
ABSTRACT

CATENACCI, JARED WILLIAM. Quantifying Degradation in Ceramic Matrix Composites
Through Electromagnetic Interrogation and the Related Estimation Techniques. (Under the
direction of Dr. Harvey Banks.)

Reflectance spectroscopy obtained from thermally treated silicon nitride carbon based

ceramic matrix composites is used to quantity the oxidation products SiO2 and SiN. The data

collection is described in detail in order to point out the potential biasing present in the data

processing. A probability distribution is imposed on selected dielectric model parameters, and

then non-parametrically estimated. A non-parametric estimation is chosen since the exact

composition of the material is unknown due to the inherent heterogeneity of ceramic composites.

The probability distribution is estimated using the Prohorov metric framework (PMF) in which

the infinite dimensional optimization is reduced to a finite dimensional optimization using an

approximating space composed of linear splines. A weighted least squares estimation is carried

out, and uncertainty quantification is performed on the model parameters. Our estimation

results indicate a distinguishable increase in the SiO2 present in the samples which were heat

treated for 100 hours compared to those treated for 10 hours.

To establish probability measure estimation in a nonparametric model using the Prohorov

Metric Framework, we first summarize the computational methods and related convergence

results that were recently developed by our group. Results are presented on the bias and the

variance due to the approximation and the pointwise asymptotic normality of the approximated

probability measure estimator is established. We propose use of a model selection criterion to

balance the bias and the variance, and compare the pointwise confidence bands constructed using

the asymptotic normality results with that obtained by Monte Carlo simulations. Additionally,

we propose a method in which the information provided by difference based approximations

of the measurement errors is used as a way of determining the presence of statistical model

discrepancy. A number of numerical examples are given to illustrate the effectiveness of these

proposed methods.

Additionally, we investigate the feasibility of quantifying properties of a composite dielectric

material through the reflectance in which we estimate an unknown probability measure by

means of the PMF. We point out the limitation of the existing computational algorithms for

this particular application. We then improve the algorithms, and demonstrate the feasibility of

our proposed methods by numerical results obtained for both simulated data and experimental

data for inorganic glass. We compare this with a second, more classical approach, where it is

assumed that the permittivity is composed of a number of oscillators, and then a convolution

is taken with a normal distribution. Each of these methods are able to fit the data well, yet



the ease in interpreting the estimation results in using the PMF approach, as well as the tight

mathematical results guaranteeing convergence under the Prohorov metric, lead us to favor this

approach.
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CHAPTER 1

Introduction

1.1 Motivation

There is a current interest in the incorporation of ceramic matrix composites (CMCs) for

both static and rotating components in high temperature turbine engines, specifically in high-

performance aircraft engines and other gas turbine engines [4, 74]. Over the course of a CMCs

lifetime, oxidation occurs which can compromise the integrity of the desired material properties.

Furthermore, collaborators at Wright-Patterson Air Force Base have hypothesized that as

the CMC under study (a ceramic matrix with a silicon carbide fiber) is exposed to high

temperatures, components of the material will transition from an amorphous to a crystalline

state. In a crystalline state the material becomes more brittle. Together, these factors eventually

lead to catastrophic failure. If these materials are going to be effectively integrated into modern

turbine construction, then noninvasive techniques with the capability to detect the early stages

of degradation must also be developed. Fourier Transform Infrared (FTIR) spectroscopy is a

nondestructive electromagnetic interrogating method, which has been investigated as one possible

non-destructive evaluation tool with the potential to quantify the oxidation behavior [50,78,80,81].

Additionally, reflectance spectroscopy has previously been shown to have sensitivity to heat-

treated ceramic thermal barrier coatings, which are being investigated for their use in turbine

engines [63, 64]. Due to the fact that CMCs are optically dense, we will consider reflectance

(rather than transmission or absorption) spectroscopy.

Our goal is to develop a technique for modeling the reflectance, obtained using an FTIR

spectrometer, which can be used to quantify the levels of degradation. The development of a
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reliable mathematical model and the accurate quantification of the model parameters may prove

to be a useful tool in the development of systems designed to monitor material damage and/or

degradation. Furthermore, due to the ease of data acquisition, it is plausible that the experiment

may be amenable for adaptation to field use, giving near-real time results. With this in mind,

we desire to develop a mathematical model and accompanying estimation procedure which is

computationally efficient. These goals will guide our choices throughout this work as it pertains

to the model development and estimation techniques employed.

The decomposition of a material’s electromagnetic response into the elementary component

mechanisms responsible for observed phenomena is a fundamental problem of spectroscopy. In the

setting of nonmagnetic materials, this involves determining the components of the permittivity

using the measured spectral responses. Typically one would assume a particular combination of

polarization models (Debye, Lorentz, Gaussian, etc.) with a predetermined number of dielectric

parameters [10, 11, 15, 30]. However, in practice, the type of polarization model and the number

of constituent dielectric mechanisms are usually unknown, particularly for complex, highly

heterogenous materials. In addition, the resulting decomposition may be non-unique or even

nonphysical by using the reflectance (the ready observable in the primary experiment) alone. In

a case where the material under study is inorganic glass, to alleviate this difficulty, a convolution

of the Lorentz and Gaussian functions (a linear combination of normal distributions is imposed

on the resonance frequency in the Lorentz model) was proposed by Efimov, et al., as early as in

1985 (e.g., see [59,60]).

Our approach in the current effort is to impose an unknown probability distribution on the

dielectric parameters, specifically, either the resonance frequencies or the relaxation times. Our

goal is to place the weakest possible assumptions on the form of the underlying probability

measure. For these reasons we are interested in non-parametrically estimating the probability

measures. To carryout the estimation, we will make use of the Prohorov Metric Framework

(PMF), which provides a solid theoretical foundation as well as a computational method for

the non-parametric estimation of a probability distribution [5,9,30,33,79]. We will show that

this framework has the potential to provide a sufficient description of the complex nature of

the materials without the need for the development of a more detailed model which takes into

account the microscopic structure.

In this work we will establish the appropriate mathematical techniques in which to apply the

PMF to the electromagnetic interrogation of a complex heterogenous material such as a ceramic

matrix composite. The thesis is laid out as follows. In the remainder of this chapter we begin

by introducing the necessary background information from electromagnetic theory which apply

to our situation of interest. In Chapter 2 we formally introduce the PMF, as well as supply

the required theoretical and computational framework. Chapter 3 introduces difference-based

methods as a means to guide the statistical model and gives several practical applications. Later,
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these methods will be applied to experimental reflectance spectroscopy data sets. Chapters 4–5

extensively investigate the feasibility of incorporating the PMF as a method to estimate an

unknown distribution in spectroscopy data sets. The methods developed in the previous chapters

are applied to a number of rich reflectance data sets provided by Wright-Patterson Air Force

Base in Chapter 6. Finally, in Chapter 7 we conclude by providing computationally efficient

methods in which to compute the gradients in PMF estimation problems.

1.2 Problem Description

For simplicity, we assume that a monochromatic uniform wave of frequency ω is incident at

an angle φ on a plane interface between free space and a nonmagnetic dielectric medium as

depicted schematically in Figure 1.1. This medium is assumed to be linear, homogeneous and

isotropic. We first describe the reflection coefficient for the case where the wave is incident on a

plane interface between two lossy media, where the permittivity, permeability and conductivity

of medium ` are denoted by ε̂`, µ̂`, and σ̂`, respectively. Once we have derived the formulas for

the reflection coefficient in this case, we will simplify to the particular situation of interest here.

We remark that the following arguments used in deriving the reflection coefficient are similar to

those in [66, Section 9.3] and [3, Chapter 5]. Hence, we only sketch the ideas.

φ

Free Space Dielectric Medium

ε̂1 = ε0

µ̂1 = µ0

σ̂1 = 0

ε̂2 = ε̂(ω)
µ̂2 = µ0

σ̂2 = 0

Figure 1.1: A monochromatic uniform wave is incident at an angle φ on a plane interface
between a free space and a nonmagnetic dielectric medium, where ω denotes the frequency of
the wave.
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1.2.1 Reflection Coefficient: Perpendicular Polarization

To analyze the reflections and transmissions at an oblique angle of incidence for a general wave

polarization, it is convenient to decompose the electric field into its perpendicular and parallel

components, relative to the plane of incidence. Then the total reflected and transmitted fields

will be the sum from each of the two polarizations.

We first assume that the electric field is polarized perpendicular to the plane of incidence

(TE polarization). Let di = (sinφi, 0, cosφi)
T denote the unit vector for the direction of the

incident wave. Then the incident electric field and incident magnetic fields can be written as

Ei
⊥ = ŷEi⊥e

−iγ1di·r = ŷE0e
−iγ1(x sinφi+z cosφi)

Hi
⊥ = (−x̂ cosφi + ẑ sinφi)H

i
⊥e
−iγ1di·r

= (−x̂ cosφi + ẑ sinφi)
E0

η1
e−iγ1(x cosφi+z sinφi),

where

Ei⊥ = E0, H i
⊥ =

Ei⊥
η1

=
E0

η1
.

In the above equation, r = (x, y, z)T , and x̂, ŷ and ẑ denote the unit vector in the x, y and z

directions, respectively. In addition, γ` represents the propagation constant in medium `, and η`

denotes the complex intrinsic impedance in medium `. They are, respectively, given by

γ` = iω
√
ε̂c`(ω)µ̂`(ω), η` =

√
µ̂`(ω)

ε̂c`(ω)
, ` = 1, 2,

where i denotes the imaginary unit, and ε̂c` represents the complex permittivity of medium `,

ε̂c`(ω) = ε̂`(ω)− i σ̂`(ω)

ω
. (1.2.1)

Similarly, using the reflection coefficient Γ⊥ the reflected fields can be expressed as

Er
⊥ = ŷEr⊥e

−iγ1dr·r = ŷΓ⊥E0e
−iγ1(x sinφr+z cosφr)

Hr
⊥ = (−x̂ cosφr + ẑ sinφr)H

r
⊥e
−iγ1dr·r

= (−x̂ cosφr + ẑ sinφr)
Γ⊥E0

η1
e−iγ1(x cosφr+z sinφr),

where

Er⊥ = Γ⊥E
i
⊥ = Γ⊥E0, Hr

⊥ =
Er⊥
η1

=
Γ⊥E0

η1
.
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In addition, with the transmission coefficient T⊥, the transmitted fields can be written as

Et
⊥ = ŷEt⊥e

−iγ1dt·r = ŷT⊥E0e
−iγ2(x sinφt+z cosφt)

Ht
⊥ = (−x̂ cosφt + ẑ sinφt)H

t
⊥e
−iγ2dt·r

= (−x̂ cosφt + ẑ sinφt)
T⊥E0

η2
e−iγ2(x cosφt+z sinφt),

where

Et⊥ = T⊥E
i
⊥ = T⊥E0, Ht

⊥ =
Et⊥
η2

=
T⊥E0

η2
.

By enforcing the boundary condition, namely that the tangential components of both the

electric field and the magnetic field are continuous on the interface, we can obtain a relationship

between the reflection and transmission coefficients and the incident φi, reflected φr, and

transmitted (refracted) φt angles. That is,(
Ei⊥ + Er⊥

)∣∣∣
tan,z=0

=
(
Et⊥

)∣∣∣
tan,z=0(

H i
⊥ +Hr

⊥

)∣∣∣
tan,z=0

=
(
Ht
⊥

)∣∣∣
tan,z=0

,

which leads to

eiγ1x sinφi + Γ⊥e
−iγ1x sinφr = T⊥e

−iγ2x sinφt (1.2.2)

1

η1

(
− cosφie

−iγ1x cosφ1 + Γ⊥ cosφre
−iγ1x sinφr

)
=
T⊥
η2
e−iγ2x sinφt . (1.2.3)

Equations (1.2.2) and (1.2.3) are two complex equations with four unknowns (Γ⊥, T⊥, φr, φt),

and solving these yields the relationships

φr = φi (Snell’s law of reflection) (1.2.4)

γ1 sinφi = γ2 sinφt (Snell’s law of refraction). (1.2.5)

Using Snell’s law of reflection and refraction, we can manipulate equations (1.2.2) and (1.2.3) to

arrive at

1 + Γ⊥ = T⊥

cosφi
η1

(−1 + Γ⊥) = −cosφt
η2

T⊥.
(1.2.6)
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Finally, we can solve the above equations for the reflection coefficient

Γ⊥ =
Er⊥
Ei⊥

=
η2 cosφi − η1 cosφt
η2 cosφi + η1 cosφt

=

√
µ̂2/ε̂c2 cosφi −

√
µ̂1/ε̂c1 cosφt√

µ̂2/ε̂c2 cosφi +
√
µ̂1/ε̂c1 cosφt

. (1.2.7)

Equation (1.2.7) is often referred to as the plane wave Fresnel reflection coefficient for perpen-

dicular polarization.

1.2.2 Reflection Coefficient: Parallel Polarization

Now we assume that the electric field is polarized parallel to the plane of incidence. In this case

we have that the incident electric and magnetic fields can be written as

Ei
‖ = (x̂ cosφi − ẑ sinφi)E0e

−iγ1di·r

= (x̂ cosφi − ẑ sinφi)E0e
−iγ1(x sinφi+z cosφi)

Hi
‖ = ŷH i

‖e
−iγ1di·r = ŷ

E0

η1
e−iγ1(x sinφi+z cosφi),

where

Er‖ = Γ‖E
i = Γ‖E0, Hr

‖ =
Er‖

η1
=

Γ‖E0

η1
.

The reflected fields are given by

Er
‖ = (x̂ cosφr − ẑ sinφr)E

re−iγ1d
r·r

= (x̂ cosφr − ẑ sinφr)Γ‖E0e
−iγ1(x sinφr−z cosφr)

Hr
‖ = −ŷHr

‖e
−iγ1dr·r = −ŷ

Γ‖E0

η1
e−iγ1(x sinφr−z cosφr),

where

Ei‖ = E0, H i
‖ =

Ei‖

η1
=
E0

η1
.

Finally, we express the transmitted fields as

Et
‖ = (x̂ cosφt − ẑ sinφt)E

te−iγ2d
t·r

= (x̂ cosφt − ẑ sinφt)T‖E0e
−iγ2(x sinφt+z cosφt)

Ht
‖ = ŷHt

‖e
−iγ2dt·r = ŷ

T‖E0

η2
e−iγ2(x sinφt+z cosφt),

where

Et‖ = T‖E
i = T‖E0, Ht

‖ =
Et‖

η2
=
T‖E0

η2
.
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As before, by applying the appropriate continuity boundary conditions at the interface, we

obtain

cosφie
−iγ1x sinφi + Γ‖ cosφre

−iγ1x sinφr = T‖ cosφte
−iγ2x sinφt (1.2.8)

1

η1

(
e−iγ1x sinφi − Γ‖e

−iγ1x sinφr
)

=
1

η2
T‖e
−iγ2x sinφt . (1.2.9)

These equations can also be reduced to Snell’s law of reflection and refraction. Thus, obtaining

the equation for the reflection coefficient due to parallel polarization

Γ‖ =
−η1 cosφi + η2 cosφt
η1 cosφi + η2 cosφt

=
−
√
µ̂1/ε̂c1 cosφi +

√
µ̂2/ε̂c2 cosφt√

µ̂1/ε̂c1 cosφi +
√
µ̂2/ε̂c2 cosφt

. (1.2.10)

Next we turn our attention to simplifying the expression for the reflection coefficient due to

perpendicular and parallel polarizations to match the formulation of the problem of interest.

1.2.3 Reflection Coefficient Between Free Space and a Lossy Material

In free space, µ̂1 ≡ µ0 and ε̂c1 ≡ ε0, where ε0, µ0 are, respectively, the permittivity and

permeability in free space. Also, since our material is nonmagnetic, we have that µ̂2 ≡ µ0. The

conductivity in a dielectric material is very small, and so we assume that it is negligible, that is,

σ̂ ≡ 0. Thus, by (1.2.1) we have ε̂c2(ω) = ε̂2(ω).

Once we make the requisite substitutions in (1.2.7) and (1.2.10) we obtain

r⊥(ω) =

√
µ0/ε̂2 cosφi −

√
µ0/ε0 cosφt√

µ0/ε̂2 cosφi +
√
µ0/ε0 cosφt

r‖(ω) =
−
√
µ0/ε0 cosφi +

√
µ0/ε̂2 cosφt√

µ0/ε0 cosφi +
√
µ0/ε̂2 cosφt

,

where r⊥ and r‖ denote the reflection coefficients for our problem of interest. Utilizing Snell’s

law of refraction to eliminate φt, we arrive at

r⊥(ω) =
cosφi −

√
ε̂r(ω)− sin2 φi

cosφi +
√
ε̂r(ω)− sin2 φi

(1.2.11)

r‖(ω) =

√
1− sin2 φi/ε̂r(ω)−

√
ε̂r(ω) cosφi√

1− sin2 φi/ε̂r(ω) +
√
ε̂r(ω) cosφi

, (1.2.12)

where ε̂r(ω) = ε̂2(ω)/ε0.
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1.2.4 Complex Permittivity

The Lorentz oscillator model is derived by considering the polarization which results from the

displacement of electrons from equilibrium under the effect of an applied electromagnetic field.

It is assumed that an electron bound to the nucleus of an atom obeys Hooke’s law, where

the displacement of the electrons from equilibrium is a result of the applied electromagnetic

field. Combining the Lorentz oscillator model with the Lorentz model for electronic polarization

results in the Lorentz model for the complex permittivity with a single resonance given by

ε̂r(ω) = ε∞ −
ω2
p

ω2 − iω/τf − ω2
0

. (1.2.13)

In the above equation, ε∞ denotes the relative permittivity of the medium at infinite frequency,

τf is the relaxation time, i =
√
−1 is the imaginary unit, and ωp = ω0

√
εs − ε∞ is called the

plasma frequency of the medium, where ω0 is the resonance frequency, and εs is the relative

permittivity of the medium at zero frequency, also known as the “static” dielectric constant.

In practice it is typical for the data to be collected as a function of k, the wavenumber,

rather than frequency. Using the relationship that k = ω/(2πc), where c is the speed of light in

cm/s, we obtain the relative permittivity as a function of wavenumber

ε̂r(k) = ε∞ −
k2
p

k2 − ik/τk − k2
0

. (1.2.14)

In the above equation kp = k0
√
εs − ε∞, k0 = ω0/(2πc), and τk = 2πcτf . We will refer to k0 as

the resonance wavenumber and we will omit the subscript on the relaxation time τk when it is

clear that we are referring to the relaxation time for the permittivity in terms of wavenumber.

According to quantum mechanical dispersion theory, and allowing for a material to contain

multiple oscillators, a more general model for the permittivity can be given by

ε̂r(k) = ε∞ −
J∑
j=1

Sj
k2 − ik/τj − k2

0j

, (1.2.15)

where Sj is understood to be the intensity of the jth oscillator. The intensities Sj are sometimes

replaced by the contributions of the oscillators, ∆ε0jk
2
0j

= Sj , where

J∑
j=1

∆ε0j = εs − ε∞.

In the remaining chapters we will investigate imposing a distribution on either the resonance

wavenumber or the relaxation time in equation (1.2.14), and the subsequent estimation problem.
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CHAPTER 2

The Prohorov Metric

In this chapter we lay the theoretical and computational groundwork for nonparametric proba-

bility estimation through the Prohorov Metric Framework. The work in this chapter is based on

the publication [19]:

H.T. Banks, J. Catenacci, and S. Hu. Asymptotic properties of probability measure estimators

in a nonparametric model. SIAM/ASA Journal on Uncertainty Quantification, 3: 417–433, 2015.

2.1 Introduction

We begin by considering the general nonparametric estimation of an unknown probability

measure in the case where the regression function is dependent on this measure. More precisely,

the statistical model, the model describing the observation process, is described by

Yj = f(tj ;G0) + Ej , j = 1, 2, 3, . . . , N. (2.1.1)

In the above equation, f(tj ;G0) denotes the observed part of the solution of a mathematical

model with the true probability measure G0 (unknown) at the measurement point tj , Ej is

the measurement error at tj , and N is the total number of observations, where tj ∈ [ts, tf ],

j = 1, 2, 3, . . . , N , with ts and tf being some real numbers (in the example below these numbers

tj = kj are actually wave numbers obtained in taking frequency sweeps). Following popular

conventions we will not always distinguish between probability measures and their associated

cumulative distribution functions in the discussions below.

Equation (2.1.1) is often referred to as a nonparametric model (a model with all the unknown
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parameters being in an infinite-dimensional parameter space) in the statistics literature. Such

models are motivated by a number of applications arising in biology and physics, for example,

in modeling mosquitofish populations [28] and shrimp populations [24], in wave propagation

in biotissue [39], in modeling of complex nonmagnetic dielectric materials [22,30], and in HIV

cellular models [12]. Here we only elaborate one of the motivating examples, which is the primary

application of interest in this work. In this project, the goal is to develop a noninvasive technique

to characterize the degradation of a complex nonmagnetic dielectric material by assessing the

small physical and chemical changes in the material using reflectance spectroscopy. This involves

determining the components of the permittivity of the dielectric medium using the measured

spectral responses. Recall that the relative permittivity of the dielectric medium is described by

ε̂r(k;G0) = ε∞ −
∫

Ωθ

k2
p

k2 − ik/τ − k2
0

dG0(θ). (2.1.2)

For our discussions in this chapter, we assume that θ = k0 ∈ Ωθ ⊂ R. If we assume that a

monochromatic uniform wave is incident at an angle zero on a plane interface between free space

and a nonmagnetic dielectric medium with the electric field polarized perpendicular to the plane

of incidence, then the reflection coefficient given by (1.2.11) is simplified to

r(k;G0) =
1−

√
ε̂r(k;G0)

1 +
√
ε̂r(k;G0)

, (2.1.3)

where ε̂r is defined by (2.1.2). The observations fj are the reflectance (the square of the magnitude

of the reflection coefficient) at different wave numbers kj ; that is, fj = |r(kj ;G0)|2. The goal is

then to use these observations to estimate the unknown probability measure G0.

We note here that the problem we outlined above is different from those, for example, in

pharmacokinetics studies and HIV studies, where one desires to estimate both individual-specific

parameters θ (such as clearance rate of the virus and infection rate in HIV studies) and their

associated probability distribution function P0 from blood samples taken serially in time from

individuals in the population (e.g., see [31, 53]). This is because in these cases the data fj is

dependent on θ instead of P0; that is, one has individual longitudinal data instead of aggregate

longitudinal data (i.e., data collected by sampling from the population at large). Hence, the

methods used to solve these two types of problems are fundamentally different. We refer the

interested reader to [33,37] for more details on this topic.

Traditional parametric methods, which assume the sought-after probability measure P0

has a particular distributional form, are not preferred as they are overly restrictive and will

produce inaccurate results if the parametric form is misspecified. Here we propose to use a least-

squares approach for nonparametric estimation of probability measures. Least-squares methods
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and their generalizations, as well as maximum likelihood estimation (MLE) methods, are two

widely used frequentist-based approaches for parameter estimation. It is well-known that in the

case that the parameter space is finite-dimensional both least-squares methods and maximum

likelihood estimation methods have nice limiting properties for the parameter estimator, i.e.,

asymptotic normality and consistency (e.g., see [84]). However, MLE methods require knowledge

of the probability density function of observations in order to define the likelihood function.

Unfortunately, this knowledge is often not available in practice. In contrast, for least-squares

methods, one only needs to assume the first two moments, i.e., the mean and variance or

covariance matrix, of the measurement errors in order to define the cost function. To this point,

we have not discussed the Bayesian approach, which is another widely used methodology for

parameter estimation. The difficulties for a Bayesian analysis in a nonparametric model setting

(the involved approach is often referred to as Bayesian nonparametric estimation) include prior

(a stochastic process in this case) construction, algorithmic development (as it depends on the

prior and the problem itself, and the common MCMC techniques cannot be directly applied to

the aggregate data and infinite-dimensional parameter space setting) and posterior asymptotics.

Thus, compared to frequentist approaches, the Bayesian nonparametric approach is more difficult

to implement and hence we do not consider this approach in this presentation. We refer the

interested reader to [49] for a review of recent developments on this topic.

The remainder of this chapter is organized as follows. In Section 2.2, we first give an overview

of the computational methods developed by our group in the past two decades (see [5]) for

probability measure estimation, and provide a consistency result for the probability measure

estimator. Then we discuss the bias and the variance due to the approximation and present the

asymptotic normality of the approximated probability measure estimator. In Section 2.3, we

give some numerical results to illustrate the efficacy of our approach. Finally, in Section 2.4 we

conclude the paper with some summary remarks and future research questions.

2.2 Theoretical and Computational Framework for Probability

Measure Estimation

For notational convenience, we assume that observations Yj in (2.1.1) are scalar (the multi-

dimensional case can be treated similarly). We also assume throughout the remainder of this

discussion that measurement errors Ej , j = 1, 2, 3, . . . , N , are independent and identically

distributed (i.i.d.) with zero mean and constant variance σ2
0. We note that the existence of a

true probability measure, a standard assumption in statistical formulations, along with the

assumption that the measurement errors have zero mean implies that f(t;G0) correctly describes

the observed part of the dynamical system (that is, the underlying mathematical model is
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correct).

With the i.i.d. assumption on the measurement errors, the estimator of G0 can be obtained

using the ordinary least-squares method as defined by

GN = argmin
G∈P(Ωθ)

N∑
j=1

(Yj − f(tj ;G))2, (2.2.1)

where P(Ωθ) denotes the set of probability measures on the space Ωθ ⊂ Rκθ with κθ being a

positive integer. We remark that GN itself is random in that it is a function of random variables

Yj (and hence Ej) on a probability space (Ω,F ,Prob). The corresponding realization ĜN of GN

can be calculated through

ĜN = argmin
G∈P(Ωθ)

N∑
j=1

(yj − f(tj ;G))2, (2.2.2)

where yj is a realization of Yj , j = 1, 2, 3, . . . , N . Thus, we can view GN as a stochastic process

(i.e., GN (θ; ·) as a one parameter (θ ∈ Ωθ) family of random variables on the probability space

(Ω,F ,Prob)) since each of its realizations yields a probability measure ĜN ∈ P(Ωθ).

The existence of a minimizer to the least-squares optimization problem (2.2.1) or (2.2.2) can

be established under the Prohorov metric framework. The Prohorov metric was introduced by

the Russian probabilist Y.V. Prohorov [79] and is defined as follows (e.g., see [41, pp. 237–238]).

Definition 2.2.1. Let F ⊂ Ωθ be any closed set and define Fε as follows:

Fε =

{
θ ∈ Ωθ : inf

˜θ∈F
d(θ, θ̃) < ε

}
,

where d denotes the metric on Ωθ. For P,G ∈ P(Ωθ), the Prohorov metric is given by

ρ(P,G)

= inf {ε > 0 | G(F) ≤ P (Fε) + ε and P (F) ≤ G(Fε) + ε, for all F closed in Ωθ} .

It is clear from the definition above that the meaning of Prohorov metric is far from intuitive.

Yet one can provide several useful characterizations. For example, convergence in the Prohorov

metric is equivalent to the weak∗ convergence if we view P(Ωθ) ⊂ C∗B(Ωθ), where C∗B(Ωθ) denotes

the topological dual of the space CB(Ωθ) of bounded and continuous functions on Ωθ. In other

words, the statement ρ(Gj , G)→ 0 is equivalent to the statement∫
Ωθ

h(θ)dGj(θ)→
∫

Ωθ

h(θ)dG(θ) for any h ∈ CB(Ωθ).
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The Prohorov metric also possesses many useful and important properties. For example, if we

assume that Ωθ is compact, then P(Ωθ) is a compact metric space when taken with the Prohorov

metric ρ. We refer interested readers to [5,33,41,57,95] for more information on the Prohorov

metric and its properties. Based on these discussions, we see that if Ωθ is compact and f is

continuous with respect to G, then there exists a solution to (2.2.1) or (2.2.2).

