ABSTRACT

WHITE, CHARLES EDNARD CAUTHEN. Manufacturing andtructural Characterization
of Flexible andDualMatrix Deployable Composites for Space Application. (Under the
direction ofDr. Mark Pankow.

The field of high strain composite (HSC) structures undergoing large deformations
have interest with regard to deployable space structures; such as truss members, solar arrays
and antenna reflectors. In an area dominated by metallictstes and mechanical hinges,
composite alternatives have the ability to lower cost and complexity of systems through
decreased weight and reduced number of moving compofentsal composite design and
laminate theory focus on relatively thick stiff ttures incapable of handling high strain
levels. SeHdeployable structures exploitdifferent design approach. Theternally stored
strain energyleveloped when rolling or folding a structusereleased as the structumgsen
helping toaid in low erergy deploymentThis research seeksnmanufacture andharacterize
thin highly elastic laminates as they are incorpeanto deployable structures. Manufacturing
of a HSC CubeSat boom was developed to allow the fabrication of a 12 foot long, clesed cro
section boom to be cured in a single cure cySkecondary elastic matrix systems are also
investigated to create a deahktrix laminate where the secondary matrix can respond as a
springhinge.Origami folding architectureshich have inspired recenbhitions for complex
deployment and packagiraye then usetb demonstratenore complexmanufacturingand
application of the springinge with intent to prove composites forext generation space
deployablesJust as standard composite design fails toigrstfuctural responses of thin and
hyper elastic matrix laminatestasidard test methods do not accurately chainaeteheir
mechanical properties. Aodified platen test methaglasinvestigated taletermire the large
deformationbending stiffnes®f thin HSC laminatesThe epoxyinfused coupons behaved
very constantly whileand the silicone infused coupons exhibited more variation in
measurement. The flattening stiffness of the HSC CubeSat boom was also tested before
beginning to draw a correlatioretween physical test methods and finite element analysis
(FEA) predictions.
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Chapter 171 Introduction

1.17 Background

Space structuresre volumetrically limited by the cargo capacity of their launch vehicle.
Satellites, antenna, and solar arrayisich deploy b many timedarger thantheir launch
vehiclerequirecomplex packagingr secondaryassembly once in orbit. Historically this has
been solved by mechanical hingesmodular designs. For efficiency, it is advantageous to
launchin the smallespackagingvolumerelative to the deployed sizEngineering research
into structural packaging efficiencies and deployment ousthhas becomerucial to send
larger structures into and beyond orbit without relying on larger and larger launch vehicles.
The focus of tis study will investigate fiber reforced composite structureapable of large
deformation and strajrthusenaling structures to change shapapporing next generation
space deployables
Mechanical hinges are a costly method duth&increased number of high precision
moving parts antheir associate@nass.The hinge masalsocontributesadynamicchallenge
asit is often swungutward from the center of mag8lternative deployment methods have
been developed which utilize metallape springs si mi | ar t o a cato pent er
elastically actuate simple hingedthough mechanical performance and analytical predictions
of these metallic hinges are well understood there are two major drawbacks. First, they are
relatively hevy whencomparingstrength to weight ratiosith FRP composites. Second, they
are thermally expansive and exhibit high deformations when exposed to a thermal §tadient
High strain composites (HS@¥e a different design approach than Classical Laminat
Theory (CLT) suggests and these thin structin@se been proposed as a light weight and
thermally stable solution to replace metallic hingegghly flexible and ultra-thin fiber
reinforced substratesdlow folding and storage aftructuresvhile proving the ability to assist
low energy deploymerthroughexploitingelasticallystored strain energ$everal esearchrs
havebegun to show the possibilitie$ implementing such structureklowever high strain
composite materials kia yet to be flown on a mission and extensive material characterization

is still needed before that will happen.



Static loading and folding athin composite tape spring® measure the bending
stiffnessof a hinge habeen modeled using FEdftwareandverified throughtestingphysical
prototypeq2]. Furtherinvestigations haveonstrainedwo oppositely opposing tape springs
in parallelto act similar to a closed form cross section; creating a hingenertased stiffness
and torsional rigidity{1]. Other variations have also showncreased stiffness with good
repeatability inaccuratedeployments Cutting twvo oval sectiondrom a closed form tube
allows flattening and folding of the slotted regianth the remaining materialctingas two
parallel ape springsFigure 1[3]. Repeatedleploymentof this continuoudiber structure

showed little to no hysteresis shape or stiffneggl].

