
ABSTRACT

KRIPAKARAN, PRAKASH. GA-Based Decision Support for Optimizing the

Response of Secondary Systems. (Under the direction of Dr. Abhinav Gupta).

The objective of this research is to develop a Decision Support System (DSS) for seis-

mic design and performance evaluation of piping supports. The current practice of design-

ing piping support locations is primarily heuristic, relying heavily on professional expe-

rience. In this thesis, approaches to optimize support locations using Genetic Algorithms

(GAs), a heuristic optimization technique, are discussed. These approaches have been im-

plemented in a DSS using Vitri, a generic, distributed framework designed to support the

development of DSSs, which reduces the computational requirements by combining the

processing power of a network of workstations.

Previous attempts to solve the problem of pipe support optimization modeled supports

as flexible springs, which have a stiffness depending on the support capacity, resulting in

the use of an integer representation in the GA. In this thesis, a new approach where supports

are modeled as rigid springs is presented. This permits the use of a binary representation

in the GAs. Also, earlier attempts had solved the problem by minimizing the number of

supports, which does not always indicate if cost is minimized. In this thesis, capital cost and

lifetime cost are studied by examining the trade-off curve between the cost and the number

of supports. A crossover scheme aimed at generating cost optimal solutions of a specified

number of supports, which is required for generating trade-off curves, is proposed.

It has been observed that optimization results in solutions that may be practically infea-

sible because of unmodeled costs in the optimization model. In pipe support optimization,

such costs might be from the preference of certain locations over others because of eas-

ier support installation costs or the desire to locate the supports under lumped masses to

stabilize the pipe against local vibrations from equipment such as pumps and motors. The

role of Modeling to Generate Alternatives (MGA), a methodology based on optimization

to produce alternatives, is explored to address these issues.
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Chapter 1

Introduction

1.1 General background

Seismic design and qualification of secondary systems such as power plant piping, like

other complex decision problems, involves many tradeoffs among competing criteria. At all

stages in a power plant life-cycle, structural engineers are faced with formidable challenges

of complex decision-making. In the context of seismic design and performance evaluation,

these may relate to technical as well as practical feasibility, cost, and redundancy. Although

some of these challenges can be quantified and formally analyzed, others may call for out-

side opinions from experts or engineering judgment. Key features of the decision-making

process include identification of alternatives for solving the given problem. Then, whether

an alternative is satisfactory typically requires analysis by one or more computer models,

e.g., redundancy versus cost analyses, and the expertise and judgment of the engineer.
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Research in structural optimization has included computation complexity studies [21],

traditional mathematical optimization [9], and modern heuristic optimization such as ge-

netic algorithms [20]. In practical applications, the use of mathematical optimization or

other formal search techniques may lead to “optimal” structural systems that are either in-

feasible or unnecessarily costly in the sense that they are not conducive to construction,

maintenance or serviceability. In this scenario, the optimization model produces a single

solution that is “best,” but only with respect to the objectives and constraints that appear in

the model: the unmodeled issues, such as downstream maintenance or outage costs, may

not have been factored into the search process. To produce a truly optimal solution, then,

would require that the judgment and expertise of an experienced designer somehow be em-

bedded in the model. These difficulties in modeling are a key limitation, not of optimization

techniques per se, but of the way in which they are routinely used.

Optimization for seismic support locations in piping systems is a highly complex and

iterative problem that is time and cost intensive. An extremely large number of possibili-

ties may exist, making enumeration impractical. The current practice of designing piping

support locations is primarily heuristic, relying heavily on professional experience. Engi-

neers use the knowledge learned from observed performances and past failures to arrive at

the most appropriate locations. In this paper, we explore the role of formal computational

approaches that support decision making in the seismic design and performance evaluation

of multiply-supported piping systems in critical industrial facilities such as nuclear power

plants.
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1.2 Objectives

A primary system (such as building) is a structural system that receives seismic input

directly from the ground and filters it to the secondary system supported on it. Secondary

systems (such as equipment and piping) are supported on primary systems and do not re-

ceive seismic input directly from the ground. Seismic design for piping is dependent on the

seismic input it receives from the primary system (building). The piping receives this input

through the supports on which it is mounted. The seismic input transmitted through all the

supports may not be the same. It typically depends upon the floor elevations of the supports

in the primary system. Choosing appropriate support locations for the pipe optimizes the

overall cost of the supports and the response. The existence of numerous possibilities in

selecting the support locations and the absence of a strategy for choosing the support loca-

tions make it a complex-decision making problem. The primary objective of this study is

to explore the role of a Decision Support System (DSS) in seismic design and performance

evaluation of piping supports. This is realized using the following components:

• PIPESTRESS [8] - a finite element analysis software package, for evaluating the

seismic response of piping systems.

• Vitri [14] - a distributed, high performance computing framework designed to support

Decision Support Systems.

• Heuristic techniques such as Genetic Algorithms [10, 17] for pipe support optimiza-

tion.
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• MGA [4] - “Modeling to Generate Alternatives,” a methodology that utilizes opti-

mization, to generate alternatives that are similar in objective space, but very different

in decision space.

1.3 Organization

The thesis consists of five chapters. This chapter gives the introduction, objectives and

the overall organization. The second chapter discusses the concepts of the DSS to be de-

signed for the given problem. The DSS has been implemented on Vitri, a distributed object-

oriented framework developed for DSSs. The tools provided by Vitri and PIPESTRESS,

a commercial package for finite element analysis, are presented. The purpose of the DSS

and the approach taken to develop the DSS are described in detail.

The third chapter presents a GA-based optimization approach for choosing the seismic

support locations for power plant piping. It discusses improvements to various components

of the GA, such as, representation and crossover. It explains the optimization procedure

used for multi-objective study between cost (capital and lifetime cost) and the number

of supports and examines the trade-off curves obtained. It describes the MGA technique

used to generate alternatives to the optimal solutions obtained from the GA approach and

analyzes the generated results. Finally, the developed GA approach is applied to a real

life piping system and the results of the multi-objective study between lifetime cost and

the number of supports are given. It should be noted that parts of the introduction and the
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objectives are repeated in chapter 3. The third chapter is essentially a manuscript to be

submitted to the ASCE Journal of Structural Engineering.

The fourth chapter consists of the results generated during the course of research but are

not given in the third chapter representing the manuscript. These include (a) comparison

of the performance of integer string representation with binary string representation, (b)

the alternatives generated by MGA technique while using uniform crossover, (c) results on

the selection techniques studied for lifetime cost optimization, and (e) intermediate results

obtained on application to real-life piping system. The last chapter gives the conclusions

and summary.
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Chapter 2

The Decision Support System

Decision support systems (DSSs) are formal approaches for computer assisted decision

making. A DSS is a computer system that initiates human involvement by helping engi-

neers to create alternatives, test their effects and interpret the generated results. A DSS

uses tools for analysis, optimization, etc., to assist the engineer in evaluating the alterna-

tives. Thus, engineers can select favorable alternatives for implementation.

Often, the decision maker does not have a full understanding of the problem and its pa-

rameters at the onset of the decision-making process. He strives to get a better understand-

ing of the problem through experimentation and trial-and-error. A decision making process

can involve (a) tasks that require computer-intensive processing and (b) tasks that require

human judgment. A computer-based DSS [15, 18, 12] enhances the decision-making pro-

cess by providing the engineer with an easy-to-use problem solving environment that sup-

ports a suite of analysis tools for joint-cognitive decision making. A joint-cognitive system
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is comprised of a human decision maker and a set of computational resources. DSSs allow

the engineer to monitor progress by presenting him with intermediate results for review. It

supports a collection of various analytical and computation techniques, schemes for uncer-

tainty propagation, and optimization tools.

