
ABSTRACT

TANADKITHIRUN, RAYWAT. Partition-Based Proposal Distributions for Importance Sampling .
(Under the direction of Min Kang.)

Importance Sampling (IS) is a useful Monte Carlo based technique to estimate an expectation

of a target function with respect to a distribution of interest using random samples drawn from

another distribution, called a proposal distribution. The optimal proposal distribution minimizing

the variance of the estimator is known, but it cannot be used in reality. This work summarizes basic

theory for IS method including the convergence of the estimators as well as the optimal proposal

distributions for both kinds of IS: basic and self-normalized IS. Moreover, the insufficiency of the

widely used rule of thumb in choosing a proposal density is clarified. A partition-based method that

utilizes the information of the known optimal proposal distribution is proposed in this work. The

idea can also extend to the case of multidimensional spaces. IS was only done for known distributions

in the past, but the partition-based method is not limited to known distributions. Furthermore, the

optimal distribution for a simultaneous simulation using IS is identified and proved. An alternative

scheme of sequential IS, which allows us to draw each component of a sample sequentially in time,

using basic IS instead of self-normalized IS as the base step is also provided.
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CHAPTER

1

INTRODUCTION

Importance Sampling (IS) is a Monte Carlo-based simulation technique to estimate an expectation

with respect to a distribution of interest using random samples drawn from another distribution.

Normally, this technique is used when we have problems arising from our distribution of interest,

which will be called the target distribution, and wish that we could use another distribution, which

will be called a proposal distribution or importance distribution, instead. We would like to use an

ideal proposal distribution to generate samples to use in the estimation.

This technique is first used in rare event applications [17, 18, 14, 32, 2]where we want to estimate

the expectation of a function that concentrates on the extremely-unlikely-to-be-visited region of

the target distribution. In ordinary Monte Carlo method, we need to generate a huge number of

samples directly from the target distribution to get just a sample falling inside that region. In many

rare event applications, even when we set a pretty big number of samples, we could fail to have

even one sample in that important region. Using IS, we can manage to estimate the expectation

by sampling from another proposal distribution that has high probability around that important

region of interest, hence the name importance sampling.

IS is very useful when we have difficulty in sampling from the target distribution especially

in Bayesian Analysis [21, 33, 11, 36, 24]. Sometimes, it is hard or even impossible to sample from

the target distribution. However, IS allows us to get samples from another easier-to-sample-from
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CHAPTER 1. INTRODUCTION

distribution together with associated weights that can be used as an empirical estimate of that target

distribution. We can also use this empirical estimate to approximate the expectation of any given

function with respect to the target distribution.

Apart from rare event applications and Bayesian inference which are two primary applications

of IS, there are more uses IS can offer. In some applications where we have more than one target

distribution, we can sample a single set of samples that can be used for all target distributions [1, 35].

This greatly reduces the amount of work from the direct simulation where we have to sample a

separate set of samples for each target distribution. IS can also be a tool for estimating derivatives of

expectations with respect to parameters of the underlying distribution [26, 27, 13, 3, 8]. This usage

allows IS to attack some problems to which simple Monte Carlo method can hardly be directly

applied. Moreover, IS is a key ingredient to develop Sequential Monte Carlo simulation in which IS

is performed sequentially in time with samples and associated weights from the past time steps

[9, 31, 7, 10, 5].

IS is considered as a variance reduction method to the ordinary Monte Carlo method. This

depends on how well we choose a proposal distribution for sampling. If we pick a bad proposal

distribution, it could blow the variance and has worse performance compared to a plain Monte

Carlo method. A good proposal distribution actually depends on the target distribution and the

function of interest.

To see the derivation of IS, we need to talk about a classical Monte Carlo method first. Let X be a

random variable with a probability distribution π, and f a π−integrable function. Define the true

expectation

µ = E[ f (X )] = Eπ( f ).

Since we assume that f is a π−integrable function, µ is finite. This is a convention to apply the

Monte Carlo method. Also, because we are not interested in the obvious case, we assume that f is

not a constant function. A classical Monte Carlo estimator for µ is

µ̂π =
1

N

N
∑

i=1

f (X i ), X i
iid∼ π (1.1)

where X i
iid∼ π denote that X i ’s are independent and identically distributed with the distribution

π. Also, we will denote by X ∼πwhen X has distribution π. Please keep in mind that there are N

number of samples in the formula of µ̂π, but we will suppress N for a short notation and focus on

the distribution from which the samples are drawn.

The concept of IS is to change the dominating measure fromπ to another probability distribution.

There are two kinds of IS: basic IS and self-normalized IS. These names are from [25], and will be

2



1.1. BASIC IMPORTANCE SAMPLING CHAPTER 1. INTRODUCTION

used in this work. Most of the related work in the literature talk about just one kind of IS relying on

their application, and most of foundation theory are available for only basic IS.

Throughout this work, we will express everything in the case of continuous space. For a discrete

space, it can be derived in a similar manner and will be much easier to implement. To be able to apply

IS, we assume that every probability distribution in this study is absolutely continuous with respect to

the Lebesgue measure and has a density function. We will use the same notation for both probability

measure and its probability density. When we write the integral without specifying the domain, we

mean that the integral is taken on the whole domain which is allowed to be multidimensional.

1.1 Basic Importance Sampling

Consider a given pair of a target function and a target density ( f ,π). For a valid density q , we can

have that

Eπ( f ) =

∫

f (x )π(x ) d x

=

∫

f (x )π(x )
q (x )

q (x ) d x

=Eq

�

f π

q

�

.

Define the weight function

w (·) =
π(·)
q (·)

. (1.2)

Then, the basic IS estimator for µ is

µ̂q =
1

N

N
∑

i=1

w (X i ) f (X i ), X i
iid∼ q . (1.3)

Now, let’s discuss more on the validity of q . One may set an assumption on q to be π� q (π is

absolutely continuous with respect to q ), and most current research use that q (x ) = 0 =⇒ π(x ) = 0

as the assumption for a proposal density function q , which is slightly stronger than π� q . However,

we can relax π� q to a weaker assumption. Since µ is finite, we can considerφ(d x ) = f (x )π(x ) d x

as a finite measure. So, we can set an assumption for a legitimate q in the derivation step asφ� q .

We will denote this by

f π� q

3



1.2. SELF-NORMALIZED IMPORTANCE SAMPLING CHAPTER 1. INTRODUCTION

and this is a weaker assumption than π� q .

Note that the weight function compensates the fact that we change the dominating measure

from π to q . X i ’s in (1.1) are drawn according to π, while X i ’s in (1.3) are drawn according to q . The

regular Monte Carlo method has equal weight 1
N to all samples, but the basic IS method has weight

1
N w (X i ) for sample X i . The sample that properly represents the importance region will have high

weight and become an important sample.

Remark 1.1. If we choose a proposal distribution q to be π itself, then it is equivalent to performing

the classical Monte Carlo method.

1.2 Self-normalized Importance Sampling

In some situations especially in Bayesian inference applications where the normalizing constant for

a posterior distribution is very hard to calculate, we can only deal with an unnormalized version of

π. Consider a given pair of a target function and an unnormalized target density ( f , p )where

π(x ) =
p (x )

Z

and p (x ) is known pointwise but the normalizing constant Z =
∫

p (x ) d x is not known. For a valid

density function q , we can have that

Eπ( f ) =

∫

f (x )π(x ) d x

=
1

Z

∫

f (x )p (x )
q (x )

q (x ) d x

=
1

Z
Eq

�

f p

q

�

≈
1

Z

�

1

N

N
∑

i=1

w̃ (X i ) f (X i )

�

(X i
iid∼ q )

where

w̃ (·) =
p (·)
q (·)

.

Here, the self-normalized weight function w̃ is not defined the same as the basic weight function

from (1.2) in Section 1.1 due to the unknown normalizing constant Z . Here, we need that f π� q .

Assume further that π� q or equivalently

4



1.2. SELF-NORMALIZED IMPORTANCE SAMPLING CHAPTER 1. INTRODUCTION

p � q .

Then,

Z =

∫

p (x ) d x

=

∫

p (x )
q (x )

q (x ) d x

≈
1

N

N
∑

i=1

w̃ (X i ). (X i
iid∼ q )

Thus, the self-normalized IS estimator for µ is

µ̃q =

∑N
i=1 w̃ (X i ) f (X i )
∑N

j=1 w̃ (X j )
, X i

iid∼ q . (1.4)

Remark 1.2. We can define the self-normalized weight function to be w̃ (·) = c p (·)
q (·) for any constant

multiplier c . All of these weight functions can induce the same self-normalized IS estimator µ̃q due

to the cancellation in the ratio w̃ (X i )
∑N

j=1 w̃ (X j )
.

Observe that the self-normalized weights are w̃ (X i )
∑N

j=1 w̃ (X j )
summing up to one. Recall that for the

basic IS, the weights are 1
N w (X i ) and may not be summed up to one. The self-normalized IS can

be used to simulate the distribution of interest π by getting some samples {X i }Ni=1 from a proposal

distribution q with associated weights

(

Wi =
w̃ (X i )

∑N
j=1 w̃ (X j )

)N

i=1

and approximating the distribution π by the empirical distribution

N
∑

i=1

w̃ (X i )
∑N

j=1 w̃ (X j )
δX i
(d x )

thanks to the self-normalized weights summing up to one. Self-normalized IS is used widely because

the target distribution can be approximated by this empirical distribution, unlike basic IS. We can

apply self-normalized IS even when we know the normalizing constant of the target distribution,

so self-normalized IS can be applied to any applications that basic IS can be applied. In Statistics,

5
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especially in Bayesian inference, the proposal distribution q is selected as close as possible to the

target distributionπwithout much consideration to the target function f . However, the samples with

associated weights can represent the distribution π, and the corresponding empirical distribution

can be used to approximate

Eπ( f )≈
∫

f (x )
N
∑

i=1

w̃ (X i )
∑N

j=1 w̃ (X j )
δX i
(d x ) (X i

iid∼ q )

=
N
∑

i=1

w̃ (X i )
∑N

j=1 w̃ (X j )
f (X i )

which is (1.4).

1.3 Mathematical Theory

The derivation of IS is pretty simple, but this simulation technique has a huge benefit in many

areas of applications described before. For whatever reasons or applications, we prefer to have the

lowest possible variance for our IS. This section will provide mathematical statements about the

convergence theorem in the form of Central Limit Theorem for each estimator: Monte Carlo, basic

IS, and self-normalized IS. This obviously includes results on the expectation and the variance of

each estimator. Moreover, the optimal proposal density for each kind of IS is identified here. Current

work in this research area state these results without proper assumptions and precise details. In

particular, the mathematical statements with proper assumptions and proofs of Theorem 1.5 and

Theorem 1.10 have never been rigorously established in the past. The essential proofs, which are for

Theorem 1.5, 1.7 and 1.10, will be provided in Chapter 2, and only the mathematical statements and

some straightforward proofs are given in this Chapter.

1.3.1 Convergence Theorems

Let’s consider the Monte Carlo estimator µ̂π and the basic IS estimator µ̂q defined by (1.1) and (1.3),

respectively. We can easily acquire the following theorem.

Theorem 1.3. E(µ̂π) =µ andE(µ̂q ) =µ. Also,

Var(µ̂π) =
1

N

∫

( f (x )−µ)2π(x ) d x

=
1

N

�∫

f (x )2π(x ) d x −µ2

�

6
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and

Var(µ̂q ) =
1

N

∫

( f (x )π(x )−µq (x ))2

q (x )
d x

=
1

N

�∫

f (x )2π(x )2

q (x )
d x −µ2

�

.

Since E(µ̂π) = E(µ̂q ) = µ, both µ̂π and µ̂q are unbiased estimators. Also, by the Central Limit

Theorem, we have the following corollary.

Corollary 1.4. If
∫

f (x )2π(x ) d x <∞,

p
N
�

µ̂π−µ
� D−−−→

N→∞
N

�

0,

∫

f (x )2π(x ) d x −µ2

�

.

If
∫ f (x )2π(x )2

q (x ) d x <∞,

p
N
�

µ̂q −µ
� D−−−→

N→∞
N

�

0,

∫

f (x )2π(x )2

q (x )
d x −µ2

�

.

Now, consider the self-normalized IS estimator µ̃q defined by (1.4). Because of the ratio formula

of µ̃q ,E(µ̃q ) and Var(µ̃q ) cannot be directly derived. Generally,E(µ̃q ) 6=µ, so the self-normalized

IS estimator is biased. However, by the Strong Law of Large Number together with the continuous

mapping theorem, µ̃q converges to µ almost surely as N →∞. In the same way as the basic IS, we

can also have a convergence theorem for self-normalized IS. The following theorem tells us about

the asymptotic variance of the estimator in the form of Central Limit Theorem.

Theorem 1.5. If
∫ f (x )2π(x )2

q (x ) d x and
∫ π(x )2

q (x ) d x are finite, then

p
N
�

µ̃q −µ
� D−−−→

N→∞
N

�

0,

∫

( f (x )−µ)2π(x )2

q (x )
d x

�

.

AVar(µ̃q ) =
1
N

∫ ( f (x )−µ)2π(x )2
q (x ) d x will be called the asymptotic variance of the self-normalized IS

estimator µ̃q . From Corollary 1.4 and Theorem 1.5, the rate of convergence for Monte Carlo, basic

IS, and self-normalized IS is O
�

1p
N

�

. Since π(x ) = p (x )
Z , Theorem 1.5 can also be restated in terms of

p which is what is actually given. However, it is common to write with the π version when we deal

with theory. The p version of this theorem is as follow.

7
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Corollary 1.6. If
∫ f (x )2p (x )2

q (x ) d x and
∫ p (x )2

q (x ) d x are finite, then

p
N
�

µ̃q −µ
� D−−−→

N→∞
N

�

0,

∫

( f (x )−µ)2p (x )2

Z 2q (x )
d x

�

.

1.3.2 Optimal Proposal Densities

Unlike the classical Monte Carlo estimator which has a fixed variance, the variance of the basic IS

estimator and the asymptotic variance of the self-normalized IS estimator can vary and can depend

on the proposal distribution. If we can choose a good proposal density q that makes Var(µ̂q ) or

AVar(µ̃q ) lower than Var(µ̂π), this will increase the precision of the IS estimate over the simple Monte

Carlo method. However, a wrong choice of proposal distribution can make the estimation worse

than that of the simple Monte Carlo method. We wish to find a proposal density that minimizes the

variance of the basic IS estimator, and another for the asymptotic variance of the self-normalized IS

estimator.

Theorem 1.7. The basic IS proposal density q that satisfies the validity condition f π � q and

minimizes Var(µ̂q ) is

q ∗b (x ) =
| f (x )|π(x )

∫

| f (x )|π(x ) d x
. (1.5)

Remark 1.8. q ∗b always satisfies the validity for being a basic IS proposal density

f π� q ∗b

as well as the necessary condition for the convergence theorem for the basic IS estimators

∫

f (x )2π(x )2

q ∗b (x )
d x <∞.

Remark 1.9. If f is non-negative, then Var(µ̂q ∗b
) = 0. This fact can be easily verified by calculating

Var(µ̂q ∗b
)with q ∗b (x ) =

f (x )π(x )
µ . Similarly, if f is non-positive, then Var(µ̂q ∗b

) = 0.

Theorem 1.10. The self-normalized IS proposal density q that minimizes AVar(µ̃q ) is

q ∗s n (x ) =
| f (x )−µ|p (x )

∫

| f (x )−µ|p (x ) d x
(1.6)

provided that p � q ∗s n .

8
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Remark 1.11. q ∗s n may not satisfy the self-normalized IS validity condition p � q ∗s n nor the assump-

tion of the convergence theorem for self-normalized IS estimators
∫ f (x )2π(x )2

q ∗s n (x )
d x ,

∫ π(x )2
q ∗s n (x )

d x <∞.

However, the validity condition p � q ∗s n is satisfied for all target functions f that is not constant at

µ on a set of finite measure. Hence, q ∗s n satisfies the self-normalized IS validity condition p � q ∗s n in

most of real-life problems.

q ∗b in Theorem 1.7 and q ∗s n in Theorem 1.10 will be called the optimal proposal densities for

basic IS and self-normalized IS, respectively. Although we know what is the optimal proposal density

for basic IS from Theorem 1.7, we cannot use it in reality because we do not know
∫

| f (x )|π(x ) d x .

Even in an easy case when f is always non-negative, this term equals to µwhich is what we want

to estimate at first, so we do not know
∫

| f (x )|π(x ) d x in advance for the problem that we want to

apply the basic IS method. The same argument also apply to the self-normalized IS method. We

do not know in advance both µ and the normalizing constant
∫

| f (x )−µ|p (x ) d x needed for the

optimal proposal density for self-normalized IS acquired from Theorem 1.10.

1.4 Current Approaches

As discussed in the previous section, we cannot use the theoretically optimal proposal density in IS

method. So, what do people do?

This research area of IS are growing fast in Statistics. What statisticians currently do for basic

IS is to select a class of known distributions and try to find a distribution within that class which

minimizes Var(µ̂q ). One of the best and recent methods is discussed in Subsection 1.4.1. To select a

class of distributions for the proposal distribution q , statisticians focus on balancing weights of the

samples, w (X i )’s where X i
iid∼ q , and try to minimize variance of these associated weights because

dramatic fluctuation in weights usually results in a bad estimation. Hence, they want Varq (w ) to be

bounded. Consequently,
∫

π(x )2

q (x )
d x <∞ (1.7)

is used as a rule of thumb [23, 34] in selecting a class of distributions for q . This is also the case in

the self-normalized IS, since the weight function is the scalar multiplication version of that of basic

IS. The equivalent rule of thumb for self-normalized IS is

∫

p (x )2

q (x )
d x <∞,

and statisticians just rely on only this rule of thumb to select a good proposal density.

9
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1.4.1 Efficient Importance Sampling

There is a widely cited method called efficient IS [28, 29]which may be praised as the best method

for IS currently. It is an iterative method for basic IS that still has some limitations. It works only for

a positive target function, and the proposal distribution has to be chosen in an exponential family

of distributions. By the way, the rule of thumb (1.7) is broadly used to select such exponential family

of distributions.

Suppose a class of known distributions indexed by a vector of auxiliary parameters

Q = {qa | a ∈ A}

is carefully selected, where A is a space of auxiliary parameters. Known distributions are used

because they provide a quick access in sampling by various available software. The expression of

Var(µ̂qa
) from Theorem 1.3 can be re-expressed as

σ2(a ) =Var(µ̂qa
) =

∫

h
�

g 2
a (x )

�

f (x )π(x ) d x

where

ga (x ) = log
�

f (x )π(x )
µ qa (x )

�

and

h (x ) = e
p

x + e −
p

x −2.

Note that h is monotone, convex on R+, and h (x )≥ x . Minimizingσ2(a )with respect to a calls for

nonlinear optimization. Consider the simpler function

v (a ) =

∫

�

g 2
a (x )

�

f (x )π(x ) d x

=

∫

�

log[ f (x )π(x )]− log(µ)− log[qa (x )]
	2

f (x )π(x ) d x .

