
ABSTRACT 

TATE, JENNIFER ELYSE. Analysis of Precipitation Predictability in a 29-Year Reforecast. 

(Under the direction of Dr. Gary Lackmann). 

 

Quantitative precipitation forecasting is an important forecast problem in the 

Southeast U.S., with societal and economic consequences. Past studies have enumerated the 

qualities of meteorological systems that produce heavy and extreme precipitation. However, 

less work has been done on which types of precipitation systems have high or low 

predictability, and on objectively determining model biases during heavy precipitation. Thus, 

this research identifies precipitation events that were well forecast and poorly forecast by 

NOAAõs 2
nd

-generation global ensemble reforecast dataset. It was found that, as expected, 

predictability decreases with lead time and during the warm season. Further, highly 

convective cases exhibited lower predictability than strongly forced and stratiform events.  

To explore model biases, event-relative composites of the North American Regional 

Reanalysis dataset were compared with those from the reforecast for strongly forced, highly 

convective events at a day 5 lead time. This showed a bias in the reforecast toward system 

movement that was too fast, with forcing for ascent and precipitation too far north and east in 

poorly forecast cases. For a case study occurring 12 April 2013, this behavior was attributed 

to precipitation that was underforecast midway through the forecast, and thus lower-

tropospheric PV errors. Additionally, the reforecast composite of poorly forecast cases 

underforecasted precipitation compared to the NARR. Slightly more stability in the 

reforecast composite and a shorter duration of rainfall due to a faster system may have 

contributed to this low precipitation bias. The reforecast composite at a 5 day lead time 

exhibited less available moisture than the NARR for both poorly forecast and well forecast 

cases, particularly over the Gulf of Mexico. In the composite at initialization, this bias did not 



occur, indicating possible moisture transport issues throughout the model run. However, the 

moisture flux was sufficient in the reforecast composite. Implications for forecasters are 

discussed. 
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1. Introduction 

1.1. Motivation 

Precipitation forecasts, including when and where precipitation will occur, probability 

of precipitation, and the amount of precipitation, are among the most frequently utilized 

weather forecasts by the U.S. public (Ebert et al. 2003; Lazo et al. 2009). Precipitation can 

affect human behavior; a study of the traffic on the Tokyo Metropolitan Expressway revealed 

that considerably fewer people drove on rainy days, especially on weekends (Chung et al. 

2005). The same study showed that there are significantly more accidents on rainy days 

compared to drier ones. The U.S. Department of Transportation (2015) states that 23% of 

vehicle crashes are weather related, and of those, the vast majority are related to rain and wet 

pavement. According to the Federal Aviation Administration (2015), weather is the number 

one cause of flight delays across the nation. Precipitation can be related to convective 

weather and low ceiling and visibility, two of the most common flight delay causes. 

When precipitation is heavy, it can lead to river flooding and flash flooding, which 

can cause loss of life and property. The National Weather Service (NWS) (2016) reports a 

30-year average (1986-2015) of 81 deaths per year due to flooding alone. In 2015, flash 

flooding caused about 2.1 billion dollars in damage, by far the highest of any weather 

incident (NWS 2016). Forecasting heavy precipitation accurately can minimize these 

negative impacts, since decision makers and the general public would ideally be better 

prepared for excessive rainfall. 

Though it is of great societal importance, quantitative precipitation forecasting is a 

difficult task for both numerical weather models and for forecasters. Forecasts by both 
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human forecasters and numerical weather prediction (NWP) models have improved over 

time (Baxter et al. 2014; Novak et al. 2014; Sukovich et al. 2014), but there is still much to 

improve upon. Utilizing the National Oceanic and Atmospheric Administrationõs (NOAA) 

second-generation reforecast, Baxter et al. (2014) demonstrated that in the southeastern 

United States (SEUS), forecasts at longer lead times have little skill, particularly for larger 

rainfall amounts and during the warm season. There is little skill for any season beyond day 

5.5. Compared to other regions, the Southeast has among the lowest predictive skill for 

extreme rainfall events, likely because smaller-scale convective episodes dominate the 

extreme events there (Sukovich et al. 2014). The SEUS is affected by many potential causes 

of heavy precipitation, including landfalling tropical cyclones, extratropical cyclones and 

baroclinic waves, and mesoscale convective systems (Moore et al. 2015).  

Because of the societal impacts of precipitation and the fact that NWP model 

guidance often has low skill for precipitation prediction, working to improve precipitation 

forecasting has benefits for both meteorologists and the general public.  

A synthesis of prior research related to precipitation mechanisms, precipitation 

climatologies, and model performance and predictability for precipitation follows in this 

chapter, along with stating science questions that this research attempts to answer. Chapter 2 

describes the datasets and methods utilized for this research. Chapter 3 discusses the results 

from compositing observational and model data for both well forecast and poorly forecast 

cases, to attempt to answer the first two research questions. Chapter 4 looks at a case study of 

a poorly forecast event, to determine solutions to the subsequent questions. Chapter 5 revisits 

and summarizes the results, and describes future work.  



 

3 

 

1.2. Synthesis of Prior Research 

1.2.1. Mechanisms for Heavy Precipitation 

A number of meteorological mechanisms can come together to create heavy 

precipitation on the synoptic scale and mesoscale. The primary focus in this research will be 

on the synoptic scale aspects. The first ingredient that must be present for precipitation to 

occur is sufficient moisture. Availability of moisture can be quantified in terms of 

precipitable water (Moore et al. 2015), integrated water vapor (Moore et al. 2012; Wick et al. 

2013; Moore et al. 2015), and specific humidity or mixing ratio in a lower level of the 

atmosphere such as 700 or 850 hPa (Konrad 1997). Precipitable water and specific humidity 

are utilized in this study. To obtain sufficient moisture for moderate to heavy precipitation, a 

moisture transport mechanism is needed. For the SEUS, southerly flow often transports 

moisture from the Gulf of Mexico in the form of low level jets (LLJs), which are a cause of 

heavy rainfall (Moore et al. 2012; Trier et al. 2014; Moore et al. 2015). Similar phenomena 

called atmospheric rivers (ARs) are defined by Newell et al. (1992) and Zhu and Newell 

(1998) as filaments of relatively high water vapor flux that are termed òriversó because they 

have lengths many times their widths. ARs transport a large amount of moisture: in the 

extratropical regions, they account for >90% of the meridional moisture fluxes [Nayak et al. 

(2014), after Newell et al. (1992) and Zhu and Newell (1998)]. 

It is well established that the western U.S. is particularly prone to flooding due to 

ARs partly because of how they interact with orography (Smith et al. 2010; Ralph et al. 2013; 

Wick et al. 2013), and studies have shown that ARs can cause flooding in other portions of 
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the U.S. as well, including the central U.S. (Lavers and Villarini 2013) and the SEUS (Moore 

et al. 2012; Moore et al. 2015; Mahoney et al. 2016). Moore et al. (2012) discussed how a 

strong AR had an impact on the generation of persistent rainfall during the May 2010 flood 

in Nashville, Tennessee. However, whereas in the western U.S. the majority of flooding 

events are related to ARs, Mahoney et al. (2016) demonstrated that days with precipitation 

over 100 mm were only matched to days with ARs ~41% of the time, showing that the 

presence of an AR is not the only element needed for heavy precipitation in the SEUSñother 

forcing mechanisms are often involved, as described below. This work does not deal 

explicitly with ARs, but does discuss differences in moisture availability and moisture 

transport between model and analyzed data as a major contributing factor of precipitation 

differences. 

The second ingredient needed for precipitation is a forcing mechanism for ascent. 

Rapid ascent of air that contains substantial water vapor can cause high rainfall rates, and 

when combined with other factors such as an eventõs duration and favorable hydrological 

conditions, can cause flash flooding (Doswell et al. 1996). In the SEUS, the cool season 

months tend to be dominated by dynamical forcing, whereas the warm season is generally 

dominated by thermodynamic forcing (Moore et al. 2015). Dynamical forcing includes 

phenomena such as synoptic-scale baroclinic waves/extratropical cyclones and their 

associated fronts. Synoptically, deep upper-level troughs can be present (Moore et al. 2012), 

as well as midlevel vorticity maxima and differential cyclonic vorticity advection (Konrad 

1997). In heavy precipitation and flash flooding situations involving extratropical cyclones, 

there is often a LLJ or AR ahead of a slow-moving cold front that continually provides 
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moisture (Maddox et al. 1979; Lackmann 2002; Moore et al. 2015). Thermodynamic 

influences on precipitation exhibit more variability at mesoscales, and help create deep moist 

convection that dominates the warm season precipitation in the SEUS (Moore et al. 2015). 

Parameters such as convective available potential energy (CAPE) are utilized to describe 

instability associated with heavy precipitation (Konrad 1997; Trier et al. 2014). Mesoscale 

boundaries from a myriad of sources, such as sea-breeze circulations, cold air damming, cold 

pools from previous convection, and residual cloudiness causing sensible heat flux gradients, 

can help initiate or maintain convection that produces heavy rainfall (Trier et al. 2014; Moore 

et al. 2015). Many of these mesoscale boundaries may not be resolved in the GEFS 

reforecast, however. This research eliminates the summer months of June, July, and August 

for this reason among others, so it mainly focuses on the dynamical influences. However, a 

substantial portion of highly convective precipitation events in this study take place during 

the spring months and are thus influenced by thermodynamics as well.  

Organized convection in the form of mesoscale convective systems (MCSs) can also 

cause heavy precipitation in the SEUS, particularly in the warm season but not exclusively 

(Moore et al. 2012; Trier et al. 2014; Moore et al. 2015). Additionally, heavy precipitation 

and flooding can be generated by landfalling tropical cyclones and their remnants, especially 

in the eastern portion of the SEUS (Moore et al. 2015). Another special case to consider 

regarding precipitation in the SEUS is the effect of upstream convection on downstream 

precipitation. Mahoney and Lackmann (2007) describe a fast moving convection scenario in 

which precipitation is decreased downstream, and a slow moving convection scenario in 

which precipitation is increased downstream. These scenarios are important to consider when 
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forecasting heavy precipitation in the SEUS, as they can cause forecast busts when models 

do not adequately handle the propagation of the upstream convection. Thus, in this study, 

precipitation events are categorized separately if they are related to tropical cyclones or 

upstream convection. 

 

1.2.2. Precipitation Climatologies 

Several climatologies have described spatial and temporal (seasonal, diurnal, and 

semidiurnal) precipitation distribution, especially for heavy precipitation, across the U.S. and 

the SEUS in particular (Wallace 1975; Maddox et al. 1979; Carbone et al. 2002; Schumacher 

and Johnson 2006; Hitchens et al. 2013; Prat and Nelson 2014; Moore et al. 2015). Though 

heavy precipitation events occur throughout the U.S., especially east of the Rockies, the 

SEUS has the highest frequency of rainfall events of at least 25 mm in one hour (Hitchens et 

al. 2013). The southern U.S. also leads in number of heavy precipitation cases where at least 

125 mm of rain falls in a day (Schumacher and Johnson 2006). Within the SEUS, higher 

rainfall amounts are observed in the Mississippi River basin, near the Gulf Coast, and in the 

Florida peninsula, whereas western parts of their domain (west of 100°W) have lighter 

rainfall on average (Prat and Nelson 2014).  