2.2.1 Consistency of the Probability Measure Estimator

The ideas for establishing the consistency of probability measure estimators follow closely to

those given in [26] and [33]. Here we only present the necessary assumptions as well as the result,

and refer the interested reader to [33, Section 5.5] for details. For a given sampling set {tj}Nj=1

in the interval [ts, tf ], one can define the empirical distribution function

µN (t) =
1
N

N∑
j=1

∆tj (t), (2.2.3)

where ∆tj is the Dirac measure with atom at tj ; that is,

∆tj (t) =

{
0, t < tj

1, otherwise.

Clearly, µN ∈ P([ts, tf ]), the space of probability measures (or, equivalently the cumulative

distribution functions) on [ts, tf ]. We assume

(A1) For each fixed N , Ej , j = 1, 2, . . . , N , are independent and identically distributed with

zero mean and constant variance σ2
0, and they are defined on some probability space

(Ω,F ,Prob).

(A2) There exists a measure µ on [ts, tf ] such that

1

N

N∑
j=1

h(tj) =

∫ tf

ts

h(t)dµN (t)→
∫ tf

ts

h(t)dµ(t)

for all h ∈ C([ts, tf ]).

(A3) The space Ωθ ⊂ Rκθ is compact; the space P(Ωθ) is taken with the Prohorov metric ρ.

(A4) The function f satisfies f ∈ C([ts, tf ], C(P(Ωθ))).
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(A5) The functional J0 defined by

J0(G) = σ2 +

∫ tf

ts

(f(t;G0)− f(t;G))2 dµ(t)

is uniquely minimized at G0 ∈ P(Ωθ).

Theorem 2.2.2. Under assumptions (A1)–(A5), ρ(GN , G0)
a.s.−→ 0 as N → ∞, where

a.s.−→
denotes convergence almost surely in (Ω,F ,Prob). That is,

Prob

{
ω ∈ Ω

∣∣∣ lim
N→∞

ρ(GN (ω), G0) = 0

}
= 1.

2.2.2 Approximation Schemes for Probability Measure Estimation

We note that (2.2.2) is an infinite-dimensional optimization problem. Hence, the infinite-

dimensional space P(Ωθ) must be approximated by some finite dimensional space PM (Ωθ)

so that one has a computationally tractable finite-dimensional optimization problem given by

ĜNM = argmin
G∈PM (Ωθ)

N∑
j=1

(yj − f(tj ;G))2. (2.2.4)

However, one needs to choose PM (Ωθ) in a meaningful way so that ĜNM approaches the solution

to (2.2.2) as M →∞.

One such approximation method involves using Dirac measures to approximate the probability

measures. The following theorem is useful in establishing the convergence results as well as in

constructing approximation schemes. We refer the interested reader to [9] for a proof of this

result.

Theorem 2.2.3. Assume Ωθ ⊂ Rκθ is compact. Let ΩθD = {θj}∞j=1 be an enumeration of a

countable dense subset of Ωθ. Define

P̃D(Ωθ)

=

G ∈ P(Ωθ)
∣∣∣ G =

M∑
j=1

αj∆θj ,θj ∈ ΩθD, αj ∈ [0, 1] ∩Q,
M∑
j=1

αj = 1, M ∈ N

 ,

where ∆θj is the Dirac measure with atom at θj, and Q ⊂ R denotes the set of all rational

numbers. (That is, P̃D(Ωθ) is the collection of all convex combinations of Dirac measures on

Ωθ with atoms θj ∈ ΩθD and rational weights.) Then P̃D(Ωθ) is dense in (P(Ωθ), ρ), and thus

P(Ωθ) is separable.
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Under this Dirac measure approximation framework, we define PM (Ωθ) to be the set of all

atomic probability measures with nodes placed at the first M elements in the enumeration of

the countable dense subset of Ωθ; that is,

PM (Ωθ) =

G ∈ P(Ωθ)

∣∣∣∣ G =

M∑
j=1

αj∆θj , where αj ≥ 0 and

M∑
j=1

αj = 1

 . (2.2.5)

By Theorem 2.2.3 we know that we can approximate any element G ∈ P(Ωθ) by a sequence

{GMj}, GMj ∈ PMj (Ωθ), such that ρ(GMj , G) → 0 as Mj → ∞. We also see that this Dirac

measure approximation method can be used regardless of the smoothness of probability measures.

This is especially useful in the situations where one has no knowledge of the sought-after

probability measures.

Another family of approximation methods is based on linear spline approximations, which

are designed for the case where the sought after probability measures are absolutely continuous

so that their corresponding probability density functions exist. The following theorem is useful

in establishing the convergence results as well as in constructing approximation schemes. We

refer the interested reader to [39] for a proof of this result.

Theorem 2.2.4. Assume Ωθ ⊂ Rκθ is compact. Define

P̃S(Ωθ)

=

G ∈ P(Ωθ)
∣∣∣ G′(θ) =

M∑
j=1

αjl
M
j (θ), αj ∈ [0,∞) ∩Q,

M∑
j=1

αj

∫
Ωθ

lMj (ξ)dξ = 1, M ∈ N

 ,

where G′ denotes the derivative of G with respect to θ, the {lMj } denote the usual piecewise linear

splines, and Q ⊂ R denotes the set of all rational numbers. Then P̃S(Ωθ) is dense in P(Ωθ).

Under this linear spline approximation framework, we define PM (Ωθ) to be

PM (Ωθ) =

G ∈ P(Ωθ)

∣∣∣∣ G′(θ) =
M∑
j=1

αjl
M
j (θ), where αj ≥ 0 and

M∑
j=1

αj

∫
Ωθ

lMj (ξ)dξ = 1

 .

(2.2.6)

By Theorem 2.2.4 we know that we can approximate any element G ∈ P(Ωθ) by a sequence

{GMj}, GMj ∈ PMj (Ωθ), such that ρ(GMj , G)→ 0 as Mj →∞.

The following theorem (which we state without proof for sake of brevity) provides a desired

convergence result for the infinite dimensional theory given here. The general finite dimensional

parameter space approximation theory developed in [38] can be used in the context of the

infinite dimensional PMF along with the Theorems 2.2.3 and 2.2.4 given above to provide an
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infinite dimensional asymptotic theory for the estimators of interest here. This guarantees a

convergence theory in the context of the Prohorov metric.

Theorem 2.2.5. Assume Ωθ is compact and P(Ωθ) is taken with the Prohorov metric ρ . If f

is continuous with respect to G, then there exists a minimizer ĜNM to (2.2.4) for each M and N,

where PM (Ωθ) is chosen as either (2.2.5) or (2.2.6). Moreover, the sequence {ĜNM}∞M=1 has at

least one convergent (as Mk →∞ ) subsequence {ĜNMk
} and the ρ-limit ĜN∗ = ρ-limMk→∞Ĝ

N
Mk

of such a subsequence is a minimizer to the least-squares problem (2.2.2).

Remark 2.2.6. Both the Dirac measure approximation methods and the spline-based approx-

imation methods have been successfully used to estimate probability measures in a number

of applications (e.g., see [22, 27, 28, 30, 39]). However, it was demonstrated in [23] that if the

sought-after probability measure is absolutely continuous, then the spline-based approximation

methods converge much faster than do the Dirac measure approximation methods (in terms

of the value of M). In addition, it was observed in [23] that the spline-based approximation

methods also provide convergence for the associated probability density functions while the Dirac

measure approximation methods do not do this. This is not surprising since in the spline-based

approximation methods one directly approximates the associated probability density functions

instead of the cumulative distribution functions.

2.2.3 Bias and Variance in Probability Measure Estimation

As we discussed in the above section, what one actually does in practice is to minimize the cost

functional in a finite-dimensional space; that is, one solves the optimization problem

GNM = argmin
G∈PM (Ωθ)

N∑
j=1

(Yj − f(tj ;G))2. (2.2.7)

For example, if one uses the Dirac measure approximation methods, then GNM = ∆TAN
M , where

∆ = ∆(θ) = (∆θ1
,∆θ2

, . . . ,∆θM )T , and

AN
M = argmin

aNM∈R̃M

N∑
j=1

[
Yj − f(tj ;

M∑
l=1

αNM,l∆θl)

]2

. (2.2.8)

Here R̃M =
{

aM = (αM1 , αM2 , . . . , αMM )T
∣∣∣ αMj ≥ 0, j = 1, 2, . . . ,M,

∑M
j=1 α

M
j = 1

}
. The corre-

sponding realization of (2.2.7) is given by

ĜNM = argmin
G∈PM (Ωθ)

N∑
j=1

(yj − f(tj ;G))2; (2.2.9)
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that is, ĜNM = ∆T âNM , where ∆ = (∆θ1
,∆θ2

, . . . ,∆θM )T , and

âNM = argmin
aNM∈R̃M

N∑
j=1

[
yj − f(tj ;

M∑
l=1

αNM,l∆θl)

]2

. (2.2.10)

In essence, one presumes that the data was generated using the following statistical model

Yj = f̃(tj ; a0,M ) + Ej , j = 1, 2, 3, . . . , N. (2.2.11)

In the above equation, f̃(tj ; a0,M ) = f(tj ;G0,M ), where G0,M = ∆Ta0,M ∈ PM (Ωθ), and

a0,M ∈ R̃M is the one that minimizes

J̃0(aM ) = σ2
0 +

∫ tf

ts

(f(t;G0)− f̃(t; aM ))2dµ(t) (2.2.12)

over R̃M . In other words, the functional J0 defined by

J0(P ) = σ2
0 +

∫ tf

ts

(f(t;G0)− f(t;G))2dµ(t) (2.2.13)

has a minimizer G0,M in PM (Ωθ) for each fixed M .

Thus, we have a model “misspecification”, which is due to the approximation of the infinite-

dimensional space P(Ωθ) by the finite-dimensional space PM (Ωθ). Under this framework, the total

error between the true model (2.1.1) and the approximating model (2.2.11) can be characterized

by (illustrated in Figure 2.1)

ρ(G0, G0,M ) + ρ(G0,M , Ĝ
N
M ),

where the first term ρ(G0, G0,M ) is a measure of the accuracy of the approximating model and

is often called bias in the statistics literature, and the second term ρ(G0,M , Ĝ
N
M ) is a measure

of estimation accuracy and is often called variance. Using properties of the Prohorov metric

and assumptions (A3)–(A5) as well as Theorems 2.2.3 and 2.2.4, we readily see that the bias

ρ(G0, G0,M ) approaches zero as M →∞. However, for fixed N the variance in general increases

as the value of M increases (e.g., see [46]); that is, we have less confidence in the parameter

estimates as the number of approximating parameters increases. Hence, there is a trade-off

between the bias and the variance (illustrated in Figure 2.2). Model selection criteria such as

the Akaike Information Criterion and the Bayesian Information Criterion have been widely used

in the literature to select a best approximating model from a prior set of candidate models,

and they all are based to some extent on the principle of parsimony (again see [33,46]). The
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Figure 2.1: Illustration of the bias and the variance in the probability measure approximation.

Figure 2.2: Illustration of the trade-off between the bias and the variance.

goal in model selection is to simultaneously minimize both bias (modeling error) and variance

(estimation error). Thus one can use a model selection criterion to select a best M value (i.e., a

best approximating model).

2.2.4 Pointwise Asymptotic Normality of the Approximatd Probability Mea-

sure Estimator

In this section, we consider the pointwise asymptotic normality of the least-squares estimator

GNM . Since for any given θ, GNM (θ) is linearly dependent on AN
M (for example, in the case
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where the Dirac measure approximation is used, GNM (θ) = (∆(θ))TAN
M ), we first consider the

asymptotic normality of AN
M . As discussed in the above section, (2.2.11) is misspecified. Hence,

the asymptotic normality results established in [94] for the parameter estimator in a misspecified

nonlinear regression can be applied to our case. To ensure the results in [94] hold, we make the

following additional assumptions.

(A6) For each fixed M , J̃0 has a unique minimizer a0,M in R̃M (that is, J0 has a unique

minimizer G0,M in PM (Ωθ)), and the minimizer a0,M is interior to R̃M .

(A7) For each fixed M , f̃ is twice continuously differentiable with respect to aM , and the

matrices H(a0,M ) and F(a0,M ) defined by

H(aM ) = ∂2J̃0(aM )
∂a2
M

= 2
∫ tf
ts

[
∂f̃(t;aM )
∂aM

(
∂f̃(t;aM )
∂aM

)T
− (f(t;G0)− f̃(t; aM ))∂

2f̃(t;aM )
∂a2
M

]
dµ(t)

(2.2.14)

and

F(aM ) = 4
∫ tf
ts

[
σ2

0 + (f(t;G0)− f̃(t; aM ))2
]
∂f̃(t;aM )
∂aM

(
∂f̃(t;aM )
∂aM

)T
dµ(t) (2.2.15)

are nonsingular.

Theorem 2.2.7. Under assumptions (A1)–(A7), for each fixed M we have

√
N
(
AN
M − a0,M

) d−→ Z ∼ N (0,Σ0,M ) , as N →∞, (2.2.16)

where
d−→ denotes convergence in distribution, Σ0,M = (H(a0,M ))−1F(a0,M ) (H(a0,M ))−1, and

N (0,Σ0,M ) represents a multivariate normal distribution with zero mean and covariance matrix

Σ0,M . A strongly consistent estimator of a0,M is AN
M , and a strongly consistent estimator of

Σ0,M is given by

ΣN
M = (HN (AN

M ))−1FN (AN
M )(HN (AN

M ))−1, (2.2.17)

where “strongly consistent” means convergence almost surely, and

HN (aM ) =
2

N

N∑
j=1

∂f̃(tj ; aM )

∂aM

(
∂f̃(tj ; aM )

∂aM

)T
− (Yj − f̃(tj ; aM ))

∂2f̃(tj ; aM )

∂a2
M

 , (2.2.18)
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and

FN (aM ) =
4

N

N∑
j=1

(Yj − f̃(tj ; aM ))2

(
∂f̃(tj ; aM )

∂aM

)(
∂f̃(tj ; aM )

∂aM

)T . (2.2.19)

Theorem 2.2.7 implies that for any sufficiently large N , we have

AN
M ∼ N (âNM ,

1
N Σ̂N

M ). (2.2.20)

Here Σ̂N
M is given by

Σ̂N
M = (ĤN (âNM ))−1F̂N (âNM )(ĤN (âNM ))−1, (2.2.21)

with

ĤN (aM ) =
2

N

N∑
j=1

∂f̃(tj ; aM )

∂aM

(
∂f̃(tj ; aM )

∂aM

)T
− (yj − f̃(tj ; aM ))

∂2f̃(tj ; aM )

∂a2
M

 , (2.2.22)

and

F̂N (aM ) =
4

N

N∑
j=1

(yj − f̃(tj ; aM ))2

(
∂f̃(tj ; aM )

∂aM

)(
∂f̃(tj ; aM )

∂aM

)T . (2.2.23)

If one uses the Dirac measure approximation method, then by (2.2.20) we know that for any

sufficiently large N

GNM (θ) ∼ N ((∆(θ))T âNM ,
1
N (∆(θ))T Σ̂N

M∆(θ)) (2.2.24)

holds for any fixed θ ∈ Ωθ. Similarly, one can use (2.2.20) to obtain the pointwise asymptotic

result for GNM (θ) in the case where the linear spline approximation method is employed.

2.3 Numerical Results

In this section, we use the motivating example in Section 2.1 to demonstrate our theoretic results

through simulated data. Specifically, we consider the following nonparametric model

Yj = |r(kj ;G0)|2 + Ej , j = 1, 2, 3, . . . , N, (2.3.1)

with r(k;G) given by (2.1.3). The simulated data is then generated by simulating

yj = |r(kj ;G0)|2 + εj , j = 1, 2, 3, . . . , N. (2.3.2)
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In the above equation, G0 is chosen as the cumulative distribution function of a truncated

normal distribution with its corresponding probability density function p0 given by

p0(k0) =
β

σ
√

2π
exp

(
−(k0 − µ)2

2σ2

)
, k0 ∈ [k0, k̄0],

where µ = 700, σ = 50, k0 = 400, k̄0 = 1090, and β is the normalizing constant

β−1 =

∫ k̄0

k0

1

σ
√

2π
exp

(
−(k0 − µ)2

2σ2

)
dk0.

The εj are realizations of Ej , which are assumed to be normally distributed with zero mean and

standard deviation σ0 = 0.002. For all the simulations below, N is chosen as 70, the measurement

wavenumber points are kj = 400 + 10(j − 1), j = 1, 2, . . . , 70, and the values for the rest of

model parameters are chosen as

τ = 0.03, εs = 2.7, ε∞ = 2.5.

Since G0 is chosen as an absolutely continuous function, we will use the linear spline approxima-

tion method in the simulations demonstrated below.

In the presentation below, we first use the Akaike Information Criterion to determine the

optimal value of M , where the probability measure is obtained by the linear spline approximation

method. We then compare the confidence band obtained using the asymptotic normality results

with the one obtained with the Monte Carlo simulations.

2.3.1 Optimal Value of M

As we stated earlier in this section, we use the Akaike Information Criterion (AIC), one of

the most widely used model selection criteria, to determine the optimal value for M . The

AIC was developed by Akaike (in 1973), and it is based on Kullback-Leibler information (a

well-known measure of “distance” between two probability density functions) and maximum

likelihood estimation. There are several advantages in using the AIC. For example, it can be

used to compare both nested models and non-nested models, and it can also be used to compare

multiple models at a time. For the least squares case, it can be found (e.g., see [46, Section

2.2], [33, Section 4.3.1]) that if the measurement errors are i.i.d. normally distributed, then the

AIC is given by

AIC = N log

(
RSS

N

)
+ 2(M + 1). (2.3.3)
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Here M + 1 is the total number of estimated parameters including the coefficients for the splines

and the variance of measurement errors, and RSS denotes the residuals of sum squares given by

RSS =
N∑
j=1

(yj − |r(kj ; ĜNM )|2)2.

Given a prior set of candidate models, one calculates the AIC value for each model, and the

best approximating model is the one with minimum AIC value. As might be expected, the AIC

value depends on the data set used. Thus, when one tries to select a best model from a set of

candidate models, one must use the same data set to calculate AIC values for each of the models.

It should be noted that the AIC may perform poorly if the sample size N is small relative to the

total number of estimated parameters (it is suggested in [46] that the AIC should be used only

if the sample size is at least 40 times the total number of estimated parameters). Otherwise, one

needs to use the small sample AIC, the so-called AICc, which is given by

AICc = AIC +
2(M + 1)(M + 2)

N −M − 2
. (2.3.4)

For more information on the AIC and its variations, we refer the interested reader to [46]

and [33, Chapter 4].

The set of our candidate models is chosen as model (2.2.11) with M = 5, 10, 15, 20, 25 and

30, and Ej , j = 1, 2, 3, . . . , N , being i.i.d. normally distributed with zero mean and constant

variance. Note that for all our models the sample size is less than 40 times total number of

estimated parameters. Hence, we will use the AICc to select the best model. Figure 2.3 depicts

the AICc values for each of these models. From this figure we see that the model with M = 15 is

the one with the minimum AICc value and thus it is the best approximating model as measured

by AICc.

2.3.2 Pointwise Confidence Band

In this section, we construct the pointwise confidence band for GNM by using both the asymptotic

normality results presented in Section 2.2.4 and Monte Carlo simulations, where M is chosen as

the optimal value of M = 15 obtained in the above analysis.

By (2.2.20) we know that for any sufficiently large N

GNM (k0) ∼ N (ĜNM (k0), 1
N (L(k0))T Σ̂N

ML(k0)) (2.3.5)
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Figure 2.3: The AICc values for model (2.2.11) with M = 5, 10, 15, 20, 25 and 30.

holds for any fixed k0 ∈ [k0, k̄0]. In the above equation, ĜNM (k0) = (L(k0))T âNM , where

L(k0) =

(∫ k0

k0

l1(ξ)dξ,

∫ k0

k0

l2(ξ)dξ, . . . ,

∫ k0

k0

lM (ξ)dξ

)T
.

One can then use (2.3.5) to construct the pointwise 100(1− λ)% level confidence band, which is

given by [
ĜNM (k0)− t1−λ/2SEPAN(k0), ĜNM (k0) + t1−λ/2SEPAN(k0)

]
, k0 ∈ [k0, k̄0].

Here SEPAN(k0) =
√

1
N (L(k0))T Σ̂N

ML(k0), and the critical value t1−λ/2 is determined by

Prob{T ≥ t1−α/2} = λ/2, where T has a student’s t distribution tN−M with N − M de-

grees of freedom. For the simulations illustrated below, lj is the jth piecewise linear spline

element using equally spaced nodes, and central difference schemes are used to approximate the

first and second order derivatives involved in the covariance matrix Σ̂N
M .

To construct a pointwise confidence band using the Monte Carlo simulations, we first generate

K simulated data sets and then estimate the probability measure for each data set. We denote the

estimated weights for the mth simulation as â
N,(m)
M and the corresponding estimated probability

measure as Ĝ
N,(m)
M ; that is, Ĝ

N,(m)
M (k0) = (L(k0))T â

N,(m)
M . Then the mean vector and covariance
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matrix for the estimator AN
M obtained using Monte Carlo simulations are computed as

âMC =
1

K

K∑
m=1

â
N,(m)
M , Σ̂MC =

1

K − 1

K∑
m=1

(â
N,(m)
M − âMC)(â

N,(m)
M − âMC)T ,

and the mean and covariance for the corresponding probability measure estimator GNM are

respectively given by

ĜMC(k0) = 1
K

∑K
m=1 Ĝ

N,(m)
M = 1

K

∑K
m=1(L(k0))T â

N,(m)
M = (L(k0))T âMC

and
(SEPMC(k0))2 = 1

K−1

∑K
m=1(Ĝ

N,(m)
M (k0)− ĜMC(k0))2

= 1
K−1

∑K
m=1

[
(L(k0))T

(
â
N,(m)
M − âMC

)]2

= (L(k0))T Σ̂MCL(k0).

The pointwise 100(1− λ)% level confidence band is then given by

[ĜMC(k0)− t1−λ/2SEPMC(k0), ĜMC(k0) + t1−λ/2SEPMC(k0)].

Figure 2.4 depicts the pointwise confidence bands for GNM obtained using both the pointwise

asymptotic normality results and the Monte Carlo simulations, where α is chosen to be 0.1,

and K = 1,000. We observe from this figure that the confidence bands obtained by these two

approaches are similar except at the plateau regions where the confidence band obtained using

the asymptotic results is wider than that obtained using the Monte Carlo simulations. To have

some idea of this discrepancy, we calculate the confidence intervals of the coefficients for each

spline obtained by using both the asymptotic normality results and the Monte Carlo simulations.

By (2.2.20) we know that the 100(1− λ)% level confidence intervals for the coefficients obtained

from the asymptotic normality results are given by

[âNM,j − t1−λ/2SEAAN,j , â
N
M,j − t1−λ/2SEAAN,j ], j = 1, 2, 3, . . . ,M,

where âNM,j is the jth element of âNM , and SEAAN,j =
√

1
N Σ̂N

M,jj with Σ̂N
M,jj being the (j, j)th

element of Σ̂N
M . For the Monte Carlo method, the 100(1− λ)% level confidence intervals for the

coefficients are calculated as

[âMC,j − t1−λ/2SEAMC,j , âMC,j + t1−λ/2SEAMC,j ], j = 1, 2, 3, . . . ,M.
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Figure 2.4: The pointwise confidence bands for the cumulative distribution function obtained
using the pointwise asymptotic normality results (left) and the ones obtained using the Monte
Carlo simulations (right).

Here âMC,j is the jth element of âMC, and SEAMC,j =
√

Σ̂MC,jj with Σ̂MC,jj being the (j, j)th

element of Σ̂MC. In Table 2.1, we give the confidence intervals obtained by these two methods.

From this table, we see that the confidence intervals obtained by the asymptotic normality results

Table 2.1: The confidence intervals (CI) computed using the pointwise asymptotic normality
(AN) results and the ones obtained using the Monte Carlo (MC) simulations.

j CI using AN method CI using MC method

1 [−0.0006, 0.0006] [−0.0001, 0.0002]

2 [−0.0007, 0.0007] [−0.0001, 0.0001]

3 [−0.0010, 0.0010] [−0.0001, 0.0002]

4 [−0.0005, 0.0014] [−0.0001, 0.0004]

5 [0.0006, 0.0018] [0.0010, 0.0021]

6 [0.0055, 0.0066] [0.0052, 0.0063]

7 [0.0080, 0.0091] [0.0080, 0.0090]

8 [0.0051, 0.0056] [0.0049, 0.0058]

9 [0.0012, 0.0018] [0.0010, 0.0018]

10 [−0.0004, 0.0005] [−0.0001, 0.0004]

11 [−0.0002, 0.0003] [−0.0001, 0.0002]

12 [−0.0003, 0.0003] [−0.0001, 0.0001]

13 [−0.0004, 0.0004] [−0.0001, 0.0001]

14 [−0.0002, 0.0002] [−0.0000, 0.0001]

15 [−0.0003, 0.0003] [−0.0001, 0.0001]
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are wider than those obtained by the Monte Carlo simulations except for those with splines

located in the middle region where we have a good match. This is in agreement with the plots in

Figure 2.4. It is clear from (2.1.2) that the relative permittivity is less sensitive to the coefficients

for those splines located in the far left and far right (i.e., the plateau regions of the cumulative

distribution function) where the values of the corresponding probability density function are

negligible. Hence, the model output, the reflectance |r|2, is less sensitive to the coefficients for

those splines located in these two regions. Thus, one would have wider confidence intervals (i.e.,

have less confidence in estimates) for these coefficients as we see from (2.2.21)–(2.2.23) that the

covariance matrix for the coefficients obtained by the asymptotic normality results is dependent

on the sensitivity of the model output with respect to the coefficients.

2.4 Concluding Remarks and Future Research Questions

A computational and theoretical framework was presented for nonparametric estimation of a

probability measure G0 in cases where the regression function is dependent on the sought-after

probability measure. We also provided a consistency result for the probability measure estimator

GN . Moreover, we discussed the bias and the variance in the parameter estimation process

where the infinite-dimensional parameter space P(Ωθ) is approximated by a finite-dimensional

parameter space PM (Ωθ), and we established the pointwise asymptotic normality for the

approximated probability measure estimator GNM . Numerical results verify that we have a good

match for the pointwise confidence band obtained by the pointwise asymptotic normality results

and the Monte Carlo simulations in the region to which the model output is most sensitive.

Future efforts include investigation of convergence in distribution of the stochastic process√
N(GN −G0) to a certain Gaussian process. It is worth noting that the asymptotic normality of

an infinite-dimensional parameter estimator in a statistic model with smooth regression function

has been studied by a number of researchers (e.g., see [69] and the references therein). However,

in those efforts the space for the infinite-dimensional parameter was required to be a compact

set in a Hilbert space. Thus, the results established in those research efforts cannot be applied

to our case as our parameter space P(Ωθ) is a compact set in the space of all finite regular

measures with weak norm
(

frm(Ωθ), ‖ · ‖frm(Ωθ),w

)
, which is a separable normal linear space

(e.g., see [93, Theorem IV.1.4]), but not a Hilbert space.
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CHAPTER 3

Use of Difference-Based Methods to Explore Statistical and

Mathematical Model Discrepancy in Inverse Problems

Next we focus on methods for exploring the validity of the statistical model assumptions. In

parameter estimation, one must always pair the mathematical model, which describes the

underlying dynamics, with a statistical model that describes the observation process. The

requirements about what must be specified in the statistical model depend upon the estimation

method. For example in ordinary least squares, one must make assumptions about the first two

moments of the measurement errors, and in a maximum likelihood or Bayesian estimation, the full

distribution of the measurement errors must be specified. Misspecification in the statistical model

can lead to improperly calibrated model parameters and meaningless uncertainty quantification,

just as in the case of mathematical model discrepancy. The contents of this chapter are based

upon the following publication [18]:

H.T. Banks, J. Catenacci, and S. Hu. Use of difference–based methods to explore statistical and

mathematical model discrepancy in inverse problems. Journal of Inverse and Ill-Posed Problems.

(in press).

3.1 Introduction

A number of difference-based methods have been proposed in the literature to estimate the

variance of measurement errors in a nonparametric regression where the mean function of

observations is unknown and estimated using some nonparametric methods (e.g., see [44, 54,

71,73,91] and the reference therein). These methods involve differencing the data and do not
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require estimation of the mean function. Specifically, the estimated variance is defined as the

weighted average of the squared normalized difference of ν+1 observations, where ν is an integer.