= —

HGUREL. FOLDING OELOSEFORMCOMPOSITHAPESPRINGHINGE[3]

Another use of HSC shells was made through the developmenhiofe usedor a
prototype desigmf a large aperture space telescaopiégh combinedoptical barrel assembly
(OBA) and secondary mirror support system (SM38js combination of what is usuwliwo
separate structurggovidesoptical and thermal protectidn the primary mirroas well as an
enclosed support of the secondary mirtorshield micro-debris Folding panel sections
connected ta@ustom springs made from stackscofved compositehels enabled this dual
structuraldesign Figure 2 The spring hingeswust bemanudly flattenedbutbehave as agid

members when deploygproviding increasedernding and axial stiffness for thehroud[5].



FIGURE2. SPRINGHINGE MADE FRORURVEDCOMPOSITEHELL$5]

Another HSC concepteveloped by GermaaerospaceompanyDLR was theirdesign
for a deployable boorwhich could tension a set of solar safsgure 3 These booms used
ultra-thin laminates to form alosedcrosssection capable giroviding adequatdending and
torsional stiffnessn the deployedstate could alsobe pressed flaaind therrolled around a
central hub for storage and laun@j. Strain levels of the outer surfaaee developed both
whenflattening and rollingout are keptvithin atolerablerange due to theltra-thin, 0.1mm,
shell thickness. Thenaximum curvatureor minimum radiughat can be achieved by HSC

laminais determined by the tensile strain limit of the material seen on the exterior curved face.

p—

g—

HGURE3. OMEGASHAPEDBOOM BYDLR[6]

An alteration to the HSC concept using thin laminates is the infusion of a low modulus, high
straining matrix material such as an elastomer or silicone rubber. These flexible matrices allow
extreme laminate bending without danmagthe fibers. First concepts of this application were

seen in impact resistant fiber composite research whererggdelastomer matrices allowed



impulse deformations to occur without overstressing or cracking the matrigh in part
preserved the fiber integrify]. Further application was seen in the skin design of a morphing
wing where large deformations and relatively small curvatures were attained through use of a
carbon fiber laminate infused with a semi rigid polyurethane mgg}ixThe fiber reinforced
wing <kins were allowed to conform to these large bending deformations withourtefail
because the matrix remainigdits elastic region and transferred little stress to the fibers.
Applications in the space industry have also investigated high straining, Idwiuso
matrix materials through carbon fiber reinforced silicone (CA&S8)nateshut have yet to fly
on any missionin the design of a large deployable reflector (LDR) receiving dish for
communication satellitesa novel silicone infusediexible carbon fber lamina was
investigated Figure 4[9]. The shell membrane reflecting surface of this satellite needed to
exhibit, under certain tensile loading conditions, adequate bending stiffness to hold a double
curved geometry but remain pliable enough to fokd lan umbrella. This behavior was
successfully achieved with high dimensional stability through use of a flexible CFRS

membrane.

— -

FHGURH. CARBONHBERREINFORCESLICONECFRPREFLECTINBURFACHES]

Others have looked not only at applications of CFRS but into the mechanics of such
structures taunderstand and predict thg@erformance This type of research is necessary
before any mission would be able to implement such technololggs beermbserve when
bending CFRS to small curvatures that the compression side of a lamifrae to exhibit
micro-buckleswhich act as stress relieving mechanigi@]. Predictions of buckled fiber
amplitudes and wavelengthvebeen investigatedlong with thehygderesis effecof bending



stiffnessdue to cyclicloading [11]. Additional research has predicted the extentiloérf
failuresassociated witharge deformation$12]. As seen in many of these investigations,
characterization of hyper elastic matriag#iffer from standardCLT just asultrathin HSC
laminaalso differfrom theory

Dualmatrix composites ar¢hen another derivation from HSC and hyper elastic
composite work. By applying two distinctly different stiffness matrices, one of which is hyper
elastic, into a single laminate it is possible to create regions which can log fodehedto very
small radiusof curvature.ln applying the hyper elastic matrix to precise areas within the
laminate it igpossible to creatéetailed architectusof spring hingesFigure 5 These regions
were createdavithin a continuous fiber structure Igcally infusing siliconeinto a larger and
stiffer laminateto create an antenna concept for CubeSat sate]lils Narrow regions
extending the length and spaced radially about the cone shaped receiver were infused with a
UV cured silicone rubber. The silicone regions allowesreceiver to be folded, flattened and

stored for launch

Deployed Flattened Z -folded
FIGURES. FOIDINGSEQUENCE dBUALI-MATRIXQUBESAT ANTENNA13]



