
ABSTRACT

HUSSAIN, AZMAT. Some Optimization Problems for Stochastic Systems with Memory.
(Under the direction of Dr. Tao Pang.)

We consider portfolio optimization models of the Merton’s type over finite and infi-

nite time horizons. Unlike the classical Markov model, we study systems with delays. We

consider both finite and infinite delay/memory models. The problem is formulated as a

stochastic control problem and the state evolves according to a process governed by a

stochastic process with delay. The goal is to choose investment and consumption controls

such that the total expected discounted utility is maximized. Under certain conditions,

in each model, we derive the optimal controls and explicit solutions for the associated

Hamilton-Jacobi-Bellman (HJB) equations in a finite dimensional space for logarithmic,

exponential and HARA utility functions. For each model, verification theorems are es-

tablished to ensure that the solution obtained from HJB equation is equal to the value

function.
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Chapter 1

Introduction

In this dissertation, we study the optimal investment and consumption models when an

investor makes decisions considering the past performance of the portfolio. In portfolio

construction, utility function criterion is used to model the behavior of an investor.

Depending on the the type of investments, an investment can be made for a finite or

infinite amount of time. Investor is open to all market opportunities subject to her risk

premium. The goal of the investor is to choose the investment and/or consumption such

that the total discounted expected utility is maximized.

1.1 Background and Literature Review

Investment-consumption portfolio problem was first studied by Robert C. Merton in 1969,

1971 ([38, 39]). In the classical portfolio optimization model of Merton’s type, the problem

can be formulated as a optimal stochastic control problem, in which an investor chooses

the optimal investment and/or consumption control to maximize the total discounted

expected utility.

Some of the other pioneering work in modern finance theory was done by Markowitz in

1952, 1959 ([36, 37]). In Markowitz’s model of mean-variance portfolio optimization con-

struction, an investor addresses the uncertainty of an investment by constructing a portfo-

lio such that for a given level of risk, the expected return is maximized or equivalently for

a predetermined level of expected return, the variance is minimized. In Levy-Markowitz

[33] and Kroll-Levy-Markowitz [30], authors have made a comparison of portfolios which

maximize expected utility with mean-variance efficient portfolios.
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In the Merton’s type utility optimization model, a Markovian stochastic process such

as geometric Brownian process is used to describe the price of the risky asset. In such a

model past information is irrelevant and decisions are made only on the basis of current

information. A substantial amount of work has been done on models with such settings.

The case of a Merton-type model with consumption and the interest rate, which vary in

a random, Markovian way, was considered by Fleming-Pang [15, 16] and Pang [44, 45].

Bielecki-Pliska [2], Fleming-Sheu [18] have considered the case where the mean returns of

individual asset categories are explicitly affected by underlying economic factors such as

dividends and interest rates and the goal is to maximize the long term growth rate of the

utility based on the wealth with no consumption. In some other extensions of the model,

stochastic volatility is taken into consideration (e.g. Fleming-Hernandez-Hernandez [14],

Fouque-Papanicolaou-Sircar [20], Hata-Sheu [24, 25]). Some related literatures include

[15], [16], [18], [45], [48], [49], [50] and the references therein.

Some researchers have considered stochastic systems with memory given by the fol-

lowing system:

dX(t) = b(t,Xt, u(t))dt+ σ(t,Xt, u(t))dW (t), t ∈ [0, T ],

X(t) = ϕ(t), t ∈ [−h, 0],

where h > 0 is a fixed constant, Xt : [−h, 0] 7→ R is the memory variable defined by

Xt(θ) ≡ X(t + θ), and it is the segment of the path from t− h to t, ϕ ∈ C[−h, 0] is the

initial path and u is the control in some admissible control space Π. We want to point out

that if T is finite, then above system is a model for an optimal stochastic control problem

on a finite time horizon. If T is infinite, then the model is on an infinite time horizon. For

this type of problems, the value function will depend on the initial variable ϕ, which is

in an infinite dimensional space C[−h, 0]. For this type of control problems, the idea for

the derivation of associated Hamilton-Jacobi-Bellman (HJB) equation was presented in

Mohammed [40, 41] and the HJB equation involves the Frechét derivatives with respect

to the initial variable ϕ. Some related works can be found in Chang-Pang-Pemy [3, 4].

The presence of the Fréchet derivative makes the stochastic control problems with

memory given by Xt very complicated and working in an infinite dimensional space

limits its application in practice. On the other hand, as we mentioned earlier, when

investors look at the historical performance, instead of the whole path, moving average or

exponential moving average is usually used. For this reason, many researcher considered
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stochastic system, ∀t ∈ [0, T ],

dX(t) = b(t,X(t), Y (t), Z(t), u(t))dt+ σ(t,X(t), Y (t), Z(t), u(t))dW (t), t ∈ [0, T ],

X(t) = ϕ(t), t ∈ [−h, 0],

with memory variables Y (t), Z(t) given by

Y (t) =

∫ 0

−h
eλθX(t+ θ)dθ,

Z(t) = X(t− h),

where λ ≥ 0 is a parameter. As we can see, Y (t) is the exponential moving average of

the total wealth and Z(t) is a historical value of X(t) or the historical wealth. X(t) over

[t−h, t] if λ > 0. A special case would be λ = 0, and now Y (t) is just the moving average.

Typically, higher historical wealth (in terms of Y (t), Z(t)) usually implies the investor

has invested heavily on stocks rather than the risk-free asset, therefore, due to the good

performance, the investor will tend to allocate more on stocks, and that will increase the

stock demand. We want to point out that the state equation of X(t) may not depend on

Z(t), as investors may not care about the historical value at a particular time point.

For the system given above, the value function V will depend on the initial variable

ϕ through memory variables (x, y, z) that are given by

x ≡ X(0) = ϕ(0), y ≡ Y (0) =

∫ 0

−h
eλθϕ(θ)dθ, z ≡ Z(0) = ϕ(−h),

and we can derive the HJB equation for V in the classical sense in a finite dimensional

space.

This type of models can be used to describe a stochastic system with memory or de-

layed information, and they can be used to model problems in finance and investment (see

Elsanousi-Larssen [10] for an optimal consumptions problem, Federico [12] for a pension

fund model, Chang-Pang-Yang [5] and Pang-Hussain [47, 46] for stochastic investment

and consumption optimization models). In Federico [12], an optimal control problem

arising in the management of a pension fund with dynamics governed by a stochastic

differential equation with delay is considered. They also have applications in business

management (see, e.g. Elsanousi-Øksendal-Sulem [11] for a stochastic optimal harvest
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problem, Gozzi-Marinelli-Savin [23] for optimal advertising models). In Federico-Goldys-

Gozzi [13], the authors consider a model in economics where a class of optimal control

problems with state constraints, where the state equation is a differential equation with

delays. Koivo [27] studied optimal control of linear stochastic systems that have feedback

loop. In Bauer-Rieder [1], the authors consider stochastic control problems with delay

variable given by Y (t) =
∫ 0

−h e
λθf(X(t+θ))dθ, Z(t) = f(X(t−h)) with three applications:

linear quadratic problems with delay; the optimal consumption in a financial market with

delay and a deterministic fluid problem with delay which arises from admission control

in ATM communication networks.

Problems with delay also arise in modeling optimal advertising under uncertainty (see

Gozzi-Marinelli [22] and Gozzi-Marinelli-Savin [23]). Some early works on optimal control

for systems with delays can be found in Kolmanovskii-Maizenberg [28], Kolmanovskii-

Shaikhet [29], Lindquist [34, 35] and the references therein. Further, some other applica-

tions of systems involving delays given by Y (t) and/or Z(t) can be found in Koivo [27],

Kolmanovskii-Maizenberg [28], Kolmanovskii-Shaikhet [29], Lindquist [34, 35] and the

references therein. On the other hand, some researchers have studied the maximum prin-

ciples for stochastic control problems with delays (see Chen-Wu [6], Øksendal-Sulem [42],

Øksendal-Sulem-Zhang [43]), but the involved backward stochastic differential equations

are hard to solve. Here we still use the dynamic programming method.

As we have mentioned, Z(t) may not appear in the state equation of X(t). However,

even for this case, z variable will appear in the associate HJB equation. On the other

hand, one key requirement for the HJB equation to have a solution is that the solution

V must be independent of z (see Larssen-Risebro [32] and Pang-Hussain [47] for more

details). It is this condition that limits the application of the above model .

1.2 Contribution and Outline

In real world, the stock price process is not truly Markov and the historic performance

of the risky asset influences the decisions of investors. As we know, investors tend to

look at the moving average or exponential moving average for a stock before they make

the investment decision. A stock with current price lower than its exponential moving

average may signal the downward trend for the stock price, therefore it will scare away

some investors. Due to the weaker demand, the price may go down further. On the other
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hand, if the current price is higher than its exponential moving average, it may signal

an upward trend, so it will attract more investment. Due to the higher demand, the

price may go up further. Therefore, it is motivated to consider a stochastic portfolio

optimization model with historic information, or memory.

Stochastic control models with delay have wide range of applications and have been

discussed extensively in literature. Kolmanovaskĭı and Maizenberg [28] introduced the

idea of describing the delay information like (2.3)-(2.4). Elsanousi and Larssen [10] and

Larssen and Riserbro [32] have discussed model with finite delay. Elsanousi, Øksendal and

Sulem [11] developed and maximum principle for optimal control problem of stochastic

systems with delay. The idea of dynamic programming principle for stochastic delay

differential equations appears in Gihman and Skorokhod [21] and Kolmanosvskĭı and

Shăıkhet [29]. Larssen [31] showed dynamic programming principle for the stochastic

control problems with delay.

In this dissertation, we investigate some stochastic optimization models of Merton’s

type with delays. In chapter 2, an optimal-investment consumption model over a finite

time horizon with finite delay is investigated. In section 2.2, the problem is formulated as

an optimal stochastic control problem. Newly developed functional Ito’s formula is used

to obtain the Hamilton-Jacobi-Bellman (HJB) equation in section 2.3. In section 2.4, the

optimal investment and consumption controls and explicit solution of HJB equation is

derived for logarithmic and exponential utility functions and finally, verification theorems

are established to prove that the solution obtained from the HJB equation is the value

function.

In chapter 3, the model discussed in chapter 2 is studied on infinite time horizon.

In section 3.2, HJB equation for the value function is derived. In section 3.3, optimal

controls and explicit solution of HJB equation is obtain for logarithmic, exponential and

HARA utility functions. For each of the utility function, verification theorems are also

established in this section.

In chapters 4 and 5, we introduce the idea of infinite delay in the model introduced in

chapter 2. In chapter 4, stochastic portfolio management model is studied on a finite time

horizon and the model captures all the historic performance of the portfolio. In section

4.2, HJB equation is derived. In section 4.3, for each of the exponential, logarithmic

and HARA utility function, optimal controls and explicit solution of HJB equation is

established followed by the verification theorems.
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In each of the chapters 2, 3, 4, the volatility of the risky asset is assumed to be

constant. In chapter 5, the volatility of the risky asset is assumed to be stochastic in the

model. The model captures the complete historic performance of the risky asset through

an infinite delay variable. In section 5.4, we use the method of sub/super solutions to

obtain the classical solution of the HJB equation established in section 5.3 for logarithmic

utility function. The optimal controls and verification theorems are also established in

this section.
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Chapter 2

A Finite Time Horizon Stochastic

Portfolio Optimization Model with

Bounded Memory

2.1 Introduction

In a classical portfolio of Merton’s type, an investor allocates her wealth between a

risky asset and a riskless asset and chooses the consumption rate to maximize the total

expected utility. In this chapter we study an optimal investment-consumption model of

Merton type as a stochastic control problem over a finite time horizon. The model takes

into account the past performance of the risky asset. The risky asset is modeled using

a delayed stochastic differential equations. This work is motivated by the model studied

by Chang, Pang and Yang [5].

In this chapter, we are going to use a newly developed functional Ito’s formula to derive

the associated Hamilton-Jacobi-Bellman (HJB) equation. The functional Ito’s formula

was first initiated by Dupire [8]. Details to be given section 2.3.

We consider a stochastic control problem over a finite time horizon in which the

state variable X(t) is modeled by a control stochastic process with bounded memory. In

particular, we consider for the following system with bounded memory:{
dX(t) = b(t,Xt, u(t))dt+ σ(t,Xt, u(t))dW (t), t ∈ [s, T ],

X(t) = ψ(t− s), t ∈ [s− h, s],
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where h is a fixed delay and Xt is the segment of the path from t− h to t, ψ ∈ C[−h, 0]n

is the initial path and u is the control in some admissible control space U . The goal is to

choose a control u to maximize the functional:

J(s, ψ;u) = Es,ψ,u

[∫ T

s

f(t,Xt, u(t))dt+ g(XT )

]
.

The value functions is given by

V (s, ψ) = sup
u∈U

J(s, ψ;u).

In particular, the value of the portfolio follows a stochastic process X(t) (see (2.9))

that depends on following delay information:

Y (t) =

∫ 0

−h
eλθX(t+ θ)dθ, (2.1)

Z(t) = X(t− h), ∀t ∈ [s, T ], (2.2)

where λ > 0 is a constant, h > 0 is the delay parameter and s ∈ [0, T ] is the initial time.

The performance of the portfolio in [s− h, s], the historic performance, gives the initial

condition for X(t) and is characterized as:

X(t) = ϕ(t− s), ∀t ∈ [−h, s],

where ϕ > 0 is a continuous function on [−h, 0].

As we can see, eλθ in (2.1) serves as a weight function if we regard Y (t) as the weighted

average of the X(t + θ), θ ∈ [−h, 0]. We assume that λ > 0 because usually the most

recent information will be assigned a higher weight so the weight function should be

increasing with respect to θ.

The utility function comes from consumption. Let C be the consumption rate. We

investigate the HJB equation for logarithmic and exponential utility functions:

U(C) = log(C)

U(C) = 1− eαc, α > 0.

Under certain conditions, for each utility function, we derive the the optimal policies and
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the explicit solution for associated HJB equation in a finite dimensional space.

This chapter is organized as follows. In section 2.2, the model is formulated. In section

2.3, the HJB equation is derived using the functional Ito’s formula. Solution of the HJB

for logarithmic and exponential utility functions and the verification theorems are given

in section 2.4

2.2 Problem Formulation

Consider an investor’s portfolio comprises a risky asset and a riskless asset. The riskless

assets earns the investor a fixed interest rate r > 0. Money depositd in the bank can be

considered as riskless asset. The consumption of the investor is assumed to come from

riskless asset and we also assume that the investor can freely move his money between

the risky and riskless asset at any time.

Assume the process {B(t), t ≥ 0} is a one-dimensional standard Brownian motion

defined on a complete filtered probability space (Ω,F , P ; F), where F = {F , t ≥ 0} is

the P -augmented natural filtration generated by the Brownian motion {B(t), t ≥ 0}. Let

K(t) be the amount invested in the risky asset and assume it satisfies the following

stochastic differential equation

dK(t) = [(µ1 + µ2Y (t) + µ3Z(t))K(t) + I(t)]dt+ σK(t)dB(t),

where µ1, µ2, µ3 and σ are constants, and the performance of the risky asset depends on

Y (t)and Z(t), the delay variables, given as

Y (t) =

∫ 0

−h
eλθX(t+ θ)dθ, (2.3)

Z(t) = X(t− h), ∀t ∈ [s, T ], (2.4)

where λ > 0 is a constant and h is the delay parameter. Let L(t) is the amount invested

in the riskless asset. The price of riskless asset satisfies

dL(t) = [rL(t)− C(t)− I(t)]dt,

where I(t) is the investment rate in the risky asset at t, and C(t) is the consumption

rate. The net wealth is given by X(t) = K(t) + L(t). The equation for X(t) follows by

9



using X(t) = K(t) + L(t):

dX(t) = [(µ1 + µ2Y (t) + µ3Z(t))K(t) + rL(t)− C(t)]dt

+ σK(t)dB(t), ∀t ∈ [s, T ]. (2.5)

The initial condition is the information about X(t) for t ∈ [−h, s]:

X(t) = ϕ(t− s), ∀t ∈ [−h, s],

where ϕ ∈ J and J is defined by J ≡ C[−h, 0], which is the space for all continuous

functions defined on [−h, 0] equipped with the sup norm

||ϕ|| = sup
θ∈[−h,0]

|ϕ(θ)|. (2.6)

Let L2(Ω,J) be a Banach space for all (F,B(J))-measurable maps Ω→ J that are in L2

in the Bochner sense, where B(J) is the Borel σ− field on J. For any φ ∈ L2(Ω,J), the

Banach norm is given by

||φ(ω)||2 =

[∫
Ω

||φ(ω)||2dP (ω)

]1/2

, (2.7)

where the norm || · || is given by (2.6). The state variables are X(t) and Y (t). The wealth

is allocated between risky and riskless asset and in order to describe it, we treat K(t)

and C(t) as our control variables. For technical reasons, we modify the model described

in (2.9) and consider the following model

dX(t) = [µ1K(t) + µ2Y (t) + µ3Z(t) + rL(t)− C(t)]dt

+ σK(t)dB(t), ∀t ∈ [s, T ] (2.8)

Remark 2.2.1. If we assume that K(t) > 0 almost surely, we can use the following delay

variables Ỹ (t) and Z̃(t):

Ỹ (t) =
1

K(t)

∫ 0

−h
eλθX(t+ θ)dθ, Z̃(t) =

X(t− h)

K(t)
, t ∈ [s, T ],

instead of (2.3) and (2.4), so we can reach (2.8).
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Instead of using K(t) and C(t), we use c(t) = C(t)
X(t)

and k(t) = K(t)
X(t)

as our consumption

and investment controls, respectively. Using L(t) = X(t) − K(t) = X(t)(1 − k(t)), we

can rewrite the equation for X(t) as

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t)

+ µ3Z(t)]dt+ σk(t)X(t)dB(t), ∀t ∈ [s, T ]. (2.9)

Initial condition is given by

X(t) = ϕ(t− s), ∀t ∈ [s− h, s], (2.10)

where ϕ ∈ J and ϕ(θ) > 0,∀θ ∈ [−h, 0].

For functional differential equations we use the following conventional notation: If

ϕ ∈ C([−h, T ]; R) and t ∈ [0, T ], let ϕt(θ) ∈ J be defined by

ϕt(θ) = ϕ(t+ θ), ∀θ ∈ [−h, 0]. (2.11)

Since ϕt(θ) ∈ J, its norm is given by the sup norm:

||ϕt(θ)|| = sup
θ∈[−h,0]

|ϕ(θ)| = sup
θ∈[−h,0]

|ϕ(t+ θ)|. (2.12)

Using the above notation, initial condition (2.10) can be written as

Xs = ϕ.

Following definition gives the admissible control space Π for control variables k(t) and

c(t):

Definition 2.2.1 (Admissible Control Space). Let Π denote the admissible control space.

A control policy (k(t), c(t)) is said to be in the admissible control space Π if it satisfies

the following conditions:

(a) (k(t), c(t)) is F t−measurable for any t ∈ [0, T ];

(b) c(t) ≥ 0,∀t ∈ [0, T ];
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(c) For any t ∈ [0, T ], we have

|k(t)X(t)| ≤ Λ1|X(t) + µ3Y (t)|,

|c(t)X(t)| ≤ Λ2|X(t) + µ3Y (t)|,

}
(2.13)

where Λ1 > 0,Λ2 > 0 are constants.

Following Lemma gives the existence and uniqueness of solution of (2.9) with initial

condition (2.10):

Lemma 2.2.1. For any control (k(t), c(t)) ∈ Π, the equation (2.9) with initial condition

(2.10) has a unique strong solution X : [−h, T ]×Ω→ R. Furthermore, for t ∈ [s, T ], Xt ∈
J and for any positive integer n, we have

E
[
||Xt||2n

]
≤ Cn[1 + ||ϕ||2n], ∀t ∈ [s, T ], (2.14)

where Cn > 0 is a constant.

Proof. Let ‖ϕ‖2 be the L2 norm of ϕ as given in (3.7). Then, by virtue of

‖ϕ‖2 ≤ ‖ϕ‖,

this Lemma is a corollary of Theorem I.2 of Mohammed [41].

The wealth process X(t) must also satisfy the state constraint

X(t) > 0 ∀t ∈ [s, T ].

We have the following result:

Lemma 2.2.2. The solution X(t) of the system (2.9) -(2.10) satisfies

X(t) > 0, Y (t) > 0, Z(t) > 0, almost surely ∀t ∈ [s, T ].

Proof. By the definition of Y (t), Z(t), it is sufficient to show that

X(t) > 0, almost surely ∀t ∈ [s, T ]. (2.15)
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First we show that

X(t) ≥ 0, a.s. ∀t ∈ [s, T ].

For a given intial condition ϕ(θ) > 0, ∀θ ∈ [s− h, s], we have

Y (s) > 0, Z(s) > 0.

We note that Y (t) and Z(t) are non-negative as long as X(θ) ≥ 0, ∀θ ∈ [t− h, t], and

they are equal to zero if X(t) has hit zero before they do. Moreover, from equation (2.9),

we note that if X(t) hits zero for the first time at τ , the diffusion part vanishes and the

drift coefficient becomes µ2Y (τ) + µ3Z(τ) and is positive. Therefore we get

X(t) ≥ 0, a.s. ∀t ∈ [s, T ].

So that we can get

Y (t) ≥ 0, Z(t) ≥ 0, a.s. ∀t ∈ [s, T ].

Let X̃(t) be a solution of

dX̃(t) = [((µ1 − r)k(t)− c(t) + r)X̃(t)]dt+ σk(t)X̃(t)dB(t), ∀t ∈ [s, T ]. (2.16)

X̃(t) = ϕ(t− s), ∀t ∈ [s− h, s], (2.17)

for same ϕ > 0 as in (2.10). The solution is given as

X̃(t) = ϕ(s) exp

{∫ t

s

(
(µ1 − r)k(θ)− c(θ) + r − σ2k2(θ)

2

)
dθ

+

∫ t

s

σk(θ)dB(θ)

}
.

Obviously, we have

X̃(t) > 0, a.s. ∀t ∈ [s, T ].
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Moreover, using Ito’s formula, we get

d

[
1

X̃(t)

]
= − dX̃(t)

X̃(t)2
+

1

2

2((dX̃(t))2

(X̃(t))3

= −(µ1 − r)k(t)− c(t) + r

X̃(t)
dt− σk(t)

X̃(t)
dB(t) +

σ2k2(t)

X̃(t)
dt

=
σ2k2(t)− [(µ1 − r)k(t)− c(t) + r]

X̃(t)
dt− σk(t)

X̃(t)
dB(t). (2.18)

Consider a new stochastic process A(t) defined by

A(t) =
X(t)

X̃(t)
= X(t) · 1

X̃(t)
. (2.19)

Then, we can get

dA(t) = (dX(t)) · 1

X̃(t)
+X(t) · d

[
1

X̃(t)

]
+ (dX(t)) · d

[
1

X̃(t)

]
= A(t) [(µ1 − r)k(t)− c(t) + r] dt+

µ2Y (t)

X̃(t)
dt+ σk(t)A(t)dt

+
(
σ2k2(t)− [(µ1 − r)k(t)− c(t) + r]

)
A(t)dt

− σk(t)A(t)dB(t)− σ2k2(t)A(t)dt

=
µ2Y (t)

X̃(t)
dt

≥ 0. (2.20)

Since A(s) = X(s)

X̃(s)
= ϕ(s)

ϕ(s)
= 1, therefore we have

A(t) ≥ 1, a.s. ∀t ≥ s.

