ABSTRACT

AL-KATEEB, ALA'A QASEM MOHAMMAD. Structures and Properties of Cyclotomic Polynomials. (Under the direction of Hoon Hong.)

The cyclotomic polynomial $\Phi_{n}(x)$ is the monic polynomial in $\mathbb{Z}[x]$ whose zeros are the primitive n-th roots of unity. It has numerous application in number theory, abstract algebra and cryptography. Thus it is important to understand its structures and properties. In this dissertation, we report several newly found structures and properties of Φ_{n}.

Let $n=m p$, where m is an odd square-free integer and $p>m$ is a prime number. Let $q=\operatorname{quo}(p, m)$ and $r=\operatorname{rem}(p, m)$. Let $f_{m, p, i}$ be the i-th digit of $\Phi_{m p}$ in the radix x^{p}. Let $f_{m, p, i, j}$ be the j-th digit of $f_{m, p, i}$ in the radix x^{m}. Let $C_{m, p, i, j}$ be the list of coefficients of $f_{m, p, i, j}$.

The newly found structures are as follows:

1. $C_{m, p, i, 0}=\cdots=C_{m, p, i, q-1}$.
2. $C_{m, p, i, q}$ is a truncation of $C_{m, p, i, 0}$.

$$
\begin{array}{ll}
C_{m, p, i, q}=(1) & \text { if } r=1 \text { and } i=0 \\
C_{m, p, i, q}=(0) & \text { if } r=1 \text { and } i>0
\end{array}
$$

3. Let $p-\tilde{p} \equiv_{m} 0$. Then $C_{m, p, i, 0}=C_{m, \tilde{p}, i, 0}$.
4. Let $p+\tilde{p} \equiv_{m} 0$. Then $C_{m, \tilde{p}, i, 0}$ is a negated/rotated version of $C_{m, p, i, 0}$.
5. Let $i+\tilde{\imath}=\varphi(m)-1$. Then $C_{m, p, \tilde{\imath}, 0}$ is a flipped/rotated version of $C_{m, p, i, 0}$.

The newly found properties are as follows:

1. Norm: $\left\|\Phi_{m p}\right\|_{k}^{k}$ is linear over p 's that are equivalent modulo m. Moreover, $\left\|\Phi_{m p}\right\|_{k}^{k}$ and $\left\|\Phi_{m \tilde{p}}\right\|_{k}^{k}$ are parallel if $p+\tilde{p} \equiv_{m} 0$.
2. Middle term: Let $M\left(\Phi_{m p}\right)$ denote the coefficient of the midterm of $\Phi_{m p}$. Then we have $M\left(\Phi_{m p}\right)= \pm M\left(\Phi_{m \tilde{p}}\right)$ if $p \mp \tilde{p} \equiv_{m} 0$ and $M\left(\Phi_{m p}\right)= \pm 1$ if $p \equiv_{m} \pm 1$.
3. Number of terms: Let $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ denote the number of terms with the coefficient c in $\Phi_{m p}$. Then $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ is linear over p 's that are equivalent modulo m. Moreover, $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ and $\mathrm{Nt}_{-c}\left(\Phi_{m \tilde{p}}\right)$ are parallel if $p+\tilde{p} \equiv_{m} 0$.
4. Number of terms in $\Phi_{p_{1} p_{2} p_{3}}$: We provide explicit formulas for the number of terms in $\Phi_{p_{1} p_{2} p_{3}}$ for some special families of p_{1}, p_{2} and p_{3}.
(C) Copyright 2016 by Ala'a Qasem Mohammad Al-Kateeb

All Rights Reserved

Structures and Properties of Cyclotomic Polynomials
by
Ala'a Qasem Mohammad Al-Kateeb

A dissertation submitted to the Graduate Faculty of North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Mathematics

Raleigh, North Carolina
2016

APPROVED BY:

Eunjeong Lee
Seth Sullivant
Chair of Advisory Committee

DEDICATION

I dedicate this work to my husband, Amer, who has been a constant source of support and encouragement during the challenges of graduate school, life and motherhood. I am very thankful to you for your help and constant support during that long and hard trip. I also dedicate it to my parents, my great father and my precious mother who have always loved me unconditionally, for their endless support and motivation. I dedicate it also to my siblings, and finally, to my three little angels: Sara, Mohammad and Salma.

BIOGRAPHY

Al-Kateeb was born in Irbid a nice northern city in Jordan. She is a wife and a mother of three kids. She received her elementary and secondary education in Irbid, graduating in 2003. Al-Kateeb joined the math department at Yarmouk University in fall 2003. During her undergraduate studies she developed interests in Abstract algebra, number theory and the history of mathematics. Besides, Al-Kateeb has pursued interests in mathematics educational activities. In 2007, Al-Kateeb graduated with a B. S. in Mathematics and was on the top of her class. Al-Kateeb finished her master degree in Mathematic 2009 and then she worked as a mathematics teacher in a high school for one year. After that she worked as a mathematics lecturer in Yarmouk University in Jordan, the school that gave her a PhD scholarship. Al-Kateeb enrolled in the graduate program of NCSU in 2012. After graduation she will return back to Jordan to start her job as an assistant professor of mathematics.

ACKNOWLEDGEMENTS

My utmost and most sincere gratitude goes to my advisor, Prof. Hoon Hong, for the continuous support of my Ph.D study and related research and for his patience, motivation, and immense knowledge. He helped me to learn how to think, organise my work and even more how to slowdown and control my stress.

My appreciation and utmost thanks goes to Prof. Eunjeong Lee whose help and collaborations was so precious and crucial in completing this dissertation and its related research.

My sincere thanks also goes to my doctoral committee, Prof. Ernie Stitzinger, Prof. Seth Sullivant, Dr. Ricky Liu and Prof. David Aspnes, for their insightful comments and encouragement.

I also would like to thank my friend and classmate Mary Ambrosino for the helpful discussions and also all my friends in the department especially Ranya Ali.

Finally, I would like to thank Yarmouk university for giving me the scholarship and supporting my study.

TABLE OF CONTENTS

List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Review 5
2.1 Cyclotomic polynomials 5
2.2 Structures of cyclotomic polynomials 14
2.3 Property: norm 17
2.4 Property: middle term 18
2.5 Property: number of terms 19
2.6 Inverse cyclotomic polynomials 22
Chapter 3 Structures 25
3.1 Main results 26
3.2 Proofs 32
Chapter 4 Property: Norm 46
4.1 Main Results 47
4.2 Proofs 49
4.3 Application 50
Chapter 5 Property: Middle term 54
5.1 Main results 55
5.2 Proofs 55
5.3 Application 59
Chapter 6 Property: Number of terms 61
6.1 Main results 62
6.2 Proofs 64
6.3 Application 66
Chapter 7 Property: Number of terms in $\Phi_{p_{1} p_{2} p_{3}}$ 70
7.1 Main Results 70
7.2 Proof 74
References 96
APPENDIX 99
Appendix A Maple Codes 100
A. 1 Utilities 100
A. 2 Partition 101
A. 3 Operation 102
A. 4 Structure 1 103
A. 5 Structure 2 103
A. 6 Structure 3 104
A. 7 Structure 4 105
A. 8 Structure 5 106
A. 9 Norm 107
A. 10 Mid terms 107
A. 11 Number of Terms 108

LIST OF TABLES

Table 4.1 Norms of $\Phi_{m p}$, where $m=105$ and $r=1$ 51
Table 4.2 Norms of $\Phi_{m p}$, where $m=105$ and $r=1$ 52
Table $4.3\left\|\Phi_{m p}\right\|_{2}$ where $m=165$ 53
Table 5.1 Time needed computing $M\left(\Phi_{m p}\right)$ 60
Table 6.1 $\mathrm{Nt}_{1}\left(\Phi_{105 p}\right)$ 67
Table $6.2 \quad \mathrm{Nt}_{2}\left(\Phi_{105 p}\right)$ 68
Table $6.3 \mathrm{Nt}_{3}\left(\Phi_{165 p}\right)$ 69

Chapter 1

Introduction

In this dissertation, we study a fundamental family of polynomials in number theory, namely the family of cyclotomic polynomials. A cyclotomic polynomial $\Phi_{n}(x)$ is the monic polynomial in $\mathbb{Z}[x]$ whose zeros are the primitive n-th roots of unity.

Example 1.1.

$$
\begin{array}{ll}
\Phi_{1}(x)=-1+x & \Phi_{2}(x)=1+x \\
\Phi_{3}(x)=1+x+x^{2} & \Phi_{4}(x)=1+x^{2} \\
\Phi_{5}(x)=1+x+x^{2}+x^{3}+x^{4} & \Phi_{6}(x)=1-x+x^{2} \\
\Phi_{7}(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6} & \Phi_{8}(x)=1+x^{4} \\
\Phi_{9}(x)=1+x^{3}+x^{6} & \Phi_{10}(x)=1-x+x^{2}-x^{3}+x^{4}
\end{array}
$$

This set of polynomials has numerous application in number theory, abstract algebra and cryptography:

1. Some important theorems were proved using the properties of those polynomial
like:
(a) Wedderburn's theorem for finite division rings (see [5]).
(b) Proving a special case of Dirichlet's theorem on primes in arithmetic progressions (see [23]).
2. Some applications in cryptography:
(a) investigating the efficiencies of certain class of cryptosystems (see[27])
(b) constructing cryptosystems (see [34, 39])

Thus it is important to understand its structures and properties. In this dissertation, we report several newly found structures and properties.

In Chapter 2, we review the definition, various known structures and properties of cyclotomic polynomials. We also review the definition of inverse cyclotomic polynomials and summarize some of its basic properties needed in the subsequent chapters.

In Chapter 3, we investigate the structure of cyclotomic polynomials. Let $n=m p$ where m is an odd square-free integer and $p>m$ is a prime number. Let $q=\operatorname{quo}(p, m)$ and $r=\operatorname{rem}(p, m)$. Let $f_{m, p, i}$ be the i-th "digit" of $\Phi_{m p}$ in the radix x^{p}. Let $f_{m, p, i, j}$ be the j-th "digit" of $f_{m, p, i}$ in the radix x^{m}. Let $C_{m, p, i, j}$ be the list of coefficients of $f_{m, p, i, j}$. Note that $C_{m, p, i, j}$ is a consecutive sub-list of the list of the coefficients of $\Phi_{m p}$. Hence they together form a partition of the list of the coefficients of $\Phi_{m p}$. We show the following structures on the partition (Theorem 3.1).

1. $C_{m, p, i, 0}=\cdots=C_{m, p, i, q-1}$
2. $C_{m, p, i, q}$ is a truncation of $C_{m, p, i, 0}$.

$$
C_{m, p, i, q}=(1) \quad \text { if } r=1 \text { and } i=0
$$

$$
C_{m, p, i, q}=(0) \quad \text { if } r=1 \text { and } i>0
$$

3. Let $p-\tilde{p} \equiv_{m} 0$. Then $C_{m, p, i, 0}=C_{m, \tilde{p}, i, 0}$.
4. Let $p+\tilde{p} \equiv_{m} 0$. Then $C_{m, \tilde{p}, i, 0}$ is a negated/rotated version of $C_{m, p, i, 0}$.
5. Let $i+\tilde{\imath}=\varphi(m)-1$. Then $C_{m, p, \tilde{\imath}, 0}$ is a flipped/rotated version of $C_{m, p, i, 0}$.

We point out that the structural finding 1 was implicitly present in a recursive formula and resulting algorithms in Arnold and Monagan ([4] Section 4), but they did not make it explicit, maybe because their main concern was computational efficiency, not structural study. We have made it explicit because the explicit structure is useful for studying many other properties.

In Chapter 4, we investigate the norm of cyclotomic polynomial $\left\|\Phi_{m p}\right\|_{k}$. We show the following properties of norms (Theorem 4.1).

1. $\left\|\Phi_{m p}\right\|_{k}^{k}$ is linear over p 's that are equivalent modulo m.
2. $\left\|\Phi_{m p}\right\|_{k}^{k}$ and $\left\|\Phi_{m \tilde{p}}\right\|_{k}^{k}$ are parallel if $p+\tilde{p} \equiv_{m} 0$.

In Chapter 5, we investigate the middle term of a cyclotomic polynomial. Let $M\left(\Phi_{m p}\right)$ denote the coefficient of the midterm of $\Phi_{m p}$. We show the following properties of midterms (Theorem 5.1).

1. $M\left(\Phi_{m p}\right)= \pm M\left(\Phi_{m \tilde{p}}\right)$ if $p \mp \tilde{p} \equiv_{m} 0$.
2. $M\left(\Phi_{m p}\right)= \pm 1$ if $p \equiv_{m} \pm 1$.

In Chapter 6, we investigate the number of terms with prescribed coefficient in Φ_{n}. Let $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ denote the number of terms with the coefficient c in $\Phi_{m p}$. We show the following properties of number of terms (Theorem 6.1).

1. $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ is linear over p 's that are equivalent modulo m.
2. $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ and $\mathrm{Nt}_{-c}\left(\Phi_{m \tilde{p}}\right)$ are parallel if $p+\tilde{p} \equiv_{m} 0$.

Finally, in Chapter 7, we study the number of terms in $\Phi_{p_{1} p_{2} p_{3}}$. We report the following findings on(Theorem 7.1). Suppose that $p_{2} \equiv_{p_{1}}+1$ or -1 . Then

1. $\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)=N \cdot\left(p_{3}-1\right)+1 \quad$ if $p_{3} \equiv_{p_{1} p_{2}}+1$
2. $\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)=N \cdot\left(p_{3}+1\right)-1 \quad$ if $p_{3} \equiv_{p_{1} p_{2}}-1$
where

$$
\begin{aligned}
& N=\frac{2}{3} \frac{\left(p_{1}-1\right)\left(\left(p_{1}+4\right)\left(p_{2}-1\right)-\left(r_{2}-1\right)\right)}{p_{1} p_{2}} \\
& r_{2}=\operatorname{rem}\left(p_{2}, p_{1}\right)
\end{aligned}
$$

Chapter 2

Review

In this chapter we will review the definition and various known structures and properties of cyclotomic polynomials.

2.1 Cyclotomic polynomials

In this section we will define the cyclotomic polynomials and review some of their basic structures and properties.

Let n be a positive integer. Then the zeros of $x^{n}-1$ are all of the form $e^{\frac{2 \pi i k}{n}}$ where $1 \leq k \leq n$,

$$
x^{n}-1=\prod_{k=1}^{n}\left(x-e^{\frac{2 \pi i k}{n}}\right)
$$

Let $R(n)=\left\{e^{\frac{2 \pi i k}{n}}, k=0, \cdots, n\right\}$ be the set of n-th roots of unity. Clearly $R(n)$ is an abelian group under multiplication. An n-th root of unity is called primitive if it is a generator of the group $R(n)$, i.e, $\operatorname{gcd}(k, n)=1$.

Definition 2.1 (Cyclotomic Polynomials). The cyclotomic polynomial Φ_{n} is defined to
be the polynomial whose zeros are the primitive n-th roots of unity, i.e,

$$
\Phi_{n}=\prod_{\substack{\operatorname{gcd}(k, n)=1 \\ 1 \leq k \leq n}}\left(x-e^{\frac{2 \pi i k}{n}}\right)
$$

Example 2.1. Note

n	Φ_{n}
1	$x-e^{2 \pi i}=-1+x$
2	$x-e^{\frac{2 \pi i}{2}}=x-(-1)=1+x$
3	$\left.\left(x-e^{\frac{\pi i}{3}}\right) \cdot\left(x-e^{\frac{2 \pi i}{3}}\right)=\left(x+\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) \cdot\left(x+\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right)=1+x+x^{2}$
4	$\left(x-e^{\frac{2 \pi i}{4}}\right) \cdot\left(x-e^{\frac{6 \pi i}{4}}\right)=(x-i) \cdot(x+i)=1+x^{2}$
5	$\left(x-e^{\frac{2 \pi i}{5}}\right) \cdot\left(x-e^{\frac{4 \pi i}{5}}\right) \cdot\left(x-e^{\frac{6 \pi i}{5}}\right) \cdot\left(x-e^{\frac{8 \pi i}{5}}\right)=1+x+x^{2}+x^{3}+x^{4}$

Based on the last example, one might think that all coefficients of cyclotomic polynomials are either ± 1 or 0 , but this is not generally true. The first integer n for which Φ_{n} has a coefficient different from $-1,0$ or 1 is $n=105$. That was found in 1883 by Migotti [35].

$$
\begin{aligned}
\Phi_{105}= & 1+x+x^{2}-x^{5}-x^{6}-2 x^{7}-x^{8}-x^{9}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\
& +x^{17}-x^{20}-x^{22}-x^{24}-x^{26}-x^{28}+x^{31}+x^{32}+x^{33}+x^{34}+x^{35} \\
& +x^{36}-x^{39}-x^{40}-2 x^{41}-x^{42}-x^{43}+x^{46}+x^{47}+x^{48}
\end{aligned}
$$

the coefficients of x^{7} and x^{41} equal -2 .
Now review some basic structures and properties of Φ_{n}. For this, we first recall two essential functions in number theory, Euler's and Möbius functions. Those functions are useful in proving many basic structures and properties of Φ_{n}.

Definition 2.2 (Euler's function). Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ be the cardinality of $\{k: 1 \leq k \leq$ n and $\operatorname{gcd}(k, n)=1\}$.

Remark 2.1. From the definition of $\varphi(n)$ we can see that the degree of Φ_{n} is $\varphi(n)$.

Example 2.2. We have

$$
\begin{aligned}
& \varphi(1)=1, \varphi(2)=1 \\
& \varphi(5)=4, \varphi(10)=8
\end{aligned}
$$

Lemma 2.1. Let $n, m \in \mathbb{Z}$. Then

1. $n=\sum_{d \mid n} \varphi(d)$
2. If $\operatorname{gcd}(n, m)=1$, then $\varphi(n m)=\varphi(n) \varphi(m)$
3. If p is prime, then $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$
4. If $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ is the prime factorization of n, then

$$
\varphi(n)=\prod_{i=1}^{k} p_{i}^{e_{i}-1}\left(p_{i}-1\right)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

Proof. For proof see any elementary number theory textbook such as [15, 25, 37]
Definition 2.3 (Möbius function μ). The function $\mu: \mathbb{Z}^{+} \rightarrow\{-1,0,1\}$ is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
1 & \text { if } n=1 \\
(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \\
0 & \text { otherwise }
\end{array}\right.
$$

where p_{i} 's are distinct prime numbers.

Example 2.3. We have

$$
\begin{aligned}
& \mu(2)= \\
& \mu(6)=1 \\
& \mu(12)=0
\end{aligned}
$$

Theorem 2.1 (Möbius Inversion Formula). Let $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be functions such that $f(n)=\prod_{d \mid n} g(d)$. Then $g(n)=\sum_{d \mid n}\left(f\left(\frac{n}{d}\right)\right)^{\mu(d)}$.

Proof. Note

$$
\begin{aligned}
\prod_{d \mid n}\left(f\left(\frac{n}{d}\right)\right)^{\mu(d)} & =\prod_{d \mid n}\left(\prod_{e \left\lvert\, \frac{n}{d}\right.} g(e)\right)^{\mu(d)} \\
& =\prod_{e \mid n}\left(\prod_{d \left\lvert\, \frac{n}{e}\right.} g(e)^{\mu(d)}\right) \\
& =\prod_{e \mid n}\left(g(e)^{\sum_{d \left\lvert\, \frac{n}{e}\right.} \mu(d)}\right) \\
& =g(n)
\end{aligned}
$$

Theorem 2.2. For $n \geq 1$,

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Proof. Let ζ be an n-th primitive root of unity such that $\zeta^{d}=1$, then ζ is also a d-th root of unity and hence a root of Φ_{d}. Since $d \mid n$ we have ζ is a root of $x^{n}-1$. Since both polynomials $x^{n}-1$ and $\prod_{d \mid n} \Phi_{d}(x)$ are monic and have same roots then they are equal.

Theorem 2.3. For $n \geq 1$ and $x \neq \pm 1$,

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}=\prod_{d \mid n}\left(x^{\frac{n}{d}}-1\right)^{\mu(d)}
$$

Proof. We have from Theorem 2.2

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Let $f(n)=x^{n}-1$. Then by applying Theorem 2.1 on f we have

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{\frac{n}{d}}-1\right)^{\mu(d)}=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}
$$

Example 2.4. Let $n=45$. Then

$$
\begin{aligned}
\Phi_{45}(x) & =1-x^{3}+x^{9}-x^{12}+x^{15}+x^{24} \\
& =\prod_{d \mid 45}\left(x^{d}-1\right)^{\mu\left(\frac{45}{d}\right)} \\
& =(x-1)^{\mu(45)}\left(x^{3}-1\right)^{\mu(15)}\left(x^{5}-1\right)^{\mu(9)}\left(x^{9}-1\right)^{\mu(5)}\left(x^{15}-1\right)^{\mu(3)}\left(x^{45}-1\right)^{\mu(1)} \\
& =\left(x^{3}-1\right)^{1}\left(x^{9}-1\right)^{-1}\left(x^{15}-1\right)^{-1}\left(x^{45}-1\right)
\end{aligned}
$$

Theorem 2.4. We have $\Phi_{n}=\Phi_{\operatorname{rad}(n)}\left(x^{\frac{n}{\operatorname{rad}(n)}}\right)$.

Proof.

$$
\Phi_{n}=\prod_{d \mid n}\left(x^{\frac{n}{d}}-1\right)^{\mu(d)} \quad \text { by Theorem } 2.3
$$

$$
\begin{aligned}
& =\prod_{d \mid \operatorname{rad}(n)}\left(x^{\frac{n}{d}}-1\right)^{\mu(d)} \quad \text { since } \mu(k)=0 \text { if } k \text { is not square free } \\
& =\prod_{d \mid \operatorname{rad}(n)}\left(\left(x^{\left.\left.\frac{n}{\operatorname{rad}(n)}\right)^{\frac{\operatorname{rad}(n)}{d}}-1\right)^{\mu(d)}}\right.\right. \\
& =\Phi_{\operatorname{rad}(n)}\left(x^{\frac{n}{\operatorname{rad}(n)}}\right)
\end{aligned}
$$

Theorem 2.5. If $n \geq 3$ is odd, then $\Phi_{2 n}(x)=\Phi_{n}(-x)$.

Proof.

$$
\begin{array}{rlr}
\Phi_{2 n}(x) & =\prod_{d \mid 2 n}\left(x^{d}-1\right)^{\mu\left(\frac{2 n}{d}\right)} \\
& =\prod_{2 \mid d}\left(x^{d}-1\right)^{\mu\left(\frac{2 n}{d}\right)} \prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{2 n}{d}\right)} \quad d \text { is either odd or even } \\
& =\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{2 n}{d}\right)}\left(x^{2 d}-1\right)^{\mu\left(\frac{n}{d}\right)} \\
& =\prod_{d \mid n}\left(x^{d}+1\right)^{\mu\left(\frac{n}{d}\right)} & \text { since } \mu\left(\frac{2 n}{d}\right)=-\mu\left(\frac{n}{d}\right) \\
& =\prod_{d \mid n}\left(-x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)} & \\
& =\Phi_{n}(-x)
\end{array}
$$

Theorem 2.6. Let $n \geq 2$ and $\Phi_{n}=\sum_{s=0}^{\varphi(n)} a_{s} x^{s}$. Then we have

1. $\Phi_{n}=x^{\varphi(n)} \Phi_{n}\left(\frac{1}{x}\right)$
2. $a_{\varphi(n)-s}=a_{s}$ for $0 \leq s \leq \varphi(n)$

Proof. Since complex roots are coming in pairs we can write

$$
\Phi_{n}=\prod_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(x-e^{\frac{2 \pi i k}{n}}\right) \cdot\left(x-e^{\frac{-2 \pi i k}{n}}\right)=\prod_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(x^{2}-2 x \cos \left(\frac{2 \pi k}{n}\right)+1\right)
$$

Now

1. Note

$$
\begin{aligned}
x^{-\varphi(n)} \Phi_{n}(x) & =x^{-\varphi(n)} \prod_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(x^{2}-2 x \cos \left(\frac{2 \pi k}{n}\right)+1\right) \\
& =\prod_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(x^{2-\varphi(n)}-2 x^{1-\varphi(n)} \cos \left(\frac{2 \pi k}{n}\right)+x^{-\varphi(n)}\right) \\
& =\Phi_{n}\left(\frac{1}{x}\right)
\end{aligned}
$$

2. Note

$$
\Phi_{n}=\sum_{s=0}^{\varphi(n)} a_{s} x^{s}=\sum_{s=0}^{\varphi(n)} a_{s} x^{\varphi(n)-s}=\sum_{s=0}^{\varphi(n)} a_{\varphi(n)-s} x^{s}
$$

Example 2.5. Let $n=15$. Then $\varphi(15)=8$ and

$$
\Phi_{15}(x)=1-x+x^{3}-x^{4}+x^{5}-x^{7}+x^{8}
$$

Note

$$
\begin{aligned}
x^{8} \Phi_{15}\left(\frac{1}{x}\right) & =x^{8}\left(x^{-8}-x^{-7}+x^{-5}-x^{-4}+x^{-3}-x^{-1}+1\right) \\
& =1-x+x^{3}-x^{4}+x^{5}-x^{7}+x^{8} \\
& =\Phi_{15}(x)
\end{aligned}
$$

Clearly

$$
\begin{array}{ll}
a_{0}=a_{8}=1 & a_{1}=a_{7}=-1 \\
a_{2}=a_{6}=0 & a_{3}=a_{5}=1 \\
a_{4}=-1 &
\end{array}
$$

Example 2.6. We have

1. $\Phi_{3}(x)=1+x+x^{2}$
2. $\Phi_{9}(x)=\Phi_{3}\left(x^{3}\right)=1+x^{3}+x^{6}$
3. $\Phi_{18}(x)=\Phi_{9}(-x)=1-x^{3}+x^{6}$

Theorem 2.7. $\Phi_{n}(x) \in \mathbb{Z}[x]$ and monic.