The development of modern heuristic techniques such as genetic algorithms, combined

with high performance computing environments, have increased the scope of engineering

design problems that can be addressed by mathematical optimization. New approaches

for decision support where the intended role of optimization models is not to generate the

“best” solution, but rather to generate sets of good, alternative designs that provide in-

sight and creativity, have been developed. This approach has been applied for alternative

generation in the design of truss structures using integer-linear programming [1], vehi-

cle routing and scheduling using simulated annealing [2] and air quality management for

control-strategy optimization using genetic algorithms and simulated annealing [16], and

have been shown to greatly assist decision-making.

A distributed computing system can be used to improve the performance of computa-

tionally intensive DSS problems. For instance, computational resources can be assigned

jobs such as brute force calculations and information storage and retrieval. This permits

human decision makers to set their minds on activities such as consideration of abstract is-

sues, directing overall decision-making process, and providing feedback based on intuition

and professional judgment.

The decision maker selects the parameters, schemes and software, and decides the de-
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sign and serviceability requirements for compliance. These selections are then explored

with the help of the DSS. The decision maker uses his professional judgment for providing

useful feedback to the DSS in the form of changes made to the previous selections. In this

manner, the DSS employs an iterative process involving continuous modification to evolve

initially conceived potential solutions to a satisfactory solution. The following section de-

scribes the design of the DSS for seismic design and performance evaluation of secondary

systems.

2.1 Design of DSS

The DSS draws on the complementary strengths of the engineer and the computer in a

joint-cognitive system. Three components comprise the DSS,

• Finite element analyses are used for evaluating the seismic response of piping sys-

tems.

• Genetic algorithms are used as part of a formal procedure for generating alternative

solutions using a methodology referred to as “modeling to generate alternatives -

MGA” [4]. MGA uses optimization to generate a set of solutions that are similar in

objective space - “near optimal,” but very different in decision space - “as different

as possible.”

• The computational performance requirements of the DSS are addressed by using an

existing framework for high performance computing on workstation clusters. The
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object-oriented framework, Vitri, includes basic support for distributed computing

and communication, and distributed GA implementations [3].

2.2 Vitri: A framework for engineering DSS

Vitri [14] is a generic, distributed, object-oriented framework for the development of en-

gineering DSSs. Vitri provides a high performance computing environment for distributed

computing that harnesses the resources of a network of computers to provide adequate com-

puting power to deal with the various problems. A lot of formal tools and concepts such

as optimization-based techniques have been developed, that help in searching for solutions

that optimize certain goals while satisfying specified constraints. The development of such

tools has helped in avoiding time-consuming enumeration of potential solutions for prob-

lems where good solutions are hard to find using a trial-and-error approach. Vitri provides a

number of formal computational approaches such as heuristic optimization techniques that

provide generic capabilities that are suitable for dealing with difficult, ill-behaved prob-

lems.

A decision maker is typically interested in details such as the trade-offs between cost

and a certain competing variable, the effect of uncertainties on solutions, etc. Formal tools

and concepts provided by Vitri can be used in an iterative decision making process to

assist with such what-if analyses. Moreover, tools for optimization can be used to generate

good alternatives in addition to finding optimal solutions. For example, Vitri provides a
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tool, Modeling to Generate Alternatives (MGA) [4], that is based on genetic algorithms, to

produce a small set of slightly sub-optimal solutions that are different in decision space.

Vitri also provides a number of graphical interfaces to evaluate and monitor the runtime

performance of the distributed system. Decision makers can use these graphical interfaces

to decide on whether to proceed with the exploration of an alternative. For instance, con-

vergence towards an optimal solution for a computationally intensive technique may be

aborted or re-routed by the decision maker based on the observations during the first few

iterations. Vitri has a graphical display displaying the best fitness and the average fitness of

the population as the GA progresses. A screen capture to illustrate this is given in Figure

2.1.

Engineers often develop prototypes based on their ideas, and test them to gain a better

understanding. The framework in Vitri allows for rapid prototyping, which is desirable

for the DSS as designers can learn about the problem quickly. The object-oriented tools

and component-based modeling technologies of Vitri promote the development of modular

systems that are flexible and extensible. This also means that the tools in Vitri can be

reused for testing different prototypes and applications. Vitri not only facilitates an iterative

decision making process, but also helps the decision maker incrementally learn about the

problem at hand. The improved knowledge promotes the refinement of existing designs and

models. The tools provided by Vitri to assist problem solving, and to insulate the user from

the complexities of underlying hardware and software, make Vitri a powerful framework

for the development of engineering DSSs.
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Figure 2.1: A sample graphical interface offered by Vitri
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Chapter 3

Optimizing Seismic Response of

Secondary Systems

3.1 Introduction

Seismic design and qualification of secondary systems such as power plant piping, like

other complex decision problems, involves many tradeoffs among competing criteria. At all

stages in a power plant life-cycle, structural engineers are faced with formidable challenges

of complex decision-making. In the context of seismic design and performance evaluation,

these may relate to technical as well as practical feasibility, cost, and redundancy. Although

some of these challenges can be quantified and formally analyzed, others may call for out-

side opinions from experts or engineering judgment. Key features of the decision-making

process include identification of alternatives for solving the given problem. Then, whether
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an alternative is satisfactory typically requires analysis by one or more computer models,

e.g., redundancy versus cost analyses, and the expertise and judgment of the engineer.

Research in structural optimization has included computation complexity studies [21],

traditional mathematical optimization [9], and modern heuristic optimization such as ge-

netic algorithms [20]. In practical applications, the use of mathematical optimization or

other formal search techniques may lead to “optimal” structural systems that are either in-

feasible or unnecessarily costly in the sense that they are not conducive to construction,

maintenance or serviceability. In this scenario, the optimization model produces a single

solution that is “best,” but only with respect to the objectives and constraints that appear in

the model: the unmodeled issues, such as downstream maintenance or outage costs, may

not have been factored into the search process. To produce a truly optimal solution, then,

would require that the judgment and expertise of an experienced designer somehow be em-

bedded in the model. These difficulties in modeling are a key limitation, not of optimization

techniques per se, but of the way in which they are routinely used.

Optimization for seismic support locations in piping systems is a highly complex and

iterative problem that is time and cost intensive. An extremely large number of possibili-

ties may exist, making enumeration impractical. The current practice of designing piping

support locations is primarily heuristic, relying heavily on professional experience. Engi-

neers use the knowledge learned from observed performances and past failures to arrive at

the most appropriate locations. In this paper, we explore the role of formal computational

approaches that support decision making in the seismic design and performance evaluation
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of multiply-supported piping systems in critical industrial facilities such as nuclear power

plants.

The objectives of the present study are realized through a prototype decision support

system (DSS) that draws on the complementary strengths of the engineer and the computer

in a joint-cognitive system. Three components comprise the DSS. First, finite element

analyses are used for evaluating the seismic response of piping systems. Second, genetic

algorithms are used as part of a formal procedure for generating alternative solutions using

a methodology referred to as “modeling to generate alternatives - MGA” [4]. MGA uses

optimization to generate a set of solutions that are similar in objective space - “near opti-

mal,” but very different in decision space - “as different as possible.” Third, the computa-

tional performance requirements of the DSS are addressed by using an existing framework

for high performance computing on workstation clusters. The object-oriented framework,

Vitri, includes basic support for distributed computing and communication, and distributed

GA implementations [3].