Therefore, we have

X(t) ≥ X̃(t), a.s. ∀t ∈ [s, T ].

Since X̃(t) > 0, a.s., we have

X(t) > 0, a.s. ∀t ∈ [s, T ].
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This completes the proof.

The utility function U(C) is defined based on the consumption rate. We assume that

Ψ is the terminal utility function that depends on both X(T ) and Y (T ). The problem

under consideration is portfolio optimization problem on a finite time horizon [0, T ] with

the objective function given by

J(s, ϕ, k, c) = Es,ϕ

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
, ∀(k, c) ∈ Π.

Then the value function is given by

V (s, ϕ) = sup
k,c∈Π

J(s, ϕ, k, c)

= sup
k,c∈Π

Es,ϕ

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
. (2.21)

Note that V (s, ϕ) is a functional defined on an infinite dimensional space [0, T ]×C[−h, 0].

We turn V into a function defined on a finite dimensional space as follows

V (s, ϕ) = V (s, x, y, z),

where V : [0, T ]×R3 → R, and

x = x(ϕ) ≡ ϕ(0), (2.22)

y = y(ϕ) ≡
∫ 0

−h
eλϕ(θ)dθ, (2.23)

z = z(ϕ) ≡ ϕ(−h)., (2.24)

Further, to derive the HJB equation, we will need that the value function V only depends

on (s, x, y), i.e.

V (s, ϕ) = V (s, x, y, z) = V (s, x, y). (2.25)

Actually, this is a necessary condition that we can derive a HJB equation in a finite
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dimensional space. See Lemma 2.3.2 for details.

2.3 Functional Ito’s Formula and the HJB Equation

Recall that we use X(t) to denote the current value and we use Xt : [−h, 0]→ R to denote

the path of X(t) from t − h to t. We use functional Ito’s formula to find the dy(Xt) of

the the path dependent functional y(Xt). Functional Ito’s formula is an extension of Ito’s

formula to functionals. For details about the notations and other details of functional

Ito’s formula see Dupire [8].

For a functional f(Xt) of Xt, we have the following functional Ito’s formula:

df(Xt) = ∂tf(Xt)dt+ ∂xf(Xt)dX(t) + 1
2
∂xxf(Xt)d〈X〉(t). (2.26)

where

∂tf(Xt) = lim
δ→0

f(Xt,δ)− f(Xt)

δ
, (2.27)

Xt,δ(θ) = Xt(δ + θ), ∀θ ∈ [−h,−δ], (2.28)

Xt,δ(θ) = Xt(0), θ ∈ [−δ, 0]; (2.29)

∂xf(Xt) = lim
h→0

f(Xh
t )− f(Xt)

h
, (2.30)

Xh
t (θ) = Xt(θ), θ < 0, (2.31)

Xh
t (0) = Xt(0) + h; (2.32)

∂xxf(Xt) = lim
h→0

∂xf(Xh
t )− ∂xf(Xt)

h
. (2.33)

The above derivatives and the functional Ito’s formula was initiated by Dupire [8]

and was later studied in Cont and Fournié [7].

Now let us consider the following functional:

y(Xt) =

∫ 0

−h
φ(θ)Xt(θ)dθ; (2.34)

z(Xt) = Xt(−h), (2.35)

where φ(θ) is a smooth function with a continuous first order derivative φ′(θ).

From the above definition, we can see that the delay variable y(Xt) is actually the
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weight average of the delayed (historic) value of X(t+ θ) for θ ∈ [0,−h] with the weight

function given by φ(θ), θ ∈ [−h, 0]. For example, when φ(θ) = eλθ, y(Xt) is just the

exponential moving average for X(s) for s ∈ [t, t − θ]. If φ(θ) = 1, y(Xt) is just the

moving average, which is a special case of the exponential moving average (with λ = 0).

As we know, investors tend to look at the moving average or exponential moving average

for a stock before they make the investment decision. A stock with current price lower

than its exponential moving average may signal the downward trend for the stock price,

therefore it will scare away some investors. Due to the weaker demand, the price may go

down further. That is why we want to study the system (2.5) with delay variable given

by (2.3).

On the other hand, from the following Lemma, we will see why we also include the

delay variable z(Xt) given by (2.35).

Lemma 2.3.1. If y(Xt), z(Xt) is given by (2.34)-(2.35), then we have

dy(Xt) =

[
−
∫ 0

−h
φ′(θ)Xt(θ)dθ − φ(−h)z(Xt) +Xt(0)φ(0)

]
dt. (2.36)

Proof. It is easy to see that

∂xy(Xt) = 0, ∂xxy(Xt) = 0. (2.37)

On the other hand,

y(Xt,δ) =

∫ 0

−h
φ(θ)Xt,δ(θ)dθ

=

∫ −δ
−h

φ(θ)Xt(δ + θ)dθ +

∫ 0

−δ
φ(θ)Xt(0)dθ

=

∫ 0

−h+δ

φ(u− δ)Xt(u)du+Xt(0)

∫ 0

−δ
φ(θ)dθ.
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So we have

y(Xt,δ)− y(Xt) =

∫ 0

−h+δ

φ(u− δ)Xt(u)du+Xt(0)

∫ 0

−δ
φ(θ)dθ

−
∫ 0

−h
φ(θ)Xt(θ)dθ

=

∫ 0

−h
φ(θ − δ)Xt(θ)dθ −

∫ −h+δ

−h
φ(θ − δ)Xt(θ)dθ

+Xt(0)

∫ 0

−δ
φ(θ)dθ −

∫ 0

−h
φ(θ)Xt(θ)dθ

=

∫ 0

−h
[φ(θ − δ)− φ(θ)]Xt(θ)dθ

−
∫ −h+δ

−h
φ(θ − δ)Xt(θ)dθ +Xt(0)

∫ 0

−δ
φ(θ)dθ.

Thus, it is easy to verify that

∂ty(Xt) = lim
δ→0

y(Xt,δ)− y(Xt)

δ

= −
∫ 0

−h
φ′(θ)Xt(θ)dθ − φ(−h)Xt(−h) +Xt(0)φ(0)

= −
∫ 0

−h
φ′(θ)Xt(θ)dθ − φ(−h)z(Xt) +Xt(0)φ(0).

Now by virtue of the functional Ito’s formula (2.26), we can get (2.36).

Take φ(θ) = eλθ. Then we can get the initial delay variables defined by (2.22)-(2.24).

It is easy to check that

∂ty(Xt) = Xt(0)− λy(Xt)− e−λhz(Xt).

Therefore, we can get

dy(Xt) = ∂ty(Xt)dt = [Xt(0)− λy(Xt)− e−λhz(Xt)]dt.

We want to point out that Lemma 3.1 in [5] gives us the same result, but the method

used there is different. In addition, in [5] and other papers, such as [32], [10], it is simply

assumed that V does not depend on z but the reason was not given. The following lemma
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explains why this is a necessary condition.

Lemma 2.3.2. If the value function V depends on z, there is no way to write the HJB

equation in terms of (s, x, y, z).

Proof. It is easy to check that

∂tz(Xt) = lim
δ→0

z(Xt,δ)− z(Xt)

δ

= lim
δ→0

X(t− h+ δ)−X(t− h)

δ
.

As we can see, ∂tz(Xt) usually does not exists since the path of Brownian motion is not

differentiable. Therefore, if the value function V depends on z, there is not way to write

down the Hamilton-Jacobi-Bellman equation in a finite dimensional space.

Now assume that the value function V depends on the initial path ϕ only through

the functionals x(ϕ) and y(ϕ) defined by (2.22)-(2.23) . That is,

V (s, ϕ) = V (s, x(ϕ), y(ϕ)) ≡ V (s, x, y). (2.38)

We need the following dynamic programming principle to derive the HJB equation.

Lemma 2.3.3 (Dynamic Programming Principle). Assume that the value function V (s, x, y)

given by (2.21) and (2.38) is well defined and assume the system given by (2.9)-(2.10).

Then we have

V (s, x, y) = sup
(k,c)∈Π

Es,ϕ,k,c

[ ∫ t

s

e−β(τ−s)U(c(τ))X(τ)dτ + e−β(t−s)V (t,X(t), Y (t))

]
,

for all F t-stopping time t ∈ [s, T ] and (x, y) ∈ R2, where ϕ ∈ J is such that x = x(ϕ) =

X(s) and y = y(ϕ) = Y (s).

Proof. The proof is similar to Theorem 4.2 of [31] so it is omitted here.

Following theorem gives the Hamilton Jacobi Bellman equation which follows from

above Lemma and functional Ito’s formula (2.26) and the proof is similar to Theorem

5.1 in [31]. So we omit the proof here.
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Theorem 2.3.1 (HJB Equation). Assume that (2.38) holds and V (s, x, y) ∈ C1,2,1([0, T ]×
R×R). Then the value function value function V (s, x, y) given by (2.21) and (2.38) sat-

isfies the following HJB equation

βV − Vs = max
k

[
(σkx)2

2
Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y + µ3z)Vx

+ max
c≥0

[−cxVx + U(cx)] + (x− e−λhz − λy)Vy, ∀z ∈ R (2.39)

with the boundary condition

V (T, x, y) = Ψ(x, y). (2.40)

We note that the HJB equation is a non-linear second order path dependent partial

differential equation. The next step would be find the classical or viscosity solutions for

the above equation and verify that the solution is the value function we need. Recent

results on path dependent differential equations by [9] may be used to prove the existence

of the viscosity solution of the above HJB equation. However, in this chapter, our focus

is on the systems with bounded memory in certain forms, such that it is possible to work

in a finite dimensional space and the HJB equation will become a PDE in classical sense.

2.4 The Solution of the HJB equation

2.4.1 Logarithmic Utility

In this section we consider logarithmic utility function given as

U(cX) = log(cX). (2.41)

We find explicit solution of HJB equations (2.39)-(2.40). Using the log utility we have

βV − Vs = max
k

[
(σkx)2

2
Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y + µ3z)Vx

+ max
c≥0

[−cxVx + log(cx)] + (x− e−λhz − λy)Vy, (2.42)
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The candidates for optimal controls are

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

xVx
.

The terminal utility function Ψ(x, y) is assumed to be of the form

Ψ(x, y) =
1

β
log(x+ µ3e

λhy). (2.43)

We assume the solution is of the form

V (s, x, y) = ψ(x, y) +Q(s), (2.44)

where Q(s) and ψ(x, y) will be determined. Moreover, we have

Vx = ψx(x, y), Vxx = ψxx(x, y),

Vy = ψy(x, y), Vs = Q′(s).

Plug k∗ and c∗ and solution form into (2.42), we obtain

β[ψ(x, y) +Q(s)]−Q′(s) = − 1

2

(µ1 − r)2ψ2
x

σ2ψxx
+ log(

1

ψx
)− 1

+ (rx+ µ2y + µ3z)ψx + (x− λy − e−λhz)ψy. (2.45)

Define

u ≡ x+ µ3e
λhy, (2.46)

Let ψ(x, y) = 1
β

log(u), then we have,

ψx =
1

βu
, ψxx = − 1

βu2
, ψy =

µ3e
λh

βu
.

Assume that

µ3e
λh(r + µ3e

λh) = µ2 − µ3λe
λh, (2.47)

21



Using assumption (2.47) and definition of u, equation (2.45) can be written as

Q′(s) = βQ(s)− (µ1 − r)2

2βσ2
− log(β) + 1− 1

β
(r + µ3e

λh). (2.48)

Let

Λ4 ≡
(µ1 − r)2

2βσ2
+ log β − 1 +

1

β
(r + µ3e

λh). (2.49)

Equation (2.48) can be written as

d

ds
(e−βsQ(s)) = −Λ4e

−βs. (2.50)

At terminal time t = T , we have

V (T, x, y) = Q(T ) +
1

β
log(x+ µ3e

λhy)

= Ψ(x, y)

=
1

β
log(x+ µ3e

λhy). (2.51)

So the boundary condition for Q(s) at s = T is given by

Q(T ) = 0. (2.52)

The solution for (2.50)-(4.73) is given as

Q(s) =
Λ4

β
(1− e−β(T−s)). (2.53)

If Λ4 > 0, we have

Q(s) ≥ 0, ∀s ∈ [0, T ]. (2.54)

Therefore, the equations (2.39)-(2.40) for logarithmic utility function have the solution:

V (s, x, y) = Q(s) + log(x+ µ3e
λhy), (2.55)

The optimal investment and consumption rates are given as
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k(s)∗ =
(µ1 − r)(x+ µ3e

λhy)

σ2x
, (2.56)

c(s)∗ =
β(x+ µ3e

λhy)

x
, (2.57)

where Q(s) is given by (2.53), and x and y are estimated at time s as following

x = X(s), y = Y (s) =

∫ 0

−h
eλθX(s+ θ)dθ.

To make sure that the solution given by (2.55) is satified by the value function (2.21),

we need to give the verification theorem.

Theorem 2.4.1 (Verification Theorem). Assume that X(t) be a strong solution of (2.9)-

(2.10) and Y (t) and Z(t) are given by (2.3) and (2.4) respectively. Let V (s, x, y) ∈
C1,2,1([0, T ]×R×R) is a solution of the HJB equation given by (2.39)-(2.40) such that

E

[∫ T

0

[k(t)X(t)Vx(t,X(t), Y (t))]2dt

]
<∞, (2.58)

∀(k, c) ∈ Π. Then we have,

V (s, x, y) ≥ sup
(k,c)∈Π

Es,ϕ

[ ∫ T

s

e−β(T−s)U(c(t)X(t))dt+ e−β(t−s)Ψ(X(T ), Y (T ))

]
.

In addition, assume that the utility function is given by

U(x) = log(x) (2.59)

and

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

xVx
.

If (k∗, c∗) ∈ Π, then (k∗, c∗) is the optimal control policy. In this case, we have

V (s, x, y) = Es,ϕ,k∗,c∗

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.
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Proof. Rewriting equation (2.39), for log utility, we have

max
k,c≥0

[Lk,cV (s, x, y) + log(cx)]− βV (s, x, y) + [x− λy − e−λhz]Vy(s, x, y) = 0. (2.60)

where Lk,c is defined as

Lk,cf = Lk,cf(t, x, y)

= ft + (((µ1 − r)k − c+ r)x+ µ2y)fx +
1

2
σ2k2x2fxx,

Assume V (s, x, y) be a solution of the equation (2.60). For any given admissible control

(k, c) ∈ Π and for any (s, x, y) ∈ [0, T ]×R×R, we have

βV (s, x, y)− Lk,cV (s, x, y)− [x− λy − e−λhz]Vy(s, x, y) ≥ log(cx). (2.61)

Applying Ito’s formula to V (t,X(t), Y (t)), we have

d[e−βtV (t,X(t), Y (t))] = e−βt[−βV (t,X(t), Y (t))dt+ dV (t,X(t), Y (t))]

= e−βt[−βV (t,X(t), Y (t)) + Lk,cV (t,X(t), Y (t))

+ [X(t)− λY (t)− e−λhZ(t)]Vy(t,X(t), Y (t))dt

+ σk(t)X(t)Vx(t,X(t), Y (t))dB(t)].

Integrating it from s to T, and using (2.61), we have

e−βTV (T,X(T ), Y (T ))− e−βsV (s, x, y)

=

∫ T

s

e−βt(−βV (t,X(t), Y (t)) + Lk,cV (t,X(t), Y (t))

+
[
X(t)− λY (t)− e−λhZ(t)

]
Vy(t,X(t), Y (t))dt

+

∫ T

s

e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t)

≤ −
∫ T

s

e−βt log(c(t)X(t))dt

+

∫ T

s

e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t).

Using the boundary condition (2.51), we have
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V (s, x, y) ≥ e−β(T−s)V (T,X(T ), Y (T )) +

∫ T

s

e−β(T−s) log(c(t)X(t))dt

−
∫ T

s

e−β(T−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t)

= e−β(T−s)Ψ(X(T ), Y (T )) +

∫ T

s

e−β(T−s) log(c(t)X(t))dt

−
∫ T

s

e−β(T−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t).

By virtue of condition (2.58), we have∫ T

s

e−β(T−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t)

a martingale. Taking expection on both sides, we obtain, ∀(k, c) ∈ Π

V (s, x, y) ≥ Es,ϕ,k,c

[ ∫ T

s

e−β(T−s) log(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

Therefore we have,

V (s, x, y) ≥ sup
k,c≥0

Es,ϕ,k,c

[ ∫ T

s

e−β(T−s) log(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

By taking (k, c) = (k∗, c∗), the inequalities can be replaced by equalities

V (s, x, y) = Es,ϕ,k∗,c∗

[ ∫ T

s

e−β(T−s) log(c∗(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

This completes the proof.

Now it remains to verify that the function defined by (2.55) is a classical solution of

(2.39)-(2.40) and control policy is given by (2.56)-(2.57)

Theorem 2.4.2. Assume that X(t) be a strong solution of (2.9)-(2.10) and Y (t) and

Z(t) are given by (2.3) and (2.4) respectively. Assume that the utility function is given
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by

U(x) = log(x),

and that the terminal function is given by

Ψ(x, y) =
1

β
log(x+ µ3e

λhy)

Suppose (2.47) also holds. Then the function V (s, x, y) given by (2.55) is a classical

solution of the HJB equation (2.39)-(2.40), and it is equal to the value of the system

defined by (2.21)-(2.25), that is

V (s, x, y) = sup
(k,c)∈Π

Es,ϕ

[ ∫ T

s

e−β(T−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

In addition, the optimal control policy is given by

k∗(t) =
(µ1 − r)(X(t) + µ3e

λhY (t))

σ2X(t)
,

c∗(t) =
β(X(t) + µ3e

λhY (t)

X(t)
, ∀t ∈ [s, T ],

where Q(·) is defined by (2.53).

Proof. It is evident from the derivation of V (s, x, y) that V (s, x, y) given by (2.55) is a

classical solution of HJB equation (2.39)-(2.40).

To use Theorem 4.3.5, we first verify that condition (2.58) is satisfied. Using (2.55)

Vx(t,X(t), Y (t)) =
1

X(t) + µ3eλhY (t)
.

We have ,

|Vx(t,X(t), Y (t))| =
∣∣∣∣ 1

X(t) + µ3eλhY (t)

∣∣∣∣
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Using the definition of admissible control space Π, we have

|k(t)X(t)| ≤ Λ1|X(t) + µ3Y (t)|

≤ Λ1|X(t) + µ3e
λhY (t)|.

Therefore, we have

|k(t)X(t)Vx(t,X(t), Y (t))| ≤ Λ1|X(t) + µ3e
λhY (t)| ·

∣∣∣∣ 1

X(t) + µ3eλhY (t)

∣∣∣∣
= Λ1.

We have,

E

[ ∫ T

0

(k(t)X(t)Vx(t,X(t), Y (t)))2dt

]
≤ E

[ ∫ T

0

Λ2
1dt

]
= Λ2

1T <∞.

where Λ1 > 0 is a constant independent of t. Thus condition (2.58) is verified. Using

definition of (k∗, c∗), it is easy to see that (k∗(t), c∗(t)) is F t-measurable for any t ∈ [0, T ].

Also, we have

k∗(t) =
(µ1 − r)(X(t) + µ3e

λhY (t))

σ2X(t)
,

c∗(t) =
β(X(t) + µ3e

λhY (t)

X(t)
, ∀t ∈ [s, T ].

We note that c(t) ≥ 0,∀t ∈ [0, T ]. The conditions given by (2.13) of admissible control

space are also satisfied. Hence we get (k∗, c∗) ∈ Π. This completes the proof.

2.4.2 Exponential Utility

In this section we consider the exponential utility function given as

U(cX) = 1− e−αcX , α > 0. (2.62)

We note that maximizing the utility function with or without the the additive term 1

gives the same results. The additive term 1 in the utility function restricts the range of
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the function between 0 and 1 and other than that it does not have any mathematical

relevance. So we drop the term 1 for technical convenience and consider the following

U(cX) = −e−αcX , α > 0. (2.63)

We seek to find a solution of HJB equations (2.39)-(2.40), we have

βV − Vs = max
k

[
(σkx)2Vxx

2
+ (µ1 − r)kxVx

]
+ (rx+ µ2y + µ3z)Vx

+ max
c≥0

[
−cxVx − e−αcx

]
+ (x− e−λhz − λy)Vy, (2.64)

The candidates for optimal controls are

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ = − 1

xα
log

(
Vx
α

)
.

Substituting k∗ and c∗ in equation (2.64), we obtain

βV − Vs = −1

2

(µ1 − r)2V 2
x

σ2Vxx
+

1

α
log

(
Vx
α

)
Vx −

Vx
α

+(rx+ µ2y + µ3z)Vx + (x− λy − e−λhz)Vy. (2.65)

We look for a solution of the form

V (s, x, y) = ψ(x, y)Q(s), (2.66)

where Q(s) and ψ(x, y) will be determined. Moreover, we have

Vx = Q(s)ψx(x, y), Vxx = Q(s)ψxx(x, y),

Vy = Q(s)ψy(x, y), Vs = Q′(s)ψ(x, y).
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Substituting above into equation (2.65) yields

β [ψ(x, y)Q(s)]− ψ(x, y)Q′(s) = −1

2

(µ1 − r)2Q(s)ψ2
x

σ2ψxx
+

1

α
log

(
Q(s)ψx
α

)
ψx

− Q(s)ψx
α

+ (rx+ µ2y + µ3z)Q(s)ψx

+ (x− λy − e−λhz)Q(s)ψy. (2.67)

Let

u ≡ x+ µ3e
λhy, (2.68)

and

ψ(x, y) = −e−γu.

where γ is a constant to be determined. Now we can get,

ψx = −γψ, ψxx = γ2ψ, ψy = −γµ3e
λhψ.

Using the above substitutions in equation (2.67), we can obtain

ψ[βQ(s)−Q′(s)] = −(µ1 − r)2Q(s)ψ

2σ2

+
Q(s)

α
(−γψ)

[
log

(
−γψQ(s)

α

)
− 1

]
− γ(rx+ µ2y)Q(s)ψ − γ(x− λy)Q(s)µ3e

λhψ.

Canceling ψ and noting that log(−ψ) = log e−γu = −γu, we can rewrite the above

equation to

−βQ(s) +Q′(s) =
(µ1 − r)2Q(s)

2σ2

+
γ

α
Q(s)

[
log

γ

α
+ logQ(s)− γu− 1

]
+
[
(r + µ3e

λh)x+ (µ2 − λµ3e
λh)y

]
γQ(s).
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Now let us assume that

µ3e
λh(r + µ3e

λh) = µ2 − µ3λe
λh, (2.69)

and

γ = α(r + µ3e
λh). (2.70)

Then by assumption (2.69), we can cancel u from the equation and obtain

−βQ(s) +Q′(s) =
(µ1 − r)2Q(s)

2σ2

+ (r + µ3e
λh)Q(s)

[
log(r + µ3e

λh) + logQ(s)− 1
]
.

