
ABSTRACT

AL-KATEEB, ALA’A QASEM MOHAMMAD. Structures and Properties of Cyclotomic
Polynomials. (Under the direction of Hoon Hong.)

The cyclotomic polynomial Φn(x) is the monic polynomial in Z[x] whose zeros are the

primitive n-th roots of unity. It has numerous application in number theory, abstract al-

gebra and cryptography. Thus it is important to understand its structures and properties.

In this dissertation, we report several newly found structures and properties of Φn.

Let n = mp, where m is an odd square-free integer and p > m is a prime number.

Let q = quo(p,m) and r = rem(p,m). Let fm,p,i be the i-th digit of Φmp in the radix xp.

Let fm,p,i,j be the j-th digit of fm,p,i in the radix xm. Let Cm,p,i,j be the list of coefficients

of fm,p,i,j .

The newly found structures are as follows:

1. Cm,p,i,0 = ∙ ∙ ∙ = Cm,p,i,q−1.

2. Cm,p,i,q is a truncation of Cm,p,i,0.

Cm,p,i,q = (1) if r = 1 and i = 0

Cm,p,i,q = (0) if r = 1 and i > 0

3. Let p− p̃ ≡m 0. Then Cm,p,i,0 = Cm,p̃,i,0.

4. Let p + p̃ ≡m 0. Then Cm,p̃,i,0 is a negated/rotated version of Cm,p,i,0.

5. Let i + ı̃ = ϕ(m)− 1. Then Cm,p,̃ı,0 is a flipped/rotated version of Cm,p,i,0.

The newly found properties are as follows:



1. Norm:‖Φmp‖
k
k is linear over p’s that are equivalent modulo m. Moreover, ‖Φmp‖

k
k

and ‖Φmp̃‖
k
k are parallel if p + p̃ ≡m 0.

2. Middle term: Let M(Φmp) denote the coefficient of the midterm of Φmp. Then we

have M(Φmp) = ±M(Φmp̃) if p∓ p̃ ≡m 0 and M(Φmp) = ±1 if p ≡m ±1.

3. Number of terms: Let Ntc(Φmp) denote the number of terms with the coefficient c

in Φmp. Then Ntc(Φmp) is linear over p’s that are equivalent modulo m. Moreover,

Ntc(Φmp) and Nt−c(Φmp̃) are parallel if p + p̃ ≡m 0.

4. Number of terms in Φp1p2p3 : We provide explicit formulas for the number of terms

in Φp1p2p3 for some special families of p1, p2 and p3.
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Chapter 1

Introduction

In this dissertation, we study a fundamental family of polynomials in number theory,

namely the family of cyclotomic polynomials. A cyclotomic polynomial Φn(x) is the

monic polynomial in Z[x] whose zeros are the primitive n-th roots of unity.

Example 1.1.

Φ1(x) = −1 + x Φ2(x) = 1 + x

Φ3(x) = 1 + x + x2 Φ4(x) = 1 + x2

Φ5(x) = 1 + x + x2 + x3 + x4 Φ6(x) = 1− x + x2

Φ7(x) = 1 + x + x2 + x3 + x4 + x5 + x6 Φ8(x) = 1 + x4

Φ9(x) = 1 + x3 + x6 Φ10(x) = 1− x + x2 − x3 + x4

This set of polynomials has numerous application in number theory, abstract algebra

and cryptography:

1. Some important theorems were proved using the properties of those polynomial
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like:

(a) Wedderburn’s theorem for finite division rings (see [5]).

(b) Proving a special case of Dirichlet’s theorem on primes in arithmetic progres-

sions (see [23]).

2. Some applications in cryptography:

(a) investigating the efficiencies of certain class of cryptosystems (see[27])

(b) constructing cryptosystems (see [34, 39])

Thus it is important to understand its structures and properties. In this dissertation, we

report several newly found structures and properties.

In Chapter 2, we review the definition, various known structures and properties of

cyclotomic polynomials. We also review the definition of inverse cyclotomic polynomials

and summarize some of its basic properties needed in the subsequent chapters.

In Chapter 3, we investigate the structure of cyclotomic polynomials. Let n = mp

where m is an odd square-free integer and p > m is a prime number. Let q = quo(p,m)

and r = rem(p,m). Let fm,p,i be the i-th“digit” of Φmp in the radix xp. Let fm,p,i,j be the

j-th “digit” of fm,p,i in the radix xm. Let Cm,p,i,j be the list of coefficients of fm,p,i,j . Note

that Cm,p,i,j is a consecutive sub-list of the list of the coefficients of Φmp. Hence they

together form a partition of the list of the coefficients of Φmp. We show the following

structures on the partition (Theorem 3.1).

1. Cm,p,i,0 = ∙ ∙ ∙ = Cm,p,i,q−1

2. Cm,p,i,q is a truncation of Cm,p,i,0.

Cm,p,i,q = (1) if r = 1 and i = 0

2



Cm,p,i,q = (0) if r = 1 and i > 0

3. Let p− p̃ ≡m 0. Then Cm,p,i,0 = Cm,p̃,i,0.

4. Let p + p̃ ≡m 0. Then Cm,p̃,i,0 is a negated/rotated version of Cm,p,i,0.

5. Let i + ı̃ = ϕ(m)− 1. Then Cm,p,̃ı,0 is a flipped/rotated version of Cm,p,i,0.

We point out that the structural finding 1 was implicitly present in a recursive formula

and resulting algorithms in Arnold and Monagan ([4] Section 4), but they did not make it

explicit, maybe because their main concern was computational efficiency, not structural

study. We have made it explicit because the explicit structure is useful for studying many

other properties.

In Chapter 4, we investigate the norm of cyclotomic polynomial ‖Φmp‖k. We show

the following properties of norms (Theorem 4.1).

1. ‖Φmp‖
k
k is linear over p’s that are equivalent modulo m.

2. ‖Φmp‖
k
k and ‖Φmp̃‖

k
k are parallel if p + p̃ ≡m 0.

In Chapter 5, we investigate the middle term of a cyclotomic polynomial. Let M(Φmp)

denote the coefficient of the midterm of Φmp. We show the following properties of midterms

(Theorem 5.1).

1. M(Φmp) = ±M(Φmp̃) if p∓ p̃ ≡m 0.

2. M(Φmp) = ±1 if p ≡m ±1.

In Chapter 6, we investigate the number of terms with prescribed coefficient in Φn.

Let Ntc(Φmp) denote the number of terms with the coefficient c in Φmp. We show the

following properties of number of terms (Theorem 6.1).

3



1. Ntc(Φmp) is linear over p’s that are equivalent modulo m.

2. Ntc(Φmp) and Nt−c(Φmp̃) are parallel if p + p̃ ≡m 0.

Finally, in Chapter 7, we study the number of terms in Φp1p2p3 . We report the following

findings on(Theorem 7.1). Suppose that p2 ≡p1 +1 or −1. Then

1. hw(Φp1p2p3) = N ∙ (p3 − 1) + 1 if p3 ≡p1p2 +1

2. hw(Φp1p2p3) = N ∙ (p3 + 1)− 1 if p3 ≡p1p2 −1

where

N =
2

3

(p1 − 1) ((p1 + 4) (p2 − 1)− (r2 − 1))

p1p2

r2 = rem(p2, p1)

4



Chapter 2

Review

In this chapter we will review the definition and various known structures and properties

of cyclotomic polynomials.

2.1 Cyclotomic polynomials

In this section we will define the cyclotomic polynomials and review some of their basic

structures and properties.

Let n be a positive integer. Then the zeros of xn − 1 are all of the form e
2πik

n where

1 ≤ k ≤ n,

xn − 1 =
n∏

k=1

(x− e
2πik

n )

Let R(n) = {e
2πik

n , k = 0, ∙ ∙ ∙ , n} be the set of n-th roots of unity. Clearly R(n) is an

abelian group under multiplication. An n-th root of unity is called primitive if it is a

generator of the group R(n), i.e, gcd(k, n) = 1.

Definition 2.1 (Cyclotomic Polynomials). The cyclotomic polynomial Φn is defined to

5



be the polynomial whose zeros are the primitive n-th roots of unity, i.e,

Φn =
∏

gcd(k,n)=1
1≤k≤n

(x− e
2πik

n )

Example 2.1. Note

n Φn

1 x− e2πi = −1 + x

2 x− e
2πi
2 = x− (−1) = 1 + x

3 (x− e
πi
3 ) ∙ (x− e

2πi
3 ) = (x + 1

2
−

√
3

2
i) ∙ (x + 1

2
+

√
3

2
i)) = 1 + x + x2

4 (x− e
2πi
4 ) ∙ (x− e

6πi
4 ) = (x− i) ∙ (x + i) = 1 + x2

5 (x− e
2πi
5 ) ∙ (x− e

4πi
5 ) ∙ (x− e

6πi
5 ) ∙ (x− e

8πi
5 ) = 1 + x + x2 + x3 + x4

Based on the last example, one might think that all coefficients of cyclotomic polyno-

mials are either ±1 or 0, but this is not generally true. The first integer n for which Φn

has a coefficient different from −1, 0 or 1 is n = 105. That was found in 1883 by Migotti

[35].

Φ105 = 1 + x + x2 − x5 − x6 − 2x7 − x8 − x9 + x12 + x13 + x14 + x15 + x16

+ x17 − x20 − x22 − x24 − x26 − x28 + x31 + x32 + x33 + x34 + x35

+ x36 − x39 − x40 − 2x41 − x42 − x43 + x46 + x47 + x48

the coefficients of x7 and x41 equal −2.

Now review some basic structures and properties of Φn. For this, we first recall two

essential functions in number theory, Euler’s and Möbius functions. Those functions are

useful in proving many basic structures and properties of Φn.

6



Definition 2.2 (Euler’s function). Let ϕ : Z → Z be the cardinality of {k : 1 ≤ k ≤

n and gcd(k, n) = 1}.

Remark 2.1. From the definition of ϕ(n) we can see that the degree of Φn is ϕ(n).

Example 2.2. We have

ϕ(1) = 1, ϕ(2) = 1

ϕ(5) = 4, ϕ(10) = 8

Lemma 2.1. Let n,m ∈ Z. Then

1. n =
∑

d|n ϕ(d)

2. If gcd(n,m) = 1, then ϕ(nm) = ϕ(n)ϕ(m)

3. If p is prime, then ϕ(pk) = pk − pk−1

4. If n = pe1
1 ∙ ∙ ∙ p

ek
k is the prime factorization of n, then

ϕ(n) =
k∏

i=1

pei−1
i (pi − 1) = n

k∏

i=1

(1−
1

pi

)

Proof. For proof see any elementary number theory textbook such as [15, 25, 37]

Definition 2.3 (Möbius function μ). The function μ : Z+ → {−1, 0, 1} is defined by

μ(n) =






1 if n = 1

(−1)k if n = p1 ∙ ∙ ∙ pk

0 otherwise

where pi’s are distinct prime numbers.

7



Example 2.3. We have

μ(2) = −1

μ(6) = 1

μ(12) = 0

Theorem 2.1 (Möbius Inversion Formula). Let f, g : Z+ → Z+ be functions such that

f(n) =
∏

d|n g(d). Then g(n) =
∑

d|n

(
f
(

n
d

))μ(d)
.

Proof. Note

∏

d|n

(
f
(n

d

))μ(d)

=
∏

d|n




∏

e|n
d

g(e)





μ(d)

=
∏

e|n




∏

d|n
e

g(e)μ(d)





=
∏

e|n

(
g(e)

∑
d|n

e
μ(d)
)

=g(n)

Theorem 2.2. For n ≥ 1,

xn − 1 =
∏

d|n

Φd(x)

Proof. Let ζ be an n-th primitive root of unity such that ζd = 1, then ζ is also a d-th

root of unity and hence a root of Φd. Since d | n we have ζ is a root of xn − 1. Since

both polynomials xn − 1 and
∏

d|n Φd(x) are monic and have same roots then they are

equal.

8



Theorem 2.3. For n ≥ 1 and x 6= ±1,

Φn(x) =
∏

d|n

(xd − 1)μ( n
d
) =

∏

d|n

(x
n
d − 1)μ(d).

Proof. We have from Theorem 2.2

xn − 1 =
∏

d|n

Φd(x)

Let f(n) = xn − 1. Then by applying Theorem 2.1 on f we have

Φn(x) =
∏

d|n

(x
n
d − 1)μ(d) =

∏

d|n

(xd − 1)μ(n
d
)

Example 2.4. Let n = 45. Then

Φ45(x) = 1− x3 + x9 − x12 + x15 + x24

=
∏

d|45

(xd − 1)μ( 45
d

)

= (x− 1)μ(45)(x3 − 1)μ(15)(x5 − 1)μ(9)(x9 − 1)μ(5)(x15 − 1)μ(3)(x45 − 1)μ(1)

= (x3 − 1)1(x9 − 1)−1(x15 − 1)−1(x45 − 1)

Theorem 2.4. We have Φn = Φrad(n)(x
n

rad(n) ).

Proof.

Φn =
∏

d|n

(x
n
d − 1)μ(d) by Theorem 2.3

9



=
∏

d|rad(n)

(x
n
d − 1)μ(d) since μ(k) = 0 if k is not square free

=
∏

d|rad(n)

((x
n

rad(n) )
rad(n)

d − 1)μ(d)

= Φrad(n)(x
n

rad(n) )

Theorem 2.5. If n ≥ 3 is odd, then Φ2n(x) = Φn(−x).

Proof.

Φ2n(x) =
∏

d|2n

(xd − 1)μ( 2n
d

)

=
∏

2|d

(xd − 1)μ( 2n
d

)
∏

d|n

(xd − 1)μ( 2n
d

) d is either odd or even

=
∏

d|n

(xd − 1)μ( 2n
d

)(x2d − 1)μ( n
d
)

=
∏

d|n

(xd + 1)μ( n
d
) since μ(

2n

d
) = −μ(

n

d
)

=
∏

d|n

(−xd − 1)μ( n
d
)

= Φn(−x)

Theorem 2.6. Let n ≥ 2 and Φn =
∑ϕ(n)

s=0 asx
s. Then we have

1. Φn = xϕ(n)Φn( 1
x
)

2. aϕ(n)−s = as for 0 ≤ s ≤ ϕ(n)

10



Proof. Since complex roots are coming in pairs we can write

Φn =

bn
2
c∏

k=1

(
x− e

2πik
n

)
∙
(
x− e

−2πik
n

)
=

bn
2
c∏

k=1

(x2 − 2x cos

(
2πk

n

)

+ 1)

Now

1. Note

x−ϕ(n)Φn(x) = x−ϕ(n)

bn
2
c∏

k=1

(x2 − 2x cos

(
2πk

n

)

+ 1)

=

bn
2
c∏

k=1

(x2−ϕ(n) − 2x1−ϕ(n) cos

(
2πk

n

)

+ x−ϕ(n))

= Φn(
1

x
)

2. Note

Φn =

ϕ(n)∑

s=0

asx
s =

ϕ(n)∑

s=0

asx
ϕ(n)−s =

ϕ(n)∑

s=0

aϕ(n)−sx
s

Example 2.5. Let n = 15. Then ϕ(15) = 8 and

Φ15(x) = 1− x + x3 − x4 + x5 − x7 + x8

Note

x8Φ15(
1

x
) = x8(x−8 − x−7 + x−5 − x−4 + x−3 − x−1 + 1)

= 1− x + x3 − x4 + x5 − x7 + x8

= Φ15(x)

11



Clearly

a0 = a8 = 1 a1 = a7 = −1

a2 = a6 = 0 a3 = a5 = 1

a4 = −1

Example 2.6. We have

1. Φ3(x) = 1 + x + x2

2. Φ9(x) = Φ3(x
3) = 1 + x3 + x6

3. Φ18(x) = Φ9(−x) = 1− x3 + x6

Theorem 2.7. Φn(x) ∈ Z[x] and monic.

Proof. We prove the theorem by induction on n.

1. Φ1 = x− 1 ∈ Z[x].

2. Assume Φd ∈ Z[x] and monic for all d < n.

3. Recall xn − 1 = Φn ∙ (
∏

d|n,d<n Φd). From the induction hypothesis, it follows that
∏

d|n,d<n Φd ∈ Z and monic. From the definition of Φn, obviously Φn a monic poly-

nomial. Thus, Φn ∈ Q[x] and monic. Since xn − 1 ∈ Z[x] and monic, we conclude

that Φn ∈ Z[x].