Proof. We prove the theorem by induction on n.

1. $\Phi_{1}=x-1 \in \mathbb{Z}[x]$.
2. Assume $\Phi_{d} \in \mathbb{Z}[x]$ and monic for all $d<n$.
3. Recall $x^{n}-1=\Phi_{n} \cdot\left(\prod_{d \mid n, d<n} \Phi_{d}\right)$. From the induction hypothesis, it follows that $\prod_{d \mid n, d<n} \Phi_{d} \in \mathbb{Z}$ and monic. From the definition of Φ_{n}, obviously Φ_{n} a monic polynomial. Thus, $\Phi_{n} \in \mathbb{Q}[x]$ and monic. Since $x^{n}-1 \in \mathbb{Z}[x]$ and monic, we conclude that $\Phi_{n} \in \mathbb{Z}[x]$.

Theorem 2.8. Φ_{n} is irreducible over \mathbb{Q}.

Proof. There are many different proofs for this result. For n is prime number there are proofs by Gauss (1801), Kronecter (1845) and Eisenstien (1850). For general integer n there are Dedekind (1827), Landaue (1929) and Schure (1929). For more proofs and details one might see [41].

Theorem 2.9. For any $a \in \mathbb{Z}$ there exists $n \in \mathbb{N}$ such that a is a coefficient of Φ_{n}.
Proof. Let t be an odd integer such that $t>2$. Then it is well known [38] that there exist t distinct primes such that

$$
p_{1}<p_{2}<\cdots<p_{t}
$$

where $p_{1}+p_{2}>t$. Let $n=p_{1} \cdots p_{t}$ and $p=p_{t}$. Then

$$
\begin{array}{rlr}
\Phi_{n} & =\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)} & \\
& =\prod_{i=1}^{t} \frac{\left(x^{p_{1}}-1\right)}{(x-1)} & \text { since } n \text { is square free } \\
& \equiv_{x^{p+1}} \frac{\left(1-x^{p}\right)}{(1-x)}\left(1-x^{p_{1}}\right) \cdots\left(1-x^{p_{t-1}}\right) & t \text { is odd } \\
& \equiv_{x^{p+1}}\left(1+x+\cdots+x^{p-1}\right)\left(1-x^{p_{1}}-\cdots-x^{p_{t-1}}\right) & \text { since } p_{j}+p_{k}>p+1
\end{array}
$$

from the last product and the fact that each $p_{i}<p-1$ we have $a_{n}(p)=-t+1$, where $a_{n}(m)$ denotes the coefficient of x^{m} in $\Phi_{n}(x)$. Let

$$
S:=\left\{a_{n}(m) \mid \forall n, m \in \mathbb{N}\right\}
$$

Then we need to show that $S=\mathbb{Z}$. We do the following steps

1. Let $t=2$, then $\{-1,0,1\} \subset S$.
2. For $t \geq 3$, we have $a_{n}(p)=-t+1 \leq-2$. Thus $\{\ell \in \mathbb{Z}, \ell \leq-2\} \subset S$
3. Consider $\Phi_{2 n}$ where n is as defined above. Then $a_{2 n}(p)=-a_{n}(p)=t-1$. Thus since $t \geq 3$ we have $\{\ell \in \mathbb{Z}, \ell \geq 2\} \subset S$

Hence $S=\mathbb{Z}$

2.2 Structures of cyclotomic polynomials

Generally, there is no explicit non-recursive formula for computing the coefficients of Φ_{n}. In this section we summarize some of the well-known formulas/descriptions for determining the structure of the polynomial Φ_{n}.

Definition 2.4. Let $n=p_{1} \cdots p_{k}$ a product of k distinct prime numbers. Then Φ_{n} is called a cyclotomic polynomial of order k.

Remark 2.2. $\Phi_{p_{1} p_{2}}$ and $\Phi_{p_{1} p_{2} p_{3}}$ are called binary $(k=2)$ and ternary $(k=3)$ cyclotomic polynomial respectively, the binary and ternary are the first non trivial cases that has been studied.

The binary cyclotomic polynomial is the first non trivial case to be considered. There are many studies on these polynomials like $[10,13,20,26,32]$. The following theorem gives an explicit formula for $\Phi_{p_{1} p_{2}}$. It can be found in [32].

Theorem 2.10. Let s, r be integers such that $\left(p_{1}-1\right)\left(p_{2}-1\right)=r p_{1}+s p_{2}$. Then

$$
\Phi_{p_{1} p_{2}}=\left(\sum_{i=0}^{r} x^{i p_{1}}\right)\left(\sum_{j=0}^{s} x^{j p_{2}}\right)-\left(\sum_{i=r+1}^{p_{2}-1} x^{i p_{1}}\right)\left(\sum_{j=s+1}^{p_{1}-1} x^{j p_{2}}\right) x^{-p_{1} p_{2}}
$$

Moreover, for any $0 \leq k \leq\left(p_{1}-1\right)\left(p_{2}-1\right)$ we have

1. $a_{k}=1$ if and only if $k=i p_{1}+j p_{2}$ for some $i \in[0, r], j \in[0, s]$
2. $a_{k}=-1$ if and only if $k+p_{1} p_{2}=i p_{1}+j p_{2}$ for some $i \in\left[r+1, p_{2}-1\right], j \in\left[s+1, p_{1}-1\right]$
3. $a_{k}=0$ otherwise

Proof. Let

$$
f(x):=\left(\sum_{i=0}^{r} x^{i p_{1}}\right)\left(\sum_{j=0}^{s} x^{j p_{2}}\right)-\left(\sum_{i=r+1}^{p_{2}-1} x^{i p_{1}}\right)\left(\sum_{j=s+1}^{p_{1}-1} x^{j p_{2}}\right) x^{-p_{1} p_{2}}
$$

clearly $f \in \mathbb{Z}[x]$ is monic. We claim that $\operatorname{deg}(f)=\varphi\left(p_{1} p_{2}\right)$ and f vanishes at each primitive $p_{1} p_{2}$-th root of unity.

The degree of the first product is $r p_{1}+s p_{2}=\varphi\left(p_{1} p_{2}\right)$ and the degree of the second product is $\left(p_{2}-1\right) p_{1}+\left(p_{1}-1\right) p_{2}-p_{1} p_{2}=p_{1} p_{2}-p_{1}-p_{2}=\varphi\left(p_{1} p_{2}\right)-1$ thus $\operatorname{deg}(f)=\varphi\left(p_{1} p_{2}\right)$. Let ζ be a primitive $p_{1} p_{2}$-th primitive root of unity. Then

$$
\Phi_{p_{1} p_{2}}(\zeta)=0=\Phi_{p_{1}}\left(\zeta^{p_{2}}\right)=\Phi_{p_{2}}\left(\zeta^{p_{1}}\right)
$$

This implies that $\quad \sum_{i=0}^{r}\left(\zeta^{p_{1}}\right)^{i}=-\sum_{i=r+1}^{p_{2}-1}\left(\zeta^{p_{1}}\right)^{i}$ and $\sum_{j=0}^{s}\left(\zeta^{p_{2}}\right)^{j}=-\sum_{j=s+1}^{p_{1}-1}\left(\zeta^{p_{2}}\right)^{j}$ Thus $f(\zeta)=0$. Then $f(x)=\Phi_{p_{1} p_{2}}(x)$. All the monomials in f are different to see that assume they are not different, then there exists $i_{1}, i_{2} \in\left[0, p_{2}-1\right]$ and $j_{1}, j_{2} \in\left[0, p_{1}-1\right]$ such that $i_{1} p_{1}+j_{1} p_{2}=i_{2} p_{1}+j_{2} p_{2}$ or $i_{2} p_{1}+j_{2} p_{2}-p_{1} p_{2}$, then we have $p_{2} \mid\left(i_{1}-i_{2}\right)$. Hence $\left(i_{1}=i_{2}\right)$, similarly $j_{1}=j_{2}$.

Ternary cyclotomic polynomial is the second non trivial case to be considered. There are many studies on these polynomials like $[6,7,12,16,18,42]$ The following theorem gives some formulas for the coefficients $\Phi_{p_{1} p_{2} p_{3}}$. It can be found in $[8,14]$.

Theorem 2.11. Let $\Phi_{n}=\sum_{m=0}^{\varphi(n)} c_{m} x^{m}$. Then c_{m} is determined by the number of partitions of m of the form:

$$
m=a+\alpha p_{1} p_{2}+\beta p_{1} p_{3}+\gamma p_{2} p_{3}+\delta_{1} p_{2}+\delta_{2} p_{3}
$$

where $0 \leq a<p_{1}, \alpha, \beta, \gamma \geq 0$ and $\delta_{i} \in\{0,1\}$. If m has no such partition, then $c_{m}=0$. Each partition of m in the given form contributes +1 to the value of c_{m} if $\delta_{1}=\delta_{2}$, but -1 if $\delta_{1} \neq \delta_{2}$.

In $[1,3,4,2]$, Arnold and Monagan gave recursive formulas for the coefficients of arbitrary cyclotomic polynomials. Using them, they also gave several algorithms. Below we review a recursive formula.

Notation 2.1. Let

$$
\Phi_{m}=\sum_{i} b_{i} x^{i} \quad \Psi_{m}=\sum_{j} c_{j} x^{j} \quad \Phi_{m p}=\sum_{k} a_{k} x^{k}
$$

Theorem 2.12. We have

$$
a_{k}-a_{k-m}=-\sum_{i p+j=k} b_{i} c_{j}
$$

Proof. Note

$$
\begin{aligned}
\Phi_{m p}(x) & =\frac{\Phi_{m}\left(x^{p}\right)}{\Phi_{m}(x)} \\
& =\Phi_{m}\left(x^{p}\right) \Psi_{m}(x)\left(x^{m}-1\right)^{-1} \\
& =-\Phi_{m}\left(x^{p}\right) \Psi_{m}(x)\left(1-x^{m}\right)^{-1} \\
& =-\Phi_{m}\left(x^{p}\right) \Psi_{m}(x) \sum_{l \geq 0} x^{l m}
\end{aligned}
$$

Thus

$$
\sum_{k} a_{k} x^{k}=-\sum_{i} b_{i} x^{i p} \sum_{j} c_{j} x^{j} \sum_{l \geq 0} x^{l m}=-\sum_{\substack{i, j \\ l \geq 0}} b_{i} c_{j} x^{i p+j+l m}=-\sum_{k} \sum_{\substack{i p+j+l m=k \\ l \geq 0}} b_{i} c_{j} x^{k}
$$

Thus

$$
a_{k}=-\sum_{\substack{i p+j+l m=k \\ l \geq 0}} b_{i} c_{j}
$$

Note

$$
a_{k-m}=-\sum_{\substack{i p+j+l m=k-m \\ l \geq 0}} b_{i} c_{j}=-\sum_{\substack{i p+j+(l+1) m=k \\ l \geq 0}} b_{i} c_{j}=-\sum_{\substack{i p+j+l m=k \\ l \geq 1}} b_{i} c_{j}
$$

Thus

$$
a_{k}-a_{k-m}=-\sum_{\substack{i p+j+l m=k \\ l \geq 0}} b_{i} c_{j}+\sum_{\substack{i p+j+l m=k \\ l \geq 1}} b_{i} c_{j}=-\sum_{\substack{i p+j+l m=k \\ l=0}} b_{i} c_{j}=-\sum_{i p+j=k} b_{i} c_{j}
$$

2.3 Property: norm

The Norm of a mathematical object (polynomial, matrix, vector, etc) is a measuring tool for the size or length of that object, in this section we will define the norm for Φ_{n}.

Notation 2.2 (Norm of a polynomial). Let $f=a_{0}+\cdots+a_{n} x^{n}$. Then the k-norm of f is defined by

$$
\|f\|_{k}= \begin{cases}\left(\sum_{j=0}^{n}\left|a_{j}\right|^{k}\right)^{\frac{1}{k}} & \text { if } k<\infty \\ \max \left\{\left|a_{j}\right|, j=0, \cdots, n\right\} & \text { if } k=\infty\end{cases}
$$

Example 2.7. Let $f=x^{3}-2 x^{2}+5 x-3$. Then

1. $\|f\|_{1}=|1|+|-2|+|5|+|-3|=11$
2. $\|f\|_{2}=\left(|1|^{2}+|-2|^{2}+|5|^{2}+|-3|^{2}\right)^{\frac{1}{2}}=(39)^{\frac{1}{2}}=6.245$

Remark 2.3 (Height). Note that $\left\|\Phi_{n}\right\|_{\infty}=h\left(\Phi_{n}\right)=\max \left\{\left|a_{j}\right|, j=0, \cdots, n\right\}$, the height of $\Phi_{n} . \Phi_{n}$ is called flat when $h\left(\Phi_{n}\right)=1$. The flatness of cyclotomic polynomial has been studied heavily and there are many open problems in that area [11, 17, 29, 31, 42], also

In [21], Carlitz proved the following theorem for $\left\|\Phi_{n p}\right\|_{2}^{2}$, where n is a square-free odd integer and p is a prime number. We will extend this result to $\left\|\Phi_{n p}\right\|_{k}^{k}$ in Chapter 4

Theorem 2.13 (Carlitz). Let $r=\operatorname{rem}(p, n)$. Then

$$
\left\|\Phi_{n p}\right\|_{2}^{2}=A_{n, r} p+B_{n, r}
$$

where $A_{n, r}, B_{n, r} \in \mathbb{Q}$ and depends only on n and r.

2.4 Property: middle term

In this section we define the middle term of Φ_{n} and present its well-known properties
Notation 2.3. $M\left(\Phi_{n}\right)=$ the coefficient of $x^{\frac{\varphi(n)}{2}}$ in Φ_{n}, middle term of Φ_{n}.
Example 2.8. Note

n	Φ_{n}	$M\left(\Phi_{n}\right)$
p	$1+\cdots+x^{p-1}$	1
8	$1+x^{4}$	0
15	$1-x+x^{3}-x^{4}+x^{5}-x^{7}+x^{8}$	-1
21	$1-x+x^{3}-x^{4}+x^{6}-x^{8}+x^{9}-x^{11}+x^{12}$	1

It has been shown that $M\left(\Phi_{p_{1} p_{2}}\right)= \pm 1$ this result can be found in [10, 32], however, this is not true when n is a multiple of three primes or more, for example $M\left(\Phi_{385}\right)=$ $-3, M\left(\Phi_{4785}\right)=5$ and $M\left(\Phi_{7735}\right)=-7$.

Theorem 2.14. $M\left(\Phi_{p_{1} p_{2}}\right)=(-1)^{r}$, where r is $\left(p_{1}-1\right)\left(p_{2}-1\right)=r p_{1}+s p_{2}$.
Proof. Let $\left(p_{1}-1\right)\left(p_{2}-1\right)=r p_{1}+s p_{2}, r$ and s are both even or both odd otherwise $r p_{1}+s p_{2}=\left(p_{1}-1\right)\left(p_{2}-1\right)$ will be odd. Let $\ell=\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{2}$. Then we consider the following cases:

1. If r and s are even, then $\ell=\left(\frac{r}{2}\right) p_{1}+\left(\frac{s}{2}\right) p_{2}$ and then by theorem 2.10 on page 14 we have $a_{\ell}=1=(-1)^{r}$.
2. If r and s are odd, then we can write $\ell+p_{1} p_{2}=r p_{1}+s p_{2}+p_{1} p_{2}=\left(\frac{r+p_{2}}{2}\right) p_{1}+\left(\frac{s+p_{1}}{2}\right) p_{2}$, now $\frac{r+p_{2}}{2} \in\left[r+1, p_{2}-1\right]$ and $\frac{s+p_{1}}{2} \in\left[s+1, p_{1}-1\right]$ since $r \leq p_{2}-1$ and $s \leq p_{1}-2$. Thus by theorem 2.10 on page $14 a_{\ell}=-1=(-1)^{r}$.
3. If $p_{1}=2$, then $r=\frac{p_{2}-1}{2}=\ell$ and $s=0 . \Phi_{2 p_{2}}=\Phi_{p_{2}}(-x)=\sum_{i=0}^{p_{2}-1}(-x)^{i}$, here $a_{\ell}=(-1)^{\ell}=(-1)^{r}$

Generally, the value of $M\left(\Phi_{n}\right)$ is a point of interest. It has been shown in [24] that $M\left(\Phi_{n}\right)$ is either zero or an odd integer.

Theorem 2.15 (Dredsen). For $n \geq 3$ the middle coefficient of Φ_{n} is either zero (when n is a power of 2) or an odd integer.

2.5 Property: number of terms

In this section we will discuss the number of terms with prescribed coefficient in Φ_{n}

Notation 2.4. Let f be a polynomial. Then $\mathrm{Nt}_{c}(f)$ denotes the number of terms with the coefficient c in f.

Example 2.9. Note

c	-2	-1	0	1	2
$\mathrm{Nt}_{c}\left(\Phi_{5}\right)$	0	0	0	5	0
$\mathrm{Nt}_{c}\left(\Phi_{7}\right)$	0	0	0	7	0
$\mathrm{Nt}_{c}\left(\Phi_{15}\right)$	0	3	2	4	0
$\mathrm{Nt}_{c}\left(\Phi_{35}\right)$	0	8	8	9	0
$\mathrm{Nt}_{c}\left(\Phi_{105}\right)$	2	13	16	18	0
$\mathrm{Nt}_{c}\left(\Phi_{165}\right)$	0	33	24	14	10

Notation 2.5. Let $\Phi_{n}=\sum_{s=0}^{\varphi(n)} a_{s} x^{s}$. Then we denote

1. $C\left(\Phi_{n}\right)=\left\{a_{s}: s=0, \ldots, \varphi(n)\right\}$, that is, the set of all the coefficients of Φ_{n}.
2. $\operatorname{hw}\left(\Phi_{n}\right)$ be the number of nonzero terms of Φ_{n}.

Remark 2.4. $\operatorname{hw}\left(\Phi_{\mathrm{n}}\right)=\sum_{0 \neq c \in C\left(\Phi_{n}\right)} \mathrm{Nt}_{\mathrm{c}}\left(\Phi_{n}\right)=\varphi(n)+1-\mathrm{Nt}_{0}\left(\Phi_{n}\right)$.
$\operatorname{hw}\left(\Phi_{p_{1} p_{2}}\right)$ has been found by Carlitz [20] but $\operatorname{hw}\left(\Phi_{n}\right)$ where n is a product of three primes or more is still an open problem.

Theorem 2.16 (Carlitz). Let $n=p_{1} \cdot p_{2}$. Then

$$
\operatorname{hw}\left(\Phi_{p_{1} p_{2}}\right)=2 \overline{p_{1}} \cdot \overline{p_{2}}-1
$$

where $p_{1} \cdot \overline{p_{1}} \equiv_{p_{2}} p_{2}-1$ and $p_{2} \cdot \overline{p_{2}} \equiv_{p_{1}} p_{1}-1$.

Proof. Let $\theta\left(p_{1} p_{2}\right)=\#\left\{0 \leq i \leq \varphi\left(p_{1} p_{2}\right): c_{i}=1\right\}$. Since all the coefficients of $\Phi_{p_{1} p_{2}}$ are either $-1,0$ or 1 and $\Phi_{p_{1} p_{2}}(1)=1$, we have

$$
\theta\left(p_{1} p_{2}\right)=1+\#\left\{0 \leq i \leq \varphi\left(p_{1} p_{2}\right): c_{i}=-1\right\}
$$

Now

$$
\begin{aligned}
\Phi_{p_{1} p_{2}} & =\frac{(1-x)\left(1-x^{p_{1} p_{2}}\right)}{\left(1-x^{p_{1}}\right)\left(1-x^{p_{2}}\right)} \\
& =\frac{1-x}{1-x^{p_{1}}} \sum_{j=0}^{p_{1}-1} x^{j p_{2}} \\
& =\frac{1}{1-x^{p_{1}}}\left(\sum_{j=0}^{p_{1}-1} x^{j p_{2}}-\sum_{i=0}^{p_{1}-1} x^{i p_{2}+1}\right)
\end{aligned}
$$

Since $\Phi_{p_{1} p_{2}}$ is a polynomial then each $x^{j p_{2}}$ associate a term $x^{i p_{2}+1}$ such that $i p_{2}+1 \equiv{ }_{p_{1}} j p_{2}$ in other words

$$
\left(x^{p_{1}}-1\right) \mid\left(x^{j p_{2}}-x^{i p_{2}+1}\right)
$$

Hence

$$
(i-j) p_{2} \equiv_{p_{1}}-1
$$

so $i-j=-\overline{p_{2}}$. Then

$$
\begin{aligned}
\Phi_{p_{1} p_{2}} & =\frac{1}{1-x^{p_{1}}}\left(\sum_{j=0, j-\overline{p_{2}}<p_{1}}^{p_{1}-1}\left(x^{j p_{2}}-x^{\left(j-\overline{p_{2}}\right) p_{2}+1}\right)-\sum_{j=0, j-\overline{p_{2}} \geq p_{1}}^{p_{1}-1}\left(x^{j p_{2}}-x^{\left.\left(j-\overline{\left.p_{2}-p_{1}\right) p_{2}+1}\right)\right)}\right.\right. \\
& =\frac{1}{1-x^{p_{1}}}\left(\left(1-x^{\overline{p_{2} p_{2}+1}}\right) \sum_{j=0}^{p_{1}-1+\overline{p_{2}}} x^{j p_{2}}-\left(1-x^{\left(p_{1}+\overline{p_{2}}\right) p_{2}-1}\right) \sum_{i=0}^{p_{1}-1+\overline{p_{2}}} x^{i p_{2}+1}\right)
\end{aligned}
$$

the first part gives the positive terms and the second one gives the negative ones, clearly

$$
\theta\left(p_{1} p_{2}\right)=\frac{\left(p_{1}+\overline{p_{2}}\right)\left(1-p_{2} \overline{p_{2}}\right)}{p_{1}}
$$

Hence

$$
\begin{aligned}
\operatorname{hw}\left(\Phi_{p_{1} p_{2}}\right) & =2 \theta\left(p_{1} p_{2}\right)-1 \\
& =2 \frac{\left(p_{1}+\overline{p_{2}}\right)\left(1-p_{2} \overline{p_{2}}\right)}{p_{1}}-1 \\
& =2 \cdot \overline{p_{1}} \cdot \overline{p_{2}}-1
\end{aligned}
$$

since $p_{2} \cdot\left(p_{1}+\overline{p_{2}}\right) \equiv{ }_{p_{1}} p_{1}-1$ and $p_{1} \cdot \frac{1-p_{2} \overline{p_{2}}}{p_{1}} \equiv_{p_{2}} p_{2}-1$.
Example 2.10. Let $p_{1}=3$. Then

$$
\begin{aligned}
\operatorname{hw}\left(\Phi_{3 p_{2}}\right) & =2 \cdot \overline{3} \cdot \overline{p_{2}}-1 \\
& = \begin{cases}2 \cdot \overline{3}-1 & p_{2} \equiv_{3} 1 \\
4 \cdot \overline{3}-1 & p_{2} \equiv_{3} 2\end{cases}
\end{aligned}
$$

2.6 Inverse cyclotomic polynomials

In this section we define the inverse cyclotomic polynomial Ψ_{n} and present some of its basic properties. As Φ_{n} is defined as the monic polynomial whose zeros are the primitive n-th roots of unity, Ψ_{n} is defined to be the monic polynomial whose zeros are the non primitive n-th roots of unity. There are some recent studies on the inverse cyclotomic polynomials [19, 28, 36].

Definition 2.5 (Inverse cyclotomic polynomial). The inverse cyclotomic polynomial
$\Psi_{n}(x)$ is defined to be the monic polynomial of degree $\psi(n)$ such that

$$
\Psi_{n}=\prod_{\substack{g c d(k, n)>1 \\ 1 \leq k \leq n}}\left(x-e^{\frac{2 \pi i k}{n}}\right)
$$

Example 2.11. Consider some cases with small values of n.