The above equation can be rewritten as

Q′(s)

Q(s)
= β +

(µ1 − r)2

2σ2
− (r + µ3e

λh) (2.71)

+(r + µ3e
λ) log

(
(r + µ3e

λh)Q(s)
)
. (2.72)

Let

Λ5 ≡ β +
(µ1 − r)2

2σ2
+ (r + µ3e

λh)[log(r + µ3e
λh)− 1]. (2.73)

Equation (2.71) can be written as

Q′(s)

Q(s)
= Λ5 + (r + µ3e

λh) logQ(s). (2.74)

At the terminal time t = T , we have

V (T, x, y) = Q(T )(−e−γu) = Ψ(x, y) (2.75)

The terminal utility function Ψ(x, y) is assumed to be consistent with the exponential

utility function. In particular, we assume that it is of the form

Ψ(x, y) = −Λe−γ(x+µ3eλhy) = −Λe−γu, (2.76)
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where γ is given by (2.70). So the boundary condition for Q(s) at s = T is

Q(T ) = Λ. (2.77)

The explicit solution for (2.74)-(2.77) is given as

Q(s) = exp

(
Λ5

r + µ3eλh

(
e−(r+µ3eλh)(T−s) − 1

)
+ e−(r+µ3eλh)(T−s) log(Λ)

)
. (2.78)

It is easy to see that Q(s) > 0 and Q(s) is an increasing function for s ∈ [0, T ]. Therefore,

we can get

0 < Q(s) < Λ ∀s ∈ [0, T ]. (2.79)

The HJB equations (2.39)-(2.40) have the solution

V (s, x, y) = −Q(s)e−α(r+µ3eλh)(x+µ3eλhy), (2.80)

The optimal investment and consumption rates are given as

k∗(s) =
(µ1 − r)

α(r + µ3eλh)σ2x
, (2.81)

c∗(s) = − 1

xα

[
log{(r + µ3e

λh)Q(s)}

− α(r + µ3e
λh)(x+ µ3e

λhy)

]
, (2.82)

where Q(s) is given by (2.78), and x and y are estimated at time s as following

x = X(s), y = Y (s) =

∫ 0

−h
eλθX(s+ θ)dθ.

By virtue of (2.79) and Lemma 2.2.2, we can see that c∗(s) ≥ 0 as long as

Λ(r + µ3e
λh) ≤ 1. (2.83)

Now we can prove the following verification theorem.
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Theorem 2.4.3 (Verification Theorem). Assume that X(t) be a strong solution of (2.9)-

(2.10) and Y (t) and Z(t) are given by (2.3) and (2.4) respectively. Let V (s, x, y) ∈
C1,2,1([0, T ]×R×R) is a solution of the HJB equation given by (2.39)-(2.40) such that

E

[ ∫ T

0

(k(t)X(t)Vx(t,X(t), Y (t)))2 dt

]
<∞, (2.84)

∀(k, c) ∈ Π. Then we have,

V (s, x, y) ≥ sup
(k,c)∈Π

Es,ϕ

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
. (2.85)

In addition, assume that the utility function is given by U(x) = −e−αx and k∗ and c∗ are

given as

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

xVx
. (2.86)

If (k∗, c∗) ∈ Π, then (k∗, c∗) is the optimal control policy. In this case, we have

V (s, x, y) = Es,ϕ,k∗,c∗

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

Proof. For exponential utility function, equation (2.39) becomes

max
k,c≥0

[Lk,cV (s, x, y)− e−αcx]− βV (s, x, y) + [x− λy − e−λhz]Vy(s, x, y) = 0. (2.87)

where Lk,c is defined as

Lk,cf = Lk,cf(t, x, y)

= ft + (((µ1 − r)k − c+ r)x+ µ2y)fx +
1

2
σ2k2x2fxx,

Assume V (s, x, y) be a solution of the equation (2.60). For any given admissible control

32



(k, c) ∈ Π and for any (s, x, y) ∈ [0, T ]×R×R, we have

βV (s, x, y)− Lk,cV (s, x, y)− [x− λy − e−λhz]Vy(s, x, y) ≥ −e−αcx. (2.88)

Applying Ito’s formula to V (t,X(t), Y (t)), we have

d[e−βtV (t,X(t), Y (t))] = e−βt[−βV (t,X(t), Y (t))dt+ dV (t,X(t), Y (t))]

= e−βt[−βV (t,X(t), Y (t)) + Lk,cV (t,X(t), Y (t))

+ [X(t)− λY (t)− e−λhZ(t)]Vy(t,X(t), Y (t))dt

+ σk(t)X(t)Vx(t,X(t), Y (t))dB(t)].

Integrating it from s to T, and using (2.88), we have

e−βTV (T,X(T ), Y (T ))− e−βsV (s, x, y)

=

∫ T

s

e−βt(−βV (t,X(t), Y (t)) + Lk,cV (t,X(t), Y (t))

+ [X(t)− λY (t)− e−λhZ(t)]Vy(t,X(t), Y (t))dt

+

∫ T

s

e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t)

≤
∫ T

s

e−βte−αc(t)X(t)dt

+

∫ T

s

e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t).

Using the boundary condition (2.75), we have

V (s, x, y) ≥ e−β(T−s)V (T,X(T ), Y (T ))−
∫ T

s

e−β(T−s)e−αc(t)X(t)dt

−
∫ T

s

e−β(T−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t)

= e−β(T−s)Ψ(X(T ), Y (T ))−
∫ T

s

e−β(T−s)e−αc(t)X(t)dt

−
∫ T

s

e−β(T−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t).
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By virtue of condition (2.84), we have∫ T

s

e−β(T−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t)

a martingale. Taking expection on both sides, we obtain, ∀(k, c) ∈ Π

V (s, x, y) ≥ −Es,ϕ,k,c

[ ∫ T

s

e−β(T−s)e−αc(t)X(t)dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

We have

V (s, x, y) ≥ sup
k,c≥0

Es,ϕ,k,c

[ ∫ T

s

e−β(T−s) (−e−αc(t)X(t)
)
dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

By taking (k, c) = (k∗, c∗), the inequalities can be replaced by equalities

V (s, x, y) = Es,ϕ,k∗,c∗

[ ∫ T

s

e−β(T−s)(−e−αc∗(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

This completes the proof.

Theorem 2.4.4. Assume that the utility function is given by

U(x) = −e−αx, α > 0,

and that the terminal function is given by

Ψ(x, y) = −Λe−γ(x+µ3eλhy)

Suppose (2.69) and (2.70) also hold. . Then the function V (s, x, y) given by (2.80) is a

classical solution of the HJB equation (2.39)-(2.40), and it is equal to the value of the

system defined by (2.21)-(2.25), that is

V (s, x, y) = sup
(k,c)∈Π

Es,ϕ

[ ∫ T

s

e−β(T−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.
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In addition, the optimal control policy is given by

k∗(s) =
(µ1 − r)

α(r + µ3eλh)σ2X(s)
,

c∗(s) = − 1

X(s)α

[
log{(r + µ3e

λh)Q(s)} − α(r + µ3e
λh)(X(s) + µ3e

λhY (s))

]
,

where Q(·) is defined by (2.78)

Proof. It is evident from the derivation of V (s, x, y) that V (s, x, y) given by (2.80) is a

classical solution of HJB equation (2.39)-(2.40). To use theorem (2.4.3), we first verify

that condition (2.84) is satisfied. Using (2.80)

Vx(t,X(t), Y (t)) = γQ(t)e−γ(X(t)+µ3eλhY (t)),

where γ > 0 is a constant given by (2.70). In addition, it is easy to verify that

0 <
1 + γx

eγx
≤ 1, ∀x > 0.

So we can get

|e−γ(X(t)+µ3eλhY (t))| ≤
∣∣∣∣ 1

1 + γ(X(t) + µ3eλhY (t))

∣∣∣∣ , ∀t ∈ [s, T ].

Therefore, by virtue of (2.79), we can get

|Vx(t,X(t), Y (t))| <
∣∣∣∣ γΛ

1 + γ(X(t) + µ3eλhY (t))

∣∣∣∣ ,
Using the definition of admissible control space Π, we have

|k∗(t)X(t)| ≤ Λ1|X(t) + µ3Y (t)| ≤ Λ1|X(t) + µ3e
λhY (t)|.
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Therefore, we can get

|k∗(t)X(t)Vx(t,X(t), Y (t))| ≤ Λ1

∣∣∣∣ γΛ(X(t) + µ3e
λhY (t))

1 + γ(X(t) + µ3eλhY (t))

∣∣∣∣
≤ Λ1Λ

∣∣∣∣1− 1

1 + γ(X(t) + µ3eλhY (t))

∣∣∣∣
≤ Λ1Λ

(
1 +

∣∣∣∣ 1

1 + γ(X(t) + µ3eλhY (t))

∣∣∣∣)
≤ 2Λ1Λ.

where Λ1,Λ are positive constants independent of t. Now we can get,

E

[∫ T

0

[
k∗(t)X(t)Vx(t,X(t), Y (t))]2dt

]
≤ E

[∫ T

0

4Λ2
1Λ2dt

]
= 4Λ2

1Λ2T <∞.

Thus condition (2.84) is verified. By definition of (k∗, c∗), it is easy to see that (k∗(t), c∗(t))

is F t-measurable for any t ∈ [0, T ]. Also, by virtue of (2.79), it is easy to get that

c∗(t) ≥ 0,∀t ∈ [0, T ]. The conditions given by (2.13) of admissible control space are also

satisfied. Hence we have (k∗, c∗) ∈ Π. This completes the proof.
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Chapter 3

An Infinite Time Horizon Portfolio

Optimization Model with Bounded

Memory

3.1 Introduction

In this chapter we consider a stochastic portfolio management problem on an infinite

time horizon taking into account the history of the portfolio performance. Consider an

investor’s portfolio consisting of a risky asset and a riskless asset. The riskless asset earns

the investor a fixed interest rate r > 0. For example, we can treat the money in a bank

as the investment on the riskless asset. We assume that the investor can freely move

her money between two assets at any time and her consumption comes from the riskless

asset.

In this chapter, we consider a portfolio optimization problem for stochastic systems

with delay variables given by (3.1) on an infinite time horizon. The problem is formulated

as a stochastic control problem. The equation of the state variable X(t) is given by (3.9)

and (3.10) and the objective function is given by (3.20). The goal is to choose the optimal

investment control k(t) and the consumption control c(t) to maximize the objective

function to obtain the value function defined by (3.21). The solution of a stochastic

control problem with delay is assumed to depend on the initial condition ϕ, which is in

an infinite dimensional space C[−h, 0], the space of all continuous functions on [−h, 0].

However, if the system only depends on the delay through process Y (t) and Z(t) defined
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by (5.1), it is possible to obtain a solution in a finite dimensional space.

Let K(t) be the amount invested in the risky asset and L(t) be the amount invested on

the riskless asset. The net wealth is given by X(t) = K(t)+L(t). We consider a situation

where the performance of the risky asset has memory. We assume that the performance

of the risky asset depends on the following delay variables Y (t) and Z(t):

Y (t) =

∫ 0

−h
eλθX(t+ θ)dθ, Z(t) = X(t− h), ∀t ∈ [0,∞), (3.1)

where λ > 0 is a constant and h is the delay parameter.

Let {B(t), t ≥ 0} be a standard one-dimensional standard Brownian motion defined

on a complete filtered probability space (Ω,F , P ; F), where F = {F t, t ≥ 0} is the P -

augmented natural filtration generated by the Brownian motion {B(t), t ≥ 0}. We assume

that K(t) and L(t) follow the stochastic differential equations:

dK(t) = [(µ1 + µ2Y (t) + µ3Z(t))K(t) + I(t)] dt+ σK(t)dB(t), (3.2)

dL(t) = [rL(t)− C(t)− I(t)]dt, (3.3)

where µ1, µ2, µ3 and σ are positive constants, I(t) is the investment rate on the risky

asset at t, and C(t) is the consumption rate. We consider the modified model formulated

in chapter 2 over infinite time horizon.

The equation for X(t) follows by using X(t) = K(t) + L(t):

dX(t) = [(µ1 + µ2Y (t) + µ3Z(t))K(t) + rL(t)− C(t)] dt

+ σK(t)dB(t), ∀t ∈ [0,∞). (3.4)

The initial condition is the information about X(t) for t ∈ [−h, 0]:

X(t) = ϕ(t), ∀t ∈ [−h, 0], (3.5)

where ϕ ∈ J and J ≡ C[−h, 0], which is the space for all continuous functions defined on

[−h, 0] equipped with the sup norm

||ϕ|| = sup
θ∈[−h,0]

|ϕ(θ)|. (3.6)
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Let L2(Ω, J) be a Banach space for all (F,B(J))-measurable maps Ω→ J that are in

L2 in the Bochner sense, where B(J) is the Borel σ− field on J. For any φ ∈ L2(Ω, J),

the Banach norm is given by

||φ(ω)||2 =

[∫
Ω

||φ(ω)||2dP (ω)

]1/2

, (3.7)

where the norm || · || is given by (3.6).

To describe the allocation between the risky asset and the riskless asset, we now treat

K(t) and C(t) as our control variables. As we can see in equation (3.4), the change of

the wealth process X(t) depends on the delay variable Y (t). We consider the following

modified model. For details see section 2.2.

dX(t) = [µ1K(t) + µ2Y (t) + µ3Z(t) + rL(t)− C(t)] dt

+ σK(t)dB(t), ∀t ∈ [0,∞). (3.8)

Instead of using K(t) and C(t), we use c(t) = C(t)
X(t)

and k(t) = K(t)
X(t)

as our consumption

and investment controls, respectively. Using L(t) = X(t) − K(t) = X(t)(1 − k(t)), we

can rewrite the equation for X(t) as

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t) + µ3Z(t)]dt

+ σk(t)X(t)dB(t), ∀t ∈ [0,∞). (3.9)

Initial condition is given by

X(t) = ϕ(t), ∀t ∈ [−h, 0], (3.10)

where ϕ ∈ J and ϕ(θ) > 0, ∀θ ∈ [−h, 0]. Using the notation given by (2.11), initial

condition (3.10) can be written as

X0 = ϕ.

Definition 3.1.1 (Admissible Control Space). Let Π denote the admissible control space.

A control policy (k(t), c(t)) is said to be in the admissible control space Π if it satisfies

the following conditions:

(a) (k(t), c(t)) is F t−measurable for any t ∈ [0,∞);
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(b) c(t) ≥ 0,∀t ∈ [0,∞);

(c)

Pr

(∫ T

0

k2(t)dt <∞
)

= 1, ∀T > 0, (3.11)

|k(t)X(t)| ≤ Λ |X(t) + Y (t)| , ∀t > 0, (3.12)

|c(t)X(t)| ≤ Λ |X(t) + Y (t)| , ∀t > 0, (3.13)

where Λ > 0 is a constant.

Here we assume that the investment control k(t) is square integrable (equation (3.11)),

to ensure that the Ito’s integral
∫ T

0
k(t)dB(t) is well defined. On the other hand, the

consumption control c(t) only appears in the drift part, not the diffusion part, so we do

not need a similar condition for c(t).

We have the following result:

Lemma 1. For any control (k(t), c(t)) ∈ Π, the equation (3.9) with initial condition

(3.10) has a unique strong solution X : [−h,∞) × Ω → R. Furthermore, for t ∈
[0,∞), Xt ∈ J and for any positive integer n, we have

E
[
||Xt||2n

]
≤ Cn[1 + ||ϕ||2n], ∀t ∈ [0,∞), (3.14)

where Cn > 0 is a constant.

Proof. Let ‖ϕ‖2 be the L2 norm of ϕ as given in (3.7). Then, by virtue of

‖ϕ‖2 ≤ ‖ϕ‖,

this lemma is a corollary of Theorem I.2 of Mohammed [41].

We have the following result:

Lemma 2. The solution X(t) of the system (3.9) -(3.10) satisfies

X(t) > 0, Y (t) > 0, Z(t) > 0, almost surely ∀t ∈ [0,∞).
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Proof. By the definition of Y (t), Z(t), it is sufficient to show that

X(t) > 0, almost surely ∀t ∈ [−h,∞). (3.15)

For a given initial condition ϕ(t) > 0,∀t ∈ [−h, 0], we have

X(t) > 0, almost surely ∀t ∈ [−h, 0], Y (0) > 0, Z(0) > 0.

Define a stopping time τ as the first time X(t) hits zero:

τ ≡ inf
t≥0
{t : X(t) = 0}.

To show that X(t) > 0, a.s., it is sufficient to show that

Pr(τ <∞) = 0.

Let X̃(t) be a solution of

dX̃(t) = [((µ1 − r)k(t)− c(t) + r)X̃(t)]dt+ σk(t)X̃(t)dB(t), ∀t ∈ [0,∞),(3.16)

X̃(t) = ϕ(t), ∀t ∈ [−h, 0], (3.17)

for the same ϕ > 0 as in (3.10). The solution is given as

X̃(t) = ϕ(0)exp

{∫ t

0

((µ1 − r)k(θ)− c(θ) + r − 1

2
σ2k2(θ))dθ

+

∫ t

0

σk(θ)dB(θ)

}
. (3.18)

Apparently, we have

X̃(t) > 0, a.s. ∀t ∈ [0,∞).
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Moreover, using Ito’s formula, we get

d

[
1

X̃(t)

]
= −dX̃(t)

X̃(t)2
+

1

2

2((dX̃(t))2

(X̃(t))3

= −(µ1 − r)k(t)− c(t) + r

X̃(t)
dt− σk(t)

X̃(t)
dB(t) +

σ2k2(t)

X̃(t)
dt

=
σ2k2(t)− [(µ1 − r)k(t)− c(t) + r]

X̃(t)
dt− σk(t)

X̃(t)
dB(t). (3.19)

Consider a new stochastic process A(t) as given by (2.19) in Lemma 2.2.2. It is easy to

see that A(t) ≥ 1, ∀t ∈ [0, τ ].

By the definition of Y (t), Z(t) and τ , it is easy to see that

Y (t) > 0, Z(t) > 0, a.s. ∀t ∈ [0, τ ].

So we can get
dA(t)

dt
> 0, ∀t ∈ [0, τ ].

Since R(0) = X(0)

X̃(0)
= ϕ(0)

ϕ(0)
= 1, we can get A(t) ≥ 1, ∀t ∈ [0, τ ]. Therefore, we have

X(t) ≥ X̃(t) > 0, a.s. ∀t ∈ [0, τ ].

By the definition of τ , if τ <∞, we must have X(τ) = 0, which is a contradiction with

the above inequality. So we must have that

Pr(τ <∞) = 0.

This completes the proof.

The utility function U(C) is defined based on the consumption rate. The problem

under consideration is a portfolio optimization problem on an infinite time horizon with

the objective function given by

J(ϕ, k, c) = Eϕ,k,c

[∫ ∞
0

e−βtU(c(t)X(t))dt

]
. (3.20)
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Then the value function is given by

V (ϕ) = sup
k,c∈Π

J(ϕ, k, c)

= sup
k,c∈Π

Eϕ,k,c

[∫ ∞
0

e−βtU(c(t)X(t))dt

]
. (3.21)

Note that V (ϕ) is a functional defined on an infinite dimensional space C[−h, 0]. We

turn V into a function defined on a finite dimensional space as follows

V (ϕ) = V (x, y, z),

where V : R3 → R, and

x = x(ϕ) ≡ ϕ(0), y = y(ϕ) ≡
∫ 0

−h
eλθϕ(θ)dθ, z = z(ϕ) ≡ ϕ(−h). (3.22)

Further, we assume that the value function V only depends on (x, y) i.e.

V (ϕ) = V (x, y, z) = V (x, y). (3.23)

The reason of this assumption is given in Lemma 2.3.2.

In the following section, using the dynamic programming principle, we heuristically

derive the Hamilton-Jacobi-Bellman equation for the value function in terms of the ini-

tial variables x = X(0), y = Y (0). In section 3.3, we derive the explicit solutions for

exponential utility, log utility and power utility (HARA utility with γ 6= 0), respectively.

The optimal control polices and the verification results are established correspondingly.

3.2 Hamilton-Jacobi-Bellman Equation

We will need some kind of Ito’s formula with respect to the function of the delay variable

Y (t). There are two methods for this purpose. One is the traditional method and the

other one is to use the functional Ito’s formula given in chapter 2. Although we can

reach the same result via both methods, by using the functional Ito’s formula, we can

also establish a necessary condition that the HJB equation can be derived in a finite

dimensional space.
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In this chapter we use the traditional method to derive the Ito’s formula for functions

of (X(t), Y (t)). Let f ∈ C2,1(R2) and define

G = f(X(t), y(Xt)),

where

y(η) ≡
∫ 0

−h
eλθη(θ)dθ, ∀η ∈ J, and Xt(θ) ≡ X(t+ θ), ∀θ ∈ [−h, 0].

Lemma 3.2.1 (Ito’s Formula). Consider the system given by (3.9)-(3.10). We have

dG = Gk,cfdt+ σkxfxdB(t), (3.24)

where

Gk,cf = Gk,cf(x, y) =[((µ1 − r)k − c+ r)x+ µ2y + µ3z]fx

+
1

2
σ2k2x2fxx + fy · [x− e−λhz − λy]dt, (3.25)

where x, y, z, k and c are evaluated as

x = X(t), y = y(Xt) =

∫ 0

−h
eλθX(t+ θ), z = z(Xt) = X(t− h),

k = k(t), c = c(t).

Proof. The idea of the proof is very similar to that of Lemma 2.1 in Elsanousi-Øksendal-

Sulem [11].
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Consider Xt(θ) = X(t+ θ), ∀θ ∈ [−h, 0] and y = y(Xt). We have

d

dt
y(Xt(·)) =

d

dt

[∫ 0

−h
eλθXt(θ)dθ

]
=

d

dt

[∫ 0

−h
eλθX(t+ θ)dθ

]
=

d

dt

[∫ t

t−h
eλ(u−t)X(u)du

]
(let u ≡ θ + t)

= X(t)− e−λhX(t− h)− λ
∫ t

t−h
eλ(u−t)X(u)du

= X(t)− e−λhX(t− h)− λ
∫ 0

−h
eλθX(t+ θ)dθ (let θ = u− t)

= x− e−λhz − λy. (3.26)

Applying classical Ito’s formula to G = f(X(t), y(Xt)), the result follows.

On the other hand, we can use the method of functional Ito’s formula. Recall that

we use X(t) to denote the current value and we use Xt : [−h, 0] → R to denote the

path of X(t) from t − h to t. For details see section 2.3. Now we assume that the value

function V only depends on (x, y) as given by (3.23). We will derive the HJB equation

satisfied by the value function V (x, y) heuristically. To derive the HJB equation, we need

the following dynamic programming principle.

Lemma 3.2.2 (Dynamic Programming Principle). Assume that the value function V (x, y)

given by (3.21), (3.23) is well defined and assume the system given by (3.9)-(3.10). Then

we have

V (x, y) = sup
(k,c)∈Π

Ex,y,k,c

[∫ t

0

e−βτU(c(τ))X(τ)dτ + e−βtV (X(t), Y (t))

]
(3.27)

for all F t-stopping time t ∈ [0,∞) and (x, y) ∈ R2, where x = x(ϕ) = ϕ(0) and y =

y(ϕ) =
∫ 0

−h e
λθϕ(θ)dθ.

Proof. The proof is similar to the proof of Theorem 4.2 of Larssen [31] and we omit it

here.