Let a ∗ and â be the optimal parameters minimizingσ2(a ) and v (a ), respectively. Then, we can have

that

σ2(â )≥σ2(a ∗)≥ h [v (a ∗)]≥ h [v (â )]

which gives an upper bound and a lower bound forσ2(a ∗), the smallest variance over the selected

class Q .

To seek for â , an iterative method is proposed. First, one selects an initial distribution, say qa0
,

10
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and draws a number of samples from this distribution: x 0
i

iid∼ qa0
for all i = 1, . . . , R . Then, minimizing

v̂R (a ) =
1

R

R
∑

i=1

�

log
�

f (x 0
i )π(x

0
i )
�

− c − log
�

qa (x
0
i )
�	2

f (x 0
i )
π(x 0

i )

qa0
(x 0

i )

with respect to a and c , an intercept in place of the unknown log(µ), takes the form of a simple

weighted linear least square problem, since Q is chosen to be an exponential family of distributions.

Starting from a0, a1 is obtained as a result of solving the above generalized least square problem. The

method can be iterated by using as initial sampler in any given round the optimized sampler from

the previous round. The process continues until a stable solution for a is reached, and that final a is

used as â . It is said that by experience, no more than 3 to 4 iterations are required to produce the

final â . Eventually, qâ is used as a proposal distribution for basic IS.

There is also an extension of efficient IS using a mixture of distributions for a proposal distribu-

tion [20]. The use of a mixture of distributions can improve the performance of IS method in the

case of heavy tailed or multi-modal target densities. Still, choosing a class of distributions at the

beginning of the process is a serious issue. If an improper class of distributions is selected, the final

result can be quite bad.

1.4.2 Truncated Importance Sampling

There is another readily applicable and theoretically justifiable approach for basic IS called truncated

IS [16]. Since unfavorable IS estimation results usually come from harsh fluctuation in samples’

weights, this method suggests to truncate extreme weights by some constant depending on N , the

number of samples. The truncated IS estimator for µ is

µ̂′q =
1

N

N
∑

i=1

w ′(X i ) f (X i ), X i
iid∼ q . (1.8)

where

w ′(X i ) =w (X i )∧τN ,

the minimum of w (X i ) and τN .

This estimator is biased, but the bias goes to zero as N →∞, provided that lim
N→∞

τN =∞.

Also, the variance of the estimator goes to zero as N →∞, if Varπ( f ) <∞ and lim
N→∞

τN
N = 0. The

recommended truncation rate in the literature is τN =
p

N . Although this method can reduce the

sensitivity of importance sampling on the choice of the proposal distribution, it can slightly reduce

the rate of convergence for the IS method and it is a biased method for basic IS.

Although this method can be easily implemented and work well in many applications, it may

11
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overlook something that can cause extreme fluctuation of each term in the summation formula of

the IS estimator. For example, consider basic IS with f (x ) = e
x
2

4px
, π(x ) = 2e −2x , and q (x ) = 5

2 e −
5
2 x .

Note that this q satisfies the rule of thumb (1.7). The basic IS weight function is w (x ) = 4
5 e

x
2 . So,

if we truncate the weight function with some threshold, we will truncate weights only for very

large samples. But, each term in the summation formula of the truncated IS estimator from (1.8),

w ′(x ) f (x ) = 4
5

e x

4px
∧ τN

e
x
2

4px
, can blow up for both too large and too small samples which can

cause high variance in estimation. Thus, the truncation cannot detect the problem with very small

samples, and the estimation can be poor. Furthermore, consider another example with f (x ) = x 3,

π(x ) = 2e −2x , and q (x ) = 4x e −2x which satisfies the rule of thumb (1.7). This setup yields w (x ) = 1
2x

and w ′(X i ) f (X i ) =
x 2

2 ∧ τN x 3. The truncation will occur only for small samples, even though the

real problem is from large samples. This method may fail because it too focuses on the fluctuation

of samples’ weights without taking into account the target function f . For truncated IS, we should

truncate w (x ) f (x ) instead of w (x ).

1.5 Examples

To understand better what is going on when IS is performed, the following example for IS is provided.

This example also shows the insufficiency of the widely used rule of thumb (1.7) in choosing a

proposal density.

Example 1.12. Let the target distribution π be an exponential distribution with parameter mean 1
2 ,

and a target function

f (x ) = x 3.

The distribution π has density

π(x ) = 2e −2x .

Consider applying IS method with the following proposal distributions:

1. a gamma distribution with shape parameter 4 and scale parameter 1
2

2. a no-name probability distribution whose density is directly proportional to a function
�

�x 3− 3
4

�

�e −2x

3. a Weibull distribution with scale parameter 1
2 and shape parameter 2

4. an equal mixture distribution between a gamma distribution with shape parameter 3 and

scale parameter 1
4 and an exponential distribution with parameter mean 1

4

12
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Figure 1.1 All PDFs in Example 1.12 with the scaled target function.

5. an equal mixture distribution between a gamma distribution with shape parameter 9 and

scale parameter 1
4 and an exponential distribution with parameter mean 1

4

6. a log-normal distribution with parameter µ= 1
2 andσ2 = 1

4

which have respectively the following densities:

q1(x ) =
8
3 x 3e −2x Gamma(4, 2)

q2(x ) =
1

Z2

�

�x 3− 3
4

�

�e −2x where Z2 =
3
2

�

1
2 +

�

3
4

�
1
3 +

�

3
4

�
2
3

�

e −2( 34 )
1
3

q3(x ) = 8x e −4x 2
Weibull

�

1
2 , 2

�

q4(x ) = 2(8x 2+1)e −4x 1
2 Gamma(3, 4) + 1

2 Exp(4)

q5(x ) =
�

1024
315 x 8+2

�

e −4x 1
2 Gamma(9, 4) + 1

2 Exp(4)

q6(x ) =
p

2p
πx e −2(log x− 1

2 )
2

LogNormal
�

1
2 , 1

4

�

.

Fig. 1.1 shows all the densities with the scaled target function f for ease of comparison. We

observe that π has high probability around zero, but f is close to zero around that area. In this
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Figure 1.2 Basic IS weight functions

example, q1 is the optimal basic IS proposal density acquired from (1.5) in Theorm 1.7, q2 is the

optimal self-normalized IS proposal density acquired from (1.6) in Theorm 1.10, and the true

expectation is µ=
∫∞

0
f (x )π(x ) d x = 3

4 .

Basic IS method is considered first. All basic IS weight functions using Eq. 1.2 are presented in

Fig. 1.2. We perform a simple Monte Carlo simulation and the basic IS with the proposals q1, . . . , q6,

and compare the results with the theoretical expected value.

In this simulation, we sample 10,000 samples from each distribution: π, q1, . . . , q6. Fig. 1.3 shows

histograms of these random samples. They tend to fit the corresponding densities very well. Since

q2 is a no-name distribution, we do not have a direct command in computer programming for

sampling from this distribution. To sample from q2, we use the acceptance-rejection method from

Appendix A. Here, we use the exponential distribution with parameter mean 1.3, where its density is

r (x ) = 1
1.3 e −

1
1.3 x , as a instrumental distribution to q2 in the acceptance-rejection method with the

bounding constant c = 1.3× 3
4 ×

1
Z2

. We can easily verify that q2(x )
c r (x ) ≤ 1 for all x ≥ 0. The graph of q2(x )

with a scaled version of r (x ), c r (x ), is also shown in Fig. 1.3. As for sampling from q4 and q5, we first

draw a Bernoulli random number with parameter 1
2 to consider which distribution in the mixture is
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Figure 1.3 Histograms of samples from π, q1, . . . , q6 with the graph of c r (x )

used, and then simply draw a sample according to that selected distribution in the mixture.

Fig. 1.4 shows basic IS performance of each proposal distribution. Each sub-graph has a dif-

ference scale for easier comparison. We sample 10,000 samples and approximate µ using (1.3).

The x-axis is the number of samples, N , and the y-axis is the approximated expectation using the

first N samples. We can see that the proposal q1 has the best performance, and q3 has the worst

performance. However, this is just one simulation. To see more about the accuracy of each proposal
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Figure 1.4 One simulation of basic IS

distribution, we perform many replications of this scenario. However, before we go into that simula-

tion, the jump behavior of the proposal distributions q3 and q4 is interesting. Later, we will see more

about this jump behavior, so we discuss this issue here using this example of the proposal q3.

From Fig. 1.2, we can see that the weight function for the proposal q3 will blow up when x is too

small or too large and this area has low probability to be sampled from. From the basic IS formula

(1.3), we need the product of the weight function and the target function in the summation. In this

case it is π(x )
q3(x )

f (x ) = x 2e 4x 2−2x

4 and this amount will blow up for only large x . So, if we have a large

sample which rarely happen here, that term will increase the total summation drastically and result

in a jump-up behavior. However, this large sample will have less effect on the total summation if

we use a large total number of samples, N . A very low sample does not make the factor x 2e 4x 2−2x

4

high in the calculation, although the corresponding weight is pretty high. Note that in this case, a

sample which is greater than 1.6 may be considered a large sample. From Fig. 1.3, we can see that

it is very hard to get a sample with really high value by sampling from the proposal q3. We will get

small samples most of the time so that each term of x 2e 4x 2−2x

4 in the summation will keep low, and

when a big sample occurs, we get a jump. After a jump occurs, it will come back to keep getting

lower and lower again until the next high sample appears and brings another jump. All information

of this discussion is provided in Fig. 1.5.

Now, we arrive at the most interesting part of this example where we perform several scenarios

of the basic IS method. Here, we generate 100 scenarios of the previous simulation and plot all
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Figure 1.5 Jump analysis for q3

results in the same graph for each proposal distribution to envisage variance of each estimator. The

theoretical variance of the simple Monte Carlo estimator is Var(µ̂π) =
1
N

�

∫

2x 6e −2x d x −
�

3
4

�2�

=
1
N

�

45
4 −

9
16

�

= 171
16N =

10.6875
N . Note that the true variance is not known in real-world problems, but

this example composing of easy functions need to know the true expectation and variance for

comparison purpose. Fig. 1.6 shows the performance of Monte Carlo method together with the plot

of µ±
p

Var(µ̂π) =
3
4 ±

3
p

19
4

1p
N

indicating the true rate of convergence which is of the order O ( 1p
N
).

Fig. 1.7 shows the result of all proposal distributions. We can now visualize about the accuracy each

distribution can offer.

17



1.5. EXAMPLES CHAPTER 1. INTRODUCTION
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Figure 1.6 The performance of simple Monte Carlo method

From Fig. 1.7, the proposal q1, which is the optimal basic IS proposal density q ∗b from Theorm 1.7,

seems to give the ideal result which is zero variance. This coincides with the theory. From Theorem

1.3,

Var(µ̂q ) =
1

N

�∫

f (x )2π(x )2

q (x )
d x −µ2

�

.

We can calculate that Var(µ̂q1
) = 1

N

�

∫

3
2 x 3e −2x d x −

�

3
4

�2�

= 1
N

�

3
2

3
8 −

9
16

�

= 0 for all N , the number of

samples. This is the ideal proposal density for the basic IS with this specific f and π. How could it

be possible to get a zero variance in a Monte Carlo approximation using random samples? This is

because in calculation, f multiplied with π just perfectly cancels out q1 and leaves just a constant:
f (x )π(x )

q1(x )
= 3

4 for any sample drawn from q1. This explains why we obtain the true expectation 3
4 for all

N since the beginning N = 1, and this really coincides with the theory about zero variance for the

optimal proposal density in the case of non-negative f .

Now, a very interesting observation is that according to Fig. 1.4, Fig. 1.6 and Fig. 1.7, the proposal

q6 tends to have much smaller variance comparing to the simple Monte Carlo method. However,

we can check that
∫ f (x )2π(x )2

q6(x )
d x =∞ which means Var(µ̂q6

) =∞ for all N . This seems like a

contradiction. Also, we can check that Var(µ̂q2
) =Var(µ̂q3

) =Var(µ̂q4
) =∞. We can clearly notice the

jump behavior in both q3 and q4 cases, and there are a small number of jumps in q2, q5 and q6 cases.

Normally, if we have a jump behavior in basic IS with a proposal distribution, then that proposal

distribution may yield an infinite variance of the corresponding basic IS estimator. We will continue

to discuss this issue together with the conflict about the simulation performance of q6 versus its

theoretical aspect in Chapter 3.

Now, the self-normalized IS is performed using the same setup of f , p = π, q1, . . . , q6. From

remark 1.2, we can also see that we can use p as π or any constant multiplication of π. The resulting

calculation for using πmultiplied by an arbitrary positive constant will turn out to be the same.

Here, we choose to use p as π for simplicity. Note again that, the proposal distribution q2 is the
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Figure 1.7 Basic importance sampling performance

optimal density q ∗s n acquired from Theorem 1.10.

Fig. 1.8 shows the self-normalized IS result of all proposal distributions using the same sampled

data when we perform the basic IS method. From Theorem 1.5, the asymptotic variance for the

proposal q is given by

AVar(µ̃q ) =
1

N

∫

( f (x )−µ)2π(x )2

q (x )
d x .

We can check that the asymptotic variance for the proposals q1, q3, q4 and q6 are all infinite. Indeed,

these proposal distributions or even q2 which is q ∗s n do not satisfy the assumption of Theorem

1.5, the convergence theorem for self-normalized IS. Thus, they are not even pre-qualified to be

considered to have an asymptotic variance. We will discuss this issue more in Chapter 3, and call

their asymptotic variance by the above formula as AVar(µ̃q ) for now. The asymptotic variance for the
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Figure 1.8 Self-normalized importance sampling performance

proposal q2 is 9
8N

�

14+7(6
1
3 ) +4(6

2
3 )
�

e −2(6
1
3 ) ≈ 1.18603

N . We can see that q1, q3, q4 and q6 yield the jump

behavior indicating very poor performance due to infinite asymptotic variance. We can see that

there are both jump-up and jump-down behaviors unlike the basic IS method. The jump behavior

is interesting and we will explain more here using this example.

For the case of non-negative f , in basic IS method, the jump behavior usually occurs when

weights in the summation of the estimator formula are very high, and only the jump-up behavior

can occur. We should observe that from Fig. 1.2, q1 and q6 have similar graphs of densities and

weight functions, but q1 which is the optimal proposal density does not have the jump behavior

while q6 does. This is because f also has an effect on the summation formula. From (1.4), if the new

adding term, from N to N +1 iteration, of weights in the formula is comparatively high, the new

summation can be jump-down because of the new much higher denominator. However, the target
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function f may make the adding term in numerator so huge that the whole numerator dominates

the increase in denominator which has no effect from f , hence the jump-up behavior. We can

see that not only π and q but f has an effect on the performance of IS method. The jump-up or

jump-down behavior really depends on all p , q , and f , but neither behaviors are good. The jump

behavior usually suggests that the estimator has infinite variance. However, there are some cases

where the variance or asymptotic variance can be bounded as shown in the case of our q5 here. So,

we cannot judge by just checking the appearance of the jump behavior.

It is quite hard to choose a good proposal density for self-normalized IS. The optimal one is

usually an unnatural density as we may realize even in this one-dimensional problem. In the same

way as basic IS, we cannot use the optimal density in reality due to the unknown µ in the first place.

An important thing to notice from this example is that q4 satisfies the rule of thumb (1.7) in choos-

ing a proposal density, but it obviously has a bad performance for both basic and self-normalized IS

methods. Also, if the proposal distribution is not well chosen such as q3 and q4 , the IS method may

be worse than the regular Monte Carlo method.

The purpose of this example is to illustrate both basic and self-normalized IS methods, so we

need to know the theoretical answer to compare the results. However, more suitable problems where

IS method should apply will be more complicated, and we cannot use the optimal proposal in reality.

Moreover, this example shows that the rule of thumb (1.7) is not a perfect criterion for selecting a

proposal density for IS. In addition, this example can spark an idea to carry on this work. We will

discuss more using this example in Chapter 3.
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CHAPTER

2

MATHEMATICAL PROOFS

The proofs for Theorem 1.5, 1.7 and 1.10 are separated from their statements in Section 1.3 and

presented in this chapter.

2.1 Proof of Theorem 1.5

This section provides the proof of Theorem 1.5. The proof relies on the so-called delta method

which is, provided by the aid of Taylor expansions, a generalization of Central Limit Theorem. In the

proof, we will really see why we need some additional assumptions which require
∫ f (x )2π(x )2

q (x ) d x

and
∫ π(x )2

q (x ) d x to be finite. Note that there is a proof given in [11], but that proof does not cite the

reference properly.

Proof of Theorem 1.5. We will apply the delta method from Appendix B to µ̃q . Let

Ai = w̃ (X i ) f (X i ) and Bi = w̃ (X i )

where X i
i i d∼ q so that the random vectors (Ai , Bi ) are independent and identically distributed.

Then,E (A1) =µZ andE (B1) = Z . Denote the variance of A1, the variance of B1, and the covariance

between A1 and B1 byσ2
A ,σ2

B , andσAB , respectively.
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σ2
A =

∫

�

p (x )
q (x )

f (x )
�2

q (x ) d x − (µZ )2

= Z 2

�∫

π(x )2 f (x )2

q (x )
d x −µ2

�

.

Also,

σ2
B =

∫

�

p (x )
q (x )

�2

q (x ) d x −Z 2

= Z 2

�∫

π(x )2

q (x )
d x −1

�

and

σAB =E
��

w̃ (X1) f (X1)−µZ
�

(w̃ (X1)−Z )
�

=E
�

w̃ (X1)
2 f (X1)−Z w̃ (X1) f (X1)−µZ w̃ (X1) +µZ 2

�

= Z 2

�∫

π(x )2 f (x )
q (x )

d x −
∫

π(x ) f (x ) d x −µ
∫

π(x ) d x +µ

�

= Z 2

�∫

π(x )2 f (x )
q (x )

d x −µ
�

.

Note that by Holder’s inequality,

∫

π(x )2 f (x )
q (x )

d x =

∫ �

π(x ) f (x )
p

q (x )

��

π(x )
p

q (x )

�

d x

≤
�∫

π(x )2 f (x )2

q (x )
d x

�
1
2
�∫

π(x )2

q (x )
d x

�
1
2

.

Thus, by the assumption that
∫ f (x )2π(x )2

q (x ) d x and
∫ π(x )2

q (x ) d x are finite, allσ2
A ,σ2

B andσAB are finite.

By Central Limit Theorem, we have that

p
N

��

1

N

N
∑

i=1

w̃ (X i ) f (X i ),
1

N

N
∑

i=1

w̃ (X i )

�

− (µZ , Z )

�

D−−−→
N→∞

N2(0,Σ)

where

Σ=

�

σ2
A σAB

σAB σ2
B

�

.
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Now, let g (a , b ) = a
b . We have that

g

�

1

N

N
∑

i=1

w̃ (X i ) f (X i ),
1

N

N
∑

i=1

w̃ (X i )

�

= µ̃q .