The western part of the SEUS (west of the Appalachians) is more affected by extreme 

precipitation events in the cool season, while the portion of the SEUS east of the 

Appalachians is more affected in the warm season (Prat and Nelson 2014; Moore et al. 

2015), which is one of many seasonal characteristics of precipitation in the SEUS. The peak 

of heavy precipitation events across the U.S. is in meteorological summer, especially July 
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(Maddox et al. 1979; Schumacher and Johnson 2006; Hitchens et al. 2013; Prat and Nelson 

2014), but heavy precipitation events are more evenly distributed throughout the year in the 

southern U.S. than in other areas (Schumacher and Johnson 2006). Occurrences of extreme 

precipitation events of at least 125 mm in a day were mostly limited to areas near the Gulf 

Coast during the cool season months (Hitchens et al. 2013). The causes of rainfall vary 

seasonally as well. Synoptic, tropical, and MCS events all played a role in producing extreme 

rainfall in the South and Southeast domains defined by Schumacher and Johnson (2006). In 

the Southeast region (Alabama, Georgia, North and South Carolina, and Virginia), tropical 

systems were the most common heavy rainfall producers, while in the South (Texas, 

Oklahoma, Kansas, Arkansas, Louisiana, and Mississippi), MCSs dominated (Schumacher 

and Johnson 2006). MCS events mainly occur in the spring and summer (Schumacher and 

Johnson 2006). Extreme precipitation events related to tropical cyclones occur from June to 

November and peak in September, while nontropical extreme events are spread throughout 

the year but have a minimum in the cool season (Schumacher and Johnson 2006; Moore et al. 

2015). Thus it is useful to separate tropical and nontropical events, as is done in this research. 

As previously noted, precipitation in the warm season tends to have more thermodynamic 

influences compared to the dynamically forced cool season (Moore et al. 2015). This was 

reported by Maddox (1979) as well, who determined that while òsynopticó type flash 

flooding events occurred fairly evenly throughout the year, òfrontaló and òmesohighó (more 

mesoscale) events peaked in meteorological summer. Precipitation can be enhanced by sea 

breezes in Florida and in coastal areas particularly in the warm season (Prat and Nelson 

2014). 
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As early as the mid-19th century, studies regarding diurnal cycles of precipitation 

have been published (Wallace 1975). In the SEUS there is a late afternoon maximum and a 

morning minimum of heavy rainfall frequencies, particularly in the summer due to 

thunderstorms; the diurnal cycle is much weaker in the winter (Wallace 1975; Maddox 1979; 

Hitchens et al. 2013). Indeed, slightly more precipitation events occur at night in the cold 

season in the SEUS, but overall the temporal distribution is more constant than during the 

warm season (Prat and Nelson 2014). For MCS events in particular, the timing of peak 

rainfall is 2100-2300 UTC east of the Rockies, but is slightly earlier (around 2100 UTC) for 

the Southern US region (Schumacher and Johnson 2006). There is also a semidiurnal cycle 

that precipitation tends to follow in the warm season, especially in the western part of the 

SEUS, with precipitation maxima around 1100 and 2300 UTC (Carbone et al. 2002). 

However, the secondary peak of precipitation in the semidiurnal cycle is weaker compared to 

the primary diurnal peak (Wallace 1975). This research does not focus on the timing of 

precipitation, but does define precipitation events from 1200 UTC to 1200 UTC the next day, 

to avoid splitting precipitation events considering the afternoon maximum and morning 

minimum. 

 

1.2.3. Model Performance 

Baxter et al. (2014) described model performance for the NOAA Global Ensemble 

Forecast System (GEFS) reforecast (to be described further in Section 2.1) from 1985-2013 

in the SEUS. This is the dataset utilized in this study, so it is important to know how it 

performs. More recent reforecasts in this time period had more skill than the older forecasts. 
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Since the reforecast is a frozen model; that is, the data assimilation system and 

dynamical/physical model schemes are identical throughout the period; the model 

improvement noted by Baxter et al. (2014) was likely because of improved initial conditions 

owing to better and more numerous observations in more recent times. Novak et al. (2014) 

demonstrated that human-produced forecasts at the Weather Prediction Center (WPC) have 

improved over time as well.  

Baxter et al. (2014) also found that lower precipitation amounts were predicted with 

more skill than higher amounts; this is in contrast to claims by Wang (2015), who determined 

that the model has better skill scores (threat score) for heavier precipitation. However, Wang 

(2015) utilized a cloud resolving model with 2.5 km grid spacing, in contrast to the GEFS 

reforecast of much lower resolution, so the results could differ for this reason, and because 

that research was focused on extreme rainfall from typhoons (indicating that the system 

exists in the model), rather than more moderate rainfall from a variety of sources.  

Baxter et al. (2014) found that precipitation forecast ability decreases with increasing 

lead time in the SEUS in the reforecast, which is also shown for WPC forecasts by Novak et 

al. (2014), and by Sukovich et al. (2014) for the most extreme precipitation events. 

Additionally, the bias scores demonstrate that for precipitation events with at least 20 mm in 

the forecast and/or observed data, precipitation was underforecast by the model (Baxter et al. 

2014). This was corroborated by Siddique et al. (2015) for the mid-Atlantic U.S.; that study 

determined that the reforecast and the Short Range Ensemble Forecast (SREF) both tended to 

overforecast light to moderate precipitation amounts and underforecast heavy precipitation 

amounts. The results that forecast ability decreases with increasing lead time and that 
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precipitation is often underforecast by the reforecast will be demonstrated by this research as 

well. 

It is generally evident that summer or warm season precipitation is not as well 

forecast as in other seasons (Ebert et al. 2003; Fritsch and Carbone 2004; Baxter et al. 2014; 

Sukovich 2014). Fritsch and Carbone (2004) called warm season QPFs the òAchillesõ heel of 

weather prediction,ó as its ability to be forecast has not improved over time nearly as much 

as other meteorological factors. This is shown by Baxter et al. (2014) as well; though 

observations and initial conditions for NWP guidance have improved over time and 

contributed to increased skill over time for other seasons, summer forecasts have not 

improved. This is likely at least partially due to the more convective scale/mesoscale 

character of the precipitation during the warm season (Zhang et al. 2003; Moore et al. 2015). 

During the cool season, extreme precipitation events in the SEUS tend to occur more on the 

synoptic scale as baroclinic waves/cyclones with associated fronts, whereas during the warm 

season they are often associated with weak baroclinic systems or diurnal convection (Moore 

et al. 2015). In a general sense, analysis errors, particularly in the middle to upper 

troposphere, lead to forecast errors (Hakim 2005). Smaller scale phenomena are not as 

accurately initially analyzed or modeled by NWP guidance, especially when moist processes 

are involved, as initial condition errors with moist convection on the convective scale can 

grow with time to the mesoscale and even larger scales (Zhang et al. 2003; Cao and Zhang 

2016). Past research and development has found that parameterization of moist convection 

has inherent limitations, but this can be improved somewhat by enhancing data assimilation 

and microphysical schemes (Fritsch and Carbone 2004).  
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The ability of models to forecast ARs accurately is relevant to precipitation prediction 

in the SEUS, since ARs are an important moisture source. In the SEUS, heavy precipitation 

cases in which an AR is identified are better forecast on average than cases in which an AR is 

not (Mahoney et al. 2016). ARs are typically well forecast at short lead times, but their 

predictability decreases over time, and by a weekõs lead time, placement errors are up to 1-3 

degrees latitude or longitude for the central U.S. for a variety of global models (Nayak et al. 

2014). For the western U.S. in the cool season, the placement errors can be up to 800 km by 

10 days lead time, and there is typically a southward bias of 1-2 degrees (Wick et al. 2013). 

In the West, differences between the models are greatest in width of the ARs, and the coarser 

resolution models have a more positive width bias, which increases with increasing lead time 

(Wick et al. 2013). Further research is needed to explore modelsõ ability to forecast ARs in 

the SEUS. 

Along with overall model performance related to precipitation forecasting, it is useful 

to look at model performance in terms of individual events. Rodwell et al. (2013) found that 

individual events that were poorly forecast in the medium range in Europe were associated 

with initial conditions errors with MCSs in the U.S. several days earlier. This could be 

because NWP models tend to have problems when it comes to moist convection and initial 

conditions, as described previously (Zhang et al. 2003). Model ability can be described in 

terms of forecast of model fields minus analysis at that time, as it is in Dirren et al. (2003). 

This study explores how errors can grow with time: in a case study on 7 October 2001, errors 

in the vicinity of the jet caused errors in an elongated potential vorticity (PV) streamer in the 

upper levels, and in the lower levels, the model did not adequately capture a cyclone and its 
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diabatic heating, leading to forecast errors 48 hours later. The research presented here will 

explore a case study in Chapter 4 to more fully explore the evolution of errors throughout a 

model run. 

Though model performance has improved over time, a number of steps can be and 

have been taken to further improve precipitation and QPF forecasts. Working groups that 

intended to improve warm season and cool season QPFs are described in Fritsch and Carbone 

(2004) and Ralph et al. (2005), respectively. To improve warm season QPFs, Fritsch and 

Carbone (2004) suggested improving data assimilation, bettering microphysical schemes, 

creating probabilistic forecasts, and focusing on cloud-resolving models that do not have a 

convective parameterization. Many of these tasks have been undertaken; the NOAA 

Environmental Modeling Center (EMC) has since upgraded the 3DVAR Ensemble Kalman 

Filter (EnKF) data assimilation of the GEFS (NOAA Environmental Modeling Center 2015), 

and the NOAA Earth System Research Laboratory (ESRL) has developed the High 

Resolution Rapid Refresh (HRRR) model, which contains no convective parameterization 

(Benjamin et al. 2016). An ensemble of convective scale models that will create storm scale 

ensemble forecasts, called the High Resolution Ensemble Forecast (HREF), is currently in 

developmental/experimental stages (NOAA Environmental Modeling Center 2016). The 

working group for short range cool season QPFs suggested utilizing the then-recently 

established Hydrometeorological Test Bed (HMT) in the eastern and western U.S. to explore 

a myriad of problems with cool season precipitation forecasts, such as precipitation type, 

mesoscale banding, and terrain-induced effects (Ralph et al. 2005). HMT-West has since 

been active particularly regarding observing precipitation and AR events in complex terrain 
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(Ralph et al. 2013; Matrosov et al. 2014; among others), while HMT-Southeast has focused 

on implementing instrumentation such as wind profiling radars and disdrometers in North 

Carolina to better understand precipitation and hydrology in the Appalachian Mountains, the 

Piedmont and Coastal Plain, and along the coast (NOAA Hydrometeorology Testbed 2013). 

