Abstract

Luo Gao. A Toolkit for Automated Fine-Grained Access Control Policy
Enforcement in Oracle 9i. (Under the direction of Dr. Ting Yu)

Database access control is indispensable to information system seksrity.
enterprises expand their services to the Internet, it has been widejpirszbthat
traditional relation-level or database-level access control is no ladgguate to handle
increasingly complex access control requirements in modern informatiemsyst
Instead, fine-grained access control (i.e., row-level access contralrisaesired.
Though several commercial database management systems support fied-gcaess
control, it requires security policies to be hard-coded into applications by program
which is a very error-prone process. It is very difficult for policy mataxserify
whether an application’s security requirements are correctly enfoydeart-coded
policies. If they fail to detect security flaws in policy implementationythele
information system may be at grave risk.

To help effectively verify and analyze the enforcement of fine-graineskacc
control, in this thesis we present the design and implementation of a policy manageme
toolkit, access control enforcement toolkit (ACET), which is able to automigtical
translate formal access control policies to the enforcement program ofsdefiziea
grained access control. We discuss the desirable properties of formallpotjopges
when used to specify database fine-grained access control. We present aredutomat
policy translation algorithm that effectively identifies access cootmiponents in
formal policies and maps them into basic database access control elememgiaDur i

evaluation shows that the automatically generated policy enforcementrprgigids

comparable performance to that developed by programmers. Thus, the toolkit enables
policy makers to focus more on fine-grained security policy specification, without

worrying the correct and efficient enforcement of database securityegol

A Toolkit for Automated Fine-Grained Access ControlPolicy

Enforcement in Oracle 9i

by
Luo Gao
A THESIS SUBMITTED TO THE GRADUATE FACULTY OF
NORTH CAROLINA STATE UNIVERSITY
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

RALEIGH

AUGUST 2004

APPROVED BY

Dr. Annie I. Anton Dr. Jaewoo Kang

Dr. Ting Yu, Chair of Advisory Committee

To my parents Jialing Shi, ShiZzhong Gao and my brother Bo.

Biography
Luo Gao was born in Kunming, Yunnan Province, People’s Republic of China.
He graduated in 2002 from North Carolina State University with a Bachelorasfcg@dan

Computer Science.

Acknowledgments

| would like to take this opportunity to express my sincere appreciation to Dr. Yu,
my advisor, for his guidance and constant support. His careful and critical comments

significantly improve the content and presentations of this thesis.

My appreciation goes to my other committee members as well, Dr. Anton and Dr.
Kang, for their valuable comments, suggestions, and encouragements. | also @&preciat

Powers and Y. Watanabe from IBM who kindly shared their work with me.

| would like to sincerely thank Keith Irwin and Stephen Reece for proof reading
my thesis. Thanks are also due to my colleagues and friends at Cyber Defer@mgab:

Zhang, Kun Sun, and Dingbang Xu

Finally, | would like to thank my parents, brother and my girlfriend Yunhua for

their love and support. | am indebted to them and no words can express my appreciation.

Table of Contents

IS o) B 1= o] =3P RTPPP vii
LIST Of FIQUIES . ..ottt e e e et e nnanes Vil
R [Vi o To 18 o 1o o FR PP 1
2 Background INFOMELIONuuiiieiiiiiiiiiii e e e e e 7
2.1 DB2'S FGAC MECNANISIM ...uiiiiiiiiiiiiiiiiiiiitt et e e e e e e e e e 7
2.2 Access Control ENfOrCEMENTcoviiiiiiiiiieiieee e 8
2.2.1 Define and USE OF VPDooooiiiiiii ettt 8
222 SEttiNng UP FGAC ...t 11
2.3 Formal POlICY LANQUAGJEScuviieeiiiiiieiie e e e eeee et e e e e e e e e e e e e e e eeeaannnennnnes 15
23.1 R B et a e e e e e e e e e e e e e 15
2.3.2 E P AL .t a e e 18
2.3.3 0] T = PSPPSR 23
3 Translating Access Control Policies to Oracle Enforcement Script 28
3.1 Creating Access Control Policy in PONAEr...........cccuuiiiiiiiiiiiiiieeeeeeeeeeeeeees 28
3.1.1 Choose the POIICY TYPE ...ccooiieeeeeee e 28
3.1.2 Access Control Policy Interpretationooooiiiiiiiiiiiiiiieeeeeeeeeeee e 30
3.2 The Architecture of the TOOIKItcccuuiiiiiiiiii e 31
3.3 Policy Translator and POlICY IMPOIEr.........cooviiiiiiiiiiii e 33
3.3.1 Role Hierarchy Identification FUNCLIONcooovviiiiiiciiccee e, 33
3.3.2 Mapping of Access Control Elements ... 34
3.3.3 Setting CONEXE VAIUBSuuiiei e 36
3.34 Oracle SCript GENETAtION...........uuuiiiiieiiiiiieeee e 38
3.3.5 Oracle SCript IMPOIENccce e 41
3.4 A SIMPIE SCENAIOcoiiiiiii et a e e 41
4 The TOOIKit USer INtEITACEuuiiiiiiiiiiiiiiiiiiiee e 45
5 Performance Analysis and OptiMIiZation.............eeeeeriiiiieiiieiiiiieeeeee 48
5.1 EXPEIMENT SELUP.....oiiieeeeeeeeee e e e e e e e e 48
5.2 POHCY TraNSIAtIONvveiiieeieeeeeee e 48
5.2.1 Hospital EXamMPIE.........ooooiiiiieiiiee i e e e e e e e 49
5.2.2 SChOOI EXAMPIE ... 50
5.3 Toolkit Performance Evaluation and Analysiscccevvviiiiiiiiiiiiiiiee e 52
5.3.1 A Review of Machine-Generated Policy Enforcement Program.............. 55
5.3.2 Performance Evaluation and AnalysSiS............ccuuuuuuiiiiiiiieeeeeeeeeeeeeeeeeeiiannns 57

B. REIAIE WOTK e e 61

6.1 ACCESS CONIOI POIICIES ... e 61
6.2 Database ACCESS CONIIOI 62
7 Conclusions and FULUIE WOTK. e 65
7.1 CONCIUSION e e e e 65
7.2 Limitation Of thisS TOOIKIt.ce e 66
7.3 FULUIE VW OTK e, 67
R I EINCE ..o e e e 68

Vi

List of Tables

Table 3.1 HR TabIe ... et e e e e e e e e e e e e eeeeeeannnnes 28
Table 3.2 Role Hierarchy Table............oooeieiiiiicie e 41
Table 5.1 Comparison of Manually Generated Code and Machine Generated Code....... 56
Table 5.2 Results of Initial Approach with Table Size 500-2000..............ccceeevvvvvvieiiinnnns 57

Table 5.3 Third APProach RESUILSooeeiiiiiiiiiiie e 60
Table 6.1 Role Hierarchy Table............ooooiiiiiiiiiiie e 62

vii

List of Figures

Figure 1.1 General architecture of the ACETcooiiiiiiiiiicccee e 4
Figure 2.1 Access control enforcement in VPD ... 10
Figure 2.2 EPAL Policy EXamPle.......ccoiiiiiiii i 22

Figure 2.3 Authorization POlICY SYNTAX.......ccuiiiiiiiiiiiiiiiiiiiieii e 24

Figure 2.4 ROIE POlICY SYNTAX ...uuuuiiiiiiiie et e e e e e e e e aaeaas 25
Figure 2.5 Role EXIENSION SYNTAXuuiiiiiiiiiiiiiiiiiiieee e 26
Figure 3.1 ROIE HIErarChi€Scccooiiiiiiiiieie et e e e e e e e e e e e e eaananaees 29
Figure 3.2 TOOIKIt AICNITECIUIEeeiiiiiiiiiiee et 32

Figure 3.3 Role Hierarchy Search QUEIY.......cccciiiiiiiiiiiiiiieeeeeecie s e e e 34
Figure 4.1 Generating POlICIES. ... 46
FIgure 4.2 TeStNG WINGOWuuuuiiiiii e e e e e e e a e e e e e eaaaes 47

Figure 5.1 Role Hierarchies for the Experiment

viii

1 Introduction

Databases are widely used to manage and archive large amounts of business
information. Proper and effective access control of databases is crucianuarieat
information system security. Unlike system security or network sgcwiitich addresses
the problem of preventing and detecting attacks from outsiders, the goal £$ ecogol
is to identify and grant proper privileges to legitimate users.

As the Internet continues to grow, many enterprises offer their sergipablic
via the Internet, Web-service, etc, which makes database access congasimgly
challenging. While greatly improving the efficiency, flexibileyd availability of
enterprises’ services, Web-based applications are significantly imongex than
traditional information systems. Millions of users may access datadasees and other
resources at the same time, and they may come from different securitysioengd, part
suppliers, partners, customers, etc. As a result, enterprises’ acceskpmities
become more and more complex.

It has been well recognized that traditional database-level or tableatmeds
control is not adequate for Web-based applications’ security requirementsafRgplex
in a health care system, patients’ records are often stored in one table, \ahictchnde
a patient’s identifier, name, date of birth, symptoms, etc. Typically, a useyialtmved
to access its own record. Similarly, a doctor should only be able to accessdmtspat
records, but not that of the patients of other doctors. Table-level access cdmrol ei

allows a user to access the whole table (i.e., each record in the table), or havessdoacc

the table at all. Clearly, such a coarse-grained access cannot expresestmngly
complex access control requirements.

To address the above problem, fine-grained access control (FGAC), also known
as row level access control, has been proposed [RMS04]. As the name suggests, the basic
access control elements in FGAC are the tuples of a table instead of thtsédible
FGAC allows a user to access a certain portion of a table. Therefore, ural tat
support flexible access control policies such as those described above.

Several commercial database systems already provide support for FGAC.
Representative systems include Oracle’s Virtue Private DatabB&® (Wyt] and DB2’'s
low-level access control [Bir00]. Such features are widely used in Web-based
applications. On the other hand, existing FGAC mechanisms require access control
policies to be hard-coded into a database by programmers, which is a vegyreneor-
process. To realize the access control requirements of an application, it not onlysdepe
on the policy maker to correctly specify access control policies, but alsodiepe how
well programmers understand those policies. If logic errors are introdudes in t
enforcement code, due to either a programmer’ misunderstanding of the policyer his/
negligence, the security of the whole system may be at grave risk. Tisugny
important to verify that access control policies are correctly enforgcad lapplication.
However, since the policy enforcement program is written in generaigonogng
languages and is embedded in applications, such verification is very hard.