We simply calculate g (µZ , Z ) =µ and∇T
~µ :=∇g (µZ , Z )T = ( 1

Z ,− µZ ). Then,

∇T
~µ Σ∇~µ =

1

Z 2
σ2

A +
µ2

Z 2
σ2

B −2
µ

Z 2
σAB

=

�∫

π(x )2 f (x )2

q (x )
d x −µ2

�

+µ2

�∫

π(x )2

q (x )
d x −1

�

−2µ

�∫

π(x )2 f (x )
q (x )

d x −µ
�

=

∫

π(x )2( f (x )−µ)2

q (x )
d x .

Applying the delta method, we obtain
p

N
�

µ̃q −µ
� D−−−→

N→∞
N

�

0,
∫ ( f (x )−µ)2π(x )2

q (x ) d x
�

.

2.2 Proof of Theorem 1.10

The proof of Theorem 1.10 is given in this section. Moreover, the proof of Theorem 1.7, which can

be found in [19, 30, 25], is provided in details here. We will see the way to come up with the proof for

Theorem 1.7 which is to seek for a nominee for the optimal proposal density and then show that

such nominee really is the optimal one. Then, we can use this line of proof to prove Theorem 1.10.

We now begin with the proof of Theorem 1.7.

Proof of Theorem 1.7. To minimize
∫ f (x )2π(x )2

q (x ) d x subject to a constraint
∫

q (x ) d x = 1, we apply

the method of Lagrange multipliers for calculus of variations from Appendix C at least to find the

candidate for the minimizer. Note that we also have constraints π and q being non-negative. Let

L (x , q ,λ) =
f (x )2π(x )2

q (x )
+λq (x ).

Setting
∂ L

∂ q
=−

f (x )2π(x )2

q (x )2
+λ= 0,

we have that

q (x ) =

√

√ f (x )2π(x )2

λ
=
| f (x )|π(x )
p
λ

.

Since
∫

q (x ) d x = 1, we have that q (x ) = | f (x )|π(x )
∫

| f (x )|π(x ) d x
. Note that this method of Lagrange multipliers

for calculus of variations does not give us a complete proof as Kahn and Marshall [19] claimed. Now,
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we will show that this

q ∗b (x ) =
| f (x )|π(x )

∫

| f (x )|π(x ) d x

yields the minimum variance among all valid basic IS proposal densities. Obviously, f π� q ∗b . Let q

be any density satisfying f π� q . Then,
∫

f (x )2π(x )2

q ∗b (x )
d x =

∫

f (x )2π(x )2

| f (x )|π(x )
∫

| f (x )|π(x ) d x

d x =

�∫

| f (x )|π(x ) d x

�2

=

�∫

| f (x )|π(x )
q (x )

q (x ) d x

�2

=
�

E

� | f (X )|π(X )
q (X )

��2

, X ∼ q

≤E
�

� | f (X )|π(X )
q (X )

�2�

=

∫

f (x )2π(x )2

q (x )2
q (x ) d x

=

∫

f (x )2π(x )2

q (x )
d x

by Jensen’s inequality. Hence,

Var(µ̂q ∗b
) =

1

N

�∫

( f (x )2π(x )2

q ∗b (x )
d x −µ2

�

≤
1

N

�∫

( f (x )2π(x )2

q (x )
d x −µ2

�

=Var(µ̂q )

which completes the proof.

Now, we will follow analogous line of proof for Theorem 1.10. Note that there is a statement with

proof given in [11], but that statement does not talk about the validity of the proposal density.

Proof of Theorem 1.10. Let

L (x , q ,λ) =
π(x )2( f (x )−µ)2

q (x )
+λq (x ).

Setting
∂ L

∂ q
=−
( f (x )−µ)2π(x )2

q (x )2
+λ= 0,

we have that

q (x ) =

√

√ ( f (x )−µ)2π(x )2
λ

=
| f (x )−µ|π(x )

p
λ

.
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Since
∫

q (x ) d x = 1, we have that q (x ) = | f (x )−µ|π(x )
∫

| f (x )−µ|π(x ) d x
= | f (x )−µ|p (x )

∫

| f (x )−µ|p (x ) d x
. Now, we will show that

this candidate

q ∗s n (x ) =
| f (x )−µ|p (x )

∫

| f (x )−µ|p (x ) d x

yields the minimum asymptotic variance. Let q be any density function such that p � q .
∫

( f (x )−µ)2π(x )2

q ∗s n (x )
d x =

∫

( f (x )−µ)2π(x )2
| f (x )−µ|π(x )

∫

| f (x )−µ|π(x ) d x

d x =

�∫

| f (x )−µ|π(x ) d x

�2

=

�∫

| f (x )−µ|π(x )
q (x )

q (x ) d x

�2

=
�

E

� | f (X )−µ|π(X )
q (X )

��2

, X ∼ q

≤E
��

� | f (X )−µ|π(X )
q (X )

�2��

=

∫

( f (x )−µ)2π(x )2

q (x )2
q (x ) d x

=

∫

( f (x )−µ)2π(x )2

q (x )
d x

by Jensen’s inequality. Therefore, we get the desired result.
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3

PARTITION-BASED METHOD

Before the partition-based method is presented, we continue the discussion of Example 1.12 here.

Table 3.1 shows the related integrals for proposal distributions in Example 1.12. Surprisingly, the

optimal densities for both basic (q1 = q ∗b ) and self-normalized (q2 = q ∗s n ) IS have integral
∫ π(x )2

qi (x )
d x =

∞. This integral is the current rule of thumb (1.7) widely used by statisticians as a criterion to choose

a good proposal density for both basic and self-normalized IS. More surprisingly, q2 which is the

Table 3.1 Related integrals for proposal distributions in Example 1.12

qi

∫ π(x )2
qi (x )

d x
∫ f (x )2π(x )2

qi (x )
d x

∫ ( f (x )−µ)2π(x )2
qi (x )

d x

q1 = q ∗b ∞ 0.5625 ∞
q2 = q ∗s n ∞ ∞ ≈ 1.18603
q3 ∞ ∞ ∞
q4 ≈ 1.11072 ∞ ∞
q5 ≈ 1.93144 ≈ 1.34172 ≈ 1.50409
q6 ∞ ∞ ∞
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optimal density for self-normalized IS does not satisfy the convergence assumption of Theorem

1.5. This does not violate any theory. From Remark 1.11, q ∗s n is just the probability density function

that minimizes
∫ ( f (x )−µ)2π(x )2

q (x ) d x and may not satisfy the self-normalized IS validity condition nor

the assumption of the convergence theorem for self-normalized IS estimators. Here, q2 attains

the minimum of
∫ ( f (x )−µ)2π(x )2

q2(x )
d x at 9

8 (14+ 7 3p6+ 4 3p36)e −2 3p6 ≈ 1.18603. It satisfies p � q2, but
∫ f (x )2π(x )2

q2(x )
d x ,

∫ π(x )2
q2(x )

d x =∞. Another interesting point is that
∫ π(x )2

q4(x )
d x = π

2
p

2
≈ 1.11072 <∞,

so q4 satisfies the rule of thumb (1.7). However, it is a bad proposal density for both basic IS and

self-normalized IS as we can see from Fig. 1.7 and Fig. 1.8. Thus, the condition (1.7) is not a satisfying

criterion for choosing a good proposal density for IS method. If we really pay attention to the

convergence theorem of IS estimator, we can get closer to the answer. The criterion should rather be

∫

f (x )2π(x )2

q (x )
d x <∞

for basic IS, and
∫

f (x )2p (x )2

q (x )
d x ,

∫

p (x )2

q (x )
d x <∞

for self-normalized IS. A good example for this is q5 which has
∫ f (x )2p (x )2

q5(x )
d x = 37/4 357/8

29

�

17
2 +6

p
2
�

1
8 π≈

1.34172<∞ and
∫ p (x )2

q5(x )
d x = 31/4 351/8

225/8

�

4+2
p

2
�

1
2 π≈ 1.93144<∞. Therefore, we have a finite vari-

ance, Var(µ̂q5
) = 1

N

�

∫ f (x )2p (x )2

q5(x )
d x −µ2

�

≈ 1.34172−0.5625
N = 0.77922

N and a finite asymptotic variance,

AVar(µ̃q5
) = 1

N

∫ ( f (x )−µ)2π(x )2
q5(x )

d x = 1
N

�

31/4 351/8

21/8

�

4+2
p

2
�

1
2 + 33/4357/8

12

�

17
2 +6

p
2
�

1
8 −

�

35
2

�
1
2

�

9π
27 ≈ 1.50409

N .

Both basic IS and self-normalized IS performances of q5 are really good.

Although we cannot always use the theoretically optimal proposal density in IS method in reality,

we may be able to find a nice proposal density that gives a really pleasant outcome and at the same

time satisfies all theoretical assumptions we need. To get an idea of how this work can come about,

we consider the case of basic IS first. From Example 1.12, we can see from Fig. 1.7 that the proposal

density q6 has a good performance, and from Fig. 1.1 that the probability density function of q6 is very

closed to the optimal proposal density q1. This gives us an idea that a good proposal density should be

closed to the optimal one, q ∗b for basic IS and q ∗s n for self-normalized IS. A question that should come

to one’s mind is why the proposal q6 brings about a nice result despite the fact that Var(µ̂q6
) =∞.

From Theorem 1.3, we have that Var(µ̂q6
) = 1

N

�

∫∞
0

2
p

2πx 7e 2(log x− 1
2 )

2−4x d x − ( 34 )2
�

and one can

check that the part that make the variance infinite is the integral around the neighborhood of

zero, say
∫ ε

0
2
p

2πx 7e 2(log x− 1
2 )

2−4x d x =∞, ε> 0. From the basic IS formula (1.3),each term in the

summation with the proposal density q6 is f (x )π(x )
q6(x )

=
p

2πx 4e 2(log x− 1
2 )

2−2x and this amount will go
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Table 3.2 All assumptions for proposal distributions/densities

Basic IS Self-normalized IS

Given f ,π f , p
Validity f π� q p � q

Convergence
∫ f (x )2π(x )2

q (x ) d x <∞
∫ f (x )2p (x )2

q (x ) d x ,
∫ p (x )2

q (x ) d x < ∞

to infinity as x goes to 0. So, the jump behavior will arise when we get a sample too closed to 0.

According to the probability density function q6 from Fig. 1.1, most of the time we will get random

samples not too close to 0. Thus, the jump problem rarely happens in the simulation, and that

makes q6 look good enough to be used as a proposal density. However, we cannot deny the fact that

it brings about infinite variance. Therefore, in this chapter, we propose a valid proposal density that

gives a really pleasant outcome, guarantee finite variance (for basic IS or asymptotic variance for

self-normalized IS) of the estimator, and satisfies the assumption for the associated convergence

theorem.

3.1 Sufficient Conditions

The derivation of both kinds of IS from Section 1.1 and 1.2 needs the assumption for a legitimate

proposal distribution. Also, Corollary 1.4 and Theorem 1.5 tell us all the assumptions for a proposal

density to have the associated convergence theorem. Table 3.2 summarizes all of these assumptions.

Note that the assumption
∫ f (x )2π(x )2

q (x ) d x <∞ also implies the boundedness of Var(µ̂q ), and the

assumption
∫ f (x )2p (x )2

q (x ) d x ,
∫ p (x )2

q (x ) d x < ∞ also implies the boundedness of AVar(µ̃q ). Therefore,

all we need for a good proposal distribution are

f π� q (3.1)

and
∫

f (x )2π(x )2

q (x )
d x <∞ (3.2)

for basic IS, and also

p � q (3.3)
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and
∫

f (x )2p (x )2

q (x )
d x ,

∫

p (x )2

q (x )
d x < ∞ (3.4)

for self-normalized IS.

The following proposition gives some sufficient conditions to satisfy the assumption for the

convergence theorem for the IS estimators.

Proposition 3.1. If πq is bounded almost everywhere, then

∫

π(x )2

q (x )
d x <∞.

Also, if either

1. Varπ( f )<∞ and π
q is bounded almost everywhere, or

2. f π
q is bounded almost everywhere

then
∫

f (x )2π(x )2

q (x )
d x <∞.

Proof. The proof of this proposition is quite obvious once we note that
∫

π(x ) d x = 1, Varπ( f )<∞
implies

∫

f (x )2π(x ) d x <∞, and f is π−integrable which means
∫

| f (x )|π(x ) d x <∞. Therefore,

if πq is bounded almost everywhere by a constant M , then

∫

π(x )2

q (x )
d x ≤M

∫

π(x ) d x =M <∞.

If Varπ( f )<∞ and π
q is bounded almost everywhere by a constant M , then

∫

f (x )2π(x )2

q (x )
d x ≤M

∫

f (x )2π(x ) d x <∞.

If | f |πq is bounded almost everywhere by a constant K , then

∫

f (x )2π(x )2

q (x )
d x ≤ K

∫

| f (x )|π(x ) d x <∞

which completes the proof.
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Table 3.3 Sufficient conditions for the convergence theorem for IS estimators.

Basic IS Self-normalized IS

Varπ( f )<∞ and π
q is bounded Varπ( f )<∞ and p

q is bounded
or or

f π
q is bounded f p

q and p
q are bounded

In practice, we can replace "bounded almost everywhere" in this proposition by just "bounded".

Thus, to practically meet the assumption for the convergence theorem for IS estimators, we want the

proposal density q that satisfies the conditions given in Table 3.3. For a valid proposal distribution,

we also need to be aware of the absolute continuity issue.

Some people may say that knowing the optimal density is useless because it cannot be used in

reality. However, finding a proposal that is close to the optimal one is possible, and it should provide

a very good result. For example, in Example 1.12, we would like to acquire a valid proposal density

that satisfies the assumption for the convergence theorem like q5 and is close to the optimal density

like q6 for basic IS and q5 for self-normalized IS.

3.2 Classes of Functions

The classes of functions that can be handled by the partition-based method are discussed before we

go into the partition-based method. The primary issue is about the oscillation of a function. For

a function that has oscillatory behavior, we need to justify what kind of an oscillation can still be

applied the partition-based method.

Definition 3.2. Let f be a real-valued function on a domain D ⊂R that has countable discontinu-

ities and countable local extrema. Then, the collection of all the discontinuities and all the local

extrema can partition D into enumerated intervals {I f
i }i∈J for some index set J . We say that f is

well oscillated, if

inf
I

f
i ⊂[−T ,T ]

|I f
i |> 0, ∀T > 0.

For a well oscillated function f , we call

inf
I

f
i ⊂W

|I f
i |

the pseudo period of f on W for any bounded subset W ⊂D .
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Definition 3.3. For a function f on a domain D ⊂Rd for some d > 1, we say that f is well oscillated,

if

fk (xk ) = f (x1, . . . , xd )|xi=αi ,∀i∈{1,...,d }\{k}

is well oscillated for all k ∈ {1, . . . , d } and for all (α1, . . . ,αd ) ∈D .

Denote the collection of all probability density functions on D byP (D ). Define classes for the

pairs of target functions and target densities:

Ab (D ) = { ( f ,π) ∈RD ×P (D ) | | f |π is well oscillated}

As n (D ) = { ( f ,π) ∈RD ×P (D ) | | f −µ|π is well oscillated}

B (D ) = { ( f ,π) ∈RD ×P (D ) | Varπ( f )<∞}

C1(D ) = { ( f ,π) ∈RD ×P (D ) | π is bounded}

C2(D ) = { ( f ,π) ∈RD ×P (D ) | f π is bounded}.

We will categorize the classes for the pairs of target functions and target densities that can be handled

by the partition-based method into the following four groups.

1. G b
b (D ) = Ab (D ) ∩

�

[B (D )∩C1(D )] ∪ C2(D )
�

2. G u
b (D ) = Ab (D ) ∩

�

[B (D )∩C1(D )c ] ∪ C2(D )c
�

3. G b
s n (D ) = As n (D ) ∩

�

[B (D )∩C1(D )] ∪ [C1(D )∩C2(D )]
�

4. G u
s n (D ) = As n (D ) ∩

�

[B (D )∩C1(D )c ] ∪ [C1(D )c ∩C2(D )]

∪ [C1(D )∩C2(D )c ] ∪ [C1(D )c ∩C2(D )c ]
�

The subscript in the notation refers to which kind of IS the partition-based method can be ap-

plied: b for basic IS, and s n for self-normalized IS. The superscript in the notation determines the

boundedness of π and/or f π: b for bounded, and u for unbounded. Each class will be differently

managed before applying the partition-based method. Note that most functions from real world

applications are usually well-oscillated. We just want to clearly state the class of functions to which

the partition-based method can be applied.

3.3 One-Dimensional Spaces

IS is capable of having a zero variance estimator for the case of basic IS with positive target function

by using the optimal density, so we should find a way to obtain a proposal density that is close to

32



3.3. ONE-DIMENSIONAL SPACES CHAPTER 3. PARTITION-BASED METHOD

the optimal one by utilizing known theory. We will start with one-dimensional problem to get an

idea of the proposed method, and generalize that to the multidimensional case later.

In most applications, there are three types of one-dimensional domain: bounded interval domain

[a , b ], semi-infinite domain [0,∞), and infinite domain (−∞,∞). We will illustrate examples mainly

in semi-infinite domain because there are two issues that normally do not appear at the same time

in the other two cases. The first issue is about the tail in which the bounded interval domain does

not have. The second issue is the unboundedness of the target distribution π. A distribution with

infinite domain usually has bounded density. Even if it is unbounded, we can adjust it to use the

method proposed in the semi-infinite case.

Now, a method to get a proposal density for IS that has a good performance and satisfies all the

required theoretical assumptions is proposed. The idea is very simple and can be easily simulated

in 1-dimensional problem. The concept is to get a proposal density that close to the optimal density

(1.5) from Theorem 1.7 for basic IS or (1.6) from Theorem 1.10 for self-normalized IS, and to ensure

that it satisfies (3.1) and (3.2) for basic IS or (3.3) and (3.4) for self-normalized IS.

3.3.1 Basic Importance Sampling

In this subsection, we will focus on the case of basic IS. The classes of the pairs of the target functions

and the target densities that can be handled by the partition-based method are G b
b (D ) and G u

b (D ).

We will explain the process of the method for each class separately, and primarily focus on the class

G b
b (D ).

3.3.1.1 ClassG b
b (D )

Assume that ( f ,π) ∈G b
b (D ). Consider the case when D = [0,∞). The first step in the method is to

partition the domain. Let’s fix a proper constant M ∈ (0,∞) somewhere in the domain. We will

discuss how to choose the parameter M later. We will call [0, M ] the importance region, and [M ,∞)
the tail region. Let

0= x0 < x1 < . . .< xL =M <∞= xL+1

be a partition for [0,∞). We will discuss how to choose the parameter L later. For the sake of

simplicity in programming, let

∆=
M

L
and xi = i∆ for i = 0, 1, . . . , L .

The first L subintervals of the partition have equal length∆ and their union is the importance region,

and the last subinterval is [M ,∞)which is the tail region. Note that subintervals in the importance
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region do not need to have the same length, and we can use varying-length subintervals at the

expense of more complexity and memory requirement in programming.

