
ABSTRACT

LEWIS, ALLISON LEIGH. Gradient-Free Active Subspace Construction and Model Calibration
Techniques for Complex Models. (Under the direction of Dr. Ralph C. Smith.)

As physical models used in large-scale applications become increasingly complex and computa-

tionally demanding, numerous issues related to the field of uncertainty quantification (UQ) must be

addressed. Knowledge of topics such as model calibration, parameter selection, uncertainty propa-

gation, and surrogate modeling have become essential to researchers in a wide array of fields. In this

dissertation, we focus on two aspects of UQ: (i) model calibration in a high-to-low fidelity framework,

and (ii) gradient-free construction of active subspaces for emulation via response surfaces.

We first develop an information-theoretic approach to calibrating low-fidelity codes using

simulated data from validated high-fidelity models, which are prohibitively expensive to evaluate

repeatedly. Our objective is to employ a minimal number of high-fidelity code evaluations as syn-

thetic data for Bayesian calibration of the low-fidelity code under consideration. We employ the

mutual information between low-fidelity model parameters and experimental designs to determine

input values to the high-fidelity code, which maximize the available information. For computa-

tionally expensive codes, surrogate models may be used to approximate the mutual information.

We illustrate this framework using a comprehensive set of numerical examples, including several

relevant to nuclear power plant design.

Recent developments in the field of reduced-order modeling—and in particular, active subspace

construction—have made it possible to efficiently approximate complex models by constructing low-

order response surfaces based upon a small subspace of the original high-dimensional parameter

space. These methods rely upon the fact that the response tends to vary more prominently in a few

dominant directions defined by linear combinations of the original inputs, allowing for a rotation

of the coordinate axis and a consequent transformation of the parameters. In the second portion

of this dissertation, we analyze existing gradient-based methods for active subspace construction,

and propose a gradient-free active subspace algorithm that is feasible for high-dimensional pa-

rameter spaces where finite-difference techniques are impractical. These algorithms are illustrated

with several examples from aerospace and nuclear engineering, with input spaces of up to 7700

dimensions.

© Copyright 2016 by Allison Leigh Lewis

All Rights Reserved

Gradient-Free Active Subspace Construction and Model
Calibration Techniques for Complex Models

by
Allison Leigh Lewis

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2016

APPROVED BY:

Dr. H. Thomas Banks Dr. Mansoor A. Haider

Dr. Brian J. Reich Dr. Ralph C. Smith
Chair of Advisory Committee

DEDICATION

To Mrs. Droppo, who ignited my passion for mathematics in 7th grade algebra. After all,

“A day without math homework is like a day without sunshine.”

ii

BIOGRAPHY

Allison was born in Schenectady, NY and spent her elementary through high school years in Ken-

newick, WA and Lynchburg, VA. During that time she discovered an affinity for math and science,

and decided to attend the University of Portland, majoring in mathematics. While in college, she

participated in a mathematics research program at Williams College, which solidified her desire to

continue with graduate studies.

After graduating Magna cum Laude from the University of Portland, she attended North Carolina

State University, completing her Master’s degree in Applied Mathematics in 2013 and defending

her Ph.D. thesis in May 2016. In the spring of 2016, she accepted a position in the Air and Missile

Defense sector at The Johns Hopkins University Applied Physics Laboratory.

In her free time, Allison enjoys teaching Irish dance, playing violin, tutoring high-school math,

quilting, partaking in nerdy activities such as reading fantasy novels and playing board games, and

spoiling her two mathematically-inclined cats, Fibonacci and Pascal.

iii

ACKNOWLEDGEMENTS

First of all, I would like to extend a huge thank you to my advisor, Dr. Ralph Smith. I was honored to

be approached by you three years ago, and I appreciate everything you have done for me since. I’ve

learned so much these past few years besides just math. I’ve learned that research is NOT easy, and

that sometimes no matter how hard you work, you don’t get the results you want or expect. After all,

“we don’t make the news, we just report it." But I’ve also learned that no matter how difficult, the

end result is absolutely worth it. I am so proud of the work I have done with you the past three years;

I never thought I was capable of this. I would also like to thank my other committee members, Dr.

Haider, Dr. Banks, and Dr. Reich, for their time and valuable feedback during this process.

There are a number of people who have contributed to the work in this dissertation in the form

of stimulating discussions and generation of ideas, as well as co-authorship of papers. These include,

but are not limited to, Brian Williams (LANL), Victor Figueroa, Vincent Mousseau, and Brian Adams

(Sandia), Max Morris (ISU), Paul Constantine (CSM), Gabriel Terejanu (USC), and Bassam Khuwaileh

and Katie Schmidt (NCSU).

And speaking of Katie, I would like to thank you for keeping me sane these past few years! We’ve

had a lot of laughs and a more than a few meltdowns, and I’m fairly sure I wouldn’t have made it to

the finish line without our "buddy system". I’m proud of us.

I owe my early success in mathematics and the fact that I even made it as far as graduate school

to a whole host of wonderful teachers over the years. From the 7th grade, where I first discovered

a love for math in my honors algebra class, to the incredible support I had from the entire math

department at the University of Portland, to my wonderful research advisor at Williams College, Dr.

Steven Miller, I was never lacking in encouragement. You all made me believe in myself.

And last but not least, I want to thank my family for all of their support and encouragement over

the years. My wonderful parents, Chris and Joann Lewis, are true role models for parenting. They

raised me to believe that I could accomplish whatever I dreamed of, and they backed those dreams

100%. My two incredible sisters, Michelle and Kellie, continue to inspire me on a daily basis and

push me to better myself. I love you all. This dream come true was truly a team effort, and I share

my success with all of you.

This research was supported by the Consortium for Advanced Simulation of Light Water Reac-

tors (http://www. casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for

Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-

AC05-00OR22725. North Carolina State University (NCSU) is a core CASL partner.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

I Introductory Material 1

Chapter 1 Overview of Topics . 2
1.1 High-to-Low Fidelity Model Calibration . 4
1.2 Gradient-Free Active Subspace Methods . 6

Chapter 2 Applications . 10
2.1 Neutron Transport . 10

2.1.1 SCALE6.1 . 13
2.2 Thermal-Hydraulics . 15

2.2.1 Hydra-TH . 16
2.2.2 COBRA-TF . 19

II High-to-Low Fidelity Model Calibration 21

Chapter 3 High-to-Low Framework . 22
3.1 Design Framework . 22
3.2 kNN Estimate of Mutual Information . 25

3.2.1 ANN Search Algorithm . 28
3.3 Verification of Mutual Information Algorithms . 29

3.3.1 Monte Carlo Method . 29
3.3.2 Verification Example . 30

3.4 Numerical Examples . 31
3.4.1 Steady State Heat Model . 32
3.4.2 Time-Dependent Diffusion Model . 36
3.4.3 Neutron Diffusion Model . 37
3.4.4 Particle Transport Model . 41
3.4.5 Hydra-TH CFD Code: Poiseuille Flow in a Pipe . 45

III Gradient-Free Methods for Active Subspace Construction 50

Chapter 4 Active Subspace Construction . 51
4.1 Methods for Construction . 52

4.1.1 Gradient-Based Active Subspace Method . 54
4.1.2 Gradient-Free Active Subspace Methods . 54

4.2 Determining the Dimension of the Active Subspace . 61

v

4.2.1 Gap-Based Dimension Selection . 61
4.2.2 Error-Based Dimension Selection . 62
4.2.3 PCA Dimension Selection . 63
4.2.4 Response Surface Dimension Selection . 64

4.3 Initialization Algorithm . 65

Chapter 5 Proof of Convergence . 69
5.1 Finite Sampling Convergence . 70
5.2 Approximate Gradient Convergence . 75
5.3 Adaptive Morris Convergence . 79

Chapter 6 Numerical Examples . 82
6.1 Elliptic PDE . 82

6.1.1 β = 1: Rapid Eigenvalue Decay . 84
6.1.2 β = 0.01: Gradual Eigenvalue Decay . 87

6.2 Extended Elliptic PDE . 90
6.3 SCALE6.1 Examples . 92

6.3.1 44-Dimensional Input Space . 93
6.3.2 132-Dimensional Input Space . 96
6.3.3 7700-Dimensional Input Space . 98

Chapter 7 Conclusions .102

REFERENCES .105

APPENDICES . 111
Appendix A Delayed Rejection Adaptive Metropolis Algorithm 112
Appendix B Derivation of k NN Estimate for Mutual Information 115

vi

LIST OF TABLES

Table 2.1 Thermal-hydraulics parameters for the mass, momentum, and energy conserva-
tion equations. 16

Table 3.1 Mutual information values for k NN, ANN, and Monte Carlo algorithms with
varying numbers of samples to verify the convergence to the analytic value.
Running times are reported in seconds for each method. 31

Table 3.2 Possible design choices for the steady state heat equation example. 33
Table 3.3 Design choice sequence for the Monte Carlo, k NN, and ANN algorithms in the

steady state heat equation example. 34
Table 3.4 L 2 errors for the steady state heat equation at each of the 12 design selection steps. 36
Table 3.5 Possible design choices for the time-dependent heat equation example. 37
Table 3.6 Comparison of design sequences provided by the Monte Carlo, k NN, and ANN

methods for the time-dependent heat equation example. 37
Table 3.7 Possible design conditions for the neutronics example. 40
Table 3.8 Estimated mutual information values and sequential design sequence for the

neutronics example from Algorithms 1 and 2. 40
Table 3.9 Comparison of pressure gradients, velocities, and friction factors provided by

the Hydra-TH CFD code as compared to the analytic values from (2.17), (3.22),
and (3.22). 46

Table 3.10 Estimated mutual information values computed via the k NN algorithm and
sequential design sequence for the Hydra-TH high-to-low computation. 48

Table 6.1 Active subspace dimension selections for gap-based criteria [11], principal com-
ponent analysis with varying threshold values [22], and error-based criteria with
varying tolerances [18] for the 44-input example. 95

Table 6.2 Active subspace dimension selections for gap-based criteria [11], principal com-
ponent analysis with varying threshold values [22], and error-based criteria with
varying tolerances [18] for the 132-input example. 97

Table 6.3 Reaction types and descriptions for the 7700-input example [19, 46]. 98
Table 6.4 Active subspace dimension selections for gap-based criteria [11], principal com-

ponent analysis with varying threshold values [22], and error-based criteria with
varying tolerances [18] for the 7700-input example. 99

vii

LIST OF FIGURES

Figure 1.1 Schematic of topics in uncertainty quantification [53]. 3

Figure 2.1 (a) Pressurized water reactor (PWR) schematic. Image courtesy of United States
Nuclear Regulatory Commission. (b) Nuclear fuel assembly. 11

Figure 2.2 Configuration of laminar pipe flow. 18
Figure 2.3 (a) Laminar flow schematic. (b) Hexahedron mesh for describing laminar flow

in a pipe. 19

Figure 3.1 Calculation of ε(i), nθ (i), and nd (i) for the case k = 1 from [30]. Here we have
nθ (i) = 3 and nd (i) = 4. Note that the k th-nearest neighbor is not included in
the determination of nθ and nd . 26

Figure 3.2 High-fidelity parameter distributions used to construct “experimental data”. . . 33
Figure 3.3 (a) Well-mixed parameter chains from DRAM, and (b) Joint posterior distribu-

tions for pairwise combinations of θ = [A, B , C]. 34
Figure 3.4 (a) Fit of quadratic model to the steady state heat equation analytic solution

for 15 total calibration points, with ordering selected by the k NN algorithm. (b)
Evolution of parameter distributions for the steady state heat equation over 12
cycles of the design algorithm. 35

Figure 3.5 High-fidelity solution versus calibrated low-fidelity time-dependent heat mod-
els in (a) time domain [0, 5] for eleven uniformly spaced values of x on the
interval [0, 2], (b) spatial domain [0, 2] for eleven uniformly spaced values of t
on the interval [0, 5], and (c) 3-dimensional domain. (d) Difference between the
low- and high-fidelity solutions. 38

Figure 3.6 (a) High-fidelity versus low-fidelity models and (b) evolution of parameter dis-
tributions for the neutronics example. 41

Figure 3.7 Well-mixed parameter chains for the particle transport example. 43
Figure 3.8 (a) Marginal parameter densities for the particle transport model, calculated

from the final 3,000 iterations in a 10,000 iteration DRAM run, and (b) joint
posterior distribution for the parameter set θ = [D ,Σa]. 44

Figure 3.9 High-fidelity simulated experimental data versus low-fidelity measurements
for the particle transport model. Note the widening of the 95% credible interval
(indicated in dark gray) and the 95% prediction interval (indicated in light gray)
as the distance between measurements increases. 44

Figure 3.10 Configuration of laminar pipe flow. 45
Figure 3.11 Comparison of calibrated low-fidelity exponential model versus the high-fidelity

Hydra-TH code. Analytic values provided by (3.22) are shown to demonstrate
bias present in high-fidelity model. 47

Figure 3.12 Hydra-TH parameter distributions for nine iterations of the mutual information
design algorithm. 49

Figure 4.1 Contour map depicting function variability over the input space for the function
defined in (4.1). 52

viii

Figure 4.2 Examples of steps on a two-dimensional input grid with a random initial point
x∗. One elementary effect is computed per direction, for a total of m+1 function
evaluations. (a) Finite-difference Morris steps where step sizes are constant
and step directions are aligned with the input space. (b) Adaptive Morris steps
where steps are taken in the primary directions of the active subspace with step
sizes determined by the significance of the corresponding eigenvalues. 58

Figure 4.3 (a) First iteration of Algorithm 8. Points x and y are chosen on the unit m-sphere
centered at x0. The maximum function evaluation over the great circle defined
by x and y occurs at the point z+. (b) Second iteration of Algorithm 8. The point x
has been updated to the value z+ from the previous iteration. A new y is chosen,
and the function is optimized over the new great circle. 66

Figure 6.1 (a) Normalized eigenvalues of the gradient matrix G or gradient estimate G̃ for
three active subspace methods for β = 1. (b) First 30 components of the first
eigenvector for each active subspace method. 85

Figure 6.2 (a) Final column of rotated elementary effects from the adaptive Morris method.
Note that the greatest variability is measured in the first direction, with elemen-
tary effects quickly leveling off to zero. (b) Closeup of first 20 rotated elementary
effects. 86

Figure 6.3 One-dimensional kriging surface projections for (a) the local sensitivity method,
(b) gradient-based method, (c) finite-difference Morris method, and (d) adaptive
Morris method for β = 1. Five training points are used to train the kriging
surfaces and mean kriging predictions are plotted with a solid line. We plot 300
testing evaluations to depict how closely the function on the kriging surface
matches the behavior of the function on the original surface. 86

Figure 6.4 Comparison of 300 testing point function evaluations on the original full surface
versus the constructed one-dimensional kriging surface for β = 1. Data for each
of the three active subspace methods is plotted along with the results of the
local sensitivity method: (a) gradient-based, (b) finite-difference Morris, and (c)
adaptive Morris. 87

Figure 6.5 (a) Singular values of the gradient matrix G or gradient estimate G̃ for three
active subspace methods for β = 0.01. (b) First, and (c) second eigenvectors for
each of the active subspace methods. 88

Figure 6.6 One-dimensional kriging surface projections for the (a) local sensitivity method,
(b) gradient-based method, (c) finite-difference Morris method, and (d) adaptive
Morris method for β = 0.01. Five training points are used to train the kriging
surfaces and mean kriging predictions are plotted with a solid line. We plot 300
testing evaluations to depict how closely the function on the kriging surface
matches the behavior of the function on the original surface. 88

ix

Figure 6.7 Two-dimensional kriging surface projections for (a) the local sensitivity method,
(b) gradient-based method, (c) finite-difference Morris method, and (d) adaptive
Morris method for β = 0.01. Five training points are used to train the kriging
surfaces and mean kriging predictions are plotted with a solid plane. We plot
300 testing evaluations to depict how closely the function on the kriging surface
matches the behavior of the function on the original surface. 89

Figure 6.8 Comparison of 300 testing point function evaluations on the original full sur-
face versus the constructed kriging surface for β = 0.01. Data for each of the
three active subspace methods is plotted alongside the results of the sensitivity
method. One-dimensional kriging surfaces are plotted for (a) gradient-based,
(b) finite-difference Morris, and (c) adaptive Morris. Two-dimensional kriging
surfaces are plotted for (d) gradient-based, (e) finite-difference Morris, and (f)
adaptive Morris. 90

Figure 6.9 (a) Singular values of the gradient matrix or approximation for each of the three
active subspace methods. We note the gap in magnitude between eigenvalues 10
and 11 for each method. (b) Relative errors | f − fs |/| f | at testing points outside
of the active subspace for response surfaces constructed with piecewise linear
interpolation over an active subspace of dimension 10. (b) Maximum, mean, and
minimum relative errors | f − fs |/| f | at 10,000 testing points outside of the active
subspace for response surfaces constructed via piecewise linear interpolation
over active subspaces of dimensions k = 1, ..., 14. 92

Figure 6.10 (a) PWR pin cell construction for the 44-input neutron transport example. (b)
Material composition of the PWR quarter fuel lattice for the 132- and 7700-input
neutron transport examples. 93

Figure 6.11 (a) Singular values for the 44-input example for each of the three active subspace
methods. (b) Error upper bounds given by Algorithm 5 for the 44-input example. 94

Figure 6.12 Comparison of keff responses at testing points and constructed response surface
for a one-dimensional active subsapce for the (a) gradient-based, (b) finite-
difference Morris, and (c) adaptive Morris methods for the 44-input example. . . 95

Figure 6.13 (a) Eigenvalues for the 132-input example. (b) Error upper bounds given by
Algorithm 5 for the 132-input example. 96

Figure 6.14 Comparison of keff responses at testing points and constructed response surface
for one-dimensional active subspaces for the (a) gradient-based, (b) adaptive
Morris, and (c) initialized adaptive Morris methods, and two-dimensional active
subspaces for the (d) gradient-based, (e) adaptive Morris, and (f) initialized
adaptive Morris methods for the 132-input example. 97

Figure 6.15 (a) First 300 eigenvalues for the 7700-input example. (b) Response surface RMSE
values for the first 450 dimensions. (c) First 350 error upper bounds given by
Algorithm 5 for the 7700-input example. 99

Figure 6.16 Observed versus predicted keff values for (a) 25, (b) 75, (c) 150, and (d) 300
dimensions for the gradient-based (left) and initialized adaptive Morris (right)
methods. 101

x

Part I

Introductory Material

1

CHAPTER

1

OVERVIEW OF TOPICS

Uncertainty quantification is rapidly growing as a result of increasingly complex physical mod-

els and scientists’ and engineers’ recognition of the need for a framework that can facilitate the

prediction of future outputs with quantified uncertainties. Sources of error in these models may

include approximation errors, uncertainties in the inputs or parameters, errors in experimental data

acquisition, and errors resulting from numerical methods. One goal of uncertainty quantification

is to predict how these errors and uncertainties will propagate through the models and design

prediction intervals for relevant quantities of interest.

The process of uncertainty quantification can be broken down into two main steps. The first

revolves around the calibration of the model to fit physical data that may be available experimentally

or from another validated code. Given expected output values in the form of physical data, we can

infer the parameter distributions that would lead the model to produce these outputs. In a Bayesian

framework, which we use throughout this investigation, we consider inputs to be random variables

with associated densities, rather than treating them as fixed but unknown values as we would in a

frequentist perspective. The Bayesian framework is natural to employ for uncertainty quantification,

since the use of parameter densities allows for propagation of parameter uncertainties throughout

the model. Once model calibration is complete, we can develop a prediction framework with

quantified uncertainty. At this point, prediction intervals can be constructed for quantities of interest

that are based upon user-specified certainty levels.

These constructed prediction intervals and the prior propagation of uncertainties are of sig-

2

nificant importance for applications such as nuclear reactor simulation. For obvious reasons, it is

essential that scientists be able to quantify the sources of error and uncertainty in reactor simula-

tion and predict how those sources will affect the overall reactor performance. In addition, these

prediction intervals are often used for extrapolation. That is, predictions are sought outside the

regime in which experimental data is available; i.e., the prediction of reactor behavior at threshold

conditions.

There are a number of relevant topics that contribute to the processes of model calibration

and uncertainty propagation. In Figure 1.1, we provide a schematic that details the relationship

between each of the main areas of uncertainty quantification. The two on which this dissertation

will focus are model calibration—specifically, the use of validated high-fidelity codes to calibrate

low-fidelity model parameters—and reduced-order modeling. In particular, we consider the use

of active subspaces to construct low-dimensional surrogate models to use in place of expensive

high-dimensional physical models for response prediction, focusing on a construction method that

avoids the need for gradient information or adjoint capabilities. We introduce high-to-low fidelity

model calibration in Section 1.1, and gradient-free active subspace construction in Section 1.2.

	
	

Uncertainty	Propagation	

Stochastic	Spectral	Methods	

Sparse	Grids	

Model	Calibration	

Local	Sensitivity	Analysis	 Global	Sensitivity	Analysis	

Parameter	Selection	

Model	Discrepancy	
Surrogate	Models	

Sparse	Grids	

Input	Representation	

Gradient-Free	Active	
Subspace	Construction	

High-to-Low	Fidelity	
Model	Calibration	

Figure 1.1: Schematic of topics in uncertainty quantification [53].

3

1.1 High-to-Low Fidelity Model Calibration

Most complex simulation models have inputs comprised of parameters – such as those in closure

relations, initial conditions, boundary conditions, or exogenous forces, which must be calibrated

to ensure that the model accurately quantifies the considered physical system. Ideally, one would

employ experimental data to calibrate the model. However, there are numerous settings for which

this is prohibitively expensive or physically infeasible.

In the context of nuclear power plant design, this can be illustrated by the difficulties associated

with measuring chalk river unidentified deposit (CRUD) build-up on the fuel rods. In the ideal

scenario, this measurement requires the complete shutdown of the plant and removal of the fuel

rods. After data acquisition, engineers are left with only a low-resolution image of the deposit

from which the data must be digitized and used for least-squares inference. The process is further

complicated by the fact that thermal contraction of cladding during cooling can cause CRUD to

break off rods, thus distorting measurements. Furthermore, cold CRUD does not accurately reflect

boron levels during operation where hot CRUD serves as a boron absorber.

For some applications, one can alternatively employ validated higher-fidelity codes to generate

synthetic data, which can be used to calibrate lower-fidelity codes. Such high-fidelity models and

codes can be based on, for example, conservation laws or physics that are highly resolved in the

regimes for which predictions are sought. When employing high-fidelity codes to generate synthetic

data in this manner, it is critical that simulations be restricted to the validation regimes for which

the high-fidelity code is statistically determined to be accurate.

Due to their complexity, high-fidelity codes are typically computationally expensive and, in

some cases, can take hours or days to run. Hence a critical issue concerning their use for generating

synthetic data centers on evaluation strategies that optimize the information content provided by

the simulated data. The goal is to reduce the uncertainty associated with calibrated low-fidelity

inputs using a minimal number of high-fidelity model evaluations.

In the context of nuclear transport, a number of methods have recently been proposed to

address the integration of high- and low-fidelity codes to predict future observations in an efficient

manner. As described fully in [48] and introduced earlier in [52], multi-scale frameworks have

been proposed for use in many nuclear transport models. In these models, the full domain is split

into multiple sub-domains on which a micro-scale approach is applied. A fine-scale transport

equation is solved over each sub-domain characterized by appropriate boundary conditions, and

cross-sections over angular direction, energy, and space are determined in a manner that preserves

neutron reaction rates. A coarse model is then applied to the domain as a whole; a low-order

approximation of the transport equation is solved over the entire spatial domain, but without the

dependence on the angular direction that was removed via the fine-scale method. This allows for a

more efficient evaluation of the model. However, there are weaknesses to this approach, the most

4

significant of which is that the boundary conditions used in the micro-scale model to preserve

neutron reaction rates are not necessarily refined based on the coarse-scale solution. Schaefer et al.

[48] discusses an approach that addresses the updating of the fine-scale boundary conditions to

meet the requirements of the coarse-scale model.

We employ a Bayesian information-theoretic framework to specify evaluation strategies for

high-fidelity codes that optimize the information required to calibrate low-fidelity code inputs and

reduce associated uncertainties. The goal is to accurately calibrate low-fidelity model parameters

using as few high-fidelity model evaluations as possible. By measuring the mutual information

between potential designs and parameter distributions, we can select the design that will most

significantly reduce the amount of uncertainty in the parameters. We utilize a sequential design

setting in which each specific design is selected based on its optimal ability to reduce parameter

uncertainty. Once selected, the corresponding high-fidelity simulation is run and the newly acquired

data is used to recalibrate the low-fidelity model parameters. The posterior distribution resulting

from this calibration becomes the prior distribution for the next cycle. Mutual information between

parameters and designs is computed again, and the next most profitable experiment or high-fidelity

simulation is chosen. Once a point is reached where information gain is no longer significant,

the process is terminated and the cost of additional high-fidelity model evaluations or expensive

experimental data acquisition is avoided. We consider two methods for estimating the mutual

information between random variables or distributions. The first is based on Monte Carlo evaluation

whereas the second utilizes a k th-nearest neighbor (k NN) algorithm to approximate the mutual

information.

Of the two, we focus primarily on this k NN approach, since it is generally more efficient than

Monte Carlo sampling, particularly in cases with moderate-to-high dimensionality. Within the k NN

approach, we investigate two methods for identifying the k th nearest neighbor to a query point.

The first, utilized by Kraskov et al. [30] in their initial presentation of this estimate, uses a brute

force search, requiring computation time on the order of O (n 2) for n data points. In addition, we

investigate the performance of an approximate nearest neighbor (ANN) search algorithm, proposed

by Arya et al. [1], in the context of mutual information estimation. This relaxation on the require-

ment to identify the strict nearest neighbor allows for significant computational savings, requiring

computation time on the order of O (n log n), and the substitution of these approximate nearest

neighbors into the mutual information estimate does not affect the order in which we select design

conditions for high-fidelity model evaluation.

The use of high-fidelity simulation models to calibrate lower-fidelity models is closely related to

the Method of Manufactured Universes (MMU) proposed in [57]. In this framework, the researcher

defines the laws of their manufactured “universe” and simulates experimental data—coinciding

with the high-fidelity synthetic data in this investigation—that follows these laws and may contain

5

measurement error. These “experiments” are then simulated via the proposed model—the low-

fidelity model—and the differences between simulation and manufactured reality are determined.

Once the input uncertainties are quantified, the simulated model may be used to predict future

observations with a corresponding level of uncertainty. The goal is to provide a framework to test

proposed uncertainty quantification methods and assess the predictive capabilities of proposed

models. These goals can be similarly achieved using the high-to-low methodology employed here.

The mutual information approach of using high-fidelity codes to calibrate lower-fidelity codes

is based on the methodology reported in [4, 60] and more generally in [33]. In this dissertation, we

extend these results in three ways. The first centers on the use of the Delayed Rejection Adaptive

Metropolis (DRAM) algorithm to construct posterior densities. This yields mutual information

algorithms that are robust for models exhibiting highly nonlinear parameter dependencies or

correlated parameters. Secondly, we provide a verification framework in which direct Monte Carlo

evaluation can be used to assess the accuracy of the computationally more efficient k NN and ANN

estimates used to approximate the mutual information. Finally, we establish the relation between

the employed high-to-low framework and the Method of Manufactured Universes, which has been

used to assess the accuracy and feasibility of uncertainty quantification methods. Specifically, we

demonstrate how the method can be employed to construct prediction intervals for the low-fidelity

model.

Chapter 3 will be devoted to the discussion of this high-to-low methodology and illustration via

a comprehensive set of numerical examples.

1.2 Gradient-Free Active Subspace Methods

The complex nature of many physical models has prompted a number of recent investigations

focused on reduced-order modeling methods that can subsequently be employed for uncertainty

quantification, design, and control implementation. Due to the high-dimensionality of their input

spaces and potentially tightly-coupled multi-physics components, the physical models tend to be

prohibitively expensive to evaluate repeatedly. Thus, we require the construction and verification

of more cost-efficient surrogate response surface models that can accurately predict the model

behavior in the regime of interest, while utilizing fewer computations. Prior to the construction

of the response surface, it is often crucial to perform some type of dimension reduction to reduce

the number of required input parameters; otherwise the response surface can quickly become

prohibitively expensive itself, due to the “curse of dimensionality". In particular, neutronics models

can contain input spaces with dimensions on the order of tens of thousands to millions of parameters,

a size that makes the construction of a response surface or surrogate model infeasible without first

redefining a smaller subspace of influential parameters.

6

The reduction in parameter dimension also constitutes a critical first step before performing

Bayesian analysis to construct parameter densities. This is necessary both to reduce the input

dimension and isolate those parameters that are identifiable in the sense that they are uniquely

determined by the measured response.