3.2 Design of piping supports for seismic loads

Conventionally, an initial design of the piping system and its supports is drawn pri-

marily from the standpoint of withstanding loads calculated from thermal, hydraulic, and

deadweight considerations. In piping systems that experience significant thermal stresses

(hot piping), additional supports are likely to increase the thermal stresses due to increased
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constraints. At the same time, additional supports are needed to withstand earthquake loads.

Supports called snubbers are used to satisfy these competing requirements. Snubbers have

a locking mechanism that activates only during pipe vibrations, thereby avoiding additional

constraints against thermal loads in normal operation. Snubbers can be either hydraulic or

mechanical devices that require periodic maintenance. Regulations dictate that the integrity

of critical piping systems and pipe supports be maintained at all times to withstand future

earthquakes safely. It should be noted that pipe vibrations due to hydraulic loads such as

water hammer cause snubbers to lock and activate during normal operation. Emergency

plant outages arise whenever a snubber is found to have failed or malfunctioned. In addi-

tion to having high capital cost, the lifetime cost of snubbers is excessively high especially

when the cost of replacement and loss of revenue during an outage are considered together

with the maintenance cost. In piping systems that have negligible thermal stresses (cold

piping), a designer can avoid the use of snubbers for withstanding seismic loads by using

rigid or hanger type supports. While the capital and maintenance cost of such supports is

significantly less than that of snubbers, the other issues related to lifetime cost and down-

time remain the same.

The key elements of piping system design for withstanding seismic loads are determin-

ing the number of supports, the type of supports (capacities), and their locations. Some of

the considerations in this process are: (1) use of as few supports as possible, which mini-

mizes capital cost, (2) minimization of high capacity (and also high cost) supports to reduce

the maintenance and replacement costs, (3) selection based on analysis for (a) identification
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and elimination of cases with overstressed piping, (b) evaluating support loads and their ac-

ceptability against support capacities, and (c) evaluating maximum pipe displacements and

their acceptability with respect to serviceability limits. An additional consideration that is

not quantified in present practice is related to the desire for providing a support directly un-

der the heavy equipment such as valves that may be located on the piping system. Further,

a piping system that is very flexible is undesirable with respect to vibrations encountered

during everyday operations, i.e., it is desired that the fundamental frequency of vibration

be above 1 Hz. Typical values for piping system frequencies exceed 5 Hz. Additional

constraints may also exist depending upon the particular problem or a given solution.

Chiba et al. [7] use genetic algorithms (GAs) for optimization in seismic design of pipe

support locations and capacities. In this study, supports are modeled as uniaxial springs of

varying stiffness. The objective function is formulated as:

min{ max
0≤i≤nelm

{RMS(σi)}+ αnsup + β

nsup∑
j=0

kj + γPs(σ) + δPr(F )} (3.1)

whereRMS(σi) is the root mean square stress at locationi, nelm is the total number of

elements used in the finite element model,nsup is the total number of support locations,

andkj is the spring stiffness of thejth support. α, β, γ, andδ are multipliers assigned

values according to the relative importance ofRMS(σi), nsup,
∑

kj, Ps andPr. Ps andPr

are penalty functions to solutions in which the pipe stresses or support loads exceed the al-

lowables, respectively. The above formulation is focused on minimizing (a) stresses in the

piping system, (b) the number of supports, and (c) the cumulative support capacities that

are represented in terms of spring stiffness. Minimization of the number of supports and
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their cumulative capacities is a widely accepted practice that is implicitly targeted towards

minimizing the cost associated with the supports. It should be noted that the above for-

mulation does not consider any constraints on the displacement serviceability limits. Also,

the modeling of supports as springs with varying stiffness, while an acceptable practice,

can lead to infeasible solutions that may go undetected. For example, a piping analysis

may yield axial displacements in supports that are represented by relatively soft springs.

Such axial support displacements are usually incorrect because a typical support is axially

rigid and fails in buckling at loads corresponding to their capacities. The objective of the

study conducted by Chiba et al. [7] is to arrive at the most optimal solution with respect to

the modeled issues. However, such a solution may be infeasible with respect to the other

constraints that are not included in the model or the issues that cannot be quantified. For

example, the desire to provide a support directly under a heavy equipment is not addressed

in the optimal solution generated using Equation 3.1. Further, Equation 3.1 may not be ac-

ceptable with respect to typical piping failures that occur primarily due to support buckling

and not due to excessive stresses.

3.3 GA-based pipe support optimization

For inherently discrete problems such as pipe support optimization, methods such as

GAs are superior to traditional gradient-based techniques which require that the objective

function be continuous with respect to decision variables. In the application of GAs to pipe
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support optimization, the problem formulation requires an appropriate representation. The

representation determines the size of the search space for the GA. Two different represen-

tations are possible depending upon the manner in which support topology and sizing are

considered in the analysis model.

1. Integer string:An integer string representation is required if supports are modeled as

flexible springs with specified stiffness values (corresponding to the support capac-

ities). According to this representation, the length of GA string corresponds to the

number of possible support locations such that each gene is represented by an integer

that is used to identify the support type; i.e., a string of lengthn, < b1, b2, . . . , bn >

and

bi = j, 0 ≤ j ≤ m (3.2)

wherej is an integer used for identifying support type at locationi andm is the

number of support types. The search space size in this representation is(m + 1)n. It

can be observed that the size of the search space increases by a factor ofn with an

increase in the number of available support types.

2. Binary string:As described earlier, it may be desirable to model supports as rigid (a

single spring having high stiffness value). Consequently, the primary decision in the

GA is whether or not to have a support at a particular locationi. A binary string may
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then be used for the purpose such that

bi =




1, if a support exists at location i

0, if no support exists at location i

Support types can be selected in each evaluation based on the support loads calcu-

lated from the analysis. The search space size when using this representation is much

less and equal to only2n. Therefore, the GA not only converges faster but also pro-

duces better solutions due to a reduction in the search space. All the results and

discussion that follow assume the use of a binary string representation.

Seeding of a GA can be critical with respect to efficiently searching the entire decision

space without significantly compromising the time to convergence. For an integer string

representation, a typical rolling of dice to seed the GA would result in a string whose

genes have been assigned a random integer corresponding to a support type. However,

this approach is undesirable as it results in seeding the population with strings that have

supports at almost all possible locations. As designers are typically interested in studying

the trade-off between cost and the number of supports, cost optimal solutions are needed

for a specified number of supportsnreq. Therefore, the GA can be seeded with solutions

having nearlynreq supports if the value ofbi is selected using a random variablep which is

uniformly distributed between0 and1.

bi =




0, if p <
nreq

n

j, if p >
nreq

n
where 1 ≤ j ≤ m

(3.3)
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wheren is the total number of possible locations. The value ofj is selected by rolling a

dice of valuem. In a binary string representation,bi can take on only two values, 0 or 1. A

conventional seeding would result in nearly half as many support locations as the number

of nodes in the piping model. Hence,bi is chosen as follows:

bi =




0, if p <
nreq

n

1, if p >
nreq

n

(3.4)

A better approach to obtain cost optimal solutions for a specified number of supports,nreq,

would be to seed the genetic algorithm with solutions having exactlynreq number of sup-

ports. This can be achieved by choosingbi as follows:

bc = 1, ∀c ∈ C = {c1, c2, . . . , cnreq} (3.5)

whereci are randomly chosen from the set ofn available nodes andci 6= cj if i 6= j.