Next, we will approximate the optimal basic-IS proposal density from Theorem 1.7. For the

importance region, we will use the idea of Riemann integral where the function value is constant on

each subinterval. We choose representative points from each subinterval

x ∗i ∈ [xi−1, xi ] for all i = 1, . . . , L

and evaluate with | f |π, the optimal function without the normalizing constant, to get the unnor-

malized proposal density q̃ in each subinterval, let

h̃i = | f (x ∗i )|π(x
∗
i ) for all i = 1, . . . , L

q̃ (x ) = h̃i for x ∈ [xi−1, xi ).

Recall that q needs to satisfy the absolute continuity (3.1). It is possible that the point x ∗i can

cause | f (x ∗i )|π(x
∗
i ) = 0, but f π is not zero on the entire subinterval [xi−1, xi ), and we will call this

the zero problem. The support of the final proposal density should cover the support of f π. So,

we just need nonzero h̃i to approximately represent q on [xi−1, xi ) and we can avoid this zero

problem by reselecting x ∗i , or using several intermediate points and averaging the function values

with these intermediate points. For instance, we select x ∗i 1, . . . , x ∗i k ∈ [xi−1, xi ] for some k and set

h̃i =
1
k

∑k
j=1 | f (x

∗
i j )|π(x

∗
i j ) or even use a weighted average. Anyway, we may predetermine the domain

where f π is nonzero, and choosing x ∗i to be the mid-point of each interval [xi−1, xi ] seems to be

an easy choice and works well. If f π is zero on the entire subinterval [xi−1, xi ), then any choice of

x ∗i will make | f (x ∗i )|π(x
∗
i ) = 0 which does not violate (3.1). Suppose for now that x ∗i = xi − ∆2 , the

mid-point of the interval [xi−1, xi ] does not bring about the zero problem. Sometimes, we can make

a transformation by adding or subtracting f with some constant to avoid zero problem.

According to the assumption of Proposition 3.1, if we assume that Varπ( f ) <∞, we have to

choose q that makes πq bounded (more practical and stronger than bounded almost everywhere),

otherwise we need that f π
q is bounded. For ( f ,π) ∈G b

b (D ), we choose q to be a piecewise-constant

function in the importance region, so the bounded condition in the importance region is satisfied

for these cases.

For the tail region, a proper function q̃t will be chosen to be the tail of our proposal density. q̃t has

to satisfy the condition that πq̃t
is bounded on [M ,∞) for the case of ( f ,π) ∈Ab (D )∩B (D )∩C1(D ); or

f π
q̃t

is bounded on [M ,∞) for the case of ( f ,π) ∈Ab (D )∩C2(D ). We will choose a continuous function

q̃t such that lim
x→∞

π(x )
q̃t
<∞ for the case of ( f ,π) ∈Ab (D )∩B (D )∩C1(D ); or lim

x→∞
f (x )π(x )

q̃t
<∞ for

the case of ( f ,π) ∈Ab (D )∩C2(D ), and
∫∞

M
q̃t d x can be computed. We suggest that q̃t has purely
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exponential decay or purely polynomial decay of degree more than one. It is possible that purely

polynomial decay is not enough. For example, we may need to choose functions like 1
x (log x )1+α

for α > 0. Note that if exponentially decaying function is appliable, so is polynomially decaying

function. We also suggest to match q̃t (M )with h̃L to get a sense of smoothness. Now, we have the

unnormalized proposal density

q̃ (x ) =







h̃i , if x ∈ [xi−1, xi )

q̃t (x ) , if x ∈ [M ,∞).

Useful functions to be used as q̃t are h̃L e −α(x−M ), h̃L
(x−M+1)1+α , and h̃L M 1+α

x 1+α for α > 0 which are

clearly integrable on [M ,∞). For these q̃t ’s,
∫∞

M
q̃t d x equals h̃L

α for the first two densities, and h̃L M
α

for the third one. Then, the calculation of Zq and hi ’s follows. The probability of getting a sample in

[xi−1, xi ) for i = 1, . . . , L is∆hi , and the probability of getting a sample in [M ,∞) is hL
α for the first

two densities or h̃L M
α for the last one. The probability of getting a sample in the tail region can be

controlled by choosing parameter α, but we have to ensure the existence of lim
x→∞

π(x )
q̃t (x )

for the case

of ( f ,π) ∈Ab (D )∩B (D )∩C1(D ); or lim
x→∞

f (x )π(x )
q̃t (x )

for the case of ( f ,π) ∈Ab (D )∩C2(D ). Note that
h̃L

(x−M+1)1+α and h̃L M 1+α

x 1+α are the polynomial tail with the same order. We suggest to use h̃L e −α(x−M )

and h̃L
(x−M+1)1+α as the tail function because the probability of getting a sample in the tail region does

not depend on M .

Next, we calculate the normalizing constant Zq for our q̃ . We still stick to the plan of using equal

length of∆ for each subintervals in the importance region. Then,

Zq =∆ ·
L
∑

i=1

h̃i +

∫ ∞

M

q̃t (x ) d x .

Consequently, we obtain the proposal density

q (x ) =







hi =
h̃i
Zq

, if x ∈ [xi−1, xi ) for i = 1, . . . , L

qt (x ) =
q̃t (x )

Zq
, if x ∈ [M ,∞).

We can draw random samples according to this density by using the inverse transform method

described in Appendix D. Most of the time, we will get samples in the importance region and this is

why we call it importance region. To draw random samples, we set I0 = 0, I j = I j−1+∆h j =∆·
∑ j

i=1 hi

for j = 1, . . . , L , and IL+1 = 1 as cumulative sum of the integral over the subintervals. To get a sample,

we generate a random number u from the uniform distribution over the unit interval. Then, we find

35



3.3. ONE-DIMENSIONAL SPACES CHAPTER 3. PARTITION-BASED METHOD

the lowest k such that Ik > u . If k = L +1 which means the sample will fall in the tail region, then we

have the relationship

u = IL +

∫ x

M

hL e −α(z−M ) d z

= IL +
hL

α
(1− e −α(x−M ))

x =−
1

α
log

�

1−
α(u − IL )

hL

�

+M

for qt (x ) = hL e −α(x−M ) or

u = IL +

∫ x

M

hL

(z −M +1)1+α
d z

= IL +
hL

α

�

1−
1

(x −M +1)α

�

x =
�

1−
α(u − IL )

hL

�−1/α

+M −1

for qt (x ) =
hL

(x−M+1)1+α , otherwise the sample will fall in the importance region and we have that

u = Ik−1+

∫ x

(k−1)∆
hk d z

= Ik −∆hk + (x − (k −1)∆)hk

x =
u − Ik

hk
+k∆

with q (x ) = hk . This computed x is a sample drawn from the proposal distribution q , and the regular

IS method can be directly applied.

Example 3.4. We will illustrate this method by applying it to the setup from Example 1.12. Here,

we have f (x ) = x 3 and π(x ) = 2e −2x . We will apply our method with parameters M = 4,10 and

L = 10, 25, 80. In each combination of M and L , we set∆= M
L and choose x ∗i = (i−

1
2 )∆, the mid-point

of the i t h subinterval, for i = 1, . . . , L . The height of the unnormalized proposal density in each

subinterval can be straightforwardly calculated by h̃i = | f (x ∗i )|π(x
∗
i ) for i = 1, . . . , L . Note that we

must check if any of h̃i is zero, and if so, we have to reselect x ∗i or use the average of more than one

point for each subinterval. However, for this setup of f and π, the subinterval’s mid-points do not

create the zero problem.
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Figure 3.1 Proposal densities for parameters M = 4, 10 and L = 10, 25, 80 for Example 3.4

As for the tail region, we have two easy choices of the tail function. One is an exponentially

decaying function e −αx and the other is a polynomially decaying function 1
(x−M+1)1+α for some α> 0,

and both functions are multiplied by a constant to match up the height of the last subinterval in

importance region. Here, we choose

q̃t (x ) = h̃L e −(x−M ).

Then, lim
x→∞

π(x )
q̃t (x )

= 0 and lim
x→∞

f (x )π(x )
q̃t (x )

= 0, so the bounded condition is satisfied. The integral of q̃t on

the tail region is
∫∞

M
h̃L e −(x−M ) d x = h̃L . Thus, the normalizing constant for the proposal density is

Zq =∆ ·
L
∑

i=1

h̃i + h̃L .
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Figure 3.2 Histograms of the corresponding densities from Fig. 3.1

We set hi =
h̃i
Zq

for i = 1, . . . , L . Then, the proposal density is

qb (x ) =







hi , if x ∈ [xi−1, xi ) for i = 1, . . . , L

hL e −(x−M ) , if x ∈ [M ,∞).

Fig. 3.1 shows the proposal densities for all the combinations of parameters M = 4,10 and L =

10, 25, 80. The optimal basic-IS density q ∗b is also plotted to show how close each proposal density is

to the optimal one.

We generate 10,000 samples from each density using the inverse transform method. Then, the

basic IS computation using (1.3) proceeds. Fig. 3.2 shows histograms of samples obtained from the

corresponding densities in Fig. 3.1.
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Figure 3.3 Basic IS performance of the corresponding densities from Fig. 3.1

Fig. 3.3 shows the basic-IS performance of the corresponding densities from Fig. 3.1 with n = 100

scenarios. We can see that the smaller ∆ is, the closer our qb tends to be to the optimal density;

hence, we have a better approximation. As a comparison, the performance of proposal densities

q5 and q6 from Example 1.12 is presented in Fig. 3.4 with the same scale as in Fig. 3.3. The optimal

proposal density q1 gives absolutely zero variance, so there is no need to reshow a rescaled graph of

its performance. Note that q6 yields infinite variance of estimation, while all of our qb with various

parameters M and L guarantee to have finite variance according to Proposition 3.1.

There is another way of sampling method using two random numbers for one output sample. In

our method for 1-dimensional problem, the probability of getting a sample in each subinterval of

the importance region and in the tail region can be easily calculated. We can express our proposal

distribution as a linear combination of known distributions. For instance, the proposal density in
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Figure 3.4 Rescaled basic IS performance of q5 and q6 from Example 1.12

Example 3.4 can be expressed as

qb (x ) =
L
∑

i=1

hi1[xi−1,xi )(x ) + hL e −(x−M )
1[M ,∞)(x )

=
L
∑

i=1

(hi∆)
�

1

∆
1[xi−1,xi )(x )

�

+ hL

�

e −(x−M )
1[M ,∞)(x )

�

so that our proposal distribution can be expressed as

L
∑

i=1

(hi∆)Unif(xi−1, xi ) + hL GPD(0, 1, M )

where GPD(ξ,σ,θ ) is the generalized Pareto distribution with shape parameter ξ, scale parameterσ,

and threshold parameter θ described in Appendix E. The reason why we use the generalized Pareto

distribution instead of the exponential distribution is because the generalized Pareto distribution is

more general and includes polynomial-decaying distributions, which can be selected to be the tail

part of the proposal density. It is often used to model the tails of diverse distributions. Recall that
∑L

i=1 hi∆+hL = 1. Thus, the proposal distribution can be expressed as a mixture distribution and

be sampled by the composition method.

To perform the composition method, recall that we have I0 = 0, I j = I j−1+∆h j for j = 1, . . . , L ,

and IL+1 = IL +hL = 1. So, we generate u from Unif(0, 1) and find the first j that gives I j ≥ u . Then,

we simply generate a desired sample x from the j t h corresponding distribution. That is, if j ≤ L ,

we sample x from Unif(x j−1, x j ), and if j = L + 1, we sample x from GPD(0,1, M ). This mixture

distribution is a combination of distributions with different supports that form a partition for the

resulting mixture distribution. This is different from the current glowing research where the mixture

distribution is a combination of distributions with the same support.
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As we can see from Example 3.4, the size of∆ and the threshold M can affect the performance of

the method. Now, one way to determine the parameters in the partition-based method is discussed.

By fixing the tail function to be a generalized-Pareto-density type, we can express our unnormalized

tail function as

q̃ (x ) =
L
∑

i=1

∆h̃i Unif(xi−1,xi )(x ) + σh̃L GPD(ξ,σ,M )(x )

with parameter ξ ≥ 0 and σ > 0. Here, Unif(xi−1,xi ) and GPD(ξ,σ,M ) refer to their corresponding

probability density functions:

Unif(xi−1,xi )(x ) =
1

∆
1[xi−1,xi )(x ) (3.5)

GPD(ξ,σ,M )(x ) =











1

σ
�

1+ξ (x−M )
σ

�1+ 1
ξ
1[M ,∞)(x ) , if ξ> 0

1
σ e −

(x−M )
σ 1[M ,∞)(x ) , if ξ= 0.

(3.6)

Note that q̃ (M ) = h̃L . Then,
∫

q̃ (x ) d x =
∑L

i=1∆h̃i +σh̃L so that

q (x ) =
q̃ (x )

∑L
i=1∆h̃i + σh̃L

.

Now, the first step is to choose parametersξ andσ in order to satisfy all the required assumptions.

Specifically, the tail function q̃t chosen from the generalized Pareto densities have to make π
q̃t

bounded on [M ,∞) for the case of ( f ,π) ∈Ab (D )∩B (D )∩C1(D ); or f π
q̃t

bounded on [M ,∞) for

the case of ( f ,π) ∈Ab (D )∩C2(D ).

The second step is to choose∆. The smaller∆ is, the better the approximation will be. However,

if it is too small, the computation cost will be high. For ( f ,π) ∈Ab (D ), if | f |π has no oscillation,∆

can be any small number, but if | f |π has oscillation behavior,∆ should be chosen to be smaller than

the pseudo period of | f |π on [0, M ]. In general real-world problems, the pseudo period of | f |π on

the entire domain is strictly positive, so we can just choose∆ to be smaller than this global pseudo

period. Sometimes,∆ bigger than the pseudo period of | f |π on [0, M ] can still work well.

Now, to find a cutting point M , we will seek L , the number of∆-size intervals in the importance

region. Let’s introduce two more parametersε∆ andε0. Here,ε∆ is an upper bound for the probability

of getting a sample in the tail region and ε0 is the machine precision bound. The probability of

getting a sample in the tail region is

∫

σh̃L GPD(ξ,σ,M )(x ) d x
∑L

i=1∆h̃i + σh̃L

=
σh̃L

∑L
i=1∆h̃i + σh̃L

.
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Thus, we want that

ε0 <
σh̃L

∑L
i=1∆h̃i + σh̃L

< ε∆.

Simple calculation yields
∆

σ

ε0

1−ε0
<

h̃L
∑L

i=1 h̃i

<
∆

σ

ε∆
1−ε∆

.

Note that x
1−x is an increasing function on (0, 1). We always have ε0 > 0 and choose ε∆ < 1. Hence, if

ε0 < ε∆, then ∆
σ

ε0
1−ε0

< ∆σ
ε∆

1−ε∆ . The third step is to increase the number of intervals L and find the

first L that makes h̃L
∑L

i=1 h̃i
lower than the threshold ∆

σ
ε∆

1−ε∆ . Note that ε0 is so small that we should get

∆

σ

ε0

1−ε0
<

h̃L
∑L

i=1 h̃i

.

We should check for this condition, but we can ignore it in practice since ε0 tends to be very small.

Consider a sequence h̃L
∑L

i=1 h̃i
in L . The denominator

∑L
i=1 h̃i is increasing in L because h̃i =

| f (x ∗i )|π(x
∗
i )≥ 0 for i = 1, . . . , L . The numerator h̃L will converge to zero, if lim

x→∞
f (x )π(x ) = 0. Recall

that µ=
∫

f (x )π(x ) d x <∞, so lim
x→∞

f (x )π(x ) = 0 holds. One may construct a counterexample such

as a function that takes value n on (n , n + 1
n 3 ) for all n ∈N and zero elsewhere. h̃L is not guaranteed

to converge to zero because it may do not converge at all.

Claim. There exists L0 ∈N such that

h̃L0
∑L0

i=1 h̃i

<
∆

σ

ε∆
1−ε∆

.

Proof. We must have h̃k > 0 for some k ∈N. Thus, h̃k
∆
σ

ε∆
1−ε∆ > 0. Since

∫

| f (x )|π(x ) d x <∞, there

exists L0 > k such that

h̃L0
= | f (x ∗L0

)|π(x ∗L0
)

< h̃k
∆

σ

ε∆
1−ε∆

≤

� L0
∑

i=1

h̃i

�

∆

σ

ε∆
1−ε∆

.

Hence,
h̃L0

∑L0
i=1 h̃i

<
∆

σ

ε∆
1−ε∆

.
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Note that this claim relies on the choice of x ∗i ’s and we may have to choose x ∗i ’s other than the

interval-mid-points. Eventually, h̃L
∑L

i=1 h̃i
will be lower than the threshold ∆

σ
ε∆

1−ε∆ for some L , and we

will use this L as our parameter. Thus, we finally have M =∆L and the proposed method can be

carried on.

This method is self-determining where to cut for the tail and can also be applied with the scheme

where we use one uniform random number for one output sample. We will call that scheme the

auto-sampling-once scheme. The above scheme where we use one uniform random number and

one generalized Pareto random number for one output sample will be called the auto-sampling-

twice scheme. The summary for both schemes are shown in Table 3.4. Sometimes we need to take

care of the choice of x ∗i ’s, but the interval-mid-points usually work well in general. The algorithm

can also be adjusted to be applied to the other kinds of domain in R.

In Table 3.4, Step 1 - 4 compute the proposal density, and step 5 - 7 deliver one random sample

x from the proposal density with the corresponding function value q (x ) = qx for the regular IS

approximation using (1.3). One may force the cutting point M to be further than a certain point M0

by computing the initial step before entering the while-loop until∆L >M0.

Note that the parameters in the auto-sampling-once and auto-sampling-twice schemes can

be equivalently changed to the other scheme. Table 3.5 shows the relationship of the parameters

change between these two schemes. Both schemes should have the same performance, but the auto-

sampling-twice scheme uses more computing time because it draws one more random number than

the auto-sampling-once scheme for one sample. Thus, we recommend the auto-sampling-once

scheme over the auto-sampling-twice scheme. We introduce the idea of the auto-sampling-twice

scheme because it can be extended easily to the problems with multidimensional space. We will

talk about this idea in Section 3.4.

Example 3.5. We redo Example 3.4 again with the auto-sampling-once and auto-sampling-twice

schemes with ∆ = 0.1,0.2,0.4,0.8 and ε∆ = 5%. For the auto-sampling-once scheme, we use the

exponential tail with parameter α = 1 which is equivalent to using parameters ξ = 0 and σ = 1

for the auto-sampling-twice scheme. The proposal densities qb with different parameter∆ using

the self-determined-where-to-cut method is shown in Fig. 3.5. Note that the auto-sampling-once

scheme and the auto-sampling-twice scheme are different mainly on the sampling step, and have

the same process of computing proposal densities. Fig. 3.6 and Fig. 3.7 show the performance of

the auto-sampling-once scheme and the auto-sampling-twice scheme, respectively, with different

∆. Note that each case has n = 100 scenarios and each scenario uses N = 10,000 samples. The

time to compute each proposal density (step 1 - 4 in Table 3.4), the time in sampling step (step 5 - 7

in Table 3.4 with n ×N samples), and the time to calculate IS approximation (step 8 in Table 3.4)
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Table 3.4 Algorithm of the partition-based method for basic IS on [0,∞)

Step 1 For the auto-sampling-once scheme, choose a type of tail (polynomial or exponential)
and parameter α for the algorithm.