These normalized differences of ν + 1 observations are called pseudo measurement errors in

this paper. The purpose of this paper is to illustrate how these pseudo measurement errors can

be used as a possible way of detecting statistical model misspecification or discrepancy as

well as mathematical model misspecification or discrepancy within the context of a least

squares inverse problem. That is, given a set of observed data, a mathematical model describing

the observed process is fitted to the data via a least squares formulation by estimating a set of

unknown parameters. As has become conventional in inverse problems, we would also like to

quantify the uncertainty present in the estimation of the mathematical model parameters using

confidence intervals. To do this, one must have a correctly specified statistical model which

describes the data collection process along with a mathematical model which is assumed to

describe the process under observation. Typically, one uses residual plots as illustrated in [33,40]

to ensure that the assumptions made in specifying both the statistical and mathematical model

are not violated. However, the residuals can only be computed after the inverse problem has been

completed. Furthermore, if the residual plots do not illustrate the desired random patterns, it can

be difficult, if not impossible to determine if this is caused by mathematical model discrepancy

or statistical model discrepancy, or both. We will show how difference-based techniques can

be used directly on the data to deduce if the assumptions of the statistical model have been

violated prior to running the inverse problem. Then residual plots can be used afterwards to

verify that the mathematical model is sufficiently accurate.

We consider inverse or parameter estimation problems in the context of a parameterized

(with vector parameter q ∈ Ωκq ⊂ Rκq) n-dimensional vector dynamical system (for a physical

or biological process) or mathematical model given by

dx

dt
(t) = h(t,x(t),q), (3.1.1)

x(ts) = x0, (3.1.2)

with observation process

f(t;θ) = Cx(t;θ), (3.1.3)

where θ = (qT , x̃T0 )T ∈ Ω ⊂ Rκq+ñ = Rκθ , ñ ≤ n, κq is the number of unknown dynamic

parameters, ñ is the number of unknown initial conditions x̃0, and the observation operator C
maps Rn to Rm. The sets Ωκq and Ω are assumed known restraint sets for the parameters.

We make some standard assumptions (see [33,40]) underlying our inverse problem formula-

tions.

• Assume that there exists a true or nominal set of parameters θ0 ∈ Ω.
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• Ω is a compact subset of Euclidian space of Rκθ and f(t;θ) is continuous on [0, T ]×Ω.

Denote θ̂ as the estimated parameter for θ0 ∈ Ω. The inverse problem is based on statistical

assumptions on the observation error in the data. We consider a special case of a general

statistical model of the form

Yj = f(tj ;θ0) + g(tj ;θ0) ◦ Ej , j = 1, 2, . . . , N, (3.1.4)

where Yj = (Y1j , Y2j , . . . , Ymj)
T , f(tj ;θ0) = (f1(tj ;θ0), f2(tj ;θ0), . . . , fm(tj ;θ0))T denotes ob-

servations of the mathematical model describing the underlying physical or biological process

with the nominal parameters θ0 at the measurement point tj , and N is the total number of

observations. The so called measurement or observation error at tj is represented by g(tj ;θ0)◦Ej ,
where ◦ denotes component-wise multiplication of the vectors, and Ej = (E1j , E2j , . . . , Emj)T is

a m× 1 random vector.

The simplest form of (3.1.4) is when g(tj ;θ0) is m × 1 vector with each element being 1,

this is known as an absolute error model. Another popular choice for a statistical model is

given by g(tj ;θ0) = f(tj ;θ0) which results in a relative error model. In this work we will

only concern ourselves with the special case of g(tj ;θ0) = fγ(tj ;θ0) so that

Yj = f(tj ;θ0) + fγ(tj ;θ0) ◦ Ej , j = 1, 2, . . . , N, (3.1.5)

where fγ(tj ;θ0) = (fγ11 (tj ;θ0), fγ22 (tj ;θ0), . . . , fγmm (tj ;θ0))T and γ = (γ1, γ2, . . . , γm). Here fγ◦
denotes the component-wise exponentiation by γ of the vector function f followed by component-

wise multiplication of the vectors fγ(tj ;θ0) and Ej . Furthermore, we assume that for any fixed

j, Eij , i = 1, 2, . . . ,m, are independent with mean zero and

Var(Eij) = σ2
0,i.

There are numerous examples (especially in biological and biomedical problems involving

assays and/or population counts) in which such statistical models have been found appropriate

if a proper value of γ is chosen. These examples include modeling of HIV viral infections [8]

for data consisting of CD4+ T cell counts with γ1 = 0 and viral RNA counts with γ2 = 1.2;

prion aggregation kinetic models [25] with γi = γ = 0.6; insect populations undergoing pesticide

treatments [6, 7] with γ ≈ .8 or .85; and cell proliferation studies modeling flow cytometry

data with γ = 0.5 [33, p. 87], [90] for a dividing population of lymphocytes labeled with the

intracellular dye CFSE. In this latter example, as cells divide, the highly fluorescent intracellular

CFSE is partitioned evenly between two daughter cells. A flow cytometer measures the CFSE

fluorescence intensity (FI) of labeled cells as a surrogate for the mass of CFSE within a cell,

thus providing an indication of the number of times a cell has divided. In these applications we
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note that γ is a to-be-determined tuning parameter for the statistical model. These problems

involve special cases of Generalized Least Squares (GLS) formulations [33,48,52,53,84] which

have become central to many inverse problem efforts in recent years.

We remark that for the case where the measurement errors are heteroscedastic, the difference-

based methods were specially designed for the general case (3.1.4), and where the problem of

interest is to estimate the function g in the case where f is also unknown (f is often referred

to as a nuisance parameter). Specifically, the estimator of g is a weighted average of squared

pseudo measurement errors with weights being some kernel functions, where the bandwidth

(a free parameter) of the kernel function has a strong influence on the resulting estimate. To

our knowledge, a proper choice of bandwidth is still a current topic of research. Since in this

thesis we only consider the special case (3.1.5) with γ unknown, we refer the interested reader

to [44,71] and the references therein for more information on this topic.

To represent a collected data set, we let yj = (y1j , y2j , . . . , ymj)
T be a realization of Yj ,

yj = f(tj ;θ0) + fγ(tj ;θ0) ◦ εj , j = 1, 2, . . . , N,

where εj = (ε1j , ε2j , . . . , εmj)
T is a realization of Ej , j = 1, 2, . . . , N . We remark that difference-

based methods for calculation of pseudo measurement errors can also be used in the case

where the components of Yj may be observed at different measurement points (that is, Yij =

fi(tij ;θ0) + fγii (tij ;θ0)Eij , j = 1, 2, . . . , Ni, i = 1, 2, . . . ,m). But for notational convenience, we

only consider the case where all the components of Yj are observed at the same measurement

time points.

Of course, our model f(tj ;θ0) typically does not perfectly describe the underlying process

in question. This results in what we will refer to as mathematical model misspecification or

discrepancy. Additionally, even in our assumption that the measurement errors can be described

by (3.1.5), the value of γ is not known a priori. We will refer to this as statistical model

misspecification or discrepancy.

For the sake of clarity, we present a basic example to make our motives clear. Consider a

population under observation which is believed to follow the well known logistic model given by

ẋ(t) = bx(t)

(
1− x(t)

κ

)
, x(ts) = x0. (3.1.6)

Here x denotes the number of individuals, r is the intrinsic growth rate, and κ represents the

carrying capacity and we assume that we can observe the number of individuals at times tj ,

j = 1, 2, , . . . , N . In this case we would have the statistical model

Yj = f(tj ;θ0) + f(tj ;θ)γEj , j = 1, 2, . . . , N, (3.1.7)
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where f(tj ;θ) = x(tj ;θ) denotes the solution to (3.1.6), (i.e. C = I), and θ = (b, κ, x0)T are

the unknown mathematical model parameters. Recall that if γ = 0 we have an absolute error

model, which is interpreted as meaning that the observation errors are independent of the

size of the population itself, and if γ = 1 we have a relative error model, which indicates that

the observation errors are a multiple of the population size itself. In general, for any γ > 0

we are making the assumption that the observation errors are dependent on the size of the

population itself. Notice that E(Yj) = f(tj ;θ0), and Var(Yj) = f(tj ;θ0)2γσ2
0, thus the variance

is non-constant provided γ 6= 0.

In practice, one often assumes a specific statistical model (i.e., assumes a specific value for

γi) and then chooses an appropriate method to carry out parameter estimation (for example, if

γi = 0, i = 1, 2, . . . ,m, then an ordinary least squares method is appropriate). One can then use

residual plots to determine whether or not the assumed statistical model is appropriate (e.g.,

see [33, Chapter 3]). If one assumes a statistical model with γi = 0, i = 1, 2, . . . ,m, and the

resulting residual plots exhibit a non random pattern, such as a fan shaped pattern, then the

assumed statistical model is not reasonable. In the case where the assumed statistical model is

inappropriate, one tries another set of values for γi’s and carries out another inverse problem.

This may be done iteratively until one finds values γ̂i’s such that the plot of the modified

residuals rij/|yij − fi(tj ; θ̂)|γ̂i versus tj forms a horizontal band around the horizontal axis

(where rij = yij − fi(tj ; θ̂) is the residual and θ̂ denotes the estimate for θ0). We thus see that

if the involved inverse problem is computationally expensive, then this procedure can become

prohibitive to implement. In addition, as we see later in this paper (see Section 4), residual

plots may provide incorrect information for the variance of measurement errors in cases where

mathematical model misspecification is present. In this paper, we propose to use the information

provided by the pseudo measurement errors to directly determine appropriate values for the

γi’s. We note that difference-based methods used to calculate pseudo measurement errors do

not involve any inverse problem calculations and are independent of the chosen mathematical

model. Hence, if our proposed method is successful, it should provide a much more efficient and

accurate way to determine appropriate values for the γi’s.

After determining appropriate values for the γi’s (i.e., an appropriate statistical model),

one may then use pseudo measurement errors to determine whether there is a mathematical

model error. Specifically, one first uses the appropriate statistical model (chosen based on

the information provided by pseudo measurement errors) to carry out parameter estimation.

Then one compares the residual plot and the plot of ε̂ij versus tj to determine whether there

is a mathematical model misspecification. For example, if there is a discernible divergence

between these two plots, then there is a mathematical model error and the degree of this error is

determined by the degree of the divergence. The difference between residuals and ε̂ij ’s provides

some prior information on this error. However, we remark that no discernible divergence between
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these two plots does not imply that there is no mathematical model error. This is because there

are some cases where two different mathematical models could give the same solution in the

given sampling time region. For example, one may have an alternative mathematical model

that has exactly the same form as the true model in a certain time region and has different

forms in other time regions. If the sampling time region happens to be the one where these two

mathematical models are the same, then there is no difference between the residuals and ε̂ij ’s.

In this chapter, we also propose to use the information provided by pseudo measurement errors

to perform bootstrapping to quantify the uncertainty in parameter estimates. Bootstrapping is

a popular tool for construction of confidence intervals for parameter estimators (e.g., see [33,

Chapter 3] and [62]). It involves constructing a family of samples/data sets based on random

sampling with replacement. One uses each of these data sets to solve the inverse problem to

obtain a new estimate, and then constructs the confidence intervals based on this family of

estimates for the parameter estimators. We remark that there are two common ways to construct

a family of data sets. One involves resampling the original data set, and it is based on the

assumption that the original data are independent and identically distributed (i.i.d.). However,

this method does not work well for cases where models are used to describe dynamic systems as

observations are often not identically distributed even in the case where measurement errors

are independent and identically distributed. The other method involves resampling residuals

from an initial estimation to the original data set, and this is based on the assumptions that

the regression function correctly specifies the observed part of the system and the first two

moments of measurement errors are correctly specified (that is, the given statistical model

is correctly specified). We thus see that this method does not work for the case where there

is a mathematical modeling misspecification, which is often the situation in describing a real

system. To alleviate this difficulty, we propose to use difference-based methods to obtain the

pseudo measurement errors and then create bootstrapping samples using random sampling with

replacement from these pseudo measurement errors. As we shall see later in Section 3.4, our

proposed method works quite well and is robust to mathematical model misspecification. This

is expected as the pseudo measurement errors, unlike residuals, are independent of the chosen

mathematical model.

The remainder of this chapter is organized as follows. In Section 3.2, we give an introduction

to difference-based methods for variance calculations. We then apply these methods in Section

3.3 to simulated data sets to verify the accuracy of these methods and then use the obtained

pseudo measurement errors to determine proper statistical models for several experimental data

sets. In Section 3.4, we use the information provided by these pseudo measurement errors to

determine whether there is possible mathematical model error and illustrate how to carry out

bootstrapping to quantify the uncertainty of corresponding parameter estimators in the presence

of model misspecification. Finally, in Section 3.5 we conclude the chapter with some summary
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remarks and future research efforts.

3.2 Difference-Based Methods

All of the difference-based methods are based on the assumption that the true or nominal

regression function is sufficiently smooth and the maximum of the length of sampling time

intervals (i.e., max{tj+1 − tj , j = 1, 2, . . . , N − 1}) is sufficiently small. The estimated variance

is defined as the weighted average of the squared normalized differences of ν + 1 observations.

Specifically, the normalized differences of ν + 1 observations, pseudo measurement errors, are

defined as being either symmetric around yij as in

ε̂ij =

ν∑
k=0

wkyi,j−
[
ν+1

2

]
+k+1

, j =
[
ν
2

]
,
[
ν
2

]
+ 1, . . . , N −

[
ν
2

]
, i = 1, 2, . . . ,m, (3.2.1)

or asymmetric about yij as in

ε̂ij =
ν∑
k=0

wkyi,j+k, j = 1, 2, . . . , N − ν, i = 1, 2, . . . ,m. (3.2.2)

Here [a] denotes the smallest integer that is greater than or equal to a, and the wk’s are some

real numbers which satisfy the conditions

ν∑
k=0

wk = 0,
ν∑
k=0

w2
k = 1. (3.2.3)

We remark that the above conditions are necessary to obtain an asymptotically unbiased

estimator for the variance (e.g., see [73]) and so that the choice of the form for the pseudo

measurement errors (i.e., choosing either (3.2.1) or (3.2.2)) does not affect the asymptotic result

(e.g., see [71]). It is also worth noting that for ν > 1 there are many different choices for the

weights that satisfy condition (3.2.3), and that the variance of the variance estimator in general

depends on the choice of the weights (e.g., see [73] for details).

Based on the choice for the values of ν and wk’s, we introduce here three of these difference-

based methods. One of them involves first-order backward differencing data (i.e., ν = 1) and the

associated pseudo measurement errors are calculated as follows:

ε̂1stij =
1√
2

(yi,j−1 − yi,j), j = 2, 3, . . . , N, i = 1, 2, . . . ,m. (3.2.4)
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For the case γi = 0 (i.e., constant variance error), the estimate for σ0,i is then given by

σ̂1st
0,i =

√√√√ 1

N − 1

N∑
j=2

(
ε̂1stij

)2
, i = 1, 2, . . . ,m. (3.2.5)

Another method involves second-order differencing data; that is ν = 2. The pseudo measurement

errors are given by

ε̂2ndij =
1√
6

(yi,j−1 − 2yij + yi,j+1), j = 2, 3, . . . , N − 1, i = 1, 2, . . . ,m. (3.2.6)

For the case γi = 0, the associated estimate for σ0,i is then given by

σ̂2nd
0,i =

√√√√ 1

N − 2

N−1∑
j=2

(
ε̂2ndij

)2
, i = 1, 2, . . . ,m. (3.2.7)

The last method we consider involves applying a first-order differencing operator l times (referred

to as an lth-order differencing method in this paper), where l is some integer. Let ∆l denote

the first order differencing operator applied l times with ∆yij = yi,j+1 − yij , j = 1, 2, . . . , N − 1,

i = 1, 2, . . . ,m. Then pseudo measurement errors are calculated as follows:

ε̂1st-lij =

√√√√( 2l

l

)−1

∆lyj , j = 1, 2, 3, . . . , N − l, i = 1, 2, . . . ,m, (3.2.8)

where

(
2l

l

)
= (2l)!

(l!)2
with l! be the factorial of l. For the case γi = 0, the estimate for σ0,i is

then given by

σ̂1st-l
0,i =

√√√√ 1

N − l
N−l∑
j=1

(ε̂1st-lij )2, i = 1, 2, . . . ,m. (3.2.9)

It was suggested in [92] that the choice of l = 3 works well in practice. This is also the value

that we use for l in all the numerical results shown in this paper.

We remark that for the case where one suspects that observation coordinates of Yj may

have different constant variance (i.e., σ0,i may not be equal to σ0,k), one usually uses an iterative

process to carry out parameter estimation for mathematical model parameters and σ0,i’s (e.g.,

see [33, Section 3.2.2] for details). However, by using the above methods one is able to obtain

the estimates for σ0,i’s and hence one does not need to use such an iterative inverse problem

procedure. This can significantly speed up the desired inverse problem methodology.
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3.3 Application on Determining an Appropriate Statistical Model

In this section, we first apply the three methods introduced in Section 3.2 to some simulated data

sets to demostrate the accuracy of these methods as well as the accuracy of the proposed method

in using the information provided by pseudo measurement errors to determine an appropriate

statistical model. We then apply these methods to some experimental data sets to determine

the appropriate statistical models.

3.3.1 Numerical Results for Simulated Data Sets

We first consider applying the three methods introduced in Section 3.2 to two simulated data

sets: one is generated using the logistic growth model and the other is generated using a classical

SIR model. These examples are used to support the accuracy of the proposed method for using

the information provided by pseudo measurement errors to determine appropriate values for the

γi’s in (3.1.5).

Example 1: Logistic Growth Model

We consider the standard logistic growth model

ẋ = bx
(

1− x

κ

)
, x(ts) = x0 (3.3.1)

as described in Section 3.1.

We assume that we can observe the number of individuals; that is, f = x. To generate

the simulated data, we simulate (3.3.1) with parameter values and initial values chosen as

b = 3, κ = 100, x0 = 10. We then impose a normal distribution on Ej with zero mean and

standard deviation σ0 = 0.05, where the measurement time points are tj = ts + (j− 1)
tf−ts
N−1 with

ts = 0, tf = 2.5, j = 1, 2, . . . , N and N = 201. In other words, the simulated data set {yj}Nj=1 is

generated as follows:

yj = x(tj) + xγ(tj)εj , j = 1, 2, . . . , N, (3.3.2)

where εj is a relization of Ej . We first will confirm that the pseudo measurement errors provide

a reasonable approximation of the true measurement errors εj . Then we show that the pseudo

measurement errors can be used to determine the unknown value of γ.

Table 3.1 summarizes the estimates for σ0 found using the three methods introduced in

Section 3.2 for the case where γ = 0 in (3.3.2). From this table, we see that the last two methods

give reasonable estimates for σ0 while the first method considerably overestimates the value

of σ0. But we do see from other numerical results (see the SIR example discussed in the next

section) that this simple method does give a good estimate for some examples. But in summary,
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this suggests that this first-order differencing method does not consistently perform well. This

is consistent with the observation made in [54], wherein it is suggested that the first-order

differencing method should not be used since it does not always behave well. We also observe

from Table 3.1 that the estimate obtained by the third-order differencing method is slightly

worse than the one obtained by the second-order differencing method. This is somehow contrary

to the common finding in numerical analysis that the higher the order the better the result.

However, as we mentioned in the beginning of Section 3.2, the variance of the estimator for σ0

depends on the choice of the weights. This means that if the weights for a given method lead to

a larger variance, then the variance estimator obtained by this method has larger uncertainty.

This may be the reason why the estimate obtained by the third-order differencing method is

slightly worse than that obtained by the second-order method.

Table 3.1: Results for the logistic example in the case where γ = 0: the true value of σ0 as
well as its estimates obtained using the three mentioned methods (σ̂1st

0 is obtained using the
first-order differencing method, σ̂2nd

0 is obtained using the second-order differencing method, and
σ̂1st-3

0 is obtained by the third-order differencing method).

σ0 σ̂1st
0 σ̂2nd

0 σ̂1st-3
0

5.000e-02 3.930e-01 5.210e-02 5.216e-02

Figure 3.1 presents the plot of pseudo measurement errors ε̂1stj (obtained using the first-order

differencing method and denoted as “estimates” in the legend of this figure) versus tj and the

plot of εj (simulated measurement errors and denoted as “true values” in the legend) versus tj

for the cases where γ = 0 (left column) and γ = 1 (right column) in (3.3.2). From this figure, we

see that for the case where γ = 0 the plot of ε̂1stj versus tj diverges from the plot of εj versus tj

except at the very end. This is consistent with considerable difference of the estimate σ̂1st
0 from

its true value. However, for the case where γ = 1 the time plot for the pseudo measurement

errors exhibits a pattern similar to that for the true values. This suggests that for this case this

method works well. Figure 3.2 illustrates the results for the pseudo measurement errors ε̂2ndj

obtained using second-order differencing method while Figure 3.3 depicts the results for the

pseudo measurement errors ε̂1st-3j obtained by applying the first-ordering differencing operator 3

times. From these two figures, we see that the time plot for the pseudo measurement errors

exhibits the same pattern as that for the true ones. This suggests that these two methods work

well at approximating the true measurement errors for both the constant variance error case

and the relative error case.
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Figure 3.1: Comparison of the plot of ε̂1stj (denoted as “estimates” in the legend) versus tj
and the plot of εj (denoted as “true value”) versus tj : (left panel) results obtained for γ = 0;
(right panel) results obtained for γ = 1, where ε̂1stj ’s are obtained by the first-order differencing
method.
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Figure 3.2: Comparison of the plot of the ε̂2ndj (denoted as “estimates” in the legend) versus tj
and the plot of εj (denoted as “true value”) versus tj for the case γ = 0 (left panel) and the case
γ = 1 (right panel), where the ε̂2ndj are obtained using the second-order differencing method.

Of course, in practice one does not have a value of the measurement errors themselves, rather

only the data measurement {yj}Nj=1 is known. We claim that if the pseudo measurement errors

provide a reasonable approximation of the true (but unknown) measurement errors, then we

can use the pseudo measurement errors to determine an appropriate value for γ. For example, if

the plot of pseudo measurement errors ε̂j versus tj seems to form a horizontal band around the
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Figure 3.3: Comparison of the plot of the ε̂1st-3j (denoted as “estimates” in the legend) versus tj
and the plot of εj (denoted as “true value”) versus tj for the case γ = 0 (left panel) and the
case γ = 1 (right panel), where the ε̂1st-3j are obtained by applying the first-order differencing
operator for 3 times.

horizontal axis, then γ = 0 may be appropriate. However, if one finds that the plot of ε̂j versus

tj does not appear to be identically distributed, then γ 6= 0 and one needs to find a proper

nonzero value for γ. To do this, we try different values for γ until one finds a value γ̂ such that

the plot of ε̂j/|yj − ε̂j |γ̂ versus tj forms a horizontal band around the horizontal axis. To verify

whether or not this works, we take this logistic model with simulated data generated using γ = 1

as an example. We note that for this data set the plot of ε̂j versus tj (e.g., see the right panel of

Figure 3.3) exhibits a fan shaped pattern. To begin with, we choose γ̃ = 2. The resulting plot for

ηγ̃j = ε̂1st-3j /|yj − ε̂1st-3j |γ̃ versus tj with γ̃ = 2 is shown in the left panel of Figure 3.4, where the

ε̂1st-3j are obtained by applying the first-order differencing operator three times. We observe from

this plot that it has an inverted fan shaped pattern. This indicates that a proper value for γ is

between 0 and 2. We then plotted ηγ̃j versus tj with γ̃ = 1 (shown in the right panel of Figure

3.4) and found that they appear to be identically distributed. Figure 3.5 depicts the results

obtained using the second-order differencing method. We observe similar patterns. These results

demonstrate that our proposed method works well. One may argue that this proposed method

is somewhat subjective and that one can use difference-based methods to obtain directly the

estimate for the variance of measurement errors using the kernel function approach mentioned

in the Introduction. One could then use this estimate to obtain the estimate for γ. However,

as we remarked in the introduction of this chapter, such an estimate for the variance highly

depends on the value of the bandwidth and that a proper choice of bandwidth is still a subject

of research. Hence, our proposed method provides an alternative and practical way to determine
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Figure 3.4: Plot of ηγ̃j = ε̂1st-3j /|yj − ε̂1st-3j |γ̃ versus tj for the case where the simulated data were
generated with γ = 1: (left panel) γ̃ = 2; (right panel) γ̃ = 1.
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Figure 3.5: Plot of ηγ̃j = ε̂2ndj /|yj − ε̂2ndj |γ̃ versus tj for the case where the simulated data were
generated with γ = 1: (left panel) γ̃ = 2; (right panel) γ̃ = 1.

a reasonable value for γ.
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Example 2: SIR Model

We next consider a simple SIR model described by the following system of ordinary differential

equations

Ṡ = −βSI,

İ = βSI − δI,

Ṙ = δI,

(S(ts), I(ts), R(ts)) = (S0, I0, R0).

(3.3.3)

Here S, I and R respectively denote the ratios of the numbers of susceptible, infected, and

recovered individuals to the total number of individuals (so they are dimensionless), β denotes

the infection rate, and δ is the recover rate.

For demonstration purpose, we assume that we can observe all these three states; that is,

f = (S, I,R)T . For all the results shown below, the parameter values and initial values are

chosen as β = 6, δ = 3, S0 = 0.7, I0 = 0.2, R0 = 0.1. To generate the simulated data, we impose

a normal distribution on E1j with zero mean and standard deviation σ0,1 = 0.01, a normal

distribution on E2j with zero mean and σ0,2 = 0.005 and a normal distribution on E3j with zero

mean and σ0,3 = 0.02, where the measurement time points are tj = ts + (j − 1)
tf−ts
N−1 with ts = 0,

tf = 2 and N = 201, j = 1, 2, . . . , N .

Table 3.2 summarizes the estimates for σ0,i by using the three methods introduced in Section

3.2 for the case where γi = 0, i = 1, 2, 3. From this table, we see that all three methods give

reasonable estimates for σ0,i.

Table 3.2: Results for the SIR example in the case where γi = 0, i = 1, 2, 3: the value of σ0,i as
well as its estimates obtained using the three methods introduced in Section 3.2.

σ0,i 1.000e-02 5.000e-03 2.000e-02

σ̂1st
0,i 1.074e-02 5.295e-03 2.049e-02

σ̂2nd
0,i 1.039e-02 5.297e-03 2.009e-02

σ̂1st-3
0,i 1.043e-02 5.368e-03 1.996e-02

Figure 3.6 presents the plots of pseudo measurement errors ε̂1stij (obtained using first-order

differencing method and denoted as “estimates” in the legend of this figure) versus tj and the

plot of εij (simulated measurement errors and denoted as “true value” in the legend of this

figure) versus tj for the cases where γ1 = γ2 = γ3 = 0 (left column) and γ1 = γ2 = γ3 = 1
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(right column). From this figure, we see that for the case γ1 = γ2 = γ3 = 0 the time plot for ε̂1sti·
exhibits exactly the same pattern as that for εi·. However, for the case γ1 = γ2 = γ3 = 1, there is

a discernible divergence between the plot of ε̂1st2j versus tj and the plot of ε2j versus tj . This again

demonstrates that the first-order differencing method does not consistently perform well. Figure
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Figure 3.6: Comparison of the plot of ε̂1stij (denoted as “estimates” in the legend) versus tj and
the plot of εij (denoted as “true value”) versus tj for the case γ1 = γ2 = γ3 = 0 (left column)
and the case γ1 = γ2 = γ3 = 1 (right column).

