
ABSTRACT

JIANG, HANSI. Modularity Component Analysis. (Under the direction of Carl Meyer.)

In data clustering when high dimensional data is involved it is often necessary to

cluster the data while reducing the number of dimensions. The principal component

analysis (PCA) is a very popular analysis tool to achieve the goals, but one drawback of

PCA is that the sparsity of the data may be destroyed while centering. Another data

clustering method, the modularity clustering algorithm, does not require data centering,

but the theory requires a bipartition of the data and a hierarchy has to be built if the

number of clusters is more than two.

In this paper the exact linear relation between the leading eigenvectors of the modularity

matrix and the singular vectors of an uncentered data matrix is developed. Based on

this analysis the concept of a modularity component is defined, and its properties are

developed. It is shown that modularity component analysis can be used to cluster data

similar to how traditional principal component analysis is used except that modularity

component analysis does not require data centering. Some practical examples of using the

modularity component analysis method developed in this paper is provided to corroborate

the theoretical results.
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CHAPTER 1

Introduction

The purpose of this dissertation is to give theoretical support to use multiple eigenvectors

of the modularity matrices in clustering and dimension reduction. In data analysis,

sometimes people want to pursue higher accuracy. A more accurate result can give better

description of the data. However, sometimes the efficiency of the algorithms is more

focused on, especially in the industries where datasets often have larger sizes than in

academia. Faster algorithms are more preferred to save more time because the new data

is coming in rapidly or the users may request the result to be updated frequently. More

efficient algorithms are performed with or without sacrificing the accuracy in the data

analysis results. It is almost certain that the best algorithms may have both accuracy

and efficiency meeting the desired requirements, but more often people have to choose

one between the two. For the data with high dimensions, the data analysis tools that
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can perform dimension reduction is more favorited since most of the information in the

original data will be kept in the results, and the number of dimensions are greatly reduced

so the data can be easily described and stored.

In this paper a novel data analysis method that can help to reveal the cluster structures

in the data as well as to perform dimension reduction will be introduced. In Chapter 2

and Chapter 3 some important data analysis methods in the literature will be discussed.

In Chapter 4 we will give the definition to the modularity components, and in Chapter 5

some important properties of the modularity components will be stated and proven.

Chapter 6 contains some experimental results and Chapter 7 is the conclusion.

1.1 Cluster Analysis

Although there is no clear definition about cluster analysis, different people have similar

descriptions for it. Webster [83] defines cluster analysis as “a statistical classification

technique for discovering whether the individuals of a population fall into different groups

by making quantitative comparisons of multiple characteristics.” By [36], cluster analysis

organizes of a group of patterns into clusters based on similarity. By [75], cluster analysis

groups data based on their features and relationships. Although different in expressions,

there is something in common in these descriptions. First, clustering analysis is based on

the characteristics or features of the data. These characteristics may be already given

by the data or to be extracted. Sometimes there are redundant features so some feature

selection methods should be applied. Second, clustering analysis picks some measurement

to build the similarity among the data points. Different measurements would probably

lead to different clustering results. Third, cluster analysis aims to group data points that

are similar to each other, and separate the data points that are dissimilar to each other.
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In the next section we will talk more about data.

1.2 About Data

1.2.1 Attributes

A data set usually contains some attributes and data points. Attributes are used to

describe some basic characteristics of the data points. In [75], attributes are classified

into four types:

1. Nominal: Variables that are used to distinguish different objects. The information

given by nominal variables cannot be used to order objects. Examples: gender, zip

codes, travel destinations.

2. Ordinal: Variables that provide information to order objects, but the differences

between values have no meanings. Examples: Level of education, street numbers.

3. Interval: Variables that provide information to order objects, and the differences

between values have some meaning, but the ratios between values have no meanings.

For example, calendar dates is a interval attribute. There are three days strictly

between July 1st, 2015 and July 5th, 2015, but the ratio between the two end dates

has no meaning.

4. Ratio: Variables that both differences and ratios between different values have

meanings. For example, age is a ratio attribute. A 40-year-old man is twenty years

older than a 20-year-old woman, and is twice as old as the woman.

Nominal and ordinal attributes are also called categorical attributes, and interval and

ratio attributes are also called numeric attributes. In this paper we will assume that
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the attributes are numeric. It is also noticeable that since the attributes are used to

describe the characteristics of the data, it is possible that different attributes have different

units and scales. In these cases sometimes it is necessary to normalize the attributes to

make them having the same scale to extract useful information. More discussions about

normalizing attributes will be given in Chapter 2.

1.2.2 Data Quality

Before applying clustering analysis, it is more desirable to get familiar with the data

and perform some preprocessing if necessary. It is quite often that the data contains

some noise, outliers or missing values, and the data analysis tools may be sensitive to

them. For instance, principle component analysis (PCA) is a very popular data analysis

method. The method can give cluster structure of the data while reducing the number

of dimensions, and is widely used in image and motion processing [58, 61, 78]. However,

it is mentioned in [14] and [33] that it is very sensitive to the outliers. In order to get

more reliable clustering results, outlier detection algorithms may be applied before cluster

analysis. So before using PCA some outlier detection methods may be applied. Here we

list some data quality issues that data analysts may pay attention to. Hodge [31] gives a

nice survey about outlier detection methods.

1. Noise: Noise is irrelevant or meaningless information in the data. It is often very

difficult to eliminate the noise in the data completely, but there are several ways

to reduce the effect of noise, such as aggregation and dimension reduction [75]. In

the retail industry it is common to aggregate the data up to a high level where

the data mining techniques are performed. This is to reduce the effect of noise in

both estimation and prediction. In statistics, sometimes the noise is assumed to be
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independent and identically distributed (also known as i.i.d.). In this paper, it will

be assumed that the noise is distributed independently and identically.

2. Outliers: Outliers are the data points that are different from most of other data.

Like PCA, some data analysis algorithms are sensitive to the outliers, so it may

be necessary to detect the outliers in the preprocessing step. Such techniques are

also called anomaly detection. Support vector data description (SVDD) [76] is one

of the anomaly detection methods. The basic idea of SVDD is to draw a “circle”

based on the known information in the training step, and use the circle to identify

the outliers in the testing step. More methods about anomaly detection can be

found in [75].

3. Missing values: Missing value occurs when there is no information provided for a

data point in some feature. For example, the rating of a movie given by a user may

be missing just because the user has not watched the movie. The missing values

can be eliminated, estimated or ignored with some advantages or disadvantages. In

this paper, it will be assumed that the missing values, if they exist, are properly

handled so they will not get in our way.

1.3 Practical Questions about Cluster Analysis

1.3.1 How to Get Better Clustering Results?

Although there are countless clustering algorithms, there is no one that is better than the

others. This is mentioned in [44] and [48] and referred to as “The Fundamental Theorem

of Cluster Analysis”:
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Theorem 1.1 (The Fundamental Theorem of Cluster Analysis). There does not exist a

best method, that is, one which is superior to all other methods, for solving all problems

in a given class of problems.

A realistic problem we have to face is that different clustering algorithms performed on

the same data may give different clustering results because they use the same information

differently. Even the same clustering algorithm applied on the same data may give

different results due to different initial points given to the algorithm. This disagreement

from the algorithms may bring confusion and difficulty in selecting proper algorithms to

analyze the data. A promising solution to this problem is the idea of consensus clustering

[59, 57, 67]. The basic idea of consensus clustering is that, if two objects are supposed to

be in the same cluster, then the majority of the algorithms should agree to group them

together. On the other hand, if two objects are supposed to be separated to different

clusters, then the majority of the algorithms should agree to separate them. One example

of consensus clustering is introduced in [84]. In the paper different clustering algorithms

are run with different initial settings and number of clusters. An adjacency matrix is

built for each run to represent if two data points are put in the same cluster or not, and

then the sum of all adjacency matrices are calculated for further analysis.

1.3.2 How Many Clusters?

Another practical problem for cluster analysis is to determine the number of clusters. In

fact, the answer to the problem is it depends on how to “look at” the data. For example,

some people may think the Ruspini dataset [71] in Figure 1.1 has four clusters while some

others may think there is only one cluster. Although there is no right or wrong answers to

the question, some methods can be applied to help us to get a more desirable number of
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clusters. The method of using plots of sum of squared error (SSE) or silhouette coefficient

versus the number of clusters is introduced in [75]. Meyer and Wessell use the number of

eigenvalues in the Perron Cluster discussed in [15] and [16]. Race [66] uses the consensus

clustering technique to determine the number of clusters. In this paper we will focus

on building the modularity components and discussing their properties, so we will just

assume in this paper that the number of clusters is already given to us.

Figure 1.1: Ruspini Dataset.
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1.4 Notations

In this paper a lot of mathematical notations will be used. To avoid confusions, here the

notations that will be used in this paper will be listed.

1. Capital bold-faced letters (A, B, X, etc.) denote matrices.

2. Lower cased bold-faced letters (u, v, b, etc.) denote vectors.

3. Single subscripts (vi) of a vector denote the index of a column in a matrix or an

eigenvector of a matrix.

4. Greek letters (α, β, λ, etc.) denote the eigenvalues of matrices. Single subscripts of

Greek letters (λi) denote the indices of eigenvalues of a matrix.

5. Double subscripts (Aij) denote the row and column indices of an entry in a matrix

unless with some other explanations.

6. e denotes a vector with all 1’s with proper size.

7. ‖ ∗ ‖p denotes the p-norm of a vector.
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CHAPTER 2

Background and Literature Review

In this chapter we will look at some data analysis methods that can help to reveal the

cluster structures in the literature.

2.1 K-means

K-means is a clustering method aims to partition the data points x1, x2, · · · , xn into k

clusters such that each data point belongs to the cluster that has the nearest mean. The

means are also called the centroids, and act as the prototypes of the clusters [75]. The

term “k-means” was first used in MacQueen’s paper [52], although the idea was already

used in Steinhaus’s paper [73]. The basic algorithm of k-means was proposed by Lloyd

[50] and Forgy [25].

