
ABSTRACT

OZBAG, FATIH. Stability Analysis of Combustion Waves in Porous Media. (Under the
direction of Stephen Schecter.)

This thesis is devoted to the analysis of combustion waves that occur when air is

injected into a porous medium containing initially some fuel. Our analysis consists of

showing existence of traveling waves, studying stability of some of them, constructing

possible generic wave sequences, showing numerical simulations and looking at an exten-

sion of the combustion system.

We begin by discussing the existence of various combustion waves for a system of

three partial differential equations that give temperature, oxygen and fuel balance laws.

After simplifying our model in a more convenient form, we use phase plane analysis to

prove their existence.

Studying stability starts by determining the spectrum of the linearized system at

a traveling wave. A weight function is required to stabilize the essential spectrum for

certain waves. For the discrete spectrum, we perform a numerical computation of the

Evans function for certain waves to show that there is no unstable discrete spectrum.

One problem during the stability analysis is that the system is partially parabolic so

the linearized operator is not sectorial. We use recent results about partially parabolic

systems to overcome this issue.

The thesis then identifies all possible generic wave sequences that solve boundary

value problems. In addition, numerical simulations are presented for the generic wave

sequences.

Lastly, extension to small diffusion of oxygen is studied to find a bound on the unstable

eigenvalues by spectral energy estimates.
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Chapter 1

Introduction

Combustion waves are studied widely in heavy oil recovery techniques. There are several

methods of enhanced oil recovery. The most commonly used approaches are air injection

(in situ combustion), steam injection and water injection. In this paper we study com-

bustion waves that occur when air is injected into a porous medium containing initially

some fuel. The main goal behind in situ combustion (ISC) is to reduce the oil viscosity

and enhance the oil flow. The recovery process with this method is hard to control and

has explosion hazards. Due to safety risks use of this method is not widespread.

This thesis is devoted to the analysis of combustion waves in porous media. Com-

bustion waves are continuous nontrivial traveling waves. A traveling wave is a solution

of a partial differential equation that moves with constant velocity while maintaining

its shape. Our analysis consists of showing existence of traveling waves, studying sta-

bility of some of them, constructing possible generic wave sequences, showing numerical

simulations and looking at extension to small diffusion of oxygen.

We consider here a combustion system that is derived in [9]. It is a partly parabolic

system which has diffusion in one equation and no diffusion in others. In chapter 2 we

describe our model which consists of three equations that give temperature, oxygen and

fuel balance laws. It is based on one proposed in [1] and expanded in [6], [7] and [9]. In

our system we ignore the diffusion of oxygen and also have solid reactant that does not

diffuse. In [9] oxygen and heat are both moving at exactly the same velocity of the moving

gas. In this work we assume the oxygen is transported faster than the temperature which

is physically more realistic. We define the generic boundary conditions and generic waves.

Then we state our theorems about the existence of combustion waves.

1



We consider only combustion waves that approach both end states exponentially. We

find six types of combustion waves in this pattern. We have two fast combustion waves

that propagate faster than oxygen and temperature, and two slow combustion waves

called “reaction-trailing smolder waves” [2] that propagate more slowly than oxygen and

temperature. We also find two intermediate combustion waves that propagate more slowly

than oxygen but faster than temperature. The intermediate combustion waves have been

called “reaction-leading smolder waves” studied in [2] and [31].

In a fast combustion wave, combustion begins with both oxygen and fuel present at

the right in a low temperature region. Once it starts, it runs to the right where oxygen and

fuel are present. Since heat is transported at a lower velocity, the heat produced remains

behind the combustion front. The reaction stops when either oxygen or fuel is exhausted.

In a slow combustion wave, combustion begins when the moving gas transports oxygen

into a region in which solid fuel and high temperature are present. Combustion occurs be-

hind the incoming gas. It can not start ahead since there is no oxygen. The reaction stops

once the solid fuel is exhausted or because the incoming gas is low temperature. Interme-

diate combustion waves are similar to the slow combustion waves. The main difference is

that the oxygen velocity is greater than that of the flame front and temperature velocity

is less than that of the flame front. Thus the high temperature region stays behind the

wave. Combustion cannot occur ahead of the front since there is low temperature or no

oxygen or both.

Our model can be simplified in a convenient form which allows us to prove the exis-

tence of traveling waves by a technique for studying the behavior of nonlinear systems

that is called phase plane analysis. In section 3.1 the traveling wave system is reduced

to two dimensions and then equilibria of the traveling wave equation are determined in

section 3.2.

In section 4.1, 4.2 and 4.3 we prove the existence of fast, slow and intermediate

combustion waves using phase plane analysis.

Once the existence of the combustion waves is proved, we focus on their stability.

The first step of the stability analysis is to find the spectrum of the operator which we

obtain from the linearization of the partial differential equation system about traveling

wave. The spectrum of the operator will then provide information about stability of the

wave. To find the spectrum, first we find essential spectrum which is done in chapter

5 by using Fourier transform. For the discrete spectrum, we study certain waves and
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perform a numerical computation of the Evans function which is an analytic function

whose zeros correspond to the isolated eigenvalues of the differential operator. It is used

to show that there is no unstable discrete spectrum. However some of the waves turn out

to be unstable.

In chapter 7 the stability of the combustion waves is studied. Stability of a traveling

wave is sometimes called nonlinear stability which means that a small perturbation of

the traveling wave stays close to the set of all translates of the traveling wave. We face

some problems during the stability analysis. One of the problems is that the essential

spectrum is marginally stable. For certain waves this problem can be cured by working

in a weighted space. The other issue is that the system is partially parabolic so the

linearized operator is not sectorial. We use recent results in [15] to overcome this issue.

Contact discontinuities and wave sequences are discussed in chapter 8. We only con-

sider generic wave sequences; in particular the reaction does not occur for one reason

only at both end states. Moreover we give our theorems that state only certain contact

discontinuities can appear in generic wave sequences. Lastly numerical simulations are

presented for the generic wave sequences that we expect to occur for large time.

Finally, in chapter 9 we show that adding small diffusion to the oxygen equation does

not change the traveling waves. However it can cause some difference on the continuous

spectrum. Therefore we find the spectrum for the system with diffusion added. In section

9.1, with this new system, we are able to find a bound on the eigenvalues by using the

similar study of [12].
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Chapter 2

Mathematical model and its

traveling waves

The original model was proposed in [1]. In this chapter we present the simplified version of

this model used in [9]. We consider combustion waves that occur when air is injected into

a porous medium containing initially solid fuel that is immobile and does not vaporize.

In time–space coordinate the model includes the heat balance equation (2.1), the

molar balance equations for fuel (2.2) and oxygen (2.3). We ignore gas diffusion as in [1].

Same notation and assumptions are used as in [6]. The balance equations for energy, fuel

and oxygen are:

∂((Cm + ϕcgρg)(T − Tres))
∂t

+
∂(cgρgu(T − Tres))

∂x
= λ

∂2T

∂x2
+QrρYWr, (2.1)

∂ρ

∂t
= −µfρYWr, (2.2)

ϕ
∂(Y ρg)

∂t
+
∂(Y ρgu)

∂x
= −µoρYWr (2.3)

where T [K] is the temperature, Y [mole/mole] is the oxygen molar fraction in the gas,

ρ [mole/m3] is the molar concentration of immobile fuel. We assume that rest of the

quantities are constant as in [1]: Cm [J/m3K], heat capacity of the porous medium; cg

[J/moleK], heat capacity of the gas; Tres [K], initial reservoir temperature; λ [J/(msK)],

thermal conductivity of the porous medium; Qr [J/mole], the immobile fuel combus-

tion enthalpy at Tres; ρg [mole/m3], molar density of gas; u [m/s], gas injection rate; ϕ

[m3/m3], porosity of the medium.
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In the reaction, we assume that one mole of immobile fuel reacts with one mole of

oxygen to generate one mole of gaseous products that yields the scalar stoichiometric

coefficients µf = µo = 1. The reaction rate is usually governed by the Arrhenius’ law as

Wr = kp exp (−E/RT ). Instead we use shifted Arrhenius’ law as

Wr =

kp exp
(

−E
R(T−Tign)

)
, T > Tign,

0, T ≤ Tign,
(2.4)

where E is the activation energy; R is the ideal gas constant; Tign is the ignition temper-

ature; and kp is the pre-exponential factor.

In order to derive the nondimensionalized version of the equations (2.1)–(2.4), we

present the dimensionless dependent and independent variables (denoted by tildes) as

ratios of the dimensional quantities and reference quantities (denoted by stars):

t̃ =
t

t∗
, x̃ =

x

x∗
, θ̃ =

T − Tign
∆T ∗

, ρ̃ =
ρ

ρ∗
, Ỹ =

Y

Y ∗
. (2.5)

To simplify the equations (2.1)–(2.4), we choose the reference quantities as

∆T ∗ =
E

R
, t∗ =

ϕQrρg
kpC∗m∆T ∗

, Y ∗ =
1

kpt∗
, ρ∗ =

ϕρg
kpt∗

, x∗ =

√
λt∗

C∗m
,

C∗m = Cm + ϕcgρg.

(2.6)

We nondimensionalize the equations (2.1)–(2.4) by using (2.5)–(2.6). Omitting the tildes,

we have the following model that is described by three dependent variables that are tem-

perature θ (θ = 0 corresponds to T = Tign), oxygen fraction Y and fuel concentration ρ:

∂tθ + a∂xθ = ∂xxθ + ρY Φ, (2.7)

∂tρ = −ρY Φ, (2.8)

∂tY + b∂xY = −ρY Φ, (2.9)

Φ =

{
e(−1/θ), θ > 0

0, θ ≤ 0
(2.10)

5



where a and b are dimensionless thermal and oxygen wave speeds given by:

a =
cgρgut

∗

x∗C∗m
, b =

ut∗

ϕx∗
. (2.11)

We assume a < b which is correct in rock porous media since the thermal capacity of

the gas cg is much less than the thermal capacity of the substrate Cm. See [9] for more

information for the derivation of the model.

Combustion can occur at an ignition temperature when air is injected into a porous

medium containing initially solid fuel. We normalize so that θ = 0 corresponds to ignition

temperature where reaction can not occur when the temperature is below the ignition

temperature. The first equation (2.7) is the heat balance equation represents transport

and diffusion of temperature and production of energy in the chemical reaction. Equation

(2.8) is the immobile fuel balance equation that represents consumption of the solid fuel.

Equation (2.9) is the oxygen balance equation that consists of transport and consumption

of oxygen. We neglect the diffusion of oxygen until chapter 9.

We only consider the solutions such that both solid fuel and the oxygen are nonnega-

tive everywhere. We have constant boundary conditions for (2.7)–(2.9) on −∞ < x <∞,

t ≥ 0

(θ, ρ, Y )(−∞) = (θL, ρL, Y L), (θ, ρ, Y )(∞) = (θR, ρR, Y R). (2.12)

Reaction can not occur at the boundaries since the reaction ceases due to low temperature

θ ≤ 0 (temperature control or TC), lack of fuel ρ = 0 (fuel control or FC) or lack of

oxygen Y = 0 (oxygen control or OC). Two or all three of these conditions can exist

simultaneously. For example, there can be neither oxygen nor fuel at the left state. We

only consider the generic boundary conditions: only one of the following conditions holds

at the left state: θL ≤ 0, or ρL = 0, or Y L = 0 and at the right state: θR ≤ 0, or ρR = 0,

or Y R = 0. The other two components are positive for left and right state.

A wave with velocity c can be denoted by (θ−, ρ−, Y −)
c−→ (θ+, ρ+, Y +) where

(θ−, ρ−, Y −) is left state and (θ+, ρ+, Y +) is right state. For example, a wave of velocity

c from a left state of type TC ∩ FC to a right state of type OC can be indicated

TC ∩ FC c−→ OC. Since we are only interested in generic wave sequences, TC, FC, and

OC can be the first or last state of a wave sequence. For example TC ∩ OC can not be

the first and last state of a wave sequences but it can appear between left and right end

states.
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We only consider the waves with ρ ≥ 0 and Y ≥ 0. We also limit our attention to

waves that approach end states exponentially, except that we sometimes discuss other

waves in order to explain how these fit together. Only combustions waves with velocity

c > 0 are considered.

Theorem 2.0.1. There exist two types of fast combustion waves with velocity cf > b > a

• FC
cf−→ TC.

• OC
cf−→ TC.

Right end state has low-temperature in a fast combustion wave. Once the reaction

occurs, combustion front moves to the right by leaving the high temperature zone behind.

Behind the combustion front the reaction ceases due to lack of fuel or lack of oxygen or

both. In section 4.1 we prove the existence of these fronts.

Theorem 2.0.2. There exist two types of slow combustion waves with velocity b > a > cs

• FC
cs−→ OC.

• TC
cs−→ OC.

There is no oxygen at right state in a slow combustion wave. Therefore reaction can

not start ahead of the incoming gas. Once the combustion begins behind the incoming

gas, generated high temperature zone is transported ahead of the combustion front since

c < a < b. The reaction ceases due to lack of fuel or low temperature. In section 4.2 we

prove the existence of these fronts.

Theorem 2.0.3. There exist two types of intermediate combustion wave with velocity

b > cm > a

• FC
cm−→ OC.

• FC
cm−→ TC.

Intermediate combustion wave is slightly different than slow ones. In an intermediate

combustion wave, heat produced by the combustion stays behind the combustion front

since a < c < b. Behind the front the reaction stops because the fuel is entirely consumed.
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Theorem 2.0.4. Fast Combustion Waves.

1. FC∩OC
cf−→ TC Waves. Fix b > a > 0. Let θ+ ≤ 0, ρ+ > 0 with (b−a)θ++bρ+ > 0.

Then there are numbers θ− > 0, cf > b > a and unique Y +
∗ > 0, such that there

is a combustion wave of type FC ∩ OC
cf−→ TC, i.e. (θ−, ρ− = 0, Y − = 0)

cf−→
(θ+, ρ+, Y +). Moreover

θ− = θ+ +
bY +
∗ ρ

+

(b− a)Y +
∗ + aρ+

, cf =
bY +
∗

Y +
∗ − ρ+

.

These waves approach only their right state exponentially.

2. FC
cf−→ TC and OC

cf−→ TC Waves. Fix b > a > 0. Let θ+ ≤ 0 and ρ+ > 0. If

Y + > Y +
∗ ,

(a) there exists a combustion wave of type FC
cf−→ TC, i.e. (θ−, ρ− = 0, Y −)

cf−→
(θ+, ρ+, Y +) where θ− > 0, Y − > 0 and cf > b > a. θ−, Y − and cf are related

by the formulas

θ− = θ+ +
bρ+(Y + − Y −)

(b− a)(Y + − Y −) + aρ+
, cf =

b(Y + − Y −)

Y + − Y − − ρ+
.

(b) there exists a combustion wave of type OC
cf−→ TC, i.e. (θ−, ρ−, Y − = 0)

cf−→
(θ+, ρ+, Y +) where θ− > 0, ρ− > 0 and cf > b > a. θ−, ρ− and cf are related

by the formulas

θ− = θ+ +
bY +(ρ+ − ρ−)

(b− a)Y + + a(ρ+ − ρ−)
, cf =

bY +

Y + + ρ− − ρ+
.

These waves approach both end states exponentially.

Other than possible non uniqueness of the waves described in parts 2a and 2b, there are

no other combustion waves with cf > b > a and θ+ + bY +ρ+

(b−a)Y ++aρ+ > 0 that approach the

right state exponentially.

If θ+ + bY +ρ+

(b−a)Y ++aρ+ ≤ 0, there are no traveling waves with right state (θ+, ρ+, Y +).

For given θ+ and ρ+, if the right state has sufficient amount of oxygen, then reaction can

occur until all the oxygen is consumed or all the fuel is consumed.
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Theorem 2.0.5. Slow Combustion Waves.

1. FC
cs−→ OC and FC ∩ TC cs−→ OC Waves. Fix b > a > 0. Let (θ−, 0, Y −) have

θ− ≥ 0 and Y − > 0. Then for each ρ+ > 0, such that (a − b)Y − + aρ+ > 0, there

are numbers θ+ > 0 and cs, 0 < cs < a < b, such that there exists a combustion

wave of velocity cs from (θ−, 0, Y −) to (θ+, ρ+, 0). In fact,

θ+ = θ− +
bY −ρ+

(a− b)Y − + aρ+
, cs =

bY −

ρ+ + Y −
. (2.13)

These waves approach their right state exponentially, and approach their left state

exponentially if and only if θ− > 0, i.e., if and only if the left state is of type FC.

2. TC
cs−→ OC Waves. Fix b > a > 0. Let θ− < 0, Y − with θ−+ b

a
Y − > 0, and ρ+ > 0

be given. Then there are numbers ρ− > 0, θ+ > 0, and cs, 0 < cs < a < b, such

that there exists a combustion wave of velocity cs from (θ−, ρ−, Y −) to (θ+, ρ+, 0).

Moreover θ+ = θ− + b(ρ+−ρ−)Y −

a(ρ+−ρ−)−(b−a)Y −
, and the quantities cs and ρ− are related by

the formula

cs =
bY −

Y − − ρ− + ρ+
.

These waves approach both end states exponentially.

3. There are no other combustion waves 0 ≤ c ≤ a ≤ b. In particular, there are no

slow combustion waves with θ− + b(ρ+−ρ−)Y −

a(ρ+−ρ−)−(b−a)Y −
≤ 0.

Theorem 2.0.6. Intermediate Combustion Waves.

1. FC
cm−→ OC Waves. Fix b > a > 0. Let θ+ > 0 and ρ+ > 0. Then for each

Y − > 0, such that (a − b)Y − + aρ+ < 0, there are numbers θ− > 0 and cm,

0 < a < cm < b, such that there exists a combustion wave of velocity cm from

(θ−, 0, Y −) to (θ+, ρ+, 0). In fact,

θ− = θ+ +
bY −ρ+

(b− a)Y − − aρ+
, cm =

bY −

ρ+ + Y −
. (2.14)

These waves approach their right and left state exponentially.

2. FC
cm−→ OC ∩ TC Waves. Fix b > a > 0. Let θ+ = 0 and ρ+ > 0. Then for

each Y − > 0, such that (a − b)Y − + aρ+ < 0, there are numbers θ− > 0 and cm,
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0 < a < cm < b, such that there exists a combustion wave of velocity cm from

(θ−, 0, Y −) to (0, ρ+, 0). In fact,

θ− =
bρ+Y −

(b− a)Y − − aρ+
, cm =

bY −

Y − + ρ+
. (2.15)

These waves approach only their left state exponentially.

3. FC
cm−→ TC Waves. Fix b > a > 0. Let θ+ < 0 and ρ+ > 0. Then for each

Y − > 0, such that (a − b)Y − + aρ+ < 0, there are numbers θ− > 0, Y + > 0 and

cm, 0 < a < cm < b, such that there exists a combustion wave of velocity cm from

(θ−, 0, Y −) to (θ+, ρ+, Y +). In fact,

θ− = θ+ +
bρ+(Y + − Y −)

(b− a)(Y + − Y −) + aρ+
, cm =

b(Y + − Y −)

Y + − Y − − ρ+
. (2.16)

These waves approach their right and left state exponentially.
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Chapter 3

Traveling wave equation and its

equilibria

In this chapter we derive the traveling wave equation for our model, reduce it to two

dimensions and study equilibria.