Theorem 2.8. Φn is irreducible over Q.
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Proof. There are many different proofs for this result. For n is prime number there are

proofs by Gauss (1801), Kronecter (1845) and Eisenstien (1850). For general integer n

there are Dedekind (1827), Landaue (1929) and Schure (1929). For more proofs and

details one might see [41].

Theorem 2.9. For any a ∈ Z there exists n ∈ N such that a is a coefficient of Φn.

Proof. Let t be an odd integer such that t > 2. Then it is well known [38] that there

exist t distinct primes such that

p1 < p2 < ∙ ∙ ∙ < pt

where p1 + p2 > t. Let n = p1 ∙ ∙ ∙ pt and p = pt. Then

Φn =
∏

d|n

(xd − 1)μ( n
d
)

=
t∏

i=1

(xp1 − 1)

(x− 1)
since n is square free

≡xp+1

(1− xp)

(1− x)
(1− xp1) ∙ ∙ ∙ (1− xpt−1) t is odd

≡xp+1 (1 + x + ∙ ∙ ∙ + xp−1)(1− xp1 − ∙ ∙ ∙ − xpt−1) since pj + pk > p + 1

from the last product and the fact that each pi < p − 1 we have an(p) = −t + 1, where

an(m) denotes the coefficient of xm in Φn(x). Let

S := {an(m)| ∀ n,m ∈ N}

Then we need to show that S = Z. We do the following steps

1. Let t = 2, then {−1, 0, 1} ⊂ S.

13



2. For t ≥ 3, we have an(p) = −t + 1 ≤ −2. Thus {` ∈ Z, ` ≤ −2} ⊂ S

3. Consider Φ2n where n is as defined above. Then a2n(p) = −an(p) = t − 1. Thus

since t ≥ 3 we have {` ∈ Z, ` ≥ 2} ⊂ S

Hence S = Z

2.2 Structures of cyclotomic polynomials

Generally, there is no explicit non-recursive formula for computing the coefficients of Φ n.

In this section we summarize some of the well-known formulas/descriptions for determin-

ing the structure of the polynomial Φn.

Definition 2.4. Let n = p1 ∙ ∙ ∙ pk a product of k distinct prime numbers. Then Φn is

called a cyclotomic polynomial of order k.

Remark 2.2. Φp1p2 and Φp1p2p3 are called binary (k = 2) and ternary (k = 3) cyclotomic

polynomial respectively, the binary and ternary are the first non trivial cases that has

been studied.

The binary cyclotomic polynomial is the first non trivial case to be considered. There

are many studies on these polynomials like [10, 13, 20, 26, 32]. The following theorem

gives an explicit formula for Φp1p2 . It can be found in [32].

Theorem 2.10. Let s, r be integers such that (p1 − 1)(p2 − 1) = rp1 + sp2. Then

Φp1p2 =

(
r∑

i=0

xip1

)(
s∑

j=0

xjp2

)

−

(
p2−1∑

i=r+1

xip1

)(
p1−1∑

j=s+1

xjp2

)

x−p1p2

Moreover, for any 0 ≤ k ≤ (p1 − 1)(p2 − 1) we have

14



1. ak = 1 if and only if k = ip1 + jp2 for some i ∈ [0, r], j ∈ [0, s]

2. ak = −1 if and only if k+p1p2 = ip1+jp2 for some i ∈ [r+1, p2−1], j ∈ [s+1, p1−1]

3. ak = 0 otherwise

Proof. Let

f(x) :=

(
r∑

i=0

xip1

)(
s∑

j=0

xjp2

)

−

(
p2−1∑

i=r+1

xip1

)(
p1−1∑

j=s+1

xjp2

)

x−p1p2

clearly f ∈ Z[x] is monic. We claim that deg(f) = ϕ(p1p2) and f vanishes at each

primitive p1p2-th root of unity.

The degree of the first product is rp1+sp2 = ϕ(p1p2) and the degree of the second product

is (p2 − 1)p1 + (p1 − 1)p2 − p1p2 = p1p2 − p1 − p2 = ϕ(p1p2)− 1 thus deg(f) = ϕ(p1p2).

Let ζ be a primitive p1p2-th primitive root of unity. Then

Φp1p2(ζ) = 0 = Φp1(ζ
p2) = Φp2(ζ

p1)

This implies that
∑r

i=0(ζ
p1)i = −

∑p2−1
i=r+1(ζ

p1)i and
∑s

j=0(ζ
p2)j = −

∑p1−1
j=s+1(ζ

p2)j

Thus f(ζ) = 0. Then f(x) = Φp1p2(x). All the monomials in f are different to see that

assume they are not different, then there exists i1, i2 ∈ [0, p2 − 1] and j1, j2 ∈ [0, p1 − 1]

such that i1p1 + j1p2 = i2p1 + j2p2 or i2p1 + j2p2− p1p2, then we have p2 | (i1− i2). Hence

(i1 = i2), similarly j1 = j2.

Ternary cyclotomic polynomial is the second non trivial case to be considered. There

are many studies on these polynomials like [6, 7, 12, 16, 18, 42] The following theorem

gives some formulas for the coefficients Φp1p2p3 . It can be found in [8, 14].
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Theorem 2.11. Let Φn =
∑ϕ(n)

m=0 cmxm . Then cm is determined by the number of parti-

tions of m of the form:

m = a + αp1p2 + βp1p3 + γp2p3 + δ1p2 + δ2p3

where 0 ≤ a < p1, α, β, γ ≥ 0 and δi ∈ {0, 1}. If m has no such partition, then cm = 0.

Each partition of m in the given form contributes +1 to the value of cm if δ1 = δ2, but

−1 if δ1 6= δ2.

In [1, 3, 4, 2], Arnold and Monagan gave recursive formulas for the coefficients of

arbitrary cyclotomic polynomials. Using them, they also gave several algorithms. Below

we review a recursive formula.

Notation 2.1. Let

Φm =
∑

i

bix
i Ψm =

∑

j

cjx
j Φmp =

∑

k

akx
k

Theorem 2.12. We have

ak − ak−m = −
∑

ip+j=k

bicj

Proof. Note

Φmp(x) =
Φm(xp)

Φm(x)

= Φm(xp)Ψm(x)(xm − 1)−1

= −Φm(xp)Ψm(x)(1− xm)−1

= −Φm(xp)Ψm(x)
∑

l≥0

xlm
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Thus

∑

k

akx
k = −

∑

i

bix
ip
∑

j

cjx
j
∑

l≥0

xlm = −
∑

i,j
l≥0

bicjx
ip+j+lm = −

∑

k

∑

ip+j+lm=k
l≥0

bicjx
k

Thus

ak = −
∑

ip+j+lm=k
l≥0

bicj

Note

ak−m = −
∑

ip+j+lm=k−m
l≥0

bicj = −
∑

ip+j+(l+1)m=k
l≥0

bicj = −
∑

ip+j+lm=k
l≥1

bicj

Thus

ak − ak−m = −
∑

ip+j+lm=k
l≥0

bicj +
∑

ip+j+lm=k
l≥1

bicj = −
∑

ip+j+lm=k
l=0

bicj = −
∑

ip+j=k

bicj

2.3 Property: norm

The Norm of a mathematical object (polynomial, matrix , vector, etc) is a measuring

tool for the size or length of that object, in this section we will define the norm for Φn.

Notation 2.2 (Norm of a polynomial). Let f = a0 + ∙ ∙ ∙ + anxn. Then the k-norm of f

is defined by

‖f‖k =






(∑n
j=0 |aj|

k
) 1

k
if k <∞

max{|aj| , j = 0, ∙ ∙ ∙ , n} if k =∞

Example 2.7. Let f = x3 − 2x2 + 5x− 3. Then
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1. ‖f‖1 = |1|+ |−2|+ |5|+ |−3| = 11

2. ‖f‖2 = (|1|2 + |−2|2 + |5|2 + |−3|2)
1
2 = (39)

1
2 = 6.245

Remark 2.3 (Height). Note that ‖Φn‖∞ = h(Φn) = max{|aj| , j = 0, ∙ ∙ ∙ , n}, the height

of Φn. Φn is called flat when h(Φn) = 1. The flatness of cyclotomic polynomial has been

studied heavily and there are many open problems in that area [11, 17, 29, 31, 42], also

there are many studies regarding the height of Φn such as [7, 9, 16, 22, 30, 33, 40, 43].

In [21], Carlitz proved the following theorem for ‖Φnp‖
2
2, where n is a square-free odd

integer and p is a prime number. We will extend this result to ‖Φnp‖
k
k in Chapter 4

Theorem 2.13 (Carlitz). Let r = rem(p, n). Then

‖Φnp‖
2
2 = An,rp + Bn,r

where An,r, Bn,r ∈ Q and depends only on n and r.

2.4 Property: middle term

In this section we define the middle term of Φn and present its well-known properties

Notation 2.3. M(Φn) = the coefficient of x
ϕ(n)

2 in Φn, middle term of Φn.

Example 2.8. Note

n Φn M(Φn)

p 1 + ∙ ∙ ∙ + xp−1 1

8 1 + x4 0

15 1− x + x3 − x4 + x5 − x7 + x8 −1

21 1− x + x3 − x4 + x6 − x8 + x9 − x11 + x12 1
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It has been shown that M(Φp1p2) = ±1 this result can be found in [10, 32], however,

this is not true when n is a multiple of three primes or more, for example M(Φ385) =

−3,M(Φ4785) = 5 and M(Φ7735) = −7.

Theorem 2.14. M(Φp1p2) = (−1)r, where r is (p1 − 1)(p2 − 1) = rp1 + sp2.

Proof. Let (p1 − 1)(p2 − 1) = rp1 + sp2, r and s are both even or both odd otherwise

rp1 + sp2 = (p1 − 1)(p2 − 1) will be odd. Let ` = (p1−1)(p2−1)
2

. Then we consider the

following cases:

1. If r and s are even, then ` = ( r
2
)p1 + ( s

2
)p2 and then by theorem 2.10 on page 14

we have a` = 1 = (−1)r.

2. If r and s are odd, then we can write `+p1p2 = rp1+sp2+p1p2 = ( r+p2

2
)p1+( s+p1

2
)p2,

now r+p2

2
∈ [r + 1, p2− 1] and s+p1

2
∈ [s + 1, p1− 1] since r ≤ p2− 1 and s ≤ p1− 2.

Thus by theorem 2.10 on page 14 a` = −1 = (−1)r.

3. If p1 = 2, then r = p2−1
2

= ` and s = 0. Φ2p2 = Φp2(−x) =
∑p2−1

i=0 (−x)i, here

a` = (−1)` = (−1)r

Generally, the value of M(Φn) is a point of interest. It has been shown in [24] that M(Φn)

is either zero or an odd integer.

Theorem 2.15 (Dredsen). For n ≥ 3 the middle coefficient of Φn is either zero (when

n is a power of 2) or an odd integer.

2.5 Property: number of terms

In this section we will discuss the number of terms with prescribed coefficient in Φn
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Notation 2.4. Let f be a polynomial. Then Ntc(f) denotes the number of terms with

the coefficient c in f .

Example 2.9. Note

c −2 −1 0 1 2

Ntc(Φ5) 0 0 0 5 0

Ntc(Φ7) 0 0 0 7 0

Ntc(Φ15) 0 3 2 4 0

Ntc(Φ35) 0 8 8 9 0

Ntc(Φ105) 2 13 16 18 0

Ntc(Φ165) 0 33 24 14 10

Notation 2.5. Let Φn =
∑ϕ(n)

s=0 asx
s. Then we denote

1. C(Φn) = {as : s = 0, . . . , ϕ(n)}, that is, the set of all the coefficients of Φn.

2. hw(Φn) be the number of nonzero terms of Φn.

Remark 2.4. hw(Φn) =
∑

0 6=c∈C(Φn) Ntc(Φn) = ϕ(n) + 1− Nt0(Φn).

hw(Φp1p2) has been found by Carlitz [20] but hw(Φn) where n is a product of three primes

or more is still an open problem.

Theorem 2.16 (Carlitz). Let n = p1 ∙ p2. Then

hw(Φp1p2) = 2p̄1 ∙ p̄2 − 1.

where p1 ∙ p̄1 ≡p2 p2 − 1 and p2 ∙ p̄2 ≡p1 p1 − 1.
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Proof. Let θ(p1p2) = #{0 ≤ i ≤ ϕ(p1p2) : ci = 1}. Since all the coefficients of Φp1p2 are

either −1, 0 or 1 and Φp1p2(1) = 1, we have

θ(p1p2) = 1 + #{0 ≤ i ≤ ϕ(p1p2) : ci = −1}

Now

Φp1p2 =
(1− x)(1− xp1p2)

(1− xp1)(1− xp2)

=
1− x

1− xp1

p1−1∑

j=0

xjp2

=
1

1− xp1

(
p1−1∑

j=0

xjp2 −
p1−1∑

i=0

xip2+1

)

Since Φp1p2 is a polynomial then each xjp2 associate a term xip2+1 such that ip2+1 ≡p1 jp2

in other words

(xp1 − 1) | (xjp2 − xip2+1)

Hence

(i− j)p2 ≡p1 −1

so i− j = −p̄2. Then

Φp1p2 =
1

1− xp1

(
p1−1∑

j=0,j−p̄2<p1

(
xjp2 − x(j−p̄2)p2+1

)
−

p1−1∑

j=0,j−p̄2≥p1

(
xjp2 − x(j−p̄2−p1)p2+1

)
)

=
1

1− xp1

(
(
1− xp̄2p2+1

) p1−1+p̄2∑

j=0

xjp2 −
(
1− x(p1+p̄2)p2−1

) p1−1+p̄2∑

i=0

xip2+1

)

21



the first part gives the positive terms and the second one gives the negative ones, clearly

θ(p1p2) =
(p1 + p̄2)(1− p2p̄2)

p1

Hence

hw(Φp1p2) = 2θ(p1p2)− 1

= 2
(p1 + p̄2)(1− p2p̄2)

p1

− 1

= 2 ∙ p̄1 ∙ p̄2 − 1

since p2 ∙ (p1 + p̄2) ≡p1 p1 − 1 and p1 ∙
1−p2p̄2

p1
≡p2 p2 − 1.

Example 2.10. Let p1 = 3. Then

hw(Φ3p2) = 2 ∙ 3̄ ∙ p̄2 − 1

=






2 ∙ 3̄− 1 p2 ≡3 1

4 ∙ 3̄− 1 p2 ≡3 2

2.6 Inverse cyclotomic polynomials

In this section we define the inverse cyclotomic polynomial Ψn and present some of its

basic properties. As Φn is defined as the monic polynomial whose zeros are the primitive

n-th roots of unity, Ψn is defined to be the monic polynomial whose zeros are the non

primitive n-th roots of unity. There are some recent studies on the inverse cyclotomic

polynomials [19, 28, 36].

Definition 2.5 (Inverse cyclotomic polynomial). The inverse cyclotomic polynomial
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Ψn(x) is defined to be the monic polynomial of degree ψ(n) such that

Ψn =
∏

gcd(k,n)>1
1≤k≤n

(x− e
2πik

n )

Example 2.11. Consider some cases with small values of n.

• n = 1 : Ψ1 = x−1
Φ1

= 1

• n = 2 : Ψ2 = x2−1
x+1

= −1 + x

• n = 4 : Ψ4 = x4−1
x2+1

= −1 + x2

• n = 3 : Ψ3 = x3−1
x2+x+1

= −1 + x

Lemma 2.2. We have

Ψn = −
∏

k|n
k<n

(1− xk)−μ( n
k
)

Lemma 2.3. We have

1. Ψ2n = (1− xn) ∙Ψn(−x) if n is odd.

2. Ψnp = Ψn(xp) if p | n.

3. Ψnp = Ψn(xp) ∙ Φn if p - n.

4. Ψn = Ψrad(n)(x
n

rad(n) ).

5. Ψn = −Ψn( 1
x
) ∙ xn−ϕ(n).

Proof.

1. Ψ2n = x2n−1
Φ2n

= x2n−1
Φn(−x)

= (x2n − 1) Ψn(−x)
−(xn+1)

= (1− xn)Ψn(−x).
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2. Ψnp = xnp−1
Φnp

= xnp−1
Φn(xp)

= (xp)n−1
Φn(xp)

= Ψn(xp).

3. Ψnp = xnp−1
Φnp

= xnp−1
Φn(xp)

Φn = Ψn(xp)Φn.

4. Ψn = xn−1
Φn

= xn−1

Φrad(n)(x
n

rad(n) )
= (x

n
rad(n) )rad(n)−1

Φrad(n)(x
n

rad(n) )
= Ψrad(n)(x

n
rad(n) ).

