
ABSTRACT

LANKFORD, GEORGE BERNARD. Optimization, Modeling, and Control: Applications to Klystron
Designing and Hepatitis C Virus Dynamics. (Under the direction of Dr. Hien Tran.)

In this dissertation, we address applying mathematical and numerical techniques in the fields

of high energy physics and biomedical sciences. The first portion of this thesis presents a method

for optimizing the design of klystron circuits. A klystron is an electron beam tube lined with cavities

that emit resonant frequencies to velocity modulate electrons that pass through the tube. Radio

frequencies (RF) inserted in the klystron are amplified due to the velocity modulation of the elec-

trons. The routine described in this work automates the selection of cavity positions, resonant

frequencies, quality factors, and other circuit parameters to maximize the efficiency with required

gain. The method is based on deterministic sampling methods. We will describe the procedure and

give several examples for both narrow and wide band klystrons, using the klystron codes AJDISK

(Java) and TESLA (Python).

The rest of the dissertation is dedicated to developing, calibrating and using a mathematical model

for hepatitis C dynamics with triple drug combination therapy. Groundbreaking new drugs, called

direct acting antivirals, have been introduced recently to fight off chronic hepatitis C virus infec-

tion. The model we introduce is for hepatitis C dynamics treated with the direct acting antiviral

drug, telaprevir, along with traditional interferon and ribavirin treatments to understand how this

therapy affects the viral load of patients exhibiting different types of response. We use sensitivity

and identifiability techniques to determine which parameters can be best estimated from viral load

data. We use these estimations to give patient-specific fits of the model to partial viral response,

end-of-treatment response, and breakthrough patients. We will then revise the model to incorporate

an immune response dynamic to more accurately describe the dynamics. Finally, we will imple-

ment a suboptimal control to acquire a drug treatment regimen that will alleviate the systemic cost

associated with constant drug treatment.
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CHAPTER

1

INTRODUCTION

The groundwork for mathematics is founded upon solving problems. Around 200 B.C., an ancient

Chinese book called Chiu-chang Suan-shu(Nine Chapters on Arithmetic) was written. At the begin-

ning of Chapter VIII, the following problem is given:

Three sheafs of a good crop, two sheafs of a mediocre crop, and

one sheaf of a bad crop are sold for 39 dou. Two sheafs of

good, three mediocre, and one bad are sold for 34 dou; and one

good, two mediocre, and three bad are sold for 26 dou. What is

the price received for each sheaf of a good crop, each sheaf of a

mediocre crop, and each sheaf of a bad crop?

This problem can subsequently be formulated as the system of linear equations given in (1.1):

3x +2y + z = 39,

2x +3y + z = 34,

x +2y +3z = 26,

(1.1)

where x is the price of one sheaf of the good crop, y is the price of one sheaf of the mediocre crop,

and z is the price of one sheaf of the bad crop. There are many tools that have been developed to

1



1.1. THESIS OUTLINE CHAPTER 1. INTRODUCTION

solve such a problem. One approach involves methodically eliminating variables by adding and/or

subtracting multiples of the equations from each other. Another is by putting the coefficients into an

augmented matrix and using Gaussian elimination. Indeed, solving problems is a catalyst for many

branches of mathematics. However, certain problems may not always be understood in the physical

sense. To this extent, people with a combination of mathematics and specialized knowledge are

needed to bridge the gap between theory and applications. The foundation of applied mathematics

involves studying methodology in mathematics, and using those methods to quantify and/or solve

practical problems. This thesis concerns itself with furthering the field of applied mathematics by

exploring how different mathematical techniques can be used to investigate real-world applications

concerning klystron design and viral kinetic modeling.

1.1 Thesis Outline

The remainder of this chapter is dedicated to developing certain techniques in optimization and

modeling that will be relevant to our study. The implementation of the aforementioned techniques

with applications to beam tube design optimization and biological modeling is described in the

remaining chapters. In Chapter 2, an automated algorithm is presented to improve klystron design.

Chapter 3 is dedicated to developing and validating a new model for hepatitis C dynamics with

triple drug therapy. In Chapter 4, the model in Chapter 3 is further developed to include an immune

response dynamic and a control is used to investigate potential optimal drug treatment protocols. A

summary and conclusion is given in Chapter 5.

1.2 Optimization Techniques

Most students initially learn about a special relation between two sets–usually denoted as an input

set and output set–called a function. Formally, a function f : X → Y is a rule that assigns to each

element x of a set X a unique element y of a set Y . It is well known that functions can be used

to characterize a myriad of applications. These applications may range from determining how

much revenue a company will earn for a product given a certain price to giving the position of an

object on a surface at some time. These (and many more) are standard examples that are usually

explored in depth in an introductory algebra class. It is often advantageous to find a particular set of

values which may help reveal additional information regarding the behavior of the function (and

hence the behavior of the physical phenomenon that the function models, if applicable). These

aforementioned values are typically defined to be the critical values of a function. Typically, a critical

value occurs when the function’s derivative, f ′, is zero or undefined. For example, if we consider a

2
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price-revenue function, the maximum revenue may be a critical value. In the latter example, the

point for which the object is at its lowest height on the surface may be at a critical value. Finding

these values is such an important concept, that an entire branch of mathematics was built around

solving such a problem. Indeed, the process of finding the minimum or maximum value of a function

is called optimization. In what follows, we detail some of the optimization tools that will be used to

help solve the problems developed in this thesis.

1.2.1 Unconstrained and Constrained Minimization

Given an objective function J : X ⊂Rn →R, unconstrained minimization is the process of finding

the elementω∗ such that

J (ω∗)≤ J (ω) ∀ω ∈ X ,

and is commonly denoted by

min
ω

J (ω).

Hereω∗ is called the global minimizer of the function J . However, as noted in [61], this problem is

considerably more difficult than finding the local minimizerω∗

J (ω∗)≤ J (ω) ∀ω nearω∗.

To quantify the meaning of near, we require the existence of an ε > 0 so that |ω∗ −ω| < ε. The

main difference between a constrained minimization problem and an unconstrained minimization

problem is that the former problem involves conditions that must be enforced on the function’s

output or input. Thus, instead of using X ,the entire domain of J , a setΩ⊂ X such that the constraints

hold is considered. Similarly, the global and local minimizers over Ω are given as theω∗ such that

J (ω∗)≤ J (ω) ∀ω ∈Ω,

and

J (ω∗)≤ J (ω) ∀ω nearω∗,

respectively. Depending on what is known about J , there are many different methods that can be

used to findω∗ for both constrained and unconstrained minimization problems.

In what follows, we consider a broad class of problems known as nonlinear least squares prob-

lems as the models that will be introduced in the subsequent chapters will not be linear in the states

or parameters. Thus, during the model fitting to data, we will be minimizing a weighted sum of

3
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squared errors between our data and model output. To this end, one of our goals is to minimize

objective functions of the form

J (t , p ) =wi

N
∑

i=1

(yi − ŷ (ti , p ))2,

where wi ∈R are the weights, p ∈Rm is the vector of m parameters, yi is the measured data at time,

ti , and ŷ (ti ; p ) is the model output. The upcoming sections will introduce the methods used in this

work following similar notation and theory given in [57, 61] and references therein.

1.2.2 Gradient Based Methods

One popular strategy for locating the local and/or absolute extrema of a function, f (x ) for x ∈R,

involves using derivatives. The derivative of a function, f ′, exists if and only if f is sufficiently smooth.

Recalling that f ′ can be interpreted as the slope of the tangent line to the curve of f at a given point,

we observe that local extrema can only occur at x when f ′(x ) = 0 for functions of this type. After

finding these values, the second derivative, f ′′, is used to determine if that point is a local or absolute

extrema. If f ′(x ) = 0 and f ′′(x )> 0 then f has a local minimum at x . Gradient based methods seek to

extend this concept to functions of multiple variables so that x ∈Rn . The gradient of a function,∇ f ,

contains the partial derivatives with respect to xi , the i th component of x . We assume that f is twice

continuously differentiable (i.e.∇2 f (x ) exist) in order to consider gradient based methods. This is

because, as in the one dimensional case,∇ f (x ) = 0 and ||∇2 f (x )||> 0 is needed to guarantee a local

minimum at x . Specific details about many other iterative gradient based optimization methods

such as the conjugate gradient method, Newton’s method and the method of steepest descent can

be found in [23, 40, 57, 61]. In what follows, we provide a comprehensive description of the method

that was used in this thesis.

1.2.2.1 Levenberg-Marquardt Method

An important class of gradient based iterative strategies for optimization is the trust region approach.

Let f :Rn →R be the considered function that is to be minimized. Given that f can be represented

by the quadratic model in (1.2)

mc (x ) = f (xc ) +∇ f (xc )
T (x − xc ) +

(x − xc )T Hc (x − xc )
2

, (1.2)

4
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in some region, the idea is that (1.2) can be iteratively minimized in varying regions to ultimately

determine the minimum of f . Here Hc is the matrix of partial derivatives

(∇2 f )i j =
∂ 2 f

∂ xi ∂ x j
,

called the function hessian and xc is the center of a ball, B , known as the trust region such that

B (r ) = {x | ||x − xc || ≤ r },

with trust radius, r . The difference between xc and the minimum of mc is st and the trust region

problem is given by

min
||s ||<r

mc (xc + s ). (1.3)

At each iteration, the trial step, st , or the trial solution, xt = xc + st , is accepted as the solution to

(1.3) and determines if the step and/or r should be revised. Let the actual reduction in f be given by

a r e d = f (xc )− f (xt ).

The decrease in the quadratic model is given by

p r e d = mc (xc )−mc (xt ),

= f (xc ) +∇ f (xc )
T (xc − xc ) +

(xc − xc )T Hc (xc − xc )
2

,

− ( f (xc ) +∇ f (xc )
T (xt − xc ) +

(xt − xc )T Hc (xt − xc )
2

),

= −∇ f (xc )
T (xc + st − xc )−

(xc + st − xc )T Hc (xc + st − xc )
2

,

= −∇ f (xc )
T st −

s T
t Hc st

2
,

and is called the predicted reduction such that p r e d > 0 unless∇ f (xc ) = 0. Typically, three control

parameters

µ0 ≤µ1 <µ2,

determine if the trial step or trust region radius should be adjusted. If a r e d
p r e d < µ0, st is rejected. If

a r e d
p r e d >µ2, then r increases to r̂ =ω2 · r whereω2 > 1. If a r e d

p r e d <µ1, r decreases to r̂ =ω1 · r where

0 <ω1 < 1. Typical values are µ0 = 10−4, µ1 = .25, µ2 = .75,ω1 = .5, andω2 = 2. So that the region

5
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doesn’t expand infinitely, a bound for the lengthening of r is set so that

r ≤ c ||∇ f (xc )||,

for some c > 0 that may depend on xc . Adjustment patterns such as a sufficient decrease in f

being the factor that determines modifications to st or using |p r e d−a r e d |
||∇ f || instead of a r e d

p r e d can be

implemented depending on the algorithm. A significant advantage of using the trust region approach

is that there is an exact solution to (1.3). In what follows we prove the existence of an exact solution

similar to what is given in [61, 96].

Theorem 1.2.1 Let g ∈Rn and let A be a symmetric N ×N matrix. Let

m (s ) = g T s +
s T As

2
.

A vector s is a solution to

min
||s ||≤r

m (s ), (1.4)

if and only if there is v ≥ 0 such that

(A+ v I )s =−g ,

and either v = 0 or ||s ||= r .

Proof 1.2.2 Consider the equivalent problem to (1.4) given by (1.5):

min
||s ||2≤r 2

m (s ). (1.5)

Using the theory of Lagrange multipliers, where

F (s ) = ||s ||2− r 2,

= s T s − r 2,

if s solves (1.5) then it must also solve

∇m (s ) = λ̄(∇F (s )),

g +As = λ̄(2s ),

(A+λI )s =−g ,

(1.6)

subject to

λF (s ) = 0.

6
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Here λ≥ 0 is a multiple of the Lagrange multiplier associated with ||s ||2 ≤ r 2, λ̂. If s 6= 0 and solves

(1.4) then it also solves

min
||w ||≤||s ||

m (w ), (1.7)

because ||w || ≤ ||s || ≤ r . This means that for any w so that ||w ||= ||s ||, if (1.4) and (1.6) are combined

then the following is obtained

−s T (A+λI )w +
w T Aw

2
≥−s T (A+λI )s +

s T As

2
,

=⇒ −s T Aw −λs T w +
w T Aw

2
≥−s T As −λs T s +

s T As

2
,

=⇒
w T Aw

2
− s T Aw −λs T w +

s T As

2
+
λs T s

2
≥−

λs T s

2
.

The following equalities

s T Aw =
s T Aw

2
+

w T As

2
,

λs T w =
λs T w

2
+
λw T s

2
,

are used after adding λw T w
2 to both sides to give the following inequality

w T Aw

2
−

s T Aw

2
−

w T As

2
−
λs T w

2
−
λw T s

2
+

s T As

2
+
λs T s

2
+
λw T w

2
≥
λw T w

2
−
λs T s

2
.

Therefore,
1

2
(w − s )T (A+λI )(w − s )≥

λ

2
(w T w − s T s ) = 0. (1.8)

It follows from (1.8) that A+λI is positive semidefinite. If s = 0, then g = 0 and s solves

min
||s ||≤r

s T As

2
,

which implies A is positive semidefinite. Therefore, A+λI is always at least positive semidefinite since

λ≥ 0. If s solves (1.6) and (1.7) then for any w

g T w +
w T (A+λI )w

2
≥ g T s +

s T (A+λI )s
2

=⇒ m (w )≥m (s ) +
λ

2
(s T s −w T w ).

(1.9)

The following are consequences acquired immediately from (1.9):

7
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1. If λ= 0 and ||s || ≤ r then s solves (1.4).

2. If ||s ||= r then s solves

m (s ) = min
||w ||=r

m (w ).

3. If λ≥ 0 and ||s ||= r then s solves (1.4).

This completes the proof.

When positive definiteness is obtained for (A+λI ) and w 6= s then the inequality is strict in (1.9) and

s =−(Hc +λI )−1g ,

is the exact solution to (1.3). Levenberg-Marquardt algorithm [65, 69] takes advantage of adjusting λ

instead of r with respect to a r e d
p r e d in their trust region based algorithm. Variations of this method

can be found in [57, 96] but this work focuses on the algorithm as described in [61]. The Levenberg-

Marquardt quadratic model with parameter λc at the point xc is

m (x ) = f (xc ) + (x − xc )
T R ′(xc )

T R (xc ) +
1

2
(x − xc )

T (R ′(xc )
T R ′(xc ) +λc I )(x − xc ),

using the least squares objective function given by

f (x ) =
1

2

M
∑

i=1

||ri (x )||22 =
1

2
R (x )T R (x ).

The minimizer of m (x ) is given by

xt = xc − (R ′(xc )
T R ′(xc ) +λc I )−1R ′(xc )

T R (xc ), (1.10)

with step s = xt − xc . The predicted reduction is then

p r e d =m (xc )−m (xt ),

=−s T R ′(xc )
T R (xc )−

1

2
s T (R ′(xc )

T R ′(xc ) +λc I )s ,

=−s T R ′(xc )
T R (xc ) +

1

2
s T R ′(xc )

T R (xc ) using (1.10),

=−
1

2
s T∇ f (xc ).

8
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This means we will accept/reject our trial point, xt , and Levenberg-Marquardt parameter, λc , based

on the ratio
a r e d

p r e d
=

f (xc )− f (xt )
m (xc )−m (xt )

,

=−2
f (xc )− f (xt )

s T∇ f (xc )
.