The Hydrometeorological Testbed at WPC has a national scope; part of its role is to run the 

Flash Flood and Intense Rainfall Experiment, which further explores precipitation 

forecasting and modeling, and precipitation effects on hydrology (Barthold et al. 2015). 

Recent and ongoing developments have made a difference in improving precipitation 

forecasting, but more improvements are still necessary. 

 

1.3. Science Questions 

This research seeks to identify precipitation events in the SEUS that were well forecast, 

and distinguish those from events that were poorly forecast. This will allow identification of 

certain meteorological patterns that are more or less predictable than others. Additionally, it 

explores a few poorly forecast cases more in depth to further ascertain the sources of error in 

those cases, consistent with the suggestion of Moore et al. (2015) for future work. The 

science questions this research intends to explore for the SEUS are: 

1. What meteorological patterns tend to exhibit relatively high forecast skill, and why? 

Which patterns exhibit low skill, and why? 

2. How do model forecasts differ from what was observed, and what are the causes of 

these differences? 
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3. Why does the model fail in poorly forecast cases? What mechanisms are 

misrepresented by the model? What are the relative roles of moisture transport and 

moisture removal? 

4. How can model forecasts be improved?  

5. Can recommendations be provided to forecasters to allow them to anticipate and 

compensate during expected periods of low predictive skill? 

Answers to these questions will provide information about the predictability of precipitation. 

For the most part, these questions will be examined for synoptic-scale strongly forced, highly 

convective precipitation systems at a 5 day lead time.  
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2. Methods 

2.1. Defining Well-Forecasted and Poorly-Forecasted Heavy Precipitation Cases 

Heavy precipitation forecast cases were found by utilizing the reforecast version 2 

from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research 

Laboratory (Hamill et al. 2013). The reforecast is initialized at 00 UTC, and is run based on 

the configuration of the operational Global Ensemble Forecast System (GEFS) in 2012. The 

control runs employ initial conditions from the Climate Forecast System Reanalysis (CFSR) 

(Saha et al. 2010), and are run at a T254L42 resolution out to day 7.5, which approximately 

translates to 40 km at 40° latitude, and 42 vertical levels. The model continues at a lower 

resolution through day 16, but those data are not used for this research. Additionally, though 

the reforecast includes an ensemble of 10 perturbed members, only the control run was 

utilized here. This research uses the years 1985-2013 for a total of 29 years of data. The 

reforecast allows for a consistent long-term dataset of precipitation forecasts, whereas 

identifying cases from operational model forecasts would be inconsistent owing to changes in 

model configuration over time; the forecast accuracy would degrade severely further back in 

time. 

The reforecast data were compared to the NOAA Climate Prediction Center (CPC) 

Daily U.S. Unified Precipitation Dataset for verification (Chen et al. 2008). This dataset is 

produced by optimum interpolation of gauge data on a 0.25° latitude/longitude grid. To do 

the verification, both the reforecast and the CPC precipitation were interpolated onto a 0.5° 

grid. Verification was undertaken for 24 hour periods from 12 UTC. Since the reforecast was 

initialized at 00Z, the forecast analysis periods extend  from 12-36 h, 60-72 h, and 108-132 h 
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(0.5-1.5, 2.5-3.5, and 4.5-5.5 d); these periods will be referred to as days 1, 3, and 5 

respectively. Each case is named for the second day in the 24 hour period. For example, a 

reforecast run that was initialized 01 January 1985 at 00Z would have a day 1 case from 12Z 

on 01 January to 12Z on 02 January, and would be named 19850102 after the second day. 

This research focuses mainly on the day 5 cases, but explores the day 1 and day 3 lead times 

to some extent as well.  

To define the well forecast and poorly forecast cases, the cases were ranked based on 

their Equitable Threat Score (ETS). ETS is a forecast skill score that ranges from -ӎ to 1, 

where 1 is a perfect forecast and scores less than 0 are worse than a random chance forecast. 

The mathematical form of the ETS is given by equation (1):  

ETS= , where Á= ,     (1) 

Where ὥ is òhits expected by chanceó, a is a hit, ὦ is a false alarm, ὧ is a miss, and ὲ 

is the total number of events, including correct negatives (Wilks 2011, chapter 8). The ETS 

requires a threshold to find hits, misses, and false alarms. The threshold chosen for this 

research was 20 mm; to be considered a heavy precipitation case, the event was required to 

have at least 5% of its gridpoints (over land) with 20 mm of precipitation in either the 

observed or the reforecast. Fig. 2.1 shows the study domain, which extends throughout the 

Southeast U.S. and northward, with each gridpoint circled in yellow. The red box in this 

figure indicates what approximately 5% of the gridpoints looks like. A hit at a gridpoint is 

where both the observed and the reforecast had at least 20 mm of precipitation, a miss is 

where the reforecast had less than 20 mm but 20 mm or greater was observed, and a false 
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alarm is where the reforecast had at least 20 mm of precipitation but the observed had less 

than 20 mm. A list of cases that met the criteria described above was created for the 29 years 

from 1985-2013. Then the months of meteorological summer (June, July, and August) were 

removed, since summer precipitation is often of a more mesoscale character with smaller 

scale forcing, which was not the focus of this research. Over 2000 cases for each lead time 

(days 1, 3, and 5) remained. Stratified by ETS, the top 10% of cases for each day were 

termed the well forecast, or ògood,ó cases, while the bottom 10% were the poorly forecast, or 

òbad,ó cases. Day 1 had 244 good cases and 244 bad cases, day 3 had 255 good cases and 

255 bad cases, and day 5 had 272 good cases and 274 bad cases, as two good cases were 

erroneously omitted.  

 

2.2. Synoptic Classification/Categorization 

2.2.1. Categorization Process 

Once the well forecast and poorly forecast cases were determined, the next step was 

to categorize them according to synoptic pattern. Table 2.1 displays the categories that were 

utilized for classification. Categories 1 and 2 were combined soon after categorization began, 

as it was evident that determining whether the precipitation was frontal or not would be too 

difficult and subjective given the available data. Categories 1-7 were identical to categories 

8-14 respectively, except that the first 7 categories were strongly forced (at least a 120 kt jet 

at 300 hPa or at least a 20 unit [20Å10
-5

 s
-1
] vorticity maximum at 500 hPa was present within 

a 600 km radius of the center of the heaviest precipitation), while the latter categories were 

weakly forced. The last category (15) was for tropical systems. Categories were chosen based 
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on some early exploration of the cases and previous research regarding forecasting of heavy 

precipitation situations. For example, winter cases were noted separately because verification 

may not be as good for cases that are below freezing, because of the way snowfall is verified 

(Rasmussen et al. 2012). The upstream convection category was included due to research by 

Mahoney and Lackmann (2007), which showed that model performance is affected by 

upstream convection, as described earlier. The general consensus in the research that 

convective precipitation is forecasted more poorly than stratiform precipitation (Fritsch and 

Carbone 2004; etc.) led to the separation of highly convective, stratiform, and moderately 

convective cases.  

Pre-configured graphical products were examined using the Integrated Data Viewer 

(IDV, Murray et al. 2003) for each case. A case example is shown in Figures 2.2-2.4. The 

first frame (Fig. 2.2) consists of the precipitation from the reforecast, the observed 

precipitation from the CPC analysis, and the difference between the two. The second and 

third frames, shown in Figs. 2.3 and 2.4, contain 3 hourly data from the North American 

Regional Reanalysis (NARR, Mesinger et al. 2006), which were used to categorize the 

synoptic pattern. These parameters include convective precipitation, 2 m temperature, mean 

sea level pressure, surface wind barbs, 300 hPa height and isotachs, 500 hPa height and 

vorticity, and moisture transport. These three frames were viewed to determine the category 

in which to place each case, using the following steps: 

1. The approximate center of the observed precipitation that was within the 20 mm 

contour was determined. If the precipitation was very spread out or there were distinct 

areas of heavy precipitation, an estimated weighted average was used to determine 
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the center. The latitude/longitude (lat/lon) of the heavy precipitation center indicated 

where to place the center of a 600 km range ring. 

2. The range ring was used to determine if a case was strongly forced or not. If a 120 kt 

jet at 300 hPa or a 20 unit vorticity maximum at 500 hPa entered the range ring, the 

case was considered strongly forced.  

3. If most of the precipitation fell with surface temperatures below 32°F, as determined 

by viewing the 2 m temperatures and freezing line, the case could be considered a 

winter case.  

4. If a highly convective precipitation area was farther south and west of an area of 

stratiform precipitation, upstream convection may have affected the forecast. The 

progression of precipitation every 3 hours was viewed to see the precipitation timing; 

if the highly convective precipitation took place earlier in the period but seemed to 

have an effect on the downstream precipitation, the case was classified as an upstream 

convection case.  

5. If it seemed possible that the precipitation was related to a tropical system, it was 

necessary to check other resources (such as lists of dates of tropical cyclones) to see if 

there was a tropical system occurring at the time in the area of the precipitation. 

6. For the remaining cases that were not classified as winter, upstream convection, or 

tropical, the last step in case categorization was to determine how convective the case 

was. The convective scheme utilized by the NARR is a modified Arakawa and 

Schubert (1974) scheme produced by Pan and Wu (1994) (Bukovsky and Karoly 

2007). At each gridpoint, the percentage of convection was determined by dividing 
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the amount of precipitation produced by the convective scheme of the NARR by the 

total precipitation from the NARR; then this percentage was considered at all 

gridpoints to classify the case. If a case had >50% convective precipitation overall, it 

was considered highly convective; if it had 10-50% convection, it was called 

moderately convective; and if there was <10% convection, it was termed stratiform. 

Each case was assigned a single category; e.g., if a case was determined to be a 

winter case, it was not also counted as a stratiform case. 

All cases were also classified separately by their magnitude of moisture transport. The 

600 km range ring was also used in this process. If an area of 200 m/s g/kg moisture transport 

at 850 hPa entered the ring, the case was considered to have strong moisture transport. 

Moderate moisture transport was considered 100-200 m/s g/kg, and weak moisture transport 

was less than 100 m/s g/kg.  