3.1 Reduced traveling wave equation

First we add equation (2.8) to (2.7), then replace (2.8). Next we substract equation (2.8)

from (2.9), then replace (2.9). We obtain

∂tθ + a∂xθ = ∂xxθ + ρY Φ(θ), (3.1)

∂t(θ + ρ) + a∂xθ = ∂xxθ, (3.2)

∂t(Y − ρ) + b∂xY = 0. (3.3)

In (3.1)–(3.3), we replace the spatial coordinate x with the moving coordinate ξ = x− ct
with velocity c. We obtain

∂tθ = (c− a)∂ξθ + ∂ξξθ + ρY Φ(θ), (3.4)

∂t(θ + ρ) = (c− a)∂ξθ + ∂ξξθ + c∂ξρ, (3.5)

∂t(Y − ρ) = (c− b)∂ξY − c∂ξρ. (3.6)
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We can find a traveling wave solution of (2.7)–(2.9) with velocity c by considering a

stationary solution of (3.4)–(3.6). Stationary solutions of (3.4)–(3.6) satisfy the system

of ODEs

0 = (c− a)∂ξθ + ∂ξξθ + ρY Φ(θ), (3.7)

0 = (c− a)∂ξθ + ∂ξξθ + c∂ξρ, (3.8)

0 = (c− b)∂ξY − c∂ξρ. (3.9)

In (3.7), let v1 = ∂ξθ, and integrate (3.8)–(3.9). Note that dot denotes the derivative

with respect to ξ. Then we obtain the system

θ̇ = v1, (3.10)

v̇1 = (a− c)v1 − ρY Φ(θ), (3.11)

w1 = (c− a)θ + v1 + cρ, (3.12)

w2 = (c− b)Y − cρ, (3.13)

where w1 and w2 are constants. We will show below (Proposition 3.1.1) that there are

no traveling waves when c = a and c = b. We therefore assume c 6= a and c 6= b. In

(3.10)–(3.11) we substitute for v1 using (3.12) and for Y using (3.13). We obtain the

reduced traveling wave system

θ̇ = (a− c)θ − cρ+ w1, (3.14)

ρ̇ =
cρ+ w2

c(c− b)
ρΦ(θ), (3.15)

where (w1, w2) is a vector of parameters.

The system (3.14)–(3.15) has two invariant lines ρ = 0 and ρ = −w2

c
. The invariant

line ρ = −w2

c
corresponds to Y = 0 since Y = cρ+w2

c−b .

The phase space for (3.14)–(3.15) is the set P = {(θ, ρ) : ρ ≥ 0 and Y ≥ 0}. We

will always restrict to (θ, ρ) ∈ P . From (3.13), we have three cases

1. if 0 < c < a < b, Y ≥ 0 if and only if ρ ≤ −w2

c
,

2. if 0 < a < c < b, Y ≥ 0 if and only if ρ ≤ −w2

c
,

3. if c > b > a, Y ≥ 0 if and only if ρ ≥ −w2

c
.
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In the first and second case, P is nonempty if w2 ≤ 0; P = {(θ, ρ) : 0 ≤ ρ ≤ −w2

c
}. In

the third case, P = {(θ, ρ) : ρ ≥ max(0,−w2

c
)}. In both cases P is invariant.

We now show:

Proposition 3.1.1. Consider the system (2.7)–(2.9)

1. Suppose c = a. Then there are no traveling waves for the system (2.7)–(2.9).

2. Suppose c = b. Then there are no traveling waves for the system (2.7)–(2.9).

Proof. For case (1), let c = a in (3.10)–(3.13). We have

θ̇ = v1, (3.16)

v̇1 = −ρY Φ(θ), (3.17)

w1 = v1 + cρ, (3.18)

w2 = (c− b)Y − cρ, (3.19)

where w1 and w2 are constants.

In (3.16)–(3.17) we substitute for v1 using (3.18) and for Y using (3.19). We obtain

the reduced system.

θ̇ = −cρ+ w1, (3.20)

ρ̇ =
cρ+ w2

c(c− b)
ρΦ(θ), (3.21)

θ̇ = 0 is the line ρ = w1

c
and the set ρ̇ = 0 consists of two lines ρ = 0 and ρ = −w2

c

and the half-space θ ≤ 0. The system (3.20)–(3.21) has a set of equilibrium points which

is {(θ, ρ) : θ ≤ 0 and ρ = w1

c
}. It is clear to see that there is no possibility to have a

traveling wave with velocity c > 0.

For case (2), let c = b in (3.10)–(3.13). After simplification, we have
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θ̇ = w1 + w2 + (a− c)θ, (3.22)

v̇1 = (a− c)v1 +
w2

c
Y Φ(θ), (3.23)

w1 = (c− a)θ + v1 − w2, (3.24)

where w1 and w2 are constants.

In (3.22) we can solve for θ since w1 and w2 are constants and θ is the only variable.

The solution of (3.22) is θ(ξ) = w1+w2

c−a + ke(a−c)ξ where k is constant. Once we know θ,

we substitute it into (3.24) then determine v1. Therefore in (3.23) we can solve for Y .

We find that the only solutions of (3.22) that approach constants at ±∞ are themselves

constant. The result follows.

3.2 Equilibria

To find all equilibria of (3.14)–(3.15) we set θ̇ = 0 and ρ̇ = 0. If an equilibrium is a

FC equilibrium, then it has no fuel (ρ = 0), does have oxygen (Y > 0) and positive

temperature (θ > 0), i.e.

FC = {(θ, ρ) ∈ P : θ > 0, ρ = 0, cρ+ w2 6= 0, and (a− c)θ − cρ+ w1 = 0}.

If an equilibrium is an OC equilibrium, then it has no oxygen (Y = 0) and does have

fuel (ρ > 0) and positive temperature (θ > 0), i.e.

OC = {(θ, ρ) ∈ P : θ > 0, ρ > 0, cρ+ w2 = 0, and (a− c)θ − cρ+ w1 = 0}.

If an equilibrium is a FC ∩ OC equilibrium, then it has no oxygen (Y = 0), no fuel

(ρ = 0) and does have positive temperature (θ > 0), i.e.

FC ∩OC = {(θ, ρ) ∈ P : θ > 0, ρ = 0, cρ+ w2 = 0, and (a− c)θ − cρ+ w1 = 0}.
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If an equilibrium is a TC equilibrium, then it has fuel (ρ > 0), oxygen (Y > 0) and low

temperature (θ ≤ 0), i.e.

TC = {(θ, ρ) ∈ P : θ ≤ 0, ρ > 0, cρ+ w2 > 0 and (a− c)θ − cρ+ w1 = 0}.

If an equilibrium is a FC ∩TC equilibrium, then it has no fuel (ρ = 0) and does have

oxygen(Y > 0) and low temperature (θ ≤ 0), i.e.

FC ∩ TC = {(θ, ρ) ∈ P : θ ≤ 0, ρ = 0, cρ+ w2 > 0, and (a− c)θ − cρ+ w1 = 0}.

If an equilibrium is an OC ∩TC equilibrium, then it has no oxygen (Y = 0) and does

have fuel (ρ > 0) and low temperature (θ ≤ 0), i.e.

OC ∩ TC = {(θ, ρ) ∈ P : θ ≤ 0, ρ > 0, cρ+ w2 = 0, and (a− c)θ − cρ+ w1 = 0}.

If an equilibrium is a FC ∩ TC ∩ OC equilibrium, then it has no fuel (ρ = 0), no

oxygen (Y = 0) and low temperature (θ ≤ 0), i.e.

FC ∩ TC ∩OC = {(θ, ρ) ∈ P : θ ≤ 0, ρ = 0, cρ+w2 = 0, and (a− c)θ − cρ+w1 = 0}.

The last four subsets are called low-temperature equilibria.

The set of equilibria of (3.14)–(3.15) is the union of these seven subsets. Let H be

the line defined by (a− c)θ − cρ + w1 = 0. It contains all equilibria. The invariant lines

ρ = −w2

c
and ρ = 0 each contain only one equilibrium.

The linearization of (3.14)–(3.15) at a point (θ, ρ) has the matrix a− c −c
cρ+ w2

c(c− b)
ρΦ′(θ)

2cρ+ w2

c(c− b)
Φ(θ)

 . (3.25)

If (θ, ρ) is a low-temperature equilibrium, (3.25) becomes(
a− c −c

0 0

)
. (3.26)

Proposition 3.2.1. If an equilibrium is a low-temperature equilibrium, then one eigen-

value is a− c, with eigenvector (1, 0); the other eigenvalue is 0 with eigenvector (c, a− c).
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If (θ, ρ) ∈ FC or FC ∩OC, (3.25) becomesa− c −c
0

w2

c(c− b)
Φ(θ)

 . (3.27)

In FC, Y > 0 and ρ = 0, so w2 = (c− b)Y − cρ = (c− b)Y has the sign of c− b. If Y = 0

and ρ = 0 that is FC ∩OC, then w2 = 0. Therefore:

Proposition 3.2.2. If an equilibrium is in FC or FC ∩ OC, then one eigenvalue is

a− c, with eigenvector (1, 0). This eigenvector points along the invariant line ρ = 0. The

other eigenvalue is positive if Y > 0 and is 0 if Y = 0.

If (θ, ρ) ∈ OC, (3.25) becomesa− c −c
0

w2

c(b− c)
Φ(θ)

 . (3.28)

In OC, Y = 0 and ρ > 0, so cρ+ w2 = 0 and w2 < 0. Therefore:

Proposition 3.2.3. If an equilibrium is in OC, then one eigenvalue is a− c, with eigen-

vector (1, 0). This eigenvector points along the invariant line ρ = −w2/c, which corre-

sponds to Y = 0.

We are concerned only with the solutions of (3.14)–(3.15) that approach their end

states exponentially. Therefore from the propositions of this section, we only consider the

following three cases:

• 0 < a < b < c, left state in FC or OC, right state in one of the low-temperature

equilibria.

• 0 < a < c < b, left state in FC, right state in OC or one of the low-temperature

equilibria.

• 0 < c < a < b, left state in FC or one of the low-temperature equilibria, right state

in OC.
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Chapter 4

Existence of traveling waves

4.1 Fast traveling waves (0 < a < b < c)

In this section we study fast traveling waves which have TC right state and prove Theorem

2.0.4.

We assume that the right state of a traveling wave for (2.7)–(2.9) is TC that is

(θ+, ρ+, Y +) with θ+ ≤ 0, ρ+ > 0 and Y + > 0.

In (3.14)–(3.15) the right state (θ+, ρ+, Y +) corresponds to (θ, v1, ρ, Y ) = (θ+, 0, ρ+, Y +).

The constants w1 and w2 are

(w1, w2) = ((c− a)θ+ + cρ+, (c− b)Y + − cρ+). (4.1)

We substitute (w1, w2) into (3.14)–(3.15) and obtain

θ̇ = (a− c)(θ − θ+)− c(ρ− ρ+), (4.2)

ρ̇ =

(
ρ− ρ+

c− b
+
Y +

c

)
ρΦ(θ). (4.3)

The system (4.2)–(4.3) has two invariant lines ρ = 0 and ρ = ρ+− c−b
c
Y +. The latter

corresponds to Y = 0. If ρ+ = c−b
c
Y +, i.e., c = bY +

Y +−ρ+ , the lines ρ = 0 and Y = 0

coincide. The line ρ = ρ+ − c−b
c
Y + lies above ρ = 0 provided ρ+ > c−b

c
Y + and lies below

provided ρ+ < c−b
c
Y +. Moreover it lies below ρ = ρ+ since we assume c > b > a.
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For fixed b > 0 and ρ+ > 0, we define a curve and two regions

C = {(Y +, c) : ρ+ < Y + <∞ and c =
bY +

Y + − ρ+
},

Region 1 = {(Y +, c) : ρ+ < Y + <∞ and c >
bY +

Y + − ρ+
},

Region 2 = {(Y +, c) : Y + > 0, c > b, and (Y +, c) /∈ C ∪ Region 1}.

See Figure 4.1.

c = /( − )

1
2

Y+
ρ+

Y+ Y+ ρ+

b

bc

Figure 4.1 Curve C, region 1 and region 2.

4.1.1 The curve C

On the curve C, we have c = bY +

Y +−ρ+ . By substituting this into (4.2)–(4.3) and multiplying

the right hand side by bρ+(Y + − ρ+) > 0, we obtain

θ̇ = bρ+
(
(aρ+ + (b− a)Y +)(θ+ − θ) + bY +(ρ+ − ρ)

)
, (4.4)

ρ̇ = (Y + − ρ+)2ρ2Φ(θ). (4.5)

See Figure 4.2. The equilibrium (θ+, ρ+) has a 1-dimensional stable manifold.

If bY +ρ+

(b−a)Y ++aρ+ + θ+ ≤ 0, there are no traveling waves with right state (θ+, ρ+). If
bY +ρ+

(b−a)Y ++aρ+ + θ+ > 0, then in ρ > 0 the equilibrium ( bY +ρ+

(b−a)Y ++aρ+ + θ+, 0) has a unique

1-dimensional center manifold W c( bY +ρ+

(b−a)Y ++aρ+ + θ+, 0).
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θ
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ρ
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+a(b-a)+

ρ+

ρ+

ρ+
+

θ
+

Y+
Y+

Figure 4.2 Phase portrait of (4.4)–(4.5) in P (ρ ≥ 0) assuming bY +ρ+

(b−a)Y ++aρ+ + θ+ > 0. In

ρ > 0, ρ̇ = 0 for θ ≤ 0 and ρ̇ > 0 for θ > 0. θ̇ changes from positive to negative when the null
cline (aρ+ + (b− a)Y +)(θ+ − θ) + bY +(ρ+ − ρ) = 0 is crossed from left to right.

Proposition 4.1.1. Let θ+ ≤ 0. Suppose (b− a)θ+ + bρ+ > 0 then there are two possi-

bilities

1. Suppose ρ+ ≥ −aρ+θ+

θ+(b−a)+bρ+ . Then there is a unique Y∗, ρ
+ < Y∗ < ∞ such that, for

(4.4)–(4.5), the stable manifold of (θ+, ρ+) contains a branch of the center manifold

of ( bY∗ρ+

(b−a)Y∗+aρ+ + θ+, 0). For ρ+ < Y + < Y∗, the former lies above the latter; for

Y∗ < Y + <∞, the former lies below the latter.

2. Suppose ρ+ < −aρ+θ+

θ+(b−a)+bρ+ .Then there is a unique Y∗,
−aρ+θ+

θ+(b−a)+bρ+ < Y∗ < ∞ such

that, for (4.4)–(4.5), the stable manifold of (θ+, ρ+) contains a branch of the center

manifold of ( bY∗ρ+

(b−a)Y∗+aρ+ + θ+, 0). For −aρ+θ+

θ+(b−a)+bρ+ < Y + < Y∗, the former lies above

the latter; for Y∗ < Y + <∞, the former lies below the latter.

The connection in Proposition(4.1.1) corresponds to a traveling wave of (2.7)–(2.9)

of type FC ∩OC
cf−→ TC that does not approach its left state exponentially.

Proof. In case one, we consider Y + > ρ+; in case two, we consider −aρ+θ+

θ+(b−a)+bρ+ < Y +. In

both cases, −aρ+θ+

θ+(b−a)+bρ+ < Y +, so there may be traveling waves with right state (θ+, ρ+)

and the phase portrait is given by Figure 4.2.
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For the first case, consider the limit Y + = ρ+ of (4.4)–(4.5). We obtain

θ̇ = b2(ρ+)2
(
(θ+ − θ) + (ρ+ − ρ)

)
, (4.6)

ρ̇ = 0. (4.7)

The stable manifold of (θ+, ρ+) lies above the center manifold of ( bY +ρ+

(b−a)Y ++aρ+ + θ+, 0) for

Y + a little larger than ρ+.

For the second case, consider the limit Y + = −aρ+θ+

θ+(b−a)+bρ+ . We obtain

θ̇ =
ab2(ρ+)2

θ+(b− a) + bρ+
(θ+ρ− ρ+θ), (4.8)

ρ̇ =

(
−bρ+(θ+ + ρ+)

θ+(b− a) + bρ+

)2

ρ2φ(θ). (4.9)

The stable manifolds of equilibria on the line ρθ+ − θρ+ = 0 are horizontal lines. In

particular, the stable manifold of (θ+, ρ+) is the line ρ = ρ+, and the center manifold of

( bY +ρ+

(b−a)Y ++aρ+ + θ+, 0) = (0, 0) is the line ρθ+ − θρ+ = 0, θ+ < θ. It follows that for Y + a

little larger than ρ+, the former lies above the latter.

Next we show that for large Y +, the former lies below the latter. For fixed ε, 0 < ε <

ρ+, consider the region −θ+ + ε ≤ θ ≤ −θ+ + 2ε, ρ+ − ε ≤ ρ ≤ ρ+. On this region, we

have

dθ

dρ
=

bρ+

(Y + − ρ+)2
·
(
(b− a)Y + + aρ+

)
(θ+ − θ) + bY +(ρ+ − ρ)

ρ2Φ(θ)
.

Therefore, say bρ+

(Y +−ρ+)2 = K > 0

K ·
(
(b− a)Y + + aρ+

)
(2θ+ − 2ε)

(ρ+ − ε)2Φ(−θ+ + ε)
≤ dθ

dρ
≤ K ·

(
(b− a)Y + + aρ+

)
(2θ+ − ε) + bY +ε

(ρ+ − ε)2Φ(−θ+ + ε)
.

For large Y +, the lower bound is negative and upper bound is positive. Both lower and

upper bound approach 0 as Y + →∞. The result follows.

Therefore, for (4.4)–(4.5), there exists Y∗, with ρ+ < Y∗ < ∞ in case (1) and
−aρ+θ+

θ+(b−a)+bρ+ < Y∗ < ∞ in case (2), such that, for (4.4)–(4.5), the stable manifold of

(θ+, ρ+) contains a branch of the center manifold of ( bY +ρ+

(b−a)Y ++aρ+ + θ+, 0).

The breaking of these manifolds for (4.4)–(4.5) as Y + varies is obtained by a Melnikov
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integral. Let X(θ, ρ) = (X1(θ, ρ), X2(θ, ρ)) be the vector field given by the right hand

side of (4.4)–(4.5). Let Y + be a value for which the connection exists, let (θ, ρ)(τ) be the

connecting orbit, and let r(τ) = divX(θ, ρ)(τ). Then the Melnikov integral is given by

M =

∫ ∞
−∞

exp

(
−
∫ τ

0

r(η) dη

)(
−ρ̇ θ̇

) ∂

∂Y +

(
X1

X2

)
dτ

=

∫ ∞
−∞

exp

(
−
∫ τ

0

r(η) dη

)(
−ρ̇ θ̇

)(bρ+
(
(b− a)(θ+ − θ) + b(ρ+ − ρ)

)
2(Y + − ρ+)ρ2Φ(θ)

)
dτ.

We have θ+ − θ < 0, ρ+ − ρ > 0, θ̇ < 0 and ρ̇ > 0. Since Y + > ρ+ and θ̇ < 0, we have

0 <
(b− a)Y + + aρ+

bY +
<

(b− a)(Y + + ρ+) + 2aρ+

b(Y + + ρ+)
, (4.10)

(b− a)Y + + aρ+

bY +
(θ+ − θ) + (ρ+ − ρ) < 0. (4.11)

After plugging θ̇ and ρ̇ into the Melkinov integral and by using (4.10) and (4.11), we

obtain(
bρ+(Y + − ρ+)

)((
(b− a)(Y + + ρ+) + 2aρ+

)
(θ+ − θ) + b(Y + + ρ+)(ρ+ − ρ)

)
< 0.

It follows that M < 0. Therefore the center manifold of ( bY +ρ+

(b−a)Y ++aρ+ +θ+, 0) crosses from

below to above the stable manifold of (θ+, ρ+) as Y + increases past Y∗. Since this is true

for any Y∗ where the manifolds meet, it follows that Y∗ is unique.

4.1.2 Region 1

In Region 1, we have c > bY +

Y +−ρ+ so the line Y = 0 lies below ρ = 0. The equilibrium

(θ+, ρ+) has a stable manifold and (θ+ + c
c−aρ

+, 0) has an unstable manifold. A traveling

wave exists if there is a connection from left state (θ+ + c
c−aρ

+, 0) to right state (θ+, ρ+).

Proposition 4.1.2. Let b > a > 0 and θ+ ≤ 0. Let Y∗ given by Proposition 4.1.1.

1. Suppose ρ+ ≥ −θ+. For Y∗ < Y + < ∞, all points (Y +, c) in Region 1 have θ+ +
c

c−aρ
+ > 0, so the phase portrait of (4.2)–(4.3) is given by Figure 4.3. For each such

Y + there exists a c, bY +

Y +−ρ+ < c <∞, such that the unstable manifold of the saddle

(θ+ + c
c−aρ

+, 0) meets the stable manifold of the degenerate equilibrium (θ+, ρ+).
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Figure 4.3 Phase portrait of (4.2)–(4.3) in P (ρ ≥ 0) for (Y +, c) in Region 1. The equilib-
rium (θ+ + c

c−aρ
+, 0) is a hyperbolic saddle.