3.7 illustrates the results for the pseudo measurement errors ε̂2ndij obtained using the second-order

differencing method while Figure 3.8 depicts the results for the pseudo measurement errors ε̂1st-3ij

obtained by applying the first-order differencing operator 3 times. From these two figures, we
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see that the time plots for the pseudo measurement errors exhibit the same pattern as that for

the true ones. Hence, these two methods work well for both the constant variance error case

and the relative error case.
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Figure 3.7: Comparison of the plot of ε̂2ndij (denoted as “estimates” in the legend) versus tj and
the plot of εij (denoted as “true value”) versus tj for the case γ1 = γ2 = γ3 = 0 (left column)
and the case γ1 = γ2 = γ3 = 1 (right column).
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Figure 3.8: Comparison of the plot of ε̂1st-3ij (denoted as “estimates” in the legend) versus tj and
the plot of εij (denoted as “true value”) versus tj for the case γ1 = γ2 = γ3 = 0 (left column)
and the case γ1 = γ2 = γ3 = 1 (right column).
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The above numerical results again reveal that if difference-based methods work, then the

obtained pseudo measurement errors can be used to play the role as measurement errors and

hence can be used to determine appropriate values for γi’s. Here we take this SIR model with

simulated data generated using γ1 = γ2 = γ3 = 1 as another example to further verify the

method used in Section 3.3.1 for determining appropriate values for γi’s in the case where the

pseudo measurement errors do not appear to be identically distributed. Specifically, we try

different values for γi until one finds a value γ̂i such that the plot of ε̂ij/|yij − ε̂ij |γ̂i versus tj

forms a horizontal band around the horizontal axis. We note that for this data set both the plot

of ε̂1j versus tj and the plot of ε̂2j versus tj (e.g., see the right column of Figure 3.8) exhibit a

fan shaped pattern while the plot of ε̂3j versus tj exhibits an inverted fan shaped pattern. For a

start, we choose γ̃i = 2, i = 1, 2, 3. The resulting plots for ηγ̃iij = ε̂1st-3ij /|yij− ε̂1st-3ij |γ̃i versus tj with

γ̃i = 2 and i = 1, 2, 3, are shown in the left column of Figure 3.9, where the ε̂1st-3ij are obtained by

applying the first-order differencing operator for three times. We observe from these plots that

the patterns for all these three plots are inverted (i.e., the plot previously having a fan shaped

pattern now has an inverted fan shaped pattern, and the plot previously having an inverted

fan shaped pattern now have a fan shaped pattern). This indicates that a proper value for γi is

between 0 and 2, i = 1, 2, 3. We then plotted ηγ̃iij versus tj with γ̃1 = γ̃2 = γ̃3 = 1 (shown in the

right column of Figure 3.9) and found that they all appear to be identically distributed. Figure

3.10 depicts the results using the second-order differencing method. We observe similar patterns.

These results again demonstrate that our proposed method of using pseudo measurement errors

to determine an appropriate value for γ works well.
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Figure 3.9: Plot of ηγ̃iij = ε̂1st-3ij /|yij− ε̂1st-3ij |γ̃i versus tj for the case where the simulated data were
generated with γ1 = γ2 = γ3 = 1: (left panel) γ̃1 = γ̃2 = γ̃3 = 2; (right panel) γ̃1 = γ̃2 = γ̃3 = 1.
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Figure 3.10: Plot of ηγ̃iij = ε̂2ndij /|yij− ε̂2ndij |γ̃i versus tj for the case where the simulated data were
generated with γ1 = γ2 = γ3 = 1: (left panel) γ̃1 = γ̃2 = γ̃3 = 2; (right panel) γ̃1 = γ̃2 = γ̃3 = 1.
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3.3.2 Numerical Results for Experimental Data Sets

In this section, we apply the difference-based methods to some experimental data sets to determine

an appropriate value for γ. Since the first-order differencing method does not consistently perform

well, we only use the second-order differencing method and the method for applying the first-order

differencing operator 3 times for these data sets.

Daphnia magna Data Set

Here we consider the survival data collected for Daphnia magna that were presented in [1].

Specifically, ninety daphnids (neonates) were longitudinally observed and survival was recorded

daily, and an ordinary least squares method was used in this paper to estimate the mortality

rate.

Figure 3.11 presents the time plot results for the pseudo measurement errors obtained

using the second-order differencing method (left) and the method for applying the first-order

differencing operator three times (right). We observe from the right plot of this figure that

pseudo measurement errors form a horizontal band around the line ε = 0. The similar pattern

can be observed from the left plot of Figure 3.11 except several outliers. This indicates that the

absolute error model (i.e., γ = 0) may be correct for this case. This provides support for using

ordinary least squares method for parameter estimation in [1].
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Figure 3.11: Time plots for pseudo measurement errors obtained for the Daphnia data set
presented in [1]: (left panel) using the second-order differencing method; (right panel) using the
method for applying the first-order differencing operator for three times (right).
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CFSE Data Set

Here we consider the flow cytometry data presented in [33, Section 3.5.3] for a dividing population

of lymphocytes labeled with the intracellular dye CFSE. The observable is the number of cells

measured at time sk with log-fluorescence intensity in the region [zi, zi+1), k = 1, 2, . . . , 7,

i = 1, 2, . . . , 513. To be consistent with the notation introduced earlier, we re-index the data

collection points {(sk, zi)} by {tj}; that is, the elements in the set {tj}513k
j=513(k−1)+1 correspond

to the elements in the set {(sk, zi)}513
i=1 , k = 1, 2, . . . , 7.

Figure 3.12 depicts results obtained using the second-order diferencing method. Specifically,

the left panel shows the plot of pseudo measurement errors ε̂2ndj versus j, and the right panel

illustrates the plot of ηγ̃j = ε̂2ndj /|yj − ε̂2ndj |γ̃ versus j with γ̃ = 0.5, where the vertical lines

delineate the pseudo measurement errors obtained in time intervals [sk, sk+1), k = 1, 2, . . . , 7.

We observe from the left panel of Figure 3.12 that pseudo measurement errors are far from
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Figure 3.12: Plots for pseudo measurement errors obtained for the CFSE data set presented
in [33, Section 3.5.3] by using the second-order differencing method: (left panel) plot of ε̂j versus

j; (right panel) plot of ηγ̃j = ε̂2ndj /|yj − ε̂2ndj |γ̃ versus j with γ̃ = 0.5. The vertical lines delineate
the pseudo measurement errors obtained in time intervals [sk, sk+1), k = 1, 2, . . . , 7.

identically distributed. This is also true even in each subinterval [sk, sk+1). Hence, γ = 0 is not a

reasonable choice for this data set. This conclusion is consistent with the one made in [33, Section

3.5.3] where residual plots were used to determine an appropriate value for γ. Results in the right

panel of Figure 3.12 imply that in each subinterval [sk, sk+1) the ηγ̃j ’s appear to be identically

distributed except some outliers. This indicates that γ = 0.5 may be appropriate in each of

these subintervals. We also observe from this plot that the bandwidth formed by the plot of ηγ̃j ’s
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in the last two subintervals are larger than the ones for those subintervals located in the middle.

This suggests that we may have different constant variance for ηγ̃j in these subintervals and the

variance of ηγ̃j depends on when the measurement was taken. This observation is inconsistent

with the conclusion made in [33, Section 3.5.3] where residual plots reveal that the modified

residuals rj/|yj − f(tj ; θ̂)|γ̃ with γ̃ = 0.5 appear to be identically distributed in the whole

interval. Figure 3.13 demonstrates the results obtained by the third-order differencing method.

We observe similar patterns as that obtained by the second-order differencing method. As we

discussed earlier in the Introduction and also shown in the next section, this inconsistency

suggests that there may be a mathematical model misspecification involved.

Motivated by the recent CFSE label division studies of Bocharov, Luzyanina and colleagues

[43,72] on asymmetric label division and time-lags to division in proliferating mouse cell data,

we further investigated the data sets presented in [33, 34, 36, 67] and discussed then here.

The Bocharov, et al., investigations raised the question of whether cell proliferation models

which allowed for asymmetric label division might be better suited to describe our human cell

proliferation data. In [35] we revisited these data sets for the possibility of mathematical model

misspecification. In these investigations statistically based model comparison tests were employed

and seemingly contradictory results were found. In one third of the data sets studied, support

was found for the hypothesis that mathematical models permitting asymmetric label division

did not improve the fits-to-data. However, for two thirds of the data sets, it was found that

allowing asymmetric division does appear to lead to statistically significantly better agreement

with the data. While there may be other confounding factors, the findings of [35] support the

suggestion that there may be mathematical modeling error in the earlier CSFE labeled cell

proliferation studies of [33,34,36,67]. Thus, the findings in the present analysis are consistent

with notion of a mathematical modeling misspecification in the earlier findings reported in [35].

3.4 Application on Detecting Mathematical Model Misspecifi-

cation and Bootstrapping

In this section, we use an example to demonstrate that one could use pseudo measurement

errors to determine whether there is a possible mathematical model error in the case where the

statistical model is known to be correct. In addition, we use this example to demonstrate how

to use the information provided by the pseudo measurement errors to carry out bootstrapping

to quantify the uncertainty of parameter estimators, and show the robustness of this method in

the presence of mathematical model misspecification.

For demonstration purpose, we use the simulated data set that was generated by the logistic

growth model (3.3.1) using an absolute error model (γ = 0). Specifically, the data set {yj} is
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Figure 3.13: Plots for pseudo measurement errors obtained for the CFSE data set presented
in [33, Section 3.5.3] by applying the first-order differencing operators for three times: (left
panel) plot of ε̂j versus j; (right panel) plot of ηγ̃j = ε̂1st-3j /|yj − ε̂1st-3j |γ̃ versus j with γ̃ = 0.5.
The vertical lines delineate the pseudo measurement errors obtained in time intervals [sk, sk+1),
k = 1, 2, . . . , 7.

generated as follows: we first simulate (3.3.1) with model parameters and initial values given

by b = 0.8, κ = 200, x0 = 10; we then impose a normal distribution on Ej with zero mean and

standard deviation σ0 = 0.2 to generate a realization εj of measure error Ej (i.e., constant

variance error), where again the measurement time points are tj = ts + (j − 1)
tf−ts
N−1 with ts = 0,

tf = 2 and j = 1, 2, . . . , N , with N = 201. We finally add this noise to the simulated model

solution (that is, yj = x(tj) + εj with x(t) the solution to the logistic model (3.3.1)). The

resulting data are illustrated in Figure 3.14.

In practice, one has no idea how {yj} is generated. Based on the information provided by

the plot of this data set, one may choose to use an exponential growth model to describe the

data, i.e.,

˙̃x = bx̃, x̃(ts) = x0, (3.4.1)

where the parameter b needs to be estimated from the data. Hence, the data is assumed to be

generated by

Yj = f(tj ; b0) + Ej , j = 1, 2, . . . , N, (3.4.2)

where f(t; b) = x̃(t; b) = x0 exp(bt). In practice, one may have no knowledge of the measurement

errors either. Since both second-order differencing method and the method for applying the

first-order differencing operator 3 times work well, here we just use the second-order differencing

method to determine a proper statistical model. The resulting plot for the pseudo measurement

errors ε̂j versus tj is illustrated in the left panel of Figure 3.15. From this plot, we observe
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Figure 3.14: Results for fitting exponential growth model (3.4.1) to the simulated data generated
by the logistic growth model (3.3.1).

that the obtained pseudo measurement errors form a horizontal band around the horizontal

axis. This implies that γ = 0 is appropriate to use (it conforms with the actual data collection

process). Based on this information, we use the following ordinary least squares method to do

parameter estimation.

b̂ = arg min
b∈[b,b̄]

N∑
j=1

(yj − f(tj ; b))
2, (3.4.3)

where b and b̄ are some constants. The resulting model fit is illustrated in Figure 3.14. From

this figure, we see that we obtain a very good fit to the data. Hence, one might conclude

there is no/negligible mathematical modeling error. However, when one plots the residuals

rj = yj − f(tj ; b̂) versus tj (shown in the right panel of Figure 3.15), one clearly sees that

residuals are far from identically distributed. This divergence between the residual plot and

the plot of ε̂2ndj versus tj implies that there is a mathematical model error. In addition, this

example clearly demonstrates that residual plots may give incorrect information for the variance

of measurement errors in the case where there is a mathematical model error. That is, if one

looked solely at the residual plots, the conclusion might be drawn that the statistical model

has been incorrectly specified. Hence, one needs to be cautious when one attempts to use only

residual plots to determine whether or not the assumed statistical model is appropriate.

Here we consider how to use the information provided by the pseudo measurement errors to

quantify uncertainty through bootstrapping, and demonstrate the robustness of this method in

the presence of model misspecification. For simplicity, we take the scalar observation case (i.e.,
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Figure 3.15: (left panel): plot of pseudo measurement errors ε̂2ndj versus tj , where ε2ndj ’s are
obtained by applying the second-order differencing method to the simulated data generated
by the logistic growth model (3.3.1); (right panel): residual plot (i.e., a plot of rj versus tj)
obtained by fitting exponential growth model (3.4.1) to the simulated data generated by logistic
growth model (3.3.1).

m = 1) as an example and assume an absolute error model. We use the second-order differencing

method to obtain pseudo measurement errors. For a given data set {yj}Nj=1 that was generated

by some unknown function ψ(t;ϑ0), we assume that we have a mathematical model f(t;θ0)

which approximates ψ(t;ϑ0). That is, the data is generated by

yj = ψ(tj ;ϑ0) + εj , j = 1, 2, . . . , N,

but since ψ is unknown, we assume the data was generated by

yj = f(tj ;θ0) + εj , j = 1, 2, . . . , N, (3.4.4)

where f(tj ;θ0) denotes the observed part of the solution of the chosen mathematical model

with θ0 ∈ Rκθ (κθ is an integer) at the measurement point tj . Algorithm 3.4.1 illustrates how to

use the bootstrapping method to quantify uncertainty for parameter estimator in the presence

of model misspecification when the pseudo measurement errors appear to be independent and

identically distributed.

We then calculate the mean and covariance matrix for the bootstrapping estimator using

the formulae

θ̂ = 1
K

∑K
k=1 θ̂

(k)
,

Σ̂ = 1
K−1

∑K
k=1(θ̂

(k) − θ̂)(θ̂
(k) − θ̂)T .

(3.4.5)
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Algorithm 3.4.1 Boostrapping.

1. Apply the second-order differencing method to data set {yj}Nj=1 to obtain pseudo mea-
surement errors ε̂2ndj , j = 2, 3, . . . , N − 1, and then use these pseudo measurement errors
to obtain estimates for the true regression function at tj ’s by

ψ̂j = yj − ε̂2ndj , j = 2, 3, . . . , N − 1.

Set k = 1.

2. Create a bootstrapping sample using random sampling with replacement from {ε̂2ndj }N−1
j=2

to form a bootstrapping sample {ε̂(k)
2 , . . . , ε̂

(k)
N−1}.

3. Create bootstrapping sample points

y
(k)
j = ψ̂j + ε̂

(k)
j , j = 2, . . . , N − 1.

4. Obtain an estimate θ̂
(k)

from the bootstrapping sample {y(k)
j } using the ordinary least

squares method given by

θ̂
(k)

= argmin
θ∈Ω

N−1∑
j=2

(y
(k)
j − f(tj ;θ))2,

where Ω is some compact set in Rκϑ .

5. Set k = k + 1 and repeat steps 2–5 until k > K (e.g., typically K = 1000 as in our
calculations below).

The standard error for the ith component of the bootstrapping estimator is then given by√
Σ̂ii, where Σ̂ii is the (i, i)th component of Σ̂, i = 1, 2, . . . , κθ. It is worth emphasizing that

Algorithm 3.4.1 can be used not only for the case where model misspecification is due to

modeling error but also for the case where model misspecification is due to some approximations

such as approximating infinite-dimensional parameters by finite-dimensional parameters as was

considered in [19].

To illustrate the robustness of this algorithm in the presence of model misspecification,

we take the logistic example of this section, that is, ψ is the solution of the logistic model

used to generate the data, and f is the solution to the exponential model which is used as

the mathematical model. We compare the results obtained by Algorithm 3.4.1 and the results

obtained by an algorithm similar to Algorithm 3.4.1 (referred to as Modified Algorithm 3.4.2)

except that bootstrapping sample points are created by random sampling with replacement from
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the simulated/true measurement errors {εj}N−1
j=2 and then adding them to the true regression

function. For the sake of clarity, we present the Modified Algorithm 3.4.2 below.

Algorithm 3.4.2 Boostrapping: Modified.

1. Set k = 1, and create a bootstrapping sample using random sampling with replacement
from the simulated/true measurement errors {εj}N−1

j=2 to form a bootstrapping sample

{ε(k)
j }N−1

j=2 .

2. Create bootstrapping sample points

y
(k)
j = ψ(tj ;ϑ0) + ε̂

(k)
j , j = 2, . . . , N − 1.

3. Obtain an estimate θ̂
(k)

from the bootstrapping sample {y(k)
j } using the ordinary least

squares method given by

θ̂
(k)

= argmin
θ∈Ω

N−1∑
j=2

(y
(k)
j − f(tj ;θ))2,

where Ω is some compact set in Rκϑ .

4. Set k = k + 1 and repeat steps 2–5 until k > K (e.g., typically K = 1000 as in our
calculations below).

Table 3.3 illustrates the mean and standard error of the bootstrapping estimator for the

logistic example of this section obtained using Algorithm 3.4.1 and Modified Algorithm 3.4.2

for different values of σ0. From this table, we see that the mean and standard error for the

bootstrapping estimators obtained by Algorithm 3.4.1 are quite similar to those obtained by

Modified Algorithm 3.4.2 for both cases considered. This implies that Algorithm 3.4.1 works

well, and is robust to model misspecification.

We also observe from Table 3.3 that the ratios of the standard errors to the corresponding

means are very small for both cases considered. This suggests that we obtain very reliable

estimates for b0. However, the estimated value for b0 for each of these cases is smaller than its

true value 0.8 (i.e., the value used to generated the data), and the true value lies outside the

confidence interval. This clearly demonstrates that obtaining excellent fits to the data and very

reliable estimates for parameters is not sufficient to obtain accurate estimates for the true values

of the parameters with which to make reliable predictions. We remark that the effect of model

misspecification on parameter estimates and model prediction has been addressed by a number
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Table 3.3: The mean and standard error of the bootstrapping estimator for the logistic example
of this section obtained using Algorithm 3.4.1 and Modified algorithm 3.4.2.

Value of σ0 Algorithm Mean Standard error

σ0 = 0.2
Algorithm 3.4.1 7.213e-01 4.095e-04

Modified Algorithm 3.4.2 7.213e-01 3.978e-04

σ0 = 1
Algorithm 3.4.1 7.218e-01 2.045e-03

Modified Algorithm 3.4.2 7.220e-01 1.986e-03

of researchers (e.g., see [45] and the references therein). There have been numerous attempts to

incorporate this error to obtain accurate estimates for parameters (e.g., see [2, 45,92] and the

recent review made in [55]). However, as remarked in [55], none of the approaches attempted so

far is universally applicable due to the complexity and wide diversity of the underlying problems

to be treated.

3.5 Concluding Remarks and Future Research Questions

We demonstrate with a number of examples how to employ pseudo measurement errors to

determine an appropriate statistical model. Numerical results demonstrate that this method

works well in practice and is more efficient and accurate than the traditional method of using

residual plots to investigate statistical model errors. Once a proper statistical model is determined,

we then use the information provided by pseudo measurement errors to determine whether there

is a mathematical model error. This is done through comparing the plot for pseudo measurement

errors and residual plots. We demonstrate this with an example where the assumed mathematical

model has a different form than the model that is used to generate the data. We found that

even though the model fit is superb, there is a discernible difference between residual plots and

the plot for pseudo measurement errors. Thus, this method provides a much more reliable way

to detect a mathematical modeling error.

We also investigated how to use the information provided by pseudo measurement errors

to quantify uncertainty in parameter estimators through bootstrapping methods. Numerical

results demonstrate the robustness of this method in the presence of model misspecification.

In addition, these results reveal that even in the case where the modeling error is small, it is

important to recognize it in order to avoid obtaining biased estimates and hence making false

predictions. In the future, we hope to use the information provided by pseudo measurement

errors and the ideas in [45] on using realistic priors for modelling error to properly calibrate

parameters in the presence of model misspecification.
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CHAPTER 4

Estimation of Distributed Parameters in Permittivity Models of

Composite Dielectric Materials Using Reflectance

4.1 Introduction

In this chapter we revisit the general permittivity model and impose a general distribution

on the parameters. We consider here the cases where either the resonance wavenumber or the

relaxation time is taken to be a distribution. We then investigate the specific form of data that

is required to carryout out the inverse problem, and point out the limitations of the existing

computational algorithm for our problem. We then describe improvements to this algorithm,

and demonstrate the capability of our proposed algorithm to accurately recover a probability

measure which was used to generate the simulated data set. We also successfully apply this

algorithm to estimate an unknown probability measure with experimental data. A version of

this work has been published and can be found in [20]:

H.T. Banks, J. Catenacci, and S. Hu. Estimation of distributed parameters in permittivity

models of composite dielectric materials using reflectance. Journal of Inverse and Ill-Posed

Problems, 23(5):491–509, 2015.

4.2 The Model for the Complex Dielectric Constant and the

Reflection Coefficient

In a homogeneous medium one might assume that the resonance wavenumbers k0 or the

relaxation times τ would be the same throughout the material particles, but for a composite
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material these would vary across the population of material particles, thus requiring some type

of distribution on these resonance wavenumbers or relaxation times in order to characterize

the heterogeneous population of particles. To allow for a distribution G of either resonance

wavenumbers, or relaxation times, over an admissible set K ⊂ R, we generalize the relative

permittivity for the Lorentz model (1.2.14) to be

ε̂r(k;G, q) = ε∞ −
∫
K

k2
p

k2 − ik/τ − k2
0

dG, (4.2.1)

where G ∈ P(K), the set of admissible probability measures on K. In the case of assuming

a distribution of resonance wavenumbers we take q = (εs, ε∞, τ)T ∈ Q ⊂ R3 and in the case

where there is a distribution on the relaxation times we take q = (εs, ε∞, k0)T ∈ Q ⊂ R3

with Q assumed to be compact for either case. Thus, for our composite materials the relative

permittivity

ε̂r(k) = ε∞ −
k2
p

k2 − ik/τk − k2
0

of (1.2.14) is replaced by

ε̂r(k;G, q) = ε∞ −
∫
K

k2
p

k2 − ik/τ − k2
0

dG

of (4.2.1).

We next turn our attention to obtaining a model for the reflectance. For simplicity, we

assume that a monochromatic uniform wave of wavenumber k is normally incident on a plane

interface between free space and a dielectric medium. In addition, we assume that the electric

field is polarized perpendicular to the plane of incidence. With these assumptions the fully

complex reflection coefficient is reduced to

r(k;G, q) =
1−

√
ε̂r(k;G, q)

1 +
√
ε̂r(k;G, q)

. (4.2.2)

An interferometer does not directly measure the reflection coefficient, rather the observable is

the reflectance

R(k;G, q) = |r(k;G, q)|2.

We remark that some interferometers have the capability to obtain the derivative of the

reflectance. Specifically, the Bruker 80V two beam interferometer [76] is capable of calculating

derivatives up to the fifth order using the Savitzky-Golay algorithm. This algorithm smoothes

the data through fitting successive sub-sets of adjacent data points with a low-degree polynomial.

Hence, we will also explore the use of derivative of the reflectance measurements, where
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the derivative is taken with respect to the wavenumber k. To simulate how the Bruker 80V

interferometer obtains derivative information, our derivative measurements will be obtained

through the application of the Savitzky-Golay algorithm to the raw (simulated/experimental)

reflectance data.

4.3 Computational Framework

In this section we examine an inverse problem methodology for estimating the probability

measure G as well as the additional model parameters q.

4.3.1 Statistical Model

We consider a statistical model of the form

Yj = h(kj ;G0, q0) + Ej , j = 0, 1, 2, . . . , N. (4.3.1)

In the above equation, h(kj ;G0, q0) corresponds to the observed part of the system with the

“true” probability measure G0 and “true” parameters q0 at the measurement (input) wavenumber

kj , Ej denotes the measurement error at the measurement wavenumber kj , and N + 1 is the total

number of observations. For simplicity in the current proof of concept discussion, we assume that

Ej , j = 0, 1, 2, . . . , N , are independent and identically distributed with zero mean and constant

covariance matrix σ2
0 ∗ Ic, where Ic is an `× ` identity matrix with ` being the dimension of h.

We note here that the usual statistical concept of longitudinal (in time) data is in our problem

replaced by input wavenumber data as opposed to the more commonly encountered notion of

time point observations found in mathematical and statistical formulations. Our observations

depend on the population level probability measures where we have only “aggregate” population

particle data for the heterogeneous material as opposed to individual data. More specifically, we

do not have h(kj ; q), j = 0, 1, 2, . . . , N , which would constitute individual population (particle)

data, i.e., we don’t have data based on the particle permittivities ε̂r of (1.2.14) for individual

material particles as a function of input wavenumbers kj .

As discussed above, we consider two types of data. In the case that the observed part of the

system is the reflectance, we have

h(kj ;G, q) = R(kj ;G, q). (4.3.2)

In the case in which the data contains both the reflectance and the derivative of the reflectance,
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h has two components and is given by

h(kj ;G, q) =

(
R(kj ;G, q),

∂
∂kR(kj ;G, q)

maxj
∂
∂kR(kj ;G, q)

)T
. (4.3.3)

We remark that the reason for choosing the second component of h as above is because the

magnitude of the derivative of the reflectance is extremely small compared to the value of the

reflectance. A closed form analytical solution for the derivative of the reflectance has proved to

be very difficult to obtain due to the form of R(k;G, q). Hence, we approximate with a simple

forward difference.

4.3.2 Inverse Problem

Under the assumptions for the measurement errors in the statistical model, the estimator of

(G0, q0) can be obtained using the ordinary least squares formulation (e.g., see [33,40] for details)

(GN , qN ) = argmin
(G,q)∈(P(K)×Q)

N∑
j=0

(h(kj ;G, q)− Yj)T (h(kj ;G, q)− Yj) . (4.3.4)

The corresponding realization of (GN , qN ) can be calculated through

(ĜN , q̂N ) = argmin
(G,θ)∈(P(K)×Q)

N∑
j=0

(h(kj ;G, q)− yj)T (h(kj ;G, q)− yj) , (4.3.5)

where yj is a realization of Yj , that is,

yj = h(kj ;G0, q0) + εj , j = 0, 1, 2, . . . , N, (4.3.6)

with εj being a realization of Ej .
As discussed in Chapter 2, the existence of a minimizer to (4.3.4) or (4.3.5) can be established

under the Prohorov metric framework as developed in [5, 9, 28,30,33,37,39] specifically to use

with population level (aggregate) data as opposed to individual longitudinal data. The Prohorov

metric was introduced in [79] as a means to define what is meant by the distance between

arbitrary probability measures.

We recall that (4.3.5) is an infinite-dimensional optimization problem (as P(K) is an infinite-

dimensional space). Hence, we need to approximate the infinite-dimensional space P(K) with

finite-dimensional spaces PM (K) so that we have a computationally tractable finite-dimensional
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optimization problem given by

(ĜNM , q̂
N ) = argmin

(G,q)∈(PM (K)×Q)

N∑
j=0

(h(kj ;G, q)− yj)T (h(kj ;G, q)− yj) . (4.3.7)

Of course, one needs to choose PM (K) in a meaningful way so that ĜNM approaches ĜN as M

goes to infinity. In this Chapter we consider the approximation method that involves using Dirac

measures to approximate the probability measure and can be used regardless of the smoothness

of the underlying desired probability measures. This is especially useful in the situations where

one has no knowledge of the sought-after probability measures. The theoretical foundation for

such an approximation relies on the Prohorov metric framework and Theorem 2.2.3 (see [9],

Chapter 2 for details). With this approximation, the least squares problem that we wish to solve

is (4.3.7) with

PN (K) =

{
G ∈ P(K)

∣∣∣∣ G =
∑N

j=1 αj∆ξj , where αj ≥ 0 and
∑N

j=1 αj = 1

}
. (4.3.8)

Under this computational framework the optimization problem (4.3.7) is reduced to a standard

optimization problem over RM+3 in which we seek to estimate the finite set of values {αm}Mm=1∪
{θ}.

We remark that the Dirac measure approximation method has been successfully used to

estimate probability measures in a number of applications (e.g., see [27,28,30,39]). However,

it was noted in practice that a poor choice of nodes and improper number of nodes could

both result in ill-conditioned inverse problems. As we shall see in the next section, this is also

discerned in the problem we investigate here. To alleviate some of these difficulties, we propose

to estimate both weights and nodes. The feasibility of this modified method is demonstrated in

the next section with both simulated data and experimental data.

