
ABSTRACT

TOTH, ALEXANDER RAYMOND. A Theoretical Analysis of Anderson Acceleration and Its
Application in Multiphysics Simulation for Light-Water Reactors. (Under the direction of Carl
Kelley.)

In this work, we are concerned with both contributing to the theoretical foundation for

Anderson acceleration, a method for accelerating the convergence rate of Picard iteration, and

evaluating its performance in the context of coupled multiphysics problems in nuclear reactor

simulation. Anderson acceleration proceeds by maintaining a depth of previous iterate informa-

tion in order to compute a new iterate as a linear combination of previous evaluations of the

fixed-point map, where the linear combination coefficients are obtained by solving a linear least-

squares problem. Prior to this work, theory for this method was fairly sparse, dealing mainly

with showing its relation to quasi-Newton multisecant updating and, when applied to linear

problems, GMRES iteration. The analysis presented in this work significantly expands upon the

theory for this method. As this method is intended as an acceleration method for Picard itera-

tion, our analysis concerns problems for which Picard iteration is convergent, namely when the

fixed-point mapping is contractive. We present analysis which represent the first convergence

results for limited-memory variations of Anderson acceleration and for nonlinear problems.

Additionally, we present analysis for several variations on the standard Anderson acceleration

method. In particular, we consider a variation which adjusts the memory utilization in order

to maintain good conditioning of the least-squares problem, and we present local improvement

results for the case in which the fixed-point map can only be evaluated approximately.

With respect to coupled multiphysics problems, we examine Anderson acceleration as an

alternative to Picard iteration in the context of black-box code coupling in nuclear reactor

simulation. Picard iteration comes with several drawbacks in this context, namely relatively slow

convergence and poor robustness. To test the potential for Anderson acceleration to improve

upon the weaknesses of Picard iteration, we first consider a one-dimensional model problem

which recreates several phenomena observed in higher fidelity couplings. We then consider the

Tiamat code coupling being developed as part of the Consortium for Advanced Simulation of

LWRs (CASL). Tiamat couples the Bison fuel performance code with the MPACT neutronics

and COBRA-TF thermal hydraulics codes to provide a tool for pellet-cladding interaction

analysis. Prior to this work, this code utilized exclusively Picard iteration to couple these

single-physics codes. We overview Tiamat and describe how Anderson acceleration has been

integrated into this coupling by posing the coupled system as a fixed-point problem in terms of

coupling parameters. We then examine the performance gains obtained from utilizing Anderson

acceleration for this coupling by considering parameter studies at various problem sizes.

© Copyright 2016 by Alexander Raymond Toth

All Rights Reserved

A Theoretical Analysis of Anderson Acceleration and Its Application in Multiphysics
Simulation for Light-Water Reactors

by
Alexander Raymond Toth

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2016

APPROVED BY:

Pierre Gremaud Dmitriy Anistratov

Roger Pawlowski Carl Kelley
Chair of Advisory Committee

DEDICATION

To my parents for their constant support and encouragement, and to my dog Max, who has

been by my side through the ups and down of this whole process.

ii

BIOGRAPHY

Alexander Raymond Toth was born on October 14, 1988 to parents Joseph and Eileen in

Elmhurst, IL in the west suburbs of Chicago. Raised along side older brother Mike in Villa

Park, IL, he graduated from Willowbrook High School in 2007. For his undergraduate education,

he attended the University of Notre Dame. During the summer of 2010, he participated in a

Research Experience for Undergraduates (REU) program at North Carolina State University,

under the direction of Dr. Ralph Smith. Upon graduating from Notre Dame in 2011 with a B.A.

in mathematics, and minoring in Russian language and literature, he returned to Raleigh to

continue his mathematics education by enrolling in the Ph.D. program in applied mathematics

at North Carolina State University, studying under the direction of Dr. Tim Kelley. In the course

of his graduate education, he regularly collaborated with researchers at Oak Ridge National

Laboratory, and spent a significant portion of time stationed at the lab.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Tim Kelley, for providing me with this great opportunity

and for all his help and guidance along the way. Next, I would like to thank my committee for

helping me through this process. Finally, I would also like to thank all the math teachers I’ve

had over the years for fostering my interest in mathematics at an early age, encouraging me to

participate on the math team in high school, and challenging me and pushing my boundaries

in this subject.

Next, I would like to thank all the folks with whom I regularly dealt and collaborated at

Oak Ridge National Laboratory during my time spent there. In particular, thank you to Roger

Pawlowski, Stuart Slattery, and Steven Hamilton for their research guidance and assistance in

programming and computing matters, and thanks to Linda Weltman for her administrative

support. And finally, thank you to all my office mates in the CASL intern office for making my

working environment such an enjoyable one to be at, and for answering nuclear questions for

the non-nuclear engineer in the room.

Lastly, I would like to make acknowledgement for my funding sources and use of computing

resources. This work has been supported by the Consortium for Advanced Simulation of Light

Water Reactors (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for

Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No.

DE-AC05-00OR22725, and by National Science Foundation Grants DMS-1406349, and SI2-

SSE-1339844. This research used resources of the Oak Ridge Leadership Computing Facility at

the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC05-00OR22725.

iv

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction to Coupled Multiphysics Problems 1
1.1 Introduction . 1

1.1.1 Basic Definitions . 2
1.1.2 General Formulation . 3

1.2 Standard Solution Methods . 4
1.2.1 Picard Iteration . 4
1.2.2 Jacobian-Free Newton-Krylov . 7
1.2.3 Nonlinear Elimination . 9

Chapter 2 Tiamat Overview . 11
2.1 Introduction . 11
2.2 Participating Codes . 12

2.2.1 Bison . 13
2.2.2 COBRA-TF (CTF) . 14
2.2.3 MPACT . 16
2.2.4 Data Transfer Kit (DTK) . 18
2.2.5 PIKE . 19

2.3 Tiamat Simulation Process . 20
2.3.1 Fully-Coupled Problem Formulation . 21
2.3.2 Solution of Fully-Coupled Problem . 23
2.3.3 Performance of Picard Iteration . 26

Chapter 3 Analysis of Anderson Acceleration . 30
3.1 Review of Literature . 32
3.2 Standard Convergence Analysis . 35

3.2.1 Analysis for Linear Problems . 35
3.2.2 Analysis for Nonlinear Problems . 36
3.2.3 Numerical Tests . 41

3.3 Preconditioning . 43
3.4 Adjusting Storage Depth for Conditioning . 45

3.4.1 Numerical Tests . 53
3.5 Deterministic Errors in the Function Evaluation 58

3.5.1 Linear Problems . 58
3.5.2 Nonlinear Problems . 62

3.6 Stochastic Errors in the Function Evaluation . 68

Chapter 4 Trilinos Anderson Acceleration Implementation 70
4.1 Introduction . 70
4.2 Solver Description . 70

v

4.2.1 Solver Options . 72
4.2.2 Step Implementation . 73
4.2.3 QR Management Routines . 74
4.2.4 Solver Creation . 82

4.3 Unit Tests . 83
4.3.1 Rosenbrock Test . 84
4.3.2 Chandrasekhar H-equation Test . 85
4.3.3 1DFEM Test . 87

Chapter 5 1D Coupled Model Problem . 89
5.1 Introduction . 89
5.2 Physical Models and Discretization . 91
5.3 Coupling Algorithms . 97

5.3.1 Picard Iteration . 97
5.3.2 Anderson Acceleration . 99

5.4 Numerical Results . 100
5.4.1 Picard Results . 101
5.4.2 Anderson Results . 104

Chapter 6 Anderson Acceleration for Tiamat . 107
6.1 Introduction . 107
6.2 Definition of Fixed-Point Maps . 107

6.2.1 Block Gauss-Seidel Map . 109
6.2.2 Block Jacobi Map . 110
6.2.3 Intermediate Map . 111
6.2.4 Scaling of Unknown Fields . 114

6.3 Implementation Details . 116
6.3.1 NOX Solver Creation . 116
6.3.2 Interfacing With PIKE . 117
6.3.3 Setting NOX Initial Iterate . 118

6.4 Numerical Results . 119
6.4.1 Single Fuel Rod Tests . 119
6.4.2 3x3 Mini-Assembly Tests . 144
6.4.3 17x17 Assembly Tests . 148

Chapter 7 Conclusion . 155
7.1 Anderson Acceleration Theory . 155
7.2 Coupled Multiphysics Problems . 158

References . 162

Appendices . 167
Appendix A Iterative Methods for Linear and Nonlinear Equations 168

A.1 Linear Equations . 168
A.1.1 Preliminaries . 169

vi

A.1.2 Stationary Iterative Methods . 170
A.1.3 Krylov Subspace Methods . 172

A.2 Nonlinear Equations . 174
A.2.1 Preliminaries . 175
A.2.2 Fixed-Point Iteration . 177
A.2.3 Newton’s Method . 178
A.2.4 Quasi-Newton Methods . 184

Appendix B Trilinos . 187
B.1 Trilinos Overview . 187
B.2 Relevant Packages . 187

B.2.1 Teuchos . 187
B.2.2 Epetra . 188
B.2.3 Tpetra . 188
B.2.4 Thyra . 189
B.2.5 Belos . 190
B.2.6 Anasazi . 190
B.2.7 Ifpack2 . 190
B.2.8 ML . 191
B.2.9 NOX . 191
B.2.10 PIKE . 191

B.3 Configuring and Building Trilinos . 192
Appendix C Tiamat Input Files . 194

C.1 17x17 Assembly Test Inputs . 195
C.2 Changes for 3x3 Mini-Assembly Tests . 201
C.3 Changes for Single-Rod Tests . 202

vii

LIST OF TABLES

Table 2.1 Comparison of block Gauss-Seidel vs block Jacobi for single rod Tiamat
simulation at various power levels. Power damping factor ω = 0.5 and max
iteration count = 25 . 27

Table 2.2 Breakdown of solve and transfer timings (in seconds) for Tiamat HFP solve
phase at 75% power . 28

Table 3.1 H-equation iteration statistics for Newton-GMRES and fixed point iteration 42
Table 3.2 H-equation Anderson statistics, ω = 0.5 . 43
Table 3.3 H-equation Anderson statistics, ω = 0.99 43
Table 3.4 H -equation Anderson statistics, ω = 1.0 44

Table 4.1 Solving H-equation with ω = 0.999 and N = 400 by Anderson-10, varying
the number of MPI processes utilized . 86

Table 5.1 1D model problem cross sections at various fuel temperatures with con-
stant coolant temperature 565K . 94

Table 5.2 1D model problem cross sections at various fuel and coolant temperatures 94

Table 6.1 Comparison of Picard and Anderson-2 with each of the fixed-point maps
(Gauss-Seidel, intermediate, and Jacobi) for single-rod Tiamat simulation
at various power levels. Damping factor = 0.5 and max iterations = 25 . . 120

Table 6.2 Comparison of Picard and Anderson-2 with each of the Gauss-Seidel and
Jacobi fixed-point maps for 3x3 Tiamat simulation at various power levels.
Damping factor = 0.5 and max iteration count = 25 145

Table 6.3 Average application solve time(s) for Tiamat 3x3 tests at 100% power . . . 145
Table 6.4 Iterations to convergence for Tiamat 3x3 tests at various damping level,

100% power . 147
Table 6.5 17x17 assembly Tiamat test results, damping factor 0.5 149
Table 6.6 Average application solve time(s) for Tiamat single-assembly tests 149
Table 6.7 Anderson-2 with Gauss-Seidel map with varying mixing parameter 152
Table 6.8 17x17 assembly Tiamat test results with 47-group cross section libraries

and damping factor 0.5 . 154
Table 6.9 Average application solve times for single-assembly Tiamat tests with 47-

group cross section libraries . 154

viii

LIST OF FIGURES

Figure 2.1 Codes utilized in the Tiamat code coupling 12
Figure 2.2 Bison 2-D axisymmetric finite element representation of a fuel rod; the

radial dimension is scaled by a factor of 100 13
Figure 2.3 Subchannel representation utilized by CTF for a 3x3 array of fuel rods . . 15
Figure 2.4 Schematic of the MPACT solution process, coupling 2D/1D treatment of

the transport equation with 3D CMFD acceleration (from [57]) 18
Figure 2.5 Variation of the inlet coolant temperature (in blue) and power level (in

red) during ramp of Bison from cold zero-power (CZP) to hot full-power
(HFP) . 20

Figure 2.6 Data transfers utilized by Tiamat in the fully-coupled hot full-power
(HFP) solve phase . 22

Figure 2.7 MPI communication layers in Tiamat . 26
Figure 2.8 Block Gauss-Seidel iterations to convergence for Tiamat single-rod simu-

lation, varying the damping factor and power level 29

Figure 3.1 Solving H-equation with Anderson-10 for various ω 53
Figure 3.2 Solving H-equation by Algorithm 5 with m = 10 for various ω and con-

dition number bound τ . 55
Figure 3.3 Solving H-equation with ω = 0.9999 and initial residual norm reduced by

a factor δ from the base case . 56
Figure 3.4 Solving H-equation with ω = 0.99999 and initial residual norm reduced

by a factor δ from the base case . 57

Figure 4.1 Convergence behavior and loss of orthogonality in the QR factorization
of the least-squares coefficient matrix for H-equation test problem, m =
10, ω = 0.9999 . 80

Figure 4.2 Solving the Rosenbrock function by Anderson-2 85
Figure 4.3 Solving H-equation with ω = 0.99 by Anderson-5 with acceleration de-

layed until iteration 5 . 87
Figure 4.4 Solving the nonlinear heat conduction equation by Newton’s method and

Anderson-2 . 88

Figure 5.1 Oscillatory temperature shift in Insilico/AMP coupling 90
Figure 5.2 Fuel temperature behavior for the model problem, without and with

damping . 102
Figure 5.3 Picard iterations to convergence, varying damping factor 103
Figure 5.4 Nonlinear iterations to convergence for two-way coupling 105
Figure 5.5 Nonlinear iterations to convergence for three-way coupling 106

Figure 6.1 Comparison of Picard and Anderson with the Gauss-Seidel map for Tia-
mat single-rod tests at 100% power, varying the damping level and An-
derson storage depth parameter . 122

ix

Figure 6.2 Anderson-2 iteration counts for single-rod Tiamat tests at several power
levels, varying the damping factor . 123

Figure 6.3 Relative fixed-point residual histories from Tiamat single-rod tests at
100% power for Picard iteration and Anderson acceleration with various
storage depth parameters . 124

Figure 6.4 Average fuel temperature computed by Picard iteration with Gauss-Seidel
map, and relative difference between this curve and Anderson solutions . 127

Figure 6.5 Average clad temperature computed by Picard iteration with Gauss-
Seidel map, and relative difference between this curve and Anderson so-
lutions . 127

Figure 6.6 Average fission rate computed by Picard iteration with Gauss-Seidel map,
and relative difference between this curve and Anderson solutions 128

Figure 6.7 Average heat flux computed by Picard iteration with Gauss-Seidel map,
and relative difference between this curve and Anderson solutions 128

Figure 6.8 Varying CTF global energy balance tolerance in Tiamat single-rod tests . 132
Figure 6.9 Varying MPACT scalar flux tolerance in Tiamat single-rod tests 133
Figure 6.10 Varying Bison JFNK tolerances in Tiamat single-rod tests 135
Figure 6.11 Varying temperature scaling for Anderson-2 single-rod Tiamat tests with

the Gauss-Seidel map . 137
Figure 6.12 Varying temperature and density scaling for Anderson-2 single-rod Tia-

mat tests with the Jacobi map . 139
Figure 6.13 Varying power and heat flux scaling for Anderson-2 single-rod Tiamat

tests with the Jacobi map . 140
Figure 6.14 Comparison of Anderson-2 and JFNK with block Jacobi map for Tiamat

single-rod tests. JFNK uses a constant forcing term of 0.1 or 0.01, or an
adjustable forcing term with initial value 0.1 141

Figure 6.15 Comparison of Anderson-2 and JFNK with block Gauss-Seidel map for
Tiamat single-rod tests. JFNK uses a constant forcing term of 0.01 143

Figure 6.16 3x3 mini-assembly layout, with 8 UO2 fuel rods (in red) and a central
guide tube . 144

Figure 6.17 17x17 assembly lattice with 264 UO2 fuel rods (in blue), 24 guide tubes
(in white), and 1 instrument tube (in orange) 148

Figure 6.18 Assembly averaged fuel temperature computed by Picard iteration with
Gauss-Seidel map, and relative difference between this curve and Ander-
son solutions . 150

Figure 6.19 Assembly averaged clad temperature computed by Picard iteration with
Gauss-Seidel map, and relative difference between this curve and Ander-
son solutions . 150

Figure 6.20 Assembly averaged fission rate computed by Picard iteration with Gauss-
Seidel map, and relative difference between this curve and Anderson so-
lutions . 151

Figure 6.21 Assembly averaged heat flux computed by Picard iteration with Gauss-
Seidel map, and relative difference between this curve and Anderson so-
lutions . 151

x

Chapter 1

Introduction to Coupled

Multiphysics Problems

1.1 Introduction

Many important problems of interest involve complex systems which feature several interde-

pendent physical processes which interact in a variety of ways. Hence, accurately simulating

the entire system involves not only solving these individual physical processes, but accounting

for the manner in which they interact. An example on which we focus in this work the coupled

physics within a reactor core. Some of the relevant processes involved in this system include

heat generation from fission, coolant flow through the core, heat exchange between fuel and

coolant, and changes in the chemical composition of the fuel. Each of these physical processes

affects the others in some way. For instance, heat generation from fission affects properties of

the fuel, and these fuel properties in turn determine that rate at which fission occurs. The

interacting physical processes in a coupled system may cover a wide range of areas of expertise,

and as a result, it is desirable to couple together software which has been specifically developed

for accurately solving some set of physical processes in order to simulate the entire coupled

system. In many cases, such software for solving single sets of physics has been developed over

the course of many years and can greatly vary in functionality, with respect to what can be

computed and accessed by the user. It is then of interest to develop flexible and robust methods

in order to efficiently utilize existing software in order to simulate coupled multiphysics systems.

In this chapter, we precisely describe the problem at hand by first introducing some impor-

tant terminology and notation, and describing a general formulation of multiphysics coupling as

presented in [44]. We then overview some of the solution methods that have traditionally been

utilized in solving coupled multiphysics problems, including the advantages and drawbacks of

these methods.

1

1.1.1 Basic Definitions

In this section, we introduce several important definitions for describing multiphysics coupling:

• Coupled physics - When the solution of one set of physics depends on the solution of

another set of physics, theses physics are said to be coupled.

• Degree of physics coupling - The level of influence one set of physics has on another set.

Two sets of physics are said to be strongly coupled if a change in the solution of one set

results in a large change in the solution of the other. Otherwise, if a change in the solution

of one set of physics results in a negligible change in the solution of the other, the sets of

physics are said to be weakly coupled.

• Directional coupling - The manner in which two sets of physics depend on each other.

Two sets of physics are said to be two-way coupled of the solution of each set is dependent

on the solution of the other. Conversely, the sets of physics are said to feature one-way or

forward coupling if the solution of only one set is dependent on the other. In this case, one

set of physics may be solved independently of the other, possibly simplifying the solution

of the coupled system.

• State variables - The set of variables that a single-physics application is solving for.

• Residual (constraint) equation - The system of equations that a physics code solves to

compute the solution state variables. These are often generated from conservation or

balance laws.

• Response function - A quantity of interest which a code is used to compute. This may cor-

respond to the state variables themselves, but more generally may include postprocessed

values computed from state variables and other independent parameters.

• Transfer function - A function which maps data from one application code to an input

for another code. This may simply perform an interpolation of state variables or a re-

sponse function between meshes, or possibly a mapping from a volume source to a point

source, or vice versa. For problems featuring meshes distributed in parallel these functions

will involve parallel communication as well, so these functions may include a fair bit of

complexity.

2

1.1.2 General Formulation

We now describe coupled multiphysics with mathematical rigor. We first consider a single-

physics application. The residual equation corresponding to this application is given by

f(ẋ, x, {pl}, t) = 0, (1.1)

where

• x ∈ RNx is the vector of state variables,

• ẋ ∈ RNx is the time derivative of the state variables,

• {pl} = {p0, . . . , pNp−1} is the set of independent parameter sub-vectors,

• t is the time variable.

It is of interest to determine the state variables which solve this residual equation over some

time interval of interest. In this work, we will be more concerned with solving steady state

problems, for which (1.1) simplifies to

f(x, {pl}) = 0. (1.2)

This form may still be used to describe transient simulation, in which case this formulation

represents the set of equations being solved for a given time step.

It is fairly straightforward to extend this formulation to coupled multiphysics problems.

We now consider a set of Nf single-physics applications. Application i has its own residual

equation which it solves, as described by (1.2). Some of the set of parameter sub-vectors for

this application may depend on state variables or other data from the other applications, so we

partition the parameter sub-vectors into {zi,j}, the sub-vectors which depend on the solution

to other applications, and {pi,k}, the remaining sub-vectors whose values are independent of

the other applications. We then write the residual equation corresponding to application i as

fi(xi, {zi,j}, {pi,k}) = 0, for i = 0, . . . , Nf − 1. (1.3)

As the coupling parameters depend on some collection of state variables and independent pa-

rameters from other applications, we can express them as follows

zi,j = ri,j({xm}, {pm,n}). (1.4)

• {xm} = {x0, . . . , xNf−1} is the set of state variables for all applications,

3

• {pm,n} = {p0,0, . . . , p0,Np0−1, . . . , pi,0, . . . , pi,Npi−1, . . . } is the set of all independent pa-

rameter sub-vectors for all applications,

• ri,j is a transfer function which maps state variable and parameter data from the other

applications to compute a dependent coupling parameter vector. This notation may bury

significant complexity, as these transfer functions may involve computation of response

functions, parallel communication, volume averaging, interpolation, etc. In practice, the

dependencies of the transfer functions should be fairly sparse, usually mapping data from

only a single application to a parameter vector for another.

Making the substitution (1.4), the above residual equation becomes

fi(xi, {ri,j({xm}, {pm,n})}, {pi,k}) = 0, for i = 0, . . . , Nf − 1. (1.5)

Associated with this multiphysics system are the response functions

gi({xm}, {rj,k({xm}, {pm,n})}, {pm,n}), for i = 0, . . . , Ng − 1. (1.6)

The problem at hand is then to determine a collection of state variables {xm} such that

each residual equation (1.5) is simultaneously solved.

1.2 Standard Solution Methods

In this section, we overview standard solution methods which have frequently been used in

solving coupled multiphysics problems. We note that the available solution methods may be

limited by the capability of the physics codes being used. A code may have the capability to

expose residual evaluations to the user, or it may only be able to solve for the state variables

and return the solution or some post-processed response functions. Which data are exposed to

the user will dictate which solution methods may be utilized.

1.2.1 Picard Iteration

Perhaps the simplest solution method for this class of problems is Picard iteration (also known

as fixed-point iteration or successive substitution). We describe Picard iteration in a more

general sense in Appendix A. This type of iteration proceeds by sequentially solving single-

physics applications and transferring the updated state variables or response functions to the

other applications, and iterating in this manner until a consistent solution or some measure of

failure is attained.

4

The main advantage for this method is its simplicity of implementation and flexibility. This

method requires the minimum that can be expected of a physics code: that it can accept coupling

parameters as inputs and return response functions. The only data that needs to be exposed

are whichever response functions are required to evaluate the transfer functions for each of the

single-physics applications. The solution state variables for a given application might not even

need to be accessible, so long as the required response functions are. Single-physics applications

may be treated as black boxes with internal workings opaque to the user. Termination of this

sort of iteration is then generally determined by small changes in various response functions (1.6)

for the coupled system from iteration to iteration. Because of this method’s flexibility in regard

to leveraging existing software and its relative simplicity of implementation it has been very

widely used in solving coupled multiphysics problems. In particular, it has been the standard

method utilized in the Consortium for Advanced Simulation of Light-Water Reactors (CASL).

It is utilized in the VERA core simulator [40], the main product of CASL, as well as Tiamat [45],

the coupling on which we focus later in this work.

In order to implement a Picard iteration in attempt to solve a coupled multiphysics problem,

one needs to define some order in which to solve the single-physics applications. The two most

common types of Picard iteration in this context (so named after their similarities to the

corresponding stationary iterative methods for linear systems) are:

• Block Jacobi - Data transfers between all applications are carried out at the same time,

and each set of physics is independently solved.

• Block Gauss-Seidel - Single-physics applications are sequentially solved with updated

solutions transferred to the other applications as soon as they are obtained.

That is, in block Jacobi there are alternating phases of solving each of the single-physics appli-

cations, and then computing updated coupling parameters. Conversely, for block Gauss-Seidel

the applications are solved one at a time in a sequential order, passing data as it is obtained.

These represent the only two types of orderings when the coupled system comprises of only two

applications, but additional orderings are possible when coupling more applications. This will

be examined further in Section 6.2.

As a more concrete example , we consider the following two-application multiphysics system

f0(x0, r0,0(x1)) = 0, (1.7)

f1(x1, r1,0(x0)) = 0. (1.8)

We seek solutions x∗0 and x∗1 such that both f0(x∗0, r0,0(x∗1)) = 0 and f1(x∗1, r1,0(x∗0)) = 0. We

can represent a block Jacobi iteration scheme for this system as follows:

5

• Given x0
0, x

0
1.

• For n = 0, 1, . . .

– Solve f0(xn+1
0 , r0,0(xn1)) = 0 for xn+1

0 .

– Solve f1(xn+1
1 , r1,0(xn0)) = 0 for xn+1

1 .

Note that in this, each of the transfer functions , r0,0 and r1,0, is evaluated using the approximate

solutions that are present at the beginning of the iteration. We similarly represent the block

Gauss-Seidel iteration as follows:

• Given x0
0, x

0
1.

• For n = 0, 1, . . .

– Solve f0(xn+1
0 , r0,0(xn1)) = 0 for xn+1

0 .

– Solve f1(xn+1
1 , r1,0(xn+1

0)) = 0 for xn+1
1 .

In this, xn+1
0 is transferred to the other application as soon as it is obtained, and f1 is solved

given this updated value. Assuming that xn+1
0 is closer to the solution than xn0 , the residual

equation f1 given these updated values should be closer to the actual problem we are looking

to solve, so this should result in an improved approximation to the solution.

In general, a block Gauss-Seidel scheme is expected to converge in fewer iteration than a

block Jacobi scheme, as it keeps the applications more tightly coupled in a sense. Additionally,

because a block Gauss-Seidel scheme keeps individual physics components more tightly coupled,

it will likely converge for several problems where a block Jacobi scheme does not, particularly

if the sets of physics are very tightly coupled. However, as each of the single-physics solves for

block Jacobi is independent, it is possible to execute each solve simultaneously, whereas single-

physics solves need to be executed serially for block Gauss-Seidel due to the sequential nature

of the solves. In a parallel computing environment, this simultaneous solution of single-physics

systems may result in significantly lower time per block Jacobi iteration than that for a block

Gauss-Seidel iteration. However, significant reduction in per iteration run-time requires careful

load balancing so that each of the single-physics solves takes roughly the same time.

Utilizing Picard iteration as a solution method for coupled multiphysics problems features

several noteworthy drawbacks. One of the primary disadvantages of this method is its relatively

slow rate of convergence. When convergent, the rate of convergence for this method should be

expected to be at best q-linear (see Appendix A). Another drawback of this method is potential

poor robustness. It may simply diverge, or it may require a ad hoc chosen numerical damping for

convergence, which will be the case when we consider the Tiamat code coupling in Chapter 2.

6

1.2.2 Jacobian-Free Newton-Krylov

An alternative solution method to Picard iteration which has been employed in coupled mul-

tiphysics problems is Jacobian-free Newton-Krylov (JFNK) [29, 31]. In contrast with Picard

iteration, where the individual sets of physics are treated in a partitioned manner and solved

indepently, JFNK achieves a tighter coupling by solving all the sets of physics simultaneously.

Because of this more tightly coupled treatment, and several other advantages that Newton-like

methods offer, JFNK has become widely utilized in solving coupled multiphysics problems. For

instance, JFNK is a foundational tool for the MOOSE (Multiphysics Object Oriented Simula-

tion Environment) framework [20]. In MOOSE, the Galerkin finite-element method is used for

discretization and geometric representation [7] and JFNK is used to solve the resulting systems

of equations. The Bison nuclear fuel performance code [23], which is utilized in the Tiamat

coupling that we introduce in Chapter 2, is built on this framework.

A more formal description of Newton’s method, JFNK, and convergence theory for these

methods, is given in Appendix A. As the name JFNK suggests, this method is derived from

Newton’s method, which solves the equation F (u) = 0 by iterating

uk+1 = uk + dk, (1.9)

where the Newton direction, dk, solves the linear equation

F ′(uk)dk = −F (uk). (1.10)

In the context of coupled multiphysics problems, the residual F in the above equation is a

monolithic residual which is comprised of the residual equations for each of the single-physics

systems

F ({xm}, {pm,n}) =


f0(x0, {r0,i({xm}, {pm,n})}, {p0,j})
f1(x1, {r1,i({xm}, {pm,n})}, {p1,j})

...

fNf−1(xNf−1, {rNf−1,i({xm}, {pm,n})}, {pNf−1,j})

 = 0, (1.11)

where fi is the the residual equation for single-physics system i. The Jacobian matrix corre-

7

sponding to this residual has the form

F ′({xm}) =



∂f0
∂x0

∂f0
∂x1

. . . ∂f0
∂xNf−1

∂f1
∂x0

∂f1
∂x1

. . . ∂f1
∂xNf−1

...
...

...
∂fNf−1

∂x0

∂fNf−1

∂x1
. . .

∂fNf−1

∂xNf−1

 . (1.12)

In this, the off-diagonal blocks, ∂fi
∂xj

for i 6= j, will be zero if none of the transfer functions {ri,k}
corresponding to the single-physics residual i depends on xj , and generally non-zero otherwise.

There are several drawbacks to forming and storing the full Jacobian matrix. First, for even

moderately large problems, forming the Jacobian may be prohibitively expensive, either with

respect to computation or storage. If the entire set of state variables {xm} contains N variables,

the Jacobian has N2 entries, which may be too large to store. Even if there are several zero

off-diagonal blocks, the amount of computation and storage required for the full Jacobian may

be excessive. Second, it may not be possible to compute the Jacobian at all. Not only does it

require differentiating each single-physics residual with respect to its own state variables, but

the state variables for other applications for which it has a non-zero dependence as well. Even

if a given physics code can compute a Jacobian for its residual equation with respect to its own

state variables, the off-diagonal blocks may be difficult to obtain.

To avoid forming a Jacobian matrix, (1.10) may be solved in a matrix-free manner by uti-

lizing a Krylov method. For this, one simply requires a method of computing the action of

the Jacobian matrix on a given vector, F ′(uk)v. As with forming the full Jacobian, comput-

ing a Jacobian-vector product analytically may be infeasible or impossible. As a result, some

approximation to the Jacobian-vector product may be the only possible option in many cases.

In JFNK, the Jacobian-vector product is approximated using a finite difference. This finite

difference approximation is as follows

F ′(uk)v =
F (uk + εv)− F (uk)

ε
, (1.13)

where ε is a perturbation parameter. We see that each finite-difference approximation requires

only the evaluation of the residual equation at a small perturbation to the current solution uk.

The individual residual equations may need to be scaled if they deal with quantities of vastly

different magnitude, otherwise selection of the perturbation factor ε in the forward-difference

Jacobian-vector product may be problematic.

Returning to the example system in Equations (1.7)-(1.8), we seek a solution u∗ =

(
x∗0
x∗1

)

8

to the monolithic system

F

(
x0

x1

)
=

(
f0(x0, r0,0(x1))

f1(x1, r1,0(x0))

)
= 0. (1.14)

In order to apply JFNK to solve this system, we simply require the ability to evaluate the

perturbed residual about the current iterates xn0 and xn1

F

(
xn0 + εv0

xn1 + εv1

)
=

(
f0(xn0 + εv0, r0,0(xn1 + εv1))

f1(xn1 + εv1, r1,0(xn0 + εv0))

)
= 0. (1.15)

JFNK is attractive for several reasons. First, Newton-like methods feature fast local conver-

gence. Second, Newton-like methods feature several globalization methods, i.e. line searches [17]

or trust-region methods [30]. As a result, even with a poor initial iterate, Newton’s method will

converge to a solution or fail to do so in a predictable manner. Lastly, this method ensures

consistency upon convergence. A Picard iteration generally terminates upon small change in

response functions. However, small changes in response functions may not necessarily imply

convergence of the state variables, so it is possible for a Picard iteration to declare convergence

prematurely. However, because JFNK deals with the actual residuals for the application codes,

on solution of the composite residual, the state variables for each physics application will also

be converged.

However, JFNK comes with its own disadvantages. First, this method is more restrictive in

implementation than Picard. Each of the codes needs to provide access to the state variables for

which it is solving, and be able to return its residual. Many codes work as black boxes, in which

inputs are specified, and output response functions are returned. The internal workings of the

codes are not exposed to the user, so access to state variables or a residual may not be provided,

or a residual might not be computed at all. Second, while the nonlinear iteration is generally

expected to converge in few iterations, it may require many iterations in the linear solve phase,

and as one residual evaluation is required per linear iteration, this may be prohibitively costly.

In this case, it is necessary either to have a good preconditioner or in some way reduce the cost

of residual evaluations in the linear iterations.

1.2.3 Nonlinear Elimination

An additional technique that has been used for coupled multiphysics problems in various fields

is nonlinear elimination [38, 67]. This is not a solution method in itself, but it can provide

flexibility in the choice of solution method for a coupled problem. This approach proceeds by

using the Implicit Function Theorem to express the state variables for given a single-physics

system as a function of the other single-physics state variables on which its residual equation

9

(1.5) depends, and using this relation to eliminate that system from the coupled problem. In

this way, a coupled problem can be reduced to solving for only a subset of the single-physics

systems, and the solution to any eliminated system can be recovered from the solutions for those

that are solved. This can provide flexibility if the systems that are eliminated are preventing

from utilizing more advanced solution methods, e.g. enabling the use of Newton’s method by

nonlinearly eliminating a single-physics system for which we can not access a residual or compute

Jacobian information.

As an example, again consider the two-component coupled system given by Equations (1.7)

and (1.8). The residual equation f1(x1, r1,0(x0)) = 0 implicitly defines x1 as a function of x0,

so we denote the solution of this equation given any x0 by x1(x0). We can then rewrite (1.7) as

f0(x0, r0,0(x1(x0))) = 0. (1.16)

This reduces the coupled problem to a single-physics problem which we solve for only x0, and

we can apply some nonlinear solution method to solve this reduced equation. For instance,

one can apply the Picard iteration by letting xn+1
0 be the solution of f0(x0, r0,0(x1(xn0))) = 0.

However, this does not differ from block Gauss-Seidel for the coupled system, as this will

alternate between solving f1 for x1 internally and using this value to update x0 by solving

f0. More usefully, one may be able to solve this reduced system by a Newton-like method.

In [34] the authors analyze full Newton’s method applied to a nonlinearly eliminated system.

Even without analytic Jacobian information, this technique may enable the use of JFNK if it is

possible to nonlinearly eliminate all systems for which one can not compute and directly access

state variables and residuals. For example, suppose that we have access to the state variables x0

and can compute the residual f0, but this information is not accessible for the second system.

This would preclude using JFNK as described in the previous section, as this requires the ability

to compute and access the state variables and residual for both systems. However, in this case

it will be possible to apply JFNK to the reduced system (1.16), as this only requires the ability

to evaluate the reduced residual.

10

Chapter 2

Tiamat Overview

2.1 Introduction

We now restrict our focus to the specific case of coupled multiphysics problems in the context

of nuclear reactor simulation. The particular coupling on which we focus in this work is called

Tiamat [45]. Tiamat is one of several code couplings being developed by the Consortium for

Advanced Simulation of LWRs (CASL). Tiamat is intended as a tool for pellet-cladding inter-

action (PCI) analysis. A nuclear fuel rod is comprised of a stack of UO2 fuel pellets enclosed

in a Zircaloy tube, referred to as the cladding. Initially there is a gap between the fuel pellets

and the cladding, and this closes during operation as a result of thermal expansion and fission

product swelling in the fuel pellets, and inward displacement of the cladding due to external

coolant pressure. PCI refers to cladding failure due to strains caused by contact between fuel

pellets and the surrounding cladding during operation, resulting in release of radioactive fission

products into the coolant. Such behavior usually occurs as a result of rapid changes in the

local power distribution during power maneuvers. PCI is a problem of significant interest to

the nuclear industry, as reactor operating restrictions established to mitigate this issue may

result in reduced power generation [10]. It is then desirable to improve upon modeling and

simulation techniques for this problem, as this could result in improvements in fuel design and

quantification of safety margins.

PCI failure is governed by the complex interplay of the thermal, mechanical, and chemical

behavior within a fuel rod, so an integral fuel performance code is required to simulate these

processes. Bison is a single-rod fuel performance code being developed to model this coupled

thermal-mechanical-chemical behavior in order to assess safety margins and fuel rod design [23].

Bison can be used to calculate key figures of merit, such as maximum hoop stress, which

indicate the potential for PCI failure within a given fuel rod. In order for Bison to accurately

compute these quantities of interest, it needs to be provided high-fidelity representations of

11

Figure 2.1: Codes utilized in the Tiamat code coupling

several conditions within the reactor, specifically the rate of heat generation from fission in the

fuel, which is the main thermal source in the fuel, and the clad surface temperature, which

acts as a thermal boundary condition. This is accomplished in Tiamat by coupling Bison with

other CASL single-physics codes to provide the necessary feedback, specifically the MPACT

neutronics [14] and COBRA-TF thermal hydraulics [50] codes. Bison in turn provides feedback

to the other single-physics codes, as the fuel temperatures affects the fission heat generation

rate, and the heat flux from the fuel to the coolant affects several important coolant properties.

We are concerned with finding a solution to this fully-coupled problem as efficiently as possible.

In the remainder of this chapter, we will first overview the major codes participating in

this coupling in Section 2.2. We will then describe precisely the problem at hand and how it

has previously been solved by Picard iteration in Section 2.3, and lastly we will briefly present

numerical results illustrating the behavior of Picard iteration for this problem in Section 2.3.3.

2.2 Participating Codes

The collection of codes being actively developed and utilized within the CASL project is known

as the Virtual Environment for Reactor Applications [61]. Tiamat utilizes a rather large subset

of the codes in the VERA suite. A schematic of the major participating codes is shown in

Figure 2.1. In this we see the single-physics application codes as well as a variety of utilities for

driving input/output, data transfers, and solvers. In this section we overview the major codes

that are utilized in Tiamat.

12

Figure 2.2: Bison 2-D axisymmetric finite element representation of a fuel rod; the radial
dimension is scaled by a factor of 100

2.2.1 Bison

As has been stated, the Bison fuel performance code [23] is being developed to provide single-

rod, fuel performance modeling capability, which we utilize in Tiamat in order to calculate

figures of merit which indicate the potential for PCI failures in PWRs. Bison is built upon

Idaho National Laboratory’s MOOSE framework [20], so it uses the finite element method

for geometric representation and JFNK to solve the resulting systems of partial differential

equations. It includes 1D, 2D, and full 3D modeling capabilities. The fuel rod geometric repre-

sentation utilized by Bison within Tiamat is a 2D R-Z axially-symmetric, smeared-pellet model.

This is illustrated in Figure 2.2, where the red region is fuel and the blue region is cladding.

The system of equations that Bison solves is as follows

ρCp
∂T

∂t
+∇ · (−k∇T)− q = 0, (2.1)

∇ · σ + ρf = 0. (2.2)

These equations represent conservation of energy and momentum respectively. In Equation (2.1),

T, ρ, Cp, k, and q are the temperature, density, specific heat, thermal conductivity, and volumet-

ric energy generation due to fission respectively. This is a standard heat equation, with source

given by fission energy production. In Equation (2.2), σ is the Cauchy stress tensor, and f is

the body force per unit mass. This equation governs the displacement field, i.e. deformation of

the fuel pellets and cladding due to mechanical forces. Bison utilizes various constitutive rela-

tionships, depending on internal material models, which relate the displacement to the Cauchy

13

stress tensor, through a strain tensor. The material models are strongly influenced by the time

history, so the Bison application is inherently a transient code. The state variables that Bison

solves for are the temperature distribution and the displacement field. The coupling between

the temperature solution and the mechanical solution is non-linear due to the complex depen-

dency of the material properties on temperature, stress, and strain. In addition to the above,

Bison accounts for changing chemical composition of the fuel and clad by the following equation

representing species conservation

∂C

∂t
+∇ · J + λC − S = 0, (2.3)

where C, λ, S, and J are the concentration, decay constant, source, and mass flux respectively

for a given chemical species. This affects material properties, and causes swelling in the pellets

due to production of fission product.

A core-simulator is traditionally uses a quasi-static model, with a series of steady-state

calculations [45], but since the material models within Bison are strongly dependent on the time

history this code must be run transient. Then, when coupling Bison with the other application

codes, we solve Bison one time step at a time, while the other codes are solved in steady-state

mode. We represent the residual equation resulting from discretizing Equations (2.1) and (2.2)

for a given time step as follows

fB(xB, Tc, q) = 0. (2.4)

In this, the vector of state variables xB is comprised of fuel temperature and displacement

unknowns. Note, we also identify the quantities Tc and q in this equation. These are coupling

parameter sub-vectors. That is, they are the zi,j vectors defined in Section 1.1.2. These are

quantities that depend on solutions to other application codes which affect the solution of (2.4).

In this case, Tc is the cladding surface temperature and q is the fission heat generation rate.

The dependence of Equation (2.1) on q is obvious, and Tc acts as the outer boundary condition

in this equation. In (2.4), we suppress the independent parameter sub-vector notation, {pi,k},
from Equation (1.3), which can include things like geometry specifications or other reactor

conditions which are do not depend on the solution of any application codes. As Bison utilizes

JFNK internally, it computes this residual directly, though access for the user is not easily

provided.

2.2.2 COBRA-TF (CTF)

COBRA-TF (CTF) [50] is a thermal-hydraulic simulation code designed for LWR analysis. CTF

is currently being developed and maintained by the Reactor Dynamics and Fuel Management

Group at the Pennsylvania State University. CTF uses a two-fluid, three-field representation of

14

Figure 2.3: Subchannel representation utilized by CTF for a 3x3 array of fuel rods

the two-phase flow. The three fields considered are liquid film, liquid droplets and vapor. For

each field, the equations and solved are as follows

∂

∂t
(αkρk) +∇ · (αkρk~vk) = Lk +MT

k , (2.5)

∂

∂t
(αkρk~vk) +∇ · (αkρk~vk~v∗k) = αkρk~g − αk∇P +∇ · [αk(τk + Tk)] + ~ML

k + ~Md
k + ~MT

k , (2.6)

∂

∂t
(αkρkhk) +∇ · (αkρkhk~vk) = −∇ · [αk(~Qk + ~qTk)] + Γkhk + q′′′w,k + αk

∂P

∂t
. (2.7)

These equations represent conservation of mass, momentum, and energy respectively. In these

equations, the subscript k denotes the field under consideration. Some important quantities to

note in this equation are the void fraction αk, the density ρk, the velocity field ~vk, the enthalpy

hk, the pressure P , and the volumetric wall heat transfer q′′′w,k. For discretization, CTF utilizes

a simplified subchannel form of these equations. A subchannel refers to the gap between a

collection of rods as illustrated in Figure 2.3. CTF defines control volumes over axial sections

of subchannels, and enforces Equations (2.5), (2.6), and (2.7) over these control volumes. The

method used by CTF to solve these equations is called the Semi-Implicit Method for Pressure-

Linked Equations [43]. CTF additionally includes several internal models useful for reactor

analysis, such as spacer grid models and built-in material properties.

As mentioned in the previous section, with the exception of Bison we utilize the application

codes in steady-state mode, so we seek a steady state solution to Equations (2.5), (2.6), and

(2.7). However, internally CTF always solves the time dependent form of these equations. To

approximate a steady state solution CTF uses a pseudo-steady-state solver which marches

forward in time for a particular flow/power state until it has been determined that the solution

has become sufficiently close to steady state. CTF tracks five quantities to determine the steady

15

state convergence, which are as follows:

• The amount of energy stored in the fluid.

• The amount of energy stored in the solids.

• The amount of mass stored in the system.

• Global energy balance.

• Global mass balance.

These quantities are defined precisely in [50]. CTF declares steady-state convergence upon

sufficiently small changes in these quantities relative to the time step.

We represent the discretized residual of the steady-state form of Equations (2.5), (2.6), and

(2.7) as

fC(xC , q
′′) = 0. (2.8)

In this, xC represents the discretized form of the velocity field, density, enthalpy, etc. The

coupling parameter vector q′′ is the heat flux from the fuel to the coolant. As was previously

stated, the CTF conservation equations are discretized by integrating over control volumes, and

this converts the volumetric wall heat transfer q′′′w,k to the total wall heat transfer qw,k. This

value can also be computed by integrating the heat flux from the fuel q′′ over the cladding

surface area which bounds the control volume, so the heat flux represents a source in (2.7).

We note here that while CTF is governed by Equation (2.8), it does not include the capability

to evaluate this residual. It only has the capability to solve for its state variables and return

various response functions.

2.2.3 MPACT

The reactor core simulator MPACT [14] has been developed collaboratively by researchers at

the University of Michigan and Oak Ridge National Laboratory to provide an advanced pin-

resolved transport capability within VERA. This code solves the neutron transport equation

Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) =

∫ ∞
0
dE′

∫
4π
dΩ′Σs(r,Ω · Ω′, E′ → E)ψ(r,Ω′, E′)

+
χ(r, E)

4πkeff

∫ ∞
0
dE′

∫
4π
dΩ′ νΣf (r, E′)ψ(r,Ω′, E′). (2.9)

In this equation, ψ is called the angular flux, and it is a measure of intensity of neutrons passing

through a point in space with a given direction and energy. It is a function of position r, direction

Ω, and energy E. Σt is referred to as the total cross section, Σs is the scattering cross section,

16

and Σf is the fission cross section. These quantities represent probability densities of a neutron

undergoing each given type of interaction. Lastly, keff is called the dominant eigenvalue, and

this represents the average number of neutrons born per fission event that go on to undergo

a fission event. In 3-dimensional space, ψ is a 6-dimensional function (3 space, 2 angle, and

energy), so due to the high dimensionality, several simplifications are generally made when

solving this problem. First, rather than solving for the directionally dependent ψ, one typically

solves for various angular moments of the angular flux. Second, energy dependence is generally

treated through the multigroup approximation. In this, the energy variable is partitioned into

energy groups given by the collection of intervals {[Eg, Eg−1]}NGg=1, and (2.9) is integrated over

each of these energy group. This results in the following

Ω · ∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω) =

NG∑
g′=1

∫
4π
dΩ′Σs,g′→g(r,Ω · Ω′)ψg′(r,Ω′)

+
χg(r)

4πkeff

NG∑
g′=1

∫
4π
dΩ′ νΣf,g′(r)ψg′(r,Ω

′), g = 1, . . . , NG, (2.10)

where

ψg(r,Ω) =

∫ Eg−1

Eg

dE ψ(r,Ω, E), (2.11)

χg(r) =

∫ Eg−1

Eg

dE χ(r, E), (2.12)

Σx,g =

∫ Eg−1

Eg
dE Σx(r, E)φ(r, E)∫ Eg−1

Eg
dE φ(r, E)

. (2.13)

In (2.13), the subscript x represents any of the reaction types, and the weighting function φ,

known as the scalar flux, is the zeroth angular moment of the angular flux. As the scalar flux is

not known a priori, the group cross sections are typically computed using approximate weighting

functions. Accurately solving this multigroup equation requires high-fidelity approximation of

these group cross sections, and such approximation can be rather expensive.

There are many methods that have been developed to solve Equation (2.10). Some of these

methods include discrete ordinates angular treatment with either finite difference or method

of characteristics spatial treatment [51], Monte Carlo methods [36], expansion in spherical har-

monics [51], and hybrid deterministic/Monte Carlo methods [64]. In MPACT, the workhorse

method for solving this equation is a 2D/1D scheme in space accelerated with coarse-mesh

finite difference (CMFD) [28]. The 2D/1D scheme decomposes the geometry as an axial stack

of planes in the radial direction, as illustrated in Figure 2.4. The 2D problem is solved using

17

Figure 2.4: Schematic of the MPACT solution process, coupling 2D/1D treatment of the trans-
port equation with 3D CMFD acceleration (from [57])

the method of characteristics, and the 1D problem is solved by a lower order approximation.

For computing multigroup cross sections, MPACT utilizes either the subgroup method [15] or

the embedded self-shielding method [65]. CMFD accelerates this 2D/1D scheme by globally

rebalancing the flux with a diffusion-like equation on a coarse mesh using coefficients computed

from a fine mesh approximate solution. The coarse mesh equation is formulated in such a way

that its solution is consistent with the fine mesh solution.

As with the first two applications, we represent the discretized form of Equation (2.10) in

the following residual form

fM (xM , Tf , Tw, ρw) = 0. (2.14)

In this, the vector of state variables xm consists of group scalar fluxes and the dominant eigen-

value. The dependencies Tf , Tw, and ρw represent the fuel temperature, coolant temperature,

and coolant density respectively. These affect the solution of (2.10) through the dependence of

the multigroup cross sections on these material properties. Like CTF, MPACT does not feature

the capability to evaluate this residual given some input set of state variables xM .