To begin with, we used uniform crossover [17] in the GA. A difficulty arises in using

uniform crossover when cost optimal solutions are desired for a specified number of sup-

ports,nreq. Even if the number of supports in the parents is equal tonreq, the offspring

generated using uniform crossover do not necessarily have exactlynreq supports. This ne-

cessitates the imposition of a penalty on solutions having a number of supports not equal

to nreq. It is undesirable to do so with respect to the performance of genetic algorithms.

Therefore, we developed a new crossover scheme that avoids the use of a penalty func-

tion by implicitly accounting for the constraint on the number of supports. This crossover

scheme requires that the seeding be done in accordance with Equation 3.5. This crossover,

illustrated in Figure 3.3, is described as follows. If the two parent strings that have exactly
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nreq supports are given by< b11, b12, . . . , b1n > and< b21, b22, . . . , b2n >, then consider

the set of nodes given byS = {i : b1i 6= b2i}. Note thatS, whose cardinality is always

even, can be randomly divided into two sets of equal sizesS1 andS2.Then, the offspring

are given by:

o1i = o2i = b1i, ∀i /∈ S (3.6)

o1i = 1, ∀i ∈ S1 (3.7)

o2i = 1, ∀i ∈ S2 (3.8)

The above scheme ensures that the number of supports in each offspring is equal tonreq.

This crossover scheme reduces the size of the search space tonCnreq from 2n.

For mutation with uniform crossover, a randomly selected gene in the string can be

modified according to the string representation used. In the integer representation, its value

is modified randomly such that Equation 3.2 is satisfied. In the binary representation, its

value is taken as the complement of the current value. For mutation with the new crossover

technique proposed above, the mutation operator is required to ensure that the resulting

solution has exactlynreq supports. Therefore, a mutation technique is chosen that removes

a support from one of the nodes that originally had a support, and adds one to a randomly

chosen node that previously did not have a support. The objective function and the selection

technique used are described in the following section.
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3.4 Cost optimization

Minimization for number of supports as well as the cumulative support capacity [7]

in a single objective appears inappropriate primarily because the two quantities represent

competing criteria. For example, minimization for number of supports yields few high

capacity supports whereas minimization for cumulative support capacity yields a larger

number of low capacity supports. A designer, under such circumstances, could benefit

from a trade-off curve between the two. Further, an explicit understanding of the effect of

capital and lifetime costs cannot be gained from the presently used model.

The effects of cost, both capital and lifetime cost, are examined with trade-off stud-

ies between the corresponding cost and the number of supports. We study the trade-off

between the cost and the number of supports by considering an objective function that is

similar in purpose to the one used by Chiba et al. [7]. The only exception being that the

cost is included directly instead of minimization for the number of supports and cumulative

support capacity. For the purpose of studying trade-off, the minimum cost solutions for a

specified number of supportsnreq are evaluated by using a penalty when the number of

supports in a particular solution are other than the specified. It should be noted that this

penalty becomes redundant when the seeding is done according to Equation 3.5 and the

crossover scheme used is as defined by Equations 3.6, 3.7 and 3.8. The objective function

is defined as

max

{
1

a∆δ + b∆σ + c∆θ + dC + e|nsup − nreq|
}

(3.9)
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∆δ =
ns∑
i=1

si max>sall

(si max − sall); ∆σ =
n∑

j=1
σj>σall

(σj − σall); ∆θ =

nsup∑
k=1

θk>θkc

(θk − θkc) (3.10)

wherea, b, c, d, e are multipliers that are assigned values according to the relative impor-

tance of the constraints;σi is the stress at nodei; σall is the allowable stress;n is the total

number of nodes in the piping system;ns is the total number of spans in the system;sj max

is the maximum displacement to span ratio in spanj; sall is the allowable displacement

to span ratio;θk andθkc are the support load and support capacity, respectively, at thekth

support location;nsup is the total number of supports in the system; andnreq is the number

of supports specified for a given solution. The following subsection describes the piping

system chosen to illustrate cost (capital and lifetime cost) optimization using the proposed

GA.

3.4.1 Example piping system

For simplicity, a 46 cm (18 inch) outer diameter straight pipe having 3.5 cm (1.375 inch)

wall thickness is considered. As shown in Figure 3.1, the two ends of the straight pipe are

anchored and several lumped masses representing valves and other equipment are located

on the pipe. In Figure 3.1, the numbers under the lumped masses show their corresponding

weights in kips. The pipe is discretized into beam elements with 46 nodes including the

two anchors. Each node on the pipe is allowed only two degrees of freedom, namely, the

vertical displacement and the in-plane rotation. The piping system is modeled on com-

mercial piping analysis program PIPESTRESS [8]. Seismic analysis is performed for a
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response spectrum input in the vertical direction corresponding to El Centro, 1940 S00E

earthquake that is applied uniformly at all the supports. Figure 3.2 shows the flowchart

illustrating the interface of PIPESTRESS with Vitri for GA-based optimization. Table 3.2

shows the list of supports that are considered for the piping system, along with their cost

and support capacities. The following subsection describes the application of the proposed

GA for capital cost optimization by using this piping system as an example.

3.4.2 Capital cost optimization

The capital cost for various support types can be directly considered in the formulation

because such costs are readily available. The capital cost is given by

C =

nsup∑
i=1

ci (3.11)

whereci is the capital cost of support at locationi. The above equation is used to compute

C in Equation 3.9. Tournament selection and stochastic universal selection [17] are tried

and both appear to perform equally well for capital cost optimization.

It is necessary to verify that the solution generated by the genetic algorithm is the real

optimal solution or very close to the real optimal solution in order to make sure that the

proposed GA works for this problem. The real optimal solution for a givennreq can be

found by evaluating all possible solutions havingnreq supports, which actually count to

nCnreq . It must be noted that this is possible only for smallnreq as the search space increases

drastically withnreq. In this manner, the real optimal solutions fornreq = 3, 4, 5 are found.
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The performance of the two crossover schemes is compared in Figure 3.4 with the

benchmark as the real optimal solutions fornreq = 3, 4, 5. The points in the graph represent

the best solutions that are generated over 5 runs of the genetic algorithm for eachnreq. It is

observed that the proposed crossover appears to produce better solutions, compared to the

uniform crossover. Moreover, the proposed crossover scheme generates the real optimal

solutions fornreq = 3, 4, 5. A notable difference between the two curves is that unlike the

proposed crossover, uniform crossover could not find the optimal solution fornreq = 3 as

only a very few of the solutions with three supports are feasible.

The optimal solutions generated using proposed crossover, the cost values of which are

plotted in Figure 3.4, and their important properties for variousnreq are shown in Figure 3.6

and Table 3.3 respectively. The(θk/θkc) values of these solutions are shown in Figure 3.9.

Figure 3.4 also shows that the minimum cost solutions have minimum number of supports.

It should be noted that in an integer string representation, minimization for only the num-

ber of supports without explicitly considering the cost in the objective function would not

yield the same solution. Several different feasible solutions, with different support types

but equal number of supports would exist, each having a different cost. On the contrary,

minimization for the number of supports in a binary string representation will produce a

least cost solution as the sizing for support type can be delayed until the final step in each

evaluation. Next, we study the effect of lifetime cost rather than just the capital cost.
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3.4.3 Lifetime cost optimization

Lifetime cost includes the cost of replacement and outage in addition to the capital and

maintenance cost. Revenue losses due to unscheduled outage are much higher than the

maintenance and capital costs. Since specific estimates of lifetime costs are unavailable,

lifetime cost is represented as being proportional to some power of the support capacities,

i.e.,

C =

n∑
i=1

cf
i (3.12)

We considerf = 1.2 even though actual values off are expected to be much higher.

