense to consider time as a variable, as not every patient will visit their doctor or get tested

at the exact same stage of the disease. In the context of mutations, the “judge" may not make sense.

However we do know that mutations do not always occur in some fixed order but do tend to occur in

some sort of order. Thus, the idea idea of a judge is more accurately thought of as the virus’ or cell’s

propensity to mutate in some order.

A traditional problem with Thurstonian models is, due to the structure of the model (i.e. random

σμ

σt

μ
tX

(i)
T

(i)

Y
(i)

i= 1, ... , N

Figure 4.1 Graphical representation of proposed model

84



4.3. BAYESIAN METHODS CHAPTER 4. PARTIAL RANK THURSTONIAN MODEL

variables following normal distribution), there is no closed form for the MLEs of the parameters of the

model. This is one reason why other ranking models are preferred to the Thurstonian model. Methods

around the rather significant problem of parameter estimation have been proposed [15] [44] for a

traditional Thurstonian model. We develop two different methods of recovering global ranking within

the partially ranked Thurstonian model as well as efficient methods for parameter estimation.

4.3 Bayesian Methods

The first method we use to analyze data will be a Bayesian technique. All Bayesian analyses involve

sampling from the posterior distribution of some variable (in most instances, a parameter). We will

use an iterative MCMC algorithm called a Gibbs sampler to sample from the posterior distribution.

The authors of [44] showed that the Gibbs sampler is a computationally effective method of parameter

estimation for Thurstonian models. Furthermore, it is shown in [15] that partially ranked data can be

used to greatly increase computational efficiency within a Thurstonian model, though in this paper

the authors used rank dependencies to further simplify many of the probability formulas that do not

have a closed form in the Thurstonian model.

The general idea of this algorithm is to sample values of our hidden variables based on those

variables’ distributions, the current value of our parameter estimation, and the observed variables.

A Gibbs sampler is typically used for obtaining a large number of observations approximated from

a specific multivariate probability distribution when direct sampling is hard. Because we cannot

observe our variables X (i ), T (i ) or our parameters µ,σ, we use the Gibbs sampler to approximate

values of these from conditional probability distributions. We iterate through this process several

times, continually updating our estimations for µ,σ.

For the Thurstonian mutation model, the first step of each iteration will be to go through each of

our N observations and take a sample value for t (i ). First, we let

x (i )U = min
Y (i )j =0

x (i )j and x (i )L = max
Y (i )j =1

x (i )j

be the lowest value of x (i )j such that Y (i )j = 0 and the highest value of x (i )j such that Y (i )j = 1, respectively.

The values of the x (i ) will come from our previous iteration. We want to guarantee that t (i ) < x (i )j

if Y (i )j = 0 and x (i )j < t (i ) if Y (i )j = 1; thus x (i )U ,x (i )L will serve as upper and lower bounds on t (i ). By

bounding t (i ) in this way, we ensure that for every sampled t (i ),x (i ), the corresponding y (i ) will always

be the same as our original observed Y (i ). To use this Gibbs sampler, we need to know the conditional
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distributions for each of our variables. The distributions are as follows:

t (i )|x (i ), Y (i ),µ,σ∼Ntruncated(0, 1,x (i )L ,x (i )U )

where Ntruncated(0, 1,x (i )L ,x (i )U ) is the truncated normal distribution with mean 0, standard deviation 1,

a lower bound of x (i )L and an upper bound of x (i )U . So, if X ∼N(µ,σ2), then Y ∼Ntruncated(µ,σ, a ,b ) is

equivalent to Y =X | a ≤X ≤b . Let

x (i )j |µj ,σj , Y (i )j , t (i ) ∼







Ntruncated(µj ,σj ,−∞, t (i )) if Y (i )j = 1

Ntruncated(µj ,σj , t (i ),∞) if Y (i )j = 0

σ2
j |µj , s 2

j ,x (·)j , t (·), Y (·)j ∼ Scale-inv-χ2(N −1, 1/s 2
i )

µj |σj , x̄ j ,x (·)j , t (·), Y (·)j ∼ N(x̄ j , (σj /N )2)

where x̄ j is the mean of the j th coordinate over all of the sampled x (i )j and s 2
j the variance of the j th

coordinate over all samples. Hereσ is sampled from the scaled inverse chi-square distribution. We

know if X ∼ Scale− inv−χ2(ν ,τ2), then
X

τ2ν
∼ inv−χ2(ν )where ν is the degrees of freedom and τ is

the scaling parameter. Then the algorithm for the Gibbs sampler is as follows:

Algorithm 4.3.1. Let Y (1), . . . , Y (N ) be observed values for the random variable Y . To estimate the

values µ,σ, we first take initial estimates of µ,σ such that p (µ,σ)∝ 1
σ2 . We also need initial values of

x (i ), t (i ) for all i = 1, . . . , N . Then during each iteration we do the following:

1. Sample t (i ) ∼Ntruncated(0, 1,x (i )L ,x (i )U )where

x (i )U = min
Y (i )j =0

x (i )j and x (i )L = max
Y (i )j =1

x (i )j

for each i = 1, . . . , N

2. Sample

x (i )j |µj ,σj , Y (i )j , t (i ) ∼







Ntruncated(µj ,σj ,−∞, t (i )) if Y (i )j = 1

Ntruncated(µj ,σj , t (i ),∞) if Y (i )j = 0

for each j = 1, . . . , k and i = 1, . . . , N

3. Sample σ2
j |µj , s 2

j ,x (·)j , t (·), Y (·)j ∼ Scale-inv-χ2(N − 1,1/s 2
j ) where s 2

j is the variance of x (i )j over
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i = 1, . . . , N for each j .

4. Sample µi |σi , x̄ i ,x (·)j , t (·), Y (·)j ∼ N(x̄ i , (σi /N )2) where x̄ j is the mean of x (i )j over i = 1, . . . , N over

each j .

5. Repeat

We record estimates for our µ,σ at set intervals. We do not want to record every estimation of

µ,σ as it is possible that our algorithm gets “trapped" in a region where estimates for µ and σ are

not likely to change much due to the conditions placed on them. Therefore, to ensure our samples

are sufficiently random, we ran our procedure with a large burn-in value and multiple chains. From

each chain we draw a set number of samples with a large number of iterations between each sample.

These guidelines allow us to say the the samples are sufficiently random. After recording each of our

sampled µ values, we transform each of them into a permutation and consider the mode of these

permutations to be the most likely mutation order.

4.4 Maximum Likelihood Estimation For Thurstonian Modal

Another method of approximating µ and σ is to find the Maximum Likelihood Estimate (MLE) of

each. These are the µ,σ which maximize the value of the log-likelihood function `(µ,σ |Y ). This is

immediately a problem, as it is very hard, even with a known µ,σ to calculate this log-likelihood.

Instead, we will find the µ,σ which maximize the log-likelihood function `(µ,σ |X , T ), which is much

easier. However, maximizing `(µ,σ |X , T ) is only easier if we know X , T , which we do not.

In [44], Ennis and Ennis show that by imposing rank dependencies on the items, certain condi-

tional probabilities become much easier to compute. They go on to conclude that the computation

efficiency of this method will be increased further by using partially ranked data. We introduce a

way to estimate the necessary conditional probabilities rather than compute them directly; these

estimates will allow us to make use of the Expectation Maximization algorithm without imposing any

rank dependencies.

The Expectation Maximization (EM) algorithm is used when computing parameters directly is

difficult, often because there are hidden variables. As this is true of the Thurstonian mutation model,

we use the EM algorithm to estimate µj =E(X (·)j ). The general idea is as follows: we will initialize the

algorithm with some values for our parameters (µ0,σ0). Then

1. We estimate hidden variables T (i ), X (i ) at the m th step for each of our N observations based on

µm ,σm and Y (i ) according to the distribution prescribed by the model which is being examined.
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2. Using the estimated values of our T (i ), X (i ), we compute the value of our parameters µm+1,σm+1

which maximize log-likelihood function, `(µ,σ | T (i ), X (i )).

3. Repeat.

While this is intuitively what we want, it is not exactly what is actually done in the EM algorithm.

We will not compute the values of X (i ), T (i ); instead, at the m th step, we will compute the values of

the sufficient statistics E[X (i )j |Y (i ),µ,σ] , E[(X (i )j )
2 |Y (i ),µ,σ]. Unfortunately, computing the values of

these sufficient statistics is difficult, as

E[X (i )j |Y (i ),µ,σ] =

∫∫∫

xr<t if Y (i )` =1

xs>t if Y (i )p =0

x j F (x, t |µ,σ) d x d t

E[(X (i )j )
2 |Y (i ),µ,σ] =

∫∫∫

xr<t if Y (i )` =1

xs>t if Y (i )p =0

x 2
j F (x, t |µ,σ) d x d t

where

F (x, t |µ,σ) = f (t |µ,σ)
k
∏

p=1

f (xp |µ,σ)

and f (x |µ,σ) is the normal probability density function. These integrals are difficult to compute,

but without these sufficient statistics, we cannot use the EM algorithm. Direct computation of these

estimated values is not feasible, so we will estimate these expected values using importance sampling.