- $n=1: \Psi_{1}=\frac{x-1}{\Phi_{1}}=1$
- $n=2: \Psi_{2}=\frac{x^{2}-1}{x+1}=-1+x$
- $n=4: \Psi_{4}=\frac{x^{4}-1}{x^{2}+1}=-1+x^{2}$
- $n=3: \Psi_{3}=\frac{x^{3}-1}{x^{2}+x+1}=-1+x$

Lemma 2.2. We have

$$
\Psi_{n}=-\prod_{\substack{k \mid n \\ k<n}}\left(1-x^{k}\right)^{-\mu\left(\frac{n}{k}\right)}
$$

Lemma 2.3. We have

1. $\Psi_{2 n}=\left(1-x^{n}\right) \cdot \Psi_{n}(-x)$ if n is odd.
2. $\Psi_{n p}=\Psi_{n}\left(x^{p}\right)$ if $p \mid n$.
3. $\Psi_{n p}=\Psi_{n}\left(x^{p}\right) \cdot \Phi_{n}$ if $p \nmid n$.
4. $\Psi_{n}=\Psi_{\operatorname{rad}(n)}\left(x^{\frac{n}{\operatorname{rad}(n)}}\right)$.
5. $\Psi_{n}=-\Psi_{n}\left(\frac{1}{x}\right) \cdot x^{n-\varphi(n)}$.

Proof.

1. $\Psi_{2 n}=\frac{x^{2 n}-1}{\Phi_{2 n}}=\frac{x^{2 n}-1}{\Phi_{n}(-x)}=\left(x^{2 n}-1\right) \frac{\Psi_{n}(-x)}{-\left(x^{n}+1\right)}=\left(1-x^{n}\right) \Psi_{n}(-x)$.
2. $\Psi_{n p}=\frac{x^{n p}-1}{\Phi_{n p}}=\frac{x^{n p}-1}{\Phi_{n}\left(x^{p}\right)}=\frac{\left(x^{p}\right)^{n}-1}{\Phi_{n}\left(x^{p}\right)}=\Psi_{n}\left(x^{p}\right)$.
3. $\Psi_{n p}=\frac{x^{n p}-1}{\Phi_{n p}}=\frac{x^{n p}-1}{\Phi_{n}\left(x^{p}\right)} \Phi_{n}=\Psi_{n}\left(x^{p}\right) \Phi_{n}$.
4. $\Psi_{n}=\frac{x^{n}-1}{\Phi_{n}}=\frac{x^{n}-1}{\Phi_{\mathrm{rad}(n)}\left(x^{\left.\frac{n}{\mathrm{rad}(n)}\right)}\right.}=\frac{\left(x^{\left.\frac{n}{\mathrm{rad}(n)}\right)^{\mathrm{rad}(n)}-1}\right.}{\Phi_{\mathrm{rad}(n)}\left(x^{\mathrm{rad}(n)}\right)}=\Psi_{\mathrm{rad}(n)}\left(x^{\frac{n}{\mathrm{rad}(n)}}\right)$.
5. $\Psi_{n}\left(\frac{1}{x}\right)=\frac{\left(\frac{1}{x}\right)^{n}-1}{\Phi_{n}\left(\frac{1}{x}\right)}=\frac{1-x^{n}}{x^{n} \Phi_{n}\left(\frac{1}{x}\right)}=\frac{1-x^{n}}{x^{n-\varphi(n)} \Phi_{n}}=-\frac{\Psi_{n}}{x^{n-\varphi(n)}}$, hence $\Psi_{n}=-\Psi_{n}\left(\frac{1}{x}\right) \cdot x^{n-\varphi(n)}$

Proposition 2.1. We have

1. $\Psi_{p}=-1+x$.
2. $\Psi_{p_{1} p_{2}}=\left(-1+x^{p_{2}}\right) \cdot \Phi_{p_{1}}$.

Chapter 3

Structures

Introduction

In this chapter, we investigate the structure of cyclotomic polynomials.
Let m be an odd square-free positive integer and p be a prime number such that ${ }^{1}$ $p>m$. Let $q=\operatorname{quo}(p, m)$ and $r=\operatorname{rem}(p, m)$, the quotient and the reminder of p divided by m respectively. Let $f_{m, p, i}$ be the i-th "digit" of $\Phi_{m p}$ in the radix x^{p}. Let $f_{m, p, i, j}$ be the j-th "digit" of $f_{m, p, i}$ in the radix x^{m}. Let $C_{m, p, i, j}$ be the list of coefficients of $f_{m, p, i, j}$. Note that $C_{m, p, i, j}$ is a consecutive sub-list of the list of the coefficients of $\Phi_{m p}$. Hence they together form a partition of the list of the coefficients of $\Phi_{m p}$. We show the following structures on the partition (Theorem 3.1).

1. $C_{m, p, i, 0}=\cdots=C_{m, p, i, q-1}$
2. $C_{m, p, i, q}$ is a truncation of $C_{m, p, i, 0}$.

$$
C_{m, p, i, q}=(1) \quad \text { if } r=1 \text { and } i=0
$$

[^0]$$
C_{m, p, i, q}=(0) \quad \text { if } r=1 \text { and } i>0
$$
3. Let $p-\tilde{p} \equiv_{m} 0$. Then $C_{m, p, i, 0}=C_{m, \tilde{p}, i, 0}$.
4. Let $p+\tilde{p} \equiv_{m} 0$. Then $C_{m, \tilde{p}, i, 0}$ is a negated/rotated version of $C_{m, p, i, 0}$.
5. Let $i+\tilde{\imath}=\varphi(m)-1$. Then $C_{m, p, \tilde{i}, 0}$ is a flipped/rotated version of $C_{m, p, i, 0}$.

We point out that the structural finding 1 was implicitly present in a recursive formula and resulting algorithms in Arnold and Monagan ([4] Section 4), but they did not make it explicit, maybe because their main concern was computational efficiency, not structural study. We have made it explicit because the explicit structure is useful for studying many other properties.

3.1 Main results

In this section, we will state the main results of this chapter precisely. We will use the following notations.

Notation 3.1 (Partition). Let $\Phi_{m p}=\sum_{v \geq 0} c_{v} x^{v}$. For $0 \leq i \leq \varphi(m)-1$ and $0 \leq j \leq q$, let

$$
C_{m, p, i, j}:=\left(c_{i p+j m}, \ldots, c_{i p+j m+l}\right)
$$

where if $j<q$ then $l=m-1$ else $l=r-1$.

We will illustrate the idea of partition by the following two examples.

Example 3.1. We will visualize a polynomial by a graph where the horizonal axis stands for the exponents and the vertical axis stands for the corresponding coefficients.

Let $m=11$ and $p=41$. Then $\phi(m)-1=9, q=3$ and $r=8$. The partition of the list of the coefficients of $\Phi_{m p}$ into $C_{m, p, i, j}$'s is illustrated by the following diagram.

Example 3.2. We will visualize a polynomial by a graph where the horizonal axis stands for the exponents and the vertical axis stands for the corresponding coefficients.

Let $m=15$ and $p=53$. Then $\phi(m)-1=7, q=3$ and $r=8$. The partition of the list of the coefficients of $\Phi_{m p}$ into $C_{m, p, i, j}$'s is illustrated by the following diagram.

We need to define some operations on $C_{m, p, i, j}$'s.

Notation 3.2 (Operation). For $A=\left(a_{0}, \ldots a_{m-1}\right)$ and $0 \leq s<m$, let

1. $\mathcal{T}_{s} A:=\left(a_{0}, \ldots, a_{s-1}\right) \quad$ "Truncate from the s-th element"
2. $\mathcal{N} A:=\left(-a_{0}, \ldots,-a_{m-1}\right)$ "Negate"
3. $\mathcal{F} A:=\left(a_{m-1}, \ldots, a_{0}\right)$
"Flip"
4. $\mathcal{R}_{s} A:=\left(a_{s}, \ldots, a_{m-1}, a_{0}, \ldots, a_{s-1}\right) \quad$ "Rotate by $s "$
5. $\mathcal{E}_{s} A:=\left(a_{0}, 0, \ldots, 0, a_{1}, 0, \ldots, 0, \ldots, a_{m-1}\right) \quad$ "Expand by $s "$
where s-1 zeros are padded between two consecutive elements

Example 3.3 (Operation). Let $A=(1,2,3,4,5)$. Then

We can now state the main theorem of this chapter regarding $C_{m, p, i, j}$'s.
Theorem 3.1 (Structure). We have

1. $C_{m, p, i, 0}=\cdots=C_{m, p, i, q-1}$
2. $C_{m, p, i, q}=\mathcal{T}_{r} C_{m, p, i, 0}$

$$
\begin{array}{ll}
C_{m, p, i, q}=(1) & \text { if } r=1 \text { and } i=0 \\
C_{m, p, i, q}=(0) & \text { if } r=1 \text { and } i>0
\end{array}
$$

3. $C_{m, \tilde{p}, i, 0}=C_{m, p, i, 0} \quad$ if $\tilde{p}-p \equiv_{m} 0$
4. $C_{m, \tilde{p}, \tilde{i}, 0}=\mathcal{R}_{r} \mathcal{N} C_{m, p, i, 0} \quad$ if $\tilde{p}+p \equiv_{m} 0$ and $\tilde{\imath}+i=\varphi(m)-1$
5. $C_{m, p, \tilde{\imath}, 0}=\mathcal{R}_{\tilde{r}} \mathcal{F} C_{m, p, i, 0} \quad$ if $\tilde{\imath}+i=\varphi(m)-1$ and $\tilde{r}+r \equiv_{m} \varphi(m)-1,0 \leq \tilde{r}<m$

Now we present a set of examples to illustrate the main theorem.
Example 3.4 (Structure 1). Let $m=11$ and $p=31$. Then $\varphi(m)-1=9$
and $q=2$. Note

Example 3.5 (Structure 1). Let $m=15$ and $p=53$. Then $\varphi(m)-1=7$ and $q=3$. Note

i	0	1	2	3	4	5	6	7	
$C_{m, p, i, 0}$									
$C_{m, p, i, 1}$				ת	ת				
$C_{m, p, i, 2}$				π	ก		Ω	L	

Example 3.6 (Structure 2). Let $m=15$ and $p=53$. Then $\varphi(m)-1=7$, $q=3$ and $r=8$. Note

Example 3.7 (Structure 2). Let $m=15$ and $p=31$. Then $\varphi(m)-1=7$, $q=2$ and $r=1$. Note

Example 3.8 (Structure 3). Let $m=11, p=31$ and $\tilde{p}=53$.

Then $\varphi(m)-1=9$. Note

Example 3.9 (Structure 3). Let $m=15, p=53$ and $\tilde{p}=83$.
Then $\varphi(m)-1=7$. Note

Example 3.10 (Structure 4). Let $m=11, p=41$ and $\tilde{p}=47$.
Then $\varphi(m)-1=9$ and $r=8$. Note

$$
\begin{aligned}
& \begin{array}{lllllllllll}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllllll}
\tilde{\imath} & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0
\end{array} \\
& C_{m, \tilde{p}, \tilde{i}, 0} \text { ॠ- }
\end{aligned}
$$

Example 3.11 (Structure 4). Let $m=15, p=53$ and $\tilde{p}=37$.

Then $\varphi(m)-1=7$ and $r=8$ ．Note

Example 3.12 （Structure 5）．Let $m=11$ and $p=31$ ．
Then $\varphi(m)-1=9, r=9$ and $\tilde{r}=0$ ．Note

i	0	1	2	3	4	5	6	7	8	9
$C_{m, p, i, 0}$		\＃	\＃に	\＃』r	\＃®®	TIRTR	TIRF	－	\square	\checkmark
$\mathcal{F} C_{m, p, i, 0}$		\square	－	\rightarrow TRF	ת®R	\＃ルロ	\＃ルー	凡几	そ	
$\mathcal{R}_{\tilde{r}} \mathcal{F} C_{m, p, i, 0}$		$\square \square$	－	TMR	HITH	\＃ッチロ	\＃\＃r	凡几	そ	
τ	9	8	7	6	5	4	3	2	1	0
$C_{m, p, \tilde{z}, 0}$	\square	$\square \square$	－	\rightarrow TRF	תルハF	\＃an		凡几	冗	\square

Example 3.13 （Structure 5）．Let $m=15$ and $p=53$ ．

Then $\varphi(m)-1=7, r=8$ and $\tilde{r}=14$. Note

3.2 Proofs

In this section we prove Theorem 3.1. Previously we defined $C_{m, p, i, j}$ as a list of coefficients. However, it will be useful to have them in polynomial format, because it is easier to work with polynomials rather than lists. Hence we begin by reformulating Notations 3.1 and 3.2 in terms of polynomials.

Notation 3.3 (Partition). Let $f_{m, p, i}$ be the i-th digit of $\Phi_{m p}$ in the radix x^{p} and let $f_{m, p, i, j}$ be the j-th digit of $f_{m, p, i}$ in the radix x^{m}, that is,

$$
\begin{aligned}
\Phi_{m p} & =\sum_{i=0}^{\varphi(m)-1} f_{m, p, i} x^{i p} \\
f_{m, p, i} & =\sum_{i=0}^{q} f_{m, p, i, j} x^{j m}
\end{aligned}
$$

Lemma 3.1. $C_{m, p, i, j}$ is the list of the coefficients of $f_{m, p, i, j}$, that is,

$$
f_{m, p, i, j}=\sum_{k=0}^{l} c_{i p+m j+k} x^{k}
$$

where if $j<q$ then $l=m-1$ else $l=r-1$.

Proof. Immediate from comparing Notations 3.1 and 3.3.

Example 3.14. Let $m=5$ and $p=13$. Then

$$
\begin{aligned}
\Phi_{5 \cdot 13} & =1-x+x^{5}-x^{6}+x^{10}-x^{11}+x^{13}-x^{14}+x^{15}-x^{16}+x^{18}-x^{19} \\
& +x^{20}-x^{21}+x^{23}-x^{24}+x^{25}-x^{27}+x^{28}-x^{29}+x^{30}-x^{32}+x^{33} \\
& -x^{34}+x^{35}-x^{37}+x^{38}-x^{42}+x^{43}-x^{47}+x^{48}
\end{aligned}
$$

Hence

$$
\begin{array}{ll}
f_{5,13,0,0}=1-x & f_{5,13,0,2}=1-x \\
f_{5,13,1,0}=1-x+x^{2}-x^{3} & f_{5,13,1,2}=1-x+x^{2} \\
f_{5,13,2,0}=-x+x^{2}-x^{3}+x^{4} & f_{5,13,2,2}=-x+x^{2} \\
f_{5,13,3,0}=-x^{3}+x^{4} & f_{5,13,3,2}=0
\end{array}
$$

Notation 3.4 (Operation). For $f=a_{0}+\cdots+a_{m-1} x^{m-1}$ and $0 \leq s<m$, let

1. $\mathcal{T}_{s} f:=a_{0} x^{0}+\cdots+a_{s-1} x^{s-1}$
2. $\mathcal{N} f:=-a_{0} x^{0}-\cdots-a_{m-1} x^{m-1}$
3. $\mathcal{F} f:=a_{m-1} x^{0}+\cdots+a_{0} x^{m-1}$
4. $\mathcal{R}_{s} f:=a_{s} x^{0}+\cdots+a_{m-1} x^{(m-1-s)}+a_{0} x^{(m-s)}+\cdots+a_{s-1} x^{m-1}$
5. $\mathcal{E}_{s} f:=a_{0} x^{0}+a_{1} x^{s}+\cdots+a_{m-1} x^{s(m-1)}$

Lemma 3.2. Let f be a polynomial of degree less than m and $0 \leq s<m$. Then we have

1. $\mathcal{T}_{s} f=\operatorname{rem}\left(f, x^{s}\right)$
2. $\mathcal{N} f=-f$
3. $\mathcal{F} f=x^{m-1} f\left(x^{-1}\right)$
4. $\mathcal{R}_{s} f=\operatorname{rem}\left(x^{m-s} f, x^{m}-1\right)$
5. $\mathcal{E}_{s} f=f\left(x^{s}\right)$

Proof. Immediate from Notation 3.4.

Example 3.15. Let $f=1-3 x+x^{2}-2 x^{3}+x^{5}, m=6$ and $s=3$. Then we have

1. $\mathcal{T}_{3} f=\operatorname{rem}\left(f, x^{3}\right)=1-3 x^{2}+x^{2}$
2. $\mathcal{N} f=-f=-1+3 x-x^{2}+2 x^{3}-x^{5}$
3. $\mathcal{F} f=x^{5} f\left(x^{-1}\right)=1-2 x^{2}+x^{3}-3 x^{4}+x^{5}$
4. $\mathcal{R}_{3} f=\operatorname{rem}\left(x^{3} f, x^{6}-1\right)=-2+x^{2}+x^{3}-3 x^{4}+x^{5}$
5. $\mathcal{E}_{3} f=f\left(x^{3}\right)=1-3 x^{3}+x^{6}-2 x^{9}+x^{15}$

Proposition 3.1.

1. $\operatorname{rem}(i(m-r), m)=m-\operatorname{rem}(i r, m)$
2. $x^{\operatorname{rem}(\square, m)}=\operatorname{rem}\left(x^{\square}, x^{m}-1\right)$

Proof. Obvious.

Lemma 3.3. We have

$$
\Phi_{m p}=-\Phi_{m}\left(x^{p}\right) G
$$

where

$$
G=\Psi_{m} \sum_{u \geq 0} x^{u m}
$$

Proof. Note

$$
\begin{aligned}
\Phi_{m p} & =\frac{\Phi_{m}\left(x^{p}\right)}{\Phi_{m}} & & \text { from } p \nmid m \\
& =\Phi_{m}\left(x^{p}\right) \frac{\Psi_{m}}{x^{m}-1} & & \text { from Definition 2.5 } \\
& =-\Phi_{m}\left(x^{p}\right) \Psi_{m} \frac{1}{1-x^{m}} & & \text { by rearranging } \\
& =-\Phi_{m}\left(x^{p}\right) \Psi_{m} \sum_{u \geq 0} x^{u m} & & \text { by carrying out a formal expansion of } \frac{1}{1-x^{m}} \\
& =-\Phi_{m}\left(x^{p}\right) G & &
\end{aligned}
$$

Notation 3.5. Let

$$
G=\Psi_{m} \sum_{u \geq 0} x^{u m}=\sum_{t \geq 0} e_{t} x^{t}
$$

For $0 \leq i \leq \varphi(m)-1$ and $0 \leq j \leq q$, let

$$
g_{m, p, i, j}=\sum_{k=0}^{l} e_{i p+m j+k} x^{k}
$$

where if $j<q$ then $l=m-1$ else $l=r-1$.
Lemma 3.4. For all $0 \leq i \leq \varphi(m)-1$, we have

1. $g_{m, p, i, 0}=\cdots=g_{m, p, i, q-1}=\mathcal{R}_{\operatorname{rem}(i r, m)} \Psi_{m}$
2. $g_{m, p, i, q}=\mathcal{T}_{r} g_{m, p, i, 0}$

Proof. Let $0 \leq j \leq q$. Let $\Psi_{m}=\sum_{s \geq 0} b_{s} x^{s}$. Since $\operatorname{deg} \Psi_{m}<m$, we see immediately that $e_{t}=b_{\mathrm{rem}(t, m)}$ for $0 \leq t$. We consider two cases:

1. $j<q$

$$
\left.\begin{array}{rr}
g_{m, p, i, j}=\sum_{k=0}^{m-1} e_{i p+m j+k} x^{k} & \text { from Notation } 3.5 \\
=\sum_{k=0}^{m-1} b_{\mathrm{rem}(i r+k, m)} x^{k} & \text { since } e_{i p+j m+k}
\end{array}=b_{\mathrm{rem}(i p+j m+k, m)}\right)
$$

$=\sum_{s=0}^{m-1} b_{s} x^{\mathrm{rem}(s+i(m-r), m)} \quad$ by re-indexing k with $s=\operatorname{rem}(i r+k, m)$ which can be easy shown to be a bijection $\mathbb{N}_{\leq m-1} \rightarrow \mathbb{N}_{\leq m-1}$ with the inverse map $k=\operatorname{rem}(s+i(m-r), m)$

$$
=\sum_{s=0}^{m-1} b_{s} \operatorname{rem}\left(x^{s+i(m-r)}, x^{m}-1\right) \quad \text { by Proposition } 3.1
$$

$$
=\operatorname{rem}\left(\sum_{s=0}^{m-1} b_{s} x^{s+i(m-r)}, x^{m}-1\right)
$$

$$
\text { since } b_{s} \text { does not depend on } x
$$

$$
=\operatorname{rem}\left(x^{i(m-r)} \sum_{s=0}^{m-1} b_{s} x^{s}, x^{m}-1\right) \quad \text { by factoring out } x^{i(m-r)}
$$

$$
=\operatorname{rem}\left(x^{i(m-r)} \Psi_{m,} x^{m}-1\right) \quad \text { by recalling } \Psi_{m}=\sum_{s \geq 0} b_{s} x^{s}
$$

$$
=\operatorname{rem}\left(x^{\operatorname{rem}(i(m-r), m)} \Psi_{m,} x^{m}-1\right) \quad \text { by Proposition } 3.1
$$

$$
\begin{array}{ll}
=\operatorname{rem}\left(x^{m-\operatorname{rem}(i r, m)} \Psi_{m,} x^{m}-1\right) & \\
=\text { by Proposition } 3.1 \begin{array}{l}
\operatorname{rem}(i r, m) \\
\Psi_{m}
\end{array} & \text { from Lemma } 3.2
\end{array}
$$

2. $j=q$

$$
\begin{aligned}
g_{m, p, i, q} & =\sum_{k=0}^{r-1} e_{i p+m q+k} x^{k} & & \text { from Notation 3.5 } \\
& =\sum_{k=0}^{r-1} b_{\mathrm{rem}(i r+k, m)} x^{k} & & \text { since } e_{i p+j m+k}=b_{\operatorname{rem}(i p+j m+k, m)}=b_{\operatorname{rem}(i r+k, m)} \\
& =\mathcal{T}_{r} g_{m, p, i, 0} & & \text { from the second line in the previous case. }
\end{aligned}
$$

Lemma 3.5. For all $0 \leq i \leq \varphi(m)-1$ and $0 \leq j \leq q$, we have

$$
f_{m, p, i, j}=-\sum_{s=0}^{i} a_{s} g_{m, p,(i-s), j}
$$

where $\Phi_{m}=\sum_{s \geq 0} a_{s} x^{s}$.