Stochastic universal selection is used in the GA as it appeared to perform better than tour-

nament selection for this fitness function.

The results generated by using this cost function in the fitness function given by Equa-

tion 3.9 are shown in Figure 3.5. The figure shows two curves, one representing the results

generated using uniform crossover and the other using the proposed crossover. The solu-

tions represented by both the curves are the best solutions generated over 5 different runs of

the GA for eachnreq. The figure also shows the lifetime costs of the real optimal solutions

generated by enumeration, as described earlier for capital cost, fornreq = 3, 4, 5. The pro-

posed crossover scheme produces significantly better results due to reduced search space

and as in the case of capital cost, the proposed crossover scheme matches the real optimal

solutions fornreq = 3, 4, 5. In contrast to the results shown in Figure 3.4, it can also be

observed that there is a trade-off between the lifetime cost and the number of supports even

though we considered a relatively small value off .
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The optimal solutions generated by proposed crossover are shown in Figures 3.7 and

3.8. The important properties of these solutions are given in Tables 3.5 and 3.5. The

(θk/θkc) values of the solutions in Figure 3.7 are shown in Figure 3.10. It is observed from

the optimal solutions for both, capital and lifetime cost, that the desire of having the the

supports under lumped masses is not satisfied. In the following section, a lumped mass

parameterU is proposed to model this desirability as an objective in the GA.

3.5 Modified objective function

The optimal solutions for capital cost and lifetime cost corresponding to different values

of nreq, are shown in Figures 3.6, and 3.7 and 3.8 respectively. It can be noted that most

of the supports in these solutions are not under the lumped masses. This is so because the

requirements for lumped masses has not been considered either explicitly or implicitly in

the objective function.

Consideration of support locations to be under the lumped masses requires some means

of quantification. While placing a support under all the heavy lumped masses would be

cost intensive, it is desirable to have as many lumped masses supported as possible. To do

so, we propose a lumped mass parameterU as follows:

U =
(mu

m

)(
nu

nsup

+ 1

)
(3.13)

wheremu is the total unsupported lumped mass andm is the total lumped mass in the

solution. nu is the number of supports not under lumped masses andnsup is the total
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number of supports in a given solution.

The objective function given by Equation 3.9 can be modified to includeU as follows:

max

{
1

a∆δ + b∆σ + c∆θ + dC + e|nsup − nreq|+ fU

}
(3.14)

wheref is a constant chosen appropriately to obtain solutions in which the heavier masses

in the piping system are supported. Figure 3.11 shows the solution obtained by using Equa-

tion 3.14 as the objective function. The cost of such solutions, given in Table 3.7, are much

higher than the cost of the optimal solutions for the correspondingnreq in Figure 3.5. It

is desirable to consider only small deviations from the optimal cost (about10% to 20%)

for accommodating issues such as the location of supports under lumped masses. Conse-

quently, a designer would benefit by generating alternatives that not only have costs in the

neighborhood of the cost optimal solution but also low values ofU . Next, we explore the

role of a technique referred to as “Modeling to Generate Alternatives (MGA)” for evaluat-

ing alternative solutions.

3.6 Modeling to Generate Alternatives (MGA)

A traditional use of optimization is to create and run a model to find the “optimal” so-

lution. This solution, however, is rarely the best solution to the real problem because some

objectives and constraints may not have been explicitly stated in the problem formulation.

The omissions may be due to errors, the unquantifiable nature of certain issue or issues that

are not identified at the point of model formulation. Traditionally, this has been a major
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limitation of optimization applications. Modeling to Generate Alternative (MGA) tech-

niques [1, 4] use optimization to generate a small set of very different solutions. MGA is

an extension of single and multiple-objective mathematical programming techniques with

an emphasis on generating a set of alternatives that are “good” but “as different as possible.”

By generating these good yet different solutions, a decision maker can explore alternatives

that satisfy unmodeled objectives to varying degrees. These alternatives may be assessed

by the decision maker either subjectively or quantitatively.

For instance, consider the problem of optimizing a single objectiveZ1. Let it have a

solutionA as shown in Figure 3.12A. The addition of another objectiveZ2 would result in

a trade-off, probably like the one shown in Figure 3.12B. SolutionB, which is inferior to

A on the omission ofZ2, might be the most desirable compromise betweenZ1 andZ2 for

the decision maker. In a similar manner, there might be a solutionC which is not on the

trade-off curve but is actually preferable to the designer in the presence of a third objective

Z3.

To further illustrate this idea, consider the following formulation of a design optimiza-

tion problem:

Maximizez = x + 2y subject to

x + y ≤ 30

y ≤ 20

x, y ≥ 0



30

The decision space for the problem is shown as the shaded region in Figure 3.13A and the

slope of the objective function can be seen from a typical contour line at an arbitrary value,

80. Mathematical optimization correctly produces z = 50 at point A as the solution. Thus,

all other things being equal, the design would be< x, y >=< 10, 20 >. The premise of

MGA, however, is that all other things may not be equal, and that there may be problem

features not completely captured by the model. When those issues are considered, point

A may be less desirable overall than a point, call it B, originally deemed inferior by the

model. The issues involved in finding B and establishing the computer assistance needed

in this process are discussed below.

• Generating all feasible solutions suggests that one has no confidence in the model -

one would expect that point B optimizes the objective function nearly as well as A,

so only these good solutions need to be examined. This idea is illustrated in Figure

3.13B, where only those solutions that are within 10% of the optimal are retained.

• Available solutions should represent a cross-section of good solutions, so that, if B is

not actually among them, perhaps one of them is close enough from which to begin

“tinkering.”

• Since a decision maker can reasonably consider only a small number of designs, a

subset of these good solutions should be presented for inspection.

Baugh et. al. [1] illustrate these ideas with a topological truss optimization. Other MGA

techniques have been extensively used in environmental engineering applications for air
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pollution control as well as for land use and planning [6, 5, 19]. For the problem given ear-

lier, the first alternative can be found by changing the formulation to maximize a difference

metricδ, instead ofz and imposing the following constraint:

x + 2y ≥ 0.9(50)

This constraint ensures that the alternative generated is a “good” solution by searching the

objective space around the optimal solution.δ for this problem can be given by:

(x− 10)2 + (y − 20)2

which is the distance between the two points in the decision space. In this manner, an

alternative that is very different from the optimal solution in decision space but yet closer

to the optimal in objective space can be obtained.

3.7 Application of MGA to pipe support optimization

As noted from the discussion in the previous section, application of MGA requires

definitions of a reduced decision space and a difference metric to generate the alternatives.

For pipe support optimization, the decision space can be reduced by imposing the following

constraints:

Cmga ≤ k1Copt (3.15)

fitnessmga ≥ k2fitnessopt (3.16)

Umga ≤ Uall (3.17)
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wherek1 > 1 andk2 < 1; Cmga andCopt are the cost of the alternative and the cost of

the optimal solution respectively;fitnessmga andfitnessopt are the fitness values of the

alternative and the optimal solution respectively;Uall is an upper bound on the lumped mass

parameter specified by the designer, andUmga is the value of the lumped mass parameter

for an alternative solution;rmax is not considered for the MGA as it is found to be very

restrictive for the generation of alternatives as indicated in section 4.4.