5. Ψn( 1
x
) =

( 1
x
)n−1

Φn( 1
x
)

= 1−xn

xnΦn( 1
x
)

= 1−xn

xn−ϕ(n)Φn
= − Ψn

xn−ϕ(n) , hence Ψn = −Ψn( 1
x
) ∙ xn−ϕ(n)

Proposition 2.1. We have

1. Ψp = −1 + x.

2. Ψp1p2 = (−1 + xp2) ∙ Φp1 .
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Chapter 3

Structures

Introduction

In this chapter, we investigate the structure of cyclotomic polynomials.

Let m be an odd square-free positive integer and p be a prime number such that1

p > m. Let q = quo(p,m) and r = rem(p,m), the quotient and the reminder of p divided

by m respectively. Let fm,p,i be the i-th“digit” of Φmp in the radix xp. Let fm,p,i,j be the

j-th “digit” of fm,p,i in the radix xm. Let Cm,p,i,j be the list of coefficients of fm,p,i,j . Note

that Cm,p,i,j is a consecutive sub-list of the list of the coefficients of Φmp. Hence they

together form a partition of the list of the coefficients of Φmp. We show the following

structures on the partition (Theorem 3.1).

1. Cm,p,i,0 = ∙ ∙ ∙ = Cm,p,i,q−1

2. Cm,p,i,q is a truncation of Cm,p,i,0.

Cm,p,i,q = (1) if r = 1 and i = 0

1The case p < m turns out to be uninteresting from certain structural point of view.
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Cm,p,i,q = (0) if r = 1 and i > 0

3. Let p− p̃ ≡m 0. Then Cm,p,i,0 = Cm,p̃,i,0.

4. Let p + p̃ ≡m 0. Then Cm,p̃,i,0 is a negated/rotated version of Cm,p,i,0.

5. Let i + ı̃ = ϕ(m)− 1. Then Cm,p,̃ı,0 is a flipped/rotated version of Cm,p,i,0.

We point out that the structural finding 1 was implicitly present in a recursive formula

and resulting algorithms in Arnold and Monagan ([4] Section 4), but they did not make it

explicit, maybe because their main concern was computational efficiency, not structural

study. We have made it explicit because the explicit structure is useful for studying many

other properties.

3.1 Main results

In this section, we will state the main results of this chapter precisely. We will use the

following notations.

Notation 3.1 (Partition). Let Φmp =
∑

v≥0 cvx
v. For 0 ≤ i ≤ ϕ(m)− 1 and 0 ≤ j ≤ q,

let

Cm,p,i,j := (cip+jm, . . . , cip+jm+l)

where if j < q then l = m− 1 else l = r − 1.

We will illustrate the idea of partition by the following two examples.

Example 3.1. We will visualize a polynomial by a graph where the horizonal axis stands

for the exponents and the vertical axis stands for the corresponding coefficients.
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Let m = 11 and p = 41. Then φ(m) − 1 = 9, q = 3 and r = 8. The partition of the list

of the coefficients of Φmp into Cm,p,i,j’s is illustrated by the following diagram.

Cm,p,0,0

m

Cm,p,0,1

m

Cm,p,0,2

m

Cm,p,0,3

r
p

Cm,p,1,0

m

Cm,p,1,1

m

Cm,p,1,2

m

Cm,p,1,3

r
p

. . . . . .

Example 3.2. We will visualize a polynomial by a graph where the horizonal axis stands

for the exponents and the vertical axis stands for the corresponding coefficients.

Let m = 15 and p = 53. Then φ(m) − 1 = 7, q = 3 and r = 8. The partition of the list

of the coefficients of Φmp into Cm,p,i,j’s is illustrated by the following diagram.

Cm,p,0,0

m

Cm,p,0,1

m

Cm,p,0,2

m

Cm,p,0,3

r
p

Cm,p,1,0

m

Cm,p,1,1

m

Cm,p,1,2

m

Cm,p,1,3

r
p

. . . . . .

We need to define some operations on Cm,p,i,j ’s.

Notation 3.2 (Operation). For A = (a0, . . . am−1) and 0 ≤ s < m, let

1. TsA := (a0, . . . , as−1) “Truncate from the s-th element”

2. NA := (−a0, . . . ,−am−1) “Negate”

3. FA := (am−1, . . . , a0) “Flip”

4. RsA := (as, . . . , am−1, a0, . . . , as−1) “Rotate by s”

5. EsA := (a0, 0, . . . , 0, a1, 0, . . . , 0, . . . , am−1) “Expand by s”

where s− 1 zeros are padded between two consecutive elements
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Example 3.3 (Operation). Let A = (1, 2, 3, 4, 5). Then

A T3A NA FA R2A E3A

We can now state the main theorem of this chapter regarding Cm,p,i,j ’s.

Theorem 3.1 (Structure). We have

1. Cm,p,i,0 = ∙ ∙ ∙ = Cm,p,i,q−1

2. Cm,p,i,q = TrCm,p,i,0

Cm,p,i,q = (1) if r = 1 and i = 0

Cm,p,i,q = (0) if r = 1 and i > 0

3. Cm,p̃,i,0 = Cm,p,i,0 if p̃− p ≡m 0

4. Cm,p̃,̃ı,0 = RrNCm,p,i,0 if p̃ + p ≡m 0 and ı̃ + i = ϕ(m)− 1

5. Cm,p,̃ı,0 = Rr̃FCm,p,i,0 if ı̃ + i = ϕ(m)− 1 and r̃ + r ≡m ϕ(m)− 1, 0 ≤ r̃ < m

Now we present a set of examples to illustrate the main theorem.

Example 3.4 (Structure 1). Let m = 11 and p = 31. Then ϕ(m)− 1 = 9

and q = 2. Note

i 0 1 2 3 4 5 6 7 8 9

Cm,p,i,0

Cm,p,i,1
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Example 3.5 (Structure 1). Let m = 15 and p = 53. Then ϕ(m)− 1 = 7

and q = 3. Note

i 0 1 2 3 4 5 6 7

Cm,p,i,0

Cm,p,i,1

Cm,p,i,2

Example 3.6 (Structure 2). Let m = 15 and p = 53. Then ϕ(m)− 1 = 7,

q = 3 and r = 8. Note

i 0 1 2 3 4 5 6 7

Cm,p,i,0

TrCm,p,i,0

Cm,p,i,q

Example 3.7 (Structure 2). Let m = 15 and p = 31. Then ϕ(m)− 1 = 7,

q = 2 and r = 1. Note

i 0 1 2 3 4 5 6 7

Cm,p,i,0

TrCm,p,i,0

Cm,p,i,q

Example 3.8 (Structure 3). Let m = 11, p = 31 and p̃ = 53.
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Then ϕ(m)− 1 = 9. Note

i 0 1 2 3 4 5 6 7 8 9

Cm,p,i,0

Cm,p̃,i,0

Example 3.9 (Structure 3). Let m = 15, p = 53 and p̃ = 83.

Then ϕ(m)− 1 = 7. Note

i 0 1 2 3 4 5 6 7

Cm,p,i,0

Cm,p̃,i,0

Example 3.10 (Structure 4). Let m = 11, p = 41 and p̃ = 47.

Then ϕ(m)− 1 = 9 and r = 8. Note

i 0 1 2 3 4 5 6 7 8 9

Cm,p,i,0

NCm,p,i,0

RrNCm,p,i,0

ı̃ 9 8 7 6 5 4 3 2 1 0

Cm,p̃,̃ı,0

Example 3.11 (Structure 4). Let m = 15, p = 53 and p̃ = 37.
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Then ϕ(m)− 1 = 7 and r = 8. Note

i 0 1 2 3 4 5 6 7

Cm,p,i,0

NCm,p,i,0

RrNCm,p,i,0

ı̃ 7 6 5 4 3 2 1 0

Cm,p̃,̃ı,0

Example 3.12 (Structure 5). Let m = 11 and p = 31.

Then ϕ(m)− 1 = 9, r = 9 and r̃ = 0. Note

i 0 1 2 3 4 5 6 7 8 9

Cm,p,i,0

FCm,p,i,0

Rr̃FCm,p,i,0

ı̃ 9 8 7 6 5 4 3 2 1 0

Cm,p,̃ı,0

Example 3.13 (Structure 5). Let m = 15 and p = 53.
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Then ϕ(m)− 1 = 7, r = 8 and r̃ = 14. Note

i 0 1 2 3 4 5 6 7

Cm,p,i,0

FCm,p,i,0

Rr̃FCm,p,i,0

ı̃ 7 6 5 4 3 2 1 0

Cm,p,̃ı,0

3.2 Proofs

In this section we prove Theorem 3.1. Previously we defined Cm,p,i,j as a list of coefficients.

However, it will be useful to have them in polynomial format, because it is easier to work

with polynomials rather than lists. Hence we begin by reformulating Notations 3.1 and 3.2

in terms of polynomials.

Notation 3.3 (Partition). Let fm,p,i be the i-th digit of Φmp in the radix xp and let fm,p,i,j

be the j-th digit of fm,p,i in the radix xm, that is,

Φmp =

ϕ(m)−1∑

i=0

fm,p,i xip

fm,p,i =

q∑

i=0

fm,p,i,j xjm

Lemma 3.1. Cm,p,i,j is the list of the coefficients of fm,p,i,j, that is,

fm,p,i,j =
l∑

k=0

cip+mj+kx
k
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where if j < q then l = m− 1 else l = r − 1.

Proof. Immediate from comparing Notations 3.1 and 3.3.

Example 3.14. Let m = 5 and p = 13. Then

Φ5∙13 = 1− x + x5 − x6 + x10 − x11 + x13 − x14 + x15 − x16 + x18 − x19

+ x20 − x21 + x23 − x24 + x25 − x27 + x28 − x29 + x30 − x32 + x33

− x34 + x35 − x37 + x38 − x42 + x43 − x47 + x48

Hence

f5,13,0,0 = 1− x f5,13,0,2 = 1− x

f5,13,1,0 = 1− x + x2 − x3 f5,13,1,2 = 1− x + x2

f5,13,2,0 = −x + x2 − x3 + x4 f5,13,2,2 = −x + x2

f5,13,3,0 = −x3 + x4 f5,13,3,2 = 0

Notation 3.4 (Operation). For f = a0 + ∙ ∙ ∙ + am−1x
m−1 and 0 ≤ s < m, let

1. Tsf := a0x
0 + ∙ ∙ ∙ + as−1x

s−1

2. N f := −a0x
0 − ∙ ∙ ∙ − am−1x

m−1

3. Ff := am−1x
0 + ∙ ∙ ∙ + a0x

m−1

4. Rsf := asx
0 + ∙ ∙ ∙ + am−1x

(m−1−s) + a0x
(m−s) + ∙ ∙ ∙ + as−1x

m−1

5. Esf := a0x
0 + a1x

s + ∙ ∙ ∙ + am−1x
s(m−1)
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Lemma 3.2. Let f be a polynomial of degree less than m and 0 ≤ s < m. Then we have

1. Tsf = rem(f, xs)

2. N f = −f

3. Ff = xm−1f (x−1)

4. Rsf = rem(xm−sf, xm − 1)

5. Esf = f(xs)

Proof. Immediate from Notation 3.4.

Example 3.15. Let f = 1− 3x + x2 − 2x3 + x5,m = 6 and s = 3. Then we have

1. T3f = rem(f, x3) = 1− 3x2 + x2

2. N f = −f = −1 + 3x− x2 + 2x3 − x5

3. Ff = x5f (x−1) = 1− 2x2 + x3 − 3x4 + x5

4. R3f = rem(x3f, x6 − 1) = −2 + x2 + x3 − 3x4 + x5

5. E3f = f(x3) = 1− 3x3 + x6 − 2x9 + x15

Proposition 3.1.

1. rem (i(m− r),m) = m− rem (ir,m)

2. xrem(�,m) = rem
(
x�, xm − 1

)

Proof. Obvious.
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Lemma 3.3. We have

Φmp = − Φm (xp) G

where

G = Ψm

∑

u≥0

xum

Proof. Note

Φmp =
Φm (xp)

Φm

from p - m

= Φm (xp)
Ψm

xm − 1
from Definition 2.5

= −Φm (xp) Ψm
1

1− xm
by rearranging

= − Φm (xp) Ψm

∑

u≥0

xum by carrying out a formal expansion of
1

1− xm

= − Φm (xp) G

Notation 3.5. Let

G = Ψm

∑

u≥0

xum =
∑

t≥0

etx
t

For 0 ≤ i ≤ ϕ(m)− 1 and 0 ≤ j ≤ q, let

gm,p,i,j =
l∑

k=0

eip+mj+kx
k

where if j < q then l = m− 1 else l = r − 1.

Lemma 3.4. For all 0 ≤ i ≤ ϕ(m)− 1, we have

1. gm,p,i,0 = ∙ ∙ ∙ = gm,p,i,q−1 = Rrem(ir,m)Ψm
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2. gm,p,i,q = Tr gm,p,i,0

Proof. Let 0 ≤ j ≤ q. Let Ψm =
∑

s≥0 bsx
s. Since deg Ψm < m, we see immediately that

et = brem(t,m) for 0 ≤ t. We consider two cases:

1. j < q

gm,p,i,j =
m−1∑

k=0

eip+mj+k xk from Notation 3.5

=
m−1∑

k=0

brem(ir+k,m) xk since eip+jm+k = brem(ip+jm+k,m)

= brem(ir+k,m)

=
m−1∑

s=0

bs xrem(s+i(m−r),m) by re-indexing k with

s = rem(ir + k,m) which can be easy

shown to be a bijection

N≤m−1 → N≤m−1 with the inverse

map k = rem(s + i (m− r) ,m)

=
m−1∑

s=0

bs rem
(
xs+i(m−r), xm − 1

)
by Proposition 3.1

= rem

(
m−1∑

s=0

bs xs+i(m−r), xm − 1

)

since bs does not depend on x

= rem

(

xi(m−r)

m−1∑

s=0

bsx
s, xm − 1

)

by factoring out xi(m−r)

= rem(xi(m−r)Ψm,x
m − 1) by recalling Ψm =

∑

s≥0

bsx
s

= rem(xrem(i(m−r),m)Ψm,x
m − 1) by Proposition 3.1
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= rem(xm−rem(ir,m)Ψm,x
m − 1) by Proposition 3.1

= Rrem(ir,m)Ψm from Lemma 3.2

2. j = q

gm,p,i,q =
r−1∑

k=0

eip+mq+k xk from Notation 3.5

=
r−1∑

k=0

brem(ir+k,m) xk since eip+jm+k = brem(ip+jm+k,m) = brem(ir+k,m)

= Tr gm,p,i,0 from the second line in the previous case.

Lemma 3.5. For all 0 ≤ i ≤ ϕ(m)− 1 and 0 ≤ j ≤ q, we have

fm,p,i,j = −
i∑

s=0

asgm,p,(i−s),j

where Φm =
∑

s≥0 asx
s.