2. Suppose ρ+ < −θ+. For Y∗ < Y + < ∞, points (Y +, c) in Region 1 have θ+ +
c

c−aρ
+ > 0 (so the phase portrait of (4.2)–(4.3) is given by Figure 4.3) if and only

if bY +

Y +−ρ+ < c < aθ+

θ++ρ+ . For each such Y + there exists a c, bY +

Y +−ρ+ < c < aθ+

θ++ρ+ , such

that the unstable manifold of the saddle (θ+ + c
c−aρ

+, 0) meets the stable manifold

of the degenerate equilibrium (θ+, ρ+).

In both cases there are no points (Y +, c) in Region 1 with Y + < Y∗ for which the un-

stable manifold of the saddle (θ+ + c
c−aρ

+, 0) meets the stable manifold of the degenerate

equilibrium (θ+, ρ+).

In Proposition 4.1.2 the connections that exist are combustion waves for (2.7)–(2.9) of

type FC
cf−→ TC. These traveling waves have left state (θ−, ρ−, Y −) = (θ++ c

c−aρ
+, 0, Y +−

c
(c−b)ρ

+) and right state (θ+, ρ+, Y +). Y − can be determined by using the fact that w2

given by (3.13) is constant on solutions.

Proof. Fix Y + > Y∗.

For the first case, consider the limit c→∞, divide the right hand side of (4.2)–(4.3)

by c and let c→∞. Then we obtain

θ̇ = −(θ − θ+)− (ρ− ρ+), (4.12)

ρ̇ = 0. (4.13)

This is the same system (4.8)–(4.9) divided by (bρ+)2. By the proof of Proposition 4.1.1,
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the stable manifold of (θ+, ρ+) lies above the unstable manifold of (θ+ + ρ+, 0) for large

c.

For the second case, we substitute c = aθ+

θ++ρ+ into (4.2)–(4.3) and multiply the right

hand side of (5.2) by −(θ+ + ρ+) > 0, which yields

θ̇ = −aρ+(θ − θ+) + aθ+(ρ− ρ+), (4.14)

ρ̇ = (θ+ + ρ+)

(
ρ− ρ+

(a− b)θ+ − bρ+
+
Y +

aθ+

)
ρΦ(θ). (4.15)

See Figure 4.4. The stable manifold of (θ+, ρ+) lies above the center manifold of the

origin.

ρ+

ρ

θ
+ θ

Figure 4.4 Phase portrait of (4.14)–(4.15) in P (ρ ≥ 0).

For Y∗ < Y + < ∞, by Proposition 4.1.1 the structure of invariant manifolds on C

and at large c are reverse in both cases. This shows the existence of c.

4.1.3 Region 2

In Region 2, a point (Y +, c) is neither on C nor in region 1, so the line Y = 0 lies above

ρ = 0 and lies below ρ = ρ+. See Figure 4.5. The equilibrium (θ+ + c−b
c−aY

+, ρ+ − c−b
c
Y +)

has an unstable manifold and the degenerate equilibrium (θ+, ρ+) has a stable manifold.

A traveling wave exists if there is a connection from left state (θ+ + c−b
c−aY

+, ρ+− c−b
c
Y +)

to right state (θ+, ρ+).
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Figure 4.5 For (Y +, c) in Region 2, phase portrait of (4.2)–(4.3) in P (ρ ≥ ρ+ − c−b
c Y

+ > 0,
i.e., in Y ≥ 0).

Proposition 4.1.3. For b > a > 0, θ+ ≤ 0 and Y∗ < Y + given by Proposition 4.1.1,

there is a speed c > b > a such that aθ++bY +

θ++Y + < c < bY +

Y +−ρ+ the point (Y +, c) lies in

Region 2, and the stable manifold of (θ+, ρ+) contains part of the unstable manifold of

(θ+ + c−b
c−aY

+, ρ+ − c−b
c
Y +).

In Proposition 4.1.3 the connection that exists is a combustion wave for (2.7)–(2.9) of

type OC
cf−→ TC. It has left state (θ−, ρ−, Y −) = (θ+ + c−b

c−aY
+, ρ+ − c−b

c
Y +, 0) and right

state (θ+, ρ+, Y +).

Proof. (1) Fix Y + > Y∗.

θ− = θ+ + c−b
c−aY

+ is positive as required provided c > aθ++bY +

θ++Y + > b. Consider the new

curve c = aθ++bY +

θ++Y + and call it C̃ which is below the curve C. See Figure 4.6.

We consider the limit c = aθ++bY +

θ++Y + . Substitute it into (4.2)–(4.3) and multiply the

right hand side by θ+ + Y + > 0 which yields

θ̇ = (a− b)Y +(θ − θ+)− (aθ+ + bY +)(ρ− ρ+), (4.16)

ρ̇ = (θ+ + Y +)2(
ρ− ρ+

(a− b)θ+
+

Y +

aθ+ + bY +
)ρΦ(θ). (4.17)

See Figure 4.7. The stable manifold of (θ+, ρ+) lies above the center manifold of (0, ρ+ +
(b−a)θ+Y +

aθ++bY + ) which perturbs to the unstable manifold of (θ+ + c−b
c−aY

+, ρ+− c−b
c
Y +) when c

is increased.

24



c
= /( − )

ρ+

ρ+

Y+

Y+

b

bc

- 

b a
+
+c =

12

C
C
~

Y+Y+
Y+ θ+

θ+

θ
+

Figure 4.6 Curve C and C̃.

For Y∗ < Y + < ∞, by Proposition 4.1.1 the structure of invariant manifolds on C

and C̃ are reverse. This shows the existence of c.

θ+ θ

ρ+

ρ

Figure 4.7 Phase portrait for (4.16)-(4.17).

Now we can prove Theorem 2.0.4. Proposition 4.1.1 implies Theorem 2.0.4 (1).

Proof of Theorem 2.0.4 (2):

Proof. (a) The formula for c follows from the equations w2 = (c − b)Y + − cρ+ and

w2 = (c − b)Y − − cρ− = (c − b)Y −. The formula for θ+ follows from the equations
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w1 = (c−a)θ+ +cρ+ and w1 = (c−a)θ−+cρ− = (c−a)θ−, together with the formula

for c. Existence of the wave follows from Proposition 4.1.2.

(b) The formula for c follows from the equations w2 = (c − b)Y + − cρ+ and w2 =

(c − b)Y − − cρ− = −cρ−. The formula for θ+ follows from the equations w1 =

(c− a)θ+ + cρ+ and w1 = (c− a)θ−+ cρ−, together with the formula for c. Existence

of the wave follows from Proposition 4.1.3.

4.1.4 Numerical results.

In previous subsections, we prove the existence of a traveling wave for values of c in

region 1 and region 2 for large Y +. Now we try to see how c changes as we vary Y +.

We set a = 0.5, b = 0.7, θ+ = −0.1, ρ+ = 2, Y + = 8 and found a value of c for which

a traveling wave exists. Starting from this point (Y +, c), we then used AUTO to plot a

curve of values (Y +, c) for which a traveling wave exists. Figure 4.8 shows the result. The

solutions labeled from 12 to 18 are in region 1 and after that, solutions cross to region 2.

While the curve is in region 2, Y + reaches a minimum value Y +
∗∗ ; the curve turns at Y +

∗∗ ,

and later stays in region 2.

Y    (oxygen)  

c (
sp
ee

d)
  

+

Figure 4.8 Bifurcation diagram when a = 0.5, b = 0.7.
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Next we consider the case when a = b = 0.5 which is studied in [9]. In [9] oxygen

(b) and heat (a) are both moving at exactly the same velocity of the moving gas. Figure

4.9 shows how c changes as we vary Y + when a = b. This figure is consistent with [9],

which shows that when a = b, traveling waves in region 2 must exist for Y + < Y +
∗ , not

for Y +
∗ < Y + as in the present paper. We obtain the Figure 4.10 when we make a small

change on b. A little change on b causes the curve of c parameters turn and c values

approach to 0.55 as we decrease Y +.

c 
(s

pe
ed

)

Y    (oxygen)  +

Figure 4.9 Bifurcation diagram when a =
b = 0.5.

c 
(s

pe
ed

)

Y    (oxygen)  +

Figure 4.10 Bifurcation diagram when a =
0.5, b = 0.55.

Figure 4.12 shows the bifurcation diagram for a = 0.5 and b = 0.7 along with the

curve C and C̃. Bifurcation solution for region 2 is between the curve C and C̃ as we

state in Proposition 4.1.3. Additionally, Figure 4.11 shows the bifurcation diagram when

a = b along with the curve C.

4.2 Slow traveling waves (0 < c < a < b)

In this section we study slow traveling waves which have OC right state and prove

Theorem 2.0.5.

We assume that 0 < c < a < b and the right state of a traveling wave for (2.7)–(2.9)
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Y+

Figure 4.11 a=b=0.5

~

Y+

Figure 4.12 a=0.5, b=0.7 .

is OC that is (θ+, ρ+, Y +) with θ+ > 0, ρ+ > 0 and Y + = 0. The constants w1 and w2

are

(w1, w2) = ((c− a)θ+ + cρ+,−cρ+). (4.18)

We substitute (w1, w2) into (3.14)–(3.15) and obtain

θ̇ = (a− c)(θ − θ+)− c(ρ− ρ+), (4.19)

ρ̇ =
ρ+ − ρ
b− c

ρΦ(θ). (4.20)

The invariant line Y = 0 corresponds to ρ = ρ+. P is the region 0 ≤ ρ ≤ ρ+.

Let θ] = θ+ − c
a−cρ

+ < θ+, ρ† = ρ+ − a−c
c
θ+ < ρ+. Recall from section 3.2 the line H

defined by (a− c)θ − cρ+ w1 = 0, which contains all equilibria.

Proposition 4.2.1. Let b > a > 0, θ+ > 0, and ρ+ > 0. For each c with 0 < c < a < b,

one equilibrium of (4.19)–(4.20) is the saddle (θ+, ρ+), which corresponds to (θ, ρ, Y ) =

(θ+, ρ+, 0). In addition:

1. If 0 < c < θ+

θ++ρ+a, then θ] > 0, ρ† < 0, (θ], 0) is a repeller, and there is unique

connecting orbit from (θ], 0) to (θ+, ρ+), of type FC
cs−→ OC. The line H does not

intersect the part of P with θ ≤ 0, so the set TC is empty. There are no other

connecting orbits in P .

2. If c = θ+

θ++ρ+a, then θ] = ρ† = 0, (0, 0) has one positive and one zero eigenvalue, and

there is unique connecting orbit from (0, 0) to (θ+, ρ+), of type TC ∩ FC cs−→ OC.

28



The intersection of the line H and P is the origin. There are no other connecting

orbits in P .

3. If θ+

θ++ρ+a < c < a, then θ] < 0, ρ† > 0, and H meets P in the line segment of

equilibria

TC = {(θ, ρ) : θ] ≤ θ ≤ 0 and ρ = ρ+ +
a− c
c

(θ − θ+)}.

The endpoints of TC are (θ], 0) and (0, ρ†). The equilibria in TC have one 0 eigen-

value and one positive eigenvalue.

In cases (1) and (2) the connecting orbit approaches the right state exponentially; in case

(1), but not case (2), it also approaches the left state exponentially.

Proof. We give a sketch of the easy proof of this proposition.

To prove the first part of the Proposition 4.2.1, consider the region

R = {(θ, ρ) : θ] ≤ θ ≤ θ+, 0 ≤ ρ ≤ ρ+, (θ, ρ) is below or on H }.

In backward time, the orbit starts from the unstable manifold of (θ+, ρ+) can not cross

this compact region R. It has to stay in this region and go to its α-limit points. The only

possible limit point is the equilibrium of the unstable node (θ], 0). Second part can be

proved with similar argument. For proof of the last part, see Figure 4.13.

Now we can prove the Theorem 2.0.5.

Proof of Theorem 2.0.5 (1):

Proof. The formula for c follows from the equations

w2 = (c− b)Y + − cρ+ = −cρ+ and w2 = (c− b)Y − − cρ− = (c− b)Y −.

Therefore we have c = bY −

ρ++Y −
. Now we show that 0 < c < a < b. It suffices to show that

0 < bY −

ρ++Y −
< a which is true by the assumption (a− b)Y − + aρ+ > 0.

The formula for θ+ follows from the equations

w1 = (c− a)θ+ + cρ+ and w1 = (c− a)θ− + cρ− = (c− a)θ−,
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Figure 4.13 For 0 < c < a, phase portrait of (4.19)–(4.20). (a) 0 < c < θ+

θ++ρ+a. (b)
θ+

θ++ρ+a < c < a.

together with the formula for c. Since θ+ > 0 and 0 < c < a < b, the existence and

uniqueness of the wave follow from Proposition 4.2.1 (1).

Proof of Theorem 2.0.5 (2):

Proof. Since w1 (resp. w2) is equal at (θ, v1, ρ, Y ) = (θ−, 0, ρ−, Y −) and (θ+, 0, ρ+, 0), we

obtain the equations

(c− a)θ− + cρ− = (c− a)θ+ + cρ+, (c− b)Y − − cρ− = −cρ+.

Solving for (ρ−, θ+), we obtain

ρ− = ρ+ − b− c
c

Y −, θ+ = θ− +
b− c
a− c

Y −. (4.21)

Both are positive as required provided Y −

ρ++Y −
b < c < a < b. By Proposition 4.2.1 (3), for

Y −

ρ++Y −
b < c < a, the phase portrait is given by Figure 4.13 (b).

We rewrite (4.19)–(4.20) in terms of the parameters (θ−, Y −, ρ+, c) by making the
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substitutions (4.21), which yields

θ̇ = (a− c)(θ − (θ− +
b− c
a− c

Y −))− c(ρ− ρ+), (4.22)

ρ̇ =
ρ+ − ρ
b− c

ρΦ(θ). (4.23)

We consider this system for Y −

ρ++Y −
b < c < a.

We find the limit c→ a and we obtain

θ̇ = −(b− a)Y − − a(ρ− ρ+), (4.24)

ρ̇ =
(ρ+ − ρ)

b− a
ρΦ(θ). (4.25)

The flow is given by Figure 4.14. After a small perturbation, we have Figure 4.15.

ρ

ρ    -

θ
θ  -

Figure 4.14 Phase portrait of (4.24)–(4.25).

ρ

θ

ρ  -

θ  - θ+

ρ+

Figure 4.15 After a small per-
turbation.

By Figures 4.14–4.15, unstable manifold of the point (θ−, ρ−) is above the stable manifold

of (θ+, ρ+).

To study c = Y −

ρ++Y −
b, we substitute this value into (4.22)–(4.23), multiply by ρ+ +Y −
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which is positive and simplify, which yields

θ̇ = ((a− b)Y − + aρ+)(θ − θ−)− bY −ρ, (4.26)

ρ̇ =
(ρ+ + Y −)2

bρ+
(ρ+ − ρ)ρΦ(θ). (4.27)

For this system, the point on TC with θ = θ− is just (θ−, 0). Its unstable manifold is the

θ-axis, above which is the stable manifold of (θ+, ρ+).

From the previous two paragraphs we deduce the existence of the combustion wave

for some c in the interval Y −

ρ++Y −
b < c < a < b.

4.3 Intermediate traveling waves (0 < a < c < b)

We assume 0 < a < c < b. From Section 3.2, we assume that the right state of a traveling

wave of (2.7)–(2.9) is of type OC or TC.

If the right state is OC, i.e., an equilibrium (θ+, ρ+, 0) with θ+ > 0 and ρ+ > 0 then

the constants w1 and w2 are

(w1, w2) = ((c− a)θ+ + cρ+,−cρ+), (4.28)

We substitute (w1, w2) into (3.14)–(3.15) and obtain

θ̇ = (a− c)(θ − θ+)− c(ρ− ρ+), (4.29)

ρ̇ =
ρ+ − ρ
b− c

ρΦ(θ). (4.30)

The invariant line Y = 0 corresponds to ρ = ρ+. P is the region 0 ≤ ρ ≤ ρ+. Let

θ] = θ+ − c
a−cρ

+ > θ+, ρ† = ρ+ − a−c
c
θ+ > ρ+. Recall from section 3.2 the line H defined

by (a− c)θ − cρ+ w1 = 0, which contains all equilibria.

Proposition 4.3.1. Let b > a > 0, θ+ > 0, and ρ+ > 0. For each c with 0 < a < c < b,

one equilibrium of (4.29)–(4.30) is the saddle (θ], 0). In addition (θ+, ρ+) is the stable

node which corresponds to (θ, ρ, Y ) = (θ+, ρ+, 0) and there is unique connecting orbit

from (θ], 0) to (θ+, ρ+), of type FC
cm−→ OC. The line H does not intersect the part of
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P with θ ≤ 0, so the set TC is empty. There are no other connecting orbits in P . These

waves approach both end state exponentially.

ρ

θ
θ#

ρ†

H

ρ+

θ
+

Figure 4.16 Phase portrait for (4.29)-(4.30).

Proof. The idea of the proof is similar to the proof of Proposition 4.2.1.

Consider the region

R = {(θ, ρ) : θ+ ≤ θ ≤ θ], 0 ≤ ρ ≤ ρ+, (θ, ρ) is above or on H}.

In forward time, the orbit starts from the unstable manifold of (θ], 0) can not leave the

compact region R. It has to stay in this region and go to its ω-limit set. The only possible

limit point is the equilibrium of the stable node (θ+, ρ+). See Figure 4.16. There are no

other connecting orbits in P.

If the right state is OC ∩ TC with an equilibrium (θ+, ρ+, Y +) with θ+ = 0, ρ+ > 0

and Y + = 0 then the constants w1 and w2 are

(w1, w2) = (cρ+,−cρ+). (4.31)

We substitute (w1, w2) into (3.14)–(3.15) and obtain
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θ̇ = (a− c)θ − c(ρ− ρ+), (4.32)

ρ̇ =
ρ+ − ρ
b− c

ρΦ(θ). (4.33)

The invariant line Y = 0 corresponds to ρ = ρ+. P is the region 0 ≤ ρ ≤ ρ+.

Let θ] = c
c−aρ

+ > 0, ρ† = ρ+ > 0. Recall from section 3.2 the line H defined by

(a− c)θ − cρ+ w1 = 0, which contains all equilibria.

Proposition 4.3.2. Let b > a > 0, θ+ = Y + = 0, and ρ+ > 0. For each c with

a < c < b, one equilibrium of (4.32)–(4.33) is the saddle (θ], 0). In addition (0, ρ+) has

one negative and one zero eigenvalue, and there is unique connecting orbit from (θ], 0)

to (0, ρ+), of type FC
cm−→ OC ∩ TC. The intersection of the line H and P is the point

(0, ρ+). There are no other connecting orbits in P . These waves approach only their left

state exponentially.

Proof of Proposition (4.3.2) is similar to proof of Proposition (4.3.1). Only difference

is that we have the degenerate equilibrium (0, ρ+) which does not effect the proof.

Note that for θ+ < 0, the degenerate equilibrium (θ+, ρ+) lies in the invariant line

ρ = ρ+. Then the orbit starts from the unstable manifold of (θ], 0) can not meet the stable

manifold of the degenerate equilibrium (θ+, ρ+). Therefore FC
cm−→ OC ∩ TC waves do

not exist with θ+ < 0 and Y + = 0.

If the right state is TC, i.e., an equilibrium (θ+, ρ+, Y +) with θ+ < 0, ρ+ > 0 and

Y + > 0 then the constants w1 and w2 are

(w1, w2) = ((c− a)θ+ + cρ+, (c− b)Y + − cρ+). (4.34)

We substitute (w1, w2) into (3.14)–(3.15) and obtain

θ̇ = (a− c)(θ − θ+)− c(ρ− ρ+), (4.35)

ρ̇ = (
ρ+ − ρ
b− c

+
Y +

c
)ρΦ(θ). (4.36)

The invariant line Y = 0 corresponds to ρ = ρ+ + b−c
c
Y +. Let θ] = θ+ − c

a−cρ
+,

ρ† = ρ+− a−c
c
θ+ < ρ+. Recall from section 3.2 the line H defined by (a−c)θ−cρ+w1 = 0,
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which contains all equilibria. The equilibrium (θ+, ρ+) has a stable manifold and (θ], 0)

has an unstable manifold. A traveling wave exists if there is a connection from left state

(θ], 0) to right state (θ+, ρ+).