There exist many methods, both local and global, for the construction of identifiable and influ-

ential parameter subsets. In local sensitivity methods, inputs are varied about a nominal value and

corresponding effects on the outputs are measured. Global sensitivity methods, on the other hand,

can account for potential interactions between parameters throughout the admissible parameter

space. As detailed in [53], they also provide a technique for quantifying how uncertainties in outputs

can be apportioned to uncertainties in inputs.

One such global method is the screening method referred to as Morris screening [36]. The Morris

algorithm, which is classified as a “One factor At a Time” (OAT) method [44], improves upon typical

OAT algorithms by eliminating the restriction to localized sensitivity measures by averaging over

local coarse derivative approximations to provide a more global measure. The goal of the Morris

algorithm is to identify inputs or parameters that are negligible, linear and additive, or comprised of

interactions and nonlinear main effects between inputs [53]. One advantage of a method such as

the Morris algorithm is its ability to rank the parameters in order of their importance to the model,

enabling the researcher to fix parameters that are determined to have a less significant contribution.

It is often the case that the function varies most prominently in directions that are not aligned

with the coordinate axis as associated with the original inputs. In [10, 11], Constantine et.al suggest

that for more effective dimension reduction, the coordinates of the input space may be rotated to

align with the directions of strongest variation, which may be a series of linear combinations of the

original input parameters. After identification of these primary directions and the rotation of the

coordinate axes to match, the original input space is projected onto the new low-dimension subspace

defined by these directions, a subspace termed the “active subspace” due to its containment of the

majority of the function’s variability [42]. From here on, the function may be approximated on the

active subspace with a user-specified error term as discussed in [10].

Recent works [2, 10, 11] propose gradient-based methods to determine directions of strongest

variability in a function and construct a resulting active subspace. For models in which adjoint

capabilities are available, evaluations of the gradient may be used to separate directions of strong

variability from those of relative flatness. Computing a QR or SVD factorization of the gradient matrix

provides a basis for the active subspace of the inputs. A numerical example in [10] demonstrates the

effectiveness of the rotation of the coordinate axes to align with the prominent directions. Specifically,

function evaluations on a kriging surface created by active subspace construction behave much

more similarly to the original model than function evaluations on a kriging surface using a simple

sensitivity analysis, where the input space is projected onto a subspace of the same dimension as

7

the identified active subspace, but without the benefit of the rotated axes.

We propose a method of active subspace construction that avoids the need for gradient eval-

uation in cases where adjoint capabilities may not be accessible. To accomplish this, we employ

the concept of “elementary effects” from the Morris screening algorithm [36], using these coarse

derivative approximations to replace evaluations of the function gradient. We also adapt the Morris

screening algorithm to allow for adaptive step sizes and directions. Rather than stepping in the

direction of a single input parameter with each evaluation, we step in the directions defined by the

active subspace. This allows larger steps to be taken in directions of minimal function variability to

maximize coverage of the input space and minimize the number of function evaluations needed to

accurately approximate the gradient matrix.

Since our gradient-free algorithms initially require m +1 function evaluations per column for m

input parameters—a cost comparable to that of a finite-difference approximation—use of these

techniques is often infeasible for high-dimensional problems. To account for this, we introduce

an initialization algorithm that permits efficient approximation of the first few gradient vectors to

initialize the gradient-free methods with a few important directions. These gradient approximations

are based upon maximizing the function over great circles on an ball around the initial sample point

with radius chosen to ensure that local linearity is trusted. The initialization algorithm provides a

subspace of reduced dimension based on the rough gradient estimates, after which the adaptive

gradient-free method can be used for further reduction in the rotated coordinate space.

Another significant issue that we address is the determination of how many directions should

be retained in the active subspace to guarantee an accurate response surface. We incorporate a

variety of dimension selection criteria from varying sources to verify our gradient-free algorithms.

These include visual-based criteria [11, 34], error-based criteria [18, 56], a criterion based upon the

stopping algorithm used in principal component analysis [22], and a criterion based upon observing

errors in response surfaces constructed for each of the possible dimensions [11]. We include the

dimensions specified by each of these criteria for both the gradient-based and gradient-free methods

for additional verification.

This work addresses two problems in uncertainty quantification: (i) parameter selection, or

active subspace construction to reduce the input dimension and (ii) reduced-order model (ROM)

construction. Parameter selection is motivated by the problem that many of the parameters may be

noninfluential or nonidentifiable and we wish to redefine a smaller parameter space using linear

combinations of the original inputs to reduce the dimension of our problem. Reduced-order model

construction is necessary when our simulation models are too computationally expensive to provide

the large number of simulations required for model calibration or uncertainty quantification.

Chapters 4-6 contain the relevant material for this active subspace investigation. In addition

to the presentation and discussion of our algorithms in Chapter 4 and the demonstration of our

8

methods via a set of numerical examples in Chapter 6, we include the necessary theoretical back-

ground and a proof of convergence for the adaptive Morris gradient approximation construction in

Chapter 5.

9

CHAPTER

2

APPLICATIONS

When considering the issues of reduced-order modeling and high-to-low fidelity model calibration,

one natural application area to consider is the modeling and simulation of nuclear reactors. This

is a task that has been undertaken by the Consortium for the Advanced Simulation of Lightwater

Reactors (CASL), with the goal of creating a virtual reactor environment. Here, we apply our methods

to applications in nuclear reactor design, focusing in particular on neutron transport and thermal-

hydraulics models. We summarize the relevant models and provide descriptions of the codes used

to solve these models and generate data for our investigations.

2.1 Neutron Transport

We begin with a brief overview of nuclear reactor design and the neutronics components relevant

to the examples provided in Chapters 3 and 6. Figure 2.1(a) depicts the typical construction of a

pressurized water reactor (PWR), which is one type of lightwater reactor (LWR). The reactor core

contains fuel rods consisting of uranium or uranium dioxide pellets, control rods, and water-filled

coolant channels—see Figure 2.1(b). Coolant is circulated throughout the core under high pressure,

ensuring that it maintains a liquid state despite extremely hot conditions in the reactor. This heated

coolant generates steam, which is used to drive the turbines. The coolant also performs a second

task of acting as a neutron moderator; hydrogen atoms present in the coolant water collide with the

fast fission neutrons, slowing them to a velocity that allows for a sustainable chain reaction.

10

	 	

(a) (b)

Figure 2.1: (a) Pressurized water reactor (PWR) schematic. Image courtesy of United States Nuclear
Regulatory Commission. (b) Nuclear fuel assembly.

Since the neutron densities and energies drive the reactions occurring in the reactor core, it is

essential that we are able to both quantify the neutron distributions and model the interactions

between the fuel and coolant at any given time. We start by defining the angular neutron density

n (r, E , Ω̂, t)d r 3d E d Ω̂ and angular neutron flux ϕ(r, E , Ω̂, t) = v n (r, E , Ω̂, t) for a position vector

r = (x , y , z) and volume d r 3, velocity v , solid angle Ω̂ = v /|v | specifying the direction of motion,

and energy level E at time t . We then construct the 3D neutron transport equation

∂

∂ t

�∫

V

n (r, E , Ω̂, t)d r 3

�

= gain in V − loss in V

by balancing source and loss mechanisms for some arbitrary volume V . The neutron sources

include (i) fission, (ii) neutrons entering V , and (iii) neutrons entering the state (E ,Ω) from scattering

reactions, which we denote by E ′→ E , Ω̂′→ Ω̂. For the loss mechanisms, we consider (iv) neutrons

leaving V and (v) neutrons that change states via collisions.

We begin with the fission source. The introduction of neutrons to our control volume via fission

can be expressed as

(i)=
χ(E)

4π

∫

4π

d Ω̂′
∫ ∞

0

d E ′ν(E ′)Σ f (E
′)ϕ(r, E ′, Ω̂′, t), (2.1)

where χ(E) is the fission spectrum at energy E , and ν(E ′) and Σ f (E ′) are the density of fission

neutrons and fission cross-sections, respectively, at energy E ′. We integrate over all energies E ′ and

solid angles Ω̂′ to incorporate all possibilities for neutrons entering the state of interest via fission.

For the remainder of this section, we will denote the source term by s (r, E , Ω̂, t).

11

To address the loss of neutrons suffering a collision and transitioning to different energy states,

we consider that the rate at which neutrons collide at the point r is ft = vΣt (r, E)n (r, E , Ω̂, t), where

Σt (r, E) denotes the total cross-section. Therefore, the loss of neutrons due to collisions is

(v)=

�∫

V

vΣt (r, E)n (r, E , Ω̂, t)d r 3

�

d E d Ω̂. (2.2)

Next we incorporate the gain and loss of neutrons due to movement in and out of the control

volume. The rate of neutron leakage over the full surface S is given by v Ω̂n (r, E , Ω̂, t) ·d S . Therefore,

(iv)-(ii) =

�∫

S

d S · v Ω̂n (r, E , Ω̂, t)

�

d E d Ω̂

=

�∫

V

∇· v Ω̂n (r, E , Ω̂, t)d r 3

�

d E d Ω̂

=

�∫

V

v Ω̂ ·∇n (r, E , Ω̂, t)d r 3

�

d E d Ω̂ (2.3)

quantifies the movement of neutrons in and out of the arbitrary volume V = d r 3.

Finally, we address the neutrons that enter our state of interest via scattering reactions. The rate

at which neutrons scatter from state (E ′, Ω̂′) to (E , Ω̂) is given by

�∫

V

v ′Σs (E
′→ E , Ω̂′→ Ω̂)n (r, E ′, Ω̂′, t)d r 3

�

d E d Ω̂

for scattering cross-section Σs . We integrate over all possibilities for energy E ′ and solid angle Ω̂′ to

obtain

(iii)=

�∫

V

d r 3

∫

4π

d Ω̂

∫ ∞

0

d E ′v ′Σs (E
′→ E , Ω̂′→ Ω̂)n (r, E ′, Ω̂′, t)

�

d E d Ω̂. (2.4)

Having quantified all of our neutron gain and loss mechanisms, we return to (2.1) and perform

our balance of sources using (2.1-2.4). This yields

0 =

∫

V

�

∂ n

∂ t
+ v Ω̂ ·∇n + vΣt n (r, E , Ω̂, t) (2.5)

−
∫

4π

d Ω̂′
∫ ∞

0

d E ′v ′Σs (E
′→ E , Ω̂′→ Ω̂)n (r, E ′, Ω̂′, t) + s (r, E , Ω̂, t)

�

d r 3d E d Ω̂. (2.6)

12

Since (2.6) must hold for any arbitrary control volume, we have

∂ n

∂ t
+ v Ω̂ ·∇n + vΣt n (r, E , Ω̂, t)

=

∫

4π

d Ω̂′
∫ ∞

0

d E ′v ′Σs (E
′→ E , Ω̂′→ Ω̂)n (r, E ′, Ω̂′, t) + s (r, E , Ω̂, t). (2.7)

Rewriting (2.7) in terms of the angular flux yields the 3D neutron transport equation

1

v

∂ ϕ

∂ t
+ Ω̂ ·∇ϕ+Σt (r, E)ϕ(r, E , Ω̂, t)

=

∫

4π

d Ω̂′
∫ ∞

0

d E ′Σs (E
′→ E , Ω̂′→ Ω̂)ϕ(r, E ′, Ω̂′, t) + s (r, E , Ω̂, t). (2.8)

We note that (2.8) is linear in the state ϕ, but is a function of seven independent variables in

three dimensions: r = x , y , z , E , Ω̂= θ ,φ, t . Due to symmetry of the plane, we can express Ω̂ in terms

of x only, as Ω̂x = cosθ . Then
∫

4π
d Ω̂′ =

∫ π

0
dθ ′ sinθ ′. Therefore, we have Ω̂ ·∇ϕ = Ω̂x

∂ ϕ
∂ x = cosθ ∂ ϕ∂ x ,

which yields

1

v

∂ ϕ

∂ t
+ cosθ

∂ ϕ

∂ x
+Σtϕ(x , E ,θ , t)

=

∫ π

0

dθ ′ sinθ ′
∫ ∞

0

d E ′Σs (E
′→ E ,θ ′→ θ)ϕ(x , E ′,θ ′, t) +S (x , E ,θ , t). (2.9)

We let µ= cosθ in (2.9) to obtain a 1D representation of the neutron transport equation for general

source term s :

1

v

∂ ϕ

∂ t
+ µ

∂ ϕ

∂ x
+Σtϕ(x , E ,µ, t)

=

∫ 1

−1

dµ′
∫ ∞

0

d E ′Σs (E
′→ E ,µ′→µ)ϕ(x , E ′,µ′, t) + s (x , E ,µ, t). (2.10)

For additional details on the derivations of (2.8) and (2.10), see [14, 54]. We now discuss the neutron

transport simulation code used in this dissertation, SCALE6.1.

2.1.1 SCALE6.1

SCALE (Standardized Computer Analyses for Licensing Evaluation) is a modeling and simulation

software suite developed at Oak Ridge National Laboratory for use in radiation transport appli-

cations [46]. In particular, SCALE is employed for problems in criticality safety, reactor physics,

radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analy-

sis. First released in 1980, SCALE has since undergone extensive modifications and improvements.

13

The version in use today, SCALE6.1, contains a total of 89 computation modules.

Most notable for this dissertation is the TRITON (Transport Rigor Implemented with Time-

dependent Operation for Neutronic depletion) module, which which is employed for lattice physics

model development [47]. Though full-core, high-fidelity physical models do exist to predict behavior

in reactor cores, these models are prohibitively expensive to run. The purpose of the TRITON module

is to enable simulation of the full 3-D fuel assembly via a low-fidelity lattice model. The lattice model

is based upon basic nuclear reactor fuel design information, including fuel pin and clad radii, pin

and lattice pitch, material compositions, and thermal-hydraulic conditions of the fuel and coolant

mixtures. The cross-section data generated by this lattice model is then utilized by a nodal simulator

to simulate behavior in the full fuel assembly.

TRITON can be used for both 2- and 3-D transport and depletion calculations, as it integrates

contributions from cross-section processing codes, neutron transport solvers, and point depletion

codes. Several neutron transport solvers are available for use in the SCALE framework; we use the

NEWT (New ESC-based Weighting Transport) module, based upon the Extended Step Characteristic

(ESC) approach for spatial discretization on an arbitrary mesh structure. The primary purpose of

the NEWT module is to the solve the steady-state form of the linear Boltzmann equation,

Ω̂ · ~∇ϕ
�

r, Ω̂, E
�

+Σt (r, E)ϕ
�

r, Ω̂, E
�

=Q
�

r, Ω̂, E
�

, (2.11)

where ϕ
�

r, Ω̂, E
�

is the neutron angular flux at position r per unit volume, in direction Ω̂ per unit

solid angle, and at energy E per unit energy. Additionally, Σt (r, E) is the macroscopic total cross-

section, and Q (r, Ω̂, E) is the neutron source term, which includes the fission source, scattering

source, and any external neutron source [25].

NEWT supports 2-D transport calculations, and generates weighted burnup-dependent cross-

sections to provide localized fluxes for multiple depletion regions. In addition, the NEWT sequence

in TRITON can be used to generate both forward and adjoint transport solutions. The adjoint

solution is used to calculate sensitivity coefficients and uncertainties for the keff and other responses

of interest due to perturbations in the cross-sections. This sensitivity information is processed in

the SAMS (Sensitivity Analysis Module for SCALE) module, where sensitivities can be generated

with respect to nuclide, reaction, material region, and energy group.

There are several multigroup cross-section libraries provided within the SCALE framework,

each containing reference values across materials, reactions, and energy group discretizations. The

most advanced library, recommended for safety and criticality tests, is the 238-group ENDF/B-VII

neutron library. For quicker calculations, this library can be collapsed into the 44-group ENDF/B-V

library, which runs approximately five times faster than its more advanced counterpart. We utilize

this collapsed library throughout the examples of Chapter 6 for efficiency, but note that use of this

library is generally recommended only for test cases, and not for safety or criticality analyses.

14

2.2 Thermal-Hydraulics

We now consider the modeling of coolant behavior via thermal-hydraulics models. Since coolant

is present in both liquid and vapor forms within the reactor, we require two-phase flow models

to simulate transient and steady-state behavior. These two-phase models can be expressed using

conservation of mass, momentum, and energy equations, given by

∂

∂ t
(α f ρ f) +∇· (α f ρ f ν f) =−Γ , (2.12)

α f ρ f

∂ ν f

∂ t
+α f ρ f ν f ·∇ν f +∇·σR

f +α f ∇·σ+α f ∇ρ f

=−F R − F + Γ (ν f −νg)/2+α f ρ f g , (2.13)

and

∂

∂ t
(α f ρ f e f) +∇· (α f ρ f e f ν f +T h) = (Tg −Tf)H +Tf ∆ f

−Tg (H −αg∇·h) +h ·∇T − Γ [e f +Tf (s
∗− s f)] (2.14)

−pf

�

∂ α f

∂ t
+∇· (α f ν f) +

Γ

ρ f

�

,

for the fluid phase and parameters described in Table 2.1 [53]. Note that we must solve analogous

coupled relations for the gas phase. The viscous and heat transfer coefficients can be modeled

via the constitutive relations σ = −η∇ν and h = −λ∇T , where η and λ, along with the transport

coefficients κ, ζ, and γ, must be estimated during model calibration.

The exchange at the vapor/liquid interfaces are modeled via the constitutive relations

Γ = γ[(s f − sg)(Tsat(ρ f)−Tg)−K f],

F = ζ(ν f −νg),

and

H = κ(Tf −Tg),

for mass, momentum, and energy, respectively. A summary of all relevant parameters and descrip-

tions is provided in Table 2.1. Relations for K f , Tf ∆ f , s ∗,σR , and F R can be found in [5, Chapter

16]. We now introduce the two thermal-hydraulics codes relevant to this dissertation, Hydra-TH

and COBRA-TF.

15

Table 2.1: Thermal-hydraulics parameters for the mass, momentum, and energy conservation
equations.

Variable(s) Description

αg , α f Volume fractions of gas and fluid

ρg , ρ f Densities of gas and fluid

νg , ν f Velocities of gas and fluid

eg , e f Internal energies of gas and fluid

Tg , Tf Temperatures of gas and fluid

sg , s f Entropy densities of gas and fluid

pf Continuous phase pressure

Ts a t Saturation temperature

κ, ζ, γ Positive transport coefficients

σ Viscous transport coefficient

h Heat transport coefficient

2.2.1 Hydra-TH

Hydra-TH is a thermal-hydraulics code designed for use in nuclear reactor applications [39]. It

was developed at Los Alamos National Laboratory for use in the CASL project. The hybrid finite

volume/finite element multi-physics code was assembled with the goal of providing a detailed

resolution of flow fields in a number of regimes and describing interactions with the reactor fuel

assembly. Hydra-TH is capable of dealing with a number of problems in varying situations, including

but not limited to:

• Crud-Induced Power Shift (CIPS)

• Crud-Induced Localized Corrosion (CILC)

• Grid-To-Rod Fretting (GTRF)

• Departure from Nucleate Boiling (DNB).

Hydra-TH was built in part to fill the need for a code able to perform simulation of thermal-

hydraulics processes with unparalleled fidelity. As such, we employ Hydra-TH as a high-fidelity code

in Part II, using the finely-resolved solution to calibrate a lower-fidelity model. In the remainder of

this section, we provide details for our particular problem of interest: simulating laminar flow in a

pipe. We begin with a derivation of the analytic values used to verify Hydra-TH in Section 3.4.5, and

then describe the Hydra-TH setup.

16

We consider laminar pipe flow in the setup depicted in Figure 2.2, where p describes the pressure

in the pipe, vz is the velocity along the length of the pipe, µ is the kinematic viscosity of the fluid,

and r denotes the radial coordinate. Neglecting body forces, the differential equation for Poiseuille

flow in a laminar pipe flow is

∂ p

∂ z
=µ

�

∂ 2vz

∂ r 2
+

1

r

∂ vz

∂ r

�

. (2.15)

The solution

vz (r) =
1

4µ

d p

d z

�

D 2

4
− r 2

�

,

to the differential equation (2.15) illustrates that the profile is quadratic in the radial direction. Here

D represents the diameter of the pipe and d z is the length of the pipe over which the pressure drop

d p occurs. It further follows that

d p

d z
=−

32V µ

D 2
, (2.16)

where V is the average velocity over the pipe flow area. A dimensionless analysis reveals that

d p

d z
=−

V 2

2

ρ

D
f , (2.17)

whereρ and f respectively denote the fluid density and friction factor. We employ the valuesρ = 977

kg/m3, D = 0.0254 m, and µ = 9.576× 10−4 kg/m·s. For laminar pipe flows, the friction factor is

f = 64/R e , where R e =ρV D /µ . We note that the Reynolds number R e must be less than 2300 to

ensure laminar flow. Integrating equations (2.16) and (2.17), we obtain the pressure solutions

p (z) =
−32V µ(z − z0)

D 2
+p (z0)

or

p (z) = −
V 2

2

µ(z − z0)
D

�

64

R e

�

+p (z0), (2.18)

where p (z) and p (z0) are pressures at the upstream location z and downstream location z0 in the

pipe. The choice of z and z0 is arbitrary. As noted in equation (2.18), the pressure downstream

decreases linearly and is a function of z only if D and V are fixed.

17

	
Figure 2.2: Configuration of laminar pipe flow.

We employ equation (2.17), along with the relations

V =
R e ·µ
ρD

and

f =
64

R e

for the average velocity and friction factor, to provide analytic relations to verify the accuracy of

Hydra-TH for the considered flow regime.

We now discuss the Hydra-TH setup. To minimize effort when running the cases and minimize

errors during the pre- and post-processing steps, we employ the automated strategy depicted in

Figure 2.3(a). A three-dimensional mesh model of laminar flow in a pipe is run in Hydra-TH assuming

constant inlet and outlet pressure at the pipe extremes. Figure 2.3(b) shows a typical hexahedron

mesh used for these runs. This mesh is generated in Cubit by first meshing the circular surface

(inlet side) with quadrilateral elements and then extruding these 2-dimensional elements along

the direction of the pipe axis. We note that several tests were conducted with differing meshes; in

particular, we employed a higher mesh density near the wall and higher mesh density near the

center of the pipe. In general, better results were observed when the mesh density was finer at the

center of the pipe.

For the verification exercise of Section 3.4.5, the inlet and outlet are specified based on a pre-

scribed laminar Reynolds number. For simplicity, the outlet pressure p (z = L) is set to zero, and the

inlet pressure p (z0 = 0)was set to the value calculated from equation (2.18) after setting the diameter

and the average velocity (calculated via scripts) corresponding to the prescribed Reynolds number.

This method assures laminar conditions. To constrain the velocity at the inlet and outlet of the pipe,

velocity values tangential to the cross-section of the pipe are set to zero; i.e., vx (r) = vy (r) = 0. The

18

	 	
(a) (b)

Figure 2.3: (a) Laminar flow schematic. (b) Hexahedron mesh for describing laminar flow in a pipe.

walls of the pipe are defined to have a no-slip condition.

The inlet pressure is calculated in the script using equation (2.18), assuming that the outlet

temperature is zero. For these simulations, the diameter of the pipe is fixed at 0.0254 meters, and

the length of the pipe is equal to 0.125 ·R e ·D ; i.e., two and a half times the developing length of the

flow in the pipe. The time step d t varied according to the Reynolds number and the C F L number,

d t =
∆z ·C F Lma x ·ρ ·D

R e ·µ
, (2.19)

where C F Lma x ≈ 1.65. In all cases, a fully implicit Picard solution scheme is used to solve the

coupled equations.

Details on the verification of the Hydra-TH code and the use of the code as a high-fidelity model

for calibration of a lower-fidelity model will be discussed in Chapter 3.

2.2.2 COBRA-TF

Coolant Boiling in Rod Arrays - Two Fluids (COBRA-TF) is a subchannel thermal-hydraulics sim-

ulation code developed for lightwater reactor (LWR) vessel analysis [43]. Since its development

at Pacific Northwest Laboratory in 1980, the code has undergone multiple modifications. One of

the significant updates was completed at Pennsylvania State University, where the code was then

rebranded as CTF. The CTF code employs a two fluid modeling approach, with consideration for

three fields: fluid film, fluid drops, and vapor. In addition to containing the capability to derive

solutions for fluid behavior in a number of regimes, CTF also deals with problems in the following

19

areas, among others:

• Behavior of fuel rods and reactor decay heat

• Heated and unheated conductors

• Two-phase heat transfer

• Droplet breakup.

Within CTF, each of the three fields is modeled with its own set of mass, momentum, and

energy conservation equations, together with a set of closure relations that makes possible the

determination of the conservation parameters. The one exception to this rule is the liquid and droplet

fields, which are assumed to be in thermal equilibrium, and therefore share a set of conservation

equations. The conservation equations are formulated through one of two approaches: expression

in 3-D Cartesian coordinate form, or a simplified subchannel approach which considers flow in only

the axial and lateral directions. The equations are expressed in terms of finite-differences, then solved

numerically over a mesh of finite volumes using the Semi-Implicit Method for Pressure-Linked

Equations (SIMPLE).

Though CTF was not directly employed during the course of this dissertation, the goal of future

calibration of CTF using a high-fidelity CFD code served as motivation in our development of the

high-to-low framework of Part II. Work will soon be undertaken by another group to carry out this

task.

With our motivations established and the application areas described, we now proceed to the

first portion of the dissertation work: an information-theoretic approach to using high-fidelity codes

to calibrate low-fidelity models.

20

Part II

High-to-Low Fidelity Model Calibration

21

CHAPTER

3

HIGH-TO-LOW FRAMEWORK

For many simulation models, it can be prohibitively expensive or physically infeasible to obtain

a complete set of experimental data to calibrate model parameters. In such cases, one can alter-

natively employ validated higher-fidelity codes to generate simulated data, which can be used to

calibrate the lower-fidelity code. We employ an information-theoretic framework to determine

the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a

specific set of design conditions. These conditions are chosen sequentially, based on the the amount

of information that they contribute to the low-fidelity model parameters. The goal is to employ

Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations

required to accurately calibrate the low-fidelity model. This design scheme will be illustrated for

several numerical examples in Section 3.4.

3.1 Design Framework

We employ the following experimental design protocol to optimally evaluate high-fidelity codes to

calibrate low-fidelity codes. Given a set of observations Dn−1 = {d̃1, d̃2, ..., d̃n−1} of the high-fidelity

code, we seek an evaluation strategy ξn ∈Ξ so that uncertainty in low-fidelity model parameters

θ ∈ Rp is reduced when the model is re-calibrated using the new high-fidelity data point d̃n . To

specify ξn , we employ the mutual information strategy reported in [4, 60] and more generally in [33].

22

We employ the statistical model

dn = d`(θ ,ξn) +δ(ξn) + εn (ξn), (3.1)

where d`(θ ,ξn) denotes the low-fidelity model, which depends on parameters θ ∈Rp that we seek

to optimally calibrate using synthetic data constructed using a high-fidelity model. Here ξn ∈ Ξ
denotes the n t h design or evaluation strategy, where Ξ designates the set of possible evaluation

strategies or experimental conditions. For the examples considered here, Ξ is taken to be a discrete

set of independent variable values. We denote potential discrepancy in the low-fidelity model by

δ(ξn) and random measurement or discretization errors by εn (ξn).

When using mutual information measures to determine the next design point ξn , we employ

independent and identically distributed (iid) Gaussian errors, εn (ξn)∼N (0,σ2), whereσ is a user-

specified parameter. Throughout this work, we take 2σ to be 10% of maxi=1,··· ,n−1 dh (ξi), where

dh (ξi) is the high-fidelity solution evaluated using the ξi design strategy. An alternative option is to

inferσ during the calibration process. We note that this error assumption is commonly valid for

measurement errors but will likely need to be modified for biases common to numerical errors.

For this investigation, we neglect model discrepancies and take δ(ξn) = 0. Discussion regarding

the use of Gaussian processes, δ∼G P (0;λδ,ρδ), to quantify δ is provided in [3, 23, 24].

For a given design ξn , the n t h observation d̃n , generated by the high-fidelity model dh (ξn), is

given by

d̃n = dh (ξn) + ε̃n (ξn) (3.2)

where potential numerical or measurement errors ε̃n (ξn) are assumed to be iid and normally

distributed, ε̃n (ξn)∼N (0,σ̃2). Here σ̃ is also a user-specified parameter. In this investigation, we

again take 2σ̃ to be 10% of maxi=1,··· ,n−1 dh (ξi) but note that, in general, σ̃ can differ from σ. We

employ the high-fidelity model (3.2) to generate the synthetic data used to calibrate the low-fidelity

model.

