Abstract

SANDELIER, MATTHEW J.: (+)-Desoxoprosopinine: A Model for the Total Asymmetric Synthesis of *Prosopis* Alkaloids. (Under the direction of Dr. Daniel L. Comins.)

This work develops a general synthesis of the *Prosopis africana* alkaloids, using a chiral auxiliary-mediated process. Enantiopure *N*-acyldihydropyridones were produced and used as intermediates, targeting (+)-desoxoprosopinine as a synthetic model for those alkaloids. The orientation of all three stereocenters was highly controlled, with the synthesis of intermediate 75, just short of the target, in 7 steps with a 13.8% overall yield.
(++)-DESOXOPROSOPININE: A MODEL FOR THE TOTAL ASYMMETRIC SYNTHESIS OF PROSOPIS ALKALOIDS

by

MATTHEW J. SANDELIER

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science

DEPARTMENT OF CHEMISTRY

Raleigh, North Carolina

1999

APPROVED BY:

Dr. Daniel L. Comins, Chair

__________________________ __________________________
Dr. Suzanne T. Purrington Dr. Samuel G. Levine
Biography

The author was born in Woodbury, NJ on March 30, 1971 to James and Margaret Ann Sandelier. In 1989, he graduated from Cherokee High School in Marlton, NJ. After attending Boston University for two years on an Air Force ROTC scholarship, Matt transferred to the United States Air Force Academy, Colorado Springs, CO. With the encouragement of the faculty, including a Comins’ group graduate, Dr. Michael Killpack, the author began his studies in organic chemistry.

After graduation, Lt Sandelier was assigned to the High Explosives Research and Development (HERD) Facility at Eglin AFB, Fort Walton Beach, FL. For two years he worked as a research chemist formulating and testing new explosives for USAF developmental munitions. Then in August 1997, he was given the opportunity to pursue his Master’s Degree at North Carolina State University, Raleigh, NC, sponsored by the Air Force Institute of Technology.
Acknowledgements

I would like to thank Dr. Daniel L. Comins for his invaluable direction and encouragement throughout this project. I must also recognize the other members of the Comins' group, for both their academic and personal support. I am deeply indebted to the members of my committee, Dr. Suzanne Purrington, and Dr. Samuel Levine, for their diligence in the editing of this manuscript. Lastly, I must thank the Air Force Institute of Technology and North Carolina State University, for the wonderful educational opportunity that I have been given for the past two years.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Schemes</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of Abbreviations and Terms</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Chiral N-Acyl-2,3-dihydro-4-pyridones</td>
<td>1</td>
</tr>
<tr>
<td>Isolation and Structure Determination of Prosopis africana Alkaloids</td>
<td>7</td>
</tr>
<tr>
<td>Literature Review</td>
<td></td>
</tr>
<tr>
<td>Syntheses of (+)- and (-)-Desoxoprosopinine</td>
<td>11</td>
</tr>
<tr>
<td>Synthesis of (+)-Prosopinine</td>
<td>15</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td></td>
</tr>
<tr>
<td>Synthesis of Key Intermediate 73:</td>
<td></td>
</tr>
<tr>
<td>8-Acetoxo-3,7-dioxo-1,7,8,8a-tetrahydro-oxazolo[3,4-α]pyridine</td>
<td>17</td>
</tr>
<tr>
<td>Formation of an α-Hetero-Organometallic Reagent</td>
<td>19</td>
</tr>
<tr>
<td>Synthesis of Key Intermediate 54:</td>
<td></td>
</tr>
<tr>
<td>3,7-Dioxo-1,7,8,8a-tetrahydro-oxazolo[3,4-α]pyridine</td>
<td>24</td>
</tr>
<tr>
<td>C-3 Oxidation</td>
<td>29</td>
</tr>
<tr>
<td>Attempted Synthesis of (+)-Desoxoprosopinine</td>
<td>40</td>
</tr>
<tr>
<td>Conclusions</td>
<td>43</td>
</tr>
<tr>
<td>Experimental</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>60</td>
</tr>
<tr>
<td>Appendix</td>
<td>63</td>
</tr>
</tbody>
</table>
List of Schemes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 1</td>
<td>Synthesis of Chiral N-Acyl-2,3-dihydro-4-pyridones</td>
<td>3</td>
</tr>
<tr>
<td>Scheme 2</td>
<td>Periodate Oxidation of (+)-Desoxoprosopinine</td>
<td>9</td>
</tr>
<tr>
<td>Scheme 3</td>
<td>Synthesis of (+)-Desoxoprosopinine by Yamamoto, et.al.</td>
<td>12</td>
</tr>
<tr>
<td>Scheme 4</td>
<td>Synthesis of (-)-Desoxoprosopinine by Couty, et.al.</td>
<td>14</td>
</tr>
<tr>
<td>Scheme 5</td>
<td>Synthesis of (+)-Prosopinine by Ojima & Vidal</td>
<td>16</td>
</tr>
<tr>
<td>Scheme 6</td>
<td>Original Synthetic Plan</td>
<td>18</td>
</tr>
<tr>
<td>Scheme 7</td>
<td>Grignard Reagent Formation</td>
<td>19</td>
</tr>
<tr>
<td>Scheme 8</td>
<td>Formation of Tin Reagent</td>
<td>21</td>
</tr>
<tr>
<td>Scheme 9</td>
<td>Organolithium Addition to Pyridinium Salt</td>
<td>22</td>
</tr>
<tr>
<td>Scheme 10</td>
<td>Higher Order Cuprate Addition</td>
<td>23</td>
</tr>
<tr>
<td>Scheme 11</td>
<td>Removal of Chiral Auxiliary</td>
<td>25</td>
</tr>
<tr>
<td>Scheme 12</td>
<td>Hydrogenolysis</td>
<td>26</td>
</tr>
<tr>
<td>Scheme 13</td>
<td>Bicyclic Carbamate Formation</td>
<td>26</td>
</tr>
<tr>
<td>Scheme 14</td>
<td>Alternate Route to 53</td>
<td>27</td>
</tr>
<tr>
<td>Scheme 15</td>
<td>Protodesilylation of 53</td>
<td>28</td>
</tr>
<tr>
<td>Scheme 16</td>
<td>Enolate Formation</td>
<td>29</td>
</tr>
<tr>
<td>Scheme 17</td>
<td>Acetoxylation of 53</td>
<td>31</td>
</tr>
<tr>
<td>Scheme 18</td>
<td>Varying the N-Acyl Groups</td>
<td>33</td>
</tr>
<tr>
<td>Scheme 19</td>
<td>Progress with the Benzyl Carbamate</td>
<td>34</td>
</tr>
</tbody>
</table>
Scheme 20. Progress with the (-)-TCC Carbamate ... 35
Scheme 21. Progress with the Phenyl Carbamate ... 36
Scheme 22. Failed Hydrogenolysis of 72 .. 37
Scheme 23. Debenzylation / Spontaneous Cyclization ... 39
Scheme 24. Conjugate Addition to 73 .. 41
Scheme 25. Reduction of the Vinyl Triflate 74 ... 42
Scheme 26. Synthesis of (+)-Desoxoprosopinine ... 42
Scheme 27. Final Synthetic Route .. 44
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Past and Future Targets using Chiral N-Acyl-2,3-dihydro-4-pyridones</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Rotamer A</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Rotamer B</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Substitution of Chiral N-Acyl-2,3-dihydro-4-pyridones</td>
<td>6</td>
</tr>
<tr>
<td>Figure 5</td>
<td>A(^{(1,3)}) strain in Chiral N-Acyl-2,3-dihydro-4-pyridones</td>
<td>7</td>
</tr>
<tr>
<td>Figure 6</td>
<td>\textit{Prosopis africana} Alkaloids</td>
<td>8</td>
</tr>
<tr>
<td>Figure 7</td>
<td>(O,O')-Benzylidene Derivative of (+)-Desoxoprosopinine</td>
<td>10</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Axial Attack of Pb(OAc)(_4)</td>
<td>31</td>
</tr>
</tbody>
</table>
List of Tables

Table 1. Attempted Grignard Reagent Formation Conditions .. 20
Table 2. Enolate Formation .. 30
Table 3. Conditions for the Acetoxylation of 71 .. 37
List of Abbreviations and Terms

<table>
<thead>
<tr>
<th>Abbreviation or Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\alpha]_D$</td>
<td>optical rotation</td>
</tr>
<tr>
<td>Anal.</td>
<td>analysis</td>
</tr>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>bp</td>
<td>boiling point</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>brine</td>
<td>saturated aqueous sodium chloride</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-butyllithium</td>
</tr>
<tr>
<td>t-BuLi</td>
<td>tert-butyllithium</td>
</tr>
<tr>
<td>°C</td>
<td>degree(s) Celsius</td>
</tr>
<tr>
<td>13C NMR</td>
<td>carbon-13 nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>calcd.</td>
<td>calculated</td>
</tr>
<tr>
<td>CDCl$_3$</td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>chloroform</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>methylene chloride</td>
</tr>
<tr>
<td>cm$^{-1}$</td>
<td>reciprocal centimeters</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift in ppm from tetramethylsilane</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets</td>
</tr>
<tr>
<td>de</td>
<td>diastereomeric excess</td>
</tr>
<tr>
<td>dm</td>
<td>decimeter</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethyl formamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>eq.</td>
<td>equivalent(s)</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>Et$_2$O</td>
<td>diethyl ether</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>H+</td>
<td>proton or protic acid</td>
</tr>
<tr>
<td>1H NMR</td>
<td>proton nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>HOAc</td>
<td>glacial acetic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>i-Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectroscopy</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>Kcal</td>
<td>kilocalorie(s)</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>lit.</td>
<td>literature</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>Mhz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter(s)</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole(s)</td>
</tr>
<tr>
<td>mol</td>
<td>mole(s)</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>N</td>
<td>normal</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>NaHMDS</td>
<td>sodium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>radial PLC</td>
<td>radial preparative-layer chromatography</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetra-(n)-butyl ammonium fluoride</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyl diphenylsilyl</td>
</tr>
<tr>
<td>TBDPSCI</td>
<td>tert-butylchlorodiphenylsilyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butyl dimethylsilyl</td>
</tr>
<tr>
<td>TBSCI</td>
<td>tert-butyl dimethylsilyl chloride</td>
</tr>
<tr>
<td>t-Bu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>TCC</td>
<td>trans-2-((\alpha)-cumyl)cyclohexyl</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylamine</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>thin-layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>Ts</td>
<td>(p)-toluenesulfonyl</td>
</tr>
</tbody>
</table>
Introduction

Chiral N-Acyl-2,3-dihydro-4-pyridones:

Chiral N-acetyl-2,3-dihydro-4-pyridones have been used extensively as intermediates in the asymmetric synthesis of various indolizidine\(^1\), quinolizidine\(^2\), and piperidine\(^3\) alkaloids (Figure 1). The versatility of these intermediates stems from the ability to substitute stereoselectively at each of 2,3,4,5, & 6 carbons of the dihydropyridone skeleton.