Proposition 4.3.3. Let b > a > 0, θ+ < 0, and ρ+ > 0.

1. Suppose ρ+ ≥ −θ+. Then θ] > 0, ρ† > 0.

2. Suppose ρ+ < −θ+. If aθ+

θ++ρ+ > c > a, then θ] > 0, ρ† > 0.

For both cases, H meets P in a line segment of equilibria

TC = {(θ, ρ) : θ+ − b− c
c− a

Y + ≤ θ ≤ 0 and ρ = ρ+ +
a− c
c

(θ − θ+)}.

The endpoints of TC are (θ+ − b−c
c−aY

+, 0) and (0, ρ†). The equilibria in TC have

one 0 eigenvalue and one negative eigenvalue.

ρ

θ
θ#

ρ†

H

θ
+

ρ+

?

Figure 4.17 Phase portrait for (4.35)-(4.36).

Proof. See Figure 4.17.

Now we can prove the Theorem 2.0.6.

Proof of Theorem 2.0.6(1) :
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Proof. The formula for c follows from the equations

w2 = (c− b)Y + − cρ+ = −cρ+ and w2 = (c− b)Y − − cρ− = (c− b)Y −.

Therefore we have c = bY −

ρ++Y −
. Now we show that c is between a and b. It suffices to show

that a < bY −

ρ++Y −
< b which is true by the assumption (a− b)Y − + aρ+ < 0.

The formula for θ− follows from the equations

w1 = (c− a)θ+ + cρ+ and w1 = (c− a)θ− + cρ− = (c− a)θ−,

together with the formula for c. Since θ+ > 0, ρ+ > 0 and 0 < a < c < b, the existence

of the wave follows from Proposition 4.3.1.

Proof of Theorem 2.0.6(2) :

Proof. The formula for c follows from the equations

w2 = (c− b)Y + − cρ+ = −cρ+ and w2 = (c− b)Y − − cρ− = (c− b)Y −.

Hence we have c = bY −

ρ++Y −
which is between a and b by the assumption (a−b)Y −+aρ+ < 0.

The formula for θ− follows from the equations

w1 = (c− a)θ+ + cρ+ = cρ+ and w1 = (c− a)θ− + cρ− = (c− a)θ−,

together with the formula for c. Since θ+ = Y + = 0, ρ+ > 0 and 0 < a < c < b, the

existence of the wave follows from Proposition 4.3.2.

Proof of Theorem 2.0.6(3) :

Proof. Since w1 (resp. w2) is equal at (θ, v1, ρ, Y ) = (θ−, 0, 0, Y −) and (θ+, 0, ρ+, Y +), we

obtain the equations

(c− a)θ− = (c− a)θ+ + cρ+, (c− b)Y − = (c− b)Y + − cρ+.

Solving for (θ−, Y +), we obtain

θ− = θ+ +
c

c− a
ρ+, Y + = Y − +

c

c− b
ρ+. (4.37)
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Y + is positive as required provided b > bY −

ρ++Y −
> c. θ− is positive as required provided

ρ+ ≥ −θ+ and c > a, or −θ+ > ρ+ and aθ+

ρ++θ+ > c > a. By Proposition 4.3.3, for

b > bY −

ρ++Y −
> c > a, the phase portrait is given by Figure 4.17.

We rewrite (4.35)–(4.36) in terms of the parameters (Y −, θ+, ρ+, c) by making the

substitutions (4.37), which yields

θ̇ = (a− c)(θ − θ+)− c(ρ− ρ+), (4.38)

ρ̇ = (
ρ

c− b
+
Y −

c
)ρΦ(θ). (4.39)

We consider this system for b > bY −

ρ++Y −
> c > a.

We find the limit c→ a and we obtain

θ̇ = −a(ρ− ρ+), (4.40)

ρ̇ = (
ρ

a− b
+
Y −

a
)ρΦ(θ). (4.41)

The flow is given by Figure 4.18. After a small perturbation, we have the Figure 4.19. By

ρ

θ
θ

+

ρ+

Figure 4.18 Phase portrait of (4.40)–(4.41)

ρ

θ
θ

+
θ  -

ρ+

Figure 4.19 After a small pertur-
bation

the Figures 4.18–4.19, unstable manifold of the point (θ−, 0) is above the stable manifold

of (θ+, ρ+).

To study c = bY −

ρ++Y −
, we substitute this value into (4.38)–(4.39), multiply by ρ+ +Y −
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which is positive and simplify, which yields

θ̇ = ((a− b)Y − + aρ+)(θ − θ+)− bY −(ρ− ρ+), (4.42)

ρ̇ =
(ρ+ + Y −)2

bρ+
(ρ+ − ρ)ρΦ(θ). (4.43)

For this system, ρ = ρ+ is the invariant line and the point on TC with θ = θ+ is (θ+, ρ+).

Its stable manifold is the line ρ = ρ+, below which is the unstable manifold of (θ−, 0).

From the previous two paragraphs we deduce the existence of the combustion wave

for some c in the interval b > bY −

ρ++Y −
> c > a.
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Chapter 5

Spectrum and exponential weight

functions

After proving the existence of the traveling waves, we are interested in investigating the

stability of these traveling waves. For stability analysis, the first and natural approach

is to linearize the system about the traveling wave and then study the spectrum of the

operator L. The spectrum of L which we denote Sp(L) consists of the discrete spectrum

Spd(L) and the essential spectrum Spess(L). The discrete spectrum is the set of all

eigenvalues of L with finite multiplicity that are isolated in the spectrum and the essential

spectrum is complement of the discrete spectrum.

Replacing the spatial coordinate x by the moving coordinate ξ = x−ct in (2.7)–(2.9),

we obtain

∂tθ = ∂ξξθ + (c− a)∂ξθ + F, (5.1)

∂tρ = c∂ξρ− F, (5.2)

∂tY = (c− b)∂ξY − F, (5.3)

where F = ρY Φ. The traveling wave T ∗(ξ) = (θ∗(ξ), ρ∗(ξ), Y ∗(ξ)) is a stationary

solution of (5.1)–(5.3) with

lim
ξ→−∞

T ∗(ξ) = T−, lim
ξ→+∞

T ∗(ξ) = T+.

We always consider traveling waves that approach their end states T± at an exponential

rate.

39



The stability of the wave T ∗(ξ) can be proven by taking a small perturbation of T ∗

of the form T = T ∗ + T̃ then proving that it converges to some shift of T ∗. Therefore we

linearize (5.1)–(5.3) in moving coordinates at a traveling wave T ∗(ξ).

∂tθ̃ = ∂ξξθ̃ + (c− a)∂ξθ̃ + Fθ(T
∗(ξ))θ̃ + Fρ(T

∗(ξ))ρ̃+ FY (T ∗(ξ))Ỹ , (5.4)

∂tρ̃ = c∂ξρ̃− Fθ(T ∗(ξ))θ̃ − Fρ(T ∗(ξ))ρ̃− FY (T ∗(ξ))Ỹ , (5.5)

∂tỸ = (c− b)∂ξỸ − Fθ(T ∗(ξ))θ̃ − Fρ(T ∗(ξ))ρ̃− FY (T ∗(ξ))Ỹ . (5.6)

To find the spectrum of (5.4)–(5.6), we write the right hand side as At = LA where

L =

∂ξξ + (c− a)∂ξ + Fθ(T
∗(ξ)) Fρ(T

∗(ξ)) FY (T ∗(ξ))

−Fθ(T ∗(ξ)) c∂ξ − Fρ(T ∗(ξ)) −FY (T ∗(ξ))

−Fθ(T ∗(ξ)) −Fρ(T ∗(ξ)) (c− b)∂ξ − FY (T ∗(ξ))

 . (5.7)

There are two related constant coefficient linear partial differential equations At = L±A,

obtained by linearizing (5.1)-(5.3) at T±. The spectrum of L± can be computed using

the Fourier transform

L̂± =

−µ
2 + iµ(c− a) + Fθ(T

∗(±∞)) Fρ(T
∗(±∞)) FY (T ∗(±∞))

−Fθ(T ∗(±∞)) iµc− Fρ(T ∗(±∞)) −FY (T ∗(±∞))

−Fθ(T ∗(±∞)) −Fρ(T ∗(±∞)) iµ(c− b)− FY (T ∗(±∞))


(5.8)

The right hand boundary of the essential spectrum of L is the union of the right hand

boundary of Sp(L−) and Sp(L+).

Definition 5.0.1. If the spectrum of L±

• lies in the half-plane {Reλ ≤ −ν} for some ν > 0, then T± is called stable.

• lies in the half-plane {Reλ ≤ 0} and touches the imaginary axis, then T± is called

marginally stable.

• contains points with Reλ > 0, then T± is called unstable.
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Definition 5.0.2. The traveling wave T ∗(ξ) is spectrally stable in a space X if

1. 0 is a simple eigenvalue of L, and

2. the rest of the spectrum of the linearized system (5.4)–(5.6) lies in Reλ < −µ,

µ > 0.

There is always an eigenvalue 0 with eigenfunction T ∗′(ξ).

Definition 5.0.3. The traveling wave T ∗(ξ) is linearly stable in a space X if every

solution of (5.4)–(5.6) decays exponentially to a multiple of T ∗′(ξ).

Since there exist three different type of combustion waves, we determine the spectrum

of each type.

• Spectrum of fast combustion waves (a < b < cf )

We have two types of fast combustion waves; FC
cf−→ TC and OC

cf−→ TC. Since

the right state has same type TC, first we compute the spectrum of L̂+ at the right

end state (θ+, ρ+, Y +) where θ+ ≤ 0, ρ+ > 0 and Y + > 0. We obtain

L̂+ =

−µ
2 + iµ(cf − a) 0 0

0 iµcf 0

0 0 iµ(cf − b)

 . (5.9)

The spectrum of L̂+ is the set of the lambdas that are eigenvalues of (5.9) for

some µ in R.

λ(µ) = −µ2 + iµ(cf − a), λ(µ) = iµcf , λ(µ) = iµ(cf − b).

At (θ+, ρ+, Y +), the spectrum of the linearization is a parabola in the left-half plane

that touches the origin and the imaginary axis.

1. FC left state

We determine the spectrum of L̂− at the point (θ−, ρ−, Y −) where θ− > 0,

ρ− = 0 and Y − > 0. We obtain

L̂− =

−µ
2 + iµ(cf − a) Y −Φ(θ−) 0

0 iµcf − Y −Φ(θ−) 0

0 Y −Φ(θ−) iµ(cf − b)

 . (5.10)
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The spectrum of L̂− is the set of the lambdas that are eigenvalues of (5.10)

for some µ in R.

λ(µ) = −µ2 + iµ(cf − a), λ(µ) = iµcf − Y −Φ(θ−), λ(µ) = iµ(cf − b).

Similarly, the spectrum of the linearization is a parabola in the left-half plane

that touches the origin, a vertical line in the left-half plane and the imaginary

axis.

2. OC left state

We determine the spectrum of L̂− at the point (θ−, ρ−, Y −) where θ− > 0,

ρ− > 0 and Y − = 0. We obtain

L̂− =

−µ
2 + iµ(cf − a) 0 ρ−Φ(θ−)

0 iµcf −ρ−Φ(θ−)

0 0 iµ(cf − b)− ρ−Φ(θ−)

 . (5.11)

The spectrum of L̂− is the set of the lambdas that are eigenvalues of (5.11)

for some µ in R.

λ(µ) = −µ2 + iµ(cf − a), λ(µ) = iµ(cf − b)− ρ−Φ(θ−), λ(µ) = iµcf .

The spectrum consists of a curve, a vertical line in the left half-plane and

imaginary axis.

• Spectrum of slow combustion waves (cs < a < b)

We have two types of slow combustion waves; FC
cs−→ OC and TC

cs−→ OC. Since

the right state has same type OC, first we compute the spectrum of L̂+ at the right

end state (θ+, ρ+, Y +) where θ+ > 0, ρ+ > 0 and Y + = 0. We obtain

L̂+ =

−µ
2 + iµ(cs − a) 0 ρ+Φ(θ+)

0 iµcs −ρ+Φ(θ+)

0 0 iµ(cs − b)− ρ+Φ(θ+)

 . (5.12)

The spectrum of L̂+ is the set of the lambdas that are eigenvalues of (5.12) for

some µ in R.
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λ(µ) = −µ2 + iµ(cs − a), λ(µ) = iµcs, λ(µ) = iµ(cs − b)− ρ+Φ(θ+).

The spectrum of the linearization is a parabola in the left-half plane that touches

the origin, a vertical line in the left-half plane and the imaginary axis.

1. FC left state

Similarly,

λ(µ) = −µ2 + iµ(cs − a), λ(µ) = iµcs − Y −Φ(θ−), λ(µ) = iµ(cs − b).

The spectrum of the linearization is a parabola in the left-half plane that

touches the origin, a vertical line in the left-half plane and the imaginary axis.

2. TC left state

λ(µ) = −µ2 + iµ(cs − a), λ(µ) = iµcs, λ(µ) = iµ(cs − b).

The spectrum of the linearization is a parabola in the left-half plane that

touches the origin and the imaginary axis.

• Spectrum of intermediate combustion waves (a < cm < b)

We have two types of intermediate combustion waves; FC
cm−→ OC and FC

cm−→ TC.

Since the left state has same type FC, we compute the spectrum of L̂− at the left

end state (θ−, ρ−, Y −) where θ− > 0, ρ− = 0 and Y − > 0. We obtain the spectrum

of L̂− which is a parabola in the left-half plane that touches the origin, a vertical

line in the left-half plane and the imaginary axis.

λ(µ) = −µ2 + iµ(cm − a), λ(µ) = iµcm − Y −Φ(θ−), λ(µ) = iµ(cm − b).

1. TC right state

λ(µ) = −µ2 + iµ(cm − a), λ(µ) = iµcm, λ(µ) = iµ(cm − b).

The spectrum of the linearization is a parabola in the left-half plane that touches

the origin and the imaginary axis.
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2. OC right state

λ(µ) = −µ2 + iµ(cm − a), λ(µ) = iµcm, λ(µ) = iµ(cm − b)− ρ+Φ(θ+).

The spectrum consists of a curve, a vertical line in the left half-plane and the

imaginary axis.

We don’t have spectral stability for any type of the combustion wave since the spec-

trum of L+ and L− for fast, slow and intermediate combustion waves touches the imag-

inary axis. Spectral stability can be obtained if these spectra can be moved to the left

of the imaginary axis by working in a space with weighted norm. We introduce a weight

function such that for α = (α−, α+) ∈ R2, γα : R→ R

γα(ξ) =

{
eα−ξ, ξ ≤ 0

eα+ξ, ξ ≥ 0
(5.13)

Let X0 denote one of the standard Banach spaces L2(R)n, H1(R)n or BUC(R)n with

norm ‖ ‖0. Let Xα denote the weighted space for a fixed weight γα(ξ) such that for

x(ξ) ∈ Xα, γα(ξ)x(ξ) ∈ X0 with norm ‖x‖α = ‖γα(ξ)x(ξ)‖0.

We need to find Sp(L) on Xα to determine weight functions for fast, slow and inter-

mediate combustion waves at the left and right end states.

To study the spectrum of At = LA as an operator on Xα, let A = (θ̃(ξ), ρ̃(ξ), Ỹ (ξ)) ∈
Xα such that γα(ξ)A = B, B = (u(ξ), v(ξ), z(ξ)) ∈ X0. Then we have γ−1

α Bt = Lγ−1
α B and

multiply both sides by γα. We obtain Bt = γαLγ−1
α B where γαLγ−1

α is a linear operator

on X0. To find the spectrum of L on Xα, instead find the spectrum of γαLγ−1
α on X0. Let

Lα = γαLγ−1
α . Therefore we have

Bt = LαB. (5.14)

By taking ξ → ±∞, (5.14) yields constant-coefficient linear differential expressions

Bt = Lα±B (5.15)
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where

Lα± =

∂ξξ + (c− a− 2α±)∂ξ + α2
± + aα± − cα± + Fθ(T ∗) Fρ(T ∗) FY (T ∗)

−Fθ(T ∗) c∂ξ − cα± − Fρ(T ∗) −FY (T ∗)

−Fθ(T ∗) −Fρ(T ∗) (c− b)(∂ξ − α±)− FY (T ∗)

.
(5.16)

The right hand boundary of the essential spectrum of Lα is the union of the right hand

boundary of Sp(Lα−) and Sp(Lα+).

• Weight function for fast combustion waves (a < b < cf )

Since the right state has same type TC for fast combustion waves, we compute the

spectrum of Lα+ at the right end state (θ+, ρ+, Y +) where θ+ ≤ 0, ρ+ > 0 and

Y + > 0. We obtain

Lα+ =

−µ
2 + (cf − a− 2α+)iµ+ α2

+ + (a− cf )α+ 0 0

0 iµcf − cfα+ 0

0 0 iµ(cf − b)− (cf − b)α+

.
(5.17)

The spectrum of Lα+ is the set of the lambdas that are eigenvalues of (5.17) for

some µ in R.

λ(µ) = −µ2 + (cf − a− 2α+)iµ+ α2
+ + (a− cf )α+,

λ(µ) = iµcf − cfα+,

λ(µ) = iµ(cf − b)− (cf − b)α+.

To move the spectrum to the left half plane, we require that real part of the eigen-

values to be negative. Therefore if 0 < α+ < cf − a is provided, then the spectra

lies in the left half plane.

1. FC left state

By similar computation, we determine the spectrum of Lα− at the point

(θ−, ρ−, Y −) where θ− > 0, ρ− = 0 and Y − > 0. We require 0 < α− < cf − a
to move the spectra to the left half plane.

2. OC left state

Similarly we determine the spectrum of Lα− at the point (θ−, ρ−, Y −) where
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θ− > 0, ρ− > 0 and Y − = 0. Again we require 0 < α− < cf − a to move the

spectra to the left half plane.

• Weight function for slow combustion waves (cs < a < b)

Since the right state has same type OC for slow combustion waves, we compute

the spectrum of Lα+ at the right end state (θ+, ρ+, Y +) where θ+ > 0, ρ+ > 0 and

Y + = 0. We obtain

Lα+ =

−µ
2 + (cs − a− 2α+)iµ+ α2

+ + (a− cs)α+ 0 ρ+Φ(θ+)

0 iµcs − csα+ −ρ+Φ(θ+)

0 0 iµ(cs − b)− (cs − b)α+ − ρ+Φ(θ+)

.
(5.18)

The spectrum of Lα+ is the set of the lambdas that are eigenvalues of (5.18) for

some µ in R.

λ(µ) = −µ2 + (cs − a− 2α+)iµ+ α2
+ + (a− cs)α+, (5.19)

λ(µ) = iµcs − csα+, (5.20)

λ(µ) = iµ(cs − b)− (cs − b)α+ − ρ+Φ(θ+). (5.21)

To move the spectrum to the left half plane, real part of the eigenvalues needs to

be negative. From (5.20) and (5.21), 0 < α+ < ρ+Φ(θ+)
b−cs . By (5.19), cs− a < α+ < 0.

α+ can not be both negative and positive at the same time. Therefore, there is no

α+ which makes the real part of the eigenvalues be negative.

1. FC left state

We determine the spectrum of Lα− at the point (θ−, ρ−, Y −) where θ− > 0,

ρ− = 0 and Y − > 0.

Lα− =

−µ
2 + (cs − a− 2α−)iµ + α2

− + (a− cs)α− Y−Φ(θ−) 0

0 iµcs − csα− − Y−Φ(θ−) 0

0 −Y−Φ(θ−) iµ(cs − b)− (cs − b)α−

 (5.22)

The spectrum of Lα− is the set of the lambdas that are eigenvalues of (5.22)

for some µ in R.

