
ABSTRACT

ACQUESTA, ERIN CAROLYN SOLFIELL. Cost and Benefit Analysis of Vaccination Strategies
for the HIV Virus. (Under the direction of Prof. Negash Medhin.)

For decades the human immunodeficiency virus (HIV), which left untreated leads to the

acquired immunodeficiency syndrome (AIDS), has plagued societies from both developed and

developing countries alike. Although there have been many successful intervention campaigns

for controlling the spread of the infection the fight to eradicate the virus continues. As an

important part of that fight, mathematical models of infectious diseases have been used to

better understand the spread of infection from an epidemiological perspective, as well as for the

purpose of analyzing the economic evaluation of intervention programs. An approach that is

not commonly applied considers the results from the epidemiological analysis in the economic

evaluation of intervention programs for the purpose of optimizing a strategy for intervention

that will control the spread of infections. For the research presented, we will consider an existing

HIV-transmission model, presented by Edwards et al. in the late 1990’s, that evaluated the costs

and benefits of vaccine programs. The original authors considered the economic evaluation of

vaccines with varying efficacy and duration to determine a minimum requirement for each that

will result with an outcome where the benefits, measured in quality-adjusted life years (QALYs),

have a broader impact than the introduction of adverse effects. In our research we will build

on Edwards et al.’s findings and consider optimizing a strategy for administering the vaccines

in the event that both vaccines are available.

Considering the success that various HIV vaccines have had in clinical trials, scientist are

very optimistic about the development of a vaccine in the future. This puts an emphasis on the

importance for understanding further analysis regarding the cost and benefits of various vaccine

programs, the impact that adverse effects can have, and the methods for comparing the benefits

to competing intervention programs. Therefore, the current research will start on the path of

exploring the epidemiological analysis of the HIV-transmission model with vaccine intervention

programs for the purpose of understanding more about the impact the vaccines will have on

controlling the spread of the virus. From a mathematical perspective this implies studying the

properties of the dynamics governing the projections of the model for the equilibria and their

stability. Then the consideration for how the vaccines are administered can be made in a way

that will result with an efficient balance between the multiobjective optimization for minimizing

monetary cost and increasing QALYs. To do so, we will utilize principles from optimal control

theory and multiobjective optimization, then apply appropriate numerical methods to derive the

solutions. Confirming that the result will generate a ‘better’ outcome will be done by comparing

the cost-effective analysis to alternative strategies and evaluate that it will meet the appropriate



criterion for optimality from the principles defined by optimal control theory.

To conclude a well-rounded analysis of the infectious disease model, the use of the adjoint

variable method will allow us to determine the impact that the variations in the parameters

will have on results for the objective function. Then consideration for the impact that the most

highly sensitive parameter will have on the outcome for the optimal intervention strategy is

further explored.

The results of the research as a whole indicate the importance of analyzing the dynamics of

an infectious disease model whenever the consideration for economic evaluation of intervention

programs is made. This will give researchers a full picture of the impact each program will have

on the spread of the infection, while highlighting primary areas of concern.
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Chapter 1

Introduction

For decades the human immunodeficiency virus (HIV), which left untreated leads to the acquired

immunodeficiency syndrome (AIDS), has plagued societies from both developed and developing

countries alike. According to the National Institute of Allergies and Infectious Diseases (NIAID),

a component of the National Institute of Health (NIH), there are 50,000 new infections in the

United States each year and over 34 million people worldwide currently living with HIV [40].

At the local, federal, and global levels, efforts have been made to both manage and treat those

who are already infected as well as addressing ways to prevent new infections from occurring.

Although researchers have been making significant progress in both areas, there is still much

more that needs to be done in the fight against HIV and AIDS.

A key component to this fight is the use of mathematical modeling. For HIV research

there are two primary types of models used. The first type of modeling, we will refer to as HIV-

pathogen models, are used to interpret the interaction between the virus and the human immune

system. Researchers will refer to this type of modeling when they are interested in understanding

the immunology of the HIV virus as a pathogen [26]. The second type of modeling, is HIV-

transmission models. These models interpret the likelihood that the virus will transfer from one

individual to another. Researchers interested in understanding the epidemiology of the virus

will refer to these types of models instead. The research we are presenting will focus on an

HIV-transmission model. The purpose is to understand the impact that various intervention

strategies will have on an infected society.

The model under consideration was developed, by Edwards et al. in the late 1990’s, to

determine what the expectations should be for both preventative and therapeutic vaccines to

be considered cost-effective [13]. For the preventative vaccine the researchers allowed both the

efficacy and duration of the vaccine to vary. This allowed them to evaluate the impact adverse

effects could have on cost-effectiveness. For the therapeutic vaccine, the primary parameters

were reduction to infectivity and duration in the asymptomatic phase of infection. They then
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considered how cost-effective a therapeutic vaccine would be for various infectivity rates and

duration.

The contributions we make to the existing model include the dynamical analysis of four

variations of the model: 1○ the baseline HIV-transmission model without an intervention; 2○
the impact of a therapeutic vaccine only, 3○ the impact of a preventative vaccine only; and 4○
the analysis of the system when the combination of both vaccines is offered during the same

time period. This leads to the consideration of optimizing an intervention strategy, related to

the timing and duration for each, utilizing methods from control theory and multi-objective

optimization. To evaluate the validity of the results from the analysis it is also necessary to

address the sensitivity of the output relative to the parameters of the model.

The organization of the subsequent chapters will be as follows. In chapter 2 we offer more

detail regarding the motivation for the current research, and provide the reader an understand-

ing of the policies and prevention methods currently in place to reduce the number of new

infections as well as manage the symptoms and infectivity of those already infected. Then in

chapter 3, we give a full description of the model under consideration as it was defined by the

original authors, along with the trajectories for each of the four possible state spaces of the

model and the cost-effective analysis of each. This leads us to chapter 4, where we determine

the physically relevant equilibria for each variation of the model and asses the stability for each

using the Routh-Hurwitz criterion.

Once we have determined the cost-effective analysis for the three intervention strategies,

as they relate to the baseline HIV-transmission model, as well as the dynamical analysis for

each state space, we can consider methods for optimizing an intervention strategy. In chapter

5 we introduce fundamental definitions, concepts and principles of optimal control theory and

multi-objective optimization, allowing us to structure a statement for the problem of optimizing

an intervention strategy. This implies that numerical methods for solving fundamental optimal

control problems can be applied to optimize an intervention strategy. While taking into consid-

eration the physical boundaries of the model, including the implications for the solution that

satisfies the optimality conditions we implement a direct numerical method that results in a

locally optimal solution. If the solution satisfies the necessary conditions for optimality, we can

then verify that the solution is also globally optimal. By comparing the results to the earlier

cost-effective analysis, we can further validate the solution as a more cost-effective strategy.

Up to this point, all of the analysis applied to the HIV-transmission model under consider-

ation took into account the assumptions for the parameters made by the original authors. In

chapter 6, we consider the sensitivity of the output for the model relative to its parameters.

Implementing the adjoint variable method for sensitivity analysis, we can quantify the impact

variations that the parameters have on the objective function as it relates to each interpretation

of the model. Comparing the results of the sensitivities for each of the model variations, we will
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be able to evaluate the impact that variations from each of the parameters has on the overall

solution to the optimal intervention strategy.

We conclude in chapter 7 with a summary for the research completed. Once we have com-

pleted the analysis of the HIV-transmission model and the optimization strategy, we will have

insight into areas for future research.

3



Chapter 2

The Fight Against HIV and AIDS

Since the onset of the HIV/AIDS epidemic in the early 1980s efforts made by medical doctors,

scientists, researchers, and policy makers in the fight against HIV and AIDS have led to a

decrease in the number of new infections and an increase in life expectancy for those infected.

According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) 2015 Facts Sheet,

there has been a 35% decrease in new infections since 2000 and a 42% decrease in AIDS related

deaths since 2004 [41]. Between prevention programs and treatment therapies the epidemic

has been on the decline for the last 10 to 15 years. Although there has been great success in

combating the virus, experts believe that progress will need to continue through 2030 before we

can expect to see an end to the HIV/AIDS epidemic. In joining the fight, we focus on analyzing

a deterministic HIV-transmission model for the purpose of optimizing cost-effective intervention

strategies with the intent to aid decision makers in allocating resources in an efficient manor.

2.1 Modeling the Spread and Control of Infectious Diseases

There are countless publications referencing mathematical modeling of infectious diseases. Some

are written for the purpose of defining the standards of modeling infectious diseases as well as

highlighting areas for development that will result with better accuracy [3, 4, 22, 26, 27]. Many

more focus on a particular disease, offering methods for deriving thresholds that characterize

conditions for model parameters that will result in an epidemic [2, 12, 37, 54, 38, 39]. This

mostly refers to epidemic models, where the analysis is restricted to the projections for a

single year [22]. The most notable development of analyzing epidemic models is known as

the R0 threshold. In epidemiological terms, R0 defines the number of secondary infections

expected for each infected individual. As an expression defined by the parameters of the model,

mathematically R0 is a bifurcation for which the stability of a disease-free equilibrium transfers

to the endemic equilibrium [22]. If R0 < 1, then the disease-free equilibrium is considered
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asymptotically stable and the disease is not considered a threat to the population. Otherwise,

when R0 > 1 the endemic equilibrium is asymptotically stable and the disease is expected to

persist, resulting with an epidemic and a need for controlling new infections.

To offer a more detailed description of the R0 threshold we will introduce a simple SIR (Sus-

ceptible, Infected, Recovery) model and give a brief description for the mathematical analysis

of the secondary infection rate, as it is presented by Hethcote in The Mathematics of Infectious

Diseases [22]. Consider the following system of differential equations,

dS(t)

dt
=µN − µS(t)− β I(t)S(t)

N
(2.1a)

dI(t)

dt
=β

I(t)S(t)

N
− γI(t)− µI(t) (2.1b)

dR(t)

dt
=γI(t)− µR(t), (2.1c)

where S(t) is the number of susceptible individuals at time t, I(t) is the number of infected

individuals, R(t) is the number of individuals who have recovered from infection, and N =

S(t) + I(t) + R(t) is the total population size. For the model described by (2.1) there is an

assumption made that the inflow of newborns into the susceptible class, µN , is equal to the

death rate for the total population, µS(t), µI(t) and µR(t). This implies that the size of the

total population is constant for all t ≥ 0 and if we let S(0) = S0, I(0) = I0 and R(0) = R0, then

N = S0 + I0 +R0 for t ≥ 0. The parameter µ can be better described in terms of its reciprocal,

where 1/µ is the average life expectancy for the population. The number of new infections,

βI(t)S(t)/N , can be described further in detail as the average number of contacts a susceptible

individual has with the infected population, βI(t)/N , where β is the average number of adequate

contacts. We will emphasize that in a more descriptive model the average number of adequate

contacts is typically broken down further into two distinct parameters for infectivity separate

from the number of contacts. For our current objective, to use the SIR model to briefly describe

the R0 threshold, assuming β to be the number of adequate contacts will be sufficient. The

final component of the model, γI(t), is the rate at which infected individuals recover from the

infection. As a more descriptive interpretation of the parameter γ, its reciprocal 1/γ, represents

the average infectious period.

To introduce the R0 threshold, Hethcote choses to reduce the system of differential equations

(2.1) by dividing the equations by N and only considering the dynamics for the resulting state

space with s(t) defining the proportion of the susceptible population at time t and i(t) is the

proportion of the infected population. Then we can assume the proportion of the population

that has recovered is r(t) = 1 − s(t) − i(t). Thus, the system of differential equations we will

use to describe the secondary infection rate, R0, that still holds all of the same properties as

(2.1), is defined by
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ds(t)

dt
=µ− µs(t)− βi(t)s(t) (2.2a)

di(t)

dt
=βi(t)s(t)− (γi(t) + µ)i(t), (2.2b)

with the initial conditions s(0) = s0 and i(0) = i0. The two equilibria of system (2.2) are defined

in terms of the parameters as the following,

(sdf , idf ) = (1, 0)

(se, ie) =

(
(µ+ γ)

β
,
µ(β − (µ+ γ))

β(µ+ γ)

)
.

In epidemiological terms, (sdf , idf ) is the disease-free equilibrium and (se, ie) is the endemic

equilibrium. For this model we will not give the full analysis to derive R0, instead we will

present Hethcote’s findings along with a brief examination of the properties of the equilibria

with various parameter selections. For the infectious disease model, described by (2.2), the

secondary infection rate is defined as

R0 =
β

(µ+ γ)
,

where 1/(µ + γ) is described as the average death-adjusted infectious period. Therefore, if we

reconsider the endemic equilibrium point for the system in terms of R0 we get

(se, ie) =

(
1

R0
,
µ(R0 − 1)

β

)
.

As we mentioned earlier, in mathematical terms the R0 threshold defines a bifurcation at

which the stability of the disease-free equilibrium transfers to the endemic equilibrium. To check

that this condition is met we will make a couple of couple of parameter selections so that we

can evaluate the stability for each equilibrium. The fixed assumptions we will make include

the following: 1○ the average life expectancy is 60 years (1/µ = 60 ⇒ µ = 1/60) and 2○ the

average infectious period is 3 years (1/γ = 3 ⇒ γ = 1/3). We will chose β to be defined such

that β = R0(µ+ γ), allowing us to consider each case for R0 < 1 and R0 > 1. To determine the

stability for each equilibria with particular parameter selections, we begin by linearizing system

(2.2) to get the following Jacobian matrix,

J =

[
−βi− µ −βs− µ
βi βs− (µ+ γ)

]
, (2.3)
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and the corresponding characteristic polynomial,

p(x) = x2 + (β(i− s) + 2µ+ γ)x+ (βi+ µ)((µ+ γ)− βs)− βi(βs+ µ). (2.4)

Thus, the roots of (2.4) can be solved at each of the equilibrium points, (sdf , idf ) and (se, ie),

giving us the eigenvalues for the system in a neighborhood of each equilibrium, which can then

be used to determine their stability. Therefore when we check each case, R0 < 1 and R0 > 1, we

will make the parameter selections such that R0 = 1± δ for 0 < δ. In table 2.1 we set δ = 0.001

and evaluate the roots to the characteristic polynomial at each of the equilibrium points. From

the choice of the δ in these two cases the results show a stable disease-free equilibrium when

R0 < 1 and a stable endemic equilibrium when R0 > 1.

Table 2.1: Roots to the characteristic polynomial for an si infectious disease model for R0 < 1
and R0 > 1.

R0 = 0.999 R0 = 1.001

(sdf , idf)
x ≈ −0.01667
x ≈ −0.00035

x ≈ −0.01667
x ≈ 0.00035

(se, ie)
x ≈ −0.01701
x ≈ 0.00036

x ≈ −0.01631
x ≈ −0.00037

We will emphasize that the simple SIR model has been presented to give a sufficiently

reasonable understanding for the R0 threshold for those that may not be familiar with the

mathematical analysis of infectious disease models. We will also note that, although a solution

for an R0 threshold cannot be evaluated for the model used in the current research, the impor-

tance for having a preliminary understanding is essential whenever the discussion of infectious

disease models is presented from an epidemiological perspective.

In addition to the epidemiological implication of a virus, infectious disease models are also

used quite extensively in the economic evaluation of intervention programs for controlling the

spread of infectious diseases [2, 10, 12, 13, 14, 15, 20, 28, 50, 53]. For the past century the most

successful means of controlling an infectious disease is by means of vaccinating [14]. Although

vaccinations have controlled the spread of infectious diseases like influenza, pertussis and the

human papillomavirus (HPV), to name a few, not all vaccines can be considered cost-effective.
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This is where transmission models are useful in determining which ones are not before they

are made available to the population. Taking into consideration the possibility of introducing

adverse effects, analyzing the cost-effectiveness of new and emerging vaccines is essential in

understanding when the benefits will out weigh the costs. To measure benefits of vaccinating,

researcher use a utility assessment for each health status, as they relate to a particular infectious

disease, known as quality-adjusted life years (QALYs) [45, 43]. The utility for each disease

related health status is defined on an interval between 0 and 1, where 0 indicates death and the

uninfected population will assume the value 1 since this is the standard of good health for which

all other health status’ will be measured against. After the introduction of QALYs in the 1970s

they have become the most commonly used parameters for measuring the undesirable health

consequences of acquiring an infection, allowing researchers a quantifiable means to measure

the benefits as they relate to the human factor of vaccinating the population [45].

Of the publications referenced thus far only two address the implications that the epidemi-

ological analysis has on optimizing intervention programs to control the spread of infections.

Castillo-Chavez and Feng defined an age-structured model to determine an optimal vaccination

strategy for a tuberculosis (TB) vaccine that determined the ideal age for which individuals

should be vaccinated [12]. Alister et al. analyzed a standard susceptible, infected, recovery (SIT)

model to evaluate optimal allocation of prevention and treatment resources for populations with

and without mixing [2]. A similar method for optimizing a strategy was implemented in both

cases. The group of researchers first determined the R0 threshold for their model then used

this as the objective to be minimized while considering constraints defined by the limited re-

sources available to do so. By targeting the R0 threshold to be minimized the conclusion that

the optimal result will define the best control for reducing the spread of the infection is a direct

result from the original interpretation of the dynamics. Although minimizing R0 results with

a reduction to the number of secondary infections it does not capture the full benefits of an

intervention. Alister et al. addresses this fact when they consider sensitivity analysis and con-

sider the alternative measure for QALYs gained. This leads to the possibility that optimization

methods can be applied with the objective of maximizing QALYs, especially for models that

do not define an R0 threshold.

Today the means to controlling the spread of HIV does not include any form of vaccina-

tion, but progress is being made with regards to both preventative and therapeutic vaccine

research. In anticipation for the future availability of a preventative vaccine and in considera-

tion that current therapies for infected individuals offer similar benefits to that of a therapeutic

vaccine, the research we will present in the subsequent chapters offers detailed analysis for an

HIV-transmission model with vaccine intervention for the purpose of optimizing the timing of

interventions.
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2.2 Controlling the Spread of HIV

2.2.1 Preventative Vaccine Research and Current Prevention Programs

As the worlds leading researcher in HIV/AIDS, the NIH has sponsored over 80 clinical trials of

more than 50 preventative vaccine candidates, both individually and in combination [1]. The

vaccine known as RV144, the first to demonstrate modest prevention, is the most notable and

only HIV vaccine tested in a Phase III clinical trial. Although the modest results were not

sufficient to receive FDA approval for production to the general public, it did give researchers

insight into developing a vaccine that one day will be. This led to HTVN 100, the latest

preventative vaccine candidate currently in Phase I/II clinical trials in South Africa. Building

from the successes of RV144 there is great anticipation that HVTN 100 will show more potential

for preventing HIV infection.

In the meantime, in the absence of a preventative vaccine, policy makers have had to con-

sider alternatives for preventing the spread of HIV. These efforts include screening for infected

individuals, running HIV awareness campaigns, and early education programs. Noting again

that there has been a decrease by 35% of new infections since 2000 implies these efforts have

been effective, most notably in developed countries.

2.2.2 Therapeutic Vaccine Research and Antiretroviral Therapies

The prospects of developing a therapeutic vaccine have proven to be even more challenging than

the preventative vaccine. By definition, a therapeutic vaccine is a treatment that is designed to

stimulate the body’s immune system for the purpose of controlling an infection. The problem

with developing a therapeutic HIV vaccine relates to the virus’ ability to hide in particular

cells and going undetected for decades. By eluding researchers the development of a vaccine

that produces an effective immune response has been close to impossible. This does not imply,

however, that researchers have given up hope.

As an alternative to a therapeutic HIV vaccine the FDA has approved of more than 35

antiretroviral therapies. This form of treatment differs from a vaccine because they do not

enhance the immune system for fighting the virus. Instead, an antiretroviral therapy suppresses

the virus from replicating, thus mitigating the effects on the individuals system. Although the

antiretroviral therapies can be reasonable responses to the infection, when only one treatment

is administered the virus is capable of becoming immune. This leads to treatment plans known

as highly active antiretroviral therapy (HAART). HAART is the combination of three or more

drugs that can be used by newly infected individuals as well as patients with AIDS.
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Chapter 3

HIV-Transmission Model with

Vaccine Intervention Programs

The model that we will use as the focus of our analysis defines a deterministic compartmental

model for HIV-transmission for the homosexual male population of San Francisco, CA during

the early to mid 1990s [13]. Introduced by Edwards et al. in the late 1990s, the model was

generated for the purpose of analyzing how cost-effective vaccine programs will be with vary-

ing efficacy and duration, resulting with minimal requirements each vaccine must meet to be

considered a dominant program.

To begin the analysis of the model for the purpose of optimizing an intervention strategy

we will introduce the HIV-transmission model with vaccine intervention in detail, then evaluate

the short term projections for four variations of the model.

Table 3.1: HIV-transmission model with vaccine intervention programs: compartment classifi-
cations.

Yi,j(t) Disease Status, i Vaccination Status, j

Y0,0(t)

Y0,1(t)
Susceptible

Unvaccinated

Vaccinated (Preventative)

Y1,0(t)

Y1,1(t)

Asymptomatic

Unaware

Unvaccinated

Vaccinated (Preventative)

Y2,0(t)

Y2,1(t)

Asymptomatic

Aware

Unvaccinated

Vaccinated (Therapeutic)

Y3,0(t) Symptomatic Unvaccinated

Y4,0(t) AIDS Unvaccinated
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3.1 Model Description

The dynamics for HIV-transmission with vaccine intervention is given as the following system

of ordinary differential equations:

dY0,0(t)

dt
=I0,0 − νp(t)Y0,0(t)− µY0,0(t)− p0λ(t)Y0,0(t) + ωY0,1(t)

dY0,1(t)

dt
=νp(t)Y0,0(t)− µY0,1(t)− ωY0,1(t)− p0(1− ε)λν(t)Y0,1(t)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− σξY1,0(t)− νp(t)Y1,0(t) + ωY1,1(t)− µ1,0Y1,0(t)− µY1,0(t)

dY1,1(t)

dt
=p0(1− ε)λν(t)Y0,1(t) + νp(t)Y1,0(t)− ωY1,1(t)− σξY1,1(t)− µ1,1Y1,1(t)− µY1,1(t)

dY2,0(t)

dt
=I2,0 + σξ(Y1,0(t) + Y1,1(t))− νt(t)Y2,0(t)− µ2,0Y2,0(t)− µY2,0(t)

dY2,1(t)

dt
=νt(t)Y2,0(t)− µ2,1Y2,1(t)− µY2,1(t)

dY3,0(t)

dt
=I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− µ3,0Y3,0(t)− µY3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− µ4,0Y4,0(t)− µY4,0(t).

The initial population is distributed amongst the unvaccinated states according to the initial

prevalence and the average duration for each stage of infection. Both vaccine programs will

be initiated at time t = 0, therefore all three states related to the vaccinated populations are

initially set to zero. This gives us the following initial populations for each compartment of the

model,

Y0,0(0) = (1− φ0)Y0

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4

Yi,1(0) = 0, for i = 0, 1, 2,

such that Y0 =
∑i=4

i=0 Yi,0(0) and denotes the total size of the initial population. The state

variables Yi,j(t) represent the total population for each compartment of the model corresponding

to a classification for disease status i and vaccination status j. Each of the 8 compartments of

the model are defined in table 3.1. The fixed parameters, as well as the numerical assumptions

for each, can be found in tables 3.2 and 3.3.

In the dynamics there are two distinct representation for the rate of infection. The first,

λ(t), relative to the likelihood an unvaccinated susceptible individual becomes infected and the
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Table 3.2: HIV-transmission model with vaccine intervention programs: state dependent pa-
rameters and the numerical value for each.

State
variable

Immigration
Ii,0

Infectivity
βi,j

Mean duration
of disease

stage
1/µi,j (years)

Contact
rate

pi (per year)

Y0,0 0.9(µY0) - - 2

Y0,1 - - - 2

Y1,0 0.04(µY0) 0.066 7.1 2

Y1,1 - 0.066 7.1 2

Y2,0 0.04(µY0) 0.066 8.1 2

Y2,1 -
(0.066 · (1− βt))
0.25 ≤ βt ≤ 0.9

(8.1 + dt)
5 ≤ dt ≤ 20

2

Y3,0 0.02(µY0) 0.147 2.7 2

Y4,0 - 0.147 2.1 0.667

Table 3.3: HIV-transmission model with vaccine intervention programs: state independent pa-
rameters and the numerical value for each.

Description Parameter Value

Percent of susceptible and asymptomatic-unaware

populations that receives the preventative vaccine at time t
νp(t) 0.75

Percent of the asymptomatic-aware

population that receives the therapeutic vaccine at time t
νt(t) 0.75

Initial size of total population Y0 55, 816

Initial prevalence of the disease φ0 0.493

Non-AIDS-related annual death rate µ 0.0222

Fraction of population screened annually for HIV σ 0.15

True-positive rate of screening process ξ 0.983

Efficacy of preventative vaccine ε 0.75 ≤ ε ≤ 0.9

Mean duration, in years, of preventative vaccine 1/ω 10 ≤ 1/ω ≤ 20
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second, λν(t), for the likelihood a vaccinated susceptible individual will acquire the infection,

λ(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη00,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

λν(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη01,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

.

As a means to model the adverse effects of vaccinating, Edwards et al. introduced an ad-

ditional parameter η`k,ij defining the probability that a partnership, between an individual in

disease status ` with vaccination status k and an individual in disease status i and vaccination

status j, is not protected by a condom. Resulting with the distinction for the rate of infection

between susceptible individuals who are not vaccinated and those that are. The adverse effect

addressed by the model is the concern that vaccinated individuals will not practice the same

precautions that unvaccinated individuals do, by assuming vaccinated individuals reduce their

condom use by 25%. To emphasize the impact the individual behavioral changes will have on

the partnerships that result in transmission of the disease, the authors started with the in-

dividuals probability for condom use (hi,j) as they relate to each compartment of the model,

presented in table 3.4. In defining g`k,ij , the maximum of the two individuals probabilities for

using a condom, h`,k and hi,j results with the probability that a condom is used in a partnership

between an individual in disease status ` and vaccination status k with an individual in disease

status i and vaccination status j,

g`k,ij := max(h`,k, hi,j).

Table 3.4: HIV-transmission model with vaccine intervention programs: individuals probability
of using a condom.

Y0,0 Y0,1 Y1,0 Y1,1 Y2,0 Y2,1 Y3,0 Y4,0

hi,j 0.55 0.415 0.55 0.415 0.77 0.5775 0.85 0.85

Concluding with the probability that a partnership with a susceptible individual is not

protected by a condom, η00,ij and η01,ij , is the sum between the two mutually exclusive events

that the partnership can result in transmission of the virus: 1○ the condom is used, but fails to

work (which is assumed to occur 10% of the time); or 2○ a condom was not used at all. This

description gives us the following expressions,

η0k,ij := (0.1)g0k,ij + (1− g0k,ij) for k = 0, 1,
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along with table 3.5 where the probability for each partnership has been calculated.

Table 3.5: HIV-transmission model with vaccine intervention programs: probability that a
partnership is NOT protected by a condom.

Y0,0 Y0,1 Y1,0 Y1,1 Y2,0 Y2,1 Y3,0 Y4,0

Y0,0 0.505 0.505 0.505 0.505 0.307 0.4803 0.235 0.235

Y0,1 0.505 0.6287 0.505 0.6287 0.307 0.4803 0.235 0.235

We will point out that the adverse effects of vaccinating is not simply restricted to suscep-

tible population that is vaccinated. Notice that the probability that the partnership between a

susceptible individual and an asymptomatic and aware individual is not protected by a condom

increases when individuals from the asymptomatic and aware population become vaccinated,

regardless of whether or not their susceptible partner has been vaccinated. Alternatively, the

adverse effects for administering a preventative vaccine only occur when there is a partnership

between an individual that has received the preventative vaccine with an individual that is

unaware that they are infected with the virus. According to the calculations presented in table

3.5 we can see that the likelihood that the partnership between two individuals that are both

susceptible and vaccinated also goes up, but since there is no danger of this contact resulting

in a new infection it does not contribute to the adverse effects of vaccinating.

This concludes the introduction to the variable and parameter definitions of the HIV-

transmission model with vaccine intervention programs and leads us to a brief description

of the analysis presented by Edwards et al. to evaluate the cost-effectiveness of various vaccine

programs; where analyzing the preventative vaccine independently from the therapeutic vac-

cine. For the preventative vaccine there are three parameters in the HIV-transmission model

that relate directly to introducing the vaccine to the system: 1○ the percent of susceptible and

unaware-asymptomatic populations that receive the vaccine at time t (νp(t)); 2○ mean duration

of the vaccine, in years, (1/ω); and 3○ vaccine efficacy, (ε). The first of the three parameters

was assumed to be fixed, while the focus of their analysis was to allow both duration and effi-

cacy to vary. Similarly, the model introduces three therapeutic vaccine specific parameters: 1○
the percent of the aware-asymptomatic population that receives the vaccine at time t, (νt(t));

2○ average additional years added to the asymptomatic stage of the infection, (1/µν); and 3○
change in infectivity (1− βν). Again, the first of the three parameters was fixed and the other

two were allowed to vary for evaluating the cost effective analysis for alternative therapeutic

vaccine programs.
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To evaluate the cost-effectiveness of each vaccine program two integral equations were de-

fined. The first to quantify the expected accumulated cost, for both direct and indirect monetary

costs. As well as a second integral equation to measure the accumulated QALYs over a specified

time horizon,

C(T ) =

∫ T

0
[κpνp(t)(Y0,0(t) + Y1,0(t)) + κtνt(t)Y2,0(t)] e−rtdt+

∫ T

0

j=1∑
j=0

i=4∑
i=0

ciYi,je
−rtdt

Q(T ) =

∫ T

0

j=1∑
j=0

i=4∑
i=0

qiYi,j(t)e
−rtdt.

This introduces additional parameters related to the costs and benefits of vaccinating that are

presented and defined with their numerical values in table 3.6.

Table 3.6: HIV-transmission model with vaccine intervention programs: cost and benefit pa-
rameters and the numerical value for each.

Description Parameter Value

Per-person cost of preventative vaccine κp $1, 000

Per-person cost of therapeutic vaccine κt $1, 000

Annual discount rate r 0.05

Time horizon T 20

Average annual medical expenses:

Susceptible population c0 $3, 307

Unaware-asymptomatic population c1 $5, 467

Aware-asymptomatic population c2 $5, 467

Symptomatic population c3 $12, 586

AIDS population c4 $35, 394

Quality-adjustment for a year of life:

Susceptible population q0 1

Unaware-asymptomatic population q1 1

Aware-asymptomatic population q2 0.83

Symptomatic population q3 0.42

AIDS population q4 0.17

For the purposes of the research that we will present in the subsequent sections and the
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following chapters we will consider only dominant vaccine programs. A dominant vaccine pro-

gram is one that will save money and increases QALYs. The conclusion from the original authors

analysis, on a 20 year time horizon, resulted with two cases that a preventative vaccine program

is considered dominant: 1○ the efficacy of the vaccine is at least 75% and the mean duration

is at least 10 years; or 2○ the efficacy is at least 50% and the mean duration is at least 50

years. With regards to the therapeutic vaccine program there are three cases that result with a

dominant program: 1○ the vaccine adds at least 10 years to the asymptomatic stage of infection;

2○ the vaccine decreases infectivity by at least 50%; or 3○ the vaccine adds at least 5 years to

the asymptomatic stage of infection and decreases infectivity by at least 25%.

Based on these results we will make the following assumptions for the analysis regarding

optimization for the timing of vaccine strategies that minimizes cost and maximizes QALYs.

Assumptions:

• 75% of the respective population will be vaccinated, whenever either vaccine is adminis-

tered.

• The efficacy of the preventive vaccine is 75%.

• The mean duration of the preventative vaccine is 10 years.

• The therapeutic vaccine adds 5 years to the asymptomatic stage of the infection.

• The therapeutic vaccine reduces infectivity by 25%.

Thus, initiating our analysis of the model we begin by evaluating the projected outcomes and

cost-effectiveness on a time horizon of 20 years for each variation of the model: 1○ the baseline

HIV-transmission model without an intervention; 2○ the impact of a therapeutic vaccine only,

3○ the impact of a preventative vaccine only; and 4○ the analysis of the system when the

combination of both vaccines is offered during the same time horizon. Then concluding the

current chapter by comparing the results for each and determining which of the four alternatives

is the most cost-effective.

3.1.1 HIV-Transmission Dynamics without an Intervention

To apply the cost-effective analysis for each of the vaccine programs we begin with introducing

the baseline analysis for the system without an intervention. Removing all of the vaccine related

compartments and parameters we have the following system of ordinary differential equations:
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dY0,0(t)

dt
= I0,0 − (µ+ p0λ(t))Y0,0(t) (3.1a)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (3.1b)

dY2,0(t)

dt
= I2,0 + σξY1,0(t)− (µ2,0 + µ)Y2,0(t) (3.1c)

dY3,0(t)

dt
= I3,0 +

i=2∑
i=1

µi,0Yi,0(t)− (µ3,0 + µ)Y3,0(t) (3.1d)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t), (3.1e)

with the initial value

Y0,0(0) = (1− φ0)Y0 (3.2a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4. (3.2b)

Resulting with just one of the two rate of infection functions,

λ(t) =

∑i=4
i=1 piβi,0η00,i0Yi,0(t)∑i=4

i=0 piYi,0(t)
, (3.3)

and the integral functions for the accumulated cost and QALYs simplify to the following,

C(T ) =

∫ T

0

( i=4∑
i=0

ciYi,0(t)
)
e−rtdt (3.4a)

Q(T ) =

∫ T

0

( i=4∑
i=0

qiYi,0(t)
)
e−rtdt. (3.4b)

For the model without an intervention program we get a base understanding for the costs of

doing nothing. The accumulated monetary cost, C(T ), represents the general medical expenses

for the population as a whole. The accumulated QALYs, Q(T ), without an intervention present,

gives us a projection for the quality of life for the total population if nothing is done to control

the spread of infections.

To determine the expected cost for not implementing an intervention strategy we will turn to

numerical solvers to evaluate the initial value problem and corresponding integrals. Setting up

the problem in MatLab we add the two integrand expressions, (3.4a) and (3.4b), as additional

equations to the system (3.1). By applying the second fundamental theorem of calculus, given(∑i=4
i=0 ciYi,0(t)

)
e−rt and

(∑i=4
i=0 qiYi,0(t)

)
e−rt are each continuous on the open interval (0, T ),

17



for all T > 0, then the following holds true for any t ∈ (0, T )

dC(t)

dt
=
( i=4∑
i=0

ciYi,0(t)
)
e−rt (3.5a)

dQ(t)

dt
=
( i=4∑
i=0

qiYi,0(t)
)
e−rt. (3.5b)

By adding (3.5a) and (3.5b) to system (3.1) and setting C(0) = Q(0) = 0 we have the

following initial value problem:

dY0,0(t)

dt
= I0,0 − (µ+ p0λ(t))Y0,0(t) (3.6a)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (3.6b)

dY2,0(t)

dt
= I2,0 + σξY1,0(t)− (µ2,0 + µ)Y2,0(t) (3.6c)

dY3,0(t)

dt
= I3,0 +

i=2∑
i=1

µi,0Yi,0(t)− (µ3,0 + µ)Y3,0(t) (3.6d)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (3.6e)

dC(t)

dt
=
( i=4∑
i=0

ciYi,0(t)
)
e−rt (3.6f)

dQ(t)

dt
=
( i=4∑
i=0

qiYi,0(t)
)
e−rt, (3.6g)

with the initial values

Y0,0(0) = (1− φ0)Y0 (3.7a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4 (3.7b)

C(0) = 0 (3.7c)

Q(0) = 0. (3.7d)

Setting T = 20 and the parameters to their numerical values as they are defined in section 3.1

we applied the Runge-Kutta(4,5) algorithm using MatLab to generate the following projections.

For the expected cost and accumulated QALYs when no intervention is introduced during a

time horizon of 20 years we get the results presented in table 3.7. These values will be the bases

from which we will measure any gains and losses that each intervention program is projected
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to produce.

Table 3.7: Model without an intervention: expected accumulated cost and QALYs over a 20
year time horizon.

Monetary Cost, C(20) Accumulated QALYs, Q(20)

$3,778,541,557 495,630

Evaluating accumulated cost and QALYs only gives us part of the story, without an inter-

vention and an initial prevalence of 49.3%, over the course of 20 years, the total population is

projected to drop from 55,816 to a population of 35,714. In addition, we can expect to see a

drop in the prevalence of infection from 49.3% to 20%. Noting that the time horizon and the

total expected duration of infection,
∑k=4

k=1 1/µk,0, are both equal to 20 years and the initial

prevalence of the infection is 49.3% implies that at the end of only 20 years 49.3% of the initial

population is expected to die from AIDS related causes. We point this out with the purpose of

emphasizing the overall impact the infection has already had on the population. Alternatively,

with constant immigration into both uninfected and infected states, the population is continu-

ally replenishing guaranteeing that a distribution to all compartments of the model exists for

all time.

To get more detail about the mixing of the population, new infections, and the expected

trajectories for each compartment of the model we now address the graphs showen in figure 3.2.
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Figure 3.1: Model without an intervention: total population projections for a 20 year time
horizon.
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It is noted that each of the asymptomatic states are strictly decreasing, unlike the other three

states where we see more interesting behavior. For the first 4-6 years both the symptomatic and

AIDS populations are growing fairly consistently, while the susceptible population is strictly de-
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Figure 3.2: Model without an intervention: projections for each classe over a 20 year time
horizon.
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creasing. At the end of 6th year, even without an intervention, both the symptomatic and AIDS

population start to decrease, which is due to the already decreasing asymptomatic populations.

The impact the trajectories of the infectious states has on λ(t), the probability of acquiring the

infection at time t from any one partner, is shown in figure 3.3. Comparing the results for λ(t) to

the projections for the susceptible population, we can see that once the rate of infection drops

below about .009 (less than a 1% chance of acquiring the infection) the susceptible population

starts to increase. Even though it appears as though the system seems to correct itself, we

need to keep in mind the major impact the disease has already had on the population. Recall,

by the end of the 20 years, if nothing is done to intervene against the spread of the virus the

population is expected to decrease by 36%, with at least 46% of the initial population passing

away due to AIDS related causes.
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Figure 3.3: Model without an intervention: probability of acquiring the infection.

The results from analyzing the projections for the system without an intervention highlight

the need for a program that will control the spread of HIV. In the subsequent sections of this

chapter we will evaluate the predictions the model makes for each of the vaccine programs

independently then as a combined strategy, allowing the comparison to the made between each

alternative.

3.1.2 Therapeutic Vaccine Program

Introducing a vaccine program to the analysis of the model results in the addition of one

state, Y2,1(t) representing the asymptomatic, aware and vaccinated population. Recall, from

section 3.1 we made the assumption that a therapeutic vaccine is administered to 75% of the

asymptomatic and aware population. Setting the percentage of the population that receives the
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vaccine as a fixed parameter we will remove the time dependency from the notation, νt = νt(t) =

0.75 for all t ∈ [0, 20]. For those that receive the vaccine their infectivity will be reduced by

25% and an increase of 5 years added to the asymptomatic stage of the infection. By receiving

the vaccine there is also the assumption that the likelihood partnerships with the susceptible

population is not protected by a condom increases. After the vaccination wears off it is assumed

that infected individuals will transfer directly to the symptomatic stage of the infection. This

results with the following initial value problem governing the projections for each trajectory of

the model:

dY0,0(t)

dt
= I0,0 − (µ+ p0λ(t))Y0,0(t) (3.8a)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (3.8b)

dY2,0(t)

dt
= I2,0 + σξY1,0(t)− (νt + µ2,0 + µ)Y2,0(t) (3.8c)

dY2,1(t)

dt
= νtY2,0(t)− (µ2,1(t) + µ)Y2,1(t) (3.8d)

dY3,0(t)

dt
= I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (3.8e)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t), (3.8f)

with the initial values

Y0,0(0) = (1− φ0)Y0 (3.9a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4, (3.9b)

Y2,1(0) = 0. (3.9c)

We will now use the original expression for the rate of infection function that was introduced

in the beginning of the chapter,

λ(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη00,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

. (3.10)

Regarding the integral equations we will account for the additional cost of the therapeutic

vaccine in the accumulated cost equation,
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C(T ) =

∫ T

0

(
κtνtY2,0(t) +

j=1∑
j=0

i=4∑
i=0

ciYi,j(t)
)
e−rtdt (3.11a)

Q(T ) =

∫ T

0

( i=4∑
i=0

qiYi,0(t)
)
e−rtdt. (3.11b)

Following the approach we took for solving the state trajectories in addition to the accu-

mulated cost and QALYs for the model without an intervention, we will add the corresponding

expressions for
dC(t)

dt
and

dQ(t)

dt
to system (3.8), resulting with the following initial value

problem:

dY0,0(t)

dt
= I0,0 − (µ+ p0λ(t))Y0,0(t) (3.12a)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (3.12b)

dY2,0(t)

dt
= I2,0 + σξY1,0(t)− (νt + µ2,0 + µ)Y2,0(t) (3.12c)

dY2,1(t)

dt
= νtY2,0(t)− (µ2,1(t) + µ)Y2,1(t) (3.12d)

dY3,0(t)

dt
= I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (3.12e)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (3.12f)

dC(t)

dt
=
(
κtνtY2,0(t) +

j=1∑
j=0

i=4∑
i=0

ciYi,j(t)
)
e−rt (3.12g)

dQ(t)

dt
=
( i=4∑
i=0

qiYi,0(t)
)
e−rt, (3.12h)

with the initial values,

Y0,0(0) = (1− φ0)Y0 (3.13a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4 (3.13b)

Y2,1(0) = 0 (3.13c)

C(0) = 0 (3.13d)

Q(0) = 0. (3.13e)

Setting T = 20 and the parameters as they are defined in section 3.1 we again used the
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Runge-Kutta(4,5) algorithm in MatLab to generate the following projections. In table 3.8 the

outcomes related to the accumulated cost and QALYs for the therapeutic vaccine program

are presented in comparison to the outcomes when no intervention is introduced. The results

show a savings of $31,138,862 and an increase of 11,178 QALYs when the therapeutic vaccine

program is offered. This confirms the conclusions of Edwards et al. that a therapeutic vaccine

that decreases infectivity by 25% and prolongs the asymptomatic stage of infection by 5 years

will result with a dominant program.

Table 3.8: Therapeutic vaccine program: expected accumulated cost and QALYs over a 20
year time horizon.

No Intervention Therapeutic Vaccine Program

Cost, C(20) $3,778,541,557 $3,747,402,695

QALYs, Q(20) 495,630 506,808

Taking the analysis of the therapeutic vaccine program a step further we consider the

projections for the population trajectories shown in figures 3.4 and 3.5. At the end of 20 years the

total population is 37,218 with a 26% prevalence of the infected individuals. This is an increase

in the size of the total population and prevalence of the infection compared to the results for the

population over 20 years when no intervention is introduced. Intuitively a vaccine that decreases

infectivity and prolonged life expectancy for the infected asymptomatic population benefits both
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Figure 3.4: Therapeutic vaccine program: total population projections for a 20 year time hori-
zon.
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the susceptible and infected populations, but taking into consideration the adverse effects of

vaccinating we find that the results of the therapeutic vaccine for the susceptible population

are actually undesirable. This is apparent from the trajectory for the susceptible population

presented in figure 3.5. After decreasing for the first 10 years the susceptible population starts

to increase, but only recovering to about half the size of the initial susceptible population. For

the projections when nothing was done to intervene with the spread of infections the susceptible

population decreased for the first 9 years, then recovered to a susceptible population size larger

than its initial population. Exploring the properties of the model a bit further to determine

the impact the adverse effects has on the spread of the infection we will start by considering

β2,0η00,20, representing the likelihood that an asymptomatic and aware individual infects a

susceptible individual. Referencing tables 3.2 and 3.5, β2,0 = 0.066 and η00,20 = 0.307 resulting

with β2,0η00,20 = 0.020262. Implying there is approximately a 2% chance the disease will spread

from partnerships between the asymptomatic, aware and unvaccinated population with the

susceptible population. Alternatively, when an asymptomatic and aware individual receives the

therapeutic vaccine their infectivity is reduced by 25%, resulting with β2,1 = 0.066 ∗ 0.75 =

0.0495. From table 3.5 the probability that their partnerships with a susceptible individual

is not protected by a condom was evaluated to be η00,21 = 0.4803. Therefore, β2,1η00,21 =

0.0495 ∗ 0.4803 = 0.02377485 which implies there is approximately a 2.38% chance that a

susceptible individual will become infected by means of a partnership with an asymptomatic and

aware individuals that have received the vaccination. Although the therapeutic vaccine reduces

infectivity, the impact the adverse effect has on the population has a much greater impact.

Resulting with an increase of 17.34% for the likelihood the asymptomatic and aware population

will spread the infection after they become vaccinated. Not only does the introduction of the

therapeutic vaccine increase the likelihood that the disease will spread, but it also extends

the period of time for which this population is unknowingly more dangerous than they were

before they were vaccinated. All of which resulting in an undesirable outcome for the susceptible

population.

This leads us to considering the outcome for λ(t) with the therapeutic vaccine program and

how it relates to to the results when no intervention is introduced. Referring to figure 3.6, the

graph of the function shows an initial increase to the probability of acquiring the infection when

the therapeutic vaccine is first offered. This peak is directly attributed to the adverse effects

that out weigh the benefits of vaccinating for reduction to infectivity. After the initial increase,

the probability for the spread of infection begins to decline. In figure 3.7 we take the combined

asymptomatic and aware population for the therapeutic vaccine program and compare it to the

respective population for the projections when no intervention was introduced. In both cases

we see the asymptomatic and aware population is strictly decreasing, offering the therapeutic

vaccine only slows the rate at which it goes down. This defines the rather quick change in the

25



probability for acquiring the infection from increasing to decreasing.
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Figure 3.5: Therapeutic vaccine program: projections for each class over a 20 year time horizon.
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Figure 3.6: Therapeutic vaccine program: comparison for the rate of infection function with
the projections found when no intervention was made.
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Figure 3.7: Therapeutic vaccine program: comparison for the total asymptomatic-aware pop-
ulation with the projections found when no intervention was made.
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In conclusion, the therapeutic vaccine does offer a better cost-effective strategy in compar-

ison to doing nothing for controlling the spread of the disease. Although, regarding the results

we’ve seen for the susceptible population, it is not a desirable vaccine program for the total

population.

3.1.3 Preventative Vaccine Program

Now we consider the analysis for the impact the preventative only vaccine program will have

on the population and how it compares to the baseline analysis from section 3.1.1. In the

beginning of this chapter we made the assumption that vaccines are administered to 75%

of the population. By fixing the percentage of the population that receives the preventive

vaccine we will remove the time dependency from the notation, νp = νp(t) = 0.75 for all

t ∈ [0, 20]. Introducing the preventative vaccine to the system adds two additional states to the

dynamics, the susceptible and vaccinated population (Y0,1(t)) and the asymptomatic, unaware

and vaccinated population (Y1,1(t)). The dominant preventative vaccine program we chose to

analyze has an efficacy of 75% and a mean duration of 10 years. Emphasizing that the vaccine is

not 100% effective and a portion of the population being vaccinated are already infected results

with the need for the second force of infection rate, λν(t), which takes into account for the

likelihood that vaccinated individuals reduce their condom use by 25%. Once the vaccine wears

off the vaccinated populations return to their respective unvaccinated states. This results with

the following initial value problem governing the projections for each trajectory of the model

when only a preventative vaccine is administered:

dY0,0(t)

dt
= I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (3.14a)

dY0,1(t)

dt
= νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (3.14b)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + νp + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (3.14c)

dY1,1(t)

dt
= p0(1− ε)λν(t)Y0,1(t) + νpY1,0(t)− (ω + σξ + µ1,1 + µ)Y1,1(t) (3.14d)

dY2,0(t)

dt
= I2,0 + σξ(Y1,0(t) + Y1,1(t))− (µ2,0 + µ)Y2,0(t) (3.14e)

dY3,0(t)

dt
= I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (3.14f)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t), (3.14g)

with the initial values
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Y0,0(0) = (1− φ0)Y0 (3.15a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4 (3.15b)

Yi,1(0) = 0, for i = 0, 1. (3.15c)

We now have the representation for both rate of infection functions, λ(t) defines the proba-

bility that a susceptible and unvaccinated individual becomes infected and λν(t) defines that

probability that a susceptible vaccinated individual will acquire the infection,

λ(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη00,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

(3.16a)

λν(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη01,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

. (3.16b)

Accounting for the additional cost for the preventative vaccine in the accumulated cost equation

we have the following two integral functions,

C(T ) =

∫ T

0

(
κpνp(Y0,0(t) + Y1,0(t)) +

j=1∑
j=0

i=4∑
i=0

ciYi,j(t)
)
e−rtdt (3.17a)

Q(T ) =

∫ T

0

( j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
)
e−rtdt. (3.17b)

Following the same method used in the analysis for the model without an intervention and

the therapeutic vaccine strategy we will again add
dC(t)

dt
and

dQ(t)

dt
to the dynamics to give

us the following initial value problem we will solve using numerical methods:

dY0,0(t)

dt
= I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (3.18a)

dY0,1(t)

dt
= νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (3.18b)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + νp + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (3.18c)

dY1,1(t)

dt
= p0(1− ε)λν(t)Y0,1(t) + νpY1,0(t)− (ω + σξ + µ1,1 + µ)Y1,1(t) (3.18d)

dY2,0(t)

dt
= I2,0 + σξ(Y1,0(t) + Y1,1(t))− (µ2,0 + µ)Y2,0(t) (3.18e)
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dY3,0(t)

dt
= I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (3.18f)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (3.18g)

dC(t)

dt
=
(
κpνp(Y0,0(t) + Y1,0(t)) +

j=1∑
j=0

i=4∑
i=0

ciYi,j(t)
)
e−rt (3.18h)

dQ(t)

dt
=
( j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
)
e−rt, (3.18i)

with the initial values

Y0,0(0) = (1− φ0)Y0 (3.19a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4 (3.19b)

Yi,1(0) = 0, for i = 0, 1 (3.19c)

C(0) = 0 (3.19d)

Q(0) = 0. (3.19e)

Applying the Runge-Kutta(4,5) algorithm, using Matlab, we get the following projections

for the current model.

Table 3.9: Preventative vaccine program: expected accumulated cost and QALYs over a 20
year time horizon.

No Intervention Preventative Vaccine Program

Cost, C(20) $3,778,541,557 $3,711,111,604

QALYs, Q(20) 495,630 508,220

From the projections of the dominant preventative vaccine program we see a reduction to

cost by $67,429,953 and an increase to QALYs by an additional 12,590. For the population as

whole, at the end of 20 years, the size of the population drops to 37,862 with 12% prevalence

of the infection.

The impact that the preventative vaccine has on the population is apparent by the drastic

drop in the prevalence of the infection compared to the initial prevalence of 49.3%, the resulting
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Figure 3.8: Preventative vaccine program: total population projections for a 20 year time
horizon.

prevalence from the therapeutic vaccine program, 26%, and the prevalence of infection from the

model without an intervention at the end of 20 years, 20%. For the terminal size of the total

population we still have a result below 38,000, which can again be attributed to the fact that

the mean total duration of infection is equal to the time horizon of 20 years. This implies the

total initial population of infected individuals are expected to die due to AIDS related causes

before the end of the 20 years. Although the preventative vaccine has been shown to have a

major impact on controlling the spread of the virus, it lacks in consideration for benefiting those

that are already infected.

Considering the impact these results have on the projections for both rate of infection

functions we refer to figure 3.10 where we compare the the results from the preventative vaccine

program to the results we found when we analyzed the system without an intervention. The

impact the adverse effect of vaccinating has on the over all spread of the infection is over

shadowed by the efficacy of vaccinating. For the unvaccinated population the rate of infection,

λ(t), for the preventative vaccine program is closely related to the projections for λ(t) when no

intervention is offered. Alternatively, (1− ε)λν(t), the probability of acquiring the infection for

the susceptible and vaccinated population, is significantly lower than the projections made for

unvaccinated susceptible population. This results with projections for the combined susceptible

population to only drop very subtly for the first year then strictly increase for the rest of the time

horizon. The asymptomatic and unaware population, as a whole, follows a similar trajectory as

the system when no intervention is present with the exception that there is greater decline to

the population when a preventative vaccine program is administered.
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Figure 3.9: Preventative vaccine program: projections for each class over a 20 year time horizon.
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Figure 3.10: Preventative vaccine program: comparison for the rate of infection functions with
the projections found when no intervention was made.
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Figure 3.11: Preventative vaccine program: comparison for the total susceptible and total
asymptomatic-unaware populations with the model when no intervention is offered.

In conclusion the preventative vaccine program resulted with a dominate strategy that

decreases cost and increases QALYs, but still does not contribute to the overall well being for

the population as a whole.

3.1.4 Combined, Preventative and Therapeutic, Vaccine Program

Taking into consideration the third possible vaccine program, where the therapeutic and pre-

ventative vaccine programs are both offered for the duration of the 20 year time horizon, the

dynamics are presented as they were originally defined in the beginning of the chapter. We will
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emphasize that both of the parameters for each of the vaccines is assumed to be administered to

75% of their respective populations. Since we are also assuming that both vaccines are admin-

istered to the population for the full duration of the time horizon we will again drop the time

dependency from each parameter, νp = νp(t) = 0.75 and νt = νt(t) = 0.75 for all t ∈ [0, 20].

Therefore, we have the following initial value problem that governs the state trajectories for

the full model description:

dY0,0(t)

dt
= I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (3.20a)

dY0,1(t)

dt
= νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (3.20b)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + νp + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (3.20c)

dY1,1(t)

dt
= p0(1− ε)λν(t)Y0,1(t) + νpY1,0(t)− (ω + σξ + µ1,1 + µ)Y1,1(t) (3.20d)

dY2,0(t)

dt
= I2,0 + σξ(Y1,0(t) + Y1,1(t))− (νt + µ2,0 + µ)Y2,0(t) (3.20e)

dY2,1(t)

dt
= νtY2,0(t)− (µ2,1 + µ)Y2,1(t) (3.20f)

dY3,0(t)

dt
= I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (3.20g)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t), (3.20h)

with the initial values

Y0,0(0) = (1− φ0)Y0 (3.21a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4 (3.21b)

Yi,1(0) = 0, for i = 0, 1, 2. (3.21c)

(3.21d)

Including both rate of infection functions, λ(t), the probability that a susceptible and unvac-

cinated individual becomes infected, and λν(t), the probability that a susceptible vaccinated

individual will acquire the infection,

λ(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη00,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

(3.22a)
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λν(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη01,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

. (3.22b)

Accounting for the cost of the preventative and therapeutic vaccines in the accumulated cost,

we have the following two integral functions,

C(T ) =

∫ T

0

(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

j=1∑
j=0

i=4∑
i=0

ciYi,j(t)
)
e−rtdt (3.23a)

Q(T ) =

∫ T

0

( j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
)
e−rtdt. (3.23b)

Taking the same approach from the earlier three variations of the model, the equations for
dC(t)

dt
and

dQ(t)

dt
are included in system (3.20) for the following initial value problem that can

be solved numerically:

dY0,0(t)

dt
= I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (3.24a)

dY0,1(t)

dt
= νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (3.24b)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + νp + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (3.24c)

dY1,1(t)

dt
= p0(1− ε)λν(t)Y0,1(t) + νpY1,0(t)− (ω + σξ +−µ1,1 + µ)Y1,1(t) (3.24d)

dY2,0(t)

dt
= I2,0 + σξ(Y1,0(t) + Y1,1(t))− (νt + µ2,0 + µ)Y2,0(t) (3.24e)

dY2,1(t)

dt
= νtY2,0(t)− (µ2,1 + µ)Y2,1(t) (3.24f)

dY3,0(t)

dt
= I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (3.24g)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (3.24h)

dC(t)

dt
=
(
κνp(t)(Y0,0(t) + Y0,1(t)) + κtνt +

j=1∑
j=0

i=4∑
i=0

ciYi,j(t)
)
e−rt (3.24i)

dQ(t)

dt
=
( j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
)
e−rt, (3.24j)

with the initial values
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Y0,0(0) = (1− φ0)Y0 (3.25a)

Yi,0(0) =
1/µi,0∑k=4
k=1 1/µk,0

φ0Y0, for i = 1, 2, 3, 4 (3.25b)

Yi,1(0) = 0, for i = 0, 1, 2 (3.25c)

C(0) = 0 (3.25d)

Q(0) = 0. (3.25e)

Setting T = 20 and the parameters as they are defined in section 3.1 then implementing

the Runge-Kutta(4,5) algorithm from MatLab results with the following projections for the

combined vaccination program.

Table 3.10: Combined vaccine program: expected accumulated cost and QALYs over a 20 year
time horizon.

