
ABSTRACT

SCHMIDT, KATHLEEN LYNN. Uncertainty Quantification for Mixed-Effects Models with Applications
in Nuclear Engineering. (Under the direction of Dr. Ralph C. Smith.)

Mixed-effects models include two types of parameters: fixed effects, which characterize the

nominal parameter value for a population, and random effects, which characterize the variation

among individual data sets. Whereas this type of model is routinely used in a variety of scientific fields,

there has been little consideration for quantifying the associated uncertainties. In this dissertation,

we explore techniques for performing uncertainty quantification (UQ) on mixed-effects models,

focusing on the tasks of model calibration and parameter selection.

To aid in model calibration, we introduce a novel version of the Delayed Rejection Adaptive

Metropolis (DRAM) algorithm for mixed-effects models. Moreover, we employ this new technique to

calibrate nuclear engineering models, including a parameterized version of the Dittus-Boelter model.

We also utilize the modified DRAM algorithm for radiation source localization in an urban setting

based on detector responses. We consider this inverse problem for both stationary and mobile

detectors, and we incorporate mixed-effects modeling to account for the variation in background

radiation among detector locations.

The parameterizations of mixed-effects models that serve to incorporate the population and

individual effects are often unidentifiable in the sense that parameters are not uniquely specified

by the data, but traditional parameter selection techniques are ineffective. As a result, current

literature focuses on model selection, by which insensitive parameters are fixed or removed from the

model. Model selection methods that employ information criteria are applicable to both linear and

nonlinear mixed effects models, but such techniques are limited in that they are computationally

prohibitive for large problems due to the number of possible models that must be tested. To limit

the scope of possible models for model selection via information criteria, we introduce a parameter

subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their

significance. We provide examples to verify the effectiveness of the PSS algorithm and to test the

performance of mixed-effects model selection that makes use of parameter subset selection.
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CHAPTER

1

INTRODUCTION

Uncertainty quantification (UQ) is the science of identifying and reducing sources of uncertainty in

order to make predictions and understand the degree to which these predictions can be trusted. The

field of UQ is inherently multidisciplinary, incorporating aspects such as mathematical modeling,

statistics, and numerical analysis. As shown in Figure 1.1, model calibration and parameter selection

are vital aspects of UQ. Model calibration generally serves as an initial step in quantifying uncer-

tainties. Parameter selection—typically implemented via sensitivity analysis or active subspace

construction—isolates a subset or subspace of influential and identifiable parameters. This aids

model calibration by reducing the number of parameters to be estimated and ensuring that there

exists a unique set of inferred parameters.

1.1 Model Calibration

Model calibration involves optimally inferring parameters to match the model output to a physical

response obtained from measurement data. For the purposes of UQ, we also want to quantify, or

possibly update, the uncertainty in these optimal parameter estimates. We can accomplish this either

by constructing parameter distributions or by determining confidence intervals about a parameter

estimate. We examine two perspectives on parameter estimation: frequentist and Bayesian.

From a frequentist point of view, probabilities are defined as the frequency with which events
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Figure 1.1: Flow chart representing the components of predictive estimation in uncertainty quan-
tification as described in [37].

occur when a large number of experiments are performed. Thus, a frequentist views the concept of

probability as a deterministic value that does not change regardless of experimental data. Similarly,

parameters are also viewed as fixed but unknown values, which are not affected by the collection

of additional response data. To estimate these fixed parameter values, we construct estimators

for assigning optimal parameter values based on response data. These estimators are functions

of random variables that map the sample space—that is, the set of all possible observations—to

a set of parameter estimates. Hence, the estimators themselves are considered random variables,

each with an associated sampling distribution. Since the parameters are assumed to have a true,

fixed value, parameter uncertainty from a frequentist perspective is simply the uncertainty of the

estimator, which is represented by its sampling distribution [37].

The Bayesian perspective defines probability as a quantified measure of the belief that an event

will occur based on available information and prior knowledge [1]. Note that this interpretation of

probability is subjective; hence, Bayesian probabilities are not fixed values and can change as more

information is acquired. As another departure from the frequentist framework, Bayesian parameters

are regarded as random variables; their associated distributions characterize the current “state of

knowledge" about the parameter value. Hence, the task of Bayesian parameter estimation involves

constructing the parameter probability density function (pdf), which is termed the “posterior den-

sity," rather than obtaining a single-valued approximation. Since Bayesian probability is conditioned
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on observations and prior information, Bayes’ theorem

P (A|B ) =
P (B |A)P (A)

P (B )

for events A and B where P (∗) denotes the probability of an event occurring provides a natural

foundation for parameter estimation. Thus, to infer parameters Q = [Q1,Q2, . . . ,Qp ] based on obser-

vations ν= [ν1,ν2, . . . ,νn ], we employ Bayes’ relation

π(q |ν) =
π(ν|q )π0(q )

∫

Rp π(ν|q )π0(q )d q
, (1.1)

where π(q |ν) is the posterior parameter pdf, q represents realizations of Q , π0(q ) is the prior distri-

bution, π(q |ν) is the likelihood function, and the marginal pdf represented by the integral in the

denominator is a normalization factor [37]. While (1.1) appears to be a straightforward formula for

obtaining the posterior density, its implementation can be difficult in practice. The normalization

factor in the denominator can rarely be calculated analytically, so numerical methods such as

quadrature techniques must instead be applied. This is similarly true for the integral evaluations

required to obtain marginal posterior densities from the joint posterior π(q |ν). As an alternative to

numerically evaluating theses integrals, we can construct Markov chains whose stationary distribu-

tion is the posterior density as is done in Markov Chain Monte Carlo (MCMC) techniques [37]. In

Chapter 2, we construct distributions using both frequentist and Bayesian techniques to explore

parameter uncertainty.

1.2 Sensitivity Analysis

Sensitivity analysis involves quantifying the relative contributions of parameters or inputs to the

model output [37]. One important application of sensitivity analysis is parameter selection. Once

insensitive parameters are identified, they can be fixed rather than estimated with minimal impact

on the model response. This is particularly beneficial for models in biology and physics, which

often have hundreds of parameters [45]. Reducing the number of parameters, especially in high-

dimensional problems, greatly improves the efficiency—and sometimes the feasibility—of model

calibration.

Sensitivity analysis techniques are divided into two categories: local and global. Local sensi-

tivity analysis methods examine how the model response varies when the parameters or inputs

are perturbed about a nominal value. Partial derivatives are typically employed to quantify local

sensitivities, but they are often impossible or infeasible to calculate directly. Whereas adjoint capa-

bilities are available for certain codes, they are not generally available for the thermal-hydraulics

and fuel codes employed for motivating CASL applications summarized in Section 1.4.1. Common

3



techniques for obtaining local sensitivities include finite difference approximations, solutions to

sensitivity equations, and automatic differentiation [37]. Whereas the majority of sensitivity analysis

literature focuses on local techniques, such methods can be problematic for determining the global

effect of parameters, especially in highly nonlinear problems [33, 37]. When the sensitivity over the

entire parameter space is of interest, global techniques are advantageous.

Global sensitivity techniques ascertain the relative contributions of parameter uncertainty to

the uncertainty in the model output over the entire possible range of parameter values. Such global

sensitivities depend solely on the model and response and are not affected by experimental data [37].

Variance-based global sensitivity methods, such as the calculation of Sobol’ indices, apportion the

variance of the output Var(y ) to the variance of the parameters. To do this, we rank the parameters

q = [q1, q2, . . . , qp ]based on the amount of variance that is removed from the output when a particular

parameter is fixed. Ideally, we would fix the parameters, setting them equal to nominal values q ∗i ,

and calculate Var(Y |qi = q ∗i ) for each parameter qi , but these values of q ∗i are generally unknown.

We instead take the average of the variance over all possible values of qi , namely E
�

Var(y |qi )
�

[34].

Although some would recommend using variance-based methods whenever possible [33], these

sensitivity methods are computationally demanding, which often makes them infeasible for complex

and high-dimensional problems. In such cases, Morris screening provides an appealing alternative.

The idea of Morris screening is to average local sensitivity information, essentially finite difference

approximations of partial derivatives, taken throughout the parameter space to obtain a more

global measure of sensitivity. Unlike variance-based methods, Morris screening only provides a

relative ranking of parameter significance; it does not give a measure of how much more significant

a higher-ranking parameter is [37]. In spite of providing less information, Morris screening remains

a popular choice for global sensitivity analysis due to its computational efficiency.

1.3 Uncertainty Quantification for Mixed-Effects Models

Mixed-effects models are commonly used to statistically model phenomena that include attributes

associated with a population or general underlying mechanism as well as effects specific to individ-

uals or components of the general mechanism. This can include individual effects associated with

data from multiple experiments. When appropriate, the incorporation of mixed-effects can reduce

model discrepancy and provide a means for quantifying individual variation of parameter values

within populations.

Despite the advantages of using this framework, uncertainty quantification for mixed-effects

models is particularly challenging since UQ techniques established for traditional modeling gen-

erally prove incompatible or ineffective with this type of model. In this dissertation, we focus on

parameter estimation and sensitivity analysis methods for mixed-effects models. In Chapter 3,

we detail the current procedures—both Bayesian and frequentist—for mixed-effects parameter
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estimation and introduce a modified version of the Delayed Rejection Adaptive Metropolis (DRAM)

algorithm for mixed-effects models. Current frequentist methods for mixed-effects parameter esti-

mation, which involve on maximum likelihood estimation, are available in MATLAB via the Statistics

Toolbox. The standard Bayesian technique for mixed-effects models is Gibbs sampling, which is also

utilizing for some parameter updates in our modified DRAM algorithm. In Chapter 4, we demon-

strate the problems with applying traditional sensitivity analysis techniques to mixed-effects models

and propose an efficient method for mixed-effects parameter selection that is effective for both

linear and nonlinear problems. While traditional sensitivity analysis techniques fail to distinguish

between the global parameters and the parameters quantifying individual variations, our parameter

subset selection algorithm, based on standard errors, accurately ranks both types of parameters for

mixed-effects models.

1.4 Applications

Mixed-effects models have applications in many areas of science and engineering. We specifically ex-

plore nuclear engineering applications, focusing on problems that are of interest to the Consortium

for Advanced Simulation of Light-water Reactors (CASL) and to the Consortium for Nonproliferation

Enabling Capabilities (CNEC).

1.4.1 CASL Applications

CASL was founded with the purpose of improving modeling and simulation for the light-water

reactor (LWR). Unlike heavy water reactors used in Canada and India, light-water nuclear reactors

employ ordinary water as a coolant and neutron moderator [37]. With the aim of modeling this reac-

tor type, CASL created the Virtual Environment for Reactor Applications (VERA). This environment

includes capabilities for thermal-hydraulics analysis, which is crucial for modeling the behavior of

the coolant. The coolant in the LWR is present in both liquid and vapor form; hence, we require a

two-phase model.

Letαg andα f represent the volume fractions for the gas and fluid phases. We respectively denote

the densities and velocities of the gas and fluid phases asρg ,ρ f and νg , ν f . Let the internal energies

of gas and fluid be denoted by eg and e f . Now, using conservation of mass, momentum, and energy,

we can model the fluid phase relations as

∂

∂ t
(α f ρ f ) +∇· (α f ρ f ν f ) =−Γ ,
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α f ρ f

∂ ν f

∂ t
+α f ρ f ν f ·∇ν f +∇·σR

f +α f ∇·σ+α f ∇ρ f

=−F R − F + Γ (ν f −νg )/2+α f ρ f g ,

and

∂

∂ t
(α f ρ f e f ) +∇· (α f ρ f e f ν f +T h ) = (Tg −Tf )H +Tf ∆ f

−Tg (H −αg∇·h ) +h ·∇T − Γ [e f +Tf (s
∗− s f )]

−pf

�

∂ α f

∂ t
+∇· (α f ν f ) +

Γ

ρ f

�

,

where Tf is the fluid temperature, s f is the fluid entropy density, pf is the continuous phase pressure,

σ is the viscous transport coefficient, and κ, ζ, and γ are positive transport coefficients [37]. The

coupled relations for the gas phase are analogous. In addition to these equations, numerous closure

relations, such as the Dittus-Boleter equation, are needed to model the coolant. In Chapter 2, we

introduce a parameterized version of the phenomenological Dittus-Boelter equation. We then

construct pdf’s for the parameters and illustrate the need for model modifications, including the

incorporation of mixed-effects.

1.4.2 CNEC Applications

CNEC, funded by a grant from the National Nuclear Security Administration (NNSA), is comprised

of seven universities (North Carolina State University, Georgia Institute of Technology, Kansas State

University, North Carolina A&T State University, Purdue University, University of Illinois at Urbana-

Champaign, and University of Michigan) and three national laboratories (Los Alamos, Oak Ridge,

and Pacific Northwest National Laboratories). This consortium supports research in the detection

and characterization of special nuclear materials (SNM) as well as in the detection of facilities

producing SNM. CNEC members also investigate feasible replacements for industrial radiation

sources as a means to prevent their misappropriation such as being used to build dirty bombs.

In accordance with the goals of CNEC, we investigate radiation detection in an urban setting in

Chapters 5 and 6. Given responses from radiation detectors, we wish to determine the radiation

source intensity and location. In Chapter 5, we solve this inverse problem for stationary detectors

using a simplified radiation transport model. However, this model does not account for variation in

background radiation among the detector locations. We introduce a mixed-effects model in Chapter

6 to account for the varying background term. In addition to stationary radiation sensors, we also

explore mobile detectors. In Chapter 5, we propose an algorithm to guide the movement of mobile

sensors using mutual information to determine the location that provides the most information.
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1.5 Dissertation Contributions and Organization

In this dissertation, we introduce two new UQ techniques for mixed-effects models: a mixed-effects

version of the DRAM algorithm and a parameter subset selection (PSS) algorithm. The DRAM

algorithm for mixed-effects models provides a new method of Bayesian parameter estimation,

and the PSS algorithm aids mixed-effects model selection when traditional sensitivity analysis

techniques are ineffective. Moreover, we employ mixed-effects modeling for a variety of nuclear

engineering problems, including radiation detection in an urban setting. The organization of this

dissertation, based on the contents of the chapters, is detailed below.

• Chapter 2

We introduce a parameterized version of the Dittus-Boelter equation, which serves as a mo-

tivating example for the use of mixed-effects modeling. As mentioned in Section 1.4.1, the

Dittus-Boelter equation is important to the CASL initiative because it serves as one of the

closure relations in the LWR coolant model. We construct parameter pdf’s for the parame-

terized Dittus-Boelter equation using three methods: asymptotic analysis, bootstrapping,

and DRAM. Also, we provide a plot of experimental data that suggests that the Dittus-Boelter

model parameters are inconsistent among data sets, indicating that use of mixed-effects

modeling is advisable.

• Chapter 3

We formally introduce the structure of mixed-effects models and highlight the parameter

estimation techniques for such models. Using functions from the MATLAB Statistics Tool-

box, we perform frequentist parameter estimation, via maximum likelihood estimation, for

both linear and nonlinear mixed-effects models. For Bayesian parameter estimation, Gibbs

sampling is the current standard, but some efforts have been made to expand the DRAM

algorithm to mixed-effects models. In particular, the MATLAB MCMC Toolbox DRAM code

contains an option for estimating mixed-effects parameters with independent random effects.

We expand upon this and introduce a novel version of the DRAM algorithm for mixed-effects

models with non-diagonal random effects covariance matrices.

• Chapter 4

When performing sensitivity analysis for mixed-effects models, traditional techniques are

generally ineffective, failing to distinguish between the global and local effects. In the mixed-

effects literature, the isolation of sensitive parameters is instead achieved with model selection

via information criteria. However, this process can be computationally prohibitive, especially

for high-dimensional problems. Alternatives to this type of model selection have been pro-

posed, but most of these cannot be applied to nonlinear mixed-effects models. To remedy

these problems, we introduce a novel parameter subset selection algorithm for mixed-effects
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models, which is applicable to both linear and nonlinear problems, and use it to reduce the

computational cost of model selection with information criteria.

• Chapter 5

Here we introduce the problem of radiation source localization. We first consider the case

of stationary radiation detectors. To simulate a radiation source in downtown Washington

D.C., we use a simplified photon transport equation to generate the detector responses. Using

this data, we solve the inverse problem to determine the intensity and location of the source.

In this chapter, we do not employ mixed-effects for our detector response model; we simply

employ the photon transport equation used to generate the data as our model. We perform

parameter estimation via DRAM and the Differential Evolution Adaptive Metropolis (DREAM)

algorithm. We also consider source localization with mobile sensors. We propose the use

of mutual information to guide the movement of the radiation detectors. In particular, we

provide an algorithm that determines the optimal measurement location from a set of possible

design conditions using mutual information.

• Chapter 6

The simplified photon transport model from Chapter 5 does not account for varying back-

ground radiation among the detector locations. Thus, we incorporate mixed-effects to allow

for individual background We apply the mixed-effects DRAM algorithm form Chapter 3 to

estimate the source location and intensity along with the individual background parameters

for each source. We initially used flat priors for all of the parameters and discovered that the

parameter set is not mutually identifiable. We use the term “flat prior" rather than "uniform

prior" throughout this disseration because the employed prior distributions may not integrate

to unity and may, in fact, be improper; e.g. for parameters with the admissible space [0,∞).
We then calibrated the background radiation parameters in the absence of a source to obtain

better prior information for the background terms. Use of this narrow prior distributions

allowed us to simultaneously estimate all of the model parameters without experiencing

identifiability issues.
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CHAPTER

2

STATISTICAL INFERENCE FOR THE

DITTUS-BOELTER EQUATION

The Dittus-Boelter equation for heated liquids is

N u = 0.023R e 0.8P r 0.4, (2.1)

where N u is the Nusselt number, R e is the Reynolds number, and P r is the Prandtl number with

P r having an exponent of 0.3 for cooling liquids. This empirical relation is frequently used for

approximate calculations in engineering. Pinpointing the origin of the equation in its final form is

somewhat challenging with many authors referencing papers that do not contain the equation at all

[47]. The most likely true origin is McAdams’s 1942 textbook [26]with the author slightly modifying

the values of the coefficient and exponents compared to earlier versions of the equation.