4.4 Numerical Results

In this section we present results for obtaining an estimation of a probability measure on the

resonance wavenumber using both simulated data and experimental data sets for inorganic glass

(taken from [58]) where h is given by (4.3.2). We begin by presenting results obtained using

simulated data to explore the reliability and accuracy, as well as the limitations of the above

approximation methods. We then improve these approximation methods by estimating both

the weights and the nodes, and demonstrate the ability of our proposed methods to accurately

recover a probability measure which was used to generate the simulated data set. Finally we use

the proposed algorithm to estimate an unknown probability measure with experimental data

60



sets.

In addition, we also give results in which the probability measure is taken over the relaxation

time rather than the resonance wavenumber. Using simulated data where h is given by (4.3.2),

we show in this case that estimating both the weights and the nodes is not sufficient to give

reliable results. We then show how the the accuracy of the estimation of the probability measure

can be improved by the use of derivative information. In order to obtain derivative data we use

the Savitzky-Golay algorithm, which as was mentioned previously, is a common algorithm used

by modern interferometers to obtain derivative measurements.

4.4.1 Results Obtained Using Simulated Data When Estimating a Probabil-

ity Measure on the Resonance Wavenumber

In this section we will attempt to estimate a probability measure on the resonance wavenumber

k0 where h is given by (4.3.2). For the remainder of this section we will take the vector of fixed

parameters to be q = (εs, ε∞, τ)T and we will denote the nodes of the Dirac masses as ξm = k0m .

First, we will use the simulated data to discuss the importance of the placement of nodes of

the Dirac measures, i.e., the values of k0j , j = 1, 2, ..., N . In all of the following results shown

in this section, the data was generated by evaluating equation (4.3.6), where kj = 400 + 10j,

j = 0, 1, 2, . . . 69, the true probability measure G0 =
∑3

m=1 αm∆k0m with

α1 = α2 = 0.05, α3 = 0.9, k01 = 570, k02 = 580, k03 = 850.

We used the true parameters q0 = (2.7, 1.9, 0.03)T , and εj was chosen as a realization of a

normally distributed random variable with mean 0 and standard deviation σ0 = 0.005.

To simplify the scenario, we first only estimate the weights of the Dirac measures, i.e.,

αm,m = 1, 2, ...,M , with q0 assumed to be known. In Figure 4.1 we present the model fit and the

estimated distribution where the nodes are chosen to be evenly spaced in the interval [405, 1080],

where M = 25. In this case the model and the estimated distribution are both an excellent fit

to the data and the true distribution, respectively. However, by altering the node placement so

that there are now 25 nodes evenly spaced in the interval [405, 1100], the fit to the data is not

as good as in the previous case, and the estimated distribution also fails to be as good a fit as

before. These results are shown in Figure 4.2. Clearly, from this simple example, we see that our

ability to achieve good fits to the data and accurate estimations of the distribution relies on the

placement of the nodes.

In attempts to alleviate these difficulties, we seek to also optimize the node locations as well

as the weights of the Dirac measures. We did so by including the node locations as additional
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Figure 4.1: The model fit to the simulated data (left) and the estimated distribution of
wavenumbers (right), where the nodes are evenly placed over [405, 1080] with M = 25.
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Figure 4.2: The model fit to the simulated data (left) and the estimated distribution of
wavenumbers (right), where the nodes are evenly placed over [405, 1100] with M = 25.

parameters in the minimization problem. Thus, we can reformulate the minimization problem as

(α̂M , k̂M0 ) = argmin
α∈R̃Mw ,k0∈KM

N∑
j=0

(h(kj ;G, θ0)− yj)2 , (4.4.1)

where G =
∑M

j=1 αj∆k0j , and the weights and node locations are chosen respectively from

R̃Mw =
{
α = (α1, α2, . . . , αM )T | αj ≥ 0 and

∑M
j=1 αj = 1

}
,

KM = {k0 = (k01, k02, . . . , k0M )T | k0j ∈ K, j = 1, 2, . . . ,M}.
(4.4.2)
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The estimated probability measure is then given by Ĝ =
∑M

j=1 α̂j∆k̂0j
, where α̂j and k̂0j are

the jth element of α̂M and k̂M0 , respectively. The results of this inverse problem are shown in

Figure 4.3. In this case we see an excellent fit to the data, and the estimated distribution falls

nearly precisely on the true distribution.
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Figure 4.3: Model fit (left) and estimated distribution (right) where the parameters εs, ε∞ and
τ are fixed and the weights and node locations were optimized with M = 25.

Next we consider the case where the parameters εs, ε∞ and τ are not known, and thus must

also be estimated; that is, our minimization problem is given by

(α̂M , k̂M0 , q̂) = argmin
α∈R̃Mw ,k0∈KM ,q∈Q

N∑
j=0

(h(kj ;G, q)− yj)2 , (4.4.3)

where G =
∑M

j=1 αj∆k0j , R̃Mw and KM are defined by (4.4.2). In doing so, we impose the

additional constraint that εs > ε∞. This was done to add stability to the inverse problem with

respect to the initial guesses for the parameter values. The parameters and the distribution were

estimated in this way for M = 5, 10, 15, 20, 25, and 30, and the results are given in Table 4.1 and

Figures 4.4–4.9. For all of the various number of nodes chosen, the model is an excellent fit to

the data. For the cases when a low number of nodes is used, e.g., M = 5 and 10, the estimated

distribution coincides with the true distribution, and the estimated values for parameters

εs, ε∞ and τ are very close to their corresponding true values. As M increases, we see that the

estimated distributions begin to deviate from the true distribution and the estimation accuracy

for parameters εs, ε∞ and τ decreases. This is especially true for the parameter τ , where the

relative error for the cases of M = 25 and 30 is 0.14 and 0.30 respectively, and it is considerably
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Table 4.1: Estimations obtained using the simulated data for various numbers of Dirac measures.

M εs ε∞ τ (cm)

5 2.6749 1.8781 0.0298
10 2.6703 1.8703 0.0297
15 2.6618 1.8261 0.0303
20 2.6563 1.8163 0.0306
25 2.6713 1.8408 0.0341
30 2.6661 1.8441 0.0389

True Values 2.700 1.900 0.0300

higher than those obtained with a lower value of M (for M = 5, 10, 15, 20 the mean relative

error is 0.06). We remark that the loss of estimation accuracy as M increases is in agreement

with the common understanding that for a fixed number of observations the estimation accuracy

in general decreases as the number of estimated parameters increases (e.g., see [19,46]). Actually,

this is how model selection criteria play a role as all model selection criteria such as the Akaike

Information Criterion and the Bayesian Information Criterion are based to some extent on the

principle of parsimony (a balance between the model accuracy and the estimation accuracy).

We again refer the interested reader to [19,46] for more information on this.
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Figure 4.4: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 5.
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Figure 4.5: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 10.
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Figure 4.6: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 15.

4.4.2 Results Obtained Using Inorganic Glass Data When Estimating a

Probability Measure on the Resonance Wavenumber

To illustrate the feasibility of our approximation methods on experimental data sets, we present

results obtained using inorganic glass data available in [58]. We first consider reflectance data

collected from Vitreous Germania in the 400 to 1100 cm−1 range (see Table A7 in [58]). Using

M = 5, 10, 15, 20 and 25 Dirac measures to estimate the distribution of resonance wavenumbers,

the corresponding model fits and probability distribution estimations are given in Figures 4.10–

4.14. Unlike when using the simulated data, we do see an improvement in the model fits as M

is increased. Recall that the simulated data was generated using a true distribution of only 3
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Figure 4.7: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 20.

400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k, cm
−1

|r
 (

k
)|

2

 

 

Data

Model Fit

400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
0
, 1/cm

P
ro

b
a

b
ili

ty
 D

is
tr

ib
u

ti
o

n

 

 

True

Estimated

Figure 4.8: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 25.

discrete measures, 2 of which were very close to each other. Therefore it is not surprising that

we were able to obtain very good model fits using only a small number of Dirac measures in that

case. Here, it appears as if the unknown distribution for the Vitreous Germania data is made

up of either many more discrete measures which are closely clustered in the 500–600, and the

800–900 cm−1 range, or a continuous distribution whose probability density function only has

nontrivial values over those before mentioned ranges. If this is indeed the case, then it follows

that more Dirac measures are needed in order to obtain an accurate fit to the data. Observe

that in Figure 4.15 where we superimpose the estimated probability distributions obtained using

the various values of M , we see that the distributions exhibit a similar basic structure (with
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Figure 4.9: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 30.

increases from 0 to ∼0.2–0.3 over the 500–600 range, and a second increase to ∼1 over the

800–900 range).
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Figure 4.10: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 5 for Vitreous Germania.
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Figure 4.11: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 10 for Vitreous Germania.
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Figure 4.12: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 15 for Vitreous Germania.

The parameter estimates for εs, ε∞ and τ are given in Table 4.2. Since the material was

not interrogated at wavenumbers lower than 400 cm−1, we cannot expect to reliably estimate

the “static” dielectric constant εs. With this in mind, we see that the estimated value of ε∞

generally decreases as M increases. With the values of M = 20 and 25, the estimates for ε∞

are relatively close to each other. Similarly, the estimates for τ increase as M increases, and

above the value of M = 15 at which the model better fits the data, the values for τ remain

at approximately 0.05+. This may suggest that once a sufficient number of nodes are used to

provide a “good” model fit, the parameter estimates settle around stationary values even as M

continues to increase. Again, we emphasize that the ideal number of nodes to use is a topic for
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Figure 4.13: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 20 for Vitreous Germania.
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Figure 4.14: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 25 for Vitreous Germania.

Table 4.2: Estimations obtained using the reflectance data for Vitreous Germania using various
numbers of Dirac measures.

M εs ε∞ τ (cm)

5 2.7677 2.1518 0.0275
10 2.5768 1.9634 0.0418
15 2.5999 1.9904 0.0525
20 2.4677 1.8341 0.0578
25 2.4361 1.7732 0.0581
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Figure 4.15: The estimated distributions for all values of M considered from the Vitreous
Germania data.

further research and the corresponding solution will undoubtedly be dependent on the inherent

underlying (and most likely unknown) properties of the material, specifically, the form of the

underlying distribution of resonance wavenumbers.

As a second consideration, we solve the optimization problem using reflectance data obtained

from Vitreous Silica (available in Table A3 in [58]) over the 200–900 cm−1 range. The resulting

model fits and estimated distributions are given in Figures 4.16–4.20. Here, we again see that

the model fits improve as M increases, and by M = 25 an excellent fit is obtained. As before,

we plot the distributions obtained using different values of N on one graph in Figure 4.21. From

this we see that all of the estimated distributions agree quite well with each other, with a major

jump to 0.6 at around 450 cm−1 and a second jump of 0.4 at approximately 1080 cm−1.

In Table 4.3 we present the estimated parameter values obtained. For the glass Vitreous

Silica, baseline values for εs and ε∞ which were obtained experimentally are available in [65].

This gives a general benchmark to determine if our estimates for these values are valid. In fact,

our estimated values are in very good agreement with the experimental values, particularly for

M = 20, and 25 which, not surprisingly, provide the best model fits to the data.

4.4.3 Results Obtained Using Simulated Data When Estimating a Probabil-

ity Measure on the Relaxation Time

In this section we turn our focus to estimating a distribution of relaxation times rather than

resonance wavenumbers. Therefore, in the remainder of this section we take q = (εs, ε∞, k0)T ,
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Figure 4.16: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 5 for Vitreous Silica.
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Figure 4.17: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 10 for Vitreous Silica.

and denote the nodes of the Dirac masses as ξm = τm. The data was generated by evaluating

(4.3.6) with h given by (4.3.2), where kj = ωj , with {ωj}100
j=0 = {107+0.09j}100

j=0, and εj was chosen

as a realization of a normally distributed random variable with mean 0 and standard deviation

σ0 = 0.001. The true probability measure G0 was chosen as

G0 = 0.6∆τ1k
+ 0.4∆τ2k

, (4.4.4)

where τ1
k = 2πc · 7.14× 10−16 and τ2

k = 2πc · 10−14, where c is the speed of light in cm/s. We

used the true parameters θ0 = (2.25, 1.25, k0)T , where k0 = ω0/(2πc), ω0 = 1014. We note that

these choices for frequency ranges and parameter values are adapted from [42]. To keep the

71



200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k, cm
−1

|r
s
(k

)|
2

 

 

Data

Model Fit

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
0
, 1/cm

P
ro

b
a

b
ili

ty
 D

is
tr

ib
u

ti
o

n

Figure 4.18: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 15 for Vitreous Silica.
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Figure 4.19: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 20 for Vitreous Silica.

scenario simple, we take θ0 to be known and only estimate the probability measure.

We first consider the case where the nodes are kept fixed and choose {τm}Mm=1 to be M

evenly spaced nodes over the interval 2πc · [10−17, 2× 10−14]. In Figure 4.22 we give the model

fit and the estimated probability measure for M = 15. Although the model fit is reasonable, the

estimated distribution is nowhere near the true distribution. As we did in the case of estimating

a distribution of wavenumbers, we will attempt to resolve this issue by optimizing the node

locations as well. In Figure 4.23 we give the results where both the weights and the locations

of the Dirac masses have been estimated. Compared to the case of fixed nodes, the model fit

and the estimated distribution are both improved. However, the estimated distribution does
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Figure 4.20: Model fit (left) and the estimated distribution (right) from the full inverse prob-
lem (4.4.3) where M = 25 for Vitreous Silica.
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Figure 4.21: The estimated distributions for all values of M considered from the Vitreous Silica
data.

not recover the single increase in the true distribution at approximately τ ≈ 2 cm. Rather, the

estimated distribution approximates the jump by slowly increasing from 0.6 at τ ≈ 1.5 cm to 1

at τ ≈ 2.25 cm.

Finally, we consider the addition of derivative information into the minimization problem,

hence, we take h as in (4.3.3). As before, both the node weights and the locations are being

estimated. In Figure 4.24 we give the model and derivative fits, as well as the estimated

distribution. The model fit is again quite good, and the derivative fit is reasonable. However, in
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Table 4.3: Parameter estimates obtained using the reflectance data for Vitreous Silica employing
various numbers of Dirac measures compared to experimental values (abbreviated as Expt. in
the table) taken from [65].

M εs ε∞ τ (cm)

5 3.8636 2.2615 0.0277
10 3.9546 2.3613 0.0323
15 3.9805 2.1704 0.0341
20 3.7402 2.0880 0.0397
25 3.7818 2.0879 0.0398
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Figure 4.22: Model fit (left), and the estimated distribution (right) with M = 15 fixed nodes.
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Figure 4.23: Model fit (left) and the estimated distribution (right) where both M = 15 node
weights and locations were optimized.
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this case, we are able to recover, almost precisely the true distribution.
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Figure 4.24: Model fit (left), the derivative of reflectance fit (right), and the estimated distribu-
tion (bottom) where both M = 15 node weights and locations were optimized.

4.5 Concluding Remarks and Future Research Efforts

In this chapter we imposed a probability measure on the resonance wavenumber as well as

the relaxation time within the Lorentz polarization model. We then summarized an existing

computational framework developed by our group to non-parametrically estimate the unknown

probability measure. We carried out existing Dirac measure approximation methods on a set

of simulated data to illustrate the basic feasibility and restrictions of these methods for this

particular application. We then improved the existing approximation methods by optimizing both

weights and nodes of the approximating Dirac measures, and demonstrated the capability of the
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proposed methods to accurately recover a true distribution for the simulated data. Additionally,

we applied our methods of estimating a distribution of resonance wavenumbers to available

data sets of reflectance collected from inorganic glass. Using these data sets we were able to

obtain very good fits to the data. The fits improved as the number of nodes M increased, and

the estimated distributions and parameter values appeared to stabilize as the value of M was

increased. When possible, we showed that our parameter estimates agreed well with available

experimental values. Finally, using simulated data we showed that when estimating a distribution

of relaxation times the use of derivative measurements increases the accuracy of the method.

Future efforts will include using a model selection criteria, namely the Akaike Information

Criterion, in order to quantitatively determine an optimal number of approximating elements.

Alternatively, one could devise a pseudo “mesh refinement” in which initially a low number of

nodes is chosen, then during the optimization process more nodes are added until a desired

accuracy is reached. Moreover, for particular applications, it may be necessary to simultaneously

estimate a probability measure on the resonance wavenumbers and the relaxation times. Thus,

our methods would require extension to such a case. It will also prove useful to investigate the

robustness of the estimation procedure we have outlined on simulated data generated from a

continuous, rather than discrete distribution. Moreover, one may wish to extend these results

to the case where the unknown probability measure is known to be absolutely continuous so

that the corresponding probability density function (PDF) exists and can be approximated by

piecewise linear spline functions (see [39] for details). It was demonstrated in [23] that for such

a case the spline-based approximation methods converge much faster than do the Dirac measure

approximation methods and they also provide convergence for the associated PDFs while the

Dirac measure approximation methods do not do this.

Another future effort involves quantifying uncertainties of the probability estimators obtained

using this modified Dirac measure approximation method. The pointwise asymptotic normality

result for the approximated probability measure estimators was established in our theoretic

paper [19] (see Chapter 2) for the case where the original Dirac measure approximation method

is used for approximation. It was based on the asymptotic normality results for the corresponding

weights of the approximated probability measure estimator under the model “misspecification”

due to approximation as well as the fact that the approximated probability measure estimator is

linearly dependent on these weights. Numerical results demonstrated in [19] show that one has a

good match for the confidence bands obtained by the pointwise asymptotic normality result and

the Monte Carlo method in the region to which the model output is most sensitive. However,

the pointwise asymptotic normality result established in [19] cannot be applied to the case

where the modified Dirac measure approximation method is used as the obtained approximated

probability measure estimator is not linearly dependent on its corresponding weights and node

locations.
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CHAPTER 5

Method Comparison For Estimation Of Distributed Parameters In

Permittivity Models Using Reflectance

5.1 Introduction

In this chapter we compare the two available approximation schemes under the PMF, Dirac

masses and piecewise linear splines, to establish the accuracy and reliability for the estimation

of the distribution of resonance wavenumbers. Additionally, we also carryout an alternative

approach of imposing a normal distribution of the resonance wavenumbers and compare these

results with those obtained using the PMF. In Section 5.2, we give the permittivity models

which are embedded in the model for the reflection coefficient, and establish the foundation for

the two approximation schemes under the PMF. In Section 5.3 we give the results obtained using

both synthetic data sets and experimental data sets obtained from various inorganic glasses.

Finally, in Section 5.4 we conclude the chapter with summary remarks and plans for future

work. The results found in this Chapter have been published and can be found in [21]:

H.T. Banks, J. Catenacci, and S. Hu. Method comparison for estimation of distributed parameters

in permittivity models using reflectance. Eurasian Journal of Mathematical and Computer

Applications, 3(2):424, 2015.
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5.2 The Model for the Complex Permittivity and the Reflection

Coefficient

5.2.1 Efimov model for permittivity

In [58,61], Efimov describes an observed band broadening in the spectra of glasses, which he

contributes to the random distribution of particular realizations of microscopic structures. To

handle this band broadening, Efimov chooses to approximate the broadening by using a Gaussian

probability density function. This leads to a model for the relative permittivity given by

ε̂r(k) = ε∞ −
J∑
j=1

Sj√
2πσj

∫ ∞
−∞

exp
(
−(x− k0j )

2/2σ2
j

)
k2 − ik/τj − x2

dx, (5.2.1)

where J is the number of oscillators. The above permittivity model can be considered a

generalization of equation 1.2.15. We note that Efimov has made the tacit assumption to

consider the intensities Sj as a “free” parameter. By this we mean, that had the relationship

Sj = ∆ε0jk
2
0j

been enforced, then there would be a x2 term multiplying the exponential function

in the integration.

Efimov notes that the band broadening could be better approximated by a truncated

Gaussian in order to ensure that the wavenumber ranges remain non-negative. We make this

modification which results in what we will refer to as the modified Efimov relative permittivity

model, given by

ε̂r(k; q) = ε∞ −
J∑
j=1

Sj
cj

∫ ∞
0

exp
(
−(x− k0j )

2/2σ2
j

)
k2 − ik/τj − x2

dx, (5.2.2)

where

cj =

∫ ∞
0

exp
(
−(x− k0j )

2/2σ2
j

)
dx. (5.2.3)

In the above equation q = (ε∞, {Sj , τj , k0j , σj}Jj=1)T ∈ Q ⊂ R4J+1 with Θ assumed to be

compact.

5.2.2 Prohorov Metric Framework Model for Permittivity

As discussed previously, an alternate method which can be used to account for multiple dielectric

mechanisms present in a material, is to impose a probability distribution on the dielectric

parameters, or a subset of the dielectric parameters. Here, we take this approach and then will

make use of the PMF to non-parametrically estimate the distribution(s). In this work we only

consider the case where a distribution is placed on the resonance wavenumbers (distributions

could also be put on the relaxation constants τ (see [20], Chapter 4).
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To allow for a distribution G of resonance wavenumbers over an admissible set K ⊂ R, we

recall that we generalize the relative permittivity for the Lorentz model (1.2.14) to be

ε̂r(k;G, q) = ε∞ −
∫
K

k2
p

k2 − ik/τ − k2
0

dG(k0), (5.2.4)

where G ∈ P(K), the set of admissible probability measures on K. In the case of assuming

a distribution of resonance wavenumbers we also have the constant parameter vector q =

(εs, ε∞, τ)T ∈ Q with Q ⊂ R3 assumed to be compact.

We remark the the Efimov model is not a subcase of the PMF models.

5.2.3 Reflection Coefficient

Next we focus on obtaining an appropriate model for the reflectivity for our situation of interest.

As in the previous chapters, we assume that a monochromatic uniform wave of wavenumber

k is incident on a plane interface between free space and a dielectric medium. We will deal

with data which is obtained either at an incident angle of φ = 45◦ or 0◦. Both situations

can be accurately described by assuming that the reflectance is composed of the parallel and

perpendicular polarizations in equal weights. Thus we obtain the equation for the reflectivity

R(k;G, q) =
1

2

(
|r⊥(k;G, q)|2 + |r‖(k;G, q)|2

)
, (5.2.5)

where

r⊥(k;G, q) =
cosφ−

√
ε̂r(k;G, q)− sin2 φ

cosφ+
√
ε̂r(k;G, q)− sin2 φ

, (5.2.6)

and

r‖(k;G, q) =

√
1− sin2 φ/ε̂r(k;G, q)−

√
ε̂r(k;G, q) cosφ√

1− sin2 φ/ε̂r(k;G, q) +
√
ε̂r(k;G, q) cosφ

. (5.2.7)

Notice that if φ = 0◦, then the equation for the reflectivity reduces to R(k;G, q) = |r⊥(k;G, q)|2.

The equations (5.2.6) and (5.2.7) are the same as formulas (1.2.11) and (1.2.12) except that we

have explicitly included the dependence on the probability measure G and the parameter vector

q.

At this point we remark that when using the modified Efimov model for the complex

permittivity, the distribution G is absent. In order to avoid cumbersome notation, when the

modified Efimov model is used, we will ignore the input G mathematically, but not drop it

notationally.
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5.2.4 Statistical Model

Our goal is to estimate both the unknown probability measure G as well as the additional model

parameters when using the PMF approach. Of course, when using the Efimov model we need

only estimate the relevant model parameters. We consider a statistical model of the form

Yj = R(kj ;G0, q0) + Ej , j = 0, 1, 2, ..., N. (5.2.8)

In the above equation Yj is a random variable which is composed of the reflectance with G0

the “true” probability measure and q0 the “true” parameters at a sampling wavenumber kj , and

the measurement error Ej . For simplicity, we consider that the errors Ej are independent and

identically distributed with mean 0 and constant variance.

5.2.5 Inverse Problem

With the assumptions we have made for the measurement errors in the statistical model, the

estimates Ĝ of G and q̂ of q can be obtained through an ordinary least squares formulation

(Ĝ, q̂) = argmin
(G,q)∈(P(K)×Q)

J(G, q). (5.2.9)

In the above equation, the cost functional J is defined as

J(G, q) =
N∑
j=0

(R(kj ;G, q)− yj)2 (5.2.10)

and yj is a realization of Yj , j = 0, 1, ..., N in (6.4.1). That is,

yj = R(k;G0, q0) + εj , j = 0, 1, 2, ..., N. (5.2.11)

We note that (5.2.9) is an infinite-dimensional optimization problem in the case of using

the PMF. Thus, we need to approximate the infinite dimensional space P(K) with a finite

dimensional space PM (K) in order to have a computationally tractable finite-dimensional

optimization problem

(Ĝ, q̂) = argmin
(G,q)∈(PM (K)×Q)

J(G, q). (5.2.12)

We will consider two finite-dimensional spaces, PMD (K) and PMS (K), to approximate P(K).

The space PMD involves the use of Dirac measures, and the space PMS involves the use of piecewise
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linear splines. We define these two spaces as

PMD (K) =

{
G ∈ P(K)

∣∣∣∣∣ G =
M∑
m=1

αm∆xm ,where αm ≥ 0 and
M∑
m=1

αm = 1

}
(5.2.13)

and

PMS (K) =

{
G ∈ P(K)

∣∣∣∣∣ G′ =
M∑
m=1

αmlm(k0),where αm ≥ 0 and

M∑
m=1

αm

∫
Km

lm(ξ)dξ = 1

}
(5.2.14)

where ∆xm is a Dirac measure with atom at xm, and lm is the mth linear spline element with

support Km. With either of these spaces we have reduced the infinite-dimensional problem to a

finite-dimensional problem in which we only need to estimate q and the weights α = {αm}Mm=1.

Following the work in [20] we will estimate the Dirac atom locations x = {xm}Mm=1 as well.

Hence, when using the Delta approximation method we have the minimization problem

(α̂, x̂, q̂) = arg min
(α,x,q)∈(RMD ×KM×Q)

J

(
M∑
m=1

αm∆xm , q

)
, (5.2.15)

where

RMD =

{
α = (α1, α2, . . . , αM )T

∣∣∣∣∣ αm ≥ 0, and
M∑
m=1

αm = 1

}
,

KM =
{
x = (x1, x2, . . . , xM )T

∣∣ xm ∈ K,m = 1, 2, . . . ,M
}
.

Using the spline method we have the minimization problem

(α̂, q̂) = argmin
(α,q)∈(RMS ×Q)

J(G, q), G′ =

M∑
m=1

αmlm(k0) (5.2.16)

where

RMS =

{
α = (α1, α2, . . . , αM )T

∣∣∣∣∣ αm ≥ 0, and
M∑
m=1

αm

∫
Km

lm(ξ)dξ = 1

}
.

When using the modified Efimov model, we simply have the standard minimization problem

q̂ = argmin
q∈Q

J(q), (5.2.17)

where Q ⊂ R4J+1 is compact.
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5.3 Results

The results section is laid out as follows. First we investigate the differences between the Dirac

and spline approximation methods and the modified Efimov approach using simulated data sets.

We consider two simulated data sets, the first using a “true” distribution G0 which is discrete,

and the second distribution being continuous. Next we compare the methods using reflectance

data obtained from three different inorganic glasses.

For the modified Efimov model we must choose the number of oscillators J which describe

the interrogated material. This is done by starting with a low value of oscillators and then

increasing J until the model fit gives a reasonable approximation to the data.

5.3.1 Simulated Data

The simulated data was generated by evaluating (5.2.11) at k = 600 + j∆k, where ∆k = 0.8

and j = 0, 1, 2, ..., N = 1000. The errors, εj , were chosen as a realization of a normally

distributed random variable with mean 0 and standard deviation σ0 = 0.001. The number

of interrogating wavenumbers which we use here is similar to sampling capabilities of a modern

FTIR spectrometer.

As noted above, for the true distribution G0, we consider two cases. In the first case we

take G0 to be a discrete distribution, which is depicted as the true distribution (along with

a number of graphs for the results from optimized PMF based fits-to-data) in Figure 5.2

below. In the second case we take G0 to be a continuous distribution. For this we chose to

take G0 as a truncated bivariate normal distribution which can be seen in Figure 5.4 (again

along with a number optimized fits-to-data). For both cases we used the scalar parameters

q0 = (εs0 , εs0 , τ0) = (1.6, 1.32, 0.017) and the incident angle was set to φ = 45◦.