A subset of engineering which has emerged in recent years and av@kmatrix
laminates have application is in the utilization of origami fold techniques. Origami principals
are inspiring efficient packaging and helping to create semi rigid structures that are magnitudes
stiffer than their construction material. The art of origas@iathin paper which remains pliable
when doubled or tripled in thickness. As thickness increases it becomes necessary to account
for the expanded volume associated with each fold region. The hinge and rigid regions of thick
origami then need to be adjudtéor the expanding fold volumé&his folding problemwas
investigatedthrough mathematical developmemtf a Wbldas ders o0d4].One arr ay
design consideration for suppog solar cell collectors, was the need for the -fmiding
regions to remairigid or semi rigid. This is to prevent the cells attached tefotuting regions
from breaking or cracking during deployment. This additional consideration is known as rigid
foldable origami. A 1/20th scale model of this array was constructed using skeatioe
materials Figure 6 Material selection for flight hardware is omd the next step in
implementing this technology and also an area that flexible anehthtak composites could

support.

.

FIGURES. MODIFIEDORIGAMIFLASHERVIODELSOLARARRAYCONCEP14]



It has been shown that maagplicationsuisingHSCand hyper elastic matrices provide
opportunity for deployment without the need of mechanical hinges or moving padgk. D
matrix compositefiave also shown alternative methods for packaging of complex structures
using origami fold techniques. Tmplement thes®w mass, high stiffness and dimensidyal
stable materials into next generation space structr@aoed research intmanufactumg

andmaterial characterizatias required before wide scale implementations can be made.

1.27 ResearclObjectives

Understanding of thin HSC will be made through fabricasiod testingf a deployble boom

for CubeSat missiondlovel infusion methods for duahatrix laminates wilklsobe expanded

as nonproprietary and out of autoclave methods are developed for accurately infusing a
complex duaimatrix architecturavithin a larger laminatéDualmatrix structures will then be
combined with origami folding patterns to create deployable structasro-mechanical
characterization of flexibland dualmatrix laminateswill be experimentally testethrough a
modified platen testo measurghe bending stiffnes®f small coupon sp@mensas they are
conformedto a small radius of curvaturéhe flattening stiffness of the HSC CubeSat boom
will be tested and along with the benditegt datacorrelation will bestartedusing finite
element analysis=§EA) modeling through availabl&@BAQUS software.

1.37 ResearclQuestions

How can a HSC laminate be useddaployalle booms for small satellite applicati®hiow
can the HSC boom fabrication be extended to fabricate full scale length bblowsana
localizeddualmatix architecturébe infused withira larger laminatéo support origami fold
inspired packagingPlow can the response ofH5C and dualmatrix spring hingesubject to
extremebendingbe characterized? How does FEA modeling of a HSC anedndaiaix spring

hinge correlate wh physical test data?



1.47 Thesis Outline

Chapter 1 provided background to HSC and hyper elastic laminates and gave purpose for the
current researchin Chapter2 a deployableboom which was developed fdCubeSat
applicationswill be introduced teserve as a baseline HSC structievelopment ofterative
fabricationmethods to create a 12 foot whole boom in a single-cyoke will be described
Chapter3 will investigateaternative dual matrixnfusion methods to understand limits of
manufactuing and will apply them tarigamifolding techniques which allow for efficient
storage of large structure€hapter 4 will investigate an experimental test method to
characterize extreme deformation bending as coupons are sulgjecfaom to small bendg
radius Detailed mechanical resposseill be obtained through the use of digital image
correlation (DIC) software, as it is the only reliable way to capture large deform&iwayster

5 will correlate material testing witREA modelingof HSC laminate using ABAQUS
Chapter &concludes this study and gives direction for further research.



Chapter 217 HSC CubeSat Boom

Manufacturing of a high strain composite deployable boom scaled for CubeSat incorporation
is developed here to flatten and roll about a cylindrical storage hub. faliradation usedwo
separate cure cycles bmndindependently curetialvesinto aclosed cross section. Further
development allowed cui@ awhole boomin a single cure through use of a manufacturing
plug. Finally usingultra-thin spread towpre-preg fabrics a 12 foot long boom was fabricated

in a single cure.