The Dittus-Boelter equation was first developed to describe heat transfer in the smooth pipes of

automobiles, but it is currently employed by CASL to describe heat transfer in light-water nuclear

reactors [28]. Currently, CASL utilizes the thermal hydraulic code CTF—originally called COBRA-TF

before its rebranding—as a component of its virtual reactor (VERA) [32]. CTF uses the Dittus-Boelter

equation to model heat transfer from the solid wall to fluids of certain regimes in the reactor pipes.

In particular, the Dittus-Boelter equation is used for fluids that are categorized as single-phase

vapor or turbulent single-phase liquids. For saturate nucleate boiling, CTF employs Chen and Thom
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correlations, which are modified versions of the Dittus-Boelter equation [28].

The nominal values of 0.023, 0.8, and 0.4 from (2.1) were obtained via fitting the data by hand for

a specific regime. Since the Dittus-Boelter has taken various forms [47] due to varying calibration

regimes and the use of rudimentary parameter estimation methods, we utilize a parameterized

version to obtain more accurate coefficient and exponent values via parameter estimation. Thus,

for modeling the behavior of heated liquids, we consider the statistical model

N u (q , R e , P r ) = q1R e q2 P r q3 + ε, (2.2)

where N u is the Nusselt number, R e is the Reynolds number, P r is the Prandtl number, and ε is

the measurement error. We assume that the measurement errors are independent and identically

distributed (iid); in particular, ε ∼N (0,σ2). Note that (2.2) is a parameterized version of the Dittus-

Boelter equation (2.1).

2.1 Parameter Probability Density Functions

Whereas we seek to calibrate the model (2.2) via parameter estimation, we also aim to quantify the

uncertainty of these parameter estimates. We do this by constructing parameter probability density

functions (pdf’s). To implement parameter estimation and uncertainty quantification, we employed

experimental data sets from [27], namely groups of ordered triples containing recorded measure-

ments of the Reynolds, Prandtl, and Nusselt numbers. We utilized four such groups corresponding

to four different steam-heated liquids: water, gas oil, straw oil, and light motor oil. Given the four

data sets—which respectively contained 12, 13, 22, and 9 data points—we constructed pdf’s for

the parameter set q = [q1, q2, q3] using three methods: asymptotic analysis, bootstrapping, and the

Delayed Rejection Adaptive Metropolis (DRAM) algorithm.

2.1.1 Asymptotic Analysis

As explained in Chapter 1, the frequentist approach to quantifying parameter uncertainty involves

examining the sampling distribution, which characterizes the uncertainty in the performance of

the estimator. For asymptotic analysis, we consider the behavior of the sampling distribution as

n →∞ where n is the number of data points. Here, we examine the asymptotic behavior of the

sampling distribution associated with the nonlinear ordinary least squares (OLS) estimator.

Let a general nonlinear statistical model be represented by

Υ = f (q0) + ε

where Υ is the random vector of measurements, f is the mathematical model function, q0 repre-
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sents the true but unknown frequentist parameter vector, and ε = [ε1,ε2, . . . ,εn ]T is the vector of

measurement errors. As with the Dittus-Boelter model (2.2), we assume that the errors are iid and

normally distributed with a mean of zero and fixed but unknown variance, which we denote here as

σ2
0. The nonlinear OLS estimator and estimate are defined as

qO LS = argmin
q∈Q

n
∑

i=1

�

Υi − fi (q )
�2

, (2.3)

q̂O LS = argmin
q∈Q

n
∑

i=1

�

υi − fi (q )
�2

,

whereQ is the space associated with the estimator qO LS ,Q is the admissible parameter space, and

υ= [υ1,υ2, . . . ,υn ] is the vector of experimental observations. Hence, the parameter estimate q̂O LS

is obtained from minimizing the cost function

J (q ) =
n
∑

i=1

�

υi − fi (q )
�2

(2.4)

subject to q ∈ Q. For nonlinear problems, (2.4) generally does not have an analytic solution, so

we instead minimize the cost function numerically. In this dissertation, we employ the MATLAB

function fminsearch to obtain nonlinear OLS estimates. Since the error variance is also fixed but

unknown, we also construct an OLS estimator and estimate

σ2
O LS =

1

n −p
R T R

σ̂2
O LS =

1

n −p
R̂ T R̂

for the error variance where p is the number of parameters. Here, R = Υ− f (qO LS ) and R =υ− f (q̂O LS )

are n ×1 column vectors respectively corresponding to the residual estimator and estimate.

With the assumption that εi ∼ N (0,σ2
0), the nonlinear OLS estimator is consistent—that is,

for a sufficiently large sample size, E(qO LS ) = q0—as well as asymptotically normal [36, 37, 38].

In particular, given a large number of data points, the sampling distribution can be accurately

approximated as qO LS ∼N (q0, V̂O LS ), where V̂O LS is the OLS estimate of covariance given by

V̂O LS = σ̂
2
O LS [χ

T (q̂O LS )χ(q̂O LS )]
−1.

Hereσ2
O LS is the OLS estimate of error variance and χ(q ) represents the sensitivity matrix

χi k (q̂O LS ) =
∂ fi (q̂O LS )
∂ qk
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evaluated at the OLS estimate q̂O LS . Hence, when we use asymptotic theory to construct the sampling

distribution, we assume that our number of data points is sufficiently large to enter the asymptotic

regime and simply employ a multivariate Gaussian distribution utilizing the OLS estimates q̂O LS

and V̂O LS as the mean and covariance, respectively.

2.1.2 Bootstrapping

Whereas asymptotic analysis is computationally efficient, there are many conditions required for

its accurate characterization of the sampling distribution beyond a rough approximation. In the

previous section, we assumed that we have a “large enough" sample size to apply asymptotic

properties. The number of data points that constitute a sufficiently large sample is often ambiguous,

but it is clear that asymptotic theory will not perform well for small data sets. Moreover, many of the

results described previously for the nonlinear OLS estimator and its asymptotic properties were

derived using a linear Taylor series expansion along with the assumption of local linearity to exploit

existing theory for the linear OLS estimator [37, 36]. For highly nonlinear problems, the assumption

of local linearity is no longer valid, and the results for the previous section cannot be applied.

Bootstrapping provides an alternative method to construct sampling distributions associated

with frequentist estimators. Bootstrapping outperforms asymptotic theory for small sample sizes,

and we can relax the assumption that the errors are iid and normally distributed to requiring that

they are simply iid. Moreover, bootstrapping techniques are not rooted in linear theory, so we no

longer require the assumption of local linearity and may freely employ such methods for highly

nonlinear problems [7].

When we apply bootstrapping from a frequentist perspective, we seek to determine the uncer-

tainty of an estimator by constructing its sampling distribution. We again consider the nonlinear

OLS estimator, and we estimate the parameters based on (2.3) using n data points. Ideally, we

would get a sense of the distribution associated with the OLS parameter estimates by repeatedly

resampling to obtain new data points and applying (2.3) to recalculate the parameter estimates.

In particular, we would obtain Monte Carlo approximations to the parameter distributions if the

number of resampling iterations was large. However, resampling to obtain new data points is often

either impossible or impractical. The idea of bootstrapping is to use the n data points in place of

the larger population and sample from the original data points with replacement. As detailed in [7],

bootstrapping follows these general steps:

1. Sample with replacement from the original n data points; this newly sampled set is called the

“bootstrap sample."

2. Compute estimate(s) using the desired estimator with the bootstrap sample.

3. Repeat steps 1 and 2 M times.
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For large enough M , we are essentially constructing a Monte Carlo approximation of the estimator

sampling distribution, but we are drawing from an empirical distribution, which assigns a prob-

ability of 1/n to each of the originally-collected data points, in place of the unknown population

distribution.

With the idea of bootstrapping in place, it may seem reasonable to approach the problem of

constructing parameter pdf’s for the Dittus-Boelter model (2.2) by obtaining a large number of

bootstrap samples from the collected ordered triples [R ei , P ri , N ui ], estimating the the parameters

q1, q2, and q3 for each bootstrap sample, and using the set of the estimates to obtain a Monte

Carlo approximation to the parameter distributions. However, this approach can be theoretically

problematic; it treats the design conditions—in this case, R e and P r —as random rather than fixed,

which is inappropriate for experiments necessitating measurements under specific designs [12]. To

treat the design conditions as fixed, we utilize the bootstrapping method described in Algorithm 1.

This method treats the originally-collected data as fixed and instead resamples the residuals of the

fitted model (2.2). The bootstrap samples in Step 3 provide a Monte Carlo approximation to the

parameter pdf’s. For the Dittus-Boelter problem, we employed M = 105 bootstrap samples.
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Algorithm 1 Construction of Parameter pdf’s via Bootstrapping [16]

1. Set q̂O LS equal to the ordinary least square estimate of the parameter vector.

2. For m = 0, 1, . . . , M −1, where M is the number of bootstrapping samples,

For j = 0, 1, . . . , n −1, where n is the number of data points,

(a) Construct set of standardized residuals {r j }nj=0 as

r j =
√

√ n

n −p

�

yj − f (x , q̂O LS )
�

,

where p is the number of parameters, f is the model function, and x is the vector of

design conditions.

(b) Sample from {r j }nj=0 with replacement to generate a bootstrap sample of n

standardized residuals
�

r̃ m
0 , r̃ m

1 , . . . , r̃ m
n−1

	

.

(c) Generate synthetic data y m
j = f (x , q̂O LS ) + r̃ m

j .

(d) Using the synthetic data, calculate the ordinary least squares estimate to obtain q̃m .

3. This generates bootstrap samples
�

q̃0, q̃1, . . . , q̃M−1

	

.

2.1.3 Delayed Rejection Adaptive Metropolis (DRAM)

Recall from Chapter 1 that Bayesian parameter estimation entails constructing posterior densities,

which represent the "state of knowledge" about the parameter. Since the constructed posterior

densities inherently characterize parameter uncertainty, this approach to parameter estimation is

natural for the goals of UQ. Here, we employ the DRAM algorithm for Bayesian parameter estimation

and, hence, for building parameter pdf’s.

The DRAM algorithm [15, 37] is a modified version of the Metropolis-Hastings algorithm, a

Markov Chain Monte Carlo (MCMC) technique used to randomly sample from probability distri-

butions. In the case of Bayesian inference, the Metropolis-Hastings algorithm is used to sample

from the posterior parameter densities. The DRAM algorithm—detailed in Algorithms 2 and 3 for

problems employing a normal likelihood function—adds two additional steps, which correspond

to adaptation and delayed rejection. The adaptive step allows for the geometry of the proposal

function to be updated as new information about the posterior densities is acquired, and the de-
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layed rejection step improves the mixing of the chains. In order to achieve good exploration of the

parameter space via the proposal distributionN (θ k−1, Vk−1), it is important that the covariance

matrix reflect the geometry of the parameter space. The incorporation of the adaptation step allows

for a poor initial estimate of the covariance to be corrected, enabling a more efficient exploration of

the chains.

To implement DRAM, we used OLS estimates as the starting values of q1, q2, and q3. We bounded

each of the parameters with a lower limit of zero and an upper limit of two times the nominal

values from (2.1); this is standard practice in the nuclear engineering literature when computing

uncertainties. We used the least squares estimate of variance σ̂2
O LS = 186.0443 for the initial value of

the error variance. For design parameters, we chose ns = 1,σ2
s = σ̂

2
O LS , sp = 2.382/p , and k0 = 100.

With this setup, we implemented the DRAM code from the MATLAB MCMC Toolbox available for

download at http://helios.fmi.fi/∼lainema/mcmc/. After a burn-in period of 104 iterations,

we reran the code for 105 iterations starting with the results from the previous run. We obtained the

DRAM estimate error variance by taking the mean of the resulting error variance chain.

2.2 Results

Figure 2.1 shows the parameter pdf’s obtained using asymptotic analysis, bootstrapping, and DRAM

with 56 points pooled from the four data sets. The resulting distributions are similar for all three

methods, but those generated via bootstrapping and DRAM are nearly visually indistinguishable.

Since we are using a flat prior and a normal likelihood function with DRAM, the Bayesian technique

should only agree with a frequentist method if the problem is linear or if the parameter distributions

are Gaussian. However, the Dittus-Boelter model (2.2) is clearly nonlinear, and Figure 2.2 also shows
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Figure 2.1: Distributions for parameters (a) q1, (b) q2, and (c) q3 constructed using asymptotic
theory, bootstrapping, and DRAM with all four data sets.
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that the q1 parameter distribution is slightly skewed and, therefore, non-Gaussian. This suggests

that the model might exhibit linear behavior in the observed region.

To examine this possibility, we consider—as an alternative to (2.2)—the statistical model

N u (q , R e , P r ) = f (qno m , R e , P r ) +D f (qno m , R e , P r )(q −qno m ) + ε (2.5)

based on linearization about the nominal parameter values qno m = [0.023, 0.8, 0.4], where

f (q , R e , P r ) = q1R e q2 P r q3

and

D f (q , R e , P r ) =

�

∂ f

∂ q1

�

�

�

�

q ,R e ,P r

,
∂ f

∂ q2

�

�

�

�

q ,R e ,P r

,
∂ f

∂ q3

�

�

�

�

q ,R e ,P r

�

.

Implementing the DRAM algorithm for this model, we used the least squares parameter estimates

q̂O LS = [−0.4457,2.3509,1.6019] as the starting values of the parameters, and we used the least

squares estimate of variance for the initial value of the error variance. No bounds were placed on

the parameters. After a burn-in period of 104 iterations, we reran the DRAM code for 105 iterations

starting with the results from the previous run. Using the mean values of the estimated parameter

distributions, we calculated the residuals for the nonlinear model (2.2) and the linear model (2.5). A

plot comparing the residuals for both models is given in Figure 2.3. The residuals are very similar

in pattern and size, suggesting that the two models provide similar fits. Hence, it is likely that the

model behavior is approximately linear in the observed region, which explains the agreement of the

parameter distributions obtained from bootstrapping and DRAM.

Table 2.1 gives a comparison of the mean values of the three constructed distributions and the

nominal parameter values. While the means of all three distributions agree, these values are notably

different for parameters q1 and q2. Since we also see a reduction in our estimation of uncertainty,

this suggests that the parameter estimates for all three methods are an improvement of the nominal

values used in (2.1). This reduction in uncertainty is characterized by the 95% confidence intervals

for the frequentist methods and the 95% credible intervals for DRAM given in Table 2.2. Note that

the intervals derived from the constructed pdf’s are much narrower than the nominal interval of

uncertainty.

2.3 Model Improvements

Whereas we were able to successfully construct pdf’s for the parameters of (2.2) with the results

suggesting estimates that are reasonably close to the nominal values, closer examination reveals the

limitations of the model. In particular, the pairwise plots generated by DRAM indicate identifiability
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Figure 2.2: Distributions for parameters (a) q1, (b) q2, and (c) q3 constructed using bootstrapping
and DRAM with all four data sets.

Table 2.1: Comparison of the nominal values to the means of the parameter pdf’s constructed via
asymptotic analysis, bootstrapping, and DRAM.

Asymptotic Bootstrapping DRAM Nominal
q1 0.0040 0.0044 0.0042 0.023
q2 0.9863 0.9803 0.9831 0.8
q3 0.4108 0.4085 0.40913 0.4
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Figure 2.3: Residuals for non-linear model (2.2) and linear model (2.5).

problems. Figure 2.4 shows that q1 and q2 have a nearly one-to-one relationship. Hence, if we fix one

of the parameters to an arbitrary value, we could find a corresponding value for the other parameter

that optimally fits the model to the data. This means that the parameter set q = [q1, q2, q3] is not

jointly identifiable in the sense that the parameters cannot be uniquely determined from the data.
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Table 2.2: The 95 % confidence intervals for asymptotic theory and bootstrapping as well as the
95% credible intervals for DRAM compared to the nominal uncertainty.

Asymptotic Intervals Bootstrapping Intervals DRAM Intervals Nominal Uncertainty
q1 [0.0021, 0.0059] [0.0023, 0.0065] [0.0025, 0.0064] [0, 0.046]
q2 [0.9436, 1.0291] [0.9377, 1.0228] [0.94401.0262] [0, 1.6]
q3 [0.3857, 0.4359] [0.3836, 0.4335] [0.3853, 0.4353] [0, 0.8]

We can resolve this issue by fixing either q1 or q2 in the model (2.2) and estimating the remaining

two parameters.

In addition to identifiability problems, we have the issue of incompatible parameters. To under-

stand incompatible parameters, we present in Figure 2.5 a comparison of two scenarios in which

data is modeled by a parameterized version of the McAdams relation [46]

F = ξ1R e ξ2 + ε (2.6)

where F is the friction factor, R e is the Reynolds number, ξ1 and ξ2 are parameters, and ε represents

measurement error. In one scenario, the data points from 5 experiments are aligned in such a way

that a single model curve—and, hence, a single set of optimal parameters—provides a reasonable

fit for all data sets. However, this is not true of the second scenario. While the shape of the curves

are similar for all of the experimental data sets, suggesting the same underlying physics, there is

not one set of parameter values that will optimally fit all of the data sets. As shown in Figure 2.6, a

similar situation arises with the data from [27] for the Dittus-Boelter problem. To remedy this type of

situation, we need to account for parameter variability among the individual data sets and allow for

individual fits. Ideally, we would also like to quantify “nominal" parameter values that adequately

represent all data sets. In Chapter 3, we introduce mixed-effect models as a way to account for

variability within a population of parameters. We also present techniques for estimating parameters

of mixed-effects models and employ them for an improved version of (2.2), which remedies the

nonidentifiability and the incompatibility of the parameters.
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Figure 2.4: Pairwise plots for parameters of (2.2) obtained using DRAM.
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Figure 2.5: Two scenarios involving data collected from multiple experiments modeled by (2.6).
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Algorithm 2 Delayed Rejection Adaptive Metropolis with a Normal Likelihood Function and a Flat
Prior Distribution [15, 37]

1. Set design parameters ns ,σ2
s , sp and k0 and the number of chain iterates M . Here ns andσ2

s are
employed to update the error variance. The design parameter sp depends on the dimension of
the problem; we use sp = 2.382/p . Also, k0 denotes the number of iterations between updates
of the covariance matrix.