The change in knowledge about the model parameters due to the addition of new synthetic or

experimental data d̃n is given by Bayes’ rule

p (θ |Dn) =
p (Dn |θ)p (θ)

p (Dn)
=

p (d̃n , Dn−1|θ)p (θ)
p (d̃n , Dn−1)

for the new data set Dn = {d̃n , Dn−1}. The goal in experimental design is to optimize the information

provided by an experiment or high-fidelity observation d̃n based on the design ξn . Because our

objective is to determine the distribution of the model parameters θ from the calibration of our

low-fidelity model with data d̃n , using as few experiments as possible, the strategy upon which we

base our design decision should be chosen according to the amount of information provided by

23

the proposed data as a result of measuring under design conditions ξn . Since d̃n has not yet been

observed when we make a decision regarding the choice of ξn , we employ predictions dn provided

by the statistical model (3.1) to determine ξn .

We employ Shannon entropy estimates to quantify the mutual information between the pro-

posed observation dn and parameter values θ as in [60]. For a random variable Θ having a corre-

sponding density p (θ) for θ ∈Ω, the Shannon entropy is defined as

H (Θ) =−
∫

Ω

p (θ) log(p (θ))dθ

for the prior and

H (Θ|x) =−
∫

Ω

p (θ |x) log(p (θ |x))dθ

for the posterior distribution given data x . We define the utility of observing the high-fidelity code

at condition ξn , perturbed by error, as

U (dn ,ξn) =

∫

Ω

p (θ |dn , Dn−1) log p (θ |dn , Dn−1)dθ −
∫

Ω

p (θ |Dn−1) log p (θ |Dn−1)dθ , (3.3)

which is a random function of unobserved data dn . By marginalizing over the domainD, the set of

all unknown future observations, we obtain the average amount of information contributed by the

proposed experiment ξn . This yields

Edn
[U (dn ,ξn)] =

∫

D
U (dn ,ξn)p (dn |Dn−1,ξn)d dn , (3.4)

where the predictive distribution

p (dn |Dn−1,ξn) =

∫

Ω

p (dn |θ ,ξn)p (θ |Dn−1)dθ

can be computed using the prior probability density function for the model parameters. We substi-

24

tute (3.3) into (3.4) and rewrite the expected utility as

Edn
[U (dn ,ξn)] =

∫

D

∫

Ω

p (θ , dn |Dn−1,ξn) log
p (θ , dn |Dn−1,ξn)

p (dn |Dn−1,ξn)
dθd dn

−
∫

D

∫

Ω

p (θ , dn |Dn−1,ξn) log p (θ |Dn−1)dθd dn

=

∫

D

∫

Ω

p (θ , dn |Dn−1,ξn) log
p (θ , dn |Dn−1,ξn)

p (θ |Dn−1)p (dn |Dn−1,ξn)
dθd dn

= I (θ ; dn |Dn−1,ξn). (3.5)

The result of (3.5) is the mutual information I (θ ;dn |Dn−1,ξn) between the low-fidelity model

parameters θ and the proposed observation dn at design condition ξn . This gives a measure of the

parameter uncertainty reduction provided by knowing the new data. We choose the optimal set of

design conditions ξ∗n to be the design that maximizes this quantity, namely

ξ∗n = arg max
ξn∈Ξ

I (θ ; dn |Dn−1,ξn).

The high-fidelity code is then evaluated using the design condition ξ∗n and the resulting data d̃n

is used to recalibrate the model parameters θ . This design is then eliminated from the design set, as

design replication is not considered in this study. We note, however, that by allowing replication in

design selections, one can formally quantify uncertainty in high-fidelity code calculations due to

parameter variation; e.g., turbulence models in CFD codes. A basic implementation of our method

is outlined in Algorithm 1.

3.2 kNN Estimate of Mutual Information

In general, the integral in (3.4) cannot be directly evaluated and requires numerical approximation.

The primary method of mutual information estimation utilized in this investigation is the k NN

(k th-Nearest Neighbor) method proposed by Kraskov et al. [30] and summarized in Algorithm 2.

We draw N samples from the prior distribution p (θ |Dn−1) computed via the DRAM algorithm

[17, 53], detailed in Appendix A, creating a chain X = (θ , dn (ξn))with which we have appended the

outputs for each sample of parameters predicted according to the statistical model (3.1). We note

that the k NN algorithm requires independent parameter samples. To ensure that we are as close

as possible to meeting this independence requirement, we thin our dependent DRAM results by

randomly sampling from our parameter chains. For each chain element X i , we compute the distance

25

Algorithm 1 Design Implementation

(1) Define N , the number of samples to be used in either the Monte Carlo or k NN algorithms.

(2) Initialize a list of pre-existing high-fidelity data, [(ξ1, d̃1), (ξ2, d̃2), ..., (ξr , d̃r)].

(3) Define list of possible design conditions, [ξr+1,ξr+2, ...,ξs].

(4) If r ≥ 1, run the DRAM algorithm (see Appendix A) to construct a chain {θ i }Ni=1 of size p ×N
from the prior distribution p (θ |Dn−1), where p is the number of parameters. If r = 0; that is,
there is no pre-existing data, construct a chain of size p ×N by sampling a proper prior p (θ)
of choice.

(5) Send the chain {θ i } to the Monte Carlo or k NN algorithms detailed in Sections 3.3.1 and 3.2.

(6) The Monte Carlo and k NN algorithms return a single design condition ξn . Append this value
and the corresponding high-fidelity prediction d̃n = dh (ξn)+ ε̃n (ξn) to the previous data list
to obtain

[(ξ1, d̃1), (ξ2, d̃2), ..., (ξr , d̃r), (ξn , d̃n)].

(7) Repeat steps 4-6 until all designs are used or a user-specified error tolerance is met.

ε(i)/2= ||X i −Xk (i)||∞, where Xk (i) represents the k th-nearest neighbor to X i in the chain {X i }Ni=1

with respect to the sup norm, and determine the number of points in each marginal subspace nθ
and nd that lie within ε(i)/2 of the projected point; see Figure 3.1 for an example of this computation.

!

Xi

d

θ"

ε!
!

(i)

ε!(i)

Xk(i)

Figure 3.1: Calculation of ε(i), nθ (i), and nd (i) for the case k = 1 from [30]. Here we have nθ (i) = 3
and nd (i) = 4. Note that the k th-nearest neighbor is not included in the determination of nθ and nd .

26

As detailed in [30], the mutual information can approximated by

I (θ ; dn |Dn−1,ξn)≈ψ(k)−
1

N

�

N
∑

i=1

ψ(nθ (i) +1) +
N
∑

i=1

ψ(nd (i) +1)

�

+ψ(N), (3.6)

whereψ(·) is the digamma function. A derivation of this quantity can be found in Appendix B.

Algorithm 2 k NN Method

(1) Fix value of k (e.g., k = 6) and define number of k NN vector elements N (e.g., N = 2000).

(2) For each potential design ξn ∈Ξ,

(a) Create a vector with dim(θ) +dim(d) rows and N columns

(i) In the first dim(θ) rows, draw N samples, {θ i }Ni=1, from the prior distribution
p (θ |Dn−1).

(ii) In the next dim(d) rows, place dn (ξn), i = 1, ..., N .

(iii) Normalize the data vector,

X =
�

(diag(s−1)(X i −µ)
	N

i=1

where µ= [θ̄ , d̄]T is a (dim(θ)+dim(d))×1 vector of sample means and s = [sθ , sd]T

is the vector of sample standard deviations.

(b) For each sample X i , identify the k th nearest neighbor, Xk (i), using the brute force or
ANN search algorithms.

(c) For each sample X i , compute ε(i)/2= ||X i −Xk (i)||∞.

(d) For each sample X i , compute nθ (i) = # points in θ marginal space with at least one
coordinate within distance ε(i)/2 and nd (i) = # points in d marginal space with at least
one coordinate within distance ε(i)/2.

(e) Estimate the mutual information:

I (θ ; dn |Dn−1,ξn)≈ψ(k)−
1

N

�

N
∑

i=1

ψ(nθ (i) +1) +
N
∑

i=1

ψ(nd (i) +1)

�

+ψ(N),

whereψ(·) is the digamma function.

(3) Let ξ∗ be the design such that max
ξn∈Ξ

I (θ ; dn |Dn−1,ξn) = I (θ ; dn |Dn−1,ξ∗).

We note that the value of k does not need to be fixed. For each design tested, the mutual

27

information may be calculated for a vector of possible k values, and the k that yields the maximum

mutual information value may be employed. In this work, we fix k = 6 based on previous work done

by Terejanu et al. [60], and save the analysis of a varying k for future work.

3.2.1 ANN Search Algorithm

The process of identifying the k th-nearest neighbor requires computation times on the order of

O (N 2) using a brute force search, where N is the number of data points, each consisting of a param-

eter sample with a corresponding output as described in Section 3.2. We improve this by employing

an approximate nearest neighbor (ANN) search algorithm [1, 37]. Within the ANN algorithm, the

brute force search for the nearest neighbor is replaced by a hierarchical decomposition of space,

dependent upon the construction of a balanced box-decomposition (BBD) tree; see [1] for back-

ground on the BBD-tree data structure and details on its construction. By subdividing our space

into a series of cells, each of which contains a subset of our data points, we can estimate the nearest

neighbor by visiting cells in order of increasing distance outward from the query point.

We define the approximate nearest neighbor as follows. Given a set S of data points in Rm , a

query point q ∈Rm , and an error tolerance ε> 0, a point p ∈ S is said to be an approximate nearest

neighbor of q if

dist(p , q)≤ (1+ε)dist(p ∗, q),

where p ∗ is the true nearest neighbor to q . That is, p is within error ε of the actual nearest neighbor

to q . We extend this to locating the k th-nearest neighbor; for 1≤ k ≤N , the k th approximate nearest

neighbor of q is a data point whose relative error from the true k th-nearest neighbor is less than ε.

With the ANN algorithm, we sacrifice total certainty that we have identified the true nearest

neighbor, and accept an approximate nearest neighbor in its place. However, what we lose in accu-

racy, we gain in computational savings, as the ANN algorithm allows us to identify an approximate

nearest neighbor in O (N log N) time in contrast to the O (N 2) time that is required by the k NN brute

force method. In addition, ε can be set to zero, in which case the ANN algorithm can correctly

identify the true k th-nearest neighbor.

Here, we use the mutual information estimate (3.6) with the k nearest neighbors identified via

both the brute force and ANN search algorithms to choose the next design condition at which our

high-fidelity models should be evaluated to obtain the maximum information gain in the low-fidelity

parameters. To implement the ANN algorithm, we employ the code developed by David Mount in

[37]. As will be seen in the examples of Section 3.4, the ANN and k NN brute force methods return

the design conditions in the same order, where we use an error ε = 10−3 for the ANN algorithm.

Throughout the investigation, we will refer to the mutual information computation using the brute

force search method as the k NN estimate, and the computation using the ANN search mechanism

as the ANN estimate.

28

3.3 Verification of Mutual Information Algorithms

In this section, we present an alternative to the computation in (3.6) in the form of a Monte Carlo

estimation. We show in Section 3.3.2 that whereas both estimates converge to the true analytic value

for the mutual information, the Monte Carlo estimate is much more costly in terms of the number

of samples required for convergence. Thus, we use the Monte Carlo estimate primarily as a means

to verify the k NN estimate use for the remainder of this investigation.

3.3.1 Monte Carlo Method

We present here a Monte Carlo sampling method for numerical approximation of the integral in

(3.5). First, N samples {θ i }Ni=1 are drawn from the prior p (θ |Dn−1), which describes the state of

knowledge about parameters θ existing before the new observation dn is obtained. Given θ i and

ξn , d i
n is drawn from the conditional predictive distribution p (dn (ξn)|θ i , Dn−1,ξn) derived from

the statistical model (3.1). We note that the joint probability distribution p (θ , dn |Dn−1,ξn)may be

written

p (θ , dn |Dn−1,ξn) = p (dn |θ , Dn−1,ξn)p (θ |Dn−1) ,

leading to the expression

p (dn |Dn−1,ξn) =

∫

Ω

p (θ , dn |Dn−1,ξn)dθ =

∫

Ω

p (dn |θ , Dn−1,ξn)p (θ |Dn−1)dθ

for the evidence p (dn |Dn−1,ξn). Our samples of θ can thus be used to estimate the evidence for

design condition ξn ,

p̂ (dn |Dn−1,ξn) =
1

N

N
∑

j=1

p (dn |θ j , Dn−1,ξn).

With these expressions in hand, the logarithm in the integrand of (3.5) can be written as

log
p (θ , dn |Dn−1,ξn)

p (θ |Dn−1)p (dn |Dn−1,ξn)
= log

p (dn |θ , Dn−1,ξn)
p (dn |Dn−1,ξn)

,

resulting in an estimate of the mutual information (3.5) for design condition ξn ,

Î (θ ; dn |Dn−1,ξn) =
1

N

N
∑

i=1

log
p (d i

n |θ
i , Dn−1,ξn)

p̂ (d i
n |Dn−1,ξn)

.

For δ(ξn) = 0 and εn (ξn)∼N (0,σ2), (3.1) results in the conditional predictive distribution

p (dn (ξn)|θ , Dn−1,ξn)

29

being Gaussian with mean d`(θ ,ξn) and varianceσ2.

After computing these quantities and estimating the mutual information, the design ξn that

yields the largest mutual information I (θ ;dn |Dn−1,ξn) in (3.5) is chosen as the next design in

the sequence. We evaluate dh (ξn), sample ε̃n (ξn)∼N (0,σ̃2), augment the available data Dn−1 by

d̃n = dh (ξn) + ε̃n (ξn), and continue the sequence.

Each of our examples utilizes a parameter space of dim(θ)≤ 3 so tensored quadrature techniques

are feasible. For moderate dimensionality—e.g., p = 4 to approximately 30—one can employ sparse

grid quadrature techniques [53] or employ the more efficient k th-nearest neighbor (k NN) algorithm

detailed in Section 3.2. In this work, our Monte Carlo estimates are used primarily to verify the k NN

algorithm.

3.3.2 Verification Example

To demonstrate the estimation of mutual information using the Monte Carlo, k NN, and ANN

methods, we consider a simple example of two Gaussian random variables, X ∼ N (µx ,σ2
x) and

Y ∼N (µy ,σ2
y). This example is chosen to illustrate the convergence of all three methods to the

analytic value for a sufficiently large sample size and the efficiency provided by the k NN algorithm

using both the brute force and ANN search methods.

For this example, the values of µx and µy are randomly selected fromU (0,1). We randomly

select a covariance matrix of the form

cov(X , Y) =

σ2
x σx y

σx y σ2
y

withσx y > 0. This last requirement is due to the fact that mutual information is equal to zero if and

only if the random variables are independent. As this is easy to test, we choose the covariance value

σx y such that the variables X and Y are at least weakly correlated. The results included here are for

mean and covariance matrices

µx

µy

=

0.3005

0.1482

and

cov(X , Y) =

0.5434 0.3971

0.3971 0.3500

 .

We calculate the mutual information analytically for comparison, obtaining a mutual infor-

mation value of 0.8834. We then estimate the mutual information for the k NN, ANN, and Monte

Carlo algorithms for increasing values of N , and report the results in Table ??. We observe that

30

Table 3.1: Mutual information values for k NN, ANN, and Monte Carlo algorithms with varying
numbers of samples to verify the convergence to the analytic value. Running times are reported in
seconds for each method.

N k NN/ANN |k NN−True| k NN (s) ANN (s) N MC |MC−True| MC (s)

1000 0.8675 0.0159 0.339 0.926 102 0.9575 0.0741 0.025

2000 0.8778 0.0056 0.898 1.202 103 0.8592 0.0242 0.216

4000 0.8791 0.0043 2.800 1.989 104 0.8888 0.0054 5.523

8000 0.8829 0.0005 9.532 3.893 105 0.8852 0.0018 379.7

16000 0.8838 0.0004 23.35 9.373 106 0.8840 0.0006 4.52e4

the k NN and ANN estimates return the same mutual information value when we use ε = 10−3

in the ANN algorithm. However, the advantage of the ANN algorithm now becomes evident, as

the ANN estimates correspond to significantly smaller computational times for the larger sample

sizes. We demonstrate the convergence of these algorithms with a comparison to the analytic value

over increasing sample sizes. Likewise, the Monte Carlo estimates converge to the analytic value

with increasing sample sizes, but the number of samples required to obtain errors of the same

magnitude as those observed in the k NN and ANN methods are significantly larger. In addition,

the amount of time required to obtain the Monte Carlo estimate quickly becomes infeasible for

practical applications. Therefore, while we provide Monte Carlo estimates in addition to the k NN

and ANN estimates for the first several examples of Section 3.4 for verification, we use only the k NN

and ANN algorithms in the later examples to save computations.

3.4 Numerical Examples

We provide a comprehensive set of examples illustrating the high-to-low calibration framework

detailed in Section 3.1. The first is a steady-state heat model for which we have experimental

temperature data. In the second example, we illustrate the calibration framework for a general

time-dependent diffusion model. In our third example, we employ a 1-D kinetic diffusion equation

for the high-fidelity model and a point kinetic equation for the low-fidelity model. For these first

three examples, we note that these scenarios are not necessarily representative of situations in

which we would use this method in practice, since by evaluating our high-fidelity solution at one

design condition, we have essentially collected data for all possible designs. Rather, these examples

are used as a means of verification of our method, and provide some intuition for the reader using

examples with which they are likely familiar.

31

In our fourth example, we illustrate the framework for a particle transport model quantifying

angular flux in a 1-D slab. The purpose of this example is to illustrate the similarities between our

high-to-low framework and the Method of Manufactured Universes [57].

For our final example, we employ the high-fidelity thermal-hydraulics code Hydra-TH to simulate

laminar flow in a pipe. This exercise is done both as a means to verify the Hydra-TH code, and as a

step toward calibration of the low-fidelity CTF code using validated high-fidelity CFD codes.

3.4.1 Steady State Heat Model

To illustrate our methods for estimating mutual information between two random variables, we

consider a steady state heat equation quantifying heat conduction in an aluminum rod of dimensions

a × b × L , subjected to an ambient room temperature of Tamb. The thermal conductivity coefficient

is denoted by K (W /cm · °C), the convective heat transfer coefficient by h (W /cm2 · °C), and the

source heat flux by Φ (W /cm2). As detailed in [53], the model is

d 2Ts

d x 2
=

2(a + b)
a b

h

K
[Ts (x)−Tamb] ,

with boundary conditions

d Ts

d x
(0) =

Φ

K
,

d Ts

d x
(L) =

h

K
[Tamb−Ts (L)] .

The analytic solution to the steady state heat equation for parameter setφ = [Φ, h] is

Ts (x ;φ) = c1(φ)e
−γx + c2(φ)e

γx +Tamb, (3.7)

where

c1(φ) = −
Φ

K γ

�

e γL (h +K γ)
e −γL (h −K γ) + e γL (h +K γ)

�

,

c2(φ) =
Φ

K γ
+ c1(q),

and γ=
Ç

2(a+b)h
a b K .

Our physical system consists of an aluminum rod, heated at the secured end x = 0 and free at the

other, of height and width a = b = 0.95 cm and length L = 70 cm. We use the thermal conductivity

coefficient value of K = 2.37 W/cm·°C reported for aluminum at 300°C . The independent spatial

32

−19 −18 −170

0.5

1

1.5

2

2.5

3

Parameter Φ
1.8 1.9 2

x 10−3

0

0.5

1

1.5

2

2.5

3x 104

Parameter h

Figure 3.2: High-fidelity parameter distributions used to construct “experimental data”.

variable xξ is discretized into fifteen uniformly distributed points on the range [10, 66] cm. Choosing

a spatial location for evaluation is considered a design condition and Table ?? specifies the possible

design choices. For the experimental data set reported in [53], we calibrate the high-fidelity model

parametersφ = [Φ, h] for use in simulating our synthetic data set. Specifically, we employ DRAM, as

detailed in Appendix A and [53], to construct the marginal densities for Φ and h shown in Figure 3.2.

From these densities, we draw a parameter pair φ = [Φ, h] that is used for all high-fidelity model

simulations.

We consider a low-fidelity quadratic surrogate model

y = Ax 2+B x +C (3.8)

with parameters θ = [A, B , C] and use parameter calibration to fit it to our analytic solution with

as few high-fidelity model evaluations as possible. Upon selection of a design ξn , the high-fidelity

model is evaluated at xξn
and the resulting observation d̃n = Ts (xξn

;φ) + ε̃n (ξn) is added to the data

set for use in re-calibrating the low-fidelity model. Here we take ε̃n (ξn)∼N (0,σ̃2)where 2σ̃ is 10%

of maxi=1,··· ,n−1 Ts (xξi
;φ).

We estimate the mutual information via the Monte Carlo, k NN, and ANN methods and compile

the sequence of chosen designs in Table 3.3. If one has a proper prior parameter distribution, one

can estimate the mutual information even in the case when the prior is “diffuse.” In this example,

Table 3.2: Possible design choices for the steady state heat equation example.

Design # — 1 2 3 4 5 6 — 7 8 9 10 11 12 —
Location (cm) 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66

33

Table 3.3: Design choice sequence for the Monte Carlo, k NN, and ANN algorithms in the steady
state heat equation example.

Method Sequence
MC 12 1 6 5 7 2 4 8 3 11 9 10

k NN 12 1 6 5 7 2 4 8 3 11 9 10
ANN 12 1 6 5 7 2 4 8 3 11 9 10

however, we employ an noninformative and improper prior – as is very often the case when one

simply has parameter bounds or conditions such as positivity — so we need enough data to ensure

that the posterior p (θ |Dr) is proper. This requires that we have at least three data points to do

an initial DRAM calibration, but results may be more consistent with a number of data points

exceeding the dimensionality of the parameter space. Here we assume that high-fidelity data is

already available at locations x = 10, x = 38, and x = 66. The remaining twelve design conditions are

then selected in order of decreasing mutual information yielding the results tabulated in Table 3.3.

We note that the Monte Carlo, k NN, and ANN estimates yield the same design strategies thus

verifying the consistency of each algorithm.

Figure 3.3(a) shows the parameter chains obtained from DRAM after several iterations of the

algorithm, illustrating that they are well-mixed in the sense that they appear as white noise with no

discernible patterns. Figure 3.3(b) shows the final joint posterior distributions after all twelve points

have been selected. Each pairwise combination of the parameters θ = [A, B , C] is highly correlated,

0 5000 100000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Parameter A
0 5000 10000−6

−5

−4

−3

−2

−1

0

Parameter B
0 5000 1000080

90

100

110

120

130

140

150

160

Parameter C
0.0250.030.035

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

B

A
0.0250.030.035

115

120

125

130

C

A
−4 −3.5 −3

115

120

125

130

C

B

(a) (b)

Figure 3.3: (a) Well-mixed parameter chains from DRAM, and (b) Joint posterior distributions for
pairwise combinations of θ = [A, B , C].

34

but not to the point where parameter identifiability becomes an issue.

Figure 3.4(b) displays the evolution of the parameter distributions over the course of the 12-cycle

process. In the early stages, there is a uncertainty in the parameter behavior due to the fact that at

Stage 3, we have the minimal number of observations required to have a proper posterior density.

As the algorithm progresses and the amount of data is increased, the posterior distributions begin

to more closely exhibit the expected Gaussian behavior.

We compare the final quadratic model, obtained using all fifteen calibration points, with the

analytic solution in Figure 3.4(a), for the ordering of points selected via both the Monte Carlo and

k NN algorithms. A listing of L 2 errors is included in Table 3.4 to illustrate the convergence of the

low-fidelity model to the high-fidelity model. Errors are large in the selection of the first few points,

when there is not enough information for the low-fidelity model to “know” the correct shape. With

the addition of a few extra points, there is enough data for the low-fidelity model to mimic the shape

of the high-fidelity model. We note that towards the end of the process, the errors are no longer

decreasing by any appreciable amount—our low-fidelity model is about as well-calibrated as it

can be. At this point, we could choose to terminate the process and save the computation time of

evaluating the high-fidelity model at the final few points.

Location (m)
0 10 20 30 40 50 60 70

Te
m

pe
ra

tu
re

 (F
)

0

20

40

60

80

100

120

140

160

1

2

3
4

5

6

7

8

9

1011
12

Low-Fidelity (Quadratic)
High Fidelity (Analytic)
Selected Points
Initial Points

Parameter A
-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0

50

100
Stage 3
Stage 6
Stage 9
Stage 12

Parameter B
-10 -8 -6 -4 -2 0
0

0.5

1
Stage 3
Stage 6
Stage 9
Stage 12

Parameter C
60 80 100 120 140 160 180 200 220

0

0.05
Stage 3
Stage 6
Stage 9
Stage 12

(a) (b)

Figure 3.4: (a) Fit of quadratic model to the steady state heat equation analytic solution for 15
total calibration points, with ordering selected by the k NN algorithm. (b) Evolution of parameter
distributions for the steady state heat equation over 12 cycles of the design algorithm.

35

Table 3.4: L 2 errors for the steady state heat equation at each of the 12 design selection steps.

Step 1 2 3 4 5 6 7 8 9 10 11 12
L 2 Error 379.9 24.0 20.8 16.1 23.5 22.6 13.7 12.5 13.1 13.1 13.9 13.5

3.4.2 Time-Dependent Diffusion Model

We now consider the time-dependent diffusion model

∂ u

∂ t
=α
∂ 2u

∂ x 2
(3.9)

subject to defined initial and boundary conditions

u (t , 0) = u (t , 2) = 0,

u (0, x) = sin(πx/2).

The analytic solution of (3.9) is

u (t , x) = e −απ
2t /4 sin

�πx

2

�

. (3.10)

To maintain generality, we consider non-dimensional variables and employ the prior distribution

N (0.7, 0.1) for the diffusivity α in the high-fidelity model (3.10). Output from this solution is used to

calibrate a lower-fidelity model constructed via a finite-difference approximation of (3.9) obtained

using backward differences in time and centered differences in space. As in previous examples,

we add noise ε̃n (ξn)∼N (0,σ̃2), where 2σ̃ is 10% of maxi=1,··· ,n−1 u (tξi
, xξi
), to the simulated data

produced with the high-fidelity model at each design ξn .

The model is analyzed on a time domain of [0, 5] and a spatial domain of length [0, 2]. Stepsizes are

5×10−3 in the t direction and 1×10−2 in the x direction. To avoid improper posterior distributions,

we assume data is already available at xξ = [1, 0]. The remaining 29 possible design conditions are

listed in Table 3.5—the points used for model calibration are chosen sequentially based on the

maximum mutual information between the parameter α and the model predictions given design

inputs (tξn
, xξn
). The design sequence is given in Table 3.6 for the time dependent model, and the

final fit of the model after parameter calibration with a parameter value of α= 0.7117 is shown in

Figure 3.5.

The design sequence, chosen by the Monte Carlo, k NN, and ANN mutual information algorithms,

follows the behavior that we would expect; the points are chosen in order of increasing t values,

36

Table 3.5: Possible design choices for the time-dependent heat equation example.

Design — 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0
Location 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8

Design 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Time 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0
Location 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

Table 3.6: Comparison of design sequences provided by the Monte Carlo, k NN, and ANN methods
for the time-dependent heat equation example.

Method Sequence
MC 5 1 4 2 3 6 11 7 10 8 9 12 17 13 16 14 15 18 23 19 22 20 21 24 29 25 28 26 27

k NN 5 1 4 2 3 6 11 7 10 8 9 12 17 13 16 14 15 18 23 19 22 20 21 24 29 25 28 26 27
ANN 5 1 4 2 3 6 11 7 10 8 9 12 17 13 16 14 15 18 23 19 22 20 21 24 29 25 28 26 27

corresponding to the exponential temporal decay of the solution. Within each time classification,

the points are generally chosen from the ends of the spatial interval in towards the center, again

following the leveling off of the slope in the spatial domain. Points occurring in a region with a

larger slope value in magnitude are more likely to be chosen because of the larger discrepancy in

their output values which contributes a more significant information gain relative to other points.

This concurs with the engineering practice of sampling in regions having large gradients to observe

increased sensitivity.

3.4.3 Neutron Diffusion Model

In this example, we employ the 1-D kinetic neutron diffusion equation

1

νt h

∂ φ

∂ t
−

1

3Σs c

∂ 2φ

∂ x 2
=Σ f φn f −Σaφna , 0< x < L , t > 0

φ(t , 0) =φ(t , L) = 0 , t > 0

φ(0, x) = 1 , 0< x < L

(3.11)

as the high-fidelity model. Here φ (neutrons/s·m3) is the flux and Σs c , Σ f , and Σa respectively

represent the scattering, fission, and absorption cross sections with units of (1/m), (fission/m),

and (absorption/m). The constants νt h , n f , and na have units of (m/s), (neutrons/fission), and

37

0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

D
is

pl
ac

em
en

t

High−Fidelity (Analytic)
Low−Fidelity (Finite Difference)

0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location

D
is

pl
ac

em
en

t

High−Fidelity (Analytic)
Low−Fidelity (Finite Difference)

(a) (b)

(c) (d)

Figure 3.5: High-fidelity solution versus calibrated low-fidelity time-dependent heat models in (a)
time domain [0, 5] for eleven uniformly spaced values of x on the interval [0, 2], (b) spatial domain
[0, 2] for eleven uniformly spaced values of t on the interval [0, 5], and (c) 3-dimensional domain.
(d) Difference between the low- and high-fidelity solutions.