No Intervention Combined Vaccine Program

Cost, C(20) $3,778,541,557 $3,674,411,240

QALYs, Q(20) 495,630 519,572
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Figure 3.12: Combined, preventative and therapeutic, vaccine program: total population pro-
jections for a 20 year time horizon.
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From table 3.10 implementing both vaccines over the course of 20 years results with a

savings of $104,130,318 and a gain of 23,942 in QALYs. Both the greatest savings and highest

gain in QALYs between the three vaccination programs considered in this chapter. There is

still a consistent decline in the total population, at the end of 20 years the population drops to

39,359 with a prevalence of 16%.

For controlling the spread of the infection, when the two vaccine programs were considered

independently, the results showed that the adverse effects of the therapeutic vaccine had a

significant impact on increasing the spread of the infection. Alternatively, the preventative

vaccine, while accounting for the adverse effects, resulted with a significant impact on reducing

the spread of the infection. The impact of adding the therapeutic vaccine to the system for

the preventative vaccine program introduces similar results to the ones obtained when the

therapeutic vaccine program was introduced to the system when no intervention was introduced.

For each there was an increase of approximately 2,000 in the final total population and a 30%

increase to the prevalence of the infection at the end of 20 years. As a combined strategy the

benefits of offering the preventative vaccine out weigh the adverse effects introduced by the

therapeutic vaccine. In administering both generates the most desirable outcome with regards

to the total population as well as begin the most cost-effective strategy.
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Figure 3.13: Combined, preventative and therapeutic, vaccine program: projections for each
class over a 20 year time horizon.
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Figure 3.14: Combined, preventative and therapeutic, vaccine program: comparison for the
rate of infection functions with the results when no intervention was made.
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Figure 3.15: Combined, preventative and therapeutic, vaccine program: comparison of the
total susceptible, total asymptomatic-unaware and the total asymptomatic populations with
the projections found when no intervention is made.
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Concluding with the combined vaccination program, the results indicate a significant de-

crease to cost with a substantial increase in QALYs and benefits the population as a whole.

Following the analysis of each vaccine program, in the next section a comparative analysis for

all four possible outcomes is evaluated.

3.2 Cost-Effective Analysis of Intervention Strategies

Concluding the analysis for the projections defined on a fixed time horizon for each of the four

possible variations of the model a brief discussion of the results in direct comparison to each

alternative is presented.

Considering the incremental cost of each scenario in table 3.11 we can see how much of an

impact each strategy will have. Independently the therapeutic vaccine strategy is expected to re-

sult with a savings of $229/QALY and the preventative vaccine is projected to save $321/QALY.

Implying, between the two, the preventative vaccine is a slightly better alternative with a sav-

ings of an additional $92/QALY. Alternatively, the strategy of administering both vaccine op-

tions will result with an expected savings of $551/QALYs, more than a $230/QALY in savings

compared to each vaccine program as a stand alone option.

Table 3.11: Projected accumulated cost and QALYs, as well as the cost/QALY, for each of the
four variations of the model over a 20 year time horizon.

Accumulated

Cost

Accumulated

QALYs
Cost/QALY

No

Intervention
$3,778,541,557 495,630 $7623/QALY

Therapeutic

Vaccine
$3,747,402,695 506,808 $7394/QALY

Preventative

Vaccine
$3,711,111,604 508,220 $7302/QALY

Combination Both

Vaccines
$3,674,411,239 519,572 $7072/QALY
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After the detailed analysis for the state trajectories for each of the four possible variations

of the model, presented in sections 3.1.1 - 3.1.4, we learned that the cost-effective analysis

only highlighted part of the story regarding the benefits of intervention strategies. Due to

the adverse effects of vaccinating the therapeutic vaccine made the asymptomatic and aware

population riskier than before for spreading the infection. To evaluate the results for the total

population and each of the sub populations, figures 3.16 - 3.21 show a direct comparison of the

four alternative scenarios, with the combination of the unvaccinated and vaccinated populations

graphed when needed. From the graphs we can see that there is a variation to the trajectories

between alternative scenarios. Considering that the ultimate purpose of analyzing infectious

disease models is to understand the spread and control of infections, this puts an emphasis on

the importance in understanding the projections of the susceptible population for evaluating

the rate of success each intervention program has for controlling the spread of the disease.

Recall, based on the assumptions of the model and the fixed 20 year time horizon for analysis,

the life expectancy after acquiring the infection is the same as the time horizon for analysis.

This explains the marginal impact to the trajectories for the total population as well as each

of the infected populations. Unfortunately there is no intervention that can reverse the impact

the epidemic has already had on the population.

In conclusion, we have already shown that offering both vaccines has a significantly better

cost-effective outcome for a 20 year time horizon in comparison the projections for offering either

one of the vaccines on their own. To determine if we can find an even better strategy, regarding

the timing for offering each vaccine, will be the focus of the next couple of chapters. Starting in

chapter 4 with the long run analysis for each of the four state spaces of the model to characterize

the dynamical properties of the system and the expectations for the state trajectories.
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Projections for the Total Population
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Figure 3.16: Total population projections for each of the four variation of the model; no inter-
vention, therapeutic only, preventative only, and the combined vaccination strategy.

44



Projections for the Susceptible Class
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Figure 3.17: Susceptible population projections for each of the four variation of the model; no
intervention, therapeutic only, preventative only, and the combined vaccination strategy.
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Projections for the Asymptomatic-Unaware Class
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Figure 3.18: Asymptomatic-unaware population projections for each of the four variation of
the model; no intervention, therapeutic only, preventative only, and the combined vaccination
strategy.
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Projections for the Asymptomatic-Aware Class
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Figure 3.19: Asymptomatic-aware population projections for each of the four variation of the
model; no intervention, therapeutic only, preventative only, and the combined vaccination strat-
egy.
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Projections for the Symptomatic Class

No Intervention Therapeutic
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Figure 3.20: Symptomatic population projections for each of the four variation of the model;
no intervention, therapeutic only, preventative only, and the combined vaccination strategy.
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Projections for the AIDS Class
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Figure 3.21: AIDS population projections for each of the four variation of the model; no inter-
vention, therapeutic only, preventative only, and the combined vaccination strategy.
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Chapter 4

Equilibria and Stability Analysis

Equilibrium stability analysis is a critical part of analyzing deterministic compartment epidemic

models. The importance of doing such can lead to the characterization for the R0 threshold in

terms of the parameters of the model. As a bifurcation defining the point in the parameter space

that the stability of the disease free equilibrium is transferred to an endemic equilibrium implies

that the dynamics should have both equilibrium points, for the variation of the model without

an intervention. We will find with the HIV-transmission model we described and analyzed in

chapter 3 the dynamics for each variation of the model have exactly one equilibrium and it’s

the endemic equilibrium. This is a result of the assumption that constant immigration into

the infected population is independent of the population size or prevalence of the infection.

Therefore, we will not derive a symbolic representation for R0 in terms of the parameters of the

model. Instead we consider the stability of the equilibrium to understand the expectations for

the trajectories and their behavior in the neighborhood of each equilibrium for the purposes of

controlling the system.

4.1 Routh-Hurwitz Criterion for Stability

To determine the stability of the equilibrium points the Routh-Hurwitz Criterion will be verified.

Before proceeding with the equilibrium and stability analysis for each variation of model we

will begin by introducing necessary definitions for the Routh-Hurwitz criterion, as it was stated

by Gantmacher in 1959 [19]. For the polynomial

c(x) = c0x
n + c1x

n−1 + c2x
n−2 + · · · + cn−1x+ cn (c0 6= 0 and n ∈ N)

of degree n we have the following definitions.
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Definition 4.1.1. The Hurwitz matrix is a square matrix of order n defined by the coefficients

of the polynomial c(x) as the following:

H =



c1 c3 c5 · · · · · · · · · 0 0 0

c0 c2 c4

...
...

...

0 c1 c3

...
...

...
... c0 c2

. . . 0
...

...
... 0 c1

. . . cn
...

...
...

... c0
. . . cn−1 0

...
...

... 0 cn−2 cn
...

...
...

... cn−3 cn−1 0

0 0 0 · · · · · · · · · cn−4 cn−2 cn



.

For even n: ck = 0 when k >
n

2
.

For odd n: ck = 0 when k >
n− 1

2
.

Definition 4.1.2. The Hurwitz determinants are the principle minors of the Hurwitz matrix,

∆1(c) = c1,∆2(c) =

∣∣∣∣∣∣c1 c3

c0 c2

∣∣∣∣∣∣ ,∆3(c) =

∣∣∣∣∣∣∣∣∣
c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣∣∣ , . . . ,∆n(c) = det (H).

Therefore the Criterion of Routh-Hurwiz for Stability is given by the following statement.

Criterion 4.1.3 (Routh-Hurwitz). All the roots of the real polynomial c(x) have negative real

parts if and only if the following inequalities hold,

c0∆1(c) > 0,∆2(c) > 0, c0∆3(c) > 0,∆4(c) > 0, . . . ,

 c0∆n(c) > 0 (for odd n)

∆n(c) > 0 (for even n)
.

Thus, checking if all the roots for the characteristic polynomial at an equilibrium point have

negative real parts implies that the equilibrium is asymptotically stable. The benefit that is

gained by using the Routh-Hurwitz criterion for stability is the ability to define a threshold in

terms of the parameters that will define when an equilibrium is stable or unstable.
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4.2 Endemic Equilibria

As we have already mentioned, the model as it was originally defined will have only one physi-

cally relevant equilibrium point for each of the four variations. In each case, with the constant

immigration of infected individuals the only equilibrium for the system will be endemic equi-

libria.

4.2.1 HIV-Transmission Dynamics without an Intervention

Starting with the HIV-transmission dynamics without an intervention we reintroduce the system

of differential equations to the following:

dY0,0(t)

dt
=I0,0 − (µ+ p0λ(t))Y0,0(t) (4.1a)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (4.1b)

dY2,0(t)

dt
=I2,0 + σξY1,0(t)− (µ2,0 + µ)Y2,0(t) (4.1c)

dY3,0(t)

dt
=I3,0 +

i=2∑
i=1

µi,0Yi,0(t)− (µ3,0 + µ)Y3,0(t) (4.1d)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (4.1e)

were

λ(t) =

∑i=4
i=1 piβi,0η00,i0Yi,0(t)∑i=4

i=0 piYi,0(t)
. (4.2)

Equilibrium Calculations

To solve for the equilibria of the system without an intervention we set
dYi,0(t)

dt
= 0 for i =

0, 1, . . . , 4 and solve for Y ?(t) = [Y ?
0,0(t), Y ?

1,0(t), Y ?
2,0(t), Y ?

3,0(t), Y ?
4,0(t)]ᵀ. Thus,

0 = I0,0 − (µ+ p0λ(t))Y ?
0,0(t) (4.3a)

0 = I1,0 + p0λ(t)Y ?
0,0(t)− (σξ + µ1,0 + µ)Y ?

1,0(t) (4.3b)

0 = I2,0 + σξY ?
1,0(t)− (µ2,0 + µ)Y ?

2,0(t) (4.3c)

0 = I3,0 +

i=2∑
i=1

µi,0Y
?
i,0(t)− (µ3,0 + µ)Y ?

3,0(t) (4.3d)

0 = µ3,0Y
?

3,0(t)− (µ4,0 + µ)Y ?
4,0(t). (4.3e)
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Note that equation (4.3a) can be written as the following expression for λ(t), defined only at

an equilibrium,

λ(t) =
I0,0 − µY ?

0,0(t)

p0Y ?
0,0(t)

. (4.4)

Using the expression for λ(t) defined by equation (4.4) in (4.3b) we can solve for Y ?
1,0(t) in terms

of Y ?
0,0(t). In doing so,

0 = I1,0 + p0

(
I0,0 − µY ?

0,0(t)

p0Y ?
0,0(t)

)
Y ?

0,0(t)− (σξ + µ1,0 + µ)Y ?
1,0(t)

0 = I1,0 + I0,0 − µY ?
0,0(t)− (σξ + µ1,0 + µ)Y ?

1,0(t)

implies,

Y ?
1,0(t) =

I1,0 + I0,0

(σξ + µ1,0 + µ)
−
[

µ

(σξ + µ1,0 + µ)

]
Y ?

0,0(t). (4.5)

Next, substituting the right side of equation (4.5) into equation (4.3c), Y2,0(t) can also be defined

in terms of Y0,0(t), such that

0 = I2,0 + σξ

(
I1,0 + I0,0

(σξ + µ1,0 + µ)
−
(

µ

(σξ + µ1,0 + µ)

)
Y ?

0,0(t)

)
− (µ2,0 + µ)Y ?

2,0(t)

0 = I2,0 +
σξ(I1,0 + I0,0)

(σξ + µ1,0 + µ)
−
(

σξµ

(σξ + µ1,0 + µ)

)
Y ?

0,0(t)− (µ2,0 + µ)Y ?
2,0(t)

implies,

Y ?
2,0(t) =

I2,0

(µ2,0 + µ)
+

σξ(I1,0 + I0,0)

(µ2,0 + µ)(σξ + µ1,0 + µ)
−
[

σξµ

(µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t). (4.6)

Continuing with evaluating each of the infectious states in terms of Y ?
0,0(t), the right side of

equations (4.5) and (4.6) can be substituted into equation (4.3d) to get the following expression

for Y3,0(t),
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0 = I3,0 + µ1,0

(
I1,0 + I0,0

(σξ + µ1,0 + µ)
−
[

µ

(σξ + µ1,0 + µ)

]
Y ?

0,0(t)

)

+ µ2,0

(
I2,0

(µ2,0 + µ)
+

σξ(I1,0 + I0,0)

(µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

σξµ

(µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t)

)
− (µ3,0 + µ)Y ?

3,0(t)

0 = I3,0 +
µ1,0(I1,0 + I0,0)

(σξ + µ1,0 + µ)
+

µ2,0I2,0

(µ2,0 + µ)
+

µ2,0σξ(I1,0 + I0,0)

(µ2,0 + µ)(σξ + µ1,0 + µ)

−

(
µ1,0µ

(σξ + µ1,0 + µ)
+

µ2,0σξµ

(µ2,0 + µ)(σξ + µ1,0 + µ)

)
Y ?

0,0(t)− (µ3,0 + µ)Y ?
3,0(t)

results with,

Y ?
3,0(t) =

I3,0

(µ3,0 + µ)
+

µ1,0(I1,0 + I0,0)

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ2,0I2,0

(µ3,0 + µ)(µ2,0 + µ)

+
µ2,0σξ(I1,0 + I0,0)

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

µ1,0µ

(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ2,0σξµ

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t). (4.7)

Finally plugging equation (4.7) into equation (4.3e) the last infectious state, Y ?
4,0(t), will be

defined by the following,

0 = µ3,0

(
I3,0

(µ3,0 + µ)
+

µ1,0(I1,0 + I0,0)

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ2,0I2,0

(µ3,0 + µ)(µ2,0 + µ)

+
µ2,0σξ(I1,0 + I0,0)

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

µ1,0µ

(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ2,0σξµ

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t)

)
− (µ4,0 + µ)Y ?

4,0(t)
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0 =
µ3,0I3,0

(µ3,0 + µ)
+

µ3,0µ1,0(I1,0 + I0,0)

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ3,0µ2,0I2,0

(µ3,0 + µ)(µ2,0 + µ)

+
µ3,0µ2,0σξ(I1,0 + I0,0)

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

−
(

µ3,0µ1,0µ

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ3,0µ2,0σξµ

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

)
Y ?

0,0(t)

− (µ4,0 + µ)Y ?
4,0(t)

implies,

Y ?
4,0(t) =

µ3,0I3,0

(µ4,0 + µ)(µ3,0 + µ)
+

µ3,0µ1,0(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0I2,0

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

+
µ3,0µ2,0σξ(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

µ3,0µ1,0µ

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0σξµ

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t). (4.8)

The expressions derived for the infectious disease states in terms of the susceptible population

can now be used to express the rate of infection function λ(t) in terms of Y ?
0,0(t). To simplify

the notation we introduce the following vector notation,

P :=



p0

p1

p2

p3

p4


B :=



0

p1β1,0η00,10

p2β2,0η00,20

p3β3,0η00,30

p4β4,0η00,40


Φ :=



φ0,0

φ1,0

φ2,0

φ3,0

φ4,0


M :=



m0,0

m1,0

m2,0

m3,0

m4,0


, such that
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φ0,0 := 0

φ1,0 :=
I1,0 + I0,0

(σξ + µ1,0 + µ)

φ2,0 :=
I2,0

(µ2,0 + µ)
+

σξ(I1,0 + I0,0)

(µ2,0 + µ)(σξ + µ1,0 + µ)

φ3,0 :=
I3,0

(µ3,0 + µ)
+

µ1,0(I1,0 + I0,0)

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ2,0I2,0

(µ3,0 + µ)(µ2,0 + µ)

+
µ2,0σξ(I1,0 + I0,0)

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

φ4,0 :=
µ3,0I3,0

(µ4,0 + µ)(µ3,0 + µ)
+

µ3,0µ1,0(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0I2,0

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

+
µ3,0µ2,0σξ(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)
,

m0,0 := 1

m1,0 := − µ

(σξ + µ1,0 + µ)

m2,0 := − σξµ

(µ2,0 + µ)(σξ + µ1,0 + µ)

m3,0 := − µ1,0µ

(µ3,0 + µ)(σξ + µ1,0 + µ)
− µ2,0σξµ

(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

m4,0 := − µ3,0µ1,0µ

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)
− µ3,0µ2,0σξµ

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)
.

Therefore the rate of infection function defined by equation (4.2) can be expressed as the ratio

of two linear combinations of Y ?
0,0(t),

λ(t) =
B′Φ +B′MY ?

0,0(t)

P ′Φ + P ′MY ?
0,0(t)

. (4.9)

Given two expressions for λ(t), defined only at an equilibrium point, we will set each expression
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from (4.4) and (4.9) equal to each other to get an equation in terms of only Y ?
0,0(t). The

solution to the following equation can then be solved to get the symbolic representation for the

susceptible population defined at the equilibria,

B′Φ +B′MY ?
0,0(t)

P ′Φ + P ′MY ?
0,0(t)

=
I0,0 − µY ?

0,0(t)

p0Y ?
0,0(t)

. (4.10)

By cross-multiplying and combining like terms in equation (4.10) we will get the following

quadratic equation for Y ?
0,0(t),

(µP ′M + p0B
′M)(Y ?

0,0(t))2 + (p0B
′Φ + µP ′Φ − I0,0P

′M)Y ?
0,0(t) − I0,0P

′Φ = 0. (4.11)

Considering the graph of the quadratic function corresponding to (4.11), written in standard

form,

f(Y ?
0,0(t)) = (µP ′M + p0B

′M)

(
Y ?

0,0(t) +
p0B

′Φ + µP ′Φ− I0,0P
′M

2(µP ′M + p0B′M)

)2

− I0,0P
′Φ− (p0B

′Φ + µP ′Φ− I0,0P
′M)2

4(µP ′M + p0B′M)
,

we can determine conditions for the parameters that will result with either 0, 1, or 2 roots. Thus,

the existence of a solution and the number of roots will depend on the sign of (µP ′M +p0B
′M)

and

(
− I0,0P

′Φ − (p0B
′Φ + µP ′Φ− I0,0P

′M)2

4(µP ′M + p0B′M)

)
1. Assuming that (µP ′M + p0B

′M) 6= 0 we

have the following conditions for solutions.

• When

(
− I0,0P

′Φ− (p0B
′Φ + µP ′Φ− I0,0P

′M)2

4(µP ′M + p0B′M)

)
and (µP ′M + p0B

′M) have the same

sign, there are no solutions to (4.11).

• When I0,0P
′Φ = −(p0B

′Φ + µP ′Φ− I0,0P
′M)2

4(µP ′M + p0B′M)
there is exactly one solution to equation

(4.11).

• When

(
− I0,0P

′Φ− (p0B
′Φ + µP ′Φ− I0,0P

′M)2

4(µP ′M + p0B′M)

)
and (µP ′M + p0B

′M) have opposite

signs, there are exactly two solutions to (4.11).

1Recall that most of the components of M are negative.

57



For the parameter values presented in chapter 3,

µP ′M + p0B
′M ≈ 0.0115792 > 0

−I0,0P
′Φ− (p0B

′Φ + µP ′Φ− I0,0P
′M)2

4(µP ′M + p0B′M)
≈− 25, 155, 561 < 0.

Therefore there are exactly two roots to equation (4.11) and using MatLab to find the numerical

solution to each we get

Y ?
0,0(t) ≈ −47, 847 (4.12a)

Y ?
0,0(t) ≈ 45, 371. (4.12b)

This implies from equations (4.5) - (4.8) and the solutions in (4.12) we get the following

two equilibrium points for the system,

E† ≈



−47, 847

7, 183

7, 589

5, 027

3, 736


E? ≈



45, 372

508

853

514

382


.

Although there are two mathematical solutions for system (4.3), only one is considered

physically relevant for the model. Requiring that the solution to the dynamics stay non-negative,

E† is not considered a feasible solution. Therefore the infectious disease model without an

intervention only has an endemic equilibrium that we will denote by E?b . Here we make the

distinction that this is the endemic equilibrium with respect to the base dynamics without

an intervention (b). This is important because we will also need to evaluate the equilibrium

points as they are defined when we introduce each strategy; the therapeutic progam (t), the

preventative program (p), and the combined vaccine strategy (c).

E?b ≈



45, 372

508

853

514

382


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This implies that in the long run we should expect the total population to stay around

47,629 with a consistent prevalence of infected individuals at approximately 5%.

Equilibrium Stability

The full description of the Jacobian along with the derivation of the characteristic polynomial

in symbolic form is presented in appendix A. For the purpose of determining the stability of the

endemic equilibrium we will use the solution to the characteristic polynomial and the endemic

equilibrium to evaluate the numerical approximation for the characteristic polynomial at E?b ,

c(x) = c0x
5 + c1x

4 + c2x
3 + c3x

2 + c4x+ c5 (4.13)

with each of the coefficients approximated by,

c0 = 1

c1 ≈ 1.36886129999

c2 ≈ 6.06507381914e-01

c3 ≈ 1.43752973349e-01

c4 ≈ 1.17082002872e-02

c5 ≈ 1.96150810432e-04.

If the objective is to solely determine whether or not the system (4.1) with the fixed parameters

values defined in section 3.1 is stable then solving for the roots of (4.13) and verifying that

they all have negative real parts would be sufficient. This refers to determining the sign of

the eigenvalues. In doing so, we used the ‘root’ function in MatLab to find the numerical

approximations for each of the roots of (4.13), resulting with the following solutions,

x ≈ −0.824

x ≈ −0.209 + 0.242i

x ≈ −0.209− 0.242i

x ≈ −0.104

x ≈ −0.022.

Since all of the eigenvalues have negative real parts implies that E?b is a local asymptotically

stable equilibrium. To evaluate how stable the equilibrium is in terms of the assumptions re-

garding the parameter values we will consider validating the stability using the Routh-Hurwitz
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criterion 4.1.3 with the following Hurwitz determinants2,

∆1(c) = c1

∆2(c) = c2∆1 − c0c3

∆3(c) = c3∆2 − c4c
2
1 + c5c1c0

∆4(c) = c4∆3 − c5c2∆2 + c5c4c1c0 − c2
5c

2
0

∆5(c) = c5∆4.

For the numerical approximations to the characteristic polynomial (4.13) the Hurwitz determi-

nants are each evaluated to be the following,

∆1(c) ≈ 1.368861299993612

∆2(c) ≈ 6.864701859278965e-01

∆3(c) ≈ 7.701293620277477e-02

∆4(c) ≈ 8.231208565862636e-04

∆5(c) ≈ 1.614558231066645e-07.

Noting that some of the results for the Hurwitz determinants are defined within a ‘small’

neighborhood of zero it is important that we address the accuracy for which the calculations were

made. We will first emphasize that the derivation for the endemic equilibria and characteristic

polynomial were each done analytically. The derivation for the endemic equilibrium was done

in this section of the current chapter and the derivation for the characteristic polynomial can

be found in appendix A. Given the size and complexity of each, MatLab was used to derive

the numerical approximations to both the equilibrium point and then the coefficients of the

characteristic polynomial. We will note that MatLab stores numbers and computes to the

equivalent of 16 decimal places [23]. This implies, that the numerical approximations to each

of the coefficients for the characteristic polynomial at the endemic equilibrium is accurate to

about 16 decimal places. Since the Hurwitz determinants are defined analytically in terms of

the coefficients to the characteristic polynomials in appendix B, we can state that the solutions

we have found for the Hurwitz determinants are within the order of accuracy expected for the

numerical solver we used.

Given the approximations for the Hurwitz determinants and c0 = 1, we can verify that the

equilibrium point E?b satisfies the Routh-Hurwitz criterion for stability,

2The detailed calculations for deriving each of the Hurwitz determinants is presented in appendix B.
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c0∆1(c) ≈ 1.368861299993612 > 0

∆2(c) ≈ 6.864701859278965e-01 > 0

c0∆3(c) ≈ 7.701293620277477e-02 > 0

∆4(c) ≈ 8.231208565862636e-04 > 0

c0∆5(c) ≈ 1.614558231066645e-07 > 0.

From these results we have confirmed that the endemic equilibrium for the system without an

intervention is asymptotically stable. By verifying the conditions for stability defined by the

Routh-Hurwitz criterion we have realized that the stability of the equilibrium could possibly

change if the assumptions for the values of the parameters are altered. This insight can lead

to another are for consideration when determining the sensitivity of the model with regards to

the parameters. An area of research that would be far more interesting to explore when the

dynamics introduce both the disease-free equilibrium along with the endemic equilibrium.

For the purpose of optimizing an intervention strategy, the results of an asymptotically

stable endemic equilibrium leads us on the investigation for alternative outcomes when various

intervention programs are introduced.

4.2.2 Therapeutic Vaccine Program

The first intervention program we will analyze for the corresponding equilibria and stability

is the therapeutic vaccine program. For the model with only the therapeutic vaccine we have

following system of ordinary differential equations:

dY0,0(t)

dt
= I0,0 − (µ+ p0λ(t))Y0,0(t) (4.14a)

dY1,0(t)

dt
= I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (4.14b)

dY2,0(t)

dt
= I2,0 + σξY1,0(t)− (νt + µ2,0 + µ)Y2,0(t) (4.14c)

dY2,1(t)

dt
= νtY2,0(t)− (µ2,1 + µ)Y2,1(t) (4.14d)

dY3,0(t)

dt
= I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (4.14e)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (4.14f)

were
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λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

. (4.15)

Equilibrium Calculations

To solve for the equilibria of the system when the therapeutic vaccine only is admistered we set
dYi,j(t)

dt
= 0 for i = 0, 1, . . . , 4 and j = 0, 1 then solve for Y ?(t) = [Y ?

0,0(t), Y ?
1,0(t), Y ?

2,0(t), Y ?
2,1(t),

Y ?
3,0(t), Y ?

4,0(t)]ᵀ. This gives us the following system of equations:

0 = I0,0 − (µ+ p0λ(t))Y ?
0,0(t) (4.16a)

0 = I1,0 + p0λ(t)Y ?
0,0(t)− (σξ + µ1,0 + µ)Y ?

1,0(t) (4.16b)

0 = I2,0 + σξY ?
1,0(t)− (νt + µ2,0 + µ)Y ?

2,0(t) (4.16c)

0 = νtY
?

2,0(t)− (µ2,1 + µ)Y ?
2,1(t) (4.16d)

0 = I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jY
?
i,j(t)− (µ3,0 + µ)Y ?

3,0(t) (4.16e)

0 = µ3,0Y
?

3,0(t)− (µ4,0 + µ)Y ?
4,0(t). (4.16f)

In adding the therapeutic vaccine to the dynamics we will note that nothing changes with

regards to the first two equations. This implies that equation (4.4) for the second expression

for λ(t) at the equilibrium and equation (4.5) for Y ?
1,0(t) in terms of Y ?

0,0(t) still hold,

λ(t) =
I0,0 − µY ?

0,0(t)

p0Y ?
0,0(t)

(4.17)

Y ?
1,0(t) =

I1,0 + I0,0

(σξ + µ1,0 + µ)
−
[

µ

(σξ + µ1,0 + µ)

]
Y ?

0,0(t). (4.18)

For the rest of the infectious populations the following expressions take into consideration the

additional parameters for the therapeutic vaccine and the additional state Y2,1(t). Therefore, we

have the following expressions for the rest of the infected populations in terms of the susceptible

population,

Y ?
2,0(t) =

I2,0

(νt + µ2,0 + µ)
+

σξ(I0,0 + I1,0)

(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

σξµ

(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t) (4.19)
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Y ?
2,1(t) =

I2,0νt
(µ2,1 + µ)(νt + µ2,0 + µ)

+
σξ(I0,0 + I1,0)νt

(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

σξµνt
(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t) (4.20)

Y ?
3,0(t) =

I3,0

(µ3,0 + µ)
+

µ2,0I2,0

(µ3,0 + µ)(νt + µ2,0 + µ)
+

µ2,0I2,0νt
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

+
µ1,0(I0,0 + I1,0)

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ2,0σξ(I0,0 + I1,0)

(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

+
µ2,0σξνt

(µ3,0 + µ)(µ2,1 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

µ1,0µ

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ2,0σξµ

(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

+
µ2,0µσξνt

(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t) (4.21)

and

Y ?
4,0(t) =

µ3,0I3,0

(µ4,0 + µ)(µ3,0 + µ)
+

µ3,0µ2,0I2,0

(µ4,0 + µ)(µ3,0 + µ)(νt + µ2,0 + µ)

+
µ3,0µ2,0I2,0νt

(µ4,0 + µ)(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

+
µ3,0µ1,0(I0,0 + I1,0)

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0σξ(I0,0 + I1,0)

(µ4,0 + µ)(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0σξνt

(µ4,0 + µ)(µ3,0 + µ)(µ2,1 + µ)(µ2,0 + µ)(σξ + µ1,0 + µ)

−
[

µ3,0µ1,0µ

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0σξµ

(µ4,0 + µ)(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0µσξνt

(µ4,0 + µ)(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

]
Y ?

0,0(t).

(4.22)

Thus, we will again introduce vector notation to simplify our calculations in solving for the

equilibrium points,
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P :=



p0

p1

p2

p2

p3

p4


B :=



0

p1β1,0η00,10

p2β2,0η00,20

p2β2,1η00,21

p3β3,0η00,30

p4β4,0η00,40


Φ :=



φ0,0

φ1,0

φ2,0

φ2,1

φ3,0

φ4,0


, M :=



m0,0

m1,0

m2,0

m2,1

m3,0

m4,0


, such that

φ0,0 := 0

φ1,0 :=
I1,0 + I0,0

(σξ + µ1,0 + µ)

φ2,0 :=
I2,0

(νt + µ2,0 + µ)
+

σξ(I1,0 + I0,0)

(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

φ2,1 :=
I2,0νt

(µ2,1 + µ)(νt + µ2,0 + µ)
+

σξ(I1,0 + I0,0)νt
(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

φ3,0 :=
I3,0

(µ3,0 + µ)
+

µ1,0(I1,0 + I0,0)

(µ3,0 + µ)(σξ + µ1,0 + µ)
+

µ2,0I2,0

(µ3,0 + µ)(νt + µ2,0 + µ)

+
µ2,0σξ(I1,0 + I0,0)

(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

+
µ2,0I2,0νt

(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

+
µ2,0σξνt

(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

φ4,0 :=
µ3,0I3,0

(µ4,0 + µ)(µ3,0 + µ)
+

µ3,0µ1,0(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0I2,0

(µ4,0 + µ)(µ3,0 + µ)(νt + µ2,0 + µ)

+
µ3,0µ2,0σξ(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

+
µ3,0µ2,0I2,0νt

(µ4,0 + µ)(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

+
µ3,0µ2,0σξνt

(µ4,0 + µ)(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)
,
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m0,0 := 1

m1,0 := − µ

(σξ + µ1,0 + µ)

m2,0 := − σξµ

(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

m2,1 := − σξµνt
(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

m3,0 := − µ1,0µ

(µ3,0 + µ)(σξ + µ1,0 + µ)
− µ2,0σξµ

(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

− µ2,0σξµνt
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

.

m4,0 := − µ3,0µ1,0µ

(µ4,0 + µ)(µ3,0 + µ)(σξ + µ1,0 + µ)

− µ3,0µ2,0σξµ

(µ4,0 + µ)(µ3,0 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

− µ3,0µ2,0σξµνt
(µ4,0 + µ)(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)(σξ + µ1,0 + µ)

.

Using the vector notation implies that we will have the same rate of infection function that was

defined in the previous section when we considered the dynamics without an intervention,

λ(t) =
B′Φ +B′MY ?

0,0(t)

P ′Φ + P ′MY ?
0,0(t)

. (4.23)

With both expressions for λ(t) defined as they were when we solved for the equilibria in section

4.2.1 results with the same quadratic function in terms of Y0,0(t). Therefore,

B′Φ +B′MY ?
0,0(t)

P ′Φ + P ′MY ?
0,0(t)

=
I0,0 − µY ?

0,0(t)

p0Y ?
0,0(t)

(4.24)

implies

(µP ′M + p0B
′M)(Y ?

0,0(t))2 + (p0B
′Φ + µP ′Φ − I0,0P

′M)Y ?
0,0(t) − I0,0P

′Φ = 0. (4.25)

Emphasizing the only difference between equation (4.25) and the same equation (4.11) in section

4.2.1 is how each of the vectors, P , B, Φ, and M are defined. We will still check the standard

notation,
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f(Y ?
0,0(t)) = (µP ′M + p0B

′M)

(
Y ?

0,0(t)− p0B
′Φ + µP ′Φ− I0,0P

′M

2(µP ′M − p0B′M)

)2

− I0,0P
′Φ− (p0B

′Φ + µP ′Φ− I0,0P
′M)2

4(µP ′M + p0B′M)
,

and determine whether the quadratic equation (4.25) has 0, 1, or 2 roots. Yet again, the existence

of a solution and the number of roots will depend on the sign of (µP ′M + p0B
′M) and(

− I0,0P
′Φ − (p0B

′Φ + µP ′Φ− I0,0P
′M)2

4(µP ′M + p0B′M)

)
3. Assuming that (µP ′M + p0B

′M) 6= 0 we have

the following conditions for solutions.

• When

(
− I0,0P

′Φ− (p0B
′Φ + µP ′Φ− I0,0P

′M)2

4(µP ′M + p0B′M)

)
and (µP ′M + p0B

′M) have the same

sign, there are no solutions to (4.11).

• When I0,0P
′Φ = −(p0B

′Φ + µP ′Φ− I0,0P
′M)2

4(µP ′M + p0B′M)
there is exactly one solution to equation

(4.11).

• When

(
− I0,0P

′Φ− (p0B
′Φ + µP ′Φ− I0,0P

′M)2

4(µP ′M + p0B′M)

)
and (µP ′M + p0B

′M) have opposing

signs, there are exactly two solutions to (4.11).

For the parameter values presented in chapter 3 and the vector notation defined by equations

(4.18) - (4.22),

µP ′M + p0B
′M ≈ 0.0070660 > 0

−I0,0P
′Φ− (p0B

′Φ + µP ′Φ− I0,0P
′M)2

4(µP ′M + p0B′M)
≈− 32, 820, 709 < 0.

Therefore there are exactly two roots to equation (4.25) and using MatLab to find the numerical

solution to each we get the following,

Y ?
0,0(t) ≈ −92, 687 (4.26a)

Y ?
0,0(t) ≈ 43, 619 (4.26b)

resulting with the following two equilibrium points,

3Recall that most of the components of M are negative.
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E† ≈



−92, 687

10, 393

1, 761

13, 405

6, 952

5, 167


E? ≈



43, 619

634

159

1, 213

576

428


.

Noting again that one of the two mathematical solutions to the equilibrium points does not

satisfy the physical limitation for the interpretation of the model (i.e. all of the compartments

of the model are strictly non-negative), we are left with only one equilibrium point for the

therapeutic model,

E?t ≈



43, 619

634

159

1, 213

576

428


.

This result implies that the long run expectation for the population as a whole when a

therapeutic vaccine is administered is that the total population will stay around 46,629, with a

steady prevalence of the infection around 6.5%.

Equilibrium Stability

The Jacobian and the derivation for the characteristic polynomial in symbolic form are both

presented in appendix A. As a numerical approximation to the symbolic solution to the char-

acteristic polynomial, at the endemic equilibrium we get the following,

c(x) = c0x
6 + c1x

5 + c2x
4 + c3x

3 + c4x
2 + c5x+ c6 (4.27)

with the coefficients,
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c0 = 1

c1 ≈ 2.217397865783052

c2 ≈ 1.802908824781624

c3 ≈ 6.747477931309361e-01

c4 ≈ 1.160699718272295e-01

c5 ≈ 7.616996330660597e-03

c6 ≈ 1.188495639018756e-04.

For the fixed parameter values of the model we can verify that the endemic equilibrium is stable

if all of the solutions to (4.27) have negative real parts. Solving for the roots numerically we

get the following,

x ≈ −8.956574588109634e-01

x ≈ −4.983781016846317e-01

x ≈ −3.925958681080570e-01

x ≈ −3.100305547497526e-01

x ≈ −9.853594264602114e-02

x ≈ −2.219993978362754e-02.

Given all eigenvalues have negative real parts we can conclude that the equilibrium is asymptot-

ically stable. To verify the stability we will also confirm the results by checking the conditions

for Routh-Hurwitz criterion 4.1.3. For a 6th degree polynomial the Hurwitz determinants are

defined by the following4,

∆1(c) = c1

∆2(c) = c2∆1 − c0c3

∆3(c) = c3∆2 − c4c
2
1 + c5c1c0

∆4(c) = c4∆3 − c5c2∆2 + c5c4c1c0 − c2
5c

2
0 + c6c2c

2
1 − c6c3c1c0

∆5(c) = c5∆4 − c6c3∆3 + c6c5c1∆2 − c2
6c

3
1

∆6(c) = c6∆5.

Using the numerical approximations to the characteristic polynomial (4.27) the approximations

4The derivation for each of the Hurwitz determines can be found in appendix B.
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to the Hurwitz determinants are each evaluated to be the following,

∆1(c) ≈ 2.217397865783052

∆2(c) ≈ 3.323018387141267

∆3(c) ≈ 1.688390211214303

∆4(c) ≈ 1.531153542540695e-01

∆5(c) ≈ 1.037397690930284e-03

∆6(c) ≈ 1.232942631598769e-07.

Again we will address the accuracy for which the results of the calculations can be reliable.

Noting that the derivation for the endemic equilibrium, the characteristic polynomial, and the

Hurwitz determinants were all done analytically in symbolic form and each can be found either

in this section, appendix A, or appendix B, respectively, the numerical approximations will

therefore rely on the precision that MatLab evaluates the calculations. As we already mentioned

in the previous section, MatLab stores and computes all numbers to the equivalent 16 digit value

[23]. Therefore, it can again be concluded that the accuracy for each of the solutions to the

Hurwitz determinants are all defined within machine precision.

Given the approximations for the Hurwitz determinants, as well as c0 = 1, we can verify

that the equilibrium point E?t just nearly satisfies the Criterion of Routh-Hurwitz for stability,

c0∆1(c) ≈ 2.217397865783052 > 0

∆2(c) ≈ 3.323018387141267 > 0

c0∆3(c) ≈ 1.688390211214303 > 0

∆4(c) ≈ 1.531153542540695e-01 > 0

c0∆5(c) ≈ 1.037397690930284e-03 > 0

∆6(c) ≈ 1.232942631598769e-07 > 0.

To conclude with the equilibria and stability analysis for the therapeutic vaccine program

there is only one physically relevant equilibrium point and based on the parameters values, as

they are defined in section 3.1, it is asymptotically stable.

4.2.3 Preventative Vaccine Program

Continuing with the dynamical analysis for each of the intervention strategies we will introduce

the dynamics as they are defined for the model when only the preventative vaccine is available:
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dY0,0(t)

dt
=I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (4.28a)

dY0,1(t)

dt
=νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (4.28b)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (4.28c)

dY1,1(t)

dt
=νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t) (4.28d)

dY2,0(t)

dt
=I2,0 + σξ(Y1,0(t) + Y1,1(t))− (µ2,0 + µ)Y2,0(t) (4.28e)

dY3,0(t)

dt
=I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (4.28f)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (4.28g)

where

λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

(4.29a)

λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

. (4.29b)

Equilibrium Calculations

To solve for the equilibria of the system when the preventative vaccine only is administered we

set
dYi,0(t)

dt
= 0 for i = 0, 1, . . . , 4 and j = 0, 1 then solve for Y ?(t) = [Y ?

0,0(t), Y ?
0,1(t), Y ?

1,0(t),

Y ?
1,1(t), Y ?

2,0(t), Y ?
3,0(t), Y ?

4,0(t)]ᵀ. Therefore, the system of equations defined at the equilibria is

given as:

0 = I0,0 − (νp + µ+ p0λ(t))Y ?
0,0(t) + ωY ?

0,1(t) (4.30a)

0 = νpY
?

0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y ?
0,1(t) (4.30b)

0 = I1,0 + p0λ(t)Y ?
0,0(t)− (σξ + νp + µ1,0 + µ)Y ?

1,0(t) + ωY ?
1,1(t) (4.30c)

0 = p0(1− ε)λν(t)Y ?
0,1(t) + νpY

?
1,0(t)− (ω + σξ + µ1,1 + µ)Y ?

1,1(t) (4.30d)

0 = I2,0 + σξ(Y ?
1,0(t) + Y ?

1,1(t))− (µ2,0 + µ)Y ?
2,0(t) (4.30e)

0 = I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jY
?
i,j(t)− (µ3,0 + µ)Y ?

3,0(t) (4.30f)

0 = µ3,0Y
?

3,0(t)− (µ4,0 + µ)Y ?
4,0(t). (4.30g)
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Recall from the introduction to the model in chapter 3, Edwards et al. introduced the

model to analyze the impact that adverse effects of vaccinating can have on the effectiveness

of various vaccination programs. To model this behavioral impact the introduction for two rate

of infection functions was made: 1○ for the susceptible population that is unvaccinated (the

primary rate of infection) and 2○ for the susceptible population that is vaccinated (accounting

for the adverse effects). This implies when we consider the method we have already used for

deriving the equilibrium for the model without an intervention and the therapeutic vaccine

program this time we will need to take into consideration setting up two equations for each of

the force of infection rates. Just as we derived in the previous sections, equation (4.30a) defines

a second expression for the primary rate of infection, defined only at an equilibrium point,

λ(t) =
I0,0 − (νp + µ)Y ?

0,0(t) + ωY ?
0,1(t)

p0Y ?
0,0(t)

. (4.31)

Similarly, we also get a second expression for λν(t) from equation (4.30b),

λν(t) =
νpY

?
0,0(t)− (ω + µ)Y ?

0,1(t)

p0(1− ε)Y ?
0,1(t)

. (4.32)

Plugging (4.31) and (4.32) into equations (4.30c) and (4.30d) respectively we get the following

equivalent system of equations:

0 =
I0,0 − (νp + µ)Y ?

0,0(t) + ωY ?
0,1(t)

p0Y ?
0,0(t)

− λ(t) (4.33a)

0 =
νpY

?
0,0(t)− (ω + µ)Y ?

0,1(t)

p0(1− ε)Y ?
0,1(t)

− λν(t) (4.33b)

0 = I1,0 + I0,0 − (νp + µ)Y ?
0,0(t) + ωY ?

0,1(t)− (σξ + νp + µ1,0 + µ)Y ?
1,0(t) + ωY ?

1,1(t) (4.33c)

0 = νpY
?

0,0(t)− (ω + µ)Y ?
0,1(t) + νpY

?
1,0(t)− (ω + σξ + µ1,1 + µ)Y ?

1,1(t) (4.33d)

0 = I2,0 + σξ(Y ?
1,0(t) + Y ?

1,1(t))− (µ2,0 + µ)Y ?
2,0(t) (4.33e)

0 = I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jY
?
i,j(t)− (µ3,0 + µ)Y ?

3,0(t) (4.33f)

0 = µ3,0Y
?

3,0(t)− (µ4,0 + µ)Y ?
4,0(t). (4.33g)

Considering the method used before, where we defined each of the infectious states in terms

of the susceptible population, we will again define each of the infectious states in terms of the

susceptible populations. For the preventative vaccine only dynamics this implies that we will

need to define each of the infectious states in terms of both the susceptible and unvaccinated
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as well as the susceptible and vaccinated states. Thus, the objective now is to reduce the above

system of equations (4.33) to a system of two equations defining the relationship between Y ?
0,0(t)

and Y ?
0,1(t).

Starting with equation (4.33d)

Y ?
1,1(t) =

νp
(σξ + ω + µ1,1 + µ)

Y ?
0,0(t)− ω + µ

(σξ + ω + µ1,1 + µ)
Y ?

0,1(t) +
νp

(σξ + ω + µ1,1 + µ)
Y ?

1,0(t)

(4.34)

and plugging into equation (4.33c) we get the following representation for Y ?
1,0(t),

Y ?
1,0(t) =

(σξ + ω + µ1,1 + µ)(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

+

[
ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,0(t)

+

[
ω(σξ + µ1,1)

(σξ + νp + µ1,0)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,1(t). (4.35)

Using (4.35) to express Y ?
1,1(t) in terms of Y ?

0,0(t) and Y ?
0,1(t), we get the following

Y ?
1,1(t) =

νp(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

+

[
νp(σξ + µ1,0)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,0(t)

+

[
ωνp − (ω + µ)(σξ + νp + µ1,0 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,1(t). (4.36)

Continuing to the following infectious state equations, we input (4.35) and (4.36) into equation

(4.33e) to define Y ?
2,0(t) in terms of Y ?

0,0(t) and Y ?
0,1(t),

Y ?
2,0(t) =

I2,0

(µ2,0 + µ)
+

σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

[
σξ
(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,0(t)

+

[
σξ
(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,1(t). (4.37)

Then (4.35), (4.36), and (4.37) input into (4.33f) results with
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Y ?
3,0(t) =

I3,0

(µ3,0 + µ)
+

µ2,0I2,0

(µ3,0 + µ)(µ2,0 + µ)

+
µ2,0σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ3,0 + µ)(µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

(µ1,0(σξ + ω + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

[
µ2,0σξ

(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) ]Y ?
0,0(t)

+

[
µ2,0σξ

(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) ]Y ?
0,1(t). (4.38)

Finally, we have Y ?
4,0(t) defined as the following

Y ?
4,0(t) =

µ3,0I3,0

(µ4,0 + µ)(µ3,0 + µ)
+

µ3,0µ2,0I2,0

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

+
µ3,0µ2,0σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

µ3,0

(
(µ1,0(σξ + ω + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

)
(µ4,0 + µ)(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

[
µ3,0µ2,0σξ

(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

µ3,0

(
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

)
(µ4,0 + µ)(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,0(t)

+

[
µ3,0µ2,0σξ

(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

µ3,0

(
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

)
(µ4,0 + µ)(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,1(t).

(4.39)
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Again, we will use vector notation to represent each of the infection rate functions, as they

are originally defined in the model. In consideration that each of the infectious states are now

defined in terms of the two distinct susceptible populations, we will define M for the coefficients

of Y ?
0,0(t) and Mν for the coefficients to Y ?

0,1(t). All other vector notation will be notated as

before with the correct representation for the preventative vaccine model.

P :=



p0

p0

p1

p1

p2

p3

p4


B :=



0

0

p1β1,0η00,10

p1β1,1η00,11

p2β2,0η00,20

p3β3,0η00,30

p4β4,0η00,40


Bν :=



0

0

p1β1,0η01,10

p1β1,1η01,11

p2β2,0η01,20

p3β3,0η01,30

p4β4,0η01,40


Φ :=



φ0,0

φ0,1

φ1,0

φ1,1

φ2,0

φ3,0

φ4,0



M :=



m0,0

m0,1

m1,0

m1,1

m2,0

m3,0

m4,0


Mν :=



mν
0,0

mν
0,1

mν
1,0

mν
1,1

mν
2,0

mν
3,0

mν
4,0


, such that

φ0,0 := 0

φ0,1 := 0

φ1,0 :=
(σξ + ω + µ1,1 + µ)(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

φ1,1 :=
νp(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

φ2,0 :=
I2,0

(µ2,0 + µ)
+

σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
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φ3,0 :=
I3,0

(µ3,0 + µ)
+

µ2,0I2,0

(µ3,0 + µ)(µ2,0 + µ)

+
µ2,0σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ3,0 + µ)(µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

(µ1,0(σξ + ω + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
φ4,0 :=

µ3,0I3,0

(µ4,0 + µ)(µ3,0 + µ)
+

µ3,0µ2,0I2,0

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

+
µ3,0µ2,0σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

µ3,0

(
(µ1,0(σξ + ω + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

)
(µ4,0 + µ)(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
m0,0 := 1

m0,1 := 0

m1,0 :=
ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

m1,1 :=
νp(σξ + µ1,0)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

m2,0 :=
σξ
(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
m3,0 :=

µ2,0σξ
(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
m4,0 :=

µ3,0µ2,0σξ
(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

µ3,0

(
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

)
(µ4,0 + µ)(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
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mν
0,0 := 0

mν
0,0 := 1

mν
1,0 :=

ω(σξ + µ1,1)

(σξ + νp + µ1,0)(σξ + ω + µ1,1 + µ)− ωνp

mν
1,1 :=

ωνp − (ω + µ)(σξ + νp + µ1,0 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

mν
2,0 :=

σξ
(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
mν

3,0 :=
µ2,0σξ

(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
mν

4,0 :=
µ3,0µ2,0σξ

(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ4,0 + µ)(µ3,0 + µ)(µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

µ3,0

(
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

)
(µ4,0 + µ)(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) .
With the vector notation we can now express each of the rate of infection functions as

λ(t) =
B′Φ +B′MY ?

0,0(t) +B′MνY
?

0,1(t)

P ′Φ + P ′MY ?
0,0(t) + P ′MνY ?

0,1(t)
(4.40)

λν(t) =
B′νΦ +B′νMY ?

0,0(t) +B′νMνY
?

0,1(t)

P ′Φ + P ′MY ?
0,0(t) + P ′MνY ?

0,1(t)
. (4.41)

Setting equations (4.40) and (4.41) equal to (4.31) and (4.32) respectively, will result with the

two equations needed for evaluating Y ?
0,0(t) and Y ?

0,1(t) at the equilibria,

I0,0 − (νp + µ)Y ?
0,0(t) + ωY ?

0,1(t)

p0Y ?
0,0(t)

=
B′Φ +B′MY ?

0,0(t) +B′MνY
?

0,1(t)

P ′Φ + P ′MY ?
0,0(t) + P ′MνY ?

0,1(t)
(4.42)

νpY
?

0,0(t)− (ω + µ)Y ?
0,1(t)

p0(1− ε)Y ?
0,1(t)

=
B′νΦ +B′νMY ?

0,0(t) +B′νMνY
?

0,1(t)

P ′Φ + P ′MY ?
0,0(t) + P ′MνY ?

0,1(t)
. (4.43)

After simplifying equations (4.42) and (4.43) we have the following system of equations
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0 =
[
(P ′M)(νp + µ) + (B′M)p0

]
(Y ?

0,0(t))2

+
[(

(B′Mν)p0 + (P ′Mν)(νp + µ)− (P ′M)ω
)
Y ?

0,1(t)

+
(
(B′Φ)p0 + (P ′Φ)(νp + µ)− (P ′M)I0,0

)]
Y ?

0,0(t)

−
[
(P ′Mν)ω(Y ?

0,1(t))2 +
(
(P ′Φ)ω + (P ′Mν)I0,0

)
Y ?

0,1(t) + (P ′Φ)I0,0

]
(4.44)

0 =
[
(P ′Mν)(ω + µ) + (B′νMν)p0(1− ε)

]
(Y ?

0,1(t))2

+
[(

(P ′M)(ω + µ)− (P ′Mν)νp + (B′νM)p0(1− ε)
)
Y ?

0,0(t)

+
(
(P ′Φ)(ω + µ) + (B′νΦ)p0(1− ε)

)]
Y ?

0,1(t)

−
[
(P ′M)νp(Y

?
0,0(t))2 + (P ′Φ)νpY

?
0,0(t)

]
. (4.45)

To consolidate the calculations we will introduce the following parameters and continue with

solving the system. For equation (4.44)

a00,2 := (P ′M)(νp + µ) + (B′M)p0

b00,1 := (B′Mν)p0 + (P ′Mν)(νp + µ)− (P ′M)ω

b00,2 := (B′Φ)p0 + (P ′Φ)(νp + µ)− (P ′M)I0,0

c00,0 := −(P ′Mν)ω

c00,1 := −(P ′Φ)ω − (P ′Mν)I0,0

c00,2 := −(P ′Φ)I0,0

and for equation (4.45) let

a01,2 := (P ′Mν)(ω + µ) + (B′νMν)p0(1− ε)

b01,1 := (P ′M)(ω + µ)− (P ′Mν)νp + (B′νM)p0(1− ε)

b01,2 := (P ′Φ)(ω + µ) + (B′νΦ)p0(1− ε)

c01,0 := −(P ′M)νp

c01,1 := −(P ′Φ)νp

then the system of equations can be more simply written as
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0 = a00,2(Y ?
0,0(t))2 + (b00,1Y

?
0,1(t) + b00,2)Y ?

0,0(t) + c00,0(Y ?
0,1(t))2 + c00,1Y

?
0,1(t) + c00,2 (4.46a)

0 = a01,2(Y ?
0,1(t))2 + (b01,1Y

?
0,0(t) + b01,2)Y ?

0,1(t) + c01,0(Y ?
0,0(t))2 + c01,1Y

?
0,0(t). (4.46b)

From equation (4.46b), the quadratic formula can be used to define a solution for Y ?
0,1(t) in

terms of Y ?
0,0(t),

Y ?
0,1(t) =

−b01,1Y
?

0,0(t)− b01,2 ±
√

(b01,1Y ?
0,0(t) + b01,2)2 − 4a01,2(c01,0(Y ?

0,0(t))2 + c01,1Y ?
0,0(t))

2a01,2
.

Focusing now on just the radicand we derive another quadratic expression in terms of Y ?
0,0(t),

(b01,1Y
?

0,0(t) + b01,2)2 − 4a01,2(c01,0(Y ?
0,0(t))2 + c01,1Y

?
0,0(t))

=
[
(b01,1)2 − 4a01,2c01,0

]
(Y ?

0,0(t))2 +
[
2b01,1b01,2 − 4a01,2c01,1

]
Y ?

0,0(t) + (b01,2)2.

Introducing another set of parameters to consolidate our calculations,

α01,0 := (b01,1)2 − 4a01,2c01,0

α01,1 := 2b01,1b01,2 − 4a01,2c01,1

α01,2 := (b01,2)2

and setting

Y ?
0,1(t) =

−b01,1Y
?

0,0(t)− b01,2 ±
√
α01,0(Y ?

0,0(t))2 + α01,1Y ?
0,0(t) + α01,2)

2a01,2
(4.47)

we plug (4.47) into (4.44) to get,

0 = 4(a01,2)2a00,2(Y ?
0,0(t))2 + 4(a01,2)2b00,2Y

?
0,0(t) + 4(a01,2)2c00,2

+ 2(a01,2b00,1)
(
− b01,1Y

?
0,0(t)− b01,2 ±

√
α01,0(Y ?

0,0(t))2 + α01,1Y ?
0,0(t) + α01,2

)
Y ?

0,0(t)

+ c00,0

(
− b01,1Y

?
0,0(t)− b01,2 ±

√
α01,0(Y ?

0,0(t))2 + α01,1Y ?
0,0(t) + α01,2

)2

+ 2a01,2c00,1

(
− b01,1Y

?
0,0(t)− b01,2 ±

√
α01,0(Y ?

0,0(t))2 + α01,1Y ?
0,0(t) + α01,2

)
.

Expanding and reorganizing the expressions results with
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((
2a01,2b00,1 − 2c00,0b01,1

)
Y ?

0,0(t) + 2a01,2c00,1 − 2c00,0b01,2

)
×
(
±
√
α01,0(Y ?

0,0(t))2 + α01,1Y ?
0,0(t) + α01,2

)
=
(

4(a01,2)2a00,2 − 2a01,2b00,1b01,1 + c00,0α01,0

)
(Y ?

0,0(t))2

+
(

4(a01,2)2b00,2 − 2a01,2b00,1b01,2 − 2a01,2c00,1b01,1

+ 2c00,0b01,1b01,2 + c00,0α01,1

)
Y ?

0,0(t)

+ 4(a01,2)2c00,2 − 2a01,2c00,1b01,2 + c00,0(b01,2)2 + c00,0α01,2.

And, yet again, we will introduce our last set of parameters for the purpose of consolidating

the calculations as we work toward a solution to the equilibrium,

φ1 := 2a01,2b00,1 − 2c00,0b01,1

φ2 := 2a01,2c00,1 − 2c00,0b01,2

γ0 := 4(a01,2)2a00,2 + c00,0(b01,1)2 + c00,0α01,0 − 2a01,2b00,1b01,1

γ1 := 4(a01,2)2b00,2 + 2c00,0b01,1b01,2 + c00,0α01,1 − 2a01,2b00,1b01,2 − 2a01,2c00,1b01,1

γ2 := 4(a01,2)2c00,2 + c00,0(b01,2)2 + c00,0α01,2 − 2a01,2c00,1b01,2,

implies,

[(
φ1Y

?
0,0(t) + φ2

)(
±
√
α01,0(Y ?

