
ABSTRACT

BRYAN, TIMOTHEE WILLIAM. Hall-Littlewood Vertex Operators and the Kostka-Foulkes
Polynomials. (Under the direction of Naihuan Jing.)

The familiar Hall-Littlewood polynomials, Lλ[X; t] form a basis for symmetric functions

and are related to the Schur function, sλ[X], basis via

Lλ[X; t] =
∑
λ`|µ|

Kλµ(t)sλ[X]

where Kλµ is the Kostka-Foulkes Polynomial. Lascoux and Schützenberger proved that for

semi-standard Young tableaux

Lλ[X; t] =
∑

T∈SSTλ
tcharge(T )sshape(T )[X]

where the charge of a tableau T is a value obtained by weighting the entries of a reading

word corresponding to a filling using content µ. We define an explicit algebraic formula for the

Kostka-Foulkes polynomials using Hall-Littlewood vertex operators and Jing’s Hall-Littlewood

inner product which does not utilize Lascoux and Schüteznberger’s result. We also introduce

new Young-like tableaux to discuss combinatorially significant lattice symmetries which arise

during and as a result of the calculations and proof of the Kostka-Foulkes polynomial formula.
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Chapter 1

Introduction

1.1 Partitions and Tableaux

Definition 1.1.1. A partition λ consisting of l parts of a positive integer n is an unordered

collection of positive integers summing to n.

Example 1.1.2. Consider n = 3. The four partitions of 3 are

3 = 3

= 2 + 1

= 1 + 2

= 1 + 1 + 1.

Because addition is commutative, we could rearrange the entries of third partition of 3 into

the second partition. As we will not be concerned with counting the number of partitions of n,

we will consider 2 + 1 = 1 + 2 in this paper and subsequently we will consider only those unique

partitions of n which are not rearrangements of each other. Hence the partitions of 3 are

3 = 3

= 2 + 1

= 1 + 1 + 1.

For the duration of this paper we will represent an l-part partition λ of n by a sequence

λ = (λ1, λ2, . . . , λl) such that λ1 ≥ λ2 ≥ . . . λl > 0 and say that λ has weight n or |λ| = n.

We adopt the notational shorthand where an entry jm in the sequence of λ does not represent

the m-th power of j but rather represents m consecutive λi = j for 1 ≤ i ≤ l, i.e. m is the

multiplicity of an element j. We say that λ has length l, denoted l(λ) = l, and will write λ ` n
to denote that λ is a partition of n.
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It is possible and often convenient, in this paper and in general, to graphically represent a

partition as a collection of stacked cells or boxes called a Young tableau.

Definition 1.1.3. For a partition λ, the Young tableau, represented Tλ or simply T when there

is no confusion, for λ is a left aligned collection of rows of cells stacked one on top of another

via the rule that row i of T contains λi boxes for 1 ≤ i ≤ l.

Following the English notation style, we arrange T such that row 1 is the top-most row, row

2 is directly below row 1, and so on until row l is the bottom-most row of the tableau. For this

reason, λ is said to be the shape of T .

Remark 1.1.4. Let λ and λ̄ be partitions. It is clear from Definition 1.1.3 that if Tλ and Tλ̄
have the same shape, then λi = λ̄i for 1 ≤ i ≤ l = l(λ) = l(λ̄). Thus, λ = λ̄ and there exists a

unique Young tableau for each partition λ.

Example 1.1.5. For λ ` 9 where λ = (32, 2, 1) and λ̄ ` 17 where λ̄ = (5, 4, 32, 2), the Young

tableaux Tλ and Tλ̄ are shown in Figure 1.1.

T(32,2,1) = T(5,4,32,2) =

Figure 1.1: Young tableaux of λ = (32, 2, 1) and λ̄ = (5, 4, 32, 2)

Given a partition λ, it is sometimes useful to define the conjugate of a partition.

Definition 1.1.6. For λ ` n with l(λ) = l, the conjugate of λ, denoted λ′, is the partition

λ′ ` n whose j-th entry is the number of boxes in the j-th column of λ. Graphically, this can

be thought of as the tableau T ′λ obtained by reflecting Tλ about the main diagonal.

Example 1.1.7. For λ ` 9 where λ = (32, 2, 1) and λ̄ ` 17 where λ̄ = (5, 4, 32, 2), the conjugate

Young tableaux T ′λ and T ′
λ̄

are shown in Figure 1.2.
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T ′(32,2,1) = T ′(5,4,32,2) =

Figure 1.2: Conjugate Young tableau for λ = (32, 2, 1) and λ̄ = (5, 4, 32, 2)

There is another realization of a Young tableau which will be useful later.

Definition 1.1.8. Given a partition λ, locate it’s Young tableau such that the upper left corner

of the first box in row 1 has (x, y)-coordinate (0, 0) in the plane. Then the entire left edge of

column 1 of Tλ is on the negative y-axis and the entire top edge of row 1 is on the positive

x-axis. Because λ has a unique tableau it is possible to describe the shape of a partition using a

doubly infinite sequence of up and right steps of unit length, denoted U and R respectively, by

moving up the negative y-axis until reaching the bottom edge of the tableau and then tracing

along the exterior edge of Tλ until reaching the x-axis and moving right. We call the sequence

of up and right steps to be the code, [5], of the partition λ.

Example 1.1.9. Let λ = (32, 2, 1) andλ̄ = (5, 4, 32, 2). Then the Young tableau for λ and λ̄ in

quadrant IV of the xy-plane with the bold path formed by moving along the bottom and right

edges of the tableau are shown in Figure 1.3.

Figure 1.3: Young tableaux and codes for λ = (32, 2, 1) and λ̄ = (5, 4, 32, 2)

3



Code

λ = (32, 2, 1) . . . UUURURURUURRR . . .

λ̄ = (5, 4, 32, 2) . . . UUURRURUURURURRR . . .

Regardless of the representation chosen for a partition λ, where λ 6= (1), we see there are

smaller partitions contained within λ, i.e. by subtracting 1 from λl. Because containment will

be of central importance in Chapter 3, we define it in the following way.

Definition 1.1.10. Let λ = (λ1, λ2, . . . , λl) ` n and µ = (µ1, µ2, . . . , µk) ` m with m ≤ n and

k ≤ l. If µj ≤ λi for all 1 ≤ j ≤ i ≤ l, then µ is contained within λ and is denoted µ ⊆ λ.

We can construct a Young lattice for a partition λ and all tableaux µ contained within λ in

the following way. Beginning with the Young tableau of λ we remove one cell at a time from

Tλ, such that partition shape is always maintained, to arrive at a subtableau Tµ and write Tµ

below Tλ and draw an edge between them.

Observe that, though is it not a partition according to Definition 1.1.1, we can define the

empty partition to be the unique “partition“ whose Young tableau consists of zero cells and is

denoted by ∅. As ∅ is contained within each Young tableau, we can extend the Young lattice for

any partition λ so that it ends at the Young tableau for the empty partition instead of ending

at the Young tableau for the partition λ = (1).

Example 1.1.11. Consider the Young tableau corresponding to λ = (3, 2, 1), the Young lattice

formed by µ ⊆ λ is show in Figure 1.4.

4



∅

Figure 1.4: Young lattice for λ = (3, 2, 1)

Having defined containment for any partition λ, we introduce another important type of

tableaux created by removing the cells corresponding to a subtableau of λ from Tλ.

Definition 1.1.12. Let λ and µ be partitions with µ ⊆ λ. A skew tableau, denoted λ/µ, is a

tableau formed by removing the upper leftmost cells corresponding to Tµ from the cells of Tλ.

5



Example 1.1.13. Let µ = (3, 22), λ = (32, 2, 1) and λ̄ = (5, 4, 32, 2). Then the skew tableaux

λ/µ and λ̄/µ are shown, respectively, in Figure 1.5.

Figure 1.5: Examples of skew tableaux

There exists a special type of connected, skew tableaux, called ribbon tableaux, which we

will utilize later in this paper.

Definition 1.1.14. Let λ = (λ1, λ2, . . . , λl) and µ = (λ2 − 1, λ3 − 1, . . . , λl − 1) be partitions.

Consider the skew tableaux formed by λ/µ. Because λ/µ is a connected strip with no 2 × 2

subtableaux, graphically, a ribbon tableau is the rightmost edge of Tλ which is still connected

and of unit width.

Example 1.1.15. Consider the partitions λ = (32, 2, 1) and λ̄ = (5, 4, 32, 2). Then for µ = (2, 1)

and µ̄ = (3, 22, 1), λ/µ and λ̄/µ̄ produce the ribbon tableaux shown in Figure 1.6.

Figure 1.6: Examples of ribbon tableaux

Let λ and λ̄ be partitions of n such that λ 6= λ̄ for n ≥ 2. This means that neither partition

of n is contained within the other, because there must exist entries i and j where λi > λ̄i and

λj < λ̄j for 1 ≤ i, j ≤ max{l(λ), l(λ̄)}. Hence we need to introduce an ordering for λ and λ̄ so

6



that we can determine whether λ is less than λ̄ or vice versa. This ordering is important during

the calculation of the main result of Chapter 2 and is motivational to the combinatorial results

presented in Chapter 3.

Definition 1.1.16. Let λ = (λ1, λ2, . . . , λl) and λ̄ = (λ̄1, λ̄2, . . . , λ̄m) be unique partitions of

n. We say that λ̄ is less than λ, denoted λ̄ ≤ λ, in the dominance ordering if
k∑
i=1

λ̄i ≤
k∑
i=1

λi for

all k ≥ 1.

We visualize the dominance ordering for partitions n using a Young lattice where nodes

are the tableaux of partitions of n and an edge between nodes denotes that the upper node

dominates the lower node.

As Definition 1.1.16 suggests, there is no direct connection between partition containment

and the dominance ordering. If we consider the partitions (5, 1) and (4, 2), it is clear that (5, 1)

dominates (4, 2) even though neither partition of six is contained within the other.

In the following example, we select the first “interesting“ value of a partition of weight n

for which there exists more than one Young tableau per horizontal level of the Young lattice.

Example 1.1.17. Consider the unique partitions of n = 6. Then the dominance ordering for

partitions of n are shown in Figure 1.7.
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Figure 1.7: Dominance ordering for Young tableau of weight 6
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1.2 Content

Definition 1.2.1. For a partition λ of n with Young tableau T and µ = (µ1, µ2, . . . , µm) ` n
where µ ≤ λ in the dominance ordering, we define the content of T to be a filling of the boxes

of T with µi number of entries i for 1 ≤ i ≤ m.

Definition 1.2.2. Given a tableau T of shape λ and content µ, we say T is a standard Young

tableau, or just a standard tableau, if the entries in a filling of T are strictly increasing from left

to right along the rows and from top to bottom along the columns of T .

Since the rows and the columns of cells must be strictly increasing, a standard filling cannot

contain more than more number i in any row or column and, as a result, µ1 = 1. Since µ is

a partition, µ1 ≥ µ2 ≥ . . . ≥ µm > 0 implies that each µi = 1 and hence µ = (1n). Thus, a

standard tableau T with shape λ corresponding to a partition of n has the entries {1, 2, . . . , n}
appearing exactly once in a filling. Observe, a standard tableau T of shape λ may have multiple

fillings resulting from permutations of the entries.

Example 1.2.3. Let T be a tableau with shape λ and content µ where λ = (32, 2, 1) and

µ = (19). Two standard fillings of T are shown in Figure 1.8.

1 2 3

4 5 6

7 8

9

1 2 4

3 5 6

7 8

9

Figure 1.8: Examples of standard tableau of shape (32, 2, 1) and content (19)

By easing the conditions for a filling of the rows of a tableau, we can define a set of fillings

of T where entries can appear with multiplicity greater than one.

Definition 1.2.4. Given a tableau T of shape λ and content µ, we say T is a semi-standard

Young tableau, or just a semi-standard tableau, if the entries in a filling of T are weakly increasing

from left to right along the rows and strictly increasing from top to bottom along the columns

of T .

Observe that by definition, the set of all standard tableau T of shape λ where |λ| = n are

precisely those semi-standard tableau with content (1n).

9



Example 1.2.5. Let T be a tableau with shape λ and content µ where λ = (32, 2, 1) and

µ = (24, 1). Then the fillings of T which are semi-standard are show in Figure 1.9.