For the auto-sampling-twice scheme, choose parameters ξ andσ for the algorithm.
Choose parameters∆ and ε∆ for the algorithm and set

Threshold=∆α ε∆
1−ε∆ or ∆σ

ε∆
1−ε∆ depending on the chosen scheme.

Step 2 Initially set L = 1, x ∗ = ∆2 , h1 =
�

| f |π
�

(x ∗) and SUMh= h1.

Step 3 While hL
SUMh ≥ Threshold

Increase L by 1, set x ∗ = x ∗+∆ and compute NEWh=
�

| f |π
�

(x ∗).
Append NEWh to h so that hL =NEWh.
Set SUMh= SUMh+NEWh.

end while loop
Step 4 Compute M =∆L , and check for zero problem.

Normalize all hi by

∆ ·SUMh+ hL
α or∆ ·SUMh+σhL depending on the chosen scheme.

Step 5 Set I j =∆ ·
∑ j

i=1 hi for j = 1, . . . , L and IL+1 = 1.
Step 6 Draw u ∼Unif(0, 1) and find the first index k of I that Ik > u .
Step 7 For the auto-sampling-once scheme:

If k = L +1
If choose exponential tail,

set x =− 1
α log

�

1− α(u−IL )
hL

�

+M and qx= hL e −α(x−M ).

If choose polynomial tail,

set x =
�

1− α(u−IL )
hL

�−1/α
+M −1 and qx= hL

(x−M+1)1+α .

else
Set x = u−Ik

hk
+k∆ and qx= hk .

end if
For the auto-sampling-twice scheme:

If k = L +1
Set x =GPD(ξ,σ, M ) and qx=σhL GPD(ξ,σ,M )(x ).

else
Set x =Unif ((k −1)∆, k∆) and qx= hk .

end if

Step 8 Calculate IS approximation using (1.3) with a number of samples from step 5 - 7.
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Table 3.5 Parameters change between auto-sampling-once and auto-sampling-twice schemes

auto-sampling-once auto-sampling-twice

exponential tail ξ= 0
polynomial tail ξ= 1

α

α= 1
σ σ= 1

α
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Figure 3.5 Proposal densities with∆= 0.1, 0.2, 0.4, 0.8 for Example 3.5

are presented in Table 3.6. All simulations in this work are on the same machine which is an Intel

Core i5-3320M 2.60 GHz processor. The sampling time for auto-sampling-twice scheme is obviously

much more than the sampling time for auto-sampling-once scheme, although the performance of

both schemes are the same.

For comparison, the performance of the simple Monte Carlo method is shown in Fig. 3.8 with two

different scales. With N = 10, 000 and n = 100, the sampling time and the time to calculate Monte

Carlo approximation using (1.1) are 0.0464 and 0.0892 seconds, respectively. For fair comparison,

we should consider to rerun the Monte Carlo method with larger sample size or the partition-based

method with lower sample size. We rerun the Monte Carlo method with sample size N = 1, 000, 000

and other parameters fixed. The performance of this simulation is presented in Fig. 3.9 which has
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Figure 3.6 Performance of the corresponding densities from Fig. 3.5 with the auto-sampling-once scheme.

Figure 3.7 Performance of the corresponding densities from Fig. 3.5 with the auto-sampling-twice scheme.

the same y-axis scale as Fig. 3.6 and Fig. 3.7. With N = 1,000,000 and n = 100, the sampling time

and the time to calculate Monte Carlo approximation are 3.5906 and 18.8331 seconds, respectively.
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Table 3.6 Computing time in seconds for Example 3.5 with N = 10, 000

∆= 0.1 ∆= 0.2 ∆= 0.4 ∆= 0.8
Computing the proposal density 0.0053 0.0051 0.0055 0.0012
Sampling for (I) auto-sampling-once scheme 1.8942 1.8211 1.6877 1.8462
Sampling for (II) auto-sampling-twice scheme 13.5899 13.4918 13.4355 13.3309
Calculating IS approximation for (I) 0.1158 0.1283 0.1102 0.1290
Calculating IS approximation for (II) 0.1212 0.1090 0.1069 0.1044

Figure 3.8 Performance of the simple Monte Carlo method for Example 3.5 with N = 10, 000.

Figure 3.9 Performance of the simple Monte Carlo method for Example 3.5 with N = 1, 000, 000.

We can see that the partition-based method outperforms the Monte Carlo method in this example.

3.3.1.2 ClassG u
b (D )

Assume that ( f ,π) ∈G u
b (D ). We want that πq is bounded for ( f ,π) ∈Ab (D )∩B (D )∩C1(D )c , or f π

q

is bounded for ( f ,π) ∈Ab (D )∩C2(D )c . Note that when we say that a function is well-oscillated,

the number of points where the function assumes infinity is finite. When π or f π is unbounded,

we cannot take q as constant around the area that π or f π is unbounded. We have to choose a
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function qh that goes unbounded on that area but still make π
qh

or f π
qh

bounded there. It is similar to

the concept of choosing the tail for the proposal density. The proposal density is tailored to almost

fit the optimal density. We will illustrate this method with the adjusted auto-sampling-once scheme

through the following example.

Example 3.6. Consider f (x ) = 4px and π(x ) = e −x
p
πx on (0,∞). We can see that π and f π are un-

bounded around 0. We choose x ∗i = (i −
1
2 )∆, the mid-point of the i t h subinterval, for i = 2, . . . , L . The

height of the unnormalized proposal density in each subinterval can be straightforwardly calculated

by h̃i = | f (x ∗i )|π(x
∗
i ) for i = 2, . . . , L .

Regarding the first subinterval, we choose the unnormalized head function to be

q̃h (x ) =
h̃2∆

1−αh

x 1−αh

with αh =
1
2 so that the bounded condition is satisfied. Note that it is not necessary to use the first

subinterval with the same size as the other intervals. The integral of qh on the first subinterval is
∫ ∆

0
h̃2∆

1−αh

x 1−αh
d x = h̃2∆

αh
. As for the tail, we choose

q̃t (x ) = h̃L e −αt (x−M )

with αt = 1, so that the bounded condition is satisfied. The integral of q̃t on the tail region is
∫∞

M
h̃L e −αt (x−M ) d x = h̃L

αt
. Thus, the normalizing constant for the proposal density is

Zq =
h̃2∆

αh
+∆ ·

L
∑

i=2

h̃i +
h̃L

αt
.

Setting hi =
h̃i
Zq

for i = 2, . . . , L , we have the proposal density

qb (x ) =















h2∆
1−αh

x 1−αh
, if x ∈ [0,∆)

hi , if x ∈ [(i −1)∆, i∆) for i = 2, . . . , L

hL e −αt (x−M ) , if x ∈ [M ,∞).

Now, to determine where to cut, M , we set a parameter ε∆ to be the upper bound for the

probability of getting a sample in the tail region. The probability of having a sample in the tail region

is
h̃L
αt

h̃2∆
αh
+∆ ·

∑L
i=2 h̃i +

h̃L
αt

.
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Figure 3.10 Target density and proposal densities with∆= 0.5, 0.1, 0.01 for Example 3.6

Then, the condition to determine L is that

h̃L

h̃2
αh
+
∑L

i=2 h̃i

<∆αt
ε∆

1−ε∆
.

The algorithm starts with L = 2 and increases it until the condition is satisfied. We can define h̃1 =
h̃2
αh

to get a full array h when we implement the method.

We apply the partition-based method with parameters∆= 0.5, 0.1, 0.01 and ε∆ = 5%. Fig. 3.10

shows graphs of the target density π and the proposal densities with these parameters. The optimal

basic-IS density

q ∗b (x ) =
e −x

Γ ( 34 )
4px

,

where Γ is the gamma function Γ (t ) =
∫∞

0
x t−1e −x d x , is also plotted to show how close each

proposal density to the optimal one.

In the sampling step, we set I0 = 0, I1 =
h2∆
αh

, I j = I j−1 +∆h j for j = 2, . . . , L , and IL+1 = 1 as

cumulative sum of the integral over the subintervals. To get a sample using the inverse transform

method, we generate a random number u from the uniform distribution over the unit interval,

u ∼Unif(0, 1), and find the lowest k such that Ik > u . If k = L +1, then we have
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u = IL +

∫ x

M

hL e −αt (z−M ) d z

= IL +
hL

αt
(1− e −αt (x−M ))

x =−
1

αt
log

�

1−
αt

hL
(u − IL )

�

+M .

If k = 1, we obtain

u =

∫ x

0

h2∆
1−αh

z 1−αh
d z

=
h2∆

1−αh

αh
xαh

x =∆
�

u

I1

�
1
αh

,

otherwise we have

u = Ik−1+

∫ x

(k−1)∆
hk d z

= Ik −∆hk + (x − (k −1)∆)hk

x =
u − Ik

hk
+k∆.

This computed x is a sample drawn from the proposal distribution qb . Then, the basic IS computa-

tion using (1.3) can proceed.

Fig. 3.11 shows the basic-IS performance of the corresponding densities from Fig. 3.10 with

100 scenarios of 10,000 samples. The ordinary Monte Carlo method performance is also shown in

Fig. 3.11. From Fig. 3.10, we can see that π is close to q ∗b . Thus, the ordinary Monte Carlo method

is already a good approximation for this problem. With N = 10,000 and n = 100, the original

Monte Carlo method uses 0.0949 seconds in sampling step, and 0.0893 seconds to calculate Monte

Carlo approximation using (1.1). The time used in the simulation for each proposal density of the

partition-based method with∆= 0.5, 0.1, 0.01 is shown in Table 3.7.

Consider the partition-based method with∆= 0.001 and N = 10,000 versus the Monte Carlo

method with N = 1,000,000. Their performances are presented in Fig. 3.12. The time used in the

simulation of each method with n = 100 scenarios is presented in Table 3.8. With fair comparison,

the partition-based method works better than the simple Monte Carlo method.
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Figure 3.11 Performance of simple Monte Carlo method and basic IS with the corresponding densities
from Fig. 3.10

3.3.2 Self-normalized Importance Sampling

Recall that π(x ) = p (x )
Z , and p (x ) is known point-wise for self-normalized IS. For the basic IS scheme,

we just approximate the optimal basic-IS density q ∗b (x ) =
| f (x )|π(x )

∫

| f (x )|π(x ) d x
and use the approximated

density as the proposal density. The IS weights will theoretically correct the Monte Carlo approxima-

tion, and the proposed method guarantees finite variance of the approximation with an attempt to

get closer to the optimal density. Now, we would like to do the same thing for the self-normalized IS.

However, the problem is that the optimal self-normalized-IS density q ∗s n (x ) =
| f (x )−µ|p (x )

∫

| f (x )−µ|p (x ) d x
really

requires the knowledge of µ, which is what we want to approximate. Thus, it is not straightforward

Table 3.7 Computing time in seconds of the partition-based method with N = 10,000, n = 100 and∆ =
0.5, 0.1, 0.01 for Example 3.6

∆= 0.5 ∆= 0.1 ∆= 0.01
Computing the proposal density 0.0077 0.0147 0.0746
Sampling 1.9806 1.9342 2.2803
Calculating IS approximation 0.6946 0.7424 0.7439
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Figure 3.12 Performance of the simple Monte Carlo method with N = 1,000,000 and the partition-based
method with∆= 0.001 and N = 10, 000 for Example 3.6.

Table 3.8 Computing time in seconds of the simple Monte Carlo method with N = 1,000,000 and the
partition-based method with∆= 0.001 and N = 10, 000 for Example 3.6

Monte Carlo ∆= 0.001
with N = 1, 000, 000 with N = 10, 000

Computing the proposal density - 0.7459
Sampling 8.7935 7.1354
Calculating the approximation 10.3522 0.7744

to imitate the basic-IS partition-based method.

A possible way is to roughly approximate µ as the first step and use it in the optimal self-

normalized-IS formula. To do this, we need to fix M and L at first to approximate µ. Since

µ=

∫

f (x )π(x ) d x
∫

π(x ) d x
=

∫

f (x )p (x ) d x
∫

p (x ) d x
,

we can approximate µ by the Riemann sum on the importance region

µ≈
∑L

i=1 f (x ∗i )p (x
∗
i )

∑L
i=1 p (x ∗i )

.

By doing so, the resulting proposal density will be changed just a bit depending on the error in

approximating µ in the first step. Even though we have error from approximating µ in the first step,

the resulting density can do the job as a proposal density because any q such thatπ� q can actually

be used as a proposal density in self-normalized IS. The IS weights will automatically correct the

Monte Carlo approximation. Note that in our regular procedure, all subintervals have the same size
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∆. If the subintervals are chosen to have different sizes, the approximated µ can still be achieved by

the above formula with the adjustment of multiplying the interval sizes in both summations.

Example 3.7. We illustrate this idea by applying it to Example 1.12 which is a bounded case

( f ,π) ∈ G b
s n (D ). For an unbounded case ( f ,π) ∈ G u

s n (D ), we can still use this procedure with

some adjustment in the area where the unboundedness occurs as demonstrated in Example

3.6. Here, we have f (x ) = x 3 and p (x ) = 2e −2x . We will apply our method with the parameters

(M , L ) = (3, 5), (3, 20), (3, 80), (6, 5), (6, 20), (6, 80), (8, 5) and (8, 2000). In each combination of M and L ,

we set∆= M
L and we choose x ∗i = (i −

1
2 )∆, the mid-point of the i t h subinterval, for i = 1, . . . , L . Then,

we roughly estimate µ using these x ∗i ’s and call the approximated result ν.

ν=

∑L
i=1 f (x ∗i )p (x

∗
i )

∑L
i=1 p (x ∗i )

.

Then, we calculate the unnormalized heights by

h̃i = | f (x ∗i )−ν|p (x
∗
i ) for all i = 1, . . . , L

and check if any h̃i causes the zero problem. Here, q is chosen to be nonzero finite-piecewise

constant in the importance region, so the bounded condition in the importance region according to

Proposition 3.1 is satisfied. Next, we choose q̃t (x ) = h̃L e −(x−M ) for the tail region, which corresponds

to choosing ξ= 0,σ= 1 for the generalized Pareto distribution, so that the bounded condition in

Proposition 3.1 is satisfied. The normalizing constant for the proposal density is Zq =∆·
∑L

i=1 h̃i+h̃L .

We set hi =
h̃i
Zq

for i = 1, . . . , L . Then, the proposal density is

qs n (x ) =







hi , if x ∈ [xi−1, xi ) for i = 1, . . . , L

hL e −(x−M ) , if x ∈ [M ,∞).

Fig. 3.13 shows the graphs of the proposal densities with the optimal self-normalized-IS density

q ∗s n . We generate 10,000 samples from each density using the inverse transform method in the

same way as we did in Example 3.4. Then, the self-normalized IS computation using (1.4) proceeds.

Fig. 3.14 shows the self-normalized IS performance of the corresponding densities from Fig. 3.13. All

the proposal densities with various parameters M and L guarantee to give finite variance according

to Proposition 3.1.

We can clearly see from Fig. 3.13 that the graph of the proposal density with parameters (M , L ) =

(3, 80) is shifted from q ∗s n or the pivot point x such that f (x ) =µ, due to the error in approximatingµ in
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Figure 3.13 Proposal densities with various parameters for Example 3.7

the beginning step. Also, the graphs of the proposal densities with parameters (M , L ) = (3, 20), (6, 20)

are slightly shifted from the pivot point, and it is hard to notice that the graph of the proposal density

with parameters (M , L ) = (3, 5) is actually slightly shifted from the pivot point because of the bigger

subinterval size,∆. When∆ is bigger than the pseudo period of q ∗s n on [0, M ], the proposal density
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Figure 3.14 Self-normalized IS performance of the corresponding densities in Fig. 3.13

may not approximate q ∗s n well. We can see that the proposal densities with parameters (M , L ) =

(6,5), (8,5) do not have the reflection behavior of q ∗s n because the first subinterval is so big that it

eats the pivot point. As we expect, the proposal densities with parameters (M , L ) = (6, 80), (8, 2000)

can approximate q ∗s n very well thanks to the large enough parameters M and L . However, from
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q*
sn
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M

Figure 3.15 Self-normalized IS performance with (M , L ) = (6, 1)

Fig. 3.14, all the proposal densities surprisingly have insignificantly different performance including

even the one with (M , L ) = (8,2000). If we look back at Fig. 1.8, we will see that even the optimal

proposal density q2 = q ∗s n has the same performance as these proposal densities obtained from the

partition-based method.

Let’s take a look at the result with another pair of fixed parameters (M , L ) = (6, 1)with the same

tail function. We may say that the variance of the estimator with (M , L ) = (6, 1) seems to be slightly

bigger than the others, but the result still surprisingly have insignificantly different performance. It

seems like every density that satisfies all the conditions for self-normalized IS from Table 3.2 should

work. Note that some proposal densities used in this example do not bring∆ less than the pseudo

period of | f −µ|p on [0, M ], but they still work well.

From Example 3.7, we should question ourselves whether it is worth putting lots of effort to

approximate q ∗s n . These efforts include creating the self-determined-where-to-cut scheme for self-

normalized IS. The big difference between basic IS and self-normalized IS is that for a positive (or

negative) target function f , q ∗b yields the zero-variance estimator for basic IS, but q ∗s n never gives

the zero-variance estimator for self-normalized IS. Thus, we suggest to choose parameters M and

L large enough and proceed with the partition-based method as we did in this example for the

self-normalized IS. We just have to make sure that the tail function will make the proposal density

satisfy all the required conditions for self-normalized IS from Table 3.2. Specifically, we want our

proposal density to satisfy Table 3.3 and the absolute continuity condition. Note that the current

development in choosing proposal densities for IS method focuses only on basic IS. Currently, there

is only the rule of thumb (1.7) in choosing proposal densities for self-normalized IS, and that rule of

thumb may fail as we can see from Example 1.12. Perhaps, statisticians just rely on the rule of thumb

for self-normalized IS because the performances of various proposal densities are not significantly

different.
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3.4 Multidimensional Spaces

In this section, an algorithm for choosing a proposal density for IS method in multi-dimensional

space that has a good performance with finite variance is proposed. The concept is still to obtain a

proposal density that is close to the optimal density, and to ensure that it yields a finite variance

estimate. In Section 3.3 which talks about only 1-dimensional space, the domain can be easily

separated into two regions: the importance region and the tail region. The importance region in

which most of the samples lie is partitioned into many subintervals, and a proposal density is

approximated to be piecewise constant on each subinterval based on the optimal density formula

from Theorem 1.7 or 1.10. A proper function, which is easy to handle and guarantees finite variance

estimate, is selected to be the tail region for the proposal density. With this proposal density, the IS

method can be carried out properly. Now, for a multi-dimensional space, we would like to stay on

this concept. However, there are more messy problems we have to cope with. The primary problems

are how to separate the importance region and the tail region, and how to choose a workable tail

function that allows the capability to be sampled from the final proposal density, not just any

function that is integrable over the tail region and satisfies the bounded condition.