Discrete Distribution

The “true” discrete distribution G0 used to simulate the data has 30 Dirac measures. There are

two regions, between 650 and 1100 cm−1, and between 1100 and 1400 cm−1, in which the jump

discontinuities present in the distribution produce relatively small increases. At k0 = 1100 cm−1

there is a relatively large jump of 0.34. It is reasonable assumption to expect a distribution of

similar characteristics to describe a CMC which is in a crystalline state.

In Figure 5.1 we give the model fit for both PMF approximation schemes using M = 45 as

well as for the modified Efimov approach with J = 6. We see that both PMF methods obtain

an excellent model fit, and similar fits were obtained for other values of M . The model using

the modified Efimov approach fits the data well except for wavenumbers k > 1350 cm−1. We

present the estimated distributions using the spline and Dirac methods in Figure 5.2 and the
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Figure 5.1: The model fits to the simulated data generated with a discrete distribution. The
model fit using the Dirac approximation scheme is labeled as D45 and the spline approximation
schemes as S45, where 45 is the number of nodes M , and the model fit using the modified
Efimov method is labeled as E6 where J = 6 oscillators were used.
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Figure 5.2: The estimated distributions to the simulated data using a discrete distribution
using the Dirac approximation method with M = 15, 25, 35 and 45 nodes (left) and using the
spline approximation method with M = 25, 35, 45 and 55 nodes (right).

estimated scalar parameters can be found in Table 5.1.

We see an interesting feature as M is increased using the Dirac approximation. With a

low number of nodes, specifically for M = 15 and 25, the estimation results match the true

parameters and distribution very well. However, for M greater than 25, the estimation results
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begin to deviate from the true values. This is most likely due to an over parameterization of

the problem. This increased freedom allows for the approximate model to begin to fit the noise

present in the data.

Table 5.1: The estimated parameters using the Dirac and spline approximation methods for
the discrete distribution.

Delta Approximation Spline Approximation Efimov Method

M εs ε∞ τ M εs ε∞ τ J εs ε∞
15 1.6187 1.3299 0.0142 8 1.9850 1.6000
25 1.6055 1.3252 0.0164 25 1.7243 1.4931 0.0513
35 1.5707 1.2869 0.0192 35 1.7043 1.4496 0.0280
45 1.5668 1.2860 0.0194 45 1.6786 1.4228 0.0353

55 1.7068 1.4502 0.0332

q0 1.6 1.32 0.017 q0 1.6 1.32 0.017 q0 1.6 1.32

Table 5.2: The estimated values of the intensities Sj , the relaxation times τj , the resonance
wavenumbers k0j and the standard deviations σj for each oscillator using the modified Efimov
approach, using the simulated data with a discrete distribution.

Oscillator (j) Sj τj k0j σj
1 6.2021e+04 0.0060 600.22 88.37
2 1.9846e+04 0.0135 839.29 56.89
3 1.6175e+02 0.0064 839.87 119.82
4 2.7413e+04 0.0968 1103.13 14.17
5 1.7871e+05 0.0124 1123.55 19.92
6 1.3596e+04 0.0317 1207.65 17.02

The estimated distribution using the spline method is not able to replicate the large jump at

k0 = 1100 cm−1, even when using as many as M = 55 nodes. However, in general, the estimated

distributions are reasonable approximations to the true distribution. This result is somewhat

unexpected since we only can guarantee convergence of the spline method if the probability

density function is absolutely continuous [39]. The estimated scalar values are all over estimated,

and in particular the estimated values of τ are not close to the true value. This is consistent with

the results in [20], in which it was shown that it is extremely difficult to accurately estimate the

relaxation time τ .

In Table 5.2 we give the estimated values for the individual oscillators using the modified
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Efimov model. We expect to see an oscillator centered near 1100 cm−1 with a narrow broadening

(i.e. a small standard deviation) to describe the jump discontinuity in the distribution. Indeed,

we see that the 4th oscillator is centered at k04 = 1103.13 cm−1 and has a standard deviation

of σj = 14.17. Unexpectedly we also see that the 5th and 6th oscillators also have a narrow

broadening. Furthermore, using the Efimov approach, it is difficult to associate the oscillator

directly to the size of the jump discontinuity in the distribution, one must look at the magnitude

of the intensity Sj relative to the other intensities to understand the relative “importance” of

each oscillator. That is, from Table 5.2 we would deduce that the 5th oscillator with an intensity

on the order to 105 has more importance compared to the 3rd oscillator which has an intensity

of 102 three orders of magnitude lower.

Continuous Distribution

In this example we consider the case where the true distribution G0 is taken as a truncated

bivariate normal distribution with corresponding probability density function g0 given by

G0(k0) =
β

σ1

√
2π

exp

(
−(k0 − µ1)2

2σ2
1

)
+

β

σ2

√
2π

exp

(
−(k0 − µ2)2

2σ2
2

)
, k0 ∈ [k0, k0]. (5.3.1)

In the above equation, we take µ1 = 850 cm−1, µ2 = 1050 cm−1, σ1 = 70, σ2 = 60, k0 = 600

cm−1, k0 = 1400 cm−1 and β is the normalizing constant

β−1 =

∫ k0

k0

1

σ1

√
2π

exp

(
−(k0 − µ1)2

2σ2
1

)
+

1

σ2

√
2π

exp

(
−(k0 − µ2)2

2σ2
2

)
dk0. (5.3.2)

We expect that a CMC in an amorphous state would best be represented by a continuous

distribution.

Table 5.3: The estimated parameters using the Dirac and spline approximation methods for
the simulated data with a continuous distribution.

Delta Approximation Spline Approximation Efimov Method

M εs ε∞ τ M εs ε∞ τ J εs ε∞
10 1.4519 1.1613 0.0101 10 1.9299 1.7017 0.0264 2 1.5747 1.3013
15 1.4107 1.1239 0.0112 15 1.5768 1.3040 0.0156
20 1.4011 1.1174 0.0116 20 1.5751 1.3074 0.0195
25 1.3909 1.1090 0.0124 25 1.5717 1.3077 0.0261

q0 1.6 1.32 0.017 q0 1.6 1.32 0.017 q0 1.6 1.32
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Figure 5.3: The model fits to the simulated data generated with a continuous distribution. For
the Dirac and spline approximation schemes the number of nodes was taken as M = 25 (labeled
as D25 and S25 respectively) and for the Efimov approach we have J = 2 (labeled as E2).
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Figure 5.4: The estimated distributions to the simulated data using a continuous distribution
using the Dirac approximation method (left) and using the spline approximation method (right).
For both methods we chose the number of nodes to be M = 10, 15, 20 and 25.

In Figure 5.3, we see that both PMF methods achieve a very good fit to the data where we

set M = 25. Using the Dirac method, we see in Figure 5.4 that the estimated distribution using

M = 10 nodes is shifted to the right of the true distribution. As M is increased, the estimated

distribution becomes a reasonable approximation of the continuous distribution. The estimated

distribution using the spline method gives an excellent approximation of the true distribution
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Table 5.4: The estimated values of the intensities Sj , the relaxation times τj , the resonance
wavenumbers k0j and the standard deviations σj for each oscillator using the modified Efimov
approach using the simulated data with a continuous distribution.

Oscillator (j) Sj(1× 105) τj k0j σj
1 1.0170 0.0139 861.23 66.61
2 1.4794 0.0175 1057.06 60.07

except when M = 10. In this case, there simply are not enough elements in the approximation

scheme to accurately fit the data. The Efimov approach is able to accurately fit the data with

only J = 2 oscillators, which is not surprising since the true distribution is composed of two

normal distributions.

From Table 5.3, we see that the constant parameters are more accurately estimated using

the spline approximation scheme and the Efimov approach. However, again the value for τ is

difficult to estimate correctly.

In Table 5.4 we see that we obtain a good estimate for the relaxation time for the second

oscillator, but not for the first. The resonance wavenumbers and the standard deviations for

both oscillators are a good estimation of the mean and standard deviations of the bivariate

normal distribution.

5.3.2 Inorganic Glass Data

To compare our approximation methods on experimental data sets, we present results obtained

using inorganic glass data available in [58]. These inorganic glasses have properties similar to

the materials which comprise the matrix in many CMCs. For these data sets the incident angle

is approximately φ ≈ 0◦.

Vitreous Silica

We first consider reflectivity data collected from Vitreous Silica in the 200 to 1350 cm−1 range

(see Table A2 in [58]). In Figure 5.5 we present the model fits to the data using the Dirac and

spline approximations with M = 50 for both methods and using the modified Efimov method

with J = 8. We see that all of the methods are able to obtain a good fit to the data.

In Figure 5.6 we present the estimated distributions using both PMF methods. It is clear the

the Dirac method gives consistent results for M = 30, 50 and 80, indicating that the method has

converged for a relatively low value of M . The spline method gives consistent results for M = 50

and 80; the distribution obtained using M = 30 has the same general characteristic shape as

the other two distributions, but it is clearly an outlier. Thus, we may assume that the spline

method has not converged at M = 30, but has by M = 50. In fact, once both methods have
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Figure 5.5: The model fits to the Vitreous Silica data.. For the Dirac and spline approximation
schemes the number of nodes was taken as M = 50 (labeled as D50 and S50 respectively) and
for the Efimov approach we have J = 8 (labeled as E8).
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Figure 5.6: The estimated distributions to the Vitreous Silica data using the Dirac approximation
method (left) and using the spline approximation method (right). For both methods we chose
the number of nodes to be M = 30, 50 and 80.

converged, they have converged to the same distribution. Although the estimated distribution

has large jumps near k0 = 400 cm−1 and 1050 cm−1, we again see the surprising result that the

spline approximation method is able to handle these regions of rapid change in the distribution.

In Table 5.5, we present the estimated parameter values using both PMF methods. Notice
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Table 5.5: The estimated parameter values using the Dirac and spline approximation methods
to fit the Vitreous Silica data. The “true” parameter values θ0 are the experimental values taken
from [65].

Delta Approximation Spline Approximation Efimov Method

M εs ε∞ τ M εs ε∞ τ J εs ε∞
30 3.7535 2.0845 0.0398 30 3.3489 1.5553 0.1032 8 3.7530 2.1384
50 3.7183 2.0487 0.0522 50 3.7079 2.0581 0.2020
80 3.6780 2.0153 0.0564 80 3.7019 2.0675 0.1851

q0 3.8 2.1 q0 3.8 2.1 q0 3.8 2.1

Table 5.6: The estimated values of the intensities Sj , the relaxation times τj , the resonance
wavenumbers k0j and the standard deviations σj for each oscillator using the modified Efimov
approach on the Vitreous Silica data.

Oscillator (j) Sj(1× 105) τj k0j σj
1 3.6176e+03 0.0183 311.63 66.62
2 1.4231e+05 0.0190 435.59 4.89
3 4.4941e+04 0.8445 459.17 8.71
4 1.8884e+04 0.0165 677.56 87.54
5 2.7526e+04 0.0282 806.88 9.48
6 1.4019e+03 0.0178 1014.97 34.98
7 5.2605e+05 1.6468 1077.90 21.29
8 1.1559e+05 0.0373 1166.09 46.83

that the estimated values of εs and ε∞ are very similar for M = 30 , 50 and 80 using the Dirac

approximation method. However, the values for εs and ε∞ using the spline method do not

match the values obtained using the Dirac approximation at M = 30, but do for M = 50 and

80. Thus, again indicating that the Dirac method converges for a lower value of M than the

spline method. We also see that the high and low frequency limits are well approximated by the

modified Efimov method.

The estimated values of the individual oscillators using the modified Efimov method are

given in Table 5.6. The 2nd, 3rd and 5th oscillators, centered at approximately 435, 459 and 806

cm−1, respectively, each have a very narrow broadening. The 2nd and 3rd oscillators correspond

to the first large jump in the estimated distribution using the PMF methods. The 5th oscillator

is present in a region where the estimated distribution does not contain a sharp jump.

Vitreous Germania

We next consider reflectivity data collected from Vitreous Germania in the 200 to 1350 cm−1

range (see Table A7 in [58]). In Figure 5.7 we present the model fit and the estimated distributions
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using both the Dirac and spline methods with M = 50 and using the modified Efimov method

with J = 8. Once again, we obtain very good fits to the data in all cases.

400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k, 1/cm

R
e
fl
e
c
ta

n
c
e

 

 

Data

Model fit (D50)

Model fit (S50)

Model fit (E8)

Figure 5.7: The model fits to the Vitreous Germania data. For the Dirac and spline approxima-
tion schemes the number of nodes was taken as M = 50 (labeled as D50 and S50 respectively)
and for the Efimov approach we have J = 8 (labeled as E8).
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Figure 5.8: The estimated distributions to the Vitreous Germania data using the Dirac approx-
imation method (left) and using the spline approximation method (right). For both methods we
chose the number of nodes to be M = 30, 50 and 80.
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From Figure 5.8 we see that each estimation using the spline method gives consistent results,

and the estimation with M = 30 using the Dirac method does not match the results using

M = 50 and 80. In this case, the results suggest that the spline method converges for a lower

number of nodes than the Dirac method, but both methods do converge to the same distribution.

This should be expected since it appears as if the estimated distribution is sufficiently smooth,

and it is known [39] that the spline method will outperform the Dirac method in this case.

In Table 5.7 we present the estimated parameter values for both methods. This time we see

that the spline method gives consistent values for εs and ε∞, whereas for M = 30, the values

estimated using the Dirac method are the outliers. The estimated values for εs and ε∞ using

the modified Efimov approach are slightly higher than the estimates using the PMF methods.

Table 5.7: The estimated parameter values using the Dirac and spline approximation methods
to fit the Vitreous Gernamia data.

Delta Approximation Spline Approximation Efimov Method

M εs ε∞ τ M εs ε∞ τ J εs ε∞
30 2.3992 1.7707 0.0779 30 2.0034 1.3320 0.4989 8 2.1844 1.5200
50 1.8961 1.3013 0.7741 50 2.0567 1.3854 0.2581
80 1.9068 1.3435 0.6250 80 2.0254 1.3659 0.4964

Table 5.8: The estimated values of the intensities Sj , the relaxation times τj , the resonance
wavenumbers k0j and the standard deviations σj for each oscillator using the modified Efimov
approach on the data obtain from Vitreous Germania.

Oscillator (j) Sj(1× 105) τj k0j σj
1 1.5434e+03 0.0159 511.79 68.73
2 2.6232e+03 0.0178 540.71 51.28
3 5.9389e+04 0.1661 565.51 35.91
4 4.4435e+04 0.0160 696.72 68.21
5 1.4581e+05 0.6777 812.01 40.25
6 9.9376e+04 1.1347 852.97 30.93
7 6.1715e+02 0.0157 940.72 69.75
8 7.1409e+03 0.4162 958.32 19.93

In Table 5.8 we present the individual oscillator estimates obtain from the modified Efimov

approach. In this case we see that the only oscillator which has a somewhat narrow broadening is

present at 958 cm−1. This oscillator has an intensity of 103, two orders of magnitude lower than
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the largest estimated intensity. This indicates that the modified Efimov approach agrees with

the results seen using the PMF, that there are no sharp jumps in the resonance wavenumber

which characterize the Vitreous Germania data.

Sodium Silicate

As a final consideration, we use reflectivity data collected from Sodium Silicate in the 40 to

1260 cm−1 range (see Table A3 in [58]). In Figure 5.9 we give the model fit to the data and the

estimated distributions using the Dirac and spline approximation schemes using M = 25 and

using the modified Efimov approach with J = 9.

We see that the estimated distributions using both methods agree very well for the relatively

low number of nodes, and the agreement is increased for M = 30 as is seen from Figure 5.10.

Additionally, in Table 5.9 we see that the estimated values of εs and ε∞ agree well for M = 30.

Thus, it appears in this case that both the spline and Dirac approximation methods have

converged at a relatively low number of nodes. It should be noted, that for this particular data

set, there were 62 data points, which is why we did not use a larger number of nodes than

M = 30. Using the modified Efimov approach, the estimated value of ε∞ is consistent with the

results using the PMF, but the value of εs does not match.
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Figure 5.9: The model fits to the Sodium Silicate data. For the Dirac and spline approximation
schemes the number of nodes was taken as M = 25 (labeled as D25 and S25 respectively) and
for the Efimov approach we have J = 9 (labeled as E9).
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Figure 5.10: The estimated distributions to the Sodium Silicate data using the Dirac approxi-
mation method (left) and using the spline approximation method (right). For both methods we
chose the number of nodes to be M = 25 and 30.

Table 5.9: The estimated parameter values using the Dirac and spline approximation methods
as compared to the Efimov method to fit the Sodium Silicate Silica data.

Delta Approximation Spline Approximation Efimov Method

M εs ε∞ τ M εs ε∞ τ J εs ε∞
25 6.3266 2.1110 0.0200 25 5.7623 1.5496 0.0269 9 7.4048 2.1179
30 5.9747 2.0939 0.0240 30 5.9068 1.9573 0.0305

Table 5.10: The estimated values of the intensities Sj , the relaxation times τj , the resonance
wavenumbers k0j and the standard deviations σj for each oscillator using the modified Efimov
approach on the Sodium Silicate data.

Oscillator (j) Sj(1× 105) τj k0j σj
1 8.7256e+03 0.0191 95.82 24.06
2 3.7072e+04 0.0208 187.11 62.71
3 7.1957e+04 0.0292 412.24 53.15
4 9.0464e+04 0.0764 459.40 23.43
5 2.6822e+04 0.0279 638.16 53.20
6 3.9439e+04 0.0491 778.93 29.66
7 1.8828e+05 0.5529 986.26 40.27
8 2.7424e+05 0.0154 1057.79 13.43
9 9.9229e+04 0.0775 1122.55 65.13

In Table 5.10 we present the estimation results for the oscillators using the modified Efimov

approach. In this case, the oscillator with the most narrow broadening is the 8th oscillator which

is centered at 1057 cm−1. This oscillator corresponds to a region of relatively gradual increase

93



in the estimated distribution.

5.4 Concluding Remarks and Future Work

Two contrasting methods of modeling the complex permittivity of a material in which the

number of dielectric mechanisms is unknown were compared in this chapter. Using the PMF, we

imposed a distribution on the resonance wavenumber and considered two approximation schemes

for estimating the unknown distribution. We also considered a method which uses a convolution

of Lorentz and Gaussian functions, the modified Efimov approach. We considered both simulated

and experimental data sets. Within the context of the PMF, it is clear that considering the

model fits alone are not sufficient to determine which approximation scheme to use, since both

consistently give good model fits even if the estimated distributions vary. It is not surprising

that the Dirac methods are better suited to estimate a discontinuous distribution and that

the spline method are better suited to handle estimating a continuous distribution. In practice

of course, there in general is no prior knowledge as to the form of the unknown distribution

(continuous or discontinuous). Fortunately, we have illustrated in the examples presented in this

work that the spline approximation method gives reasonable estimates even for the cases where

the true distribution possesses discontinuities. Thus, it is our recommendation that initially both

methods should be used to do the inverse problem. Once it is established that the estimated

distributions using both methods sufficiently agree, then the results obtained using the lowest

number of nodes possible to achieve this agreement should be used. This should minimize

any effects of over parameterization. Only after the distributions agree should the decision be

made as to whether the distribution appears to obtain discontinuities. If discontinuities (or

regions of relative rapid change) are present in the distribution, then the results using the Dirac

method would be preferred, and the results from the spline approximation would be preferred

for distributions which appear continuous in nature.

Using the modified Efimov method, we were also able to obtain very good model fits to

the data for both the simulated data and the inorganic glass data. It was seen that using this

approach, regions of rapid increase in the distribution will correspond to oscillators with a narrow

broadening. However, one pitfall to this approach is the difficulty in ascertaining the relative

“importance” of each oscillator, for which the only indication is the estimated intensity. One

advantage that the PMF approach has over the modified Efimov approach is that the estimated

distribution can easily be interpreted. Furthermore, there is a strong theoretical foundation for

the PMF approximation schemes to converge as M →∞ (with the assumption that the density

function is absolutely continuous in the case of using splines), however, there is no known sense

of convergence as J →∞ in the Efimov approach.

In the following chapter, we consider experimental data sets obtained from CMCs which
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have undergone various levels of heat treatment and attempt to use the methods described here

to ascertain levels of degradation. Additionally, we concern ourselves with the mathematical and

statistical model discrepancy present in this problem, and use this in an effort to appropriately

quantify the uncertainty in the probability distribution estimators.
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CHAPTER 6

Quantifying the Degradation in Thermally Treated Ceramic Matrix

Composites

In this chapter we focus on a silicon nitride carbon based CMC in which our collaborators at

Wright-Patterson Air Force Base have a specific interest. This SiC/SiCN CMC has a silicon

carbon fiber and a silicon nitride carbon matrix. Exposure to high temperature environments

induces oxidation in the CMC, producing SiO2 and SiN. The contents of this chapter are based

on a manuscript which has been accepted for publication [17]:

H.T. Banks, J. Catenacci, and A. Criner. Quantifying the degradation in thermally treated

ceramic matrix composites. The 17th International Symposium on Applied Electromagnetics

and Mechanics (ISEM2015). (in press).

6.1 Introduction

Data sets have been provided by researchers at the Air Force Research Lab at Wright-Patterson

Air Force Base, which were collected using a Bruker Vertex 80V FTIR spectrometer. CMC

samples were placed in a 1200◦C oven for either 10 or 100 hours, then the reflectance was

measured. Three samples, sample 4, 16, and 32, underwent the heat treatment for 10 hours, and

two samples, sample 1 and 13, underwent the heat treatment for 100 hours. The dimensions

of the samples were 15.7 × 1.3 × 0.2 cm. Each sample was divided along its length into 11

blocks of equal area, and three measurements were taken within each block for a total of 33

measurements per sample (typically the measurements contain greater than 200 data points).

Since the beam width of the interrogating electromagnetic wave is significantly smaller than
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the size of each block, we assume that each of the three measurements within each block are

spatial independent. An example data set from sample 4 and sample 1 is given in Figure 6.1.

It is known that SiN will give peaks at approximately 640 and 1200 cm−1, and SiO2 will give

peaks at approximately 800 and 1080 cm−1, and for both data sets we see peaks in these regions.

Yet, it is not possible to ascertain from the data alone how much SiN or SiO2 is present, or

how much oxidation has occurred. To aid in this analysis we will develop a mathematical model

for the reflectance, and through an inverse problem we will fit the mathematical model to the

experimental data to obtain parameter estimates for each data set. We will then show that we

can detect differences in the estimated model inputs resulting from the inverse problem using

data collected from the samples which underwent different lengths of heat exposure.
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Figure 6.1: Example reflectance data sets from sample 4 which was heat treated for 10 hours
(the black dots) and from sample 1 which was heat treated for 100 hours (the blue circles).

6.2 The Model for the Complex Permittivity and the Reflectance

Due to the heterogeneous structure of the CMCs, which we would like to characterize, we precede

as in the previous chapters by imposing a distribution on the resonance wavenumber in the

permittivity model. Treating the resonance wavenumber in this way allows us to account for

the contributions from different molecular components of the material. Therefore, to allow for

a distribution G of resonance wavenumbers over an admissible set K ⊂ R, we generalize the
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relative permittivity for the Lorentz model to be

ε̂r(k;G, q) = ε∞ −
∫
K

k2
p

k2 − ik/τ − k2
0

dG(k0), (6.2.1)

whereG ∈ P(K), the set of admissible probability measures onK and q = (εs, ε∞, τ)T ∈ Qα ⊂ R3,

where Qα is compact.

The data we consider in this document is obtained at an incident angle of φ = 45◦, therefore we

further assume that the reflectance is composed of the parallel and perpendicular polarizations in

equal weights. Thus, we make use of the the equation for the reflectivity given by (5.2.5)–(5.2.7).

6.3 Interferogram to Spectrum

An FTIR spectrometer does not measure the reflectance spectrum (given in percent reflectance)

directly; rather an interferogram (measure of intensity) is collected. This is then converted to

a reflectance spectrum. An interferogram can be single sided or double-sided. A single sided

interferogram is the result of measuring only on one side of zero path difference (ZPD), whereas

a double sided interferogram is collected by measuring both sides of the ZPD. Additionally,

the data can be acquired during forward movement of the mirror only or during forward

and backward movement of the mirror, which results in a single-direction or bi-directional

interferogram, respectively. Here, we will consider the case of a double sided, bi-directional

interferogram. We give an example of such an interferogram in Figure 6.2, the two large spikes

in signal are the ZPD, the first being measured during the forward mirror movement, the second

during the backward mirror movement.

Reflectance data sets were provided by the Air Force Research Lab at Wright-Patterson Air

Force Base which we collected using a Bruker Vertex 80V FTIR spectrometer. Here we will

detail the process used by the software on the instrument to covert the interferograms to a

spectrum.

An interferogram contains out-of-phase elements, which are a results of optical path differences

in the spectrometer. In order for the spectrum to be photometrically accurate, the data must

be phase corrected. When using a bi-directional interferogram, each half of the interferogram

needs to be phase corrected separately. The most common phase correction method is the Mertz

method, which we describe here. The first step is to apodize the interferogram, this was done

using a three-term Blackman-Harris window function. Then the data is zero padded using a

zerofilling factor of 8 (the number of data points was multiplied by 8, then zero filled until the

next power of 2 is reached). The data is then shifted about its maximum value and a FFT is
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Figure 6.2: Double sided, bi-directional interferogram.

taken resulting a complex signal Y . The phase curve is computed by

φ = arctan
Im(Y )

Re(Y )
, (6.3.1)

where Re(Y ) and Im(Y ) are the real and imaginary parts of Y , respectively. Finally, the

spectrum, B, is computed by

B = Re(Y ) cosφ+ Im(Y ) sinφ. (6.3.2)

Once both halves of the interferogram are converted into a spectrum separately, the spectrums

are averaged together.

In order to obtain reflectance data of a sample, two interferograms are collected, one

from the sample (the sample interferogram), and one with the sample removed (the reference

interferogram). Then the reflectance data is obtained by taking the ratio of the spectrum

computed from the sample and reference interferograms. For further details on converting an

interferogram to a spectrum and using this to obtain the reflectance, see [66, Section 4.3].

6.3.1 Measurement Errors

Since we are interested in quantifying the uncertainty in the estimates resulting from the inverse

problem, we must understand the measurement error process in order to correctly specify a

statistical model. Because an FTIR spectrometer does not directly measure the reflectance,
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we must take extra care to avoid as much as possible altering the measurement errors in the

conversion of the interferograms to the spectrum. To illustrate some of the possible pitfalls, we

give the estimated measurement errors in the reflectance data obtained using three different

methods of converting the interferograms to reflectance. The measurement errors are estimated

using a second order difference

ν̂j =
1√
6

(yj−1 − 2yj + yj+1), (6.3.3)

where the {yj} are the observed data (see [73,92] for further details) where as usual endpoints

are formed with one-sided differences.

There are several methods one might use to preprocess the data. This first method is the

method used by the software associated with the Bruker Vertex 80V (the method described

in detail above), in which a zerofilling factor of 8 was used, and the spectrums from the first

and second ZPD are averaged. In Figure 6.3 we see that the estimated measurement errors

using this method exhibit an oscillatory behavior. The second method, which we consider, also

uses a zerofilling factor of 8, but this time only the spectrum from the first ZPD is used. The

estimated measurement errors, shown in Figure 6.4, again have oscillations present, however

the magnitude of the errors is more consistent in the middle of the interrogating range. The

final method we consider uses no zero padding, and only uses the spectrum from the first ZPD.

In Figure 6.5, we now see that the estimated measurement errors do not have any oscillations

present, and the magnitude of the error is fairly consistent throughout the entire wavenumber

sample, with slightly larger errors occurring at the ends of the interrogating range. For this

reason, for the remainder of the results we present here, we use the third method in which there

is no zero padding and only the spectrum from the first ZPD is used.

