ABSTRACT

HANSEN, BRITTANY LOUISE. The Hyperbolic Kac-Moody Lie Algebra of Type Ggl) and its
Root Multiplicities. (Under the direction of Dr. Kailash Misra.)

In 1968 V. Kac and R. Moody independently defined Kac-Moody algebras to be an infinite
dimensional analog to finite-dimensional semisemple Lie algebras. Kac-Moody algebras are
classified by symmetrizable indecomposable matrices known as generalized Cartan matrices
(GCM), which fall into three categories: finite type, affine type, and indefinite type.

An important problem in the study of Kac-Moody algebras is to determine root multiplicities.
Roots are classified as either real or imaginary. For Kac-Moody algebras of finite and affine type,
the root multiplicities are known in generality. For indefinite type Kac-Moody algebras, however,
it is still an important and open problem to compute the multiplicities of imaginary roots. In

this thesis our primary interest is in the hyperbolic Kac-Moody algebra H Ggl) of indefinite type.

(

First we give a realization of H GQI) following the construction given in [Ben93]. We construct

H Ggl) as a Z-graded Lie algebra with Ggl) being the zero component. Utilizing this construction

we apply Kang’s multiplicity formula to obtain multiplicities of roots of H Ggl) using the

multiplicities of certain weights of some integrable highest weight Ggl) -modules. In order to
determine such weight multiplicities, we utilize the combinatorics of the crystal base for the
Ggl)—modules.

Let {ag, a1, a2} and {a_1, g, a1, @} denote the simple roots of Ggl) and HGS), respectively,

and let § be the canonical null root of Ggl). In this thesis we provide some general results

for imaginary roots of H Gél). Using these results, Kang’s multiplicity formula, and crystal

base theory, we determine the multiplicities of roots —fa_1 — a — k6, for £ < 3 and a =

moop + mia + maag < § (m; € Z>p). We also determine the energy function for the level 1

perfect crystal of Uq(Ggl)) and use it to determine a bound on the fluctuations of level 1 paths.

In addition, we observe that the root multiplicities for H Ggl) obtained in this thesis satisfy

Frenkel’s conjectured bound.
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CHAPTER

INTRODUCTION

Introduction

Lie groups and Lie algebras arose out of the study of symmetries of algebraic and geometric
objects [Kac90]. In the 19th century W. Killing and E. Cartan completely classified finite-
dimensional simple Lie Algebras. In the 1960’s interest in infinite-dimensional Lie algebras led to
several classifications of infinite-dimensional Lie groups and Lie algebras. In 1968 V. Kac and R.
Moody independently defined an infinite dimensional analog to finite-dimensional semisemple Lie
algebras, which are known as Kac-Moody algebras. Representation theory of Kac-Moody algebras
is rich with many connections to mathematics and physics such as combinatorics, topology,
finite simple groups, modular forms and theta functions, soliton equations, and quantum field
theory [Kac90].

Kac-Moody algebras are classified by special indecomposable matrices known as generalized
Cartan matrices (GCM). These matrices fall into three categories: finite type, affine type, and
indefinite type, and their corresponding Kac-Moody algebras are classified in the same manner.
Briefly speaking, finite type GCMs are positive definite and as the name suggests, produce
finite dimensional Kac-Moody algebras. The other types correspond to positive semidefinite and

negative definite GCMs, respectively, and yield infinite dimensional Kac-Moody algebras. To
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each GCM we associate an oriented diagram, called a Dynkin diagram, that encodes the data of
the GCM. An important subset of the indefinite GCMs are the hyperbolic type GCMs which
have Dynkin diagrams whose proper subdiagrams are of finite or affine type only.

An important question in the study of Kac-Moody algebras is to determine the multiplicities
of roots. Informally speaking, a root space of a Kac-Moody algebra g is a generalized eigenspace
under the adjoint action of the Cartan subalgebra h of g. Formally speaking, a root space of
a € @Q is the set go = {x € g | [h,z] = a(h)z for all h € b}, where Q is the root lattice of g. We
say « # 0 is a root if g, # 0. We define the multiplicity of root a to be the dimension of g,
and denote it by mult(a). Roots are classified as either real or imaginary (see Definition 2.2.20).
For Kac-Moody algebras of all types, the real roots are known to have multiplicity equal to
1. All of the roots of finite type Kac-Moody algebras are real roots and thus have multiplicity
equal to 1. For affine type, the imaginary roots have multiplicity equal to the rank of the
associated GCM and hence are completely known.! For indefinite type Kac-Moody algebras,
however, it is still an important and open problem to compute the multiplicities of imaginary
roots. Although this problem has been studied for Kac-Moody algebras of types H D§4) and
H Xf(Ll),X = A, B,C, D for example, the multiplicities have not been completely determined for
any of the aforementioned algebras. See for example, [Erb12], [KM94], [HMO02], [Ben94], [Wil03],
and [Will2].

Our primary focus in this thesis is to determine the multiplicities of imaginary roots of the
hyperbolic Kac-Moody algebra H Ggl), whose GCM is given by

In Chapter 3, we give a realization of H Ggl) which follows the construction given in [Ben93]. We

begin with the affine Kac-Moody algebra Ggl) having GCM equal to that of H Gél) with the first
column and row removed, and construct H Ggl) as a Z-graded Lie algebra with Gél) as the degree

zero component. Utilizing this construction we apply Kang’s multiplicity formula, which we

review in Chapter 4, to determine the root multiplicities H Ggl) using the weight multiplicities of

)

certain integrable highest weight Gél -modules. In order to determine such weight multiplicities,

we utilize crystal base theory.

!Technically, this is only true for untwisted affine Kac-Moody algebras. However, we only work with untwisted
Kac-Moody algebras in this thesis and drop the untwisted qualifier.
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Quantum groups were introduced by V. G. Drenfel’d [Dre85] and M. Jimbo [Jim88] indepen-
dently in 1985. In short, a quantum group U,(g) is a g-deformation of the universal enveloping
algebra U(g) of a Kac-Moody algebra g. It is known [Lus85] that for generic “q” the U,(g) rep-
resentation theory parallels that of U(g) representation theory and hence provides the structure
for studying representations of Kac-Moody algebras. Crystal bases are important combinatorial
tools used in the study of quantum groups and are used for determining weight multiplicities
of Uq(Ggl))—modules, hence Ggl)—modules, in this thesis. Developed by M. Kashiwara [Kas90;
Kas91] and G. Lusztig [Lus90] independently in 1990, crystal bases can be viewed as a basis at
g = 0 and have nice combinatorial structures. In Chapter 5, we review the theory of quantum
groups and crystal bases and outline the procedure for computing root multiplicities of H Ggl) .

Let {ag, a1, ag} and {a_1, ag, a1, aa } denote the simple roots of Gél) and HGgl), respectively.
Let 0 = ag + 21 + 3as be the canonical null root of G(l), and denote the set of positive roots
of Ggl) by Ag. In Chapter 4, we provide some general results for imaginary roots of H Ggl).
For example, when £ > 1 and o« = mjaq + maoag € Ag, we show mult(—fla_1 — £§) = 2 and
mult(—la—1 — a — £d) = 1. In Chapter 6, we use these results, Kang’s multiplicity formula, and
crystal base theory to determine the root multiplicities of —fa_1 — o — ké, where £ = 1,2,3 and
a = moay + miag + maae < 6§ (m; € Z>o). We also determine the energy function associated
with the level 1 perfect crystal of Uq(Gél)) in Chapter 5 and use it and the affine weight formula
to determine a bound on the fluctuations on level 1 paths in Chapter 6. In addition, we verify

that all of the root multiplicities in Chapter 6 satisfy Frenkel’s conjectured bound [Fre85].



CHAPTER

2
PRELIMINARIES

In this chapter we survey the basic definitions and theorems associated with Lie algebras and
Kac-Moody algebras that are found in the literature. For more details on the subject see, for
example [Kan94], [Kac90], [Hum72], and [Mis12]. Unless otherwise stated we assume the field
F=C.

2.1 Lie Algebras

Definition 2.1.1. A vector space L over a field F' is a Lie algebra if there is a product
[,-] : L x L — L, called the bracket, such that

(1) [-,-] is bilinear,

(2) [x,z]=0forall z € L,

(3) [z, [y, 2]] + [y, [z, x]] + [2, [z, y]] = 0 (Jacobi identity), for all z,y,z € L.
Observe that identity (2) implies the bracket is anticommutative: [z,y] = —[y, z].

Theorem 2.1.2. Let {z; | i € I} be a basis of a vector space L with bracket [-,-]. L is a Lie

algebra if and only if the relations in Definition 2.1.1 are satisfied on the basis elements.
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Therefore it is enough to define a Lie algebra on the basis elements and extend it by linearity.

Next we review some notable examples of Lie algebras.

Example 2.1.3. Let A be an associative algebra over F' with associative product ‘-’. Then
A is a Lie algebra under the bracket defined by [z,y] = 2 -y — y - z, called the commutator

bracket. Some particular associative algebras of interest are as follows.

1. Let M, (F) denote the set of n x n matrices with entries in F'. Then M,,(F') is an associative
algebra under matrix multiplication. We denote the Lie algebra M, (F) with commutator
bracket as gl(n, F).

2. Let V be a vector space and denote the set of linear transformations from V' to V' by g¢(V).
Then ¢gf(V') is an associative algebra with associative product equal to the composition of
maps. If dimV = n, then g¢(V') = gl(n, F).

Definition 2.1.4. A subspace M of a Lie algebra L is a subalgebra if [z,y] € M for all
x,y € M. A subalgebra I of L is an ideal if [z,y] € I for all z € L,y € I. If I is an ideal, the
quotient space L/I is a Lie algebra with bracket defined by

[+ 1,y+1]=z,y]+ 1 foral z,y € L.

Example 2.1.5. The subset Z(L) ={x € L | [x,y] =0 for all y € L} is an ideal of L, called
the center of L. If Z(L) = L then we say L is abelian.

Definition 2.1.6. A Lie algebra L is simple if the only ideals of L are {0} and L itself. L is

semisimple if it can be expressed as a direct sum of simple ideals.

Definition 2.1.7. A derivation of L is a linear transformation 0 : L — L satisfying
[z, y]) = [0(x), y] + [, 0(y)] for all z,y € L.
Example 2.1.8. The map ad, : L — L defined as ad,(y) = [z,y] for all y € L is a derivation.

2.1.1 Representations and Modules of Lie Algebras

In this section, we introduce Lie algebra homomorphisms which give rise to a field of study

known as representation theory.
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Definition 2.1.9. Let L; and Lo be Lie algebras. A homomorphism of Lie algebras is a

linear transformation ¢ : L1 — Lo satisfying

o[z, y]) = [p(x), p(y)] for all 2,y € L.

A one-to-one and onto homomorphism is called an isomorphism. The kernal of ¢ is defined
as kerp = {z € L; | ¢(x) = 0}.

Definition 2.1.10. Let L be a Lie algebra over field F'. Let V' be a vector space over F.
(1) A Lie algebra homomorphism ¢ : L — gf(V) is called a representation of L on V.

(2) An L-module is a vector space V' with bilinear map L xV — V', denoted by (z,v) — x-v,

which satisfies

[,y v=2-(y-v)—y-(x-v)foral z,y € L,veV.
(3) A submodule of an L-module V is a subspace U of V' such that x -u € U for all
reLuelU.
(4) An L-module V is irreducible if the only submodules of V' are {0} and V itself.

(5) Let V be an L-module. Then x € L is locally nilpotent on V if there exists an integer
N such that 2V - v =0 for any v € V.

(6) If U is a submodule of V, then the quotient V/U is an L-module under the action

z-(v+U)=z-v+Uforallze LiveV.
Observe that any representation of ¢ : L — g¢(V') induces an L-module structure on V' given
by v = p(z)v for all x € L,v € V and conversely.
Example 2.1.11. The following are notable L-modules.

1. A Lie algebra L is an L-module under the adjoint action x - y = ad,(y). We call ad, the

adjoint representation.

2. Let V and W be L-modules, then V & W is an L-module with action given by

x-(v+w)=z-v+zx-wiralzelvev,weW
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3. Let V and W be L-modules, then V ® W is an L-module with action given by

r-(v@w)=(r-v)Q@W+v (x-w) forall z € L,v € v,w € W.

4. Let V be an L-module over field F, and consider the dual space V* = {f : V —

F'| f is linear}. Then V* is an L-module under the action x - f satisfying

(- f)(v)=—f(x-v) forallv eV, wherex € L, f € V*.

Definition 2.1.12. Let U(L) be an associative algebra with unity over field F'. Let i : L — U(L)

be a linear map such that

i([z,y]) = i(z)i(y) —i(y)i(z) for all z,y € L.

We say the pair (U(L),%) is the universal enveloping algebra of L if it has the universal

property represented by the diagram:

I 1

U(L)

N

A

for any associative algebra A and linear map j : L — A satisfying

iz, y]) = §(x)j(y) — 3 (y)j(z) for all z,y € L.

Theorem 2.1.13. [HK02] For Lie algebra L and universal enveloping algebra (U(L),i), we
have the following.

1. U(L) is unique.
2. i: L — U(L) is injective.

Theorem 2.1.13 allows us to view L as a subspace of U(L) and the Poincaré-Birkhoff-Witt

Theorem provides a basis for U(L).

Theorem 2.1.14 (Poincaré-Birkhoff-Witt (PBW)). Let L be a Lie algebra with index set
Q and ordered basis {xola € Q}. For ap < ag < -+ <, consider elements of the form

TayTay *** Tay, € L. Together with the identity, 1, all such elements form a basis for U(L).
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Suppose V is an L-module. Then we can extend the L-module structure on V naturally to

an U(L)-module structure on V' by defining the U(L) action on V as follows
(z‘lexr) .v:[]jl . ((xer)U) :ajl (ZEQ(er)),

for all x1,--- ,x, € L,v € V. Therefore a representation of L extends to a representation on
U(L). Conversely, the PBW theorem implies U(L) contains L, and so a representation of U(L)
is a representation of L. Therefore the representation theory of Lie algebras and universal

enveloping algebras is essentially the same.

2.2 Kac-Moody Algebras

In this section we discuss Kac-Moody algebras which are generalizations of finite-dimensional
semisimple Lie algebras and may or may not be infinite dimensional. The study of Kac-Moody
Lie algebras starts with a matrix known as a generalized Cartan matrix, whose entries determine

the structure of the algebra.

Definition 2.2.1. Let I be an index set of size n. A matrix A = (aj;); jer of rank [ is called a

generalized Cartan matrix (GCM) if it satisfies:
e q;;=2foralliecl
® a;j € L<ofori£jel
e a;; =0<=a;; =0foralli,jel

Definition 2.2.2. A GCM is symmetrizable if there exists some invertible diagonal matrix

d = diag(s1, 82, ,Sn | 8i € Zso) such that DA is symmetric.

Definition 2.2.3. A GCM is indecomposable if every decomposition of I into two disjoint

nonempty subsets I, I has the property that a;; # 0 for some i € I1 and j € I5.

Theorem 2.2.4. [HK02] Let A be an indecomposable GCM. Let u = (uy uz -+ un)? be a
column vector in R™. If u; > 0 (resp. u; >0) for alli=1,--- ,n, we say u >0 (resp. u > 0).
Then A has one (and only one) of the following types:

o (Finite type) if there exists a u > 0 such that Au > 0,

o (Affine type) if there exists a u > 0 such that Au =0,
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e (Indefinite type) if there exists a u > 0 such that Au < 0.

Definition 2.2.5. Let A be an indecomposable GCM. The Dynkin diagram of A is the

connected diagram with nodes indexed by I and edges defined using the following rules for ¢ # j:

(1) If ajja;; < 4 and |a;;j| > |aj|, then the ith and jth nodes are connected by |a;;| edges

with an arrow pointing toward the ith node if |a;;| > 1.
(2) If ajjaj; > 4, then the nodes are connected with a bold-faced edge and the ordered pair
(laijl, lai])-

A subdiagram of a Dynkin diagram is a subset of nodes and connecting edges taken from the

original Dynkin diagram.

Theorem 2.2.6. [HK02] Let A be an indecomposable GCM with an associated Dynkin diagram.
Then,

1. A is of finite type if and only if all of the subdiagrams are of finite type.

2. A is of affine type if and only if all of the proper subdiagrams are of finite type and
detA = 0.

Definition 2.2.7. Let A be an indecomposable GCM of indefinite type with an associated
Dynkin diagram. We say A is hyperbolic if every proper subdiagram is of finite type or affine

type.

Definition 2.2.8. The Cartan datum associated with the GCM A = (a;j); jer is a quintuple
(A, IL 1L, P, P) where

o P=spang{{h1, -~ ,hy,} U{ds | s=1,--- ,n—1}} is a free abelian group of rank 2|I| — I,
called the dual weight lattice,

e P={\ch*|\(P) C Z} is called the weight lattice,

o IT={hy,--- ,h,} C b is the set of simple coroots, and
o Il ={aq, -+ ,an} C bh* is the set of simple roots which satisfy:
aj(hi) = ai

aj(ds) =0or1

foralli,j el and se {1,---,n—(}.



2.2. KAC-MOODY ALGEBRAS CHAPTER 2. PRELIMINARIES

We let h = C ®7 P be the complex extension of P, called the Cartan subalgebra.

Definition 2.2.9. The Kac-Moody algebra g = g(A) associated with the Cartan datum
(A, ILIL, P, P) is a Lie algebra with generators e;, f; (i € I) and h € P satisfying:

(1) [h, 1] =0 for h, b’ € P,

(2) [ear £i] = bz,

(3) [hei] = ag(h)e; for h € P,
(4) [h, fi] = —as(h) f; for h € P,
(5) (ade;)'~%i(e;) = 0 for i # j,
(6) (adfi)' =3 (f;) = 0 for i # j.

The generators e; and f; are called Chevalley generators and g = (¢; | i € I) and g_ =
(fi | © € I) are the subalgebras of g. The relations 1-4 are known as the Chevalley relations

and relations 5-6 are known as the Serre relations.
Theorem 2.2.10. Let g = g(A) be a Kac-Moody algebra. Then,

1. Suppose g+ = (e; | i € I) and g— = (f; | i € I) are as in Definition 2.2.9. Then g has
triangular decomposition
g=g9-dhd g,

2. The center of g is given by
Z(g) ={h e€b | ai(h) =0 for all i € I}.

Furthermore, the dimension of the center is dimb — |I|.

Definition 2.2.11. Let g = g(A) be an affine Kac-Moody algebra with associated affine
GCM A = (aij)ijer indexed by I = {0,1,--- ,n}. The canonical null vector is the vector
§ = (ap ar --- ay)T such that A§ = 0. In this case we decorate the nodes of the Dynkin diagram
of A with the labels ag,ay,--- ,a,. In addition, we find a dual vector v = (dg @) --- ay)” such
that ATv = 0. One can show that the center of g is spanned by ¢ = dohg dihi + - - - dphn € b,

called the canonical central element.

10
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Example 2.2.12. The affine Kac-Moody Lie algebra gy = g(Ap) corresponding to the GCM
below is called Ggl) and has Dynkin diagram given in Fig. 2.1. In this case, we use index
1=1{0,1,2}.

2 -1 0
Ag = -1 2 -1
0 -3 2

ag al a9

1 2 3

Figure 2.1 Dynkin diagram for Ggl)

Example 2.2.13. The hyperbolic Kac-Moody Lie algebra g = g(A) corresponding to the GCM
below is called H Ggl) and has Dynkin diagram given in Fig. 2.2. In this case, we use index
I ={-1,0,1,2} and note that H Ggl) can be constructed from Ggl) by adding an additional

row and column with entries: (2, —1,0,0).

O—O0—"—C==

Figure 2.2 Dynkin diagram for HGS)

11
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2.2.1 Roots and the Weyl Group

For simple roots o; (i € I), the root lattice is defined to be the free abelian group Q = @, ; Za;.

We denote the positive root lattice by Q, = @,.; Z>0a; and the negative root lattice
as (- = —@Q4+. Having defined the positive root lattice we endow h* with the partial ordering
given by A > p if and only if A — p € Q4 for A\, p € h*. We say A > p if and only if A — p € Q4+
and A — p # 0.

Definition 2.2.14. For a € () define the root space of o to be
9o ={z €9 [h,z] = a(h)x for all h € h}.

For ae # 0, if g, # 0 we say « is a root of g and define its multiplicity as mult(a) = dimg,.
We denote the set of all roots by A. Then AT = AN Q4 (resp. A~ = AN Q_) denotes the set
of positive roots (resp. negative roots). It is possible to view every root as either positive or

negative, therefore, we have the decomposition A = A~ U A™.

Example 2.2.15. Consider simple roots IT = {«; | i € I'}. Then g,, = Fe; and g_,, = F'f; for
all i € 1.

Theorem 2.2.16. [HK02] For g = @, cn- 9o and g+ P cp+ 8o, we can write the triangular

decomposition as
g=9-0h Doy
Theorem 2.2.17. In addition to a triangular decomposition, g has root space decomposition
g= @ Ja
a€e@
and furthermore dimg, < oo for all a € Q.

Definition 2.2.18. The simple reflections are reflections of 5 € h* defined by
ri(B) = B — B(hi)ay for all i € I.

Let gf(b*) be the group of invertible linear transformations from h* to h*. The subgroup W of
gl(h*) generated by the set of simple reflections is called the Weyl group.

Definition 2.2.19. Let w € W and choose ¢ to be the smallest integer such that w = r;,r;, - - - 74,.
Then the expression w = r;, 1y, - - - 7, is called the reduced expression of w and we denote the

length of w as ¢(w) = t.

12
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Definition 2.2.20. A root a € A is a real root if it is Weyl group conjugate to a simple root,

i.e. if there exists a w € W and «; such that a = w(q;). Otherwise, « is called an imaginary root.

Denote the set of real roots as A" and the imaginary roots as A", Then, A = A™ U A™

and we have the following properties.
1. For a € A,w € W, mult(a) = mult(wa). In particular, mult(a) = mult(—a).
2. If a € A", then mult(a) = 1.
3. If @« € A", then +« are the only multiples of o in A",
4. Suppose g(A) is of affine type. If a € A" then mult(a) = rank(A).

Hence we can restrict our focus to either positive or negative roots. For convenience we focus
on negative roots in this thesis.

Suppose g(A) is of finite type, then all roots are Weyl group conjugate to simple roots, and
hence have multiplicity equal to 1.

Suppose g(A) is of affine type, then the multiplicities of real roots are equal to 1. For imaginary
roots we recall the canonical null vector § = (ag a; --- a,)’ and define the canonical null
root of g(A) as the root § = apag + a1 + - - - + ap, where o (i € I) are the simple roots of
g(A). Observe that ké (k € Z>1) is not Weyl group conjugate to any simple root and hence is
an imaginary root. The imaginary roots of affine Kac-Moody algebras are nonzero multiples of
0 and have multiplicity equal to the rank of A.

For g(A) of indefinite type, the multiplicities of real roots are equal to 1, as with the finite
and affine cases. However, the problem of determining multiplicities of imaginary roots is still
an open problem in general for indefinite Kac-Moody algebras. This topic is the primary focus
of this thesis.

2.2.2 Weights and Modules of Kac-Moody Algebras

Definition 2.2.21. Let g = g(A) be a Kac-Moody algebra associated with A = (a;j); jer of
rank [. For i € I, let A; € b* be the linear functional satisfying

Al(hl) = (51']' and Al(ds) =0 (S = 1, cee ,u’ — l),

then {A; | i € I} C h* is called the set of fundamental weights of g.

13
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As with roots we define the weight space and weight space decomposition for a g-module V.

Definition 2.2.22. Let V be a g-module and define the weight space of y € h* as
Veo={veV |h-v=pu(h)v for all h € h}.

If V, # 0, we call u a weight of V' and define the multiplicity of p as mult(n) = dimV,,.
Vectors in V), are called weight vectors and a weight vector v € V), satisfying e; - v = 0 for
all ¢ € [ is called a maximal vector. We say V is a weight module if it has weight space

decomposition: V' = @ V.. We denote the set of weights of V' as wt(V). If dimV,, < co for
peh*
all 4 € b*, we define the character of V to be

chV = Z dimV,e",
neb*

where e# are formal basis elements of the group algebra F[h*] such that elet = eAH,

Definition 2.2.23. An integrable module V over g is a weight module for which e; and

fi (i € I) are locally nilpotent on V.

Next we give a presentation of the universal enveloping algebra for a Kac-Moody algebra g
[HKO02].
The universal enveloping algebra U(g) is the associative algebra with unity over field F

generated by e;, f; (i € I) and b satisfying relations:
(1) hi' = b'h for h € b,
(2) eif; — fjei = 6ijh; for i, j € I,
(3) he; —e;h = a;(h)e; for h e hiel,
(4) hfs— fih = —ai(R)fi for he b,i €T,

1—a;;
; 1 - 17 —Qj i — . .
(5) Z (_1)k ( ka] > 6; N kejef =0 for ¢ # j,

k=0

o . ( 1 _kazj ) FTh R =0 for i # .

14
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Now that we have defined the universal enveloping algebra for Kac-Moody algebras, we
define an important weight module, called a highest weight module, and its restricted dual,

called a lowest weight module.

Definition 2.2.24. We say V is a highest weight module of highest weight \ € h* if V
is a weight module such that there exists a highest weight vector 0 # vy € V satisfying

V =U(g)va,
e;-vy=0foralliel,
h-vy = A(h)vy for all h € b.
Observe, dimVy =1 and dimV,, < oo for all i € wt(V). Therefore, V = @ Vi, and V' is indeed

peh*
a weight module.

Definition 2.2.25. We say V* is a lowest weight module of lowest weight A € h* if V* is

a weight module such that there exists a lowest weight vector 0 # v} € V* satisfying

V* =U(g)vy,
fi-vy=0foralliel,
h - vy = —A(h)v} for all h € b.

For a fixed A € h*, consider the left ideal of U(g) generated by e; and h—A(h)1 (i € I, h € b),
denoted by J(A). The Verma module is the quotient M (\) = U(g)/J(\) with U(g)-module
structure given by left multiplication. Let N () denote the unique maximal submodule of M (\).
Then V(\) = M(X\)/N(A) is the irreducible highest weight module of weight .

We now define category O. Let V' be weight module and define

DA)={pebhx [ p<Atfor Aeh'}.

Definition 2.2.26. [Category O]

e Objects: weight modules V' over g with dimV) < oo for all A € h* and for which there
exists a finite number of weights A1, -, As € h* such that wt(V) C D(A)U--- U D(Ay)

e Morphisms: g-module homomorphisms

e Closure: the category is closed under finite direct sums or finite tensor products

15
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Proposition 2.2.27. The following are true of weight modules V' in category O.
1. Let V be a highest weight module, then V € O.
2. Let V be an irreducible module in O, then V is isomorphic to V(\) for some X € h*.

We now define a subcategory of O in which all modules are integrable and have integral

weights.

Definition 2.2.28. [Category O]
The objects in this category are integrable g-modules in category O such than wt(V) C P.

As a consequence of Definition 2.2.28, every weight module V' in category O;,; has a weight
space decomposition V = @ Vy where Vi = {v € V' | h-v = p(h)v for all h € P}.
AEP

Theorem 2.2.29. Let V be a weight module in category Oine and let w € W, the Weyl group.
Then for weight A € wt(V),
dth}::dthLA.

Recall the weight lattice P = {\ € h* | A\(P) C Z}. We say weight A\ € P is an integral
weight since A\(h;) € Z for all i € I. The set of dominant integral weights is denoted by

Pt ={\e P | \h;) € Zx for all i € I}.

Proposition 2.2.30. The following hold for weight modules V in category Oint.

1. Let V(\) be the irreducible highest weight module with highest weight X\ € b*, then
V(A) € Oppt if and only if X € PT.

2. Every irreducible module in Oy is isomorphic to V(X) for some A € PT.

Observe that part 2 of Proposition 2.2.30 is an immediate consequence of parts 1 and 2 from
Proposition 2.2.30 and Proposition 2.2.27 respectively. Finally, by Theorem 2.2.31 below we
have that V' in Oy, is completely reducible.

Theorem 2.2.31. Let V' be any g-module in category Oing. Then, V = EB V(A).
Aep+t
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CHAPTER

3

CONSTRUCTION OF HGY

In this chapter we realize H Ggl) using the construction outlined in [Ben93|. Starting with

the affine Kac-Moody Lie algebra gy = Ggl), we first define a gg-module homomorphism
U V*(Ag) @ V(Ag) — go, where V*(Ag) and V(Ag) are irreducible highest weight Ggl)—modules.
Using this homomorphism, we then build the maximal (resp. minimal) Z-graded Lie algebra §
(resp. g) with local part V(Ag) ® go ® V*(Ag). In Theorem 3.0.1, we show that g is isomorphic
to H Ggl), completing our construction.

We begin with the affine Kac-Moody Lie algebra go = Ggl), having the generalized Cartan
matrix Agp and corresponding Dynkin diagram presented in Section 2.2 and reproduced below.
Then we denote the Cartan subalgebra, central canonical element, simple roots, and fundamental

weights of go below.

2 —1 0 ap al ao
Ag=| -1 2 -1 O—CO==0
0 -3 2 1 2 3

e Cartan subalgebra: hy = spanc{Hy, H1, Ha} U {d}

17
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e central canonical element: ¢ = Hy + 2H7 + Ho

e simple roots: II = {ap, a1, ag} C b, satisfying
Oéj(Hi) = Qjj and Oéj(d) = 50j (Z,] = O, 1, 2)

e fundamental weights: {Ag, A1, A2} C b, satisfying

We focus on Ag and recall that V' (Ag) is the irreducible highest weight module with highest
weight Ag and highest weight vector vy satisfying the following relations for i € {0, 1, 2}.
H; - vo = Ao(H;) - vo = doi - vo
E,-v9=0
d-vy=Ao(d) - v9g=0
Similarly, V*(Ap) is the irreducible lowest weight module with lowest weight —A( lowest weight

vector v} and satisfies the following for 7 € {0, 1,2}.