 

2.2.2. Categorization Results 

The breakdown of cases by category and lead time are shown in Tables 2.2-2.4. For 

each lead time (days 1, 3, and 5), the majority of the cases were strongly forced (cat. 1-7), 

and most were in the first 4 categories (strongly forced/highly convective, strongly 

forced/moderately convective, and strongly forced/stratiform). The main category with a 

significant number of weakly forced cases was the highly convective category for bad cases 

(cat. 8 & 9). The other weakly forced categories all contained less than 20 cases, and some 

categories contained none at all for a dayñthere was only one weakly forced upstream 

convection case (cat. 12) across all lead times, a good one at day 5. Upstream convection 
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cases happened only rarely in the strongly forced category as well (cat. 5). At all lead times, 

there were more well forecast winter cases than poorly forecast ones, though often public 

perception is that winter forecasts are typically poor. There were 20 or fewer total winter 

cases at any lead time, however. Categories 7 and 14 (unsure) were rarely used. The highly 

convective category tended to have many more bad cases than good, though this was less 

pronounced at day 5. Conversely, the moderately convective and stratiform cases contained 

more good cases than bad, but once again, day 5 did not have as big of a discrepancy 

between the number of good and bad cases. 

The results of the moisture transport categorization are displayed in Tables 2.5-2.7. 

There were only 3 cases total that had weak moisture transport, and these were all poorly 

forecasted cases. Each lead time had the highest number of cases in the strong moisture 

transport category, though the breakdowns were different between the good and bad cases. 

At days 1 and 3, approximately 60% of bad cases had strong moisture transport while 40% 

were moderate, whereas the good cases had closer to 90% strong and 10% moderate. Day 5 

had somewhat more similar results between the good and bad cases than days 1 and 3, with 

the bad cases having about 70% strong/30% moderate moisture transport, and the good cases 

having about 85% strong/15% moderate moisture transport.  

It is also insightful to look at how many cases took place during each month. Fig. 2.5 

displays this information for the strongly forced/highly convective (cat. 1&2), strongly 

forced/moderately convective (cat. 3), and strongly forced/stratiform (cat. 4) cases. As 

described in the introduction, warm season precipitation is not as well forecast as 

precipitation in the cool season, which is evident in these graphs even though the 
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meteorological summer months of June, July and August were excluded: May has the highest 

number of bad cases by 30 events, with April having the second most with 70 events. The 

majority of bad cases in April, May, and September were highly convective, while in winter 

months, most of the cases were stratiform or moderately convective. For the good cases, the 

month of March had the highest number of cases with 108 events, with November and 

December following, with about 80 cases each. The distribution of highly convective cases 

was spread more evenly throughout the year for the good cases, though no month had over 

30 highly convective events.  

 

2.3. Compositing 

2.3.1. Compositing Code 

Cases were categorized so that similar events could be grouped together, to see if 

some patterns were more predictable than others. Also, case categorization helped ensure 

somewhat similar events would be composited, lessening cancellation in the composites due 

to dissimilar events. Event-relative composites of cases in the same category were centered 

on the latitude and longitude of the heaviest precipitation. The compositing code was adapted 

from Dr. Chuck Graves at Saint Louis University. It ingests each caseõs reforecast or 

observed (NARR) data, each caseõs latitude and longitude to use to shift the cases, a list of 

parameters to composite, and a center latitude and longitude on which to center the 

composite (which was the average lat/lon when taking all cases that went into the composite 

into account). The NARR and the reforecast were first interpolated to a half degree grid so 

their composites would be more comparable to each other. Compositing does tend to smear 
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out meteorological signals (Lackmann et al. 1996; Weisman et al. 2002), but since these were 

event-relative composites, this effect is lessened somewhat. Composites of good cases in 

each category were done for the NARR data, and composites of bad cases in each category 

were done for both the NARR and the reforecast. 

 

2.3.2. Determining Latitudes and Longitudes for Compositing 

The observed (NARR) composites shown in Section 3.1 were made by centering each 

case on its lat/lon of the center of the heaviest precipitation that were found manually as 

described earlier in step 1 of categorization. For the reforecast, however, finding the center 

lat/lon for each case needed to be done in an automated way. The reforecast precipitation can 

be (and inherently is, for the bad cases) substantially different from the observed 

precipitation. The difference in location of the heaviest precipitation made it necessary to use 

center lat/lons that were based on the heaviest precipitation in the reforecast, because using 

the lat/lons from the observed cases proved to smear the reforecast composite out (Fig. 2.6). 

It is also helpful to see how the reforecast compares to the observed for its average lat/lon 

center, because it gives insight into model behavior, such as whether the model tends to 

exhibit consistent bias in location. 

To mimic how the center lat/lons were manually found for the observed cases, the 

first step was to heavily smooth the precipitation field of each case to simulate an estimated 

weighted average. This was done utilizing the Gaussian filter in GEMPAK, which smooths 

fields by damping lower amplitude waves. Then the location of the maximum precipitation of 

this smoothed field was found, and the case would be centered on that point instead. This 
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created new center lat/lons that were reforecast-relative for each case. The average lat/lon of 

37.67, -87.35 for the reforecast was farther northeast of the NARR human-determined center 

lat/lon of 35.43, -90.62. 

Then, the same code was employed to find automated lat/lons for the observed data. 

Though this data already had human-determined lat/lons of good quality, it was better to use 

the automated lat/lons for both the observed and the reforecast so that the two datasets were 

more comparable to each other. Ideally, the automated and the human-determined lat/lons 

should be nearly the same. Table 2.8 displays how the code-determined and human-

determined lat/lons compare to each other. Though there was some difference between the 

two, there were no egregious differences. These differences are small enough that they would 

be contained within the aforementioned range rings used to categorize cases. The latitude 

differences and longitude differences were fairly similar to each other, with the exception of 

a larger positive residual for longitude. The code-determined average lat/lon of 34.85, -91.18 

was southwest of the human-determined lat/lons, placing it even farther southwest from the 

reforecast average lat/lon. So, the northeastern shift in the reforecast compared to the 

observed was not an artifact of the code, but a true signal, to be explored further in Chapter 3. 

Composites of the NARR and reforecast using the automated lat/lons are shown in Section 

3.2. 

 

2.4 Precipitation Metrics and Case Elimination 

2.4.1 Other Precipitation Metrics and the Drawbacks of ETS 
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When the first round of composites was created, it became evident that the good cases 

contained much more precipitation than the bad cases. This is likely because of the 

downsides of ETS. Since ETS requires a threshold to calculate hits, misses, and false alarms, 

there are occasions when gridpoints are considered hits when they are subjectively poorly 

forecast, and misses and false alarms when they are subjectively well forecast. For example, 

if the forecast calls for 20 mm of precipitation, but 100 mm of precipitation falls, that would 

be counted as a hit using the ETS because both are at least 20 mm, but a significantly higher 

amount of rain fell in the practical sense. Similarly, if the forecast calls for 20 mm of 

precipitation, but 19 mm of precipitation falls, this would be considered a false alarm by 

ETS, though most would consider that a good forecast. Thus, the ETS can falsely categorize 

a case as being badly forecast if the rainfall totals are flirting right around the threshold. This 

is especially egregious at days 1 and 3 when looking at average precipitation for each case 

(Figs. 2.7-2.9, further explained below). The composite amount of precipitation for the good 

cases is also significantly higher than the composite amount of precipitation for bad cases. It 

is possible there are fewer subjectively bad cases at these lead times, and many of the 

supposedly poorly forecast cases were right around the ETS threshold, since a 

disproportionate number of cases had lower precipitation for the bad cases compared to the 

good. This is one reason that this research focuses mainly on the day 5 lead time cases. 

Wang (2015) noted this tendency of the threat score (similar to ETS, but simpler in 

that it does not take into account the hits expected by chance) in his article discussing rainfall 

forecasts for typhoons in Taiwan. He claims the model performs better for heavier rainfall 

events because the model can capture the precipitation mechanisms, but also because the area 
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of hits for the threat score is larger when there is more precipitation (Wang 2015). 

Precipitation verification metrics that use this contingency table of hits, misses, false alarms, 

and correct negatives have this tendency. Thus it can be useful to employ additional forecast 

skill metrics to further investigate forecast quality. 

Therefore, two additional metrics were utilized for this research: mean absolute error 

(MAE) and bias. MAE is the difference between the observed and reforecast precipitation 

taken at each point and averaged. The higher the MAE, the bigger the difference between the 

two, so the forecast is considered worse; an MAE of 0 is perfect. The bias is a measure of 

whether the reforecast tended to under- or overforecast the precipitation. A bias of 1 is 

considered perfect, or unbiased, while a score under 1 represents an underforecast and a score 

over 1 represents an overforecast by the model (Wilks 2011, chapter 8). All the cases that 

were found to have heavy precipitation were also ordered by MAE, so the <10th and >90th 

percentiles for the MAE could be compared to the same percentiles for ETS. This is shown in 

Table 2.9. Only a minority of cases are shared in the top and bottom 10% of ETS and MAE. 

There are about 20% of cases that are shared between both the best cases for MAE and ETS 

at all lead times; the model predicted the amount of precipitation well (MAE) and its 

placement well (ETS) in those cases, indicating these were the best forecasts. The amount of 

cases that were in the bottom 10% (were considered badly forecast) for both metrics 

increased with longer lead time; day 5 had the highest percentage of shared cases with about 

29%. These were the cases that were poorly forecast for both amount and placement of 

precipitationñthe worst forecasts. However, there were some cases that were considered bad 

using one metric but good for the other. A bad ETS/good MAE case would mean that the 
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precipitation was placed poorly, but the amount of precipitation was forecast well, and might 

indicate that the amounts were fairly low so there was less of an error magnitude. A good 

ETS/bad MAE case would have excellent placement in where the model predicted the 

precipitation, but the amounts would not be forecast well, and amounts could be high, 

contributing to an error magnitude. The disadvantage of MAE could be called the opposite of 

ETSõs disadvantage. MAEõs bad cases are biased toward higher precipitation; e.g., if the 

model forecasts 80 mm of precipitation for a case but 100 mm of precipitation falls, this 

would be a large MAE of 20 mm, though subjectively fairly well forecast. 

The aggregate MAE and bias are displayed in Tables 2.6-2.8, along with the ETS for 

each category. For most categories, there is higher MAE for the bad ETS cases than the 

good, as shown by the last column in each table. This fortunately indicates that the bad cases 

are not only worse for ETS, but generally for MAE as well. This is not a guaranteed resultñ

as described above, a case that performs well with ETS will not necessarily perform well 

with MAE (i.e., a case that had precipitation well above the ETS threshold in both the 

forecast and observed). But this builds confidence that the cases defined as bad and good by 

ETS were well-defined. The biases under 1 for the badly forecast categories shown reveals 

that the model tends to underforecast the precipitation. This is especially egregious at the day 

1 lead time. Biases for the good cases are close to the perfect score of 1 at all lead times for 

the categories shown, however, indicating that the reforecast is not systematically 

underforecasting precipitation at all times. Also notable in these tables is how much worse 

the ETS is for the good cases at day 5 compared to days 1 and 3. Though they are all the top 
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10% of cases, the quality of the best cases is worse at longer lead times because forecasts are 

worse further out in time (Baxter et al. 2014). 