Chiral N-aclypyridinium salts are the backbone of the current Comins’ group chemistry, and are the basis for synthesizing enantiopure 2-substituted 2,3-dihydro-4-pyridones\(^4\). By adding a chiral chloroformate to 4-methoxy-3-triisopropylsilylpyridine 1, a pyridinium salt 2 is formed which is susceptible to a facially selective attack by an organometallic nucleophile at the C-2 position (Scheme 1). Subsequent acid hydrolysis of the dihydropyridine 3 *in situ* produces a diastereomeric mixture of enantiopure 2-substituted 2,3-dihydro-4-pyridones 4.
Figure 1: Past and Future Targets using Chiral N-Acyl-2,3-dihydro-4-pyridones
This facial selectivity is controlled by the use of two modifications to a basic pyridinium salt. The first is a chiral auxillary, *trans*-2-(α-cumyl)cyclohexanol (TCC), whose enantiomers are isolated by kinetic resolution\(^5\). The structure of this auxillary, when incorporated into the N-acylpyridinium salt, is specifically designed to overlap one face of the pyridine ring. The second facial director is the 3-triisopropylsilyl group. This bulky group not only blocks the 2-position of the pyridine ring from attack from either side, but also plays a role in the alignment of the chiral auxillary, increasing the facial selectivity of the attacking nucleophile. Rotation about the carbon-nitrogen bond of a pyridinium salt is normally not restricted. However, the combination of
steric interactions between the chiral auxiliary and 3-silyl group and possible $\pi-\pi$ interactions between the phenyl ring of TCC and the pyridinium ring contribute to the limited rotation about that bond. Figures 2 & 3 show molecular mechanics (MMX) representations of the two most stable rotamers. The population of rotamer A is significantly higher than rotamer B, and thus high diastereoselectivities are obtained.
Figure 2: Rotamer A

Figure 3: Rotamer B
Once this enantiopure 2-substituted dihydropyridone is formed, substitution at the other carbons can be achieved through a number of methods. Through enolate formation, producing an N-acyl stabilized dihydropyridine, the C-3 position can be alkylated1c,3d,6. Either 1,2- and 1,4 additions or reductions can be used to substitute C-4 and C-61b,7. Finally, the C-5 position can be electrophilically substituted7.

![Diagram of dihydropyridone substitution methods]

Figure 4: Substitution of N-Acyl-2,3-dihydro-4-pyridones

The stereoselectivity of all of these substitution methods relies on the conformation of the dihydropyridone. Steric interactions between the N-acyl group and the new C-2 substituent, A(1,3) strain, cause the dihydropyridone to be somewhat rigid, with the C-2 substituent remaining axial (Figure 5)8. This conformational bias effects considerable control over the stereochemistry at all the positions of the dihydropyridone.
Isolation and Structure Determination of *Prosopis africana* Alkaloids:

Several 2,6-disubstituted piperidin-3-ol alkaloids have been isolated from the *Prosopis africana*10, whose leaves have been used in Africa to treat toothaches9a. These alkaloids 5-9, shown in Figure 6, all have a hydroxyl group in the 3-position, an n-C$_{12}$ side chain in the 6-position, and either a methyl or hydroxymethyl group in the 2-position.

The structure of these alkaloids was determined by a series of reactions degrading the molecules to known compounds and using mass spectrometry for identification. First, by an Oppenauer oxidation, *prosopine* 5 could be transformed into *prospinone* 7, which was shown to be isomeric with *prospinine* 6. Then, by Wolff-Kishner reduction, both *prospinine* 6 and *prospinone* 7 were transformed into the same compound, desoxoprospinine, proving that all three had the same stereochemistry about the piperidine ring, and differed only in the substitution of the C-
6 side chain. The same sequence, when applied to *prosophylline* 8, produced a different compound, proving its piperidine ring stereochemistry was different9,10.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Prosopis_africana_Alkaloids.png}
\caption{Prosopis africana Alkaloids}
\end{figure}
Scheme 2: Periodate Oxidation of Desoxoprosopinine

(+)-desoxoprosopinine

10

HO

CH3

(CH2)11

11

CHO

HCOHN

HO

(CH2)11

CH3

OHC

N

CH3

(CH2)11

CHO

HO (CH2)11CH3

12

KBH4

LAH

13

14
Next, a periodate oxidation of desoxoprosopinine resulted in a tautomeric mixture of 11 and 12, favoring prosopinamide 12. This mixture was subjected to both LAH and KBH₄ reductions giving products 13 and 14, respectively (Scheme 2)⁹,¹⁰. The relative stereochemistry of the piperidine ring was established by forming the \(O,O'\)-benzylidene derivative 15 by reacting desoxoprosopinine 10 with benzaldehyde (Figure 7). NMR coupling constants were used to determine the trans relationship between both C-2 and C-3, and C-2 and C-6⁹b,¹⁰.

![Figure 7: \(O,O'\)-Benzylidene Derivative of (+)-Desoxoprosopinine](image)

Horeau’s method of kinetic resolution¹¹ was used to determine the absolute stereochemical configuration of prosopine 5 and prosopinine 6. Using the C-3 hydroxyl position of prosopinine 6, the configuration of all three centers on the piperidine ring were established to be \((2R,3S,6R)\). For the 11\(^\prime\)-hydroxyl group of prosopine’s C-6 side chain, the \(O,O'\)-benzylidene derivative was made, and this compound was subjected to Horeau’s kinetic resolution. The center was established as \(11\,S\)¹⁰,¹¹.
Literature Review

(+) & (-)-Desoxoprosopinine:

The synthesis of desoxoprosopinine has been achieved by several groups12,13 in an effort to demonstrate their ability to stereoselectively design the piperidine ring structure of the *Prosopis* alkaloids. Desoxoprosopinine has three stereocenters that need to be set in any such synthesis—C-2, C-3 and C-6. In the two cases reviewed here, the syntheses take starting materials from the chiral pool. With the orientation of either C-2 or C-3 already set, only two other centers needed to be introduced.

Yamamoto, et.al.12 started with an L-glutamic acid derived starting material, 20 (Scheme 3). Silyl ether protection of the primary alcohol, followed by selective deprotection of the amine, gave compound 21. Tosylation of the resulting primary alcohol followed by alkylation produced the \(n\)-C\textsubscript{12} side chain of desoxoprosopinine. Next, allylation of the amine and desilylation of the primary hydroxyl group gave compound 22. Treatment with base produced an allylic anion which was quenched with Bu\textsubscript{3}SnCl to produce the allylstannane necessary for the key step in this synthesis—an intramolecular \(\gamma \)-aminoallylstannane cyclization. Cyclization induced by BF\textsubscript{3}Et\textsubscript{2}O was high yielding but only moderately selective, producing a 7:3 mixture of diastereomers at C-2 and C-3. Ozonolysis, reduction, and deprotection provided (+)-desoxoprosopinine in 12 steps with a 16% overall yield.
Scheme 3: Synthesis of (+)-Desoxoprosopinine by Yamamoto, et.al.

1. TBDPSCl, imidazole
2. PdCl$_2$(CH$_3$CN)$_2$

1. TsCl, DMAP, Et$_3$N
2. C$_{11}$H$_{23}$Li, Cul
3. Allyl bromide, KH
4. NBu$_4$F

1. sec-BuLi, TMEDA
2. Bu$_3$SnCl
3. SO$_3$py, DMSO, TEA
Another synthesis was done by Couty, et.al.13 to produce the unnatural enantiomer, (-)-desoxoprosopinine 10e. This sequence (Scheme 4) started from a Weinreb’s amide 30, which was derived from (R)-phenylglycinol in four steps (78% overall yield)14. Treatment of 30 with 4-butenylmagnesium bromide, diastereoselective reduction with NaBH\textsubscript{4}, and protection of the new hydroxyl as a benzyl ether produced compound 31. This sequence established the stereochemistry of the C-3 hydroxyl group of (-)-desoxoprosopinine. The terminal olefin of 31 was oxidatively cleaved to an aldehyde, treated with dodecylmagnesium bromide, and finally reoxidized to form ketone 32. Acidic deprotection of the amine, followed by intramolecular condensation with the tethered ketone, formed an iminium ion which when treated with aqueous KCN produced aminonitrile 33. This aminonitrile was diastereoselectively reduced via a literature method15 to form compound 34, setting the C-6 stereocenter of the target 10e. Although no reagent is listed, the authors describe a Lewis-acid mediated opening of the oxazolidine ring. This formed an intermediate iminium ion, which was treated with vinylmagnesium bromide to form piperidine 35, and set the final C-2 stereocenter. This facial selectivity is purportedly due to both the dodecyl and benzyloxy groups blocking the opposite face. The last novel step was the dealkylation of the amine. Treatment with thionyl chloride formed the primary chloride, which when substituted with cyanide, induced a spontaneous β-elimination to produce the free amine 36. N-Acylation, oxidative cleavage of the olefin, aldehyde reduction, and hydrogenolysis delivered the target in 11 steps with a 12.8% overall yield.
Scheme 4: Synthesis of (-)-Desoxoprosopinine by Couty, et al.