2.2.4 Data Transfer Kit (DTK)

The Data Transfer Kit (DTK) [56] is a software package being developed at Oak Ridge National

Laboratory which provides parallel services for mesh and geometry searches and data transfers

for multiphysics applications. It it useful for passing data between meshes or geometries which

may not conform spatially and have arbitrary parallel distribution. It achieves good scaling

properties for data transfers through use of a method called the rendezvous algorithm. In this,

18

an intermediate decomposition of the source mesh/geometry is utilized in order to localize and

load balance search operations.

In Tiamat, DTK was used for determining the parallel MPI communication mappings and

for moving all data between codes. Issues such as unit conversions, as each application code uses

different units, and differing coordinate systems are handled within these data transfer objects.

We describe the DTK data transfer objects which are utilized in Tiamat in more detail when

describing the formulation of the coupled problem in Section 2.3.1

2.2.5 PIKE

PIKE is a package of Trilinos [27] which provides interfaces and various utilities for black-

box code coupling. This framework is leveraged heavily throughout Tiamat. One of the main

features utilized is the PIKE solver class, which provides an interface for solving couplings be-

tween black-box physics codes which interact through transfers of coupling parameter data, i.e.

problems formulated as described in Section 1.1.2. Two implementations of PIKE solvers are

provided in the package: a block Jacobi solver and a block Gauss-Seidel solver. These solvers

are concrete implementations of the Picard iterations that were outlined in Section 1.2.1. These

solvers work with abstract interfaces for model evaluator and data transfer objects which are

also defined in PIKE. A PIKE model evaluator is wrapper class for single-physics application

codes. The main functionality of this class is to solve the underlying application and return

response functions. Additionally, it provides several other routines for step control for time-

dependent application codes. Tiamat includes concrete model evaluator implementations for

each of the three application codes. A PIKE data transfer is an abstraction of a transfer func-

tion. The purpose of this class is to provide an interface for mapping data computed by one

application code to input arrays for other codes. In Tiamat, DTK is the primary driver in the

implementations of the PIKE data transfer objects.

Some other important pieces from this package that are utilized throughout Tiamat are as

follows

• Status tests - Status tests are used to check for convergence or failure of an iteration.

Some of the status tests included with PIKE check for successful local convergence of

each participating physics application, small changes in response functions of interest, or

exceeding a maximum number of iterations.

• Solver observers - Solver observers are used to provide additional functionality to PIKE

solvers. They give the ability to insert action at some point within the solution process,

e.g. before or after a full solve or a single iteration. For instance, observers which are used

in Tiamat carry out the pre-solve initialization phase which we describe in Section 2.3,

and post-process output upon a successful solve.

19

Figure 2.5: Variation of the inlet coolant temperature (in blue) and power level (in red) during
ramp of Bison from cold zero-power (CZP) to hot full-power (HFP)

• Multiphysics distributor - The multiphysics distributor class provides several utilities for

parallel task management. It can create and provide MPI sub-communicators for model

evaluator and data transfers, and is useful for checking whether an application or transfer

exists on a given MPI process. Additionally, the multiphysics distributor includes utilities

for parallel output.

2.3 Tiamat Simulation Process

We are interested in utilizing Tiamat to carry out simulations at normal operating conditions,

referred to as hot full-power (HFP). However, as we have mentioned the material models in

Bison have a strong time-dependence, so an initialization phase needs to be followed in order

to bring Bison from shut-down conditions, referred to as cold zero-power (CZP), up to HFP. A

direct coupling between MPACT and CTF can simulate HFP directly, so this is used in order

to obtain an estimate of HFP conditions, which is used to ramp Bison to this estimated state.

There are several options for how this HFP estimation can be carried out. First, one or more

iterations of stand-alone coupled MPACT/CTF may be carried out. Another option is to read

in data from a restart file generated offline from a previous MPACT/CTF or Tiamat run. The

Bison ramping process, which is illustrated visually in Figure 2.5, essentially simulates start-

up of the reactor first from CZP to a state referred to as hot zero-power (HZP) in which the

coolant is warmed to the operating inflow temperature but no power is being produced in the

fuel rods, and then from HZP to the estimated HFP conditions. The Tiamat solution process

is then given by the following .

20

1. Estimate the conditions at HFP in stand-alone MPACT/CTF as described above.

2. Model the transition from CZP to HZP in Bison. In this step, Bison simulates over a

period of 100 seconds with the inlet coolant temperature linearly varied from 293K to

565K.

3. Model the transition from HZP to HFP in Bison. In this step, Bison simulates over a period

of 48 hours with clad surface temperatures linear varied from 565K to the estimated value

from CTF in Step 1, and the power distribution linearly varied from zero to the estimated

value from MPACT in Step 1.

4. Model the reactor state at HFP for one or more time step.

The first three steps in this process represent a fixed-cost for any given Tiamat simulation. The

last step, in which we solve the fully-coupled system given by the three single-physics codes

for one or more time step, is where we focus our attention, as this is where improvement can

be made through advancement in techniques for solving tightly coupled multiphysics problems.

We first describe more precisely the problem being solved in this step, and the methods which

have been used to solve it prior to this work.

2.3.1 Fully-Coupled Problem Formulation

In the fully-coupled solve phase, we seek solutions to each of the single-physics applications such

that each system is simultaneously solved. That is, we seek single-physics solutions , x∗B, x
∗
C ,

and x∗M , which solve the following monolithic residual equation

F

 xB

xC

xM

 =

 fB(xB, Tc, q)

fC(xC , q
′′)

fM (xM , Tf , Tw, ρw)

 = 0, (2.15)

where fB, fC , and fM are the single-physics residual equations defined in Equations (2.4), (2.8),

and (2.14). As we had previously noted, the auxiliary conditions for each of the single-physics

residual equations comes from quantities computed by other physical systems, so it remains to

explicitly define these coupling parameter sub-vectors. We do this using the concept of transfer

functions introduced in Section 1.1.2. In the fully coupled solve phase, five data transfer objects

are utilized, and they are as follows

• Bison to CTF: The heat flux from the fuel to the coolant computed by Bison is transferred

to CTF. Computation of this quantity involves computing the outward normal derivative

21

Figure 2.6: Data transfers utilized by Tiamat in the fully-coupled hot full-power (HFP) solve
phase

of the temperature distribution. We denote this transfer function as

q′′ = rC,B(xB). (2.16)

• Bison to MPACT: The fuel temperature computed by Bison is transferred to MPACT.

Denote this transfer function as

Tf = rM,B(xB). (2.17)

• CTF to Bison: The clad surface temperature computed by CTF is transferred to Bison.

Denote this transfer function as

Tc = rB,C(xC). (2.18)

• CTF to MPACT: The coolant temperature and density computed by CTF is transferred

to MPACT. Denote this transfer function as(
Tw

ρw

)
= rM,C(xC) =

(
rM,C,T (xC)

rM,C,ρ(xC)

)
. (2.19)

• MPACT to Bison: The power distribution computed by MPACT is transferred to Bison.

Denote this transfer function as

q = rB,M (xM). (2.20)

22

For each of these data transfers, the general process for evaluating the transfer function is to

first compute the desired quantity on the set of source processes, and then perform a parallel

communication to pass the data to the correct target processes. In general, this parallel trans-

fer can involve interpolation or some more complex method of moving data between meshes.

However, in Tiamat this is simplified by performing all transfers on a coupling mesh, which

corresponds to the coarsest application axial mesh in the simulation. In this case, this is the

axial mesh used by both CTF and MPACT. The coupling mesh consists of the volumes given

by subdividing each fuel rod at a given set of axial bounds. Transfers between MPACT and

CTF are volume-to-volume, so these simply consist of copying data to the correct volume. For

transfers from Bison to the other application, a post-processor first averages the values defined

on the Bison finite element mesh over the coupling mesh cells, and transfers these averages.

Transfers to Bison are volume-to-point, and this is accomplished by simply assigning the value

at a given finite element node the averaged value for whichever volume in the coupling mesh

contains it.

Now given the notation in Equations (2.16)–(2.20), we can represent the fully-coupled sys-

tem (2.15) in the following form

F

 xB

xC

xM

 =

 fB(xB, rB,C(xC), rB,M (xM))

fC(xC , rC,B(xB))

fM (xM , rM,B(xB), rM,C,T (xC), rM,C,ρ(xC))

 = 0. (2.21)

Then, at each time step in the fully-coupled HFP solve phase we seek solutions x∗B, x
∗
C , and x∗M

such that Equation (2.21) is satisfied.

2.3.2 Solution of Fully-Coupled Problem

Given the problem formulation from the previous section, we now describe the methods which

have been previously utilized to solve this fully-coupled HFP problem. As was stated in Sec-

tion 2.2.5, Tiamat utilizes PIKE solvers for solving the fully-coupled problem, and currently

only two PIKE solver implementations are included in the package: a block Gauss-Seidel solver

and a block Jacobi solver. Tiamat can utilize either of these solvers. The process that block

Gauss-Seidel follows for this coupling is shown in Algorithm 1. In this, the order that we have

chosen to solve the applications is MPACT, followed by Bison, and lastly CTF. Again, these

solves must be executed sequentially. After the process for ramping Bison to HFP, each of the

of the application codes will have an estimated solution to its system at HFP conditions. These

estimated solutions serve as the initial iterates, x0
B, x

0
C , and x0

M , for the algorithm when solv-

ing for the first time step. In solving for more than one time step, the final solution from the

previous time step is used as the initial iterate for the current step.

23

Algorithm 1 Block Gauss-Seidel Nonlinear Solve for Tiamat

1: Given x0
B, x

0
C , and x0

M .

2: for k = 0, 1, . . . until converged do

3: Transfer Bison to MPACT, T kf = rM,B(xkB).

4: Transfer CTF to MPACT, T kw = rM,C,T (xkC) and ρkw = rM,C,ρ(x
k
C).

5: Solve fM (xM , T
k
f , T

k
w, ρ

k
w) = 0 for xk+1

M .

6: Transfer MPACT to Bison, qk+1 = rB,M (xk+1
M).

7: Transfer CTF to Bison, T kc = rB,C(xkC).

8: Solve fB(xB, T
k
c , q

k+1) = 0 for xk+1
B .

9: Transfer Bison to CTF, q′′k+1 = rC,B(xk+1
B).

10: Solve fC(xC , q
′′
k+1) = 0 for xk+1

C .

11: end for

Algorithm 2 Damped Block Gauss-Seidel Nonlinear Solve for Tiamat

1: Given x0
B, x

0
C , and x0

M .

2: for k = 0, 1, . . . until converged do

3: Transfer Bison to MPACT, T kf = rM,B(xkB).

4: Transfer CTF to MPACT, T kw = rM,C,T (xkC) and ρkw = rM,C,ρ(x
k
C).

5: Solve fM (xM , T
k
f , T

k
w, ρ

k
w) = 0 for xk+1

M .

6: Transfer MPACT to Bison, qk+1 = rB,M (xk+1
M).

7: if k > 0 then

8: Damp the transferred power, qk+1 = (1− ω)qk + ωqk+1.

9: end if

10: Transfer CTF to Bison, T kc = rB,C(xkC).

11: Solve fB(xB, T
k
c , q

k+1) = 0 for xk+1
B .

12: Transfer Bison to CTF, q′′k+1 = rC,B(xk+1
B).

13: Solve fC(xC , q
′′
k+1) = 0 for xk+1

C .

14: end for

24

Algorithm 3 Damped Block Jacobi Nonlinear Solve for Tiamat

1: Given x0
B, x

0
C , and x0

M .
2: for k = 0, 1, . . . until converged do
3: Transfer Bison to MPACT, T kf = rM,B(xkB).

4: Transfer CTF to MPACT, T kw = rM,C,T (xkC) and ρkw = rM,C,ρ(x
k
C).

5: Transfer MPACT to Bison, qk = rB,M (xkM).
6: if k > 0 then
7: Damp the transferred power, qk = (1− ω)qk−1 + ωqk.
8: end if
9: Transfer CTF to Bison, T kc = rB,C(xkC).

10: Transfer Bison to CTF, q′′k = rC,B(xkB).
11: Solve fM (xM , T

k
f , T

k
w, ρ

k
w) = 0 for xk+1

M .

12: Solve fB(xB, T
k
c , q

k) = 0 for xk+1
B .

13: Solve fC(xC , q
′′
k) = 0 for xk+1

C .
14: end for

At normal operating conditions, the procedure outlined in Algorithm 1 will fail to converge

due to oscillation in the solution induced by certain error modes [24]. A standard method that

has been utilized to remedy this issue is to introduce a numerical damping. Algorithm 2 shows

the same block Gauss-Seidel solution process, now with a damping applied to the power update.

In this, ω ∈ (0, 1] is a damping factor. While these damping factors are chosen ad hoc, it has

been observed that factors in the range 0.3-0.6 generally perform fairly well [24, 39,66].

The process that the block Jacobi solver follows is shown in Algorithm 3. This algorithm

alternates between phases of performing all data transfers and then solving all application codes.

As with block Gauss-Seidel, a damping on the power update is included, and this is generally

required in order to obtain convergence of the iteration. It is important to note that the solves

in this case need not be performed in sequential order, and this allows block Jacobi to more

effectively utilize parallelism. Figure 2.7 shows the parallel distribution utilized in Tiamat. Each

of the application codes exists in its own process space, and due to this design choice each of

the applications can perform a solve simultaneously. Conversely, for block Gauss-Seidel there is

significantly more processor idle time, as all processes associated with a given application are

idle while another application is solving. Hence, in an ideal scenario in which each application

requires the same solve time, the time required per block Jacobi iteration would be roughly one

third of the time per block Gauss-Seidel iteration.

Convergence of Tiamat is judged at both a local and global level. Local convergence refers to

convergence of the individual single-physics application codes, for which each of the applications

has its own set of criteria. Global convergence refers to convergence of the whole coupled system.

Global convergence is generally determined by checking for small changes in various response

25

Figure 2.7: MPI communication layers in Tiamat

functions between coupled iterations. PIKE status tests are used in order to determine the

global convergence of the coupled system. In order for a simulation to declare successful global

convergence, each of the application codes must have successfully converged locally, and the

following conditions for must be satisfied

• Bison: the absolute change in the maximum fuel temperature from iteration to iteration

must be less than some user-defined tolerance εT .

• CTF: the absolute change in the maximum coolant temperature and maximum clad sur-

face temperature from iteration to iteration must be less than εT .

• MPACT: the relative change (in the l2 norm) of the power distribution is less than some

user-defined tolerance εq between Picard iterations, and the absolute change in keff must

be less than some tolerance εk.

The iteration fails if it takes more than a prescribed maximum iteration count.

2.3.3 Performance of Picard Iteration

We now consider some test problems which illustrate the behavior of Picard iteration when

applied to this problem. For these tests, we simulate a single fuel rod, and solve for one time

step at HFP. 12 processes are utilized: 8 allocated to MPACT, 3 to Bison, and 1 to CTF.

Within MPACT, these tests utilize 8-group cross sections. This is a rather coarse energy mesh,

but this is not of great concern as we are concerned more with convergence behavior than high

accuracy in the solution. We simply note that higher fidelity cross sections will result in higher

solve times for MPACT than what is observed in these results. The inputs for this problem are

specified in greater detail in Appendix C.

26

Table 2.1: Comparison of block Gauss-Seidel vs block Jacobi for single rod Tiamat simulation
at various power levels. Power damping factor ω = 0.5 and max iteration count = 25

Power Level Method Iterations Solve Time (s) keff Tf,max

25%
Gauss-Seidel 9 303 1.23708 483.55

Jacobi 14 392 1.23708 483.54

50%
Gauss-Seidel 7 292 1.23105 694.09

Jacobi 15 407 1.23106 693.92

75%
Gauss-Seidel 8 332 1.22493 931.20

Jacobi 18 462 1.22497 930.18

100%
Gauss-Seidel 8 353 1.21857 1194.67

Jacobi DNC

125%
Gauss-Seidel 12 445 1.21214 1505.16

Jacobi DNC

First, in Table 2.1 are results from Tiamat simulations utilizing both block Gauss-Seidel

and block Jacobi as the solution method at several power levels. The power levels are listed as

a percentage of the rated power specified in the input. This determines the magnitude of the

power compute by MPACT, which is then passed to Bison. The power appears linearly as a

source in Bison’s residual equation (2.4), so the power level affects the strength of the coupling

between the applications. Increasing the power increases the strength of the coupling, and thus

the difficulty of the problem. We see that with the exception of 125% power, each block Gauss-

Seidel iteration converges with comparable iteration counts and run times. At 125% power

there is a significant increase in these quantities. For block Jacobi, there is a more obvious

upward trend throughout. Performance is comparable at the two lowest power levels, but as it

is increased further the iteration counts rise sharply, and it begins to fail to converge. These

results indicate that for both methods the performance may suffer as the strength of coupling

between the sets of physics becomes greater.

The dominant eigenvalue keff and the maximum fuel temperature Tf,max are listed in this

table to indicate the level of agreement between these two solution methods. We see that the

two methods agree well for the cases where they both converge.

Lastly, we observe in this table that the run times for block Jacobi are generally significantly

higher than those for block Gauss-Seidel. This can be explained by the application timing

breakdown presented in Table 2.2. This considers the 75% power case, as this is the highest

power level at which both methods converge. In this table, we see the time required by each of

the application solves and data transfers. We first note that each of the data transfers requires

a negligible amount of the time, and the application solves dominate the cost. In particular,

with this allocation of processes Bison solves take roughly 80–90% of the time per iteration for

27

Table 2.2: Breakdown of solve and transfer timings (in seconds) for Tiamat HFP solve phase
at 75% power

Phase Num Calls Total Time Time/Call

Gauss-Seidel

Bison Solve 8 140.3 17.5
CTF Solve 8 4.0 0.5

MPACT Solve 8 24.9 3.1
Bison to CTF 8 4.8e-3 6.0e-4

Bison to MPACT 8 2.9e-3 3.6e-4
CTF to Bison 8 5.6e-3 7.0e-4

CTF to MPACT 8 9.7e-3 1.2e-3
MPACT to Bison 8 2.9e-1 3.6e-2

Jacobi

Bison Solve 18 315.2 17.5
CTF Solve 18 10.6 0.59

MPACT Solve 18 66.6 3.7
Bison to CTF 18 5.2e-2 2.8e-3

Bison to MPACT 18 1.0e-2 5.4e-4
CTF to Bison 18 5.9e-1 3.2e-2

CTF to MPACT 18 2.1e+0 1.1e-1
MPACT to Bison 18 6.9e-1 3.7e-2

Gauss-Seidel. Because of this poor balance, little reduction in per iteration run-time results from

simultaneously solving the applications in block Jacobi. It may be possible to bring Bison and

MPACT into better balance with a different processor allocation. However, currently CTF is

only parallelized to run with one processor per fuel assembly, and this may make good balancing

of all three application codes problematic.

Next, Figure 2.8 shows the dependence of the performance of block Gauss-Seidel on the

damping factor ω. We note that block Jacobi behaves similarly. We observe that the performance

of the method is very strongly dependent on this parameter. Fairly consistent performance is

achieved over damping factors in range 0.4—0.6, and iteration counts rise rapidly away from

this range. We also note that the performance depends noticeably on the power level. The

left side of the curves remain static but on the right there is an upward trend. As a result, a

damping factor that was suitable for a lower power level may be quite bad at higher powers.

Additionally, the damping factor at which the method performs optimally is dependent on the

power level. The optimum level shifts to the left as the power increased, and hence it difficult

to say prior to simulation that one has chosen the best damping level for a given problem.

These results illustrate poor robustness of Picard iteration with respect to the power and

damping level, and this could become problematic when simulating more tightly coupled sys-

tems. Because of theses numerical weakness, it is of interest to utilize some alternative method

to Picard iteration for fully-coupled HFP solve. JFNK would be a good alternative due to its

28

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Damping factor

It
e
ra

ti
o
n
s

80% Power

100% Power

120% Power

Figure 2.8: Block Gauss-Seidel iterations to convergence for Tiamat single-rod simulation,
varying the damping factor and power level

fast local convergence and good robustness from globalization methods. However, these codes

do not provide the functionality required to implement JFNK as described in Section 1.2.2.

Neither CTF nor MPACT computes the residuals (2.8) and (2.14), and while Bison employs

JFNK internally, access to its residual vector is not provided to the users. Because of the re-

strictiveness of the codes utilized in the coupling, we need a method which does not require

significantly more information than Picard it implement. The method that we will consider for

this purpose is called Anderson acceleration, and we introduce this concept in the following

chapter.

29

Chapter 3

Analysis of Anderson Acceleration

In this chapter, we consider the algorithm proposed by Anderson in [2] which has come to be

known as Anderson acceleration or mixing. The algorithm has also essentially been rediscovered

and discussed under various names including Pulay mixing or Direct Inversion in the Iterative

Subspace (DIIS) in [47,48] for electronic structures calculations, Nonlinear Krylov Acceleration

in [9], and IQL-ILS [16] for fluid-structure interaction calculations. Anderson originally consid-

ered the algorithm in the context of solving a particular class of nonlinear integral equations,

but it has subsequently gained popularity as a method to accelerate the convergence rates of

Picard iterations. Given some mapping G : RN → RN , the method to solve G(u) = u proceeds

as shown in Algorithm 4. In this, m is an algorithmic parameter that dictates the maximum

depth for which previous iterate information is stored. We refer to the algorithm for any partic-

ular value of m as Anderson-m. Anderson-0 corresponds to standard Picard iteration. We need

to store both u and one of F (u) or G(u) at each iterate, so the storage burden is a maximum

of 2(m + 1) vectors. The additional cost in implementing this method as opposed to Picard

iteration is dominated by the solution of the minimization problem. In the constrained form in

Algorithm 4, the problem may be solved with a linear program or Lagrange multipliers. There

are several equivalent ways to describe the algorithm with the minimization problem given in

unconstrained form. If the minimization problem is solved in the l2 norm, as is standard, we

then need only solve a linear least-squares problem. In the form originally posed by Anderson,

we determine (θ
(k)
1 , . . . , θ

(k)
mk) which solve the problem

min
(θ1,...,θmk)

∥∥∥∥∥F (uk) +

mk∑
i=1

θ
(k)
i (F (uk−i)− F (uk))

∥∥∥∥∥ , (3.3)

and then calculate

uk+1 = G(uk) +

mk∑
i=1

θ
(k)
i (G(uk−i)−G(uk)). (3.4)

30

Algorithm 4 Anderson acceleration with inexact function evaluations

1: Given initial iterate u0 and storage depth parameter m ∈ N.
2: Set u1 = G(u0).
3: Set F̂0 = G(u0)− u0.
4: for k = 1,2,. . . do
5: Set mk = min{m, k}.
6: Set Fk = G(uk)− uk.
7: Determine α(k) = (α

(k)
0 , . . . , α

(k)
mk) which solves

min
α=(α0,...αmk)T

∥∥∥∥∥
mk∑
i=0

αiFk−mk+i

∥∥∥∥∥ , (3.1)

subject to the constraint
∑mk

i=0 αi = 1.
8: Set

uk+1 =

mk∑
i=0

α
(k)
i G(uk−mk+i). (3.2)

9: end for

Here the coefficients {α(k)
i } and {θ(k)

i } are related by α
(k)
i = θ

(k)
mk−i for 0 ≤ i < mk and α

(k)
mk =

1 −
∑mk

i=1 θ
(k)
i . Note that this requires the computation of the entire least-squares coefficient

matrix at each iteration. A third form which may be implemented more efficiently expresses

the algorithm in terms of differences between successive iterates. For this, we determine γ(k) =

(γ
(k)
1 , . . . , γ

(k)
mk)T which solve the problem

min
γ
‖F (uk)−Fkγ‖ , (3.5)

where Fk = (∆Fk−mk+1, . . . ,∆Fk) and ∆Fi = F (ui)− F (ui−1). Then, we calculate

uk+1 = uk + F (uk)− (Uk + Fk)γ(k), (3.6)

where Uk = (∆uk−mk+1, . . . ,∆uk) and ∆ui = ui−ui−1. In this form {α(k)
i } and {γ(k)

i } are related

by α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1, and αmk = 1 − γmk−1. To update Fk and Uk
between iterations we append the new difference vectors at the end and drop the first columns if

the storage limit has been reached. Solving the least-squares problem by taking QR factorization

of Fk each iteration then results in a marginal cost of O(m2
kN) over Picard iteration. However,

as mentioned in [62], we can obtain the QR factorization of Fk from that of Fk−1 , and this

reduces the cost of the factorization to O(mnN) operations. We describe the method by which

the QR factorization may be updated from iteration to iteration in Section 4.2.3. If N is much

larger than m, the savings in operations from updating the QR factors in this manner is not

31

substantial, especially if the evaluation of G is relatively expensive. However, there may be

an appreciable difference in storage for problems of interest. Storing Fk and computing a QR

factorization each iteration requires at least temporary storage of both Fk and the Q factor,

both of which have the same size. Conversely, when updating the QR factorization directly,

only the Q and R factors need to be stored, and for reasonably sized storage parameter m, the

storage burden of the R factor is negligible. Hence, for problems where N is very large, this

yields an appreciable difference.

3.1 Review of Literature

We begin with an overview of previous work related to Anderson acceleration. Anderson ac-

celeration is one of several methods which has been proposed and studied for the purpose of

accelerating the rate of convergence for slowly converging series. Many acceleration methods are

sequence transformations, i.e. methods which utilize the iterates produced by a slowly converg-

ing sequence {xk} in order to construct a new, faster converging sequence {yk}. This includes

scalar acceleration methods such as Richardson extrapolation, the Aitken delta–squared pro-

cess, and the Wynn epsilon method [8]. These methods can be applied to vector sequences in

a component-wise manner, or one may utilize a vector extrapolation method such as reduced

rank extrapolation, mimimal polynomial extrapolation, or modified minimal polynomial ex-

trapolation [52]. Anderson acceleration differs from these methods in that it does not construct

the original fixed-point iteration sequence. The acceleration from this method is derived from

storing a history of previous iterates in order to compute a better approximation to the solution

than the fixed-point iteration.

Again, Anderson acceleration was first proposed by Anderson in [2]. While he provides

no rigorous analysis of the method, Anderson discusses several practical considerations. For

instance, he claims that in practice, the method seems to perform best for small values of m,

generally less than 10. Additionally, he describes how incorporate a mixing parameter into the

algorithm. For this, the only difference in the above algorithm is that we replace (3.2) with

uk+1 = (1− βk)
mk∑
i=0

αiuk−mk+i + βk

mk∑
i=0

αiG(uk−mk+i), (3.7)

where the sequence of scalars {βk} are referred to as mixing parameters. This corresponds to a

damping factor in the context of Picard iteration. The choice of an appropriate mixing parameter

is often necessary for the iterates to converge or obtain an acceptable rate of convergence.

Subsequent analysis has primarily dealt with showing the equivalence between this method

and other methods in some sense. First, in [19] the authors show that Anderson acceleration

32

may be viewed as a sort of quasi-Newton method. It is worth noting that the authors consider

Anderson acceleration to solve F (u) = 0, not specifically as a fixed-point solver. To see this

equivalence, consider (3.6). We rewrite this, now including mixing parameters, as:

uk+1 = uk + βkF (uk)− (Uk + βkFk)γ(k). (3.8)

Then, assuming Fk is full rank, γ(k) is obtained by solving the normal equations, which gives

γ(k) = (FTk Fk)−1FTk F (uk). Substituting this into (3.8), we obtain

uk+1 = uk −GkF (uk), (3.9)

where we have defined

Gk ≡ −βkI + (Uk + βkFk)(FTk Fk)−1FTk . (3.10)

In [19], it is claimed that this matrix Gk forms an approximate inverse Jacobian of F (x) in

the sense that the matrix minimizes ‖Gk + βkI‖F over all matrices which satisfy the inverse

multisecant condition

GkFk = Uk. (3.11)

This is referred to this as the Type-II method in [19]. Along these lines, they define the Ander-

son’s family of methods according to

uk+1 = uk + βkF (uk)− (Uk + βkFk)V T
k F (uk), (3.12)

where Vk ∈ Rn×m satisfies V T
k Fk = I. The choice V T

k = (FTk Fk)−1FTk gives the Type-II method

above. Conversely, V T
k = (UTk Fk)−1UTk , under the assumption that UTk Fk is nonsingular, gives

what is referred to in [19] as the Type-I method. For this choice of V T
k we have

Gk ≡ −βkI + (Uk + βkFk)(UTk Fk)−1UTk . (3.13)

As in [62], from the Sherman-Morrison-Woodbury formula this corresponds to the approximate

Jacobian

Jk = G−1
k = − 1

βk
I +

1

βk
(Uk + βkFk)(UTk Uk)−1UTk , (3.14)

which satisfies the direct multisecant condition JkUk = Fk. According to [19] this minimizes

‖Jk + 1
βk
I‖f among matrices satisfying the direct multisecant condition.

In [62], it is shown that when G is linear, i.e. G(u) = Au+ b with A ∈ RN×N and b ∈ RN ,
the Type-I method is “essentially equivalent” to the Arnoldi method applied to the equivalent

problem (I −A)x = b when both are applied to the same initial iterate. It is assumed that the

Type-I iteration is untruncated, i.e. mk = k at each step. The methods are equivalent in the

33

sense that the iterates of one method may easily be obtained from those of the other according

to the following: uArnoldi
k =

∑k
i=0 α

(k)
i uType-I

i and uType-I
k+1 = AuArnoldi

k + b, where {uType-I
k } and

{xArnoldi
k } are the sequences of Type-I and Arnoldi iterates respectively.

It is also shown in [62] that standard Anderson acceleration on the linear function G(x) =

Ax + b is “essentially equivalent” in the same sense to GMRES applied to the equivalent

problem (I − A)x = b. The authors obtain this result assuming no mixing, i.e. βk = 1 at each

step. Let {uAA
k } and {uGMRES

k } be the sequences of Anderson acceleration and GMRES iterates

respectively. Under the assumptions that ‖rGMRES
k−1 ‖ = ‖b − (I − A)uGMRES

k−1 ‖ 6= 0 and that

‖rGMRES
j−1 ‖ > ‖rGMRES

j ‖ for each j such that 0 < j < k, the iterates of one method may easily

obtained from those of the other as follows: uGMRES
k =

∑k
i=0 α

(k)
i uAA

i and uAA
k+1 = AuGMRES

k +b.

This equivalence between the methods is established as follows. Using the fact that
∑k

i=0 α
(k)
i =

1, for untruncated Anderson acceleration with mixing parameters equal to one and with linear

G, the Anderson iterates may be rewritten as follows

uAA
k+1 = Aūk+1 + b, (3.15)

where we define

ūk+1 =
k∑
i=0

α
(k)
i uAA

i . (3.16)

The equivalence of the methods in the given sense is established once it is shown that uGMRES
k =

ūk+1. This is shown inductively in [62] by showing that if for 1 ≤ j ≤ k, {uAA
1 −u0, . . . , u

AA
j −u0}

is a basis for Kj = span{r0, (I −A)r0, . . . , (I −A)j−1r0}, then ūj+1 and uGMRES
j solve the same

minimization problem. It is then shown for 1 ≤ j ≤ k, that {uAA
1 − u0, . . . , u

AA
j − u0} is indeed

a basis for Kj . Hence, it follows that for 1 ≤ j ≤ k, it holds that uGMRES
j =

∑j
i=0 α

(j)
i uAA

i . The

authors also claim that Anderson-m is equivalent in the same sense to a truncated variant of

GMRES, and a variant of Anderson acceleration which is restarted after m steps is equivalent

in the same sense to GMRES(m).

In [46], the behavior of untruncated Anderson acceleration for linear problems is further

characterized. The above result is extended to show the equivalence to GMRES for general

nonzero mixing parameters. This again relies on showing that under the non-stagnation as-

sumption for GMRES it holds that span{uAA
1 −u0, . . . , u

AA
k −u0} = Kk. As a result, regardless

of whatever nonzero mixing parameters are used, the result is that ūAA
k+1 = uGMRES

k . Addition-

ally, in [46] mixing parameters are calculated for the linear problem which are ideal in the sense

that the residual is minimized at each step. However, it is claimed that iteration with these

ideal mixing parameters does not essentially accelerate convergence when compared to Ander-

son acceleration with arbitrary nonzero mixing parameters due to the GMRES equivalence in

each case.

34

In both [62] and [46] it is shown that if GMRES stalls at step k with rGMRES
k−1 = rGMRES

k ,

then uAA
k = uAA

k+1. While GMRES continues and converges to the solution, Anderson accelera-

tion stalls indefinitely at this point. In [62], it is also suggested that near-stagnation of GMRES,

that is consecutive iterates which are nearly equal, could lead to ill-conditioning of the least-

squares problem for the next step of Anderson acceleration. Because of this potential numerical

weakness, untruncated Anderson acceleration should not in general be used as an alternative

to GMRES for linear problems when the size of the problem is not prohibitive with regard to

storage. In [62] poor conditioning of the least-squares problem is posed as another potential nu-

merical weakness of this algorithm, so a method is proposed in which mk is modified throughout

the iteration in order to maintain acceptable conditioning of the least-squares problem.

3.2 Standard Convergence Analysis

With the exception of full GMRES, the results in the previous section show the relationship

between Anderson acceleration and other methods for which there is not sufficient theory. As

a result, these results do not provide satisfactory convergence theory, especially for nonlinear

problems and the limited memory variations of Anderson acceleration. Therefore, we attempted

to expand upon the convergence theory for this method, and we have proved several local

convergence theorems for both linear and nonlinear problems. In all of the forthcoming results,

with the exception of Section 3.4, the norm is not specified, so the results hold using any vector

norm and corresponding induced matrix norm. Additionally, each result relies on the fact that

(α
(k)
0 , . . . , α

(k)
mk) is a solution to (3.1), so we have∥∥∥∥∥

mk∑
i=0

α
(k)
i F (uk−mk+i)

∥∥∥∥∥ ≤
∥∥∥∥∥
mk∑
i=0

αiF (uk−mk+i)

∥∥∥∥∥ , (3.17)

for any set of coefficients such that
∑mk

i=0 αi = 1. In particular, we have∥∥∥∥∥
mk∑
i=0

α
(k)
i F (uk−mk+i)

∥∥∥∥∥ ≤ ‖F (uk)‖. (3.18)

We note that several results from this section are published in [58].

3.2.1 Analysis for Linear Problems

In this section, we characterize the convergence for Anderson applied to solve u = G(u), where

G is linear, i.e. G(u) ≡ Au + b with A ∈ RN×N and b ∈ RN . In this case, the corresponding

35

fixed-point residual is given by

F (u) = G(u)− u = b− (I −A)u.

Theorem 3.1. If ‖A‖ = c < 1, then the Anderson iterates, for any m or m =∞, {ui} converge

r-linearly to the solution u∗ = (I − A)−1b with r-factor c, and the residuals {F (ui)} converge

q-linearly to zero with q-factor c.

Proof. First, because ‖A‖ < 1, I − A is nonsingular and thus u∗ exists. We will first prove the

convergence for the residuals, and the convergence of the iterates will follow from this. Because∑mk
i=0 α

(k)
i = 1, we can rewrite the k + 1 residual as

F (uk+1) = b− (I −A)uk+1

=

mk∑
i=0

α
(k)
i [b− (I −A)(Auk−mk+i + b)]

=

mk∑
i=0

α
(k)
i [b− (I −A)b−A(I −A)uk−mk+i]

=

mk∑
i=0

α
(k)
i A[b− (I −A)uk−mk+i]

= A

mk∑
i=0

α
(k)
i F (uk−mk+i).

Then, by (3.18)

‖F (uk+1)‖ ≤ c

∥∥∥∥∥
mk∑
i=0

α
(k)
i F (uk−mk+i)

∥∥∥∥∥ ≤ c‖F (uk)‖.

This proves the result for the residuals. Next, we define e = u−u∗, so we have F (u) = −(I−A)e.

Then, because ‖A‖ < 1, we have ‖(I −A)−1‖ ≤ 1
1−c . Thus, we have

‖ek‖ ≤
1

1− c
‖F (uk)‖ ≤

1

1− c
ck‖F (u0)‖ ≤ 1 + c

1− c
ck‖e0‖,

which is in fact r-linear convergence with r-factor c.

3.2.2 Analysis for Nonlinear Problems

We now turn our attention to solving the problem u = G(u) where G may be nonlinear. Much

of the following analysis relies in Assumption 3.1, which implies the standard assumptions for

local convergence of Newton’s methods.

36

Assumption 3.1.

1. There is u∗ ∈ RN such that F (u∗) = G(u∗)− u∗ = 0.

2. G is Lipschitz continuously differentiable in the ball Bρ̂(u∗) = {u : ‖e‖ ≤ ρ̂} for some

ρ̂ > 0.

3. There is c ∈ (0, 1) such that for all u, v ∈ Bρ̂(u∗), ‖G(u)−G(v)‖ ≤ c‖u− v‖.

The second is implies F being Lipschitz continuously differentiable with the same Lipschitz

constant. Additionally, the last of these assumptions implies that ‖G′(u)‖ ≤ c < 1 for all

u ∈ Bρ̂(u∗). In particular, ‖G′(u∗)‖ < 1, which implies that F ′(u∗) = G′(u∗)− I is nonsingular.

In the following section, we will also use the following Lemma.

Lemma 3.1. Assume that Assumption 3.1 hold and let γ > 0 denote the Lipschitz constant

for F ′ in Bρ̂(u∗). Then for ρ ≤ ρ̂ sufficiently small and all u ∈ Bρ(u∗)

‖F (u)− F ′(u∗)e‖ ≤ γ

2
‖e‖2, (3.19)

and

(1− c)‖e‖ ≤ ‖F (u) ≤ (1 + c)‖e‖. (3.20)

We now prove a local r-linear convergence result. The result holds for any general iteration

of the form

uk+1 =

mk∑
i=0

α
(k)
i G(uk−mk+i), (3.21)

for any m ∈ N with mk = min{m, k} such that the coefficients satisfy the following assumption.

Assumption 3.2.

1. ‖
∑mk

i=0 α
(k)
i F (uk−mk+i)‖ ≤ ‖F (uk)‖ holds.

2.
∑mk

i=0 α
(k)
i = 1.

3. There is some Mα such that
∑mk

i=0 |α
(k)
i | ≤Mα for all k ≥ 0.

The first two are trivially satisfied by Anderson acceleration, however there is no reason

to assume that the third is satisfied in general. For the special case where m = 1 and the

minimization problem is solved in the l2 norm, we will see that this assumption is in fact

satisfied. There are several ways the algorithm may be modified so that this last assumption is

guaranteed to be satisfied for more general cases, such as:

• Restarting the iteration if the coefficient sum exceeds some tolerance.

37

• Imposing a bound constraint on the sum
∑mk

i=0 |αi| in the linear least squares problem

and solving the problem with the method of [13].

• Solving the minimization problem in the l1 or l∞ norms, adding a bound constraint, and

formulating the resulting problem as a linear program, for which there are many efficient

solvers.

The first is the simplest, and based on our experience unlikely to significantly affect the iteration.

In numerical experiments, we have not observed examples where the coefficient absolute value

sum becomes unreasonably large, even in cases where the minimization problem becomes highly

ill-conditioned.

Theorem 3.2. Let Assumption 3.1 hold, and let c < ĉ < 1. Then if u0 is sufficiently close to

u∗ the iterates defined by (3.21) given Assumption 3.2 converge r-linearly to u∗ with r-factor

no greater than ĉ. In fact,

‖F (uk)‖ ≤ ĉk‖F (u0)‖, (3.22)

and

‖ek‖ ≤
1 + c

1− c
ĉk‖e0‖. (3.23)

Proof. We let u0 ∈ Bρ̂(u∗) and assume that ρ is small enough so that the conclusions of Lemma

3.1 hold. We will prove (3.22). (3.23) will follow from (3.22) and Lemma 3.1. Recall that we let

γ be the Lipschitz constant for F ′. We let ρ be small enough so that ρ < 2(1− c)/γ and

c
ĉ +

(
Mαγρ
2(1−c)

)
ρĉ−m−1

1− γρ
2(1−c)

≤ 1. (3.24)

Then, reduce ‖e0‖ further so that

Mα(c+ γρ/2)

1− c
ĉ−m‖F (u0)‖ ≤ Mα(1 + c)(c+ γρ/2)

1− c
ĉ−m‖e0‖ ≤ ρ. (3.25)

We will proceed by induction on K. Assume that for all k such that 0 ≤ k ≤ K we have

‖F (uk)‖ ≤ ĉk‖F (u0)‖. (3.26)

Clearly, this holds for K = 0. Equations (3.25) and (3.26) imply that ‖ek‖ ≤ ρ for 1 ≤ k ≤ K.

Hence, by (3.19)

F (uk) = F ′(u∗)ek + ∆k,

38

where

‖∆k‖ ≤
γ

2
‖ek‖2. (3.27)

This gives

G(uk) = u∗ +G′(u∗)ek + ∆k. (3.28)

Then, the next iterate is given by

uK+1 =

mK∑
i=0

α
(K)
i (u∗ +G′(u∗)eK−mK+i + ∆K−mK+i)

= u∗ +

mK∑
i=0

α
(K)
i G′(u∗)eK−mK+i + ∆̄K , (3.29)

because
∑mK

i=0 α
(K)
i = 1. Here

∆̄K =

mK∑
i=0

α
(K)
i ∆K−mK+i.

We then need to bound ∆̄K . (3.27) and (3.28) imply that

‖∆̄K‖ ≤
mK∑
i=0

|α(K)
i |γ‖eK−mK+i‖2/2. (3.30)

Next, Lemma 3.1, the induction hypothesis, and the fact that

K −mK + i = K −min{m,K}+ i ≥ K −m

imply that

‖eK−mK+i‖ ≤
1

1− c
‖F (uK−mK+i)‖

≤ 1

1− c
ĉK−mK+i‖F (u0)‖ (3.31)

≤ 1

1− c
ĉK−m‖F (u0)‖ ≤ 1

1− c
ĉ−m‖F (u0)‖.

Then, because
∑mK

i=0 |α
(K)
i | ≤Mα and ‖e‖ ≤ ρ for the previous iterates, we have

‖∆̄K‖ ≤
γ

2(1− c)
‖F (u0)‖

mK∑
i=0

|α(K)
i |‖eK−mK+i‖ ≤

Mαγρ

2(1− c)
ĉK−m‖F (u0)‖

≤ Mαγρ

2(1− c)
ĉ−m‖F (u0)‖. (3.32)

39

Next, we write (3.29) as

eK+1 =

mK∑
i=0

α
(K)
i G′(u∗)eK−mK+i + ∆̄K . (3.33)

From (3.31), we have

‖
mK∑
i=0

α
(K)
i G′(u∗)eK−mK+i‖ ≤

Mαc

1− c
ĉ−m‖F (u0)‖. (3.34)

Then, combining (3.33) with (3.32) and (3.34) gives

‖eK+1‖ ≤ ‖F (u0)‖
(
Mα(c+ γρ/2)

1− c

)
ĉ−m ≤ ρ.

Since ‖eK+1‖ ≤ ρ ≤ ρ̂, we may apply (3.28) with k = K + 1 to obtain

F (uK+1) = (G′(u∗)− I)eK+1 + ∆K+1,

where

‖∆K+1‖ ≤
γ

2
‖eK+1‖2 ≤

γρ

2(1− c)
‖F (uK+1)‖. (3.35)

Then, from (3.33) and the fact that G′(u∗) and G′(u∗)− I commute, we have

F (uK+1) = G′(u∗)

mK∑
i=0

α
(K)
i (G′(u∗)− I)eK−mK+i + (G′(u∗)− I)∆̄K + ∆K+1

= G′(u∗)

mK∑
i=0

(α
(K)
i F (uK−mK+i)− α(K)

i ∆K−mK+i) + (G′(u∗)− I)∆̄K + ∆K+1

= G′(u∗)

mK∑
i=0

α
(K)
i F (uK−mK+i)− ∆̄K + ∆K+1.

We assumed that ρ < 2(1− c)/γ, so ργ
2(1−c) < 1, and thus

‖F (uK+1)−∆K+1‖ ≥ |‖F (uK+1)‖ − ‖∆K+1‖| ≥
(

1− γρ

2(1− c)

)
‖F (uK+1)‖.

40

Therefore, by Assumption 3.2, the induction hypothesis, and (3.32) we have(
1− γρ

2(1− c)

)
‖F (uK+1)‖ ≤ c‖

mK∑
i=0

α
(K)
i F (uK−mK+i)‖+ ‖∆̄K‖

≤ c‖F (uK)‖+
Mαγρ

2(1− c)
ĉK−m‖F (u0)‖

≤
(
c

ĉ
+

Mαγρ

2(1− c)
ĉ−m−1

)
ĉK+1‖F (u0)‖.

Hence, because we assumed (3.24), we have

‖F (uK+1)‖ ≤

(
c
ĉ + Mαγρ

2(1−c) ĉ
−m−1

)
(

1− γρ
2(1−c)

) ĉK+1‖F (u0)‖ ≤ ĉK+1‖F (u0)‖.

This completes the induction.

3.2.3 Numerical Tests

To illustrate some of the ideas presented in this section, we consider as an example solving

the Chandrasekhar H-equation [11]. In continuous form, we seek a function H ∈ C[0, 1] which

satisfies

H(µ) = G(H) ≡
(

1− ω

2

∫ 1

0

µ

µ+ ν
H(ν) dν

)−1

, (3.36)

where ω ∈ [0, 1] is a parameter. From [58], the solution H∗(µ) ≥ 1 satisfies

‖H∗‖∞ ≤ min

(
3,

1√
1− ω

)
. (3.37)

Additionally, for ε > 0 sufficiently small and u, v ∈ Bε(H∗)

‖G(u)−G(v)‖ ≤ (1 + ε)2‖H∗‖2∞ω
2

‖u− v‖, (3.38)

for any Lp norm. This inequality carries over the the discrete problem, and in particular, G is

locally contractive for ω = 0.5, which is one of the test cases we will consider. It is additionally

known that for ω < 1,

ρ(G′(H∗)) ≤ 1−
√

1− ω < 1. (3.39)

Hence ‖G′(H∗)‖ < 1 for some choice of matrix norm, and thus G(H) is a local contraction in

some neighborhood of H∗ with respect to that norm. This implies that fixed-point iteration will

be locally convergent, and the theory from the previous applies section with this choice norm.

41

Table 3.1: H-equation iteration statistics for Newton-GMRES and fixed point iteration

Newton-GMRES Fixed Point

ω 0.5 0.99 1.0 0.5 0.99 1.0

F s 12 18 49 11 75 23970

Discretization of (3.36) by composite midpoint rule with N nodes gives

G(u)i =

1− ω

2N

N∑
j=1

µiuj
µi + µj

−1

, 1 ≤ i ≤ N, (3.40)

where µi = (i−1/2)/N, 1 ≤ i ≤ N . We compare Anderson acceleration with fixed point iteration

and Newton-GMRES for this problem. We we consider an N = 500 point discretization with

ω = 0.5, 0.99, and 1.0. F ′(u∗) is singular for ω = 1.0, but both fixed point iteration and

Newton-GMRES will converge for our choice of initial iterate. For tests with Anderson, we

solve the optimization problem with respect to the l1, l2, and l∞ norm, and vary the storage

depth over m = 1, . . . , 6. In each case, we use the initial iterate u0 = (1, . . . , 1)T , which is

a good initial iterate for ω = 0.5, and a marginal one for the other two. We tabulate the

number of function evaluations as a metric of cost. This ignores the cost of the optimization

problem within Anderson and the orthogonalization cost within Newton-GMRES, which are

non-negligible at this problem size, but should be essentially negligible for larger problems

where G is expensive to evaluate. We terminate the iteration on the relative residual reduction

‖F (uk)‖/‖F (u0)‖ ≤ 10−8.

Results for solving these tests with Newton-GMRES and fixed point iteration as show in

Table 3.1. This table tabulates the number of iterations needed for convergence over each value

of ω. In both cases the number of function evaluations needed for convergence increases rather

sharply as ω increases to 1.0, the case where F ′(u∗) is singular. At this value of ω, Newton’s

method is linearly convergent, and fixed point iteration converges sublinearly.

In Tables 3.2, 3.3, and 3.4, we present results from solving the equations for each value of

ω using Anderson acceleration. In these tables, we tabulate the number of function evaluations

needed for convergence, the maximum condition number of the coefficient matrix over the

history of each iteration, which we call κmax, and the maximum value of
∑mk

i=0 |α
(k)
i | over

the history of each iteration, which we refer to as Smax. We note that as m increases, κmax

becomes very large, but Smax remains reasonably small. This suggests that the assumption in

the coefficient sums in Assumption 3.2 is reasonable, at least for reasonably small values of m.

In each case, Anderson is competitive with Newton-GMRES in number of function evaluations,

but is generally significantly better. With respect to the choice of optimization norm, none of

42

Table 3.2: H-equation Anderson statistics, ω = 0.5

l1 Optimization l2 Optimization l∞ Optimization

m F s κmax Smax F s κmax Smax F s κmax Smax
1 7 1.00e+00 1.4 7 1.00e+00 1.4 7 1.00e+00 1.5
2 6 1.40e+03 1.4 6 2.90e+03 1.4 6 2.21e+04 1.4
3 6 7.75e+05 1.4 6 6.19e+05 1.4 6 5.91e+05 1.4
4 7 1.19e+09 1.4 6 9.63e+08 1.4 6 9.61e+08 1.4
5 7 1.90e+13 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
6 7 2.60e+14 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4

Table 3.3: H-equation Anderson statistics, ω = 0.99

l1 Optimization l2 Optimization l∞ Optimization

m F s κmax Smax F s κmax Smax F s κmax Smax
1 11 1.00e+00 5.2 11 1.00e+00 4.0 10 1.00e+00 10.8
2 10 1.19e+04 5.2 10 9.81e+03 5.4 10 4.34e+02 5.9
3 10 6.55e+05 5.2 10 2.17e+06 5.4 11 1.13e+06 5.9
4 12 6.92e+09 5.2 11 6.39e+08 5.4 11 8.33e+08 5.9
5 12 1.46e+10 5.2 12 1.64e+11 5.4 12 3.66e+10 5.9
6 14 4.55e+10 7.5 12 1.49e+12 5.4 12 1.05e+11 5.9

the considered norms performed significantly better than the others. Then, as a result of the

simplicity and lower cost of solving a linear least-squares problem compared to a linear program,

this does not present a compelling reason to further pursue either the l1 or l∞ norm for the

optimization.