Proof. Note

Φmp = −Φm (xp) G from Lemma 3.3

= −(
∑

s≥0

asx
sp) G from Φm =

∑

s≥0

asx
s

= −
∑

s≥0

asx
sp
∑

k≥0

ekx
k G =

∑

k≥0

ekx
k

= −
∑

s≥0

asx
sp
∑

i≥0

q∑

j=0

gm,p,i,j xjm xip from Notation 3.5 and q =
p− r

m
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= −
∑

s≥0

∑

i≥0

q∑

j=0

as gm,p,i,j xjm+(s+i)p by collecting the exponents of x

= −
∑

i≥0

∑

s,i≥0
s+s̄=i

q∑

j=0

asgm,p,s̄,j xjm+ip by re-indexing

= −
∑

i≥0

i∑

s=0

q∑

j=0

asgm,p,(i−s),jx
jm+ip by re-indexing and s̄ = i− s

= −
∑

i≥0

q∑

j=0

i∑

s=0

asgm,p,(i−s),jx
jm+ip by changing the summation order

=
∑

i≥0

(
q∑

j=0

(

−
i∑

s=0

asgm,p,(i−s),j

)

xjm

)

xip by grouping

Recall that deg gm,p,i,j < m. Thus

deg
i∑

s=0

asgm,p,(i−s),j < m

Furthermore deg gm,p,i,q < r. Recall that p = qm + r. Thus

deg

q∑

j=0

(

−
i∑

s=0

asgm,p,(i−s),j

)

xjm < p

Thus finally from Notation 3.3, we have

fm,p,i,j = −
i∑

s=0

asgm,p,(i−s),j
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Lemma 3.6. For 0 ≤ i ≤ ϕ(m)− 1 and 0 ≤ j ≤ q,

fm,p,i,j =






NRrem(ir,m)(Ψm ∙ ErTi+1Φm) 0 ≤ j ≤ q − 1

Trfm,p,i,0 j = q

Proof. We consider two cases:

1. j < q

fm,p,i,j = −
i∑

s=0

asgm,p,(i−s),j from Lemma 3.5

= −
i∑

s=0

asRrem((i−s)r,m)Ψm from Lemma 3.4

= −
i∑

s=0

asrem(xm−rem((i−s)r,m)Ψm, xm − 1) from Lemma 3.2

= −rem(xrem(m−ir,m)Ψm

i∑

s=0

asx
sr, xm − 1) by Proposition 3.1

= −rem(xm−rem(ir,m)Ψm

i∑

s=0

asx
sr, xm − 1) by Proposition 3.1

= NRrem(ir,m)(Ψm ∙ ErTi+1Φm)

2. j = q

fm,p,i,q = −
i∑

s=0

asgm,p,(i−s),q

= −
i∑

s=0

asTrgm,p,(i−s),0

= −Tr

i∑

s=0

asgm,p,(i−s),0 from Lemma 3.4
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= Trfm,p,i,0 from Lemma 3.5

Lemma 3.7. We have rem(ΨmΦm(xr), xm − 1) = 0

Proof. Note

rem(ΨmΦm(xr), xm − 1) = rem(ΨmΦm(xp), xm − 1) Φm(xp) ≡xm−1 Φm(xr)

= rem(ΨmΦmΦmp, x
m − 1) Φm(xp) = ΦmΦmp

= rem((Φmp)(x
m − 1), xm − 1) ΨmΦm = xm − 1

= 0 rem(xm − 1, xm − 1) = 0

Finally we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 (Structure 1). From Lemma 3.6 on page 38 we see that fm,p,i,j does

not depend on j. Hence

Cm,p,i,0 = ∙ ∙ ∙ = Cm,p,i,q−1

Proof of Theorem 3.1 (Structure 2). From Lemma 3.6 it is immediate that

Cm,p,i,q = TrCm,p,i,0
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From now on, let r = 1. Note

fm,p,i,q = T1NRrem(i∙1,m)(Ψm ∙ E1Ti+1Φm) Lemma 3.6

= rem

(

−rem

(

xm−i
∑

t

btx
t
∑

s≤i

asx
s, xm − 1

)

, x1

)

= rem





−

∑

0≤t≤m−ϕ(m)
0≤s≤i

btasx
rem(m−i+t+s,m), x1







= −
∑

0≤t≤m−ϕ(m)
0≤s≤i

rem(m−i+t+s,m)=0

btas

= −
∑

0≤t≤m−ϕ(m)
0≤s≤i

m−i+t+s=m

btas

since 0 < m− i + t + s < 2m

= −
∑

t+s=i

btas

= −coeff i (ΨmΦm)

= −coeff i (x
m − 1)

=






1 i = 0

0 i 6= 0

Thus

Cm,p,i,q =






(1, 0, . . . , 0) i = 0

(0, 0, . . . , 0) i 6= 0
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Proof of Theorem 3.1 (Structure 3). Note

fm,p̃,i,0 = NRrem(ir,m)(Ψm ∙ ErTi+1Φm)

Thus

fm,p̃,i,0 = fm,p,i,0

Hence

Cm,p̃,i,0 = Cm,p,i,0

Proof of Theorem 3.1 (Structure 4). Note

fm,p̃,̃ı,0 = NRrem(ı̃r̃,m)(Ψm ∙ Er̃Tı̃+1Φm) from Lemma 3.6

= −rem(Ψm xm−rem(ı̃r̃,m)

ı̃∑

s=0

as xsr̃, xm − 1) from Lemma 3.2

= −rem(xrem(ı̃(m−r̃),m) Ψm

ı̃∑

s=0

as xsr̃, xm − 1) by Proposition 3.1

= −rem(xı̃(m−r̃) Ψm

ı̃∑

s=0

as xsr̃, xm) by Proposition 3.1

= rem(−xı̃(m−r̃) Ψm

ı̃∑

s=0

aϕ(m)−s xsr̃, xm − 1) since aϕ(m)−s = as

= rem(−x(ϕ(m)−1−i)r Ψm

ı̃∑

s=0

aϕ(m)−s xs(m−r), xm − 1) ı̃ = ϕ(m)− 1− i

and r̃ = m− r

= rem(−x(m−1−i)r Ψm

ı̃∑

s=0

aϕ(m)−s xr(ϕ(m)−s), xm − 1) by rearranging
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= rem(−xrem(m−(1+i)r,m) Ψm

ϕ(m)∑

t=i+1

atx
tr, xm − 1) by re-indexing with

t = ϕ(m)− s

= rem(−xrem(m−(1+i)r,m) Ψm (Φm(xr)−
i∑

t=0

atx
tr), xm − 1) since

Φm (xr) =

ϕ(m)∑

t=0

atx
tr

= rem(xrem(m−(1+i)r,m)Ψm

i∑

t=0

atx
tr, xm − 1) by Lemma 3.7

= rem(xrem(m−r,m) ∙ xrem(m−ir,m)Ψm

i∑

t=0

atx
tr, xm − 1)

= rem(xrem(m−r,m) (N fm,p,i,0) , xm − 1) by Lemma 3.6

= rem(xm−r (N fm,p,i,0) , xm − 1)

= RrN fm,p,i,0

Hence

Cm,p̃,̃ı,0 = RrNCm,p,i,0

Proof of Theorem 3.1 (Structure 5). From Lemma 3.6 on page 38,

fm,p,̃ı,0 = NRrem(ı̃r,m)(Ψm ∙ ErTı̃+1Φm)

= −rem(xm−rem(ı̃r,m)Ψm

ı̃∑

s=0

asx
sr, xm − 1) by Lemma 3.2

= −rem(xm−rem(ı̃r,m)ΨmΦm(xr)
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− xm−rem(ı̃r,m)Ψm

ϕ(m)∑

s=ı̃+1

asx
sr), xm − 1) Φm(xr) =

ϕ(m)∑

s=0

asx
sr

= rem(xm−rem(ı̃r,m)Ψm

ϕ(m)∑

s=ı̃+1

asx
sr, xm − 1) by Lemma 3.7

= rem(xrem(ı̃(m−r),m)Ψm

ϕ(m)∑

s=ı̃+1

asx
sr, xm − 1) by Proposition 3.1

= rem(xı̃(m−r)Ψm

ϕ(m)∑

s=ı̃+1

asx
sr, xm − 1) by Proposition 3.1

= rem(Ψm

ϕ(m)∑

s=ı̃+1

asx
(s−ı̃)r, xm − 1) by distributing and

xm ≡xm−1 1

= rem(Ψm

i∑

w=0

aϕ(m)−(i−w)x
(w+1)r, xm − 1) w = s− ı̃− 1

= rem(Ψm

i∑

w=0

ai−wx(w+1)r, xm − 1) since aϕ(m)−s = as

= rem(xrΨm

i∑

w=0

ai−wxwr, xm − 1) by factoring xr

= rem(xrΨm

i∑

t=0

atx
(i−t)r, xm − 1) t = i− w

= rem(−xrxψ(m)Ψm(x−1)
i∑

t=0

atx
(i−t)r, xm − 1) Ψm = −xψ(m)Ψm(x−1)

= rem(−xrxψ(m)xir−mΨm(x−1)
i∑

t=0

atx
−tr, xm − 1)

= rem(xr+m−ϕ(m)fm,p,i,0(x
−1), xm − 1) ψ(m) = m− ϕ(m)

= rem(xr+m−ϕ(m)+1Ffm,p,i,0, x
m − 1) Ffm,p,i,0 = xm−1fm,p,i,0(x

−1)

= rem(xm−r̃Ffm,p,i,0, x
m − 1) by Proposition 3.1

= Rr̃Ffm,p,i,0 by Lemma 3.2
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Hence Cm,p,̃ı,0 = Rr̃FCm,p,i,0
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Chapter 4

Property: Norm

Introduction

In this chapter we study the norm of Φmp. Recall

Notation 4.1 (Norm of a polynomial). Let f = a0 + ∙ ∙ ∙ + anxn. Then the k-norm of f

is defined by

‖f‖k =






(∑n
j=0 |aj|

k
) 1

k
if k <∞

max{|aj| , j = 0, ∙ ∙ ∙ , n} if k =∞

There have been intensive research on the norms of cyclotomic polynomials.

1. Numerous works on the infinity norm [7, 9, 11, 16, 17, 22, 29, 30, 31, 33, 40, 42, 43]

2. Carlitz’s [21] showed that ‖Φmp‖
2
2 is linear over p’s that are equivalent modulo m.

We show the following newly found properties of norms (Theorem 4.1).

1. ‖Φmp‖
k
k is linear over p’s that are equivalent modulo m.

2. ‖Φmp‖
k
k and ‖Φmp̃‖

k
k are parallel if p + p̃ ≡m 0.
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4.1 Main Results

In this section state the main result of this chapter. We start by the following notation.

Notation 4.2. Let p ∈ Pm,r and k is finite. Then let

‖am,r‖k =

ϕ(m)−1∑

i=0

‖fm,p,i,0‖
k
k

‖bm,r‖k =

ϕ(m)−1∑

i=0

‖fm,p,i,q‖
k
k

‖Am,r‖k =
‖am,r‖k

m

‖Bm,r‖k = ‖bm,r‖k − r ‖Am,r‖k

We can now state the main Theorem of this chapter.

Theorem 4.1 (Norm). Let p ∈ Pm,r and k is finite. Then

1. [Linear] ‖Φmp‖
k
k = ‖Am,r‖k p + ‖Bm,r‖k

2. [Parallel] ‖Am,m−r‖k = ‖Am,r‖k ‖Bm,m−r‖k = −‖Bm,r‖k

Example 4.1. Let m = 15.

1. Let p1 = 17 and p2 = 47. Then r = 2

k 1 2 ∞

‖Φ15p1)‖
k
k 75 79 2

‖Φ15p2)‖
k
k 211 223 2

‖Φ15p)‖
k
k

68
15

p− 31
15

72
15

p− 39
15

2

‖Φ15p‖k
68
15

p− 31
15

√
72
15

p− 39
15

1
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2. Let p1 = 43 and p2 = 73. Then r = 13

k 1 2 ∞

‖Φ15p1)‖
k
k 197 209 2

‖Φ15p2)‖
k
k 333 353 2

‖Φ15p)‖
k
k

68
15

p + 31
15

72
15

p + 39
15

2

‖Φ15p)‖k
68
15

p + 31
15

√
72
15

p + 39
15

1

Example 4.2. Let m = 15. Then we have

‖Φ15p‖
2
2 =






36
15

p− 21
15

if p ≡15 1

72
15

p− 39
15

if p ≡15 2

120
15

p + 4
15

if p ≡15 4

84
15

p− 3
15

if p ≡15 7

84
15

p + 3
15

if p ≡15 8

120
15

p− 4
15

if p ≡15 11

72
15

p + 39
15

if p ≡15 13

36
15

p + 21
15

if p ≡15 14

The following figure shows the relationship between p and ‖Φ15p‖
2
2.
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4.2 Proofs

Proof of Theorem 4.1.

1. (Linear)

‖Φmp‖
k
k =

ϕ(m)−1∑

i=0

q∑

j=0

‖fm,p,i,j‖
k
k from Notation 3.1

=

ϕ(m)−1∑

i=0

q ‖fm,p,i,0‖
k
k +

ϕ(m)−1∑

i=0

‖fm,p,i,q‖
k
k Theorem 3.1 (Structures 1, 2)

= q ‖am,r‖k + ‖bm,r‖k from Notation 4.2

= ‖am,r‖k
(p− r)

m
+ ‖bm,r‖k q =

p− r

m

= ‖Am,r‖k p + ‖Bm,r‖k from Notation 4.2

2. (Parallel) For p̃ ∈ Pm,m−r, without loss of generality we may assume p̃ > m. Then
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we have gcd(m,m − r) = gcd(m, r) = 1 because p̃ is prime and p̃ - m. Therefore,

we have

‖Φmp̃‖
k
k =

ϕ(m)−1∑

i=0

q̃∑

j=0

‖fm,p̃,̃ı,j‖
k
k from Notation 3.1

=

ϕ(m)−1∑

i=0

q̃ ‖fm,p̃,̃ı,0‖
k
k +

ϕ(m)−1∑

i=0

‖fm,p̃,̃ı,q̃‖
k
k from Theorem 3.1

(Structures 1, 2)

= q̃

ϕ(m)−1∑

i=0

‖fm,p̃,̃ı,0‖
k
k +

ϕ(m)−1∑

i=0

‖fm,p,i,0‖
k
k − ‖fm,p,i,q‖

k
k from Lemma 6.1

= q̃ ‖am,r‖k + ‖am,r‖k − ‖bm,r‖k from Notation 4.2

= ‖am,r‖k

(
p̃−m + r̃

m

)

− ‖bm,r‖k q̃ =
p̃− (m− r)

m

= ‖Am,r‖k p̃− ‖Bm,r‖k from Notation 4.2

4.3 Application

In this section we provide a fast algorithm for computing ‖Φmp‖k .
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Algorithm 4.1 (Norm).

Input m, p and k such that p� m and k ≥ 1

Output ‖Φmp‖k

1. Find small primes p1, p2 > m such that p ≡m p1 ≡m p2

2. N1 ← ‖Φmp1‖
k
k

N2 ← ‖Φmp‖
k
k through direct computation

3. ‖Am,r‖k ←
N2−N1

p2−p1

‖Bm,r‖k ← N1 − ‖Am,r‖k p1

4. return
(
‖Am,r‖k p + ‖Bm,r‖k

) 1
k

Remark 4.1. The algorithm depends on the linear property of ‖Φmp‖
k
k

We implement the last algorithm in the following two examples to show how fast and

useful it is. In the next example we fix the values of r and change the values of k.

Example 4.3. Let m = 105, r = 1. In Step 1, we used p1 = 211, p2 = 421. We compare

the time needed to find ‖Φmp‖1 and ‖Φmp‖2 by Algorithm 4.1 and direct computation.

All calculations were made using Maple 18 and the time is in seconds.

Table 4.1: Norms of Φmp, where m = 105 and r = 1

p ‖Φmp‖1 Direct (sec) Improved (sec)

10501 114401 0.984 0.031

10711 116689 0.990 0.039

12391 134993 1.178 0.040
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Table 4.1(continued)

15121 16473 1.373 0.037

16381 178465 1.484 0.036

17011 185329 1.563 0.034

20161 219649 2.038 0.039

200341 2182753 17.781 0.043

200971 2189617 17.346 0.037

300301 3271841 34.446 0.043

Table 4.2: Norms of Φmp, where m = 105 and r = 1

p ‖Φmp‖2 Direct (sec) Improved (sec)

10501 340.5892 0.992 0.036

10711 343.978 1.012 0.047

12391 369.974 1.217 0.043

15121 402.706 1.452 0.040

16381 402.706 1.452 0.040

17011 433.499 1.644 0.042

20161 471.933 1.946 0.038

200341 1487.710 17.735 0.039

200971 1490.047 18.314 0.039

300301 1821.428 42.18 0.047

Example 4.4. In this example we fix k and change the values of r. Let m = 165. We

compare the time needed to find ‖Φmp‖2 by Algorithm 4.1 and direct computation. All

calculations were made using Maple 18 and the time is in seconds.
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Table 4.3: ‖Φmp‖2 where m = 165

p r p1 p2 ‖Φmp‖2 Direct (sec) Improved (sec)

80527 7 337 997 2871.585451 16.161 0.238

81517 7 337 997 2889.183103 17.168 1.983

81847 7 337 997 2895.025216 17.346 0.212

82507 7 337 997 2906.674216 17.915 0.200

82837 7 337 997 2912.481245 17.719 0.300

81203 23 353 683 3582.830307 18.447 0.204

81533 23 353 863 3590.103202 17.592 0.193

82193 23 353 683 3604.604971 16.999 0.183

83843 23 353 683 3640.606680 17.142 0.189

84503 23 353 683 3654.908070 17.176 0.192

80621 101 431 761 6629.918930 21.089 0.261

81281 101 431 761 6657.001202 18.969 0.210

81611 101 431 761 6670.501106 25.286 0.229

82601 101 431 761 64710.837876 21.929 0.234

83591 101 431 761 6750.933639 21.875 0.243

80177 152 317 647 4571.239329 19.188 0.201

82487 152 317 647 4636.624311 19.269 0.187

83477 152 317 647 4664.365873 19.778 0.185

84137 152 317 647 4682.768946 19.891 0.200

84467 152 317 647 4691.943414 20.140 0.185
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Chapter 5

Property: Middle term

Introduction

In this chapter we investigate the middle term of a cyclotomic polynomial.