(neutrons/absorption). We employ the values

νt h = 2×103 , n f = 2.2 , na = 1

Σs c = 8×102 , Σa = 4.2 , Σ f = 23

from [38].

Because we cannot easily obtain an analytic solution for (3.11), we approximate the solution us-

ing a finite-element discretization of the weak model formulation. To construct a weak formulation,

we multiply (3.11) by test functions η(x) ∈H 1
0 (0, L), the Sobolev space of functions that are at least

38

once differentiable almost everywhere on the interval [0, L] and satisfy the boundary conditions,

and integrate in space to obtain

1

νt h

∫ L

0

∂ φ

∂ t
η(x)d x −

1

3Σs c

∫ L

0

∂ 2φ

∂ x 2
η(x)d x = (Σ f n f −Σa na)

∫ L

0

φη(x)d x , (3.12)

which must hold for all η(x) ∈H 1
0 (0, L).

We approximate the solutionφ(t , x) using the representation

φN (t , x) =
N−1
∑

j=1

ϕ j (t)η j (x) (3.13)

where we employ the piecewise splines

η j (x) =
1

h

x − x j−1 , x j−1 ≤ x < x j

x j+1− x , x j ≤ x < x j+1

0 , else

as spatial basis functions. For L = 2, we obtained converged solutions with N = 25 which yields the

stepsize h = 2/25. Substitution of (3.13) into (3.12), use of the basis functions as test functions, and

integration by parts yields the system

d ~ϕ

d t
=V −1

0

�

νt h

�

(Σ f −Σa)V0−
1

3Σs c
V1

��

~ϕ(t) (3.14)

of ordinary differential equations where ~ϕ(t) = [ϕ1(t), · · · ,ϕN−1(t)]. The (N −1)× (N −1)matrices V0

and V1 are given by

V0 =

∫ L

0

ηiη j d x =
h

6

4 1

1 4 1
...

...
...

1 4 1

and V1 =

∫ L

0

η′iη
′
j d x =

1

h

2 −1

−1 2 −1
...

...
...

−1 2 −1

.

We numerically integrate the system (3.14) to obtain ~ϕ(t) and evaluate (3.13) at x̄ = 1 to obtain our

high-fidelity solution. Observations are given by d̃n =φN (tξn
, x̄) + ε̃n (ξn), where ε̃n (ξn)∼N (0,σ̃2)

with 2σ̃ taken to be 10% of maxi=1,··· ,n−1φ
N (tξi

, x̄).

We employ the point kinetic equation

d n

d t
=
(r −1)
β

n (t), (3.15)

39

as a low-fidelity model where r represents the reactivity, β is a function of shape, and n has units of

(neutrons/m3). Model (3.15) is compared to the high-fidelity model (3.14) to calibrate the parameters

θ = [r,β]. The prior distributions for r and β were taken to be r ∼U (0, 2) and β ∼U (0, 250).

As before, we identify a set of design conditions from which our calibration points will be selected.

The remaining independent variable, time, is discretized into a set of ten values. We assume that

data is already available at times t = 0.50 and t = 1.00 seconds—the remaining design possibilities

are listed in Table 3.7.

Choosing these calibration points one at a time in order of decreasing mutual information, we

obtain the parameter values r = 1.63 and β = 172.65 that most accurately fit the low-fidelity model

to the high-fidelity model. The resulting fit is shown in Figure 3.6(a). Table 3.8 contains the estimated

mutual information values for the k NN method—the k NN, ANN, and Monte Carlo algorithms

all chose the designs in the same order. We note that toward the end of the process, the mutual

information values become increasingly smaller—we could choose to terminate the process several

steps earlier as the selection of the last few points is fairly insignificant in the calibration of the

low-fidelity model. This is supported by the evolution of the parameter distributions illustrated in

Figure 3.6(b). It can be seen that by the selection of the fifth design, we have essentially captured the

final values for r and β and could avoid future evaluations of the high-fidelity model.

It is observed that the visual fit in Figure 3.6(a) is fairly accurate. We are currently investigating

the use of energy statistics to quantitatively test the null hypothesis that two independent samples

Table 3.7: Possible design conditions for the neutronics example.

Design # — — 1 2 3 4 5 6 7 8
Time (s) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Table 3.8: Estimated mutual information values and sequential design sequence for the neutronics
example from Algorithms 1 and 2.

Time 1 2 3 4 5 6 7 8
1.5 0.971 0.053 0.021 0.013 0.001 0.001 0.005 —
2.0 1.211 0.116 0.027 0.001 0.002 0.001 0.004 0.001
2.5 1.443 0.206 0.044 0.001 0.013 0.015 — —
3.0 1.555 0.289 0.080 0.019 0.022 — — —
3.5 1.711 0.361 0.097 0.048 — — — —
4.0 1.839 0.441 0.135 — — — — —
4.5 1.866 0.550 — — — — — —
5.0 1.949 — — — — — — —

40

0 1 2 3 4 50.8

1

1.2

1.4

1.6

1.8

7

8

6

5

4

3

2

1

Time (s)

Fl
ux

 (n
eu

tro
ns

/s
⋅m

3)

High−Fidelity
Low−Fidelity
Selected Points
Initial Points

0.5 1 1.5 2 2.50

0.5

1

1.5

Parameter r

−500 0 500 10000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 10−3

Parameter β

Stage 2
Stage 5
Stage 8

Stage 2
Stage 5
Stage 8

(a) (b)

Figure 3.6: (a) High-fidelity versus low-fidelity models and (b) evolution of parameter distributions
for the neutronics example.

of parameters are derived from the same probability distribution [58].

3.4.4 Particle Transport Model

Next, we consider an example investigated in the context of the Method of Manufactured Universes

with examination of a particle transport “universe”. These types of particle transport calculations

are important in many applications, including nuclear reactors or high energy-density laboratory

experiments [57]. In these applications, it is often prohibitively expensive to obtain experimental

measurements. We employ a high-fidelity model to represent the “reality” of our universe—from

which “experimental measurements” are obtained—and use this to calibrate the parameters in a

low-fidelity model for production of simulated results, which serves as an approximation to the

high-fidelity model in situations where evaluation of the high-fidelity model is too expensive.

For our high-fidelity model, we assume that the particle transport universe behaves according

to the SN discrete ordinates method—we choose N = 8—whose governing equation in 1D slab

geometry with no volumetric source is [8]

µm
dΨm (x)

d x
+ΣtΨm (x)−

cΣt

2

N
∑

n=1

Ψn (x)wn = 0 (3.16)

where Ψm (x) represents the angular flux in the mth quadrature point at continuous slab thickness

x , and the cosines µ and weights w are given by the Gauss-Legendre quadrature set of N points on

the interval (−1, 1). The total cross-section and scattering ratio are respectively taken to be Σt = 1.00

cm−1 and c =Σs /Σt = 0.99.

41

The analytic solution of model (3.16) is

Ψm (x) =
N
∑

k=1

Ak
νk

νk −µm
exp

�−Σt x

νk

�

, (3.17)

where each νk satisfies the condition

2

c
=

N
∑

m=1

wm
ν

ν−µm
.

The coefficients Ak , k = 1, ..., N , are obtained by defining the incident fluxes

Ψm (0) = 1.0 , µm > 0

Ψm (L s) = 0.0 , µm < 0

and requiring continuity of the Ψm ’s at the region interfaces, where L s is a specified slab thickness.

Using the analytic solution (3.17), we produce “experimental data” consisting of the reflected

and transmitted particle flow rates

Y1 = j−(0) =
∑

m
µm<0

|µm |Ψm (0)wm , Y2 = j+(L s) =
∑

m
µm>0

µmΨm (L s)wm , (3.18)

with measurement noise ε̃, at a set of six different slab thicknesses L s = [1, 2, 4, 8, 16, 32] cm. We take

our quantity of interest to be the reflected particle flow rate j−(0).

For our low-fidelity model, we utilize the diffusion equation

d 2Φ(x)
d x 2

−
1

L 2
Φ(x) = 0, 0≤ x ≤ L s (3.19)

in a 1-D slab, where L =
p

D /Σa is the diffusion length for diffusion coefficient D and absorption

cross-section Σa . This has the analytic solution

Φ(x) =C1 sinh
� x

L

�

+C2 cosh
� x

L

�

. (3.20)

The coefficients C1 and C2 are chosen to satisfy the known incident particle flow rates, given by the

42

high-fidelity model on each slab boundary,

j+(0) =
Φ(0)

4
+

J (0)
2
=
∑

m
µm>0

Ψm (0)µm wm

j−(L s) =
Φ(L s)

4
−

J (L s)
2
=
∑

m
µm<0

Ψm (L s)|µm |wm

where J (x) =−D dΦ/d x .

Again, we take our quantity of interest to be the reflected particle flow rate at each of the six slab

thicknesses. For the low-fidelity model, this is given by

Ys i m = j−(0) =
Φ(0)

4
−

J (0)
2

. (3.21)

The high-fidelity experimental measurements obtained from (3.18) are used to calibrate the pa-

rameter set θ = [D ,Σa] in the low-fidelity model (3.20). For calibration, we use the DRAM algorithm

with an initial parameter guess of θ = [0.333,0.010] and 10,000 iterations. We omit the first 7,000

iterations during which the parameter chains are “burned in” and use the final 3,000 iterations as a

sample from the joint posterior distribution of our parameters. In Figures 3.7 and 3.8, we show the

well-mixed DRAM chains and marginal posterior densities, respectively, for the parameters D and

Σa . Figure 3.9 illustrates the fit between the high and low-fidelity models, comparing experimental

and simulated reflected particle flow rates (3.18) and (3.21), respectively, for each of the six slab

widths. The 95% prediction and credible intervals are plotted with the data to illustrate the likely

locations of future model observations taken at slab widths other than those used for “training” the

0 1000 2000 30000.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

Parameter D
0 1000 2000 30005.5

6

6.5

7

7.5

8

8.5

9

9.5

10 x 10−3

Parameter Σa

Figure 3.7: Well-mixed parameter chains for the particle transport example.

43

0.18 0.2 0.22 0.240

20

40

60

80

100

120

140

Parameter D
0 0.005 0.01 0.0150

200

400

600

800

1000

1200

1400

Parameter Σa 0.195 0.2 0.205 0.21 0.215 0.22 0.225 0.23

6.5

7

7.5

8

8.5

9

x 10−3

Σ a

D

(a) (b)

Figure 3.8: (a) Marginal parameter densities for the particle transport model, calculated from the
final 3,000 iterations in a 10,000 iteration DRAM run, and (b) joint posterior distribution for the
parameter set θ = [D ,Σa].

0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

Slab width, x

R
ef

le
ct

ed
 C

ur
re

nt
, Y

1

High−Fidelity (S8)

Low−Fidelity (Diffusion)

Figure 3.9: High-fidelity simulated experimental data versus low-fidelity measurements for the
particle transport model. Note the widening of the 95% credible interval (indicated in dark gray)
and the 95% prediction interval (indicated in light gray) as the distance between measurements
increases.

low-fidelity model. Measurement noise ε̃ is added to the statistical model, causing a widening of

the prediction interval as the slab width increases and information becomes more scarce.

Having calibrated our parameter set θ = [D ,Σa] so that the low-fidelity model is able to accu-

rately quantify the behavior of the high-fidelity model at our “training” set of slab widths, L s =

[1,2,4,8,16,32] cm, we can now use (3.20) in place of (3.17) to predict experimental data at slab

44

widths outside of our calibration set, reducing the computational expenses for future predictions.

For this same example, [57] discusses the construction of an emulator for the reflected particle flow

rate that can be used to construct 95% prediction intervals for future observations taken at a slab

width x outside of our training set.

3.4.5 Hydra-TH CFD Code: Poiseuille Flow in a Pipe

For our final example, we employ the high-fidelity thermal-hydraulics code Hydra-TH to simulate

laminar flow in a pipe. This example has two objectives. (i) We consider a low-fidelity model with

known parameters to identify and quantify potential biases in Hydra-TH, which provides an initial

verification of Hydra-TH. (ii) We illustrate the design algorithm detailed in Section 3.1 for a large

scale CFD code in a regime where designs can be verified by expert opinion. In combination, this

illustrates an important use of this approach, which is to construct correlation or closure relations for

low fidelity models in applications where experimental data acquisition is expensive or infeasible.

A detailed description of the derivation for the analytic solution and setup for the Hydra-TH

code is outlined in Section 2.2.1. As a reminder, we are considering laminar pipe flow in the setup

depicted in Figure 3.10, where p describes the pressure in the pipe, vz is the velocity along the length

of the pipe, µ is the kinematic viscosity of the fluid, D denotes the diameter of the pipe, and R e

represents the Reynolds number. Our analytic relations representing Poiseuille flow are given by

d p

d z
=−

V 2

2

ρ

D
f , V =

R e ·µ
ρD

, and f =
64

R e
, (3.22)

for the pressure gradient, average velocity, and friction factor.

An initial comparison of the pressure and velocity fields calculated by Hydra-TH versus the

analytic results from equations (3.22) revealed that in all cases, predicted velocities were slightly

lower than expected whereas predicted pressure gradients were slightly higher than expected over

!
Figure 3.10: Configuration of laminar pipe flow.

45

the entire cross section of the pipe. The magnitude of the error decreased away from the center

of the pipe in the radial direction. Along the length of the pipe, errors in predicted velocities were

higher near the inlet and decreased along the length of the pipe. The biases seen in the pressure

and velocity fields lead to slight overestimates in the friction factor f computed by the Hydra-TH

code, as seen in the results plotted in Figure 3.11. Values for the pressure and velocity fields, as

well as the friction factor estimates, can be noted for both the analytic solution and the Hydra-TH

computations in Table 3.9, for a range of R e values.

To illustrate the mutual information-based design algorithm detailed in Section 3.1 in a regime

for which we have analytic values for the parameters, we employ the exponential expression

f (θ) = a ·R e b (3.23)

as our low-fidelity model. The parameter set is θ = [a , b], where the true parameters following from

(3.22) are a = 64 and b =−1. In the absence of bias in Hydra-TH, we would expect to recover these

values during Bayesian model calibration. We note that the alternative choice a = 0.184 and b =−0.2

would yield the McAdams friction factor correlation f = 0.184 ·R e −0.2 for turbulent flow.

We allow a budget of two initial high-fidelity code evaluations to ensure a proper posterior

distribution in the DRAM algorithm with no prior knowledge of our parameters, and nine addi-

tional high-fidelity code evaluations with which to complete our parameter calibration. We define

a grid of design conditions comprised of Reynolds values ranging from R e = 100 to R e = 2000

in intervals of 100. The Hydra-TH code is evaluated on the boundaries, giving us data for initial

Table 3.9: Comparison of pressure gradients, velocities, and friction factors provided by the Hydra-
TH CFD code as compared to the analytic values from (2.17), (3.22), and (3.22).

Hydra-TH Values Analytic Values
Re dp/dz Vavg f dp/dz Vavg f

100 0.1851 0.0038 0.6782 0.1870 0.0039 0.6400
200 0.3752 0.0075 0.3392 0.3740 0.0077 0.3200
300 0.5623 0.0112 0.2269 0.5611 0.0116 0.2133
400 0.7494 0.0150 0.1705 0.7481 0.0154 0.1600
500 0.9366 0.0187 0.1365 0.9351 0.0193 0.1280
600 1.1237 0.0224 0.1138 1.1222 0.0232 0.1067
700 1.3109 0.0262 0.0976 1.3092 0.0270 0.0914
800 1.4981 0.0299 0.0854 1.4963 0.0309 0.0800
900 1.6853 0.0336 0.0759 1.6833 0.0347 0.0711

1000 1.8725 0.0374 0.0683 1.8703 0.0386 0.0640
2000 3.7785 0.0749 0.0350 3.7407 0.0772 0.0327

46

designs at R e = 100 and R e = 2000. In our mutual information algorithm, we again employ in-

dependent and identically distributed Gaussian errors, εn (ξn) ∼ N (0,σ2), where 2σ is 10% of

max [dh (R e = 100), dh (R e = 2000)] and dh denotes the Hydra-TH solution. This choice for the ex-

perimental noise affects only how quickly our posterior parameter distributions converge to the

“best” parameter setting rather than affect the solution itself.

The fit of the low-fidelity exponential expression for friction factor correlation is compared to

the high-fidelity code evaluations in Figure 3.11. We note that the mutual information algorithm

of Section 3.1 selects design conditions in an order corresponding to a decreasing value of friction

factor, where the output for the first several designs chosen coincides with an area of steeper gradient

in the low-fidelity model. Intuitively, this selection makes sense, as the low-fidelity model is more

sensitive to changes in its parameters at designs corresponding to steeper gradients in the friction

factor.

Mutual information values computed via the k NN algorithm are contained in Table 3.10. It can

be seen here that after several iterations of the design algorithm, the mutual information values

for each possible design condition are nearly identical—equivalent to at least four decimal places.

While it matters little which design condition we choose at this point, the amount of information

contributed by each point is still fairly significant until the final few calibration steps.

The parameter distributions with 1, 5, and 9 additional high-fidelity data points are plotted in

Figure 3.12. It is noted that although parameter distributions are fairly wide early on in the process,

by the conclusion of the calibration process we are very certain of the values of our parameters,

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

2
3
4 5 6 7 8 9

Reynolds Number

Fr
ic

tio
n

Fa
ct

or

Analytic Data
Low−Fidelity
High−Fidelity
Initial Points

Figure 3.11: Comparison of calibrated low-fidelity exponential model versus the high-fidelity Hydra-
TH code. Analytic values provided by (3.22) are shown to demonstrate bias present in high-fidelity
model.

47

Table 3.10: Estimated mutual information values computed via the k NN algorithm and sequential
design sequence for the Hydra-TH high-to-low computation.

Re 1 2 3 4 5 6 7 8 9
100 — — — — — — — — —
200 0.8538 — — — — — — — —
300 0.8423 0.0888 — — — — — — —
400 0.8337 0.0885 0.0718 — — — — — —
500 0.8261 0.0880 0.0717 0.0568 — — — — —
600 0.8193 0.0879 0.0717 0.0567 0.0464 — — — —
700 0.8129 0.0880 0.0717 0.0567 0.0464 0.0418 — — —
800 0.8066 0.0880 0.0716 0.0566 0.0464 0.0418 0.0385 — —
900 0.8021 0.0881 0.0716 0.0566 0.0464 0.0418 0.0385 0.0266 —

1000 0.7980 0.0881 0.0716 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1100 0.7932 0.0882 0.0715 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1200 0.7880 0.0882 0.0715 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1300 0.7824 0.0882 0.0715 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1400 0.7761 0.0880 0.0714 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1500 0.7708 0.0879 0.0714 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1600 0.7662 0.0877 0.0713 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1700 0.7625 0.0875 0.0713 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1800 0.7584 0.0874 0.0713 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
1900 0.7546 0.0873 0.0712 0.0565 0.0464 0.0418 0.0385 0.0266 0.0228
2000 — — — — — — — — —

indicated by the extremely narrow densities. We note that the final calibration values are a = 66.7172

and b =−0.9965, as opposed to our analytic values of a = 64 and b =−1. This discrepancy is due to

the bias in the Hydra-TH code discussed earlier, demonstrating the importance of having a validated

high-fidelity code prior to beginning low-fidelity model calibration. This bias will be resolved prior

to the calibration of the low-fidelity COBRA-TF code in future work.

Figure 3.11 illustrates the final fit of the low-fidelity exponential expression to the high-fidelity

code evaluations representing synthetic data. Analytic estimates are plotted with the high-fidelity

data to illustrate the slight bias revealed by our earlier comparison.

This example is the first of this investigation to include a set of design conditions that is not

a discrete subset of time steps or locations at which an experiment may be conducted. The first

several examples were done as simulations to illustrate the design algorithm discussed in Section 3.1.

Where the mutual information algorithm can be used to identify beneficial future experiments one

at a time, this was redundant in the examples of Section 3.4.1-3.4.4 since high-fidelity data was in

fact collected at all design conditions by way of acquiring the output for the selected design. In this

48

60 70 800

0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

Parameter a

−1.1 −1 −0.90

100

200

300

400

500

600

Parameter b

Stage 9
Stage 5
Stage 1

Stage 9
Stage 5
Stage 1

Figure 3.12: Hydra-TH parameter distributions for nine iterations of the mutual information design
algorithm.

final example, our design conditions consist of discrete values of the Reynolds number, requiring an

entirely separate experiment to be conducted for each design chosen. Data could not be collected for

two experiments simultaneously. This example is representative of situations in which this design

algorithm will be utilized in practice.

49

Part III

Gradient-Free Methods for Active

Subspace Construction

50

CHAPTER

4

ACTIVE SUBSPACE CONSTRUCTION

Among multivariate functions with high-dimensional input spaces, it is common for functions to

vary more strongly in a few dominant directions related to a small number of highly influential

parameters. In such cases, the input dimension may be greatly reduced by constructing a low-

dimensional response space that is aligned with the directions of strongest dominance—this is

the basis behind active subspace methods. In previous work in [2, 10, 11], gradient-based methods

have been employed to construct the active subspace. We introduce a gradient-free active sub-

space construction method that avoids the need to sample out of the gradient, which may not be

available, by constructing a coarse approximation to the gradient matrix by employing the concept

of “elementary effects” from Morris screening procedures. In addition, we introduce the use of

adaptive step sizes and directions, when constructing these elementary effects, to allow for more

accuracy in locally sensitive regions while still covering a substantial amount of the input space.

This increases algorithmic efficiency by avoiding function evaluations in directions in which the

gradient is relatively flat. To account for scenarios in which the input space is of a prohibitively

high dimension, we propose an initialization algorithm to identify lower-dimensional subspaces of

influential directions to seed the gradient-free algorithm. In addition, we analyze several dimension

selection criteria to verify the algorithms.

The algorithms are proposed and discussed in Chapter 4. We provide a proof of convergence for

both gradient-based and gradient-free algorithms in Chapter 5. To illustrate the use of these algo-

rithms, we consider a set of numerical examples in Chapter 6, ranging in size from 44 to 7700 inputs.

51

4.1 Methods for Construction

Whereas many sensitivity methods are able to rank input parameters in order of importance, the

active subspace method is advantageous in that it is able to rotate the coordinates to align with

the directions of strongest variation. This is accomplished by determining linear combinations of

the original parameters to which functions are sensitive, defining new orthogonal directions on

which the function has more variability than along the original coordinate directions. As a simple

motivating example, consider the function

y = exp (0.7x1+0.3x2), (4.1)

for input parameters {x1, x2} and scalar output y [11]. As illustrated by the contour map in Fig-

ure 4.1, regardless of where the gradient is sampled in the input space, the result is the same. All

of the variability in the function can be quantified by defining a new parameter that is a linear

combination of x1 and x2, specifically, z = [0.7 0.3][x1 x2]T . On the contrary, there is no function

variability at all in the orthogonal direction defined by the vector [−0.3 0.7]. Therefore, by rotating

the coordinate space to align with these orthogonal vectors, we can reduce the input dimension

from two parameters to just one.

More generally, consider the function

f = f (x), x ∈X ,

where the random variable x :X →Rm has an associated probability density function ρ :Rm →R+

	

!

Figure 4.1: Contour map depicting function variability over the input space for the function defined
in (4.1).

52

with

ρ(x)> 0 x ∈X

ρ(x) = 0 x /∈X .

We assume that f is continuous and square-integrable with respect to the density ρ.

We denote the gradient vector of f by ∇x f (x) =
�

∂ f
∂ x1
· · · ∂ f
∂ xm

�T
and use this to construct the

expected value of the outer product of the gradient with itself,

C=

∫

(∇x f)(∇x f)Tρ d x. (4.2)

We note that C is symmetric and positive semi-definite. By computing the real eigenvalue decompo-

sition

C=WΛWT , Λ= diag(λ1, ...,λm), λ1 ≥ · · · ≥λm ≥ 0,

of C, we can partition the eigenvalues and eigenvectors according to their natural split

Λ=

�

Λ1

Λ2

�

, W= [W1 W2],

should one occur. We define rotated coordinates y ∈Rn and z ∈Rm−n by

y=WT
1 x, z=WT

2 x,

noting that f varies more along y directions than along z, since the eigenvalues corresponding to

W1 are strongly dominant. That is, z is close to x-invariant; if λn+1 = 0, then z is in fact x-invariant,

and all of f ’s behavior can be quantified by y.

We note that many reduced-order modeling methods rely on an eigenvalue partition as in

(4.3) where n is chosen such that λ1+ · · ·+λn exceeds some proportion of λ1+ · · ·+λm . However,

as discussed in [11], active subspace methods instead exploit significant gaps in the eigenvalue

spectrum.

We next explore two methods for determining a basis for the active subspace. The first, pro-

posed in [10, 11], details a gradient-based approach. The second, a fundamental contribution of

this dissertation, introduces a gradient-free approach that utilizes elementary effects from Morris

screening procedures to approximate the gradient matrix.

53

4.1.1 Gradient-Based Active Subspace Method

As detailed in [11], information provided by an SVD or eigenvalue decomposition of a gradient matrix

can be exploited to determine directions of strongest variability in a function. To construct the active

subspace, the eigenvectors W and eigenvalues Λ of the matrix C must first be computed. To avoid

the computation of high-dimensional integrals, Monte Carlo integration is typically employed with

parameter samples x j drawn from the associated probability density ρ(x) to yield

∇x f j =∇x f (x j), x j ∈X , j = 1, ..., M

for M computed samples of the gradient vector.

As in [10], we use the singular value decomposition in lieu of the real eigenvalue decomposition.

Consider C̃=GGT , where

G=
1
p

M

�

∇x f 1 · · ·∇x f M
�

. (4.3)

The matrix G ∈ Rm×M admits a singular value decomposition G = W̃
p

Λ̃VT where the rotation

matrix W̃ can be interpreted as the uncentered principal directions obtained from a set of gradient

evaluations [22].

It is generally suggested that M be chosen large enough to satisfy M ≥αk log(m), for an oversam-

pling factor α ∈ [2, 10] and a number of eigenvalues of concern k . This lower bound ensures that the

accuracy in the first k eigenvalues is unaffected by the finite sampling of the gradient matrix—see

[11] for motivation.

4.1.2 Gradient-Free Active Subspace Methods

Whereas the gradient-based methods of [2, 10, 11] are both accurate and efficient for determining a

low-dimensional active subspace for dimension reduction, it is commonly the case that gradient

information cannot easily be obtained. This is the motivation behind the gradient-free active

subspace method developed in [31], which we summarize here. We begin with a brief discussion

of classical Morris screening, which provides the motivation for the following methods. The finite-

difference and adaptive Morris algorithms for gradient-free active subspace construction then

follow.

In contrast to the gradient-based algorithm presented in Section 4.1.1, there are now two sources

of error that must be considered when using (4.3) to construct the matrix C of (4.2). In addition to

54

errors resulting from the Monte Carlo sampling, where we assume

∫

(∇x f)(∇x f)Tρ d x≈
1

M

M
∑

i=1

(∇x f i)(∇x f i)T ,

we must also account for errors resulting from the approximation of the gradient vectors via finite-

difference or adaptive Morris methods. Error bounds for both of these error sources will be discussed

in Chapter 5.

Classical Morris Screening

Classical Morris screening utilizes coarse local sensitivity approximations, termed “elementary

effects”, to provide information about global sensitivities. The elementary effect associated with the

i th input is given by

di (x) =
f (x1, · · · , xi−1, xi +∆, xi+1, · · · , xm)− f (x)

∆
=

f (x+∆ ·ei)− f (x)
∆

, (4.4)

for a fixed step size∆where ei is a vector of zeros with a one in the i th component. These elementary

effects are partitioned into `-levels which restricts each input to ` values chosen according to a

partition of the input space grid; see Figure 4.2(a). Typically, the value of∆ is chosen from among

the set

∆ ∈
§

1

`−1
, · · · , 1−

1

`−1

ª

.

Due to the magnitude of∆, these elementary effects are very coarse approximations of local sensi-

tivity. They may be used to rank relative importance among inputs, but generally cannot resolve

fine-scale gradient behavior.