1. 4-butenylMgBr
2. NaBH₄
3. NaH, BnBr, NBu₄I

1. OsO₄, NaIO₄
2. C₁₂H₂₅MgI
3. PDC

1. TFA, CIC₂H₄Cl
2. Aq. KCN

1. AgBF₄
2. Zn(BH₄)₂

1. CbzCl, DMAP
2. O₃
3. PPh₃
4. NaBH₄

H₂, Pd(OH)₂
EtOH/HCl

(-)-desoxoprosopinine

30
31
32
33
34
35
36
37
10e
One successful synthesis of a side-chain functionalized *Prosopis* alkaloid, (+)-*prosopinine* (6), was accomplished by Ojima & Vidal\(^\text{16}\). This work started with the synthesis of Garner’s aldehyde\(^\text{17}\) 41 from (\(R\))-serine 40. This chiral starting material establishes the C-2 stereochemistry of the target 6. Setting the C-3 center was accomplished with a 6:1 selectivity by treating 41 with vinylmagnesium bromide. After removal of the acetonide with \(p\)-toluenesulfonic acid and protection of both hydroxyl groups as the tert-butyldimethylsilyl ethers, intermediate 44 was ready for the key reaction. Cyclohydrocarbonylation was achieved in high yield (92%) when catalyzed by a rhodium-BIPHEPHOS complex. Generation of the acyliminium ion of 45 \textit{in situ} and attack by the alkylcuprate of 1-bromo-10-oxo-dodecane ketal produced the fully protected (+)-*prosopinine* 46 with the proper \textit{trans}-2,6 stereochemistry. After deprotection, the total synthesis of (+)-*prosopinine* 6 was achieved in 10 steps from 41 with an overall yield of 11.3\%.
Scheme 5: Synthesis of (+)-Prosopinine by Ojima & Vidal

1. p-TsOH, MeOH
2. TBSCl, Imidazole

Rh(acac)(CO)₂ (1 mol%), BIPHEPHOS (2 mol%), H₂/CO

6:1

1. TBAF
2. TFA/CH₂Cl₂

(+)-prosopinine
Results and Discussion

The synthetic utility of chiral N-acyl-2,3-dihydro-4-pyridones has been well-established in the past in the total asymmetric syntheses of various indolizidine1, quinolizidine2, and piperidine3 alkaloids. This study once again demonstrates that utility in the asymmetric synthesis of (+)-desoxoprosopinine 10. The convergence of this synthesis will also prove to be a model for the synthesis of all Prosopis africana alkaloids.

The original synthetic plan (Scheme 6) involved using an α-hetero-Grignard reagent as the nucleophile in the synthesis of a (2S)-benzyloxymethyl substituted chiral N-acyl-2,3-dihydro-4-pyridone 50. After removal of the chiral auxiliary, cleavage of the benzyl ether by hydrogenolysis would produce β-aminoalcohol 52. Cyclization of 52 would form the oxazolidinone ring in bicyclic compound 53, which is critical in controlling the stereochemistry at C-6. This bicyclic ring system would force the 2-substituent into a pseudoequatorial orientation, and thus direct the subsequent 1,4-addition via a stereoelectronically-controlled axial attack18 to produce the desired trans 2,6-product. However, before this 1,4-addition could be accomplished, the C-3 hydroxyl functionality must be installed trans to the C-2 substituent. This transformation would eventually become the most difficult step in this scheme.
Scheme 6: Original Synthetic Plan

R* = (-)-trans-α-cumylcyclohexyl
[(-)-TCC]

P = any protecting group
Formation of an α-Hetero-Organometallic Reagent

The formation of compound 50 involved the preparation of an organometallic reagent from benzyl chloromethyl ether. This chloride had been the subject of previous work19, where the formation and stability of Grignard reagents from various chloromethyl ethers was studied. That report states that Grignard reagents of this type are extremely temperature-sensitive, both in formation and stability. However, the work also mentions that the chloromethyl allyl and benzyl ethers are somewhat more stable than the alkyl ethers, and therefore the formation of this Grignard reagent seemed a good starting point.

\textbf{Scheme 7: Grignard Reagent Formation}

\begin{center}
\begin{tikzpicture}
 \node (a) [draw, rectangle] at (0,0) {59};
 \node (b) [draw, rectangle] at (2,0) {60};
 \draw[->] (a) edge (b);
 \node at (1,1) {Activated Mg^+};
 \node at (1,-1) {anhydrous THF};
\end{tikzpicture}
\end{center}

Many attempts were made to synthesize Grignard reagent 60, the conditions of which are listed in Table 1. Extensive efforts were made regarding the purity and dryness of the reagents; however, no indication of any Grignard reagent was found.
Table 1: Attempted Grignard Reagent Formation Conditions

<table>
<thead>
<tr>
<th>Magnesium activation</th>
<th>Temperature (°C)</th>
<th>Electrophile</th>
</tr>
</thead>
<tbody>
<tr>
<td>HgCl₂</td>
<td>-33</td>
<td>benzaldehyde</td>
</tr>
<tr>
<td>HgCl₂, 1,2-dibromoethane</td>
<td>-33</td>
<td>benzaldehyde</td>
</tr>
<tr>
<td>HgCl₂, 1,2-dibromoethane</td>
<td>0, -25, excess heat</td>
<td>piperonal</td>
</tr>
<tr>
<td>Mechanical</td>
<td>0</td>
<td>piperonal</td>
</tr>
</tbody>
</table>

The decomposition of the Grignard reagent, purportedly by two organometallic molecules reacting with one another to eliminate ethylene and two molecules of magnesium alkoxide19, was never a result that could be substantiated by NMR. Nevertheless, all attempts at forming this Grignard reagent were unsuccessful.

The use of a tributylstannane intermediate had been previously reported20, and transmetallation to the lithium or cuprate reagent would prove successful. By Kaufman’s procedure20a, freshly distilled tributyltin hydride was deprotonated with LDA at –15 °C, cooled to –78 °C, and benzyl chloromethyl ether was added dropwise. The solution was warmed to room temperature, diluted with hexane, washed with brine, and concentrated. Vacuum distillation provided pure, anhydrous 61 in 80-87% yields, comparable to the literature.
With the required tributylstannane 61 prepared, the next step was transmetallation and addition to the pyridinium salt. The first attempts were the addition of the organolithium reagent to the \(N\)-acylpyridinium salt. These early attempts were done using racemic auxiliary. By treatment of stannane 61 with \(n\)-BuLi at \(-78^\circ\text{C}\), reagent 62 was formed and was then added to the \textit{in situ} formed pyridinium salt. After hydrolysis, the reaction did produce some 50 in low yield (38%). To eliminate the possibility of thermal sensitivity, as was reportedly the case for the corresponding Grignard reagent, the pyridinium salt was transferred via double-tipped stainless steel needle to 62. This “inverse addition” method showed no improvement over the “normal addition.”
As was previously observed in the Comins’ group, organolithiums are not the best organometallic reagents to use since they often attack the carbonyl of the carbamate instead of the C-2 position of the pyridinium salt. Therefore, the higher order cyanocuprate was next attempted. After forming as previously described, lithium 2-thienylcyanocuprate (Lipshutz reagent) was added, stirred for 5 min at –78 °C, and then was transferred to the pyridinium salt. This procedure (Scheme 10) proved successful after some optimization.
After allowing more time for both the organolithium and cuprate to form, consistent results were obtained and enantiopure chiral auxiliary was now used. Small-scale reaction yields ranged from 71-78%, with the major and minor diastereomers easily separated by radial PLC. HPLC analyses of the crude reaction mixtures determined that the diastereomeric excesses ranged from 79-82. These
de’s are not as good as those typical of Grignard reagents, but are certainly sufficient.

Synthesis of (9S)-8,8a-Dihydro-1H-oxazolo[3,4-α]pyridine-3,7-dione (54)

The next four transformations were focused on the synthesis of intermediate 54 (Scheme 6). The first of these transformations involved the removal of the chiral auxiliary, (-)-TCC alcohol, from 50. Treatment with sodium methoxide in methanol for 18 h afforded free vinylogous amide 51 in excellent yield. A one-pot process removing both the chiral auxiliary and the TIPS group was also accomplished. After basic hydrolysis, protodesilylation occurred by treatment with excess hydrochloric acid in isopropanol to give 65 (Scheme 11).
Scheme 11: Removal of Chiral Auxiliary

![Chemical Structure](attachment:Scheme11.png)

Scheme 11: Removal of Chiral Auxiliary

Compound 51 was next subjected to standard hydrogenolysis conditions, using palladium hydroxide, Pearlman’s catalyst\(^\text{23}\). After several attempts, no reaction occurred, and catalytic transfer hydrogenolysis was performed using cyclohexene as the hydrogen donor\(^\text{24}\) (Scheme 12). Excellent yields were obtained (84%), and this method would become the standard for debenzylation in this project.
Scheme 13: Hydrogenolysis

The next step in this segment was forming the bicyclic carbamate compound 53. This was achieved by treatment of 52 with triethylamine and 1,1'-carbonyldiimidazole. This conversion yielded 91% of compound 53.

Scheme 14: Bicyclic Carbamate Formation
Before moving on, a shorter route to 53 was investigated. After debenzylating compound 50, it was hoped that a deprotonated hydroxyl group would be nucleophilic enough to attack the carbamate carbonyl and displace the chiral auxiliary forming compound 53. Catalytic transfer hydrogenation was performed in a manner similar to before producing compound 80 in high yield. Unfortunately, several attempts were made using both NaH (1.1 eq) and sodium methoxide. In both cases the major product was the deprotected-vinylogous amide, uncyclized compound 52. In the latter case, using sodium methoxide, the yield of 52 was as high as 93%.

