ABSTRACT

TATE, JENNIFER ELYSE. Analysis of Precipitation Predictability in a¥X®ar Reforecast.
(Under the direction of Dr. Gary Lackmann).

Quantitative precipitation forecasting is an important forecast problem in the
Southeast U.S., with societal amcbnomic consequences. Past studies have enumerated the
gualities of meteorological systems that produce heavy and extreme precipitation. However,
less work has been done on which types of precipitation systems have high or low
predictability, and on objéiwely determining model biases during heavy precipitation. Thus,
this research identifies precipitation events that were well forecast and poorly forecast by
N O A A d%gengration global ensemble reforecast dataset. It was found that, as expected,
predictbility decreases with lead time and during the warm season. Further, highly
convective cases exhibited lower predictability than strongly forced and stratiform events.

To explore model biases, evarlative composites of the North American Regional
Rearalysis dataset were compared with those from the reforecast for strongly forced, highly
convective events at a day 5 lead time. This showed a bias in the reforecast toward system
movement that was too fast, with forcing for ascent and precipitation toorfdrand east in
poorly forecast cases. For a case study occurring 12 April 2013, this behavior was attributed
to precipitation that was underforecast midway through the forecast, and thus lower
tropospheric PV errors. Additionally, the reforecast coripax poorly forecast cases
underforecasted precipitation compared to the NARR. Slightly more stability in the
reforecast composite and a shorter duration of rainfall due to a faster system may have
contributed to this low precipitation bias. The refost@mposite at a 5 day lead time
exhibited less available moisture than the NARR for both poorly forecast and well forecast

cases, particularly over the Gulf of Mexico. In the composite at initialization, this bias did not



occur, indicating possible moise transport issues throughout the model run. However, the
moisture flux was sufficient in the reforecast composite. Implications for forecasters are

discussed.
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1. Introduction
1.1. Motivation

Precipitation forecasts, including when and where precipitation will occur, probability
of precipitation, and the amount of precipitation, are among the most frequently utilized
weather forecasts by the U.S. public (Ebert et al. 2003; Lazo et al. 20@8pittion can
affect human behavior; a study of the traffic on the Tokyo Metropolitan Expressway revealed
that considerably fewer people drove on rainy days, especially on weekends (Chung et al.
2005). The same study showed that there are significaotly accidents on rainy days
compared to drier ones. The U.S. Department of Transportation (2015) states that 23% of
vehicle crashes are weather related, and of those, the vast majority are related to rain and wet
pavement. According to the Federal Aviatiddministration (2015), weather is the number
one cause of flight delays across the nation. Precipitation can be related to convective
weather and low ceiling and visibility, two of the most common flight delay causes.

When precipitation is heavy, it cagdd to river flooding and flash flooding, which
can cause loss of life and property. The National Weather Service (NWS) (2016) reports a
30-year average (1988015) of 81 deaths per year due to flooding alone. In 2015, flash
flooding caused about 2.1 bdh dollars in damage, by far the highest of any weather
incident (NWS 2016). Forecasting heavy precipitation accurately can minimize these
negative impacts, since decision makers and the general public would ideally be better
prepared for excessive rairifal

Though it is of great societal importance, quantitative precipitation forecasting is a

difficult task for both numerical weather models and for forecasters. Forecasts by both



human forecasters and numerical weather prediction (NWP) models have impveved
time (Baxter et al. 2014; Novak et al. 2014; Sukovich et al. 2014), but there is still much to
I mprove upon. Utilizing the National Oceanic
secondgeneration reforecast, Baxter et al. (2014) demonstrated ttiegt southeastern
United States (SEUS), forecasts at longer lead times have little skill, particularly for larger
rainfall amounts and during the warm season. There is little skill for any season beyond day
5.5. Compared to other regions, the Southeasamasg the lowest predictive skill for
extreme rainfall events, likely because smadleale convective episodes dominate the
extreme events there (Sukovich et al. 2014). The SEUS is affected by many potential causes
of heavy precipitation, including laralfing tropical cyclones, extratropical cyclones and
baroclinic waves, and mesoscale convective systems (Moore et al. 2015).

Because of the societal impacts of precipitation and the fact that NWP model
guidance often has low skill for precipitation preitin, working to improve precipitation
forecasting has benefits for both meteorologists and the general public.

A synthesis of prior research related to precipitation mechanisms, precipitation
climatologies, and model performance and predictability fecipitation follows in this
chapter, along with stating science questions that this research attempts to answer. Chapter 2
describes the datasets and methods utilized for this research. Chapter 3 discusses the results
from compositing observational and nebdata for both well forecast and poorly forecast
cases, to attempt to answer the first two research questions. Chapter 4 dolseastudygf
apoorly forecast event, to determine solutions to the subsequent questions. Chapter 5 revisits

and summarigs the results, and describes future work.



1.2. Synthesis of Prior Research
1.2.1. Mechanisms for Heavy Precipitation

A number of meteorological mechanisms can come together to create heavy
precipitation on the synoptic scale and mesoscale. The primauyg in this research will be
on the synoptic scale aspects. The first ingredient that must be present for precipitation to
occur is sufficient moisture. Availability of moisture can be quantified in terms of
precipitable water (Moore et al. 2015), inteigcawater vapor (Moore et al. 2012; Wick et al.
2013; Moore et al. 2015), and specific humidity or mixing ratio in a lower level of the
atmosphere such as 700 or 850 hPa (Konrad 1Pe&¢ipitable water and specific humidity
are utilized in this studyl o obtain sufficient moisture for moderate to heavy precipitation, a
moisture transport mechanism is needed. For the SEUS, southerly flow often transports
moisture from the Gulf of Mexico in the form of low level jets (LLJs), which are a cause of
heavy raindll (Moore et al. 2012; Trier et al. 2014; Moore et al. 20$&hilar phenomena
called amospheric rivers (ARsgre defined by Newell et al. (1992) and Zhu and Newell
(1998) as filaments of relatively hihgyh wat er
have lengths many times their widths. ARs transport a large amount of moisture: in the
extratropical regions, they account for >90% of the meridional moisture fluxes [Nayak et al.
(2014), after Newell et al. (1992) and Zhu and Newell (1998)].

It is well established that the western U.S. is particularly prone to flooding due to
ARs partly because of how they interact with orography (Smith et al. 2010; Ralph et al. 2013;

Wick et al. 2013), and studies have shown that ARs can cause flooding in oti@rspoirt



the U.S. as well, including the central U.S. (Lavers and Villarini 2013) and the SEUS (Moore
et al. 2012; Moore et al. 2015; Mahoney et al. 2016). Moore et al. (2012) discussed how a
strong AR had an impact on the generation of persistent radofatlg the May 2010 flood
in Nashville, Tennessee. However, whereas in the western U.S. the majority of flooding
events are related to ARs, Mahoney et al. (2016) demonstrated that days with precipitation
over 100 mm were only matched to days with ARs ~41%e time, showing that the
presence of an AR is not the only element needed for heavy precipitation in thé SH1¢H
forcing mechanisms are often involved, as described bé&lbis.work does not deal
explicitly with ARs, but does discuss differencesnaisture availability and moisture
transport between model and analyzed data as a major contributing factor of precipitation
differences.

The second ingredient needed for precipitation is a forcing mechanism for ascent.
Rapid ascent of air that containgistantial water vapor can cause high rainfall rates, and
when combined with other factors such as an
conditions, can cause flash flooding (Doswell et al. 1996). In the SEUS, the cool season
months tend to be damated by dynamical forcing, whereas the warm season is generally
dominated by thermodynamic forcing (Moore et al. 2015). Dynamical forcing includes
phenomena such as synogditale baroclinic waves/extratropical cyclones and their
associated fronts. Syntially, deep uppelevel troughs can be present (Moore et al. 2012),
as well as midlevel vorticity maxima and differential cyclonic vorticity advection (Konrad
1997). In heavy precipitation and flash flooding situations involving extratropical cyclones,

there is often a LLJ or AR ahead of a slowving cold front that continually provides



moisture (Maddox et al. 1979; Lackmann 2002; Moore et al. 2015). Thermodynamic
influences on precipitatioexhibit more variability at mesoscajesd help create deep 50
convection that dominates the warm season precipitation in the SEUS (Moore et al. 2015).
Parameters such as convective available potential energy (CAPE) are utilized to describe
instability associated with heavy precipitation (Konrad 1997; Trier @044). Mesoscale
boundaries from a myriad of sources, such ashseaze circulations, cold air damming, cold
pools from previous convection, and residual cloudiness causing sensible heat flux gradients,
can help initiate or maintain convection that proekiheavy rainfall (Trier et al. 2014; Moore
et al. 2015). Many of these mesosdadeindaris may not be resolved in the GEFS
reforecast, howeverhis research eliminates the summer months of June, July, and August
for this reason among others, so it nyailocuses on the dynamical influences. However, a
substantial portion of highly convective precipitation events in this study take place during
the spring months and are thus influenced by thermodynamics as well.

Organized convection in the form of mesale convective systems (MCSs) can also
cause heavy precipitation in the SEUS, patrticularly in the warm seasoit exclusively
(Moore et al. 2012; Trier et al. 2014; Moore et al. 2015). Additionally, heavy precipitation
and flooding can be generated by landfalling tropical cyclones and their remnants, especially
in the eastern portion of the SEUS (Moore eR@ll5). Another special case to consider
regarding precipitation in the SEUS is the effect of upstream convection on downstream
precipitation. Mahoney and Lackmann (2007) describe a fast moving convection scenario in
which precipitation is decreased dowesim, and a slow moving convection scenario in

which precipitation is increased downstream. These scenarios are important to consider when



forecasting heavy precipitation in the SEUS, as they can cause forecast busts when models
do not adequately handle thepagation of the upstream convectidhus, in this study,
precipitation events are categorized separately if they are related to tropical cyclones or

upstream convection.