λ(µ) = −µ2 + (cs − a− 2α−)iµ+ α2
− + (a− cs)α−, (5.23)

λ(µ) = iµcs − csα− − Y −Φ(θ−), (5.24)
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λ(µ) = iµ(cs − b)− (cs − b)α−. (5.25)

From (5.24) and (5.25), we get −Φ(θ−)Y −

cs
< α− < 0. By (5.23), cs−a < α− < 0.

To move the spectrum to the left half plane, we choose α− such that

(1) if −Φ(θ−)Y −

cs
< cs − a, then we pick cs − a < α− < 0

(2) if −Φ(θ−)Y −

cs
> cs − a, then we pick −Φ(θ−)Y −

cs
< α− < 0

2. TC left state

We determine the spectrum of Lα− at the point (θ−, ρ−, Y −) where θ− ≤ 0,

ρ− > 0 and Y − > 0.

Lα− =

−µ
2 + (cs − a− 2α−)iµ+ α2

− + (a− cs)α− 0 0

0 iµcs − csα− 0

0 0 iµ(cs − b)− (cs − b)α−

. (5.26)

The spectrum of Lα− is the set of the lambdas that are eigenvalues of (5.26)

for some µ in R.

λ(µ) = −µ2 + (cs − a− 2α−)iµ+ α2
− + (a− cs)α−, (5.27)

λ(µ) = iµcs − csα−, (5.28)

λ(µ) = iµ(cs − b)− (cs − b)α−. (5.29)

We need α− be positive for (5.28) and negative for (5.29) to make the real

part of the eigenvalues be negative. α− can not be both negative and positive

at the same time. Therefore, there is no α− which moves the spectra to the

left half plane.

• Weight function for intermediate combustion waves (a < cm < b)

Since the left state has same type FC for intermediate combustion waves, we com-

pute the spectrum of Lα− at the left end state (θ−, ρ−, Y −) where θ− > 0, ρ− = 0

and Y − > 0. We obtain

Lα− =

−µ
2 + (cm − a− 2α−)iµ+ α2

− + (a− cm)α− Y −Φ(θ−) 0

0 iµcm − cmα− − Y −Φ(θ−) 0

0 −Y −Φ(θ−) (iµ− α)(cm − b)

.
(5.30)
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The spectrum of Lα− is the set of the lambdas that are eigenvalues of (5.30) for

some µ in R.

λ(µ) = −µ2 + (cm − a− 2α−)iµ+ α2
− + (a− cm)α−, (5.31)

λ(µ) = iµcm − cmα− − Y −Φ(θ−), (5.32)

λ(µ) = iµ(cm − b)− (cm − b)α−. (5.33)

From (5.32) and (5.33), we get −Φ(θ−)Y −

cm
< α− < 0. By (5.31), 0 < α−. α− can not

be both negative and positive at the same time. Therefore, there is no α− which

makes the real part of the eigenvalues be negative.

1. TC right state

We determine the spectrum of Lα+ at the point (θ+, ρ+, Y +) where θ+ < 0,

ρ+ > 0 and Y + > 0.

Lα+ =

−µ
2 + (cm − a− 2α+)iµ+ α2

+ + (a− cm)α+ 0 0

0 iµcm − cmα+ 0

0 0 iµ(cm − b)− (cm − b)α+

.
(5.34)

The spectrum of Lα+ is the set of the lambdas that are eigenvalues of (5.34)

for some µ in R.

λ(µ) = −µ2 + (cm − a− 2α+)iµ+ α2
+ + (a− cm)α+, (5.35)

λ(µ) = iµcm − cmα+, (5.36)

λ(µ) = iµ(cm − b)− (cm − b)α+. (5.37)

We need α+ be positive for (5.36) and negative for (5.37) to make the real

part of the eigenvalues be negative. α+ can not be both negative and positive

at the same time. Therefore, there is no α+ which moves the spectra to the

left half plane.

2. OC right state

We need to determine the spectrum of Lα+ at the right end state (θ+, ρ+, Y +)

where θ+ > 0, ρ+ > 0 and Y + = 0. The spectrum of Lα+ is
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λ(µ) = −µ2 + (cm − a− 2α+)iµ+ α2
+ + (a− cm)α+, (5.38)

λ(µ) = iµcm − cmα+, (5.39)

λ(µ) = iµ(cm − b)− (cm − b)α+ − ρ+Φ(θ+). (5.40)

To move the spectrum to the left half plane, real part of the eigenvalues needs

to be negative. From (5.39) and (5.40), 0 < α+ < ρ+Φ(θ+)
b−cm . By (5.38), 0 < α+ <

cm − a. Therefore we choose α+ such that

(1) if Φ(θ+)ρ+

b−cm < cm − a, then we pick 0 < α+ < Φ(θ+)ρ+

b−cm .

(2) ifΦ(θ+)ρ+

b−cm > cm − a, then we pick 0 < α+ < cm − a.
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Chapter 6

Numerical results of Evans function

for fast combustion waves

The Evans function is an analytic function that can be used to locate the discrete spec-

trum of the differential operator L. It can be solved analytically for simple systems but

in general, it is difficult to calculate explicitly for a given PDE. Hence numerical compu-

tation is required.

In this section we show the numerical result of Evans function for fast combustion

waves. In previous section we have shown that the spectrum of L+ and L− for fast

combustion waves touches the imaginary axis. We fixed this problem by introducing the

weight function such that for α = (α−, α+) ∈ R2, 0 < α± < cf − a is required to move

the spectrum to the left half plane. In addition that to determine the stability one needs

to trace the position of the point spectrum. Evans function is used to locate the point

spectrum. We can count the eigenvalues in the right half plane by calculating the winding

number.

We write the eigenvalue problem of (5.15). The eigenvalue problem reads

λu = uξξ + (c− a− 2α±)uξ + (α2
± + aα± − cα±)u+ Fθ(T

∗)u+ Fρ(T
∗)v + FY (T ∗)z,

λv = cvξ − cα±v − Fθ(T ∗)u− Fρ(T ∗)v − FY (T ∗)z, (6.1)

λz = (c− b)zξ − (c− b)α±z − Fθ(T ∗)u− Fρ(T ∗)v − FY (T ∗)z.
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We can write (6.1) as a first order system, let w = uξ

uξ = w,

wξ = λu− (c− a− 2α±)w − (α2
± + aα± − cα±)u− Fθ(T ∗)u− Fρ(T ∗)v − FY (T ∗)z,

vξ =
1

c
(λv + cα±v + Fθ(T

∗)u+ Fρ(T
∗)v + FY (T ∗)z), (6.2)

zξ =
1

c− b
(λz + (c− b)α±z + Fθ(T

∗)u+ Fρ(T
∗)v + FY (T ∗)z).

We obtain the system of ODE in the form

Zξ = A(ξ, λ)Z. (6.3)

We note that the limit matrices A±(λ) = limξ→±∞A(ξ, λ) where A is analytic in λ.

Also we know that the dimension of the unstable subspace U− of A− and the stable

subspace S+of A+ are three and one respectively which sum to four, the dimension of the

entire phase space. Then we run (6.3) at −∞ with three vectors spanning the unstable

subspace and with one vector spanning the stable subspace at +∞ and compute them

toward ξ = 0. This gives the analytic basis Z−1 , Z
−
2 , Z

−
3 and Z+

4 spanning the manifolds

Z± of solutions of (6.3) that decay as ξ → ±∞. Then Evans function can be defined as

D(λ) = det(Z−1 Z
−
2 Z
−
3 Z

+
4 )|ξ=0.

Hence there is an eigenvalue if and only if D(λ) = 0, and order of root corresponds to

algebraic multiplicity of eigenvalue.

We use STABLAB to compute the Evans function. First, we numerically solve the

profile equations for the system (4.2)–(4.3). We have a = 0.5 and b = 0.7. For the

right end state, we set θ+ = −0.1, ρ+ = 2 and Y + = 8. For the left end state, first

we take ρ− = 0 which corresponds to FC
cf−→ TC wave. These parameters yield the

output shown in the left of the Figure 6.1. The picture in the right of the Figure 6.1

has winding number one about 0 indicating the simple eigenvalue at 0. Figure 6.2 shows

that the Evans function output winds around 0. The parameters we take are the same

parameters with the bifurcation diagram Figure 4.8. By varying Y + we plot a curve of

values (Y +, c). The solution labeled from 12 to 18 are in region 1 and we also computed

their Evans function by decreasing Y + until solution labeled 18. We saw that they also
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have the winding number one about 0 indicating the simple eigenvalue at 0. In all Evans

function computation, we try to use large semi-circle since we are not able to rule out

large eigenvalues. We could use it to plausibly conclude that the simple eigenvalue 0 is

the only element in {λ : Reλ ≥ 0} for FC
cf−→ TC waves.
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Figure 6.1 Profile for the system (4.2)–(4.3) (left) and Evans function output for a semi-
circular contour of radius 250 (right). We have Y + = 8.
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Figure 6.2 Evans function of Figure 6.1, zoom in near 0, showing that 0 is inside the curve.
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Now we take Y − = 0 which corresponds to OC
cf−→ TC wave and decrease Y + to

1.5. These parameters yield the output shown in the left of the Figure 6.3. The picture

in the right of the Figure 6.3 has winding number one about 0 indicating the simple

eigenvalue at 0. Figure 6.4 shows that the Evans function output winds around 0. By

Figure 4.8 the solutions labeled from 18 to 21 are in region 2 and we also computed their

Evans function by decreasing Y + until solution labeled 21. We saw that they also have

the winding number one about 0 indicating the simple eigenvalue at 0. Evans function

computations are performed for large semi-circle since we do not have bound on the

eigenvalues. Therefore we could use it to reasonably conclude that the simple eigenvalue

0 is the only element in {λ : Reλ ≥ 0} for OC
cf−→ TC waves between the solutions label

18 and 21.
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Figure 6.3 Profile for the system (4.2)–(4.3) (left) and Evans function output for a semi-
circular contour of radius 250 (right). We have Y + = 1.5.

As Y + reaches its minimum value at Y +
∗∗ , the curve of Figure 4.8 turns and solutions

labeled from 21 to 47 stay in region 2 that corresponds to OC
cf−→ TC wave. Now we

decrease Y + to 1.2 and compute Evans function. These parameters yield the output

shown in the left of the Figure 6.5. The picture in the right of the Figure 6.5 has winding

number two about 0 indicating the simple eigenvalue at 0 and a positive eigenvalue in the

right half plane. Figure 6.6 shows that the Evans function output winds around 0. We
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also computed the Evans function for the solutions labeled from 21 to 47 by increasing

Y + until solution labeled 47. We saw that they have similar result. Therefore solutions

labeled after 21 are not stable since they have a positive eigenvalue in {λ : Reλ ≥ 0}.
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Figure 6.5 Profile for the system (4.2)–(4.3) (left) and Evans function output for a semi-
circular contour of radius 2 (right). We have Y + = 1.2.
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Chapter 7

Stability analysis of combustion

waves

In this section, we focus on the stability of a given traveling wave. Previously the existence

of combustion waves was proved in section 4.1, 4.2 and 4.3. Then we study the spectrum

of the operator obtained by the linearization of the combustion system about the wave.

Since the essential spectrum of each type of combustion waves touches the imaginary

axis, a weight function is needed to be introduced. Such study is done extensively in

chapter 5. Concerning the discrete spectrum, in previous chapter we compute the Evans

functions. From these computations it is reasonable to conclude that certain waves have

no eigenvalues in the half–plane Reλ ≥ 0 other than a simple eigenvalue zero. Although

we have not proved this, we will assume it in this chapter.

Even though the discrete spectrum is stable, it does not imply either linear stability

or nonlinear stability. We encounter some difficulties.

1. The essential spectrum of the operator (5.7) touches the imaginary axis so it is

marginally stable. We overcome this issue by introducing a weight function γα(ξ).

Unfortunately there is no such α that shifts these spectra to the left of the imaginary

axis for slow and intermediate combustion waves. On the other hand we are able to

find weight function γα(ξ) with 0 < α− < cf − a and 0 < α+ < cf − a for only fast

combustion waves. In the weighted space with a positive growth rate, we study the

fast traveling waves to prove their linear and nonlinear stability.
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2. Since the system (2.7)-(2.9) is partially parabolic, the linearized operator has a

vertical line in its spectrum so it is not a sectorial operator.Therefore the linearized

system generates a C0-semigroup, not an analytic semigroup. This difficulty is

typical for systems with no diffusion in some equations.

By using recently obtained results about partially parabolic systems [34, 15], these diffi-

culties can be cured. In [34], more general result states that sometimes spectral stability

implies linear stability even when the spectrum has vertical lines. In Appendix A the

theorem in [34] is stated and note that the assumption of Theorem A.0.1 holds in the

weighted space Xα for the system (2.7)-(2.9). Therefore linear stability follows from the

spectral stability for the fast traveling waves.

Nonlinear stability does not necessarily follow from the linear stability. The semi-

group estimates which follows from the Theorem A.0.1 are not sufficient to conclude the

nonlinear stability. The system (5.1)-(5.3) and the traveling wave solution T ∗ have some

properties that satisfy the hypotheses of Theorem 3.14 in [15] which allow us to obtain

nonlinear stability.

Let X0 denote one of the standard Banach spaces L2(R)n ,H1(R)n or BUC(R)n. We

denote the norm in X0 by ‖ ‖0. Recall the weight functions γα(ξ) introduced in section 5.

Let Xα denote the weighted space for a fixed weight γα such that Xα = {x : γα(ξ)x(ξ) ∈
X0} with norm ‖x‖α = ‖γα(ξ)x(ξ)‖0.

We assume α− and α+ are nonnegative. Let β = (min(0, α−),max(0, α+)) = (0, α+)

and γβ(ξ) be a fixed weight function such that max(1, γα(ξ)) ≤ γβ(ξ). Let Xβ denote the

weighted space for a fixed weight γβ such that Xβ = {x : γβ(ξ)x(ξ) ∈ X0} with norm

‖x‖β = ‖γβ(ξ)x(ξ)‖0.

Consider the system (5.1)-(5.3) and let T ∗(ξ) be a stationary solution of it, i.e, a

traveling wave solution of (2.7)-(2.9) with speed c > 0, with T− = (θ−, 0, Y −) and T+ =

(0, ρ+, Y +) that corresponds to a fast traveling wave which has temperature controlled

right state and fuel controlled left state. Following work can be easily done for a fast

traveling wave which has temperature controlled right state and oxygen controlled left

state.

The change of variables u1 = θ − θ−, u2 = ρ, and u3 = Y − Y − converts (5.1)-(5.3)

to the system
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∂tu1 = ∂ξξu1 + (c− a)∂ξu1 + u2(u3 + Y −)Φ(u1 + θ−), (7.1)

∂tu2 = c∂ξu2 − u2(u3 + Y −)Φ(u1 + θ−), (7.2)

∂tu3 = (c− b)∂ξu3 − u2(u3 + Y −)Φ(u1 + θ−). (7.3)

Let U∗(ξ) = (u∗1(ξ), u∗2(ξ), u∗3(ξ)) be stationary solution of (7.1)-(7.3) that corresponds

to T ∗(ξ) so that U− = (0, 0, 0) and U+ = (−θ−, ρ+, Y + − Y −).

Let

R(U) = (u2(u3+Y −)Φ(u1+θ−),−u2(u3+Y −)Φ(u1+θ−),−u2(u3+Y −)Φ(u1+θ−)), (7.4)

then the linearization of (7.1)-(7.3) at U∗(ξ) isũ1t

ũ2t

ũ3t

 =

∂ξξ + (c− a)∂ξ 0 0

0 c∂ξ 0

0 0 (c− b)∂ξ


ũ1

ũ2

ũ3

+DR(U∗(ξ))Ũ (7.5)

where

DR(U∗(ξ)) =

 u∗2(u∗3 + Y −)Φ′(u∗1 + θ−) (u∗3 + Y −)Φ(u∗1 + θ−) u∗2Φ(u∗1 + θ−)

−u∗2(u∗3 + Y −)Φ′(u∗1 + θ−) −(u∗3 + Y −)Φ(u∗1 + θ−) −u∗2Φ(u∗1 + θ−)

−u∗2(u∗3 + Y −)Φ′(u∗1 + θ−) −(u∗3 + Y −)Φ(u∗1 + θ−) −u∗2Φ(u∗1 + θ−)

 .

(7.6)

Then the following statement follows from Theorem 3.14 in [15].

Theorem 7.0.1. Consider the system (5.1)-(5.3) with the constants a, b and c > 0 that

are chosen so that there is a stationary solution T ∗(ξ) of type FC to TC. Let α = (α−, α+)

with 0 < α− < c−a and 0 < α+ < c−a. Assume the Evans function for the traveling wave

T ∗(ξ) has no zeros in the half-plane Reλ ≥ 0 other than a simple zero at the origin. Let

β = (0, α+). Choose ν > 0 as in Corollary A.0.2. Suppose T 0 ∈ T ∗+X 3
β with ‖T 0−T ∗‖β

small and let T (t) be the solution of (5.1)-(5.3) with T (0) = T 0. Then :

1. T (t) is defined for all t ≥ 0

2. T (t) = T̃ (t) + T ∗(ξ − q(t)) with T̃ (t) in a fixed subspace of X 3
α complementary to

the span of T ∗′
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3. ‖T̃ (t)‖β + |q(t)| is small for all t ≥ 0

4. ‖T̃ (t)‖α ≤ Ce−νt‖T̃ 0‖α

5. There exists q∗ such that |q(t)− q∗| ≤ Ce−νt‖T̃ 0‖α

Let Ũ = (M̃, Ñ) with M̃ = (ũ1, ũ3) and Ñ = ũ2.

6. ‖(M̃(t)‖0 ≤ C‖T̃ 0‖β

7. ‖Ñ(t)‖0 ≤ Ce−νt‖T̃ 0‖β

For a fast traveling wave which has temperature controlled right state and oxygen

controlled left state, the only changes in Theorem 7.0.1 are in the (M̃, Ñ) decomposition:

M̃ = (ũ1, ũ2) and Ñ = ũ3.

The results of Theorem 7.0.1 (6) and (7) have a physical interpretation. In the case

of FC left state, combustion front moves to the right by leaving the high temperature

zone behind. Behind the combustion front fuel is exhausted and oxygen is present. If we

make a perturbation behind the front by adding

• fuel (ũ2), it immediately burns because of the high temperature and presence of

oxygen.

• oxygen (ũ3), it simply sits there since there is no fuel.

• heat (ũ1), it simply diffuses.

On the other hand, in the case of OC left state, behind the combustion front temperature

is high, oxygen is exhausted and fuel is present. If we make a perturbation behind the

front by adding

• fuel (ũ2), it simply sits there since there is no oxygen.

• oxygen (ũ3), it immediately reacts with the fuel until it is exhausted.

• heat (ũ1), it simply diffuses.

In order to prove Theorem 7.0.1, we need to verify hypotheses of Theorem 3.14 in

[15]. We do this in the remainder of this chapter.
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7.1 Assumptions

The linearization of (7.1)-(7.3) at the end state U− = (0, 0, 0) is

ũ1t

ũ2t

ũ3t

 = L−

ũ1

ũ2

ũ3

 =

∂ξξ + (c− a)∂ξ Y −Φ(θ−) 0

0 c∂ξ − Y −Φ(θ−) 0

0 −Y −Φ(θ−) (c− b)∂ξ


ũ1

ũ2

ũ3

 . (7.7)

If (ũ1, ũ2, ũ3) is in a weighted space L2 with weight function eαξ, then (ũ1, ũ2, ũ3) =

(e−αξw̃1, e
−αξw̃2, e

−αξw̃3) is in L2(R)3. Substitute them into L− and multiply by eα−ξ. We

obtain the following linear differential expression

L̂−W̃ =

∂ξξ + (c− a− 2α−)∂ξ + α2
− + (a− c)α− Y −Φ(θ−) 0

0 c∂ξ − α−c− Y −Φ(θ−) 0

0 −Y −Φ(θ−) (c− b)∂ξ − (c− b)α−


w̃1

w̃2

w̃3

. (7.8)

We find the spectrum of L̂− by using the Fourier transform.