Topology metric is used as the difference metric in the present study. This metric,

commonly known as “Hamming distance,” is applicable for binary strings. If the two

strings are given by< b1, b2, . . . , bn > and< c1, c2, . . . , cn >, the difference metric is

given by:

δ =
n∑

i=1

|bi − ci| (3.18)

The flowchart showing the incorporation of MGA in Vitri is given in Figure 3.14. The

alternatives generated using the topology metric in the MGA fornreq = 5 are given in

Figure 3.15. The important characteristics of the alternatives are listed in Table 3.8. The

values that are used for the MGA parameters in Equations 3.15, 3.16, 3.17 to produce

these results are as follows:Uall = 1.8, k1 = 1.25 andk2 = 0.8. More lumped masses

are supported in the alternatives than in the optimal solutions given in 3.7. It is seen that

all the alternatives are very different from each other in topology. These solutions, which

are spread over a large expanse of the decision space, provide the decision maker with an

opportunity for tinkering with the solutions to generate better solutions. The alternatives

generated fornreq = 7 are shown in Figure 3.16. The characteristics of these solutions are
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given in Table 3.10. A stricter constraint onUall is possible fornreq = 7 as there are more

number of supports. The alternatives fornreq = 7 are generated usingUall = 1.000, k1 =

1.3 andk2 = 0.8. It should be noted thatCopt = 1269610 because the optimal solution

with respect to lifetime cost is that ofnreq = 5 as seen from Figure 3.5.

In the process of generating these alternatives, various values forUall andk1 are tried.

It is seen that the chances of finding alternatives decrease rapidly as the values ofUall

andk1 are reduced. This observation supports the conclusion reached upon the end of

the examination of the modified fitness function that it is excessively costly when all the

heavier lumped masses are supported. At the same time it should be kept in mind that this

piping system had a large number of heavy masses for the purpose of studying the effects of

these parameters. Actual piping systems may also have a large number of masses but they

are typically comparable in size to each other. Thus, there is a better chance of generating

much better solutions when the same is applied to a real piping system.

3.8 Application to real life piping system

The developed techniques are applied to the real life piping system shown in Figure

3.17. This piping system is in use in a nuclear power plant operated by Carolina Power

& Light. It consists of a 12.75 inch diameter Schedule 100 pipe loop that is anchored at

the reactor vessel. This loop is connected to an 18 inch diameter Schedule 120 pipe that

is anchored at the bottom of the concrete shield wall. Like in the earlier piping system,
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El Centro is used as the earthquake input to the piping system. The piping system has 75

support locations and each location can have a maximum of three supports, namely, one in

each of the principal directionsx, y andz. Some new issues that arise during the analysis

of the real life piping system are discussed in section 4.5.

The results of the trade-off study between lifetime cost and the number of supports

for this piping system is given in Figure 3.18. Even though the trough of the trade-off

curve seems to be nearnreq = 25, the fundamental frequency of the piping system is much

higher than5 Hz, because of the higher stiffness of the system. Designers normally prefer

the frequency of the piping system to be close to5 Hz. The number of supports required to

have such a frequency is more likely to be nearnreq = 10.

3.9 Summary and conclusions

A GA-based approach for seismic design and performance evaluation of pipe supports

is discussed in the paper. Supports are modeled as rigid springs, permitting the use of a

binary string representation in the GA. The change in representation from integer to bi-

nary string is shown to produce a considerable reduction in the size of the search space

to be explored by the GA. Alternative seeding techniques to create populations, in which

the number of supports in its solutions is nearer to the required number, are explored.

The trade-off curves between various types of cost (capital or lifetime) and the number of

supports are obtained. A new crossover scheme is proposed to aid in the generation of
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optimal solutions having a specified number of supports. The performances of the pro-

posed crossover scheme and uniform crossover are compared. A proposed lumped mass

parameter,U , is used in the MGA technique to generate useful alternatives. Finally, the

practical applicability of the developed techniques is shown by applying them to a real

piping system.

The study shows that the solutions are primarily infeasible with respect to support ca-

pacities, and not because of the stress and the displacement constraints. Binary string

representation performs better than the integer string representation but it should be noted

that it is applicable only if the supports are modeled as rigid springs. The results show that

the proposed crossover scheme works better than uniform crossover. Optimization for cap-

ital cost is same as minimizing the number of supports whereas optimization for lifetime

cost is a multi-objective problem. The results from the use of the modified fitness function

show that it might be practically infeasible to support all the heavy lumped masses of a

pipe because of the high cost involved. MGA, using topology metric for difference and the

proposed lumped mass parameter as a constraint to reduce the decision space appears to

work well.
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Table 3.1: Location of lumped masses along the pipe

Sl No. Distance from left end

of the pipe (in ft.)

1 12

2 18

3 30

4 42

5 54

6 63

7 75

8 87

9 102

10 111

11 129
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Table 3.2: Cost and capacity of supports

Sl No Support capacity(lbs) Cost(dollars)

0 0 0

1 1978 15000

2 2067 15100

3 3600 21000

4 8610 21500

5 13750 24000

6 19150 24600

7 20100 24800

8 23450 32000

8 37300 35500

9 62000 36000

10 70350 42000

Table 3.3: Properties of optimal capital cost solutions given in Figure 3.6

nreq Cost U

(
θk

θkc

)
max

Frequency (Hz)

(
σi

σall

)
max

(in 10,000s)

3 108.000 0.873 0.921 5.489 0.980

4 131.600 1.448 0.951 9.632 0.593

5 162.900 2.000 0.952 9.398 0.429

6 189.000 0.930 0.974 8.768 0.457

7 203.300 1.122 0.938 8.760 0.457

8 218.300 1.146 0.977 8.753 0.459

9 232.700 0.803 0.991 9.580 0.492
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Table 3.4: Anchor forces of optimal capital cost solutions given in Figure 3.6

nreq Anchor 1 Anchor 2

Fy (in lbs) Mz (in lb-ft) Fy (in lbs) Mz (in lb-ft)

3 68507 632607 56389 383012

4 20010 120032 57074 382689

5 10150 46519 44139 276992

6 8328 32585 50560 295129

7 412 1409 50614 295151

8 1136 4 50739 296099

9 424 1275 47203 317243

Table 3.5: Properties of optimal lifetime cost solutions given in Figures 3.7 and 3.8

nreq Cost U

(
θk

θkc

)
max

Frequency (Hz)

(
σi

σall

)
max

(in 10,000s)

3 169.0406 0.873 0.921 5.489 0.980

4 131.3528 1.448 0.951 9.632 0.593

5 126.9610 2.000 0.952 11.007 0.244

6 131.4293 1.365 0.995 13.055 0.096

7 135.4763 2.000 0.988 11.720 0.257

8 143.7118 1.289 0.987 10.985 0.098

9 152.3744 1.840 0.995 15.860 0.157
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Table 3.6: Anchor forces of optimal lifetime cost solutions given in Figures 3.7 and 3.8

nreq Anchor 1 Anchor 2

Fy (in lbs) Mz (in lb-ft) Fy (in lbs) Mz (in lb-ft)