We will explain a partition-based method in a multi-dimensional space D for ( f ,π) ∈ G b
b (D ).

The other three classesG u
b (D ),G

b
s n (D ),G

u
s n (D ) can also be adjusted to adopt the procedure as we did

in Section 3.3. Recall the auto-random-twice scheme which is an alternative sampling method for

1-dimensional problem that uses two random numbers for one sample. We will generalize that idea

to a multi-dimensional problem. We will explain for a d -dimensional space D = [0,∞)d . For other

kinds of multi-dimensional space such as Rd or [a , b ]d , we can still adjust this proposed method.

Let Di = [0,∞) be the domain for the i t h coordinate so that the domain D =
∏d

i=1 Di = [0,∞)d .

Similar to what we did in the 1-dimensional problem, we fix a proper constant Mi ∈ (0,∞) some-

where in Di to get importance regions [0, Mi ] and tails [Mi ,∞). Then, choose L i the number of

partitions in the importance region in each dimension. Let

∆i =
Mi

L i
and x

j
i = j∆i for j = 0, 1, . . . , L i

and x L i+1
i =∞. Here, i is the index indicating which dimension to focus, and j in x

j
i is the index

indicating the partition

0= x 0
i < x 1

i < . . .< x L i
i =Mi <∞= x L i+1

i

for Di = [0,∞). Let’s name each subinterval

J
j

i = [x
j−1

i , x
j

i ) = [( j −1)∆i , j∆i ) for j = 1, . . . , L i
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and

J L i+1
i = [Mi ,∞).

Then, we have a partition
¦

J
j1

1 × . . .× J
jd

d

©

ji∈{1, ..., L i+1}∀i=1, ..., d

for the domain D . We will call
∏d

i=1[0, Mi ) the importance region, and its compliment the tail region

of our proposal distribution.

Now, we can imitate the idea of mixture distribution in Section 3.3. In each subcell of the

partition, we will use 1-dimensional independent distribution for each coordinate. We will use

uniform distributions in all coordinates for a subcell in the importance region, and a mixture

distribution of uniform distributions and generalized Pareto distributions for a subcell in the tail

region. To do this, we choose representative points from each subcell in the importance region

x ∗j1, ..., jd
∈ J

j1
1 × . . .× J

jd

d

for ji ∈ {1, . . . , L i } for all i = 1, . . . , d and evaluate with | f |π, the optimal function without the nor-

malizing constant,

h̃ j1, ..., jd
=
�

�

� f
�

x ∗j1, ..., jd

�

�

�

�π
�

x ∗j1, ..., jd

�

for ji ∈ {1, . . . , L i } for all i = 1, . . . , d to get the unnormalized proposal density q̃ on each subcell in

the importance region

q̃ (~x ) = h̃ j1, ..., jd
∀~x ∈ J

j1
1 × . . .× J

jd

d (3.7)

for ji ∈ {1, . . . , L i } for all i = 1, . . . , d . Note that this is well defined because we have the partition for

the importance region
⋃

·
ji∈{1, ..., L i }
∀i=1, ..., d

J
j1

1 × . . .× J
jd

d .

Thus, for each ~x in the importance region, there exists uniquely a cell J
j1

1 × . . .× J
jd

d in which ~x

lives, and we will have h̃ j1, ..., jd
for the corresponding indices j1, . . . , jd . We need to check whether

h̃ j1, ..., jd
’s cause the zero problem, and may need to justify a new choice of x ∗j1, ..., jd

. According to the

assumption of Proposition 3.1, if we assume that Varπ( f ) <∞, we have to choose q that makes
π
q bounded, otherwise we need that f π

q is bounded. For ( f ,π) ∈G b
b (D ), we choose q to be a finite

piecewise-constant function in the importance region, so the bounded condition in importance

region is satisfied for these cases.

For the tail region, we choose the tail function

58



3.4. MULTIDIMENSIONAL SPACES CHAPTER 3. PARTITION-BASED METHOD

q̃t (~x ) = h̃ j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd )

d
∏

i=1
ji=L i+1

σi GPD(ξi ,σi ,Mi )(xi ) (3.8)

for ~x = (x1, . . . , xd ) ∈ J
j1

1 × . . .× J
jd

d , for appropriate parameters ξi ’s and σi ’s. Let’s contemplate

this complicated-looking function. For ~x = (x1, . . . , xd ) in the tail region, there must be at least

one coordinate, say xi , falling in the tail part of that coordinate, [Mi ,∞). For such coordinate,

the corresponding index ji will be L i +1. The generalized Pareto distributions are used for those

coordinates which fall into the tail region, so we have the product for tail-regioned coordinates

d
∏

i=1
ji=L i+1

σi GPD(ξi ,σi ,Mi )(xi ).

The constants σi ’s are put into the product because we want to control the height at the con-

nected part between the importance region and the tail region of the final proposal density. Since

GPD(ξi ,σi ,Mi )(Mi ) =
1
σi

for each i , the above product at the connected part of each dimension will

be 1. For the other coordinates falling in the importance region, we simply use the uniform dis-

tribution over the corresponding subinterval for each coordinate. Thus, it is just constant for the

importance-regioned coordinates, say 1.

Now, an appropriate height is picked and put into the product formula. For a tail-regioned

coordinate s , we want the height h̃ with the corresponding index L s indicating the last interval in

importance region of that coordinate. Since js = L s +1 for the tail-regioned coordinate, js −1 will be

our wanted index. For an importance-regioned coordinate r , the stay-still index jr is simply used.

For such coordinate, jr < L r +1. Thus, we have that

ji −1{L i+1}( ji ) =







ji −1= L i , if xi ∈ [Mi ,∞)

ji , if xi ∈ [0, Mi ).

Hence, h̃ j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd ) is our wanted height for controlling smoothness of the result

function q̃ .

Recalling the uniform and generalized Pareto densities from (3.5) and (3.6), we have, in this

situation,

Unif
J

ji
i
(xi ) =Unif[( ji−1)∆i , ji∆i )(xi ) =

1

∆i
1[( ji−1)∆i , ji∆i )(xi )

and
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GPD(ξi ,σi ,Mi )(xi ) =











1

σi

�

1+ξi
(xi −Mi )
σi

�1+ 1
ξi

1[Mi ,∞)(xi ) , if ξi > 0

1
σi

e −
(xi −Mi )
σi 1[Mi ,∞)(xi ) , if ξi = 0.

Combining (3.7) and (3.8), we have the unnormalized proposal density

q̃ (~x ) = h̃ j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd )

·
d
∏

r=1
jr<L r+1

∆r UnifJ
jr

r
(xr ) ·

d
∏

s=1
js=L s+1

σs GPD(ξs ,σs ,Ms )(xs )
(3.9)

for ~x = (x1, . . . , xd ) ∈ J
j1

1 × . . .× J
jd

d . Note that the product with the dummy variable r refers to the

importance-regioned coordinates, and the product with the dummy variable s refers to the tail-

regioned coordinates. Also, note that the empty product is by convention equal to 1. Note again that

this is well defined because we have the partition for D

D =
⋃

·
ji∈{1, ..., L i+1}
∀i=1, ..., d

J
j1

1 × . . .× J
jd

d .

Thus, for each ~x = (x1, . . . , xd ) ∈D , there exists uniquely determined cell J
j1

1 × . . .× J
jd

d in which ~x

lives; hence, we obtain the corresponding indices j1, . . . , jd . Since this unnormalized density can be

defined through this partition, the matching unnormalized distribution can be expressed as the

mixture distribution

q̃ =
L1+1
∑

j1=1

. . .
Ld+1
∑

jd=1

h̃ j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd ) ·
d
∏

r=1
jr<L r+1

∆r Unif(J jr
r ) ·

d
∏

s=1
js=L s+1

σs GPD(ξs ,σs , Ms ).

Finally, q̃ can be normalized by the normalizing constant Zq obtained from integrating (3.9)

over the whole domain

Zq =

∫

q̃ (~x )d ~x

=
L1+1
∑

j1=1

. . .
Ld+1
∑

jd=1

h̃ j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd ) ·
d
∏

r=1
jr<L r+1

∆r ·
d
∏

s=1
js=L s+1

σs

= ∆ ·
L1+1
∑

j1=1

. . .
Ld+1
∑

jd=1

h̃ j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd ) ·
d
∏

s=1
js=L s+1

σs

∆s
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where∆=
∏d

i=1∆i . Setting

h j1, ..., jd
=

1

Zq
h̃ j1, ..., jd

for ji ∈ {1, . . . , L i } for all i = 1, . . . , d , we acquire the proposal density

q (~x ) = h j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd ) ·
d
∏

r=1
jr<L r+1

∆r UnifJ
jr

r
(xr ) ·

d
∏

s=1
js=L s+1

σs GPD(ξs ,σs ,Ms )(xs )

for ~x = (x1, . . . , xd ) ∈ J
j1

1 × . . .× J
jd

d , with the corresponding mixture distribution

q =
L1+1
∑

j1=1

. . .
Ld+1
∑

jd=1

h j1−1{L1+1}( j1), ..., jd−1{Ld +1}( jd )

·
d
∏

r=1
jr<L r+1

∆r Unif(J jr
r ) ·

d
∏

s=1
js=L s+1

σs GPD(ξs ,σs , Ms ).

Now, let’s discuss how to choose parameters Mi and L i for i = 1, . . . , d . This also relates to writing

computer programming for the method. The idea is the same as the one-dimensional case, but the

tail region is also partitioned into many pieces now.

The first step is to choose parameters ξi andσi for i = 1, . . . , d in order to satisfy all the desired

assumptions. Specifically, the generalized Pareto densities for the tail function q̃t have to make
π
q̃t

bounded on the tail region for ( f ,π) ∈ Ab (D )∩B (D )∩C1(D ); or f π
q̃t

bounded on [M ,∞) for

( f ,π) ∈Ab (D )∩C2(D ). The second step is to choose∆i for i = 1, . . . , d . The smaller∆i is, the better

the approximation will be. The next crucial step is to find the cutting point Mi . We will seek L i ,

the number of subintervals in the i t h coordinate. Let ε∆ be an upper bound for the probability of

getting a sample in the tail region and ε0 the machine precision bound. The probability of getting a

sample in the tail region is
S tail

S imp+S tail

where

S imp =∆ ·
L1
∑

j1=1

. . .
Ld
∑

jd=1

h̃ j1−1{L1+1}( j1),..., jd−1{Ld +1}( jd ) ·
d
∏

s=1
js=L s+1

σs

∆s

=∆ ·
L1
∑

j1=1

. . .
Ld
∑

jd=1

h̃ j1−1{L1+1}( j1),..., jd−1{Ld +1}( jd )
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and

S tail =






∆ ·

L1+1
∑

j1=1

. . .
Ld+1
∑

jd=1

h̃ j1−1{L1+1}( j1),..., jd−1{Ld +1}( jd ) ·
d
∏

s=1
js=L s+1

σs

∆s






−S imp.

Thus, we want to have that

ε0 <
S tail

S imp+S tail
< ε∆.

Simple calculation yields
ε0

1−ε0
<

S tail

S imp
<

ε∆
1−ε∆

.

The machine precision bound ε0 is so small that having ε0
1−ε0

< S tail
S imp

should not be a problem. With

the same reason as how we deal with the 1-dimensional case, we will increase L i , for all i = 1, . . . , d ,

from 1 until we get
S tail

S imp
<

ε∆
1−ε∆

.

Once we determine L i , we have Mi =∆i L i and the proposed method can be carried on.

Since the probability to get a sample in each cell J
j1

1 × . . .× J
jd

d for ji ∈ {1, . . . , L i + 1} for all

i = 1, . . . , d is known, we can easily obtain a sample by first drawing a uniform random number to

decide which cell the sample falls into, and then drawing d random numbers corresponding to each

dimensional distribution. For the dimension that the sample falls into the importance region, the

corresponding uniform distribution is used, and for the dimension that the sample falls into the tail

region, the corresponding generalized Pareto distribution is used.

We summarize the algorithm in Table 3.9. Note that the variable Pr, which will finally be a

multidimensional matrix, collects the probability of getting a sample in each partitioned cell divided

by∆. Also, PrIR and PrTail are the probability of getting a sample in the importance region and in

the tail region, respectively, divided by∆. Dividing by∆ helps moderately reduce the running time

for programming. Step 1 - 5 talk about getting the proposal density, and step 6 - 8 produce one

random sample from this density. The function cumsum is the cumulative sum. As for other types

of the domain such asRd , the idea of this algorithm can still be imitated by extending each layer in

all directions.

Example 3.8. Consider a 4-dimensional problem with

f (~x ) = x 2
1 x2 x3

�

x4−
1
p

2

�

and
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Figure 3.16 The performance of a 4-dimensional partition-based proposal density in Example 3.8

π(~x ) =
384
p

2
�

4+3
p
π
�

π

(x1+ x2)e −(x1+2x3)2

(x2+1)5 (x 4
4 +1)

.

The true expectation is 0, and Varπ( f ) =
5

768 +
401

6720(4+3
p
π) ≈ 0.0129149.

The algorithm from Table 3.9 is applied to this 4-dimensional problem. Choosing ξ1 = 0,ξ2 =
1
2 ,ξ3 = 0,ξ4 =

1
2 andσ1 =σ2 =σ3 =σ4 = 1 will guarantee the bounded condition. Here, we choose

ε∆ = 5% and ∆1 = ∆2 = ∆3 = ∆4 = 0.2. The performance of the proposed method is shown in

Fig. 3.16 with 100 scenarios of 10,000 samples. The time for computing the proposal density is 8.1254

seconds, and the sampling time for a million samples here is 479.4017 seconds.

Observe that this setting problem may be difficult to apply the classical Monte Carlo method

because of the difficulty in sampling directly from π. Also, in order to use the efficient IS, a family of

distributions must be appropriately selected.
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Table 3.9 Algorithm of the partition-based method for basic IS in the multidimensional spaces [0,∞)d

Step 1 Choose parameters ξi ,σi ,∆i ,ε∆ for the algorithm.

Set∆=
∏d

i=1∆i and Threshold= ε∆
1−ε∆ .

Step 2 Initially set L i = 1 for all i and assign Pr1,...,1 =
�

| f |π
� �∆1

2 , . . . , ∆d
2

�

.
Also set PrIR= Pr1,...,1 and PrTail= 0.

Step 3 Assign only additional layer (L i +1) to Pr according to

Pr j1,..., jd
= Pr j1−1{L1+1}( j1),..., jd−1{Ld +1}( jd ) ·

d
∏

s=1
js=L s+1

σs

∆s

and add this Pr j1,..., jd
to PrTail for each additional cell.

Step 4 While PrTail
PrIR ≥ Threshold

Increase all L i ’s by 1, and reset PrTail= 0.
Reassign only the previous layer (L i now) to Pr according to

Pr j1,..., jd
=
�

| f |π
� �

( j1− 1
2 )∆1, . . . , ( jd − 1

2 )∆d

�

and add this Pr j1,..., jd
to PrIR.

Assign only additional layer (L i +1) to Pr according to

Pr j1,..., jd
= Pr j1−1{L1+1}( j1),..., jd−1{Ld +1}( jd ) ·

d
∏

s=1
js=L s+1

σs

∆s

and add this Pr j1,..., jd
to PrTail for each additional cell.

end while loop
Step 5 Compute Mi = L i ·∆i , and check for zero problem.

Normalize all Pr j1,..., jd
by∆ ·

∑L1+1
j1=1 . . .

∑Ld+1
jd=1 Pr j1,..., jd

.

Step 6 Set I =∆ · cumsum(Pr).
Step 7 Draw a uniform random number Unif(0, 1) and find indices i1, . . . , id of I

that the random number falls into.
Step 8 Set qx= Pri1,...,id

.
For t = 1 to d

If it ≤ L t

xt =Unif ((it −1)∆t , it∆t )
else

xt =GPD(ξt ,σt , Mt )
qx= qx ·∆t ·GPD(ξt ,σt ,Mt )(xt )

end if
end for loop

Step 9 Calculate IS approximation using (1.3) with a number of samples from step 6 - 8.
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CHAPTER

4

PRACTICAL EXAMPLES

4.1 Option Greeks

In finance, option prices can change due to directional price shifts in the underlying asset, prices

changes in the implied volatility, time decay, and even changes in the interest rates. The option

Greeks [15] are the quantities representing the sensitivity of the price of the options to change in these

parameters. They have also been called the risk sensitivities, risk measures or hedge parameters.

They play an important role in understanding the sensitivity of prices to relevant parameters,

constructing a hedging portfolio, and approximating the loss distribution for risk management. The

most commonly used Greeks are delta (∆), vega (v ), theta (Θ), rho (ρ) and gamma (Γ ). We will write

their full names instead of using Greek letters to avoid redundancy in using the Greek letter∆.

Consider the Black-Scholes model [15] for the European call option with initial stock price S0,

strike price K , expiration T , risk-free interest rate r , and volatility constantσ. The underlying stock

price follows the geometric Brownian motion

d St = r St d t +σSt d Bt

which has the solution
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St = S0e

�

r−σ
2

2

�

t+σBt (4.1)

where Bt is a Brownian motion. The probability density function for ST is

fST
(x ) = fST

(x ;S0, r,σ, T ) =
1

σ
p

T x
φ (ζ(x ))

=
1

σ
p

2πT x
e −

�

log
�

x
S0

�

−
�

r−σ
2

2

�

T
�2

2σ2T

whereφ is the standard normal density

φ(x ) =
1
p

2π
e −

x 2
2 (4.2)

and

ζ(x ) = ζ(x ;S0, r,σ, T ) =
log

�

x
S0

�

−
�

r − σ
2

2

�

T

σ
p

T
.

The price of the European call option is

C =C (S0, r,σ, T , K ) =E
�

e −r T (ST −K )+
�

, ST ∼ fST

=

∫ ∞

0

e −r T (x −K )+ fST
(x ) d x

where a+ =max(a , 0).

Example 4.1 (Black-Scholes Delta). Delta of an option measures the rate of change of the theoretical

option value with respect to changes in the underlying asset’s price. It is the first derivative of the

value of the option with respect to the underlying asset’s price, i.e. ∂ C
∂ S0

. We can manage to interchange

the order of differentiation and integration

∂ C

∂ S0
=
∂

∂ S0
C (S0, r,σ, T , K ) =

∂

∂ S0

∫ ∞

0

e −r T (x −K )+ fST
(x ) d x

=

∫ ∞

0

e −r T (x −K )+
∂

∂ S0
fST
(x ) d x .