Now we can use the dynamic programming principle given by Lemma 3.2.2 to heuristi-

cally derive the HJB equation. In particular, if we assume that V (x, y) is smooth enough,
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then we can use the Ito’s formula to get

d
[
e−βtV (X(t), Y (t))

]
= e−βt [dV (X(t), Y (t))− βV (X(t), Y (t))dt]

= e−βt
[ (
Gk,cV (X(t), Y (t))− βV (X(t), Y (t))

)
dt

+ σk(t)X(t)Vx (t,X(t), Y (t)) dB(t)

]
,

where Gk,c is given by (3.25). Integrate it over [0, T ], and we can get

e−βTV (X(T ), Y (T ))− V (x, y) =

∫ T

0

e−βt
[
Gk,cV (X(t), Y (t))− βV (X(t), Y (t))

]
dt

+

∫ T

0

e−βtσk(t)X(t)Vx (t,X(t), Y (t)) dB(t) (3.28)

Assume that
∫ T

0
e−βtσk(t)X(t)Vx (t,X(t), Y (t)) dB(t) is a martingale, then we can get

lim
T→0

1

T
Ex,y,k,c

[
e−βtV (X(t), Y (t))− V (x, y)

]
= lim

T→0

1

T

∫ T

0

e−βtEx,y,k,c

[
Gk,cV (X(t), Y (t))

− βV (X(t), Y (t))

]
dt

= Gk,cV (x, y)− βV (x, y). (3.29)

On the other hand, from the equation (3.27), we can get

0 = lim
T→0

sup
k,c∈Π

Ex,y,k,c

[
1

T
(e−βtV (X(t), Y (t))− V (x, y))

+
1

T

∫ T

0

e−βtU(c(t))X(t)dt

]
= lim

T→0
sup
k,c∈Π

Ex,y,k,c

[
1

T
(e−βtV (X(t), Y (t))− V (x, y)) + U(cx)

]
. (3.30)

Together with equation (3.29), we can get the following HJB equation:

sup
k,c

[Gk,cV (x, y)− βV (x, y) + U(cx)] = 0
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Since Gk,c is given by (3.25), we can write the HJB equation as the following:

βV = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y + µ3z)Vx +

max
c≥0

[−cxVx + U(cx)] + (x− λy − e−λhz)Vy, ∀z ∈ R. (3.31)

So we have heuristically derived the HJB equation for our stochastic control problem.

For details and general theory about dynamic programming principle and HJB equations,

please see Fleming-Rishel [17] or Yong-Zhou [52].

In this chapter, we will consider utility functions of exponential, logarithmic and

HARA type. For each utility function, we will find an explicit solution of the correspond-

ing HJB equation and we will verify that the solution is equivalent to the value function

by establishing the verification theorem. The optimal control polices will be derived,

too. The optimal control problem is then solved with the explicit value function and the

optimal controls.

We want to point out that our goal is to solve the stochastic control problem to get the

value function and the optimal controls while the HJB equation we derived heuristically

just serves as an intermediate vehicle to find the explicit form of the value function and

the optimal control. Therefore, we do not need to formally show that the value function

is a classical or viscosity solution of the above HJB equation. Further, we do not need to

show that the HJB equation has a unique solution, either.

3.3 The Solution of the HJB equation

In this section we solve the HJB equation (3.31) for each exponential, logarithamic and

HARA utility function and give the verification theorems for each of those utility func-

tions.

3.3.1 Exponential Utility

We consider the exponential utility function given as

U(cX) = 1− e−αcX , (3.32)
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where α > 0 is a constant. The additive term 1 has no mathematical relevance except it

restricts the range of the function between 0 and 1. Therefore for technical convenience

we consider

U(cX) = −e−αcX , α > 0. (3.33)

For this exponential utility function, the HJB equation (3.31) now becomes

βV = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y + µ3z)Vx

+ max
c≥0

[
−cxVx − e−αcX

]
+ (x− e−λhz − λy)Vy, (3.34)

First, we will solve the above equation and then we will verify that the solution is equal

to the value function. By the first order condition, we can get that the candidates for

optimal controls are

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ = − 1

αx
log

(
Vx
α

)
. (3.35)

Substituting k∗ and c∗ in equation (3.34), we obtain

βV = −(µ1 − r)2V 2
x

2σ2Vxx
+
Vx
α

[
log

(
Vx
α

)
− 1

]
+ (rx+ µ2y + µ3z)Vx +

(
x− λy − e−λhz

)
Vy. (3.36)

The above equation can be rewritten as

βV = −(µ1 − r)2V 2
x

2σ2Vxx
+
Vx
α

[
log

(
Vx
α

)
− 1

]
+ (rVx + Vy)x

+ (µ2Vx − λVy)y + (µ3Vx − e−λhVy)z. (3.37)

Since we are looking for a solution that is independent of z, we will look for a solution

in forms of

V (x, y) = η1e
η2u. (3.38)

where η1, η2 are two constants to be determined, and u is defined by

u ≡ x+ µ3e
λhy. (3.39)
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Under this assumption, we can get

Vx = η2V, Vxx = η2
2V, Vy = µ3e

λhη2V. (3.40)

So it is easy to verify that

µ3Vx − e−λhVy = 0.

Plug (3.40) into (3.37) and we can get

βV = −(µ1 − r)2

2σ2
V +

η2V

α

[
log

(
η2V

α

)
− 1

]
+ (r + µ3e

λh)xη2V + (µ2 − λµ3e
λh)η2yV. (3.41)

As we can see, the term involving z has vanished. Cancel V from both sides and we can

get

β = −(µ1 − r)2

2σ2
+
η2

α

[
log

(
η2V

α

)
− 1

]
+ (r + µ3e

λh)xη2 + (µ2 − λµ3e
λh)η2y.

Plug in (3.38), and we have

β = −(µ1 − r)2

2σ2
+
η2

α

[
log

(
η1η2

α

)
+ η2u− 1

]
+ (r + µ3e

λh)xη2 + (µ2 − λµ3e
λh)η2y. (3.42)

Now assume that

µ2 − λµ3e
λh = (r + µ3e

λh)µ3e
λh (3.43)

Then equation (4.29) can be written as

β = −(µ1 − r)2

2σ2
+
η2

α

[
log

(
η1η2

α

)
− 1

]
+
η2

2

α
u+ (r + µ3e

λh)η2u. (3.44)

We pick η2 such that
η2

2

α
+ (r + µ3e

λh)η2 = 0.
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One solution is the trivial solution η2 = 0 and the other solution is

η2 = −α(r + µ3e
λh). (3.45)

Then equation (3.44) becomes

β = −(µ1 − r)2

2σ2
+
η2

α

[
log

(
η1η2

α

)
− 1

]
.

We can solve the above equation to get η1:

η1 =
α

η2

exp

(
α

η2

[
β +

(µ1 − r)2

2σ2

]
+ 1

)
= − 1

r + µ3eλh
exp

(
1−

β + (µ1−r)2

2σ2

r + µ3eλh

)
. (3.46)

Therefore the solution of the HJB equation (3.34) is given by

V (x, y) = η1e
η2u

= − 1

r + µ3eλh
exp

(
1−

β + (µ1−r)2

2σ2

r + µ3eλh

)
e−α(r+µ3eλh)(x+µ3eλhy). (3.47)

The optimal investment and the optimal consumption controls are

k∗(t) = −(µ1 − r)Vx
σ2X(t)Vxx

= − (µ1 − r)
σ2X(t)η2

=
(µ1 − r)

ασ2X(t)(r + µ3eλh)
, (3.48)

c∗(t) = − 1

αX(t)
log

(
Vx
α

)
= − 1

αX(t)

[
log

(
η2V

α

)]
= − 1

αX(t)

[
log
(η1η2

α

)
+ η2(X(t) + µ3e

λhY (t))
]

=
β + (µ1−r)2

2σ2 − (r + µ3e
λh)

αX(t)(r + µ3eλh)

+
(r + µ3e

λh)
(
X(t) + µ3e

λhY (t)
)

X(t)
. (3.49)
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To ensure that c∗ > 0, we assume that

β +
(µ1 − r)2

2σ2
> r + µ3e

λh. (3.50)

Next, we will establish the verification theorem to make sure that the solution given

by (3.47) is equal to the value function defined by (3.21). In addition, we will verify that

k∗(t), c∗(t) defined by (3.48)-(3.49) are the optimal policies.

Theorem 3.3.1 (Verification Theorem). Assume that (3.43) and (3.50) hold. Let V (x, y)

be defined by (3.47). Then V (x, y) ∈ C2,1(R×R) and it is a solution of (3.34) such that

E

[∫ T

0

(
k(t)X(t)Vx(X(t), Y (t))

)2

dt

]
<∞, ∀(k, c) ∈ Π, ∀T > 0. (3.51)

In addition, we have

(a) V (x, y) ≥ J(x, y; k, c) for any admissible progressively measurable control process

(k(t), c(t)) ∈ Π.

(b) Assume that k∗(t), c∗(t) are defined by (3.48)-(3.49). Then k∗(t), c∗(t) ∈ Π and

V (x, y) = J(x, y; k∗, c∗).

Proof. We first verify that condition (3.51) is satisfied. By the definition of V (x, y), we

can get

Vx(X(t), Y (t)) = η1η2e
η2(X(t)+µ3eλhY (t)),

where η1, η2 are defined by (3.46) and (3.45), respectively. By the definitions of η1 and

η2, we can see that η1η2 > 0. In addition, by virtue of the fact that X(t) > 0, Y (t) > 0

and η2 < 0, it is not hard to get that

eη2(X(t)+µ3eλhY (t)) ≤ 1

1 + |η2|(X(t) + µ3eλhY (t))
, ∀t ∈ [0,∞).

Therefore we have,

|Vx(X(t), Y (t))| ≤ η1η2

∣∣∣∣ 1

1 + |η2|(X(t) + µ3eλhY (t))

∣∣∣∣ .
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Using the definition of admissible control space Π, we have

|k(t)X(t)| ≤ Λ|X(t) + Y (t)| ≤ Λ1|X(t) + µ3e
λhY (t)|,

where

Λ1 = Λ max

{
1

µ3eλh
, 1

}
.

Therefore, we have

|k(t)X(t)Vx(X(t), Y (t))| ≤ Λ1η1η2

∣∣∣∣ X(t) + µ3e
λhY (t)

1 + |η2|(X(t) + µ3eλhY (t))

∣∣∣∣
≤ Λ1η1η2

∣∣∣∣ 1

|η2|

(
1− 1

1 + |η2|(X(t) + µ3eλhY (t))

)∣∣∣∣
≤ Λ1η1η2

|η2|
= −Λ1η1,

where −Λ1η1 > 0 is a constant independent of t. Thus it is easy to check that condition

(3.51) holds.

Let Gk,c defined by (3.25) be the generator of the process (X(t), Y (t)) for any control

process (k(t), c(t)) ∈ Π. Then by using Ito’s rule

d
[
e−βtV (X(t), Y (t))

]
= e−βt [dV (X(t), Y (t))− βV (X(t), Y (t))dt]

= e−βt
[ (
Gk,cV (X(t), Y (t))− βV (X(t), Y (t))

)
dt

+ σk(t)X(t)Vx (t,X(t), Y (t)) dB(t)

]
.

Integrating it on [0, T ] and noting that V (x, y) is a classical solution of (3.34), we have

e−βTV (X(T ), Y (T ))− V (x, y)

≤
∫ T

0

e−βte−αcX(t)dt+

∫ T

0

e−βtσk(t)X(t)Vx (t,X(t), Y (t)) dB(t). (3.52)

By virtue of (3.51),
∫ T

0
e−βtσk(t)X(t)Vx (t,X(t), Y (t)) dB(t) is a martingale. Then by

taking expectation on both sides, for every finite T we have

V (x, y) ≥ −E

[∫ T

0

e−βte−αcX(t)dt

]
+ E

[
e−βTV (X(T ), Y (T ))

]
, (3.53)
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where V (·, ·) is given by (3.47). By (3.47) and noting that η1 < 0, η2 < 0, we have

E
[∣∣e−βTV (X(T ), Y (T ))

∣∣] = E
[∣∣e−βTη1e

η2(X(T )+µ3Y (T ))
∣∣]

≤ E
[
|η1|e−βT

]
= |η2|e−βT . (3.54)

Therefore, by taking T →∞, we have E
[
e−βTV (X(T ), Y (T ))

]
→ 0. Then we have

V (x, y) ≥ E

[∫ ∞
0

e−βt
(
−e−αcX(t)

)
dt

]
(3.55)

for any admissible control (k(t), c(t)) ∈ Π. This proves (a).

On the other hand, for k∗(t), c∗(t) defined by (3.48) and (3.49), we can easily verify

that F t measurable. In addition, from Lemma 2, we know that X(t) > 0, a.s., so we

can get that k∗(t), c∗(t) are well defined and and c∗(t) ≥ 0. In addition, it is not hard to

check that (3.12) and (3.13) are true for k∗(t) and c∗(t). Finally, since X(t) > 0 are well

defined, we can get that

Pr(k∗(t) <∞) = 1, ∀t ≥ 0.

Therefore, we can get

Pr

(∫ T

0

(k∗(t))2dt <∞
)

= 1, ∀T > 0.

So we can get that (k∗(t), c∗(t)) ∈ Π. With (k(t), c(t)) = (k∗(t), c∗(t)) all the inequalities

up to inequality (3.53) in the first part can be replaced by equalities. Then instead of

(3.53), we have

V (x, y) = −E

[∫ T

0

e−βte−αc
∗(t)X∗(t)dt

]
+ E

[
e−βTV (X∗(T ), Y ∗(T ))

]
. (3.56)

Taking T →∞ and using (3.54), we have

V (x, y) = E

[∫ ∞
0

e−βt
(
−e−αc∗X∗(t)

)
dt

]
.

Therefore we have V (x, y) = J(x, y; k∗, c∗). This proves (b).
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3.3.2 Logarithmic Utility

We consider a logarithmic utility function given by

U(cX) = log
(
cX
)
. (3.57)

Now the HJB equation (3.31) becomes

βV = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y + µ3z)Vx

+ max
c≥0

[−cxVx + log(cx)] +
(
x− e−λhz − λy

)
Vy, (3.58)

The candidates for optimal controls are

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

xVx
. (3.59)

Substituting k∗ and c∗ in (3.58), we obtain

βV = −1

2

(µ1 − r)2V 2
x

σ2Vxx
+ log

(
1

Vx

)
− 1

+ (rx+ µ2y + µ3z)Vx +
(
x− λy − e−λhz

)
Vy, (3.60)

To cancel the items involving z, we assume that

u ≡ x+ µ3e
λhy, (3.61)

and we look for the solution of the form

V (x, y) = η1 log(u) + η2 (3.62)

where η1, η2 are two constants to be determined. It is easy to see that

Vx =
η1

u
, Vxx = −η1

u2
, Vy =

η1µ3e
λh

u
. (3.63)
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By plugging (3.62) and (3.63) into (5.25) we get

β(η1 log u+ η2) =
1

2

(µ1 − r)2η1

σ2
− log η1 + log u− 1

+ (rx+ µ2y)
η1

u
+ (x− λy)

µ3e
λhη1

u
(3.64)

Assume that

η1 =
1

β
(3.65)

and

µ3e
λh(r + µ3e

λh) = µ2 − µ3λe
λh. (3.66)

Then we can plug (3.65) into (3.64) and use (3.66) to cancel u. The explicit formula for

η2 is

η2 =
1

β2

[
(µ1 − r)2

2σ2
+ β log β − β +

(
r + µ3e

λh
)]
. (3.67)

Therefore (3.58) has a solution

V (x, y) = η2 +
1

β
log
(
x+ µ3e

λhy
)
, (3.68)

where η2 is given by (5.26). The optimal investment and consumption control policies are

k∗(t) =
(µ1 − r)(X(t) + µ3e

λhY (t))

σ2X(t)
, c∗(t) =

β(X(t) + µ3e
λhY (t))

X(t)
. (3.69)

Now we verify that V (x, y) is the maximum expected discounted utility and k∗, c∗ are

the optimal policies.

Theorem 3.3.2 (Verification Theorem). Assume that condition (3.66) holds and let

V (x, y) be given by (3.68). Then V (x, y) ∈ C2,1(R × R) and it is a solution of (3.58)

such that

E

[∫ T

0

(
k(t)X(t)Vx(X(t), Y (t))

)2

dt

]
<∞ ∀k ∈ Π, ∀T > 0. (3.70)

Moreover, we have

(a) V (x, y) ≥ J(x, y; k, c) for any admissible control process (k(t), c(t)) ∈ Π.
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(b) If k∗, c∗ are given by (3.69), then k∗(t), c∗(t) ∈ Π and V (x, y) = J(x, y; k∗, c∗).

Proof. By the construction of the function V (x, y), it is easy to check that V (x, y) ∈
C2,1(R × R) and it is a solution of (3.58). Next we verify the condition (3.70). Using

(3.68), we have

|Vx(X(t), Y (t))| = 1

β

∣∣∣∣ 1

X(t) + µ3eλhY (t)

∣∣∣∣
Using the definition of admissible control space Π, we have

|k(t)X(t)| ≤ Λ|X(t) + Y (t)| ≤ Λ1|X(t) + µ3e
λhY (t)|,

where

Λ1 = Λ max

{
1

µ3eλh
, 1

}
.

Therefore, we have

|k(t)X(t)Vx(X(t), Y (t))| ≤ Λ1

β
|X(t) + µ3e

λhY (t)| ·
∣∣∣∣ 1

X(t) + µ3eλhY (t)

∣∣∣∣ =
Λ1

β
.

Then we have,

E

[∫ T

0

[k(t)X(t)Vx(t,X(t), Y (t))]2dt

]
≤ E

[∫ T

0

Λ2
1

β2
dt

]
=

Λ2
1T

β2
<∞.

Thus condition (3.70) is verified.

Let Gk,c be the generator of the process (X(t), Y (t)) for any control process (k(t), c(t)) ∈
Π. Then by using Ito’s rule

d
[
e−βtV (X(t), Y (t))

]
= e−βt [dV (X(t), Y (t))− βV (X(t), Y (t))dt]

= e−βt
[
Gk,cV (X(t), Y (t))− βV (X(t), Y (t))

]
dt

+ e−βtσk(t)X(t)Vx(X(t), Y (t))dB(t).

Integrating above on [0, T ] and also noting that V (x, y) is classical solution of (3.58), we
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have

e−βTV (X(T ), Y (T ))− V (x, y) ≤ −
∫ T

0

e−βt log(c(t)X(t))dt

+

∫ T

0

e−βtσk(t)X(t)Vx(X(t), Y (t))dB(t).

By virtue of (3.70),
∫ T

0
e−βtσk(t)X(t)V x(t,X(t), Y (t))dB(t) is a martingale. Then we

have

V (x, y) ≥ E

[∫ T

0

e−βt log(c(t)X(t))dt

]
+ E

[
e−βTV (X(T ), Y (T ))

]
. (3.71)

Using (3.68), we have

lim
T→∞

E
[
e−βTV (X(T ), Y (T ))

]
= lim

T→∞
E

[
e−βT

(
1

β
log
(
X(T ) + µ3e

λhY (T )
)

+ η2

)]
,

where η2 is given by (5.26). To show that

lim
T→∞

E
[
e−βTV (X(T ), Y (T ))

]
= 0,

it is sufficient to show

lim
T→∞

E
[
e−βT log

(
X(T ) + µ3e

λhY (T )
)]

= 0. (3.72)

Let

S(t) = X(t) + µ3e
λhY (t). (3.73)

Then using (3.66), we have

dS(t) = dX(t) + µ3e
λhdY (t)

=
[

((µ1 − r)k(t)− c(t))X(t) + (r + µ3e
λh)S(t)

]
dt+ σk(t)X(t)dB(t).
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Using Ito’s rule, we have

d logS(t) =
dS(t)

S(t)
− 1

2

(dS(t))2

(S(t))2

=

[
((µ1 − r)k(t)− c(t)) X(t)

S(t)
+ (r + µ3e

λh)

− 1

2
σ2k2(t)

(
X(t)

S(t)

)2 ]
dt+ σk(t)

X(t)

S(t)
dB(t). (3.74)

Since (k(t), c(t)) ∈ Π, it is easy to verify that
∫ T

0
σk(t)X(t)

S(t)
dB(t) is a martingale. There-

fore, we can get

E [logS(T )] = log(S(0)) + E

[∫ T

0

((µ1 − r)k(t)− c(t)) X(t)

S(t)
dt

]
+

∫ T

0

(r + µ3e
λh)dt− E

[∫ T

0

1

2
σ2k2(t)

(
X(t)

S(t)

)2

dt

]
. (3.75)

For any (k(t), c(t)) ∈ Π, by virtue of (3.12) and (3.13), we have∣∣∣∣k(t)
X(t)

S(t)

∣∣∣∣ ≤ Λ |X(t) + Y (t)|
|X(t) + µ3eλhY (t)|

≤ Λ1,∣∣∣∣c(t)X(t)

S(t)

∣∣∣∣ ≤ Λ |X(t) + Y (t)|
|X(t) + µ3eλhY (t)|

≤ Λ1,

where

Λ1 = Λ max

{
1

µ3eλh
, 1

}
.

Then we can get

lim
T→∞

e−βTE

[∫ T

0

((µ1 − r)k(t))
X(t)

S(t)
dt

]
= 0,

lim
T→∞

e−βT
∫ T

0

(
r + µ3e

λh
)
dt = 0,

lim
T→∞

e−βTE

[∫ T

0

(−c(t)X(t)

S(t)
)dt

]
= 0,

lim
T→∞

e−βTE

[∫ T

0

(
−1

2
σ2k2(t)

(
X(t)

S(t)

)2
)
dt

]
= 0.
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Then from (3.75), we can get

lim
T→∞

e−βTE[log(S(T ))] = 0.

Thus, we have

lim
T→∞

E
[
e−βTV (X(T ), Y (T ))

]
= 0, ∀(k(t), c(t)) ∈ Π.

Combined with (3.71), this implies (a).

Now assume that k∗, c∗ are given by (3.69). We can easily verify that they are F t-
measurable. In addition, from Lemma 2, we know that X(t) > 0, a.s., so we can get that

k∗(t), c∗(t) are well defined and c∗(t) ≥ 0. In addition, it is not hard to check that (3.12)

and (3.13) are true for k∗(t) and c∗(t). Finally, since X(t) > 0 and k∗(t) is well defined,

we can get that

Pr(k∗(t) <∞) = 1, ∀t ≥ 0.

Therefore, we can get

Pr

(∫ T

0

(k∗(t))2dt <∞
)

= 1, ∀T > 0.