Notation 5.1. Let Φn =
∑ϕ(n)

s=0 asx
s. Then M(Φn) = aϕ(n)

2

, that is, the coefficient of the

middle term of Φn.

There have been some research on the middle term of cyclotomic polynomials.

1. Clearly, M(Φp) = 1

2. In [24], Dredsen proved that M(Φ2k) = 0, and M(Φn) is odd if n 6= 2k.

3. In [10, 32], Beiter and (Lam and Leung) gave a formula for M(Φpq).

We show the following newly found properties of midterms (Theorem 5.1).

1. M(Φmp) = ±M(Φmp̃) if p∓ p̃ ≡m 0.

2. M(Φmp) = ±1 if p ≡m ±1.
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5.1 Main results

Theorem 5.1 (Middle term). We have

1. M(Φmp) = +M(Φmp̃) if p− p̃ ≡m 0

2. M(Φmp) = −M(Φmp̃) if p + p̃ ≡m 0

Example 5.1. Let m = 15. Then

p ≡m 1 p̃ ≡m 14 M(Φpm) M(Φp̃m) p ≡m 2 p̃ ≡m 13 M(Φpm) M(Φp̃m)

31 29 1 −1 17 43 −1 1

61 59 1 −1 47 73 −1 1

151 89 1 −1 107 103 −1 1

Theorem 5.2 (Middle term). We have

1. M(Φmp) = +1 if p ≡m +1

2. M(Φmp) = −1 if p ≡m −1

5.2 Proofs

Lemma 5.1. We have

(
ϕ(m)

2
− 1

)

p ≤
ϕ(mp)

2
≤ p

(
ϕ(m)

2

)

− 1

Proof. Note

(
ϕ(m)

2
− 1

)

p =
ϕ(m)p

2
− p
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=
ϕ(m)p

2
− p +

ϕ(m)

2
−

ϕ(m)

2

=
ϕ(mp)

2
+

(
ϕ(m)

2
− p

)

≤
ϕ(mp)

2

On the other hand

(
ϕ(m)

2

)

p− 1 =
ϕ(m)

2
p− 1 +

ϕ(m)

2
−

ϕ(m)

2

=
ϕ(mp)

2
+

ϕ(m)

2
− 1

≥
ϕ(mp)

2

Proof of Theorem 5.1. Let I = ϕ(m)
2
− 1

1. In order to show that M(Φmp) = M(Φmp̃) we need to show that cϕ(mp̃)
2

= cϕ(mp)
2

.

Note

M(Φmp̃) = cϕ(mp̃)
2

by Notation 5.1

= cϕ(m)(p̃−1)
2

by distribution

= c
Ip̃+p̃−ϕ(m)

2

from Lemma 5.1

= c
Ip̃+q̃m+r−ϕ(m)

2

p̃ = q̃m + r

=






c
Ip̃+(q̃−1)m+(m+r−ϕ(m)

2
)

r < ϕ(m)
2

c
Ip̃+q̃m+(r−ϕ(m)

2
)

r ≥ ϕ(m)
2
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=






c
Ip+(q−1)m+(m+r−ϕ(m)

2
)

r < ϕ(m)
2

c
Ip+qm+(r−ϕ(m)

2
)

r ≥ ϕ(m)
2

Theorem 3.1 (Structures 1, 3)

= c
Ip+p−ϕ(m)

2

= cϕ(mp)
2

= M(Φmp)

2. Note

Cm,p̃,I,0 = RrNCm,p,I+1,0 by Theorem 3.1(Structure 4)

Then we have

M(Φmp̃) =






c
Ip̃+(q̃−1)m+(m+r̃−ϕ(m)

2
)

r̃ < ϕ(m)
2

c
Ip̃+q̃m+(r̃−ϕ(m)

2
)

r̃ ≥ ϕ(m)
2

=






c
Ip̃+(q̃−1)m+(m+m−r−ϕ(m)

2
)

r̃ < ϕ(m)
2

c
Ip̃+q̃m+(m−r−ϕ(m)

2
)

r̃ ≥ ϕ(m)
2

=






c
Ip̃+(m+m−r−ϕ(m)

2
)

m− r < ϕ(m)
2

by Theorem 3.1

c
Ip̃+(m−r−ϕ(m)

2
)

m− r ≥ ϕ(m)
2

(Structure 1)

=






−c
(I+1)p+rem((m+m−r−ϕ(m)

2
)+r,m)

m− r < ϕ(m)
2

by Theorem 3.1

−c
(I+1)p+(m−r−ϕ(m)

2
)+r

m− r ≥ ϕ(m)
2

(Structure 4 )

= −c
Ip+p+m−ϕ(m)

2

= −c
Ip+p−ϕ(m)

2

by Theorem 3.1
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(Structure 1)

= − cϕ(mp)
2

= −M(Φmp)

Proof of Theorem 5.2.

1. Let I = ϕ(m)
2
−1. Then from Lemma 5.1 and the proof of Theorem 5.1 we can easily

see that

M(Φmp) = c
Ip+rem(r−ϕ(m)

2
,m)

Let r = 1. Then rem(r − ϕ(m)
2

,m) = m + 1− ϕ(m)
2

, by Lemma 3.6

fm,p,I,0 = NRrem(I,m)(Ψm ∙ E1TI+1Φm)

= N rem(xm+1−ϕ(m)
2 Ψm

I∑

s=0

asx
s, xm − 1)

= N rem



xm+1−ϕ(m)
2




m−ϕ(m)∑

t=0

a0btx
t + ∙ ∙ ∙ +

m−ϕ(m)∑

t=0

aIbtx
t+I



 , xm − 1





Note that, for 0 ≤ s ≤ I and 0 ≤ t ≤ m− ϕ(m),

m + 1−
ϕ(m)

2
+ s + t ≡m m + 1−

ϕ(m)

2

⇐⇒ s + t ≡m 0

⇐⇒ s + t = 0
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from 0 ≤ s + t ≤ I + m− ϕ(m) = m− 1− ϕ(m)
2

< m. Hence

M(Φmp) = −a0b0 = 1

2. Follows from the last part and Theorem 5.1.

5.3 Application

In this subsection we provide an efficient algorithm to find M(Φmp) for a very large prime

number p.

Algorithm 5.1 (Middle Term).

Input m, p such that p >> m

Output M(Φmp)

1. Find a primes p0 > m such that p ≡m p0

2. mid←M(Φmp0) through direct computation

3. return mid

Example 5.2. Let m = 105. We compare the time needed to find the middle term by

Algorithm 5.1 and direct computation. All calculations were made using Maple 18 and

the time is in seconds.
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Table 5.1: Time needed computing M(Φmp)

p r p0 M(Φmp) Direct (sec) Improved (sec)

15017 2 107 −1 2.102 0.007

17117 2 107 −1 2.187 0.016

Table 5.1(continued)

18587 2 107 −1 2.355 0.015

15439 4 109 1 1.782 0.007

16069 4 109 1 1.950 0.015

1.7959 4 109 1 2.237 0.015

15131 11 431 3 2.235 0.033

16811 11 431 3 2.440 0.040

19121 11 431 3 2.734 0.046

15973 13 223 −3 2.597 0.023

18493 13 223 −3 2.751 0.026

19753 13 223 −3 2.986 0.033
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Chapter 6

Property: Number of terms

Introduction

In this chapter, we investigate the number of terms with prescribed coefficient in Φn.

Notation 6.1. Let f be a polynomial. Then Ntc(f) denotes the number of terms with

the coefficient c in f .

There have been some research on the number of term of cyclotomic polynomials.

1. Clearly, Ntc(Φp) =






p c = 1

0 c 6= 1

2. In [20], Carlitz founds an explicit formula for the number of terms of Φ p1p2(x).

We show the following newly found properties of number of terms (Theorem 6.1).

1. Ntc(Φmp) is linear over p’s that are equivalent modulo m.

2. Ntc(Φmp) and Nt−c(Φmp̃) are parallel if p + p̃ ≡m 0.
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6.1 Main results

In this section we state the main result of this chapter.

Definition 6.1. Pm,r = {p : p prime, p > m and p ≡m r} .

Theorem 6.1 (Number of terms with coefficient c). Let p ∈ Pm,r. Then there exist

Am,r,c, Bm,r,c ∈ Q such that

1. [Linear] Ntc(Φmp) = Am,r,c p + Bm,r,c

2. [Parallel] Am,m−r,−c = Am,r,c Bm,m−r,−c = −Bm,r,c

Example 6.1. Let m = 15.

1. Let p1 = 17 and p2 = 47. Then r = 2

c −2 −1 0 1 2

Ntc(Φ15∙17) 0 37 56 34 2

Ntc(Φ15∙47) 0 105 164 94 6

Ntc(Φ15p) 0 34
15

p− 23
15

270
15

p− 465
15

30
15

p 2
15

p− 4
15

2. Let p1 = 43 and p2 = 73. Then r = 13

c −2 −1 0 1 2

Ntc(Φ15∙43) 6 86 146 99 0

Ntc(Φ15∙73) 10 146 254 167 0

Ntc(Φ15p)
2
15

p + 4
15

30
15

p 270
15

p− 735
15

34
15

p + 23
15

0

Remark 6.1. We can easily see from the last example that Ntc(Φmp) and Ntc(Φmp̃),

where p + p̃ ≡m 0 are not parallel.
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Example 6.2 (Hamming weight). In this example we focus on the number of non-zero

terms in Φmp. Clearly

hw(Φmp) = ϕ(mp) + 1− Nt0(Φmp)

Hence for all p ∈ Pm,r we have

1. [Linear] hw(Φmp) = Am,r p + Bm,r

2. [Parallel] Am,m−r = Am,r Bm,m−r = −Bm,r

where

Am,r = ϕ(m) + 1− Am,r,0

Bm,r = −1− Bm,r,0 − ϕ(m)

Example 6.3. Let m = 15. Then we have

hw(Φ15p) =






36
15

p− 21
15

if p ≡15 1

66
15

p− 27
15

if p ≡15 2

78
15

p + 3
15

if p ≡15 4

72
15

p− 9
15

if p ≡15 7

72
15

p + 9
15

if p ≡15 8

78
15

p− 3
15

if p ≡15 11

66
15

p + 27
15

if p ≡15 13

36
15

p + 21
15

if p ≡15 14
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6.2 Proofs

Definition 6.2. Ntc(Cm,p,i,j) = Ntc(fm,p,i,j)

Notation 6.2. Let

am,r,c =

ϕ(m)−1∑

i=0

Ntc(Cm,p,i,0)

bm,r,c =

ϕ(m)−1∑

i=0

Ntc (Cm,p,i,q)

Am,r,c =
am,r,c

m

Bm,r,c = bm,r,c − rAm,r,c

The above notation is justified because of Theorem 3.1 (Structure 3).

Lemma 6.1. Let p > m. Then Cm,p̃,̃ı,q̃ = Rr(NCm,p,i,0 + Cm,p,i,q)
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Proof. From Theorem 3.1 (Structure 4) we have

Cm,p̃,̃ı,0 = RrNCm,p,i,0

Hence cı̃p̃, . . . , cı̃p̃+m−1−r in Cm,p̃,̃ı,0 are the same as cip+r, . . . , cip+m−1 in NCm,p,i,0 which

implies

Cm,p̃,̃ı,q̃ = Rr(NCm,p,i,0 + Cm,p,i,q)

Proof of Theorem 6.1.

1. (Linear)

Ntmp(c) =

ϕ(m)−1∑

i=0

q∑

j=0

Ntc (Cm,p,i,j) from Notation 3.1

=

ϕ(m)−1∑

i=0

q Ntc (Cm,p,i,0) +

ϕ(m)−1∑

i=0

Ntc (Cm,p,i,q) Theorem 3.1

(Structures 1 and 2 )

= q am,r,c + bm,r,c from Notation 6.2

= am,r,c
(p− r)

m
+ bm,r,c q =

p− r

m

= Am,r,c p + Bm,r,c from Notation 6.2

2. (Parallel) For p̃ ∈ Pm,m−r, without loss of generality we may assume p̃ > m. Then

we have gcd(m,m − r) = gcd(m, r) = 1 because p̃ is prime and p̃ - m. Therefore,
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we have

Nt−c(Φmp̃) =

ϕ(m)−1∑

i=0

q̃∑

j=0

Nt−c(Cm,p̃,̃ı,j) from Notation 3.1

=

ϕ(m)−1∑

i=0

q̃ Nt−c (Cm,p̃,̃ı,0) +

ϕ(m)−1∑

i=0

Nt−c (Cm,p̃,̃ı,q̃) from Theorem 3.1

(Structures 1, 2)

= q̃

ϕ(m)−1∑

i=0

Ntc (Cm,p,i,0)

+

ϕ(m)−1∑

i=0

Ntc (Cm,p,i,0)− Ntc (Cm,p,i,q) from Lemma 6.1

= q̃ am,r,c + am,r,c − bm,r,c from Notation 6.2

= am,r,c

(
p̃ + r̃

m

)

− bm,r,c q̃ =
p̃− (m− r)

m

= Am,r,c p̃− Bm,r,c from Notation 6.2

6.3 Application

In this section we will apply the linearity property in Theorem 6.1 to compute Nt c(Φmp)

when p� m.
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Algorithm 6.1 (Ntc(Φmp)).

Input m, p and c such that p� m and c ∈ Z

Output Ntc(Φmp)

1. Find small primes p1, p2 > m such that p ≡m p1 ≡m p2

2. N1 ← Ntc(Φmp1)

N2 ← Ntc(Φmp2) through direct computation

3. Am,r,c ← N2−N1

p2−p1

Bm,r,c ← N1 − Am,r,c p1

4. return Am,r,c p + Bm,r,c

We implement the last algorithm in the following two examples to show how fast and

useful it is. In the next example we fix the values of r and change the values of c.

Example 6.4. Let m = 105, r = 1. In Step 1, we used p1 = 211, p2 = 421. We compare

the time needed to find Nt1(Φmp) and Nt2(Φmp) by Algorithm 6.1 and direct computation.

All calculations were made using Maple 18 and the time is in seconds.

Table 6.1: Nt1(Φ105p)

p Nt1(Φ105p) Direct (sec) Improved (sec)

10501 56401 1.300 0.055

10711 57529 1.314 0.056

12391 66553 1.632 0.051

15121 81217 1.836 0.055
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Table 6.1(continued)

16381 87985 2.084 0.053

17011 91369 2.251 0.060

20161 108289 2.589 0.055

21001 112801 2.724 0.062

Table 6.2: Nt2(Φ105p)

p Nt2(Φ105p) Direct (sec) Improved (sec)

10501 400 1.352 0.053

10711 408 1.342 0.051

12391 472 1.541 0.056

15121 576 1.890 0.053

16381 624 2.068 0.056

17011 684 2.104 0.055

20161 768 2.522 0.050

21001 800 2.675 0.065

In the next example we fix c and change the values of r.

Example 6.5. Let m = 165. We compare the time needed to find Nt3(Φmp) by Algorithm

6.1 and direct computation. All calculations were made using Maple 18 and the time is

in seconds.
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Table 6.3: Nt3(Φ165p)

p r p1 p2 Nt3(Φ165p) Direct (sec) Improved (sec)

80527 7 377 997 111275 39.572 0.338

81517 7 377 997 112643 22.119 0.232

81847 7 377 997 113099 19.796 0.262

82507 7 377 997 114011 21.954 0.250

82837 7 377 997 114467 18.392 0.223

81203 23 353 683 197834 24.263 0.186

81533 23 353 683 198638 21.125 0.207

82193 23 353 683 204266 21.966 0.182

83843 23 353 683 200246 24.722 0.203

84503 23 353 683 205874 21.338 0.216

80621 101 431 761 415320 25.539 0.239

81281 101 431 761 418720 21.761 0.233

81611 101 431 761 420420 21.861 0.228

82601 101 431 761 425520 21.295 0.40

83591 101 431 761 430620 22.903 0.229

80177 152 317 647 409138 23.278 0.180

82487 152 317 647 420926 21.774 0.188

83477 152 317 647 425926 21.684 0.191

84137 152 317 647 409138 23.278 0.180

84467 152 317 647 431030 22.182 0.176
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Chapter 7

Property: Number of terms in Φp1p2p3

In the chapter, we investigate explicit formulas for the number of terms in cyclotomic

polynomials. The only previously known results are as follows:

1. Clearly, hw(Φp(x)) = p.

2. In [20], Carlitz founds an explicit formula for the number of terms in Φ p1p2(x).

In this chapter, we show explicit formulas for the number of terms in the following cases:

1. p2 ≡p1 ±1 and p3 ≡p1p2 +1.