Taking Oracle 9i as an example, an access control enforcement progrdym may

similar to the following:

create function my_security_function(p_schema in varchar2,
p_object in varchar2) return varchar2
as
begin
if (sys_context(“userenv”, “role”) ='MGR") then
return 'MGR = sys_context(“userenv”, “session_user”)
OR
EMP = sys_context(“userenv”, “session_user”)’;
elsif(sys_context(“userenv”, “role”) ='EMP’) then
return ‘EMP =sys_context(“userenv”, “session_user”)’;
elseiféys_context(“userenv”, “role”) ='CEQ’) then
return ‘1=1
else return ‘1=0";
end if;
end;

The above code states that if a login user is an employee, the user can head his/
own record. If the user is a manager, then the user can access the recoitie of all
employees who work under him/her plus his/her own record. If the user is a CEO, he can
view everything within the table.

If there are thousands of such lines of codes, one can imagine how hard it will be
to verify that they have correctly enforced access control policies.

In this project, we address this challenge by developing an access control
enforcement toolkit (ACET) that can simplify the creation of access camtfoicement
program and make access control policy analysis easier than analyzingspaetitten in
database programming language. The essential idea is that, sincdiitu# tfanalyze
and verify access control enforcement code, it is desirable to have pgspe®fed in a
high-level policy language, which can be formally analyzed. Then the toolkit

automatically generates access control enforcement program based @vhigittess

control policies, which will eliminate potential logic errors introduced by puogners.
The following figure (Figure 1.1) further illustrates the idea of this taolkit

Access Control
Requirements (plain text)

O

Verify l l Verify

/—Traditiona ‘Approact /—Approach with the toolkit:
Toolkit
Create Ponder
Policy Specification Interface “ Policy
Programmer
Generates l Policy Translator %
Policy Importer Security Officers
Verify
-+
l Generates
Security Officers
Database Database
FGAC Policy FGAC Policy
Code Code
AN J/

N s

Database

Figure 1.1 General architecture of the ACET

Instead of letting a programmer create policy enforcement prograntydireen
access control requirements, this toolkit allows a policy maker to formdihedepolicy

by using a high-level policy language Ponder [DDLO1]. After the formal pblas been

verified and analyzed, they will be automatically translated into thecarfant
programand imported into a database server. The key to this toolkit is to develop a policy
specification model that is abstract enough so that it can be expressed d&ypiiay
languages. Meanwhile, the policy model also needs to be specific enough scathiet ¢
easily mapped into database management systems where data are stored.

Specifically, this toolkit has three major modules: a policy specificati@nface;
a policy translator that translates formal policies into enforcement codl@ramporter
that imports generated enforcement program into a database system:

» Policy specification interfacelhis module allows users to define an access
control policy by using a high-level policy language such as EnterpriseiPriva
Authorization Language (EPAL) [AHCO03], Rei[KFJ03], or Ponder[DDLO1]. This
interface will help a policy maker specify formal access control gslici

» Policy Translator This module translates a formal access control into the
database enforcement code. In order to do so, the translator will analyze the
policy first and identify all the necessary access control elements) wbed to
be mapped to corresponding database principals, objects and operations.

» Policylmporter. This module is responsible for generating auxiliary functions,
which are necessary for the automatically generated enforcementrprogiake
effect in database access control.

The developed toolkit offers the following benefits:

» This toolkit provides a user interface to allow a policy maker to create aaabs
data model to represent access control policies. We hope it can a policy maker to

check whether a policy has been properly specified.

» Since policy enforcement program is automatically generated and impoded int
databases, human errors are reduced.

* Instead of worrying about correct implementation of access control policies,
policy makers are able to focus more efforts on policy specification.

* We discuss in detail how to optimize the performance of machine-generated code.
Our preliminary experiment results show that automatically-generated
enforcement program yields comparable performance to that written by
programmers. Therefore, by using the toolkit, we hope policy makers can enjoy

ease of policy management as well as efficient access control

The rest of the thesis is structured as follows. Chapter 2 provides background
information about Oracle’s fine-grained access control mechanism and goerd c
existing policy languages. Chapter 2 also provides rationale for choosing policy
language. In chapter 3, we discuss how formal policy languages can be usedds expre
fine-grained access control policies for databases. We also descriligotitara to
translate formal policies into Oracle policy enforcement code. Chapteruatasthe
performance of the enforcement program generated by the toolkit, and diszwssiety
of optimization techniques. We briefly describe the toolkit's user-interfackapter 5.

We conclude this thesis in chapter 6 and discuss possible directions for future work.

2 Background Information

In this section, we will compare the Oracle’s FGAC mechanism with DB2’s
FGAC mechanism and explain why we use Oracle instead of DB2. We will therbdescr
Oracle’s fine-grained access control mechanism and analyze its adgamage
disadvantages. This will help us identify the desirable properties that a foohtsl
language should have in order to support database FGAC. We then examine several
policy languages in the literature, including Rei[KEF03], EPAL[AHCO03] and
Ponder[DDLO1] and analyze their suitability for specifying databasegfiamed access

control policies.
2.1 DB2's FGAC mechanism

Several commercial database systems provide mechanisms to support find-grai
access control. Examples include Oracle’s virtual private database {KiAband
DB2’s low level's access control [Bir00].

DB2 uses views as the primary instrument to implement FGAC. For a list of
policies, DB2 creates a view for each policy. In each view, it defines the polic
constraints. In order to properly define who can access a view, DB2 binds an
authorization ID and a view together to forrpackage The common representation of
authorization ID is a role name. In this package, it defines that the viebecatessed
only if a user has the authorization ID that is associated with the viewx#&wopge, in a
health system, there is a patient role and a doctor role. The policies apgldgefithe
following: a patient can view his own record and a doctor can view his patiemsisec

To implement these polices in DB2, we need create a view for patients (pagent

and a view for doctors (doctor_view). The next step is to associate patientvitietve
patient role and doctor_view with the doctor role. These two views are grantedito publ
Before a user can issue a query on patient_view, the DB2 has to verify thairhesaas
patient role first.

Instead of using views for each policy, Oracle uses query-rewriting tecenfo
policies. When a user issues a query, based on his privileges, the Oracle database s
will attach a predicate to the query. This predicate reflects what thesapavileges the
user has. The details of FGAC implementation in Oracle are described ixthe ne
section. Compare with Oracle’s approach, DB2’s approach has the following
disadvantages: first of all, views are not always practical when veeanie¢ of them to
enforce security policy [KD02]. For example, if have want to use views to limit
customers’ accesmnd there are 100,000 customers, it is not practical to cerate 100,000
views. Second, views may complicate administration of security policies [KDR0Z]
hard for a policy maker to tell the difference between a view definition basedatrasat
relationship from that for security purpose. Based on above analysis, we decide to use

Oracle for this toolkit.

2.2 Access Control Enforcement

In this section, we describe the establishment of the VPD in Oracle.

2.2.1 Define and use of VPD

Traditional database access control is enforced by creating views foduali
users based on their privileges. Although it provides a secure environment for agjatabas

such an approach is very inefficient and costly with a large number of users, svhich i

typical in today’'s Web-based applications. For example, suppose there direra mi
patients in a health-care information system. Assume that a user can @3ty lais¢her

own records. Then a million different views need to be defined. Even if those views do
not need to be materialized, creating and managing such a large number of Viés wi
very expensive. In Oracle 8i, a new access control mechanism, called Vivate Pr
Database (VPD), was introduced. Instead of creating views for each indjwéRi2l
restricts users’ access to selected rows of tables through quetyngewVhen a user
issues a query, based on his/her privilege, a predicate will be generatedraerane be
attached to the query [Kyt]. Access control is enforced when the rewrittenigue
executed by the database engine, since the attached predicate lim#susbacan

access.

Figure 2.1 shows an example. The policy is that a user only can see his/her own
record unless the user is a ‘DBA’. When a common user Alice logs into a dathlease
policy function will generate a predicate for Alice. Since Alice issnBBA, the
generated predicate will enforce the policy that Alice can only see herecardr When
Alice issues a SELECT query against the table, this predicate willdmhedl to the
guery. As a result, Alice’s access is restricted according to thesammetsol policy.

Role is an important concept in VPD. Since it is infeasible to grant priviteges
each individual user, VPD often assigns privileges based on the roles. For ea¢Pbble
defines explicit privileges for it. A user can assume more than one role in VPD.&Vhe
user logs into a database, based on the role he/she assumed, he/she will hent diffe
privileges. The advantage of using roles in VPD is to simplify access contiey pol

specification.

1. Login into database

\/

—_—
Login
info

Policy Function

2. Issues SQL query

\/

ue
Query l Predicate

Alice
[Alice| .. [.. [.| Bob

~

Figure 2.1 Access control enforcement in VPD

Since its introduction, VPD is widely used in Web-based applications, due to its
following advantages:

» Multiple security: By using VPD, we can enforce more than one policy to a table
at the same time without using views. It avoids using different views to enforce
different policies. Thus, it is easy to enforce database security ly\ViBiD.

» Suitable for single user based applications: Single user based applicatobnas s
Web applications, allow a single user to connect to a database. It requires that
each individual user can see different results. By using VPD, row leveltgecur
can easily identify different users and retrieve information for them.

* No Back door: Since each policy is associated with a table, not an application, no

users can bypass those policies. By letting the policy directly assodiatine

10

table, regardless what applications the user is using, the database derver w

always check the user’s privileges, before the user’s query is executed.

2.2.2 Setting up FGAC

There are five steps to setup fine-grained access control by using VPD.

. Policy specificationlIn this step, the policy maker needs to state that for each role,
what privileges it has. For example, the policy maker may state that an employee
can issue SELECT statements on his own records. Managers can issue SELECT
statements on the records of employees who work under him as well as his own
record. The manager may also have the rights to update any employee’s record,
but not his own. For anyone else, he cannot perform any actions on that table.

. Context creationA context value is a text information that can be retrieved by
other Oracle functions and PL/SQL queries. It is often used to store some
information about the current login user. The second step is to create a context
space, which is used to store context values. Each policy can only have one
context. This context will be used to store some user information such as login
user information and some other values that are defined by a policy maker. Those
context values can be used by other Oracle functions. Creating context is usually
associate an Oracle procedure. This Oracle procedure is the only waid® dec
what information will be stored and how to store/set up these context attributes.
For example, we may define a context GREATE OR REPLACE CONTEXT
example_context USING example_procetluiexample_contexs the name of
context we creatd&=xample_procedures an Oracle procedure that sets up context

values. In other words, in order to set context variablezample_contextve

11

have to use thexample_procedur® define those variables. By using only one
procedure to store context values, it can protect data consistency. For example, if
another procedure tries to set the context value and the database server finds out
this procedure is n@xample_procedureéhe database server will rejects it. .
. Create the proceduré\fter we defined the procedure name that is used to set the
context values, we are now going to show how to create such procedure. The
context values are defined by calling DBMS_SESSION.SET_CONTEXT within
the procedure. This statement is used to define and populate a context’s attributes.
It includes three parameters:
a. Namespace: the name of context that is used by an application.
b. Attributes: name of the attribute to be set in a context.
c. Value: the value of a context attributes. Those values can be retrieved by
calling functionSYS_CONTEXT
Let us look at theéxample_contextéxample again. In this context, we
create an attribute in this context named “Role”. If we are going tonaasiglue

to the context attribute, we can use the statement:

Dbms_session.set_context (‘example_context’, ‘Role’, ‘Employee’

In this example, the namespace is ‘example_context’, attribute is ‘Role’,
and value is ‘Employee’. In other words, this statement defines that in the context
‘example_context’ the context ‘Role’ has value ‘Employee’(or Role =

Employee’).