1.2.2. Precipitation Climatologies

Several climatologies have described spatma temporal (seasonal, diurnal, and
semidiurnal) precipitation distribution, especially for heavy precipitation, across the U.S. and
the SEUS in particular (Wallace 1975; Maddox et al. 1979; Carbone et al. 2002; Schumacher
and Johnson 2006; Hitchens et2013; Prat and Nelson 2014; Moore et al. 2015). Though
heavy precipitation events occur throughout the U.S., especially east of the Rockies, the
SEUS has the highest frequency of rainfall events of at least 25 mm in one hour (Hitchens et
al. 2013). Theauthern U.S. also leads in number of heavy precipitation cases where at least
125 mm of rain falls in a day (Schumacher and Johnson 2006). Within the SEUS, higher
rainfall amounts are observed in the Mississippi River basin, near the Gulf Coast, and in the
Florida peninsula, whereas western parts df themain(west of 100°Whave lighter
rainfall on average (Prat and Nelson 2014).

The western part of the SEUS (west of the Appalachians) is more affected by extreme
precipitation events in the cool seasahjle the portion of the SEUS east of the
Appalachians is more affected in the warm season (Prat and Nelson 2014; Moore et al.
2015), which is one of many seasonal characteristics of precipitation in the SEUS. The peak

of heavy precipitation events acraks U.S. is in meteorological summer, especially July



(Maddox et al. 1979; Schumacher and Johnson 2006; Hitchens et al. 2013; Prat and Nelson
2014), but heavy precipitation events are more evenly distributed throughout the year in the
southern U.S. thamiother areas (Schumacher and Johnson 2006). Occurrences of extreme
precipitation events of at least 125 mm in a day were mostly limited to areas near the Gulf
Coast during the cool season months (Hitchens et al. 2013¢atlikes ofainfall vary

seasondy as well. Synoptic, tropical, and MCS events all played a role in producing extreme
rainfall in the South and Southeasimains defined by Schumacher and Johnson (2006).

the Southeast regidqilabama, Georgia, North and South Carolina, and Virgitiapical

systems were the most common heavy rainfall producers, while in the (Fexts,

Oklahoma, Kansas, Arkansas, Louisiana, and Mississigiiss dominated (Schumacher

and Johnson 2006). MCS events mainly occur in the spring and summer (Schumeécher a
Johnson 2006). Extreme precipitation events related to tropical cyclones occur from June to
November and peak in September, while nontropical extreme events are spread throughout
the year but have a minimum in the cool season (Schumacher and Johr&di@a@ et al.
2015).Thus it is useful to separate tropical and nontropical events, as is done in this research.
As previously noted, precipitation in the warm season tends to have more thermodynamic
influences compared to the dynamically forced cootgedMoore et al. 2015). This was
reported by Maddox (1979) as well, who deter
flooding events occurred fairly evenly throu
mesoscale) events peaked in meteorological surfPnecipitation can be enhanced by sea
breezes in Florida and in coastal areas particularly in the warm season (Prat and Nelson

2014).



As early as the mid 9th century, studies regarding diurnal cycles of precipitation
have been published (Wallace 1978)the SEUS there is a late afternoon maximum and a
morning minimum of heavy rainfall frequencies, particularly in the summer due to
thunderstorms; the diurnal cycle is much weaker in the winter (Wallace 1975; Maddox 1979;
Hitchens et al. 2013). Indeedigitly more precipitation events occur at night in the cold
season in the SEUS, but overall the temporal distribution is more constant than during the
warm season (Prat and Nelson 2014). For MCS events in particular, the timing of peak
rainfall is 21002300 UTC east of the Rockies, but is slightly earlier (around 2100 UTC) for
the Southern US region (Schumacher and Johnson 2006). There is also a semidiurnal cycle
that precipitation tends to follow in the warm season, especially in the western part of the
SHEUS, with precipitation maxima around 1100 and 2300 UTC (Carbone et al. 2002).
However, the secondary peak of precipitation in the semidiurnal cycle is weaker compared to
the primary diurnal peak (Wallace 197%is research does not focus on the timing of
precipitation, but does define precipitation events from 1200 UTC to 1200 UTC the next day,
to avoid splitting precipitation events considering the afternoon maximum and morning

minimum.

1.2.3. Model Performance

Baxter et al. (2014) described model performance for the NOAA Global Ensemble
Forecast System (GEFS) reforecast (to be described further in Section 2.1) fre@013885
in the SEUSThis is the dataset utilized in this study, so it is important to knowithow

performs.More recent reforecasts in this time period had more skill than the older forecasts.



Since the reforecast is a frozen model; that is, the data assimilation system and
dynamical/physical model schemes are identical throughout the period; dle¢ mo
improvement noted by Baxter et &014)was likely because of improved initial conditions
owing to better and more numerous observations in more recent times. Novak et al. (2014)
demonstrated that humgmoduced forecasts at the Weather Predictiomé2gWPC) have
improved over time as well.

Baxter et al. (2014) also found that lower precipitation amounts were predicted with
more skill than higher amounts; this is in contrast to claims by Wang (2015), who determined
that the model has better skitles (threat score) for heavier precipitation. However, Wang
(2015) utilized a cloud resolving model with 2.5 km grid spacing, in contrast to the GEFS
reforecast of much lower resolution, so the results could differ for this reason, and because
that resesch was focused on extreme rainfall from typhofndicating that the system
exists in the modelyather than more moderate rainfall from a variety of sources.

Baxter et al. (2014) found that precipitation forecast ability decreases with increasing
leadtime in the SEUS in the reforecast, which is also shown for WPC forecasts by Novak et
al. (2014), and by Sukovich et al. (2014) for the most extreme precipitation events.
Additionally, the bias scores demonstrate that for precipitation events withte2Oeasn in
the forecast and/or observed data, precipitation was underforecast by the model (Baxter et al.
2014). This was corroborated by Siddique et al. (2015) for theAthéahtic U.S.; that study
determined that the reforecast and the Short Range ElesEorecast (SREF) both tended to
overforecast light to moderate precipitation amounts and underforecast heavy precipitation

amountsThe results that forecast ability decreases with increasing lead time and that



precipitation is often underforecast by tiedorecast will be demonstrated by this research as
well.

It is generally evident that summer or warm season precipitation is not as well
forecast as in other seasons (Ebert et al. 2003; Fritsch and Carbone 2004; Baxter et al. 2014;
Sukovich 2014). Fritdt and Car bone (2004) <called warm
weat her prediction, 6 as its ability to be
as other meteorological factoiis is shown by Baxter et al. (2014) as well; though
observabns and initial conditions for NWP guidance have improved over time and
contributed to increased skill over time for other seasons, summer forecasts have not
improved.This is likely at least partially due to the more convective scale/mesoscale
characteof the precipitation during the warm season (Zhang et al. 2003; Moore et al. 2015).
During the cool season, extreme precipitation events in the SEUS tend to occur more on the
synoptic scale as baroclinic waves/cyclones with associated fronts, wheregsiueirirarm
season they are often associated with weak baroclinic systems or diurnal convection (Moore
et al. 2015). In a general sense, analysis errors, particularly in the middle to upper
troposphere, lead to forecast errors (Hakim 2005). Smaller scat@mpiena are not as
accurately initially analyzed or modeled by NWP guidance, especially when moist processes
are involved, as initial condition errors with moist convection on the convective scale can
grow with time to the mesoscale and even larger s€ahemng et al. 2003; Cao and Zhang
2016). Past research and development has found that parameterization of moist convection
has inherent limitations, but this can be improved somewhat by enhancing data assimilation

and microphysical schemes (Fritsch ando©ae 2004).
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The ability of models to forecast ARs accurately is relevant to precipitation prediction
in the SEUS, since ARs are an important moisture source. In the SEUS, heavy precipitation
cases in which an AR is identified are better forecast on av¢nag cases in which an AR is
not (Mahoney et al. 2016). ARs are typically well forecast at short lead times, but their
predictability decreases over time, and by a
degrees latitude or longitude for the zahU.S. for a variety of global models (Nayak et al.
2014). For the western U.S. in the cool season, the placement errors can be up to 800 km by
10 days lead time, and there is typically a southward biag2atdgrees (Wick et al. 2013).

In the West, dierences between the models are greatest in width of the ARs, and the coarser
resolution models have a more positive width bias, which increases with increasing lead time
(Wick et al. 2013). Further reseatARRini s need
the SEUS.

Along with overall model performance related to precipitation forecasting, it is useful
to look at model performance in terms of individual events. Rodwell et al. (2013) found that
individual events that were poorly forecast in the mediange in Europe were associated
with initial conditions errors with MCSs in the U.S. several days earlier. This could be
because NWP models tend to have problems when it comes to moist convection and initial
conditions, as described previously (Zhangle2003). Model ability can be described in
terms of forecastf model fields minugsnalysisat that time as it is in Dirren et al. (2003).

This studyexplores how errors can grow with time: acasestudy on 7 October 200&rrors
in the vicinity of the jet caused errors in an elongated potential vorticity (PV) streamer in the

upper levels, and in the lower levels, the model did not adequately capture a cyclone and its
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diabatic heating, leading to forecastors48 hours laterThe research presenteera will
explore a case study in Chapter 4 to more fully explore the evolution of errors throughout a
model run.

Though model performance has improved over time, a number of steps can be and
have been taken to further improve precipitation and QPF foseddstking groups that
intended to improve warm season and cool season QPFs are described in Fritsch and Carbone
(2004) and Ralph et al. (2005), respectively. To improve warm season QPFs, Fritsch and
Carbone (2004) suggested improving data assimilatidterivey microphysical schemes,
creating probabilistic forecasts, and focusing on clesblving models that do not have a
convective parameterization. Many of these tasks have been undertaken; the NOAA
Environmental Modeling Center (EMC) has since upgildtie 3DVAR Ensemble Kalman
Filter (EnKF) data assimilation of the GEFS (NOAA Environmental Modeling Center 2015),
and the NOAA Earth System Research Laboratory (ESRUjiéslopedhe High
Resolution Rapid Refresh (HRRR) model, which contains no coneguéirameterization
(Benjamin et al. 2016). An ensemble of convective scale models that will create storm scale
ensemble forecasts, called the High Resolution Ensemble Forecast (HREF), is currently in
developmental/experimental stages (NOAA Environmentadidling Center 2016). The
working group for short range cool season QPFs suggested utilizing the teertly
established Hydrometeorological Test Bed (HMT) in the eastern and western U.S. to explore
a myriad of problems with cool season precipitatioedasts, such as precipitation type,
mesoscale banding, and terraiduced effects (Ralph et al. 2005). HMVest has since

been active particularly regarding observing precipitation and AR events in complex terrain
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(Ralph et al. 2013; Matrosov et al. 2054nong others), while HMBoutheast has focused

on implementing instrumentation such as wind profiling radars and disdrometers in North
Carolina to better understand precipitation and hydrology in the Appalachian Mountains, the
Piedmont and Coastal Plaemd along the coast (NOAA Hydrometeorology Testbed 2013).
The Hydrometeorological Testbed at WPC has a national scope; part of its role is to run the
Flash Flood and Intense Rainfall Experiment, which further explores precipitation
forecasting and modelingnd precipitation effects on hydrology (Barthold et al. 2015).
Recent and ongoing developments have made a difference in improving precipitation

forecasting, but more improvements are still necessary.