0,0(t))2 + α01,1Y ?
0,0(t) + α01,2

)]2

=

[
γ0(Y ?

0,0(t))2 + γ1Y
?

0,0(t) + γ2

]2

.

Upon squaring each side of the equation, we see that the solution for Y ?
0,0(t) is independent

of the sign for the radical expression. After expanding and combining like terms we get the

following quartic equation for Y ?
0,0(t),

0 =
[
γ2

0 − φ2
1α01,0

]
(Y ?

0,0(t))4 +
[
2γ0γ1 − φ2

1α01,1 − 2φ1φ2α01,0

]
(Y ?

0,0(t))3

+
[
γ2

1 + 2γ0γ2 − 2γ1γ2α01,1 − φ2
1α01,2 − φ2

2α01,0

]
(Y ?

0,0)2

+
[
2γ1γ2 − 2φ1φ2α01,2 − φ2

2α01,1

]
Y ?

0,0(t) +
[
γ2

2 − φ2
2α01,2

]
.
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Now, going to a numerical solver we input the original parameter assumptions along with

each of the defined parameters we introduced into the calculations and solve for the roots of

the quartic expression to the get the following solutions,

Y ?
0,0(t) ≈ 178, 153

Y ?
0,0(t) ≈ 6, 903

Y ?
0,0(t) ≈ 4, 073

Y ?
0,0(t) ≈ −1, 177.

For each solution to Y ?
0,0(t) we get two solutions for Y ?

0,1(t). In table 4.1 we let b(Y ?
0,0(t)) =

−b01,1Y
?

0,0(t)− b01,2 and α(Y ?
0,0(t)) = α01,0(Y ?

0,0(t))2 + α01,1Y
?

0,0(t) + α01,2.

Table 4.1: Solutions to Y ?
0,1(t) evaluated from the quadratic expression for each solution to

Y ?
0,0(t) for the preventative vaccine only model.

Y ?
0,0(t) Y ?

0,1(t) =
b(Y ?

0,0(t)) +
√
α(Y ?

0,0(t))

2a01,2
Y ?

0,1(t) =
b(Y ?

0,0(t))−
√
α(Y ?

0,0(t))

2a01,2

178,153 1,128,273 -193,515

6,903 42,246 -21,937

4,073 24,508 -19,312

-1,177 -5,677 -17,160

Before moving on to define the equilibrium points to the dynamical system we will first

verify that the solutions to Y ?
0,0(t) and Y ?

0,1(t) in table 4.1 satisfy equations (4.46a) and (4.46b).

In doing so, we found for each solution for Y ?
0,0(t) there is only one corresponding solution to

Y ?
0,1(t) that satisfies the original system. Thus, after checking all solutions found in table 4.1

we are left with only the four (Y ?
0,0(t), Y ?

0,1(t)) pairs in table 4.2 that satisfy equations (4.46a)

and (4.46b). Thus, using the verified solutions for Y ?
0,0(t) and Y ?

0,1(t), along with the expressions

for each of the infectious states defined by equations (4.35) - (4.39) we get the following four

solutions for the equilibrium points to the dynamical system used to defined the infectious

disease model when a preventative vaccine is introduced.
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Table 4.2: Verified solutions to Y ?
0,1(t) for each solution of Y ?

0,0(t) for the preventative vaccine
only model.

Y ?
0,0(t) Y ?

0,1(t) =
b(Y ?

0,0(t)) +
√
α(Y ?

0,0(t))

2a01,2
Y ?

0,1(t) =
b(Y ?

0,0(t))−
√
α(Y ?

0,0(t))

2a01,2

178,153 1,128,273 -193,515

6,903 42,246 -21,937

4,073 24,508 -19,312

-1,177 -5,677 -17,160

E†1 ≈



178, 153

−193, 515

−133, 849

138, 706

5, 242

3, 454

2, 567


E? ≈



6, 903

42, 246

71

166

580

331

246


E†2 ≈



4, 073

−19, 312

−2, 954

7, 802

5, 233

3, 448

2, 562


E†3 ≈



−1, 177

−17, 160

745

4, 324

5, 457

3, 598

2, 674


Just as we have seen in the analysis of the previous models, we again have only one physically

relevant equilibrium point. Therefore, to continue our analysis of the dynamical system when

a preventative vaccine is present we will only need to evaluate the stability of the one endemic

equilibrium point,

E?p ≈



6, 903

42, 246

71

166

580

331

246


.

Equilibrium Stability

In referencing appendix A where the full symbolic representation for the Jacobian matrix is

presented we will again evaluate the eigenvalues of the system and determine the stability of the

equilibria E?c . Given the size of the system the calculations required to derive the characteristic
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polynomial in symbolic form are far to computationally intensive and will not be evaluated.

Instead the numerical approximation to the coefficients of the characteristic polynomial was

derived using the ‘poly’ function in MatLab,

c(x) = c0x
7 + c1x

6 + c2x
5 + c3x

4 + c4x
3 + c5x

2 + c6x+ c7 (4.48)

with the coefficients,

c0 = 1

c1 ≈ 3.376272183437085

c2 ≈ 4.387961784494099

c3 ≈ 2.800292114176461

c4 ≈ 9.265143626371679e-01

c5 ≈ 1.515818025675994e-01

c6 ≈ 1.018052814755124e-02

c7 ≈ 1.607176324024748e-04.

For the fixed parameter values of the model we can verify that the endemic equilibrium is stable

if all of the solutions to (4.64) have negative real parts. Solving for the roots numerically we

get the following,

x ≈ −1.159622474835404

x ≈ −8.734244681842751e-01

x ≈ −4.816493409460326e-01

x ≈ −4.289209890026219e-01

x ≈ −2.918423857965558e-01

x ≈ −1.186262672926165e-01

x ≈ −2.218625737957888e-02.

Given all eigenvalues have negative real parts we can conclude that the equilibrium is asymptot-

ically stable. To verify the stability we will also confirm the results by checking the conditions

for Routh-Hurwitz criterion 4.1.3. For a 7th degree polynomial the Hurwitz determinants are

defined by the following5

5The derivation for each of the Hurwitz determinants can be found in appendix B.
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∆1(c) = c1

∆2(c) = c2∆1 − c0c3

∆3(c) = c3∆2 − c4c
2
1 + c5c1c0

∆4(c) = c4∆3 − c5c2∆2 + c5c4c1c0 − c2
5c

2
0 + c6c2c

2
1 − c6c3c1c0 − c7c2c1c0 + c7c3c

2
0

∆5(c) = c5∆4 − c6c3∆3 + (c6c5c1 + c7c3c2 − c7c4c1)∆2 − c2
6c

3
1 + c6c7c

2
1c0

− c7c3c4c1c0 + c7c3c5c
2
0 + c7c6c

2
1c0 − c2

7c1c
2
0

∆6(c) = c6∆5 − c7c4∆4 + c7c6c2∆3 + (c2
7c4c0 − c2

7c
2
2 − c7c6c5c0)∆2

+ c7c
2
6c

2
1c0 − c2

7c6c1c
2
0 + c2

7c2c4c1c0 − c2
7c2c5c

2
0 − c2

7c6c1c
2
0 + c3

7c
3
0

∆7(c) = c7∆6.

Thus, to verify the stability of the endemic equilibrium point, E?p , for the preventative vaccine

model we will again use a numerical solver to evaluate the approximation to each of the Hurwitz

determinants,

∆1(c) ≈ 3.376272183437085

∆2(c) ≈ 12.01466120079592

∆3(c) ≈ 44.71787779957474

∆4(c) ≈ 34.30261806001776

∆5(c) ≈ 4.003863356067739

∆6(c) ≈ 3.556684851783046e-02

∆7(c) ≈ 5.716219685803183e-06.

Noting that the solutions to the Hurwitz determinants are not as ‘small’ as they were in

the cases for the model without an intervention and the therapeutic only variations, they are

‘small’ enough to address again the accuracy of the calculations. One major difference in the

calculations for the Hurwitz determinants in the preventative only variation of the model, was

the need to use the built-in function ‘poly’ in MatLab to solve for the characteristic polynomial.

The concern that a numerical method for deriving the coefficients to the characteristic poly-

nomial could reduce the accuracy for the solution is alleviated by the fact that ‘poly’ uses the

summation algorithm for which the error depends on the floating-point precision [24]. There-

fore, the accuracy for the numerical solution to the Hurwitz determinants are within machine

precision.

Given the approximations for the Hurwitz determinants, as well as c0 = 1, we can verify

at the endemic equilibrium point E?p the Criterion of Routh-Hurwitz for stability is just nearly
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satisfied,

c0∆1(c) ≈ 3.376272183437085 > 0

∆2(c) ≈ 12.01466120079592 > 0

c0∆3(c) ≈ 44.71787779957474 > 0

∆4(c) ≈ 34.30261806001776 > 0

c0∆5(c) ≈ 4.003863356067739 > 0

∆6(c) ≈ 3.556684851783046e-02 > 0

c0∆7(c) ≈ 5.716219685803183e-06 > 0.

Thus we have found that the endemic equilibrium point for the preventative vaccine program

dynamics, E?p is locally asymptotically stable. By checking the conditions from Routh-Hurwitz

criterion for stability we find that the conditions are just nearly met, but we can say that E?p

is more stable than E?b and E?t .

4.2.4 Combined, Preventative and Therapeutic, Vaccine Program

We conclude the equilibrium and stability analysis for each of the intervention strategies with

the dynamics for the combined vaccination strategy. For the full model with both vaccines, the

preventative and therapeutic, we have the following system of ordinary differential equations:

dY0,0(t)

dt
=I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (4.49a)

dY0,1(t)

dt
=νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (4.49b)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (4.49c)

dY1,1(t)

dt
=νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t) (4.49d)

dY2,0(t)

dt
=I2,0 + σξ(Y1,0(t) + Y1,1(t))− (νt + µ2,0 + µ)Y2,0(t) (4.49e)

dY2,1(t)

dt
=νtY2,0(t)− (µ2,1 + µ)Y2,1(t) (4.49f)

dY3,0(t)

dt
=I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (4.49g)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (4.49h)
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with

λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

(4.50a)

λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

. (4.50b)

Equilibrium Calculations

To solve for the equilibria of the system with the combined intervention strategy we set
dYi,0(t)

dt
= 0 for i = 0, 1, . . . , 4 and j = 0, 1 then solve for Y ?(t) = [Y ?

0,0(t), Y ?
0,1(t), Y ?

1,0(t), Y ?
1,1(t),

Y ?
2,0(t), Y ?

2,1(t), Y ?
3,0(t), Y ?

4,0(t)]ᵀ. This results with the following system of equations:

0 = I0,0 − (νp + µ+ p0λ(t))Y ?
0,0(t) + ωY ?

0,1(t) (4.51a)

0 = νpY
?

0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y ?
0,1(t) (4.51b)

0 = I1,0 + p0λ(t)Y ?
0,0(t)− (σξ + νp + µ1,0 + µ)Y ?

1,0(t) + ωY ?
1,1(t) (4.51c)

0 = p0(1− ε)λν(t)Y ?
0,1(t) + νpY

?
1,0(t)− (ω + σξ + µ1,1 + µ)Y ?

1,1(t) (4.51d)

0 = I2,0 + σξ(Y ?
1,0(t) + Y ?

1,1(t))− (νt + µ2,0 + µ)Y ?
2,0(t) (4.51e)

0 = νtY
?

2,0(t)− (µ2,1 +−µ)Y ?
2,1(t) (4.51f)

0 = I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jY
?
i,j(t)− (µ3,0 + µ)Y ?

3,0(t) (4.51g)

0 = µ3,0Y
?

3,0(t)− (µ4,0 + µ)Y ?
4,0(t). (4.51h)

The approach for evaluating the equilibria for the system with the combined vaccine strategy

is the same method we used to solve for the equilibria for the preventative vaccine program.

Noting that the addition of the therapeutic vaccine to the preventative only system implies

that the first four equations of the current system, (4.51a) - (4.51d), are the same as the first

four equations from the preventative vaccine analysis, (4.30a) - (4.30d). This results with the

same expressions for each of the infection rate functions, as well as the two distinct states for

the asymptomatic and unaware populations,

λ(t) =
I0,0 − (νp + µ)Y ?

0,0(t) + ωY ?
0,1(t)

p0Y ?
0,0(t)

(4.52)

λν(t) =
νpY

?
0,0(t)− (ω + µ)Y ?

0,1(t)

p0(1− ε)Y ?
0,1(t)

(4.53)
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Y ?
1,0(t) =

(σξ + ω + µ1,1 + µ)(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

+

[
ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,0(t)

+

[
ω(σξ + µ1,1)

(σξ + νp + µ1,0)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,1(t) (4.54)

Y ?
1,1(t) =

νp(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

+

[
νp(σξ + µ1,0)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,0(t)

+

[
ωνp − (ω + µ)(σξ + νp + µ1,0 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

]
Y ?

0,1(t). (4.55)

Next, evaluating the rest of the infectious states using the expressions defined for Y ?
1,0(t) and

Y ?
1,1(t), as well as each of the following expressions for the next consecutive populations, we get

the following

Y ?
2,0(t) =

I2,0

(νt + µ2,0 + µ)

+
σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

[
σξ
(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,0(t)

+

[
σξ
(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,1(t) (4.56)
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Y ?
2,1(t) =

νtI2,0

(µ2,1 + µ)(νt + µ2,0 + µ)

+
νtσξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ2,1 + µ)(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+

[
νtσξ

(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,0(t)

+

[
νtσξ

(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]Y ?
0,1(t)

(4.57)

Y ?
3,0(t) =

I3,0

(µ3,0 + µ)
+

(µ1,0(σξ + νp + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
(µ2,0(µ2,1 + µ) + µ2,1νt

(µ3,0 + µ)(µ2,1 + µ)

)
×
[ I2,0

(νt + µ2,0 + µ)

+
σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]
+

[
σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ3,0

(
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

)
(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) ]
Y ?

0,0(t)

+

[
σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) ]Y ?
0,1(t) (4.58)
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Y ?
4,0(t) =

(
µ3,0

(µ4,0 + µ)

)

×

[
I3,0

(µ3,0 + µ)
+

(µ1,0(σξ + νp + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
(µ2,0(µ2,1 + µ) + µ2,1νt

(µ3,0 + µ)(µ2,1 + µ)

)[ I2,0

(νt + µ2,0 + µ)

+
σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)]
+

[
σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ3,0

(
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

)
(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) ]
Y ?

0,0(t)

+

[
σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) ]Y ?
0,1(t)

]
.

(4.59)

Based on equations (4.54) - (4.59) we now have the following vector notation that will be used

for each of the original rate of infection functions

P :=



p0

p0

p1

p1

p2

p2

p3

p4


, B :=



0

0

p1β1,0η00,10

p1β1,1η00,11

p2β2,0η00,20

p2β2,1η00,21

p3β3,0η00,30

p4β4,0η00,40


Bν :=



0

0

p1β1,0η01,10

p1β1,1η01,11

p2β2,0η01,20

p2β2,1η01,21

p3β3,0η01,30

p4β4,0η01,40


Φ :=



φ0,0

φ0,1

φ1,0

φ1,1

φ2,0

φ2,1

φ3,0

φ4,0


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M :=



m0,0

m0,1

m1,0

m1,1

m2,0

m2,1

m3,0

m4,0


Mν :=



mν
0,0

mν
0,1

mν
1,0

mν
1,1

mν
2,0

mν
2,1

mν
3,0

mν
4,0


, such that

φ0,0 := 0

φ0,1 := 0

φ1,0 :=
(σξ + ω + µ1,1 + µ)(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

φ1,1 :=
νp(I1,0 + I0,0))

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

φ2,0 :=
I2,0

(νt + µ2,0 + µ)
+

σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
φ2,1 :=

νtI2,0

(µ2,1 + µ)(νt + µ2,0 + µ)

+
νtσξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(µ2,1 + µ)(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
φ3,0 :=

I3,0

(µ3,0 + µ)
+

(µ1,0(σξ + νp + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
(µ2,0(µ2,1 + µ) + µ2,1νt

(µ3,0 + µ)(µ2,1 + µ)

)( I2,0

(νt + µ2,0 + µ)

+
σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

))
+

(µ1,0(σξ + ω + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
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φ4,0 :=
µ3,0I3,0

(µ4,0 + µ)(µ3,0 + µ)

+
µ3,0(µ1,0(σξ + νp + µ1,1 + µ) + µ1,1νp)(I1,0 + I0,0)

(µ4,0 + µ)(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
( µ3,0µ2,0(µ2,1 + µ) + µ2,1νt

(µ4,0 + µ)(µ3,0 + µ)(µ2,1 + µ)

)( I2,0

(νt + µ2,0 + µ)

+
σξ(νp + σξ + ω + µ1,1 + µ)(I1,0 + I0,0)

(νt + µ2,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

))

m0,0 := 1

m0,1 := 0

m1,0 :=
ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

m1,1 :=
νp(σξ + µ1,0)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

m2,0 :=
σξ
(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
m2,1 :=

νtσξ
(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
m3,0 :=

σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ3,0

(
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

)
(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
m4,0 :=

σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
νp(ω + σξ + µ1,0)− (νp + µ)(σξ + ω + µ1,1 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ3,0

(
µ1,0(ωνp − (νp + µ)(σξ + ω + µ1,1 + µ)) + µ1,1νp(σξ + µ1,0)

)
(µ3,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
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mν
0,0 := 0

mν
0,0 := 1

mν
1,0 :=

ω(σξ + µ1,1)

(σξ + νp + µ1,0)(σξ + ω + µ1,1 + µ)− ωνp

mν
1,1 :=

ωνp − (ω + µ)(σξ + νp + µ1,0 + µ)

(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

mν
2,0 :=

σξ
(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
mν

2,1 :=
νtσξ

(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
mν

3,0 :=
σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
mν

4,0 :=
σξ
(
µ2,0(µ2,1 + µ) + µ2,1νt

)(
ω(νp + σξ + µ1,1)− (ω + µ)(σξ + νp + µ1,0 + µ)

)
(µ3,0 + µ)(µ2,1 + µ)(νt + µ2,0 + µ)

(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

)
+
µ1,0ω(σξ + µ1,1) + µ1,1(ωνp − (ω + µ)(σξ + νp + µ1,0 + µ))

(µ3,0 + µ)
(
(σξ + νp + µ1,0 + µ)(σξ + ω + µ1,1 + µ)− ωνp

) .
Again we have the following two expressions for the infection rate functions, defined using the

vector notation given above,

λ(t) =
B′Φ +B′MY ?

0,0(t) +B′MνY
?

0,1(t)

P ′Φ + P ′MY ?
0,0(t) + P ′MνY ?

0,1(t)
(4.60)

λν(t) =
B′νΦ +B′νMY ?

0,0(t) +B′νMνY
?

0,1(t)

P ′Φ + P ′MY ?
0,0(t) + P ′MνY ?

0,1(t)
. (4.61)

Then as we had in section 4.2.3, setting equations (4.60) and (4.61) equal to (4.52) and (4.53)

respectively, will result with two equations for Y ?
0,0(t) and Y ?

0,1(t). To recall the solution and

parameters we introduced in the last section we will give a brief description here,

0 = a00,2(Y0,0(t))2 + (b00,1Y0,1(t) + b00,2)Y0,0(t) + c00,0(Y0,1(t))2 + c00,1Y0,1(t) + c00,2 (4.62a)

0 = a01,2(Y0,1(t))2 + (b01,1Y0,0(t) + b01,2)Y0,1(t) + c01,0(Y0,0(t))2 + c01,1Y0,0(t)) (4.62b)
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where

a00,2 = (P ′M)(νp + µ) + (B′M)p0

b00,1 = (B′Mν)p0 + (P ′Mν)(νp + µ)− (P ′M)ω

b00,2 = (B′Φ)p0 + (P ′Φ)(νp + µ)− (P ′M)I0,0

c00,0 = −(P ′Mν)ω

c00,1 = −(P ′Φ)ω − (P ′Mν)I0,0

c00,2 = −(P ′Φ)I0,0

a01,2 = (P ′Mν)(ω + µ) + (B′νMν)p0(1− ε)

b01,1 = (P ′M)(ω + µ)− (P ′Mν)νp + (B′νM)p0(1− ε)

b01,2 = (P ′Φ)(ω + µ) + (B′νΦ)p0(1− ε)

c01,0 = −(P ′M)νp

c01,1 = −(P ′Φ)νp.

Then from equation (4.62b) we get

Y ?
0,1(t) =

−b01,1Y
?

0,0(t)− b01,2 ±
√
α01,0(Y ?

0,0(t))2 + α01,1Y ?
0,0(t) + α01,2)

2a01,2
(4.63)

when α01,0, α01,1 and α01,2 are defined as the following

α01,0 = (b01,1)2 − 4a01,2c01,0

α01,1 = 2b01,1b01,2 − 4a01,2c01,1

α01,2 = (b01,2)2.

Plugging (4.63) into equation (4.62a) and introducing the final set of parameters

φ1 = 2a01,2b00,1 − 2c00,0b01,1

φ2 = 2a01,2c00,1 − 2c00,0b01,2

γ0 = 4(a01,2)2a00,2 + c00,0(b01,1)2 + c00,0α01,0 − 2a01,2b00,1b01,1

γ1 = 4(a01,2)2b00,2 + 2c00,0b01,1b01,2 + c00,0α01,1 − 2a01,2b00,1b01,2 − 2a01,2c00,1b01,1

γ2 = 4(a01,2)2c00,2 + c00,0(b01,2)2 + c00,0α01,2 − 2a01,2c00,1b01,2,
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we derived the quartic expression for Y0,0(t),

0 =
[
γ2

0 − φ2
1α01,0

]
(Y ?

0,0(t))4 +
[
2γ0γ1 − φ2

1α01,1 − 2φ1φ2α01,0

]
(Y ?

0,0(t))3

+
[
γ2

1 + 2γ0γ2 − 2γ1γ2α01,1 − φ2
1α01,2 − φ2

2α01,0

]
(Y ?

0,0)2

+
[
2γ1γ2 − 2φ1φ2α01,2 − φ2

2α01,1

]
Y ?

0,0(t) +
[
γ2

2 − φ2
2α01,2

]
.

Next, inputing the parameter assumptions and vector notation as they are defined for the

combined strategy analysis the solutions for each of the roots to the quartic expression are

given,

Y ?
0,0(t) ≈ 212, 405

Y ?
0,0(t) ≈ 6, 871

Y ?
0,0(t) ≈ 5, 113

Y ?
0,0(t) ≈ −1, 807.

For each solution to Y ?
0,0(t) we get two solutions for Y ?

0,1(t). In table 4.3 we let b(Y ?
0,0(t)) =

−b01,1Y
?

0,0(t)− b01,2 and α(Y ?
0,0(t)) = α01,0(Y ?

0,0(t))2 + α01,1Y
?

0,0(t) + α01,2.

Table 4.3: Solutions to Y ?
0,1(t) from the quadratic expression for each solution to Y ?

0,0(t) for the
combined strategy model.

Y ?
0,0(t) Y ?

0,1(t) =
b(Y ?

0,0(t)) +
√
α(Y ?

0,0(t))

2a01,2
Y ?

0,1(t) =
b(Y ?

0,0(t))−
√
α(Y ?

0,0(t))

2a01,2

212,405 1,352,947 -230,538

6,871 42,021 -24,665

5,113 30,957 -23,053

-1,807 -8,125 -21,177

We will again check the solutions to Y ?
0,0(t) and Y ?

0,1(t) to confirm that the solutions satisfy

the reduced system of equations (4.46a) - (4.46b). The results of our verification are given in

table 4.4. Thus, using the verified solutions for Y ?
0,0(t) and Y ?

0,1(t), along with the expressions for

each of the infectious states defined by equations (4.54) - (4.59) we get the following four solu-

tions for the equilibrium points to the dynamical system used to defined the infectious disease
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model when a the combined, preventative and therapeutic, vaccine strategy is introduced,

Table 4.4: Verified solutions to Y ?
0,1(t) for each solution of Y ?

0,0(t) for the combined strategy
model.

Y ?
0,0(t) Y ?

0,1(t) =
b(Y ?

0,0(t)) +
√
α(Y ?

0,0(t))

2a01,2
Y ?

0,1(t) =
b(Y ?

0,0(t))−
√
α(Y ?

0,0(t))

2a01,2

212,405 1,352,947 -230,538

6,871 42,021 -24,665

5,113 30,957 -23,053

-1,807 -8,125 -21,177

E†1 ≈



212, 405

−230, 538

−159, 824

164, 870

885

6, 736

3, 465

2, 575


E? ≈



6, 871

42, 021

74

181

97

741

330

245


E†2 ≈



5, 113

−23, 053

−3, 952

8, 994

883

6, 719

3, 456

2, 568


E†3 ≈



−1, 807

−21, 177

847

4, 555

942

7, 170

3, 692

2, 744


.

Just as we have seen in the analysis of the previous models, we again have only one physically

relevant equilibrium point. Therefore, to continue our analysis of the dynamical system when

the combined vaccination strategy is present we will only need to evaluate the stability of the

one endemic equilibrium point,
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E?c =



6, 871

42, 021

74

181

97

741

330

245


.

Equilibrium Stability

In referencing appendix A where the full symbolic representation for the Jacobian matrix is

presented we will again evaluate the eigenvalues of the system and determine the stability of the

equilibrium E?c . Given the size of the system the calculations required to derive the characteristic

polynomial in symbolic form will not be evaluated. Instead the numerical approximation to the

coefficients of the characteristic polynomial was derived using the ’poly’ function in MatLab,

c(x) = c0x
8 + c1x

7 + c2x
6 + c3x

5 + c4x
4 + c5x

3 + c6x
2 + c7x+ c8 (4.64)

with the coefficients

c0 = 1

c1 ≈ 4.196533446473763

c2 ≈ 7.116144689040367

c3 ≈ 6.325660802484393

c4 ≈ 3.235613786491986

c5 ≈ 1.000397183370066

c6 ≈ 1.894899658645659e-01

c7 ≈ 1.906773638444585e-02

c8 ≈ 3.405782269716043e-04.

For the fixed parameter values of the model we can verify that the endemic equilibrium is stable

if all of the solutions to (4.64) have negative real parts. Solving for the roots numerically we

get the following,
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x ≈ −1.159924292995883

x ≈ −9.871685753240487e-01

x ≈ −8.561350492855480e-01

x ≈ −4.884164960525558e-01

x ≈ −4.103824189504522e-01

x ≈ −1.361337159979307e-01 + (2.437350577832072e-01)i

x ≈ −1.361337159979307e-01− (2.437350577832072e-01)i

x ≈ −2.223918186941349e-02.

Given all eigenvalues have negative real parts we can conclude that the equilibrium is asymptot-

ically stable. To verify the stability we will also confirm the results by checking the conditions

for Routh-Hurwitz criterion 4.1.3. For an 8th degree polynomial the Hurwitz determinants are

defined by the following6

∆1(c) = c1

∆2(c) = c2∆1 − c0c3

∆3(c) = c3∆2 − c4c
2
1 + c5c1c0

∆4(c) = c4∆3 − c5c2∆2 + c5c4c1c0 − c2
5c

2
0 + c6c2c

2
1 − c6c3c1c0 − c7c2c1c0 + c7c3c

2
0

∆5(c) = c5∆4 − c6c3∆3 + (c6c5c1 + c7c3c2 − c7c4c1)∆2 − c2
6c

3
1 + c6c7c

2
1c0 − c7c3c4c1c0

+ c7c3c5c
2
0 + c7c6c

2
1c0 − c2

7c1c
2
0 − c8c3c2c

2
1 + c8c

2
3c0c1 + c8c4c

3
1 − c8c5c

2
1c0

∆6(c) = c6∆5 − c7c4∆4 + (c7c6c2 + c8c4c3 − c8c5c2)∆3

+ (c2
7c4c0 − c7c6c5c0 − c2

7c
2
2 − c8c4c5c1 + c8c

2
5c0 + c8c7c2c1 − c8c7c3c0)∆2

+ c7c
2
6c

2
1c0 − c2

7c6c1c
2
0 + c2

7c2c4c0c1 − c2
7c2c5c

2
0 − c2

7c6c1c
2
0 + c3

7c
3
0

+ c7c8c
2
2c

2
1 − c7c8c2c3c0c1 − c7c8c4c

2
1c0 + c7c8c5c1c

2
0

+ c8c4c6c
3
1 + c8c4c7c

2
1c0 − c8c5c6c

2
1c0 + c8c5c7c1c

2
0 − c2

8c2c
3
1 + c2

8c3c
2
1c0

∆7(c) = c7∆6 − c8c5∆5 + c8c7c3∆4

+ (c2
8c5c1 − c8c7c6c1 − c2

8c
2
3)∆3 + (c8c

2
7c1c2 + c2

8c3c5c1 − c2
8c7c

2
1)∆2

− c8c
2
7c

2
1c4c0 + c8c

2
7c1c5c

2
0 − c2

8c7c
3
1c2 + c2

8c7c
2
1c3c0 − c2

8c3c6c
3
1

+ c2
8c3c7c

2
1c0 + c3

8c
4
1

∆8(c) = c8∆7.

6The derivation for each of the Hurwitz determinants can be found in appendix B.
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Evaluating the numerical approximation to each of the Hurwitz determinants for the charac-

teristic polynomial at the endemic equilibrium for the combined strategy model we get,

∆1(c) ≈ 4.196533446473763

∆2(c) ≈ 23.53747839502015

∆3(c) ≈ 210.0703527901395

∆4(c) ≈ 542.9950805724345

∆5(c) ≈ 319.9971836041562

∆6(c) ≈ 32.95073190264795

∆7(c) ≈ 5.397579299874337e-01

∆8(c) ≈ 1.838297987889835e-04.

Now, given the approximations for the Hurwitz determinants, as well as c0 = 1, we can verify

that the equilibrium point E?p1 just nearly satisfies the Criterion of Routh-Hurwitz for stability,

c0∆1(c) ≈ 4.196533446473763 > 0

∆2(c) ≈ 23.53747839502015 > 0

c0∆3(c) ≈ 210.0703527901395 > 0

∆4(c) ≈ 542.9950805724345 > 0

c0∆5(c) ≈ 319.9971836041562 > 0

∆6(c) ≈ 32.95073190264795 > 0

c0∆7(c) ≈ 5.397579299874337e-01 > 0

∆8(c) ≈ 1.838297987889835e-04 > 0.

Therefore, by the Routh-Hurwitz Criterion for Stability the endemic equilibrium, E?c , for

the combined strategy model is locally asymptotically stable. Just as we mentioned with the

equilibria for the other three variations of our infectious disease model, consideration can be

made regarding the sensitivity for the stability of the equilibria based on any variation in the

parameters. For the purposes of optimizing an intervention strategy knowing that each variation

of the state space has exactly one physically relevant equilibrium that is locally asymptotically

stable is sufficient.
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4.3 Consideration for a Disease-Free Equilibrium

So far we have shown that each variation of the state space has exactly one feasible equilibrium

and each is locally asymptotically stable. As we proceed with the control analysis, in later

chapters, this will be the only expectation for the system when no intervention is present.

Alternatively, to give a full epidemiological analysis of the infectious disease model we consider

the behavior for a disease-free equilibrium when we assume constant immigration can only occur

into the susceptible class.

To evaluate the system for a disease-free equilibrium we must first consider altering the

dynamics so that constant immigration into the infective classes is no longer present. Recall

from table 3.2 that overall immigration into the population is defined by the product between the

non-AIDS related annual death rate (µ) and the initial size of the total population (Y0) with the

assumption that 90% of immigration belongs to the susceptible population, 8% are considered

asymptomatic 7, while the last 2% of the incoming population are assumed to be symptomatic.

Assuming that immigration into the infected population has ceased, we will assume that 100%

of immigration belongs to the susceptible class, resulting with I0,0 = µY0. Thus, considering the

dynamics for the system when no intervention is present (4.1) and assume that immigration

will only occur in the susceptible class results with the following system of ordinary differential

equations:

dY0,0(t)

dt
= I0,0 − (µ+ p0λ(t))Y0,0(t) (4.65a)

dY1,0(t)

dt
= p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (4.65b)

dY2,0(t)

dt
= σξY1,0(t)− (µ2,0 + µ)Y2,0(t) (4.65c)

dY3,0(t)

dt
=

i=2∑
i=1

µi,0Yi,0(t)− (µ3,0 + µ)Y3,0(t) (4.65d)

dY4,0(t)

dt
= µ3,0Y3,0(t)− µ4,0Y4,0(t)− µY4,0(t) (4.65e)

with only the primary infection rate function,

λ(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη00,ijYi,j(t)∑j=1

j=0

∑i=4
i=1 piYi,j(t)

. (4.66)

7The additional assumption is that half of the asymptomatic population entering the system is aware of their
infection and half are note. Implying that 4% of immigration belong to the asymptomatic-unaware population
and 4% belong to the asymptomatic-aware population.
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Equilibrium Calculations

To determine the symbolic representation for the disease-free equilibrium point we set the five

differential terms and four infectious states to zero and solve for the susceptible population.

In doing so the system of equations (4.65) reduces to the following single equation in terms of

Y ?
0,0(t); keeping in mind that λ(t) = 0 when the infected populations are equal to zero,

0 = I0,0 − µY ?
0,0(t).

Thus, the disease-free equilibrium point exists and is defined when all of the infective classes

are zero,

E?b0 = [I0,0/µ, 0, 0, 0, 0]ᵀ,

where we use E?b0 to denote the base model disease-free equilibrium (when immigration only

occurs in the susceptible population).

Recall, we initially assumed that all immigration will flow into the susceptible population

only, which resulted with I0,0 = µY0. This implies that the disease-free equilibrium simplifies to

E?b0 = [Y0, 0, 0, 0, 0]ᵀ.

Since the initial population for the model described in section 3.1 is assumed to be 55,816 the

disease-free equilibrium is,

E?b0 =


55, 816

0

0

0

0

 .

Equilibrium Stability

To evaluate the stability of the disease-free equilibrium we will again consider whether the

Criterion from Routh-Hurwitz for stability is satisfied. To begin, note that the solution to

the characteristic polynomial when we remove the terms for constant immigration into the

infective classes will be the same as the solution for the characteristic polynomial we derived

for the base model without an intervention. Therefore, referring to appendix A we can evaluate

the coefficients for the characteristic polynomial at E?b0 = [Y0, 0, 0, 0, 0].
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Recalling λ(t) is dependent on the state variables we will begin by evaluating λ(t) as well

as all corresponding partial derivatives with respect to each of the state variables,

λ(t)|E?
b0

=

∑i=4
i=1 piβi,0η00,i0Yi,0(t)∑i=4

i=0 piYi,0(t)

∣∣∣∣∣
E?

b0

=
0

p0Y0
= 0.

The derivative of λ(t) with respect to Y0,0(t), the susceptible class, at the disease-free equilibrium

is also zero,

λ[0,0](t)
∣∣
E?

b0

=
−p0

∑i=4
i=1 piβi,0η00,i0Yi,0(t)(∑i=4
i=0 piYi,0(t)

)2

∣∣∣∣∣∣∣
E?

b0

=
0

(p0Y0)2 = 0.

For each of the infective classes, Yk,0(t) for k = 1, 2, . . . , 4, the respective partial derivatives of

λ(t) at the disease-free equilibrium are defined as the following,

λ[k,0](t)
∣∣
E?

b0

=
pkβk,0η00,k0

∑i=4
i=0 piYi,0(t)− pk

∑i=4
i=1 piβi,0η00,i0Yi,0(t)(∑i=4

i=0 piYi,0(t)
)2

∣∣∣∣∣∣∣
E?

b0

=
pkβk,0η00,k0 (p0Y0)

(p0Y0)2

=
pkβk,0η00,k0

p0Y0
.

Therefore, the coefficients of the characteristic polynomial defined by the parameters at the

disease-free equilibrium are

c0 = 1

c1 = (σξ + µ1,0 + µ2,0 + µ3,0 + µ4,0 + 5µ)− (p1β1,0η00,10)

c2 = (σξ + µ1,0 + 2µ)(µ2,0 + µ3,0 + µ4,0 + 3µ)

+ µ(σξ + µ1,0 + µ) +
(
(µ2,0 + µ)(µ3,0 + µ) + (µ2,0 + µ3,0 + 2µ)(µ4,0 + µ)

)
− (µ2,0 + µ3,0 + µ4,0 + 4µ)(p1β1,0η00,10)− σξ(p2β2,0η00,20)− µ1,0(p3β3,0η00,30)

100



c3 = (σξ + µ1,0 + µ)
(
(µ2,0 + µ)(µ3,0 + µ) + (µ2,0 + µ3,0 + 2µ)(µ4,0 + µ)

)
+ µ(σξ + µ1,0 + µ)(µ2,0 + µ3,0 + µ4,0 + 3µ) + (µ2,0 + µ)(µ3,0 + µ)(µ4,0 + µ)

−
(

(µ2,0 + µ)(µ3,0 + µ) + (µ2,0 + µ3,0 + 2µ)(µ4,0 + µ)

+ µ(µ2,0 + µ3,0 + µ4,0 + 3µ)
)

(p1β1,0η00,10)

− σξ(µ3,0 + µ4,0+3µ)(p2β2,0η00,20)− (σξµ2,0 + µ1,0(µ2,0 + µ4,0 + 3µ))(p3β3,0η00,30)

+ µ1,0µ3,0(p4β4,0η00,40)

c4 = (σξ + µ1,0 + µ)(µ2,0 + µ)(µ3,0 + µ)(µ4,0 + µ)

+ µ(σξ + µ1,0 + µ)
(
(µ2,0 + µ)(µ3,0 + µ) + (µ2,0 + µ3,0 + 2µ)(µ4,0 + µ)

)
−
(

(µ2,0 + µ)(µ3,0 + µ)(µ4,0 + µ) + µ
(
(µ2,0 + µ)(µ3,0 + µ)

+ (µ2,0 + µ3,0 + 2µ)(µ4,0 + µ)
))

(p1β1,0η00,10)

− σξ
(
(µ3,0 + µ)(µ4,0 + µ)µ(µ3,0 + µ4,0 + 2µ)

)
(p2β2,0η00,20)

−
(
σξµ2,0(µ4,0 + µ) + µ1,0

(
(µ2,0 + µ)(µ4,0 + µ)

+ µ(µ2,0 + µ4,0 + 2µ)
))

(p3β3,0η00,30)

−
(
σξµ2,0µ3,0 + µ1,0µ3,0(µ2,0 + 2µ)

)
(p4β4,0η00,40)

c5 = µ(σξ + µ1,0 + µ)(µ2,0 + µ)(µ3,0 + µ)(µ4,0 + µ)

− µ(µ2,0 + µ)(µ3,0 + µ)(µ4,0 + µ)(p1β1,0η00,10)

− µσξ(µ3,0 + µ)(µ4,0 + µ)(p2β2,0η00,20)

− µ
(
σξµ2,0(µ4,0 + µ) + µ1,0(µ2,0 + µ)(µ4,0 + µ)

)
(p3β3,0η00,30)

− µ
(
σξµ2,0µ30 + µ1,0µ3,0(µ2,0 + µ)

)
(p4β4,0η4,0),

Evaluating the numerical approximation to each of the coefficients defined above we get the

following

c0 = 1

c1 ≈ 1.36886151283

c2 ≈ 6.06507587946e-01

c3 ≈ 1.43754416252e-01

c4 ≈ 1.17082196757e-02

c5 ≈ 1.96151498574e-04.

Again, we will consider the Routh-Hurwitz Criterion for stability to determine whether the
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disease-free equilibrium is stable, just as we have already done for the endemic equilibrium.

Recall the Hurwitz determinants for the characteristic polynomial, c(x) = c0x
5 + c1x

4 + c2x
3 +

c3x
2 + c4x+ c5, are defined as;

∆1(c) = c1

∆2(c) = c2∆1 − c0c3

∆3(c) = c3∆2 − c4c
2
1 + c5c1c0

∆4(c) = c4∆3 − c5c2∆2 + c5c4c1c0 − c2
5c

2
0

∆5(c) = c5∆4.

Evaluating each of the Hurwitz determinants for the coefficients of the characteristic polynomial

at the disease free equilibrium when immigration is restricted to the susceptible population only,

we get the next approximations

∆1(c) ≈ 1.368861512825629

∆2(c) ≈ 6.864704781242760e-01

∆3(c) ≈ 7.701301767157777e-02

∆4(c) ≈ 8.231229710455165e-04

∆5(c) ≈ 1.614568042810366e-07,

Therefore, by the Routh-Hurwitz Criterion for Stability, given

c0∆1(c) ≈ 1.368861512825629 > 0

∆2(c) ≈ 6.864704781242760e-01 > 0

c0∆3(c) ≈ 7.701301767157777e-02 > 0

∆4(c) ≈ 8.231229710455165e-04 > 0

c0∆5(c) ≈ 1.614568042810366e-07 > 0,

implies we have an asymptotically stable equilibrium point at E?b0 . As we continue with the

consideration of optimizing an intervention strategy for controlling the spread of HIV we will

remind the reader that the state space for the model without an intervention strategy has only

one physically relevant equilibrium point; the endemic equilibrium E?b . Therefore, in the rest of

our analysis regarding the HIV-transmission model with vaccine intervention the consideration

for the disease-free equilibrium will not be addressed.
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Chapter 5

Optimizing an Intervention Strategy

Taking into consideration our earlier analysis regarding the three direct approaches for inter-

vention (the therapeutic vaccine only, the preventative vaccine only and the combined strategy)

we note that for each one of these strategies we made the assumption that the available vac-

cine(s) would be offered for the full 20 year time horizon. Alternatively, allowing the timing for

each vaccine to vary could result with a more cost-effective strategy. Therefore, we will need to

structure the statement of a problem that will allow us to derive such a solution.

To begin our analysis we will introduce the standard definitions and terminology for a

general nonlinear optimal control problem. From there we will be able to introduce Pontryagin’s

maximum principle, which states the necessary conditions required to satisfy optimality [30].

For a particular class of problems we will find that further investigation will allow us to get

more information regarding the structure of the optimal solution. The class of problems we will

consider satisfy the assumptions made regarding the “bang-bang” principle, which we will also

introduce in full detail. One of the limitations of optimal control theory is the assumption of

one objective functional. Therefore, we will also define a multiobjective optimization problem

along with the definitions for Pareto optimality and introduce the weighted-sums method for

evaluating Pareto optimal solutions.

The goal in the first couple of sections will be to lay the ground work to structure a mul-

tiobjective control problem for the purpose of optimizing an intervention strategy to mitigate

the impact the spread of the HIV virus has on a society. This leads to methods for solving the

optimization problem numerically, taking into consideration an approach that offers an efficient

algorithm for evaluating “bang-bang” controls. Thus, we will give a description for the method

of control parameterization and present the solution for the optimal intervention strategy. Not-

ing that the method we have chosen for its efficiency will only guarantee an approximation

to the optimal solution, we will also check that the solution satisfies the conditions from the

“bang-bang” principle.
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5.1 Introduction to Optimal Control Theory

5.1.1 Formulation of an Optimal Control Problem

In the first section of this chapter we will introduce the terminology, notation and necessary

definitions from optimal control theory as they appear in Nonlinear Optimal Control Theory by

Leonard D. Berkovitz and Negash G. Medhin [9]. Noting that not every notation will be exactly

as Berkovitz and Medhin define them in their book, instead we introduce notation that will be

consistent with the notation already presented by Edwards et al., while keeping the definitions

the same.

We will begin with introducing the basic notation and some terminology as they relate to the

formulation of an optimal control problem. Let t denote a non-negative real value, t ∈ R+∪{0},
representing time. Let the variable y denote a vector in the real Euclidean space Rn, where n ∈ N
and y = (y1, . . . , yn) is referred to as the state variable. Let the variable ν denote a vector in

the real Euclidean space Rm, where m ∈ N and ν = (ν1, . . . , νm) is referred to as the control

variable. We consider the regions R and U , each defined by an open connected set, where R is

a region of the (t, y)-space and U is a region of the ν-space. The cartesian product of the two

regions, R and U , defines the region F = R× U . Then we let f0, f1, . . . , fn define real valued

continuous functions of the variables (t, y, ν) on the region F .

We will emphasize before moving on that the standard notation for vector component in-

dexing will be used. This results with yi denoting the ith component of the vector y. Therefore,

we will use the superscript to distinguish between the vectors from the same space, such that

y(i) and y(j) are two vectors in R.

In many situations an objective control problem may require that either the initial state

y(0) comes from a pre-assigned set T (0) in R as well as reach a second state y(1) from a

second pre-assigned set T (1) in R. Therefore, we will also define the set B for the points

(t(0), y(0), t(1), y(1)) = (t(0), y
(0)
1 , . . . , y

(0)
n , t(1), y

(1)
1 , . . . , y

(1)
n ) such that (t(i), y(i)) for i = 0, 1 are in

R and t(1) ≥ t(0) + δ for some fixed δ > 0. Then B is said to define the end conditions for the

problem.

As a fundamental aspect to many optimal control problems, typically the state of the system

at time t is described by a point or vector

y(t) = (y1(t), . . . , yn(t))

such that (t, y(t)) is in R and initially, at time t(0),

y(t(0)) = y(0) = (y
(0)
1 , . . . , y(0)

n )
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is such that (t(0), y(0)) is also in R. Then a measurable function ν defined on [t(0), t(1)] with a

range in U is chosen such that the system is said to vary with time according to the system of

differential equations

y′i(t) =
dyi
dt

= fi(t, y(t), ν(t)), yi(t
(0)) = y

(0)
i , for i = 1, . . . , n. (5.1)

At points of discontinuity of ν, equation (5.1) holds for the one-sided limits. As a function of

time, y describes the evolution of the system and will be referred to as a trajectory. As we

continue we will use the standard vector notation for systems of differential equations

y′(t) =
dy

dt
= f(t, y(t), ν(t)), y(t(0)) = y(0), (5.2)

where y = (y1, . . . , yn) and f = (f1, . . . , fn), such that (5.2) defines the relationships between

column vectors. The system of differential equations y′(t) = f(t, y(t), ν(t)) will be called the

state equations.

It is often further required that the control ν and corresponding state trajectory y satisfy a

pre-defined system of inequality constraints

Ri(t, y(t), ν(t)) ≥ 0, for i = 1, 2, . . . , r (5.3)

for all t(0) ≤ t ≤ t(1), where the functions R1, . . . , Rr are given functions of (t, y, ν). These

constraints are referred to as the control constraints and can be defined by a mapping V from

R to a subset V(t, x) of U such that

V(t, y) = {ν : Ri(t, y, ν) ≥ 0, i = 1, . . . , r}.

Thus the requirement that a function ν and a corresponding trajectory y satisfy the constraints

(5.3) can be written as

ν(t) ∈ V(t, y(t)) for t(0) ≤ t ≤ t(1).

Definition 5.1.1. A control ν is said to be an admissible control if there exists a trajectory y

corresponding to ν such that

(i) t→ f0(t, y(t), ν(t)) is in L1[t(0), t(1)].

(ii) ν(t) ∈ V(t, y(t)) a.e. on [t(0), t(1)].

(iii) (t(0), y(t(0)), t(1), y(t(1))) ∈ B.
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Definition 5.1.2. A trajectory corresponding to an admissible control is called an admissible

trajectory.

Definition 5.1.3. A pair of functions (y, ν) such that ν is an admissible control and y is an

admissible trajectory corresponding to ν will be called an admissible pair.

Problem 5.1.4. Let A denote the set of all admissible pairs (y, ν) and let A be non-empty.

Let

J(y, ν) = g(t(0), y(t(0)), t(1), y(t(1))) +

∫ t(1)

t(0)
f0(t, y(t), ν(t))dt, (5.4)

where (y, ν) is an admissible pair and g is a given real valued function defined on B. Find a pair

(y?, ν?) in A that minimizes (5.4) in the class A. That is, find an element (y?, ν?) in A such

that

J(y?, ν?) ≤ J(y, ν) for all (y, ν) in A

Definition 5.1.5. The objective functional J(y, ν) defined by equation (5.4) is called a cost or

payoff or performance index.1

The statement for the optimal control problem 5.1.4 is sometimes referred to as the Bolza

problem. Alternatively, when we consider special cases of the Bolza problem where f0 = 0 or

g = 0 these problems are referred to as the Mayer problem and Lagrange problem, respectively.

As we continue onto the subsequent sections, we will assume that we are always dealing with

the Lagrange problem.

Problem 5.1.6 (The Lagrange Problem). Let A denote the set of all admissible pairs (y, ν)

and let A be non-empty. Let

J(y, ν) =

∫ t(1)

t(0)
f0(t, y(t), ν(t))dt, (5.5)

where (y, ν) is an admissible pair. Find a pair (y?, ν?) in A that minimizes (5.5) in the class A.

That is, find an element (y?, ν?) in A such that

J(y?, ν?) ≤ J(y, ν) for all (y, ν) in A
1For the objective optimization problem that we will address in our research, we will refer to the objective

functional as the payoff.
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5.1.2 Pontryagin’s Maximum Principle

In this section we will introduce Pontryagin’s maximum principle which states the necessary

conditions required to satisfy optimality for the control problem 5.1.6 [30]. We will point out

that in problem 5.1.6 the statement addresses a minimization problem and in this section we

will be introducing the maximum principle. Since every minimization problem can be solved by

taking the negation of the objective and approaching the problem as a maximization problem,

it will suffice to present the maximum principle as a means to addressing both maximization

and minimization problems. To begin, we start by introducing the Hamiltonian, H : R1×Rn×
Rm × R1 × Rn defined by

H(t, y, ν, z, z0) := 〈z, f(t, y, ν)〉+ z0f0(t, y, ν)

where 〈·, ·〉 is the inner product on Rn, z is a vector valued function defined on [t(0), t(1)] with

a range in Rn and z0 is a nonzero constant value. The vector valued function z will be referred

to as the costate variable.

Although we use the 1962 English translation of original publication from Pontryagin et al.,

we will state the theorem for the maximum principle in integral form along with the corollary

for the pointwise maximum principle as it was introduced by Berkovitz in 1974 [7, 44].

Theorem 5.1.7 (Maximum Principle in Integral Form). Let (y?, ν?) be an optimal pair defined

on the interval [t(0), t(1)]. Then there exists a constant z0 ≤ 0 and an absolutely continuous vector

function z? : [t(0), t(1)]→ Rn such that the following hold:

(i) (z0, z
?) is never zero on [t(0), t(1)].

(ii) For a.e. t in [t(0), t(1)]

dy?(t)

dt
= Hz(t, y

?(t), ν?(t), z?(t), z0)

dz?(t)

dt
= −Hy(t, y

?(t), ν?(t), z?(t), z0).

(iii) For any admissible control ν defined on the interval [t(0), t(1)]

∫ t(1)

t(0)
H(t, y?(t), ν?(t), z?(t), z0)dt ≥

∫ t(1)

t(0)
H(t, y?(t), ν(t), z?(t), z0)dt.
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(iv) If the mapping t → f̂(t, y(t), ν(t)), for f̂ := (f0, f1, . . . , fn), is continuous at t = t(i),

i = 0, 1, then the (2n+ 2)-vector

(
H(π(t(0))),−z?(t(0)),−H(π(t(1))), z?(t(1))

)
is orthogonal to B at the point (t(0), y?(t(0)), t(1), y?(t(1))), where

π(t(i)) = (t(i), y?(t(i)), ν?(t(i)), z?(t(i)), z0) for i = 0, 1.

The system of differential equations defining z′(t) = −Hy(t, y(t), ν(t), z(t), z0) will be called the

costate equations.

Corollary 5.1.8 (Pointwise Maximum Principle). If for all t, V(t) = V, where V is a fixed set,

and f̂ is continuous on F , then

H(t, y?(t), ν?(t), z?(t), z0) ≥ H(t, y?(t), ν(t), z?(t), z0)

for almost all t in [t(0), t(1)] and all ν in V.

From theorem 5.1.7 and the corollary 5.1.8 we obtain a set of necessary conditions for

optimality that become the focus for evaluating an optimal solution to any control problem in

the form of 5.1.6. Setting z0 = −1 the Hamiltonian is defined as

H(t, y, ν, z) := 〈z, f(t, y, ν)〉 − f0(t, y, ν).

For the Lagrange problem, with g = 0, the assumption for the terminal condition for the costate

equations is z?(t(1)) = 0. This results with the following conditions that must hold true for the

optimal control ν? along with the corresponding state and costate trajectories, y? and z?.

1.
dy?(t)

dt
= Hz(y

?(t), ν?(t), z?(t)), y?(t(0)) = y(0)

2.
dz?(t)

dt
= −Hy(y

?(t), ν?(t), z?(t)), z?(t(1)) = 0

3. H(t, y?(t), ν?(t), z?(t)) ≥ H(t, y?(t), ν(t), z?(t)) for all ν ∈ V

5.1.3 The “Bang-Bang” Principle

Next we consider a particular class of optimal control problems, where the control is bounded

and appears linearly in both the dynamics and payoff. These types of optimal control problem
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require special consideration since the necessary conditions are insufficient for solving the control

problem analytically. To give a general description to an optimal control problem whose solution

fits the “bang-bang” principle we will start with a couple of assumptions.

Assumption 5.1.9. The state equations are defined by an autonomous system of differential

equations,

dy(t)

dt
= f(y(t), ν(t)).

Assumption 5.1.10. The control variable is bounded both above and below

M−i ≤ νi(t) ≤M
+
i , i = 1, . . . ,m,

where M−i and M+
i define the lower and upper bounds of the ith control component.

Assumption 5.1.11. The state equations of the system are of the form

dy(t)

dt
= a(y(t)) +B(y(t))ν(t),

where a is a continuous vector-valued function whose range is defined in Rn, and B is an n×m
matrix of continuous functions.

Assumption 5.1.12. The cost functional (payoff) is in the form

J(y, ν) =

∫ t(1)

t(0)
[a0(y(t)) +B0(y(t))ν(t)] dt,

where a0 is a continuous scalar valued function and B0 is an 1×m vector of continuous functions.

Making the same assumptions that were made in section 5.1.2, the maximum principle can

be used to develop a generalized solution for this particular class of optimal control problems.

According to assumptions 5.1.9 - 5.1.12 and z0 = −1, the Hamiltonian is defined as

H(y(t), ν(t), z(t)) =
〈
z(t), a(y(t)) +B(y(t))ν(t)

〉
− a0(y(t))−B0(y(t))ν(t)

=
[〈
z(t), B(y(t))

〉
−B0(y(t))

]
ν(t) +

〈
z(t), a(y(t))

〉
− a0(y(t)).

From the pointwise maximum principle 5.1.8, an optimal pair (y?, ν?) must satisfy the following

inequality for a.e. t in [t(0), t(1)] and each admissible control ν ∈ V,
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[〈
z?(t), B(y?(t))

〉
−B0(y?(t))

]
ν?(t) +

〈
z?(t), a(y?(t))

〉
− a0(y?(t))

≥
[〈
z?(t), B(y?(t))

〉
−B0(y?(t))

]
ν(t) +

〈
z?(t), a(y?(t))

〉
− a0(y?(t)). (5.6)

Simplifying the inequality (5.6) results with the following necessary condition for the class of

maximization problems with bounded linear control functions,

[〈
z?(t), B(y?(t))

〉
−B0(y?(t))

]
ν?(t) ≥

[〈
z?(t), B(y?(t))

〉
−B0(y?(t))

]
ν(t). (5.7)

Let G(y?(t), z?(t)) =
〈
z?(t), B(y?(t))

〉
−B0(y?(t)) define the 1×m matrix of continuous func-

tions representing the coefficient to the control function in (5.7). If we take G = (g1, g2, . . . , gm),

then we can write (5.7) as a system of inequalities

gi(y
?(t), z?(t))ν?i (t) ≥ gi(y?(t), z?(t))νi(t), i = 1, 2, . . . ,m. (5.8)

Then the solution to the maximization problem with assumptions 5.1.9 - 5.1.12 can be given

in the general form

ν?i (t) =


M+
i , gi(y(t), z(t)) > 0

M−i , gi(y(t), z(t)) < 0

Undetermined, gi(y(t), z(t)) = 0

i = 1, 2, . . . ,m. (5.9)

For the case when gi(y(t), z(t)) = 0 the results for the optimal control are considered unde-

termined because it depends on whether this case is valid for only a set of unique points with

measure zero on the interval [t(0), t(1)] or if it holds true on a set of subintervals on [t(0), t(1)].

When it holds true for only a finite set of points, this set of points are referred to as the switch-

ing times. Alternatively, when gi(y(t), z(t)) = 0 on any subinterval the control is referred to as

singular on that interval and since the necessary conditions do not give us sufficient information

for this case the solution would require further investigation. The consideration for whether a

control is singular on any subinterval is handled by case by case scenario and depends directly

on the specifics for a particular optimal control problem. Therefore, we will leave the investi-

gation to the case when the switching function, G(y(t), z(t))) = 0, for later consideration when

we approach a solution to the objective control problem we will consider for optimizing an

intervention strategy.