12

4. Create a security policy procedur€his is the central step for establishing
FGAC, because the dynamic predicate will be generated by this sqmlitty
procedure, which will be called by the database engine at run time. itttsestr
what a user can see.

5. Associate the policy with a tabl€he last step is to associate the predicates with
each of the DML operations and the table itself. In order to define a policy, we
need to define the following attributes:

a. Object_schema: It defines the owner who created the table. If it is NULL
the database will assume the current login user is the owner of the table.

b. Object_name: The table name where the policy will take effect.

c. Policy_name: The name of the policy to be added. The name is defined
by a security officer. It must be unique, since there may be more than one
policy applied to a table.

d. Policy_function: It refers to the name of security policy procedure that
generates the predicate for users.

e. Statement_types: Define the SQL statements that will be monitored by this
policy, such as SELECT, UPDATE, or DELETE. For each DML

operations, it has to have a different predicate function.

As mentioned before, a key step in enforcing access control polices is to create
security policy procedures by using Oracle procedure language (PL)e ®tad a
Turing-Complete language. Thus, it is very powerful and can be used to express very
sophisticated policies. On the other hand, access control policies are manually

implemented by programmers. Security flaws may be introduced, due to either a

13

programmer’ misunderstanding of a policy specification or his/her negligemce. (e
Oracle PL is a Turing-Complete language, it is very hard for securiteddfto verify
implemented policies and detect potential vulnerabilities.

The above observation is the major motivation for this project. If policy
specification can be automatically implemented and enforced in the database, pol
verification and security flaw detections only need to be performed in policyfispgon
phase, which is much more manageable than checking policies written in OracleePL. T
key question is to choose the appropriate formal policy language to specifydined
access control in Oracle 9i. We have identified the following desirable fiespfar
policy languages. These properties are based on the characteristics. t\R®same
time, this policy language should also be easy to understand for a securdy. offic

* A policy language should have an easy-to—understand and concise syntax. Basic
access control elements, such as subjects, objects, access rights, etcheshoul
clearly identified by using policy key words.

* The semantics of a policy language should support the close model, i.e., a subject
does not have access to a certain object unless it is explicitly alloweddsg acc
control policies. This is desirable because VPD assumes a closed model.

* Negative policies should take precedence over positive policies. In other words, if
a subject is allowed by one policy to access an object, but is denied by another
policy, then the subject cannot access that object. This is also due to the semantics
of VPD.

» The access control policy language needs to support role-based access control. In

Oracle VPD, privileges are often granted based on users’ roles. And tbé&snis

14

more than one role defined in a policy. The policy language also needs to support
role hierarchies. Otherwise, the relationship between roles cannot be properly

identified in a formal policy specification.

Keeping in mind the above properties, we analyze three representative policy
languages: Rei [KFJO03], EPAL[AHCO03], and Ponder[DDLO1], from which we s#éiect
most suitable one for specifying fine-grained access control in databasatsoW
considered other policy languages such as Web Services Policy Langisige)(

[AAO4] developed by SUN Microsystems and REWERSE (for REasoning on the WEDb

with Rules and SEmantics) [REWO04], but both of them are still under development.

2.3 Formal Policy Languages

This subsection provides an overview of the three most relevant policy

specification languages: Rei [KFJ03], EPAL[AHCO03], and Ponder[DDLO1].

2.3.1 Rei

Rei, a Japanese word that means “universal”, is a policy language developed by
Kagal, Finin, and Joshi [KFJ03, Kag02, KaFJO03]. It is an action based policy language
It includes constructs for rights, prohibitions, obligations, and dispensations [KFJ03].
Since Rei is not designed for any specific applications, it permits domaificspec
information to be added without modification of the language itself. Rei is inepiah
in Prolog. The creators of Rei believe that a policy could be expressed asvwob#Ec
can/cannot and should/should not do in terms of actions, services etc. Rei includes two
parts: domain independent ontologies and domain dependent ontologies. The former

includes concepts such as permissions, obligations, actions, and operators etterThe lat

15

is a set of ontologies, shared by the entities in a specific system, whicasdeéfimain
classes and it's properties such as file directories and file name83KRei includes

three types of constructs for domain independent ontologies: policy objects, meta
policies, and speech acts. Speech acts includes: request, cancellation, deledation a
revocation. They are used for decentralized control. For example, a user may have the
rights to send aequestrequest for an action) to other user, but he may not have the
rights to cancel the request he has sent.

The constructs are the core of the policy language. It describes th@tsooice
rights, prohibitions, obligations, and dispensations. In this part, we are only to describe
rights and probations, because are not essential to authorization.

* Rights define the permission that a subject has. It allows a subject to perform one
or more actions. Rei defines rights as follows:
* has éubject right @ctionnameconditiong). This defines that if the
subjectwants to perform the action, it has to satinditions
Actionname is defined separately which contains the object of the action.
Example:
has (employee, right(print, rank =3))
It defines that if an employee’s rank is 3, then he/she can perform print
action.
* Prohibitions define negative authorizations, meaning that a subject cannot
perform certain actions.
* has éubject prohibition @ctionnameconditiong). Thesubjectis

prohibited from performingctionnamef subjectsatisfiesconditions

16

In Rei, actions can be represented as a tuple with parameters, as shown in the

following format:

action @ctionnametargetobject pre<€onditions effect3
In this tuple, actionname defines the name of action. It is used in the rights and
prohibitions policies to define the action that a user can perform. Targetobjdist isfa
objects on which the action is performed. Pre-conditions are the conditions that need to
be true before the action can be performed and Effects are the results abtnelTae
pre-conditions are defined only for the action not for any subjects.

Rei proposes two ways to resolve conflicts in policies. The first is to setipsorit
by using statement overrides (A, B), meaning policy A has priority over Bs@dend
way is to use precedence relations. The policy maker may decide certaidemess for
a set of actions, e.g., negative policies are stronger than positive ones.

The advantage of Rei is that it provides a variety of action primitives for access
control specification. Access control policies can be defined as what actiogiscans
take; and many perimeters can be associated with this action. For exampleyavhe
define what action a user can perform, we can also define operators fordhe aath
as: repetition (allows the user to repeat the action) and once (definesisieatcan only
perform this action once). Although Rei is relatively simple syntax, it does bawe s
disadvantages and therefore is not quite suitable for specifying access golnty for
databases. First of all, subjects are treated as un-interpreted syNtake hierarchy
can be defined in Rei. As a result, it will be difficult to define role-baseegfiamed

access control policies.

17

2.3.2 EPAL

Enterprise Privacy Authorization Language (EPAL) is developed by IBM
[AHCO03, ASP02, KSW02]. EPAL is a “formal language to specify fine- grained
enterprise privacy policies. It concentrates on the core privacy authamizatile
abstracting from all deployment detail such as data model or user-
authentication”[AHCO3]. It is an XML-based policy language and allows develdpe
enforce privacy policies directly into enterprise applications.

An EPAL policy is a set of privacy rules ordered with descending precedence. In
EPAL, rules are used to determine if the request is granted or not. If a ruksappli
subsequent rules are ignored. A rule may contain conditions and obligations. There are
four elements in a rule:wser categoryan action adata categoryanda purpose

» A user categorylefines the subject of a rule, such as an employee, a manager.

» Data categorythe data category provides a high level classification of data, such
as employee information, medical record, etc. By classifying data ifftoeatit
category, based on the privacy requirements, data can be treated differently.
EPAL itself does not define any actual data. Instead, it uses data category t
categorize data.

* Purposeis an important part in EPAL, because information should only be
disclosed for particular purposes. For each rule in EPAL, it has to state the
purpose for the use of certain informati@milarly, each information access
request also needs to specify the purpose for the access. Otherwise, it will be
rejected automatically.

» Actiondefines a privacy relevant action that can be referenced in rule definitions

18

Typically, privacy authorization rules also require context conditions. Each
container defines a data structure that contains context data that can beé\mjua
conditions associated with the context data. The container defines a listooftestthat
can be evaluated by conditions. Such attributes may include e g., one’s nanogeempl
number, and department. And based on instances of the attributes, the conditions will be
evaluated to be ‘true’ or ‘false’. Eaclbnditionstatement represents one condition. If
there is more than one condition, all the conditions have to be true before the rule can be
applied. Otherwise the rule will be ignored.

Since EPAL does not define any specific data types, it is necessary toadefine
vocabulary set defined agmfoTypé , which contains all the vocabularies that will be
referenced in rules . There are three attributes in the definition of a voeabglketr The
“id” attributes defines the name of the vocabulary. The “issuer” defines whesishese
vocabularies. And the “version-info” defines the version of this rule and other
management information such as date.

In order to establish an EPAL policy, a policy maker has to create a set of user
categoriedJ, a set of data categori€ésa set of purposdd and a set of actions All of
them have to be defined in vocabulary and will be referenced by other parts of tiie polic
A request to the system is in the form “Is the given user-category alloweddampéhe
given action on the given data category for the given purpose?” The systemimketer
the ruling by processing each rule with descending precedence. By anéhgzingle

(U, T, P, A), the system’s output will be either “allow”, “deny” or “not-applicable”.

19

If an access control policy is “An employee can only see his own record and a
manager can view the records of all the employees who work in his department. In

EPAL, the policy will be defined as shown in Figure 2.2.