So we can get that (k∗(t), c∗(t)) ∈ Π. Moreover, the equation for X(t) now is

dX∗(t) =

[(
(µ1 − r)2

σ2
− β

)
(X∗(t) + µ3e

λhY ∗(t)) + rX∗(t) + µ2Y
∗(t)

+ µ3Z
∗(t)

]
dt+

µ1 − r
σ

(X∗(t) + µ3e
λhY ∗(t))dB(t). (3.76)

Let

S∗(t) = X∗(t) + µ3e
λhY ∗(t). (3.77)
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Using assumption (3.66), we have

dS∗(t) = dX∗(t) + µ3e
λhdY ∗(t)

=

[(
(µ1 − r)2

σ2
− β

)
(X∗(t) + µ3e

λhY ∗(t)) + rX∗(t) + µ2Y
∗(t)

+ µ3Z
∗(t)

]
dt+

µ1 − r
σ

(X∗(t) + µ3e
λhY ∗(t))dB(t)

+ µ3e
λh
[
X∗(t)− λY ∗(t)− e−λhZ∗(t)

]
dt

=

[(
(µ1 − r)2

σ2
− β

)
S∗(t) + rX∗(t) + µ2Y

∗(t) + µ3Z
∗(t)

]
dt

+
µ1 − r
σ

S∗(t)dB(t) + µ3e
λh
[
X∗(t)− λY ∗(t)− e−λhZ∗(t)

]
dt

=

[
(µ1 − r)2

σ2
− β + r + µ3e

λh

]
S∗(t)dt+

µ1 − r
σ

S∗(t)dB(t). (3.78)

The solution is

S∗(t) = S∗(0)e

[
(µ1−r)

2

σ2 −β+(r+µ3eλh)− (µ1−r)
2

2σ2

]
t+

µ1−r
σ

B(t)

= (x+ µ3e
λhy)e

[
(µ1−r)

2

2σ2 −β+r+µ3eλh
]
t+

µ1−r
σ

B(t)
. (3.79)

Using (k∗(t), c∗(t)) as controls, similar to (3.71), now we can get

V (x, y) = E

[∫ T

0

e−βt log(c∗(t)X∗(t))dt

]
+ E

[
e−βTV (X∗(T ), Y ∗(T ))

]
. (3.80)

By virtue of (3.68) and (3.79), we can get

V (X∗(T ), Y ∗(T )) =
1

β
log

(
X∗(T ) + µ3e

λhY ∗(T )

)
+ η2,

=
1

β
log(S∗(T )) + η2

=
1

β
log(x+ µ3e

λhy) +

[
(µ1 − r)2

2σ2
− β + r + µ3e

λh

]
T

+
µ1 − r
σ

B(T ) + η2. (3.81)
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Then it is easy to show that

lim
T→∞

E
[
e−βTV (X∗(T ), Y ∗(T )

]
= 0. (3.82)

Hence we have V (x, y) = J(x, y; k∗, c∗). Therefore (b) is proved. This completes the

proof.

3.3.3 HARA Utility

In this section we consider HARA utility function

U(cX) =
1

γ
(cX)γ , 0 < γ < 1. (3.83)

The HJB equation (3.31) can now be written as

βV = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y + µ3z)Vx

+ max
c≥0

[
−cxVx +

1

γ
(cx)γ

]
+
(
x− e−λhz − λy

)
Vy, (3.84)

The candidates for optimal controls are

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

x
V

1
γ−1
x . (3.85)

Substituting k∗ and c∗ in (3.84), we obtain

βV = −1

2

(µ1 − r)2V 2
x

σ2Vxx
+

(
1

γ
− 1

)
V

γ
γ−1
x + (rx+ µ2y + µ3z)Vx

+
(
x− λy − e−λhz

)
Vy, (3.86)

Suppose solution is of the form

V (x, y) =
1

γ
ηuγ (3.87)

where u ≡ x+ µ3e
λhy. Now we have

Vx = ηuγ−1, Vxx = (γ − 1) ηuγ−2, Vy = µ3e
λhηuγ−1. (3.88)
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By substituting (3.87) and (3.88) in (3.86) we get

β

γ
ηuγ = −1

2

(µ1 − r)2

(γ − 1)σ2
ηuγ +

(
1

γ
− 1

)
η

γ
γ−1uγ

+ (rx+ µ2y)ηuγ−1 + (x− λy)µ3e
λhηuγ−1 (3.89)

Assume that

µ3e
λh(r + µ3e

λh) = µ2 − µ3λe
λh. (3.90)

Then the explicit formula for η is

η =

(
γ

1− γ

(
β

γ
− (µ1 − r)2

2σ2(1− γ)
−
(
r + µ3e

λh
)))γ−1

. (3.91)

Assume that
β

γ
>

(µ1 − r)2

2σ2(1− γ)
+ (r + µ3e

λh). (3.92)

Then it is easy to check that η > 0. Therefore the solution of the HJB equation (3.84) is

given by

V (x, y) =
1

γ
η
(
x+ µ3e

λhy
)γ
, (3.93)

The optimal investment and consumption control policies are

k∗(t) =
(µ1 − r)(X(t) + µ3e

λhY (t))

(1− γ)σ2X(t)
, c∗(t) =

η
1
γ
(
X(t) + µ3e

λhY (t)
)

X(t)
, (3.94)

where η is given by (3.91). It remains to verify that V (x, y) is equal to the value function

and k∗, c∗ are the optimal policies. We give the verification in the following theorem.

Theorem 3.3.3 (Verification Theorem). Assume that the condition (3.90) and (3.92)

hold. Let V (x, y) be given by (3.93). Then V (x, y) ∈ C2,1(R× R) and it is a solution of

(3.84) such that

E

[∫ T

0

(
k(t)X(t)Vx(t,X(t), Y (t))

)2

dt

]
<∞, ∀k ∈ Π, ∀T > 0. (3.95)

Further, we have

(a) V (x, y) ≥ J(x, y; k, c) for any admissible progressively measurable control process
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(k(t), c(t)) ∈ Π.

(b) If k∗(t), c∗(t) are given by (3.94), then k∗(t), c∗(t) ∈ Π and

V (x, y) = J(x, y; k∗, c∗). (3.96)

Proof. By the construction of V (x, y), it is easy to check that V (x, y) ∈ C2,1(R×R) and

it is a solution of (3.84). Next we verify the condition (3.95). Using (3.93), we have

Vx(X(t), Y (t)) = η(X(t) + µ3e
λhY (t))γ−1

where η > 0 is a constant. Using η > 0, we can get

|Vx(X(t), Y (t))| = η
∣∣(X(t) + µ3e

λhY (t))γ−1
∣∣ .

Using the definition of admissible control space Π, we have

|k(t)X(t)| ≤ Λ|X(t) + Y (t)| ≤ Λ1|X(t) + µ3e
λhY (t)|,

where

Λ1 = Λ max

{
1

µ3eλh
, 1

}
.

Therefore, we have

|k(t)X(t)Vx(t,X(t), Y (t))| ≤ Λ1η
∣∣X(t) + µ3e

λhY (t)
∣∣γ

where Λ1η > 0 is a constant. Now using the definition of Y (t),

Y (t) =

∫ 0

−h
eλhX(t+ θ)dθ ≤

∫ 0

−h
X(t+ θ)dθ

≤ h max
θ∈[−h,0]

|X(t+ θ)| ≤ h‖Xt‖.

Therefore, noting that |X(t)| ≤ ‖Xt‖, we have

|k(t)X(t)Vx(t,X(t), Y (t))| ≤ Λ1η
∣∣X(t) + µ3e

λhY (t)
∣∣γ

≤ Λ2‖Xt‖γ.
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where Λ2 > 0 is a constant independent of t. Therefore, by (3.14) and noting that 2γ < 2,

we can get

E

[∫ T

0

(
k(t)X(t)Vx(t,X(t), Y (t))

)2

dt

]

≤ E

[∫ T

0

Λ2
2‖Xt‖2γdt

]
≤ E

[∫ T

0

Λ2
2(1 + ‖Xt‖)2γdt

]
≤ E

[∫ T

0

Λ2
2(1 + ‖Xt‖)2dt

]
≤ E

[∫ T

0

Λ2
2(2 + 2‖Xt‖2)dt

]
≤ Λ2

2

[∫ T

0

E[2 + 2‖Xt‖2]dt

]
≤ Λ2

2

(
2T +

∫ T

0

2C2(1 + ‖ϕ‖2)dt

)
<∞.

This verifies condition (3.95).

Let Gk,c be the generator of the process (X(t), Y (t)) for any control process (k(t), c(t)) ∈
Π. Then by using Ito’s rule

d
[
e−βtV (X(t), Y (t))

]
= e−βt [dV (X(t), Y (t))− βV (X(t), Y (t))dt]

= e−βt
[
Gk,cV (X(t), Y (t))− βV (X(t), Y (t))

]
dt

+ e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t).

Integrating above on [0, T ] and also noting that V (x, y) is classical solution of (3.84), we

have

e−βTV (X(T ), Y (T ))− V (x, y)

≤
∫ T

0

e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t)−
∫ T

0

e−βt
1

γ
(cx)γdt,

where, by virtue of (3.95),
∫ T

0
e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t) is local martingale

under P . Then we have

V (x, y) ≥ E

[∫ T

0

e−βt
1

γ
(cx)γdt

]
+ E

[
e−βTV (X(T ), Y (T ))

]
(3.97)
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Since V (x, y) ≥ 0, we have

lim sup
T→∞

e−βTE [V (X(T ), Y (T ))] ≥ 0.

Then, taking T →∞ in (3.97), we can get

V (x, y) ≥ E

[∫ ∞
0

e−βt
1

γ
(cx)γdt

]
(3.98)

Hence V (x, y) ≥ J(x, y; k, c) for all admissible (k(t), c(t)). This proves (a).

Now assume that k∗, c∗ are given by (3.94). We note that k∗(t) and c∗(t) are F t-
measurable. In addition, from Lemma 2, we know that X(t) > 0, a.s., so we can get that

k∗(t), c∗(t) are well defined and c∗(t) ≥ 0. In addition, it is not hard to check that (3.12)

and (3.13) are true for k∗(t) and c∗(t). Finally, since X(t) > 0 and k∗(t) is well defined,

we get

Pr(k∗(t) <∞) = 1, ∀t ≥ 0.

Therefore, we can get

Pr

(∫ T

0

(k∗(t))2dt <∞
)

= 1, ∀T > 0.

So we can get that (k∗(t), c∗(t)) ∈ Π.

Using (k∗(t), c∗(t)) as controls, instead of (3.97), now we can get

V (x, y) = E

{
1

γ

∫ T

0

e−βt(c∗(t)X∗(t))γdt+ e−βTV (X∗(T ), Y ∗(T ))

}
. (3.99)

Next we will show that

lim
T→∞

E
[
e−βTV ∗(X∗(T ), Y ∗(T ))

]
= 0. (3.100)

Let

S∗(t) = X∗(t) + µ3e
λhY ∗(t). (3.101)

Using (3.93), we have

V (X∗(T ), Y ∗(T )) =
1

γ
η
(
X∗(T ) + µ3e

λhY ∗(T )
)γ

=
1

γ
η (S∗(T ))γ . (3.102)
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where η is given by (3.91). To show equation (3.100), it is sufficient to show

lim
T→∞

E
[
e−βT (S∗(T ))γ

]
= 0. (3.103)

Using assumption (3.90), we have

dS∗(t) = dX∗(t) + µ3e
λhdY ∗(t)

=

[(
(µ1 − r)2

(1− γ)σ2
− η

1
γ

)
(X∗(t) + µ3e

λhY ∗(t))

+ rX∗(t) + µ2Y
∗(t) + µ3Z

∗(t)

]
dt

+
µ1 − r

(1− γ)σ
(X∗(t) + µ3e

λhY ∗(t))dB(t)

+ µ3e
λh
[
X∗(t)− λY ∗(t)− e−λhZ∗(t)

]
dt

=

[(
(µ1 − r)2

(1− γ)σ2
− η

1
γ

)
S∗(t) + rX∗(t) + µ2Y

∗(t) + µ3Z
∗(t)

]
dt

+
µ1 − r

(1− γ)σ
S∗(t)dB(t) + µ3e

λh
[
X∗(t)− λY ∗(t)− e−λhZ∗(t)

]
dt

=

[
(µ1 − r)2

(1− γ)σ2
− η

1
γ + r + µ3e

λh

]
S∗(t)dt+

µ1 − r
(1− γ)σ

S∗(t)dB(t).

The solution is

S∗(t) = S∗(0)e

[
(µ1−r)

2

(1−γ)σ2−η
1
γ +(r+µ3eλh)

]
t
e

[
− (µ1−r)

2

2(1−γ)2σ2

]
t+

µ1−r
(1−γ)σ

B(t)

= (x+ µ3e
λhy)e

[
(µ1−r)

2

(1−γ)σ2−η
1
γ +(r+µ3eλh)

]
t
e

[
− (µ1−r)

2

2(1−γ)2σ2

]
t+

µ1−r
(1−γ)σ

B(t)
.

Then we have

[S∗(t)]γ = (x+ µ3e
λhy)γ exp

(
γ

[
(µ1 − r)2

(1− γ)σ2
− η

1
γ + (r + µ3e

λh)

]
t

)
· exp

(
γ

[
− (µ1 − r)2

2(1− γ)2σ2

]
t+

γ(µ1 − r)
(1− γ)σ

B(t)

)
. (3.104)
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Take the expectation, and we can get

E [(S∗(t))γ] = (x+ µ3e
λhy)γ exp

(
γ

[
(µ1 − r)2

(1− γ)σ2
− η

1
γ + r + µ3e

λh

]
t

)
· exp

(
γ

[
− (µ1 − r)2

2(1− γ)2σ2

]
t+

1

2

γ2(µ1 − r)2

(1− γ)2σ2
t

)
= (x+ µ3e

λhy)γ exp

(
γ

[
(µ1 − r)2

2(1− γ)σ2
− η

1
γ + (r + µ3e

λh)

]
t

)
.

By virtue of (3.92), we can get that η > 0 and

−β + γ

[
(µ1 − r)2

2(1− γ)σ2
− η

1
γ + (r + µ3e

λh)

]
< 0.

Therefore, we can get

lim
T→∞

e−βTE [(S∗(T ))γ]

= (x+ µ3e
λhy)γ lim

T→∞

[
e

[
−β+γ

[
(µ1−r)

2

2(1−γ)σ2−η
1
γ +(r+µ3eλh)

]]
T

]
= 0.

Thus (3.103) is established. So we can get (3.100). Then, by virtue of (3.99), we can get

that V (x, y) = J(x, y; k∗, c∗). This completes the proof of (b).
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Chapter 4

A Stochastic Portfolio Optimization

Model with Complete Memory

4.1 Introduction

In chapter 2 and chapter 3, we considered stochastic systems with memory given by the

following system:{
dX(t) = b(t,Xt, u(t))dt+ σ(t,Xt, u(t))dW (t), t ∈ [0, T ],

X(t) = ϕ(t), t ∈ [−h, 0],

where h > 0 is a fixed constant, Xt : [−h, 0] 7→ R is the memory variable defined by

Xt(θ) ≡ X(t + θ), and it is the segment of the path from t − h to t, ϕ ∈ C[−h, 0] is

the initial path and u is the control in some admissible control space Π. The presence of

the Fréchet derivative makes the stochastic control problems with memory given by Xt

very complicated and working in an infinite dimensional space limits its application in

practice. On the other hand, as we mentioned earlier, when investors look at the historical

performance, instead of the whole path, moving average or exponential moving average

is usually used.{
dX(t) = b(t,X(t), Y (t), Z(t), u(t))dt+ σ(t,X(t), Y (t), Z(t), u(t))dW (t),

X(t) = ϕ(t), t ∈ [−h, 0],
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with memory variables Y (t), Z(t) given by

Y (t) =

∫ 0

−h
eλθX(t+ θ)dθ, Z(t) = X(t− h), (4.1)

where λ ≥ 0 is a parameter. As we can see, Y (t) is the exponential moving average of

X(t) over [t − h, t] if λ > 0 and it is the moving average if λ = 0. Z(t) is a historical

value of X(t). For the system given above, the value function V will depend on the initial

variable ϕ through memory variables (x, y, z) that are given by

x ≡ X(0) = ϕ(0), y ≡ Y (0) =

∫ 0

−h
eλθϕ(θ)dθ, z ≡ Z(0) = ϕ(−h),

and we can derive the HJB equation for V in the classical sense in a finite dimensional

space.

In this chapter (and chapter 5), we introduce idea of complete memory or infinite

delay in a stochastic portfolio management model. In particular, we consider a stochastic

portfolio management model on a finite time horizon and the model incorporates all

the historic performance of the portfolio. The state equation describing the model is a

stochastic delay differential equation. In this model, investor’s portfolio comprises a risky

and a riskless asset. The value of the portfolio follows a stochastic process X(t) which

satisfies a delay equation of the form

dX(t) = f(t,X(t), Y (t), u(t))dt+ σ (t,X(t), u(t)) dB(t), ∀t ∈ [s, T ]

X(t) = ϕ(t), ∀t ∈ (−∞, s],

where u(t) is the control in some control space Π applied at time t, and the Y (t) is

defined by

Y (t) ≡
∫ 0

−∞
eλθX(t+ θ)dθ. (4.2)

where λ > 0 is a constant, and ϕ is a function which gives the initial path. We will give

a more precise formulation of the problem in the next section. The main contribution

in our model is that we deal with infinite delay i.e. the model captures the complete

memory. One motivation to consider the complete memory variable Y (t) given by (4.2)

is that investors tend to consider all available historical information of a stock instead of

the information for the past 10 or 50 days. Another motivation is that with the complete
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memory, we can skip the memory variable Z(t) and z will not appear in the HJB equation

any more. This will make the model more feasible and applicable. Another thing we want

to point out is that in reality, the historical information does not go back to −∞, but we

still use Y (t) given by (4.2) for convenience. See Remark 5.2.1.

Consider an investor’s portfolio consisting of a risky asset and a riskless asset. An

example of riskless asset is money deposited in a bank account that earns a fixed interest

rate r > 0. In this model the complete performance of the risky asset is taken into

account. We also assume that the investor can freely move his money between two assets

at any time and his consumption comes from the riskless asset.

Let K(t) be the amount invested in the risky asset and L(t) is the amount invested

on the riskless asset. The total wealth is given by X(t) = K(t) + L(t). We assume that

the performance of the risky asset depends on the following delay variable Y (t):

Y (t) =

∫ 0

−∞
eλθX(t+ θ)dθ, (4.3)

where λ > 0 is a constant.

Remark 4.1.1. From the definition of Y (t), its value is actually the exponential average

of all the historical values of the total wealth X(t). We want to point out that in reality,

there is always a historical time that the value of X is available. In other words, the initial

path ϕ(t) will start at some point t = −M instead of t = −∞. In this case, we simply

assume that ϕ(t) = 0,∀t ∈ (∞,−M), and we can still use the formula (4.3) to define the

delay variable Y (t). In addition, Y (t) is still a continuous function with respect to t for

t ≥ s.

Let {B(t), t ≥ 0} be a one-dimensional standard Brownian motion defined on a com-

plete filtered probability space (Ω,F , P ; F), where F = {F t, t ≥ 0} is the P -augmented

natural filtration generated by the Brownian motion {B(t), t ≥ 0}. We assume that K(t)

and L(t) follow the stochastic differential equations:

dK(t) = [(µ1 + µ2Y (t))K(t) + I(t)]dt+ σK(t)dB(t), (4.4)

dL(t) = [rL(t)− C(t)− I(t)]dt, (4.5)

where µ1, µ2, and σ are positive constants, I(t) is the investment rate on the risky

asset at t, and C(t) is the consumption rate. The equation for X(t) follows by using
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X(t) = K(t) + L(t):

dX(t ) = [(µ1 + µ2Y (t))K(t) + rL(t)− C(t)] dt

+ σK(t)dB(t), ∀t ∈ [s, T ], (4.6)

with the initial condition given by the information about X(t) for t ∈ (−∞, s]:

X(t) = ϕ(t), ∀t ∈ (−∞, s], (4.7)

where ϕ is a positive, bounded function which is integrable on (−∞, s].
As we can see, we introduce a delay (or memory) variable Y (t) in the state equations

for K(t) and X(t). The reason is that an investor usually will look at her portfolio

performance to determine whether to allocate more money to the risky asset. While all

the investors act this way, a higher value of Y (t), the historical moving average, will

increase the risky asset demand, so it tends to push the price of the risky asset even

higher.

To describe the allocation between the risky asset and the riskless asset, we now treat

K(t) and C(t) as our control variables. The state variables are X(t) and Y (t). As we

can see in Equation (4.6), the change of the wealth process X(t) depends on the delay

variable Y (t). For technical reasons, we modify the model described in (4.6)

dX(t) = [µ1K(t) + µ2Y (t) + rL(t)− C(t)] dt+ σK(t)dB(t), ∀t ∈ [s, T ]. (4.8)

Remark 4.1.2. If we assume that K(t) > 0 almost surely, we can use the following delay

variable Ỹ (t):

Ỹ (t) =
1

K(t)

∫ 0

−∞
eλθX(t+ θ)dθ, t ∈ [s, T ],

instead of (4.3), so we can reach (4.8).

Instead of using K(t) and C(t), we use c(t) = C(t)
X(t)

and k(t) = K(t)
X(t)

as our consumption

and investment controls, respectively. In Lemma 4.1.1, we will show that X(t) > 0, a.s.,

so that c(t), k(t) are well defined.
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Using L(t) = X(t)−K(t) = X(t)(1− k(t)), the equation for X(t) can be written as

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t)]dt

+ σk(t)X(t)dB(t),∀t ∈ [s, T ]. (4.9)

Recall that the initial condition is given by

X(t) = ϕ(t), ∀t ∈ (−∞, s], (4.10)

where ϕ is a bounded function and ϕ(θ) > 0,∀θ ∈ (−∞, s]. The above initial condition

implies the following initial conditions:

X(s) = x ≡ ϕ(s), Y (s) = y ≡
∫ 0

−∞
eλθϕ(s+ θ)dθ. (4.11)

X(t) stands for the total wealth, and it should remain positive all the time. Actually,

we can show that the solution X(t) of (4.9)-(4.11) is strictly positive almost surely (see

Lemma 4.1.1). Before we show the result, let us first define the admissible control space.

Definition 4.1.1 (Admissible Control Space). Let Π denote the admissible control space.

A control policy (k(t), c(t)) is said to be in the admissible control space Π if it satisfies

the following conditions:

(a) (k(t), c(t)) is F t−measurable for any t ∈ [0, T ];

(b)

Pr

(∫ T

0

k2(t)dt <∞
)

= 1.

(c) c(t) ≥ 0,∀t ∈ [0, T ];

(d)

|k(t)X(t)| ≤ Λ0 |X(t) + Y (t)| , ∀t > 0, (4.12a)

|c(t)X(t)| ≤ Λ0 |X(t) + Y (t)| , ∀t > 0, (4.12b)

where Λ0 > 0 is a constant.

We have the following lemma.
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Lemma 4.1.1. The solution X(t) of the system (4.9)-(4.10) satisfies

X(t) > 0, Y (t) > 0 almost surely ∀t ∈ [0, T ].

Proof. First, for t ∈ [0, s], noting that the initial condition ϕ(θ) > 0,∀θ ∈ −∞, s], it is

easy to see that

X(t) = ϕ(t) > 0, Y (t) =

∫ 0

−∞
eλθX(t+ θ)dθ =

∫ 0

−∞
eλθϕ(t+ θ)dθ > 0. (4.13)

On the other hand, for any t ∈ [s, T ], by the definition of Y (t), it is easy to see that

Y (t) ≥ 0 as long as X(t + θ) ≥ 0,∀θ ∈ (−∞, 0] and Y (t) reaches zero only after X(t)

has reached zero. The rest of the proof is similar to proof of Lemma 2.2.2.