1.3. Science Questions

This research seeks to identify precipitation events in the SEUS that were well forecast,
and distinguish those from events that were poorly forecast. This will allow identification of
certain meteorological patterns that are more or less predictablettiegas. Additionally, it
explores a few poorly forecast cases more in depth to further ascertain the sources of error in
those cases, consistent with the suggestion of Moore et al. (2015) for future work. The
science questions this research intendsxdorefor the SEUSare:

1. What meteorological patterns tend to exhibit relatively high forecast skill, and why?

Which patterns exhibit low skill, and why?
2. How do model forecasts differ from what was observed, and what are the causes of

these differences?
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3. Why does the model fail in poorly forecast cases? What mechanisms are
misrepresented by the model? What are the relative roles of moisture transport and
moisture removal?

4. How can model forecasts be improved?

5. Can recommendations be provided to forecasterdaw #hem to anticipate and
compensate during expected periods of low predictive skill?

Answers to these questions will provide information about the predictability of precipitation.
For the most part, these questions will be examined for syregdie stongly forced, highly

convective precipitation systems at a 5 day lead time.
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2. Methods
2.1.Defining Well-Forecasted and PoorlyForecasted Heavy Precipitation Cases

Heavy precipitation forecast cases were found by utilizing the reforecast version 2
from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research
Laboratory (Hamill et al. 2013). The reforecast is initialized at 00 UTC, and is run based on
the configuration of the operational Global Ensemble Forecast System (GER3RinThe
control runs employ initial conditions from the Climate Forecast System Reanalysis (CFSR)
(Saha et al. 2010), and are run at a T254L42 resolution out to day 7.5, which approximately
translates to 40 km at 40° latitude, and 42 vertical levelsniddel continues at a lower
resolution through day 16, but those data are not used for this research. Additionally, though
the reforecast includes an ensemble of 10 perturbed members, only the control run was
utilized here. This research uses the years -P2933 for a total of 29 years of data. The
reforecast allows for a consistent letegm dataset of precipitation forecasts, whereas
identifying cases from operational model forecasts would be inconsistent owing to changes in
model configuration over timehe forecast accuracy would degrageerelyfurther back in
time.

The reforecast data were compared to the NOAA Climate Prediction Center (CPC)
Daily U.S. Unified Precipitation Dataset for verification (Chen et al. 2008). This dataset is
produced by optimm interpolation of gauge data on a 0.25° latitude/longitude grid. To do
the verification, both the reforecast and the CPC precipitation were interpolated onto a 0.5°
grid. Verification was undertaken for 24 hour periods from 12 UTC. Since the reforesast w

initialized at 00Z, the forecast analysis periods extend froi®3612, 6072 h, and 10832 h
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(0.51.5, 2.53.5, and 4.5.5 d); thesg@eriods will be referred to akays 1, 3, and 5
respectively. Each case is named for the second day in the 24 hiodt per example, a
reforecast run that was initialized 01 January 1985 at 00Z would have a day 1 case from 12Z
on 01 January to 12Z on 02 January, and would be named 19850102 after the second day.
This research focuses mainly on the day 5 cases, buregpghe day 1 and day 3 lead times
to some extent as well.

To define the well forecast and poorly forecast cases, the cases were ranked based on
their Equitable Threat Score (ETS). ETS is a forecast skill score that rangesiftort,
where 1 is a peett forecast and scores less than 0 are worse than a random chance forecast.

The mathematical form of the ETS is given by equation (1):

ETS=—— whereA=———— (1)

Where®d i s oOhi ts ex paisahidis abfase alansis @ reiss, and
is the total number of events, including correct negatives (Wilks 2011, chapter 8). The ETS
requires a threshold to find hits, misses, and false alarms. The threshold chosen for this
research was 20 mm; to be cons@dea heavy precipitation case, the event was required to
have at least 5% of its gridpoints (over land) with 20 mm of precipitation in either the
obseved or the reforecast. Fig.1 shows the study domain, which extends throughout the
Southeast U.S. ambrthward, with each gridpoint circled in yelloWhe red box in this
figure indicates what approximately 5% of the gridpoints looks Alklit at a gridpoint is
where both the observed and the reforecast had at least 20 mm of precipitation, a miss is

where the reforecast had less than 20 mm but 20 mm or greater was observed, and a false
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alarm is where the reforecast had at least 20 mm of precipitation but the observed had less
than 20 mmaA list of cases that met the critedascribed above was createdthe 29 years

from 19852013. Then the months of meteorological summer (June, July, and August) were
removed, since summer precipitation is often of a more mesoscale character with smaller
scale forcing, which was not the focus of this research. Ovér i¥es for each lead time

(days 1, 3, and 5) remained. Stratified by ETS, the top 10% of cases for each day were

termed the well forecast, or o0good, 6 cases

Obad, 6 cases. Day 1 Ilachcdses2day3 hgd®295djood caseeasd a n d

255 bad cases, and day 5 had 272 good cases and 274 bad cases, as two good cases were

erroneously omitted.

2.2. Synoptic Classification/Categorization
2.2.1. Categorization Process

Once the well forecast and pooftyecast cases were determined, the next step was
to categorize them according to synoptic pattern. Table 2.1 displays the categories that were
utilized for classification. Categories 1 and 2 were combined soon after categorization began,
as it was eviderthat determining whether the precipitation was frontal or not would be too
difficult and subjective given the available data. Categoriésvkre identical to categories
8-14 respectively, except that the first 7 categories were strongly forced (at Xkt jet
at 300 hPa or a fs'vertiis maximun2ad 500 hPa was preséntiwithin
a 600 km radius of the center of the heaviest precipitation), while thedategories were

weakly forced. The last category (15) was for tropsgatemsCategories were choseased
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on some early exploration of the cases and previous research regarding forecasting of heavy
precipitation situations. For example, winter cases weted separately becausgsrification
may not be as good for cases that are below freezing, because of the way snowfall is verified
(Rasmussen et al. 2012he upstream convection category was included due to research by
Mahoney and Lackmann (2007), which showed that modelpeaface is affected by
upstream convection, as described earlier. The general consensus in the research that
convective precipitation is forecasted more poorly than stratiform precipitation (Fritsch and
Carbone 2004; etc.) led to the separation of highhyweotive, stratiform, and moderately
convective cases.

Preconfigured graphical products were examined using the Integrated Data Viewer
(IDV, Murray et al. 2003) for each case. A case example is shown in Figur2gl2The
first frame(Fig. 2.2) consist of the precipitation from the reforecast, the observed
precipitation from the CPC analysis, and the difference between the two. The second and
third frames, shown in F&gy2.3 and 2.4, contain 3 hourly data from the North American
Regional Reanalysis (NRR, Mesinger et al. 2006), which were used to categorize the
synoptic pattern. These parameters include convective precipitation, 2 m temperature, mean
sea level pressure, surface wind barbs, 300 hPa height and isotachs, 500 hPa height and
vorticity, and noisture transport. These three frames were viewed to determine the category
in which to place each case, using the following steps:

1. The approximate center of tiddservedrecipitation that was within the 20 mm
contour was determined. If the precipitativas very spread out or there were distinct

areas of heavy precipitation, an estimated weighted average was used to determine
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the center. The latitude/longitude (lat/lon) of the heavy precipitation center indicated
where to place the center of a 600 km gngg.

. The range ring was used to determine if a case was strongly forced or not. If a 120 kt
jet at 300 hPa or a 20 unit vorticity maximum at 500 hPa entered the range ring, the
case was considered strongly forced.

. If most of the precipitation fell witBurface temperatures below 32°F, as determined
by viewing the 2 m temperatures and freezing line, the case could be considered a
winter case.

. If a highly convective precipitation area was farther south and west of an area of
stratiform precipitation, uggeam convection may have affected the forecast. The
progression of precipitation every 3 hours was viewed to see the precipitation timing;
if the highly convective precipitation took place earlier in the period but seemed to
have an effect on the downsdre precipitation, the case was classified as an upstream
convection case.

. If it seemed possible that the precipitation was related to a tropical system, it was
necessary to check other resour@esh as lists of dates of tropical cyclonis3ee if

there was a tropical system occurring at the time in the area of the precipitation.

. For the remaining cases that were not classified as winter, upstream convection, or
tropical, the last step in case categorization was to determine how convective the case
was.The convective scheme utilized by the NARR is a modified Arakawa and
Schubert (1974) scheme produced by Pan and Wu (1994) (Bukovsky and Karoly

2007). At each gridpoint, the percentage of convection was determined by dividing
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the amount of precipitation pduced by the convective scheme of the NARR by the
total precipitatiorfrom the NARR then this percentage was considered at all
gridpoints to classify the case. If a case had >50% convective precipitation overall, it
was considered highly convective;tihad 1650% convection, it was called

moderately convective; and if there was <10% convection, it was termed stratiform.
Each case was assigned a single category; e.g., if a case was determined to be a
winter case, it was not also counted as a stratiftase.

All cases were also classified separately by their magnitude of moisture transport. The
600 km range ring was also used in this process. If an area of 200 m/s g/kg moisture transport
at 850 hPa&ntered the ring, the case was considered to have stmisture transport.

Moderate moisture transport was considered2@® m/s g/kg, and weak moisture transport

was less than 100 m/s g/kg.