Scheme 15: Alternate Route to 53
The final step of this segment was removing the TIPS group. Although it was easily removed along with the chiral auxiliary in Scheme 11, carrying the TIPS group through to this point simplified the purification of the products in Schemes 11, 12 & 13. The added non-polarity of the TIPS group balanced the highly polar free vinylogous amide and hydroxyl groups in this small molecule. Scheme 15 shows the ease with which protodesilylation occurred in refluxing formic acid. This step afforded compound 54 in near quantitative yield.

Scheme 16: Protodesilylation of 53
C-3 Oxidation

Before the conjugate addition of the n-C$_{12}$ side chain could be carried out, the hydroxyl group at C-3 needed to be installed. Several methods were attempted without success due to a lack of stereoselectivity.

Scheme 16 depicts the general plan for oxidation at C-3, using various bases to form the enolate and adding a source of electrophilic oxygen. Also shown in Table 2 are the conditions used in those attempts.

Scheme 17: Enolate Formation
Table 2: Enolate Formation

<table>
<thead>
<tr>
<th>SM</th>
<th>Base</th>
<th>Electrophile</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>LDA</td>
<td>Mel</td>
<td>Some methylation by NMR</td>
</tr>
<tr>
<td>53</td>
<td>LDA</td>
<td>(Ph-CO₂)₂</td>
<td>All SM</td>
</tr>
<tr>
<td>53</td>
<td>NaHMDS</td>
<td>(Ph-CO₂)₂</td>
<td>All SM</td>
</tr>
<tr>
<td>54</td>
<td>NaHMDS</td>
<td>(Ph-CO₂)₂</td>
<td>All SM</td>
</tr>
<tr>
<td>54</td>
<td>NaHMDS + BF₃Et₂O</td>
<td>(Ph-CO₂)₂</td>
<td>decomposition</td>
</tr>
<tr>
<td>54</td>
<td>NaHMDS</td>
<td>(Me₃SiO)₂</td>
<td>only 40% SM recovered</td>
</tr>
</tbody>
</table>

The first attempt at enolate formation seemed to work sufficiently; the NMR spectrum appeared to show some methylation. However, why each subsequent attempt failed, whether in enolate formation or in electrophilic substitution, could not be determined.

Previous work by the Comins' group²⁵ had shown that a more traditional method, using lead tetraacetate, was a low-yielding reaction and would produce the undesired cis-2,3 stereochemistry with this bicyclic system. This result was verified in attempts using these conditions (Scheme 17). Lead tetraacetate, acting in an axial attack fashion (see Figure 8), attacks from the bottom face leading to the undesired isomer 76. The NMR spectrum of this product, isolated only in trace amounts, showed no visible coupling between the axial proton of C-2 and the lone
proton on C-3. The desired axial-axial orientation, as will be shown later, has a distinctly large coupling constant \((J = 13.0 \text{ Hz})\).

Scheme 18: Acetoxylation of 53

\[
\begin{array}{c}
\text{53} \\
\text{O} \\
\text{TIPS} \\
\text{O} \\
\text{O} \\
\text{Pb(OAc)}_4 \\
\text{toluene, } \Delta \\
\text{AcO} \\
\text{TIPS} \\
\text{O} \\
\text{O} \\
\text{76} \\
\end{array}
\]

Figure 8: Axial Attack of Pb(OAc)$_4$

In order to take advantage of this stereoelectronic mode of attack and achieve the correct stereochemical outcome, the starting material must have the C-2 substituent in an axial position—as \(A^{(1,3)}\) strain normally dictates in the monocyclic series. Therefore, the acetoxylation reaction needed to be carried out before cyclization of the carbamate ring.
This plan presented the problem of selecting the appropriate nitrogen protecting group. Earlier attempts at direct cyclization with the chiral auxiliary still attached had failed. Nevertheless, three separate paths would be explored varying the N-acyl group between benzyl, phenyl and (−)-TCC carbamates.

The benzyl carbamate was formed by treatment of 65 with n-BuLi and then benzyl chloroformate giving 83 in high yield (80%). Similarly, the phenyl carbamates 70 and 71 (Method B) were formed using 51 and 65 as the respective starting materials (Scheme 18).

Starting with the benzyl carbamate 83, acetoxylation in a manner similar to previous reactions25 was carried out in refluxing anhydrous toluene with Pb(OAc)$_4$, freshly recrystallized from acetic acid, dried under vacuum, and stored in a glove box. This reaction afforded compound 84 in only moderate yield (43%) (Scheme 19). Before any optimization was done, the product was immediately subjected to catalytic transfer hydrogenation. The failure of this step was most likely due to some instability of the product, since all the starting material was consumed but only decomposition was observed.
Scheme 19: Varying the N-Acyl groups

1. *n*-BuLi (1.1 eq)
2. BnOCOC\(_{\text{TIPS}}\)H
 \[\text{BnO} \text{N} \text{H} \]
 \[\rightarrow \]
 \[\text{BnO} \text{N} \text{H} \]
 \[65 \rightarrow 83 \]
 \[85\% \]

1. *n*-BuLi (1.1 eq)
2. PhOCOC\(_{\text{TIPS}}\)H
 \[\text{BnO} \text{N} \text{H} \]
 \[\rightarrow \]
 \[\text{BnO} \text{N} \text{H} \]
 \[51 \rightarrow 70 \]
 \[93\% \]

1. *n*-BuLi (1.1 eq)
2. PhOCOC\(_{\text{TIPS}}\)H
 \[\text{BnO} \text{N} \text{H} \]
 \[\rightarrow \]
 \[\text{BnO} \text{N} \text{H} \]
 \[65 \rightarrow 71 \]
 \[94\% \]
Next, the (-)-TCC carbamate series was carried out. Protodesilylation, using formic acid as previously described, afforded compound 90 in 75% yield. However, there was a significant amount (16%) of a byproduct—the debenzylated, formate ester 91 (Scheme 20). Changing from formic to trifluoroacetic acid, with an equal amount of CHCl₃, alleviated the formation of byproduct 91 and provided 90 in 98% yield. When compound 90 was subjected to the lead tetraacetate procedure, a good
yield (62%) of 92 was obtained. Unfortunately, the previous failure to form the bicyclic ring (Scheme 14) left little optimism for the cyclization of compound 92.

Scheme 20: Progress with the (-)-TCC Carbamate

![Scheme 20 Diagram]
With the last hope, the phenyl carbamate series, compound 70 was desilylated using TFA to produce 71 (Method A) in excellent yield. This product was carried on to acetoxylation, where optimization of the conditions was successful in preparing 72 in 57% yield. Variations in these conditions are shown in Table 3.
Table 3: Conditions for the Acetoxylation of 71

<table>
<thead>
<tr>
<th>SM</th>
<th>Eq of Pb(OAc)$_4$</th>
<th>Time</th>
<th>Solvent</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>3.6</td>
<td>24h</td>
<td>toluene</td>
<td>57% yield & 24% SM</td>
</tr>
<tr>
<td>71</td>
<td>2.6</td>
<td>20h</td>
<td>trifluorotoluene</td>
<td>47% yield & 26% SM</td>
</tr>
<tr>
<td>71</td>
<td>2.6</td>
<td>14h</td>
<td>toluene</td>
<td>53% yield & minimal SM</td>
</tr>
<tr>
<td>71</td>
<td>2.6</td>
<td>14h</td>
<td>toluene</td>
<td>56% yield & minimal SM</td>
</tr>
</tbody>
</table>

The final hurdle in the formation of this key intermediate was the debenzylation of 72. It was speculated that cyclization to compound 73 would be a simple task with the free hydroxyl group. Catalytic transfer hydrogenolysis, in a situation similar to Scheme 18, was unfortunately unsuccessful with the complete consumption of starting material but no recognizable product.

Scheme 22: Failed Hydrogenolysis of 72
The formate ester, a previously undesirable byproduct, would prove to be a useful intermediate. By refluxing 72 in formic acid for several hours, spot-to-spot conversion of the benzyl ether to formate ester was accomplished. After concentrating the solution in vacuo, and again refluxing the crude material in methanol, none of intermediate 87 was found. Instead, a small amount of the desired cyclized compound 73 was isolated. It was evident that the cyclization step was spontaneous under these conditions. Unfortunately, no matter how long the solution was refluxed in methanol, only a small portion of the formate ester would cleave. Therefore, more harsh conditions were necessary, and so methanolic ammonia was used. In order to control the speed of the reaction, since ammonia also cleaves the acetate (formate esters are cleaved ~100 times faster than acetate esters), the crude formate ester in methanol solution was cooled to 0 °C before adding the ammonia. After complete cleavage of the formate, the ammonia could be quenched with acetic acid before the acetate was harmed. This technique afforded a good yield (73%) of the desired acetoxyalted bicyclic intermediate 73 (Scheme 23).
Scheme 23: Debenzylation / Spontaneous Cyclization

\[
\begin{align*}
&\text{72} \\
&\text{Aco} \\
&\text{BnO} \\
&\text{CO}_2\text{Ph} \\
&\overset{\text{Formic acid}}{\xrightarrow{\Delta}} \\
&\text{73} \\
&\text{Aco} \\
&\text{O} \\
&\overset{\text{NH}_3, \text{MeOH}}{\longrightarrow} \\
&\text{87} \\
&\text{Aco} \\
&\text{O} \\
&\overset{\text{73\% overall}}{\longrightarrow} \\
&\text{88} \\
&\text{Aco} \\
&\text{O} \\
&\text{CO}_2\text{Ph} \\
\end{align*}
\]
Attempted Synthesis of (+)-Desoxoprosopinine

Compound 73 is a potential stepping stone en route to many of the Prosopis alkaloids. By 1,4-addition of the corresponding predesigned side-chain, prosopine 5, prosopinine 6, and prosopinone 7 are all within reach. In order to demonstrate this in the most simplified way, the synthesis of (+)-desoxoprosopinine 10 was attempted. Although not a natural product, the synthesis of 10 would stand as a model for these alkaloids without having to expend the effort of designing and synthesizing the various side chains.