3.3 Preconditioning

The previous section provides local convergence results for this method with mixing parameter

equal to one provided that the function G is contractive near the solution. However, a different

value of mixing parameter can often result in faster convergence, or might be necessary to

obtain convergence at all if G is not contractive near the solution. Even then, choosing an

appropriate mixing parameter may not be sufficient if G is not contractive, in which case we

must precondition the problem to obtain a solution. To implement preconditioning, we will

recall the formulation of Anderson acceleration (3.6), which we can rewrite as

uk+1 =

mk∑
i=0

α
(k)
i [uk−mk+i + F (uk−mk+i)]. (3.41)

43

Table 3.4: H -equation Anderson statistics, ω = 1.0

l1 Optimization l2 Optimization l∞ Optimization

m F s κmax Smax F s κmax Smax F s κmax Smax
1 21 1.00e+00 3.0 21 1.00e+00 3.0 19 1.00e+00 4.8
2 18 8.99e+04 43.0 16 2.90e+03 14.3 33 4.48e+04 25.3
3 25 8.43e+07 26.3 17 2.99e+06 23.4 50 3.05e+07 182.0
4 22 2.10e+08 12.7 21 6.25e+08 6.6 34 4.92e+08 39.2
5 21 1.30e+09 21.9 27 1.06e+10 14.8 33 1.45e+09 105.8
6 40 3.77e+11 47.2 35 1.44e+11 180.5 33 2.89e+10 18.6

We note that this formulation does not rely on G, and can be applied to solve the equation

F (u) = 0. Now, we can apply the Anderson acceleration algorithm to the function Fβ(u) =

βF (u) rather that F (u). This preconditions F by a constant multiple of the identity, and so

long as β 6= 0, F and Fβ have the same solutions. In case, the algorithm gives

uk+1 =

mk∑
i=0

α
(k)
i [uk−mk+i + βF (uk−mk+i)]. (3.42)

We note that if F (u) = G(u) − u, this is the same as (3.7) if βk is kept at a constant value

β. Thus, we can view choosing a mixing parameter different from one as a particular kind of

preconditioning. We can employ more general left preconditioning by applying the algorithm to

the function F̄ (u) = βM(u)F (u), where M(u) ∈ RN×N is some preconditioner. In order to not

change the solution set, M needs to be nonsingular at all relevant u. Then, applying Anderson

to F̄ , we have

uk+1 =

mk∑
i=0

α
(k)
i [uk−mk+i + βM(uk−mk+i)F (uk−mk+i)], (3.43)

where the minimization problem for the coefficients is now in terms of preconditioned residuals

min
(α0,...,αmk)

∥∥∥∥∥
mk∑
i=0

αiM(uk−mk+i)F (uk−mk+i)

∥∥∥∥∥ , such that

mk∑
i=0

αi = 1.

Note that this is what results from applying our original formulation of Anderson acceleration

to find a fixed point of Ḡ(u) = u + βM(u)F (u). Then, the local convergence results from the

previous section will apply if we have chosen mixing parameter and preconditioner such that

the function Ḡ(u) is contractive in a neighborhood of the solution u∗. This will be the case if

44

‖Ḡ′(u∗)‖ < 1. We have Ḡ′(u) = I+βM(u)F ′(u)+βT (u), where T (u) ∈ RN×N with (i, j) entry

Tij =
N∑
k=1

∂

∂uj
(Mik(u))Fk(u).

Each Fk(u
∗) = 0, so T (u∗) = 0, and thus Ĝ′(u∗) = I + βM(u∗)F ′(u∗). This provides some

insight as to how to go about selecting the mixing parameter and preconditioner. We would

like

‖I − [−βM(u∗)]F ′(u∗)‖ < 1,

so we must choose the mixing parameter and preconditioner such that −βM(u∗) is an approxi-

mate inverse of F ′(u∗). We may simply let M(u) to be an approximate inverse of −F ′(u) letting

β = 1, or let M(u) to be an approximate inverse of F ′(u) and choose β = −1. As an extreme,

we may select M(u) = F ′(u)−1. In this case each iteration will require essentially the same

number of operations as Newton’s method while carrying an additional storage burden.

We furthermore note that in the case where we consider mixing parameters, but no other

preconditioning, to guarantee local convergence, we need β such that Gβ(u) = u + βF (u) is

contractive near u∗. As above, this will be the case if ‖G′β(u∗)‖ = ‖I + βF ′(u∗)‖ < 1, which

may be achievable depending on the clustering of the eigenvalues of F ′(u∗).

3.4 Adjusting Storage Depth for Conditioning

In this section, we consider a variation of the Anderson acceleration algorithm in which the

storage depth is adjusted in order to maintain good conditioning of the least-squares problem.

This alteration to the method was suggested in [62] purely as a heuristic consideration in

order to ensure sufficient accuracy in the solution of the least squares problem. This variation

proceeds as shown in Algorithm 5. In this, Fk and Uk contain the mk most recent differences

between consecutive residuals and iterates respectively, and mk simply acts as a counter for the

number of vectors in each matrix. The management of these matrices is similar to the standard

algorithm in that new vectors are appended and the oldest discarded if the storage threshold is

exceeded, but now we also require that κ(Fk) ≤ τ , for some tolerance τ , and discard the oldest

vectors until this is satisfied. We note that the matrices will always contain at least one vector

each (so long as ∆Fk 6= 0 at any point in the iteration), because κ(Fk) = 1 in the case where

the current storage depth is reduced to one. Hence, we see that if the tolerance τ is set fairly

small, the algorithm will likely reduce to Anderson-1.

While this variation was originally presented as a practical consideration without analysis,

we have shown that this change allows us to show convergence of the method without utilizing

the coefficient sum bound in Assumption 3.2. For the following result, we additionally illustrate

45

Algorithm 5 Anderson acceleration with adjusted storage depth

1: Given initial iterate u0, mixing parameter β, storage depth parameter m, and condition
number bound τ

2: Set u1 = u0 + βF0

3: Initialize mk = 0,F0 = [],U0 = []
4: for k = 1,2,. . . do
5: Set Fk = [Fk−1,∆Fk],Uk = [Uk−1,∆uk],mk = mk + 1
6: if mk > m then
7: Set Fk = [Fk(2 : mk, :)],Uk = [Uk(2 : mk, :)],mk = mk − 1
8: end if
9: while κ(Fk) > τ do

10: Set Fk = [Fk(2 : mk, :)],Uk = [Uk(2 : mk, :)],mk = mk − 1
11: end while
12: Determine γ(k) which solves

min
γ=(γ0,...γmk−1)T

‖Fk −Fkγ‖ (3.44)

13: Set
uk+1 = uk + βFk − (Uk + βFk)γ(k) (3.45)

14: end for

how arbitrary mixing parameters affect the analysis. In this case, we require the following

assumption, which is a slight variation of Assumption 3.1.

Assumption 3.3.

• There exists u∗ such that F (u∗) = G(u∗)− u∗ = 0

• There is ρ̂ > 0 such that F ′(u) is Lipschitz continuous with constant γ in Bρ̂(u∗) = {u :

‖u− u∗‖ ≤ ρ̂}

• For all u, v ∈ Bρ̂(u∗), there is c ∈ (0, 1) such that ‖Gβ(u)−Gβ(v)‖ ≤ c‖u− v‖

A minor difference for this case is that the earlier analysis permitted use of arbitrary norm

for solving the least-squares problem and tracking convergence. In this analysis, we assume that

the norm is induced by an inner product. This is necessary for the use of orthogonal projectors

in the proof of the theorem. As the l2 norm is generally the preferred norm, this should not be

a controversial assumption.

Before stating the theorem, we will first establish some consequences from the above set of

assumptions. First note that the last point implies

c ≥ ‖G′β(u)‖ = ‖(1− β)I + βG′(u)‖ = ‖I + βF ′(u)‖,

46

for u ∈ Bρ̂(u∗). By the Banach Lemma, this implies that F ′β(u) = −(I −G′β(u)) is nonsingular.

We also have F ′β(u) = βF ′(u), which implies that F ′(u) is likewise nonsingular as F ′(u)−1 =

(1
βF
′
β(u))−1 = βF ′β(u)−1. From this, we have the following bounds for each u ∈ Bρ̂(u∗)

‖F ′(u)‖ = ‖ 1

β
F ′β(u)‖ =

1

|β|
‖I −G′β(u)‖ ≤ 1 + c

|β|
, (3.46)

and

‖F ′(u)−1‖ = |β|‖F ′β(u)−1‖ ≤ |β| 1

1− ‖G′β(u)‖
≤ |β|

1− c
. (3.47)

Next, consider u, v ∈ Bρ̂(u∗). In this case, we have

‖F (u)− F (v)‖ =
1

|β|
‖Fβ(u)− Fβ(v)‖ =

1

|β|
‖Gβ(u)−Gβ(v)− (u− v)‖

≤ 1

|β|
(‖Gβ(u)−Gβ(v)‖+ ‖u− v‖) ≤ 1 + c

|β|
‖u− v‖, (3.48)

and

‖u− v‖ = ‖Gβ(u)− βF (u)− (Gβ(v)− βF (v))‖ =≤ ‖Gβ(u)−Gβ(v)‖+ |β|‖F (u)− F (v)‖

≤ c‖u− v‖+ |β|‖F (u)− F (v)‖ ⇒ ‖u− v‖ ≤ |β|
1− c

‖F (u)− F (v)‖. (3.49)

In particular, letting v = u∗ in the above inequalities results in the following (as F (u∗) = 0)

1− c
|β|
‖e‖ ≤ ‖F (u)‖ ≤ 1 + c

|β|
‖e‖. (3.50)

From all of the above, we show the following theorem:

Theorem 3.3. Suppose that Assumption 3.3 holds, and let ĉ ∈ (c, 1). Then, there is ρ ≤ ρ̂

such that for ‖e0‖ sufficiently small, the iteration described by Algorithm 5 remains in Bρ(u∗),
the fixed-point residuals converge q-linearly to zero with q-factor at most ĉ, i.e.

‖Fk+1‖ ≤ ĉ‖Fk‖, (3.51)

and the errors converge r-linearly to zero and satisfy the bound

‖ek+1‖ ≤ ĉk+1 1 + c

1− c
‖e0‖. (3.52)

Moreover,

lim sup
‖Fk+1‖
‖Fk‖

≤ c. (3.53)

47

Proof. First, we let ρ be small enough such that it holds that(
1 +

3γρ|β|
2(1− c)

)(
γρ|β|

2(1− c)
+ c+

2γτρm|β|
1− c

)
≤ ĉ. (3.54)

We note that the left hand side above approaches c as ρ decreases to zero, and is monotone

increasing for ρ ≥ 0, so this inequality is necessarily attainable for small enough ρ, as ĉ > c.

We then let ‖e0‖ ≤ ρ small enough so that

‖e0‖ ≤
ρ(1− c)2

|β|(1 + c)
(
γρ
2 + c(1+c)

|β| + 2γρτ(1+c)
1−c

) . (3.55)

Now, we will prove (3.51) and (3.52) by induction. The induction hypothesis holds for k = 0,

because the first iterate is a step of fixed-point iteration with the fixed-point map Gβ, that is

u1 = Gβ(u0), and we assume Gβ to be contractive with constant c. Thus

‖e1‖ = ‖Gβ(u0)−Gβ(u∗)‖ ≤ c‖e0‖ ≤ ĉ‖e0‖,

and

‖F1‖ = ‖ 1

β
Fβ(u1)‖ =

1

|β|
‖Gβ(u1)−Gβ(u0)‖ ≤ c

|β|
‖u1 − u0‖

=
c

|β|
‖Gβ(u0)− u0‖ =

c

|β|
‖Fβ(u1)‖ =

c

|β|
‖βF0‖ = c‖F0‖ ≤ ĉ‖F0‖.

We then assume that the induction hypothesis holds for each 0 ≤ i ≤ k for some k ≥ 0.

That is, we assume that ui ∈ Bρ(u∗), and (3.51) and (3.52) hold for 0 ≤ i ≤ k for k ≥ 0. We will

first express the new iterate (3.45) in a different form. We note that because γ(k) solves (3.44),

Fkγ(k) = PkFk, where Pk is the orthogonal projector onto the column space of Fk, and similarly

Fk −Fkγ(k) = (I − Pk)Fk, where I − Pk is the projector onto the orthogonal complement. The

projector Pk has rank at most mk, and I − Pk likewise has rank at least N −mk. With this,

we can write

uk+1 = uk − Ukγ(k) + β(Fk −Fkγ(k)) = uk − Ukγ(k) + β(I − Pk)Fk. (3.56)

Now, for k −mk + 1 ≤ i ≤ k we have

∆Fi =

∫ 1

0
F ′(ui−1 + t∆ui)∆ui dt = F ′(uk)∆ui +

∫ 1

0
[F ′(ui−1 + t∆ui)− F ′(uk)]∆ui dt. (3.57)

48

From this, we get

∆ui = F ′(uk)
−1∆Fi − F ′(uk)−1Ek,i, (3.58)

where we define

Ek,i ≡
∫ 1

0
[F ′(ui−1 + t∆ui)− F ′(uk)]∆ui dt.

Given the Assumption 3.3, and from the assumption that ‖ei‖ ≤ ρ for each previous iterate,

we bound each of these error terms as follows

‖Ek,i‖ ≤
∫ 1

0
γ‖ui−1 + t∆ui − uk‖dt‖∆ui‖

=

∫ 1

0
γ‖tei + (1− t)ei−1 − ek‖ dt‖∆ui‖

≤
∫ 1

0
γ(t‖ei‖+ (1− t)‖ei−1‖+ ‖ek‖) dt‖∆ui‖

= γ

(
‖ei‖

2
+
‖ei−1‖

2
+ ‖ek‖

)
‖∆ui‖

≤ 2γρ‖∆ui‖. (3.59)

From (3.58), we can write

Uk = F ′(uk)
−1Fk − F ′(uk)−1Ek, (3.60)

where Ek = (Ek,k−mk+1, . . . , Ek,k). Substituting this into (3.56), and recalling that Fkγ(k) =

PkFk, this gives

uk+1 = uk − [F ′(uk)
−1Fk − F ′(uk)−1Ek]γ

(k) + β(I − Pk)Fk
= uk − F ′(uk)−1PkFk + β(I − Pk)Fk + F ′(uk)

−1Ekγ
(k) (3.61)

= uk − F ′(uk)−1Fk + F ′(uk)
−1[(I + βF ′(uk))(I − Pk)Fk + Ekγ

(k)].

We see that the direction differs from a Newton direction by the orthogonal projection term

and the higher order expansion terms in Ek. This results in the following bound:

‖ek+1‖ ≤ ‖F ′(uk)−1‖
(
‖F ′(uk)− Fk‖+ ‖I + βF ′(uk)‖‖Fk‖+ ‖Ekγ(k)‖

)
≤ |β|

1− c

(γ
2
‖ek‖2 + c‖Fk‖+ ‖Ekγ(k)‖

)
. (3.62)

Now, because the algorithm adjusts the storage depth to ensure good conditioning of Fk =

[∆Fk−mk+1, . . . ,∆Fk], we know that Fk has full column rank and the least squares problem

(3.44) has the solution γ(k) = (FTk Fk)−1FTk Fk. The expression (FTk Fk)−1FTk represents the

49

pseudoinverse of Fk, so from the bound on κ(Fk), we have

τ ≥ κ(Fk)

= ‖Fk‖‖(FTk Fk)−1FTk ‖

≥ ‖Fkvi‖‖(FTk Fk)−1FTk ‖

= ‖∆Fk−mk+i‖‖(FTk Fk)−1FTk ‖,

where vi is the ith canonical vector. Thus, for 1 ≤ i ≤ mk we have

‖(FTk Fk)−1FTk ‖ ≤ ‖∆Fk−mk+i‖−1τ. (3.63)

Then, using this and (3.59), the following holds

‖Ekγ(k)‖ ≤ ‖Ek‖‖(FTk Fk)−1FTk ‖‖Fk‖

≤
mk∑
i=1

(‖Ek,k−mk+i‖‖(FTk Fk)−1FTk ‖)‖Fk‖

≤
mk∑
i=1

(‖Ek,k−mk+i‖‖∆Fk−mk+i‖−1τ)‖Fk‖

≤
mk∑
i=1

(
2γρ
‖∆uk−mk+i‖
‖∆Fk−mk+i‖

τ

)
‖Fk‖

= 2γρτ‖Fk‖
mk∑
i=1

‖∆uk−mk+i‖
‖∆Fk−mk+i‖

.

Thus, we have

‖Ekγ(k)‖ ≤ 2γρτ |β|m
1− c

‖Fk‖.

Substituting this into (3.62) and using the inductive hypothesis gives

‖ek+1‖ ≤
|β|

1− c

(
γ

2
‖ek‖2 + c‖Fk‖+

2γρτ |β|m
1− c

‖Fk‖
)

≤ |β|
1− c

(
γρ

2
+
c(1 + c)

|β|
+

2γρτm(1 + c)

1− c

)
‖ek‖

≤ |β|(1 + c)

(1− c)2

(
γρ

2
+
c(1 + c)

|β|
+

2γρτm(1 + c)

1− c

)
‖e0‖.

Then, by the assumption (3.55), we assume that ‖e0‖ is small enough so that ‖ek+1‖ ≤ ρ, so

uk+1 ∈ Bρ(u∗). Then, we can use the fundamental theorem of calculus and the expression for

50

the new iterate (3.61) to rewrite the new residual as

Fk+1 =

∫ 1

0
F ′(u∗ + tek+1)ek+1 dt

=

∫ 1

0
F ′(u∗ + tek+1)F ′(uk)

−1 dt
(
F ′(uk)ek − Fk + (I + βF ′(uk))(I − Pk)Fk + Ekγ

(k)
)
.

Hence

‖Fk+1‖ ≤
∫ 1

0
‖F ′(u∗ + tek+1)F ′(uk)

−1‖ dt(
‖F ′(uk)ek − Fk‖+ ‖I + βF ′(uk)‖‖Fk‖+ ‖Ekγ(k)‖

)
. (3.64)

For any t ∈ [0, 1], we can write

F ′(u∗+tek+1)F ′(uk)
−1 = I−(I−F ′(u∗+tek+1)F ′(uk)

−1) = I−(F ′(uk)−F ′(u∗+tek+1))F ′(uk)
−1.

Hence, by Lipschitz continuity of F ′ in Bρ(u∗), we have∫ 1

0
‖F ′(u∗ + tek+1)F ′(uk)

−1‖ dt ≤
∫ 1

0
1 + ‖F ′(uk)− F ′(u∗ + tek+1)‖‖F ′(uk)−1‖ dt

≤
∫ 1

0
1 + γ‖ek − tek+1‖‖F ′(uk)−1‖ dt

≤ 1 +
γ|β|
1− c

(
‖ek‖+

‖ek+1‖
2

)
≤ 1 +

3γρ|β|
2(1− c)

. (3.65)

Now, Assumption 3.3, (3.49) and (3.63) imply the following bounds on the remaining parts of

(3.64)

‖F ′(uk)ek − Fk‖ ≤
γ‖ek‖2

2
≤ γ|β|‖ek‖

2(1− c)
‖Fk‖, (3.66)

‖I + βF ′(uk)‖‖Fk‖ ≤ c‖Fk (3.67)

‖Ekγ(k)‖ ≤
mk∑
i=1

‖Ek,k−mk+i‖‖(FTk Fk)−1FTk ‖‖Fk‖

≤

(
γτ

mk∑
i=1

(
‖ek+mk+i−1‖+ ‖ek−mk+i‖

2
+ ‖ek‖)

‖∆uk−mk+i‖
‖∆Fk−mk+i‖

)
‖Fk‖

≤

(
γτ |β|
1− c

mk∑
i=1

(
‖ek+mk+i−1‖+ ‖ek−mk+i‖

2
+ ‖ek‖)

)
‖Fk‖. (3.68)

51

Substituting these into (3.64) gives

‖Fk+1‖
‖Fk‖

≤
(

1 +
γ|β|
1− c

(
‖ek‖+

‖ek+1‖
2

))
(
γ|β|‖ek‖
2(1− c)

+ c+
γτ |β|
1− c

mk∑
i=1

(
‖ek+mk+i−1‖+ ‖ek−mk+i‖

2
+ ‖ek‖)

)
. (3.69)

From this, we get

‖Fk+1‖
‖Fk‖

≤
(

1 +
3γρ|β|

2(1− c)

)(
γρ|β|

2(1− c)
+ c+

2γτρm|β|
1− c

)
≤ ĉ, (3.70)

where the final inequality is simply the assumption (3.54). Hence, we have ‖Fk+1‖ ≤ ĉ‖Fk‖,
and the bound (3.59) follows directly from the q-linear convergence in the residuals. We have

‖ek+1‖ ≤
|β|

1− c
‖Fk+1‖ ≤ ĉk+1 |β|

1− c
‖F0‖ ≤ ĉk+1 1 + c

1− c
‖e0‖. (3.71)

Hence, we see that ‖ek‖ converges to zero r-linearly. This fact and (3.69) imply the last claim.

Because the errors go to zero, as k →∞ we have

1 +
γ|β|
1− c

(
‖ek‖+

‖ek+1‖
2

)
→ 1,

and
γ|β|‖ek‖
2(1− c)

+ c+
γτ |β|
1− c

mk∑
i=1

(
‖ek+mk+i−1‖+ ‖ek−mk+i‖

2
+ ‖ek‖

)
→ c.

Hence, from (3.69) it in fact follows that

lim sup
‖Fk+1‖
‖Fk‖

≤ c.

We will note here that the condition on the initial error imposed by equations (3.54) and

(3.55) may require the initial error to be very small in order to display the monotonic decrease

in the residual predicted by this theorem, especially in cases where the fixed-point map is

weakly contractive (i.e. c is very near to 1) or a moderately large condition number bound τ is

chosen. However, without such a good initial iterate the r-linear local convergence results from

Section 3.2 should still hold, and the results from this section should apply once the iteration has

reached a point where each of the stored iterates is within Bρ(u∗). That is, without a sufficiently

good initial iterate we may expect some non-monotonic reduction in the fixed-point residual

52

0 10 20 30 40
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

ω = 0.9999

ω = 0.99999

(a) Residual norms

0 10 20 30 40
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Iteration Count

C
o

n
d

it
io

n
 N

u
m

b
e

r

ω = 0.9999

ω = 0.99999

(b) Coefficient matrix condition number, κ(Fk)

Figure 3.1: Solving H-equation with Anderson-10 for various ω

early in the iteration, but at some point the residual norms should display strict monotonic

decrease as predicted by this theorem.

3.4.1 Numerical Tests

As a numerical example of this storage adjusted algorithm, we again consider the Chandrasekhar

H-equation introduced in Section 3.2.3. We consider tests with N = 400,m = 10, and both

ω = 0.9999 and ω = 0.99999. For both of these values of ω the spectral radius of G′(u∗) is

very near unity. First, in Figure 3.1, we see plots of the residual norm and coefficient matrix

condition number resulting from solving this equation with the two values of ω by Anderson-

10 without adjusting the storage depth for conditioning. In the residual plot, we observe that

the convergence is non-monotonic, as the previous theory predicts. In fact, in both cases there

are points where the residual norm increases by over an order of magnitude from iteration to

iteration. Additionally, we observe that the condition number of the coefficient matrix rapidly

grows very large in both cases. We note that utilizing the storage adjusted algorithm with a

condition number bound τ ≥ 1014 would produce the same iteration, at least for the portion of

the iteration shown here. This does not violate the theory from this section, however, because

allowing such a large condition number bound on such weakly contractive fixed-point maps

would require an incredibly good initial iterate in order to satisfy the conditions of the theorem.

In Figure 3.2, we see the residual histories and storage utilization from solving the same

problems with coefficient matrix condition bounds τ = 10, 103, and 105. In each case, we set

53

m = 10, so the storage depth will be 10 at a maximum. However, in each case the condition

number bound prevents the maximum depth from being attained. For both problems, the bound

τ = 10 results in taking Anderson-1 steps each iteration, resulting in monotonically decreasing

residual histories. τ = 103 and τ = 105 allow more of the allocated storage to be utilized, but the

storage depth utilized never rises above 5. While the residual histories for these larger bounds

display some non-monotonicity, they are noticeably smoother than those observed in Figure 3.1,

and the rate of convergence is similar to that with τ = 10. In every case, the number of iterations

to convergence when adjusting for conditioning is roughly half of that for the unbounded case.

It seems that m = 10 is a poor choice for this problem, and adjusting to maintain a reasonable

condition number can act as a safeguard against such a poor choice of storage depth. However,

it may be possible that setting too small a bound may restrict the number of stored vectors

from expanding when it would be advantageous, so this may also sacrifice performance.

The non-monotonic convergence observed in Figure 3.2 for the larger bounds would seem to

indicate that the initial iterate used for these tests was not good enough to satisfy the theory

we have derived. To verify that q-linear convergence is indeed obtained with better initial data,

the same tests were run with improved initial iterates obtained by can simply performing some

number of Picard iterations, and using the result from that as the initial iterate for Anderson

acceleration. In Figures 3.3 and 3.4 we see Anderson acceleration residual histories for which

the start of the acceleration is delayed by a number of Picard iterations chosen to reduce

the initial residual (and thus roughly the initial error) by a factor δ = 102, 104, and 106. For

ω = 0.9999, this meant delaying the start of the Anderson acceleration until iterations 22,

150, and 347 respectively. For ω = 0.99999, the start of the Anderson acceleration is delayed

until iterations 22, 215, and 784 respectively to achieve the desired reduction. For ω = 0.9999,

each initial iterate seems sufficiently good for τ = 10. However, we need the initial iterate

improved by a factor of 104 before monotonic convergence for τ = 103, and 106 for τ = 105. For

ω = 0.99999, non-monotonic convergence is observed for each choice of τ with only a factor of

102 improvement in the initial iterate. With a factor of 104 improvement in the initial residual,

we obtain monotonic convergence for τ = 10 and τ = 103. In all cases, with initial iterate

improved by a factor of 106, we observe very smooth q-linear convergence in the residual plots,

so it seems that this initial iterate is sufficiently good for even the largest condition number

bound we consider. While this is interesting for observing theory, this approach is not practical

as the cost of Picard iterations required to obtain a good enough initial iterate to satisfy the

theory was significantly higher than simply using Anderson acceleration from the beginning

and accepting non-monotonic convergence.

54

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration Count

R
e
s
id

u
a
l
N

o
rm

τ = 1e+1

τ = 1e+3

τ = 1e+5

(a) Residual histories with ω = 0.9999

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration Count

S
to

re
d
 V

e
c
to

rs

τ = 1e+1

τ = 1e+3

τ = 1e+5

(b) Storage utilization with ω = 0.9999

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration Count

R
e
s
id

u
a
l
N

o
rm

τ = 1e+1

τ = 1e+3

τ = 1e+5

(c) Residual histories with ω = 0.99999

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration Count

S
to

re
d
 V

e
c
to

rs

τ = 1e+1

τ = 1e+3

τ = 1e+5

(d) Storage utilization with ω = 0.99999

Figure 3.2: Solving H-equation by Algorithm 5 with m = 10 for various ω and condition
number bound τ

55

0 5 10 15
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Delay Start = 22

τ = 1e+1

τ = 1e+3

τ = 1e+5

(a) Residual histories, δ = 102

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration Count

S
to

re
d

 V
e

c
to

rs

Delay Start = 22

τ = 1e+1

τ = 1e+3

τ = 1e+5

(b) Storage utilization, δ = 102

0 2 4 6 8
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Delay Start = 150

τ = 1e+1

τ = 1e+3

τ = 1e+5

(c) Residual histories, δ = 104

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

Iteration Count

S
to

re
d

 V
e

c
to

rs

Delay Start = 150

τ = 1e+1

τ = 1e+3

τ = 1e+5

(d) Storage utilization, δ = 104

0 1 2 3 4 5 6
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Delay Start = 347

τ = 1e+1

τ = 1e+3

τ = 1e+5

(e) Residual histories, δ = 106

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration Count

S
to

re
d

 V
e

c
to

rs

Delay Start = 347

τ = 1e+1

τ = 1e+3

τ = 1e+5

(f) Storage utilization, δ = 106

Figure 3.3: Solving H-equation with ω = 0.9999 and initial residual norm reduced by a factor
δ from the base case

56

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Delay Start = 22

τ = 1e+1

τ = 1e+3

τ = 1e+5

(a) Residual histories, δ = 102

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration Count

S
to

re
d

 V
e

c
to

rs

Delay Start = 22

τ = 1e+1

τ = 1e+3

τ = 1e+5

(b) Storage utilization, δ = 102

0 2 4 6 8 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Delay Start = 215

τ = 1e+1

τ = 1e+3

τ = 1e+5

(c) Residual histories, δ = 104

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Iteration Count

S
to

re
d

 V
e

c
to

rs

Delay Start = 215

τ = 1e+1

τ = 1e+3

τ = 1e+5

(d) Storage utilization, δ = 104

0 1 2 3 4 5 6
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Delay Start = 784

τ = 1e+1

τ = 1e+3

τ = 1e+5

(e) Residual histories, δ = 106

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Iteration Count

S
to

re
d

 V
e

c
to

rs

Delay Start = 784

τ = 1e+1

τ = 1e+3

τ = 1e+5

(f) Storage utilization, δ = 106

Figure 3.4: Solving H-equation with ω = 0.99999 and initial residual norm reduced by a factor
δ from the base case

57

3.5 Deterministic Errors in the Function Evaluation

We now consider the Anderson acceleration algorithm with inaccuracies in the function eval-

uation. That is, we attempt to solve G(u) = u, but we only have the capability to evaluate

Ĝ(u) = G(u) + ε(u). This gives the same error in the fixed-point residual F̂ (u) = Ĝ(u) − u =

F (u) + ε(u), where F (u) = G(u) − u is the true residual. This ε term could represent things

like rounding error, an inaccurate matrix-vector product for linear problems, or more pertinent

to our work, the effect of internal tolerances from single-physics solves in multiphysics coupling

problems or possibly some sort of Monte Carlo simulation involved in the function evaluation.

The Anderson algorithm with errors in the function evaluation proceeds as follows.

Algorithm 6 Anderson acceleration with inexact function evaluations

1: Given initial iterate u0 and storage depth parameter m.
2: Set u1 = Ĝ(u0).
3: Set F̂0 = Ĝ(u0)− u0.
4: for k = 1,2,. . . do
5: Set mk = min{m, k}.
6: Set F̂k = Ĝ(uk)− uk.
7: Determine α(k) = (α

(k)
0 , . . . , α

(k)
mk) which solves

min
α=(α0,...αmk)T

∥∥∥∥∥
mk∑
i=0

αiF̂k−mk+i

∥∥∥∥∥ . (3.72)

8: Set

uk+1 =

mk∑
i=0

α
(k)
i Ĝk−mk+i. (3.73)

9: end for

The only difference from the error-free case is that the optimization problem is solved over

linear combinations of the perturbed residuals, and the new iterate is a linear combination of

perturbed function evaluations. We will first consider the case where the errors are deterministic

and bounded is norm, i.e. ‖ε(u)‖ ≤ ε0 for some ε0. We will then show how to adapt these results

to the case where there the function errors are stochastic.

3.5.1 Linear Problems

We first let G be a linear function, i.e. G(u) = Au + b where A ∈ RN×N and b ∈ RN . As a

result of the equivalence of Anderson acceleration to GMRES iteration for linear problems, any

58

analysis for GMRES with inaccuracies in the matrix-vector product should provide some insight

into the behavior of Anderson acceleration in this context. The effect of inaccurate matrix-vector

products in the context of Krylov methods has been studied previously [53–55]. The results in

these papers for GMRES suggest that errors in early matrix-vector products may accumulate

and lead to significant loss of accuracy in the solution returned by the solver, and this effect may

be particularly problematic if the problem requires many iterations. In this section, we adapt

results from the previous sections to the case where only an inaccurate function evaluation

may be obtained, and show that in the context we consider the effect of inaccurate function

evaluations may not be as pessimistic as the result for GMRES might suggest, so long as the

fixed-point map is not very weakly contractive..

Before presenting our analysis for Anderson, for the sake of comparison we will establish

some results for Picard iteration with the inaccurate function Ĝ.

Theorem 3.4. Suppose that G(u) = Au + b, where ‖A‖ = c < 1. Then, the Picard iteration

uk+1 = Ĝ(uk) satisfies the following bounds for k ≥ 0

‖ek‖ ≤ ck‖e0‖+
1− ck

1− c
ε0, (3.74)

and

‖Fk‖ ≤ ck‖F0‖+ (1 + c)
1− ck

1− c
ε0. (3.75)

Proof. We will prove these bounds by induction. These bounds trivially hold for k = 0, as they

simply state ‖e0‖ ≤ ‖e0‖ and ‖F0‖ ≤ ‖F0‖. We then suppose that the bounds hold for some

k ≥ 0. We will begin by relating ek+1 to ek and Fk+1 to Fk. First, noting that the solution u∗

satisfies u∗ = G(u∗) = Au∗ + b, we have

ek+1 = uk+1 − u∗ = Ĝ(uk)−G(u∗) = (Auk + b+ ε(uk))− (Au∗ + b) = Aek + ε(uk). (3.76)

Then, recalling that the true residual is given by F (u) = (A− I)u+ b

Fk+1 = (A− I)uk+1 + b = (A− I)(Auk + b+ ε(uk)) + b = A(A− I)uk +Ab+ (A− I)ε(uk)

= A[(A− I)uk + b] + (A− I)ε(uk) = AFk + (A− I)ε(uk). (3.77)

59

Then, it follows that

‖ek+1‖ = ‖Aek + ε(uk)‖

≤ c‖ek‖+ ε0

≤ c

(
ck‖e0‖+

1− ck

1− c
ε0

)
+ ε0

= ck+1‖e0‖+

(
c(1− ck)

1− c
+ 1

)
ε0

= ck+1‖e0‖+
1− ck+1

1− c
ε0,

and similarly

‖Fk+1‖ = ‖AFk + (A− I)ε(uk)‖

≤ c‖Fk‖+ (1 + c)ε0

≤ c

(
ck‖F0‖+ (1 + c)

1− ck

1− c
ε0

)
+ (1 + c)ε0

= ck+1 + (1 + c)

(
c(1− ck)

1− c
+ 1

)
ε0

= ck+1‖F0‖+ (1 + c)
1− ck+1

1− c
ε0.

Hence, we see that the bounds hold for k + 1, so this completes the induction.

From this result it holds that lim supk→∞ ‖ek‖ ≤ ε0
1−c and lim supk→∞ ‖Fk‖ ≤

(1+c)ε0
1−c . Thus,

asymptotically the iteration errors and residuals are proportional to the error in the function

evaluation, and unless c is very near one, the error in the function evaluation is not significantly

amplified. Ideally, we would like a similar result to hold for Anderson acceleration, and this is

in fact the case, though we must now utilize Assumption 3.2. In our original analysis of the

error-free case, this assumption was required in analysis for nonlinear problems, though no such

assumption was necessary for linear problems.

Theorem 3.5. Suppose that G(u) = Au + b, where ‖A‖ = c < 1, and Assumption 3.2 holds.

Then the iteration produced by Algorithm 6 satisfies the following bounds for k ≥ 0

‖ek‖ ≤ ck
1 + c

1− c
‖e0‖+

(
1− ck

) Mα + c

(1− c)2
ε0, (3.78)

and

‖Fk‖ ≤ ck‖F0‖+
(

1− ck
)Mα + c

1− c
ε0. (3.79)

60

Proof. We again proceed by induction. We will first show (3.79), and then (3.78) will follow

directly from this. Again, the inequalities hold trivially for k = 0 as they say ‖e0‖ ≤ 1+c
1−c‖e0‖

and ‖F0‖ ≤ ‖F0‖, and 1+c
1−c > 1 because c < 1.

Now suppose the inequalities hold for some k ≥ 0. We will begin by expressing Fk+1 in an

alternate form.

Fk+1 = (A− I)uk+1 + b

= (A− I)

(
mk∑
i=0

α
(k)
i (Auk−mk+i + b+ ε(uk−mk+i))

)
+ b

= A

(
mk∑
i=0

α
(k)
i (A− I)uk−mk+i

)
+Ab+ (A− I)

(
mk∑
i=0

α
(k)
i ε(uk−mk+i)

)

= A

mk∑
i=0

α
(k)
i ((A− I)uk−mk+i + b+ ε(uk−mk+i))−

mk∑
i=0

α
(k)
i ε(uk−mk+i)

= A

mk∑
i=0

α
(k)
i F̂k−mk+i −

mk∑
i=0

α
(k)
i ε(uk−mk+i).

From this, and recalling that {α(k)
i } solves (3.72) and thus

∥∥∥∑mk
i=0 α

(k)
i F̂k−mk+i

∥∥∥ ≤ ‖F̂k‖, it

holds that

‖Fk+1‖ ≤ c‖F̂k‖+Mαε0 ≤ c‖Fk‖+ (Mα + c)ε0. (3.80)

Then, from the induction hypothesis, we have

‖Fk+1‖ ≤ c‖Fk‖+ (Mα + c)ε0

≤ c

(
ck‖F0‖+

(
1− ck

)Mα + c

1− c
ε0

)
+ (Mα + c)ε0

= ck+1‖F0‖+ (Mα + c)

(
c(1− ck)

1− c
+ 1

)
ε0

= ck+1‖F0‖+ (1− ck+1)
Mα + c

1− c
ε0.

Therefore, (3.79) holds for k + 1. Then, to prove the bound on the iteration errors, we recall

that

(1− c)‖e‖ ≤ ‖F (u)‖ ≤ (1 + c)‖e‖.

(3.78) then directly follows from this and (3.79), as

‖ek+1‖ ≤
‖Fk+1‖
1− c

≤ ck+1 ‖F0‖
1− c

+
(

1− ck+1
) Mα + c

(1− c)2
ε0 ≤ ck+1 1 + c

1− c
‖e0‖+

(
1− ck+1

) Mα + c

(1− c)2
ε0.

61

Hence, (3.78) also holds for k + 1, so this completes the induction.

Now we have lim supk→∞ ‖ek‖ ≤
(Mα+c)ε0

(1−c)2 and lim supk→∞ ‖Fk‖ ≤
(Mα+c)ε0

1−c . Mα ≥ 1, so it

seems that the errors in the function evaluation may be amplified a bit more than for Picard

iteration. However, for a reasonably small value of m, we have observed that value of Mα

generally remains fairly small. We also see an extra factor of 1
1−c , which can be large if the

function is weakly contractive. Thus, so long as the contractive constant c is not very close

to one, the effect of an inaccurate function evaluation should not be significantly worse for

Anderson acceleration than for Picard iteration for linear problems.

3.5.2 Nonlinear Problems

We now consider the case where G(u) is a nonlinear function. Again, we will first consider the

effect that inaccuracies in the evaluation of G have on Picard iteration. We obtain a very similar

result to that for linear problems. In this case however, we assume that G is a contraction in a

neighborhood of the solution, and we must impose a bound on the size of the function errors

in order to ensure that the iteration remains in this neighborhood.

Theorem 3.6. Suppose that G(u) is contractive with constant c in the neighborhood Bρ̂(u∗).
Then, given u0 ∈ Bρ̂(u∗) and ε0 sufficiently small, the iterates produced by Picard iteration

remain in Bρ̂(u∗) and satisfy the following bounds for k ≥ 0

‖ek‖ ≤ ck‖e0‖+
1− ck

1− c
ε0, (3.81)

and

‖Fk‖ ≤ ck‖F0‖+ (1 + c)
1− ck

1− c
ε0. (3.82)

Proof. First, we let ε0 be small enough such that

ε0 ≤ (1− c)ρ̂. (3.83)

This condition guarantees that if u ∈ Bρ̂(u∗) then Ĝ(u) ∈ Bρ̂(u∗). To see this, suppose that

‖u− u∗‖ ≤ ρ̂. Then

‖Ĝ(u)− u∗‖ = ‖(G(u) + ε(u))−G(u∗)‖ ≤ c‖u− u∗‖+ ε0 ≤ cρ̂+ (1− c)ρ̂ = ρ̂.

Hence, if ε0 satisfies (3.83) and u0 ∈ Bρ̂(u∗) then each successive Picard iterate will remain in

this neighborhood.

Now, we can prove the bounds (3.81) and (3.82) by induction, but the proof is essentially

identical to the proof for the linear case, instead using the contractivity of G to show ‖ek+1‖ ≤

62

c‖ek‖+ ε0 and ‖Fk+1‖ ≤ c‖Fk‖+ (1 + c)ε0, so this will be omitted here.

Hence, we obtain nearly the same result for linear and nonlinear problems for Picard iter-

ation. The only difference is that nonlinear result only holds locally and requires a sufficiently

small bound on the errors. The next result shows that we also obtain very similar results for

Anderson for linear and nonlinear problems. As with Picard, the significant difference is that

the results now hold locally and require a bound on the acceptable size of ε0.

Theorem 3.7. Suppose that G(u) is contractive with constant c and F ′(u) is Lipschitz contin-

uous with constant γ in the neighborhood Bρ̂(u∗), and let ĉ ∈ (c, 1). Then, if Assumption 3.2

holds and given ρ, ‖e0‖, and ε0 sufficiently small, the iteration produced by Algorithm 6 satisfies

the following for k ≥ 0: the iterates remains in the neighborhood Bρ(u∗) (i.e. ‖ek‖ ≤ ρ), and

the following bounds hold

‖ek‖ ≤ ĉk
1 + c

1− c
‖e0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)

1− ĉk

(1− c)(1− ĉ)
ε0, (3.84)

‖Fk‖ ≤ ĉk‖F0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)

1− ĉk

1− ĉ
ε0. (3.85)

Proof. We first let ρ ≤ ρ̂ and reduce ρ if necessary so that the following holds(
1 +

γρ

2(1− c)

)(
c+

γρMα

2(1− c)
ĉ−m

)
≤ ĉ. (3.86)

This is necessarily achievable for some ρ > 0, because the left hand side is a continuous function

of ρ which goes to c at ρ = 0. Then, let ‖e0‖ and ε0 satisfy

‖e0‖ ≤ min

{
ρ,

(
1 +

γρ

2(1− c)

)
1− c
1 + c

ρ

}
, (3.87)

and

ε0 ≤
(1− c)(1− ĉ)

(1 + γρ
2(1−c))(Mα + c)

ρ. (3.88)

We again proceed by induction. As before, the case for k = 0 is trivial. We assume ‖e0‖ ≤
min{ρ, (1 + γρ

2(1−c))1−c
1+cρ} ≤ ρ so u0 ∈ Bρ(u∗), and (3.84) and (3.85) state ‖e0‖ ≤ 1+c

1−c‖e0‖ and

‖F0‖ ≤ ‖F0‖ which again hold trivially.

Next, let k ≥ 0 and suppose that ‖ej‖ ≤ ρ and the bounds (3.84) and (3.85) hold for each

0 ≤ j ≤ k. We will first show that ‖ek+1‖ ≤ ρ. We begin by noting that we can write the

previous residuals as follows

Fk−mk+i = F ′(u∗)ek−mk+i + ∆k−mk+i, 0 ≤ i ≤ mk, (3.89)

63

where

‖∆k−mk+i‖ ≤
γ

2
‖ek−mk+i‖2. (3.90)

Alternately, because F ′(u∗) is invertible due to the Banach Lemma, we can write this as

ek−mk+i = F ′(u∗)−1(Fk−mk+i −∆k−mk+i)

= F ′(u∗)−1(F̂k−mk+i −∆k−mk+i − ε(uk−mk+i)). (3.91)

We rewrite uk+1 as

uk+1 =

mk∑
i=0

α
(k)
i Ĝ(uk−mk+i) =

mk∑
i=0

α
(k)
i [uk−mk+i + F̂ (uk−mk+i)]. (3.92)

Because
∑mk

i=0 α
(k)
i = 1, this implies

ek+1 =

mk∑
i=0

α
(k)
i [ek−mk+i + F̂ (uk−mk+i)]. (3.93)

Substituting (3.91) into this, and defining

∆̄k =

mk∑
i=0

α
(k)
i ∆k−mk+i, and Ek =

mk∑
i=0

α
(k)
i ε(uk−mk+i),

results in the following

ek+1 =

mk∑
i=0

α
(k)
i [F ′(u∗)−1(F̂k−mk+i −∆k−mk+i − ε(uk−mk+i)) + F̂ (uk−mk+i)]

= F ′(u∗)−1
mk∑
i=0

α
(k)
i [(I + F ′(u∗))F̂k−mk+i −∆k−mk+i − ε(uk−mk+i))]

= F ′(u∗)−1

(
G′(u∗)

mk∑
i=0

α
(k)
i F̂k−mk+i − ∆̄k − Ek

)
. (3.94)

Applying norms and recalling that {α(k)
i } solve (3.72) and thus ‖

∑mk
i=0 α

(k)
i F̂k−mk+i‖ ≤ ‖F̂k‖

gives

‖ek+1‖ ≤
1

1− c

(
c‖F̂k‖+ ‖∆̄k‖+ ‖Ek‖

)
. (3.95)

We then bound the quantities ‖∆̄k‖ and ‖Ek‖. ‖Ek‖ is straightforward, as

‖Ek‖ ≤
mk∑
i=0

|α(k)
i |ε0 ≤Mαε0. (3.96)

64

Now, using (3.90) and the assumption that ‖ej‖ ≤ ρ for each 0 ≤ j ≤ k gives

‖∆̄k‖ ≤
γ

2

mk∑
i=0

|α(k)
i |‖ek−mk+i‖2 ≤

γρ

2

mk∑
i=0

|α(k)
i |‖ek−mk+i‖. (3.97)

Using the induction hypothesis, for 0 ≤ i ≤ mk we have the following bound:

‖ek−mk+i‖ ≤
‖Fk−mk+i‖

1− c

≤ 1

1− c

(
ĉk−mk+i‖F0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)(1− ĉk−mk+i)

1− ĉ
ε0

)
≤ 1

1− c

(
ĉk−m‖F0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)(1− ĉk)

1− ĉ
ε0

)
.

In this we used the fact that for any i such that 0 ≤ i ≤ mk, it holds that k−m ≤ k−mk+i ≤ k.

Hence ĉk−mk+i ≤ ĉk−m and 1− ĉk−mk+i ≤ 1− ĉk. Then, from this and Assumption 3.2 it follows

that

‖∆̄k‖ ≤
γρMα

2(1− c)

(
ĉk−m‖F0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)(1− ĉk)

1− ĉ
ε0

)
. (3.98)

Now, combining (3.96) and (3.98), and using the induction hypothesis for ‖Fk‖ results in the

following

c‖F̂k‖+ ‖∆̄k‖+ ‖Ek‖ ≤ c
(
ĉk‖F0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)

1− ĉk

1− ĉ
ε0

)
+

γρMα

2(1− c)

(
ĉk−m‖F0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)(1− ĉk)

1− ĉ
ε0

)
+ (Mα + c)ε0. (3.99)

Collecting terms, this gives

c‖F̂k‖+ ‖∆̄k‖+ ‖Ek‖ ≤
(
c+

γρMα

2(1− c)
ĉ−m

)
ĉk‖F0‖

+

[(
1 +

γρ

2(1− c)

)(
c+

γρMα

2(1− c)

)
(1− ĉk) + 1− ĉ

]
Mα + c

1− ĉ
ε0. (3.100)

We now note that 1 ≤ ĉ−m, so (3.86) also implies that
(

1 + γρ
2(1−c)

)(
c+ γρMα

2(1−c)

)
≤ ĉ. Using

65

(3.86), (3.100) then becomes

c‖F̂k‖+ ‖∆̄k‖+ ‖Ek‖ ≤
ĉ

1 + γρ
2(1−c)

ĉk‖F0‖+
(
ĉ(1− ĉk) + 1− ĉ

)Mα + c

1− ĉ
ε0

=
ĉk+1

1 + γρ
2(1−c)

‖F0‖+ (1− ĉk+1)
Mα + c

1− ĉ
ε0. (3.101)

Now, substituting this into (3.95) and using the bounds (3.87) and (3.88) gives

‖ek+1‖ ≤
1

1− c

(
ĉk+1

1 + γρ
2(1−c)

‖F0‖+ (1− ĉk+1)
Mα + c

1− ĉ
ε0

)

≤ (1 + c)ĉk+1

(1− c)(1 + γρ
2(1−c))

‖e0‖+ (1− ĉk+1)
Mα + c

(1− c)(1− ĉ)
ε0

≤ ĉk+1ρ+ (1− ĉk+1)ρ = ρ. (3.102)

Hence, ‖ek+1‖ ≤ ρ, and thus uk+1 is in the neighborhood Bρ(u∗). It then remains to show the

bounds (3.84) and (3.85) hold for k + 1. We can now use the fundamental theorem of calculus

and the expression (3.94) to give the following

Fk+1 =

∫ 1

0
F ′(u∗ + tek+1)ek+1 dt

=

∫ 1

0
F ′(u∗ + tek+1)F ′(u∗)−1 dt

(
G′(u∗)

mk∑
i=0

α
(k)
i F̂k−mk+i − ∆̄k − Ek]

)
.