Adjusting λ is opposite to how we adjusted r . If a r e d
p r e d is large, the actual reduction in the function

could be large. Thus, s should be large in order to go further in this direction, so λ is decreased so

that the term (R ′(xc )T R ′(xc ) +λc I )−1R ′(xc )T R (xc ) is larger in (1.10). By similar reasoning, if a r e d
p r e d is

small, λ increases. This method converges q-quadratically [61] in the following sense

Definition Let {xn} ⊂Rn and x ∗ ∈Rn . xn → x ∗ q-quadratically if xn → x ∗ and there is K > 0 such

that

||xn+1− x ∗|| ≤ K ||xn − x ∗||2.

We use the MATLAB implementation in the package nlinfit of algorithm (1.1).

Algorithm 1.1 lmalg(x,R,kmax)

1. Set λ=λ0.

2. For k = 1, ..., k ma x

(a) Let xc = x .

(b) Compute R , f , R ′, and∇ f ; test for termination.

(c) Compute xt using (1.10).

(d) Call lmfunc(xc , xt , x , f ,λ) (see algorithm 1.2)

1.2.3 Non-Gradient Based Methods

If the function of interest is non-smooth, discontinuous, based on a stochastic model, or if the

gradient is too difficult to compute, then the optimization methods discussed to this point may not

be useful or practical. In this case there are methods that don’t depend on the gradient or the Hessian

of the objective function. Instead, the method evaluates the objective function at different points

and predicts where to search next to find the minimum. Global convergence is difficult to guarantee

9
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Algorithm 1.2 lmfunc(xc , xt , x+, f ,λ)

1. z = xc

2. Do while z = xc

(a) a r e d = f (xc )− f (xt ), st = xt − xc , p r e d = −∇ f (xc )T st
2 .

(b) If a r e d
p r e d <µ0 then set z = xc , λ=max(ω2λ,λ0), and recompute the trial point with the new

value of λ.

(c) If µ0 ≤ a r e d
p r e d <µ1, then set z = xt and λ=max(ω2λ,λ0).

(d) If µ1 ≤ a r e d
p r e d , then set z = xt .

If µ2 <
a r e d
p r e d , then set λ=ω1λ.

If λ<λ0, then set λ= 0.

3. x+ = z

with no knowledge of the gradient; however, some convergence criterion have been proven for

specific functions in lower dimensions [31, 64]. An interesting class of these methods are called

genetic algorithms. They are adaptive heuristic search algorithms that at each iteration mimics the

principles of natural selection and genetics. Popularly used for mixed integer optimization, they use

the initial population as “parents" and use them to give “offspring" based on their fitness score to

move towards a minimum. The chief operators for these types of algorithms use probabilistic rather

than deterministic transitions and are given in the following:

1. Reproduction - determines which of the parents are going to survive to the next generation.

2. Crossover - determines how the parents will be combined to make offspring.

3. Mutation - determines how changes will be made to parents to create offspring.

We refer the reader to [38, 48] and references therein for a more detailed description. The class

of non-gradient based methods that are employed in this work are called deterministic sampling

methods.

1.2.3.1 Deterministic Sampling Methods

Sampling methods do not require knowledge of the objective function’s gradient. The method will

sample points in the domain of the function, then use that information to determine where to

10
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search next for the optimal value of the objective function. Deterministic sampling methods use

patterns to optimally guide the search [103]. There are a myriad of algorithms that use deterministic

sampling like the Hooke-Jeeves algorithm and the multidirectional search method described in [61].

We describe two specific methods that are used in this research.

1.2.3.1.1 Nelder-Mead Algorithm

The Nelder-Mead algorithm is a non-gradient based method that is simplex based [61, 80]. Let

J :Rn →R and S = {λ0,λ1, · · · ,λn} be a simplex of n +1 points with λi ∈Rn . We let

J (λl ) =min
λ∈S

J (λ),

and

J (λu ) =max
λ∈S

J (λ).

By adjusting the point in the simplex that gives the value farthest from the objective, we are able to

find the minimum over the space. Figure 1.1 gives a sketch of the simplex points (λ1,λ2,λ3) in two

dimensions as well as the points considered to revise the simplex which are given by

• extension point (e ),

• reflection point (r ),

• outer contraction point (o c ), and

• inner contraction point (i c ).

11
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Figure 1.1 A simplex and points considered during the Nelder-Mead algorithm from [37].

Algorithm (1.3), as obtained from [37, 66, 74], gives a brief overview of how the Nelder-Mead algo-

rithm is implemented. The tolerance between values of the functions and total number of iterations

are among options for stopping criterion.

Figure 1.2 shows the first 11 iterations of the Nelder-Mead algorithm converging to the local mini-

mum for a function of two variables.

Figure 1.2 A graph of the different simplexes associated with the implementation of the Nelder-Mead
algorithm where each triangle is a simplex and the minimum at p = (3, 2).
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Algorithm 1.3

1. Not including λu , compute the centroid of the simplex, c ,

c =

n
∑

i=0,i 6=u

λi

n
.

2. Usingα= 1 as the step size in the direction (in relevance to the centroid) that is opposite to the
direction of λu , calculate the reflection point r = c +α(c −λu ). If J (λl )≤ J (r )< J (λk )where
J (λk ) is the second lowest objective function value then λu is replaced with r and restart.

3. Compute the extension point e = c +α(c − su )where α= 2 if J (r )< J (λl ) to expand the search
further than r . If J (e )< J (r ), λu is replaced with e and the algorithm is restarted. If not, then
the simplex is not expanded and λu is replaced with r and restart.

4. If the above is not true then check if J (r )≥ J (λi ) for i 6= u . For this case, one of the following
points are considered:

(a) If J (r )< J (λu ) then the outer contraction point, o c = c +α(r − c ), is computed where
α= 1

2 . If J (o c )< J (r ) then replace λu with o c and restart.

(b) If J (r )≥ J (λu ) then the inner contraction point, i c = c +α(λu − c ), is computed where
α= 1

2 . If J (i c )< J (λu ) then replace λu with i c and restart.

5. If the above points are not used, then let λi =
λi+λl

2 for each i and restart from step 1.

13
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Convergence is only guaranteed in one dimension for strictly convex functions with bounded

level sets [64]. In MATLAB, the optimization package fminsearch provides a numerical implementa-

tion of the algorithm.

1.2.3.1.2 Implicit Filtering

Implicit filtering is a non-gradient based optimization routine that estimates the gradient using

difference approximations [61]. The size of the increment in the difference varies as iterations

progress. This is to filter out initial oscillations and circumvent local minima. Algorithm (1.4) gives a

simplified version of the implicit filtering routine as described in [66]. The implicit filtering iterative

Algorithm 1.4

1. We start with the current minimum of J being at sc and initial step size hc . A 2n dimensional
stencil is created about sc and is given by

S (sc , hc ) = {sc ±hc ei },

where ei are unit vectors.

2. We then evaluate J at all points in S and let

J (su ) =min{J (z )|z ∈ S (sc , hc )}.

3. Set s0 = sc and let
sc = s0−λ∇hc

J (s0),

if J (su )< J (sc )where λ assures enough decrease such that

J (sc −λd )< J (sc )where d =−∇J (sc ),

and

(∇hc
J (x ))i =

J (x +hc ei )− J (x −hc ei )
2hc

.

4. If the above is not true and J (su )≥ J (sc ) then hc is reduced and restart from step 1.

process will stop when the step size hc falls below a user specified value.
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Figure 1.3 depicts a function where there are many local minima close together and the first 7

iterations of the implicit filtering algorithm trying to find the global minimum. It is noted that the

algorithm initially uses a large step size hc to avoid the many local minima.

Figure 1.3 The implicit filtering iterations are able to skip many local minima.

In [31], the authors proved that if the objective function is smooth with low amplitude noise and

the noise decays rapidly near the minimizer sufficiently, then superlinear convergence is established

in the following sense

Definition Let {xn} ⊂Rn and x ∗ ∈Rn . xn → x ∗ q-superlinearly if

lim
n→∞

||xn+1− x ∗||
||xn − x ∗||

= 0.

1.3 Modeling Techniques and Validation

In Chapter 3, a system of nonlinear ordinary differential equations(ODEs) is used to model a biolog-

ical phenomena. This means there are parameters in the model that are used to describe particular

aspects of the system. Thus, emphasis should be placed in obtaining accurate estimates of these

parameters while fitting model output to clinical data. These estimates can help determine the

robustness and capabilities of the model in solving the forward problem. The forward problem

refers to using a model to predict the future behavior of a system given a set of parameters. The

inverse problem is the parameterization of a model from empirical data [5, 34, 110]. Accuracy of
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the parameters directly determines the accuracy of the model output. However, depending on the

complexity of the model, providing accurate parameters can be challenging or impossible. There

has been extensive study about parameter selection while solving the inverse problem for biological

models and other applications that can be found in [5, 9, 11, 13, 14] and references therein. In what

follows, we provide background for the techniques used to calibrate the parameters for the models

used in this thesis.

1.3.1 Sensitivity Analysis

A sensitivity analysis is the process of understanding how the model output is affected by changes

in the parameters. Sensitivity analyses are used in many branches of mathematics such as statistics,

PDEs (partial differential equations), and control design [10,106]. The parameters that give the most

change in the output are said to be sensitive parameters. This is important in the forward problem

because it allows an understanding of which parameters will give useful information. Once the

parameters have been identified, a sensitivity analysis for the inverse problem is usually performed

to determine the sensitive parameters. Parameters with minimal impact are fixed from literature.

There are two different types of sensitivity analysis: global and local. A global sensitivity analysis

heavily depends on the structure of the model and quantifies how uncertainties in outputs can be

apportioned to uncertainties in inputs. We refer the reader to [94] for more information. Our work

uses a local sensitivity analysis which depends on the prescribed value of the parameters.

1.3.1.1 Sensitivity Equations

The sensitivity analysis presented in this section uses a derivative-based approach. Consider the

general form of an ODE model and a function z of its output

d y

d t
= f (t , y ; q ),

z =g (t , y ; q ),
(1.11)

whereby the vectors y and q contain the variables and parameters of the model, respectively. Since

we are concerned with how our model output, z , is influenced by changes to our parameters, q ,

then we consider the partial derivative of z , ∂ z
∂ q , with respect to q . One approach to computing this
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partial derivative is by solving the associated sensitivity equations. Consider the formulation

∂ z

∂ q
=
∂ g

∂ t

∂ t

∂ q
+
∂ g

∂ y

∂ y

∂ q
+
∂ g

∂ q
,
∂ q

∂ q

=
∂ g

∂ y

∂ y

∂ q
+
∂ g

∂ q
,

(1.12)

since ∂ t
∂ q = 0 and ∂ q

∂ q = 1. The two components ∂ g
∂ y and ∂ g

∂ q can be directly calculated from g , but can

be cumbersome to do by hand depending on the complexity of the function. Thus, one can employ

automatic differentiation to evaluate these derivatives. Since any mathematical function can be

decomposed into elementary functions, automatic differentiation numerically implements the

chain rule and basic arithmetic equations repeatedly to compute the total derivative of a function

with accuracy to working machine precision [25]. This is achieved with table lookups and tabulating

all of the functional compositions [51, 73]. An automatic differentiation(AD) code developed by

Martin Fink in MATLAB is employed. Finally, to calculate ∂ y
∂ q , it is noted that y is continuous in t

and q . Since ∂ y
∂ q exists, by computing the partial derivative with respect to q of the state equations

and reversing the order of differentiation [100] the following is obtained

∂

∂ q

�

d y

d t

�

=
d

d t

�

∂ y

∂ q

�

=
∂ f

∂ t

∂ t

∂ q
+
∂ f

∂ y

∂ y

∂ q
+
∂ f

∂ q

∂ q

∂ q

=
∂ f

∂ y

∂ y

∂ q
+
∂ f

∂ q
.

(1.13)

Similar to ∂ g
∂ y and ∂ g

∂ q , ∂ f
∂ y and ∂ f

∂ q is calculated using automatic differentiation. From (1.13), the

sensitivity equations are given as follows

d y

d t
= f (t , y ; q ),

d

d t

�

∂ y

∂ q

�

=
∂ f

∂ q

∂ y

∂ q
+
∂ f

∂ q
.

(1.14)

Solving the sensitivity equations calculates ∂ y
∂ q to determine ∂ z

∂ q .

17



1.3. MODELING TECHNIQUES AND VALIDATION CHAPTER 1. INTRODUCTION

1.3.1.2 Finite Difference Approximation

A direct approach to finding d z
d qi

is by a finite difference approximation where qi is the i th component

of q . Recall by the definition of a derivative,

d z

d qi
= lim

h→0

z (qi +h )− z (qi )
h

.

Thus, an approximation for the first derivative is the forward-difference formula given by

d z

d qi
≈

z (qi +h )− z (qi )
h

,

with step size, h , and O (h ) truncation error so it is accurate to first order. Another approximation

for the first derivative is the backwards-difference formula given by

d z

d qi
≈

z (qi )− z (qi −h )
h

,

that also has O (h ) truncation error. Adding the previous two formulas together yields the centered

difference formula

2
d z

d qi
≈

z (qi +h )− z (qi ) + z (qi )− z (qi −h )
h

,

=⇒
d z

d qi
≈

z (qi +h )− z (qi −h )
2h

,
(1.15)

and has O (h 2) truncation error so it is accurate to second order. The step size should be chosen

to minimize truncation error and subtractive cancellation error due to finite precision arithmetic.

In [57], it is shown that a good candidate for the step size in the backwards and forward differences

is h =
p

macheps · qi and h = (macheps)
1
3 · qi for central difference where macheps is accuracy

at which the function z is evaluated. Therefore, to obtain an accurate approximation to the finite

difference of the derivative of z , z must be evaluated at high precision. A routine where subtractive

cancellation error does not occur is preferable and is presented in the next section.

1.3.1.3 Complex Step Method

This method utilizes a procedure that uses complex functions to calculate first derivatives as pre-

sented in [70]. The technique takes advantage of how complex functions are extensions of their real

counterparts, the analyticity of complex functions and the definition of a derivative to devise an

algorithm to determine the first derivative of a function. Assume that z = x + i y where Re(z ) = x
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and Im(z ) = y such that

f (z ) = u (x + i y ) + i v (x + i y )

is an analytic complex function where u and v are the real and imaginary parts of f , respectively.

Since f is analytic, it satisfies the Cauchy-Riemann equations. That is, the components satisfy

ux = vy , u y =−vx . (1.16)

The forward difference approximation is used to rewrite the first equation in (1.16) as

ux ≈
v (x + i (y +h ))− v (x + i y )

h
.

If the function is restricted to the real axis then the following are true:

y = 0,

v (x ) = 0,

f (x ) = u (x ).

(1.17)

This implies that
d f

d x
= ux ,

≈
v (x + i h )− v (x )

h
,

=
v (x + i h )

h
.

(1.18)

Therefore, an approximation of the first derivative of f at a given parameter x is

d f

d x
≈

Im( f (x + i h ))
h

,

and is called the complex step derivative approximation. This has an obvious advantage over the

finite difference approximation because there is no subtraction operation and thus has no subtrac-

tive cancellation error. The benefit over automatic differentiation is that it is usually quicker and

uses less memory since it doesn’t take multiple function evaluations. We implement this method in

MATLAB by evaluating f (x + i h ) and recovering the imaginary component of the output over h .

The error for the complex step method can be determined using a Taylor series expansion with a

pure imaginary step, i h . Given that f is analytic and a real function in real variables, the following

19



1.3. MODELING TECHNIQUES AND VALIDATION CHAPTER 1. INTRODUCTION

Taylor series expansion is obtained about a real point x ,

f (x + i h ) = f (x ) + i h f ′(x )−h 2 f ′′(x )
2!
− i h 3 f ′′′(x )

3!
+ ...

By considering the imaginary parts of both sides and dividing by h we obtain

f ′(x ) =
Im( f (x + i h ))

h
+h 2 f ′′′(x )

3!
+ ...,

and therefore have O (h 2) error. Since there is no subtractive cancellation, h can be reduced to very

small values to achieve higher accuracy in the derivative.