1 1 4

2 2 5

3 3

4

1 1 3

2 2 4

3 4

5

1 1 3

2 2 4

3 5

4

1 1 3

2 2 5

3 4

4

1 1 2

2 3 4

3 4

5

1 1 2

2 3 4

3 5

4

1 1 2

2 3 5

3 4

4

1 1 2

2 3 3

4 4

5

Figure 1.9: Semi-standard tableau of shape (32, 2, 1) and content (24, 1)

The arrangement of the tableau in Figure 1.9 is meant to be illustrative of a process to

assure that one records all possible semi-standard fillings of a tableau. In this case, the first

row of tableaux correspond to fixing the 1 entries in the highest rows possible, followed by

fixing the 2 entries in the highest remaining rows, and then fixing the 3 entries in the highest

10



remaining rows before recording the possible fillings. The second row of tableaux correspond

to fixing the 1 entries in the highest rows possible and then fixing the 2 entries in the highest

rows before recording the possible fillings. The third and fourth rows of tableaux proceed in a

similar manner to the first and second rows.

1.3 Charge

For semi-standard tableaux T of shape λ and content µ, Lascoux and Schutzenberger, [12],

showed that it is possible to define the charge of T , denoted c(T ), for all fillings. In order to

define the charge for a semi-standard tableau T , it is first necessary to construct the reading

word, ω, of T via the following process.

For λ = (λ1, λ2, . . . , λl), begin by recording each entry of a filling of the tableau from left to

right starting at row l and moving upwards until reaching row 1.

Example 1.3.1. Consider λ = (5, 4, 32, 2) with content µ = (32, 24, 13) and filling shown in

Figure 1.10.

1 1 1 2 4

2 2 3 5

3 4 7

5 6 9

6 8

Figure 1.10: Example of a tableau of shape (5, 4, 32, 2) and content (32, 24, 13)

Hence, the reading word ω for the semi-standard filling of T shown in Figure 1.10 is

ω = 68569347223511124.

As the content of the previous tableau is not giving by µ = (117), there are repetitions of

cell entries. However, Lascoux and Schutzenberger’s charge statistic requires a multiplicity of

one for each entry of µ in a reading word. To adjust for multiple entries we need to then form

reading subwords, ωi, of ω for 1 ≤ i ≤ µ1 by scanning from right to left across ω and recording

the position of the first entry 1, followed by the first entry 2, and so on until we either reach

the far left end of ω at which point we “wrap“ back to the far right end of ω and continue

11



the process or we record m where l(µ) = m. We then construct the first subword, ω1 of ω, by

writing the sequence of numbers {1, 2, . . . ,m} in the order they were found in ω from left to

right. Next, we delete the entries of ω1 from ω. We repeat this process until every entry of ω

appears in a subword ωi for 1 ≤ i ≤ µ1.

For Figure 1.10 the reading subwords of ω = 68569347223511124 are

ω1 = 869372514

ω2 = 654231

ω3 = 12.

Once we have formed the subwords of ω, we find the charge of ω by weighting the entries j,

denoted w(j), of ωi for 1 ≤ i ≤ µ1 according to the following rule:
w(j) = 0 if j = 1

w(j + 1) = w(j) if (j + 1) appears to the left of j in ωi

w(j + 1) = w(j) + 1 if (j + 1) appears to the right of j in ωi

and summing of the entry weights of its subwords. The charges of the subwords for the tableau

in Figure 1.10 are

ω1 = 869372514

213020101 charge = 10

ω2 = 654231

111010 charge = 4

ω3 = 12

01 charge = 1.

Hence the charge of the tableau in Figure 1.10 is 15.

Let λ = (λ1, λ2, . . . , λl), µ = (µ1, µ2, . . . , µm) ` n and µ ≤ λ. Amongst all possible fillings of

a tableau with shape λ and content µ there exist two special situations for the charge, namely

those fillings corresponding to the maximum and minimum charges of T .

We begin by considering the minimum charge for a semi-standard tableau. Clearly, for any

tableau T , c(T ) cannot be negative by the weighting algorithm above. Suppose λ = µ. Then

l = m and λi = µi for 1 ≤ i ≤ l. Because we have a semi-standard tableau, every entry of a row

i in filling of the tableau is exactly i. Hence, there exits only one filling of T with shape λ and

content µ. Further, because it is formed by recording the entries from row l upwards to row 1,

12



the reading word ω of T must be in weakly decreasing order. Thus, the weight of every entry

in ω is 0. Therefore, when λ = µ, the minimum charge of a tableau T is c(T ) = 0.

We now consider the maximum charge of a tableau T . It is apparent from the weighting

algorithm above that the multiplicity and ordering of the entries affect the sum which composes

the charge, i.e. to produce a maximum charge we want to arrange the entries j and (j + 1) in

such a way so as to make w(j) and w(j + 1) as large as possible. This is accomplished in two

ways. First, to produce a maximum charge, µ must have the form (1n) because any repetition

of an entry j in the reading word can have weight at most (j − 1). Second, for every pair of

successive entries j and (j + 1) of ω, (j + 1) must appear to the right of j in ω, otherwise,

w(j) = w(j + 1), for 1 ≤ j ≤ l − 1. To achieve this, the length of λ must equal one, because

otherwise there must exist some pair of entries j and (j + 1) where (j + 1) appears in a row

beneath the row that j appears in, i.e. (j+ 1) would appear to the left of j in the reading word.

Therefore the maximum charge of a tableau is
l−1∑
i=0

i =
(l − 1)l

2
and occurs when λ = (n) and

µ = (1n).

Example 1.3.2. For Tλ with λ = (32, 2, 1) and content µ = (32, 2, 1) and Tλ̄ with λ̄ = (9) and

content µ̄ = (19), the reading word and charges of Tλ and Tλ̄ are shown in Figure 1.11.

Tλ =

1 1 1

2 2 2

3 3

4

Tλ̄ = 1 2 3 4 5 6 7 8 9

reading word charge

Tλ 433222111 0

Tλ̄ 123456789 36

Figure 1.11: Examples of maximum and minimum tableau charges

13



Chapter 2

Symmetric Functions and the

Hall-Littlewood Inner Product

2.1 Symmetric Functions

Let Z[x1, x2, . . . , xn] be the ring of integer polynomials in n independent variables x1, x2, . . . , xn.

The symmetric group Sn acts invariantly upon Z[x1, x2, . . . , xn] by permuting the elements of

the polynomial, i.e. S(x1, x2, . . . , xn) is a symmetric polynomial if and only if for every function

φ ∈ Sn, where φ : Sn → Sn,

S(x1, x2, . . . , xn) = S(xφ(1), xφ(2), . . . , xφ(n)).

Provided that n is large enough, the number of variables xi is usually unimportant. However,

it is frequently useful to work with symmetric function rings in infinitely many variables, denoted

Z[x1, x2, . . . , xn, . . .]. In such cases there exists a natural embedding of Z[x1, x2, . . . , xn, . . .] into

Z[x1, x2, . . . , xn] by sending xi to itself for 1 ≤ xi ≤ n and sending xi to 0 for i ≥ (n+ 1).

2.2 Symmetric Function Bases

For the symmetric functions there exists five classical bases which can be found in every text-

book, [11], [13], [15], on symmetric functions. We will introduce all five bases for the symmetric

functions as well as their generating functions, though we will focus exclusively on the last one.

In all cases, we let λ = (λ1, λ2, . . . , λl) be a partition of a positive integer n.

14



Definition 2.2.1. Define the monomial symmetric function, denoted mλ, as the sum of the

product of l variables xi such that

mλ =
∑

1≤i≤l
xλ1i1 x

λ2
i2
. . . xλlil

where each monomial is distinct having exponents λ1, λ2, . . . , λl.

Definition 2.2.2. Let n be an non-negative integer. The n-th elementary symmetric function,

denoted en, is defined as the sum of the product of n variables xi, where the xi’s are distinct,

such that e0 = 1 and

en =
∑

i1<i2<...<in

xi1xi2 . . . xin = m1n

for n ≥ 1.

Proposition 2.2.3. The generating function, denoted E(t), for the elementary symmetric func-

tions is given by

E(t) =
∑
n≥0

en(x)tn =
∏
i≥1

(1 + xit)

for another variable t.

We observe that if we add all the square-free monomials of a degree n, we obtain the n-th

elementary symmetric function en.

Definition 2.2.4. Let n be a non-negative integer. The n-th complete homogeneous, or simply

complete, symmetric function, denoted hn, is defined as the sum of all monomials of degree n

of the variables xi such that h0 = 1 and

hn =
∑

i1≤i2≤...≤in

xi1xi2 . . . xin =
∑
λ`n

mλ.

We note that, by definition, e1 = h1 and observe that hn is the sum of all n-th degree

monomials.

Proposition 2.2.5. The generating function, denoted H(t), for the complete homogeneous

symmetric functions is given by

H(t) =
∑
n≥0

hn(x)tn =
∏
i≥1

1

1− xit
.
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Definition 2.2.6. Let n be a positive integer. The n-th power sum symmetric function, denoted

pn, is defined as the sum of the n variables xi such that

pn =
∑
i≥1

xni = m(n).

Proposition 2.2.7. The generating function, denoted P (t), for the power sum symmetric func-

tions is given by

P (t) =
∑
n≥1

pn(x)

tn−1

=
∑
i≥1

∑
n≥1

xni
tn−1

=
∑

i≥1

xi
1− xit

=
∑

i≥1

d

dt
log
( 1

1− xit
)
.

Because they are instructive, we will provide two equivalent definitions for the fifth basis of

the symmetric functions, the Schur symmetric functions, first introduced by Issai Schur in his

dissertation in 1901 and which bear his name.

Definition 2.2.8. For a partition λ, define the Schur symmetric functions, denoted sλ, to be

sλ(x) =
∑
T

xT

where the sum is over all semi-standard tableau T of shape λ and x = xλ11 xλ22 · · ·x
λl
l .

This basis for the symmetric functions is often useful to work with as it allows the symmetric

functions to be represented by their accompanying Young tableau and is often seen when finding

the irreducible characters of symmetric functions.

We note that, when defined this way it is easy to see, the Schur symmetric function basis

provides a generalization for the complete homogeneous symmetric function basis when the

length of λ is one, i.e. T is a horizontal strip. When λ = (1n), i.e. T is a vertical strip, then the

Schur symmetric functions generalize the elementary symmetric functions. Finally, the Schur

symmetric functions can be written as the sum of the product of the Kostka numbers, denoted

Kλ,µ, and the monomial symmetric functions, mµ for a partition µ ≤ λ. Hence,

s(n)(x) = hn(x),

s(1n)(x) = en(x), and

sλ =
∑
µ≤λ

Kλ,µmµ.
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The second definition for the Schur symmetric function basis is expressed as a ratio of matrix

determinants and will be motivational in the next section.

Definition 2.2.9. Given a partition λ = (λ1, λ2, . . . , λl), let Λ[x] be the ring of symmetric

functions in x where x is the set of variables given by x = {x1, x2, . . . , xl}. Then by forming

the l × l determinant αλ given by

αλ = det(x
λj
i )

for 1 ≤ i, j ≤ l, we can define the Schur symmetric functions, sλ, by

sλ =
αλ+δ

αδ

where δ is the partition δ = (l−1, l−2, . . . , 0), αδ is the Vandermonde determinant
∏
i<j

(xi−xj),

and the addition of λ and δ is done component-wise.

By properties of the determinant of a matrix, we note that the choice of α in the above

definition is meant to be evocative of the fact that under any transposition of the variables, αλ

will alternate signs. Then since the Vandermonde determinant is also alternating, we have that

the Schur functions are indeed symmetric.

2.3 Hall-Littlewood Functions and Kostka-Foulkes Coefficients

Introduced implicitly by Philip Hall in terms of the Hall algebra and later explicitly defined

by D.E. Littlewood, the Hall-Littlewood functions provide a generalization for the complete

homogeneous symmetric functions as well as the Schur symmetric functions and serve as the

foundation for the operators utilized to prove the main result of the next section.

Definition 2.3.1. Given a partition λ = (λ1, λ2, . . . , λl) and set of variables x = {x1, x2, . . . , xl}
and t, define the Hall-Littlewood symmetric functions, denoted Lλ[x; t], to be

Lλ[x; t] =

(∏
i≥0

m(i)∏
j=1

1− ti

1− tj

)∑
ω∈Sl

ω

(
xλ11 xλ22 · · ·x

λl
l

∏
i<j

xi − txj
xi − xj

)

where m(i) is the multiplicity of an element i as defined in chapter 1.