Applying norms, this gives

‖Fk+1‖ ≤
∫ 1

0
‖F ′(u∗ + tek+1)F ′(u∗)−1‖ dt

(
c‖F̂k‖+ ‖∆̄k‖+ ‖Ek‖

)
. (3.103)

Because ‖ek+1‖ ≤ ρ, for any t ∈ [0, 1] u∗ + tek+1 ∈ Bρ(u∗). Then, by Lipschitz continuity of F ′

in this neighborhood we have the following

‖F ′(u∗ + tek+1)F ′(u∗)−1‖ = ‖I − [F ′(u∗)− F ′(u∗ + tek+1)]F ′(u∗)−1‖

≤ 1 + ‖F ′(u∗)− F ′(u∗ + tek+1)‖‖F ′(u∗)−1‖

≤ 1 +
γt‖ek+1‖

1− c
.

Therefore, ∫ 1

0
‖F ′(u∗ + tek+1)F ′(u∗)−1‖ dt ≤ 1 +

γ‖ek+1‖
2(1− c)

≤ 1 +
γρ

2(1− c)
. (3.104)

66

This, along with equations (3.103) and (3.101) give

‖Fk+1‖ ≤
(

1 +
γρ

2(1− c)

)(
c‖Fk‖+ ‖∆̄k‖+ ‖Ek‖

)
≤

(
1 +

γρ

2(1− c)

)(
ĉk+1

1 + γρ
2(1−c)

‖F0‖+ (1− ĉk+1)
Mα + c

1− ĉ
ε0

)

= ĉk+1‖F0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)

1− ĉk+1

1− ĉ
ε0. (3.105)

Thus (3.85) holds for k + 1, and (3.84) follows directly from this as

‖ek+1‖ ≤
‖Fk+1‖
1− c

≤ ĉk+1 ‖F0‖
1− c

+

(
1 +

γρ

2(1− c)

)
(Mα + c)

1− ĉk+1

(1− c)(1− ĉ)
ε0

≤ ĉk+1 1 + c

1− c
‖e0‖+

(
1 +

γρ

2(1− c)

)
(Mα + c)

1− ĉk+1

(1− c)(1− ĉ)
ε0. (3.106)

This completes the induction.

This shows that

lim sup
k→∞

‖ek‖ ≤
(

1 +
γρ

2(1− c)

)
(Mα + c)

(1− c)(1− ĉ)
ε0,

and

lim sup
k→∞

‖Fk‖ ≤
(

1 +
γρ

2(1− c)

)
(Mα + c)

(1− ĉ)
ε0.

Hence, asymptotically the the evaluation errors may be amplified by an additional factor of

(1 + γρ
2(1−c))(1−c

1−ĉ) when compared with the result for linear problems, but the results can be

made arbitrarily close by letting ĉ be sufficiently close to c and ρ sufficiently small. We note

that the conditions (3.86) and (3.88) may require ‖e0‖ to be significantly smaller than ρ̂, which

is the radius for which the Picard results hold. This seems to suggest that it may make sense

to perform several Picard iterations if the initial iterate is not known to be relatively good.

We also note that the bound on ε0 is smaller in this case than it is for Picard, and it may be

very small if the contractive constant is near one or if Mα is fairly large. We will return to this

issue when considering the effect of varying single-physics application tolerances for Tiamat

single-rod tests in Section 6.4.1.

67

3.6 Stochastic Errors in the Function Evaluation

The results in the previous section can be modified fairly simply to provide results for the case

where the errors in the function evaluation are probabilistic in nature. For this, we consider

a problem setup as in [63]. In this, the evaluation of F is assumed to involve a Monte Carlo

simulation with NMC trials, and the error in the Monte Carlo residual F̂ (u,NMC) is assumed to

satisfy Assumption 3.4. The authors of this paper consider the effect that errors of this nature

in the residual evaluation have on JFNK. It is observed that the inaccuracies are problematic

for the Krylov solves for the Newton step, and they formulate an algorithm in which the number

of trials in the residual evaluation are increased as the iteration progresses which performs well.

Results in this section suggestion suggest that Anderson might be a more resilient alternative

to JFNK in this context, and does not require the number of Monte Carlo trials to increase

throughout the iteration. The results in this section simply extend the results from the previous

section, and show that these bounds can be made to hold for any finite number of iterations

with arbitrary probability given enough Monte Carlo trials. We will present the adapted results

for linear problems, and the results for nonlinear problems may be reproduced analogously.

Assumption 3.4. There is a function cF and an open set B′ which contains Bρ̂(u∗) such that

for all u ∈ B′ and δ > 0

Prob

(
‖F (u)− F̂ (u,NMC)‖ > cF (δ)√

NMC

)
< δ. (3.107)

In keeping with the conventions from the previous section, we will define the function eval-

uation error ε(u,NMC) = F̂ (u,NMC) − F (u) and the inexact fixed-point map Ĝ(u,NMC) =

G(u) + ε(u,NMC). Then, given (sufficiently small in the case of nonlinear problems) ε0 > 0, the

results from the previous section will hold for a finite number K iterations if ‖ε(uj , NMC)‖ ≤ ε0
for each 0 ≤ j ≤ K − 1. As the errors have no upper bounds, but rather small variances, this

will not hold in general. However, we can choose NMC such that this will in fact be the case

with any arbitrary probability in (0, 1).

Theorem 3.8. Suppose that G(u) = Au + b, where ‖A‖ = c < 1, and let a positive integer

K,ω ∈ (0, 1), and ε0 > 0 be given. Then, there exists NMC such that with probability at least

(1− ω) the Picard iteration uk+1 = Ĝ(uk, NMC) satisfies the following bounds for 0 ≤ k ≤ K:

‖ek‖ ≤ ck‖e0‖+
1− ck

1− c
ε0, (3.108)

and

‖Fk‖ ≤ ck‖F0‖+ (1 + c)
1− ck

1− c
ε0. (3.109)

68

Proof. As was already noted, this follows immediately from Theorem 3.4 if ‖ε(uk, NMC)‖ ≤ ε0
for 0 ≤ k ≤ K − 1. We first define

δ = 1− (1− ω)1/K . (3.110)

Then, if we let

NMC ≥
(
cF (δ)

ε0

)2

, (3.111)

it will hold with probability at least 1− δ that for any 0 ≤ k ≤ K − 1

‖ε(uk, NMC)‖ ≤ ε0. (3.112)

Each function evaluation is independent, so with probability at least (1 − δ)K = 1 − ω, that

‖ε(uk, NMC)‖ ≤ ε0 for each 0 ≤ k ≤ K−1. Hence, from Theorem 3.4 it follows that the desired

bounds hold with probability at least 1− ω

We can analogously use Theorem 3.5 to give the following result for Anderson acceleration

on linear problems.

Theorem 3.9. Suppose that G(u) = Au + b, where ‖A‖ = c < 1, and Assumption 3.2 holds,

and let a positive integer K,ω ∈ (0, 1), and ε0 > 0 be given. Then there exists NMC such that

with probability at least (1 − ω) the iteration produced by Algorithm 6 satisfies the following

bounds for 0 ≤ k ≤ K:

‖ek‖ ≤ ck
1 + c

1− c
‖e0‖+

(
1− ck

) Mα + c

(1− c)2
ε0, (3.113)

and

‖Fk‖ ≤ ck‖F0‖+
(

1− ck
)Mα + c

1− c
ε0. (3.114)

The proof of this theorem is essentially identical to that for the previous theorem, and in

fact given the same integer K, failure probability ω, and error bound ε0, the required number

of Monte Carlo trails is the same. In a similar manner, we can show that given large enough

NMC , the results from Theorem 3.7 hold for some finite number of iterations with arbitrary

probability as well.

69

Chapter 4

Trilinos Anderson Acceleration

Implementation

4.1 Introduction

As part of this work, we have added an Anderson acceleration solver to the Trilinos package

of nonlinear solver software NOX. Trilinos is a package of numerical analysis software devel-

oped by Sandia National Laboratories. We describe Trilinos, as well as its packages which we

reference in this chapter, in greater detail in Appendix B. NOX provides interfaces for various

objects (solvers, vector types, status tests) as abstract base classes, and concrete implemen-

tations are created as derived subclasses. In the case of NOX solvers, the base class is the

NOX::Solver::Generic class. This class provides the interface for subroutines which initialize

the solver, compute a new iterate, solve the problem to completion, and provide access to data

from the solver. Classes which inherit from this base class include the LineSearchBased class

which implements various nonlinear solver methods based on line search globalization [29], and

the TrustRegionBased class which implements various trust region based methods [30]. We

have implemented NOX::Solver::AndersonAcceleration as a new class which derives from

the generic solver base class. In this section, we will describe the concrete implementation of

several of the inherited member functions for this Anderson acceleration solver class, as well as

several of the unit tests we have created to ensure proper functionality.

4.2 Solver Description

This solver attempts to solve the preconditioned problem

M(u)F (u) = 0, (4.1)

70

where M is a preconditioner. Preconditioning is optional, and if not enabled the preconditioner

is taken to be the identity. The new iterate computed by Anderson acceleration is given by

uk+1 = uk + βM(uk)Fk − (Uk + βFk)γ(k), (4.2)

where the columns of Uk are differences between consecutive iterates

Uk = [uk−mk+1 − uk−mk , . . . , uk − uk−1],

the columns of Fk are differences between consecutive preconditioned residuals

Fk = [M(uk−mk+1)Fk−mk+1 −M(uk−mk)Fk−mk , . . . ,M(uk)Fk −M(uk−1)Fk−1],

and γ(k) solves

min
γ
‖M(uk)Fk −Fkγ‖. (4.3)

In this implementation, rather than storing the matrix Fk itself we store and update its QR

factorization from iteration to iteration. We store Uk and the Q factor as objects of type

std::vector which contain pointers to NOX::Abstract::Vector types, and these are referred

to as xMat and qMat respectively. The R factor is stored as a dense matrix called rMat. For MPI

implementations, the entire R factor is replicated across each participating process, but as it

contains at most m2 entries and in most cases m is kept relatively small, this should generally

not be a significant storage burden. We overview the process of updating the QR factorization

from iteration to iteration in detail in Section 4.2.3.

The solver requires the following inputs during construction:

1. A NOX::Abstract::Group object. This class provides the interface to the necessary prob-

lem information, i.e. the solution vector, residual, Jacobian, and preconditioner. At min-

imum, the solver requires the ability to evaluate the residual at the current solution vec-

tor. The group provides access to the solution and residual vectors as NOX::Abstract::

Vector’s. This abstract interface includes routines for various vector operations including

scaling, linear products, inner products, and norms. Access to individual vector entries,

however, is not provided. If the solver is created with preconditioning enabled, the group

implementation must provide a routine to apply the preconditioner to a vector. Jacobian

information is only required if preconditioning is enabled, and the preconditioner requires

the Jacobian in order to be applied.

2. A NOX::StatusTest::Generic object. This object dictates the stopping criteria for the

solver. Status tests included with NOX include tests for absolute and relative residual

71

norm, maximum iteration counts, and a combination test for combining various other

status tests. Additionally, user defined status tests may be supplied.

3. A Teuchos::ParameterList. The input parameter list dictates particular attributes of

the solver to be created. The valid parameters which may be specified for this solver type

are described in detail in the following section.

4.2.1 Solver Options

The constructor for this solver class uses an initialization list to copy data from the input

parameters and allocate storage for several class members, and then calls the member function

init. The main purpose of this member function is to set up the valid parameters for the

solver, parse and validate the parameter list parameter list supplied to the constructor for the

appropriate solver parameters, and set defaults for any unspecified parameters. The following

parameters are supported by the solver.

• “Storage Depth” - An integer that determines the maximum storage depth stored by the

solver. This is the parameter m for Anderson-m. We set a default value of 2, and throw

an exception if the value passed in is less than 0. If the input value is 0, then the solver

performs Picard iteration.

• “Mixing Parameter” - A double that gives the mixing parameter. The default value is set

to 1.0 (no mixing), and an exception is thrown if the input value is outside the interval

[−1, 0) ∪ (0, 1].

• “Adjust Matrix for Condition Number” - A Boolean that determines whether the storage

depth will be adjusted to maintain good conditioning of the condition number of the

least-squares coefficient matrix. The default value is set to false.

• “Condition Number Drop Tolerance” - A double that gives the condition number bound

if adjusting the storage depth. This has no effect if the parameter “Adjust Matrix for

Condition Number” is not set to true. The default value is set to 10e12.

• “Acceleration Start Iteration” - . The default value is set to 1, which means Anderson

acceleration begins right away. Although we require the storage depth to be at least 1,

setting this parameter larger than the iteration count limit will reduce the solver to an

Anderson-0 (Picard) solver.

• “Disable Storage Depth Check for Unit Testing” - An exception is thrown if the input

storage depth parameter is greater than the problem size, as this necessarily results in a

singular least squares problem after enough iterations. If this option is set to true, this

72

check is disabled. This is included for the purpose of unit testing, and is not intended to

be set to true by users.

• A sublist “Preconditioning” which contains the entries:

– “Precondition” - A Boolean that determines whether or not preconditioning will be

used. The default value is set to false.

– “Recompute Jacobian” - A Boolean that determines whether the Jacobian should be

recomputed before applying the preconditioner each iteration. If the preconditioner

is computed from the Jacobian and the group object does not internally update

the Jacobian prior to computing the preconditioner, this needs to be set to true

to update the preconditioner. Otherwise the preconditioner is computed from the

initial Jacobian. The default value is false, and this option has no effect unless the

“Precondition” parameter is set to true.

We create a parameter list which contains these parameter names with the given default values,

and then call the parameter list member function validateParametersAndSetDefaults. This

function compares the input parameter list agains the valid parameters list and throws an

exception if either a parameter is specified which does not match one of the valid parameters,

or if a parameter with a valid name has the incorrect value. This acts as a safeguard against

potential input errors for the input parameter list.

4.2.2 Step Implementation

The bulk of the work done by the solver is performed in the member function step. This

function implements the computation of a new iterate.

When in the acceleration stage of the iteration, we begin by computing the QR factors of

the matrix Fk. This is performed by calling two subroutines which update the QR factorization

of a matrix resulting from appending a vector in the right or deleting a column from the

left. The process for performing this update will be described in greater depth in the next

section. Then, given the appropriate QR factors, we then solve the linear least-squares problem

minγ ‖M(uk)Fk − Fkγ‖. As we have the QR factorization of Fk, this is simply performed by

solving

Rγ = QTM(uk)Fk, (4.4)

which proceeds as shown in the following code fragment.

for (int ii = 0; ii<nStore; ii++)

RHS(ii,0) = precF->innerProduct(*(qMat[ii]));

73

//Back-solve for gamma

for (int ii = nStore-1; ii>=0; ii--){

gamma(ii,0) = RHS(ii,0);

for (int jj = ii+1; jj<nStore; jj++){

gamma(ii,0) -= rMat(ii,jj)*gamma(jj,0);

}

gamma(ii,0) /= rMat(ii,ii);

}

As the name suggests, in the above precF represents the product of the preconditioner and the

residual.

Once the least-squares problem is solved, the computation of the new iterate is fairly

straightforward. We first compute the “Anderson direction”

d = βM(uk)Fk − (Uk + βFk)γ(k). (4.5)

We then use a line search to determine a step size λ and compute the new iterates as uk+1 =

uk + λd. This is performed in the following code fragment.

if (nStore > 0)

Rgamma.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,mixParam,rMat,gamma,0.0);

tempVec->update(mixParam,*precF);

for (int ii=0; ii<nStore; ii++)

tempVec->update(-gamma(ii,0), *(xMat[ii]), -Rgamma(ii,0),*(qMat[ii]),1.0);

bool ok = lineSearchPtr->compute(*solnPtr, stepSize, *tempVec, *this);

The Anderson direction might not be a descent direction, so the use of a backtracking or

polynomial line search may or may not be advisable. However, the line search may be useful

for controlling the step size in order to maintain given bounds on the solution. This utility is

offered through the “Safeguarded Step” line search option included in NOX.

The step function then finishes by evaluating the residual at the new iterate and checking

for convergence or failure according to the status test. The member function solve carries

out the iteration by simply calling this step routine until the status test for the solver has

determined that the iteration has either succeeded or failed.

4.2.3 QR Management Routines

As was noted previously, our preferred method for solving the linear least squares problem (3.6)

is storing the QR factorization of Fk rather than the matrix itself, and updating the factoriza-

tion directly from iterate to iterate. There are several reasons why this method is preferable to

74

storing and fully factorizing Fk each iteration. First, because of the limited operations provided

by the NOX vector interface, the only available QR factorization methods are those based on

Gram-Schmidt orthogonalization. Householder QR would be more numerically robust [22], but

requires access to individual vector entries which the NOX vector interface does not provide.

Second, while the cost should in general be minimal compared to the function evaluation, up-

dating the QR factors directly generally requires less computation, and communication in the

case of distributed vectors. For full factorization by modified Gram-Schmidt the major compu-

tational cost is up to m(m−1)
2 inner product computations (or m(m−1) if orthogonalizing twice

for improved robustness). For MPI implementations inner products also require communication

between processes, and we will see that we require as few or generally fewer inner products by

updating the QR factorization directly. Lastly, this method results in minimal storage utiliza-

tion. When storing and factoring Fk, both the matrix and the Q factor (which have the same

size) need to be stored temporarily. Of course, Fk could be overwritten by its Q factor and

recovered by multiplying QR, but this introduces additional computation and is clearly not

ideal.

In this section, we describe our implementation of the process for updating the QR fac-

torization over successive iterations. As stated previously, the information from the previous

iterates is stored in the “matrices” xMat, qMat, and rMat, where xMat and qMat are vectors of

pointers to NOX::Abstract::Vector objects and rMat is a dense matrix. Each time step is

called, we begin with xMat, qMat, and rMat from the previous iteration. The first thing done is

to update these to the correct values for the current iteration. At the start of the acceleration,

each of these is empty. We then allocate storage for these, and xMat is assigned the most recent

iterate difference vector, rMat is assigned the norm of the most recent residual difference vector,

and qMat is assigned the normalized residual difference vector. If the acceleration has already

started, we perform this update in three stages. First, if the storage depth limit is already sat-

urated we compute the updates resulting from discarding information from the oldest iterate.

Next, we append the new iterate difference vector to xMat and compute the effect of append-

ing the new residual difference on qMat and rMat. Lastly, if the storage depth is adjusted to

maintain conditioning, the oldest iterates are dropped from storage until the condition bound

is satisfied. The first two stages of the update could be performed in either order. We first

perform the deletion for storage purposes. If the storage depth is already saturated and the new

residual difference is appended first, then xMat and qMat will at least temporarily contain one

more vector than the storage depth parameter dictates. Conversely, by performing the deletion

first, the maximum storage depth is never exceeded.

The first two steps described above proceed in the code as shown in the following frag-

ment. The variable nStore denotes the number of previous iterates currently in storage, and

storeParam is the storage depth parameter. Additionally, qrAdd and qrDelete represent sub-

75

routines which compute the updated the QR factors of the coefficient matrix resulting from

appending a vector on the right and deleting a vector from the left respectively.

if (nStore < storeParam){

xMat.push_back(solnPtr->getX().clone(NOX::ShapeCopy));

nStore++;

}

else{

for (int ii = 0; ii<nStore-1; ii++)

*(xMat[ii]) = *(xMat[ii+1]);

qrDelete();

}

*(xMat[nStore-1]) = solnPtr->getX();

(xMat[nStore-1])->update(-1.0,oldSolnPtr->getX(),1.0);

oldPrecF->update(1.0, *precF, -1.0);

qrAdd(*oldPrecF);

In this, if the storage is not saturated, this simply allocates storage and writes in the new iterate

difference vector to xMat, and calls qrAdd to compute the effect of appending the new residual

difference vector on the QR factors. However, if the storage is already saturated, the columns

of xMat are shuffled, overwriting the oldest vector, and qrDelete is called to update the QR

factors by column deletion. Then the new difference vectors are appended.

Next, if the option to adjust the storage depth for conditioning is enabled, we potentially

discard more of the stored iteration history. As the Q factor is has orthonormal columns, the

least-squares coefficient matrix has the same condition number as rMat in the l2 norm, so we

adjust storage so that the condition number of rMat satisfies a given bound. For condition

number estimates the LAPACK routine DGECON is used. This estimates the inverse of the

condition number of a matrix, though it only does so with the l1 or l∞ norm. We choose to

bound the condition number of rMat in the l1 norm, and as the l1 and l2 norms are equivalent,

this imposes a bound on the condition number of the coefficient matrix. The code fragment

which performs this storage depth adjustment is shown below:

if (adjustForConditionNumber) {

while ((1.0/invCondNum > dropTolerance) && (nStore > 1)) {

for (int ii = 0; ii<nStore-1; ii++)

*(xMat[ii]) = *(xMat[ii+1]);

xMat.pop_back();

qrDelete();

--nStore;

76

lapack.GECON(normType,nStore,rMat.values(),nStore,rMat.normOne(),

&invCondNum,&WORK[0],&IWORK[0],&info);

if (utilsPtr->isPrintType(Utils::Details))

utilsPtr->out() << " Adjusted R condition number estimate ("

<< nStore << ") = " << 1.0/invCondNum << std::endl;

}

}

In this, dropTolerance is the specified condition number bound. This fragment repeatedly

drops information from the oldest iterate and computes the condition number of the updated

R factor until this condition number bound is satisfied. As before, we discard the oldest iterate

information by overwriting it in xMat and calling qrDelete to update the QR factorization.

As the condition number of a single vector is one, we should always retain at least one vector,

and the inclusion of the while statement condition nStore > 1 imposes this directly, as well as

safeguards against an input dropTolerance below one. Then, all that remains is to describe the

qrAdd and qrDelete subroutines.

qrAdd

We first consider the subroutine which updates the new QR factorization after appending a

column. In this subroutine, we begin with the QR factors of the matrix A ∈ RN×M and a

vector b ∈ RN , and we compute the QR factors of the appended matrix A′ = [A b]. Given the

factorization A = QR, we can write this as:

A′ =
[
QR b

]
=
[
Q b

] [R 0

0 1

]
. (4.6)

Then, as the columns of Q are already assumed to be orthonormal, to obtain the QR factors

of A′ we simply need to orthogonalize b against the columns of Q. This is accomplished via

the Gram-Schmidt process [22]. In this, we sequentially subtract off of b its component in the

direction of each of the columns of Q. Letting qi be column i of Q, this proceeds as follows.

• For i = 1, 2, . . . ,M .

– Set ri,M+1 = qTi b.

– Set b = b− ri,M+1qi.

• Set rM+1,M+1 = ‖b‖.

• Set qM+1 = b
rM+1,M+1

.

77

The updated factorization is then given by A′ = Q′R′, where

Q′ =
[
Q qM+1

]
, (4.7)

and

R′ =


r1,M+1

R
...

rM.M+1

0 rM+1,M+1

 . (4.8)

In an initial implementation, the qrAdd subroutine was implemented as described above. How-

ever, it was seen to result in poor performance for some problems where the storage depth

for Anderson is modestly large and the least-squares coefficient matrix becomes highly ill-

conditioned. An example of this is shown in Figure 4.1a. This shows the iteration history for

Anderson-10 for the Chandrasekhar H-equation (Section 3.2.3) with ω = 0.9999. In this, “Loss

of Orthogonality” is a measure of the distance of the Q factor from orthogonality which we

define as:

Loss of Orthogonality = ‖I −QTQ‖.

This is a problem for which the iteration should be convergent. Initially, the residual norms

decrease as expected, but as the condition number of the least-squares matrix increases rapidly

the loss of orthogonality in the Q factor becomes rather large. As a result, the iteration begins

to diverge. This loss of orthogonality is consistent with a result in [6], which says that the loss

of orthogonality in the Q factor for the modified Gram-Schmidt algorithm due to roundoff error

is proportional to the condition number of the matrix being factored times machine epsilon.

This problem may be rectified by performing another round of orthogonalization. That is,

first factor A = QR, then compute the factorization Q = Q̄R̄. As Q should be somewhat

near orthogonal, it should likely have a condition number somewhat near one. As a result, we

expect the loss of orthogonality for Q̄ to be on the order of machine epsilon. We then have an

improved QR factorization of A by letting A = Q̄(R̄R). In our case, this simply means that

orthogonalizing the vector being appended against the columns of the previous Q factor twice

should be sufficient to maintain orthogonality of the Q factor to machine precision. This agrees

with a result from [42], which states that orthogonalizing twice in a Gram-Schmidt process will

maintain sufficient orthogonality. In Figure 4.1b we see that this process of twice orthognalizing

the newly appended column against the previous Q factor maintains orthogonality of the Q

factor on the order of machine precision despite a highly ill-conditioned coefficient matrix,

and the iteration converges as expected. The second round of orthogonalization doubles the

computational cost of this subroutine, but the number of operations is still only O(MN), so

78

it seems that the additional robustness justifies the increased cost. This change results in the

following code fragment, which is the subroutine as included in the solver:

void NOX::Solver::AndersonAcceleration::qrAdd(NOX::Abstract::Vector& newCol)

{

// Increase size of QR factors.

int N = qMat.size();

qMat.push_back(solnPtr->getX().clone(NOX::ShapeCopy));

rMat.reshape(N+1,N+1);

// Update QR factors

// Orthogonalize against previous columns once

for (int ii = 0; ii<N; ii++){

rMat(ii,N) = qMat[ii]->innerProduct(newCol);

newCol.update(-rMat(ii,N),*(qMat[ii]),1.0);

}

// Reorthogonalize

for (int ii = 0; ii<N; ii++){

double Alpha = qMat[ii]->innerProduct(newCol);

newCol.update(-Alpha,*(qMat[ii]),1.0);

rMat(ii,N) += Alpha;

}

rMat(N,N) = newCol.norm();

TEUCHOS_TEST_FOR_EXCEPTION((rMat(N,N) < 1.0e-16),std::logic_error,

"Error - R factor is singular to machine precision!");

*(qMat[N]) = newCol.scale(1.0/rMat(N,N));

}

This requires at most only 2(m− 1) inner product computations, which is less than or equal to

the number required for full modified Gram-Schmidt with single orthogonalization except for

m = 2 or 3, in which case this requires one additional inner product. This always requires at

most as many inner products as modified Gram-Schmidt twice.

qrDelete

We next consider the subroutine which updates the QR factorization when the first column is

deleted. In this subroutine, we begin with the QR factors for the matrix A ∈ RN×M where we

write A = [a1 a2 . . . aM], and compute the QR factors of A′ = [a2 . . . aM]. Noting that we

79

2 4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

10
5

10
10

10
15

10
20

Iteration number

Single Orthogonalization

Residual norm

Condition Number

Loss of Orthogonality

(a) Single orthogonalization

2 4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

10
5

10
10

Iteration number

Twice Orthogonalized

Residual norm

Condition Number

Loss of Orthogonality

(b) Twice orthogonalized

Figure 4.1: Convergence behavior and loss of orthogonality in the QR factorization of the
least-squares coefficient matrix for H-equation test problem, m = 10, ω = 0.9999

80

can write ai = Qri, where ri is column i of R, we can write:

A′ =
[
a2 . . . aM

]
=
[
Qr2 . . . QrM

]
= Q

[
r2 . . . rM

]
(4.9)

Denote entry j of ri as ri,j . As R is upper triangular, ri,j = 0 for j ≥ i. Hence, the matrix

[r2 . . . rM] is Upper Hessenberg, and it can be made upper triangular by the application of

M − 1 Givens rotations [22]. Letting G1, . . . , GM−1 be a sequence of rotations which upper

triangularizes [r2 . . . rM], we can write:

A′ = (QGT1 . . . G
T
M−1)

(
GM−1 . . . G1

[
r2 . . . rM

])
= Q′1

[
R′

0

]
(4.10)

In this, R′ is upper triangular, and as Q is assumed to have orthonormal columns and Gi

is orthogonal for 1 ≤ i ≤ M − 1, the matrix Q′1 has orthonormal columns. Then, writing

Q′1 = [Q′ q′], where q′ is the last column of Q′1, we have

A′ =
[
Q′ q′

] [R′

0

]
= Q′R′ (4.11)

Unlike the Gram-Schmidt process from the previous section, Givens rotations are known to

have favorable roundoff properties [22], so it is not expected that special care need be taken to

maintain orthogonality in the Q factor for this subroutine. Translating the above into code, the

subroutine as included in the solver is shown in the following code fragment.

void NOX::Solver::AndersonAcceleration::qrDelete()

{

int N = qMat.size();

for (int ii = 0; ii<N-1; ii++){

double temp = sqrt(rMat(ii,ii+1)*rMat(ii,ii+1)

+ rMat(ii+1,ii+1)*rMat(ii+1,ii+1));

double c = rMat(ii,ii+1)/temp;

double s = rMat(ii+1,ii+1)/temp;

rMat(ii,ii+1) = temp;

rMat(ii+1,ii+1) = 0;

for (int jj = ii+2; jj<N; jj++){

temp = c*rMat(ii,jj) + s*rMat(ii+1,jj);

rMat(ii+1,jj) = -s*rMat(ii,jj) + c*rMat(ii+1,jj);

rMat(ii,jj) = temp;

}

81

*tempVec = *(qMat[ii]);

tempVec->update(s, *(qMat[ii+1]), c);

qMat[ii+1]->update(-s, *(qMat[ii]), c);

*(qMat[ii]) = *tempVec;

}

// Shrink the factors.

qMat.pop_back();

for (int ii=0; ii<N; ii++){

for (int jj = 0; jj<N-1; jj++)

rMat(ii,jj) = rMat(ii,jj+1);

}

rMat.reshape(N-1,N-1);

}

As the R factor is replicated across each process for MPI implementations, all operations in

this routine are local, so this introduces no communication.

4.2.4 Solver Creation

NOX employs factory classes to create specific instances of its derived classes. Given a parameter

list specifying details about the object to be created, these factory classes create the requested

derived object and returns a reference to its base class. For NOX solvers, the factory class is

NOX::Solver::Factory. This class has a single member function, buildSolver, which which

returns a returns a pointer to a NOX::Solver::Generic object. Which derived class is created

is determined by the parameter list passed in when the function is called. The parameter list is

expected to have an entry named “Nonlinear Solver,” which prior to the addition of the Ander-

son acceleration solver accepted values of “Line Search Based,” “Trust Region Based,” “Inexact

Trust Region Based,” “Tensor Based,” or “Pseudo-Transient.” Getting the factory to create the

Anderson acceleration solver simply involved changing this function to return a new Anderson

acceleration solver object if the “Nonlinear Solver” parameter is set to “Anderson Accelerated

Fixed-Point.” An example of using a factory object to create an Anderson acceleration solver

is shown in the following code fragment:

// Create nox parameter list

Teuchos::RCP<Teuchos::ParameterList> nl_params =

Teuchos::rcp(new Teuchos::ParameterList);

nl_params->set("Nonlinear Solver", "Anderson Accelerated Fixed-Point");

nl_params->sublist("Anderson Parameters").set("Storage Depth", 2);

nl_params->sublist("Anderson Parameters").set("Mixing Parameter", 1.0);

82

nl_params->sublist("Anderson Parameters").

set("Acceleration Start Iteration", 1);

nl_params->sublist("Anderson Parameters").sublist("Preconditioning").

set("Precondition", false);

nl_params->sublist("Printing").sublist("Output Information").

set("Details",true);

nl_params->sublist("Printing").sublist("Output Information").

set("Outer Iteration",true);

// Line search parameters

nl_params->sublist("Line Search").set("Method", "Full Step");

// Create the solver

Teuchos::RCP<NOX::Solver::Generic> solver =

NOX::Solver::buildSolver(nox_group, combo, nl_params);

In this, we first create the parameter list for the nonlinear solver parameters, and we set the

parameter “Nonlinear Solver” to “Anderson Accelerated Fixed-Point,” which indicates that

the Anderson acceleration solver is the derived class that will be created. We then set values

for the “Anderson Parameters” sublist which controls the behavior of the solver through the

options specified in Section 4.2.1, the “Printing” sublist which controls the output level, and the

“Line Search” sublist which determines the details of line search object which will be internally

created in the solver. We finally create the solver object by calling the nonmember function

buildSolver, which itself creates a solver factory and calls the factory’s buildSolver function.

In this function call, the argument nox group is the group object which contains information

about the iterate value and function evaluation, and combo is the status test which is used to

determine success or failure of the iteration.

4.3 Unit Tests

Included with the Anderson acceleration implementation, we have written several unit tests to

test various aspects of the solver for both serial and parallel execution. In this section we will

overview the performance of the solver for these test problems.

83

4.3.1 Rosenbrock Test

The first set of unit tests concern solving F (u) = 0, where F is the following Rosenbrock

function

F

(
u1

u2

)
=

(
10(u2 − u2

1)

1− u1

)
. (4.12)

The analytic solution to this problem can be easily verified to be (1, 1)T . There are three tests

associated with this problem, and in each case we use as the initial iterate u0 = (−1.2, 1)T . The

tests are as follows:

• In the first test, we simply solve the problem by Anderson-2. Since we have an analytic

solution for this problem, we check this against the computed solution to ensure that the

correct values are computed.

• In the second test, we attempt to solve the equation with Anderson-3 and enable the

option to adjust the storage depth to maintain good conditioning of the least-squares

coefficient matrix. Note that attempting to append a third vector in the least-squares

coefficient matrix will always result in a singular R factor, since the vectors are only 2-

dimensional. Hence, the condition number of the R factor after this appending will be

infinite, and the storage depth will be adjusted down to 2. This test ensures the proper

functionality of the option to adjusting storage depth for conditioning.

• In the last test, we solve the problem by Anderson-2 while utilizing the “Safeguarded

Step” line search included in NOX. This tests the functionality of the line search option

in the Anderson acceleration solver.

For each of the tests, successfully passing requires the computed solution to match the analytic

solution and the solver to converge in the expected number of iterations.

We note here that the function G(u) = u+F (u), which is the fixed-point problem that An-

derson is solving, is not contractive near the solution. In fact, at the solution the Jacobian has

spectral radius ρ(G′(u∗)) ≈ 18.49. The convergence of the solver for each of the tests relies on the

fact that we use Anderson-2 rather than Anderson-1 in each case. Expressing the Anderson iter-

ation in the form given in Equation (3.61), when the storage depth has reached 2 the projector

term (I − Pk), which is in the portion of the expression where contractivity is important, be-

comes zero, and this is not the case for Anderson-1. All that remains is uk − F ′(uk)−1Fk, which

is a Newton iteration, and the higher order expansion term F ′(uk)
−1Ekγ

(k). For an Anderson-2

step, we will have ‖Ek‖ = O(
∑2

i=0

∑i
j=0 ‖ek−i‖‖ek−j‖), so the convergence depends on both

the current step and the two prior. This behavior is illustrated in Figure 4.2, which shows the

residual history from the first unit test. We first observe an increase in the residual for iterations

84

0 1 2 3 4 5 6

10
−15

10
−10

10
−5

10
0

Iteration Number

N
o

n
li
n

e
a

r
R

e
s
id

u
a

l

Rosenbrock Function Residual Norms

Figure 4.2: Solving the Rosenbrock function by Anderson-2

1 and 2, which correspond to a Picard iteration and and Anderson-1 iteration. The iteration

then stagnates for an iteration, and then begins to converge super-linearly as the high error

terms from the beginning of the iteration are discarded from memory.

4.3.2 Chandrasekhar H-equation Test

For the next set of unit test, we consider the Chandrasekhar H-equation from Section 3.2.3.

There are two unit tests associated with this problem. In the first test, we consider solving the

H-equation with ω = 0.999 using Anderson-10. In this test, we solve the problem once, then we

call the reset member function with the same initial iterate as the first solve and resolve the

same problem. To pass the test, the solver must converge in the proper number of iterations,

and compute the same solution with the first solve and the restarted solve. This ensures that

the reset member function is functioning properly to prepare the solver for consecutive solves.

We can also use this first unit test to ensure that the solver is implemented in such a way

that it properly handles the distributed memory case with MPI communication. In Table 4.1,

we see results from solving this problem while varying the number of MPI processes utilized.

The vectors are distributed so that there are approximately the same number of entries on each

process. In each case there is no observable difference in the residual norm values for the first

10 iterations, and after that point, there is some minor deviation, though the values generally

remain very close. When this divergence in residual norms occurs, the condition number of

the least-squares coefficient matrix is very large, on the order of 1012. This is large enough

so that differences in rounding error could contribute to minor differences in the solution to

the least-square problem, which could lead to the minor deviations we observe. In this case,

the differences in rounding error likely come from the computation of inner products used in

85

Table 4.1: Solving H-equation with ω = 0.999 and N = 400 by Anderson-10, varying the
number of MPI processes utilized

Number of MPI Processes

Iteration 1 2 4 8

0 7.48e+0 7.48e+0 7.48e+0 7.48e+0
1 3.87e+0 3.87e+0 3.87e+0 3.87e+0
2 1.26e+0 1.26e+0 1.26e+0 1.26e+0
3 1.43e-1 1.43e-1 1.43e-1 1.43e-1
4 1.05e-1 1.05e-1 1.05e-1 1.05e-1
5 5.35e-2 5.35e-2 5.35e-2 5.35e-2
6 4.60e-2 4.60e-2 4.60e-2 4.60e-2
7 2.39e-2 2.39e-2 2.39e-2 2.39e-2
8 1.63e-2 1.63e-2 1.63e-2 1.63e-2
9 4.30e-3 4.30e-3 4.30e-3 4.30e-3
10 6.88e-3 6.88e-3 6.88e-3 6.88e-3
11 2.67e-4 2.66e-4 2.68e-4 2.66e-4
12 1.35e-4 1.38e-4 1.35e-4 1.36e-4
13 6.66e-5 6.66e-5 6.81e-5 6.82e-5
14 2.11e-5 2.17e-5 2.22e-5 2.29e-5
15 3.15e-6 3.39e-6 3.27e-6 3.35e-6
16 6.38e-7 6.24e-7 6.51e-7 6.45e-7
17 2.43e-7 2.71e-7 2.65e-7 2.40e-7
18 1.10e-7 1.05e-7 1.13e-7 8.14e-8

computing the R factor, and in computing the quantity QTk Fk when solving QkRkγ = Fk. Since

changing the number of processes affects the parallel distribution of the vectors, the order of

addition in computing inner products will differ for each choice of MPI process count, and this

will lead to slightly different accumulation of rounding error.

In the second unit test, we consider solving the H-equation with ω = 0.99 using Anderson-5.

In this, we simply solve the problem with the start of the Anderson acceleration delayed until the

fifth iteration. That is, it performs Picard iteration for 5 steps and then beginning performing

Anderson acceleration at this point. This test is meant to ensure the proper functionality of

the “Acceleration Start Iteration” solver option. The only quantity that is checked in this test

is that the iteration converges in the expected number of iterations. The residual norm history

produced from this unit test is shown in Figure 4.3.

86

0 5 10 15
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration Number

N
o

n
lin

e
a

r
R

e
s
id

u
a

l

H−equation Residual Norms

Figure 4.3: Solving H-equation with ω = 0.99 by Anderson-5 with acceleration delayed until
iteration 5

4.3.3 1DFEM Test

In the final unit test, we consider a finite element discretization of the following equation

describing nonlinear heat conduction

−d
2T

dx2
+ kT 2 = 0, 0 ≤ x ≤ 1, (4.13)

T (0) = 1, T ′(1) = 0.

To discretize, we first consider this equation in the weak form∫ 1

0

dT

dx

dv

dx
dx+

dT

dx
v|x=0 + k

∫ 1

0
T 2v dx = 0, (4.14)

where v is a test function. We seek the solution ~T = (T0 . . . TN)T at the finite element nodal

points ~x = (x0 . . . xN)T . To form the residual, we first impose the condition T0 − 1 = 0. The

other components of the residual come from evaluating the weak formulation with the test

functions

vi(x) =


x−xi−1

xi−xi−1
x ∈ [xi−1, xi],

xi+1−x
xi+1−xi x ∈ [xi, xi+1],

0 otherwise,

(4.15)

for i = 1, . . . , N . This results in a residual equation of the form

F (~T) =

(
T0 − 1

A~T + kB~T 2

)
= 0, (4.16)

87

0 2 4 6 8 10 12
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration Number

N
o

n
li
n

e
a

r
R

e
s
id

u
a

l

1DFEM Residual Norms

Newton

Anderson−2

Figure 4.4: Solving the nonlinear heat conduction equation by Newton’s method and
Anderson-2

where A,B ∈ RN×(N+1) and ~T 2 = (T 2
0 . . . T 2

N)T .

This test is important since this is the only unit test in which we need to utilize the option to

precondition the problem in order for Anderson to converge. As described in Section 3.3, we need

to choose the mixing parameter β and preconditioner M(u) such that ‖I + βM(u)F ′(u)‖ < 1.

We have an analytic Jacobian, so for the preconditioner we let M(u) = F ′(u)−1, which we

compute with the Trilinos package ML (see Section B.2.8), and β = −1. This means that

Anderson will be applied to solve the fixed-point problem

G(u) = u− F ′(u)−1F (u). (4.17)

Note that this is simply applying Anderson acceleration to a Newton iteration.

In this test, we simply solve the above nonlinear equation (4.16) by Anderson-2. We consider

k = 1000, and an initial iterate of ~T0 = (1 . . . 1)T . To pass the test, the solver must simply

successfully converge in the expected number of iterations. In Figure 4.4, we see a residual plot

which compares the results from this test to the same problem solved by Newton’s method. We

observe that Anderson acceleration performs slightly worse than Newton’s method. It appears

that the Anderson acceleration residual norm is converging to zero superlinearly, though the

order of convergence is likely less than 2, which is the q-order for Newton’s method.

88

Chapter 5

1D Coupled Model Problem

5.1 Introduction

We now return to coupled multiphysics problems in reactor simulation. In this chapter, which

expands upon work first presented in [60], we consider a simplified model problem that we have

developed in order to assess potential performance gains from Anderson acceleration prior to

integrating it into the production level Tiamat code coupling. This problem models several of

the interdependent physical processes present in the Tiamat coupling. In particular, we are

concerned with the interdependence of the distribution of neutrons throughout the core and

the transfer of heat between the fuel and coolant regions.

In order to give any meaningful insight for the production level code coupling, this model

problem must recreate several key characteristics that have been observed with regard to the

behavior of Picard iteration for solving coupled problems in reactor physics. Beyond Tiamat,

Picard iteration has been very widely utilized for solving coupled multiphysics problems in

nuclear reactor physics [24, 25, 32, 39, 40, 66]. In most cases, some sort of numerical damping

scheme is required in order for the Picard iterations to be convergent. It has been observed that

at high enough power, oscillatory behavior arises in the solution as the iteration progresses.

It seems that this oscillatory behavior contributes to the poor convergence behavior of Picard

iteration which we noted for Tiamat in Section 2.3.3. This oscillatory behavior is illustrated

in Figure 5.1. This figure shows the temperature profile for consecutive iterations of a single

assembly calculation which couples Insilico for neutronics and AMP for fuel performance with

integrated subchannel flow [24]. As the iteration proceeds, there is an oscillatory shift between

the lower temperature peaking on the top and the upper temperature peaking at the bottom,

and the iteration fails to converge. This oscillation is equally observed in couplings between

various codes for 3× 3 “mini-assembly” calculation in [25] as well as for larger single assembly

to full core problems in [24,39]. It seems that this behavior is inherent to the physical processes

89

(a) Lower temperature peaking

(b) Upper temperature peaking

Figure 5.1: Oscillatory temperature shift in Insilico/AMP coupling

90

considered, and does not depend strongly on the codes being coupled or the number of fuel rods.

The oscillatory behavior seems primarily to be an axial phenomenon, so we attempt to utilize a

one-dimensional model in order to recreate and analyze this behavior. We then use this model

to evaluate the potential of Anderson acceleration as an alternative solution method to Picard

iteration. While Anderson acceleration has become widely utilized to accelerate Picard iterations

in other contexts, particularly SCF iterations for electronic structures calculations [26,35,47–49],

its effectiveness in the context of coupled multiphysics problems in LWRs has been largely

untested to this point.

In this chapter, we first describe the physical models that we considered and the discretized

problem in Section 5.2. We then describe how Picard iteration and Anderson acceleration are

used to solve this problem in Section 5.3. Lastly, in Section 5.4 we verify that this model problem

recreates the expected behavior for Picard iteration and then compare the performance of Picard

iteration with Anderson acceleration.

5.2 Physical Models and Discretization

In this simplified model problem we simulate the interdependence between the neutron distri-

bution and the temperature distributions within the fuel and coolant regions in a single fuel

rod of height L. We denote the cross sectional area at a given axial height as A(z). This area

comprises of a circular fuel region with radius Rf inscribed within a square coolant region.

We attempt to capture the behavior of the physical system by a one-dimensional model, so we

consider equations which describe the axial behavior of the neutron distribution and fuel and

coolant temperatures, which we treat as homogenous at a given axial height.

For reactor analysis, the distribution of neutrons is governed by the Boltzmann transport

equation (Equation (2.9)), and codes for this purpose solve some approximation of this equation.

As the purpose of this simplified study concerns convergence behavior rather than simulation

accuracy, we consider the fairly low-accuracy one-group diffusion equation

−∇ ·D(~r, T)∇φ(~r) + (Σt(~r, T)− Σs(~r, T))φ =
1

k
νΣf (~r, T)φ(~r), (5.1)

where φ is the neutron scalar flux, Σ are the material cross sections, D is the diffusion coefficient,

ν is the mean number of neutrons per fission, and k is the dominant eigenvalue. The cross section

dependence on ~r and T indicates that these quantities depend on both the material at position

r and its temperature. At the radial boundaries, we assume reflective boundary conditions.

To obtain a one-dimensional equation, we integrate (5.1) over the radial area A(z). Using the

divergence theorem on the first term, the radial derivative terms vanish due to the reflective

91

conditions at the radial boundaries. This leaves

−
∫
A(z)

∂

∂z
D(~r)

∂φ(~r)

∂z
dA+

∫
A(z)

(Σt(~r)− Σs(~r))φ(~r) dA =
1

k

∫
A(z)

νΣf (~r)φ(~r) dA. (5.2)

We then define the radially homogenized cross sections

Σ̄(z) =

∫
A(z)Σ(~r)φ(~r) dA∫
A(z)φ(~r) dA

, (5.3)

radially homogenized diffusion coefficient

D̄(z) =

∫
A(z)φ(~r) dA∫

A(z)D(~r)−1φ(~r) dA
=

1

3Σ̄t(z)
, (5.4)

and the radially integrated scalar flux

φ̄(z) =

∫
A(z)

φ(~r) dA. (5.5)

Substituting the radially homogenized cross sections and integrated scalar flux, and replacing

D(~r) with the radially homogenized quantity, (5.2) reduces to

− d

dz
D̄
dφ̄

dz
+ (Σ̄t − Σ̄s)φ̄ =

1

k
¯νΣf φ̄ . (5.6)

The neutron distribution affects the other physical systems primarily through heat generated

from fission. The linear heat generation rate is given by

q′(z) =

∫
A(z)

EfΣf (~r)φ(~r) dA = Ef Σ̄f (z)φ̄(z) , (5.7)

where Ef is the energy released per fission. As Equation (5.6) represents an eigenvalue problem,

the eigenfunction has no explicit magnitude, and we choose to set the average linear power to

a prescribed value P ∗

1

L

∫ L

0
Ef Σ̄f φ̄ dz = P ∗ . (5.8)

We will suppose that there is a vacuum at the upper and lower boundaries, so we impose

the following Marshak boundary conditions

φ̄(0)− 2D̄(0)
dφ̄

dz
(0) = 0, (5.9)

φ̄(L) + 2D̄(L)
dφ̄

dz
(L) = 0. (5.10)

92

To discretize this system, we employ a finite difference approximation which results in the

following system of equations

φ0

(
1

2
+

D1 +D0

2(z1 − z0)
+
z1 − z0

2
(Σt,0 − Σs,0)

)
− φ1

D1 +D0

2(z1 − z0)
=

1

keff
φ0
z1 − z0

2
νΣf,0, (5.11)

− φi−1
Di +Di−1

2(zi − zi−1)
+ φi

(
Di +Di−1

2(zi − zi−1)
+

Di+1 +Di

2(zi+1 − zi)
+
zi+1 − zi−1

2
(Σt,i − Σs,i)

)
− φi+1

Di+1 +Di

2(zi+1 − zi)
=

1

keff
φI
zi+1 − zi−1

2
νΣf,i, 1 ≤ i ≤ N − 1, (5.12)

− φN−1
DN +DN−1

2(zN − zN−1)
+ φN

(
1

2
+

DN +DN−1

2(zN − zN−1)
+
zN − zN−1

2
(Σt,N − Σs,N)

)
=

1

keff
φN

zN − zN−1

2
νΣf,N . (5.13)

Combining (5.11), (5.12), and (5.13), we can write the system for φ = (φ0, φ1, . . . , φN)T in

the following form

Aφ =
1

keff
Bφ (5.14)

where A is tridiagonal and B is diagonal. In implementation, we solve this problem as the

generalized eigenproblem Bφ = keffAφ using the Generalized Davidson eigensolver included in

the Trilinos package Anasazi (see Appendix B.2.6).