As an exercise, a comparison of the sensitivities given by the complex step method, sensitivity

equations with automatic differentiation, and finite difference is executed at different values of h .

To this end, consider the logistic growth model with the Verhulst-Pearl logistic equation studied

in [10, 12]

d x

d t
= r x (1−

x

K
),

x (0) = x0,
(1.19)

where K is the carrying capacity and r is the intrinsic growth rate. The exact solution for (1.19) is

given by

x (t ) =
K

1+ ( K
x0
−1)e −r t

.

The graph in Figure 1.4 shows the solution to (1.19) with specific parameters. The parameters in this

model are r , K , and x0 and their impact on the output x is of interest. Let xr (t ) =
d x
d r , xK (t ) =

d x
d K ,

and xx0
(t ) = d x

d x0
. We can directly calculate the sensitivity equations using (1.14) as a guide to obtain

d x

d t
= r x (1−

x

K
),

d xr

d t
= (r −

2r

K
x (t ))xr + x (t )−

1

K
x 2(t ),

d xK

d t
= (r −

2r

K
x (t ))xK +

r

K 2
x 2(t ),

d xx0

d t
= (r −

2r

K
x (t ))xx0

,

(1.20)
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and initial conditions
x (0) = x0,

xr (0) = 0,

xK (0) = 0,

xx0
(0) = 1.
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Figure 1.4 Solution to (1.19) with K = 10, r = 1 and x0 = .1.

The graphs on the left in Figure 1.5 and Figure 1.6 have the sensitivities using (1.4) and automatic

differentiation (blue solid line), central difference (red dotted line), and complex step method (black

dashed line). The graphs on the right are the errors between the sensitivity equations (SE) and finite

difference (blue solid line), finite difference (FD) and complex step method (red dotted line), and

complex step method (CM) and sensitivity equations (black dashed line). It is observed in Figure 1.5

that at h = 1×10−10 all 3 methods are nearly the same with small error. However, as h gets smaller

in Figure 1.6, the central difference method becomes inaccurate, but the complex step method

continues to be precise for h = 1×10−200. In fact, with machine accuracy 1×10−323, the complex

step method is still accurate at h = 1×10−320.
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Figure 1.5 Graphs show a comparison of sensitivities using the sensitivity equations with automatic differ-
entiation, central difference, and complex step methods with with h = 1×10−10.
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Figure 1.6 Graphs show a comparison of sensitivities using the sensitivity equations with automatic differ-
entiation, central difference, and complex step methods with with h = 1×10−200.
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1.3.2 Identifiability Analysis

After deciding which parameters are sensitive, consideration is given to understanding which

sensitive parameters can uniquely be identified from the data. The structure of the model as well as

amount of data can affect whether a parameter is identifiable. A parameter q is locally identifiable

if for an open neighborhood about q in the parameter space, y (q1) = y (q2) is true implies that

q1 = q2 [71]. We illustrate how model structure can affect identifiability by considering the parameters

a and b within the simple ODE:
d x

d t
= a b x . (1.21)

We observe that a and b are unidentifiable as there are many possible values for a and b that

result in the same product a b . a = 2 and b = 1 results in the same solution to (1.21) as a = 1 and

b = 2. Thus, estimating the parameters in this model is futile because of the lack of uniqueness. An

identifiability analysis will aid us in deciding which parameters can be uniquely estimated from the

experimental data as it is desirable to estimate parameters that are both sensitive and identifiable.

Consider the parameters contained in q which minimize the cost function

J (q ) =
1

N

N
∑

i=1

(V i
d −V (ti ; q ))2,

with V (ti ;q ) denoting the model output and V i
d denoting the corresponding data value at time

point ti for i = 1, . . . N , where N is the number of data values. Assume that q ∗ is the minimum of

this cost function. Then by using a Taylor series expansion around q ∗, we obtain

V (ti , q ) =V (ti ; q ∗) +
d V (ti ; q ∗)

d q
(q −q ∗) + . . .

If we only consider the first two elements of V (ti , q ) under the assumption that q ≈ q ∗ and substitute

this expression into the cost function we find that

J (q ) =
1

N

N
∑

i=1

�

V i
d −V (ti ; q ∗)−

d V (ti ; q ∗)
d q

(q −q ∗)
�2

,

=
1

N

N
∑

i=1

�

d V (ti ; q ∗)
d q

(q −q ∗)
�2

,

(1.22)
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where we used the fact that q ∗ is the minimum of the cost function so that V i
d ≈V (ti ; q ∗). Let

S =
d V

d q
=













d V
d q1
(t1)

d V
d q2
(t1) · · · d V

d ql
(t1)

d V
d q1
(t2)

d V
d q2
(t2) · · · d V

d ql
(t2)

...
...

...
...

d V
d q1
(tN )

d V
d q2
(tN ) · · · d V

d ql
(tN )













, (1.23)

be a (N × l ) sensitivity matrix relating to the sensitivities d V
d q j
(ti ) of the output with i = 1, . . . , N and

j = 1, . . . , l , where l denotes the number of parameters. The cost function of (1.22) is rewritten in

terms of this sensitivity matrix

J (q ) =
1

N
(S (q −q ∗))T (S (q −q ∗)),

=
1

N
(S∆q )T (S∆q ),

where∆q = q −q ∗. Rearranging∆q = q −q ∗, we formulate the cost function in terms of q ∗+∆q :

J (q ∗+∆q ) =
1

N
∆q T S T S∆q . (1.24)

If we suppose that∆q is an eigenvector of S T S with S T S∆q =λ∆q , then we have

J (q ∗+∆q ) =
1

N
∆q T (λ∆q ),

=
1

N
λ||∆q ||22.

We note that if∆q is an eigenvector with eigenvalue λ= 0, then the cost function to second order

approximation is J (q ∗ +∆q ) = 0. The least squares cost function does not change values when

moving from q ∗ to q ∗ + g∆q , with g arbitrary. Thus, the parameters are locally unidentifiable

at q ∗. If S T S has very small eigenvalues, this can also be a problem for parameter identification.

There has been studies about how the Fisher Matrix(S T S ) information can be used for parameter

identification [21, 24, 33, 81]. In [33], they search all possible parameter combinations and choose

them based on the rank of the sensitivity matrix, S , and asymptotic standard error uncertainty. We

use algorithm (1.5) as described in [81] to help us decide which of the parameters in our model

will be unidentifiable. After performing this procedure, we now have a set of sensitive and locally

identifiable parameters to estimate. The rest of the parameters are set to "typical values" found in

literature.
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Algorithm 1.5

1. Create the matrix S T S , compute its eigenvalues, and order them such that

|λ1| ≤ |λ2| ≤ · · · ≤ |λn |.

2. If |λ1| is less than some threshold ε (typically taken to be 10−4), we say that there is a parameter
that is unidentifiable.

3. The largest magnitude component of the eigenvector∆q1 associated with the eigenvalue λ1

corresponds to the least identifiable parameter. Remove the corresponding column from S
and repeat step 1.

1.3.3 Data Analysis

Occasionally, there is data that one cannot observe. For instance in infectious diseases, due to

different patient responsiveness to drug treatment, there is viral load data that we are not able to

examine with the technology used. Specifically, the exact data measurement is below what is called

the lower limit of quantification(LLOQ). This data is considered to be left-censored. Censored data

is sometimes excluded in model calibration which can result in inaccurate parameter estimates. The

importance of understanding the data below LLOQ can be seen in an example of a Breakthrough

patient’s viral load shown in Figure 1.7.
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Figure 1.7 Viral load pattern for a Breakthrough patient.
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The viral load in Breakthrough patients goes below LLOQ (detection level) and rises back up

during treatment. This patient behavior will not be accurately modeled without robust predictions

for what is occurring beneath the censoring line. Thus, when there is censored data, expectation

maximization(EM) [39] is used to compute maximum likelihood estimates for the parameters,

q . A derivation of the EM algorithm that is employed is provided and uses similar notation and

techniques as in [7]. Consider the general objective function

q ∗ = arg min J (q ) =
1

N

N
∑

i=1

|y i
d − y (ti , q )|2, (1.25)

where N is the number of data points, y i
d is the data at time ti , and y is the model output over an

admissible parameter spaceω⊂Rp such that p is the number of parameters being estimated. Since,

in general, the model output, data, and parameters have a large range of values, they are log10 scaled.

Assume for true parameter q 0 and varianceσ2 that the log scaled data is normally distributed such

that

y i
d ∼N (y (ti , q 0),σ2).

Let yi = y (ti , q ) and L = log(L LOQ ). The data can be written as the piecewise function

d i =







y i
d ify i

d > L

L ify i
d ≤ L

,

with

X i = I{y i
d>L},

where I{y i
d>L} is an indicator function such that if y i

d > L at ti then X i = 1, otherwise X i = 0. Before

presenting the likelihood function to be maximized, standard probability tools are introduced. The

standard probability density function(pdf) for mean 0 and unit variance is given by

ϕ(ξ) =
1
p

2π
e
−ξ2

2 ,

which gives the probability that a continuous random variable has the value ξ. The pdf has corre-

sponding cumulative distribution function(cdf),

Φ(ξ) =

∫ ξ

−∞
ϕ(s )d s ,
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which gives the probability of a continuous random variable being less than or equal to ξ. Since the

censored data is bounded above, it is assumed to follow a truncated normal distribution so that the

likelihood function for a sample point di is given by

M (q ,σ) =
N
∏

i=1

� 1

σ
ϕ
�d i − yi

σ

��X i �

Φ
�d i − yi

σ

��1−X i

, (1.26)

where the first term accounts for the probability of observing d i if it is uncensored and the second

term accounts for the probability of observing d i if it is censored. Computing log(M ) gives the

log-likelihood function

M (q ,σ) =
N
∑

i=1

�

X i
�

logϕ
�d i − yi

σ

�

− logσ
�

+
�

1−X i
��

Φ
�d i − yi

σ

��

. (1.27)

Since in the first term of (1.26), di = y i
d , and in the second term, di = L , (1.27) is rewritten as

M (q ,σ) =
N
∑

i=1

�

X i
�

logϕ
� y i

d − yi

σ

�

− logσ
�

+
�

1−X i
��

Φ
�L − yi

σ

��

. (1.28)

EM is used to maximize M by iteratively improving q andσ until the maximum is achieved. A lower

truncated normal distribution is considered so the following is true:

E [y i
d |y

i
d ≤ L ] = yi −σΛ(ξi ),

where ξi = L−yi
σ and Λ(ξi ) = ϕ(ξ

i )
Φ(ξi ) . The following theorem from [50] gives an important result about

truncated normal distributions.

Theorem 1.3.1 If x ∼N [µ,σ2] and a is a constant, then

E [x |truncation] =µ+σλ(α),

V a r [x |truncation] =σ2[1−δ(α)],

where α= a−µ
σ such that

λ(α) =
ϕ(α)

1−Φ(α)
if truncation is x > a ,

λ(α) =
ϕ(α)
Φ(α)

if truncation is x < a .
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Here ϕ(α) is the standard normal density with Φ(α) cumulative distribution function, and

δ(α) =λ(α)[λ(α)−α].

Theorem 1.3.1 along with the relationship between the expected value, E (X ), and the variance,

V a r (X ),
V a r (X ) = E (X 2)−E 2(X ),

=⇒ E (X 2) =V a r (X ) +E 2(X ),

gives the following

E [(y i
d )

2|y i
d ≤ L ] =V a r [y i

d |y
i

d ≤ L ] +E 2[y i
d |y

i
d ≤ L ],

=σ2(1−Λ(ξi )[Λ(ξi )−ξi ])+ (yi −σΛ(ξi ))2,

=σ2−σ2Λ(ξi )2+σ2Λ(ξi )ξi + y 2
i −2σΛ(ξi )yi +σ

2Λ(ξi )2,

= y 2
i −2σΛ(ξi )yi −σ2ξiΛ(ξi ) +σ2.

The censored data is updated with

ȳ i = X i y i
d + (1−X i )E [y i

d |y
i

d ≤ L ],

= X i y i
d + (1−X i )[yi −σΛ(ξi )].

The squared residuals are updated through

r̄ i = X i E [(y i
d − yi )

2] + (1−X i )E [(y i
d − yi )

2|y i
d ≤ L ].

= X i (y i
d − yi )

2+ (1−X i )[E [(y i
d )

2|y i
d ≤ L ]−2yi E [y i

d |y
i

d ≤ L ] + y 2
i ],

= X i (y i
d − yi )

2+ (1−X i )σ2[1−ξiΛ(ξi )].

The EM Algorithm is presented in algorithm (1.6). A stopping criterion for this algorithm is the

relative change between q̂ ,σ̂. EM results in estimates of the expected value and variance for the

censored data.

1.3.4 Confidence and Prediction Intervals

An error-free model with noiseless data is an unreasonable expectation. In practice, one should

expect noise in the data and model due to human or technical imperfection. Thus, there will always

be some degree of uncertainty in the model that needs to be taken into consideration. Confidence

and prediction intervals are used to understand the extent of uncertainty involved in estimating our
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Algorithm 1.6

1. Estimate q̂ 0 using yd and ordinary least squares where the censored data is adjusted by half
to L

2 . Set k = 0 and compute an initial estimate forσ2 from

(σ̂(0))2 =
1

N

N
∑

i=1

| ȳ i − y (ti ; q̂ (0))|2.

2. Let ŷ (k )i = y (ti , q̂ (k )) and ξ̂i (k ) =
L−y (k )i
σ̂(k )

and update the data and residuals by

ȳ i (k ) = X i y i
d + (1−X i )[ ŷ (k )i − σ̂(k )Λ(ξ̂i (k ))],

r̄ i (k ) = X i (y i
d − ŷ (k )i )

2+ (1−X i )(σ̂(k ))2[1− ξ̂i (k )Λ(ξ̂i (k ))].

3. Compute q̂ (k+1),σ̂(k+1) using ordinary least squares by solving

q̂ (k+1) = arg min
1

N

N
∑

i=1

| ȳ i (k )− y (ti , q )|2,

and updating σ̂ with

(σ̂(k+1))2 =
1

N

N
∑

i=1

r̄ i (k ).
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parameters. In calculating these intervals, standard errors are computed from the model predictions

using the parameters that have been estimated. Techniques and notation as in [5, 7, 13, 88, 94] are

used.

1.3.4.1 Parameter Confidence Intervals

Consider the statistical model

Yj ≡ f (t j , ~q0) +ε j , j = 1, 2, ..., N , (1.29)

for N observations where f is the model in terms of the theoretical true parameter values, ~q0 ∈Rp .

The errors, ε j , are assumed to be independent and identically distributed (i.i.d.) random variables

with mean E [ε j ] = 0 and variance, V a r (ε j ) = σ2
0 where σ2

0 is unknown. Thus, Yj are i.i.d. with

mean f (t j , ~q0) and varianceσ2
0. The parameters, q , are estimated using the ordinary least squares

approach

q ∗ = arg min J (q ) =
N
∑

j=1

|yj − f (ti , ~q )|2, (1.30)

where {yj } is a realization of the observation process {Yj } and q ∗ is an estimator that depends on

the sampling size. Since Yj is a random variable, so is q ∗ with a distribution called the sampling

distribution. A sampling distribution characterizes the distribution of all the values an estimator {q ∗}

could have across all realizations {yj }with data size, N , that could be collected. Thus, the standard

errors provide a measure of the extent of uncertainty involved in estimating q using the estimator

q ∗ with sample size N . Here p -multivariate Gaussian distributions with asymptotic convergence

in distribution, mean E [q ∗( ~Y )] ≈ ~q0, and covariance matrix Σ0 ≈ σ2
0(S

T (q0)S (q0))−1 are used to

approximate the sampling distribution. Asymptotic convergence in distribution means that the

cumulative distribution functions converge as N →∞. Here S (q0) is the sensitivity matrix similar

to (1.23). Consequently, the sampling distribution approximates satisfy

q ∗(Y )∼Np (q0,Σ0)≈Np (q0,σ2
0(S

T (q0)S (q0))
−1), (1.31)

for large N . Note thatσ2
0 is approximated by

σ2
0 ≈ σ̂

2 =
1

N −p

N
∑

j=1

(yk − f (tk , q ∗))2. (1.32)
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The standard errors that will be used in the half-widths of the confidence intervals are given by

S Ek (q ) =
Æ

Σk k (q ), k = 1, 2, ..., p .