3 68507 632607 56389 383012

4 20010 120032 57074 382689

5 22687 136491 31272 157784

6 10298 46949 13769 53662

7 27542 166163 13777 54162

8 10724 49855 12969 59132

9 7599 29075 21149 101047

Table 3.7: Properties of optimal solutions obtained using Equation 3.14

nreq Cost (in ten thousands) U

6 244.8697 0.102

7 253.3298 0.077

8 202.6044 0.060

Table 3.8: Properties of MGA solutions fornreq = 5 in Figure 3.15

Sl. No. Cost U

(
θk

θkc

)
max

Frequency (Hz)

(
σi

σall

)
max

(in 10,000s)

1 149.7216 1.099 0.991 9.953 0.547

2 153.1160 1.785 0.957 9.493 0.365

3 140.0385 1.532 0.997 10.254 0.353
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Table 3.9: Anchor forces of MGA solutions fornreq = 5 in Figure 3.15

Sl. No. Anchor 1 Anchor 2

Fy (in lbs) Mz (in lb-ft) Fy (in lbs) Mz (in lb-ft)

1 19646 108406 53240 352690

2 14238 67781 38970 235801

3 18894 103855 34972 227664

Table 3.10: Properties of MGA solutions fornreq = 7 in Figure 3.16

Sl. No. Cost U

(
θk

θkc

)
max

Frequency (Hz)

(
σi

σall

)
max

(in 10,000s)

1 163.0442 0.576 0.964 18.324 0.084

2 154.4800 0.862 0.992 14.578 0.210

Table 3.11: Anchor forces of MGA solutions fornreq = 7 in Figure 3.16

Sl. No. Anchor 1 Anchor 2

Fy (in lbs) Mz (in lb-ft) Fy (in lbs) Mz (in lb-ft)

1 10974 50915 11610 38892

2 20952 114237 28109 135237



41

y

x

20 3 320 204 3 22020 1

Figure 3.1: Straight pipe with lumped masses
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Figure 3.2: Interfacing of PIPESTRESS and Vitri
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nreq = 5

nreq = 4

nreq = 3

nreq = 6

Figure 3.6: Optimal solutions for capital cost obtained using proposed crossover
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nreq = 4

nreq = 3

nreq = 6

nreq = 5

Figure 3.7: Optimal solutions for lifetime cost obtained using proposed crossover
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nreq = 8

nreq = 7

nreq = 9

Figure 3.8: Optimal solutions for lifetime cost obtained using proposed crossover
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Figure 3.9:θk/θkc for supports of solutions in Figure 3.6
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Figure 3.10:θk/θkc for supports of solutions in Figure 3.7
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nreq = 8

nreq = 7

nreq = 6

Figure 3.11: Best fitness solutions using modified fitness function (Equation 3.14) for life-
time cost
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Figure 3.12: Multiple-objective optimization
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Figure 3.15: MGA solutions for lifetime cost withnreq = 5
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Figure 3.16: MGA solutions for lifetime cost withnreq = 7
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Chapter 4

Other Results

4.1 Integer string representation

The string representation initially used in the GA is the integer string representation. In

this scenario, the support size is chosen at each support location. A support of zero capacity

is used to allow locations without supports. It should be noted that this representation must

be used for cases where the stiffnesses of the supports vary with the support capacity.

The performance of this representation with respect to lifetime cost is shown in Figure

4.1. It can be observed that the binary representation employing uniform crossover and

the proposed crossover perform much better than the integer string representation. This

difference is mainly due to the reduction in search space size from(m + 1)n to 2n and

nCnreq for binary string with uniform crossover and proposed crossover respectively.
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4.2 Cumulative capacity optimization

It is observed in section 3.4 while discussing capital cost optimization that optimizing

for number of supports with integer string representation will not yield the cost optimal

solution because several different feasible solutions, with different support types but equal

number of supports would exist, each having a different cost . To avoid the above problem

in an integer string representation, Chiba et al. [7] also minimize the cumulative spring

stiffness of the supports. Another purpose of doing so is to consider minimization for

maintenance cost which is typically considered as proportional to the support capacities.

Therefore, the relationship between the maintenance cost and the number of supports can

be illustrated using a trade-off curve between cumulative capacity and the number of sup-

ports. The objective function in this case is the same as that given by Equation 3.9 with

the exception thatci in Equation 3.11 represents the support capacity and not the capital

cost. As shown in Figure 4.2, minimization for cumulative support capacity also results in

minimization for total number of supports.

4.3 Comparison of selection techniques

When using tournament selection in the GA, there are indications of the presence of

premature convergence which eliminated the population diversity established by seeding.

Stochastic universal selection has a minimal spread and zero bias. Therefore, this procedure

is compared with tournament selection. Even stochastic sampling can introduce premature
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convergence, if the fitness of the best solution is much higher than the average fitness of

the population. In order to avoid this problem, scaling is done by adding a large number

to the denominator of the fitness function given by Equation 3.9, so that the best fitness is

not very far from the average fitness. The results generated using tournament selection and

stochastic universal selection, when the GA is run using different seeds, are compared with

“real” optimal solutions obtained using rigorous enumeration of the search space. From

Figure 4.3, which shows the comparison for capital cost, it can be observed that both the

selection procedures do equally well. But in the case of lifetime cost, shown in Figure

4.4, it is observed that stochastic universal selection marginally outperforms tournament

selection.

4.4 Uniform crossover

4.4.1 Lifetime cost optimization

The optimal solutions with respect to lifetime cost generated using uniform crossover

and binary representation are given in Figure 4.5. The(θk/θkc) values for these solutions

are shown in Figure 4.7. Similarly, the optimal solutions with respect to capital cost and

their (θk/θkc) values are shown in Figures 4.6 and 4.8 respectively. The Figures 4.7 and

4.8 show that the supports are non-uniformly loaded as the ratios are close to unity for

some supports but much less than unity for the others. This behavior is thought to be an

outcome of the absence of a parameter controlling the(θk/θkc) in the fitness function. This
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resulted in developing the parameterrmax, the maximum value of support load to support

capacity ratio in the solution. A more uniform distribution of support loads can be achieved

by minimizingrmax, which is defined as,

rmax = max
1≤k≤nsup

(
θk

θkc

)
(4.1)

4.4.2 Modified fitness function

The lumped mass parameter,U , described in section 3.5 is used in conjunction with

rmax to generate optimal solutions with respect to capital cost, which have the heavier

masses supported as well as a lowrmax. The fitness function is given by:

max

{
1

a∆δ + b∆σ + c∆θ + dC + fU + grmax

}
(4.2)

It is similar to Equation 3.14 except for using capital cost instead of lifetime cost and the

absence of the|nsup − nreq| term. Alternatives to the optimal solution are generated using

the topology metric and constraints only on the cost and the fitness as given by Equations

3.15 and 3.16. The optimal solution and the alternatives generated using this fitness func-

tion are given in Figure 4.9. The cost,U andrmax for these solutions are listed in Table

4.1. It is observed that the even though the cost of the alternatives are within20% of the

cost of the optimal, the cost optimal solution fornreq = 3 shown in Figure 3.6 has a much

lower cost than this optimal solution. Thus, as seen from section 3.5 for lifetime cost, the

modified fitness function does not appear to work well for capital cost too.
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4.4.3 MGA solutions

MGA is used to generate alternatives to the optimal solutions with respect to lifetime

cost. To begin with, in addition to the constraints given by Equations 3.15, 3.16 and 3.17,

a constraint onrmax is also imposed for the alternative, given as,

rmax ≤ rall (4.3)

It is observed that there are very few alternatives that satisfy all the four constraints. More-

over, the observation that the optimal solutions with respect to lifetime cost obtained by

proposed crossover are better than those obtained by uniform crossover, and that the sup-

port load to capacity ratios for these solutions as seen from Figure 3.10 are, in general,

uniform over all the supports, lower the need of the constraint in the MGA. Thus, the con-

straint given by Equation 4.3 is not used to define the decision space for the alternatives.