Proof. Note

$$
\begin{array}{rlrl}
\Phi_{m p} & =-\Phi_{m}\left(x^{p}\right) G & & \text { from Lemma 3.3 } \\
& =-\left(\sum_{s \geq 0} a_{s} x^{s p}\right) G & & \text { from } \Phi_{m}=\sum_{s \geq 0} a_{s} x^{s} \\
& =-\sum_{s \geq 0} a_{s} x^{s p} & \sum_{k \geq 0} e_{k} x^{k} & \\
& =-\sum_{s \geq 0} a_{s} x^{s p} & \sum_{i \geq 0} \sum_{j=0}^{q} g_{m, p, i, j} e_{k} x^{k} \\
& x^{j p} & & \text { from Notation 3.5 and } q=\frac{p-r}{m}
\end{array}
$$

$$
\begin{array}{ll}
=-\sum_{s \geq 0} \sum_{i \geq 0} \sum_{j=0}^{q} a_{s} g_{m, p, i, j} x^{j m+(s+i) p} & \text { by collecting the exponents of } x \\
=-\sum_{i \geq 0} \sum_{\substack{s, i \geq 0 \\
s+\bar{s}=i}} \sum_{j=0}^{q} a_{s} g_{m, p, \bar{s}, j} x^{j m+i p} & \\
=-\sum_{i \geq 0} \sum_{s=0}^{i} \sum_{j=0}^{q} a_{s} g_{m, p,(i-s), j} x^{j m+i p} & \text { by re-indexing } \\
=-\sum_{i \geq 0} \sum_{j=0}^{q} \sum_{s=0}^{i} a_{s} g_{m, p,(i-s), j} x^{j m+i p} & \text { by re-indexing and } \bar{s}=i-s \\
=\sum_{i \geq 0}\left(\sum_{j=0}^{q}\left(-\sum_{s=0}^{i} a_{s} g_{m, p,(i-s), j}\right) x^{j m}\right) x^{i p} & \text { by changing the summation order } \\
\end{array}
$$

Recall that $\operatorname{deg} g_{m, p, i, j}<m$. Thus

$$
\operatorname{deg} \sum_{s=0}^{i} a_{s} g_{m, p,(i-s), j}<m
$$

Furthermore $\operatorname{deg} g_{m, p, i, q}<r$. Recall that $p=q m+r$. Thus

$$
\operatorname{deg} \sum_{j=0}^{q}\left(-\sum_{s=0}^{i} a_{s} g_{m, p,(i-s), j}\right) x^{j m}<p
$$

Thus finally from Notation 3.3, we have

$$
f_{m, p, i, j}=-\sum_{s=0}^{i} a_{s} g_{m, p,(i-s), j}
$$

Lemma 3.6. For $0 \leq i \leq \varphi(m)-1$ and $0 \leq j \leq q$,

$$
f_{m, p, i, j}= \begin{cases}\mathcal{N} \mathcal{R}_{\mathrm{rem}(i r, m)}\left(\Psi_{m} \cdot \mathcal{E}_{r} \mathcal{I}_{i+1} \Phi_{m}\right) & 0 \leq j \leq q-1 \\ \mathcal{T}_{r} f_{m, p, i, 0} & j=q\end{cases}
$$

Proof. We consider two cases:

1. $j<q$

$$
\begin{aligned}
f_{m, p, i, j} & =-\sum_{s=0}^{i} a_{s} g_{m, p,(i-s), j} & & \text { from Lemma 3.5 } \\
& =-\sum_{s=0}^{i} a_{s} \mathcal{R}_{\operatorname{rem}((i-s) r, m)} \Psi_{m} & & \text { from Lemma 3.4 } \\
& =-\sum_{s=0}^{i} a_{s} \operatorname{rem}\left(x^{m-\operatorname{rem}((i-s) r, m)} \Psi_{m}, x^{m}-1\right) & & \text { from Lemma 3.2 } \\
& =-\operatorname{rem}\left(x^{\operatorname{rem}(m-i r, m)} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s r}, x^{m}-1\right) & & \text { by Proposition 3.1 } \\
& =-\operatorname{rem}\left(x^{m-\operatorname{rem}(i r, m)} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s r}, x^{m}-1\right) & & \text { by Proposition 3.1 } \\
& =\mathcal{N} \mathcal{R}_{\operatorname{rem}(i r, m)}\left(\Psi_{m} \cdot \mathcal{E}_{r} \mathcal{T}_{i+1} \Phi_{m}\right) & &
\end{aligned}
$$

2. $j=q$

$$
\begin{array}{rlr}
f_{m, p, i, q} & =-\sum_{s=0}^{i} a_{s} g_{m, p,(i-s), q} & \\
& =-\sum_{s=0}^{i} a_{s} \mathcal{T}_{r} g_{m, p,(i-s), 0} & \\
& =-\mathcal{T}_{r} \sum_{s=0}^{i} a_{s} g_{m, p,(i-s), 0} & \text { from Lemma } 3.4
\end{array}
$$

$$
=\mathcal{T}_{r} f_{m, p, i, 0}
$$

Lemma 3.7. We have $\operatorname{rem}\left(\Psi_{m} \Phi_{m}\left(x^{r}\right), x^{m}-1\right)=0$

Proof. Note

$$
\begin{aligned}
\operatorname{rem}\left(\Psi_{m} \Phi_{m}\left(x^{r}\right), x^{m}-1\right) & =\operatorname{rem}\left(\Psi_{m} \Phi_{m}\left(x^{p}\right), x^{m}-1\right) & & \Phi_{m}\left(x^{p}\right) \equiv_{x^{m}-1} \Phi_{m}\left(x^{r}\right) \\
& =\operatorname{rem}\left(\Psi_{m} \Phi_{m} \Phi_{m p}, x^{m}-1\right) & & \Phi_{m}\left(x^{p}\right)=\Phi_{m} \Phi_{m p} \\
& =\operatorname{rem}\left(\left(\Phi_{m p}\right)\left(x^{m}-1\right), x^{m}-1\right) & & \Psi_{m} \Phi_{m}=x^{m}-1 \\
& =0 & & \operatorname{rem}\left(x^{m}-1, x^{m}-1\right)=0
\end{aligned}
$$

Finally we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 (Structure 1). From Lemma 3.6 on page 38 we see that $f_{m, p, i, j}$ does not depend on j. Hence

$$
C_{m, p, i, 0}=\cdots=C_{m, p, i, q-1}
$$

Proof of Theorem 3.1 (Structure 2). From Lemma 3.6 it is immediate that

$$
C_{m, p, i, q}=\mathcal{T}_{r} C_{m, p, i, 0}
$$

From now on, let $r=1$. Note

$$
\begin{aligned}
f_{m, p, i, q} & =\mathcal{T}_{1} \mathcal{N} \mathcal{R}_{\operatorname{rem}(i \cdot 1, m)}\left(\Psi_{m} \cdot \mathcal{E}_{1} \mathcal{I}_{i+1} \Phi_{m}\right) \\
& =\operatorname{rem}\left(-\operatorname{rem}\left(x^{m-i} \sum_{t} b_{t} x^{t} \sum_{s \leq i} a_{s} x^{s}, x^{m}-1\right), x^{1}\right) \\
& =\operatorname{rem}\left(-\sum_{\substack{0 \leq t \leq m-\varphi(m) \\
0 \leq s \leq i}} b_{t} a_{s} x^{\operatorname{rem}(m-i+t+s, m)}, x^{1}\right) \\
& =-\sum_{\substack{0 \leq t \leq m-\varphi(m) \\
0 \leq s \leq i \\
\operatorname{rem}(m-i+t+s, m)=0}} b_{t} a_{s} \\
& =-\sum_{\substack{ \\
0 \leq t \leq m-\varphi(m) \\
0 \leq s \leq i \\
m-i+t+s=m}} b_{t} a_{s}
\end{aligned}
$$

since $0<m-i+t+s<2 m$
$=-\sum_{t+s=i} b_{t} a_{s}$
$=-\operatorname{coeff}_{i}\left(\Psi_{m} \Phi_{m}\right)$

$$
=-\operatorname{coeff}_{i}\left(x^{m}-1\right)
$$

$$
= \begin{cases}1 & i=0 \\ 0 & i \neq 0\end{cases}
$$

Thus

$$
C_{m, p, i, q}= \begin{cases}(1,0, \ldots, 0) & i=0 \\ (0,0, \ldots, 0) & i \neq 0\end{cases}
$$

$$
f_{m, \tilde{p}, i, 0}=\mathcal{N} \mathcal{R}_{\mathrm{rem}(i r, m)}\left(\Psi_{m} \cdot \mathcal{E}_{r} \mathcal{I}_{i+1} \Phi_{m}\right)
$$

Thus

$$
f_{m, \tilde{p}, i, 0}=f_{m, p, i, 0}
$$

Hence

$$
C_{m, \tilde{p}, i, 0}=C_{m, p, i, 0}
$$

Proof of Theorem 3.1 (Structure 4). Note

$$
\begin{aligned}
f_{m, \tilde{p}, \tilde{\imath}, 0} & =\mathcal{N} \mathcal{R}_{\operatorname{rem}(\tilde{\imath}, m)}\left(\Psi_{m} \cdot \mathcal{E}_{\tilde{r}} \mathcal{I}_{\tilde{\imath}+1} \Phi_{m}\right) & & \text { from Lemma 3.6 } \\
& =-\operatorname{rem}\left(\Psi_{m} x^{m-\operatorname{rem}(\tilde{\imath} \tilde{r}, m)} \sum_{s=0}^{\tilde{\imath}} a_{s} x^{s \tilde{r}}, x^{m}-1\right) & & \text { from Lemma 3.2 } \\
& =-\operatorname{rem}\left(x^{\operatorname{rem}(\tilde{\imath}(m-\tilde{r}), m)} \Psi_{m} \sum_{s=0}^{\tilde{i}} a_{s} x^{s \tilde{r}}, x^{m}-1\right) & & \text { by Proposition 3.1 } \\
& =-\operatorname{rem}\left(x^{\tilde{\imath}(m-\tilde{r})} \Psi_{m} \sum_{s=0}^{\tilde{i}} a_{s} x^{s \tilde{r}}, x^{m}\right) & & \text { by Proposition 3.1 } \\
& =\operatorname{rem}\left(-x^{\tilde{\imath}(m-\tilde{r})} \Psi_{m} \sum_{s=0}^{\tilde{i}} a_{\varphi(m)-s} x^{s \tilde{r}}, x^{m}-1\right) & & \text { since } a_{\varphi(m)-s}=a_{s} \\
& =\operatorname{rem}\left(-x^{(\varphi(m)-1-i) r} \Psi_{m} \sum_{s=0}^{\tilde{i}} a_{\varphi(m)-s} x^{s(m-r)}, x^{m}-1\right) & & \tilde{\imath}=\varphi(m)-1-i \\
& & & \text { and } \tilde{r}=m-r
\end{aligned}
$$

$$
\begin{array}{ll}
=\operatorname{rem}\left(-x^{\mathrm{rem}(m-(1+i) r, m)} \Psi_{m} \sum_{t=i+1}^{\varphi(m)} a_{t} x^{t r}, x^{m}-1\right) & \text { by re-indexing with } \\
=\operatorname{rem}\left(-x^{\mathrm{rem}(m-(1+i) r, m)} \Psi_{m}\left(\Phi_{m}\left(x^{r}\right)-\sum_{t=0}^{i} a_{t} x^{t r}\right), x^{m}-1\right) & \text { since } \\
=\operatorname{rem}\left(x^{\mathrm{rem}(m-(1+i) r, m)} \Psi_{m} \sum_{t=0}^{i} a_{t} x^{t r}, x^{m}-1\right) & \Phi_{m}\left(x^{r}\right)=\sum_{t=0}^{\varphi(m)} a_{t} x^{t r} \\
=\operatorname{rem}\left(x^{\mathrm{rem}(m-r, m)} \cdot x^{\mathrm{rem}(m-i r, m)} \Psi_{m} \sum_{t=0}^{i} a_{t} x^{t r}, x^{m}-1\right) & \\
=\operatorname{rem}\left(x^{\mathrm{rem}(m-r, m)}\left(\mathcal{N} f_{m, p, i, 0}\right), x^{m}-1\right) & \\
=\operatorname{rem}\left(x^{m-r}\left(\mathcal{N} f_{m, p, i, 0}\right), x^{m}-1\right) & \text { by Lemma 3.7 } \\
=\mathcal{R}_{r} \mathcal{N} f_{m, p, i, 0} & \text { by Lemma 3.6 }
\end{array}
$$

Hence

$$
C_{m, \tilde{p}, \tilde{i}, 0}=\mathcal{R}_{r} \mathcal{N} C_{m, p, i, 0}
$$

Proof of Theorem 3.1 (Structure 5). From Lemma 3.6 on page 38,

$$
\begin{array}{rlr}
f_{m, p, \tilde{\imath}, 0} & =\mathcal{N} \mathcal{R}_{\operatorname{rem}(\tilde{\imath} r, m)}\left(\Psi_{m} \cdot \mathcal{E}_{r} \mathcal{I}_{\tilde{\imath}+1} \Phi_{m}\right) \\
& =-\operatorname{rem}\left(x^{m-\operatorname{rem}(\tilde{\imath} r, m)} \Psi_{m} \sum_{s=0}^{\tilde{i}} a_{s} x^{s r}, x^{m}-1\right) \quad \text { by Lemma } 3.2 \\
& =-\operatorname{rem}\left(x^{m-\operatorname{rem}(\tilde{\imath} r, m)} \Psi_{m} \Phi_{m}\left(x^{r}\right)\right.
\end{array}
$$

$$
\begin{aligned}
& \left.\left.-x^{m-\operatorname{rem}(\tilde{\imath} r, m)} \Psi_{m} \sum_{s=\tilde{\imath}+1}^{\varphi(m)} a_{s} x^{s r}\right), x^{m}-1\right) \quad \Phi_{m}\left(x^{r}\right)=\sum_{s=0}^{\varphi(m)} a_{s} x^{s r} \\
& =\operatorname{rem}\left(x^{m-\operatorname{rem}(\tilde{\imath}, m)} \Psi_{m} \sum_{s=\tilde{\imath}+1}^{\varphi(m)} a_{s} x^{s r}, x^{m}-1\right) \\
& =\operatorname{rem}\left(x^{\mathrm{rem}(\tilde{\imath}(m-r), m)} \Psi_{m} \sum_{s=\tilde{\imath}+1}^{\varphi(m)} a_{s} x^{s r}, x^{m}-1\right) \quad \text { by Proposition } 3.1 \\
& =\operatorname{rem}\left(x^{\tilde{\imath}(m-r)} \Psi_{m} \sum_{s=\tilde{\imath}+1}^{\varphi(m)} a_{s} x^{s r}, x^{m}-1\right) \quad \text { by Proposition } 3.1 \\
& =\operatorname{rem}\left(\Psi_{m} \sum_{s=\tilde{\imath}+1}^{\varphi(m)} a_{s} x^{(s-\tilde{\imath}) r}, x^{m}-1\right) \\
& \text { by distributing and } \\
& x^{m} \equiv_{x^{m}-1} 1 \\
& =\operatorname{rem}\left(\Psi_{m} \sum_{w=0}^{i} a_{\varphi(m)-(i-w)} x^{(w+1) r}, x^{m}-1\right) \quad w=s-\tilde{\imath}-1 \\
& =\operatorname{rem}\left(\Psi_{m} \sum_{w=0}^{i} a_{i-w} x^{(w+1) r}, x^{m}-1\right) \quad \text { since } a_{\varphi(m)-s}=a_{s} \\
& =\operatorname{rem}\left(x^{r} \Psi_{m} \sum_{w=0}^{i} a_{i-w} x^{w r}, x^{m}-1\right) \quad \text { by factoring } x^{r} \\
& =\operatorname{rem}\left(x^{r} \Psi_{m} \sum_{t=0}^{i} a_{t} x^{(i-t) r}, x^{m}-1\right) \quad t=i-w \\
& =\operatorname{rem}\left(-x^{r} x^{\psi(m)} \Psi_{m}\left(x^{-1}\right) \sum_{t=0}^{i} a_{t} x^{(i-t) r}, x^{m}-1\right) \quad \Psi_{m}=-x^{\psi(m)} \Psi_{m}\left(x^{-1}\right) \\
& =\operatorname{rem}\left(-x^{r} x^{\psi(m)} x^{i r-m} \Psi_{m}\left(x^{-1}\right) \sum_{t=0}^{i} a_{t} x^{-t r}, x^{m}-1\right) \\
& =\operatorname{rem}\left(x^{r+m-\varphi(m)} f_{m, p, i, 0}\left(x^{-1}\right), x^{m}-1\right) \quad \psi(m)=m-\varphi(m) \\
& =\operatorname{rem}\left(x^{r+m-\varphi(m)+1} \mathcal{F} f_{m, p, i, 0}, x^{m}-1\right) \quad \mathcal{F} f_{m, p, i, 0}=x^{m-1} f_{m, p, i, 0}\left(x^{-1}\right) \\
& =\operatorname{rem}\left(x^{m-\tilde{r}} \mathcal{F} f_{m, p, i, 0}, x^{m}-1\right) \\
& =\mathcal{R}_{\tilde{r}} \mathcal{F} f_{m, p, i, 0} \\
& \text { by Lemma } 3.2
\end{aligned}
$$

Hence $C_{m, p, \tilde{\tau}, 0}=\mathcal{R}_{\tilde{r}} \mathcal{F} C_{m, p, i, 0}$

Chapter 4

Property: Norm

Introduction

In this chapter we study the norm of $\Phi_{m p}$. Recall

Notation 4.1 (Norm of a polynomial). Let $f=a_{0}+\cdots+a_{n} x^{n}$. Then the k-norm of f is defined by

$$
\|f\|_{k}= \begin{cases}\left(\sum_{j=0}^{n}\left|a_{j}\right|^{k}\right)^{\frac{1}{k}} & \text { if } k<\infty \\ \max \left\{\left|a_{j}\right|, j=0, \cdots, n\right\} & \text { if } k=\infty\end{cases}
$$

There have been intensive research on the norms of cyclotomic polynomials.

1. Numerous works on the infinity norm $[7,9,11,16,17,22,29,30,31,33,40,42,43]$
2. Carlitz's [21] showed that $\left\|\Phi_{m p}\right\|_{2}^{2}$ is linear over p 's that are equivalent modulo m.

We show the following newly found properties of norms (Theorem 4.1).

1. $\left\|\Phi_{m p}\right\|_{k}^{k}$ is linear over p 's that are equivalent modulo m.
2. $\left\|\Phi_{m p}\right\|_{k}^{k}$ and $\left\|\Phi_{m \tilde{p}}\right\|_{k}^{k}$ are parallel if $p+\tilde{p} \equiv_{m} 0$.

4.1 Main Results

In this section state the main result of this chapter. We start by the following notation.

Notation 4.2. Let $p \in P_{m, r}$ and k is finite. Then let

$$
\begin{aligned}
\left\|a_{m, r}\right\|_{k} & =\sum_{i=0}^{\varphi(m)-1}\left\|f_{m, p, i, 0}\right\|_{k}^{k} \\
\left\|b_{m, r}\right\|_{k} & =\sum_{i=0}^{\varphi(m)-1}\left\|f_{m, p, i, q}\right\|_{k}^{k} \\
\left\|A_{m, r}\right\|_{k} & =\frac{\left\|a_{m, r}\right\|_{k}}{m} \\
\left\|B_{m, r}\right\|_{k} & =\left\|b_{m, r}\right\|_{k}-r\left\|A_{m, r}\right\|_{k}
\end{aligned}
$$

We can now state the main Theorem of this chapter.

Theorem 4.1 (Norm). Let $p \in P_{m, r}$ and k is finite. Then

1. $[$ Linear $] \quad\left\|\Phi_{m p}\right\|_{k}^{k}=\left\|A_{m, r}\right\|_{k} p+\left\|B_{m, r}\right\|_{k}$
2. [Parallel] $\left\|A_{m, m-r}\right\|_{k}=\left\|A_{m, r}\right\|_{k} \quad\left\|B_{m, m-r}\right\|_{k}=-\left\|B_{m, r}\right\|_{k}$

Example 4.1. Let $m=15$.

1. Let $p_{1}=17$ and $p_{2}=47$. Then $r=2$

k	1	2	∞		
$\left.\\| \Phi_{15 p_{1}}\right) \\|_{k}^{k}$	75	79	2		
$\left.\\| \Phi_{15 p_{2}}\right) \\|_{k}^{k}$	211	223	2		
$\left.\\| \Phi_{15 p}\right) \\|_{k}^{k}$	$\frac{68}{15} p-\frac{31}{15}$	$\frac{72}{15} p-\frac{39}{15}$	2		
$\left\\|\Phi_{15 p}\right\\|_{k}$	$\frac{68}{15} p-\frac{31}{15}$	$\sqrt{\frac{72}{15} p-\frac{39}{15}}$	1		

2. Let $p_{1}=43$ and $p_{2}=73$. Then $r=13$

k	1	2	∞		
$\left.\\| \Phi_{15 p_{1}}\right) \\|_{k}^{k}$	197	209	2		
$\left.\\| \Phi_{15 p_{2}}\right) \\|_{k}^{k}$	333	353	2		
$\left.\\| \Phi_{15 p}\right) \\|_{k}^{k}$	$\frac{68}{15} p+\frac{31}{15}$	$\frac{72}{15} p+\frac{39}{15}$	2		
$\left.\\| \Phi_{15 p}\right) \\|_{k}$	$\frac{68}{15} p+\frac{31}{15}$	$\sqrt{\frac{72}{15} p+\frac{39}{15}}$	1		

Example 4.2. Let $m=15$. Then we have
$\left\|\Phi_{15 p}\right\|_{2}^{2}= \begin{cases}\frac{36}{15} p-\frac{21}{15} & \text { if } p \equiv_{15} 1 \\ \frac{72}{15} p-\frac{39}{15} & \text { if } p \equiv_{15} 2 \\ \frac{120}{15} p+\frac{4}{15} & \text { if } p \equiv_{15} 4 \\ \frac{84}{15} p-\frac{3}{15} & \text { if } p \equiv_{15} 7 \\ \frac{84}{15} p+\frac{3}{15} & \text { if } p \equiv_{15} 8 \\ \frac{120}{15} p-\frac{4}{15} & \text { if } p \equiv_{15} 11 \\ \frac{72}{15} p+\frac{39}{15} & \text { if } p \equiv_{15} 13 \\ \frac{36}{15} p+\frac{21}{15} & \text { if } p \equiv_{15} 14\end{cases}$
The following figure shows the relationship between p and $\left\|\Phi_{15 p}\right\|_{2}^{2}$.

4.2 Proofs

Proof of Theorem 4.1.

1. (Linear)

$$
\begin{aligned}
\left\|\Phi_{m p}\right\|_{k}^{k} & =\sum_{i=0}^{\varphi(m)-1} \sum_{j=0}^{q}\left\|f_{m, p, i, j}\right\|_{k}^{k} & & \text { from Notation 3.1 } \\
& =\sum_{i=0}^{\varphi(m)-1} q\left\|f_{m, p, i, 0}\right\|_{k}^{k}+\sum_{i=0}^{\varphi(m)-1}\left\|f_{m, p, i, q}\right\|_{k}^{k} & & \text { Theorem 3.1 (Structures 1, 2) } \\
& =q\left\|a_{m, r}\right\|_{k}+\left\|b_{m, r}\right\|_{k} & & \text { from Notation 4.2 } \\
& =\left\|a_{m, r}\right\|_{k} \frac{(p-r)}{m}+\left\|b_{m, r}\right\|_{k} & & q=\frac{p-r}{m} \\
& =\left\|A_{m, r}\right\|_{k} p+\left\|B_{m, r}\right\|_{k} & & \text { from Notation 4.2 }
\end{aligned}
$$

2. (Parallel) For $\tilde{p} \in P_{m, m-r}$, without loss of generality we may assume $\tilde{p}>m$. Then
we have $\operatorname{gcd}(m, m-r)=\operatorname{gcd}(m, r)=1$ because \tilde{p} is prime and $\tilde{p} \nmid m$. Therefore, we have

$$
\begin{aligned}
\left\|\Phi_{m \tilde{p}}\right\|_{k}^{k} & =\sum_{i=0}^{\varphi(m)-1} \sum_{j=0}^{\tilde{q}}\left\|f_{m, \tilde{p}, \tilde{r}, j}\right\|_{k}^{k} & & \text { from Notation 3.1 } \\
& =\sum_{i=0}^{\varphi(m)-1} \tilde{q}\left\|f_{m, \tilde{p}, \tilde{z}, 0}\right\|_{k}^{k}+\sum_{i=0}^{\varphi(m)-1}\left\|f_{m, \tilde{p}, \tilde{,}, \tilde{q}}\right\|_{k}^{k} & & \text { from Theorem 3.1 }
\end{aligned}
$$

(Structures 1, 2)

$$
\begin{array}{ll}
=\tilde{q} \sum_{i=0}^{\varphi(m)-1}\left\|f_{m, \tilde{p}, \tilde{i}, 0}\right\|_{k}^{k}+\sum_{i=0}^{\varphi(m)-1}\left\|f_{m, p, i, 0}\right\|_{k}^{k}-\left\|f_{m, p, i, q}\right\|_{k}^{k} & \text { from Lemma 6.1 } \\
=\tilde{q}\left\|a_{m, r}\right\|_{k}+\left\|a_{m, r}\right\|_{k}-\left\|b_{m, r}\right\|_{k} & \\
=\left\|a_{m, r}\right\|_{k}\left(\frac{\tilde{p}-m+\tilde{r}}{m}\right)-\left\|b_{m, r}\right\|_{k} & \\
=\left\|A_{m, r}\right\|_{k} \tilde{p}-\left\|B_{m, r}\right\|_{k} & \\
\tilde{q}=\frac{\tilde{p}-(m-r)}{m} \\
\text { from Notation 4.2 } \\
= &
\end{array}
$$

4.3 Application

In this section we provide a fast algorithm for computing $\left\|\Phi_{m p}\right\|_{k}$.

Algorithm 4.1 (Norm).

Input m, p and k such that $p \gg m$ and $k \geq 1$

Output $\left\|\Phi_{m p}\right\|_{k}$

1. Find small primes $p_{1}, p_{2}>m$ such that $p \equiv_{m} p_{1} \equiv_{m} p_{2}$
2. $N_{1} \leftarrow\left\|\Phi_{m p_{1}}\right\|_{k}^{k}$
$N_{2} \leftarrow\left\|\Phi_{m p}\right\|_{k}^{k} \quad$ through direct computation
3. $\left\|A_{m, r}\right\|_{k} \leftarrow \frac{N_{2}-N_{1}}{p_{2}-p_{1}}$
$\left\|B_{m, r}\right\|_{k} \leftarrow N_{1}-\left\|A_{m, r}\right\|_{k} p_{1}$
4. $\operatorname{return}\left(\left\|A_{m, r}\right\|_{k} p+\left\|B_{m, r}\right\|_{k}\right)^{\frac{1}{k}}$

Remark 4.1. The algorithm depends on the linear property of $\left\|\Phi_{m p}\right\|_{k}^{k}$

We implement the last algorithm in the following two examples to show how fast and useful it is. In the next example we fix the values of r and change the values of k.

Example 4.3. Let $m=105, r=1$. In Step 1, we used $p_{1}=211, p_{2}=421$. We compare the time needed to find $\left\|\Phi_{m p}\right\|_{1}$ and $\left\|\Phi_{m p}\right\|_{2}$ by Algorithm 4.1 and direct computation. All calculations were made using Maple 18 and the time is in seconds.