2.17 HSC Familiarity

The cesign of a deployable carbon fiber boom for qgmssamer applications was developed,
fabricated and tested for CubeSat scale satellites. This work was prometepipyable
boom design from DLR6] intended to be used as the tensioning structure fotaa sail
Figure 3 Each half of the boom was manufactured independentthe deployed statend
then bonded together in a second cure cycle to form the closed cross section. This open cross
section is the state of lowest energy and causes the sioedto unroll and open, aiding in
deploymentThear designmeasuredlmost 46 feein length,was5.9 incheswide and had a
deployed cross section heightd83 incles Each half was 0039 incheshick, resuling in a
flattened height of 0.00787 inchedile the width extended t8.2 incheq 15, 6]. Complete
scaling of this boonwas however not possible due to the limits of shell thickness. For a
CubeSascalemissionwheretheflattenedwidth is 1.57 incheghe double laminate thickness
would scale t®.0015 incheswhich is 2 to 3 times the thickness of an individual graphite fiber.
Due to this unrealistic scaling, the laminate thickness would be fabricated as thin as possible
from available materials while the width and height were scaled accordoleptalimensions
[16].

The ability to manufacture thin laminates that remain in an elastic range when
conformed to small radius of curvaturenescessaryo successfully exploilSC structures. If
the inner or outer face strains reach a critical valueitber the fiber or matrix the laminate

will fail. The design examined here must be able to fully flatten transversely and then roll



longitudinally around 2 inchcylindrical hub similar to what would be seen during storage

of actual flight hardware.

2.27 Boom Fabrication

Similar to the design by DLRunitial fabrication methods required the two halves to be
cured independently and then bonded together in a second cureRngitereand negative
molds were CNC(computer numerical controbhachined from aluminunto be used in
conjunction as a compression mold for-pregfibers or individually in vacuunbagging a
wet lay-up. A total of three setsof 22 | ong mo | d s; attaehingthem golabase at e d
plate and aliging them in seriesreated a 3 | o0 n g hiamoould be wsed to fabricate

longer boomsFigure 7

HGURE/. HALFBOOM ALUMINUMMOLDS

Initial fabrication sought to manufacture half booms only, Figure 8. These halves were
flattened and rolled prioto bonding a whole boom to ensure adequate performance of the

selected laminat& he tab area of the boomsasvalsdabricated with excess length and then
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cut to size after curing to provide a clean edygstraight edge used to trim the tabs to sias

machined with a lip that fit over the edge of the molds to ensure an exact tapRigdtie 9

v 8 A
HGURE3. HALFBOOM VACUUMBAG FABRICATION

Extended Tabs

Machined
Straight Edge

Trimmed Tabs

FGURE. TAB TRIMMINGUSINGMACHINELSTRAIGHEDGE WITHUP
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First inquiry was to usa prepreg fabri¢ these aralesirable in aerospace design as
they maintaira predictable andonsistently high fiber volumedction.A pre-preg 3Kfabric
advertised to be 0.012 inch thick was dondtedn ACP CompositesThe 3K ndication
represents thretnousand filaments in the individual tows, this size of fabric is the most widely
available and least expensive mihot the absolute thinnest. Thigh fiber volume fraction
also leads to a stiffer laminate arfteacuringa +45° fiber orientatecdboom,failure was seen
along the individual weave lines due to the stiffnessrafadively large thickness to bending
ratio, Figure 10

AGURELO. CRACKEIPREPREG BOOM

Other thinner prereg fabrics weraot readily available to be sourced or donatethey are
manufactured on a specific need basis. Thergtheerext step would be to use a wel-up
technique witha single positive mold and vacuum batp fabricate half boomst room
temperatureWet lay-up is not ideal in achieving a precise fiber volume ratio but it was
determined that after an effectilaaninatefabrication methods determinedhe selected fabric
could be prepreggedby an external company or through application of a resin fiereral

fabricsof different thicknessvere sourcedr donatedTable 1.

12



TABLEL. THICKNESS AWFFERENTLSOURCEICARBONABERS

Company Fiber Thickness
ACRg AX5201S 3K Plain Weave Piereg ndnmMHE
VectorPly €BX 0300 Unit/-45° Stitched nonnyé€
VectorPly €BX 0450 Uni +/+45° Stitched nonmé
Textile Products 3K Plain Weave Dry ndanmMHE
SAATE CC201 3K Plain Weave Dry NnodnmMHE
ACR; 2.90z 1K Plain Weave Dry 0.00&