It is possible to estimate expected values by sampling points according to the probability distri-

bution and averaging them. For example, if we want to estimate E[X ] and we know X is distributed

according to a specific probability distribution, we draw several random points according to this

probability distribution and then take the average of these points. In our model, we know each X (i )j

is normally distributed, so it would seem that we could sample from a normal distribution for each

X (i )j and take the average of these values to get the expected value we are interested in. But drawing a

random sample X (i ) from a normal distribution might cause our X (i ) to fall outside of the region of

integration. This means we will not be able to use this exact approach. Importance sampling allows

us to estimate this same expected value by drawing samples from a different distribution as long as

the two corresponding integrals are the same. Consider the above integral as

∫∫∫

x`<t if Y (i )` =1

xp>t if Y (i )p =0

F (x, t |µ,σ) d x d t =

∫∫∫

x`<t if Y (i )` =1

xp>t if Y (i )p =0

F (x, t |µ,σ)
G (x, t |µ,σ)

G (x, t |µ,σ)d x d t
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where

G (x, t |µ,σ) = f (t |µ,σ)
k
∏

p=1

g (xp |µ,σ)

f (t |µ,σ) is still the normal probability density function, and g (x |µ,σ) is the probability density

function of the truncated normal distribution bounded above or below by t , according to the cor-

responding Y (i ). Now, using importance sampling, we can approximate our expected values (and

therefore our sufficient statistics) by taking many samples of t ∼N(µt ,σt ) and samples of x from the

truncated normal distribution

x (i )j |µj ,σj , Y (i )j , t (i ) ∼







Ntruncated(µj ,σj ,−∞, t (i )) if Y (i )j = 1

Ntruncated(µj ,σj , t (i ),∞) if Y (i )j = 0

If we take m such samples as directed above, then the expected value will be estimated by

E[X (i )j |Y
(i ),µ,σ]≈

1

m

m
∑

i=1

x (i )j

F (x(i ), t (i ) |µ,σ)
G (x(i ), t (i ) |µ,σ)

which is the average value of F
G evaluated at each of our sampled points.

Knowing, then, that we can approximate these expected values, we can now maximize the log-

likelihood `(µ,σ |X (i ), T (i )) and prove that the values that maximize the log-likelihood function are, in

fact,

µj =E[X j |Y (i ),µ,σ] =

∫∫∫

x`<t if Y (i )` =1

xp>t if Y (i )p =0

x j
F (x, t |µ,σ)
G (x, t |µ,σ)

G (x, t |µ,σ)d x d t

andσ2
j =E[X

2
j |Y (i ),µ,σ]− (E[X j |Y (i ),µ,σ])2 where

E[X 2
j |Y

(i ),µ,σ] =

∫∫∫

x`<t if Y (i )` =1

xp>t if Y (i )p =0

x 2
j

F (x, t |µ,σ)
G (x, t |µ,σ)

G (x, t |µ,σ)d x d t

We describe this in the following algorithm.

Algorithm 4.4.1. Let Y (1), . . . , Y (N ) be observed data for the above model. We initialize vectors µ(0),σ(0)

randomly from a uniform distribution. Set an M which will be the number of samples we draw each

time we use importance sampling. Then, at the m th step of the algorithm:
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1. Using importance sampling, for i = 1, . . . , N estimate

E[X (i )j |Y (i ),µ(m ),σ(m )] =
1

M

M
∑

`=1

x (`)
F (x (`), t |µ(m ),σ(m ))
G (x (`), t |µ(m ),σ(m ))

E[(X (i )j )
2 |Y (i ),µ,σ] = 1

M

M
∑

`=1

(x (`))2
F (x (`), t |µ(m ),σ(m ))
G (x (`), t |µ(m ),σ(m ))

where

F (x (`), t |µ(m ),σ(m )) = f (t |µ(m ),σ(m ))
k
∏

p=1

f (x (`)p |µ
(m ),σ(m ))

and f (x |µ,σ) is the probability density function for the normal distribution. Similarly, G (x (`), t |µ(m ),σ(m ))
is the product of the truncated normal probability density functions.