Next, let us derive the equation for Y (t). We have the following lemma:

Lemma 4.1.2. The process Y (t) defined by (4.3) satisfies the following equation:

dY (t) = (X(t)− λY (t))dt. (4.14)

Proof. By virtue of the definition of Y (t) (4.2), we can get

d

dt
Y (t) =

d

dt

[∫ 0

−∞
eλθXt(θ)dθ

]
=

d

dt

[∫ 0

−∞
eλθX(t+ θ)dθ

]
=

d

dt

[∫ t

−∞
eλ(u−t)X(u)du

]
(let u ≡ θ + t)

=
d

dt

[
lim

τ→−∞

∫ t

τ

eλ(u−t)X(u)du

]
= lim

τ→−∞

[
d

dt

∫ t

τ

eλ(u−t)X(u)du

]
= lim

τ→−∞

[
−λ
∫ t

τ

eλ(u−t)X(u)du+X(t)

]
= − λ

∫ t

−∞
eλ(u−t)X(u)du+X(t)

= − λ

∫ 0

−∞
eλθX(t+ θ)dθ +X(t) (let θ = u− t)

= X(t)− λY (t).
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So we can get (4.14).

Using the above result, we can see that the system given by (4.9), (4.10) and (4.3)

can be described equivalently by

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t)]dt

+ σk(t)X(t)dB(t), (4.15)

dY (t) = (X(t)− λY (t))dt, t ∈ [s, T ], (4.16)

with the initial conditions

X(s) = x, Y (s) = y, (4.17)

where x, y are given by (4.11).

We have the following lemma for existence and uniqueness of solution of (4.15)-(4.17).

Lemma 4.1.3. For any admissible control (k(t), c(t) in Π, (4.15)-(4.17) has a unique

strong solution (X(t), Y (t)) and it satisfies

E
[
|X(t)|2 + |Y (t)|2

]
≤ Λ(x2 + y2)eCt, ∀t ∈ [s, T ], (4.18)

where Λ and C are constants that may depend on T .

Proof. It is easy to check that if (k(t), c(t)) ∈ Π, then the drift coefficients and the

diffusion coefficients satisfy global Lipschitz conditions. Then the result follows from

Theorem 2.9 of Karataz and Shreve [26] (page 289).

From Lemma 4.1.2, we note that any solution of (4.9)-(4.11) satisfies (4.15)-(4.17)

and vice versa. Given the existence and uniqueness result for solution of (4.15)-(4.17),

we can get the existence and uniqueness result for the solution of (4.9)-(4.11).

From now on, we will consider the system with state equations given by (4.15)-

(4.17) instead. The utility function U(C) is defined based on the consumption rate.

The problem under consideration is on a finite time horizon [s, T ]. The terminal utility

function Ψ depends on both X(T ) and Y (T ). Assume the expected total discounted
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utility J(s, x, y, k, c) be given by

J(s, x, y, k, c) = Es,x,y

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
, ∀(k, c) ∈ Π.

Then the value function is given by

V (s, x, y) = sup
k, c∈Π

J(s, x, y, k, c)

= sup
k, c∈Π

Es,x,y

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
. (4.19)

The rest of the chapter is organized as follows. In Section 4.2, we derive the HJB equation

for the value function in a classical sense. Exponential, logarithm and Hyperbolic Ab-

solute Risk Averse (HARA) utility functions are considered in Section 4-6, respectively.

For each utility function, we derive the explicit solutions for the associated HJB equation

and establish the verification results.

4.2 Hamilton-Jacobi-Bellman Equation

In this section, we will derive the HJB equation satisfied by the value function V (s, x, y).

First, we have the following dynamic programming principle.

Lemma 4.2.1 (Dynamic Programming Principle). Assume that the value function V (s, x, y)

is given by (4.19) and assume the system given by (4.15)-(4.17). Then we have

V (s, x, y) = sup
(k,c)∈Π

Es,x,y,k,c

[ ∫ t

s

e−β(τ−s)U(c(τ))X(τ)dτ

+ e−β(t−s)V (t,X(t), Y (t))

]
, (4.20)

for all F t-stopping time t ∈ [0, T ] and (x, y) ∈ R2.

The proof is straight forward and we omit it here. For details, please see Section III.7
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of Fleming and Soner [19].

Next, we will need some kind of Ito’s formula with respect to the function of the delay

variable Y (t). Let f ∈ C1,2,1([0, T ]× R2) and define

G(t) = f(t,X(t), Y (t)).

Lemma 4.2.2 (Ito’s Formula). Consider the system given by (4.9)-(4.10). We have

dG(t) = Lk,cfdt+ σkxfxdB(t) + fy · (x− λy)dt, (4.21)

where

Lk,cf = Lk,cf(t, x, y)

= ft + (((µ1 − r)k − c+ r)x+ µ2y)fx +
1

2
σ2k2x2fxx, (4.22)

where x, y, k and c are evaluated as

x = x(t), y = Y (t) =

∫ 0

−∞
eλθX(t+ θ)dθ, k = k(t), c = c(t). (4.23)

Proof. Applying classical Ito’s formula to G(t) = f(t,X(t), Y (t)) and using the result of

Lemma 4.1.2, we can easily get the result.

Now we can give the HJB equation for the value function V (s, x, y).

Theorem 4.2.1. (HJB Equation) Assume that V (s, x, y) ∈ C1,2,1([0, T ] × R × R)

then the value function V (s, x, y) given by (4.19) satisfies the following Hamilton-Jacobi-

Bellman partial differential equation

βV − Vs = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y)Vx

+ max
c≥0

[−cxVx + U(cx)] + (x− λy)Vy, (4.24a)

with the boundary condition

V (T, x, y) = Ψ(x, y). (4.24b)

The proof is standard so we omit it here. For more details, please see Section IV.3 of

Fleming and Soner [19].
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4.3 The Solution of the HJB Equation

4.3.1 Exponential Utility

In this section we consider the exponential utility function which is given as

U(cX) = 1− e−αcX , α > 0.

We note that maximizing the utility function with or without the additive term 1 gives the

same results. The additive term 1 in the utility function restricts the range of the function

between 0 and 1 and other than that it does not have any mathematical relevance. So

we drop the term 1 for technical convenience and consider the following

U(cX) = −e−αcX , α > 0. (4.25)

In this case, the utility function is negative. To be consistent, we will also assume that

the terminal utility function Ψ is negative. More conditions on Ψ will be specified later.

Under those assumption, it is easy to see that V (s, x, y) < 0.

Now the HJB equation is

βV − Vs = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y)Vx

+ max
c≥0

[
−cxVx − e−αcx

]
+ (x− λy)Vy. (4.26)

The candidates for optimal controls are

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ = − 1

xα
log

Vx
α
.

Substituting k∗ and c∗ in equation (4.26) , we obtain

βV − Vs = −(µ1 − r)2V 2
x

2σ2Vxx
+
Vx
α

[
log

(
Vx
α

)
− 1

]
+ (rx+ µ2y)Vx

+ (x− λy)Vy. (4.27)
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Suppose the solution is of the form

V (s, x, y) = ψ(x, y)Q(s), (4.28)

where Q(s) and ψ(x, y) will be determined. For convenience, we assume that ψ(x, y) < 0

and Q(s) > 0.

Now, we have

Vx = Q(s)ψx(x, y), Vxx = Q(s)ψxx(x, y),

Vy = Q(s)ψy(x, y), Vs = Q′(s)ψ(x, y).

Substituting above equations into equation (4.27) and noting that Q(s) > 0, we can get

(βQ(s)−Q′(s))ψ(x, y) = −(µ1 − r)2Q(s)ψ2
x

2σ2ψxx
+ (x− λy)Q(s)

+
Q(s)ψx
α

(
log (Q(s)) + log

(
ψx
α

)
− 1

)
+ (rx+ µ2y)Q(s)ψxψy. (4.29)

Define u ≡ x+ ηy and assume that

ψ(x, y) = −eη1u = −eη1(x+ηy),

where η, η1 are constants to be determined. It is easy to see that

ψx(x, y) = η1ψ(x, y), ψxx(x, y) = η2
1ψ(x, y), ψy(x, y) = ηη1ψ(x, y). (4.30)
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By plugging (4.30) into (4.29) we get

βQ(s)−Q′(s) = −(µ1 − r)2

2σ2
Q(s) + (rx+ µ2y)η1Q(s) + (x− λy)ηη1Q(s)

+
η1

α
Q(s)

(
log (Q(s)) + log

(
η1ψ(x, y)

α

)
− 1

)
= −(µ1 − r)2

2σ2
Q(s) + η1[(r + η)x+ (µ2 − λη)y]Q(s)

+
η1

α
Q(s)

(
log (Q(s)) + log

(
η1ψ(x, y)

α

)
− 1

)
. (4.31)

We pick a constant η such that

µ2 − λη = (r + η)η, (4.32)

then we can get

(r + η)x+ (µ2 − λη)y = (r + η)(x+ ηy) = (r + η)u. (4.33)

Remark 4.3.1. From the equation (4.32), we can get

η =
1

2

(
±
√

(r + λ)2 + 4µ2 − (r + λ)
)
.

We will pick the solution

η =
1

2

(√
(r + λ)2 + 4µ2 − (r + λ)

)
, (4.34)

so that η > 0 and r + η > 0.

Plugging the equation (4.33) and ψ(x, y) into equation (4.31), we can get

βQ(s)−Q′(s) = −(µ1 − r)2

2σ2
Q(s) +

η1

α
Q(s) (log (Q(s))− 1)

+
η2

1

α
uQ(s) + η1(r + η)uQ(s)

+
η1

α
Q(s) log

(
−η1

α

)
(4.35)
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We pick η1 such that
η2

1

α
+ (r + η)η1 = 0.

η1 = 0 is the trivial solution and the other solution is

η1 = −α(r + η). (4.36)

Then equation (4.35) becomes

βQ(s)−Q′(s) = −(µ1 − r)2

2σ2
Q(s)− (r + η)Q(s) (log (Q(s))− 1)

− (r + η) log((r + η))Q(s) (4.37)

Rewriting the above equation

Q′(s) =

(
β +

(µ1 − r)2

2σ2
− (r + η) + (r + η) log((r + η)

)
Q(s)

+ (r + η)Q(s) log (Q(s)) (4.38)

Define

Λ1 ≡ β +
1

2

(µ1 − r)2

σ2
− (r + η) + (r + η) log(r + η). (4.39)

Then equation (4.38) can be written as

Q′(s)

Q(s)
= Λ1 + (r + η) log (Q(s)) (4.40)

At the terminal time s = T , we have

V (T, x, y) = Q(T )(−e−η1u) = Ψ(x, y)

The terminal utility function Ψ(x, y) is assumed to be consistent with the exponential

utility function. In particular, we assume that it is of the form

Ψ(x, y) = −Λe−η1(x+ηy) = −Λe−α(r+η)(x+ηy), (4.41)

where Λ > 0 is a constant, η1 is given by (4.36) and η is given by (4.34).
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So the boundary condition for Q(s) at s = T is

Q(T ) = Λ. (4.42)

The explicit solution for (4.40)-(4.42) is given as

Q(s) = exp

(
− Λ1

r + η
+

(
Λ1

r + η
+ log Λ

)
e−(r+η)(T−s)

)
. (4.43)

We note that Q(s) > 0. Moreover, it is easy to verify that, if Λ1 > 0, we have

0 < Q(s) ≤ Λ ∀s ∈ [0, T ]. (4.44)

The HJB equations (4.24a)-(4.24b) have the solution

V (s, x, y) = −Q(s)e−α(r+η)(x+ηy) (4.45)

The optimal investment and consumption rates are given as

k∗(s) =
(µ1 − r)

α(r + η)σ2x
, (4.46)

c∗(s) = − 1

αx

[
log{(r + η)Q(s)} − α(r + η)(x+ ηy)

]
, (4.47)

where Q(s) is given by (4.43), and x and y are estimated at time s as following

x = X(s), y = Y (s) =

∫ 0

−∞
eλθX(s+ θ)dθ.

We can see that c∗(s) ≥ 0 as long as

Λ(r + η) ≤ 1. (4.48)

Next, we will prove the verification results for exponential utility function case in two

steps. First, in Theorem 4.3.1, we will show that, under certain conditions, a classical

solution of the HJB equation (4.24a)-(4.24b) will equal to the value function defined by

(4.19). Secondly, in Theorem 4.3.2, we will show that the function defined by (4.45) is

a classic solution of (4.24a)-(4.24b) and it satisfies the conditions in Theorem 4.3.1. In
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addition, the explicit formula for the optimal controls will be given in Theorem 4.3.2.

Theorem 4.3.1. (Verification Theorem) Let (X(t), Y (t)) be a strong solution of

(4.15)-(4.17). Assume that V (s, x, y) ∈ C1,2,1([0, T ] × R × R) is a solution of the HJB

equations (4.24a)-(4.24b) such that

E

[∫ T

0

(k(t)X(t)Vx(t,X(t), Y (t)))2 dt

]
<∞, ∀(k, c) ∈ Π. (4.49)

Then we have

V (s, x, y) ≥ sup
(k,c)∈Π

Es,x,y,k,c

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

In addition, assume that the utility function and (k∗, c∗) are given as

U(x) = 1− e−αx;

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ = − 1

xα
log

Vx
α
. (4.50)

If (k∗, c∗) ∈ Π, then (k∗, c∗) is the optimal control policy. In this case, we have

V (s, x, y) = Es,x,y,k∗,c∗

[∫ T

s

e−β(t−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

Proof. Equation (4.24a) can be written using the notation Lk,c defined by (4.22) as

max
k,c≥0

[
Lk,cV (s, x, y) + U(cx)

]
+ (x− λy)Vy(s, x, y)− βV (s, x, y) = 0. (4.51)

Assume that V (s, x, y) is a classic solution of the equation (4.51). For any given admissible

control (k, c) ∈ Π and for any (s, x, y) ∈ [0, T ]× R× R, we have

βV (s, x, y)− Lk,cV (s, x, y)− (x− λy)Vy(s, x, y) ≥ U(cx). (4.52)
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Applying Ito’s formula to V (t,X(t), Y (t)), we have

d
[
e−βtV (t,X(t), Y (t))

]
= e−βt [−βV (t,X(t), Y (t))dt+ dV (t,X(t), Y (t))]

= e−βt[−βV (t,X(t), Y (t)) + Lk,cV (t,X(t), Y (t))

+ (X(t)− λY (t))Vy(t,X(t), Y (t)]dt

+ e−βt[σk(t)X(t)Vx(t,X(t), Y (t))dB(t)].

Integrating it from s to T, and using (4.52), we have

e−βTV (T,X(T ), Y (T ))− e−βsV (s, x, y)

=

∫ T

s

e−βt(−βV (t,X(t), Y (t)) + Lk,cV (t,X(t), Y (t))

+ (X(t)− λY (t))Vy(t,X(t), Y (t))dt

+

∫ T

s

e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t)

≤
∫ T

s

e−βtσk(t)X(t)Vx(t,X(t), Y (t))dB(t)

−
∫ T

s

e−βtU(c(t)X(t))dt.

Using the boundary condition (4.24b) we have

V (s, x, y) ≥ e−β(T−s)V (T,X(T ), Y (T )) +

∫ T

s

e−β(t−s)U(c(t)X(t))dt

−
∫ T

s

e−β(t−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t)

= e−β(T−s)Ψ(X(T ), Y (T )) +

∫ T

s

e−β(t−s)U(c(t)X(t))dt

−
∫ T

s

e−β(t−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t).

By virtue of condition (4.49) we have∫ T

s

e−β(t−s)σk(t)X(t)Vx(t,X(t), Y (t))dB(t)
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a martingale. Taking expectation on both sides we obtain

V (s, x, y) ≥ Es,x,y,k,c

[∫ T

s

e−β(t−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
,

∀(k, c) ∈ Π.

Then for any (k, c) ∈ Π we have

V (s, x, y) ≥ sup
(k,c)∈Π

Es,x,y,k,c

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

Now let us take (k, c) = (k∗, c∗) which are given by (4.50). If (k∗, c∗) ∈ Π, the inequality

(4.52) can be replaced by the corresponding equality. Further, all the following inequalities

can be replaced by the corresponding inequalities. Using the exponential utility function,

we can eventually get

V (s, x, y) = Es,x,y,k∗,c∗

[∫ T

s

e−β(t−s)U(c∗(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

This completes the proof.

Theorem 4.3.2. Assume that the utility function is given by U(x) = −e−αx and the

terminal function is given by (4.41). In addition, assume that (4.48) holds and Λ1 > 0,

where Λ1 is defined by (4.39). Then the function V (s, x, y) given by (4.45) is a classical

solution of the HJB equation (4.24a)-(4.24b), and it is equal to the value of the system

defined by (4.19) that is

V (s, x, y) = sup
(k,c)∈Π

J(s, x, y, k, c).

In addition, the optimal control policy is given by

c∗(t) = − 1

X(t)α

[
log{(r + η)Q(t)} − α(r + η)(X(t) + ηY (t))

]
, (4.53)

k∗(t) =
(µ1 − r)

α(r + η)σ2X(t)
, ∀t ∈ [s, T ]. (4.54)
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Proof. From the derivation of V (s, x, y), it is easy to check that V (s, x, y) given by (4.45)

is a classical solution of HJB equation (4.24a)-(4.24b).

To use Theorem 4.3.1 we first verify that condition (4.49) is satisfied. Using (4.45) we

have

Vx(t,X(t), Y (t)) =
Q(t)

α(r + η)
e−α(r+η)(X(t)+ηY (t)).

From the inequality ex > 1 +x, we can get e−x < 1
1+x

for x > 0. Therefore, using that

X(t) > 0, Y (t) > 0, η > 0, α > 0, r > 0, we can get

|e−α(r+η)(X(t)+ηY (t))| ≤
∣∣∣∣ 1

α(r + η)(X(t) + ηY (t)) + 1

∣∣∣∣ , ∀t ∈ [s, T ].

Therefore, noting that 0 < Q(t) ≤ Λ, we can get,

|Vx(t,X(t), Y (t))| ≤ Λ

α(r + η)

∣∣∣∣ 1

α(r + η)(X(t) + ηY (t)) + 1

∣∣∣∣ ,
Using the definition of admissible control space Π, we have

|k∗(t)X(t)| ≤ Λ0|X(t) + Y (t)| ≤ Λ̄0|X(t) + ηY (t)|,

where Λ̄0 = Λ0 max{ 1
η
, 1}.

Therefore, we have

|k∗(t)X(t)Vx(t,X(t), Y (t))| ≤ ΛΛ̄0

α2(r + η)2

∣∣∣∣ α(r + η)(X(t) + ηY (t)

α(r + η)(X(t) + ηY (t)) + 1

∣∣∣∣
≤ ΛΛ̄0

α2(r + η)2

(∣∣∣∣1− 1

α(r + η)(X(t) + ηY (t)) + 1

∣∣∣∣)
≤ ΛΛ̄0

α2(r + η)2

(
1 +

∣∣∣∣ 1

α(r + η)(X(t) + ηY (t)) + 1

∣∣∣∣)
≤ 2

ΛΛ̄0

α2(r + η)2
= Λ̄

where Λ̄ > 0 is a constant independent of t. We have,

E

[∫ T

0

[
k∗(t)X(t)Vx(t,X(t), Y (t))

]2
dt

]
≤ E

[∫ T
0

Λ̄2dt
]

= Λ̄T <∞.
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Thus condition (4.49) is verified. Using definition of (k∗, c∗), it is easy to see that

(k∗(t), c∗(t)) is F t-measurable for any t ∈ [0, T ]. Also, by virtue of (4.46), (4.47) and

(4.44), it is easy to get that k∗(t) ≥ 0, c∗(t) ≥ 0,∀t ∈ [0, T ]. The conditions given

by (4.12a) and (4.12b) of admissible control space are also satisfied. Hence we get

(k∗, c∗) ∈ Π. This completes the proof.

4.3.2 Log Utility

In this section, we consider log utility function given as

U(cX) = log(cX). (4.55)

Now the HJB equation (4.24a) become

βV − Vs = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y)Vx

+ max
c≥0

[−cxVx + log(cx)] + (x− λy)Vy, (4.56)

The candidates for optimal controls are

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

xVx
.

Substituting k∗ and c∗ in equation (5.21), we get

βV − Vs = −1

2

(µ1 − r)2V 2
x

σ2Vxx
+ log

(
1

Vx

)
− 1 + (rx+ µ2y)Vx + (x− λy)Vy, (4.57)

Suppose solution is of the form

V (s, x, y) = ψ(x, y) +Q(s), (4.58)

where Q(s) and ψ(x, y) will be determined. Moreover, we have

Vx = ψx(x, y), Vxx = ψxx(x, y), Vy = ψy(x, y), Vs = Q′(s). (4.59)
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By plugging (4.58) and (4.59) into equation (4.57) we get

β[ψ(x, y) +Q(s)]−Q′(s) = −1

2

(µ1 − r)2ψ2
x

σ2ψxx
+ log

(
1

ψx

)
− 1

+ (rx+ µ2y)ψx + (x− λy)ψy. (4.60)

Define u ≡ x+ ηy and assume that

ψ(x, y) = η1 log(u) = η1 log(x+ ηy). (4.61)

where η, η1 are constants to be determined. It is easy to see that

ψx =
η1

u
, ψxx = −η1

u2
, ψy =

η1η

u
. (4.62)

By plugging (4.61) and (4.62) into (4.62) we get

β[η1 log(u) +Q(s)]−Q′(s)

=
1

2

(µ1 − r)2

σ2
η1 + log

(
u

η1

)
− 1 + (rx+ µ2y)

η1

u
+ (x− λy)

ηη1

u

=
1

2

(µ1 − r)2

βσ2
η1 + log u− log η1 − 1 +

η1

u
[(r + η)x+ (µ2 − λη)y]. (4.63)

We pick a constant η such that

µ2 − λη = (r + η)η. (4.64)

In particular, we pick the positive solution of the above equation(see remark (4.3.1)).

η =
1

2

(√
(r + λ)2 + 4µ2 − (r + λ)

)
. (4.65)

Then we can get

(r + η)x+ (µ2 − λη)y = (r + η)(x+ ηy) = (r + η)u. (4.66)

Assume that

η1 =
1

β
. (4.67)
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Then, by virtue of (4.66), we have

βQ(s)−Q′(s) =
1

2

(µ1 − r)2

βσ2
+ log(β)− 1 +

1

β
(r + η). (4.68)

Rewriting the above equation

Q′(s) = βQ(s)− Λ2, (4.69)

where

Λ2 ≡
1

2

(µ1 − r)2

βσ2
+ log(β)− 1 +

1

β
(r + η). (4.70)

At terminal time s = T we have

V (T, x, y) = Q(T ) +
1

β
log(x+ ηy). (4.71)

The terminal utility function Ψ(x, y) is assumed to be consistent with the log utility

function. In particular, for technical reasons, we assume that the function Ψ(x, y) is of

the form

Ψ(x, y) =
1

β
log(x+ ηy). (4.72)

Then, by virtue of (4.71) and (4.72), we can get the boundary condition for Q(s) at

s = T

Q(T ) = 0. (4.73)

The solution for (5.27)-(4.73) is given as

Q(s) =
Λ2

β
(1− e−β(T−s)). (4.74)

Assume 1
2

(µ1−r)2

σ2 + (r + η) > β − β log(β), we have

0 ≤ Q(s) ≤ Λ2

β
, ∀s ∈ [0, T ]. (4.75)
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Therefore, the HJB equations (4.24a)-(4.24b) have the solution

V (s, x, y) = Q(s) + log(x+ ηy), (4.76)

The optimal investment and consumption rates are given as

k∗(s) =
(µ1 − r)(x+ ηy)

σ2x
, (4.77)

c∗(s) =
β(x+ ηy)

x
, (4.78)

where Q(s) and η are given by (4.74) and (4.65) respectively and x and y are estimated

at time s as following

x = X(s), y = Y (s) =

∫ 0

−∞
eλθX(s+ θ)dθ.