H; vy = —Ao(H;) - vo = —do; - vo

In general, the module action of gg is given by (g-v*,v) = —(v, g - v*), equivalently (g -v*)(v) =
—v*(g - v), for every g € go,v € V(Ag), and v* € V*(Ay).

Next we define a gg-module homomorphism from V*(Ag) ® V(Ao) to go, which is key in

our construction of H Ggl). For this purpose we recall from [Kac90] the standard, symmetric,

bilinear form on b, (-|-), defined as:
(HZ|H]) = ajdj_laij, 1,J € {0, 1, 2}

(d|d) =0

(Hz|d) = 51‘0, 1 E {0, 1, 2}

18
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where a;; corresponds to the ij-th entry of Ag, a; corresponds to the labels of the Dynkin

diagram for Ggl), and a; corresponds to the labels of the Dynkin diagram for the dual algebra,

D:(;l), given in Fig. 3.1.

a al a9
D) O—C==0
1 2 1

Figure 3.1 Dynkin diagram for Df’)

Specifically, (-]-) acting on the basis elements of by is computed as:

(Hold) = dpp =1
1

(HolHo) = (1)(7)(2) = 2

(HolH) = ()(3)(-1) = -1

(HolH:) = (3)(7)(0) =0

(H1ld) = 610=0

(HilH1) = (2)(3)(2) = 2
(F|Hy) = (3)(1)(~1) = -3
(Hald) = 920 =0
(Hol ) = (3)(7)(2) = 6
(did) = 0.

Then (+|) is nondegenerate and can be uniquely extended to a nondegenerate, symmetric,
bilinear form on the elements of gg. See Theorem 2.2 of [Kac90] for more details. Therefore, g
has an orthonormal basis with respect to (:|-), which we denote as {z;|i € Z} and use in our
homomorphism from V*(Ag) ® V(Ag) to go.
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Define the map ¥ : V*(Ag) ® V(Ag) — go by
U(v*®@uv)=— Z<’U*|$l ~vyx; — 2(v*|v)e (3.1)
€T

where v € V(Ag),v* € V*(Ag), and ¢ = Hy + 2H; + H> is the canonical central element of gg.
Then ¥ is a gg-module homomorphism by [Ben93].

Having defined a gg-module homomorphism ¥, we construct the Z-graded Lie algebra g with
local part V(Ag) @ go ® V*(Ap), having local Lie algebra structure given by

[v*, 0] = U(v* @)
[gvv] =g-v

lg,v*] =g -v"

for v € V(Ag),v* € V*(Ap), and g € go that can be extended to g [Ben93|. For this purpose we

define the spaces:

g-1="V(Ao)
go = 9o
g1 = V" (Ao)

For i > 1, let g; (resp. §—;) be the space spanned by all products of i vectors from §; (resp.

g—1). In particular,
g = spanc{[y1, [y2 -, Wi, wil] -] | wrs- - sy € -1}

ai = spanc{[yf, [vs - Wiyl ] T ul -y €81

Then g— = @;>,0-i and g+ = P,>, §; are free Lie algebras generated by g1 and g1,

respectively. In addition,

i=Pa

€7
= (@ @—z‘) @ V(Ao) ®go® V*(Ao) & <@ ﬁi) (3.2)
i>1 i>1
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is the maximal graded Lie algebra with local part V(Ag) @ go @ V*(Ap). To find the minimal
graded Lie algebra with local part V(Ag) @ go ® V*(Ao), we define the subspaces for k > 1:

Je={z €|y, [ [ye-1.2]]...] =0 Vyr,..., k-1 € V(Ao)}
Joe=A{z g |l [ 2l ..]=0Vyy, ... yey € Vi(Ao)}
Je=> Jun

k=1
J=J & J,

Since g_ = 692'21 g—; and g4 = @221 g; are free Lie algebras, J1 are ideals of g and J is the
largest graded ideal of g which intersects the local part of g trivially. Define,

g=9/J
(@9 ) ©V(Ao) Dgo® V*(Ao) ® <@gz> (3.3)
i>1 i>1

where g1; = g4;/J4; for i« > 1. Then g is the minimal graded Lie algebra with local part
V(Ao) @ go @ V*(Ap). In Theorem 3.0.1, we prove g is isomorphic to HGS).

Theorem 3.0.1. Consider the map ® : HGgl) — g defined by
e_1+>r Us, f_1 — 9, h_1+— —d— 2c,

ei— B,  fi—F;, hi— H;

fori=0,1,2 where {e_1,ep,e1,e2} and {f-1, fo, f1, f2} are the Chevalley generators of HGgl),
and b = spanc{h_1, ho, hi,ha} is the Cartan subalgebra of HGgl). Then, ® is a Lie algebra

isomorphism.

Proof. We begin by reviewing H Ggl) , with Cartan matrix

Then HGS) is the Kac-Moody algebra generated by {e_1,eg,e1,e2},{f-1, fo, f1, f2}, and the
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Cartan subalgebra b with the following relations for 7,5 = {—1,0,1,2}, and h,h’ € b, and
ajj € A:

le;

[, h] =0

[h, e = a;(h)e;
[h, fi] = —ai(h) fi

where «; is a simple root of H Ggl) defined by «;(h;) = aj; as with go.

From the previous section, we have that J is the maximal graded ideal of g which intersects
the local part of g trivially. In addition, it is clear that ® is a linear bijection. Thus, we need
only show the following relations hold for 4, j = {—1,0,1,2}, and h,h' € b, and a;; € A:

[@(ei), ®(f5)] = 05 (hs)
[@(h), @(R')] = 0

[@(R), D(ei)] = i(h)®(es)
[@(R), ®(fi)] = —i(h)®(fi)

Consider the above relations for 7,5 € {0,1,2}. We observe that A is identical to Ay with
an extra row and column in the (-1)-position. Thus, A and Ay are identical when we restrict
to i,j € {0,1,2}. Now for 7,5 € {0, 1,2}, we have ®(e;) = E;, ®(f;) = F;, and ®(h;) = H;, as
defined by our homomorphism. Thus, the above relations hold for 4, j € {0,1,2}. We need only

to show:
[®(e—1), ®(f-1)] = ®(h-1) (3.4)
(e 1), B(f)] =0, (i = 0,1,2) (3.5)
[®(ei), ©(f-1)] =0,(:=10,1,2) (3.6)
[®(h),®(h)] =0 (3.7)
[B(R), B(e_1)] = a1 (A)B(e_1) (3.8)
[@(h), ®(f-1)] = —a—1(h)®(f-1) (3.9)
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To show (3.4), we give a change of basis for ) so that the new basis is orthonormal with

respect to the bilinear form (:|-)|y. Choose y_1 = \/%(d —c¢) and yo = %(d + ¢), where

¢ = Ho+2H; + Hy and d is as defined in the previous section. Then y_1 and yg are orthonormal:

(Y-1ly-1) = —%(d —cld —¢)
= 2 1(dld) ~ (dle) ~ (cld) + (cle)
:—%[0—1—1+O]

=1

(solyo) = 5 (d + cld +¢)
= S 1(dld) + (dle) + (cld) + (cle)]

1
=50+1+1+0

=1

(y1lyo) = = (d — cld + )

21
:%wm+wm—wﬁ—ww
1
= 50-1+1-0]
=0

Now let {y1,y2} be an orthonormal basis for H = span{ H, Ha}. This basis exists because (-|-)|x
is an inner product. Then {y_1, 0, y1,y2} is an orthonormal basis for j and can be extend to
form an orthonormal basis for H Ggl), denoted by {x;|i € I} and ordered so that z; = y; for
i€ {-1,0,1,2}. It follows that

[©(e-1), ®(f-1)] = [v5, o]
= U(vj ® vp)
=— Z@’Ok]xz ~vo)xi — 2{vg|vo)c

1€T

23



CHAPTER 3. CONSTRUCTION OF HG"

=— Z vo (x4 - vo)x; — 2v5(vo)c. (3.10)
€L
Clearly z; is a linear combination of E; and F; for x; # y;. Therefore the expression vj(z; - vo) =

—(x; - vg)(vo) in (3.10) vanishes for z; # y; since E; - vg = 0 and F; - v§ = 0. Therefore,

2
[@(e—1), D(f-1)] = —v§(y—1 - v0)y—1 — v§(yo - vo)yo — D w5 (i - vo)zi — 2 (vo)e

i=1
2

= —v5(y—1-v0)y—1 — v3(Yo - vo)yo — ZUS(CC,‘ <vg)x; — 2¢. (3.11)
i=1

We now argue that summation portion of equation (3.11) equals 0. Recall {z1,z2} = {y1,92}
forms a basis for H = {H, Ha}. As such, z; and x5 are linear combinations of H; and Hj only

and thus the action H; - vg = d;9 - v implies x1 - vg = T3 - vg = 0. Therefore,

[@(e-1), (f-1)] = —v6(y-1 - vo)y—1 — v (0 - vo)yo — 2¢

— i (S5a- 0 w) SA5d—o i (Jsld+o w) @+ -2
= %va‘(d-vo —c-v)(d—c)— %vg(d-vo +c-v)(d+c)—2c
= e (0)(d — ) — Su(u0)(d +¢) — 20
1 1
= —§(d—c) - §(d+c) —2c
=—d—2c
= ®(h_y).

Next we prove (3.5) and (3.6) below, simultaneously for i = 0, 1, 2.

[@(e-1), ©(fi)] = [v, Fi] [®(ei), D(f-1)] = [Ei, vo]
= —[F3, vg] = Ei-vo
. ~0
=0

To prove (3.7) we observe that ®(h_1) = —d—2Hy—4H; —2H> and ®(h;) = H; are elements
of ho for i = 0,1,2 and recall that [H, H'| = 0 for all H, H' € hy. Therefore, the linearity of ®
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guarantees that the images of h and h’ will be in by and hence [®(h), (k)] = 0 for all h, b’ € b.
It remains to prove (3.8) and (3.9). For convenience, suppose h = c_1h_1+coho+c1hi+c2ha €

b for complex scalars c_1, cg, ¢1, co. Then,

[‘I)(h), @(671)] = [671(—d — 20) 4+ coHy + c1Hy + coHo, US]

= (2c_1 — co)vp
and

a_1(h)®(e—1) = a_1(c_1h_1 + cohg + c1h1 + c2h2) - v
= (c_1a-1,1 + coap,—1 + cra1, 1 + c2a2, 1) - V)

= (2¢_1 — o)}

implies [®(h), ®(e—1)] = a—1(h)®(e_1). Similarly,

[‘I)(h), (I)(f_l)] = [0_1(—d — 20) + coHy + c1Hy + CQHQ,’U()]
= (—2c_1 + co)vo

= —(20_1 — Co)’Uo

and
a_1(h)®(f-1) = —a_1(c—1h—1 + coho + c1hi + c2h2) - vg
= —(c—1a-1,-1 + coap,—1 + cra1,—1 + a2 1) - Vo
= —(2c_1 — co)vo
implies [®(h), ®(f-1)] = a—1(R)P(f-1). O
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CHAPTER

4
GENERAL RESULTS

In this chapter we present some well known theorems of general hyperbolic Kac-Moody algebras,
as well as some new results. Together these results are instrumental in our exploration of
level 1, 2, and 3 root multiplicities in Chapter 6. Specifically, we provide some general results
regarding the multiplicities of certain level ¢ roots in Section 4.1. In Section 4.2 we review
Kang’s multiplicity formula, which provides an algorithm for computing root multiplicities of
H Ggl) using weight multiplicities of irreducible highest weight Ggl)—modules. In Section 4.3 we
review the multiplicity bound given by Frenkel’s conjecture, which are verified for all roots in
Chapter 6.

4.1 Level ¢ Root Multiplicities

In this section we use the simple Weyl group reflections r; (i = —1,0, 1, 2) defined by

ri(B) = B — B(hi)oy, for B € b

to prove several multiplicity theorems for general roots of level £. These theorems are utilized in

Chapter 6 to find multiplicities of specific roots of level ¢ < 3.
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Proposition 4.1.1. Let —fa_1 — moag — miay — maas be a root of HGS), then

r_l(—ﬁa_l — Moty — M1y — mgag) = —(m() — 6)06_1 — mMo&py — M1y — M0y
To(—ﬁa_l — Mo&xg — M1y — m2042) = —Ea_l — (€ —mg + ml)Oé() — M1 — Moo
?"1(—605_1 — moQyg — Mg — mgOdQ) = —EOé_l — moQg — (mo —m1 + 7712)041 — MoQ2
?”2(—60571 — Mmooy — 1M1y — m2052) = —Ka,1 — Mmooy — M1y — (3m1 — mg)a2
Proof.
T,l(—foz,l — Moy — Mo — ’rTLQOéQ) = —fa,1 — Moy — M1 — Mo

— (—la—1 — moag — mpag — maag)(h_1)a_
= —ﬂa_l — Moy — M1y — Moty — (—26 + mo)a_l

= —(mo — E)Oé_1 — Moy — M1 — M0y

To(—foz,l — Moy — Mo — mQOéQ) = —foz,l — Moy — M1 — 1Moy
— (—la—1 — moayg — mia; — maas)(ho)ag
= —Ea_l — Moy — M1y — Moy — (f - 2m0 + ml)ag

= —Ea_l — (f —mgp + ml)ao — M1 — Moo

7’1(—50[,1 — mMoQypg — MMmioxy — TTLQOQ) = —f()éfl — MoQyg — M1y — 1Mo
— (—fa,l — mMoQpg —miovp — mgag)(hl)al
= —la_1 — moag — mia; — maag — (Mo — 2my + ma)ay

= —la_1; — moag — (Mo — m1 + ma)ag — maay

7“2(—40471 — Mmooy — M1 — m20[2) = —Ea,1 — Moy — M1 — Moy
— (—fOéfl — mMoQyyg — MmMmioep — TTLQOéQ)(hQ)OlQ
= —Ea,l — Moy — M1 — Moy — (3m1 - 2m2)oz2

= —la_1 —moag —miag — (3mp — ma)ag
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Theorem 4.1.2. If{,k € Z~y and —fa_1 — ké is a root of HG(l), then k > £. Furthermore,
mult(—la_y — £5) = 2.
Proof. Suppose —fa_1 — k¢ is a root. By Proposition 4.1.1,
r_i1(—la_q1 —kd) = —(k —O)a_q1 — ko
is a root as well. Therefore k > £. If k = ¢, then

mult(—lo—1 — 06) = mult(r—1(—Lla_q — £9))
= mult(—49)
= rank of Ag
=2

O]

Let A* be the set of positive (respectively, negative) roots of g = HGgl) and A§ be the set
of positive (respectively, negative) roots of gy = Ggl), where S ={0,1,2}.

Theorem 4.1.3. For {,k € Z~y and a = miay + maoag € Aig U {0},
mult(—la_1 — o — kd) = mult(—(k — O)a—1 — o — k9).

Proof. We use Proposition 4.1.1 to show —la_1 — a — ké and —(k — {)a_1 — o — kd are Weyl

group conjugate:

r_1(—la_1 —a—ké) =r_j(—Lla_1 — kag — (2k + m1)ag — (3k + m2)az)
= —(k — K)a_l — koo — (2]{3 + m1)0é1 - (3k + m2)012
=—(k—0a_1 —a—kd

Therefore mult(—la_; — a — kd) = mult(—(k — {)a—1 — a — k).

Corollary 4.1.4. For { € Z~¢ and o = miaq + moasg € Ag,

mult(—la_1 — o — £5) = 1.
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Proof. By Theorem 4.1.3,

mult(—lo—1 — a — £6) = mult(— (€ — O)a—y — o — £9)
= mult(—a — £0).

Ifae A;r, then —a — £ is a real root and hence has multiplicity 1. Therefore,

mult(—lo—y — o — £5) = 1.

Theorem 4.1.5. For 0,k € Z~¢ and o = miog + maan € Ag U {0},
mult(—la_1 — bogy — o — k6) = mult(—ka_1 — bagy — o — k).

Proof. We use Proposition 4.1.1 to show —fa_1 — lag — a — kd and —ka_1 — bag — a — kd are

Weyl group conjugate:

T_1(—fa_1 — EOJO - — k(S) = r_l(—ﬁa_l — (5 + k)a() — (Qk + ml)al — (3]€ + mg)ag)
= —ka_q — (E + k)ao — (2k + ml)al — (3]€ + mg)ag

= —ka_1 — Loy — o — kb

Therefore mult(—la_1 — bay — o — kd) = mult(—ka_1 — bagy — o — k9).
0

In the next sections we provide a means for computing additional root multiplicities of

H Ggl), as well as a conjectured bound on the multiplicities.

4.2 Kang’s multiplicity Formula

In Chapter 3 we constructed H Ggl) as a graded Lie algebra with degree zero component
Ggl). Utilizing this construction, Kang’s multiplicity formula allows us to determine the root
multiplicities of H Gél) using the weight multiplicities of certain Ggl)—modules. In this section,
we recall Kang’s multiplicity formula and outline specifically the algorithm for computing the

root multiplicities of H Ggl). For more details, see [Kan94].

29



4.2. KANG’S MULTIPLICITY FORMULA CHAPTER 4. GENERAL RESULTS

Theorem 4.2.1 (Kang’s Multiplicity formula for HGS) [Kan94]). For Kac-Moody algebras
g= HGS) and go = Ggl), let A be the set of positive (respectively, negative) roots of g and
quc be the set of positive (respectively, negative) roots of go. Define A*(S) = Ai/Afgc. Then, for
acA(S):

dim(ga) = Y (%) (Z) B(r)

T

where,

Tl if o = kT for some positive integer k,

1 ifn=1
ey is the classical Mébius function, p(n) = < (=1)°  if n is a product of s distinct primes,
0 otherwise

(Zni—l)! )
TCRID S e 10
(ns,m)ET(T) H(nl)'

T(1) ={(ni,7)|ni € Z>o, 7 € P, Y nmym =T} is the finite set of all partitions of T,
e K= S () dimV (wp — p)-,,

weW (S)
L(w)>1

e W(S)={weWjwA~NAT C AT(S)}, and
e V(wp — p) is the highest weight go-module with highest weight wp — p.
e p € b* such that p(h;) =1 for alli € I.

Note Theorem 4.2.1 provides a nice algorithm for computing root multiplicities for negative
roots. First, we sum over the 7 that divide the negative root of interest, a. For each 7, we
compute B(7) by summing over the partitions of 7, but observe that we only need to consider
the partitions for which K7, is nonzero for each 7;. To determine K, we sum over the Weyl
group reflections satisfying wA~ N AT C AT(S), i.e. the set of reflections that send negative
roots to positive roots containing an (a_j)-term. Finally, we compute weight multiplicities of
the Ggl)—modules, V(wp — p). In the next chapter, we provide the framework for computing
weight multiplicities of the Ggl)—modules using the combinatorial structure of crystal bases and

path realizations.
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4.3 Frenkel’s Conjecture

In his paper on representations of Kac-Moody algebras and dual resonance models [Fre85],
Frenkel conjectured a bound for the root multiplicities of indefinite Kac-Moody Lie algebras.
Although this bound has been disproven for some algebras such as H C}zl) in [Wil03], it has
remained valid for other algebras such as H Ag), H Dg), and H Df) (see [KM94], [HMO02], [Wil12],
and [Erb12]) and provides some insight into the behavior of hyperbolic root multiplicities. In
order to consider Frenkel’s bound, we let g(A) be any indefinite Kac-Moody Lie algebra with
corresponding Cartan matrix A of rank [ and standard invariant bilinear form, denoted by (-|-),
on the set of roots A. Then for a € A, Frenkel’s conjecture states [Fre85]:

mult(a) < pt=2 <1 - (O‘go‘)> :

where p(=2)(k) are the formal coefficients in the infinite series satisfying

Sor D) = [Ja—a) 2.
k=0 i=1

Now suppose g(A) is a Kac-Moody Lie algebra with symmetrizable GCM, A = (a;;j)nxn, and
diagonal matrix, D = diag(s;|i € {1,--- ,n}), such that DA is symmetric. Then (-|-) defined on
the simple roots of g(A) by (ci|ej) = s;ai; is a standard invariant bilinear form [Kac90]. For our
algebra HGS) we let D = diag(3,3,3,1) so that DA is a symmetric matrix. Then for simple

roots {a_1, o, a1, as} we have:

(aq|a1) =6 (a-1|lag) = -3 (a—1]a1) =0 (a_1|az)=0
(agla—1) = =3 (aolap) =6 (alar) = =3 (aplag) =0
(a1la—1) =0  (a|ag) = -3 (a1|a1) =6  (aq|az) = -3
(ala—1) =0  (azlag) =0 (zlan) = =3 (ag|ag) =2
Consider level £ roots of the form o = —fa_1 — moag — miay — mocra € A™, then

(o)) = (—la—1 — mpay — mia; — maan| — ba_1 — moag — My — Maa)
= 6/% — 3¢mg — 3fmg + Gm% — 3mgomq — 3mom1 + Gm% — 3mimeg — 3mimse + 2m%

= 6(0% + m3 +m? — tmg — momy — myma) + 2m3
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and Frenkel’s bound implies

mult(a) < p@ <1 _ (a;a)>

= p(2) (1 — 3(€2 + ’m% + m% — Img — moem1 — myma) — m%) . (4.1)

In the remainder of the thesis we use (4.1) and our C# program to compute p@ (1 — %),
specifically for the imaginary root o € A~ appearing in Chapter 6.
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CHAPTER

5
CRYSTALS

In Section 4.2, we outlined a procedure for determining root multiplicities of H Ggl) using weight

multiplicities of certain highest weight Gél)—modules. In this chapter we recall combinatorial
objects known as crystals, which can be used to determine the weight multiplicities of highest
weight modules of the associated affine quantum group Uq(Ggl)). Because the characters of the
integrable modules U,(g) and U(g) the same, the weight multiplicities Uq(Ggl))—modules are
equivalent to those of U (Ggl)) and hence to those of Ggl) (see Theorem 5.1.5). Therefore, we
focus on finding weight multiplicities of Uq(Gél))—modules. Unless otherwise stated we assume

the field F' = C.

5.1 Quantum Groups

In this section we present the basic definitions and theorems of quantum groups which we need

to define the quantum affine algebra Uq(Gél) ) in Section 5.3.

Definition 5.1.1. Fix an indeterminate ¢ such that ¢ # 1 for all m € Z. For n € Z, we define
the g-number [n], by

qn _ q—n
g = —7
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and ¢-binomial coefficient by

where 0 <n < m and [0],! =1 and [n],! = [n]s[n —1],---[1];. Note that as ¢ — 1, [n]; = n and

n

[ m ] — < m ), the standard binomial coeflicient.
n
q

Now suppose A = (a;j)i jer is a symmetrizable GCM with symmetrizing diagonal matrix
D = diag(s; € 7o | i € I) and Cartan datum (A,ILII, P, P). We now define the quantum

group of g = g(A), also known as the quantized universal enveloping algebra of g = g(A).

Definition 5.1.2. The associative algebra with unity over F'(q) generated by e;, f; (i € I) and
" (h e ]5) satisfying the following relations is known as the quantum group or quantized

universal enveloping algebra of g = g(A) and is denoted U,(g).
(1) ¢*=1,¢"¢" =¢"*" for h € P,
(2) qreig™ = q®iMWe; for he P,ie I,

(3) ¢"figh =g Wi for he Piel,

K — K;!
(4) €Z'fj — fjei = (511% for 1,7 €1,

( i

1—a;;

(5) Z (—1)* ! _kaij e,}*a"jfkejef =0 for i # j,
k=0 - -4
P i 1 — aj ] 1—ai—k , .k .
(6) (1) . fi 7 L =0fori# g,
k=0

L da

where ¢; = ¢% and K; = ¢%M.

Observe that in Definition 5.1.2 we recover U(g) when g — 1. Therefore the representation
theory for U,(g) is analogous to that of U(g) and hence to that of g. Specifically, U,(g) has
triangular and root space decompositions, as well as weight modules V;, categories O7 and O} ,,

and other theorems that parallel those for g. For this reason we omit all but a few definitions

and theorems here. For more details see [HK02].
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)

int- Lhen the following are true of V4:

Let V4 be an element in category O

(1) V7 can be decomposed into weight spaces V¢ = @ Vi where dimp(g)Vy < oo for all

\eP
Ae P.

(2) wt(V9) C D(A1)U---UD(Ns) for finitely many Ay, -+, A\ € P.
(3) e; and f; are locally nilpotent on V7 for all 7 € I.

We recall the following important theorems from [HK02].

Theorem 5.1.3. Let V() denote the irreducible highest weight Uy (g)-module of highest weight
A€ P. Then V4(\) € O . if and only if X € PT.

int

Theorem 5.1.4. Let V4 be a Uy(g)-module in Of

int- Lhen V1 is completely reducible, i.e. 1s

isomorphic to a direct sum of irreducible highest weight modules VI(X) with highest weight
A€ Pt.

Theorem 5.1.5. Let V() denote the irreducible highest weight Uq(g)-module of highest weight
A € P. Then V() is isomorphic to the highest weight U(g)-module V (\). Moreover,

ch VI(X) = ch V(A).

Therefore the multiplicity of weights in VI(X) is equivalent to the multiplicity in V (X).

5.2 Crystal Bases

In this section, we consider U,(g)-modules VI = @, p Vi with Vi # 0 in category OF,,. We
define Kashiwara operators on V¢ and use them to develop the notion of a crystal base for
V4. In short, crystal bases can be viewed as a basis for V7 at ¢ = 0. The combinatorics of
crystal bases makes it simple to study the combinatorial structure of integrable representations

q

of quantum groups in category O} ,.

To begin, we recall that for every ¢ € I we can write every weight vector v € Vf as
v =g+ fi(l)m +- 4 fi(N)vN,

fk
(k]!
the property that vy # 0 if and only if A(h;) + k > 0 and is uniquely determined by v [HK02].

Now we are able to define the Kashiwara operators on V? and give some of their properties.

where N € Zxg, v;, € V)\q Nker e;, and fi(k) =

ke, forall k=0,1,--- , N. Then each v; has
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Definition 5.2.1. Define the Kashiwara operators & and f; (i € I) on V9 by

€iv = Z fi(k_l)vka JEW = Z fi(k+1)vk

Theorem 5.2.2. For allt € I and A\ € P, we have
EVi=eVicVL . fVi=fVicVi,.

Next, we consider the principal ideal domain, whose field of fractions is F'(q):

_ /@
Ay — {g(q) ] £(a)-9(q) € Fla). 9(0) # o}.

Definition 5.2.3. A crystal lattice is a free Ag-submodule £ of V¢ that satisfies

(1) For all p € wt(V9), we have VI = L, ® 4, F(q). In other words, Vj is generated by L as

a vector space over F(q).
(2) For all A € P, define Ly = LNV}, then L =@ ,cp L.
(3) For all i € I, & and f; satisfy &L C £ and f;£ C L.

Now consider the unique maximal ideal of Ay, Jo = (¢). Then the field isomorphism
Ao/Jo = F given by f(q) + Jo — f(0) induces an isomorphism F ®4, £ — L/JoL = L/qL.
Specifically, ¢ gets mapped to 0 in the quotient space £/qL. The mapping from L into £/qL is
referred to as taking the crystal limit. By Definition 5.2.3 we observe €; and ﬁ preserve £ and
are well defined in £/qL, therefore no change of notation is necessary. We now define a crystal

base for integrable weight module V7 € Of ..

Definition 5.2.4. A crystal base for V7 is a pair (£, B) such that
(1) L is a crystal lattice of V9,
(2) B is an F-basis of L/qL,

(3) B is the disjoint union of subspaces By = BN (Lx/qLy):

B=||Bx,
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(4) foralli e I, &B c BU{0} and f;B C BU {0},
(5) B has the property that for any b, € B and i € I, f;b =¥ if and only if &b = b.

One important application of crystal bases comes from the following theorem. This theorem
allows us to determine weight multiplicities of U, (g)-modules using the nice combinatorics of

the crystal bases for such modules.

Theorem 5.2.5. Let V9(\) be an irreducible highest weight Uy(g)-module and let (L(N), B(X))
be its crystal base. For every weight u € V1(\), the multiplicity of u is equal to the cardinality

of B(A),.

The set B admits a graph structure called a crystal graph because we can depict the set

as an i-colored, oriented graph. To do so, we define an i-colored arrow:
b5 ¥ if and only if fib =¥ for all i € I,

and construct an oriented graph with one node for every b € B, connected by i-colored arrows.
Thus the crystal graph depicts the internal structure of B. In addition, the crystal graph allows
us a nice way to interpret the maps ¢;, p; : B — Z defined by,

ei(b) = max{k > 0 | &b € B},

©i(b) = max{k >0 | j‘:ikb € B}.

Therefore, €;(b) (resp. ¢;(b)) represents the number of i-colored arrows coming into (resp. going
out of ) b and ¢;(b) —e;(b) = A(h;) represents the length of the i-string through b. Finally, observe
that for &b € B and f;b € B,

Ei(éib) = Ez(b) — 1, (pz‘(éib) = QDZ(b) + 1,

ei(fib) =)+ 1,  @i(fib) = wi(b) — 1,

which implies ;8 C By1q, U {0} and fiBy C Bx_o, U{0}. We use these maps to abstract the
notion of crystal bases, but before doing so we discuss how crystal bases behave with respect to

direct sums and tensor products.

Theorem 5.2.6 (Direct Sums and Tensor Products). [HK02] Let Vi and V3! be Uy(g)-modules
in category OF . having crystal bases (L1,B1) and (L2, B), respectively.
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1. The crystal base for VI =VI® Vil is given by (L, B), where L = L1 ® Ly and B = By LU Bs.

The Kashiwara operators and crystal graph for V4 are defined in the natural way.