The solution eigenvectors returned by the Anasazi solvers will have norm one, so a scaling

will be required to enforce the power normalization condition (5.8). To do this, we need to

approximate the integral 1
L

∫ L
0 EfΣf φ̃ dz, where φ̃ is the unit norm solution returned by the

solver. We simply approximate this value using composite trapezoidal rule, which gives

I =
1

L

∫ L

0
EfΣf φ̃ dz ≈ 1

2L

N∑
j=1

(zj − zj−1)(EfΣf,j−1φ̃j−1 + EfΣf,jφ̃j).

Given this integral, computing φ = P ∗φ̃/I scales the eigenvector to satisfy the desired normal-

ization. Then, because the cross sections are homogenized over radial directions, we have the

linear heat generation rate q′ = EfΣfφ.

The last component to this set of physics is computation of cross sections. We compute pin

cell homogenized cross section data using a linear fit on reference data generated by the Scale

module XSProc [1]. We assume isotropic scattering, so the diffusion coefficient is computed by

93

Table 5.1: 1D model problem cross sections at various fuel temperatures with constant coolant
temperature 565K

Fuel Temp (K) Σt Σs Σf νΣf

500 0.655322 0.632804 0.0115249 0.0283528

1000 0.654535 0.631904 0.0114019 0.0280547

1500 0.653949 0.631236 0.0113002 0.0278078

Table 5.2: 1D model problem cross sections at various fuel and coolant temperatures

Fuel Temp (K) Coolant Temp (K) Σt Σs νΣf

565 565 0.655302 0.632765 0.0283063

1565 565 0.653976 0.631252 0.0277754

565 605 0.61046 0.589171 0.0265561

D = 1
3Σt

. The reference data for these computations are given in Tables 5.1 and 5.2. To com-

pute cross sections in the case with constant coolant properties, we perform a piecewise linear

interpolation using the three reference temperatures. For temperatures beyond the bounds of

the reference temperatures, we extrapolate by simply extending the linear fit past the reference

temperatures. This does not seem unreasonable, as the cross sections seem to have a rather

linear dependence on fuel temperature in this range. Next, in the case with variable coolant

temperature cross sections are computed by the linear fit

Σ(Tf , Tw) = Σ(565, 565) +
Σ(1565, 565)− Σ(565, 565)

1000
(Tf − 565)

+
Σ(565, 605)− Σ(565, 565)

40
(Tw − 565). (5.15)

In Table 5.2, Σf is not provided, but in Table 5.1 we see that ν is approximately constant and

equal to 2.46, so we let Σf = νΣf/2.46.

Next, we let the fuel temperature be governed by a simple relation derived from Newton’s

Law of Cooling [5], which states

q′′ = h(Tf − Tw), (5.16)

where q′′ is the heat flux and h is the heat transfer coefficient. To relate q′′ and q′ we consider

the differential length of the rod between axial heights z and z+dz. This corresponds to a heat

transfer surface area of 2πRfdz. In this model, we assume all the power generated in the fuel is

deposited radially into the coolant, so the power transferred through this area is given by q′dz.

Hence, the heat flux is q′′ = q′

2πRf
. Making this substitution gives the relation

2πRfh(Tf − Tw) = q′. (5.17)

94

Discretization of this equation is trivial, and we simply evaluate the above expression at each

axial height.

The last set of physics that we consider is coolant flow. We will consider two cases for the

coolant temperature. In the first, we let the fluid temperature be axially constant. We assume a

known incoming coolant temperature, and let this be the coolant temperature over the height

of the reactor. That is, given inflow temperature TIN , we let Tw,i = TIN for each node i. In

this case, there is a two-way coupling between the fuel temperature and neutronics. The fuel

temperature determines the cross sections, which affects the solution of (5.6). The neutronics

in turn determines the power distribution, which affects the fuel temperature through (5.17).

In the second case, we integrate a simple flow model to determine the coolant temperature.

In this model, we assume that flow is only in the axial direction with a constant mass flow rate

ṁ. We again consider a differential length dz about z. We let the change in temperature from

z to z + dz, dTw, be governed by the simplified steady-flow thermal energy equation [5], which

states

ṁcp(Tw)dTw = q, (5.18)

where q is the power generation in this interval. The power transferred to the coolant is again

q = q′dz, so we let the axial profile of the coolant temperature be governed by the differential

equation

ṁcp(Tw)
dTw
dz

= q′. (5.19)

Given the inflow temperature TIN , this can be solved to give the axial coolant temperature

profile. We let specific heat values be given by a piecewise linear interpolation using computed

data at reference temperatures and pressures given in [18]. Integrating this flow model now

results in a three way coupling between the neutron distribution, fuel properties, and coolant

properties. The coolant and fuel temperatures both depend on neutronics through heat genera-

tion from fission. There is also a relationship between the coolant and fuel temperature imposed

by (5.17). The neutron distribution depends on both the fuel and fluid temperatures through

the cross section temperature dependence.

We derive the discretized form of this equation by integrating over [zj−1, zj] and approxi-

mating by midpoint rule, which gives the approximation

ṁcp(Tw,j−1/2)
dTw,j−1/2

dz
= q′j−1/2,

where the subscript j−1/2 indicates the values are evaluated at zj−1/2 = 1
2(zj−1 +zj). We only

95

wish to involve quantities evaluated at mesh nodes, so we introduce the following approximations

dTw,j−1/2

dz
=
Tw,j − Tw,j−1

zj − zj−1
,

Tw,j−1/2 =
Tw,j + Tw,j−1

2
,

q′j−1/2 =
q′j + q′j−1

2
.

This gives the discretized equation

ṁcp

(
Tw,j + Tw,j−1

2

)
Tw,j − Tw,j−1

zj − zj−1
=
q′j + q′j−1

2
. (5.20)

This, combined with the boundary condition Tw,0 = TIN defines the system of equations to

solve for the coolant temperature. It is nonlinear, and in implementation this will be solved by

JFNK. The residual for this system is defined by

F (T)j =

Tw,0 − TIN , j = 0,

ṁcp([Tw,j + Tw,j−1]/2)(Tw,j − Tw,j−1)− (zj − zj−1)(q′j + q′j−1)/2, 1 ≤ j ≤ N.

This system is simple to differentiate analytically, and its Jacobian is given by

F ′(T)i,j =



1, i = j = 0,

ṁ(−cp(Tw,i+Tw,i−1

2) + c′p(
Tw,i+Tw,i−1

2)[Tw,j − Tw,j−1]/2), 1 ≤ i ≤ N, j = i− 1,

ṁ(cp(
Tw,i+Tw,i−1

2) + c′p(
Tw,i+Tw,i−1

2)[Tw,j − Tw,j−1]/2), 1 ≤ i ≤ N, j = i,

0, otherwise.

As specific heat evaluations will be computed via a table lookup, we prefer not to involve its

derivatives. For this reason, we implement a Jacobian-free method for solving this problem. To

precondition the linear JFNK solves, we approximate the Jacobian by disregarding the terms

involving specific heat temperature derivatives. For a realistic problem, the coolant temperature

should only increase approximately 30 degrees over the height of the reactor, so the difference

between neighboring coolant temperatures should be fairly small given a moderately fine mesh

and these terms should be somewhat negligible. The preconditioner is then given by the inverse

96

of the matrix defined by

M(Tw)i,j =



1, i = j = 0,

−ṁcp([Tw,i + Tw,i−1]/2), 1 ≤ i ≤ N, j = i− 1,

ṁcp([Tw,i + Tw,i−1]/2), 1 ≤ i ≤ N, j = i,

0, otherwise.

5.3 Coupling Algorithms

We seek φ̄, k, Tf , and Tw such that Equations (5.6), (5.8), (5.17), and (5.19) are simultaneously

satisfied. In this section, we describe how Picard iteration and Anderson acceleration can be

utilized to solve this problem.

5.3.1 Picard Iteration

First, we will consider the two-way coupling with constant coolant properties listed in Table 5.1.

Again, Picard iteration proceeds by cycling between solution of individual physical systems in

some order. In this one-dimensional study, we will only consider a block Gauss-Seidel type

fixed-point map. For the two-way coupling we alternate between solving the neturonics system

and solving the fuel temperature system. This scheme implemented as follows.

• Given Tnf , compute the cross sections Σ(Tnf).

• Solve the k-eigenvalue problem

− d

dz
D(Tnf)

dφn+1/2

dz
+
[
Σt(T

n
f)− Σt(T

n
f)
]
φn+1/2 =

1

keff
νΣf (Tnf)φn+1/2.

• Apply the power normalization and compute linear power

φn+1 =
P ∗φn+1/2

1
L

∫ L
0 EfΣf (Tnf)φn+1/2 dz

,

q′n+1 = EfΣf (Tnf)φn+1.

• Compute the updated temperature

Tn+1
f = Tw +

q′n+1

2πRh
.

97

As was previously stated, at high enough power levels this sort of iteration suffers poor conver-

gence or possibly divergence due to oscillatory error modes which arise in the temperature and

flux distributions. This has generally been addressed by utilizing a damping on the either the

temperature or power update, and we choose to damp the temperature. That is, we replace the

temperature update with the two-step process

T
n+1/2
f = Tw +

q′n+1

2πRh
,

Tn+1
f = (1− ω)Tnf + ωT

n+1/2
f .

We refer to ω as the damping parameter, and it has been noted that for this sort of iteration,

the damping parameter which results in the fastest rate of convergence generally falls between

0.3 and 0.6.

Integrating the flow model results in only a slight change to this process. Following the ex-

ample of the high fidelity coupling, we solve for the fuel and coolant temperatures as a tightly

coupled system. Given a power distribution, we independently solve (5.19) for the coolant

temperature, then use this in evaluating (5.17). When applying damping, we damp both tem-

peratures using the same damping parameter. This iteration then proceeds as follows.

• Given Tnf and Tnw , compute the cross sections Σ(Tnf , T
n
w).

• Solve the k-eigenvalue problem

− d

dz
D(Tnf , T

n
w)
dφn+1/2

dz
+
[
Σt(T

n
f , T

n
w)− Σt(T

n
f , T

n
w)
]
φn+1/2 =

1

keff
νΣf (Tnf , T

n
w)φn+1/2.

• Apply the power normalization and compute linear power

φn+1 =
P ∗φn+1/2

1
L

∫ L
0 EfΣf (Tnf)φn+1/2 dz

,

q′n+1 = EfΣf (Tnf)φn+1.

• Solve for the coolant and fuel temperatures

ṁcp(T
n+1/2
w)

dT
n+1/2
w

dz
= q′n+1,

T
n+1/2
f = Tn+1/2

w +
q′n+1

2πRh
.

98

• Apply the temperature damping

Tn+1
w = (1− ω)Tnw + ωTn+1/2

w ,

Tn+1
f = (1− ω)Tnf + ωT

n+1/2
f .

In the iteration, we attempt to converge each of the temperatures, the scalar flux, and the

eigenvalue.

5.3.2 Anderson Acceleration

We wish to use Anderson acceleration to improve the convergence rates, and potentially ro-

bustness, of iterations like those described in the previous section, which may be very slow

for realistic problems of interest, like Tiamat, and require ad hoc damping factors. To utilize

Anderson acceleration to solve this model problem, we need only to define the fixed-point map

to provide to the solver. The maps will be defined from the Picard iterations, but there is some

flexibility in how to implement this. We can choose to iterate on some subset or all of the state

variables. We will choose to expose the temperature vectors to the Anderson solver and embed

the neutronics application inside the fixed-point map evaluation. First, we will define G(Tf) to

be the fixed-point map for the two-way coupling. This function is evaluated as follows.

• Given Tf , compute the cross sections Σ(Tf).

• Solve the k-eigenvalue problem

− d

dz
D(Tf)

dφ̃

dz
+ [Σt(Tf)− Σt(Tf)] φ̃ =

1

keff
νΣf (Tf)φ̃.

• Apply the power normalization and compute linear power

φ =
P ∗φ̃

1
L

∫ L
0 EfΣf (Tf)φ dz

,

q′ = EfΣf (Tf)φ.

• Compute the updated temperature

G(Tf) = Tw +
q′

2πRh
.

Note that we can then represent the Picard iteration as Tn+1
f = (1− ω)Tnf + ωG(Tnf). For the

three-way coupling, the fixed-point map will be a function of both temperatures. We will call

99

this function H

(
Tf

Tw

)
, and it is evaluated as follows.

• Given Tf , Tw, compute the cross sections Σ(Tf , Tw).

• Solve the k-eigenvalue problem

− d

dz
D(Tf)

dφ̃

dz
+ [Σt(Tf)− Σt(Tf)] φ̃ =

1

keff
νΣf (Tf)φ̃.

• Apply the power normalization and compute linear power

φ =
P ∗φ̃

1
L

∫ L
0 EfΣf (Tf)φ dz

,

q′ = EfΣf (Tf)φ.

• Solve for T̃w and T̃f by

ṁcp
dT̃w
dz

= q′,

T̃f = T̃w +
q′

2πRh
.

• Define H

H

(
Tf

Tw

)
=

(
T̃f

T̃w

)
.

Again, we can represent the Picard iteration as(
Tn+1
f

Tn+1
w

)
= (1− ω)

(
Tnf
Tnw

)
+ ωH

(
Tnf
Tnw

)
.

5.4 Numerical Results

We now present numerical results for solving this 1D model problem with Picard iteration

and Anderson acceleration. For these tests, we select physical parameters to be approximately

realistic. We let the dimensions of the fuel rod be given by L = 360 cm and Rf = 0.5 cm.

We set the pressure of the system to 15.5 MPa, set a 100% power baseline at P ∗ = 200 W
cm ,

let the energy released per fission be Ef = 191.4 MeV, and let the heat transfer coefficient be

h = 0.2 W
m2 K

. For the flow model, we assume an incoming coolant temperature of TIN = 565 K

100

and a mass flow rate of ṁ = 0.3 kg
s . We discretize each of the systems on the same evenly spaced

mesh consisting of N = 201 axial nodes. In general, each of the systems need not be solved on

the same mesh, but differing meshes only increases the complexity of data transfers between

physical systems and should not significantly affect the convergence behavior of the coupled

system. We solve the generalized eigenproblem resulting from discretization of (5.6) by the

Generalized Davidson solver in the Trilinos package Anasazi (see Section B.2.6), and we solve

the nonlinear system from (5.19) using a NOX JFNK solver. For the Anderson iterations, we

utilize the NOX Anderson acceleration solver described in the previous chapter. To terminate

each iteration, we require each of φ̄, k, Tf , and Tw to be sufficiently converged by requiring

‖φ̄j+1−φ̄j‖
‖φ̄0‖

< τ,
|kj+1−kj |

k0
< τ,

‖Tf,j+1−Tf,j‖
‖Tf,0‖ < τ,

‖Tw,j+1−Tw,j‖
‖Tw,0‖ < τ,

(5.21)

where τ is some tolerance. For Anderson, φ̄ and k are the values computed internally in the

evaluation of the fixed-point map. In the following tests, we let τ = 10−4, and we begin with

initial fuel and coolant profiles identically equal to TIN .

5.4.1 Picard Results

We first implemented the Picard couplings to verify that the one dimensional model in fact

recreates the oscillatory behavior observed in the high-fidelity Insilico/AMP coupling. In the

case where coolant properties are held constant, the problem is symmetric about the center

height, and we expect the iterations oscillate between a center peaked distribution and a bimodal

distribution. In Figures 5.2a and 5.2b, we see fuel temperature profiles resulting from the one

dimensional model with constant coolant properties without and with damping. We see that

without sufficient damping we in fact recreate this oscillatory behavior. When the flow model

is integrated, the rise in the coolant temperature as it flows through the reactor introduces

asymmetry into the problem. As a result, we expect oscillation between lower-peaked and

upper-peaked distributions, as was displayed in Figure 5.1. Figure 5.2c shows the temperature

behavior for the one dimensional model without temperature damping, and we again see that

this problem retains sufficient physics to recreate the oscillatory behavior. Figure 5.2d shows a

similar effect from damping as what is observed in the two way coupling.

In Figure 5.3, we see the effect varying the damping parameter has on the number of Picard

iterations to convergence. The dependence of the necessary and ideal damping parameters

on power are very similar to what is observed in the high fidelity couplings. The three-way

coupling generally requires more damping, but this increased sensitivity to the level of damping

should not too surprising. In Table 5.2, we see that the cross sections have a significantly higher

dependence on the coolant temperature than the fuel temperature, and the coolant temperature

101

0 50 100 150 200 250 300 350
500

600

700

800

900

1000

1100

1200

Axial Height (cm)

F
u

e
l
T

e
m

p
e

ra
tu

re
 (

K
)

Temperature Profile, ω = 1.0

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

(a) Two-way coupling, no damping

0 50 100 150 200 250 300 350
500

600

700

800

900

1000

1100

1200

Axial Height (cm)
F

u
e

l
T

e
m

p
e

ra
tu

re
 (

K
)

Temperature Profile, ω = 0.5

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

(b) Two-way coupling, with damping

0 50 100 150 200 250 300 350
500

600

700

800

900

1000

1100

1200

1300

Axial Height (cm)

F
u

e
l
T

e
m

p
e

ra
tu

re
 (

K
)

Fuel Temperature Profile, ω = 0.5

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

(c) Three-way coupling, no damping

0 50 100 150 200 250 300 350
500

600

700

800

900

1000

1100

Axial Height (cm)

F
u

e
l
T

e
m

p
e

ra
tu

re
 (

K
)

Fuel Temperature Profile, ω = 0.5

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

(d) Three-way coupling, with damping

Figure 5.2: Fuel temperature behavior for the model problem, without and with damping

102

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

N
o
n
lin

e
a
r

It
e
ra

ti
o
n
s

Damping Factor, ω

Picard, Two−Way Coupling

80% Power

100% Power

120% Power

140% Power

(a) Two-way coupling

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

N
o
n
lin

e
a
r

It
e
ra

ti
o
n
s

Damping Factor, ω

Picard, Three−Way Coupling

80% Power

100% Power

120% Power

(b) Three-way coupling

Figure 5.3: Picard iterations to convergence, varying damping factor

103

depends strongly on the scalar flux through (5.19). Hence the coolant temperature and neutron

distribution are ratherly tightly coupled in these models. In general, we seem to recreate the

convergence behavior of the Insilico/AMP coupling, namely oscillatory behavior in the solution

vectors and strong dependence of iteration counts on both the damping parameter and power

level. This suggests that this model should be a good surrogate for higher fidelity couplings,

and our results for Anderson acceleration for this problem should provide some insight on its

behavior for such high fidelity coupling.

5.4.2 Anderson Results

In Figures 5.4 and 5.5 illustrate the convergence behavior of Anderson acceleration for the two-

way coupling and the three-way coupling while varying the power levels, mixing parameter and

storage depth. In most cases, the Anderson iterations do as well or better than the optimally

damped Picard iterations. In addition to at worst a modest improvement in terms of number of

iterations to convergence, we observe a significant improvement with respect to robustness. Each

of the Anderson iterations converges regardless of the mixing parameter, and in all cases the

number of iterations to convergence is generally insensitive to the choice of mixing parameter.

As expected, the iterations counts worsen a bit as the mixing parameter approaches zero, but

away from zero, for the most part there is no obvious relation between the iteration counts

and the mixing parameter. While the Picard iterations counts generally increase rapidly for

damping parameters away from the optimal value, the Anderson iterations do not have such an

observable dependence on the mixing parameter. As a result, the mixing parameter does not

need to be tuned to obtain acceptable performance.

Next, we have noted that the optimal damping parameter for the Picard iterations depends

rather strongly on the power level. In addition to this, the number of iterations at the optimal

damping level increases with the power. Conversely, the number of Anderson iterations to

convergence for a given mixing parameter does not depend strongly on the power level. In

terms of the choice of storage depth, the results agree well with past experience. In most cases,

Anderson-2 converges faster than Anderson-1, and Anderson-3 is faster than Anderson-2, but

less so. Anderson-3 seems moderately more stable with respect to the mixing parameter than

Anderson-2, and improvements seem to stagnate beyond this point. Then, ignoring memory

requirements, Anderson-3 or Anderson-4 seems optimal for this problem. Lastly, we noted that

the three-way coupling generally required significantly more damping to obtain convergence

when compared to the two-way coupling as a result of the strong dependence of the cross

sections on the coolant temperature. The Anderson iterations generally handle this stronger

coupling better, as in most cases additional damping is not necessary and the optimal number

of iterations are fairly comparable between the two mappings.

104

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Mixing Parameter, β

Comparison of Methods, Two−Way Coupling

Picard

Anderson−1

Anderson−2

Anderson−3

Anderson−4

(a) Two-way coupling comparison, 100% power

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Mixing Parameter, β

Anderson−1, Two−Way Coupling

80% Power

100% Power

120% Power

140% Power

(b) Two-way coupling, Anderson-1 iterations

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Mixing Parameter, β

Anderson−2, Two−Way Coupling

80% Power

100% Power

120% Power

140% Power

(c) Two-way coupling, Anderson-2 iterations

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Mixing Parameter, β

Anderson−3, Two−Way Coupling

80% Power

100% Power

120% Power

140% Power

(d) Two-way coupling, Anderson-3 iterations

Figure 5.4: Nonlinear iterations to convergence for two-way coupling

105

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Mixing Parameter, β

Comparison of Methods, Three−Way Coupling

Picard

Anderson−1

Anderson−2

Anderson−3

Anderson−4

(a) Three-way coupling comparison, 100% power

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Mixing Parameter, β

Anderson−1, Three−Way Coupling

80% Power

100% Power

120% Power

(b) Three-way coupling, Anderson-1 iterations

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Mixing Parameter, β

Anderson−2, Three−Way Coupling

80% Power

100% Power

120% Power

(c) Three-way coupling, Anderson-2 iterations

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Mixing Parameter, β

N
o

n
lin

e
a

r
It

e
ra

ti
o

n
s

Anderson−3, Three−Way Coupling

80% Power

100% Power

120% Power

(d) Three-way coupling, Anderson-3 iterations

Figure 5.5: Nonlinear iterations to convergence for three-way coupling

106

Chapter 6

Anderson Acceleration for Tiamat

6.1 Introduction

Given the promising results for Anderson acceleration on the model problem in the previous

chapter, we now now return to Tiamat and examine the performance of Anderson acceleration

on this production-level code coupling. Again, we are concerned with the solving the fully-

coupled problem at HFP conditions. In order to apply Anderson acceleration to solve this

problem, we simply need to define the vector of unknowns u and the fixed-point map G(u)

to which we apply the method. In this chapter, we first outline how we formulate the fixed-

point problem in Section 6.2. We then consider some technical details about how we integrate

Anderson acceleration into the Tiamat code in Section 6.3, and lastly, we consider numerical

tests which illustrate the performance of Anderson acceleration in comparison to other methods

in Section 6.4. Initial results from this work which utilize Insilico rather than MPACT for the

neutronics application can be found in [59].

6.2 Definition of Fixed-Point Maps

Because we implement Anderson acceleration in order to improve the rate of convergence for

Picard iteration, the fixed-point map to which we apply Anderson acceleration should in some

way be derived from the Picard iteration. When performing Picard iteration, the fact that we

are solving a fixed-point problem need not be explicitly stated. As described in Algorithms 1

and 3, the Picard iterations simply describe a process to map the current solutions to the new

solutions through a sequence of solves and data transfers. While there is an underlying fixed-

point problem u = G(u) that this attempting to solve, this is treated implicitly and the vector

of unknowns u and the fixed-point evaluation G(u) need not be explicitly formed. Conversely,

in order to utilize Anderson acceleration to solve this problem we need to explicitly define u

107

and G(u), as we need to compute the fixed-point residual F (u) = G(u) − u in order to form

and solve the least-squares problem in the Anderson acceleration algorithm. Note that u and

G(u) should be defined in such a way that we can express the Picard iteration in the form

uk+1 = G(uk).

The notation utilized in Algorithms 1 and 3 lends itself naturally to formulating the problem

as a fixed-point problem in terms of the state variables xB, xC , and xM . One could simply define

G

 xnB
xnC
xnM

 =

 xn+1
B

xn+1
C

xn+1
M

 , (6.1)

where xn+1
B , xn+1

C , and xn+1
M are the updated solutions resulting from performing one Picard

iteration given xnB, x
n
C , and xnM as inputs. This formulation is sufficient for Picard iteration, as

this simply requires the ability to evaluate the operator G, though G and the state variables

need not be explicitly accessible. This definition of the fixed-point problem will not work in

the case of Tiamat for the purpose of implementing Anderson acceleration. Applying Anderson

acceleration with this fixed-point map would require explicit access to the state variables for

each of the applications in order to compute the fixed-point residual F (u) = G(u)−u, and this

will not be possible with the applications we are utilizing, as neither CTF nor Bison provides

simple access to their state variables.

As a result of this, we must formulate the fixed-point problem in a different form in order

to apply Anderson acceleration. Rather than the single-physics state variables, we can instead

attempt to pose the iteration as a fixed-point problem in terms of the coupling parameter

vectors that are computed by the data transfer functions. That is, instead of mapping xB, xC ,

and xM from their current values to an updated approximate solution, we pose the Picard

iteration as a method for mapping Tf , Tw, ρw, Tc, q and q′′ to updated values through a series

of solves and data transfers. In this sense, we attempt to converge the solutions to the single-

physics application codes to the fully-coupled solution by converging the coupling parameters on

which the single-physics solutions depend. It is important to note that this coupling parameter

data being passed between codes must be necessarily accessible in order to implement the data

transfers.

In a sense, this method of formulating the fully-coupled problem in terms of coupling pa-

rameter vectors can be viewed as a form of nonlinear elimination. When we write the the fully-

coupled problem in the form of the residual equation (2.21), we have eliminated the transfer

functions from the coupled system in the sense that they are embedded within the single-physics

systems. However, we can instead treat these transfer functions as additional sets of constraints,

108

and express the fully-coupled system in the following form

F



xB

xC

xM

Tf

Tw

ρw

Tc

q

q′′


=



fB(xB, Tc, q)

fC(xC , q
′′)

fM (xM , Tf , Tw, ρw)

rM,B(xB)− Tf
rM,C,T (xC)− Tw
rM,C,ρ(xC)− ρw
rB,C(xC)− Tc
rB,M (xM)− q
rC,B(xB)− q′′


= 0. (6.2)

Now, rather than eliminating the transfer functions from the system, we can employ a non-

linear elimination scheme and instead eliminate the single-physics residuals from the system.

The single-physics residual equation fB(xB, Tc, q) = 0, implicitly defines the solution xB as

a function of the clad surface temperature Tc and the power q. We then denote the solution

to this equation given Tc and q by xB(Tc, q). We can similarly utilize fC(xC , q
′′) = 0 and

fM (xM , Tf , Tw, ρw) = 0 to express xC as a function of the heat flux q′′ and xM as a function

of the fuel temperature Tf , coolant temperature Tw, and coolant density ρw, denoting these by

xC(q′′) and xM (Tf , Tw, ρw) respectively. Then, eliminating these from the coupled system, (6.2)

reduces to

F



Tf

Tw

ρw

Tc

q

q′′


=



rM,B(xB(Tc, q))− Tf
rM,C,T (xC(q′′))− Tw
rM,C,ρ(xC(q′′))− ρw
rB,C(xC(q′′))− Tc

rB,M (xM (Tf , Tw, ρw))− q
rC,B(xB(Tc, q))− q′′


= 0. (6.3)

6.2.1 Block Gauss-Seidel Map

We now explicitly define the fixed-point problems that we utilize Anderson acceleration to

solve. We first consider the block Gauss-Seidel scheme. As in Algorithm 1, we perform the

single-physics solves in the order MPACT, Bison, then CTF. We express the block Gauss-Seidel

fixed-point map by the following

1. Given Tf , Tw, ρw, Tc

2. Solve fM (xM , Tf , Tw, ρw) = 0 for xM

3. Transfer MPACT to Bison, q = rB,M (xM)

109

4. Solve fB(xB, Tc, q) = 0 for xB

5. Transfer Bison to MPACT, T̂f = rM,B(xB)

6. Transfer Bison to CTF, q′′ = rC,B(xB)

7. Solve fC(xC , q
′′) = 0 for xC

8. Transfer CTF to MPACT, T̂w = rM,C,T (xC) and ρ̂w = rM,C,ρ(xC)

9. Transfer CTF to Bison, T̂c = rB,C(xC)

Then define

GGS


Tf

Tw

ρw

Tc

 =


T̂f

T̂w

ρ̂w

T̂c



=


rM,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))

rM,C,T (xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))))

rM,C,ρ(xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))))

rB,C(xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))))

 . (6.4)

Given the initial iterates T 0
f = rM,B(x0

B), T 0
w = rM,C,T (x0

C), ρ0
w = rM,C,ρ(x

0
C), and T 0

c =

rB,C(x0
C), Picard iteration with this fixed-point map will produce the same sequence as that

given by Algorithm 1. Also note that we have eliminated q and q′′ from the quantities that we

solve for. These quantities are computed internally in the evaluation of the fixed-point map, so

they do not need to be passed in as inputs. Since q is computed internally in this fixed-point

map, we do not consider a power damping when applying Anderson acceleration, and opt in-

stead to utilize the Anderson acceleration mixing parameter. This also acts as a damping factor,

but it is applied to each of the components of the vector of unknowns u, so in this case it acts

as a uniform damping on all the temperature and density updates. We lastly note that there

are multiple possible block Gauss-Seidel fixed-point maps, depending on the order in which one

chooses to solve the applications. This ordering was chosen in order to as closely as possible

mirror the approach from the previous chapter, in which the fixed-point map was defined in

terms of temperatures alone.

6.2.2 Block Jacobi Map

We proceed in a similar manner to define the block Jacobi fixed-point map. Again, for the block

Jacobi iteration we alternate between phases of solving all applications and then performing all

110

data transfers, so we let the block Jacobi map be defined by the following process

1. Given Tf , Tw, ρw, Tc, q, q
′′

2. Solve fM (xM , Tf , Tw, ρw) = 0 for xM

3. Solve fB(xB, Tc, q) = 0 for xB

4. Solve fC(xC , q
′′) = 0 for xC

5. Transfer MPACT to Bison, q̂ = rB,M (xM)

6. Transfer Bison to MPACT, T̂f = rM,B(xB)

7. Transfer Bison to CTF, q̂′′ = rC,B(xB)

8. Transfer CTF to MPACT, T̂w = rM,C,T (xC) and ρ̂w = rM,C,ρ(xC)

9. Transfer CTF to Bison, T̂c = rB,C(xC)

We then define

GJAC



Tf

Tw

ρw

Tc

q

q′′


=



T̂f

T̂w

ρ̂w

T̂c

(1− ω)q + ωq̂

q̂′′


=



rM,B(xB(Tc, q))

rM,C,T (xC(q′′))

rM,C,ρ(xC(q′′))

rB,C(xC(q′′))

(1− ω)q + ω rB,M (xM (Tf , Tw, ρw))

rC,B(xB(Tc, q))


. (6.5)

In this case q and q′′ are present in the vector of unknowns. Since each of the applications is

simultaneously solved at the beginning of the evaluation of the fixed-point map, each of the

coupling parameter vectors is required as input. As the power is now included in the vector of

unknowns, we allow for a damping on the power update.

6.2.3 Intermediate Map

As was mentioned in Section 1.2.1, the two types of fixed-point maps defined above represent the

essentially the only possible orderings of single-physics solves when considering two applications.

However, when considering more than two applications, there are more possible orderings in

which to solve the application codes. For instance, one could partition the applications into

groups and loop through solving those groups in some order, with applications within a group

solved simultaneously. This would result in a per-iteration run time somewhere between block

Jacobi and block Gauss-Seidel. This sort of intermediate fixed-point map could perform well

111

if the strength of the coupling between some of the applications is relatively weak. When two

applications are simultaneously solved, the applications are treated as more weakly coupled,

as the feedback between the two is delayed until the following iteration. Imposing a weaker

coupling betweens sets of physics that are themselves weakly coupled might possibly not cause

a dramatic increase in iterations over a block Gauss-Seidel scheme while offering improved

utilization of parallel resources. One such intermediate map that we briefly consider is given by

the following process

1. Given Tf , Tw, ρw, Tc, q, q
′′

2. Solve fM (xM , Tf , Tw, ρw) = 0 for xM

3. Solve fB(xB, Tc, q) = 0 for xB

4. Transfer MPACT to Bison, q̂ = rB,M (xM)

5. Transfer Bison to CTF, q′′ = rC,B(xB)

6. Transfer Bison to MPACT, T̂f = rM,B(xB)

7. Solve fC(xC , q
′′) = 0 for xC

8. Transfer CTF to MPACT, T̂w = rM,C,T (xC) and ρ̂w = rM,C,ρ(xC)

9. Transfer CTF to Bison, T̂c = rB,C(xC)

We then define

GINT


Tf

Tw

ρw

Tc

q

 =


T̂f

T̂w

ρ̂w

T̂c

(1− ω)q + ωq̂

 =


rM,B(xB(Tc, q))

rM,C,T (xC(rC,B(xB(Tc, q))))

rM,C,ρ(xC(rC,B(xB(Tc, q))))

rB,C(xC(rC,B(xB(Tc, q))))

(1− ω)q + ω rB,M (xM (Tf , Tw, ρw))

 . (6.6)

In this map, we alternate between simultaneously solving Bison and MPACT and then solving

CTF. While the solutions for Bison and MPACT should be rather strongly coupled, the stronger

coupling that this map imposes between both of these applications and CTF could result in

a lesser increase in iterations over block Gauss-Seidel than what is observed for block Jacobi.

Like the block Jacobi map, this includes the power in the vector of unknowns, so we allow for

a damping on the power update computed in this map.

We lastly note here the connection between the fixed-point maps we have defined in this

section and the residual equation (6.3) that these iterations are intended to solve. First off, the

112

fixed-point residual for the block Jacobi map is given by

FJAC



Tf

Tw

ρw

Tc

q

q′′


=



rM,B(xB(Tc, q))− Tf
rM,C,T (xC(q′′))− Tw
rM,C,ρ(xC(q′′))− ρw
rB,C(xC(q′′))− Tc

ω(rB,M (xM (Tf , Tw, ρw))− q)
rC,B(xB(Tc, q))− q′′


. (6.7)

This is precisely the residual given in (6.3) (with the power component scaled by the damping

factor).

Next, the fixed-point residual for the intermediate map is given by

FINT


Tf

Tw

ρw

Tc

q

 =


rM,B(xB(Tc, q))− Tf

rM,C,T (xC(rC,B(xB(Tc, q))))− Tw
rM,C,ρ(xC(rC,B(xB(Tc, q))))− ρw
rB,C(xC(rC,B(xB(Tc, q))))− Tc
ω(rB,M (xM (Tf , Tw, ρw))− q)

 . (6.8)

Note that the final component of the block Jacobi residual explicitly defines q′′ as a function

of the other unknowns as q′′ = rC,B(xB(Tc, q)). Using this equation to eliminate q′′ from the

block Jacobi residual results in this intermediate map residual.

Lastly, the fixed-point residual for the block Gauss-Seidel map is given by

FGS


Tf

Tw

ρw

Tc

 =


rM,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))− Tf

rM,C,T (xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))))− Tw
rM,C,ρ(xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))))− ρw
rB,C(xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw))))))− Tc

 . (6.9)

Like above, the last component of the intermediate map residual explicitly defines q as a function

of the other unknowns as q = rB,M (xM (Tf , Tw, ρw)), and using this to eliminate q from the

intermediate map residual gives precisely the residual for the block Gauss-Seidel map. Hence,

the block Jacobi map is directly solving the residual equation given in Equation (6.3), while

the block Gauss-Seidel and intermediate maps are solving nonlinearly eliminated forms this

residual equation.

113

6.2.4 Scaling of Unknown Fields

As each of the components of the fixed-point maps (6.4), (6.5), and (6.6) represents a different

physical quantity, it is possible that the relative scaling of these fields may be an issue with

regard to the least-squares problem in Anderson acceleration. If the values for one field are

significantly larger in magnitude than the others, then even small changes in this field will

have a more significant weight the least-squares problem than large changes in the other fields.

Similarly, if a field has entries of relatively small magnitude, the weight of this field in the

least-squares problem will be negligible.

To address this issue, we apply Anderson acceleration instead to a scaled fixed-point prob-

lem. For this, we first introduce the scaled variables v = Mu, where M is a diagonal scaling

matrix. We then apply Anderson to the scaled fixed-point problem given by

v = MG(M−1v) ≡ H(v), (6.10)

where G is one of the three fixed-point maps defined above, and u is the vector of unknowns

corresponding to that map. We note that we can express the fixed-point residual corresponding

to the scaled problem as

H(v)− v = MG(M−1v)− v = M(G(M−1v)−M−1v) = M(G(u)− u). (6.11)

That is, the scaled fixed-point residual is simply a left preconditioning of the unscaled residual.

It then remains to describe how the scaling matrix M is defined for each of the fixed-point

maps we consider. Beginning with the simplest case, for the block Gauss-Seidel map we define

the scaling matrix MGS by

MGS =


diag(T 0

f)−1

diag(T 0
w)−1

diag(ρ0
w)−1

diag(T 0
c)−1

 , (6.12)

where T 0
f , T

0
w, ρ

0
w, and T 0

c are the fuel temperature, coolant temperature, coolant density, and

clad temperature from the initial iterate, and diag indicates a diagonal matrix with the given

vector along the diagonal. This choice of scaling gives as the initial iterate for the scaled problem

a vector of ones. The scaled fixed-point residual will measure changes in each entry relative to

its initial value. We note that this choice of scaling should not pose a threat of zero division, as

both the temperature and density are given on an absolute scale, and should never be very near

zero under normal conditions. Scaling for this map should likely not be of great concern, as the

majority of unknowns we solve for are temperatures, which should all be on roughly the same

114

order of magnitude. However, with the chosen units the density values will be several orders

of magnitude smaller than the temperatures, so this scaling will give the density field a more

appreciable weight in the Anderson acceleration least-squares problem.

With the other fixed-point maps, scaling needs to be handled slightly differently, as employ-

ing a similar scheme as what is used for block Gauss-Seidel could could lead to zero division.

While the power is on an absolute scale, local power values of zero are possible, and will in fact

be the case in non-fuel pins or cladding regions. Zero division would similarly possible for the

heat flux, and in fact negative heat flux values can be obtained. As the heat flux represents

energy being deposited into the coolant, a negative value would represent energy flowing from

the coolant into a rod, and this is possible in non-fuel rods. We address this issue by scaling

these fields by average values rather then the entry-wise values. For the intermediate map, only

the power is introduced as an unknown field in addition to those considered in the block Gauss-

Seidel map. Then, employing the same scaling that is used for the block Gauss-Seidel map for

the temperature and density fields, we define the scaling matrix MINT for this map by

MINT =

(
MGS

Mq

)
. (6.13)

In this, we define

Mq =


1
q̄01
I

. . .
1
q̄0Nr

I

 , (6.14)

where Nr is the number of rods and q̄0
i is the initial average power in rod i. We define the initial

average power in rod i as

q̄0
i =

1

Nqi

∑
j∈Ri

|q0
j |, (6.15)

where Nqi is the number of power unknowns contained in rod i, Ri is the set of indices corre-

sponding to power unknowns located in rod i, and q0 is the initial power distribution. If q̄0
i = 0

for some rod (e.g. a non-fuel rod), we disable scaling for this rod by setting this value to 1.

Essentially, this scales the power components of the fixed-point residual by their initial rod-wise

initial average value.

We lastly consider the scaling matrix for the block Jacobi map. This appends heat flux to

the vector of unknowns for the intermediate map. Then employing the same scaling strategy

for the temperature, density, and power fields as for the intermediate map, we define the block

115

Jacobi scaling matrix MJAC by

MJAC =

(
MINT

1
q̄′′0
I

)
, (6.16)

where the initial average heat flux q̄′′0 is defined as

q̄′′0 =
1

Nq′′

Nq′′∑
i=0

|q′′0,i|. (6.17)

In this, Nq′′ is the number of heat flux unknowns and q′′0 is the initial heat flux distribution.

This scales each heat flux component of the fixed-point residual by the initial global average

heat flux.

6.3 Implementation Details

In this section, we overview some technical details regarding the integration of Anderson ac-

celeration into the Tiamat code coupling. In order to integrate Anderson acceleration into this

coupling, we utilize the NOX solver that we described in Chapter 4, and we now overview how

this is accomplished.

6.3.1 NOX Solver Creation

As described in Section 4.2, creating a NOX Anderson acceleration solver requires a NOX group,

a status test, and a parameter list passed in during construction. The parameter list describes

several options for the solver, like the storage depth and the mixing parameter, and the sta-

tus test describes the termination criteria. The group contains most important information for

describing an iteration, like the approximate solution, the residual vector, and derivative infor-

mation. In order for the group to compute the residual and any other supported information, it

must be provided some model evaluator object that defines how this information is computed.

For this purpose, we utilize NOX’s support for the Trilinos package Thyra (see Appendix B.2.4)

for implementations of both the group and model evaluator classes. The model evaluator class

we create inherits from the Thyra::StateFuncModelEvaluatorBase class, which is a basic im-

plementation of a Thyra model evaluator which supports computing a residual given some input

vector. The crux of this class is the definition of the inherited member function evalModelImpl,

which is what defines the residual evaluation. In our case, this routine, which computes the

fixed-point residual given some input set of coupling parameter vectors, proceeds essentially as

follows.

116

1. Extract coupling parameter vectors from input vector.

2. Convert from scaled variables to unscaled variables by applying the inverse of the scaling

matrix.

3. Write input coupling parameter vectors to the appropriate DTK target containers.

4. Run through sequence of solves and transfers.

5. Extract new coupling parameter data from the same DTK target containers.

6. Apply scaling to the variables.

7. Compute fixed-point residual (possibly applying block damping) and write result to the

output vector.

This model evaluator class supports each of the fixed-point map types that were defined in the

previous section. We simply specify on construction of this object whether we are considering

block Gauss-Seidel, block Jacobi, or the intermediate map, and this determines within the model

evaluator which coupling parameter vectors comprise the vector of unknowns u, and in what

order the solves and data transfers should be performed. This class also features functions for

creating the appropriate initial iterate and scaling vector for the given fixed-point map type

given the current solutions to each of the single-physics application codes. With this model

evaluator created, it is used to create a NOX::Thyra::Group object, which is then used to create

the Anderson acceleration solver. Beneath the Thyra objects, Tpetra (see Appendix B.2.3) is

utilized for the underlying distributed vectors.

6.3.2 Interfacing With PIKE

As was previously stated, Tiamat uses PIKE solvers for the fully-coupled solve, so in order

to integrate Anderson acceleration with minimal change to the Tiamat code, this required

creating a wrapper class which implements the PIKE solver interface while internally utilizing

a NOX solver for the routine to compute a new iterate. The type of the internal solver is

the NOX solver base class, NOX::Solver::Generic, so the underlying NOX solver need not

be the Anderson acceleration solver. This is useful in Section 6.4.1, when we compare the

performance of Anderson acceleration and Picard iteration with JFNK. This wrapper class

allows Tiamat to easily interface with the NOX solver while utilizing the previously developed

PIKE objects (status tests, solver observers, etc.) without any change. The wrapper class that

has been developed is very minimal. This class contains a pointer to the underlying NOX solver

and most of the work is deferred to this solver. The main functionality provided by this class

is accessor functions for the underlying NOX solver and an implementation of the inherited

117

member function stepImplementation, which is the function which computes the next iterate.

In this case, this simply calls the step routine in the NOX solver. This function computes the

new iterate with, then evaluates the fixed-point residual at this new iterate. The exception to

this is on the first iteration. For this step, we simply evaluate the fixed-point residual for the

initial iterate. Otherwise, a call to the NOX solver step would advance the internal models twice,

as this would evaluate the initial residual, compute the first NOX iterate, and then compute

the residual at this new iterate (each residual evaluation involves solving the application codes).

Additionally, while we are using NOX to solve the problem, PIKE rather than NOX is used to

determine convergence of the system. The only status test we set in the NOX solver enforces a

maximum number of iterations.

6.3.3 Setting NOX Initial Iterate

After the NOX solver is created, and has been wrapped in the PIKE solver, Tiamat solves the

problem by simply calling the solve routine in the PIKE solver, which repeatedly calls the

step function until the iteration has converged or failed to converge. The initialization phase

for ramping Bison to HFP, which was described in Section 2.3, is performed by a PIKE solver

observer, which inserts this action before the solver begins to solve the problem. The initial

iterate we desire for the NOX Anderson acceleration solver is not available until after this

initialization phase, as it is computed from the estimated HFP solutions for the single-physics

applications that result from the initialization. Recall, however, that an initial iterate is required

for the construction of the NOX group, and the group is required to create the NOX solver.

The NOX solver must be set in the PIKE solver before solve is called, so this raises an issue

as to how to set the initial iterate in the NOX solver.

The method by which we address this is to introduce another solver observer which sets the

correct initial iterate by using the NOX solver’s reset member function. When constructing

the NOX solver, we simply pass in a dummy vector to the group which has the correct size.

Then when solving the problem, this observer inserts an action before each call to the step

function. It first checks which iteration the PIKE solver is at. If it is determined that the PIKE

solver is in the first iteration, this observer uses the model evaluator described in Section 6.3.1

to compute the correct initial iterate, and the reset function in the NOX solver is called to set

this as the initial iterate. This observer can also be used for resetting the NOX solver for use

in repeated solves if solving for more than one time step.

118

6.4 Numerical Results

We now consider numerical tests of various problem size in order to demonstrate the behavior

of Anderson acceleration when applied to solve the fully-coupled HFP problem in Tiamat, and

these results are compared with other methods.

6.4.1 Single Fuel Rod Tests

We first consider the simulation of a single fuel rod at HFP conditions for a single time step.

This is the same problem we considered when illustrating the behavior of Picard iteration in

Section 2.3.3, so the input specifications for this problem are given in Appendix C.3.

Sensitivity to Power Level

We first compare Anderson acceleration against Picard iteration with respect to some of the

issues that we noted as weaknesses for Picard, namely poor robustness with regard to varia-

tion in parameters like the power and damping levels. First, in Table 6.1, we see results from

solving the fully-coupled problem at various power levels with both Picard and Anderson. We

now include results for Picard iteration with the intermediate fixed-point map. As was noted

previously, the Picard iterations display some sensitivity to the power level. With the block

Gauss-Seidel map, there is only a slight rise in iteration counts when going from 100% power

to 125% power. However the other two fixed-point maps display a significant dependence on

the power level. The falloff in performance as the power level is increased for the intermediate

map is actually even more dramatic than what is observed for the Jacobi map. In both cases,

the Picard iterations fail to converge at 100% power and above.

The Anderson acceleration results in this table seem to indicate that this method is some-

what more robust with regard to power variation than Picard. We note that with the Gauss-

Seidel map, both Anderson and Picard seem somewhat insensitive to changes in the power level.

In both cases, the performance is fairly consistent over all but the 125% power case, for which

there is a minor increase in iterations to convergence, and the rise for Anderson is slightly

less than that for Picard. Also note that the in each case, the Anderson iteration converges

in as few or fewer iterations than Picard iteration. Anderson with the other fixed-point maps

does not display quite this level of robustness with regard to variation in the power level, but

it does seem to provide a significant improvement over Picard with these maps. While there

is an upward trend in the Anderson iteration counts, it is significantly less than the increase

for Picard iteration, and the Anderson iterations actually converge at each power considered. We

lastly note that even for the low powers, at which Picard performs fairly well, the Anderson

119

Table 6.1: Comparison of Picard and Anderson-2 with each of the fixed-point maps (Gauss-
Seidel, intermediate, and Jacobi) for single-rod Tiamat simulation at various power levels.
Damping factor = 0.5 and max iterations = 25

Power Level Method Iterations Solve Time (s) keff Tf,max

25%

Picard (GS) 9 303 1.23708 483.55
Picard (INT) 10 328 1.23709 483.57
Picard (JAC) 14 392 1.23708 483.54

Anderson-2 (GS) 7 267 1.23710 483.54
Anderson-2 (INT) 9 290 1.23710 483.55
Anderson-2 (JAC) 10 280 1.23708 483.54

50%

Picard (GS) 7 292 1.23105 694.09
Picard (INT) 17 486 1.23106 693.97
Picard (JAC) 15 407 1.23106 693.92

Anderson-2 (GS) 7 290 1.23102 694.07
Anderson-2 (INT) 10 346 1.23109 694.00
Anderson-2 (JAC) 10 312 1.23104 694.12

75%

Picard (GS) 8 332 1.22493 931.20
Picard (INT) 24 634 1.22500 929.81
Picard (JAC) 18 462 1.22497 930.18

Anderson-2 (GS) 8 324 1.22495 930.22
Anderson-2 (INT) 12 389 1.22498 929.83
Anderson-2 (JAC) 10 331 1.22496 930.89

100%

Picard (GS) 8 353 1.21857 1194.67
Picard (INT) DNC
Picard (JAC) DNC

Anderson-2 (GS) 7 337 1.21858 1194.06
Anderson-2 (INT) 14 466 1.21859 1193.20
Anderson-2 (JAC) 19 486 1.21855 1195.16

125%

Picard (GS) 12 445 1.21214 1505.16
Picard (INT) DNC
Picard (JAC) DNC

Anderson-2 (GS) 10 420 1.21218 1504.21
Anderson-2 (INT) 12 400 1.21216 1505.35
Anderson-2 (JAC) 16 459 1.21214 1504.62

120

acceleration provides a noticeable improvement over Picard iteration for the intermediate and

Jacobi maps.

Sensitivity to Damping Level

We now consider the effect that damping has on the performance of Anderson acceleration

for this problem. First, consider Figure 6.1. In this figure we see iteration counts for Picard

and Anderson with the Gauss-Seidel map using various damping parameters at 100% power.