Exploring metrics like MAE and bias yield some additional insight into the character 

of the heavy precipitation cases, as seen above. There are more modern metrics used for 

verification, such as spatial techniques like the fractions skill score and Method for Object-

Based Diagnostic Evaluation (MODE), as described by Wolff et al. (2014). Venugopal et al. 

(2005) described the forecast quality index, which combines image analysis and nonlinear 

shape comparison features to verify precipitation forecasts. However, the ETS and 

supplemental information from MAE and bias were sufficient for the scope of this research; 

by using a combination of ETS, MAE, and bias, composite samples that provide insight into 

model error sources and patterns of high and low predictability were able to be constructed. 

Furthermore, forecasters and researchers are familiar with the metrics that were utilized, 

which is an advantage of using these common metrics.  

 

2.4.2. Case Elimination 

The tendency of ETS to disproportionately single out cases that were closer to the 

threshold had to be accounted for, as described below. This research takes that into account 

by eliminating cases that were very close to the ETS threshold. As Figs. 2.7-2.9 show, each 

case was sorted into its average precipitation. At each lead time for the strongly forced/highly 

convective cases, the cases (both good and bad) starting from the lowest average 

precipitation were eliminated up until the good and the bad contained approximately the 

same number of cases. This eliminated many more bad cases than good cases, with the 
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intention of removing the ones that were right around the 20 mm threshold, and evening out 

the number of bad and good cases for a better comparison of the composites. For day 1, this 

led to 27 cases being left in the bad cases, while 25 good ones remained, as cases that had 

less than 27 mm on average were eliminated. At day 3, cases with less than 26 mm were 

eliminated, leaving 32 bad cases and 33 good cases. At day 5, fewer cases were eliminated, 

as the numbers of bad and good cases were closer to begin with. Cases with less than 24 mm 

were excluded, leaving 48 bad cases and 53 good cases. One reason this research focuses 

mainly on day 5 cases is because fewer cases were eliminated from the composite. In this 

way, we were able to isolate meteorological signals and avoid results that were an artifact of 

the verification metric. 

 

2.5. Choosing a Case Study  

The strongly forced, highly convective case composites with a day 5 lead time are 

shown in Section 3.2. The primary goal of choosing a case study (presented in Chapter 4) 

was to find a case that exemplified the behaviors found in those composites, so that the case 

could be considered representative of the composite. Only cases past the year 2000 were 

considered, so that supplementary information such as radar data and surface analyses would 

be available. To choose potential case studies, the synoptic setup (250 hPa wind and height, 

500 hPa vorticity and height, 850 hPa height and temperature, and 1000-500 hPa thickness 

and sea level pressure) was taken into consideration for each case, and subjectively compared 

to the composites. The potential case studies were all included in the composite, not excluded 

due to low average precipitation. Additionally, cases that were very near the border of the 
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domain were not selected. This left seven potential cases. Then, other factors such as specific 

humidity differences at 850 hPa, potential vorticity (PV) from 850-700 hPa, and pressure on 

the dynamic tropopause (to represent upper level PV) were considered. The evolution of each 

case was viewed for both the NARR and the reforecast. The case taking place from 11-12 

April 2013 was chosen to be explored in Chapter 4 due to its qualitative similarities with the 

composites and its interesting forecast evolution. 
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Table 2.1: Categories in which each case was placed, and their descriptions. 

Category 

Number 
Forcing Category Type 

1  

Strongly Forced 

(120 kt jet or 20 

unit vort max 

within 600 km 

range ring) 

>50% convective, possible severe reports, no front present 

2 >50% convective, possible severe reports, front present 

3 10-50% convective, few to no severe reports 

4 <10% convective 

5 
>50% convective upstream from significant precip <50% 

convective 

6 Winter (Majority of precip error where T<32°) 

7 Unsure 

8 

Weakly Forced 

(conditions for 

strongly forced 

not met) 

>50% convective, possible severe reports, no front present 

9 >50% convective, possible severe reports, front present 

10 10-50% convective, few to no severe reports 

11 <10% convective 

12 
>50% convective upstream from significant precip <50% 

convective 

13 Winter (Majority of precip error where T<32°) 

14 Unsure 

15 N/A Tropical 

 

Table 2.2: The number of cases that were placed in each category for each lead time. 

Category Day 1 Day 3 Day 5 

 Bad Good Bad Good Bad Good 

1 and 2 68 25 82 37 76 56 

3 42 48 40 84 66 77 

4 45 92 57 80 59 82 

5 4 1 1 0 0 2 

6 2 11 3 10 6 10 

7 1 0 0 0 1 1 

8 and 9 56 6 51 5 32 11 

10 16 8 16 4 17 12 

11 10 5 3 5 7 4 

12 0 0 0 0 0 1 

13 0 1 0 2 0 1 

14 0 0 0 0 4 0 

15 0 47 2 28 6 15 

Total 244 244 255 255 274 272 
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Table 2.3: The number of cases that were placed in each moisture transport category for each 

lead time. Strong moisture transport is >200 m/s g/kg, moderate is 100-200 m/s g/kg, and 

weak moisture transport is <100 m/s g/kg. The total number of cases for each lead time for 

the bad and good cases is in parentheses in the second row. The number of events as well as 

the percentage of events out of the total is indicated. 

Moisture 

Transport 

Category 

Day 1 Day 3 Day 5 

 Bad 

(244) 

Good 

(244) 

Bad 

(255) 

Good 

(255) 

Bad 

(274) 

Good 

(272) 

Strong 144 (59%) 222 (91%) 153 (60%) 235 (92%) 194 (71%) 234 (86%) 

Moderate 100 (41%) 22 (9%) 100 (39%) 20 (8%) 79 (29%) 38 (14%) 

Weak 0 (0%) 0 (0%) 2 (1%) 0 (0%) 1 (<1%) 0 (0%) 

 

Table 2.4: Comparison of center latitudes and longitudes that were determined by the code 

(automated) and those that were human-determined for strongly forced, highly convective 

day 5 bad cases. The RMSE is the root mean square error. Longitudes are negative because 

they are degrees west of the Prime Meridian. 

 Latitude Longitude 

Center Determined by Undergrads 35.43 -90.62 

Center Determined by Code 34.85 -91.18 

Average Residual (Code-Undergrads) -0.58 -0.56 

Average Positive Residual 0.63 1.44 

Average Negative Residual -1.22 -1.06 

RMSE 1.25 1.43 

 

Table 2.5: The percentages of the best and worst forecasts shared by MAE and ETS. 

Case Type Day 1  Day 3  Day 5 

Bad ETS/Bad MAE 6.1% 14.5% 29.2% 

Good ETS/Bad MAE 5.3% 5.5% 3.3% 

Bad ETS/Good MAE 4.1% 1.6% 0 

Good ETS/Good MAE 20.9% 19.6% 20.8% 

 

Table 2.6: ETS, Bias, and MAE by category for day 1 cases. # refers to the number of cases. 

Only categories with a sufficient number of both bad and good cases are included. 

Day 

1 

Bad 

# ETS Bias MAE 
 

Day 

1 

Good 

# ETS Bias MAE 

Bad-

Good 

MAE 

1and2 68 0.005 0.49 4.9 
 

1and2 25 0.588 1.00 5.2 -0.3 

3 42 0.018 0.53 4.9 
 

3 48 0.591 1.00 4.5 0.4 

4 45 0.007 0.59 4.3 
 

4 92 0.612 1.02 3.5 0.8 
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Table 2.7: ETS, Bias, and MAE by category for day 3 cases. # refers to the number of cases. 

Only categories with a sufficient number of both bad and good cases are included. 

Day 

3 

Bad 

# ETS Bias MAE 
 

Day 

3 

Good 

# ETS Bias MAE 

Bad-

Good 

MAE 

1and2 82 -0.015 0.80 6.8 
 

1and2 37 0.476 0.94 5.8 1.0 

3 40 -0.015 0.69 6.5 
 

3 84 0.480 1.00 6.1 0.4 

4 57 -0.021 0.89 6.3 
 

4 80 0.508 0.98 4.3 2.0 

 

Table 2.8: ETS, Bias, and MAE by category for day 5 cases. # refers to the number of cases. 

Only categories with a sufficient number of both bad and good cases are included. 

Day 

5 

Bad 

# ETS Bias MAE 
 

Day 

5 

Good 

# ETS Bias MAE 

Bad-

Good 

MAE 

1and2 76 -0.030 0.87 9.2 
 

1and2 56 0.373 0.98 6.3 2.9 

3 66 -0.032 0.86 10.5 
 

3 77 0.379 0.96 6.5 4.0 

4 59 -0.039 0.97 8.9 
 

4 82 0.376 0.98 5.5 3.4 
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Figure 2.1: The domain of this research, termed the Southeast. The ETS was calculated at 

each point circled in yellow; offshore points were not used. The red box displays an example 

of 5% of the gridpoints. 
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Figure 2.2: An example of the first frame of a case viewed in IDV. The leftmost frame 

displays the precipitation from the reforecast, the middle panel shows the observed 

precipitation from the CPC analysis, and the rightmost panel exhibits the difference between 

the two. The precipitation is shaded in mm, and the black contour contains the precipitation 

of at least 20 mm. 
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Figure 2.3: An example of the second frame of a case viewed in IDV. The leftmost panel 

contains the 3 hr accumulated precipitation from the NARR, as well as an overlay of the 

percentage of the precipitation that was convective, shaded from less than 10% convective 

(yellow), 10-50% convective (blue), and greater than 50% convective (red). The middle 

panel contains the 3 hr precipitation from the convective scheme of the NARR. The panel on 

the right consists of the 2 m temperature (shaded), the freezing line (red contour), the mean 

sea level pressure (MSLP) (pink contours), and the surface wind barbs. 
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Figure 2.4: An example of the third frame of a case viewed in IDV. The leftmost panel is 

composed of the isotachs (shaded) and height (black contours) at 300 hPa, with values of 120 

kt or higher in the red contour. The middle panel contains the vorticity (shaded) and height 

(black contours) at 500 hPa, with vorticity values of at least 20 units (10
-5
 s

-1
) in the red 

contour. The rightmost panel is for categorizing strength of moisture transport. This panel 

contains specific humidity and wind at 850 hPa multiplied, with a red contour surrounding 

the moderate moisture transport (100-200 m/s g/kg) and a blue contour surrounding strong 

moisture transport (200 m/s g/kg).  