Thus, a 100(1−α)% confidence interval for parameter qk is

q̂k ±τ
N−p
1− α2

σ̂k S Ek (q )

where τ
N−p
1− α2

is the 1− α2 quantile of a student’s t -distribution with N −p degrees of freedom. α= .05

since 95% confidence intervals are used. [49, 88] Given the parameter estimates, the next step is

quantifying the accuracy in the model predictions.

1.3.4.2 Predictive Confidence Intervals

An understanding of the uncertainty in the model predictions is important for making conclusions.

This is determined by calculating predictive confidence intervals. Consider an estimation of the

true mean response, ȳj , of the output

ŷj = f (t j , q̂ ),

where q̂ is an estimate of the solution to (1.30). Note that q̂ is close to the true value, q0, for large N

so

∇ f (t j , q0)≈∇ f (t j , q̂ ).

This implies that

E [ ŷj ] = ȳj ,

and by using Taylor series, the following is observed

V a r [ ŷj ] =V a r [ f (t j , q̂ )],

≈V a r [ f (t j , q0) +∇ f (t j , q0)(q̂ −q0)],

=V a r [ f (t j , q0)]+V a r [∇ f (t j , q0)(q̂ −q0)],

=∇ f (t j , q0)
T V a r [(q̂ −q0)]∇ f (t j , q0),

=σ2
0∇ f (t j , q0)

T (S (q0)
T S (q0))

−1∇ f (t j , q0).

Thus,
ŷj − ȳj

σ̂
p

v0
∼τN−p

1− α2
,
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such that

v0 =∇ f (t j , q0)
T (S T S )−1∇ f (t j , q0). (1.33)

Therefore, the confidence interval for ŷj is given by

ŷj ±τ
N−p
1− α2

σ̂
p

v0.

The variance estimator σ̂2 specified in (1.32) is employed here. A followup question to consider

is given an output, where will the next prediction be given the uncertainty in the parameter and

prediction values. The answer to the aforementioned question lies in prediction intervals. [88]

1.3.4.3 Prediction Intervals

Prediction intervals provide a range of values for a future prediction. Consider (1.29) and recall that

ε j ∼N (0,σ2).

If q̂ is the estimated solution to (1.30), a reasonable estimate for Yj at time t j is

ŷj = f (t j , q̂ ).

Taylor series expansion is used to obtain

f (t j , q̂ )≈ f (t j , q0) +∇ f (t j , q0)
T (q̂ −q0),

=⇒ Yj − ŷj ≈ Yj − f (t j , q0)−∇ f (t j , q0)
T (q̂ −q0),

= ε j −∇ f (t j , q0)
T (q̂ −q0).

This implies that

E [Yj − ŷj ]≈ E [ε j ]−∇ f (t j , q0)
T E [q̂ −q0],

≈ 0,

and
V a r [Yj − ŷj ]≈V a r [ε j ] +V a r [∇ f (t j , q0)

T (q̂ −q0)],

≈σ2
0 +σ

2
0∇ f (t j , q0)

T (S (q0)
T S (q0))

−1∇ f (t j , q0),

=σ2
0(1+ v0).

Here v0 is the expression in 1.33. This means that Yj − ŷj is asymptoticallyN (0,σ2(1+ v0)). Since σ̂2

is independent of Yj and asymptotically independent of q̂ because we noted earlier that q̂ ≈ q0 for
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large N , then σ̂2 is asymptotically independent of Yj − ŷj . Thus,

Yj − ŷj

σ̂
p

1+ v0

∼τN−p
1− α2

,

asymptotically. Therefore, the prediction interval is given by

ŷj ±τ
N−p
1− α2

σ̂
p

1+ v0.

Note that the difference between the predictive confidence interval and prediction interval is that

there is
p

v0 in the former and
p

1+ v0 in the latter. Thus, the prediction intervals will be wider than

the prediction confidence intervals.
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CHAPTER

2

OPTIMIZATION OF KLYSTRON DESIGNS

USING DETERMINISTIC SAMPLING

METHODS

2.1 Introduction

This chapter introduces a process for optimizing the design of klystron circuits. Developed in the

1930s, the klystron (shown in Figure 2.1) is categorized as a linear-beam tube [6, 56, 77]. There are

several different kinds of klystrons including multiple-beam, multiple-cavity, reflex, and clustered-

cavity klystrons. It uses an electron beam to amplify signals such as radio-frequency(RF) waves and

microwaves using interactions between several cavities that line the inner walls of the klystron. The

motivation for designing these devices was a desire for higher RF powers at higher RF frequencies.

There are many applications for klystrons in linear colliders, communications, plasma heating, and

radar systems [6, 30, 54, 56, 77, 92, 93, 101].
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Figure 2.1 Diagram of a Klystron from [99].

Klystrons have the ability to operate under different frequency ranges or bandwidths in order to

be a part of these different applications. An electron gun (Gun in Figure 2.1) emits an electron beam

into the klystron. The beam travels through a floating drift tube to a collector and interacts with the

cavities that line the tube. There are four types of cavities that can be found in a klystron. The first

cavity is called the input cavity (first cavity in Figure 2.1 with Pi n ). This is where RF input power is

inserted via an external circuit. The last cavity is called the output cavity where RF output power

is extracted (fifth cavity in Figure 2.1 with Po u t ). The cavities in between are called idler cavities

(middle three cavities in Figure 2.1) with the cavity next to the output cavity (fourth cavity in Figure

2.1) called the penultimate cavity. These cavities serve to further enhance the velocity modulation

of the electrons causing electron bunching since some of the electrons are decelerated, accelerated

or left alone from the resonant frequencies of the cavities. The cavity frequencies depend on the

cavity shape. The penultimate cavity’s resonant frequency is tuned higher than the other cavities to

maximize efficiency by sharpening the bunches. The interaction velocity between the cavities and

beam that modulates the velocity of the electrons with a modulating electric field is given by

u = u0(1+
αM

2
sinωt ),

where u0 is the initial velocity, α is the depth of modulation, M is the modulating coefficient andω

is the electron plasma frequency. The electron beam carries RF current with it as it moves through

the tube given by

i (z ) =
i1

|1−X cosωt |
,

where z is the position in the klystron, i1 is approximately the DC current for small α, and

X =
ωz

u0

αM

2
,
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is the bunching parameter. As the beam traverses the gaps of the idler cavities, current is induced in

the cavities at an instantaneous rate of

i = Ev q v.

This results in an electric field across the gap that further modulates the velocities of the electrons

and results in more bunching. Finally, after reaching the output cavity, RF output power is extracted

that is substantially larger than the input power via an external circuit [6, 56]. The positions and

frequencies of the cavities play a vital role in RF power amplification.

A klystron is typically used as part of another device. A satellite, for instance, uses a klystron to

amplify the RF signal to reach long distances. Specific values for the gain, efficiency, and output

power are usually the most important desires for klystron users. The gain gives the magnitude in

which the klystron is amplifying and is given by

gain= 10 log10
Po u t

Pi n
.

The efficiency of a klystron describes how much power is being lost in the tube and is given by

η=
Po u t

Vb · I
,

where Po u t is the RF output power, Vb is the beam voltage, and I is the beam current [6]. Efficiencies

exceeding 80% have been demonstrated, with gains over 43 dB [105]. However, high efficiency

klystrons have a number of cavities, each of which has several parameters that must be adjusted to

produce high efficiency and gain. The parameters are interdependent, so the design process can

be an extended, iterative exercise. Even with a skilled klystron engineer, this can take considerable

time.

Recently in [67], the authors introduced an automatic optimization technique for the design of

a klystron interaction structure using evolutionary algorithms. The methodology was applied to

optimally design the interaction structure of the B-factory klystron [46], where all cavity frequencies,

drift lengths from previous cavities, and input coupling were considered as design or free parameters.

As noted by the authors, the evolutionary algorithm can not be applied to the optimal design of the

klystron interaction structure in its generic form but several modifications need to be considered

for it to converge to a useful set of klystron parameters.
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This chapter describes how to automate the klystron design process using a variety of deter-

ministic sampling methods conveniently bundled in MATLAB. Since the optimization methods

are considered as black boxes, they are good candidates for the automated design of a klystron.

In Section 2, we introduce the design software to simulate klystron output given a set of input

parameters. We also describe in detail the construction of the automated process used for klystron

design. Section 3 gives the results from klystrons in which we implement our numerical scheme

and shows that we achieve significant improvements even with a design that was obtained using

conventional methods by a skilled engineer. We also show that a very rough design can be improved

dramatically. Section 4 discusses the advantages and disadvantages of our optimizer and why our

scheme works well. Lastly, Section 5 gives concluding remarks concerning our optimizer and the

automation of the klystron design process.

2.2 Methodology

As discussed before, a klystron designer will take specifications and attempt to find optimal parame-

ters to achieve a desired output. For this optimal design problem, we formulate an objective function

that will penalize the method the farther it is from the goal. Let J (p ) be the objective function to

be minimized and p = [p1 · · ·pn ] be the set of inputs or free parameters. First, the deterministic

sampling methods that are used to strategically find the p ∗ that minimizes J are given. Then we will

give a brief description of the klystron simulation software. Finally, we will give the algorithm for the

optimization scheme.

2.2.1 Deterministic Sampling Methods

The packages in MATLAB pertinent to our study include the deterministic sampling methods

described earlier in Chapter 1 in Section 1.2.3.1.1 and Section 1.2.3.1.2. That is the Nelder-Mead

algorithm (1.3) and implicit filtering algorithm (1.4). We do not use gradient based methods, since

there is no analytic gradient available for the klystron design problem.

2.2.2 Simulation Programs

For numerical proof of concept, we use the two, large signal, klystron simulation codes AJDISK and

TESLA. This provides a good demonstration of our approach because the analysis and design are

independent of the code used.
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2.2.2.1 AJDISK

AJDISK is a 1-D(one dimensional), large signal, klystron simulator. Given a set of parameters, such

as cavity frequencies and positions, AJDISK will predict klystron performance characteristics, such

as output power and gain. The algorithm, as described in [59], breaks the electron beam into thin

rectangular plates, then calculates the electric field in each cavity using the space charge field from

the other plates to determine the force on each plate. The dynamics of the charges (plates) are

determined by the Lorentz force (conservation of momentum) equations given by

d (γm v̄ )
d t

= q (Ē + v̄ × B̄ ),

where γ is the relativistic correction factor. If it is assumed that the beam is confined by the infinite

magnetic field and the direction of propagation of the charge is in the z direction, then the Lorentz

force equation is simplified to

γ3m
d 2z

d t 2
= q Ez ,

= q (Ec a v +Es p c h ),

where the electric field is split between the electric field from the klystron cavity Ec a v and the space

charge field Es p c h from the other plates. The above equation is integrated to find the charge position

as a function of the fields Ec a v and Es p c h . For the calculations of Ec a v and Es p c h , we refer the reader

to [59].

2.2.2.2 TESLA

TESLA(Telagraphist’s Equations Solution for Linear beam Amplifiers) is a 2.5-D, klystron simulator

[87] that evolved from the gyroton code MAGY [19] and was developed [104] at the University of

Maryland and Naval Research Laboratory. The capabilities include the ability to simulate linear

beam, vacuum electronic devices with cavities, such as klystrons, extended interaction klystrons,

twystrons, and coupled cavity amplifiers. The model includes a self-consistent, nonlinear solution of

the three-dimensional, relativistic, electron equations of motion and the solution of time-dependent

electromagnetic field equations [29, 87]. For more information about TESLA, we refer the reader

to [19, 29, 87, 104] and references therein. Similar to AJDISK, TESLA uses input parameters and

calculates klystron performance.
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2.2.3 Optimizer Scheme

The implemented optimizer scheme unifies the simulation software for a klystron and optimization

algorithm in MATLAB. Both klystron simulators read the input parameters from a formatted file,

and the flowchart in Figure 2.2 shows the combined capabilities of the simulators. Deterministic

sampling methods in MATLAB automate the klystron design process. Results in the next section

demonstrate the feasibility of this scheme for the automation of klystron design.

40



2.2. METHODOLOGY
CHAPTER 2. OPTIMIZATION OF KLYSTRON DESIGNS USING DETERMINISTIC SAMPLING

METHODS

Figure 2.2 Schematic diagram for the local optimizer routine.

41



2.3. EXAMPLES
CHAPTER 2. OPTIMIZATION OF KLYSTRON DESIGNS USING DETERMINISTIC SAMPLING

METHODS

2.3 Examples

In this section, we use the optimization algorithm in Figure 2.2 to design three example klystrons.

The examples include both narrow and wide band klystrons. The results will illustrate how our

optimization algorithms take user provided initial data and not only makes the design process more

efficient, but also significantly improves the klystron design.

2.3.1 CBAND

CBAND is a nine cavity, wideband klystron. This is a multi-beam device with a voltage of 25 kV and a

current per beamlet of 1.2 A. While there were 18 beams, all of the analysis here is for a single beam

device with R/Q equal to 1/18 times the actual value. Our goal was to achieve 40db gain and 6940

watts output power over a bandwidth of 5400-5770 GHz. This is a 6.6% bandwidth. As shown in

Figure 2.3 (dashed curves), we were unable to achieve this bandwidth with a conventional design

process.

The parameters that we chose to optimize and their initial values are given in Table 2.1. We ac-

quired this initial data from engineers with extensive experience in designing this type of klystron.

For more information on these parameters, we refer the reader to [6].

Achieving at least 40db gain across the required band was critical; however, it was also desirable to

have the gain curve as flat as possible. Achieving 40db gain across the band simultaneously achieved

at least 6940 W power out. Thus, we can choose our objective functional without incorporating

power out and focusing solely on achieving our goal gain. Consequently, we chose our objective

functional as

c (x ) =

(

1000(40− x ) if x < 40

0 if x ≥ 40,

with the weight(1000) to sufficiently penalize the optimizer for not achieving the goal. We sampled

across the bandwidth by uniformly picking 20 frequencies between 5400-5770 MHz. We then picked

the smallest value of those evaluations and used that in the objective functional. Now that we have

our initial data and objective functional, we can apply the steps described in Figure 2.2 to obtain

the results in Figure 2.3. We note that AJDISK is the simulator used along with the Nelder-Mead

Algorithm described before as the deterministic sampling method.
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Figure 2.3 The Gain (left) and The Power Out (right) for CBAND with a run time of approximately 38 hours.

We achieved the desired specifications, in both gain and power out, across the bandwidth.

The optimized parameters, shown in Table 2.1, were obtained on a laptop with a 2.70GHz Intel(R)

Core(TM) i7-2620M CPU processor in less than two days of computation.

Table 2.1 Initial and optimized parameter values for the CBAND klystron.