2. The crystal base for V4 = V| ®F(q) Vil is given by (L,B), where L = L1 ®4, L2 and
B =By x By. For by ® by € By x Bs, the Kashiwara operators é; and ﬁ (i € I) are given
by the tensor product rule,

éibi1 @by if pi(b1) > ei(ba2),
bi ® &by if vi(b1) < i(b2),

éi(b1 ® by) =

filb1 @ by) = Ity @bz i) > eilb),
br ® fiba if pi(b1) < ei(ba).

Notice we use the notation by ® by in place of (b1,bs) € By X By and set by ®0 = 0®by = 0.
Moreover, we have

wt(br @ ba) = wt(b1) + wt(ba),
ei(b1 ® by) = max {e;(b1),i(b2) — (hi, wt(br))},
@i(b1 ® b2) = max {pi(b2), pi(br) — (hi, wt(ba))}.

The crystal graph of By x By is defined in the same manner as before and is denoted as
B ® Bs.

The tensor product rule yields a convenient combinatorial way to describe the Kashiwara
operators on multifold tensor products of crystals. Let By, --- , B be crystals and fix ¢ € I. Con-
sider b = b1®- - -®by, € B1®- - -®@Bj. For each b; € B; assign €;(b;) many —’s and ¢;(b;) many +’s:

b — b]. ® b2 ® ...... ® bk —
(_7 7_7+7 +7_7'”7_7+7” 7+7 """ ) 7_7+7 )+)
—_— Y Y Y —_—
ei(b1) @i(b1) ei(b2) wi(b2) &i(bk) wi(br)

Next cancel any (4, —)-pairs in the sequence generated by b. This yields a reduced sequence
Z'S.gn(b) = (_7 Ty Ty +7 +> IR +>a

called the reduced i-signature of . Then the tensor product rule implies €; acts on b by
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applying é; to b; corresponding to the right-most — in i-sgn(b). Similarly, f,, acts on b by
applying f; to b; corresponding to the left-most + in i-sgn(b). Therefore,

Eb=b1® - ®Eb; @ ® by,

fib=b1@ - ® fibj @@ by,
We now abstract the definition of crystal bases by defining what are called crystals.

Definition 5.2.7. [HK02] Let A = (a4j)ijer be a GCM with associated Cartan datum
(A, T1, 11, P, P) and let g = g(A) be a Kac-Moody algebra. A (U9(g)—)crystal associated with
Cartan datum (A, II,II, P, P) is a set B, together with the maps wt : B — P, &, fi : B — BU {0},
and g;,; : B— ZU{—o0} (i € I), if B satisfies the following properties:

(1) for all i € I, @;(b) — €;(b) = (hi, wt(b)),

(2) if €;b € B, then wt(é;b) = wt(b) + a,

(3) if f;b € B, then wt(f;b) = wt(b) —

(4) if é;b € B, then g;(é;b) = ¢;(b) — 1,  pi(€:b) = ¢i(b) + 1,
(5) if fib € B, then ei(fib) = &i(b) + 1, ¢i(fib) = @i(b) — 1,
(6) for bt/ € Band i€ I, fib =V if and only if &b = b,

(7) for b e B, if ¢;(b) = —oo, then &b = fib = 0.

We denote By = {b € B | wt(b) = A} so that B = | | cp Bx. A crystal B is called semiregular
if we have

ei(b) = max{k > 0 | &b € B},

©i(b) = max{k > 0| fFb e B}.

Example 5.2.8. Let V¢ be a U,(g)-module in category Oj;.
1. The crystal graph B of V7 is a U,(g)-crystal.

2. Similarly, if V9()) is a highest weight U,(g)-module in category Of ., then its crystal
graph B(\) is a Uy(g)-crystal.

Theorem 5.2.9. An isomorphism between two crystals B, By associated with Cartan datum
(A, TL L, P, P) is a bijection ¥ : By U {0} — By U {0} satisfying:
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2. If b € By, then wt(¥ (b)) = wt(b), £;(¥(b)) = &;(b), and p;(¥(b)) = p;(b) for all i € I.
3. If bt € By and fib =1V, then f;¥(b) = W(V) and &V (') = U(b) for alli e I.

The following theorem from [HK02] provides the foundation for the existence and uniqueness

of crystal bases for U,(g)-modules in category OF ..

Theorem 5.2.10. Let V9(X) denote the irreducible highest weight U,(g)-module with highest
weight X\ € PT and highest weight vector vy. Define L(\) to be the free Ag-submodule of VI(N)
spanned by fil "'fiTU)\ forr >0 andi; € I. Set

BO) = {fiy -+ fion +aL(A) € LN /aLN) | =0, i; € I}/{0},

then the pair (L(N), B(N)) is a crystal base of VI(N).

5.3 Perfect Crystals

In this section we consider special quantum groups known as quantum affine algebras and
present the notion of perfect crystals. Specifically, we recall path realizations of crystals using
perfect crystals. With this technique we determine the weight multiplicities of irreducible highest
weight Uq(Gél))—modules and hence Ggl)—modules.

We begin with some basic definitions. Suppose A = (ai;); jer is an affine GCM with index
I=4{0,1,---,n}. Then P = Zho @ Zhy ®- - - Zh, ® Zd is called the affine dual weight lattice,
P = {)\ € h*|A\(P) C Z} is called the affine weight lattice, and (A,IL1II, P, P) is called
the affine Cartan datum. For affine Kac-Moody algebras, recall that the center of g is one
dimensional and spanned by the canonical central element ¢ = dphg + d1h1 + - - - + dphy, where
h; is an element of the Cartan subalgebra h = C ®z P. In addition, recall the canonical null root
d = apag +ajo + - - - + apay,, where o are simple roots defined by a;(h;) = aj; and a;(d) = do;.
Using the null root we can rewrite P in terms of the fundamental weights given by A;(h;) = d;;
and A;(d) = 0:

PZZAO—I-ZAl-l-"‘—i—ZAnEBZalO(S.

We call elements of P affine weights and denote the set of affine dominant integral weights
by Pt ={X € P | A(h;) € Z> for all i € I'}. The level of an affine dominant integral weight
A € P is the integer A(c) > 0.
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Example 5.3.1. Consider the affine Kac-Moody algebra go = Gél) with simple roots {ay, a1, an}
C b* and fundamental weights {Ao, A1, A2} C b* satisfying:

ai(hj) = aji,  a;(d) = doi,

Az(h]) = 5ija Al(d) =0,

and recall the null root and canonical central elements are
§ = agp + 201 + 3,

c=hg+ 2h1 + ho.

We can write the simple roots in terms of fundamental weights and the null vector as follows:
ag =2 — A1+

o] = —AO 4+ 2A1 — 3A5
ag = —A1 +2A

Definition 5.3.2. Let g = g(A) be an affine Kac-Moody algebra with affine Cartan datum
(A,TL 11, P, P). In this case we call the quantized universal enveloping algebra U,(g) the quantum
affine algebra. We also call U(;(g) the subalgebra of U, (g) generated by e;, f;, Ki' (i € I) the
quantum affine algebra. Then U(;(g) can be viewed as the quantum group associated with the
classical Cartan datum (A, I, 11V, P, PV):

o PV =7Zhy®Zh1 & - & Zhy, and h = C @7 PV,
e P=7ZAg®ZA - D ZA,,
e IT and ITIV are the same as in the affine case.

We call elements in P classical weights and denote the set of classical dominant weights
as
Pt ={Ne P | \hi) € Z>o for alli € I}.

We say a classical dominant weight A\ € Pt is of level [ if A(c) = [, same as with affine weights.

Definition 5.3.3. An abstract crystal associated with affine Cartan datum (A,II,1I, P, P)
is called an affine crystal. An abstract crystal associated with classical Cartan datum
(A, I, 11V, P, PV) is called a classical crystal.
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Let I > 0 be an integer and B be a classical crystal. For b € B, recall
ei(b) = max{k > 0 | &b € B},

¢i(b) = max{k >0 | fFb e B}.

and define
e(d) =Y aid)Ai, and (b)) =Y @i(b)As.

el i€l

Then wit(b) = p(b) — e(b), where wt dentoes the classical weights. Let
Bf={Ae P |{N =1}
denote the subset of the classical dominant weights having level [ > 0. We are now ready to

define perfect crystals.

Definition 5.3.4. [HK02] Let B; be a finite classical crystal with maps defined as above. Then

B; is a perfect crystal of level [, if it satisfies the conditions:
(1) there exists a finite dimensional U;(g)—module whose crystal is isomorphic to 5y,
(2) B, ® By is connected,
(3) there exists a classical weight A\g € P such that
wt(By) C Ao + ZZSOai and dim(B;)x, = 1,
i#0
(4) (c,e(b)) =1 for any b € By,

(5) for each A € P;", there exists unique vectors b* € B; and by € B; such that e(b*) = A
and ¢(by) = A.

Theorem 5.3.5 (Level [ perfect crystal for Uq(Ggl))). [Mis10] The U;(Ggl))—crystal B given
below is a perfect crystal of level [ > 1.

B, = {b = (xl,xg,ajg,.fg,i“g,fl) S (Zzo/?))ﬁ | T1,T1,x2 — x3 € Z, 3x3 = 3T3 (mod 2),
T3+ T3
2

and s(b) = x1 + x2 + +f2+531§l}

equipped with the Kashiwara operators €; and ﬁ (1 =0,1,2) given by:
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( (x1 — 1,29, x3, T3, T2, T1) if (E1),
(x1, 1:2,333 1,23 —1,Z9,1 + 1) if (E2),
(x1,x :1:3—%,5734-%,3?’24-%,5;1) if (E3) and jcg—xgz—%,
éo(b) = (z1,2 $3j%:f3+§if2+§,ifl) Z:f(ES) and 9%‘3—933:—%,
(21,2, 23 — 2,T3,T2 + 1,T1) if (E3) and T3 — x5 # 3,—§,
(1,29 — 1,23, T3 + 2, T2, Z1) if (Ey4),
(x1—1 xg,mg—i—l T3+ 1,T9,71) if (Es),
| (#1,72,73,%3,72,71 + 1) if (Eg),
( (x1 + 1,9, x3, T3, T2, T1) if (F1),
(1,29, 23+ 1,23+ 1,Z2,71 — 1) if (F3),
(21,2, 23 + 2,T3,To — 1,T7) if (F3),
- (21, :c2+3,:n3+3,m3 22— 2,11) if (Fy) and 73 — a3 = 2,
folb) = (z1,72+ 2,23+ 2,7 4m L z1)  if (Fy) and Z3 — x3 = 4,
2+ 35,23+ 3,T3— 3,2 — 3, 4 3— %3 =3,
(1,29 + 1, 23,3 — 2, T2, Z1) if (Fy) and T3 — x3 # %,%,
(x1+ 1,209,235 — 1,3 — 1, T2, T1) if (F5),
(x1,x9,x3, T3, T2, T1 — 1) if (Fg),
(1,29, X3, T3, To,T1 — 1) if (To — Z3) > (2 — 3) 4,
é1(b) = ¢ (1,722,253 + 1,73 — 1,%0,71) if (T2 — T3) < 0 < (23 — 22),
L (x1 + 1,29 — 1,23, %3, T2, 1) if (T2 — Z3)4 < (z2 — x3),
(x1 — Lxo + 1,23,%3,%2,%1) if (T2 — Z3)4+ < (z2 — 73),
{ (1,29, 23 — 1,23+ 1,Z2,%1) if (T2 — T3) <0< (x3 — 22),
(x1,29,23,%3,T2 — 1,21 + 1) if (T2 — Z3) > (x2 — x3) 4,
_{ ($1,$27$3,I3+37$2 3.%1)  if T3 — w3 >0,
B (1 :U2+3,:U3 3,x3,x2, 1) if T3 —x3 <0,
= _{ (x1,22 — 3,23+ 3,23, %2,21) if T3 — 23 <0,
f0 = ($1,$2,IE3,$3 2T+ 5,01)  if T3 —a3>0,

where (F1) — (Fs) are given below and (Ey) — (Eg) are defined by replacing > with > and < with
< in the definition of (F1) — (Fg). If b € By and &;(b) or fi(b) is not in B; we take it to be 0.
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\ 7~

\

271 — 221 + 2%9 — 220+ T3 — 23 < 0
21 — 221 4+ 222+ 23 — 323 <0
T1—21+T2—23<0

r1—x1 <0

21 — 221+ 2% — 229 + T3 —x3 < 0
220+ T3 — 323 <0

To—23 <0

r1—x1 >0

271 — 2x1 — 229 + 373 —x3 <0

3T3 —x3 — 229 <0

T3 —x3 <0

To —x3 >0

T1—x1+T9—T3>0

21 — 221 4+ 2x2+ 23 — 323 >0

2%0 + T3 — 3x3 >0

T3 —x3 >0

r3— 29 <0

T1—x1+x3—12 <0

271 — 221 + 2Z9 — 220+ T3 — 23 >0
3T3 —x3 — 229 >0

r3 —To >0

r1—x1 <0

271 — 2x1 + 2% — 2209 + T3 —x3 >0
271 — 2x1 — 229 + 373 —x3 > 0
T1—x1+x3—12 >0

r1—x1 >0

Example 5.3.6 (Level 1 perfect crystal for Uq(Ggl))). Using the set defined in Theorem 5.3.5

we determine the elements in By, determine the classical weights for each element, and construct

the crystal graph of B; in Fig. 5.1. Please note in Fig. 5.1 we denote the elements b; € B; by

the number j encased in a rectangle and represent the f; actions by i-arrows (i1=0,1,2).

We have By = {b; | 0 < i < 14} where
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=(0,0,0,0,0,0) by =(0,0,0,%,%,0) bs=(0,0,2,0,0,0) b2=(0,%,%,0,0,0)
=(0,0,0,0,0,1) b5 =(0,0,0,2,0,0) by =(0,3%,3%,3,%,0) bi3=(0,1,0,0,0,0)
=(0,0,0,0,1,0) b= (0,0,1,1,%,0) b1p=(0,%,%,1,0,0) by =(1,0,0,0,0,0)
b3_ (0,0,0,2,2,0) b; =(0,0,1,1,0,0) b1 = (0,3,3%,0,0,0)
m(bo) =0 W(b4) (oq + 052) E(bg) = m(blg) = o1 + 209
w(bﬂ = —(20(1 + 3042) ﬁ(b5) = -1 m(bg) =0 m(blg) = a1 + 3ay
w(bg) = —(041 + 30&2) W(bﬁ) = —Q2 w(blo) = 9 m(bm) = 201 + 3as
w(bg) = —(Oq + 20[2) 7([)7) =0 ﬁ(bll) = o1 + Qo

Figure 5.1 Crystal graph of B;
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Example 5.3.7. Using the set defined in Theorem 5.3.5 and our C# program, we determine
the elements in By and list them in Table A.1 of the appendix. Because the crystal graph of Bsy
is quite large, we do not depict the crystal graph pictorially. Instead we provide in Appendix A
the necessary information from the crystal graph that is needed in the examples to follow. The
interested reader can refer to [Mis10] for a picture of By. Similarly, we use our C# program to

find the elements in B; and the desired information. See Table A.2 of the appendix.

5.3.1 Path Realizations

Theorem 5.3.8. [HK02] Let B; be a perfect crystal of level | > 0 and let \ be any classical

dominant integral weight in ]5l+. Then, there exists a crystal isomorphism
U B(A) — B(e(by)) ® B given by v\ = vop,) @ by,

where by € B is the unique vector such that ¢(by) = A, and vy, v:(by) are the highest weight
vectors of B(A) and B(e(by)), respectively.

We use Theorem 5.3.8 to inductively construct a sequence of isomorphism as follows. Set
Ao = A and define \pyq = £(by, ). Similarly, set by = by and by4; = by, +1. Then Theorem 5.3.8

implies that there exists a crystal isomorphism
U B(Ak) = B(Ag+1) ® B given by U, 7 Uxyy © by,

such that ¢(by) = Ai, and €(by) = A\g41. Composing such isomorphisms for k£ > 1, we obtain the
sequence
BO) S BOw) @B 5 Bha) @ BoB S -

given by
’U)\l—>1))\1®b0i—>?))\2®bl®bol—>-~

Therefore we obtain the following infinite sequences
pr=(br)io =" Qb1 Qb ®--- @by ®by € BE®.

Using the fact that there is only a finite number of elements in Pl+ and in B, it is straightforward

to show that py is periodic with some period N > 0. See [HK02] for more details.
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Definition 5.3.9.

(1) pr=(br)i2g = Qbry1 @b ® - @by @by is called the ground-state path of weight
A
(2) A sequence p= (pr)ilg =" ® Pkt1 DDk ® -+ ® p1 ® po with p € B such that pj = by,

for all £ > 0 is called a A-path in B.
(3) Define P()) to be the set of all A\-paths in 5.

For p = (pi)72 € P(A) such that p, = by, for all £ > N > 0 and for all i € I we define maps

N-1
Wip) = A+ > W),
k=0

Ep=""Q@PN+1®E(pN @+ @ po),
fip="+-@pnn1® filpy ® -+ @ po),

ei(p) = max{e;(py—1 ® - -+ @ po) — pi(bn), 0},

©i(p) = wilpn-1® - @ po) + max{pi(bn) — €i(pn-1® - ® po), 0}

Observe that e; and ¢; can be determined by using the i-signature rule in Section 5.2. Then
P()N), together with the above maps, is a U;(g)—crystal [HK02]. By Theorem 5.3.10 below we
have B(A) = P(A). In this case, we say P(\) is a path realization of B(\). We sometimes use
the language “path crystal” to describe P(A).

Theorem 5.3.10. Let B()\) be a highest weight U;(g)—module and let P(X) be the set of \-paths

in B(\). Then there exists an U(;(g)-crystal isomorphism
U : B(A) — P(A) given by vy — py.

Example 5.3.11. Let V9(Ag) be the irreducible highest weight Uq(Ggl))—module. Consider the
perfect crystal of level 1 By given in Example 5.3.6 and recall that by = (0,0,0,0,0,0) € B;. We
consider A = Ay and determine the ground-state path of P(Ag). Set \g = Ay and observe

©(bo) = wo(bo)Ao + 1(bo)A1 + p2(bo) A2
= Ayp.

Therefore by = (0,0,0,0,0,0) is the unique vector in By such that ¢(by,) = Ao.
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Next we find A\ = (by,):

£(bxg) = (bo)
= Eo(bQ)AQ + &1 (bo)Al + E2(b0)A2
= Aq.

Therefore A\; = Ag and hence by, = by = (0,0,0,0,0,0). Thus the ground-state path for P(Ag) is
pAo :®b0®b0

Using the signature rule and the perfect crystal B, we obtain a partial depiction of P(Ay),
the path realization of B(Ag) given in Fig. 5.2. By Theorem 5.2.5 we know the multiplicities of
weights p € wt(V9(Ag)) are equal to the cardinality of B(Ag),. Then by Theorem 5.1.5 we have
multyaepg) (1) = multy sy (). Therefore, we say P(Ag) the path realization of V/(Ag).

Example 5.3.12. Let V9(A1) be the irreducible highest weight Uq(Gél))-module. Consider the
perfect crystal of level 2 By given in Example 5.3.7 and recall that b7g = (1,0,0,0,0,1) € Bs.
We consider A = A; and determine the ground-state path of P(A1). Set \g = Ay and observe

@(brg) = wo(b7s) Ao + @1(brg) A1 4 w2 (brg) A2
= A;.

Therefore b7g = (1,0,0,0,0, 1) is the unique vector in By such that ¢(by,) = Ao.
Next we find A\ = (by,):

e(by,) = €(brs)
= eo(brg)Ao + 1(brg) A1 + e2(brg) Az
= A;.

Therefore Ay = Ay and hence by, = bys = (1,0,0,0,0,1). Thus the ground-state path for P(A;)
is
PA, = - ® brg @ brs.

Using the signature rule and the perfect crystal Bs, we obtain a partial depiction of P(A1),
the path realization of B(A;) given in Fig. 5.3. As in Example 5.3.11 we call P(A;) the path
realization of V(A1).
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(0®0)

|s

(0 ® 14)

(0®12)

AN

(0®11)

PN

(0® 10) (0®8)

0®14®10087)  (089)

1 0 \
2 0
(0®5) (0214 7(0®14®9)(0 ® 6)
(0®14®5) (0®13®9)(0®4) (0Q14®6)
—
2 2
(0914®13) (0®13®6) 0®14®4) (0®3) (0®12®9)
\ 2
1 2 0 2
(0®13®4) (0® 14 ® 12) (0®14®3 (0®12®6) 0®2) (0®11®9)
2 1 /\\
0
(0®13®3) (0®13®12) (0®12®4) (0®14® 11) 0®1) 1914®2) 0109 0®11®6)

0®13®11(0®12®3)0813®2) (012 12) (0106 0®11R4)0R14R 1 0R 148 (0R1®10®9)(0RIR®9)

Figure 5.2 Partial graph of P(Ao)
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(78)

e

(78 ® 64)

[

(78 ® 70)(78 ® 55)

AN

(78 ® 61)(78 ® 46)

/X T

(78 ® 59)(78 ® 40)(78 ® 52) (78 © 28)

0
1 2

(78 ® 50)(78 ® 39)(78 @ 58) (78 ® 37)(78 ® 22) (78 ® 34)

(78 ® 44) (78 ® 87)(78 ® 49)(78 ® 13)(78 ® 36)(78 ® 21)(78 ® 32)(78 ® 57)(78 @ 19)

Figure 5.3 Partial graph of P(A;)

Example 5.3.13. Let V9(3A2) be the irreducible highest weight Uq(G(Ql))—module. Consider
the perfect crystal of level 3 Bs and recall that byj9 = (0,1,1,1,1,0) € Bs. The ground-state
path for P(3Ag) is

P3r, = ® bo1g ® barg.

Using the signature rule and the perfect crystal Bs, we a obtain partial depiction of P(3A3), the
path realization of B(3A2) given in Fig. 5.4.
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(219)
2
(219 ® 183)
1 2
(219 ® 174) (219 ® 147)
2 1 2
0
(219 ® 244) (219 ® 171) (219 ® 138) (219 ® 87)
2 1 2
2 0 0
(219 ® 226) (219 ® 168) (219 ® 120) (219 ® 314) (219 ® 135) (219 ® 78)
1 2 1
0 0
(219 ® 220) (219 ® 167) (219 ® 190) (219 ® 132) (219 ® 237)(219 ® 117) (219 ® 311)(219 ® 60) (219 ® 75) (219 ® 296)

(219 ® 184)219 ® 183 ® 220)(219 ® 166219 ® 131219 ® 183 ® 167)219 ® 154)(219 ® 310X219 ® 256)219 ® 234)(219 ® 36)(219 ® 57Y219 ® 287)(219 ® 293)(219 ® 72)(219 ® 114)

Figure 5.4 Partial graph of P(3A3)
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5.3.2 Energy Functions and Applications

Let (£, B) be a crystal base for a finite dimensional U;(g)—module V4. In this section we define
the energy function from B ® B to Z and use it to determine the affine weight of paths in the

path realizations of perfect crystals.

Definition 5.3.14. An energy function on B is a function H : B ® B — 7Z satisfying:

H (b1 ® ba) if i #0,
H(&i(b1®b2)) = { H(by ®ba) + 1 if i = 0,¢0(b1) > €o(b2),
H(bi ®b2) =1 if i =0,90(b1) < eo(b2),

forallie I, by ® by € B® B with ez(b1®bg)€B®B.

Lemma 5.3.15. [Jim91] Let \,u € P* and u € B(\),v € B(u). Then é;(u ® v) = 0 for all
1€ I if and only if é;u =0 and éi’\(hiHlv =0 foralliel.

Theorem 5.3.16. Let By be the perfect crystal of level 1 for Uq(Ggl)) from Example 5.1 and
define H : By ® By — 7Z below. Then H is an energy function on Bi.

0 4 t=0andj=0
t=6—-—8andj=1
i=9—13 and j=1—-4,6,9
i=14 and j=1-17,9,10

1 if i=0andj=1-14
i=1andj=0
t=2andj=0,1
i=3—5and j=0-4,6,9
H(b; ® bj) = i=6-—-8andj=0,2-17,9,10
1=9—-13 and j =0,5,7,8,10 — 12
i=14 and j =0,8,11 — 13

2 if i=landj=1-14
t=2andj=2-14
t=3—-5andj=>5,7,810—14
t=6—8 and j =8,11 — 14
1=9—13 and j =13,14
i=14 and j =14
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Proof. 1t follows by direct verification. O
We remark on how the energy of B; was determined.

Remark 5.3.17. Recall that By = B(0) & B(A1) [Mis10]. Then,

By © By = (B(0) ® B(0)) @ (B(0) @ B(A1)) @ (B(A1) ® B(0)) @ (B(A1) @ B(A1))
>~ B(0) @ B(A1) ® B(A1) @ (B(A1) ® B(A1))

Then the crystal graph of By ® By can be viewed as union of crystal graphs B(A1) @ B(A1),
B(0), and two copies of B(A1), connected by ég-action. Now observe that the definition of an
energy function implies that the éy-action requires a change of H(by ® by) by £1 and all other
actions (€1 and éz) preserve the value of H(by ® by). Therefore, it is enough to determine the
connected components of By @ By and assign values for H (b1 @ be) which are in accordance
with the €y-actions that connect these components. For this purpose, we now determine the
connected components of B(A1) ® B(A1) using Lemma 5.3.15 to identify the highest weights and
weight vectors of B(A1) ® B(A1). Observe that the following vectors satisfy the conditions of
Lemma 5.3.15 and are therefore highest weight vectors of B(A1) ® B(A1) with corresponding
highest weights:

bia @ brg, wit(bis ® big) = 2Aq,
bis ® b1z, wit(big ® b13) = Ao,
b1 ® by, wi(b1y ® b1o) = 2As,
bia ® by,  wi(biy ® by) = A,
bia ®b1, wit(biy ®by) =0,

Then,

By ® By = B(0) ® B(A1) @ B(A1) @ (B(A1) ® B(Aq1))
= B(0) ® B(A1) @ B(A1) ® B(2A1) ® B(3A2) © B(2A2) @ B(A1) @ B(0).

Now assign the following values to the elements in each connected component of By ® By :
0 to the elements of B(0) = {by ® bo}
1 to the elements of B(A1) = {bp @ b;} (i=1—14)
1 to the elements of B(A1) = {b; ®bp} (i =1—14)
2 to the elements of B(2A1), which are generated by b14 ® byy
1 to the elements of B

—_— e~~~

3A1), which are generated by biy ® bis

53



5.3. PERFECT CRYSTALS CHAPTER 5. CRYSTALS

0 to the elements of B(2A3), which are generated by b14 ® big
0 to the elements of B(A1), which are generated by b1y ® by
0 to the elements of B(0) = {b14 ® b1}

Let V9(A) be an irreducible highest weight U;(g)—module with crystal base (L(\), B(\)). Now
that we have defined the energy function for crystal bases, we recall the affine weight formula
for P(X), the path realization B(\), which is given in [HKO02]. In later sections we derive many
results using this weight formula. For example, in Section 6.1 we use it and the energy function
in Theorem 5.3.16 to find certain level 1 root multiplicities of H Gél) .

Theorem 5.3.18 (Affine Weight Formula). [HK02] Let p = (pi)?2, be a path in P(\) having
ground-state path py = (by)72,. Then the affine weight of p is given by

:)\+§: — wi(by))

k=0

(Z (k+1) (H(pr+1 @ pr) — H(bp1 @ bk))) J.
k=0
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CHAPTER

6

ROOT MULTIPLICITIES OF HGY

In this chapter we use the path realizations of Ggl) irreducible highest weight modules from

Section 5.3, our general results from Section 4.1, and Kang’s multiplicity formula from Section 4.2
to find multiplicities of imaginary roots of H Ggl). The focus is on roots of the form —fa_1 —a—kd,
where ¢ < 3 corresponds to the level of the root, § = cg+2ai; +3ae is the canonical imaginary root
of G(Ql), and a = moag + miag + maag < 0 for m; € Z>o. We also verify that the multiplicities

of these roots satisfy Frenkel’s conjecture bound from Section 4.3.

6.1 Level 1 Roots

Consider level 1 roots of the form —a_; — a — kd, where a = mgoag + miaqg + maay < 6 for
m; € Z>p. In Theorem 6.1.1 and Theorem 6.1.2 we show that for all & < ¢ the multiplicity of
—a_1 — a — kd is equal to the multiplicity of —a_1 — ké or —a_1 — ag — a1 — ag — kd with a
possible shift of the root string by at most —44. Therefore we only compute multiplicities of
level 1 roots of these forms.

By our construction in Chapter 3 the simple root —a_; of H Ggl) corresponds to the

fundamental weight Ay of Ggl) and hence the multiplicity of level 1 roots are equal to the
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dimension of the corresponding weight space of V(Ag). For small multiples of §, we determine
the dimV (Ao)—a_,—a—ks by counting the number of paths of weight Ag — a — kd in P(Ay), the
path realization of V(Ag), and collect the results in Table 6.1 and Table 6.3. For large multiples
of §, we utilize the computer programming language C'# to write a program to count the paths
in P(Ap) and display the multiplicities in Table 6.2 and Table 6.4. In addition to determining the
multiplicity of roots f = —a_1 — a — ké, we compute the multiplicity bound given by Frenkel’s

— (@—ﬁ)) In each case, we observe that this bound is satisfied.

conjecture: p®(1

In Theorem 6.1.3 we show that paths of weight Ag — kd have a maximum of k terms which
differ from the ground-state path. Moreover, we show that there is at least one path which will
attain this bound. Recall that there are at most 15 possibilities for each fluctuation from the
ground-state path corresponding to the 15 elements in the perfect crystal of level 1. Therefore,

Theorem 6.1.3 gives us a concrete bound on the multiplicity of roots a_; — kd:
mult(a_y — ké) < 15,

Lastly, we provide an alternative way to determine level 1 root multiplicities using the energy
function from Section 5.3.2, Theorem 6.1.3, and the weight formula from Section 5.3.2, for roots
—a_1 — 46 and —a_1 — ap — a1 — ag — 49. Although we only use this method to calculate the

multiplicity of two roots, it can be extended to find the multiplicity of any level 1 root.