20

<rule id ="Oracle_policy” ruling ="allow”>
<user-category refid = “employee table”/>
<data-category refind = “employee_record_table”/>
<prupose refind = “view table” />

<operation refined ="SELECT" />

<condition refid = “condition1”/>

<condition refid = “condition2”/>

</rule>

<rule id ="Oracle_policy _manager” ruling ="allow”>
<user-category refid = “employee table”/>
<data-category refind = “employee_record_table”/>
<prupose refind = “view table” />

<operation refined ="SELECT" />

<condition refid = “condition1"/>

<condition refid = “condition3"/>

</rule>

<container

id=“employeeTAB™>

<attribute

id =" employee _table.userID”

simpleType =http://www.w3.0rg/2001/XMLSchema#string
</attribute>

<attribute

id = “employee _table.name”

simpleType =http://www.w3.0rg/2001/XMLSchema#string
</attribute>

</container>

<container

id= “employeeREC">

<attribute

id =" employee_record_table.userID”

simpleType =http://www.w3.0rg/2001/XMLSchema#string
</attribute>

<attribute

id = “employee_record_table.name”

simpleType =http://www.w3.0rg/2001/XMLSchema#string
</attribute>

<attribute

id = “employee_record_table.manager”

simpleType =http://www.w3.0rg/2001/XMLSchema#string
</attribute>

</container>

21

<condition id = “condition1”>

<predicate refid kttp://www.research.ibm.com/privacy/epal#string-etpial
<function

refind ="http://www.research.ibm.com/privacy/epal#string-bag-to-e'&u
attributes-reference

container-refid = “employeeTAB”

attribute-refid = ““employee _table.name”/>

</function>

<attribute-value simTypehttp://www.w3.0rg/2001/XMLSchema#string
<value> context.name</value>

</attribute-bag>

</predicae>

</condition>

<condition id = “condition2”>

<predicate refid kttp://www.research.ibm.com/privacy/epal#string-etpial
<function

refind ="http://www.research.ibm.com/privacy/epal#string-bag-to-e'&u
<attributes-reference

container-refid = “employeeTAB”

attribute-refid = ““employee _table.ID"/>

<attributes-reference

container-refid = “employeeREC”

attribute-refid = ““employee_record_table.userID"/>

</attribute-bag>

</predicae>

</condition>

<condition id = “condition3">

<predicate refid kttp://www.research.ibm.com/privacy/epal#string-etpial
<function

refind ="http://www.research.ibm.com/privacy/epal#string-bag-to-e'&u
<attributes-reference

container-refid = “employeeTAB”

attribute-refid = ““employee _table.name”/>

<attributes-reference

container-refid = “employeeREC”

attribute-refid = ““employee_record_table.manager’/>
</attribute-bag>

</predicae>

</condition>

Figure 2.2 EPAL Policy Example

22

As we can see, EPAL requires a formal definition for each attribute andioandit
before they can be applied into policies. This requirement does offer the adwaintage
keeping data references consistent, because each attribute has to bg ¢mfnaid in
the vocabulary set. The drawback of this language is that it does not fully support role
hierarchy. EPAL only allows each role to have a single parent. As a resudan not use
EPAL to express a relationship that a node has more than one parent. For example,
suppose a manager is also considered as an employee and a team leader. Then, it is
difficult to define the parent node for the manager in EPAL, since the manageraole is

extension of both the employee role and the team leader role.

2.3.3 Ponder

Ponder is a policy language developed by researchers at Imperial (Cdlie2,
DDLO1, DSLO1]. Itis a declarative, object-oriented language for spegigecurity and
management policies for distributed object systems[DDL 01]. Ponder is difigne
non-discretionary access control, where administrators have the authopéciiy s
security policies that are enforced by the access control system. Porp@atsup
authorization, delegation, information filtering, refrain policies, and obligations.

In Ponder, the termaubjectrefers to users. The tertargetrefers to objects
(resources). The teractiondefines what action/actions can be performed on the target
and the termvhenstates the constraints/conditions where a policy can be applied..

An authorization policy defines what actions a subject could perform agairist a se
of targets. Ponder allows two kinds of authorization policies. A positive authorization

police defines the actions that subjects are permitted to perform on taegtsobj

23

A negative authorization policy defines what actions that subjects areaveeall

to perform on target objects. The syntax of an authorization policy is shown in Figure 2.3.

Inst (auth+ | auth-) policyname{
Subject expression;
Target expression;
Action expression;
When constraints

}

Figure 2.3 Authorization Policy Syntax

Example 1. Positive and negative authorization policies

Inst auth+ employee_view

{

subject manager
target employee_record_table
action select

}

It defines that a manager can issue select statement on employdeabtmor

Inst auth- employee_view

{

subject manager
target employee_record_table
action delete, update

}

It defines a manager is forbidden to issue delete and update statement on the
employee record table.

Ponder explicitly supports the definition of roles and role hierarchies. Policies ca
be grouped together based on roles to reflect the privileges of a group of useais afist
individuals. The syntax of roles is showed in Figure 2.4. For example, a manager will

always have the same privileges regardless who is assigned to this role.

24

Type role roleName

{
{basic-policy-definition}
{group-definition}
{meta-policy-definition}
@ subject-domain]

Figure 2.4 Role Policy Syntax

Example 3. Role Policy

type role employee

{
}

inst auth+ emp_select

{
target /IBM/RECORD_TABLE/record

action SELECT
when subject.name=/IBM/REC_TB/record.name

}

The above policy specifies that an employee only can view his own record in the
record_table. A role may include more than one basic policy, group or meta-policy. A
group definition groups related policies together for the purpose of policy ortyaniza
Meta policies define policies about the policies within a composite policy and aréouse
define application specific constraints. For example, the meta policy couldd®use
define that the same person cannot submit and approve a budget. Subject domain
defines the set of subjects. The subject domain is specified following the @ aign.
subject domain is undefined, then a subject domain will be created with the same name as
role.

Role hierarchy can be defined through role extension. When a role extends from

another role (base role), it inherits all the privileges from the base e phlicies can

25

also be added to the extended role. If two policies have the same name, then the new one
will overwrite the old one. The keywor@Xtend8is used when a role extends another.
Formal parameters define the parameters for the newly createthdodetaal parameters
define the parameters that may have included in the base role. The inheritdageasy

shown in Figure 2.5.

Type Role roleTypeNmae { formal Parameters }
Extends parentRoleType { atucalparameters}

{
role body
}

Figure 2.5 Role Extension Syntax

Example 4. Role inheritance
type role manager extends employee

{

inst auth+ mgr_select

{
target /IBM/REC_TB/record

action SELECT
when subject.name=/IBM/REC_TB/record.mgr

}
}

The above policy specifies that a manager role is extended from an employee role
It not only inherits all the privileges of an employee role, but also extends tHegesvi
by allowing a manager to view the records of all the employees who work under him
After analyzing the above three policy languages, we believe that Roerdées
the requirements for specifying fine-grained access control policiestadrades. Ponder
can be easily used to support role-based access control, which is the cruciatfer Or

VPD. While Rei and EPAL have their own advantages, they fall short in defineg rol

26

hierarchies. Further, Ponder has a clear and concise syntax. Thus, a Pondeapdley c
mapped to Oracle policy enforcement program in a relatively straiglafdmvanner.

Since Ponder is originally designed for distributed network service management,
it has features that are not completely suitable for database aooéss. For example,
the Ponder role policy requires the subject-domain to be formally defined, but FGAC
does not have such definition. Based on the above analysis, in this project we adopt
Ponder as a preliminary high-level policy language database fine-grasess @ontrol
policy specification. Although Ponder supports four types of policies: authorization,
obligation, delegation, and refrain policy. In our toolkit, as explained in this section, we
are only use authorization policy to express database access control padiceheF
type of the policies, they will not be used to define the access control policieshér fur
study is needed to decide whether these type of polices can be properlyetdainsta

database access control policies.

27

3 Translating Access Control Policies to Oracle Enfazement Script

In this section, we first discuss how Ponder is used to specify database fine-
grained access control policies. Then, we introduce the new algorithm tisdatiea

these Ponder policies into Oracle FGAC enforcement code.

3.1 Creating Access Control Policy in Ponder

This subsection provides an overview of how we use the Ponder policy languages

to create FGAC policies.

3.1.1 Choose the Policy Type

As mentioned in previous chapter, Ponder allows various policy types. Clearly,
authorization policies are the most relevant for access control policyisataeif. Since
roles are important component of FGAC, the Ponder role hierarchy should be used to
create access control policy specifications.

To illustrate how to create FGAC specifications, we assume we aretgoing

enforce a policy on the following table (HR table):

Name Manager Rank

Table 3.1 HR Table

Table 3.1 has three attributestmestores an employee’s nanmeanagerstores
the employee’s manager name, aak stores the employee’s rank. This table will be
also used in the following examples, unless otherwise specified. There areothssin

the policy: employee, manager, and CEO. The employee can only view his own record. A

28

manager can view an employee’s record whose manager is him. A CEO can view the
whole table.

By setting the employee role as the base role for manager role, whenis us
trying to perform the manager role, he not only can have the manager privilege® but als
can have employee privileges. A Ponder policy and role hierarchy could besexiass
the following figure (Figure 3.1). It defines that role manager and role CE&xtmeded
from the employee role. Each of them has individual privileges in addition to eraploye
privileges. By using Ponder role definition and role hierarchy, we believarhaccess

control relationship can be properly identified.

Type Role employee

{
name = current login user CEO
}
Type role manageextendsemployee
{
manager = current login user
} Manager
Type role CEOextendsmanager
{
1=1
}

Employee

Figure 3.1 Role Hierarchies

For each access control policy, its subject, target, action and constraints need to be
defined properly. In our case, since we are trying to define the privilegdgferent
roles, the subject of an access control policy will be roles. In generaea cauld refer

to a table, or the whole database. Since FGAC only supports a single talegeghantar

29

this toolkit will also refer to a single table. For access control actiondelywthere are
only a few action commands in Oracle database that a user can issue agaiessach
as “SELECT”, “INSERT”, “UPDATE” and “DELETE". All these commands waitt as
the action key words in Ponder. By using default Oracle action keywords asguimy
keyword, the translation between the Oracle and policy action key words can be
simplified, therefore it reduces the complexity of policy specification andase the

performance of the toolkit.

3.1.2 Access Control Policy Interpretation

Given a set of authorization policies, it is possible that several policiesroonc
about a role’s privileges on the same object under different conditions. When anforcin
those policies in a database, we need to consider the overall effects of the set of
authorization policies.

Formally, positive authorization policies define a set of positive authorization
tuples 6, o, +a, ¢), wheresis a roleo is a database objeetjs an action, andis a
predicate that specifies the constraints whean take actioa ono. Similarly, negative
authorization policies define a set of negative authorization tuples {a, ¢, which
means that s cannot take action a on o if c is trues lhetthe current role of a user.

Given two authorization tuples;(01, *a, ¢;) and &, o, *a; andc;,), where * can be
either + or —, if s1 and s2 are either the same as s or are extended from s, ola)2, al=
then we say the two tuples asdevantto s. Otherwise, they angelevantto s.

In order to determine a user’s privileges, we need consider the combineagffect

authorization tuples. Suppose a user’s current role is s. Letsf,o{(*+a, @), ..., (S, 0,

+a, ¢y)} be a set of positive authorization tuples that are relevant to s. Then the user is

30

allowed to take actioa on object as long ag; OR ... ORc, is true. Intuitively, since
the authorization tuples are positive, as long as one of the constraints isdsatisfiuser
obtains the corresponding privilege. Similarly, let Ts; {0, -a, @), ..., (5, 0, -a, ¢)} be

a set of negative authorization tuples that are relevanflioen the user is not allowed to
take actiora on objec as long ag; OR ... ORc;, is true.

When there are both positive and negative authorization tuples, we take the closed
authorization model, i.e., negative authorization overrides positive authorization.
Formally, given two relevant authorization tuplss ¢, +a, g) and &, o, -a, ¢), the user
is allowed to take actioaon objecio only if cL AND - c2is true.