Initial and Optimized parameters for CBAND

Parameters Initial Data Optimized Values

Cavity Position of Idler Cavity 1-3
.07112 m .07112 m
.12954 m .13344 m
.18415 m .1853 m

Cavity Position of Idler Cavity 4-6
.22860 m .23053 m
.26543 m .26626 m
.29972 m .30041 m

Cavity Position of Penultimate Cavity .32893 m .32958 m
Cavity Position of Output Cavity .35535 m .35024 m
Cavity Frequency of Input Cavity 5399 MHz 5393.924 MHz

Cavity Frequency of Idler Cavity 1-3
5473 MHz 5481.732 MHz
5595 MHz 5597.977 MHz
5692 MHz 5705.562 MHz

Cavity Frequency of Idler Cavity 4-6
5718 MHz 5713.674 MHz
5749 MHz 5765.532 MHz
5773 MHz 5784.384 MHz

Cavity Frequency of Penultimate Cavity 5855 MHz 5870.885 MHz
Cavity Frequency of Output Cavity 5602 MHz 5583.489 MHz

Power In .75 W .75 W
Qe of Output Cavity 8 8.038
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2.3.2 KSB

KSB is a five cavity, PPM (Periodic Permanent Magnet) focused narrowband klystron with operating

frequency 2.856 GHz. TESLA is the simulator used with a combination of implicit filtering and Nelder-

Mead algorithms as the deterministic sampling methods. We chose TESLA because AJDISK is unable

to handle PPM focused klystrons. We first use the Nelder-Mead algorithm to find a minimum of

the cost. Then, since implicit filtering can leap over local minima, we use it after the Nelder-Mead

algorithm to find a better local minimum. Once implicit filtering is unable to locate a better local

minimum, we then implement the Nelder-Mead algorithm with the improved input parameter

values to determine if we can improve our results. If the previous step is successful, we reimplement

the implicit filtering algorithm. We continue this process until the local minimum does not improve

for either method. We optimized for two different designs of this klystron on a laptop equipped with

a 1.80 GHz Intel(R) Core(TM) i7-4500U CPU processor.

2.3.2.1 Design One

Our goal is to achieve 5.5 MW power out with a voltage of 127 kV and 90.5 A current. The optimized

parameters and their initial values are given in Table 2.2. Because the cavities were inserted between

the pole pieces of a PPM focusing structure, the positions of the cavities could only be varied by

increments of 1
2 of the PPM period. Thus, for the purposes of this optimization, the cavity positions

were fixed. Since this was a narrow band klystron, the Q’s of the idler cavities were unimportant if

they are above some minimum values. Thus, only the resonant frequencies of all cavities and the Q

of the output cavity were varied in the optimization. The initial data in Table 2.2 were generated by

trial and error to obtain a klystron with 4 MW power out to start.

Our objective functional is given by

c (x ) =

(

5, 500, 000− x if x < 5, 500, 000

0 if x ≥ 5, 500, 000.

We used this objective functional because the difference between the target and result was large

enough to penalize the optimizer. We achieved 5.501 MW power out with the optimized parameters

given in Table 2.2 in about four and a half days of computer time.
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Table 2.2 Initial and optimized parameter values for design one of the KSB klystron.

Initial and Optimized parameters for Design One of KSB

Parameters Initial Data Optimized Values

Cavity Frequency of Idler Cavity 1-2
2864 MHz 2856 MHz

2897 MHz 2908 MHz

Cavity Frequency of Penultimate Cavity 2934 MHz 2931 MHz

Power In 104.7 W 175.1 W

Qe of Output Cavity 21.4 35.3

2.3.2.2 Design Two

This illustrates how the optimizer could improve a design which is far from optimal. It was motivated

by the desire to run the klystron described in Section 2.3.2.1 at lower voltage. At the lower voltage

97.6 kV, the efficiency was reduced significantly, resulting in an output power of 1.283 MW. The

optimizer was employed to increase this power to the desired level of 3 MW. The objective functional

is given by

c (x ) =

(

3, 000, 000− x if x < 3, 000, 000

0 if x ≥ 3, 000, 000.

A weighting coefficient in the objective functional was not required because the difference between

the target and result was large enough to penalize the optimizer. We achieved 2.732 MW of power

out, a 48% increase over the original output power, with optimized parameters given in Table 2.3 in

approximately four days of computing time.

Table 2.3 Initial and optimized parameter values for design two of the KSB klystron.

Initial and Optimized parameters for Design Two of KSB

Parameters Initial Data Optimized Values

Cavity Frequency of Idler Cavity 1-2
2858 MHz 2859 MHz

2901 MHz 2898 MHz

Cavity Frequency of Penultimate Cavity 2936 MHz 2884 MHz

Power In 126.4 W 138.2 W

Qe of Output Cavity 21.4 46.1
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2.4 Discussion

There are many parameters that we could have optimized, but we chose cavity frequency and cavity

position because other parameters did not have as much of an impact on the output we desired.

Because the deterministic sampling algorithms we used find a local minimum for the cost function,

the initial guess for the parameters played a crucial role in achieving the output specifications.

The number of parameters involved in klystron simulations can be very high so local minimum

techniques are usually more desirable than global techniques. Even though they may not yield the

best parameters, Nelder-Mead and Implicit Filtering efficiently achieve the desired output. Our new

approach provides a highly efficient, automated technique to design klystrons that meet customer

specifications.

2.5 Conclusion

This chapter describes how we used deterministic sampling methods to automate the design process

of klystrons. This was motivated by the copious amount of time it takes to design klystrons by trial

and error. It is shown that optimization can reduce the duration of the design process from weeks to

days. Not only was design time reduced, but the performance achieved was better than previously

achieved using manual, trial and error methods.
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3.1 Introduction

Over 200-300 million people worldwide are infected with a virus that affects the liver called

Hepatitis C (HCV) that was discovered in 1989 [89,97]. It is usually spread by blood-to-blood contact

via intravenous drug use, poorly sterilized medical equipment, and transfusions. Scarring of the liver

and ultimately cirrhosis are just a few of the more severe complications associated with HCV [15,84].

Six different genotypes of HCV exist due to the highly error prone RNA polymerase with the most

common being genotype 1 that has the lowest levels of response to standard treatment [14,22,28,75].

Genotype 1 patients have about a 50% chance for sustained viral response (SVR) while

non-genotype 1 patients have about an 80% chance for SVR [53, 95]. The data available for the

research was provided by the University of Sao Paulo, School of Medicine in Sao Paulo, Brazil and

consist of genotype 1 patients.

One of the first treatments for HCV was 6-12 months monotherapy with interferon glycoproteins as

47



3.1. INTRODUCTION CHAPTER 3. MATHEMATICAL MODEL OF HEPATITIS C VIRUS

the only medication used. Interferon is naturally secreted from our bodies to fight off infection and

monotherapy treatment with them is associated with around 10% SVR [62]. The addition of ribavirin

(RBV), a drug believed to render some of the virus non-infectious, increased SVR to around 30% [62].

RBV monotherapy is not recommended because it does not give a significant benefit to SVR [20].

Until recently, the most common therapy was a combination of pegylated Interferon (IFN) and RBV

for 24-48 weeks which yielded about a 45% SVR [41, 42, 44, 62, 79, 95]. One of the major differences

between IFN and standard inteferon glycoproteins is that the pegylation allows the drugs to stay in

the body longer [102]. There has also been clinical trials with RBV monotherapy before and after

IFN+RBV therapy described in [82, 91]. Recently, new drugs called direct-acting antiviral agents

(DAAs) have raised the chance for SVR for HCV patients.

DAAs give an increase to about an 80% chance for SVR for genotype 1 [98]. According to the FDA,

DAAs are drugs that interfere with specific steps in the HCV replication cycle by taking advantage of

the biological makeup of HCV [45]. HCV is a single stranded RNA molecule that is several nucleotides

in length. During HCV’s life cycle it is translated into a polyprotein that is composed into structural

and nonstructural proteins that aid in replication. During post-translational processing, DAAs called

protease inhibitors block a key protease from the replication process and hinders further infec-

tion [58, 63, 98]. Among the protease inhibitors available are boceprevir, telaprevir and simeprevir.

Simeprevir is recommended over telaprevir and boceprevir because of both improved efficacy and

less side effects, but telaprevir continues to be used because of its cost efficiency in other countries

such as where we received our data [17, 55, 83, 109]. Telaprevir, a substrate of the efflux transporter

p-glycoprotein, is an inhibitor of the CYP3A4 enzyme [107].

Mathematically modeling viral dynamics with data has led to further understanding of how treat-

ment strategies dictate viral load patterns and how they compare to each other. Many nonlinear

ODE models have been proposed to model different treatment strategies for HCV. One of the first

models was given by Neumann et. al which attempted to describe HCV dynamics with interferon

monotherapy [75]. Improvements were made to Neumann’s model to better describe different

mechanisms in the liver during treatment like the regeneration of liver cells. Adjustments were

also made to include the standard of care, IFN and RBV. Some of these modifications can be found

in [8, 35, 36, 95]. [95] had data after the end of the treatment phase so that the model can give a more

accurate representation of it’s prediction of SVR. The introduction of DAAs has ushered in more

mathematical models that include this type of therapy [27]. For example, mathematical models

have been proposed using telaprevir monotherapy [3, 4, 52, 85, 86] and in combination with IFN

and RBV [4] that uses Bayesian Feedback to estimate the parameters in the model. The challenges
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that come with models with DAAs is that since they are relatively new, there is not as much data

available [3]. It can be difficult to predict SVR because of lack of data after the treatment phase ends

due to how recent the drugs have been approved.

This chapter introduces a novel approach for the development of a mathematical model that

describes how HCV propagates through the liver given the triple-drug combination treatment of

IFN, RBV and the DAA telaprevir. We use a sensitivity and identifiability analysis to determine

which parameters can be best estimated from the data. In Section 2, we describe how we adapted a

previously known HCV model to include telaprevir. Section 3 discusses the analysis and results used

for model validation. Section 4 gives results from parameter estimation. Lastly, Section 5 provides

concluding remarks.

3.2 Model

3.2.1 Motivation

The original model for HCV dynamics in Neumann et. al. [75]was frequently used to assess viral-load

profiles after short-term treatment and is given as

d T

d t
= s −d T − (1−η)βV T ,

d I

d t
= (1−η)βV T −δI ,

d V

d t
= (1−ε)p I − c V .

(3.1)

One of the key contributions of the model was the understanding of the mechanism of IFN. It was

unknown whether it acted through η> 0 or ε> 0. In [75], it is determined that it is through εwhich

inhibits production of the virus. The drawback to (3.1) is that it cannot describe patients exhibiting

Breakthrough, relapse, and most importantly SVR. These responses are reasons that early viral

response does not uniformly predict responses in the long term. Another important aspect is the

handling of viral load measurements below the LLOQ. Previous analysis omitted the data below

LLOQ, but it can contain critical information regarding long-term treatment outcome. Snoeck, et

al., [95], presents a mathematical model used for HCV with the drug treatment combination of IFN

and RBV that attempts to address both the long term responses and the use of the LLOQ.
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3.2.2 Assumptions

Snoeck, et al. uses a maximum likelihood estimation (MLE) of the parameters, using the extended

stochastic expectation-maximization(SAEM) algorithm which was implemented in the MONOLIX

software. However, some of the parameters are fixed to values that make sense biologically. The fixed

values come from previous literature that provides discussions about the parameters in question. In

addition, the proliferation rates are the same in both the infected and uninfected hepatocytes. The

parameters for the maximum number of hepatocytes, death rate of uninfected hepatocytes, and

the production of new hepatocytes are all fixed to values that can be found in [35, 68, 90]. [95] also

accounts for interindividual variability between patients. The estimated parameters that account

for interindividual variability are the basic reproductive number, the natural clearance of the virus,

the death rate of the infected hepatocytes and the estimated weekly dose of IFN that results in a

50% inhibition of the virion production using a nonlinear mixed effects model. If at any point there

is less than one infected hepatocyte, the virion production rate is set to zero. This model does not

take into account mutations due to drug resistant strands of the virus.

3.2.3 Model from Snoeck et. al.

The mathematical model given in [95] is described by the system of nonlinear ODEs

d T

d t
= s + r T (1−

T + I

Tma x
)−d T −βVI T ,

d I

d t
= βVI T + r I (1−

T + I

Tma x
)−δI ,

d VI

d t
= (1− ρ̄)(1− ε̄)p I − c VI ,

d VN I

d t
= ρ̄(1− ε̄)p I − c VN I ,

(3.2)

where T (uninfected hepatocytes), I (infected hepatocytes), VI (infectious virions) and VN I (non-

infectious virions) are natural states (international units IU/mL) from a standard model of viral

infection [75]. The number of uninfected hepatocytes increases each day with reproduction rate s

and regeneration rate r . That number decreases each day as those hepatocytes die naturally at a

rate d or infected at a rate β . The maximum number of hepatocytes per mL is Tma x . The number

of infected hepatocytes increases when the healthy liver cells are infected and when the infected

cells regenerate themselves. That number decreases when they die off naturally at a rate δ. Infected

hepatocytes produce both infectious and noninfectious virions at a rate p . Virions are naturally

cleared at a rate c . IFN inhibits virion production while RBV renders some of the virus noninfectious.
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The drug efficacies of IFN and RBV are represented by ε andρ, respectively. The bounds for IFN and

RBV are 0< ε≤ 1 and 0<ρ ≤ 1 where the more effective the drug is, the closer the efficacy of the

drug will be to 1. Snoeck uses data that extends beyond treatment for patients so ε̄ and ρ̄ account

for the exponential decays of the efficacies of the drugs after treatment has ceased. The exponential

decay of the drug efficacies are given by

ε̄= εe −k (t−te nd )+ ,

and

ρ̄ =ρe −k (t−te nd )+ ,

where k is the efficacy decay rate, te nd marks the end of treatment, and

(a )+ =

(

a if a ≥ 0,

0 otherwise.

The parameters ε and ρ are given by the following expressions

ε=
DosePEG

ED50PEG
+DosePEG

, (3.3)

and

ρ =
DoseRBV

ED50RBV
+DoseRBV

, (3.4)

where DosePEG is the weekly subcutaneous dose of IFN and ED50PEG
is the estimated weekly dose

that causes 50% inhibition of virion production. DoseRBV represents the daily dose of RBV/kg body

weight, and ED50RBV
represents the estimated daily dose in mg/kg that makes 50% of the virions

noninfectious. Biologically, all state variables and parameters are non-negative.
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Parameter Value

s 6.17×104 hepatocyte
mL·day

r .00562 day−1

β 8.7×10−9 mL
virion·day

δ .139 day−1

c 4.53 day−1

Tmax 1.85×107 hepatocytes
mL

d .003 day−1

p 25.1 virions
hepatocyte·day

ε .896

ρ .4-.6

k .0238 day−1

Table 3.1 Typical values from [95].

3.2.4 Model with DAA

Snoeck’s model is adapted to incorporate the DAA, telaprevir. Recall that a DAA targets specific parts

of the genome of the virus to inhibit both replication and infection. The hindrance of replication of

the virus in the infected hepatocytes results in the virus not being produced by those cells. This means

that the DAA should be implemented as part of the infection term, βT VI , for inhibiting infection

and viral production terms, p VI and p VN I , for inhibiting replication of the virus in (3.2). However,

after simulations and analysis, it is concluded in this study that the obstruction of the infection

and replication of the virus by telaprevir can be described solely as an amplifier for mitigating the

production of virions alongside IFN. With this assumption, the model in [95] is modified to include

the triple drug combination of IFN, RBV and teleprevir as follows:

Ṫ = s + r T
�

1−
T + I

Tmax

�

−d T −βVI T

İ =βVI T + r I
�

1−
T + I

Tmax

�

−δI

V̇I = (1− ρ̄)(1− ε̄)(1− γ̄)p I − c VI

V̇N I = ρ̄(1− ε̄)(1− γ̄)p I − c VN I ,

(3.5)
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where 0 < γ ≤ 1 represents the efficacy of telaprevir. Existence and uniqueness of solutions are

proven and a steady state stability analysis is performed to validate the model.