When the distance measure is Euclidian distance, the objective function is then the sum
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of squared error:

SSE =
k∑
i=1

∑
xj∈Ci

‖xj − ci‖22, (2.1)

where the Ci’s are the clusters and the ci’s are the centroids of the clusters. It is proved

in [75] that the centroids minimizes Eq. 2.1 are the means:

ci =
1

mi

∑
xj∈Ci

xj. (2.2)

The algorithm of k-means is presented in Algorithm 1.

Algorithm 1 Euclidian k-means

Require: Data points x1, x2, · · · , xn, initial centroids c1, c2, · · · , ck.

• repeat

Assign each data point to the cluster with nearest centroid with Euclidean

distance.

Calculate the new centroids with Eq. 2.2.

• until The centroids do not change.

return Clusters C1, C2, · · · , Ck.

It is discussed in [75] that k-means may output undesired clusters with poor initial

centroids, and the result may be just a local minimum for Eq. 2.1 rather than a global

minimum. There are several ways to overcome this disadvantage. One may run several

times of the algorithm and pick the result with lowest SSE, or use some other algorithms to

help to determine the initial centroids [66], or combine/split the clusters as a postprocessing
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step [75].

2.2 Principal Component Analysis

It is not rare for real world data to have variables correlated with each other. When the

number of variables is more than needed, then feature selection or extraction methods

may be necessary. In this case a good clustering algorithm should be able to achieve the

following goals:

1. To reveal the cluster structures in the data;

2. To reduce the dimension in the data;

3. To keep as much as possible the useful information in the original data.

The modularity component analysis method we are going to introduce in this paper and

the principal component analysis method can both achieve these goals. PCA is first

introduced by Pearson [65] and Hotelling [32], while the singular vector decomposition,

which underlies PCA, is already discussed in [3] and [42]. Jolliffe’s book [40] has more

discussions and applications about PCA.

2.2.1 Definition of Principal Components

The main idea of principal component analysis is to reduce the number of dimensions of

the original data and to keep as much as possible the variance in the data. The algorithm

provides a set of orthonormal vectors called the principal components. The first principal

component has the maximal variance in the data, and each successive component has the

maximal variance with the constraint that it is orthogonal to the preceding components.
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Each data point has a score on each of the components based on how the data is “related

with” the component. The principal component analysis can be understood as changing

a basis from the elementary basis {e1, e2, · · · , ep} to a new basis {u1,u2, · · · ,up}, and

the scores are the new coordinates of the data points in the new coordinate system.

To give a mathematical definition of the principal components, suppose we have a p× n

data matrix X0 where p is the number of variables and n is the number of data points.

We want to find a vector u1 such that ‖u1‖2 = 1 and the sample variance of the vector

uT1 X0 =

(
uT1 x1 uT1 x2 · · · uT1 xn

)

is maximized. The word “sample” means we are dealing with data rather than random

variables, and will be omitted in the later discussion for the sake of simplicity. If the

mean vector of the xi’s is x, then the problem becomes of solving

max
‖u1‖2=1

1

n− 1

n∑
i=1

(uT1 (xi − x))2. (2.3)

Subtracting the mean vector from each data point vector is also called centering. Eq. 2.3

can be formulated as

max
‖u1‖2=1

uT1 Su1, (2.4)

where

Sp×p =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T (2.5)

is the covariance matrix of the data. It can be also written in the matrix form:

S =
1

n− 1
XXT , (2.6)
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where

X =

(
x1 − x x2 − x · · · xn − x

)
(2.7)

represents the centered data. The Rayleigh-Ritz Theorem [51] says the solution to Eq. 2.4

is given by the eigenvector corresponding to the largest eigenvalue λ1 of S, and the

maximum value of Eq. 2.5 is given by λ1. That means λ1 is the largest variance in the

centered data. The i-th principal components where i ≥ 2 is the solution to the problem

max
‖ui‖2=1

ui⊥uj ,j=1,··· ,i−1

uTi Sui, (2.8)

and by the Rayleigh-Ritz Theorem ui is the eigenvector corresponding to the i-th largest

eigenvalue λi of S, and the maximum value of Eq. 2.8 is given by λi. That means λi is

the largest variance in the centered data that is uncorrelated with the preceding principal

components. Since the eigenvectors of S and XXT are the same, and the eigenvalues of S

are 1/(n− 1) proportional to the eigenvalues of XXT , the principal components can be

also computed from XXT , or singular vectors of X.

One point to note is that although in our analysis it is not required that each variable is

normalized (i.e. to divide each variable by its 2-norm), sometimes it is still important to

do it. Jolliffe [40] discussed the importance of normalizing the variables. When the PCA

algorithm is applied on real data, it is highly probable that the variables have different

units. Applying PCA without normalizing the variables may cause the first principal

component dominated by the variables with larger entries. For example, suppose we have

a data with four variables, and the fourth variable is in centimeters while the other three

are in meters, but they describe similar length. To illustrate the point more clearly, the

variance of the first three variables are set to one, and the variance of the fourth variable
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is set to 10000. With the variables normalized, the covariance matrix is

S1 =



1.0000 −0.1176 0.8718 0.8179

−0.1176 1.0000 −0.4284 −0.3661

0.8718 −0.4284 1.0000 0.9629

0.8179 −0.3661 0.9629 1.0000


,

and the first principal component is

u1 =



0.5211

−0.2693

0.5804

0.5649


.

The covariance matrix of the unnormalized data is

S′1 =



1.0000 −0.1176 0.8718 81.7941

−0.1176 1.0000 −0.4284 −36.6126

0.8718 −0.4284 1.0000 96.2865

81.7941 −36.6126 96.2865 10, 000


,

and the first principal component is

u′1 =



0.0082

−0.0037

0.0096

0.9999


.
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It can be seen that in the unnormalized case, the direction of the first principal component

is almost identical to e4, and that means the data is described mostly by the fourth

variable, which is misleading. Therefore, when the data has different scales it is often

necessary to normalize the variables after centering. In the following discussion in this

section, it will be assumed that the data has been centered and normalized.

2.2.2 Singular Value Decomposition and Scoring the Data

The singular value decomposition (SVD) technique is a matrix factorization method and

plays a very important role in PCA. Here we write down the definition of SVD in [56]:

Definition 2.1. For each A ∈ Rm×n of rank r, there are orthogonal matrices Um×m,

Vn×n and a diagonal matrix Dr×r = diag(σ1, σ2, · · · , σr) such that

A = U

D 0

0 0


m×n

V with σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. (2.9)

The σi’s are called the nonzero singular values of A. When r < p = min{m,n}, A is

said to have p− r additional zero singular values. The factorization in Eq. 2.9 is called

a singular value decomposition of A, and the columns in U and V are called the

left-hand and right-hand singular vectors for A, respectively.

The SVD is related with PCA in two ways. First, the principal components we defined

in Section 2.2.1 can be derived from SVD. To see this, suppose Xp×n is the data matrix

after centering and normalization. Let the SVD of X to be

X = UΣVT = U

D 0

0 0

VT . (2.10)
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Then the matrix XXT can be written as

XXT = U

D2 0

0 0


p×p

UT . (2.11)

Therefore, the eigenvalues of XXT are the squares of the singular values of X, and the

eigenvectors of XXT are the left-hand singular values of X. To calculate the eigenvalues

and eigenvectors of XXT , it is sufficient to apply SVD on X.

Second, SVD is related to the scores of the data on the principal components. The inner

product uTj xi is the projection of xi onto the span of uj and is also called the score of

the i-th data point on the j-th principal component [40]. From X = UΣVT we have

UTX = ΣVT =



uT1 x1 uT1 x2 · · · uT1 xn

uT2 x1 uT2 x2 · · · uT2 xn
...

. . .
...

uTp x1 uTp x2 · · · uTp xn


, (2.12)

which contains the scores of each data point on each principal component. Therefore, the

score matrix UTX can be computed with ΣVT . An advantage of using ΣVT to compute

the score matrix is the Σ is very sparse and the computations can be very efficient.

2.2.3 Dimension Reduction, Low Rank Representation of Data

and Clustering

A very important feature of PCA is it can help to reduce the number of dimensions in

the data if there are correlated variables, while keep as much as possible the variance in

the original data. The total variance in the data is defined as the sum of the variances in
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each component, and is just the trace of the covariance matrix S. Since the trace of a

matrix is equal to the sum of its eigenvalues, it can be computed that how much variance

is kept by the first k principal components:

Variance retained, Vk =

∑k
i=1 λi

trace(S)
. (2.13)

Therefore, if the sum of the first k eigenvalues of the covariance matrix can take a large

portion of the total sum of all eigenvalues, then the first k principal components retain

the majority of the variance in the data. The score matrix

Tk = UT
kX =



uT1

uT2
...

uTk


X (2.14)

is then a k-dimensional representation of the original data and may keep the cluster struc-

ture of the data [40, 68]. Therefore, after dimension reduction the clustering algorithms

such as k-means can be applied on the low-rank representation of the data to reveal

the clusters. For example, Figure 2.1 is a 2-dimensional representation of the iris data

[24]. Although it is argued that sometimes the first principal components may not give

clear structure [88], it is pointed out in [40] that this kind of cases is vary rare, since

the principal components are calculated with all information of the data. Thus in our

experiments, we will combine the PCA with k-means to get the clusters.

17



Figure 2.1: A 2-dimensional representation of the iris data given by PCA.
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2.2.4 Summary of Properties of Principal Components

Now we summarize the important properties of the principal components. We will first

describe the properties, then state the properties again by writing them as theorems. To

make the points more clear, it will be assumed that the data matrix X has full row rank.

• The principal components are orthogonal to each other.

• If we project the data onto the span of a principal component, we get a scalar

multiple of the score vector that can reveal the cluster structure in the data based

on the signs of the entries in the score vector.

• The first principal component has the largest variance of the data. Each succeeding

principal component has the largest variance with the constraint that it is orthogonal

to all previous principal components.

Next we state the properties as theorems. Let the ui’s be the principal components.