2. Determine q 0 =arg minq

∑n
i=1[vi − fi (q )]2.

3. Set SSq 0 =
∑n

i=1[νi − fi (q 0)]2.

4. Compute initial variance estimate s 2
0 =

SSq 0

n−p , where n is the number of data points and p is
the number of parameters.

5. Construct initial variance estimate V0 = s 2
0

�

χT (q 0)χ(q 0)
�−1

and set R0 = chol(V0), where the

sensitivity matrix has components χi j =
∂ fi (q 0)
∂ q j

.

6. For k = 1, ..., M

(a) Sample zk ∼N (0, I ).

(b) Construct candidate q ∗ = q k−1+R T
k−1zk .

Note that this is equivalent to sampling q ∗ ∼N (q k−1, Vk−1).

(c) Sample uα ∼U (0, 1).

(d) Compute SSq ∗ =
∑n

i=1[νi − fi (q ∗)]2.

(e) Compute

α(q ∗|q k−1) =min
�

1, e −
�

SSq∗−SSq k−1

�

/2s 2
k−1

�

.

(f ) If uα <α,

Set q k = q ∗, SSq k = SSq ∗ .

else

Enter Delayed Rejection Algorithm 3.

endif

(g) Update s 2
k ∼ Inv-gamma(av a l , bv a l ), where

av a l = 0.5(ns +n ) , bv a l = 0.5(nsσ
2
s +SSq k ).

(h) If mod (k , k0) = 1,

Update Vk = sp cov(q 0, q 1, ..., q k ) and Rk = chol(Vk ).

else

Vk =Vk−1, Rk =Rk−1.

endif
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Algorithm 3 Delayed Rejection Component of DRAM with a Normal Likelihood Function [15, 37]

1. Set the design parameter γ2 < 1. We set γ2 =
1
5 .

2. Sample zk ∼N (0, I ).

3. Construct second-stage candidate q ∗2 = q k−1+γ2R T
k−1zk .

Note that this is equivalent to sampling q ∗2 ∼N (q k−1,γ2
2Vk−1).

4. Sample uα2
∼U (0, 1).

5. Compute SSq ∗2 =
∑n

i=1[νi − fi (q ∗2)]2.

6. Compute

α2(q ∗2|q k−1, q ∗) =min
�

1, π(q ∗2|ν)J (q ∗|q ∗2)[1−α(q ∗|q ∗2)]
π(q k−1|v )J (q ∗|q k−1)[1−α(q ∗|q k−1)]

�

,

where π is the normal likelihood function and J is the proposal, or jumping, distribution in
(6a-b) of Algorithm 2. Specifically,

J (q a |q b ) =
1

p

(2π)p |V |
exp

�

−
1

2

�

(q a −q b )V −1(q a −q b )T
�

�

.

7. If uα2
<α2,

Set q k = q ∗2, SSq k = SSq ∗2 .

else

Set q k = q k−1, SSq k = SSq k−1 .

endif
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Figure 2.6: Three-dimensional plot of data from [27].
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CHAPTER

3

PARAMETER ESTIMATION TECHNIQUES

FOR MIXED-EFFECTS MODELS

Varying responses within a population can be described by a mixed-effects model. Such a model

includes fixed, population-wide effects as well as random effects, which incorporate individual

variation. The statistical mixed-effects model takes the form of

yi j = f (xi j ;β , bi ) + εi j (3.1)

where, for each individual i , yi j is the j th observation, xi j is the j th vector of independent variables,

β is the vector of fixed-effect parameters, bi denotes the vector of random effects, and εi j is the

measurement error. It is assumed that

bi ∼N (0,Ψ) (3.2)

εi j ∼N (0,σ2),

where Ψ is the covariance matrix of the random effects andσ2 is the variance of the measurement

errors. Note that the covariance matrix Ψ is diagonal if the random effects for each individual are

assumed to be independent. The quantities to be estimated are the fixed effectsβ , the random effects

bi , the error variance σ2, and the elements of the covariance matrix Ψ. Frequently, the effective
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parameters βi =β + bi for each individual i are estimated in place of the random effects.

3.1 Current Parameter Estimation Techniques

3.1.1 Frequentist Methods

Parameter estimation in the frequentist framework involves constructing an estimator, which assigns

optimal parameter values based on the observed data. Recall from Chapter 1 that the parameters in

frequentist inference are considered fixed but unknown and that the data are considered realizations

of random variables. In Chapter 2, we utilized the Ordinary Least Squares (OLS) estimator to obtain

optimal parameter values. Here we employ maximum likelihood estimation.

To define a maximum likelihood estimator, we first must define a likelihood function. Let fΥ (ν; q )

be a joint probability density function where q ∈ Q is an unknown vector of parameters in the

admissible parameter spaceQ, Υ = [Υ1, . . . ,Υn ] is the associated random vector, and ν= [ν1, . . . ,νn ]

are realizations of Υ . Then, the likelihood function L :Q→ [0,∞), as defined by [37], is given by

L (q ) = L (q |ν) = fΥ (ν; q ).

We note that the likelihood is a function of the parameters as compared to the sampling distribution,

which is a function of the data. Using this likelihood function with the assumption that the samples

νi are iid, we obtain maximum likelihood estimate

q̂M L E = argmax
q∈Q

n
∏

i=1

fΥ (νi ; q )

as in [37].

Let a general linear mixed-effects model with pF fixed effects and pR random effects be given by

y = X β +Z b + ε (3.3)

where y is the n×1 response vector, X is the n×pF design matrix for the fixed effects, β is the pF ×1

vector of fixed effects, Z is the n ×pR design matrix for the random effects, b is the pR ×1 vector of

random effects, and ε is the vector of measurement errors. We assume that

b ∼N (0,Ψ) =N (0,σ2D (θ )),

ε ∼N (0,σ2In )

where D is a symmetric, positive semidefinite matrix that is parameterized by the vector θ [21].

From a frequentist perspective, the right-hand side of (3.3) contains random variable b as well
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as fixed but unknown parameters β ,σ2, and θ . We have realizations y for the corresponding vector

of random variables Y in the form of data, but the random effects denoted by b are unobserved.

Therefore, we must eliminate the dependence on b to obtain a true frequentist likelihood function

L (β , b ,σ2,θ |y ), which depends only on fixed but unknown parameters and observed random

variables.

We now derive the likelihood function as detailed in [21, 30]. Since the random effects bi for

each group i = 1, . . . , M are independent, it follows that

L (β ,σ2,θ |y ) =
M
∏

i=1

p (yi |β ,σ2,θ ) =
M
∏

i=1

∫

p (yi |β , bi ,σ2,θ )p (bi |σ2,θ )|d bi . (3.4)

Note that the probability density function p (y |β , b ,σ2,θ ) is a multivariate normal distribution. In

particular, we note that

y |β , b ,σ2,θ ∼N (X β +Z b ,σ2In ).

Thus, we have

p (y |β , b ,σ2,θ ) =
1

(2πσ2)n/2
exp









−
M
∑

i=1
‖yi −X iβ −Z bi ‖2

2σ2









=
1

(2πσ2)n/2
exp

�

−‖y −X β −Z b ‖2

2σ2

�

.

Recall that bi ∼N (0,Ψ), so

p (b |θ ,σ2) =
1

(2π)pR /2|Ψ|1/2
exp

�

−
1

2
b TΨ−1b

�

=
1

(2πσ2)pR /2|D (θ )|1/2
exp

�

−
1

2σ2
b T (D (θ ))−1 b

�

.

Thus, we have

L (β ,σ2,θ |y ) =
|det [∆(θ )]|
(2πσ2)n/2

∫

exp
�

−
�

‖y −X β −Z b ‖2+ ‖∆(θ )b ‖2
�

/2σ2
�

(2πσ2)pR /2
d b (3.5)

where ∆(θ ) is any matrix such that D (θ )−1 = ∆(θ )T∆(θ ). One possibility for ∆(θ ) is to use the

Cholesky factorization of D (θ )−1. Note that evaluating the integral in (3.5) will still leave occurrences

of b in the right hand side. To eliminate the dependence on b , we find the conditional modes of the

random effects given the data. We first let

r 2(β , b ,θ ) = b T∆(θ )T∆(θ )b + (y −X β −Z b )T (y −X β −Z b ).

Then, the vector of conditional modes b ∗ is the vector for which the values of the random effects
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vector b satisfy
∂ r 2(β , b ,θ )

∂ b

�

�

�

�

b ∗
= 0

for givenβ and θ . Now, by evaluating the integral in (3.5) and substituting in the vector of conditional

modes b ∗, we obtain the likelihood function

L (β ,σ2,θ |y ) =
|det [∆(θ )]|
(2πσ2)n/2

exp
§

−
1

2σ2
r 2(β , b ∗(β ,θ ),θ )

ª

1

|∆T∆+Z T Z |1/2
. (3.6)

While (3.6) represents a valid likelihood function, a profiled likelihood, which reformulates (3.6) to

exclusively be parameterized by θ , is generally used in practice for numerical optimization [21]. This

is achieved by deriving formulas for the conditional estimates β ∗(θ ) andσ2∗(θ ), which maximize

L (β ,σ2,θ |y ) for a given value of θ . We then substitute in the conditional estimates to obtain the

profiled likelihood L (θ |y ) = L
�

β ∗(θ ),σ2∗(θ ),θ |y
�

[30].

MATLAB has two functions for computing the maximum likelihood estimates for linear mixed-

effects problems, namely fitlme and fitlmematrix [22, 23]. The fitlme function uses an input

array of data to fit the parameters of a user-provided formula. The fitlmematrix function takes

input arguments in the form of matrices as defined by X , Z , and y in (3.3) along with an n×1 grouping

vector. Use of the profiled likelihood for MLE is the default for both functions with each function

having the option to instead employ restricted maximum likelihood estimation (REML). For mixed-

effects models, maximum likelihood estimates of the variance parameters tend to underestimate

the true values, especially when these values are small [21, 30]. REML estimation has the benefit of

being unbiased for the variance parameters; however, we cannot use likelihood ratio tests such as

information criteria to compare mixed-effects models using a restricted likelihood function. Since

use of information criteria is important to the mixed-effects parameter subset selection algorithm

introduced in Chapter 4, we exclusively use the full profiled likelihood instead of the restricted

likelihood throughout this dissertation. For optimization, fitlmematrix and fitlme employ a

quasi-Newton optimizer as the default setting, but both functions have the option of using fminunc
if the Optimzation Toolbox is installed.

For nonlinear mixed-effect models—that is, models of the form (3.1) when f is nonlinear—the

integral in (3.4) generally does not have a closed form, so the MLE estimates cannot be obtained

directly. For these cases, the MATLAB Statistics Toolbox has two options for obtaining MLE estimates:

nlmefit and nlmefitsa [24, 25]. The nlmefit function uses an approximation to the likelihood

function paired with an optimizer to obtain parameter estimates. There are four options for the

likelihood approximation: (i) the linear mixed-effects model likelihood at the current conditional

estimates of the fixed and random effects, (ii) the linear mixed-effects model restricted likelihood

at the current conditional estimates of the fixed and random effects, (iii) the first-order Laplacian

approximation without random effects, and (iv) the first-order Laplacian approximation with con-

26



ditional estimates of the random effects. The default choice is the linear mixed-effects likelihood.

MATLAB’s fminsearch is used to optimize the likelihood function. If the Optimization Toolbox is

installed, fminunc may alternatively be used as the optimizer.

Instead of employing an approximate likelihood function, nlmefitsa uses a stochastic approx-

imation expectation-maximization (SAEM) algorithm to find the parameter estimates. Use of the

standard expectation-maximization (EM) algorithm is common for problems with incomplete data.

In the case of mixed-effects models, the unobserved random effects are considered to be missing or

incomplete data. The EM algorithm is an iterative process. In the expectation step, we formulate the

expected value of the log-likelihood function based on the conditional distribution of the random

effects given the observed data and the current parameter estimates. In the maximization step, we

recalibrate the parameters by maximizing the conditional expectation from the previous step. More

details on the EM algorithm are provided in [20]. Whereas the EM algorithm is a useful tool, the

standard version of the algorithm is problematic for nonlinear mixed-effects models, which do

not have a closed form for the likelihood; the expectation step of the algorithm cannot be done

without a full likelihood function [11]. The SAEM algorithm remedies this dilemma by stochastically

approximating the expectation for the E step of the EM algorithm [25].

3.1.2 Bayesian Parameter Estimation: Gibbs Sampling

Bayesian parameter estimation for mixed-effects modeling typically utilizes Gibbs sampling, a

Markov Chain Monte Carlo (MCMC) method for obtaining random samples from a joint probability

density function that is either unknown or difficult to sample. In particular, Gibbs sampling relies

on drawing from the conditional distributions of each of the variables. We utilize this technique

to estimate the mixed-effects parameters defined by (3.1) and (3.2). For the purpose of Bayesian

inference, we assume that the parameters have the prior distributions

β ∼N (β0,Σ0) , σ−2 ∼Gamma (ν0,τ0) , bi ∼N (0,Ψ) , Ψ ∼ Inv-Wishart(Ψ0,ρ0).

In the case of linear mixed-effects problems, all of the conditional distributions required for Gibbs

sampling can be completely derived, but with nonlinear mixed-effects problems, the conditional

distribution for βi =β + bi has no closed form. Hence, we must do a Metropolis-within-Gibbs step

to estimate the effective parameters βi for each individual i . As derived in [49], the full conditional

distributions for the nonlinear mixed-effects model parameters are
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[β |σ2,Ψ,β∗, y ]∼N

�

(ngΨ
−1+Σ−1

0 )
−1

�

Ψ−1
ng
∑

i=1

βi +Σ
−1
0 β0

�

, (ngΨ
−1+Σ−1

0 )
−1

�

,

[σ−2|β ,Ψ,β∗, y ]∼Gamma



ν0+
1

2

ng
∑

i=1

ni ,



τ0+
1

2

ng
∑

i=1

ni
∑

j=1

(yi j − fi j (xi j ;βi ))
2





−1

 ,

[Ψ|σ,β ,β∗, y ]∼ Inv-Wishart
�

(βi −β )(βi −β )T +Ψ0, ng +ρ0

�

,

with

f (βi |β∗,σ, D , y )∝ exp

 

−
σ−2

2

ni
∑

j=1

(yi j − fi j (xi j ;βi ))
2−

1

2
(βi −β )TΨ−1(βi −β )

!

.

3.1.3 Bayesian Parameter Estimation: DRAM

Whereas Gibbs sampling is a commonly-applied approach to Bayesian inference for mixed-effects

models, it suffers from its chain samples being correlated to neighboring samples. Some efforts have

been made to remedy this, including thinning the chains; however, the Delayed Rejection Adaptive

Metropolis (DRAM) algorithm will typically outperform Gibbs sampling in the case of highly corre-

lated parameters. Thus, we have augmented the standard DRAM algorithm to construct a version

that is appropriate for mixed-effects models. There are current implementations of mixed-effects

DRAM algorithm for problems with diagonal random effects covariance matrices. In particular,

the MATLAB MCMC Toolbox DRAM code has an option for this that is enacted by localflag=2.

However, we have made novel changes to generalize the DRAM algorithm to mixed-effects models

with non-diagonal Ψ matrices. We modified the Metropolis-within-Gibbs step described in the

previous section to be a DRAM-within-Metropolis step, updating all additional parameters via Gibbs

sampling. The mixed-effects version of DRAM is given in Algorithms 4 and 5.
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Algorithm 4 Delayed Rejection Adaptive Metropolis for Mixed-Effects Models adapted from [15, 37]

1. Set design parameters ns ,σ2
s , ρ0, k0, and the number of chain iterates M .

2. Obtain initial hyperparameter estimates β0 and Ψ0 for the vector of parameter means and

covariance matrix, respectively. Also, obtain initial estimates β0
i = β

0 + b 0
i for the effective

parameters for all i = 1, 2, . . . , n and s 2
0 for the error variance. Set q 0 = [β0

1 , . . . ,β0
n ]. We compute

these estimates via freqentist techniques.

3. Construct the ng · pR × ng · pR initial covariance estimate V0 for the full set of effective pa-

rameters where pR is the number of random effects and ng is the total number of groups

or individuals. Set R0 = chol(V0). To characterize the basic geometry of the problem, we

employ V0 = diag[V1, V2, . . . , Vn ], where Vi = diag
�

(0.05 ·β0
i 1)

2, (0.05 ·β0
i 2)

2, . . . , (0.05 ·β0
i rR
)2
�

for

i = 1, 2, . . . , n .

4. For k = 1, . . . , M

(a) Sample zk ∼N (0, I ).

(b) Construct candidate q ∗ = [β ∗1 , . . . ,β ∗n ] = q k−1+R T zk where R = chol(Vk ).

Note that this is equivalent to sampling q ∗ ∼N (q k−1, Vk ).

(c) Sample uα ∼U (0, 1).

(d) Computeα(q ∗|q k−1) =min
�

1,
π(y |q ∗)π0(q ∗)

π(y |q k−1)π0(q k−1)

�

using likelihood functionπ and prior

π0.

(e) If uα <α,

Set q k = q ∗.

else

Enter Delayed Rejection Algorithm 5.

endif

(f) Compute SSk =
∑n

i=1

∑ni
j=1(yi j − fi j (βi ))2.