In general, let T={, o, *a, @), ..., (5, 0, *a,)} be a set of authorization tuples
relevant to s. The combined authorization constraints for s can be determinedves foll
Let T and T be the sets of all the positive and negative authorization tuples in T
respectively. We can get the combined constraifitand C of T and T for s
respectively, as described above. Then the user is allowed to take action a on object o

only if C* AND - C is satisfied.

3.2 The Architecture of the Toolkit

This toolkit has three components: Ponder policy specification interface, policy
translator, and policy importer. A policy maker can use the Ponder policy spemifica
interface to create Ponder authorization policies. The created Ponder poéidies ar
input for the policy translator, which translates Ponder policies into Oraclg polic
enforcement program. The translation includes three steps: identifyingecdechy,

access control elements translation and set context values. The policy ingorter

31

responsible for importing the created Oracle policy enforcement programanr®racle
database by using JDBC. Figure 3.3 shows the architecture of the toolkit. In the

following, we describe the Policy translator and the importer in detail.

—Toolkit

Ponder Policy
<> Interface
Specification

Ponder Policies

Security Officer

Policy Translator

-ldentify Role Hierarchy .

Oracle Policy

-Translate Access Control Elements to Enforcement
Code

Oracle Format
-Set Context Values

-Generate Oracle Script

Policy Importer

Database

Figure 3.2 Toolkit Architecture

32

3.3 Policy Translator and Policy Importer

Policy translator is the core of this toolkit. It is responsible for trangl&onder
policies into Oracle policy enforcement program. This program is wiittdava and
contains three functions: identifying role hierarchy, access control eietmanslation
and set context values. The following subsections discuss how the policy translator

translates Ponder policies into Oracle scripts.

3.3.1 Role Hierarchy Identification Function

The purpose of role hierarchy identification function is to identify the role
relationship in a policy. This function analyzes the Ponder policy and records rallethe
existing in the policy. A text file will be generated and contain all the paés
generated by the translator If a role is an extended from another onép# vatorded
as (senior role, junior role) in the text file, where the senior role is the ertenideand
the junior role is the base role. If a role is not extended from any other roles)ehislr
be saved as (Senior Role, NULL) in the text file. This text file will be ingobinto an
Oracle server and a new table will be generated by the translator basedext files In
this table, it has two attributes: senior role and junior role. All the role pairsapped
into this table. The reason to create such a table is to allow the Oracle fuagierform
a role hierarchy search among roles. The reason to create a text filegolitlgegoles is
to allow a policy maker to check whether the policy role relationship has beertlgorrec
built. By doing so, a policy maker can check the role hierarchy first befdBA\& being
fully implemented.

The created role table is used by a role comparison function defined by this toolki

The role comparison function takes two roles rl and r2 as parameters and re¢uifns tr

33

rl=r2 or rlis senior to r2. This comparison function is based on the role table created by
the translator. When a role comparison function is called, the function will searobie
table by using SQLstart with...connect by’.query. An example of the syntax is shown

in Figure 3.5.

select count(*)
from role table
where junior_role in §electjunior_rolefrom role table
start with senior role = current user role
connect byprior junior role = senior role)
and junior role = Give role name

Figure 3.3 Role Hierarchy Search Query

If a user’s current role is senior to a given role, it means that the uskawga the
privileges of the given role. For example, if a role table contains two piilest
(Manager, Employee) and (CEO, Manager), and a user sets his role to CEGleThe r
comparison function compares role CEO with role Employee and role managerns re
true in both cases. As the result, the CEO will have the privileges of both mandger a

employee.

3.3.2 Mapping of Access Control Elements

The task of the second function is to scan through Ponder policies and identify all
the access control elements, including subject, target, action, and constrants. T
translator identifies each one of them and stored them in a Java array, wiget it
later create Oracle policy enforcement program.

In this project, we assume the roles defined in Ponder policies are from the same
ontology as those in a database. Further, we assume actions are the saane as da

manipulation operations. Therefore, for subjects and actions, the translation is

34

straightforward. If roles and actions are not defined using the same ontolagy, the
necessary mapping is needed. Additionally if a Ponder action is “retrieve’it theeds

to be mapped to SELECTION operation to a database. The translation of target and
constraints is more challenging. In Ponder, objects are often organized intoherar
Thus, a target not only includes the table name but also includes the directory path. For

example, in a Ponder policy, the target statement may be expressed as:

Target: /IBM/HR/record

It refers to the tablelR underlBM directory. The keywordecord defines the particular
tuple/tuples that satisfied the constraints of the policy. On the other hand, ia,@racl
table is simply referred by a unigue name. We cannot directly map therntange
written in Ponder to a database object, because the Ponder table name is not uniquely
identified. In Ponder, two different tables can have the same name, as far lasvihey
different directory paths. In Oracle, a table name must be unique.

To solve this problem, we assumed therensapaping filewhich explicitly maps
Ponder policy targets to database objects. A mapping file is a text fiaied by a
policy maker and stores target names that are written in both Ponder formataled O
format. When the translator maps a target element, it looks up the mapping file and finds
the corresponding Oracle database objects. If no mapping exits in the filgifena
target element, an error message is returned.

For example, assume the mapping file has the following name pair:

(/IBM/HR/record, HR)

35

Once the translator encounters this pair, it knows “/IBM/HR/record” in a Pquadiey
refers to table HR in an Oracle database. Thus, the HR table will be useératgen
Oracle policy enforcement program.

The mapping file contains not only the mapping information for tables, but also

Subject.name = /IBM/HR/record.name

that of policy constraints. For example, if we have the following constraints:

This constraint states that thameattribute of a tuple in the HR table must match the
user’'s name. When the translator translates this constraint, it breaks tinaicbimso

two parts;subject.namand IBM/HR/record.nameFor the/IBM/HR/record.nameart,

as described above, the translator looks up the mapping file and maps it to database HR
table.

Thus, the constraint is translated as:

Subject.name = HR.name

For thesubject.nam@art, the translator needs to retrieve it from the subjects’ (i.e., the

current user) context value.

3.3.3 Setting context values

A context stores information about the current user connected to an Oracle
database. Oracle 9i provides functions to retrieve a user’s propertiesSrocumrént
context In a Ponder policy, part of constraint is usually defined as “subjecth&tew

‘X’ represents an attribute of a user. For example, subject.name refersdgitheder’s

36
Subject.name = HR.name

name and subject.rank refers to the rank of the user. Using the example from abgve aga

the constraint

refers to that the current login database user can only view his own informatiam. Whe

sys_context('userenv’, 'session_user')= HR.name

the translator translatesttbject.namk it creates a context value to store the current
login user’'s name. In Oracle, a context value is already created fanaif®g’'s name,
which can be retrieved by callingy's_context('userenv’, 'session_userhus, the

constraint is translated into Oracle format as

It is necessary to set a context value for each indiviciuddjéct. X elements to avoid
unnecessary nested query. For example, if we set current login user'ssdra®aly

context value. For the following constraint:

Subject.rank < /IBM/HR/record.rank

It states that the current login user can only view employee record whoss lauvkr
than him. By using the name as the only context value, the above constraint has to be

translated as:

Rank < ANY (select rank from HR
where name= sys_context(‘userenv’,

'session_user’))

37

In above query, if we use name as the only context value, we need a nested query in order
to fully express the constraint. However, this nested query can be avoided. Instead of
using name as the only context value, we can create another context value for “rank”.
When the translator reads “subject.rank”, it will create a new contexe @ ‘rank’. As

the result, the constraint can be written as:

Rank < sys_context('db_context’, 'rank’)

in above query,db_contextis the name we defined for the context, aladk’ is a
context value. By storingstibject.X as a context value and eliminating unnecessary

nested queries, the efficiency of query can be improved.

3.3.4 Oracle Script Generation

Once three functions have been executed, the translator is ready toggenerat
Oracle script. There are three Oracle functions need to be generated inaioléing
setting function, predicate setting function, and policy generating funatidie |
following graphs, we are going to give a brief description about how the sagpts a
generated.

The first Oracle function that needs to be generated for VPD is the seténg
function. The main goal for this procedure is to set context values for the user. $imce ea
user may have more than one role in a database, when a user logs in a dataledsasa r
to be set for him before he can issue any SQL query. In this procedure, it allearsta
set his role and this role will be stored as an Oracle context value. Afterainage has
been set, the role name will be available to other Oracle functions. Onlyheftel¢ has

been set, the database server can attach the corresponding predicate toissiyaase

38

guery. For example, if a user requests to assume the employee role, thitingle se
procedure will set the requested role for him. The assumption is that the usesseaks pa
the role checking mechanism. This mechanism is to ensure a user will onlyeasesn
assigned to him. Since the role-checking mechanism is not the goal of this toolkit, the
toolkit will assume that role checking is done by other part of the system. Otiiextc
values also need to be set in this function, such as name, rank etc.

For each database application, a new context should be created and the role
setting function should bind to it. This function is the only way to set a context value. By
doing so, it ensures data integrity. Once a context value has been set, we knoluehis va
has been validated and properly assigned to a user.

The second Oracle function is for setting predicates. A predicate is dytigmica
attached to user’s query during run time. This function defines the predicate based on a
user’s privileges. In this toolkit, instead of returning a different predicatesich
different role, only one predicate is returned for all the roles. In this gangtkcate, it
contains all the role constraints. This predicate is generated by retradivihg role
constraints that already translated into Oracle format by the trangla®generated

predicate has the following format:

Predicate =
Rolel constraints and
role comparison function (current user role, rolel)

OR

Role2 constraints and
Role comparison function (current user role, role2)

RoleN constraints and
Role comparison function (current user role, roleN)

39

Each role constraint is associated with the role comparison function gengrated b
the translator. The role comparison function compares the current user roleggivith a
role. Only if the role comparison result returns true, the associated roleaganstll be
executed.

The reason, to return one predicate contains all the constraints instead of returning
a different predicate for each role, is the relationship between each radpirction. A
user could be an employee. He also could be an employee and manager at theesame tim
An OR relationship ensures the current login user be able to view all the iiflorma

allowed by his privileges. For example, if the predicate is setting likenfmigp

Predicate =
Employee constraints and
role comparison function (current user role, employge)

OR

Manager constraints and
Role comparison function (current user role, manager)

Assume the user’s role is employee. When this predicate is attached to the quer
the user issue, the database server checks the Boolean variable returned by role
comparison functions. Since the result for role comparison function (employee, manage

returns false, as the result, the predicate is equal to

Predicate = Employee constraints

This is because manager constraints are not executed due to the emplogganimeto

the manager role.

40

The last Oracle function is to associate predicates with each of the DML
operations (SELECT, UPDATE, DELETE and UPDATE) and the targeting tesalf.
In this function, it requires to define the policy name, function name(the function
generates the predicate), table name, and which DML statement it tessaath. All
these information can be retrieved from policy model and previous OracleofuiCTihis
Oracle adding policy function will ensure for every each DML operatior tisea
predicate setting function associate with it.