We will note, that the core principles of optimal control theory consider a single objective

cost functional. Alternatively and as it is in our case, there are many control problems where

there are an array of objectives, that may or may not be directly competing. Therefore in the
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next section we will outline the fundamental concepts of a multiobjective optimization.

5.2 Multiobjective Optimization

Multiobjective optimization problems have been studied since the late 1800’s, originating with

Edgeworth in 1881 [35]. The concepts and definitions for multiobjective optimization and Pareto

optimality are presented here as stated from Miettinin’s book Nonlinear Multiobjective Opti-

mization [35]. As it is presented in a majority of the literature, we will present the multiobjective

optimization problem as a minimization problem with the understanding that any maximization

problem can be made a minimization problem by negating the objective.

Problem 5.2.1 (Multiobjective Optimization). To minimize a set of 2 or more objective func-

tions over a constrained space,

min
u∈U
{J1(u), J2(u), . . . , Jk(u)},

where we have k ∈ N, such that k ≥ 2, objective functions Ji : Rm → R. We denote the

objective functions by J(u) = (J1(u), . . . , Jk(u)). The decision variable u = (u1, . . . , um) belong

to a feasible region U a subset of Rm. To ‘minimize’ the set of objective functions means we

want to minimize all the objective functions simultaneously.

In the scalar case optimization can be straight forward, in the sense that a maximum or

minimum is clearly understood to be the value that exceeds all others. Alternatively, with the

multiobjective optimization problem it is rarely the case that you would ever find a unique

decision variable u? that satisfies each and every one of the objectives simultaneously. This

leads us to the discussion of optimizing trade-offs, when it is not possible to satisfy one objective

without sacrificing an alternative objective.

5.2.1 Pareto Optimality

Since Vilfredo Pareto’s developments in 1896, furthering the work done by Edgeworth in 1881,

the concept known as Pareto optimality that has been widely used to describe the solutions for

a multiobjective optimization problem. Introducing the definitions for Pareto optimality will

lay the foundation for interpreting methods for solving a multiobjective problem.

Definition 5.2.2. If Rk is partially ordered in a natural way, then given v(1), v(2) ∈ Rk with

v(1) = (v
(1)
1 , . . . , v

(1)
k ) and v(2) = (v

(2)
1 , . . . , v

(2)
k ), we have v(1) ≤ v(2) if and only if v

(1)
i ≤ v

(2)
i for

all i = 1, . . . , k.
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Assuming that U is a nonempty subset of Rm and J : U → Rk is a vector function whose range

is defined on a partially ordered space, we have the following definitions required for evaluating

Pareto optimality for a multiobjective optimization problem.

Definition 5.2.3. If there exists u(1), u(2) ∈ U such that J(u(1)) ≤ J(u(2)) and Ji(u
(1)) <

Ji(u
(2)) for any i = 1, . . . , k, then u(1) is considered a Pareto improvement to u(2).

Definition 5.2.4. Pareto optimality is obtained when no more Pareto improvements can be

made to a solution u? ∈ U where J(u?) ≤ J(u) for all u ∈ U . That is to say, it is not possible

to move from that point u? and improve any one objective function without detriment to any

other objective function.

Definition 5.2.5. A vector v′ = (v′1, . . . , v
′
k) ∈ Rk is said to dominate v = (v1, . . . , vk) ∈ Rk if

and only if v′ ≤ v and there exists j such that v′j < vj . Then the Pareto dominance is denoted

by v′ � v.

Definition 5.2.6. For a given multiobjective optimization problem, the Pareto optimal set is

defined as,

PS(U) = {u ∈ U| there does not exist u′ ∈ U such that J(u′) � J(u)}.

Definition 5.2.7. For a given multiobjective optimization problem with a Pareto optimal set

PS(U), the Pareto front is defined as,

PF ? = {w = J(u) = (J1(u), . . . , Jk(u)) ∈ Rk | u ∈ PS(U)}.

Definition 5.2.8. A decision vector u? ∈ U is locally Pareto optimal if there exists a δ > 0 ball

centered at u? such that u? is Pareto optimal in U ∩Bδ(u?).

We will emphasize the importance of locally Pareto optimal when numerical methods are

used to solve a multiobjective optimization problem. As it will be in our case, the solution

to many optimization problems can be too complex to solve analytically. Therefore, when

considering the techniques and methods for solving a problem by numerical methods will at

most be locally optimal.

5.2.2 Weighted-Sums Method

The weighted-sums method is the most commonly used approach for evaluating a multiobjective

optimization problem. Given the vector-valued function J(u) = (J1(u), . . . , Jk(u)) a selection

of weights is chosen (α1, . . . , αk), relating to each objective functions respectively, such that

αi > 0 for i = 1, . . . , k and
∑k

i=1 αi = 1. Then a single objective function is defined as,
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L(u) =
k∑
i=1

αiJi(u). (5.10)

Where the Pareto optimal solution to (5.10) defines a Pareto optimal solution to the multiob-

jective optimization problem 5.2.1.

As with any approach for solving a multiobjective optimization problem the weighted-sum

method require some preference relationship between the objective functions. Without one, it

would be impossible to consider a ranking of the solutions from the Pareto optimal set. Depend-

ing on which one of the following approaches is taken, the technique for defining this precedence

relationship can be done at various stages of implementing an optimization algorithm.

1. a priori - The selection for the weights are assigned before the optimization routine is

implemented, based on the expertise of the decision maker.

2. progressive - The weights are updated during the optimization process using feedback

from the solutions as they evolve.

3. a posteriori - At the end of the end of the optimization routine, a decision maker selects

a solution from the Pareto optimal set, PS(U), thus selecting its corresponding weights.

For the purpose of deriving an optimal intervention strategy we will consider the opposing

objectives to minimize cost and maximize QALYs. In chapter 3, when we introduced the model,

we ran a cost-effective analysis for the three intervention strategies (therapeutic vaccine only,

preventative vaccine only, and the combined strategy). We will use this information and select

the weights for the objective functionals a priori.

5.3 Optimizing an Intervention Strategy as a Multiobjective

Control Problem

Referring back the cost-effective analysis applied in chapter 3 we learned that the best strategy,

for a 20 year time horizon, is to offer both vaccines for the full duration. This conclusion was

made with regards to the comparison between the three direct cases, where we only considered

the options of offering either one of the vaccines or both for the entire time, to the alternative of

not offering either vaccine. To quantify the effectiveness of each of the intervention strategies the

comparison to each of the alternatives is done by evaluating the resulting cumulative monetary

cost (both direct and indirect costs) as well as the total combined QALYs for the population

as a whole. The objective, as we mentioned before, is to minimize the monetary cost while

maximizing QALYs,
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minC(T ) =

∫ T

0
[κpνp(t)(Y0,0(t) + Y1,0(t)) + κtνt(t)Y2,0(t)] e−rtdt+

∫ T

0

j=1∑
j=0

i=4∑
i=0

ciYi,je
−rtdt

maxQ(T ) =

∫ T

0

j=1∑
j=0

i=4∑
i=0

qiYi,j(t)e
−rtdt,

dependent on the time horizon and the solution to the dynamical system,

dY0,0(t)

dt
=I0,0 − νp(t)Y0,0(t)− µY0,0(t)− p0λ(t)Y0,0(t) + ωY0,1(t) (5.11a)

dY0,1(t)

dt
=νp(t)Y0,0(t)− µY0,1(t)− ωY0,1(t)− p0(1− ε)λν(t)Y0,1(t) (5.11b)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− σξY1,0(t)− νp(t)Y1,0(t) + ωY1,1(t)− µ1,0Y1,0(t)− µY1,0(t)

(5.11c)

dY1,1(t)

dt
=p0(1− ε)λν(t)Y0,1(t) + νp(t)Y1,0(t)− ωY1,1(t)− σξY1,1(t)− µ1,1Y1,1(t)− µY1,1(t)

(5.11d)

dY2,0(t)

dt
=I2,0 + σξ(Y1,0(t) + Y1,1(t))− νt(t)Y2,0(t)− µ2,0Y2,0(t)− µY2,0(t) (5.11e)

dY2,1(t)

dt
=νt(t)Y2,0(t)− µ2,1Y2,1(t)− µY2,1(t) (5.11f)

dY3,0(t)

dt
=I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− µ3,0Y3,0(t)− µY3,0(t) (5.11g)

dY4,0(t)

dt
=µ3,0Y3,0(t)− µ4,0Y4,0(t)− µY4,0(t) (5.11h)

with,

λ(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη00,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

λν(t) =

∑j=1
j=0

∑i=4
i=1 piβi,jη01,ijYi,j(t)∑j=1

j=0

∑i=4
i=0 piYi,j(t)

and initial condition,

Y0,0(0) = (1− φ0)Y0

Yi,0(0) =
1/µi,0∑
j 1/µj,0

φ0 · Y0, for i = 1, 2, 3, 4

Yi,1(0) = 0, for i = 0, 1, 2, 3, 4.

For the assumptions we made regarding the vaccines resulted with dominant options for
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each. For every alternative that saved more money, we also had an increase in QALYs (As a

reminder we included table 5.12 as a reference.).

Table 5.1: Projected accumulated cost and QALYs, as well as the cost/QALY, for each of
the four variations of the model on a 20 year time horizon; no intervention, therapeutic only,
preventative only, and the combined vaccination strategy.

Accumulated
Cost

Accumulated
QALYs

Cost/QALY

No
Intervention

$3,778,541,557 495,630 $7623/QALY

Therapeutic
Vaccine

$3,747,402,695 506,808 $7394/QALY

Preventative
Vaccine

$3,711,111,604 508,220 $7302/QALY

Combination Both
Vaccines

$3,674,411,239 519,572 $7072/QALY

To determine whether or not there is a strategy that will further optimize the trade-off

between minimizing monetary cost and maximizing QALYs we will set up a multiobjective

optimization problem. Then utilizing the weighted-sums method, with weights assigned a priori,

we can implement numerical methods from optimal control theory. To begin, we will first

introduce the following vector notation for the variables and functions of the model. Let,

Y (t) = (Y0,0(t), Y0,1(t), Y1,0(t), Y1,1(t), Y2,0(t), Y2,1(t), Y3,0(t), Y4,0(t))

Y (0) = Y (0)

ν(t) = (νp(t), νt(t))

F (Y (t), ν(t)) = (F1(Y (t), ν(t)), F2(Y (t), ν(t)), . . . , F8(Y (t), ν(t)))

be used to define the right hand side of equations (5.11a) - (5.11h). Continuing with the con-

sideratin for an optimal intervention strategy we will refer to Y (t) as the state variable and ν(t)

2Table 5.1 is a duplicate of the table 3.11 found in section 3.2 where the initial cost effective analysis was
presented.

115



as the control variable. Recall, given the physical limitations for the interpretation of the model

we assume the range of Y (t) is restricted to R8
+. In addition, given the control variables define

a proportion of a population that receives a vaccine we will require an upper bound of 1, but

according to the assumptions of Edwards et al. and our earlier analysis we will restrict the space

of feasible controls to V = [0, 0.75]× [0, 0.75]. To determine the payoff, as it would relate to the

two objective functions C(T ) and Q(T ), we need to chose a single optimization objective and

make a reasonable selection for the weights used to combine the two objectives. Considering

we have opposing objectives, minC(T ) and maxQ(T ), we will instead require that the solution

for our multiobjective optimization problem minimizes both, C(T ) and −Q(T ). Although the

objective functions were originally defined in terms of the final time T , we are also assuming for

the purposes of the cost-effective analysis a fixed 20 year time horizon, T = 20. Therefore, with

the vaccine parameters defining the control variables we will now assume the cost functionals

to also be dependent on the choice of ν(t) and consequently Y (t). Let

J(Y (t), ν(t)) = (C(Y (t), ν(t)),−Q(Y (t), ν(t)))

then the multiobjective optimization problem for intervention strategies of the HIV virus is

defined by:

min
ν(t)∈V

J(Y (t), ν(t))

subject to

dY (t)

dt
= F (Y (t), ν(t)), Y (t0) = Yt0 .

With the statement of the multiobjective optimization problem, we can now consider the

weighted-sums method to derive one objective functional. With only two objective functions we

can simply consider one parameter α, resulting with the second weight simply defined by (1−α).

For the purpose of defining the problem statement for optimizing an intervention strategy, the

parameter definitions will be sufficient. We will get into defining the weights when we discuss

numerical methods for solving the Pareto optimal solution.

L(Y (t), ν(t)) = αC(Y (t), ν(t))− (1− α)Q(Y (t), ν(t))

= α

[ ∫ 20

0
[κpνp(t)(Y0,0(t) + Y1,0(t)) + κtνt(t)Y2,0(t)] e−rtdt

+

∫ 20

0

j=1∑
j=0

i=4∑
i=0

ciYi,je
−rtdt

]
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− (1− α)

[ ∫ 20

0

j=1∑
j=0

i=4∑
i=0

qiYi,j(t)e
−rtdt

]

=

∫ 20

0

[
α
[
κpνp(t)(Y0,0(t) + Y1,0(t)) + κtνt(t)Y2,0(t)

j=1∑
j=0

i=4∑
i=0

ciYi,j
]

− (1− α)
[ j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
]]
e−rtdt

Therefore, we can now make the following statement for an optimal control problem.

Problem 5.3.1 (Optimizing Intervention Strategies for the HIV Virus; as a minimization prob-

lem). Find an admissible control ν?(t) ∈ V along with its corresponding admissible trajectory

Y ?(t) defined by the system

dY (t)

dt
= F (Y (t), ν(t)), Y (t0) = Yt0

that will minimize the payoff

L(Y (t), ν(t)) =

∫ 20

0

[
α
[
κpνp(t)(Y0,0(t) + Y1,0(t)) + κtνt(t)Y2,0(t)

j=1∑
j=0

i=4∑
i=0

ciYi,j
]

− (1− α)
[ j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
]]
e−rtdt.

5.3.1 Necessary Conditions

Now that we have defined our optimal intervention strategy problem as a fundamental optimal

control problem we will use the pointwise maximum principle 5.1.8 to derive the necessary

conditions to get an analytical interpretation of the optimal control. Then we will follow up in

the next chapter implementing numerical methods for solving “bang-bang” controls.

Noting that we will use the maximum principle to define the necessary conditions we will

have to make the translation from the minimization problem stated in 5.3.1 to the following

maximization problem, by negating the payoff functional.

Problem 5.3.2 (Optimizing Intervention Strategies for the HIV Virus; as a maximization prob-

lem). Find an admissible control ν?(t) ∈ V along with its corresponding admissible trajectory

Y ?(t) defined by the system

dY (t)

dt
= F (Y (t), ν(t)), Y (t0) = Yt0
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that will maximize the payoff

− L(Y (t), ν(t)) =

∫ 20

0

[
(1− α)

[ j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
]

− α
[
κpνp(t)(Y0,0(t) + Y1,0(t)) + κtνt(t)Y2,0(t)

j=1∑
j=0

i=4∑
i=0

ciYi,j
]]
e−rtdt.

Given the statement of a maximization problem 5.3.2 for the objective of optimizing an

intervention strategy we will introduce the Hamiltonian

H(Y (t), ν(t), Z(t)) = 〈Z(t), F (Y (t), ν(t))〉 − f0(Y (t), ν(t))

where the costate variable will be denoted by

Z(t) = (Z0,0(t), Z0,1(t), Z1,0(t), Z1,1(t), Z2,0(t), Z2,1(t), Z3,0(t), Z4,0(t)).

Then the necessary conditions for the optimal solution ν? along with the corresponding state

and costate trajectories Y ? and Z? are the following. For a.e. t in [0, 20],

1.
dY ?(t)

dt
= HZ(Y ?(t), ν?(t), Z?(t)), Y ?(0) = Y (0)

2.
dZ?(t)

dt
= −HY (Y ?(t), ν?(t), Z?(t)), Z?(20) = 0

3. H(t, Y ?(t), ν?(t), Z?(t)) ≥ H(t, Y ?(t), ν(t), Z?(t)) for all ν(t) ∈ V.

Thus, defining the Hamiltonian we get:

H(Y (t), ν(t), Z(t))

=
[
I0,0 − (νp(t) + µ+ p0λ(t))Y0,0(t) + ωY0,1(t)

]
Z0,0(t)

+
[
νp(t)Y0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

]
Z0,1(t)

+
[
I1,0 + p0λ(t)Y0,0(t)− (σξ + νp(t) + µ1,0 + µ)Y1,0(t) + ωY1,1(t)

]
Z1,0(t)

+
[
p0(1− ε)λν(t)Y0,1(t) + νp(t)Y1,0(t)− (ω + σξ + µ1,1 + µ)Y1,1(t)

]
Z1,1(t)

+
[
I2,0 + σξ(Y1,0(t) + Y1,1(t))− νt(t) + µ2,0 + µ)Y2,0(t)

]
Z2,0(t)

+
[
νt(t)Y2,0(t)− (µ2,1 + µ)Y2,1(t)

]
Z2,1(t)

+
[
I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t)
]
Z3,0(t)
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+
[
µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

]
Z4,0(t)

+
[
α
[
κpνp(t)(Y0,0(t) + Y1,0(t)) + κtνt(t)Y2,0(t) +

j=1∑
j=0

i=4∑
i=0

ciYi,j
]

− (1− α)
[ j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
]]
e−rt. (5.12)

Next, deriving the necessary conditions, we will note that the first condition is a statement for

the state equations (5.11). Then second condition gives us the costate equations as the following

system of ordinary differential equations,

dZ0,0(t)

dt
=
[
νp(t) + p0

(∂λ(t)

∂Y0,0
Y0,0(t) + λ(t)

)
+ µ

]
Z0,0(t)

+
[
p0(1− ε)

(∂λν(t)

∂Y0,0
Y0,1(t)

)
− νp(t)

]
Z0,1(t)

− p0

(∂λ(t)

∂Y0,0
Y0,0(t) + λ(t)

)
Z1,0(t)− p0(1− ε)

(∂λν(t)

∂Y0,0
Y0,1(t)

)
Z1,1(t)

− (α(κpνp(t) + c0 + q0)− q0)e−rt (5.13a)

dZ0,1(t)

dt
=
[
p0

(∂λ(t)

∂Y0,1
Y0,0(t)

)
+ ω

]
Z0,0(t)

+
[
p0(1− ε)

(∂λν(t)

∂Y0,1
Y0,1(t) + λν(t)

)
+ µ+ ω

]
Z0,1(t)

− p0

(∂λ(t)

∂Y0,1
Y0,0(t)

)
Z1,0(t)− p0(1− ε)

(∂λν(t)

∂Y0,1
Y0,1(t) + λν(t)

)
Z1,1(t)

− (α(c0 + q0)− q0)e−rt (5.13b)

dZ1,0(t)

dt
= p0

(∂λ(t)

∂Y1,0
Y0,0(t)

)
Z0,0(t) + p0(1− ε)

(∂λν(t)

∂Y1,0
Y0,1(t)

)
Z0,1(t)

+
[
νp(t)− p0

(∂λ(t)

∂Y1,0
Y0,0(t)

)
+ σξ + µ1,0 + µ

]
Z1,0(t)

−
[
νp(t) + p0(1− ε)

(∂λν(t)

∂Y1,0
Y0,1(t)

)]
Z1,1(t)

− σξZ2,0(t)− µ1,0Z3,0(t)− (α(κpνp(t) + c1 + q1)− q1)e−rt (5.13c)
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dZ1,1(t)

dt
= p0

(∂λ(t)

∂Y1,1
Y0,0(t)

)
Z0,0(t) + p0(1− ε)

(∂λν(t)

∂Y1,1
Y0,1(t)

)
Z0,1(t)

−
[
p0

(∂λ(t)

∂Y1,1
Y0,0(t)

)
+ ω

]
Z1,0(t)

+
[
ω + σξ + µ1,1 + µ− p0(1− ε)

(∂λν(t)

∂Y1,1
Y0,1(t)

)]
Z1,1(t)

− σξZ2,0(t)− µ1,1Z3,0(t)− (α(c1 + q1)− q1)e−rt (5.13d)

dZ2,0(t)

dt
= p0

(∂λ(t)

∂Y2,0
Y0,0(t)

)
Z0,0(t) + p0(1− ε)

(∂λν(t)

∂Y2,0
Y0,1(t)

)
Z0,1(t)

− p0

(∂λ(t)

∂Y2,0
Y0,0(t)

)
Z1,0(t)− p0(1− ε)

(∂λν(t)

∂Y2,0
Y0,1(t)

)
Z1,1(t)

+
[
νt(t) + µ2,0 + µ

]
Z2,0(t)− νt(t)Z2,1(t)− µ2,0Z3,0(t)

− (α(κtνt(t) + c2 + q2)− q2)e−rt (5.13e)

dZ2,1(t)

dt
= p0

(∂λ(t)

∂Y2,1
Y0,0(t)

)
Z0,0(t) + p0(1− ε)

(∂λν(t)

∂Y2,1
Y0,1(t)

)
Z0,1(t)

− p0

(∂λ(t)

∂Y2,1
Y0,0(t)

)
Z1,0(t)− p0(1− ε)

(∂λν(t)

∂Y2,1
Y0,1(t)

)
Z1,1(t)

+ (µ2,1 + µ)Z2,1(t)− µ2,1Z3,0(t)− (α(c2 + q2)− q2)e−rt (5.13f)

dZ3,0(t)

dt
= p0

(∂λ(t)

∂Y3,0
Y0,0(t)

)
Z0,0(t) + p0(1− ε)

(∂λν(t)

∂Y3,0
Y0,1(t)

)
Z0,1(t)

− p0

(∂λ(t)

∂Y3,0
Y0,0(t)

)
Z1,0(t)− p0(1− ε)

(∂λν(t)

∂Y3,0
Y0,1(t)

)
Z1,1(t)

+ (µ3,0 + µ)Z3,0(t)− µ3,0Z4,0(t)− (α(c3 + q3)− q3)e−rt (5.13g)

dZ4,0(t)

dt
= p0

(∂λ(t)

∂Y4,0
Y0,0(t)

)
Z0,0(t) + p0(1− ε)

(∂λν(t)

∂Y4,0
Y0,1(t)

)
Z0,1(t)

− p0

(∂λ(t)

∂Y4,0
Y0,0(t)

)
Z1,0(t)− p0(1− ε)

(∂λν(t)

∂Y4,0
Y0,1(t)

)
Z1,1(t)

+ (µ4,0 + µ)Z4,0(t)− (α(c4 + q4)− q4)e−rt (5.13h)

with Z(20) = 0.

Then the final necessary condition,

H(t, Y ?(t), ν?(t), Z?(t)) ≥ H(t, Y ?(t), ν(t), Z?(t))

for a.e. t in [0, 20] and every ν(t) ∈ V, gives us the optimality condition for which the op-

timal solution must satisfy. Emphasizing that the control variable ν(t) appears linearly in
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the Hamiltonian (5.12) and V = [0, 0.75] × [0, 0.75] implies that the “bang-bang” principle

can be applied to derive an interpretation for the solution of the optimal control based on

its switching functions. Combining like terms and evaluating the Hamiltonian in the form

H(Y (t), ν(t), Z(t)) = gp(Y (t), Z(t))νp(t) + gt(Y (t), Z(t))νt(t) + h(Y (t), Z(t)), we get

H(Y (t), ν(t), Z(t))

=
[
(Z0,1(t)− Z0,0(t))Y0,0(t) + (Z1,1(t)− Z0,1(t))Y1,0(t) + ακp(Y0,0(t) + Y1,0(t))e−rt

]
νp(t)

+
[
(Z2,1(t)− Z2,0(t))Y2,0(t) + ακtY2,0(t)e−rt

]
νt(t)

+
[
I0,0 − µY0,0(t)− p0λ(t)Y0,0(t) + ωY0,1(t)

]
Z0,0(t)

−
[
µY0,1(t) + ωY0,1(t) + p0(1− ε)λν(t)Y0,1(t)

]
Z0,1(t)

+
[
I1,0 + p0λ(t)Y0,0(t)− σξY1,0(t) + ωY1,1(t)− µ1,0Y1,0(t)− µY1,0(t)

]
Z1,0(t)

+
[
p0(1− ε)λν(t)Y0,1(t)− ωY1,1(t)− σξY1,1(t)− µ1,1Y1,1(t)− µY1,1(t)

]
Z1,1(t)

+
[
I2,0 + σξ(Y1,0(t) + Y1,1(t))− µ2,0Y2,0(t)− µY2,0(t)

]
Z2,0(t)

−
[
µ2,1Y2,1(t) + µY2,1(t)

]
Z2,1(t)

+
[
I3,0 +

j=1∑
j=0

i=2∑
i=1

µi,jYi,j(t)− µ3,0Y3,0(t)− µY3,0(t)
]
Z3,0(t)

+
[
µ3,0Y3,0(t)− µ4,0Y4,0(t)− µY4,0(t)

]
Z4,0(t)

+
[
α
[ j=1∑
j=0

i=4∑
i=0

ciYi,j
]
− (1− α)

[ j=1∑
j=0

i=4∑
i=0

qiYi,j(t)
]]
e−rt.

By the “bang-bang” principle the solution to the optimal control for

gp(t) =(Z?0,1(t)− Z?0,0(t))Y ?
0,0(t) + (Z?1,1(t)− Z?0,1(t))Y ?

1,0(t) + ακp(Y
?

0,0(t) + Y ?
1,0(t))e−rt

gt(t) =(Z?2,1(t)− Z?2,0(t))Y ?
2,0(t) + ακtY

?
2,0(t)e−rt

is defined by the following step functions

ν?p(t) =


3/4, gp(t) < 0

0, gp(t) > 0

?, gp(t) = 0

(5.14)
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ν?t (t) =


3/4, gt(t) < 0

0, gt(t) > 0

?, gt(t) = 0

. (5.15)

5.4 Numerical Solution

As we have already discussed, the solution to the Pareto optimal intervention strategy can not

be solved by analytical means. Therefore, we will now direct our attention to numerical methods.

Solving optimal control problems numerically can be done in one of two ways. The first option

is to take a direct approach, where the control and state space is discretized and then methods

from nonlinear programming can be implemented. The alternative approach is known as the

indirect approach and these methods take into consideration Pontryagin’s maximum principle

and solves for the admissible control that satisfies the necessary conditions. To derive a solution

that optimizes on intervention strategies for the HIV virus we will begin with a direct numerical

approach.

5.4.1 Control Parameterization

The direct numerical method we have chosen to implement is referred to as control parameteriza-

tion, where the continuous optimal control problem is approximated by a discrete optimization

problem that we can then solve by using methods from nonlinear programming [6]. Referencing

“Nonlinear Programming: Theory and Applications” we will set up the statement for a nonlin-

ear programming problem as the discrete approximation to the fundamental control problem

5.3.2. Recall, the objective problem statement is given by

max
ν(t)∈V

L(Y (t), ν(t))

subject to

dY (t)

dt
= F (Y (t), ν(t)), Y (0) = Y (0)

on the interval [0, 20]. By choosing a discrete set of points {t[1], t[2], . . . , t[`]} such that 0 = t[1] <

t[2] < · · · < t[`] = 20, we define a piecewise constant function, that is right continuous, for the

control variables such that

ν(t) = ν[k] for t ∈ [t[k], t[k+1]) and k = 1, . . . , `.
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Assuming a uniform distribution of the discrete points, such that h = ti+1−ti for 1 ≤ i ≤ (`−1)

, the discrete state variables can then be defined at each node t[k] ∈ {t[1], t[2], . . . , t[`]} by,

Y [k] = Y [k−1] + hF [k](Y [k−1], ν[k]) for k = 1, . . . , `,

with Y [1] = Y (0). Such a solution that satisfies all of the requirements of the inequality as well as

the equality constraints of the model is referred to as an admissible solution. For interpretation

of the infectious disease model the set of admissible solutions to the discrete model is easily

defined by,

D = {(Y [1], Y [2], . . . , Y [`], ν[1], ν[2] . . . , ν[`])
∣∣0 ≤ Y [k], 0 ≤ ν[k]

p ≤ 0.75

and 0 ≤ ν[k]
t ≤ 0.75 for all k = 1, . . . , `}.

Thus, making the translation from the continuous optimal control problem to the discrete

nonlinear programming problem we get the following.

Problem 5.4.1 (Optimizing Intervention Strategies for the HIV Virus; as a nonlinear pro-

gramming problem).

max
k=∑̀
k=1

L(Y [k], ν[k])

subject to

Y [k] = Y [k−1] + hF [k](Y [k−1], ν[k]) for k = 1, . . . , `

such that (Y [1], Y [2], . . . , Y [`], ν[1], ν[2], . . . , ν[`]) ∈ D.

One of the benefits of taking a direct approach is the number of readily available algorithms,

that already exist, for solving nonlinear programming problems. In our case, since we are using

MatLab for all of our numerical analysis, we will be able to utilize the built-in function ’fmin-

con.m’ to find a numerical approximation to the solution for 5.4.1. Keeping in mind that the

nonlinear programming problem is already an approximation to the continuous optimal control

problem, we will also validate the solution we get by verifying that it satisfies the necessary

conditions from the “bang-bang” principle.

In addition to the ease for which solutions to nonlinear programming problems are found,

by converting our optimal control problem, we have also removed the concerns for singularity

that were introduced in section 5.3.1

123



5.4.2 Pareto Optimal Intervention Strategy

Before implementing control parameterization to optimize on the intervention strategy we need

to assign a numerical value to α as an a priori selection for the weights associated to the two

objective functions. Considering the fact that parameters associated to monetary cost are on

an order of magnitude 104 larger than the quality index parameters, we found it reasonable to

assign α = 10−4. By doing so, this results with weighting the objectives in such a way that one

is not favored significantly more than the other.

Thus, setting up problem 5.4.1 in MatLab with a 20 year time horizon we chose 101 nodes,

resulting with intervals of length 0.2. The nonlinear programming solver, ‘fmincon’, returned

the solution given in figure 5.1. Based on the solution we found we have two switching times,

one for each decision variable. Noting that the switching times will be defined by the choice

made for discretizing the problem, we found that the switching time for the preventative vaccine

is at t
[?]
p = 12.4 and for the therapeutic vaccine t

[?]
t = 18.2. Therefore,

ν[?]
p (t) =

{
3/4, 0 ≤ t < 12.4

0, 12.4 ≤ t
(5.16)

ν
[?]
t (t) =

{
3/4, 0 ≤ t < 18.2

0, 18.2 ≤ t
, (5.17)

where the superscript [?] will be used to denote any solution that relates to the approximation

for the optimal control.
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Figure 5.1: Pareto optimal intervention strategy derived by the direct numerical method, con-
trol parameterization.
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To verify our solution we will first consider the cost-effective analysis and compare the

results to the earlier direct strategies we evaluated, which will give us some satisfaction that we

have found a ‘better’ strategy. Noting that the problem was approximated twice by converting

the continuous control problem into a discrete nonlinear programming problem then using

numerical methods to solve for the optimal solution we will also evaluate the corresponding

switching functions and verify that the sign of each of the functions changes at approximately

the same time as the switch occurs for each of the control variables.

5.4.3 Cost-Effective Analysis

To begin with the cost-effective analysis we evaluated the objective functionals for the monetary

cost as well as the accumulated QALYs for the optimal control ν[?] and the corresponding state

trajectory Y [?]. The results are present in table 5.2, along with the solutions for the four direct

strategies that we evaluated in chapter 3.

Table 5.2: Projected accumulated cost and QALYs for each of the four variations of the model
and how they compare to the Pareto optimal strategy.

Accumulated
Cost

Accumulated
QALYs

Cost/QALY

No
Intervention

$3,778,541,557 495,630 $7623/QALY

Therapeutic
Vaccine

$3,747,402,695 506,808 $7394/QALY

Preventative
Vaccine

$3,711,111,604 508,220 $7302/QALY

Combination Both
Vaccines

$3,674,411,239 519,572 $7072/QALY

Pareto Optimal
Strategy

$3,664,516,772 519,454 $7055/QALY

When the preventative vaccine is only offered to 75% of the susceptible population for

the first 12.4 years and the therapeutic vaccine is offered to 75% of the asymptomatic-aware

125



population for the first 18.2 years we find that the solution offers the lowest cost per QALY

compared to the other four strategies. In comparison to the direct combined, preventative and

therapeutic, vaccine strategy the Pareto optimal solution decreased cost as well as QALYs. To

understand how this can be considered a ’better’ alternative to offering the vaccines for the full

duration of time, we considered the ratio of cost relative to QALYs. This gives us a number

that defines the relative cost for each QALY gained, resulting with a clear index for ranking

the strategies3. Therefore, based on the cost ratio we have satisfied the objective for finding

an alternative strategy that optimized the trade-off between minimizing monetary cost while

maximizing the QALYs, resulting with a locally optimal intervention strategy.

5.4.4 Necessary Conditions for Pareto Optimal Solution

Considering the necessary conditions from the “bang-bang” principle for the Pareto optimal

solution we found, we will derive the corresponding state and costate trajectories for ν
[?]
p (t) and

ν
[?]
t (t) and evaluate the switching functions we derived in sections 5.3.1. If we can show that

the switching times correspond to the point in time for which the sign of each of the switching

functions changes, then we will have satisfied the necessary conditions for the “bang-bang”

principle. Recall for the Hamiltonian,

H(Y (t), ν(t), Z(t)) = 〈Z(t), F (Y (t), ν(t))〉+ (Y (t), ν(t)),

we have the following:

1.
dY (t)

dt
= HZ(Y ?(t), ν?(t), Z?(t)), Y ?(t(0)) = Y (0)

2.
dZ(t)

dt
= −HY (Y ?(t), ν?(t), Z?(t)), Z?(t(1)) = 0

3.

ν?p(t) =


3/4, gp(Y

?(t), Z?(t)) < 0

0, gp(Y
?(t), Z?(t)) > 0

?, gp(Y
?(t), Z?(t)) = 0

ν?t (t) =


3/4, gt(Y

?(t), Z?(t)) > 0

0, gt(Y
?(t), Z?(t)) < 0

?, gt(Y
?(t), Z?(t)) = 0

3When cost-effective analysis is typically applied analyst will compare the discounted cost ratio. When this
is done, it tends to be the case that the alternatives will both increase cost as well as the quality index. For the
model we have been analyzing we have two dominant vaccine options. Thus considering the discounted cost ratio
does not give us a clear understanding, so we consider the direct cost ratio instead.
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with

gp(Y
?(t), Z?(t)) =(Z?0,1(t)− Z?0,0(t))Y ?

0,0(t) + (Z?1,1(t)− Z?0,1(t))Y ?
1,0(t)

+ ακp(Y
?

0,0(t) + Y ?
1,0(t))e−rt

gt(Y
?(t), Z?(t)) =(Z?2,1(t)− Z?2,0(t))Y ?

2,0(t) + ακtY
?

2,0(t)e−rt.

Based on the solution to the numerical approximation we derived there is no need to be con-

cerned with either of the switching functions vanishing for a period of time and resulting with a

singular control. Instead there is exactly one switching time for each control. Thus, after deriv-

ing the corresponding state and costate trajectories for the Pareto optimal control ν[?](t), using

the initial value problems (1) and (2) from the necessary conditions, we will be able to evaluate

the switching functions and determine if the numerical approximation to the local solution is

in fact an approximation to the optimal solution. The results of the switching functions are

presented along side of their control solution in figure 5.2. With the corresponding state and

costate trajectories found in figures 5.4 and 5.5 respectively. Noting that the switching function

for the therapeutic vaccine has such a significantly small slope around the switching time we

also plotted a graph of the function on the interval [10, 20], allowing us to zoom into the function

values.

From the graphs of the switching functions it appears as though the Pareto optimal solution,

derived by solving the corresponding nonlinear programming problem, is a valid approxima-

tion to the optimal control solution. Evaluating the switching functions at the corresponding

switching times,

gp(Y
[?](12.4), Z [?](12.4)) ≈ 2.189527297370716 and

gt(Y
[?](18.2), Z [?](18.2)) ≈ 0.6413617052318576,

reveals that the optimal solution was not obtained. Instead, by evaluating the switching func-

tions at the time node just before t
[?]
p and t

[?]
t , we get,

gp(Y
[?](12.2), Z [?](12.2)) ≈ −1.260841910117648 and

gt(Y
[?](18), Z [?](18)) ≈ −0.9450336606823555.

Then, assuming a small change to the switching time would result with minimal variation to

the switching functions, implies 12.2 ≤ t?p < 12.4 and 18 ≤ t?t < 18.2.

With this information we could further refine the approximation to the optimal control by

focusing our nonlinear programming problem to optimize over the switching times. Note that

we could not initially focus our problem statement around a single switching time because prior
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Figure 5.2: Numerical solutions to the Pareto optimal controls as they relate to their corre-
sponding switching functions.

to deriving the solution we did not have a priori knowledge regarding the number of switches,

or even whether or not there would be an issue with singularity.

Time (years)
10 11 12 13 14 15 16 17 18 19 20

S
w

it
ch

in
g
 F

u
n
ct

io
n

-60

-50

-40

-30

-20

-10

0

10

20

Switching Function for the Therapeutic Control

Zoomed In at the Switching Time

Figure 5.3: Zoomed-in window for the solution to the switching function for the therapeutic
vaccine.
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Figure 5.4: Projections for each class of the model over a 20 year time horizon with the Pareto
optimal intervention strategy administered.
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Figure 5.5: Projections for the costate variables as they relate to the classes of the model over
a 20 year time horizon with the Pareto optimal intervention strategy administered.
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5.4.5 The Pareto Front

As we have already mentioned in setting up the multiobjective problem statement for optimizing

an intervention strategy the selection for the weights was made a priori. Noting that we only

have two objectives the choice for weighting each of the opposing objectives is as simple as

introducing a single parameter α, as the first weight, then (1 − α) defines the weight for the

second objective. The decision to set α = 10−4 was done by considering the values that were

driving the cost for the monetary objective compared to the proportional values that are used

to assess the quality indexes for the various stages of infection.

In this section we will offer more insight into the choice for α and how it compares to

alternative weighting options by means of analyzing the Pareto front. Recall the combined

objective function we defined using the weighting method in section 5.3,

L(Y (t), ν(t)) = αC(Y (t), ν(t))− (1− α)Q(Y (t), ν(t)).

Allowing α to vary between 0 and 1 then solving for the Pareto optimal solutions for each fixed

α using the same numerical methods we applied in section 5.4 we derived the Pareto front shown

in figure 5.6. We will note that the point on the Pareto front that agrees with the greatest cost

and the greatest value for accumulated QALYs, defines the corresponding cost and QALYs for

the optimal solution when the only objective is to increase QALYs (α = 0). Alternatively, the

other extreme with the lowest cost and QALYs agrees with the optimal solution when the only

objective is decreasing cost (α = 1). We will also note that, for all α ≥ 10−3 the solution to

the Pareto optimal control will all agree with the solution to the optimization problem when

the only objective is to minimize cost. This can be explained by the wide range of discrepancy

between the values associated to monetary cost relative to the values associated to QALYs.

Originally, we used this distinction between the range of values for the opposing objectives

to define α so that neither objective would be considered a higher priority than the other. We

chose to emphasize this solution on the Pareto front, where α̂ = 10−4 is denoted with a red star.

Comparing the results along the Pareto front we can see that the a priori selection we made for

weighting the objective functions was a reasonable choice. If we chose to move along the Pareto

front, away from the a priori selection for the weighted distribution of the objectives, will result

with a trade-off between the objectives. Any choice for α > α̂, corresponds to moving along the

Pareto front in the direct that decreases cost and QALYs, which is a result to optimizes one

objective while sacrificing the other. Alternatively, if a selection for α < α̂ is made, the results

indicate an optimal strategy with an increase in QALYs, but the increase to monetary cost is

too substantial to ignore.

Whether or not the selection for α̂ = 10−4 is the ideal choice is something that will likely
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be disputed between policy makers when consideration for implementing an optimal strategy

is made. At that time, with the knowledge of the Pareto front, a posteriori selection for the

weights can be made where the consideration for the rate of change for each objective has been

made along the Pareto front. Answering the question, at what point does the gains for one

objective become insignificant enough that it is not worth the loss to the opposing objective?

Monetary Cost ×10
9

3.662 3.664 3.666 3.668 3.67 3.672 3.674 3.676

Q
A

L
Y

s

×10
5

5.193

5.1935

5.194

5.1945

5.195

5.1955

5.196

Pareto Front

Figure 5.6: Pareto front for the multiobjective optimization problem to minimize monetary
cost and increase QALYs.

Even though we can suggest that the selection for α̂ = 10−4 is a reasonable choice, either

as an a priori or an a posteriori selection by analyzing the system, we are still limited to the

assumptions made and data collected to understand the infectious disease model for the purpose

of interpreting the spread and control of an infection. There may be, and usually are, additional

outside factors that govern policy decisions. This highlights the importance for evaluating the

full Pareto front whenever a multiobjective problem is addressed.
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Chapter 6

Sensitivity Analysis

Sensitivity analysis is the study for understanding how variation in parameter values impact the

results of a model [5, 51, 11, 52]. Many researchers are typically interested in running sensitivity

analysis after implementing uncertainty analysis, a related field where the uncertainty for the

model results is quantified based on the known uncertainty of the model parameters [52]. We

will emphasize the distinction between uncertainty and sensitivity analysis by clarifying the

difference between between the two. Uncertainty analysis gives researchers a means to quantify

how uncertainty in the model inputs propagate through the model and define the uncertainty in

the conclusion. For sensitivity analysis the result is a ranking that determines which parameters

will contribute the most variation to the model if they were to change.

For the HIV-transmission model with vaccine intervention the uncertainty of the parame-

ters is unknown. Therefore, we will forgo uncertainty analysis and focus on a means to rank

the sensitivity of the parameters. Following the same approach from chapters 3 and 4 when we

analyzed the dynamics for each variation of the model, we will again consider each case inde-

pendently then compare the results of the sensitivities to get an interpretation for the model

as a whole at the end.

6.1 Introduction to Sensitivity Analysis

Here we will present the necessary definitions and description for sensitivity analysis, as it is

presented by Rosenwasser and Yusupov in Sensitivity of Automatic Control Systems [49]. This

will introduce a general understanding of sensitivity before we continue on to presenting the

method for which we will use to analyze the model parameters for the impact variations will

have on the solution to the multiobjective optimal control problem we solved for in the last

chapter.

First we will consider a system of ordinary differential equations:
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dy(t)

dt
= f(t, y) y(t(0)) = y(0) (6.1)

where y = (y1, y2, . . . , yn) is a vector in the real Euclidean space Rn and f = (f1, f2, . . . , fn) is

a vector-valued function such that each fi for i = 1, . . . , n are C(1) functions of the variables

(t, y).

The solution and properties of the system (6.1) can further be described by its dependency

on the selection of parameter values we will denote by Θ = [θ1, θ2, . . . , θk], where Θ is a vector

in the real Euclidean space Rk we will refer to as the parameter space. Therefore, the finite-

dimensional continuous system (6.1) can be written in expanded form as:

dy(t,Θ)

dt
= f(y(t,Θ),Θ), y(t(0)(Θ),Θ) = y(0)(Θ). (6.2)

Assuming that each function fi for i = 1, . . . , n are also C(1) functions of the variable Θ,

we will have continuity and differentiability with respect to each one of the parameters θi for

i = 1, . . . , k. Thus, to determine the impact that variations in the parameters will have on the

resulting solutions for the state trajectories means we are interested in evaluating,

∂y(t)

∂θi
(6.3)

for each θi ∈ Θ.

Definition 6.1.1. The first-order sensitivity functions of the state trajectories yj with respect

to the corresponding parameters θi in the parameter space Θ are each defined by,

∂yj(t,Θ)

∂θi
, for i = 1, 2, . . . , k and j = 1, 2, . . . , n.

Therefore the objective is to derive the first-order sensitivity functions from the system of

equations defined by (6.2). To do so, we will start with considering the fundamental theorem

of calculus, such that (6.2) gives us

y(t,Θ) =

∫ t

t(0)(Θ)
f(y(t,Θ),Θ)dt+ y(t(0)(Θ),Θ). (6.4)

Differentiating with respect to θi ∈ Θ,

∂

∂θi
(y(t,Θ)) =

∂

∂θi

(∫ t

t(0)(Θ)
f(y(t,Θ),Θ)dt+ y(t(0)(Θ),Θ)

)
, (6.5)
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and applying Leibnitz’s integration rule we can evaluate the right hand side the equation (6.5),

∂

∂θi

(∫ t

t(0)(Θ)
f(y(t,Θ),Θ)dt+ y(t(0)(Θ),Θ)

)

=

∫ t

t(0)(Θ)

[
∂

∂θi
f(y(t,Θ),Θ)

]
dt− f(t(0)(Θ),Θ)

dt(0)(Θ)

dθi
+
dy(0)(Θ)

dθi

=

∫ t

t(0)(Θ)

[(∂f(y(t,Θ))

∂y

∂y(t,Θ)

∂θi

)
+
∂f

∂θi

]
dt− f(t(0)(Θ),Θ)

dt(0)(Θ)

dθi
+
dy(0)(Θ)

dθi
(6.6)

Therefore,

∂y(t,Θ)

∂θi
=

∫ t

t(0)(Θ)

[(∂f(y(t,Θ))

∂y

∂y(t,Θ)

∂θi

)
+
∂f

∂θi

]
dt− f(t(0)(Θ),Θ)

dt(0)(Θ)

dθi
+
dy(0)(Θ)

dθi

(6.7)

implies the solution to the first-order sensitivity functions can be found by solving for their

corresponding initial value problem,

d

dt

(
∂y(t,Θ)

∂θi

)
=

(
∂f(y(t,Θ))

∂y

∂y(t,Θ)

∂θi

)
+
∂f

∂θi
, (6.8)

with

∂y(t(0)(Θ),Θ)

∂θi
=
dy(0)(Θ)

dθi
− f(t(0)(Θ),Θ)

dt(0)(Θ)

dθi
. (6.9)

As a brief introduction to sensitivity analysis we have presented the motivation for under-

standing the impact that variations in the parameter values can have on the solutions for the

state trajectories. For the purposes of understanding the impact that variations on the parame-

ters can have on the payoff function for the multiobjective optimization problem we considered

in chapter 5 we will introduce the adjoint variable method in the following section, were La-

grange multipliers are introduced to defined an augmented objective function that considers

both the dynamics and payoff in tandem.

6.2 Adjoint Variable Method

The adjoint variable method is a differential approach to analyzing the first order sensitivity

functions for the parameters as they relate to the objective payoff from an optimal control

problem [5, 11]. To introduce the method we will consider the following generalize optimization

problem, for which we use the notation from the objective control problem we addressed in
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chapter 5.

Problem 6.2.1. For Y ∈ Rn minimize the payoff functional

L(Y, ν) =

∫ t(1)

t(0)
`(Y (t), ν(t))dt

over the set of admissible controls ν ∈ V, subject to

dY (t)

dt
= F (Y (t), ν(t)), Y (t(0)) = Y (0).

Noting that we will be analyzing each variation of the state space independently we assume

the fixed parameters for each of the control variables, νp(t) = νp and νt(t) = νt, that will be

defined as part of the parameter space we will continue to denote by Θ = [θ1, θ2, . . . , θk]. Taking

a differential approach to understanding the impact that the variations in the parameters have

on the outcome of the payoff functional implies that the current objective is to evaluate ∂L/∂θi

for each parameter θi ∈ Θ. To do so we will implement the adjoint variable method that utilizes

Lagrange multipliers to define an augmented objective function for which the variation of the

parameters are calculated and results with the solution ∂L/∂θi for each parameter θi ∈ Θ.

To begin we will start by introducing the following notation for the dynamical system,

Ψ(Ẏ (t), Y (t),Θ) :=
dY (t)

dt
− F (Y (t))

G(Y (t(0)),Θ) :=Y (t(0))− Y (0),

such that

Ψ(Ẏ (t), Y (t),Θ) = 0 (6.10a)

G(Y (t(0)),Θ) = 0. (6.10b)

Introducing the Lagrange multipliers, Λ and Γ, we get the following augmented objective func-

tion

S(Y,Θ) = L(Y,Θ) +

∫ t(1)

t(0)
〈Λ,Ψ(Ẏ (t), Y (t),Θ)〉dt+ 〈Γ, G(Y (t(0)),Θ)〉,

where 〈·, ·〉 denotes the inner product. This implies, L(Y,Θ) = S(Y,Θ) and
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∂L(Y,Θ)

∂θi
=
∂S(Y,Θ)

∂θi

=

∫ t(1)

t(0)
(`θi + `Y Yθi)dt

+

∫ t(1)

t(0)
〈Λ, (Ψθi + ΨY Yθi + ΨẎ Ẏθi)〉dt+ 〈Γ, (GY (t(0))Yθi(t

(0)) +Gθi)〉.

(6.11)

Applying integration by parts

∫ t(1)

t(0)
〈Λ,ΨẎ Ẏθi〉dt = 〈Λ,ΨẎ Yθi〉

∣∣∣t(1)
t(0)
−
∫ t(1)

t(0)
(〈Λ̇,ΨẎ Yθi〉+ 〈Λ, Ψ̇Ẏ Yθi〉)dt

results with

∂L(Y,Θ)

∂θi
=

∫ t(1)

t(0)

[
`θi + `Y Yθi + 〈Λ, (Ψθi + ΨY Yθi − Ψ̇Ẏ Yθi)〉 − 〈Λ̇,ΨẎ Yθi〉

]
dt

+ 〈Λ,ΨẎ Yθi〉
∣∣∣
t(1)

+
(
〈Γ, GY (t(0))〉 − 〈Λ̇,ΨẎ 〉

∣∣∣
t(0)

)
Yθi + 〈Γ, Gθi〉. (6.12)

Assuming Γ = 〈Λ,ΨẎ 〉
∣∣∣
t(0)
G−1
Y (t(0))

and Λ(t(1)) = 0 then

∂L(Y,Θ)

∂θi
=

∫ t(1)

t(0)

(
`θi + 〈Λ,Ψθi〉)dt+

∫ t(1)

t(0)

(
`Y + 〈Λ, (ΨY − ˙ΨẎ )〉 − 〈Λ̇,ΨẎ 〉

)
Yθidt

+ 〈Λ,ΨẎ 〉
∣∣∣
t(0)
G−1
Y (t(0))

Gθi . (6.13)

Noting that Ψ(Ẏ (t), Y (t),Θ) = Ẏ (t) − F (Y (t)) and G(Y (t(0)),Θ) = Y (t(0)) − Y (0) implies

ΨẎ = 1n×1, Ψ̇Ẏ = 0n×1, and G−1
Y (t(0))

= In×n, then the sensitivity functions simplify to

∂L(Y,Θ)

∂θi
=

∫ t(1)

t(0)

(
`θi + 〈Λ,Ψθi〉)dt+

∫ t(1)

t(0)

(
`Y + 〈Λ,ΨY 〉 − Λ̇

)
Yθidt+ 〈Λ

∣∣∣
t(0)
, Gθi〉. (6.14)

Therefore, if we let Λ̇ = 〈Λ,ΨY 〉+ `Y then

∂L(Y,Θ)

∂θi
=

∫ t(1)

t(0)

(
`θi + 〈Λ,Ψθi〉)dt+ 〈Λ

∣∣∣
t(0)
, Gθi〉. (6.15)

By introducing the Lagrange multipliers results with a boundary value problem whose so-

lution can be used to solve for each of the sensitivity functions.

Noting that Ψ(Ẏ , Y,Θ) = Ẏ (t)− F (Y (t)), then ΨY = −FY and
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∂L(Y,Θ)

∂θi
=

∫ t(1)

t(0)

(
`θi + 〈Λ,Ψθi〉)dt+ 〈Λ

∣∣∣
t(0)
, Gθi〉

subject to

dY (t)

dt
= F (Y (t)), Y (t(0)) = Y (0)

dΛ(t)

dt
= −〈Λ, FY 〉+ `Y , Λ(t(1)) = 0.

To solve the state and adjoint equations as well as the sensitivity functions for each param-

eter will require numerical values for the parameter assumptions that were made by Edwards

et al. and presented in chapter 3. As we continue with the sensitivity analysis the point in

the parameter space, Θ, defined by numerical values we have already considered during our

simulations and solution to the optimization problem, will be denoted by Θ̂. This implies that

the solution for each of the sensitivity functions will define the instantaneous rate of change for

the payoff with respect to corresponding parameter evaluated at the point Θ̂,

∂L(Y,Θ)

∂θi
=
∂L(Y,Θ)

∂θi

∣∣∣∣∣
Θ̂

.

In the following sections we will set up the equations as they are defined for each variation of

the model then numerical solvers will be implemented to derive the solution to state trajectories

(solving forward in time), as well as the adjoint equations (solved in reverse time). The solutions

to the state and adjoint equations will then be used to evaluate the integral for the sensitivity

functions for each parameter of the model1.

6.2.1 HIV-Transmission Dynamics without Intervention

To evaluate the sensitivity for each of the parameters of the model when no intervention is

present we present the system of differential equations with the introduction of three more

parameters that were not defined in section 3.1. The three parameters we are introducing

define the distribution of the immigration population as it relates to an individuals infection

status. Originally each of the immigration terms were defined as the following,

1Given the volume of parameters for each variation of the model the sensitivity functions are derived and
presented in appendix C.
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I0,0 = 0.9µY0 (6.16a)

I1,0 = 0.04µY0 (6.16b)

I2,0 = 0.04µY0 (6.16c)

I3,0 = 0.02µY0. (6.16d)

To evaluate the sensitivity for the outcome of the model to the distribution of the immigrating

population we introduce the parameters ρ1,ρ2, and ρ3 such that 0 ≤ ρi ≤ 1 for i = 1, 2, 3 and∑i=3
i=1 ρi ≤ 1. Then the immigration parameters are defined by

I0,0 = (1−
i=3∑
i=1

)µY0 (6.17a)

I1,0 = ρ1µY0 (6.17b)

I2,0 = ρ2µY0 (6.17c)

I3,0 = ρ3µY0, (6.17d)

and the dynamics are defined as the following:

dY0,0(t)

dt
=(1−

i=3∑
i=1

ρi)µY0 − (µ+ p0λ(t))Y0,0(t) (6.18a)

dY1,0(t)

dt
=ρ1µY0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (6.18b)

dY2,0(t)

dt
=ρ2µY0 + σξY1,0(t)− (µ2,0 + µ)Y2,0(t) (6.18c)

dY3,0(t)

dt
=ρ3µY0 +

i=2∑
i=1

µi,0Yi,0(t)− (µ3,0 + µ)Y3,0(t) (6.18d)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t), (6.18e)

were λ(t) =

∑i=4
i=1 piβi,0η00,i0Yi,0(t)∑i=4

i=0 piYi,0(t)
, along with the initial state

Y0,0(0) =(1− φ0)Y0 (6.19a)

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4 (6.19b)

(6.19c)

and the corresponding payoff functional
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L(T ) =

∫ T

0

[
α
( i=4∑
i=0

ciYi,0(t)
)
− (1− α)

( i=4∑
i=0

qiYi,0(t)
)]
e−rtdt. (6.20)

For the base case, without an intervention, we have the following set of parameters governing

the outcome

Θ = [µ, µ1,0, µ2,0, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β2,0, β3,0, β4,0, η00,10, η00,20η00,30, η00,40, . . .

. . . , σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, r, α],

where particular values at the point that the variations are analyzed are shown in the second

column of table 6.1.

To evaluate the sensitivity analysis for each of the 37 parameters, we will start by setting up

the system of differential equations that define the adjoint variables. Presenting the model using

the notation introduced in the previous section we begin by defining Ψ(Ẏ , Y,Θ), G(Y (0),Θ)

and `(Y,Θ),

Ψ(Ẏ , Y,Θ) =


Ẏ0,0(t) + (µ+ p0λ(t))Y0,0(t)− (1−

∑i=3
i=1 ρi)µY0

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (σξ + µ1,0 + µ)Y1,0(t)− ρ1µY0

Ẏ2,0(t)− σξY1,0(t) + (µ2,0 + µ)Y2,0(t)− ρ2µY0

Ẏ3,0(t)− µ1,0Y1,0(t)− µ2,0Y2,0(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)



G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
( i=4∑
i=0

ciYi,0(t)
)
− (1− α)

( i=4∑
i=0

qiYi,0(t)
)]
e−rt.

Then the initial value problem for the adjoint variables is defined by
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dΛ(t)

dt
= −〈Λ, FY 〉+ `Y , Λ(t(1)) = 0

with

`Y =


(α(c0 + q0)− q0)e−rt

(α(c1 + q1)− q1)e−rt

(α(c2 + q2)− q2)e−rt

(α(c3 + q3)− q3)e−rt

(α(c4 + q4)− q4)e−rt

 ,

and FY is the Jacobian matrix for the system (6.18), which can be referenced in appendix A.