The first fabric to use aet leyup techniquewas a 3K plain weavefrom Textile
ProductsExamination of a cured half boom showed that flattening could occur without failure
when manufactured in #45° fiber orientation However the large stiffness and compound
curvature of flattening and rolling aba@inchdiametethubcausedracturego develomlong
the individual weave lines, as seen in the-preg boomAn inherent feature of woven fabrics
is the out of plain movement and crimping of individual tows as they cross over each other
Figure 11 Stress concentratisrof this crimping can leai failure along the weave lines in

such HSC laminates as thes®l a thinner ply was determinedcessary

HGUREL1. 3KVERSHKWOVENHBERCRIMPING DUE TINDIVIDUALTOW THICKNESS

A plain weave 1K fabric measuring twbirds the thickness of the 3K was purchased
to further examine the design feasibility of a scaled bddrmadecrease in thickness translated
to lower face strains and thmaller tow size meariéss pronounced fiberimping from the
tow weave Half boom samples weragain fabricated at45° fiber orientatiols and were
successfully flattened and rolled about a 2 idi@meterhub without failureThis single ply
laminate was the first successful candidate for fabrigadclosed cross section whole boom.
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Alternatefabricswerealso simultaneouslsourced through donations from VectiyrP
The double bia£-BX 0300 and 0450aminates come manufactured #45° stitched fiber
orientation Stitched or knit fabrigsalsoreferredto asa double biasstack separate layers of
unidirectional fibers at different orientationisefore stitching them together. The 45
orientationused here effectivelgreateda two layer+45%-45° unidirectionallaminate By
stitching the layers instead of weaving them fiber crimping is avoided and a thinner laminate
with a higher fiber volume fraction can be achieveWhile the un-crimped laminate is
desirable, when using only a single layer for each half boom, thermgling due to
asymmetridiber orientations becomeeconcern. This was seen when introducing a half boom
to a thermal gradient of as little as°B0causingthem to twist about their longitudinal axis

Figure 12

HGUREL2. TWISEDHALFBOOMDUE TOTHERMALDEFORMATION OF@TITCHEBABRIC

Post curing the booms in the compression mold at an elevated temperature and allowing them
to cool over several hours also proved unsuccessful as the booms would warnewbesd

from the compressionAlthough half boomtwisting was a problemneither of the stitched
fabricsfracturad when flattened and therefobeth weights of fiber werdesirable optiosfor

whole boom fabrication. If axial twisting could be canceled out with an opposite

complementary boom it would be possible to manufacture a whole boom with good geometry.
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The two oppositely opposing fiber orientation half boomesre therefordbonded together

beforeintroducinga thermal gradientigure 13

| HGR;. OPPOSITELEOMPLEMENTARYECTOHPLYBONDEDNHOLEBOOM
To formaclosed cross section the tabs of two half booraetsonded together using
the same resin system used for infusion. Careful application of resin was lightly applied to the
tabregion of the first half boom before placing tradf into a negative mold. A light application
of resin waghenapplied to the tab of the second half boom attds half wasaligned and
placed on top of the first. To ensure alignmathe cross sectiom second negative mold was
placed on top of the matched halves and the edges of the two molds aligned with clamps. The
second moldlso provided pressure to the bond. After the bond region was cured the tabs were
trimmed to the appropriateidth usingthe straight edgéemplate
The 1K whole boom was able to fully flatten and roll about the 2 inch hub without
failure, Figure 14 The aymmetric wholéboons were also able téully flatten and exhibited
no deformatiorwhen applied to a thermal gradient
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FGUREL4. HLATTENED ANROLLEDNVHOLELKBOOM

It is assumechoweverthat internal stressedid inherently develop from the displacement
constraintThe stifferVectorPly0450 asymmetric boom performed poorly when subject to the
compound curvature of the cylindrical hub. In areas where the tab bond was weak the two
halves would pop aparnzippingthe bond Figure 15This popping and unzipping could also

be instigated with minimal effort in the other two booms by prying the halves apart with a razor
blade. Repeated flattening and rolling of these booms showed decent damage tolerance to the

fibers lut exposed the bondeabs to be an area of weakness.

HGURELS. TAB DE-BONDING ORMVHOLEBOOM
The overall performanceof this fabricatiormethodwasdependent on the strength of
the bondedtalbs and asecond fabrication method wesveloped to enableondingduring a

single cure cycleA silicone plug matching the inside geomatifyithe whole boom would be
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used to manufacture the closed cross section. Thevalsignade by pouringtavo-partsilicone
rubber into the cavity madbetween twamegativemolds Figure 16 The length of this plug
was limited to the length of nega¢ molds which were 12 inches.

FHGURELG. SLICONEMOLDFORMING FORVHOLEBOOM FABRICATION

The plug was hen used to layp both sides of thboom simultaneously whilehé entire

laminatewas vacuunbagged Figure 17

HGUREL7. SNGLEQUREWHOLEBOOM FABRICATION

Easy removal of the plug was possible to due to the smootkstiotrsurface of the silicone
and by pulling one exposed end of the plug it would slide out, Figure 18.
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