2. p2 ≡p1 ±1 and p3 ≡p1p2 −1.

7.1 Main Results

In this section we state the main results of this chapter.

Theorem 7.1. Suppose that p2 ≡p1 +1 or −1. Then

1. hw(Φp1p2p3) = N ∙ (p3 − 1) + 1 if p3 ≡p1p2 +1
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2. hw(Φp1p2p3) = N ∙ (p3 + 1)− 1 if p3 ≡p1p2 −1

where

N =
2

3

(p1 − 1) ((p1 + 4) (p2 − 1)− (r2 − 1))

p1p2

r2 = rem(p2, p1)

Example 7.1.

1. Let

p1 =170141183460469231731687303715884105727

p2 =19396094914493492417412352623610788052879

p3 =2772062616341349718440289381107988513974840

91203319282999801642607689554229994773

Then p2 ≡p1 +1 and p3 ≡p1∙p2 +1. From Theorem 7.1, we have

hw(Φp1p2p3) =31442800944722794411398673999914603816453631

93783142644102273813658808597364717079870210

3022370537039135233707348104609

2. Let

p1 =170141183460469231731687303715884105727

p2 =13611294676837538538534984297270728458159
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p3 =67622580114592658127365455245073738185509803

3130497314468262207083921533518765157

Then p2 ≡p1 −1 and p3 ≡p1∙p2 +1. From Theorem 7.1, we have

hw(Φp1p2p3) =76702572062314586199903198061612901540538320

13481075468240750312978706994728287761069675

8415342362606954703001208582545

3. Let

p1 =170141183460469231731687303715884105727

p2 =19396094914493492417412352623610788052879

p3 =75901714495060766100150780673194923596930

1678294802798689933069044864255629747589

Then p2 ≡p1 +1 and p3 ≡p1∙p2 −1. From Theorem 7.1, we have

hw(Φp1p2p3) =86093383539121937078829702618813796164099

23030596700096946702108827690207070058671

0731948751728851416679806579643619759
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4. Let

p1 =170141183460469231731687303715884105727

p2 =13611294676837538538534984297270728458159

p3 =4631683569492647816942839400347516314076

0139255513514689607000485200105035531859

Then p2 ≡p1 −1 and p3 ≡p1∙p2 −1. From Theorem 7.1, we have

hw(Φp1p2p3) =5253600826185930561637205346685815174009473981

8363530604388700773826760237864984664860793435

16600178558541301452642639

Remark 7.1 (Sparsity of Φp1p2p3). For large p1, p2 and p3, the families of cyclotomic

polynomials considered in this chapter are very sparse. To see this, consider the ratio

hw (Φp1p2p3)

deg (Φp1p2p3)
=

2
3

(p1−1)((p1+4)(p2−1)−(r2−1))
p1p2

(p3 ∓ 1)± 1

(p1 − 1) (p2 − 1) (p3 − 1)

≈
2
3

p1(p1p2−r2)
p1p2

p3

p1p2p3

≈
2
3

p1p1p2

p1p2
p3

p1p2p3

≈
2

3

1

p2
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7.2 Proof

Notation 7.1. Let

m = p1p2

q2 = quo(p2, p1)

r2 = rem(p2, p1)

q3 = quo(p3, p1p2)

r3 = rem(p3, p1p2)

Remark 7.2. From lemma 3.6 from chapter 3, we have

fm,p,i,0 = NRrem(ir,m)(Ψm ∙ ErTi+1Φm)

= −rem(xm−rem(ir,m)Ψm

i∑

s=0

asx
sr, xm − 1)

where Φm(x) =
∑ϕ(m)

s=0 asx
s. In this chapter we frequently use both versions of the previous

equation.

Lemma 7.1. Let r2 = 1. Then

fp1,p2,i,0 =






1− x i = 0

−x + xp1−i i 6= 0

fp1,p2,i,q2 =






1 i = 0

0 i 6= 0
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Proof. Note

fp1,p2,i,0 = NRrem(i∙1,p1)(Ψp1 ∙ E1Ti+1Φp1) Lemma 3.6

= −rem(xp1−i (x− 1)
i∑

s=0

xs, xp1 − 1)

= −rem(xp1−i
(
xi+1 − 1

)
, xp1 − 1) cancelling

= −rem(xp1+1 − xp1−i, xp1 − 1)

= −






x− 1 i = 0

x− xp1−i i 6= 0

=






1− x i = 0

−x + xp1−i i 6= 0

(Note p1 − i ≥ p1 − q2 = p1 −

⌊
ϕ (p1p2)

p2

⌋

= 2)

fp1,p2,i,q2 = T1fp1,p2,i,0

=






rem(1− x, x1) i = 0

rem(−x + xp1−i, x1) i 6= 0

=






1 i = 0

0 i 6= 0

Lemma 7.2. Let r2 = 1. Then for i 6= 0 we have

1. Φp1 ∙ (−x + xp1−i) = (−1 + xp1) ∙
p1−1−i∑

s=1

xs

2. Φp1 ∙ fp1,p2,i = (−1 + xp1q2) ∙
p1−1−i∑

s=1

xs

Proof.
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1. Note

Φp1 ∙ (−x + xp1−i) =

(
p1−1∑

s=0

xs

)

(−x + xp1−i)

=

(
p1−1∑

s=0

xs

)

(−1 + x)

(
p1−i−1∑

s=1

xs

)

factoring

= (−1 + xp1)

(
p1−1−i∑

s=1

xs

)

cancelling

2. Note

Φp1 ∙ fp1,p2,i = Φp1 ∙
q2∑

j=0

fp1,p2,i,jx
jp1

=

(
p1−1∑

s=0

xs

) (
q2−1∑

j=0

(−x + xp1−i) xjp1 + 0 xq2p1

)

Lemma 7.1

=

(
p1−1∑

s=0

xs

)

(−x + xp1−i)

(
q2−1∑

j=0

xjp1

)

=

(
p1−1∑

s=0

xs

)

(−1 + x)

(
p1−i−1∑

s=1

xs

) (
q2−1∑

j=0

xjp1

)

factoring

= (−1 + xp1)

(
p1−i−1∑

s=1

xs

) (
q2−1∑

j=0

xjp1

)

cancelling

=

(
p1−i−1∑

s=1

xs

)

(−1 + xp1)

(
q2−1∑

j=0

xjp1

)

=

(
p1−i−1∑

s=1

xs

)

(−1 + xq2p1) cancelling

Lemma 7.3 (Multiples of p1). Let r2 = 1, r3 = 1 and i = (uq2 + v) p1, where
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0 ≤ u ≤ (p1−1)
2
− 1 and 0 ≤ v ≤ q2 − 1. Then

hw (fm,p3,i,0) = 2(p1 − u)

Proof. Let i = (uq2 + v)p1. Then we consider the following cases:

• Case v = 0. Then we claim that

fm,p3,i,0 = xm−i +

p1−1∑

s=u+1

xs −
p1−1∑

s=u

xp2+s

we will use induction on u to prove the claim.

1. If u = 0, then

fm,p3,0,0 = − rem(Ψm ∙ (a0x
0), xm − 1)) by Lemma 3.6

= − (rem(Ψm ∙ (1), xm − 1)) a0 = 1

= −Ψm

= 1 +

p1−1∑

s=1

xs −
p1−1∑

s=0

xp2+s

2. Assume

fm,p3,uq2p1,0 = xm−u−q2p1 +

p1−1∑

s=u+1

xs −
p1−1∑

s=u

xp2+s

3. Consider fm,p3,i,0, where i = (u + 1)q2p1

fm,p3,i,0 =− rem(xm−iΨm

i∑

s=0

asx
s, xm − 1) i < m

=− rem(xm−iΨm ∙
u∑

s=0

xsp2fp1,p2,s, x
m − 1) by Lemma 7.2

77



= rem(xm−p1q2fm,p3,uq2p1,0

− xm+u−p1q2Ψmfp1,p2,u, x
m − 1) by induction

= rem(xm−i +

p1−1∑

s=u+1

xs+m−p1q2 −
p1−1∑

s=u

xs+1

(xu+1 − xp2+u − xu−p1q2 + xu)

p1−1−u∑

s=1

xs, xm − 1) by Lemma 7.1

= xm−i +

p1−1∑

s=u+1

xs+m−p1q2 −
p1−1∑

s=u

xs+1 +

p1−1−u∑

s=1

xs+u+1 since all

− xp2

p1−1−u∑

s=1

xs+u −
p1−1−u∑

s=1

xs+u−p1q2 +

p1−1−u∑

s=1

xs+u exponents

are ≤ m− 1

= xm−i − xp1 +

p1−1−u∑

s=1

xs+u+1 − xp2

p1−1−u∑

s=1

xs+u by cancelation

= xm−(u+1)q2p1 +

p1−1∑

s=u+2

xs − xp2

p1−1∑

s=u+1

xs+u

Hence we proved the claim.

• Case v = 1. Consider fm,p3,i,0 where i = (uq2 + 1)p1

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

asx
s, xm − 1)

= rem(−xm−iΨm ∙ (fm,p3,0 + ∙ ∙ ∙

+ xup2(xp1−u − x), xm − 1) by Lemma 7.1

= rem
((

xm−p1fm,p3,uq2p1 + xu+1−p1Ψm −Ψm

)
, xm − 1

)
by the case v = 0

= rem((xm−p1(xm−uq2p1 +

p1−1∑

s=u+1

xs −
p1−1∑

s=u

xp2+s)
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+ xu+1−p1Ψm −Ψm), xm − 1)

= xm−i +

p1−1∑

s=u+1

xs+m−p1 −
p1−1∑

s=u

xp2−p1+s since exponents

−
p1−1∑

s=0

xs+u+1+m−p1 +

p1−1∑

s=0

xp2−p1+u+1+s + Ψm are ≤ m− 1

= xm−i −
u∑

s=0

xs + xp2

u∑

s=0

xs + xp2−p1+u + Ψm by cancelation

= xm−i − xp2−p1+u +

p1−1∑

s=u+1

xs − xp2

p1−1∑

s=u+1

xs

• Case v > 1. Consider fm,p3,i,0 where i = (uq2 + v)p1

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

asx
s, xm − 1)

= − rem(xm−iΨm

(uq2j+1)p1∑

s=0

asx
s, xm − 1) as = 0 for

(uq2 + 1)p1 < s < (uq2 + v)p1

= − rem(xm−p1(v−1)fm,p3,(uq2+1)p1,0, x
m − 1)

Hence hw(fm,p3,i,0) = 2(p1 − u) as desired.

Lemma 7.4 (Non Multiplies of p1). Let r2 = 1, r3 = 1 and i = (uq2 + v) p1 + t, where

0 ≤ u ≤ (p1−1)
2
− 1, 0 ≤ v ≤ q2 − 1 and 1 ≤ t ≤ p1 − 1. Then

hw(fp1,p2,i,0) =






2(p1 − u) t = 1, ∙ ∙ ∙ , u

2(2 + u) t = u + 1, ∙ ∙ ∙ , p1 − 1
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Proof. We consider the following cases:

• Case 1 ≤ t ≤ u. We have a(uq2+v)p1+t = 0 by Lemma 7.2. Therefore

fm,p3,i,0 = rem(xm−tfm,p3,i,0, x
m − 1). Thus for 1 ≤ t ≤ u

hw(fm,p3,i,0) = 2(p1 − u)

since the rotation does not change the number of terms

• Case t = u + 1. Here we have two cases:

1. v = 0

fm,p3,,0 = − rem(xm−iΨm

i∑

s=0

asx
s, xm − 1)

= − rem(xm−(iΨm ∙ (fp1,p2,0 + ∙ ∙ ∙

+ xp2(u−1)fp1,p2,u−1 − xi−t+(u+1)), xm − 1) by Lemma7.1

= rem(xm−(u+1)fm,p3,i−t,0 + Ψm, xm − 1)

= rem(xm−(u+1)(xm−i+t +

p1−1∑

s=u+1

xs

−
p1−1∑

s=u

xp2+s) + Ψm, xm − 1) by Lemma 7.3

= xm−(p2u+1)) +

p1−1∑

s=u+1

xs−u−1 by distribution

+

p1−1∑

s=u

xp2+s−u−1 + Ψm and exponents ≤ m

= xm−(p2u+1) − xp2−1 +

p1−u−2∑

s=0

xs
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−
p1−u−2∑

s=0

xp2+s + Ψm by changing index

= xm−(p2u+1) − xp2−1 −
p1−1∑

s=p1−u−1

xs

+

p1−1∑

s=p1−u−1

xp2+s by cancelation

= xm−(p2u+1) − xp2−1 −
u+1∑

s=1

xp1−s +
u+1∑

s=1

xp1+p2−s by changing index

2. Case v 6= 0. Then i = (uq2 + v)p1 + u + 1

fm,p3,i,0 = rem(−xm−iΨm

i∑

s=0

asx
s, xm − 1)

= rem(−xm−iΨm ∙ (fp1,p2,0 + ∙ ∙ ∙ + xp2(u−1)fp1,p2,u−1

+ xp2u

v−1∑

w=0

(xp1−u − x)xp1w − xp2j+p1v+1), xm − 1)

= rem(xm−(p1v+1)(xufm,p3,p1q2u −Ψm

v−1∑

w=0

(xp1−u − x)xp1w

+ Ψm, xm − 1)

= rem(xm−(p1v+u+1)(xm−p1q2u +

p1−1∑

s=u+1

xs −
p1−1∑

s=u

xp2+s)

− xm−(p1v+1)Ψm

v−1∑

w=0

(xp1−u − x)xp1w + Ψm, xm − 1)

= xm−i − xp2−p1v−1 + xm−p1v

p1−1∑

s=u+1

xs−u−1

− xm−p1v

p1−1∑

s=u

xp2+s−u−1 − xm−(p1v+1)Ψm

v−1∑

w=0

(xp1−u − x)xp1w + Ψm

= xm−i − xp2−p1v−1 + xm−p1v

p1−u−2∑

s=0

xs − xm−p1v

p1−u−2∑

s=0

xp2+s
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− xm−(p1v+1)Ψm

v−1∑

w=0

(xp1−u − x)xp1w + Ψm

= xm−i − xp2−p1v−1 +

p1−u−2∑

s=0

xs −
p1−u−2∑

s=0

xp2+s + Ψm

= xm−i − xp2−p1v−1 +

p1−1∑

s=p1−u−1

xs −
p1−1∑

s=p1−u−1

xp2+s

= xm−i − xp2−p1v−1 +
u+1∑

s=1

xp1−s −
u+1∑

s=1

xp2+p1−s

• Case u + 1 < t < p1 − 1. Then i = (q2u + v)p1 + t.

From Lemma 7.1 we have as = 0 for (uq2 +v)p1 +u+2 ≤ s ≤ (uq2 +v)p1 +p1−1.

Hence

fm,p3,i,0 = rem(−xm−iΨm

i−t+u+1∑

s=0

asx
s, xm − 1)

= rem(−xt−u−1fm,p3,(uq2+v)p1+(j+1),0, x
m − 1)

Thus hw(fm,p3,i,0) = hw(fm,p3,(uq2+v)p1+(j+1),0)

From all the previous cases we have

hw(fm,pp,(uq2+v)p1+t,0) =






2(p1 − u) t = 1, ∙ ∙ ∙ , u

2(2 + u) t = u + 1, ∙ ∙ ∙ , p1 − 1

Lemma 7.5. Let r2 = 1, r3 = 1 and i = (uq2 + v) p1 + t, where 0 ≤ u ≤ (p1−1)
2
− 1,
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0 ≤ v ≤ q2 − 1 and 1 ≤ t ≤ p1 − 1. Then

hw(fm,p3,i,0) =






2(p1 − u) t = 0, ∙ ∙ ∙ , u

2(2 + u) t = u + 1, ∙ ∙ ∙ , p1 − 1

Proof. Immediate from the previous two lemmas.