3.2.5 Existence and Uniqueness

Typically, when showing that a solution exists for a general differential equation given by

ẋ = f̂ (t , x , q ), (3.6)

it is sufficient to use the following theorem 3.2.1 (Cauchy-Lipschitz theorem) from [32],

Theorem 3.2.1 Let || · || denote any norm in Rn . Given T > 0 and D =Rn , let f ∈C([0, T ]×Rn ;Rn )

be a mapping with the property that there exists a constant L > 0 that satisfies the Lipschitz condition

|| f̂ (t , x1)− f̂ (t , x2)|| ≤ L ||x1− x2||, ∀ (x1, t ), (x2, t ) ∈D × [0, T ],

Then the initial value problem, or Cauchy problem,

ẋ (t ) = f (t , x (t )), 0≤ t ≤ T , and x (0) = x0,

has a unique solution x ∈C1([0, T ];Rn ).

Note that the right hand side of (3.5) corresponding to f̂ does not satisfy a Lipschitz condition in the

states due to product nonlinearities like βVI T and r T T+I
Tmax

. However, since the model represents a

biological system, it is impractical to expect the states to be boundless as the population increases.

Thus, the non-linear terms are replaced with terms that saturate as the cell populations grow large

as in [2, 7]. This causes f̂ to be piecewise differentiable and satisfy a global Lipschitz condition to

guarantee existence and uniqueness of a solution.

In a revised saturated model where each state has a saturation limit such that xi ≤ x M
i then (3.6) is

rewritten as the following

ẋ s = f̂ s (t , x s , q ), (3.7)

where any nonlinearity of the form an xi x j with constant an is replaced with

an (xi )an (x j ), (3.8)
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where the saturation term is given by

an (xp ) =















0, xp < 0
p

an xp , 0≤ xp ≤ x M
p

p
an x M

p , x M
p < xp .

It is observed that (3.7) is exactly (3.5) below the saturation limit and (3.8) is globally bounded and

piecewise differentiable. (3.5) is rewritten to give the following

ẋ = A+B (t )x + c (t , x , q ),

where A = [s ,0,0,0] contains the source terms, B (t )x contains the terms linear in x like d T , and

c (t , x .q ) contains the nonlinearities. Immediately from (3.8) it is acquired that the derivative of the

saturated nonlinear term is bounded and gives the following

||Dx c (t , x s , q )||<∞.

It can now be concluded that for

ẋ s = f̂ s (t , x s , q ) = A+B (t )x s + c (t , x s , q ),

and any x s
1 and x s

2 where f̂ s (t , x s
i , q ) = f̂ s

i , the following is obtained

|| f s
1 − f s

2 ||= ||B (t )(x
s
1 − x s

2 ) + c (t , x s
1 , q )− c (t , x s

2 , q )||,

= ||B (t )(x s
1 − x s

2 ) +

∫ 1

0

Dx c (t , x s
2 + s̄ (x s

1 − x s
2 ), q )(x s

1 − x s
2 )d s̄ || by Mean Value Theorem,

≤ ||B (t )|| ||x s
1 − x s

2 ||+ ||Dx c (t , x s
2 + s̄ (x s

1 − x s
2 ), q )|| ||x s

1 − x s
2 ||,

≤ L ||x s
1 − x s

2 ||.

This provides a global Lipschitz condition for (3.7). A last remark is that even though the above anal-

ysis is with the saturated system, the original system (3.5) is used during this work. The reasoning is

that during simulations, no issues regarding states growing without bound were observed. Solutions

being guaranteed allows the use of this system of ODEs. An analysis of the steady states will give

more information about the dynamics of these solutions.
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3.2.6 Steady States and Stability

The computation of steady states give the values for which the system is in stasis. The steady states

are examined without outside interference so drugs are not introduced. Thus, the drug efficacies

are fixed to ε=ρ = γ= 0 to simulate no treatment being administered. Steady states occur at the

equilibria of an ODE which are found by solving the following system of equations

Ṫ = 0,

İ = 0,

V̇I = 0,

V̇N I = 0.

(3.9)

(3.9) is solved to obtain two physically possible steady states. The uninfected steady state is given by

T =
Tma x

2r

�

r −d +

√

√

(r −d )2+
4r s

Tma x

�

,

I = 0,

VI = 0,

VN I = 0,

(3.10)

and the infected steady state is given by

T =
1

2

�

−
r 2D

A2
+

√

√

(
r 2D

A2
)2+

4r s Tma x

A2

�

,

I = T
�A

r
−1

�

+Tma x −
δTma x

r
,

VI =
p

c
I ,

VN I = 0,

(3.11)

where

A =
pβTma x

c
,

D =
Tma x

r 2
[A(r −δ) + r (d −δ)].

The nominal parameters from [95] are used to acquire the uninfected and infected steady state

values in Table 3.2. Since the uninfected state is unstable, introduction of the virus will likely lead to

chronic infection.
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State Uninfected Steady State Infected Steady State

T 1.92×107 2.788×106

I 0 4.928×105

VI 0 2.7307×106

VN I 0 0

Table 3.2 Steady state values for (3.5).

The local stability of each steady state is determined by analyzing the eigenvalues of the Jacobian

matrix for (3.5) given by

JN I =











r (1− T+I
Tma x
)− r T

Tma x
−d −βVI − r T

Tma x
−βT 0

βVI − r I
Tma x

r (1− T+I
Tma x
)− r I

Tma x
−δ βT 0

0 p −c 0

0 p 0 −c











. (3.12)

The uninfected steady state gives (3.12) at least one positive eigenvalue so it is locally unstable. The

infected steady state gives (3.12) all negative eigenvalues so it is locally stable. Figure 3.1 shows that

with the introduction of one Virion
mL , cell concentrations will rapidly propagate from the uninfected

steady state to the infected steady state. This illustrates how instrumental the drugs are in viral clear-

ance. Without treatment, VN I is decoupled from the system and remains at zero. Next, information

about when treatment will be administered is presented.
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Figure 3.1 Simulation of (3.5) with initial conditions [T0, I0, VI 0] = [1.92×107, 0, 1].

3.2.7 Treatment Schedule

The data in this research uses the treatment schedule timeline as described in Figure 3.2.

0"12%
Weeks:%
TVR%+%IFN%
+%RBV%

12"24%
Weeks:%
IFN%+%RBV%

24"36%
Weeks:%
IFN%+%RBV%

36"48%
Weeks:%
IFN%+%RBV%

Figure 3.2 Treatment schedule for patients used for data received from patients treated at University of Sao
Paulo, School of Medicine in Sao Paulo, Brazil.
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(1) The patient is treated with IFN+RBV+telaprevir the first 12 weeks.

(2) If at 12 weeks, viral load > 1000ml, then discontinue treatment. Otherwise, continue 12 weeks

IFN+RBV.

(3) If at 24 weeks, viral load > LLOQ(12-15ml), then discontinue treatment. Otherwise, continue 12

weeks IFN+RBV.

(4) If at 36 weeks, viral load > LLOQ, then discontinue treatment. Otherwise, continue 12 weeks

IFN+RBV.

(5) End of treatment at 48 weeks.

3.3 Subset Selection

Many parameter sets in the parameter space are used to determine which parameters in (3.5) will

be estimated. In particular, the subset of parameters that are locally sensitive and identifiable as

described in Chapter 1 are estimated. Thus, algorithm (3.1) is implemented to perform subset

selection on each set of parameters. Since these are local analyses, this procedure is repeated over a

Algorithm 3.1

1. Start with full parameter set Q .

2. Remove parameters that are not locally sensitive to attain QS ⊂Q .

3. Remove parameters that are not locally identifiable from QS to obtain sensitive and identifiable
parameter set QS I

large number of parameter sets and the parameters that appear most often in QS I are the parameters

that are estimated. All other parameter values are fixed to values from literature. A biological and

structural explanation for some of the fixed parameters is given in the next section.

3.3.1 Fixed Parameters

The assumptions for fixed parameters are the same as in [95]. Since the maximum number of

hepatocytes in the liver is 2.50×1011 and HCV RNA is distributed in plasma and extracellular fluids
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with a volume of ∼ 1.35×104 ml, then Tma x =
2.50×1011

1.35×104 = 1.85×107. d is obtained from hepatocyte

turnover being every 300 days and s = Tma x ·d can be deduced in the absence of liver disease. p is

always fixed because p (1−ε) appears in V̇ and V̇N I making p and ε, impossible to estimate uniquely.

The rest of the parameters will be considered in the sensitivity analysis.

3.3.2 Sensitivity Analysis Model Considerations and Results

The procedure for the sensitivity analysis as outlined in Section 1.3.1 is implemented. The sensitivi-

ties of each parameter are ranked to obtain which parameters are most sensitive. Since there is a

large range of parameter and viral load values, each parameter, q j , is log scaled in association with

the state variable, y ; i.e.,
d log10(y )
d log10(q j )

=
q j

y

d y

d q j

is considered instead of d y
d q j

. This allows a comparison the sensitivities of each parameter using

similar magnitudes. The l2−norm is used to non-dimensionalize the sensitivities over time so the

following sensitivity coefficient is considered for each parameter

Si j =

�

�

�

�

�

�

�

�

∂ yi

∂ q j

�

�

�

�

�

�

�

�

2

=

�

1

t f − t0

∫ t f

t0

�

∂ yi

∂ q j

� q j

max yi

��2

∂ t

�
1
2

. (3.13)

(3.13) is defined to be the relative ranking sensitivity of each variable yi in y with respect to each

individual parameter q j .

Since the local sensitivity analysis depends on values in q , independent sets of parameters that

have a log-normal distribution are created according to the population-based model fit in Snoeck

et al. That is, a sequence of independent parameter sets {qk } are generated from this distribution

using the typical values from [95] as the mean. Initially, 5000 parameter sets are considered for this

local sensitivity analysis to make it pseudo-global. It was observed that certain parameter sets in

the parameter space obtained negative components in the initial conditions of (3.5). The reason for

this phenomenon is that the initial conditions are parameter dependent. Also, it is desired to only

examine parameter values that give measurements above the LLOQ to simulate measurements that

can be observed. Therefore, only parameter sets that give all nonnegative components in the initial

conditions and output above the LLOQ are analyzed. To determine pseudo-global sensitivities, a

sensitivity coefficient, S k
i j , is computed for each parameter in the k th parameter set. Then, if B
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parameter sets are to be analyzed, then an average for all the parameter sets is computed by

S̄i j =
1

B

B
∑

k=1

S k
i j . (3.14)

A cutoff is determined based on the ranking of the averages attained in (3.14). Those parameters

above the cutoff are further examined in the identifiability analysis. This method is a version of what

is referred to as Morris Screening in [94]. Similar to the work done here, the Morris algorithm [72]

averages local derivative approximations to provide more global sensitivity measures. The difference

being that the variance in the parameter sets is also considered. Here that variance would be given

by

σ2
i j =

1

B −1

B
∑

k=1

(S k
i j − S̄i j )

2. (3.15)

As explained in [94], while the mean (3.14) quantifies the individual effect of the input on the output,

the variance (3.15) estimates the combined effects of the input due to nonlinearities or interactions

with other inputs. The reader is referred to [72,94] and references therein for a more detailed analysis

of Morris Screening. It is noted that only the marginal distributions are given in [95], so computations

are ignorant of any covariances between parameters. The data that is used contains only the viral

load observations. So the sensitivities of V =VI +VN I are of interest. Therefore, (1.11) is considered

where

y = [T I VI VN I ]
T ,

with output

z =V =VI +VN I .

Two different sets of time points are used during this analysis. The first and second set of time

points come from the partial viral response(PVR) case and Breakthrough case, respectively. This

will provide a better illustration of sensitivities given that treatment decays in the Breakthrough

case, but doesn’t in PVR. The sensitivity rankings are given in Figure 3.3 and Figure 3.4 for over 2000

and 400 parameter sets, respectively. Error bars that are 2 standard deviations from the mean are

included.
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Figure 3.3 Sensitivity rankings using PVR time points.

Parameter
c / - 0 ; r . k

Se
ns

iti
vi

ty
 R

an
ki

ng

0

0.1

0.2

0.3

0.4

0.5

Figure 3.4 Sensitivity rankings using Breakthrough time points.

The sensitive parameters for the PVR and Breakthrough time points are QP V R = {δ, c ,β , r,γ}
and QB r k = {δ, c ,β , r,ρ,γ,ε}, respectively. These parameters are considered in the identifiability

analysis. Note that γ is always considered in the identifiability analysis due to there not being a value

from literature to fix it to for this model. It is used to determine if it affects the identifiability of other

parameters.
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3.3.3 Identifiability Analysis Results

Algorithm (1.5) as described in Chapter 1 is used for the local identifiability analysis here. The

analysis is applied to all of the parameter sets of sensitive parameters, QP V R and QB r k , obtained

in the previous section. It is observed from Figure 3.5 that the parameters in QP V R = {δ, c ,β ,γ}
are identifiable at least 50% of the time. In Figure 3.6, it is shown that the parameters in QB r k =

{δ, c ,β ,γ,ε} are identifiable at least 50% of the time. The parameters contained in QP V R and QB r k

are estimated.
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Figure 3.5 Final subset percentages using PVR time points.

3.4 Parameter Estimation

The parameters in QP V R and QB r k are estimated using the weighted sum of squares of errors (WSSE)

given by

J (q ) =wi

N
∑

i=1

[log(V i
d )− log(V (ti ; q ))]2, (3.16)

where wi is the weight associated with the data point V i
d at time ti and V (ti ; q ) is the model output

with parameters q . We used both sampling and gradient based methods to minimize this function

implemented in MATLAB. The three different responses during treatment presented in Figure 3.7

are PVR, ETR (end-of-treatment response) and Breakthrough. PVR represents when the patient

has an initial positive reaction to the therapy, but then the viral load rebounds during treatment
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Figure 3.6 Final subset percentages using Breakthrough time points.

and never goes below detection. ETR represents when the viral load drops below detection and

does not rebound. Breakthrough represents when the patient’s viral load drops below detection,

but rebounds. The detection level (red line) represents the LLOQ (15 IU/ml) for this patient data.

The Breakthrough patient behavior will not be accurately modeled without robust predictions for

what is happening beneath the censoring line. Thus, the EM algorithm described in Chapter 1 is

implemented when fitting ETR and Breakthrough viral load profiles. The RBV dosage depends on the

patient’s body weight and was sometimes modified during treatment due to different symptoms of

the patients such as blood thinning. The patients experiencing PVR and Breakthrough had constant

RBV dosage for the entire treatment while the patient exhibiting ETR had modified dosage. The RBV

efficacy is fixed to ρ = .1222 from [5] for the PVR and Breakthrough patient. The efficacies for the

ETR patient were modified based on time, t , in days since initial treatment. are presented in Table

3.3.

Parameter t ≤ 27 27< t ≤ 83 t > 83

ρ .5127 .3185 .219

Table 3.3 Patient ETR’s RBV efficacies based on modified dosage.
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Figure 3.7 Examples of viral load profiles for PVR, ETR, and Breakthrough patients.
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Parameter Value

s 6.17×104

r .00562

Tmax 1.85×107

d .003

p 25.1

ε .6138

Table 3.4 Fixed parameter values from [95] and [5].

The parameters not in QP V R or QB r k are fixed to the values in Table 3.4 from [95] and [5]. As in [95],

the infected steady state is used for the initial conditions for (3.5) because the patients considered

had chronic infection. The values in Table 3.5 are obtained after estimating the parameters in QP V R

and QB r k . The estimated parameters are in bold. The PVR parameters have 95% confidence interval

half-widths attached. These estimates produce the model fits (graphs on the left) and residuals

(graphs on the right) in Figure 3.8. The patient’s viral load in the ETR fit goes to zero. The residuals

for censored data are set to zero. Moreover, 95% parameter and predictive confidence intervals

and prediction intervals for the parameters and predictions are calculated using the asymptotic

theory outlined in Section 1.3.4.1, Section 1.3.4.2, and Section 1.3.4.3. The predictive confidence

intervals and prediction intervals are shown in Figure 3.9. The prediction intervals are larger than

the predictive confidence intervals for the reasons given in Chapter 1.
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Figure 3.8 Results from parameter estimation for (3.5).
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Figure 3.9 Predictive confidence intervals and prediction intervals for (3.5).