(g) Update s 2
k ∼ Inv-gamma(av a l , bv a l ), where

av a l = 0.5

�

ns +
n
∑

i=1

ni

�

, bv a l = 0.5(nsσ
2
s +SSk ).

We setσ2
s equal to the frequentist estimate of error variance and choose ns = 1, which is

consistent with a non-informative prior [37].

(Continued on the next page)
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Algorithm 4 Delayed Rejection Adaptive Metropolis for Mixed-Effects Models (continued)

(h) Update βk ∼N
�

(nΨ−1+Σ−1
0 )
−1
�

Ψ−1
∑n

i=1βi +Σ−1
0 β0

�

, (nΨ−1+Σ−1
0 )
−1
�

where the prior on the
hyperparameter vector β is N (β0,Σ0).

(i) Update Ψk ∼ Inv-Wishart
�

nΨ0+
∑n

i=1(β
k
i −β

k )(βk
i −β

k )T , n +ρ0

�

where βk
i is the pr × 1

column vector of the current effective parameters for the i th data set. To employ a non-
informative prior in the sense of utilizing the flattest distribution,ρ0 is set equal to the number
of random effects.

(j) If mod (k , k0) = 1

Update Vk = sp cov(q 0, q 1, ..., q k ) and Rk = chol(Vk ).

else

Vk =Vk−1.

endif

3.1.4 Nonlinear Example

For the purposes of verification, we compare the results of parameter estimation via Gibbs sampling,

nlmefit and mixed-effects DRAM. In this example, we use synthetic data to verify the effectiveness

of our methods for a nonlinearly parameterized mixed-effects problem. We consider the classic

orange tree growth model

yi j =
β1+ b1i

�

1+ e −[ti j−(β2+b2i )]/(β3+b3i )
� + εi j (3.7)

bi ∼N (0,Ψ) , εi ∼N (0,σ2I )

from [24]where, for the j th data point in the i th data set, yi j is the tree circumference in millimeters,

ti j is the time in days, β = [β1,β2,β3] are the fixed effects, and bi = [b1i , b2i , b3i ] are the random

effects. We generated synthetic data for ng = 5 individuals using the model (3.7) with error variance

drawn from εi j ∼N (0, 1),

ti =
�

118 484 664 1004 1231 1372 1582
�T
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Algorithm 5 Delayed Rejection Component [15, 37]

1. Set the design parameter γ2 < 1. We set γ2 =
1
5 .

2. Sample zk ∼N (0, I ).

3. Construct second-stage candidate q ∗2 = q k−1+γ2R T
k zk where Rk = chol(Vk ).

Note that this is equivalent to sampling q ∗2 ∼N (q k−1,γ2
2Vk ).

4. Sample uα2
∼U (0, 1).

5. Compute

α2(q ∗2|q k−1, q ∗) =min
�

1, π(q ∗2|v )J (q ∗|q ∗2)[1−α(q ∗|q ∗2)]
π(q k−1|v )J (q ∗|q k−1)[1−α(q ∗|q k−1)]

�

,

where J is the proposal, or jumping, distribution defined by (4a-b) in Algorithm 4. Specifically,

J (q a |q b ) =
1

p

(2π)ng pR |V |
exp

�

−
1

2

�

(q a −q b )V −1(q a −q b )T
�

�

.

6. If uα2
<α2,

Set q k = q ∗2.

else

Set q k = q k−1.

endif

for all i = 1, . . . , 5, bi = [b1i , b2i , b3i ] drawn fromN (0,Ψ)with

Ψ =







15 0 0

0 100 0

0 0 50






, (3.8)

and β1 = 175, β2 = 800, and β3 = 300.

To implement Gibbs sampling, we used chains constructed from 107 iterations. Using the condi-

tional distributions from Section 3.1.2, we drew each new chain value out of the specified probability

density, setting all other parameter values equal to their latest chain sample. The chain starting

values for the fixed effects, effective parameters, and error variance were set equal to the frequentist

estimates obtained from MATLAB function nlmefit. We employed the true value of Ψ, given by

(3.8), as the starting value for the random effects covariance matrix. To employ a flat prior forσ2,

we set ν0 and τ0 to be small. In particular, we used ν0 = 0.001 and τ0 = 0.001. For the random
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effects covariance matrix, we setρ0 = 100, which suggests a highly informative prior for Ψ. The most

noninformative choice, in the sense that it corresponds to the flattest distribution, is to let ρ0 be

equal to the number of random effects. We initially employed a noninformative prior; however,

when we used ρ0 = 3, the estimate we obtained for the random effects covariance matrix was

103×







0.9376 0.9264 0.9264

0.9264 1.0015 0.9264

0.9264 0.9264 0.9639






,

which is not close to the true value of Ψ used to generate the data. Using ρ0 = 100 produces much

better results; this is shown in Table 3.1, which gives a comparison of the Gibbs sampling and

nlmefit parameters estimates. Note that the output for nlmefit gives estimates of bi instead of

the effective parameters, but we have calculated the effective parameters β + bi and used these

values in the table for comparison to the Gibbs sampling results. For Gibbs sampling, the reported

parameter estimates are the mean values of the chains. Aside from the random effects covariance

matrix, the parameter estimates are very similar, suggesting that the methods agree. When we

employed the nlmefit function, we activated the option of assuming a diagonal random effects

covariance matrix, which explains its success in correctly placing zeros in the off-diagonal entries of

its Ψ estimate, but the Gibbs sampler with the informative prior more closely approximated the true

Ψ matrix given in (3.8). However, even the Gibbs sampling estimate of Ψ is not particularly close.

These results suggest that a flat prior may not be the best choice for Gibbs sampling when

starting with a reasonably accurate approximation for the random effects covariance matrix. Further

research is required to determine a recommended methodology. Possible techniques could involve

utilizing informative priors or employing empirical Bayes methods to initially estimate the random

effects covariance matrix and then treat it as a constant during Gibbs sampling.

We also employed the mixed-effects version of the DRAM algorithm given in Algorithms 4 and 5

to estimate the effective parameters for the model (3.7). We used likelihood function

π(y |q ) =π(y |[β1, . . . ,β5]) = exp
5
∑

i=1



−
σ−2

2

ni
∑

j=1

�

yi j − fi j (xi j ;βi )
�2





and prior function

π0(q ) =π0([β1, . . . ,β5]) = exp
5
∑

i=1

�

−
1

2
(βi −β )TΨ−1(βi −β )

�

.

For the chain starting values, we set the effective parameters equal to their frequentist estimates

from nlmefit, and we bound the effective parameters to be greater than zero. For the hyperpa-
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Figure 3.1: Chains generated using DRAM for the effective parameters of the orange tree model
(3.7).

rameters, we used the true random effects covariance matrix (3.8) as Ψ0. We set ρ0 = 100 to employ

an informative prior for the covariance matrix as we did with Gibbs sampling. We employed a

noninformative uniform hyperprior for β , which is equivalent to setting β0 equal to the frequentist

estimate of the fixed effects and

Σ0 =







∞
...

∞






.

After a burn-in period of 106, we constructed final parameter chains of length 105. Visual inspection

suggests that the chains (Figure 3.1) and the hyperchains (Figure 3.2) are burned in. Moreover, the

entries in Table 3.1 indicate that for the nonlinear orange-tree growth model (3.7) the DRAM effective

parameter estimates, constructed from the mean chain values, agree with the Gibbs sampling

results. The fixed-effect estimates also agree with Gibbs sampling, and the DRAM estimate of Ψ is

significantly closer to the true matrix than those obtained using both Gibbs sampling and nlmefit.
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Table 3.1: Estimated parameter values for (3.7) from nlmefit, Gibbs sampling, and DRAM.

nlmefit Gibbs DRAM
β1 176.8110 176.7097 176.7428
β2 808.7220 808.2492 808.4321
β3 298.2351 298.0403 298.1843

β11 181.9081 181.1310 180.7033
β12 172.1659 169.5569 170.3078
β13 176.9944 178.0913 178.0310
β14 176.6842 178.2312 178.4585
β15 176.3024 176.5359 176.2340

β21 837.4897 830.0412 828.9037
β22 837.0985 820.9839 825.1117
β23 779.9052 789.6234 788.3719
β24 783.6309 793.2692 793.9753
β25 805.4958 807.3115 805.8295

β31 291.1670 291.8160 289.9685
β32 306.5638 298.6679 301.0232
β33 306.6009 307.2777 307.4212
β34 284.3055 290.1250 290.7398
β35 302.5384 302.3099 301.7683

σ2 0.7418 1.5737 1.4627

Ψ





11.34 0 0
0 674.16 0
0 0 104.83









35.44 20.59 20.59
20.59 119.62 20.59
20.59 20.59 70.10









15.69 −0.47 −0.36
−0.47 115.14 −1.50
−0.36 −1.50 53.27





3.2 Revised Dittus-Boelter Model

In Chapter 2, we introduced the parameterized version of the Dittus-Boelter equation and noted

two problems with the model. In particular, the parameters q1 and q2 were not mutually identifiable.

We can remedy this by fixing q1 to be its nominal value in (2.1). Additionally, we had the problem of

incompatible parameters; no one set of parameter estimates would simultaneously provide a good

fit for all of the data sets. We switch to using a mixed-effects model to permit individual fits as well

as population-wide parameter estimates. The resulting model is

N ui j = 0.023R e (β2+b2i )P r (β3+b3i )+ εi j , (3.9)
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Figure 3.2: Hyperchains generated using DRAM for the components of β and Ψ.

where N u is the Nusselt number, P r is the Prandtl number, R e is the Reynolds number, and for

the j th observation of the i th data set β1 and β2 are the fixed effects, bi = [b2i , b3i ] is the vector of

random effects for each data set, and εi j is the measurement error. We assume that

ri ∼N (0,Ψ),

εi j ∼N (0,σ2).

We now estimate the fixed effects, random effects, random effects covariance matrix, and measure-

ment error for the revised Dittus-Boelter model (3.9).

As with the orange tree example, we first perform frequentist parameter estimation to obtain

starting values for chains corresponding to the effective parameters βi = [β2i ,β3i ]. For the purposes

of verification, we employed both nlmefit and nlmefitsa. The resulting parameter estimates

are given in Table 3.2. Note that the values are very similar, suggesting that the two methods agree.

Moreover, the resulting model fits and residuals are visually indistinguishable. Figure 3.3 shows

these plots from nlmefit; the identical plots from nlmefitsa are omitted. Note that the parameter

estimates provide a good fit to the data and that the residuals are fairly iid for the combined data set.

Whereas frequentist parameter estimation is an important first step in the mixed-effects version

of the DRAM algorithm, the initial parameter estimates also happened to uncover an insignificant

parameter for the Dittus-Boelter model (3.9). Observe that the estimated values of b3i from both

nlmefit and nlmefitsa are essentially zero for all four groups. This implies that this random effect

parameter is unnecessary and can be removed from the model, which will lessen the computational
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cost of the DRAM algorithm. We now have

N ui j = 0.023R e (β2+b2i )P r β3 + εi j (3.10)

where N u is the Nusselt number, P r is the Prandtl number, R e is the Reynolds number, and for the

j th observation of the i th data set β2 and β3 are the fixed effects, b2i is the single random effects for

each data set, and εi j is the measurement error. We assume that

b2i ∼N (0,ψ2),

εi j ∼N (0,σ2).

Since we have a single random effect, the covariance matrix is 1 × 1, so it is simply a variance

parameter, which we denote asψ2.

Using this new model (3.10), we employ the mixed effects DRAM algorithm for parameter

estimation. Note that for the DRAM algorithm, we estimate the effective parameter β2i =β2+ b2i

instead of the random effect b2i . Also, β3 no longer has a random effect, so we construct a DRAM

chain for β3 instead of β3i . The updating of β3 is equivalent to the fixed-effects DRAM process

described in Algorithms 2 and 3, and we do not have any corresponding hyperparameters to update

for β3. Also, the covariance matrix Vk will be 5× 5 with one diagonal entry corresponding to the

variance of the parameter β3 and the remaining 4 diagonal entries corresponding to the variance of

the effective parameters β2i for i = 1, . . . , 4.

For starting values of the chains, we used the nlmefit parameter estimates. We employed

likelihood function

π(y |q ) =π(y |[β21, . . . ,β24,β3]) = exp
4
∑

i=1



−
σ−2

2

ni
∑

j=1

�

N ui j − fi j (R ei j , P ri j ;β2i ,β3)
�2





and prior function

π0(q ) =π0([β21, . . . ,β24,β3]) = exp
4
∑

i=1

�

−
1

2ψ2
(β2i −β2)

T (β2i −β2)
�

p0(β3),

where p0 is the flat prior on the interval [0,∞) used for β3. For the chain starting values, we used

the frequentist estimates from nlmefit, and we bounded β2i and β3 to be greater than zero. For

the hyperparameters, we used the nlemfit estimate of the b2i variance asψ2
0, and we set ρ0 = 3

to invoke a fairly noninformative prior. We also employed the noninformative uniform hyperprior

described in the previous section for β2.

After a burn-in period of 105, we reran the DRAM code to obtain final chains of length 104. The
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Table 3.2: Estimated parameter values for (3.9) from nlmefit and nlmefitsa.

nlmefit nlmefitsa
β2 0.8758 0.8753
β3 0.2050 0.2064

β21 −0.0397 −0.0393
β22 0.0053 0.0053
β23 0.0224 0.0223
β24 0.0119 0.0115

β31 −0.0000 −0.0000
β32 −0.0000 −0.0000
β33 0.0000 0.0000
β34 0.0000 −0.0000

σ2 77.8791 77.8806

Ψ

�

0.0.00057 0
0 0.0000

� �

0.00055 0
0 0.0000

�

plots in Figures 3.4 and 3.5 indicate that both the chains and hyperchains are burned in. Figure 3.6

shows the model fit and residuals obtained using the mean DRAM chain values. Note that these

are visually indistinguishable from those produced by the frequentist methods. Moreover, Table 3.3

indicates that the nlmefit and DRAM parameter estimates for model (3.10) agree. While we have

successfully estimated the parameters of the revised Dittus-Boelter model (3.10), the fortuitous

discovery of the insignificant random effect highlights the need for rigorous parameter selection for

mixed-effects models. In Chapter 4, we address the current issues with mixed-effects parameter

selection and introduce a new parameter subset selection algorithm.
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Figure 3.3: (a) Model fit and (b) residuals for (3.10) using the parameter estimates from nlmefit.
The fit and residuals obtained using nlmefitsa are not pictured because they are visually indistin-
guishable from those shown here.

Table 3.3: Estimated parameter values for (3.9) from nlmefit and nlmefitsa.

nlmefit DRAM
β2 0.8758 0.8773
β3 0.2050 0.2015

β21 −0.0397 −0.0409
β22 0.0053 0.0050
β23 0.0224 0.0226
β24 0.0119 0.0128

σ2 77.8791 81.0284

ψ2 0.00057 0.0010
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Figure 3.4: Chains generated using DRAM for β2i =β2+ b2i and β3 in model (3.10).

Figure 3.5: Hyperchains generated using DRAM for β2 andψ2 for model (3.10).
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Figure 3.6: (a) The model fit and (b) residuals for (3.10) using the mean DRAM chain values as the
parameter estimates.
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CHAPTER

4

A PARAMETER SUBSET SELECTION

ALGORITHM FOR MIXED-EFFECTS

MODELS

4.1 Introduction

As detailed in the previous chapter, mixed-effects models provide one way to accommodate param-

eter values that vary among individuals in a population. In this chapter, we specifically examine the

challenges of parameter selection for mixed-effects models. To illustrate the associated issues, we

consider two examples with linearly and nonlinearly parameterized parameters. The contents of

this chapter have been submitted for publication [35].

We first consider the problem of modeling the heights of boys measured over time as presented

in [50]. Height measurements of 26 boys were recorded at nine occasions over time. The data plotted

in Figure 4.1 shows that all of the boys exhibit a linear growth pattern, but no one single choice of

an intercept will provide a good fit for all of the individuals since they start at different heights. To

quantify the boys’ growth in a manner that incorporates the variability in their initial heights, we
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consider a linearly parameterized statistical model of the form

yi j = (β0+ bi ) +β1 xi j + εi j , i = 1, . . . , M , j = 1, . . . , ni (4.1)

= f (xi j ;β , bi ) + εi j .

Here yi j denotes the height of the i th boy at time j , xi j quantifies the time when the measurement

was taken, and εi j is the observation error associated with the measurement. The fixed effect

parameters β = [β0,β1] apply to the population of all data sets and β0 can be interpreted as the

population average for the intercept, or starting height. The random effect bi represents the variation

in the starting height of the i th boy from the population mean. We typically assume that bi ∼N (0,Ψ),

where the covariance matrix Ψ specifies the variability and correlation in initial height. It is also

standard to assume that measurement errors are independent and identically distributed (iid),

εi j ∼N (0,σ2), and that εi j and bi are independent.

Alternatively, we could also choose to include a random effect to account for individual variation

of the slope, or the growth rate. In this case, the model would be

yi j = (β0+ b0i ) + (β1+ b1i )xi j + εi j , (4.2)

where we assume that

bi ∼N (0,Ψ) , εi j ∼N (0,σ2)

where bi = [b0i , b1i ]. However, it is clear from Figure 4.1 that there is limited variation of the slope

among the data sets, so inclusion of a second random effect parameter is unlikely to significantly

improve the individual fits. In cases where the parameter relations are more complex, it may not

be immediately obvious if the inclusion of a particular random effect is necessary or if parameters

will be identifiable in the sense that they can be uniquely determined from data. As we will detail

after the next example, techniques to isolate identifiable parameters in fixed effect models are often

ineffective for mixed-effects models, thus motivating the algorithms presented here.