As expected, the Picard curve displays a clear optimal damping level, and performance falls

off rapidly away from this optimal level. Conversely, for Anderson we observe a significant

improvement in robustness with respect to variation in damping. First of all, Anderson converges

in each case considered, while Picard fails if the damping factor is too large. As the damping

factor is made very small, the iteration counts begin to rise, but otherwise the performance

displayed by Anderson acceleration is rather consistent across each damping level considered.

It is also interesting to note that over this wide range at which Anderson performs well, the

iteration counts are generally comparable to, and occasionally better than, the count for Picard

at its optimal damping level. We also note that this represents a best case scenario for Picard.

With the other fixed-point maps, Anderson provides a much more significant improvement over

optimally damped Picard.

Next, we refer to Figure 6.2, which shows Anderson-2 iteration counts at various power

and damping levels for each of the fixed-point maps. We had previously noted in Section 2.3.3

that the optimal damping level for Picard is dependent on the power level. In this figure, we

note that this is not the case for Anderson acceleration. Each curve displays behavior similar

to what we observe in Figure 6.1, in that the solve times can rise a bit for very small damping

factors, but the performance is generally very consistent over a wide range of damping levels.

We note that there is a slight upward trend in the iteration counts as the power is increased,

though we expect the iterations to solution for Picard at the optimal damping level to similarly

increase. Whereas for Picard power variation shifts the shape of the iteration count curve and the

optimal damping level (as seen in Figure 2.8), for Anderson the shape of the curve is essentially

unchanged. Hence, it should be easier to obtain good performance when utilizing Anderson

acceleration than Picard iteration, as Picard iteration requires knowledge of a good damping

parameter for a given problem, while Anderson displays more consistent good performance.

Anderson Acceleration Storage Depth Parameter

We now consider the effect of varying the storage depth parameter for Anderson acceleration.

First, we refer again to Figure 6.1, which shows iteration count results for solving the problem

by Picard, Anderson-1, Anderson-2, and Anderson-3 with the Gauss-Seidel map. In this, we

121

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Damping Factor

It
e
ra

ti
o
n
s
 t
o
 C

o
n
v
e
rg

e
n
c
e

Picard

Anderson−1

Anderson−2

Anderson−3

Figure 6.1: Comparison of Picard and Anderson with the Gauss-Seidel map for Tiamat single-
rod tests at 100% power, varying the damping level and Anderson storage depth parameter

observe that the performance for each choice of storage depth parameter is rather similar.

Anderson-2 and Anderson-3 only differ by more than a single iteration at damping factor 1.0,

where Anderson-3 converges 2 iterations faster. Anderson-1 requires several more iterations

than the other two storage depth parameters for damping factors smaller than 0.4, but over the

range 0.4–1.0, the performance of all three methods is very similar and consistently comparable

to Picard at its optimal level. The improved performance for smaller damping factors may

give reason to choose Anderson-2 over Anderson-1, especially since the increase in storage and

computational costs for Anderson-2 over Anderson-1 is not a significant concern. However, these

results do not display a compelling reason to consider a storage depth parameter greater than 2.

Next, Figure 6.3 displays fixed-point residual history plots comparing Picard and Anderson

with various storage depth parameters. In this, we see that for each fixed-point map, Anderson

provides a noticeable improvement over Picard with respect to the rate of convergence of the

fixed-point residual for each considered storage depth parameter. This is especially apparent

for the intermediate and Jacobi fixed-point maps, where we generally note residual norms for

Anderson several orders of magnitude smaller than Picard at the point where the Anderson

iterations terminate. However, even for the Gauss-Seidel map, each Anderson iteration reports

a final fixed-point residual norm smaller than that for Picard by about an order of magnitude

or more, even though the iterations all converge in a similar number of iterations. With respect

to the choice of storage depth parameter for Anderson, these figures show similar results to

what was noted above. That is, there is no obvious trend which suggests an advantage for one

choice of storage depth parameter over the others. Anderson-1 converges in the fewest iterations

122

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Damping Factor

It
e
ra

ti
o
n
s
 t
o
 S

o
lu

ti
o
n

Gauss−Seidel Map

80% Power

100% Power

120% Power

(a) Block Gauss-Seidel map

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Damping Factor

It
e
ra

ti
o
n
s
 t
o
 S

o
lu

ti
o
n

Intermediate Map

80% Power

100% Power

120% Power

(b) Intermediate map

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Damping Factor

It
e
ra

ti
o
n
s
 t
o
 S

o
lu

ti
o
n

Jacobi Map

80% Power

100% Power

120% Power

(c) Block Jacobi map

Figure 6.2: Anderson-2 iteration counts for single-rod Tiamat tests at several power levels,
varying the damping factor

123

0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

R
e
la

ti
v
e
 f
ix

e
d
−

p
o
in

t
re

d
is

u
a
l

Gauss−Seidel map, damping = 0.5

Picard

Anderson−1

Anderson−2

Anderson−3

(a) Block Gauss-Seidel map

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

R
e
la

ti
v
e
 f
ix

e
d
−

p
o
in

t
re

s
id

u
a
l

Intermediate map, damping = 0.5

Picard

Anderson−1

Anderson−2

Anderson−3

(b) Intermediate map

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

R
e
la

ti
v
e
 f
ix

e
d
−

p
o
in

t
re

d
is

u
a
l

Jacobi map, damping = 0.5

Picard

Anderson−1

Anderson−2

Anderson−3

(c) Block Jacobi map

Figure 6.3: Relative fixed-point residual histories from Tiamat single-rod tests at 100% power
for Picard iteration and Anderson acceleration with various storage depth parameters

124

for the Gauss-Seidel map, but referring to Figure 6.1, we see that is a matter of the choice of

damping factor. For the other fixed-point maps, Anderson-1 is actually the slowest, and in

general there is not a significant difference in the number of iterations to convergence for each

storage depth parameters. Overall, the apparent rate of convergence for each choice of storage

depth parameter is very similar, so due to the weaker performance of Anderson-1 for smaller

damping factors which was noted above, we consider Anderson-2 from this point forward.

Comparison of Fixed-Point Maps

From Table 6.1 and Figure 6.2 we can compare the performance of the three considered fixed-

point maps. As expected, we generally observe that the Gauss-Seidel map converges in the

fewest iterations, followed by the intermediate map, and then the Jacobi map. Again, this is

expected because Gauss-Seidel treats the applications in the most tightly coupled manner by

transferring updated information as soon as it is obtained, while Jacobi treats them in the most

weakly coupled manner by solving every application simultaneously. While Figure 6.2 shows

that iteration counts generally seem somewhat lower for the intermediate map than the Jacobi

map, they are fairly comparable and significantly higher than what we observe for the Gauss-

Seidel map. It then seems that the strength of coupling between Bison and MPACT is rather

strong, as the weaker coupling that the intermediate map imposes between these applications

due to their simultaneous solution results in a significant rise from Gauss-Seidel in iterations

to convergence.

With respect to timings, in Table 6.1 we observe that Anderson with the Gauss-Seidel

map again generally does best. This problem, however, is not ideal for gauging the timing

performance of the intermediate or Jacobi maps. Recall that in Table 2.2, which broke down

application timings for Picard simulations for this problem, we observed that the Bison solve

dominated the time per iteration. The advantage of the intermediate and Jacobi maps derives

from the fact that the simultaneous solution of applications results in a lower time per iteration

than Gauss-Seidel. This advantage disappears if the applications do not require roughly the same

solve time. In this case the per-iteration time for each of the three maps is essentially equal to

the Bison solve time. It is possible that the intermediate or Jacobi map may outperform Gauss-

Seidel given these iteration counts, but this would require better balance in the application

solve times. Still, as we observe the iteration counts for the intermediate map are generally

comparable to the Jacobi map, it seems that this map is unlikely to be best in many cases.

If solve times are poorly balanced, the additional iterations required will make it worse than

Gauss-Seidel. Conversely, if solve times are well balanced, its iteration count will be similar to

Jacobi, but with significantly higher time per iteration. As a result of this, we do not consider

the intermediate map from this point forward.

125

Agreement Between Anderson and Picard Solutions

We now consider the level of accuracy of the solutions produced by Anderson acceleration.

There has been work performed benchmarking the solutions computed by Tiamat against results

from the VERA core simulator, which consists of a stand-alone coupling between MPACT and

CTF [12] . In this, only the block Gauss-Seidel Picard iteration is considered, so we are satisfied

if the solutions we obtain from the Anderson acceleration simulations are sufficiently close to

the block Gauss-Seidel Picard solutions. Beyond the benchmarking that has been performed for

Tiamat with Picard iteration, Picard and Anderson are solving the same fixed-point problem,

so we expect that they should produce approximately the same solution.

We first refer again to Table 6.1. In this table, we list the dominant eigenvalue keff and the

maximum fuel temperature Tf,max resulting from solving the fully-coupled problem at various

power levels with both Picard and Anderson-2. Within a given power level, the eigenvalues agree

fairly closely, with no two eigenvalues differing by more than 10 pcm (pcm is a unit referring

to the fifth decimal place in the eigenvalue). We also note that the difference in the maximum

fuel temperature for any two simulations within a power level is less than 2 Kelvin.

To explore the level of agreement further, we consider Figures 6.4, 6.5, 6.6, and 6.7. These

figures display the solution fuel temperature, clad temperature, fission rate, and heat flux com-

puted by block Gauss-Seidel Picard iteration, which we take as reference solutions, and addi-

tionally show the relative differences in these quantities computed by Anderson acceleration

with both the Gauss-Seidel and Jacobi fixed-point maps. We observe that there is generally

good agreement between the Anderson solutions and the Picard solution. Generally the last

convergence criteria to be satisfied in simulations with the currently utilized termination cri-

teria is the power tolerance, and in for these test we utilize a power convergence tolerance of

εq = 10−4. The relative differences observed in these figures are essentially on this order of

magnitude, so it seems that the relative differences we observe can likely be attributed to the

global convergence criteria. We note that within each figure, the Anderson acceleration relative

difference curves have generally the same shape. This could indicate that there is some minor

bias introduced by utilizing Anderson acceleration, or this could indicate that the Anderson

solutions are actually of higher accuracy than the Picard solution.

Sensitivity to Single-Physics Solve Tolerances

We now consider the effect that varying the individual single-physics solve tolerances has on

the behavior of both Picard iteration and Anderson acceleration. Each of the application codes

only solves its set of physics approximately and has its own set of tolerances which are used

to determine a successful solve. As a result, when solving an single set of physics, we obtain

some approximate solution x̂i rather than the exact solution xi. Hence, we can more accurately

126

0 100 200 300 400
650

700

750

800

850

900

950

1000

1050

1100

1150

Height (cm)

F
u

e
l
T

e
m

p
e

ra
tu

re
 (

K
)

Fuel Temperature

(a) Average fuel temperature computed by Pi-
card iteration

0 100 200 300 400
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Fuel Temperature

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson
acceleration and Picard solutions

Figure 6.4: Average fuel temperature computed by Picard iteration with Gauss-Seidel map,
and relative difference between this curve and Anderson solutions

0 100 200 300 400
560

570

580

590

600

610

620

Height (cm)

C
la

d
 T

e
m

p
e

ra
tu

re
 (

K
)

Clad Temperature

(a) Average clad temperature computed by Pi-
card iteration

0 100 200 300 400
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Clad Temperature

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson
acceleration and Picard solutions

Figure 6.5: Average clad temperature computed by Picard iteration with Gauss-Seidel map,
and relative difference between this curve and Anderson solutions

127

0 100 200 300 400
0

2

4

6

8

10

12

14

16

18
x 10

18

Height (cm)

F
is

s
io

n
 R

a
te

Fission Rate

(a) Average fission rate computed by Picard
iteration

0 100 200 300 400
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Fission Rate

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson ac-
celeration and Picard solutions

Figure 6.6: Average fission rate computed by Picard iteration with Gauss-Seidel map, and
relative difference between this curve and Anderson solutions

0 100 200 300 400
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Height (cm)

H
e

a
t

F
lu

x
 (

W
/m

2
)

Heat Flux

(a) Average heat flux computed by Picard it-
eration

0 100 200 300 400
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Heat Flux

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson
acceleration and Picard solutions

Figure 6.7: Average heat flux computed by Picard iteration with Gauss-Seidel map, and rela-
tive difference between this curve and Anderson solutions

128

represent the fixed-point maps to which we apply Anderson acceleration as

ĜGS


Tf

Tw

ρw

Tc

 =


rM,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw))))

rM,C,T (x̂C(rC,B(x̂B(Tc, rB,M (xM (Tf , Tw, ρw))))))

rM,C,ρ(x̂C(rC,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw))))))

rB,C(x̂C(rC,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw))))))

 , (6.18)

and

ĜJAC



Tf

Tw

ρw

Tc

q

q′′


=



rM,B(x̂B(Tc, q))

rM,C,T (x̂C(q′′))

rM,C,ρ(x̂C(q′′))

rB,C(x̂C(q′′))

(1− ω)q + ω rB,M (x̂M (Tf , Tw, ρw))

rC,B(x̂B(Tc, q))


. (6.19)

In this, we have simply replaced exact solves with approximate solves. It is then of inter-

est to determine how significantly the level of accuracy with which we solve the application

codes affects the performance of the solution methods. Supposing that we can in some way

bound the deviation between the evaluation of the fixed-point map with approximate and ex-

act application solves, then the results from Section 3.5 provide some insight. We note that

this will be the case for the Jacobi map if the application solve tolerances guarantee that

the approximate solutions are sufficiently close to to the exact solutions, i.e. ‖x̂B(Tc, q) −
xB(Tc, q)‖ < εB, ‖x̂C(q′′) − xC(q′′)‖ < εC , and ‖x̂M (Tf , Tw, ρw) − xM (Tf , Tw, ρw)‖ < εM , for

some εB, εC , εM > 0, and that the transfer functions are Lipschitz continuous (there is Li,j such

that ‖ri,j(xj) − ri,j(x′j)‖ ≤ Li,j‖xj − x′j‖). With these assumptions, and letting G(u) denote

error-free evaluation of the fixed-point map, we have

‖ĜJAC(u)−GJAC(u)‖ ≤ (LM,B + LC,B)‖x̂B(Tc, q)− xB(Tc, q)‖

+ (LB,C + LM,C,T + LM,C,ρ)‖x̂C(q′′)− xC(q′′)‖

+ωLB,M‖x̂M (Tf , Tw, ρw)− xM (Tf , Tw, ρw)‖

≤ (LM,B + LC,B)εB + (LB,C + LM,C,T + LM,C,ρ)εC

+ωLB,M εM .

Hence, we have a uniform bound on the difference between the approximate and exact evalua-

tions, and this bound is proportional to the quality of the solution returned by each application.

For the Gauss-Seidel map, we need to additionally assume that the exact Bison solution is Lip-

schitz continuous with respect to the power (there is LB such that ‖xB(Tc, q1) − xB(Tc, q2) ≤
LB‖q1 − q2‖) and that the exact CTF solution is Lipschitz continuous with respect to the heat

129

flux (there is LC such that ‖xC(q′′1)− xC(q′′2)‖ ≤ LC‖q′′1 − q′′2‖). With this, in addition to what

was assumed for the Jacobi map, we have

‖ĜGS(u)−GGS(u)‖ ≤ LM,B‖x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))− xB(Tc, rB,M (xM (Tf , Tw, ρw)))‖

+ (LB,C + LM,C,T + LM,C,ρ)‖x̂C(rC,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))))

− xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw)))))‖.

Note the differences within these norms are between approximate and exact solutions to different

problems. Then, to bound these quantities, we compare the approximate solution against the

exact solution for the problem it is actually solving, and then bound the difference between the

exact solutions to the different problems. In this manner, we bound the difference between the

Bison solutions as

‖x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))− xB(Tc, rB,M (xM (Tf , Tw, ρw)))‖

≤ ‖x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))− xB(Tc, rB,M (x̂M (Tf , Tw, ρw)))‖

+ ‖xB(Tc, rB,M (x̂M (Tf , Tw, ρw)))− xB(Tc, rB,M (xM (Tf , Tw, ρw)))‖

≤ εB + LBLB,M‖x̂M (Tf , Tw, ρw)− xM (Tf , Tw, ρw)‖ ≤ εB + LBLB,M εM .

With this, we similarly bound the difference between the CTF solutions as

‖x̂C(rC,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))))− xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw)))))‖

≤ ‖x̂C(rC,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))))− xC(rC,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))))‖

+ ‖xC(rC,B(x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))))− xC(rC,B(xB(Tc, rB,M (xM (Tf , Tw, ρw)))))‖

≤ εC + LCLC,B‖x̂B(Tc, rB,M (x̂M (Tf , Tw, ρw)))− xB(Tc, rB,M (xM (Tf , Tw, ρw)))‖

≤ εC + LCLC,B(εB + LBLB,M εM).

With the above, we have the following bound for the error in the evaluation of the Gauss-Seidel

map

‖ĜGS(u)−GGS(u)‖ ≤ (LB,C + LM,C,T + LM,C,ρ)εC

+ [LM,B + (LB,C + LM,C,T + LM,C,ρ)LCLC,B](εB + LBLB,M εM).

Again, this gives a bound on the fixed-point map evaluation error proportional to the error

in each of the single physics solves. This bound has potential to be significantly larger than

what was obtained for the Jacobi map, at least with respect to the Bison and MPACT errors,

which makes sense due to propagation of error between sequential single-physics solves. Then,

130

supposing that the above assumptions hold, for both Picard and Anderson the theory from

Section 3.5 predicts r-linear convergence in the error and residual up to some stagnation point

which is proportional to the size of the error in the fixed-point map evaluation.

To test this, we first consider sensitivity to CTF solve tolerances. We outlined the tolerances

that CTF uses to determine whether it has become sufficiently steady state in Section 2.2.2.

Again, it measures the change in 5 quantities from time step to time step, and declares conver-

gence when they are sufficiently small. Since CTF internally solves a time dependent problem,

the error in the CTF solution represents a deviation from steady-state. Rather than considering

each of these tolerances, we choose a single tolerance to vary. For this, we choose the global

energy balance tolerance. In order to test only this tolerance, we set the values for the other

tolerances very large so that only the specified tolerance determines the number of time steps

taken per CTF solve. We note here that when CTF models only the coolant region, as in the

fully-coupled Tiamat solve phase, the solid energy storage tolerance is not utilized. This is im-

portant as CTF does model the solid region in the HFP estimation phase, so this allows us

to tune this solid energy storage tolerance so that Bison is ramped to the same HFP estimate

conditions, regardless of how loose or tight we set the global energy balance tolerance. Results

from varying the CTF global energy balance tolerance for both the Gauss-Seidel and Jacobi

maps are given in Figure 6.8. Figures 6.8a and 6.8b show results from utilizing a very loose

1% tolerance. During the coupled solve, this resulted in CTF declaring convergence after only

one time step in each CTF solve. We see that both Picard and Anderson approach a stagna-

tion point, and this occurs in both maps. Only Anderson with the Gauss-Seidel map declares

convergence, but it does so at a point far from the actual solution. Note that in each case,

the residuals for Picard and Anderson stagnate about approximately the same point. While

the theory from Section 3.5 suggested that Anderson may amplify the error in the function

evaluation more than Picard, especially if the fixed-point map is weakly contractive, we do

not observe this here. The residuals for Anderson simply appear more jagged about the same

stagnation point as Picard. In the remaining figures, we reduce the tolerances to 0.01% and

0.0001%. With the relatively loose 0.01% tolerance, Anderson and Picard perform comparably

using the Gauss-Seidel map, and Anderson performs noticeably better with the tighter 0.0001%

tolerance. In both cases, there is a reduction in iterations to convergence with the tighter tol-

erance. With the Jacobi map, Anderson significantly outperforms Picard at both 0.01% and

0.0001%, and there is marginal improvement for both Picard and Anderson when the tolerance

is reduced from 0.01% to 0.0001%.

Next, we consider the convergence criteria for MPACT. MPACT determines convergence

base upon the relative change in the group scalar flux and absolute change in the dominant

eigenvalue between coarse-mesh finite-difference iterations. For these tests, we choose to vary

only the tolerance for the change in the scalar flux. Figure 6.9 shows results from solving the

131

0 10 20 30 40
10

−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e+0

Picard

Anderson

(a) Gauss-Seidel map, tolerance = 1%

0 10 20 30 40
10

−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e+0

Picard

Anderson

(b) Jacobi map, tolerance = 1%

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−2

Picard

Anderson

(c) Gauss-Seidel map, tolerance = 0.01%

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−2

Picard

Anderson

(d) Jacobi map, tolerance = 0.01%

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−4

Picard

Anderson

(e) Gauss-Seidel map, tolerance =
0.0001%

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−4

Picard

Anderson

(f) Jacobi map, tolerance = 0.0001%
blank space

Figure 6.8: Varying CTF global energy balance tolerance in Tiamat single-rod tests

132

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−1

Picard

Anderson

(a) Gauss-Seidel map, tolerance = 1.0e-1

0 10 20 30 40
10

−3

10
−2

10
−1

10
0

10
1

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−1

Picard

Anderson

(b) Jacobi map, tolerance = 1.0e-1

0 2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−3

Picard

Anderson

(c) Gauss-Seidel map, tolerance = 1.0e-3

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−3

Picard

Anderson

(d) Jacobi map, tolerance = 1.0e-3

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−5

Picard

Anderson

(e) Gauss-Seidel map, tolerance = 1.0e-5

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Tol = 1e−5

Picard

Anderson

(f) Jacobi map, tolerance = 1.0e-5

Figure 6.9: Varying MPACT scalar flux tolerance in Tiamat single-rod tests

133

coupled problem with both Picard and Anderson at various scalar flux convergence tolerances.

The results are fairly similar to what was observed when varying the CTF convergence criteria.

In Figures 6.9a and 6.9b we utilize a fairly loose tolerance, and we observe somewhat good

convergence up until a stagnation point is reached. As before, this stagnation point occurs at

roughly the same residual norm for both Picard and Anderson, so it does not seem that Anderson

significantly amplifies the error in the function evaluation. At an intermediate tolerance of τ =

1e-3, we see that Anderson and Picard perform comparably with the Gauss-Seidel map, and

Anderson performs significantly better than Picard with the Jacobi map. With the tightest

tolerance of τ = 1e− 5, which is the default tolerance for MPACT, Anderson with the Gauss-

Seidel map performs noticeably better than Picard. There is very little observable difference

when decreasing the tolerance below this point. One thing to note is that for the Jacobi map,

Anderson converges in fewer iterations with τ = 1e-3 than τ = 1e-5. However, this is due to false

convergence being declared in the looser tolerance case, as the final maximum fuel temperature

differs from the expected solution by approximately 3 degrees and the final eigenvalue differs

by approximately 5pcm.

Lastly, as Bison internally utilizes JFNK, it declares convergence based on the residual norm.

It utilizes an absolute/relative tolerance in which the absolute and relative tolerances τa and

τr are specified, and the problem is said to be converged when ‖fB(xnB)‖ ≤ τa + τr‖fB(x0
B)‖,

where fB is Bison’s residual. Figure 6.10 shows results from solving the coupled system with

variation in both the absolute and relative tolerances. The values used in the default Bison

input template are τr = 1e-4 and τa = 1e-10. First note that decreasing the relative tolerance

below this value did not result in a noticeable difference in any case considered. At these base

values, we never obtain a residual norm less than 1e-5, so setting the absolute tolerance to any

value less than this would have no effect on the iteration. In fact, with a given relative tolerance

we do not observe significant difference in any case considered when an absolute tolerance less

than 1e-1 is used. Figures 6.10a and 6.10b show the effect of varying the relative tolerance

in the Gauss-Seidel map. We see that Picard seems to be be rather insensitive to this change.

Conversely, with a looser relative tolerance, Anderson seems to stagnate briefly before declaring

convergence of the coupled system far from the solution. The remaining figures depict results

from using the Jacobi map. In Figures 6.10c and 6.10d we consider variation of the relative

tolerance. As with the Gauss-Seidel map, the Anderson iterations display greater sensitivity to

this change. For both maps, an incorrect solution is obtained using Anderson with the looser

relative tolerance. For Picard, there is a more noticeable difference from the change in the

relative tolerance than for the Gauss-Seidel map, but it still converges to the expected solution.

Lastly, Figures 6.10e and 6.10f show the effect of varying the absolute tolerance. As with the

relative tolerance, Picard is rather insensitive to variation in this parameter. Conversely, with

134

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Picard iteration

rtol=1e−2,atol=1e−4

rtol=1e−4,atol=1e−4

(a) Picard for Gauss-Seidel map, vary-
ing τr

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Anderson acceleration

rtol=1e−2,atol=1e−4

rtol=1e−4,atol=1e−4

(b) Anderson for Gauss-Seidel map,
varying τr

0 10 20 30 40
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Picard Iteration

rtol=1e−2,atol=1e−4

rtol=1e−4,atol=1e−4

(c) Picard for Jacobi map, varying τr

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Anderson acceleration

rtol=1e−2,atol=1e−4

rtol=1e−4,atol=1e−4

(d) Anderson for Jacobi map, varying τr

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Picard Iteration

rtol=1e−4,atol=1e+2

rtol=1e−4,atol=1e+1

rtol=1e−4,atol=1e+0

(e) Picard for Jacobi map, varying τa

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration Count

R
e

s
id

u
a

l
N

o
rm

Anderson acceleration

rtol=1e−4,atol=1e+2

rtol=1e−4,atol=1e+1

rtol=1e−4,atol=1e+0

(f) Anderson for Jacobi map, varying τa

Figure 6.10: Varying Bison JFNK tolerances in Tiamat single-rod tests

135

the largest absolute tolerance, Anderson stagnates at an incorrect solution. As the tolerance is

decreased it rapidly begins to perform better than Picard.

Variation of Field Scaling

We now examine the effect of varying the relative weights of the fields in our choice of the

scaling matrices MGS and MJAC . The scaling matrices were chosen in order to bring the entries

in the vector of unknowns u to roughly the same order of magnitude, but it may still be the case

that some quantities are under or overrepresented in the Anderson acceleration least-squares

problem. To test this, we introduce additional scaling factors into our definition of the scaling

matrices. With this addition, we now define the Gauss-Seidel scaling matrix as

MGS =


[st diag(T 0

f)]−1

[st diag(T 0
w)]−1

[sd diag(ρ0
w)]−1

[st diag(T 0
c)]−1

 , (6.20)

and the Jacobi scaling matrix as

MJAC =

 MGS

1
sp
Mq

1
sh q̄′′

I

 , (6.21)

where st is the scaling factor for the temperatures, sd is the density scaling factor, sp is the

power scaling factor, and sh is the heat flux scaling factor. Note that these factors appear in

the inverse, so decreasing a scaling factor will increase the weight of the corresponding field,

and vice versa.

We first consider tests with the block Gauss-Seidel map. For this, we set the density scaling

factor at one, and vary only the temperature scaling factor, since only the relative weight

between the temperature and density fields is important. Relative residual plots from solving

the coupled problem with Anderson acceleration for various temperature scaling factors are

shown in Figure 6.11. Again, scaling factors larger than one will give the temperature fields

less weight in the Anderson least-squares problem, so changes in density have a larger effect.

Conversely scaling factors smaller than one weigh temperature changes more heavily in the

least-squares problem. In Figure 6.11a we see results with scaling factors larger than one. We

see that as the scaling factor is made larger, and relatively more weight is given to density

changes in the least-squares problem, convergence slows, and the number of iterations required

for convergence increases by 50%. The very small change in the residual plots from st =1e+2

to st =1e+3 would seem to indicate that in both cases, density changes are dominating the

136

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Temperature Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

t
 = 1e+3

s
t
 = 1e+2

s
t
 = 1e+1

s
t
 = 1e+0

(a) Temperature scaling factors st ≥ 1.0

0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

10
0

Temperature Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

t
 = 1e−3

s
t
 = 1e−2

s
t
 = 1e−1

s
t
 = 1e+0

(b) Temperature scaling factors st ≤ 1.0

Figure 6.11: Varying temperature scaling for Anderson-2 single-rod Tiamat tests with the
Gauss-Seidel map

Anderson least-squares problem, and giving density more weight by increasing st further would

not significantly affect the iteration. Figure 6.11b shows results with scaling factor less than

one, and the curves in this plot are not visibly distinguishable. This would seem to indicate

that at the base case of st = 1.0, temperature changes dominate the residual, as giving these

more weight does not visibly affect the convergence behavior. This however does not seem to

be a problem, as weighing density more heavily slowed convergence, as we saw previously. It

then seems unlikely that any choice of parameter will result in faster convergence than what is

obtained from our original scaling with st = 1.0.

We next consider the block Jacobi scheme. We now have more parameters to vary, so for these

tests we choose a single factor to vary over the values 10−3, 10−2, 10−1, 10+0, 10+1, 10+2, 10+3,

and keep the other factors frozen at 1.0. Figures 6.12 and 6.13 present results from following this

approach with each of the four scaling factors. Figures 6.12a and 6.12b show relative residual

plots from varying the temperature scaling factor. We see that for scaling factors st ≥ 1.0 the

convergence behavior does not change significantly, but giving the temperature changes more

weight in the residual by letting st < 1.0 has an effect on the iteration. This would indicate

that at st = 1.0, the temperature changes are dominated by the rest of the residual. Despite

this, giving the temperatures additional weight in the residual does not result in a noticeable

gain in performance. In fact, each factor st < 1.0 required an additional iteration to achieve

137

convergence. Figures 6.12c and 6.12d show results from varying the density scaling, and the

results are largely similar to what is observed for the temperature scaling. There is little visible

difference in the iteration for any scaling factor sd ≥ 1.0 and performance is fairly consistent

as sd is decreased below 1.0. At sd =1e-3, density changes begin to dominate the residual

and the convergence worsens. In any case, the base choice of sd = 1.0 again converges in the

fewest iterations. In Figures 6.13a and 6.13b, the residual plots with power scaling varied, we

now observe changes in behavior for scaling factors both larger and smaller than 1.0. This

indicates that at sp = 1.0, the power changes are a significant, but not dominating, component

of the residuals. As the scaling factor is increased above 1.0, the rate of convergence becomes

consistently slower, and as the scaling factor is decreased below 1.0, the residual curves become

less smooth but the overall convergence rate remains roughly the same as for sp = 1.0. Again,

there is no obvious trend that would suggest that there is an advantage to be gained by tuning

this parameter. Lastly, Figures 6.13c and 6.13d show results from varying the heat flux scaling.

Like the power scaling, there is an observable change in behavior for factors larger and smaller

than 1.0. As we have observed throughout, there is no compelling trend that would suggest that

any choice of scaling parameter different from sh = 1.0 would result in obvious improvement.

Lastly note, that Figures 6.13d is a bit unique in the increasingly large spike in the residual at

iteration 1. This is due to the ramp to hot full-power prior to the coupled solve. The first Bison

solve in the fully-coupled solve is for a small time step using the same coupling parameters as

the final step in the HFP estimation, so the difference in the heat flux resulting from these two

solves is negligible. When updated power and clad temperatures are provided to Bison at the

next coupled iteration, an appreciable change in the heat flux is obtained, and the increased

weight given to the heat flux in the residual is reflected by this spike.

For both the Gauss-Seidel and Jacobi maps, we see that varying the scaling of the fields

can significantly impact the convergence behavior. However in each case, our original choice

of scaling converged in the fewest iterations of the cases considered. With the Jacobi map, we

have several parameters we can vary, and it may be the case that we could obtain improved

performance with changes to multiple scaling factors. However, this approach does not seem

practical, as a better choice of scaling factors may be problem dependent.

Comparison with JFNK

Expressed in the forms (6.4) and (6.5), each of the fixed-point maps corresponds to a fixed-point

residual which we can both compute and access. In fact, with respect to implementation, NOX

expects the function evaluation to be provided in residual form, so these fixed-point residuals

are what is actually computed in the model evaluator. Hence, we can additionally compare

the results obtained using Anderson acceleration against results from solving these fixed-point

138

0 5 10 15
10

−3

10
−2

10
−1

10
0

Temperature Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

t
 = 1e+3

s
t
 = 1e+2

s
t
 = 1e+1

s
t
 = 1e+0

(a) Temperature scaling factors st ≥ 1.0

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

Temperature Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

t
 = 1e−3

s
t
 = 1e−2

s
t
 = 1e−1

s
t
 = 1e+0

(b) Temperature scaling factors st ≤ 1.0

0 5 10 15
10

−3

10
−2

10
−1

10
0

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

Density Scaling

s

d
 = 1e+3

s
d
 = 1e+2

s
d
 = 1e+1

s
d
 = 1e+0

(c) Density scaling factors sd ≥ 1.0

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Density Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

d
 = 1e−3

s
d
 = 1e−2

s
d
 = 1e−1

s
d
 = 1e+0

(d) Density scaling factors sd ≤ 1.0

Figure 6.12: Varying temperature and density scaling for Anderson-2 single-rod Tiamat tests
with the Jacobi map

139

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Power Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

p
 = 1e+3

s
p
 = 1e+2

s
p
 = 1e+1

s
p
 = 1e+0

(a) Power scaling factors sp ≥ 1.0

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Power Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

p
 = 1e−3

s
p
 = 1e−2

s
p
 = 1e−1

s
p
 = 1e+0

(b) Power scaling factors sp ≥ 1.0

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Heat Flux Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

h
 = 1e+3

s
h
 = 1e+2

s
h
 = 1e+1

s
h
 = 1e+0

(c) Heat flux scaling factors sh ≥ 1.0

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Heat Flux Scaling

Iteration

R
e

la
ti
v
e

 R
e

s
id

u
a

l

s

h
 = 1e−3

s
h
 = 1e−2

s
h
 = 1e−1

s
h
 = 1e+0

(d) Heat flux scaling factors sh ≤ 1.0

Figure 6.13: Varying power and heat flux scaling for Anderson-2 single-rod Tiamat tests with
the Jacobi map

140

0 5 10 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration

R
e

s
id

u
a

l
N

o
rm

Anderson vs JFNK

Anderson

0.01

Adjusted

0.1

(a) Residual norm vs iteration

0 20 40 60 80 100
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

Evaluations of G

Anderson vs JFNK

Anderson

0.01

Adjusted

0.1

(b) Residual norm vs evaluations of G

Figure 6.14: Comparison of Anderson-2 and JFNK with block Jacobi map for Tiamat single-
rod tests. JFNK uses a constant forcing term of 0.1 or 0.01, or an adjustable forcing term with
initial value 0.1

residual equations using JFNK. There is minimal marginal work required in order to attempt to

solve these residual systems by JFNK rather than Anderson acceleration. The only significant

code alteration that must be made relates to creation of the forward difference Jacobian-vector

operator and providing information about the linear solve strategy. The forward difference

operator included in NOX has several options for computing the perturbation δ in the forward

difference approximation F ′(u)v ≈ F (u+δv)−F (u)
δ . We utilize the “KSP NOX 2001” option, which

computes

δ = λ

(
10−12

λ
+
|uT v|
‖v‖2

)
uT v

|uT v|
, (6.22)

where λ is a user defined parameter. For the linear solve, we utilize the “Pseudo Block GMRES”

iterative linear solver from the Trilinos package Belos (see Section B.2.5), which is a standard

GMRES implementation included in this package. “Pseudo Block” refers with the strategy for

solving with multiple right hand sides, but we only utilize this to solve equations with single

right hand sides.

We first consider the block Jacobi fixed-point map. Results comparing the performance

of Anderson acceleration and JFNK with this map are shown in Figure 6.14. For these tests,

JFNK does not utilize a line search. In order to minimize the combination of the finite difference

approximation error and the error in the function evaluation, the parameter λ in the Jacobian-

vector product approximation should be chosen to be roughly the square root of the error in

141

the function evaluation [29]. With the standard application solve tolerances that have been

used to this point, this requires a very large perturbation, which results in large error in the

Jacobian-vector product approximation and a poor Newton direction. Because of this, for these

tests we reduced several application solve tolerances, and we set the perturbation parameter

λ = 10−4. We reduced the MPACT scalar flux tolerance to 10−8, and for CTF we set fluid/solid

energy storage and mass storage tolerances to 5 × 10−6 and the global energy/mass balance

tolerances to 10−4. For the computation of the forcing term in the linear solve, we consider three

strategies: a constant forcing term of 0.1, a constant forcing term of 0.01, and an adjustable

forcing term with initial value 0.1. The adjustable forcing term is computed by

ηk = γ

(
‖Fk‖
‖Fk−1‖

)α
, (6.23)

where it is enforced that max{γηαk−1, ηmin} ≤ ηk ≤ ηmax, and we let γ = 0.9, α = 1.5, ηmin =

10−4, and ηmax = 0.9. In Figure 6.14, we observe that with respect to iterations to convergence,

Anderson and JFNK are somewhat comparable. With forcing term 0.1, the iteration struggles

initially, but otherwise each JFNK iteration displays fast local convergence as expected. With

forcing term 0.01, JFNK converges several iterations before all the other methods. Anderson

and JFNK with adjustable forcing term converge in the same number of coupled iterations,

and JFNK with forcing term 0.1 requires several more iterations than the other methods. We

note that in each JFNK iteration reduced the residual norm several orders of magnitude lower

than the level that was required for Anderson to be declared converged. This may be due to the

manner of determining convergence of the coupled system. The iteration terminates on small

changes in various response functions from iteration to iteration, and as JFNK takes larger steps

toward the solution, this could result in larger changes in these responses until the iteration is

very close to the solution.

With respect to evaluations of the fixed-point map, Anderson is a clear winner over each

JFNK iteration. This is due to the level of work required in the computation of the Newton

step. Each inner GMRES iteration requires an evaluation of the fixed-point map. The forcing

term 0.1 required between 2 and 6 iterations for each GMRES solve. Similarly, the adjustable

forcing term generally required between 2 and 6 iterations each GMRES solve, with one it-

eration for which 9 linear iterations were required. The forcing term 0.01 required between 5

and 10 iterations per GMRES solve. Additionally, during iteration, Belos utilizes a cheaper

approximation to the linear residual for measuring convergence, and when that has been de-

clared successful the actual linear residual is computed to verify convergence, which expends an

additional evaluation of the fixed-point map. Hence, each nonlinear JFNK iteration will require

at minimum three evaluations of the fixed-point map, but generally several more. Conversely,

Anderson simply requires a single evaluation of the fixed-point map per iteration. As a result,

142

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

Iteration

R
e

s
id

u
a

l
N

o
rm

Anderson vs JFNK

Anderson

JFNK

(a) Residual norm vs iteration

0 20 40 60 80
10

−4

10
−3

10
−2

10
−1

10
0

Evaluations of G

R
e

s
id

u
a

l
N

o
rm

Anderson vs JFNK

Anderson

JFNK

(b) Residual norm vs evaluations of G

Figure 6.15: Comparison of Anderson-2 and JFNK with block Gauss-Seidel map for Tiamat
single-rod tests. JFNK uses a constant forcing term of 0.01

even if Anderson were to require several iterations more than JFNK, it will still likely require

many fewer evaluations of the fixed-point map. Additionally, as the evaluation of the fixed-point

map is the dominant computational cost, run times for Anderson will be significantly lower as

well.

We now note that the block Jacobi map seems to be the best case scenario for JFNK.

In Figure 6.15, we see a comparison of Anderson and JFNK with forcing term 0.01 for the

Gauss-Seidel map. In this, we see that JFNK performs much worse than Anderson with this

map, as well as worse than JFNK with the Jacobi map. As we noted previously, the error in

the evaluation of this map may be larger than in the Jacobi map due to accumulation of error

between successive application solves, and this larger error in fact seems to be problematic.

With the perturbation parameter λ = 10−4 which was used previously, JFNK performs very

poorly, and in fact frequently fails by computing negative fuel temperatures. For the results

shown here, we choose λ = 10−3. This may still be fairly small given the size of the evaluation

error, but increasing it much further will result in a very poor approximation to the Jacobian-

vector product. In any case, it seems that the combination of a fairly large perturbation and

large evaluation error results in the computation of a very poor Newton step near the coupled

solution. The iteration repeatedly takes a good step toward the solution, and then proceeds to

compute a Newton step that does not seem to be a descent direction. This is evidenced by the

repeated failure of the line search which we utilize for these results. We utilize a backtracking

143

Figure 6.16: 3x3 mini-assembly layout, with 8 UO2 fuel rods (in red) and a central guide tube

line search with a reduction factor 0.5 and a maximum of 7 step reductions. This gives a

minimum step size of 7.8125e− 3, which is the step that is taken if the residual fails to achieve

sufficient decrease. We note that a line search should be used with caution for this problem,

as the the termination is based on changes in responses computed during the evaluation of the

fixed-point map between successive nonlinear iterations rather than the residual norm, so a

small computed step size may result in premature termination while the residual is still large.

In any case, we again see that Anderson acceleration performs significantly better than JFNK

in this context. The level of error in the evaluation of the fixed-point map can make it difficult

for JFNK to perform well, and when it does performs well, too much work is required in the

computation of the Newton step to be competitive with Anderson.

6.4.2 3x3 Mini-Assembly Tests

We next consider a slightly larger problem, consisting of a full 3D simulation of a 3x3 array

containing 8 fuel rods around a central guide tube, illustrated by Figure 6.16. The input spefi-

cations for this problem are described in Section C.2. Some changes worth noting between the

input for these test and those in the previous section are that in this case the global power

convergence tolerance is increased from εq = 10−4 for the previous tests to εq = 10−3 for this

test, and these tests perform a single additional subcycle of stand-alone coupled MPACT/CTF

prior to ramping Bison to HFP. This subcycling improves the HFP estimate that is used during

the ramp phase. As a result of these differences, these tests are run with an improved initial

iterate for the fully-coupled solve and a looser convergence tolerance, so we expect that in gen-

eral these will converge in few coupled iterations. These tests are run with 19 processors: 9 for

both MPACT and Bison and 1 for CTF.

144

Table 6.2: Comparison of Picard and Anderson-2 with each of the Gauss-Seidel and Jacobi
fixed-point maps for 3x3 Tiamat simulation at various power levels. Damping factor = 0.5 and
max iteration count = 25

Power Level Method Iterations Solve Time (s) keff Tf,max

25%

Picard (GS) 4 577 1.17014 483.13
Picard (JAC) 7 678 1.17014 482.83

Anderson-2 (GS) 5 650 1.17014 482.83
Anderson-2 (JAC) 6 609 1.17014 482.85

50%

Picard (GS) 5 655 1.16716 681.98
Picard (JAC) 7 735 1.16716 681.70

Anderson-2 (GS) 5 650 1.16716 681.72
Anderson-2 (JAC) 6 685 1.16715 681.69

75%

Picard (GS) 5 691 1.16431 890.90
Picard (JAC) 6 720 1.16430 890.43

Anderson-2 (GS) 5 681 1.16431 890.65
Anderson-2 (JAC) 6 722 1.16431 890.42

100%

Picard (GS) 5 729 1.16137 1106.81
Picard (JAC) 9 859 1.16137 1106.90

Anderson-2 (GS) 5 736 1.16137 1106.72
Anderson-2 (JAC) 8 790 1.16137 1107.02

125%

Picard (GS) 5 719 1.15855 1131.28
Picard (JAC) 16 1168 1.15855 1131.37

Anderson-2 (GS) 6 786 1.15855 1131.29
Anderson-2 (JAC) 7 738 1.15854 1131.31

Table 6.3: Average application solve time(s) for Tiamat 3x3 tests at 100% power

Method Bison CTF MPACT

Picard (Gauss-Seidel) 44.6 3.9 8.3

Picard (Jacobi) 44.3 3.1 8.9

Anderson-2 (Gauss-Seidel) 47.8 2.9 8.1

Anderson-2 (Jacobi) 42.5 3.6 9.2

145

Sensitivity to Power Variation

Table 6.2 presents results from solving the fully-coupled HFP problem by Picard iteration

and Anderson acceleration with the Gauss-Seidel and Jacobi fixed-point maps at various power

levels. As expected, we observe that the iteration counts are in general lower in this table due to

the combination of improved initial iterate and looser power convergence tolerance. Picard with

the block Gauss-Seidel scheme actually generally performs the best for this problem, though

the performance of Anderson acceleration with this map is general comparable. For problems

like this in which Picard iteration converges very quickly, say 5 iterations or less, it will be very

difficult for Anderson to improve upon this, as the iterations are the same for the first two steps.

This table displays some similar behavior to what was observed in Table 6.1. We note that,

like in the single-rod tests, methods utilizing the block Gauss-Seldel map displayed generally

good robustness to the increased strength of coupling between the applications introduced by

increasing the power level. For both Picard and Anderson, there is only an increase by a single

coupled iteration from the 25% power case to the 125% power case. Anderson with the Jacobi

map performs similarly, as the difference in coupled iterations between the best cases, 25–75%

power, and the worst case, 100% power, is only 2 iterations, and there is even an improvement

as the power level is increased from 100% to 125%. As in the previous section, Picard with

the Jacobi map performs more poorly as the power level is increased, and the iterations to

convergence more than doubles when going from the lowest power considered to the highest.

Lastly, with respect to timings, we note that when utilizing the Gauss-Seidel map the

solve times are generally lower than those obtained when utilizing the Jacobi map, despite

the iteration counts for the Jacobi map generally not being significantly higher. This is again

explained by the a poor balance in the application solve times, which is given in Table 6.3. We

again observe that Bison solves are dominant cost in the per-iteration time for the Gauss-Seidel

map, so again, the improvement in time per iteration for the block Jacobi scheme over the

block Gauss-Seidel scheme is fairly small. This stresses the importance of good balance in the

application solve times for block Jacobi, as we observe several cases in which block Jacobi only

requires in 1 iteration more than block Gauss-Seidel but still has a longer solve time.

Agreement Between Picard and Anderson Solutions

In Table 6.2, we also list the dominant eigenvalue keff and the maximum fuel temperature

Tf,max as a measure of the level of agreement between the solutions computed by each of

the methods. We note that these results indicate very good agreement between each solution

method and choice of fixed-point map. Within a given power level, the eigenvalues computed

by all the methods differ by at most 1 pcm. Similarly, the maximum fuel temperatures for each

method differ by at most a half degree Kelvin. Even though these tests are being converged

146

Table 6.4: Iterations to convergence for Tiamat 3x3 tests at various damping level, 100% power

Damping factor

Method 0.2 0.4 0.6 0.8 1.0

Picard (Gauss-Seidel) 13 6 4 13 DNC

Picard (Jacobi) 13 11 14 DNC DNC

Anderson-2 (Gauss-Seidel) 8 6 5 5 6

Anderson-2 (Jacobi) 10 9 7 6 6

to a looser power tolerance, these results actually seem to display better agreement with each

other than what was observed in the single-rod tests.

Sensitivity to Damping Level

Table 6.4 shows the number of iterations required to achieve convergence for Picard and An-

derson with both the Gauss-Seidel and Jacobi maps at 100% power, with various choices of

damping factor. Again, the damping factor is a power damping in all cases except Anderson

with the Gauss-Seidel map, where the mixing parameter is utilized. These results are fairly sim-

ilar to what we observe for the single-rod tests. For Picard iteration, both block Gauss-Seidel

and block Jacobi perform fairly well for damping factors in the range 0.4–0.6. As the damping

factor moves away from this range, iteration counts begin to rise rapidly. As expected, letting

the damping factor be too large leads to convergence failure. This table also seems to indicate

that the Jacobi map is more sensitive to the damping factor than Picard, as its performance

degrades more rapidly as the damping factor is increased.

Also similar to the single-rod tests, we observe that the Anderson iterations display more

robustness with respect to variation in damping than Picard. For the smallest damping factor,

iteration counts rise, but not dramatically, and otherwise the performance is fairly steady over

a wide range of damping parameters. Over this range Anderson is performing about on par

with (as in the case of the Gauss-Seidel map) or significantly better than (like the Jacobi map)

Picard iteration performing at its optimal level. At its best, Picard with the Gauss-Seidel map

converges one iteration faster than Anderson, but again for problems in which Picard converges

so quickly, we can not generally expect Anderson to do better, since the iterations are the

same for the first and second steps. For the Jacobi map, Anderson acceleration can reduce the

iteration count from the best Picard case by approximately 40%, and this level of performance

is observed over the range of damping factors 0.6–1.0. The improvement is lessened a bit as the

damping factor is decreased below this level. Still, every case considered for Anderson converged

faster than the best case for Picard.

147

Figure 6.17: 17x17 assembly lattice with 264 UO2 fuel rods (in blue), 24 guide tubes (in white),
and 1 instrument tube (in orange)

6.4.3 17x17 Assembly Tests

We lastly consider tests consisting of a full 3D simulation of a single 17x17 fuel assembly in

order to verify that the encouraging observations for Anderson acceleration from the previous

two sections carry over to a problem of more significant size. This assembly contains 264 UO2

fuel rods, 24 guide tubes, and a single central instrument tube. The layout of the assembly is

illustrated in Figure 6.17, and problem inputs are specified in Appendix C.1. This test corre-

sponds to the CASL progression problem P6a [21]. Unlike the first two problems, which are

unit-test sized problems, this problem is considered large enough to be of significant interest.

The following simulations were performed utilizing 64 processors: 32 allocated to MPACT, 31

to Bison, and 1 to CTF. Note that we are only able to allocate a single processor to CTF for

this problem, as this code is currently only parallelized to the assembly-level [33].