We observe the Hall-Littlewood functions generalize the complete homogeneous symmetric

functions by letting t→ 1 and generalize the Schur symmetric functions by letting t→ 0 in the

definition above.
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Given their relation, it is not surprising that the Hall-Littlewood symmetric functions can

be expanded in terms of the Schur symmetric function basis. For partitions λ and µ of n, with

µ ≤ λ this expansion is given by

Lλ[x; t] =
∑
λ

Kλ,µ(t)sλ[x]

where the coefficients Kλ,µ(t) are the Kostka-Foulkes numbers in variable t with non-negative

integer coefficients.

In 1978, Lascoux and Schutzenberger, [12], proved that

Kλ,µ =
∑
T

tc(T )

where T is a semi-standard tableau of shape λ and content µ and c(T ) is the charge statistic

for T .

As an immediate consequence of Lascoux and Schutzenberger’s theorem, we see that each

semi-standard filling of a tableau contributes exactly one monomial in t to the summand.

Combinatorially, this means that the coefficient cm ∈ N of a term in the polynomial

Kλ,µ =
∑
T

tc(T )

counts the number of tableaux with charge m and for this reason the coefficients are known as

the Kostka-Foulkes numbers.

Example 2.3.2. Let T be a semi-standard Young tableau of shape λ = (4, 12) with content

µ = (2, 14). Every semi-standard filling of T with its respective charge is shown in Figure 2.1.

By Lascoux’s and Schutzenberger’s theorem, the Kostka-Foulkes coefficients for a tableau with

shape λ = (4, 12) with content µ = (2, 14) is

K(4,12)(2,14) = t3 + t4 + 2t5 + t6 + t7.

Example 2.3.3. By definition of the charge statistic and the combinatorial statement made

above, we highlight four special cases for the Kostka-Foulkes coefficients:

Kλ,µ(0) = 0 if λ 6= µ, Case (2.3.3.1)

Kλ,µ(0) = 1 if λ = µ, Case (2.3.3.2)

Kλ,µ(t) = 0 if |λ| 6= |µ|. Case (2.3.3.3)

Kλ,µ(t) = 1 if |λ| = |µ|. Case (2.3.3.4)
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charge:

1 1 2 3

4

5

7

1 1 2 4

3

5

6

1 1 2 5

3

4

5

charge:

1 1 3 4

2

5

5

1 1 3 5

2

4

4

1 1 4 5

2

3

3

Figure 2.1: K(4,12)(2,14) utilizing charge

Recall that for a tableau T with shape λ and content µ, it is not possible to find a filling if

λ < µ. Hence the charge of Tλ,µ equals 0 in Case (2.3.3.3) (Case (2.3.3.1) is by convention).

Further, as we saw in section 1.3, there is exactly one filling of T when λ = µ and the

reading word is strictly increasing from left to right. Thus, the charge of T is exactly equal to

1 in Case (2.3.3.4) (Case (2.3.3.2) is due to the fact that there is exactly one way to represent

the “empty“ partition as an “empty“ tableau, i.e ∅).

Although the Kostka-Foulkes coefficients can be calculated utilizing Lascoux and Schutzen-

berger’s charge statistic, the process quickly becomes difficult to perform by hand. This can be

seen when considering the difference in the number of semi-standard fillings for a partition of

weight and content six as in the previous example versus the number of semi-standard fillings

for a partition of weight and content fifteen in the following example, i.e. 6 as compared to

35,035.

Example 2.3.4. Let T be a semi-standard tableau of shape λ = (6, 4, 3, 2) with content

µ = (3, 112). Then the Kostka-Foulkes coefficients are K(6,4,3,2),(3,112) =
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t16 + 3t17 + 7t18 + 15t19 + 28t20 + 48t21

+ 79t22 + 122t23 + 180t24 + 256t25 + 351t26 + 465t27

+ 600t28 + 751t29 + 917t30 + 1093t31 + 1273t32 + 1447t33

+ 1613t34 + 1758t35 + 1878t36 + 1965t37 + 2017t38 + 2027t39

+ 2001t40 + 1933t41 + 1832t42 + 1701t43 + 1549t44 + 1378t45

+ 1203t46 + 1025t47 + 855t48 + 695t49 + 552t50 + 425t51

+ 320t52 + 232t53 + 163t54 + 110t55 + 72t56 + 44t57

+ 26t58 + 14t59 + 7t60 + 3t61 + t62.

While there exist computer software packages, including Maple and Sage, capable of calcu-

lating them using the charge, it has long been the goal to develop an explicit algebraic formula

for the Kostka-Foulkes coefficients. This goal is both intellectually and practically driven as

we clearly would prefer to have a more efficient mechanism for calculating the Kostka-Foulkes

coefficients and, thus, a more efficient transition between the Schur symmetric functions and

the Hall-Littlewood symmetric functions. Further, the Kostka-Foulkes coefficients appear in

the calculations of even more general families of polynomials such as the Lascoux, Leclerc, and

Thibon (LLT) polynomials and the Macdonald polynomials, [3], [4], [9], [10]. Moreover, the

pursuit of an explicit algebraic formula for the Kostka-Foulkes coefficients is motivated by the

hope that such a formula would reveal additional relationships between partitions and their

corresponding Young tableaux.

2.4 An Explicit Algebraic Formula for the Kostka-Foulkes Poly-

nomials

To determine an explicit algebraic formula for the Kostka-Foulkes coefficients we develop an

explicit algebraic formula for the Kostka-Foulkes polynomials utilizing vertex operators. Let h

be the Heisenberg algebra generated by the central element c and the n nonzero integer elements

hn, with the relation

[hm, hn] = mδm,−nc.

We reintroduce the Hall-Littlewood vertex operators defined by Jing in [7] and utiilized

subsequently in [8].

Definition 2.4.1. The vertex operators B(t) and H(t) on the space V with parameter t are

defined as

B(t) = exp

{∑
n≥1

1

n
h−nt

n

}
exp

{
−
∑
n≥1

1− tn

n
hnt
−n
}
,
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H(t) = exp

{∑
n≥1

1− tn

n
h−nt

n

}
exp

{
−
∑
n≥1

1− tn

n
hnt
−n
}
.

Remark 2.4.2. The above defintion for the Hall-Littlewood vertex operators differ from those

defined by Zabrocki in [18] and utilized in [17] and [19].

We refer the reader to [7] and [8] for an explicit proofs of the following results.

Corollary 2.4.3. We have the following relations:

HnHn−1 = tHn−1Hn;

H∗nH
∗
n+1 = tH∗n+1H

∗
n.

Observe for n ≥ 0, we can consider either the Hn operator or the H−n∗ operator as an

annihilation operator.

Lemma 2.4.4. One has that

Hn · 1 = 0; n > 0;

H∗−n · 1 = 0; n > 0; and

H0 · 1 = H∗0 · 1 = 1.

Proposition 2.4.5. (1) Given a partition λ = (λ1, . . . , λl), the element H−λ1 , H−λ2 , · · ·H−λl ·1
can be expressed as

H−λ1 , H−λ2 , · · ·H−λl · 1 =
∏
i<j

1−Rij
1− tRij

Pλ1Pλ2 · · ·Pλl

where Rij is the raising operator given by

RijP(µ1,µ2,...,µl) = P(µ1,µ2,...,µi+1,...,µj−1,...,µl)

where P(µ1,µ2,...,µl) = Pµ1 ·Pµ2 , · · · , Pµl which ensures that the expression has finitely many terms.

Moreover, the product of the vertex operators H−λ.1 = H−λ1H−λ2 · · ·H−λl .1 are orthogonal such

that

〈H−λ.1, H−µ.1〉 = δλµbλ(t),

where bλ(t) =
∏
i≥1

φmi(λ)(t) and φn(t) = (1− t)(1− t2) · · · (1− tn).
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(2) Let µ = (µ1, µ2, . . . , µk) be any composition. The element of the product of the vertex

operators B−µ1B−µ2 · · ·B−µk · 1 can be expressed as

B−µ1B−µ2 · · ·B−µk · 1 =
∏
i<j

(1−Rij)sµ1sµ2 · · · sµk = sµ

which is the Schur function associated to µ. In general sµ = 0 or ±sλ for a partition λ =

(λ1, λ2, . . . , λl) such the λ ∈ Sl(µ+ δ)− δ. Here δ = (l − 1, l − 2, · · · , 1, 0).

We will need to make use of another definition from [7], in the following proposition.

Definition 2.4.6. The Kostka-Foulkes polynomials (or the t-analogue of the Kostka-Foulkes

numbers) K(λ),(µ)(t) are defined for all µ ≤ λ by

sλ =
∑
µ≤λ

1

bµ(t)
Kλµ(t)Lµ(t)

where bµ(t) =
∏
i≥1 Φmi(λ)(t),Φr(t) = (1 − t)(1 − t2) · · · (1 − tr), and mi(λ) is the number of

occurrences of i in λ.

Proposition 2.4.7. The Kostka-Foulkes polynomials are the matrix coefficients of vertex op-

erators. Specifically,

Kλµ(t) = 〈B−λ · 1, H−µ · 1〉.

Proposition 2.4.8. The commutation relations for the Hall-Littlewood inner product are:

1. Bmsn = snBm + sn−1Bm+1 (It follows for B(z)s(w) = (1 − w

z
)s(w)B(z). Here s(z) =

exp

{∑ h−n
n
zn
}

=
∑
snz

n.)

2. H∗mBn = t−1BnH
∗
m + t−1H∗m−1Bn−1 + (tn−m − tn−m−1)sn−m.

Example 2.4.9. Let T be the Young tableau of shape λ = (3, 2, 1) with content (22, 12). By

applying second relation from Proposition 2.4.8 for the dual Hall-Littlewood inner product, the

Kostka-Foulkes polynomial for T is
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K(3,2,1),(22,12) = K(22,1),(2,13) + t−1〈B3H
∗
2B2B1, H2H

2
1 〉

−(1− t)[K(3,1),(2,12) +K(22),(2,12) +K(2,12),(2,12)]

= K(22,1),(2,13) + t−2〈B3H
∗
1B

2
1 , H2H

2
1 〉+ t−2〈B3B2H

∗
2B1, H2H

2
1 〉

−(1− t)[K(3,1),(2,12) +K(22),(2,12) +K(2,12),(2,12)]− (1− t)t−2K(3,1),(2,12)

= K(22,1),(2,13) − (1− t)K(2,12),(2,12) − (1− t)K(22),(2,12)

−(1− t)K(3,1),(2,12) − (1− t)t−2K(3,1),(2,12) − t−2K(3,1),(2,12)

= K(22,1),(2,13) − (1− t)K(2,12),(2,12) − (1− t)K(22),(2,12)

−(−t−1 + 1− t)K(3,1),(2,12)

= (t+ t2)− (1− t)(1)− (1− t)(t)
= −(−t−1 + 1− t)(t+ t2)

= t+ 2t2 + t3.

The result of the above calculation of the Kostka-Foulkes polynomial for a tableau of shape

(3, 2, 1) with content (22, 12) is easily verified utilizing Lascoux and Schutzenberger’s charge

statistic or by using mathematics software (our results were verified using the Kostka-Foulkes

polynomial function found in Sage).

Given the relative simplicity involved in the calculation of K(3,2,1),(22,12) through other means

we include Example 2.4.9 as a reference to verify two remarks about the action of dual Hall-

Littlewood vertex operator found in [1]. First, the action of the dual Hall-Littlewood operator,

H∗µ, on Bλ always leaves the Bλis in partition order. Second, the number of dual Hall-Littlewood

operator, H∗µ, actions on Bλ is bounded by (µ1 + l(λ)− 2).

Remark 2.4.10. The action of the dual Hall-Littlewood operator, H∗µ, on Bλ always leaves the

Bλis in partition order.

Proof. By part 2) of Proposition 2.4.5, since the Schur function Bµ.1 for any composition µ can

always be reduced to that of a partition or it vanishes, the action of the dual Hall-Littlewood

vertex operator H∗n on the Bλ.1s will terminate in a combination of genuine Schur functions

after finitely many steps.