Theorem 4.3.3. (Verification Theorem) Let (X(t), Y (t)) be a strong solution of

(4.15)-(4.17). Assume that V (s, x, y) ∈ C1,2,1([0, T ] × R × R) is a solution of the HJB

equations (4.24a)-(4.24b) such that

E

[∫ T

0

(k(t)X(t)Vx(t,X(t), Y (t)))2 dt

]
<∞, ∀(k, c) ∈ Π. (4.79)

Then we have

V (s, x, y) ≥ sup
(k,c)∈Π

Es,x,y,k,c

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

In addition, assume that the utility function and (k∗, c∗) are given as

U(x) = log(x)

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

xVx
.
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If (k∗, c∗) ∈ Π, then (k∗, c∗) is the optimal control policy. In this case, we have

V (s, x, y) = Es,x,y,k∗,c∗

[∫ T

s

e−β(t−s)U(c(t)X(t))dt+ e−β(t−s)Ψ(X(T ), Y (T ))

]
.

Proof. The proof is very similar to the proof of Theorem 4.3.1, so we omit it here.

Theorem 4.3.4. Let (X(t), Y (t)) be a strong solution of (4.15)-(4.17). Assume that

the utility function is given by U(x) = log(x) and that the terminal function is given

by Ψ(x, y) = 1
β

log(x + ηy). Also assume that η is given by (4.65). Then the function

V (s, x, y) given by (4.76) is a classical solution of the HJB equation (4.24a)-(4.24b), and

it is equal to the value of the system defined by (4.19), that is

V (s, x, y) = sup
(k,c)∈Π

J(s, x, y, k, c).

In addition, the optimal control policy is given by

k∗(t) =
(µ1 − r)(X(t) + ηY (t))

σ2X(t)
, (4.80)

c∗(t) =
β(X(t) + ηY (t))

X(t)
, ∀t ∈ [s, T ], (4.81)

where Q(·) is defined by (4.74).

Proof. It is evident from the derivation of V (s, x, y) that V (s, x, y) given by (4.76) is a

classical solution of HJB equation (4.24a)-(4.24b). To use Theorem 4.3.3, we first verify

that condition (4.79) is satisfied. Using (4.76), we can get

|Vx(t,X(t), Y (t))| =
∣∣∣∣ 1

X(t) + ηY (t)

∣∣∣∣
Using the definition of admissible control space Π, we have

|k∗(t)X(t)| ≤ Λ0|X(t) + Y (t)| ≤ Λ̄0|X(t) + ηY (t)|,
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where Λ̄0 = Λ0 max{ 1
η
, 1}. Therefore, we have

|k∗(t)X(t)Vx(t,X(t), Y (t))| ≤ Λ̄0|X(t) + ηY (t)| ·
∣∣∣∣ 1

X(t) + ηY (t)

∣∣∣∣
= Λ̄0.

We have,

E

[∫ T

0

[k∗(t)X(t)Vx(t,X(t), Y (t))]2dt

]
≤ E

[∫ T

0

Λ̄2
0dt

]
= Λ̄2

0T <∞.

where Λ̄0 > 0 is a constant independent of t. Thus condition (4.79) is verified. Using

definition of (k∗, c∗), it is easy to see that (k∗(t), c∗(t)) is F t-measurable for any t ∈ [0, T ].

Also, by virtue of (4.77) and (4.78), it is easy to get that k∗(t) ≥ 0, c∗(t) ≥ 0, ∀t ∈
[0, T ]. The conditions given by (4.12b) and (4.12a) of admissible control space are also

satisfied.

4.3.3 HARA Utility

In this section we consider HARA utility function

U(cX) =
1

γ
(cX)γ, γ ∈ (−∞, 1), γ 6= 0.

We seek to find explicit solution of HJB equations (4.24a)-(4.24b). For HARA utility

function, the HJB equation is given as

βV − Vs = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx+ µ2y)Vx

+ max
c≥0

[
−cxVx +

1

γ
(cx)γ

]
+ (x− λy)Vy, (4.82)

The candidates for maximum over c and k are given as

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

x
V

1
γ−1
x .
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Substituting k∗ and c∗ in (4.82), we get

βV − Vs = −1

2

(µ1 − r)2V 2
x

σ2Vxx
+

(
1

γ
− 1

)
V

γ
γ−1
x + (rx+ µ2y)Vx + (x− λy)Vy. (4.83)

Suppose solution is of the form

V (s, x, y) = Q(s)ψ(x, y), (4.84)

where Q(s) and ψ(x, y) will be determined. Moreover, we have

Vx = Q(s)ψx(x, y), Vxx = Q(s)ψxx(x, y),

Vy = Q(s)ψy(x, y), Vs = Q′(s)ψ(x, y). (4.85)

Substituting (4.85) into (4.83) yields

[βQ(s)−Q′(s)]ψ(x, y) = −1

2

(µ1 − r)Q(s)ψ2
x

σ2ψxx
+

(
1

γ
− 1

)
[Q(s)ψx]

γ
γ−1

+ (rx+ µ2y)Q(s)ψx + (x− λy)Q(s)ψy. (4.86)

Define u ≡ x+ ηy where η is a constant to be determined. Assume that

ψ(x, y) =
1

γ
uγ. (4.87)

Then we have

ψx = uγ−1, ψxx = (γ − 1)uγ−2, ψy = ηuγ−1. (4.88)

By plugging (4.87) and (4.88) into (4.86) we have

1

γ
[βQ(s)−Q′(s)]uγ = −1

2

(µ1 − r)2Q(s)uγ

σ2(γ − 1)
+

(
1

γ
− 1

)
[Q(s)]

γ
γ−1uγ

+ [(r + η)x+ (µ2 − λη)y]Q(s)uγ−1. (4.89)

We pick a constant η such that

µ2 − λη = (r + η)η. (4.90)

92



In particular, we pick the following positive solution of the above equation(see remark

(4.3.1))

η =
1

2

(√
(r + λ)2 + 4µ2 − (r + λ)

)
. (4.91)

Then we can get

(r + η)x+ (µ2 − λη)y = (r + η)(x+ ηy) = (r + η)u. (4.92)

Now the equation (4.89) can be written as

1

γ
[βQ(s)−Q′(s)]uγ = −1

2

(µ1 − r)2Q(s)uγ

σ2(γ − 1)
+

(
1

γ
− 1

)
[Q(s)]

γ
γ−1uγ

+ (r + η)Q(s)uγ

Canceling the term uγ on both sides of the equation (4.89) we get

1

γ
[βQ(s)−Q′(s)] = −(µ1 − r)2Q(s)

2σ2(γ − 1)
+

(
1

γ
− 1

)
[Q(s)]

γ
γ−1

+ (r + η)Q(s).

The above equation can be re-written as

Q′(s) = Λ3Q(s) + (γ − 1)[Q(s)]
γ
γ−1 (4.93)

where

Λ3 ≡ β +
1

2

γ(µ1 − r)2

σ2(γ − 1)
− γ(r + η). (4.94)

At terminal time s = T we have

V (T, x, y) =
1

γ
Q(T )(x+ ηy)γ (4.95)

The terminal utility function Ψ(x, y) is assumed to be consistent with the HARA

utility function. In particular, for technical reasons, we assume that the function Ψ(x, y)

is of the form

Ψ(x, y) =
Λ

γ
(x+ ηy)γ, (4.96)

where Λ is a constant. Then, by virtue of (4.95) and (4.96), we can get the boundary
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condition for Q(s) at s = T

Q(T ) = Λ. (4.97)

The solution for (4.93)-(4.97) is given as

Q(s) =

[
1− γ

Λ3

(1− e−
Λ3(T−s)

1−γ ) + Λ
1

1−γ e−
Λ3(T−s)

1−γ

]1−γ

. (4.98)

In order for Q(s) > 0, we assume

β

γ
>

1

2

(µ1 − r)2

σ2(1− γ)
+ (r + η), (4.99)

Therefore, the HJB equations (4.24a)-(4.24b) have the solution

V (s, x, y) =
1

γ
Q(s)(x+ ηy)γ. (4.100)

The optimal investment and consumption rates are given as

k∗(s) =
(µ1 − r)(x+ ηy)

(1− γ)σ2x
, (4.101a)

c∗(s) =
x+ ηy

x
Q(s)

1
γ−1 , (4.101b)

where η and Q(s) are respectively given by (4.90) and (4.98), and x and y are estimated

at time s as following

x = X(s), y = Y (s) =

∫ 0

−∞
eλθX(s+ θ)dθ.

We give the verification theorem for the classical solution we obtained above.

Theorem 4.3.5. (Verification Theorem) Let (X(t), Y (t)) be a strong solution of

(4.15)-(4.17). Assume that V (s, x, y) ∈ C1,2,1([0, T ] × R × R) is a solution of the HJB

equations (4.24a)-(4.24b) such that

E

[∫ T

0

(k(t)X(t)Vx(t,X(t), Y (t)))2 dt

]
<∞, ∀(k, c) ∈ Π. (4.102)
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Then we have

V (s, x, y) ≥ sup
(k,c)∈Π

Es,x,y,k,c

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

In addition, assume that the utility function is given by

U(x) =
1

γ
xγ, γ ∈ (−∞, 1), γ 6= 0, (4.103)

and

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

x
V

1
γ−1
x .

If (k∗, c∗) ∈ Π, then (k∗, c∗) is the optimal control policy. In this case, we have

V (s, x, y) = Es,x,y,k∗,c∗

[∫ T

s

e−β(t−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

Proof. The proof is very similar to the proof of Theorem 4.3.1, so we omit it here.

Now it remains to verify that the function defined by (4.100) is a classical solution of

(4.24a)- (4.24b) and control policy is given by (4.101a)-(4.101b) Assume that X(t) is a

strong solution of (4.9)-(4.10) and Y (t) be given by (4.2).

Theorem 4.3.6. Assume that the utility function is given by

U(x) =
1

γ
xγ, γ ∈ (−∞, 1), γ 6= 0,

and that the terminal function is given by

Ψ(x, y) =
1

γ
(x+ ηy)γ

Also assume that η satisfies (4.90). Then the function V (s, x, y) given by (4.100) is a

classical solution of the HJB equation (4.24a)-(4.24b) and it is equal to the value of the
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system defined by (4.19), that is

V (s, x, y) = sup
(k,c)∈Π

Es,x,y

[∫ T

s

e−β(T−s)U(c(t)X(t))dt+ e−β(T−s)Ψ(X(T ), Y (T ))

]
.

In addition, the optimal control policy is given by

k∗(t) =
(µ1 − r)(X(t) + ηY (t))

(1− γ)σ2X(t)
, c∗(t) =

X(t) + ηY (t)

X(t)
Q(t)

1
γ−1 , ∀t ∈ [s, T ]

where Q(·) is defined by (4.98).

Proof. It is evident from the derivation of V (s, x, y) that V (s, x, y) given by (4.100) is a

classical solution of HJB equation (4.24a)-(4.24b).

To use theorem 4.3.5 we first verify that condition (4.102) is satisfied. Using (4.100) we

have

Vx(t,X(t), Y (t)) = Q(t)(X(t) + ηY (t))γ−1.

Using Q(t) > 0, we have

|Vx(t,X(t), Y (t))| = Q(t)|X(t) + ηY (t)|γ−1. (4.104)

Using the definition of admissible control space Π, we have

|k(t)X(t)| ≤ Λ0|X(t) + Y (t)| ≤ Λ̄0|X(t) + ηY (t)|

where Λ̄0 = Λ0 max{ 1
η
, 1}.

Since Q(t) is bounded on [0, T ] we have

|k(t)X(t)Vx(t,X(t), Y (t))| ≤ Λ̄0Q(t)|X(t) + ηY (t)|γ

≤ Λ3|X(t) + ηY (t)|γ

where Λ3 > 0 is a constant that does not depend on t. Using lemma 4.1.3 and noting

that 2γ < 2, we can show

E

[∫ T

0

(k(t)X(t)Vx(t,X(t), Y (t)))2 dt

]
< ∞
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where Λ3 > 0 is a constant independent of t. Thus condition (4.102) is verified. The

optimal controls are

k∗(t) =
(µ1 − r)(X(t) + ηY (t))

(1− γ)σ2X(t)
, c∗(t) =

X(t) + ηY (t)

X(t)
Q(t)

1
γ−1 , ∀t ∈ [s, T ].

It is easy to see that (k∗(t), c∗(t)) is F t-measurable for any t ∈ [0, T ]. Moreover, c∗(t) ≥ 0.

Hence we get (k∗, c∗) ∈ Π. This completes the proof.
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Chapter 5

A Stochastic Portfolio Model with

Complete Memory and Stochastic

Volatility

5.1 Introduction

In this chapter, an optimal investment-consumption model is considered, in which the

historical performance of the model is accounted for and the volatility of the risky asset

is considered to be stochastic. In chapters 2 - 4 the volatility of the risky asset is assumed

to be constant. In this chapter, we study the model for the case when the volatility of

the risky asset is stochastic. In this model, investor’s portfolio comprises a risky and a

riskless asset. The economic factor Θt of the coefficient σ(Θt) in the risky asset dynam-

ics (5.4) is an ergodic diffusion process which satifies (5.5). The value of the portfolio

follows a stochastic process X(t) (see (5.6)) that depends on following exponential delay

information:

Y (t) =

∫ 0

−∞
eλτX(t+ τ)dτ, (5.1)

where λ > 0 is a constant.

The historic performance from −∞ to s is the initial condition for X(t) where s ∈
[0, T ] is the initial time.

X(t) = ϕ(t− s), ∀t ∈ (−∞, s],
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where ϕ > 0 is a bounded function which is integrable (−∞, 0].

The goal is to choose investment and consumption controls such that the total

expected discounted log utility of consumption is maximized. Like in chapter 4, the

model incorporates the complete past information. This is done by introducing the com-

plete memory variable (5.1). Unlike in chapters 2 and 3, the memory variable Θ(t) (see

(2.2)/(3.1) ) does not appear in the HJB equation for this model.

The rest of the chapter is organized as follows. In Section 5.2, we formulate the model

for infinite delay and stochastic volatility. In Section 5.3, HJB equation is established. In

Section 5.4, the method of sub and super solutions is used to prove the existence of the

solution of the HJB equation for log utility function and the verification theorem is also

established.

5.2 Stochastic Volatility Model

Consider an investor’s portfolio consisting of a risky asset and a riskless asset. An example

of riskless asset is money deposited in a bank account that earns a fixed interest rate

r > 0. In this model the complete performance of the risky asset is taken into account.

We also assume that the investor can freely move his money between two assets at any

time and his consumption comes from the riskless asset.

Let K(t) be the amount invested in the risky asset and L(t) is the amount invested

on the riskless asset. The total wealth is given by X(t) = K(t) + L(t). We assume that

the performance of the risky asset depends on the following delay variable Y (t):

Y (t) =

∫ 0

−∞
eλτX(t+ τ)dτ, (5.2)

where λ > 0 is a constant.

Remark 5.2.1. From the definition of Y (t), its value is actually the exponential average

of all the historical values of the total wealth X(t). We want to point out that in reality,

there is always a historical time that the value of X is available. In other words, the initial

path ϕ(t) will start at some point t = −M instead of t = −∞. In this case, we simply

assume that ϕ(t) = 0,∀t ∈ (∞,−M), and we can still use the formula (5.2) to define the

delay variable Y (t). In addition, Y (t) is still a continuous function with respect to t for

t ≥ s.
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Assume the processes B1(t) and B2(t) are one-dimensional standard Brownian mo-

tions defined on a complete filtered probability space (Ω,F , P ). The Brownian motions

are correlated with correlation ρ ∈ (−1, 1). The price of the riskless asset L(t) satisfies

the stochastic differential equations

dL(t) = [rL(t)− C(t)− I(t)]dt, (5.3)

where C(t) is the consumption rate. The price of the risky asset is modeled as a process

K(t) satisfying

dK(t) = [(µ1 + µ2Y (t))K(t) + I(t)]dt+ σ(Θ(t))K(t)dB1(t), (5.4)

where µ1 and µ2 are constants, I(t) is the investment rate and 0 < σ1 ≤ σ(θ) ≤ σ2. The

process Θ(t) is referred to as the stochastic factor and it satisfies

dΘ(t) = a(Θ(t))dt+ b(Θ(t))dB2(t), (5.5)

The drift and diffusion coefficients a(θ) and b(θ) are such that equation (5.5) has a unique

strong solution. In particular, in this chapter, we consider the case where a(θ) = c(θ̄−θ),
where c, θ̄ > 0 and b(θ) = b is a constant.

If we assume that K(t) > 0 almost surely, we can use the following delay variable

Ỹ (t) :

Ỹ (t) =
1

K(t)

∫ 0

−∞
eλτX(t+ τ)dτ,

instead of (5.2). Using the above assumption, the equation for K(t) is rewritten as

dK(t) = [(µ1 + µ2Ỹ (t))K(t) + I(t)]dt+ σ(Θ(t))K(t)dB1(t)

= [µ1K(t) + µ2Y (t) + I(t)]dt+ σ(Θ(t))K(t)dB1(t),

where Y (t) is given by (5.2). The process followed by the net wealth X(t) = K(t) +L(t)

is given as

dX(t) = [µ1K(t) + µ2Y (t) + rL(t)− C(t)]dt+ σ(Θ(t))K(t)dB1(t), ∀t ∈ [0,∞). (5.6)

In order to describe the distribution of wealth between the risky asset and the riskless
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asset, the control variables are defined using C(t) and K(t) as c(t) = C(t)
X(t)

and k(t) = K(t)
X(t)

as consumption and investment controls, respectively. X(t) and Y (t) are state variables.

As we shall prove X(t) > 0 in the following section so that the controls are well defined.

Using L(t) = X(t)−K(t) = X(t)(1− k(t)), equation for X(t) can be written as

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t)]dt+ σ(Θ(t))k(t)X(t)dB(t), (5.7)

The initial condition is given by

X(t) = ϕ(t− s), ∀t ∈ (−∞, s], (5.8)

where ϕ is a bounded function and ϕ(τ) > 0,∀τ ∈ (−∞, s].

Definition 5.2.1 (Admissible Control Space). Let Π denote the admissible control space.

A control policy (k(t), c(t)) is said to be in the admissible control space Π if it satisfies

the following conditions:

(a) (k(t), c(t)) is F t−measurable for any t ∈ [0,∞);

(b) c(t) ≥ 0,∀t ∈ [0,∞);

(c)

Pr

(∫ T

0

k2(t)dt <∞
)

= 1, ∀T > 0, (5.9)

|k(t)X(t)| ≤ Λ |X(t) + Y (t)| , ∀t > 0, (5.10)

|c(t)X(t)| ≤ Λ |X(t) + Y (t)| , ∀t > 0, (5.11)

where Λ > 0 is a constant.

Lemma 5.2.1. The solution X(t) of equation (5.7) with initial condition (5.8) is almost

surely positive.

Proof. The proof is similar to the proof of Lemma 4.1.1.

The utility function U(C) is defined based on the consumption rate. The problem

under consideration is on an infinite time horizon [0,∞). Assume the expected total
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discounted utility J(ϕ, θ, k, c) be given by

J(ϕ, θ, k, c) = Eϕ

[∫ ∞
0

e−βtU(c(t)X(t))dt

]
, ∀(k, c) ∈ Π.

Then the value function is given by

V (ϕ, θ) = sup
k, c∈Π

J(ϕ, k, c)

= sup
k, c∈Π

Eϕ

[∫ ∞
0

e−αtU(c(t)X(t))dt

]
. (5.12)

We note that the initial data has infinite dimension. We will show that for (5.7) the value

function and optimal controls depend on the initial data as given below,

x = x(ϕ) ≡ ϕ(0),

y = y(ϕ) ≡
∫ 0

−∞
eλϕ(τ)dτ.

Taking advantage of this we can write

V (ϕ, θ) = V (x, y, θ),

where V : R3 → R.

5.3 Hamilton-Jacobi-Bellman Equation

In this section HJB equation satisfied by the value function V (ϕ, θ) is derived. Let f ∈
C1,2,1(R3) and define

G(t) = f(t,X(t), y(Xt)),

where

y(η) ≡
∫ 0

−∞
eλτη(τ)dτ,
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and

Xt(τ) ≡ X(t+ τ), ∀τ ∈ (∞, 0].

Lemma 5.3.1 (Ito’s Formula). Consider the system given by (5.7)-(5.8). We have

dG(t) = Lk,cfdt+ σkxfxdB(t) + fy · [x− λy]dt, (5.13)

where

Lk,cf = Lk,cf(t, x, y)

= ft + (((µ1 − r)k − c+ r)x+ µ2y)fx +
1

2
σ2k2x2fxx, (5.14)

where x, y, k and c are evaluated as

x = x(t), y = y(Xt) =

∫ 0

−∞
eλτX(t+ τ)dτ, k = k(t), c = c(t). (5.15)

Proof. See Lemma 4.1.2.

By virtue of Lemma 5.3.1, we obtain the following formula for dY (t):

dY (t) = (X(t)− λY (t))dt.

We assume that the initial path ϕ depends on the value function V only through the

functionals x(ϕ) and y(ϕ) as defined by (5.15) . That is,

V (ϕ, θ) = V (x(ϕ), y(ϕ), θ) ≡ V (x, y, θ). (5.16)

Theorem 5.3.1 (HJB Equation). Assume that (5.16) holds and V (x, y, θ) ∈ C1,2,1(R×
R×R) then the value function value function V (x, y, θ) given by (5.12) and (5.16) satisfies

the following Hamilton-Jacobi-Bellman partial differential equation

βV = max
k

[
1

2
(σ(θ)kx)2Vxx + (µ1 − r)kxVx + ρkxσ(θ)b(θ)Vxθ

]
+ (rx+ µ2y)Vx

+ max
c≥0

[−cxVx + U(cx)] + (x− λy)Vy + a(θ)Vθ +
1

2
b2(θ)Vθθ. (5.17)
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Proof. The proof is standard so we omit it here.