2.2.2. Categorization Results

The breakdown of cases by category and lead time are shown in Takke4. Ear
each lead time (days 1, 3, and 5), the majority of the cases were strongly force/{cat. 1
and most were in the first 4 categories (strongly forced/highly convectiveghktro
forced/moderately convective, and strongly forced/stratiform). The main category with a
significant number of weakly forced cases was the highly convective category for bad cases
(cat. 8 & 9). The other weakly forced categories all contained les2€theases, and some
categories contained none at all for afddlyere was only one weakly forced upstream

convection case (cat. 12) across all lead times, a good one at day 5. Upstream convection
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cases happened only rarely in the strongly forced categaovglbg&at. 5). At all lead times,

there were more well forecast winter cases than poorly forecast ones, though often public
perception is that winter forecasts are typically poor. There were 20 or fewer total winter
cases at any lead time, however. Catego/ and 14 (unsure) were rarely used. The highly
convective category tended to have many more bad cases than good, though this was less
pronounced at day 5. Conversely, the moderately convective and stratiform cases contained
more good cases than badi bnce again, day 5 did not have as big of a discrepancy
between the number of good and bad cases.

The results of the moisture transport categorization are displayed in Tabkg.2.5
There were only 3 cases total that had weak moisture transporteaadéne all poorly
forecasted cases. Each lead time had the highest number of cases in the strong moisture
transport category, though the breakdowns were different between the good and bad cases.
At days 1 and 3, approximately 60% of bad cases had stmorggure transport while 40%
were moderate, whereas the good cases had closer to 90% strong and 10% moderate. Day 5
had somewhat more similar results between the good and bad cases than days 1 and 3, with
the bad cases having about 70% strong/30% mod®i@tture transport, and the good cases
having about 85% strong/15% moderate moisture transport.

It is also insightful to look at how many cases took place during each montB.5-ig.
displays this information for the strongly forced/highly convective. (c&®), strongly
forced/moderately convective (cat. 3), and strongly forced/stratiform (cat. 4) cases. As
described in the introduction, warm season precipitation is not as well forecast as

precipitation in the cool season, which is evident in these gemrsthough the
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meteorological summer months of June, July and August were excluded: May has the highest
number of bad cases by 30 events, with April having the second most with 70 events. The
majority of bad cases in April, May, and September were higniyective, while in winter

months, most of the cases were stratiform or moderately convective. For the good cases, the
month of March had the highest number of cases with 108 events, with November and
December following, with about 80 cases each. Thteiloligion of highly convective cases

was spread more evenly throughout the year for the good cases, though no month had over

30 highly convective events.

2.3. Compositing
2.3.1. Compositing Code

Cases were categorized so that similar events could bpegtdogether, to see if
some patterns were more predictable than others. Also, case categorization helped ensure
somewhat similar events would be compositegsening cancellation in the composites due
to dissimilar eventsEventrelative composites of sas in the same category were centered
on the latitude and longitude of the heaviest precipitation. The compositing code was adapted
from Dr. Chuck Graves at Saint Louis Univers
observed ( NARR) itdde &nd longisudedohusedossisifettie sasds,atist of
parameters to composite, and a center latitude and longitude on which to center the
composite (which was the average lat/lon when taking all cases that went into the composite
into account). The NARRNd the reforecast were first interpolated to a half degree grid so

their composites would be more comparable to each other. Compositing does tend to smear
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out meteorological signa({tackmann et al. 1996; Weisman et al. 2Q@1i since these were
eventrelative composites, this effect is lessened somewhat. Composites of good cases in
each category were done for the NARR data, and composites of bad cases in each category

were done for both the NARR and the reforecast.

2.3.2. Determining Latitudes and Lomitudes for Compositing

The observed (NARR) composites shown in Section 3.1 were Inyackentering each
case on itsat/lon of the center of the heavigstecipitationthatwere found manually as
described earlier in step 1 of categorizatibor the reforecast, however, finding the center
lat/lon for each case needed to be done in an automated way. The reforecast precipitation can
be (and inherently is, for the bad cases) substantially different from the observed
precipitation.The differene in location of the heaviest precipitation madweeitessary to use
centerdat/lons that weréased on the heaviest precipitation inrierecast, because using
the lat/lons from the observed cases proved to smeegftirecastompositeout (Fig.2.6).
It is also helpful to see how the reforecast compares to the observed for its average lat/lon
center, because it gives insight into model behavior, such as whether the model tends to
exhibit consistent bias in location.

To mimic how the center lat/longere manually foundbr the observed cases, the
first step was to heavily smooth the precipitation field of each case to simukd@raated
weighted averagd.his was done utilizing the Gaussian filter in GEMPAK, which smooths
fields by damping lower antipude wavesThen the location of the maximum precipitation of

this smoothed field was found, and the case would be centered on that point instead. This
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created new center lat/lons that were reforenslative for each case. The average lat/lon of
37.67,-87.35 for the reforecast was farther northeast oNtARBRR humandetermined center
lat/lon of 35.43;90.62.

Then, the same code was employed to find automated lat/lons for the observed data.
Though this data already had hundetermined lat/lons of goaglality, it was better to use
the automated lat/lons for both the observed and the reforecast so that the two datasets were
more comparable to each other. Ideally, the automated and the-deteamined lat/lons
should be nearly the same. Table 2.8 digpleow the codeletermined and human
determined lat/lons compare to each other. Though there was some difference between the
two, there were no egregious differencHsese differences are small enough that they would
be contained within the aforemention@ahge rings used to categorize ca3é® latitude
differences and longitude differences were fairly similar to each other, with the exception of
a larger positive residual for longitude. The cald¢ermined average lat/lon of 34.891.18
was southwesgtf the humardetermined lat/lons, placing it even farther southwest from the
reforecast average lat/lon. So, the northeastern shift in the reforecast compared to the
observed was not an artifact of the code, but a true signal, to be explored furthester Gha
Composites of the NARR and reforecast using the automated lat/lons are shown in Section

3.2.

2.4 Precipitation Metrics and Case Elimination

2.4.1 Other Precipitation Metrics and the Drawbacks of ETS

24



When the first round of composites was creatdaecame evident that the good cases
contained much more precipitation than the bad cases. This is likely because of the
downsides of ETS. Since ETS requires a threshold to calculate hits, misses, and false alarms,
there are occasions whgndpoints areonsidered hits when they are subjectively poorly
forecast, and misses and false alarms when they are subjectively well forecast. For example,
if the forecast calls for 20 mm of precipitation, but 100 mm of precipitation falls, that would
be counted as athusing the ETS because both are at least 20 mm, but a significantly higher
amount of rain fell in the practical sense. Similarly, if the forecast calls for 20 mm of
precipitation, but 19 mm of precipitation falls, this would be considered a false atarm b
ETS, though most would consider that a good forecast. Thus, the ETS can falsely categorize
a case as being badly forecast if the rainfall totals are flirting right around the threshold. This
is especially egregious at days 1 and 3 when looking at averegitation for each case
(Figs. 2.7-2.9, further explained below). The composite amount of precipitation for the good
cases is also significantly higher than the composite amount of precipitation for bad cases. It
is possible there are fewer subjectivbad cases at these lead times, and many of the
supposedly poorly forecast cases were right around the ETS threshold, since a
disproportionate number of cases had lower precipitation for the bad cases compared to the
good. This is one reason that thisearch focuses mainly on the day 5 lead time cases.

Wang (2015) noted this tendency of the threat score (similar to ETS, but simpler in
that it does not take into account the hits expected by chance) in his article discussing rainfall
forecasts for typhoanin Taiwan. He claims the model performs better for heavier rainfall

events because the model can capture the precipitation mechanisms, but also because the area
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of hits for the threat score is larger when there is more precipitation (Wang 2015).
Precipittion verification metrics that use this contingency table of hits, misses, false alarms,
and correct negatives have this tendency. Thus it can be useful to employ additional forecast
skill metrics to further investigate forecast quality.

Therefore, two aditional metrics were utilized for this research: mean absolute error
(MAE) and bias. MAE is the difference between the observed and reforecast precipitation
taken at each point and averaged. The higher the MAE, the bigger the difference between the
two, 0 the forecast is considered worse; an MAE of O is perfect. The bias is a measure of
whether the reforecast tended to un@eroverforecast the precipitation. A bias of 1 is
considered perfect, or unbiased, while a score under 1 represents an undédockaacore
over 1 represents an overforecast by the model (Wilks 2011, chapter 8). All the cases that
were found to have heavy precipitation were also ordered by MAE, so the <10th and >90th
percentiles for the MAE could be compared to the same peesfdil ETS. This is shown in
Table 2.9. Only a minority of cases are shared in the top and bottom 10% of ETS and MAE.
There are about 20% of cases that are shared between both the best cases for MAE and ETS
at all lead times; the model predicted the amadiprrecipitation well (MAE) and its
placement well (ETS) in those caseslicating these were the best forecastee amount of
cases that were in the bottom 10% (were considered badly forecast) for both metrics
increased with longer lead time; day 5 liae highest percentage of shared cases with about
29%. These were the cases that were poorly forecast for both amount and placement of
precipitatiorii the worst forecast$iowever, there were some cases that were considered bad

using one metric but good ftire other. A bad ETS/good MAE case would mean that the
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precipitation was placed poorly, but the amount of precipitation was forecast wathjgimd
indicate thathe amounts were fairly low so there was less of an error magnitude. A good
ETS/bad MAE caswould have excellent placement in where the model predicted the
precipitation, but the amountsowld not be forecast well, amamountscould behigh,
contributing toan error magnitude. The disadvantage of MAE could be called the opposite of
ETSO0s it agqelvaMAEOS bad cases are biased towa
model forecasts 80 mm of precipitation for a case but 100 mm of precipitation falls, this
would be a large MAE of 20 mm, though subjectively fairly well forecast.

The aggregate MABNd bias are displayed in Table§-2.8, along with the ETS for
each categoryror most categories, there is higher MAE for the bad ETS cases than the
good as shown by the last column in each tabhes fortunately indicatethat the bad cases
are notonly worse for ETS, but generally for MAE as wdlhis is not a guaranteed result
as described above, a case that performs well with ETS will not necessarily perform well
with MAE (i.e., a case that had precipitation well above the ETS threshold ineoth t
forecast and observed). But this builds confidence that the cases defined as bad and good by
ETS were welldefined.The biases under 1 ftine badly forecast categoriehownreveals
that the model tends to underforecast the precipitation. This is especially egregious at the day
1 lead timeBiases for the good cases are close to the perfect score of 1 at all lead times for
the categories shown, however, indicating that thereefst is not systematically
underforecasting precipitation at all times. Also notable isgttablesis how much worse

the ETS is for the good cases at day 5 compared to days 1 and 3. Though they are all the top

27



10% of cases, the quality of the bestesais worse at longer lead times because forecasts are
worse further out in time (Baxter et al. 2014).