Theorem 6.1.1. If —a_1 — k¢ is a root of HGS), then

mult(—a—1 — ko) = mult(By — kd)
= mult(p1 — (k + 1)0)
= mult(f2 — (k + 2)0)
= mult(fBs — (k + 3)0)
= mult(By — (k + 4)0)
where B; is as follows:
Bo ‘ p1 ‘ Pa ‘ Bs ‘ Ba
—Q_1 — Q) —(_1 — —Q_1 — Oy — 20(1 —Q_1 — 30&2 —Q_1 — 2041
—Q_1 —Qap— Q1 —_1 — a1 — 30 —_1 — g — 3

—Q_1 —Qp — Q1 — 30&2 —_1 — 20[1 - 30&2
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Proof. Tt is enough to show each 8; — (k + )0 is Weyl group conjugate to —a_1 — kd.

For each £y we choose reflection, w, as follows and apply Proposition 4.1.1:

o wW=r9)— w(—a_l — ]C(S) = —0_1 — Qg — ko
o W ="7r1T) — w(—a,1 — k?5) = Q-1 —0Qp— Qa1 — ko
e W =Torirg = w(—@_l — ké) = —0_1 — Q0o — Q&1 — 30(2 — ko

For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w=rirorirg = w(—a_1 — kd) = —a_; —ag — (k+ 1)
o w=rorirarirg = w(—a_1 —kd) = —a_1 — a1 —3ag — (k+1)0
o w=rrorirorirg = w(—a_; — kd) = —a_1 — 201 — 3ag — (k+1)0

For each 2 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w = ryrgrorireriro = w(—a_1 — kd) = —a_1 — ap — 2aq — (k+2)d
For each 3 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w = roryroreriTeriro = w(—a_1 — kd) = —a_1 — 3ags — (k + 3)¢

o w = roryroriTerirerirg — w(—a_1 — kd) = —a—1 — ag — 3as — (k + 3)0
For each 84 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w = rirarirorirerireriro = w(—a—; — kd) = —a_1; — 2a1 — (k+4)9

Theorem 6.1.2. If —a_1 — ag — a3 — as — ké is a root of HGgl), then

mult(—a_; —ap — a1 — ag — kb)) = mult(By — kd)

(
= mult(f1 — (k+ 1))
= mult(fe — (k + 2)0)
= mult(Bs — (k + 3)9)

where B; is as follows:
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Bo B B2 B3
—0_1 — g — a1 — 209 —_1 — o — Q9 —0_1 — 209 —a_1 — 201 —
—Q_1 — Oy — 20&1 — 20&2 —_1 — g — 2&1 — (9 —Q_1 — O — 2&2
—Q_1] — Q9 —a_1 — 2001 — 209

—Q_1 — 0] — Q9

—a_1 — a1 — 209
Proof. 1t is enough to show each ; — (k+1)d is Weyl group conjugate to —a_1 —ap—ag — e —ké.
For each By we choose reflection, w, as follows and apply Proposition 4.1.1:
° w:TQ:}w(—a_l—ao—al—&2-]4?(5):—a_l_QO_al_zoﬂ_ké
o w=riry = w(—a_1 —ay—a; —ay —kd) = —a_1 —ap — 201 — 22 — ko

For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w=rorgriro = w(—a_1 —apg—a; —ag —kd) = —a_1 —apg—as — (k+ 1)

o w=rirorgriry = w(—a_1—ap—a; —azy—kd) = —a_1 —ag—2a1 —ag— (k+1)0
o w=roriry = w(—a_1 —ayg— a1 —ag —kd) = —a_1 —az— (k+ 1)

o w=riroriro = w(—a_1 —apg—a; —ag —kd) = —a_1 —ag —as — (k+ 1)

o w=roriroriTe = w(—a_1 —ap — a1 —ag — kd) = —a_1 —ag —2ay — (k+ 1)

For each 2 we choose reflection, w, as follows and apply Proposition 4.1.1:

® W = Trorgrariry — w(—a_l — o) — 01 — 02 — k5) = 01— 20{2 - (k + 2)5
® w =rorarereriTe => wW(—a_1 —ap — a1 —az —kd) = —a_1 —ag — 2z — (k +2)d
o w =T1rerorer1ry = W(—0—1 — g — a1 —ag — kd) = —a—1 — 21 — 2a2 — (kK +2)6

For each 3 we choose reflection, w, as follows and apply Proposition 4.1.1:
o W =Trrarirorerirarire = w(—a_1—ag—og—ae—kd) = —a_1 —2a1 —ag—(k+3)0

O]
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Table 6.1 Multiplicity table for —a_7 — ké when 1 < k<4

—_1 — ké

Multiplicity

Paths

Frenkel Bound

k=1

2

...b0®b7
~~bo®b9

2

k=2

by ® by ® by
-+ by ® b1g ® bg
- by ® b11 ® by
-+ by ® b1 ® b3
-+ by ® b1z ® by
-+ by ® b1y ® by

20

14

-+ by ® bg ® big
-+ by ® by @ by
- by ® by @ by
-+ by ® by ® by
- by ® bg & bs
-+ by ® by ® by
-+ by ® by ® by

<+ by ® by ® bg ® by
by ® b1g ® by @ bg
- by ® b11 ® by ® by
by ® b12 ® by ® b3
by ® b13 ® by ® by
~o by ® b4 ® by ® by
- by ® b1y ® bg ® by

110

32

~+bp ® by ® b1y
<+byp ® by ® bi3
~+by ® b3 ® b1
~+bp ® by ® b1y
+++bp ® b5 ® bg

-+ by ® bg ® bg ® b1g
b ® by ® by ® bo
by ® by ® by ® by
by ® b1p ® bg @ by
by ® b1o ® b ® by
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Table 6.1 (continued)

by @ b1p ® bg ® by

- by ® b11 ® by ® by
by ® b11 ® by @ by
by ® b11 ® be ® bs
by ® b12 ® by ® b
by ® b12 ® bz ® by
by ® b12 ® by @ bg

-+ by ® b1a ® bg @ by
by ® b13 ® by ® by
by @ b1z ® b3 ® bg
by ® b13 ® b ® b3

-+ bg ® b4 ® b1 ® by
by ®b14 ® b3 @ by

-+ by ® b4 ® by ® b3

-+ by ® b4 ® by ® by

-+ by ® by @ by ® by @ by
-+ by ® b1g ® by ® by ® bg
< by ® b1 ® bg ® by ® by
-+ by ® b1a ® by ® by ® b
-+ by ® b13 ® bg ® by ® by
-+ by ® b4 ® by ® bg ® by
<+ by ®b14 ® b1g ® bg ® by
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Table 6.2 Multiplicity table for —a_1 — ké when 5 < k < 20

—a_1 —kd | mult(—a_1 — kd) | Frenkel Bound
k=5 66 1770
k=6 135 5822
k=17 258 17490
k=8 486 49010
k=9 878 129512
k=10 1559 326015
k=11 2696 786814
k=12 4589 1831065
k=13 7652 4126070
k=14 12584 9035539
k=15 20370 19283830
k=16 32570 40210481
k=17 51406 82088400
k=18 80280 164363280
k=19 124004 323275512
k=20 189764 625425005

Table 6.3 Multiplicity table for —a_1 —ap — a3 —as — kéd when 1 < k<4

—a_1 —ag — a1 —ag — kd | Multiplicity Paths | Frenkel Bound
k=1 3 <+ by ® b1 ® by 10
--bp ® b13 ® bg
~+by ® b4 ® by
k=2 9 by ® bg ® b1 65

<+ +bg ® b1p ® b1y
- +bg ® b11 ® b1g
by ® b2 ® by
- by ® b1a ® by
by ® bi2 ® by ® by
-+ byp @ b1z ® bg ® bg
by ® b1g ® by @ by
-+ bg ® b1y ® big ® by

k=3 21 <o by ® by @ big 300
by ® bg ® b13
- -bp ®br ® byg
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Table 6.3 (continued)

by @ bg ® by @ b12

-+ by ® b1g ® bg ® by1
by ® b1y ® by @ by

-+ by ® b1y ® bg ® big
by ® b12 ® bg ® by

by ® b12 ® by ® by

by ® b13 ® b ® b

by @ bz @ bg @ by

by ® b13 ® b @ by

-+ by ® b1g ® by ® by

by ® b14 ® by @ by

by ® b14 ® bs ® bg

by ® b14 ® b @ bs

- by ® b4 ® by @ by

by @ b1z ® by @ by @ o
-+ by ® b1z ® by ® by @ vg
<o by ® b4 ®bg ® by ® vy
<o by ® b14 ® b1g ® bg ® v
48 <o by ® by ® by ® by 1165
by ® by ® bg @ b13
-+ by ® by ® b12 ® by
<+ by ® b1g ® by @ b1y
-+ by ® b1g ® bg ® b2
-+ by ® b1g ® b11 ® by
<+ by ® b1g ® 12 ® bg
<+ by ® b11 ® by ® b3
by ® b1 ® by ® bio
-+ by ® b11 ® b1g ® by
by ® b11 ® b1a ® by
by ® b12 ® by ® b
by ® b12a ® by ® by
<+ by ® b1a ® by ® b3
by @ b12 @ b3 ® b2

=
I
W
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Table 6.3 (continued)

by @ b12 ® by ® b1y

by ® b12 ® b1p ® bg

by @ b12 @ b11 ® by

by ® b2 ® b12 ® b3

by @ b13 ® ba ® b12

-+ by ® b13 ® bz ® b1y

by ® b13 ® by ® b

by @ b13 ® b11 ® b3

by @ b13 ® b12 ® bo

by ® b4 ® by @ b1

by @ b14 ® bz ® byg
by ® b1y ® by ® by

<obo ® b1y @ b12 ® by

<o by ® bg ® bg @ bg ® b2
by ® b1o ® by ® by @ b1y
++bo @ b11 ® by ® bg ® big

<+ by ® b2 ® by ® bg ® b1g

<+ bp ® b12 ® bg ® by ® by

<+ by ® b12 ® bg ® bg ® by

<+ bp ® b1z ® by ® bg @ by

-+ bp ® b1z ® bg ® bg ® by

<+ bo ® b1z ® by ® bg @ by

by ® b1a @ by ® by ® by

<+ bo ® b4 ® by ® by @ by

<+ by ® b1g ® bg ® bg ® by

-+ by ® biga ® bip ® b3 ® by

-+ by ® b14 ® b1p ® b3 @ bg

-+ by ® b14 ® bip ® by @ bg
by ® b1a @ bip ® bg @ by
by ® b12 ® bg ® by ® by @ by
-+ by ® b1z ® bg ® bg ® bg ® bg
by ®b1g ® by @ by @ by @ by
++bo ® b1y @ b1g ® by ® by @ b3
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Table 6.4 Multiplicity table for a1 — g — 1 — g — kd when 5 < k < 20

—a_1—ag—ay —as— kb | mult(—a—1 — g — ag — s — kd) | Frenkel Bound
k=5 99 3956
k=26 199 12230
k=7 378 35002
k=28 702 94235
k=9 1258 240840
k=10 2211 589128
k=11 3789 1386930
k=12 6388 3157789
k=13 10566 6978730
k=14 17235 15018300
k=15 27691 31551450
k=16 43962 64854575
k=17 68931 130673928
k=18 106967 258508230
k=19 164259 502810130
k=20 249957 962759294

In the next theorem we use the energy function for the perfect crystal By of level 1 and the
affine weight formula (see Theorem 5.3.18) to provide a bound on the number of fluctuations a
path of P(Ap) can have from the ground-state path. Then we use these tools to find the root
multiplicity of —a_; — 4 and —a_1 — g — @1 — g — 46 in Example 6.1.4 and Example 6.1.5.
For convenience we recall the weight of each b; € By and the energy function H : By ® B — Z

from sections 5.3 and 5.3.2.

wit(by) = —(2a1 + 3az) wit(b1g) = 207 + 3ae  wi(by) =0
wit(b2) = —(a1 + 3a2)  wit(biz) = a1 +3a2  wi(by) =0
wt(bg) = —(a1 + 2a2)  wi(bi2) = a1 +2a2  wi(bg) =0
wt(bs) = — (o1 + a2) wt(b11) = a1 + ag

wt(bs) = —ay wt(bg) = an

wt(bg) = —az wt(bip) = @z
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0 if i=0andj=0
i=6—-—8and j =1
i=9—13and j=1-4,6,9
i=14and j=1-17,9,10

1 if ¢=0andj=1-14

t=1and =0

i=2and j=0,1

t=3—-5and j=0-4,6,9
H(b; ® bj) = t=6—-8and j=0,2-17,9,10
t=9—-13and j=0,5,7,8,10 — 12
t=14and j=0,8,11 - 13

2 if i=landj=1-14
t=2and j=2—-14
1=3—band j=5,7,8,10—- 14
1=6—-8and j=28,11—-14
1=9—-13 and j =13,14
1=14 and j =14

Theorem 6.1.3. Let p=(---by @ Tpy @ Tpp—1 @ - - @ 1 ® x9) be a path in P(Ag) with weight
wt(p) = —a—1 — kd, where m is the smallest positive integer such that x; = by for all j > m.
Then,

m<k—1 foral k> 1.

Furthermore, k — 1 is the least upper bound of m.

Proof. Clearly m is finite, since k is finite. Suppose to the contrary m > k — 1. Then Theo-
rem 5.3.18 yields,

—a_1 —ké =wt(-- by @ Ty @ Tp—1 @ -+ ® X0)
= Ao + wt(xy,) + wt(zm_1) + - - - + wt(xo)
—[(m+1)H((bo @ xm) + -+ kH(xp @ xp—1) + -+ H(x1 @ 20)] 6 (6.1)

Observe wt(b;) is a linear combination of o and ag for all 0 <4 < 14 and thus cannot form

a 0 when summed. Therefore equation (6.1) implies
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wt(z,) + wt(zm—1) + -+ + wt(zg) =0 (6.2)
(m+1)H(bo@xm) + -+ kH(zp @ xp—1) + -+ H(z1 @ 20) = K. (6.3)

By the definition of the energy function, we have H(b; ® b;) > 0 for every 0 < i < 14
and 0 < j < 14. Since we assumed m + 1 > k, equation (6.3) implies H(bg ® x,,) = 0. Using

the defined energy function, we conclude x,,, = by, which is a contradiction. Therefore, m < k—1.
We now show that for every k the bound on m is obtained:

k =1: Consider p = (---by ® bg), which has weight Ag — ¢ and m = 0.

k = 2: Consider p = (---by ® bj4 ® by), which has weight Ay — 2§ and m = 1.

k = 3: Consider p = (---by ® bj4 ® bg ® by), which has weight Ag — 36 and m = 2.

k = 4: Consider p = (---by ® b14 ® b1g ® bg ® b1), which has weight Ay — 46 and m = 3.

k> 4: COHSiderp:(---b0®b14®b10®bg®---®b9®bﬁ®bl)EP(AQ) with m =k — 1.
—_—

k—4 times

Using the defined energy function, we compute the weight of p:

wt(p) = Ao + wt(bia) + wi(bio) + (k — 4)wi(by) + wt(bs) + wt(b1)
~ [kH (b ® bra) + (k — 1) H (b1 ® 210) + (k — 2)H (b1 © bg)+
e+ 2H by ® 25) + H(bs ® b1)] 6
—Ao—[k+0+0+-+0+0]0
=Ag— ko

Therefore, k — 1 is the least upper bound of m.
O

Example 6.1.4 (Multiplicity of —a_; —49). To find the multiplicity of —a_; — 40, we use the
affine weight formula to determine the paths of weight —a_; — 46 in P(Ag). Let p € P(Ay).
Theorem 6.1.3 implies p has at most 4 fluctuations from the ground-state path. Then the weight

formula becomes,
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—a_1 — 46 =wt(-- by @ 3 @ T2 @ T1  T0)
= Ao + wi(x3) + wt(ze) + wi(x1) + wit(zg)
— [4H (by ® x3) + 3H (23 ® x2) + 2H (x2 ® 1) + H(z1 ® 20)] §

Since wt(z;) contains no ag’s for all 0 < i < 14, we have

wt(z3) + wt(z2) + wt(z1) + wt(zg) =0
[4H (b ® x3) + 3H (13 @ 22) + 2H (22 @ 1) + H(x1 ® x0)] = 4.
This yields the 4 cases below, which we examine in turn.
Case (1): H(bp ® x3) =1 and H(z3® x2) = H(ze @ x1) = H(x1 ® 29) =0
Case (2): H(zg®z2) = H(x1 ®z9) =1and H(bp ® z3) = H(x2 ®@x1) =0
Case (3): H(za®x1) =2 and H(by ® x3) = H(zg ® x2) = H(x1 @ 29) =0

Case (4): H(zea®@x1) =1, H(z1 ® x9) =2, and H(bp® x3) = H(z3 @ 22) =0

Case (1): Using the definition of the energy function we narrow down the possible choices

for x5, x9, 1, xo. First, observe H(by ® x3) = 1 and H(x3 ® x2) = 0 imply x5 = bg — b14.

If x3 = bg—bs, then H(x3®x2) = 0 implies zo = by, which is impossible when H (zo®x1) = 0.
If x3 = bg — b13, then H(z3 ® x9) = 0 and H(ze ® x1) = 0 imply xo = bg, bg.
If 29 = bg, then H(x2®x1) = 0 implies z; = by, which is impossible when H (21 ®xg) = 0.
If 29 = by, then H(zo ® 1) = 0 and H(z1 ® z9) = 0 imply x1 = bg, by.
If 1 = bg, then H(z1 ® x9) = 0 implies z9 = b;.
If 1 = by, then H(z1 ® x9) = 0 implies xg = by — by, bg, by.
If x3 = by4, then H(z3 ® x2) =0 and H(ze ® x1) = 0 imply z2 = b, b7, by, b1o.
If z9 = bg, b7, then H(zo ®x1) = 0 implies 1 = by, which is impossible if H(x; ® xg) = 0.
If 29 = by, b1g, then H(xe ® x1) = 0 and H(z1 ® x¢) = 0 imply z1 = bg, byg.
If 1 = bg, then H(z1 ® xg)
If 1 = by, then H(z1 ® x¢)

= 0 implies zg = b;.

=0 implies o = bl — b4, b6, bg.
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For each of the above choices of x3, 22, 1, 2o, we determine which paths satisfy wit(z3) 4+ wt(z2)+

W(a:l) + M(xo) =0:

Case (2): Using the definition of the energy function, we again narrow down the possible
choices for x3, z9,x1,z9. Observe H(by ® x3) = 0 implies z3 = by. Then H(z3 ® x2) = 1 and
H(zo ® x1) = 0 imply z9 = bg — b14.

If 9 = bg — bg, then H(zo ® 21) = 0 implies 1 = by. Then H(z1 ® x¢) = 1 implies xg = by.

< by ®bg ® bg ® bg ® by
<+ by ® bip ® bg ® by ® bg
- bp ®b11 ® bg ® bg ® by

<+ by ® b1a ® bg ® bg ® b3

-+ by ® b1z ® bg ® bg ® ba
< by ® b1y ® bg ® bg ® by
by ® b1g ®b1g ® bg ® by

If x9 = bg — by3, then H(:IZQ & $1) = 0 implies 1 = by — by, bg, byg.
If 21 = by, then H(z1 ® z9) = 1 implies xg = by.

If 1 = by, then H(z1 ® x9) = 1 implies x¢ = by, b;.

If 1 = b3, by, then H(x1 ® o) = 1 implies x¢g = by — by, bg, bg.
If z1 = bg, then H((L‘l & 1’0) = 1 implies xg = bg, bo — b7, b1g.

If z1 = by, then H(l’l & l’o) = 1 implies x¢ = by, b5, b7, bs, b1g — b12.

If x9 = b1y, then H(zo ® x1) = 0 implies 21 = by — by, by, bio.

If 21 = by, then H(z1 ® z9) = 1 implies xg = by.

If 1 = by, then H(z1 ® x9) = 1 implies z¢ = by, b;.

If 1 = bg — b5, then H(.Tl X 330) = 1 implies xg = by — by, bg, by.
If z1 = bg, b7, then H(.%‘l (= mo) = 1 implies xy = by, bo — b7, big.

If I = bg, blo, then H(ﬂ?l X® l‘o) =1 implies Trog = bo, b5, b7, bg, blO — blg.

For each of the above choices of x, x1, 29, we determine which paths satisfy wt(xs) + wt(zq) +

W(mo) =0:

-+ by ® bg ® bg ® byg
<+ by ® by ® bg ® by
<+ by ® by ® bg ® by
by ® b1p ® bg ® by
-+ by ® b1y ® bg ® by
- by @ bro @ bg @ by
~+bo ® b11 ® by ® by

by ® b11 ® by ® by
by ® b1 ® bg @ bs
-+bp @ b12 ® b3 ® by
by ® b2 ® b3 @ by
<+ by ® b1a ® by ® bg
<+ by ® b1y ® bg ® by
by @ b13 @ ba ® by
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-+ by ® b13 ® b ® bg
by ® b1z ® b ® b3
-+ by ® b14 ® b1 ® by
< by ® b1g ® by @ by
<o by ® b4 ® by ® b
-+ by ® b4 ® by ® by
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Case (3): Observe H(bgp ® x3) = 0 and H(z3 ® x2) = 0 imply z3 = xo = by. However, xo
cannot be by when H(zy ® 1) = 2.

Case (4): Again we use the definition of the energy function to narrow down the possible
choices for x3, x2, x1,x0. Observe H(by ® x3) = 0 and H(x3 ® x2) = 0 imply x5 = x2 = bg. Then
H(zo®x1) =1 and H(x1 ® x9) = 2 imply x; = by — by4.

If 1 = by, then H(z1 ® ) = 2 implies xg = by — by4.

If 1 = b, then H(z1 ® x9) = 2 implies xy = by — by4.

If 21 = b3 — b5, then H(z; ® x¢) = 2 implies zg = bs, by, bg, bio — b14.
If x1 = bg — bs, then H(z1 ® xy) = 2 implies zg = bg, b1 — bi4.

If 21 = by — b13, then H(z; ® x¢) = 2 implies z¢ = b3, b14.

If 1 = byy, then H(z1 ® ) = 2 implies xg = by4.

For each of the above choices of x1, zg, we determine which paths satisfy wt(x1) + wt(zg) = 0:

by ® b1 ® biy
-+ by ® by ® b3
by ® b3 ® bi2
-+ by ® by ® b1y
-+ by ® bs ® by

Combining the results from cases (1)-(4) in Table 6.1, we have
mult(—a_; —49) = 32.

Example 6.1.5 (Multiplicity of —a_; — ap — a1 — ag — 49). Similar to the previous example,
we use the affine weight formula to determine the paths of weight —a_1 — ag — a1 — as — 49 in
P(Ao). Let p € P(Ag). We cannot use Theorem 6.1.3, but using similar logic we conclude that p

has at most 5 fluctuations from the ground-state path. Then the weight formula becomes,

—og—apg—a;—ay— 40 =wt(-- by ® x4y ® X3 X T2 R T R X))
= Ao + wt(z4) + wi(xs) + wi(x) + wi(z1) + wi(zo)
— [6H(by ® w4) + 4H (14 @ x3) + 3H (13 @ 22)
+ 2H (2o @ x1) + H(z1 @ 20)] 0 (6.4)
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Since wt(z;) contains no ag’s for all 0 <4 < 14, we have

wt(xg) + wt(xsg) + wt(za) + wi(z1) + wi(xg) =0
[5H (bg ® x4) + 4H (x4 ® x3) + 3H (23 ® x2) + 2H (22 ® x1) + H(x1 ® x0)] = 5.
This yields the 5 cases below, which we examine in turn.
Case (1): H(bp®x4) =1 and H(ba®@x3) = H(z3 @ x2) = H(z2 ® x1) = H(z1 ® 29) =0
Case (2): H(xy®x3) = H(x1 ®x9) =1 and H(by @ x4) = H(xz @ x9) = H(zo @ 21) = 0
Case (3): H(xs®x9) = H(xo®x1) =1 and H(by @ x4) = H(xqg ® x3) = H(x1 @ 29) =0
Case (4): H(zs®ux2) =1, H(x1 ®x0) =2, and H(by®z4) = H(r4®@x3) = H(xa®@x1) =0

Case (5): H(xo®x1) =2, H(z1®x0) =1, and H(by®z4) = H(r3®x2) = H(x1 ®10) =0

As in the previous example, we use the energy function to narrow down the choices of x4, z3,

x9,21,xo for cases (1)-(5). This process parallels Example 6.1.4, so we omit some justification.

Case (1): The conditions of (6.4) for this case imply x4 = bg — b14.
If x4 = bg — bg, then x5 = by, which is impossible.
If x4 = bg — by3, then z3 = bg, by.
If x5 = bg, then x5 = 1, which is impossible.
If z3 = by, then x9 = bg — by.
If z9 = bg, then x1 = by, which is impossible.
If z9 = by, then x1 = bg, byg.
If z1 = bg, then xy = by.
If £1 = by, then xy = by — by, bg, bo.
If x4 = b1y, then z3 = bg, b7, by, b1p.
If 3 = bg — b7, then x5 = by, which is impossible.
If x5 = bg — b1g, then x9 = bg, byg.
If 29 = bg, then x1 = by, which is impossible.
If 9 = by, then x1 = bg, by.
If z1 = bg, then xy = by.
If 1 = by, then xg = by — by, bg, by.
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For each of the above choices of 4, x3, 2, 21, Tg, we determine which paths satisfy wt(z4) +
wt(xg) + wit(xg) + wt(x1) + wi(xg) = 0:

by ® b12 ® by @ bg ® bg @ by
o bp ® b13 ® by ® bg ® by @ bg
by ® b14 ® bg @ bg ® by @ by
by @ b4 ® b1g ® by @ by @ b3

Case (2): The conditions of (6.4) for this case imply x4 = by and x3 = bg — b14.
If 3 = bg — bg, then x5 = by, which is impossible.
If z3 = bg — by3, then zo = bg, by.
If 9 = bg, then 21 = by and zg = by.
If z9 = by, then x1 = by — by, bg, by.
If £1 = by, then xy = by.
If 1 = by, then zg = by, b1.
If £1 = b3 — by, then xg = by — by, bg, byg.
If z1 = bg, then xg = by, bo — b7, by, b1p.
If ©1 = by, then xg = by, bs, b7, bg, big — b12.
If 3 = by4, then z9 = bg, b7, by, b1p.
If 9 = bg — b7, then 1 = b1 and zg = by.
If z9 = by — by, then x1 = by — by, bg, by.
If ©1 = b1, then zg = bg.
If 1 = by, then zg = by, b1.
If 1 = bg — by, then xg = by — by, bg, bg.
If 1 = bg, then xg = by, by — b, by, b1g.
If 1 = by, then xg = by, bs, b7, bg, big — b12.

For each of the above choices of x3,x2,x1, 29, we determine which paths satisfy wt(x3) +
ﬁ(m) + M(Il) + W(Io) =0:

< bp by ®bg @ bg ®b1a  --by ® b3 ® by R bg X by - by ®b14 ® bg ® bg ® b5
e bg®@b1o®bg Wby ®b1y by D13 R DY Rbg @by -+ -by ® b1y ® by ® by ® by
o bp ®b11 ®bg ®bg @b1g  ~+-bp ®b13 ®bg ®bg @by -+ by ® bia ® b1 @ b3 @ b
bp®b1a @by @b @b1g - by @bia ®bg ®bs®by by ® b4 @ b1o ® by @ bg
o bp @ b1a @by @by @by by Rb1a Rbg @by Rbg by @ b1a ® big @ bg @ by
by ® b1 ® by ® by ® by
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Case (3): The conditions of (6.4) for this case imply x4 = x3 = by and xo = by — b14.
If zo = by, then 1 = by and xg = bg.
If z9 = by, then x1 = by and xy = bg.
If zo = bg — bs, then x1 = by, bg, by.
If z1 = by, then zg = by.
If 1 = bg, then xy = by.
If z1 = by, then xg = by — by, bg, by.
If 29 = bg — bg, then x1 = by, bg, b7, by, b10.
If z1 = by, then zg = by.
If 1 = bg — b7, then xg = by.
If 1 = by — b1g, then xg = by — by, bg, by.
If x9 = bg — b13, then x1 = by, b7, bg, b1g — b12.
If z1 = by, then zg = by.
If 1 = by — bg, then zg = by.
If 1 = byg — b12, then xy = by — by, bg, by.
If x9 = b14, then z1 = bg, bg, b11 — b13.
If z1 = by, then zg = by.
If ©1 = bg, then zg = b;.
If 1 = by1 — b13, then xg = by — by, bg, by.

For each of the above choices of x9, x1, 2o, we determine which paths satisfy wt(xs)+wt(x1) +
wt(zg) = 0:

by @ by @ by @ b1y
by @ by @ b ® b3
by @ byo ® bz ® by
oo by ® bro @ b @ bya
by @ by @ b3 @ b3

Case (4): The conditions of (6.4) for this case imply x4 = x3 = by and x3 = bg — b14.

<+bp @ b11 @ by @ b12
by @ b12 ® by ® b1y
~+bp @ b12 ® by @ b13
by @ b12 ® b3 ® b12
~+bo ® b2 ® by ® b1y

If Tro = bﬁ — bg, then Tr1 = bl and Trog = bl — 514.
If zo = bg — b13, then 21 = by — by, bg, by.

If Tr1 = bl, then g = bl — b14.
If 1 = by, then xy = by — b14.