Table 4.1: Norms of $\Phi_{m p}$, where $m=105$ and $r=1$

p	$\left\\|\Phi_{m p}\right\\|_{1}$	Direct (sec)	Improved (sec)
10501	114401	0.984	0.031
10711	116689	0.990	0.039
12391	134993	1.178	0.040

Table 4.1 (continued)			
15121	16473	1.373	0.037
16381	178465	1.484	0.036
17011	185329	1.563	0.034
20161	219649	2.038	0.039
200341	2182753	17.781	0.043
200971	2189617	17.346	0.037
300301	3271841	34.446	0.043

Table 4.2: Norms of $\Phi_{m p}$, where $m=105$ and $r=1$

p	$\left\\|\Phi_{m p}\right\\|_{2}$	Direct (sec)	Improved (sec)
10501	340.5892	0.992	0.036
10711	343.978	1.012	0.047
12391	369.974	1.217	0.043
15121	402.706	1.452	0.040
16381	402.706	1.452	0.040
17011	433.499	1.644	0.042
20161	471.933	1.946	0.038
200341	1487.710	17.735	0.039
200971	1490.047	18.314	0.039
300301	1821.428	42.18	0.047

Example 4.4. In this example we fix k and change the values of r. Let $m=165$. We compare the time needed to find $\left\|\Phi_{m p}\right\|_{2}$ by Algorithm 4.1 and direct computation. All calculations were made using Maple 18 and the time is in seconds.

Table 4.3: $\left\|\Phi_{m p}\right\|_{2}$ where $m=165$

p	r	p_{1}	p_{2}	$\left\\|\Phi_{m p}\right\\|_{2}$	Direct (sec)	Improved (sec)
80527	7	337	997	2871.585451	16.161	0.238
81517	7	337	997	2889.183103	17.168	1.983
81847	7	337	997	2895.025216	17.346	0.212
82507	7	337	997	2906.674216	17.915	0.200
82837	7	337	997	2912.481245	17.719	0.300
81203	23	353	683	3582.830307	18.447	0.204
81533	23	353	863	3590.103202	17.592	0.193
82193	23	353	683	3604.604971	16.999	0.183
83843	23	353	683	3640.606680	17.142	0.189
84503	23	353	683	3654.908070	17.176	0.192
80621	101	431	761	6629.918930	21.089	0.261
81281	101	431	761	6657.001202	18.969	0.210
81611	101	431	761	6670.501106	25.286	0.229
82601	101	431	761	64710.837876	21.929	0.234
83591	101	431	761	6750.933639	21.875	0.243
80177	152	317	647	4571.239329	19.188	0.201
82487	152	317	647	4636.624311	19.269	0.187
83477	152	317	647	4664.365873	19.778	0.185
84137	152	317	647	4682.768946	19.891	0.200
84467	152	317	647	4691.943414	20.140	0.185

Chapter 5

Property: Middle term

Introduction

In this chapter we investigate the middle term of a cyclotomic polynomial.

Notation 5.1. Let $\Phi_{n}=\sum_{s=0}^{\varphi(n)} a_{s} x^{s}$. Then $M\left(\Phi_{n}\right)=a_{\frac{\varphi(n)}{2}}$, that is, the coefficient of the middle term of Φ_{n}.

There have been some research on the middle term of cyclotomic polynomials.

1. Clearly, $M\left(\Phi_{p}\right)=1$
2. In [24], Dredsen proved that $M\left(\Phi_{2^{k}}\right)=0$, and $M\left(\Phi_{n}\right)$ is odd if $n \neq 2^{k}$.
3. In $[10,32]$, Beiter and (Lam and Leung) gave a formula for $M\left(\Phi_{p q}\right)$.

We show the following newly found properties of midterms (Theorem 5.1).

1. $M\left(\Phi_{m p}\right)= \pm M\left(\Phi_{m \tilde{p}}\right)$ if $p \mp \tilde{p} \equiv_{m} 0$.
2. $M\left(\Phi_{m p}\right)= \pm 1$ if $p \equiv_{m} \pm 1$.

5.1 Main results

Theorem 5.1 (Middle term). We have

1. $M\left(\Phi_{m p}\right)=+M\left(\Phi_{m \tilde{p}}\right) \quad$ if $p-\tilde{p} \equiv_{m} 0$
2. $M\left(\Phi_{m p}\right)=-M\left(\Phi_{m \tilde{p}}\right) \quad$ if $p+\tilde{p} \equiv_{m} 0$

Example 5.1. Let $m=15$. Then

$p \equiv_{m} 1$	$\tilde{p} \equiv_{m} 14$	$M\left(\Phi_{p m}\right)$	$M\left(\Phi_{\tilde{p} m}\right)$	$p \equiv_{m} 2$	$\tilde{p} \equiv_{m} 13$	$M\left(\Phi_{p m}\right)$	$M\left(\Phi_{\tilde{p} m}\right)$
31	29	1	-1	17	43	-1	1
61	59	1	-1	47	73	-1	1
151	89	1	-1	107	103	-1	1

Theorem 5.2 (Middle term). We have

1. $M\left(\Phi_{m p}\right)=+1 \quad$ if $p \equiv_{m}+1$
2. $M\left(\Phi_{m p}\right)=-1 \quad$ if $p \equiv_{m}-1$

5.2 Proofs

Lemma 5.1. We have

$$
\left(\frac{\varphi(m)}{2}-1\right) p \leq \frac{\varphi(m p)}{2} \leq p\left(\frac{\varphi(m)}{2}\right)-1
$$

Proof. Note

$$
\left(\frac{\varphi(m)}{2}-1\right) p=\frac{\varphi(m) p}{2}-p
$$

$$
\begin{aligned}
& =\frac{\varphi(m) p}{2}-p+\frac{\varphi(m)}{2}-\frac{\varphi(m)}{2} \\
& =\frac{\varphi(m p)}{2}+\left(\frac{\varphi(m)}{2}-p\right) \\
& \leq \frac{\varphi(m p)}{2}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left(\frac{\varphi(m)}{2}\right) p-1 & =\frac{\varphi(m)}{2} p-1+\frac{\varphi(m)}{2}-\frac{\varphi(m)}{2} \\
& =\frac{\varphi(m p)}{2}+\frac{\varphi(m)}{2}-1 \\
& \geq \frac{\varphi(m p)}{2}
\end{aligned}
$$

Proof of Theorem 5.1. Let $I=\frac{\varphi(m)}{2}-1$

1. In order to show that $M\left(\Phi_{m p}\right)=M\left(\Phi_{m \tilde{p}}\right)$ we need to show that $c_{\frac{\varphi(m \tilde{p})}{2}}=c_{\frac{\varphi(m p)}{2}}$. Note

$$
\begin{aligned}
M\left(\Phi_{m \tilde{p}}\right) & =c_{\frac{\varphi(m \tilde{p})}{2}} \\
& =c_{\frac{\varphi(m)(\tilde{p}-1)}{2}} \\
& =c_{I \tilde{p}+\tilde{p}-\frac{\varphi(m)}{2}} \\
& =c_{I \tilde{p}+\tilde{q} m+r-\frac{\varphi(m)}{2}} \\
& = \begin{cases}c_{I \tilde{p}+(\tilde{q}-1) m+\left(m+r-\frac{\varphi(m)}{2}\right)} & r<\frac{\varphi(m)}{2} \\
c_{I \tilde{p}+\tilde{q} m+\left(r-\frac{\varphi(m)}{2}\right)} & r \geq \frac{\varphi(m)}{2}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{ll}
c_{I p+(q-1) m+\left(m+r-\frac{\varphi(m)}{2}\right)} & r<\frac{\varphi(m)}{2} \\
c_{I p+q m+\left(r-\frac{\varphi(m)}{2}\right)} & r \geq \frac{\varphi(m)}{2}
\end{array}\right. \text { Theorem 3.1 (Structures 1, 3) } \\
& =c_{I p+p-\frac{\varphi(m)}{2}} \\
& =c_{\frac{\varphi(m p)}{2}} \\
& =M\left(\Phi_{m p}\right)
\end{aligned}
$$

2. Note

$$
C_{m, \tilde{p}, I, 0}=\mathcal{R}_{r} \mathcal{N} C_{m, p, I+1,0} \quad \text { by Theorem 3.1(Structure 4) }
$$

Then we have

$$
\begin{aligned}
M\left(\Phi_{m \tilde{p}}\right) & = \begin{cases}c_{I \tilde{p}+(\tilde{q}-1) m+\left(m+\tilde{r}-\frac{\varphi(m)}{2}\right)} & \tilde{r}<\frac{\varphi(m)}{2} \\
c_{I \tilde{p}+\tilde{q} m+\left(\tilde{r}-\frac{\varphi(m)}{2}\right)} & \tilde{r} \geq \frac{\varphi(m)}{2}\end{cases} \\
& = \begin{cases}c_{I \tilde{p}+(\tilde{q}-1) m+\left(m+m-r-\frac{\varphi(m)}{2}\right)} & \tilde{r}<\frac{\varphi(m)}{2} \\
c_{I \tilde{p}+\tilde{q} m+\left(m-r-\frac{\varphi(m)}{2}\right)} & \tilde{r} \geq \frac{\varphi(m)}{2}\end{cases} \\
& = \begin{cases}c_{I \tilde{p}+\left(m+m-r-\frac{\varphi(m)}{2}\right)} & m-r<\frac{\varphi(m)}{2} \\
c_{I \tilde{p}+\left(m-r-\frac{\varphi(m)}{2}\right)} & m-r \geq \frac{\varphi(m)}{2} \\
& \text { by Theorem 3.1 } \\
& = \begin{cases}-c_{(I+1) p+\operatorname{rem}\left(\left(m+m-r-\frac{\varphi(m)}{2}\right)+r, m\right)} m-r<\frac{\varphi(m)}{2} & \text { by Theorem 3.1 } \\
-c_{(I+1) p+\left(m-r-\frac{\varphi(m)}{2}\right)+r} & m-r \geq \frac{\varphi(m)}{2}\end{cases} \\
\text { (Structure 4) }\end{cases} \\
& =-c_{I p+p+m-\frac{\varphi(m)}{2}} \\
& =-c_{I p+p-\frac{\varphi(m)}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =-c_{\frac{\varphi(m p)}{2}} \\
& =-M\left(\Phi_{m p}\right)
\end{aligned}
$$

Proof of Theorem 5.2.

1. Let $I=\frac{\varphi(m)}{2}-1$. Then from Lemma 5.1 and the proof of Theorem 5.1 we can easily see that

$$
M\left(\Phi_{m p}\right)=c_{I p+\operatorname{rem}\left(r-\frac{\varphi(m)}{2}, m\right)}
$$

Let $r=1$. Then $\operatorname{rem}\left(r-\frac{\varphi(m)}{2}, m\right)=m+1-\frac{\varphi(m)}{2}$, by Lemma 3.6

$$
\begin{aligned}
f_{m, p, I, 0} & =\mathcal{N} \mathcal{R}_{\operatorname{rem}(I, m)}\left(\Psi_{m} \cdot \mathcal{E}_{1} \mathcal{I}_{I+1} \Phi_{m}\right) \\
& =\mathcal{N} \operatorname{rem}\left(x^{m+1-\frac{\varphi(m)}{2}} \Psi_{m} \sum_{s=0}^{I} a_{s} x^{s}, x^{m}-1\right) \\
& =\mathcal{N} \operatorname{rem}\left(x^{m+1-\frac{\varphi(m)}{2}}\left(\sum_{t=0}^{m-\varphi(m)} a_{0} b_{t} x^{t}+\cdots+\sum_{t=0}^{m-\varphi(m)} a_{I} b_{t} x^{t+I}\right), x^{m}-1\right)
\end{aligned}
$$

Note that, for $0 \leq s \leq I$ and $0 \leq t \leq m-\varphi(m)$,

$$
\begin{aligned}
& m+1-\frac{\varphi(m)}{2}+s+t \equiv_{m} m+1-\frac{\varphi(m)}{2} \\
\Longleftrightarrow & s+t \equiv_{m} 0 \\
\Longleftrightarrow & s+t=0
\end{aligned}
$$

from $0 \leq s+t \leq I+m-\varphi(m)=m-1-\frac{\varphi(m)}{2}<m$. Hence

$$
M\left(\Phi_{m p}\right)=-a_{0} b_{0}=1
$$

2. Follows from the last part and Theorem 5.1.

5.3 Application

In this subsection we provide an efficient algorithm to find $M\left(\Phi_{m p}\right)$ for a very large prime number p.

```
Algorithm 5.1 (Middle Term).
Input \(m, p\) such that \(p \gg m\)
Output \(M\left(\Phi_{m p}\right)\)
    1. Find a primes \(p_{0}>m\) such that \(p \equiv_{m} p_{0}\)
    2. mid \(\leftarrow M\left(\Phi_{m p_{0}}\right) \quad\) through direct computation
    3. return mid
```

Example 5.2. Let $m=105$. We compare the time needed to find the middle term by Algorithm 5.1 and direct computation. All calculations were made using Maple 18 and the time is in seconds.

Table 5.1: Time needed computing $M\left(\Phi_{m p}\right)$

p	r	p_{0}	$M\left(\Phi_{m p}\right)$	Direct (sec)	Improved (sec)
15017	2	107	-1	2.102	0.007
17117	2	107	-1	2.187	0.016

Table 5.1(continued)

18587	2	107	-1	2.355	0.015
15439	4	109	1	1.782	0.007
16069	4	109	1	1.950	0.015
1.7959	4	109	1	2.237	0.015
15131	11	431	3	2.235	0.033
16811	11	431	3	2.440	0.040
19121	11	431	3	2.734	0.046
15973	13	223	-3	2.597	0.023
18493	13	223	-3	2.751	0.026
19753	13	223	-3	2.986	0.033

Chapter 6

Property: Number of terms

Introduction

In this chapter, we investigate the number of terms with prescribed coefficient in Φ_{n}.

Notation 6.1. Let f be a polynomial. Then $\mathrm{Nt}_{c}(f)$ denotes the number of terms with the coefficient c in f.

There have been some research on the number of term of cyclotomic polynomials.

1. Clearly, $\operatorname{Nt}_{c}\left(\Phi_{p}\right)= \begin{cases}p & c=1 \\ 0 & c \neq 1\end{cases}$
2. In [20], Carlitz founds an explicit formula for the number of terms of $\Phi_{p_{1} p_{2}}(x)$.

We show the following newly found properties of number of terms (Theorem 6.1).

1. $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ is linear over p 's that are equivalent modulo m.
2. $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ and $\mathrm{Nt}_{-c}\left(\Phi_{m \tilde{p}}\right)$ are parallel if $p+\tilde{p} \equiv_{m} 0$.

6.1 Main results

In this section we state the main result of this chapter.

Definition 6.1. $P_{m, r}=\left\{p: p\right.$ prime, $p>m$ and $\left.p \equiv_{m} r\right\}$.

Theorem 6.1 (Number of terms with coefficient c). Let $p \in P_{m, r}$. Then there exist $A_{m, r, c}, B_{m, r, c} \in \mathbb{Q}$ such that

1. [Linear] $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)=A_{m, r, c} p+B_{m, r, c}$
2. [Parallel] $A_{m, m-r,-c}=A_{m, r, c} \quad B_{m, m-r,-c}=-B_{m, r, c}$

Example 6.1. Let $m=15$.

1. Let $p_{1}=17$ and $p_{2}=47$. Then $r=2$

c	-2	-1	0	1	2
$\mathrm{Nt}_{c}\left(\Phi_{15 \cdot 17}\right)$	0	37	56	34	2
$\mathrm{Nt}_{c}\left(\Phi_{15 \cdot 47}\right)$	0	105	164	94	6
$\mathrm{Nt}_{\mathrm{c}}\left(\Phi_{15 p}\right)$	0	$\frac{34}{15} p-\frac{23}{15}$	$\frac{270}{15} p-\frac{465}{15}$	$\frac{30}{15} p$	$\frac{2}{15} p-\frac{4}{15}$

2. Let $p_{1}=43$ and $p_{2}=73$. Then $r=13$

c	-2	-1	0	1	2
$\mathrm{Nt}_{c}\left(\Phi_{15 \cdot 43}\right)$	6	86	146	99	0
$\mathrm{Nt}_{c}\left(\Phi_{15 \cdot 73}\right)$	10	146	254	167	0
$\mathrm{Nt}_{\mathrm{c}}\left(\Phi_{15 p}\right)$	$\frac{2}{15} p+\frac{4}{15}$	$\frac{30}{15} p$	$\frac{270}{15} p-\frac{735}{15}$	$\frac{34}{15} p+\frac{23}{15}$	0

Remark 6.1. We can easily see from the last example that $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ and $\mathrm{Nt}_{c}\left(\Phi_{m \tilde{p}}\right)$, where $p+\tilde{p} \equiv_{m} 0$ are not parallel.

Example 6.2 (Hamming weight). In this example we focus on the number of non-zero terms in $\Phi_{m p}$. Clearly

$$
\operatorname{hw}\left(\Phi_{m p}\right)=\varphi(m p)+1-\mathrm{Nt}_{0}\left(\Phi_{m p}\right)
$$

Hence for all $p \in P_{m, r}$ we have

1. $[$ Linear $] \operatorname{hw}\left(\Phi_{m p}\right)=A_{m, r} p+B_{m, r}$
2. [Parallel] $A_{m, m-r}=A_{m, r} \quad B_{m, m-r}=-B_{m, r}$
where

$$
\begin{aligned}
& A_{m, r}=\varphi(m)+1-A_{m, r, 0} \\
& B_{m, r}=-1-B_{m, r, 0}-\varphi(m)
\end{aligned}
$$

Example 6.3. Let $m=15$. Then we have

$$
\operatorname{hw}\left(\Phi_{15 p}\right)= \begin{cases}\frac{36}{15} p-\frac{21}{15} & \text { if } p \equiv_{15} 1 \\ \frac{66}{15} p-\frac{27}{15} & \text { if } p \equiv_{15} 2 \\ \frac{78}{15} p+\frac{3}{15} & \text { if } p \equiv_{15} 4 \\ \frac{72}{15} p-\frac{9}{15} & \text { if } p \equiv_{15} 7 \\ \frac{72}{15} p+\frac{9}{15} & \text { if } p \equiv_{15} 8 \\ \frac{78}{15} p-\frac{3}{15} & \text { if } p \equiv_{15} 11 \\ \frac{66}{15} p+\frac{27}{15} & \text { if } p \equiv_{15} 13 \\ \frac{36}{15} p+\frac{21}{15} & \text { if } p \equiv_{15} 14\end{cases}
$$

6.2 Proofs

Definition 6.2. $\mathrm{Nt}_{c}\left(C_{m, p, i, j}\right)=\mathrm{Nt}_{c}\left(f_{m, p, i, j}\right)$

Notation 6.2. Let

$$
\begin{aligned}
& a_{m, r, c}=\sum_{i=0}^{\varphi(m)-1} \mathrm{Nt}_{\mathrm{c}}\left(C_{m, p, i, 0}\right) \\
& b_{m, r, c}=\sum_{i=0}^{\varphi(m)-1} \mathrm{Nt}_{\mathrm{c}}\left(C_{m, p, i, q}\right) \\
& A_{m, r, c}=\frac{a_{m, r, c}}{m} \\
& B_{m, r, c}=b_{m, r, c}-r A_{m, r, c}
\end{aligned}
$$

The above notation is justified because of Theorem 3.1 (Structure 3).

Lemma 6.1. Let $p>m$. Then $C_{m, \tilde{p}, \tilde{\imath}, \tilde{q}}=\mathcal{R}_{r}\left(\mathcal{N} C_{m, p, i, 0}+C_{m, p, i, q}\right)$

Proof. From Theorem 3.1 (Structure 4) we have

$$
C_{m, \tilde{p}, \tilde{i}, 0}=\mathcal{R}_{r} \mathcal{N} C_{m, p, i, 0}
$$

Hence $c_{i \tilde{p}}, \ldots, c_{\tilde{\imath} \tilde{p}+m-1-r}$ in $C_{m, \tilde{p} \tilde{i}, 0}$ are the same as $c_{i p+r}, \ldots, c_{i p+m-1}$ in $\mathcal{N} C_{m, p, i, 0}$ which implies

$$
C_{m, \tilde{p}, \tilde{r}, \tilde{q}}=\mathcal{R}_{r}\left(\mathcal{N} C_{m, p, i, 0}+C_{m, p, i, q}\right)
$$

Proof of Theorem 6.1.

1. (Linear)

$$
\begin{array}{rlrl}
\mathrm{Nt}_{m p}(c) & =\sum_{i=0}^{\varphi(m)-1} \sum_{j=0}^{q} \mathrm{Nt}_{\mathrm{c}}\left(C_{m, p, i, j}\right) & & \text { from Notation 3.1 } \\
& =\sum_{i=0}^{\varphi(m)-1} q \mathrm{Nt}_{\mathrm{c}}\left(C_{m, p, i, 0}\right)+\sum_{i=0}^{\varphi(m)-1} \mathrm{Nt}_{\mathrm{c}}\left(C_{m, p, i, q}\right) & & \text { Theorem 3.1 } \\
& =q a_{m, r, c}+b_{m, r, c} & & \text { (Structures 1 and 2) } \\
& =a_{m, r, c} \frac{(p-r)}{m}+b_{m, r, c} & & \text { from Notation 6.2 } \\
& =A_{m, r, c} p+B_{m, r, c} & & q=\frac{p-r}{m} \\
\text { from Notation 6.2 }
\end{array}
$$

2. (Parallel) For $\tilde{p} \in P_{m, m-r}$, without loss of generality we may assume $\tilde{p}>m$. Then we have $\operatorname{gcd}(m, m-r)=\operatorname{gcd}(m, r)=1$ because \tilde{p} is prime and $\tilde{p} \nmid m$. Therefore,
we have

$$
\begin{array}{rlrl}
\mathrm{Nt}_{-c}\left(\Phi_{m \tilde{p}}\right) & =\sum_{i=0}^{\varphi(m)-1} \sum_{j=0}^{\tilde{q}} \mathrm{Nt}_{-c}\left(C_{m, \tilde{p}, \tilde{\imath}, j}\right) & & \text { from Notation 3.1 } \\
& =\sum_{i=0}^{\varphi(m)-1} \tilde{q} \mathrm{Nt}_{-c}\left(C_{m, \tilde{p}, \tilde{i}, 0}\right)+\sum_{i=0}^{\varphi(m)-1} \mathrm{Nt}_{-c}\left(C_{m, \tilde{p}, \tilde{q}, \tilde{q}}\right) & \text { from Theorem 3.1 }
\end{array}
$$

(Structures 1, 2)

$$
=\tilde{q} \sum_{i=0}^{\varphi(m)-1} \mathrm{Nt}_{c}\left(C_{m, p, i, 0}\right)
$$

$$
+\sum_{i=0}^{\varphi(m)-1} \mathrm{Nt}_{c}\left(C_{m, p, i, 0}\right)-\mathrm{Nt}_{c}\left(C_{m, p, i, q}\right) \quad \text { from Lemma } 6.1
$$

$$
=\tilde{q} a_{m, r, c}+a_{m, r, c}-b_{m, r, c} \quad \text { from Notation } 6.2
$$

$$
=a_{m, r, c}\left(\frac{\tilde{p}+\tilde{r}}{m}\right)-b_{m, r, c}
$$

$$
=A_{m, r, c} \tilde{p}-B_{m, r, c}
$$

$\tilde{q}=\frac{\tilde{p}-(m-r)}{m}$
from Notation 6.2

6.3 Application

In this section we will apply the linearity property in Theorem 6.1 to compute $\mathrm{Nt}_{c}\left(\Phi_{m p}\right)$ when $p \gg m$.

```
Algorithm \(6.1\left(\mathrm{Nt}_{c}\left(\Phi_{m p}\right)\right)\).
Input \(m, p\) and \(c\) such that \(p \gg m\) and \(c \in \mathbb{Z}\)
Output \(\mathrm{Nt}_{c}\left(\Phi_{m p}\right)\)
    1. Find small primes \(p_{1}, p_{2}>m\) such that \(p \equiv_{m} p_{1} \equiv_{m} p_{2}\)
    2. \(N_{1} \leftarrow \mathrm{Nt}_{c}\left(\Phi_{m p_{1}}\right)\)
    \(N_{2} \leftarrow \mathrm{Nt}_{c}\left(\Phi_{m p_{2}}\right) \quad\) through direct computation
3. \(A_{m, r, c} \leftarrow \frac{N_{2}-N_{1}}{p_{2}-p_{1}}\)
    \(B_{m, r, c} \leftarrow N_{1}-A_{m, r, c} p_{1}\)
4. return \(A_{m, r, c} p+B_{m, r, c}\)
```

We implement the last algorithm in the following two examples to show how fast and useful it is. In the next example we fix the values of r and change the values of c.

Example 6.4. Let $m=105, r=1$. In Step 1, we used $p_{1}=211, p_{2}=421$. We compare the time needed to find $\mathrm{Nt}_{1}\left(\Phi_{m p}\right)$ and $\mathrm{Nt}_{2}\left(\Phi_{m p}\right)$ by Algorithm 6.1 and direct computation. All calculations were made using Maple 18 and the time is in seconds.