Since the purpose of classical Morris screening is to rank the parameters in order of relative

importance, sensitivity measures for parameter xi , based on r elementary effects, are defined by

µ∗i =
1

r

r
∑

j=1

|di (x
j)|,

σ2
i =

1

r −1

r
∑

j=1

�

di (x
j)−µi

�2
for µi =

1

r

r
∑

j=1

di (x
j),

where

di (x
j) =

f (x j +∆ ·ei)− f (x j)
∆

is the elementary effect associated with the i th parameter and j th sample. The mean µ∗i quantifies

55

the individual effect of the input on the output, whereas the varianceσ2
i estimates the combined

effects of the input due to nonlinearities or interactions with other inputs [53]. These sensitivity

measures can be used to rank the inputs according to their relative importance and determine

noninfluential parameters that may be fixed in subsequent model calibration.

To minimize the number of model evaluations required to compute the sensitivity measures,

Morris screening employs neighbors—see Figure 4.2(a)—to reduce the number of model evaluations

needed to construct m elementary effects from 2m to m +1, for m input parameters. To construct

tours in which neighbors differ only in one component, one employs an (m +1)×m orientation

matrix B∗, where the elements in the i th row represent the input values used in the i th evaluation.

The first row is a seed value randomly drawn from the admissible parameter space; each subsequent

row differs in only one component from the preceding row. The orientation matrix

B∗ =
�

Jm+1,1x∗+
∆

2

�

(2B− Jm+1,m)D
∗+ Jm+1,m

�

�

P∗

is constructed using B, an (m +1)×m strictly lower triangular matrix of ones, Jr,c , an r × c matrix of

ones, D∗, an m ×m diagonal matrix with elements chosen randomly from the set [−1, 1], and P∗, an

m ×m matrix constructed by randomly permuting the columns of an m ×m identity matrix. For

more information on the selection of seed values to optimize coverage of the input space, see [6, 53].

Finite-Difference Morris Active Subspace Construction

We now introduce a gradient-free algorithm for constructing an active subspace, utilizing the

concept of elementary effects from Morris screening. The goal is to form an approximation to the

gradient matrix G of Section 4.1.1, where each column of the gradient approximation is a vector of

m Morris elementary effects. Random seed values x j ∈Rm , j = 1, ..., M , are chosen from a specified

probability density ρ(x). Rather than using the tour-based approach of classical Morris screening,

we utilize a finite-difference based approach to avoid stepping too far away from our initial sample

point or sampling in low-probability regions of the input space. From each seed value, we step once

in the direction of each input with a specified step size ∆. Function evaluations at each step are

used to construct a set of elementary effects (4.4); this set of effects becomes the j th column of

our approximated gradient matrix, which we will denote by G̃. This method for approximating the

gradient matrix G is outlined in Algorithm 3. For problems in which the dimension of the input

space is too large to admit a standard SVD decomposition, a randomized SVD algorithm can be

utilized; see [18] for details.

56

Algorithm 3 Gradient Approximation Using Finite-Difference Morris Method [36, 53]

(1) Let m be the number of input parameters, M be the number of desired columns, and specify
a step size∆.

for j = 1 : M

(2) Let D1×m be a row matrix where each element is equal to ±∆, chosen randomly. Let x1×m be a
randomly selected vector from the admissible parameter space.

(3) Evaluate the function at each step and compute the corresponding elementary effect:
for i = 1 : m

g i =
f (x+Di ·ei)− f (x)

Di
,

where ei is the standard basis row vector with a one in the i th position and zeros elsewhere.
end

(4) Let G̃(:, j) = g.

end

Adaptive Morris Active Subspace Construction

Although missing gradient information can always be supplied by finite-difference algorithms as in

Algorithm 3, these are computationally inefficient, since the construction of a single gradient vector

requires m +1 function evaluations. Developing a more efficient means of gradient approximation

has become a priority. Recently, Constantine et al. [12] have presented promising preliminary results

employing the concept of gradient sketching. We will approach this goal by exploiting the active

subspace at each iteration to decrease the number of function evaluations required per gradient

vector.

In classical Morris screening, the orientation matrix contains rows that differ only in one com-

ponent at a time, restricting one to steps in directions associated with the original coordinate axes.

Here, we allow step directions that are linear combinations of the input parameters and alter the

classical algorithm to allow for step sizes of varying magnitude in order to maximize coverage of the

parameter space while still obtaining reasonable accuracy in directions to which the function is

highly sensitive. These alterations are the basis for the adaptive Morris algorithm in Algorithm 4. A

comparison of classical and adaptive Morris screening for a two-dimensional example is illustrated

in Figure 4.2.

57

	

x1	

x2	

x*	 x2	

x1	

	
	

x1	

x2	

x*	

x1	

x2	

(a) (b)

Figure 4.2: Examples of steps on a two-dimensional input grid with a random initial point x∗.
One elementary effect is computed per direction, for a total of m + 1 function evaluations. (a)
Finite-difference Morris steps where step sizes are constant and step directions are aligned with the
input space. (b) Adaptive Morris steps where steps are taken in the primary directions of the active
subspace with step sizes determined by the significance of the corresponding eigenvalues.

To adaptively update the primary directions and step sizes, we employ an iterative scheme,

where after each column of elementary effects is appended to the matrix, we compute an SVD

factorization of the updated gradient approximation G̃=U
p
ΛVT to redefine the active subspace.

Directions for future steps are specified by the eigenvectors in U, with corresponding step lengths

chosen according to the magnitude of their eigenvalues. Directions along which the function has

more variability are assigned smaller step lengths to accurately quantify the changes occurring in the

function, while directions that are deemed less important to variations in the function are assigned

larger step sizes, thus increasing coverage of the input space without affecting the accuracy of the

approximation. For the assignment of these step sizes, we specify a desired interval of possible sizes

[δmin,δmax], and define a transformation that will take the largest eigenvalue to δmin, the smallest

eigenvalue to δmax, and map the interior eigenvalues to values in the δ interval with the same

spacing as their positions in the eigenvalue spectrum. This is accomplished via the transformation

δi =δmin+
Λ(1, 1)−Λ(i , i)
Λ(1, 1)−Λ(m , m)

(δmax−δmin) . (4.5)

Details on this transformation and the adaptive Morris method are provided in Algorithm 4.

Here we note another advantage of the adaptive Morris algorithm. By exploiting the active

subspace, we can drastically reduce the number of function evaluations needed to approximate

the gradient matrix. For the examples presented here, we stop evaluating the model f once we

have obtained over 99% of the information from the eigenvalue spectrum, given by λi = Λ(i , i),

58

Algorithm 4 Gradient Approximation Using Adaptive Morris Method

(1) Let m be the number of input parameters, M be the number of desired columns, and specify
an interval of possible step sizes [δmin,δmax]. Initialize the gradient matrix approximation G̃
with one iteration of Algorithm 3.

for j = 2 : M

(2) Compute the SVD factorization of the existing gradient approximation: G̃=U
p
ΛVT .

(3) Assign step sizes to the directions specified by the eigenvectors in matrix U via the transfor-
mation

δi =δmin+
Λ(1, 1)−Λ(i , i)
Λ(1, 1)−Λ(m , m)

(δmax−δmin)

for i = 1, ..., m .

(4) Define a vector∆m×1 = [±δ1, ...,±δm]where the sign preceding each δi is chosen randomly.
Let x1×m be a randomly selected vector from the admissible parameter space.

(5) Evaluate the function at each step and compute the corresponding elementary effect:
for i = 1 : m

g i =
f (x+∆i ·U(:, i)T)− f (x)

∆i

end

(6) Transform the new set of elementary effects back to the original input space and append to
the existing gradient approximation:

G̃(:, j) =Um×m gm×1

end

i = 1, ..., m . That is, for the j th iteration, j = 1, ..., M , we determine the first n (j)< j −1 for which
n (j)
∑

i=1
λi /

j−1
∑

i=1
λi ≥ 0.99, and then use steps only in the first n (j)directions. We assume that the remainder

of the directional derivatives are equal to zero. If no such n (j) exists, we set n (j) =m and use all m

directions . Therefore, the total number of function evaluations needed to approximate the gradient

is N =
∑M

j=1[n (j)+1]. As illustrated in Section 6.1, this truncation is especially beneficial in problems

with rapid eigenvalue decay since we will be able to terminate the function evaluations very early

on in the process.

Prior to the construction of our approximated gradient matrix, we normalize our inputs so

59

that they are centered at zero and have equal ranges. The rescaling ensures that inputs with large

values do not dominate smaller inputs in multi-scale codes. This is especially important for the

neutronics examples that we investigate in Section 6.3 since we observe differences of up to 18 orders

of magnitude in parameter samples. In addition, we require that input distributions be centered

at zero so that rotations defined by the active subspace revolve about the origin. For the examples

of Section 6.3, we normalized all input distributions toU [−1, 1]m from their original distributions

U [x`, xu], for lower and upper bound vectors x` and xu , prior to the construction of our gradient

matrices. We note that for physical parameter vector x and corresponding normalized parameter

vector z computed via the linear transformation

z=Rx+ r,

where R= 2 ·diag((xu ,i −x`,i)−1) for i = 1, ..., m , and r=−(Rx`+1m)where 1m is the m-vector of ones,

the elementary effects g̃ i in Step (5) of Algorithm 4 are computed as

g̃ i =
f (x∗+∆i U(:, i)T R−1)− f (x∗)

∆i
.

In addition, in Step (2) we take the SVD of RG̃ in order to use our termination scheme in the physical

space rather than the normalized space. The remainder of Algorithm 4 proceeds as previously

described.

We include one final note on the effect of the early termination of function evaluations on

the eigenvalue spectrum. As seen in the examples of Chapter 6, our adaptive Morris gradient

matrices tend to be of rank n +1, where we have terminated all function evaluations for directions

n +1, ..., m for all columns past the (n +1)st. The following serves as an intuitive explanation of why

this phenomenon occurs.

Suppose we are about to begin the (n +2)nd iteration of Algorithm 4; that is, we are at Step (2)

with j = n + 2. We determine that starting with this (n + 2)nd column, we will use only the first n

directions; the (n +1)st eigenvalue is determined to be insignificant according to our termination

criteria. Our current gradient matrix approximation G̃ is of size m × (n +1) and has singular value

decomposition G̃=Um×m
p

Λm×m VT
m×(n+1).

We start by constructing the column of elementary effects,

g̃m×1 =
�

g̃1 g̃2 . . . g̃n 0 . . . 0
�T

,

where the directional derivatives for directions n+1, ..., m are assumed to be equal to zero. Following

Step (6) of Algorithm 4, we transform this column back to the original space before adding it to the

60

current gradient matrix:

G̃(:, n +2) = Ug̃

= g̃1u∗1+ g̃2u∗2+ ...+ g̃n u∗n .

Therefore, the new column G̃(:, n + 2) is a linear combination of the first n vectors of U. Thus,

rank(G̃m×(n+2)) ≤ n + 1. It follows then that for the final gradient approximation, rank(G̃m×M) ≤
max

j
(n (j)) +1.

4.2 Determining the Dimension of the Active Subspace

As noted in Section 4.1, active subspace methods utilize partitions of the eigenvalue spectrum to

define potential reductions in the input space. A number of methods for order determination have

recently been proposed, some of which rely on visual gaps in the spectrum [11, 34], and some of which

include enough dimensions to satisfy a user-defined error tolerance [18, 56]. Here we summarize

four dimension selection criteria: gap-based [11], error-based [18], one based on concepts from

principal component analysis [22], and a final method where we choose the dimension based on

the errors in constructed response surfaces [11].

We summarize these algorithms in terms of the gradient matrix G but note that the algorithms

are equally valid for the approximated gradient matrix G̃. We emphasize that these methods are

utilized to determine the final active subspace dimension for response surface construction based

on the full gradient matrix constructed via the gradient-based, finite-difference Morris, or adaptive

Morris algorithms. The method used to determine the proper dimension for reduction within the

adaptive Morris gradient construction differs from these and is discussed in Section 4.1.2.

4.2.1 Gap-Based Dimension Selection

The most straight-forward of the dimension selection criteria, which we analyze here, is the gap-

based criteria employed in [11]. In this approach, one determines the appropriate active subspace

dimension by identifying where the largest gap in magnitude in the eigenvalue spectrum occurs.

Though easy to implement and justify visually, we note that using dimension choices based on

visual indicators provides no measure by which to determine whether one has quantified enough of

the variation in the function without the construction of response surfaces to test function behavior

for the chosen active subspace. Additionally, defining the “correct” dimension based on the largest

gap in the eigenvalues can be misleading in cases where the eigenvalue decay is very gradual. As we

will observe for the examples in Chapter 6, the eigenvalue spectrums tend to exhibit very gradual

decay after the first eigenvalue. As a result, determination of the active subspace dimension via this

61

method results in the selection of one dimension for all examples, even when a single dimension is

clearly insufficient for the construction of a response surface that is able to quantify input-output

correlation in the function.

4.2.2 Error-Based Dimension Selection

We also utilize an error-based criterion proposed in [18] and used in [2, 26] to determine the dimen-

sion of the active subspace. The process is summarized in Algorithm 5. In this algorithm, the user

defines a tolerance εtol for the problem based on the importance of accuracy and the computational

time and available resources. For each possible rank, an error upper bound is computed and com-

pared to the user-defined tolerance. The error upper bound of Algorithm 5 is guaranteed with a

probability of 1−10−p [18], where p is the number of standard Gaussian vectors employed in the

construction of the bound. We employ p = 10 vectors for the examples in Chapter 6, and note that

the number of samples used may be altered depending on the problem and the level of certainty

desired in the error upper bound. Once the upper bound has decreased beyond the value of εtol, the

algorithm is terminated and the current rank is deemed to be sufficient for the active subspace.

Algorithm 5 Error-Based Dimension Selection [18]

(1) Specify a tolerance εtol, and let Gm×k be the gradient matrix. Compute the SVD: G=U
p
ΛVT .

for j = 1 : k −1

(a) Draw a sequence of p standard Gaussian vectors {ωi }pi=1,ωi ∼N (0, I).

(b) Let Ũm× j be the first j columns of U.

(c) Let ε
j
upp = 10

q

2
π max

i=1...p
||(I− ŨŨT)Gωi ||.

end

(2) The active subspace dimension is the first j for which ε
j
upp < εtol. If no such j exists, add more

columns to G and repeat.

Of the methods considered in this investigation, this error-based method tends to be the most

conservative, retaining the largest number of dimensions for response surface construction. The

increased cost of constructing these higher-dimensional response surfaces is offset by the decreased

errors in the resulting surface as compared to the full model. However, one downside to this method

is its extreme dependency on the eigenvalue spectrum. This causes disagreements in ‘correct’

dimension between the gradient-based and adaptive Morris methods, since the termination of

62

function evaluations beyond a certain threshold in the adaptive Morris algorithm results in more

rapid decay of eigenvalues compared to the gradient-based spectrum. This tends to be the case

among many of the error-based algorithms, including the one proposed in [56], where the required

construction of a mapping J may rely heavily upon the configuration of the eigenvalue spectrum,

particularly in cases where the input distribution ρ has compact support as in our examples in

Chapter 6.

4.2.3 PCA Dimension Selection

The goal of principal component analysis (PCA) is closely related to that of active subspace con-

struction; reduce the dimensionality of a data set while retaining the majority of the variability of

the function through use of a variable transformation [22]. Therefore, we employ the dimension

selection algorithm used in PCA to provide further verification for our gap-based and error-based

methods. This method relies upon a user-specified percentage of total variation, 100t ∗, that is to be

included in the reduced subset. Typically, chosen values for t ∗ range between 0.75−0.99, depend-

ing on the available computational resources and the required accuracy. The required number of

dimensions is then the smallest value of j for which the ratio of the sum of the energy content for

the eigenvector set containing eigenvectors i = 1, ..., j over the total sum of the eigenvalues exceeds

the specified percentage 100t ∗. The details of this method are provided in Algorithm 6.

Algorithm 6 PCA-Based Dimension Selection [22]

(1) For the gradient matrix Gm×n , calculate the sample mean u (i) = 1
n

n
∑

j=1
G(i , j).

Let h be an n ×1 column vector of ones.

(2) Compute the deviations from the mean using the vector of sample means u:
B=G−uhT .

(3) Compute the covariance matrix by taking the outer product of B with itself:
C= 1

n−1 BBT .

(4) Compute the eigen-decomposition of the covariance matrix: C=VDVT , where D is the diago-
nal matrix containing the eigenvalues of C.

(5) Compute the cumulative ‘energy’ content for each subset of j eigenvectors, quantifying the

variance contained in each set: g (j) =
∑ j

k=1 D(k , k), for j = 1, ..., m .

(6) The active subspace dimension is the smallest j such that g (j)
g (m) ≥ t ∗, for some user-specified

percentage 100t ∗.

63

4.2.4 Response Surface Dimension Selection

The final considered dimension selection criterion involves the construction of response surfaces,

which can be used to approximate the function. We are ultimately interested in employing re-

sponse surfaces in place of expensive physical models, and so this is a natural measure to utilize.

By comparing the function evaluations on the low-dimensional response surfaces to the true func-

tion evaluations, we can select the necessary active subspace dimension depending on the error

tolerance. To exploit the active subspace for response surface construction, we use Algorithm 7.

Algorithm 7 Construction of Response Surfaces [11]

(1) Begin with training pairs {xi ,υi }, i = 1, ..., N1, of inputs xi and their corresponding responses
υi .

(2) For each xi , compute the corresponding transformed inputs by projecting onto the active
subspace: yi =WT

1 xi .

(3) Fit a response surface g (y) via regression using the pairs {yi ,υi }, where υi ≈ g (yi).

(4) Approximate the original function behavior by f (x)≈ g (WT
1 x).

For this investigation, we use multivariate polynomial regression to construct a function denoted

by g (y), where y is the vector of active parameters. To avoid overfitting the data, we utilize the Akaike

Information Criterion (AIC) [28] to determine an appropriate polynomial order. The AIC criterion

rewards a maximized likelihood function—indicated by a small residual sum-of-squares value—

while penalizing any increase in the number of parameters required to specify the polynomial. The

formula is given by

AIC= 2k −2 log
�

1

N1
SSR

�

, (4.6)

where k is the number of parameters, N1 is the number of data points υi used for the fit, and SSR is

the residual sum-of-squares function, defined for this situation by

SSR=
N1
∑

i=1

�

υi − g (yi)
�2

.

To choose the most appropriate polynomial model for our response surfaces, we calculated the AIC

value for each polynomial order in consideration and selected the model with the lowest AIC score.

64

To confirm that an appropriate choice was made for the polynomial order, we also calculated values

for the Bayesian Information Criterion (BIC) [28]. In all cases, the choices suggested by the AIC and

BIC criteria were in agreement.

The error metric used to evaluate the accuracy of the response surfaces in this investigation is

the root mean squared error, given by

RMSE=

√

√

√

√

1

N2

N2
∑

i=1

�

υ̃i − g (ỹi)
�2

(4.7)

using a new set of verification points {x̃i , υ̃i }, for i = 1, ..., N2, where ỹi =WT
1 x̃i .

We use this response surface criterion as a visual indicator for dimensions one and two. Close

clustering of testing points about the constructed response surface indicates that the chosen dimen-

sion is sufficient to quantify the majority of variability in the function. For dimensions beyond the

first two, we rely on the errors reported by (4.7) to choose an appropriate active subspace dimension.

We note that this process of constructing the response surface results in two primary sources

of error: error occurring from the elimination of columns not used in the selected subspace, and

approximation errors resulting from our gradient approximation techniques of Section 4.1.

4.3 Initialization Algorithm

For models with inputs numbering in the thousands to millions, it will typically be infeasible to

employ the gradient-free adaptive Morris algorithm without first identifying a smaller subset of

directions for steps. Here we introduce an initialization algorithm that approximates a number of

gradient samples on the original parameter space with only `�m function evaluations required

for each column. Once a smaller subset of important directions has been identified, the adaptive

Morris algorithm can be used for further reduction using a rotated input space.

The initialization algorithm approximates the gradient vector at a point x0 by assuming local

linearity on a ball centered at x0 and maximizing the function evaluation over its surface. We begin

by constructing a ball centered at x0, with radiusδwithin which local linearity is trusted. The surface

of the ball is defined as

z ∈Rm such that (z−x0)T (z−x0) =δ.

We choose points z= x, y on the surface of the ball, and evaluate the function at x0, x, and y.

We consider the great circle through the points x and y as illustrated in Figure 4.3. Given that

the great circle is the intersection of a plane through the center x0 of the ball, we can express any

point z on the circumference of the great circle as z= x0+a (x−x0)+ b (y−x0), for constants a and

b that will be quantified through optimization, subject to (z− x0)T (z− x0) = δ. Our local linearity

65

assumption yields f (z) = f (x0) + (z−x0)Tβ , for an unknown gradient vector β . It thus follows that

f (z) = a (x−x0)Tβ + b (y−x0)Tβ + f (x0)

= a [f (x)− f (x0)]+ b [f (y)− f (x0)]+ f (x0)

= a r + b s + f (x0),

where we define r ≡ f (x)− f (x0) and s ≡ f (y)− f (x0). Our maximization problem is now a constrained

optimization problem, which can be formulated as

max
a ,b
(a r + b s) subject to [a (x−x0) + b (y−x0)]T [a (x−x0) + b (y−x0)] =δ.

Exploiting the fact that (x− x0)T (x− x0) = (y− x0)T (y− x0) = δ, we have the great circle relation

a 2 + 2a b p + b 2 = 1 for p = 1
δ (x − x0)T (y − x0). The use of a Lagrange multiplier to enforce the

constraint yields the unconstrained maximization problem

max
a ,b
φ = a r + b s −λ[a 2+2a b p + b 2−1].

	
	

x0	

x	

y	

z-	

z+	

	

	
	

x0	

x	

y	

z+	

z-	

(a) (b)

Figure 4.3: (a) First iteration of Algorithm 8. Points x and y are chosen on the unit m-sphere centered
at x0. The maximum function evaluation over the great circle defined by x and y occurs at the point
z+. (b) Second iteration of Algorithm 8. The point x has been updated to the value z+ from the
previous iteration. A new y is chosen, and the function is optimized over the new great circle.

66

Solving∇a ,bφ = 0 yields the values

a =
r −p s

2λ(1−p 2)
, b =

s −p r

2λ(1−p 2)
(4.8)

for the coefficients. To solve for λ we return to the great circle relation a 2 + 2a b p + b 2 = 1 and

employ the relations in (4.8) for a and b to obtain

λ=±
p

(r −p s)2+2(r −p s)(s −p r)p + (s −p r)2

2(1−p 2)
.

This optimization leads to the determination of extrema z− and z+ on the great circle, corre-

sponding to the two solutions for λ. We update x to replace the extremum z+ that maximizes our

function, obtained by employing the λ> 0 solution, choose a new point y on our ball, and repeat.

This process is repeated for a total of ` iterations, after which the vector x−x0 is established to be a

rough approximation to the gradient vector at x0. The first two iterations of the initialization process

are illustrated in Figure 4.3 and the algorithm is summarized in Algorithm 8. Note that each choice

of x0 yields a single column of the gradient matrix; that is, Algorithm 8 is repeated for each gradient

column, using a different sample point x0.

We employ a termination scheme similar to that used for our adaptive Morris algorithm to

decide how many columns to compute via this initialization algorithm. We continue constructing

columns using Algorithm 8 until we have obtained over 99% of the information from the eigenvalue

spectrum with a strict subset of the existing columns, say this subset is of dimension k . The first k

columns of the basis matrix U from the SVD of this subset provide our starting directions for the

adaptive Morris algorithm; all other directions are assumed to have a derivative equal to zero. The

omission of function evaluations for these directions is crucial to models with infeasibly large input

dimensions. Further reduction may occur within Algorithm 4 as the algorithm improves upon our

rough gradient approximations from Algorithm 8.

67

Algorithm 8 Initialization Method for Adaptive Morris Algorithm

(1) Let m be the number of input parameters, ` be the number of function evaluations, and x0 be
a randomly chosen point from the admissible parameter space.

(2) Choose an initial point x that lies on the ball centered at x0.
Let r = f (x)− f (x0).

(3) Begin iteration to update x:
for i = 1 : `

(a) Choose a point y that lies on the ball centered at x0.
Let s = f (y)− f (x0).

(b) Solve for the two extreme points on the great circle defined by x and y.

(i) Define the quantities:

p = 1
δ (x−x0)T (y−x0)

λ=±
p
(r−p s)2+2(r−p s)(s−p r)p+(s−p r)2

2(1−p 2)

a = r−p s
2λ(1−p 2)

b = s−p r
2λ(1−p 2)

(ii) Let (a+, b+) denote a and b evaluated at the positive solution for λ. Then

z+ = x0+a+(x−x0)T + b+(y−x0)

is the approximate location of the output maximum on the great circle.

(iii) Set x= z+ and update r to a+r + b+s .

end

(4) The approximation to the gradient at point x0 is given by x−x0. This gradient approximation
comprises one column in the constructed gradient matrix.

68

CHAPTER

5

PROOF OF CONVERGENCE

We provide here a theoretical convergence framework to support the gradient-free active subspace

methods proposed in Chapter 4. We quantify the errors that arise when approximating the gradient

matrix, including those resulting from the Monte Carlo finite sampling of gradient vectors, estimation

of derivatives via finite-differences, and omission of function evaluations in directions that are found

to be nearly function-invariant. We prove that our estimated gradient matrix converges to the true

matrix of gradient information as the maximum step size decreases to zero and the number of

directions of the active subspace retained for function evaluations approaches the total number of

input parameters.

Consider the problem formulation of Section 4.1, where f = f (x) for inputs x= [x1, ..., xm] ∈X .

We assume f is differentiable and Lipschitz continuous. The gradient is denoted by

∇x f (x) =
�

∂ f

∂ x1
(x) . . .

∂ f

∂ xm
(x)
�T

,

where the Lipschitz continuity property gives boundedness of the gradient vector; that is, ‖∇x f (x)‖ ≤
L , for all x ∈X . This gradient is used to construct the expected value of the outer product of the

gradient with itself,

C=

∫

(∇x f)(∇x f)Tρ d x.

69

As discussed in Section 4.1.1, we can estimate the eigenpairs of the matrix C using Monte Carlo

integration, obtaining an approximate matrix

Ĉ≈
1

M

M
∑

j=1

(∇x f j)(∇x f j)
T ,

for a number of gradient samples, M . We must now determine the errors that arise in the eigenpair

estimates via this finite sampling approach. This is discussed in Section 5.1. Section 5.2 addresses the

additional errors that occur when gradients cannot be easily computed and must be approximated

via finite-differences or a similar method. The results of Sections 5.1 and 5.2 were first proven

in [11]. Finally, in Section 5.3 we show that these results can be adapted to fit the situation that we

face in the adaptive Morris method, where we are not only approximating our derivatives, but are

also computing these derivatives in directions aligned with the active subspace and disregarding

information from directions that are deemed insignificant.

Remark: Throughout this investigation, all norms ‖ · ‖ are assumed to represent the Euclidean

2-norm.

5.1 Finite Sampling Convergence

We begin with a result quantifying the difference between the k th true eigenvalue λk of the matrix C

and the k th estimated eigenvalue λ̂k of the matrix Ĉ.

Theorem 5.1.1. [11, Thm. 3.3] Assume that ‖∇x f ‖ ≤ L for all x ∈X . Then for ε ∈ (0, 1],

P
�

λ̂k ≥ (1+ ε)λk

�

≤ (m −k +1)exp

�

−Mλkε
2

4L 2

�

(5.1)

and

P
�

λ̂k ≤ (1− ε)λk

�

≤ k exp

�

−Mλ2
kε

2

4λ1L 2

�

. (5.2)

Proof. We define X j = ∇x f j∇x f T
j so that X j is a random sample of the outer product of the gra-

dient with itself. Thus, each X j is an independent random sample from the same matrix-valued

distribution. Therefore, we have

E
�

X j

�

=

∫

∇x f j∇x f T
j ρ(x j)d x j =

∫

∇x f ∇x f Tρd x=C. (5.3)

70

For this definition of X j , the eigenvalue bounds then follow from Theorem 5.1.2, the eigenvalue

Bernstein inequality for subexponential matrices, originally proven in [15].

For the following result—required for the proof of Theorem 5.1.1—we note that the notation

A � B means that B −A is positive semi-definite, as detailed in [15].

Theorem 5.1.2. [15, Thm. 5.3] Consider a finite sequence {X j } of independent, random, symmetric

matrices with dimension m, all of which satisfy the subexponential moment growth condition

E
�

Xp
j

�

�
p !

2
B p−2Σ2

j , for p = 2, 3, 4, ...,

where B is a positive constant and Σ2
j are positive-semidefinite matrices. Given an integer k ≤m, set

µk =λk

∑

j

E
�

X j

�

!

.

Choose V+ as an orthogonal matrix of size m ×m −k +1 that satisfies

µk =λmax

∑

j

VT
+ (EX j)V+

!