Using commercially available 1-iodododecane, a dialkylcuprate was formed by transmetallation of the corresponding lithium reagent with copper(I) bromide-dimethyl sulfide complex. This copper(I) complex is reasonably stable, readily available, and easily purified. By treatment of the alkyl iodide with t-BuLi, lithium-halogen exchange is performed, and then that solution is transferred to a solution of the copper complex. Once the cuprate is completely formed, the dropwise addition of compound 73 affords intermediate 95 (Scheme 24) with complete stereochemical control.

Since none of the target compounds, including (+)-desoxoprosopinine, have any substitution at the C-4 position, trapping of this enolate as the vinyl triflate and subsequent reduction was potentially an efficient method of removing that C-4 functionality. Addition of a triflating reagent developed by the Comins’ group 5c, 2-[N,N-bis(trifluoromethanesulfonyl)amino]-5-chloropyridine, effectively trapped the
lithium enolate as the vinyl triflate 74. This complete transformation was effected in good overall yield (60%).

Scheme 24: Conjugate Addition to 73

Reduction of vinyl triflate 74 with platinum on carbon under a balloon pressure of hydrogen using lithium carbonate as an acid scavenger produced compound 75 in excellent yield (Scheme 25).
Scheme 25: Reduction of the Vinyl Triflate 74

\[
\begin{align*}
\text{AcO} & \quad \text{OTf} \\
\text{N} & \quad (\text{CH}_2)_{11}\text{CH}_3 \\
\text{74} & \quad \xrightarrow{\text{H}_2, \text{Pt/C, Li}_2\text{CO}_3, \text{EtOH, rt}} \\
\text{AcO} & \quad \text{N} \\
\text{N} & \quad (\text{CH}_2)_{11}\text{CH}_3 \\
\text{75} & \quad 91\%
\end{align*}
\]

In order to complete the synthesis of (+)-desoxoprosopinine, deprotection of the C-3 hydroxyl group and hydrolysis of the 5-membered carbamate ring must be accomplished. Many different conditions are possible for such a transformation, and two of those possibilities are depicted in Scheme 26. To date, this step has not been successfully carried out, but future efforts should produce the desired transformation.

Scheme 26: Synthesis of (+)-Desoxoprosopinine

\[
\begin{align*}
\text{AcO} & \quad \text{N} \\
\text{N} & \quad (\text{CH}_2)_{11}\text{CH}_3 \\
\text{75} & \quad \xrightarrow{\text{KOH, aq. EtOH, } \Delta \text{ or Ba(OH)}_2, \text{ aq. glyme, } \Delta} \\
\text{HO} & \quad \text{N} \\
\text{N} & \quad (\text{CH}_2)_{11}\text{CH}_3 \\
\text{10} & \quad \text{HO}
\end{align*}
\]
Conclusions

Although the final target, (+)-desoxoprosopinine was not reached, the utility of chiral N-acyl-2,3-dihydro-4-pyridones in the asymmetric synthesis of *Prosopis* alkaloids has been demonstrated. The piperidine ring structure has been established with excellent stereochemical control. The ability to use intermediate 73 as a turning point en route to many different *Prosopis* alkaloids is novel. With more time and effort, the final ring opening step should be accomplished, completing this model synthesis. As shown in Scheme 27, the final synthetic route utilized 7 steps to arrive at intermediate 75 with a overall yield of 13.8%.
Scheme 27: Final Synthetic Route

Scheme 27: Final Synthetic Route
Experimental Section

All reactions described in this section were performed using oven-dried glassware under an argon or dry nitrogen atmosphere. THF, toluene, and diethyl ether were dried by distillation from sodium/benzophenone. Other reagents and solvents were stored over molecular sieves under argon and used directly. Radial PLC was done using a model 7924T Chromatotron (Harrison Research, Palo Alto, CA) using thin-layers of Silica Gel-Gypsum. Elemental analyses were performed by Atlantic Microlabs, Norcross, GA. High resolution mass spectra were taken using a JEOL HX1110HF mass spectrometer by the NCSU Mass Spectrometry Facility. Infrared spectra were obtained on a Perkin-Elmer 7500 spectrometer. Melting points were measured using a Thomas-Hoover capillary melting point apparatus. NMR spectra were taken using both a Varian XL-300 and a GE GN 300 spectrometer. Optical rotations were measured with a Randolf Research (Flanders, NJ) Autopol III automatic polarimeter using a 1.0 dm cell. Waters and Associates HPLC systems used for both diastereomeric and enantiomeric excess measurements were: (1) a 600E multisolvent pump, with a 486 tunable detector and a µ-PORASIL analytical column; and (2) a 501 pump, with a 440 absorbance detector with a Chiralcel OJ column.
(2S)-1-[(1R,2S)-trans-2-(α-Cumyl)cyclohexyloxycarbonyl]-2-(benzyloxymethyl)-5-(triisopropylsilyl)-2,3-dihydro-4-pyridone (50). To a stirred solution of 61 (308 mg, 0.75 mmol) in THF cooled to –78 °C was added 0.375 mL n-butyllithium (2.0 M solution in hexanes). After stirring for 30 min at the same temperature, 3.0 mL of lithium 2-thienylcyanocuprate (0.25 M solution in diethyl ether) was added dropwise. This solution was allowed to stir for an additional 30 min at –78 °C. In a separate flask, a stirred solution of 1 (132.8 mg, 0.50 mmol) in toluene was cooled to –30 °C, and 0.52 mL of (-)-TCC chloroformate (1.0 M solution in toluene) was added dropwise. This solution was allowed to stir at –30 °C for 1 h, and then was cooled to –78 °C. Through a double-tipped stainless steel needle, surrounded by a layer of dry ice, the cuprate solution was slowly transferred to the pyridinium salt solution. The resulting mixture was stirred for 1 h, at which point TLC showed complete disappearance of starting material 1. The reaction was then quenched with an excess of 10% aqueous hydrochloric acid. This acid hydrolysis step was stirred for 1 h. The solution was then diluted with EtOAc, washed with water and brine. The combined aqueous layers were back-extracted twice with EtOAc, and the combined organic layers were dried over MgSO₄, and concentrated in vacuo. Purification by radial PLC (2-10% EtOAc/hexanes) yielded a colorless oil which solidified upon standing. Recrystallization from methanol afforded 215 mg (70%) of 50 as a white solid, (mp 84-85 °C). A small amount (16 mg, 5%) of the minor diastereomer was also isolated, for a total yield of 75%. HPLC analysis of the crude reaction mixture determined a de of 82; [α]$_{23}^{D}$ –30.9 (c 0.12, CHCl₃); 1H (300 MHz, CDCl₃) δ 7.73 (s,
1H), 7.10-7.31 (m, 10H), 4.79 (m, 1H), 4.32 (s, 2H), 2.97-3.10 (m, 2H), 2.40 (m, 1H),
2.18 (m, 2H), 2.00 (m, 1H), 1.61-1.74 (m, 4H), 1.17-1.35 (m, 9H), 0.99-1.04 (m,
22H); 13C (75 MHz, CDCl3) δ 196.2, 152.5, 152.2, 147.7, 137.7, 128.4, 128.0, 127.9,
127.7, 125.2, 110.1, 77.8, 73.0, 58.4, 51.0, 50.9, 39.4, 38.1, 33.1, 30.8, 26.7, 25.8,
24.6, 21.5, 18.9, 11.2; IR (thin film, NaCl) 2942, 2863, 1716, 1659, 1577, 1453,
1383, 1325, 1264 cm⁻¹. Anal. Calcd for C38H55NO4Si: C, 73.86; H, 8.97; N, 2.27.
Found C, 73.92; H, 9.17; N, 2.34. HRMS calcd for C38H56NO4Si 618.3979 [M + H]+,
found 618.3986.

(2S)-2-(Benzyloxymethyl)-5-(triisopropylsilyl)-2,3-dihydro-4-pyridone (51). To
a stirred solution of 50 (3.525 g, 5.704 mmol) in 250 mL of MeOH was added 13.0
mL of sodium methoxide (4.36 M solution in MeOH). The solution was heated to
reflux, and the reaction was stirred for 18 h. The reaction mixture was cooled to rt
and glacial acetic acid was added until the solution reached a pH of 7. The solution
was concentrated in vacuo, and the resulting sodium acetate precipitate was
washed with EtOAc and removed by filtration through Celite®. Concentration in
vacuo, purification by radial PLC (5-20% EtOAc/hexanes), and recrystallization from
hexanes gave 1.962 g (92%) of 51 as a white solid, mp 109-110 °C; [α]23D +201.3 (c
1.02, MeOH); 1H (300 MHz, CDCl3) δ 7.33 (m, 5H), 7.16 (d, 1H, J = 6.3 Hz), 5.48 (br
s, 1H), 4.58 (d, 1H, J = 11.8 Hz), 4.52 (d, 1H, J = 11.8 Hz), 3.90 (m, 1H), 3.54 (m,
2H), 2.33 (m, 2H), 1.26 (m, 3H), 1.02 (t, 18H, J = 7.1 Hz); 13C (75 MHz, CDCl3) δ
195.2, 155.8, 137.5, 128.6, 128.1, 127.8, 100.2, 73.5, 71.8, 52.4, 39.3, 18.9, 11.3; IR
(2S)-2-(Hydroxymethyl)-5-(triisopropylsilyl)-2,3-dihydro-4-pyridone (52). To a stirred solution of 51 (299 mg, 0.800 mmol) in 20 mL of EtOH was added 367 mg of 20% Pd(OH)$_2$/C and 5 mL of cyclohexene. The solution was heated to reflux and stirred for 24 h. The reaction mixture was then cooled to rt, filtered through Celite® with EtOAc, and concentrated in vacuo. Purification by radial PLC (50-75% EtOAc/hexanes) gave 190 mg (84%) of 52 as a white solid, mp 129.0-129.5 °C; $[\alpha]_23^D +255.4$ (c 0.65, MeOH); 1H (300 MHz, CDCl$_3$) δ 7.21 (d, 1H, $J = 6.3$ Hz), 5.66 (br s, 1H), 3.78 (m, 2H), 3.66 (t, 1H, $J = 10.0$ Hz), 2.36 (m, 2H), 2.17 (br s, 1H), 1.26 (m, 3H), 1.03 (t, 18H, $J = 6.9$ Hz); 13C (75 MHz, CDCl$_3$) δ 195.6, 156.1, 100.1, 64.4, 54.2, 39.0, 18.9, 11.3; IR (thin film, NaCl) 3389, 3212, 2931, 2861, 1608, 1572, 1549, 1461, 1361, 1314, 1155, 1044, 879 cm$^{-1}$. Anal. Calcd for C$_{15}$H$_{29}$NO$_2$Si: C, 63.55; H, 10.31; N, 4.94. Found C, 63.38; H, 10.47; N, 4.89.