Table 6.1: $\mathrm{Nt}_{1}\left(\Phi_{105 p}\right)$

p	$\mathrm{Nt}_{1}\left(\Phi_{105 p}\right)$	Direct (sec)	Improved (sec)
10501	56401	1.300	0.055
10711	57529	1.314	0.056
12391	66553	1.632	0.051
15121	81217	1.836	0.055

Table 6.1 (continued)			
16381	87985	2.084	0.053
17011	91369	2.251	0.060
20161	108289	2.589	0.055
21001	112801	2.724	0.062

Table 6.2: $\mathrm{Nt}_{2}\left(\Phi_{105 p}\right)$

p	$\mathrm{Nt}_{2}\left(\Phi_{105 p}\right)$	Direct (sec)	Improved (sec)
10501	400	1.352	0.053
10711	408	1.342	0.051
12391	472	1.541	0.056
15121	576	1.890	0.053
16381	624	2.068	0.056
17011	684	2.104	0.055
20161	768	2.522	0.050
21001	800	2.675	0.065

In the next example we fix c and change the values of r.

Example 6.5. Let $m=165$. We compare the time needed to find $\mathrm{Nt}_{3}\left(\Phi_{m p}\right)$ by Algorithm 6.1 and direct computation. All calculations were made using Maple 18 and the time is in seconds.

Table 6.3: $\quad \mathrm{Nt}_{3}\left(\Phi_{165 p}\right)$

p	r	p_{1}	p_{2}	$\mathrm{Nt}_{3}\left(\Phi_{165 p}\right)$	Direct (sec)	Improved (sec)
80527	7	377	997	111275	39.572	0.338
81517	7	377	997	112643	22.119	0.232
81847	7	377	997	113099	19.796	0.262
82507	7	377	997	114011	21.954	0.250
82837	7	377	997	114467	18.392	0.223
81203	23	353	683	197834	24.263	0.186
81533	23	353	683	198638	21.125	0.207
82193	23	353	683	204266	21.966	0.182
83843	23	353	683	200246	24.722	0.203
84503	23	353	683	205874	21.338	0.216
80621	101	431	761	415320	25.539	0.239
81281	101	431	761	418720	21.761	0.233
81611	101	431	761	420420	21.861	0.228
82601	101	431	761	425520	21.295	0.40
83591	101	431	761	430620	22.903	0.229
80177	152	317	647	409138	23.278	0.180
82487	152	317	647	420926	21.774	0.188
83477	152	317	647	425926	21.684	0.191
84137	152	317	647	409138	23.278	0.180
84467	152	317	647	431030	22.182	0.176

Chapter 7

Property: Number of terms in $\Phi_{p_{1} p_{2} p_{3}}$

In the chapter, we investigate explicit formulas for the number of terms in cyclotomic polynomials. The only previously known results are as follows:

1. Clearly, $\operatorname{hw}\left(\Phi_{p}(x)\right)=p$.
2. In [20], Carlitz founds an explicit formula for the number of terms in $\Phi_{p_{1} p_{2}}(x)$.

In this chapter, we show explicit formulas for the number of terms in the following cases:

1. $p_{2} \equiv_{p_{1}} \pm 1$ and $p_{3} \equiv_{p_{1} p_{2}}+1$.
2. $p_{2} \equiv p_{1} \pm 1$ and $p_{3} \equiv_{p_{1} p_{2}}-1$.

7.1 Main Results

In this section we state the main results of this chapter.

Theorem 7.1. Suppose that $p_{2} \equiv_{p_{1}}+1$ or -1 . Then

1. $\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)=N \cdot\left(p_{3}-1\right)+1 \quad$ if $p_{3} \equiv_{p_{1} p_{2}}+1$
2. $\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)=N \cdot\left(p_{3}+1\right)-1 \quad$ if $p_{3} \equiv{ }_{p_{1} p_{2}}-1$
where

$$
\begin{aligned}
& N=\frac{2}{3} \frac{\left(p_{1}-1\right)\left(\left(p_{1}+4\right)\left(p_{2}-1\right)-\left(r_{2}-1\right)\right)}{p_{1} p_{2}} \\
& r_{2}=\operatorname{rem}\left(p_{2}, p_{1}\right)
\end{aligned}
$$

Example 7.1.

1. Let

$$
\begin{aligned}
& p_{1}=170141183460469231731687303715884105727 \\
& p_{2}=19396094914493492417412352623610788052879 \\
& p_{3}=2772062616341349718440289381107988513974840
\end{aligned}
$$

91203319282999801642607689554229994773

Then $p_{2} \equiv_{p_{1}}+1$ and $p_{3} \equiv_{p_{1} \cdot p_{2}}+1$. From Theorem 7.1, we have

$$
\begin{aligned}
\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)= & 31442800944722794411398673999914603816453631 \\
& 93783142644102273813658808597364717079870210 \\
& 3022370537039135233707348104609
\end{aligned}
$$

2. Let

$$
\begin{aligned}
& p_{1}=170141183460469231731687303715884105727 \\
& p_{2}=13611294676837538538534984297270728458159
\end{aligned}
$$

$$
p_{3}=67622580114592658127365455245073738185509803
$$ 3130497314468262207083921533518765157

Then $p_{2} \equiv_{p_{1}}-1$ and $p_{3} \equiv_{p_{1} \cdot p_{2}}+1$. From Theorem 7.1, we have

$$
\begin{aligned}
\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)= & 76702572062314586199903198061612901540538320 \\
& 13481075468240750312978706994728287761069675 \\
& 8415342362606954703001208582545
\end{aligned}
$$

3. Let

$$
\begin{aligned}
p_{1}= & 170141183460469231731687303715884105727 \\
p_{2}= & 19396094914493492417412352623610788052879 \\
p_{3}= & 75901714495060766100150780673194923596930 \\
& 1678294802798689933069044864255629747589
\end{aligned}
$$

Then $p_{2} \equiv_{p_{1}}+1$ and $p_{3} \equiv_{p_{1} \cdot p_{2}}$-1. From Theorem 7.1, we have

$$
\begin{aligned}
\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)= & 86093383539121937078829702618813796164099 \\
& 23030596700096946702108827690207070058671 \\
& 0731948751728851416679806579643619759
\end{aligned}
$$

4. Let

$$
\begin{aligned}
p_{1}= & 170141183460469231731687303715884105727 \\
p_{2}= & 13611294676837538538534984297270728458159 \\
p_{3}= & 4631683569492647816942839400347516314076 \\
& 0139255513514689607000485200105035531859
\end{aligned}
$$

Then $p_{2} \equiv_{p_{1}}-1$ and $p_{3} \equiv_{p_{1} \cdot p_{2}}-1$. From Theorem 7.1, we have

$$
\begin{aligned}
\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)= & 5253600826185930561637205346685815174009473981 \\
& 8363530604388700773826760237864984664860793435 \\
& 16600178558541301452642639
\end{aligned}
$$

Remark 7.1 (Sparsity of $\Phi_{p_{1} p_{2} p_{3}}$). For large p_{1}, p_{2} and p_{3}, the families of cyclotomic polynomials considered in this chapter are very sparse. To see this, consider the ratio

$$
\begin{aligned}
\frac{\operatorname{hw}\left(\Phi_{p_{1} p_{2} p_{3}}\right)}{\operatorname{deg}\left(\Phi_{p_{1} p_{2} p_{3}}\right)} & =\frac{\frac{2}{3} \frac{\left(p_{1}-1\right)\left(\left(p_{1}+4\right)\left(p_{2}-1\right)-\left(r_{2}-1\right)\right)}{p_{1} p_{2}}\left(p_{3} \mp 1\right) \pm 1}{\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right)} \\
& \approx \frac{\frac{2}{3} \frac{p_{1}\left(p_{1} p_{2}-r_{2}\right)}{p_{1} p_{2}} p_{3}}{p_{1} p_{2} p_{3}} \\
& \approx \frac{\frac{2}{3} \frac{p_{1} p_{1} p_{2}}{p_{1} p_{2}} p_{3}}{p_{1} p_{2} p_{3}} \\
& \approx \frac{2}{3} \frac{1}{p_{2}}
\end{aligned}
$$

7.2 Proof

Notation 7.1. Let

$$
\begin{aligned}
& m=p_{1} p_{2} \\
& q_{2}=\operatorname{quo}\left(p_{2}, p_{1}\right) \\
& r_{2}=\operatorname{rem}\left(p_{2}, p_{1}\right) \\
& q_{3}=\operatorname{quo}\left(p_{3}, p_{1} p_{2}\right) \\
& r_{3}=\operatorname{rem}\left(p_{3}, p_{1} p_{2}\right)
\end{aligned}
$$

Remark 7.2. From lemma 3.6 from chapter 3, we have

$$
\begin{aligned}
f_{m, p, i, 0} & =\mathcal{N} \mathcal{R}_{\mathrm{rem}(i r, m)}\left(\Psi_{m} \cdot \mathcal{E}_{r} \mathcal{I}_{i+1} \Phi_{m}\right) \\
& =-\operatorname{rem}\left(x^{m-\operatorname{rem}(i r, m)} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s r}, x^{m}-1\right)
\end{aligned}
$$

where $\Phi_{m}(x)=\sum_{s=0}^{\varphi(m)} a_{s} x^{s}$. In this chapter we frequently use both versions of the previous equation.

Lemma 7.1. Let $r_{2}=1$. Then

$$
\begin{aligned}
& f_{p_{1}, p_{2}, i, 0}= \begin{cases}1-x & i=0 \\
-x+x^{p_{1}-i} & i \neq 0\end{cases} \\
& f_{p_{1}, p_{2}, i, q_{2}}= \begin{cases}1 & i=0 \\
0 & i \neq 0\end{cases}
\end{aligned}
$$

Proof. Note

$$
\begin{aligned}
& f_{p_{1}, p_{2}, i, 0}= \mathcal{N} \mathcal{R}_{\operatorname{rem}\left(i \cdot 1, p_{1}\right)}\left(\Psi_{p_{1}} \cdot \mathcal{E}_{1} \mathcal{I}_{i+1} \Phi_{p_{1}}\right) \\
&=-\operatorname{rem}\left(x^{p_{1}-i}(x-1) \sum_{s=0}^{i} x^{s}, x^{p_{1}}-1\right) \\
&=-\operatorname{rem}\left(x^{p_{1}-i}\left(x^{i+1}-1\right), x^{p_{1}}-1\right) \\
&=-\operatorname{rem}\left(x^{p_{1}+1}-x^{p_{1}-i}, x^{p_{1}}-1\right) \\
&=- \begin{cases}x-1 & i=0 \\
x-x^{p_{1}-i} & i \neq 0\end{cases} \\
&= \begin{cases}1-x & i=0 \\
-x+x^{p_{1}-i} & i \neq 0\end{cases} \\
& f_{p_{1}, p_{2}, i, q_{2}}= \mathcal{T}_{1} f_{p_{1}, p_{2}, i, 0} \quad \begin{array}{ll}
\left.\operatorname{Note} p_{1}-i \geq p_{1}-q_{2}=p_{1}-\left\lfloor\frac{\varphi\left(p_{1} p_{2}\right)}{p_{2}}\right\rfloor=2\right)
\end{array} \\
&= \begin{cases}\operatorname{rem}\left(1-x, x^{1}\right) \\
\operatorname{rem}\left(-x+x^{p_{1}-i}, x^{1}\right) & i \neq 0\end{cases} \\
&= \begin{cases}1 & i=0 \\
0 & i \neq 0\end{cases}
\end{aligned}
$$

Lemma 7.2. Let $r_{2}=1$. Then for $i \neq 0$ we have

1. $\Phi_{p_{1}} \cdot\left(-x+x^{p_{1}-i}\right)=\left(-1+x^{p_{1}}\right) \cdot \sum_{s=1}^{p_{1}-1-i} x^{s}$
2. $\Phi_{p_{1}} \cdot f_{p_{1}, p_{2}, i}=\left(-1+x^{p_{1} q_{2}}\right) \cdot \sum_{s=1}^{p_{1}-1-i} x^{s}$

Proof.

1. Note

$$
\begin{array}{rlr}
\Phi_{p_{1}} \cdot\left(-x+x^{p_{1}-i}\right) & =\left(\sum_{s=0}^{p_{1}-1} x^{s}\right)\left(-x+x^{p_{1}-i}\right) \\
& =\left(\sum_{s=0}^{p_{1}-1} x^{s}\right)(-1+x)\left(\sum_{s=1}^{p_{1}-i-1} x^{s}\right) & \text { factoring } \\
& =\left(-1+x^{p_{1}}\right)\left(\sum_{s=1}^{p_{1}-1-i} x^{s}\right) & \text { cancelling }
\end{array}
$$

2. Note

$$
\begin{array}{rlr}
\Phi_{p_{1}} \cdot f_{p_{1}, p_{2}, i} & =\Phi_{p_{1}} \cdot \sum_{j=0}^{q_{2}} f_{p_{1}, p_{2}, i, j} x^{j p_{1}} \\
& =\left(\sum_{s=0}^{p_{1}-1} x^{s}\right)\left(\sum_{j=0}^{q_{2}-1}\left(-x+x^{p_{1}-i}\right) x^{j p_{1}}+0 x^{q_{2} p_{1}}\right) & \text { Lemma } 7.1 \\
& =\left(\sum_{s=0}^{p_{1}-1} x^{s}\right)\left(-x+x^{p_{1}-i}\right)\left(\sum_{j=0}^{q_{2}-1} x^{j p_{1}}\right) & \\
& =\left(\sum_{s=0}^{p_{1}-1} x^{s}\right)(-1+x)\left(\sum_{s=1}^{p_{1}-i-1} x^{s}\right)\left(\sum_{j=0}^{q_{2}-1} x^{j p_{1}}\right) & \text { factoring } \\
& =\left(-1+x^{p_{1}}\right)\left(\sum_{s=1}^{p_{1}-i-1} x^{s}\right)\left(\sum_{j=0}^{q_{2}-1} x^{j p_{1}}\right) & \\
& =\left(\sum_{s=1}^{p_{1}-i-1} x^{s}\right)\left(-1+x^{p_{1}}\right)\left(\sum_{j=0}^{q_{2}-1} x^{j p_{1}}\right) & \\
& =\left(\sum_{s=1}^{p_{1}-i-1} x^{s}\right)\left(-1+x^{q_{2} p_{1}}\right) & \text { cancelling } \\
\end{array}
$$

Lemma 7.3 (Multiples of $\left.p_{1}\right)$. Let $r_{2}=1, r_{3}=1$ and $i=\left(u q_{2}+v\right) p_{1}$, where
$0 \leq u \leq \frac{\left(p_{1}-1\right)}{2}-1$ and $0 \leq v \leq q_{2}-1$. Then

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2\left(p_{1}-u\right)
$$

Proof. Let $i=\left(u q_{2}+v\right) p_{1}$. Then we consider the following cases:

- Case $v=0$. Then we claim that

$$
f_{m, p_{3}, i, 0}=x^{m-i}+\sum_{s=u+1}^{p_{1}-1} x^{s}-\sum_{s=u}^{p_{1}-1} x^{p_{2}+s}
$$

we will use induction on u to prove the claim.

1. If $u=0$, then

$$
\begin{array}{rlr}
f_{m, p_{3}, 0,0} & \left.=-\operatorname{rem}\left(\Psi_{m} \cdot\left(a_{0} x^{0}\right), x^{m}-1\right)\right) & \text { by Lemma } 3.6 \\
& =-\left(\operatorname{rem}\left(\Psi_{m} \cdot(1), x^{m}-1\right)\right) & a_{0}=1 \\
& =-\Psi_{m} & \\
& =1+\sum_{s=1}^{p_{1}-1} x^{s}-\sum_{s=0}^{p_{1}-1} x^{p_{2}+s} &
\end{array}
$$

2. Assume

$$
f_{m, p_{3}, u q_{2} p_{1}, 0}=x^{m-u-q_{2} p_{1}}+\sum_{s=u+1}^{p_{1}-1} x^{s}-\sum_{s=u}^{p_{1}-1} x^{p_{2}+s}
$$

3. Consider $f_{m, p_{3}, i, 0}$, where $i=(u+1) q_{2} p_{1}$

$$
\begin{aligned}
f_{m, p_{3}, i, 0} & =-\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) & & i<m \\
& =-\operatorname{rem}\left(x^{m-i} \Psi_{m} \cdot \sum_{s=0}^{u} x^{s p_{2}} f_{p_{1}, p_{2}, s}, x^{m}-1\right) & & \text { by Lemma } 7.2
\end{aligned}
$$

$$
\begin{array}{rlrl}
= & \operatorname{rem}\left(x^{m-p_{1} q_{2}} f_{m, p_{3}, u q_{2} p_{1}, 0}\right. & & \text { by induction } \\
& \left.-x^{m+u-p_{1} q_{2}} \Psi_{m} f_{p_{1}, p_{2}, u}, x^{m}-1\right) & \\
= & \operatorname{rem}\left(x^{m-i}+\sum_{s=u+1}^{p_{1}-1} x^{s+m-p_{1} q_{2}}-\sum_{s=u}^{p_{1}-1} x^{s+1}\right. & \\
& \left.\left(x^{u+1}-x^{p_{2}+u}-x^{u-p_{1} q_{2}}+x^{u}\right) \sum_{s=1}^{p_{1}-1-u} x^{s}, x^{m}-1\right) & & \text { by Lemma } 7.1 \\
= & x^{m-i}+\sum_{s=u+1}^{p_{1}-1} x^{s+m-p_{1} q_{2}}-\sum_{s=u}^{p_{1}-1} x^{s+1}+\sum_{s=1}^{p_{1}-1-u} x^{s+u+1} & \text { since all } \\
& -x^{p_{2} \sum_{s=1}^{p_{1}-1-u} x^{s+u}-\sum_{s=1}^{p_{1}-1-u} x^{s+u-p_{1} q_{2}}+\sum_{s=1}^{p_{1}-1-u} x^{s+u}} & & \text { exponents } \\
= & x^{m-i}-x^{p_{1}}+\sum_{s=1}^{p_{1}-1-u} x^{s+u+1}-x^{p_{2}} \sum_{s=1}^{p_{1}-1-u} x^{s+u} & \text { by cancelation } \\
= & x^{m-(u+1) q_{2} p_{1}}+\sum_{s=u+2}^{p_{1}-1} x^{s}-x^{p_{2}} \sum_{s=u+1}^{p_{1}-1} x^{s+u} &
\end{array}
$$

Hence we proved the claim.

- Case $v=1$. Consider $f_{m, p_{3}, i, 0}$ where $i=\left(u q_{2}+1\right) p_{1}$

$$
\begin{array}{rlr}
f_{m, p_{3}, i, 0}= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) & \\
= & \operatorname{rem}\left(-x^{m-i} \Psi_{m} \cdot\left(f_{m, p_{3}, 0}+\cdots\right.\right. & \\
& \left.+x^{u p_{2}}\left(x^{p_{1}-u}-x\right), x^{m}-1\right) & \text { by Lemma } 7.1 \\
= & \operatorname{rem}\left(\left(x^{m-p_{1}} f_{m, p_{3}, u q_{2} p_{1}}+x^{u+1-p_{1}} \Psi_{m}-\Psi_{m}\right), x^{m}-1\right) & \text { by the case } v=0 \\
= & \operatorname{rem}\left(\left(x^{m-p_{1}}\left(x^{m-u q_{2} p_{1}}+\sum_{s=u+1}^{p_{1}-1} x^{s}-\sum_{s=u}^{p_{1}-1} x^{p_{2}+s}\right)\right.\right. &
\end{array}
$$

$$
\begin{array}{rlr}
& \left.\left.+x^{u+1-p_{1}} \Psi_{m}-\Psi_{m}\right), x^{m}-1\right) & \\
= & x^{m-i}+\sum_{s=u+1}^{p_{1}-1} x^{s+m-p_{1}}-\sum_{s=u}^{p_{1}-1} x^{p_{2}-p_{1}+s} & \text { since exponents } \\
& -\sum_{s=0}^{p_{1}-1} x^{s+u+1+m-p_{1}}+\sum_{s=0}^{p_{1}-1} x^{p_{2}-p_{1}+u+1+s}+\Psi_{m} & \\
=x^{m-i}-\sum_{s=0}^{u} x^{s}+x^{p_{2}} \sum_{s=0}^{u} x^{s}+x^{p_{2}-p_{1}+u}+\Psi_{m} & \text { are } \leq m-1 \\
= & x^{m-i}-x^{p_{2}-p_{1}+u}+\sum_{s=u+1}^{p_{1}-1} x^{s}-x^{p_{2}} \sum_{s=u+1}^{p_{1}-1} x^{s} & \text { by cancelation }
\end{array}
$$

- Case $v>1$. Consider $f_{m, p_{3}, i, 0}$ where $i=\left(u q_{2}+v\right) p_{1}$

$$
\begin{aligned}
f_{m, p_{3}, i, 0} & =-\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) \\
& =-\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{\left(u q_{2} j+1\right) p_{1}} a_{s} x^{s}, x^{m}-1\right) \quad a_{s}=0 \text { for } \\
& \quad\left(u q_{2}+1\right) p_{1}<s<\left(u q_{2}+v\right) p_{1} \\
& =-\operatorname{rem}\left(x^{m-p_{1}(v-1)} f_{m, p_{3},\left(u q_{2}+1\right) p_{1}, 0}, x^{m}-1\right)
\end{aligned}
$$

Hence $\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2\left(p_{1}-u\right)$ as desired.
Lemma 7.4 (Non Multiplies of $\left.p_{1}\right)$. Let $r_{2}=1, r_{3}=1$ and $i=\left(u q_{2}+v\right) p_{1}+t$, where $0 \leq u \leq \frac{\left(p_{1}-1\right)}{2}-1,0 \leq v \leq q_{2}-1$ and $1 \leq t \leq p_{1}-1$. Then

$$
\operatorname{hw}\left(f_{p_{1}, p_{2}, i, 0}\right)= \begin{cases}2\left(p_{1}-u\right) & t=1, \cdots, u \\ 2(2+u) & t=u+1, \cdots, p_{1}-1\end{cases}
$$

Proof. We consider the following cases:

- Case $1 \leq t \leq u$. We have $a_{\left(u q_{2}+v\right) p_{1}+t}=0$ by Lemma 7.2. Therefore $f_{m, p_{3}, i, 0}=\operatorname{rem}\left(x^{m-t} f_{m, p_{3}, i, 0}, x^{m}-1\right)$. Thus for $1 \leq t \leq u$

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2\left(p_{1}-u\right)
$$

since the rotation does not change the number of terms

- Case $t=u+1$. Here we have two cases:

1. $v=0$

$$
\begin{array}{rlr}
f_{m, p_{3}, 0}= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) & \\
= & -\operatorname{rem}\left(x ^ { m - (i } \Psi _ { m } \cdot \left(f_{p_{1}, p_{2}, 0}+\cdots\right.\right. & \\
& \left.\left.+x^{p_{2}(u-1)} f_{p_{1}, p_{2}, u-1}-x^{i-t+(u+1)}\right), x^{m}-1\right) & \\
=\operatorname{rem}\left(x^{m-(u+1)} f_{m, p_{3}, i-t, 0}+\Psi_{m}, x^{m}-1\right) & & \\
= & \operatorname{rem}\left(x ^ { m - (u + 1) } \left(x^{m-i+t}+\sum_{s=u+1}^{p_{1}-1} x^{s}\right.\right. & \\
& \left.\left.-\sum_{s=u}^{p_{1}-1} x^{p_{2}+s}\right)+\Psi_{m}, x^{m}-1\right) & \\
= & x^{\left.m-\left(p_{2} u+1\right)\right)}+\sum_{s=u+1}^{p_{1}-1} x^{s-u-1} & \text { by Lemma7.1 } \\
& +\sum_{s=u}^{p_{1}-1} x^{p_{2}+s-u-1}+\Psi_{m} &
\end{array}
$$

$$
\begin{array}{rlr}
& -\sum_{s=0}^{p_{1}-u-2} x^{p_{2}+s}+\Psi_{m} & \text { by changing index } \\
= & x^{m-\left(p_{2} u+1\right)}-x^{p_{2}-1}-\sum_{s=p_{1}-u-1}^{p_{1}-1} x^{s} & \\
& +\sum_{s=p_{1}-u-1}^{p_{1}-1} x^{p_{2}+s} & \\
= & x^{m-\left(p_{2} u+1\right)}-x^{p_{2}-1}-\sum_{s=1}^{u+1} x^{p_{1}-s}+\sum_{s=1}^{u+1} x^{p_{1}+p_{2}-s} & \\
& \text { by cancelation } \\
&
\end{array}
$$

2. Case $v \neq 0$. Then $i=\left(u q_{2}+v\right) p_{1}+u+1$

$$
\begin{aligned}
f_{m, p_{3}, i, 0}= & \operatorname{rem}\left(-x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) \\
= & \operatorname{rem}\left(-x^{m-i} \Psi_{m} \cdot\left(f_{p_{1}, p_{2}, 0}+\cdots+x^{p_{2}(u-1)} f_{p_{1}, p_{2}, u-1}\right.\right. \\
& \left.\left.+x^{p_{2} u} \sum_{w=0}^{v-1}\left(x^{p_{1}-u}-x\right) x^{p_{1} w}-x^{p_{2} j+p_{1} v+1}\right), x^{m}-1\right) \\
= & \operatorname{rem}\left(x ^ { m - (p _ { 1 } v + 1) } \left(x^{u} f_{m, p_{3}, p_{1} q_{2} u}-\Psi_{m} \sum_{w=0}^{v-1}\left(x^{p_{1}-u}-x\right) x^{p_{1} w}\right.\right. \\
& \left.+\Psi_{m}, x^{m}-1\right) \\
= & \operatorname{rem}\left(x^{m-\left(p_{1} v+u+1\right)}\left(x^{m-p_{1} q_{2} u}+\sum_{s=u+1}^{p_{1}-1} x^{s}-\sum_{s=u}^{p_{1}-1} x^{p_{2}+s}\right)\right. \\
& \left.-x^{m-\left(p_{1} v+1\right)} \Psi_{m} \sum_{w=0}^{v-1}\left(x^{p_{1}-u}-x\right) x^{p_{1} w}+\Psi_{m}, x^{m}-1\right) \\
= & x^{m-i}-x^{p_{2}-p_{1} v-1}+x^{m-p_{1} v} \sum_{s=u+1}^{p_{1}-1} x^{s-u-1} \\
& -x^{m-p_{1} v} \sum_{s=u}^{p_{1}-1} x^{p_{2}+s-u-1}-x^{m-\left(p_{1} v+1\right)} \Psi_{m} \sum_{w=0}^{v-1}\left(x^{p_{1}-u}-x\right) x^{p_{1} w}+\Psi_{m} \\
= & x^{m-i}-x^{p_{2}-p_{1} v-1}+x^{m-p_{1} v} \sum_{s=0}^{p_{1}-u-2} x^{s}-x^{m-p_{1} v} \sum_{s=0}^{p_{1}-u-2} x^{p_{2}+s}
\end{aligned}
$$

$$
\begin{aligned}
& -x^{m-\left(p_{1} v+1\right)} \Psi_{m} \sum_{w=0}^{v-1}\left(x^{p_{1}-u}-x\right) x^{p_{1} w}+\Psi_{m} \\
= & x^{m-i}-x^{p_{2}-p_{1} v-1}+\sum_{s=0}^{p_{1}-u-2} x^{s}-\sum_{s=0}^{p_{1}-u-2} x^{p_{2}+s}+\Psi_{m} \\
= & x^{m-i}-x^{p_{2}-p_{1} v-1}+\sum_{s=p_{1}-u-1}^{p_{1}-1} x^{s}-\sum_{s=p_{1}-u-1}^{p_{1}-1} x^{p_{2}+s} \\
= & x^{m-i}-x^{p_{2}-p_{1} v-1}+\sum_{s=1}^{u+1} x^{p_{1}-s}-\sum_{s=1}^{u+1} x^{p_{2}+p_{1}-s}
\end{aligned}
$$

- Case $u+1<t<p_{1}-1$. Then $i=\left(q_{2} u+v\right) p_{1}+t$.