Theorem 2.2. For 1 ≤ i, j ≤ p, we have

uTi uj =

 1 i = j,

0 i 6= j.
(2.15)

Proof. By definition.

Theorem 2.3. Let Pui
be the projector onto the span of ui. Then we have

Pui
X = σiuiv

T
i , (2.16)

where σi is the i-th singular value of X and vi is the i-th right-hand singular vector of X.
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Proof. Let X = UΣVT be the SVD of X.

Pui
X = uiu

T
i X = ui

(
uTi x1 uTi x2 · · · uTi xn

)
= ui

(
ΣVT

)
i∗

= σiuiv
T
i .

Theorem 2.4. Let σi be the i-th largest singular value of X. Moreover, for 2 ≤ i ≤ p, let

Xi = X−
i−1∑
j=1

uiu
T
i X, (2.17)

then σ2
i is the largest eigenvalue of XiX

T
i , and ui is the corresponding eigenvector of σ2

i .

Proof. By the discussion in Section 2.2.1.

After defining the modularity components and stating their properties, we will come

back to compare the properties of modularity components with the ones of principal

components. Here we write down the algorithm of clustering with PCA as following.
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Algorithm 2 Clustering with Principal Component Analysis

Require: A p×n data matrix X0, number of clusters k, number of principal components

t.

• Center and normalize X0 to matrix X.

• Compute the SVD of X with Eq. 2.10.

• Let the score matrix Tt be the first t rows of the matrix ΣVT .

• Let pi be the i-th colomn of Tt.

• Cluster the pi’s with k-means into clusters C1, C2, · · · , Ck.

return Clusters G1, G2, · · · , Gk such that Gi = {j|pj ∈ Ci}.

2.2.5 How Many Principal Components?

From the discussion above it can be seen that PCA is hoped to perform dimension

reduction while retain as much as possible the variance in the original data and keep the

cluster structure. Then there is a natural but essential question: How many principal

components should be used to achieve these goals? A true but diplomatic answer is “It

depends on the data”. Accepting this answer but being a little bit arbitrary, we seek

for some rules and research papers that may help to get a proper number of principal

components, rather than trying numbers from one to p.

The first method is to set a threshold for the variance to be retained, and use Eq. 2.13

to determine k. The threshold is usually set to be 80% or 90% [40]. Some researchers

[53, 74] studied the possible distributions of Vk. Jackson’s book [35] contains some other
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criterion based on Vk.

The second method is just set a threshold on the λk in Eq. 2.13. Kaiser’s rule says

that only the λk’s that exceed 1 and their corresponding principal components should

be retained. Jolliffe [41] argues that setting λk = 1 to be the threshold may discard too

much useful information, and 0.7 may be a better threshold.

The third method is to plot the λk’s against the k to get a scree graph [11]. Figure 2.2 is

an example of a scree graph. People may calculate

bk =
λk−1 − λk
λk − λk+1

, 1 < k < p− 1 (2.18)

to get the k∗ that has the maximal bk (also called the “elbow”), and drop the λk’s that

are smaller than k∗. For the wine data [49] that has the scree plot in Figure 2.2, the

elbow rule suggests to keep the first four principal components.

There are other techniques that can be applied to determine how many principal compo-

nents to keep. Statistical methods are studied in [2, 35, 77, 5, 4]. These research focused

on using hypothesis tests to determine how many principal component are statistical

significant. Wold [86], Eastment and Krzanowski [19], and Krzanowski and Kline [45]

studied the residual between the original data and the low-rank estimation of the data

given by SVD. The principal components would be dropped if adding it causes no signifi-

cant decrease to the residual. There are also some papers comparing these methods, such

as [69, 27, 20].

2.2.6 Other Research about Principal Components

There are numerous research papers about principal components. Moore et al. [60]

proposed a partitioning algorithm named the principal component partitioning algorithm.
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Figure 2.2: Scree graph for the covariance matrix: wine data.
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It is mainly used to cluster web pages, and iteratively uses the first principal component

to bipartition the data. Boley [7] continued this research and proposed the principal

direction divisive partitioning algorithm (PDDP). Candes et al. [10] and Wright et al.

[87] considered a way to recover a low-rank representation of the data when the data is

corrupted. Wang et al. [82] and Jeng [37] discussed a moving window PCA method that

can be used on time series.

2.3 Spectral Clustering

The spectral clustering method is one of the most widely used techniques for graph

partitioning. The theory is based on Miroslav Fiedler’s research [21, 22, 23]. In this

section we will first introduce the classical spectral clustering algorithm, and then some

extended versions of spectral clustering will be discussed.

2.3.1 Classical Spectral Clustering

We start with a graph G(V,E) with V the set of vertices and E the set of edges. We assume

that the graph G is weighted and undirected, so its adjacency matrix A is symmetric.

The (i, j)-th entry of A is the weight on the edge between vertices i and j, or zero if there

is no edge between them. The graph is connected if there is a path between every pair

of vertices in the graph. A connected component is a maximal connected subgraph of

G. Suppose |V | = n and |E| = m, then the degree of vertex i is defined by the sum of

weights on the edges connected with i, i.e.

di =
n∑
i=1

aij. (2.19)
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It can be seen that di is also the i-th row sum of A. The degree matrix D is a diagonal

matrix with di on its i-th diagonal entry. Now we give the definition of the Laplacian

matrix.

Definition 2.5. The Laplacian matrix L of a weighted and undirected graph is defined as

L = D−A. (2.20)

The Laplacian matrix is symmetric and positive semi-definite. The smallest eigenvalue

of L is zero, and its corresponding eigenvector is the vector e. For any vector v ∈ Rn, we

have [79]

vTLv =
1

2

n∑
i,j=1

aij(vi − vj)
2. (2.21)

If the graph is not connected, then the number of connected components in the graph is

equal to the algebraic multiplicity of the zero eigenvalue of L. To see this, note that the

Laplacian matrix of a graph that contains k connected components has the form

L =



L1

L2

. . .

Lk


,

where L1 is the Laplacian matrix of the first connected component, L2 is the Laplacian

matrix of the second connected component, etc. Each of the Laplacian matrices Li have

one and only one zero eigenvalue, therefore there are k zero eigenvalues of the matrix L
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in total. If the graph is connected, then consider the matrix

M = A−D + dmaxI = dmaxI− L, (2.22)

where dmax = max{d1, d2, · · · , dn}. Then M is nonnegative and irreducible. From the

Perron-Frobenius theorem [56], the largest eigenvalue of M is simple. Also notice that

there is a relation between the eigenvalues of M and the eigenvalues of L:

λi(L) = dmax − λi(M), (2.23)

therefore the smallest eigenvalue of L is simple.

In [21], Fiedler defined the second smallest eigenvalue of the Laplacian matrix, λ2, as the

algebraic connectivity of the graph. The eigenvector of L corresponding to λ2 is called

the Fiedler vector. In [22], Fiedler proved that if a connected graph is partitioned by the

signs of the Fiedler vector (an arbitrary decision has to be make if some entries are zero),

then the two subgraphs are also connected. If the desired number of clusters k is given,

then by recursively bipartition the graph with Fiedler vectors, k connected subgraphs of

G can be achieved.

2.3.2 Graph Cuts and Spectral Clustering

In this section we will look at some graph cutting techniques and their relation with

spectral clustering. Suppose we want to cut a weighted, undirected graph G into k parts.

The simplest way to do this is to solve the mincut problem, i.e. to find a partition G1,
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G2, · · · , Gk, such that

cut(G1, G2, · · · , Gk) =
1

2

k∑
i=1

W (Gi, Gi), (2.24)

is minimized, where

W (A,B) =
∑

i∈A,j∈B

aij (2.25)

and Gi is the complement of Gi. The meaning of Eq. 2.24 is to cut the graph such that

minimized number of edges are cut in the process. Although intuitive, in practice the

solution to this problem is often helpless, because in many cases the solution put a single

vertex into one group and all other vertices in another group. One way to avoid getting

this kind of unsatisfactory results is to try to cut the graph while keeping the sizes of

the clusters more balanced. Two examples of such cutting techniques are solving the

RatioCut and Normalized Cut problems.

Figure 2.3: A case where minimum cut gives an unsatisfactory partition.
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RatioCut

Now we give another way to cut the graph called the RatioCut [30]:

Definition 2.6. Suppose G1, G2, · · · , Gk is a partition of G. The RatioCut is defined by

RatioCut(G1, G2, · · · , Gk) =
1

2

k∑
i=1

W (Gi, Gi)

|Gi|
=

k∑
i=1

cut(Gi, Gi)

|Gi|
, (2.26)

where |G| is the number of vertices in G.

Suppose a set of k indicator vectors vi is defined by

vij =


1√
|Gj |

if node i in Gj

0 otherwise.

(2.27)

Then it can be seen that the vi’s are orthonormal to each other. If the columns of the

matrix V ∈ Rn×k are the vi’s, then VTV = I. In [79], it is proven that minimizing the

RatioCut is equivalent to minimizing the trace of the matrix VTLV. However, solving

the equation with the constraint to the form of V is NP-hard. Then the constraint to

V is relaxed by allowing the entries in V to take any real values. The relaxed problem

becomes solving

min
V∈Rn×k

Tr(VTLV) subject to VTV = I. (2.28)

By the Rayleigh-Ritz theorem [51], the columns of V are formed by the eigenvectors

corresponding to the first k smallest eigenvalues of L. The rows in V can be treated as

representatives of the nodes, and other clustering algorithms such as k-means can be used

on the rows. This method is also referred as the unnormalized spectral clustering [79]

and the algorithm is given as following.
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Algorithm 3 Unnormalized Spectral Clustering [79]

Require: An n× n adjacency or similarity matrix A, number of clusters k.

• Compute the Laplacian matrix L = D−A.

• Compute the smallest k eigenvalues of L and their corresponding eigenvectors.

• Form the matrix V with the k eigenvectors of L as columns.

• Let pi be the i-th row of V.