As a second example, we employ a nonlinearly parameterized mixed-effects model. We consider

the spring equation

m
d 2 y

d t 2
+k y = 0 (4.3)

y (0) = y0 ,
d y

d t
(0) = 0,

which has the solution

y (t ) = y0 cos
�

t
p

k/m
�

. (4.4)

When conducting numerical experiments, we assume that the observed initial displacements are
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Figure 4.1: Height measurements in centimeters for 26 boys on nine occasions from [50].

drawn from a population and thus can be represented as y0+ bi where bi ∼N (0,Ψ). The resulting

statistical model is

yi j = f (ti j ;β , bi ) + εi j ,

where yi j is the measured spring displacement at time ti j for the i th experiment and εi j ∼N (0,σ2)

are the measurement errors. The mathematical model is

f (xi j ;β , bi ) = (y0+ bi )cos
�

t
p

k/m
�

,

where β = [m , k , y0] are the fixed effect parameters. We first note that mass m and stiffness k are not

jointly identifiable since they appear in the solution as a quotient. Furthermore, additional random

effects would not be identifiable for data generated in this manner.

To motivate issues that must be addressed when considering parameter subset selection tech-

niques for mixed-effects models, we first detail the concepts of identifiable and influential parame-

ters. Here we consider general models of the form y = f (q ).

The parameters q = [q1, . . . , qp ] are identifiable at q ∗ if f (q ) = f (q ∗) implies that q = q ∗ for all

admissible q ∈Q, whereQ is the admissible space of parameters. The parameters q are identifiable

with respect to a space I (q ), termed the identifiable subspace, if this holds for a q ∗ ∈ I (q ). Readers are

referred to Chapter 6 of [37] for details regarding the specification of I (q ) for the spring model (4.3).
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Influential parameter spaces are sometimes defined differently in various disciplines. We define

the parameters q to be noninfluential on the space N I (q ) if | f (q )− f (q ∗)|< ε for all q and q ∗ ∈N I (q ).

The space of influential parameters, I (q ), is defined to be the orthogonal complement of N I (q )

with respect to the admissible parameter space q .

Because noninfluential parameters yield model responses that vary minimally over N I (q ), it is

common to ascertain noninfluential parameters by testing whether local sensitivities satisfy the

property ∂ y
∂ qi
≈ 0. More generally, one can employ global sensitivity techniques to rank the influence

of the parameters. For example, variance-based techniques, such as Sobol’ analysis, rank the degree

to which response uncertainties can be apportioned to input uncertainties. Morris indices provide

quasi-global parameter rankings by averaging coarse finite-difference approximations computed at

randomly-chosen points in the parameter space [37].

Whereas these techniques often prove very effective for fixed effect models, they are generally

much less effective for mixed-effects models since they do not distinguish between the global nature

of the fixed effects and the local nature of the random effects. Since standard sensitivity methods are

generally ineffective, model selection techniques are frequently employed to determine insensitive

parameters, which can be fixed without greatly affecting the model response.

Many model selection techniques for mixed-effects models utilize information criteria, or se-

lection scores generated by minimizing a penalized least squares error function for various model

versions [6, 9, 29]. The most common choices for information criteria include the Akaike Information

Criteria (AIC), the Bayesian Information Criteria (BIC), and modified versions of these such as the

marginal AIC (mAIC) and the conditional AIC (cAIC) [29]. The use of information criteria is beneficial

in that it can be applied to both linear and nonlinear mixed-effects models [6, 29]. However, use

of information criteria can be prohibitive due to the number of model candidates that need to be

considered [3, 29].

Typically, model selection starts with a version of a mixed-effects model containing pF fixed

effects and pR random effects, and it attempts to reduce the number of parameters to avoid overfit-

ting. This means that the model candidates are generated with all possible combinations of each of

the pF +pR parameters being used as a variable or fixed as an appropriate constant. Hence, 2pF +pR

possible models must be considered. Some efforts have been made to reduce the number of tested

models, including the Extended GIC (EGIC) and the Restricted Information Criteria, both of which

perform model “pre-selection" based on either the mean or the covariance [3]. However, this only

reduces the number of models to 2pF +2pR , which can still be prohibitive with high-dimensional

problems.

For linear mixed-effects models, the two most notable model selection alternatives to informa-

tion criteria are fence methods and shrinkage methods. Like the use of information criteria, fence

methods can also be computationally intensive, especially for large models [29]. Shrinkage methods,

however, are a popular choice for model selection when pF +pR is large. These methods, including
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mixed-effects variations of the LASSO (Least Absolute Shrinkage and Selection Operator) such as in

[3], utilize a regularized least squares estimation that drives parameters to zero; those parameters

that are shrunk to zero are eliminated from the model. There have been some attempts to generalize

LASSO techniques to nonlinear mixed-effects models, as detailed in [31]. However, these techniques

are limited in that they cannot be used for certain types of covariate relations such as power models

[31].

We propose a method of model selection, which relies on parameter subset selection, that can

be used for both linear and nonlinear mixed-effects models. We first introduce the parameter subset

selection algorithm for mixed-effects models in Section 4.2. Then, in Section 4.3 we use the algorithm

to limit the number of model candidates, reducing the computational cost of model selection via

information criteria. Employing of our version of parameter subset selection, which is based on

standard errors, lowers the number of model candidates from 2pF +pR to pF +pR .

4.2 Parameter Subset Selection (PSS) Algorithm

Consider the general mixed-effects model

yi j = f (xi j ;β , bi ) + εi j , i = 1, . . . , M , j = 1, . . . , ni ,

where, for each individual i , yi j is the j th observation, xi j is the j th vector of independent vari-

ables, β is the vector of fixed effect parameters, bi represents the random effects, and εi j is the

measurement error. We assume that

bi ∼N (0,Ψ) , εi ∼N (0,σ2I ),

where Ψ is the covariance matrix of the random effects andσ2 is the variance of the measurement

errors. Note that there are M individual data sets. Let pF denote the number of fixed effects and pR

be the number of random effects.

To calibrate the mixed-effects model, the parameters to be estimated are the pF components of

the fixed effects vector β , the pR components each of the random effects vectors bi for i = 1, . . . , M ,

and the components of the pR×pR random effects covariance matrixΨ. We build upon the parameter

subset selection (PSS) method developed in [8] and described in [4] and [45] to establish influential

parameters for mixed-effects models. Specifically, our PSS Algorithm 6 determines the set of the

np ≤ p = pF +pR most influential parameters from among the fixed and random effects.
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Algorithm 6 Parameter Subset Selection (PSS)

1. Check the identifiability of the parameters for the purely fixed effects model. This can be done

using a variety of techniques, including computing Pearson correlation coefficients, analyzing

pairwise scatter plots of parameter realizations, and constructing joint parameter probability

density functions using Bayesian techniques [37, 45]. Fix parameters as necessary to eliminate

identifiability problems.

2. Construct an estimate of the error variance ŝ 2 = R̂ T R̂
N−p where R̂ = [R̂1, . . . , R̂M ]T is the column

vector of residuals with

bi =







yi 1(xi 1; q̂i )− ŷi 1
...

yi ni
(xi ni

; q̂i )− ŷi ni






=







f (xi 1; q̂i )− ŷi 1
...

f (xi ni
; q̂i )− ŷi ni






.

Here ŷi j is the j th observed model response for the i th data set, N =
∑M

i=1 ni is the total

number of observations for all data sets, and q̂i = [β̂ , r̂i ] is the optimized parameter vector for

the i th data set.

3. Using local sensitivity matrix

χ(q̂ ) =







χ1(q̂1)
...

χM (q̂M )






,

where

χi (q̂i ) =









∂ y
∂ β1
(xi 1; q̂i ) . . . ∂ y

∂ βpF
(xi 1; q̂i )

∂ y
∂ b1i
(xi 1; q̂i ) . . . ∂ y

∂ rpR i
(xi 1; q̂i )

...
...

...
...

∂ y
∂ β1
(xi ni

; q̂i ) . . . ∂ y
∂ βpF

(xi ni
; q̂i )

∂ y
∂ b1i
(xi ni

; q̂i ) . . . ∂ y
∂ rpR i

(xi ni
; q̂i )









,

construct an estimate of the covariance matrix Cov = ŝ 2
�

χ(q̂ )Tχ(q̂ )
�†

containing the vari-

ances and correlations of the fixed and random effects. Here † denotes the Moore-Penrose

pseudoinverse.

4. Determine standard errors S Ek =
p

Cov(k , k ).

5. Calculate selection scores for all i data sets. For the k th parameter in the i th data set, the selec-

tion score is αki
=
�

�S Ek/q̂ki

�

�. The np smallest selection scores for the i th data set correspond

to the data set’s np most significant parameters.

(Continued on the next page)
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Algorithm 6 Parameter Subset Selection (PSS) (continued)

6. To determine the np most significant parameters over all M data sets, we assign the k th
parameter in the i th data set a selection index γki

. For the most significant parameter in the
i th data set—i.e., the parameter with the lowest αki

for all ki = 1, . . . , p —we set the selection
index equal to one. For the next significant parameter with the next highest αki

, we assign a
selection index of 2. We continue until the least significant parameter is assigned a selection
index of p .

7. Calculate the selection index sums Γki
=
∑M

i=1γki
for all k = 1, . . . , p parameters. The np

smallest values of Γki
correspond to the np most significant parameters for all data sets. If

selection index sums are equal for two parameters, we compare the selection scores of the
two parameters for each of the M data sets. The parameter that most frequently has the lower
selection score of the two is determined to be more significant over all M data sets.

Note that the elements of the random effects covariance matrixΨ are not considered in parameter

selection. To construct an estimate of the parameter covariance matrix utilizing asymptotic theory

(Step 3) and obtain the resulting standard errors (Step 4), we need to be able to take partial derivatives

of the model response with respect to the parameters of interest; the parameters ofΨ are not included

in the formula for the model response. However, when we employ PSS to aid model selection, we

indirectly determine the dimensions of Ψ by determining the number of random effects included in

the selected model.

4.2.1 Examples Illustrating the PSS Algorithm

In this section, we illustrate the PSS Algorithm for linearly and nonlinearly parameterized models.

Example 1: Linearly Parameterized Model

We utilize an example from [3] to examine the effectiveness of the PSS algorithm for linear problems.

We first generate synthetic data for 30 individuals from the true model

ŷi j =β1 xi j 1+β2 xi j 2+ b1i + b2i zi j 2+ b3i zi j 3 + εi j , εi j ∼N (0, 1). (4.5)

Here we have n j = 5 observations and j = 1, . . . 5 for all i = 1, . . . , 30. The covariates xi j 1, xi j 2, and zi j `

for `= 1, 2, 3 are drawn from the uniform distributionU (−2, 2), the random effects bi = [b1i , b2i , b3i ]
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are drawn fromN (0,Ψ)with

Ψ =







9 4.8 0.6

4.8 4 1

0.6 1 1






,

and β1 =β2 = 1.

We assume that the synthetic data was quantified using nine fixed effects β1, . . . ,β9 and four

random effects b1i , . . . , b4i via the model

yi j =β1 xi j 1+β2 xi j 2+ · · ·+β9 xi j 9+ b1i + b2i zi j 2+ b3i zi j 3+ b4i zi j 4+ εi j (4.6)

with unbiased measurement error εi j ∼N (0,σ2) for fixed but unknown error varianceσ2. With 5

observations each, we have j = 1, . . . ,5 for all 30 data sets. The covariates xi j k for k = 1,2 and zi j `

for `= 2, 3 were drawn fromU (−2, 2)with the generation of the synthetic data. We draw additional

covariates xi j k for k = 3, . . . , 9 and zi j ` for `= 4 fromU (−2, 2) to obtain a full set of covariates for the

model (4.6), specifically xi j k for k = 1, . . . , 9 and zi j ` for `= 1, 2, 3.

Since the assumed model contains more parameters than (4.5), the model (4.6) is overfitting the

data, and we would expect the five most significant parameters of (4.6) to be the five parameters

used to generate the data, namely β1, β2, b1i , b2i , and b3i . We can rewrite (4.6) as

yi = X iβ +Zi bi + εi , i = 1, . . . , 30

bi ∼N (0,Ψ) , εi ∼N (0,σ2I ).

Here X i =
�

xi 1 . . . xi 9

�

is a 5×9 matrix for i = 1, . . . , 30 with xi k denoting the 5×1 column vector

of covariates xi j k for j = 1, . . .5 and k = 1, . . .9, and Zi =
�

1 j×1 zi 2 zi 3 zi 4

�

is a 5× 4 matrix for

i = 1, . . . ,30 with 15×1 representing a column vector of ones and zi` representing the 5×1 column

vector of covariates zi j k for j = 1, . . . , 5 and `= 2, 3, 4. Note that each covariate vector corresponds to

only one parameter, indicating that the parameters of (4.6) are identifiable.

With the synthetic data ŷi generated from (4.5), we constructed an estimate of the covariance

matrix in the following manner. We used the MATLAB Statistics Toolbox function fitlmematrix to

obtain optimal parameter estimates q̂ = [q̂1, . . . , q̂30]where q̂i = [β̂1, . . . , β̂9, b̂1i , . . . , b̂4i ] for i = 1, . . . , 30.

We computed the estimated error variance using the relation

ŝ 2 =
R̂ T R̂

N −p
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where

R̂ =







R̂1
...

R̂30






=







y1(X1, Z1; q̂1)− ŷ1
...

y30(X30, Z30; q̂30)− ŷ30







is the column vector of residuals, N = 150 is the total number of observations for all 30 data sets,

and p = pF +pR = 13 is the total number of fixed and random effects parameters. The covariance

estimate was then calculated as

Cov(q̂ ) = ŝ 2(X T X )−1,

where

X =













X1 Z1

X2 Z2
...

...

X30 Z30













.

Note that the pseudoinverse is not necessary since X T X is full rank. We used the diagonal elements

of this covariance matrix to calculate the selection scores for each parameter in each data set.

The selection scores are presented in Table 4.1. To determine the overall ordering of parameter

significance, we used the selection scores to calculate the selection index sums, which are given in

Table 4.2. Based on the selection index sums, we found that the parameters b2i , β2, b3i , β1, and b1i

are the five most significant parameters for (4.6). Hence, we recovered the parameters used in the

true model, which supports the validity of the mixed-effects PSS algorithm.

Example 2: Nonlinearly Parameterized Model

In this example, we use synthetic data to verify the effectiveness of the PSS algorithm for a nonlinearly

parameterized problem. We consider the classic orange tree growth model

yi j =
β1+ b1i

�

1+ e −[ti j−(β2+b2i )]/(β3+b3i )
� + εi j (4.7)

bi ∼N (0,Ψ) , εi ∼N (0,σ2I )

from [24]where, for the j th data point in the i th data set, yi j is the tree circumference in millimeters,

ti j is the time in days, β = [β1,β2,β3] are the fixed effects, and bi = [b1i , b2i , b3i ] are the random

effects. We generated pairwise plots for the fixed effect parameters of (4.7) using the Delayed Re-

jection Adaptive Metropolis (DRAM) algorithm [15, 37]. Observing these pairwise plots in Figure
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Table 4.1: Selection scores for (4.6) for all 30 data sets.

Data
β1 β2 β3 β4 β5 β6 β7 β8 β9 b1i b2i b3i b4iSet

1 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.62 0.051 0.37 13.6
2 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.24 0.026 0.035 0.95
3 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.041 0.58 0.023 2.42
4 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.14 0.025 0.079 11.9
5 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.056 0.042 0.055 3.05
6 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.099 0.070 0.031 1.30
7 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.11 0.007 0.010 0.25
8 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.089 0.035 0.049 2.96
9 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.55 0.010 0.026 0.49

10 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.042 0.025 0.016 0.71
11 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.055 0.043 0.080 1.76
12 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.058 0.035 0.041 10.3
13 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.36 0.026 0.061 1.54
14 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.25 0.021 0.038 1.01
15 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.053 0.014 0.014 0.48
16 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.554 0.046 1.162 22.9
17 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.280 0.031 0.51 3.85
18 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.079 0.006 0.015 0.26
19 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.075 0.016 0.019 0.62
20 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.046 0.012 0.014 0.52
21 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.069 0.086 0.036 4.02
22 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.38 0.011 0.017 0.40
23 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.065 0.030 0.019 0.76
24 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.159 0.014 0.023 0.56
25 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 1.28 0.012 0.023 0.49
26 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.080 0.012 0.58 1.04
27 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.149 0.020 0.077 0.95
28 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.34 0.12 0.088 1.63
29 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.11 0.15 0.054 3.77
30 0.051 0.047 1.21 0.46 0.91 2.02 0.43 0.31 0.22 0.039 0.017 0.032 2.54

Table 4.2: Selection index sums for the linear mixed-effects model (4.6).

Γβ1
Γβ2

Γβ3
Γβ4

Γβ5
Γβ6

Γβ7
Γβ8

Γβ9
Γb1i

Γb2i
Γb3i

Γb4i

107 76 344 265 309 379 235 200 165 164 56 95 335

4.2, we determined that that none of the three plots show single-valuedness; thus, the fixed effect

parameters are identifiable.
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We generated synthetic data for 30 individuals using the model

ŷi j =
β1+ b1i

�

1+ e −[ti j−(β2+b2i )]/β3
� + εi j , εi j ∼N (0, 1), (4.8)

where

ti =
�

118 484 664 1004 1231 1372 1582
�T

.

Here ti is the 1×7 column vector of time covariates for all i = 1, . . . , 30, bi = [b1i , b2i ] are drawn from

N (0,Ψ)with

Ψ =

�

15 0

0 30

�

,

and β1 = 175, β2 = 800, and β3 = 300. Note that (4.8) does not contain an b3i random effect. Thus,

using the mixed-effect PSS algorithm with the synthetic data, we would expect to find that b3i is the

least influential parameter of (4.7).

Using the 30 synthetic data sets ŷi , we employed the MATLAB Statisitics Toolbox function

nlmefit to obtain optimal parameter estimates q̂ = [q̂1, . . . , q̂30]where q̂i = [β̂1, β̂2, β̂3, b̂1i , b̂2i , b̂3i ]
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Figure 4.2: Pairwise plots generated by DRAM for the fixed effects of (4.7).
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for i = 1, . . . , 30. We computed the estimated variance

ŝ 2 =
R̂ T R̂

N −p

where

R̂ =







R̂1
...