After all the necessary Oracle scripts have been generated, they wijhteed

into Oracle database sever by using the script importer provided by the toolkit.

3.3.5 Oracle Script Importer
The importer connects the toolkit and an Oracle database by using JDBC. The

function of importer is to import all the generated scripts into an Oracle databaer.

3.4 A Simple Scenario

The example of employee, manager and CEO is used at here again. The policy is
defined in section 3.1. When the translator reads the Ponder policy, it creates the role

hierarchy file first. In this case, the role hierarchy is shown as thepean Table 3.1.

Senior Role Junior Role

Employee NULL
Manager Employee
CEO Manager

Table 3.2 Role Hierarchy Table

41

The translator imports this role hierarchy relationship into Oracle andadseto role
table.

The next step is to create a function that sets roles in the application context
The context will contain role name for current login user. The function allows tosses
the role to be “employee”, “manager”, or “CEQ”. Assume that the current logimsass
to his role to “employee”. The role name “employee” is stored in application ¢ontex
variable ‘rolename’ and if the application context name is “context_name’, tr@aole

"employee” can be retrieved by calling following statement:

Sys_context (context_name, ‘rolename’)

Once a role has been set, the predicate function generates the preditetefoployee
role. Since we include all three roles constraints in single predicate aradelmame can
be retrieved by calling “Sys_context(context_name, ‘rolname’)” stateme

The predicate is generated like the following:

Predicate :=

Name = sys_context('userenv’, 'session_user")
And role_comparsion function (current user RoleName, ‘Employe€)

OR

Manager = name= sys_context(‘'userenv', 'session_user’)
And role_comparsion function (current user RoleName, ‘Manager’

OR

1=1
role_comparsion function (current user RoleName, ‘CEQO’)

Those condition expressions are generated by using the mapping file, whish store

policy constraints in Ponder format and Oracle format in pair. Assume such mélgping

42

already created. The translator extracts policy constraints fraoy pebdel and replaces
with the corresponding Oracle format one by scanning through the mapping te. Af
these constrains have been translated, they are put into Oracle predicegdsettion.
By using these condition expressions, the Oracle predicate setting furertenaigs the
predicate for all the roles.

After the user assumes an employee role, the comparison function compares
three pairs of roles. For (employee, employee) pair, the comparison funtiors rieue.
But for (employee, manager) and (employee, CEO), the role comparison fuettiorsr
false due to employee role is not senior to either manager or CEO role. Asuletihe

predicate becomes

Predicate :=

Name = sys_context('userenv’, 'session_user")
And true

OR

Manager = name= sys_context(‘userenv', 'session_user’)
And false

OR

false

This predicate ensures a user that is assuming employee role only have the
employee privileges, but not manager and CEO privileges.

The last step is to add a policy. This is be achieved by calling Oracle add_policy
function. The parameters of the function include: table name, predicate function name,

and action type. Once this policy is added, the Oracle FGAC is fully implemented.

43

When a user issues a query, assume the table name is “table_name” and the query

is following:

Select * from table_name;

The predicate generated by predicate setting function will be attazhi@d guery. As

the result after the predicate is attached, the query will look like:

Select * from table_name;

Where name = sys_context(‘userenv’, 'session_user’)
And TURE

OR

Manager = name= sys_context(‘'userenv', 'session_user’)
And FALSE

OR

FALSE

Which is equal to

Select * from table_name;
Where name = sys_context(‘userenv’, 'session_user’)

As the result, an employee can only view his own record.
In this section, we have discussed how to define a VPD policy by using Ponder.
We also discussed the necessary steps for a translator to translate gBlarydeto

Oracle scripts. In next section, we are going to analyze the performthnig toolkit.

44

4 The Toolkit User Interface

The interface of the toolkit is designed to help policy makers easily translat
formal access control policies to policy enforcement programs. It allowkcg maker
to specify access control policies, create corresponding enforcemerarpsognd import
the program into Oracle database. In this section, we give a brief descriptien of t
interface.

After successfully logging in, the policy maker is prompted with the major
working interface, as shown in Figure 4.1. The policy maker can create nesg acce
control policies or edit previously saved policies on the left side text windowr. dtes
satisfied with the contents of the policy, he can clickitaeslatebutton, which invokes
the policy transaction function of the toolkit. The resulting Oracle policy egriveat
program will be displayed in the text pad located at right side of the window. The
generated program has three parts: role setting function, predid¢atg &etction, and
policy generating function. The policy maker can review any of themidirgy view
and choosing different functions. By displaying the access control policy and the
corresponding enforcement program side by side, the toolkit gives the policy anake
visual view on how the policy is interpreted by Oracle.. Once the policy maker is
satisfied with the enforcement program, he/she can clickpert button, and the

enforcement program will be imported into an Oracle database.

45

File Edit View Import
pe role ermnp

pe role mgr extends emp
pe role mogr2 extends emp
pe role CEO1 extends mgrl

pe role CEO1 extends mor2
1

linst auth+ emp_select

suhject emp
Marget IBEMIREC_TB/recard
action SELECT
hen subjectname=/BMIREC_TB/record.name

}
linst auth+ marl _select

suhbject morl

Marget IEMIREC_TB/record

action SELECT

hen subjectname=IBMREC_TB/recard.rar
}

linst auth+ mar?_select

subject mar?

target IBMIREC_TB/record

action SELECT

hen subjectname=IBMREC_TB/recard.rar
}

oot outbe con _coloct

Translate

hegin

dbms_rls.add_policy
{object_schrme ==RULL,
ohject_name == "REC_TE_wiew ',
policy_name == 'REC_TB__policy!,
function_schme == MULL
policy_function=='emp_function REC_TE_function’,
staterment_type == "SELECT,
update_check== TRLUEY,

end;

r

Figure 4.1 Generating Policies

This toolkit connects to the Oracle database by using JDBC with the same

username/password that the policy maker uses to login into the toolkit. After the

enforcement program has been successfully imported, the policy maker ¢&n test

effectiveness. The testing window is shown in Figure 4.2. During the testing, different

user names with different roles can be used to issue queries. The testing véndesias

a simple front end to the database management system. It submits testiapgue the

database engine, and retrieve and display query results.

46

Figure 4.2 Testing Window

47

5 Performance Analysis and Optimization

In this chapter, we are going to examine the correctness of the automaticall
generated policy enforcement program. It is important that this toolkit cesiaia
various policies correctly. If this toolkit cannot perform such duty, then theretikea li
value for this toolkit. It is also very important to consider its quality, i.e., whetitesa
control policies can be enforcedficientlyby using the toolkit. If after adopting the
machine-generated policy enforcement program, the performance obasata
management system deteriorates severely, then the toolkit is of littee irathe rest of
the thesis, we refer to the policy enforcement program written by a prograhene
human-generated prograrand that generated by the toobkie machine-generated
program.lt is reasonable to assume that human-generated program is efficieng since
programmer can carefully analyze a policy first and find the optimal evesetite the

policy enforcement program.
5.1 Experiment Setup

In this experiment, we use a P4 2.8 GHz computer with 512 Mb RAM. The

database management system is Oracle 9i version 9.2.0.1.0.
5.2 Policy Translation

In this subsection, we are going to analyze several policies and demoh&sate t

policies can be correctly translated by the toolkit.

48

5.2.1 Hospital Example

This example is for a hospital system and we only consider the information
retrieval process. The schema of the table and its access control @okctefined as
the following:

* The patient record table (patient_table) contains following attributes:
“Doctor_ID” defines which doctor this patient belongs to; “patient_ID “stdres t
id number for the patient; “patient_name” stores the name of the patient;
“disease” stores the disease name of the disease.

* There are two roles in this example: doctors and patients.

» Each user in the system has to assume at least one of the above two roles before
she can access the database. We assume that login authentication and role
authentication are handled by other part of the system.

* The policy is like the following: a patient can only view his own information. A
doctor can view all his patients’ records.

» The Ponder policy will be generated like the following:

49

Type role patient {}
Type role doctor{}

inst auth+ patient_select

{

subject patient

target patient_table/record

action SELECT

when subject.name = patient_table/record.name

}

inst auth+ doctor_select

{

subject doctor

target patient_table/record

action SELECT

when subject.ID = patient_table/record.Doctor_ID

In the above policy, we only defined two roles and there is no role hierarchy
relationship between them. The reason is patients may have different déeterket
the doctor role extend from the patient role, it means a doctor can view everny patie

record even if that patient does not belong to him.

5.2.2 School Example

This example is for a school system. It demonstrates how the role hierarchy
relationship can be expressed. The schema of the table and its access cona®slgpelic
defined as the following:

» The student record table (student_table) contains following attributes: “name”
stores the name of a student; “teacher_name” stores the name of the teacher;
“class_name” stores the class the student is currently taken; “TA” sheres
teaching assistant’s name for that class; and “grade” stores thefgr#ue

student.

50

» There are three roles can issue select statement to this tabler,t&@acland
student.

» [Each user in the system has to assume at least one of the above three roles before
she can access the database. We assume that login authentication and role
authentication are handled by other part of the system.

» The policy is like the following: a student can only view his own record. A TA
can view everybody’s record who he is TAing for. A teaching assistanbis als
student. A teacher can view everybody’s record.

* The ponder policy will be generated like the following:

Type role student {}

Type role TA extends
employee{}

Type role teacheextends Teacher

TA{}

inst auth+ student_select

{

subject student

target student_table/ record v

action SELECT

when TA

subject.name= student_table/
record.name

}

inst auth+ TA select v

{

subject TA Student
target student_table/ record

action SELECT

when subject.name=
student_table/ record.TA

}

inst auth+ Teacher_select

{

subjectteacher

target student_table/ record
action SELECT}

51

In above example, we demonstrate that the role hierarchy relationship can be

properly expressed. In this example, a teacher can have all the privildgestident

and a TA can have.

5.3

Toolkit Performance Evaluation and Analysis

The database of the experiment is for an employee management system. In

particular, we consider the access control for the employee record taidedaftabase.

For simplicity, we only consider the enforcement of access control policies for

information retrieval (i.e., SELECTION statements). The schema oflifeeaad its

access control policies are defined as the following:

The employee record table (emp_table) contains the following attrintese”,

the name of an employee; “manager”, the name of an employee’s manager;
“department_ID”, the department that an employee is in; “rank”, the rank of an
employee; “salary”, an employee’s salary; and “ project”, the prijet an

employee is currently working on. The integrity constraints of the tatjleree

that an employee can only belong to one department and work on one project at a
time.

There are seven roles defined in the database: employee (EMP), manag§gr (MG
human-resource staff (HR), research and development staff (RD), humaneesourc
manager (HR_MGR), research and development manager (RD_MGR), and CEO.
Each user in the system has to assume at least one of the above seven roles before
she can access the database. We assume that login authentication and role

authentication are handled by other part of the system.