The resulting system of ordinary differential equations is given as the following:

dΛ0,0(t)

dt
=
(
µ+ p0

( ∂λ

∂Y0,0
Y0,0(t) + λ(t)

))
Λ0,0(t)− p0

( ∂λ

∂Y0,0
Y0,0(t)

)
Λ1,0(t)

+ (α(c0 + q0)− q0)e−rt (6.21a)

dΛ1,0(t)

dt
= p0

( ∂λ

∂Y1,0
Y0,0(t)

)
Λ0,0(t) +

(
(σξ + µ1,0 + µ)− p0

∂λ

∂Y1,0
Y0,0(t)

)
Λ0,0(t)

− σξΛ2,0(t)− µ1,0Λ3,0(t) + (α(c1 + q1)− q1)e−rt (6.21b)

dΛ2,0(t)

dt
= p0

( ∂λ

∂Y2,0
Y0,0(t)

)
Λ0,0(t)− p0

( ∂λ

∂Y2,0
Y0,0(t)

)
Λ0,0(t) + (µ2,0 + µ)Λ2,0(t)

− µ2,0Λ3,0(t) + (α(c2 + q2)− q2)e−rt (6.21c)

dΛ3,0(t)

dt
= p0

( ∂λ

∂Y3,0
Y0,0(t)

)
Λ0,0(t)− p0

( ∂λ

∂Y3,0
Y0,0(t)

)
Λ0,0(t) + (µ3,0 + µ)Λ3,0(t)

− µ3,0Λ4,0(t) + (α(c3 + q3)− q3)e−rt (6.21d)

dΛ4,0(t)

dt
= p0

( ∂λ

∂Y4,0
Y0,0(t)

)
Λ0,0(t)− p0

( ∂λ

∂Y4,0
Y0,0(t)

)
Λ0,0(t) + (µ4,0 + µ)Λ4,0(t)

+ (α(c4 + q4)− q4)e−rt. (6.21e)

The solutions for both systems (6.18) and (6.21) were derived by numerical methods and are

presented in figures 6.1 and 6.2 respectively. The solutions for both the state trajectories and

adjoint variables are then used evaluate each of the sensitivity functions for all 37 parameters2.

The results for each are presented in table 6.1 where they have been ranked in order by the

most sensitive to the least. We will notice from the results that the range of sensitivities is on

an order of magnitude equal to 109. This implies, any small change in the parameter in the size

of the total initial population Y0 will have the least significant impact on the payoff functional.

2All 37 sensitivity functions are derived and presented in appendix C.
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Alternatively, any variation in the weighting parameter we introduced when we defined Pareto

optimality, α, will have the most significant impact on the payoff function. The payoff functional

is at least 100 times more sensitive to α than any other parameter.
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Figure 6.1: Model without an intervention: state trajectories for evaluating parameter sensi-
tivity to the objective function.
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Figure 6.2: Model without an intervention: adjoint variables for evaluating parameter sensi-
tivity to the objective function.
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Table 6.1: Adjoint variable method: parameter sensitivity to the objective function for the
dynamics when no intervention is present. Solutions to the instantaneous rate of change for the
payoff with respect to the corresponding parameter evaluated at Θ̂.

Parameters
Parameter Values

(Assumptions, Θ̂)

Sensitivity of the Payoff
Relative to each Parameter(

∂L(Y,Θ)

∂θi

∣∣∣
Θ̂

)
α 1/10000 3.77893288584679e+09
µ 0.022 -2.05766844091403e+06
r 0.05 1.06877275341801e+06
φ0 0.493 6.08681045598163e+05
µ2,0 1/8.1 4.71856179135082e+05
q0 1 -3.49011143301420e+05
β2,0 0.066 2.65391025219291e+05
µ1,0 1/7.1 2.48321336019011e+05
µ4,0 1/2.1 -2.31110989786677e+05
β1,0 0.066 2.30344329463931e+05
ρ3 0.02 1.77804374121074e+05
ρ1 0.04 1.10034511112133e+05
ρ2 0.04 1.09573991827064e+05
β3,0 0.147 1.06171506498069e+05
q2 0.83 -8.95411159820186e+04
µ3,0 1/2.7 -8.09226150773032e+04
η00,30 0.235 6.64136657668773e+04
η00,20 0.307 5.70547480927466e+04
q3 0.42 -4.73824609258732e+04
q1 1 -4.61969135242662e+04
q4 0.17 -3.63181330680740e+04

η00,10 0.505 3.01044074150881e+04
β4,0 0.147 2.66508811130811e+04
η00,40 0.235 1.66709766962677e+04
p0 2 1.04141606044455e+04
p3 2 5.35647554957312e+03
p1 2 5.00036726417670e+03
p4 0.667 4.06351423557415e+03
p2 2 3.99552727984316e+03
σ 0.15 -3.61336579054310e+03
ξ 0.98 -5.53066192430067e+02
c0 3307 3.49046047906211e+01
c2 5467 8.95500709891175e+00
c3 12586 4.73871996458378e+00
c1 5467 4.62015336776339e+00
c4 35394 3.63217652445984e+00
Y0 55816 -2.10922602687988e+00
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6.2.2 Therapeutic Vaccine Program

We will again emphasize the notation for immigration defined as we introduced it in section

6.2.1,

I0,0 = (1−
i=3∑
i=1

)µY0 (6.22a)

I1,0 = ρ1µY0 (6.22b)

I2,0 = ρ2µY0 (6.22c)

I3,0 = ρ3µY0. (6.22d)

This results with the following system of differential equations for the dynamics for the thera-

peutic vaccine program:

dY0,0(t)

dt
= (1−

3∑
i=1

ρi)µY0 − (µ+ p0λ(t))Y0,0(t) (6.23a)

dY1,0(t)

dt
= ρ1µY0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t) (6.23b)

dY2,0(t)

dt
= ρ2µY0 + σξY1,0(t)− (νt + µ2,0 + µ)Y2,0(t) (6.23c)

dY2,1(t)

dt
= νtY2,0(t)− (µ2,1 + µ)Y2,1(t) (6.23d)

dY3,0(t)

dt
= ρ3µY0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (6.23e)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (6.23f)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

along with the initial state

Y0,0(0) = (1− φ0)Y0 (6.24a)

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4 (6.24b)

Y2,1(0) = 0. (6.24c)

and the corresponding payoff functional
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L(T ) =

∫ T

0

[
α
(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rtdt. (6.25)

For the model with only the therapeutic vaccine we have the following set of parameters gov-

erning the outcome,

Θ = [µ, µ1,0, µ2,0, µ2,1, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β2,0, β2,1, β3,0, β4,0, . . .

. . . , η00,10, η00,20, η00,21η00,30, η00,40, νt, σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, . . .

. . . , c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, κt, r, α]

where particular values at the point that the variations are analyzed are shown in the second

column of table 6.2.

To evaluate the sensitivity analysis for each of the 42 parameters, we will start by setting up

the system of differential equations that define the adjoint variable. Introducing the notation

from section 6.2 we get the following for the therapeutic vaccine program,

Φ(Ẏ , Y,Θ) =



Ẏ0,0(t) + (µ+ p0λ(t))Y0,0(t)− (1−
∑i=3

i=1 ρi)µY0

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (σξ + µ1,0 + µ)Y1,0(t)− ρ1µY0

Ẏ2,0(t)− σξY1,0(t) + (µ2,0 + µ+ νt)Y2,0(t)− ρ2µY0

Ẏ2,1(t)− νtY2,0(t)− (µ2,1 + µ)Y2,1(t)

Ẏ3,0(t)− µ1,0Y1,0(t)− µ2,0Y2,0(t)− µ2,1Y2,1(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)


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G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y2,1(0)

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rt.

Then the initial value problem for the adjoint variables is defined by

dΛ(t)

dt
= −〈Λ, FY 〉+ `Y , Λ(t(1)) = 0

with

`Y =



(α(c0 + q0)− q0)e−rt

(α(c1 + q1)− q1)e−rt

(α(kt + c2 + q2)− q2)e−rt

(α(c2 + q2)− q2)e−rt

(α(c3 + q3)− q3)e−rt

(α(c4 + q4)− q4)e−rt


,

and FY is the Jacobian matrix for the system (6.23), which can be referenced in appendix A.

The resulting system of ordinary differential equations is given as the following:
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dΛ0,0(t)

dt
=
(
µ+ p0

( ∂λ

∂Y0,0
Y0,0(t) + λ(t)

))
Λ0,0(t)− p0

( ∂λ

∂Y0,0
Y0,0(t)

)
Λ1,0(t)

+ (α(c0 + q0)− q0)e−rt (6.26a)

dΛ1,0(t)

dt
= p0

( ∂λ

∂Y1,0
Y0,0(t)

)
Λ0,0(t) +

(
(σξ + µ1,0 + µ)− p0

∂λ

∂Y1,0
Y0,0(t)

)
Λ0,0(t)

− σξΛ2,0(t)− µ1,0Λ3,0(t) + (α(c1 + q1)− q1)e−rt (6.26b)

dΛ2,0(t)

dt
= p0

( ∂λ

∂Y2,0
Y0,0(t)

)
Λ0,0(t)− p0

( ∂λ

∂Y2,0
Y0,0(t)

)
Λ0,0(t) + (νt + µ2,0 + µ)Λ2,0(t)

− νtΛ2,1(t)− µ2,0Λ3,0(t) + (α(κt + c2 + q2)− q2)e−rt (6.26c)

dΛ2,1(t)

dt
= p0

( ∂λ

∂Y2,1
Y0,0(t)

)
Λ0,0(t)− p0

( ∂λ

∂Y2,1
Y0,0(t)

)
Λ0,0(t) + (µ2,1 + µ)Λ2,1(t)

− µ2,1Λ3,0(t) + (α(c2 + q2)− q2)e−rt (6.26d)

dΛ3,0(t)

dt
= p0

( ∂λ

∂Y3,0
Y0,0(t)

)
Λ0,0(t)− p0

( ∂λ

∂Y3,0
Y0,0(t)

)
Λ0,0(t) + (µ3,0 + µ)Λ3,0(t)

− µ3,0Λ4,0(t) + (α(c3 + q3)− q3)e−rt (6.26e)

dΛ4,0(t)

dt
= p0

( ∂λ

∂Y4,0
Y0,0(t)

)
Λ0,0(t)− p0

( ∂λ

∂Y4,0
Y0,0(t)

)
Λ0,0(t) + (µ4,0 + µ)Λ4,0(t)

+ (α(c4 + q4)− q4)e−rt. (6.26f)

Setting T = 20 and the parameters values as they are defined in section 3.1 the solutions for

both systems (6.23) and (6.26) were derived by numerical methods and are presented in figures

6.3 and 6.4 respectively. These solutions for both the state trajectories and adjoint variables are

then used evaluate each of the sensitivity functions for all 42 parameters3. The results for each

are presented in table 6.2 where they have been ranked in order by the most sensitive to the

least. We will notice the results for the therapeutic vaccine program are similar to the results

for they dynamics when no intervention is present. Any variation in the weighting parameter

we introduced when we defined Pareto optimality, α, will have the most significant impact on

the payoff function. The payoff functional is at least 100 times more sensitive to α than any

other parameter. Alternatively, in the case for the therapeutic vaccine we find that the least

influential parameter is the direct cost for the therapeutic vaccine κt.

3All 42 sensitivity functions are derived and presented in appendix C.
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Figure 6.3: Therapeutic vaccine program: state trajectories for evaluating parameter sensitivity
to the objective function.

149



Time (years)
0 2 4 6 8 10 12 14 16 18 20

A
d
jo

in
t 

V
ar

ia
lb

e 
S

o
lu

ti
o
n

0

1

2

3

4

5

6

7

Adjoint Variable to

the Susceptible Class

Time (years)
0 2 4 6 8 10 12 14 16 18 20

A
d
jo

in
t 

V
ar

ia
lb

e 
S

o
lu

ti
o
n

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Adjoint Variable to

the Asymptomatic-Unaware Class

Time (years)
0 2 4 6 8 10 12 14 16 18 20

A
d
jo

in
t 

V
ar

ia
lb

e 
S

o
lu

ti
o
n

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Adjoint Variable to

the Asymptomatic-Aware-Unvaccinated Class

Time (years)
0 2 4 6 8 10 12 14 16 18 20

A
d
jo

in
t 

V
ar

ia
lb

e 
S

o
lu

ti
o
n

-8

-7

-6

-5

-4

-3

-2

-1

0

Adjoint Variable to the Symptomatic Class

Time (years)
0 2 4 6 8 10 12 14 16 18 20

A
d
jo

in
t 

V
ar

ia
lb

e 
S

o
lu

ti
o
n

-7

-6

-5

-4

-3

-2

-1

0

Adjoint Variable to the AIDS Class

Time (years)
0 2 4 6 8 10 12 14 16 18 20

A
d
jo

in
t 

V
ar

ia
lb

e 
S

o
lu

ti
o
n

-2.5

-2

-1.5

-1

-0.5

0

0.5

Adjoint Variable to

the Asymptomatic-Aware-Vaccinated Class

Figure 6.4: Therapeutic vaccine program: adjoint variables for evaluating parameter sensitivity
to the objective function.
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Table 6.2: Adjoint variable method: parameter sensitivity to the objective function for the
dynamics when the therapeutic vaccine only is presented. Solutions to the instantaneous rate
of change for the payoff with respect to the corresponding parameter evaluated at Θ̂.

Parameters
Parameter Values

(Assumptions, Θ̂)

Sensitivity of the Payoff
Relative to each Parameter(

∂L(Y,Θ)

∂θi

∣∣∣
Θ̂

)
α 1/10000 3.73314584954996e+09
µ 0.022 -1.94939407662373e+06
r 0.05 1.18799979973974e+06
φ0 0.493 5.78343566609914e+05
µ2,1 1/13.1 4.78803206121683e+05
β2,1 0.0495 3.59942749007504e+05
q0 1 -3.45551131516594e+05
µ1,0 1/7.1 2.62253208226607e+05
β1,0 0.066 2.20468392709959e+05
µ4,0 1/2.1 -2.17234957728128e+05
µ2,0 1/8.1 2.10118559397876e+05
ρ3 0.02 1.76531461143370e+05
q2 0.83 -1.08086045851810e+05
ρ1 0.04 1.05080291191557e+05
ρ2 0.04 9.88698381721251e+04
β3,0 0.147 9.02350940130041e+04
µ3,0 1/2.7 -7.86021537406759e+04
β2,0 0.066 5.88664420442731e+04
η00,30 0.235 5.64449311485600e+04
q1 1 -4.75196118101732e+04
q3 0.42 -4.34867302848632e+04

η00,21 0.4803 3.70997731928610e+04
q4 0.17 -3.36641304573673e+04

η00,10 0.505 2.88136909284303e+04
σ 0.15 -2.31321596659052e+04
β4,0 0.147 2.29900302273869e+04
η00,40 0.235 1.43809976315994e+04
η00,20 0.307 1.26553263026776e+04
p0 2 1.08068363895652e+04
p2 2 5.43799855927527e+03
p1 2 4.66141533551225e+03
p3 2 4.41207224324328e+03
ξ 0.98 -3.54063668355693e+03
p4 0.667 3.38937335621676e+03
c0 3307 3.45585690085603e+01
c2 5467 1.08096855537364e+01
c1 5467 4.75243642465978e+00
c3 12586 4.34910793928024e+00
c4 35394 3.36674972070880e+00
Y0 55816 -2.35642199643805e+00
κt 1000 1.97349738175286e+00
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6.2.3 Preventative Vaccine Program

We again start the section for parameter sensitivity for the preventative vaccine program by

emphasize the notation for immigration defined as we introduced it in section 6.2.1,

I0,0 = (1−
i=3∑
i=1

)µY0 (6.27a)

I1,0 = ρ1µY0 (6.27b)

I2,0 = ρ2µY0 (6.27c)

I3,0 = ρ3µY0. (6.27d)

This results with the following system of ordinary differential equations:

dY0,0(t)

dt
= (1−

3∑
i=1

ρi)µY0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (6.28a)

dY0,1(t)

dt
= νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (6.28b)

dY1,0(t)

dt
= ρ1µY0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (6.28c)

dY1,1(t)

dt
= νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t) (6.28d)

dY2,0(t)

dt
= ρ2µY0 + σξ(Y1,0(t) + Y1,1(t))− (µ2,0 + µ)Y2,0(t) (6.28e)

dY3,0(t)

dt
= ρ3µY0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (6.28f)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (6.28g)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

and λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

, along with

the initial state

Y0,0(0) = (1− φ0)Y0 (6.29a)

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4 (6.29b)

Yi,1(0) = 0 for i = 0, 1 (6.29c)
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and the corresponding payoff functional,

L(T ) =

∫ T

0

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rtdt.

(6.30)

From the dynamics, initial state, and the payoff functional, for the model with only the

preventative vaccine we have the following set of parameters

Θ = [µ, µ1,0, µ1,1, µ2,0, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β1,1, β2,0, β3,0, β4,0, . . .

. . . , η00,10, η00,11, η00,20, η00,30, η00,40, η01,10, η01,11, η01,20, η01,30, η01,40, . . .

. . . , ε, νp, ω, σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, r, α, κp]

where particular values at the point that the variations are analyzed are shown in the second

column of tables 6.3 and 6.4.

To evaluate the sensitivity analysis for each of the 49 parameters, we will start by setting

up the system of differential equations for the adjoint variable. Presenting the model in terms

of the notation used in section 6.2 we get,

Φ(Ẏ , Y,Θ) =

Ẏ0,0(t) + (νp + µ+ p0λ(t))Y0,0(t)− ωY0,1(t)− (1−
∑i=3

i=1 ρi)µY0

Ẏ0,1(t)− νpY0,0(t) + (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (νp + σξ + µ1,0 + µ)Y1,0(t)− ωY1,1(t)− ρ1µY0

Ẏ1,1(t)− p0(1− ε)λν(t)Y0,1(t)− νpY1,0(t) + (σξ + ω + µ1,1 + µ)Y1,1(t)

Ẏ2,0(t)− σξ(Y1,0(t) + Y1,1(t)) + (µ2,0 + µ)Y2,0(t)− ρ2µY0

Ẏ3,0(t)− µ1,0Y1,0(t)− µ1,1Y1,1(t)− µ2,0Y2,0(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)


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G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y0,1(0)

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y1,1(0)

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rt.

Then the initial value problem for the adjoint variables is defined by

dΛ(t)

dt
= −〈Λ, FY 〉+ `Y , Λ(t(1)) = 0

with

`Y =



(α(κp + c0 + q0)− q0)e−rt

(α(c0 + q0)− q0)e−rt

(α(κp + c1 + q1)− q1)e−rt

(α(c1 + q1)− q1)e−rt

(α(c2 + q2)− q2)e−rt

(α(c3 + q3)− q3)e−rt

(α(c4 + q4)− q4)e−rt


and FY is the Jacobian matrix for the system (6.23), which can be referenced in appendix A.

The resulting system of ordinary differential equations is given as the following:
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dΛ0,0(t)

dt
=
(
µ+ νp + p0

( ∂λ

∂Y0,0
Y0,0 + λ(t)

))
Λ0,0(t) +

(
p0(1− ε) ∂λν

∂Y0,0
Y0,1 − νp

)
Λ0,1(t)

− p0

( ∂λ

∂Y0,0
Y0,0 + λ(t)

)
Λ1,0(t)−

(
p0(1− ε) ∂λν

∂Y0,0
Y0,1

)
Λ1,1(t)

+ (α(κp + c0 + q0)− q0)e−rt (6.31a)

dΛ0,1(t)

dt
=
(
p0

∂λ

∂Y0,1
Y0,0 − ω

)
Λ0,0(t) +

(
ω + µ+ p0(1− ε)

( ∂λν
∂Y0,1

Y0,1 + λν(t)
))

Λ0,1(t)

− p0
∂λ

∂Y0,1
Y0,0Λ1,0(t)− p0(1− ε)( ∂λν

∂Y0,1
Y0,1 + λν(t))Λ0,1(t)

+ (α(c0 + q0)− q0)e−rt (6.31b)

dΛ1,0(t)

dt
= p0

∂λ

∂Y1,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y1,0
Y0,1Λ0,1(t)

+ (σξ + νp + µ1,0 + µ− p0
∂λ

∂Y1,0
Y0,0)Λ1,0(t)−

(
p0(1− ε) ∂λν

∂Y1,0
Y0,1 + νp

)
Λ1,1(t)

− σξΛ2,0(t)− µ1,0Λ3,0(t) + (α(κp + c1 + q1)− q1)e−rt (6.31c)

dΛ1,1(t)

dt
= p0

∂λ

∂Y1,1
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y1,1
Y0,1Λ0,1(t)

−
(
p0

∂λ

∂Y1,1
Y0,0 + ω

)
Λ1,0(t) +

(
σξ + ω + µ1,1 + µ− p0(1− ε) ∂λν

∂Y1,1
Y0,1

)
Λ1,1(t)

− σξΛ2,0(t)− µ1,1Λ3,0(t) + (α(c1 + q1)− q1)e−rt (6.31d)

dΛ2,0(t)

dt
= p0

∂λ

∂Y2,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y2,0
Y0,1Λ0,1(t)− p0

∂λ

∂Y2,0
Y0,0Λ1,0(t)

− p0(1− ε) ∂λν
∂Y2,0

Y0,1Λ1,1(t) + (µ2,0 + µ)Λ2,0(t)− µ2,0Λ3,0(t)

+ (α(c2 + q2)− q2)e−rt (6.31e)

dΛ3,0(t)

dt
= p0

∂λ

∂Y3,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y3,0
Y0,1Λ0,1(t)− p0

∂λ

∂Y3,0
Y0,0Λ1,0(t)

− p0(1− ε) ∂λν
∂Y3,0

Y0,1Λ1,1(t) + (µ3,0 + µ)Λ3,0(t)− µ3,0Λ4,0(t)

+ (α(c3 + q3)− q3)e−rt (6.31f)

dΛ4,0(t)

dt
p0

∂λ

∂Y4,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y4,0
Y0,1Λ0,1(t)− p0

∂λ

∂Y4,0
Y0,0Λ1,0(t)

− p0(1− ε) ∂λν
∂Y4,0

Y0,1Λ1,1(t) + (µ4,0 + µ)Λ4,0(t)

+ (α(c4 + q4)− q4)e−rt. (6.31g)
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Setting T = 20 and the parameters values as they are defined in section 3.1 the solutions

for both systems (6.28) and (6.31) were derived by numerical methods and are presented in

figures 6.5 and 6.6 respectively. These solutions for both the state trajectories and adjoint

variables are then used evaluate each of the sensitivity functions for all 49 parameters4. The

results for each are presented in tables 6.3 and 6.4 where they have been ranked in order by

the most sensitive to the least. Again we find some similar results compared to the analysis

for the therapeutic vaccine program and the dynamics without an intervention. Any variation

in the weighting parameter we introduced when we defined Pareto optimality, α, will have the

most significant impact on the payoff function, again the payoff functional is at least 100 times

more sensitive to α than any other parameter. Regarding the least sensitive parameter we find

that the total initial population size Y0 has the smallest impact, just like the case when no

intervention was presented. This is an interesting alternative considering in the case for the

therapeutic vaccine we find that the least influential parameter is the direct cost of the vaccine

κt. Alternatively, for the preventative vaccine program, the direct cost of the vaccine κp ranks

higher in sensitivity than the average medical expenses for all the infectious states, as well as

the total initial population.

4All 49 sensitivity functions are derived and presented in appendix C.
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Figure 6.5: Preventative vaccine program: state trajectories for evaluating parameter sensitiv-
ity to the objective function.
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Figure 6.6: Preventative vaccine program: adjoint variables for evaluating parameter sensitivity
to the objective function.
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Table 6.3: Adjoint variable method: parameter sensitivity (> 104) to the objective function for
the dynamics when the preventative vaccine only is presented. Solutions to the instantaneous
rate of change for the payoff with respect to the corresponding parameter evaluated at Θ̂.

Parameters
Parameter Values

(Assumptions, Θ̂)

Sensitivity of the Payoff
Relative to each Parameter(

∂L(Y,Θ)

∂θi

∣∣∣
Θ̂

)
α 1/10000 3.73577120279128e+09
µ 0.022 -1.76168388644912e+06
r 0.05 1.34465379582781e+06
φ0 0.493 5.97118442945960e+05
µ2,0 1/8.1 4.53729931437988e+05
q0 1 -3.79004949678658e+05
µ4,0 1/2.1 -2.15889377099890e+05
ρ3 0.02 1.72259283001503e+05
β2,0 0.066 1.14763063446554e+05
µ1,0 1/7.1 1.12787189077008e+05
ρ2 0.04 1.03661505443833e+05
ρ1 0.04 1.03496963430559e+05
µ1,1 1/7.1 1.03423908147592e+05
q2 0.83 -8.35525825274645e+04
µ3,0 1/2.7 -6.86797430405222e+04
β1,1 0.066 5.85545377394499e+04
ω 1/10 5.54577780498569e+04
β3,0 0.147 4.32513231685160e+04
q3 0.42 -4.29781414034382e+04
β1,0 0.066 4.17796011305228e+04
q1 1 -3.60599100168914e+04
ε 0.75 -3.52289334651797e+04
q4 0.17 -3.36339039156473e+04

η00,30 0.235 1.54627687922365e+04
η00,20 0.307 1.48186305384655e+04
η01,30 0.235 1.15923150991761e+04
β4,0 0.147 1.08853602008431e+04
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Table 6.4: Adjoint variable method: parameter sensitivity (< 104) to the objective function for
the dynamics when the preventative vaccine only is presented. Solutions to the instantaneous
rate of change for the payoff with respect to the corresponding parameter evaluated at Θ̂.

Parameters
Parameter Values

(Assumptions, Θ̂)

Sensitivity of the Payoff
Relative to each Parameter(

∂L(Y,Θ)

∂θi

∣∣∣
Θ̂

)
η01,20 0.307 9.85355746768976e+03
η00,10 0.505 4.37950333783591e+03
p0 2 4.34725531234807e+03

η00,11 0.505 4.08371644541146e+03
η00,40 0.235 3.78844405501942e+03
η01,40 0.235 3.02071847369263e+03
η01,11 0.6287 2.86651634174733e+03
p3 2 2.20483204969525e+03
p1 2 2.20478521185174e+03
p2 2 1.75841785106467e+03
p4 0.667 1.68504904280168e+03

η01,10 0.505 1.08080096244802e+03
σ 0.15 6.64914913458124e+02
ξ 0.98 1.01772690835427e+02
c0 3307 3.79042853964055e+01
κp 1000 9.62510195285204e+00
c2 5467 8.35609386213267e+00
c3 12586 4.29824396474029e+00
c1 5467 3.60635163685282e+00
c4 35394 3.36372676424115e+00
Y0 55816 -2.41248231562490e+00
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6.2.4 Combined, Preventative and Therapeutic, Vaccine Program

We again start the section for parameter sensitivity for the preventative vaccine program by

emphasize the notation for immigration defined as we introduced it in section 6.2.1,

I0,0 = (1−
i=3∑
i=1

)µY0 (6.32a)

I1,0 = ρ1µY0 (6.32b)

I2,0 = ρ2µY0 (6.32c)

I3,0 = ρ3µY0. (6.32d)

For the full model with both vaccinations, the preventative and therapeutic, we have the

following system of ordinary differential equations:

dY0,0(t)

dt
= (1−

3∑
i=1

ρi)µY0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t) (6.33a)

dY0,1(t)

dt
= νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t) (6.33b)

dY1,0(t)

dt
= ρ1µY0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t) (6.33c)

dY1,1(t)

dt
= νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t) (6.33d)

dY2,0(t)

dt
= ρ2µY0 + σξ(Y1,0(t) + Y1,1(t))− (νt + µ2,0 + µ)Y2,0(t) (6.33e)

dY2,1(t)

dt
= νtY2,0(t)− (µ2,1 + µ)Y2,1(t) (6.33f)

dY3,0(t)

dt
= ρ3µY0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t) (6.33g)

dY4,0(t)

dt
= µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t) (6.33h)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

and λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

, along with

the initial state
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Y0,0(0) = (1− φ0)Y0 (6.34a)

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4 (6.34b)

Yi,1(0) = 0 for i = 0, 1, 2 (6.34c)

(6.34d)

and the corresponding payoff functional

L(T ) =

∫ T

0

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)

− (1− α)
( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rtdt. (6.35)

From the dynamics, initial state, and the payoff functional, for the combined strategy model

we have the following set of parameters

Θ = [µ, µ1,0, µ1,1, µ2,0, µ2,1, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β1,1, β2,0, β2,1, β3,0, β4,0, . . .

. . . , η00,10, η00,11, η00,20, η00,21, η00,30, η00,40, η01,10, η01,11, η01,20, η01,21, η01,30, η01,40, . . .

. . . , ε, νp, νt, ω, σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, r, α, κp, κt]

where particular values at the point that the variations are analyzed are shown in the second

column of tables 6.5 and 6.6.

To evaluate the sensitivity analysis for each of the 55 parameters, we will start by setting

up the system of differential equations for the adjoint variable. Presenting the model in terms

of the notation used in section 6.2 we get,

162



Φ(Ẏ , Y,Θ) =

Ẏ0,0(t) + (νp + µ+ p0λ(t))Y0,0(t)− ωY0,1(t)− (1−
∑i=3

i=1 ρi)µY0

Ẏ0,1(t)− νpY0,0(t) + (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (νp + σξ + µ1,0 + µ)Y1,0(t)− ωY1,1(t)− ρ1µY0

Ẏ1,1(t)− p0(1− ε)λν(t)Y0,1(t)− νpY1,0(t) + (σξ + ω + µ1,1 + µ)Y1,1(t)

Ẏ2,0(t)− σξ(Y1,0(t) + Y1,1(t)) + (µ2,0 + µ+ νt)Y2,0(t)− ρ2µY0

Ẏ2,1(t)− νtY2,0(t) + (µ2,1 + µ)Y2,1(t)

Ẏ3,0(t)− µ1,0Y1,0(t)− µ1,1Y1,1(t)− µ2,0Y2,0(t)− µ2,1Y2,1(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)



G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y0,1(0)

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y1,1(0)

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y2,1(0)

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)

− (1− α)
( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rt.

Then the initial value problem for the adjoint variables is defined by

dΛ(t)

dt
= −〈Λ, FY 〉+ `Y , Λ(t(1)) = 0

with
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`Y =



(α(κp + c0 + q0)− q0)e−rt

(α(c0 + q0)− q0)e−rt

(α(κp + c1 + q1)− q1)e−rt

(α(c1 + q1)− q1)e−rt

(α(c2 + q2)− q2)e−rt

(α(κt + c2 + q2)− q2)e−rt

(α(c3 + q3)− q3)e−rt

(α(c4 + q4)− q4)e−rt


,

and FY is the Jacobian matrix for the system (6.23), which can be referenced in appendix A.

The resulting system of ordinary differential equations is given as the following:

dΛ0,0(t)

dt
=
(
µ+ νp + p0

( ∂λ

∂Y0,0
Y0,0 + λ(t)

))
Λ0,0(t) +

(
p0(1− ε) ∂λν

∂Y0,0
Y0,1 − νp

)
Λ0,1(t)

− p0

( ∂λ

∂Y0,0
Y0,0 + λ(t)

)
Λ1,0(t)−

(
p0(1− ε) ∂λν

∂Y0,0
Y0,1

)
Λ1,1(t)

+ (α(κp + c0 + q0)− q0)e−rt (6.36a)

dΛ0,1(t)

dt
=
(
p0

∂λ

∂Y0,1
Y0,0 − ω

)
Λ0,0(t) +

(
ω + µ+ p0(1− ε)

( ∂λν
∂Y0,1

Y0,1 + λν(t)
))

Λ0,1(t)

− p0
∂λ

∂Y0,1
Y0,0Λ1,0(t)− p0(1− ε)( ∂λν

∂Y0,1
Y0,1 + λν(t))Λ0,1(t)

+ (α(c0 + q0)− q0)e−rt (6.36b)

dΛ1,0(t)

dt
= p0

∂λ

∂Y1,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y1,0
Y0,1Λ0,1(t)

+ (σξ + νp + µ1,0 + µ− p0
∂λ

∂Y1,0
Y0,0)Λ1,0(t)−

(
p0(1− ε) ∂λν

∂Y1,0
Y0,1 + νp

)
Λ1,1(t)

− σξΛ2,0(t)− µ1,0Λ3,0(t) + (α(κp + c1 + q1)− q1)e−rt (6.36c)

dΛ1,1(t)

dt
= p0

∂λ

∂Y1,1
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y1,1
Y0,1Λ0,1(t)

−
(
p0

∂λ

∂Y1,1
Y0,0 + ω

)
Λ1,0(t) +

(
σξ + ω + µ1,1 + µ− p0(1− ε) ∂λν

∂Y1,1
Y0,1

)
Λ1,1(t)

− σξΛ2,0(t)− µ1,1Λ3,0(t) + (α(c1 + q1)− q1)e−rt (6.36d)
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dΛ2,0(t)

dt
= p0

∂λ

∂Y2,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y2,0
Y0,1Λ0,1(t)− p0

∂λ

∂Y2,0
Y0,0Λ1,0(t)

− p0(1− ε) ∂λν
∂Y2,0

Y0,1Λ1,1(t) + (νt + µ2,0 + µ)Λ2,0(t)− νtΛ2,1(t)− µ2,1Λ3,0(t)

+ (α(c2 + q2)− q2)e−rt (6.36e)

dΛ2,1(t)

dt
= p0

∂λ

∂Y2,1
Y0,0(t)Λ0,0(t) + p0(1− ε) ∂λν

∂Y2,1
Y0,1(t)Λ0,1(t)− p0

∂λ

∂Y2,1
Y0,0(t)Λ1,0(t)

− p0(1− ε) ∂λν
∂Y2,1

Y0,1(t)Λ1,1(t) + (µ2,1 + µ)Λ2,1(t)− µ2,1Λ3,0(t)

+ (α(c2 + q2)− q2)e−rt (6.36f)

dΛ3,0(t)

dt
= p0

∂λ

∂Y3,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y3,0
Y0,1Λ0,1(t)− p0

∂λ

∂Y3,0
Y0,0Λ1,0(t)

− p0(1− ε) ∂λν
∂Y3,0

Y0,1Λ1,1(t) + (µ3,0 + µ)Λ3,0(t)− µ3,0Λ4,0(t)

+ (α(c3 + q3)− q3)e−rt (6.36g)

dΛ4,0(t)

dt
= p0

∂λ

∂Y4,0
Y0,0Λ0,0(t) + p0(1− ε) ∂λν

∂Y4,0
Y0,1Λ0,1(t)− p0

∂λ

∂Y4,0
Y0,0Λ1,0(t)

− p0(1− ε) ∂λν
∂Y4,0

Y0,1Λ1,1(t) + (µ4,0 + µ)Λ4,0(t)

+ (α(c4 + q4)− q4)e−rt. (6.36h)

Setting T = 20 and the parameters values as they are defined in section 3.1 the solutions for

both systems (6.33) and (6.36) were derived by numerical methods and are presented in figures

6.7 and 6.8 respectively. These solutions for both the state trajectories and adjoint variables are

then used evaluate each of the sensitivity functions for all 49 parameters5. The results for each

are presented in tables 6.5 and 6.6 where they have been ranked in order by the most sensitive

to the least. Again we find some similar results compared to the analysis for the preventative

vaccine program, the therapeutic vaccine program and the dynamics without an intervention.

Instead of getting into too much detail here we will address the parameter sensitivity comparison

for each variation of the model in the following section.

5All 49 sensitivity functions are derived and presented in appendix C.
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Figure 6.7: Combined, preventative and therapeutic, vaccine program: state trajectories for
evaluating parameter sensitivity to the objective function.
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Figure 6.8: Combined, preventative and therapeutic, vaccine program: adjoint variables for
evaluating parameter sensitivity to the objective function.
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Table 6.5: Adjoint variable method: parameter sensitivity (> 104) to the objective function for
the dynamics when the combined, preventative and therapeutic, vaccine program is presented.
Solutions to the instantaneous rate of change for the payoff with respect to the corresponding
parameter evaluated at Θ̂.

Parameters
Parameter Values

(Assumptions, Θ̂)

Sensitivity of the Payoff
Relative to each Parameter(

∂L(Y,Θ)

∂θi

∣∣∣
Θ̂

)
α 1/10000 3.70359321468862e+09
µ 0.022 -1.65413747648665e+06
r 0.05 1.47423642072584e+06
φ0 0.493 5.67929917275335e+05
µ2,1 1/13.1 4.58133123581753e+05
q0 1 -3.77589250197162e+05
µ2,0 1/8.1 2.12287966514073e+05
µ4,0 1/2.1 -2.02620150508584e+05
ρ3 0.02 1.71836349519474e+05
β2,1 0.0495 1.42276656025451e+05
µ1,1 1/7.1 1.12418452861067e+05
µ1,0 1/7.1 1.09508599874891e+05
q2 0.83 -1.00803348982309e+05
ρ1 0.04 9.95780374055173e+04
ρ2 0.04 9.32597404241762e+04
µ3,0 1/2.7 -6.91744147989177e+04
ω 1/10 5.63999070301863e+04
β1,1 0.066 5.61725900047318e+04
β1,0 0.066 4.01102140197220e+04
q3 0.42 -3.90816504103753e+04
β3,0 0.147 3.74429473139820e+04
q1 1 -3.65924209679311e+04
ε 0.75 -3.63580959136667e+04
β2,0 0.066 3.28956012966058e+04
q4 0.17 -3.09878773947230e+04
σ 0.15 -1.74062671055518e+04

η00,30 0.235 1.36332256515006e+04
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Table 6.6: Adjoint variable method: parameter sensitivity (< 104) to the objective function for
the dynamics when the combined, preventative and therapeutic, vaccine program is presented.
Solutions to the instantaneous rate of change for the payoff with respect to the corresponding
parameter evaluated at Θ̂.

Parameters
Parameter Values

(Assumptions, Θ̂)

Sensitivity of the Payoff
Relative to each Parameter(

∂L(Y,Θ)

∂θi

∣∣∣
Θ̂

)
η01,30 0.235 9.78853100843731e+03
β4,0 0.147 9.58275137238856e+03
η00,21 0.4803 7.48895689258012e+03
η01,21 0.4803 7.17568283257671e+03
η00,20 0.307 5.52278688504569e+03
p0 2 4.45860644393792e+03

η00,10 0.505 4.20137022351679e+03
η00,11 0.505 3.91341510897369e+03
η00,40 0.235 3.39523630244231e+03
η01,11 0.6287 2.75326526208321e+03
ξ 0.98 -2.66422455697222e+03

η01,40 0.235 2.59908019055416e+03
p2 2 2.36667122992879e+03
p1 2 2.07851716566375e+03
p3 2 1.85674451113226e+03

η01,20 0.307 1.54923150010401e+03
p4 0.667 1.43952897262286e+03

η01,10 0.505 1.04075606832242e+03
c0 3307 3.77627012898452e+01
c2 5467 1.00813430325342e+01
κp 1000 9.61289664215710e+00
c3 12586 3.90855589662719e+00
c1 5467 3.65960805759887e+00
c4 35394 3.09909764923722e+00
Y0 55816 -2.67356071108355e+00
κt 1000 1.80908668817771e+00
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6.3 Parameter Sensitivity Comparison

In the previous sections we applied the adjoint variable method to derive the sensitivity of

the parameters for each of the four variation of the state space of the HIV-transmission model

with vaccine intervention. The results independently give us a ranking of the most sensitive

parameters to the least sensitive, for the set of distinct parameters for each variation of the

state space. Some of the parameters are consistent throughout all four variations of the model,

specifically the parameters associated to the model when no intervention is present. As we

analyze the impact that each vaccine program has on the population dynamics there are vaccine

specific parameters added to the model, resulting with an impact to the sensitivity of the base

parameters. Therefore we were interested in comparing the results of the individual state space

sensitivity analysis, which is presented in tables 6.7 - 6.9.

From the results we find that the most sensitive parameter is the weighting parameter α

that we introduced during the discussion of Pareto optimality. To consider the impact the

variations of α will have on the solution for optimizing an intervention strategy, we allowed

α to vary between 10−3 to 10−5. The results indicated that the timing of the intervention

strategy is highly dependent with the choice of α, which is consistent with the concept of

the Pareto Front (PF) defined in section 5.2.1 and analyzed in section 5.4.5. If α = 10−3,

the assumption would indicate that minimizing cost was more important than the original

analysis. This results with an optimal strategy with both vaccines being offered immediately,

then removing the preventative vaccine around t = 10.8 and the therapeutic vaccine around

t = 17.6. Both of which is earlier than the original analysis, but the change is more prevalent

in the preventative vaccine than the therapeutic. Alternatively, when we evaluated the results

for α = 10−5 we found an alternative optimal strategy to administer both vaccines right away,

then remove the preventative vaccine around t = 15.2 and the therapeutic around t = 19.

Since α = 10−5 indicates a greater importance for maximizing QALYs over minimizing cost the

results support offering both vaccines for a longer period of time.

Alternatively, we want to emphasize how much variation we find in the sensitivity for the

portion of the population that is screened for the infection (σ) between the variations of the

state spaces. It is the least sensitive for the case when only the preventative vaccine is present,

with a sensitivity of 6.6492e+02. On an order of magnitude, the sensitivity for σ is 100 times

less sensitive then it is in all of the other three state spaces. To determine the impact this

variation would have on the optimal control solution we allowed σ to vary between 1% to 50%

and found that there was no change to results for the optimal intervention strategy presented

in sections 5.4.2.

The comparison of the sensitivity analysis for the impact that variation in the parameters

has on the payoff functional allows us to interpret the impact that variations will have on the
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solution to the optimal intervention strategy. The results indicate that when a parameter is

highly sensitivity in all variations of the state space then we can expect to find variation in

the solution to the optimal control. Alternatively, even when the sensitivity changes between

variations of the state space but is low enough then the impact on the solution to the optimal

control is negligible.

Table 6.7: Parameter sensitivity comparison for the four variations of the model with sensitiv-
ities greater than 9e+05.

Combined
Vaccination
Strategy

Preventative
Vaccine
Program

Therapeutic
Vaccine
Program

No Intervention

α 3.7036e+09 α 3.7358e+09 α 3.7331e+09 α 3.7789e+09

µ -1.6541e+06
r 1.4742e+06

µ -1.7617e+06
r 1.3447e+06

µ -1.9494e+06
r 1.1880e+06

µ -2.0577e+069
r 1.0688e+06

φ0 5.6793e+05
µ2,1 4.5813e+05
q0 -3.7759e+05
µ2,0 2.1229e+05
µ4,0 -2.0262e+05
ρ3 1.7184e+05
β2,1 1.4228e+05
µ1,1 1.1242e+05
µ1,0 1.0951e+05
q2 -1.0080e+05
ρ1 9.9578e+04
ρ2 9.3260e+04

φ0 5.9712e+05
µ2,0 4.5373e+05
q0 -3.7901e+05
µ4,0 -2.1589e+05
ρ3 1.7226e+05
β2,0 1.1476e+05
µ1,0 1.1279e+05
ρ2 1.0366e+05
ρ1 1.0350e+05
µ1,1 1.0342e+05

φ0 5.7834e+05
µ2,1 4.7880e+05
β2,1 3.5994e+05
q0 -3.4555e+05
µ1,0 2.6225e+05
β1,0 2.2047e+05
µ4,0 -2.1723e+05
µ2,0 2.1012e+05
ρ3 1.7653e+05
q2 -1.0809e+05
ρ1 1.0508e+05
ρ2 9.8870e+04
β3,0 9.0235e+04

φ0 6.0868e+05
µ2,0 4.7186e+05
q0 -3.4901e+05
β2,0 2.6539e+05
µ1,0 2.4832e+05
µ4,0 -2.3111e+05
β1,0 2.3034e+05
ρ3 1.7780e+05
ρ1 1.1003e+05
ρ2 1.0957e+05
β3,0 1.0617e+05
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Table 6.8: Parameter sensitivity comparison for the four variations of the model with sensitiv-
ities between 1e+03 and 9e+05.

Combined
Vaccination
Strategy

Preventative
Vaccine
Program

Therapeutic
Vaccine
Program

No Intervention

µ3,0 -6.9174e+04
ω 5.6400e+04
β1,1 5.6173e+04
β1,0 4.0110e+04
q3 -3.9082e+04
β3,0 3.7443e+04
q1 -3.6592e+04
ε -3.6358e+04
β2,0 3.2896e+04
q4 -3.0988e+04
νp -1.9426e+04
σ -1.7406e+04

η00,30 1.3633e+04
η01,30 9.7885e+03
β4,0 9.5828e+03

q2 -8.3553e+04
µ3,0 -6.8680e+04
β1,1 5.8555e+04
ω 5.5458e+04
β3,0 4.3251e+04
q3 -4.2978e+04
β1,0 4.1780e+04
q1 -3.6060e+04
ε -3.5229e+04
q4 -3.3634e+04
νp -1.9303e+04

η00.30 1.5463e+04
η00.20 1.4819e+04
η01,30 1.1592e+04
β4,0 1.0885e+04
η01,20 9.8536e+03

µ3,0 -7.8602e+04
β2,0 5.8866e+04
η00,30 5.6445e+04
q1 -4.7520e+04
q3 -4.3487e+04

η00,21 3.7100e+04
q4 -3.3664e+04

η00,10 2.8814e+04
σ -2.3132e+04
β4,0 2.2990e+04
η00,40 1.4381e+04
η00,20 1.2655e+04
p0 1.0807e+04

q2 -8.9541e+04
µ3,0 -8.0923e+04
η00,30 6.6414e+04
η00,20 5.7055e+04
q3 -4.7382e+04
q1 -4.6197e+04
q4 -3.6318e+04

η00,10 3.0104e+04
β4,0 2.6651e+04
η00,40 1.6671e+04
p0 1.0414e+04

η00,21 7.4890e+03
η01,21 7.1757e+03
νt -6.5796e+03

η00,20 5.5228e+03
p0 4.4586e+03

η00,10 4.2014e+03
η00,11 3.9134e+03
η00,40 3.3952e+03
η01,11 2.7533e+03
ξ -2.6642e+03

η01,40 2.5991e+03
p2 2.3667e+03
p1 2.0785e+03
p3 1.8567e+03

η01,20 1.5492e+03
p4 1.4395e+03

η01,10 1.0408e+03

η00,10 4.3795e+03
p0 4.3473e+03

η00,11 4.0837e+03
η00,40 3.7884e+03
η01,40 3.0207e+03
η01,11 2.8665e+03
p3 2.2048e+03
p1 2.2048e+03
p2 1.7584e+03
p4 1.6851e+03

η01,10 1.0808e+03

νt -6.6398e+03
p2 5.4380e+03
p1 4.6614e+03
p3 4.4121e+03
ξ -3.5406e+03
p4 3.3894e+03

p3 5.3565e+03
p1 5.0004e+03
p4 4.0635e+03
p2 3.9955e+03
σ -3.6134e+03
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Table 6.9: Parameter sensitivity comparison for the four variations of the model with sensitiv-
ities less than 1e+03.

Combined
Vaccination
Strategy

Preventative
Vaccine
Program

Therapeutic
Vaccine
Program

No Intervention

σ 6.6492e+02
ξ 1.0177e+02

ξ -5.5307e+02

c0 3.7763e+01
c2 1.0081e+01
κp 9.6129e+00

c0 3.7904e+01
κp 9.6251e+00

c0 3.4559e+01
c2 1.0810e+01

c0 3.4905e+01

c3 3.9086e+00
c1 3.6596e+00
c4 3.0991e+00
Y0 -2.6736e+00
κt 1.8091e+00

c2 8.3561e+00
c3 4.2982e+00
c1 3.6064e+00
c4 3.3637e+00
Y0 -2.4125e+00

c1 4.7524e+00
c3 4.3491e+00
c4 3.3667e+00
Y0 -2.3564e+00
κt 1.9735e+00

c2 8.9550e+00
c3 4.7387e+00
c1 4.6202e+00
c4 3.6322e+00
Y0 -2.1092e+00
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Chapter 7

Conclusion

7.1 Summary

This concludes the research for the HIV-transmission model with vaccine intervention for the

purpose of deriving an optimal intervention strategy. In offering a full analysis of the system

we started with the cost-effective analysis for the base case HIV-transmission model without an

intervention, as well as each of the vaccine programs independently, followed by the analysis of

the combined, preventative and therapeutic, vaccine strategy for a time horizon of 20 years. Both

of the vaccine programs we chose are considered dominant programs with the expectation that

they will reduce cost and increase QALYs. Although, we found in the case for the therapeutic

vaccine, even though the dominant therapeutic vaccine saved money and increased QALYs

the adverse effects of vaccinating resulted with the vaccinated population having a higher risk

in transmitting the disease than the unvaccinated population. This implied that the results

generated more infections when the therapeutic vaccine was offered.

This led us to analyzing the dynamical system in consideration for the R0 threshold, in

an attempt to characterize the secondary infection number. From our review of the literature

it is standard practice to derive the R0 threshold by evaluating the conditions for which the

disease free equilibrium will be stable or unstable. By assuming that immigration into the

infected population is defined by constant parameters in the dynamics a disease-free equilibrium

will not exist without altering the original assumptions of the model. This implies that the

characterization for the R0 threshold was not possible in our case. Instead we found with

each variation of the state space there is exactly one physically relevant, locally asymptotically

stable, equilibrium point; described as an endemic equilibrium. This implies that regardless of

the strategy implemented the disease will continue to persist. We did find though, that some

outcomes, specifically when the preventative vaccine is introduced, will have a more desirable

outcome.
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After understanding the expected outcomes for each variation of the model we proceeded to

the analysis for optimizing an intervention strategy. In consideration of opposing objectives, to

minimize cost and maximize QALYs, an introduction to multiobjective optimization and Pareto

optimality was made so that we could structure a problem statement that fit the objective for

optimizing an intervention strategy for which methods from optimal control theory could be

applied. Upon structuring the problem statement we implemented a direct numerical method

(control parameterization) for solving the optimal intervention strategy. The results of a direct

numerical optimization method only guarantee a locally optimal solution, so to verify whether or

not the solution was a globally optimal intervention strategy we checked the necessary conditions

from Pontryagin’s maximum principle. We found, with two dominant vaccine programs, the

globally optimal strategy on a 20 year time horizon is to offer both vaccines immediately then

stop offering the preventative vaccine after 12 years and the therapeutic vaccine after 18 years.

Although, we do not attempt to get into an ethical discussion regarding offering a vaccine then

taking it away, what we do get out of the analysis is that even with a dominant program further

research can provide insight into even more cost-effective savings.

To understand the expectations for the model results, relative to the assumptions regarding

the parameters that govern the outcomes, we concluded with sensitivity analysis for each of

the variations of the state space as well as the implications this has on the outcome for the

optimal intervention strategy. We did find, as we would have expected after the discussion of

Pareto optimality, that the results of the analysis is highly dependent on the choice for the

weighting parameter α. In the consideration for sensitivity analysis we only offer a ranking for

the sensitivity of the payoff function relative to the parameter changes and how it impact the

results for optimizing an intervention strategy. Although uncertainty analysis is typically offered

in tandem to sensitivity analysis, without knowledge for the uncertainty in the parameters we

didn’t quantify the uncertainty in the conclusion.

7.2 Model Development

The research we have presented for the HIV-transmission model with vaccine intervention has

resulted with an understanding for the underlying dynamics, a consideration for an optimal

strategy, and insight into the sensitivity of the model to the parameter assumptions. All of which

gives us a well rounded analysis for the projections made regarding controlling the spread of HIV.

In addition, the research also highlighted a couple of concerns regarding the epidemiological

and cost-effective analysis. This leads us to the consideration regarding model development for

the purpose of characterizing the secondary infection rate threshold, R0. The lack of an R0

threshold for HIV-transmission models with constant immigration into the infected population

requires further consideration for adding a dependency on the prevalence of the infection within
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a population. As a simple and yet extreme example, we would not expect susceptible individuals

to migrate to a region where everyone in the population is infected. Keeping this in mind

and along with careful consideration, a population dependent immigration function will result

with a model whose dynamics have two equilibria, a disease-free equilibrium and an endemic

equilibrium, then the epidemiological analysis can be applied for the secondary infection rate.

This will also allow the researcher to consider two benefits of vaccinating, minimizing R0 and

increasing QALYs. The importance of adding the second benefit of vaccinating has already

been apparent from the analysis we presented on the dominant therapeutic vaccine in chapter

3. The vaccine in this case increased QALYs, which is considered a beneficial outcome, but it

was apparent by the trajectory for the susceptible population that the number of secondary

infections also appeared to increase, which is an undesirable outcome. A symbolic representation

for R0 would allow for a direct comparison between intervention programs to determine which

one will be expected to decrease R0 to a value below 1 in a reasonable amount of time.

In addition to the concern regarding the R0 threshold there are a number of areas of devel-

opment that have been considered for the mathematical modeling of infectious disease [27]. To

begin, we will emphasize the assumptions that are made regarding the HIV-transmission model

that was the subject of our analysis in the earlier chapters. The model presented by Edwards

et al. was originally designed to interpret the spread of HIV infections amongst the homosex-

ual population of San Francisco, CA during the mid to late 1990’s. Clearly a very restrictive

model regarding the population and region, which allowed the researchers to make generalized

assumptions regarding the target population that were considered reasonably accurate. As a

deterministic compartmental model the assumptions are made that the whole population be-

haves with the same risk factors. This refers to a homogenous model because the consideration

for variation in behavioral patterns are not included. For models attempting to simulate a so-

cial system, heterogenous models would describe a better fit for interpreting the impact that

human behavior can have on the projections. A heterogenous model will take into account that

various factors, such as social/economic status, age, education, and religious beliefs (to name a

few) of the individuals in the population will have an impact on how the disease spreads. As an

example we will consider a simple age distinction between two men in the population. Some-

thing as simple as distinguishing the behavioral differences between a millennial and a baby

boomer would better characterize the dynamics for the population. In adding heterogeneity to

the model a significant number of compartments will be added to the dynamics and then the

additional consideration for mixing between groups would also need to be addressed. This leads

us to environmental factors that are associated to where the population is located. These factors

can include ethnicity, whether the total population belongs to the same ethnic group or if there

is mix of ethnic backgrounds. Another possibility is whether the population is from a major

city, the suburbs, or a small rural town. All of which have a unique way of influence behav-
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ioral patterns within the population. Evaluating the environmental factors will allow the model

development to go further and incorporate the heterogeneity with the possibility of migration

between regions. We will make the distinction between migration and mixing by clarifying that

when individuals from one region migrate to another region they will be influenced by environ-

mental factors and the possibility for behavioral changes are excepted. Alternatively, when we

refer to mixing there is no assumption that the individuals acquire the behavioral patterns of

the population they are mingling with.

Thus far we have named a few examples for developing the model and it is already apparent

that the level of complexity for analysis will grow with each consideration. We will emphasize

that with all the examples for development of the homogenous model to a heterogenous model,

we have yet to address the consideration of sexual orientation, gender, or methods for which

individuals can acquire the infection. With the model restricted to the interpretation for the ho-

mosexual male population the assumption was also made that the disease will only transfer by

means of homosexual partnerships. Although there are additional means of transmission includ-

ing heterosexual partnerships, needle sharing, as well as the infection passing from mother to

child. Adding any one of additional means for transmission would require careful consideration

for additional infection functions. Further more, with the addition of heterosexual partnerships

the model would need to include a gender classification as well as sexual orientation. Then if

vertical transmission, from mother to child, is taken into consideration there would need to be

an additional consideration for the likelihood of becoming pregnant as well as the probability

that the women in the population use contraceptives. Again, just to name a couple of additional

key factors that we know to be true in real life but the mathematical model we have already

analyzed does not take into consideration.

We can see how quickly the considerations for model development can grow in number.

Everything that has been discussed thus far has all been in consideration to a deterministic

compartmental model governed by a system of ordinary differential equations. This time we will

place the emphasize on deterministic modeling, where the assumption for the system is that

the solution to the state trajectories is known at each time, t. The alternative to deterministic

modeling is stochastic modeling, where the exact position of the system at time t is unknown,

instead a distribution of possible positions is the interpretation. Converting a deterministic

model to a stochastic model can be done by replacing the infection rate function with a random

variable so that the likelihood for the disease spreading will be more accurately interpreted by

simulating the true randomness of human behavior. This will result with dynamics driven by

chance where the basic entities of the model are defined by discrete individuals [27, 46].
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7.3 Current Efforts in the Fight Against HIV and AIDS

To better understand the path that we will pursue for future research we need to understand

what is currently being done to control the HIV/AIDS epidemic and align our efforts with those

who have already started paving the way.

The motivation presented at the beginning of our research was done to give an introduction

to the importance of analyzing an HIV-transmission model with vaccine intervention as well as

present the advancements by researchers in the development of a preventative vaccine for HIV

infections in addition to presenting the prospects of a therapeutic vaccine. Although there has

been significant progress in both regards, the reality of offering either vaccine to an infected

population is not expected, and definitely not guaranteed, any time in the near future. There-

fore, knowing the alternative efforts currently being implemented for controlling the spread

of infections as well as managing the symptoms for those already infected, the model can be

converted to consider the cost-effective analysis of current intervention programs.