The solutions generated using MGA fornreq = 8 is shown in Figure 4.10. The important

aspects of the alternatives are listed in Table 4.2. It is be observed that the topology of

all the alternatives bear some similarity and are not very good as the decision maker could

have arrived at most of the alternatives by hand-tweaking any one of the alternatives.

4.5 Application to real life piping system

While applying the developed DSS to a real piping system the following strange behav-

ior is seen. Even though the actual piping system required15 snubbers, the GA is able to

find a solution with just one snubber. This solution satisfied all the constraints - stress, dis-
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placement and support capacity, that are considered in the model. On careful examination

of the solution, it is observed that the piping system is very flexible with its fundamental

frequency very close to1 Hz. Such a low fundamental frequency for the piping system is

undesirable due to in-plant low frequency operating loads. In order to overcome this prob-

lem, it is essential to have enough supports to bring the fundamental frequency greater than

5 Hz. It is found by trial and error that if the number of supports is near15, the frequencies

of the system are above5 Hz. This is the reason for the trade-off curve for the real system

shown in Chapter 3 being evaluated in the neighborhood ofnreq = 15.
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Table 4.1: Properties of solutions given in Figure 4.9

Solution Cost (in thousands) U

(
θk

θkc

)
max

Best 215.500 0.159 0.751

MGA1 246.500 0.139 0.800

MGA2 180.000 0.301 0.906

MGA3 227.500 0.175 0.823

Table 4.2: Properties of solutions given in Figure 4.10

Solution Cost (in ten thousands) U

(
θk

θkc

)
max

1 172.2904 0.818 0.995

2 196.4135 0.944 0.995

3 198.5535 1.050 0.975
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Figure 4.1: Comparison of performance of various crossover schemes for lifetime cost
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nreq = 7

nreq = 6

nreq = 9

nreq = 8

Figure 4.5: Optimal lifetime cost solutions obtained using uniform crossover and binary
representation
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Figure 4.6: Optimal capital cost solutions obtained using uniform crossover and binary
representation
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Figure 4.7:θk/θkc values for solutions given in Figure 4.5
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Figure 4.8:θk/θkc values for solutions given in Figure 4.6
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Best
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MGA2

Figure 4.9: The best solution and the alternatives using Equation 4.2
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(3)

(2)

(1)

Figure 4.10: Alternatives generated for lifetime cost optimal solution ofnreq = 8
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Chapter 5

Summary and Conclusions

5.1 Summary

The first step in the creation of the DSS for seismic design and performance evaluation

of piping supports is the implementation of a GA to optimize support locations of piping

systems subject to earthquake load. Chiba et al. [7] have used integer string representa-

tion in their GA formulation that minimizes the number of supports as well as cumulative

capacity of the supports. The following limitations are identified in this formulation:

• The supports are assumed to behave as springs with stiffnesses that depend on the

capacity of the support, whereas in practice, supports have been observed to fail in

buckling, exhibiting more of a rigid behavior.

• It is not clear whether minimizing the number of supports and their cumulative ca-

pacity minimizes the total capital or lifetime cost of the supports.
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• The formulation does not address issues such as the idea of providing a support di-

rectly under heavy equipment. The engineer is likely to prefer solutions that consider

these issues even if they are somewhat costlier than the optimal solution.

The above limitations are eliminated by introducing various modifications. Supports

are modeled as rigid, resulting in all the supports having the same stiffness. This lead to the

introduction of the binary string representation. This change is shown to produce a great

reduction in the search space to be explored by the GA. Then, it is observed that seeding

the GA by rolling a dice produced an initial population in which solutions have supports at

50% of the possible locations even though only a very few supports are required. Therefore,

alternative seeding techniques are explored in which the population is seeded with solutions

having a number of supports near the required number.

The possibility of trade-offs between various types of cost (capital or lifetime) and the

number of supports is examined. The performance of the two representations are tested

with respect to lifetime cost. In the process of generation of trade-off curves, cost optimal

solutions for a specified number of supportsnreq are required. It is observed that uniform

crossover produces a lot of solutions with number of supports either greater than or less

thannreq. Consequently, it is noticed that the performance of the genetic algorithm for

trade-off study can be enhanced if the crossover is made to generate offspring with exactly

nreq supports. Thus, a new crossover scheme is proposed to take care of this issue and its

performance is compared with that of uniform crossover for capital cost and lifetime cost.



73

In order to consider the issue of having supports directly under heavy equipment, a

lumped mass parameterU is proposed. The support load to support capacity ratio in the

optimal solutions is seen to vary non-uniformly in the sense that, some of the supports are

fully loaded while others are partially loaded. Thus, the minimization ofrmax, the maxi-

mum value of support load to capacity ratio of the supports in the solution, is suggested. A

new fitness function that considers minimization ofU andrmax is used in the GA. The fail-

ure to support all heavier masses with a cost close to the optimal cost, is shown to suggest

the usefulness of MGA. The topology metric, which is essentially the “Hamming distance,”

is used as a difference metric for generating alternatives that are attractive with respect to

U andrmax. Finally, the resulting DSS is evaluated on a real piping system.

5.2 Conclusions

The following conclusions are obtained from the process of development of the DSS

for seismic design and performance evaluation of piping supports:

• Solutions are primarily infeasible with respect to support capacities. The constraints

on stress and displacement are trivially satisfied in many cases.

• Binary string representation performs better than integer string representation be-

cause of the reduced search space but can be used only if all supports are modeled as

rigid springs.

• The proposed crossover scheme is better suited over uniform crossover when optimal
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solutions are desired for a specified number of supportsnreq as it significantly reduces

the search space.

• Seeding techniques significantly affects the performance of the GA. To generate

trade-off curves, it is essential to seed the GA with solutions having exactly the re-

quired number of supports,nreq, to converge accurately on the optimal solution.

• Optimization for capital cost is same as minimizing the number of supports whereas

optimization for lifetime cost is a multi-objective problem.

• Stochastic selection appears to work better than tournament selection for the op-

timization of lifetime cost while both performed equally well with respect to the

optimization of capital cost.

• It might not be practically feasible to support all the heavy lumped masses of a piping

system because of the high cost involved.

• MGA, using topology metric for difference and the proposed lumped mass parameter

as a constraint to reduce the decision space, appears to work well.

5.3 Future work

• Explore the role of local search techniques to improve the GA solutions as several

GA runs are required to find the absolute optimal.
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• In the case of the trade-off study, the search space is seen to increase with the spec-

ified number of supportsnreq. Hence, the population in the GA has to be increased

accordingly. For this purpose, a mathematical relation has to be derived betweennreq

and the population size.

• The results show that the cost incurred increases with decrease in the value of the

lumped mass parameterU . A trade-off study between unattractiveness and cost

might be useful to the engineer in decision making.

• The excitation through all the supports is assumed to be the same whereas in reality

the excitation coming through a support varies according to the floor level in the

building at which the support is located. Consideration of multi-support excitation is

needed to solve this problem.

• The piping system has been analyzed independently. Accounting for building-piping

interactions is essential as it can further bring down the cost of the supports required.
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