• Cluster the pi’s with k-means into clusters C1, C2, · · · , Ck.

return Clusters G1, G2, · · · , Gk such that Gi = {j|pj ∈ Ci}.

As an example to illustrate how to use Fiedler vector to partition a graph, we use

Algorithm 3 to partition the graph in Figure 2.3. The adjacency matrix of the graph is

A =



0 1 0 0 0 0 0 0 0 0

1 0 1 1 1 0 1 0 0 0

0 1 0 1 1 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0

0 1 1 1 0 1 0 0 0 0

0 0 0 0 1 0 1 1 1 0

0 1 0 0 0 1 0 1 0 1

0 0 0 0 0 1 1 0 1 1

0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 1 1 1 0



,
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and the Laplacian matrix is

L =



1 −1 0 0 0 0 0 0 0 0

−1 5 −1 −1 −1 0 −1 0 0 0

0 −1 3 −1 −1 0 0 0 0 0

0 −1 −1 3 −1 0 0 0 0 0

0 −1 −1 −1 4 −1 0 0 0 0

0 0 0 0 −1 4 −1 −1 −1 0

0 −1 0 0 0 −1 4 −1 0 −1

0 0 0 0 0 −1 −1 4 −1 −1

0 0 0 0 0 −1 0 −1 3 −1

0 0 0 0 0 0 −1 −1 −1 3



.

Then the Fiedler vector, i.e. the eigenvector corresponding to the second smallest

eigenvalue, is

v2 =



−0.5275

−0.2383

−0.2810

−0.2810

−0.1696

0.2148

0.1983

0.3364

0.3764

0.3716


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By looking at the signs of the entries in v2, we put the first five vertices into one group,

and the last five vertices into the other group.

Normalized Cut

There is another kind of spectral clustering technique that aims to minimize the objective

function called Normalized Cut, or NCut introduced by Shi and Malik [72]:

Definition 2.7. Suppose G1, G2, · · · , Gk is a partition of G. The NCut is defined by

NCut(G1, G2, · · · , Gk) =
1

2

k∑
i=1

W (Gi, Gi)

vol(Gi)
=

k∑
i=1

cut(Gi, Gi)

vol(Gi)
, (2.29)

where

vol(G) =
∑
i∈G

di. (2.30)

It can be seen that the technique used in solving the NCut problem is quite similar

to the case of solving the RatioCut problem. Suppose a set of k indicator vectors vi is

defined by

vij =


1√

vol(Gi)
if node i in Gj

0 otherwise.

(2.31)

Then the vi’s are orthonormal to each other. If the columns of the matrix V ∈ Rn×k are

the vi’s, then VTDV = I. In [79], it is proven that minimizing the NCut is equivalent to

minimizing

min
V

Tr(VTLV) subject to VTDV = I. (2.32)

However, solving this problem with the constraint to the form of V is NP-hard. Then

the constraint to V is relaxed by allowing the entries in V to take any real values, and
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substitute V by D−1/2T, where T ∈ Rn×k. The relaxed problem becomes solving

min
T∈Rn×k

Tr(TTD−
1
2 LD−

1
2 T) subject to TTT = I. (2.33)

By the Rayleigh-Ritz theorem again, the columns of T are formed by the eigenvectors

corresponding to the first k smallest eigenvalues of

Lsym = D−
1
2 LD−

1
2 . (2.34)

Solving back for V with V = D−1/2T, it can be seen that the columns of V are the the

eigenvectors corresponding to the first k smallest eigenvalues of

Lrw = D−1L. (2.35)

Then other clustering algorithms such as k-means can be used on the rows of V. This

method is also referred as the normalized spectral clustering [79]. Next we give the

algorithm of normalized spectral clustering.
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Algorithm 4 Normalized Spectral Clustering by Shi and Malik [72]

Require: An n× n adjacency or similarity matrix A, number of clusters k.

• Compute the Laplacian matrix L = D−A.

• Compute the Normalized Laplacian matrix Lrw = D−1L.

• Compute the smallest k eigenvalues of Lrw and their corresponding eigenvectors.

• Form the matrix V with the k eigenvectors of Lrw as columns.

• Let pi be the i-th row of V.

• Cluster the pi’s with k-means into clusters C1, C2, · · · , Ck.

return Clusters G1, G2, · · · , Gk such that Gi = {j|pj ∈ Ci}.

Other Spectral Clustering Algorithms and Discussions

In 2002 Ng, Jordan and Weiss [64] introduced another normalized spectral clustering

algorithm. Instead of using the eigenvectors of Lrw, they used the eigenvectors of Lsym.
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Algorithm 5 Normalized Spectral Clustering by Ng, Jordan and Weiss [64]

Require: An n× n adjacency or similarity matrix A, number of clusters k.

• Compute the Laplacian matrix L = D−A.

• Compute the Normalized Laplacian matrix Lsym = D−
1
2 LD−

1
2 .

• Compute the smallest k eigenvalues of Lsym and their corresponding eigenvectors.

• Form the matrix V with the k eigenvectors of Lsym as columns.

• Normalize each row of V to form a matrix U.

• Let pi be the i-th row of U.

• Cluster the pi’s with k-means into clusters C1, C2, · · · , Ck.

return Clusters G1, G2, · · · , Gk such that Gi = {j|pj ∈ Ci}.

Other than using the eigenvectors of a different Laplacian matrix, Algorithm 8 nor-

malizes each row of the V matrix. One reason of doing this, as pointed in [79], is because

the eigenvector corresponding to the smallest eigenvalue of Lsym is D1/2e instead of e.

In the indicator matrices in Eq. 2.27 and Eq. 2.31 for the ideal cases, there is one and

only one nonzero entry in each row. In the solutions to the relaxed problems (Eq. 2.28

and Eq. 2.33), it can be guaranteed that for each row of the matrix V there is at least

one entry that has value (1/
√
n)e, since e is the eigenvector corresponding to the zero

eigenvalue of L and Lrw. So each row in the V matrix is “bounded away” from zero.

However, if a vertex in the graph has very small degree, then it is possible that in the V

matrix its corresponding row are very close to zero and difficult to cluster. By normalizing
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each row in V, it can be guaranteed that each row is not close to the origin.

There are many other discussions about spectral clustering. Chung [12] discussed many

properties of unnormalized and normalized Laplacian matrices. Von Luxburg and others

[81, 80] discussed the consistency of spectral clustering algorithms and compared the

unnormalized spectral clustering with normalized spectral clustering. Kannan and others

[43] examined the quality of spectral clustering while the algorithm are in polynomial

time.
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CHAPTER 3

Modularity Graph Partitioning

The data analysis method introduced in this paper is based on the modularity graph

partitioning method introduced by Norman and Girvan in [63], and further explained by

Newman in [62]. In this chapter we will define the modularity matrix and discuss how to

use the modularity matrix to partition a graph. We will also discuss some other research

about modularity partitioning.

3.1 The Modularity Matrix

We start with the definition of the modularity matrices.

Definition 3.1. For a weighted, undirected graph, suppose its adjacency matrix A is
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given. Then the modularity matrix corresponding to the graph is defined by

B = A− ddT

2m
, (3.1)

where m is the number of edges in the graph and

d =

(
d1 d2 · · · dn

)T
(3.2)

is the degree vector.

In Definition 3.1, the (i, j)-th entry in the rank-one matrix (ddT )/(2m) represents the

expected number of edges between nodes i and j in a graph having random edges where

the degrees of the nodes i and j are di and dj , respectively. So the meaning of the matrix

B is the comparison between the given graph and the graph that contains the expected

number of edges. If two nodes should be put in the same cluster, then the number of

edges between these nodes in the actual graph should be more than the expected number

of edges, and the corresponding entry in the modularity matrix should be positive. On

the other hand, if two nodes should be put in different clusters, then the number of edges

between these nodes in the actual graph should be less than the expected number of

edges, and the corresponding entry in the modularity matrix should be negative.

Here are some basic properties of the modularity matrix:

1. A modularity matrix is symmetric and all of its eigenvalues are real;

2. A modularity matrix has an eigenpair (0, e);

3. A modularity matrix may have both positive and negative eigenvalues.
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In the following sections we will discuss how to use the modularity matrix to partition a

graph.

3.2 Bipartitioning a Graph

Suppose we are given a weighted, undirected graph, so its adjacency matrix A is known.

Then for a particular bipartition (G1, G2) of the graph, we can express the partition with

a vector s by letting

si =

 1 if node i in G1

−1 otherwise.
(3.3)

Then we can define the modularity corresponding the graph with the given bipartition.

Definition 3.2. Given a graph with a bipartition s, the modularity of the graph corre-

sponding to the bipartition is defined by

Q(s) =
1

4m
sTBs. (3.4)

For a given graph, since its number of edges is constant, the definition of modularity

can be also written as

Q(s) = sTBs. (3.5)

It can also be written in the summation form

Q(s) =
∑

1≤i,j≤n

sisjBij. (3.6)

As mentioned above, the (i, j)-th entry in the matrix B represents the difference of the

numbers of edges between nodes i and j in the actual graph and the graph that contains
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the expected number of edges. Therefore we may have four cases for the term sisjBij:

1. If si and sj have the same sign, which means in the given partition the two nodes

are grouped together, and at the same time Bij is positive, which means the number

of edges in the actual graph is more than expected, then the term sisjBij will be

positive.

2. If si and sj have different signs, which means in the given partition the two nodes

are grouped in different clusters, and at the same time Bij is negative, which means

the number of edges in the actual graph is less than expected, then the term sisjBij

will also be positive.

3. If si and sj have the same sign, and Bij is negative, then sisjBij will be negative.

4. If si and sj have different signs, and Bij is positive, then sisjBij will be negative.

From these four cases it can be seen that Q(s) is positive when the signs of Bij and sisj

are the same, and negative when the signs are different. This property can be understood

as the “correctness” of grouping nodes i and j together. To be more clear, Q(s) increases

when the partition make the “correct” decisions, and decreases when the “wrong” decisions

are made. Therefore, the goal of modularity graph partitioning is to find such a vector

s that subject to Eq. 3.3 to maximize Q(s). However, the problem is NP-hard due to

the special restriction on the vector s. Newman [62] relaxed the problem by allowing the

entries in s to be any arbitrary real values, and the graph will be partitioned based on

the signs of the entries in the vector s. It is easy to see that the dominant eigenvector of

B can solve the relaxed problem.