Comparison of Anderson and Picard

In Table 6.5, we see results from solving the fully-coupled problem at HFP by Picard iteration

and Anderson-2 with both the block Gauss-Seidel and block Jacobi fixed-point maps. We note

that for both fixed-point maps, Anderson provides a modest improvement over Picard iteration

in terms of iteration counts. For both maps, Anderson reduces the iterations to convergence by

25–30% from Picard, and based on results from the previous two sections, we expect that the

damping factor of 0.5 that is utilized for these iterations should be near-optimal for the Picard

iterations. Additionally, as expected, for both Picard and Anderson the Jacobi map requires

significantly more coupled iterations to converge than Gauss-Seidel. In both cases, the Jacobi

148

Table 6.5: 17x17 assembly Tiamat test results, damping factor 0.5

Iterations Time(s) keff Tf,max
Picard (GS) 8 3935 1.16522 1134.76

Anderson-2 (GS) 6 3055 1.16522 1134.75

Picard (JAC) 17 3515 1.16522 1134.78

Anderson-2 (JAC) 12 2762 1.16522 1134.78

Table 6.6: Average application solve time(s) for Tiamat single-assembly tests

Bison CTF MPACT Time/Iteration

Picard (GS) 145 131 180 492

Anderson-2 (GS) 155 126 193 509

Picard (JAC) 148 127 172 207

Anderson-2 (JAC) 149 137 190 230

iterations require roughly twice as many iterations to converge as the Gauss-Seidel iterations.

With respect to timings, we observe that the Anderson iterations also converge in the least

wall time. In fact, Anderson with the Jacobi map actually performs the best, despite requiring

twice as many coupled iterations as Anderson with the Gauss-Seidel map. This can be explained

by the application solve time breakdown presented in Table 6.6. In this, we note that MPACT

generally requires slightly more time than the other applications, but overall the average solve

times for the three applications are very well balanced. As a result of this, the block Jacobi

schemes feature very efficient parallel utilization. Given the timings reported in this table, a

block Jacobi iteration will require approximately 40%, on average, of the time required for a

block Gauss-Seidel iteration. Because of this significant decrease in time per iteration, block

Jacobi is able to require appreciably more iterations and still converge in the least time.

Agreement Between Anderson and Picard Solutions

As in the previous two sections, we wish to verify that the solutions resulting from Anderson

acceleration agree well with the Picard solutions. To check this, we refer again to Table 6.5. In

this table, we see that each Picard and Anderson iteration resulted in a dominant eigenvalue

that agrees to at least 5 decimal places, and the maximum fuel temperature resulting from

each of the simulations also agrees very well, differing by at most three-hundredths of a degree

Celsius.

To further test the level of agreement, we consider Figures 6.18, 6.19, 6.20, and 6.21, which

compare assembly averaged fuel temperature, clad temperature, fission rate, and heat flux

resulting from Anderson acceleration with both the Gauss-Seidel and Jacobi fixed-point maps

against the Gauss-Seidel Picard solutions, which we consider a reference solution. These figures

149

0 100 200 300 400
600

650

700

750

800

850

900

950

1000

1050

Height (cm)

F
u

e
l
T

e
m

p
e

ra
tu

re
 (

K
)

Assembly Averaged Fuel Temperature

(a) Assembly averaged fuel temperature com-
puted by Picard iteration

0 50 100 150 200 250 300 350
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Assembly Averaged Fuel Temperature

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson ac-
celeration and Picard solutions

Figure 6.18: Assembly averaged fuel temperature computed by Picard iteration with Gauss-
Seidel map, and relative difference between this curve and Anderson solutions

0 100 200 300 400
560

570

580

590

600

610

620

Height (cm)

C
la

d
 T

e
m

p
e

ra
tu

re
 (

K
)

Assembly Averaged Clad Temperature

(a) Assembly averaged clad temperature com-
puted by Picard iteration

0 50 100 150 200 250 300 350
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−5

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Assembly Averaged Clad Temperature

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson ac-
celeration and Picard solutions

Figure 6.19: Assembly averaged clad temperature computed by Picard iteration with Gauss-
Seidel map, and relative difference between this curve and Anderson solutions

150

0 100 200 300 400
0

2

4

6

8

10

12

14

16
x 10

18

Height (cm)

F
is

s
io

n
 r

a
te

Assembly Averaged Fission Rate

(a) Assembly averaged fission rate computed
by Picard iteration

0 50 100 150 200 250 300 350

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Assembly Averaged Fission Rate

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson ac-
celeration and Picard solutions

Figure 6.20: Assembly averaged fission rate computed by Picard iteration with Gauss-Seidel
map, and relative difference between this curve and Anderson solutions

0 100 200 300 400
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Height (cm)

H
e

a
t

fl
u

x
 (

W
/2

)

Assembly Averaged Heat Flux

(a) Assembly averaged heat flux computed by
Picard iteration

0 50 100 150 200 250 300 350

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

Height (cm)

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

Assembly Averaged Heat Flux

Gauss−Seidel

Jacobi

(b) Relative difference between Anderson ac-
celeration and Picard solutions

Figure 6.21: Assembly averaged heat flux computed by Picard iteration with Gauss-Seidel
map, and relative difference between this curve and Anderson solutions

151

Table 6.7: Anderson-2 with Gauss-Seidel map with varying mixing parameter

Mixing Parameter Iteration Count Time(s) keff Tf,max
0.25 11 4995 1.16522 1134.79

0.5 6 3055 1.16522 1134.75

0.75 8 4025 1.16522 1134.78

1.0 7 3870 1.16522 1134.79

further indicate that the solutions obtained by the Anderson iterations agree very well with

the Picard solution. The differences between these solutions seem explainable by the global

convergence tolerances, as these tests utilize a power convergence tolerance (which is usually

the final criteria to be satisfied) of εq = 1.0−4, and the relative differences in these figures are

on this order of magnitude. Similar to the single-rod tests, in each figure both of the relative

difference curves for the Anderson solutions have roughly the same shape. As this is observed in

both the single-rod tests and these tests, this may may lend support to the Anderson solutions

having higher accuracy than the Picard solution.

Sensitivity of Anderson to the Mixing Parameter

In Figure 6.7, we present results from Anderson-2 tests using the Gauss-Seidel map at various

mixing parameters. In this, we note similar results to what was observed in the previous sections,

in that the performance is generally fairly insensitive to the choice of mixing parameter. For

the smallest choice of mixing parameter, there is a modest increase in the iteration count.

However, for mixing parameters between 0.5–1.0 the performance of Anderson acceleration is

rather consistent. Note that for the worst case in this range, mixing parameter 0.75, the number

of iterations to convergence is the same as the number required for Gauss-Seidel Picard iteration

in Table 6.5, and we assume that this represents Picard at or near its best. Hence, Anderson is

again seen to be robust with respect to numerical damping, and it performs over a wide range

of damping levels comparably to or better than Picard at its best.

Varying Cross Section Libraries

For all tests prior to this point, we utilized an 8-group test cross section library for the multi-

group approximation for MPACT described in Section 2.2.3. Again, this refers to the discretiza-

tion of the energy variable for the transport equation. The 8-group library is a rather coarse

energy structure. In order to examine the performance of Anderson acceleration with more ac-

curate solutions, we lastly consider tests which utilize higher fidelity cross sections. In Table 6.8,

we present results comparing Picard and Anderson-2 with both the Gauss-Seidel and Jacobi

maps using the high-fidelity 47-group cross section library. This table is analogous to Table 6.5,

152

only substituting the 47-group library for the 8-group library. We first note that changing the

cross section library results in a significant change in the solution, as the eigenvalue changes by

about 50 pcm, and the maximum fuel temperature increases by approximately 30 degrees Cel-

sius. This however does not significantly affect the convergence behavior, though, as Anderson

with the Gauss-Seidel map is the only case in which the iteration count changes, and increases

by only a single iteration. Despite the increase for Anderson, it still converges faster than Picard,

and again based on results from the previous sections, this should be a near-optimal damping

factor for Picard.

We lastly note the rather significant increase in run times when utilizing the higher fidelity

cross section library. Despite converging approximately in the same number of iterations in

all cases, the 47-group cross section tests take 2–3 times as long to converge as the 8-group

tests for the Gauss-Seidel map, and 4–5 times as long for the Jacobi map. This is explained by

Table 6.9, which breaks down the average solve times for each application. When switching to

the 47-group cross sections, the MPACT solves take approximately 5 times as long. As a result,

with 47-group cross sections the MPACT solve takes, on average, roughly 75% of the time

per iteration Gauss-Seidel iteration. Hence, there is fairly minor improvement in per-iteration

run time from solving the applications simultaneously in the Jacobi map, while this still leads

to a large increase in iterations to convergence. As noted above, in order for the block Jacobi

scheme to be effective, the application solve times need to be well balanced, and in this case this

would require a significant increase in the number of processors allocated to MPACT. However,

balancing the application solve times for this coupling in general will be difficult, and this is

actually due to CTF. This is because both Bison and MPACT parallelize well, but CTF is very

coarsely parallelized. Ideally, Bison would be run with at least one processor allocated per rod,

and MPACT can be run on thousands of processors [32], so the average solve time for these

applications could be reduced significantly. However, this will leave CTF as a bottleneck, since

it can only utilize a single processor per fuel assembly. As a result of this likely difficulty in load

balancing, Gauss-Seidel should generally be the best option for most Tiamat simulations.

153

Table 6.8: 17x17 assembly Tiamat test results with 47-group cross section libraries and damp-
ing factor 0.5

Iteration Count Time(s) keff Tf,max
Picard (GS) 8 10166 1.16468 1161.27

Anderson-2 (GS) 7 9384 1.16468 1161.23

Picard (JAC) 17 16609 1.16468 1161.24

Anderson-2 (JAC) 12 12637 1.16468 1161.23

Table 6.9: Average application solve times for single-assembly Tiamat tests with 47-group cross
section libraries

Bison CTF MPACT Time/Iteration

Picard (GS) 147 139 961 1271

Anderson-2 (GS) 166 118 1042 1341

Picard (JAC) 150 129 948 977

Anderson-2 (JAC) 153 135 1022 1053

154

Chapter 7

Conclusion

In this work, we were concerned with several aspects of the acceleration method for fixed-point

iteration Anderson acceleration. First, we sought to expand the theoretical understanding of this

method, as its theoretical foundation was rather sparse prior to this work. Focusing particularly

on contractive fixed-point problems, we have proved several new convergence results which

significantly expanded upon the theory for this method. Additionally, we have developed an

implementation of Anderson acceleration that is compatible with distributed-memory vector

types using MPI parallelism, which has been included in the Trilinos nonlinear solver package

NOX. Lastly, we looked to evaluate this method in the context of coupled multiphysics problems

in nuclear reactor simulation, specifically focusing on problems for which Picard iteration has

been the primary solution method due to software restrictions. While useful for its simplicity

and flexibility, Picard iteration features several drawbacks, namely relatively slow convergence

and poor robustness, and we sought to evaluate the potential of Anderson acceleration to

improve upon these issues. For this purpose, we integrated the NOX Anderson acceleration

implementation into the Tiamat code coupling, which couples the Bison fuel performance,

CTF thermal hydraulics, and MPACT neutronics codes in order to provide a tool for pellet-

cladding interaction analysis, and performed an in-depth comparison between the performance

of Picard iteration and Anderson acceleration for solving this fully-coupled problem. We will

now overview the major conclusions that we have drawn in there areas, and additionally discuss

some limitations of this work and areas for further development.

7.1 Anderson Acceleration Theory

Prior to this work, the bulk of the analysis for Anderson acceleration was in regard to showing its

relation to other methods (quasi-Newton methods and multi-secant updating in [19], GMRES

in [62]). Again, these results are interesting to note, but with the exception of GMRES with

155

full storage utilization, they provide little in the way of convergence theory. For our analysis,

we sought to show more fundamental convergence results, especially for the limited-memory

variant of this method and for nonlinear fixed-point problems. As this method is intended

to accelerate fixed-point iteration, we focused on problems for which fixed-point iteration is

convergent (locally for nonlinear fixed-point maps). We considered the case where the fixed-

point map is contractive in a neighborhood of the solution. That is, for linear problems we

assume that G(u) = Au + b with ‖A‖ = c < 1, and for nonlinear problems we assume that

there exist ρ̂ > 0 and c ∈ [0, 1) such that for u, v ∈ Bρ̂(u∗), ‖G(u)−G(v)‖ ≤ c‖u− v‖. Some of

the significant results which we have shown include:

• For the linear fixed-point problem u = G(u) ≡ Au + b, the Anderson-m iterates {uk}
with any storage depth parameter m converge to the solution u∗ r-linearly with rate

of convergence no worse than the contractive constant c, and the fixed-point residuals

{F (uk)} converge to 0 q-linearly also with rate no worse than c.

• For nonlinear fixed-point problems, for any storage-depth parameter m the Anderson-m

iterates {uk} converge to the solution u∗ and the fixed-point residuals {F (uk)} converge

to 0, both r-linearly with rate of convergence ĉ which can be made arbitrarily close to c

given good enough initial iterate. This result requires the assumption that there exists

some constant Mα ≥ 1 such that
∑mk

i=0 |α
(k)
i | ≤Mα for all k ≥ 1.

• For a variation of the Anderson acceleration algorithm which adjusts the storage depth

to maintain good conditioning of the least-squares problem, the iterates {uk} converge r-

linearly to the solution u∗ and the fixed-point residuals {F (uk)} converge to 0 q-linearly,

both with rate of convergence ĉ which can be made arbitrarily close to c given good

enough initial iterate. Unlike the previous result, this requires no assumption on the size

of the linear combination coefficients. Additionally, as the convergence in the residuals is

q-linear, the convergence for this method will be more readily apparent and the rate of

convergence can be more easily estimated.

• When applying Anderson acceleration with a fixed-point map which can only be evaluated

approximately (i.e. we evaluate Ĝ(u) = G(u)+ε(u) where ε(u) is some error term), rather

than convergence we obtain local improvement results. The bounds which are obtained

((3.84) and (3.85)) predict linear reduction in the error and fixed-point residual up to

some stagnation point, and the stagnation point is proportional to the size of the error in

the fixed-point map evaluation.

The first three results listed here essentially state that Anderson acceleration is in a sense is no

worse than Picard iteration. Under these conditions, for both linear and nonlinear fixed-point

156

problems Picard iteration converges q-linearly in both the residual and error with rate of conver-

gence c. For linear problems, we see that the rate of convergence is the same for both Anderson

and Picard, and for nonlinear problems, the rate of convergence for Anderson can be made ar-

bitrarily close to that of Picard iteration. However, in practice it is generally observed that An-

derson acceleration provides an appreciable improvement in the rate of convergence over Picard.

The reason that these results do not say that Anderson will definitively converge more rapidly

than Picard is the fact that for each result we assume no improvement from the optimization step

in Anderson acceleration. In each proof, we obtain the quantity ‖
∑mk

i=0 α
(k)
i F (uk−mk+i)‖, where

the coefficients {α(k)
i } are chosen to minimize ‖

∑mk
i=0 αiF (uk−mk+i)‖ such that

∑mk
i=0 αi = 1. We

make the bound ‖
∑mk

i=0 α
(k)
i F (uk−mk+i)‖ ≤ ‖F (uk)‖, but it is possible that this bound signifi-

cantly neglects the optimality of the linear combination coefficients. If we could, say, guarantee

that ‖
∑mk

i=0 α
(k)
i F (uk−mk+i)‖ ≤ η‖F (uk)‖ for some η ∈ (0, 1) for all k ≥ 1, then we could defini-

tively say that Anderson will converge more rapidly than fixed-point iteration. Going forward,

it would be interesting to identify conditions, or possibly a class of problems, for which it could

be said that Anderson acceleration will converge more rapidly than Picard iteration.

The final result described above shows that we also obtain a similar result for both Picard

and Anderson in the context of an inaccurate fixed-point map evaluation. For both, we expect

stagnation in the iteration error and fixed-point residual at some level proportional to the error

in the function evaluation. Our result however suggests that Anderson may react more poorly

than Picard if the size of the error in the fixed-point map evaluation is large, as the bound

on the allowable size of the evaluation error for Anderson may be significantly smaller than

that for Picard. Additionally, Anderson may behave more poorly than Picard if the error-free

fixed-point map is weakly contractive. This is due to the fact that for Anderson the bound on

the iteration error is derived from a bound on the exact fixed-point residual, whereas for Picard

the iteration error bound is computed directly. If the fixed-point map is weakly contractive, the

fixed-point residual may poorly reflect the size of the iteration error, and thus deriving a bound

from the residual does little good.

While the results described above significantly expand upon the theoretical foundation for

Anderson acceleration, there several other issues not addressed in these results for which practice

could benefit from further theory development. First, these results provide little insight with

regard to selection of the storage depth parameter m. The rate of convergence which we show

does not depend in any way on this parameter. The only location in which this parameter

comes into play in any of our analysis is in the definition of “good enough” for the initial

iterate, and that we might expect the coefficient bound Mα to be larger for larger storage depth

parameters. Ideally, there would be some theoretical justification for selecting a storage depth

parameter, rather than simply determining a good parameter for a problem experimentally.

Along these lines, in a similar manner to adjusting for conditioning there may be better methods

157

for dynamically selecting the storage depth at a given iteration in order to obtain the maximum

residual reduction. One additional area where there is room for further theory development is

in globalization of this method. The NOX implementation of Anderson acceleration includes an

option for line searches, and the delayed start option seems like it can provide some measure of

globalization by providing Anderson acceleration an improved initial iterate. However, the use

of these options is currently not supported or guided by theory. Theoretical developments in

these areas could potentially lead to improvements in the NOX Anderson acceleration solver,

resulting in improved robustness and performance.

7.2 Coupled Multiphysics Problems

The remainder of this work concerned the solution of coupled multiphysics problems, specifically

in the context of LWR simulation. In particular, we were concerned with problems for which we

assume no more functionality from the application codes for solving individual sets of physics

than the ability to solve their individual problems and returning some response functions. As

Newton-like methods require at the very least the ability to compute and access a residual

(to apply JFNK), Picard has to this point been the primary method for solving this sort of

problem. In this study we explored the potential of Anderson acceleration to improve upon some

of the drawbacks of Picard iteration. We tested this specifically using the Tiamat code coupling.

Again, this couples together the Bison fuel performance, CTF thermal hydraulics, and MPACT

neutronics codes. Bison solves its set of physics by JFNK, so it internally computes a residual,

but the other applications are black boxes which can only accept coupling data, solve their sets

of physics, and return some response functions. As a result, a straightforward application of a

Newton-like method is not possible, so this coupling had been previously implemented using

Picard iteration.

To integrate Anderson acceleration into Tiamat, we had to explicitly define the vector of

unknowns u and the fixed-point map G(u) for the fixed-point problem u = G(u) which we

apply Anderson acceleration to solve. These quantities are implicit in Picard iteration, but

the these must be explicitly defined for Anderson acceleration in order to form and solve the

least-squares problem and compute a new iterate. This involved reformulating the fully-coupled

problem in the form of a fixed-point problem in terms of coupling data being passed between

application codes. The problem needed to be formulated in this manner as the state variables

for each of the application codes are not accessible, but the coupling data must necessarily be

accessible in order to implement the Picard coupling. This formulation allowed us to implement

Anderson acceleration while utilizing much of the existing infrastructure with minimal change.

As the coupling data comprising the vector of unknowns and the fixed-point map represent

various physical quantities, we applied Anderson to a scaled fixed-point problem to give the

158

various fields more equal weight in the least-squares problem solved in the Anderson acceleration

algorithm. This scaling essentially represents a left preconditioning of the fixed-point residual.

To compare the performance of Anderson acceleration and Picard iteration, we considered

various parameter studies. These studies include a comparison the two with respect to some

of the issues which were noted to be problematic for Picard, namely robustness with respect

to variation in damping and power levels. In general, we noted that Anderson provides a sig-

nificant improvement in robustness. With Picard, the performance of the method is strongly

dependent on selection of the damping level, but with Anderson this does not seem to be the

case. Whereas Picard displays an optimal level of damping with performance degrading away

from this optimal level, Anderson gave consistently good performance. At worst, Anderson per-

formed comparably to optimally-damped Picard iteration, but it often provided a significant

improvement. This sort of behavior was consistently displayed as the power level was varied.

As we noted previously, the optimal damping level for Picard shifts depending on the power

level. Thus, when solving a problem by Picard with some given damping factor, it can not be

known without additional simulations whether the performance could be improved by changing

the damping level. Conversely, since the performance of Anderson acceleration was consistently

insensitive to the damping level, we can more comfortably assume that Anderson acceleration

is performing near its optimal level.

Another aspect of this work was a comparison of ways to reformulate the fully-coupled

problem in Tiamat as different fixed-point problems. We formulated the fully-coupled problem

in the form of three fixed-point maps: a block Gauss-Seidel map which solves the applications

sequentially, a block Jacobi map which solves all applications simultaneously, and an inter-

mediate map which alternates between simultaneously solving Bison and MPACT and solving

CTF. The advantage of the second two maps is a lower time per evaluation of the fixed-point

map due to improved utilization of parallel resources. We observe that iteration counts for the

intermediate map were generally fairly close to the Jacobi map while taking more time per

iteration, so it seems that this formulation will rarely perform best. For Picard iteration, the

increase in iteration counts for the Jacobi map over Gauss-Seidel makes it uncompetitive de-

spite the reduced time per iteration, but for Anderson, the iterations to convergence for these

maps can be made close enough so that Jacobi may give the best run time. However, for a block

Jacobi scheme to be effective, care must be taken so that the solve times for the application

codes are nearly the same. Balancing the solve times for the application codes in this specific

coupling will be problematic due to the coarse parallelism of CTF. Bison and MPACT can be

run with hundreds to thousands of processors, while CTF can currently only utilize a single

processor per fuel assembly, and it will thus be a bottleneck. As a result of this, unless CTF

is further developed to accommodate finer grained parallelism, the block Gauss-Seidel scheme

will generally be the best option for Tiamat simulations.

159

We also considered a comparison of Anderson acceleration and JFNK for solving the fully-

coupled problem in Tiamat. Anderson acceleration requires the formation and computation of

a fixed-point residual, and one can attempt to solve this fixed-point residual equation by JFNK.

We observe that JFNK performs significantly worse than Anderson for solving this fixed-point

problem. The error introduced by the approximate solves in the evaluation of the fixed-point

map can be problematic for JFNK, and when JFNK does perform well, too much work is

required each nonlinear iteration to be competitive with Anderson acceleration. Each fixed-point

map evaluation requires a full solve of each application code, and JFNK requires an evaluation of

the fixed-point map each linear and nonlinear iteration. In the tests we considered, this resulted

in more fixed-point map evaluations for 1 or 2 JFNK iterations than Anderson requires to fully

solve the coupled problem. We will note however that in cases in which the application codes

can compute and return residuals, or possibly even derivative information, Newton-like methods

may very well be the better option. For instance, the study in [24] considers a coupling between

neutronics and thermal hydraulics codes which can compute residuals, and by utilizing an

approximate residual evaluation in linear solves, very good performance is obtained for JFNK.

However, in our case where the residual for JFNK is a fixed-point residual involving internal

application code solves, JFNK is unlikely to be competitive with Anderson.

Going forward, the techniques which have been utilized in this work could abstracted into

a more general framework for integrating Anderson acceleration into code couplings which

have used Picard iteration as the primary solution method. Returning to the general problem

formulation described in Section 1.1.2, and suppressing the independent parameters {pm,n}
from notation, consider the problem given by Nf coupled sets of physics. Suppose that the

functionality of the codes corresponding to these single-physics systems is limited to solving

their individual sets of physics and returning at least the responses necessary to evaluate the

transfer functions. As we do not assume the ability to access state variables or compute single-

physics residuals or derivative information, it is not possible to implement Newton’s method

in the manner described in Section 1.2.2. Picard iteration can be implemented by imposing

some sequence of single-physics solves and transfers of updated coupling data. While the single-

physics state variables may or may not be accessible, the data being passed between codes

must be accessible in order to implement the Picard coupling. Then, as we did for the Tiamat

coupling, we note that the residual equation fi(xi, {zi,j}) = 0 implicitly defines the solution

xi as a function of the coupling parameters {zi,j}. We then denote the solution to residual

equation i given the coupling parameters {zi,j} as xi({zi,j}). We thus reformulate the system

160

using the transfer functions to define the constraints, and write the fully-coupled system as:

F ({zm,n}) =



r0,0({xi({zi,j})})− z0,0

...

r0,Nz0−1({xi({zi,j})})− z0,Nz0−1

...

rk,0({xi({zi,j})})− zk,0
...

rk,Nzk−1({xi({zi,j})})− zk,Nzk−1

...


= 0, (7.1)

where {zm,n} is the collection of all coupling parameter vectors. As this residual is evaluated

by first solving of each set of physics given some input set of coupling parameter vectors and

then evaluating transfer functions given these solutions, this corresponds to the fixed-point

residual for a block Jacobi scheme. Other fixed-point maps can be obtained by employing a

nonlinear elimination scheme on this system. The promising results obtained for the Tiamat

coupling suggest that it may be worthwhile to investigate integrating Anderson acceleration in

this manner into other code couplings which use primarily Picard iteration, as it may result in

a significant improvement in terms of performance and robustness with respect to parameter

variation.

161

REFERENCES

[1] SCALE: A comprehensive modeling and simulation suite for nuclear safety analysis and
design. ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, TN,
2011.

[2] D.G. Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM,
12(4):547–560, 1965.

[3] R.A. Bartlett. Teuchos::RCP beginner’s guide: An introduction to the Trilinos smart
reference-counted pointer class for (almost) automatic dynamic memory management in
C++. Technical Report SAND2004-3268, Sandia National Laboratories, 2010.

[4] R.A Bartlett. TriBITS developers guide and reference. Technical Report
L3:PHI.INF.P8.03, Consortium for Advanced Simulation of LWRs, 2014.

[5] T. Bergman, A. Lavine, F. Incropera, and D. Dewitt. Fundamentals of Heat and Mass
Transfer. Wiley, 7th edition, 2011.

[6] A. Björk and C.C. Paige. Loss and recapture of orthogonality in the modified Gram-
Schmidt algorithm. SIAM Journal on Matrix Analysis and Applications, 13(1):176–190,
1992.

[7] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Springer, New York, 3rd edition, 2008.

[8] C. Brezinski. Convergence acceleration during the 20th century. Journal of Computational
and Applied Mathematics, 122:1–21, 2000.

[9] M.T. Calef, E.D. Fichtl, J.S. Warsa, M. Berndt, and N.N. Carlson. Nonlinear Krylov ac-
celeration applied to a discrete ordinates formulation of the k-eigenvalue problem. Journal
of Computational Physics, 238:188–209, April 2013.

[10] N. Capps, B.D. Wirth, R. Montgomery, D. Sunderland, and M. Pytel. Evaluation of missing
pellet surface geometry on cladding stress distribution and magnitude. Technical Report
L3:FMC.FUELS.P11.01, Consortium for Advanced Simulation of LWRs, 2015.

[11] S. Chandrasekhar. Radiative Transfer. Dover Publications, New York, 1960.

[12] K.T. Clarno, R.P. Pawlowski, R.O. Montgomery, T.M. Evans, and B..S. Collins. High
fidelity modeling of pellet-clad interaction using the CASL Virtual Environment for Re-
actor Applications. In Joint International Conference on Mathematics and Computation,
Supercomputing in Nuclear Applications and the Monte Carlo Method, pages 1–15, 2015.

[13] T. Coleman and Y. Li. A reflective Newton method for minimizing a quadratic function
subject to bounds on some of the variables. SIAM Journal on Optimization, 6(4):1040–
1058, 1996.

162

[14] B. Collins, T. Downar, et al. MPACT theory manual. Technical Report CASL-U-2015-
0078-000, Consortium for Advanced Simulation of LWRs, 2015.

[15] D.E. Cullen. Application of the probability table method to multigroup calculations of
neutron transport. Nuclear Science and Engineering, 55(4):387–400, 1974.

[16] J. Degroote, K.-J. Bathe, and J. Vierendeels. Performance of a new partitioned procedure
versus a monolithic procedure in fluid-structure interaction. Computers & Structures,
87:793–801, June 2009.

[17] S.C. Eisenstat and H.F. Walker. Globally convergent inexact Newton methods. SIAM
Journal on Optimization, 4(2):393–422, 1994.

[18] M.M. El-Wakil. Nuclear Heat Transport. American Nuclear Society, La Grange Park, IL,
1993.

[19] H.-R. Fang and Y. Saad. Two classes of multisecant methods for nonlinear acceleration.
Numerical Linear Algebra with Applications, 16(3):197–221, 2009.

[20] D. Gaston, C. Newman, and G. Hansen. MOOSE: A parallel computational framework for
coupled systems of nonlinear equations. Nuclear Engineering and Design, 239(10):1768–
1778, October 2009.

[21] A.T. Godfrey. VERA core physics benchmark progression problem specifications. Technical
Report CASL-U-2012-0131-004, Revision 4, Consortium for Advanced Simulation of LWRs,
2014.

[22] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

[23] J.D. Hales, S.R. Novascone, G. Pastore, D.M. Perez, B.W. Spencer, and R.L. Williamson.
BISON theory manual. Technical Report October, Idaho National Laboratory, 2013.

[24] S. Hamilton, M. Berrill, K. Clarno, R. Pawlowski, A. Toth, C.T. Kelley, T. Evans, and
B. Philip. An assessment of coupling algorithms for nuclear reactor core physics simula-
tions. Journal of Computational Physics, 311:241–257, 2016.

[25] S. Hamilton et al. Multiphysics simulations for LWR analysis. In International Conference
on Mathematics and Computational Methods Applied to Nuclear Science and Engineering,
Sun Valley, ID, 2013.

[26] R.J. Harrison. Krylov subspace accelerated inexact Newton method for linear and nonlinear
equations. Journal of Computational Chemistry, 25(3):328–334, 2003.

[27] M. Heroux et al. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia
National Laboratories, 2003.

[28] B.W. Kelley and E.W Larsen. 2D/1D approximations to the 3D neutron transport equa-
tion. I: Theory. In International Conference on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering, 2013.

163

[29] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial
and Applied Mathematics, Philadelphia, PA, January 1995. no. 16 in Frontiers in Applied
Mathematics.

[30] C.T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1999. no. 18 in Frontiers in Applied Mathematics.

[31] D.A. Knoll and D.E. Keyes. Jacobian-free Newton-Krylov methods: A survey of approaches
and applications. Journal of Computational Physics, 193(2):357–397, January 2004.

[32] B. Kochunas, D. Jabaay, B. Collins, and T. Downar. Demonstration of neutronics coupled
to thermal-hydraulics for a full-core problem using COBRA-TF / MPACT. Technical
Report L3:RTM.P7.05, Consortium for Advanced Simulation of LWRs, 2014.

[33] V. Kucukboyaci, Y. Sung, and B. Salko. COBRA-TF parallelization and application to
PWR reactor core subchannel DNB analysis. In Joint International Conference on Math-
ematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo
Method, pages 1–18, 2015.

[34] P.J. Lanzkron, D.J. Rose, and J.T. Wilkes. An analysis of approximate nonlinear elimina-
tion. SIAM Journal on Scientific Computing, 17(2):538–559, 1996.

[35] L. Lin and C. Yang. Elliptic preconditioner for accelerating the self consistent field iteration
in Kohn-Sham density functional theory. Siam Journal on Scientific Computing, 35(5):277–
298, June 2013.

[36] I Lux and L Koblinger. Monte Carlo Particle Transport Methods: Neutron and Photon
Calculations. CRC Press, 1991.

[37] K. Martin and B. Hoffman. Mastering CMake. Kitware, Inc., 6th edition, 2013.

[38] K. Mayaram and D.O. Pederson. Coupling algorithms for mixed-level circuit and device
simulation. IEEE Transactions on Computer Aided Design, 11(8):1003–1012, 1992.

[39] L. Monti and T. Schulenberg. Coupled ERANOS / TRACE system for HPLWR 3 pass
core analyses. In International Conference on Mathematics, Computational Methods and
Reactor Physics, pages 1–14, Saratoga Springs, NY, 2009.

[40] S. Palmtag. Demonstration of neutronics coupled to thermal-hydraulics for a full-core prob-
lem using VERA. Technical Report L2:AMA.P7.02, Consortium for Advanced Simulation
of LWRs, 2013.

[41] S. Palmtag and A. Godfrey. VERA common input user manual. Technical Report CASL-
U-2014-0014-002, Consortium for Advanced Simulation of LWRs, 2015.

[42] B.N. Parlett. The Symmetric Eigenvalue Problem. Society for Industrial and Applied
Mathematics, January 1998.

[43] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing, 1980.

164

[44] R. Pawlowski, R.A. Bartlett, N. Belcourt, R. Hooper, and R. Schmidt. A theory manual
for multi-physics code coupling in LIME version 1.0. Technical Report SAND2011-2195,
Sandia National Laboratories, 2011.

[45] R. Pawlowski, K. Clarno, and R. Montgomery. Demonstrate integrated VERA-CS for
the PCI challenge problem. Technical Report L1:CASL.P9.03, Consortium for Advanced
Simulation of LWRs, 2014.

[46] F. Potra and H. Engler. A characterization of the behavior of the Anderson acceleration
on linear problems. Linear Algebra and its Applications, 438(3):1002–1011, February 2013.

[47] P. Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration.
Chemical Physics Letters, 73(2):393–398, 1980.

[48] P. Pulay. Improved SCF convergence acceleration. Journal of Computational Chemistry,
3(4):556–560, 1982.

[49] T. Rohwedder and R. Schneider. An analysis for the DIIS acceleration method used in
quantum chemistry calculations. Journal of Mathematical Chemistry, 49(9):1889–1914,
August 2011.

[50] R.K. Salko and M.N. Avramova. CTF theory manual. Technical Report CASL-U-2015-
0054-000, Consortium for Advanced Simulation of LWRs, 2015.

[51] R. Sanchez and N. McCormick. A review of neutron transport approximations. Nuclear
Science and Engineering, 80:481–535, 1982.

[52] A. Sidi, W.F. Ford, and D.A. Smith. Acceleration of convergence of vector sequences.
SIAM Journal on Numerical Analysis, 23(1):178–196, 1986.

[53] V. Simoncini and D.B. Szyld. Flexible inner-outer Krylov subspace methods. SIAM Journal
on Numerical Analysis, 40(6):2219–2239, 2003.

[54] V. Simoncini and D.B. Szyld. Theory of inexact Krylov subspace methods and applications
to scientific computing. SIAM Journal on Scientific Computing, 25(2):454–477, 2003.

[55] V. Simoncini and D.B. Szyld. Recent computational developments in Krylov subspace
methods for linear systems. Numerical Linear Algebra with Applications, 14:1–59, 2007.

[56] S.R. Slattery, P.P.H. Wilson, and R.P. Pawlowski. The Data Transfer Kit: A geometric
rendezvous-based tool for multiphysics data transfers. In International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering,
pages 1–11, 2013.

[57] S.G. Stimpson. An azimuthal, Fourier moment-based axial SN solver for the 2D/1D
scheme. PhD thesis, University of Michigan, 2015.

[58] A. Toth and C.T. Kelley. Convergence analysis for Anderson acceleration. SIAM Journal
on Numerical Analysis, 53(2):805–819, 2015.

165

[59] A. Toth, C.T. Kelley, and R. Pawlowski. Demonstrate Anderson acceleration for coupled
neutronics and thermal hydraulics in Tiamat. Technical Report L3:RTM.SUP.P10.01,
Consortium for Advanced Simulation of LWRs, 2015.

[60] A. Toth, C.T. Kelley, S. Slattery, S. Hamilton, K. Clarno, and R. Pawlowski. Analysis
of Anderson acceleration on a simplified neutronics/thermal hydraulics system. In Joint
International Conference on Mathematics and Computation, Supercomputing in Nuclear
Applications and the Monte Carlo Method, pages 1–12, 2015.

[61] J.A. Turner. Virtual environment for reactor applications (VERA). Technical Report
L2:VRI.P7.01, Consortium for Advanced Simulation of LWRs, 2013.

[62] H.F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on
Numerical Analysis, 49(4):1715–1735, 2011.

[63] J. Willert, X. Chen, and C.T. Kelley. Newton’s method for Monte Carlo-based residuals.
SIAM Journal on Numerical Analysis, 53(4):1738–1757, 2015.

[64] J. Willert, C.T. Kelley, D.A. Knoll, and H. Park. Hybrid deterministic/Monte Carlo neu-
tronics. Siam Journal on Scientific Computing, 35(5):62–83, 2013.

[65] M.L. Williams and K.S. Kim. The embedded self-shielding method. In PHYSOR 2012,
Knoxville, TN, 2012.

[66] J. Yan, B. Kochunas, M. Hursin, T. Downar, Z. Karoutas, and E. Baglietto. Coupled
computational fluid dynamics and MOC neutronic simulations of Westinghouse PWR fuel
assemblies with grid spacers. In 14th International Topical Meeting on Nuclear Reactor
Thermalhydraulics, Toronto, Ontario, 2011.

[67] D.P. Young, W.P. Huffman, R.G. Melvin, C.L. Hilmes, and F.T. Johnson. Nonlinear elim-
ination in aerodynamic analysis and design optimization. Lecture Notes in Computational
Science A, pages 17–43, 2003.

166

APPENDICES

167

Appendix A

Iterative Methods for Linear and

Nonlinear Equations

Anderson acceleration, and several of the other methods that we consider in this work (e.g.

fixed-point iteration and JFNK) are considered iterative methods. In this sort of method, a

hopefully improving approximation to the solution is generated by a sequence of iterates {un}
given some initial iterate u0. In this appendix, we provide a more in-depth description of several

of the methods which were referenced in this work, and overview some theory related to these

methods.

A.1 Linear Equations

We first consider iterative methods for solving linear equations. By linear equations, we refer

to problems of the form

Au = b,

where we seek u ∈ Rn given A ∈ Rn×n and b ∈ Rn. One sort of method for solving this

problem is a direct method. For instance, one may decompose A using an LU or Cholesky

(for symmetric positive-definite matrices) factorization and directly compute the solution by

forward/back substitution. In general, the dominant cost for a direct method is the matrix

factorization. If the matrix A is dense, the computational cost of either an LU or Cholesky

factorization is O(n3), though this can be less if the matrix is sparse or banded. For many

realistic problems the computational cost of direct methods is too large for such methods to

be useful. As a result, iterative methods are the only practical option for many problems, in

particular when n is very large.

168

A.1.1 Preliminaries

Before describing some commonly used iterative methods for linear equations, we first need to

establish some conventions and definitions.

Definition A.1. Given some vector norm on Rn ‖ · ‖, we define the induced matrix norm of

A ∈ Rn×n by the following

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖. (A.1)

Induced matrix norms have the attractive property that ‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ Rn. An

important concept related to matrix norms is that of the condition number.

Definition A.2. The condition number of the matrix A ∈ Rn×n is defined as κ(A) = ‖A‖‖A−1‖.
If A is singular, its condition number is infinite.

The condition number of a matrix is useful for relating the residual r = b − Au to the

error e = u− u∗, where u∗ = A−1b is the exact solution. Termination of iterative methods are

generally based on the size of the residual, as the error can not be computed without already

knowing the solution, so it is important to know how well the residual reflects the error. A

common termination criterion is to require some level of relative reduction in the residual, i.e.
‖rk‖
‖r0‖ < τ where τ ∈ (0, 1) is a given tolerance. This quantity is related to the relative error

reduction by the following Lemma.

Lemma A.1. Let u0, b ∈ Rn and nonsingular A ∈ Rn×n be given, and let u∗ = A−1b. Then,

the following bound holds:
‖e‖
‖e0‖

≤ κ(A)
‖r‖
‖r0‖

. (A.2)

Proof. To prove this, note that for any u it holds that

r = b−Au = A(u∗ − u) = −Ae.

Thus, we have both r = −Ae and e = −A−1r. From these, we obtain ‖e‖ ≤ ‖A−1‖‖r‖,
and ‖r‖ ≤ ‖A‖‖e‖, which we can rewrite as ‖e‖−1 ≤ ‖A‖‖r‖−1 (so long as u 6= u∗). These

inequalities give

‖e‖
‖e0‖

= ‖e‖‖e0‖−1 ≤ (‖A−1‖‖r‖)(‖A‖‖r0‖−1) = κ(A)
‖r‖
‖r0‖

.

One last concept that we need to introduce is eigenvalues and eigenvectors.

169

Definition A.3. We say that λ is an eigenvalue of matrix A if there exists a vector x 6= 0 such

that

Ax = λx,

and x is referred to as an eigenvector. We refer to a corresponding eigenvalue–eigenvector pair

as an eigenpair.

The matrix A ∈ Rn×n has n (not necessarily distinct or real) eigenvalues. They are given

by the roots of the characteristic polynomial of A, p(z) = det(A− zI). We now introduce one

final definition related to the eigenvalues of a matrix.

Definition A.4. Define σ(A) to be the set of all eigenvalues of matrix A, which is referred to

as the spectrum of A. We then define the spectral radius of A as ρ(A) = maxλ∈σ(A) |λ|.

A.1.2 Stationary Iterative Methods

Among the simplest of iterative methods for solving linear equations are stationary iterative

methods. These typically proceed by splitting the matrix into some convenient form A = B−C
with B nonsingular, and formulating the problem as solving

Bu = Cu+ b. (A.3)

This is then attempted to be solved by iterating

uk+1 = B−1Cuk +B−1b = Muk + d, (A.4)

where M = B−1C and d = B−1b. In this manner, the root finding problem is reformulated as a

fixed problem, which is being solved by fixed-point iteration. That is, letting G(u) = Mu+d, this

iteration can be represented in the form uk+1 = G(uk). We now present a theorem describing

the behavior of fixed-point iteration for linear problems.

Theorem A.1. If ρ(M) < 1, then I −M is nonsingular, and the iteration (A.4) converges to

the solution (I −M)−1d

Proof. We begin by noting that given some ε > 0, there exists a matrix norm such that ‖M‖ ≤
ρ(M) + ε (Theorem 1.3.1 from [29]). Letting ε = 1−ρ(M)

2 , this implies that there is some matrix

norm such that ‖M‖ < 1. We now show that
∑∞

i=0M
i = (I −M)−1. First, denote the partial

sum Sj =
∑j

i=0M
i. Now, given j, k > 0 with j > k, and using the matrix norm indicated

above, we have

‖Sj − Sk‖ = ‖
j∑

i=k+1

M i‖ ≤
j∑

i=k+1

‖M‖i = ‖M‖k+1 1− ‖M‖j−k

1− ‖M‖
≤ ‖M‖

k+1

1− ‖M‖
. (A.5)

170

The quantity on the right goes to 0 as j, k → ∞, so {Sj} is a Cauchy sequence in Rn×n.

Since Rn×n is complete, this sequence therefore has some limit S ∈ Rn×n. Now, noting that

I +MSj = Sj+1 and letting j →∞, this becomes I +MS = S, or alternatively (I −M)S = I.

Hence S =
∑∞

i=0M
i = (I −M)−1. Next, we note that we can write (A.4) as

uk+1 = Mk+1u0 +

(
k∑
i=0

M i

)
d. (A.6)

Because ‖M‖ < 1, the first term on the right goes to 0 as k → ∞, and by what was shown

above,
(∑k

i=0M
i
)
d→ (I −M)−1d as k →∞. Hence, {uk} → (I −M)−1d.

Note that I−M = I−B−1C = B−1(B−C) = B−1A. Then, because I−M is nonsingular, A

is nonsingular as well and we have (I−M)−1 = A−1B. Hence, (I−M)−1d = A−1BB−1b = A−1b,

which is the correct solution of the linear system.

Some frequently used methods of this type include the Jacobi, Gauss-Seidel, and Successive

Over-Relaxation (SOR) methods. For these methods, the matrix A is decomposed as A =

D−L−U, where D is the diagonal component and −L and −U are the strict lower and upper

triangular components respectively of A. For Jacobi, the splitting is chosen to be B = D and

C = L+ U , giving the following iteration

uk+1 = D−1(L+ U)uk +D−1b. (A.7)

As D is diagonal, the application of its inverse is very cheap. For Gauss-Seidel, the splitting is

B = D − L and C = U , giving

uk+1 = (D − L)−1Uuk + (D − L)−1b. (A.8)

Note that the application of the inverse of D − L simply involves a triangular solve. Lastly,

SOR requires some over-relaxation factor ω > 1. The splitting used for this method is given by

B = D−ωL and C = (1−ω)D+ωU , which is actually a splitting for the equation (ωA)u = ωb.

This gives the iteration

uk+1 = (D − ωL)−1[(1− ω)D + ωU]uk + ω(D − ωL)−1b. (A.9)

Note that letting ω = 1 simply gives the Gauss-Seidel method. Again, the convergence behavior

of these methods is determined by the spectral radius of the iteration matrix.

171

A.1.3 Krylov Subspace Methods

Krylov methods are another class of iterative methods for linear equations. This type of method

proceeds by choosing the kth iterate to minimize some measure of the error over the shifted kth

Krylov subspace u0 +Kk, where

Kk = span{r0, Ar0, . . . , A
k−1r0}

and r0 = b − Au0. Frequently utilized Krylov methods include the conjugate gradient (CG),

generalized minimal residual (GMRES), CGNR, and CGNE methods. CG only applies to sym-

metric positive-definite matrices (i.e. AT = A and uTAu > 0 for all u 6= 0), and it minimizes

‖u−u∗‖A over the shifted Krylov subspace, where we define the A–norm of some vector x to be

‖x‖A =
√
xTAx. CGNR and CGNE enable the use of CG for non-spd matrices by applying it

to a different problem. CGNR proceeds by applying CG to the normal equations ATAu = AT b,

which results in minimizing ‖b−Au‖22. CGNE applies CG to solve AAT y = b for y and recovers

the solution by computing u = AT y. This method minimizes ‖u∗ − u‖22 each iteration. Note

that both of these methods require some method for applying AT to a vector. Both also have an

additional disadvantage in that κ(ATA) = κ(AAT) = κ(A)2. GMRES also works for non-spd

matrices, and this method chooses the kth iterate to minimize the residual ‖b− Au‖2 over the

space u0 +Kk. An advantage of this sort of method is that it only requires the ability to apply

the action of A (and AT for CGNR and CGNE) on a vector, and explicit representation of the

matrix is not required. The analysis for each of these methods is fairly similar, so due to its

“essential equivalence” to Anderson acceleration shown in [62], we will consider GMRES from

this point forward. Additionally, we will take ‖ · ‖ to refer to the l2 norm. Before characterizing

the convergence behavior of this method, we require an additional definition.

Definition A.5. We call polynomial pk(z) a kth degree residual polynomial if pk is of degree k

and pk(0) = 1. We denote the set of all kth degree residual polynomials by Pk.

We now overview some results which describe the behavior of this method.

Theorem A.2. Let A be nonsingular and uk be the kth iteration of GMRES. Then for any

residual polynomial pk(z) ∈ Pk, we have

‖rk‖
‖r0‖

≤ ‖pk(A)‖.

Proof. First note that we can express any u ∈ u0 +Kk in the form

u = u0 +
k−1∑
i=0

γiA
ir0.

172

Thus we have

r = b−Au = b−Au0 −
k∑
i=1

γi−1A
ir0 = r0 −

k∑
i=1

γi−1A
ir0 = pk(A)r0,

for some residual polynomial pk(z). Hence, each residual polynomial in Pk has a one-to-one

correspondence to some element in the shifted Krylov subspace u0 +Kk. Now, let the residual

polynomial pk(z) be given, and r be the residual corresponding to this polynomial as defined

above. Due to the minimization property of the the kth GMRES residual, we have ‖rk‖ ≤ ‖r‖,
and we thus have

‖rk‖ ≤ ‖r‖ = ‖pk(A)r0‖ ≤ ‖pk(A)‖‖r0‖.

From this result, we can show that the GMRES iteration will converge to the solution in a

finite number of iterations.

Theorem A.3. Let A be nonsingular. Then, the GMRES iteration will converge to the solution

A−1b in at most n iterations.

Proof. Consider the characteristic polynomial of A, p̄(z) = det(A − zI). The characteristic

polynomial of an n × n matrix is of degree n. Since A is nonsingular, we have p̄(0) 6= 0, so

we can then define pn(z) = p̄(z)
p̄(0) , which is in Pn. The matrix A is a root of its characteristic

equation, so we have pk(A) = 0. Then, from what was shown above we have ‖rn‖ = 0, and thus

un is the exact solution.

Often, the problem size n is too large for this number of iterations to be practical. In

general, GMRES is utilized as an iterative method which terminates when some specified error

tolerance is satisfied. In order to further characterize the behavior of this method, Theorem A.2

may be used to derived additional results. We lastly present one final result for specifically

diagonalizable matrices.

Theorem A.4. Let A be nonsingular and diagonalizable with eigen-decomposition A = QΛQ−1,

and let uk be the kth GMRES iterate. Then, for any pk ∈ Pk

‖rk‖
‖r0‖

≤ κ(Q) max
λ∈σ(A)

|pk(λ)|.

If A is normal, then it can be diagonalized by a unitary transformation, in which case

κ(Q) = 1. This result shows that the convergence behavior of GMRES (at least for diagonal-

izable matrices) can be characterized in terms of the eigenvalues of the matrix A.

173

We conclude discussion of GMRES by considering some practical aspects of this method.

GMRES is generally implemented by maintaing an orthonormal basis Vk for for the Krylov

subspace Kk using an Arnoldi process. Given the orthonormal basis Vk, any z ∈ Kk can be

represented as z = Vky for some y ∈ Rk. In this way, the GMRES minimization problem can

be formulated as solving

min
y∈Rk

‖r0 −AVky‖.