R̂30






=







y1(t1; q̂1)− ŷ1
...

y30(t30; q̂30)− ŷ30







is the column vector of residuals, N = 210 is the total number of observations for all 30 data sets,

and p = pF +pR = 6 is the total number of fixed and random effects parameters. We then calculated

the covariance matrix

Cov(q̂ ) = ŝ 2(χ(q̂ )Tχ(q̂ ))†

where † is the Moore-Penrose pseudoinverse and

χ(q̂ ) =







χ1(q̂1)
...

χ30(q̂30)






.

For i = 1, . . . , 30, we computed the local sensitivities

χi (q̂i ) =
�

∂ y
∂ β1
(ti ; q̂i )

∂ y
∂ β2
(ti ; q̂i )

∂ y
∂ β3
(ti ; q̂i )

∂ y
∂ b1i
(ti ; q̂i )

∂ y
∂ b2i
(ti ; q̂i )

∂ y
∂ b3i
(ti ; q̂i )

�

evaluated at the optimized parameter vector q̂i = [β̂1, β̂2, β̂3, b̂1i , b̂2i , b̂3i ] for the i th data set, con-

taining 7 data points. Note that we use the pseudoinverse because χ(q̂ )Tχ(q̂ ) has rank 3 and is,

therefore, non-invertible.

Using the diagonal elements of the estimated covariance matrix, we calculated the selection

scores for each of the six parameters for all 30 data sets. The selection scores are tabulated in Table 4.3,

and the resulting selection index sums are given in Table 4.4. The selection index sums indicate

that b3i is overall the least significant parameter. This is expected since the synthetic data was

generated from (4.8), which did not include an b3i random effect. Hence, the results support the

validity of the mixed-effects version of the PSS algorithm when applied to the benchmark nonlinearly

parameterized problem.
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Table 4.3: Selection scores for the nonlinear mixed-effects orange tree circumference model (4.7).

Data Set |S E1/β̂1| |S E2/β̂2| |S E3/β̂3| |S E4/b̂1i | |S E5/b̂2i | |S E6/b̂3i |
1 0.6479 0.8960 0.7948 71.88 107.87 299.06
2 0.6479 0.8960 0.7948 120.71 95.67 286.26
3 0.6479 0.8960 0.7948 933.49 16.62 1443.12
4 0.6479 0.8960 0.7948 43.45 1413.06 15274.02
5 0.6479 0.8960 0.7948 73.24 1099.03 389.92
6 0.6479 0.8960 0.7948 60.12 239.68 903.57
7 0.6479 0.8960 0.7948 17.44 52.88 276.29
8 0.6479 0.8960 0.7948 241.53 124.86 543.32
9 0.6479 0.8960 0.7948 37.08 76.50 300.59

10 0.6479 0.8960 0.7948 20.75 373.93 667.00
11 0.6479 0.8960 0.7948 8.700 103.18 279.28
12 0.6479 0.8960 0.7948 32.33 62.07 1810.03
13 0.6479 0.8960 0.7948 26.03 374.38 575.21
14 0.6479 0.8960 0.7948 26.70 44.37 315.69
15 0.6479 0.8960 0.7948 29.69 150.75 283.38
16 0.6479 0.8960 0.7948 29.02 388.47 2454.32
17 0.6479 0.8960 0.7948 57.87 93.86 362.46
18 0.6479 0.8960 0.7948 37.02 290.18 441.05
19 0.6479 0.8960 0.7948 269.34 154.94 1602.34
20 0.6479 0.8960 0.7948 162.72 205.70 998.84
21 0.6479 0.8960 0.7948 31.49 130.49 285.46
22 0.6479 0.8960 0.7948 515.65 65.19 1341.84
23 0.6479 0.8960 0.7948 68.15 107.18 309.76
24 0.6479 0.8960 0.7948 92.36 559.78 338.74
25 0.6479 0.8960 0.7948 14806.29 338.39 373.06
26 0.6479 0.8960 0.7948 23.32 191.33 213.74
27 0.6479 0.8960 0.7948 173.02 48.49 222.54
28 0.6479 0.8960 0.7948 33.50 85.21 672.02
29 0.6479 0.8960 0.7948 70.99 193.41 1336.61
30 0.6479 0.8960 0.7948 35.48 320.27 396.94

Table 4.4: Selection index sums for the nonlinear mixed-effects orange tree circumference model
(4.7).

Γβ1
Γβ2

Γβ3
Γb1i

Γb2i
Γb3i

30 90 60 128 145 177
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4.3 Model Selection

The PSS algorithm ranks the fixed and random effects of a mixed-effects model in order of signifi-

cance and defines a subset of the np most influential parameters for 1≤ np ≤ p where p = pF +pR .

These results allow us to limit the number of models considered for testing via information criteria.

Instead of testing all 2pF +pR models as is commonly the case, we only test the p models derived

from the subsets of the np = 1, 2, . . . , p most significant parameters. We apply this method of model

selection to the previous models to verify the PSS algorithm.

For the linear model (4.6), we used both AIC and BIC scores to select from among the 13 models

corresponding to the parameter subsets generated by the PSS algorithm. For 200 trials, we used

(4.5) to generate 30 individual data sets with 5 observations each and performed model selection. In

Table 4.5, we list the percentage of the trials for which the PSS-aided model selection determined the

correct model, the correct fixed effects, and the correct random effects. Moreover, Table 4.5 compares

the results from the PSS-aided model selection to those from various other techniques as reported

by [3]. Note that for the M-ALASSO method, the label of AIC or BIC denotes the method used for

tuning. For REML.IC and EGIC, it denotes the method used for pre-selection. The methods denoted

as LASSO, ALASSO, and Stepwise utilize REML.IC with either AIC or BIC for pre-selection and then

the listed shrinkage or stepwise technique for the final step of model selection. The performance

of the PSS-aided model selection via BIC compares favorably to the other methods, and while the

PSS-aided AIC does not do quite as well, it out-performs the other techniques that make use of the

AIC.

We similarly applied our model selection technique to the nonlinear model (4.7), calculating the

AIC and BIC scores for the 6 models determined by the PSS algorithm. For 200 trials, we employed

the model (4.8) to generate 30 individual data sets with 7 observations each and calculated the AIC

and BIC scores for the appropriate models. In Table 4.6, we tabulate the percentage of the trials

for which the PSS-aided model selection determined the correct model, the correct fixed effects,

and the correct random effects. For the nonlinearly parameterized model, we did not compare our

model selection method to the alternative techniques listed in Table 4.5 because these techniques

are not easily applicable to nonlinear models. Although we do not compare our PSS-aided model

selection to other methods for nonlinear mixed-effects models, note that for both the AIC and BIC,

the percentages compare favorably with those for the linear model selection given in Table 4.5.
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Table 4.5: Model selection results for linear model (4.6). The results from PSS-aided model selection
are shown along with the results from various other methods as reported in [3].

Method %Correct Model %Correct Fixed Effects % Correct Random Effects
PSS BIC 67 75 91
PSS AIC 26 27 91

M-ALASSO BIC 71 73 79
EGIC BIC 47 56 52

REML.IC AIC 19 21 62
REML.IC BIC 59 59 68
Stepwise AIC 13 15 62
Stepwise BIC 51 53 68

LASSO AIC 17 21 62
LASSO BIC 45 47 68

ALASSO AIC 21 24 62
ALASSO BIC 62 63 68

Table 4.6: Model selection results for nonlinear model (4.7) using PSS to aid in model selection.

Method %Correct Model %Correct Fixed Effects % Correct Random Effects

PSS BIC 55 100 55

PSS AIC 62 100 62

4.4 Conclusion

Because local and global sensitivity analysis techniques are generally ineffective for mixed-effects

models, one must determine alternative techniques to ascertain which parameters are noninfluen-

tial and can be effectively fixed for subsequent computations. The most common model section

technique, the use of information criteria, is limited in that it can be computationally demanding for

problems with large numbers of parameters. We developed a parameter subset selection algorithm

for mixed-effects models, which can be used to limit the number of models required to be tested

with information criteria. We verified the performance of the mixed-effects PSS algorithm and

successfully applied it to aid model selection.

Although the PSS algorithm performed well for the considered linear and nonlinear examples, it
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is important to remember that the algorithm is rooted in asymptotic theory; thus, it is vital that a

sufficient data points be used to obtain accurate results. Future work will involve a more thorough

exploration of this aspect of the PSS algorithm, hopefully providing more insight as to the number of

observations required to trust the results of the algorithm. For additional future work, we will further

test PSS-aided model selection, applying it to additional examples—both linear and nonlinear—and

comparing our nonlinear model selection results to those from other techniques described in the

literature. Moreover, we will explore information criteria beyond the basic AIC and BIC, which may

not be ideal for use with mixed-effects models [10, 14].
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CHAPTER

5

RADIATION DETECTION IN AN URBAN

SETTING

Our objective in this component of the investigation is to determine the location and intensity of a

radiation source in an urban environment. As a prototypical setting, we consider a 250 m×180 m

block of downtown Washington D.C. as depicted in Figure 5.1. We utilize the responses of radiation

detectors to help us infer the source intensity and location. Note that we are primarily focused

on gamma radiation, so the detector response will be in the form of photon counts. This problem

set-up represents a classical inverse problem, and we employ Bayesian inference to estimate the

location and intensity of the radiation source. We present inference strategies for both stationary

and mobile sensors.

5.1 Model Derivation

In our problem, we focus on detecting ionizing radiation in the form of gamma rays. Thus, we

need a mathematical description of photon transport to formulate our model. We start with several

assumptions to simplify the problem. Since the detectors and the radiation source are significantly

smaller than the search domain, we can simplify the problem geometry by treating them both as

points. With this modification, the solid angle subtended by the detector is assumed to be very small.

Thus, a photon that undergoes a scattering event, while within the solid angle, is very unlikely to
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Figure 5.1: Satellite image of the problem geometry, source location, and stationary detector
positions from [39].

re-emerge in the angle of detection after the event. Moreover, photons that are absorbed by the

media while traveling on the path from the source to the detector will not be detected. Hence, to

model the photons reaching the detector, we are interested in quantifying the uncollided flux—that

is, the flux of photons along path from the source to the detector that are not absorbed or scattered.

We begin our model formulation by deriving the formula for uncollided flux. Let I denote the

angular flux of a photon and let n denote the photon number density. By definition,

I = c n ,

where c is the speed of light. Let (r , Ω̂, E , t ) denote the phase space where r is the position vector, Ω̂

is the unit vector in the direction of the photon’s travel, E is the photon energy, and t is time. Now,

consider an arbitrary volume V . Then, the net rate of photon change in volume V is

∂

∂ t

�∫

V

1

c
I (r , Ω̂, E , t )d r

�

d E d Ω̂= (gains in V )− (losses in V ). (5.1)

58



We consider only uncollided photons, so we have gains only as results of

1. External source

2. Photons streaming into V .

Photon losses from the volume are solely due to

3. Any interaction, which would render the photon “collided"

4. Photons streaming out of V .

Thus, we modify (5.1) to obtain

∂

∂ t

�∫

V

1

c
I (r , Ω̂, E , t )d r

�

d E d Ω̂= (Gain 1+Gain 2)− (Loss 3+Loss 4). (5.2)

Let S (r , Ω̂, E , t ) denote the rate of external source emission in d r about r , d Ω̂ about Ω̂, etc. It then

follows that

(Gain 1) =

∫

V

S (r , Ω̂, E , t )d r d E dΩ. (5.3)

Now, the net rate at which photons stream out of V is given by

(Loss 4)− (Gain 2) =

∫

S

d SΩ̂I (r , Ω̂, E , t )d E d Ω̂,

where Ω̂ is a unit vector. Applying the Divergence Theorem, we obtain

(Gain 2)− (Loss 4) =

∫

S

d S Ω̂I (r , Ω̂, E , t )d E d Ω̂=

∫

V

d r Ω̂ ·∇I (r , Ω̂, E , t )d E d Ω̂. (5.4)

By definition of the total scattering cross-section Σt , we obtain

(Loss 3) =

∫

V

d r Σt (r , Ω̂, E , t )d E d Ω̂. (5.5)

Substituting (5.3), (5.4), and (5.5) into (5.2) yields

∫

V

d r
�

1

c

∂

∂ c
I (r , Ω̂, E , t ) + Ω̂ ·∇I (r , Ω̂, E , t ) +Σt (r , Ω̂, E , t )−S (r , Ω̂, E , t )

�

d E d Ω̂= 0.

Since V is arbitrary, it follows that

∫

V

d r f (r ) = 0⇒ f (r ) = 0.
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Thus, we set

1

c

∂

∂ c
I (r , Ω̂, E , t ) + Ω̂ ·∇I (r , Ω̂, E , t ) +Σt (r , Ω̂, E , t )−S (r , Ω̂, E , t ) = 0. (5.6)

Rearranging (5.6), we obtain

1

c

∂

∂ c
I (r , Ω̂, E , t ) + Ω̂ ·∇I (r , Ω̂, E , t ) +Σt (r , Ω̂, E , t ) = S (r , Ω̂, E , t ), (5.7)

which is the transport equation for uncollided photons. Disregarding the depletion of the media and

assuming that the measurement time is short enough that the source activity is constant throughout

allows us to eliminate the time dependence, so we obtain

Ω̂ ·∇I (r, E , Ω̂) +Σt (r, E , Ω̂)I (r, E , Ω̂) = S (r, E , Ω̂). (5.8)

Moreover, we can assume that our source is monoenergetic, only emitting photons with energy

E0. Then, we can express the photon source as

S (r, E , Ω̂) = 4π0δ (‖r− rs ‖)δ(E −E0),

where I0 and rs are respectively the nominal source intensity and location. Substituting this expres-

sion for S (r, E , Ω̂) into (5.8) yields

Ω̂ ·∇I (r, E , Ω̂) +ΣT (r, E , Ω̂)I (r, E , Ω̂) = 4π0δ (‖r− rs ‖)δ(E −E0), (5.9)

where δ is the Dirac delta density. Solving for the uncollided flux I , we obtain

I (E ) = I0 exp

�

−
∫

rd−rs

Σt d s

�

δ(E −E0),

where rd is the location of the detector and rs is the location of the source.

Now, we derive the formula for the detector response. Since the detector is assumed to be small,

the intensity striking its face is given by

Id = Ω̂d I (E ),

and we can approximate the solid angle of detection as

Ω̂d =
A

4π‖rd − rs ‖2
2

,

where A is the area of the detector. Hence, we can quantify the number of photons from the source
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counted by the detector as

Γs (E ) = I (E )∆εi n t
A

4π‖rd − rs ‖2
2

,

where∆ is the dwell time and εi n t is the detector efficiency. Integrating over all possible energies,

we obtain

Γs = I0∆εi n t
A

4π‖rd − rs ‖2
2

exp

�

−
∫

rd−rs

Σt d s

�

.

Assuming the presence of only a single source, we can account for the total detector response by

including background radiation B to obtain

Γ = I0∆εi n t
A

4π‖rd − rs ‖2
2

exp

�

−
∫

rd−rs

Σt d s

�

+B .

Thus, in the context of the inverse problem with parameters rs and I0, the detector response is given

by

Γ (I0, rs ) = I0∆εi n t
A

4π‖rd − rs ‖2
2

exp

�

−
∫

rd−rs

Σt d s

�

+B . (5.10)

5.2 Data Generation

LetΣt denote the total nuclear cross section of a material. We assume that the air hasΣt = 0, and we

denote the cross sections of the Nb buildings asΣk
t for k = 1, . . . , Nb . We assume that the buildings are

homogeneous and have a constant Σt throughout. We draw the Σt for each of the buildings from a

scaled uniform distribution. For a building measuring 25 meters in length, we draw Σt ∼U (0.5, 1.5).

Similarly, for a building 50 meters in length, we draw Σt ∼ U (2,3). Letting εi n t be the intrinsic

efficiency of the radiation detector, we set εi n t = 0.62. Let B indicate the detected background

radiation. We set B = 300 cps. Let the position of the source and the Nd detectors be respectively

denoted by rs and
¦

r j
d

©Nd

j=1
. Let A be the surface area of the detector. Here, we simulate use of a

3 inch × 3 inch NaI detector. Let∆ be the dwell time—that is, the time for which the detectors make

measurements. We assume the same dwell time for all of the detectors. We take ten consecutive

measurements each with a ten-second dwell time. Given Σk
t , εi n t , B , A, rs ,

¦

r j
d

©Nd

j=1
, I0, and∆, we

generate one vector of measurements Γ̂ = [Γ̂1, . . . , Γ̂Nd
]T with the following steps.

1. Set I0 to the nominal intensity of the simulated radiation source. We employ a source of

1 mg of Cs-137. Note that the nominal intensity is 3.214× 1012 for 1 g of Cs-137, so we set

I0 = 3.214×109 Bq.

2. Ray-trace from rs to rd j
to obtain path lengths γ1 j , . . . ,γm j j . The path lengths indicate the

distances that the radiation from the source travels through the air before hitting either a
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building or the detector. That is, the distance Dj from the source to the j th detector is split into

m j path lengths due to m j −1 buildings partitioning the ray from the source to the detector.

Thus, we have Dj =
∑m j

i=1γi j . We employ the Python package Shapely to perform the ray

tracing.

3. Obtain the value Γ j , denoting the number of particles arriving at the detector, with the formula

Γ j = I0∆εi n t
A

4π‖rd j
− rs ‖2

2

exp

�

−
m j
∑

i=1

Σi
t γi j

�

+B .

4. Draw Γ̂ j ∼ Poisson(Γ j ). We draw from the distribution ten times to reflect the ten consecutive

data collections with dwell time∆= 1s.