If T = b3 — b4, then o = b5, b7, bg, b10 — b14.
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<+bp ® b13 @ by @ b12
-+bp ® b13 ® b3 ® b1y
by ® b1z @by @ bg
~+bp ® b14 ® b1 ® bio
by ® b4 ® b3 ® big
by @b14 ® by ® by
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If z1 = bg, then xy = bg, b11 — b14.
If 1 = by, then xy = b13, b14.
If z9 = by4, then 1 = by — by, by, byo.
If 1 = by, then 2y = by — b14.
If z1 = by, then zg = by — by4.
If 21 = bg — b5, then zg = bs, b7, bg, big — b14.
If 1 = bg — by, then zg = bg, b11 — b1a.
If 1 = by, b1g, then xg = b3, b14.

For each of the above choices of z3, 1, 2o, we determine which paths satisfy wi(xs)+wt(x1)+
w(ibo) =0:

by @ by ® b12 @ by
-+ by ® b1g ® b1 ® bg
by ® b1g ® b12 ® bg
-+ by ® b1 ® big ® by

o bo ® b1y ® b2 @ by
-+ by ® bi1a ® by ® by
by @ b12 ® b1 ® bg
coo by ® b1a ® b1 ® by

by ® b12 ® b12 ® b3
-+ by ® b1z ® b1 ® by
by ® b13 ® b12 ® by
-+ by ® b4 ® b1a ® by

Case (5): The conditions of (6.4) for this case imply x4 = x3 = 22 = by, but x9 = by is impossible.
Combining the results from cases (1)-(5) in Table 6.3, we have
mult(—a_1 — ap — a; — ag — 49) = 48.

Lastly, we compile in Table 6.5 those multiplicities that were calculated in [Hon98| using
different techniques than ours. Please note that after a change of a index, we obtain the same

results.

Table 6.5 Recovered level 1 multiplicities

o d—factored « mult(a) | Frenkel’s Bound
—Q_1 — 20[0 - 30[1 - 40[2 —0_1 — 0y — Q1 — Qg — 0 3 10
—Q_q —20&0 —30[1 —50[2 —Q_1 —Qp— Q7 —20(2 -0 3 10
—Q_q 720&0730[1 760[2 —Q_1 —Qp— Q7 730&275 2 2
—Q_1 — 20&0 — 40(1 — 60[2 —Q_1 — 20 6 20
—_1 — 20&0 - 40[1 - 70[2 —Q_1 — Qg — 20 3 10
—Q_1 — 20&0 — 40[1 — 8042 —_1 — 2a2 — 26 1 1
—Q_1 — 2040 - 50[1 - 80[2 —Q_1 — Q1 — 2@2 — 26 3 10
—_1 — 30&0 — 50(1 — 7042 —Q_1 — Oy — Q1 — Qg — 20 9 65
—Q_1 — 3@0 - 5@1 - 80[2 —Q_1 —Qp— Q1 — 2&2 — 26 9 65
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6.2 Level 2 Roots

Consider level 2 roots of the form —2a_1 — a — kd, where a = moag + miag + moas < § and
m; € Z>o. In Theorem 6.2.1 through Theorem 6.2.4 we show that for all @ < 4 the multiplicity
of —2a_1 — a — kd is equal to that one of the following with a possible shift of the root string
by at most —24.

—20_1 — kb

—20_1 — ag — kb
*20[,1 — oy — g — ko
—2(171 — o) — Q01 — Qg — ko

Therefore we primarily consider level 2 roots of these forms.
From Section 4.1 we recall Theorem 4.1.2: If —¢a_1 — kd is a root of HGS), then k > /4.
Furthermore, mult(—fa_y — €5) = 2. Therefore,

d’im(g_ga_l_(s) =0

dim(g_ga_l_g(;) = 2.

For k > 2, we use Kang’s multiplicity formula and the path realizations of the highest weight
modules V(Ag) and V(A — J) to find the multiplicities. When k is small, we compute the
multiplicities explicitly as in Example 6.2.5 and Example 6.2.7. When k is large we use our C#
program for level 2 roots to compute these multiplicities, as well as the additional multiplicities
and give the results in Table 6.9 through Table 6.12.

In Proposition 6.2.8 we give a specialized version of Kang’s multiplicity formula for roots of
the form —2a_1 — 8 where g = Z?:o m;a; and m; € Zx>o. This specialization gives the outline

of the algorithm used in our C# program for finding multiplicities of level 2 roots.
Theorem 6.2.1. If —2a_1 — kd is a root of HGgl), then
mult(—2a_1 — k) = mult(f1 — (k4 1)0)

= mult(Be — (k + 2)0)

where B; is as follows:
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B1 ‘ B2

—2a_1 —ag — 3ag ‘ —2a_1 — 207

Proof. 1t is enough to show each 3; — (k +1)d is Weyl group conjugate to —2a_1 — kd.

For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:
o w=rorirg = w(—2a_1 — kd) = —2a_1 —ag — 3az — (k+ 1)
For each 82 we choose reflection, w, as follows and apply Proposition 4.1.1:

® W =T1TeriTo — QU(—QOé_l - k(S) == —204_1 - 20{1 - (k + 2)6

Theorem 6.2.2. If —2a_1 — ag — kd is a root of HGgl), then

mult(—2a—1 — ag — kd) = mult(By — ko)
= mult(f — (k+ 1)))
= mult(Be — (k + 2)9)

where B; is as follows:

Bo B B2
*20471 — Oy — (1 *20571 — a1 *20471 - 30[2
—2a_1 — oy — Q1 — 3042 —2a_1 — X1 — 30&2

—20571 - 20[1 - 30[2

—2a_1 — oy — 20&1
Proof. Tt is enough to show each 3; — (k +i)d is Weyl group conjugate to —2a_1 — ap — ko.
For each £y we choose reflection, w, as follows and apply Proposition 4.1.1:
o w=r] = w(—2a_1 —ay—kd) =—2a_1 —ay—a; — kb
o w=r9r] = w(—2a_1 —ap — ki) = —2a_1 —ag — a; —3ag — kb

For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:
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& W =Tirer] — w(_2a—1 — Qg — k'(S) =201 — a1 — (k + 1)5

® W =Torirary — ”UJ(—2OZ71 — oy — k’é) == _20571 — 1] — 30{2 - (k; + 1)5
o w=rrarirary = w(—2a_1 — ag — kd) = —2a_1 — 201 — 3oz — (k +1)d

For each 2 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w =rorirorary — w(—2a_1 —ap — kd) = —2a_1 — 3o — (k 4+ 2)0

Theorem 6.2.3. If —2a_1 — oy — ag — kd is a root of HGS), then

mult(—2a_1 — ag — ag — kd) = mult(By — ko)
= mult(f1 — (k +1)0)

where B; is as follows:

Bo | B

—20471 — oy — 2041 — Q9 —20471 — 20[2

—2a_1 — 201 — 2009
Proof. Tt is enough to show each (3; — (k + )0 is Weyl group conjugate to —2a—_1 — ag — ae — k0.
For each 5y we choose reflection, w, as follows and apply Proposition 4.1.1:
o w=r; = w(—2a_1—ay—az — kd) = —2a_1 — ap — 201 — a2 — kd
For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:

o W =T9r] —> ’U)(—20671 —Qp — g — k‘(S) = —20-1 — 209 — (k + 1)5

e W =T1ryr] = w(—?a_l —Qp — Qg — k:(S) = —2a-1 — 201 — 209 — (k + 1)(5
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Theorem 6.2.4. If —2c_1 — ag — a1 — as — kd is a root of HG(l), then

mult(—2a_1 — ag — a1 — ag — kd) = mult(By — ko)
= mult(f1 — (k+1)0)
= mult(Be — (k + 2)0)

where B; is as follows:

Bo B B2
*20571 — o) — o1 — 20[2 *20171 — (9 *20471 — 20(1 — (9
—2a_1 — Qg — 2@1 — 2@2 —204_1 — Q1 — Q2

*20[,1 — ] — 20&2

—2a_1 — Qg — 2@2
Proof. 1t is enough to show each 3; —(k+1i)d is Weyl group conjugate to —2a_1—ag—aq —ag—kd.
For each By we choose reflection, w, as follows and apply Proposition 4.1.1:
o w=r9 = w(—2a_1—ayg— a1 —ay —kd) = —2a_1 —ayg — a1 — 209 — ko
o w=rirg = w(—2a_1 —ayg— a1 —az —kd) = —2a_1 — ap — 201 — 22 — ko

For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w=rriry = w(—20_1 —pg —a; —az —kd) = 201 —az — (k+ 1))

o w=riroriry = w(—2a_1 —ap —a; —ay — k) = —2a_1 —a1 —az — (k+1)0

o w =roriroriry = w(—2a_1 —ap —a; —ag — kd) = —2a_1 —ay —2a9 — (k+1)0
o w=ror1r) = W(—20-1 —ap — a1 —az — kd) = —2a_1 —ap — 2az — (k +1)0

For each 2 we choose reflection, w, as follows and apply Proposition 4.1.1:
o w=riroriror) = W(—a_1 —ap —a; —ag — kd) = —2a_1 — 201 —ay — (k+2)4

O]
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In the examples to follow, we demonstrate the algorithm corresponding to Kang’s multiplicity

formula. for the level 2 roots —2a_1 — 36 and —2a_1 — 49.

Example 6.2.5 (Multiplicity of —2a_; — 36). Recall that Kang’s formula sums over the 7 that
divide a:

dim(ga) = - u(2) () B(r)

7|

When k = 3 the only divisor of « is « itself and hence

' 201 =36\ [ —20_1 —36
dim(g—20_1-30) = 1\ 5~ 35 | o0, 35

= B(—Q(X_l — 35)

) B(—2a_1 — 30)

Next we recall B(7) sums over the partitions of 7:

(Zni—l)! )
TR SIE S
(n4,m)€T(T) H(nz)'

where K, = Z (=D)L dimV (wp — p)5, and V(wp — p) is the highest weight module of
weW (S)

L(w)>1
(

weight wp — p in GQI). For 7 of level 2, each 7; will be a root of level less than or equal to 2.
Therefore dimV (wp— p)., = 0 for weight wp — p with level greater than 2. To find the w € W (S)

satisfying this criteria, we utilize the following lemma from [Kan94].

Lemma 6.2.6. For w = w'rj and {(w) = {(w') + 1,
w e W(S) & w' € W(S) and w'(a;) € AT(S).

where r; : h* — b* are the simple Weyl group reflections defined as r;j(5) = 8 — B(hj)a;.

We start with the identity reflection in W (.S) of length zero and use Lemma 6.2.6 to induce
on the length of w in W (S). Lemma 6.2.6 implies

Tj € W(S) — Qj € A+(S)

—j=-1

Therefore, the only length one reflection is r_i. Letting w’ = r_; we find the length two
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reflections. Lemma 6.2.6 implies

T_1Tj € W(S) — 7“71(043') S A+(S)
> a; —aj(H_1)a_; € AT(S)

= j=0

Therefore, r_17g is the only length two reflection in W(S). Table 6.6 summarizes these findings

and verifies the level of wp — p is less than or equal to 2 for our w of length one and two.

Table 6.6 Length one and two refections w € W(.9)

k| l(w)=k wp — p level of wp — p
roip—p=I[p—plh-1)a_1]—p
1 r_q = —a_q Ao(K) =1
= Ay

r-1ro(p) — p=r-1(p — p(ho)o) — p
=7r_1(p—ao) —p
= [(p— a0) = (p — ao)(h—1)a—1] = p | (A1 —6)(K) = A1(K)

2 _
e =[(p—a0) — 2a_1] = p =2
= —201_1 — Q)
=A -0

Summing over the above w from Table 6.6, we simplify the expression for K-,.

K, = Z (_1)Z(w)+ldimv(wp — P

weW(S)
L(w)>1

= dimV(Ao)Ti — dimV(A1 — 5)7—7

For dimV (Ao)-, to be nonzero, we require the 7; to be of form

2 2
A() — Zmijaj = —0_1 — Zmijaj (6.5)
J=0 J=0

where m;; € Z>(. Therefore, we partition 7 into 71 + 72, where 71 and 7 are level 1 roots of
form (6.5). Observe that since k = 3 is odd, all unique partitions of 7 are such that 73 < 7. To
find the dimV (Ag)+,, recall mult(r;) = dimV (Ag)-, for level 1 roots and refer to the methods
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and results presented in Section 6.1. Since B(7) requires we sum over K., we consider only
71 < 79 for which dimV (Ag)-, # 0 and dimV (Ag)-, # 0 and collect them in Table 6.7.

Table 6.7 Partitions of 7 = —2a_1 — 30 into 7y + 7 with 7; = —a_1 — Z?:o m;;0; and my; € Z>g
T1 dimV Ao)Tl T2 dimV(AQ)7—2

—Q_1 1 —Q_1 — 30[0 - 60&1 - 9042 14
—Q_1 — Qp 1 —Q_1 — 20[() - 6&1 - 9@2 2
—_1 — oy —oq 1 —a_1 — 209 — D — 9an 2
—Q_1 — Qg — Q1 — Q9 1 —Q_1 —2040 —50&1 —8052 3
—Q_1 — Qg — Q1 — 20&2 1 —Q_1 — 20&0 — 50&1 — 7012 3
—Q_1 — Oy — Qa1 — 30&2 1 —Q_1 — 20[0 - 50[1 - 60[2 2
—Q_1 — Oy — 20[1 — 2&2 1 —Q_1 — 20[0 - 40&1 - 70[2 3
—o_1 — g — 2a1 — 3an 2 —o_1 — 209 — 4a; — 6an 6
—Q_1 — Oy — 20&1 — 4042 1 —Q_1 — 20[0 — 40&1 — 5042 3
—Q_1 — Oy — 3041 — 30(2 1 —Q_1 — 20&0 — 30&1 — 6&2 2
—Q_1 — Oy — 30é1 - 40(2 1 —_1 — 20[0 - 3041 - 50[2 3
—Q_1 — Qg — 3C¥1 - 50[2 1 —Q_1 — 20[0 — 30&1 - 4&2 3
—a_1 —ag — 3a; — 6as 1 —a_1 — 209 — 3a1 — 3as 2
—a_1 — ag — 4o — 6an 1 —a_1 — 200 — 2001 — 3ag 2

For dimV (A1 — 0), to be nonzero, we require 7; to be of form

2 2
A —6— Zmijaj = —2a_1 — g — Zmijaj (6.6)
=0 =0
2
= —20_1 — Zmijaj (67)
=0

where m;j,m;; € Z>o. Then 7 = —2c_; — 30 is the only partition of 7 with form (6.7). Using
the isomorphism V(A1) =2 V(A; — ) ® V(§), we have dimV (A1 — 6), = dimV (A1) ,4s. Thus
we determine the dimV (A1 — 6)_24_,—3s5, by counting the paths in P(A;) = V(A1) of weight

—2a_1 — 20 (viewed in terms of the fundamental weights of ng)) below.

dimV (A1 — 6)_oa_,—35 = dimV (A1) _2a_, 25
= dimV (A1)A,+ag—36
= dimV (A1) A, —2a0—6a1—9as
=42
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We are now ready to find dim(g_g4_,—35) = B(—2a_1 — 30):

. (Z ng — 1)' n;
(ni,Ti)ET(—2a_1—36)
2
2—1)! (1—1)!
- 2 101! 1[5+ TR
T1+7m0=—20_1—30 i=1
Ti=—Q_1—Y M0
T1<T2
= > dimV (Ao)r, - dimV (Ag)r, | — dimV (Ay — &),
T1+7T0=—200_1—30
Ti=—Q_1—) M0
T1<T2
=56 — 42

=14

Recall Theorem 4.1.3 from Section 4.1 which states mult(—fa_1 — o — kd) = mult(—(k —
Oy —a—ké) for £,k € Zso and o = mioq + moas € AL U{0}. When ¢ = 2 and k = 3, this
theorem implies mult(—2a_1 — 30) = mult(—a_1 — 39) = 14. Observe that this result agrees

with our calculation of mult(—2a_; — 36) using Kang’s Formula in Example 6.2.5.

Example 6.2.7 (Multiplicity of —2a_; — 40). Consider now o« = —2a_; — 49. We find the
multiplicity of « using Kang’s multiplicity formula which sums over all 7 that divide «. Clearly,

7 = « divides a. In addition, 7 = —a_1 — 2§ divides a. Applying Kang’s formula, we obtain

) —20_1 — 49 —20_1 — 49
dim(g-za-1-15) = 1 (—205_1 - 45) (—204_1 - 45) B(=20-1 —409)

y (—2a_1 - 45) <—2a_1 - 25> Bloas —25)

—2a_1 — 20 —2a_1 — 46

1
B(—2oz,1 - 45) - 56(—0571 - 25)

We start by calculating B(—a_; — 20) using the level 1 result for —a_; — 24.

1-1)!
B(—a-1 —20) = ( 1 ) —a_1—25
=dimV (Ao)—a_,-25
—6 (6.8)
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Now consider the formula for B(—2a_; — 4d), which sums over the partitions of —2a_; — 4.

B(—2a_1 — 46) = 3 (2, ni — 1)t I &z

(ni,Ti)ET(—Qa_1—45)

As in the previous example, we consider only 7; for which K7, is nonzero and hence we
consider only the following partitions of 7 = —2a_1 — 49: 7 = 71 + 7 where 7 and 75 are level 1
roots of form (6.5) and the level 2 partition 7 = 7.

For 7 = 71 + 72, observe that since k = 4 is even there is one partition where 7 = 72 = 7.
Therefore, the unique partitions 7 = 7 + 79 are such that 7 < 7. Since 7 and 79 are level 1
roots, we again use the level 1 methods from Section 6.1 to find their multiplicities and collect
the 71 and 7 that have nonzero multiplicity in Table 6.8 .

For the partition 7 = —2a_; — 4, we use the path realization of V(A1) and the isomorphism

V(A1) 2 V(AL —9) ® V(I) to determine dimV (A1 — ), below.

dimV(Al — 5),20_1,45 = dimV(Al),Qo_l,g(s
= dimV(Al)AlJraO,M
= dimV (A1) A, —3a0—8a1—120s
=141 (6.9)
We are now ready to use the results from Table 6.8 and (6.9) to calculate B(—2a_; — 49).
|

B(—2a_1 — 48) = 3 (X ni—1)! T

(ni,Ti)ET(—2a71—46)

2
2 1)
o Z 1-1! H K,
T1+To=—200_1—40 =1
Ti=—Q_1—) M0y
T1<T2

(2-1)!

+ 2!

2
Kfa,1725

(1-1)!
1!

K—2a71—4(5
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Table 6.8 Partitions of 7 = —2a_1 — 46 into 7y + 79 with 7; = —a_1 —

>

ClZ'TnV(A())T1 ~dimV (A0>7—2

T1+mo=—20a_1—46
Ti=—Q_1—y, MO

T1<T2

1, .
+ 5(dmﬂ/(Ao),a_l,%)2

— dsz(Al — 5)_2a_1_45

1
192 + 5(6)2 —141

=69

2
Zj:O mMy; 05 and mi; € ZZO

1 dimV A())'rl T2 dimV(A())7—2
—Q_q —Q_1 — 40(0 — 80&1 — 120&2 32
—a_1 — Qo —Q_1 — 30[0 - 80[1 - 120[2

—Q_1 — 0y — Q7
—Q_1 — Oy — Q1 — Q2
—Q_1 — 0y — Q1 — 2(12
—Q_1 — Oy — Q1 — 30[2

—Q_1 — Oy — 2051 — 20&2
—Q_1 —Qp— 20&1 - 3(12
—q_1 — oy — 2001 — 4oy
—Q_1 — Qp — 30(1 — 3042
—_1 — Qpy — 30&1 — 40(2
—Q_1 — Oy — 30&1 — 5&2
—Q_1 — Oy — 3051 — 60&2
—Q_1 —Qp— 4041 - 6&2
—Q_1 — 204() — 2(11 — 2&2
—_1 — 20&0 - 2041 - 3042
—Q_1 — 20&0 — 20&1 — 40(2
—_1 — 20&0 — 3@1 — 30[2
—Q_1 — 2@0 - 30[1 - 4C¥2
—a_1 — 209 — 31 — Doy
—_1 — 2040 - 30&1 - 6042
—Q_1 — 20&0 — 4041 — 40(2
—Q_1 — 2040 - 40[1 - 50(2
—Q_1 — 20&0 - 4C¥1 - 60!2

1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
2
1
2
3
3
2
1
3
6

—Q_1 — 30[0 - 70&1 - ].20[2
—a_1 — 30 — Tap — 1las
—_1 — 30[0 — 70&1 — 100[2
—Q_1 — 30(0 — 70[1 — 90&2
—_1 — 30[0 - 6041 - 100[2
—Q_1 — 3&0 — 60[1 — 9062
—a_1 — 3ag — 6a; — 8ap
—Q_1 — 3040 — 50[1 — 90(2
—_1 — 30[0 — 5041 — 80&2
—_1 — 3040 — 50[1 — 70&2
—Q_1 — 30[0 — 50[1 — 60&2
—Q_1 — 3@0 - 40[1 - 6@2
—a_1 — 20p — 6 — 100
—Q_1 — 2050 - 60[1 - 90&2
—_1 — 2&0 — 60[1 - 80&2
—Q_1 — 20[0 — 50[1 — 90&2
—Q_1 — 20[0 — 50[1 — 8062
—a_1 — 209 — a1 — Ty
—Q_1 — 20[0 - 50[1 - 60&2
—_1 — 20(0 — 40[1 — 80&2
—Q_1 — 20[0 - 40[1 - 70&2
—Q_1 — 2&0 - 40[1 — 6042

@O&HM@WMHMH@@@@@@E@@@@@@
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Combining results (6.8) and (6.10), we determine dim(g_24_,—45)-

For simplicity of calculations and for use in our C# code, we now present Kang’s multiplicity
formula in generality for roots of the form —2a_1 — 8 where 5 = Z?:o m;ca; and m; € Z>q. For
these equations to hold we use the fact that we have one divisor, 7 = «, of @ when 2t § and
two divisors, 7 = @ and 7 = §, of a when 2|3. We also observe that only if 2|3 do we have a

partition of 7 = « into 71 4+ 72 such that 7, = 7.
Proposition 6.2.8. Let —2a_1 — 8 be a root of HG;I), then the dim(g_2q_,—g) is computed
as follows.

If 213, then

dim(g_oa_,p) = B(—2a_1 — B)

= > dimV (Ag)ry - dimV (Ag)ry | — dimV (A1) A, 4ag—p (6.11)

Ti+T2e=—2a_1—f
TiI=—ao1— ) Mmija;
T1<T2

If 2|8, then
. 1 p
dim(g—2a_,-8) = B(—2a_1 — ) — 55(—04—1 - 5)
= > dimV (Ao)r, - dimV (Ag)s,
T1+Ta=—200_1—0
Ti:—afl—Zmijaj

T1<T2

1
+ §(dimV(Ao)_a71_§)2 —dimV (A1)Ay+a0-5

— 5dimV(Ao)_, | s (6.12)
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In the next example we use formula (6.12) to find the multiplicity of —2a_1 — 209 — 21 —
2009 — 20 = —2a_1 — 4ap — 61 — 8ag. In [Hon98], this root was shown to have multiplicity 21

utilizing slp(C) theory. We verify the calculation using our methods.

Example 6.2.9 (Multiplicity of —2a_1 — 4y — 61 — 8aa).

. 1
dlm(972a7174a076a178a2) = B(—2Oé71 — 40&0 — 60&1 — 80[2) — 56(—0171 — 20&0 — 30&1 — 4042)

= > dimV (Ag)r, - dimV (Ao)-,
T1+7m2=—2a_1—4ap—6a1 —8aa

Ti=—Qo1— ) Mijaj
T1<T2

1, . .
+ 5(dsz(AO)fa_l72&0730(1740(2)2 - dlmV(Al)A173aof6a178a2

1 .
— §dlmV(A0)—a_1—2o¢0—3041—4062
1,9 1
=78+ 5(3)° — 60 — 5(3)

=21

We now use our C# program to calculate additional multiplicities and collect them in
Table 6.9 through Table 6.12.

Table 6.9 Multiplicity table for —2a_1 — kd when 2 < k < 12

—2a_1 — ko | mult(—2a_1 — k¢) | Frenkel Bound
k=2 2 2
k=3 14 110
k=4 66 1770
k=5 258 17490
k=6 878 129512
k=17 2692 786814
k=38 7626 4126070
k=9 20244 19283830
k=10 50930 82088400
k=11 122417 323275512
k=12 282934 1191580872
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Table 6.10 Multiplicity table for —2a_1 — ag — kd when 1 < k <12

—2a_1 —ag — kd | mult(—2a_1 — ag — ko) | Frenkel Bound
k=1 1 1
k=2 6 20
k=3 32 481
k=4 135 5822
k=5 485 49010
k=6 1558 326015
k=7 4578 1831065
k=8 12524 9035539
k=9 32320 40210481
k=10 79396 164363280
k=11 186985 625425005
k=12 424550 2238075315

Table 6.11 Multiplicity table for —2a_1 — ag — ao — kd when 1 < k <12

—2a_1 —ag —ag — k0 | mult(—2a_1 — ag — as — ko) | Frenkel Bound
k=1 0 1
k=2 3 10
k=3 21 300
k=4 99 3956
k=5 378 35002
k=6 1257 240840
k=7 3781 1386930
k=28 10518 6978730
k=9 27489 31551450
k=10 68200 130673928
k=11 161937 502810130
k=12 370176 1816715170

Table 6.12 Multiplicity table for —2a_1 — ag — a1 — as — kd when 1 < k <12

—2a_1 —ag—ay —ay — kb | mult(—2a_1 — ag — ag — as — ko) | Frenkel Bound
k=1 1 1
k=2 9 65
k=3 48 1165
k=4 199 12230
k=5 702 94235
k=6 2208 589128
k=7 6367 3157789
k=28 17134 15018300
k=9 43570 64854575
k=10 105647 258508230
k=11 245949 962759294
k=12 552674 3381689157
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6.3 Level 3 Roots

Consider level 3 roots of the form —3a_1 — a — kd, where a = moag + miag + moas < § and
m; € Z>o. In Theorem 6.3.1 through Theorem 6.3.5 we show that for all @ < 4 the multiplicity
of —3a_1 — a — kd is equal to that of the following with a possible shift of the roots string by at
most —24.

—3a_1 — kb

—3a_1 —oag— kb
—3a_1—ayg—ay —kd
—3a_1 —ag — 209 — kb

—3a_1—ap—a1 —ay—kd
—3a_1 —ag — 201 — kb

Therefore we only consider level 3 roots of these forms.
Recall once more Theorem 4.1.2: If —fa_1 — kJ is a root of HGgl), then k > £. Furthermore,
mult(—la_y — £§) = 2. Therefore,

dz’m(g,3a71,§) =0

dim(gf?)a_lf%) == 0
dim(g_gail_gg) = 2.

When k£ > 3 we use Kang’s multiplicity formula and the path crystal representations of
V(Ap), V(A1), and V(3A2) from Section 5.3 to calculate the multiplicities of —3a_; — o — kd.
Specifically, for —3a_; — kd (k = 4,5,6) we apply Kang’s multiplicity formula explicitly. For
brevity, however, we omit some details of the calculations when k = 5 and k = 6. For larger
values of k, we use our C# program for level 3 roots to compute the multiplicities. These are
displayed in Table 6.16 through Table 6.21.

Theorem 6.3.1. If —3a_1 — ag — kd is a root of HGS), then

mult(—3a—1 — ag — kd) = mult(By — ko)
= mult(f — (k+ 1)d)
= mult(Be — (k + 2)9)
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where B; is as follows:

Bo B B2
*30471 — Oy — (1 *30471 — oy — 30[2 *30471 - 20[1
—3a_1 — Q) — Q1 — 3042 —3a_1 — 1

—30471 — ] — 30[2

—304_1 — 2@1 — 3042

Proof. 1t is enough to show each 3; — (k +)d is Weyl group conjugate to —3a_; — ag — kd.

For each £y we choose reflection, w, as follows and apply Proposition 4.1.1:

o w=r = w(-3a_1 —ay—kd) = —-3a_1 —ay—a; — kd

o w=r9r; = w(—3a_1 —ap — ki) = —3a_1 —ag — a; —3ag — kb
For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w=rorirg — w(—3a_1 —ap — kd) = —3a_1 —ap — 3az — (k+ 1)

o w=rrory = w(—3a_1 —ap — kd) = —3a_; —ag — (k+1)d

o w=rorirory = w(—3a_1 —ag — kd) = —3a_1 — a3 — 3ay — (k+1)4

o w=rirorirary — w(—3a—1 —ag — kd) = —3a_1 — 201 — 3ay — (k+1)4
For each f2 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w=rror1Tg = W(—a_1 —apg — a1 — g — kd) = —3a_1 — 201 — (k+2)d

Theorem 6.3.2. If —3a_1 — oy — ag — kd is a root of HGS), then

mult(—3a_1 — g — ag — kd) = mult(By — ko)
= mult(f1 — (k + 1)0)

where B; is as follows:
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Bo ‘ 5

—3a_1—ag— 201 — a9 —3a_1 — 2a9

—3a_1 — 2001 — 209
Proof. 1t is enough to show each §; — (k +1)d is Weyl group conjugate to —3a_1 — ap — aa — k0.
For each §y we choose reflection, w, as follows and apply Proposition 4.1.1:
e w=r] = w(—3a_1 —ayg—as —kd) = -3a_1 —ayg — 207 — ag — kd
For each 1 we choose reflection, w, as follows and apply Proposition 4.1.1:

& W =TT —> w(—Sa_1 —Qp — Qg — k5) = —3a-1 — 209 — (k + 1)5

o w=r1ror; = w(—3a_1 — oy — ag — kd) = =3a_1 — 201 — 2ap — (kK + 1)0

Theorem 6.3.3. If —3a_1 — ap — 2a0 — kd is a root of HGgl), then
mult(—3a_1 — ag — 2ap — kd) = mult(—3a_1 — 2a1 — ag — (k + 1)9).