5.4 Logarithmic Utility

In this section we study the HJB equation (5.17) for log utility function. We use subsolu-

tion and supersolution method to establish the classical solution for HJB equation. Log

utility function is given by

U(cX) = log(cX). (5.18)

Substituting in equation (5.17), we have

βV = max
k

[
1

2
(σ(θ)kx)2Vxx + (µ1 − r)kxVx + ρkxσ(θ)b(θ)Vxθ

]
+ (rx+ µ2y)Vx

+ max
c≥0

[−cxVx + log(cx)] + (x− λy)Vy + a(θ)Vθ +
1

2
b2(θ)Vθθ, (5.19)

The candidates for optimal controls are

k∗ =
−(µ1 − r)Vx − ρb(θ)σ(θ)Vxθ

σ2(θ)xVxx
, c∗ =

1

xVx
(5.20)

Plugging optimal control candidates in (5.25), we have

βV = −1

2

[(µ1 − r)Vx + ρb(θ)σ(θ)Vxθ]
2

σ2(θ)Vxx
+ (rx+ µ2y)Vx + (x− λy)Vy

+ log

(
1

Vx

)
− 1 + a(θ)Vθ +

1

2
b2(θ)Vθθ. (5.21)

We assume a solution is of the form

V (x, y, θ) = η1 log(u) +W (θ) (5.22)

where η1 is a constant to be determined, u ≡ x+ ηy and η = η(r, λ, µ2) > 0 satisfies

η(r + η) = µ2 − ηλ. (5.23)
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Moreover, we have

V = η1 log(u) +W (θ), Vx = η1

u
, Vxx = − η1

u2 , Vxθ = 0,

Vy = η1η
u
, Vθ = Wθ, Vθθ = Wθθ (5.24)

Choose η1 = 1
β

then (5.21) becomes

log(u) + βW (θ) =
1

2

(µ1 − r)2

βσ2(θ)
+ (rx+ µ2y)

1

βu
+ (x− λy)

η

βu

+ log(β)− 1 + a(θ)Wθ +
1

2
b2(θ)Wθθ. (5.25)

Using the assumption (5.23), equation (5.25) becomes

βW (θ) =
1

2

(µ1 − r)2

βσ2(θ)
+ log(β)− 1 +

1

β
(r + η) + a(θ)Wθ +

1

2
b2(θ)Wθθ. (5.26)

The above equation can be rewritten as

1

2
b2(θ)Wθθ(θ) + a(θ)Wθ(θ)− βW (θ) +Q(θ) = 0, (5.27)

where

Q(θ) =
1

2

(µ1 − r)2

βσ2(θ)
+

1

β
(r + η) + log(β)− 1. (5.28)

Now we use the subsolution-supersolution method to get a classical solution W (θ) of

equation (5.21).

Define

LW =
1

2
b2(θ)Wθθ(θ) + a(θ)Wθ(θ) (5.29)

f(θ,W ) = Q(θ)− βW (θ). (5.30)

Using above notations equation (5.27) can be written as

−LW = f(θ,W ). (5.31)
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5.4.1 Subsolution and Supersolution

Now we define subsolutions and supersolutions.

Definition 5.4.1. A function W (θ) is called a subsolution of equation (5.31) if

−LW (θ) ≤ f(θ,W (θ)), ∀θ ∈ R. (5.32)

While a function W (θ) is called a supersolution of equation (5.31) if

−LW (θ) ≥ f(θ,W (θ)), ∀θ ∈ R. (5.33)

In addition, (W (θ),W (θ)) is called a pair of subsolution and supersolution if

W (θ) ≤ W (θ), ∀θ ∈ R. (5.34)

Lemma 5.4.1. Assume

(µ1 − r)2

2σ2
2

+ r + η ≥ β(1− log(β)) (5.35)

where 0 < σ1 ≤ σ(θ) ≤ σ2. Any constant K < K1 is a subsolution of (5.31) where K1 is

given as

K1 ≡
1

β2

[(
(µ1 − r)2

2σ2
2

+ r + η

)
+ β(log(β)− 1)

]
. (5.36)

Proof. Since K1 is a constant, we have −LK1 = 0 .

Now consider

f(θ,K1) = Q(θ)− βK1 (5.37)

=
(µ1 − r)2

2β

[
1

σ2(θ)
− 1

σ2
2

]
(5.38)

≥ 0 (5.39)

Therefore, we get

−LK1 ≤ f(θ,K1). (5.40)

Thus K1 is a subsolution of (5.31).
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Lemma 5.4.2. Assume (5.35) holds. Any constant K > K2 is a supersolution of (5.31)

where K2 is given as

K2 ≡
1

β2

[(
(µ1 − r)2

2σ2
1

+ r + η

)
+ β(log(β)− 1)

]
. (5.41)

Proof. Since K2 is a constant, we have −LK2 = 0 .

Now consider

f(θ,K2) = Q(θ)− βK2 (5.42)

=
(µ1 − r)2

2β

[
1

σ2(θ)
− 1

σ2
1

]
(5.43)

≤ 0, (5.44)

Therefore, we get

−LK1 ≥ f(θ,K2). (5.45)

Thus K2 is a supersolution of (5.31).

We note that K1 ≤ K2 for all θ ∈ R follows from σ1 ≤ σ2. Therefore, (K1, K2) is an

ordered pair of subsolution and supersolution.

5.4.2 Existence of Solution

Following theorem establishes the existence result.

Theorem 5.4.1. The equation (5.31) possesses a classical solution Ŵ (θ) such that

K1 ≤ Ŵ (θ) ≤ K2, (5.46)

where K1 and K2 are the subsolution and supersolution given by equations (5.36) and

(5.41) respectively.

Proof. By virtue of Lemma 5.4.1 and 5.4.2, K1 and K2 are ordered subsolution and

supersolution. Also note that equation (5.31) has a positive subsolution and f(θ, 0) ≥ 0.

The result follows using theorem 7.5.2 in [51]

Lemma 5.4.3. If Ŵ (θ) is a classical solution of (5.31) such that (5.46) is satisfied, then

Ŵθ(θ) is bounded.
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Proof. Let a(θ) = c(θ̄ − θ), where c, θ̄ are positive constants. From (5.46) we note that

Ŵ (θ) is bounded. To show that Ŵθ(θ) is bounded, it is enough to show that Ŵθ(θ) is

bounded at its local maxima or minima. Without any loss of generality, assume that

Ŵθ(θ) has a local maxima or minima at θ0. Then we have Ŵθθ(θ0) = 0. Therefore at

θ = θ0, we can get

a(θ)Ŵθ(θ)− βŴ (θ) +Q(θ) = 0, (5.47)

For any Λ > 0, let θ ∈ [−Λ,Λ], we have |Wθ(θ)| ≤ CΛ, where CΛ is a constant that

depends on Λ. Let θ ∈ [Λ,∞). Assume that a(θ) ≤ −C̆Λ < 0 where C̆Λ is a constant. We

can write equation (5.47) as

Ŵθ(θ) =
1

a(θ)
[βŴ (θ)−Q(θ)] (5.48)

Then we have

|Ŵθ(θ)| =
1

|a(θ)|
[|βŴ (θ)−Q(θ)|]

≤ 1

C̆Λ

[
β|Ŵ (θ)|+ |Q(θ)|

]
≤ 1

C̆Λ

[
βK2 + Q̄

]
<∞

where Q̄ = 1
2

(µ1−r)2

βσ2
1

+ 1
β
(r + η) + log(β)− 1.

Similarly when θ ∈ (−∞,−Λ], Assume that a(θ) ≥ ĈΛ > 0 where ĈΛ is a constant.

We can write equation (5.47) as

Ŵθ(θ) =
1

a(θ)
[βŴ (θ)−Q(θ)] (5.49)

Then we have

|Ŵθ(θ)| =
1

|a(θ)|
[|βŴ (θ)−Q(θ)|]

≤ 1

ĈΛ

[
β|Ŵ (θ)|+ |Q(θ)|

]
≤ 1

ĈΛ

[
βK2 + Q̄

]
<∞
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Therefore for θ ∈ (−∞,−Λ) ∪ (Λ,∞), we have

|Ŵθ(θ)| ≤
1

min{ĈΛ, C̆Λ}
[
βK2 + Q̄

]
<∞ (5.50)

Since θ = θ0 is an arbitrary minimum or maximum point of Ŵθ(θ), therefore Ŵθ(θ) is

bounded at its minima and maxima. Hence Ŵθ(θ) is bounded.

5.4.3 Verification Theorem

Now we give the verification theorem.

Theorem 5.4.2. (Verification Theorem) Suppose that Ŵ (θ) (such that (5.46) holds) is

a classical solution of equation (5.31). Define

V̂ (x, y, θ) =
1

β
log(u) + Ŵ (θ). (5.51)

such that

E

[∫ T

0

(
σ(θ)k(t)X(t)V̂x(X(t), Y (t),Θ(t))

)2

dt

]
<∞, ∀(k, c) ∈ Π. (5.52)

then we have

(a) For every admissible control process

V̂ (x, y, θ) ≥ E

∫ ∞
0

e−βt log(ctxt)dt, (5.53)

(b) If

k∗ =
(µ1 − r)u
σ2(θ)x

, c∗ =
βu

x
. (5.54)

Then (k∗, c∗) ∈ Π and

V̂ (x, y, θ) = E
∫ ∞

0

e−βt log(c∗tx
∗
t )dt. (5.55)
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Proof. First we verify the condition (5.52). Using (5.51), we have

|V̂x(X(t), Y (t),Θ(t))| = 1

β

∣∣∣∣ 1

X(t) + ηY (t)

∣∣∣∣
Using the definition of admissible control space Π, we have

|k(t)X(t)| ≤ Λ|X(t) + Y (t)| ≤ Λ1|X(t) + ηY (t)|,

where

Λ1 = Λ max

{
1

η
, 1

}
.

Therefore, we have

|σ(θ)k(t)X(t)V̂x(X(t), Y (t),Θ(t))| ≤ σ2Λ1

β
|X(t) + ηY (t)| ·

∣∣∣∣ 1

X(t) + ηY (t)

∣∣∣∣ =
σ2Λ1

β
.

Then we have,

E

[∫ T

0

[σ(θ)k(t)X(t)V̂x(t,X(t), Y (t),Θ(t))]2dt

]
≤ E

[∫ T

0

σ2
2Λ2

1

β2
dt

]
=
σ2

2Λ2
1T

β2
<∞.

Thus condition (5.52) is verified.

Using equation (5.17) we have

βV̂ − U(cx) ≥ 1

2
(σ(θ)kx)2V̂xx + (((µ1 − r)k − c+ r)x+ µ2y) V̂x + ρkxσ(θ)b(θ)V̂xθ

+ (x− λy)V̂y + a(θ)V̂θ +
1

2
b2(θ)V̂θθ. (5.56)

Applying Ito’s rule to e−βtV̂ (X(t), Y (t),Θ(t)), we have

d
(
e−βtV̂ (X(t), Y (t),Θ(t))

)
= e−βtdV̂ (X(t), Y (t),Θ(t))− βe−βtV̂ (X(t), Y (t),Θ(t))dt

(5.57)

where

dV̂ (X(t), Y (t),Θ(t)) =

(
1

2
(σ(θ)kx)2V̂xx + (((µ1 − r)k − c+ r)x+ µ2y)V̂x + ρkxσ(θ)b(θ)V̂xθ

+ (x− λy)V̂y + a(θ)V̂θ +
1

2
b2(θ)V̂θθ

)
dt+ σ(θ)xkVxdB1(t) + b(θ)VθdB2(t).
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Combining equations (5.56), (5.57) and (5.58), we have

d
(
e−βtV̂ (X(t), Y (t),Θ(t))

)
≤ e−βt log(c(t)X(t)) + σ(θ)xkVxdB1(t) + b(θ)VθdB2(t).

(5.58)

By virture of (5.52) and Lemma 5.4.3 it is easy to verify that
∫ T

0
σ(θ)xkVxdB1(t) and∫ T

0
b(θ)VθdB2(t) are martingales. Therefore using equation (5.58), we have

V̂ (x, y) ≥ E

[∫ T

0

e−βt log(c(t)X(t))dt

]
+ E

[
e−βT V̂ (X(T ), Y (T ))

]
. (5.59)

Using (5.51), we have

lim
T→∞

E
[
e−βT V̂ (X(T ), Y (T ))

]
= lim

T→∞
E

[
e−βT

(
1

β
log (X(T ) + ηY (T )) + Ŵ (θ)

)]
,

From equation (5.46) we note that

lim
T→∞

E
[
e−βT Ŵ (θ)

]
≥ 0.

To show that

lim
T→∞

E
[
e−βT V̂ (X(T ), Y (T ))

]
= 0,

it is sufficient to show

lim
T→∞

E
[
e−βT log (X(T ) + ηY (T ))

]
= 0. (5.60)

Let

S(t) = X(t) + ηY (t). (5.61)

Then using (5.23), we have

dS(t) = dX(t) + ηdY (t)

=
[

((µ1 − r)k(t)− c(t))X(t) + (r + η)S(t)
]
dt+ σ(θ)k(t)X(t)dB(t).
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Using Ito’s rule, we have

d logS(t) =
dS(t)

S(t)
− 1

2

(dS(t))2

(S(t))2

=

[
((µ1 − r)k(t)− c(t)) X(t)

S(t)
+ (r + η)

− 1

2
σ2(θ)k2(t)

(
X(t)

S(t)

)2 ]
dt+ σ(θ)k(t)

X(t)

S(t)
dB(t). (5.62)

Since (k(t), c(t)) ∈ Π, it is easy to verify that
∫ T

0
σ(θ)k(t)X(t)

S(t)
dB(t) is a martingale.

Therefore, we can get

E [logS(T )] = log(S(0)) + E

[∫ T

0

((µ1 − r)k(t)− c(t)) X(t)

S(t)
dt

]
+

∫ T

0

(r + η)dt− E

[∫ T

0

1

2
σ2(θ)k2(t)

(
X(t)

S(t)

)2

dt

]
. (5.63)

For any (k(t), c(t)) ∈ Π, by virtue of (5.10) and (5.11), we have∣∣∣∣k(t)
X(t)

S(t)

∣∣∣∣ ≤ Λ |X(t) + Y (t)|
|X(t) + ηY (t)|

≤ Λ1,∣∣∣∣c(t)X(t)

S(t)

∣∣∣∣ ≤ Λ |X(t) + Y (t)|
|X(t) + ηY (t)|

≤ Λ1,

where

Λ1 = Λ max

{
1

η
, 1

}
.

And also σ2(θ) ≤ σ2. Then we can get

lim
T→∞

e−βTE

[∫ T

0

((µ1 − r)k(t))
X(t)

S(t)
dt

]
= 0,

lim
T→∞

e−βT
∫ T

0

(r + η) dt = 0,

lim
T→∞

e−βTE

[∫ T

0

(−c(t)X(t)

S(t)
)dt

]
= 0,

lim
T→∞

e−βTE

[∫ T

0

(
−1

2
σ2(θ)k2(t)

(
X(t)

S(t)

)2
)
dt

]
= 0
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Then from (5.63), we can get

lim
T→∞

e−βTE[log(S(T ))] = 0.

Thus, we have

lim
T→∞

E
[
e−βT V̂ (X(T ), Y (T ))

]
= 0, ∀(k(t), c(t)) ∈ Π.

combined with (5.59), part 1 of the theorem is established.

Now assume that k∗, c∗ are given by (5.54). We can easily verify that they are F t-
measurable. In addition, from Lemma 5.2.1, we know that X(t) > 0, a.s., so we can get

that k∗(t), c∗(t) are well defined and c∗(t) ≥ 0. In addition, it is not hard to check that

(5.10) and (5.11) are true for k∗(t) and c∗(t). Finally, since X(t) > 0 and k∗(t) is well

defined, we can get that

Pr(k∗(t) <∞) = 1, ∀t ≥ 0.

Therefore, we can get

Pr

(∫ T

0

(k∗(t))2dt <∞
)

= 1, ∀T > 0.

So we can get that (k∗(t), c∗(t)) ∈ Π. For (k∗(t), c∗(t)) ∈ Π, instead of (5.59), we have

V̂ (x, y, θ) = E

[∫ T

0

e−βt log(c∗(t)X∗(t))dt

]
+ E

[
e−βT V̂ (X(T ), Y (T ))

]
. (5.64)

To show

V̂ (x, y, θ) = E
∫ ∞

0

e−βt log(c∗tx
∗
t )dt, (5.65)

By virtue of (5.51), it is sufficient to show

lim
T→∞

E
[
e−βT log (X∗(T ) + ηY ∗(T ))

]
= 0. (5.66)

Using k∗ and c∗ equation (5.62) becomes

d logS∗(t) =

[(
1

2

(µ1 − r)2

σ2(θ)
− β

)
+ (r + η)

]
dt+

(µ1 − r)
σ2(θ)

dB(t) (5.67)
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Since σ(θ) is assumed to be bounded, therefore we have

E [logS∗(T )] = log(S∗(0)) + E

[∫ T

0

(
1

2

(µ1 − r)2

σ2(θ)
− β + r + η

)
dt

]
It immediately follows that

lim
T→∞

e−βT
[∫ T

0

log(S(0))dt

]
= 0,

lim
T→∞

e−βTE

∫ T

0

(
1

2

(µ1 − r)2

σ2(θ)
− β + r + η

)
dt = 0,

Therefore we have

lim
T→∞

E
[
e−βTV (X∗(T ), Y ∗(T ),Θ∗(t))

]
= 0. (5.68)

Hence we have V (x, y) = J(x, y; k∗, c∗). This completes the proof.
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Chapter 6

Conclusion and Future Work

In this dissertation, we consider some stochastic portfolio optimization models with de-

lays. In chapters 2 and 3, models with finite delay for finite and infinite time horizons

have been investigated. In chapters 4 and 5, models with infinite delay have been studied.

In chapter 5, the volatility for the price process of risky asset is assumed to be stochastic.

We consider utility functions that have been widely used, such as exponential, log and

HARA utility functions. Due to the delay variables Y (t) and Z(t), the system is no longer

a Markovian system. Under certain conditions, we have derived the explicit formulas for

the value functions as well as the optimal investment and consumption controls.

We want to point out that a crucial condition for both log utility case and the non-log

HARA utility case is (see (2.47) and (3.66))

µ3e
λh(r + µ3e

λh) = µ2 − µ3λe
λh. (6.1)

This condition is necessary to ensure that the HJB equations have solutions that

are independent of z. As we have showed in Lemma 2.3.2, the independence of z is a

necessary condition that we can solve the delay problem in a finite dimensional space.

Actually, this is the main reason that stochastic control problems with delays are very

challenging (see Larssen-Risebro [32]). More discussions about the condition (6.1) can be

found in Chang-Pang-Yang [5] (Section 5 and 6). Finally, in this dissertation, we only

consider the delay variables that depend on the total wealth process X(t).

In chapters 4 and 5, we have some stochastic portfolio optimization models where the

price of the risky asset is no more Markovian because of the infinite delay variable Y (t).
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In chapter 4, the volatility of risky asset is considered to be constant. In chapter 5, the

volatility of the risky asset is no more constant. The dynamics of the model are

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t)]dt+ σ(Θ)k(t)X(t)dB1(t),

dΘ(t) = a(Θ)dt+ b(Θ)dB2(t)

dY (t) = (X(t)− λY (t))dt,

with the initial conditions

X(s) = x, Y (s) = y

where x, y are given as

X(s) = x ≡ ϕ(s), Y (s) = y ≡
∫ 0

−∞
eλθϕ(s+ θ)dθ.

By taking the volatility of the risky asset to be constand and by taking µ2 = 0, above

model reduces to the classical Merton’s portfolio optimization problem.

In chapters 4 and 5, for each of the utility functions (exponential, logarithm and

HARA), we obtained the explicit solution in terms of functions of u ≡ x+ ηy such that

η =
1

2

(√
(r + λ)2 + 4µ2 − (r + λ)

)
.

For instance, consider the case in chapter 4. As we can see, if we take µ2 = 0, then

we get η = 0. Therefore, the value function and the optimal controls are independent of

the memory (delay) variable Y (t). Further, when µ2 = 0, the process for X(t) does not

depend on Y (t) and it reduces to

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t)]dt+ σk(t)X(t)dB(t), ∀t ∈ [s, T ],

with the initital condition

X(s) = x.

For this reduced model, for each of the utility functions, we note the following

• Exponential Utility
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The value function is given by

V (s, x, y) = −Q(s)e−αrx.

The optimal investment and consumption rates for exponential utlity are given as

k∗(s) =
(µ1 − r)
αrσ2x

,

c∗(s) = − 1

αx

[
log (rQ(s))− αrx

]
,

where

Q(s) = exp

(
− Λ1

r
+

(
Λ1

r
+ log Λ

)
e−r(T−s)

)
and

Λ1 ≡ β +
1

2

(µ1 − r)2

σ2
− r + r log(r).

• Logarithmic Utility

The value function is given by

V (s, x, y) = Q(s) + log(x). (6.2)

The optimal investment and consumption rates are given as

k∗(s) =
(µ1 − r)
σ2

c∗(s) = β,

where

Q(s) =
Λ2

β
(1− e−β(T−s)),

and

Λ2 ≡
1

2

(µ1 − r)2

βσ2
+ log(β)− 1 +

r

β
.

• HARA Utility
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The value function is given by

V (s, x, y) =
1

γ
Q(s)xγ.

The optimal investment and consumption rates are given as

k∗(s) =
(µ1 − r)

(1− γ)σ2
,

c∗(s) = [Q(s)]
1

γ−1 ,

where

Q(s) =

[
1− γ

Λ3

(1− e−
Λ3(T−s)

1−γ ) + Λ
1

1−γ e−
Λ3(T−s)

1−γ

]1−γ

,

and

Λ3 ≡ β − 1

2

γ(µ1 − r)2

σ2(1− γ)
− γr.

In each of the cases discussed above, the value function and optimal controls are

solutions of the Merton’s classical model on a finite time horizon with the objective

function given by

J(s, x) = Es,x

[ ∫ T

s

e−β(τ−s)U(c(τ))X(τ)dτ + e−β(T−s)Ψ(X(T ))

]
.

Similarly it is easy to verify that it is true for models discussed in chapters 2, 3 and

5.

Our future plans for research are driven from the models discussed in this dissertation.

The models discussed in this dissertation consider single risky asset. We are interested

in extending these models to multiple risky assets.

The model considered in chapter 5 investigates an infinite time horizon model for

logarithmic utility function. One of our future works include extension of the model for

exponential and HARA utility functions for this model. We also plan to study this model

on finite time horizon.

In practice the interest rate may not be constant. We also plan on extending the

models for stochastic interest rates. The models considered in this dissertation do not

consider risky assets that produce stochastic dividends. These models can be studied for

risky assets which produce stochastic dividends.
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Moreover, the consumption and investment controls are assumed to be Markovian

in this dissertation. However, in practice, an investor would consider the historic data

of consumption and investment. The models studied in this dissertation can be investi-

gated for non-Markovian control processes where an investor makes his/her decisions by

incorporating the past information of the control processes.

To use the HJB framework for solving these class of models, we use functional Ito’s

calculus to obtain the modified HJB equation. The HJB is too complicated in this case.

Obtaining explicit solution of HJB equation might not be possible. In that case method

of sub/super solutions and viscosity solutions can be used to prove the existence of the

solution of the HJB equation. These extensions will be our future research topics.

119



REFERENCES

[1] Harald Bauer and Ulrich Rieder. Stochastic control problems with delay. Mathe-
matical Methods of Operations Research, 62(3):411–427, 2005.

[2] Tomasz R Bielecki and Stanley R Pliska. Risk-sensitive dynamic asset management.
Applied Mathematics and Optimization, 39(3):337–360, 1999.

[3] Mou-Hsiung Chang, Tao Pang, and Moustapha Pemy. Finite difference approxima-
tions for stochastic control systems with delay. Stochastic Analysis and Applications,
26(3):451–470, 2008.

[4] Mou-Hsiung Chang, Tao Pang, and Moustapha Pemy. Optimal control of stochastic
functional differential equations with a bounded memory. Stochastics An Interna-
tional Journal of Probability and Stochastic Processes, 80(1):69–96, 2008.

[5] Mou-Hsiung Chang, Tao Pang, and Yipeng Yang. A stochastic portfolio optimization
model with bounded memory. Mathematics of Operations Research, 36(4):604–619,
2011.

[6] Li Chen and Zhen Wu. Maximum principle for the stochastic optimal control prob-
lem with delay and application. Automatica, 46(6):1074–1080, 2010.
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