5.3 Methods: DRAM and DREAM

For the purpose of verification, we employed two Bayesian parameter estimation techniques: the

Delayed Rejection Adaptive Metropolis (DRAM) algorithm and the DiffeRential Evolution Adaptive

Metropolis (DREAM) algorithm. As described in Chapter 2, the DRAM algorithm [15, 37] is a modified

version of the Metropolis-Hastings algorithm, a Markov Chain Monte Carlo (MCMC) technique used

to randomly sample from probability distributions. Since radiation count data is Poisson distributed,

we employ a Poisson likelihood function. Hence, we provide a more general version of DRAM in

Algorithm 7 for which the notation does not rely on a normal likelihood function. We still use the

Delayed Rejection component given in Algorithm 3.

While the adaptation and delayed rejection components of DRAM are often sufficient for ob-

taining posterior parameter densities, there are some types of problems for which the algorithm

is not efficient, especially those involving complex, multimodal, or heavy-tailed posteriors [37]. In

response to these concerns, parallel chains were incorporated into adaptive Metropolis algorithms,

resulting in differential evolution Markov chain methods. One such method is the DREAM algorithm

described in [48]. The steps of DREAM are detailed in Algorithm 8.
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Algorithm 7 Delayed Rejection Adaptive Metropolis for a General Likelihood Function [15, 37]

(1) Set design parameters sp and k0 and the number of chain iterates M .

(2) Determine q 0 =arg minq

∑n
i=1[vi − fi (q )]2.

(3) Set V0 equal to the initial covariance estimate and set R0 = chol(V0).

(4) For k = 1, ..., M

(a) Sample zk ∼N (0, I ).

(b) Construct candidate q ∗ = q k−1+R T
k−1zk .

Note that this is equivalent to sampling q ∗ ∼N (q k−1, Vk−1).

(c) Sample uα ∼U (0, 1).

(d) Computeα(q ∗|q k−1) =min
�

1,
π(y |q ∗)π0(q ∗)

π(y |q k−1)π0(q k−1)

�

using likelihood functionπ and prior

π0.

(e) If uα <α,

Set q k = q ∗.

else

Enter Delayed Rejection Algorithm 3.

endif

(f) If mod (k , k0) = 1,

Update Vk = sp cov(q 0, q 1, ..., q k ) and Rk = chol(Vk ).

else

Vk =Vk−1.

endif
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Algorithm 8 DREAM from [48]
Let the current state of the chain, corresponding to the i th chain iteration, be given by the p -
dimensional vector qi . Let the j th element of the current state of the i th chain be given by q i

j .

1. Let p be the number of parameters and define p ′ as the number of parameters that are jointly
updated. Set p ′ = p . Set the number of chains N and the number of pairs δ. Define γ(δ, p ′) as
the number of randomly sampled pairs. We use γ(δ, p ′) = 2.38/

p
2δd .

2. Draw an initial population—that is, a vector of p parameters for each of the N chains denoted
by {q i , i = 1, 2, .., N }—using the prior distributions for each parameter.

3. For i = 1, . . . , N

(a) Generate a new candidate using the proposal function

q ∗i = q i +
�

Ip +E
�

γ(δ, p ′)

�

δ
∑

k=1

q r1(k )−
δ
∑

`=1

q r2(`)

�

+ ε, (5.11)

where r1(k ), r2(`) ∈ {1, 2, .., N }with r1(k ) 6= r2(`) 6= i , for k ,`= 1, 2, ..,δ. Here each entry

of the p ×p matrix E is drawn fromU (−b , b ) and the vector ε is drawn fromN (0, b ∗)

where |b |< 1 and b and b ∗ are smaller than the variance of the posterior density.

(b) Since in many cases it is not optimal to update all p dimensions simultaneously,

DREAM employs randomized subspace sampling, updating each dimension with prob-

ability C R and decreasing p ′ accordingly. Here

q ∗ij =

�

q i
j , if u ≤ 1−C R , p ′ = p ′−1

q ∗ij , otherwise ,
(5.12)

where j = 1, . . . , p and u is drawn from uniform distributionU (0, 1). Note that if we

have crossover probability C R = 1, all dimensions are updated and p ′ = p .

(c) Compute Metropolis acceptance probability

α(q ∗i ) =min

�

1,
π(ν|q ∗i ) ·π0(q ∗i )
π(ν|q i ) ·π0(q i )

�

.

(d) Sample u ∈U (0, 1).

If α> u ,

Set q i+1 = q ∗i .

else

Set q i+1 = q i .

endif.

(Continued on the next page)
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Algorithm 8 DREAM (continued)

4. Remove possible outlier chains using inter-quartile range (IQR) statistics during the burn-in
period.

5. Compute R̂ j , the Gelman-Rubin convergence diagnostic [13], for all p dimensions with j =
1, . . . , p using the last 50% of each chain.

6. If R̂ j < 1.2, which indicates that the chains have converged,

End the algorithm.

else

Return to chain evolution in Step 3.

We applied the Delayed Rejection Adaptive Metropolis (DRAM) algorithm to estimate the pa-

rameters x , y , and I0 employing synthetic data generated as described in Section 5.2 using Nd = 10

detectors along with the building geometry, source location, and detector positions shown in Fig-

ure 5.1. We used the ordinary least squares estimates as the starting values for each of the parameter

chains. The x and y coordinates were bound based upon the limits of the geometry. The I0 param-

eter was bound by the interval [5× 108,5× 1010]. For all three parameters, we utilized flat priors

constrained by the specified bounds. We employed the Poisson log likelihood function

`(rs , I0|Γ̂ ) =
Nd
∑

j=1

��

10
∑

i=1

Γ̂ j i log
�

Γ j (I0, rs )
�

�

−10 · Γ j (I0, rs )

�

, (5.13)

where Γ j is the model response from (5.10) for the j th detector and Γ̂ j i is the i th component of the

synthetic data vector Γ̂ j for the j th detector.

After a burn-in period of 3000, we reran the code for 104 iterations. The resulting chains are

shown in Figure 5.2. Visual inspection of the chains suggests that they are burned in, and the Geweke

diagnostic values reported in Table 5.1 further support this. Using the mean chain values as our

parameter estimates, we obtained x̂ = 158.06, ŷ = 98.19, and Î0 = 3.249× 109, which compare

favorably with the parameter values used to generate the synthetic data: x = 158, y = 98, and

I0 = 3.214×109.

To verify our results obtained using Bayesian inference via DRAM, we also estimated the pa-

rameters x , y , and I0 using the DREAM algorithm. For DREAM, we utilized the Poisson likelihood

(6.2) as well as uniform priors bounded by the constraints described in the previous section for the

DRAM algorithm. We employed ten chains of length 104 for each parameter, utilizing a total of 105

function evaluations. The starting values for each of the ten chains were drawn from the respective
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Table 5.1: Numerical results from DRAM using the Poisson likelihood (6.2). The reported parameter
estimates are the mean chain values.

Parameter Estimates Geweke Diagnostic
x̂ 158.06 0.99962
ŷ 98.188 0.99953
Î0 3.249×109 0.99966

(a) (b) (c)

Figure 5.2: Chains generated by DRAM for source characteristics (a) x , (b) y , and (c) I0.

prior distributions of each parameter.

Figure 5.3 shows the plot of the ten chains for all three parameters. The truncated chains in

Figure 5.3 (d)–(f) suggest that the chains have burned in after the 2000th sample. This is confirmed

by the plots of the Gelman-Rubin R-statistic in Figure 5.4. For the parameter estimates, we used

the mean value of the final 25% of the chains, which are comprised of samples from the stationary

posterior distributions. The resulting parameter estimates x̂ = 158.05, ŷ = 98.18, and Î0 = 3.251×109

compare favorably with the true parameter values. As shown in Table 5.2, the parameter estimates

produced by DREAM and DRAM agree. Moreover, as shown in Figure 5.5, the probability density

functions (pdf’s) resulting from the two methods appear to be nearly identical. While the pdf’s are

visually very similar, there are quantitative options for determining their agreement. The pdf’s were

constructed using parameter chains, which—after the burn-in period—are simply samples from

the posterior distribution. We can use energy statistics to test the hypothesis that the samples in the

DREAM and DRAM chains for a given parameter come from the same distribution [41, 42, 43]. This

constitutes future work.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Full DREAM chains for (a) x , (b) y , and (c) I0. Truncated DREAM chains only including
the burned-in portion for (d) x , (e) y , and (f) I0.

Figure 5.4: Gelman-Rubin R-statistic at each DREAM chain iteration. R-statistic values below 1.2
suggest that the chain has converged to its stationary distribution.
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Table 5.2: Numerical results from DRAM and DREAM using the Poisson likelihood (6.2) along with
the true values used to generate the synthetic data. The reported parameter estimates are the mean
chain values.

Parameter DRAM DREAM True
x̂ 158.06 158.05 58
ŷ 98.188 98.18 98
Î0 3.249×109 3.251×109 3.214×109

(a) (b) (c)

Figure 5.5: Comparison of marginal pdf’s for source components (a) x , (b) y , and (c) I0 obtained
with DRAM and DREAM.

5.4 Optimal Mobile Sensor Deployment via Mutual Information

So far in this chapter, we have only considered radiation detection via stationary sensors. Moreover,

these stationary detectors were randomly positioned with no attention to the optimality of their

placement aside from a cursory visual inspection that they were well-dispersed throughout the

domain. The optimal placement of stationary detectors is a challenging problem in the context of

source localization because ideal detector placement is highly problem dependent. In particular,

optimal detector placement is based on the location of the source, which will vary among problems

and generally be unknown a priori. As an alternative, mobile sensors can easily adapt to differing

source locations when paired with a movement strategy that places the sensors in optimal mea-

surement locations. Here we employ mutual information, a dimensionless value that measures how

much one random variables informs another, to guide mobile sensor movement.

5.4.1 Employing Mutual Information to Choose an Experimental Design Conditions

for Optimal Model Calibration

In a variety of problems, low-fidelity models are used in place of full physics models that are com-

putationally prohibitive. We can calibrate these low-fidelity models using experimental data, but
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running experiments to obtain this data can be difficult or costly. In such cases where obtaining

data is expensive, it is desirable to limit the number of experiments and, for the experiments that

are carried out, to provide the maximum amount of information. Thus, given a current data set, we

seek an experimental design condition producing a measured response that optimally informs the

low-fidelity code. That is, we wish to obtain a new data point that provides the greatest reduction

in the uncertainty of the low-fidelity parameter estimates, and we seek the design condition for

the experiment that provides such response data. In this section, we describe the use of mutual

information to choose such an optimal design condition within a Bayesian framework. This process

is based on the work in [5, 18, 44] and is more generally related to the work in [19].

Given a set of experimental observations Dn−1 = {d̃1, d̃2, ..., d̃n−1}, we seek a design condition

ξ∗n ∈Ξ, which would generate new data point (ξ∗n , d̃n ), such that we optimally reduce the uncertainty

in the low-fidelity model parameters q ∈Rp when we re-calibrate the model using the new set of

observations Dn = {d̃n , Dn−1}. We use mutual information to choose ξ∗n from the set of possible

design conditions Ξ. Note that we can use Bayes’ Rule to represent how the posterior parameter

distributions change with the inclusion of the additional point (ξn , d̃n ). In particular, we have

p (q |Dn ) =
p (Dn |q )p (q )

p (Dn )
=

p (d̃n , Dn−1|q )p (q )
p (d̃n , Dn−1)

. (5.14)

Let dn denote the unknown response from the yet-to-be-performed experiment under design

condition ξn . To quantify the mutual information between dn and parameter values q , we employ

Shannon entropy estimates as in [44]. For a random variable Q with associated pdf p (q ) for q ∈Q,

whereQ is the parameter space, the Shannon entropy is given by

H (Q ) =−
∫

Q
p (q ) log(p (q ))d q

for the prior and

H (Q |ν) =−
∫

Q
p (q |ν) log(p (q |ν))d q

for the posterior distribution given observations ν. Based on our goals for the selecting a design

condition, we define the utility function

U (dn ,ξn ) =

∫

Q
p (q |dn , Dn−1) log p (q |dn , Dn−1)d q −

∫

Ω

p (q |Dn−1) log p (q |Dn−1)d q , (5.15)

which quantifies the amount of information provided by the low-fidelity measurement dn obtained

under design condition ξn ∈Ξ. We can then compute the average amount of information obtained

69



with design condition ξn by marginalizing over the set of all unknown future observationsD as

Edn
[U (dn ,ξn )] =

∫

D
U (dn ,ξn )p (dn |Dn−1,ξn )d dn . (5.16)

We substitute (5.15) into (5.16) to obtain the expected utility

Edn
[U (dn ,ξn )] =

∫

D

∫

Q
p (q , dn |Dn−1,ξn ) log

p (q , dn |Dn−1,ξn )
p (dn |Dn−1,ξn )

d q d dn

−
∫

D

∫

Q
p (q , dn |Dn−1,ξn ) log p (q |Dn−1)d q d dn

=

∫

D

∫

Q
p (q , dn |Dn−1,ξn ) log

p (q , dn |Dn−1,ξn )
p (q |Dn−1)p (dn |Dn−1,ξn )

d q d dn

= I (q ; dn |Dn−1,ξn ). (5.17)

As indicated by the notation in (5.17), the expected utility quantifies the mutual information

I (q ;dn |Dn−1,ξn ) between the low-fidelity model parameters q and unknown measurement dn at

design condition ξn . The optimal design condition ξ∗n maximizes the mutual information; that is,

ξ∗n = arg max
ξn∈Ξ

I (q ; dn |Dn−1,ξn ).

We then perform an experiment under the optimal condition ξ∗n and use the resulting observation

d̃n to recalibrate the model parameters q . If design replication is not desired, the chosen ξ∗n is then

eliminated from the design set Ξ. Note that the integral in (5.16) generally cannot be evaluated

directly; hence, numerical methods are necessary for the calculation of mutual information. In this

dissertation, we utilize the k NN (k t h -Nearest Neighbor) method proposed in [17] to obtain our

mutual information values; see Appendix A for more details. An alternative option, not employed

here, for numerically calculating mutual information is the Approximate Nearest Neighbor (ANN)

method [2]. Compared to the k NN method, the computational cost of the ANN algorithm is much

less. Whereas k NN requires a computational time on the order of O (n 2), the ANN algorithm running

time is on the order of O (n log n ) for n data points [18].

5.4.2 Mutual Information for Mobile Sensors

The problem of guiding mobile sensors is analogous to finding an optimal design condition to

inform low-fidelity model parameters. The goal is to move a given sensor to the measurement

location—or, design condition—that provides the most information about the source location and

intensity, which are the parameters of the simplified radiation transport model (5.10). Note that
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we are not specifying the sensor dynamics or trajectories but rather are specifying a sequence of

discrete locations where measurements optimally inform parameters. Thus, when considering

mobile sensors, we take a similar approach to that described in Section 5.4.1. Based on the approach

described in the previous section and the algorithm detailed in [18], we propose the mobile sensor

movement strategy in Algorithm 9.

To evaluate the performance of this strategy, we once again examine the problem of determining

the location and intensity of an unknown radiation source in of downtown Washington D.C. In

practice, we would move to the optimal design location and obtain experimental measurements, but

we are unable to collect real-life data as defined by our simulated problem. Because there are practical

and ethical considerations associated with placing a radiation source in downtown Washington D.C.,

we are exploring other options for obtaining experimental data for similar problems. In cooperation

with Oak Ridge National Lab, we have arranged a measurement campaign, which will take place

at National Guard urban training center at Fort Indiantown Gap. Moreover, we are also looking

into using high-fidelity codes, such the Monte Carlo N-Particle (MCNP) transport code developed

by Los Alamos National Lab, to generate higher-quality synthetic data. In this case, we could use

high-fidelity synthetic data to inform the low-fidelity model calibration as in [18]. However, in this

dissertation, we simply generate synthetic data from the simplified model (5.10) for all possible

measurement locations a priori and supply the synthetic measurements in place of a true measured

response. As before, the synthetic response for each location is a vector of ten values, corresponding

to the detector counts obtained over ten consecutive one-second measurement periods.

For the set of possible design locationsΞ, we constructed a discrete grid of possible measurement

sites. As shown in Figure 5.6, we employed 29 regularly-spaced grid points, requiring that they be

placed outside of the buildings. With a regular grid throughout the geometry, randomly selecting

the starting locations for the three sensors is likely to result in the choice of three detector positions

that register little to no signal from the radiation source. To avoid this, we intentionally selected

three points that were well-dispersed throughout the geometry. Specifically, we used (61.65, 44.08),

(92.48,132.25), and (184.96,66.13) as the initial locations. We employed a value of N = 5000 and

a value of k = 6 for the k NN algorithm. For parameter calibration via DRAM, we used the same

bounds as in the stationary sensor problem. For x and y , we employed uniform priors characterized

by these bounds, but for I0, we employed a normal approximation of a Poisson prior with mean

and the variance equal to 3.214×109. Use of a more informative prior, compared to the uniform

prior in the stationary detector problem, helped to decrease the burn-in period for the multiple

model calibrations. We also employed chain starting values equal to the values of x , y , and I0 used

to generate the data to further reduce the computation time.

The order in which the design conditions were selected are shown in Figure 5.7. The source is

shown as a red triangle, and the three initial points are shown as green stars. The order in which the

design conditions were chosen appears to be reasonable. The early points were chosen to be either
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Figure 5.6: Grid of possible design locations for mobile sensors.

near the source or near the corner of a building, which suggests good exploration of the geometry.