  



 

38 

 

 
Figure 2.5: The number of cases that occurred in each month, for the combination of day 1, 

3, and 5 lead times for good (top) and bad (bottom) cases. Cases classified in category 1&2 

are shown in blue, category 3 cases are in red, and category 4 cases are in green. The 

categories are as described in Table 2.1.  
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Figure 2.6: Comparison of compositing precipitation from the reforecast using the observed 

latitudes and longitudes compared to the reforecast-relative ones. The left panel is observed-

relative, and the right panel is reforecast-relative. 
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Figure 2.7: The average precipitation for each case, with bad cases in blue and good cases in 

red, for a day 1 lead time in the strongly forced/highly convective category. Cases to the left 

of the black line were eliminated, and the new total number of cases is at the top in red.  
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Figure 2.8: Similar to Figure 2.7, but for a day 3 lead time.  
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Figure 2.9: Similar to Figure 2.7, but for a day 5 lead time.  
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3. Compositing Results 

As described in Chapter 2, event-relative composites were created for cases in the 

same categories that were described in Table 2.1. This chapter focuses on these composites in 

the first category, the strongly forced/highly convective events. This category had more 

poorly forecast (òbadó) cases than well forecast (ògoodó) cases at all lead times, indicating 

that this pattern has lower forecast skill and predictability. Therefore, it is useful to study this 

category further to learn about model forecasts for these events and identify shortcomings 

and increase forecaster awareness of error sources for this event category. The composites in 

this chapter are based on the reduced set lists as described in Section 2.4.2, which are 

intended to (a) lessen the effect of the ETS threshold issue and (b) ensure that the good and 

bad composites have approximately the same number of cases. The day 5 lead time had the 

fewest number of cases eliminated, as its good and bad precipitation amounts were most 

similar to each other, whereas at days 1 and 3, the average precipitation was much higher for 

the good cases than the bad. Particularly at days 1 and 3, it is possible that some of the bad 

cases were chosen mainly as an artifact of the ETS threshold rather than being subjectively 

bad forecasts. Section 3.1 compares well forecast and poorly forecast cases from the NARR, 

beginning with the day 5 lead time, and Section 3.2 examines the reforecast behavior 

compared to the NARR, and focuses solely on the day 5 cases.  

 

3.1. Comparison of Well Forecast and Poorly Forecast Cases in the NARR 

Section 3.1 compares the well forecast/high predictability (ògoodó) cases to the 

poorly forecast/low predictability (òbadó) cases, with the goal of answering the first research 
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question: what meteorological patterns tend to exhibit relatively high and low forecast skill? 

These cases were determined by the reforecast modelõs performance, but the NARR is shown 

here at the time of the precipitation event. This is so that the actual synoptic setup of events 

when the model does well can be compared to the synoptic setup of events when it does 

poorly. The composites in this section are centered on the manually-determined lat/lons, but 

as shown in Section 2.3.2 and Table 2.4, the differences between the manually determined 

and automated lat/lons are small. Subsections 3.1.1, 3.1.2, and 3.1.3 cover the day 5, day 3, 

and day 1 lead times, respectively, with 3.1.4 providing a summary and brief discussion.  

 

3.1.1. Day 5 Lead Time 

Figs. 3.1 and 3.2 contain a synoptic overview of the NARR bad and good case 

composites, respectively, for the strongly forced, highly convective cases at a day 5 lead 

time. Details of the synoptic fields are explained in the caption for Fig. 3.1. Both the bad and 

good cases are characterized by a trough at all pressure levels with its axis through the central 

U.S. Higher vorticity values occur in the base of the trough, particularly in the Central Plains, 

in both the bad and good cases (Figs. 3.1b and 3.2b). However, the magnitude of the 

composite vorticity is larger for the good cases compared to the bad. This signal of stronger 

synoptic forcing for the good cases is also evident in the 250 hPa isotachs (Figs. 3.1a and 

3.2a), which show a higher magnitude and better defined jet in the base and downstream of 

the trough axis for the good cases compared to the bad. Though the surface low in Figs. 3.1d 

and 3.2d has a central pressure of 1006-1008 hPa for both the good and bad cases, the isobars 

are more tightly packed around the low in the good cases, as a stronger high exists in the 
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western Atlantic for the good cases. This high can be seen just off the coast of Florida in the 

850 hPa heights of the good cases as well (Fig. 3.2c). Tighter isobar packing corresponds to 

stronger winds and therefore stronger moist southerly flow from the Gulf of Mexico in the 

good cases. There are indications of a warm front stretching northeast of the low in both bad 

and good cases, as 850 hPa temperatures (Fig. 3.1c and 3.2c ) and 1000-500 hPa thicknesses 

(Figs. 3.1d and 3.2d) both bulge northward northeast of the low. Generally, the good cases 

have colder 850 hPa temperatures (Figs. 3.1c and 3.2c) than the bad cases. As discussed in 

Section 2.2.2 and Fig. 2.5, the majority of bad category 1 cases occurred in May at all lead 

times, with April being second and meteorological winter having the least number of cases. 

The good cases are more evenly spread throughout the year, which could account for the 

cooler 850 hPa temperatures in the good cases compared to the bad. The spatial patterns, 

including the location of the trough, of both the good and bad cases are fairly similar, but one 

difference is that the surface low in the good cases is somewhat farther southwest compared 

to the bad cases. 

Poorly forecast (Fig. 3.3a) cases tend to have more convective available potential 

energy (CAPE) than the well forecast cases (Fig. 3.3b), with the maximum several hundred 

J/kg higher. The highest values for both are over the Gulf of Mexico, and the highest values 

over land protrude particularly into eastern Texas and the Lower Mississippi Valley. The area 

of relatively high CAPE extends farther eastward in the bad cases, namely, into the Deep 

South. One reason for higher CAPE in the bad cases is likely because of the previously 

mentioned warmer low level temperatures, one element of the calculation of CAPE, and 

potentially higher moisture in lower levels as well. 
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Cases at a Day 5 lead time seemed to be least affected by the ETS threshold issue 

described in Section 2.4.1. This is evident from Fig. 3.4, which contains the 24 hour 

precipitation. The day 5 lead time had the least cases eliminated, as indicated in Section 

2.4.2, and was also the lead time that had the most similar precipitation magnitudes between 

the good and bad cases. The difference in the maximum precipitation is only about 6 mm, 

and the areal extent of the precipitation >12 mm is approximately the same. Spatially, the 

center of the heaviest precipitation is farther southwest in the good cases (b) compared to the 

bad (a). This is consistent with the slightly southwestern surface low placement in the good 

cases (Fig. 3.2d) vs. the bad cases (Fig. 3.1d). A difference in low placement would affect the 

location of the previously discussed warm front that tends to stretch eastward and 

northeastward from the low, and as precipitation often falls along and near a warm front, the 

precipitation displacement could be related to that. Overall, well forecast cases tend to have 

stronger forcing in the upper troposphere, lower CAPE, and heavier precipitation than poorly 

forecast cases at a day 5 lead time. 

 

3.1.2. Day 3 Lead Time 

NARR synoptic fields at the day 3 lead time (Figs. 3.5 and 3.6) generally show 

similar patterns to the day 5 synoptic fields. A broad trough is present over the central U.S. in 

both good and bad cases, but this trough is significantly deeper in the good cases. A ridge 

building in the eastern U.S. contributes to the pattern being higher in amplitude in the good 

cases. Once again, the 250 hPa jet (Figs. 3.5a and 3.6a) and the 500 hPa vorticity (Figs. 3.5b 

and 3.6b) are considerably stronger for the good cases. The high in the western Atlantic at 
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850 hPa (Figs. 3.5c and 3.6c) and in sea level pressure (Figs. 3.5d and 3.6d) is much farther 

west in the good cases, creating a tighter pressure gradient across the SEUS between it and 

the surface low. For day 3, the lows have similar placement in central to east Texas, though 

marginally farther eastward in the good cases, as well as a similar central pressure. 

The CAPE for the bad cases is higher than it is for the good cases at a day 3 lead time 

(Fig. 3.7), as it was at day 5. The highest values of CAPE occurred over the Gulf of Mexico 

and southeastern Texas. CAPE extends throughout the SEUS; higher CAPE amounts exist 

through Florida and near the Gulf Coast in the bad cases (a) compared to the good (b). 

The composite amount of precipitation in the bad cases is substantially less than in 

the good cases (Fig. 3.8). Maximum precipitation in the composite of the bad cases (a) is 24-

30mm, whereas in the good cases (b) it is 48-54 mm. This signal exists even though the cases 

with the lowest precipitation were eliminated. The location of the heaviest precipitation is 

similar, however. 

 

3.1.3. Day 1 Lead Time 

Figs. 3.9 and 3.10 display the NARR synoptic fields for day 1. Once again, a 

substantially deeper trough is present for the good cases compared to the bad, as shown by 

heights at all levels. The jet at 250 hPa for the bad cases (Fig. 3.9a) is stronger than at days 5 

and 3, but still not as well defined meridionally and as far south as in the good cases (Fig. 

3.10a). This and the comparatively zonal 250 and 500 hPa heights in the bad cases (Fig. 3.9b) 

compared to the good (Fig. 3.10b) suggests a more progressive steering flow for the bad 

cases. The vorticity at 500 hPa is of higher magnitude and is farther south in the good cases 
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compared to the bad (Figs. 3.9b and 3.10b), again indicating stronger synoptic forcing. 850 

hPa temperatures are generally warmer for the bad cases than the good (Figs. 3.9c and 

3.10c), as described in the day 5 composites. Sea level pressures indicated low pressure 

systems under 1008 hPa for both good and bad cases, but a substantial high near Cape Cod in 

the good cases, much stronger than the highs in the Atlantic and northeastern U.S. in the bad 

cases, created a pressure gradient that was higher in magnitude for the good cases (Figs. 3.9d 

and 3.10d). Sea level pressures east of the low are almost purely meridional for the good 

cases, while there is more of a zonal element for the bad cases, indicating somewhat more 

easterly flow/moisture transport from the Gulf of Mexico for the bad cases. 

At day 1, CAPE has a somewhat different distribution than it does at days 3 and 5, 

particularly for the bad cases (Fig. 3.11). The axis of the highest CAPE is southwest to 

northeast in the bad cases (a), compared to the south to north axis in the good cases (b). This 

suggests a more progressive cold front in the bad cases, consistent with the more progressive 

steering flow in the bad cases. The magnitude of the highest CAPE is similar between the 

good and bad cases at day 1, though the area over land of the higher CAPE is larger for the 

bad cases than the good.  

Even though cases that were on the lower end of average precipitation were excluded, 

Fig. 3.12 displays the substantial precipitation differences between the bad (a) and good (b) 

cases at day 1ñin the composite maxima, the good cases have >30 mm more than the bad 

cases. The area covered by moderate precipitation of >12 mm is considerably larger for the 

good cases for the bad cases. Another difference worth noting is the axis of precipitation. The 
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good cases have an axis that is more south to north compared to the bad cases. This is 

consistent with the more meridional jet in the good cases that was noted above. 