We observe that applying Proposition 2.4.8, one often uses the simple fact

H∗nBλ1Bλ2 · · ·Bλl · 1 = 0

when n > |λ|.
Assume the inner product is of the form

t−k〈Bλ(l−2)
H∗µαBλ(l−1)

Bλl , ∗∗〉

and µα > λ(l−1). By Proposition 2.4.8 we see that
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t−k〈Bλ(l−2)
H∗µαBλ(l−1)

Bλl , ∗∗〉 = t−k−1〈Bλ(l−2)
H∗µα−1Bλ(l−1)−1Bλl , ∗∗〉

+t−k−1〈Bλ(l−2)
Bλ(l−1)

H∗µαBλl , ∗∗〉
−(1− t)tλ(l−1)−µα−k−1〈Bλ(l−2)

s(λ(l−1)−µα)Bλl , ∗∗〉

where s(λ(l−1)−µα)Bλl is the Littlewood-Richardson multiplication of s(λ(l−1)−µα) and Bλl .

Therefore, the action of the dual Hall-Littlewood operator, H∗µ, action on Bλ always leaves the

Bλis in partition order.

Remark 2.4.11. The number of dual Hall-Littlewood operator, H∗µ, actions on Bλ is bounded

by (µ1 + l(λ)− 2).

Proof. Combinatorially, we proceed in the manner of a stars and bars proof where H∗µ1−j is

inserted into Bλ = Bλ1Bλ2 · · ·Bλl · 1.

Define ri,j where i = # ofBλ(i) in front ofH∗µ1−j and j is such that i+j+1 = the exponent k

of t−k.

In the second relation of Proposition 2.4.8, H∗µ1−j acts by either removing a box from the

Bλ following it and itself or H∗µ1−j acts by trading places with the Bλ following it. This means

that minuses from Bλ form a weak composition of j in exactly i+ 1 parts.

We have that i is bounded below by 0 and above by k − 1 while j is also bounded below

by 0 and k − 1. Hence, there are
(
k−1
i

)
ways to insert H∗µ1−j into Bλ following i entries. Thus

there are
k−1∑
i=0

(
k − 1

i

)
ways to insert H∗µ1−j into Bλ in total.

It is well known that the number of weak compositions of j into i+ 1 parts is counted by(
j + i+ 1− 1

i+ 1− 1

)
=

(
j + i

i

)
.

By construction, i+ j + 1 = k, which gives i+ j = k − 1 and thus there are

k−1∑
i=0

(
k − 1

i

)
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weak compositions of j into i+ 1 parts.

Thus, the number of ways to insert H∗µ1−j is equal to the number of weak compositions of

j. Hence,

|ri,j | =
k−1∑
i=0

(
k − 1

i

)
for all k = 1, 2, . . . .

Then, assuming a sufficiently large Bλ∗ the action of H∗µ is either

• Hold in place (with µ1 − 1) ≤ µ1 − 1 times because H∗0Bλi = tλiBλi , or

• Move ≤ l(λ)− 1 times because H∗i · 1 = 0 for all i > 0.

Therefore, the action of the dual Hall-Littlewood operator, H∗µ, on Bλ terminates in ≤ (µ1 +

l(λ)− 2) steps.

We are now ready to prove our main result found in [1], an explicit algebraic formula for

the Kostka-Foulkes polynomials utilizing Hall-Littlewood vertex operators found in [7]. In our

theorem and subsequent proof, we will make repeated use of removing the j-th entry of a

partition λ and adding 1 to each entry λi, where 1 ≤ i < j ≤ l. Accordingly, we introduce the

notational convenience λ(i) for this action and define it in the following way.

Definition 2.4.12. Let λ(i) = (λ1 + 1, λ2 + 1, . . . , λi−1 + 1, λi+1, . . . , λl).

Theorem 2.4.13. For partitions λ, µ ` n with λ = (λ1, λ2, . . . , λl),

H∗kBλ =
l∑

i=1

(−1)i−1tλi−k−i+1sλi−k−i+1Bλ(i)

where sλ is the multiplication operator by the Schur function sλ.

Proof. We argue by induction on |λ|+ k, where λ is a partition and k is the degree of the dual

vertex operator for the Hall-Littlewood symmetric function. First of all, the initial step is clear.

Thus, the inductive hypothesis implies that

H∗k−1Bλ1−1Bλ2 · · ·Bλl = tλ1−ksλ1−kBλ2 · · ·Bλl − tλ2−ksλ2−kBλ1Bλ3 · · ·Bλl − · · ·

H∗kBλ2 · · ·Bλl = tλ2−ksλ2−kBλ3 · · ·Bλl − tλ3−k−1sλ3−k−1Bλ2+1Bλ4 · · ·Bλl − · · · .
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Now we have

H∗kBλ = t−1Bλ1H
∗
kBλ2 · · ·Bλl

+t−1H∗k−1Bλ1−1Bλ2 · · ·Bλl
= t−1Bλ1(tλ2−ksλ2−kBλ3 · · ·Bλl
−tλ3−k−1sλ3−k−1Bλ2+1Bλ4 · · ·Bλl
+tλ4−k−2sλ4−k−2Bλ2+1Bλ3+1Bλ5 · · ·Bλl − · · · )
+t−1(tλ1−ksλ1−kBλ2 · · ·Bλl
−tλ2−ksλ2−kBλ1Bλ3 · · ·Bλl
+tλ3−k−1sλ3−k−1Bλ1Bλ2+1Bλ4 · · ·Bλl − · · · )
+(tλ1−k − tλ1−k−1)sλ1−kBλ2 · · ·Bλl .

Using the first commutation relation in Proposition 2.4.8, the first parenthesis can be put

into

(tλ2−k−1sλ2−kBλ1Bλ3 · · ·Bλl − tλ3−k−2sλ3−k−1Bλ1Bλ2+1Bλ4 · · ·Bλl
+tλ4−k−3sλ4−k−2Bλ1Bλ2+1Bλ3+1Bλ5 · · ·Bλl − · · · )
+(tλ2−k−1sλ2−k−1Bλ1+1Bλ3 · · ·Bλl − tλ3−k−2sλ3−k−2Bλ1+1Bλ2+1Bλ4 · · ·Bλl
+tλ4−k−3sλ4−k−3Bλ1+1Bλ2+1Bλ3+1Bλ5 · · ·Bλl − · · · ).

Combining with the other terms, they are exactly the following sum

l∑
i=1

(−1)i−1tλi−k−i+1sλi−k−i+1Bλ(i) .

Remark 2.4.14. We are aware of Zabrocki’s result in [18] involving the Kostka-Foulkes poly-

nomials in the action of a modified vertex operator for the Hall-Littlewood operator, Hm,µ, on

the Schur symmetric function basis and wish to highlight three differences. First, an explicit

formula for the calculation of the Kostka-Foulkes polynomials is not provided by the action of

the operator Hm,µ. Second, the action of the operator in [18] is combinatorial in nature in that

it requires fillings for semi-standard tableaux based upon the height their k-snake (or modified

k-ribbon) whereas our formula is strictly algebraic. Third, the recursion resulting from Theorem

2.4.13 does not rely upon the iteration defined by Morris in [14].

In the following remark we highlight several interesting features of the Kostka-Foulkes

polynomial formula in Theorem 2.4.13.

Remark 2.4.15. For partitions λ, µ ` n with λ = (λ1, λ2, . . . , λl),
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• 2.4.15.1 The formula has at most l nonzero summands, although in many cases there are

fewer by the Littlewood-Richardson multiplication rule that s−mBλ(i) = 0 for a positive

integer m.

• 2.4.15.2 The formula depends only upon µ1 from the content partition.

• 2.4.15.3 The exponent λi− k− i+ 1 of t is evocative of the exponents of the determinant

defintion of the Schur symmetric functions.

• 2.4.15.4 Despite the alternating signs in the formula, positivity is assured.

Example 2.4.16. Given λ = (4, 12) and µ = (2, 14), the Kostka-Foulkes plolynomial formula

gives

H∗2Bλ =
3∑
i=1

(−1)i−1tλi−µ1−i+1sλ1−µ1−i+1Bλ(i)

= t2s2Bλ(1) − t−2s−2Bλ(2) + t−3s−3Bλ(3)

= t2s2B1B1

= t2[K(3,1),(14) +K(2,12),(14)]

= t2[(t3 + t4 + t5) + (t+ t2 + t3)]

= t2(t+ t2 + 2t3 + t4 + t5)

= t3 + t4 + 2t5 + t6 + t7

= K(4,12),(2,12).

We include another example for calculating the Kostka-Foulkes polynomial using our formula

to demonstrate its improvement over using Lascoux and Schutzenberger’s charge statistic. We

consider the semi-standard tableau T shape λ = (6, 4, 3, 2) with content µ = (3, 112). As we

saw in Example 2.3.4, there were 35,035 unique fillings of T and, thus, 35,035 summands in the

calculation of K(6,4,3,2),(3,112) using the charge.

Example 2.4.17. Given λ = (6, 4, 3, 2) and µ = (3, 112), the dual Hall-Littlewood inner prod-

uct algorithm gives

H∗3Bλ =
3∑
i=1

(−1)i−1tλi−µ1−i+1sλ1−µ1−i+1Bλ(i)

= t3s3Bλ(1) − t0s0Bλ(2) + t−2s−3Bλ(3) + t−4s−4Bλ(4)

= t3s3Bλ(1) −Bλ(2)
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Using the Pieri rule, the above formula gives that

K(6,4,3,2),(3112) = t3[K(7,3,2),(112) +K(6,4,2),(112) +K(6,32),(112)

+K(6,3,2,1),(112) +K(5,4,3),(112) +K(5,4,2,1),(112)

+K(5,32,1),(112) +K(5,3,22),(112) +K(42,3,1),(112)

+K(42,22),(112) +K(4,32,2),(112)]−K(7,3,2),(112)

which is easily verified using Sage or repeated applications of our iterative formula

While example 2.4.17 clearly illustrates the computational superiority of the recursion de-

fined in Theorem 2.4.13, requiring only two summands of a combined 12 Kostka-Foulkes polyno-

mials, we again wish to draw attention to the fact that our result provides an explicit algebraic,

instead of combinatorial, formula for the Kostka-Foulkes polynomials.

As consequences of Theorem 2.4.13, in the next section we introduce several combinatorial

results about partitions and their corresponding Young tableaux, develop a new lattice structure

for tableaux, and define two new classes of symmetric polynomials, the first of which possesses

the stronger condition of being monic.
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Chapter 3

Littlewood-Richardson Tableaux

3.1 Littlewood-Richardson Cores and Tableaux

In 1981, while extending the Murnaghan-Nakayama formula to generalized characters, James

and Kerber, [6], showed any partition λ can be associated with a k-core.

Definition 3.1.1. Define the k-core λ(k) of a partition λ of n to be the unique partition obtained

by removing ribbons of size k, called k-ribbons, from the Young tableau representation of λ

such that partition shape is always maintained.

Let |λ(k)| = m be the number of k-ribbons removed in acquiring the k-core of λ. Note that,

regardless of the method utilized to obtain a k-core for a partition, m is always the same. We

then introduce the weight of λ(k), denoted µ, to be (1m). By numbering the removed k-ribbons

from 1 to m, where the label 1 represents the last ribbon removed, the number 2 represents the

second to last ribbon removed, and so on, we can identify distinct methods of obtaining the

k-core.

Example 3.1.2. Let n = 17 and λ = (5, 4, 32, 2). Then the six tableaux of λ/λ(3) with λ(3) =

(12) and weight µ = (15) are shown in Figure 3.1. Observe that the first and second pairs of

tableaux have the exact same k-ribbons to be removed to respectively reach λ(3) = (12) with

differing orderings.
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Figure 3.1: λ(3) = (12) for λ = (5, 4, 32, 2)

As there are often multiple methods for reaching a k-core, we wish to generalize to k-ribbon

tableaux of a general shape and weight.
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Following Lascoux, Leclerc and Thibon, [10], we denote a k-ribbon by R and consider the

upper rightmost cell of R to be its initial cell. Then define a skew shape Ψ to be Ψ = γ/δ and

set δ+ = (γ1) ∧ δ such that a horizontal strip consisting of the upper cells of Ψ if formed by

δ+/δ. If Ψ can be tiled by ω k-ribbons with initial cells contained in δ+/δ, then Ψ is a horizontal

k-ribbon strip with weight ω.