We will continue our focus on San Francisco, CA where the San Francisco AIDS foundation

leads the efforts for managing the HIV/AIDS epidemic for their city. The foundation’s mission

to reduce the number of new HIV infections and help people live longer, healthier lives by 2019

is guided by three goals: 1○ build healthier communities by fostering personal resilience and

social support, increasing community engagement, and reducing harms associated with alcohol

and other drugs; 2○ reduce new HIV diagnoses in San Francisco to fewer than 100 per year; and

3○ improve the health and lifespan of San Franciscans living with HIV [18]. These three goals

align directly with the three goals outlined by the National HIV/AIDS Strategy by the White

House Office of National AIDS Policy: 1○ decrease HIV-associated health disparities; 2○ reduce

new HIV infections; and 3○ improve access to high-quality care and optimize health outcomes

for people living with HIV. With the initiative for controlling the spread of HIV reaching the

focus of the White House we will soon find that more of the local and state initiatives will start

to follow the same guidelines.

As a means for controlling the spread of infections the efforts have been focused on awareness

and education about the disease to help the population understand better the risks they may be

taking based on various behaviors they portray. Quantifying the benefits of these educational

intervention programs will introduce a new challenge, but once that hurdle is crossed the cost-

effective analysis for competing program can easily be assessed.
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7.4 Future Research

In addition to some of the comments we have already made regarding model development there

is one area of the current model that would be important to explore a little further than we

already have. The purpose of our research was to give a well rounded analysis for strategizing

vaccine programs when one would become available. To do this required assumptions regarding

the vaccine specific parameters. At the beginning of our research we chose to assume that both

vaccines would be considered dominant vaccines, meaning they would reduce cost and increase

QALYs, then the parameters were defined that supported this conclusion based on the research

from the original authors of the model. For the purpose of optimizing an intervention strategy

for the model we also fixed the time horizon to 20 years. A couple of additional questions that

could use more exploration are the following.

• What if one or both of the vaccines are not considered dominant vaccines? How could

this impact the results for optimizing the intervention strategy?

• What would happen to the solution for the optimal intervention strategy if we considered

longer time horizons? Could this result with more switching times? Would it be possible

to have a scenario that results with an optimal strategy where there is a delay in providing

either one of the vaccines?

Some preliminary analysis was run prior to making the decision to fixed the model with

dominant vaccines on a 20 years times horizon. It will be expected that alternative choices for the

vaccine related parameter assumptions will result with some significant variation in the solution

for the optimal intervention strategy. This would be analyzed best by considering the sensitivity

analysis for the model when we allow multiple parameters to vary. The sensitivity analysis that

we have already presented only considered single parameter variation. To consider the impact

to the solution for alternative vaccine program we can focus on varying all of the parameters

associated to each of the vaccines and analyze the impact to the cost and optimization problem.

This will result with an efficient means to considering the largest variety of variations, then we

can target particular vaccine programs for further analysis of the state trajectories and optimal

solution. This can then be followed with consideration for longer time horizons and the impact

this can have on the variations to the solution. We will point out that when the time horizon

was extended to 50 or 100 years in our preliminary analysis the results for the optimal strategy

did not show any new interesting behavior worth exploring for the case when both vaccines are

dominant.

Next, taking into consideration the areas for which we can develop the model and the current

efforts being made in the fight against HIV and AIDS the goals as we move forward with our
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research will be to develop a model that offers beneficial analysis for the intervention strategies

that are available today. To begin, the first objective in the model development will be to address

the concerns of having constant immigration parameters. Instead, taking into consideration that

immigration will depend not only on the infectivity level of the individuals migrating but also

on the prevalence of infection within the population that they are migrating to. This will allow

us to have a component to the dynamics that is defined by the ratio of the total infected

population relative to the population as a whole, which will result with dynamics that have an

appropriate disease-free equilibrium. With careful consideration for defining the immigration

function, a selection can be made that results with an interpretation for an endemic equilibrium

as well. This will result with the application of stability analysis to consider a characterization

of the R0 threshold in symbolic form.

Once a characterization for the R0 threshold has been evaluated, the next consideration

that needs to be made relates to the fact that the original model we analyzed was defined

and presented by Edwards et al. in the late 1990’s and it is reasonable to assume that the

parameter assumptions have changed in the last 20 years. Therefore, the next objective would

be to determine what the assumptions are regarding the parameters of the model and evaluating

how well the model will fit to the data for spread of HIV infections within the San Francisco

homosexual population today. This information will lead us to more insights that will help

determine the most appropriate areas for which the model needs to be further developed.

Next, the consideration for development will focus on adding heterogeneity to the model.

Considering an age structured model will result with the most diversity in behavioral differ-

ences, risk factors and the ideal approach for to introducing mixing between cohorts. At this

time additional consideration can be made to determine other distinguishing characteristics

for introducing significant behavioral difference between members of the population based on

additional demographic/environmental factors.

With developed deterministic compartment model for HIV-transmission that accurately

fits the data for the homosexual male population in San Francisco the next objective will be

to research the specifics regarding the educational programs implemented for the purposes of

controlling the spread of HIV infections in San Francisco and determine an appropriate means

to quantify their benefits. This will then allow us to further update the model to interpret

current active intervention programs that will allow us to run comparative analysis between

various programs. We have already discussed the therapies currently available to the infected

population at the beginning of the research. Although highly active antiretroviral therapies

(HAART) don’t classify as a therapeutic vaccine, they mitigate the symptoms of the disease

as well as reduce an individuals infectivity. Therefore, the implications for modeling HAART

programs will be very similar to that of the therapeutic vaccine the parameters will need to be

evaluated to accurately simulate the current programs offered to the infected population.
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Appendix A

The Jacobian Matrices and

Characteristic Polynomials

To reduce the amount of calculations presented in chapter 4 we will provide all of the calculations

necessary for deriving the symbolic representation for the characteristic polynomials for each

of the four variations for the state space of the model.

As an approach to deriving the characteristic polynomial, which is defined as c(x) =

det (xI − J) where J is the Jacobian matrix for the system of differential equations and I

is the appropriate corresponding identity matrix, we will instead approach the calculations by

solving

det ((xI − J)ᵀ) = det (xI − Jᵀ).

Since the determinant of the transpose of any non-singular square matrix is equal to the deter-

minant of that matrix, the solution to det (xI − Jᵀ) is equivalent to det (xI − J) [34].

In addition to using the transpose of the Jacobian to derive the characteristic polynomial,

we will also find that the following notation regarding the partial derivatives for the rate of

infection functions will be useful

Qi,j := p0
∂λ

∂Yi,j
Y0,0(t)

Qνi,j := p0(1− ε) ∂λν
∂Yi,j

Y0,1(t)
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A.1 HIV-Transmission Dynamics without Intervention

For the model without an intervention we have following system of ordinary differential equa-

tions

dY0,0(t)

dt
=I0,0 − (µ+ p0λ(t))Y0,0(t)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t)

dY2,0(t)

dt
=I2,0 + σξY1,0(t)− (µ2,0 + µ)Y2,0(t)

dY3,0(t)

dt
=I3,0 +

i=2∑
i=1

µi,0Yi,0(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were

λ(t) =

∑i=4
i=1 piβi,0η00,i0Yi,0(t)∑i=4

i=0 piYi,0(t)
.

A.1.1 The Jacobian Matrix
−Q0,0 − (µ+ p0λ(t)) −Q1,0 −Q2,0 −Q3,0 −Q4,0

Q0,0 + p0λ(t) Q1,0 − (σξ + µ1,0 + µ) Q2,0 Q3,0 Q4,0

0 σξ −(µ2,0 + µ) 0 0

0 µ1,0 µ2,0 −(µ3,0 + µ) 0

0 0 0 µ3,0 −(µ4,0 + µ)


A.1.2 Characteristic Polynomial

We note the additional notation will also help in reducing the calculation by introducing a

single term for the combined rate at which a population leaves each compartment of the model.

d0,0 := µ+ p0λ(t)

d1,0 := σξ + µ1,0 + µ

d2,0 := µ2,0 + µ

d3,0 := µ3,0 + µ

d4,0 := µ4,0 + µ

Thus, the calculations for deriving the characteristic polynomial are given as the following.
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c(x) = det (xI − Jᵀ)

=

∣∣∣∣∣∣∣∣∣∣∣∣

x+Q0,0 + d0,0 −Q0,0 − p0λ(t) 0 0 0

Q1,0 x−Q1,0 + d1,0 −σξ −µ1,0 0

Q2,0 −Q2,0 x+ d2,0 −µ2,0 0

Q3,0 −Q3,0 0 x+ d3,0 −µ3,0

Q4,0 −Q4,0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣∣∣

= (x+Q0,0 + d0,0)

∣∣∣∣∣∣∣∣∣∣
x−Q1,0 + d1,0 −σξ −µ1,0 0

−Q2,0 x+ d2,0 −µ2,0 0

−Q3,0 0 x+ d3,0 −µ3,0

−Q4,0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣

+ (Q0,0 + p0λ(t))

∣∣∣∣∣∣∣∣∣∣
Q1,0 −σξ −µ1,0 0

Q2,0 x+ d2,0 −µ2,0 0

Q3,0 0 x+ d3,0 −µ3,0

Q4,0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣

= (x+Q0,0 + d0,0)(x−Q1,0 + d1,0)

∣∣∣∣∣∣∣
x+ d2,0 −µ2,0 0

0 x+ d3,0 −µ3,0

0 0 x+ d4,0

∣∣∣∣∣∣∣
+ (x+Q0,0 + d0,0)(σξ)

∣∣∣∣∣∣∣
−Q2,0 −µ2,0 0

−Q3,0 x+ d3,0 −µ3,0

−Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
− (x+Q0,0 + d0,0)(µ1,0)

∣∣∣∣∣∣∣
−Q2,0 x+ d2,0 0

−Q3,0 0 −µ3,0

−Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
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+ (Q0,0 + p0λ(t))(Q1,0)

∣∣∣∣∣∣∣
x+ d2,0 −µ2,0 0

0 x+ d3,0 −µ3,0

0 0 x+ d4,0

∣∣∣∣∣∣∣
+ (Q0,0 + p0λ(t))(σξ)

∣∣∣∣∣∣∣
Q2,0 −µ2,0 0

Q3,0 x+ d3,0 −µ3,0

Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
− (Q0,0 + p0λ(t))(µ1,0)

∣∣∣∣∣∣∣
Q2,0 x+ d2,0 0

Q3,0 0 −µ3,0

Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣

= (x+Q0,0 + d0,0)(x−Q1,0 + d1,0)(x+ d2,0)(x+ d3,0)(x+ d4,0)

− (x+Q0,0 + d0,0)(σξ)(Q2,0)(x+ d3,0)(x+ d4,0)

− (x+Q0,0 + d0,0)(σξ)(µ2,0)(Q3,0(x+ d4,0) +Q4,0µ3,0)

− (x+Q0,0 + d0,0)(µ1,0)(x+ d2,0)(Q3,0(x+ d4,0) +Q4,0µ3,0)

+ (Q0,0 + p0λ(t))(Q1,0)(x+ d2,0)(x+ d3,0)(x+ d4,0)

+ (Q0,0 + p0λ(t))(σξ)(Q2,0)(x+ d3,0)(x+ d4,0)

+ (Q0,0 + p0λ(t))(σξ)(µ2,0)(Q3,0(x+ d4,0) +Q4,0µ3,0)

+ (Q0,0 + p0λ(t))(µ1,0)(x+ d2,0)(Q3,0(x+ d4,0) +Q4,0µ3,0)

=
[
(x2 + (Q0,0 −Q1,0 + d0,0 + d1,0)x− (Q0,0 + d0,0)(Q1,0 − d1,0))

· (x3 + (d2,0 + d3,0 + d4,0)x2 + (d2,0d3,0 + d2,0d4,0 + d3,0d4,0)x+ d2,0d3,0d4,0)
]
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− σξQ2,0(x+Q0,0 + d0,0)(x2 + (d3,0 + d4,0)x+ d3,0d4,0)

− σξµ2,0(x+Q0,0 + d0,0)(Q3,0x+Q3,0d4,0 +Q4,0µ3,0)

−
[
µ1,0(x2 + (Q0,0 + d0,0 + d2,0)x+ d2,0(Q0,0 + d0,0))

· (Q3,0x+Q3,0d4,0 +Q4,0µ3,0)
]

+
[
Q1,0(Q0,0 + p0λ(t))

· (x3 + (d2,0 + d3,0 + d4,0)x2 + (d2,0d3,0 + d2,0d4,0 + d3,0d4,0)x+ d2,0d3,0d4,0)
]

+ σξQ2,0(Q0,0 + p0λ(t))(x2 + (d3,0 + d4,0)x+ d3,0d4,0)

+ σξµ2,0(Q0,0 + p0λ(t))(Q3,0x+Q3,0d4,0 +Q4,0µ3,0)

+ µ1,0(Q0,0 + p0λ(t))(x+ d2,0)(Q3,0x+Q3,0d4,0 +Q4,0µ3,0)

=
[
x5 + (Q0,0 −Q1,0 + d0,0 + d1,0 + d2,0 + d3,0 + d4,0)x4

+
[
d2,0d3,0 + d2,0d4,0 + d3,0d4,0 + (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0 + d3,0 + d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)
]
x3

+
[
d2,0d3,0d4,0 + (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0 + d3,0 + d4,0)
]
x2

+
[
d2,0d3,0d4,0(Q0,0 −Q1,0 + d0,0 + d1,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)
]
x

− d2,0d3,0d4,0(Q0,0 + d0,0)(Q1,0 − d1,0)
]
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−
[
σξQ2,0

(
x3 + (Q0,0 + d0,0 + d3,0 + d4,0)x2 + (d3,0d4,0 + (d3,0 + d4,0)(Q0,0 + d0,0))x

+ d3,0d4,0(Q0,0 + d0,0)
)]

−
[
σξµ2,0

(
Q3,0x

2 + (Q3,0(Q0,0 + d0,0 + d4,0) +Q4,0µ3,0)x

+ (Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)
)]

−
[
µ1,0

(
Q3,0x

3 + (Q3,0(Q0,0 + d0,0 + d2,0 + d4,0) +Q4,0µ3,0)x2

+ ((Q0,0 + d0,0 + d2,0)(Q3,0d4,0 +Q4,0µ3,0) + d2,0Q3,0(Q0,0 + d0,0))x

+ d2,0(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)
)]

+
[
Q1,0(Q0,0 + p0λ(t))

· (x3 + (d2,0 + d3,0 + d4,0)x2 + (d2,0d3,0 + d2,0d4,0 + d3,0d4,0)x+ d2,0d3,0d4,0)
]

+ σξQ2,0(Q0,0 + p0λ(t))(x2 + (d3,0 + d4,0)x+ d3,0d4,0)

+ σξµ2,0(Q0,0 + p0λ(t))(Q3,0x+Q3,0d4,0 +Q4,0µ3,0)

+
[
µ1,0(Q0,0 + p0λ(t))

(
Q3,0x

2 + (Q3,0(d2,0 + d4,0) +Q4,0µ3,0)x

+ d2,0(Q3,0d4,0 +Q4,0µ3,0)
)]

= x5 + (Q0,0 −Q1,0 + d0,0 + d1,0 + d2,0 + d3,0 + d4,0)x4

+
[
d2,0d3,0 + d2,0d4,0 + d3,0d4,0 + (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0 + d3,0 + d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)− σξQ2,0 − µ1,0Q3,0 +Q1,0(Q0,0 + p0λ(t))
]
x3
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+
[
d2,0d3,0d4,0 − (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0 + d3,0 + d4,0)− σξQ2,0(Q0,0 + d0,0 + d3,0 + d4,0)

− σξµ2,0Q3,0 − µ1,0(Q3,0(Q0,0 + d0,0 + d2,0 + d4,0) +Q4,0µ3,0)

+Q1,0(Q0,0 + p0λ(t))(d2,0 + d3,0 + d4,0) + σξQ2,0(Q0,0 + p0λ(t))

+ µ1,0Q3,0(Q0,0 + p0λ(t))
]
x2

+
[
d2,0d3,0d4,0(Q0,0 −Q1,0 + d0,0 + d1,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)

− σξQ2,0(d3,0d4,0 + (d3,0 + d4,0)(Q0,0 + d0,0))

− σξµ2,0(Q3,0(Q0,0 + d0,0 + d4,0) +Q4,0µ3,0)

− µ1,0((Q0,0 + d0,0 + d2,0)(Q3,0d4,0 +Q4,0µ3,0) + d2,0Q3,0(Q0,0 + d0,0))

+Q1,0(Q0,0 + p0λ(t))(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)

+ σξQ2,0(Q0,0 + p0λ(t))(d3,0 + d4,0)

+ σξµ2,0Q3,0(Q0,0 + p0λ(t))

+ µ1,0(Q0,0 + p0λ(t))(Q3,0(d2,0 + d4,0) +Q4,0µ3,0)
]
x

−
[
d2,0d3,0d4,0(Q0,0 + d0,0)(Q1,0 − d1,0) + σξQ2,0d3,0d4,0(Q0,0 + d0,0)

+ σξµ2,0(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)

+ µ1,0d2,0(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)

− d2,0d3,0d4,0Q1,0(Q0,0 + p0λ(t))− σξd3,0d4,0Q2,0(Q0,0 + p0λ(t))

− σξµ2,0(Q0,0 + p0λ(t))(Q3,0d4,0 +Q4,0µ3,0)

− µ1,0d2,0(Q0,0 + p0λ(t))(Q3,0d4,0 +Q4,0µ3,0)
]
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Therefore, the characteristic polynomial c(x) = c0x
5 + c1x

4 + c2x
3 + c3x

2 + c4x + c5 for the

system without an intervention is defined with the following coefficients.

c0 = 1

c1 = Q0,0 −Q1,0 + d0,0 + d1,0 + d2,0 + d3,0 + d4,0

c2 = d2,0d3,0 + d2,0d4,0 + d3,0d4,0 + (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0 + d3,0 + d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)− σξQ2,0 − µ1,0Q3,0 +Q1,0(Q0,0 + p0λ(t))

c3 = d2,0d3,0d4,0 − (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0 + d3,0 + d4,0)− σξQ2,0(Q0,0 + d0,0 + d3,0 + d4,0)

− σξµ2,0Q3,0 − µ1,0(Q3,0(Q0,0 + d0,0 + d2,0 + d4,0) +Q4,0µ3,0)

+Q1,0(Q0,0 + p0λ(t))(d2,0 + d3,0 + d4,0) + σξQ2,0(Q0,0 + p0λ(t))

+ µ1,0Q3,0(Q0,0 + p0λ(t))

c4 = d2,0d3,0d4,0(Q0,0 −Q1,0 + d0,0 + d1,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)

− σξQ2,0(d3,0d4,0 + (d3,0 + d4,0)(Q0,0 + d0,0))

− σξµ2,0(Q3,0(Q0,0 + d0,0 + d4,0) +Q4,0µ3,0)

− µ1,0((Q0,0 + d0,0 + d2,0)(Q3,0d4,0 +Q4,0µ3,0) + d2,0Q3,0(Q0,0 + d0,0))

+Q1,0(Q0,0 + p0λ(t))(d2,0d3,0 + d2,0d4,0 + d3,0d4,0)

+ σξQ2,0(Q0,0 + p0λ(t))(d3,0 + d4,0)

+ σξµ2,0Q3,0(Q0,0 + p0λ(t)) + µ1,0(Q0,0 + p0λ(t))(Q3,0(d2,0 + d4,0) +Q4,0µ3,0)

c5 = d2,0d3,0d4,0(Q0,0 + d0,0)(Q1,0 − d1,0) + σξQ2,0d3,0d4,0(Q0,0 + d0,0)

+ σξµ2,0(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0) + µ1,0d2,0(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)

− d2,0d3,0d4,0Q1,0(Q0,0 + p0λ(t))− σξd3,0d4,0Q2,0(Q0,0 + p0λ(t))

− σξµ2,0(Q0,0 + p0λ(t))(Q3,0d4,0 +Q4,0µ3,0)

− µ1,0d2,0(Q0,0 + p0λ(t))(Q3,0d4,0 +Q4,0µ3,0)
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A.2 Therapeutic Vaccine Program

For the model with only the therapeutic vaccine we have following system of ordinary differential

equations

dY0,0(t)

dt
=I0,0 − (µ+ p0λ(t))Y0,0(t)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t)

dY2,0(t)

dt
=I2,0 + σξY1,0(t)− (νt + µ2,0 + µ)Y2,0(t)

dY2,1(t)

dt
=νtY2,0(t)− (µ2,1 + µ)Y2,1(t)

dY3,0(t)

dt
=I3,0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

, along with the initial state

A.2.1 The Jacobian Matrix

−Q0,0 − (µ+ p0λ(t)) −Q1,0 −Q2,0 −Q2,1 −Q3,0 −Q4,0

Q0,0 + p0λ(t) Q1,0 − (σξ + µ1,0 + µ) Q2,0 Q2,1 Q3,0 Q4,0

0 σξ −(νt + µ2,0 + µ) 0 0 0

0 0 νt −(µ2,1 + µ) 0 0

0 µ1,0 µ2,0 µ2,1 −(µ3,0 + µ) 0

0 0 0 0 µ3,0 −(µ4,0 + µ)



A.2.2 Characteristic Polynomial

We note the additional notation will also help in reducing the calculation by introducing a

single term for the combined rate at which a population leaves each compartment of the model.
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d0,0 := µ+ p0λ(t)

d1,0 := σξ + µ1,0 + µ

d2,0 := νt + µ2,0 + µ

d2,1 := µ2,1 + µ

d3,0 := µ3,0 + µ

d4,0 := µ4,0 + µ

Thus, the calculations for deriving the characteristic polynomial are given as the following. and

something else to find the line width

c(x) = det (xI − Jᵀ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x+Q0,0 + d0,0 −Q0,0 − p0λ(t) 0 0 0 0

Q1,0 x−Q1,0 + d1,0 −σξ 0 −µ1,0 0

Q2,0 −Q2,0 x+ d2,0 −νt −µ2,0 0

Q2,1 −Q2,1 0 x+ d2,1 −µ2,1 0

Q3,0 −Q3,0 0 0 x+ d3,0 −µ3,0

Q4,0 −Q4,0 0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x+Q0,0 + d0,0)

∣∣∣∣∣∣∣∣∣∣∣∣

x−Q1,0 + d1,0 −σξ 0 −µ1,0 0

−Q2,0 x+ d2,0 −νt −µ2,0 0

−Q2,1 0 x+ d2,1 −µ2,1 0

−Q3,0 0 0 x+ d3,0 −µ3,0

−Q4,0 0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣∣∣

+ (Q0,0 + p0λ(t))

∣∣∣∣∣∣∣∣∣∣∣∣

Q1,0 −σξ 0 −µ1,0 0

Q2,0 x+ d2,0 −νt −µ2,0 0

Q2,1 0 x+ d2,1 −µ2,1 0

Q3,0 0 0 x+ d3,0 −µ3,0

Q4,0 0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣∣∣
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= (x+Q0,0 + d0,0)(x−Q1,0 + d1,0)

∣∣∣∣∣∣∣∣∣∣
x+ d2,0 −νt −µ2,0 0

0 x+ d2,1 −µ2,1 0

0 0 x+ d3,0 −µ3,0

0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣

+ (x+Q0,0 + d0,0)(σξ)

∣∣∣∣∣∣∣∣∣∣
−Q2,0 −νt −µ2,0 0

−Q2,1 x+ d2,1 −µ2,1 0

−Q3,0 0 x+ d3,0 −µ3,0

−Q4,0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣

+ (x+Q0,0 + d0,0)(µ1,0)

∣∣∣∣∣∣∣∣∣∣
−Q2,0 x+ d2,0 −νt 0

−Q2,1 0 x+ d2,1 0

−Q3,0 0 0 −µ3,0

−Q4,0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣

+ (Q0,0 + p0λ(t))(Q1,0)

∣∣∣∣∣∣∣∣∣∣
x+ d2,0 −νt −µ2,0 0

0 x+ d2,1 −µ2,1 0

0 0 x+ d3,0 −µ3,0

0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣

+ (Q0,0 + p0λ(t))(σξ)

∣∣∣∣∣∣∣∣∣∣
Q2,0 νt −µ2,0 0

Q2,1 x+ d2,1 −µ2,1 0

Q3,0 0 x+ d3,0 −µ3,0

Q4,0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣

+ (Q0,0 + p0λ(t))(µ1,0)

∣∣∣∣∣∣∣∣∣∣
Q2,0 x+ d2,0 −νt 0

Q2,1 0 x+ d2,1 0

Q3,0 0 0 −µ3,0

Q4,0 0 0 x+ d4,0

∣∣∣∣∣∣∣∣∣∣
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= (x+Q0,0 + d0,0)(x−Q1,0 + d1,0)(x+ d2,0)(x+ d2,1)(x+ d3,0)(x+ d4,0)

− (x+Q0,0 + d0,0)(σξ)(Q2,0)(x+ d2,1)(x+ d3,0)(x+ d4,0)

+ (x+Q0,0 + d0,0)(σξ)(νt)

∣∣∣∣∣∣∣
−Q2,1 µ2,1 0

−Q3,0 x+ d3,0 −µ3,0

−Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
− (x+Q0,0 + d0,0)(σξ)(µ2,0)

∣∣∣∣∣∣∣
−Q2,1 x+ d2,1 0

−Q3,0 0 −µ3,0

−Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
− (x+Q0,0 + d0,0)(µ1,0)(x+ d2,0)

∣∣∣∣∣∣∣
−Q2,1 x+ d2,1 0

−Q3,0 0 −µ3,0

−Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
+ (Q0,0 + p0λ(t))(Q1,0)(x+ d2,0)(x+ d2,1)(x+ d3,0)(x+ d4,0)

+ (Q0,0 + p0λ(t))(σξ)(Q2,0)

∣∣∣∣∣∣∣
x+ d2,1 −µ2,1 0

0 x+ d3,0 −µ3,0

0 0 x+ d4,0

∣∣∣∣∣∣∣
+ (Q0,0 + p0λ(t))(σξ)(νt)

∣∣∣∣∣∣∣
Q2,1 −µ2,1 0

Q3,0 x+ d3,0 −µ3,0

Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
− (Q0,0 + p0λ(t))(µ1,0)(x+ d2,0)

∣∣∣∣∣∣∣
Q2,1 x+ d2,1 0

Q3,0 0 −µ3,0

Q4,0 0 x+ d4,0

∣∣∣∣∣∣∣
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= (x+Q0,0 + d0,0)(x−Q1,0 + d1,0)(x+ d2,0)(x+ d2,1)(x+ d3,0)(x+ d4,0)

− (x+Q0,0 + d0,0)(σξ)(Q2,0)(x+ d2,1)(x+ d3,0)(x+ d4,0)

− (x+Q0,0 + d0,0)(σξ)(νt)(Q2,1)(x+ d3,0)(x+ d4,0)

+ (x+Q0,0 + d0,0)(σξ)(νt)(µ2,1)(Q3,0(x+ d4,0) +Q4,0µ3,0)

− (x+Q0,0 + d0,0)(σξ)(µ2,0)(x+ d2,1)(Q3,0(x+ d4,0) +Q4,0µ4,0)

− (x+Q0,0 + d0,0)(µ1,0)(x+ d2,0)(x+ d2,1)(Q3,0(x+ d4,0) +Q4,0µ3,0)

+ (Q0,0 + p0λ(t))(Q1,0)(x+ d2,0)(x+ d2,1)(x+ d3,0)(x+ d4,0)

+ (Q0,0 + p0λ(t))(σξ)(Q2,0)(x+ d2,1)(x+ d3,0)(x+ d4,0)

+ (Q0,0 + p0λ(t))(σξ)(νt)(Q2,1)(x+ d3,0)(x+ d4,0)

+ (Q0,0 + p0λ(t))(σξ)(νt)(µ2,1)(Q3,0(x+ d4,0) +Q4,0µ3,0)

+ (Q0,0 + p0λ(t))(µ1,0)(x+ d2,0)(x+ d2,1)(Q3,0(x+ d4,0) +Q4,0µ3,0)

=
[
(x2 + (Q0,0 −Q1,0 + d0,0 + d1,0)x− (Q0,0 + d0,0)(Q1,0 − d1,0))

· (x2 + (d2,0 + d2,1)x+ d2,0d2,1)(x2 + (d3,0 + d4,0)x+ d3,0d4,0)
]

−
[
σξQ2,0(x2 + (Q0,0 + d0,0 + d2,1)x+ d2,1(Q0,0 + d0,0))

· (x2 + (d3,0 + d4,0)x+ d3,0d4,0)
]

− σξνtQ2,1(x+Q0,0 + d0,0)(x2 + (d3,0 + d4,0)x+ d3,0d4,0)

+
[
σξνtµ2,1(Q3,0x

2 + (Q3,0(Q0,0 + d0,0 + d4,0) +Q4,0µ3,0)x

+ (Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)
]
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−
[
σξµ2,0(x2 + (Q0,0 + d0,0 + d2,1)x+ d2,1(Q0,0 + d0,0))

· (Q3,0x+Q3,0d4,0 +Q4,0µ4,0)
]

−
[
µ1,0(x2 + (Q0,0 + d0,0 + d2,0)x+ d2,0(Q0,0 + d0,0))

· (Q3,0x
2 + (Q3,0(d2,1 + d4,0) +Q4,0µ3,0)x+ d2,1(Q3,0d4,0 +Q4,0µ3,0))

]
+Q1,0(Q0,0 + p0λ(t))(x2 + (d2,0 + d2,1)x+ d2,0d2,1)(x2 + (d3,0 + d4,0)x+ d3,0d4,0)

+
[
σξQ2,0(Q0,0 + p0λ(t))(x3 + (d2,1 + d3,0 + d4,0)x2

+ (d2,1d3,0 + d2,1d4,0 + d3,0d4,0)x+ d2,1d3,0d4,0)
]

+ σξνtQ2,1(Q0,0 + p0λ(t))(x2 + (d3,0 + d4,0)x+ d3,0d4,0)

+ σξνtµ2,1(Q0,0 + p0λ(t))(Q3,0x+Q3,0d4,0 +Q4,0µ3,0)

+
[
µ1,0(Q0,0 + p0λ(t))(x2 + (d2,0 + d2,1)x+ d2,0d2,1)

· (Q3,0x+Q3,0d4,0 +Q4,0µ3,0)
]

=
[
x6 + (Q0,0 −Q1,0 + d0,0 + d1,0 + d2,0 + d2,1 + d3,0 + d4,0)x5

+
[
d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0)

+ (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0 + d2,1 + d3,0 + d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)
]
x4

+
[
d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1)

+ (Q0,0 −Q1.0 + d0,0 + d1,0)(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0 + d2,1 + d3,0 + d4,0)
]
x3
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−
[
(Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

− (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))

− d2,0d2,1d3,0d4,0

]
x2

+
[
d2,0d2,1d3,0d4,0(Q0,0 −Q1,0 + d0,0 + d1,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)

· (d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))
]
x

− d2,0d2,1d3,0d4,0(Q0,0 + d0,0)(Q1,0 − d1,0)
]

−
[
σξνtQ2,1(x3 + (Q0,0 + d0,0 + d3,0 + d4,0)x2

+ (d3,0d4,0 + (Q0,0 + d0,0)(d3,0 + d4,0))x+ d3,0d4,0(Q0,0 + d0,0))
]

+
[
σξνtµ2,1(Q3,0x

2 + (Q3,0(Q0,0 + d0,0 + d4,0) +Q4,0µ3,0)x

+ (Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)
]

−
[
σξQ2,0

(
x4 + (Q0,0 + d0,0 + d2,1 + d3,0 + d4,0)x3

+ (d2,1(Q0,0 + d0,0) + d3,0d4,0 + (Q0,0 + d0,0 + d2,1)(d3,0 + d4,0))x2

+ (d2,1(Q0,0 + d0,0)(d3,0 + d4,0) + d3,0d4,0(Q0,0 + d0,0 + d2,1))x

+ d2,1d3,0d4,0(Q0,0 + d0,0)
)]

−
[
σξµ2,0

(
Q3,0x

3 + (Q3,0(Q0,0 + d0,0 + d2,1 + d4,0) +Q4,0µ3,0)x2

+ ((Q0,0 + d0,0 + d2,1)(Q3,0d4,0 +Q4,0µ3,0) + d2,1Q3,0(Q0,0 + d0,0))x

+ d2,1(Q3,0d3,0 +Q4,0µ3,0)(Q0,0 + d0,0)
)]
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−
[
µ1,0

(
Q3,0x

4 + (Q3,0(Q0,0 + d0,0 + d2,0 + d2,1 + d4,0) +Q4,0µ3,0)x3

+
[
(d2,0Q3,0(Q0,0 + d0,0) + d2,1(Q3,0d4,0 +Q4,0µ3,0)

+ (Q0,0 + d0,0 + d2,0)(Q3,0(d2,1 + d4,0) +Q4,0µ3,0))
]
x2

+ (d2,1(Q0,0 + d0,0 + d2,0)(Q3,0d4,0 +Q4,0µ3,0)

+ d2,0(Q0,0 + d0,0)(Q3,0(d2,1 + d4,0) +Q4,0µ3,0))x

+ d2,0d2,1(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)
)]

+
[
Q1,0(Q0,0 + p0λ(t))

(
x4 + (d2,0 + d2,1 + d3,0 + d4,0)x3

+ (d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))x2

+ (d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))x

+ d2,0d2,1d3,0d4,0

)]
+
[
σξQ2,0(Q0,0 + p0λ(t))(x3 + (d2,1 + d3,0 + d4,0)x2

+ (d2,1d3,0 + d2,1d4,0 + d3,0d4,0)x+ d2,1d3,0d4,0)
]

+ σξνtQ2,1(Q0,0 + p0λ(t))(x2 + (d3,0 + d4,0)x+ d3,0d4,0)

+ σξνtµ2,1(Q0,0 + p0λ(t))(Q3,0x+Q3,0d4,0 +Q4,0µ3,0)

+
[
µ1,0(Q0,0 + p0λ(t))

(
Q3,0x

3 + (Q3,0(d2,0 + d2,1 + d4,0) +Q4,0µ3,0)x2

+ (Q3,0d2,0d2,1 + (d2,0 + d2,1)(Q3,0d4,0 +Q4,0µ3,0))x

+ d2,0d2,1(Q3,0d4,0 +Q4,0µ3,0)
)]
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= x6 + ((Q0,0 −Q1,0 + d0,0 + d1,0 + d2,0 + d2,1 + d3,0 + d4,0))x5

+
[
d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0)

+ (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0 + d2,1 + d3,0 + d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)− σξQ2,0 − µ1,0Q3,0 +Q1,0(Q0,0 + p0λ(t))
]
x4

+
[
d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1)

+ (Q0,0 −Q1.0 + d0,0 + d1,0)(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0 + d2,1 + d3,0 + d4,0)− σξνtQ2,1

− σξQ2,0(Q0,0 + d0,0 + d2,1 + d3,0 + d4,0)− σξµ2,0Q3,0

+ µ1,0(Q3,0(Q0,0 + d0,0 + d2,0 + d2,1 + d4,0) +Q4,0µ3,0)

+Q1,0(Q0,0 + p0λ(t))(d2,0 + d2,1 + d3,0 + d4,0) + σξQ2,0(Q0,0 + p0λ(t))

+ µ1,0Q3,0(Q0,0 + p0λ(t))
]
x3

+
[
(Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

− (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))

− d2,0d2,1d3,0d4,0 − σξνtQ2,1(Q0,0 + d0,0 + d3,0 + d4,0) + σξνtµ2,1Q3,0

d2,1(Q0,0 + d0,0) + d3,0d4,0 + (Q0,0 + d0,0 + d2,1)(d3,0 + d4,0)

− σξµ2,0(Q3,0(Q0,0 + d0,0 + d2,1 + d4,0) +Q4,0µ3,0)

− µ1,0

(
d2,0Q3,0(Q0,0 + d0,0) + d2,1(Q3,0d4,0 +Q4,0µ3,0)

+ (Q0,0 + d0,0 + d2,0)(Q3,0(d2,1 + d4,0) +Q4,0µ3,0)
)

+Q1,0(Q0,0 + p0λ(t))(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

+ σξQ2,0(Q0,0 + p0λ(t))(d2,1 + d3,0 + d4,0) + σξνtQ2,1(Q0,0 + p0λ(t))
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+ µ1,0(Q0,0 + p0λ(t))(Q3,0(d2,0 + d2,1 + d4,0) +Q4,0µ3,0)
]
x2

+
[
d2,0d2,1d3,0d4,0(Q0,0 −Q1,0 + d0,0 + d1,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))

− σξνtQ2,1(d3,0d4,0 + (Q0,0 + d0,0)(d3,0 + d4,0))

+ σξνtµ2,1(Q3,0(Q0,0 + d0,0 + d4,0) +Q4,0µ3,0)

− σξQ2,0(Q0,0 + p0λ(t))(d2,1d3,0 + d2,1d4,0 + d3,0d4,0)

− σξµ2,0((Q0,0 + d0,0 + d2,1)(Q3,0d4,0 +Q4,0µ3,0) + d2,1Q3,0(Q0,0 + d0,0))

− µ1,0(d2,1(Q0,0 + d0,0 + d2,0)(Q3,0d4,0 +Q4,0µ3,0)

+ d2,0(Q0,0 + d0,0)(Q3,0(d2,1 + d4,0) +Q4,0µ3,0))

+Q1,0(Q0,0 + p0λ(t))(d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))

+ σξQ2,0(Q0,0 + p0λ(t))(d2,1d3,0 + d2,1d4,0 + d3,0d4,0)

+ σξνtQ2,1(Q0,0 + p0λ(t))(d3,0 + d4,0) + σξνtµ2,1(Q0,0 + p0λ(t))Q3,0

+ µ1,0(Q0,0 + p0λ(t))(Q3,0d2,0d2,1 + (d2,0 + d2,1)(Q3,0d4,0 +Q4,0µ3,0))
]
x

+
[
σξνtµ2,1(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)

− d2,0d2,1d3,0d4,0(Q0,0 + d0,0)(Q1,0 − d1,0)− σξνtQ2,1d3,0d4,0(Q0,0 + d0,0)

− σξQ2,0d2,1d3,0d4,0(Q0,0 + d0,0)

− σξµ2,0d2,1(Q3,0d3,0 +Q4,0µ3,0)(Q0,0 + d0,0)

− µ1,0d2,0d2,1(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)

+Q1,0(Q0,0 + p0λ(t))d2,0d2,1d3,0d4,0 + σξQ2,0(Q0,0 + p0λ(t))d2,1d3,0d4,0)
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+ σξνtQ2,1(Q0,0 + p0λ(t))d3,0d4,0

+ σξνtµ2,1(Q0,0 + p0λ(t))(Q3,0d4,0 +Q4,0µ3,0)

+ µ1,0(Q0,0 + p0λ(t))d2,0d2,1(Q3,0d4,0 +Q4,0µ3,0)
]

Therefore, the characteristic polynomial c(x) = c0x
6 + c1x

5 + c2x
4 + c3x

3 + c4x
2 + c5x+ c6 for

the system without an intervention is defined with the following coefficients.

c0 = 1

c1 = (Q0,0 −Q1,0 + d0,0 + d1,0 + d2,0 + d2,1 + d3,0 + d4,0)

c2 = d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0)

+ (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0 + d2,1 + d3,0 + d4,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)− σξQ2,0 − µ1,0Q3,0 +Q1,0(Q0,0 + p0λ(t))

c3 = d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1)

+ (Q0,0 −Q1.0 + d0,0 + d1,0)(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0 + d2,1 + d3,0 + d4,0)− σξνtQ2,1

− σξQ2,0(Q0,0 + d0,0 + d2,1 + d3,0 + d4,0)− σξµ2,0Q3,0

+ µ1,0(Q3,0(Q0,0 + d0,0 + d2,0 + d2,1 + d4,0) +Q4,0µ3,0)

+Q1,0(Q0,0 + p0λ(t))(d2,0 + d2,1 + d3,0 + d4,0) + σξQ2,0(Q0,0 + p0λ(t))

+ µ1,0Q3,0(Q0,0 + p0λ(t))

c4 = (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

− (Q0,0 −Q1,0 + d0,0 + d1,0)(d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))

− d2,0d2,1d3,0d4,0 − σξνtQ2,1(Q0,0 + d0,0 + d3,0 + d4,0) + σξνtµ2,1Q3,0

+ d2,1(Q0,0 + d0,0) + d3,0d4,0 + (Q0,0 + d0,0 + d2,1)(d3,0 + d4,0)

− σξµ2,0(Q3,0(Q0,0 + d0,0 + d2,1 + d4,0) +Q4,0µ3,0)

− µ1,0

(
d2,0Q3,0(Q0,0 + d0,0) + d2,1(Q3,0d4,0 +Q4,0µ3,0)

+ (Q0,0 + d0,0 + d2,0)(Q3,0(d2,1 + d4,0) +Q4,0µ3,0)
)
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+Q1,0(Q0,0 + p0λ(t))(d2,0d2,1 + d3,0d4,0 + (d2,0 + d2,1)(d3,0 + d4,0))

+ σξQ2,0(Q0,0 + p0λ(t))(d2,1 + d3,0 + d4,0) + σξνtQ2,1(Q0,0 + p0λ(t))

+ µ1,0(Q0,0 + p0λ(t))(Q3,0(d2,0 + d2,1 + d4,0) +Q4,0µ3,0)

c5 = d2,0d2,1d3,0d4,0(Q0,0 −Q1,0 + d0,0 + d1,0)

− (Q0,0 + d0,0)(Q1,0 − d1,0)(d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))

− σξνtQ2,1(d3,0d4,0 + (Q0,0 + d0,0)(d3,0 + d4,0))

+ σξνtµ2,1(Q3,0(Q0,0 + d0,0 + d4,0) +Q4,0µ3,0)

− σξQ2,0(Q0,0 + p0λ(t))(d2,1d3,0 + d2,1d4,0 + d3,0d4,0)

− σξµ2,0((Q0,0 + d0,0 + d2,1)(Q3,0d4,0 +Q4,0µ3,0) + d2,1Q3,0(Q0,0 + d0,0))

− µ1,0(d2,1(Q0,0 + d0,0 + d2,0)(Q3,0d4,0 +Q4,0µ3,0)

+ d2,0(Q0,0 + d0,0)(Q3,0(d2,1 + d4,0) +Q4,0µ3,0))

+Q1,0(Q0,0 + p0λ(t))(d2,0d2,1(d3,0 + d4,0) + d3,0d4,0(d2,0 + d2,1))

+ σξQ2,0(Q0,0 + p0λ(t))(d2,1d3,0 + d2,1d4,0 + d3,0d4,0)

+ σξνtQ2,1(Q0,0 + p0λ(t))(d3,0 + d4,0) + σξνtµ2,1(Q0,0 + p0λ(t))Q3,0

+ µ1,0(Q0,0 + p0λ(t))(Q3,0d2,0d2,1 + (d2,0 + d2,1)(Q3,0d4,0 +Q4,0µ3,0))

c6 = σξνtµ2,1(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)

− d2,0d2,1d3,0d4,0(Q0,0 + d0,0)(Q1,0 − d1,0)− σξνtQ2,1d3,0d4,0(Q0,0 + d0,0)

− σξQ2,0d2,1d3,0d4,0(Q0,0 + d0,0)

− σξµ2,0d2,1(Q3,0d3,0 +Q4,0µ3,0)(Q0,0 + d0,0)

− µ1,0d2,0d2,1(Q0,0 + d0,0)(Q3,0d4,0 +Q4,0µ3,0)

+Q1,0(Q0,0 + p0λ(t))d2,0d2,1d3,0d4,0 + σξQ2,0(Q0,0 + p0λ(t))d2,1d3,0d4,0)

+ σξνtQ2,1(Q0,0 + p0λ(t))d3,0d4,0

+ σξνtµ2,1(Q0,0 + p0λ(t))(Q3,0d4,0 +Q4,0µ3,0)

+ µ1,0(Q0,0 + p0λ(t))d2,0d2,1(Q3,0d4,0 +Q4,0µ3,0)
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A.3 Preventative Vaccine Program

For the model with the preventative vaccine only we have the following system of ordinary

differential equations

dY0,0(t)

dt
=I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t)

dY0,1(t)

dt
=νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t)

dY1,1(t)

dt
=νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t)

dY2,0(t)

dt
=I2,0 + σξ(Y1,0(t) + Y1,1(t))− (µ2,0 + µ)Y2,0(t)

dY3,0(t)

dt
=I3,0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

and λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

.

We will find that the Jacobian is a non-sparse matrix which implies directly calculating

the characteristic polynomial for the preventative vaccine program dynamics and the combined

vaccine strategy dynamics is not as reasonable as it is for the dynamics without an intervention

and the therapeutic vaccine program dynamics. Therefore, we will only present the Jacobian

matrix for the preventative vaccine program dynamics.
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A.3.1 The Jacobian Matrix

−Q0,0 − (νp + µ+ p0λ(t)) −Q0,1 + ω −Q1,0 −Q1,1 −Q2,0 −Q3,0 −Q4,0

−Qν0,0 + νp −Qν0,1 − (µ+ ω + p0(1− ε)λν(t)) −Qν1,0 −Qν1,1 −Qν2,0 −Qν3,0 −Qν4,0

Q0,0 + p0λ(t) Q0,1 Q1,0 − (νp + σξ + µ1,0 + µ) Q1,1 + ω Q2,0 Q3,0 Q4,0

Qν0,0 Qν0,1 + p0(1− ε)λν(t) Qν1,0 + νp Qν1,1 − (σξ + ω + µ1,1 + µ) Qν2,0 Qν3,0 Qν4,0

0 0 σξ σξ −(µ2,0 + µ) 0 0

0 0 µ1,0 µ1,1 µ2,0 −(µ3,0 + µ) 0

0 0 0 0 0 µ3,0 −(µ4,0 + µ)


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A.4 Combined, Preventative and Therapeutic, Vaccine Strat-

egy

For the full model with both vaccinations, the preventative and therapeutic, we have the fol-

lowing system of ordinary differential equations

dY0,0(t)

dt
=I0,0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t)

dY0,1(t)

dt
=νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

dY1,0(t)

dt
=I1,0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t)

dY1,1(t)

dt
=νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t)

dY2,0(t)

dt
=I2,0 + σξ(Y1,0(t) + Y1,1(t))− (νt + µ2,0 + µ)Y2,0(t)

dY2,1(t)

dt
=νtY2,0(t)− (µ2,1 + µ)Y2,1(t)

dY3,0(t)

dt
=I3,0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

and λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

.

We will find that the Jacobian is a non-sparse matrix which implies directly calculating

the characteristic polynomial for the preventative vaccine program dynamics and the combined

vaccine strategy dynamics is not as reasonable as it is for the dynamics without an intervention

and the therapeutic vaccine program dynamics. Therefore, we will only present the Jacobian

matrix for the combined vaccine strategy dynamics.
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A.4.1 The Jacobian Matrix

−Q0,0 − (νp + µ+ p0λ(t)) −Q0,1 + ω −Q1,0 −Q1,1 −Q2,0 −Q2,1 −Q3,0 −Q4,0

−Qν0,0 + νp −Qν0,1 − (µ+ ω + p0(1− ε)λν(t)) −Qν1,0 −Qν1,1 −Qν2,0 −Qν2,1 −Qν3,0 −Qν4,0

Q0,0 + p0λ(t) Q0,1 Q1,0 − (νp + σξ + µ1,0 + µ) Q1,1 + ω Q2,0 Q2,1 Q3,0 Q4,0

Qν0,0 Qν0,1 + p0(1− ε)λν(t) Qν1,0 + νp Qν1,1 − (σξ + ω + µ1,1 + µ) Qν2,0 Qν2,1 Qν3,0 Qν4,0

0 0 σξ σξ −(νt + µ2,0 + µ) 0 0 0

0 0 0 0 νt −(µ2,1 + µ) 0 0

0 0 µ1,0 µ1,1 µ2,0 µ2,1 −(µ3,0 + µ) 0

0 0 0 0 0 0 µ3,0 −(µ4,0 + µ)


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Appendix B

Hurwitz Determinants

In chapter 4 the stability for each equilibrium for the four variations of the state space of

the HIV-transmission model with vaccine intervention is determined using the Routh-Hurwitz

Criterion for stability. Since the dimensions for the state space varies depending whether or not

each vaccine program is present we need to calculate each of the Hurwitz determines for the

corresponding characteristic polynomials of order 5, 6, 7 and 8.

As a quick reference to all necessary definitions from section 4.1 we present them again here

as they were originally stated by Gantmakher in 1959 [?].

Definition B.0.1 (Hurwitz matrix). Is a square matrix of order n defined by the coefficients

of the polynomial c(x) = c0x
n + c1x

(n−1) + · · ·+ cn−1x+ cn as the following.

H =



c1 c3 c5 · · · · · · · · · 0 0 0

c0 c2 c4

...
...

...

0 c1 c3

...
...

...
... c0 c2

. . . 0
...

...
... 0 c1

. . . cn
...

...
...

... c0
. . . cn−1 0

...
...

... 0 cn−2 cn
...

...
...

... cn−3 cn−1 0

0 0 0 · · · · · · · · · cn−4 cn−2 cn


For even n: ck = 0 when k >

n

2
.

For odd n: ck = 0 when k >
n− 1

2
.
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Definition B.0.2 (Hurwitz determinants). The principle minors of the Hurwitz matrix.

∆1(c) = c1,∆2(c) =

∣∣∣∣∣c1 c3

c0 c2

∣∣∣∣∣ ,∆3(c) =

∣∣∣∣∣∣∣
c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣ , . . . ,∆n(c) = det (H)

To simplify calculations for the Hurwitz determinants for large n we make the following propo-

sition.

Proposition B.0.3. Given two square matrices A and B, of order n, such that B is the off

diagonal reflection of A then det (A) = det (B).

Proof. Let A be defined by

A =



a11 a12 · · · a1[n−1] a1n

a21 a22 · · · a2[n−1] a2n

...
...

. . .
...

...

a[n−1]1 a[n−1]2 · · · a[n−1][n−1] a[n−1]n

an1 an2 · · · an[n−1] ann


then B is defined as the off diagonal reflection of A,

B =



ann a[n−1]n · · · a2n a1n

an[n−1] a[n−1][n−1] · · · a2[n−1] a1[n−1]

...
...

. . .
...

...

an2 a[n−1]2 · · · a22 a12

an1 a[n−1]1 · · · a21 a11


.

If D defines the square matrix of order n with ones on the off diagonal and zeros everywhere

else,

D =



0 0 · · · 0 1

0 1 0
... . .

. ...

0 1 0

1 0 · · · 0 0


,

then the series of matrix multiplication steps can be followed to derive B from A.
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DAᵀ =



0 0 · · · 0 1

0 1 0
... . .

. ...

0 1 0

1 0 · · · 0 0





a11 a21 · · · a[n−1]1 an1

a12 a22 · · · a[n−1]2 an2

...
...

. . .
...

...

a1[n−1] a2[n−1] · · · a[n−1][n−1] an[n−1]

a1n a2n · · · a[n−1]n ann



=



a1n a2n · · · a[n−1]n ann

a1[n−1] a2[n−1] · · · a[n−1][n−1] an[n−1]

...
...

. . .
...

...

a12 a22 · · · a[n−1]2 an2

a11 a21 · · · a[n−1]1 an1



D
(
DAᵀ)ᵀ =



0 0 · · · 0 1

0 1 0
... . .

. ...

0 1 0

1 0 · · · 0 0





a1n a1[n−1] · · · a12 a11

a2n a2[n−1] · · · a22 a21

...
...

. . .
...

...

a[n−1]n a[n−1][n−1] · · · a[n−1]2 a[n−1]1

ann an[n−1] · · · a[n−1]2 an1



=



ann a2[n−1] · · · an2 an1

a[n−1]n a[n−1][n−1] · · · a[n−1]2 a[n−1]1

...
...

. . .
...

...

a2n a2[n−1] · · · a22 a21

a1n a2[n−1] · · · a12 a11



(
D
(
DAᵀ)ᵀ)ᵀ =



ann a[n−1]n · · · a2n a1n

an[n−1] a[n−1][n−1] · · · a2[n−1] a1[n−1]

...
...

. . .
...

...

an2 a[n−1]2 · · · a22 a12

an1 a[n−1]1 · · · a21 a11


= B

Therefore,
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det (B) = det

((
D
(
DAᵀ)ᵀ)ᵀ)

= det
(
D
(
DAᵀ)ᵀ)

= det (D) det
((
DAᵀ)ᵀ)

= −det
(
DAᵀ)

= −
(

det (D) det
(
Aᵀ))

= −
(
− det (A)

)
= det (A)

The results of proposition B.0.3 will consolidate the calculations for the Hurwitz deter-

minants in each case, by allowing the use of earlier Hurwitz determinants to be used in the

calculations of later ones.

B.1 5th Degree Polynomial

Let c(x) = c0x
5 + c1x

4 + c2x
3 + c3x

2 + c4x+ c5, then the corresponding Hurwitz matrix is

H =


c1 c3 c5 0 0

c0 c2 c4 0 0

0 c1 c3 c5 0

0 c0 c2 c4 0

0 0 c1 c3 c5


with the following Hurwitz determinants.

∆1(c) = c1

∆2(c) =

∣∣∣∣∣c1 c3

c0 c2

∣∣∣∣∣ =

∣∣∣∣∣c2 c3

c0 c1

∣∣∣∣∣ = c2∆1 − c0c3

∆3(c) =

∣∣∣∣∣∣∣
c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
c3 c4 c5

c1 c2 c3

0 c0 c1

∣∣∣∣∣∣∣ = c3∆2 − c4c
2
1 + c5c1c0
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∆4(c) =

∣∣∣∣∣∣∣∣∣∣
c1 c3 c5 0

c0 c2 c4 0

0 c1 c3 c5

0 c0 c2 c4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
c4 c5 0 0

c2 c3 c4 c5

c0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
= c4∆3 − c5

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣ = c4∆3 − c5c2∆2 + c5c4c1c0 − c2
5c

2
0

∆5(c) =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 0 0

c0 c2 c4 0 0

0 c1 c3 c5 0

0 c0 c3 c4 0

0 0 c1 c3 c5

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

c5 0 0 0 0

c3 c4 c5 0 0

c1 c2 c3 c4 c5

0 c0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣
= c5∆4

B.2 6th Degree Polynomial

Let c(x) = c0x
6 + c1x

5 + c2x
4 + c3x

3 + c4x
2 + c5x+ c6, then the corresponding Hurwitz matrix

is

H =



c1 c3 c5 0 0 0

c0 c2 c4 c6 0 0

0 c1 c3 c5 0 0

0 c0 c2 c4 c6 0

0 0 c1 c3 c5 0

0 0 c0 c2 c4 c6


with the following Hurwitz determinants.

∆1(c) = c1

∆2(c) =

∣∣∣∣∣c1 c3

c0 c2

∣∣∣∣∣ =

∣∣∣∣∣c2 c3

c0 c1

∣∣∣∣∣ = c2∆1 − c0c3

∆3(c) =

∣∣∣∣∣∣∣
c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
c3 c4 c5

c1 c2 c3

0 c0 c1

∣∣∣∣∣∣∣ = c3∆2 − c4c
2
1 + c5c1c0
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∆4(c) =

∣∣∣∣∣∣∣∣∣∣
c1 c3 c5 0

c0 c2 c4 c6

0 c1 c3 c5

0 c0 c2 c4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
c4 c5 c6 0

c2 c3 c4 c5

c0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
= c4∆3 − c5

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c6

∣∣∣∣∣∣∣
c2 c3 c5

c0 c1 c3

0 0 c1

∣∣∣∣∣∣∣
= c4∆3 − c5c2∆2 + c5c4c1c0 − c2

5c
2
0 + c6c2c

2
1 − c6c3c1c0

∆5(c) =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 0 0

c0 c2 c4 c6 0

0 c1 c3 c5 0

0 c0 c2 c4 c6

0 0 c1 c3 c5

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

c5 c6 0 0 0

c3 c4 c5 c6 0

c1 c2 c3 c4 c5

0 c0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣
= c5∆4 − c6

∣∣∣∣∣∣∣∣∣∣
c3 c5 c6 0

c1 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣

= c5∆4 − c6c3∆3 + c6c5

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c2
6

∣∣∣∣∣∣∣
c1 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣
= c5∆4 − c6c3∆3 + c6c5c1∆2 − c2

6c
3
1

∆6(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 0 0 0

c0 c2 c4 c6 0 0

0 c1 c3 c5 0 0

0 c0 c2 c4 c6 0

0 0 c1 c3 c5 0

0 0 c0 c2 c4 c6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c6 0 0 0 0 0

c4 c5 c6 0 0 0

c2 c3 c4 c5 c6 0

c0 c1 c2 c3 c4 c5

0 0 c0 c1 c2 c3

0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= c6∆5

B.3 7th Degree Polynomial

Let c(x) = c0x
7 + c1x

6 + c2x
5 + c3x

4 + c4x
3 + c5x

2 + c6x+ c7, then the corresponding Hurwitz

matrix is
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H =



c1 c3 c5 c7 0 0 0

c0 c2 c4 c6 0 0 0

0 c1 c3 c5 c7 0 0

0 c0 c2 c4 c6 0 0

0 0 c1 c3 c5 c7 0

0 0 c0 c2 c4 c6 0

0 0 0 c1 c3 c5 c7


with the following Hurwitz determinants.