,

and define

σ2
k =λmax

∑

j

V+Σ
2
j V+

!

.

Then for any t ≥ 0,

P

λk

∑

j

X j

!

≥µk + t

≤

(m −k +1) ·exp (− 1
4 t 2/σ2

k), t ≤σ2
k/B ,

(m −k +1) ·exp (− 1
4 t 2/B), t ≥σ2

k/B .

We refer the reader to [15, Thm. 5.3] or [11, Thm. 3.4] for a proof of Theorem 5.1.2.

We now turn to the issue of determining the number of random gradient samples required to

meet a certain tolerance in the eigenvalue errors. Note that for the following result, the notation

a =Ω(b) indicates that a is bounded below by some constant times b .

Corollary 5.1.3. [11, Cor. 3.5] Let xk =λ1/λk . Then for ε ∈ (0, 1],

M =Ω

�

L 2 x 2
k

λ1ε2
log(m)

�

(5.4)

71

implies |λ̂k −λk | ≤ ελk with high probability.

Proof. We begin with the upper bound of Theorem 5.1.1. If we choose

M ≥
4L 2

λkε2
(β +1) log(m)≥

4L 2

λkε2
(β log(m) + log(m −k +1)), (5.5)

then

P
�

λ̂k ≥ (1+ ε)λk

�

≤m−β . (5.6)

For the lower bound, if we let

M ≥
4L 2λ1

λ2
kε

2
(β +1) log(m)≥

4L 2λ1

λ2
kε

2
(β log(m) + log(k)), (5.7)

then

P
�

λ̂k ≤ (1− ε)λk

�

≤m−β . (5.8)

We set xk =λ1/λk and take

M ≥ (β +1)
4L 2 x 2

k

λ1ε2
log(m). (5.9)

Both conditions (5.6) and (5.8) are now satisfied. Thus, for a defined tolerance ε and a sufficiently

large M , we can estimate the eigenvalue λk with error less than ελk .

Our final step is to estimate the distance between the true active subspace W1 and the estimated

active subspace Ŵ1 containing errors due to finite sampling error. Before we can determine this

distance, we require a second matrix Bernstein inequality from [16, Chapter 8] and [61], in the form

of Theorem 5.1.4. For this theorem, we choose X j =∇x f j∇x f T
j −C and interpret this as the deviance

of the j th sampled gradient outer product from the true matrix C.

Theorem 5.1.4. [61, Thm. 6.1] Consider a finite sequence {X j } of independent, random, symmetric

matrices with dimension m. Assume that

E
�

X j

�

= 0 and λmax(X j)≤R almost surely.

Compute the norm of the total variance,

σ2 :=

∑

j

E
�

X2
j

�

.

72

Then the following inequality holds for all t ≥ 0:

P

λmax

∑

j

X j

!

≥ t

≤

¨

m exp (−3t 2/8σ2), t ≤σ2
k/R ,

m exp (−3t 2/8R), t ≥σ2
k/R .

We refer the reader to [61] for a proof of Theorem 5.1.4. A second result, described in Theorem 5.1.5,

gives us the necessary tools to produce a lower bound on the number of random gradient samples

required for accuracy in the estimation of C.

Theorem 5.1.5. [11, Thm. 3.7] Assume ‖∇x f ‖ ≤ L for all x ∈X . Then for ε ∈ (0, 1],

P
�

‖Ĉ−C‖ ≥ ε‖C‖
�

≤ 2m exp

�

−3Mλ1ε
2

8L 2

�

. (5.10)

Proof. Observe that

P
�

‖Ĉ−C‖ ≥ t
�

= P
�

λmax(Ĉ−C)≥ t or λmax(C− Ĉ)≥ t
�

≤ P
�

λmax(Ĉ−C)≥ t
�

+P
�

λmax(C− Ĉ)≥ t
�

= P

λmax

M
∑

j=1

(∇x f j∇x f T
j −C)

!

≥M t

 (5.11)

+P

λmax

M
∑

j=1

(C−∇x f j∇x f T
j)

!

≥M t

≤ 2θ ,

where θ upper-bounds both probabilities.

Note that
∫

(∇x f ∇x f T −C)ρd x=

∫

(C−∇x f ∇x f T)ρd x= 0.

Since C is positive semidefinite and f is Lipschitz continuous, we have

λmax(∇x f ∇x f T −C) = max
‖v‖=1

vT (∇x f ∇x f T −C)v

≤ max
‖v‖=1

vT (∇x f ∇x f T)v

≤ L 2, (5.12)

for the Lipschitz bound ‖∇x f (x)‖ ≤ L for all x ∈X . Inequality (5.12) also holds forλmax(C−∇x f ∇x f T).

73

This gives us the upper bound R used in Theorem 5.1.4. We bound the variance parameter as follows:

σ2 =

M
∑

j=1

∫

(∇x f j∇x f T
j −C)2ρd x

!

= M

∫

(∇x f ∇x f T −C)2ρd x

≤ M ‖L 2C−C2‖

≤ M ‖C‖

L 2I−C

≤ Mλ1L 2.

The last line follows from the fact that λ1 ≤ L 2. The results of Theorem 5.1.4 are valid for an upper

bound onσ2, which yields an upper bound on θ . We let t = ε‖C‖= ελ1 to obtain the final result.

We can now use the results of Theorem 5.1.5 to produce a lower bound on the number of gradient

samples required to produce an accurate estimate Ĉ.

Corollary 5.1.6. [11, Cor. 3.8] For ε ∈ (0, 1],

M =Ω

�

L 2

λ1ε2
log(m)

�

(5.13)

implies that ‖Ĉ−C‖ ≤ ε‖C‖with high probability.

Finally, we utilize the bound given in Corollary 5.1.6 to determine the distance between the true

and estimated active subspaces. This first requires the result of [16, Cor. 8.1.11], which is given in

Lemma 5.1.7. This lemma requires knowledge of the definition of the distance between subspaces,

defined in [55] as

dist(range(W1), range(Ŵ1)) = ‖W1WT
1 − Ŵ1ŴT

1 ‖= ‖W1Ŵ2‖.

Lemma 5.1.7. [16, Cor. 8.1.11] Let C and Ĉ = C+E be symmetric m ×m matrices with respective

eigenvalues λ1, ...,λm and λ̂1, ..., λ̂m and eigenvector matrices

W= [W1 W2] , Ŵ=
�

Ŵ1 Ŵ2

�

,

where W1 and Ŵ1 contain the first n <m columns. If λn >λn+1 and

‖E‖ ≤
λn −λn+1

5
,

74

then

dist(range(W1), range(Ŵ1))≤
4‖WT

2 EW1‖
λn −λn+1

.

We refer the reader to [16] for further details and a proof of Lemma 5.1.7. We now have all of the

necessary components to determine the distance between the true and estimated active subspaces.

Corollary 5.1.8. [11, Cor. 3.10] Let ε > 0 be such that

ε ≤
λn −λn+1

5λ1
, (5.14)

and choose M according to Corollary 5.1.6. Then with high probability,

dist(range(W1), range(Ŵ1))≤
4λ1ε

λn −λn+1
. (5.15)

Proof. Let E= Ĉ−C as in Lemma 5.1.7. For ε as in (5.14) with M chosen according to Corollary 5.1.6,

we have with high probability

‖E‖ ≤ ε‖C‖= ελ1 ≤ (λn −λn+1)/5, (5.16)

satisfying the conditions required by Lemma 5.1.7. Then,

dist(range(W1), range(Ŵ1))≤ 4‖E‖/(λn −λn+1)≤ 4λ1ε/(λn −λn+1), (5.17)

as needed.

5.2 Approximate Gradient Convergence

The analysis of Section 5.1 applies to cases in which the gradient can be computed directly, thus

allowing for random sampling of gradient vectors. Having established that this finite sampling can

produce an accurate estimate to the true matrix C, we now address how these estimates are affected

by the approximation of the gradient vectors for cases where we lack gradient expressions and/or

adjoint capabilities are not available. In addition to the error contributed by the finite sampling

approach, we must now account for errors arising from the approximation of the gradient, via

finite-differences or other applicable methods. In particular, the following analysis serves as a proof

of convergence for our finite-difference Morris method of active subspace construction.

75

Let g(x) denote the approximate gradient vector computed at xm×1 ∈ X . We begin with the

assumption

‖g(x)−∇x f (x)‖ ≤
p

mγh , x ∈X , (5.18)

where

lim
h→0

γh = 0. (5.19)

The bounds generated here on the eigenvalue errors and the distance between the true and es-

timated active subspaces are proven in [11] for a generic error model. Therefore, we do not de-

fine a particular γh function, but simply note that this function limits toward zero as h—which

may be, for example, a finite-difference parameter or grid spacing parameter in a discrete adjoint

computation—approaches zero. We define the symmetric positive-semidefinite matrix G and its

eigenvalue decomposition as

G=

∫

ggTρd x=UΘUT , Θ = diag(θ1, ...,θm), (5.20)

and denote its Monte Carlo random sample approximation by

Ĝ=
1

M

M
∑

j=1

g j gT
j = ÛΘ̂ÛT , Θ̂ = diag(θ̂1, ..., θ̂m). (5.21)

Here g j = g(x j) is a random sample of the gradient vector computed at an independently drawn x j

from ρ. Then, we define in Lemma 5.2.1 a bound on the error between the approximated matrix Ĝ

and the sampled matrix of true gradient information Ĉ.

Lemma 5.2.1. [11, Lem. 3.11] The norm of the difference between Ĝ and Ĉ is bounded by

‖Ĝ− Ĉ‖ ≤ (
p

mγh +2L)
p

mγh .

Proof. Let g= g(x) and∇x f =∇x f (x) for simplicity in notation. We first note that

‖g+∇x f ‖= ‖g−∇x f +2∇x f ‖ ≤ ‖g−∇x f ‖+2‖∇x f ‖ ≤
p

mγh +2L ,

76

from the assumption in (5.18). It then follows that

‖ggT −∇x f ∇x f T ‖ =
1

2
‖(g+∇x f)(g−∇x f)T + (g−∇x f)(g+∇x f)T ‖

≤ ‖(g+∇x f)(g−∇x f)T ‖

≤ (
p

mγh +2L)
p

mγh .

Therefore, we can bound the difference between the estimated matrix with approximate gradients

Ĝ and the finite sampling estimate Ĉ as

‖Ĝ− Ĉ‖ =

1

M

M
∑

j=1

g j gT
j −

1

M

M
∑

j=1

∇x f j∇x f T
j

≤
1

M

M
∑

j=1

‖g j gT
j −∇x f j∇x f T

j ‖

≤ (
p

mγh +2L)
p

mγh .

We use this result to bound the error in the eigenvalue estimates. There are now two sources of

error that must be accounted for: (a) errors due to the finite sampling approach of Section 5.1, and

(b) errors arising from the methods employed to approximate the gradient; i.e., finite-differences.

Theorem 5.2.2. [11, Thm. 3.12] For ε ∈ (0,1], if M is chosen as in Corollary 5.1.3, then the differ-

ence between the true eigenvalue λk and the eigenvalue θ̂k of the random sample estimate with

approximate gradients is bounded as

|λk − θ̂k | ≤ ελk +
p

mγh (
p

mγh +2L),

with high probability.

Proof. Observe that

|λk − θ̂k | ≤ |λk − λ̂k |+ |λ̂k − θ̂k |.

We apply the results of Corollary 5.1.3 to the first term on the right hand side, recalling that ‖λk−λ̂k‖ ≤
ελk . The second term follows from Lemma 5.2.1 and [16, Cor. 8.1.6], since

|θ̂k − λ̂k |= |λk (Ĝ)| −λk (Ĉ)| ≤ ‖Ĝ− Ĉ‖ ≤
p

mγh (
p

mγh +2L).

Finally, we analyze the effects of gradient approximations on the distance between the true and

77

estimated active subspaces, adapting Corollary 5.1.8 to account for errors due to the approximation

methods.

Theorem 5.2.3. [11, Thm. 3.13] Choose ε according to Corollary 5.1.8 and choose M to satisfy both

Corollary 5.1.8 and Corollary 5.1.3 for the (n +1)st eigenvalue. Choose h small enough so that

p
mγh (

p
mγh +2L)≤

λ̂n − λ̂n+1

5
. (5.22)

Then the distance between the true active subspace W1 and the estimated active subspace with finite

samples and approximate gradients Û1 is bounded by

dist(range(Û1), range(W1))≤
4
p

mγh (
p

mγh +2L)
(1− ε)λn − (1+ ε)λn+1

+
4λ1ε

λn −λn+1
, (5.23)

with high probability.

Proof. First, we note that

dist(range(Û1), range(W1))≤ dist(range(Û1), range(Ŵ1))+dist(range(Ŵ1), range(W1)).

The second term on the right-hand side is bounded by the results of Corollary 5.1.8 under the

assumptions on M and ε. With condition (5.22) on h , Lemma 5.1.7 yields the following bound on

the first term:

dist(range(Û1), range(Ŵ1))≤
4‖Ĝ− Ĉ‖
λ̂n − λ̂n+1

. (5.24)

For M large enough to satisfy Corollary 5.1.3, |λ̂n −λn | ≤ ελn and |λ̂n+1−λn+1| ≤ ελn+1 with high

probability. Then,

λn −λn+1 = |λn −λn+1|

≤ |λn − λ̂n |+ |λ̂n+1−λn+1|+ (λ̂n − λ̂n+1) (5.25)

≤ ελn + ελn+1+ (λ̂n − λ̂n+1).

A simple rearrangement yields

λ̂n − λ̂n+1 ≥ (1− ε)λn − (1+ ε)λn+1. (5.26)

The combination of (5.26) and the bound from Lemma 5.2.1 gives the final result.

78

5.3 Adaptive Morris Convergence

We now incorporate the changes made to the standard Morris algorithm to establish the adaptive

Morris method. Recall that this includes varying the step sizes from hmin to hmax, depending on

the significance of the corresponding singular value, choosing step directions based on current

active subspace information, and terminating function evaluations once a user-defined threshold

of eigenvalue information has been obtained. The computation of the elementary effects now takes

place in the rotated coordinate space. This yields a vector g̃(x) in which vector components g̃1

through g̃n are directional derivative approximations in the first n directions specified by the unitary

basis matrix U from the current singular value decomposition, and

g̃n+1 = g̃n+2 = · · ·= g̃m = 0, (5.27)

due to the termination of the function evaluations for insignificant directions. To obtain a final

gradient vector approximation in the original coordinate space, we then use the transformation

g(x) =Ug̃(x). As in Section 5.2, we first need to determine a bound for ‖g(x)−∇x f (x)‖.
Our construction of a bound will require the vector g̃ to be split into its estimated and disregarded

components. As such, we define the “active” and “passive” vectors

g̃a =
�

g̃1 . . . g̃n 0 . . . 0
�T

and g̃p =
�

0 . . . 0 g̃n+1 . . . g̃m

�T
.

Note that due to (5.27), our passive vector g̃2 is actually just a zero column vector of size m × 1.

Likewise, we let

∇x fa =
�

∇x f1 . . . ∇x fn 0 . . . 0
�T

and ∇x fp =
�

0 . . . 0 ∇x fn+1 . . . ∇x fm

�T

represent the corresponding portions of the true gradient vector that are used for comparison. Let

g= g(x), g̃= g̃(x), and∇x f =∇x f (x) for simplicity. Then,

‖g−∇x f ‖ = ‖Ug̃−∇x f ‖

≤ ‖Ug̃a −∇x fa‖+ ‖Ug̃p −∇x fp‖

= ‖ga −∇x fa‖+ ‖0m×1−∇x fp‖

= ‖ga −∇x fa‖+ ‖∇x fp‖

≤
p

nγhmax
+αn L , (5.28)

79

where

lim
hmax→0

γhmax
= 0 (5.29)

for some function γhmax
that reflects the action of the approximation method used; i.e. finite-

differences. Furthermore,

lim
n→m

αn = 0 (5.30)

for someαn , which is a function of the number of columns of the active subspace utilized. Intuitively,

the bound αn L on the second term of the right-hand side can be explained as follows. As the

number of columns retained approaches the full input dimension m , the portion of the gradient

remaining in the second term has less of an impact. That is, as n →m , we have ‖∇x fa‖→ ‖∇x f ‖
and ‖∇x fp‖→ 0. This result is used in Lemma 5.3.1 to bound the error between the estimated matrix

Ĝ using approximated gradient information and sampled matrix Ĉ using true gradient information.

Lemma 5.3.1. The norm of the difference between Ĝ and Ĉ is bounded by

‖Ĝ− Ĉ‖ ≤ (
p

nγhmax
+αn L +2L)(

p
nγhmax

+αn L).

Proof. Let g= g(x) and∇x f =∇x f (x). It first follows that

‖g+∇x f ‖ = ‖g−∇x f +2∇x f ‖

≤ ‖g−∇x f ‖+2‖∇x f ‖

≤ (
p

nγhmax
+αn L) +2L

We then note that

‖ggT −∇x f ∇x f T ‖ =
1

2
‖(g+∇x f)(g−∇x f)T + (g−∇x f)(g+∇x f)T ‖

≤ ‖(g+∇x f)(g−∇x f)T ‖

≤ (
p

nγhmax
+αn L +2L)(

p
nγhmax

+αn L).

80

Finally, it follows that

‖Ĝ− Ĉ‖ =

1

M

M
∑

j=1

g j gT
j −

1

M

M
∑

j=1

∇x f j∇x f T
j

≤
1

M

M
∑

j=1

‖g j gT
j −∇x f j∇x f T

j ‖

≤ (
p

nγhmax
+αn L +2L)(

p
nγhmax

+αn L).

With Lemma 5.3.1 , we now have the necessary tools to prove convergence of the eigenvalues θ̂k

obtained via use of the adaptive Morris method to the true eigenvalues λk , and bound the distance

between the true and estimated active subspaces. The following theorems follow the same format

as those presented in Section 5.2, and so those proofs are not replicated here.

Theorem 5.3.2. For ε ∈ (0, 1], if M is chosen as in 5.1.3, then the difference between the true eigenvalue

λk and the eigenvalue θ̂k of the random sample estimate with approximate gradients is bounded as

|λk − θ̂k | ≤ ελk + (
p

nγhmax
+αn L)(

p
nγhmax

+αn L +2L),

with high probability.

Proof. See proof of Theorem 5.2.2.

Theorem 5.3.3. Choose ε according to Corollary 5.1.8 and choose M to satisfy both Corollary 5.1.8

and Corollary 5.1.3 for the n +1st eigenvalue. Choose h small enough so that

(
p

nγhmax
+αn L +2L)(

p
nγhmax

+αn L)≤
λ̂n − λ̂n+1

5
. (5.31)

Then the distance between the true active subspace W1 and the estimated active subspace with finite

samples and approximate gradients Û1 is bounded by

dist(range(Û1), range(W1))≤
4(
p

nγhmax
+αn L +2L)(

p
nγhmax

+αn L)
(1− ε)λn − (1+ ε)λn+1

+
4λ1ε

λn −λn+1
, (5.32)

with high probability.

Proof. See proof of Theorem 5.2.3.

81

CHAPTER

6

NUMERICAL EXAMPLES

To demonstrate the use of our gradient-free methods for active subspace construction, we consider

several examples from aerospace and nuclear engineering. We first consider an elliptic PDE to

verify the accuracy of our results with those obtained via the gradient-based method in [10]. In

this example, we compare our method to a local sensitivity analysis, which identifies the n most

important parameters and projects the function onto an n−dimensional surface corresponding to

these coordinates. Necessary MATLAB codes for this example can be found at [12, 13, 35, 41]. The

second example extends this first problem to a family of elliptic PDEs, giving us an expected active

subspace of dimension ten for further verification. We then consider a neutronics example under

three sets of conditions, which provides us with a framework in which to verify our initialization

algorithm and compare dimensions suggested by each of our selection criteria of Section 4.2.

6.1 Elliptic PDE

To demonstrate the accuracy of our gradient-free active subspace method for an example in which

gradient based methods are available, we consider the elliptic PDE from [10]. Let u = u (s, x) satisfy

−∇s · (a (s, x)∇su (s, a (s, x))) = 1, s ∈ [0, 1]2, (6.1)

82

with homogeneous Dirichlet boundary conditions u = 0 on the left, top, and bottom of the spatial

domain, denoted by Γ1, and a homogenous Neumann boundary condition ∂ u
∂ s1
= 0 on the right side,

denoted by Γ2. The coefficient a (s, x) is taken to be a log-Gaussian second-order random field with

mean zero and covariance function

C (s, s′) = exp(β−1||s− s′||1). (6.2)

The existence and uniqueness of the solution to the weak form of (6.1) can be proven in a stochastic

sense in the Sobolev space {u ∈ L 2(Ω;H 1(D))| u |Γ1 = 0} for the spatial space D and probability

space Ω, as detailed in [9]. The random field can be expressed in terms of the eigenvalues γi and

orthonormal eigenfunctionsφi ofC using a truncated Karhunen-Loeve (KL) expansion,

log(a (s, x)) =
m
∑

i=1

xiγiφi , (6.3)

where xi are independent and identically distributed standard normal random variables. Physically,

problems of this nature arise when modeling the steady-state behavior of diffusion processes such

as heat conduction or saturated flow.

To illustrate the effects of variations in the rate of eigenvalue decay, we consider two cases for

the correlation operator. The first, using β = 1, corresponds to a long correlation length and rapidly

decaying KL eigenvalues γi . The second, using β = 0.01, corresponds to a short correlation length

and a more gradual decay in the eigenvalues γi . As in [10, 11], we choose a parameter input space

X =R100 so that m = 100 with a standard Gaussian density function ρ. The scalar-valued response

is taken to be

f (x) =
1

|Γ2|

∫

Γ2

u (s, x)d s. (6.4)

To obtain function evaluations at a given set of input parameters x, the elliptic problem is

discretized using a standard finite element method with a mesh containing 34320 triangles and

17361 nodes. The eigenfunctionsφi =φi (x) are approximated on this mesh for i = 1, ..., N by solving

the matrix equation Ku= f for u= u(x) at the mesh nodes. Here the stiffness matrix has elements

[K]i j =
∫

Ω
a∇sφi (s) · ∇sφ j (s)d s, and u = [u1, ..., uN]T and [f]i =

∫

Ω
φi (s)d s. The scalar response is

then approximated as

f (x) = cTMu(x)≈
1

|Γ2|

∫

Γ2

u (s, x)d s, (6.5)

where [M]i j =
1
|Γ2|
∫

Γ2
φi (s)φ j (s)d s and the components of c are equal to one where they correspond

83

to Γ2, and zero elsewhere.

In previous work in [10, 11], the gradient vector∇x f is then computed for M = 300 samples, and

the gradient matrix G is constructed as

G=
1
p

M

�

∇x f1 · · ·∇x fM

�

(6.6)

since the gradient of u is available. From the singular value decomposition of this matrix, the first

several eigenvectors are computed and used to construct one- and two-dimensional kriging surfaces

for analysis. For implementation, we employed the MATLAB codes provided at [12, 13, 35, 41].

For comparison, we employ a simple local sensitivity analysis for coordinate dimension re-

duction. The most influential coordinates are chosen as those components of the gradient ∇x f

that are largest-in-magnitude. In the case of the long correlation length, β = 1, the two most im-

portant coordinates are x1 and x3, whereas for β = 0.01, they are x6 and x1. The corresponding

response surfaces are constructed using the Gaussian process machine learning (GPML) code from

[40], where a maximum likelihood method is used to tune the hyper-parameters of an isotropic

squared-exponential covariance kernel and a quadratic polynomial basis. For more details, see [10].

The results from this local sensitivity analysis are compared to three methods of active subspace

construction; gradient-based as discussed in [10], gradient-free finite-difference Morris as detailed

in Algorithm 3, and gradient-free adaptive Morris as summarized in Algorithm 4. The main distinc-

tion between the local sensitivity and active subspace based methods is that the active subspace

methods allow for functions to be projected onto a response surface constructed in a new parameter

space, where parameters may be linear combinations of the original inputs. In contrast, the local

sensitivity method retains the initial coordinate space, projecting the function onto a response

surface constructed via only the first n influential parameters from the original input space.

We include the construction of low-dimensional response surfaces built on the space of interest

for each of the four methods. For each value of β , we look for a gap in the eigenvalue spectrum

to indicate the “correct” active subspace dimension, and then construct a kriging surface for this

value. A comparison of function evaluations on the kriging surfaces and on the original full space

reveals how accurately the behavior of the function is characterized by varying only parameters in

the low-dimensional subspace. For more details on the construction of kriging surfaces, where the

interpolated values are modeled by a Gaussian process, see [10].

6.1.1 β = 1: Rapid Eigenvalue Decay

We first consider the case β = 1. From [10], we expect to determine a one-dimensional subspace. We

use M = 300 gradient samples—or approximations of gradient samples—to ensure certainty in the

eigenvalues. The longer correlation length of β = 1 leads to a rapid decay in eigenvalues, as shown in

84

Figure 6.1(a). Note that the more rapid decay in the adaptive Morris eigenvalue spectrum is due to the

early termination of function evaluations for insignificant directions and subsequent information

loss. We compare eigenvalues of the gradient matrices for each of our three active subspace methods

and note the large visual gap between eigenvalues 1 and 2 in all three cases; for a subspace defined

by the first left eigenvector of the gradient matrix, the data should be essentially one-dimensional.

The eigenvector used to define the 1D active subspace for each method is shown in Figure 6.1(b).

For this example, a step size of∆= 1
100 was used for the finite-difference Morris algorithms, and a

step size interval of [δmin,δmax] =
�

1
100 , 1

10

�

was used for the adaptive Morris algorithms.

In Figure 6.2, we display the initial column of elementary effects computed for the gradient

matrix approximation in the adaptive Morris algorithm prior to transformation back to the original

coordinate axis; this plot corresponds to Step (6) of Algorithm 4. Clearly, the largest variability

is measured in the direction of the first active subspace eigenvector. As the index increases, the

elementary effects quickly level off toward zero, indicating little function variability in the directions

of the later eigenvectors.

For the adaptive Morris method, we use a threshold value of 0.99 to determine when function

evaluations should be terminated. By eliminating any function evaluations computed after 99% of

the eigenvalue spectrum has been obtained, we reduce the computation time by approximately

97%, since only 894 function evaluations are used to construct 300 gradient columns instead of

the 30,300 evaluations required by the finite-difference Morris algorithm. This demonstrates that

in cases where there is rapid eigenvalue decay, use of the adaptive Morris algorithms can greatly

reduce the computational complexity.

Figure 6.3 shows the one-dimensional response surface projections for the sensitivity method

Eigenvalue
5 10 15 20

M
ag

ni
tu

de

10-30

10-20

10-10

100

Gradient-Based
Finite-Difference Morris
Adaptive Morris

Eigenvector Component
5 10 15 20 25 30

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Gradient-Based
Finite-Difference Morris
Adaptive Morris

(a) (b)

Figure 6.1: (a) Normalized eigenvalues of the gradient matrix G or gradient estimate G̃ for three
active subspace methods for β = 1. (b) First 30 components of the first eigenvector for each active
subspace method.

85

Index
0 20 40 60 80 100

El
em

en
ta

ry
 E

ffe
ct

 V
al

ue

�10-4

-2

0

2

4

6

8

10
Rotated Elementary Effects

Index
5 10 15 20

El
em

en
ta

ry
 E

ffe
ct

 V
al

ue

�10-4

-2

0

2

4

6

8

10
Rotated Elementary Effects

(a) (b)

Figure 6.2: (a) Final column of rotated elementary effects from the adaptive Morris method. Note
that the greatest variability is measured in the first direction, with elementary effects quickly leveling
off to zero. (b) Closeup of first 20 rotated elementary effects.

and all three active subspace methods. For 300 testing points, the function evaluations are shown for

comparison to the kriging mean prediction. The closer clustering of testing points around the mean

prediction in the active subspace plots indicate a better approximation to the original surface. The

sensitivity method, which projects the function onto the 1D subspace represented by the original

input parameter x1, displays far too much variability about the kriging prediction to produce an

accurate function response on the one-dimensional kriging surface.

Finally, we plot the testing evaluations for the function f on the original full surface versus the

x1

-2 0 2

f

�10-3

0

1

2

3

4
Testing Points
GP Mean
Training Points

y
-2 0 2

f

�10-3

-1

0

1

2

3

4
Testing Points
GP Mean
Training Points

y
-2 0 2

f

�10-3

-1

0

1

2

3

4
Testing Points
GP Mean
Training Points

y
-2 0 2

f

�10-3

-1

0

1

2

3

4
Testing Points
GP Mean
Training Points

(a) (b) (c) (d)

Figure 6.3: One-dimensional kriging surface projections for (a) the local sensitivity method, (b)
gradient-based method, (c) finite-difference Morris method, and (d) adaptive Morris method for
β = 1. Five training points are used to train the kriging surfaces and mean kriging predictions are
plotted with a solid line. We plot 300 testing evaluations to depict how closely the function on the
kriging surface matches the behavior of the function on the original surface.