Exploring metrics like MAE and bias yield some additional insight into the character
of the heavy precipitation cases, as seen above. There are more medigcs used for
verification, such as spatial techniques like the fractions skill score and Method for-Object
Based Diagnostic Evaluation (MODE), as described by Wolff et al. (2014). Venugopal et al.
(2005) described the forecast quality index, whioimbines image analysis and nonlinear
shape comparison features to verify precipitation forecasts. However, the ETS and
supplemental information from MAE and bias were sufficient for the scope of this research;
by using a combination of ETS, MAE, and biesmposite samples that provide insight into
model error sources and patterns of high and low predictability were able to be constructed
Furthermore, forecasters and researchers are familiar with the metrics that were utilized,

which is an advantage of ngj these common metrics

2.4.2. Case Elimination

The tendency of ETS to disproportionately single out cases that were closer to the
threshold had to be accounted for, as described below. This research takes that into account
by eliminating cases that wevery close to the ETS threshola Figs. 2.7-2.9 show, each
case was sorted into its average precipitation. At each lead time for the strongly forced/highly
convective cases, the cases (both good and bad) starting from the lowest average
precipitation vere eliminated up until the good and the bad contained approximately the

same number of cases. This eliminated many more bad cases than good cases, with the
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intention of removing the ones that were right around the 20 mm threshold, and evening out
the numler of bad and good cases for a better comparison of the composites. For day 1, this
led to 27 cases being left in the bad cases, while 25 good ones remained, as cases that had
less than 27 mm on average were eliminated. At day 3, cases with less thann2enm
eliminated, leaving 32 bad cases and 33 good cases. At day 5, fewer cases were eliminated,
as the numbers of bad and good cases were closer to begin with. Cases with less than 24 mm
were excluded, leaving 48 bad cases eéhddod cases. One reasorstresearch focuses

mainly on day 5 cases is because fewer cases were eliminated from the composite. In this
way, we were able to isolate meteorological signals and avoid results that were an artifact of

the verification metric.

2.5. Choosing a Case Study

The strongly forced, highly convective case composites with a day 5 lead time are
shown in Section 3.2. The primary goal of choosing a case gtvelsented ilChapter 4)
was to find a case that exemplified the behaviors found in those composites$ tke tase
could be considered representative of the composite. Only cases past the year 2000 were
considered, so that supplementary information such as radar data and surface analyses would
be availableTo choose potential case studies, the synoptipge&0 hPa wind and height,
500 hPa vorticity and height, 850 hPa height and temperature, and@00@Pa thickness
and sea level pressure) was taken into consideration for each casebgutivelycompared
to the composites. The potential case studie® all included in the composite, not excluded

due to low average precipitation. Additionally, cases that were very near the border of the
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domain were not selected. This left seven potential cases. Then, other factors such as specific
humidity differenes at 850 hPa, potential vorticity (PV) from 8800 hPa, and pressure on

the dynamic tropopause (to represent upper level PV) were considered. The evolution of each
case was viewed for both the NARR and the reforecast. The case taking place-t@m 11

April 2013 was chosen to be explored in Chapter 4 due tpéktativesimilarities with the

composites and its interesting forecast evolution.
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Table 2.1:

Categories in which each case was placed, and their descriptions.

ﬁitrﬁgg:y Forcing Category Type
1 >50% convective, possible severe reports, no front pre
2 Stronalv Forced >50% convective, possible severe reports, front preser
3 gy 10-50% convective, few to no severe reports
4 (12.0 Kt jet or 20 <10% convective

unit vort max >50% convective upstream from significant precip <50
5 within 600 km )

range ring) co_nvectlve_ - -
6 Winter (Majority of precip error where T<32°)
7 Unsure
8 >50% convective, possible severe reports, no fpoesent
9 >50% convective, possible severe reports, front preser
10 Weakly Forced | 10-50% convective, few to no severe reports
11 (conditions for | <10% convective

strongly forced | >50% convective upstream from significant precip <50
12 )

not met) convective
13 Winter (Majority of precip error where B2°)
14 Unsure
15 N/A Tropical
Table 2.2: The number of cases that werequan each category for ealdad time.
Category Day 1 Day 3 Day 5

Bad Good Bad Good Bad Good

1and?2 68 25 82 37 76 56
3 42 48 40 84 66 77
4 45 92 57 80 59 82
5 4 1 1 0 0 2
6 2 11 3 10 6 10
7 1 0 0 0 1 1
8and 9 56 6 51 5 32 11
10 16 8 16 4 17 12
11 10 5 3 5 7 4
12 0 0 0 0 0 1
13 0 1 0 2 0 1
14 0 0 0 0 4 0
15 0 47 2 28 6 15
Total 244 244 255 255 274 272
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Table 23: The number of cases that were placed in each moisture transport categachfor

lead time. Strong moisture transport is >200 m/s g/kg, moderate-{8Q06/s g/kg, and

weak moisture transport is <100 m/s g/kfe total number of cases for each laaeetfor

the bad and good cases is in parentheses in the second row. The number of events as well as
the percentage of events out of the total is indicated.

Moisture
Transport Day 1 Day 3 Day 5
Category
Bad Good Bad Good Bad Good
(244) (244) (255) (255) (274) (272)

Strong 144 (59%) | 222 (91%) | 153 (60%) | 235 (92%) | 194 (71%) | 234 (86%)

Moderate | 100 (41%) | 22 (9%) | 100 (39%) | 20 (8%) | 79 (29%) | 38 (14%)

Weak 0 (0%) 0 (0%) 2 (1%) 0 (0%) 1(<1%) |0 (0%)

Table 24: Comparison of center latitudes and longitudeswree determined by the code
(automated) and those that were hurdaterminedor strongly forced, highly convective

day 5 bad case3he RMSE is the root mean square error. Longitudes are negative because
they are degrees west of the Prime Meridian.

Latitude | Longitude
Center Determined by Undergrads | 35.43 -90.62
Center Determined by Code 34.85 -91.18
Average Residual (Coddndergrads) | -0.58 -0.56
Average Positive Residual 0.63 1.44
Average Negative Residual -1.22 -1.06
RMSE 1.25 1.43

Table 25: The percentages of the best and worst forecasts shared by MAE and ETS.

Case Type Dayl |Day3 | Dayb5

Bad ETS/Bad MAE 6.1% |145% |29.2%

Good ETS/Bad MAE |53% [55% |3.3%

Bad ETS/Good MAE [4.1% |16% |0

Good ETS/Good MAE | 20.9% | 19.6% | 20.8%

Table 26: ETS,Bias, and MAE by category for day 1 cases. # refers to the number of cases.
Only categories with a sufficient number of both bad and good cases are included.

Day Day Bad
1 # | ETS | Bias | MAE 1 # |ETS |Bias |MAE | Good
Bad Good MAE
land2| 68 | 0.005| 0.49 |4.9 land2/ 25 | 0.588 | 1.00 |5.2 -0.3
3 42 |10.018] 0.53 | 4.9 3 48 0591 |1.00 |45 0.4
4 45 10.007/0.59 |43 4 92 |0.612 |1.02 |35 0.8
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Table 27: ETS, Bias, and MAE by category for day 3 cases. # refers to the number of cases.
Only categories with a sufficient number of both bad and good cases are included.

Day Day Bad
3 # ETS Bias | MAE 3 # ETS Bias MAE | Good
Bad Good MAE
land2| 82 |-0.015|/0.80 | 6.8 land2| 37 | 0.476 {094 |58 1.0
3 40 |-0.015|0.69 | 6.5 3 84 10480 [1.00 |6.1 0.4
4 57 [-0.021]0.89 | 6.3 4 80 | 0508 {098 |43 2.0

Table 28: ETS, Bias, and MAE by category for day 5 cases. # refers to the number of cases.
Only categories with a sufficient number of both bad and good cases are included.

Day Day Bad
5 # ETS Bias | MAE 5 # ETS Bias MAE | Good
Bad Good MAE
land2| 76 |-0.030|0.87 |9.2 land2| 56 | 0.373 | 0.98 |6.3 2.9
3 66 |-0.032(0.86 |10.5 3 77 10379 | 0.9% 6.5 4.0
4 59 [-0.039|0.97 | 8.9 4 82 | 0376 {098 |55 34
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Figure 2.1: The domain of this research, termed the Southeast. The ETS was calculated at
each point circled in yellow; offshore points were not uSée. red box displays an example
of 5% of the gridpoints.
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Figure 2.2: An example of the first frameatase viewed in IDV. The leftmost frame

displays the precipitation from the reforecast, the middle panel shows the observed
precipitation from the CPC analysis, and the rightmost panel exhibits the difference between
the two. The precipitation is shadedmm, and the black contour contains the precipitation

of at least 20 mm.
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Figure 2.3: An example of the second frame of a case viewed in IDV. The leftmost panel
contains the 3 hr accumulated precipitation from the NARR, as well as an overlay of the
percentage of the precipitation that was convective, shaded from less than 10% convective
(yellow), 1050% convective (blue), and greater than 50% convective (red). The middle
panel contains the 3 hr precipitation from the convective scheme of the NARRaf¢leop

the right consists of the 2 m temperature (shaded), the freezing line (red contour), the mean
sea level pressure (MSLP) (pink contours), and the surface wind barbs.
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Figure 2.4: An example of the third frame of a case viewed in IDV. The lefraost is

composed of the isotachs (shaded) and height (black contours) at 300 hPa, with values of 120
kt or higher in the red contour. The middle panel contains the vorticity (shaded) and height
(black contours) at 500 hPa, with vorticity values of asi€® units (19 s?) in the red

contour. The rightmost panel is for categorizing strength of moisture transport. This panel
contains specific humidity and wind at 850 hPa multiplied, with a red contour surrounding

the moderate moisture transport (W m/s g/kg) and a blue contour surrounding strong
moisture transport (200 m/s g/kg).
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Figure 2.5: The number of cases that occurred in each month, for the combination of day 1,
3, and 5 lead times for good (top) and bad (bottom) cases. Cases dassiitegory 1&2

are shown in blue, category 3 cases are in red, and category 4 cases are in green. The
categories are as described in Table 2.1.
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Figure 2.'6:Eomparison of compositing precipit'ati'ori from the reforecast using the observed
latitudes andongitudes compared to the reforecesative ones. The left panel is observed
relative, and the right panel is reforecesftive.
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Day 1 Cat. 1 and 2 Observed Precip Averages
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Precipitation