∆1(c) = c1

∆2(c) =

∣∣∣∣∣c1 c3

c0 c2

∣∣∣∣∣ =

∣∣∣∣∣c2 c3

c0 c1

∣∣∣∣∣ = c2∆1 − c0c3

∆3(c) =

∣∣∣∣∣∣∣
c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
c3 c4 c5

c1 c2 c3

0 c0 c1

∣∣∣∣∣∣∣ = c3∆2 − c4

∣∣∣∣∣c1 c3

0 c1

∣∣∣∣∣+ c5

∣∣∣∣∣c1 c2

0 c0

∣∣∣∣∣
= c3∆2 − c4c

2
1 + c5c1c0

∆4(c) =

∣∣∣∣∣∣∣∣∣∣
c1 c3 c5 c7

c0 c2 c4 c6

0 c1 c3 c5

0 c0 c2 c4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
c4 c5 c6 c7

c2 c3 c4 c5

c0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
= c4∆3 − c5

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c6

∣∣∣∣∣∣∣
c2 c3 c5

c0 c1 c3

0 0 c1

∣∣∣∣∣∣∣− c7

∣∣∣∣∣∣∣
c2 c3 c4

c0 c1 c2

0 0 c0

∣∣∣∣∣∣∣
= c4∆3 − c5c2∆2 + c5c4c1c0 − c2

5c
2
0 + c6c2c

2
1 − c6c3c1c0 − c7c2c1c0 + c7c3c

2
0
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∆5(c) =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7 0

c0 c2 c4 c6 0

0 c1 c3 c5 c7

0 c0 c2 c4 c6

0 0 c1 c3 c5

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

c5 c6 c7 0 0

c3 c4 c5 c6 c7

c1 c2 c3 c4 c5

0 c0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣

= c5∆4 − c6

∣∣∣∣∣∣∣∣∣∣
c3 c5 c6 c7

c1 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
+ c7

∣∣∣∣∣∣∣∣∣∣
c3 c4 c6 c7

c1 c2 c4 c5

0 c0 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
= c5∆4 − c6c3∆3 + c6c5

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c2
6

∣∣∣∣∣∣∣
c1 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣+ c6c7

∣∣∣∣∣∣∣
c1 c3 c4

0 c1 c2

0 0 c0

∣∣∣∣∣∣∣
+ c7c3

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c7c4

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c7c6

∣∣∣∣∣∣∣
c1 c2 c5

0 c0 c3

0 0 c1

∣∣∣∣∣∣∣− c2
7

∣∣∣∣∣∣∣
c1 c2 c4

0 c0 c2

0 0 c0

∣∣∣∣∣∣∣
= c5∆4 − c6c3∆3 + c6c5c1∆2 − c2

6c
3
1 + c6c7c

2
1c0

+ c7c3c2∆2 − c7c3c4c1c0 + c7c3c5c
2
0 − c7c4c1∆2 + c7c6c

2
1c0 − c2

7c1c
2
0

= c5∆4 − c6c3∆3 + (c6c5c1 + c7c3c2 − c7c4c1)∆2 − c2
6c

3
1 + c6c7c

2
1c0

− c7c3c4c1c0 + c7c3c5c
2
0 + c7c6c

2
1c0 − c2

7c1c
2
0

∆6(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7 0 0

c0 c2 c4 c6 0 0

0 c1 c3 c5 c7 0

0 c0 c2 c4 c6 0

0 0 c1 c3 c5 c7

0 0 c0 c2 c4 c6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c6 c7 0 0 0 0

c4 c5 c6 c7 0 0

c2 c3 c4 c5 c6 c7

c0 c1 c2 c3 c4 c5

0 0 c0 c1 c2 c3

0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c6∆5 − c7

∣∣∣∣∣∣∣∣∣∣∣∣

c4 c6 c7 0 0

c2 c4 c5 c6 c7

c0 c2 c3 c4 c5

0 c0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣
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= c6∆5 − c7c4∆4 + c7c6

∣∣∣∣∣∣∣∣∣∣
c2 c5 c6 c7

c0 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
− c2

7

∣∣∣∣∣∣∣∣∣∣
c2 c4 c6 c7

c0 c2 c4 c5

0 c0 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
= c6∆5 − c7c4∆4 + c7c6c2∆3

− c7c6c5

∣∣∣∣∣∣∣
c0 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c7c
2
6

∣∣∣∣∣∣∣
c0 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣− c2
7c6

∣∣∣∣∣∣∣
c0 c3 c4

0 c1 c2

0 0 c0

∣∣∣∣∣∣∣
− c2

7c2

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c2
7c4

∣∣∣∣∣∣∣
c0 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣
− c2

7c6

∣∣∣∣∣∣∣
c0 c2 c5

0 c0 c3

0 0 c1

∣∣∣∣∣∣∣+ c3
7

∣∣∣∣∣∣∣
c0 c2 c4

0 c0 c2

0 0 c0

∣∣∣∣∣∣∣
= c6∆5 − c7c4∆4 + c7c6c2∆3 − c7c6c5c0∆2 + c7c

2
6c

2
1c0 − c2

7c6c1c
2
0 − c2

7c
2
2∆2

+ c2
7c2c4c1c0 − c2

7c2c5c
2
0 + c2

7c4c0∆2 − c2
7c6c1c

2
0 + c3

7c
3
0

= c6∆5 − c7c4∆4 + c7c6c2∆3 + (c2
7c4c0 − c2

7c
2
2 − c7c6c5c0)∆2

+ c7c
2
6c

2
1c0 − c2

7c6c1c
2
0 + c2

7c2c4c1c0 − c2
7c2c5c

2
0 − c2

7c6c1c
2
0 + c3

7c
3
0

∆7(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7 0 0 0

c0 c2 c4 c6 0 0 0

0 c1 c3 c5 c7 0 0

0 c0 c2 c4 c6 0 0

0 0 c1 c3 c5 c7 0

0 0 c0 c2 c4 c6 0

0 0 0 c1 c3 c5 c7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c7 0 0 0 0 0 0

c5 c6 c7 0 0 0 0

c3 c4 c5 c6 c7 0 0

c1 c2 c3 c4 c5 c6 c7

0 c0 c1 c2 c3 c4 c5

0 0 0 c0 c1 c2 c3

0 0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= c7∆6

B.4 8th Degree Polynomial

Let c(x) = c0x
8 + c1x

7 + c2x
6 + c3x

5 + c4x
4 + c5x

3 + c6x
2 + c7x + c8, then the corresponding

Hurwitz matrix is

218



H =



c1 c3 c5 c7 0 0 0

c0 c2 c4 c6 c8 0 0

0 c1 c3 c5 c7 0 0

0 c0 c2 c4 c6 c8 0

0 0 c1 c3 c5 c7 0

0 0 c0 c2 c4 c6 c8

0 0 0 c1 c3 c5 c7


with the following Hurwitz determinants.

∆1(c) = c1

∆2(c) =

∣∣∣∣∣c1 c3

c0 c2

∣∣∣∣∣ =

∣∣∣∣∣c2 c3

c0 c1

∣∣∣∣∣ = c2∆1 − c0c3

∆3(c) =

∣∣∣∣∣∣∣
c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
c3 c4 c5

c1 c2 c3

0 c0 c1

∣∣∣∣∣∣∣ = c3∆2 − c4

∣∣∣∣∣c1 c3

0 c1

∣∣∣∣∣+ c5

∣∣∣∣∣c1 c2

0 c0

∣∣∣∣∣
= c3∆2 − c4c

2
1 + c5c1c0

∆4(c) =

∣∣∣∣∣∣∣∣∣∣
c1 c3 c5 c7

c0 c2 c4 c6

0 c1 c3 c5

0 c0 c2 c4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
c4 c5 c6 c7

c2 c3 c4 c5

c0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
= c4∆3 − c5

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c6

∣∣∣∣∣∣∣
c2 c3 c5

c0 c1 c3

0 0 c1

∣∣∣∣∣∣∣− c7

∣∣∣∣∣∣∣
c2 c3 c4

c0 c1 c2

0 0 c0

∣∣∣∣∣∣∣
= c4∆3 − c5c2∆2 + c5c4c1c0 − c2

5c
2
0 + c6c2c

2
1 − c6c3c1c0 − c7c2c1c0 + c7c3c

2
0
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∆5(c) =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7 0

c0 c2 c4 c6 c8

0 c1 c3 c5 c7

0 c0 c2 c4 c6

0 0 c1 c3 c5

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

c5 c6 c7 c8 0

c3 c4 c5 c6 c7

c1 c2 c3 c4 c5

0 c0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣

= c5∆4 − c6

∣∣∣∣∣∣∣∣∣∣
c3 c5 c6 c7

c1 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
+ c7

∣∣∣∣∣∣∣∣∣∣
c3 c4 c6 c7

c1 c2 c4 c5

0 c0 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
− c8

∣∣∣∣∣∣∣∣∣∣
c3 c4 c5 c7

c1 c2 c3 c5

0 c0 c1 c3

0 0 0 c1

∣∣∣∣∣∣∣∣∣∣
= c5∆4 − c6c3∆3 + c6c5

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c2
6

∣∣∣∣∣∣∣
c1 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣+ c6c7

∣∣∣∣∣∣∣
c1 c3 c4

0 c1 c2

0 0 c0

∣∣∣∣∣∣∣
+ c7c3

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c7c4

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c7c6

∣∣∣∣∣∣∣
c1 c2 c5

0 c0 c3

0 0 c1

∣∣∣∣∣∣∣− c2
7

∣∣∣∣∣∣∣
c1 c2 c4

0 c0 c2

0 0 c0

∣∣∣∣∣∣∣
− c8c3

∣∣∣∣∣∣∣
c2 c3 c5

c0 c1 c3

0 0 c1

∣∣∣∣∣∣∣+ c8c4

∣∣∣∣∣∣∣
c1 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣− c8c5

∣∣∣∣∣∣∣
c1 c2 c5

0 c0 c3

0 0 c1

∣∣∣∣∣∣∣
= c5∆4 − c6c3∆3 + c6c5c1∆2 − c2

6c
3
1 + c6c7c

2
1c0 + c7c3c2∆2 − c7c3c4c1c0 + c7c3c5c

2
0

− c7c4c1∆2 + c7c6c
2
1c0 − c2

7c1c
2
0 − c8c3c2c

2
1 + c8c

2
3c0c1 + c8c4c

3
1 − c8c5c

2
1c0

= c5∆4 − c6c3∆3 + (c6c5c1 + c7c3c2 − c7c4c1)∆2 − c2
6c

3
1 + c6c7c

2
1c0 − c7c3c4c1c0

+ c7c3c5c
2
0 + c7c6c

2
1c0 − c2

7c1c
2
0 − c8c3c2c

2
1 + c8c

2
3c0c1 + c8c4c

3
1 − c8c5c

2
1c0

∆6(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7 0 0

c0 c2 c4 c6 c8 0

0 c1 c3 c5 c7 0

0 c0 c2 c4 c6 c8

0 0 c1 c3 c5 c7

0 0 c0 c2 c4 c6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c6 c7 c8 0 0 0

c4 c5 c6 c7 c8 0

c2 c3 c4 c5 c6 c7

c0 c1 c2 c3 c4 c5

0 0 c0 c1 c2 c3

0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= c6∆5 − c7

∣∣∣∣∣∣∣∣∣∣∣∣

c4 c6 c7 c8 0

c2 c4 c5 c6 c7

c0 c2 c3 c4 c5

0 c0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣
+ c8

∣∣∣∣∣∣∣∣∣∣∣∣

c4 c5 c7 c8 0

c2 c3 c5 c6 c7

c0 c1 c3 c4 c5

0 0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣

= c6∆5 − c7c4∆4 + c7c6

∣∣∣∣∣∣∣∣∣∣
c2 c5 c6 c7

c0 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
− c2

7

∣∣∣∣∣∣∣∣∣∣
c2 c4 c6 c7

c0 c2 c4 c5

0 c0 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣

+ c7c8

∣∣∣∣∣∣∣∣∣∣
c2 c4 c5 c7

c0 c2 c3 c5

0 c0 c1 c3

0 0 0 c1

∣∣∣∣∣∣∣∣∣∣
+ c8c4

∣∣∣∣∣∣∣∣∣∣
c3 c5 c6 c7

c1 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
− c8c5

∣∣∣∣∣∣∣∣∣∣
c2 c5 c6 c7

c0 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣

+ c8c7

∣∣∣∣∣∣∣∣∣∣
c2 c3 c6 c7

c0 c1 c4 c5

0 0 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
− c2

8

∣∣∣∣∣∣∣∣∣∣
c2 c3 c5 c7

c0 c1 c3 c5

0 0 c1 c3

0 0 0 c1

∣∣∣∣∣∣∣∣∣∣
= c6∆5 − c7c4∆4 + c7c6c2∆3

− c7c6c5

∣∣∣∣∣∣∣
c0 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c7c
2
6

∣∣∣∣∣∣∣
c0 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣− c2
7c6

∣∣∣∣∣∣∣
c0 c3 c4

0 c1 c2

0 0 c0

∣∣∣∣∣∣∣
− c2

7c2

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c2
7c4

∣∣∣∣∣∣∣
c0 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c2
7c6

∣∣∣∣∣∣∣
c0 c2 c5

0 c0 c3

0 0 c1

∣∣∣∣∣∣∣
+ c3

7

∣∣∣∣∣∣∣
c0 c2 c4

0 c0 c2

0 0 c0

∣∣∣∣∣∣∣+ c7c8c2

∣∣∣∣∣∣∣
c2 c3 c5

c0 c1 c3

0 0 c1

∣∣∣∣∣∣∣− c7c8c4

∣∣∣∣∣∣∣
c0 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣
+ c7c8c5

∣∣∣∣∣∣∣
c0 c2 c5

0 c0 c3

0 0 c1

∣∣∣∣∣∣∣+ c8c4c3∆3 − c8c4c5

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣
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+ c8c4c6

∣∣∣∣∣∣∣
c1 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣+ c8c4c7

∣∣∣∣∣∣∣
c1 c3 c4

0 c1 c2

0 0 c0

∣∣∣∣∣∣∣− c8c5c2∆3

+ c8c
2
5

∣∣∣∣∣∣∣
c0 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c8c5c6

∣∣∣∣∣∣∣
c0 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣+ c8c5c7

∣∣∣∣∣∣∣
c0 c3 c4

0 c1 c2

0 0 c0

∣∣∣∣∣∣∣
+ c8c7c2

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c8c7c3

∣∣∣∣∣∣∣
c0 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣
− c2

8c2

∣∣∣∣∣∣∣
c1 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣+ c2
8c3

∣∣∣∣∣∣∣
c0 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣
= c6∆5 − c7c4∆4 + c7c6c2∆3 − c7c6c5c0∆2 + c7c

2
6c

2
1c0 − c2

7c6c1c
2
0 − c2

7c
2
2∆2

+ c2
7c2c4c0c1 − c2

7c2c5c
2
0 + c2

7c4c0∆2 − c2
7c6c1c

2
0 + c3

7c
3
0 + c7c8c

2
2c

2
1 − c7c8c2c3c0c1

− c7c8c4c
2
1c0 + c7c8c5c1c

2
0 + c8c4c3∆3 − c8c4c5c1∆2 + c8c4c6c

3
1

+ c8c
2
5c0∆2 − c8c5c6c

2
1c0 + c8c5c7c1c

2
0 + c8c4c7c

2
1c0

+ c8c7c2c1∆2 − c8c7c3c0∆2 − c2
8c2c

3
1 + c2

8c3c
2
1c0 − c8c5c2∆3

= c6∆5 − c7c4∆4 + (c7c6c2 + c8c4c3 − c8c5c2)∆3

+ (c2
7c4c0 − c7c6c5c0 − c2

7c
2
2 − c8c4c5c1 + c8c

2
5c0 + c8c7c2c1 − c8c7c3c0)∆2

+ c7c
2
6c

2
1c0 − c2

7c6c1c
2
0 + c2

7c2c4c0c1 − c2
7c2c5c

2
0 − c2

7c6c1c
2
0 + c3

7c
3
0

+ c7c8c
2
2c

2
1 − c7c8c2c3c0c1 − c7c8c4c

2
1c0 + c7c8c5c1c

2
0

+ c8c4c6c
3
1 + c8c4c7c

2
1c0 − c8c5c6c

2
1c0 + c8c5c7c1c

2
0 − c2

8c2c
3
1 + c2

8c3c
2
1c0

222



∆7(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7 0 0 0

c0 c2 c4 c6 c8 0 0

0 c1 c3 c5 c7 0 0

0 c0 c2 c4 c6 c8 0

0 0 c1 c3 c5 c7 0

0 0 c0 c2 c4 c6 c8

0 0 0 c1 c3 c5 c7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c7 c8 0 0 0 0 0

c5 c6 c7 c8 0 0 0

c3 c4 c5 c6 c7 c8 0

c1 c2 c3 c4 c5 c6 c7

0 c0 c1 c2 c3 c4 c5

0 0 0 c0 c1 c2 c3

0 0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c7∆6 − c8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c5 c7 c8 0 0 0

c3 c5 c6 c7 c8 0

c1 c3 c4 c5 c6 c7

0 c1 c2 c3 c4 c5

0 0 c0 c1 c2 c3

0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c7∆6 − c8c5∆5 + c8c7

∣∣∣∣∣∣∣∣∣∣∣∣

c3 c6 c7 c8 0

c1 c4 c5 c6 c7

0 c2 c3 c4 c5

0 c0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣
− c2

8

∣∣∣∣∣∣∣∣∣∣∣∣

c3 c5 c7 c8 0

c1 c3 c5 c6 c7

0 c1 c3 c4 c5

0 0 c1 c2 c3

0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣
= c7∆6 − c8c5∆5 + c8c7c3∆4

− c8c7c6

∣∣∣∣∣∣∣∣∣∣
c1 c5 c6 c7

0 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
+ c8c

2
7

∣∣∣∣∣∣∣∣∣∣
c1 c4 c6 c7

0 c2 c4 c5

0 c0 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
− c2

8c7

∣∣∣∣∣∣∣∣∣∣
c1 c4 c5 c7

0 c2 c3 c5

0 c0 c1 c3

0 0 0 c1

∣∣∣∣∣∣∣∣∣∣

− c2
8c3

∣∣∣∣∣∣∣∣∣∣
c3 c5 c6 c7

c1 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
+ c2

8c5

∣∣∣∣∣∣∣∣∣∣
c1 c5 c6 c7

0 c3 c4 c5

0 c1 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣

− c2
8c7

∣∣∣∣∣∣∣∣∣∣
c1 c3 c6 c7

0 c1 c4 c5

0 0 c2 c3

0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣
+ c3

8

∣∣∣∣∣∣∣∣∣∣
c1 c3 c5 c7

0 c1 c3 c5

0 0 c1 c3

0 0 0 c1

∣∣∣∣∣∣∣∣∣∣
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= c7∆6 − c8c5∆5 + c8c7c3∆4 − c8c7c6c1∆3

+ c8c
2
7c1

∣∣∣∣∣∣∣
c2 c4 c5

c0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣− c2
8c7c1

∣∣∣∣∣∣∣
c2 c3 c5

c0 c1 c3

0 0 c1

∣∣∣∣∣∣∣− c2
8c

2
3∆3 + c2

8c3c5

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣
− c2

8c3c6

∣∣∣∣∣∣∣
c1 c3 c5

0 c1 c3

0 0 c1

∣∣∣∣∣∣∣+ c2
8c3c7

∣∣∣∣∣∣∣
c1 c3 c4

0 c1 c2

0 0 c0

∣∣∣∣∣∣∣+ c2
8c5c1∆3

− c2
8c7c1

∣∣∣∣∣∣∣
c1 c4 c5

0 c2 c3

0 c0 c1

∣∣∣∣∣∣∣+ c3
8c

4
1

= c7∆6 − c8c5∆5 + c8c7c3∆4 − c8c7c6c1∆3 + c8c
2
7c1c2∆2 − c8c

2
7c

2
1c4c0 + c8c

2
7c1c5c

2
0

− c2
8c7c

3
1c2 + c2

8c7c
2
1c3c0 − c2

8c
2
3∆3 + c2

8c3c5c1∆2 − c2
8c3c6c

3
1 + c2

8c3c7c
2
1c0

+ c2
8c5c1∆3 − c2

8c7c
2
1∆2 + c3

8c
4
1

= c7∆6 − c8c5∆5 + c8c7c3∆4

+ (c2
8c5c1 − c8c7c6c1 − c2

8c
2
3)∆3 + (c8c

2
7c1c2 + c2

8c3c5c1 − c2
8c7c

2
1)∆2

− c8c
2
7c

2
1c4c0 + c8c

2
7c1c5c

2
0 − c2

8c7c
3
1c2 + c2

8c7c
2
1c3c0 − c2

8c3c6c
3
1

+ c2
8c3c7c

2
1c0 + c3

8c
4
1

∆8(c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7 0 0 0 0

c0 c2 c4 c6 c8 0 0 0

0 c1 c3 c5 c7 0 0 0

0 c0 c2 c4 c6 c8 0 0

0 0 c1 c3 c5 c7 0 0

0 0 c0 c2 c4 c6 c8 0

0 0 0 c1 c3 c5 c7 0

0 0 0 c0 c2 c4 c6 c8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c8 0 0 0 0 0 0 0

0 c7 c8 0 0 0 0 0

0 c5 c6 c7 c8 0 0 0

0 c3 c4 c5 c6 c7 c8 0

0 c1 c2 c3 c4 c5 c6 c7

0 0 c0 c1 c2 c3 c4 c5

0 0 0 0 c0 c1 c2 c3

0 0 0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c8∆7
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Appendix C

Sensitivity Equations

By deriving the sensitivity of the payoff functional to the parameters of the model by the adjoint

variable method requires that the integral equation is evaluated for each of the parameters in

the model.

C.1 HIV-Transmission Dynamics without Intervention

For the model without an intervention we have following system of ordinary differential equa-

tions

dY0,0(t)

dt
=(1−

i=3∑
i=1

ρi)µY0 − (µ+ p0λ(t))Y0,0(t)

dY1,0(t)

dt
=ρ1µY0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t)

dY2,0(t)

dt
=ρ2µY0 + σξY1,0(t)− (µ2,0 + µ)Y2,0(t)

dY3,0(t)

dt
=ρ3µY0 +

i=2∑
i=1

µi,0Yi,0(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were λ(t) =

∑i=4
i=1 piβi,0η00,i0Yi,0(t)∑i=4

i=0 piYi,0(t)
, along with the initial state
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Y0,0(0) =(1− φ0)Y0

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4

and the corresponding payoff functional

L(T ) =

∫ T

0

[
α
( i=4∑
i=0

ciYi,0(t)
)
− (1− α)

( i=4∑
i=0

qiYi,0(t)
)]
e−rtdt.

In all, we are considering 37 parameters for the model without an intervention.

Θ = {µ, µ1,0, µ2,0, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β2,0, β3,0, β4,0, η00,10, η00,20η00,30, η00,40, . . .

. . . , σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, r, α}
To set up the sensitivity equations for each of the 37 parameters, we’ll first present the vectors

using the notation we introduced in the chapter 6.

F (Ẏ , Y,Θ) =


Ẏ0,0(t) + (µ+ p0λ(t))Y0,0(t)− (1−

∑i=3
i=1 ρi)µY0

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (σξ + µ1,0 + µ)Y1,0(t)− ρ1µY0

Ẏ2,0(t)− σξY1,0(t) + (µ2,0 + µ)Y2,0(t)− ρ2µY0

Ẏ3,0(t)− µ1,0Y1,0(t)− µ2,0Y2,0(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)



G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
( i=4∑
i=0

ciYi,0(t)
)
− (1− α)

( i=4∑
i=0

qiYi,0(t)
)]
e−rt
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Then, by the adjoint variable method, the sensitivity equations are defined by,

∂L

∂ϑi
=

∫ T

0

(
`ϑi + ΛᵀFϑi

)
dt+ Λᵀ

∣∣∣
t=0

Gϑi

where Λᵀ = [Λ0,0,Λ1,0,Λ2,0,Λ3,0,Λ4,0]. Thus, in defining the sensitivity equations for each of

the parameters in Θ we will have to evaluate Fϑi , Gϑi and `ϑi .

Average non-disease related death rate, µ

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

non-disease related death rate is defined by the following.

With Fµ =


Y0,0(t)− (1−

∑i=3
i=1 ρi)Y0

Y1,0(t)− ρ1Y0

Y2,0(t)− ρ2Y0

Y3,0(t)− ρ3Y0

Y4,0(t)

 , Gµ = 0, and `µ = 0,

implies,

∂L

∂µ
=

∫ T

0

[
Λ0,0(t)(Y0,0(t)− (1−

i=3∑
i=1

ρi)Y0) + Λ1,0(t)(Y1,0(t)− ρ1Y0)

+ Λ2,0(t)(Y2,0(t)− ρ2Y0) + Λ3,0(t)(Y3,0(t)− ρ3Y0) + Λ4,0(t)Y4,0(t))
]
dt.

Disease related transition rates, µi,0

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

rate at which an infected individual transitions out of each of the disease classes are each eval-

uated.

For µ1,0, we get,

Fµ1,0 =


0

Y1,0(t)

0

−Y1,0(t)

0

 ,
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Gµ1,0 =
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2


0

1/µ2,0 + 1/µ3,0 + 1/µ4,0

−1/µ2,0

−1/µ3,0

−1/µ4,0

 , and

`µ1,0 = 0,

implies,

∂L

∂µ1,0
=

∫ T

0
Y1,0(t)(Λ1,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ2,0 + 1/µ3,0 + 1/µ4,0)Λ1,0(0)

− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ2,0 we get,

Fµ2,0 =


0

0

Y2,0(t)

−Y2,0(t)

0

 ,

Gµ2,0 =
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2


0

−1/µ1,0

1/µ1,0 + 1/µ3,0 + 1/µ4,0

−1/µ3,0

−1/µ4,0

 , and

`µ2,0 = 0,

implies,

∂L

∂µ2,0
=

∫ T

0
Y2,0(t)(Λ2,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ3,0 + 1/µ4,0)Λ2,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ3,0 we get,
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Fµ3,0 =


0

0

0

Y3,0(t)

−Y3,0(t)

 ,

Gµ3,0 =
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2


0

−1/µ1,0

−1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ4,0

−1/µ4,0

 and

`µ3,0 = 0,

implies,

∂L

∂µ3,0
=

∫ T

0
Y3,0(t)(Λ3,0(t)− Λ4,0(t))dt

+
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ4,0)Λ3,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ4,0 we get,

Fµ4,0 =


0

0

0

0

Y4,0(t)

 ,

Gµ4,0 =
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2


0

−1/µ1,0

−1/µ2,0

−1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0

 , and

`µ4,0 = 0,

implies,
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∂L

∂µ4,0
=

∫ T

0
Y4,0(t)Λ4,0(t)dt

+
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ3,0)Λ4,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)
)
.

Average number of partners an individual will have in a year, for each pop-

ulation class, pi

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

average number of partners an individual, with disease status i, will have within a year are

evaluated for each population classes.

For p0 we get,

Fp0 =



Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
− Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
0

0

0


with

∂λ

∂p0
=
−Y0,0(t)

∑i=4
i=1 piβi,0η00,i0Yi,0(t)(∑i=4
i=0 piYi,0(t)

)2 ,

Gp0 = 0, and `p0 = 0, implies

∂L

∂p0
=

∫ T

0
Y0,0(t)(Λ0,0(t)− Λ1,0(t))

(
λ(t) + p0

[
∂λ

∂p0

])
dt.

For p1 we get,
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Fp1 =



p0

(
∂λ

∂p1

)
Y0,0(t)

− p0

(
∂λ

∂p1

)
Y0,0(t)

0

0

0


with

∂λ

∂p1
=
β1,0η00,10Y1,0(t)

(∑i=4
i=0 piYi,0(t)

)
− Y1,0(t)

(∑i=4
i=1 piβi,0η00,i0Yi,0(t)

)
(∑i=4

i=0 piYi,0(t)
)2 ,

Gp1 = 0, and `p1 = 0, implies

∂L

∂p1
=

∫ T

0
p0

(
∂λ

∂p1

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For p2 we get,

Fp2 =



p0

(
∂λ

∂p2

)
Y0,0(t)

− p0

(
∂λ

∂p2

)
Y0,0(t)

0

0

0


with

∂λ

∂p2
=
β2,0η00,20Y2,0(t)

(∑i=4
i=0 piYi,0(t)

)
− Y2,0(t)

(∑i=4
i=1 piβi,0η00,i0Yi,0(t)

)
(∑i=4

i=0 piYi,0(t)
)2 ,

Gp2 = 0, and `p2 = 0, implies

∂L

∂p2
=

∫ T

0
p0

(
∂λ

∂p2

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For p3 we get,
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Fp3 =



p0

(
∂λ

∂p3

)
Y0,0(t)

− p0

(
∂λ

∂p3

)
Y0,0(t)

0

0

0


with

∂λ

∂p3
=
β3,0η00,30Y3,0(t)

(∑i=4
i=0 piYi,0(t)

)
− Y3,0(t)

(∑i=4
i=1 piβi,0η00,i0Yi,0(t)

)
(∑i=4

i=0 piYi,0(t)
)2 ,

Gp3 = 0, and `p3 = 0, implies

∂L

∂p3
=

∫ T

0
p0

(
∂λ

∂p3

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For p4 we get,

Fp4 =



p0

(
∂λ

∂p4

)
Y0,0(t)

− p0

(
∂λ

∂p4

)
Y0,0(t)

0

0

0


with

∂λ

∂p4
=
β4,0η00,40Y4,0(t)

(∑i=4
i=0 piYi,0(t)

)
− Y4,0(t)

(∑i=4
i=1 piβi,0η00,i0Yi,0(t)

)
(∑i=4

i=0 piYi,0(t)
)2 ,

Gp4 = 0, and `p4 = 0, implies

∂L

∂p4
=

∫ T

0
p0

(
∂λ

∂p4

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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Infectivity rate for each of the infectious classes, βi,0

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

infectivity rates are evaluated for each of the infectious classes.

For β1,0 we get,

Fβ1,0 =



p0

(
∂λ

∂β1,0

)
Y0,0(t)

− p0

(
∂λ

∂β1,0

)
Y0,0(t)

0

0

0


with

∂λ

∂β1,0
=
p1η00,10Y1,0(t)∑i=4

i=0 piYi,0(t)
,

Gβ1,0 = 0, and `β1,0 = 0, implies

∂L

∂β1,0
=

∫ T

0
p0

(
∂λ

∂β1,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For β2,0 we get,

Fβ2,0 =



p0

(
∂λ

∂β2,0

)
Y0,0(t)

− p0

(
∂λ

∂β2,0

)
Y0,0(t)

0

0

0


, with

∂λ

∂β2,0
=
p2η00,20Y2,0(t)∑i=4

i=0 piYi,0(t)

Gβ2,0 = 0, and `β2,0 = 0, implies

∂L

∂β2,0
=

∫ T

0
p0

(
∂λ

∂β2,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For β3,0 we get,
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Fβ3,0 =



p0

(
∂λ

∂β3,0

)
Y0,0(t)

− p0

(
∂λ

∂β3,0

)
Y0,0(t)

0

0

0


, with

∂λ

∂β3,0
=
p3η00,30Y3,0(t)∑i=4

i=0 piYi,0(t)

Gβ3,0 = 0, and `β3,0 = 0, implies

∂L

∂β3,0
=

∫ T

0
p0

(
∂λ

∂β3,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For β4,0 we get,

Fβ4,0 =



p0

(
∂λ

∂β4,0

)
Y0,0(t)

− p0

(
∂λ

∂β4,0

)
Y0,0(t)

0

0

0


, with

∂λ

∂β4,0
=
p4η00,40Y4,0(t)∑i=4

i=0 piYi,0(t)

Gβ4,0 = 0, and `β4,0 = 0, implies

∂L

∂β4,0
=

∫ T

0
p0

(
∂λ

∂β4,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Probability that a partnership between a susceptible individual and an in-

fected individual is not protected by a condom, η00,i0

For the HIV infectious disease model, without an intervention, the sensitivity equations for the

probability that a partnership between a susceptible individual with an infected individual is

not protected by a condom are evaluated for each of the infectious classes.
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For η00,10 we get,

Fη00,10 =



p0

(
∂λ

∂η00,10

)
Y0,0(t)

− p0

(
∂λ

∂η00,10

)
Y0,0(t)

0

0

0


with

∂λ

∂η00,10
=

p1β1,0Y1,0(t)∑i=4
i=0 piYi,0(t)

,

Gη00,10 = 0, and `η00,10 = 0, implies

∂L

∂η00,10
=

∫ T

0
p0

(
∂λ

∂η00,10

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,20 we get,

Fη00,20 =



p0

(
∂λ

∂η00,20

)
Y0,0(t)

− p0

(
∂λ

∂η00,20

)
Y0,0(t)

0

0

0


with

∂λ

∂η00,20
=

p2β2,0Y2,0(t)∑i=4
i=0 piYi,0(t)

,

Gη00,20 = 0, and `η00,20 = 0, implies

∂L

∂η00,20
=

∫ T

0
p0

(
∂λ

∂η00,20

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η00,30 we get,

Fη00,30 =



p0

(
∂λ

∂η00,30

)
Y0,0(t)

− p0

(
∂λ

∂η00,30

)
Y0,0(t)

0

0

0


with

∂λ

∂η00,30
=

p3β3,0Y3,0(t)∑i=4
i=0 piYi,0(t)

Gη00,30 = 0, and `η00,30 = 0, implies

∂L

∂η00,30
=

∫ T

0
p0

(
∂λ

∂η00,30

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,40 we get,

Fη00,40 =



p0

(
∂λ

∂η00,40

)
Y0,0(t)

− p0

(
∂λ

∂η00,40

)
Y0,0(t)

0

0

0


with

∂λ

∂η00,40
=

p4β4,0Y4,0(t)∑i=4
i=0 piYi,0(t)

Gη00,40 = 0, and `η00,40 = 0, implies

∂L

∂η00,40
=

∫ T

0
p0

(
∂λ

∂η00,40

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Parameters related to the rate at which asymptomatic-unaware individuals

become aware, σ and ξ

For the HIV infectious disease model, without an intervention, the sensitivity equations for the

rate at which an asymptomatic-unaware individual becomes aware are evaluated for both the

screening rate, σ, along with the true-positive rate of screening, ξ.
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For σ we get,

Fσ =


0

ξY1,0(t)

−ξY1,0(t)

0

0

 , Gσ = 0, and `σ = 0,

implies,

∂L

∂σ
=

∫ T

0
ξY1,0(t)(Λ1,0(t)− Λ2,0(t))dt.

For ξ we get,

Fξ =


0

σY1,0(t)

−σY1,0(t)

0

0

 , Gξ = 0, and `ξ = 0,

implies,

∂L

∂ξ
=

∫ T

0
σY1,0(t)(Λ1,0(t)− Λ2,0(t))dt.

Total initial population, Y0

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

total initial population is defined by the following.

FY0 =


−
(
1−

∑i=3
i=1 ρi

)
µ

−ρ1µ

−ρ2µ

−ρ3µ

0

 ,

237



GY0 =



−(1− φ0)

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0


, and `Y0 = 0,

implies,

∂L

∂Y0
=

∫ T

0
−µ
((

1−
1=3∑
i=1

ρi
)
Λ0,0(t) + ρ1Λ1,0(t) + ρ2Λ2,0(t) + ρ3Λ3,0(t)

)
dt− (1− φ0)Λ0,0(0)

− φ0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Seroprevalence of the infected population, φ0

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

seroprevalence of the infected population is defined by the following.

Fφ0 =0, Gφ0 =



Y0

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0


, and `φ0 = 0,

implies,

∂L

∂φ0
= Y0Λ0,0(0)− Y0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Distribution of disease-related immigration, ρi

For the HIV infectious disease model, without an intervention, the sensitivity equations for the

parameters associated with the distribution of disease-related immigration is evaluated for each
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of the respective classes.

For ρ1 we get,

Fρ1 =


µY0

−µY0

0

0

0

 , Gρ1 = 0, and `ρ1 = 0,

implies,

∂L

∂ρ1
=

∫ 20

0
µY0(Λ0,0(t)− Λ1,0(t))dt.

For ρ2 we get,

Fρ2 =


µY0

0

−µY0

0

0

 , Gρ2 = 0, and `ρ2 = 0,

implies,

∂L

∂ρ2
=

∫ T

0
µY0(Λ0,0(t)− Λ2,0(t))dt.

For ρ3 we get,

Fρ3 =


µY0

0

0

−µY0

0

 , Gρ3 = 0, and `ρ3 = 0,

implies,
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∂L

∂ρ3
=

∫ 20

0
µY0(Λ0,0(t)− Λ3,0(t))dt.

Average yearly medical expenses for each class, ci

For the HIV infectious disease model, without an intervention, the sensitivity equations for the

average yearly medical expenses is evaluated for each of the population classes.

For c0 we get,

Fc0 =0, Gc0 = 0, and `c0 = αY0,0(t)e−rt,

implies,

∂L

∂c0
=

∫ T

0
αY0,0(t)e−rtdt.

For c1 we get,

Fc1 =0, Gc1 = 0, and `c1 = αY1,0(t)e−rt,

implies,

∂L

∂c1
=

∫ T

0
αY1,0(t)e−rtdt.

For c2 we get,

Fc2 =0, Gc2 = 0, and `c2 = αY2,0(t)e−rt,

implies,

∂L

∂c2
=

∫ T

0
αY2,0(t)e−rtdt.
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For c3 we get,

Fc3 =0, Gc3 = 0, and `c3 = αY3,0(t)e−rt,

implies

∂L

∂c3
=

∫ T

0
αY3,0(t)e−rtdt.

For c4 we get,

Fc4 =0, Gc4 = 0, and `c4 = αY4,0(t)e−rt,

implies,

∂L

∂c4
=

∫ T

0
αY4,0(t)e−rtdt.

QALYs, qi

For the HIV infectious disease model, without an intervention, the sensitivity equations for

QALYs is evaluated for each of the population classes.

For q0 we get,

Fq0 =0, Gq0 = 0, and `q0 = (α− 1)Y0,0(t)e−rt,

implies,

∂L

∂q0
=

∫ T

0
(α− 1)Y0,0(t)e−rtdt.

For q1 we get,

Fq1 =0, Gq1 = 0, and `q1 = (α− 1)Y1,0(t)e−rt,

implies,

241



∂L

∂q1
=

∫ T

0
(α− 1)Y1,0(t)e−rtdt.

For q2 we get,

Fq2 =0, Gq2 = 0, and `q2 = (α− 1)Y2,0(t)e−rt,

implies,

∂L

∂q2
=

∫ T

0
(α− 1)Y2,0(t)e−rtdt.

For q3 we get,

Fq3 =0, Gq3 = 0, and `q3 = (α− 1)Y3,0(t)e−rt,

implies,

∂L

∂q3
=

∫ T

0
(α− 1)Y3,0(t)e−rtdt.

For q4 we get,

Fq4 =0, Gq4 = 0, and `q4 = (α− 1)Y4,0(t)e−rt,

implies,

∂L

∂q4
=

∫ T

0
(α− 1)Y4,0(t)e−rtdt.

Annual discount rate, r

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

annual discount rate is defined by the following.

Fr =0, Gr = 0, and
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`r = −t
(
α
i=4∑
i=0

ciYi,0(t)− (1− α)
i=4∑
i=0

qiYi,0(t)
)
e−rt,

implies,

∂L

∂r
=

∫ T

0
−t
(
α
i=4∑
i=0

ciYi,0(t)− (1− α)
i=4∑
i=0

qiYi,0(t)
)
e−rtdt.

Weight for combining objectives for optimization, α

For the HIV infectious disease model, without an intervention, the sensitivity equation for the

weight introduced to evaluate the multi-objective optimization is defined by the following.

Fα =0, Gα = 0, and

`α =
( i=4∑
i=0

ciYi,0(t) +
i=4∑
i=0

qiYi,0(t)
)
e−rt,

implies,

∂L

∂α
=

∫ T

0

( i=4∑
i=0

ciYi,0(t) +
i=4∑
i=0

qiYi,0(t)
)
e−rtdt.
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C.2 Therapeutic Vaccine Program

For the model with only the therapeutic vaccine we have following system of ordinary differential

equations

dY0,0(t)

dt
=(1−

3∑
i=1

ρi)µY0 − (µ+ p0λ(t))Y0,0(t)

dY1,0(t)

dt
=ρ1µY0 + p0λ(t)Y0,0(t)− (σξ + µ1,0 + µ)Y1,0(t)

dY2,0(t)

dt
=ρ2µY0 + σξY1,0(t)− (νt + µ2,0 + µ)Y2,0(t)

dY2,1(t)

dt
=νtY2,0(t)− (µ2,1 + µ)Y2,1(t)

dY3,0(t)

dt
=ρ3µY0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

, along with the initial state

Y0,0(0) =(1− φ0)Y0

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4

Y2,1(0) =0

and the corresponding payoff functional

L(T ) =

∫ T

0

[
α
(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rtdt.

In all, we are considering 42 parameters for the model with the therapeutic vaccine only.

Θ = {µ, µ1,0, µ2,0, µ2,1, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β2,0, β2,1, β3,0, β4,0, . . .

. . . , η00,10, η00,20, η00,21η00,30, η00,40, νt, σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, . . .

. . . , c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, κt, r, α}
To set up the sensitivity equations for each of the 42 parameters, we’ll first present the vectors
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using the notation we introduced in the chapter 6.

F (Ẏ , Y,Θ) =



Ẏ0,0(t) + (µ+ p0λ(t))Y0,0(t)− (1−
∑i=3

i=1 ρi)µY0

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (σξ + µ1,0 + µ)Y1,0(t)− ρ1µY0

Ẏ2,0(t)− σξY1,0(t) + (µ2,0 + µ+ νt)Y2,0(t)− ρ2µY0

Ẏ2,1(t)− νtY2,0(t)− (µ2,1 + µ)Y2,1(t)

Ẏ3,0(t)− µ1,0Y1,0(t)− µ2,0Y2,0(t)− µ2,1Y2,1(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)



G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y2,1(0)

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rt

Then, by the adjoint variable method, the sensitivity equations are defined by,

∂L

∂ϑi
=

∫ T

0

(
`ϑi + ΛᵀFϑi

)
dt+ Λᵀ

∣∣∣
t=0

Gϑi

where Λᵀ = [Λ0,0,Λ1,0,Λ2,0,Λ2,1,Λ3,0,Λ4,0]. Thus, in defining the sensitivity equations for each

of the parameters in Θ we will have to evaluate Fϑi , Gϑi and `ϑi .

Average non-disease related death rate, µ

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the non-disease related death rate is defined by the following.
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Fµ =



Y0,0(t)− (1−
∑i=3

i=1 ρi)Y0

Y1,0(t)− ρ1Y0

Y2,0(t)− ρ2Y0

Y2,1(t)

Y3,0(t)− ρ3Y0

Y4,0(t)


, Gµ = 0, and `µ = 0,

implies,

∂L

∂µ
=

∫ T

0

[
Λ0,0(t)(Y0,0(t)− (1−

i=3∑
i=1

ρi)Y0) + Λ1,0(t)(Y1,0(t)− ρ1Y0)

+ Λ2,0(t)(Y2,0(t)− ρ2Y0) + Λ2,1(t)Y2,1(t) + Λ3,0(t)(Y3,0(t)− ρ3Y0)

+ Λ4,0(t)Y4,0(t))
]
dt.

Disease related transition rates, µi,0

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the rate at which an infected individual transitions out of each of the disease classes are

each evaluated.

For µ1,0, we get,

Fµ1,0 =



0

Y1,0(t)

0

0

−Y1,0(t)

0


,

Gµ1,0 =
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

1/µ2,0 + 1/µ3,0 + 1/µ4,0

−1/µ2,0

0

−1/µ3,0

−1/µ4,0


, and

`µ1,0 = 0,
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implies,

∂L

∂µ1,0
=

∫ T

0
Y1,0(t)(Λ1,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ2,0 + 1/µ3,0 + 1/µ4,0)Λ1,0(0)

− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ2,0 we get,

Fµ2,0 =



0

0

Y2,0(t)

0

−Y2,0(t)

0


,

Gµ2,0 =
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

−1/µ1,0

1/µ1,0 + 1/µ3,0 + 1/µ4,0

0

−1/µ3,0

−1/µ4,0


, and

`µ2,0 = 0,

implies,

∂L

∂µ2,0
=

∫ T

0
Y2,0(t)(Λ2,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ3,0 + 1/µ4,0)Λ2,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ2,1 we get,
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Fµ2,1 =



0

0

0

Y2,1(t)

−Y2,1(t)

0


, Gµ2,1 = 0, and `µ2,1 = 0,

implies,

∂L

∂µ2,1
=

∫ T

0
Y2,1(t)(Λ2,1(t)− Λ3,0(t))dt.

For µ3,0 we get,

Fµ3,0 =



0

0

0

0

Y3,0(t)

−Y3,0(t)


,

Gµ3,0 =
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

−1/µ1,0

−1/µ2,0

0

1/µ1,0 + 1/µ2,0 + 1/µ4,0

−1/µ4,0


and

`µ3,0 = 0,

implies,

∂L

∂µ3,0
=

∫ T

0
Y3,0(t)(Λ3,0(t)− Λ4,0(t))dt

+
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ4,0)Λ3,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ4,0)Λ4,0(0)
)
.
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For µ4,0 we get,

Fµ4,0 =



0

0

0

0

0

Y4,0(t)


,

Gµ4,0 =
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

−1/µ1,0

−1/µ2,0

0

−1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0


, and

`µ4,0 = 0,

implies,

∂L

∂µ4,0
=

∫ T

0
Y4,0(t)Λ4,0(t)dt

+
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ3,0)Λ4,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)
)
.

Average number of partners an individual will have in a year, for each pop-

ulation class, pi

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the average number of partners an individual, with disease status i, will have within a year

are evaluated for each population classes.

249



For p0 we get,

Fp0 =



Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
− Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
0

0

0

0


with

∂λ

∂p0
=
−Y0,0(t)

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)(∑i=4

i=0

∑j=1
j=0 piYi,0(t)

)2 ,

Gp0 = 0, and `p0 = 0, implies

∂L

∂p0
=

∫ T

0
Y0,0(t)(Λ0,0(t)− Λ1,0(t))

(
λ(t) + p0

[
∂λ

∂p0

])
dt.

For p1 we get,

Fp1 =



p0

(
∂λ

∂p1

)
Y0,0(t)

− p0

(
∂λ

∂p1

)
Y0,0(t)

0

0

0

0


with

∂λ

∂p1
=
β1,0η00,10Y1,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y1,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2 ,

Gp1 = 0, and `p1 = 0, implies

∂L

∂p1
=

∫ T

0
p0

(
∂λ

∂p1

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For p2 we get,

Fp2 =



p0

(
∂λ

∂p2

)
Y0,0(t)

− p0

(
∂λ

∂p2

)
Y0,0(t)

0

0

0

0


with

∂λ

∂p2
=

(β2,0η00,20Y2,0(t) + β2,1η00,21Y2,1(t))
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

−
(Y2,0(t) + Y2,1(t))

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2 ,

Gp2 = 0, and `p2 = 0, implies

∂L

∂p2
=

∫ T

0
p0

(
∂λ

∂p2

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For p3 we get,

Fp3 =



p0

(
∂λ

∂p3

)
Y0,0(t)

− p0

(
∂λ

∂p3

)
Y0,0(t)

0

0

0

0


with

∂λ

∂p3
=
β3,0η00,30Y3,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y3,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2 ,
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Gp3 = 0, and `p3 = 0, implies

∂L

∂p3
=

∫ T

0
p0

(
∂λ

∂p3

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For p4 we get,

Fp4 =



p0

(
∂λ

∂p4

)
Y0,0(t)

− p0

(
∂λ

∂p4

)
Y0,0(t)

0

0

0

0


with

∂λ

∂p4
=
β4,0η00,40Y4,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y4,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j1
j=0 piYi,0(t)

)2 ,

Gp4 = 0, and `p4 = 0, implies

∂L

∂p4
=

∫ T

0
p0

(
∂λ

∂p4

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Infectivity rate for each of the infectious classes, βi,0

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the infectivity rates are evaluated for each of the infectious classes.
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For β1,0 we get,

Fβ1,0 =



p0

(
∂λ

∂β1,0

)
Y0,0(t)

− p0

(
∂λ

∂β1,0

)
Y0,0(t)

0

0

0

0


with

∂λ

∂β1,0
=

p1η00,10Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ1,0 = 0, and `β1,0 = 0, implies

∂L

∂β1,0
=

∫ T

0
p0

(
∂λ

∂β1,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For β2,0 we get,

Fβ2,0 =



p0

(
∂λ

∂β2,0

)
Y0,0(t)

− p0

(
∂λ

∂β2,0

)
Y0,0(t)

0

0

0

0


, with

∂λ

∂β2,0
=

p2η00,20Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

Gβ2,0 = 0, and `β2,0 = 0, implies

∂L

∂β2,0
=

∫ T

0
p0

(
∂λ

∂β2,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For β2,1 we get,

Fβ2,1 =



p0

(
∂λ

∂β2,1

)
Y0,0(t)

− p0

(
∂λ

∂β2,1

)
Y0,0(t)

0

0

0

0


, with

∂λ

∂β2,1
=

p2η00,21Y2,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

Gβ2,1 = 0, and `β2,1 = 0, implies

∂L

∂β2,1
=

∫ T

0
p0

(
∂λ

∂β2,1

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For β3,0 we get,

Fβ3,0 =



p0

(
∂λ

∂β3,0

)
Y0,0(t)

− p0

(
∂λ

∂β3,0

)
Y0,0(t)

0

0

0

0


, with

∂λ

∂β3,0
=

p3η00,30Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

Gβ3,0 = 0, and `β3,0 = 0, implies

∂L

∂β3,0
=

∫ T

0
p0

(
∂λ

∂β3,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For β4,0 we get,

Fβ4,0 =



p0

(
∂λ

∂β4,0

)
Y0,0(t)

− p0

(
∂λ

∂β4,0

)
Y0,0(t)

0

0

0

0


, with

∂λ

∂β4,0
=

p4η00,40Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

Gβ4,0 = 0, and `β4,0 = 0, implies

∂L

∂β4,0
=

∫ T

0
p0

(
∂λ

∂β4,0

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Probability that a partnership between a susceptible individual and an in-

fected individual is not protected by a condom, η00,i0

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equa-

tions for the probability that a partnership between a susceptible individual with an infected

individual is not protected by a condom are evaluated for each of the infectious classes.

For η00,10 we get,

Fη00,10 =



p0

(
∂λ

∂η00,10

)
Y0,0(t)

− p0

(
∂λ

∂η00,10

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,10
=

p1β1,0Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,10 = 0, and `η00,10 = 0, implies
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∂L

∂η00,10
=

∫ T

0
p0

(
∂λ

∂η00,10

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,20 we get,

Fη00,20 =



p0

(
∂λ

∂η00,20

)
Y0,0(t)

− p0

(
∂λ

∂η00,20

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,20
=

p2β2,0Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,20 = 0, and `η00,20 = 0, implies

∂L

∂η00,20
=

∫ T

0
p0

(
∂λ

∂η00,20

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,21 we get,

Fη00,21 =



p0

(
∂λ

∂η00,21

)
Y0,0(t)

− p0

(
∂λ

∂η00,21

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,21
=

p2β2,1Y2,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,21 = 0, and `η00,21 = 0, implies
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∂L

∂η00,21
=

∫ T

0
p0

(
∂λ

∂η00,21

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,30 we get,

Fη00,30 =



p0

(
∂λ

∂η00,30

)
Y0,0(t)

− p0

(
∂λ

∂η00,30

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,30
=

p3β3,0Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη00,30 = 0, and `η00,30 = 0, implies

∂L

∂η00,30
=

∫ T

0
p0

(
∂λ

∂η00,30

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,40 we get,

Fη00,40 =



p0

(
∂λ

∂η00,40

)
Y0,0(t)

− p0

(
∂λ

∂η00,40

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,40
=

p4β4,0Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη00,40 = 0, and `η00,40 = 0, implies
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∂L

∂η00,40
=

∫ T

0
p0

(
∂λ

∂η00,40

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Proportion of the asymptomatic-aware population that receives the thera-

peutic vaccine, νt

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the parameter defining the proportion of the asymptomatic-aware population that receives

the therapeutic vaccine is defined by the following.

Fνt =



0

0

Y2,0(t)

−Y2,0(t)

0

0


, Gνt = 0, and `νt = 0,

implies,

∂L

∂νt
=

∫ T

0
Y2,0(t)(Λ2,0(t)− Λ2,1(t))dt.

Parameters related to the rate at which asymptomatic-unaware individuals

become aware, σ and ξ

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equa-

tions for the rate at which an asymptomatic-unaware individual becomes aware are evaluated

for both the screening rate, σ, along with the true-positive rate of screening, ξ.
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For σ we get,

Fσ =



0

ξY1,0(t)

−ξY1,0(t)

0

0

0


, Gσ = 0, and `σ = 0,

implies,

∂L

∂σ
=

∫ T

0
ξY1,0(t)(Λ1,0(t)− Λ2,0(t))dt.

For ξ we get,

Fξ =



0

σY1,0(t)

−σY1,0(t)

0

0

0


, Gξ = 0, and `ξ = 0,

implies,

∂L

∂ξ
=

∫ T

0
σY1,0(t)(Λ1,0(t)− Λ2,0(t))dt.

Total initial population, Y0

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the total initial population is defined by the following.
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FY0 =



−
(
1−

∑i=3
i=1 ρi

)
µ

−ρ1µ

−ρ2µ

0

−ρ3µ

0


,

GY0 =



−(1− φ0)

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0


, and `Y0 = 0,

implies,

∂L

∂Y0
=

∫ T

0
−µ
((

1−
1=3∑
i=1

ρi
)
Λ0,0(t) + ρ1Λ1,0(t) + ρ2Λ2,0(t) + ρ3Λ3,0(t)

)
dt− (1− φ0)Λ0,0(0)

− φ0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Seroprevalence of the infected population, φ0

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the seroprevalence of the infected population is defined by the following.

Fφ0 =0, Gφ0 =



Y0

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0


, and `φ0 = 0,
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implies,

∂L

∂φ0
= Y0Λ0,0(0)− Y0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Distribution of disease-related immigration, ρi

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equations

for the parameters associated with the distribution of disease-related immigration is evaluated

for each of the respective classes.

For ρ1 we get,

Fρ1 =



µY0

−µY0

0

0

0

0


, Gρ1 = 0, and `ρ1 = 0,

implies,

∂L

∂ρ1
=

∫ 20

0
µY0(Λ0,0(t)− Λ1,0(t))dt.

For ρ2 we get,

Fρ2 =



µY0

0

−µY0

0

0

0


, Gρ2 = 0, and `ρ2 = 0,

implies,
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∂L

∂ρ2
=

∫ T

0
µY0(Λ0,0(t)− Λ2,0(t))dt.

For ρ3 we get,

Fρ3 =



µY0

0

0

0

−µY0

0


, Gρ3 = 0, and `ρ3 = 0,

implies,

∂L

∂ρ3
=

∫ 20

0
µY0(Λ0,0(t)− Λ3,0(t))dt.

Average yearly medical expenses for each class, ci

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equa-

tions for the average yearly medical expenses is evaluated for each of the population classes.

For c0 we get,

Fc0 =0, Gc0 = 0, and `c0 = αY0,0(t)e−rt,

implies,

∂L

∂c0
=

∫ T

0
αY0,0(t)e−rtdt.

For c1 we get,

Fc1 =0, Gc1 = 0, and `c1 = αY1,0(t)e−rt,

implies,
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∂L

∂c1
=

∫ T

0
αY1,0(t)e−rtdt.

For c2 we get,

Fc2 =0, Gc2 = 0, and `c2 = α(Y2,0(t) + Y2,1(t))e−rt,

implies,

∂L

∂c2
=

∫ T

0
α(Y2,0(t) + Y2,1(t))e−rtdt.

For c3 we get,

Fc3 =0, Gc3 = 0, and `c3 = αY3,0(t)e−rt,

implies

∂L

∂c3
=

∫ T

0
αY3,0(t)e−rtdt.

For c4 we get,

Fc4 =0, Gc4 = 0, and `c4 = αY4,0(t)e−rt,

implies,

∂L

∂c4
=

∫ T

0
αY4,0(t)e−rtdt.

QALYs, qi

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equa-

tions for QALYs is evaluated for each of the population classes.
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For q0 we get,

Fq0 =0, Gq0 = 0, and `q0 = (α− 1)Y0,0(t)e−rt,

implies,

∂L

∂q0
=

∫ T

0
(α− 1)Y0,0(t)e−rtdt.