Example 7.2. We will illustrate Lemma 7.5 by an example. Let p1 = 5, p2 = 11 and

p3 = 331. Note that r2 = 1 and r3 = 1. The following figure presents the relationship

between i and hw(f55,p3,i,0).
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i

hw(f55,p3,i,0)

Lemma 7.6. Let r2 = p1 − 1. Then fp1,p2,i,j = (1− xi+1).

Proof. Note

fp1,p2,i,0 = NR(p1−1)fp1,p̃2 ,̃ı,0 by Structure 4

=






NR(p1−1)(1− x) i = p1 − 2

NR(p1−1)(−x + xi+2) i 6= p1 − 2

by Lemma 7.2

=






rem(−xp1−1(1− x), xp1 − 1) i = p1 − 2

rem(−xp1−1(−x + xi+2), xp1−1) i 6= p1 − 2
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= 1− xi+1

fp1,p2,i,q2 = Tp1−1fp1,p2,i,0

= 1− xi+1

Lemma 7.7. Let r2 = p1 − 1. For i 6= 0, we have

1. Φp1 ∙ (1− xi+1) = (1− xp1) ∙
∑i

s=0 xs

2. Φp1 ∙ fp1,p2,i = (1− x(q2+1)p1) ∙
∑i

s=0 xs

Proof.

1. Note

Φp1 ∙ (1− xi+1) =

(
p1−1∑

s=0

xs

)

(1− xi+1)

= (1 + x + ∙ ∙ ∙ + xp1−1)− (xi+1 + xi+2 + ∙ ∙ ∙ + xi+p1) expanding

= (1 + ∙ ∙ ∙ + xi)− (xp1 + ∙ ∙ ∙ + xp1+i) cancelling

= (1− xp1) ∙
i∑

s=0

xs factoring

2. Note

Φp1 ∙ fp1,p2,i = Φp1 ∙ (1− xi+1)

q2∑

s=0

xsp1 by Lemma 7.6

= (1− xp1)
i∑

s=0

xs ∙
q2∑

s=0

xsp1
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=

(
q2∑

s=0

xsp1 − xp1

q2∑

s=0

xsp1

)
i∑

s=0

xs

= (1− xp1(q2+1))
i∑

s=0

xs cancelling

Lemma 7.8 (p2u + t). Let i = p2u + t where 0 ≤ u ≤ (p1−1)
2

and 0 ≤ t ≤ u. Then

hw(fm,p3,i,0) = 2(p1 − u)

Proof. We consider the following cases:

1. Case t = 0. We claim that

fm,p3,i,0 = xm−i − xp2 +

p1−1∑

s=u+1

xs −
p1−1∑

s=u+1

xp2+s

We will use induction on u to prove the claim

(a) fm,p3,0,0 = xm + xp2 +
∑p1−1

s=1 xs −
∑p1−1

s=j+1 xp2+s = −Ψm

(b) Assume that fm,p3,i,0 = xm−i − xp2 +
∑p1−1

s=u+1 xs −
∑p1−1

s=u+1 xp2+s

(c) Consider fm,p2,p2(u+1),0

fm,p3,p2(u+1),0 = − rem(xm−p2(u+1)Ψm

p2(u+1)∑

s=0

asx
s, xm − 1)

= − rem(xm−p2(u+1)Ψm ∙
u∑

s=0

xp2sfm,p3,s

+ xm−p2(u+1)Ψmxp2(u+1), xm − 1)
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= − rem(xm−p2(fm,p3,p2u,0 −Ψmfm,p3,u

−Ψm(1− xp2)), xm − 1) by induction

= − rem(xm−p2(u+1) − 1 +

p1−1∑

s=u+1

xs+m−p2

−
p1−1∑

s=u+1

xs + xm−p2Ψmfm,p3,u

−Ψm ∙ (−xm−p2 + 1), xm − 1)

= − xm−p2(u+1) − 1 +

p1−1∑

s=u+1

xs+m−p2 −
p1−1∑

s=u+1

xs

+ xm−p2Ψmfm,p3,u −Ψm ∙ (−xm−p2 + 1) by expanding

= − xm−p2(u+1) − xp2 −
u+1∑

s=0

xs +
u∑

s=0

xs+p2 by carrying

−
p1−1∑

s=0

xs+p2 +

p1−1∑

s=0

xs calculations

= xm−p2(u+1) − xp2 +

p1−1∑

s=u+2

xs −
p1−1∑

s=u+2

xp2+s

2. Case t 6= 0. Since as = 0 for s = p2u + 1, ∙ ∙ ∙ , p2u + t. Hence we have

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

asx
s, xm − 1)

= − rem(xm−tfm,p3,p2u,0, x
m − 1)

From all cases above we have hw(fm,p3,i,0) = 2(p1 − u) as desired.

Lemma 7.9 (p2u + p1v). Let i = p2u + p1v where 0 ≤ u ≤ (p1−1)
2

and 1 ≤ v ≤ q2 − 1.

Then
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hw(fm,p3,i,0) = 2(p1 − u)

Proof.

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

xs, xm − 1)

= − rem(xm−iΨm ∙ (
u−1∑

k=0

xkp2fp1,p2,s + xup2

v−1∑

w=0

(1− xu+1)xwp1

+ xp2u+vp1), xm − 1) by Lemma 7.6

= − rem(xm−p1vfm,p3,p2u,0 + xm−p1k(1− xp2)(1− xp1k) ∙
u∑

s=0

xs

−Ψm ∙ (−xm−p1k + 1), xm − 1)

= − rem(xm−vp1fm,p3,p2u,0 − xm−vp1Ψm ∙ (1− xu+1)
v−1∑

w=0

xwp1

−Ψm ∙ (1− xm−vp1), xm − 1)

= − xm−i − xp2−vp1 +

p1−1∑

s=u+1

xs−vp1 −
p1−1∑

s=u+1

xp2+s−vp1 since all

+ (1− xp2)(xm−vp1 − 1) ∙
u∑

s=0

xs −Ψm ∙ (−xm−vp1 + 1) exponents > m

= − xm−i − xp2−vp1 − xm−vp1Ψm + (−1 + xp2) ∙
u∑

s=0

xs

−Ψm ∙ (−xm−vp1 + 1) by accumulation

= xm−i − xp2−vp1 + (−1 + xp2) ∙
u∑

s=0

xs −Ψm by cancelation

= xm−i − xp2−vp1 +

p1−1∑

s=u+1

xs −
p1−1∑

s=u+1

xp2+s
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Lemma 7.10 (up2 + q2p1). Let i = up2 + q2p1, where 0 ≤ u ≤ (p1−1)
2

. Then we have

hw(fm,p3,i,0) = 2(p1 − u− 1)

Proof.

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

asx
s, xm − 1)

= − rem(xm−iΨm ∙ (
up2+(q2−1)p1∑

s=0

asx
s − xi−p1+u+1 + xi), xm − 1) by Lemma 7.6

= rem(xm−p1fm,p3,i−p1,0 −Ψm ∙ (1− xm+u+1−p1), xm − 1)

= xm−i − xp2−(q2−2)p1 +

p1−1∑

s=u+1

xm−p1+s since all

−
p1−1∑

s=u+1

xp2−p1+s −Ψm + xm+u+1−p1Ψm exponents > m

= xm−i +

p1−2∑

s=u+1

xs −
p1−1∑

s=u+1

xp2+s

Hence hw(fm,p3,u,0) = 2(p1 − u− 1) as desired.

Lemma 7.11 (up2 + vp1 + t). Let i = up2 + vp1 + t, where 0 ≤ u ≤ (p1−1)
2

and

u + 1 ≤ t ≤ p1 − 1 and 0 ≤ v ≤ q2. Then

hw(fm,p3,i,0) = 2(2 + u)

Proof. We consider the following cases:
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1. Case v = 0 and t = u + 1

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

asx
s, xm − 1)

= − rem(xm−iΨm ∙ (f0 + ∙ ∙ ∙ + x(u−1)p2fu−1 + xup2(1− xu+1)), xm − 1)

= xm−(u+1)fm,p3,up2,0 + Ψm

= xm−i − xp2−u−1 +

p1−1∑

s=u+1

xs−u−1

−
p1−1∑

s=u+1

xp2+s−u−1 −
p1−1∑

s=0

xs +

p1−1∑

s=0

xp2+s

= xm−i − xp2−u−1 +

p1−2−u∑

s=0

xs

−
p1−u−2∑

s=0

xp2+s −
p1−1∑

s=0

xs +

p1−1∑

s=0

xp2+s

= xm−i − xp2−u−1 −
p1−1∑

s=p1−u−1

xs +

p1−1∑

s=p1−u−1

xp2+s

= xm−i − xp2−u−1 −
u+1∑

s=1

xp1−s +
u+1∑

s=1

xp2+p1−s

2. Case v = 0 and t > u + 1

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

asx
s, xm − 1)

= − rem(xm−(up2+t)Ψm

up2+u+1∑

s=0

asx
s, xm − 1)

because as = 0 for up2 + u + 2 ≤ s ≤ up2 + k

= rem(xm−t−j−1fm,p3,up2+u+1,0, x
m − 1)
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3. Case v 6= 0

fm,p3,i,0 = − rem(xm−iΨm

i∑

s=0

xs, xm − 1)

= − rem(xm−iΨm(fp1,p2,0 + ∙ ∙ ∙ + xp2(u−1)fp1,p2,u−1

+ xup2(1− xu+1)Ψm

v∑

s=0

xsp1), xm − 1)

= rem(xm−t−vp1−u−1(fm,p3,up2+(u+1),0)

− xm−t−vp1(1− xu+1)Ψm

v∑

s=1

xsp1 , xm − 1) by direct

calculations

= xm−t(x−(up2+vp1) − xp2−u−vp1)

− xm−t

(
u+1∑

s=1

xp1−s+1 +
u+1∑

s=1

xp2+p1−s+1

)

From all the cases above we can see that

hw(fm,p3,i,0) = 2(2 + u)

Lemma 7.12. Let i = up2+vp1+t, where 0 ≤ u ≤ (p1−3)
2

, 0 ≤ v ≤ q2 and 0 ≤ t ≤ p1−1.
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Then

hw(fm,p3,i,0) =






2(p1 − u) t = 0, . . . , u and v = 0

2(p1 − u) v = 1, . . . , q2 − 1 and t = 0

2(p1 − u− 1) t = 0 and v = q2

2(2 + u) t = u + 1, . . . , p1 − 1

and v = 0, . . . q2

Proof. Immediate from the previous four lemmas

Example 7.3. We will illustrate Lemma 7.12 by an example. Let p1 = 5, p2 = 19 and

p3 = 191. Note that r2 = 4 and r3 = 1. The following figure presents the relationship

between i and hw(f95,p3,i,0).

0
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9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

i

hw(f95,p3,i,0)

Next we will prove the main theorem of this chapter

Proof of Theorem 7.1 (p2 ≡p1 +1 and p3 ≡p1p2 +1). We have r2 = 1 and r3 = 1. Note

hw(Φmp3) =

ϕ(m)−1∑

i=0

hw(fm,p3,i)
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= q3




ϕ(m)−1∑

i=0

hw (fm,p3,i,0)



+ hw(fm,p3,i,q3) Structure 1

= 2q3





ϕ(m)
2

−1∑

i=0

hw (fm,p3,i,0)



+ 1 Structures 2 and 5

Note that

ϕ(m)

2
− 1 =

((
p1 − 1

2
− 1

)

q2 + (q2 − 1)

)

p1 + (p1 − 1)

Thus

{

i : 0 ≤ i ≤
ϕ(m)

2
− 1

}

= {(uq2 + v) p1 + t : 0 ≤ u ≤
p1 − 1

2
− 1,

0 ≤ v ≤ q2 − 1, 0 ≤ t ≤ p1 − 1}

Hence

hw(Φmp3) = 2q3





p1−1
2

−1∑

u=0

q2−1∑

v=0

p1−1∑

t=0

hw
(
fm,p3,(uq2+v)p1+t,0

)


+ 1

= 2q3





p1−1
2

−1∑

u=0

q2−1∑

v=0

(
u∑

t=0

2(p1 − u) +

p1−1∑

t=u+1

2(2 + u)

)

+ 1 Lemma 7.5

=
2

3
q3q2p1 (p1 − 1) (p1 + 4) + 1 summing and

simplifying

=
2

3

p3 − 1

p1p2

(p2 − 1) (p1 − 1)(p1 + 4) + 1 q2 =
p2 − 1

p1

q3 =
p3 − 1

p1p2

=
2

3

(p1 − 1) ((p1 + 4) (p2 − 1)− (r2 − 1))

p1p2

(p3 − 1) + 1 rearranging

= N (p3 − 1) + 1
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Proof of Theorem 7.1 (p2 ≡p1 −1 and p3 ≡p1p2 +1). We have r2 = 1 and r3 = 1. Note

hw(Φmp3) =

ϕ(m)−1∑

i=0

hw(fm,p3,i)

= q3




ϕ(m)−1∑

i=0

hw (fm,p3,i,0)



+ hw(fm,p3,i,q3) Structure 1

= 2q3





ϕ(m)
2

−1∑

i=0

hw (fm,p3,i,0)



+ 1 Structures 2 and 5

Note that

ϕ(m)

2
− 1 =

(
p1 − 3

2

)

p2 + q2p1 +
(p1 − 1)

2

Thus
{

i : 0 ≤ i ≤ (p1−1)
2

p2

}
=
{
up2 + vp1 + t : 0 ≤ u ≤ p1−3

2
, 0 ≤ v ≤ q2, 0 ≤ t ≤ p1 − 1

}

Notice that ϕ(m)
2
− 1 = (p1−1)(p2−1)

2
− 1 < (p1−1)

2
p2, thus in computing hw(Φmp3) we need

only fm,p3,i,0 where 0 ≤ i ≤ ϕ(m)
2
− 1. Hence

hw(Φmp3) = 2q3





p1−3
2

−1∑

u=0

q2∑

v=0

p1−1∑

t=0

hw (fm,p3,i,0)





+ 2q3




q2∑

v=0

p1−1
2∑

t=0

hw (fm,p3,i,0)



+ 1

= 2q3





p1−3
2

−1∑

u=0

(
q2∑

v=0

2

(
u∑

t=0

(p1 − u) +

p1−1∑

t=u+1

(2 + u)

))



+ 2q3






q2∑

v=0






p1−3
2∑

t=0

p1 + 3

2
+

p1−1∑

t=
p1−1

2

p1 + 1

2




 +

p1 + 1

2





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+ 2q3(p1 − 1− u) + 1 Lemma 7.12

=
2

3
q3 (p1 − 1)

(
p1 + 4p1q2 + p2

1 + p2
1q2 − 6

)
+ 1 summing and

simplifying

=
2

3

p3 − 1

p1p2

(p1 − 1) (4p2 − 2p1 + p1p2 − 2) + 1 q2 =
p2 − p1 + 1

p1

q3 =
p3 − 1

p1p2

=
2

3

(p1 − 1) ((p1 + 4) (p2 − 1)− (r2 − 1))

p1p2

(p3 − 1) + 1 rearranging

=N(p3 − 1) + 1

Proof of Theorem 7.1 (p2 ≡p1 +1 and p3 ≡p1p2 −1). This follows from the case

p2 ≡p1 +1 and p3 ≡p1p2 +1

hw(Φmp3) = Am,1 p3 − Bm,1 Theorem 6.1

= Np3 + (N − 1) from the case

p2 ≡p1 +1 and p3 ≡p1p2 +1

= N(p3 + 1)− 1

Proof of Theorem 7.1 (p2 ≡p1 −1 and p3 ≡p1p2 −1). This follows from the case

p2 ≡p1 −1 and p3 ≡p1p2 +1
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hw(Φmp3) = Am,−1 p3 − Bm,−1 Theorem 6.1

= Np3 + (N − 1) from the case

p2 ≡p1 −1 and p3 ≡p1p2 +1

= N(p3 + 1)− 1

95



REFERENCES

[1] http://www.cecm.sfu.ca/~ada26/cyclotomic/.

[2] A. Arnold. Algorithms for computing cyclotomic polynomials. Master’s thesis,
Simon Fraser university, 2011.

[3] A. Arnold and M. Monagan. A high-performance algorithm for calculating cyclo-
tomic polynomials. Proceedings of PASCO, ACM Press, pages 112–120, 2010.

[4] A. Arnold and M. Monagan. Calculating cyclotomic polynomials of very large height.
Math. Comp., 80:2359–2379, 2011.