 

3.1.4. Summary 

At lead times of days 5, 3, and 1, both well forecast and poorly forecast NARR 

strongly forced, highly convective cases are characterized by precipitation that occurs east of 

a broad scale trough in the central U.S. and centered northeast of a surface low. There is 

generally stronger forcing for good cases at all levels, higher CAPE for bad cases, and 

heavier precipitation for good cases (much heavier at days 3 and 1). Stronger forcing can lead 

to heavier precipitation because of increased moisture transport and enhanced mechanisms 

for ascent. These results indicate that high predictability situations are those that are more 

strongly forced.  

 

3.2. Comparison of NARR and Reforecast Conditions 

Section 3.2 addresses the second research question: how do models differ from what 

was observed, and what are the causes of those differences? It does this by comparing the 

conditions that were analyzed by the NARR on the day of the event at 00 UTC (the midpoint 

of the event by our definition) to the conditions that were predicted by the reforecast at 120 

hours, also 00 UTC. Precipitation is the exception, as it is shown as a 24 hour total from 12 

UTC to 12 UTC. Section 3.2.1 describes the similarities and differences between the synoptic 

fields and precipitation of the reforecast and NARR, Section 3.2.2 enumerates the differences 

in the moisture fields, Section 3.2.3 explores differences in stability, and Section 3.2.4 
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compares potential vorticity (PV) fields, all for the poorly forecast cases. Section 3.2.5 looks 

at the differences between the NARR and reforecast for the well forecast cases, to see if the 

biases the reforecast had for the poorly forecast cases hold. Section 3.2.6 provides a summary 

and describes compositing limitations. The composites in this section are centered on the 

objectively determined lat/lons that were at the centroid of the precipitation region. 

 

3.2.1. Synoptic Fields and Precipitation  

The synoptic fields for the NARR and reforecast are fairly similar at first glance (Fig. 

3.13), but as these are composite fields, which average out case to case differences, even 

small differences between the two can indicate common model behaviors. The reforecast (b) 

indicates a trough across the central U.S. similar to the NARR (a), but this trough is slightly 

deeper throughout the Plains and farther east in the reforecast. This is also evident from the 

difference field shown in Fig. 3.14, which shows that the reforecast 500 hPa heights are 

generally deeper across the U.S., but especially on the eastern side of the trough, signaling an 

eastward shift in the reforecast. This deeper trough is consistent with the more widespread 

area of higher vorticity near the trough axis in the reforecast compared to the NARR. The sea 

level pressure field in Fig. 3.13 exhibits a low in the Southern Plains to Lower Mississippi 

Valley of a similar magnitude in the NARR and reforecast, under 1008 hPa. This low is too 

far northeast in the reforecast, however. Additionally, the high in the western Atlantic is too 

strong in the reforecast, which led to a tighter pressure gradient, increasing flow east of the 

low in the SEUS compared to what occurred.  
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Despite the slightly stronger forcing mechanisms for the reforecast indicated above, 

precipitation in the reforecast (Fig. 3.15b) is lighter than the NARR precipitation (Fig. 3.15a). 

The maximum precipitation in the composite is ~20 mm lighter in the reforecast, consistent 

with previously cited studies such as Baxter et al. (2014) and Siddique et al. (2015), which 

demonstrated that the reforecast tended to underforecast heavy precipitation amounts. 41 of 

the 48 cases comprising the composite were underforecast. As the forcing mechanisms for 

heavier precipitation and southerly flow transporting moisture are present and even slightly 

too strong in the reforecast composite, the underforecast precipitation in the reforecast could 

be due to lack of available moisture, which will be explored next, and/or less instability, 

explored after that. Additionally, the reforecast precipitation is centered too far northeast 

compared to what occurred, consistent with the northeastern low bias.  

 

3.2.2. Moisture Fields 

Several moisture fields are presented below to further explore the available moisture 

in the reforecast, including 850 and 700 hPa specific humidity and moisture flux, and 

precipitable water. Fig. 3.16 displays the 850 hPa specific humidity, which peaks in the 

Lower Mississippi Valley in the NARR, while the reforecast peaks farther east, consistent 

with its synoptic fields. The specific humidity in the NARR has a higher maximum by about 

1 g/kg than the reforecast predicts. Higher values in the NARR continue southward into the 

Gulf of Mexico. The difference field of specific humidity at this level shows this as well, 

with generally lower specific humidity in the reforecast, but an area of specific humidity that 

is too high in the area where the reforecast predicted its peak precipitation (Fig. 3.17). The 
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coupled lowest and highest differences between the NARR and reforecast demonstrate the 

reforecastõs northeast shift as well. The winds in the reforecast were slightly stronger than 

what occurred, particularly near and east of the specific humidity maximum. 

The moisture flux (the specific humidity multiplied by the wind) at 850 hPa has a 

larger maximum in the reforecast (Fig. 3.18b) compared to the NARR (Fig. 3.18a), on the 

other hand. The stronger winds in the area of the highest specific humidity were able to 

compensate for the lower specific humidity values in the reforecast, leading to larger 

moisture flux values. The difference in isotachs between the NARR and reforecast at 850 hPa 

display the overforecast wind speeds in the reforecast in Fig. 3.19. In the reforecast, the 

stronger winds are transporting moisture farther north that in the NARR, consistent with the 

other errors observed. For both the NARR and reforecast, the centers of the strongest 

composite moisture flux are both just south of where their maximum precipitation occurred.  

Since moisture decreases higher in the atmosphere, the specific humidity values at 

700 hPa are lower than at 850 hPa. However, they show a similar pattern, with the largest 

values in the Lower Mississippi Valley in the NARR (Fig. 3.20a), but the peak values farther 

northeast in the reforecast (Fig. 3.20b). At 700 hPa, the specific humidity is once again too 

low in the reforecast compared to the NARR. However, at this level, the peak is 

approximately the same at 5-6 g/kg. The lower values are found especially in the Gulf of 

Mexico in the reforecast, as there is a òbreakó between the higher values in the southern Gulf 

of Mexico and over land. The magnitudes of the 700 hPa wind are approximately the same 

over most of the area. 
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The moisture fluxes at 700 hPa (Fig. 3.21) are less than those at 850 hPa due to the 

lower specific humidity. The areal distributions are similar, however, peaking in close to the 

same locations, though slightly north of where they were at 850 hPa. Once again, the 

maximum is too far northeast in the reforecast (b) compared to the NARR (a). The maximum 

composite moisture flux is slightly higher in the reforecast, though the difference is not 

nearly as substantial as it was at 850 hPa. The similar values in the reforecast and NARR for 

both wind and maximum specific humidity prescribed similar maximum moisture flux 

values. 

Precipitable water is also beneficial to utilize because it is the total water vapor 

integrated over the whole atmospheric column, and thus includes the boundary layer 

moisture. As expected, since there was less moisture at both 850 and 700 hPa, precipitable 

water is too low in the reforecast (Fig. 3.22b) compared to the NARR (Fig. 3.22a). The 

reforecast has a maximum value between 35-40 mm, as does the NARR, but the areal extent 

of the highest precipitable water is much smaller in the reforecast. There is a òbreakó in the 

largest values over the Gulf of Mexico, as there was in the specific humidity fields. 

Additionally, the area of the highest precipitable water is too far east in the reforecast; this 

shift is consistent with the synoptic fields, 24 hour accumulated precipitation, and other 

moisture fields.  

It is important to consider if this dry moisture bias of the reforecast is mainly a 

consistent difference in the two datasets rather than a model bias issue. To examine this 

possibility, the composite 850 hPa specific humidity and winds of the reforecast (Fig. 3.23b) 

are compared to the NARR (Fig. 3.23a) once again, but this time, the reforecast initialization 
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is shown rather than the 120 hr forecast, and the NARR composite is the data analyzed 5 

days before the event. At this point, both datasets are analyses, so neither is considered more 

correct than the other, but if the reforecast initialized similarly, it should look nearly identical 

to the NARR. The main difference between the reforecast and the NARR is that in the 

observations, a tongue of slightly higher specific humidity can be seen through the western 

Gulf of Mexico and into eastern Texas and Oklahoma in the NARR data, which the 

reforecast does not duplicate. Nevertheless, on the whole, the reforecast is not systematically 

drier than the NARR as it is at the longer lead time when the event took place. Thus, at some 

point between the initialization time and the event, moisture of the correct magnitude does 

not advect into the area where the event took place. 

 

3.2.3. Stability Fields 

As these were the highly convective events, it is beneficial to view a measure of 

stability/instability. CAPE was utilized to describe instability in Section 3.1 when comparing 

the bad and good cases from the NARR, but due to possible differences in the way CAPE is 

computed between the NARR and reforecast datasets, a simpler measure, the 1000-500 hPa 

lapse rate, will be discussed here (Fig. 3.24). In both the NARR (a) and reforecast (b) 

composites, the highest lapse rates occur farther west from the composite precipitation 

maxima, into the Southwest and Texas. Higher lapse rates extend eastward into the SEUS, 

especially south of where the heaviest precipitation occurred. In the area of its greatest 

precipitation, the reforecast has slightly lower lapse rates than the NARR in its area of 
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heaviest precipitation. This slightly increased stability there could be one contributor to the 

precipitation being too low in the reforecast.  

 

3.2.4. Potential Vorticity Fields 

Potential vorticity (PV) is often utilized to describe weather systems and for model 

evaluation (for example, Morgan and Nielsen-Gammon 1998; Davies and Didone 2013). A 

measure of PV is pressure on the dynamic tropopause, which is presented in Fig. 3.25 for the 

NARR (a) and reforecast (b), along with winds on the dynamic tropopause. A higher pressure 

on the dynamic tropopause indicates that the tropopause is at a lower height there, indicating 

where a trough is. The trough in the central U.S. is evident in both the observed and 

reforecast data, and its slight northeastward tendency in the reforecast is seen especially 

across Wyoming, Colorado, and the Central Plains. A stronger ridge seems to be present in 

the eastern U.S. in the reforecast compared to what occurred; this is not consistent with Figs. 

3.13 and 3.14, which showed the reforecast having lower 500 hPa heights across most of the 

U.S. However, pressures tend to be lower across the whole domain for the reforecast, which 

could be due to differences in how the tropopause is determined in the two datasets. Another 

field plotted here are winds on the dynamic tropopause, which displays the wind in the core 

of the jet for the composite. The trough in both the NARR and reforecast are lifting, as 

shown by the stronger winds on the eastern side of the trough than the western side. The 

NARR has slightly stronger winds for much of the domain compared to the reforecast. On 

the western side of the trough, the winds have a more westerly component in the reforecast. 

A stronger background westerly flow would contribute to a faster trough, consistent with the 
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Rossby wave phase speed equation. This is one contributor to faster movement in the 

reforecast. 