Proof. Use Proposition 4.1.1 to apply w = rirorirerire to —3a_1 — ag — 2as — kd to obtain
—3a_1 — 201 —ag — (k+1)0. O

Theorem 6.3.4. If —3a_1 — ap — a1 — as — ké is a root of HGS), then

mult(—3a_1 — ag — a1 — ag — kd) = mult(By — ko)
= mult(p1 — (k + 1)0)

where B; is as follows:

Bo ‘ 5l
—30171 — Qo) — Q1 — 20&2 —30471 — (9
—3a_1 — oy — 20(1 - 2042 —3a_1 — ] — Q9

—30571 — 1] — 20&2
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Proof. Tt is enough to show each f;—(k+1)d is Weyl group conjugate to —3a_1—ag—a1—as—kd.

For each £y we choose reflection, w, as follows and apply Proposition 4.1.1:
o w=ry=—= w(—3a_1 —ayg—a; —az —kd) = —3a_; —ap — a; —2a — ké
o w=riry = w(—3a_1 —ay— a1 —az — kd) = =3a_1 — ag — 201 — 202 — kO

For each 81 we choose reflection, w, as follows and apply Proposition 4.1.1:

o w=rorry = w(—3a_1 —ap—a; —ag — kd) = -3a_1 —as — (k+ 1)

o w=riroriry = w(—3a_1 —ap — a1 —ag — kd) = —3a_1 —a; —az — (k+ 1)

o w=roriroriry = w(—3a_1 —ap — a1 —ag — kd) = —3a_1 —a; —2a9 — (k+1)0

O
Theorem 6.3.5. If —3a_1 — ag — 2a1 — ké is a root of HGgl), then
mult(—3a_1 — ag — 2aq — kd) = mult(—3a_1 — 3az — (k+ 1)9).

Proof. Use Proposition 4.1.1 to apply w = 2 to —3a_1 — ap — 2a1 — ké to obtain —3a_1 —
3ag — (k+1)d. O

In the examples to follow, we demonstrate the algorithm corresponding to Kang’s multiplicity
formula for the level 3 roots —3a_1 — 46, —3a_1 — 5J, and —3a_1 — 6.

Example 6.3.6 (Multiplicity of —3a_; — 49). Consider the level 3 root « = —3a_; — 4.
Applying Kang’s multiplicity formula, we sum over the 7 that divide «. In this case, the only

divisor of o is 7 = « since £ = 3 is prime and does not divide k = 4. Therefore,

dim(g-3a_,-45) = Zu(g) (g) B(7)

7|
. —30471 — 46 —30471 — 46
—# (—30&1 — 45> (—30&1 — 45> B( 30[71 46)
= B(—3a_1 — 45)
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For convenience we once again recall that B(7) sums over the partitions of 7:

(Eni—l)! .
TR S E S
(n4,m)€T(T) H(nz)‘

where K, = Z (=)@ dimV (wp — p)r, and V(wp — p) is the highest weight module

weW (S)
L(w)>1

of weight wp — p in Ggl). As with level 2 roots, we need only consider the 7; and reflections

w € W(S) such that the dimV (wp — p)., is nonzero. For level 3 roots, this means K, sums
over the reflections for which wp — p has level less than or equal to 3. In Section 6.2 we used
Lemma 6.2.6 to show r_; and r_1rg are the only length one and two reflections, respectively. See
Table 6.6. Similarly, we use Lemma 6.2.6 to show that r_;ror; is the only length three reflection
in W(S):

r_yror; € W(S) <= r_iro(a;) € AT(S)
= r_1(a; — a;(Ho)ao) € AT(S)
< r_1(oy) — aj(Ho)r—1(ag) € AT(S)
> (o — aj(H_1)a—1) — o (Ho) (o — ap(H-1)a—1) € AT(S)
> (aj — aj(H-1)a-1) — aj(Ho)(ag + a—1) € AT(S)
< aj — a;(Ho)aog — aj(H-1 + Ho)a—y € AT(S)

—j=1

In Table 6.13 we write wp — p in terms of the fundamental weights of Ggl) and verify wp — p

is a level 3 weight. Substituting in our length one, two, and three reflections K, becomes

K, = Z (_1)Z(w)+ldimv(wp — P
weW(S)
L(w)>1

= dimV(Ao)Ti — dimV(A1 - 5)7—1 + dimV(?)AQ - 2(5)7—1.

For dimV (Ao), to be nonzero, we need 7; to be a level 1 root of form

2 2
A() — Zmijaj = —0_1 — Zmijaj (6.13)
7=0 7=0
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Table 6.13 Length three reflections w € W(S)

k| lw)=k wp — p level of wp — p

r-irori(p) — p=r-1ro(p — p(h1)ar) — p
=r_iro(p—a1) —p

r-1[(p — a1) — (p — a1)(ho)ao] — p

=r_1[p—a1 —2a0] —p (8A2 — 20)(K) = 3A2(K)

= [(p — a1 = 2a0) — (p — a1 — 2a0)(h-1)a—1] — p =3

3 r—1ToT1

=[(p— a1 —2a0) —3a_1] —p
= —3Ot71 — 20¢0 — 1
=3A2—20

where m;; € Z>. One option is to partition 7 = —3a_1 — 46 into the sum of three roots of
form (6.13). In order to prevent repeated partitions, we consider only the partitions for which
71 < 79 < 73. Because this list becomes quite large, even when k = 4, we prove Theorem 6.3.7
below, which determines the form of the largest 7 satisfying 7 < 1o < 713. Therefore, we only
have to consider the partitions with 71 less than or equal the maximum 71, thus minimizing the

time needed to find the total number of distinct partitions with 71 < 7 < 73.

Theorem 6.3.7. Let 7 = —3a_1 — xpag — T101 — Toa be a level 3 root of HGS). Let 71 =
—Q_1—agay— a1 —asQy, Ty = —a_1 —boag—biag —bsas, and T3 = —a_1 — cpag — 1] — Coax
be a partition of T satisfying T = 11 + 70+ 13 and 1 < o < 73. Define s = xg mod 3 and
t =x1 mod (3 — s). Then the largest such 11 has form

T = —Q 1—L@Ja— 1 a1 — LO@
- 31707 3= 3—s—t| *

To prove Theorem 6.3.7, observe the ordering 71 < 7 < 73 is a Lexicographic ordering. For

the reader’s convenience we recall the definition of Lexicographic ordering below.

Definition 6.3.8. Let 1 = —a_1 — agag — a1 — asap and 75 = —a_1 — bgag — by — bocrs.
We define 71 = 75 if and only if a; = b; for all i = {0,1,2}. We define 71 < 72 if and only if there
exists an integer m > 0 such that for all i < m a; = b; and a,, < b,,. Finally, we define 7, < 19

if and only if 7 = 75 or 71 < To.

Proof. We examine the three cases for s = g mod 3 in turn.

Case 1: s = 0. By the Lexicographic ordering, we have ag < by < ¢g and thus the largest
possible ag is L%OJ, which equals % since 3|xo. Consequently, ag = by = co = % and a3 < by < ¢
by the Lexicographic ordering. Then the largest possible a; is L%J, which is determined by

t =1 mod (3 — s) = x; mod 3. We consider the three cases for ¢ in turn.
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Case 1 (a): t = 0. Then 3|z1 and a3 = by = ¢; = % by the Lexicographic ordering.
Consequently, as < by < co and the largest possible ag is as = L%J Therefore, the largest m;

for s =0 and ¢t = 0 has form

Zo x1 X2
T e Ty T T e

o VOJO‘ r1 o 2
=—0_1— |&5 — — | —— |as.
o350 35| ™ 3= s—¢ |72

Case 1 (b): t = 1. Then % = L%J +1. In order to maximize a; and preserve the Lexicographic

order, a1 < b1 < ¢1, we must let a; = by = L%J and ¢ = L%J + 1. Since a1 = by < ¢1, we have
71 < 19 < 73 for any choice of co. To maximize ao, let co = 0 so that as + by = x2. To preserve
the Lexicographic ordering, as < by and hence the largest possible ao is L%J Therefore, the
largest 7 for the case when s =0 and t = 1 has form

i) I xI9
== Fo- Fer- 3o

S L O 1 P R
BT 3 s T T 3 ms—t |

Case 1 (c): t = 2. Then % = L%J + 2 and there are two options satisfying the condition

a1 < by < c¢1. We show that the first option maximizes 7.

Option 1: Since a1 < by = ¢1, we have 71 < 7o < 73 for any choice of by and co. To maximize as,

let by = ¢o = 0. Then ao = x5. Therefore, the largest 71 for this option has form

o T
T = —Q0_-1 — 3050 — ? a1 — T2009.

Because the cases differ only by their choice of as and since option 1 yields the largest possible
asz, we need not consider option 2. Therefore, the largest 71 for the case when s =1 and ¢t = 2
has form

T

2!
A N R

= —« 1—L@Jo¢ - oy — LT PN
- 31707 |35 3—s—t| >
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Case 2: s = 1. Then 3 = L“%OJ + 1. By the Lexicographic ordering, we require ag < by < ¢g
and hence the largest possible choice for ag is L%OJ Then ag = by = L%OJ and ¢y = L%J + 1.
Since ag = by < ¢, we have 7 < 19 < 73 for any choice of ¢; and ¢s. To maximize a1, let ¢; =0
so that a; + by = x1. To preserve the Lexicographic order, a; < b; and hence the largest possible
ai is L%J, which is determined by ¢ = 21 mod (3 — s) = 1 mod 2. We consider the two cases
for t in turn.

Case 2 (a): t = 0. Then 2|z and a1 = by = %-. To maximize ag, let ¢ = 0 so that az+bs = 2.
This is possible since we have shown 7 < 79 < 73 for any choice of co. To preserve Lexicographic
ordering, as < by and hence as = L%’J is the largest possible ao. Therefore, the largest 7 for

the case when s =1 and ¢t = 0 has form
- —a —r@yy—rﬁyy— =21,
T = -1 3 |20 5 | 5 2
P L@J M I
I R AU el U )

Case 2 (b): t = 1. Then & = |%| + 1 and hence a1 = |%-] and by = |%] + 1. Since

a1 < by < c1, we have 7 < 19 < 73 for any choice of by and co. To maximize aso, let by = co = 0.

Then, as = x5 and hence the largest 71 for the case when s =1 and ¢ = 1 has form

i) I
== |20 [2for -

\‘J}()J T T2
= —0_1— | — |t — a1 — | /| G9.
o™ 3= | |3—s—¢]| 2

Case 3: s = 2. Then t = 1 mod 1 = 0 and P = L%OJ + 2. Therefore, only options two

options satisfying the condition ag < by < ¢g. We show that the first option maximizes 7.

1. aO:L%OJ andbozc():L%OJ+1

8

2. ag = by = L%OJ and ¢y = L?OJ + 2.

Option 1: Since ag < by = ¢g, we have 71 < 75 < 73 for any choice of by, bo, ¢1, and co satisfying
75 < 13. To maximize aq, let by = ¢; = 0 so that a1 = x1. To maximize as, let by = co = 0 so

that as = xo. Therefore, the largest 7 for this option has form

o
T = —Q0_-1 — ? Qg — 101 — 0.
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Because the cases differ only by their choice of a; and as and since option 1 yields the largest
possible a; and as, we need not consider option 2. Therefore, the largest 7 for the case when

s = 2 has form

o
T = —O0_1 — ? Qg — 101 — a0

Ll’oJ il xTo
= —0_1 — | — |y — ol — | /| (9.
S T e [ DU s (T

In all cases, the largest possible 7 has form

T = —« —L@Ja— M- |22 |a
! BT T 3 s T 3 st |

O

For our example, the maximum 7 satisfying 71 < 79 < 73 for the partition of 7 = —3a_1 — 40
is —a—1 — ap — 4a; — 6. In addition to the constraint on 77 given by Theorem 6.3.7, we need
only consider the partitions of 7 such that dimV (Ag);, # 0 for all three 7;. Since each 7; is a
level 1 root, we use the results and methods from Section 6.1 to find dimV (Ag),, and collect
them in Table 6.14.

For dimV (A1 — )+, to be nonzero, we need 7; to be a level 2 root of form

2 2
A1 -0 — Zmijozj = —2a_1 — oy — Zmijaj (6.14)
Jj=0 Jj=0
2
= 20_1— Zmijaj (6.15)
§=0
where m;;,m;j € Z>¢. To involve 7; of form (6.15) we partition 7 = —3a_; — 46 into 71 + 7

where 7 is a level 1 root of the form (6.13) and 7 is a level 2 root of the form (6.15). To find
the dimV (Ao)-, we use the level 1 results from Section 6.1. For dimV (A1 — §)r,, we use the
isomorphism V(A1) =2 V(A; — ) ® V() and our C# program to count the paths in the path
crystal P(A1) = V(A1), whose procedure is outlined in Section 6.2. The partitions of this form
and their corresponding weight multiplicities are given in Table 6.15.

For dimV (3A2 — 2§)., to be nonzero, 7; must be of the form
2 2

3A2 — 26 — Zmijaj = —3a_1 — 2040 — 1 — Zmijaj (6.16)
7=0 7=0
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2
= —3Ct_1 - Zmijaj (6.17)
7=0

where m;;,m;; € Z>o. Then 7 = —3a_1 — 49 is the only partition of 7 satisfying (6.17). Utilizing
the path crystal realization of V(3A3), from Chapter 5 and the isomorphism V(3Ag — 26) =
V(3A2) ® V(26), we obtain the dimV (3A2 — 25), below.

dimV (3A2 — 20) _34_,—45 = dimV (3A2) _34_, 25
= dimV (3A2)3A,42a0+a1 46
= dimV (3A2)3A,—200—7a1—12a0
173 (6.18)
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Table 6.14 Partitions of 7 = —3a_1 — 40 into 71 + 72 + 73 with 7; = —a—1 — Z?:o mgjo; and mg; € Zi>q
T1 dimV(Ao)Tl T2 dimV(Ao)-,—z T3 dimV(Ao)q—S
—_1 1 —Q—1 1 —a_1 — 4o — 8y — 1202 32
-1 1 —a_1 — Qg 1 —a_1 — 3a0 — 81 — 12a2 6
—_q 1 -1 — Qo — Q1 1 —a_1 — 3ap — Ty — 12c0 6
-1 1 -1 — Qg — 1 — Qi 1 —a_1 — 3ap — Tap — 1l 9
—a_q 1 —_1 — o — 1 — 209 1 —a_1 — 3ap — 7o — 10a2 9
-1 1 —Q_1 — g — Q1 — 302 1 —a—1 — 3ag — Tar — Yan 6
-1 1 —a_1 — oo — 2001 — 2002 1 —a_1 — 3ap — 6 — 1002 9
—_1 1 —_1 — O — 2041 — 3042 2 —_1 — 30&0 — 6041 — Q2 14
—_1 1 —a_1 — oo — 2001 — 4o 1 —a_1 — 3ag — 61 — 8ag 9
—a_q 1 —a_1 — g — 31 — 3as 1 —a_1 — 39 — Har — Yan 6
—_q 1 —a_1 — oo — 301 — 4o 1 —a—1 — 3ag — Do — 8ag 9
-1 1 —a_1 — g — 301 — Do 1 —a_1 — 30 — Dy — Tag 9
—_1 1 —_1 — Qo — 3041 — 6042 1 —x_1 — 3a0 — 5(11 — 60¢2 6
—_1 1 —a_1 — o — 4oy — 6o 1 —a_1 — 3ag — 4o — 6an 6
—a_q 1 —a—1 — 200 — 2001 — 202 1 —a—1 — 200 — 61 — 102 1
—o_1 1 —a_1 — 200 — 2001 — 30 2 —a_1 — 2009 — 61 — g 2
-1 1 —a_1 — 200 — 2001 — 4an 1 —a_1 — 209 — 61 — g 1
—_1 1 —x_1 — 2040 — 30(1 — 3052 2 —x_1 — 2(10 — 50t1 — 90t2 2
-1 1 —a_1 — 200 — 31 — 4o 3 —a—1 — 209 — Dy — 8ag 3
—a_q 1 —a_1 — 200 — 31 — Hag 3 —a_1 — 209 — Dy — Tag 2
-1 1 —Q—_1 — 2a0 — 3a1 — 60[2 2 —Q—1 — 26!0 — 56!1 — 6&2 2
-1 1 —a_1 — 200 — 4ap — 4o 1 —a_1 — 209 — 4o — 8ag 1
—_q 1 —a_1 — 200 — 4o — Has 3 —a_1 — 200 — 41 — Ta 3
—_1 1 —a_1 — 200 — 4ap — 6o 6 —a_1 — 2009 — 4 — 6an 6
—_1 — Qg 1 —a_1 — oo — 2001 — 2002 1 —a_1 — 20 — 6 — 1002 1
—_1 — Qo 1 —_1 — Qo — 2041 — 3042 2 —x_1 — 2a0 — 60t1 — 90é2 2
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Table 6.14 (continued)

T1 dimV (Ao)ry T2 dimV (Ag)+, T3 dimV (Ag)ry

—a_1 — Qg 1 —a—1 — ap — 2a1 — 4o 1 —a—1 — 209 — 61 — 8an 1
—a_1 — Qg 1 —a_1 — g — 31 — 3as 1 —a_1 — 2009 — D — Yan 2
—a_1 — Qg 1 —a_1 — oo — 3o — 4o 1 —a_1 — 2009 — Dy — 8ag 3
—_1 — Qg 1 —a_1 — o — 301 — Do 1 —a_1 — 209 — Dy — Tag 3
—_1 — Qo 1 —_1 — Qo — 3041 — 6042 1 —x_1 — 2a0 — 50t1 — 6(12 2
—a_1 — Qg 1 —a_1 — o — 4oy — 6o 1 —a_1 — 209 — 4a; — 6an 6
-1 — g — Q1 1 —_1 — g — 1 — 202 1 —a_1 — 200 — 61 — 10a2 1
—_1 —og — Q1 1 —_1 — o — Q1 — 302 1 —a_1 — 209 — 61 — g 2
—_1 — g — O 1 —a_1 — oo — 2001 — 3o 2 —a_1 — 2009 — Dar — Yan 2
—_1 — Qo — 1 1 —_1 — Qo — 20&1 — 4042 1 —x_1 — 2(10 — 5(11 — 80¢2 3
—Q_1 — Qg — Q1 1 —_1 — ap — 3o — 4o 1 —a_1 — 209 — 4o — 8ag 1
-1 — g — 1 1 —_1 — g — 301 — Do 1 —a_1 — 200 — 4o — Tag 3
—Q—1 — Qo — 1 1 —Q—1 — Qo — 3041 — 6042 1 —Q—_1 — 26!0 — 4CM1 — 6&2 6
-1 — g — O 1 —a_1 — o — 4o — 6o 1 —a_1 — 209 — 31 — 6an 2
—_1 — g — Q1 — Q3 1 —Q_1 — Qg — Q] — Q9 1 —a_1 — 200 — 61 — 10as 1
—Q_1 — Qg — Q1 — Q3 1 —_1 — g — Q1 — 2002 1 —a_1 — 209 — 61 — g 2
—Q_1 — Qg — Q1 — Q2 1 —_1 — Qg — 1 — 302 1 —a_1 — 209 — 61 — g 1
—_1 — 0o — Q1 — Q2 1 —_1 — O — 2041 — 2042 1 —x_1 — 2a0 — 50t1 — 90é2 2
—Q_1 — Qg — Q1 — Q3 1 —_1 — o — 2001 — 3o 2 —a_1 — 209 — Dy — 8ag 3
—Q_1 — Qg — Q] — Q2 1 —a_1 — g — 2001 — 4as 1 —a_1 — 200 — Dy — Tag 3
—Q_1 — Qg — Q1] — Q3 1 —a_1 — o — 301 — 302 1 —a_1 — 200 — 41 — 8ag 1
—Q_1 — Qg — Q1 — Q2 1 —a_1 — oo — 301 — 4o 1 —a_1 — 209 — 4a; — Ta 3
—_1 — 0o — Q1 — Q2 1 —_1 — Qo — 3041 — 5042 1 —x_1 — 2(10 — 4(11 — 60¢2 6
—Q_1 — Qo — Q] — Q3 1 —a_1 — o — 31 — 6o 1 —a_1 — 209 — 4o — Do 3
—Q_1 — Qg — Q] — Q2 1 —a_1 — g — 4o — 6as 1 —a_1 — 209 — 31 — Doy 3
—_1 — g — a1 — 200 1 —_1 — Qo — Q1 — 2002 1 —a_1 — 209 — 61 — 8ag 1
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Table 6.14 (continued)

T1 dimV (Ao)ry T2 dimV (Ag)+, T3 dimV (Ag)ry
—_1 — g — 1 — 200 1 —_1 — oo — 2001 — 2002 1 —a_1 — 2009 — Dy — 8ag 3
-1 — g — 1 — 209 1 —_1 — g — 2001 — 3 2 —a_1 — 209 — Dy — Tag 3
—_1 — g — a1 — 200 1 —a_1 — oo — 2001 — 4o 1 —a_1 — 2009 — Dy — b6ag 2
-1 — g — 1 — 2002 1 —a_1 — o — 301 — 3 1 —a_1 — 209 — 4da; — Ta 3
—_1 — Qo — Q1 — 20(2 1 —_1 — Qo — 3041 — 40&2 1 —x_1 — 2a0 — 40t1 — 6(12 6
—_1 — g — 1 — 200 1 —_1 — g — 301 — Do 1 —a_1 — 209 — 4 — Do 3
-1 — g — o1 — 209 1 —a_1 — g — 3a; — 6 1 —a_1 — 200 — 41 — 4o 1
—_1 — Qo — 1 — 200 1 —a_1 — oo — 4o — 6o 1 —a_1 — 200 — 31 — 4a 3
—_1 — Qg — ] — 302 1 —a_1 — oo — 2001 — 2002 1 —a_1 — 209 — Dy — Tag 3
—_1 — Qo — Q1 — 30(2 1 —_1 — Qo — 20&1 — 3042 2 —x_1 — 2(10 — 5(11 — 60t2 2
—Q_1 — Qg — (] — 302 1 —_1 — p — 301 — 302 1 —a_1 — 209 — 4a; — 6an 6
-1 — g — o1 — 30 1 —a_1 — g — 31 — 4as 1 —a_1 — 209 — 4a; — Do 3
—Q—1 — Qo — Q1 — 30(2 1 —Q—1 — Qo — 3041 — 5042 1 —Q—_1 — 26!0 — 4CM1 — 4&2 1
—_1 — Qg — (] — 302 1 —a_1 — o — 4o — 6o 1 —a_1 — 209 — 31 — 32 2
—_1 — g — 201 — 20 1 —_1 — g — 2001 — 20 1 —a_1 — 200 — 4 — e 1
—0_1 — g — 201 — 202 1 —a_1 — o — 2001 — 30 2 —a_1 — 200 — 4o — Tag 3
—_1 — g — 201 — 202 1 —a_1 — oo — 2001 — 4o 1 —a_1 — 209 — 4a; — 6 6
—x_1 — Qo — 2a1 — 2042 1 —_1 — O — 3041 — 4042 1 —x_1 — 2a0 — 30t1 — 60é2 2
—a_1 — g — 201 — 20 1 —_1 — p — 301 — Do 1 —a_1 — 209 — 31 — Doy 3
—a_1 — g — 201 — 20 1 —a_1 — g — 31 — 6 1 —a_1 — 200 — 31 — 4o 3
—0_1 — g — 201 — 202 1 —a_1 — oo — 4o — 6o 1 —a_1 — 200 — 2001 — 4as 1
—_1 — g — 201 — 3 2 —a_1 — oo — 2001 — 3o 2 —a_1 — 209 — 4a; — 6an 6
—x_1 — Qo — 20t1 — 3a2 2 —_1 — Qo — 20&1 — 40&2 1 —x_1 — 2(10 — 4(11 — 50t2 3
—a_1 — g — 201 — 32 2 —_1 — p — 301 — 302 1 —a_1 — 209 — 31 — b6an 2
—_1 — g — 201 — 3 2 —a_1 — g — 3o — 4o 1 —a_1 — 209 — 31 — Doy 3
—Q—1 — Qo — 2CM1 — 3&2 2 —Q—1 — Qo — 3041 — 5042 1 —Q—_1 — 2CMO — 3CM1 — 4&2 3
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Table 6.14 (continued)

Eal dimV (Ao)+, To dimV (Ao)r, T3 dimV (Ao)+y
—a_1 — g — 201 — 32 2 —a_1 — o — 301 — 6o 1 —a_1 — 2009 — 31 — 32 2
—a_1 — g — 201 — 3 2 —a_1 — g — 4o — 6as 1 —a_1 — 200 — 201 — 3 2
—a_1 — g — 2001 — 4as 1 —_1 — oo — 2001 — 4o 1 —a_1 — 200 — 41 — das 1
—a_1 — g — 201 — 4o 1 —a_1 — o — 301 — 3 1 —a_1 — 209 — 31 — Dag 3
—x_1 — Qo — 2&1 — 40é2 1 —_1 — Qo — 3041 — 40&2 1 —x_1 — 2a0 — 30t1 — 4(12 3
—o_1 — g — 201 — 4o 1 —_1 — g — 301 — Do 1 —a_1 — 209 — 31 — 3 2
—a—1 — o — 201 — 4as 1 —a—1 —ag — 4oy — 6as 1 —a—1 — 200 — 2001 — 20 1
—a_1 — g — 301 — 32 1 —a_1 — g — 301 — Hag 1 —a_1 — 200 — 2001 — 4as 1
—a_1 — g — 301 — 32 1 —a_1 — g — 31 — 6o 1 —a_1 — 200 — 2001 — 3 2
—Q—1 — Qo — 30¢1 — 40t2 1 —Q—1 — Qo — 30&1 — 4042 1 —Q—1 — 2(10 — 2(11 — 40t2 1
—o_1 — g — 3a1 — 4o 1 —o_1 — g — 301 — Do 1 —a_1 — 2009 — 201 — 3 2
—a—1 — o — 3a1 — 4as 1 —a—1 — g — 3a; — b6as 1 —a—1 — 200 — 2001 — 20 1
—Q—1 — Qo — 3CM1 — 5&2 1 —Q—1 — Qo — 3041 — 5042 1 —Q—_1 — 26!0 — 2CM1 — 2&2 1
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Table 6.15 Partitions of 7 = —3a_; — 46 into 71 + 7 with 71 = —a_1 — Z?:o M0

and 79 = —2q_1 — Z?:O My for Mmij, Mij € ZZO
T1 dZmV(Ao)Tl T2 dsz(Al — 5)7—2
—Q_1 —20471 — 40¢0 — 80¢1 — 12042 141
—Q—_1 — Qo —20(_1 — 30{0 — 8(11 — 12&2 22
—Q—1 — Qo — 1 —20471 — 30(0 — 7Ot1 — 12&2 22
—0—1 — g — 01 — Q2 —20671 — 30¢0 — 70&1 — 110(2 31
—Q—1 — Qo — Q1 — 20(2 720(_1 — 30{0 — 7(11 — 100[2 31
—Q—1 — O — Q1 — 3042 —20571 — 30(0 — 70(1 — 90(2 22
—_1 — Qg — 20[1 — 2042 —20671 — 30¢0 — 60&1 — 100(2 31
—Q—_1 — Qo — 20[1 — 30[2 *20[_1 — 30[0 — 60{1 — 90{2 42
—_1 — Qg — 20[1 — 40[2 —20571 — 30(0 — 60(1 — 80(2 31
—_1 — Qg — 3041 — 30[2 —20471 — 30(0 — 50(1 — 90(2 22
—a_1 — g — 3a1 — 4o —20_1 — 39 — By — 8an 31
—_1 — Qg — 30[1 — 5052 —20571 — 30(0 — 50(1 — 70(2 31
——-1 — Qg — 3041 — 60[2 —2a_1 — 30(0 — 50(1 — 60(2 22
—a_1 — ag — 4o — 6o —20_1 — 3o — 4oy — 6o 22
—_1 — 20¢0 — 20¢1 — 2@2 —20471 — 20(0 — 60¢1 — 10&2 3
—Q—-1 — 20&0 — 20¢1 — 30¢2 —2a_1 — 20(0 — 60(1 — 90(2 5
—a_1 — 200 — 21 — 4o —20_1 — 29 — 6 — 8avn 3
—_1 — 20¢0 — 30t1 — 3@2 —20571 — 20(0 — 50(1 — 90(2 5
—Q—-1 — 20&0 — 30¢1 — 40¢2 —2a_1 — 20(0 — 50(1 — 80(2 7
—a_1 — 2000 — 31 — Do —2001 — 200 — By — Tag 7
—_1 — 20¢0 — 30t1 — 60t2 —20571 — 20(0 — 50(1 — 60(2 5
——-1 — 20&0 — 40¢1 — 40¢2 —2a_1 — 20(0 — 40(1 — 80(2 3
—a_1 — 2000 — 4oy — Do 2001 — 200 — 4oy — Tan 7
—_1 — 20¢0 — 40t1 — 60t2 —20571 — 20(0 — 40(1 — 60(2 11

——_1 — 20¢0 — 40&1 — 70(2
—a_1 — 2000 — 4o — 8an
—_1 — 20¢0 — 50t1 — 60t2
——_1 — 20(0 — 50&1 — 70(2
—a_1 — 2000 — By — 8an
—_1 — 20¢0 — 50t1 — 9a2
—Q_1 — 20(0 — 60&1 — 80&2
—a_1 — 2000 — 6a; — 92
—x_1 — 20&0 — 6051 — 100(2
—_1 — 30&0 — 40&1 — 60&2
—a_1 — 3 — Hay — b
—x_1 — 30t0 — 50t1 — 70t2
—_1 — 30&0 — 50&1 — 80&2
—a_1 — 3 — Hag — a2
—x_1 — 30t0 — 60¢1 — 80t2
—_1 — 30&0 — 60&1 — 90(2
—Q—_1 — 3CM() — 6CM1 — 100(2
—x_1 — 30t0 — 70t1 — 90¢2
—_-1 — 3(10 — 70(1 — 10&2
—Q—_1 — 3CM() — 7CM1 — 110(2
—x_1 — 3040 — 70(1 — 12042
—_-1 — 3(10 — 80(1 — 120{2

CDCTJ@@CT!@E@OD@@OBCD)—‘MHMC}OOO[\JHOJOBOOHMOJOD[\J)—‘[QD—‘)—‘HD—‘)—'HD—‘MHD—‘)—'HD—‘)—'H

—2a-1 — 2a0 — 41 — oo
720[_1 — 20[0 — 40(1 — 40(2
—20571 — 20(0 — 30(1 — 60(2
—2a-1 — 2a0 — 3a1 — baz
720[_1 —_ 20(0 —_ 30(1 —_ 40[2
—20571 — 20(0 — 30(1 — 30(2
—2a-1 — 2a0 — 201 — 4oz
720[71 — 20(0 — 20(1 — 30[2
—20571 — 20(0 — 20(1 — 20(2
—20_1 — ap — 4o — 6o
—2a-1 — ap — 3a1 — 6o
—2(171 — Qo — 30t1 — 50t2
—201 —ap — 31 — 4o
—20_1 — g — 301 — 32
—2a-1 — ap — 201 — 4o
—201 —ap — 2001 — 32
—2a-1 — oo — 201 — 202
—20571 — g — X1 — 3&2
—204_1 — g — X1 — 20(2
—2001 — g — a1 — Qs
—20671 — Qo — (1
—2a_1 — Q0

= e e e e DN e e e e WO WO N ] O W
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Putting result (6.18) together with the results from Table 6.14 and Table 6.15, we determine
the multiplicity of —3a_1 — 44.

dim(g-3a_,~45) = B(=3a—1 — 49)
n; — 1! n;
= Z (Zl_lml) HKT;

(ni,Ti)ET(—Sa,1 —45)

Z o H nl
;!
T1+72+73=—3a_1—46 H v

Ti=—Qo1— ) M0y
T1<T2<T3

2

2-1)!