Figure 2.7: The average precipitation for each case, with bad cases in blue and good cases in
red, for a day 1 leatiime in the strongly forced/highly convective category. Cases to the left
of the black line were eliminated, and the new total number of cases is at the top in red.
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Figure 2.8: Similar to Figure 2.7, but for a day 3 lead time.
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Figure 2.9: Similato Figure 2.7, but for a day 5 lead time.
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3. Compositing Results

As described in Chapter 2, evaetative composites were created for cases in the
same categories that were descrilme@able 2.1 This chapter focuses on these composites in
the firstcategory, the strongly forced/highly convective events. This category had more
poorly forecast (O0Obadd) cases than well fore
that this pattern has lower forecast saild predictabilityTherefore, it is usful to study this
category further to learn about model forecasts for these events and identify shortcomings
and increase forecaster awareness of error sources for this event category. The composites in
this chapter are based on the reduced set listssasilbed in Section 2.4.2, which are
intended to (a) lessen the effect of the ETS threshold issue and (b) ensure that the good and
bad composites have approximately the same number of cases. The day 5 lead time had the
fewest number of cases eliminateditaggood and bad precipitation amounts were most
similar to each other, whereas at days 1 and 3, the average precipitation was much higher for
the good cases than the bad. Particularly at days 1 and 3, it is possible that some of the bad
cases were chosamainly as an artifact of the ETS threshold rather than being subjectively
bad forecasts. Section 3.1 compares well forecast and poorly forecadtaasit®e NARR
beginning with the day 5 lead time, and Section 3.2 examines the reforecast behavior

compaed tothe NARR and focuses solely on the day 5 cases.

3.1. Comparison of Well Forecast and Poorly Forecast Casigsthe NARR
Section 3.1 compares the well forecast/ hi

poorly forecast/ | ows,withthedgpataf andwiering theyirstfeddarahd 6 ) ¢
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guestion: what meteorological patterns tend to exhibit relatively high and low forecast skill?
These cases were determined by the reforecas
here at the time of eéhprecipitation event. This is so that the actual synoptic setup of events

when the model does well can be compared to the synoptic setup of events when it does

poorly. The composites in this section are centered omineuallydetermined lat/longout

asshown in Section 2.3.2 and Table 2.4, the differences between the manually determined

and automated lat/lons are sm&ubsections 3.1.1, 3.1.2, and 3.1.3 cover the day 5, day 3,

and day 1 lead timesespectively, with 3.1.4 providing a summary and brief discussion.

3.1.1. Day 5 Lead Time

Figs. 3.1 and 3.2 contain a synoptic overview ofNW&RR bad and good case
composites, respectively, for the strongly forced, highly convective cases at éeddy 5
time. Details of the synoptic fields are explained in the caption for Fig. 3.1. Both the bad and
good cases are characterized by a trough at all pressure levels with its axis through the central
U.S. Higher vorticity values occur in the base of tloegh, particularly in the Central Plains,
in both the bad and good cases (Figs. 3.1b and 3.2b). However, the magnitude of the
composite vorticity is larger for the good cases compared to the bad. This signal of stronger
synoptic forcing for the good casiesalso evident in the 250 hPa isotachs (Figs. 3.1a and
3.2a), which show a higher magnitude and better defined jet in the base and downstream of
the trough axis for the good cases compared to the bad. Though the surface low in Figs. 3.1d
and 3.2d has a n&ral pressure of 1006008 hPa for both the good and bad cases, the isobars

are more tightly packed around the low in the good cases, as a stronger high exists in the
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western Atlantic for the good cases. This high can be seen just off the coast ofikltrela
850 hPa heightsfohe good cases as well (FBj2c). Tighter isobar packing corresponds to
stronger winds and therefore stronger moist southerly flow from the Gulf of Mexico in the
good cases. There are indications of a warm front stretchingeasttof the low in both bad
and good caseas 850 hPa temperatures (Rdlc and 3.2c ) antin00-500 hPa thicknesses
(Figs. 3.1d and 3.2d) both bulge northward northeast of the low. Generally, the good cases
have colder 850 hRamperatures (Fg3.1cand 3.2c¢) than the bad cases. As discussed in
Section 2.2.2 and Fig. 2.5, the majority of bad category 1 cases occurred in May at all lead
times, with April being second and meteorological winter having the least number of cases.
The good cases are moreealy spread throughout the year, which could account for the
cooler 850 hPa temperatures in the good cases compared to the bad. The spatial patterns,
including the location of the trough, of both the good and bad cases are fairly similar, but one
difference is that the surface low in the good cases is somewhat farther southwest compared
to the bad cases.

Poorly forecas(Fig. 3.3a)cases tend to have more convective available potential
energy (CAPE) thathe well forecast cases (Fi§.3b), with the maximunseveral hundred
J/kg higher. The highest values for both are over the Gulf of Mexico, and the highest values
over land protrude particularly into eastern Texas and the Lower Mississippi Valley. The area
of relatively high CAPE extends fagheastward ithe bad casesamely, into the Deep
South. One reason for higher CAPE in the bad cases is likely because of the previously
mentioned warmer low level temperatures, one element of the calculation of CAPE, and

potentially higher moisture in lower levels\asll.
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Cases at a Day 5 lead time seemed to be least affected by the ETS threshold issue
described in Section 2.4.This is evident from Fig3.4, which contains the 24 hour
precipitation. The day 5 lead time had the least cases eliminated, as indica¢etion
2.4.2, and was also the lead time that had the most similar precipitation magnitudes between
the good and bad cases. The difference in the maximum precipitation is only about 6 mm,
and the areal extent of the precipitation >12 mm is approximiuelyame. Spatially, the
center of the heaviest precipitation is farther southwest in the good cases (b) compared to the
bad (a). This is consistent with the slightly southwestern surface low placement in the good
cases ([. 3.2d) vs. the bad cases (R3gld). A difference in low placement would affect the
location of the previously discussed warm front that tends to stretch eastward and
northeastward from the low, and as precipitation often falls along and near a warm front, the
precipitation displacemérould be related to thaDverall, well forecast cases tend to have
stronger forcing in the upper troposphere, lower CAPE, and heavier precipitation than poorly

forecast cases at a day 5 lead time.

3.1.2. Day 3 Lead Time

NARR synoptic fielcs at the da® lead time (Fig. 3.5 and 3.6) generally show
similar patterns to the day 5 synoptic fields. A broad trough is present over the central U.S. in
both good and bad cases, but this trough is significantly deeper in the good cases. A ridge
building in the ea®rn U.S. contributes to the pattern being higher in amplitude in the good
cases. Oreagain, the 250 hPa jet (Bi@.5a and 3.6a) anddtb00 hPa vorticity (Fig 3.5b

and 3.6b) are considerably stronger for the good cases. The high in taenwdkantc at
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850 hPa (Fig 3.5c and 3.6¢)rad in sea level pressure (Bi@.5d and 3.6d) is much farther
west in the good cases, creating a tighter pressure gradient across the SEUS between it and
the surface low. For day 3, the lows have similar placemerminitral to east Texas, though
marginally farther eastward in the good cases, as well as a similar central pressure.
The CAPE for the bad cases is higher than it is for the gs®Ebea a day 3 lead time
(Fig.3.7), as it was at day 5. The highest valueSAIPE occurred over the Gulf of Mexico
and southeastern Texas. CAPE extends throughout the SEUS; higher CAPE amounts exist
through Florida and near the Gulf Coast in the bad cases (a) compared to the good (b).
The composite amount of precipitation in theglrases is substantially $ethan in
the good cases (Fi§.8). Maximum precipitation in the composite of the bad cases (a) is 24
30mm, whereas in the good cases (b) it 548nm. This signal exists even though the cases
with the lowest precipitation @re eliminated. The location of the heaviest precipitation is

similar, however

3.1.3. Day 1 Lead Time

Figs. 3.9 and 3.10 display tiéARR synoptic fields for day 1. Once again, a
substantially deeper trough is present for the good cases compareddd,the Shown by
heights at all levels. The jet 8@ hPa for the bad cases (RBgPa) is stronger than at days 5
and 3, but still not as well defined meridionally and as fatlsas in the good cases (Fig.
3.10a). This and the comparatively zonal 250 and 50thkigats in the bad cases (F&Rb)
compared to the good (Fig.10b) suggests a more progressive steering flow for the bad

cases. The vorticity at 500 hPa is of higher magnitude and is fartttbrisdbe good cases
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compared to the bad (Hg3.9b and 3.10b), again indicating stronger synoptic forcing. 850
hPa temperatures are generally warmer fob#mcases than the good ($-i8.9¢ and
3.10c), as described in the day 5 composites. Sea Imsdyes indicated low pressure
systems under 1008 hPa for both good and bad cases, but a substantial high near Cape Cod in
the good cases, much stronger than the highs in the Atlantic and northeaStamthe bad
cases, createdmessure gradiemia was higher in magnituder the good cass (Fig. 3.9d
and 3.10d). Sea level pressures east of the low are almost purely meridional for the good
cases, while there is more of a zonal element for the bad cases, indicating somewhat more
easterly flow/moigire transport from the Gulf of Mexico for the bad cases.

At day 1, CAPE has a somewhat different distribution than it does at days 3 and 5,
particularly for the bad cases (Fi§.11). The axis of the highest CAPE is southwest to
northeast in the bad cag@g, compared to the south to north axis in the good casegh(b).
suggests a more progressive cold front in the bad cases, consistent with the more progressive
steering flow in the bad casd$ie magnitude of the highest CAPE is similar between the
goodand bad cases at day 1, though the area over land of the higher CAPE is larger for the
bad cases than the good.

Even though cases that were on the lower end of average precipitation were excluded
Fig. 3.12 displays the substantial precipitation diffeesbetween the bad (a) and good (b)
cases at dayfl in the composite maxima, the good cases have >30 mm more than the bad
cases. The area covered by moderate precipitation of >12 mm is considerably larger for the

good cases for the bad cases. Another mdiffee worth noting is the axis of precipitation. The
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good cases have an axis that is more south to north compared to the bad cases. This is

consistent with the more meridionat in the good cases that was noted above.