λ = −µ2 + (c− a− 2α−)iµ+ α2
− + (a− c)α−,

λ = iµc− α−c− Y −Φ(θ−),

λ = (c− b)iµ− (c− b)α−.

Then

sup{Reλ : λ ∈ Sp(L−α−)} = sup{Reλ : λ ∈ Sp(L̂−)} (7.9)

= max(α2
− + (a− c)α−,−α−c− Y −Φ(θ−),−(c− b)α−)

which is negative for 0 < α− < c− a.

Similarly, the linearization of of (7.1)-(7.3) at the end state U+ = (−θ−, ρ+, Y +−Y −)

is ũ1t

ũ2t

ũ3t

 = L+

ũ1

ũ2

ũ3

 =

∂ξξ + (c− a)∂ξ 0 0

0 c∂ξ 0

0 0 (c− b)∂ξ


ũ1

ũ2

ũ3

 . (7.10)
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Substitute (ũ1, ũ2, ũ3) = (e−α+ξw̃1, e
−α+ξw̃2, e

−α+ξw̃3) into L+ and multiply by eα+ξ to

obtain the following linear differential expression

L̂+W̃ =

∂ξξ + (c− a− 2α+)∂ξ + α2
+ + (a− c)α+ 0 0

0 c∂ξ − α+ 0

0 0 (c− b)∂ξ − (c− b)α+


w̃1

w̃2

w̃3

.
(7.11)

Using the Fourier transform, we find that the spectrum of L+ is the set of the λ such

that

λ = −µ2 + (c− a− 2α+)iµ+ α2
+ + (a− c)α+,

λ = iµc− α+c,

λ = (c− b)iµ− (c− b)α+.

Then

sup{Reλ : λ ∈ Sp(L+
α+

)} = sup{Reλ : λ ∈ Sp(L̂+)} (7.12)

= max(α2
+ + (a− c)α+,−α+c,−(c− b)α+)

which is negative for 0 < α+ < c− a.

7.2 Eigenvalue problem

The eigenvalue problem for (7.5) reads

λ

ũ1

ũ2

ũ3

 =

∂ξξ + (c− a)∂ξ 0 0

0 c∂ξ 0

0 0 (c− b)∂ξ


ũ1

ũ2

ũ3

+DR(U∗(ξ))Ũ . (7.13)

We can write (7.13) as a first order system, for simplification let k1 = u∗2(u∗3 +Y −)Φ′(u∗1 +

θ−), k2 = (u∗3 + Y −)Φ(u∗1 + θ−), k3 = u∗2Φ(u∗1 + θ−) and let ṽ = ∂ξũ1
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
∂ξṽ

∂ξũ1

∂ξũ2

∂ξũ3

 =


a− c λ− k1 −k2 −k3

1 0 0 0

0 k1

c
λ+k2

c
k3

c

0 k1

c−b
k2

c−b
λ+k3

c−b



ṽ

ũ1

ũ2

ũ3

 . (7.14)

As ξ → ±∞ the linear system (7.14) approaches the constant coefficient linear system.

Let µ be the eigenvalues of the constant coefficient system at U−, then we obtain
a− c− µ λ −Y −Φ(θ−) 0

1 −µ 0 0

0 0 λ+Y −Φ(θ−)
c

− µ 0

0 0 Y −Φ(θ−)
c−b −µ



ṽ

ũ1

ũ2

ũ3

 = 0. (7.15)

Therefore the eigenvalues at U− are

µ−1 =
λ

c− b
, µ−2 =

λ+ Y −Φ(θ−)

c
, µ−3± =

−(c− a)±
√

(c− a)2 + 4λ

2
.

Similarly, the eigenvalues at U+ are

µ+1 =
λ

c− b
, µ+2 =

λ

c
, µ+3± =

−(c− a)±
√

(c− a)2 + 4λ

2
.

Note that for λ = 0, at U− there are two zero, one negative and one positive eigenvalues;

at U+ there are three zero and one negative eigenvalues. The eigenvalues µ−1, µ−2, µ−3±

(respectively µ+1, µ+2, µ+3±) are also the eigenvalues of the linearization of (5.1)-(5.3) at

the equilibrium (T−, 0) (respectively, (T+, 0)).

7.3 Hypotheses and proof of Theorem 7.0.1

In this subsection we give the hypotheses of Theorem 3.4 in [15] and verify these hy-

potheses to prove the Theorem 7.0.1.

Hypothesis 1. The function R is C3.

The function R defined by (7.4) is C∞, so Hypothesis 1 is satisfied.

Hypothesis 2. The system (2.7)-(2.9) has a traveling wave solution T ∗(ξ), ξ = x− ct,
for which there exist numbers K > 0 and ω− < 0 < ω+ such that for ξ ≤ 0, ‖T ∗(ξ)‖ ≤
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Ke−ω−ξ, and for ξ ≥ 0, ‖T ∗(ξ)− T+‖ ≤ Ke−ω+ξ.

Let −ω− be the minimum of the positive eigenvalues of the linearization of (5.1)-(5.3)

at (T−, 0) and let −ω+ be the maximum of the negative eigenvalues of the linearization

of (5.1)-(5.3) at (T+, 0). Since there is only one positive eigenvalue at (T−, 0) and only

one negative eigenvalue at (T+, 0), we have

ω− = −min

(
1

c
Y −Φ(θ−)

)
, ω+ = min (c− a) .

The values ω− and ω+ satisfy the Hypothesis 2.

Hypothesis 3. There exist α = (α−, α+) ∈ R2 such that the following are true

1. 0 < α− < −ω−

2. 0 ≤ α+ < ω+

3. For the system (7.5) and X0 = L2(R),

(a) sup{Reλ : λ ∈ Spess(Lα)} < 0

(b) the only element of Sp(Lα) in {λ : Reλ ≥ 0} is a simple eigenvalue 0.

Let α = (α−, α+) with 0 < α− < min(c−a,−ω−) and 0 < α+ < ω+ so that Hypothesis

3 (1) and (2) are satisfied. (7.12) is negative since we have 0 < α+ < ω+. Also (7.9) is

negative since 0 < α− < min
(
c− a, 1

c
Y −Φ(θ−)

)
. Hence Hypothesis 3 (3a) is satisfied

with

sup{Reλ : λ ∈ Spess(Lα)} = max(α2
− + (a− c)α−,−α−c− Y −Φ(θ−),−(c− b)α−,

α2
+ + (a− c)α+,−α+c,−(c− b)α+). (7.16)

Hypothesis 3 (3b) requires a numerical study of Evans function. In chapter 6, numerically

we showed that for a large semi-circle a simple eigenvalue 0 is the only element in {λ :

Reλ ≥ 0}. Therefore Hypothesis 3 (3b) holds.

By using Corollary A.0.2, there existsK > 0 such that for t ≥ 0, ‖etLαPsα‖R(Lα)→R(Lα) ≤
Ke−νt. This result says that every solution of the linearized system about the traveling

wave T ∗(ξ) in the weighted space decays exponentially to a multiple of T ∗′(ξ). This linear

result is needed to use in the proof of nonlinear Theorem 7.0.1.

Hypothesis 4. There is a 2× 2 matrix A such that R(M, 0) = (AM, 0).
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Decompose Ũ -space such that Ũ = (M̃, Ñ) with M̃ = (ũ1, ũ3) and Ñ = ũ2. Since

R(u1, 0, u3) = (0, 0, 0) from (7.4), Hypothesis 4 is satisfied with A = 0.

From (7.7) we have

L(1) =

(
∂ξξ + (c− a)∂ξ 0

0 (c− b)∂ξ

)
, L(2) = c∂ξ − Y −Φ(θ−). (7.17)

Hypothesis 5.

1. For X0 = L2(R) or BUC(R), the operator L(1) on X 2
0 generates a bounded semi-

group.

2. For X0 = L2(R), the operator L(2) on X0 satisfies sup{Reλ : λ ∈ Sp(L(2))} < 0.

The operator L(1) defined by (7.17) on L2(R) or BUC(R) generates a bounded semigroup.

Indeed, the operator (c− b)∂ξ generates a C0-semigroup and the operator ∂ξξ + (c− a)∂ξ

is sectorial. Also the spectrum of the operator c∂ξ − Y −Φ(θ−) on L2(R) is contained in

Reλ ≤ −Y −Φ(θ−) < 0. Therefore Hypothesis 5 is satisfied.
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Chapter 8

Contact discontinuities and wave

sequences

For the definition of contact discontinuities see [9]. In this paper we assume the oxygen

is transported faster than the temperature. Therefore we have contact discontinuity of

velocity 0, a or b. Only fuel concentration, temperature and oxygen concentration can

vary across the wave with velocity 0, a and b respectively.

Wave dimension number of a contact discontinuity is the dimension of the set of the

right states that can be reached from a fixed left state. For example, by speed 0, only

fuel concentration of the right state can be changed therefore dimension number is 1.

OC
0−→ OC (dimension 1)

If the fuel concentration is 0 at the right state than dimension number is 0.

OC
0−→ OC ∩ FC (dimension 0)

We find six types of combustion waves and they are listed below with their dimension

numbers.

• FC
cf−→ TC (dimension 1)

• OC
cf−→ TC (dimension 1)

• FC
cm−→ OC (dimension 1)
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• FC
cm−→ TC (dimension 1)

• FC
cs−→ OC (dimension 1)

• TC
cs−→ OC (dimension 0)

Theorem 2.0.4 and 2.0.6(3) define a smooth mapping from three dimensional space of

temperature controlled right states to two dimensional space of oxygen controlled or

fuel controlled left states. By Sard’s Theorem, almost every FC or OC left state would

correspond to a one dimensional set of right states.

Theorem 2.0.5(1) and 2.0.6(1) say that there is a one-parameter family of right states of

type OC for each left state of type FC to which the left state can be connected by a slow

combustion wave or intermediate combustion wave.

Theorem 2.0.5(2) says that the set of points in (θ−, ρ−, Y −, θ+, ρ+, cs)–space that cor-

responds to temperature controlled to oxygen controlled slow waves should be a three

dimensional manifold. By Sard’s Theorem, almost every left state corresponds to a set

of isolated right states (which may be empty).

For a wave sequence that solves the boundary value problem, the velocity of the waves

must be in increasing order. Only generic wave sequences are considered. These are the

wave sequences that satisfy the following properties;

1. Left end state must be of type TC, FC or OC.

2. Right end state must be of type TC, FC or OC.

3. If the right end state is of type TC, then the wave dimension numbers must sum

to at least three.

4. If the right end state is of type FC or OC, then the wave dimension numbers must

sum to at least two.

Contact discontinuities that begin or end at states of type TC ∩ FC, TC ∩ OC,

FC ∩OC or TC ∩ FC ∩OC can not be the first or last in the wave sequences. However

they can occur as intermediate waves in the generic wave sequences. An example of

generic wave sequence; OC
0−→ FC ∩ OC a−→ FC ∩ OC b−→ FC (dimension number=

0+1+1=2)

Theorem 8.0.1. Contact discontinuities with velocity 0, other than the following can

not appear in generic wave sequences
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1. TC
0−→ TC (dimension 1)

2. TC
0−→ TC ∩ FC (dimension 0)

3. OC
0−→ OC (dimension 1)

4. OC
0−→ OC ∩ FC (dimension 0)

By the generic wave sequence properties, a contact discontinuity with velocity 0 is

the first wave in the sequence and has left state TC, OC or FC. FC is not allowed to

be the first state since only fuel concentration can vary across the wave with velocity 0.

Therefore the new right is not allowed. However if the left is TC or OC, then only fuel

concentration can vary across the wave. Therefore the new right state is the same as the

left state or left state intersected with FC.

Theorem 8.0.2. Contact discontinuities with velocity b, other than the following can

not appear in generic wave sequences

1. TC
b−→ TC (dimension 1)

2. FC
b−→ FC (dimension 1)

3. TC ∩OC b−→ TC (dimension 1)

4. FC ∩OC b−→ FC (dimension 1)

There are two possibilities that a contact discontinuity of speed b is the last wave

in the sequence or followed by a fast combustion wave. If it is the last wave then by

the generic wave sequence properties, the right state is of type TC, OC or FC. If it is

followed by a fast combustion wave then the right state is of type OC or FC. Therefore

we have seven possible left sates ( TC, OC, FC, TC ∩ FC, TC ∩ OC, FC ∩ OC ,

TC ∩ FC ∩ OC) and three possible right state (TC, OC, FC). There are 21 possible

contact discontinuities of speed b and only four which are listed above can appear since

only oxygen concentration can vary across the wave with velocity b. The rest of the waves

cannot occur.

Theorem 8.0.3. Contact discontinuities with velocity a, other than the following can

not appear in generic wave sequences
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1. TC
a−→ TC (dimension 1)

2. TC ∩ FC a−→ FC (dimension 1)

3. OC
a−→ OC ∩ TC (dimension 1)

4. OC
a−→ OC (dimension 1)

5. FC
a−→ FC (dimension 1)

6. OC ∩ FC a−→ OC ∩ FC (dimension 1)

There are four possibilities that a contact discontinuity of speed a is the last wave in

the sequence or followed by a fast combustion wave or followed by a contact discontinuity

of speed b or followed by an intermediate combustion wave. If it is the last wave then

by the generic wave sequence properties, the right state is of type TC, OC or FC. If

it is followed by a fast combustion wave then the right state is of type OC or FC. If

it is followed by a contact discontinuity of speed b then by Theorem (8.0.2) the right

state is of type TC, FC, TC ∩ OC, FC ∩ OC. If it is followed by an intermediate

combustion wave then the right state is of type TC or FC. Therefore we have seven

possible left sates ( TC, OC, FC, TC ∩ FC, TC ∩ OC, FC ∩ OC , TC ∩ FC ∩ OC)

and five possible right state (TC, OC, FC, TC ∩OC, FC ∩OC ). There are 35 possible

contact discontinuities of speed a and only six which are listed above can appear since

only temperature concentration can vary across the wave with velocity a. The rest of the

waves cannot occur.

Using Figure 8.1, we can list all possible generic wave sequences that satisfy above

four properties. These wave sequences are classified according to their right state of type

FC, OC and TC. We provide more detailed description of these wave sequences below.

8.1 Right state of type FC

• TC to FC BVPs (θL ≤ 0 and ρR = 0).

TC
0−→ TC ∩ FC a−→ FC

b−→ FC is the only generic wave sequence of type TC to

FC, in detail,

(θL, ρL, Y L)
0−→ (θL, 0, Y L)

a−→ (θR, 0, Y L)
b−→ (θR, 0, Y R).
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Figure 8.1 All possible generic wave sequences. Dashed and black arrows indicate dimension
number 0 and 1 respectively.

See the simulation result in Figure 8.2. Notice that there is no combustion wave.

We only have three contact discontinuities with speed 0, a and b.

• OC to FC BVPs (Y L = 0 and ρR = 0).

OC
0−→ FC ∩ OC a−→ FC ∩ OC b−→ FC is the only generic wave sequence of type

OC to FC, more precisely, (θL, ρL, 0)
0−→ (θL, 0, 0)

a−→ (θR, 0, 0)
b−→ (θR, 0, Y R).

• FC to FC BVPs (ρL = ρR = 0).

FC
a−→ FC

b−→ FC is the only generic wave sequence of type FC to FC, more

precisely, (θL, 0, Y L)
a−→ (θR, 0, Y L)

b−→ (θR, 0, Y R).

8.2 Right state of type OC

• FC to OC BVPs (ρL = 0, Y R = 0).

There are two generic wave sequences. If (a − b)Y L + aρR > 0, then by Theo-

rem 2.0.5(1), θL, Y L, and ρR determine θN such that there is a slow FC
cs−→ OC
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Figure 8.2 Result of numerical simulation for the wave sequence TC
0−→ TC ∩ FC a−→ FC

b−→
FC with a = 0.5 and b = 0.7 , demonstrating contact discontinuities of speed 0, a and b.
Initial conditions (left) and simulation time 1000 (right).

combustion wave from (θL, 0, Y L) to (θN , ρR, 0) and for (a − b)Y L + aρR < 0 by

Theorem 2.0.6(1), θR, ρR and Y L determine θN such that there is an intermediate

FC
cm−→ OC combustion wave from (θN , 0, Y L) to (θR, ρR, 0)

1. FC
cs−→ OC

a−→ OC; more precisely (θL, 0, Y L)
cs−→ (θN , ρR, 0)

a−→ (θR, ρR, 0).

See the result of numerical simulation in Figure 8.3.

2. FC
a−→ FC

cm−→ OC; more precisely (θL, 0, Y L)
a−→ (θN , 0, Y L)

cm−→ (θR, ρR, 0).

See the result of numerical simulation in Figure 8.4.

Note that there is a bifurcation from FC to OC wave sequences and fixing θL and ρR

and altering the amount of Y L determine which wave sequence we get. Increasing

Y L enough in the wave sequence FC
cs−→ OC

a−→ OC changes the wave sequence to

FC
a−→ FC

cm−→ OC. Similarly, fixing θL and Y L and decreasing the amount of ρR

enough gives the same result.

• OC to OC BVPs (Y L = Y R = 0).

OC
0−→ OC

a−→ OC is the only generic wave sequence of type OC to OC, more

precisely, (θL, ρL, 0)
0−→ (θL, ρR, 0)

a−→ (θR, ρR, 0).
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Figure 8.3 Result of numerical simulation for the wave sequence FC
cs−→ OC

a−→ OC with
a = 0.5, demonstrating a fuel-controlled to oxygen-controlled slow combustion wave fol-
lowed by a contact discontinuity of speed a. Initial conditions (left) and simulation time 3500
(right).

ξ

0 500 1000 1500 2000 2500

0

0.5

1

1.5

2

2.5

3

θ

ρ

Y

ξ

0 500 1000 1500 2000 2500

0

0.5

1

1.5

2

2.5

3

θ

ρ

Y

Figure 8.4 Result of numerical simulation for the wave sequence FC
a−→ FC

cm−−→ OC with
a = 0.5, demonstrating a fuel-controlled to oxygen-controlled intermediate combustion wave
that moves ahead of a contact discontinuity of speed 0. Initial conditions (left) and simula-
tion time 3000 (right).
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• TC to OC BVPs (θL ≤ 0, Y R = 0).

We have two generic wave sequences of type TC to OC.

1. For θL + b
a
Y L > 0, TC

0−→ TC
cs−→ OC

a−→ OC is a generic wave sequence. if

θL + b
a
Y L > 0, then by Theorem 2.0.5(2), θL, Y L, and ρR determine θN and

ρM such that there is a slow TC
cs−→ OC combustion wave from (θL, ρM , Y L)

to (θN , ρR, 0).

(θL, ρL, Y L)
0−→ (θL, ρM , Y L)

cs−→ (θN , ρR, 0)
a−→ (θR, ρR, 0).

See the result of numerical simulation in Figure 8.5.

2. For (a − b)Y L + aρR < 0, TC
0−→ TC ∩ FC a−→ FC

cm−→ OC is a generic wave

sequence. If (a− b)Y L + aρR < 0, then by Theorem 2.0.6(1), θR, Y L, and ρR

determine θN such that there is an intermediate FC
cm−→ OC combustion wave

from (θL, 0, Y L) to (θN , ρR, 0).

(θL, ρL, Y L)
0−→ (θL, 0, Y L)

a−→ (θN , 0, Y L)
cm−→ (θR, ρR, 0).
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Figure 8.5 Result of numerical simulation for the wave sequence TC
0−→ TC

cs−→ OC
a−→ OC

with a = 0.5, demonstrating a temperature-controlled to oxygen-controlled slow combustion
wave that moves ahead of a contact discontinuity of speed 0 and followed a contact disconti-
nuity of speed a. Initial conditions (left) and simulation time 3500 (right).
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8.3 Right state of type TC

• TC to TC BVPs (θL ≤ 0 and θR ≤ 0).

We have six generic wave sequences of type TC to TC.

1. TC
0−→ TC

a−→ TC
b−→ TC; more precisely,

(θL, ρL, Y L)
0−→ (θL, ρR, Y L)

a−→ (θR, ρR, Y L)
b−→ (θR, ρR, Y R).