From Lemma 7.1 we have $a_{s}=0$ for $\left(u q_{2}+v\right) p_{1}+u+2 \leq s \leq\left(u q_{2}+v\right) p_{1}+p_{1}-1$. Hence

$$
\begin{aligned}
f_{m, p_{3}, i, 0} & =\operatorname{rem}\left(-x^{m-i} \Psi_{m} \sum_{s=0}^{i-t+u+1} a_{s} x^{s}, x^{m}-1\right) \\
& =\operatorname{rem}\left(-x^{t-u-1} f_{m, p_{3},\left(u q_{2}+v\right) p_{1}+(j+1), 0}, x^{m}-1\right)
\end{aligned}
$$

$\operatorname{Thus} \operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=\operatorname{hw}\left(f_{m, p_{3},\left(u q_{2}+v\right) p_{1}+(j+1), 0}\right)$

From all the previous cases we have

$$
\operatorname{hw}\left(f_{m, p_{p},\left(u q_{2}+v\right) p_{1}+t, 0}\right)= \begin{cases}2\left(p_{1}-u\right) & t=1, \cdots, u \\ 2(2+u) & t=u+1, \cdots, p_{1}-1\end{cases}
$$

Lemma 7.5. Let $r_{2}=1, r_{3}=1$ and $i=\left(u q_{2}+v\right) p_{1}+t$, where $0 \leq u \leq \frac{\left(p_{1}-1\right)}{2}-1$,
$0 \leq v \leq q_{2}-1$ and $1 \leq t \leq p_{1}-1$. Then

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)= \begin{cases}2\left(p_{1}-u\right) & t=0, \cdots, u \\ 2(2+u) & t=u+1, \cdots, p_{1}-1\end{cases}
$$

Proof. Immediate from the previous two lemmas.

Example 7.2. We will illustrate Lemma 7.5 by an example. Let $p_{1}=5, p_{2}=11$ and $p_{3}=331$. Note that $r_{2}=1$ and $r_{3}=1$. The following figure presents the relationship between i and $\operatorname{hw}\left(f_{55, p_{3}, i, 0}\right)$.

Lemma 7.6. Let $r_{2}=p_{1}-1$. Then $f_{p_{1}, p_{2}, i, j}=\left(1-x^{i+1}\right)$.

Proof. Note

$$
\begin{array}{rlr}
f_{p_{1}, p_{2}, i, 0} & =\mathcal{N} \mathcal{R}_{\left(p_{1}-1\right)} f_{p_{1}, \tilde{p}_{2}, \tilde{,}, 0} & \text { by Structure } 4 \\
& = \begin{cases}\mathcal{N} \mathcal{R}_{\left(p_{1}-1\right)}(1-x) & i=p_{1}-2 \\
\mathcal{N} \mathcal{R}_{\left(p_{1}-1\right)}\left(-x+x^{i+2}\right) & i \neq p_{1}-2\end{cases} \\
& = \begin{cases}\operatorname{rem}\left(-x^{p_{1}-1}(1-x), x^{p_{1}}-1\right) & i=p_{1}-2 \\
\operatorname{rem}\left(-x^{p_{1}-1}\left(-x+x^{i+2}\right), x^{p_{1}-1}\right) & i \neq p_{1}-2\end{cases}
\end{array}
$$

$$
\begin{aligned}
& =1-x^{i+1} \\
f_{p_{1}, p_{2}, i, q_{2}} & =\mathcal{T}_{p_{1}-1} f_{p_{1}, p_{2}, i, 0} \\
& =1-x^{i+1}
\end{aligned}
$$

Lemma 7.7. Let $r_{2}=p_{1}-1$. For $i \neq 0$, we have

1. $\Phi_{p_{1}} \cdot\left(1-x^{i+1}\right)=\left(1-x^{p_{1}}\right) \cdot \sum_{s=0}^{i} x^{s}$
2. $\Phi_{p_{1}} \cdot f_{p_{1}, p_{2}, i}=\left(1-x^{\left(q_{2}+1\right) p_{1}}\right) \cdot \sum_{s=0}^{i} x^{s}$

Proof.

1. Note

$$
\begin{array}{rlr}
\Phi_{p_{1}} \cdot\left(1-x^{i+1}\right) & =\left(\sum_{s=0}^{p_{1}-1} x^{s}\right)\left(1-x^{i+1}\right) & \\
& =\left(1+x+\cdots+x^{p_{1}-1}\right)-\left(x^{i+1}+x^{i+2}+\cdots+x^{i+p_{1}}\right) & \\
& \text { expanding } \\
& =\left(1+\cdots+x^{i}\right)-\left(x^{p_{1}}+\cdots+x^{p_{1}+i}\right) & \\
& =\left(1-x^{p_{1}}\right) \cdot \sum_{s=0}^{i} x^{s} & \text { cancelling } \\
& \text { factoring }
\end{array}
$$

2. Note

$$
\begin{align*}
\Phi_{p_{1}} \cdot f_{p_{1}, p_{2}, i} & =\Phi_{p_{1}} \cdot\left(1-x^{i+1}\right) \sum_{s=0}^{q_{2}} x^{s p_{1}} \\
& =\left(1-x^{p_{1}}\right) \sum_{s=0}^{i} x^{s} \cdot \sum_{s=0}^{q_{2}} x^{s p_{1}}
\end{align*}
$$

$$
\begin{aligned}
& =\left(\sum_{s=0}^{q_{2}} x^{s p_{1}}-x^{p_{1}} \sum_{s=0}^{q_{2}} x^{s p_{1}}\right) \sum_{s=0}^{i} x^{s} \\
& =\left(1-x^{p_{1}\left(q_{2}+1\right)}\right) \sum_{s=0}^{i} x^{s} \quad \text { cancelling }
\end{aligned}
$$

Lemma $7.8\left(p_{2} u+t\right)$. Let $i=p_{2} u+t$ where $0 \leq u \leq \frac{\left(p_{1}-1\right)}{2}$ and $0 \leq t \leq u$. Then

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2\left(p_{1}-u\right)
$$

Proof. We consider the following cases:

1. Case $t=0$. We claim that

$$
f_{m, p_{3}, i, 0}=x^{m-i}-x^{p_{2}}+\sum_{s=u+1}^{p_{1}-1} x^{s}-\sum_{s=u+1}^{p_{1}-1} x^{p_{2}+s}
$$

We will use induction on u to prove the claim
(a) $f_{m, p_{3}, 0,0}=x^{m}+x^{p_{2}}+\sum_{s=1}^{p_{1}-1} x^{s}-\sum_{s=j+1}^{p_{1}-1} x^{p_{2}+s}=-\Psi_{m}$
(b) Assume that $f_{m, p_{3}, i, 0}=x^{m-i}-x^{p_{2}}+\sum_{s=u+1}^{p_{1}-1} x^{s}-\sum_{s=u+1}^{p_{1}-1} x^{p_{2}+s}$
(c) Consider $f_{m, p_{2}, p_{2}(u+1), 0}$

$$
\begin{aligned}
f_{m, p_{3}, p_{2}(u+1), 0}= & -\operatorname{rem}\left(x^{m-p_{2}(u+1)} \Psi_{m} \sum_{s=0}^{p_{2}(u+1)} a_{s} x^{s}, x^{m}-1\right) \\
= & -\operatorname{rem}\left(x^{m-p_{2}(u+1)} \Psi_{m} \cdot \sum_{s=0}^{u} x^{p_{2} s} f_{m, p_{3}, s}\right. \\
& \left.+x^{m-p_{2}(u+1)} \Psi_{m} x^{p_{2}(u+1)}, x^{m}-1\right)
\end{aligned}
$$

$$
\begin{array}{rlr}
= & -\operatorname{rem}\left(x ^ { m - p _ { 2 } } \left(f_{m, p_{3}, p_{2} u, 0}-\Psi_{m} f_{m, p_{3}, u}\right.\right. & \text { by induction } \\
& \left.\left.-\Psi_{m}\left(1-x^{p_{2}}\right)\right), x^{m}-1\right) & \\
= & -\operatorname{rem}\left(x^{m-p_{2}(u+1)}-1+\sum_{s=u+1}^{p_{1}-1} x^{s+m-p_{2}}\right. & \\
& -\sum_{s=u+1}^{p_{1}-1} x^{s}+x^{m-p_{2}} \Psi_{m} f_{m, p_{3}, u} & \\
& \left.-\Psi_{m} \cdot\left(-x^{m-p_{2}}+1\right), x^{m}-1\right) & \text { by carrying } \\
= & -x^{m-p_{2}(u+1)}-1+\sum_{s=u+1}^{p_{1}-1} x^{s+m-p_{2}}-\sum_{s=u+1}^{p_{1}-1} x^{s} & \\
& +x^{m-p_{2}} \Psi_{m} f_{m, p_{3}, u}-\Psi_{m} \cdot\left(-x^{m-p_{2}}+1\right) & \text { by expanding } \\
= & -x^{m-p_{2}(u+1)}-x^{p_{2}}-\sum_{s=0}^{u+1} x^{s}+\sum_{s=0}^{u} x^{s+p_{2}} & \text { calculations } \\
& -\sum_{s=0}^{p_{1}-1} x^{s+p_{2}}+\sum_{s=0}^{p_{1}-1} x^{s} & \\
= & x^{m-p_{2}(u+1)}-x^{p_{2}}+\sum_{s=u+2}^{p_{1}-1} x^{s}-\sum_{s=u+2}^{p_{1}-1} x^{p_{2}+s} &
\end{array}
$$

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2\left(p_{1}-u\right)
$$

Proof.

$$
\begin{aligned}
& f_{m, p_{3}, i, 0}=-\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} x^{s}, x^{m}-1\right) \\
&=-\operatorname{rem}\left(x ^ { m - i } \Psi _ { m } \cdot \left(\sum_{k=0}^{u-1} x^{k p_{2}} f_{p_{1}, p_{2}, s}+x^{u p_{2}} \sum_{w=0}^{v-1}\left(1-x^{u+1}\right) x^{w p_{1}}\right.\right. \\
&\left.\left.+x^{p_{2} u+v p_{1}}\right), x^{m}-1\right) \\
&=-\operatorname{rem}\left(x^{m-p_{1} v} f_{m, p_{3}, p_{2} u, 0}+x^{m-p_{1} k}\left(1-x^{p_{2}}\right)\left(1-x^{p_{1} k}\right) \cdot \sum_{s=0}^{u} x^{s}\right. \\
&\left.-\Psi_{m} \cdot\left(-x^{m-p_{1} k}+1\right), x^{m}-1\right) \\
&=-\operatorname{rem}\left(x^{m-v p_{1}} f_{m, p_{3}, p_{2} u, 0}-x^{m-v p_{1}} \Psi_{m} \cdot\left(1-x^{u+1}\right) \sum_{w=0}^{v-1} x^{w p_{1}}\right. \\
&\left.-\Psi_{m} \cdot\left(1-x^{m-v p_{1}}\right), x^{m}-1\right) \\
&=-x^{m-i}-x^{p_{2}-v p_{1}}+\sum_{s=u+1}^{p_{1}-1} x^{s-v p_{1}}-\sum_{s=u+1}^{p_{1}-1} x^{p_{2}+s-v p_{1}} \\
&+\left(1-x^{p_{2}}\right)\left(x^{m-v p_{1}}-1\right) \cdot \sum_{s=0}^{u} x^{s}-\Psi_{m} \cdot\left(-x^{m-v p_{1}}+1\right) \\
&=-x^{m-i}-x^{p_{2}-v p_{1}}-x^{m-v p_{1}} \Psi_{m}+\left(-1+x^{p_{2}}\right) \cdot \sum_{s=0}^{u} x^{s} \\
&-\Psi_{m} \cdot\left(-x^{m-v p_{1}}+1\right) \\
&= x^{m-i}-x^{p_{2}-v p_{1}}+\left(-1+x^{p_{2}}\right) \cdot \sum_{s=0}^{u} x^{s}-\Psi_{m} \\
&=x^{m-i}-x^{p_{2}-v p_{1}}+\sum_{s=u+1}^{p_{1}-1} x^{s}-\sum_{s=u+1}^{p_{1}-1} x^{p_{2}+s}
\end{aligned}
$$

since all

Lemma $7.10\left(u p_{2}+q_{2} p_{1}\right)$. Let $i=u p_{2}+q_{2} p_{1}$, where $0 \leq u \leq \frac{\left(p_{1}-1\right)}{2}$. Then we have

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2\left(p_{1}-u-1\right)
$$

Proof.

$$
\begin{array}{rlr}
f_{m, p_{3}, i, 0}= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) & \\
= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \cdot\left(\sum_{s=0}^{u p_{2}+\left(q_{2}-1\right) p_{1}} a_{s} x^{s}-x^{i-p_{1}+u+1}+x^{i}\right), x^{m}-1\right) & \text { by Lemma } 7.6 \\
= & \operatorname{rem}\left(x^{m-p_{1}} f_{m, p_{3}, i-p_{1}, 0}-\Psi_{m} \cdot\left(1-x^{m+u+1-p_{1}}\right), x^{m}-1\right) & \\
= & x^{m-i}-x^{p_{2}-\left(q_{2}-2\right) p_{1}}+\sum_{s=u+1}^{p_{1}-1} x^{m-p_{1}+s} & \text { since all } \\
& -\sum_{s=u+1}^{p_{1}-1} x^{p_{2}-p_{1}+s}-\Psi_{m}+x^{m+u+1-p_{1}} \Psi_{m} & \\
= & \text { exponents }>m \\
x^{m-i}+\sum_{s=u+1}^{p_{1}-2} x^{s}-\sum_{s=u+1}^{p_{1}-1} x^{p_{2}+s} &
\end{array}
$$

Hence $\operatorname{hw}\left(f_{m, p_{3}, u, 0}\right)=2\left(p_{1}-u-1\right)$ as desired.

Lemma $7.11\left(u p_{2}+v p_{1}+t\right)$. Let $i=u p_{2}+v p_{1}+t$, where $0 \leq u \leq \frac{\left(p_{1}-1\right)}{2}$ and $u+1 \leq t \leq p_{1}-1$ and $0 \leq v \leq q_{2}$. Then

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2(2+u)
$$

Proof. We consider the following cases:

1. Case $v=0$ and $t=u+1$

$$
\begin{aligned}
f_{m, p_{3}, i, 0}= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) \\
= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \cdot\left(f_{0}+\cdots+x^{(u-1) p_{2}} f_{u-1}+x^{u p_{2}}\left(1-x^{u+1}\right)\right), x^{m}-1\right) \\
= & x^{m-(u+1)} f_{m, p_{3}, u p_{2}, 0}+\Psi_{m} \\
= & x^{m-i}-x^{p_{2}-u-1}+\sum_{s=u+1}^{p_{1}-1} x^{s-u-1} \\
& -\sum_{s=u+1}^{p_{1}-1} x^{p_{2}+s-u-1}-\sum_{s=0}^{p_{1}-1} x^{s}+\sum_{s=0}^{p_{1}-1} x^{p_{2}+s} \\
= & x^{m-i}-x^{p_{2}-u-1}+\sum_{s=0}^{p_{1}-2-u} x^{s} \\
& -\sum_{s=0}^{p_{1}-u-2} x^{p_{2}+s}-\sum_{s=0}^{p_{1}-1} x^{s}+\sum_{s=0}^{p_{1}-1} x^{p_{2}+s} \\
= & x^{m-i}-x^{p_{2}-u-1}-\sum_{s=p_{1}-u-1}^{p_{1}-1} x^{s}+\sum_{s=p_{1}-u-1}^{p_{1}-1} x^{p_{2}+s} \\
= & x^{m-i}-x^{p_{2}-u-1}-\sum_{s=1}^{u+1} x^{p_{1}-s}+\sum_{s=1}^{u+1} x^{p_{2}+p_{1}-s}
\end{aligned}
$$

2. Case $v=0$ and $t>u+1$

$$
\begin{aligned}
f_{m, p_{3}, i, 0}= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} a_{s} x^{s}, x^{m}-1\right) \\
= & -\operatorname{rem}\left(x^{m-\left(u p_{2}+t\right)} \Psi_{m} \sum_{s=0}^{u p_{2}+u+1} a_{s} x^{s}, x^{m}-1\right) \\
& \text { because } a_{s}=0 \text { for } u p_{2}+u+2 \leq s \leq u p_{2}+k \\
= & \operatorname{rem}\left(x^{m-t-j-1} f_{m, p_{3}, u p_{2}+u+1,0}, x^{m}-1\right)
\end{aligned}
$$

3. Case $v \neq 0$

$$
\begin{array}{rlrl}
f_{m, p_{3}, i, 0}= & -\operatorname{rem}\left(x^{m-i} \Psi_{m} \sum_{s=0}^{i} x^{s}, x^{m}-1\right) & \\
= & -\operatorname{rem}\left(x ^ { m - i } \Psi _ { m } \left(f_{p_{1}, p_{2}, 0}+\cdots+x^{p_{2}(u-1)} f_{p_{1}, p_{2}, u-1}\right.\right. & \\
& \left.\left.+x^{u p_{2}}\left(1-x^{u+1}\right) \Psi_{m} \sum_{s=0}^{v} x^{s p_{1}}\right), x^{m}-1\right) & \\
= & \operatorname{rem}\left(x^{m-t-v p_{1}-u-1}\left(f_{m, p_{3}, u p_{2}+(u+1), 0}\right)\right. & & \\
& \left.-x^{m-t-v p_{1}}\left(1-x^{u+1}\right) \Psi_{m} \sum_{s=1}^{v} x^{s p_{1}}, x^{m}-1\right) & & \text { calculations } \\
= & x^{m-t}\left(x^{-\left(u p_{2}+v p_{1}\right)}-x^{p_{2}-u-v p_{1}}\right) & & \\
& -x^{m-t}\left(\sum_{s=1}^{u+1} x^{p_{1}-s+1}+\sum_{s=1}^{u+1} x^{p_{2}+p_{1}-s+1}\right) &
\end{array}
$$

From all the cases above we can see that

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)=2(2+u)
$$

Lemma 7.12. Let $i=u p_{2}+v p_{1}+t$, where $0 \leq u \leq \frac{\left(p_{1}-3\right)}{2}, 0 \leq v \leq q_{2}$ and $0 \leq t \leq p_{1}-1$.

Then

$$
\operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)= \begin{cases}2\left(p_{1}-u\right) & t=0, \ldots, u \text { and } v=0 \\ 2\left(p_{1}-u\right) & v=1, \ldots, q_{2}-1 \text { and } t=0 \\ 2\left(p_{1}-u-1\right) & t=0 \text { and } v=q_{2} \\ 2(2+u) & t=u+1, \ldots, p_{1}-1 \\ & \text { and } v=0, \ldots q_{2}\end{cases}
$$

Proof. Immediate from the previous four lemmas

Example 7.3. We will illustrate Lemma 7.12 by an example. Let $p_{1}=5, p_{2}=19$ and $p_{3}=191$. Note that $r_{2}=4$ and $r_{3}=1$. The following figure presents the relationship between i and $\operatorname{hw}\left(f_{95, p_{3}, i, 0}\right)$.