(9S)-6-(Triisopropylsilyl)-8,8a-dihydro-1H-oxazolo[3,4-α]pyridine-3,7-dione (53). To a stirred solution of 52 (300 mg, 1.06 mmol) in 40 mL of toluene was added Et$_3$N (0.30 mL, 2.0 mmol) and 1,1'-carbonyldiimidazole (205.9 mg, 1.270 mmol). The solution was heated to reflux and stirred for 16 h. The reaction mixture
was cooled to rt and then concentrated *in vacuo*. Purification by radial PLC (20-50% EtOAc/hexanes) and recrystallization from EtOAc/hexanes gave 298 mg (91%) of 53 as a white solid, mp 152.0-152.8 °C; [α]$_{23}^{23}$ +270.0 (c 1.10, CHCl$_3$); 1H (300 MHz, CDCl$_3$) δ 7.60 (s, 1H), 4.71 (t, 1H, $J = 8.1$ Hz), 4.45 (m, 1H), 4.13 (t, 1H, $J = 9.5$ Hz), 2.71 (dd, 1H, $J = 4.5$ Hz, $J = 15.2$ Hz), 2.58 (t, 1H, $J = 14.9$ Hz), 1.32 (m, 3H), 1.05 (m, 18H); 13C (75 MHz, CDCl$_3$) δ 194.8, 152.4, 144.0, 113.5, 69.0, 52.4, 40.9, 18.9, 11.1; IR (thin film, NaCl) 2946, 2863, 1760, 1658, 1575, 1388, 1269, 1072, 984, 880 cm$^{-1}$. Anal. Calcd for C$_{16}$H$_{27}$NO$_3$Si: C, 62.10; H, 8.79; N, 4.53. Found C, 61.83; H, 8.77; N, 4.54.

(9S)- 8,8a-Dihydro-1H-oxazolo[3,4-α]pyridine-3,7-dione (54). A solution of 53 (101 mg, 0.326 mmol) in formic acid was heated to reflux and stirred for 1.5 h. The reaction mixture was cooled to rt and then concentrated *in vacuo*. Purification by radial PLC (60-100% EtOAc/hexanes) and recrystallization from EtOAc/hexanes gave 49 mg (98%) of 54 as a white solid, mp 141.2-142.0 °C; [α]$_{23}^{23}$ +443.9 (c 0.31, CHCl$_3$); 1H (300 MHz, CDCl$_3$) δ 7.60 (d, 1H, $J = 7.9$ Hz), 5.51 (d, 1H, $J = 7.9$ Hz), 4.72 (t, 1H, $J = 8.2$ Hz), 4.45 (m, 1H), 4.13 (t, 1H, $J = 9.4$ Hz), 2.72 (dd, 1H, $J = 4.6$ Hz, $J = 16.0$ Hz), 2.57 (t, 1H, $J = 15.4$ Hz); 13C (75 MHz, CDCl$_3$) δ 190.9, 152.3, 138.6, 109.3, 69.0, 52.6, 40.2; IR (thin film, NaCl) 1776, 1656, 1601, 1443, 1385, 1368, 1320, 1278, 1260, 1179, 1099, 987, 750 cm$^{-1}$. Anal. Calcd for C$_7$H$_7$NO$_3$: C, 54.90; H, 4.61; N, 9.15. Found C, 55.20; H, 4.60; N, 8.96.
(2S)-2-(Benzyloxymethyl)-2,3-dihydro-4-pyridone (65). To a stirred solution of 50 (200 mg, 0.324 mmol) in MeOH was added 0.74 mL of sodium methoxide (4.36 M solution in MeOH). The solution was heated to reflux, and the reaction was stirred for 18 h. The reaction mixture was cooled to rt and 6N HCl in isopropanol was added dropwise until the solution reached a pH of 1. This solution was allowed to stir at room temperature for 1.25 h, after which the pH was returned to 7 by the slow addition of solid Na₂CO₃. The solution was concentrated in vacuo, and the resulting solid was dissolved in EtOAc and filtered through Celite®. Concentration in vacuo, purification by radial PLC (50-100% EtOAc/hexanes), and recrystallization from hexanes gave 60 mg (86%) of 65 as a white solid, mp 107.8-108.3 °C; [α]23 D +285.3 (c 0.38, CHCl₃); ¹H (300 MHz, CDCl₃) δ 7.30-7.40 (m, 5H), 7.16 (d, 1H, J = 7.0 Hz), 5.34 (br s, 1H), 5.02 (d, 1H, J = 7.5 Hz), 4.56 (s, 1H), 3.92 (m, 1H), 3.56 (m, 2H), 2.34 (m, 2H); ¹³C (75 MHz, CDCl₃) δ 191.7, 150.8, 137.4, 128.6, 128.1, 127.9, 99.5, 73.5, 71.6, 52.8, 38.4; IR (thin film, NaCl) 3255, 3036, 2858, 1619, 1572, 1447, 1405, 1348, 1217, 1170, 1092 cm⁻¹. Anal. Calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found C, 71.58; H, 6.92; N, 6.37.

(2S)-2-(Benzyloxymethyl)-1-(phenoxycarbonyl)-5-(triisopropylsilyl)-2,3-dihydro-4-pyridone (70). To a solution of 51 (198 mg, 0.530 mmol) in 15 mL THF, cooled to –78 °C, was added 0.22 mL n-butyllithium (2.53 M solution in hexanes), and the mixture was stirred for 20 min. Phenyl chloroformate (0.07 mL, 0.56 mmol)
was added, and the solution was stirred for 30 min. The reaction was quenched with saturated NaHCO₃ and then warmed to rt. The solution was extracted with EtOAc, washed with water (3x), dried over MgSO₄, and concentrated in vacuo. Purification by radial PLC (5-10% EtOAc/hexanes) afforded 240 mg (93%) of 70 as a colorless oil: $[\alpha]^{23}_D$ -49.1 (c 2.05, CHCl₃); 1H (300 MHz, CDCl₃) δ 7.94 (s, 1H), 7.24-7.40 (m, 8H), 7.07 (br s, 2H), 4.93 (m, 1H), 4.52 (qAB, 2H, $J = 12.1$ Hz), 3.62 (m, 2H), 2.95 (dd, 1H, $J = 7.2$ Hz, $J = 16.3$ Hz), 2.62 (d, 1H, $J = 16.2$ Hz), 1.31 (m, 3H), 1.05 (t, 18H, $J = 8.2$ Hz); 13C (75 MHz, CDCl₃) δ 195.9, 150.8, 146.9, 137.7, 129.7, 128.7, 128.0, 126.4, 121.5, 112.6, 73.6, 68.9, 53.0, 38.5, 19.0, 11.4; IR (thin film, NaCl) 2941, 2859, 1739, 1662, 1580, 1494, 1315, 1246, 1201, 1156, 1099, 1021 cm⁻¹. Anal. Calcd for C₂₉H₃₉NO₄Si: C, 70.55; H, 7.96; N, 2.84. Found C, 70.41; H, 7.87; N, 2.79.

(2S)-2-(Benzyloxymethyl)-1-(phenoxycarbonyl)-2,3-dihydro-4-pyridone (71).

Method A: To a solution of 70 (175 mg, 0.354 mmol) in 10 mL of CHCl₃ was added 10 mL TFA. The solution was heated to reflux and stirred for 6 h. The reaction mixture was cooled to rt and then concentrated in vacuo. Purification by radial PLC (10-20% EtOAc/hexanes) afforded 110 mg (92%) of 71 as a colorless oil: $[\alpha]^{23}_D$ -44.4 (c 2.17, CHCl₃); 1H (300 MHz, CDCl₃) δ 7.88 (d, 1H, $J = 8.0$ Hz), 7.21-7.38 (m, 8H), 7.05 (m, 2H), 5.39 (d, 1H, $J = 8.2$ Hz), 4.95 (m, 1H), 4.51 (qAB, 2H, $J = 11.9$ Hz), 3.72 (m, 1H), 3.60 (m, 1H), 2.92 (dd, 1H, $J = 6.9$ Hz, $J = 16.6$ Hz), 2.62 (d, 1H, $J = 16.8$ Hz); 13C (75 MHz, CDCl₃) δ 192.4, 151.5, 150.6, 141.7, 137.6, 129.6, 128.6,
127.9, 127.8, 126.4, 121.4, 108.0, 73.5, 68.5, 52.9, 37.5; IR (thin film, NaCl) 3064, 2864, 1738, 1495, 1455, 1423, 1331, 1269, 1190, 1103, 1027, 914, 744, 690 cm\(^{-1}\). Anal. Calcd for C\(_{20}\)H\(_{19}\)NO\(_4\): C, 71.20; H, 5.68; N, 4.15. Found C, 71.19; H, 5.67; N, 4.08.