2. Compute

E[X (·)j |Y (i ),µ(m ),σ(m )] =
1
N

∑N
i=1E[X

(i )
j |Y (i ),µ(m ),σ(m )]

E[(X (·)j )
2 |Y (i ),µ(m ),σ(m )] = 1

N

∑N
i=1E[(X

(i )
j )

2 |Y (i ),µ(m ),σ(m )] .

3. Set µm+1
j =E[X (·)j |Y (i ),µ(m ),σ(m )] andσ(m+1)

j =E[(X (·)j )
2 |Y (i ),µ(m ),σ(m )].

4. Repeat.

4.5 Results

We analyze two different datasets using the partially ranked Thurstonian model, using the Gibbs

sampler and EM algorithm techniques described above on both datasets. These datasets were analyzed

before by Beerenwinkel and Sullivant using the Markov model they proposed in [3]. We compare the

results of the two different methods proposed in this paper with each other as well as with the results

of Beerenwinkel and Sullivant.

4.5.1 HIV Dataset

The first is a dataset contains 364 observations and is comprised of 7-vectors for HIV mutations. As

explained in [3], each mutation is an accumulation of amino acid changes in a segment of the HIV pol

gene. This is the gene which codes for the viral protein reverse transcriptase (RT), the process HIV

uses to trick human cells into producing many copies of the virus. Each of these seven mutations

90



4.5. RESULTS CHAPTER 4. PARTIAL RANK THURSTONIAN MODEL

X1←− 41L
X2←− 67N
X3←− 69D
X4←− 70R

X5←− 210W
X6←− 215Y
X7←− 219Q

Figure 4.2a HIV mutations and
corresponding X i

215Y

41L

210W

67N

69D

70R

219Q

Figure 4.2b Maximum Likelihood Poset for HIV data, from
Beerenwinkle and Sullivant [3]

Figure 4.2 The mutations corresponding to variables X i and the maximum likelihood poset proposed in [3].

is associated to some form of drug resistance, and acquiring all seven mutations renders the virus

completely drug resistant. The 364 observations analyzed were extracted from infected patients

prescribed treatment with zidovudine, an antiretroviral designed to inhibit RT. These amino acid

changes are inferred after DNA sequencing of the pol gene.

The seven mutations examined in this data are 41L, 67N, 69D, 70R, 210W, 215Y, and 219Q. These

are shorthand, as 41L indicates the presence of the amino acid leucine (L) at position 41 of the RT.

Figure 4.2a shows the mutation corresponding to each X i .

When we applied the Gibbs sampler to the HIV data, we drew a total of 53,756 samples, each

from an instance of the Gibbs sampler burn-in value 200 and 20 chains. From each chain we drew

20 samples and preformed 20 iterations between samples. Out of the total 53,756 samples, 33,636

samples had a mutation order corresponding to the permutation (4 5 8 2 7 3 6 1), with the time variable

being last. Thus, in 33,636 of the 53,756 samples, mutation 1 occurred fourth, mutation 2 occurred

fifth, etc. We notice that this permutation occurs a majority of the time.

The second most likely mutation order corresponded to the permutation (4 6 8 2 7 3 5 1)which

occurred 8, 140 out of the 53, 756 observed sequences. We notice that this particular permutation is a

single transposition away from the most common permutation. The third most common permutation

is (4 5 8 3 7 2 6 1)which is again a single transposition away from the most observed permutation. This

permutation occurred occurred 6, 697 times.

As a more succinct way to summarize the results, we can use a paired comparison matrix. This is

the matrix whose (i , j ) entry is the marginal probability that (X i ≥ X j ) in the posterior distribution

under the Bayesian Thurstonian mutation model. We also note that the eighth row and column

correspond to the time variable. This data is in strong agreement with the findings in [3]. In their

paper, Beerenwinkel and Sullivant use their Markov model to determine the maximum likelihood
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Table 4.1 Paired comparison matrix for HIV data



