Note that since zero is always an eigenvalue of B, the largest eigenvalue cannot be

negative. However, it is possible that the largest eigenvalue of the modularity matrix is
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zero. Newman [62] discussed this case. Since the eigenvector corresponding to the zero

eigenvalue is the e vector, the largest eigenvalue is zero indicates that all vertices in the

graph should be put into the same cluster. That means there is only one cluster in the

graph. No partitioning should be done in this case.

To generate more than two subgraphs, the partitioning method discussed above wil be

applied several times to build a hierarchy until the desired number of clusters k is reached.

Each time the subgraph that can contribute more modularity while being partitioned.

Next we give the algorithm for modularity clustering.

Algorithm 6 Modularity Clustering by Newman [62]

Require: An n× n adjacency or similarity matrix A, number of clusters k.

• repeat

Compute the modularity matrix B with Eq. 3.1.

Compute the largest eigenvalue λ1 of B.

If λ1 = 0 then return the whole data as one cluster.

If λ1 > 0 then compute its corresponding eigenvector v1.

Cluster the entries in v1 by their signs to get clusters C1 and C2.

Bipartition the graph to get subgraphs G1 and G2 such that Gi = {j|v1j ∈ Ci}.

Pick the subgraph with larger Q(s) in Eq. 3.4

• until The number of desired number of clusters is reached or no positive eigen-

values can be found for the modularity matrices of the subgraphs. Suppose in

the latter case there are k′ subgraphs.

return Clusters G1, G2, · · · , Gk∗ where k∗ = min{k, k′}.
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When the modularity clustering algorithm is applied on the toy example in Figure 2.3,

the dominant eigenvector of the modularity matrix is

v1 =



−0.1252

−0.3479

−0.3708

−0.3708

−0.3116

0.2276

0.2173

0.3991

0.3425

0.3398



,

which indicates that the first five vertices should be put into the one group and the last

five vertices into the the other group.

Although the modularity clustering algorithm can do a good job for our toy example, there

is a performance issue for it. If the desired number of clusters is three, then we need to

apply the algorithm triple times because after the first bipartition, we need to calculate the

Q(s) value for each subgraph, and calculating Q(s) is essentially equivalent to partitioning

the subgraph because the dominant eigenvector has to be solved. If for each subgraph

we have to compute the modularity matrix and compute its dominant eigenvector, the

total work could be huge, and many calculations are wasted. A natural way to avoid this

huge work is to modify the algorithm to be like Algorithm 3, that several eigenvectors

of B together give all the clusters so we only have to form the modularity matrix once
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and compute the eigenvectors once. However, the question is why the eigenvectors other

than the dominant eigenvector of the B matrix can give us the information of the clusters.

Those eigenvectors may only contain irrelevant information or just noise in the data. If

the eigenvectors contain useful information, then should we keep all of them? If there is

an order of “importance” for the eigenvectors, then how the order is defined and how to

order the eigenvectors? These questions need to be answered before just taking several

eigenvectors and partition the graph.

3.3 Other Discussions about Modularity Clustering

The questions raised in the last section will be answered in the following chapters. Before

diving into the discussion we first look at some other discussions about modularity

clustering in the literature. The modularity partitioning algorithm has been widely

applied and discussed since proposed by Newman and Girvan [63]. For instance, it has

been applied to reveal human brain functional networks [55] and ecological networks [26],

and used in image processing [54]. Blondel et al. [6] proposed a heuristic that can reveal

the community structure for large networks. Rotta and Noack [70] compared several

heuristics in maximizing modularity. DasGupta and Desai [13] studied the complexity

of modularity clustering. The limitations of the modularity maximization technique are

discussed in [29] and [46]. Bolla [8] normalized the modularity matrix to form

Bsym = D−
1
2 BD−

1
2 , (3.7)
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just like the way Lsym is formed in Eq. 2.34. Zhang and Zhao [89] normalized the

modularity matrix in another way to form

Brw = D−1B, (3.8)

as the way Lrw is formed in Eq. 2.35. To make the discussion more complete, here we

write down the normalized modularity clustering algorithms:

Algorithm 7 Normalized Modularity Clustering by Bolla [8]

Require: An n× n adjacency or similarity matrix A, number of clusters k.

• Compute the modularity matrix B with Eq. 3.1.

• Compute the normalized modularity matrix Bsym = D−
1
2 BD−

1
2 .

• Compute the largest k eigenvalues of Bsym and their corresponding eigenvectors.

• Form the matrix V with the k eigenvectors of Bsym as columns.

• Let pi be the i-th row of V.

• Cluster the pi’s with k-means into clusters C1, C2, · · · , Ck.

return Clusters G1, G2, · · · , Gk such that Gi = {j|pj ∈ Ci}.
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Algorithm 8 Normalized Modularity Clustering by Zhang and Zhao [89]

Require: An n× n adjacency or similarity matrix A, number of clusters k.

• Compute the modularity matrix B with Eq. 3.1.

• Compute the Normalized Laplacian matrix Brw = D−1B.

• Compute the smallest k eigenvalues of Brw and their corresponding eigenvectors.

• Form the matrix V with the k eigenvectors of Brw as columns.

• Let pi be the i-th row of V.

• Cluster the pi’s with k-means into clusters C1, C2, · · · , Ck.

return Clusters G1, G2, · · · , Gk such that Gi = {j|pj ∈ Ci}.

Jiang and Meyer [39] proved that although the unnormalized spectral clustering and

modularity clustering may give different results, the Fiedler vector of Lsym and the

dominant eigenvector of Bsym are exactly the same, and consequently they will give same

bipartition results.
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CHAPTER 4

Definition of Modularity Components

In this section we will define the modularity components and will discuss their properties

in the next section. The research in these chapters is mainly based on [38]. In this chapter

we will first introduce some properties of the diagonal plus rank one (DPR1) matrices

and use the properties to prove some lemmas about the relation between the eigenvectors

of a particular kind of similarity matrices that can be fed in the modularity algorithm

and the singular vectors of the uncentered data matrix. The lemmas will help us to define

the modularity components. In this and the next chapters, we will assume that Xp×n is

the uncentered and normalized data matrix.
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4.1 Eigenvalues and Eigenvectors of DPR1 Matrices

Suppose the SVD of the uncentered data matrix X is X = UΣVT and there are k nonzero

singular values. Then the similarity matrix

A = XTX = VΣTΣVT (4.1)

has k positive eigenvalues. From the interlacing theorem mentioned in [9] and [85], it is

guaranteed that the largest k − 1 eigenvalues of the modularity matrix

B = A− ddT

2m
= XTX− ddT

2m
(4.2)

are positive. If the k dominant eigenvalues of A are simple, then the eigenvectors of B

corresponding to the largest k − 1 eigenvalues can be written as linear combinations of

the eigenvectors of A. The proof of the lemma is based on a theorem from [9] about

the interlacing property of a diagonal matrix and its rank-one modification and how to

calculate the eigenvectors of a DPR1 matrix [56]. The theorem can also be found in [85].

Theorem 4.1. Let C = D+ρvvT , where D is diagonal, ‖v‖2 = 1. Let d1 ≤ d2 ≤ · · · ≤ dn

be the eigenvalues of D, and let d̃1 ≤ d̃2 ≤ · · · ≤ d̃n be the eigenvalues of C. Then

d̃1 ≤ d1 ≤ d̃2 ≤ d2 ≤ · · · ≤ d̃n ≤ dn if ρ < 0. If the di are distinct and all the elements of

v are nonzero, then the eigenvalues of C strictly separate those of D.

Corollary 4.2. With the notations in Theorem 4.1, the eigenvector of C corresponding

to the eigenvalue d̃i is given by

(D− d̃iI)−1v. (4.3)

Theorem 4.1 tells us that the eigenvalues of a DPR1 matrix are interlaced with

46



the eigenvalues of the original diagonal matrix. In the next section we will use the

theorems about the DPR1 matrices to state and prove the lemma that the k− 1 dominant

eigenvectors of B can be written as a linear combination of the eigenvectors of A.

4.2 Dominant Eigenvectors of Modularity Matrices

In this section we will develop the relation between the dominant eigenvectors of the

modularity matrices and the eigenvectors of XTX, or the singular vectors of X. This

relation will help us to define the modularity components.

Lemma 4.3. Suppose the largest k − 1 eigenvalues of B are β1 > β2 > · · · > βk−1 and

the nonzero eigenvalues of A = XTX are α1 > α2 > · · · > αk. Further suppose that for

1 ≤ i ≤ k− 1 we have βi 6= αi and βi 6= αi+1. Then the eigenvector bi of B can be written

by

bi =
k∑
j=1

γijvj, (4.4)

where

γij =
vTj d

(αj − βi)‖d‖2
. (4.5)

Proof. If A = XTX, and if the SVD of X is X = UΣVT , then

A = VΣTΣVT = VΣAVT , (4.6)

where ΣA is an n× n diagonal matrix. Suppose the rows and columns of A are ordered

such that ΣA = diag(α1, α2, · · · , αn), where α1 > α2 > · · · > αk > αk+1 = · · · = αn = 0.

Let V =

(
v1 v2 · · · vn

)
. Similarly, since B is symmetric, it is orthogonally similar

to a diagonal matrix. Suppose the eigenvalues of B are β1, β2, · · · , βn with largest k − 1
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eigenvalues β1 > β2 > · · · > βk−1.