6.4 Inverse Problem

6.4.1 Statistical Model

In the previous section we observed that if we do not zero pad the interferogram and only use

the spectrum from the first ZPD, we can avoid the oscillations in the plots of the estimated

measurement errors. However, in Figure 6.5, we see that the estimated measurement errors

are larger at the two ends of the data set, near 600 and 1600 cm−1. Additionally, if we inspect

more closely, we see that the measurement errors increase in magnitude near 850, 1050, and

1200 cm−1. In Figure 6.6 we show the estimated measurement errors for a typical data set

obtained from the 100 hour heat treated sample 1. In this case, it is even more clear that we

cannot assume our data sets contain measurement errors which are independent and identically
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Figure 6.3: Estimated measurement error, in percent reflectance, obtained when using a
zerofilling factor of 8 and averaging the spectrum from first and second ZPD.
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Figure 6.4: Estimated measurement error obtained, in percent reflectance, when using a
zerofilling factor of 8 and using only the spectrum from first ZPD.

distributed (i.i.d.). Thus, we need to take care in choosing an appropriate statistical model so

that we can carryout a meaningful uncertainty quantification.
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Figure 6.5: Estimated measurement error obtained, in percent reflectance, when using no zero
padding and using only the spectrum from first ZPD.
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Figure 6.6: Estimated measurement error from a data set from Sample 1 obtained when using
no zero padding and using only the spectrum from first ZPD.

We consider a weighted error statistical model of the form

Yj = R(kj ;G0, q0) + wjEj , j = 1, 2, ..., N. (6.4.1)

In the above equation Yj is a random variable which is composed of the reflectance with G0 the
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nominal or “true” probability measure and q0 the nominal or “true” parameters at a sampling

wavenumber kj , and the measurement error Ej with weight wj . For simplicity, we consider

that the errors Ej are independent and identically distributed random variables with mean 0

and constant variance σ2
0 and realizations εj . We must choose the weights wj in a way which

represents our knowledge of the measurement errors present in the data collection process. The

increase in the magnitude of the estimated measurement errors, which occurs at the beginning

and end of the data set, could be a result of the measurements occurring at the fringes of the

detector’s capabilities in the spectrometer. The larger measurement errors which occur near

1050 and 1200 cm−1, and near 850 cm−1 in some of the data sets, correspond to regions of rapid

change in the magnitude of the reflectance signal. With this in mind we choose the weights as

wj = c1(kj − k̄)2 + c2|y′′(kj)|+ 1, j = 1, 2, ..., n. (6.4.2)

where k̄ is the center of the interrogating wavenumber interval, y′′(kj) is the second derivative of

the reflectance data, and c1 and c2 are scaling parameters. The second derivative is calculated

using central differences for the interior points, and single sided differences for the end points.

Figure 6.7 presents the weights wj and the estimated measurement errors which are now

computed by η̂j = w−1
j ν̂j , where ν̂j is given in (6.3.3), c1 = 1.5/(600 − k̄), and c2 = 7 × 103.

From here we see that the values η̂ form an approximate horizontal band centered about 0 as

desired.
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Figure 6.7: Plot of the weights wj (left) and η̂j = w−1
j ν̂j (right) for the 100 hour heat treated

sample 1.
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6.4.2 Weighted Least Squares

With the assumptions we have made for the measurement errors in the statistical model, the

estimators θ = (G, qT )T = (G, εs, ε∞, τ)T can be obtained through a weighted least squares

formulation

θWLS = arg min
(G,q)∈(P(K)×Qα)

J(Y ; θ), (6.4.3)

with realizations

θ̂WLS = arg min
(G,q)∈(P(K)×Qα)

J(y; θ). (6.4.4)

In the above equation, the cost functional J is defined as

J(y; θ) =
N∑
j=1

w−2
j (R(kj ; θ)− yj)2 (6.4.5)

where yj is a realization of Yj , j = 1, ..., N in (6.4.1).

That is,

yj = R(k;G0, q0) + wjεj , j = 1, 2, ..., N, (6.4.6)

with εj a realization of Ej .
We note that (6.4.3) is an infinite-dimensional optimization problem. Thus, we need to

approximate the infinite dimensional space P(K) with a finite dimensional space PM (K) in

order to have a computationally tractable finite-dimensional optimization problem

(GM , q)WLS = argmin
(GM ,q)∈(PM (K)×Qα)

J(Y ;GM , q). (6.4.7)

We will consider the finite-dimensional PMS (K), a space defined using piecewise linear splines,

to approximate P(K). We define this space as

PMS (K) =

{
GM ∈ P(K)

∣∣∣∣∣ G′M =

M∑
m=1

αmlm(k0),where αm ≥ 0 and

M∑
m=1

αm

∫
Km

lm(ξ)dξ = 1

}
(6.4.8)

where lm is the mth linear spline element with support Km. With this we have reduced the

infinite-dimensional problem to a finite-dimensional problem in which we only need to estimate

q and the weights α = {αm}Mm=1. This leads to the minimization problem

(α̂, q̂) = arg min
(α,q)∈(RMS ×Qα)

J(y;GM , q), G′M =

M∑
m=1

αmlm(k0) (6.4.9)
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where

RMS =

{
α = (α1, α2, . . . , αM )T

∣∣∣∣∣ αm ≥ 0, and
M∑
m=1

αm

∫
Km

lm(ξ)dξ = 1

}
.

Unfortunately, sample calculations (see below) reveal that this inverse problem is ill-posed,

due to a lack of identifiability in the parameters. To resolve this issue we re-parameterize the

permittivity model as follows. Using the spline approximation scheme, we have the model for

the complex permittivity

ε̂r(k; {αm}Mm=1, q) = ε∞ −
M∑
m=1

αm

∫
Km

(εs − ε∞)k2
0

k2 − ik/τ − k2
0

lm(k0)dk0. (6.4.10)

Let βm = (εs − ε∞)αm. Then the permittivity model is transformed into

ε̂r(k; {βm}Mm=1, qβ) = ε∞ −
M∑
m=1

βm

∫
Km

k2
0

k2 − ik/τ − k2
0

lm(k0)dk0, (6.4.11)

where qβ = (ε∞, τ)T ∈ Qβ ⊂ R2. Observe that the constraint

M∑
m=1

αm

∫
Km

lm(ξ)dξ = 1

becomes

ε∞ +
M∑
m=1

βm

∫
Km

lm(ξ)dξ = εs, (6.4.12)

which can be enforced after the optimization has been preformed. Therefore we have transformed

the constrained optimization problem (6.4.9) into an unconstrained optimization problem given

by

(β̂, q̂β) = argmin
(β,qβ)∈(RNS ×Qβ)

J(y;GM , qβ), G′M =
M∑
m=1

βmlm(k0). (6.4.13)

6.4.3 Uncertainty Quantification

The standard weighted least squares estimator θM , where we define θM = (βT , qTβ ) to be the

vector of all the model parameters, has the asymptotic properties [33,52,53]:

θM ∼ N (θM0 ,Σ0), (6.4.14)
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where θM0 is the nominal parameter vector, and the (M + 2)× (M + 2) covariance matrix is

given approximately by

Σ0 ≈ σ2
0

(
F T (θM0)WF (θM0)

)−1
.

Here the N × (M + 2) sensitivity matrix is given by

F (θ) =

(
∂R(ki; θ)

∂θj

)
,

and the matrix W is defined as W−1 = diag(w2
1, ..., w

2
N ). Since θM0 is unknown, we will use the

estimates

Σ0 ≈ Σ̂ = σ̂2
0

(
F T (θ̂M )WF (θ̂M )

)−1
,

where we use the approximation

σ̂2
0 =

1

N −M − 2

N∑
j=1

w−2
j

(
R(kj ; θ̂M )− yj

)2
. (6.4.15)

We can then construct the 100(1− λ)% level confidence intervals by[
(θ̂M )j − t1−λ/2SEj , (θ̂M )j + t1−λ/2SEj

]
, (6.4.16)

where SEj =
√

Σ̂jj , and the critical value t1−λ/2 is determined by Prob{T > t1−λ/2} = λ/2,

where T has a students’s t distribution with N −M − 2 degrees of freedom.

Additionally, we would like to construct a pointwise confidence band for the distribution

GM (k0) and the density G′M (k0). To do this we follow the ideas presented in [19], however we

ignore the contributions of model discrepancy. We assume that the effects of model discrepancy

are negligible. For this to be a reasonable assumption, we must check that the residual plots do

not show any major signs of model discrepancy (see Section 6.5.4 below).

Define the vectors

TM(k0) =

(∫ k0

k0

l1(ξ)dξ, ...,

∫ k0

k0

lM (ξ)dξ, 0, 0

)T
,

and

LM(k0) = (l1(k0), ..., lM (k0), 0, 0)T .

Then, using the spline approximation for the probability measure, we have, for any GM ∈ PMS (K)

GM (k0) = TM(k0)T θM , G′M (k0) = LM(k0)T θM .
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Then by (6.4.14) we know that for any sufficiently large n

GM (k0) ∼ N (TM(k0)T θ̂M ,TM(k0)T Σ̂TM(k0)), (6.4.17)

and

G′M (k0) ∼ N (LM(k0)T θ̂M ,LM(k0)T Σ̂LM(k0)). (6.4.18)

Now we can compute the 100(1− λ)% level confidence intervals for the pointwise estimates by[
ĜM (k0)− t1−λ/2SEGM (k0), ĜM (k0) + t1−λ/2SEGM (k0)

]
, (6.4.19)

and [
Ĝ′M (k0)− t1−λ/2SEdGM (k0), Ĝ′M (k0) + t1−λ/2SEdGM (k0)

]
, (6.4.20)

where SEGM (k0) =

√
TM(k0)T Σ̂TM(k0) and SEdGM (k0) =

√
LM(k0)T Σ̂LM(k0).

6.5 Results

In this section we present various results of the inverse problem using data obtained from the

thermally treated SiC/SiCN CMC samples.

6.5.1 Consistency as M Increases

Before making any claims about the model’s ability to fit the data and the resulting estimations,

we must first ensure that we have convergence of the spline approximation scheme as M increases.

As was mentioned previously, the inverse problem (6.4.9) has been observed to be ill-posed. In

Figure 6.8 we show the model fits and the estimated density using one data set obtained from

the 10 hour heat treated sample 32 where the number of spline nodes was taken to be M = 74

and 75. We see that the model fits both agree very well with the data, however, the estimated

densities are quite different, as well as the estimated parameters which are given in Table 6.1.

We see a similar phenomenon in Figure 6.9 and Table 6.2 in which we fit a data set obtained

from the 100 hour heat treated sample 13. Again, both model fits, using M = 72 and 74, agree

well with the data, but the estimated densities and parameters are quite different. If we choose

to use this inverse problem, it is not clear which approximation is more “correct”.

To alleviate this issue, we consider the re-parameterization of the model which results in

the inverse problem (6.4.13). In Figure 6.10 we show the model fit and estimated density using

a data set obtained from the 10 hour heat treated sample 4. As before, the model fits agree

very well with the data, but now the estimated densities using M = 70, 71 and 80 also are in

good agreement. We do note that the estimated parameter values of ε∞ and τ for M = 80 are
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N = 74

N = 75

Figure 6.8: Using a data set from the 10 hour heat treated sample 32, the model fit to the data
(left) and the estimated density (right) using M = 74 and 75 nodes.

Table 6.1: The estimated parameters using a data set from the 10 hour heat treated sample 32
for M = 74 and 75.

M εs ε∞ τ J

74 1.9249 1.3232 0.0676 2.323e-03
75 2.2091 1.6051 0.4491 4.423e-03
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N = 72

N = 74

Figure 6.9: Using a data set from the 100 hour heat treated sample 13, the model fit to the
data (left) and the estimated density (right) using M = 72 and 74 nodes.

dissimilar to the values found using M = 70 and 71. It is also important to remark that the

parameters in the model for reflectance will at some level be unidentifiable due to the absolute

values in the reflectance model (5.2.5).
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Table 6.2: The estimated parameters using a data set from the 100 hour heat treated sample
13 for M = 72 and 74.

M εs ε∞ τ J

72 1.7311 1.2435 0.1063 2.752e-03
74 1.8984 1.3734 0.1724 2.558e-03
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Figure 6.10: Using a data set from the 10 hour heat treated sample 4, the model fit to the data
(left) and the estimated density (right) using M = 70, 71 and 80 nodes.

Table 6.3: The estimated parameters using a data set from the 10 hour heat treated sample 4
for M = 70, 71 and 80.

M εs ε∞ τ J

70 3.4922 3.0752 0.0433 8.603e-04
71 3.5226 3.0965 0.0441 8.831e-04
80 3.6259 3.2090 0.1031 6.486e-04

6.5.2 Optimal Value of M

One needs a way of determining the value of M in the inverse problem. To determine the optimal

value of M we use the model selection criteria the Aikakie Information Criterion (AIC). The

AIC (as summarized in [33, Chap. 4]) is given by

AIC = −2 lnL(θMLE |y) + 2κ, (6.5.1)

where

L(θMLE |y) =
N∏
j=1

[
1√

2πσwj
exp

(
− (R(kj ; θMLE)− yj)2

2σ2w2
j

)]
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is the likelihood function, θMLE is the maximum likelihood estimate of the parameters θ,

y = [y1, ..., yN ]T is the vector of observations, and κ is the total number of parameters estimated

(the number of unknown parameters in the mathematical model and the statistical model).

Under the assumption of the errors Ej , j = 1, ..., N, being i.i.d. N (0, σ2) with weighting

terms wj for the statistical model (6.4.1), we have that {Yj}Nj=1 are independent with mean

E(Yj) = R(kj ;G0, q0), and variance Var(Yj) = σ2w2
j .

Taking the natural log of the likelihood function gives

ln(L(θMLE |y)) = −N
2

ln(2π)−
N∑
j=1

ln(wj)−N ln(σ)− 1

2σ2

N∑
j=1

(R(kj ; θMLE)− yj)2

2σ2w2
j

. (6.5.2)

We remark that maximizing the log-likelihood function to obtain the maximum likelihood

estimate (βMLE , qβMLE) of (β, qβ) is the same as minimizing the cost function (6.4.13). Hence,

the weighted least squares and maximum likelihood estimates are identical, that is (β̂, q̂β) =

(βMLE , qβMLE), where (β̂, q̂β) solves (6.4.13)–see [33, Chap. 4].

Once the estimate θ̂M is obtained, we can solve the equation

∂ ln(L(θ̂M |y))

∂σ
= 0

to obtain the maximum likelihood estimate σMLE of σ. It can be easily verified that

∂ ln(L(θ̂M |y))

∂σ
= −N

σ
+

1

σ3

N∑
j=1

(R(kj ; θ̂M )− yj)2

w2
j

.

Thus, we find that the maximum likelihood estimate σMLE of σ is given by

σ2
MLE =

1

N

N∑
j=1

(R(kj ; θ̂M )− yj)2

w2
j

,

which is different than the estimate for σ given by the approximated finite dimensional weighted

least squares procedure (6.4.15).

Substituting these estimates θ̂M and σMLE into (6.5.2) we obtain

ln(L(θ̂M |y)) = −N
2

ln(2π)−
N∑
j=1

ln(wj)−
N

2
ln

 1

N

N∑
j=1

(R(kj ; θ̂M )− yj)2

w2
j

− N

2
.
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Then, by (6.5.1) we have

AIC = N(ln(2π) + 1) + 2
N∑
j=1

ln(wj) +N ln

 1

N

N∑
j=1

(R(kj ; θ̂M )− yj)2

w2
j

+ 2κ. (6.5.3)

Note that the first term of the above equation is constant for a fixed number of observations N ,

so we may omit these terms.

It is known that the AIC may perform poorly if the sample size N is small relative to the

total number of estimated parameters. It is recommended [46] that the AIC should only be used

if N/κ ≥ 40. We have N = 448 for a typical reflectance data set used in this work, and thus we

will use a small sample AIC, denoted by AICc, which is given by

AICc = AIC +
2κ(κ+ 1)

N − κ− 1
. (6.5.4)

We remark that for our reflectance model, κ = M + 3 since we are using M spline elements,

for each of which there is an associate weight βm to be estimated, and we also estimate the

additional mathematical model parameters ε∞ and τ as well as the statistical model parameter

σ.

For each data set, the AICc values were computed to determine the optimal value of M . In

Figure 6.11 a snapshot of the AICc values are presented where a data set from 10 hour heat

treated sample 4 was used, and M = 50, 51, ..., 120 was considered. Typically, for each data set

considered the optimal value of M was found to be between M = 80 and 90.

6.5.3 Comparison of Heat Treated Samples

In this section we compare the results of the inverse problem (6.4.13) obtained using the 10 and

100 hour heat treated samples. For all of the following results the number of spline functions

was determined using the AICc. In Figures 6.12–6.14 we give the model fits and the estimated

densities using the data obtained from the first three locations of the 10 hour heat treated

samples 4, 16, and 32, respectively. In Figures 6.15–6.16 we present the model fits and the

estimated densities using the data obtained from the first three locations (approximately 1.4

cm apart) of the 100 hour heat treated samples 1 and 13, respectively. In Table 6.4, we give

the estimated parameters and the value of the cost function for each of the first three locations

from each sample.

We see in each case that there is variation in the magnitude of the reflectance data, yet the

model is able to fit all of the data sets very well. Additionally, for each sample, the estimated

densities are similar.

To better illustrate the differences in the estimated densities between the 10 and 100 hour
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Figure 6.11: A snapshot of the AICc values using a data set obtained from the 10 hour heat
treated sample 4 with M = 70, 71, ..., 90.
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Figure 6.12: The model fits (left) and estimated densities (right) using the first three locations
of the data obtained from the 10 hour heat treated sample 4.

heat treated samples, we show the densities from each location for the 10 hour heat treated

samples in Figure 6.17 and for the 100 hour heat treated samples in Figure 6.18. We also

computed the mean density for each sample, which can be seen in Figure 6.19. Recall that for

SiO2 we should see oscillators at approximately 800 and 1080 cm−1. We see that the estimated

densities from the 100 hour samples have larger peaks near 1080 cm−1 compared to the estimated

densities from the 10 hour samples. Near 800 cm−1, the estimated densities have peaks which
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Figure 6.13: The model fits (left) and estimated densities (right) using the first three locations
of the data obtained from the 10 hour heat treated sample 16.
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Figure 6.14: The model fits (left) and estimated densities (right) using the first three locations
of the data obtained from the 10 hour heat treated sample 32.

are wider for the 10 hour samples than for the 100 hour samples which has sharper peaks. For

the SiN peaks, at approximately 640 and 1200 cm−1, we do not see a distinguishable difference

between the estimated densities using the 10 and 100 hour data samples.

The larger peaks near 1080 cm−1 in the estimated densities using the 100 hour samples may

indicate more SiO2 content compared to the 10 hour samples, which we would expect. However,

the estimated densities for both the 10 hour and 100 hour samples indicate that there is little

difference in the SiN content. Additionally, the broader peaks in the estimated densities for the

10 hour samples near 800 cm−1 may indicate that the SiO2 present in the 10 hour samples is
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Figure 6.15: The model fits (left) and estimated densities (right) using the first three locations
of the data obtained from the 100 hour heat treated sample 1.

800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k, 1/cm

R
e

fl
e

c
ta

n
c
e

600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9
x 10

−3

k
0
, 1/cm

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

 

 

Location 1

Location 2

Location 3

Figure 6.16: The model fits (left) and estimated densities (right) using the first three locations
of the data obtained from the 100 hour heat treated sample 13.

in more of an amorphous state and the SiO2 present in the 100 hour samples is in more of a

crystalline state.

6.5.4 Pointwise Confidence Bands

In order to understand the uncertainty present in the estimated quantities in our mathematical

model, we will compute the 95% confidence intervals for the model parameters ε∞ and τ according

to (6.4.16), and construct the pointwise asymptotic confidence band for the probability density

using (6.4.20). Modified residual plots will be used as a way as to assist in the determination
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Table 6.4: Estimated parameters using the first 3 locations from each sample.

Location εs ε∞ τ J

10 hr. sample 4
1 3.7115 3.3314 0.0370 6.263e-04
2 3.5406 3.1149 0.0924 1.612e-03
3 3.5483 3.1208 0.0837 1.691e-03

10 hr. sample 16
1 3.8316 3.4704 0.0415 4.173e-04
2 3.7615 3.3902 0.0409 7.992e-04
3 4.6257 4.3448 0.0486 5.744e-04

10 hr. sample 32
1 3.1822 2.6740 0.0622 1.026e-03
2 3.7688 3.3790 0.0622 1.801e-03
3 3.7276 3.3277 0.0804 1.208e-03

100 hr. sample 1
1 3.4428 2.9400 0.0589 2.600e-03
2 3.6429 3.2286 0.0812 2.552e-03
3 3.4873 3.0082 7.5718 4.252e-03

100 hr. sample 13
1 3.5733 3.1072 5.1994 1.595e-03
2 3.4479 2.9473 0.0790 1.252e-03
3 4.4069 4.0966 0.0386 2.673e-04

of whether or not the form of the measurement errors was correctly specified. The modified

residuals are computed by

rj = w−1
j (R(kj ; ĜM , q̂β)− yj), j = 1, ..., N.

Since we have a large number of data sets (33 per sample for a total of 165 data sets),

we will only present a subset of the data sets, which show typical results. We consider a data

set obtained from the 10 hour heat treated sample 32 and a data set obtained from the 100

hour heat treated sample 1. The modified residuals are plotted against the wavenumber k, and

against the model solution value in Figure 6.20 for sample 32 and in Figure 6.21 for sample 1.

We see that the modified residuals from both data sets show a random pattern centered about

zero when plotted against the interrogating wavenumber k and the model solution value. This

suggests that the error model is correctly specified.

The pointwise 95% confidence band was computed according to (6.4.20) for the estimated

density from each inverse problem and is presented in Figure 6.22 and Figure 6.23 for the data

sets from Sample 32 and 1, respectively. In both cases, we observe very narrow confidence

bands around the estimated density. Additionally, the 95% confidence intervals were computed

using (6.4.16) for the additional model parameters are given in Table 6.5. The confidence

interval for the estimated value of ε∞ is extremely narrow for both data sets, however there is

more uncertainty in our estimate for τ . This is consistent with previous work in which it was

determined that the reflectance model has a low sensitivity to the relaxation time τ .
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Figure 6.17: The estimated densities for each location from the 10 hour heat treated data
obtained from sample 4 (top left), sample 16 (top right), and sample 32 (bottom center).

Table 6.5: The 95% confidence intervals for the estimated model parameters from a representa-
tive data set from the 10 and 100 hour heat treated samples.

parameter estimate 95% CI

10 hr. sample 32
ε∞ 3.0149 [3.0005, 3.0292]
τ 0.2179 [0.1544, 0.2814]

100 hr. sample 1
ε∞ 3.3599 [3.3459, 3.3739]
τ 0.1498 [0.1189, 0.1808]
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Figure 6.18: The estimated densities for each location from the 100 hour heat treated data
obtained from sample 1 (left) and sample 13 (right).
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Figure 6.19: The mean density for each sample.
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Figure 6.20: The modified residuals versus wavenumber k (left) and versus the model solution
(right) for the 10 hour heat treated sample 32.
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Figure 6.21: The modified residuals versus wavenumber k (left) and versus the model solution
(right) for the 100 hour heat treated sample 1.
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Figure 6.22: The estimated density and the corresponding pointwise confidence band for a data
set obtained from the 10 hour heat treated sample 32.
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Figure 6.23: The estimated density and the corresponding pointwise confidence band for a data
set obtained from the 100 hour heat treated sample 1.
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6.5.5 Comparison to Bootstrapping and Bayesian Estimation

Previously in Chapter 2 we compared the confidence band for the estimated probability measure

using the pointwise asymptotic approach with Monte Carlo simulations. Since we are dealing

with experimental data rather than synthetic data, will will compare the pointwise asymptotic

confidence bands shown here with confidence bands constructed using both bootstrapping and

Bayesian parameter estimation.

Bootstrapping is a frequentist based methodology, in which the robustness of the parameter

estimates is tested by resampling the residuals to construct “simulated” data sets. The inverse

problem is then solved using these additional data sets and the estimation results are used

to construct the statistics of the estimators. The bootstrapping procedure requires that many

inverse problems be solved, however, the trade off is a relaxation of assumptions compared to the

standard asymptotic approach. Here we make use of a standard bootstrapping algorithm (rather

than the algorithm given in Chapter 3 which takes into consideration model discrepancy).

Algorithm 6.5.1 Standard Boostrapping

1. Find θ̂M,WLS = (β̂, q̂β) according to (6.4.13).

2. Define the standardized residuals as

r̃j =

√
N

N − κw
−1
j (yj −R(kj ; θ̂M,WLS)), j = 1, ..., N.

3. For m = 0, ...,M

(a) Create a sample of size N by random sampling with replacement from the set of
standardized residuals r̃j to form the bootstrap sample {rmj }Nj=1.

(b) Create the simulated data set

Rmj = R(kj ; θ̂M,WLS) + wjr
m
j , j = 1, ..., N.

(c) Solve the inverse problem with the simulated data {Rmj }Nj=1 to obtain a new estimate

θ̂mM .

Once we have complete M runs, we can compute the mean and covariance for the bootstrap
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estimator by

θ̂M,Boot =
1

M
M∑
m=1

θ̂mM ,

Σ̂Boot =
1

M− 1

M∑
m=1

(θ̂mM − θ̂M,Boot)(θ̂
m
M − θ̂M,Boot)

T .

The confidence intervals for the estimated parameters θ̂M,Boot are computing according to (6.4.16).

For our computations, we performed M = 1,000 runs.

In a Bayesian framework, one assumes that the unknown parameters are random variables

with associated probability densities. We denote the prior density by π0(θM ), which is taken as

an uniformed prior, and we further assume that the measurement errors are independent and

identically distributed with normally distribution with mean 0 and variance σ2
0 and individual

weight wj . With these assumptions, the likelihood function is given by

π(y|θM ) =
1

(2πσ2
0)N/2

exp

− 1

2σ2
0

N∑
j=1

w−2
j (yj −R(kj ; θM ))2

 . (6.5.5)

Then the posterior density can be obtained through

π(θM |y) =
π(y|θM )π0(θM )

π(y)
=

π(y|θM )π0(θM )∫
Rp π(y|θM )π0(θM )dθM

. (6.5.6)

The posterior density was approximated using the delayed rejection adaptive Metropolis (DRAM)

algorithm (available at [70]) with a burn-in phase and chain length of 104 and 105, respectively.

There are many sources available which provide an extensive discussion on the DRAM algorithm

(e.g. [88]), here we will not go into further details, but only give the outline of the algorithm

in 6.5.2 and 6.5.3.

All three methods for performing the parameter estimation result in similar estimates.

We remark that we will abbreviate both the Bayesian credible intervals and the frequentist

confidence intervals by CI, although it should be understood that there is a fundamentally

different interpretation for each. For the parameters ε∞ and τ , we obtain tighter bounds through

the Bayesian credible intervals compared to the confidence intervals given by bootstrapping

and asymptotic theory, see Tables 6.6–6.7. In fact, it was consistently observed that the CI’s

obtain through asymptotic theory for ε∞ and τ were larger compared to the other methods.

As noted earlier, it has been established that the model is not very sensitive to τ . The CI’s

using asymptotic theory are based upon the sensitivity equations, and hence we fully expect the

insensitivity to τ to be manifested in large CI’s. What is unexpected, is that the CI’s using the
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other methods (particularly for the Bayesian estimation) are relatively tight.

Table 6.6: The 95% confidence intervals (credible intervals for the Bayesian estimation) for
the estimated model parameters from a representative data set from the 10 hour heat treated
sample 32 using asymptotic theory (WLS), bootstrapping, and Bayesian estimation.

WLS Bootstrapping Bayesian

estimate 95% CI estimate 95% CI estimate 95% CI

ε∞ 3.3126 [3.2142, 3.4111] 3.2724 [3.2200, 3.3248] 3.3156 [3.2932, 3.3396]
τ 0.0494 [0.0285, 0.0703] 0.0493 [0.0491, 0.0495] 0.0502 [0.0480, 0.0521]

Table 6.7: The 95% confidence intervals (credible intervals for the Bayesian estimation) for
the estimated model parameters from a representative data set from the 100 hour heat treated
sample 1 using asymptotic theory (WLS), bootstrapping, and Bayesian estimation.