Next we will prove the main theorem of this chapter

Proof of Theorem $7.1\left(p_{2} \equiv_{p_{1}}+1\right.$ and $\left.p_{3} \equiv_{p_{1} p_{2}}+1\right)$. We have $r_{2}=1$ and $r_{3}=1$. Note

$$
\operatorname{hw}\left(\Phi_{m p_{3}}\right)=\sum_{i=0}^{\varphi(m)-1} \operatorname{hw}\left(f_{m, p_{3}, i}\right)
$$

$$
\begin{array}{ll}
=q_{3}\left(\sum_{i=0}^{\varphi(m)-1} \operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)\right)+\operatorname{hw}\left(f_{m, p_{3}, i, q_{3}}\right) & \\
\text { Structure 1 } \\
=2 q_{3}\left(\sum_{i=0}^{\frac{\varphi(m)}{2}-1} \operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)\right)+1 &
\end{array}
$$

Note that

$$
\frac{\varphi(m)}{2}-1=\left(\left(\frac{p_{1}-1}{2}-1\right) q_{2}+\left(q_{2}-1\right)\right) p_{1}+\left(p_{1}-1\right)
$$

Thus

$$
\begin{gathered}
\left\{i: 0 \leq i \leq \frac{\varphi(m)}{2}-1\right\}=\left\{\left(u q_{2}+v\right) p_{1}+t: 0 \leq u \leq \frac{p_{1}-1}{2}-1\right. \\
\left.0 \leq v \leq q_{2}-1,0 \leq t \leq p_{1}-1\right\}
\end{gathered}
$$

Hence

$$
\begin{array}{rlrl}
\operatorname{hw}\left(\Phi_{m p_{3}}\right) & =2 q_{3}\left(\sum_{u=0}^{\frac{p_{1}-1}{2}-1} \sum_{v=0}^{q_{2}-1} \sum_{t=0}^{p_{1}-1} \operatorname{hw}\left(f_{m, p_{3},\left(u q_{2}+v\right) p_{1}+t, 0}\right)\right)+1 & \\
& =2 q_{3}\left(\sum_{u=0}^{\frac{p_{1}-1}{2}-1} \sum_{v=0}^{q_{2}-1}\left(\sum_{t=0}^{u} 2\left(p_{1}-u\right)+\sum_{t=u+1}^{p_{1}-1} 2(2+u)\right)\right)+1 & \text { Lemma } 7.5 \\
& =\frac{2}{3} q_{3} q_{2} p_{1}\left(p_{1}-1\right)\left(p_{1}+4\right)+1 & & \text { summing and } \\
& =\frac{2}{3} \frac{p_{3}-1}{p_{1} p_{2}}\left(p_{2}-1\right)\left(p_{1}-1\right)\left(p_{1}+4\right)+1 & & \text { simplifying } \\
& =\frac{2}{3} \frac{q_{2}=\frac{p_{2}-1}{p_{1}}}{} & & q_{3}=\frac{p_{3}-1}{p_{1} p_{2}} \\
& =N\left(p_{1}-1\right)\left(\left(p_{1}+4\right)\left(p_{2}-1\right)-\left(r_{2}-1\right)\right) \\
p_{1} p_{2} & \left.p_{3}-1\right)+1 & \text { rearranging } \\
& &
\end{array}
$$

Proof of Theorem $7.1\left(p_{2} \equiv_{p_{1}}-1\right.$ and $\left.p_{3} \equiv_{p_{1} p_{2}}+1\right)$. We have $r_{2}=1$ and $r_{3}=1$. Note

$$
\begin{array}{rll}
\operatorname{hw}\left(\Phi_{m p_{3}}\right) & =\sum_{i=0}^{\varphi(m)-1} \operatorname{hw}\left(f_{m, p_{3}, i}\right) \\
& =q_{3}\left(\sum_{i=0}^{\varphi(m)-1} \operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)\right)+\operatorname{hw}\left(f_{m, p_{3}, i, q_{3}}\right) & \text { Structure 1 } \\
& =2 q_{3}\left(\sum_{i=0}^{\frac{\varphi(m)}{2}-1} \operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)\right)+1 & \text { Structures 2 and } 5
\end{array}
$$

Note that

$$
\frac{\varphi(m)}{2}-1=\left(\frac{p_{1}-3}{2}\right) p_{2}+q_{2} p_{1}+\frac{\left(p_{1}-1\right)}{2}
$$

Thus
$\left\{i: 0 \leq i \leq \frac{\left(p_{1}-1\right)}{2} p_{2}\right\}=\left\{u p_{2}+v p_{1}+t: 0 \leq u \leq \frac{p_{1}-3}{2}, 0 \leq v \leq q_{2}, 0 \leq t \leq p_{1}-1\right\}$
Notice that $\frac{\varphi(m)}{2}-1=\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{2}-1<\frac{\left(p_{1}-1\right)}{2} p_{2}$, thus in computing hw $\left(\Phi_{m p_{3}}\right)$ we need only $f_{m, p_{3}, i, 0}$ where $0 \leq i \leq \frac{\varphi(m)}{2}-1$. Hence

$$
\begin{aligned}
\operatorname{hw}\left(\Phi_{m p_{3}}\right)= & 2 q_{3}\left(\sum_{u=0}^{\frac{p_{1}-3}{2}-1} \sum_{v=0}^{q_{2}} \sum_{t=0}^{p_{1}-1} \operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)\right) \\
& +2 q_{3}\left(\sum_{v=0}^{q_{2}} \sum_{t=0}^{\frac{p_{1}-1}{2}} \operatorname{hw}\left(f_{m, p_{3}, i, 0}\right)\right)+1 \\
= & 2 q_{3}\left(\sum_{u=0}^{\frac{p_{1}-3}{2}-1}\left(\sum_{v=0}^{q_{2}} 2\left(\sum_{t=0}^{u}\left(p_{1}-u\right)+\sum_{t=u+1}^{p_{1}-1}(2+u)\right)\right)\right) \\
& +2 q_{3}\left(\sum_{v=0}^{q_{2}}\left(\sum_{t=0}^{\frac{p_{1}-3}{2}} \frac{p_{1}+3}{2}+\sum_{t=\frac{p_{1}-1}{2}}^{p_{1}-1} \frac{p_{1}+1}{2}\right)+\frac{p_{1}+1}{2}\right)
\end{aligned}
$$

$$
\begin{array}{rll}
& +2 q_{3}\left(p_{1}-1-u\right)+1 & \text { Lemma } 7.12 \\
= & \frac{2}{3} q_{3}\left(p_{1}-1\right)\left(p_{1}+4 p_{1} q_{2}+p_{1}^{2}+p_{1}^{2} q_{2}-6\right)+1 & \text { summing and } \\
= & \frac{2}{3} \frac{p_{3}-1}{p_{1} p_{2}}\left(p_{1}-1\right)\left(4 p_{2}-2 p_{1}+p_{1} p_{2}-2\right)+1 & \text { simplifying } \\
= & q_{2}=\frac{p_{2}-p_{1}+1}{p_{1}} \frac{\left(p_{1}-1\right)\left(\left(p_{1}+4\right)\left(p_{2}-1\right)-\left(r_{2}-1\right)\right)}{p_{1} p_{2}}\left(p_{3}-1\right)+1 & \text { rearranging } \\
= & N\left(p_{3}-1\right)+1 &
\end{array}
$$

Proof of Theorem $7.1\left(p_{2} \equiv_{p_{1}}+1\right.$ and $\left.p_{3} \equiv_{p_{1} p_{2}}-1\right)$. This follows from the case

$$
p_{2} \equiv_{p_{1}}+1 \text { and } p_{3} \equiv_{p_{1} p_{2}}+1
$$

$$
\begin{array}{rlrl}
\operatorname{hw}\left(\Phi_{m p_{3}}\right) & =A_{m, 1} p_{3}-B_{m, 1} & & \text { Theorem 6.1 } \\
& =N p_{3}+(N-1) & & \text { from the case } \\
& =N\left(p_{3}+1\right)-1 & & p_{2} \equiv_{p_{1}}+1 \text { and } p_{3} \equiv_{p_{1} p_{2}}+1 \\
&
\end{array}
$$

Proof of Theorem $7.1\left(p_{2} \equiv_{p_{1}}-1\right.$ and $\left.p_{3} \equiv_{p_{1} p_{2}}-1\right)$. This follows from the case

$$
p_{2} \equiv_{p_{1}}-1 \text { and } p_{3} \equiv_{p_{1} p_{2}}+1
$$

$$
\begin{array}{rlrl}
\operatorname{hw}\left(\Phi_{m p_{3}}\right) & =A_{m,-1} p_{3}-B_{m,-1} & & \text { Theorem } 6.1 \\
& =N p_{3}+(N-1) & & \text { from the case } \\
& =N\left(p_{3}+1\right)-1 & & p_{2} \equiv_{p_{1}}-1 \text { and } p_{3} \equiv_{p_{1} p_{2}}+1 \\
& &
\end{array}
$$

REFERENCES

[1] http://www.cecm.sfu.ca/~ada26/cyclotomic/.
[2] A. Arnold. Algorithms for computing cyclotomic polynomials. Master's thesis, Simon Fraser university, 2011.
[3] A. Arnold and M. Monagan. A high-performance algorithm for calculating cyclotomic polynomials. Proceedings of PASCO, ACM Press, pages 112-120, 2010.
[4] A. Arnold and M. Monagan. Calculating cyclotomic polynomials of very large height. Math. Comp., 80:2359-2379, 2011.
[5] S. Asgarli. Wedderburn's little theorem. http://www.math.ubc.ca/~reichst/ 423-project-wedderburn.pdf.
[6] G. Bachman. On the coefficients of ternary cyclotomic polynomials. J. Number Theory, 100:104-116, 2003.
[7] G. Bachman. Flat cyclotomic polynomials of order three. Bull.London Math. Soc., 38:53-60, 2006.
[8] A. S. Bang. "om ligningen $\phi_{n}(x)=0$ ". Nyt Tidsskrift for Mathematio, 6:6-12, 1895.
[9] P.T Bateman. Note on the coefficients of the cyclotomic polynomials. Bull. Amer . Math, 55:1180-1181, 1949.
[10] M. Beiter. The midterm coefficient of the cyclotomic polynomial $f_{p q}(x)$. American mathematical monthly, 71:769-770, 1964.
[11] M. Beiter. Magnitude of the coefficients of the cyclotomic polynomial $f_{p q r}$. The American Mathematical Monthly, 75(4):370-372, 1968.
[12] M. Beiter. Coefficients of the cyclotomic polynomial $f_{3 q r}(x)$. Fibonacci Quart, 16:302-306, 1978.
[13] B. Bezdega. Sparse binary cyclotomic polynomials. Journal of number theory, 132:410-413, 2012.
[14] D. Bloom. On the coefficients of the cyclotomic polynomials. Amer. Math. Monthly, 75:372-377, 1968.
[15] D. Burton. Elementary number theory. McGraw-Hill Education, 7 edition, 2010.
[16] B. Bzdega. Bounds on ternary cyclotomic coefficients. Acta Arithmtica 144(1), 5-16, 2010.
[17] B. Bzdega. On the height of cyclotomic polynomials. Acta Arithmtica 152(4), 349359, 2012.
[18] B. Bzdega. Jumps of ternary cyclotomic polynomials. Acta Arithmtica 163(3), 203-213, 2014.
[19] B. Bzdega. On a certain family of inverse ternary cyclotomic polynomials. J. Number Theory, 141:1-12, 2014.
[20] L. Carlitz. The number of terms in the cyclotomic polynomial $f_{p q}(x)$. The American Mathematical Monthly, 73(9):979-981, 1966.
[21] L. Carlitz. The sum of squares of the coefficients of cyclotomic polynomials. Acta Mathematica Academiae Scientiarums, 18:297-304, 1967.
[22] J. ChunGang. A specific family of cyclotomic polynomials of order three. Sci China Math, 53:2269-2274, 2010.
[23] P. Clark. Dirichlet's theorem on primes in arithmetic progressions. http://math. uga.edu/~pete/4400DT.pdf.
[24] G. Dredsen. On the middle coefficient of a cyclotomic polynomial. Amer. Math. Monthly, 18(6):979-981, 2004.
[25] U. Dudley. Elementary number theory. Dover Publications, second edition, 1978.
[26] E. Fouvry. On binary cyclotomic polynomials. Algebra and number theory, 7(5):12071223, 2013.
[27] H-S. Lee H. Hong, E. Lee. Explicit formula for optimal ate pairing over cyclotomic family of elliptic curves. Finite Fields Appl, 34:45-74, 2015.
[28] H-S. Lee H. Hong, E. Lee and C-N. Park. Maximum gap in (inverse) cyclotomic polynomial. Journal of Number Theory, 132:2297-2317, 2012.
[29] N. Kaplan. Flat cyclotomic polynomials of order three. Journal of Number Theory, 127:118-126, 2007.
[30] N. Kaplan. Bounds for the maximal height of divisors of $x^{n}-1$. Journal of Number Theory, 129:2673-2688, 2009.
[31] N. Kaplan. Flat cyclotomic polynomials of order four and higher. Integers, 10:357363, 2010.
[32] T. Y. Lam and K. H. Leung. On the cyclotomic polynomial $\phi_{p q}(x)$. Ame. Math. Monthly, 103(7):562-564, 1996.
[33] E. Lehmer. On the magnitude of the coefficients of the cyclotomic polynomials. Bull. Amer. Math. Soc, 42:389-392, 1936.
[34] A. Lenstra. Using cyclotomic polynomials to construct efficient discrete logarithm cryptosystems over finite fields. In ACISP '97 Proceedings of the Second Australasian Conference on Information Security and Privacy, pages 127-138, 1997.
[35] A. Migotti. Aur theorie der kreisteilungsgleichung. Z. B. der Math.-Naturwiss, Classe der Kaiserlichen Akademie der Wissenschaften, 87:7-14, 1883.
[36] P. Moree. Inverse cyclotomic polynomials. Journal of Number Theory, 129(3):667680, 2009.
[37] K. Rosen. Elementary number theory and its applications. Pearson, 2010.
[38] J. Suzuki. On coefficients of cyclotomic polynomials. Proc. Japan Acad., 63:279-280, 1987.
[39] S. Tanaka and K. Nakamula. Pairing-Based Cryptography, chapter Constructing Pairing-Friendly Elliptic Curves Using Factorization of Cyclotomic Polynomials, pages 136-145. Springer Berlin Heidelberg, 2008.
[40] R.C. Vaughan. Bounds for the coefficients of cyclotomic polynomials. The Michigan Mathematical Journal, 21(4):289-295, 1975.
[41] S. Weintraub. Several proofs of the irreducibility of the cyclotomic polynomials. Amer. Math. Monthly, 120:537-545, 2013.
[42] B. Zhang. A note on ternary cyclotomic polynomials. Bull. Korean Math. Soc, 51(4):949-955, 2014.
[43] J. Zhao and X. Zhang. A proof of the corrected Beiter conjecture. arXiv:0910.2770, 2009.

APPENDIX

Appendix A

Maple Codes

```
A. }1\mathrm{ Utilities
restart:
with(numtheory):
with(ListTools):
with(plots):
with(plottools):
with(FileTools):
unprotect(negate):
unprotect(rotate):
hwp := proc(f)
    local fe;
    fe := expand(f);
    return nops([coeffs(f)]);
end:
hw := proc(n)
    return hwp(cyclotomic(n,x));
end:
plist := proc(n,r,t,N)
    local S,i,p;
    S := [];
    p := t;
    for i from 1 to N do
            p := nextprime(p);
```

```
            while p mod n <> r or n mod p = 0 do
                p := nextprime(p);
            od:
        S := [op(S),p];
    od;
    return S;
end:
findprime := proc(p0,n,r)
    local q,p,P;
    for q from ceil((p0+1-r)/n) to 1000 do
        p := n*q + r;
        if isprime(p) then return p fi;
    od:
    print("findprime: FAIL"):
end:
list_plot := proc(C,w,h)
    local i,P,X;
    P := [];
    for i from 0 to nops(C)-1 do
            P := [op(P),[i-0.5,C[i+1]],[i+0.5,C[i+1]]];
    od;
    P := display(CURVES(P),color=red,thickness=1);
    X := display(CURVES([[-0.5,0],[w-0.5,0]]),linestyle=dot, thickness=1);
    return display(P,X, axes=none,view=-h..h,size=[w*5,(h+1)*20]);
end:
```


A. 2 Partition

```
block := proc(m,p,i,j)
    local f,r,q,c,Cij,e,l;
    q := iquo(p,m);
    r := irem(p,m);
    f := cyclotomic(m*p,x);
    c := k->coeff(f,x,k);
    if j < q then
        l := m-1;
    else
        l := r-1;
```

fi;
Cij := [seq(c(i*p+j*m+e),e=0..l)];
return Cij;
end:
partition := proc (m,p)
local q,r,k,h,P,j,i,Cij;
$\mathrm{k}:=\mathrm{phi}(\mathrm{m})-1$;
$\mathrm{q}:=$ iquo $(\mathrm{p}, \mathrm{m}):$
r := irem (p,m):
h := norm(cyclotomic(m*p,x), infinity):
P := $\operatorname{Array}(0 . \mathrm{q}, 0 . \mathrm{k})$:
for j from 0 to q do
for i from 0 to k do
Cij := block(m,p,i,j);
P[j,i] := list_plot(Cij,m,h);
od;
od:
return display(Array(P));
end:

A. 3 Operation

```
truncate := (A,s) -> A[1..s]:
negate := A }\quad>>\operatorname{map}(a->-a,A)
flip := A -> Reverse(A):
rotate := (A,s) -> Rotate(A,s):
expan := (A,s) -> [seq(op([A[i],0$(s-1)]),i=1..nops(A)-1),A[-1]]:
operations := proc(A,t,r,re)
    local w,h,P;
    w := nops(A);
    h := max(map (a->abs(a),A));
    P := Array(1..2,1..5);
    P[1,1] := list_plot(A, w,h);
    P[2,1] := list_plot(truncate(A,t), w,h);
    P[1,2] := list_plot(A, w,h);
    P[2,2] := list_plot(negate(A), w,h);
```

```
    P[1,3] := list_plot(A, w,h);
    P[2,3] := list_plot(flip(A), w,h);
    P[1,4] := list_plot(A, w,h);
    P[2,4] := list_plot(rotate(A,r), w,h);
    P[1,5] := list_plot(A, w,h);
    P[2,5] := list_plot(expan(A,re), W*re,h);
    display(P);
end:
```


A. 4 Structure 1

```
structure1 := proc(m,p)
    local k,h,q,r,PP,P,j,i,Cij;
    k := phi(m)-1;
    h := norm(cyclotomic(m*p,x),infinity);
    q := iquo(p,m);
    r := irem(p,m);
    PP := []:
    for j from 0 to q-1 do
    P := [];
    for i from O to k do
        Cij := block(m,p,i,j);
        P := [op(P),list_plot(Cij,m,h)];
    od;
    PP := [op(PP),P];
    od:
    display(Array(PP));
end:
```


A. 5 Structure 2

```
structure2 := proc(m,p)
    local h,k,q,r,CO,TCO,Cq,P,i;
    k := phi(m)-1;
    h := norm(cyclotomic(m*p,x),infinity);
    q := iquo(p,m);
```

```
    r := irem(p,m);
    P := Array(1..3,0..k);
    for i from 0 to k do
        CO[i] := block(m,p,i,0);
        P[1,i] := list_plot(C0[i],m,h);
    od;
    for i from 0 to k do
    TCO[i] := truncate(CO[i],r);
    P[2,i] := list_plot(TCO[i],m,h);
    od;
    for i from 0 to k do
        Cq[i] := block(m,p,i,q);
        P[3,i] := list_plot(Cq[i],m,h);
    od;
    display(Array(P));
end:
```


A. 6 Structure 3

```
structure3 := proc(m,p)
    local h,k,r,pt,q1,q2,P,Cp,Cpt,i;
    k := phi(m)-1;
    h := norm(cyclotomic(m*p,x),infinity);
    q1 := iquo(p,m);
    r := irem(p,m);
    pt := findprime(p,m,r);
    q2 := iquo(pt,m);
    print(evaln(pt)=pt);
    P := Array(1..2,0..k);
    for i from 0 to k do
        Cp[i] := block(m,p,i,0);
        P[1,i] := list_plot(Cp[i],m,h);
    od;
```

for i from 0 to k do
Cpt[i] := block(m,pt,i,0);
$\mathrm{P}[2, \mathrm{i}]:=$ list_plot(Cpt[i],m,h);
od;
display(Array(P));
end:

A. 7 Structure 4

```
structure4 := proc(m,p)
    local h,k,r,i,pt,rt,it,P,C,RC,NRC,Ct;
    h := norm(cyclotomic(m*p,x),infinity);
    k := phi(m)-1;
    r := irem(p,m);
    rt := -r mod m;
    pt := findprime(m,m,rt);
    print(evaln(pt)=pt);
    P := Array(1..4,0..k);
    for i from 0 to k do
        C[i] := block(m,p,i,0);
        P[1,i] := list_plot(C[i],m,h);
    od;
    for i from 0 to k do
        RC[i] := rotate(C[i],r);
        P[2,i] := list_plot(RC[i],m,h);
    od;
    for i from O to k do
    NRC[i] := negate(RC[i]);
    P[3,i] := list_plot(NRC[i],m,h);
    od;
    for i from 0 to k do
        it := k - i;
        Ct[it] := block(m,pt,it,0);
        P[4,i] := list_plot(Ct[it],m,h);
    od;
```

```
    display(Array(P));
```

end:

A. 8 Structure 5

```
structure5 := proc(m,p)
    local h,k,r,i,rt,it,P,C,FC,RFC,Ct;
    k := phi(m)-1;
    h := norm(cyclotomic(m*p,x),infinity);
    r := irem(p,m);
    rt := k-r mod m;
    P := Array(1..4,0..k);
    for i from 0 to k do
        C[i] := block(m,p,i,0);
        P[1,i] := list_plot(C[i],m,h);
    od;
    for i from 0 to k do
        FC[i] := flip(C[i]);
        P[2,i] := list_plot(FC[i],m,h);
    od;
    for i from O to k do
        RFC[i] := rotate(FC[i],rt);
        P[3,i] := list_plot(RFC[i],m,h);
    od;
    for i from 0 to k do
        it := k - i;
        Ct[it] := block(m,p,it,0);
        P[4,i] := list_plot(Ct[it],m,h);
    od;
    display(Array(P));
end:
```


A. 9 Norm

algorithm_norm := proc (m,p,k)
local $r, p 1, p 2, N 1, N 2, f 1, f 2, A, B ;$
r := irem (p,m);
p1 := findprime(m,m,r);
p2 := findprime($\mathrm{p} 1, \mathrm{~m}, \mathrm{r}$);
f1 := cyclotomic(m*p1,x);
f2 := cyclotomic (m*p2,x);
$\mathrm{N} 1:=(\operatorname{norm}(\mathrm{f} 1, \mathrm{k}))^{\wedge} \mathrm{k}$;
N2 : $=(\operatorname{norm}(f 2, k))^{\wedge} k$;
A $:=(N 2-N 1) /(p 2-p 1)$;
B $:=\mathrm{N} 1-\mathrm{A} * \mathrm{p} 1$;
return $(A * p+B)^{\wedge}(1 / k)$;
end:

```
compare_norm := proc(m,ps,k)
    local p,r,tp,tn,wp,wn;
    printf("\%4s \%10s \%4s \%18s \%15s \%15s \(\mathrm{m}_{\mathrm{n}}\) ", "m", "p",
        "r", "Norm(mp)", "prev(sec)", "new (sec)");
    for \(p\) in \(p s\) do
        \(r:=\operatorname{irem}(p, m)\);
        tn := time(): wn := algorithm_norm (m, p,k); tn := time() - tn;
        tp \(:=\) time(): wp \(:=\) norm (cyclotomic (m*p, \(x\) ), \(k\) ); tp := time() - tp;
        printf("\%4d \%10d \%4d \%18f \(\% 15.3 f \% 15.3 f \backslash n ", m, p, r, w p, t p, t n) ;\)
    od:
end:
```


A. 10 Mid terms

```
M := proc(m,p)
    local f;
    f := cyclotomic(m*p,x);
    return coeff(f,x,phi(m*p)/2);
end:
```

algorithm_M := proc(m,p)
local r,p0,mid;
r := irem (p,m);
p0 := findprime(m,m,r);

```
    mid := M(m,p0);
    return mid;
end:
compare_M := proc(m,ps)
    local p,r,tp,tn,wp,wn;
    printf("%4s %10s %4s %12s %10s %10s\n","m","p","r","M(mp)"
            ,"prev(sec)", "new(sec)");
    for p in ps do
        r := irem(p,m);
        tn := time(): wn := algorithm_M (m,p); tn := time() - tn;
        tp := time(): wp := M(m,p); tp := time() - tp;
        if wp <> wn then print("ERROR:",m,p,r,wn,wp); return fi;
        printf("%4d %10d %4d %12d %10.3f %10.3f\n",m,p,r,wp,tp,tn);
    od:
end:
```


A. 11 Number of Terms

```
Nt := proc (m,p,c)
    local nt,i,f,ph;
    f := cyclotomic (m*p,x);
    nt := 0;
    ph := phi(m*p);
    for i from O to ph do
        if c =coeff(f,x,i) then
            nt:= nt+1;
        fi;
    od:
    return nt;
end:
```

algorithm_Nt := proc (m, p, c)
local r,p1,p2,N1,N2, A, B;
r := irem (p,m);
p1 := findprime(m,m,r);
p2 := findprime(p1,m,r);
N1 : $=\mathrm{Nt}(\mathrm{m}, \mathrm{p} 1, \mathrm{c})$;
N2 : $=\mathrm{Nt}(\mathrm{m}, \mathrm{p} 2, \mathrm{c})$;
$\mathrm{A}:=(\mathrm{Nt} 2-\mathrm{Nt} 1) /(\mathrm{p} 2-\mathrm{p} 1)$;

```
    B := N1-A*p1;
    return A*p+B;
end:
compare_Nt := proc(m,ps,c)
    local p,r,tp,tn,wp,wn;
    printf("%4s %10s %4s %18s %15s %15s\n",
    "m","p","r","Nt(mp, c)", "prev(sec)", "new(sec)");
    for p in ps do
            r := irem(p,m);
            tn := time(): wn := algorithm_Nt (m,p,c); tn := time() - tn;
            tp := time(): wp := Nt(m,p,c); tp := time() - tp;
            printf("%4d %10d %4d %18f %15.3f %15.3f\n",m,p,r,wp,tp,tn);
    od:
end:
ntc := proc(L,c)
    local h,n;
    h := 0;
    for n in L do
            h := h + 'if'(n=c, 1, 0);
        od;
        return h;
end:
ABmpc := proc(m,p,c)
    local k,h,q,r,A,B,i,CiO;
    k := phi(m)-1;
    q := iquo(p,m);
    r := irem(p,m);
    A := 0:
    B := 0;
    for i from 0 to k do
            CiO := block(m,p,i,0);
            A := A + ntc(CiO,c);
            B := B + ntc(CiO[1..r],c);
    od;
    return A/m, B-r*A/m;
end:
```

```
Amp := proc(m,p,c)
    local k,h,q,r,A,B,i,CiO;
    k := phi(m)-1;
    q := iquo(p,m);
    r := irem(p,m);
    A := []:
    for i from 0 to k do
        CiO := block(m,p,i,0);
        A := [op(A), ntc(CiO,c)];
    od;
    return add(A[i],i=1..nops(A)),A;
end:
```


[^0]: ${ }^{1}$ The case $p<m$ turns out to be uninteresting from certain structural point of view.