Since B = A− ddT/(2m), we have

B = A− ddT

2m
= VΣAVT − ddT

2m
= V(ΣA + ρyyT )VT , (4.7)

where y = VTd/‖VTd‖2 and ρ = −‖VTd‖22/(2m). Since ΣA + ρyyT is also symmetric,

it is orthogonally similar to a diagonal matrix. So we have

B = VU′ΣBU′TVT , (4.8)

where U′ is orthogonal and ΣB is diagonal. Since ΣA + ρyyT is a DPR1 matrix, ρ < 0

and ‖y‖2 = 1, the interlacing theorem applies to the eigenvalues of A and B. More

specifically, we have

αk < βk−1 < αk−1 < βk−2 < · · · < β2 < α2 < β1 < α1.

The strict inequalities hold because of our assumptions. Let B1 = ΣA + ρyyT . Since

B = VB1V
T , we have BV = VB1. Suppose (λ,u) is an eigenpair of B1, then

BVu = VB1u = λVu (4.9)

implies that (λ,u) is an eigenpair of B1 if and only if (λ,Vu) is an eigenpair of B. By

Corollary 4.2, the eigenvector of B1 corresponding to βi, 1 ≤ i ≤ k − 1 is given by

pi = (ΣA − βiI)−1y = (ΣA − βiI)−1
VTd

‖VTd‖2
, (4.10)
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and hence the eigenvector of B corresponding to βi, 1 ≤ i ≤ k − 1 is given by

bi = Vpi = V(ΣA − βiI)−1
VTd

‖VTd‖2
=

1

‖d‖2

n∑
j=1

vTj d

αj − βi
vj. (4.11)

Since d = Ae = VΣAVTe where e is a column vector with all ones, we have

vTj d = vTj VΣAVTe = eTj ΣAVTe. (4.12)

Since rank(A) = k, we have vTj d = 0 for j > k. Therefore, the eigenvector of B

corresponding to βi, 1 ≤ i ≤ k − 1 is given by

bi =
k∑
j=1

γijvj, (4.13)

where

γij =
vTj d

(αj − βi)‖d‖2
. (4.14)

The point of Lemma 4.3 is to realize that the vector bi is a linear combination of the

vi. The next lemma gives the linear expression of the vectors bTi X† in terms of the ui,

where X† is the Moore-Penrose inverse of X.

Lemma 4.4. With the assumptions in Lemma 4.3, we have

bTi X† =
k∑
j=1

γij
σj

uTj , (4.15)

where σj is the j-th the nonzero singular value of X.
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Proof.

bTi X† =

( k∑
j=1

γijv
T
j

)
VΣ†UT

=

(
γi1 γi2 · · · γik 0 · · · 0

)
1×n

Σ†U
T

=

(
γi1
σ1

γi2
σ2
· · · γik

σk
0 · · · 0

)
1×p

UT

=
k∑
j=1

γij
σj

uTj .

Lemma 4.4 shows that if bi can be written as a linear combination of the vj , then the

vectors bTi X† can be written as a linear combination of the ui. In the next section we

give the formal definition of the modularity components.

4.3 Definition of Modularity Components

Based on Lemma 4.3 and Lemma 4.4, we may define a set of vectors that we will

call modularity components. We will prove in the next chapter that the modularity

components have some properties that are analogous to the ones of principal components.

Definition 4.5. Suppose Xp×n is the data matrix, bi is the eigenvector corresponding to

the i-th largest eigenvalue of B, where

B = XTX− ddT

2m
. (4.16)
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Under the assumptions in Lemma 4.3, let

mT
i = bTi X† =

k∑
j=1

γij
σj

uTj . (4.17)

The i-th modularity component is defined to be

ci =
mi

‖mi‖2
. (4.18)

By Lemma 4.3 and Lemma 4.4 it can be seen that as long as the assumptions in

Lemma 4.3 are met, the modularity components are well-defined, and the definition of ci

is based on the linear combination of bTi X† in terms of the ui. In the next chapter some

important properties of the modularity components are established.
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CHAPTER 5

Properties of Modularity Components

In this chapter we will use the definition of modularity components to prove some important

properties of modularity components. The properties of the modularity components will

be given, and it will be explained why these properties can help in data clustering and

dimension reduction. We will also compare the properties of modularity components

with the ones of principal components discussed in Chapter 2. It can be seen that

the properties of modularity components are quite similar to some of the properties of

principal components.

5.1 Orthogonality of Modularity Components

Now we state and prove the first important property of modularity components. We will

prove that if the assumptions in Lemma 4.3 are met, then the modularity components

52



are orthogonal to each other.

Theorem 5.1. With the assumptions in Lemma 4.3, suppose Xp×n is the unnormalized

data matrix, A = XTX, and B = A− ddT/(2m). Suppose bi, bj are the eigenvectors of

B corresponding to eigenvalues λi and λj, 1 ≤ i, j ≤ k − 1, respectively. Then we have

B = (BX†)(BX†)T (5.1)

and

ci ⊥ cj (5.2)

for i 6= j.

Proof. It is sufficient to prove that mi ⊥mj for i 6= j. From A = XTX we have

d = Ae = XTXe, (5.3)

and

2m = dTe = eTXTXe. (5.4)

Therefore,

B = A− ddT

2m
= XTX− (XTXe)(XTXe)T

eTXTXe
= XTX− XTXeeTXTX

eTXTXe
. (5.5)

Since XTXX† = XT is always true, we have

BX† =

(
XTX− XTXeeTXTX

eTXTXe

)
X†
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= XTXX† − XTXeeTXTXX†

eTXTXe
= XT − XTXeeTXT

eTXTXe
. (5.6)

Consequently,

(BX†)(BX†)T =

(
XT − XTXeeTXT

eTXTXe

)(
X− XeeTXTX

eTXTXe

)

= XTX− 2XTXeeTXTX

eTXTXe
+

(eTXTXe)XTXeeTXTX

(eTXTXe)2

= XTX− XTXeeTXTX

eTXTXe
. (5.7)

Therefore B = (BX†)(BX†)T . Since Bbi = λibi, Bbj = λjbj, λi 6= 0, λj 6= 0, we have

mT
i mj = (bTi X†)(bTj X†)T =

(
1

λi
bTi BX†

)(
1

λj
bTj BX†

)T

=
1

λiλj
bTi (BX†)(BX†)Tbj =

1

λiλj
bTi Bbj =

1

λi
bTi bj = 0, (5.8)

so

cTi cj =
mT

i mj

‖mi‖2‖mj‖2
(5.9)

implies ci ⊥ cj for i 6= j.

From Theorem 5.1, it can be seen that the modularity components are orthogonal to

each other. Therefore, like the principal components, the modularity components are also

a set to orthonormal vectors.
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5.2 Projection of Data onto the Span of Modularity

Components

In this section we will prove that the projection of the uncentered data onto the span of

ci is a scalar multiple of bi.

Theorem 5.2. With the assumptions in Lemma 4.3, let Pci be the projector onto the

span of ci. Then

PciX =
1

‖mi‖2
cib

T
i . (5.10)

Proof.

PciX = cic
T
i X =

1

‖mi‖2
cim

T
i UΣVT =

1

‖mi‖2
ci

( k∑
j=1

γij
σj

uTj

)
UΣVT

=
1

‖mi‖2
ci

(
γi1
σ1

γi2
σ2
· · · γik

σk
0 · · · 0

)
1×p

ΣVT

=
1

‖mi‖2
ci

(
γi1 γi2 · · · γik 0 · · · 0

)
1×n

VT

=
1

‖mi‖2
ci

k∑
j=1

γijv
T
i =

1

‖mi‖2
cib

T
i .

The property given by Theorem 5.2 is very similar to the principal component analysis

in the sense that if we project the data onto the span of the components, we get a scalar

multiple of a vector, and the vector can give the cluster structure of the data based on

the signs of the entries in the eigenvectors.
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5.3 Meaning of Eigenvalues of B and the Correspond-

ing Modularity Components

In this section we will prove that the first modularity component has the largest modularity

in the data, and each succeeding modularity component has the largest modularity with

the constraint that it is orthogonal to all previous modularity components. We will also

how the eigenvalues of the modularity matrix defines the “importance” of each modularity

component.

Theorem 5.3. With the assumptions in Lemma 4.3, we have

βi =
1

‖mi‖22
, (5.11)

for 1 ≤ i ≤ k − 1. Moreover, let X1 = X and for 1 < i ≤ k − 1,

Xi = X−
i−1∑
j=1

cjc
T
j X (5.12)

and di, mi defined correspondingly, then βi is the largest eigenvalue of

Bi = XT
i Xi −

did
T
i

2mi

, (5.13)

and (βi,bi) is an eigenpair for both B and Bi. Moreover, we have

bTi X†i = bTi X†. (5.14)

Proof. For i = 2, since it is proved in [62] that b1 is the vector s̄ that maximizes Q in
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Eq. 3.5, we have

Qmax1 = bT1 Bb1 = β1b
T
1 b1 = β1. (5.15)

By Theorem 5.1,

max
s

sTBs = max
s

sT (BX†)(BX†)T s = max
s
‖(BX†)T s‖22 = max

s
‖(X†)TBs‖22

= ‖(X†)TBb1‖22 = ‖(X†)Tβ1b1‖22 = ‖β1m1‖22 = β1. (5.16)

Therefore

β1 =
1

‖m1‖22
. (5.17)

Then X2 is defined by

X2 = X− c1c
T
1 X = (I− c1c

T
1 )X. (5.18)

Since I− c1c
T
1 is idempotent, we have

XT
2 X2 = XT (I− c1c

T
1 )X = XTX−XTc1c

T
1 X. (5.19)

By Theorem 5.2, we know that c1c
T
1 X = c1b

T
1 /‖m1‖2, so cT1 X =

√
β1b

T
1 and then

XT
2 X2 = XTX− β1b1b

T
1 . (5.20)

Recall that

B2 = XT
2 X2 −

d2d
T
2

2m2

= XT
2 X2 −

XT
2 X2eeTXT

2 X2

eTXT
2 X2e

, (5.21)

and in this use Eq. 5.20 together with bT1 e = 0 (because b1 and e are eigenvectors

57



corresponding to different eigenvalues of B) to obtain

B2 = B− β1b1b
T
1 . (5.22)

So by Brauer’s theorem [56](Exercise 7.1.17), the eigenpairs of B2 are the same as those of

B1 with β1 replaced by zero. So β2 is the largest eigenvalue of B2 and b2 is the eigenvector

of B2 corresponding to β2. Therefore (β2,b2) is an eigenpair for both B and B2.