2. TC
0−→ TC

cs−→ OC
a−→ OC ∩ TC b−→ TC. If θL + b

a
Y L > 0, then by Theorem

2.0.5(2), θL, Y L, and ρR determine θN and ρM such that there is a slow TC
cs−→

OC combustion wave from (θL, ρM , Y L) to (θN , ρR, 0).

(θL, ρL, Y L)
0−→ (θL, ρM , Y L)

cs−→ (θN , ρR, 0)
a−→ (θR, ρR, 0)

b−→ (θR, ρR, Y R)

See the result of numerical simulation in Figure 8.6.
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Figure 8.6 Result of numerical simulation for the wave sequence TC
0−→ TC

cs−→ OC
a−→

OC ∩ TC b−→ TC with a = 0.5 and b = 0.7, demonstrating a temperature-controlled to oxygen-
controlled slow combustion wave that moves ahead of a contact discontinuity of speed 0 and
followed contact discontinuities of speed a and b. Initial conditions (left) and simulation time
3000 (right).
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3. TC
0−→ TC ∩FC a−→ FC

b−→ FC
cf−→ TC. By Theorem 2.0.4(2), for given θR, ρR

and if Y R > Y R
∗ , there exists a left state (θN , ρN , Y N), with θN > 0, ρN = 0

and Y N > 0, such that there is a fast FC
cf−→ TC combustion wave from

(θN , ρN , Y N) to (θR, ρR, Y R). More precisely

(θL, ρL, Y L)
0−→ (θL, 0, Y L)

a−→ (θN , 0, Y L)
b−→ (θN , 0, Y N)

cf−→ (θR, ρR, Y R).

See the result of numerical simulation in Figure 8.7.

4. According to our numerical results in section 6, for given θR, ρR and if Y R
∗ >

Y R > Y R
∗∗ , there exists a left state (θN , ρN , Y N), with θN > 0, ρN > 0 and

Y N = 0, such that there is a stable fast OC
cf−→ TC combustion wave from

(θN , ρN , Y N) to (θR, ρR, Y R).

(a) TC
0−→ TC

cs−→ OC
a−→ OC

cf−→ TC. if θL + b
a
Y L > 0, then by Theorem

2.0.5(2), θL, Y L, and ρN determine ρM and θM such that there is a slow

TC
cs−→ OC combustion wave from (θL, ρM , Y L) to (θM , ρN , 0).

(θL, ρL, Y L)
0−→ (θL, ρM , Y L)

cs−→ (θM , ρN , 0)
a−→ (θN , ρN , 0)

cf−→ (θR, ρR, Y R).

(b) TC
0−→ TC ∩ FC a−→ FC

cm−→ OC
cf−→ TC. If (a− b)Y L + aρR < 0, then by

Theorem 2.0.6(1), θN , Y L, and ρN determine θM such that there is an in-

termediate FC
cm−→ OC combustion wave from (θM , 0, Y L) to (θN , ρN , 0).

(θL, ρL, Y L)
0−→ (θL, 0, Y L)

a−→ (θM , 0, Y L)
cm−→ (θN , ρN , 0)

cf−→ (θR, ρR, Y R).

See the result of numerical simulation in Figure 8.8.

5. TC
0−→ TC ∩ FC a−→ FC

cm−→ TC
b−→ TC. If (a − b)Y L + aρR < 0, then by

Theorem 2.0.6(3), θR, ρR, and Y L determine θN and Y N such that there is an

intermediate FC
cm−→ TC combustion wave from (θN , 0, Y L) to (θR, ρR, Y N).

(θL, ρL, Y L)
0−→ (θL, 0, Y L)

a−→ (θN , 0, Y L)
cm−→ (θR, ρR, Y N)

b−→ (θR, ρR, Y R).

See the result of numerical simulation in Figure 8.9.
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Figure 8.7 Result of numerical simulation for the wave sequence TC
0−→ TC ∩ FC a−→ FC

b−→
FC

cf−→ TC with a = 0.5 and b = 0.7, demonstrating a fuel-controlled to temperature-
controlled fast combustion wave that moves ahead of contact discontinuities of speed a and
b. Initial conditions (left) and simulation time 1900 (right). We take Y + > Y +

∗ to have FC
to TC fast combustion wave as stated in Theorem 2.0.4(2). Once combustion starts, the pro-
duced high temperature zone remains behind the combustion front.
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Figure 8.8 Result of numerical simulation for the wave sequence TC
0−→ TC ∩FC a−→ FC

cm−−→
OC

cf−→ TC with a=0.5, demonstrating a fuel-controlled to oxygen-controlled intermediate
combustion wave and oxygen controlled to temperature-controlled fast combustion wave that
move ahead of contact discontinuities of speed 0 and a. Initial conditions (left) and simula-
tion time 1600 (right).
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Figure 8.9 Result of numerical simulation for the wave sequence TC
0−→ TC ∩FC a−→ FC

cm−−→
TC

b−→ TC with a = 0.5 and b = 0.7, demonstrating a fuel-controlled to temperature-
controlled intermediate combustion wave that is preceded and followed by contact disconti-
nuities of speed 0, a and b. Initial conditions (left) and simulation time 2500 (right).

• FC to TC BVPs (ρL = 0, θR ≤ 0).

1. For (a−b)Y L+aρR > 0, there is a generic wave sequence. If (a−b)Y L+aρR > 0,

then by Theorem 2.0.5(1), θL, Y L, and ρR determine θN such that there is a

slow FC
cs−→ OC combustion wave from (θL, 0, Y L) to (θN , ρR, 0).

FC
cs−→ OC

a−→ OC ∩ TC b−→ TC; more precisely

(θL, 0, Y L)
cs−→ (θN , ρR, 0)

a−→ (θR, ρR, 0)
b−→ (θR, ρR, Y R).

2. By Theorem 2.0.4(2), for given θR, ρR and if Y R > Y R
∗ , there exists (θN , ρN , Y N),

with θN > 0, ρN = 0 and Y N > 0, such that there is a fast FC
cf−→ TC com-

bustion wave from (θN , ρN , Y N) to (θR, ρR, Y R). FC
a−→ FC

b−→ FC
cf−→ TC;

more precisely,

(θL, 0, Y L)
a−→ (θN , 0, Y L)

b−→ (θN , 0, Y N)
cf−→ (θR, ρR, Y R).

3. According to our numerical results in section 6, for given θR, ρR and if Y R
∗ >

Y R > Y R
∗∗ , there exists a left state (θN , ρN , Y N), with θN > 0, ρN > 0 and

Y N = 0, such that there is a stable fast OC
cf−→ TC combustion wave from

(θN , ρN , Y N) to (θR, ρR, Y R).
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(a) FC
cs−→ OC

a−→ OC
cf−→ TC. To construct the wave sequence, note that by

Theorem 2.0.5(1), θL, Y L, and ρN determine θM such that there is a slow

FC
cs−→ OC combustion wave from (θL, 0, Y L) to (θM , ρN , 0). Between

slow and fast combustion wave there is a wave of velocity a:

(θL, 0, Y L)
cs−→ (θM , ρN , 0)

a−→ (θN , ρN , 0)
cf−→ (θR, ρR, Y R).

See the result of numerical simulation in Figure 8.10.

(b) For (a− b)Y L + aρN < 0, there is a generic wave sequence. If (a− b)Y L +

aρN < 0, then by Theorem 2.0.6(1), θM , Y L, and ρN determine θN such

that there is a slow FC
cs−→ OC combustion wave from (θN , 0, Y L) to

(θM , ρN , 0). FC
a−→ FC

cm−→ OC
cf−→ TC; more precisely,

(θL, 0, Y L)
a−→ (θN , 0, Y L)

cm−→ (θM , ρN , 0)
cf−→ (θR, ρR, Y R).

See the result of numerical simulation in Figure 8.11.
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Figure 8.10 Result of numerical simulation for the wave sequence FC
cs−→ OC

a−→ OC
cf−→

TC. with a = 0.5, demonstrating a fuel-controlled to oxygen-controlled slow combustion
wave and oxygen-controlled to temperature-controlled fast combustion wave. Between these
combustion waves there is a contact discontinuity of speed a. Initial conditions (left) and sim-
ulation time 1800 (right).
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Figure 8.11 Result of numerical simulation for the wave sequence FC
a−→ FC

cm−−→ OC
cf−→

TC with a = 0.5, demonstrating a fuel-controlled to oxygen-controlled intermediate combus-
tion wave and oxygen-controlled to temperature controlled fast combustion wave that move
ahead of contact discontinuity of speed a. Initial conditions (left) and simulation time 1750
(right).

4. FC
a−→ FC

cm−→ TC
b−→ TC. If (a− b)Y L + aρR < 0, then by Theorem 2.0.6(3),

θR, ρR, and Y L determine θN and Y M such that there is an intermediate

FC
cm−→ TC combustion wave from (θN , 0, Y L) to (θR, ρR, Y N) .

(θL, 0, Y L)
a−→ (θN , 0, Y L)

cm−→ (θR, ρR, Y M)
b−→ (θR, ρR, Y R).

See the result of numerical simulation in Figure 8.12.

• OC to TC BVPs (Y L = 0, θR ≤ 0).

1. OC
0−→ OC

a−→ TC ∩ OC b−→ TC; more precisely, (θL, ρL, 0)
0−→ (θL, ρR, 0)

a−→
(θR, ρR, 0)

b−→ (θR, ρR, Y R).

2. OC
0−→ FC ∩ OC a−→ FC ∩ OC b−→ FC

cf−→ TC .By Theorem 2.0.4(2), for

given θR, ρR and if Y R > Y R
∗ , there exists (θN , ρN , Y N), with θN > 0, ρN = 0

and Y N > 0, such that there is a fast FC
cf−→ TC combustion wave from

(θN , ρN , Y N) to (θR, ρR, Y R). More precisely,

(θL, ρL, 0)
0−→ (θL, 0, 0)

a−→ (θN , 0, 0)
b−→ (θN , 0, Y N)

cf−→ (θR, ρR, Y R).
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Figure 8.12 Result of numerical simulation for the wave sequence FC
a−→ FC

cm−−→ TC
b−→ TC

with a = 0.5 and b = 0.7, demonstrating a fuel-controlled to temperature-controlled inter-
mediate combustion wave that is preceded and followed by contact discontinuities of speed a
and b. Initial conditions (left) and simulation time 2500 (right).

3. OC
0−→ OC

a−→ OC
cf−→ TC. According to our numerical results in section 6,

for given θR, ρR and if Y R
∗ > Y R > Y R

∗∗ , there exists a left state (θN , ρN , Y N),

with θN > 0, ρN > 0 and Y N = 0, such that there is a stable fast OC
cf−→ TC

combustion wave from (θN , ρN , Y N) to (θR, ρR, Y R). More precisely,

(θL, ρL, 0)
0−→ (θL, ρN , 0)

a−→ (θN , ρN , 0)
cf−→ (θR, ρR, Y R).

See the result of numerical simulation in Figure 8.13.

For all numerical simulations shown in this section we use nonlinear Crank-Nicolson

implicit finite difference scheme and Newton’s method in each time-step with a = 0.5

and b = 0.7.
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Figure 8.13 Result of numerical simulation for the wave sequence OC
0−→ OC

a−→ OC
cf−→ TC

with a = 0.5, demonstrating an oxygen-controlled to temperature-controlled fast combustion
wave that move ahead of contact discontinuities of speed 0 and a. Initial conditions (left) and
simulation time 1500 (right).
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Chapter 9

Adding small diffusion to the model

In this section we add small diffusion term ε∂xxY ( ε > 0 small) to the oxygen equation

(2.9) and show the traveling waves have not changed. Although the traveling waves do

not change, continuous spectrum and weight function may change. We also show how

the continuous spectrum and weight function change for each type of combustion waves.

We consider the combustion system with small diffusion on the oxygen equation that

is defined by

∂tθ + a∂xθ = ∂xxθ + ρY Φ, (9.1)

∂tρ = −ρY Φ, (9.2)

∂tY + b∂xY = ε∂xxY − ρY Φ. (9.3)

In the moving coordinate frame ξ = x− ct, the PDE is

∂tθ = ∂ξξθ + (c− a)∂ξθ + ρY Φ, (9.4)

∂tρ = c∂ξ − ρY Φ, (9.5)

∂tY = ε∂ξξY + (c− b)∂ξY − ρY Φ. (9.6)

We can identify traveling wave solution of (9.1)-(9.3) by looking for steady-state

solutions of (9.4)-(9.6). Steady-state solutions satisfy the ordinary differential system
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0 = ∂ξξθ + (c− a)∂ξθ + ρY Φ, (9.7)

0 = c∂ξ − ρY Φ, (9.8)

0 = ε∂ξξY + (c− b)∂ξY − ρY Φ. (9.9)

Let v1 = ∂ξθ and v2 = ∂ξY , then we have

∂ξθ = v1, (9.10)

∂ξv1 = (a− c)v1 − ρY Φ, (9.11)

∂ξρ =
1

c
ρY Φ, (9.12)

∂ξY = v2, (9.13)

ε∂ξv2 = (b− c)v2 + ρY Φ. (9.14)

This is a slow-fast system. The critical manifold (ε = 0) is v2 = 1
c−bρY Φ. It is normally

hyperbolic ∂
∂v2
ε∂ξv2 = b− c 6= 0. Therefore any compact portion persists for small ε. To

lowest order in ε, the flow on it is given by the first four equations (9.10)-(9.13) with

v2 = 1
c−bρY Φ. These are exactly the traveling wave equations we get when ε = 0, hence

the traveling waves have not changed. When ε > 0, at least things that are stable to

perturbation have not changed.

Fast traveling waves involve a connection to a non-hyperbolic equilibrium, so it is

not clear that they persist for ε > 0. Therefore we have to study them explicitly. We

shall show that the fast traveling waves have not changed. As in section 3.1 we begin by

reducing the system in a more convenient form.

First we add equation (9.5) to (9.4), then replace (9.5). Next we substract equation

(9.5) from (9.6), then replace (9.6). We obtain

∂tθ = (c− a)∂ξθ + ∂ξξθ + ρY Φ(θ), (9.15)

∂t(θ + ρ) = (c− a)∂ξθ + ∂ξξθ + c∂ξρ, (9.16)

∂t(Y − ρ) = (c− b)∂ξY + ε∂ξξY − c∂ξρ. (9.17)
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Stationary solutions of (9.15)–(9.17) satisfy the system of ODEs

0 = (c− a)∂ξθ + ∂ξξθ + ρY Φ(θ), (9.18)

0 = (c− a)∂ξθ + ∂ξξθ + c∂ξρ, (9.19)

0 = (c− b)∂ξY + ε∂ξξY − c∂ξρ. (9.20)

In (9.18) and (9.20), let v1 = ∂ξθ and v2 = ∂ξY respectively, and integrate (9.19)–

(9.20). Note that dot denotes the derivative with respect to ξ. Then we obtain the system

θ̇ = v1, (9.21)

v̇1 = (a− c)v1 − ρY Φ(θ), (9.22)

Ẏ = v2, (9.23)

w1 = (c− a)θ + v1 + cρ, (9.24)

w2 = (c− b)Y + εv2 − cρ, (9.25)

where w1 and w2 are constants. In (9.21) and (9.22) we substitute for v1 using (9.24). In

(9.22) and (9.23) we substitute for Y using (9.25). We obtain the reduced traveling wave

system

θ̇ = (a− c)θ − cρ+ w1, (9.26)

ρ̇ =
cρ+ w2 − εv2

c(c− b)
ρΦ(θ), (9.27)

εv̇2 =
w2 + cρ− εv2

c− b
ρΦ(θ)− (c− b)v2, (9.28)

where (w1, w2) is a vector of parameters. The critical manifold (ε = 0) is v2 = w2+cρ
(c−b)2ρΦ(θ).

We substitute v2 = w2+cρ
(c−b)2ρΦ(θ) + εF (θ, ρ, ε) (the lowest order in ε) into the (9.26)–

(9.27). The new system still has the invariant line ρ = 0 and the nullcline H defined by

(a− c)θ − cρ+ w1 which contains all equilibria.

Since fast traveling waves have TC right state that is (θ+, ρ+, Y +) with θ+ ≤ 0, ρ+ > 0

and Y + > 0, we still have the degenerate equilibria which lie in H. Also the invariant line

ρ = 0 has one equilibrium which also lies in H. The proof of existence of fast traveling

waves goes through as before.

To show the changes on the spectrum, we use same calculation from chapter 5. Only
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difference is on the oxygen equation.

• Spectrum of fast combustion waves (a < b < cf )

They have TC right state. We compute the spectrum of L+ at the right end state.

L+ =

−µ
2 + iµ(cf − a) 0 0

0 iµcf 0

0 0 −εµ2 + iµ(cf − b)

 . (9.29)

The spectrum of L+ is the set of the λ that are eigenvalues of (9.29) for some µ

in R.

λ(µ) = −µ2 + iµ(cf − a), λ(µ) = iµcf , λ(µ) = −εµ2 + iµ(cf − b).

The spectrum of the linearization is two parabolas in the left-half plane that touch

the imaginary axis at the origin and the imaginary axis.

Similarly, for

1. FC left state

λ(µ) = −µ2+iµ(cf−a), λ(µ) = iµcf−Y −Φ(θ−), λ(µ) = −εµ2+iµ(cf−b).

The spectrum of the linearization is two parabolas in the left-half plane that

touch the origin and a vertical line in the left-half plane.

2. OC left state

λ(µ) = −µ2 +iµ(cf−a), λ(µ) = −εµ2 +iµ(cf−b)−ρ−Φ(θ−), λ(µ) = iµcf .

The spectrum consists of a parabola in the left half plane, another parabola

that touches the origin and imaginary axis.

• Spectrum of slow combustion waves (cs < a < b)

1. OC right state

λ(µ) = −µ2 + iµ(cs−a), λ(µ) = iµcs, λ(µ) = −εµ2 + iµ(cs−b)−ρ+Φ(θ+).
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The spectrum of the linearization is a parabola in the left-half plane that

touches the origin, another parabola in the left-half plane and the imaginary

axis.

2. FC left state

λ(µ) = −µ2 +iµ(cs−a), λ(µ) = iµcs−Y −Φ(θ−), λ(µ) = −εµ2 +iµ(cs−b).

The spectrum of the linearization is two parabolas in the left-half plane that

touch the origin and a vertical line in the left-half plane.

3. TC left state

λ(µ) = −µ2 + iµ(cs − a), λ(µ) = iµcs, λ(µ) = −εµ2 + iµ(cs − b).

The spectrum of the linearization is two parabolas in the left-half plane that

touch the imaginary axis at the origin and the imaginary axis.

• Spectrum of intermediate combustion waves (a < cm < b)

1. FC left state

λ(µ) = −µ2 + iµ(cm − a), λ(µ) = iµcm − Y −Φ(θ−), λ(µ) = −εµ2 + iµ(cm − b).

The spectrum of the linearization is two parabolas in the left-half plane that touch

the imaginary axis at the origin and a vertical line in the left half-plane.

2. TC right state

λ(µ) = −µ2 + iµ(cm − a), λ(µ) = iµcm, λ(µ) = −εµ2 + iµ(cm − b).

The spectrum of the linearization is two parabolas in the left-half plane that touch

the imaginary axis at the origin and the imaginary axis.

3. OC right state

λ(µ) = −µ2 + iµ(cm − a), λ(µ) = iµcm, λ(µ) = −εµ2 + iµ(cm − b)− ρ+Φ(θ+).
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The spectrum of the linearization is a parabola in the left-half plane that touches

the origin, another parabola in the left-half plane and the imaginary axis.

Adding small diffusion to the oxygen equation only changes a vertical line to a

parabola in the spectrum for every type of combustion waves. The spectrum of fast,

slow and intermediate combustion waves still touches the imaginary axis. We determine

weight functions for the new system (9.1)-(9.3) by using the same idea from previous

section.

• Weight function for fast combustion waves (a < b < cf )

1. TC right state : if 0 < α+ < min {cf − a, cf−bε } is provided, then the spectra

lies in the left half plane.