Patient PVR ETR Breakthrough

δ .1883± .0462 .7211 .3293

c 2.717±2.724 11.67 2.089

γ .9987± .0015 .9999 .6575

β 1.875×10−5±1.688×10−5 8.684×10−8 2.259×10−6

ε .6138 .9829 .9875

Table 3.5 Values from parameter estimation for (3.5).

3.4.1 Discussion

The higher values in c and δ in the ETR patient lead us to believe that the immune response along

with the drugs have a stronger impact on the mutation and clearance of the virus. It is known that the

immune response is strongly correlated with the clearance of the virus. Since the initial conditions

of (3.5) are at the infected steady state, introduction of the drugs could be a mechanism to jump start

the immune response. We note that even when the virus is not cleared, telaprevir still has a strong

impact on viral load decay. This behavior corresponds with how powerful DAA’s can be in reducing

viral load even when it rebounds. The rebound could be because of mutations which are neglected
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in this model as stated earlier. There is a dip at around the 150th day in the Breakthrough response

that is unquantifiable due to lack of information regarding the other 3 states or a dynamic immune

response. However, this type of dip is observed in [13, 95]where data is available around this time.

We conjecture that this dip is due to the immune response being stimulated by the spike in viral load

and infection. In Chapter 4, further inspection identifies the mechanism for this dip. The residuals

in the PVR fit in Figure 3.8 seem to be i.i.d. because the errors seem to be randomly distributed and

are on both sides of the zero axis. This is unlike the Breakthrough fit which have most of the residuals

above the zero axis. The predictive confidence intervals and prediction intervals look almost the

same, but the variance is very small (σ̂2 ≈ .25 from (1.32)) and v0 ≈ .9 from (1.33). Therefore, the

terms that differ between the two intervals are given by

σ̂
p

v0 ≈ .0593,

σ̂
p

1+ v0 ≈ .0862.

Hence the intervals look very close to each other, but are not the same. This is also why the intervals

are small.

3.5 Conclusion

The missing data between weeks 12-24, 24-36, and 36-48 for the ETR and Breakthrough patients

makes parameter estimation challenging. The predictions would also be more robust if information

concerning states T , I , and VN I were available. These issues should be considered when making

remarks about the estimations and confidence measures. DAAs were introduced in 2011, so there is

not as much data available, but in the future, we hope for a larger quantity of data to make more

precise estimations.

This chapter describes a model for patients with HCV that are treated with IFN, RBV, and telaprevir

combination therapy. The development of this model was motivated by the desire for a model that

can be validated and calibrated using sensitivity and identifiability techniques while simultaneously

incorporating the new DAA, telaprevir. The model can be used to accurately describe patients

exhibiting PVR, ETR, and Breakthough.
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CHAPTER

4

IMMUNE RESPONSE AND CONTROL

4.1 Introduction

Powerful drugs and optimized treatment schedules are two of the most important components

to overcoming an infection from a virus. In Chapter 3 it is observed that the addition of DAA’s

have a substantial impact on viral load decline. However, due to drug resistance, mutations in the

virus and other complications, viral clearance is not a guarantee [60]. Various treatment strategies

have been implemented to increase the opportunity of viral clearance. These strategies include

12, 24, 36, and 48 week variations with different combinations of drugs [43, 60, 78]. This chapter

will investigate patient-specific drug treatment plans using similar strategies utilized in HIV called

structured treatment interruption(STI). STI alters the patient on and off of treatment [1, 7]. STI has

also been implemented in patients that were infected simultaneously with HIV and acute HCV [111].

While giving the patient a break from drug therapy, viral load will usually rebound resulting in more

infection and stimulating the adaptive immune response. The goal of STI is to utilize the adaptive

immune response in conjunction with the drugs to mount a stronger defense against the virus. The

model developed in the previous chapter needs to be adjusted to observe an adaptive immune

response dynamic. The next section will provide background on the immune response and its

functions in the liver. Section 3 will introduce a revised version of (3.5) that incorporates an adaptive
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immune response dynamic. In Section 4, subset selection is used to decide which parameters will

be estimated. Then, Section 5 will present parameter estimation results for the patients used in

Chapter 3. A discussion of the estimation results and a comparison of the models developed in this

chapter and Chapter 3 is also performed. Section 6 will give the control formulation and describes

how a control is used to give treatment strategy using STI. Finally, concluding remarks are given in

Section 7.

4.2 Immune Response

The defense of the body is known as the immune system. It defends the body from viruses, bacteria,

and anything that it considers foreign or a danger to our health. The immune response is responsible

for clearing the virus on its own in about 15% of patients [108]. The rest of the patients develop

chronic infection. There are two types of immune response: the innate response and the adaptive

response. There is an initial rapid and early peak of viral replication and then about 4 to 6 weeks

later, HCV RNA increases slowly or stabilizes [15]. The innate response is the first to react.

4.2.1 Innate Immune Response

The innate immune response triggers within the first two days of HCV infection. It causes the body

to produce IFN-α which is a protein that acts to inhibit the production of virus in the infected

cells and release NK(Natural Killer) cells. NK cells release chemicals that promote programmed

cell death, produces IFN-α, and also mediates the intrahepatic recruitment of inflammatory cells.

The initial production of IFN-αmay slow the virus replication, but doesn’t block it [15]. That delay,

however, aids in inhibiting production of the virus. The infected hepatocytes will produce IFN-β

which induces an anti-viral state that extends to non-infected neighboring cells and provides an

initial line of defense against infection [84]. This response reacts quickly because it behaves in a

non-specific way. The adaptive response differs in that the immune effectors are virus specific.

4.2.2 Adaptive Response

The adaptive response is stimulated by significant increases in infection. It can take over 1-2 months

for HCV to be responded to by this response. This could be a significant reason for why the immune

system has a hard time clearing the virus. There are two types of adaptive immune response: the

humoral response and the cellular response [15].
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4.2.2.1 Humoral Response

It usually takes the humoral response 8-20 weeks to respond to the infection which is much later

than the cellular response [84]. The humoral response is the body(B-cells) releasing a melange of

antiviral antibodies to fight off the HCV infection [16]. If cleared naturally, the infection is cleared

within 2-6 months. The humoral response is important in chronic infection because it tends to

control viral load by continuing to put pressure on the infected cells. An example being by inducing

apoptosis on infected cells. During the severe phase of HCV infected patients, defects in the humoral

response are seen because limited quantities of antibodies are detected [15, 84]. Since the humoral

immune response is so late, if the virus is going to be removed it will mostly be because of the T-Cell

response.

4.2.2.2 T-Cell Response

This cellular response can be detected between 5-9 weeks [84]. There are two main types of T-Cells

that are prominently working in this response: CD4+ and cytotoxic lymphocytes(CTLs), specifically

CD8+. CD4+ cells send signals to activate the body’s immune response after communicating with

antigen-presenting cells(infected cells). They are responsible for activating and enhancing B-Cells

and CTLs, respectively. HCV-specific CTLs are also stimulated by the antigens in the infected cells

and eliminate the problem via rupturing the cell walls of the infected cells. It is conjectured that

during the severe phase of HCV-infected patients the CTL cells are defective in the sense that they

have impaired production of inteferon-α, low perforin content, defective capacity for expansion, and

perform lysis on healthy cells. Possible reasons for the defectiveness could be from the fact that the

infection is attacking the liver cells so the CTL cells that are getting infected are being killed off, the

liver wall cells aren’t allowing the proliferation of the CD4+ cells, and the production of viral proteins

having immunomodulatory effects [15, 84]. There are also what’s called regulatory T-cells(CD4+

CD25+) that control the immune response in the sense that they suppress immunological response

against self and foreign antigens. This could be a reason why during chronic infection the immune

response is much lower. The reason is that the cells will limit the amount of immune mediated liver

damage [16]. Infected cells release alanine aminotransferase(ALT) when they become damaged.

From [14], it is concluded that there may not be a correlation between ALT levels and how much

viral load the body has. However, the higher the ALT levels, there is a significant increase of CD4+

CD25+ cells [18]. This makes sense since these cells try to control the liver damage the CTL cells

are performing. It seems that when the virus is cleared, there is an abundance of CTL cells, but if it

is not cleared then it is because there are not enough CTL cells that are circulating and destroying

infected cells. The model in the next section attempts to describe the adaptive cellular response.
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4.3 Model

There are several mathematical models and studies that describe immune responses to viral dy-

namics [8, 76, 108]. The data used is for patients experiencing chronic HCV. Therefore, the goal of

this research is to use STI to jumpstart the adaptive immune response and observe how it affects

the viral load. Recall from the previous section that the CTL response is stimulated by the infected

cells. To this end, an approach given in [76] and similar to [108] is used that models the adaptive

response based on the amount of infected cells to give the following revised version of (3.5)

Ṫ = s + r T
�

1−
T + I

Tmax

�

−d T −βVI T ,

İ =βVI T + r I
�

1−
T + I

Tmax

�

−δI−kI I E ,

V̇I = (1− ρ̄)(1− ε̄)(1− γ̄)p I − c VI ,

V̇N I = ρ̄(1− ε̄)(1− γ̄)p I − c VN I ,

Ė = kE I E −dE E ,

(4.1)

where E is the concentration of immune effectors, kI is the rate in which the immune effectors kill

the infected cells, kE is the rate in which the immune effectors are stimulated by the infected cells

and dE is the rate in which the immune effectors die. The new parameters in the model, {kI , kE , dE },
are not known from literature for this model. The treatment schedule and all other parameters values

will be used from the PVR, ETR and Breakthrough patients in Chapter 3. As before, the untreated

steady states are analyzed and existence and uniqueness of solutions is proven.

4.3.1 Existence and Uniqueness

The nonlinear terms kI I E and kE I E are the new concerns that arise in (4.1). However, they can be

described by (3.8) in the saturated model. Therefore, the same proof as presented in Chapter 3 is

used to obtain existence and uniqueness of solutions from a global Lipschitz condition. This allows

us to proceed with the steady state stability analysis.

4.3.2 Steady States and Stability

As in Chapter 3, we want to analyze the steady states when there is no treatment. We recall that we

find these equilibria by setting the right side of (4.1) equal to zero and solving for the states. It is

observed that Ė = 0 implies E = 0 or I = dE
kE

. If E = 0 then the uninfected and infected steady states
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are the same as (3.10) and (3.11), respectively. If I = dE
kE

the infected steady state is given by

T =
H +
p

H 2+4F

2F
,

V =
p dE

c kE
,

E =
kE

dE ∗kI

�

βp dE

c kE
T +

r dE

kE

�

1−
T + dE

kE

Tma x

�

−
δdE

kE

�

,

(4.2)

where

H = r −
r dE

kE Tma x
−d −

βp dE

c kE
,

F =
r s

Tma x
.

The physically relevant uninfected and infected steady state values for each patient response are

given in Table 4.1, Table 4.2, and Table 4.3. After analyzing the eigenvalues of the Jacobian matrix for

(4.1) given by

JI =

















r (1− T+I
Tma x
)− r T

Tma x
−d −βVI − r T

Tma x
−βT 0 0

βVI − r I
Tma x

r (1− T+I
Tma x
)− r I

Tma x
−δ−kI E βT 0 −kI I

0 p −c 0 0

0 p 0 −c 0

0 kE E 0 0 kE I −dE

















, (4.3)

the stability of the two steady states is the same as before with the uninfected being unstable and

the infected being stable. The new parameters are set to kI = 1, kE = 1×10−5, and dE = .2 for this

analysis.

State Uninfected Steady State Infected Steady State

T 1.92×107 1.7824×104

I 0 2×104

VI 0 1.848×105

VN I 0 0

E 0 2.905

Table 4.1 Steady state values using PVR parameters.
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State Uninfected Steady State Infected Steady State

T 1.92×107 1.2524×107

I 0 2×104

VI 0 4.302×104

VN I 0 0

E 0 1.62

Table 4.2 Steady state values using ETR parameters.

State Uninfected Steady State Infected Steady State

T 1.92×107 1.1420×105

I 0 2×104

VI 0 2.4031×105

VN I 0 0

E 0 2.776

Table 4.3 Steady state values using Breakthrough parameters.

In Figure 4.1 it is observed that small changes in the immune response, E , can have significant

impact on the infected cells and viral load. This is noteworthy for when STI treatments are discussed

later.

4.4 Subset Selection

The same algorithms and techniques that were presented in Chapters 1 and 3 are implemented in

this section. Indeed, it is of interest to know the additional uncertainty the three new parameters,

{kI , kE , dE }, bring to (3.5). This uncertainty can lead to different subsets of parameters being both

sensitive and identifiable in the local analysis.
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Figure 4.1 Simulation of (4.1) with initial conditions [T0, I0, VI 0, E0] = [1.142×105,2×104,2.403×105,5] and
using parameter values used in Table 4.3.
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4.4.1 Sensitivity Analysis Results

The parameter vector for (4.1) is

qS = (r,δ, c ,β ,ρ,ε,γ, k , kI , kE , dE ). (4.4)

The sensitivity rankings are given in Figure 4.2 and Figure 4.3 for over 2000 parameter sets. Error

bars that are 2 standard deviations from the mean are included. It is hard to discern the cutoff for

which parameters are considered sensitive in Figure 4.3 because unlike in Figure 4.2, there isn’t an

obvious large change in magnitude between the rankings. Thus, an analytical approach similar to the

techniques presented in [47] is employed. The method finds the lowest ranked parameter in which

a x % perturbation in the parameter poses a significant change in the output. A 25% perturbation

is used for this analysis. It is clear that kI is not impactful because its sensitivity is nearly zero so

the method is started with k . It influences the output enough that it is included in QB r k for the

identifiability analysis.
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c dE kE . - / ; r kI
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Figure 4.2 Sensitivity rankings using PVR time points.
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Figure 4.3 Sensitivity rankings using Breakthrough time points.

The set of sensitive parameters that is considered for the identifiability analysis using PVR and

Breakthrough time points is given by QP V R = {c , kE , dE } and QB r k = {r,δ, c ,β ,ρ,ε, k ,γ, kE , dE },
respectively.

4.4.2 Identifiability Analysis Results

The final subsets to estimate are QP V R = {c , kE , dE } and QB r k = {r,δ, c ,β ,ε,γ, kE , dE }. They are

obtained by observing in Figure 4.4 and Figure 4.5 which sensitive parameters are identifiable at

least 50% of time.

4.5 Parameter Estimation

The WSSE given in (3.16) is used to determine the parameters in QP V R and QB r k using the same

schemes as in Chapter 3. From [108], kI is fixed such that kI = 1 and other parameters not estimated

here are set to the values used in Section 3.4. The estimated parameter values are in bold in Table 4.4.

The PVR parameters have 95% confidence interval half-widths attached. These estimates produce

the model fits (graphs on the left) and residuals (graphs on the right) in Figure 4.6. The patient’s

viral load in the ETR fit goes to zero. The residuals for censored data are set to zero. Prediction and

confidence intervals given in Figure 4.7 are very similar to the model without the immune response

given in Figure 3.9.
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Figure 4.4 Final subset percentages using PVR time points.
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Figure 4.5 Final subset percentages using Breakthrough time points.

Patient PVR ETR Breakthrough

r 5.62×10−3 .0045 .0069
δ .1883 .1729 .2229
c 1.883± .1848 1.3 2.332
γ .9987 .9999 .6624
β 1.875×10−5 3.945×10−9 1.651×10−6

ε .6138 .4923 .9871
kE 4.392×10−7±9.485e×10−7 2.645×10−6 1.599×10−6

dE .1143± .2291 .0284 .2227

Table 4.4 Values from parameter estimation for (4.1).
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Figure 4.6 Results from parameter estimation for (4.1).
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Figure 4.7 Predictive confidence intervals and prediction intervals for (4.1).