To prove

bT2 X†2 = bT2 X†, (5.23)

notice that

bT2 X†2 =
1

λ2
bT2 B2X

†
2 =

1

λ2
bT2

(
XT

2 −
XT

2 X2eeTXT
2

eTXT
2 X2e

)
by Eq. 5.6

=
1

λ2
bT2

(
XT

2 −
(XTX− β1b1b

T
1 )eeTXT

2

eT (XTX− β1b1bT1 )e

)
by Eq. 5.20

=
1

λ2
bT2

(
XT

2 −
XTXeeTXT

2

eTXTXe

)

=
1

λ2
bT2

(
I− XTXeeT

eTXTXe

)(
X− c1c

T
1 X

)T
by Eq. 5.18

=
1

λ2
bT2

(
I− XTXeeT

eTXTXe

)
XT − 1

λ2
bT2

(
I− XTXeeT

eTXTXe

)
XTc1c

T
1

= mT
2 −mT

2 c1c
T
1 by Eq. 4.17 . (5.24)

Since m2 is on the span of c2, we have mT
2 c1c

T
1 = 0. Therefore

bT2 X†2 = mT
2 = bT2 X†. (5.25)
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For the case when 2 < i ≤ k − 1, let

Qi−1 = sTBi−1s. (5.26)

Notice that bi−1 is the vector s that maximizes Qi−1. Then by similar steps we can prove

that

βi−1 =
1

‖mi−1‖22
. (5.27)

Then Xi can be defined by

Xi = X−
i−1∑
j=1

cjc
T
j X = (I−

i−1∑
j=1

cjc
T
j )X. (5.28)

It is easy to prove that
∑i−1

j=1 cjc
T
j is idempotent. Then we have

XT
i Xi = XT (I−

i−1∑
j=1

cjc
T
j )X

= XTX−XT (
i−1∑
j=1

cjc
T
j )X = XTX−

i−1∑
j=1

βjbjb
T
j . (5.29)

Recall that

Bi = XT
i Xi −

did
T
i

2mi

= XT
i Xi −

XT
i XieeTXT

i Xi

eTXT
i Xie

, (5.30)

and in this use Eq. 5.29 together with bTj e = 0 (because bj and e are eigenvectors

corresponding to different eigenvalues of B) to obtain

Bi = B−
i−1∑
j=1

βjbjb
T
j = Bi−1 − βi−1bi−1bTi−1. (5.31)
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So by Brauer’s theorem again, the eigenpairs of Bi are the same as those of Bi−1 with

βi−1 replaced by zero. So βi is the largest eigenvalue of Bi and bi is the eigenvector of Bi

corresponding to βi. Therefore (βi,bi) is an eigenpair for both B and Bi.

To prove

bTi X†i = bTi X† (5.32)

for 2 < i ≤ k − 1, notice that

bTi X†i =
1

λi
bTi BiX

†
i =

1

λi
bTi

(
XT
i −

XT
i XieeTXT

i

eTXT
i Xie

)
by Eq. 5.6

=
1

λi
bTi

(
XT
i −

(XTX−
∑i−1

j=1 βjbjb
T
j )eeTXT

j

eT (XTX−
∑i−1

j=1 βjbjb
T
j ))e

)
by Eq. 5.29

=
1

λi
bTi

(
XT
i −

XTXeeTXT
i

eTXTXe

)

=
1

λi
bTi

(
I− XTXeeT

eTXTXe

)(
X−

i−1∑
j=1

cjc
T
j X

)T
by Eq. 5.12

=
1

λi
bTi

(
I− XTXeeT

eTXTXe

)
XT − 1

λi
bTi

(
I− XTXeeT

eTXTXe

)( i−1∑
j=1

XTcjc
T
j

)

= mT
i −

i−1∑
j=1

mT
i cjc

T
j by Eq. 4.17 . (5.33)

Since mi is on the span of ci, we have mT
i cjc

T
j = 0. Therefore

bTi X†i = mT
i = bTi X†. (5.34)

The meaning of Theorem 5.3 is, if we take out the part of data in X that lies along
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the span of c1 with Eq. 5.12 and use the data left X2 to build the new modularity

matrix B2 with Eq. 5.13, all the eigenpairs of B are kept in B2 except for the first pair.

Moreover, by Eq. 5.14 the modularity component corresponding to the largest eigenvalue

of B2 is b2, which is also the modularity component corresponding to the second largest

eigenvalue of B. Similarly, if we take out the part of data in X that lies along the span of

cj, 1 ≤ j ≤ i − 1, with Eq. 5.12 and use the data left Xi to build the new modularity

matrix Bi with Eq. 5.13, although di and mi are different from the original data so Bi

is also different from B, all the eigenpairs of B are kept in Bi except for the first i− 1

pairs. Moreover, by Eq. 5.14 the modularity component corresponding to the largest

eigenvalue of Bi is bi, which is also the modularity component corresponding to the

i-th largest eigenvalue of B. The conclusion is the first modularity component has the

largest modularity of the data X and each succeeding modularity component has the

largest modularity with the constraint that it is orthogonal to all previous modularity

components.

Combining Theorem 5.2 and Theorem 5.3 we get the following corollary.

Corollary 5.4. With the assumptions in Lemma 4.3, let Pci be the projector onto the

direction of ci. Then

PciX =
√
βicib

T
i . (5.35)

By Corollary 5.4, the “level of importance” of each modularity component is ordered

by their corresponding eigenvalues of the modularity matrix B. This corollary also tell us

that if the data is projected onto the span of the modularity components, we will get a

low-rank representation of the data. More specifically, if the first t modularity components

are used, and let

C =

(
c1 c2 · · · ct

)
, (5.36)
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then the t-dimensional representation of the uncentered data, or the score matrix, is

T = CTX =



√
β1 0 · · · 0

0
√
β2 · · · 0

...
. . .

...

0 0 · · ·
√
βt





bT1

bT2
...

bTt


. (5.37)

Then, as analogous to clustering with PCA, other clustering algorithms such as k-means

can be used on the rows of T to get the clusters.

5.4 Some Discussions

5.4.1 Modularity Components versus Principal Components

In Section 2.2.4, we listed some important properties of the principal components. Here

we list them again, then we summarize the properties of the modularity components:

• The principal components are orthogonal to each other.

• If we project the data onto the span of a principal component, we get a scalar

multiple of the score vector that can reveal the cluster structure in the data based

on the signs of the entries in the score vector.

• The first principal component has the largest variance of the data. Each succeeding

principal component has the largest variance with the constraint that it is orthogonal

to all previous principal components.

From Theorem 5.1 to Theorem 5.3, we can summarize the properties of the modularity

components:
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• Theorem 5.1 says that the modularity components are orthogonal to each other.

• Theorem 5.2 says that if we project the data onto the span of a modularity component,

we get a scalar multiple of the score vector that can reveal the cluster structure in

the data based on the signs of the entries in the score vector.

• Theorem 5.3 says that the first modularity component has the largest modularity of

the data. Each succeeding modularity component has the largest modularity with

the constraint that it is orthogonal to all previous modularity components.

If we compare the properties of modularity components with the ones of principal

components, it can be seen that they are quite similar. Both principal components

and modularity components are sets of orthonormal vectors. The projections of data

onto the span of both kinds of components can reveal cluster structure. Both kinds of

components have the property that a component has the largest “information” in the

data with the constraint that it is orthogonal to all previous components. Both principal

components and modularity components can give a low-rank representation of the data

so they can both be used to perform dimension reduction. We will call the data analysis

method that uses modularity components to reveal the cluster structure and perform

dimension reduction the modularity component analysis, or MCA. Figure 5.1 is a

2-dimensional representation of the iris data given by MCA. It can be compared with the

representation given by PCA in Figure 2.1. Since the modularity components and the

principal components are so similar, it can be expected that the cluster structure revealed

by the two kinds of components are comparable. However, there is a point that is not

shared by principal components and modularity components. The principal component

analysis requires data centering before extracting the components and cluster structure,

while it can be avoided with modularity components. Since both PCA and MCA requires
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using SVD, if a SVD solver can take the advantage of the sparsity of the input data,

PCA may not have this efficiency. On the other hand, the MCA does not require data

centering so it can benefit from the sparsity of the data.

Figure 5.1: A 2-dimensional representation of the iris data given by MCA.

5.4.2 Dimension Reduction and Number of Modularity Com-

ponents

Since the modularity components have properties that are analogous to the properties

of the principal components, the modularity component analysis can also be used as to
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reduce the number of dimensions. The first dimension lies along the span of the first

modularity component, and has the largest modularity of the normalized data. The p-th

dimension lies along the span of the p-th modularity components, and has the largest

modularity of the normalized data with the constraint that it is orthogonal to all preceding

modularity components. The first a few components are expected to have the majority of

the modularity of the whole data.

While the modularity component analysis provide a possible way of performing dimension

reduction, to determine the number of modularity components is still an open question.

It may be helpful to borrow some of the ideas for determining the number of principal

components discussed in Section 2.2.5. In Chapter 6 a scree plot for modularity component

analysis is used to determine the number of modularity components.

5.4.3 Is Lemma 4.3 Legitimate?

It can be seen that the theorems proven in this chapter are based on the condition that the

Lemma 4.3 holds true. Lemma 4.3 assumes the largest k− 1 eigenvalues of the modularity

matrix are not equal to any of the largest eigenvalues of the adjacency matrix. The

assumption is necessary to make the denominator of Eq. 4.5 nonzero. The assumption

holds true for all the practical cases discussed in Chapter 6.