[5] S. Asgarli. Wedderburn’s little theorem. http://www.math.ubc.ca/~reichst/

423-project-wedderburn.pdf.

[6] G. Bachman. On the coefficients of ternary cyclotomic polynomials. J. Number
Theory, 100:104–116, 2003.

[7] G. Bachman. Flat cyclotomic polynomials of order three. Bull.London Math. Soc.,
38:53–60, 2006.

[8] A. S. Bang. ”om ligningen φn(x) = 0”. Nyt Tidsskrift for Mathematio, 6:6–12, 1895.

[9] P.T Bateman. Note on the coefficients of the cyclotomic polynomials. Bull. Amer .
Math, 55:1180–1181, 1949.

[10] M. Beiter. The midterm coefficient of the cyclotomic polynomial fpq(x). American
mathematical monthly, 71:769–770, 1964.

[11] M. Beiter. Magnitude of the coefficients of the cyclotomic polynomial fpqr. The
American Mathematical Monthly, 75(4):370–372, 1968.

[12] M. Beiter. Coefficients of the cyclotomic polynomial f3qr(x). Fibonacci Quart,
16:302–306, 1978.

[13] B. Bezdega. Sparse binary cyclotomic polynomials. Journal of number theory,
132:410–413, 2012.

[14] D. Bloom. On the coefficients of the cyclotomic polynomials. Amer. Math. Monthly,
75:372–377, 1968.

[15] D. Burton. Elementary number theory. McGraw-Hill Education, 7 edition, 2010.

96



[16] B. Bzdega. Bounds on ternary cyclotomic coefficients. Acta Arithmtica 144(1), 5-16,
2010.

[17] B. Bzdega. On the height of cyclotomic polynomials. Acta Arithmtica 152(4), 349-
359, 2012.

[18] B. Bzdega. Jumps of ternary cyclotomic polynomials. Acta Arithmtica 163(3),
203-213, 2014.

[19] B. Bzdega. On a certain family of inverse ternary cyclotomic polynomials. J. Number
Theory, 141:1–12, 2014.

[20] L. Carlitz. The number of terms in the cyclotomic polynomial fpq(x). The American
Mathematical Monthly, 73(9):979–981, 1966.

[21] L. Carlitz. The sum of squares of the coefficients of cyclotomic polynomials. Acta
Mathematica Academiae Scientiarums, 18:297–304, 1967.

[22] J. ChunGang. A specific family of cyclotomic polynomials of order three. Sci China
Math, 53:2269–2274, 2010.

[23] P. Clark. Dirichlet’s theorem on primes in arithmetic progressions. http://math.

uga.edu/~pete/4400DT.pdf.

[24] G. Dredsen. On the middle coefficient of a cyclotomic polynomial. Amer. Math.
Monthly, 18(6):979–981, 2004.

[25] U. Dudley. Elementary number theory. Dover Publications, second edition, 1978.

[26] E. Fouvry. On binary cyclotomic polynomials. Algebra and number theory,
7(5):12071223, 2013.

[27] H-S. Lee H. Hong, E. Lee. Explicit formula for optimal ate pairing over cyclotomic
family of elliptic curves. Finite Fields Appl, 34:45–74, 2015.

[28] H-S. Lee H. Hong, E. Lee and C-N. Park. Maximum gap in (inverse) cyclotomic
polynomial. Journal of Number Theory, 132:2297–2317, 2012.

[29] N. Kaplan. Flat cyclotomic polynomials of order three. Journal of Number Theory,
127:118–126, 2007.

[30] N. Kaplan. Bounds for the maximal height of divisors of xn− 1. Journal of Number
Theory, 129:2673–2688, 2009.

[31] N. Kaplan. Flat cyclotomic polynomials of order four and higher. Integers, 10:357–
363, 2010.

97



[32] T. Y. Lam and K. H. Leung. On the cyclotomic polynomial φpq(x). Ame. Math.
Monthly, 103(7):562–564, 1996.

[33] E. Lehmer. On the magnitude of the coefficients of the cyclotomic polynomials.
Bull. Amer. Math. Soc, 42:389–392, 1936.

[34] A. Lenstra. Using cyclotomic polynomials to construct efficient discrete logarithm
cryptosystems over finite fields. In ACISP ’97 Proceedings of the Second Australasian
Conference on Information Security and Privacy, pages 127–138, 1997.

[35] A. Migotti. Aur theorie der kreisteilungsgleichung. Z. B. der Math.-Naturwiss,
Classe der Kaiserlichen Akademie der Wissenschaften, 87:7–14, 1883.

[36] P. Moree. Inverse cyclotomic polynomials. Journal of Number Theory, 129(3):667–
680, 2009.

[37] K. Rosen. Elementary number theory and its applications. Pearson, 2010.

[38] J. Suzuki. On coefficients of cyclotomic polynomials. Proc. Japan Acad., 63:279–280,
1987.

[39] S. Tanaka and K. Nakamula. Pairing-Based Cryptography, chapter Constructing
Pairing-Friendly Elliptic Curves Using Factorization of Cyclotomic Polynomials,
pages 136– 145. Springer Berlin Heidelberg, 2008.

[40] R.C. Vaughan. Bounds for the coefficients of cyclotomic polynomials. The Michigan
Mathematical Journal, 21(4):289–295, 1975.

[41] S. Weintraub. Several proofs of the irreducibility of the cyclotomic polynomials.
Amer. Math. Monthly, 120:537–545, 2013.

[42] B. Zhang. A note on ternary cyclotomic polynomials. Bull. Korean Math. Soc,
51(4):949–955, 2014.

[43] J. Zhao and X. Zhang. A proof of the corrected Beiter conjecture. arXiv:0910.2770,
2009.

98



APPENDIX

99



Appendix A

Maple Codes

A.1 Utilities

restart:

with(numtheory):

with(ListTools):

with(plots):

with(plottools):

with(FileTools):

unprotect(negate):

unprotect(rotate):

hwp := proc(f)

local fe;

fe := expand(f);

return nops([coeffs(f)]);

end:

hw := proc(n)

return hwp(cyclotomic(n,x));

end:

plist := proc(n,r,t,N)

local S,i,p;

S := [];

p := t;

for i from 1 to N do

p := nextprime(p);
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while p mod n <> r or n mod p = 0 do

p := nextprime(p);

od:

S := [op(S),p];

od;

return S;

end:

findprime := proc(p0,n,r)

local q,p,P;

for q from ceil((p0+1-r)/n) to 1000 do

p := n*q + r;

if isprime(p) then return p fi;

od:

print("findprime: FAIL"):

end:

list_plot := proc(C,w,h)

local i,P,X;

P := [];

for i from 0 to nops(C)-1 do

P := [op(P),[i-0.5,C[i+1]],[i+0.5,C[i+1]]];

od;

P := display(CURVES(P),color=red,thickness=1);

X := display(CURVES([[-0.5,0],[w-0.5,0]]),linestyle=dot, thickness=1);

return display(P,X, axes=none,view=-h..h,size=[w*5,(h+1)*20]);

end:

A.2 Partition

block := proc(m,p,i,j)

local f,r,q,c,Cij,e,l;

q := iquo(p,m);

r := irem(p,m);

f := cyclotomic(m*p,x);

c := k->coeff(f,x,k);

if j < q then

l := m-1;

else

l := r-1;
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fi;

Cij := [seq(c(i*p+j*m+e),e=0..l)];

return Cij;

end:

partition := proc(m,p)

local q,r,k,h,P,j,i,Cij;

k := phi(m)-1;

q := iquo(p,m):

r := irem(p,m):

h := norm(cyclotomic(m*p,x),infinity):

P := Array(0..q,0..k):

for j from 0 to q do

for i from 0 to k do

Cij := block(m,p,i,j);

P[j,i] := list_plot(Cij,m,h);

od;

od:

return display(Array(P));

end:

A.3 Operation

truncate := (A,s) -> A[1..s]:

negate := A -> map(a->-a,A):

flip := A -> Reverse(A):

rotate := (A,s) -> Rotate(A,s):

expan := (A,s) -> [seq(op([A[i],0$(s-1)]),i=1..nops(A)-1),A[-1]]:

operations := proc(A,t,r,re)

local w,h,P;

w := nops(A);

h := max(map(a->abs(a),A));

P := Array(1..2,1..5);

P[1,1] := list_plot(A, w,h);

P[2,1] := list_plot(truncate(A,t), w,h);

P[1,2] := list_plot(A, w,h);

P[2,2] := list_plot(negate(A), w,h);
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P[1,3] := list_plot(A, w,h);

P[2,3] := list_plot(flip(A), w,h);

P[1,4] := list_plot(A, w,h);

P[2,4] := list_plot(rotate(A,r), w,h);

P[1,5] := list_plot(A, w,h);

P[2,5] := list_plot(expan(A,re), w*re,h);

display(P);

end:

A.4 Structure 1

structure1 := proc(m,p)

local k,h,q,r,PP,P,j,i,Cij;

k := phi(m)-1;

h := norm(cyclotomic(m*p,x),infinity);

q := iquo(p,m);

r := irem(p,m);

PP := []:

for j from 0 to q-1 do

P := [];

for i from 0 to k do

Cij := block(m,p,i,j);

P := [op(P),list_plot(Cij,m,h)];

od;

PP := [op(PP),P];

od:

display(Array(PP));

end:

A.5 Structure 2

structure2 := proc(m,p)

local h,k,q,r,C0,TC0,Cq,P,i;

k := phi(m)-1;

h := norm(cyclotomic(m*p,x),infinity);

q := iquo(p,m);
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r := irem(p,m);

P := Array(1..3,0..k);

for i from 0 to k do

C0[i] := block(m,p,i,0);

P[1,i] := list_plot(C0[i],m,h);

od;

for i from 0 to k do

TC0[i] := truncate(C0[i],r);

P[2,i] := list_plot(TC0[i],m,h);

od;

for i from 0 to k do

Cq[i] := block(m,p,i,q);

P[3,i] := list_plot(Cq[i],m,h);

od;

display(Array(P));

end:

A.6 Structure 3

structure3 := proc(m,p)

local h,k,r,pt,q1,q2,P,Cp,Cpt,i;

k := phi(m)-1;

h := norm(cyclotomic(m*p,x),infinity);

q1 := iquo(p,m);

r := irem(p,m);

pt := findprime(p,m,r);

q2 := iquo(pt,m);

print(evaln(pt)=pt);

P := Array(1..2,0..k);

for i from 0 to k do

Cp[i] := block(m,p,i,0);

P[1,i] := list_plot(Cp[i],m,h);

od;
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for i from 0 to k do

Cpt[i] := block(m,pt,i,0);

P[2,i] := list_plot(Cpt[i],m,h);

od;

display(Array(P));

end:

A.7 Structure 4

structure4 := proc(m,p)

local h,k,r,i,pt,rt,it,P,C,RC,NRC,Ct;

h := norm(cyclotomic(m*p,x),infinity);

k := phi(m)-1;

r := irem(p,m);

rt := -r mod m;

pt := findprime(m,m,rt);

print(evaln(pt)=pt);

P := Array(1..4,0..k);

for i from 0 to k do

C[i] := block(m,p,i,0);

P[1,i] := list_plot(C[i],m,h);

od;

for i from 0 to k do

RC[i] := rotate(C[i],r);

P[2,i] := list_plot(RC[i],m,h);

od;

for i from 0 to k do

NRC[i] := negate(RC[i]);

P[3,i] := list_plot(NRC[i],m,h);

od;

for i from 0 to k do

it := k - i;

Ct[it] := block(m,pt,it,0);

P[4,i] := list_plot(Ct[it],m,h);

od;
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display(Array(P));

end:

A.8 Structure 5

structure5 := proc(m,p)

local h,k,r,i,rt,it,P,C,FC,RFC,Ct;

k := phi(m)-1;

h := norm(cyclotomic(m*p,x),infinity);

r := irem(p,m);

rt := k-r mod m;

P := Array(1..4,0..k);

for i from 0 to k do

C[i] := block(m,p,i,0);

P[1,i] := list_plot(C[i],m,h);

od;

for i from 0 to k do

FC[i] := flip(C[i]);

P[2,i] := list_plot(FC[i],m,h);

od;

for i from 0 to k do

RFC[i] := rotate(FC[i],rt);

P[3,i] := list_plot(RFC[i],m,h);

od;

for i from 0 to k do

it := k - i;

Ct[it] := block(m,p,it,0);

P[4,i] := list_plot(Ct[it],m,h);

od;

display(Array(P));

end:
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A.9 Norm

algorithm_norm := proc (m,p,k)

local r,p1,p2,N1,N2,f1,f2, A, B;

r := irem(p,m);

p1 := findprime(m,m,r);

p2 := findprime(p1,m,r);

f1 := cyclotomic(m*p1,x);

f2 := cyclotomic(m*p2,x);

N1 := (norm(f1,k))^k;

N2 := (norm(f2,k))^k;

A := (N2-N1)/(p2-p1) ;

B := N1-A*p1;

return (A*p+B)^(1/k);

end:

compare_norm := proc(m,ps,k)

local p,r,tp,tn,wp,wn;

printf("%4s %10s %4s %18s %15s %15s\n","m","p",

"r","Norm(mp)","prev(sec)","new(sec)");

for p in ps do

r := irem(p,m);

tn := time(): wn := algorithm_norm (m,p,k); tn := time() - tn;

tp := time(): wp := norm(cyclotomic(m*p,x),k); tp := time() - tp;

printf("%4d %10d %4d %18f %15.3f %15.3f\n",m,p,r,wp,tp,tn);

od:

end:

A.10 Mid terms

M := proc(m,p)

local f;

f := cyclotomic(m*p,x);

return coeff(f,x,phi(m*p)/2);

end:

algorithm_M := proc(m,p)

local r,p0,mid;

r := irem(p,m);

p0 := findprime(m,m,r);
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mid := M(m,p0);

return mid;

end:

compare_M := proc(m,ps)

local p,r,tp,tn,wp,wn;

printf("%4s %10s %4s %12s %10s %10s\n","m","p","r","M(mp)"

,"prev(sec)","new(sec)");

for p in ps do

r := irem(p,m);

tn := time(): wn := algorithm_M (m,p); tn := time() - tn;

tp := time(): wp := M(m,p); tp := time() - tp;

if wp <> wn then print("ERROR:",m,p,r,wn,wp); return fi;

printf("%4d %10d %4d %12d %10.3f %10.3f\n",m,p,r,wp,tp,tn);

od:

end:

A.11 Number of Terms

Nt := proc (m,p,c)

local nt,i,f,ph;

f := cyclotomic (m*p,x);

nt := 0;

ph := phi(m*p);

for i from 0 to ph do

if c =coeff(f,x,i) then

nt:= nt+1;

fi;

od:

return nt;

end:

algorithm_Nt := proc (m,p,c)

local r,p1,p2,N1,N2, A, B;

r := irem(p,m);

p1 := findprime(m,m,r);

p2 := findprime(p1,m,r);

N1 := Nt(m,p1,c);

N2 := Nt(m,p2,c);

A := (Nt2-Nt1)/(p2-p1) ;
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B := N1-A*p1;

return A*p+B;

end:

compare_Nt := proc(m,ps,c)

local p,r,tp,tn,wp,wn;

printf("%4s %10s %4s %18s %15s %15s\n",

"m","p","r","Nt(mp,c)","prev(sec)","new(sec)");

for p in ps do

r := irem(p,m);

tn := time(): wn := algorithm_Nt (m,p,c); tn := time() - tn;

tp := time(): wp := Nt(m,p,c); tp := time() - tp;

printf("%4d %10d %4d %18f %15.3f %15.3f\n",m,p,r,wp,tp,tn);

od:

end:

ntc := proc(L,c)

local h,n;

h := 0;

for n in L do

h := h + ‘if‘(n=c, 1, 0);

od;

return h;

end:

ABmpc := proc(m,p,c)

local k,h,q,r,A,B,i,Ci0;

k := phi(m)-1;

q := iquo(p,m);

r := irem(p,m);

A := 0:

B := 0;

for i from 0 to k do

Ci0 := block(m,p,i,0);

A := A + ntc(Ci0,c);

B := B + ntc(Ci0[1..r],c);

od;

return A/m, B-r*A/m;

end:
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Amp := proc(m,p,c)

local k,h,q,r,A,B,i,Ci0;

k := phi(m)-1;

q := iquo(p,m);

r := irem(p,m);

A := []:

for i from 0 to k do

Ci0 := block(m,p,i,0);

A := [op(A), ntc(Ci0,c)];

od;

return add(A[i],i=1..nops(A)),A;

end:
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