3.1.4. Summary
At lead times of day/5, 3, and 1, both well forecast and poorly forebssRR
strongly forced, highly convectiveases are characterized by precipitation that occurs east of
a broad scale trough in the central U.S. and centered northeast of a surface low. There is
generallystronger forcing for good cases at all levels, higher CAPE for bad cases, and
heavier precipitation for good cases (much heavier at days 3 and 1). Stronger forcing can lead
to heavier precipitation because of increased moisture transport and enhancedsmescha
for ascent. These results indicate that high predictability situations are those that are more

strongly forced.

3.2. Comparison of NARR and Reforecast Conditions

Section 3.2addressethe second research question: how do models differ from what
was observed, and what are the causes of those differences? It does this by comparing the
conditions that were analyzed by the NABRthe day of the event at 00 UTC (the midpoint
of the event g our definition) to the conditions that were predicted by the reforecast at 120
hours, also 00 UTC. Precipitation is the exception, as it is shown as a 24 hour total from 12
UTC to 12 UTC. Section 3.2.1 describes the similarities and differences beheegmoptic
fields and precipitation of the reforecast and NARR, Section 3.2.2 enumerates the differences

in the masture fields, Section 3.2.3 explores differences in stability, and Section 3.2.4
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compares potential vorticity (PV) fieldall for the poony forecast caseSection 3.2.5 looks
at the differences between the NARR and reforecast for the well forecast cases, to see if the
biases the reforecast had for the poorly forecast casesSaolithn 3.2.6provides assummary
and describes compositing lilations The composites in this section are centered on the

objectively determined lat/lons that were at the centroid of the precipitation region.

3.2.1. Synoptic Fields and Precipitation

The synoptic fields for the NARR and reforecast are faimyilar at first glance (Fig.
3.13), but as these are composite fields, which average out case to case differences, even
small differences between the two can indicate common model behaviors. The reforecast (b)
indicates a trough across the central U.S. sirtoldhe NARR (a), but this trough is slightly
deeper throughout the Plains aadHer east in the reforecatis is also evident from the
difference field shown in Fig. 3.14, which shows that the reforecast 500 hPa heights are
generally deeper across tHeS., but especially on the eastern side of the trough, signaling an
eastward shift in the reforeca$his deeper trough is consistent with the more widespread
area of higher vorticity near the trough axis in the reforecast compared to the NARR. The sea
level pressure fielth Fig. 3.13exhibits a low in the Southern Plains to Lower Mississippi
Valley of a similar magnitude in the NARR and reforecast, under 1008 hPa. This low is too
far northeast in the reforecast, however. Additionally, the high in dstern Atlantic is too
strong in the reforecast, which led to a tighter pressure gradient, increasing flow east of the

low in the SEUS compared to what occurred.
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Despite the slightly stronger forcing mechanisms for the reforecast indicated above,
precipiiation in the reforecast (Fig. 34) is lighter than the NARR precipitation (Fig. 8a).
The maximum precipitation in the composite is ~20 mm lighter in the reforecast, consistent
with previously cited studies such as Baxter et al. (2014) and Siddiqu€2215), which
demonstrated that the reforecast tended to underforecast heavy precipitation amounts. 41 of
the 48 cases comprising the composite were underforecast. As the forcing mechanisms for
heavier precipitation and southerly flow transporting tunesare present and even slightly
too strong in the reforecast composite,hderforecasprecipitation in the reforecast could
be due to lack of available moistumhich will be explored nexgnd/or less instability
explored after thatAdditionally, the reforecast precipitation is centered too far northeast

compared to what occurred, consistent with the northeastern low bias.

3.2.2. Moisture Fields

Several moisture fields are presahbelow to further explore tlavailable moisture
in the reforecast, including 850 and 700 hPa specific humidity and moisture flux, and
precipitable water. Fig. 36ldisplays the 850 hPa specific humidity, which peaks in the
Lower Mississippi Valley in the NARRwhile the reforecast peaks farther eastststent
with its synoptic fields. The specific humidity in the NARR has a higher maximum by about
1 g/kg than the reforecast predicts. Higher values ilN(WRR continue southward into the
Gulf of Mexico.The difference field of specific humidity at tHessel shows this as well,
with generally lower specific humidity in the reforecast, but an area of specific humidity that

is too high in the area where the reforecast predicted its peak precipitation (Fig. 3.17). The
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coupled lowest and highest differentegween the NARR and reforecast demonstrate the
reforecast ds n dhewindsm the referdcastwere slightlywtsohger than
what occurred, particularly near and east of the specific humidity maximum.
The moisture flux (the specific humigimultiplied by the wind) at 850 hPa has a
larger maximum in the reforecast (Fig. @) compared to the NARR (Fig. 34), on the
other hand. The stronger winds in the area of the highest specific humidity were able to
compensate for the lower specifigrhidity values in the reforecast, leading to larger
moisture flux valuesThe difference in isotachs between the NARR and reforecast at 850 hPa
display the overforecast wind speeds in the reforecast in Fig. 3.19. In the reforecast, the
stronger winds aredansporting moisture farther north that in the NARR, consistent with the
other errors observeBor both the NARR and reforecast, the centers of the strongest
composite moisture flux are both just south of where their maximum precipitation occurred.
Sincemoisture decreases higher in the atmosphere, the specific humidity values at
700 hPa are lower than at 850 hPa. However, they show a similar pattern, with the largest
values in the Lower Mississippi Valley in the NARR (Fig@), but the peak values faer
northeast in the reforecast (Fig2@). At 700 hPa, the specific humidity is once again too
low in the reforecast compared to the NARR. However, at this level, the peak is
approximately the same attbg/kg. The lower values are found especiallthie Gulf of
Mexico in the reforecast, as there is a oObre
of Mexico and over land. The magnitudes of the 700 hPa wind are approximately the same

over most of the area.
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The moisture fluxes at 700 hPa (FiB.are less than those at 850 hPa due to the
lower specific humidity. The areal distributions are similar, however, peaking in close to the
same locations, though slightly north of where they were at 850 hPa. Once again, the
maximum is too far northeast the reforecast (b) compared to the NARR (a). The maximum
composite moisture flux is slightly higher in the reforecast, though the difference is not
nearly as substantial as it was at 850 hPa. The similar values in the reforecast and NARR for
both wind ad maximum specific humidity prescribed similar maximum moisture flux
values.

Precipitable water is also beneficial to utilize because it is the total water vapor
integrated over the whole atmospheric colyammd thus includes the boundary layer
moisture As expected, since there was less moisture at both 850 and 700 hPa, precipitable
water is too low in the reforecast (Fig223b) compared to the NARR (Fig.22a). The
reforecast has a maximum value betweed3%nm, as does the NARR, but the areal extent
oo the highest precipitable water i s much sm
largest values over the Gulf of Mexico, as there was in the specific humidity fields.
Additionally, the area of the highest precipitable water is too far ettst ireforecast; this
shift is consistent with the synoptic fields, 24 hour accumulated precipitation, and other
moisture fields.

It is important to consider if this dry moisture bias of the reforecast is mainly a
consistent difference in the two datagsether than a model bias issue. To examine this
possibility, the composite 850 hPa specific humidity and winds of the reforecast (Big). 3.2

are compared to the NARR (Fig. 38 once again, but this time, the reforecast initialization
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Is shown rather thathe 120 hr forecast, and the NARR composite is the data analyzed 5
days before the everit this point, both datasets are analyses, so neither is considered more
correct than the other, bdtthe reforecast initializedimilarly, it should look nearlydentical

to the NARR. The main difference between the reforecast and the NARR is that in the
observations, a tongue of slightly higher specific humidity can be seen through the western
Gulf of Mexico and into eastern Texas and Oklahoma in the NARR dhaieh) the

reforecast does not duplicate. Nevertheless, on the whole, the refesetzsistystematically

drier than the NARRs itis at the longer lead time when the event took place. Thus, at some
point between the initialization time and the event, tnogsof the correct magnitude does

not advect into the area where the event took place.

3.2.3. Stability Fields

As these were the highly convective events, it is beneficial to view a measure of
stability/instability. CAPE was utilized to describe instatyilin Section 3.1 when comparing
the bad and good cases from the NARR, lugt @ possible differences in the way CAPE is
computed between the NARR and reforecast datasets, a simpler measure, tb@e01ioRa
lapse rate, will be discussed here (Fig43.t both the NARR (a) and reforecast (b)
composites, the highest lapse rates occur farther west frorotiy@ositeorecipitation
maxima,into the Southwest and Texas. Higher lapse rates extend eastward into the SEUS,
especially south of where the heaviesdcipitation occurred. In the area of its greatest

precipitation, the reforecast has slightly lower lapse rates than the NARR in its area of
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heaviest precipitation. This slightly increased stabthgrecould be one contributor to the

precipitation beag too low in the reforecast.

3.2.4. Potential Vorticity Fields

Potential vorticity (PV) is often utilized to describe weather systems and for model
evaluation (for example, Morgan and NielsBammon 1998; Davies and Didone 2013). A
measure of PV is presare on the dynamic tropopause, which is presented in Fgfd.the
NARR (a) and reforecast (b), along with winds on the dynamic tropopause. A higher pressure
on the dynamic tropopause indicates that the tropopause is at a lower height there,gndicatin
where a trough is. The trough in the central U.S. is evident in both the observed and
reforecast data, and its slight northeastward tendency in the reforecast is seen especially
across Wyoming, Colorado, and the Central Plains. A stronger ridge seleengrsent in
the eastern U.S. in the reforecast compared to what ocgthi®ds not consistent withigs.
3.13 and 3.14, which showed the reforecast having lower 500 hPa heights across most of the
U.S. However, pressures tend to be lower acrosw/time domain for the reforecast, which
could be due to differences in how the tropopause is determined in the two datasets. Another
field plotted here are winds on the dynamic tropopause, which displays the wind in the core
of the jet for the composite. €htrough in both the NARR and reforecast are lifting, as
shown by the stronger winds on the eastern side of the tthagthe western sidéhe
NARR has slightly stronger winds for much of the domain compared to the reforecast. On
the western side of theough, the winds have a more westerly component in the reforecast.