We can consider e −r T (x −K )+
∂
∂ S0

fST
(x ) d x as a finite measure. Then, importance sampling can be

used to estimate delta of the option by the change of measure
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∂ C
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e −r T (x −K )+
∂
∂ S0

fST
(x )

fST
(x )
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=E
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.

This is called a likelihood ratio method [12], and
∂
∂ S0

fST (x )
fST (x )

often written as
∂ log fST (x )

∂ S0
is called a score

function. If ST is generated with fixed parameters S0, r,σ, T from (4.1) using a standard normal

random variable Z with

ST = S0e

�

r−σ
2

2

�

T+σ
p

T Z
, Z ∼N (0, 1),

then ζ(ST ) = Z and the estimator simplifies to

e −r T (ST −K )+
Z

S0σ
p

T
.

Therefore,
∂ C

∂ S0
= e −r T E

�

�

S0e

�

r−σ
2

2

�

T+σ
p

T Z −K
�

+

Z

S0σ
p

T

�

, Z ∼N (0, 1)

and the Monte Carlo estimator for the option delta is

e −r T 1

N

N
∑

i=1

�

�

S0e

�

r−σ
2

2

�

T+σ
p

T Zi −K
�

+

Zi

S0σ
p

T

�

, Zi
iid∼ N (0, 1).

However, instead of changing the measure to the original fST
, we can use the partition-based method

describe in Chapter 3. To avoid unnecessary zero hi in the partition-based method, we can change

the variable of the integral

∂ C

∂ S0
=

∫ ∞

K

e −r T (x −K )

�

ζ(x )

S0σ
p

T

�

fST
(x ) d x

=

∫ ∞

0

e −r T x

�

ζ(x +K )

S0σ
p

T

�

fST
(x +K ) d x

and use the proposal density qb acquired from the partition-based method instead of using fST
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∂ C

∂ S0
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∫ ∞

0

e −r T x
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S0σ
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= e −r T E

�

X
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ζ(X +K )
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(X +K )
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, X ∼ qb

with

qb (x )≈ q ∗b (x )∝
�

�

�

�

x

�

ζ(x +K )

S0σ
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T

��

�

�

�

fST
(x +K ).

Here, the target function is f (x ) = x
�

ζ(x+K )
S0σ
p

T

�

and the unnormalized target density isπ(x ) = fST
(x+K )

on the domain (0,∞). The partition-based method still works for unnormalized target density

because the approximated proposal density will be eventually normalized. Then, the partition-

based Monte Carlo estimator for the option delta is

e −r T 1

N

N
∑

i=1

�

X i

�

ζ(X i +K )

S0σ
p

T

�

fST
(X i +K )

qb (X i )

�

, X i
iid∼ qb .

The partition-based method is taken with the auto-sampling-once scheme using the polynomial

tail with parameters α = 0.01,∆ = 1.5,ε∆ = 0.01. Note that this auto-sampling-once scheme is

equivalent to the auto-sampling-twice scheme parameters ξ = 100,σ = 100. Both methods are

simulated with n = 100 scenarios and the number of samples in each scenario is N = 10,000. The

performance of both the likelihood ratio method and the partition-based method is given in Fig. 4.1

using the Black-Scholes model with S0 = 100, K = 110, r = 0.05,σ = 0.2, T = 1. The theoretical

Black-Scholes delta is known to be Φ (d1)where Φ is the standard normal cumulative distribution

function

Φ(x ) =
1
p

2π

∫ x

−∞
e −

y 2

2 d y (4.3)

and

d1 =
log

�

S0
K

�

+
�

r + σ
2

2

�

T

σ
p

T
. (4.4)

For the likelihood ratio method, the time used in sampling step is 0.0671 seconds, and the time used

in calculating Monte Carlo approximation is 0.0591 seconds. For the partition-based method, the

time used in computing the proposal density is 0.0070 seconds, the time used in sampling step is

2.1997 seconds, and the time used in calculating IS approximation is 0.1653 seconds. Although the

total time for the partition-based method is more than the total time for the likelihood ratio method,

the accuracy of the partition-based method is far more satisfying than that of the likelihood ratio

method. From Fig. 4.1, it seems that 100 samples from the partition-based method is better than
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Figure 4.1 Estimating delta of European call option

Figure 4.2 Comparison between the likelihood ratio method and the partition-based method for estimat-
ing delta of European call option

10,000 samples from the likelihood ration method. For this example, if we roughly calculate the

time used in both methods with comparable accuracy, it appears that the partition-based method

is more favorable.

For fairer comparison, we rerun the likelihood ratio method with sample size N = 1,000,000

and other parameters fixed. The performance of this simulation is presented in Fig. 4.2 against the

previous result from the partition-based method with the same y-axis scale. The time used in the

simulation of each method with n = 100 scenarios is presented in Table 4.1.

Example 4.2 (Black-Scholes Vega). Vega of an option measures the rate of change of the theoretical
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Table 4.1 Computing time in seconds of the likelihood ratio method with N = 1,000,000 and the partition-
based method with∆= 1.5,ε∆ = 0.01,ξ= 100,σ= 100 and N = 10, 000 corresponding to Fig. 4.2

Likelihood ratio ∆= 1.5
with N = 1, 000, 000 with N = 10, 000

Computing the proposal density - 0.0070
Sampling 3.9659 2.1997
Calculating the approximation 21.5785 0.1653

option value with respect to changes in the volatility of the underlying asset, i.e. it is

∂ C

∂ σ
=
∂

∂ σ
C (S0, r,σ, T , K ) =

∂

∂ σ

∫ ∞

0

e −r T (x −K )+ fST
(x ) d x

=

∫ ∞

0

e −r T (x −K )+
∂ fST

(x )
∂ σ

d x .

By simple calculation, we have that

∂ fST
(x )

∂ σ
=
�

−
1

σ
−ζ(x )

∂ ζ(x )
∂ σ

�
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(x ).
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log
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S0
x

�

+
�

r + σ
2

2

�

T

σ2
p

T

= −
ζ(x )
σ
+
p

T .

Therefore, we can derive the Monte Carlo estimator for the option vega:

∂ C

∂ σ
= e −r T E
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−
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σ
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−
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���
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�
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T Z −K
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�

Z 2−1

σ
−
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, Z ∼N (0, 1)

≈ e −r T 1

N

N
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�

S0e
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r−σ
2
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�

T+σ
p

T Zi −K
�

+

�

Z 2
i −1

σ
−
p

T Zi

��

, Zi
iid∼ N (0, 1).

Also, the partition-based estimator for the option vega is
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Figure 4.3 Estimating vega of European call option

∂ C

∂ σ
= e −r T E

�

X

�

ζ2(X +K )−1

σ
−
p

T ζ(X +K )

�

fST
(X +K )

qb (X )

�

, X ∼ qb

≈ e −r T 1

N

N
∑

i=1

�

X i

�

ζ2(X i +K )−1

σ
−
p

T ζ(X i +K )

�

fST
(X i +K )

qb (X i )

�

, X i
iid∼ qb .

The partition-based method is taken with the auto-sampling-once scheme using the polynomial

tail with parameters α= 0.01,∆= 1.5,ε∆ = 0.01. Both methods are simulated with n = 100 scenarios

and the number of samples in each scenario is N = 10, 000. The performance of both the likelihood

ratio method and the partition-based method is given in Fig. 4.3 using the Black-Scholes model

with S0 = 100, K = 110, r = 0.05,σ = 0.2, T = 1. The theoretical Black-Scholes vega is known to be

S0
p

T φ (d1)where d1 andφ are from (4.4) and (4.2). For the likelihood ratio method, the time used

in sampling step is 0.0295 seconds, and the time used in calculating Monte Carlo approximation is

0.0269 seconds. For the partition-based method, the time used in computing the proposal density is

0.0089 seconds, the time used in sampling step is 1.7750 seconds, and the time used in calculating

IS approximation is 0.1264 seconds.

For fairer comparison, we rerun the likelihood ratio method with sample size N = 500, 000 and

other parameters fixed. The performance of this simulation is presented in Fig. 4.4 against the

previous result from the partition-based method with the same y-axis scale. The time used in the
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Figure 4.4 Comparison between the likelihood ratio method and the partition-based method for estimat-
ing vega of European call option

Table 4.2 Computing time in seconds of the likelihood ratio method with N = 500,000 and the partition-
based method with∆= 1.5,ε∆ = 0.01,ξ= 100,σ= 100 and N = 10, 000 corresponding to Fig. 4.4

Likelihood ratio ∆= 1.5
with N = 500, 000 with N = 10, 000

Computing the proposal density - 0.0089
Sampling 1.5942 1.7750
Calculating the approximation 1.2863 0.1264

simulation of each method with n = 100 scenarios is presented in Table 4.2.

Example 4.3 (Black-Scholes Theta). Theta of an option measures the sensitivity of the option price

to the time decay, i.e. it is

−
∂ C

∂ T
=−

∂

∂ T
C (S0, r,σ, T , K ) =−

∂

∂ T

∫ ∞

0

e −r T (x −K )+ fST
(x ) d x

=−
∫ ∞

0

(x −K )+
∂

∂ T
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e −r T fST
(x )

�

d x .

By simple calculation, we have that

∂

∂ T

�
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(x )

�
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2T
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r − σ
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3
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σ
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.
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Figure 4.5 Estimating theta of European call option

Therefore, we can derive the Monte Carlo estimator for the option theta:
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Also, the partition-based estimator for the option theta is

−
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=−e −r T E
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, X ∼ qb
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ζ(X i +K )− r

�

fST
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qb (X i )

�

, X i
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The partition-based method is taken with the auto-sampling-once scheme using the polynomial

tail with parameters α= 0.01,∆= 1.5,ε∆ = 0.01. Both methods are simulated with n = 100 scenarios

and the number of samples in each scenario is N = 10, 000. The performance of both the likelihood
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Figure 4.6 Comparison between the likelihood ratio method and the partition-based method for estimat-
ing theta of European call option

Table 4.3 Computing time in seconds of the likelihood ratio method with N = 1,000,000 and the partition-
based method with∆= 1.5,ε∆ = 0.01,ξ= 100,σ= 100 and N = 10, 000 corresponding to Fig. 4.6

Likelihood ratio ∆= 1.5
with N = 1, 000, 000 with N = 10, 000

Computing the proposal density - 0.0042
Sampling 3.1676 1.7728
Calculating the approximation 18.3153 0.1336

ratio method and the partition-based method is given in Fig. 4.5 using the Black-Scholes model

with S0 = 100, K = 110, r = 0.05,σ= 0.2, T = 1. The theoretical Black-Scholes theta is known to be

−S0σφ(d1)
2
p

T
− r K e −r TΦ(d2)whereφ,Φ and d1 are defined in (4.2), (4.3) and (4.4), respectively, and

d2 = d1−σ
p

T =
log

�

S0
K

�

+
�

r − σ
2

2

�

T

σ
p

T
. (4.5)

For the likelihood ratio method, the time used in sampling step is 0.0310 seconds, and the time used

in calculating Monte Carlo approximation is 0.0250 seconds. For the partition-based method, the

time used in computing the proposal density is 0.0042 seconds, the time used in sampling step is

1.7728 seconds, and the time used in calculating IS approximation is 0.1336 seconds.

For fairer comparison, we rerun the likelihood ratio method with sample size N = 1,000,000

and other parameters fixed. The performance of this simulation is presented in Fig. 4.6 against the

previous result from the partition-based method with the same y-axis scale. The time used in the

simulation of each method with n = 100 scenarios is presented in Table 4.3.

Example 4.4 (Black-Scholes Rho). Rho of an option measures the sensitivity of the option price to
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the interest rate, i.e. it is

∂ C
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∫ ∞
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By simple calculation, we have that
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Therefore, we can derive the Monte Carlo estimator for the option rho:
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Also, the partition-based estimator for the option rho is

∂ C
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= e −r T E

�

X

�p
T

σ
ζ(X +K )−T
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fST
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The partition-based method is taken with the auto-sampling-once scheme using the polynomial

tail with parameters α= 0.01,∆= 1.5,ε∆ = 0.01. Both methods are simulated with n = 100 scenarios

and the number of samples in each scenario is N = 10, 000. The performance of both the likelihood

ratio method and the partition-based method is given in Fig. 4.7 using the Black-Scholes model

with S0 = 100, K = 110, r = 0.05,σ = 0.2, T = 1. The theoretical Black-Scholes rho is known to be

K T e −r TΦ(d2) where Φ and d2 are defined in (4.3) and (4.5), respectively. For the likelihood ratio

method, the time used in sampling step is 0.0301 seconds, and the time used in calculating Monte

Carlo approximation is 0.0243 seconds. For the partition-based method, the time used in computing
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Figure 4.7 Estimating rho of European call option

Figure 4.8 Comparison between the likelihood ratio method and the partition-based method for estimat-
ing rho of European call option

the proposal density is 0.0081 seconds, the time used in sampling step is 1.7712 seconds, and the

time used in calculating IS approximation is 0.1024 seconds.

For fairer comparison, we rerun the likelihood ratio method with sample size N = 1,000,000

and other parameters fixed. The performance of this simulation is presented in Fig. 4.8 against the

previous result from the partition-based method with the same y-axis scale. The time used in the

simulation of each method with n = 100 scenarios is presented in Table 4.4.

Example 4.5 (Black-Scholes Gamma). Gamma measures the rate of change in the delta with respect

to changes in the underlying asset’s price, i.e. it is

76



4.1. OPTION GREEKS CHAPTER 4. PRACTICAL EXAMPLES

Table 4.4 Computing time in seconds of the likelihood ratio method with N = 1,000,000 and the partition-
based method with∆= 1.5,ε∆ = 0.01,ξ= 100,σ= 100 and N = 10, 000 corresponding to Fig. 4.8

Likelihood ratio ∆= 1.5
with N = 1, 000, 000 with N = 10, 000

Computing the proposal density - 0.0081
Sampling 3.1781 1.7712
Calculating the approximation 17.1659 0.1024
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By simple calculation, we have that
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Therefore, we can derive the Monte Carlo estimator for the option gamma:
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Also, the partition-based estimator for the option gamma is
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The partition-based method is taken with the auto-sampling-once scheme using the polynomial

tail with parameters α= 0.01,∆= 1.5,ε∆ = 0.01. Both methods are simulated with n = 100 scenarios
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Figure 4.9 Estimating gamma of European call option

and the number of samples in each scenario is N = 10, 000. The performance of both the likelihood

ratio method and the partition-based method is given in Fig. 4.9 using the Black-Scholes model

with S0 = 100, K = 110, r = 0.05,σ= 0.2, T = 1. The theoretical Black-Scholes gamma is known to be
φ(d1)

S0σ
p

T
whereφ and d2 are defined in (4.2) and (4.5), respectively. For the likelihood ratio method,

the time used in sampling step is 0.0368 seconds, and the time used in calculating Monte Carlo

approximation is 0.0312 seconds. For the partition-based method, the time used in computing the

proposal density is 0.0090 seconds, the time used in sampling step is 1.7872 seconds, and the time

used in calculating IS approximation is 0.1619 seconds.

For fairer comparison, we rerun the likelihood ratio method with sample size N = 500, 000 and

other parameters fixed. The performance of this simulation is presented in Fig. 4.10 against the

previous result from the partition-based method with the same y-axis scale. The time used in the

simulation of each method with n = 100 scenarios is presented in Table 4.5.

Note that apart from delta, vega, theta, rho and gamma, which are the most common Greeks,

other useful Greeks are vanna = ∂ 2C
∂ S0∂ σ

, vomma = ∂
2C
∂ σ2 , charm =− ∂ 2C

∂ S0∂ T , veta = ∂ 2C
∂ σ∂ T , vera = ∂ 2C

∂ σ∂ r ,

speed = ∂
3C
∂ S 3

0
, zomma = ∂ 3C

∂ S 2
0 ∂ σ

, color = ∂ 3C
∂ S 2

0 ∂ T
and ultima = ∂

3C
∂ σ3 .
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Figure 4.10 Comparison between the likelihood ratio method and the partition-based method for estimat-
ing gamma of European call option

Table 4.5 Computing time in seconds of the likelihood ratio method with N = 500,000 and the partition-
based method with∆= 1.5,ε∆ = 0.01,ξ= 100,σ= 100 and N = 10, 000 corresponding to Fig. 4.10

Likelihood ratio ∆= 1.5
with N = 500, 000 with N = 10, 000

Computing the proposal density - 0.0090
Sampling 1.4613 1.7872
Calculating the approximation 1.3958 0.1619

4.2 Simultaneous Simulation

For given target functions and distributions, f1, f2, . . . , fR and π1,π2, . . . ,πR , the expectationsEπ1
( f1),

Eπ2
( f2), . . . ,EπR

( fR ) can be approximated using IS method with the same proposal distribution q .

Although we can approximate each expectation separately with individual optimal proposal density,

we may want to consider using just a single set of samples to approximate all the expectations at

once when R is large. For j = 1, 2, . . . , R ,

µ̂ j =
1

N

N
∑

i=1

w j (X i ) f j (X i ), X i
iid∼ q . (4.6)

where

w j (·) =
π j (·)
q (·)

. (4.7)

The following theorem provides the optimal common proposal density which can be used to ap-

proximate a good proposal density by the partition-based method.
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Theorem 4.6. The proposal density q that satisfies f jπ j � q for all j = 1, 2, . . . , R and minimizes

R
∑

j=1

α j Var(µ̂ j )

for given constants α j ’s such that α j > 0 for all j = 1, 2, . . . , R is

q ∗R (x ) =

r

∑R
j=1α j f j (x )2π j (x )2

∫

r

∑R
j=1α j f j (x )2π j (x )2 d x

.

Proof. Minimizing
∑R

j=1α j Var(µ̂ j ) is equivalent to minimizing

R
∑

j=1

α j

∫

f j (x )2π j (x )2

q (x )
d x

and the minimizing constraint is
∫

q (x ) d x = 1. We also have constraints q and π j being non-

negative for all j = 1, 2, . . . , R . Applying the method of Lagrange multipliers for calculus of variations

from Appendix C, we set

L (x , q ,λ) =
R
∑

j=1

α j f j (x )2π j (x )2

q (x )
+λq (x ).

Setting

∂ L

∂ q
=−

R
∑

j=1

α j f j (x )2π j (x )2

q (x )2
+λ= 0,

we have that

q (x ) =

r

∑R
j=1α j f j (x )2π j (x )2

p
λ

.