The Arnoldi process produces a sequence of orthonormal bases {Vk} such that

AVk = Vk+1Hk,

where Hk ∈ R(k+1)×k is upper Hessenberg. Because Vk+1 has orthonormal columns, for any

v ∈ Rk+1 we have ‖Vk+1v‖ = ‖v‖. Hence, the GMRES least-squares problem can be further

reformulated as solving

min
y∈Rk

‖βe1 −Hky‖,

where β = ‖r0‖ and e1 = (1, 0, . . . , 0)T ∈ Rk+1. This problem can be solved efficiently using

Givens rotations. As an orthonormal basis for the Krylov subspace Kk is maintained throughout

the iteration, storage may be an issue if a large number of iterations is required or if the problem

size is very large. To address this, GMRES is frequently used in a way that the iteration

is restarted after some given number of iterations. This method, referred to as GMRES(m),

proceeds by performing m iterations of GMRES, and the purging the memory and restarting

with um as a new initial iterate.

A.2 Nonlinear Equations

We now turn our attention to iterative methods for nonlinear equations. In this section, we are

concerned with solving two types of problems. First, we consider fixed-point problems. For this

type of problem, we seek a solution to the equation u = G(u), where u ∈ Rn and G : Rn → Rn.

We refer to G as a fixed-point map, and a solution of this equation as a fixed-point of G. Next,

we consider root finding problems. In these, we seek a solution to the equation F (u) = 0, where

u ∈ Rn and F : Rn → Rn. We refer to F as the residual for this equation. There is an obvious

relation between these types of problems, and it is often possible to solve a nonlinear equation

in either form. For instance, a fixed-point problem can be posed as a root finding problem by

defining F (u) = G(u)− u, and in this case we call F the fixed-point residual. Similarly, a root

finding problem can be formulated as a fixed-point problem by defining G(u) = u + F (u), or

possibly as G(u) = u+M(u)F (u), where M(u) is some nonsingular preconditioner matrix.

174

A.2.1 Preliminaries

As for linear problems, we begin by establishing some definitions and conventions before de-

scribing some commonly used methods for solving nonlinear equations. First, much of the

forthcoming analysis for Newton’s method is based on derivatives of the function F , so we need

the following definition.

Definition A.6. Let F : Rn → Rn be differentiable at u ∈ Rn. We then define the Jacobian of

F (u) as the matrix F ′(u) ∈ Rn×n with (i, j) component given by

F ′(u)ij =
∂F (u)i
∂uj

.

Next, we require the following definition.

Definition A.7. Let Ω ⊂ Rn and F : Ω → Rm. We call F Lipschitz continuous on Ω with

Lipschitz constant γ ≥ 0 if

‖F (u)− F (v)‖ ≤ γ‖u− v‖,

for all u, v ∈ Ω. We additionally refer to F as a contraction map if it it Lipschitz continuous

with Lipschitz constant γ ∈ [0, 1).

The concept of a contraction mapping is very important for the analysis of fixed-point

iteration in Section A.2.2, and we also leveraged it heavily in our analysis of Anderson acceler-

ation. Lipschitz continuity also utilized in the following set of assumptions, which we refer to

as the standard assumptions. This set of assumptions is important for convergence analysis for

Newton’s method in Section A.2.3.

Assumption A.1. Given a function F on the set Ω, we say F satisfies the standard

assumptions if:

1. F (u) = 0 has a solution u∗ ∈ Ω.

2. F ′(u) is Lipschitz continuous with Lipschitz constant γ on Ω.

3. F ′(u∗) is nonsingular.

We required a similar set of assumptions for analysis of Anderson acceleration for solving

nonlinear fixed-point problems. Next, much of our analysis requires the following theorem, which

is a multivariate formulation of the Fundamental Theorem of Calculus.

Theorem A.5. Let F be differentiable in an open, convex set Ω ⊂ Rn. Then, for any u, v ∈ Ω

F (u)− F (v) =

∫ 1

0
F ′(v + t(u− v))(u− v) dt.

175

In particular, if the solution u∗ ∈ Ω this implies F (u) =
∫ 1

0 F
′(u∗ + te)e dt. Lastly, to

characterize the rate at which a sequence converges to its limit, we introduce the following

terminology.

Definition A.8. Consider the sequence {uk} ⊂ Rn with limit u∗ ∈ Rn. We say that

• uk → u∗ q-linearly with q-factor σ ∈ (0, 1) if

‖uk+1 − u∗‖ ≤ σ‖uk − u∗‖

for sufficiently large k.

• uk → u∗ q-superlinearly if

lim
k→∞

‖uk+1 − u∗‖
‖uk − u∗‖

= 0

• uk → u∗ q-superlinearly with q-order α > 1 if there is K > 0 such that

‖uk+1 − u∗‖ ≤ K‖uk − u∗‖α

• uk → u∗ q-quadratically if there is K > 0 such that

‖uk+1 − u∗‖ ≤ K‖uk − u∗‖2

Note that q-quadratic convergence is a particular case of q-superlinear convergence. Using

these definitions, we define the following, weaker sense of convergence.

Definition A.9. Consider the sequence {uk} ⊂ Rn with limit u∗ ∈ Rn. We say that uk → u∗

r-linearly if there is a sequence {ξn} ⊂ Rn such that ξk → 0 q-linearly and ‖uk − u∗‖ ≤ ξk.

Likewise, we say uk → u∗ r-superlinearly or r-quadratically if ‖uk − u∗‖ ≤ ξk where ξk → 0

q-superlinearly or q-quadratically respectively. Lastly, uk → u∗ r-superlinearly with r-order α if

ξk → 0 q-superlinearly with q-order α.

Whereas q-type convergence implies monotonic decrease in the quantity ‖uk − u∗‖ each

iteration, r-type convergence simply means an improving worst case bound, though uk+1 is not

necessarily a better approximation to u∗ than uk. Hence, we see that this is a weaker sense of

convergence, as a q-type convergent series is convergent in the corresponding r-type, though the

converse is not true. In both cases, assuming a comparable cost per iteration, a superlinearly

convergent method would generally be considered superior to a linearly convergent method.

However, in many cases the per iteration cost of a linearly convergent method is low enough

in comparison to the superlinearly convergent method that the linearly convergent method

converges in less time despite a higher iteration count.

176

A.2.2 Fixed-Point Iteration

We first consider fixed-point iteration for solving the fixed-point problem u = G(u), where

u ∈ Rn and G : Rn → Rn. This method is given by the following

uk+1 = G(uk),

where u0 is a given initial iterate. We frequently also refer to this method as Picard iteration, but

it may also be known as nonlinear Richardson iteration or successive substitution. The following

theorem provides sufficient conditions for the existence of a unique fixed-point in some set, and

characterizes the convergence behavior of fixed-point iteration toward this solution.

Theorem A.6. Let Ω be a closed subset of Rn and G be a contraction mapping on Ω with

constant c ∈ [0, 1) such that G(u) ∈ Ω for all u ∈ Ω. Then, G has a unique fixed-point u∗ ∈ Ω

and the fixed-point iteration with any u0 ∈ Ω satisfies the following bounds

‖uk+1 − u∗‖ ≤ c‖uk‖,

and

‖F (uk+1)‖ ≤ c‖F (u)‖,

where we define F (u) = G(u) − u. These bounds state that both {uk} → u∗ an {F (uk)} → 0

q-linearly with q-factor c.

Proof. We first note that since u0 ∈ Ω and G(u) ∈ Ω for all u ∈ Ω, we have that {uk} ⊂ Ω. We

will begin by showing that the sequence {uk} is Cauchy in Ω. We first show that the quantity

‖ui − u0‖ remains bounded for any i ≥ 1. We note that for any i ≥ 0 we have

‖ui+1 − ui‖ = ‖G(ui)−G(ui−1)‖ ≤ c‖ui − ui−1‖ ≤ · · · ≤ ci‖u1 − u0‖.

Then, for any i ≥ 1 we have

‖ui − u0‖ = ‖
i−1∑
j=0

uj+1 − uj‖ ≤
i−1∑
j=0

‖uj+1 − uj‖ ≤
i−1∑
j=0

cj‖u1 − u0‖ ≤
‖u1 − u0‖

1− c
.

Then, let i, j > 0 with i > j. We then have

‖ui − uj‖ = ‖G(ui−i)−G(uj−1)‖ ≤ c‖ui−1 − uj−1‖ ≤ · · · ≤ cj‖ui−j − u0‖ ≤ cj
‖u1 − u0‖

1− c
.

The quantity on the right approaches 0 as i, j → ∞, so {uk} is Cauchy in Ω. A closed subset

of a complete space is also complete, so this implies that {uk} has a limit in u∗ ∈ Ω. Since G

177

is continuous this implies that u∗ is a fixed-point of G. To show that this fixed-point is unique,

suppose that G has two fixed-points u∗, v∗ ∈ Ω. If u∗ 6= v∗ this would imply

‖u∗ − v∗‖ = ‖G(u∗)−G(v∗)‖ ≤ c‖u∗ − v∗‖ < ‖u∗ − v∗‖,

which is a contradiction, so it follows that the fixed-point u∗ is the unique fixed-point in Ω. We

conclude by showing the bounds on the error uk − u∗ and the residual F (uk). First, we have

‖uk+1 − u∗‖ = ‖G(uk)−G(u∗)‖ ≤ c‖uk − u∗‖.

Similarly, we have

‖F (uk+1)‖ = ‖G(uk+1)− uk+1‖ = ‖G(uk+1)−G(uk)‖

≤ c‖uk+1 − uk‖ = c‖G(uk)− uk‖ = c‖F (uk)‖.

In many cases, this rate of convergence may be prohibitively slow, especially if the fixed-

point map G is expensive to evaluate. It is for this reason that we are interested in Anderson

acceleration as an alternative to this solution method.

A.2.3 Newton’s Method

We next consider Newton’s method for solving the root finding problem F (u) = 0 with u ∈ Rn

and F : Rn → Rn. This method is derived from approximating the function F (u) by the

following linear model about the current iterate uc

L(u) = F (uc) + F ′(uc)(u− uc),

and choosing the next iterate u+ to be the root of this linear model. That is, u+ satisfies

0 = F (uc) + F ′(uc)(u+ − uc),

and solving this for u+ gives the Newton iteration

u+ = uc − F ′(uc)−1F (uc). (A.10)

Before describing the convergence behavior of this method, we require the following (Lemma

4.3.1 from [29]).

178

Lemma A.2. Suppose that the standard assumptions hold. Then, there exists δ > 0 such that

for all u ∈ Bδ(u∗) it holds that

‖F ′(u)‖ ≤ 2‖F ′(u∗)‖, (A.11)

‖F ′(u)−1‖ ≤ 2‖F ′(u∗)−1‖ (A.12)

‖F ′(u∗)−1‖−1‖e‖/2 ≤ ‖F (u)‖ ≤ 2‖F ′(u∗)‖‖e‖. (A.13)

We now present a theorem which describes the local convergence behavior of Newton’s

method. In this result, we allow for the case in which there is error in the evaluation of the

function and its derivative. That is, Newton’s method is applied using the residual F̂ (uc) =

F (uc) + ε(uc) and Jacobian F̂ ′(uc) = F ′(uc) + ∆(uc). In this case, the Newton iteration is

described by

u+ = uc − (F ′(uc) + ∆(uc))
−1(F (uc) + ε(uc)). (A.14)

Analysis for the standard method is given by letting ∆(uc) = 0 and ε(uc) = 0. Local behavior

of Newton’s method is described by the following.

Theorem A.7. Let the standard assumptions hold. Then there exist K, δ, δ1 > 0 such that if

uc ∈ Bδ(u∗) and ‖∆(uc)‖ ≤ δ1 then u+ as given by (A.14) is defined and satisfies

‖e+‖ ≤ K(‖ec‖2 + ‖∆(uc)‖‖ec‖+ ‖ε(uc)‖). (A.15)

Proof. We first let δ be small enough such that the results in A.2 hold. Then, note that we can

rewrite (A.14) as

u+ = uc − F ′(uc)−1F (uc)

+ [F ′(uc)
−1 − (F ′(uc) + ∆(uc))

−1]F (uc) + (F ′(uc) + ∆(uc))
−1ε(uc).

Applying norms, this implies

‖e+‖ ≤ ‖ec − F ′(uc)−1F (uc)‖

+ ‖F ′(uc)−1 − (F ′(uc) + ∆(uc))
−1‖‖F (uc)‖+ ‖(F ′(uc) + ∆(uc))

−1‖‖ε(uc)‖. (A.16)

We now need to bound each of the terms on the right hand side. First, we have

ec − F ′(uc)−1F (uc) = F ′(uc)
−1

∫ 1

0
[F ′(uc)− F ′(u∗ + tec)]ec dt.

179

Then, by (A.12) and the Lipschitz continuity of γ

‖ec − F ′(uc)−1F (uc)‖ ≤ γ‖F ′(u∗)−1‖‖ec‖2. (A.17)

We next note that Lemma A.2 implies that F ′(uc) is nonsingular, so we can write

(F ′(uc) + ∆(uc))
−1 = [F ′(uc)(I + F ′(uc)

−1∆(uc))]
−1.

Then, letting δ1 = ‖F ′(u∗)−1‖−1/4, by (A.12) we have

‖∆(uc)‖ ≤ ‖F ′(u∗)−1‖−1/4 ≤ ‖F ′(uc)−1‖−1/2,

and thus

‖F ′(uc)−1∆(uc)‖ ≤ 1/2.

By the Banach Lemma, I + F ′(uc)
−1∆(uc) is nonsingular, so u+ is well defined, and

‖(I + F ′(uc)
−1∆(uc))

−1‖ ≤ 1

1− 1/2
= 2.

From this it follows that

(F ′(uc) + ∆(uc))
−1 = (I + F ′(uc)

−1∆(uc))
−1F ′(uc)

−1,

and thus by (A.12)

‖(F ′(uc) + ∆(uc))
−1‖ ≤ ‖(I + F ′(uc)

−1∆(uc))
−1‖‖F ′(uc)−1‖ ≤ 4‖F ′(u∗)−1‖. (A.18)

Next, we can write

F ′(uc)
−1 − (F ′(uc) + ∆(uc))

−1 = [F ′(uc)
−1(F ′(uc) + ∆(uc))− I](F ′(uc) + ∆(uc))

−1

= F ′(uc)
−1∆(uc)(F

′(uc) + ∆(uc))
−1.

By (A.12) and (A.18), we then have

‖F ′(uc)−1 − (F ′(uc) + ∆(uc))
−1‖ ≤ ‖F ′(uc)−1‖‖∆(uc)‖‖(F ′(uc) + ∆(uc))

−1‖

(2‖F ′(u∗)−1‖)‖∆(uc)‖(4‖F ′(u∗)−1‖) = 8‖F ′(u∗)−1‖2‖∆(uc)‖. (A.19)

180

Now, combining (A.16), (A.17), (A.18), and (A.19) with (A.11) and (A.13)

‖e+‖ ≤ γ‖F ′(u∗)−1‖‖ec‖2 + 16‖F ′(u∗)‖‖F ′(u∗)−1‖2‖∆(uc)‖‖ec‖

+ 4‖F ′(u∗)−1‖‖ε(uc)‖ (A.20)

Finally, (A.15) follows from setting

K = max{γ‖F ′(u∗)−1‖, 16‖F ′(u∗)‖‖F ′(u∗)−1‖2, 4‖F ′(u∗)−1‖}.

This result shows that inaccuracies in the Jacobian evaluation only affect the iteration

with respect to the rate of convergence. Conversely, the effect of inaccuracies in the function

evaluation are only felt when the residual is on the order to the size of the error in the evaluation.

This means that the iteration will appear to converge as normal up to some stagnation point

proportional to the size of the error in the function evaluation, and after this point the iteration

will stagnate.

For many problems, forming and storing a Jacobian matrix is either impractical or impos-

sible. In order to avoid this, we formulate the Newton iteration as u+ = uc + d, where d solves

the linear system

F ′(uc)d = −F (uc).

This may be solved by a Krylov method like GMRES, which only requires some representation

of the Jacobian–vector product F ′(uc)v. It is typical to find a Newton direction d which satisfies

‖F ′(uc)d+ F (uc)‖ ≤ ηc‖F (uc)‖.

In this, ηc is referred to as the forcing term. The rate of convergence of the iteration may be

varied by selecting the forcing term in various ways. For instance, letting ηc = η ∈ (0, 1) will

result in linear convergence, the rate of which will be determined by the choice of η. Letting

ηc = O(‖F (uc)‖) will retain the q-quadratic convergence that is expected for the standard

Newton’s method.

In cases where an analytic Jacobian–vector product is not available, it may be approximated

by the following finite–difference approximation

F ′(uc)v ≈
F (uc + hv)− F (uc)

h
, (A.21)

where h is some perturbation parameter. Applying Newton’s method with the Newton direction

being computed by a Krylov method using a finite difference Jacobian–vector product gives a

181

method known as Jacobian–free Newton–Krylov (JFNK). The obvious advantage of this method

is that no analytic derivative information needs to be computed. This only requires the ability

to evaluate the residual F . However, this method does carry some drawbacks and challenges.

First, assuming that F (uc) has already been computed, each finite–difference Jacobian–vector

product requires a residual evaluation. This means that each inner Krylov iteration in the linear

solve requires a residual evaluation. This may be problematic if the residual is computationally

expensive and many Krylov iterations are needed in the linear solve. Hence, good precondi-

tioning for the linear solve may be necessary. Next, appropriate selection of the perturbation

parameter h may be difficult for some problems. The difference approximation (A.21) is an

O(h) approximation to F ′(uc)v, so it would seem that it is best to set h as small as possible.

However, in actuality there is always some level of error in the residual evaluation, at the very

least roundoff error. Hence, the approximation is actually computed using F (u) + ε(u), where

ε represents the error in the residual evaluation, and this gives the approximation

F ′(uc)v ≈
[F (uc + hv) + ε(uc + hv)]− [F (uc)− ε(uc)]

h
.

Assuming some bound on the size of the error ‖ε(u)‖ ≤ ε0, this gives an O(h + ε0/h) approx-

imation to F ′(uc)v. The perturbation parameter h should be chosen to minimize the quantity

in the O–term, and this is done when h ≈ √ε0. Hence, if the ε term represents double precision

roundoff error (ε0 ≈ 10−15), then a choice of h = 10−7 is reasonable. If there is some additional

level of uncertainty in the evaluation of F , then more care must be taken in the selection of h.

We lastly consider globalization of this method. The theory presented above is local, so it

requires the iteration to be sufficiently close to a solution to be applicable. By globalization

methods, we refer to methods for improving the likelihood of converging given a poor starting

point. With a globalization method, the method will converge to a solution or fail to do so

in a small number of ways. There are several methods for globalizing Newton’s method, such

as trust region methods [30] and line searches, which we describe here. In Algorithm 7, we

describe a backtracking line search for Newton’s method. This is likely the simplest form of a

line search. There are other line search methods involving polynomial interpolation which may

give better performance. In this algorithm, the condition ‖F (ut)‖ ≤ (1−αλ)‖F (u)‖ is referred

to as sufficient decrease of ‖F‖. A typical value for the parameter α is 10−4. Also note that this

algorithm allows flexibility in the reduction of the step size λ with the selection of σ ∈ [σ0, σ1],

where 0 < σ0 < σ1 < 1. This will enforce

σ0λold ≤ λnew ≤ σ1λold.

The lower bound safeguards against too large a step reduction, which may result in stagnation

182

Algorithm 7 Netwon’s method with backtracking line search

1: Given initial iterate u.
2: while not converged do
3: Find d such that ‖F ′(u)d+F (u)‖ ≤ η‖F (u)‖. If d can not be computed, terminate with

failure.
4: Set λ = 1.
5: while λ > λmin do
6: ut = u+ λd.
7: if ‖F (ut)‖ ≤ (1− αλ)‖F (u)‖ then
8: Set u = ut.
9: break

10: else
11: Choose σ ∈ [σ0, σ1].
12: Set λ = σλ.
13: end if
14: end while
15: end while

of the method. Typical values of these parameters are σ0 = 0.1 and σ1 = 0.5. Some obvious

ways that the iteration produced by this algorithm may fail include singluar F ′(uk) for some

k, in which case the computation of the direction d will fail, the sequence converges to a local

minimum of ‖F‖ which is not a root, or the sequence becomes unbounded.

We conclude this section by presenting a theorem describing the behavior of Algorithm 7.

We first need to introduce the following assumption.

Assumption A.2. There exist r, γ,mf > 0 such that F is defined, F ′ is Lipschitz continuous

with constant γ, and ‖F ′(u)−1‖ ≤ mf on the set

Ω({uk}, r) = ∪∞k=0{u|‖u− uk‖ ≤ r},

where {uk} is the sequence produced by Algorithm 7.

With this, we have the following theorem.

Theorem A.8. Let u0 ∈ Rn and α ∈ (0, 1) be given. Suppose that {uk}is computed by Algo-

rithm 7 with forcing terms {ηk}, the series {uk} remains bounded, and Assumption A.2 holds.

Then {uk} converges to a solution u∗ of F (u) = 0 at which the standard assumptions hold.

Furthermore, for k sufficiently large, full steps are taken and the convergence behavior in this

final phase is given by the local convergence theory described above.

183

A.2.4 Quasi-Newton Methods

We conclude this appendix by considering quasi-Newton methods for solving the root finding

problem F (u) = 0 for u ∈ Rn and F : Rn → Rn. Quasi-Newton methods differ from Newton’s

method by maintaing both an approximation to the solution and an approximation to the

Jacobian. That is, given the current approximation to the solution uc ∈ Rn and the current

approximation to the Jacobian Bc ∈ Rn×n, the quasi-Newton iteration takes the form

u+ = uc −B−1
c F (uc). (A.22)

The general procedure for a quasi-Newton method is as follows:

• Compute the quasi-Newton direction d = −B−1
c F (uc).

• Compute u+ = uc + λd using a line search.

• Compute the updated Jacobian approximation B+ using Bc, uc, and u+.

There are many quasi-Newton methods, such as BFGS, DFP, PSB, and SR1 [30]. The

method that we will consider in this section is Broyden’s method. This computes the approxi-

mate Jacobian update by

B+ = Bc +
(y −Bcs)sT

sT s
, (A.23)

where y = F (u+)− F (uc) and s = u+ − uc. Note that B+ satisfies the equation

B+s = y.

We call this a secant equation, so Broyden’s method is said to be a secant update method.

Recall that Anderson acceleration can be written in the form of a quasi-Newton method which

satisfies multiple secant conditions.

A significant advantage of this type of iteration over Newton-iterative methods in that only

one residual evaluation is required each iteration. There is no inner iteration when computing the

Newton direction. Furthermore, Broyden’s method can be implemented in very computationally

and memory efficient way. This is due to the fact that the updated approximate Jacobian is a

rank one update of the previous approximate Jacobian. As shown in [30], this fact can be used

with the Sherman-Morrison-Woodbury formula to recursively reduce the approximate Jacobian

inverse to a product of rank one updates to the identity, resulting in the following:

B−1
i =

i−1∏
j=0

(
I +

sj+1s
T
j

‖sj‖2

)
B−1

0 .

184

Algorithm 8 Broyden’s method

1: Given initial iterate u and approximate Jacobian B0.
2: Set s0 = −B−1

0 F (u0)
3: Set u = u+ s0

4: Set k = 0.
5: while not converged do
6: Set z = −B−1

0 F (u).
7: for j = 0, . . . , k − 1 do
8: Set z = z + sj+1s

T
j z/‖sj‖2.

9: end for
10: Set sk+1 = z/(1− sTk z/‖sk‖2).
11: Set u = u+ sk+1.
12: Set k = k + 1.
13: end while

This allows for the approximate Jacobian inverse to be applied cheaply. Using this formulation

of the approximate inverse, the algorithm for Broyden’s method can be formulated as shown

in Algorithm 8. Note that this requires the storage of the set of step vectors {sj}, and this set

grows by one vector each iteration. For some problems, the storage of a vector per iteration

may be too great a memory burden. To address this, this method can be augmented with a

restart in a similar manner to GMRES.

We lastly overview some convergence theory for Broyden’s method. Mirroring the definition

e = u− u∗, we define the error in the Jacobian as E = B − F ′(u∗). Analysis for quasi-Newton

methods is significantly different from that which we presented for the standard Newton’s

method, and relies on the following condition, which is referred to as the Dennis–Moré condition.

lim
k→∞

‖Eksk‖
‖sk‖

= 0. (A.24)

This is used in the following theorem, which says that if the Broyden iteration converges to a

solution and the Dennis–Moré condition holds, then the convergence is q-superlinear.

Theorem A.9. Let the standard assumptions hold, let the sequence of nonsingular matri-

ces {Bn} ⊂ Rn×n and initial iterate u0 ∈ Rn be given, and let the sequence {uk} be defined

by (A.22). Assume that uk 6= u∗ for any k. Then, uk → u∗ q-superlinearly if and only if

uk → u∗ and the Dennis–Moré condition (A.24) holds.

Hence, Broyden’s method can be analyzed by first establishing conditions for which the

method will be convergent, and then verifying whether the Dennis–Moré condition holds, in

which case the convergence will be q-superlinear. We first present the following theorem which

claims that Broyden’s method is locally q-linearly convergent.

185

Theorem A.10. Let the standard assumptions hold, and r ∈ (0, 1) be given. Then there exist

δ and δB such that if ‖e0‖ ≤ δ and ‖E0‖ ≤ δB, then the Broyden sequences {uk} and {Bk} are

defined and uk → u∗ q-linearly with q-factor at most r.

Note that unlike the analysis for Newton’s method, this additionally requires a sufficiently

good initial approximation to the Jacobian. The proof of this theorem relies on a concept

referred to in [29] as “bounded deterioration” of the Jacobian approximation, which allows for

the error in the Jacobian approximation ‖Ek‖ to be bounded throughout the iteration. The

final theorem we present for Broyden’s method claims that the Dennis-Moré condition in fact

holds, so the iteration locally converges q-superlinearly.

Theorem A.11. Let the standard assumptions hold. Then there exist δ and δB such that if

‖e0‖ ≤ δ and ‖E0‖ ≤ δB, then the Dennis–Moré condition holds for the Broyden iteration, and

uk → u∗ q-superlinearly.

186

Appendix B

Trilinos

B.1 Trilinos Overview

We now overview the numerical analysis software package Trilinos [27]. Trilinos is a collection of

software developed at Sandia National Laboratories intended for use in solving complex, large-

scale problems in computational science and engineering. Trilinos is divided into packages which

cover a wide range of functionality. There are Trilinos packages focused on data structures,

linear solvers, nonlinear solvers, preconditioners, automatic differentiation, and a variety of

other applications. In this appendix, we describe the purpose of the Trilinos packages utilized

in the work, and then describe how the Tribal Build, Integrate, and Test System (TriBITS) [4],

which builds upon the CMake [37] makefile generation software package, is used to configure

and build this software.

B.2 Relevant Packages

B.2.1 Teuchos

The package Teuchos contains a collection of common tools used in most other Trilinos packages.

Teuchos is a core Trilinos package, and it is required to be enabled in order to utilize many

other Trilinos packages. The functionality of this package is divided among five subpackages:

Core, ParameterList, Comm, Numerics, and Remainder.

As the name suggests, the Teuchos Core subpackages contains many core features of Teu-

chos. This package contains a variety of tools dealing with areas like outputting, exception

handling, and unit testing. A particularly widely used component of this package is its memory

management tools, specifically its various array types and the Teuchos::RCP class [3]. This

reference-counting smart pointer class is used for dynamic memory allocation and automati-

cally deallocates storage when the reference count to an object goes to zero, which helps prevent

187

memory leaks. Additionally, this class features support for the detection and resolving of circular

references.

The main component of the ParameterList subpackage is the Teuchos::ParameterList

class. This class represents a hierarchical database which stores entries as a key–value pair. The

key specifies the name of the parameter as a string, and the value is templated so it can hold

any data type. This class is used in several other Trilinos packages as part of a factory design

pattern. In this, the user creates a parameter list which describe various aspects of an object

to be created, and this is passed to a factory class which handles creation of the object. This

subpackage also contains tools for command line parsing and constructing parameter lists from

XML input files.

The Comm subpackage contains several utilities for parallel communication, including an

abstract communicator interface which provides routines for a subset of MPI functions. Imple-

mentations of this interface for single-processor programs and multi-processor programs utiliz-

ing MPI are included. This package also contains tools dealing with performance monitoring,

including timers and flop counters.

The Numerics subpackage contains BLAS and LAPACK wrapper classes as well several

data structures utilizing these.

B.2.2 Epetra

Epetra is a package which implements distributed-memory double precision vector and sparse

matrix types, including routines for linear algebra with these distributed objects, and vari-

ous associated utility classes. Commonly used matrix and vector types include the Epetra -

Vector, Epetra MultiVector, and Epetra CrsMatrix. Construction of these types requires an

Epetra Map, which describes the distribution of the entries across all processes including local

indices of the entries within a process and global indices across all processes. Required for the

construction of an Epetra Map is an Epetra Comm object. For objects on a single process, this

should be an Epetra SerialComm, and for multi-processor distributed objects this should be

an Epetra MpiComm, which is a wrapper for a raw MPI communicator. Redistribution of data

between objects with different maps is accomplished through the Epetra Import and Epetra -

Export classes. Many of the linear and nonlinear solver packages in Trilinos support Epetra

data types.

B.2.3 Tpetra

Tpetra is a package very similar to Epetra, in that it implements distributed vectors and sparse

matrix types, as well as linear algebra routines for these objects. Many objects in Tpetra have

direct analogs in Epetra: Tpetra::Map to Epetra Map, Tpetra::MultiVector to Epetra -

188

MultiVector, Tpetra::CrsMatrix to Epetra CrsMatrix, etc. A significant difference between

these packages is that the majority of Tpetra classes include several template parameters. Po-

tential template parameters for Tpetra objects include Scalar, LocalOrdinal, GlobalOrdinal,

and Node types.

The Scalar template determines the type of data being stored by the vector and matrix

types. While an Epetra MultiVector may only contain double precision data, a Tpetra::

MultiVector may be created to contain data of any scalar type. The LocalOrdinal and

GlobalOrdinal templates determine the ordinal types used for local and global indexing of

entries. Whereas local and global indices in Epetra are of the type int, templating on the

local and global index types allows Tpetra objects to store larger objects than would be al-

lowable with global indices of the type int. Additionally, the separation of the indexing types

allows for local indices to be smaller ordinal types than the global indices, hence requiring less

memory. The Node template defines the Kokkos node type for the object. Tpetra is said to be

“hybrid parallel,” meaning it utilizes distributed-memory parallelism through MPI as well as

shared-memory parallelism within an MPI process. The Node template determines what sort

of shared-memory parallelism is employed. Kokkos is a separate package of Trilinos which im-

plements computational kernels for on-node shared-memory parallel operations. This currently

includes support for programming models including OpenMP, Pthreads, and Cuda. In general,

the default for the Node template provides an intelligent value, so this template may be ignored

by the user in many cases.

B.2.4 Thyra

The Thyra package contains a set of interfaces for abstract numerical algorithms. A major

component of this package is interface for abstract linear operator/vector operations. This

includes interfaces for vector spaces, vectors, and linear operators. The vector space objects

include routines for creating members from the vector space and define an inner product on the

space. Vector and multi-vector classes include routines for scaling and adding together vectors

from compatible vector spaces, and computing vector norms. The operator classes define an

interface for applying the operator to a vector/multi-vector from the domain vector space and

returning a vector/multi-vector from the range vector space. Another useful capability of this

package is the nonlinear model evaluator interfaces. This includes interfaces for defining what

inputs a nonlinear function will accept and what outputs it supports, including the residual,

response functions, and sensitivity information. Additionally, the package includes adaptors

which create concrete implementations of Thyra ojbects using Epetra and Tpetra.

189

B.2.5 Belos

Belos is a package for solving sparse, large-scale systems of linear equations. It includes a variety

of iterative Krylov subspace solvers. Belos is extensible and interoperable in the sense that it

treats operators and vectors as opaque objects. As Krylov methods only require an expression

for a matrix-vector product rather than the actual matrix itself, Belos solvers are implemented

by utilizing traits classes which define vector operations (addition, scalar multiplication, inner

products) and operator application for given vector and operator types. Support for Epetra and

Tpetra objects is included in this package. Some of the linear solvers in this package include:

• Single vector and block generalized minimal residual method (GMRES).

• Single vector and block conjugate gradient method (CG).

• Flexible GMRES.

• Biconjugate gradient stabilized method (BiCGStab).

B.2.6 Anasazi

Anasazi is an analogous package to Belos for the solution of sparse, large-scale eigenvalue prob-

lems. Like Belos, this package allows for use of arbitrary compatible vector and operator types

through use of abstract interfaces for defining elementary vector/operator operations. Anasazi

includes support for Epetra and Tpetra objects, as well as Thyra. Some of the eigensolvers

included in this package are:

• Block Krylov-Schur.

• Block Davidson.

• Generalized Davidson.

• Riemannian Trust-Region.

B.2.7 Ifpack2

Ifpack2 is a package for incomplete factorizations and domain decomposition, specifically for

use with Tpetra objects. This package includes two incomplete factorizations, which it refers to

as ILUT and RILU(k). Each of these factorizations performs work within a single MPI process,

so all work is local, but the quality of the factorization worsens as more processes are utilized.

With respect to domain decomposition, this package includes and additive Schwarz operator. In

addition to this, Ifpack2 includes implementations of operators corresponding to the stationary

190

iterative methods Jacobi iteration, Gauss-Seidel iteration, successive over-relaxation (SOR),

and symmetric SOR (SSOR). The objects in this package can be used for several purposes,

such as preconditioning a linear system or as a smoother in a multigrid method.

B.2.8 ML

ML is a package for multigrid solvers and preconditioners. It is intended for use in solving

large sparse linear systems resulting from discretization of elliptic PDEs. Multigrid methods

accelerate solution a linear system of equations on a fine grid using a sequence of corrections

computed on a hierarchy of coarser grids. A multigrid methods generally consist of operations

for restriction (mapping from a finer grid to a coarser grid), prolongation (mapping from a

coarser grid to a finer grid), smoothing (reduction of high frequency error on a given grid), and

direct solution at the coarsest grid in some order. ML provides a general framework for creating

multigrid solvers and preconditioners, and includes implementations of several commonly used

multigrid methods. Several other Trilinos packages may be utilized as smoothers and coarse

grid solvers.

B.2.9 NOX

NOX is a package of nonlinear solver software. It includes a variety of Newton-based methods

and trust region algorithms. Newton-based methods are implemented using the NOX::Solver::

LineSearchBased class. Additionally, JFNK is supported through supplying a matrix-free op-

erator to the linear solver for the Newton direction. Support for globalization methods is im-

plemented through a variety of line search options, including backtracking, polynomial, or user

defined line searches.

NOX solvers work with abstract interfaces, so users must either provide a concrete imple-

mentation of the interfaces or use one provided with the package. NOX includes support for

Epetra and Thyra data types. Hence, Epetra objects may be used directly with NOX. Con-

versely, NOX does not include direct support for Tpetra data types. However, Thyra includes

adapters for Tpetra, so Tpetra objects may be used with NOX by first wrapping them in the

appropriate Thyra objects.

NOX also contains a subpackage LOCA, a software library for continuation and bifurcation

analysis, which we do not consider in depth here.

B.2.10 PIKE

The PIKE package provides a set of interfaces and utilities for black-box code coupling. This

includes interfaces for solvers, single-physics model evaluators, and data transfers, as well as

191

support for parallel memory management. We describe this package in greater detail in Sec-

tion 2.2.5.

B.3 Configuring and Building Trilinos

Trilinos uses the TriBITS framework [4] in order to configure, build, and test code. This software

is build on top of the CMake makefile generation software [37]. TriBITS is specialized for large

distributed, possibly multi-repository, CMake projects. Each package of Trilinos has packages

on which it depends, or which depend on it, and given a set of desired packages TriBITS

automatically handles these dependencies and determines the full set of packages that will be

built. It is also used to specify other configure time options, like the build type, supported third

party libraries, compiler options, etc. When configuring Trilinos, the user must specify a list of

options as shown in the example configure script below:

#!/bin/bash

EXTRA_ARGS=$@

rm -rf CMakeCache.txt

rm -rf CMakeFiles

##---##

cmake \

-D CMAKE_INSTALL_PREFIX:PATH=$PWD \

-D CMAKE_BUILD_TYPE:STRING=DEBUG \

-D CMAKE_VERBOSE_MAKEFILE:BOOL=OFF \

-D TPL_ENABLE_MPI:BOOL=ON \

-D TPL_ENABLE_Boost:BOOL=OFF \

-D Trilinos_ENABLE_DEBUG:BOOL=ON \

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=OFF \

-D Trilinos_ENABLE_ALL_FORWARD_DEP_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_NOX:BOOL=ON \

-D Trilinos_ENABLE_STK:BOOL=OFF \

-D Trilinos_ENABLE_TESTS:BOOL=OFF \

-D NOX_ENABLE_TESTS:BOOL=ON \

192

-D Trilinos_ASSERT_MISSING_PACKAGES:BOOL=OFF \

$EXTRA_ARGS \

$HOME/Trilinos/trilinos

In this script, we first invoke the cmake command, which calls the cmake executable to configure

the source tree specified in the last line of the script. In this case we assume that the Trilinos

source tree is located in the directory $HOME/Trilinos/trilinos. All the lines between invoking

cmake and specifying the source tree define configuration options, including $EXTRA ARGS which

appends any additional options specified on the command line. These options specify which

Trilinos packages and third-party libraries code should be built for, as well as specifying various

other options. We first indicate to configure for a debug build, which will enable array bounds

checking and other runtime checks. The line -D TPL ENABLE MPI:BOOL=ON tells CMake that we

support building code which depends on MPI, while -D TPL ENABLE Boost:BOOL=OFF indicates

that any code that depends on the third-party library Boost should not be build. Similarly, -D

Trilinos ENABLE NOX:BOOL=ON says that the Trilinos package NOX should be enabled, which

will also enable all packages on which this package has a necessary dependency, and -D NOX -

ENABLE TESTS:BOOL=ON tells CMake that we would like the unit tests for the NOX package

to be built. When CMake has successfully completed configuration, the code can be built by

invoking the make command, and any enabled unit tests can be run with the ctest command.

193

Appendix C

Tiamat Input Files

Tiamat simulations utilize the VERA common input format [41] to define problem specifica-

tions. The VERA common input format is a plain-text ASCII file which describes reactor state

conditions, geometric specifications, and input parameters for physics codes. The file is divided

into several blocks, each one describing some component of the simulation. The input blocks

used in Tiamat simulations include:

• [CASEID] - This block defines a name for the simulation.

• [STATE] - This block describes several parameters relating to operating conditions (power

level, pressure, inlet temperature, etc). Multiple instances of this block can be used to

describe changing operating conditions during a time dependent simulation.

• [CORE] - This block provides the geometric/physical description of the reactor core, in-

cluding the layout of fuel assemblies.

• [ASSEMBLY] - This block provides the geometric/physical description of the fuel assemblies

in the core, including the layout of fuel rods and guide tubes. This layout is typically

specified using octant symmetry.

• [EDITS] - This block defines the axial bounds for the cells which comprise the coupling

mesh.

• [BISON] - This block defines input parameters for the Bison application code.

• [COBRATF] - This block defines input parameters for the CTF application code.

• [MPACT] - This block defines input parameters for the MPACT application code.

194

• [COUPLING] - This block defines parameters related to coupling of physics codes, specifi-

cally relaxation factors, global convergence tolerances, and the maximum number of cou-

pled iterations.

• [TIAMAT] - This block defines parameters specific to the Tiamat coupling.

This input format also supports the blocks [CONTROL], [DETECTOR], and [INSERT], which

describe the geometry and location of control rods, detectors, and burnable poisons, but these

are not used in any of the tests considered here. More detailed descriptions of the fields contained

within each block are given in [41].

Each of the application codes in Tiamat utilizes different input formats, so prior to a Tia-

mat simulation, several pre-processing steps are required to generate the input for each of the

applications. First, a pre-processor react2xml.pl converts the VERA input file into a machine-

readable XML file. MPACT reads directly from this XML file, but Bison and CTF both have

their own input formats. To generate these input files, two more pre-processors are used. The

pre-processor xml2ctf generates a CTF input file using data specified in the XML file. Simi-

larly, the pre-processor xml2moose generates a Bison input files from the XML file, though this

additionally requires template input files for fuel rods and guide tubes.

C.1 17x17 Assembly Test Inputs

The VERA common input file for CASL Progression Problem 6a is given by the following.

[CASEID]

title ’CASL Problem 6a’

[STATE]

power 100.0 ! %

tinlet 559.0 F ! F

boron 1300 ! ppmB

pressure 2250 ! psia

tfuel 900.0 K ! K - 600K Not used with T/H feedback! set to 900K with feedback

modden 0.743 ! g/cc Not used with T/H feedback!

feedback on

sym full

[CORE]

size 1 ! 1x1 single-assembly

rated 17.67 0.6824 ! MW, Mlbs/hr

apitch 21.5

height 406.328

core_shape

195

1

assm_map

A1

lower_plate ss 5.0 0.5 ! mat, thickness, vol frac

upper_plate ss 7.6 0.5 ! mat, thickness, vol frac

lower_ref mod 26.0 1.0

upper_ref mod 25.0 1.0

bc_rad reflecting

mat he 0.000176

mat inc 8.19

mat ss 8.0

mat zirc 6.56 zirc4

mat aic 10.20

mat pyrex 2.23

mat b4c 6.56

[ASSEMBLY]

title "Westinghouse 17x17"

npin 17

ppitch 1.260

fuel U31 10.257 95.0 / 3.1

!=== material label, key_name, density (lib_name defaults to key_name)

mat he 0.000176

mat inc 8.19

mat ss 8.0

mat zirc 6.56 zirc4

cell 1 0.4096 0.418 0.475 / U31 he zirc

cell 100 0.561 0.602 / mod zirc ! guide tube

cell 200 0.561 0.602 / mod zirc ! instrument tube

cell 7 0.418 0.475 / mod mod ! empty location

cell 8 0.418 0.475 / he zirc ! plenum

cell 9 0.475 / zirc ! pincap

lattice FUEL1

200

1 1

1 1 1

100 1 1 100

1 1 1 1 1

1 1 1 1 1 100

100 1 1 100 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

196

lattice LGAP1

200

7 7

7 7 7

100 7 7 100

7 7 7 7 7

7 7 7 7 7 100

100 7 7 100 7 7 7

7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7

lattice PLEN1

200

8 8

8 8 8

100 8 8 100

8 8 8 8 8

8 8 8 8 8 100

100 8 8 100 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8

lattice PCAP1

200

9 9

9 9 9

100 9 9 100

9 9 9 9 9

9 9 9 9 9 100

100 9 9 100 9 9 9

9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9

axial A1 6.050

LGAP1 10.281

PCAP1 11.951

FUEL1 377.711

PLEN1 393.711

PCAP1 395.381

LGAP1 397.501

grid END inc 1017 3.866

grid MID zirc 875 3.810

grid_axial

END 13.884

MID 75.2

MID 127.4

MID 179.6

MID 231.8

MID 284.0

MID 336.2

197

END 388.2

lower_nozzle ss 6.05 6250.0 ! mat, height, mass (g)

upper_nozzle ss 8.827 6250.0 ! mat, height, mass (g)

[EDITS]

! 3in intervals in active fuel

axial_edit_bounds

11.951

15.817

24.028

32.239

40.45

48.662

56.873

65.084

73.295

77.105

85.17

93.235

101.3

109.365

117.43

125.495

129.305

137.37

145.435

153.5

161.565

169.63

177.695

181.505

189.57

197.635

205.7

213.765

221.83

229.895

233.705

241.77

249.835

257.9

265.965

274.03

282.095

285.905

293.97

302.035

310.1

318.165

326.23

198

334.295

338.105

346.0262

353.9474

361.8686

369.7898

377.711

[COBRATF]

nc 1 ! conduction option - radial conduction

irfc 2 ! friction factor correlation default=2

dhfrac 0.00 ! fraction of power deposited directly into coolant

hgap 5678.3 ! gap conductance

epso 0.001

oitmax 5

iitmax 40

gridloss END 0.9070 ! spacer grid loss coefficient

gridloss MID 0.9065 ! spacer grid loss coefficient

dtmin 0.000001

dtmax 0.1

tend 0.1

rtwfp 1000.0

maxits 100000

parallel 0

courant 0.8

global_energy_balance 0.0001 !%

global_mass_balance 0.0001 !%

fluid_energy_storage 0.005 !%

solid_energy_storage 0.005 !%

mass_storage 0.005 !%

[COUPLING]

epsk 2.0 ! pcm

epsp 1.0e-4

eps_temp 1.0 ! C

rlx_power 0.5

rlx_tfuel 1.0

rlx_den 1.0

maxiter 20

read_restart restart.out

[TIAMAT]

solver gauss-seidel

conserve_power_in_tiamat_transfer true

num_subcycle_iterations_before_tiamat_ramping 0

[BISON]

! globalparams_energy_per_fission = 3.2e11

executioner_dt = 1.0

executioner_end_time = 6.0e7

executioner_num_steps = 1

executioner_timestepper_time_dt = 1.0e3 1.0e5

199

executioner_timestepper_time_t = 0 1.0e5

mesh_clad_bot_gap_height = 1.52e-3

fuel_pin_input_file_template = base.bison.i.template

non_fuel_pin_input_file_template = guide_tube.moose.i.template

ramping_time = -100.0 0.0 1.7e5

ramping_factor = 0.0 0.0 1.0

ramp_data_transfers = true

mesh_type = smeared_pellet

output_average_axial_values = true

[MPACT]

vis_edits none

ray_spacing 0.05

!quad_set

quad_type CHEBYSHEV-GAUSS

polars_octant 4

azimuthals_octant 16

!iteration_control

flux_tolerance 1e-4

num_inners 3

k_tolerance 1e-4

up_scatter 2

num_outers 100

scattering LTCP0

!cmfd

cmfd cmfd

cmfd_solver mgnode

k_shift 1.5

cmfd_num_outers 20

!2D1D

split_TL true

TL_treatment lflat

nodal_method nem

! under_relax 1.0

!TH

coupling_method ctf_external

!parallel

num_space 32

num_angle 1

num_energy 1

num_threads 1

!xs_library

! xs_filename mpact47g_70s_v4.0_11032014.fmt

xs_filename mpact8g_70s_v4.0m0_02232015.fmt

xs_type ORNL

xs_shielder t

subgroup_set 4

!mesh

mesh fuel 3 1 1 / 8 8 8 8 8 8

mesh gtube 3 1 / 8 8 8 8 8

200

C.2 Changes for 3x3 Mini-Assembly Tests

The input file for 3x3 test problems is largely the same as that for problem P6a, so we simply

describe the differences from the file in C.1. The fields specified in the [STATE], [EDITS],

[COBRATF], and [BISON] blocks are identical for both problems. The differences between the

files are as follows.

• [CORE] block:

– The rated power and flow rate are scaled down to a 3x3 array, represented by the

field rated 0.53545 0.02125 ! MW, Mlbs/hr.

• [ASSEMBLY] block:

– The field npin is reduced to 3.

– The lattice fields are reduced to a 3x3 array, given as follows:

lattice FUEL1

200

1 1

lattice LGAP1

200

7 7

lattice PLEN1

200

8 8

lattice PCAP1

200

9 9

– The spacer grid and nozzle masses are scaled down to a 3x3 array, given by the

following:

grid END inc 31.67 3.866

grid MID zirc 27.25 3.810

lower_nozzle ss 6.05 194.64 ! mat, height, mass (g)

upper_nozzle ss 8.827 194.64 ! mat, height, mass (g)

201

• [MPACT] block:

– The field ray spacing is changed to 0.15.

– The fields polars octant and azimuthals octant are both set to 2.

– The tolerance fields flux tolerance and k tolerance are reduced to 1.0e-5.

– The num space field is set to 9.

• [COUPLING] block:

– The field epsk is increased from 2.0 to 5.0.

– The field epsp is increased from 1.0e-4 to 1.0e-3.

– The field read restart is omitted.

• [TIAMAT] block:

– The num subcycle iterations before tiamat ramping field is changed to 1.

C.3 Changes for Single-Rod Tests

Again, the input file for single-rod tests is largely the same as that for problem P6a, so we simply

describe the differences from the file in C.1. The fields specified in the [EDITS], [COBRATF],

[BISON], and [TIAMAT] blocks are identical for both problems. The differences between the

files are as follows.

• [STATE] block:

– The boron field is changed from 2250 to 1300.

• [CORE] block:

– The rated power and flow rate are scaled to a single rod, represented by the field

rated 0.0670 0.0024 ! MW, Mlbs/hr.

• [ASSEMBLY] block:

– The field npin is reduced to 1.

– The lattice fields are reduced to a single rod, given as follows:

lattice FUEL1

1

202

lattice LGAP1

7

lattice PLEN1

8

lattice PCAP1

9

– The spacer grid and nozzle masses are scaled down to a single rod, given by the

following:

grid END inc 4.67 3.866

grid MID zirc 3.25 3.810

lower_nozzle ss 6.05 25.0 ! mat, height, mass (g)

upper_nozzle ss 8.827 25.0 ! mat, height, mass (g)

• [MPACT] block:

– The field ray spacing is changed to 0.1.

– The fields polars octant and azimuthals octant are both set to 2.

– The tolerance fields flux tolerance and k tolerance are reduced to 1.0e-5.

– The num space field is set to 8.

• [COUPLING] block:

– The field epsk is increased from 2.0 to 5.0.

– The field eps temp is decreased from 1.0 to 0.5.

– The field read restart is omitted.

203