4.5.1 Discussion

The addition of the adaptive immune response gives lower values for δ and c than in Chapter 3.

This makes sense because more information about the clearance of infected cells by the immune

response can be quantified in the term kI E I . Also, note that the dip after the telaprevir treatment

ends in the Breakthrough fit is much deeper in Figure 4.6 than in Figure 3.8. Recall that a conjecture

was posed that the dip was due to the immune response being ignited by the sudden increase in viral

load which spikes the infected cell concentration. Figure 4.8 confirms that when the infected cells

rapidly increase, so does the adaptive immune response. In turn, the quantity of infected hepatocytes

sharply decreases due to the CTLs eliminating them. None of the residuals in Figure 4.6 seem to be

i.i.d. because they don’t seem to be randomly distributed. In both the PVR and Breakthrough fits,

most of the residuals are above the zero axis. However, the fits in Figure 4.6 are very similar to the

fits acquired from the estimations without the adaptive immune response dynamic. Therefore, a

comparison between the models presented in this and the previous chapters is considered.

4.5.2 Akaike Information Criteria

To decide if the model in (3.5) or (4.1) describes a behavior of the system better, the Akaike Infor-

mation Criteria(AIC) is used as in [47]. Developed in 1979, it measures the amount of information

lost when a model is used to describe the dynamics of a system. If two or more models are used

to describe the same behavior, the model with the lowest AIC value is favored. The AIC score is

80



4.5. PARAMETER ESTIMATION CHAPTER 4. IMMUNE RESPONSE AND CONTROL

Treatment Time (days)
0 50 100 150 200

lo
g1

0(
I)

0

1

2

3

4

5

6

7
Breakthrough

Infected Cells

Treatment Time (days)
0 50 100 150 200

lo
g1

0(
E)

-10

-8

-6

-4

-2

0

2
Breakthrough

Immune Response

Figure 4.8 Immune response for Breakthrough patient.

computed using the equations

AI C = k · ln(
J

k
) +2p ,

J =
1

ma x j (yj )

n
∑

i=1

[yj − y (ti , q )]2,

where k is the number of data points, p is the number of model parameters, yj is the data point

at time t j and y is the model output. Table 4.5 shows that (3.5) is a better model for PVR and

Breakthrough, but not for SVR. The small differences in the AIC means (4.1) has a better goodness

of fit, but is penalized by the term 2p for having three more parameters. While (3.5) has a better AIC,

it cannot account for the dip in the Breakthrough fit.

Model PVR AIC ETR AIC Breakthrough AIC

No Immune Response Model -39.37 -54.32 -30.48

Immune Response Model -33.37 -139.7 -28.61

Table 4.5 The AIC scores for (3.5) and (4.1) for each patient behavior.
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4.6 Control

This section strives to devise new drug treatment plans using a control based strategy. It is observed

in Figure 4.8 that when treatment ends there will be a spike in the immune response due to the

sudden increase in infected cells. This jolt in immune response subsequently drove the viral load to

very low levels before it rebounded. The goal is to acquire a control for (4.1) that provides a treatment

schedule that will take advantage of the immune response while simultaneously considering viral

load and drug intake.

4.6.1 Control Formulation

The drugs that we will be considering have two different dosing regimens. IFN is injected weekly

whereas ribavirin and telaprevir are consumed orally daily. Thus, two different controls are used

for them. Alongside the mathematical model in (4.1), the control problem with objective function

given by

J (u1(t ), u2(t )) =

∫ t1

t0

[WV V (t ) +Wεh1(t ) +Wγρh2(t )−WE E (t )]d t , (4.5)

is considered where
h1(t ) = u1(t )ε,

h2(t ) = u2(t )(ρ+γ),

and (u1(t ), u2(t )) are time discretized vector controls such that u1(t ) is the control for IFN and u2(t )

for ribavirin and telaprevir. The cost that is produced by drug treatment such as unintended side

effects and treatment expenses is obtained in these controls. The weights for the virus, controls

and immune response are WV , Wε, Wγρ , and WE , respectively. The controls are binary treatment

functions with ui (t ) = 1 if the drug being controlled is being taken on that day and ui (t ) = 0 if it is

not taken. Due to dosing regimens, this means that while ribavirin and telaprevir can be switched

on and off daily, IFN is controlled weekly. The size of the control vector depends on the duration the

patient is treated and is given in Table 4.6. The treatment times are not strict to the guidelines as

presented in the treatment schedule section due to human error.
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Patient Duration of Treatment

PVR 76 days

Breakthrough 174 days

ETR 335 days

Table 4.6 Treatment times obtained from the data provided.

The control vectors are size 1× x where x is the duration of treatment for that patient. Let Λ

denote the set of all such control vectors. The desire is to find the optimal control vector pair (u∗1, u∗2)

satisfying

min
u1,u2∈Λ

J (u1, u2) = J (u∗1, u∗2) (4.6)

subject to (4.1) and J is defined by (4.5). In [26], a continuous control function using Pontryagin’s

Maximum Principle is derived for patients being treated with IFN and RBV. In practice, a continuous

control is difficult to implement because treatment is prescribed at discrete intervals. Therefore, a

more realistic control is considered using the subperiod method as described in [1] and summarized

next.

4.6.2 Subperiod Method

The number of elements in Λ is finite, thus an optimal control vector pair is guaranteed for (4.6).

One way to find the optimal vector pair is by direct search and comparison. The description of this

idea is given in algorithm (4.1). Recall that the size of each binary control vector will depend on the

Algorithm 4.1

1. Let Je nd be empty.

2. Choose 2 vector controls uc = (u k
1 , u l

2) ∈Λ.

3. Solve (4.1) using uc .

4. Retrieve cost Jc from (4.5) using uc and results from step 3.

5. If Je nd is empty or Jc < Je nd , set Je nd = Jc and ue nd = uc .

6. Repeat 2.-5. for any two vectors in Λ and ue nd will contain a solution to (4.6).
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number of days of treatment for the patient. This implies that the smallest number of components

for each control vector will be 76. This forces Λ to have at least 276 elements. If all drugs are taken

daily, (276)2 different combinations of vectors are considered. This large amount of elements make

it computationally intractable to consider daily changes. The issue is partially alleviated due to IFN

being taken weekly. However, this still leaves the number of iterations to be greater than 286.

The subperiod method, similar to the underlying idea for dynamic programming, seeks to reduce

the computational burden by finding optimal policies on subintervals of the duration of treatment.

That is, instead of considering controls for the full treatment interval, controls are acquired for

subperiods such as [0,28), [0,56), [0,76]. Given a full treatment interval of 76 days, assume 28 day

subperiods are used with seven day treatment segments. The optimal pair for the interval will be

denoted by u∗i j where i is the control and j is the subperiod. Since seven day segments are used, u∗i , j

can be shortened so that it has size 1×4 where each component represents seven days. For example,

if u∗i , j = [1,1,0,0] then full treatment is used on days [0,14) and off for the rest of the interval. The

control vectors will have the form

u1(t ) =
�

u∗1,1 u∗1,2 u∗1,3

�

,

u2(t ) =
�

u∗2,1 u∗2,2 u∗2,3

�

.

The method begins by obtaining an optimal pair (u∗1,1, u∗2,1) for the first interval [0,28). An optimal

control law can be attained quickly because only (24)2 = 256 comparisons need to be analyzed. After

completion of this step, ui (t ) is appended with u∗i , j and the interval is extended to [0,56). The second

step is to attain (u∗1,2, u∗2,2) that solves (4.6) for the new subperiod. (u∗1,1, u∗2,1) is still employed for

the interval [0,28), so attaining the new control policies will still require (24)2 = 256 iterations. The

new control law is appended the same as before and the interval is extended. Suppose the control

policy extends past the subperiod that is being considered. In this case, the control pair will only be

optimized until the end of the subperiod. The method is complete after the full treatment interval

has been controlled. Indeed, this method will result in a suboptimal control in general. However, it

is shown in [2] that the results are reasonable approximations to the more robust, but impractical

continuously controlled therapy.

4.6.3 Numerical Simulations

Simulations are executed using 28 day subperiods with 7 day segments for u1,∗ and 3 day segments for

u2,∗. This means each bin will have (24)(29) = 213 = 8, 192 comparisons. As in dynamic programming,

the subperiod method is heavily dependent on the initial conditions of the state system. Recall that
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the patients are dealing with chronic infection, so the initial conditions are set to the infected steady

state. The weights {WV , Wε, Wγρ , WE } are also a major factor in the results of the method. The weights

are varied to observe outcomes where different parts of (4.1) are emphasized. Since the subperiod

method uses bins instead of the entire treatment interval, similar emphasis on components with

different weights can result in a better outcome for the patient than the other going forward in

time. A discussion is given in the next few sections about the simulated results using the subperiod

method for each patient. In the remaining figures, the legend is organized as follows for each patient

and state (T , I , V , E ):

• All Med Model (blue dots) - The state model fit with treatment being administered as prescribed

in Figure 3.2.

• OptModel (black line) - The state model fit with treatment being administered as prescribed

by the subperiod method.

• No Med Model (green dots) - The state model fit with no treatment being administered

(infected steady state).

• Control On (cyan dots) - This indicates that full treatment is being taken on that day.

• Control Off (magenta dots) - This indicates that no treatment is being taken on that day.

The control for IFN (u1(t )) is described at the bottom of each figure. The control for telaprevir and

ribavirin (u2(t )) is described at the top of each figure.

4.6.3.1 PVR Patient

In Figure 4.9 and Figure 4.10 the subperiod method found that the best strategy was for the patient

to be continuously treated for the entire duration. The viral load is emphasized in Figure 4.10, but

the subperiod method could not find a better treatment schedule to reduce the viral load. If the

immune response is heavily weighted as in Figure 4.11 then less treatment is used, but the viral load

is elevated. This is not desired because the patient is not getting healthier. Thus, it is advised that

this type of patient be fully treated.
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Figure 4.9 The weights for this implementation of the subperiod method on the PVR patient are
{WV , Wε, Wγρ , WE }= [1, 0, 0, 1]
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Figure 4.10 The weights for this implementation of the subperiod method on the PVR patient are
{WV , Wε, Wγρ , WE }= [10, 1, 1, 1]
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Figure 4.11 The weights for this implementation of the subperiod method on the PVR patient are
{WV , Wε, Wγρ , WE }= [.001, 1, 1, 100]
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4.6.3.2 Breakthrough Patient

The weights in Figure 4.12 and Figure 4.13 are chosen to put emphasis on minimizing viral load. The

optimized viral load result is the same, but less drugs are prescribed in Figure 4.13 than in Figure

4.12 using the subperiod method. This is a consequence of setting Wε =Wγρ = 1 instead of zero.

The adaptive immune response is emphasized in Figure 4.14 and has less drug treatment than the

previous two figures. The viral load oscillates, simulating the STI effect that is desired. However, the

viral load is elevated from the previous figures and will gravitate back towards the infected steady

state since it is a stable equilibrium.
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Figure 4.12 The weights for this implementation of the subperiod method on the breakthrough patient are
{WV , Wε, Wγρ , WE }= [1, 0, 0, 1]
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Figure 4.13 The weights for this implementation of the subperiod method on the breakthrough patient are
{WV , Wε, Wγρ , WE }= [10, 1, 1, 1]
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Figure 4.14 The weights for this implementation of the subperiod method on the breakthrough patient are
{WV , Wε, Wγρ , WE }= [.001, 1, 1, 100]
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4.6.3.3 ETR Patient

Figure 4.15 shows that the ETR patient’s viral load is cleared within the first week of treatment. It

never shows a spike in the immune response, so it can be concluded that the drugs are primarily

responsible for clearance. The combination of drugs are only needed for the first 3 and 7 days,

respectively.
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Figure 4.15 The weights for this implementation of the subperiod method on the ETR patient are
{WV , Wε, Wγρ , WE }= [1, 1, 1, 1]
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4.7 Conclusion

The revised model presented in this chapter provides a more complete system of differential equa-

tions to quantify the dynamics of hepatitis C with the triple drug combination therapy of telaprevir,

IFN, and ribavirin. In [75, 95] and the model presented in Chapter 3, the immune response effect is

constant and does not account for fluctuations due to treatment. The added dynamic to account

for the adaptive immune response allows the researcher to further quantify different aspects of the

system. It is clear that the adaptive response is stimulated by spikes in infection and subsequently is

a mechanism for driving the infection and viral load down.

A realistic suboptimal STI method is employed that searches for the most advantageous quan-

tity of drug holidays to minimize the viral load and systemic costs associated with treatment. The

method attempts to take advantage of stimulations of the immune response to minimize drug

intake. It has been shown that the infected steady state is stable and uninfected steady state is

unstable. Thus, in the long term, since the initial conditions are at the infected steady state, unless

all virions and infection is cleared simultaneously, the patient viral load will always be driven back

to the infected steady state. It is clear from Figure 4.15 that if the virus is cleared then it is cleared

immediately by the drugs driving the viral load and infected cells to zero. Thus, the benefits of

the treatment plan using the STI method presented lies in the alleviation of potential negative

consequences that come with constant drug treatment. This includes treatment cost that can be on

the upside of $83K [17] and side effects such as nausea/vomiting and life-threatening skin reactions.
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CHAPTER

5

CONCLUSION AND FUTURE WORK

This dissertation discusses showcases analytical and numerical tools applied to real world problems.

These applications range from the field of high energy physics to the area of biomedical sciences.

The algorithms that are utilized are well defined and researched to answer the questions posed in

this work.

Deterministic sampling and optimization are applied to the process of klystron designing. Simula-

tion software provided by klystron engineers in conjunction with novel algorithms programmed in

MATLAB are used to automatically design previously unattainable klystron builds. A minor drawback

to the algorithm presented is that there isn’t an analytical system that is used during the optimization

process. The simulation software is a black box that is utilized mainly to input sampled parameters

and retrieve outputs for the objective function. Therefore, it is not well known if there are better

builds that can be attained due to the lack of convergence theory for sampling methods in higher

dimensions. This problem is mitigated due to industry concerns being primarily directed at meeting

customer demands. Thus, while convergence is not guaranteed, as long as the minimum specifica-

tions are achieved then the procedure is a success. In any case, the automatic process is assured

to perform better than human trial and error. The plan is to generalize our optimizer scheme so

that one may easily implement the concept described in chapter 2 for any klystron or klystron
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simulation software. This includes enhancing our program to allow additional input parameters to

be optimized, use public domain software for the deterministic sampling methods and incorporate

a graphical user interface.

Personalized medicine is a field geared to enhance the patient experience with specialized treat-

ment tailored towards their specific needs. A patient specific mathematical model is developed

for describing the dynamics of hepatitis C with triple drug combination therapy including a DAA.

The first installment of the model given in (3.5) is adapted from a previously established system

that already incorporated IFN and ribavirin to include the DAA, telaprevir. The inverse problem

is solved to validate and calibrate the model and it’s parameters. Indeed, it is revealed that the

system is able to accurately fit data from patients exhibiting PVR, ETR, and Breakthrough. However,

there was some phenomenon that could not be quantified due to lack of information as to how the

adaptive immune response is affected by drug treatment. Thus, the amended model presented in

(4.1) provides more clarity with the addition of an immune response dynamic. As a final exercise, a

suboptimal routine is implemented to provide patient specific treatment regimens using STI. The

solutions give promise that better treatment schedules can be provided. An intrinsic question that

arises is how the observations made in this work can be extended to provide optimal drug treatment

schedules in a clinical setting. Indeed, while the research here is patient specific, a population based

model would be more appropriate for further study. This will allow for a more probabilistic assess-

ment allowing clinicians to have a better idea which patients are more akin to exhibit a particular

response to treatment. In turn, optimal treatment strategies similar to the one presented in this work

can be administered to specific populations and will heighten opportunities for cure and reducing

systemic costs. A substantial increase in data is needed to provide such an approach.
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