Since
∫

q (x )d x = 1, we have that q (x ) =

r

∑R
j=1α j f j (x )2π j (x )2

∫

r

∑R
j=1α j f j (x )2π j (x )2 d x

. Now, we will show that this candidate

q ∗R (x ) =

r

∑R
j=1α j f j (x )2π j (x )2

∫

r

∑R
j=1α j f j (x )2π j (x )2 d x

indeed yields the minimum variance among all valid basic IS proposal densities. Clearly, f jπ j � q ∗R
for all j = 1, 2, . . . , R . Let q be any density satisfying f jπ j � q for all j = 1, 2, . . . , R . Then,
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R
∑

j=1

α j

∫

f j (x )2π j (x )2

q ∗R (x )
d x =





∫

√

√

√

√

R
∑

j=1

α j f j (x )2π j (x )2 d x





R
∑

j=1

α j

∫

f j (x )2π j (x )2
Ç

∑R
i=1αi fi (x )2πi (x )2

d x

=





∫

√

√

√

√

R
∑

j=1

α j f j (x )2π j (x )2 d x





2

=





∫

r

∑R
j=1α j f j (x )2π j (x )2

q (x )
q (x ) d x





2

=



E





r

∑R
j=1α j f j (X )2π j (X )2

q (X )









2

, X ∼ q .

By Jensen’s inequality, we have that

R
∑

j=1

α j

∫

f j (x )2π j (x )2

q ∗R (x )
d x ≤E











r

∑R
j=1α j f j (X )2π j (X )2

q (X )





2






=

∫

∑R
j=1α j f j (x )2π j (x )2

q (x )2
q (x ) d x

=
R
∑

j=1

α j

∫

f j (x )2π j (x )2

q (x )
d x

which completes the proof.

Example 4.7 (Simultaneous Greeks). Consider applying the proposal density using Theorem 4.6 to

approximate delta, vega, theta, rho and gamma from Example 4.1, 4.2, 4.3, 4.4, 4.5 with the same

parameters S0 = 100, K = 110, r = 0.05,σ= 0.2, T = 1. The partition-based method is taken with the

auto-sampling-once scheme using the polynomial tail with parameters α= 0.01,∆= 1.5,ε∆ = 0.01.

The simultaneous simulation uses n = 100, the number of scenarios, and N = 10, 000, the number

of samples in each scenario. The performance of the partition-based method using a common set of

samples for each kind of option Greeks is given in Fig. 4.11 with the same scales of Fig. 4.1, 4.3, 4.5,

4.7 and 4.9 for comparison. The simultaneous simulation seems to have the very good performance.

The partition-based proposal densities from Example 4.1, 4.2, 4.3, 4.4, 4.5 and this example as well

as their corresponding optimal densities are presented in Fig. 4.12. The time used in computing the

common proposal density is 0.0586 seconds, the time used in sampling the common samples is
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Figure 4.11 Estimating delta, vega, theta, rho and gamma of European call option simultaneously by
partition-based method

1.9928 seconds, and the time used in calculating IS approximation for delta, vega, theta, rho and

gamma is 0.1404, 0.1621, 0.1338, 0.1016 and 0.1663 seconds, respectively. Since the most consuming

time in the approximation is used in the sampling step, simultaneous simulation can save time and

memory by sampling just a single set of sample. We can also see that the partition-based method

can work well even with the bimodal shape of the optimal proposal densities. It can be easily applied

to any multimodal-shape optimal proposal density.
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Figure 4.12 Partition-based proposal densities in Example 4.7 and their corresponding optimal densities
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CHAPTER

5

SEQUENTIAL IMPORTANCE SAMPLING

This chapter briefly talks about the sequential importance sampling (SIS) method. First, we will

introduce the SIS procedure [9] used in general application which uses the self-normalized IS as

a base step in each time increment. Then, the SIS method using the basic IS as the base step is

introduced. Finally, a possible extension of the partition-based method to the line of SIS is discussed.

5.1 Original Procedure

Let (E ,E ) be a measurable space and {πt }t ∈N a sequence of probability distributions defined on

the product space {(E t ,E t )}t ∈N. We denote by x1:t a vector (x1, . . . , xt ) ∈ E t . Note that E can be a

multidimensional space, and for that situation each xi is also a vector and x1:t is a vector of vectors.

Assume that πt is known up to normalizing constants Zt :

πt (x1:t ) =
pt (x1:t )

Zt
.

We want to approximate expectations of πt -integrable function ft : E t →R:

µt =Eπt
( ft ) =

∫

ft (x1:t )πt (x1:t )d x1:t
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as well as the normalizing constant Zt .

At time t = 1, we apply self-normalized IS method with a chosen valid proposal density q1.

µ̃1 =
N
∑

i=1

W (i )
1 f1(X

(i )
1 ) and Z̃1 =

1

N

N
∑

i=1

w1(X
(i )
1 ), X (i )1 ∼ q1

where

W (i )
1 =

w1(X
(i )
1 )

∑N
i=1 w1(X

(i )
1 )

and w1(X
(i )
1 ) =

p1(X
(i )
1 )

q1(X
(i )
1 )

.

For time t ≥ 2, we can just apply IS method on the space E t with a valid proposal density qt (x1:t ).

Doing this, we will have, for each time t , new N t -dimensional-vectors X (i )1:t drawn from qt and their

corresponding weights W (i )
t . One may want to reuse the previous vectors X (i )1:t−1 and their weights

to recursively compute X (i )1:t and W (i )
t . To do this, we need one more component to add on to the

on-hand vectors X (i )1:t−1. So, instead of sampling X (i )1:t ∼ qt (x1:t ), we conditionally draw

X (i )t |X
(i )
1:t−1 ∼ qt (xt |x1:t−1)

where

qt (x1:t ) = qt−1(x1:t−1) qt (xt |x1:t−1)

= q1(x1) q2(x2|x1) . . . qt (xt |x1:t−1).

Thus, we have to select qt (xt |x1:t−1) instead of choosing importance sampling density qt (x1:t ) in

order to be able to reuse the past simulated trajectories. To calculate the corresponding weights, we

simply do some algebra:

wt (x1:t ) =
pt (x1:t )
qt (x1:t )

=
pt (x1:t )

qt−1(x1:t−1) qt (xt |x1:t−1)

=
pt−1(x1:t−1)
qt−1(x1:t−1)

pt (x1:t )
pt−1(x1:t−1) qt (xt |x1:t−1)

=wt−1(x1:t−1)
pt (x1:t )

pt−1(x1:t−1) qt (xt |x1:t−1)
.

Define

α1(x1) =w1(x1) =
p1(x1)
q1(x1)
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and for t ≥ 2

αt (x1:t ) =
pt (x1:t )

pt−1(x1:t−1) qt (xt |x1:t−1)
.

Then, for t ≥ 2

µ̃t =
N
∑

i=1

W (i )
t ft (X

(i )
1:t ) and Z̃t =

1

N

N
∑

i=1

wt (X
(i )
1:t ), X (i )t ∼ qt ( · |X

(i )
1:t−1)

where

W (i )
t =

wt (X
(i )
1:t )

∑N
i=1 wt (X

(i )
1:t )

and

wt (X
(i )
1:t ) =wt−1(X

(i )
1:t−1) αt (X

(i )
1:t ).

This SIS method has been developed primarily from the field of filtering estimation and Bayesian

analysis [9]. It uses the self-normalized IS as a base step in each time increment. As a result, em-

pirical distributions representing target distributions in each time step can be studied through

McKean interpretations of Feynman-Kac models [5]. The nonuniqueness of McKean interpretations

of Feynman-Kac models can lead correspondingly to interacting particle system (IPS) schemes,

particularly a more specific scheme called SIS with resampling (SISR) scheme [9]which is practically

and widely used. With the strong support theory of this IPS model, This original SIS method and

SISR are typically used in many applications even when the target density is fully known, i.e. the nor-

malizing constant Zi is known. Instead of using self-normalized IS which brings biased estimators,

we should consider using basic IS as a base step for SIS.

5.2 Alternative Procedure

We would like to introduce the SIS procedure using basic IS as the base step which should work

better than the original SIS when the target density πt is known for all t .

At time t = 1, we just apply basic IS method with a chosen valid proposal density q1.

µ̂1 =
1

N

N
∑

i=1

w1(X
(i )
1 ) f1(X

(i )
1 ), X (i )1 ∼ q1

where

w1(X
(i )
1 ) =

π1(X
(i )
1 )

q1(X
(i )
1 )

.
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For time t ≥ 2, we conditionally draw

X (i )t |X
(i )
1:t−1 ∼ qt (xt |x1:t−1)

where

qt (x1:t ) = qt−1(x1:t−1) qt (xt |x1:t−1)

= q1(x1) q2(x2|x1) . . . qt (xt |x1:t−1).

The weight function

wt (x1:t ) =
πt (x1:t )
qt (x1:t )

=wt−1(x1:t−1)
πt (x1:t )

πt−1(x1:t−1) qt (xt |x1:t−1)

can be used sequentially by defining

β1(x1) =w1(x1) =
π1(x1)
q1(x1)

and for t ≥ 2

βt (x1:t ) =
πt (x1:t )

πt−1(x1:t−1) qt (xt |x1:t−1)
.

Then, for t ≥ 2

µ̂t =
1

N

N
∑

i=1

wt (X
(i )
1:t ) ft (X

(i )
1:t ), X (i )t ∼ qt ( · |X

(i )
1:t−1)

where

wt (X
(i )
1:t ) =wt−1(X

(i )
1:t−1) βt (X

(i )
1:t ).

Unlike the original SIS method, this proposed SIS procedure does not have empirical distri-

butions representing the target distributions in each time step, so it may be hard to develop the

associated IPS theory. This is definitely a good future work to explore. However, this SIS can be

developed to SISR scheme where the resampling is performed for every time step using weighted

empirical measure defined by the resampling weights to establish the associated IPS theory [4, 6].

Actually, that developed scheme is equivalent to the original SIS with resampling in every time step

though.
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5.3 Partition-Based Method

Recall from Section 5.1 and 5.2 that we must choose the proposal densities satisfying

qt (x1:t ) = qt−1(x1:t−1) qt (xt |x1:t−1). (5.1)

For the SIS method using basic IS as described in Section 5.2, we can use the partition-based method

to obtain the proposal density q1 approximating the optimal density (q1)∗b

q1(x1) ≈ (q1)
∗
b (x1) =

| f1(x1)| π1(x1)
∫

| f1(x1)| π1(x1) d x1

.

For t ≥ 2, we would like to acquire

qt (x1:t ) ≈ (qt )
∗
b (x1:t ) =

| ft (x1:t )| πt (x1:t )
∫

| ft (x1:t )| πt (x1:t ) d x1:t

. (5.2)

Suppose we use the partition-based method to obtain q1(x1) and q2(x1:2). There is no guarantee that

q1 and q2 can have the relation (5.1). In other words,
∫

q2(x1:2) d x2 may not equal q1(x1). However,

in a special case where we are interested only at the final time step, we can create the sequence of

qt satisfying (5.1). Unfortunately, it may require more work than directly applying a partition-based

method on the terminal time space.

Suppose we consider approximating Eπm
( fm ) =

∫

fm (x1:m )πm (x1:m ) d x1:m . We can use the

partition-based method in Section 3.4 to get qm (x1:m ) ≈ (qm )∗b (x1:m ). The proposal density qm

is a function on E m which is partitioned into many subcells. We can have the probabilities of getting

a sample in each subcell which can be stored in a multidimensional matrix. Thus, we can easily sum

it up in proper dimensions to get a way to conditionally draw each component of a sample from time

1 to m sequentially. The sampling step will finally use m uniform random numbers for one sample

in E m . Each uniform random number will create each component xi of the sample x1:m . Recall

that applying partition-based IS directly at time m will use m + 1 uniform random numbers for

one sample in E m , so the sequential partition-based scheme use one less uniform random number.

However, it require more work in the sequential procedure. It may depend on the problem which

method is better, but we suggest to use the partition-based IS directly at time m .
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CONCLUSION

IS is a useful Monte Carlo technique that can attack some problems that the classical Monte Carlo

method or other techniques cannot be applied to. These problems include rare-event applications

and situations when sampling directly from the target function is difficult especially in Bayesian

Analysis. Both basic IS and self-normalized IS allow us to use samples that better locate in the rare-

event region, or are easier to draw. Moreover, IS can be beneficial in estimating results under multiple

target distributions simultaneously. Furthermore, it can be a useful tool to estimate derivatives of

expectations. Sequential Monte Carlo simulation also uses IS as a key step to draw each component of

a sample sequentially. In addition, self-normalized IS can be used to simulate the target distribution

by getting a set of samples together with their associated weights summing up to one.

IS is a well-known variance reduction method. In spite of its high complexity, it is possibly the

best variance reduction method among the known approaches. For a single-signed target function,

basic IS can have the zero-variance estimator. To get a great variance reduction, it depends on how

well we choose a proposal distribution for sampling. Both kinds of IS have the optimal proposal

densities. Unfortunately, the optimal densities cannot be put to use in general problems due to the

need of knowing the answer at first. Most people stick to using known distributions for the proposal

distributions. There is a rule of thumb (1.7) in choosing proposal densities that is widely used.

However, that criterion neglects information from the target functions, and may cause failure in
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approximation for some target functions. In addition, the approximation can be at best only among

the chosen family of distributions. In this work, we propose a way to get a proposal distribution that

is not a known distribution. There are five primary contributions in this work.

The first contribution is to summarize basic mathematical theory for IS method including the

convergence of the estimators as well as the optimal proposal distributions for both basic and

self-normalized IS. The proofs of the convergence theorem of a self-normalized IS estimator and

the optimal proposal distribution for self-normalized IS are provided.

The second contribution is to point out a blind spot of the current rule of thumb (1.7) for choosing

a proposal density in IS method. A counter example that really shows the failure of that rule of

thumb is given. From the summarized theory, proper criteria for proposal distributions are summed

up.

The third contribution is to provide a partition-based method that utilizes the information of

optimal proposal densities. A class of functions that can be covered by this method is discussed. An

outcome proposal density will be close to the optimal proposal density. Thus, it yields the finite-

variance IS estimator, and satisfies the validity to be a proposal density as well as the assumption

for the convergence theorem leading to CLT. The concept of the partition-based method is to break

the domain into pieces and try to approximate the optimal density on each piece of domain. The

method still depends on choices of parameters in the method. Criteria to partition the domain are

discussed. For basic IS, the process to determine where to cut for the tail region is provided. The

partition-based idea also extends to the case of multidimensional spaces. Some practical examples

using the partition-based method are provided, and the efficiency of the partition-based method

seems very good. Computing time may be high, but we can reduce the number of samples much

lower than using other methods and still secure the same level of accuracy.

The fourth contribution is to provide an optimal density for the simultaneous simulation. Here,

the optimality is in the sense of a linear combination of estimators’ variances. The statement and

proof are given.

The fifth contribution is to provide the SIS method using the basic IS as the base step when all

target densities are known. It does not have the supported IPS theory like the original SIS method

which uses the self-normalized IS as the base step. A possible extension of the partition-based

method to the SIS procedure is discussed. However, the partition-based method is actually designed

specifically to a pair of target function and target density. It is not suitable for the SIS method but

should rather be applied directly for a pair of target function and target density.

The partition-based method does not work for all the Monte Carlo problems. The obvious

drawback of the partition-based method is that the explicit forms of the target function and the

target density are needed. We may deal with this problem in some situations with some cost. For
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example, when the target function or the target density are defined through an integral, we can

increase the dimension of the problem by adding the integrator variables into the problem. However,

this issue is at the same time an advantage of this method. The partition-based method can be

applied to multimodal distributions or weird functions that the other methods in the line of IS may

have difficulty in implementing. Another drawback of this method is that it is not suitable for very

high dimensional problem because of the cost in computing the proposal density and sampling.

The partition-based method in this work can be studied further. The sensitivity of parameters in

the method is interesting. We may improve the criteria on how to partition the domain. Changing

the ordinary rectangular partition to polar-coordinate partition or other system may improve the

performance of the estimation.

IS is capable of getting the zero-variance estimation and the optimal proposal density is known,

so we should utilize this fact. This work tries to best approximate the expectation by first finding

the optimal proposal density and then approximating it. Considering the proof of an optimal

proposal density for basic IS, self-normalized IS, and simultaneous simulation of IS, we can have a

pattern to find an optimal proposal density for a given IS scheme which may come out in the future.

Approximating the optimal proposal density, the partition-based method proposed in this work

should be able to adapt to any reasonable pair of target function and target density, and it allows IS

to be fruitfully applied in more general setting of applications.
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APPENDIX

A

ACCEPTANCE-REJECTION METHOD

Let f and g be probability densities such that there exists a constant c > 0 with f (x )≤ c g (x ) for all

x such that f (x )> 0. We can generate a random number from the density f as follows:

1. Generate X ∼ g .

2. Generate U ∼Unif(0, 1), the uniform distribution over the unit interval.

3. Check whether or not U ≤ f (X )
c g (X ) .

• If this holds, accept and return X .

• If not, reject X and go back to step 1.
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APPENDIX

B

DELTA METHOD

Theorem B.1 (The Multivariate Delta Method [22]). Let ~Xn = (X
(1)
n , . . . , X (k )n ) be a sequence of random

vectors such that
p

n
�

~Xn − ~µ
� d−−−→

n→∞
Nk

�

~0,Σ
�

.

Let g : D ⊆Rk →R be defined and has continuous first partial derivatives in a neighborhood of ~µ. If

the elements of∇~µ =
�

∂ g
∂ x1
(~x ), . . . , ∂ g

∂ xk
(~x )

�

�

�

�

�

~x=~µ
are nonzero, then

p
n
�

g ( ~Xn )− g (~µ)
� d−−−→

n→∞
N

�

0,∇~µ Σ∇T
~µ

�

.
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C

CALCULUS OF VARIATIONS

We can extend the method of Lagrange multipliers to calculus of variations. To solve an isoperimetric

problem

Optimize : I (y (x )) =

∫ x1

x0

F (x , y , y ′)d x

Subject to :

∫ x1

x0

G (x , y , y ′)d x = J

where J is a known constant, we set the Lagrangian function

L (x , y , y ′,λ) = F (x , y , y ′) +λG (x , y , y ′)

and the following unconstrained Euler equation is solved along with the constraint equation

d

d x

�

∂ L

∂ y ′

�

−
∂ L

∂ y
= 0.
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D

INVERSE TRANSFORM METHOD

Let F be a continuous cumulative distribution function and F −1 its inverse function defined by

F −1(u ) = inf{x |F (x )≥ u}. We can generate a random number distributed according to the distribu-

tion described by F as follows:

1. Generate U ∼Unif(0, 1), the uniform distribution over the unit interval.

2. Compute and return X = F −1(U ).
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E

GENERALIZED PARETO DISTRIBUTION

The probability density function for the generalized Pareto distribution GPD(ξ,σ,θ ) with shape

parameter ξ 6= 0, scale parameterσ> 0, and location parameter θ is

f (x |ξ,σ,θ ) =
1

σ
�

1+ξ (x−θ )σ

�1+ 1
ξ

for x >θ when ξ> 0, or for θ < x <θ − σξ when ξ< 0.

For ξ= 0, the density is

f (x |ξ,σ,θ ) =
1

σ
e −

(x−θ )
σ

for x >θ .

Ifξ= 0 andθ = 0, the generalized Pareto distribution is equivalent to the exponential distribution.

If ξ> 0 and θ = σξ , the generalized Pareto distribution is equivalent to the Pareto distribution.
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