Definition 3.1.3. Define the k-ribbon tableau T of shape λ/ν and weight µ = (µ1, µ2, . . . , µr)

to be a chain of partitions

ν = δ0 ⊂ δ1 ⊂ · · · ⊂ δr = λ

such that δi/δi−1 is a hortizontal strip k-ribbon strip of weight µi.

k-ribbon tableaux have been utilized to calculate the skew Kostka-Foulkes polynomials

Kλ/ν,ω(q) where the skew tableaux have shape λ/ν and weight ω as well as playing a role in

the creation of LLT polynomials which are single variable symmetric functions in q. Haglund

then showed that LLT polynomials are strongly connected to MacDonald polynomials via skew

ribbon diagrams.

As we saw in chapter 2, the Littlewood-Richardson rule for the multiplication of Young

tableaux was central to the calculation of the algebraic Kostka-Foulkes polynomials K(λ)(µ).

Furthermore, we showed that given a partition of shape λ and content µ, every non-zero term

in the K(λ)(µ) calculation had a shape containing (λ2, λ3, . . . , λl). Similar to the k-cores of

Kerber and James, we introduce a a Littlewood-Richardson core (LRC) for a partition λ.

Definition 3.1.4. Given a partition λ = (λ1, λ2, . . . , λl). Then the Littlewood-Richardson core

(LRC) of λ is λ(k) = LRC(λ) = (λ2, λ3, . . . , λl). In the case where l = 1, we take LRC(λ) = ∅.

In the language of LLT polynomials, this process produces a skew tableau of shape λ/ν

where ν = (λ2, λ3, . . . , λl). In the following sections, we will not be producing skew tableaux

for a partition λ though we still wish to record the LRC(λ). For the remainder of this paper,

for a partition λ we will graphically denote the LRC(λ) shading the upper leftmost cells of the

Young tableau of λ, those having shape (λ2, λ3, . . . , λl), in gray. For example, when λ = (3, 2, 1),

the LRC is shown in Figure 3.2.

Figure 3.2: Littlewood-Richardson core for λ = (3, 2, 1)
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The next result proves the Littlewood-Richardson core of a partition is always present within

the explicit Kostka-Foulkes polynomial algorithm of Theorem 2.4.13.

Theorem 3.1.5. The Littlewood-Richardson core of a partition λ has shape λ(1).

Proof. Let λ = (λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µk) be partitions of n with µ ≤ λ as in

Theorem 2.4.13.

Clearly, (λ2λ3, . . . , λl) = λ(1).

Consider

K(λ),(µ) = tJK(λ1−1,λ2,...,λl),(µ∗) + t−1〈Bλ1H∗µ1Bλ2 · · ·Bλl , ∗∗〉
−(1− t)tλ1−µ1−1sλ1−µ1〈Bλ2 · · ·Bλl , ∗∗〉.

We proceed inductively.

Case 1: As λ1 ≥ µ1, sλ1−µ1 is non-negative. Thus, each tableau resulting from the Littlewood-

Richardson multiplication rule has length either l or (l−1). Hence, (λ1−µ1) cells may be added

to λ(1). This means a row may have at most (λ1 − µ1) added to it. Therefore the intersection

of the tableaux resulting from the Littlewood-Richardson multiplication rule is λ(1).

Case 2: If H∗µ1 > Bλ2 , the Hall-Littlewood inner product from Theorem 2.4.13 equals 0. Else,

〈Bλ1H∗µ1Bλ2 · · ·Bλl , Hµ2 · · ·Hµk〉 = t−1〈Bλ1H∗µ1−1Bλ2−1Bλ3 · · ·Bλl , ∗∗〉
+t−1〈Bλ1Bλ2H∗µ1Bλ3 · · ·Bλl , ∗∗〉
−(1− t)tλ2−µ1−1〈Bλ1sλ2−µ1〈Bλ3 · · ·Bλl , ∗∗〉〉.

If λ2 ≤ µ1, the Hall-Littlewood inner product becomes Bλ1Bλ3 · · ·Bλl . Since Bλ1 ≥ Bλ2 , λ(1)

is contained within the tableaux resulting from the Littlewood-Richardson multiplication rule.

If λ2 > µ1, then λ(1) is contained within the tableaux resulting from the Littlewood-Richardson

multiplication rule.

Assume the k-th Hall-Littlewood inner product is not zero. Then the (k + 1) Littlewood-

Richardson multiplication is either

〈Bλ1 · · ·Bλksλk+1−µ1〈Bλk+2
· · ·Bλl , ∗∗〉〉 or

〈Bλ1Bλ2−i1Bλ3−i2 · · ·Bλj−ij−1
sλj+1−(µ1−k)〈Bλj+1

· · ·Bλl , Hµ2 · · ·Hµk ∗ ∗〉〉.

In the first case, since Bλ1 ≥ Bλ2 ≥ . . . Bλl > 0, λ(1) is contained within the (k + 1)-

st Littlewood-Richardson tableaux. In the second case, Bλj−ij−1
≥ Bλj+1

for all j ∈ 1, k by

assumption. Thus, λ(1) is contained within the (k+ 1)-st Littlewood-Richardson tableaux. This

means that
l⋂

i=1

i-th Littlewood-Richardson tableaux = λ(1).

Therefore, the Littlewood-Richardson core of a partition λ has shape λ(1).
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Remark 3.1.6. It is because of the common tableaux containment resulting from the Littlewood-

Richardson tableaux multiplication rule in Theorem 2.4.13 that we introduced the terminology

of Littlewood-Richardson cores.

If we fix the LRC of the partition and begin removing only those boxes not in the LRC(λ),

we can produce every tableau contained within λ which still contains the LRC(λ) using the

dominance ordering. For example, every tableau corresponding to a weight five partition which

is contained in (3, 2, 1) with LRC = (2, 1) is shown below.

Figure 3.3: Young tableaux contained in T(3,2,1) obtained by removing one cell not contained
in the LRC((3, 2, 1))

Definition 3.1.7. Given a tableaux T and a partition λ, define the Littlewood-Richardson

tableaux, LRT , of λ by

LRT (λ) = {T |TLRC(λ) ⊆ T ⊆ Tλ}.

Observe that if λ ` n has shape (n), then T = ∅ is an element of LRT (λ).

Similar to Young lattices, we can create LRT lattices using the dominance ordering so that

a partition shape is always maintained. For example, when λ = (2) we get the lattice

∅

Figure 3.4: LRT lattice for λ = (2)
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Theorem 3.1.8. Littlewood-Richardson Tableaux are not k-ribbon tableaux for l(λ) > 2 and

λ2 6 | λ1 with k > 1.

Proof. Let λ ` n with λ = (λ1, λ2, . . . , λl) and T be the Young tableau of λ. By definition,

|LRC(λ)| = (n− λ1).

Observe that fixing the upper leftmost cells in T corresponding to LRC(λ) means that if

l ≥ 3 there are no cells directly above row l which are not in the Littlewood-Richardson core.

As (n − λ1) ≥ 2 · λl, the cells in row l cannot be part of a (n − λ1)-ribbon. Thus, LRC(λ) is

not a k-ribbon for l(λ) > 2.

Assume l(λ) = 2 and that λ1 = p and λ2 = q with q 6 | p. Then, by the division algorithm,

p = mq + r and 0 < r < q. Since |LRC(λ)| = q, row 1 of T has the rightmost r cells not in a

q-ribbon.

Therefore, Littlewood-Richardson Tableaux are not k-ribbon tableaux for l(λ) > 2 and λ2 6 |
λ1 with k > 1.

3.2 Littlewood-Richardson Tableaux Lattices

Having defined the Littlewood-Richardson Tableaux in the previous section, we now wish to

introduce a standardizing algorithm for recording LRT lattices.

Definition 3.2.1. We define the Littlewood-Richardson Tableaux lattice algorithm as follows:

Given a partition λ = (λ1, λ2, . . . , λl) of n with Young tableau T

1. Shade the upper leftmost cells in T corresponding to the LRC(λ)

2. Below T , draw every tableau which has had exactly one cell removed from T which is on

the right end of a row and not in LRC(λ). Arrange these diagrams such that for i < j,

the tableau having had a cell removed from row i appears to the left of the tableau having

a cell removed from row j for 1 ≤ i ≤ l − 1. Thus, every tableau in this row has exactly

(n− 1) cells.

3. Draw a line between T and every new tableau which is contained within it.

4. Repeat steps 2) and 3) for each tableau until there are no more non-LRC(λ) cells which

can be removed.

5. Draw the LRC(λ) (Recall if l(λ) = 1, the LRC(λ) = ∅) and draw lines to it from each

tableau in the row immediately above it.
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Example 3.2.2. Let λ = (3, 2, 1). By Definition 3.2.1, the LRT lattice is shown in Figure 3.5.

Figure 3.5: LRT lattice for λ = (3, 2, 1)

Observe that if if we count the number of tableaux appearing in each horizontal level of the

LRT lattice and record the results, we see that we have the symmetric and monic sequence of

integers 1 − 3 − 3 − 1. As we will see in the next two examples, fixing non-LRC(λ) cells does

not, in general, produce a symmetric and monic sequence of integers.

Example 3.2.3. Let λ = (3, 2, 1). We know |LRC(λ)| = 3. Instead of fixing the upper leftmost

cells corresponding to the shape of LRC(λ), fix λ1 and shade it as before and proceed with

steps 2) through 5) from Definition 3.2.1.

Counting the tableaux appearing in each horizontal level in Figure 3.6 and recording the

results produces the integer sequence 1− 2− 1− 1 which is monic but not symmetric.

Example 3.2.4. Let λ = (3, 2, 1). We know |LRC(λ)| = 3. Instead of fixing the upper leftmost

cells corresponding to the shape of LRC(λ), fix λ′1 and shade it as before and proceed with
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Figure 3.6: Example of fixing λ1 which does not produce a symmetric lattice

steps 2) through 5) from Definition 3.2.1.

Counting the tableaux appearing in each horizontal level in Figure 3.7 and recording the

results produces the integer sequence 1− 2− 1− 1 which is monic but not symmetric. Observe

that we have fixed every set of |LRC(λ)| = 3 cells in T which have partition shape and only

fixing the LRC(λ) produced a symmetric and monic integer sequence.

We now define a new polynomial in Z[t] from the LRT lattice of a partition which is always

symmetric and monic and proves that the LRT (λ) lattice is also symmetric and monic if you

count the number of tableau appearing in each horizontal level.

Definition 3.2.5. Given a partition λ, define the map

φ : LRT (λ)→ Z[t]

by T ∈ LRT (λ) 7−→ t|λT |−|LRC(λ)|

where λT is the partition corresponding to the tableau T .
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Figure 3.7: Example of fixing λ′1 which does not produce a symmetric lattice

Define the T-polynomial, T (λ), of λ by

T (λ) =
∑

T∈LRT (λ)

t|λT |−|LRC(λ)|.

Equivalently,

T (λ) =
∑

T∈LRT (λ)

t|λT |−|LRC(λ)|

=
|λ|−|LRC(λ)|∑

m=0
Cmt

m

=
λ1∑
m=0

Cmt
m

where Cm is the number of tableaux of weight |LRC(λ)| + m where m is the number of

boxes added to the LRC(λ).
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Example 3.2.6. Let λ = (3, 2, 1). The T -polynomial for λ is shown in Figure 3.8.

1t3

3t2

3t

1

Figure 3.8: T -polynomial for λ = (3, 2, 1)

Theorem 3.2.7. For any partition λ = (λ1, λ2, . . . , λl) of n, T (λ) is symmetric and monic.

Proof. Since there is exactly one unique Young tableau for each partition λ, there is also exactly

one unique Young tableau for LRC(λ). This means the first and last terms of T (λ) are always

1 and, therefore, T (λ) is monic.

We proceed inductively to proof symmetry.

Case 1: Suppose l(λ) = 1. Then the Young tableau for λ is a horizontal strip and LRC(λ) = ∅.
This means that every cell in the Young tableau needs to be removed in order to create the

LRT (λ) lattice. However, since we must maintain partition shape after each removal, only the

rightmost cell may be removed at each step. Hence, there will be exactly (n + 1) levels in the

LRT (λ) lattice each containing exactly one LRT (λ). Thus, T (λ) = tn+ tn−1 + · · ·+ t1 +1 which

is symmetric.
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Case 2: Suppose l(λ) = 2 with |LRC(λ)| = λ2 = m.

We break this into two cases:

• Suppose that λ = (m,m). Then the only cells from the Young tableau of λ which may be

removed are in row 2. Thus, we have the same situation as Case 1) involving m removable

cells. Hence, T (λ) = tm + tm−1 + · · · + t1 + 1 where m = n
2 . Therefore, T ((m,m)) is

symmetric.