For q1 we get,

Fq1 =0, Gq1 = 0, and `q1 = (α− 1)Y1,0(t)e−rt,

implies,

∂L

∂q1
=

∫ T

0
(α− 1)Y1,0(t)e−rtdt.

For q2 we get,

Fq2 =0, Gq2 = 0, and `q2 = (α− 1)(Y2,0(t) + Y2,1(t))e−rt,

implies,

∂L

∂q2
=

∫ T

0
(α− 1)(Y2,0(t) + Y2,1(t))e−rtdt.

For q3 we get,

Fq3 =0, Gq3 = 0, and `q3 = (α− 1)Y3,0(t)e−rt,

implies,
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∂L

∂q3
=

∫ T

0
(α− 1)Y3,0(t)e−rtdt.

For q4 we get,

Fq4 =0, Gq4 = 0, and `q4 = (α− 1)Y4,0(t)e−rt,

implies,

∂L

∂q4
=

∫ T

0
(α− 1)Y4,0(t)e−rtdt.

Direct cost for the therapeutic vaccine, κt

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the direct cost for the therapeutic vaccine is defined by the following.

Fα =0, Gα = 0, and

`α = ανtY2,0(t)e−rt,

implies,

∂L

∂α
=

∫ T

0
ανtY2,0(t)e−rtdt.

Annual discount rate, r

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equation

for the annual discount rate is defined by the following.

Fr =0, Gr = 0, and

`r = −t
(
α
(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rt,
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implies,

∂L

∂r
=

∫ T

0
−t
(
α
(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rtdt.

Weight for combining objectives for optimization, α

For the HIV infectious disease model, with the therapeutic vaccine only, the sensitivity equa-

tion for the weight introduced to evaluate the multi-objective optimization is defined by the

following.

Fα =0, Gα = 0, and

`α =
(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t) +

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rt,

implies,

∂L

∂α
=

∫ T

0

(
κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t) +
i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rtdt.

C.3 Preventative Vaccine Program

For the model with the preventative vaccine only we have the following system of ordinary

differential equations

266



dY0,0(t)

dt
=(1−

3∑
i=1

ρi)µY0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t)

dY0,1(t)

dt
=νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

dY1,0(t)

dt
=ρ1µY0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t)

dY1,1(t)

dt
=νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t)

dY2,0(t)

dt
=ρ2µY0 + σξ(Y1,0(t) + Y1,1(t))− (µ2,0 + µ)Y2,0(t)

dY3,0(t)

dt
=ρ3µY0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

and λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

, along with

the initial state

Y0,0(0) =(1− φ0)Y0

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4

Yi,1(0) =0 for i = 0, 1

and the corresponding payoff functional

L(T ) =

∫ T

0

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)

− (1− α)
( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rtdt.

In all, we are considering 49 parameters for the model without an intervention.

Θ = {µ, µ1,0, µ1,1, µ2,0, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β1,1, β2,0, β3,0, β4,0, . . .

. . . , η00,10, η00,11, η00,20, η00,30, η00,40, η01,10, η01,11, η01,20, η01,30, η01,40, . . .

. . . , ε, νp, ω, σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, r, α, κp}
To set up the sensitivity equations for each of the 49 parameters, we’ll first present the vectors
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using the notation we introduced in the chapter 6.

F (Ẏ , Y,Θ) =

Ẏ0,0(t) + (νp + µ+ p0λ(t))Y0,0(t)− ωY0,1(t)− (1−
∑i=3

i=1 ρi)µY0

Ẏ0,1(t)− νpY0,0(t) + (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (νp + σξ + µ1,0 + µ)Y1,0(t)− ωY1,1(t)− ρ1µY0

Ẏ1,1(t)− p0(1− ε)λν(t)Y0,1(t)− νpY1,0(t) + (σξ + ω + µ1,1 + µ)Y1,1(t)

Ẏ2,0(t)− σξ(Y1,0(t) + Y1,1(t)) + (µ2,0 + µ)Y2,0(t)− ρ2µY0

Ẏ3,0(t)− µ1,0Y1,0(t)− µ1,1Y1,1(t)− µ2,0Y2,0(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)



G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y0,1(0)

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y1,1(0)

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1 − α)

( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rt

Then, by the adjoint variable method, the sensitivity equations are defined by,

∂L

∂ϑi
=

∫ 20

0

(
`ϑi + ΛᵀFϑi

)
dt+ Λᵀ

∣∣∣
t=0

Gϑi

where Λᵀ = [Λ0,0,Λ0,1,Λ1,0,Λ1,1,Λ2,0,Λ3,0,Λ4,0]. Thus, in defining the sensitivity equations for

each of the parameters in Θ we will have to evaluate Fϑi , Gϑi and `ϑi .

Average non-disease related death rate, µ

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equation

for the non-disease related death rate is defined by the following.
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Fµ =



Y0,0(t)− (1−
∑i=3

i=1 ρi)Y0

Y0,1(t)

Y1,0(t)− ρ1Y0

Y1,1(t)

Y2,0(t)− ρ2Y0

Y3,0(t)− ρ3Y0

Y4,0(t)


, Gµ = 0, and `µ = 0,

implies,

∂L

∂µ
=

∫ T

0

[
Λ0,0(t)(Y0,0(t)− (1−

i=3∑
i=1

ρi)Y0) + Λ0,1(t)Y0,1(t)

+ Λ1,0(t)(Y1,0(t)− ρ1Y0) + Λ1,1(t)Y1,1(t) + Λ2,0(t)(Y2,0(t)− ρ2Y0)

+ Λ3,0(t)(Y3,0(t)− ρ3Y0) + Λ4,0(t)Y4,0(t))
]
dt.

Disease related transition rates, µi,0

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tion for the rate at which an infected individual transitions out of each of the disease classes

are each evaluated.

For µ1,0, we get,

Fµ1,0 =



0

0

Y1,0(t)

0

0

−Y1,0(t)

0


,
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Gµ1,0 =
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

1/µ2,0 + 1/µ3,0 + 1/µ4,0

0

−1/µ2,0

−1/µ3,0

−1/µ4,0


, and

`µ1,0 = 0,

implies,

∂L

∂µ1,0
=

∫ T

0
Y1,0(t)(Λ1,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ2,0 + 1/µ3,0 + 1/µ4,0)Λ1,0(0)

− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ1,1 we get,

Fµ1,1 =



0

0

0

Y1,1(t)

0

−Y1,1(t)

0


, Gµ1,1 = 0, and `µ1,1 = 0,

implies,

∂L

∂µ1,1
=

∫ T

0
Y1,1(t)(Λ1,1(t)− Λ3,0(t))dt.
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For µ2,0 we get,

Fµ2,0 =



0

0

0

0

Y2,0(t)

−Y2,0(t)

0


,

Gµ2,0 =
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

−1/µ1,0

0

1/µ1,0 + 1/µ3,0 + 1/µ4,0

−1/µ3,0

−1/µ4,0


, and

`µ2,0 = 0,

implies,

∂L

∂µ2,0
=

∫ T

0
Y2,0(t)(Λ2,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ3,0 + 1/µ4,0)Λ2,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ3,0 we get,

Fµ3,0 =



0

0

0

0

0

Y3,0(t)

−Y3,0(t)


,
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Gµ3,0 =
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

−1/µ1,0

0

−1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ4,0

−1/µ4,0


and

`µ3,0 = 0,

implies,

∂L

∂µ3,0
=

∫ T

0
Y3,0(t)(Λ3,0(t)− Λ4,0(t))dt

+
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ4,0)Λ3,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ4,0 we get,

Fµ4,0 =



0

0

0

0

0

0

Y4,0(t)


,

Gµ4,0 =
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

−1/µ1,0

0

−1/µ2,0

−1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0


, and

`µ4,0 = 0,
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implies,

∂L

∂µ4,0
=

∫ T

0
Y4,0(t)Λ4,0(t)dt

+
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ3,0)Λ4,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)
)
.

Average number of partners an individual will have in a year, for each pop-

ulation class, pi

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tion for the average number of partners an individual, with disease status i, will have within a

year are evaluated for each population classes.

For p0 we get,

Fp0 =



Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
(1− ε)Y0,0(t)

(
λν(t) + p0

[
∂λν
∂p0

])
− Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
− (1− ε)Y0,0(t)

(
λν(t) + p0

[
∂λν
∂p0

])
0

0

0


with

∂λ

∂p0
=
−(Y0,0(t) + Y0,1(t))

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)(∑i=4

i=0

∑j=1
j=0 piYi,0(t)

)2

and
∂λν
∂p0

=
−(Y0,0(t) + Y0,1(t))

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)(∑i=4

i=0

∑j=1
j=0 piYi,0(t)

)2 ,

Gp0 = 0, and `p0 = 0, implies
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∂L

∂p0
=

∫ T

0
Y0,0(t)(Λ0,0(t)− Λ1,0(t))

(
λ(t) + p0

[
∂λ

∂p0

])
+ (1− ε)Y0,1(t)(Λ0,1(t)− Λ1,1(t))

(
λν(t) + p0

[
∂λν
∂p0

])
dt.

For p1 we get,

Fp1 =



p0

(
∂λ

∂p1

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p1

)
Y0,1(t)

− p0

(
∂λ

∂p1

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p1

)
Y0,1(t)

0

0

0


with

∂λ

∂p1
=

(β1,0η00,10Y1,0(t) + β1,1η00,11Y1,1(t))
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

−
(Y1,0(t) + Y1,1(t))

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p1

=
(β1,0η01,10Y1,0(t) + β1,1η01,11Y1,1(t))

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

−
(Y1,0(t) + Y1,1(t))

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp1 = 0, and `p1 = 0, implies

∂L

∂p1
=

∫ T

0
p0

[(
∂λ

∂p1

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p1

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.
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For p2 we get,

Fp2 =



p0

(
∂λ

∂p2

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p2

)
Y0,1(t)

− p0

(
∂λ

∂p2

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p2

)
Y0,1(t)

0

0

0


with

∂λ

∂p2
=
β2,0η00,20Y2,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y2,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p2

=
β2,0η01,20Y2,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y2,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp2 = 0, and `p2 = 0, implies

∂L

∂p2
=

∫ T

0
p0

[(
∂λ

∂p2

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p2

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.
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For p3 we get,

Fp3 =



p0

(
∂λ

∂p3

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p3

)
Y0,1(t)

− p0

(
∂λ

∂p3

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p3

)
Y0,1(t)

0

0

0


with

∂λ

∂p3
=
β3,0η00,30Y3,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y3,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p3

=
β3,0η01,30Y3,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y3,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp3 = 0, and `p3 = 0, implies

∂L

∂p3
=

∫ T

0
p0

[(
∂λ

∂p3

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p3

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.
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For p4 we get,

Fp4 =



p0

(
∂λ

∂p4

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p4

)
Y0,1(t)

− p0

(
∂λ

∂p4

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p4

)
Y0,1(t)

0

0

0


with

∂λ

∂p4
=
β4,0η00,40Y4,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y4,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p4

=
β4,0η01,40Y4,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y4,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp4 = 0, and `p4 = 0, implies

∂L

∂p4
=

∫ T

0
p0

[(
∂λ

∂p4

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p4

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.

Infectivity rate for each of the infectious classes, βi,0

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tion for the infectivity rates are evaluated for each of the infectious classes.
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For β1,0 we get,

Fβ1,0 =



p0

(
∂λ

∂β1,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β1,0

)
Y0,1(t)

− p0

(
∂λ

∂β1,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β1,0

)
Y0,1(t)

0

0

0


with

∂λ

∂β1,0
=

p1η00,10Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β1,0

=
p1η01,10Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ1,0 = 0, and `β1,0 = 0, implies

∂L

∂β1,0
=

∫ T

0
p0

[(
∂λ

∂β1,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β1,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.

For β1,1 we get,

Fβ1,1 =



p0

(
∂λ

∂β1,1

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β1,1

)
Y0,1(t)

− p0

(
∂λ

∂β1,1

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β1,1

)
Y0,1(t)

0

0

0


with

∂λ

∂β1,1
=

p1η00,11Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β1,1

=
p1η01,11Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,
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Gβ1,1 = 0, and `β1,1 = 0, implies

∂L

∂β1,1
=

∫ T

0
p0

[(
∂λ

∂β1,1

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β1,1

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.

For β2,0 we get,

Fβ2,0 =



p0

(
∂λ

∂β2,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β2,0

)
Y0,1(t)

− p0

(
∂λ

∂β2,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β2,0

)
Y0,1(t)

0

0

0


with

∂λ

∂β2,0
=

p2η00,20Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β2,0

=
p2η01,20Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ2,0 = 0, and `β2,0 = 0, implies

∂L

∂β2,0
=

∫ T

0
p0

[(
∂λ

∂β2,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β2,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.
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For β3,0 we get,

Fβ3,0 =



p0

(
∂λ

∂β3,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β3,0

)
Y0,1(t)

− p0

(
∂λ

∂β3,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β3,0

)
Y0,1(t)

0

0

0


with

∂λ

∂β3,0
=

p3η00,30Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β3,0

=
p3η01,30Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ3,0 = 0, and `β3,0 = 0, implies

∂L

∂β3,0
=

∫ T

0
p0

[(
∂λ

∂β3,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β3,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.
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For β4,0 we get,

Fβ4,0 =



p0

(
∂λ

∂β4,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β4,0

)
Y0,1(t)

− p0

(
∂λ

∂β4,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β4,0

)
Y0,1(t)

0

0

0


with

∂λ

∂β4,0
=

p4η00,40Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β4,0

=
p4η01,40Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ4,0 = 0, and `β4,0 = 0, implies

∂L

∂β4,0
=

∫ T

0
p0

[(
∂λ

∂β4,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β4,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.

Probability that a partnership between a susceptible-unvaccinated individual

and an infected individual is not protected by a condom, η00,i0

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tions for the probability that a partnership between a susceptible-unvaccinated individual with

an infected individual is not protected by a condom are evaluated for each of the infectious

classes.
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For η00,10 we get,

Fη00,10 =



p0

(
∂λ

∂η00,10

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,10

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,10
=

p1β1,0Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,10 = 0, and `η00,10 = 0, implies

∂L

∂η00,10
=

∫ T

0
p0

(
∂λ

∂η00,10

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,11 we get,

Fη00,11 =



p0

(
∂λ

∂η00,11

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,11

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,11
=

p1β1,1Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,11 = 0, and `η00,11 = 0, implies

∂L

∂η00,11
=

∫ T

0
p0

(
∂λ

∂η00,11

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η00,20 we get,

Fη00,20 =



p0

(
∂λ

∂η00,20

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,20

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,20
=

p2β2,0Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,20 = 0, and `η00,20 = 0, implies

∂L

∂η00,20
=

∫ T

0
p0

(
∂λ

∂η00,20

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,30 we get,

Fη00,30 =



p0

(
∂λ

∂η00,30

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,30

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,30
=

p3β3,0Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη00,30 = 0, and `η00,30 = 0, implies

∂L

∂η00,30
=

∫ T

0
p0

(
∂λ

∂η00,30

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η00,40 we get,

Fη00,40 =



p0

(
∂λ

∂η00,40

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,40

)
Y0,0(t)

0

0

0

0


with

∂λ

∂η00,40
=

p4β4,0Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη00,40 = 0, and `η00,40 = 0, implies

∂L

∂η00,40
=

∫ T

0
p0

(
∂λ

∂η00,40

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Probability that a partnership between a susceptible-vaccinated individual

and an infected individual is not protected by a condom, η01,i0

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tions for the probability that a partnership between a susceptible-vaccinated individual with an

infected individual is not protected by a condom are evaluated for each of the infectious classes.

For η01,10 we get,

Fη01,10 =



0

p0(1− ε)
(

∂λν
∂η01,10

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,10

)
Y0,0(t)

0

0

0


with

∂λ

∂η01,10
=

p1β1,0Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη01,10 = 0, and `η01,10 = 0, implies
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∂L

∂η01,10
=

∫ T

0
p0(1− ε)

(
∂λ

∂η01,10

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η01,11 we get,

Fη01,11 =



0

p0(1− ε)
(

∂λν
∂η01,11

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,11

)
Y0,0(t)

0

0

0


with

∂λ

∂η01,11
=

p1β1,1Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη01,11 = 0, and `η01,11 = 0, implies

∂L

∂η01,11
=

∫ T

0
p0

(
∂λ

∂η01,11

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η01,20 we get,

Fη01,20 =



0

p0(1− ε)
(

∂λν
∂η01,20

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,20

)
Y0,0(t)

0

0

0


with

∂λ

∂η01,20
=

p2β2,0Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη01,20 = 0, and `η01,20 = 0, implies
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∂L

∂η01,20
=

∫ T

0
p0

(
∂λ

∂η01,20

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η01,30 we get,

Fη01,30 =



0

p0(1− ε)
(

∂λν
∂η01,30

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,30

)
Y0,0(t)

0

0

0


with

∂λ

∂η01,30
=

p3β3,0Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη01,30 = 0, and `η01,30 = 0, implies

∂L

∂η01,30
=

∫ T

0
p0

(
∂λ

∂η01,30

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η01,40 we get,

Fη01,40 =



0

p0(1− ε)
(

∂λν
∂η01,40

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,40

)
Y0,0(t)

0

0

0


with

∂λ

∂η01,40
=

p4β4,0Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη01,40 = 0, and `η01,40 = 0, implies
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∂L

∂η01,40
=

∫ T

0
p0

(
∂λ

∂η01,40

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Efficacy of preventative vaccine, ε

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tion for the efficacy of the preventative vaccine is defined by the following.

Fε =



0

−p0λν(t)Y0,1(t)

0

p0λν(t)Y0,1(t)

0

0

0


, Gε = 0, and `ε = 0,

implies,

∂L

∂ε
=

∫ T

0
p0λν(t)Y0,1(t)(Λ1,1(t)− Λ0,1(t))dt.

Proportion of the susceptible and asymptomatic-unaware populations that

receives the preventative vaccine, νp

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tion for the parameter defining the proportion of the susceptible and asymptomatic-unaware

population that receives the preventative vaccine is defined by the following.
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Fνp =



Y0,0(t)

−Y0,0(t)

Y1,0(t)

−Y1,0(t)

0

0

0


, Gνp = 0, and `νp = 0,

implies,

∂L

∂νp
=

∫ T

0
Y0,0(t)(Λ0,0(t)− Λ0,1(t)) + Y1,0(t)(Λ1,0(t)− Λ1,1(t))dt.

Waning rate of the preventative vaccine, ω

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tion for the waning rate of the preventative vaccine is defined by the following.

Fω =



−Y0,1(t)

Y0,1(t)

−Y1,1(t)

Y1,1(t)

0

0

0


, Gω = 0, and `ω = 0,

implies,

∂L

∂ω
=

∫ T

0
Y0,1(t)(Λ0,1(t)− Λ0,0(t))Y1,1(t)(Λ1,1(t)− Λ1,0(t))dt.

Parameters related to the rate at which asymptomatic-unaware individuals

become aware, σ and ξ

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tions for the rate at which an asymptomatic-unaware individual becomes aware are evaluated
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for both the screening rate, σ, along with the true-positive rate of screening, ξ.

For σ we get,

Fσ =



0

0

ξY1,0(t)

ξY1,1(t)

−ξ(Y1,0(t) + Y1,1(t))

0

0


, Gσ = 0, and `σ = 0,

implies,

∂L

∂σ
=

∫ T

0
ξ

[
Y1,0(t)Λ1,0(t) + Y1,1(t)Λ1,1(t)− (Y1,0(t) + Y1,1(t))Λ2,0(t))

]
dt.

For ξ we get,

Fξ =



0

0

σY1,0(t)

σY1,1(t)

−σ(Y1,0(t) + Y1,1(t))

0

0


, Gξ = 0, and `ξ = 0,

implies,

∂L

∂ξ
=

∫ T

0
σ

[
Y1,0(t)Λ1,0(t) + Y1,1(t)Λ1,1(t)− (Y1,0(t) + Y1,1(t))Λ2,0(t))

]
dt.

Total initial population, Y0

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equation

for the total initial population is defined by the following.
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FY0 =



−
(
1−

∑i=3
i=1 ρi

)
µ

0

−ρ1µ

0

−ρ2µ

−ρ3µ

0


,

GY0 =



−(1− φ0)

0

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0



, and `Y0 = 0,

implies,

∂L

∂Y0
=

∫ T

0
−µ
((

1−
1=3∑
i=1

ρi
)
Λ0,0(t) + ρ1Λ1,0(t) + ρ2Λ2,0(t) + ρ3Λ3,0(t)

)
dt− (1− φ0)Λ0,0(0)

− φ0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Seroprevalence of the infected population, φ0

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equation

for the seroprevalence of the infected population is defined by the following.
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Fφ0 =0, Gφ0 =



Y0

0

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0



, and `φ0 = 0,

implies,

∂L

∂φ0
= Y0Λ0,0(0)− Y0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Distribution of disease-related immigration, ρi

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tions for the parameters associated with the distribution of disease-related immigration is eval-

uated for each of the respective classes.

For ρ1 we get,

Fρ1 =



µY0

0

−µY0

0

0

0

0


, Gρ1 = 0, and `ρ1 = 0,

implies,

∂L

∂ρ1
=

∫ 20

0
µY0(Λ0,0(t)− Λ1,0(t))dt.
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For ρ2 we get,

Fρ2 =



µY0

0

0

0

−µY0

0

0


, Gρ2 = 0, and `ρ2 = 0,

implies,

∂L

∂ρ2
=

∫ T

0
µY0(Λ0,0(t)− Λ2,0(t))dt.

For ρ3 we get,

Fρ3 =



µY0

0

0

0

0

−µY0

0


, Gρ3 = 0, and `ρ3 = 0,

implies,

∂L

∂ρ3
=

∫ 20

0
µY0(Λ0,0(t)− Λ3,0(t))dt.

Average yearly medical expenses for each class, ci

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tions for the average yearly medical expenses is evaluated for each of the population classes.
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For c0 we get,

Fc0 =0, Gc0 = 0, and `c0 = α(Y0,0(t) + Y0,1(t))e−rt,

implies,

∂L

∂c0
=

∫ T

0
α(Y0,0(t) + Y0,1(t))e−rtdt.

For c1 we get,

Fc1 =0, Gc1 = 0, and `c1 = α(Y1,0(t) + Y1,1(t))e−rt,

implies,

∂L

∂c1
=

∫ T

0
α(Y1,0(t) + Y1,1(t))e−rtdt.

For c2 we get,

Fc2 =0, Gc2 = 0, and `c2 = αY2,0(t)e−rt,

implies,

∂L

∂c2
=

∫ T

0
αY2,0(t)e−rtdt.

For c3 we get,

Fc3 =0, Gc3 = 0, and `c3 = αY3,0(t)e−rt,

implies

∂L

∂c3
=

∫ T

0
αY3,0(t)e−rtdt.
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For c4 we get,

Fc4 =0, Gc4 = 0, and `c4 = αY4,0(t)e−rt,

implies,

∂L

∂c4
=

∫ T

0
αY4,0(t)e−rtdt.

QALYs, qi

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tions for QALYs is evaluated for each of the population classes.

For q0 we get,

Fq0 =0, Gq0 = 0, and `q0 = (α− 1)(Y0,0(t) + Y0,1(t))e−rt,

implies,

∂L

∂q0
=

∫ T

0
(α− 1)(Y0,0(t) + Y0,1(t))e−rtdt.

For q1 we get,

Fq1 =0, Gq1 = 0, and `q1 = (α− 1)(Y1,0(t) + Y1,1(t))e−rt,

implies,

∂L

∂q1
=

∫ T

0
(α− 1)(Y1,0(t) + Y1,1(t))e−rtdt.

For q2 we get,

Fq2 =0, Gq2 = 0, and `q2 = (α− 1)Y2,0(t)e−rt,

implies,

294



∂L

∂q2
=

∫ T

0
(α− 1)Y2,0(t)e−rtdt.

For q3 we get,

Fq3 =0, Gq3 = 0, and `q3 = (α− 1)Y3,0(t)e−rt,

implies,

∂L

∂q3
=

∫ T

0
(α− 1)Y3,0(t)e−rtdt.

For q4 we get,

Fq4 =0, Gq4 = 0, and `q4 = (α− 1)Y4,0(t)e−rt,

implies,

∂L

∂q4
=

∫ T

0
(α− 1)Y4,0(t)e−rtdt.

Direct cost for the preventative vaccine, κp

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equation

for the direct cost for the preventative vaccine is defined by the following.

Fα =0, Gα = 0, and

`α = ανp(Y0,0(t) + Y1,0(t))e−rt,

implies,

∂L

∂α
=

∫ T

0
ανp(Y0,0(t) + Y1,0(t))e−rtdt.
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Annual discount rate, r

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equation

for the annual discount rate is defined by the following.

Fr =0, Gr = 0, and

`r = −t
[
α
(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
]
e−rt,

implies,

∂L

∂r
=

∫ T

0
−t
[
α
(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
]
e−rtdt.

Weight for combining objectives for optimization, α

For the HIV infectious disease model, with the preventative vaccine only, the sensitivity equa-

tion for the weight introduced to evaluate the multi-objective optimization is defined by the

following.

Fα =0, Gα = 0, and

`α =
(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t) +

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rt,

implies,

∂L

∂α
=

∫ T

0

(
κpνp(Y0,0(t) + Y1,0(t)) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t) +
i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rtdt.

C.4 Combined, Preventative and Therapeutic, Vaccine Strat-

egy

For the full model with both vaccinations, the preventative and therapeutic, we have the fol-

lowing system of ordinary differential equations
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dY0,0(t)

dt
=(1−

3∑
i=1

ρi)µY0 − (νp + µ+ p0λ(t))Y0,0(t) + ωY0,1(t)

dY0,1(t)

dt
=νpY0,0(t)− (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

dY1,0(t)

dt
=ρ1µY0 + p0λ(t)Y0,0(t)− (νp + σξ + µ1,0 + µ)Y1,0(t) + ωY1,1(t)

dY1,1(t)

dt
=νpY1,0(t) + p0(1− ε)λν(t)Y0,1(t)− (ω + σξ + µ1,1 + µ)Y1,1(t)

dY2,0(t)

dt
=ρ2µY0 + σξ(Y1,0(t) + Y1,1(t))− (νt + µ2,0 + µ)Y2,0(t)

dY2,1(t)

dt
=νtY2,0(t)− (µ2,1 + µ)Y2,1(t)

dY3,0(t)

dt
=ρ3µY0 +

i=2∑
i=1

j=1∑
j=0

µi,jYi,j(t)− (µ3,0 + µ)Y3,0(t)

dY4,0(t)

dt
=µ3,0Y3,0(t)− (µ4,0 + µ)Y4,0(t)

were λ(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

and λν(t) =

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)∑i=4

i=0

∑j=1
j=0 piYi,j(t)

, along with

the initial state

Y0,0(0) =(1− φ0)Y0

Yi,0(0) =
1/µi,0∑j=4
j=1 1/µj,0

φ0Y0, for i = 1, 2, 3, 4

Yi,1(0) =0 for i = 0, 1, 2

and the corresponding payoff functional

L(T ) =

∫ T

0

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)

− (1− α)
( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rtdt.

In all, we are considering 55 parameters for the model without an intervention.

Θ = {µ, µ1,0, µ1,1, µ2,0, µ2,1, µ3,0, µ4,0, p0, p1, p2, p3, p4, β1,0, β1,1, β2,0, β2,1, β3,0, β4,0, . . .

. . . , η00,10, η00,11, η00,20, η00,21, η00,30, η00,40, η01,10, η01,11, η01,20, η01,21, η01,30, η01,40, . . .
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. . . , ε, νp, νt, ω, σ, ξ, Y0, φ0, ρ1, ρ2, ρ3, c0, c1, c2, c3, c4, q0, q1, q2, q3, q4, r, α, κp, κt}
To set up the sensitivity equations for each of the 55 parameters, we’ll first present the vectors

using the notation we introduced in the chapter 6.

F (Ẏ , Y,Θ) =

Ẏ0,0(t) + (νp + µ+ p0λ(t))Y0,0(t)− ωY0,1(t)− (1−
∑i=3

i=1 ρi)µY0

Ẏ0,1(t)− νpY0,0(t) + (µ+ ω + p0(1− ε)λν(t))Y0,1(t)

Ẏ1,0(t)− p0λ(t)Y0,0(t) + (νp + σξ + µ1,0 + µ)Y1,0(t)− ωY1,1(t)− ρ1µY0

Ẏ1,1(t)− p0(1− ε)λν(t)Y0,1(t)− νpY1,0(t) + (σξ + ω + µ1,1 + µ)Y1,1(t)

Ẏ2,0(t)− σξ(Y1,0(t) + Y1,1(t)) + (µ2,0 + µ+ νt)Y2,0(t)− ρ2µY0

Ẏ2,1(t)− νtY2,0(t) + (µ2,1 + µ)Y2,1(t)

Ẏ3,0(t)− µ1,0Y1,0(t)− µ1,1Y1,1(t)− µ2,0Y2,0(t)− µ2,1Y2,1(t) + (µ3,0 + µ)Y3,0(t)− ρ3µY0

Ẏ4,0(t)− µ3,0Y3,0(t) + (µ4,0 + µ)Y4,0(t)



G(Y (0),Θ) =



Y0,0(0)− (1− φ0)Y0

Y0,1(0)

Y1,0(0)− φ0

(
1/µ1,0∑j=4
j=1 1/µj,0

)
Y0

Y1,1(0)

Y2,0(0)− φ0

(
1/µ2,0∑j=4
j=1 1/µj,0

)
Y0

Y2,1(0)

Y3,0(0)− φ0

(
1/µ3,0∑j=4
j=1 1/µj,0

)
Y0

Y4,0(0)− φ0

(
1/µ4,0∑j=4
j=1 1/µj,0

)
Y0



`(Y,Θ) =

[
α
(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)

− (1− α)
( i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)]
e−rt

Then, by the adjoint variable method, the sensitivity equations are defined by,

∂L

∂ϑi
=

∫ 20

0

(
`ϑi + ΛᵀFϑi

)
dt+ Λᵀ

∣∣∣
t=0

Gϑi
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where Λᵀ = [Λ0,0,Λ0,1,Λ1,0,Λ1,1,Λ2,0,Λ2,1,Λ3,0,Λ4,0]. Thus, in defining the sensitivity equations

for each of the parameters in Θ we will have to evaluate Fϑi , Gϑi and `ϑi .

Average non-disease related death rate, µ

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the non-disease related death rate is defined by the following.

Fµ =



Y0,0(t)− (1−
∑i=3

i=1 ρi)Y0

Y0,1(t)

Y1,0(t)− ρ1Y0

Y1,1(t)

Y2,0(t)− ρ2Y0

Y2,1(t)

Y3,0(t)− ρ3Y0

Y4,0(t)


, Gµ = 0, and `µ = 0,

implies,

∂L

∂µ
=

∫ T

0

[
Λ0,0(t)(Y0,0(t)− (1−

i=3∑
i=1

ρi)Y0) + Λ0,1(t)Y0,1(t)

+ Λ1,0(t)(Y1,0(t)− ρ1Y0) + Λ1,1(t)Y1,1(t) + Λ2,0(t)(Y2,0(t)− ρ2Y0)

+ Λ2,1(t)Y2,1(t) + Λ3,0(t)(Y3,0(t)− ρ3Y0) + Λ4,0(t)Y4,0(t))
]
dt.

Disease related transition rates, µi,0

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the rate at which an infected individual transitions out of each of the disease classes are each

evaluated.
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For µ1,0, we get,

Fµ1,0 =



0

0

Y1,0(t)

0

0

0

−Y1,0(t)

0


,

Gµ1,0 =
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

1/µ2,0 + 1/µ3,0 + 1/µ4,0

0

−1/µ2,0

0

−1/µ3,0

−1/µ4,0


, and

`µ1,0 = 0,

implies,

∂L

∂µ1,0
=

∫ T

0
Y1,0(t)(Λ1,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ1,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ2,0 + 1/µ3,0 + 1/µ4,0)Λ1,0(0)

− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.
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For µ1,1 we get,

Fµ1,1 =



0

0

0

Y1,1(t)

0

0

−Y1,1(t)

0


, Gµ1,1 = 0, and `µ1,1 = 0,

implies,

∂L

∂µ1,1
=

∫ T

0
Y1,1(t)(Λ1,1(t)− Λ3,0(t))dt.

For µ2,0 we get,

Fµ2,0 =



0

0

0

0

Y2,0(t)

0

−Y2,0(t)

0


,

Gµ2,0 =
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

−1/µ1,0

0

1/µ1,0 + 1/µ3,0 + 1/µ4,0

0

−1/µ3,0

−1/µ4,0


, and

`µ2,0 = 0,
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implies,

∂L

∂µ2,0
=

∫ T

0
Y2,0(t)(Λ2,0(t)− Λ3,0(t))dt

+
φ0Y0(1/µ2,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ3,0 + 1/µ4,0)Λ2,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ3,0)Λ3,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ2,1 we get,

Fµ2,1 =



0

0

0

0

0

Y2,1(t)

−Y2,1(t)

0


, Gµ2,1 = 0, and `µ2,1 = 0,

implies,

∂L

∂µ2,1
=

∫ T

0
Y2,1(t)(Λ2,1(t)− Λ3,0(t))dt.

For µ3,0 we get,

Fµ3,0 =



0

0

0

0

0

0

Y3,0(t)

−Y3,0(t)


,
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Gµ3,0 =
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

−1/µ1,0

0

−1/µ2,0

0

1/µ1,0 + 1/µ2,0 + 1/µ4,0

−1/µ4,0


and

`µ3,0 = 0,

implies,

∂L

∂µ3,0
=

∫ T

0
Y3,0(t)(Λ3,0(t)− Λ4,0(t))dt

+
φ0Y0(1/µ3,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ4,0)Λ3,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ4,0)Λ4,0(0)
)
.

For µ4,0 we get,

Fµ4,0 =



0

0

0

0

0

0

0

Y4,0(t)


,
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Gµ4,0 =
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2



0

0

−1/µ1,0

0

−1/µ2,0

0

−1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0


, and

`µ4,0 = 0,

implies,

∂L

∂µ4,0
=

∫ T

0
Y4,0(t)Λ4,0(t)dt

+
φ0Y0(1/µ4,0)2(

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)2((1/µ1,0 + 1/µ2,0 + 1/µ3,0)Λ4,0(0)

− (1/µ1,0)Λ1,0(0)− (1/µ2,0)Λ2,0(0)− (1/µ3,0)Λ3,0(0)
)
.

Average number of partners an individual will have in a year, for each pop-

ulation class, pi

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the average number of partners an individual, with disease status i, will have within a year are

evaluated for each population classes.
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For p0 we get,

Fp0 =



Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
(1− ε)Y0,0(t)

(
λν(t) + p0

[
∂λν
∂p0

])
− Y0,0(t)

(
λ(t) + p0

[
∂λ

∂p0

])
− (1− ε)Y0,0(t)

(
λν(t) + p0

[
∂λν
∂p0

])
0

0

0

0


with

∂λ

∂p0
=
−(Y0,0(t) + Y0,1(t))

∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)(∑i=4

i=0

∑j=1
j=0 piYi,0(t)

)2

and
∂λν
∂p0

=
−(Y0,0(t) + Y0,1(t))

∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)(∑i=4

i=0

∑j=1
j=0 piYi,0(t)

)2 ,

Gp0 = 0, and `p0 = 0, implies

∂L

∂p0
=

∫ T

0
Y0,0(t)(Λ0,0(t)− Λ1,0(t))

(
λ(t) + p0

[
∂λ

∂p0

])
+ (1− ε)Y0,1(t)(Λ0,1(t)− Λ1,1(t))

(
λν(t) + p0

[
∂λν
∂p0

])
dt.
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For p1 we get,

Fp1 =



p0

(
∂λ

∂p1

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p1

)
Y0,1(t)

− p0

(
∂λ

∂p1

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p1

)
Y0,1(t)

0

0

0

0


with

∂λ

∂p1
=

(β1,0η00,10Y1,0(t) + β1,1η00,11Y1,1(t))
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

−
(Y1,0(t) + Y1,1(t))

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p1

=
(β1,0η01,10Y1,0(t) + β1,1η01,11Y1,1(t))

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

−
(Y1,0(t) + Y1,1(t))

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp1 = 0, and `p1 = 0, implies

∂L

∂p1
=

∫ T

0
p0

[(
∂λ

∂p1

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p1

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.
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For p2 we get,

Fp2 =



p0

(
∂λ

∂p2

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p2

)
Y0,1(t)

− p0

(
∂λ

∂p2

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p2

)
Y0,1(t)

0

0

0

0


with

∂λ

∂p2
=

(β2,0η00,20Y2,0(t) + β2,1η00,21Y2,1(t))
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

−
(Y2,0(t) + Y2,1(t))

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p2

=
(β2,0η01,20Y2,0(t) + β2,1η01,21Y2,1(t))

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

−
(Y2,0(t) + Y2,1(t))

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp2 = 0, and `p2 = 0, implies

∂L

∂p2
=

∫ T

0
p0

[(
∂λ

∂p2

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p2

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.
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For p3 we get,

Fp3 =



p0

(
∂λ

∂p3

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p3

)
Y0,1(t)

− p0

(
∂λ

∂p3

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p3

)
Y0,1(t)

0

0

0

0


with

∂λ

∂p3
=
β3,0η00,30Y3,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y3,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p3

=
β3,0η01,30Y3,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y3,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp3 = 0, and `p3 = 0, implies

∂L

∂p3
=

∫ T

0
p0

[(
∂λ

∂p3

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p3

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.
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For p4 we get,

Fp4 =



p0

(
∂λ

∂p4

)
Y0,0(t)

p0(1− ε)
(
∂λν

∂p4

)
Y0,1(t)

− p0

(
∂λ

∂p4

)
Y0,0(t)

− p0(1− ε)
(
∂λν

∂p4

)
Y0,1(t)

0

0

0

0


with

∂λ

∂p4
=
β4,0η00,40Y4,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y4,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη00,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

and
∂λν
∂p4

=
β4,0η01,40Y4,0(t)

(∑i=4
i=0

∑j=1
j=0 piYi,j(t)

)
− Y4,0(t)

(∑i=4
i=1

∑j=1
j=0 piβi,jη01,ijYi,j(t)

)
(∑i=4

i=0

∑j=1
j=0 piYi,j(t)

)2

Gp4 = 0, and `p4 = 0, implies

∂L

∂p4
=

∫ T

0
p0

[(
∂λ

∂p4

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t)) + (1− ε)

(
∂λν
∂p4

)
Y0,1(t)(Λ0,1(t)− Λ1,1(t))

]
dt.

Infectivity rate for each of the infectious classes, βi,0

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the infectivity rates are evaluated for each of the infectious classes.
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For β1,0 we get,

Fβ1,0 =



p0

(
∂λ

∂β1,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β1,0

)
Y0,1(t)

− p0

(
∂λ

∂β1,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β1,0

)
Y0,1(t)

0

0

0

0


with

∂λ

∂β1,0
=

p1η00,10Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β1,0

=
p1η01,10Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ1,0 = 0, and `β1,0 = 0, implies

∂L

∂β1,0
=

∫ T

0
p0

[(
∂λ

∂β1,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β1,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.
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For β1,1 we get,

Fβ1,1 =



p0

(
∂λ

∂β1,1

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β1,1

)
Y0,1(t)

− p0

(
∂λ

∂β1,1

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β1,1

)
Y0,1(t)

0

0

0

0


with

∂λ

∂β1,1
=

p1η00,11Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β1,1

=
p1η01,11Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ1,1 = 0, and `β1,1 = 0, implies

∂L

∂β1,1
=

∫ T

0
p0

[(
∂λ

∂β1,1

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β1,1

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.
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For β2,0 we get,

Fβ2,0 =



p0

(
∂λ

∂β2,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β2,0

)
Y0,1(t)

− p0

(
∂λ

∂β2,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β2,0

)
Y0,1(t)

0

0

0

0


with

∂λ

∂β2,0
=

p2η00,20Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β2,0

=
p2η01,20Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ2,0 = 0, and `β2,0 = 0, implies

∂L

∂β2,0
=

∫ T

0
p0

[(
∂λ

∂β2,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β2,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.
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For β2,1 we get,

Fβ2,1 =



p0

(
∂λ

∂β2,1

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β2,1

)
Y0,1(t)

− p0

(
∂λ

∂β2,1

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β2,1

)
Y0,1(t)

0

0

0

0


with

∂λ

∂β2,1
=

p2η00,21Y2,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β2,1

=
p2η01,21Y2,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ2,1 = 0, and `β2,1 = 0, implies

∂L

∂β2,1
=

∫ T

0
p0

[(
∂λ

∂β2,1

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β2,1

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.
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For β3,0 we get,

Fβ3,0 =



p0

(
∂λ

∂β3,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β3,0

)
Y0,1(t)

− p0

(
∂λ

∂β3,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β3,0

)
Y0,1(t)

0

0

0

0


with

∂λ

∂β3,0
=

p3η00,30Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β3,0

=
p3η01,30Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ3,0 = 0, and `β3,0 = 0, implies

∂L

∂β3,0
=

∫ T

0
p0

[(
∂λ

∂β3,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β3,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.
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For β4,0 we get,

Fβ4,0 =



p0

(
∂λ

∂β4,0

)
Y0,0(t)

p0(1− ε)
(
∂λν
∂β4,0

)
Y0,1(t)

− p0

(
∂λ

∂β4,0

)
Y0,0(t)

− p0(1− ε)
(
∂λν
∂β4,0

)
Y0,1(t)

0

0

0

0


with

∂λ

∂β4,0
=

p4η00,40Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

and
∂λν
∂β4,0

=
p4η01,40Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gβ4,0 = 0, and `β4,0 = 0, implies

∂L

∂β4,0
=

∫ T

0
p0

[(
∂λ

∂β4,0

)
Y0,0(t)(Λ0,0(t)−Λ1,0(t))+(1−ε)

(
∂λν
∂β4,0

)
Y0,1(t)(Λ0,1(t)−Λ1,1(t))

]
dt.

Probability that a partnership between a susceptible-unvaccinated individual

and an infected individual is not protected by a condom, η00,i0

For the HIV infectious disease model, with the combined strategy, the sensitivity equations

for the probability that a partnership between a susceptible-unvaccinated individual with an

infected individual is not protected by a condom are evaluated for each of the infectious classes.
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For η00,10 we get,

Fη00,10 =



p0

(
∂λ

∂η00,10

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,10

)
Y0,0(t)

0

0

0

0

0



with
∂λ

∂η00,10
=

p1β1,0Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,10 = 0, and `η00,10 = 0, implies

∂L

∂η00,10
=

∫ T

0
p0

(
∂λ

∂η00,10

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,11 we get,

Fη00,11 =



p0

(
∂λ

∂η00,11

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,11

)
Y0,0(t)

0

0

0

0

0



with
∂λ

∂η00,11
=

p1β1,1Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,11 = 0, and `η00,11 = 0, implies

∂L

∂η00,11
=

∫ T

0
p0

(
∂λ

∂η00,11

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η00,20 we get,

Fη00,20 =



p0

(
∂λ

∂η00,20

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,20

)
Y0,0(t)

0

0

0

0

0



with
∂λ

∂η00,20
=

p2β2,0Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,20 = 0, and `η00,20 = 0, implies

∂L

∂η00,20
=

∫ T

0
p0

(
∂λ

∂η00,20

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,21 we get,

Fη00,21 =



p0

(
∂λ

∂η00,21

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,21

)
Y0,0(t)

0

0

0

0

0



with
∂λ

∂η00,21
=

p2β2,1Y2,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη00,21 = 0, and `η00,21 = 0, implies

∂L

∂η00,21
=

∫ T

0
p0

(
∂λ

∂η00,21

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η00,30 we get,

Fη00,30 =



p0

(
∂λ

∂η00,30

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,30

)
Y0,0(t)

0

0

0

0

0



with
∂λ

∂η00,30
=

p3β3,0Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη00,30 = 0, and `η00,30 = 0, implies

∂L

∂η00,30
=

∫ T

0
p0

(
∂λ

∂η00,30

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η00,40 we get,

Fη00,40 =



p0

(
∂λ

∂η00,40

)
Y0,0(t)

0

− p0

(
∂λ

∂η00,40

)
Y0,0(t)

0

0

0

0

0



with
∂λ

∂η00,40
=

p4β4,0Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη00,40 = 0, and `η00,40 = 0, implies

∂L

∂η00,40
=

∫ T

0
p0

(
∂λ

∂η00,40

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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Probability that a partnership between a susceptible-vaccinated individual

and an infected individual is not protected by a condom, η01,i0

For the HIV infectious disease model, with the combined strategy, the sensitivity equations for

the probability that a partnership between a susceptible-vaccinated individual with an infected

individual is not protected by a condom are evaluated for each of the infectious classes.

For η01,10 we get,

Fη01,10 =



0

p0(1− ε)
(

∂λν
∂η01,10

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,10

)
Y0,0(t)

0

0

0

0



with
∂λ

∂η01,10
=

p1β1,0Y1,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη01,10 = 0, and `η01,10 = 0, implies

∂L

∂η01,10
=

∫ T

0
p0(1− ε)

(
∂λ

∂η01,10

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η01,11 we get,

Fη01,11 =



0

p0(1− ε)
(

∂λν
∂η01,11

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,11

)
Y0,0(t)

0

0

0

0



with
∂λ

∂η01,11
=

p1β1,1Y1,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη01,11 = 0, and `η01,11 = 0, implies

∂L

∂η01,11
=

∫ T

0
p0

(
∂λ

∂η01,11

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η01,20 we get,

Fη01,20 =



0

p0(1− ε)
(

∂λν
∂η01,20

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,20

)
Y0,0(t)

0

0

0

0



with
∂λ

∂η01,20
=

p2β2,0Y2,0(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη01,20 = 0, and `η01,20 = 0, implies

∂L

∂η01,20
=

∫ T

0
p0

(
∂λ

∂η01,20

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η01,21 we get,

Fη01,21 =



0

p0(1− ε)
(

∂λν
∂η01,21

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,21

)
Y0,0(t)

0

0

0

0



with
∂λ

∂η01,21
=

p2β2,1Y2,1(t)∑i=4
i=0

∑j=1
j=0 piYi,j(t)

,

Gη01,21 = 0, and `η01,21 = 0, implies

∂L

∂η01,21
=

∫ T

0
p0

(
∂λ

∂η01,21

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

For η01,30 we get,

Fη01,30 =



0

p0(1− ε)
(

∂λν
∂η01,30

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,30

)
Y0,0(t)

0

0

0

0



with
∂λ

∂η01,30
=

p3β3,0Y3,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη01,30 = 0, and `η01,30 = 0, implies

∂L

∂η01,30
=

∫ T

0
p0

(
∂λ

∂η01,30

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.
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For η01,40 we get,

Fη01,40 =



0

p0(1− ε)
(

∂λν
∂η01,40

)
Y0,0(t)

0

− p0(1− ε)
(

∂λν
∂η01,40

)
Y0,0(t)

0

0

0

0



with
∂λ

∂η01,40
=

p4β4,0Y4,0(t)∑i=4
i=0

∑j=1
j=0 piYi,0(t)

Gη01,40 = 0, and `η01,40 = 0, implies

∂L

∂η01,40
=

∫ T

0
p0

(
∂λ

∂η01,40

)
Y0,0(t)(Λ0,0(t)− Λ1,0(t))dt.

Efficacy of preventative vaccine, ε

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the efficacy of the preventative vaccine is defined by the following.

Fε =



0

−p0λν(t)Y0,1(t)

0

p0λν(t)Y0,1(t)

0

0

0

0


, Gε = 0, and `ε = 0,

implies,

∂L

∂ε
=

∫ T

0
p0λν(t)Y0,1(t)(Λ1,1(t)− Λ0,1(t))dt.
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Proportion of the susceptible and asymptomatic-unaware populations that

receives the preventative vaccine, νp

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the parameter defining the proportion of the susceptible and asymptomatic-unaware population

that receives the preventative vaccine is defined by the following.

Fνp =



Y0,0(t)

−Y0,0(t)

Y1,0(t)

−Y1,0(t)

0

0

0

0


, Gνp = 0, and `νp = 0,

implies,

∂L

∂νp
=

∫ T

0
Y0,0(t)(Λ0,0(t)− Λ0,1(t)) + Y1,0(t)(Λ1,0(t)− Λ1,1(t))dt.

Waning rate of the preventative vaccine, ω

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the waning rate of the preventative vaccine is defined by the following.

Fω =



−Y0,1(t)

Y0,1(t)

−Y1,1(t)

Y1,1(t)

0

0

0

0


, Gω = 0, and `ω = 0,

implies,
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∂L

∂ω
=

∫ T

0
Y0,1(t)(Λ0,1(t)− Λ0,0(t))Y1,1(t)(Λ1,1(t)− Λ1,0(t))dt.

Proportion of the asymptomatic-aware population that receives the thera-

peutic vaccine, νt

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the parameter defining the proportion of the asymptomatic-aware population that receives the

therapeutic vaccine is defined by the following.

Fνt =



0

0

0

0

Y2,0(t)

−Y2,0(t)

0

0


, Gνt = 0, and `νt = 0,

implies,

∂L

∂νt
=

∫ T

0
Y2,0(t)(Λ2,0(t)− Λ2,1(t))dt.

Parameters related to the rate at which asymptomatic-unaware individuals

become aware, σ and ξ

For the HIV infectious disease model, with the combined strategy, the sensitivity equations for

the rate at which an asymptomatic-unaware individual becomes aware are evaluated for both

the screening rate, σ, along with the true-positive rate of screening, ξ.

324



For σ we get,

Fσ =



0

0

ξY1,0(t)

ξY1,1(t)

−ξ(Y1,0(t) + Y1,1(t))

0

0

0


, Gσ = 0, and `σ = 0,

implies,

∂L

∂σ
=

∫ T

0
ξ

[
Y1,0(t)Λ1,0(t) + Y1,1(t)Λ1,1(t)− (Y1,0(t) + Y1,1(t))Λ2,0(t))

]
dt.

For ξ we get,

Fξ =



0

0

σY1,0(t)

σY1,1(t)

−σ(Y1,0(t) + Y1,1(t))

0

0

0


, Gξ = 0, and `ξ = 0,

implies,

∂L

∂ξ
=

∫ T

0
σ

[
Y1,0(t)Λ1,0(t) + Y1,1(t)Λ1,1(t)− (Y1,0(t) + Y1,1(t))Λ2,0(t))

]
dt.

Total initial population, Y0

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the total initial population is defined by the following.
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FY0 =



−
(
1−

∑i=3
i=1 ρi

)
µ

0

−ρ1µ

0

−ρ2µ

0

−ρ3µ

0


,

GY0 =



−(1− φ0)

0

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
φ0



, and `Y0 = 0,

implies,

∂L

∂Y0
=

∫ T

0
−µ
((

1−
1=3∑
i=1

ρi
)
Λ0,0(t) + ρ1Λ1,0(t) + ρ2Λ2,0(t) + ρ3Λ3,0(t)

)
dt− (1− φ0)Λ0,0(0)

− φ0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Seroprevalence of the infected population, φ0

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the seroprevalence of the infected population is defined by the following.
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Fφ0 =0, Gφ0 =



Y0

0

−
( 1/µ1,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

0

−
( 1/µ2,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

0

−
( 1/µ3,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0

−
( 1/µ4,0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

)
Y0



, and `φ0 = 0,

implies,

∂L

∂φ0
= Y0Λ0,0(0)− Y0

1/µ1,0 + 1/µ2,0 + 1/µ3,0 + 1/µ4,0

(
(1/µ1,0)Λ1,0(0) + (1/µ2,0)Λ2,0(0)

+ (1/µ3,0)Λ3,0(0) + (1/µ4,0)Λ4,0(0)
)
.

Distribution of disease-related immigration, ρi

For the HIV infectious disease model, with the combined strategy, the sensitivity equations for

the parameters associated with the distribution of disease-related immigration is evaluated for

each of the respective classes.

For ρ1 we get,

Fρ1 =



µY0

0

−µY0

0

0

0

0

0


, Gρ1 = 0, and `ρ1 = 0,

implies,
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∂L

∂ρ1
=

∫ 20

0
µY0(Λ0,0(t)− Λ1,0(t))dt.

For ρ2 we get,

Fρ2 =



µY0

0

0

0

−µY0

0

0

0


, Gρ2 = 0, and `ρ2 = 0,

implies,

∂L

∂ρ2
=

∫ T

0
µY0(Λ0,0(t)− Λ2,0(t))dt.

For ρ3 we get,

Fρ3 =



µY0

0

0

0

0

0

−µY0

0


, Gρ3 = 0, and `ρ3 = 0,

implies,

∂L

∂ρ3
=

∫ 20

0
µY0(Λ0,0(t)− Λ3,0(t))dt.
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Average yearly medical expenses for each class, ci

For the HIV infectious disease model, with the combined strategy, the sensitivity equations for

the average yearly medical expenses is evaluated for each of the population classes.

For c0 we get,

Fc0 =0, Gc0 = 0, and `c0 = α(Y0,0(t) + Y0,1(t))e−rt,

implies,

∂L

∂c0
=

∫ T

0
α(Y0,0(t) + Y0,1(t))e−rtdt.

For c1 we get,

Fc1 =0, Gc1 = 0, and `c1 = α(Y1,0(t) + Y1,1(t))e−rt,

implies,

∂L

∂c1
=

∫ T

0
α(Y1,0(t) + Y1,1(t))e−rtdt.

For c2 we get,

Fc2 =0, Gc2 = 0, and `c2 = α(Y2,0(t) + Y2,1(t))e−rt,

implies,

∂L

∂c2
=

∫ T

0
α(Y2,0(t) + Y2,1(t))e−rtdt.

For c3 we get,

Fc3 =0, Gc3 = 0, and `c3 = αY3,0(t)e−rt,

implies
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∂L

∂c3
=

∫ T

0
αY3,0(t)e−rtdt.

For c4 we get,

Fc4 =0, Gc4 = 0, and `c4 = αY4,0(t)e−rt,

implies,

∂L

∂c4
=

∫ T

0
αY4,0(t)e−rtdt.

QALYs, qi

For the HIV infectious disease model, with the combined strategy, the sensitivity equations for

QALYs is evaluated for each of the population classes.

For q0 we get,

Fq0 =0, Gq0 = 0, and `q0 = (α− 1)(Y0,0(t) + Y0,1(t))e−rt,

implies,

∂L

∂q0
=

∫ T

0
(α− 1)(Y0,0(t) + Y0,1(t))e−rtdt.

For q1 we get,

Fq1 =0, Gq1 = 0, and `q1 = (α− 1)(Y1,0(t) + Y1,1(t))e−rt,

implies,

∂L

∂q1
=

∫ T

0
(α− 1)(Y1,0(t) + Y1,1(t))e−rtdt.
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For q2 we get,

Fq2 =0, Gq2 = 0, and `q2 = (α− 1)(Y2,0(t) + Y2,1(t))e−rt,

implies,

∂L

∂q2
=

∫ T

0
(α− 1)(Y2,0(t) + Y2,1(t))e−rtdt.

For q3 we get,

Fq3 =0, Gq3 = 0, and `q3 = (α− 1)Y3,0(t)e−rt,

implies,

∂L

∂q3
=

∫ T

0
(α− 1)Y3,0(t)e−rtdt.

For q4 we get,

Fq4 =0, Gq4 = 0, and `q4 = (α− 1)Y4,0(t)e−rt,

implies,

∂L

∂q4
=

∫ T

0
(α− 1)Y4,0(t)e−rtdt.

Direct cost for the preventative vaccine, κp

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the direct cost for the preventative vaccine is defined by the following.

Fα =0, Gα = 0, and

`α = ανp(Y0,0(t) + Y1,0(t))e−rt,

implies,
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∂L

∂α
=

∫ T

0
ανp(Y0,0(t) + Y1,0(t))e−rtdt.

Direct cost for the therapeutic vaccine, κt

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the direct cost for the therapeutic vaccine is defined by the following.

Fα =0, Gα = 0, and

`α = ανtY2,0(t)e−rt,

implies,

∂L

∂α
=

∫ T

0
ανtY2,0(t)e−rtdt.

Annual discount rate, r

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the annual discount rate is defined by the following.

Fr =0, Gr = 0, and

`r =

− t
[
α
(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)
− (1− α)

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
]
e−rt,

implies,

∂L

∂r
=

∫ T

0
−t
[
α
(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t)
)

− (1− α)

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
]
e−rtdt.
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Weight for combining objectives for optimization, α

For the HIV infectious disease model, with the combined strategy, the sensitivity equation for

the weight introduced to evaluate the multi-objective optimization is defined by the following.

Fα =0, Gα = 0, and

`α =
(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t) +

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rt,

implies,

∂L

∂α
=

∫ T

0

(
κpνp(Y0,0(t) + Y1,0(t)) + κtνtY2,0(t) +

i=4∑
i=0

j=1∑
j=0

ciYi,j(t) +

i=4∑
i=0

j=1∑
j=0

qiYi,j(t)
)
e−rtdt.
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