5.4.4 Algorithm of Modularity Component Analysis

As a conclusion of the discussion in this chapter, here we write down the algorithm to

perform modularity component analysis. Note that although the components are not

explicitly computed, they give the theoretical support to using multiple eigenvectors of

the modularity matrix to reveal the cluster structures in data.
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Algorithm 9 Clustering with Modularity Component Analysis

Require: A p×n normalized data matrix X, number of clusters k, number of modularity

components t.

• Compute the modularity matrix B with eq. 3.1.

• Compute the largest t eigenvalues of B, β1 > β2 > · · · > βt > 0, and their

corresponding eigenvectors b1,b2, · · · ,bt.

• Compute the score matrix S = ΣTT , where Σ = diag(
√
β1,
√
β2, · · · ,

√
βt) and

T = (b1,b2, · · · ,bt).

• Let pi be the i-th colomn of S.

• Cluster the pi’s with k-means into clusters C1, C2, · · · , Ck.

return Clusters G1, G2, · · · , Gk such that Gi = {j|pj ∈ Ci}.
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CHAPTER 6

Numerical Experiments

In this chapter we will examine the performance of MCA combined with k-means. Three

traditional clustering methods, k-means, modularity partitioning method by Newman and

Girvan [63] and PCA combined with k-means are used as baseline methods. In Section 6.1

the datasets used in the experiments will be introduced. Then in Section 6.2 the time

consumed by each method and their accuracy will be listed and discussed.

6.1 Datasets

6.1.1 Wine Dataset

The wine recognition data from the UCI data repository [49] is one of the most famous

data sets used in data mining [28, 34, 66]. The data set is a result of chemical analysis
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of wines growing in the same region. The difference between the wines is that they are

derived from three different cultivars. The data contains 178 wine samples, the labels of

the samples that tell which kind of wine each sample is and 13 variables from chemical

analysis. The variables are listed as follows:

1. Alcohol

2. Malic acid

3. Ash

4. Alcalinity of ash

5. Magnesium

6. Total phenols

7. Flavanoids

8. Nonflavanoid phenols

9. Proanthocyanins

10. Color intensity

11. Hue

12. OD280/OD315 of diluted wines

13. Proline

The goal is to group the 130 samples into three clusters corresponding to the three

cultivars.
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6.1.2 Medlars, Cranfield, CISI Dataset

The Medlars, Cranfield and CISI dataset, also known as the MCC dataset or Classic3

dataset, is a widely used dataset for clustering [18, 17, 1]. The data contains 3891

documents from three smaller datasets in different fields:

1. Medlars: 1033 medical documents

2. Cranfield: 1398 aerodynamics documents

3. CISI: 1460 information science documents

Each data point is a row vector representing a document, with the entries the frequency

of the words in the document. After preprocessing there are 11,001 terms appeared in at

least one document, so each data is a 11,000 by 1 vector. The main goal is to separate

the documents from the three smaller collections.

6.1.3 PenDigit Dataset

The PenDigit data set is a subset of the Mixed National Institute of Standards and

Technology (MNIST) database [47]. The original data contains a training set of 60,000

handwritten digits from 44 writers. Each piece of data is a row vector converted from a

greyscale image. Each image is 28 pixels in height and 28 pixels in width, so there are

784 pixels in total. Each row vector contains the label of the digit and the lightness of

each pixel. Lightness of a pixel is represented by a number from 0 to 255 inclusively, and

smaller numbers represent lighter pixels. The data used in the experiments contains digits

1, 2, 6, and 7. For each digit 200 samples are randomly selected from the original data.

The number of principal components and modularity components are picked based on the
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eigenvalues plot of the modularity matrix. The scree plot of the modularity matrix shows

how much modularity is reflected by each of the modularity components.

6.2 Experimental Setup and Results

6.2.1 Experimental Setup

For each of the datasets the k-means algorithm in Algorithm 1, Newman and Girvan’s

modularity partitioning algorithm in Algorithm 6, PCA with k-means in Algorithm 2

and MCA with k-means in Algorithm 9 are applied. When the k-means algorithm

was involved the algorithm was run several times and the result with lowest SSE was

recorded. For the wine dataset and MMC dataset the number of principal components

were determined by the scree plots of PCA, which will be given in the next section. For

these datasets the numbers of modularity components were set to be the same as the

number of principal components. For the PenDigit dataset the number of modularity

component was determined by the scree plot of MCA, and the number of principal

components was set to be the same as the number of modularity components. The wine

and MCC datasets were centered and normalized, while the PenDigit dataset was only

centered when PCA was applied.

6.2.2 Results

The experimental results for the time consumed by each algorithm and the accuracy

are listed in Table 6.1 and Table 6.2. The number of principal/modularity components

used for each dataset is listed in Table 6.3. It can be seen that for all datasets MCA

consumes less time than PCA. This is expected as MCA does not required the centering
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step, which is necessary for PCA. The baseline algorithms, k-means and Newman and

Girvan’s modularity partitioning algorithms, use more time than PCA and MCA for most

of the time. In the perspective of accuracy, MCA has a relatively stable accuracy, and the

accuracy is comparable with the best results for all datasets used. Next we post the scree

Table 6.1: Time Consumed by Each Algorithm. (Unit: Second)

k-means Modularity PCA MCA

Wine 0.0323 0.0651 0.0456 0.0426
MCC 361 17.0 3.50 2.65
PenDigit 0.187 0.210 0.0844 0.0695

Table 6.2: Accuracy by Each Algorithm.

k-means Modularity PCA MCA

Wine 0.702 0.781 0.949 0.921
MCC 0.405 0.984 0.932 0.962
PenDigit 0.656 0.418 0.861 0.848

plots for PCA and MCA, and the 2-dimensional representation plots of the data given

by PCA and MCA for each datasets. For the PCA scree plots, the x-axes represent the

indices of the eigenvalues, and the y-axes represent the values of the eigenvalues of XTX

where X is the centered data matrix sometimes normalized. For the MCA scree plots, the

x-axes represent the indices of the eigenvalues, and the y-axes represent the values of the
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Table 6.3: Number of Principal/Modularity Components Used for Each Dataset.

Wine MCC PenDigit

Number of components 4 3 4

eigenvalues of the modularity matrix. For the MCC and PenDigit datasets only the first

20 components are included in the scree plots. The 2-dimensional representation plots

shows the projections of the data onto the span of the first two principal or modularity

components. The x-axes represent the span of the first components, and the y-axes

represent the span of the second components. A good low-rank representation should

be able to show the difference between the data from different classes so high accuracy

can be expected when the k-means algorithm is applied. For example, in Figure 6.7 and

Figure 6.8 it can be seen that in the 2-dimensional representation of the MCC data, the

documents from different fields lie along three different directions. Then it is relatively

easy for k-means to separate the documents into three clusters. From the plots it can be

seen that for all the datasets used, MCA can give similar low-rank representation of data

compared with PCA, even MCA does not require data centering.
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Figure 6.1: Scree plot of the wine data (centered and normalized) given by PCA.

Figure 6.2: Scree plot of the wine data (normalized) given by MCA.
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Figure 6.3: A 2-dimensional representation of the projection of the wine data onto the
span of the first two principal components.

Figure 6.4: A 2-dimensional representation of the projection of the wine data onto the
span of the first two modularity components.
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Figure 6.5: Scree plot of the MCC data (centered and normalized) given by PCA. First
20 components included.

Figure 6.6: Scree plot of the MCC data (normalized) given by MCA. First 20 components
included.
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Figure 6.7: A 2-dimensional representation of the projection of the MCC data onto the
span of the first two principal components.

Figure 6.8: A 2-dimensional representation of the projection of the MCC data onto the
span of the first two modularity components.
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Figure 6.9: Scree plot of the PenDigit data (centered and unnormalized) given by PCA.
First 20 components included.

Figure 6.10: Scree plot of the PenDigit data (unnormalized) given by MCA. First 20
components included.
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Figure 6.11: A 2-dimensional representation of the projection of the PenDigit data onto
the span of the first two principal components.

Figure 6.12: A 2-dimensional representation of the projection of the PenDigit data onto
the span of the first two modularity components.
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CHAPTER 7

Conclusion

The main purpose of this dissertation is to build the modularity components and discuss

their properties. The discussion in this dissertation helps to address several problems in

data analysis. First, when the traditional modularity partitioning algorithm is applied,

the data or graph can only be partitioned into two groups in each iteration. When the

desired number of clusters is more than two, a hierarchy has to be built and the same

algorithm has to be applied for several times, and the total process would cost a lot

of time and computations. While it is quite natural to use several eigenvectors of the

modularity matrix to cluster data, the reason for doing so is still vague.

Second, while PCA is widely used in data analysis, one drawback is that the sparsity of

the data may be destroyed while centering. Since the sparsity of the data can be utilized

in performing SVD, the centering step in PCA makes the process less efficient. It is better
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if a data analysis algorithm can perform dimension reduction while keeping the sparsity

of the data.

7.1 Contributions

In this dissertation the concept of modularity components is defined, and the properties

of the components are developed. It is shown that the modularity components are

orthonormal to each other, and the projections of the uncentered data onto the span

of the components give scalar multiples of the eigenvectors of the modularity matrix.

It is also proven that the first modularity component has the largest modularity in the

data, and each succeeding modularity component has the largest modularity of the data

with the restrict that it is orthogonal to all preceding components. The development of

the modularity components in this dissertation gives theoretical justification for using

multiple eigenvectors of the modularity matrix to cluster data.

It is also shown in this dissertation that the modularity component analysis provides a

possible way of performing dimension reduction while keeping the sparsity of the original

data. Just like PCA, the new dimensions given by MCA lies along the span of the

modularity components. The sparsity of the original data is not destroyed since centering

is not required for modularity clustering.

7.2 Future Research

1. Look for proper methods to determine the number of modularity components;

2. Look for numerical methods to efficiently compute the eigenvalues of modularity

matrices;
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3. Investigate more properties of the modularity components;

4. Use other clustering methods on the low-rank representation and compare the results

with MCA combined with k-means;

5. Apply MCA on datasets with more variables or more data points to examine its

efficiency and accuracy;

6. Apply MCA in facial recognition to see what facial information each modularity

component can give.
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