• Suppose that λ = (m + 1,m). By definition of the LRT (λ), there is only one removable

cell in row 1 of the Young tableau of λ, specifically the rightmost cell. Label this cell a.

If a is the first cell removed from the Young tableau of λ, then beginning one level down

and to the left we have the same LRT (λ) lattice as when λ = (m,m). Moreover, removing

a at any step prior to the last step results in a Littlewood-Richardson tableau already

contained in LRT ((m,m)). Thus, we need consider only those LRT (λ) where a is fixed.

However, fixing a leaves the only removable tableau of λ to be precisely those of λ =

(m,m). Thus fixing a results in the same T -polynomial as when λ = (m,m) except it is

shifted one degree higher. There are two further cases to consider:

i. T ((m,m)) has odd length. Then adding the coefficients of the T -polynomial gives

1, . . . , 1 odd number m+ 1

+ 1, . . . , 1 odd number m+ 1

1, 2, . . . , 2, 1 even number m+ 2

ii. T ((m,m)) has even length. Then adding the coefficients of the T -polynomial gives

1, . . . , 1 even number m+ 1

+ 1, . . . , 1 even number m+ 1

1, 2, . . . , 2, 1 odd number m+ 2

Since the sum of two symmetric polynomials having the same sequence of coefficients and

differing by exactly one degree is symmetric, T ((m+ 1,m)) is symmetric.

Assume that T (λ) is symmetric for λ = (m+i,m) where i > 1. Consider λ̄ = (m+i+1,m).

As before, label the last cell in the first row of the Young tableau of λ̄ with an a. If a is

the first cell removed from the Young tableau of λ̂, then beginning one level down and to

the left we have the same LRT (λ̄) lattice as when λ = (m + 1,m). Moreover, removing

a at any step prior to the last step results in a Littlewood-Richardson tableau already

contained in LRT (λ). Thus, we need consider only those LRT (λ̄) where a is fixed.
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However, fixing a leaves the only removable cells of λ̄ to be precisely those of λ. Thus

fixing a results in the same T -polynomial as when λ = (m+ 1,m) except it is shifted one

degree higher.

Since T (λ) is symmetric for λ = (m + i,m), by assumption, and T (λ̄) is obtained by

adding the coefficients of T (λ) shifted by one degree, T (λ̄) is also symmetric.

Therefore, for every partition λ of length two, T (λ) is symmetric.

Case 3: Assume l(λ) ≥ 2 with T (λ) being symmetric. We need only consider two cases for

when add a new row to the top of the Young tableau of λ, i.e. when we create a new partition

λ̄ = (λ0, λ1, . . . , λl) from λ.

• Suppose λ0 = λ1. Since no additional cells can be removed from the Young tableau of λ̄

which are not contained in the Young tableau of λ, T (λ̄) = T (λ). Since T (λ) is symmetric,

by assumption, T (λ̄) is also symmetric.

• Suppose λ0 = (λ1 + 1). Label the last cell of the top row of the Young tableau of λ̄ a

as before. Hence, the T -polynomial of λ̄ is the shifted sum of two symmetric polynomials

differing by one degree. Then since T (λ) is symmetric, T (λ̄) is also symmetric by above.

Assume that T (λ̄) is symmetric for λ̄ = (λ0 + i, λ1, . . . , λl) where i > 1. Consider λ̂ =

(λ0 + i+1, λ1, . . . , λl). As before, label the last cell in the first row of the Young tableau of

λ̂ with an a. If a is the first cell removed from the Young tableau of λ̂, then beginning one

level down and to the left we have the same LRT (λ̂) lattice as when λ̄ = (λ0+i, λ1, . . . , λl).

Moreover, removing a at any step prior to the last step results in a Littlewood-Richardson

tableau already contained in LRT (λ̄). Thus, we need consider only those LRT (λ̂) where

a is fixed.

However, fixing a leaves the only removable cells of λ̂ to be precisely those of λ̄. Thus

fixing a results in the same T -polynomial as when λ̄ = (λ0 + i, λ1, . . . , λl) except it is

shifted one degree higher.

Since T (λ̄) is symmetric for λ̄ = (λ0+i, λ1, . . . , λl), by assumption, and T (λ̄) is obtained by

adding the coefficients of T (λ0, λ1, . . . , λl)) shifted by one degree, T (λ̄) is also symmetric.

Therefore, for every partition λ of n, T (λ) is symmetric.

Definition 3.2.8. Given a partition λ, define the i-th shifted T -polynomial of λ, Ti(λ), by

adding i to the exponent of T (λ) where 1 = t0.
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Corollary 3.2.9. Given a partition λ,

T (λ) =
λ1−λ2∑
i=0

Ti(LRC(λ))

where Ti(LRC(λ)) is the i-th shifted T -polynomial of the Littlewood-Richardson core of λ.

Proof. This result follows immediately from Theorem 3.2.7.

Graphically, we can interpret Corollary 3.2.9 as the LRT (λ) lattice is (λ1−λ2+1) diagonally

shifted bands of the LRT (LRC(λ)) lattice. In the next two examples we denote those tableaux

contained in a band with a black line between them and the connections between bands of

tableaux with red lines.

Remark 3.2.10. For a partition λ, if λ1 = λ2, then T (λ) = T (LRC(λ)).

Example 3.2.11. Consider the partitions λ = (2, 1) and λ̄ = (3, 1). In both cases, the

LRC(λ) = LRC(λ̄) = (1). By Theorem 3.2.7, T (LRC(λ)) = T (LRC(λ̄)) = (1 + t) and the

LRT lattices of LRC(λ) and LRC(λ̄) consist of two levels each containing one tableau.

Thus, for λ = (2, 1), the Littlewood-Richardson Tableaux lattice consists of two bands each

consisting of two levels each containing one tableau, i.e. one band for the LRC(λ) and an

additional band because λ1 − λ2 = 1. The LRT ((2, 1)) lattice is shown in Figure 3.9.

Similarly, for λ̄ = (3, 1), the Littlewood-Richardson Tableaux lattice consists of three bands

each consisting of two levels each containing one tableau, i.e. one band for the LRC(λ̄) and two

additional bands because λ̄1 − λ̄2 = 2. The LRT ((3, 1)) lattice is shown in Figure 3.10.

Figure 3.9: LRT lattice for λ = (2, 1)
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Figure 3.10: LRT lattice for λ = (3, 1)

Though it is well defined, our next example proves that the function φ : LRT (λ) → Z[t],

where T ∈ LRT (λ) 7−→ t|λT |−|LRC(λ)| and λT is the partition corresponding to the tableau T ,

does not have an inverse.

Example 3.2.12. Let λ be a partition and suppose T (λ) = t4 + 3t3 + 4t2 + 3t+ 1. As before,

by considering coefficients only we observe below that three shifted sums of 1− 2− 1 and two

shifted sums of 1− 2− 2− 1 equals 1− 3− 4− 3− 1.

1 2 1

+ 1 2 1 1 2 2 1

+ 1 2 1 + 1 2 2 1

1 3 4 3 1 1 3 4 3 1

Consider the partition λ = (4, 2, 1). The LRT ((4, 2, 1)) lattice is shown in Figure 3.11.
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Figure 3.11: LRT lattice for λ = (4, 2, 1)

Hence, T ((4, 2, 1)) = t4 +3t3 +4t2 +3t+1 and is the result of three shifted sums of t2 + t+1.

Now consider the partition λ̄ = (4, 3, 1). The LRT ((4, 3, 1)) lattice is shown in Figure 3.12.

43



Figure 3.12: LRT lattice for λ = (4, 3, 1)

Hence, T ((4, 3, 1)) = t4+3t3+4t2+3t+1 and is the result of two shifted sums of t3+2t2+2t+1.

Thus φ−1(t4 + 3t3 + 4t2 + 3t+ 1) is not unique. Therefore, φ does not have an inverse.

In addition to creating symmetric lattices, LRT are combinatorially significant in other

ways.
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Theorem 3.2.13. There exists a unique k-letter word W consisting of the letters U and D

which encodes the T -polynomial of a partition λ where U represents adding a row of |λ1| cells

above row one of the previous Young tableau and D represents extending row one of the previous

Young tableau by one cell, beginning with T = ∅, and

k =
( |λ|−1∑
i=1

λi − λi+1

)
+ λl.

Remark 3.2.14. The letters U and D were chosen to mirror the arrangement of tableaux within

a Young lattice and the diagonal bands of lattices seen in Section 3.4.

Proof. In each step, we record the letters of W from right to left.

We’ve already seen that if λ1 = λ2, then T (λ) = T (LRC(λ)). In this case, record a U and

remove λ1 from λ.

If λ1 6= λ2, then T (λ) = T̄ (1)(λ̄(1)) where λ̄(1) = (λ1 − 1, λ2, . . . , λl) and T̄ (1)(λ̄(1)) is its T -

polynomial. In this case, record a D and remove the rightmost cell from row one of the Young

tableau of λ. Repeat until λ1 = λ2.

Remove λ1.

Repeat this process for every entry λi of λ for 1 ≤ i ≤ l − 1.

Suppose that W1 and W2 are words encoding T (λ) such that W1 6= W2. Let i be the first

entry where W1 differs from W2. Then through the first (i − 1) letters, W1 and W2 form the

same subpartition, λ̄, of λ with |λ̄| = m.

Consider λ̄1. When a U is encountered, the next partition formed is (λ̄1, λ̄1, λ̄2, . . . , λ̄m).

When a D is encountered, the next partition formed is (λ̄1 + 1, λ̄2, . . . , λ̄m).

As this process only adds a new row or extends a row by one cell in the Young tableau

at each step, there exists a subpartition formed by W1 which is different from a subpartition

formed by W2.

This contradicts the fact that every partition has a unique sequence of integers which com-

prise its entries. Therefore W1 = W2.

Reading W then from left to right provides the unique up and diagonal path to λ from ∅.

Example 3.2.15. Beginning at T = ∅ and creating its unique Littlewood-Richardson core, the

up and diagonal path to λ = (5, 4, 32, 2) is given by the code DDUDUUDUD and is shown in

Figure 3.13.
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∅

Figure 3.13: Littlewood-Richardson up and diagonal paths from ∅ to λ = (5, 4, 32, 2)
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Corollary 3.2.16. For a partition λ 6= ∅, there exist exactly C(k, r) unique partitions reachable

from λ with a k-length word W with r letter Ds. If λ = ∅, there exist exactly C(k − 1, r − 1)

unique partitions reachable from λ with a k-length word W with r letter Ds.

Proof. For λ 6= ∅, since the order of the Ds doesn’t matter and there are (k − r) Us in W ,

there exist
(

k
r,k−r

)
= C(k, r) words of length k with r Ds. Therefore, there are C(k, r) unique

partitions reachable from λ 6= ∅ with a k-length word W with r letter Ds.

For λ = ∅, the first letter of W must always be a D. This is because a U represents adding

a new row above λ of length λ1. However, if λ = ∅, λi = 0 for i ≥ 1 and adding a new row does

not change λ. Therefore, since the first letter of W is fixed as a D, we have (r − 1) remaining

Ds to place in the remaining (k−1) spaces of W . Hence, there exist
(

k−1
r−1,(k−1)−(r−1)

)
=
(
k−1
r−1

)
=

C(k−1, r−1) words of length k with r Ds. Therefore, there are C(k−1, r−1) unique partitions

reachable from λ = ∅ with a k-length word W with r letter Ds.

3.3 T -polynomials and t-analogues

In 1997, Lascoux, Leclerc, and Thibon [10] introduced a family symmetric functions called LLT

polynomials which are the product of q-Analogues of the Schur symmetric functions arising

from the rows of a semi-standard Young tableau for a partition. Because Haglund, Haiman,

Loehr, [3], proved the Macdonald polynomials, the symmetric functions which generalize the

Hall-Littlewood symmetric functions and thus the Schur symmetric functions, can be expanded

in terms of them, the LLT polynomials are of particular interest. This connection was further

enhanced in 2015, when Grojnowski and Haiman [2] proved the positivity conjecture for the

LLT and Macdonald polynomials.

In this section we prove that the T -polynomial of a partition is the product of t-analogues,

an introduced statistic closely related to q-analogues and so-named to match the notation of

T -polynomials.

Though they appear in many contexts, see [3], [10], [17], q-analogues frequently arise in

combinatorics. For this reason, we use a standard combinatorial definition for q-analogues as

defined in [16].