52

A user with an employee role is allowed to view her own record. The predicate
generated by a programmer is:
name = sys_context (‘userenv’, ‘session_user’);

A user with a manager role is allowed to view the records of all the enegloye
that he manages. The predicate generated by a programmer is:

manager = sys_context (‘'userenv’, ‘session_user’)
A user with a human resource staff role is allowed to view the records of all the
employees whose ranks are lower than hers. The predicate generated by a
programmer is:

rank < ANY (select rank from emp_table

where name= sys_context('userenv', 'session_user'))

A user with a research and development staff role is allowed to view thdsecor
of all the employees who work on the same project as him. The predicate
generated by a programmer will be:

where project in (select project from emp_table

where name = sys_context (‘userenv’, ‘session_user’)

A user with a human resource manager role has the privileges of a manger and a
human resource staff. No further privileges are given to this role.
A user with a research and development manager role has the privileges of a
manager and a research development staff. No further privileges areagitien t
role.
The CEO is allowed to view the entire table.

The figure below shows the role hierarchy of the experiment.

53

/\

CEO

HR_MGR RD_MGR
HR MANAGER RD

\

EMPLOYEE

Figure 5.1 Role Hierarchies for the Experiment

54

5.3.1 A Review of Machine-Generated Policy Enforcement Program

Once a user issues a query, a human-generated program typicallgsattashgle
predicate to the query. The predicate is specific to the user’s current malee Contrary,
the machine-generated program described in Chapter 3 takes a simple and holistic
approach. No matter what role the user assumes, the program attaches toythe que
constant predicate, which encodes the access control constraints for all ealesnber
that the predicate contains invocation of the role comparison function. Therefore, during
guery execution, when the predicate is evaluated by the database engieieirtieel r
value of role comparison functions will dynamically determines which aingtrshould
take effect, based on the user’s current role.

Table 5.1 shows an example to illustrate the difference between the predicates
a human-generated program and that of a machine-generated program. In this,exam

the user’s current role is ‘employee’ and the issued query is “select *efmgmtable”.

55

Manually Generated Code Machine Generated Code

Select * from table_name Select * from table_name

Where name = Where name = sys_context('userenv’,
sys_context('userenv', 'session_user’); | 'session_user')

And 1= role_comparison_function
(“context_name”, ‘rolename”, “EMP”)

OR

Manager= sys_context('userenv',
'session_user")

And 1= role_comparison_function
(“context_name”, ‘rolename”, “MGR")

OR

Rank = Sys_context (context_name,
‘rank’)

And 1= role_comparison_function

(“context_name”, ‘rolename”, “HR")

OR

Project = sys_context(contxt_name,
‘project’

And 1= role_comparison_function

(“context_name”, ‘rolename”, “RD")

OR

Manager= sys_context('userenv',
'session_user")

AND Rank = Sys_context
(context_name, ‘rank’)
And 1= role_comparison_function
(“context_name”, ‘rolename”, “HR_MGR™)

OR

Manager= sys_context('userenv',
'session_user")

AND Project =
sys_context(contxt_name, ‘project’

And 1= role_comparison_function
(“context_name”, ‘rolename”, “RD_MGR™)

OR
And 1= role_comparison_function

(“context_name”, ‘rolename”, “CEQ")

Table 5.1 Comparison of Manually Generated Code and Machine Generated Code

56

5.3.2 Performance Evaluation and Analysis

We compare the performances when adopting human-generated policy programs
and machine generated programs. In the experiment, the employee record tab@has
tuples. We measure the query execution time of users with different roles,ssteni

query “Select * from emp_table”. The performance results are shown in Table 5.2.

500 1000
(Manually (Machine (Manually (Machine
Table Size /Role| Generated) | Generated) | Generated) Generated)
EMP 0 44.04 0 92.07
MGR 0.01 43.01 0 83.07
HR 0.01 3.02 0 5.07
RD 0 31.09 0 59.09
HR_MGR 0 16 0 31.07
RD MGR 0 32.07 0 71.11
CEO 0 15.06 0.01 34.08
1500 2000
(Manually (Machine (Manually (Machine
Generated) | Generated) | Generated) Generated)
EMP 0 135.07 0 193.03
MGR 0 118 0 174.01
HR 0.01 8.02 0.01 11.06
RD 0 101.07 0 141.02
HR MGR 0.01 57.04 0.01 73.02
RD_MGR 0 109.06 0.01 149.05
CEO 0.01 56.02 0.01 63.04

Table 5.2 Results of Initial Approach with Table Size 500-2000

The results show that the machine-generated program is far inferior to the-huma
generated program in terms of efficiency. For example, for a user with@oyee role,
the performance of the machine-generated program is more than 150 seconds slower than
that of the human-generated program.

We need to identify the performance bottleneck and optimize the machine-
generated program accordingly. Remember that each clause of the predidateed by

the machine-generated program contains two parts: the constraint for a spkrdicd

57

an invocation of the role comparison function. Only when the role comparison function
returns true will the corresponding constraint limit a user’'s access tGmcele

comparison function is also implemented through a SELECT query, a user’'s query after
rewritten becomes a nested query, which usually yields sub-optimal perforrRance
example, if a role constraint returns 200 tuples, the role comparison function will be
executed 200 times. If a tuple does not satisfy the role —specific congtrairdle-
comparison function will be invoked.

Note that a user’s role remains the same during a session (i.e., from the user
logons into the database until she logs out). Therefore, repeated invocation of the
expensive role comparison function is unnecessary during query execution. One way to
optimize the machine-generated program is to pre-set the results of themplarison
function as context values. Once a user sets her role, we will compare thealsewvish
all the defined roles in the system. The results returned by the role cangdanstion
are stored as context variables for the user. For example, for the enmegloyeke
management system used in the experiment, we define the following contaktesfor
each user: isEmployee, isManager, isHRManager, isRD, isSRDMansigerand is
CEQ Intuitively, if the user’s current role is the same or senior to a given hele the
corresponding context variable is set tddoe. We call such context variablesle
membershiwariables.

To determine whether a constraint for a specific role should take effect, the
generated predicate simply needs to retrieve the corresponding role nsigipblariable
for the context. Since retrieving a context value is much faster than the iowocgthe

role comparison function, the query execution time should be significantly reduced.

58

Based on this observation, we further improve the predicate setting function.
Instead of including the context variables as part of the generated predicatmtthe
variables are used to decide whether the corresponding constraints should be included int

the predicate. The major part of the predicate setting function is like the ifugtow

Pred =,

Employee conditions mame = sys_context('userenv', 'session_user')’;
Manager conditions #anager= sys_context('userenv', 'session_user’)
HR conditions =Rank = Sys_context (context_name, ‘rahk’)

CEO conditions = ‘1=1";

If (1= Sys_context (context_name, ‘compared_valuel’))
Then predicate := CONCAT (pred, ‘employee conditions’);
End if;

If (1= Sys_context (context_name, ‘compared_value2’))
Then predicate:= CONCAT (pred, ‘manager conditions’);
End if;

If (1= Sys_context (context_name, ‘compared_value3’))
Then predicate: = CONCAT (pred, ‘HR conditions’);
End if;

IF(1= Sys_context (context_name, ‘compared_value7’))
Then predicate:= CONCAT (pred, ‘CEO conditions’);
End if;

By using this approach, if a user’s role is employee, the role comparison function
sets the role membership varialdEmployedo be true, but those for other roles to be
false. As the result, only constraint specific for the employee role witidbeded in the
returned predicate. The query after rewritten will be the following, whichryssmnilar

to the one returned by the human-generated program:

Select * from table_name
Wherename = sys_context(‘userenv’, 'session_tiser’)

59

The following table shows the time difference betweerhtirean-generated

programandmachine-generated program

500 1000
Table Size (Manually (Machine (Manually (Machine
/Role Generated) Generated) Generated) Generated)
EMP 0 0 0 0
MGR 0.01 0.01 0 0.01
HR 0.01 0.01 0 0.01
RD 0 0.01 0 0.01
HR MGR 0 0 0 0
RD_MGR 0 0.01 0 0.01
CEO 0 0.01 0.01 0.01
1500 2000
(Manually (Machine (Manually (Machine
Generated) Generated) Generated) Generated)
EMP 0 0 0 0
MGR 0 0.01 0 0.01
HR 0.01 0.01 0.01 0.01
RD 0 0.01 0 0.01
HR_MGR 0.01 0.01 0.01 0.01
RD MGR 0 0.01 0.01 0.01
CEO 0.01 0.01 0.01 0.01

Table 5.3 Third Approach Results

We see the performance difference betweermtimean-generatedndmachine-

generated prograns almost negligible.

60

6. Related Work

This work is related to many areas, including: relational database magatge
system (RDBMS), access control, and policy languages. Much work has been done in
each of these areas. In this chapter, we describe the work that most helaahces
database access control.

6.1 Access Control Policies

There are two types of access control policies: discretionary aargss| ¢DAC)
[BJS 95] [TY03] and mandatory access control (MAC) [BJS 95] [TYO03].

DAC restricts a user’s access privileges to an object. Access poleideaded
by the owner of the object. Different user may have different access gewiler a same
object. Most database systems support DAC [BJS 95]. We can define a datalease tabl
an object. The creator of the table will automatically get all privdexeit. The creator
can pass different access privileges of this table to other users.

In MAC, access control policies are decided by administrators insteacdeot obj
owners. In MAC, each object has an access level such as secret, clamsified,
unclassified, etc. Each user is assigned to have a clearance level.cArusaty access
those objects that he has clearance. The difference between MAC and DATAE |
the privileges are static, not based on content. However, an organization stachoe
be easily interpreted by using classification levels. As the resulthasked access control
(RBAC) [GB98], [BBU99] is introduced.

In RBAC, access control privileges are associated with roles and users a
assigned to roles based on their responsibilities and qualifications. For RBAGlgthe

and role hierarchy are based on the structure of an organization. For exampl&) eoles

61

school may include teacher, student, teaching assistant, etc. Based on a user’s
responsibility, he/she may assume more than one role. In the above exampieaa use
be a student and a teaching assistant at the same time. When assigning rolesjptee pr
of least privilege should be followed. A user should only have the minimum privileges
that are enough to perform his duty. With RBAC, a user’s roles can be desilged.
Privileges can be granted or revoked from roles as needed. Further, role and role
hierarchy can be mapped to the operational activity of an organization.
6.2 Database Access Control

Although most database systems support RBAC, MAC, and DAC, many different
strategies have been proposed to provide a more secure environment for database
systems. In this section, we examine some of these approaches, includingedle bas
access control [TD97], IBM’s sticky policy [AHCO03, AA04] and information disclesur
management [YWO04]

The general idea of rule-based access control [TD97] is as follows. An
enterprise’s organizational structure is created as a table. Foplex@mwe have a
structure like “manager-> employee” where manager is the parent nodeloles) the

table will be created as followings:

Role Name Symbol
Manager A
Employee Al

Table 6.1 Role Hierarchy Table

The employee role uses the symbol (A1) that is similar to the manager’s

symbol(A). When a manager issues a query, the SQL keyword ‘LIKE’ will kebtose

62

identify that employee node is the sub-node of the manager. For each unit in an
organizational structure, a set of privileges is defined with the organizasioneture

table symbol attributes. The database users’ name/roles will be mapped to nbdes in t
organizational structure. When a user issues a query, the database skchecwil
whether the user has clearance to retrieve data by looking up the organizatichales
table. The problem for the rule based access control is that if we have agery la
organization structure, the symbol we used to represent each node will be gegting ver
long and complicated. Since the SQL ‘LIKE’ operation is a string comparisondancti
the performance of this access control mechanism is going to be decline.