86

True �10-3
0.5 1 1.5 2 2.5

Kr
ig

in
g

�10-3

0.5

1

1.5

2

2.5 Local Sensitivity
Gradient-Based

True �10-3
0.5 1 1.5 2 2.5

Kr
ig

in
g

�10-3

0.5

1

1.5

2

2.5 Local Sensitivity
Finite-Difference Morris

True �10-3
0.5 1 1.5 2 2.5

Kr
ig

in
g

�10-3

0.5

1

1.5

2

2.5 Local Sensitivity
Adaptive Morris

(a) (b) (c)

Figure 6.4: Comparison of 300 testing point function evaluations on the original full surface versus
the constructed one-dimensional kriging surface forβ = 1. Data for each of the three active subspace
methods is plotted along with the results of the local sensitivity method: (a) gradient-based, (b)
finite-difference Morris, and (c) adaptive Morris.

corresponding evaluation on the one-dimensional kriging surface for each method in Figure 6.4.

Strict linearity along the y = x axis indicates perfect agreement of function evaluations between the

two surfaces; this situation would correspond to a case in which z=WT
2 x is entirely x-invariant as

discussed in Section 4.1. As expected, evaluations on the gradient-based and Morris kriging surfaces

are very close matches to their corresponding evaluations on the full surface. The results from the

sensitivity method are more widely spread about the y = x axis. We conclude that in problems of

this nature, use of the active subspace can greatly reduce the dimensionality of the problem with

a negligible sacrifice in accuracy. In problems where adjoint capabilities may be unavailable, an

adaptive Morris algorithm should be used to approximate the gradient matrix G for best efficiency.

6.1.2 β = 0.01: Gradual Eigenvalue Decay

To examine the effects of gradual eigenvalue decay, we decrease the correlation length to β = 0.01.

The eigenvalues for each of the three active subspace methods are plotted in Figure 6.5(a). This

decrease in correlation length leads to a more gradual decay in the eigenvalue spectrum. To account

for this, we consider both one- and two-dimensional active subspaces. The eigenvectors used to

define these active subspaces are shown in Figure 6.5(b)-(c).

For the adaptive Morris method, we once again use a threshold value of 0.99 to determine when

function evaluations should be terminated. The more gradual decay in the eigenvalues requires

more function evaluations to be retained than in the case of the longer correlation length. Here we

use 6075 total evaluations to construct 300 columns in contrast to the 894 used in the earlier scenario.

87

Eigenvalue
5 10 15 20

M
ag

ni
tu

de

10-30

10-20

10-10

100

Gradient-Based
Finite-Difference Morris
Adaptive Morris

Eigenvector Component
0 20 40 60 80 100

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Gradient-Based
Finite-Difference Morris
Adaptive Morris

Eigenvector Component
0 20 40 60 80 100

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Gradient-Based
Finite-Difference Morris
Adaptive Morris

(a) (b) (c)

Figure 6.5: (a) Singular values of the gradient matrix G or gradient estimate G̃ for three active
subspace methods for β = 0.01. (b) First, and (c) second eigenvectors for each of the active subspace
methods.

However, this still represents an 80% decrease in computational complexity over the finite-difference

Morris algorithm.

As in our first case, we plot the response surface projections for the local sensitivity method

and all three active subspace methods. One-dimensional projections are plotted in Figure 6.6 and

two-dimensional projections are plotted in Figure 6.7. It can be seen that the gradient-based, finite-

difference Morris, and adaptive Morris methods do a reasonable job of quantifying the majority of

the function’s variability in both projections. On the contrary, the local sensitivity method fails to

quantify the variability of the function even with a two-dimensional projection. Despite the fact that

x6 and x1 are the most influential of the original parameters, the wide spread of the testing points in

x6

-2 0 2

f

�10-4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
Testing Points
GP Mean
Training Points

y
-2 0 2

f

�10-4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
Testing Points
GP Mean
Training Points

y
-2 0 2

f

�10-4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
Testing Points
GP Mean
Training Points

y
-2 0 2

f

�10-4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
Testing Points
GP Mean
Training Points

(a) (b) (c) (d)

Figure 6.6: One-dimensional kriging surface projections for the (a) local sensitivity method, (b)
gradient-based method, (c) finite-difference Morris method, and (d) adaptive Morris method for
β = 0.01. Five training points are used to train the kriging surfaces and mean kriging predictions are
plotted with a solid line. We plot 300 testing evaluations to depict how closely the function on the
kriging surface matches the behavior of the function on the original surface.

88

(a) (b)

(c) (d)

Figure 6.7: Two-dimensional kriging surface projections for (a) the local sensitivity method, (b)
gradient-based method, (c) finite-difference Morris method, and (d) adaptive Morris method for
β = 0.01. Five training points are used to train the kriging surfaces and mean kriging predictions are
plotted with a solid plane. We plot 300 testing evaluations to depict how closely the function on the
kriging surface matches the behavior of the function on the original surface.

the local sensitivity plots indicates that not all of the other parameters should be discounted.

Figure 6.8 shows a number of function evaluations on the original full surface versus their

corresponding values on the kriging surface projections. As expected, the gradient-based and Morris

methods result in a relatively strict linear relationship over the y = x axis, while the sensitivity

method produces widely spread testing evaluations, reflecting the disagreement between the two

response surfaces. Despite the more gradual decay in eigenvalues, the gradient-based and Morris

methods are able to quantify the majority of the function’s variability in a single dimension, while

the local sensitivity method is unable to do so even in two dimensions.

Once again, we conclude that active subspace construction methods are superior to simple sensi-

tivity analysis; in particular, if gradients are unavailable or expensive to compute, an adaptive Morris

scheme is the superior choice for gradient approximation due to the decrease in computational

complexity over the finite-difference Morris method.

89

True �10-4
2.6 2.8 3 3.2 3.4 3.6

Kr
ig

in
g

�10-4

2.6

2.8

3

3.2

3.4

3.6 Local Sensitivity
Gradient-Based

True �10-4
2.6 2.8 3 3.2 3.4 3.6

Kr
ig

in
g

�10-4

2.6

2.8

3

3.2

3.4

3.6 Local Sensitivity
Finite-Difference Morris

True �10-4
2.6 2.8 3 3.2 3.4 3.6

Kr
ig

in
g

�10-4

2.6

2.8

3

3.2

3.4

3.6 Local Sensitivity
Adaptive Morris

(a) (b) (c)

True �10-4
2.6 2.8 3 3.2 3.4 3.6

Kr
ig

in
g

�10-4

2.6

2.8

3

3.2

3.4

3.6 Local Sensitivity
Gradient-Based

True �10-4
2.6 2.8 3 3.2 3.4 3.6

Kr
ig

in
g

�10-4

2.6

2.8

3

3.2

3.4

3.6 Local Sensitivity
Finite-Difference Morris

True �10-4
2.6 2.8 3 3.2 3.4 3.6

Kr
ig

in
g

�10-4

2.6

2.8

3

3.2

3.4

3.6 Local Sensitivity
Adaptive Morris

(d) (e) (f)

Figure 6.8: Comparison of 300 testing point function evaluations on the original full surface versus
the constructed kriging surface for β = 0.01. Data for each of the three active subspace methods is
plotted alongside the results of the sensitivity method. One-dimensional kriging surfaces are plotted
for (a) gradient-based, (b) finite-difference Morris, and (c) adaptive Morris. Two-dimensional kriging
surfaces are plotted for (d) gradient-based, (e) finite-difference Morris, and (f) adaptive Morris.

6.2 Extended Elliptic PDE

We now modify the previous problem to test our adaptive Morris method on a function with an

active subspace of several dimensions, as presented in [20]. We consider a family of PDEs

−∇s · (a (s, x, w)∇su (s, x, w)) = 1, s ∈ [0, 1]2, w = 1, ..., W (6.7)

based upon the original problem from [10, 11]. We employ identical boundary conditions for each

PDE as in the original problem (6.1).

90

Each random field a (s, x, w) is log-Gaussian with mean zero and corresponding covariance

functionCw , and is expressed by the Karhunen-Loevre expansion of Section 6.1 with mw eigenval-

ues and eigenvectors of the covariance matrix and mw standard Gaussian random variables. Our

quantity of interest is

f (x1, ..., xW) =
W
∑

w=1

cTMuw (xw)≈
W
∑

w=1

1

|Γ2|

∫

Γ2

u (a (s, xw , w))d s. (6.8)

We note that the quantity of interest is dependent upon
∑W

w=1 mw total parameters and should vary

primarily along W directions. This formulation is identical to the original problem in the case where

W = 1. Physically, one can interpret this as W 2D slices from a 3D geometry for applications such as

steady-state saturated flow.

Using W = 10, we define covariance functions from two families with varying β values. The

covariance functions

C = exp(−||s− s′||β2) (6.9)

and

C =
�

1+
||s− s′||22

2β

�β

. (6.10)

are chosen from the exponential and rational quadratic families each for the set β =
�

2
5 , 4

5 , 6
5 , 8

5 , 10
5

	

.

To compute values of f , the solution to each of the 10 PDEs is approximated on a finite element

mesh of N = 727 nodes using the code from [12, 13, 35, 41]. Discarding eigenvalues that are less than

10−12 in magnitude, we obtain a total parameter space dimension of
∑W

w=1 mw = 3556. We compare

results for the gradient-based method versus our proposed gradient-free Morris and adaptive Morris

methods, where we know that the active subspace has dimension 10 due to the construction of the

problem.

Figure 6.9(a) illustrates the decay in the first 15 eigenvalues of the gradient matrix for all three

methods. In this investigation, we used M = 1000 gradient samples for each method. As expected,

we can indeed identify a large gap between eigenvalues 10 and 11 in all three cases.

To investigate how effective each method is for quantifying the primary dominant directions of

the function’s gradient, we construct response surfaces via a piecewise multilinear interpolation

method using the Sparse Grid Interpolation Toolbox in MATLAB [27]. For each response surface, we

can quantify the error between the true quantity of interest f and the approximated fs by measuring

errors at a number of testing points outside the active subspace where larger errors indicate that

important directions may be missing from the computed active subspace. This computation is

91

Eigenvalue
2 4 6 8 10 12 14

M
ag

ni
tu

de

10-4

10-3

10-2

10-1

100

Gradient-Based
Finite-Difference Morris
Adaptive Morris

Testing Point Index
0 10 20 30 40

R
el

at
iv

e
Er

ro
r

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Gradient-Based
Finite-Difference Morris
Adaptive Morris

Dimension
2 4 6 8 10 12 14

R
el

at
iv

e
Er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Gradient-Based
Finite-Difference Morris
Adaptive Morris

(a) (b)

Figure 6.9: (a) Singular values of the gradient matrix or approximation for each of the three active
subspace methods. We note the gap in magnitude between eigenvalues 10 and 11 for each method.
(b) Relative errors | f − fs |/| f | at testing points outside of the active subspace for response surfaces
constructed with piecewise linear interpolation over an active subspace of dimension 10. (b) Maxi-
mum, mean, and minimum relative errors | f − fs |/| f | at 10,000 testing points outside of the active
subspace for response surfaces constructed via piecewise linear interpolation over active subspaces
of dimensions k = 1, ..., 14.

depicted graphically for a sample of 40 testing points in Figure 6.9(b) for k = 10, which is the correct

active subspace dimension. Results were comparable among all three methods.

To illustrate that no more than 10 dimensions are truly necessary, we construct these response

surfaces for dimensions k = 1, ..., 14. We expect that after k = 10, the majority of the variability in the

function will have been represented by the eigenvectors and the errors will level off. Indeed, this is

the case for both the gradient-based and Morris methods as seen in Figure 6.9(c).

6.3 SCALE6.1 Examples

To demonstrate the attributes of our gradient-free and initialization algorithms in complex models,

we consider a neutronics example under three sets of conditions; see Chapter 2 for details on the

neutron transport model. We begin with a simple 44-input neutron transport model, for which we

can easily employ both the finite-difference Morris and adaptive Morris algorithms to compare their

performance. The second example is slightly larger having 132 inputs, and provides us with a regime

in which to compare the performance of our initialization algorithm to the adaptive Morris algorithm

initially run on the full input space. Finally, we consider a large-scale example with 7700 inputs, where

it is infeasible to use our gradient-free algorithm without the use of the initialization algorithm. For all

of these examples, we verify our results using gradient-based techniques summarized in Section 4.1.

Construction setups for each of our neutron transport examples are depicted in Figure 6.10.

For each of our examples, our scalar response is the effective multiplication factor keff, which is

92

!!!! !

 1
 2
 3
 4

 1
 2
 3
 4

:!!U02!
:!!He!
:!!Zirc4!
:!!H2O/Boron!

!

!

 6 ss-304 - bpr clad
 5 air in bprs
 4 borosilicate glass
 3 water
 2 cladding
 1 2.561 wt % enriched fuel
 7 rod n-9

 6 ss-304 - bpr clad
 5 air in bprs
 4 borosilicate glass
 3 water
 2 cladding
 1 2.561 wt % enriched fuel
 7 rod n-9

(a) (b)

Figure 6.10: (a) PWR pin cell construction for the 44-input neutron transport example. (b) Material
composition of the PWR quarter fuel lattice for the 132- and 7700-input neutron transport examples.

defined as the ratio of neutrons produced by fission in one generation to the number of neutrons

lost through absorption and leakage in the previous generation. Thus, a keff value equal to one

represents a self-sustaining chain reaction. For each example, a set of materials and reactions under

consideration are specified. For the initial sample points, we generate cross-section perturbations

for these materials and reactions of up to±10% from the nominal values reported in the SCALE6.1 44-

energy group cross-section library. All other cross sections are considered to be fixed at their reference

values. As discussed in Section 4.1.2, prior to the construction of our gradient approximations, we

map all input distributions toU [−1, 1]. The transport calculations are performed using the SCALE6.1

module NEWT, a multigroup discrete ordinates radiation transport code [46]. The perturbations

of the cross section libraries are computed via a C++ based toolkit for Reduced Order Modeling

based Uncertainty/Sensitivity Estimation (ROMUSE) [25]. To create the gradient-based matrices for

comparison, we perturb the cross section inputs uniformly with a range of up to ±10% from the

reference values given by the cross section library, and use the provided sensitivity information from

the SAMS module in SCALE6.1 [46] to measure the gradient vector with respect to the keff value.

6.3.1 44-Dimensional Input Space

We begin by considering a relatively small-dimensional neutron transport application to demon-

strate the capabilities of our gradient-free algorithm. Figure 6.10(a) depicts the construction of the

two dimensional PWR pin cell. The fuel is UO2, separated from the Zircaloy-4 cladding material by a

small helium gap, and the moderator is boron-infused H2O. We consider the effect of perturbations

of the fission cross sections,Σ f , for the 235
92U isotope for a discretization of 44 energy groups, yielding

a 44-dimensional input space. All cross sections for other materials and reactions are considered to

93

be fixed at their reference values provided by the 44-energy group cross-section library. We construct

an active subspace for our 44-input example with three methods: gradient-based, finite-difference

Morris, and adaptive Morris. For each case, the gradient—or approximated gradient—matrix is

constructed with 200 columns to satisfy the lower bound proposed in [11, Corollary 3.8].

As discussed above, each sample starting point is taken to be a perturbation within 10% of the

reference values. For the finite-difference Morris method, we subsequently step in the directions

of the original 44 input parameters with step sizes of∆= 0.01 from the initial starting point. For

the adaptive Morris calculation, we allow steps in directions that are linear combinations of the

original parameters, and vary the step sizes between δmin = 0.01 and δmax = 0.05 depending on

the significance of the corresponding eigenvalue. For the adaptive Morris computations, we ob-

serve that by the construction of the second column, 99% of the eigenvalue information can be

incorporated using only the first direction. Therefore, only two function evaluations are needed

for each subsequent column, compared to the 45 evaluations required for each finite-difference

Morris column. This results in a nearly 95% decrease in computational complexity, since adaptive

Morris requires 486 total function evaluations and finite-difference Morris requires 9,000 in order to

compute 200 columns of the approximated gradient matrix. Figure 6.11(a) shows the eigenvalues for

each of the three methods. The sudden decrease in the eigenvalue magnitude in the adaptive Morris

plots indicate that only the first direction was used for the construction of the gradient matrix. The

gradient-based and finite-difference Morris spectrums are very similar.

In Table 6.1, we record the number of dimensions suggested by the dimension selection criteria

of Section 4.2. Whereas the gap-based criterion suggests that a one-dimensional active subspace is

sufficient, the PCA and error-based criteria tend to require more dimensions depending on both

the decay of the eigenvalue spectrum and the value of the threshold or user-defined tolerance

specified. The low dimensions suggested by the PCA and error-based criteria for the adaptive Morris

Eigenvalue
0 10 20 30 40

M
ag

ni
tu

de

10-30

10-20

10-10

100

Gradient-Based
Finite-Difference Morris
Adaptive Morris

Rank
0 10 20 30 40

Er
ro

r U
pp

er
 B

ou
nd

10-15

10-10

10-5

100

Gradient Based
Finite-Difference Morris
Adaptive Morris

(a) (b)

Figure 6.11: (a) Singular values for the 44-input example for each of the three active subspace
methods. (b) Error upper bounds given by Algorithm 5 for the 44-input example.

94

method are due to the early decrease of the eigenvalues, as discussed in Section 4.1.2 and seen

in Figure 6.11(a). The error upper bounds calculated via Algorithm 5 are plotted in Figure 6.11(b).

Once again, the early decay of the eigenvalues for the adaptive Morris method are reflected in the

drop-off of error upper bounds.

Based on the gap-based predictions, we create response surfaces using a one-dimensional

active subspace for each of the three methods. These surfaces were constructed via multivariate

polynomial regression using training points from the input space as discussed in Section 4.2.4. For

this particular example, the AIC criterion indicates that a 1st-order multivariate polynomial is most

appropriate for the surface construction. The response surfaces are shown in Figure 6.12 for each

method. We note that the linear nature of the outputs based on the active subspace projections

justify the selection of a 1st-order multivariate polynomial. The root mean squared error (4.7) is

on the order of 10−4 for all three methods and response surfaces. The close clustering of testing

points about the response surface indicates that a one-dimensional active subspace is sufficient to

quantify the majority of the variability in the function; in this case, there is no need to use the more

conservative dimensions suggested by the PCA and error-based criteria.

Table 6.1: Active subspace dimension selections for gap-based criteria [11], principal component
analysis with varying threshold values [22], and error-based criteria with varying tolerances [18] for
the 44-input example.

Gap PCA Error Tolerance
Method 0.75 0.90 0.95 0.99 10−1 10−2 10−3 10−4

Gradient-Based 1 5 8 12 19 24 39 43 43
Finite Diff. Morris 1 1 3 5 8 2 9 19 41
Adaptive Morris 1 1 1 2 2 1 2 2 2

y1

-2 -1 0 1 2

k ef
f V

al
ue

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

Active Subspace Responses
1st Order Response Surface

y1

-2 -1 0 1 2

k ef
f V

al
ue

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Active Subspace Responses
1st Order Response Surface

y1

-2 -1 0 1 2

k ef
f V

al
ue

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

Active Subspace Responses
1st Order Response Surface

(a) (b) (c)

Figure 6.12: Comparison of keff responses at testing points and constructed response surface for a
one-dimensional active subsapce for the (a) gradient-based, (b) finite-difference Morris, and (c)
adaptive Morris methods for the 44-input example.

95

6.3.2 132-Dimensional Input Space

We now consider a moderate dimensional neutron transport application to compare the perfor-

mance of our adaptive Morris algorithm with and without use of the initialization process. Fig-

ure 6.10(b) depicts the material construction of the PWR quarter fuel lattice for the assembly model.

We consider the effect of perturbations of the fission cross sections Σ f , the density of fission

neutrons ν, and the fission spectrum χ , for the 235
92U nuclide. The SCALE6.1 cross section libraries

provide reference values for an energy spectrum discretization of 44 energy groups, resulting in an

input space of total dimension 132. Again, our scalar response is the effective multiplication factor

keff.

We construct an active subspace for our 132-input example using the gradient-based and adap-

tive Morris methods. Though this example is of a low enough dimension to make use of the adaptive

Morris algorithm feasible, we also use this example to verify the initialization algorithm of Sec-

tion 4.3. To seed the adaptive Morris algorithm, we completed `=m/4 iterations of Algorithm 4.3,

and used only the significant directions specified by the resulting basis matrix U. The total number

of function evaluations needed to approximate 500 gradient columns was 1,062. Because of the

very quick reduction that was possible in this example, the number of function evaluations for the

regular adaptive Morris was fairly comparable at 1,262. The benefit of the initialization algorithm in

terms of computation cost will be more apparent in the next example. Both algorithms provide a

significant computational savings from the 66,500 function evaluations that would be necessary

to complete the finite-difference Morris algorithm. The eigenvalues for each of the methods are

plotted in Figure 6.13(a). The magnitude drops sharply for the adaptive Morris algorithms, reflecting

the fact that only one direction was utilized for the construction of the elementary effects after the

Eigenvalue
0 10 20 30 40 50

M
ag

ni
tu

de

10-30

10-20

10-10

100
Gradient-Based
Adaptive Morris
Initialized AM

Rank
0 20 40 60 80

Er
ro

r U
pp

er
 B

ou
nd

10-15

10-10

10-5

100
Gradient Based
Adaptive Morris
Initialized AM

(a) (b)

Figure 6.13: (a) Eigenvalues for the 132-input example. (b) Error upper bounds given by Algorithm 5
for the 132-input example.

96

first several columns.

The selected dimensions for the dimension selection criteria are listed in Table 6.2. Once again,

the gap-based criterion opts for retention of a just one direction in all three methods. The PCA and

error-based criteria tend to be more conservative, particularly for the gradient-based method, where

the eigenvalue decay is much more gradual. The error upper bounds calculated via Algorithm 5 are

illustrated in Figure 6.13(b).

Table 6.2: Active subspace dimension selections for gap-based criteria [11], principal component
analysis with varying threshold values [22], and error-based criteria with varying tolerances [18] for
the 132-input example.

Gap PCA Error Tolerance
Method 0.75 0.90 0.95 0.99 10−1 10−2 10−3 10−4

Gradient-Based 1 6 9 12 20 4 24 48 54
Adaptive Morris 1 1 1 2 2 1 1 1 2
Initialized AM 1 2 2 2 2 1 1 2 2

y1

-2 -1 0 1 2

k ef
f V

al
ue

1.035

1.0355

1.036

1.0365

1.037

1.0375

1.038

1.0385
Active Subspace Responses
1st Order Response Surface

y1

-2 -1 0 1 2

k ef
f V

al
ue

1.035

1.0355

1.036

1.0365

1.037

1.0375

1.038

1.0385
Active Subspace Responses
1st Order Response Surface

y1

-2 -1 0 1 2

k ef
f V

al
ue

1.035

1.0355

1.036

1.0365

1.037

1.0375

1.038

1.0385
Active Subspace Responses
1st Order Response Surface

(a) (b) (c)

4
2

y1

0
-2-2

-1
y2

0
1

1.038

1.037

1.035

1.036

1.039

2

k ef
f V

al
ue

1.0355

1.036

1.0365

1.037

1.0375

1.038

4
2

y1

0
-2-2

-1
y2

0
1

1.037

1.036

1.035

1.039

1.038

2

k ef
f V

al
ue

1.0355

1.036

1.0365

1.037

1.0375

1.038

4
2

y1

0
-2-2

-1
y2

0
1

1.039

1.035

1.036

1.037

1.038

2

k ef
f V

al
ue

1.0355

1.036

1.0365

1.037

1.0375

1.038

(d) (e) (f)

Figure 6.14: Comparison of keff responses at testing points and constructed response surface for
one-dimensional active subspaces for the (a) gradient-based, (b) adaptive Morris, and (c) initialized
adaptive Morris methods, and two-dimensional active subspaces for the (d) gradient-based, (e)
adaptive Morris, and (f) initialized adaptive Morris methods for the 132-input example.

97

To decide whether the more conservative estimates are necessary or if a one- or two-dimensional

active subspace is sufficient, we create response surfaces based on the first two columns specified

by the active subspace basis for each method. Based on Algorithm 7 and the AIC criterion, we again

select a 1st-order multivariate polynomial to construct our response surfaces; this choice is again

justified by the linear nature of the input-output map, as seen in Figure 6.14. In each case, it is clear

that these early dimensions are sufficient to quantify the majority of the variability in the function

and later columns of the active subspace basis are not necessary. The root mean squared errors (4.7)

for the plots in Figure 6.14 range between 2.48×10−5 and 3.51×10−5, supporting the good visual fit.

6.3.3 7700-Dimensional Input Space

Our final example has an input space ofR7700, rendering our gradient-free algorithms computation-

ally infeasible without the use of the initialization algorithm of Section 4.3. The materials considered

are 1
1H, 6C, 16

8O, 10
5B, 11

5B, 14
7N, 15

7N, 23
11Na, 27

13Al, 14Si, 31
15P, 19K, 55

25Mn, 26Fe, 40Zr, 116
50Sn, 120

50Sn, 234
92U, 235

92U,
236

92U, and 238
92U. The reactions are listed in Table 6.3, along with their assigned reaction numbers in

the SCALE6.1 code and brief descriptions. All other cross-sections are fixed to their reference values

provided by the SCALE6.1 cross-section libraries.

Table 6.3: Reaction types and descriptions for the 7700-input example [19, 46].

Reaction MT Description

Σt 1 Neutron total cross-sections

Σe 2 Elastic scattering cross-section for incident particles

(n , n ′) 4 Inelastic scattering; production of one neutron

(n , 2n) 16 Production of two neutrons and a residual

Σ f 18 Particle-induced fission

Σc 101 Neutron capture (sum of 102-107)

(n ,γ) 102 Radiative capture

(n , p) 103 Production of a proton plus a residual

(n , d) 104 Production of a deuteron plus a residual

(n , t) 105 Production of a triton plus a residual

(n , 3He) 106 Production of a 3He particle plus a residual

(n ,α) 107 Production of an alpha particle plus a residual

ν̄ 452 Average number of neutrons released per fission event

χ 1018 Fission spectrum

98

Due to the size of the input space, we use only the initialized adaptive Morris algorithm and

compare our results to the gradient-based results obtained from the SAMS module. The initialization

algorithm allows us to begin Algorithm 4 with a subset of 197 important directions rather than

approximating directional derivatives in all 7700 original input directions. The adaptive Morris

algorithm is quickly able to improve upon the directions contributed by the initialization algorithm

and reduce the number of important directions to a single direction. The total number of function

evaluations used by the combination of Algorithms 4 and 8 to create 1000 gradient columns is 18,392

in contrast to the 7,701,000 evaluations that would be required to complete the finite-difference

Morris method in Algorithm 3. This is a mere 0.20% of the total computational cost. The eigenvalues

for both methods are plotted in Figure 6.15(a).

In Table 6.4, we report the dimensions selected by the criteria of Section 4.2. We again observe

the first major gaps in the eigenvalue spectrum after the first eigenvalue for both methods. The

PCA and error-based criteria yield more conservative estimates for the gradient-based method. The

error upper bounds are plotted in Figure 6.15(c). We observe a steady decline in the error for the

gradient-based method over the first 350 dimensions. For the initialized adaptive Morris method, the

Eigenvalue
0 50 100 150 200 250 300

M
ag

ni
tu

de

10-30

10-20

10-10

100
Gradient-Based
Initialized AM

Dimension
0 100 200 300 400

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

10-4

10-3

10-2
Gradient-Based
Initialized AM

Rank
0 50 100 150 200 250 300 350

Er
ro

r U
pp

er
 B

ou
nd

10-15

10-10

10-5

Gradient Based
Initialized AM

(a) (b) (c)

Figure 6.15: (a) First 300 eigenvalues for the 7700-input example. (b) Response surface RMSE values
for the first 450 dimensions. (c) First 350 error upper bounds given by Algorithm 5 for the 7700-input
example.

Table 6.4: Active subspace dimension selections for gap-based criteria [11], principal component
analysis with varying threshold values [22], and error-based criteria with varying tolerances [18] for
the 7700-input example.

Gap PCA Error Tolerance
Method 0.75 0.90 0.95 0.99 10−3 10−4 10−5 10−6

Gradient-Based 1 2 6 9 24 1 13 90 233
Initialized AM 1 1 1 1 2 1 2 2 2

99

errors are machine epsilon once the eigenvalues drop off, since the error-based criteria is strongly

related to the decay in the eigenvalue spectrum.