41L 67N 69D 70R 210W 215Y 219Q T

41L 0.0231 0.0 0.9999 0.0 0.9998 0.0022 0.9999
67N 0.9768 0.00002 0.9999 0.0008 0.9999 0.1901 0.9999
69D 0.9999 0.9999 0.9999 0.9667 0.9999 0.9999 0.9999
70R 0.00004 0.00002 0.00004 0.00006 0.1652 0.00006 0.9987
210W 0.9999 0.9991 0.0332 0.9999 0.9999 0.9902 0.9999
215Y 0.0001 0.00006 0.0000 0.8347 0.00007 0.00009 0.9999
219Q 0.9976 0.8097 0.0001 0.9998 0.0097 0.9998 0.9998
T 0.0001 0.0001 0.0001 0.0014 0.0001 0.0001 0.0001



























poset dictating mutation order and note this poset is compatible with 87% of the observations. Of the

samples taken from the posterior distribution of our Bayesian analysis of the Thurstonian mutation

model, nearly 100% of the sampled µ values are compatible with their proposed poset. Only 7 of the

53, 756 sampled µ values were not compatible with the poset. It should be noted that in the structure

of the Markov model, stopping time was not considered as a random variable.

To examine the EM algorithm data, we consider the µ,σ pairs with the highest log-likelihood

scores. When we examine the maximum likelihood estimates for the parameters µ,σ in the HIV data

in the Thurstonian mutation model, the 30 µ,σ pairs with the highest log-likelihood scores vary little

from individual sample to sample. The µ,σ pair with the highest log-likelihood score, rounded to 3

decimal places is

µ= (0.703, 2.089, 14.807, 3.417, 1.371, 0.304, 4.988, 0)

σ= (0.490, 2.411, 10.721, 18.234, 0.616, 0.173, 5.468, 1)

We notice that the overall behavior of the µ values with the highest log-likelihood score is fairly

consistent between the individual µ values. Notice that lost every µ listed has the same corresponding

permutation. In fact, the top 30 µ values correspond to just 2 different permutations, which are exactly

the top two permutations observed in the Gibbs sampler. This gives us some insight into how likely a

particular mutation is to occur.

We see a similar trend in theσ values which correspond to these µ values:

Again, we see these values of σ have fairly consistent behavior. While there is some variation

between the observedσ values, the values are fairly consistent. We know that the fourth mutation

has a large standard deviation, but because it varies so much, we can not say for certain exactly what

the value of the standard deviation for the fourth mutation is. However, the standard deviations for

the first, second, fifth, and sixth mutation have a standard deviations that are almost identical from
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sample to sample.

This behavior in the µ,σ pairs seems to indicate that these µ,σ pairs are fairly good estimates for

the maximum likelihood estimators.

4.5.2 Prostate Cancer Cell Dataset

The second contains 54 observations of 9-vectors for prostate cancer cell mutations. This the same

data analyzed in [3], in which the authors describe the data as coming from comparative genome hy-

bridization experiments. This is a technique used to detect large scale genomic alterations, particularly

the severing or attachment of chromosome arms, which is common in cancer cells. As an example, the

event 4q+ denotes the gain (+) of additional copies of the large (q ) arm of chromosome 4. Similarly,

8p− denotes the loss (−) of the small arm (p ) of the 8th chromosome. The observations are defined by

the presence or absence of nine genetic alterations, 3q+, 4q+, 6q+, 7q+, 8p−, 8q+, 10q−, 13q−, and

Xq+.

We can do the same analysis on the prostate data. Unfortunately, while the HIV had a single

permutation dominate all the observations, of the 46,585 observations from the Gibbs sampler for

the prostate data, the permutation that occurred most often only occurred 20 times, which is just a

little more than 0.04% of the observations. This might suggest that the mutation order for prostate

cancer is not fixed. That is, the mutation order for prostate cancer is nearly random.

As before, we can look at the paired comparison matrix of the results. Again, we let the (i , j ) entry

be the marginal probability that (X i ≥X j ) in the posterior distribution under the Bayesian Thurstonian

mutation model. Again, we let the last row and the last column represent the time variable. These

results seem to suggest that, for the most part, the mutation order for prostate cancer cells is not fixed.

Although it is almost always the case that the stopping time happens before any mutations occur, it is

difficult to say much more with any level of certainty. We see that almost 95% of the time, mutation 1

occurred before mutations 5, 6, and 9. Still, many of the entries in the paired comparison matrix are

close to .50, indicating that there an equal chance for either mutation to occur first.

Why then, did the posterior distribution for the prostate cancer dataset come out with so much

variability, where the posterior distribution from the HIV dataset had very little? There are perhaps a

few reasons. First, there were only 54 observations in this dataset, whereas there were 364 observations

in the HIV dataset. Compound that with the fact that this dataset observed 9 mutations, as opposed to

the HIV dataset’s 7. More mutations and fewer observations are bound to lead to greater uncertainty.