Definition 3.3.1. Let n ∈ N. Define the q-analogue of n! to be the polynomial 1(1+ q)(1+q+

q2) · · · (1 + q + q2 + · · ·+ qn−1) and denote it (n!). Moreover, we let (n) denote the q-analogue

of n where

(n) = 1 + q + q2 + · · ·+ qn−1 =
1− qn

1− q
so that

(n)! = (1)(2) · · · (n).
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Using Stanley’s definition of a q-analogue is done for two reasons. First, specifying the value

of q to be 1 in the definition of a q-analogue returns the original integer n. Second, while

q-analogues overwhelmingly require more than just the previous property in their definitions,

there is no universal agreement about what “more“ is required.

Definition 3.3.2. Let λ = (λ1, λ2, . . . , λl) be a partition of n. For each row i of the Young

tableau λ/LRC(λ), for 1 ≤ i ≤ l, number the cells (1, 2, . . . , λi − λi+1) from right to left where

λi+1 = 0 if i + 1 > l. This is equivalent to numbering the order in which the cells of each row

will be removed in the process of moving between the Young tableaux of λ and LRC(λ).

For each row numbering, construct a (λi − λi+1)-th degree polynomial of the form

λ1−λi+1∑
j=0

tj .

Clearly, this assignment yields the t-analogue

[λ1 − λi+1 + 1]t.

Theorem 3.3.3. T (λ) ∼=
l∏

i=1
[λ1 − λi+1 + 1]t.

Proof. We proceed inductively to prove symmetry.

Remark 3.3.4. As a notational convenience, we reverse the ordering of the terms of the t-

Analogues so that the resulting multiplication matches the ordering of the terms of the T -

polynomials.

Case 1: Assume l = 1. Then LRC(λ) = ∅. Thus, T (λ) ∼= [n− 0 + 1] = tn + tn−1 + · · ·+ t+ 1.

Then, for length one partitions, T (λ) is isomorphic to the product of t-analogues.

Case 2: Assume l = 2. We break this into two cases:

• Assume λ1 = λ2. Then [λ1 − λ2 + 1]t = t0 = 1. Thus,

[λ1 − λ2 + 1]t[λ2 − 0 + 1]t = 1[λ2 + 1]t = t
n
2 + t

n
2
−1 + · · ·+ t+ 1.

• Assume λ1 6= λ2. Let |λ1 − λ2| = p. Then

[λ1−λ2+1]t[λ2−0+1]t = 1[p+1]t[λ2+1]t = (tp+tp−1+· · ·+t+1)(tλ2 +tλ2−1+· · ·+t+1).

If we record this product in the form
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tp+λ2 + tp+(λ2−1) + · · · + tp+1 + tp

+ t(p−1)+λ2 + t(p−1)+(λ2−1) + · · · + tp + tp−1

. . . +
. . . + · · · +

.. . +
. . .

+ tλ2 + tλ2−1 + · · · + t + 1

we see that the result is exactly (p+ 1) shifted sums of [λ2 + 1]t. Thus, since [λ2 + 1]t ∼=
tλ2 + tλ2−1 + · · ·+ t+ 1,

[λ1 − λ2 + 1]t[λ2 + 1]t ∼= T (λ).

Then, for length two partitions, T (λ) is isomorphic to the product of t-analogues.

Assume for all l ≤ r, T (λ) ∼=
l∏

i=1
[λi − λi+1 + 1]t.

Case 3: Consider l = r + 1. We break this into two cases:

• Assume λ1 = λ2. Then

[λ1 − λ2 + 1]t = [0 + 1]t = [1]t = t0 = 1.

Thus,
r+1∏
i=1

[λi − λi+1 + 1]t =

r∏
i=1

[λi − λi+1 + 1]t ∼= T (λ/λ1)

by assumption.

• Assume λ1 6= λ2. Let |λ1 − λ2| = p. Then

[λ1 − λ2 + 1]t[λ2 − λ3 + 1]t · · · [λr+1 − 0 + 1]t = [p+ 1]t
r+1∏
i=2

[λi − λi+1]t

= [p+ 1]t
r∏
i=1

[λi − λi+1 + 1]t

after reindexing. Thus, by assumption, we have (p+ 1) shifted sums of
r∏
i=1

[λi− λi+1 + 1]t

which is isomorphic to (p+1) shifted sums of T (λ/λ1) which equals T (λ). Then, for length

(p+ 1) partitions, T (λ) is isomorphic to the product of t-analogues.

Therefore, for all partitions λ with l(λ) ≥ 1, the T (λ) is isomorphic to the product of

t-analogues.

This result allows us to determine the symmetry of the LRT lattice without actually

having to construct the LRT lattice for a partition. This result also explains why the map
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φ : LRT (λ)→ Z[t], where T ∈ LRT (λ) 7−→ t|λT |−|LRC(λ)| and λT is the partition corresponding

to the tableau T , does not have an inverse. Specifically, since a T -polynomial is the product of

polynomial factors, any permuting of those factors produces the same T -polynomial. However,

as each polynomial factor results from the difference between consecutive rows of a Littlewood-

Richardson tableau, any permutation of the polynomial factors of the T -polynomial must result

in a distinct Littlewood-Richardson tableau.

In the next example, up to the insertion of rows i having the same length as row (i + 1)

into a Littlewood-Richardson tableau, we provide every unique partition having λ such that

T (λ) = t4 + 3t3 + 4t2 + 3t+ 1.

Example 3.3.5. Consider the partitions λ1 = (4, 2, 1), λ̄ = (4, 3, 1), and λ̂ = (4, 3, 2). By

constructing the t-analogues for each row of the partitions in Figure 3.14 we verify the result of

Example 3.2.12 that T ((4, 2, 1)) = T ((4, 3, 1)) = t4 +3t3 +4t2 +3t+1 and prove that T ((4, 3, 2))

is also t4 + 3t3 + 4t2 + 3t+ 1.

(t+ 1)

(t+ 1)

(t2 + t+ 1)

(t+ 1)

(t2 + t+ 1)

(t+ 1)

(t2 + t+ 1)

(t+ 1)

(t+ 1)

(t+ 1)2(t2 + t+ 1) = t4 + 3t3 + 4t2 + 3t+ 1

Figure 3.14: Products of t-analogues for λ = (4, 2, 1), λ̄ = (4, 3, 1), and λ̂ = (4, 3, 2).
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3.4 Shifted Littlewood-Richardson Tableaux and Lattices

To highlight additional LRT lattice symmetries and combinatorial identities obscured by the

shapes of the varying LRT present within the lattice, we introduce the following tableaux

normalizing algorithm.

Definition 3.4.1. For a given partition λ with LRT lattice, we define the Shifted Littlewood-

Richardson Tableaux, SLRT, lattice algorithm as follows:

1. Recall that the LRT (λ) lattice consists of (λ1 − λ2 + 1) diagonally shifted bands of the

LRT lattice for LRC(λ). Within each band, arrange the tableaux so that the first entry

of level j is directly below the last entry of level i for all i < j, i.e. within each band draw

the tableaux such that the first tableau of a partition of weight k is directly below the

last tableau of a partition of weight (k+ 1). Observe this does not change the ordering or

tableaux containment of the LRT (λ) lattice.

2. Replace each tableau with • .

In the next example, we continue to denote those tableaux contained in a band with a black

line between them and the connections between bands of tableaux with red lines. The SLRT

lattice has also been drawn so that the • are evenly spaced vertically and horizontally, i.e. the

tableau of the partition of greatest weight within each band begins a new column of tableaux.

Example 3.4.2. Consider the partitions λ = (4, 2, 1) and λ̄ = (4, 3, 1). Using Definition 3.4.1,

the SLRT lattice of λ = (4, 2, 1) is shown in Figure 3.15.

Counting the • appearing in each column in Figure 3.15 and recording the results produces

the integer sequence 2− 4− 4− 2 which is symmetric but not monic.

For λ̄ = (4, 3, 1), the SLRT lattice is shown in Figure 3.16.

Counting the • appearing in each column in Figure 3.16 and recording the results produces

the integer sequence 2− 4− 4− 2 which is again symmetric but not monic.

We make one final modification to the SLRT (λ) lattice.

Definition 3.4.3. Define the Condensed SLRT(λ), CSLRT(λ), lattice in the following way:

• Remove all horizontal and vertical spacing between • in the lattice.

• Denote the bands of tableaux with a solid black outline, i.e form polygons.
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•

• • •

• • • •

• • •

•

Figure 3.15: SLRT lattice for λ = (4, 2, 1)

Remark 3.4.4. Observe that, under Definition 3.4.3, a tableau Tλ̄ is contained within the

tableau Tλ if Tλ̄ appears in a strictly lower level of a shared polygon or if the upper right corner

of Tλ̄ is the same as the lower left corner of Tλ.

Remark 3.4.5. Definition 3.4.3 records bands of tableaux as ribbons and thus the CSLRT (λ)

is the shifted sum of ribbons by Theorem 3.2.7 and Corollary 3.2.9.

Example 3.4.6. Consider the partitions λ = (4, 2, 1) and λ̄ = (4, 3, 1). Using Definition 3.4.3,

the condensed SLRT lattice of λ = (4, 2, 1) is shown in Figure 3.17.

•
•

•
•
•
•

•
•
•
•

•
•

Figure 3.17: Condensed SLRT lattice for λ = (4, 2, 1)
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•

• • •

• • • •

• • •

•

Figure 3.16: SLRT lattice for λ = (4, 3, 1)

For λ̄ = (4, 3, 1), the condensed SLRT lattice is shown in Figure 3.18.

•
•

•
•
•
•

•
•
•
•

•
•

Figure 3.18: Condensed SLRT lattice for λ = (4, 3, 1)

We now define a new polynomial in Z[t] from the CSLRT lattice of a partition which is

always symmetric and proves that the CSLRT (λ) lattice is also symmetric if you count the

number of tableau appearing in each vertical column.
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Definition 3.4.7. Given a partition λ, define the map

θ : CSLRT (λ)→ Z[t]

by • ∈ CSLRT (λ) 7−→ tk

where k is the k-th vertical column of CSLRT (λ) from the left and

1 ≤ k ≤
( λ1∑
k=0

(
Cm − 1

)
+ (λ1 − λ2 + 1)

)
where Cm is the number of tableaux of weight |LRC(λ)|+m where m is the number of boxes

added to the LRC(λ).

Define the T’-polynomial, T ′(λ), of λ by

T ′(λ) =

λ1∑
k=1

Dkt
k

where Dk is the number of tableaux in the k-th vertical column CSLRT (λ) lattice.

Example 3.4.8. Consider the partition λ = (4, 2, 1). Using Definition 3.4.7, the T ′-polynomial

of λ = (4, 2, 1) is shown below the condensed SLRT lattice in Figure 3.19. To highlight the

advantage of drawing the LRT -tableaux in condensed shifted fashion, note that reading across

the horizontal levels of the CSLRT lattice preserves the T -polynomial of λ.

•
•

•
•
•
•

•
•
•
•

•
•

t4

3t3

4t2

3t

1

2t1 4t2 4t3 2t4

Figure 3.19: T and T ′-polynomials for λ = (4, 2, 1)
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Theorem 3.4.9. The map θ : SLRT → Z[t] does not have an inverse.

Proof. This proof is similar to the proof that the T -polynomial map does not have an inverse.

We saw in Example 3.4.8 that T ′(4, 2, 1) = 2t1 + 4t2 + 4t3 + 2t4 and observe from Figure

3.18, the T ′(4, 3, 1) = 2t1 + 4t2 + 4t3 + 2t4.

As with T -polynomials, our next result proves that T ′-polynomials and, thus, CSLRT

lattices are symmetric.

Theorem 3.4.10. Let λ = (λ1, λ2, . . . , λl) be a partition of n. The column weights of the

(condensed) SLRT (λ) lattice form a symmetric polynomial, T ′(λ), consisting of copies of

T ′(LRC(λ)).

Proof. We proceed inductively to proof symmetry.

Case 1: Assume l(λ) = 1. Since the Young diagram of λ is a horizontal strip, LRC(λ) = ∅

and the SLRT (∅) lattice consists of a single • . Then since, T (λ) = xn + xn−1 + · · · + 1,

the SLRT (λ) lattice consists of (n + 1) • in a single column. Thus, T ′(λ) = nt1 which is

symmetric.