A stronger background westerly flow would contribute to a faster trough, consistent with the
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Rossby wave phase speed equation. This is one contributor to faster movement in the
reforecast

The composite lowetropospheridV from 858700 hPa and 850 hPa winds are
plotted in Fig. 3.B. The lowlevel PV was maximized in the Lower Midwest, northwest of
the heaviest precipitation, and northeast into the Great Lakes. Interestingly, eventiigough
reforecast cases contained lower precipitation and therefore less condensational heating, the
low level PV had a slightly higher maximum in the reforecast than what was obsEneed.
location of the maximum low level PV is slightly east of the maximvonticity and slightly

northeast of the base of the trough.

3.2.5. Comparison of NARR and Reforecast for Well Forecast Cases

It is useful to explore reforecast performance of the well forecast cases for the
strongly forced, highly convective cases & tlay 5 lead time, to see if the biases that the
reforecast was found to have for the poorly forecast caseshhodd.of the biases present for
the bad casescluding thetendency of the reforecast to underforepastipitation are not
seen in the gabcases, as described below.

The 500 hPa heights and vorticity display that the reforecast has different behavior
for the good cases than bad (Fig. 3.27 and 3.28). The reforecast (Fig. 3.27b) has a less
focused area of maximum vorticity and lower vortisiglues compared to the NARR (Fig.
3.27a), unlike the bad cases, which had more equivalent to slightly stronger vorticity in the
reforecast (Fig. 3.13). While the bad cases contained a trough that was systematically too

deep in the composite and shifted far east, the good cases do not see this behavior by the
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reforecast. The difference field for the good cases indicates slightly lower heights in the
reforecast in the southern U.S., but slightly higher heights farther north, and no eastward shift
(Fig. 328). One similarity between the good and bad cases is that the sea level pressure field
shows a high in the reforecast that was too strong in the western Atlantic in both. The low in
the reforecast is shifted slightly too far northeast compared to theRNARe good cases,
which is similar to the bad cases as well.

For the bad cases, the reforecast underforecasted the precifiiaéibout 20 mm
and was shifted northeast compared to the NARR (Fig. 3.15). For the good cases, the
reforecastwhich contaned a composite maximum precipitation~&7 mm, (Fig. 3.29b)
actually contained slightly higher maximum precipitation than the NARRch had a
maximum of~52 mm in its composité-ig. 3.29a) Thusthe claim that the reforecast is
usually too lightcannot be generalized to all cases, but is confined to the bad cases. One
possible contributing factor to this is the previously discussed behavior of ETS to favor
heavier precipitation that is far from the threshold. The reforecast will score well W&h E
when the precipitation is placed adequately and both the observed and reforecast
precipitation is well above the threshold. Excluding cases initially that had lower
precipitation close to the threshold may have minimized this behavior somewhat, hdwever.
the good cases, the composite precipitation is shifted slightly north in the reforecast
compared to the NARR, but this behavior is not as severe as it was in the bad cases.

Moisture fields such as specific humidity at 850 hPa (Fig. 3.30) and precipitable
water (Fig. 3.31) for the good cases show somewhat similar behavior to the bad case

composites. In the area of maximum precipitation and just southward, the reforecast (Fig.
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3.30b) contains less specific humidity than the NARR (Fig. 3.30a), as it did in the bad cases
(Figs. 3.16 and 3.17). There is some evidence for less moistilme reforecasn the Gulf

of Mexico in the good cas@sthere is a tongue of higher specific hdity and precipitable

water south into the western Gulf for the NARR (Fig. 3.30a and 3.31a) that is not as
pronounced in the reforecast (Fig. 3.30b and 3.31b). The break in moisture that was
pronounced for the reforecast bad cases is not as evideng fgodld cases, however. There

is generally less moisture for the good cases than the bad cases, especially in areas away
from the precipitation like the western U.S., which is likely because a substantial number of
bad cases took place in the warm seasomtingsoof May and September, and there is

typically more available moisture in the warm season.

3.26. Summary and Discussion of Compositing Limitations

Though the reforecast tended to predict similar features to what was observed in a
composite sense, tfteewere some systematic differences between theRargooorly
forecast case#he reforecast indicated stronger forcing than what actually occurred, with a
deeper trough at 500 hPa and at the dynamic tropopause, and stronger cyclonic 500 hPa
vorticity. At lower levels, it forecasted pressure gradients that were too tight due to a stronger
high in the western Atlantic, which increased low level winds and moisture tranBpert
trough and low were too far northeast in the reforecast, indicating that the reforecast was too
progressive in its flow. The precipitation and the area of maximum moisture followed suit,
with a northeastern shift as wellhe precipitation that was predicted by the reforecast was

much too lowin the bad casesvith a maximum about 20 mm less than what occuifbad

58



forcing for ascent was present and even slightly overdone in the refdierdhst bad cases
and the moisture flux was slightly stronger in the reforecast as well. The staiaditslightly
greater in the reforecast in the area of precipitatidghe bad casesvhich may have been a
contributor to lower precipitatiom that compositeAlso, considering that amount of
precipitation is rain rate multiplied by the duration (Dokweal. 1996), the fact that the
reforecast was too progressive may have lessened the duration when precipitation fell,
lowering amountsThereforecast underforecasted the amount of moisture in the area of
precipitaton and upstream in the Gulf of Mexico

The well forecast case composigdewed some similarities and some differences
from the poorlyforecast case compositestite behaviorof the reforecasihough the
maximum precipitation wasnderforecasin the bad cases) the good casebe reforecast
slightly overforecasted the maximum precipitatidhis is despite the fact thtte reforecst
had weaker upper level forcing, as demonstrated by 500 hPa vorticity, than the NARR for the
good caseslhe northeastern shift the reforecaghat wagprominent in the bad cases was
seen in the good cases, but to a lesser extsture fieldsexhibit similar reforecast
behavior in both the good and bad casasnely,850 hPa specific humiditywastoo low in
the area of precipitation and south into the Gulf of Mexicthe reforecasAdditionally, the
sea level pressure behaves similarly i tforecast for both the good and bad casitls,a
high in the western Atlantic that was too strohigus, someeforecasbehaviors seem to be
general biases in the reforecast at 120 hours for strongly forced, highly convective situations,
but some are confined to the bad cases, and coyldrialreasons theeforecasfailed in

those cases.
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One important disadvantage of compositing is that the variability between the cases
comprising the compositan cancel out each other and smear out a sigspécially for
smallerscale features (Lackmann et al. 1996; Weisman et al. 200B) effect was lessened
by the fact that these were evealative composites, centered on the lat/lon of the heaviest
precipitation, but dissimilar cases can still cancel out. Thus, when there are stronger signals
in a composite, it could be due to less variability between the cases in the composite. To
explore this possibility, Table 3.1 presents the standard deviattbe &ititudes and
longitudes used for each case from the average lat/lon of the composite for the NARR and
reforecast cases at the day 5 lead time. The latitudes contained more variability in the NARR
by about 0.5 degrees latitude, but the reforecast ic@atanore variability in longitudes by
about 2 degrees longitude. By percent change, the reforecast had 30% greater variability in
longitudes, but about 18% less variability in latitudes; thus the reforecast had slightly more
variability than the NARR ovall. It would be more robust to calculate standard deviations
of the meteorological fields themselves to further explore this, and calculate statistical
significance, since many of the differences between the NARR and reforecast composites are
fairly small.

Another way to view the variability within a composite is to look at correlations
between each case and the composite field. Table 3.2 presents a summary of the correlation
between the NARR 500 hPa height anomalies for each case and the compostddgrih
strongly forced highly convective cases. The anomalies were calculated for each case by
subtracting the height at each point from the average height indinection. These values

were then correlated to the composite average for each casheamadktage correlation
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between all cases and the composite is presented here. The average correlation around 0.32
shows the cases were on average at least similar enough to the composite to be positively
correlatedHowever, 8 cases out of the 74 total cases were negatively correlated with the
composite, and 5 out of 48 cases comprising the composite after excluding the lower
precipitation cases were negatively correlaldee standard deviation of around 0.25 is fairly
large, and the rang# correlations was fror0.49 to 0.87 or 0.8 very large variability
from case to case. There are ontyy slight differences between the correlations of all cases
categorized as strongly forced, highly convective, and those that remained after exclusions,
demonstrating that the exclusions did not change how well the composite was correlated with
the casse. However, the case that was best correlated with the composite was excluded when
eliminating lower precipitation cases. Thus, there is substantial variability in this composite,
an inherent drawback of compositing.

Though it is useful to explore compastas a succinct way to view a number of
cases, it is also informative to explore the issues found in the composites with a case study,
which will be done in the following chapter. In a case study, causes of forecast errors can be

more directly determined.
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Table 3.1: The standard deviation of the latitudes and longitudes of the cases comprising the
composite for the strongly forced, highly convective cases at a day 5 lead time. The percent
change is calculated as the (reforedd8RR)/reforecast.

Latitudes | Longitudes
NARR Standard Deviation 3.22 4.49
Reforecast Standard Deviation 2.74 6.41
Percent Change -18% 30%

Table 3.2: The average correlation and standard deviation from the composite value of 500
hPa height anomaly of NARR strondtyrced, highly convective cases. The correlations of
the cases that were best and worst correlated to the composite are also shown.

All Cases (74) | Cases After Exclusions (48)
Average Correlation 0.33 0.32
Std. Deviation 0.25 0.25
Lowest CorrelatioValue -0.49 -0.49
Highest Correlatiovalue 0.88 0.80
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Figure 3.1: Synoptic features of the composite of poorly forecast (bad) category 1 (strongly
forced, highly convective) cases at a day 5 lead fioma the NARR (@) displays the 250

hPa heights @mn, black contours) and isotachs (kt, blue contours, with values over 75 kt
shaded). (b) displays the 500 hPa heightm(dlack contours) and absolute vorticity (units

of 10° s?, shaded). (c) displays the 850 hPayhts (dam, black contours) and temperatures

(°C, shaded). (d) displays the sea level pressure (hPa, black contours) aadQ OF&

thicknesses @m, red dashed contours). H indicates a high (pressure maximum) and L a low
(pressure minimum)lhe center bthe composite precipit@n is indicated by a black dat

each panel
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Figure 3.2: Asin Fige 3.1, but for well forecast (good) céses the NARR
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(b)

Figure 3.3: Composite convective availaptgential energy (CAPE) for (a) bad and (b) good
day 5 category 1 casé&sm the NARR Values are shaded every 200 J Kphe center of the
composite precipition is indicated by a black dat each panel
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