Method B: To a solution of 65 (16 mg, 0.0736 mmol) in 1.0 mL of THF, cooled to –78 °C, was added 0.03 mL \(n\)-butyllithium (2.5 M solution in hexanes), and the mixture was stirred for 20 min. Phenyl chloroformate (0.010 mL, 0.078 mmol) was added, and the solution was stirred for 30 min. The reaction was quenched with saturated NaHCO\(_3\) and then warmed to rt. The solution was extracted with EtOAc, washed with water (3x), dried over MgSO\(_4\), and concentrated \(\text{in vacuo}\). By the same purification in Method A, 23.2 mg (94%) of 71 was isolated.

\((2R, 3R)-3\text{-Acetoxy}-2\text{-}(\text{benzyloxymethyl})\text{-}1\text{-}(\text{phenoxy carbonyl})\text{-}2,3\text{-dihydro}\text{-}4\text{-pyridone}\) (72). To a flask containing 71 (27 mg, 0.080 mmol) under a dry nitrogen atmosphere was added Pb(OAc)\(_4\) (92 mg, 0.21 mmol, freshly recrystallized from glacial acetic acid and dried \(\text{in vacuo}\)). The flask was sealed under nitrogen, and the reaction mixture was dissolved in 15 mL of toluene, heated to reflux and stirred for 18h. By TLC, the reaction was not complete, yet no active Pb(OAc)\(_4\) seemed to be present, so additional Pb(OAc)\(_4\) (35 mg, 0.080 mmol) was added and refluxing was resumed for another 6 h. After cooling to rt, the solution was filtered through silica gel with EtOAc and then concentrated \(\text{in vacuo}\). Purification by radial PLC (20% EtOAc/hexanes) gave 18 mg (57%) of 72 as a colorless oil: \([\alpha]_{D}^{23} +88.5\) (c
2.055, CHCl$_3$); 1H (300 MHz, CDCl$_3$) δ 8.03 (d, 1H, $J = 8.4$ Hz), 7.25-7.42 (m, 10H), 7.07 (m, 2H), 5.50 (d, 1H, $J = 8.6$ Hz), 5.29 (s, 1H), 4.91 (br s, 1H), 4.53 (s, 2H), 3.77 (m, 2H), 2.14 (s, 3H); 13C (75 MHz, CDCl$_3$) δ 186.6, 169.6, 150.5, 142.7, 137.3, 129.8, 128.7, 128.1, 127.9, 126.7, 121.4, 106.5, 73.7, 70.1, 67.5, 58.1, 21.2; IR (thin film, NaCl) 3076, 2920, 2858, 1745, 1677, 1605, 1490, 1423, 1345, 1314, 1262, 1190, 1112, 1029, 749, 692 cm$^{-1}$. Anal. Calcd for C$_{22}$H$_{21}$NO$_6$: C, 66.83; H, 5.35; N, 3.54. Found C, 66.77; H, 5.34; N, 3.49.

(8R,9R)-8-Acetoxy-8,8a-dihydro-1H-oxazolo[3,4-α]pyridine-3,7-dione (73).

A solution of 72 (342 mg, 0.865 mmol) in excess formic acid was refluxed for 3.5h. The solution was concentrated in vacuo, redissolved in MeOH, and cooled to 0 °C. To this solution 0.432 mL of ammonia (2.0M solution in methanol) was added and stirred for 30 min. The ammonia was then quenched with a few drops of glacial acetic acid, and the solution was concentrated in vacuo. Purification by radial PLC and recrystallization from EtOAc afforded 134 mg (73%) of 73 as a white solid, mp 180.8-182.0 °C (dec.); $[\alpha]^{23}_D +374.5$ (c 0.235, MeOH); 1H (300 MHz, CDCl$_3$) δ 7.64 (d, 1H, $J = 7.8$ Hz), 5.56 (d, 1H, $J = 7.7$ Hz), 5.42 (d, 1H, $J = 13.0$ Hz), 4.69 (t, 1H, $J = 8.0$ Hz), 4.48 (m, 1H), 4.34 (t, 1H, $J = 9.2$ Hz), 2.23 (s, 3H); 13C (75 MHz, CDCl$_3$) δ 187.4, 169.7, 151.9, 139.2, 107.4, 72.7, 67.9, 55.1, 20.7; IR (thin film, NaCl) 2915, 2849, 1777, 1752, 1677, 1593, 1430, 1372, 1313, 1259, 1192, 1096, 1063 cm$^{-1}$. Anal. Calcd for C$_9$H$_9$NO$_5$: C, 51.19; H, 4.30; N, 6.63. Found C, 51.27; H, 4.50; N, 6.35.
(5R,8R,9R)-8-Acetoxy-5-dodecyl-7-(trifluoromethanesulfonyloxy)-1,5,8,8a-tetrahydro-oxazolo[3,4-α]pyridin-3-one (74). To a solution of iodododecane (0.097 mL, 0.39 mmol) in 5.0 mL of anhydrous diethyl ether cooled to –78 °C was added 0.54 mL of t-BuLi (1.45M solution in pentane) dropwise, and the solution stirred for 1h. The lithium reagent was then transferred dropwise through a double-tipped stainless steel needle to a separate flask containing copper(I) bromide-dimethyl sulfide complex (40.2 mg, 0.196 mmol, freshly recrystallized from Me₂S/hexanes) in 2.0 mL of anhydrous THF at –78 °C. This bright yellow solution was stirred for an additional 30 min. Then a solution of 73 (13.8 mg, 0.065 mmol) in 3.0 mL of anhydrous THF was added dropwise, and the solution was stirred for 2 h. Finally, the triflating reagent, 2-[N,N-bis(trifluoromethanesulfonyl)amino]-5-chloropyridine, (160 mg, 0.407 mmol) was added and the reaction flask was stirred at –15 °C overnight (15 h). The reaction mixture was quenched with NaHCO₃, extracted with EtOAc, washed with water, and concentrated in vacuo. Purification by radial PLC (10-33% EtOAc/hexanes) afforded 20 mg (60%) of 74 as a colorless oil: [α]²³ D –41.8 (c 0.44, CHCl₃); ¹H (300 MHz, CDCl₃) δ 6.07 (d, 1H, J = 3.8 Hz), 5.43 (d, 1H, J = 7.7 Hz), 4.47 (m, 3H), 3.92 (m, 1H), 2.19 (s, 3H), 1.68 (m, 2H), 1.25-1.41 (m, 20H), 0.89 (t, 3H, J = 6.6Hz); ¹³C (75 MHz, CDCl₃) δ 170.2, 156.3, 142.2, 123.9, 118.6 (q, J = 318.1 Hz), 67.0, 66.9, 54.0, 50.3, 33.7, 32.1, 29.8, 29.7, 29.6, 29.5, 26.2, 22.9, 20.7, 14.3; IR (thin film, NaCl) 2926, 2855, 1763, 1420, 1216, 1142, 1048 cm⁻¹. HRMS Calcd for C₂₂H₃₅F₃NO₇S 514.2086 [M + H]⁺, found 514.2104.
(5R,8S,9R)-8-Acetoxy-5-dodecyl-perhydro-oxazolo[3,4-α]pyridin-3-one (75).

To a stirred solution of 74 (19.7 mg, 0.038 mmol) in absolute EtOH was added 10% Pt/C (12 mg) and Li₂CO₃ (16 mg, 0.217 mmol). Then the flask was evacuated and back filled with hydrogen under balloon pressure. After 2 h, the reaction was filtered through Celite® with EtOAc, and concentrated in vacuo. Purification by flash chromatography (50% EtOAc/hexanes) yielded 12.8 mg (91%) of 75 as a white solid, mp 77.5-78.5 °C; [α]₂₃D +20.4 (c 0.225, CHCl₃); ¹H (300 MHz, CDCl₃) δ 4.58 (m, 1H), 4.35 (m, 1H), 4.11 (m, 1H), 3.91 (m, 1H), 3.68 (m, 1H), 2.06 (s, 3H), 1.58-1.81 (m, 5H), 1.45 (m, 1H), 1.25 (br s, 20H), 0.88 (m, 3H); ¹³C (75 MHz, CDCl₃) δ 170.3, 157.0, 72.7, 66.4, 53.9, 49.1, 32.1, 30.0, 29.8, 29.8, 29.7, 29.6, 26.5, 24.9, 22.9, 21.2, 14.3; IR (thin film, NaCl) 2922, 2850, 1738, 1425, 1245, 1049 cm⁻¹. HRMS Calcd for C₂₂H₃₈NO₄ 368.2801 [M + H]+, found 368.2799.

(2S)-1-[(1R,2S)-trans-(α-Cumyl)cyclohexyloxycarbonyl]-2-(hydroxymethyl)-5-(triisopropylsilyl)-2,3-dihydro-4-pyridone (80). To a stirred solution of 50 (52 mg, 0.084 mmol) in 5 mL of EtOH was added 50 mg of 20% Pd(OH)₂/C and 1 mL of cyclohexene. The solution was heated to reflux and stirred for 6 h. The reaction mixture was then cooled to rt, filtered through Celite® with EtOAc, and concentrated in vacuo. Purification by radial PLC (20% EtOAc/hexanes) and recrystallization from methanol gave 41 mg (93%) of 80 as a white solid, mp 129.5-130.8 °C; [α]₂₃D -54.5 (c 0.84, CHCl₃); ¹H (300 MHz, CDCl₃) δ 7.73 (s, 1H), 7.10-7.34 (m, 5H), 4.86 (m,
1H), 3.31 (m, 1H), 2.79 (m, 1H), 1.68-2.40 (m, 9H), 1.18-1.37 (m, 9H), 0.99-1.05 (m, 22H); 13C (75 MHz, CDCl3) δ 196.6, 152.4, 147.9, 137.6, 128.3, 125.4, 110.4, 78.5, 62.0, 52.8, 51.2, 39.7, 37.9, 33.7, 31.3, 27.0, 26.1, 24.9, 21.5, 19.1, 11.3; IR (thin film, NaCl) 3424, 2941, 2864, 1721, 1653, 1571, 1465, 1382, 1324, 1300, 1257, 1010 cm⁻¹. Anal. Calcd for C₃₁H₄₉NO₄Si: C, 70.54; H, 9.36; N, 2.65. Found C, 70.53; H, 9.48; N, 2.56.