+ > T LK
T1+7m0=—3a_1—49 i=1

TI=—Q_1—) mjo;
To=—20_ 1—Em]-a]-

(1-1)!
1!

K_30_ 145

_ S Qni— D! [T(dimVv (Aq)-)™

T+ ra——3a_1—48 [Tn!
Ti=—Q_1— Y MO
T1<12<73
- > dimV (Ag)7, dimV (Ay — 0),

T1+Te=—3a_1—44
le—afl—ijaj
T=—20_1—) M;a;
4 dimV (3As — 26) 30 115
=790—-931+173

=32

Example 6.3.9 (Multiplicity of —3a_1 — 5¢). In this example we determine the multiplicity
of @ = —3a_1 — 5. Since 3 1 5, we only have one divisor of «, which is 7 = . Then Kang’s

formula implies
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dim(g-3a_,-56) = Zu(%) (g) B(r)

7|
. —3a_1 — 50 —3a_1 — 50
- (—3a_1 - 55> (—3a_1 - 55> B(=3a-1-59)
= B(—3a_; — 59).
In order to calculate B(—3a_; — 56), we sum over the partitions of 7 = —3a_; — 59 for

which K, is nonzero for each 7;. As in Example 6.3.6 the partitions fall into three categories:

1. a partition of 7 into three level 1 roots of the form 7, = —a_1 — 232‘:0 m;ja; where
m;; € ZZO,

2. a partition of 7 into a level 1 of form 7 = —a_1 — Z?:o m;jo; and a level 2 root of form
Ty = —200_1 — 232‘:0 my;o where Mij, M5 € Zzo, and

3. the partition 7 = —3a_1 — 56.

For brevity, the table of partitions for categories 1 and 2 are omitted. The level 1 and 2
roots for these partitions were calculated using our C# program in the same manner as in
Example 6.3.6 and are later used to find the multiplicity of —3a_; — 5J. For the partition
T = —3a_1 — 5J, we use our C# program to count the paths of P(3A2) = V(3Ag) and the
isomorphism V' (3A2 — 20) = V(3A2) ® V(2) to calculate dimV (3Ay — 26), below.

dimV (3A2 — 20)_34_,—556 = dimV (3A2) _34_,—35
= dimV (3A2)3A,+200+01—56
= dimV (3A2)3A,—300—9a1—15a
= 686

Putting this result together with the results from category 1 and 2 partitions, we determine the

multiplicity of —3a_1 — 56.

dim(g—3a_,—55) = B(—3a—1 — 50)

_ Z 2117’[1”1 H K:_le

(TLZ‘,TZ')ET(—305_1—55)
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- X U Ie
n
T1+7m2+713=—3a_1—50 H v

Ti=—Q1— ) M0
T1<T2<T3

2
2 1)
+ Z 11! HKT
T1+To=—3a_1—50 =1
TI=—Q_1—)_ m;o;
Te=—2a_1—) M0
1-1)!
L0

1!

K_34 55

- > Qo = DN T (i (8g),, )™

T1+72+713=—300_1—50
Ti=—0_1—y, M
T1ST2<7T3
- > dimV (Ao)y, dimV (A1 — 6),

T1+To=—3a_1—50
TI=—Q_1—), M0
72:—206_1—ij06j
+ dsz(3A2 — 25),30[_1,55
= 3628 — 4056 + 686

= 258
Recall once more Theorem 4.1.3 from Section 4.1: For £,k € Z~y and o = miaq + maag €
A U{0}, we have mult(—Lla_y — a — ké) = mult(—(k — £)a_1 — o — k6). Applying this theorem
to —3a_1 — 40 and —3a_1 — 59, we obtain

mult(—3a_1 — 49) = mult(—a_; — 45) = 32

mult(—3a_1 — 5J) = mult(—2a_; — 55) = 258.

Observe that these results agree with our calculations of mult(—3a—1 —49) and mult(—3a—1 —59)

using Kang’s formula in Example 6.3.6 and Example 6.3.9.

104



6.3. LEVEL 3 ROOTS CHAPTER 6. ROOT MULTIPLICITIES OF HG"

Example 6.3.10 (Multiplicity of —3a_; —64). Lastly, we find the multiplicity of &« = —3a_;—64.
In this case, 3|6 and so a has two divisors: 7 = —a_1 — 3§ and 7 = —3a_; — 64. Using Kang’s

multiplicity formula, the dim(g_3,_,—6s) has two terms:

dim(g-3a_,-65) = Zu(%) (2) B(7)

T|e

. —304_1 — 60 —304_1 — 60
s <—3a1 - 65) <—3a1 - 65> B(=3a-1 - 69)
*30171 — 60 —_1 — 20
+ H < —Q_1 — 20 ) <—30£1 - 66) B(—Oé_l B 25)

= B(—?)Oé_l - 65) - %B(—O&_l - 25)

We start by calculating B(—a—1 — 20) using the level 1 result for —a_; — 2.

1—-1)!
B(—a,1 — 25) = ( 1 ) K_a_l_gg

= dimV(Ag)_a71_25
=6 (6.19)

As in the previous example, we calculate B(—3a_; — 66) by summing over the partitions of

7= —3a_1 — 66 falling into three categories:
1. a partition of 7 into three level 1 roots of the form 7, = —a_1 — Z?:O m;ja; where
mi; € ZZO,
2. a partition of 7 into a level 1 of form 7 = —a_1 — Z?:O m;ja; and a level 2 root of form
Ty = 2001 — Z?:o m;;o; where myj, m;; € Z>o, and

3. the partition 7 = —3a_1 — 60.

The tables for categories 1 and 2 are omitted and we compute the dimV (3A2 — 20), using

our C# program, with results shown below.

dsz(?)Ag — 26)—3(171—65 = dimv(SAQ)—&l—l—‘w
= dimV(3A2)3A2+2a0+a1 —68

= dimV (3A2)3A,—4a0—11a;1—18a2
= 2355
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Then,

B(=3a_, — 65) = 3 (i = DUy e,

[]ni!
(ni,Ti)GT(—3a,1—66)

’I’Li—l ! T
= Z (Z:I_[ni!)HKTiZ

T1+7m2+713=—30_1—60

Ti=—0_1—y My 0y
71 <712<T3
2
(2-1)!
+ > o 11K
T1+T2=—3a_1—65 i=1

TI=—Q_1—) m;a;
7'2:—2(1,1—2 mjo

(1-1)!

+ 1

K_30_,-65

= > Qo = DN T (@i (Ag)s, )™

|
T1+70+713=—300_1—60 H i
’Ti:—afl—z mijQ
T1<12<73
- > dimV (Ag)s, dimV (Ay — 0)y,

T1+12=—3a_1—69
lefa,lemjaj
Te=—2a_1—-) mjay
+ dimV (3Ag — 26)_s3a_, —6s
= 14739 — 15533 + 2355

= 1561 (6.20)

Combining results from (6.19) and (6.20), we determine the multiplicity of —3a_; — 60.

1
dim(g—3a71—65) = B(_3O‘fl - 65) - 58(—071 - 26)
1

= 1561 — =(6
56 3()

= 1559
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In Table 6.16 through Table 6.21 to follow, we list some additional level 3 multiplicities,

which were calculated using our C# program for level 3 roots.

Table 6.16 Multiplicity table for —3a_1 — kd when 3 < k < 10

—3a_1 — ko | mult(—3a_1 — kd) | Frenkel Bound
k=3 2 2
k=4 32 481
k=5 258 17490
k=6 1561 326015
k=17 7638 4126070
k=8 32397 40210481
k=9 122760 323275512
k=10 425788 2238075315

Table 6.17 Multiplicity table for —3a_1 — ag — kd when 1 < k <10

—3a_1 —ag — ko | mult(—3a_1 — ap — kJ) | Frenkel Bound
k=1 0 1
k=2 1 1
k=3 14 110
k=4 135 5822
k=5 878 129512
k=6 4584 1831065
k=17 20287 19283830
k=38 79608 164363280
k=9 283746 1191580872
k=10 936048 7592053897
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Table 6.18 Multiplicity table for —3a_1 — ag — as — ké when 1 < k <10

—3a_1 —ag—ag — ko | mult(—3a_1 —ap — as — ko) | Frenkel Bound
k=1 0 1
k=2 0 1
k=3 9 65
k=4 99 3956
k=5 702 94235
k=6 3785 1386930
k=7 17169 15018300
k=28 68379 130673928
k=9 246656 962759294
k=10 820932 6214880700

Table 6.19 Multiplicity table for —3a_1 — g — 22 — k6 when 1 < k < 10

—3a_1 —ag —2a9 — ké | mult(—3a_1 — ap — 2a3 — kd) | Frenkel Bound
k=1 0 1
k=2 0 1
k=3 3 10
k=4 48 1165
k=5 378 35002
k=26 2210 589128
k=17 10537 6978730
k=28 43677 64854575
k=9 162389 502810130
k=10 554261 3381689157

Table 6.20 Multiplicity table for —3a_1 — ag — 2a1 — kéd when 1 < k < 10

—3a_1 —ag —2a1 — ko | mult(—3a_1 — apg — 21 — kd) | Frenkel Bound
k=1 0 1
k=2 0 1
k=3 2 2
k=4 32 481
k=5 258 17490
k=6 1559 326015
k=17 7637 4126070
k=28 32395 40210481
k=9 122755 323275512
k=10 425777 2238075315
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Table 6.21 Multiplicity table for —3a_1 — ag — a7 — ag — kd when 1 < k < 10

—3a_1 —ag—a3 —as —kd | mult(—3a_1 — ag — ag — as — kd) | Frenkel Bound
k=1 0 1
k=2 1 1
k=3 21 300
k=4 199 12230
k=5 1258 240840
k=26 6377 3157789
k=7 27551 31551450
k=28 105939 258508230
k=9 371252 1816715170
k=10 1207170 11285536125
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APPENDIX

A

DATA FOR By AND B3

Table A.1 Data from the level 2 crystal graph Bs

b (o), i ®), 220) | (200),1(0),220)) | (po(0), 01(0), 2 (0))
bo = (0,0,0,0,0,0) (b77,0,0) (2,0,0) (2,0,0)
=(0,0,0,0,0,1) (bo,0,0) (1,1,0) (3,0,0)
=(0,0,0,0,0,2) (b1,0,0) (0,2,0) (4,0,0)
=(0,0,0,0,1,0) (b27,b1,0) (1,0,3) (2,1,0)
=(0,0,0,0,1,1) (b3, b2,0) (0,1,3) (3,1,0)
=(0,0,0,0,2,0) (bag, bs, 0) (0,0,6) (2,2,0)
=(0,0,0,%,2,0) (bas, 0, b3) (1,0,2) (2,0,1)
=(0,0,0,2,2,1) (b6, 0, bs) 0,1,2) (3,0,1)
=(0,0,0,%,2,0) (baz, b7, bs) (0,0,5) (2,1,1)
=(0,0,0,%,1,0) (54,0, bs) (1,1,1) (2,0,2)
blo =(0,0,0,3,3,1) (b9, 0, b7) 0,2,1) (3,0,2)
b1 = (0,0,0, 3, 3,0) (bss, 0, bs) (0,0,4) (2,0,2)
bi2 = (0,0,0,2,0,0) (b3, 0, bg) (1,2,0) (2,0,3)
biz = (0,0,0,2,0,1) (b12,0, b1o) (0,3,0) (3,0,3)
b1a = (0,0,0,2,1,0) (b5, 0,b11) (0,1,3) (2,0,3)
bis = (0,0,0, %, 2,0) (b6, 0, b14) (0,2,2) (2,0,4)
bis = (0,0,0, %2, 1,0) (be7,0, b1s) (0,3,1) (2,0,5)
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Table A.1 (continued)

b1z = (0,0,0,4,0,0) (bes, 0, bie) (0,4,0) (2,0,6)
bis = (0,0,1,1,%,0) (bs3, bo, 0) (1,0,2) (1,1,0)
bio = (0,0, 1, é, §, 1) (b1s, b10,0) (0,1,2) (2,1,0)
bao = (0,0,1, ;7% 0) (bss, b19,0) (0,0,5) (1,2,0)
b21 = (0,0,1,1,0,0) (bsa, b12,0) (1,1,0) (1,1,0)
bas = (0,0,1,1,0,1) (b21, b13,0) (0,2,0) (2,1,0)
bos = (0,0,1,1,1,0) (br9, b14,0) (0,0,3) (1,1,0)
baa = (0,0,1,2,2,0) (bso, b1s, b23) (0,1,2) (1,1,1)
bas = (0,0,1, %, %,0) (bs1, bie, b2a) (0,2,1) (1,1,2)
b2 = (0,0,1,3,0,0) (bs2, bi7, bas) (0,3,0) (1,1,3)
b2y = (0,0,2,0,0,0) (bgs, b21,0) (2,0,3) (1,2,0)
b2s = (0,0,2,0,0,1) (b34, b22,0) (0,1,3) (1,2,0)
b2e = (0,0,2,0,1,0) (b3s, bag, 0) (1,0,6) (1,3,0)
bso = (0,0,2, %, 2,0) (0, b24,0) (0,0,4) (0,2,0)
bs1 = (0,0,2,3,3,0) (0, b2s, 0) (0,1,2) (0,2,0)
bs2 = (0,0,2,2,0,0) (0, bas, 0) (0,2,0) (0,2,0)
bss = (0,0,3, 1, %,0) (0,b31,0) (1,0,5) (0,3,0)
bsa = (0,0,3,1,0,0) (0, b32,0) (1,1,3) (0,3,0)
bss = (0,0,4,0,0,0) (0, b34,0) (2,0,6) (0,4,0)
bss = (0,%,3,%,3,0) (bss, 0, b1s) (1,0,1) (1,0,1)
bsr =(0,%,3,%,3,1) (b36,0, b19) (0,1,1) (2,0,1)
bss = (0,%,3,%,3,0) (bs1, bar, b2o) (0,0,4) (1,1,1)
bso = (0, %,3,1,0,0) (bs7,0, b36) (1,1,0) (1,0,2)
bao = (0, %, %, 1,0,1) (b3g, 0, b37) (0,2,0) (2,0,2)
bar = (0,%,3,1,1,0) (bso, 0, bs) (0,0,3) (1,0,2)
bz = (0,3,3,5,2,0) (be9, 0, ba1) (0,1,2) (1,0,3)
bazs =(0,%,3,%,%,0) (br2,0,baz) (0,2,1) (1,0,4)
baa = (0, %,%,3,0,0) (br3,0,baz) (0,3,0) (1,0,5)
bas = (0, %,3%,0,0,0) (bss, b3, bar) (2,0,2) (1,1,1)
bic = (0,%,3,0,0,1) (bs2, bao, bag) (0,1,2) (1,1,1)
baz = (0,%,3,0,1,0) (bs3, bas, bag) (1,0,5) (1,2,1)
bis =(0,%,5,2,2,0) (0, baz, bzo) (0,0,3) (0,1,1)
bio = (0,%,5,3,3,0) (0, baz, b31) (0,1,1) (0,1,1)
bso = (0, %,3%,2,0,0) (0, bas, bag) (0,2,0) (0,1,2)
bs1 = (0,3, %,%,3,0) (0, bag, b33) (1,0,4) (0,2,1)
bs2 = (0,3, %,1,0,0) (0, bso, bza) (1,1,2) (0,2,1)
bss = (0, %,%2,0,0,0) (0, bs2, bss) (2,0,5) (0,3,1)
bsa = (0,2,2,0,0,0) (bsg, 0, bas) (2,0,1) (1,0,2)
bss = (0,2,2,0,0,1) (b1, 0, bag) 0,1,1) (1,0,2)
bse = (0,2,2,0,1,0) (o2, bs5, bar) (1,0,4) (1,1,2)
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Table A.1 (continued)

bsr =(0,2,2,2,2,0) (0,0, b4s) (0,0,2) (0,0,2)
bss = (0,2,2,3,%,0) (0,0, bs7) (0,1,1) (0,0,3)
bso = (0,2,2,2,0,0) (0,0, bss) (0,2,0) (0,0,4)
beo = (0,2,2,%,1,0) (0, bss, bs1) (1,0,3) (0,1,2)
be1 = (0,2,2,1,0,0) (0, bsg, bs2) (1,1,1) (0,1,2)
be2 = (0,2,%,0,0,0) (0, be1, bs3) (2,0,4) (0,2,2)
bes = (0,1,0,0,0,0) (b9o, 0, bs4) (2,1,0) (1,0,3)
bes = (0,1,0,0,0,1) (b70, 0, bss) (0,2,0) (1,0,3)
bes = (0,1,0,0,1,0) (b71,0, bse) (1,0,3) (1,0,3)
bes = (0,1,0,2,2,0) (b74,0, bes) (1,1,2) (1,0,4)
ber = (0,1,0, %, %,0) (b75,0, bes) (1,2,1) (1,0,5)
bes = (0,1,0,2,0,0) (b76, 0, be7) (1,3,0) (1,0,6)
beo = (0,1,1,1,%,0) (0,0, b60) (1,0,2) (0,0,3)
b7o = (0,1,1,1,0,0) (0,0, bg1) (1,1,0) (0,0,3)
b1 = (0,1,2,0,0,0) (0, bro, be2) (2,0,3) (0,1,3)
b2 =(0,%,%,%,3,0) (0,0, bso) (1,1,1) (0,0,4)
brs = (0,5, %,1,0,0) (0,0,b72) (1,2,0) (0,0,5)
bra = (0,%,%,0,0,0) (0,0,b71) (2,0,2) (0,0,4)
brs = (0, g 2,0,0,0) (0,0,b74) (2,1,1) (0,0,5)
bze = (0,2,0,0,0,0) (0,0, brs) (2,2,0) (0,0,6)
bzr = (1,0,0,0,0,0) (bo1, bes, 0) (3,0,0) (1,1,0)
brs = (1,0,0,0,0,1) (0, be, 0) (0,1,0) (0,1,0)
bro = (1,0,0,0,1,0) (0, b8, 0) (1,0,3) (0,2,0)
bso = (1,0,0, 2, 2,0) (0, bes, bro) (1,0,2) (0,1,1)
bs1 = (1,0,0, 3, 3,0) (0, be7, bso) (1,1,1) (0,1,2)
bgz (1,0,0,2,0,0) (0, bes, bs1) (1,2,0) (0,1,3)
=(1,0,1,%,%,0) (0, bs1,0) (2,0,2) (0,2,0)
584 =(1,0,1,1,0,0) (0, bsa, 0) (2,1,0) (0,2,0)
bss = (1,0,2,0,0,0) (0, bss, 0) (3,0,3) (0,3,0)
bg6 (1,%,1,%,1,0) (0, br2, bss) (2,0,1) (0,1,1)
=(1,%,%,1,0,0) (0, brs, bse) (2,1,0) (0,1,2)
=(1,%,3%,0,0,0) (0, bgr, bgs) (3,0,2) 0,2,1)
=(1,%2,2,0,0,0) (0, brs, bss) (3,0,1) (0,1,2)
b90 (1,1,0,0,0,0) (0, bre, bgo) (3,1,0) (0,1,3)
91 = (2,0,0,0,0,0) (0, boo, 0) (4,0,0) (0,2,0)

115



APPENDIX A. DATA FOR By AND Bs

Table A.2 Data from the level 2 crystal graph Bs

b (o), F10), £20)) | (c0(6).21(6),220)) | (po(8), 01(0), (b))

bo = (0,0,0,0,0,0) (b273,0,0) (3,0,0) (3,0,0)
b1 = (0,0,0,0,0,1) (bo, 0, 0) (2,1,0) (4,0,0)
b2 = (0,0,0,0,0,2) (b1,0,0) (1,2,0) (5,0,0)
bs = (0,0,0,0,0,3) (b2,0,0) (0,3,0) (6,0,0)
by = (0,0,0,0,1,0) (bea, b1, 0) (2,0,3) (3,1,0)
bs = (0,0,0,0,1,1) (b4, b2,0) (1,1,3) (4,1,0)
bs = (0,0,0,0,1,2) (bs, b3,0) (0,2,3) (5,1,0)
bz = (0,0,0,0,2,0) (be7, bs, 0) (1,0,6) (3,2,0)
bs = (0,0,0,0,2,1) (b7, b6, 0) (0,1,6) (4,2,0)
by = (0,0,0,0,3,0) (beo, bs, 0) (0,0,9) (3,3,0)
bio = (0,0,0, 2, 2,0) (b124,0,b4) (2,0,2) (3,0,1)
b1 = (0,0,0,2,2,1) (10,0, bs) (1,1,2) (4,0,1)
biz = (0,0,0, 2, 2,2) (b11,0, bg) (0,2,2) (5,0,1)
bis = (0,0,0,2,3,0) (b127, b11,b7) (1,0,5) (3,1,1)
bia = (0,0,0,2,3,1) (b13, b1z, bs) (0,1,5) (4,1,1)
bis = (0,0,0,2,3,0) (b129, b14,bo) (0,0,8) (3,2,1)
bis = (0,0,0, 3%, 3,0) (b160, 0, b10) (2,1,1) (3,0,2)
biz =(0,0,0,3,5,1) (b16,0,b11) (1,2,1) (4,0,2)
bis = (0,0,0,3, 5,2) (b17,0,b12) (0,3,1) (5,0,2)
bio = (0,0,0,3,4,0) (b163, 0, b13) (1,0,4) (3,0,2)
b2o = (0,0,0,3,2,1) (b19,0,b14) (0,1,4) (4,0,2)
b21 = (0,0,0, §, 7,0) (bies, b2o, bis) (0,0,7) (3,1,2)
b22 = (0,0,0,2,0,0) (b19s, 0, b16) (2,2,0) (3,0,3)
b2s = (0,0,0,2,0,1) (b22,0,b17) (1,3,0) (4,0,3)
baa = (0,0,0,2,0,2) (b23, 0,b18) (0,4,0) (5,0,3)
bas = (0,0,0,2,1,0) (b199, 0, b19) (1,1,3) (3,0,3)
bas = (0,0,0,2,1,1) (b2s, 0, bao) (0,2,3) (4,0,3)
be7r = (0,0,0,2,2,0) (b201, 0, b21) (0,0,6) (3,0,3)
bas = (0,0,0, g, 3,0) (b202, 0, bas) (1,2,2) (3,0,4)
bao = (0,0,0, 8 5 2.1) (ba2s, 0, bag) (0,3,2) (4,0,4)
bso = (0,0,0,%,2,0) (b204, 0, ba7) (0,1,5) (3,0,4)
bs1 = (0,0,0, %2, 1,0) (b205, 0, b2g) (1,3,1) (3,0,5)
bs2 = (0,0,0, 42, 1,1) (b31,0, bag) (0,4,1) (4,0,5)
bss = (0,0,0, %2, 2,0) (b207,0, b3o) (0,2,4) (3,0,5)
bzs = (0,0,0,4,0,0) (b20s, 0, b31) (1,4,0) (3,0,6)
bss = (0,0,0,4,0,1) (b34,0, b32) (0,5,0) (4,0,6)
bss = (0,0,0,4,1,0) (b210, 0, b33) (0,3,3) (3,0,6)
bsr = (0,0,0, %, 2,0) (b211,0, bzs) (0,4,2) (3,0,7)
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Table A.2 (continued)

bss = (0,0,0, 4, 1,0) (b212,0, bs7) (0,5,1) (3,0,8)
bse = (0,0,0,6,0,0) (b213, 0, b3g) (0,6,0) (3,0,9)
bao = (0,0,1, 1, %,0) (b291, b16,0) (2,0,2) (2,1,0)
bar = (0,0,1,%,%,1) (bso, b17,0) (1,1,2) (3,1,0)
baz = (0,0,1,1,%,2) (ba1, b1s, 0) (0,2,2) (4,1,0)
baz = (0,0,1,1,3,0) (bs2, ba1, 0) (1,0,5) (2,2,0)
baa = (0,0,1,1,3,1) (ba3, baz, 0) (0,1,5) (3,2,0)
bas = (0,0,1,1,%,0) (bsa, baa, 0) (0,0,8) (2,3,0)
bss = (0,0,1,1,0,0) (b294, b2z, 0) (2,1,0) (2,1,0)
bsr = (0,0,1,1,0,1) (bas, ba3z, 0) (1,2,0) (3,1,0)
bss = (0,0,1,1,0,2) (barz, baa, 0) (0,3,0) (4,1,0)
bsg = (0,0,1,1,1,0) (b276, bas, 0) (1,0,3) (2,1,0)
bso = (0,0,1,1,1,1) (bag, bag, 0) (0,1,3) (3,1,0)
bs1 = (0,0,1,1,2,0) (ba7s, bso, 0) (0,0,6) (2,2,0)
bs2 = (0,0,1, 3, %,0) (279, b2g, bag) (1,1,2) (2,1,1)
bss = (0,0,1,3,%,1) (bs2, bag, bso) (0,2,2) (3,1,1)
bsa = (0,0,1, 3, 3,0) (bas1, bso, bs1) (0,0,5) (2,1,1)
bss = (0,0, 1, 27 £,0) (bas2, ba1, bs2) (1,2,1) (2,1,2)
bss = (0,0, 1, T 3 ;3. 1) (bs5, b32, bs3) (0,3,1) (3,1,2)
bs7 = (0,0,1, %, %,0) (baga, bas, bsa) (0,1,4) (2,1,2)
bss = (0,0,1,3,0,0) (b2ss, baa, bss) (1,3,0) (2,1,3)
bse = (0,0,1,3,0,1) (bss, b3s, bss) (0,4,0) (3,1,3)
bso = (0,0,1,3,1,0) (bag7, bas, bs7) (0,2,3) (2,1,3)
be1 = (0,0,1, %, 3,0) (bass, ba7, beo) (0,3,2) (2,1,4)
be2 = (0,0,1, 42, 1,0) (b2go, bas, be1) (0,4,1) (2,1,5)
bes = (0,0,1,5,0,0) (b290, b3y, be2) (0,5,0) (2,1,6)
bea = (0,0,2,0,0,0) (b300, bas, 0) (3,0,3) (2,2,0)
bes = (0,0,2,0,0,1) (bss, bar,0) (1,1,3) (2,2,0)
bes = (0,0,2,0,0,2) (bes, bas, 0) (0,2,3) (3,2,0)
ber = (0,0,2,0,1,0) (bo1, bes, 0) (2,0,6) (2,3,0)
bes = (0,0,2,0,1,1) (bg2, bes, 0) (0,1,6) (2,3,0)
b69 (0,0,2,0,2,0) (bo3, bes, 0) (1,0,9) (2,4,0)