Case 2: Assume l(λ) = 2. We break this into two cases:

• Assume λ1 = λ2. Then T (λ) = T (LRC(λ)). Since LRC(λ) is a horizontal strip, by Case

1) we have that SLRT (LRC(λ)) is a single vertical column consisting of (λ2 + 1) • .

This means that SLRT (λ) is also a single vertical column consisting of (λ2 +1) • . Thus,

T ′(λ) =
(
n
2

)
t1 which is symmetric.

• Assume λ1 6= λ2. Let |λ1 − λ2| = p. By Theorem 3.2.7,

T (λ) =

λ1−λ2∑
i=0

Ti(LRC(λ)).

Hence, the SLRT (λ) lattice consists of (p+ 1) shifted vertical columns of height (λ2 + 1).

Thus, T ′(λ) is symmetric.

Therefore, every length two partition has a symmetric T ′-polynomial.

Case 3: Assume l(λ) = 3. We break this into three cases:

• Assume λ1 = λ2. As we have seen previously, T (λ) = T (LRC(λ)). Since every T ′-

polynomial of a length two partition is symmetric, T ′(λ) must also be symmetric.
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• Assume λ1 6= λ2 and λ2 = λ3. Let |λ1 − λ2| = p. As before, the SLRT (λ) lattice consists

of (p+ 1) shifted vertical columns of height (λ2 + 1). Thus, T ′(λ) is symmetric.

• Assume λ1 6= λ2 and λ2 6= λ3. Let |λ1 − λ2| = p. Clearly, the SLRT (λ) lattice consists of

(p+1) shifted copies of the SLRT ((λ2, λ2, λ3)) lattice which is the same as (p+1) shifted

copies of the SLRT (LRC(λ)) lattice.

As the SLRT (LRC(λ)) is not a vertical strip, we need to verify that the SLRT (λ) lattice

is still symmetric.

Since SLRT (LRC(λ)) is symmetric by Case 2), T ′(LRC(λ)) is symmetric.

Let T ′(LRC(λ)) have length r. There are two further cases to consider:

i. Assume r is odd. Then T ′(LRC(λ)) is of the form

T ′(LRC(λ)) = c1t
1 + c2t

2 + · · ·+ cd r
2
e−1t

d r
2
e−1 + cd r

2
et
d r
2
e+ cd r

2
e−1t

d r
2
e+1 + · · ·+ c2t

r−1 + cr1

where ci is the height of the i-th column from the left (or right) and 1 ≤ i ≤ d r2e.

As the SLRT (λ) lattice is the result of diagonally shifting (p + 1) copies of (condensed)

SLRT (LRC(λ)) lattice, which are each ribbons, we need only consider the action of the

coefficients of T ′(LRC(λ)).

p+ 1


c1 c2 · · · cd r

2
e−1 cd r

2
e cd r

2
e−1 · · · c2 c1

...
... · · · ...

...
... · · · ...

...

c1 c2 · · · cd r
2
e−1 cd r

2
e cd r

2
e−1 · · · c2 c1

c1 c2 · · · cd r
2
e−1 cd r

2
e cd r

2
e−1 · · · c2 c1

which is a symmetric polynomial of degree (r + p+ 1).

ii. Assume r is even. Then T ′(LRC(λ)) is of the form

T ′(LRC(λ)) = c1t
1 + c2t

2 + · · ·+ c r
2
t
r
2 + c r

2
t
r
2

+1 + · · ·+ c2t
r−1 + cr1

where ci is the height of the i-th column from the left (or right) and 1 ≤ i ≤ r
2 .

As the SLRT (λ) lattice is the result of diagonally shifting (p + 1) copies of (condensed)

SLRT (LRC(λ)) lattice, which are each ribbons, we need only consider the action of the

coefficients of T ′(LRC(λ)).
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p+ 1


c1 c2 · · · c r

2
c r
2
· · · c2 c1

...
... · · · ...

... · · · ...
...

c1 c2 · · · c r
2

c r
2
· · · c2 c1

c1 c2 · · · c r
2

c r
2
· · · c2 c1

which is a symmetric polynomial of degree (r + p+ 1).

Therefore, every length three partition has a symmetric T ′-polynomial.

Case 4: Assume l(λ) > 3 and that T ′(LRC(λ)) is symmetric for all l(LRC(λ)) ≤ n. Consider

λ such that l(λ) ≥ n+ 1 > 3. We break this into two cases:

• Assume λ1 = λ2. Then T ′(λ) = T ′(LRC(λ)) and the SLRT (λ) lattice is symmetric.

• Assume λ1 6= λ2. Let |λ1 − λ2| = p. Then the SLRT (λ) lattice consists of (p+ 1) shifted

copies of the SLRT (LRC(λ)) lattice. Then since the SLRT (LRC(λ)) is symmetric, the

SLRT (λ) is also symmetric.

Therefore, the T ′-polynomial is symmetric for all partitions λ with l(λ) ≥ 1.

Even though the map θ : SLRT → Z[t] does not have an inverse, we observe that exists

a finite number of unique shapes of condensed SLRT lattices which can occur given a T -

polynomial and these shapes are uniquely determined by the value (λ1 − λ2). This is to say

that given a T -polynomial there exists a finite number of unique T ′-polynomials which can be

constructed and they are uniquely determined by the t-analogue associated to (λ1 − λ2).

Theorem 3.4.11. Let |Dλ| be the number of unique, non-constant, polynomial factors of a T -

polynomial. There exists |Dλ| T ′-polynomials which can be constructed via the condensed SLRT

lattice algorithm. Furthermore, if no pair of consecutive entries are equal, there exists

|Dλ|∑
i=1

(
l − 1

m1,m2, . . . ,mi − 1, . . . ,m|Dλ|

)
,

unique partitions having the desired T -polynomial where mi is the multiplicity of the i-th unique

factor of the T -polynomial.

Proof. Let λ = (λ1, λ2, . . . , λl) be a partition with T -polynomial given by T (λ) and Littlewood-

Richardson tableau Tλ. For each entry λi such that λi 6= λi+1, record the degree of the cor-

responding t-analogue as defined in Theorem 3.3.3 as di for 1 ≤ i ≤ l. Define mi to be the

multiplicity of di.
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Define the sets

Dλ = {di|1 ≤ i ≤ l} and

Mλ = {mi|1 ≤ i ≤ l}.

If there exists j, 1 ≤ i < j ≤ l, such that di = dj , remove dj from Dλ and increment mi in

Mλ by one. Repeat this process until di 6= dj in Dλ. Re-index the di in Dλ and the mi in Mλ

such that i < k for all 1 ≤ i < k ≤ |Dλ|.
Since a T -polynomial is isomorphic to the product of t-analogues of the rows of its LRT , if

unique partitions λ and λ̄ have Dλ = Dλ̄ and Mλ = Mλ̄, T (λ) = T (λ̄).

Without loss of generality, let λi be the first entry such that (λi − λi+1) = d1. Then there

exists (m1 − 1) entries λi in λ, such that (λi − λi+1) = d1, m2 entries λi in λ such that

(λi − λi+1) = d2, m3 entries λi in λ such that (λi − λi+1) = d3, . . . in the remaining (l − 1)

entries of λ. As these differences correspond to the polynomial factors of T (λ), any arrangement

of the rows of T (λ) will produce the same T -polynomial. Hence, every partition such that the

first entry λi with (λi − λi+1) = d1 has the same T -polynomial.

Therefore, since T ′-polynomials are the shifted sums of T -polynomials, every such partition

also has the same T ′-polynomial and condensed SLRT lattice shape. As there are exactly |Dλ|
unique, non-constant, polynomial factors of T (λ), there are |Dλ| T ′-polynomials which can be

constructed via the condensed SLRT lattice algorithm.

If λi 6= λi+1 for all 1 ≤ i ≤ l, then there exists
(

l−1
m1,m2,...,mi−1,...,m|Dλ|

)
unique partitions such

that λ1 − λ2 = di. Hence, there exists

|Dλ|∑
i=1

(
l − 1

m1,m2, . . . ,mi − 1, . . . ,m|Dλ|

)

unique partitions having the desired T -polynomial where mi is the multiplicity of the i-th

unique factor of the T -polynomial.

Example 3.4.12. Consider the T -polynomial 1 + 4t+ 7t2 + 7t3 + 4t4 + t5 = (1 + t)3(1 + t+ t2).

For partitions λ = (5, 3, 2, 1), λ̄ = (5, 4, 2, 1), and λ̂ = (52, 3, 2, 1), by Theorem 3.3.3, T (λ) =

T (λ̄) = T (λ̂) = 1+4t+7t2 +7t3 +4t4 +t5. However, by Theorem 3.4.11, T ′(λ), T ′(λ̄), and T ′(λ̂)

are uniquely determined by the difference between the number of cells contained in the first

and second rows of their LRT and thus their T ′-polynomials and respective condensed SLRT

lattices are pairwise non-equal. We consider the condensed SLRT lattices of each partition

individually.

Let λ = (5, 3, 2, 1) as shown in Figure 3.20. Then Dλ = {2, 1} and Mλ = {1, 3} and

(λ1 − λ2) = 2.
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Figure 3.20: LRT for λ = (5, 3, 2, 1)

This means that the remaining three consecutive rows of LRT (λ) must differ in length by

exactly one cell and hence, there exists
(

3
3

)
= 1 unique partition, specifically (5, 3, 2, 1), up to

insertion of an entry λi = λi+1 into λ for i 6= 1, where T ′(λ) is the shifted sum of three copies

of T ((3, 2, 1)).

Therefore, if a partition has the T -polynomial 1+4t+7t2 +7t3 +4t4 +t5 = (1+t)3(1+t+t2)

and (λ1− λ2) = 2, it must have the condensed SLRT lattice shown in Figure 3.21 and there is

only one such unique partition λ = (λ1, λ2, . . . , λl) where λi 6= λi+1 for 1 ≤ i ≤ l.

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•
•
•

•
•
•
•
•

Figure 3.21: Condensed SLRT lattice for λ = (5, 3, 2, 1)

Let λ̄ = (5, 4, 2, 1) as shown in Figure 3.22. Then Dλ̄ = {1, 2} and Mλ̄ = {3, 1} and

(λ̄1 − λ̄2) = 1.
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Figure 3.22: LRT for λ̄ = (5, 4, 2, 1)

This means that two of the remaining three consecutive rows of LRT (λ̄) must differ in

length by exactly one cell and the other set of consecutive rows must differ in length by exactly

two cells. As it does not matter the order in which the lengths of the rows differ, there exists(
3

2,1

)
= 3 unique partitions, specifically (5, 4, 2, 1), (5, 4, 3, 1), and (5, 4, 3, 2), up to insertion of

an entry λi = λi+1 into λ for i 6= 1, where T ′(λ) is the shifted sum of two copies of T ((4, 2, 1)).

Therefore, if a partition has the T -polynomial 1+4t+7t2 +7t3 +4t4 +t5 = (1+t)3(1+t+t2)

and (λ1 − λ2) = 1, it must have the condensed SLRT lattice shown in Figure 3.23 and there

are three such unique partitions λ = (λ1, λ2, . . . , λl) where λi 6= λi+1 for 1 ≤ i ≤ l.

•
•
•
•
•

•
•
•

•
•
•

•
•

•
•
•

•
•
•

•
•
•
•
•

Figure 3.23: Condensed SLRT lattice for λ̄ = (5, 4, 2, 1)

Let λ̂ = (52, 3, 2, 1) as shown in Figure 3.24. Then Dλ̂ = {2, 1} and Mλ̂ = {1, 3} and

(λ̂1 − λ̂2) = 0.
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Figure 3.24: LRT for λ̂ = (52, 3, 2, 1)

This means that three of the remaining four consecutive rows of LRT (λ̂) must differ in

length by exactly one cell and the other set of consecutive rows must differ in length by exactly

two cells. As it does not matter the order in which the lengths of the rows differ, λ̂ is the unique

partition, up to insertion of an entry λi = λi+1 into λ for i 6= 1, where T ′(λ) is the shifted sum

of one copy of T ((5, 3, 2, 1)).

Therefore, if a partition has the T -polynomial 1+4t+7t2 +7t3 +4t4 +t5 = (1+t)3(1+t+t2)

and (λ1 − λ2) = 0, it must have the condensed SLRT lattice shown in Figure 3.25.

•
•
• •

•
•
• • • • •

•
•
• • • • •

•
•
• •

•
•

Figure 3.25: Condensed SLRT lattice for λ̂ = (52, 3, 2, 1)
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