Several access control projects have been under going in IBM. One of them is
called “sticky policy paradigm”[AHC 03]. In sticky policy, the policy wile enforced on
data. “Policy” includes the conditions and requirements of data usages and must be
always associated with data instances. Even when the data is transtemrendér
database to another, the policy is still attached with the data and alweyEtteuonly
time that policy could be invalidated is when data owner issue a policy invalidation
statement. The disadvantage of stick policy is when the policy attached to the data is
updated, the user’s data is still managed by the old policy, not to the new policy. As the
result, it may cause security risk. The first attempt to implement sucly poba Tivoli
Privacy Manager, a privacy policy management tool developed by IBM. According to
IBM, this is the first enterprise privacy management solution that automatasypri
policy enforcement and monitoring.

Watanabe[YWO04] from IBM purposed a model for information disclosure

management. The model has two parts: a centralized information disclosurendecis

63

center and policy enforcement agents. There are two functions in the model: Access
Enforcement Function (AEF) and Access Decision Function (ADF). The AEfslwa
associates with data and ADF is located with the central server. Whenisitugag to
access a database, AEF will check his login information and send it to ADF. The ADF
will check the user’s information with the stored policy. If the login infororatheets

the access control requirements, the user can precede and successfuéy retrie
information from the database. However, since all the decision will be mate by t
central server, if a central server has a large number of enforcemeist aggatiate it, it

may cause a bottleneck issue.

64

7 Conclusions and Future Work
7.1 Conclusion

In this thesis, we present the design and implementation of the access control
enforcement toolkit (ACET) that automatically translates databassscontrol policy
specifications to Oracle policy enforcement programs. Instead ogletprogrammer
create access control code, which is an error prone process and may introdutye secur
risks because the access control code is hard to analyze, this toolkit mapblty a
maker create policy enforcement programs more easily. We evalugtertbenance of
the toolkit and identify a variety of ways to optimize the performance of the
automatically generated policy enforcement program.

This toolkit is composed of two parts: a policy specification model and a
policy enforcement program translator. After comparing several formalypoli
specification languages, we choose Ponder as a preliminary languaigis project
because it has a concise and intuitive syntax for policy specificatiosolsapports role
hierarchy definition and role-based access control in a straightforwamgemas
previously discussed.

Taking the Ponder policy as the input, the enforcement program translator
generates three functions: role setting, predicate setting, and policptymmer

The automatically generated policy enforcement program can correfilge
database access control policies. At the same time, the preliminatg seglgest it may
do it efficiently. After applying several optimization techniques, our pratnyi
experiment suggests that the machine-generated program yields compafabiespee

to that created by a database programmer.

65

7.2 Limitation of this Toolkit

Although this toolkit offers basic functionalities to automatically trapsddustract
database access control policies into Oracle policy enforcement progrhassseveral
limitations that require further investigation.

First, because the policy language is limited, this toolkit cannot express some
complicated queries. For example, suppose a policy states that a managewn¢ha vie
records of the employees who report directly or indirectly to her. Such & pahde

easily expressed by SQL by using the following statement:

SELECT *
FROM table_name
START WITH manager = sys_context

(...)
CONNECT BY PRIOR name = mana

However, this query cannot be directly expressed in Ponder, unless a more
complex abstract data model is defined to represent the relationship betwesmtabl
database.

Second, the mapping file for translating Ponder policy variables to Oracle
database variables has to be predefined. Generating such a mapping fiesrequir
comprehensive knowledge of both the formal access control policies and thealetails
the database implementation. Thus, in some sense, it shifts the burden from programmers
to policy makers. Also, since it requires a policy maker to create such file agsl thtem
a safe place, the situation of mishandling such file could happen.

Third, this toolkit assumes that a policy maker has some database privileges, suc
as granting procedures, adding and dropping policies, which typically are thegesvile

of database administrators. Although the access control enforcement pregram i

66

automatically generated, and it does not require the policy maker to manaatky any
Oracle functions, the possibility of misusing these privileges does exist.
7.3 Future Work

To make the toolkit completely suitable for practical usage, several isses t
need to be further investigated.

First of all, a formal policy model and a policy language for database fine-
grained access control are needed. The existing policy languages agsigoéd
specifically for databases. Therefore, they are not expressive enouwdjiy smpport
database access control policies. For example, though Ponder is the preliormat
language for the toolkit, certain extension to Ponder is required in order to support some
commonly used database access control policies.

Besides row-level access control, many web applications further reglliire
level access control, i.e., even a single record may be only partiall\sisteds a user.
For example, though an employee can access some common attributes of other
employees in the same group, their salary information should only be accestilale t
manager of the group. Cell-level access control can be achieved through theatmmbi
of row-level access control and column-based access control. Another approach is to
partition a table vertically into several sub tables. After applyinglemat access control
on each sub table, we may enforce cell-level access control through outer jowsrbe
those sub tables. How to translate abstract access control policies to enabmat
enforce cell-level access control is a challenging problem we woullikedstigate in

the future.

67

Reference

[AAO4] A. Anderson An Introduction to the Web Services Policy Language
(WSPL).Sun Microsystems Laboratories, Jun 2004

[AHCO03] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter, Enterprise
Privacy Authorization Language (EPAL 1.1BM Research Repart
October 1, 2003.

[ASP0O2] P. Ashley, M. Schunter and C. Powers, "From Privacy Promises to Privacy
Management - A New Approach for Enforcing Privacy Throughout an
Enterprise", Proceedings of the New Security Paradigms Workshop
(NSPW), Virginia, 23-26 September 2002.

[BBU99] J. Barkley, C. Beznosov, Uppal, "Supporting Relationships in Access
Control using Role Based Access Contrdfourth ACM Workshop on
Role-Based Access Contt99

[BCFO3] E. Bertino, B. Catania, E. Ferrari and P. Perlasca. A Logiaaléwork for
Reasoning about Access Control ModelsA@M Transactions on
Information and System Securi6(1), pp.71-127, February 2003.

[Bir00] P. Bird. Implementing Low Level Access Control with DB2 UDB. The
IDUG solution journa) Volume 7 Number 3, Winter 2000

[BJS 95] E.Bertino, S.Jajodia, and P.Samarati. Database Security: Search and
Practice. Information Systems. VOL 20 No. 7 pp 537-556

[Dam02] N. Damianou .A Policy Framework for Management of Distributed
Systems, University of London, Feb 2002.

[DDLO1] N. Damianou, N. Dulay, E. Lupu, M Sloman, The Ponder Specification
LanguageWorkshop on Policies for Distributed Systems and Networks
(Policy2001), HP Labs Bristol, 29-31 Jan 2001.

[DHHO2] G. Della-Libera,P. Hallam-Baker, M. Hondo etc. Web Services Sgcuri
Policy (WS-SecurityPolicy).
http://www.ibm.com/developerworks/library/ws-secpol/index.htmi
Dec 2002

[DLSO1] N. Dulay, E. Lupu, M Sloman, N. Damiano. A Policy Deployment Model
for the Ponder Languad&roc. IEEE/IFIP International Symposium on
Integrated Network Management (IM’2008gattle, May 2001.

68

[FGL92]

[FKC95]

[GB 98]

[GOKO02]

[Kag02]

[KDO02]

[KFJO3]

[KaFJOo3]

[KSW02]

[Kyt]

[REWO04]

[RMS04]

[Scho1]

D. Ferraiolo., D. Gilbert, and N. Lynch Assessing Federal and Conaherci
Information Security Needs. NISTIR 4976. Gaithersburg, MD: National
Institute of Standards and Technology. 1992.

D.F. Ferraiolo, J. Cugini, D.R. Kuhn "Role Based Access Control: Features
and Motivations" Computer Security Applications Conference, 1995

S. Gauvrila, J. Barkley, "Formal Specification for Role Based Acces
Control User/Role and Role/Role Relationship Management” (1988y
ACM Workshop on Role-Based Access Control.

M. P. Gallaher, A. C. O’'Connor, and B.Kropp. The Economic Impact of
Role-Based Access Control Research Triangle Park, NC: Research
Triangle Park Institute. 2001

Lalana Kagal, "Rei : A Policy Language for the Me-CerRrigject,
TechReport, HP Labs, September 2002.

Kristy Browder and Mary Ann Davidson, The Virtual Private Dataliase
Oracle9R2 Oracle Corporation, Redwood Shores, CA 94065 2002

L. Kagal, T.Finin, and A.Joshi. A Policy Based Approach to Security fo
the Semantic Web, InProceedingad International Semantic Web
Conference (ISWC20033eptember 2003.

L. Kagal, T. Finin, and A. Joshi. A Policy Language for A Pervasive
Computing Environment, InCollectiotEEE 4th International Workshop
on Policies for Distributed Systems and Netwpdkse 2003.

G. Karjoth, M. Schunter and M. Waidner. Platform for Enterprise Privacy
Practices: Privacy-Enabled Management of Customer DalRaotreedings

of the Second International Workshop on Privacy Enhancing Technologies
(PET 2002) LNCS 2482, pp. 69-84, 2003.

T. Kyte, Fine Grained Access Control and Application Contexts.
http://govt.oracle.com/~tkyte/article2

REWERSE (Reasoning on the Web with Rules and Semantics)
http://rewerse.net/

S.Rizvi, A.Mendelzon, S.Sudarshan,and P.Roy. Extending query rewriting
techniques for fine-grained access contiiernational Conference on
Management of Data Proceedings of the 2004 ACM SIGMOD
international conference on Management of d&ages: 551 - 562 2004

D. Scherer. Fine Grained Access Control with Oracle 8i’s virtivater

69

[TD97]

[TYO3]

database features.
http://www.coreparadigm.com/conferenceDocs/vpd/vpd.ppt.pdf

T. Didriksen. Rule based database access control—a practical approach
ACM Workshop on Role Based Access Control Proceedings of the second
ACM workshop on Role-based access control Fairfax, Virginia, United
States Pages: 143 - 151 1997

Ting Yu: “Automated Trust Establishment In Open Systems”. University
of lllinois at Urbana-Champaign, October, 2003.

70