The uncertainty could also be a result of the form of the data, as 1/3 of the observations recorded no

mutations having occurred. Finally, it could be that there are simply fewer dependencies between the

mutations for prostate cancer cells than there are in the mutations of HIV. The authors of [3] do in
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Table 4.2 Paired comparison matrix for prostate cancer data



































10q− 8p− 13q+ 3q+ 4q+ 6q+ 7q+ 8q+ Xq+ T

10q− ∗ 0.7831 0.8226 0.5722 0.9437 0.9486 0.7750 0.9047 0.9492 1
8p− 0.2168 ∗ 0.5669 0.2822 0.8062 0.8144 0.4985 0.7223 0.8061 1
13q+ 0.1774 0.4331 ∗ 0.2333 0.7472 0.7593 0.4330 0.6564 0.7496 1
3q+ 0.4278 0.7178 0.7666 ∗ 0.9134 0.9210 0.7116 0.8654 0.9215 0.9999
4q+ 0.0564 0.1938 0.2528 0.0866 ∗ 0.5133 0.2017 0.3949 0.4913 0.9999
6q+ 0.0514 0.1856 0.2407 0.0790 0.4867 ∗ 0.1904 0.3849 0.4796 0.9999
7q+ 0.2251 0.5015 0.5670 0.2884 0.7983 0.8096 ∗ 0.7165 0.8029 0.9999
8q+ 0.0954 0.2777 0.3437 0.1346 0.6051 0.6150 0.2835 ∗ 0.5955 0.9998
Xq+ 0.0509 0.1939 0.2504 0.0785 0.5086 0.5204 0.1971 0.4044 ∗ 0.9998
T 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 ∗



































(b) 

4q+
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6q+
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Figure 4.3 Maximum Likelihood Poset for prostate cancer data
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fact conclude there are fewer dependencies in prostate cancer cell mutations than in HIV mutations,

which can be seen in the Maximum Likelihood Poset the propose in Figure 4.3.

The data we computed is different in many ways than the data presented by Beerenwinkel and

Sullivant in [3]. In the HIV data, nearly all the samples taken were compatible with the poset proposed

in their findings. In the prostate cancer data, however, 39, 951 of the 46, 585 samples in the posterior

distribution are incompatible with the maximum likelihood poset Beerenwinkel and Sullivant found

using the same prostate cancer cell data. This could suggest that when few data points are available,

the choice of the model used will greatly affect the conclusions that can be drawn. It is also possible

that since Beerenwinkel and Sullivant used maximum likelihood estimation and this is a Bayesian

sampling of the posterior distribution, it could be that maximum likelihood estimation is more

effective for this particular kind of data.

To see if this is indeed the case, we examine the maximum likelihood estimate pairs µ,σ with the

highest log-likelihood values. Examining the 30 µ,σ pairs with the highest log-likelihood score, we

see in the top 30 µ have fairly consistent behavior between individual estimates. For each i , the actual

value of the estimates of µi do not change much from estimate to estimate, but the top 30 estimates

for µ correspond to six different mutation orders. This is not entirely surprising, as the estimates for

µ5,µ6,µ8 are all grouped tightly around 0.75. This is consistent with our findings in the Gibbs sampler,

as in the paired comparison matrix the (5, 6) entry is almost exactly 0.5 and the (5, 8) and (6, 8) entries

fall between 0.38 and 0.4. We also see that the correspondingσ5,σ6,σ8 are very small. The µ,σ pair

with the highest log-likelihood score, rounded to three decimal places, are

µ= (31.020, 11, 981, 0.942, 1.347, 0.708, 0.767, 1.289, 0.750, 1.385, 0)

σ= (25.642, 12.082, 0.466, 0.810, 0.350, 0.594, 1.077, 0.082, 1.756, 1)

As with the behavior of the means for the HIV data, the means for the prostate data are very

similar to one another. However, unlike the HIV data, many of these means are clustered much closer

together, such at the mean mutation time for mutations five, six, and eight and mutations four, seven

and nine. This might suggest that in among these two subsets, it is equally likely that any of these

three mutations occurs first. Also interesting is the fact that most of these mutations have a standard

deviation of less than 1. We also notice that there are six different mutation orders in these top 30 µ

values, as opposed to the two different mutation orders in the µ values for the HIV data.
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