=(0,0,2,2,2,0) (b303, bsz2,0) (1,0,4) (1,2,0)
b71 =(0,0,2,2,2,1) (bro, bs3,0) (0,1,4) (2,2,0)
b2 = (0,0,2,2,32,0) (boa, br1,0) (0,0,7) (1,3,0)
brs = (0,0,2, g, £,0) (b304, bs5,0) (1,1,2) (1,2,0)
bra = (0,0,2,5, 5, 1) (b73, bse, 0) (0,2,2) (2,2,0)
brs = (0,0,2,3,3,0) (b293, bs7,0) (0,0,5) (1,2,0)
bz = (0,0,2,2,0,0) (b305, bss, 0) (1,2,0) (1,2,0)
brr = (0,0,2,2,0,1) (b76, bsg, 0) (0,3,0) (2,2,0)
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Table A.2 (continued)

brs = (0,0,2,2,1,0) (b296, beo, 0) (0,1,3) (1,2,0)
bro = (0,0,2,%,%,0) (b2g7, be1, brs) (0,2,2) (1,2,1)
bso = (0,0,2, 42, 1,0) (b29s, be2, br9) (0,3,1) (1,2,2)
bs1 = (0,0,2,4,0,0) (b299, be3, bso) (0,4,0) (1,2,3)
bs2 = (0,0,3, 1, %,0) (b306, b73,0) (2,0,5) (1,3,0)
bss = (0,0,3,1,%,1) (bgs, br4,0) (0,1,5) (1,3,0)
bsa = (0,0,3,%,3,0) (bo7, b3, 0) (1,0,8) (1,4,0)
bss = (0,0,3,1,0,0) (b3o7, bz, 0) (2,1,3) (1,3,0)
bss = (0,0,3,1,0,1) (bos, br7,0) (0,2,3) (1,3,0)
bsr = (0,0,3,1,1,0) (0,b7s,0) (0,0,6) (0,3,0)
bss = (0,0,3,2,2,0) (0, b79,0) (0,1,4) (0,3,0)
bso = (0,0,3, Z,%,0) (0, bgo, 0) (0,2,2) (0,3,0)
bgo = (0,0,3,3,0,0) (0, bs1,0) (0,3,0) (0,3,0)
bo1 = (0,0,4,0,0,0) (b3os, bss, 0) (3,0,6) (1,4,0)
bo2 = (0,0,4,0,0,1) (bos, bss, 0) (1,1,6) (1,4,0)
bgs = (0,0,4,0,1,0) (bgg, bgz, 0) (2,0,9) (1,5,0)
bos = (0,0,4,2,2,0) (0, bss, 0) (1,0,7) (0,4,0)
bos = (0,0,4,3,%,0) (0, bsg, 0) (1,1,5) (0,4,0)
bos = (0,0,4,2,0,0) (0, bgo, 0) (1,2,3) (0,4,0)
bo7 = (0,0,5, 1, 3,0) (0, b5, 0) (2,0,8) (0,5,0)
bos = (0,0,5,1,0,0) (0, bys, 0) (2,1,6) (0,5,0)
by = (0,0,6,0,0,0) (0,bys, 0) (3,0,9) (0,6,0)
bioo = (0,3, 3,3,5,0) (b309, 0, bao) (2,0,1) (2,0,1)
b = (0,3,%,3,5,1) (b100, 0, ba1) (1,1,1) (3,0,1)
bz = (0,3,%,3,5,2) (b101,0, baz) (0,2,1) (4,0,1)
bz = (0,%,%,3,5,0) (b142, b101, ba3) (1,0,4) (2,1,1)
bioa=(0,%,%,5,5,1) (b103, b102, bas) (0,1,4) (3,1,1)
b1os = (0, %7 é, %, %, 0) (D144, b104, bas) (0,0,7) (2,2,1)
bios = (0, 3,%,1,0,0) (b312,0,b100) (2,1,0) (2,0,2)
bior = (0,1, %,1,0,1) (b106, 0, b101) (1,2,0) (3,0,2)
biog = (0, %, %, 1,0,2) (b107,0, b1o2) (0,3,0) (4,0,2)
bioe = (0,1, %,1,1,0) (b17s, 0, b103) (1,0,3) (2,0,2)
bio=(0,%,%,1,1,1) (b109, 0, b1o4) (0,1,3) (3,0,2)
bi11 = (0, %,% 1 2,0) (b180,b110,b105) (0,0,6) (2, 1,2)
bz =(0,3,%,2,2,0) (b214, 0, b109) (1,1,2) (2,0,3)
bz =(0,3,%,2,2,1) (b112,0, b110) (0,2,2) (3,0,3)
biia=(0,%,%,2,2,0) (b216,0, b111) (0,0,5) (2,0,3)
biis = (0,3, %, 2,£,0) (b232,0, b112) (1,2,1) (2,0,4)
b =(0,5,%,2,2,1) (b115,0, b113) (0,3,1) (3,0,4)
biir = (0,%,%,2,2,0) (b234,0, b114) (0,1,4) (2,0,4)
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bus = (0, 3, %,3,0,0) (b235,0,b115) (1,3,0) (2,0,5)
biio = (0,3, 3%,3,0,1) (b11s,0,b116) (0,4,0) (3,0,5)
bizo = (0, 1, %,3,1,0) (b237,0,b117) (0,2,3) (2,0,5)
bi21 = (0, %, %, %, %,0) (bass, 0, b120) (0,3,2) (2,0,6)
bz = (0,3, %,%,1,0) (b239,0, b121) (0,4,1) (2,0,7)
bizz = (0, 1, %,5,0,0) (b240,0, b122) (0,5,0) (2,0,8)
bi24 = (0, 3, 5,0,0,0) (b31s, b1os, bea) (3,0,2) (2,1,1)
bizs = (0, 1, 3,0,0,1) (b145, b1o7, bes) (1,1,2) (2,1,1)
bize = (0, 1, 3,0,0,2) (b125, b1os, beo) (0,2,2) (3,1,1)
bizr = (0,1, 3,0,1,0) (b151, b12s, ber) (2,0,5) (2,2,1)
bizs = (0,1, 3,0,1,1) (b152, b126, bes) (0,1,5) (2,2,1)
bizo = (0,1, 3,0,2,0) (b153, b12s, beo) (1,0,8) (2,3,1)
bizo = (0,%,%,%,%,0) (bs21, b112, b70) (1,0,3) (1,1,1)
bisi = (0,3,3,3,2,1) (b130, b113, b71) (0,1,3) (2,1,1)
b1s2 = (0, %, %, %, g, 0) (b1s4, b1s1, b72) (0,0,6) (1,2,1)
biss = (0,%,3,5,3,0) (b322, bi1s, br3) (1,1,1) (1,1,1)
bisa=(0,%,3.5,3,1) (b133, b116, b7a) (0,2,1) (2,1,1)
biss = (0,%,3,5,3,0) (b311,b117, brs) (0,0,4) (1,1,1)
biss = (0, 3, 3,2,0,0) (b323, b11s, b133) (1,2,0) (1,1,2)
bisr = (0, ,3,2,0,1) (b136, b119, D134) (0,3,0) (2,1,2)
biss = (0, 3, 3,2,1,0) (b314, b120, b135) (0,1,3) (1,1,2)
biso = (0,3, 3,5,2,0) (b315, b121, b13s) (0,2,2) (1,1,3)
bio = (0,3, 3, %,3,0) (b3ie, bi22, b139) (0,3,1) (1,1,4)
b = (0,1, 3,4,0,0) (bs17, b123, b140) (0,4,0) (1,1,5)
bia2 = (0, %, %, %, %, 0) (b324, bi3s, bs2) (2,0,4) (1,2,1)
bz =(0,%,%,%,5,1) (b155, b134, bs3) (0,1,4) (1,2,1)
buaa = (0,%,%,%,5,0) (b157, b1a3, bsa) (1,0,7) (1,3,1)
buas = (0,3, %,1,0,0) (b325, b13s, bss) (2,1,2) (1,2,1)
bue = (0,%,%,1,0,1) (b156, b137, bse) (0,2,2) (1,2,1)
bz = (0,%,%,1,1,0) (0, b13s, bs7) (0,0,5) (0,2,1)
bias = (0, %, %, %, %, 0) (0, b13g, bss) (0,1,3) (0,2,1)
biag = (0, %, %, %, %, 0) (0, b140, bsg) (0,2,1) (0,2,1)
biso = (0,1, %,3,0,0) (0,b141, b149) (0,3,0) (0,2,2)
bis1 = (O, %, 13*0, 0,0, 0) (b3267 b14s, bgl) (3, 0, 5) (1, 3, 1)
bis2 = (0, 5,%2,0,0,1) (b1ss, b1as, bo2) (1,1,5) (1,3,1)
biss = (0, 5,%2,0,1,0) (b1sg, bisz, bos) (2,0,8) (1,4,1)
bisa = (0,35,22,2,2,0) (0, b1ag, bos) (1,0,6) (0,3,1)
biss = (0,5,22,2,1,0) (0, b1ag, bos) (1,1,4) (0,3,1)
bise = (0, 3, %2,2,0,0) (0, b150, bgs) (1,2,2) (0,3,1)
bist = (0, 3,22, %,%,0) (0, b155, bor) (2,0,7) (0,4,1)
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biss = (0, 3,%2,1,0,0) (0, b156, bos) (2,1,5) (0,4,1)
biso = (0, 3, 22,0,0,0) (0, b1ss, bog) (3,0,8) (0,5,1)
bico = (0, 2, 2,0,0,0) (b327,0, b124) (3,0,1) (2,0,2)
bt = (0,%,2,0,0,1) (b1s1,0, b125) (1,1,1) (2,0,2)
bis2 = (0,2, 2,0,0,2) (b161, 0, b126) (0,2,1) (3,0,2)
bies = (0, %,2,0,1,0) (b1s7, b161, b127) (2,0,4) (2,1,2)
biea = (0,%,2,0,1,1) (b1ss, bis2, b12s) (0,1,4) (2,1,2)
bies = (0, 2, 2,0,2,0) (b1s9, b16a, b129) (1,0,7) (2,2,2)
biee = (0,2,2,2,2,0) (b330,0, b130) (1,0,2) (1,0,2)
bier = (0,2,2,2,2,1) (b166, 0, b131) 0,1,2) (2,0,2)
bies = (0,2,2,2,5,0) (b190, bie7, b132) (0,0,5) (1,1,2)
bieo = (0,2,2,%,1,0) (b331, 0, biss) (1,1,1) (1,0,3)
biro=(0,%2,2,2,41) (b169, 0, b167) 0,2,1) (2,0,3)
birn=(0,2,2,%,%,0) (b226, 0, biss) (0,0,4) (1,0,3)
birz = (0, %,2,2,0,0) (b332, 0, bigo) (1,2,0) (1,0,4)
bizs = (0,2,2,2,0,1) (b172,0, b170) (0,3,0) (2,0,4)
biza =(0,2,2,2,1,0) (b244,0, b171) (0,1,3) (1,0,4)
birs = (0,2,2,%,2,0) (b253,0, b174) (0,2,2) (1,0,5)
bize = (0,2,2,2,%,0) (b254,0,b175) (0,3,1) (1,0,6)
birr = (0,2, 2,4,0,0) (b255,0, b176) (0,4,0) (1,0,7)
bizs = (0,2,3,%,%,0) (bass, bieg, bra2) (2,0,3) (1,1,2)
biro =(0,2,3,%,%,1) (b191, b170, b143) (0,1,3) (1,1,2)
biso = (0,%,3,%,5,0) (b1os, bi7g, bras) (1,0,6) (1,2,2)
bisi = (0,%,3,1,0,0) (b334, b172, b145) (2,1,1) (1,1,2)
bis2 = (0,%,5,1,0,1) (b192, b173, b146) (0,2,1) (1,1,2)
biss = (0,%,3,1,1,0) (0, b174, b1a7) (0,0,4) (0,1,2)
bisa = (0,2,3,2,2,0) (0,b175, b1as) 0,1,2) (0,1,2)
biss = (0,2,5,1,1.0) (0, b176, bisa) (0,2,1) (0,1,3)
biss = (0, 2, 3,3,0,0) (0, b177, b1ss) (0,3,0) (0,1,4)
bist = (0, 2, %,0,0,0) (b33s, bis1, bis1) (3,0,4) (1,2,2)
biss = (0, %,%,0,0,1) (b194, bisz, bis2) (1,1,4) (1,2,2)
biso = (0,2, %,0,1,0) (b19s, biss, b1s3) (2,0,7) (1,3,2)
biso = (0,%,%,2,2,0) (0, b184, b154) (1,0,5) (0,2,2)
big1 = (0,%,%,%,%,0) (0, biss, biss) (1,1,3) (0,2,2)
bioz = (0, 2,5,2,0,0) (0, bise, biss) (1,2,1) (0,2,2)
bios = (0,2, 4, 3,%,0) (0,b191, b157) (2,0,6) (0,3,2)
bioa = (0,2,11,1,0,0) (0,b192, b1ss) (2,1,4) (0,3,2)
bios = (0, 2,%%,0,0,0) (0,b194, b159) (3,0,7) (0,4,2)
bigs = (0,1,0,0,0,0) (b336, 0, b1eo) (3,1,0) (2,0,3)
bigr = (0,1,0,0,0,1) (b217,0, bie1) (1,2,0) (2,0,3)
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bigs = (0,1,0,0,0,2) (b197,0, bis2) (0,3,0) (3,0,3)
bigo = (0,1,0,0,1,0) (b223, 0, b1e3) (2,0,3) (2,0,3)
baoo = (0,1,0,0,1,1) (b224, 0, b16a) (0,1,3) (2,0,3)
bao1 = (0,1,0,0,2,0) (b225, b200, b165) (1,0,6) (2,1,3)
bao2 = (0,1,0, 2, 2,0) (b241, 0, b1gg) (2,1,2) (2,0,4)
baos = (0,1,0,2,2,1) (b242, 0, bago) (0,2,2) (2,0,4)
baos = (0,1,0,2,2,0) (b243, 0, b2o1) (1,0,5) (2,0,4)
baos = (0,1,0, 2, 1,0) (bas0, 0, bao2) (2,2,1) (2,0,5)
baos = (0,1,0, 2,4, 1) (b251, 0, bao3) (0,3,1) (2,0,5)
baor = (0,1,0, 4, %,0) (b2s2,0, b2o4) (1,1,4) (2,0,5)
b2os = (0,1,0,2,0,0) (b2s9, 0, b20s) (2,3,0) (2,0,6)
b2oo = (0,1,0,2,0,1) (b260, 0, b206) (0,4,0) (2,0,6)
b210 = (0,1,0,2,1,0) (b261,0, b2o7) (1,2,3) (2,0,6)
ba11 = (0,1,0,%,2,0) (b262, 0, b210) (1,3,2) (2,0,7)
ba12 = (0,1,0, %, £,0) (b263,0, b211) (1,4,1) (2,0,8)
ba13 = (0,1,0,4,0,0) (b264, 0, b212) (1,5,0) (2,0,9)
ba1a = (0,1,1, %, %,0) (b342,0, b17s) (2,0,2) (1,0,3)
bais = (0,1,1, 3, 3,1) (b227,0,b179) 0,1,2) (1,0,3)
bais = (0,1,1, %, 3,0) (b229, ba1s, b1so) (1,0,5) (1,1,3)
ba17 = (0,1,1,1,0,0) (b343,0, b1s1) (2,1,0) (1,0,3)
ba1s = (0,1,1,1,0,1) (b22s, 0, biga) (0,2,0) (1,0,3)
b219 = (0,1,1,1,1,0) (0,0, b1s3) (0,0,3) (0,0,3)
bazo = (0,1,1,2,2,0) (0,0,b219) (0,1,2) (0,0,4)
ba21 = (0,1,1, ;, ;,0) (0,0, b220) (0,2,1) (0,0,5)
ba22 = (0,1,1,3,0,0) (0,0, b221) (0,3,0) (0,0,6)
baaz = (0,1,2,0,0,0) (b3a4, bo17, b1s7) (3,0,3) (1,1,3)
baas = (0,1,2,0,0,1) (b230, ba1s, biss) (1,1,3) (1,1,3)
baas = (0,1,2,0, 1,0) (b231, baoa, bisg) (2,0,6) (1,2,3)
bazs = (0,1,2, 2, 3, 0) (0, baao, b19o) (1,0,4) (0,1,3)
baar = (0,1,2,2,1,0) (0, baa1, bio1) (1,1,2) (0,1,3)
baos = (0,1,2,2,0,0) (0, ba2a, b1ga) (1,2,0) (0,1,3)
baze = (0,1,3,%,1,0) (0, baa7, b1g3) (2,0,5) (0,2,3)
b2zo = (0,1,3,1,0,0) (0, b22s, b194) (2,1,3) (0,2,3)
baz1 = (0,1,4,0,0,0) (0, b230, b19s) (3,0,6) (0,3,3)
basz = (0,3,%,3,3,0) (345, 0, b214) (2,1,1) (1,0,4)
bass = (0,3,%,3,3,1) (b24s, 0, b215) (0,2,1) (1,0,4)
basa = (0,3,%,1,2,0) (b247,0, b216) (1,0,4) (1,0,4)
bass = (0,3, %,1,0,0) (b346, 0, b2z2) (2,2,0) (1,0,5)
bass = (0,3,%,1,0,1) (b246, 0, b233) (0,3,0) (1,0,5)
basr = (0,3, %,1,1,0) (b2s6, 0, b23a) (1,1,3) (1,0,5)
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Table A.2 (continued)

bass = (0,3, 3,2,2,0) (b265,0, b2s7) (1,2,2) (1,0,6)
bage = (0, %, %, %, %, 0) (b2es, 0, bass) (1,3,1) (1,0,7)
baso = (0, 5, %,3,0,0) (b269, 0, b23g) (1,4,0) (1,0,8)
baa1 = (0, 3, 3,0,0,0) (b3a7, 0, ba2s) (3,0,2) (1,0,4)
baaz = (0, %, 3,0,0,1) (b24s, 0, ba2s) (1,1,2) (1,0,4)
baaz = (0, %, 3,0,1,0) (b249, b2a2, ba2s) (2,0,5) (1,1,4)
boas = (0,5, 3,2,2,0) (0,0, bazs) (1,0,3) (0,0,4)
bass = (0,5, 3,3, 5,0) (0,0, baar) (1,1,1) (0,0,4)
bass = (0, 5, 3,2,0,0) (0,0, bass) (1,2,0) (0,0,5)
baar = (0,%,%,%,%,0) (0, baus, bazg) (2,0,4) (0,1,4)
bass = (0,3, %,1,0,0) (0, baae, b2so) (2,1,2) (0,1,4)
baso = (0, 3, 12,0,0,0) (0, baas, baz1) (3,0,5) (0,2,4)
baso = (0,2, 2,0,0,0) (b34s, 0, b2a1) (3,1,1) (1,0,5)
bas1 = (0,2,2,0,0,1) (b2s7,0, boao) (1,2,1) (1,0,5)
bas2 = (0,2,2,0,1,0) (b2ss, 0, baas) (2,0,4) (1,0,5)
bass = (0,2,2,2,2.0) (0,0, b244) (1,1,2) (0,0,5)
basa = (0,2,2,%,£,0) (0,0, bass) (1,2,1) (0,0,6)
bass = (0, 2, 2,2,0,0) (0,0, b254) (1,3,0) (0,0,7)
base = (0,2,2,%,%,0) (0,0, b2a7) (2,0,3) (0,0,5)
bas7 = (0, 2,2,1,0,0) (0,0, baas) (2,1,1) (0,0,5)
bass = (0, 2, %5,0,0,0) (0, bas7, b2ag) (3,0,4) (0,1,5)
baso = (0,2,0,0,0,0) (349, 0, b2so) (3,2,0) (1,0,6)
baso = (0,2,0,0,0,1) (b266, 0, bas1) (1,3,0) (1,0,6)
bas1 = (0,2,0, 0,1,0) (b267, 0, basa) (2,1,3) (1,0,6)
basz = (0,2,0, 2 5 3, 0) (b270, 0, bag1) (2,2,2) (1,0,7)
bass = (0,2,0,2,1,0) (b271, 0, baga) (2,3,1) (1,0,8)
bass = (0,2,0,2,0,0) (b272, 0, bag3) (2,4,0) (1,0,9)
baes = (0,2,1, 3, 1,0) (0,0, base) (2,1,2) (0,0,6)
bass = (0,2,1,1,0,0) (0,0, basy) (2,2,0) (0,0,6)
basr = (0,2,2,0,0,0) (0,0, bass) (3,0,3) (0,0, 6)
bass = (0,§ )5 § § ,0) (0,0, bags) (2,2,1) (0,0,7)
baco = (0, Z,4,1,0,0) (0,0, bags) (2,3,0) (0,0,8)
baro = (0, £, 3,0,0,0) (0,0, basr) (3,1,2) (0,0,7)
bar1 = (0, %,2,0,0,0) (0,0, baro) (3,2,1) (0,0,8)
ba72 = (0,3,0,0,0,0) (0,0, ba71) (3,3,0) (0,0,9)
b273 = (1,0,0,0,0,0) (b350, b19s, 0) (4,0,0) (2,1,0)
ba7a = (1,0,0,0,0,1) (b3s1, big7, 0) (1,1,0) (1,1,0)
ba7s = (1,0,0,0,0,2) (b274, b1gs, 0) (0,2,0) (2,1,0)
ba76 = (1,0,0,0,1,0) (b3s2, bara, 0) (2,0,3) (1,2,0)
be77 = (1,0,0,0,1,1) (b301, bars, 0) (0,1,3) (1,2,0)
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Table A.2 (continued)

bazs = (1,0,0,0,2,0) (b302, bar7, 0) (1,0,6) (1,3,0)
ba7e = (1,0,0, g, §,0) (b3s3, b2o2, bave) (2,0,2) (1,1,1)
baso = (1,0,0, 2, 2,1) (b319, b2os, ba77) (0,1,2) (1,1,1)
bas1 = (1,0,0, 2, 2,0) (b320, b2so, ba7s) (1,0,5) (1,2,1)
bas2 = (1,0,0, 2, 1,0) (b354, b205, b279) (2,1,1) (1,1,2)
bass = (1,0,0, 2, 1,1) (b32s, b206, b2s0) (0,2,1) (1,1,2)
bass = (1,0,0, 2, 5,0) (bs29, b2o7, bas1) (1,0,4) (1,1,2)
bass = (1,0,0,2,0,0) (b3s5, b2os, b2s2) (2,2,0) (1,1,3)
bags = (1,0,0,2,0,1) (b337, baoo, b2s3) (0,3,0) (1,1,3)
bas7 = (1,0,0,2,1,0) (bsss, ba1o, basa) (1,1,3) (1,1,3)
bass = (1,0,0, 3, 2,0) (b339, ba11, bagr) (1,2,2) (1,1,4)
baso = (1,0,0,%2, £,0) (b340, b212, bass) (1,3,1) (1,1,5)
b290 = (1,0,0,4,0,0) (b3a1, b213, basg) (1,4,0) (1,1,6)
bao1 = (1,0,1, 5, %,0) (b3s6, b2s2, 0) (3,0,2) (1,2,0)
baoz = (1,0,1, 5, %,1) (0, bass, 0) (0,1,2) (0,2,0)
baos = (1,0,1, %, 3,0) (0, bag2, 0) (1,0,5) (0,3,0)
bags = (1,0,1,1,0,0) (b3s7, bass, 0) (3,1,0) (1,2,0)
bags = (1,0,1,1,0,1) (0, base, 0) (0,2,0) (0,2,0)
bags = (1,0,1,1,1,0) (0, bagr, 0) (1,0,3) (0,2,0)
bao7 = (1,0,1,2,2,0) (0, bass, b2gs) (1,1,2) (0,2,1)
baos = (1,0,1,%,%,0) (0, bagg, bao7) (1,2,1) (0,2,2)
bage = (1,0,1,3,0,0) (0, b2go, ba2gs) (1,3,0) (0,2,3)
bsoo = (1,0,2,0,0,0) (bsss, baoa, 0) (4,0,3) (1,3,0)
bso1 = (1,0,2,0,0,1) (0, b2gs, 0) (1,1,3) (0,3,0)
bsoz = (1,0,2 0,1,0) (0, b3o1, 0) (2,0,6) (0,4,0)
bsos = (1,0,2,2,2,0) (0, bagr, 0) (2,0,4) (0,3,0)
bsos = (1,0,2,%2,1,0) (0, bags, 0) (2,1,2) (0,3,0)
bsos = (1,0,2,2,0,0) (0, ba2gg, 0) (2,2,0) (0,3,0)
bsos = (1,0,3, 3, 1,0) (0, b304,0) (3,0,5) (0,4,0)
bsor = (1,0,3,1,0,0) (0, b30s,0) (3,1,3) (0,4,0)
baos = (1,0,4,0,0,0) (0, b3o7,0) (4,0,6) (0,5,0)
bsoo = (1,%,%,%,%,0) (b3s9, bazz, bao1) (3,0,1) (1,1,1)
bsio=(1,%,%,5,3,1) (0, baas, baga) 0,1,1) (0,1,1)
bsin = (1,%,4,%,5,0) (0, b310, b2g3) (1,0,4) (0,2,1)
bs12 = (1,3,%,1,0,0) (b360, b23s, b3og) (3,1,0) (1,1,2)
bsiz = (1,3,%,1,0,1) (0, base, b310) (0,2,0) (0,1,2)
bsia = (1,%,%,1,1,0) (0, basz, b311) (1,0,3) (0,1,2)
bais = (1,%,%,2,2,0) (0, bass, b314) (1,1,2) (0,1,3)
bsie = (1,%,%,%,2,0) (0, basg, b31s) (1,2,1) (0,1,4)
bsir = (1, %, %,3,0,0) (0, b240, b316) (1,3,0) (0,1,5)
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Table A.2 (continued)

bs1s = (1, %, %,07 0,0) (b3e1, bs12, b300) (4,0,2) (1,2,1)
bsio = (1,1, 3,0,0,1) (0, b313, b3o1) (1,1,2) (0,2,1)
bs20 = (1,1, 3,0,1,0) (0, b319, b3o2) (2,0,5) (0,3,1)
b321 = (L%,%,%,%,O) (0, bs1s, b3o3) (2,0,3) (0,2,1)
bs22 = (1,5,5,5,5:0) (0, b316, b3o4) (2,1,1) (0,2,1)
bszs = (1, 3,35,2,0,0) (0, b317, baaz) (2,2,0) (0,2,2)
bsoa = (1,5, %,%,%,0) (0, b2z, bzos) (3,0,4) (0,3,1)
bsas = (1,3, %,1,0,0) (0, b323, bsor) (3,1,2) (0,3,1)
bs2e = (1,%,22,0,0,0) (0, b32s, baos) (4,0,5) (0,4,1)
bsar = (1, %, %,O, 0,0) (bse2, b2so, b31s) (4,0,1) (1,1,2)
bsas = (1,2,2,0,0,1) (0, b251, b319) (1,1,1) (0,1,2)
bs2o = (1,2,2,0,1,0) (0, bsas, bs2o) (2,0,4) (0,2,2)
bsso = (1,2,2,2,2,0) (0, bass, bs21) (2,0,2) (0,1,2)
bss1 = (1,2,2,5,5,0) (0, b2sa, bazo) (2,1,1) (0,1,3)
bazz = (1, %, %, 2,0,0) (0, b255, baz1) (2,2,0) (0,1,4)
bszs = (1,%,3,%,%,0) (0, b331, b32a) (3,0,3) (0,2,2)
bssa = (1,2,5,1,0,0) (0, bazz, bazs) (3,1,1) (0,2,2)
bsss = (1,2, %5,0,0,0) (0, b334, b326) (4,0,4) (0,3,2)
bazs = (1,1,0,0,0,0) (b3e3, base, b3ar) (4,1,0) (1,1,3)
basr = (1,1,0,0,0, 1) (0, baso, baas) (1,2,0) (0,1,3)
bazs = (1,1,0,0,1,0) (0, bae1, b329) (2,0,3) (0,1,3)
bsso = (1,1,0,2,2,0) (0, bae2, b33s) (2,1,2) (0,1,4)
bsao = (1,1,0, 3, 3,0) (0, bag3, b3zg) (2,2,1) (0,1,5)
bza1 = (1,1,0,2,0,0) (0, basa, bzao) (2,3,0) (0,1,6)
bsaz = (1,1,1,3,1,0) (0, bags, bas3) (3,0,2) (0,1,3)
bsaz = (1,1,1,1,0,0) (0, base., baza) (3,1,0) (0,1,3)
bsas = (1,1,2,0,0,0) (0, b3az, bazs) (4,0,3) 0,2.3)
bsas = (1,3,%,3,3,0) (0, bass, b3a2) (3,1,1) (0,1,4)
bsas = (1,3, %,1,0,0) (0, baeo, b3as) (3,2,0) (0,1,5)
bsar = (1,3, 35,0,0,0) (0, b270, b3as) (4,0,2) (0,1,4)
bsas = (1,2,2,0,0,0) (0, bar1, b3ar) (4,1,1) (0,1,5)
bzao = (1,2,0,0,0,0) (0, barz, baas) (4,2,0) (0,1,6)
bsso = (2,0,0,0,0,0) (bsea, bsse, 0) (5,0,0) (1,2,0)
bss1 = (2,0,0,0,0,1) (0, b337,0) (2,1,0) (0,2,0)
bss2 = (2,0,0,0,1,0) (0,b351,0) (3,0,3) (0,3,0)
bsss = (2,0,0,%,2,0) (0, b3g, basa) (3,0,2) (0,2,1)
bssa = (2,0,0, 3, %,0) (0, b340, b3s3) (3,1,1) (0,2,2)
bsss = (2,0,0,2, 0 0) (0, b3a1, b3sa) (3,2,0) (0,2,3)
bsse = (2,0,1, 3, 3,0) (0, b3s4,0) (4,0,2) (0,3,0)
bss7 = (2,0,1,1,0,0) (0, bss, 0) (4,1,0) (0,3,0)
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Table A.2 (continued)

bsss = (2,0,2,0,0,0) (0, b3s7,0) (5,0,3) (0,4,0)
bsso = (2,3,%,3,5,0) (0, b3as, base) (4,0,1) (0,2,1)
bsco = (2,1, %,1,0,0) (0, bsae, b3so) (4,1,0) (0,2,2)
bse1 = (2, 1, 3,0,0,0) (0, b3so, bass) (5,0,2) (0,3,1)
bse2 = (2, 2,2,0,0,0) (0, b3as, bas1) (5,0,1) (0,2,2)
bass = (2,1,0,0,0,0) (0, b3ag, b3s2) (5,1,0) (0,2,3)
bsss = (3,0,0,0,0,0) (0, b33, 0) (6,0,0) (0,3,0)
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