2. FC left state : we require 0 < α− < min {cf − a, cf−bε } to move the spectra to

the left half plane.

3. OC left state : we require 0 < α− < min {cf − a,
cf−b+

√
(b−c)2+4ερ−Φ(θ−)

2ε
} to

move the spectra to the left half plane.

• Weight function for slow combustion waves (cs < a < b)

1. OC right state : there is still no weight function to move the spectrum to the

left half plane.

2. FC left state : if 0 > α− > max {cs − a, cs−bε , −Y
−Φ(θ−)
ε

} is provided, then the

spectra lies in the left half plane.

3. TC left state : there is no α− which moves the spectra to the left half plane.

• Weight function for intermediate combustion waves (a < cm < b)

1. FC left state : there is no α− which moves the spectra to the left half plane.

2. TC right state : there is no α+ which moves the spectra to the left half plane.

3. OC right state : we require 0 < α+ < min {cm − a,
cm−b+

√
(b−cm)2+4ερ−Φ(θ−)

2ε
}

to move the spectra to the left half plane.
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9.1 Spectral Energy Estimates

By spectral energy estimates, we try to find bounds on the unstable eigenvalues for the

system when we add small diffusion. Consider the system (9.1)-(9.3) and linearize it

about the combustion front (θ̂, ρ̂, Ŷ ), we obtain

∂tθ = ∂ξξθ + (c− a)∂ξθ + h1θ + h2Y + h3ρ, (9.30)

∂tρ = c∂ξρ− h1θ − h2Y − h3ρ, (9.31)

∂tY = ε∂ξξY + (c− b)∂ξY − h1θ − h2Y − h3ρ, (9.32)

where

h1(ξ) =
ρ̂(ξ)Ŷ (ξ)

θ̂(ξ)2
exp(− 1

θ̂(ξ)
), h2(ξ) = ρ̂(ξ) exp(− 1

θ̂(ξ)
), h3(ξ) = Ŷ (ξ) exp(− 1

θ̂(ξ)
).

We introduce the weight function to move the spectrum to the left half-plane. Note

that we were able to find weight function eαξ only for the fast combustion waves with

α = (α−, α+), 0 < α± < c− a.

If (θ(ξ), ρ(ξ), Y (ξ)) is in a weighted space Xα with weight function eαξ, then

(θ(ξ), ρ(ξ), Y (ξ)) = e−αξ(u(ξ), v(ξ), z(ξ)) with (u(ξ), v(ξ), z(ξ)) in X0. Substitute them

into (9.30)–(9.32) and multiply by eαξ. We obtain

∂tu = ∂ξξu+ (c− a− 2α)∂ξu+ (h1 + α2 + aα− cα)u+ h2z + h3v, (9.33)

∂tv = c∂ξv − h1u− h2z − (h3 + cα)v, (9.34)

∂tz = ε∂ξξz + (c− b− 2εα)∂ξz − h1u+ (εα2 + bα− cα− h2)z − h3v. (9.35)

The eigenvalue problem reads

λu = ∂ξξu+ (c− a− 2α)∂ξu+ (h1 + α2 + aα− cα)u+ h2z + h3v, (9.36)

λv = c∂ξv − h1u− h2z − (h3 + cα)v, (9.37)

λz = ε∂ξξz + (c− b− 2εα)∂ξz − h1u+ (εα2 + bα− cα− h2)z − h3v. (9.38)

Lemma 9.1.1. If (u, v, z) satisfies (9.36)-(9.38) for some nonzero λ, then the following

two inequalities hold for all ε1 > 0 and ε2 > 0 :
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Re(λ)

∫
|u|2 ≤

∫
(h1+α2+aα−cα)|u|2+ε1

∫
h2|u|2+

1

4ε1

∫
h2|z|2+ε2

∫
h3|u|2+

1

4ε2

∫
h3|v|2

(9.39)

and

(Re(λ) + |Im(λ)|)
∫
|u|2 ≤

∫
(h1 + α2 + aα− cα)|u|2 +

(c− a− 2α)2

4

∫
|u|2 + ε1

∫
h2|u|2

+
1

2ε1

∫
h2|z|2 + ε2

∫
h3|u|2 +

1

2ε2

∫
h3|v|2. (9.40)

Proof. We multiply (9.36) by the conjugate ū and integrate from −∞ to ∞. We have

λ

∫
|u|2 = (c− a− 2α)

∫
u′ū+

∫
(h1 + α2 + aα− cα)|u|2 +

∫
h2zū+

∫
h3vū−

∫
|u′|2.

(9.41)

Since Re
∫∞
−∞ u

′ūdξ =
∫∞
−∞(u′ū + ū′u)dξ/2 =

∫∞
−∞(uū)′dξ/2 = 0, taking the real and

imaginary parts of (9.41), we have

Re(λ)

∫
|u|2 =

∫
(h1 + α2 + aα− cα)|u|2 +Re

∫
h2zū+Re

∫
h3vū−

∫
|u′|2, (9.42)

|Im(λ)|
∫
|u|2 ≤ (c− a− 2α)

∫
|u′||ū|+ |Im

∫
h2zū|+ |Im

∫
h3vū|. (9.43)

The inequality (9.39) follows by using Young’s inequality on (9.42). We use Young’s

inequality in the form that ab ≤ εa2 + 1
4ε
b2 where a, b are any real numbers and ε > 0. In

Lemma 10.1 ε1 and ε2 come from this inequality.

The inequality (9.40) follows by adding (9.42) and (9.43) together and using the fact

that |Re(xȳ)|+ |Im(xȳ)| ≤
√

2|x||y| where x, y are complex numbers and using Young’s

inequality to get (c− a− 2α)|u′||u| ≤ (c−a−2α)2|u|2
4

+ |u′2|.
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(Re(λ) + |Im(λ)|)
∫
|u|2 ≤

∫
(h1 + α2 + aα− cα)|u|2 +

(c− a− 2α)2

4

∫
|u|2

+
√

2

∫
h2|z||u|+

√
2

∫
h3|v||u|

≤
∫

(h1 + α2 + aα− cα)|u|2 +
(c− a− 2α)2

4

∫
|u|2 + ε1

∫
h2|u|2

+
1

2ε1

∫
h2|z|2 + ε2

∫
h3|u|2 +

1

2ε2

∫
h3|v|2.

Lemma 9.1.2. If (u, v, z) satisfies (9.36)-(9.38) for some nonzero λ, then the following

two inequalities hold for all ε3 > 0 and ε4 > 0 :

Re(λ)

∫
|v|2 ≤ ε3

∫
h1|v|2 +

1

4ε3

∫
h1|u|2 + ε4

∫
h2|v|2 +

1

4ε4

∫
h2|z|2 −

∫
(h3 + cα)|v|2.

(9.44)

Proof. We multiply (9.37) by the conjugate v̄ and integrate from −∞ to ∞. We have

λ

∫
|v|2 = c

∫
v′v̄ −

∫
h1uv̄ −

∫
h2zv̄ −

∫
(h3 + cα)|v|2. (9.45)

Taking the real part of (9.45), we have

Re(λ)

∫
|v|2 = −Re

∫
h1uv̄ −Re

∫
h2zv̄ −

∫
(h3 + cα)|v|2. (9.46)

The inequality (9.44) follows by using Young’s inequality on (9.46).

Lemma 9.1.3. If (u, v, z) satisfies (9.36)-(9.38) for some nonzero λ, then the following

two inequalities hold for all ε5 > 0 and ε6 > 0 :

Re(λ)

∫
|z|2 ≤ ε5

∫
h1|u|2+

1

4ε5

∫
h1|z|2+ε6

∫
h3|v|2+

1

4ε6

∫
h3|z|2+

∫
(εα2+bα−cα−h2)|z|2

(9.47)

and

(Re(λ) + |Im(λ)|)
∫
|z|2 ≤ (c− b− 2εα)2

4ε

∫
|z|2 + ε5

∫
h1|u|2 +

1

2ε5

∫
h1|z|2 (9.48)

+ε6

∫
h3|v|2 +

1

2ε6

∫
h3|z|2 +

∫
(εα2 + bα− cα− h2)|z|2.

89



Proof. We multiply (9.38) by the conjugate z̄ and integrate from −∞ to ∞. We have

λ

∫
|z|2 = (c− b−2εα)

∫
z′z̄−

∫
h1uz̄−

∫
h3z̄v+

∫
(εα2 + bα− cα−h2)|z|2− ε

∫
|z′|2.

(9.49)

Taking the real and imaginary parts of (9.49), we have

Re(λ)

∫
|z|2 = −Re

∫
h1uz̄−Re

∫
h3z̄v+

∫
(εα2 + bα− cα−h2)|z|2− ε

∫
|z′|2, (9.50)

|Im(λ)|
∫
|z|2 ≤ (c− b− 2εα)

∫
|z′||z̄|+ |Im

∫
h1uz̄|+ |Im

∫
h3vz̄|. (9.51)

The inequality (9.47) follows by using Young’s inequality on (9.50).

The inequality (9.48) follows by adding (9.50) and (9.51) together and using the fact

that |Re(xȳ)|+ |Im(xȳ)| ≤
√

2|x||y| where x, y are complex numbers and using Young’s

inequality to get (c− b− 2εα)|z′||z| ≤ (c−b−2εα)2|z|2
4

+ |z′2|.

(Re(λ) + |Im(λ)|)
∫
|z|2 ≤ (c− b− 2εα)2

4ε

∫
|z|2 +

∫
(εα2 + bα− cα− h2)|z|2

+
√

2

∫
h1|z||u|+

√
2

∫
h3|v||z|

≤ (c− b− 2εα)2

4ε

∫
|z|2 +

∫
(εα2 + bα− cα− h2)|z|2 + ε5

∫
h1|u|2

+
1

2ε5

∫
h1|z|2 + ε6

∫
h3|v|2 +

1

2ε6

∫
h3|z|2.

Theorem 9.1.4. If (u, v, z) satisfies (9.36)-(9.38) for some nonzero λ, then the following

inequality holds for all 0 < δ < 1 :

Re(λ) ≤ 1

1− δ
sup
ξ
h1 +

(1− δ)2 + 2δ

8δ
sup
ξ
{h2 + h3}+ max{α2 + aα, εα2 + bα}. (9.52)

Proof. First we multiply (9.39) by k > 0 and add to (9.44) and (9.47). We obtain,
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Re(λ)

∫
(k|u|2 + |v|2 + |z|2) ≤ (k + ε5 +

1

4ε3
)

∫
h1u

2 + ε3

∫
h1v

2 +
1

4ε5

∫
h1z

2

+kε1

∫
h2u

2 + ε4

∫
h2v

2 + (
k

4ε1
+

1

4ε4
− 1)

∫
h2z

2

+kε2

∫
h3u

2 + (
k

4ε2
+ ε6 − 1)

∫
h3v

2 +
1

4ε6

∫
h3z

2

+ max{α2 + aα, εα2 + bα}
∫

(ku2 + z2)− cα
∫

(ku2 + v2 + z2).

Set k
4ε1

+ 1
4ε4

= 1, k
4ε2

+ ε6 = 1 and take ε4 = ε1 and ε6 = 1
4ε2

. Therefore ε1 = ε2 = ε4 =
k+1

4
and ε6 = 1

k+1
. Also set ε3 = 1

1−δ , ε5 = 1−δ
4

and k = (1−δ)2

2δ
. Thus we get,

Re(λ)

∫
(k|u|2 + |v|2 + |z|2) ≤ 1

1− δ

∫
h1(k|u|2 + |v|2 + |z|2)

+
(1− δ)2 + 2δ

8δ

∫
h2(k|u|2 + |v|2) +

(1− δ)2 + 2δ

8δ

∫
h3(k|u|2 + |z|2)

+ max{α2 + aα, εα2 + bα}
∫

(ku2 + z2)− cα
∫

(ku2 + v2 + z2).

Therefore,

Re(λ) ≤ 1

1− δ
sup
ξ
h1 +

(1− δ)2 + 2δ

8δ
sup
ξ
{h2 + h3}+ max{α2 + aα, εα2 + bα}. (9.53)

Theorem 9.1.5. If (u, v, z) satisfies (9.36)-(9.38) for some nonzero λ, then the following
inequality holds for all 0 < δ < 1 :

Re(λ) + |Im(λ)| ≤ max
ξ
{α2 + aα− cα+

(c− a− 2α)2

4
+ (1− δ)h2 +

h3
1− δ

+
(2− δ)

4δ(1− δ)
v̂2

û4
h3 +

5h1
4

εα2 + bα− cα+
(c− b− 2εα)2

4ε
+

h1
1− δ

+
h3

2(1− δ)
+

(2− δ)
2δ

v̂2

ẑ2
h3}. (9.54)

Proof. To prove (9.54), we need to revise Lemma 9.1.2. First we replace (θ̂, ρ̂, Ŷ ) in

h1(ξ), h2(ξ) and h3(ξ) with (û, v̂, ẑ). Note that we can write h1 and h2 in terms of h3

such that h1 = v̂
û2h3 and h2 = v̂

ẑ
h3. In (9.46) we replace h1uv̄ and h2zv̄ with v̂

û2h3uv̄ and
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v̂
ẑ
h3zv̄ and apply Young’s inequality, we have

h1uv̄ =
v̂

û2
h3uv̄ ≤ ε3h3|v|2 +

v̂2

4ε3û4
h3|u|2

and

h2zv̄ =
v̂

ẑ
h3zv̄ ≤ ε4h3|v|2 +

v̂2

4ε4ẑ2
h3|z|2.

Substitute them in (9.46) and it yields

Re(λ)

∫
|v|2 ≤ ε3

∫
h3|v|2 +

1

4ε3

∫
v̂2

û4
h3|u|2 + ε4

∫
h3|v|2 +

1

4ε4

∫
v̂2

ẑ2
h3|z|2 −

∫
(h3 + cα)|v|2.

(9.55)

We multiply (9.40) and (9.48) by k1 and k2 respectively then add to (9.55).

(Re(λ) + |Im(λ)|)
∫

(k1u
2 + k2z

2) +Re(λ)
∫
v2

≤
∫ (

h1 + α2 + aα− cα + ε1h2 + ε2h3 +
(c− a− 2α)2

4
+

h3

4ε3k1

v̂2

û4
+
ε5k2h1

k1

)
k1|u|2

+

∫ (
εα2 + bα− cα +

(c− b− 2εα)2

4ε
+
h1

2ε5
+
h3

2ε6
+

h3

4ε4k2

v̂2

ẑ2

)
k2|z|2

+(ε3 + ε4 +
k1

2ε2
+ k2ε6 − 1)

∫
h3|v|2 + (

k1

2ε1
− k2)

∫
h2|z|2.

Take ε1 = ε6 = 1−δ, ε3 = ε4 = ε5 = 1−δ
2

, ε2 = 1
1−δ and k1 = 2δ

2−δ . Then ε3+ε4+ k1

2ε2
+k2ε6 =

1 and k1

2k2ε1
= 1. Thus we get,

(Re(λ) + |Im(λ)|)
∫

(k1u
2 + k2z

2) +Re(λ)
∫
v2

≤
∫ (

α2 + aα− cα +
(c− a− 2α)2

4
+ (1− δ)h2 +

h3

1− δ
+

(2− δ)
4δ(1− δ)

v̂2

û4
h3 +

5h1

4

)
k1|u|2

+

∫ (
εα2 + bα− cα +

(c− b− 2εα)2

4ε
+

h1

1− δ
+

h3

2(1− δ)
+

(2− δ)
2δ

v̂2

ẑ2
h3

)
k2|z|2.

Thus we have a contradiction when

Re(λ) + |Im(λ)| ≥ max
ξ
{α2 + aα− cα+

(c− a− 2α)2

4
+ (1− δ)h2 +

h3
1− δ

+
(2− δ)

4δ(1− δ)
v̂2

û4
h3 +

5h1
4
,

εα2 + bα− cα+
(c− b− 2εα)2

4ε
+

h1
1− δ

+
h3

2(1− δ)
+

(2− δ)
2δ

v̂2

ẑ2
h3}.

92



The inequalities (9.52) and (9.54) form a trapezoidal region of admissible unstable

spectrum. After we find the bound on the eigenvalues for the system with small diffu-

sion added to the oxygen equation, we could use it to compute the Evans function and

rigorously rule out the large eigenvalues.
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Chapter 10

Conclusion

In our combustion model we assumed the oxygen is transported faster than the temper-

ature. A consequence is that we have more complicated existence theory of fast traveling

waves. For certain parameter values, we find two fast combustion waves or there is no

fast combustion wave. More precisely, if the right state has small amount of oxygen, then

the reaction cannot occur; if it has moderate amount of oxygen, then there is a stable

combustion wave in which all the oxygen is consumed (OC to TC); if it has lots of oxygen,

then there is a stable a combustion wave in which all the fuel is consumed in the reaction

(FC to TC); and in both cases there also exists an OC to TC wave that is unstable.

Moreover, stability theory of fast traveling waves requires using weight function, per-

forming numerical computation of Evans function and using the linear and the nonlinear

theorem. The results of nonlinear theorem have physical interpretation which makes sense

for FC to TC and OC to TC fast traveling waves. We found that FC to TC waves are

stable and OC to TC waves are sometimes stable and sometimes unstable.

Another consequence is the intermediate waves which make the model more fully

reproduce waves seen numerically in more elaborate models such as smoldering combus-

tion system which is studied in [2]. The intermediate combustion waves have been called

“reaction-leading smolder waves”. These are the combustion waves when the velocity of

the combustion front propagates more slowly than the velocity of the oxygen but faster

than the velocity of the temperature.

We constructed possible generic wave sequences that could be observed for large

time. Identifying generic wave sequences is more complex when a < b is assumed. Also

the number of wave sequences increased by four. The wave sequences which include both
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an intermediate and a fast combustion wave or a slow and a fast combustion wave are

the most complicated wave sequences. List of possible wave sequences omitting unstable

waves corresponds well to the numerical solutions.

Lastly, we looked at the extension of the combustion model by adding small diffusion

term to the oxygen equation. This allowed us to find a bound on the unstable eigenvalues

by spectral energy estimates.
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Appendix A

Linear stability theorem

Consider the differential operator L on L2(R;CN) of the following type:

L =

(
A R12

R21 G

)
, A = d∂ξξ + a∂ξ +R, G = B∂ξ +D (A.1)

where N = N1 +N2, d = diag{d1, ..., dN1} and a = diag{a1, ..., aN1} are constant diagonal

matrices with positive entries, R = R(ξ) is a bounded continuous N1×N1 matrix valued

function on R, B = diag{b1, ..., bN2} is a constant diagonal matrix with positive entries,

D = D(ξ) is a bounded continuous N2 × N2 matrix valued function on R, and R12 =

R12(ξ),R21 = R21(ξ) are bounded continuousN1×N2 andN2×N1 matrix valued functions

on R. We assume the existence of limiting values as ξ → ±∞, denoted by limξ→±∞R(ξ) =

R±, limξ→±∞D(ξ) = D±, limξ→±∞R12(ξ) = R±12, and limξ→±∞R21(ξ) = R±21.

Theorem A.0.1. [34] Let 0 < ν, Sp(L) ⊂ Reλ < −ν ⇒ ∃ K such that for all t ≥ 0,

‖etL‖ ≤ Ke−νt.

It is important to note that for the system (2.7)–(2.9), Theorem A.0.1 holds in the

weighted space Xα.

Next corollary follows from Theorem A.0.1 in the case that the spectrum of Lα with

α = (α−, α+), 0 < α± < c− a has simple eigenvalue zero at the origin and there is ν > 0

such that sup{Reλ : λ ∈ Sp(Lα) and λ 6= 0} < −ν.

Since 0 is isolated in the spectrum of Lα, we can define the Riesz spectral projection

Pcα of X n
α onto the N(Lα). Let Psα = I − Pcα. Psα is projection onto R(Lα), with kernel

N(Lα).
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Corollary A.0.2. Choose ν > 0, such that sup{Reλ : λ ∈ Sp(Lα) and λ 6= 0} < −ν.

Then there exists K > 0 such that for t ≥ 0, ‖etLαPsα‖R(Lα)→R(Lα) ≤ Ke−νt.
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