(2S)-1-Benzoyloxycarbonyl-2-benzyloxymethyl-2,3-dihydro-4-pyridone (83). To a solution of 65 (85 mg, 0.391 mmol) in 20 mL of THF, cooled to -78 °C, was added 0.246 mL n-butyllithium (1.75 M in hexanes), and the mixture was stirred for 20 min. Benzyl chloroformate (0.067 mL, 0.470 mmol) was added, and the solution was stirred at -78 °C for 30 min. The reaction was quenched with saturated NaHCO₃ and warmed to rt. The solution was extracted with EtOAc, washed with water, dried over MgSO₄, and concentrated in vacuo. Purification by radial PLC (40% EtOAc/hexanes) afforded 117 mg (85%) as a colorless oil: 1H (300 MHz, CDCl3) δ 7.78 (d, 1H, J = 7.6 Hz), 7.31 (m, 10H), 5.30 (d, 1H, J = 8.3 Hz), 5.24 (s, 2H), 4.83 (d, 1H, J = 6.2Hz), 4.47 (dd, 2H, J = 12.0, 8.2 Hz), 3.57 (m, 2H), 2.84 (dd, 1H, J = 16.9, 7.0 Hz), 2.66 (d, 1H, J = 16.8 Hz); 13C (75 MHz, CDCl3) δ 192.4, 152.7, 141.9, 137.7, 135.1, 128.8, 128.5, 127.9, 127.6, 107.3, 73.4, 69.2, 68.4, 52.5, 37.5; IR (thin film, NaCl) 3031, 2861, 1730, 1672, 1605, 1423, 1385, 1327, 1270, 1218, 1195, 1112 cm⁻¹.
(2R,3R)-3-Acetoxy-1-benzyloxy carbonyl-2-benzyloxymethyl-2,3-dihydro-4-pyridone (84). To a flask containing 83 (32 mg, 0.091 mmol) under a dry nitrogen atmosphere was added Pb(OAc)$_4$ (104 mg, 0.235 mmol, freshly recrystallized from glacial acetic acid and dried in vacuo). The flask was sealed under nitrogen, and the reaction mixture was dissolved in 15 mL of toluene, heated to reflux and stirred for 18 h. By TLC, the reaction was not complete, yet no active Pb(OAc)$_4$ seemed to be present, so additional Pb(OAc)$_4$ (50 mg, 0.11 mmol) was added and refluxing was resumed for another 6 h. After cooling to rt, the solution was filtered through silica gel with EtOAc and then concentrated in vacuo. Purification by radial PLC (20% EtOAc/hexanes) gave 16 mg (43%) of 84 as a colorless oil: 1H (300 MHz, CDCl$_3$) δ 7.90 (d, 1H, $J = 8.4$ Hz), 7.20-7.37 (m, 10H), 5.85 (d, 1H, $J = 8.6$ Hz), 5.25 (m, 3H), 4.78 (m, 1H), 4.46 (s, 2H), 3.65 (m, 2H), 2.08 (s, 3H); 13C (75 MHz, CDCl$_3$) δ 186.7, 169.6, 152.6, 143.0, 137.4, 134.9, 129.0, 128.6, 128.0, 127.7, 105.7, 73.6, 70.2, 69.6, 67.5, 57.6, 21.1; IR (thin film, NaCl) 3028, 2868, 1745, 1729, 1625, 1600, 1387, 1317, 1264, 1205, 1114, 1029 cm$^{-1}$.

(2S)-1-[(1R,2S)-trans-2-(α-Cumyl)cyclohexyloxycarbonyl]-2-(benzyloxymethyl)-2,3-dihydro-4-pyridone (90). To a solution of 50 (100 mg, 0.162 mmol) in 5 mL of chloroform was added 5 mL of trifluoroacetic acid, and the solution was heated to reflux for 3 h. After concentration in vacuo, purification by radial PLC (5-10% EtOAc/hexanes) produced 73 mg (98%) of 90 as a colorless oil:
\([\alpha]^{23}_D -8.9\ (c\ 1.99,\ \text{CHCl}_3)\); \(^1\text{H}\ (300\ \text{MHz},\ (\text{CD}_3)_2\text{SO},\ 100\ ^\circ\text{C})\ \delta\ 7.20-7.37\ (\text{m},\ 9\text{H}),\ 7.10\ (\text{t},\ 2\text{H},\ J = 7.0\ \text{Hz}),\ 4.98\ (\text{d},\ 1\text{H},\ J = 7.8\ \text{Hz}),\ 4.73\ (\text{m},\ 1\text{H}),\ 4.43\ (\text{m},\ 2\text{H}),\ 3.38\ (\text{brs},\ 1\text{H}),\ 3.33\ (\text{m},\ 2\text{H}),\ 2.58\ (\text{dd},\ 1\text{H},\ J = 16.8\ \&\ 7.5\ \text{Hz}),\ 2.17-2.28\ (\text{m},\ 2\text{H}),\ 1.86\ (\text{d},\ 1\text{H},\ J = 11.7\ \text{Hz}),\ 1.61-1.76\ (\text{m},\ 3\text{H}),\ 1.15-1.26\ (\text{m},\ 10\text{H});\ ^{13}\text{C}\ (75\ \text{MHz},\ (\text{CD}_3)_2\text{SO},\ 100\ ^\circ\text{C})\ \delta\ 190.6,\ 151.3,\ 150.5,\ 141.2,\ 137.5,\ 127.6,\ 127.4,\ 126.9,\ 126.7,\ 124.4,\ 105.3,\ 78.6,\ 77.1,\ 71.9,\ 67.6,\ 50.7,\ 49.7,\ 36.5,\ 32.0,\ 28.8,\ 25.8,\ 24.7,\ 23.5,\ 22.1;\ \text{IR}\ \text{(thin film, NaCl)}\ 2959,\ 2932,\ 2860,\ 1716,\ 1673,\ 1606,\ 1496,\ 1451,\ 1422,\ 1367,\ 1328,\ 1271,\ 1220,\ 1193,\ 1114,\ 1076,\ 1018,\ 968,\ 953,\ 765,\ 700\ \text{cm}^{-1}.\ \text{Anal. Calcd for}\ \text{C}_{29}\text{H}_{35}\text{NO}_4:\ \text{C},\ 75.46;\ \text{H},\ 7.64;\ \text{N},\ 3.03.\ \text{Found}\ \text{C},\ 75.55;\ \text{H},\ 7.71;\ \text{N},\ 3.01.

\((2\text{R},\ 3\text{R})\)-3-Acetoxy-1-[(1\text{R},2\text{S})-\text{trans}-2-(\alpha\text{-cumyl)cyclohexyloxycarbonyl]}-2-\text{(benzyloxymethyl)- 2,3-dihydro-4-pyridone (92).}\ \text{To a flask containing 90}\ (33\ \text{mg},\ 0.072\ \text{mmol})\ \text{under a dry nitrogen atmosphere was added Pb(OAc)}_4\ (82\ \text{mg},\ 0.19\ \text{mmol, freshly recrystallized from glacial acetic acid and dried in vacuo}).\ \text{The flask was sealed under nitrogen, and the reaction mixture was dissolved in 15 mL of toluene, heated to reflux and stirred for 18 h. By TLC, the reaction was not complete, yet no active Pb(OAc)}_4\ \text{seemed to be present, so additional Pb(OAc)}_4\ (32\ \text{mg},\ 0.072\ \text{mmol})\ \text{was added and refluxing was resumed for another 6 h. After cooling to rt, the solution was filtered through silica gel with EtOAc and then concentrated in vacuo. Purification by radial PLC (20% EtOAc/hexanes) gave 23 mg (62%) of 92 as a colorless oil: \(^1\text{H}\ (300\ \text{MHz},\ (\text{CD}_3)_2\text{SO},\ 100\ ^\circ\text{C})\ \delta;\ ^{13}\text{C}\ (75\ \text{MHz},\ (\text{CD}_3)_2\text{SO},\ 100\ ^\circ\text{C})\ \delta\ 186.6,\ 169.4,\ 152.7,\ 143.5,\ 137.4,\ 128.6,\ 128.5,\ 128.2,\ 128.0,\ 127.6,\ 127.4,\ 126.9,\ 126.7,\ 124.4,\ 105.3,\ 78.6,\ 77.1,\ 71.9,\ 67.6,\ 50.7,\ 49.7,\ 36.5,\ 32.0,\ 28.8,\ 25.8,\ 24.7,\ 23.5,\ 22.1;\ \text{IR}\ \text{(thin film, NaCl)}\ 2959,\ 2932,\ 2860,\ 1716,\ 1673,\ 1606,\ 1496,\ 1451,\ 1422,\ 1367,\ 1328,\ 1271,\ 1220,\ 1193,\ 1114,\ 1076,\ 1018,\ 968,\ 953,\ 765,\ 700\ \text{cm}^{-1}.\ \text{Anal. Calcd for}\ \text{C}_{29}\text{H}_{35}\text{NO}_4:\ \text{C},\ 75.46;\ \text{H},\ 7.64;\ \text{N},\ 3.03.\ \text{Found}\ \text{C},\ 75.55;\ \text{H},\ 7.71;\ \text{N},\ 3.01.
127.8, 125.4, 125.1, 125.0, 124.9, 104.1, 79.0, 73.5, 69.8, 66.9, 56.8, 51.0, 39.4,
33.4, 31.0, 26.7, 25.9, 24.8, 21.0; IR (thin film, NaCl) 2924, 2856, 1747, 1717, 1675,
1602, 1449, 1419, 1368, 1321, 1262, 1207, 1117, 1024, 951, 764, 700 cm^{-1}. Anal.
Calcd for C_{31}H_{37}NO_6: C, 71.65; H, 7.18; N, 2.70. Found C, 71.47; H, 7.19; N, 2.85.
References

Appendix
AcO

73

74
AcO

\[\text{(CH}_2\text{)}_{11}\text{CH}_3 \]