WLS Bootstrapping Bayesian

estimate 95% CI estimate 95% CI estimate 95% CI

ε∞ 3.3715 [3.3154, 3.4275] 3.3430 [3.3232, 3.3628] 3.3621 [3.3406, 3.3811]
τ 0.0474 [0.0360, 0.0589] 0.0435 [0.0388, 0.0483] 0.0484 [0.0461, 0.0499]

In Figures 6.24 and 6.26 we present the estimated densities using an example data set from

a 10 and 100 hour heat treated sample, respectively. We see that the estimated densities agree

remarkable well. In Figures 6.25 and 6.27 we plot the endpoints of the 95% CI’s using each

method for the corresponding densities. For the CI’s on the estimated weights, generally less of

a discrepancy between the three methods was observed, yet Bayesian estimation again provided

the tightest uncertainty bounds.

At this point, one might argue that Bayesian estimation is the preferred method for completing

the parameter estimation since similar estimates are found using each method, and the Bayesian

estimation consistently results in the highest degree of confidence in the parameter values.

However, in choosing a estimation method one must balance the decrease in parameter uncertainty

obtained using Bayesian analysis with the increase in computational load. To complete a typical

WLS procedure, the gradient based optimization routine completed roughly 300 iterations.

Standard gradient based optimization routines will employ a finite difference scheme on the cost

functional in order to approximate the gradient (see our discussions in the next chapter for how

this can be improved). Thus, for each optimization approximately 300(M+1) function evaluations

of the reflectance model are required. For bootstrapping, this becomes 300(M + 1)(M + 1)
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Figure 6.24: Comparison of the estimated density using weighted least squares (WLS), boot-
strapping, and Bayesian estimation for a 10 hour heat treated data set from sample 1.
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Figure 6.25: Comparison of the 95% confidence/credible intervals (CI) for the estimated weights
using asymptotic theory (WLS), bootstrapping, and Bayesian estimation for a 10 hour heat
treated data set from sample 1.

function evaluations, roughly 107 for a typical data set. We ran the DRAM algorithm for 105

iterations and typical runs resulted in a rejection rate of approximately 40%, which yields
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Figure 6.26: Comparison of the estimated density using weighted least squares (WLS), boot-
strapping, and Bayesian estimation for a 100 hour heat treated data set from sample 1.
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Figure 6.27: Comparison of the 95% confidence/credible intervals (CI) for the estimated weights
using asymptotic theory (WLS), bootstrapping, and Bayesian estimation for a 100 hour heat
treated data set from sample 1.

approximately 105 function evaluations. Therefore, the number of function evaluations for a

typical data set are 104, 105, and 107 for the WLS, Bayesian, and bootstrapping methods,
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respectively. By making use of the gradient evaluation procedure outlined in the following

chapter the typical cpu time1 needed to complete the WLS procedure was 4 minutes, while for

the Bayesian estimation procedure the time to completion was on the order of 2 hours, and

bootstrapping required more than a staggering 2.5 days!

6.6 Concluding Remarks

We are able to obtain accurate fits of our mathematical model for the reflectance, which

includes a probability distribution of resonance wavenumbers, to experimental data sets. By

re-parameterizing the inverse problem, we were able to establish the convergence of the estimated

probability measure. The average estimated probability density was calculated for each sample,

and with this we were able to see that the samples which were heat treated for 10 hours have

lower peaks near 1080 cm−1 and broader peaks near 800 cm−1 when compared to the 100 hour

average densities. This indicates that there is more SiO2 present in the 100 hour samples and it

is in more of a crystalline state than the 10 hour samples. We were not able to detect a difference

in the amount of SiN present between the 10 and 100 hour samples.

The uncertainty associated with the estimated parameters and the estimated density was

computed. It was found that we have a high degree of confidence for the relative permittivity at

infinite frequency ε∞ and the estimated density and have a relatively low degree of confidence

in the estimate for the relaxation time τ . The uncertainty computing using standard asymptotic

theory was compared with results obtained using bootstrapping, and also Bayesian estimation,

and all three methods were found to be in agreement.

1The nonlinear optimization was performed in MATLAB using the built-in routine fmincon on a 12 core
machine. The reflectance model and the gradient calculations were run in parallel, all of which was written in
C++ and converted to a MEX file that was called by MATLAB. The DRAM algorithm is by nature serial, so no
parallelization was employed on the algorithm itself. The DRAM algorithm computed the reflectance model using an
identical C++ program (converted to a MEX file) to the one used in the WLS problem, with the only modification
being that the gradient computations were omitted (parallelization was still used to compute the reflectance model).
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Algorithm 6.5.2 DRAM

1. Set design parameters ns, σ
2
s , the length of the non adaptive interval m0 and the number

of chain iterates C.

2. Find θ̂M,WLS = (β̂, q̂β) according to (6.4.13).

3. Set

θ0 = θ̂M,WLS , SSθ0 =
N∑
j=1

w−2
j (yj −R(kj ; θ

0)2)

4. Compute initial variance estimate: s2
0 = 1

N−κSSθ0

5. Construct covariance estimate V = s2
0(F T (θ0)F (θ0))−1 and R = chol(V ).

6. For m = 1, ..., C

(a) Sample zm ∼ N (0, 1)

(b) Construct candidate θ∗ = θm−1 +Rzm

(c) Sample uA ∼ U(0, 1)

(d) Compute

SSθ∗ =

N∑
j=1

w−2
j (yj −R(kj ; θ

∗))2.

(e) Compute

A(θ∗|θm−1) = min
(

1, e−(SSθ∗−SSθm−1 )/2s2m−1

)
(f) If uA < A,

Set θm = θ∗, SSθm = SSθ∗

else

Enter DR Algorithm

end if

(g) Update sm ∼ Inv-gamma(aval, bval), where

aval = 0.5(ns + n), bval = 0.5(nsσ
2
s + SSθm).

(h) if mod(m,m0) = 1

Update Vm = smcov(θ0, θ1, ..., θm).

else

Vm = Vm−1

end if

(i) Update Rm = chol(Vm)
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Algorithm 6.5.3 Delayed Rejection (DR)

1. Set the design parameter γ2 = 1
5

2. Sample zm ∼ N (0, 1)

3. Construct second stage candidate θ∗2 = θm−1 + γ2Rmzm

4. Sample uA ∼ U(0, 1)

5. Compute

SSq∗2 =
N∑
j=1

w−2
j (yj −R(kj ; θ

∗2))2.

6. Compute

A(θ∗2|θm−1, θ∗) = min

(
1,

π(θ∗2|y)Jd(θ
∗|θ∗2)[1−A(θ∗|θ∗2)]

π(θm−1|y)Jd(θ∗|θm−1)[1−A(θ∗|θm−1)]

)
,

where Jd(·|·) is the jumping distribution.

7. If uA < A
Set θm = θ∗2, SSθm = SSθ∗2

else

Set θm = θm−1, SSθm = SSθm−1

end if
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CHAPTER 7

Aggregate Data and the Prohorov Metric Framework: Efficient Gradient

Computation

In this final chapter before concluding, our goal is to show how the gradient of a least squares

objective function can be found in a efficient manner for inverse problems involving the estimation

of a probability measure using the PMF. The following work has been accepted for publication

[16]:

H.T. Banks and J. Catenacci. Aggregate data and the prohorov metric framework: efficient

gradient computation. Applied Math Letters, 56:1–9, 2016.

7.1 Introduction

For years even simple population models based on individual models (see, e.g., the Hare-Lynx

models [83, p. 30] and the bacterial growth and diffusion models [83, p. 33], [85], [86, p. 139])

have been based on aggregate population level data for parameter estimation and validation.

However, with increased interest in uncertainty quantification and recognition that statistical

models for the data collection procedures drive uncertainty statements about the parameters in

the underlying mathematical models, the interest in determining correct statistical models as

part of parameter estimation or inverse problems has grown. Moreover, it is now recognized

that aggregate data is widely (and frequently incorrectly) employed to quantify uncertainty in

individual models. This occurs in a ubiquitous range of applied problems including food chemistry

efforts [56,82,87], tracking of labeled substances in proliferating cell populations (e.g., Propagons

or prion seeds in amyloid growth in yeast [47,51,75,77,89]), as well as structured population
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models in marine population studies such as those for mosquitofish [14] and shrimp [24]. In

such individual models, one has a mathematical model which describes the behavior of one

“individual” which is characterized by a single parameter set which must be estimated using

population level or aggregate data.

In a second class of problems (the aggregate model case), the dynamic mathematical models

explicitly depend upon a distribution that must be estimated using aggregate data. This is the

case in electromagnetic interrogation problems with a distribution of polarization permittivity

and relaxation time parameters for molecules [17, 29, 30, 33], in HIV cellular models [12, 13], and

in wave propagation in viscoelastic materials [32,33,39]. Again in these examples, only aggregate

data is available to estimate the imbedded probability distributions.

One method for such non-parametric estimation problems of a probability measure is through

the Prohorov Metric Framework [5, 33] developed specifically to treat aggregate data problems

(for a summary see [33, Chapter 5]). The PMF provides a theoretical and computational

framework in which to estimate an unknown probability measure for which the space P(Ω) of

probability measures over a compact set Ω is approximated by a finite dimensional space PM (Ω)

of dimension M . There are many choices for the approximating space PM (Ω); two popular

choices involve using a basis of Dirac measures (zero order splines) or piecewise linear splines to

approximate the distributions.

7.2 Problem framework

We assume to have a general mathematical model for a dynamical system which is dependent

upon a probability measure G as well as Euclidean parameters q ∈ Q. We assume that the

solution to this system can be obtained either analytically or numerically and denote the solution

as u(x, t;G,q). Furthermore we assume that we have a set of observations

yj = u(xj , tj ;G0,q0) + εj , j = 1, ..., n,

where G0 and q0 are the true or nominal probability measure and parameters, respectively, and

εj is a realization of the measurement error in the observation process.

Given a set of observations yj at the points (xj , tj), j = 1, ..., N , we would like to estimate

the unknown parameters q ∈ Q ⊂ Rκ and the unknown distribution G(θ) ∈ P(Ω), where P(Ω)

is the set of admissible probability measures on Ω ⊂ R. Thus, we would like to solve

(G,q) = argmin
(G,q)∈(P(Ω)×Q)

J(G,q), (7.2.1)
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where

J(G,q) =

N∑
j=1

(yj − u(tj , xj ;G,q))2 . (7.2.2)

We note that (7.2.1) is an infinite-dimensional optimization problem. Thus, we need to

approximate the infinite dimensional space P(Ω) with a finite dimensional space PM (Ω) in order

to have a computationally tractable finite-dimensional optimization problem

(Ĝ, q̂) = argmin
(G,q)∈(PM (Ω)×Q)

J(G,q). (7.2.3)

We will consider two finite-dimensional spaces, PMD (Ω) and PMS (Ω), to approximate P(Ω).

The space PMD involves the use of Dirac measures, and the space PMS involves the use of piecewise

linear splines. We define these two spaces as

PMD (Ω) =

{
G ∈ P(Ω)

∣∣∣∣∣ G =

M∑
m=1

αm∆zm ,where αm ≥ 0 and

M∑
m=1

αm = 1

}
, (7.2.4)

and

PMS (Ω) =

{
G ∈ P(Ω)

∣∣∣∣∣ G′ =
M∑
m=1

αmlm(θ),where αm ≥ 0 and
M∑
m=1

αm

∫
Ωm

lm(ξ)dξ = 1

}
,

(7.2.5)

where ∆zm is a Dirac measure with atom at zm, and lm is the mth linear spline element with

support Ωm. With both of these spaces we have reduced the infinite-dimensional problem to a

finite-dimensional problem in which we only need to estimate the parameters q and the weights

α = {αm}Mm=1. Hence, when using the Delta approximation method we have the minimization

problem

(α̂, q̂) = argmin
(α,q)∈(RMD ×Q)

J (α,q) , (7.2.6)

where

RMD =

{
α = (α1, α2, . . . , αM )T

∣∣∣∣∣ αm ≥ 0, and
M∑
m=1

αm = 1

}
.

Using the spline method we have the minimization problem

(α̂, q̂) = argmin
(α,q)∈(RMS ×Q)

J(α,q), (7.2.7)
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where

RMS =

{
α = (α1, α2, . . . , αM )T

∣∣∣∣∣ αm ≥ 0, and
M∑
m=1

αm

∫
Ωm

lm(ξ)dξ = 1

}
.

In solving (7.2.6) or (7.2.7) one may wish to use a gradient based nonlinear optimization

method, particularly if there are a large number of parameters to be estimated, which is the case

in problems where M needs to be taken large in order to obtain a reasonable approximation.

This requires the the computation of

∇J(α,q) =

[
∂J

∂α1
, ...,

∂J

∂αM
,
∂J

∂q1
, ...,

∂J

∂qκ

]T
. (7.2.8)

The most common method for the approximating the above partial derivatives is to use a

finite difference. If a forward difference is used, then this results in the approximations

∂J

∂qk
≈ J(α,q + hke

κ
k)− J(α,q)

hk

∂J

∂αk
≈ J(α+ hke

N
k ,q)− J(α,q)

hk
,

(7.2.9)

where emk is the k-th standard unit basis vector of length m = κ or m = M . Since the evaluation

of J(α,q) is already required, we must evaluate only the first term in each of the above

numerators. This requires a total of 1 + κ+M evaluations of the cost functional J .

7.2.1 Individual models

In the situation of an individual model, we have a model that depends wholly on a single

parameter set. We denote this individual model by v(x, t; θ,q), where θ is a parameter upon

which the individual model is dependent, but where the values are expected to vary across the

population. In contrast, the parameters q are assumed to be population level parameters, i.e., q

is not expected to vary significantly across individuals. In this situation, we can formulate a

population level model as

u(x, t;G,q) =

∫
Ω
v(x, t; ξ,q)dG(ξ). (7.2.10)

If the Dirac mass approximation scheme is used, we obtain the model

u(x, t;α,q) =
M∑
m=1

αmv(x, t; zm,q), (7.2.11)
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and if the spline approximation scheme is used, we obtain

u(x, t;α,q) =
M∑
m=1

αm

∫
Ωm

v(x, t; ξ,q)lm(ξ)dξ. (7.2.12)

Using either approximation scheme, if one computes the gradient of the objective function

according to (7.2.8)−(7.2.9) then v(t, x; ·,q) must be evaluated at least M2 + (κ+ 1)M times.

If a p point quadrature is used to numerical evaluate (7.2.12), then v(t, x; ·,q) will be evaluated

p(M2 + (κ+ 1)M) times.

Observe that

∂J

∂qk
= −2

N∑
j=1

(yj − u(xj , tj ;α,q))
∂u(xj , tj ;α,q)

∂qk

∂J

∂αk
= −2

N∑
j=1

(yj − u(xj , tj ;α,q))
∂u(xj , tj ;α,q)

∂αk
.

(7.2.13)

The derivatives of u(x, t;α,q) can be obtained from the sensitivity equations [33, 68]. However,

for complex models the sensitivity equations can be difficult to derive and in most cases the term
∂
∂qk

u(x, t;α,q) will still need to be approximated by a finite difference. If a forward difference is

used, then we have

∂u(x, t;α,q)

∂qk
≈ u(t, x;α,q + hke

κ
k)− u(t, x;α,q)

hk
. (7.2.14)

Note that we are already required to compute the term u(x, t;α,q) for the cost function J(α,q),

so an efficiently implemented optimization scheme will take advantage of this information rather

than computing the term multiple times.

Since the coefficients αk appear linearly in the population level model we can compute the

derivatives of u(x, t;α,q) exactly in (7.2.13). Thus,

∂u(x, t;α,q)

∂αk
= v(t, x; zk,q) (7.2.15)

if using the Dirac approximation method, and

∂u(x, t;α,q)

∂αk
=

∫
Ωm

v(t, x; ξ,q)lm(ξ)dξ (7.2.16)

if using the spline approximation method. In either case, these values are already required

to be computed to obtain the cost function J(α,q). Taking advantage of these precomputed

values greatly reduces the computational expense in approximating the gradient of J(α,q).
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If we compute the gradient according to (7.2.13)−(7.2.16), then only (κ+ 1)M evaluations of

v(x, t; ·,q) are required (p(κ+ 1)M if using a p point quadrature rule to approximate (7.2.16)).

Additionally, since we are computing the derivative exactly in this case, there is zero truncation

error in the derivative computation of (7.2.15) or (7.2.16) and the only source of truncation

error is from (7.2.14).

7.2.2 Aggregate models

In the case of an aggregate model, the model is explicitly dependent upon a probability measure

G. Thus, our model u(x, t;G,q) does not have the form of (7.2.10). However, u(x, t;G,q) will

include at least one term of the form∫
Ω
f(x, t; ξ; q)dG(ξ), (7.2.17)

and again we will be able to exploit the linearity of the approximation terms to reduce compu-

tational times. Using the PMF approximation, the model reduces to u(x, t;α,q), which now

depends on a term of the form
M∑
m=1

αmf(x, t; zm,q), (7.2.18)

if using the Dirac approximation scheme, and if the spline approximation scheme is used we

obtain
M∑
m=1

αm

∫
Ωm

f(x, t; ξ,q)lm(ξ)dξ. (7.2.19)

Hence, just as in the case of using an individual model, computing the gradient of J(α,q)

according to (7.2.13) requires (κ+1)M evaluations of f(x, t; ·,q), whereas computing the gradient

according to (7.2.9) requires M2 + (κ+ 1)M evaluations of f(x, t; ·,q). Again, as before if using

a p point quadrature rule to approximate (7.2.19) then the number of evaluations is multiplied

by p.

7.3 Example: Sinko-Streifer Model

Consider the case where an individual Sinko-Streifer model can be used to model the size-

structured population. The model provided here is adapted from [14] where the goal was to

estimate individual growth rates for a mosquito fish population, but only aggregate data was

available. A similar problem arose in the population modeling examples for shrimp [24].

We assume that the growth rate varies according to each individual, but the death (or

removal rate) is constant across the population. For simplicity we assume that there is no
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recruitment into the system. The model is given by

∂v

∂t
+

∂

∂x
(gv) = −µv, x0 < x < x1, t > 0

v(x, 0) = Φ(x)

g(x0, t)v(x0, t) = 0

g(x1, t) = 0,

(7.3.1)

where v(t, x) represents the population density, and t and x denote time and size, respectively,

g(x) is the size dependent growth rate term, and µ is the removal rate. From [14], the admissible

growth rates of an individual fish we will consider are of the form

g(x; θ, γ) =

θ(γ − x), x0 ≤ x ≤ γ,
0, otherwise,

where θ and γ denote the intrinsic growth rate and maximum size, respectively. For simplicity

we assume that γ = 1. The collection of admissible growth rates is given by

G = {g(x; θ) | θ ∈ Ω},

where Ω is a compact set.

The solution to (7.3.1) can be found using the method of characteristics. Data was simulated

according to

yij =

∫
Ω
v(xi, tj ; θ, µ)dG0(θ) + εij , i = 1, ..., Nx, j = 1, ..., Nt (7.3.2)

where v(x, t; θ, µ) is the solution to (7.3.1), and εij are realizations of a normally distributed

random variable with 0 mean and variance 0.01. The distribution G0 was taken to be a normal

distribution with mean 4.5 and variance 0.25, and the death rate was chosen to be µ0 = 1.0.

The initial condition was taken as

Φ(x) =

sin2 10πx 0 ≤ x ≤ 0.1

0 x > 0.1
(7.3.3)

and is assumed to be known. Hence, in this example we need to estimate the probability measure

G and the removal rate µ. G is estimated using the Delta approximation scheme, where the

nodes were placed in a uniform grid over the interval [3, 6].

The Matlab routine fmincon was used to preform the resulting optimization problems for

100 independent simulated data sets. We considered 2 methods for computing the gradients.

134



For method 1, we computed the gradient using a forward difference of the objective function

J(α, µ). This method is equivalent to the default method for computing the gradient if the user

does not supply the gradient to fmincon. For method 2 we computed the gradient according

to (7.2.13)−(7.2.15). In Figure 7.1 we depict the average cpu time required to complete the

optimization using both methods for 100 independent data sets as M , the number of elements

in the approximation scheme, increases.

Figure 7.1: The average cpu time (for 100 independent data sets) required to complete the
optimization as M increases using both methods.

Using method 1 requires M2 + M(κ + 1) evaluations of v(x, t; θ, µ), whereas method 2

only requires (κ+ 1)M evaluations. This agrees with Figure 7.1 where method 1 exhibits an

approximately quadratic increase in time to preform the optimization as M increases, and

method 2 has an approximately linear increase in time.

7.4 Example: Reflectance Spectroscopy Model

Here we describe an example from [17] where the model is an aggregate model. In this project,

the goal is to develop a noninvasive technique to characterize the degradation of a complex

nonmagnetic dielectric material by assessing the small physical and chemical changes in the

material using reflectance spectroscopy. This involves determining the components of the

permittivity of the dielectric medium using the measured spectral responses. The distributed
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relative permittivity of the dielectric medium is described by

ε̂r(k;G,q) = ε∞ −
∫

Ω

k2
p

k2 − ik/τ − k2
0

dG(k0). (7.4.1)

In the above equation, ε∞ denotes the relative permittivity of the dielectric medium at infinite

frequency, k is the wavenumber (k = ω/(2πc), where ω is the angular frequency and c is the

speed of light), k0 represents the resonance wavenumbers, and τ denotes the relaxation time. The

composite parameter kp is given by kp = k0
√
εs − ε∞ with εs being the relative permittivity of

the medium at zero frequency, i =
√
−1 is the imaginary unit, and θ = k0 ∈ Ω ⊂ R. If we assume

that a monochromatic uniform wave is incident at an angle of φ = 45◦ on a plane interface

between free space and a nonmagnetic dielectric medium with the electric field composed of the

parallel and perpendicular polarizations in equal weights, then the reflection coefficient is given

by

R(k;G,q) =
1

2

(
|r⊥(k;G,q)|2 + |r‖(k;G,q)|2

)
, (7.4.2)

where

r⊥(k;G,q) =
cosφ−

√
ε̂r(k;G,q)− sin2 φ

cosφ+
√
ε̂r(k;G,q)− sin2 φ

, (7.4.3)

and

r‖(k;G,q) =

√
1− sin2 φ/ε̂r(k;G,q)−

√
ε̂r(k;G,q) cosφ√

1− sin2 φ/ε̂r(k;G,q) +
√
ε̂r(k;G,q) cosφ

. (7.4.4)

In this application, the reflectance R(k;G,q) is measured at various wave numbers k in order

to determine the distribution G(θ) = G(k0) of resonance wave numbers as well as the parameters

q = [εs, ε∞, τ ]T . Data sets which were collected using a Bruker Vertex 80V FTIR spectrometer

have been provided by researchers at the Air Force Research Lab at Wright-Patterson Air Force

Base. For a full description of the model, data collection, and subsequent inverse problems,

see [17].

In this case the spline approximation scheme was used to estimate the probability measure

G(θ), thus the permittivity model can be written as

ε̂r(k;G,q) = ε∞ −
M∑
m=1

αm

∫
Ωm

θ2(εs − ε∞)

k2 − ik/τ − θ2
lm(θ)dθ. (7.4.5)

Again we use two methods to compute the gradient of J(α,q), where method 1 computes the

gradient according to (7.2.9) and method 2 employs (7.2.13) where the integral terms in (7.4.5)

were computed only once. In Figure 7.2 we show the average over 100 trials of the cpu time

required to preform the first 10 iterations of the optimization problems as M is increased. As

expected, we see that method 1 increases quadratically and method 2 linearly.

136



Figure 7.2: The average cpu time (for 100 independent data sets) required to compute the first
10 iterations of the optimization problems as M increases using both methods.

7.5 Conclusions

In this chapter we consider the case of non-parametric estimation of a probability measure under

the Prohorov Metric Framework in a least squares problem. It is demonstrated that the gradient

computation can be reduced by exploiting the linearity of the coefficients to be estimated which

appear in the approximation schemes under the PMF.

For individual models the number of forward solves of the underlying model v is reduced

from O(M2) to O(M), where M is the number of elements in the approximation. Due to the use

of the exact partial derivatives in computing the gradient, there is no truncation error present

from a finite differencing of the objective function. An example using a Sinko-Streifer model

with aggregate data is discussed and the expected linear increase in cpu time as M increases

was observed.

For aggregate models the reduction of computational expense in computing the gradient

of the objective function is not as straight forward. This is due directly to the fact that the

model depends explicitly on the probability measure for aggregate models. However, we still

can reduce the number of evaluations of the kernel function f in (7.2.17) from O(M2) to O(M).

The practical degree to which any speed up can be obtained in the inverse problem depends

directly on the complexity of the kernel function f . If f is relatively cheap to evaluate, then the

speed up may be negligible, even though we have reduced the number of evaluations. However,

if f is costly to evaluate, then the speed up may be significant. We demonstrated this in an

example arising in an application using reflectance spectroscopy, and the cpu time was observed
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to have the expected linear behavior.
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CHAPTER 8

Concluding Remarks

In this work we first introduced a standard model for the reflection coefficient due to perpendicular

and parallel polarizations. We considered a Lorentz oscillator model, which can be used to

describe the complex permittivity of a complex dielectric material. The standard permittivity

model was extended to account for the unknown heterogenous structure of a material such as a

ceramic matrix composite. This extension was completed by imposing an unknown probability

measure on a subset of the dielectric parameters.

The estimation of the probability measure was carried out through the Prohorov metric

framework, which is a means for a nonparametric estimation. Once we carefully established both

the theoretical and computational tools necessary for the estimation problem, we compared two

competing approximation schemes, one which uses Dirac measures, and the second uses linear

splines. Both of these methods were compared to a competing permittivity model developed by

Efimov. All three methods provided adequate model fits, however, the spline approximation

lends itself to the most discernible results since it estimates the unknown density directly.

Care was taken to provide the uncertainty quantification of the fixed parameters present

in the permittivity model, as well as constructing a confidence band about the estimated

density/distribution. The uncertainty was computing using asymptotic analysis, bootstrapping

and Bayesian estimation, and it was observed that all three methods provided similar results.

The current Dirac measure approximation scheme was initially observed to be ill-posed for the

particular application of focus in this work. This was resolved by allowing the node locations for

the Dirac masses to vary as well. Additionally, the efficiency of the gradient computations needed

for the gradient based optimization routine was improved upon by removing redundancies present
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in the standard finite difference approach. This lead to a reduction in computational time from

O(M2) to O(M), with M being the number of approximating elements. These results may have

implications in improving the computational effiencency of Bayesian estimation. Recently, there

has been an interest in the Hamiltonian Monte Carlo method which uses gradient approximations

to drive the random walk of the Monte Carlo procedure. When applicable, this leads to a faster

convergence of the Monte Carlo chain. Implementing the efficient gradient calculation provided

for this problem may lead to a significant speed up for the Bayesian estimation method, resulting

in computational times which are more competitive to the WLS approach.

A major contribution of this work was the development of the statistical model used in the

estimation problem with the data provided by Wright-Patterson Air Force Base. Through the

use of the difference based methods, a methodology was developed to aid in determining if a

statistical model discrepancy is present. This approach does not require the computation of

any inverse problems, and thus is extremely efficient. Using these methods we established a

weight least squares error model to encapsulate our belief of the measurement error process.

Implementing the WLS model lead to residual plots which displayed the desired i.i.d. behavior,

thus validating our uncertainty quantification arguments.

All of this was culminated in our ability to detect significantly higher relative levels of the

oxidation products SiO2 and SiN for CMC samples which underwent longer heat treatment. We

remark that our results should be validated by collecting the reflectance from samples heated

for various amounts of time. At this point we have only considered samples which were heated

for either 10 or 100 hours. Analyzing samples heated in the interim times would lead to a better

understanding of the resolution to which we can detect the oxidation products. Furthermore, it

may prove useful to develop a time dependent model for the oxidation of the material, where

the measurable is the level of SiO2 and SiN present, as estimated by our reflectance model. If

an accurate model can be constructed, even an empirical model may be suitable, then it may be

used to better understand and predict the oxidation behavior of the CMCs under inspection.
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