The composite lower-tropospheric PV from 850-700 hPa and 850 hPa winds are 

plotted in Fig. 3.26. The low-level PV was maximized in the Lower Midwest, northwest of 

the heaviest precipitation, and northeast into the Great Lakes. Interestingly, even though the 

reforecast cases contained lower precipitation and therefore less condensational heating, the 

low level PV had a slightly higher maximum in the reforecast than what was observed. The 

location of the maximum low level PV is slightly east of the maximum vorticity and slightly 

northeast of the base of the trough.  

 

3.2.5. Comparison of NARR and Reforecast for Well Forecast Cases 

 It is useful to explore reforecast performance of the well forecast cases for the 

strongly forced, highly convective cases at the day 5 lead time, to see if the biases that the 

reforecast was found to have for the poorly forecast cases hold. Most of the biases present for 

the bad cases, including the tendency of the reforecast to underforecast precipitation, are not 

seen in the good cases, as described below. 

The 500 hPa heights and vorticity display that the reforecast has different behavior 

for the good cases than bad (Fig. 3.27 and 3.28). The reforecast (Fig. 3.27b) has a less 

focused area of maximum vorticity and lower vorticity values compared to the NARR (Fig. 

3.27a), unlike the bad cases, which had more equivalent to slightly stronger vorticity in the 

reforecast (Fig. 3.13). While the bad cases contained a trough that was systematically too 

deep in the composite and shifted too far east, the good cases do not see this behavior by the 
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reforecast. The difference field for the good cases indicates slightly lower heights in the 

reforecast in the southern U.S., but slightly higher heights farther north, and no eastward shift 

(Fig. 3.28). One similarity between the good and bad cases is that the sea level pressure field 

shows a high in the reforecast that was too strong in the western Atlantic in both. The low in 

the reforecast is shifted slightly too far northeast compared to the NARR in the good cases, 

which is similar to the bad cases as well.  

 For the bad cases, the reforecast underforecasted the precipitation by about 20 mm 

and was shifted northeast compared to the NARR (Fig. 3.15). For the good cases, the 

reforecast, which contained a composite maximum precipitation of ~57 mm, (Fig. 3.29b) 

actually contained slightly higher maximum precipitation than the NARR, which had a 

maximum of ~52 mm in its composite (Fig. 3.29a). Thus the claim that the reforecast is 

usually too light cannot be generalized to all cases, but is confined to the bad cases. One 

possible contributing factor to this is the previously discussed behavior of ETS to favor 

heavier precipitation that is far from the threshold. The reforecast will score well with ETS 

when the precipitation is placed adequately and both the observed and reforecast 

precipitation is well above the threshold. Excluding cases initially that had lower 

precipitation close to the threshold may have minimized this behavior somewhat, however. In 

the good cases, the composite precipitation is shifted slightly north in the reforecast 

compared to the NARR, but this behavior is not as severe as it was in the bad cases. 

 Moisture fields such as specific humidity at 850 hPa (Fig. 3.30) and precipitable 

water (Fig. 3.31) for the good cases show somewhat similar behavior to the bad case 

composites. In the area of maximum precipitation and just southward, the reforecast (Fig. 
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3.30b) contains less specific humidity than the NARR (Fig. 3.30a), as it did in the bad cases 

(Figs. 3.16 and 3.17). There is some evidence for less moisture in the reforecast in the Gulf 

of Mexico in the good casesñthere is a tongue of higher specific humidity and precipitable 

water south into the western Gulf for the NARR (Fig. 3.30a and 3.31a) that is not as 

pronounced in the reforecast (Fig. 3.30b and 3.31b). The break in moisture that was 

pronounced for the reforecast bad cases is not as evident for the good cases, however. There 

is generally less moisture for the good cases than the bad cases, especially in areas away 

from the precipitation like the western U.S., which is likely because a substantial number of 

bad cases took place in the warm season months of May and September, and there is 

typically more available moisture in the warm season.  

 

3.2.6. Summary and Discussion of Compositing Limitations 

Though the reforecast tended to predict similar features to what was observed in a 

composite sense, there were some systematic differences between the two. For poorly 

forecast cases, the reforecast indicated stronger forcing than what actually occurred, with a 

deeper trough at 500 hPa and at the dynamic tropopause, and stronger cyclonic 500 hPa 

vorticity. At lower levels, it forecasted pressure gradients that were too tight due to a stronger 

high in the western Atlantic, which increased low level winds and moisture transport. The 

trough and low were too far northeast in the reforecast, indicating that the reforecast was too 

progressive in its flow. The precipitation and the area of maximum moisture followed suit, 

with a northeastern shift as well. The precipitation that was predicted by the reforecast was 

much too low in the bad cases, with a maximum about 20 mm less than what occurred. The 
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forcing for ascent was present and even slightly overdone in the reforecast for the bad cases, 

and the moisture flux was slightly stronger in the reforecast as well. The stability was slightly 

greater in the reforecast in the area of precipitation in the bad cases, which may have been a 

contributor to lower precipitation in that composite. Also, considering that amount of 

precipitation is rain rate multiplied by the duration (Doswell et al. 1996), the fact that the 

reforecast was too progressive may have lessened the duration when precipitation fell, 

lowering amounts. The reforecast underforecasted the amount of moisture in the area of 

precipitation and upstream in the Gulf of Mexico.  

The well forecast case composites showed some similarities and some differences 

from the poorly forecast case composites in the behavior of the reforecast. Though the 

maximum precipitation was underforecast in the bad cases, in the good cases the reforecast 

slightly overforecasted the maximum precipitation. This is despite the fact that the reforecast 

had weaker upper level forcing, as demonstrated by 500 hPa vorticity, than the NARR for the 

good cases. The northeastern shift in the reforecast that was prominent in the bad cases was 

seen in the good cases, but to a lesser extent. Moisture fields exhibit similar reforecast 

behavior in both the good and bad cases, namely, 850 hPa specific humidity was too low in 

the area of precipitation and south into the Gulf of Mexico in the reforecast. Additionally, the 

sea level pressure behaves similarly in the reforecast for both the good and bad cases, with a 

high in the western Atlantic that was too strong. Thus, some reforecast behaviors seem to be 

general biases in the reforecast at 120 hours for strongly forced, highly convective situations, 

but some are confined to the bad cases, and could be partial reasons the reforecast failed in 

those cases.  
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One important disadvantage of compositing is that the variability between the cases 

comprising the composite can cancel out each other and smear out a signal, especially for 

smaller-scale features (Lackmann et al. 1996; Weisman et al. 2002). This effect was lessened 

by the fact that these were event-relative composites, centered on the lat/lon of the heaviest 

precipitation, but dissimilar cases can still cancel out. Thus, when there are stronger signals 

in a composite, it could be due to less variability between the cases in the composite. To 

explore this possibility, Table 3.1 presents the standard deviation of the latitudes and 

longitudes used for each case from the average lat/lon of the composite for the NARR and 

reforecast cases at the day 5 lead time. The latitudes contained more variability in the NARR 

by about 0.5 degrees latitude, but the reforecast contained more variability in longitudes by 

about 2 degrees longitude. By percent change, the reforecast had 30% greater variability in 

longitudes, but about 18% less variability in latitudes; thus the reforecast had slightly more 

variability than the NARR overall. It would be more robust to calculate standard deviations 

of the meteorological fields themselves to further explore this, and calculate statistical 

significance, since many of the differences between the NARR and reforecast composites are 

fairly small.  

Another way to view the variability within a composite is to look at correlations 

between each case and the composite field. Table 3.2 presents a summary of the correlation 

between the NARR 500 hPa height anomalies for each case and the composite for the day 5 

strongly forced highly convective cases. The anomalies were calculated for each case by 

subtracting the height at each point from the average height in the x-direction. These values 

were then correlated to the composite average for each case, and the average correlation 
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between all cases and the composite is presented here. The average correlation around 0.32 

shows the cases were on average at least similar enough to the composite to be positively 

correlated. However, 8 cases out of the 74 total cases were negatively correlated with the 

composite, and 5 out of 48 cases comprising the composite after excluding the lower 

precipitation cases were negatively correlated. The standard deviation of around 0.25 is fairly 

large, and the range of correlations was from -0.49 to 0.87 or 0.80, a very large variability 

from case to case. There are only very slight differences between the correlations of all cases 

categorized as strongly forced, highly convective, and those that remained after exclusions, 

demonstrating that the exclusions did not change how well the composite was correlated with 

the cases. However, the case that was best correlated with the composite was excluded when 

eliminating lower precipitation cases. Thus, there is substantial variability in this composite, 

an inherent drawback of compositing. 

Though it is useful to explore composites as a succinct way to view a number of 

cases, it is also informative to explore the issues found in the composites with a case study, 

which will be done in the following chapter. In a case study, causes of forecast errors can be 

more directly determined. 
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Table 3.1: The standard deviation of the latitudes and longitudes of the cases comprising the 

composite for the strongly forced, highly convective cases at a day 5 lead time. The percent 

change is calculated as the (reforecast-NARR)/reforecast.  

 Latitudes Longitudes 

NARR Standard Deviation 3.22 4.49 

Reforecast Standard Deviation 2.74 6.41 

Percent Change  -18% 30% 

 

Table 3.2: The average correlation and standard deviation from the composite value of 500 

hPa height anomaly of NARR strongly forced, highly convective cases. The correlations of 

the cases that were best and worst correlated to the composite are also shown. 

 All Cases (74) Cases After Exclusions (48) 

Average Correlation 0.33 0.32 

Std. Deviation 0.25 0.25 

Lowest Correlation Value -0.49 -0.49 

Highest Correlation Value 0.88 0.80 
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Figure 3.1: Synoptic features of the composite of poorly forecast (bad) category 1 (strongly 

forced, highly convective) cases at a day 5 lead time from the NARR. (a) displays the 250 

hPa heights (dam, black contours) and isotachs (kt, blue contours, with values over 75 kt 

shaded). (b) displays the 500 hPa heights (dam, black contours) and absolute vorticity (units 

of 10
-5

 s
-1

, shaded). (c) displays the 850 hPa heights (dam, black contours) and temperatures 

(°C, shaded). (d) displays the sea level pressure (hPa, black contours) and 1000-500 hPa 

thicknesses (dam, red dashed contours). H indicates a high (pressure maximum) and L a low 

(pressure minimum). The center of the composite precipitation is indicated by a black dot in 

each panel. 

  

(a) (b) 

(c) (d) 
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Figure 3.2: As in Figure 3.1, but for well forecast (good) cases from the NARR.  

(a) (b) 

(c) (d) 
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Figure 3.3: Composite convective available potential energy (CAPE) for (a) bad and (b) good 

day 5 category 1 cases from the NARR. Values are shaded every 200 J kg
-1

. The center of the 

composite precipitation is indicated by a black dot in each panel.   

(a) 

(b) 




















































































































