The root mean squared errors (4.7) for the 1st-order multivariate polynomial response surfaces

are plotted in Figure 6.15(b) for the first 450 dimensions. The slower decay observed in the initialized

adaptive Morris errors is due to difference in eigenvalue spectrum; columns 3 through 450 contribute

very little to the decrease in response surface error because of their correspondingly insignificant

eigenvalues. To visually depict the accuracy of the response surfaces, we plot the observed keff values

for 100 testing points versus the predicted outputs using the 25-, 75-, 150-, and 300-dimensional

active subspaces for the two methods in Figure 6.16. As the number of dimensions increases, we

observe a tighter fit to the diagonal axis that represents a perfect match in predicted versus observed

outputs.

100

Observed keff

1.034 1.036 1.038 1.04
Pr

ed
ic

te
d

k ef
f

1.034

1.035

1.036

1.037

1.038

1.039

1.04
Gradient-Based

Observed keff

1.034 1.036 1.038 1.04

Pr
ed

ic
te

d
k ef

f

1.034

1.035

1.036

1.037

1.038

1.039

1.04
Initialized AM

(a)

Observed keff

1.034 1.036 1.038 1.04

Pr
ed

ic
te

d
k ef

f

1.034

1.035

1.036

1.037

1.038

1.039

1.04

Observed keff

1.034 1.036 1.038 1.04
Pr

ed
ic

te
d

k ef
f

1.034

1.035

1.036

1.037

1.038

1.039

1.04

(b)

Observed keff

1.034 1.036 1.038 1.04

Pr
ed

ic
te

d
k ef

f

1.034

1.035

1.036

1.037

1.038

1.039

1.04

Observed keff

1.034 1.036 1.038 1.04

Pr
ed

ic
te

d
k ef

f

1.034

1.035

1.036

1.037

1.038

1.039

1.04

(c)

Observed keff

1.034 1.036 1.038 1.04

Pr
ed

ic
te

d
k ef

f

1.034

1.035

1.036

1.037

1.038

1.039

1.04

Observed keff

1.034 1.036 1.038 1.04

Pr
ed

ic
te

d
k ef

f

1.034

1.035

1.036

1.037

1.038

1.039

1.04

(d)

Figure 6.16: Observed versus predicted keff values for (a) 25, (b) 75, (c) 150, and (d) 300 dimensions
for the gradient-based (left) and initialized adaptive Morris (right) methods.

101

CHAPTER

7

CONCLUSIONS

In this dissertation, we have made contributions to two fundamental areas of uncertainty quantifi-

cation, advancing the field of model calibration by employing an information-theoretic approach to

the calibration of low-fidelity codes using simulated data from high-fidelity models, and expanding

the options for surrogate model and response surface construction by designing a gradient-free

approach to active subspace construction. We summarize the major contributions of this work

below.

In Part II, we focused on a high-to-low fidelity model calibration methodology. This investigation

emphasized the need to be able to calibrate low-fidelity models using a limited number of validated

high-fidelity code evaluations. Ideally, one would employ experimental data but, for complex appli-

cations, this is often physically infeasible or prohibitively expensive. Alternatively, one can employ a

validated high-fidelity code to generate synthetic data, which can be used to calibrate lower-fidelity

models. By using a validated high-fidelity code to calibrate parameters in the low-fidelity model,

one can cover the state space that is relevant to the quantities of interest that we ultimately want to

predict. Whereas experimental data is preferable, we often do not have the option of collecting it

throughout the state space.

We employed a Bayesian experimental design strategy in which we optimize the mutual informa-

tion between a set of model parameters and the corresponding prediction outputs to select designs

in an order that will maximize the information gain while minimizing the number of evaluations

required for calibration purposes. Whereas in this investigation we chose to specify a fixed number of

102

design conditions to be used for calibration of the low-fidelity model, one could choose to terminate

the iteration procedure when the information gain decreases below a specified tolerance.

The result of this process is the construction of a low-fidelity model that exhibits the primary

characteristics of the high-fidelity model necessary to fit the provided data. The evaluation of this

low-fidelity model is much more efficient in both time and computational costs. The uncertainties

present in the new model may be quantified so that future observations may be predicted with

known levels of uncertainty as illustrated by the prediction intervals in Figure 3.9.

We note that the k th-nearest neighbor (k NN) analysis, used to compute the mutual information

between design conditions and low-fidelity model parameters, requires repeated evaluation of the

low-fidelity model to determine optimal evaluation conditions ξn . For computationally intense

models, this direct evaluation may be infeasible. In such cases, surrogate models may be required

to determine the optimal evaluation designs at which one subsequently evaluates the high-fidelity

model.

Here we focused on the implementation of the information-theoretic design framework for

applications in which validated high-fidelity codes were used to generate synthetic data in lieu of

experimental data. We note that the same framework can be employed for experimental design for

applications in which physical experiments are feasible.

In Part III, we demonstrated the development and effectiveness of a gradient-free active subspace

method for functions which vary primarily in several dominant directions, particularly in cases

where there is rapid decay of singular values. For problems such as these, we can identify the most

influential parameters or combinations of parameters, realign our coordinates with the associated

directions, and project the problem onto a much lower-dimensional subspace on which the behavior

of the original function can still be accurately characterized. It has been shown that this method is

far superior to local sensitivity analysis.

This dissertation has extended work in the area of Morris screening, adapting the classical

Morris screening algorithm to allow for construction of a gradient matrix approximation using

Morris elementary effects. We developed two new gradient-free active subspace methods. The first

was based on standard Morris screening where neighbors differing in only one component were

used to construct the coarse derivative approximations. The second utilized an adaptive Morris

algorithm where adaptive step sizes and directions were used in the construction of the elementary

effects used for the gradient approximation. This was done to maximize coverage of the input space,

maximize accuracy of the gradient in small regions where there is a great deal of local sensitivity in

a few dominant directions, and minimize function evaluations in regions that are nearly invariant.

Both algorithms may be used in cases where gradient information is unavailable or difficult to

obtain.

To account for the prohibitively high dimensions that one can encounter in applications such as

103

neutron transport models, we introduced an initialization algorithm, which can be coupled with the

adaptive Morris algorithm to make possible the construction of active subspaces for examples with

input spaces that are very high-dimensional. As illustrated in the final two examples of Chapter 6,

the adaptive Morris method coupled with the initialization algorithm performs comparably with

the other available methods, particularly for moderate-dimensional examples, and does so much

more efficiently than performing gradient approximation on the full input space. We will continue

to investigate an extended initialization algorithm that performs more accurately in very high-

dimensional scenarios.

We also considered various dimension selection criteria, comparing their advantages and dis-

advantages for the various active subspace methods. We demonstrated that error-based methods,

while potentially useful for the gradient-based and finite-difference Morris algorithms, are not

appropriate for use with the adaptive Morris algorithm due to the rapid decay of the singular values

that results from the termination of the function evaluations after a certain threshold is met. The

gap-based dimensions generally agree between all methods, but tend to be more liberal about the

errors allowed in the resulting response surfaces. By constructing simple multivariate polynomial

response surfaces for each possible dimension and comparing the resulting errors, we get a better

idea of the necessary dimension for accuracy in future predictions, depending on a user-specified

error threshold.

Though our methods were verified through use of a neutronics code that possesses adjoint

capabilities, the algorithms clearly have the potential to be important for applications where adjoints

are not available. For example, in the thermal-hydraulics component of nuclear reactor simulations,

it is common to employ subchannel codes such as COBRA-TF [43] and CFD codes such as Hydra-

TH [39], which do not contain adjoint capabilities. For these applications, gradient-based methods

for active subspace will not be applicable, and so they can benefit from the use of our gradient-free

algorithms.

104

REFERENCES

[1] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu, “An optimal algorithm for

approximate nearest neighbor searching in fixed dimensions,” Journal of the ACM, 45(6): 891-

923, 1998.

[2] Y. Bang, H.S. Abdel-Khalik, and J.M. Hite, “Hybrid reduced order modeling applied to nonlinear

models,” International Journal for Numerical Methods in Engineering, 91, pp. 929-949, 2012.

[3] J. Beck and S. Guillas, “Sequential Design with Mutual Information for Computer Experiments

(MICE): Emulation of a Tsunami Model”, arXiv:1410.0215v1, 2014.

[4] C. Bryant and G. Terejanu, “An Information-Theoretic Approach to Optimally Calibrate Approx-

imate Models”, American Institute of Aeronautics and Astronautics, 2012.

[5] D.G. Cacuci, Ed., Handbook of Nuclear Engineering, Springer-Verlag, New York, 2010.

[6] F. Campolongo, J. Cariboni, and A. Saltelli, “An effective screening design for sensitivity analysis

of large models,” Environmental Modeling and Software, 22, pp. 1509-1518, 2007.

[7] F. Campologno and J. Cariboni, “Sensitivity analysis: how to detect important factors in large

models,” Institute for the Protection and Security of the Citizen, 2007.

[8] K.M. Case and P.F. Zweifel, 1967, Linear Transport Theory, Addison-Wesley, Reading, MA.

[9] J. Charrier, “Strong and weak error estimates for elliptic partial differential equations with

random coefficients,” SIAM Journal of Numerical Analysis, 50(1), pp. 216-246, 2012.

[10] P.G. Constantine, E. Dow, and Q. Wang, “Active subspace methods in theory and practice:

applications to kriging surfaces,” SIAM Journal of Scientific Computing, 36(4), pp. A1500-A1524,

2014.

[11] P.G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter

Studies, SIAM Spotlights, Philadelphia, PA, 2015.

105

[12] P.G. Constantine, MATLAB code, https://bitbucket.org/paulcon/active-subspace-methods-in-

theory-and-practice.

[13] P.G. Constantine, “Random Field Simulation”, MATLAB code, http://www.mathworks.com/

matlabcentral/fileexchange/27613-random-field-simulation.

[14] J.J. Duderstadt and L.J. Hamilton, Nuclear Reactor Analysis, John Wiley and Sons, New York,

1976.

[15] A. Gittens, J.A. Tropp, “Tail bounds for all eigenvalues of a sum of random matrices,”

arXiv:1104.4513, 2011.

[16] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., Baltimore: Johns Hopkins University

Press, 1996.

[17] H. Haario, M. Laine, A. Mira, and E. Saksman, “DRAM: Efficient adaptive MCMC”, Statistics

and Computing, 16(4): 339-354, 2006.

[18] N. Halko, P.G. Martinsson, and J.A. Tropp, “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions,” SIAM Review, 53(2), pp. 217-

288, 2011.

[19] M. Herman and A. Trkov, “ENDF-6 Formats Manual,” Brookhaven National Laboratory, 2009.

[20] J.T. Holodnak, Topics in Randomized Algorithms for Numerical Linear Algebra, Ph.D. Thesis,

2015, http://www.lib.ncsu.edu/resol ver/1840.16/10327.

[21] X. Huan and Y.M. Marzouk, “Simulation-based optimal Bayesian experimental design for

nonlinear systems”, Journal of Computational Physics, 232(1): 288-317, 2013.

[22] I.T. Jolliffe, Principal Component Analysis, Springer Verlag, 2nd ed., 2002.

[23] M.C. Kennedy and A. O’Hagan, ”Predicting the output from a complex computer code when

fast approximations are available”, Biometrika, 87: 1-13, 2000.

106

[24] M.C. Kennedy and A. O’Hagan, ”Bayesian calibration of computer models”, Journal of the Royal

Statistical Society, Series B 63: 425-450, 2001.

[25] B.A. Khuwaileh, “Scalable methods for uncertainty quantification, data assimilation, and target

accuracy assessment for multi-physics advanced simulation of light water reactors,” Ph.D.

Thesis, North Carolina State University, 2015.

[26] B.A. Khuwaileh and H.S. Abdel-Khalik, “Subspace methods for multi-physics reduced order

modeling in nuclear engineering applications,” Transactions of the American Nuclear Society,

110: 196-199, 2014.

[27] A. Klimke, MATLAB Sparse Grid Interpolation Toolbox, http://www.ians.uni-stuttgart.

de/spinterp/

[28] S. Konishi and G. Kitagawa, Information Criteria and Statistical Modeling, Springer New York,

2008.

[29] L.F. Kozachenko and N.N. Leonenko, “Sample Estimate of the Entropy of a Random Vector”,

Problems of Information Transmission, 23(2): 95-101, 1987.

[30] A. Kraskov, H. Stogbauer, and P. Grassberger, “Estimating mutual information”, Physical Review

E, 69(6), 2004.

[31] A. Lewis, R.C. Smith, and B. Williams, “Gradient-free active subspace construction using Morris

screening elementary effects,” Computers and Mathematics with Applications, Submitted.

[32] A. Lewis, R.C. Smith, B. Williams, M. Morris, B.A. Khuwaileh, “Gradient-free construction of

active subspaces for dimension reduction in complex models with applications to neutronics,"

SIAM/ASA Journal on Uncertainty Quantification, Submitted.

[33] J. Liepe, S. Filippi, M. Komorowski, and M.P.H. Stumpf, “Maximizing the Information Content

of Experiments in Systems Biology”, PLOS Computational Biology, 9(1), Jan. 2013.

107

[34] W. Luo and B. Li, “Combining eigenvalues and variation of eigenvectors for order determination,”

Biometrika, 99(1), pp. 1-12, 2013.

[35] Mathworks, MATLAB Partial Differential Equations Toolbox, http://www.mathworks.com/

products/pde/.

[36] M.D. Morris, “Factorial sampling plans for preliminary computational experiments,” Techno-

metrics, 33(2), pp. 161-174, 1991.

[37] D.M. Mount, “ANN Programming Manual, Version 1.1,” University of Maryland, 2010.

[38] V.A. Mousseau, “A fully implicit, second order in time, simulation of a nuclear reactor core”,

Proceedings of ICONE 14, International Conference on Nuclear Engineering, 2014.

[39] R.R. Nourgaliev, M.A. Christon, J. Bakosi, R.B. Lowrie, and L.A. Pritchett-

Sheats, “Hydra-TH: a thermal-hydraulics code for nuclear reactor applications,”

Fifteenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15),

2013.

[40] C.E. Rasmussen, C.K.I. Williams, “Gaussian processes for machine learning”, Vol. I, MIT Press,

Cambridge, MA, 2006.

[41] C.E. Rasmussen, H. Nickisch, MATLAB code, http://www.gaussianprocess.org/gpml/

code/matlab/doc/.

[42] T.M. Russi, “Uncertainty quantification with experimental data and complex system models,”

PhD thesis, UC Berkeley, 2010.

[43] R.K. Salko and M.N. Avramova, “COBRA-TF Subchannel Thermal-Hydraulics Code (CTF) The-

ory Manual,” Consortium for the Advanced Simulation of Lightwater Reactors, 2015.

[44] A. Saltelli, M. Ratto, S. Tarantola, and F. Campolongo, “Sensitivity analysis practices: Strategies

for model-based inference,” Reliability Engineering and System Safety, 91, pp. 1109-1125, 2006.

108

[45] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola,

Global Sensitivity Analysis: The Primer, John Wiley and Sons, Chichester, UK, 2008.

[46] SCALE6.1: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and

Design, ORNL/TM-2005/39, Version 6.1, June 2011. Available from Radiation Safety Information

Computational Center at Oak Ridge National Laboratory as CCC-785.

[47] SCALE/TRITON Primer: A Primer for Light Water Reactor Lattice Physics Calculations,

ORNL/TM-2011/21, November 2012. Available from Radiation Safety Information Computa-

tional Center at Oak Ridge National Laboratory.

[48] J.P. Schafer and H.S. Abdel-Khalik, “Subspace Multi-Scale Approach for Reactor Analysis, Part 1:

Energy Variable”, International Conference on Mathematics, Computational Methods & Reactor

Physics, 2009.

[49] P. Sebastini and H.P. Wynn, “Maximum entropy sampling and optimal Bayesian experimental

design”, Journal of the Royal Statistical Society, Series B 62(1): 145-157, 2000.

[50] C.E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal, Vol.

27: 379-423, 1948.

[51] G. Sin, K. Gernaey, “Improving the Morris method for sensitivity analysis by scaling the ele-

mentary effects,” Proceedings of the 19th European Symposium on Computer Aided Process

Engineering - ESCAPE19, Eds. J. Jezowski and J. Thullie, Oxford, UK, pp. 925-930, 2009.

[52] K.S. Smith, “Assembly Homogenization Techniques for Light Water Reactor Analysis”, Progress

in Nuclear Energy, Vol. 17(3): 303-335, 1986.

[53] R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM,

Philadelphia, PA, 2014.

[54] W.M. Stacey, Nuclear Reactor Physics, John Wiley and Sons, New York, 2001.

109

[55] G. Stewart, “Error and perturbation bounds for subspaces associated with certain eigenvalue

problems,” SIAM Review,15: 727-764, 1973.

[56] M. Stoyanov and C.G. Webster, “A gradient-based sampling approach for dimension reduction of

partial differential equations with stochastic coefficients,” International Journal for Uncertainty

Quantification, 5(1), pp. 49-72, 2015.

[57] H.F. Stripling, M.L. Adams, R.G. McClarren, B.K. and Mallick, “The Method of Manufactur-

ing Universes for validating uncertainty quantification methods”, Reliability Engineering and

System Safety, 96(9): 1242-1256, Jan. 2011.

[58] G.L. Székely and M.L. Rizzo, “Energy Statistics: A class of statistics based on distances,” Journal

of Statistical Planning and Inference, Vol. 143: 1249-1272, 2013.

[59] G. Terejanu, T. Oliver, and C. Simmons, “Application of Predictive Model Selection to Coupled

Models”, Proceedings of the World Congress on Engineering and Computer Science, Vol. 2, Oct.

2011.

[60] G. Terejanu, R.R. Upadhyay, and K. Miki, “Bayesian experimental design for the active nitration

of graphite by atomic nitrogen”, Experimental Thermal and Fluid Science, Vol. 36, Jan. 2012, pp.

178-193.

[61] J.A. Tropp, “User-friendly tail bounds for sums of random matrices,” Foundations of Computa-

tional Mathematics, 12: 389-434, 2012.

110

APPENDICES

111

APPENDIX

A

DELAYED REJECTION ADAPTIVE

METROPOLIS ALGORITHM

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm [17, 53]was developed to efficiently

sample posterior densities for models with highly nonlinear parameter dependencies and potentially

correlated parameters. In basic Metropolis algorithms, a Markov chain is constructed so that its

stationary distribution is the posterior distribution of the parameters. This is achieved by employing

a proposal distribution that incorporates, to the degree possible, the geometry of the distribution.

Haario et al. [17] furthered this approach by including both an adaptive step that updates the

proposal covariance matrix as further information is gained about the parameter space, and a

“delayed rejection” step that constructs an alternative parameter candidate—which will induce

greater mixing if the first candidate is rejected rather than retaining the initial estimate—this is the

foundation of the DRAM algorithm. The DRAM method is outline in in Algorithms 9 and 10; for

more details on the implementation of DRAM see [17, 53].

112

Algorithm 9 Delayed Rejection Adaptive Metropolis with Noninformative Prior [17, 53]

(1) Set design parameters ns ,sp ,σ2
s , k0 and number of chain iterates M .

(2) Determine θ 0 =arg minθ
∑n

i=1[vi − fi (θ)]2.

(3) Set SSθ 0 =
∑n

i=1[vi − fi (θ 0)]2.

(4) Compute initial variance estimate s 2
0 =

SSθ0

n−p for n the number of data points and p the number
of parameters.

(5) Construct covariance estimate V0 = s 2
0

�

χT (θ 0)χ(θ 0)
�−1

and R0 = chol(V0)where the sensitivity
matrix has components

χi k (θ
0) =

∂ fi (θ 0)
∂ θk

.

for k = 1, ..., M

(a) Sample zk ∼N (0, I).

(b) Construct candidate θ ∗ = θ k−1+R T
k−1zk .

(c) Sample uα ∼U (0, 1).

(d) Compute SSθ ∗ =
∑n

i=1[vi − fi (θ ∗)]2.

(e) Compute α(θ ∗|θ k−1) =min
�

1, e −[SSθ ∗−SSθk−1]/2s 2
k−1

�

.

if uα <α,

Set θ k = θ ∗, SSθ k = SSθ ∗ .

else

Enter Algorithm 10.

end

(g) Update s 2
k ∼ Inv-gamma(aval, bval), where

aval = 0.5(ns +n) , bval = 0.5(nsσ
2
s +SSθ k).

if mod (k , k0) = 1

Update Vk = sp cov(θ 0,θ 1, ...,θ k) and Rk = chol(Vk).

else

Set Vk =Vk−1 and Rk =Rk−1.

end

end

113

Algorithm 10 Delayed Rejection Component of DRAM with Noninformative Prior [17, 53]

(1) Set the design parameter γ2 =
1
5 .

(2) Sample zk ∼N (0, I).

(3) Construct second-stage candidate θ ∗2 = θ k−1+γ2R T
k−1zk .

(4) Sample uα2
∼U (0, 1).

(5) Compute SSθ ∗2 =
∑n

i=1[vi − fi (θ ∗2)]2.

(6) Compute

α2(θ
∗2|θ k−1,θ ∗) =min

�

1,
π(θ ∗2|v)J1(θ ∗|θ ∗2)[1−α(θ ∗|θ ∗2)]

π(θ k−1|v)J1(θ ∗|θ k−1)[1−α(θ ∗|θ k−1)]

�

,

where J1(θp |θc) is the first stage proposal distribution from (6a-b) of Algorithm 3 for the move
from θc to θp .

if uα2
<α2,

Set θ k = θ ∗2 , SSθ k = SSθ ∗2 .

else

Set θ k = θ k−1 , SSθ k = SSθ k−1 .

end

Note: The choice of γ2 =
1
5 in Step (1) is common, but other values are reasonable. The choice of

γ2 < 1 ensures that the second-stage proposal function is narrower than the first, increasing the
mixing of the chain.

114

APPENDIX

B

DERIVATION OF K NN ESTIMATE FOR

MUTUAL INFORMATION

Here we present the derivation of the k NN estimate for mutual information (3.6) as developed

in [30] by Kraskov et al. We generalize to any two random variables X and Y —this can easily be

adapted to measure the information between a random variable and a set of model parameters, as

done in Chapter 3.

We begin by defining the Shannon entropy [50] of a random variable X with density µ(x) as

H (X) =−
∫

µ(x) log(µ(x))d x , (B.1)

where the log function is taken to be the natural logarithm for the remainder of this appendix. We

can view (B.1), up to the minus sign, as the average of log(µ(x)) over the domain of the x variable.

For a set of unbiased estimators Ûlog(µ(xi)), we create the estimator

Ĥ (X) =−
1

N

N
∑

i=1

Ûlog(µ(xi)),

which estimates H (X) from a random sample {x1, x2, ..., xN } of N realizations of X . To obtain the
Ûlog(µ(xi)) estimators, consider a probability distribution Pk (ε) for the distance between the point xi

115

and its k th-nearest neighbor. The quantity Pk (ε)dε represents the probability that one point falls

within a distance r ∈ [ε/2, ε/2+dε/2] from xi , k −1 points are at distances smaller than ε/2 from

xi , and N −k −1 points are at distances larger than ε+dε/2 from xi . We denote the mass of the

ε-ball centered at xi by pi (ε); that is,

pi (ε) =

∫

||ξ−xi ||<ε/2
µ(ξ)dξ.

Then the probability density of the distance ε between xi and its k th-nearest neighbor can be

expressed as

Pk (ε) = k

�

N −1

k

�

d pi (ε)
dε

pi (ε)
k−1(1−pi (ε))

N−k−1. (B.2)

Note that
∫

Pk (ε)dε= 1; that is, Pk (ε) is correctly normalized. Using (B.2), we compute the expec-

tation of the mass of an ε-ball centered at xi with respect to the distribution of the distance to its

k th-nearest neighbor

E(log(pi (ε))) =

∫ ∞

0

Pk (ε) log(pi (ε))dε

= k

�

N −1

k

�∫ 1

0

log(p)p k−1(1−p)N−k−1d p

= ψ(k)−ψ(N), (B.3)

whereψ(x) denotes the digamma function,ψ(x) = 1
Γ

d Γ (x)
d x . To obtain the estimator for log(µ(xi)), we

assume that µ(xi) is constant on the entire ε-ball. The mass of the ε-ball can then be estimated by

pi (ε)≈ cdε
dµ(xi),

where d is the dimensionality of x and cd is the volume of the d -dimensional unit ball. By taking

the expectation of log(pi (ε)) and isolating log(µ(xi)), we obtain

log(µ(xi)) ≈ E[log(pi (ε))]− log(cd)−dE(log(ε))

= ψ(k)−ψ(N)− log(cd)−dE(log(ε)).

We note that the expectation of log(ε) can be estimated by the mean of the N sampled values

116

log(ε(i)),

E[log(ε)]≈
1

N

N
∑

i=1

log(ε(i)).

Therefore,

Ĥ (X) =ψ(k) +ψ(N) + log(cd) +
d

N

N
∑

i=1

log(ε(i)). (B.4)

Equation (B.4) is referred to as the Kozachenko-Leonenko estimator for the Shannon entropy of

a random variable X [29]. We can adapt this for multiple random variables as follows. Let Z = (X , Y)

be a joint random variable with maximum norm,

||z − z ′||=max{||x − x ′||, ||y − y ′||}.

Equations (B.2) and (B.3) still hold. We change only the dimensionality d to dz = dx +d y and the

volume of the dz -dimensional 1-ball to cdz
= cdx

cd y
, a result of Z having the maximum norm. It

then follows that

Ĥ (X , Y) =−ψ(k) +ψ(N) + log(cdx
cd y
) +

dx +d y

N

N
∑

i=1

log(ε(i)). (B.5)

Suppose the k th-nearest neighbor of zi is furthest in one of the x directions. Then, ε(i)/2 is the

distance to the (nx (i) +1)st neighbor of xi and

Ĥ (X) =
1

N

N
∑

i=1

ψ(nx (i) +1) +ψ(N) + log(cdx
) +

dx

N

N
∑

i=1

log(ε(i)). (B.6)

Similarly, we take

Ĥ (Y) =
1

N

N
∑

i=1

ψ(ny (i) +1) +ψ(N) + log(cd y
) +

d y

N

N
∑

i=1

log(ε(i)). (B.7)

We note that (B.7) is slightly biased; because the k -nearest neighbor of zi was assumed to be furthest

in one of the x directions, the distance ε(i)/2 is actually larger than the distance to the (ny (i)+1)st

neighbor. However, (B.7) is still considered a good approximation for H (Y) since it becomes exact

as N →∞ [30]. Combining (B.5), (B.6), and (B.7), we obtain our estimate (3.6) for the mutual

117

information between random variables X and Y :

I (X ; Y) ≈ Ĥ (X) + Ĥ (Y)− Ĥ (X , Y)

= ψ(k)−
1

N

�

N
∑

i=1

ψ(nx (i) +1) +
N
∑

i=1

ψ(ny (i) +1)

�

+ψ(N). (B.8)

As discussed in Section 3.2, the identification of the k th-nearest neighbors used in (B.8) can be

performed via either a brute force search, or through use of the more efficient approximate-nearest

neighbor (ANN) search algorithm.

118

	LIST OF TABLES
	LIST OF FIGURES
	I Introductory Material
	Overview of Topics
	High-to-Low Fidelity Model Calibration
	Gradient-Free Active Subspace Methods

	Applications
	Neutron Transport
	SCALE6.1

	Thermal-Hydraulics
	Hydra-TH
	COBRA-TF

	II High-to-Low Fidelity Model Calibration
	High-to-Low Framework
	Design Framework
	kNN Estimate of Mutual Information
	ANN Search Algorithm

	Verification of Mutual Information Algorithms
	Monte Carlo Method
	Verification Example

	Numerical Examples
	Steady State Heat Model
	Time-Dependent Diffusion Model
	Neutron Diffusion Model
	Particle Transport Model
	Hydra-TH CFD Code: Poiseuille Flow in a Pipe

	III Gradient-Free Methods for Active Subspace Construction
	Active Subspace Construction
	Methods for Construction
	Gradient-Based Active Subspace Method
	Gradient-Free Active Subspace Methods

	Determining the Dimension of the Active Subspace
	Gap-Based Dimension Selection
	Error-Based Dimension Selection
	PCA Dimension Selection
	Response Surface Dimension Selection

	Initialization Algorithm

	Proof of Convergence
	Finite Sampling Convergence
	Approximate Gradient Convergence
	Adaptive Morris Convergence

	Numerical Examples
	Elliptic PDE
	= 1: Rapid Eigenvalue Decay
	= 0.01: Gradual Eigenvalue Decay

	Extended Elliptic PDE
	SCALE6.1 Examples
	44-Dimensional Input Space
	132-Dimensional Input Space
	7700-Dimensional Input Space

	Conclusions
	REFERENCES
	APPENDICES
	Delayed Rejection Adaptive Metropolis Algorithm
	Derivation of kNN Estimate for Mutual Information