Moreover, the final measurement locations to be selected were those at the perimeter. While the

search strategy seems to be valid, the results are less promising for the resulting posterior parameter

distributions. For both x and y , the posteriors produced by DRAM at each iteration of Algorithm 9

were fairly uniform with the chains hitting against the enforced bounds. The chains and pdf’s for

the final iteration are shown in Figures 5.8 and 5.9, respectively. In this regard, the results from the

stationary detectors are much better with the narrow posterior distributions suggesting a much

smaller amount of uncertainty in the parameter estimates. The uniform posteriors produced by

the mobile sensor measurements are likely due to the high number of design locations at which

little to no signal from source is detected. In fact, the responses at two of the three initial sensor

locations, (61.6540,44.0830) and (92.4810,132.2500), are close to the nominal background count

of 300, indicating little to no influence from the source. A possible remedy for this problem would

be to implement a filtering process which removes noninformative design locations from the set Ξ

and to pair that process with a method for initializing all three detectors at informative points. This

constitutes future work.
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Algorithm 9 Mobile Sensor Movement Strategy

1. Set N equal to the number of samples to be used in the k NN algorithm.

2. Define the set Ξ of nL possible measurement locations.

3. Initialize with three sensors placed at locations ξ1,ξ2,ξ3 chosen from Ξ. Take readings to
obtain data set η3 = [(ξ1, d̃1), (ξ2, d̃2), (ξ3, d̃3)]. Note that these three initial locations should be
chosen so that they are well-dispersed throughout the domain.

4. The remaining possible locations for mobile sensors are [ξ4,ξ5, ...,ξnL
].

5. For r = 4, . . . , nL −1,

(a) Let Ξr be the remaining design conditions.

(b) Employ DRAM as detailed in Algorithm 7 using the data set ηr−1 to construct a 3×N

matrix of parameters chains {q i }Ni=1.

(c) Send {q i } to the k NN algorithm detailed in Appendix A.

(d)The k NN algorithm returns a single design condition ξnr
, which indicates where one

of the three mobile sensors should move. Move a sensor to the location, and measure

the detector response to obtain d̃nr
. Here we use synthetic data in place of the measured

response. Append the new location and response (ξnr
, d̃nr
) to data set ηr−1 to obtain

ηr .

(e) Remove ξnr
from Ξr to obtain Ξr+1.
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Figure 5.7: Order in which the sensor locations were employed. The blue x’s indicate the possible
measurement locations of Ξ, and the number indicates the iteration of Algorithm 9 for which the
design location was selected. The green stars represent the original locations of the three sensors.
The red triangle shows the location of the source.
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Figure 5.8: DRAM chains from the final iteration of Algorithm 9 with 25 potential design conditions.
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Figure 5.9: Marginal pdf’s constructed from the DRAM chains of the final iteration of Algorithm 9
with 25 potential design conditions.
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CHAPTER

6

MODELING RADIATION DETECTION

USING MIXED-EFFECTS FOR

BACKGROUND VARIATION

In Chapter 5, we employed Bayesian parameter estimation to solve a radiation source localization

inverse problem. Recall that in both the model (5.10) and the generation of synthetic data, we treated

background radiation as a constant set to 300 counts per second (cps). To improve the physical

accuracy of the model, we opted to estimate the background radiation, treating it as a parameter.

However, simple parameterization does not account for the varying background radiation at each

of the detector locations. Measurements taken at the Fort Indiantown Gap National Guard Training

Center in Pennsylvania indicate that background radiation fluctuates with location, even within

a localized urban area. Moreover, these measurements suggest that the background radiation is

normally distributed within the urban locale. To account for the underlying distribution of the

background radiation, we employed mixed-effects modeling, allowing us to estimate the individual

values of the background radiation at each of the detectors as well the mean and standard deviation

of the underlying distribution.
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6.1 Revised Model and Data Generation

Modifying (5.10) to include background variation, we obtain the model

Γ j (I0, rs , B j ) = I0∆εi n t
A

4π‖rd j
− rs ‖2

2

exp

 

−
∫

rd j
−rs

Σt d s

!

+B j ,

where B j is the individual background parameter for the j th detector, j = 1, . . . , Nd , and all other

terms are as defined previously. We assume that

B j ∼N (µ,σ2).

We generate synthetic data as in Section 5.2 with the exception of Step 4. To obtain the value Γ j ,

which denotes the number of photons counted by the detector, we now employ the formula

Γ j = I0∆εi n t
A

4π‖rd j
− rs ‖2

2

exp

�

−
m j
∑

i=1

Σi
t γi j

�

+B j

where B j is the background radiation for the location of the j th detector. The values B j are drawn

from the normal distributionN (259.4,13.022), which reflects the data from Fort Indiantown gap

[40]. We use the data Γ̂ = [Γ̂1, . . . , Γ̂Nd
]T to estimate the parameters I0, rs = (x , y ), and B j for all

j = 1, . . . , Nd detectors and the hyperparameters µ andσ using the mixed-effects version of DRAM

from Algorithms 4 and 5. Note that estimating B j for each detector along with the corresponding

hyperparameters is equivalent to estimating the alternative mixed-effects formulation B + r j with

fixed effect B =µ and random effects r j ∼ N (0,σ2) along with the random effects standard deviation

σ. For this problem, we only have a single random effect, so we can implement mixed-effects DRAM

via the MATLAB MCMC Toolbox DRAM code, which operates under the assumption that the random

effects covariance matrix is diagonal, without loss of generality.

6.2 Non-Unique Optimal Parameters

We generated data using a 1-mg Cs-137 radiation source located at the coordinates (158,98). We

generated ten sets of observations for ten randomly-placed detectors. We denote the ten realizations

from the j th detector as

Γ̂ j = [Γ̂ j 1, Γ̂ j 2, · · · , Γ̂ j 10].

Using this data, we initially attempted to simultaneously estimate the parameters x , y , I0, and B j

for all j = 1, . . . ,10 along with hyperparameters µ and σ for the radiation model (5.10) using the

modified delayed rejection adaptive metropolis (DRAM) algorithm from Algorithms 4 and 5. We used
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the true values of x , y , and I0 as the starting values, and we set the initial values of B j = 300 for all

j = 1, . . . , 10. The x and y coordinates were bounded based upon the limits of the geometry—that is,

the grid representing the portion of interest of downtown Washington D.C. The intensity parameter

I0 was bounded by the interval [5×108,5×1010], and the B j parameters were bounded below by

zero for all j = 1, . . . , 10.

For both x and y , we employed a flat prior, specifically one specified by the parameter bounds.

Since I0 represents the detector counts based on the source intensity, we used a normal approxima-

tion of a Poisson distribution as the prior. That is, we set the mean and the variance equal to the true

value of I0. The prior for each B j is determined by hyperparameters µ and σ with B j ∼N (µ,σ2).

We employed hyperpriors µ∼N (300, 202) andσ∼ Inv-χ2(1, 202). Since Γ̂ j ∼ Poisson(λ j )where

λ j = Γ j (I0, rs ) = I0∆εi n t
A

4π‖rd j
− rs ‖2

2

exp

�

−
m j
∑

i=1

Σi
t γi j

�

+B j (6.1)

for detectors j = 1, . . . , Nd , we employed the Poisson log likelihood function

`(rs , I0|Γ̂ ) =
Nd
∑

j=1

��

10
∑

i=1

Γ̂ j i log
�

Γ j (I0, rs )
�

�

−10 · Γ j (I0, rs )

�

. (6.2)

Note that the likelihood function excludes constant terms that do not depend on λ j as defined by

(6.1).

We employed the MCMC Toolbox DRAM code utilizing the hierarchical option localflag =
2 for the background parameters. After a burn-in period of 2× 104, we reran the code for 5000

iterations. The resulting chains are shown in Figure 6.1. It is clear that the chains have not burned

in, but more importantly, the chains appear to have shifted away from burning in near their true

values, jumping to an alternative set of optimal parameters. This suggests that the parameter set

is non-identifiable in the sense that the parameter estimates are not uniquely determined by the

data. Hence, the optimal parameter set is not unique, and the parameters cannot be simultaneously

estimated.

6.3 Narrow Prior Distribution for the Background Parameters

When good a priori information about model parameters is available, the Bayesian framework is

advantageous. In particular, narrow prior distributions can sometimes remedy the type of iden-

tifiability problem seen in Section 6.2. We obtain such a prior for the background parameters by

performing a calibration in the absence of a source.

To simulate data for a zero-source calibration, we generated synthetic data by setting I0 = 0.

We again obtained ten observations for each detector with each observation corresponding to a
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Figure 6.1: Chains generated using DRAM with Poisson likelihood (6.2) for parameters rs = (x , y ),
I0, and B j for j = 1, . . . , 10.

one-second dwell time. Based on (6.1), the resulting data for the j th detector is simply ten values

sampled from the distribution Poisson(B jtrue
), where B jtrue

is the value of the background radiation

at the j th detector location that was used to generate the data.

Using this synthetic data, we fixed I0 = 0 and (x , y ) = (158,98) in model (6.1), leaving only the

background parameters B j for j = 1,2, . . . ,10 and the hyperparameters to be estimated. Note that

the choice to fix the source location as (158,98)was arbitrary since it corresponds to the location

of an absent source. We employed the mixed-effects DRAM algorithm to estimate the parameters,

again using the localflag = 2 option in the MCMC Toolbox. As before, we bounded all of the

background parameters to be positive. We used a burn-in period of 1.5× 104 and final chains of

length 5000. As shown in Figures 6.2 and 6.3, the chains and hyperchains have successfully burned-

in. Moreover, Table 6.1 shows a comparison of the parameter and hyperparameter estimates with

their true values, and the estimates closely agree with the values used to generate the data.

Note that we now have estimates for the hyperparameters µ and σ, and we can use these

estimates to supply informative prior—namely,N (257.98, 14.462)—for the background parameters

BJ . Thus, we again attempt to simultaneously estimate the parameters of (6.1) via DRAM, this time

employing the estimated values of the hyperpriors to provide a narrow prior for the estimation of the
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background radiation. We employ the same bounds and priors for x , y , and I0 as those in Section

6.2, and we again bound all background parameters to be greater than zero. After a burn-in period

of 3×104, we obtained final chains of length 5000. These parameter chains are shown in Figure 6.4.

Visual inspection indicates that they have burned in. Thus, by employing a fairly tight prior on the

background parameters, we prevented the chains from jumping to alternate optimal parameter

values, and we were able simultaneously estimate the individual background terms along with the

source location and intensity. Moreover, as shown in Table 6.2, we obtained parameter estimates

close to the true values.

With our success in utilizing an informative prior with background terms to eliminate iden-

tifiability problems, a potential future direction for this problem is to resolve the components of

the background radiation. The majority of radioactive decay that naturally occurs in an urban

environment originates from 40K, 238U, and 232Th. Thus, we could consider a background parameter

to essentially be the sum of these three components. Even in a purely fixed effect model, dividing

the background into elements, it is apparent that there would be identifiability problems without

narrow priors or tight bounds on the background components. Consider such a model for a detector

response

Γ (I0, rs , B ) = I0∆εi n t
A

4π‖rd − rs ‖2
2

exp

�

−
∫

rd−rs

Σt d s

�

+ (BK +BU +BT ).

It is apparent that the optimal value of the sum BK +BU +BT accommodates many possibilities for

the values of BK , BU , and BT , but—as in the previous problem—we may be able to use a narrow

prior on each of the background components so that all three may be simultaneously, and uniquely,

estimated.
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Table 6.1: Estimates of background radiation parameters and hyperparameters in the absence of a
source obtained from the mean values of the DRAM chains.

Parameter Estimate True Value
B1 250.81 244
B2 256.06 251
B3 270.60 268
B4 236.33 243
B5 255.42 250
B6 276.51 278
B7 240.43 240
B8 258.43 256
B9 259.82 258
B10 251.54 260

µ 257.98 259.4
σ 14.46 13.02
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Figure 6.2: Chains generated using DRAM with Poisson likelihood (6.2) for parameters B j for
j = 1, . . . , 10 in the absence of a source.
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Figure 6.3: Chains generated for hyperparameters µ andσ using DRAM with Poisson likelihood
(6.2) in the absence of a source.
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Figure 6.4: Chains generated using DRAM with Poisson likelihood (6.2) for parameters x , y , I0, and
B j for j = 1, . . . , 10 employing a narrow prior for all background terms B j .
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Table 6.2: Estimates of background and source location and intensity parameters obtained from the
mean values of the DRAM chains constructed with a narrow prior on the background parameters.

Parameter Estimate True Value
x 158.08 158
y 98.254 98
I0 3.214×109 3.214×109

B1 249.11 244
B2 246.55 251
B3 268.52 268
B4 250.15 243
B5 255.81 250
B6 272.52 278
B7 241.76 240
B8 255.29 256
B9 258.18 258
B10 256.22 260
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CHAPTER

7

CONCLUSIONS

Whereas mixed-effects models are used throughout many areas of science, there are limited tools for

performing uncertainty quantification on these types of models. In this dissertation, we introduced

two novel UQ techniques tailored to mixed-effects models: a mixed-effects version of the DRAM

algorithm and a parameter subset selection (PSS) algorithm. The mixed-effects DRAM algorithm

allows us to perform Bayesian model calibration, obtaining accurate results even in the case of

highly correlated parameters. When employed for the orange tree circumference problem, the

DRAM algorithm produced an estimate of the random effects covariance matrix that was much

closer to the true value than both frequentist estimation and Gibbs sampling. However, we needed

to utilize a highly informative prior to obtain a good estimate of the random effects covariance

matrix. Future work is needed to determine a standard approach for when good prior information

is unavailable.

Our new PSS algorithm ranks the random and fixed effect parameters in order of significance,

and it can be employed to aid model selection. In particular, we use our PSS algorithm to limit

the number of models to be tested via information criteria. Compared to methods with similar

approaches, use of the new PSS algorithm significantly lowers the number of models to be tested.

Furthermore, PSS-aided model selection can be used with both linear and nonlinear mixed-effects

models. Future research could involve employing new types of information criteria for model

selection or implementing Morris screening techniques in the PSS algorithm to get a more global

sense of parameter ranking. Also, in order to determine the relative effectiveness of PSS-aided
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model selection for our nonlinear example, we need to compare it to other current model selection

methods. Ideally, such methods would be applicable to large dimensional problems and all types of

nonlinear models.

When exploring applications for mixed-effects models in nuclear engineering, we primarily

focused on locating a radiation source in an urban setting. To allow for reasonably quick model

evaluations, we employed a simplified radiation transport model. We initially employed a purely

fixed effect model, examining source localization strategies for both stationary and mobile sensors.

For stationary sensors, we estimated the source location and intensity using both DRAM and DREAM.

For mobile sensors, we used mutual information to determine which location from a set of possible

measurement sites would provide the most information for parameter calibration. While our mutual

information-based strategy chose the measurement sites in a logical order, the Bayesian parameter

calibration at each step produced uniform posteriors for both location parameters. This is likely

due to the large number of noninformative measurements sites within the possible set of locations.

Further work is necessary to develop a strategy for removing the sensor locations receiving little or

no signal from the source from the list of possible measurement sites.

When using the fixed effect radiation transport model, we set the background radiation to a

constant 300 cps, but this is not an accurate reflection of reality. To account for varying background

radiation at stationary detector locations, we employed a mixed-effects model. We attempted to use

mixed-effects DRAM to calibrate the background parameters and hyperparameters along with the

source location and intensity; however, the parameter chains would not burn in. Moreover, the chains

appeared to be jumping away from their true location to an alternate set of optimal parameters.

To remedy this nonidentifiability, we first did a calibration on the background parameters and

hyperparameters in the absence of a source. Using these hyperparameter estimates, we were able

to employ a tight prior on the background terms, which allowed us to simultaneously estimate the

source location and intensity as well as the individual background parameters. As future work, we

may be able to similarly employ tight priors to resolve the components of the background radiation,

such as the radiation from 40K, 238U, and 232Th.
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APPENDIX

A

K NN ALGORITHM

Since the integral in (5.16) generally cannot be evaluated directly, we employ the k NN (k th nearest

neighbor) method for numerical approximation. Algorithm 10 details the procedure.

	

Xi	

Xk(i)	

ε (i)	

ε (i)	
		

d	

q	

Figure A.1: Calculation of ε(i ), nq (i ), and nd (i ) for the case k = 1 from [17, 18]. Here we illustrate
nq (i ) = 3 and nd (i ) = 4.
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Algorithm 10 k NN Method [17, 18]

1. Fix the value of k and define number of k NN vector elements N . We use k = 6 and N = 5000.

2. For each possible design condition ξn ∈Ξ,

(a) Let p = dim(q ) be the number of parameters and let m = dim(d ) be the dimension of
the model output. We create a vector with p +m rows and N columns.

(i) In the first p rows, draw N samples, {q i }Ni=1, from the distribution p (q |Dn−1). For
these samples, we use the DRAM chains generated for Step 5(b) in Algorithm 9.

(ii) In the next m rows, place the 1×N low-fidelity model reponse vector dn (ξn ;qi ),
where qi is the parameter vector from the first p rows of the i th column.

(iii) Normalize the data vector,

X =
�

(diag(s−1)(X i −µ)
	N

i=1

where µ = [q̄ , d̄ ]T is a (p +m )× 1 vector of sample means and s = [sq , sd ]T is the
vector of sample standard deviations.

(b) For each sample X i , identify the k th nearest neighbor, Xk (i ) and compute
ε(i )/2= ||X i − Xk (i )||∞.

(c) For each sample X i , compute nq (i ) = # points in q marginal space with at least one
coordinate within distance ε(i )/2 and nd (i ) = # points in d marginal space with at least
one coordinate within distance ε(i )/2. A visual representation of nq (i ) and nd (i ) is given
in Figure A.1.

(d) Estimate the mutual information as

I (q ; dn |Dn−1,ξn )≈ψ(k )−
1

N

�

N
∑

i=1

ψ(nq (i ) +1) +
N
∑

i=1

ψ(nd (i ) +1)

�

+ψ(N ),

whereψ(·) is the digamma function.

3. Use the estimated mutual information to determine ξ∗, the design such that
max
ξn∈Ξ

I (q ; dn |Dn−1,ξn ) = I (q ; dn |Dn−1,ξ∗).
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