
Abstract

Luo Gao. A Toolkit for Automated Fine-Grained Access Control Policy

Enforcement in Oracle 9i. (Under the direction of Dr. Ting Yu)

Database access control is indispensable to information system security. As

enterprises expand their services to the Internet, it has been widely recognized that

traditional relation-level or database-level access control is no longer adequate to handle

increasingly complex access control requirements in modern information systems.

Instead, fine-grained access control (i.e., row-level access control) is much desired.

Though several commercial database management systems support fine-grained access

control, it requires security policies to be hard-coded into applications by programmers,

which is a very error-prone process. It is very difficult for policy makers to verify

whether an application’s security requirements are correctly enforced by hard-coded

policies. If they fail to detect security flaws in policy implementation, the whole

information system may be at grave risk.

To help effectively verify and analyze the enforcement of fine-grained access

control, in this thesis we present the design and implementation of a policy management

toolkit, access control enforcement toolkit (ACET), which is able to automatically

translate formal access control policies to the enforcement program of database fine-

grained access control. We discuss the desirable properties of formal policy languages

when used to specify database fine-grained access control. We present an automated

policy translation algorithm that effectively identifies access control components in

formal policies and maps them into basic database access control elements. Our initial

evaluation shows that the automatically generated policy enforcement program yields

comparable performance to that developed by programmers. Thus, the toolkit enables

policy makers to focus more on fine-grained security policy specification, without

worrying the correct and efficient enforcement of database security policies.

A Toolkit for Automated Fine-Grained Access Control Policy

Enforcement in Oracle 9i

by

Luo Gao

A THESIS SUBMITTED TO THE GRADUATE FACULTY OF

NORTH CAROLINA STATE UNIVERSITY
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

RALEIGH

AUGUST 2004

APPROVED BY

Dr. Annie I. Antón Dr. Jaewoo Kang

Dr. Ting Yu, Chair of Advisory Committee

 ii

To my parents Jialing Shi, ShiZhong Gao and my brother Bo.

 iii

Biography

Luo Gao was born in Kunming, Yunnan Province, People’s Republic of China.

He graduated in 2002 from North Carolina State University with a Bachelor of Science in

Computer Science.

 iv

Acknowledgments

I would like to take this opportunity to express my sincere appreciation to Dr. Yu,

my advisor, for his guidance and constant support. His careful and critical comments

significantly improve the content and presentations of this thesis.

My appreciation goes to my other committee members as well, Dr. Antón and Dr.

Kang, for their valuable comments, suggestions, and encouragements. I also appreciate C.

Powers and Y. Watanabe from IBM who kindly shared their work with me.

I would like to sincerely thank Keith Irwin and Stephen Reece for proof reading

my thesis. Thanks are also due to my colleagues and friends at Cyber Defense Lab: Qing

Zhang, Kun Sun, and Dingbang Xu

Finally, I would like to thank my parents, brother and my girlfriend Yunhua for

their love and support. I am indebted to them and no words can express my appreciation.

 v

Table of Contents

List of Tables ... vii

List of Figures... viii

1 Introduction... 1

2 Background Information ... 7

2.1 DB2’s FGAC mechanism ... 7
2.2 Access Control Enforcement .. 8

2.2.1 Define and use of VPD ... 8
2.2.2 Setting up FGAC... 11

2.3 Formal Policy Languages ... 15
2.3.1 Rei ... 15
2.3.2 EPAL... 18
2.3.3 Ponder ... 23

3 Translating Access Control Policies to Oracle Enforcement Script28

3.1 Creating Access Control Policy in Ponder.. 28
3.1.1 Choose the Policy Type .. 28
3.1.2 Access Control Policy Interpretation .. 30

3.2 The Architecture of the Toolkit .. 31
3.3 Policy Translator and Policy Importer.. 33

3.3.1 Role Hierarchy Identification Function .. 33
3.3.2 Mapping of Access Control Elements .. 34
3.3.3 Setting context values ... 36
3.3.4 Oracle Script Generation... 38
3.3.5 Oracle Script Importer .. 41

3.4 A Simple Scenario .. 41

4 The Toolkit User Interface... 45

5 Performance Analysis and Optimization.. 48

5.1 Experiment Setup.. 48
5.2 Policy Translation ... 48

5.2.1 Hospital Example.. 49
5.2.2 School Example .. 50

5.3 Toolkit Performance Evaluation and Analysis ... 52
5.3.1 A Review of Machine-Generated Policy Enforcement Program.............. 55
5.3.2 Performance Evaluation and Analysis .. 57

 vi

6. Related Work .. 61

6.1 Access Control Policies .. 61
6.2 Database Access Control ... 62

7 Conclusions and Future Work... 65

7.1 Conclusion .. 65
7.2 Limitation of this Toolkit.. 66
7.3 Future Work .. 67

Reference ... 68

 vii

List of Tables
Table 3.1 HR Table... 28
Table 3.2 Role Hierarchy Table.. 41
Table 5.1 Comparison of Manually Generated Code and Machine Generated Code....... 56
Table 5.2 Results of Initial Approach with Table Size 500-2000..................................... 57
Table 5.3 Third Approach Results .. 60
Table 6.1 Role Hierarchy Table.. 62

 viii

List of Figures

Figure 1.1 General architecture of the ACET... 4
Figure 2.1 Access control enforcement in VPD ... 10
Figure 2.2 EPAL Policy Example.. 22
Figure 2.3 Authorization Policy Syntax.. 24
Figure 2.4 Role Policy Syntax ... 25
Figure 2.5 Role Extension Syntax ... 26
Figure 3.1 Role Hierarchies .. 29
Figure 3.2 Toolkit Architecture ... 32
Figure 3.3 Role Hierarchy Search Query... 34
Figure 4.1 Generating Policies.. 46
Figure 4.2 Testing Window .. 47
Figure 5.1 Role Hierarchies for the Experiment... 54

 1

1 Introduction

Databases are widely used to manage and archive large amounts of business

information. Proper and effective access control of databases is crucial to enterprise

information system security. Unlike system security or network security, which addresses

the problem of preventing and detecting attacks from outsiders, the goal of access control

is to identify and grant proper privileges to legitimate users.

As the Internet continues to grow, many enterprises offer their services to public

via the Internet, Web-service, etc, which makes database access control increasingly

challenging. While greatly improving the efficiency, flexibility and availability of

enterprises’ services, Web-based applications are significantly more complex than

traditional information systems. Millions of users may access database services and other

resources at the same time, and they may come from different security domains, e.g., part

suppliers, partners, customers, etc. As a result, enterprises’ access control policies

become more and more complex.

It has been well recognized that traditional database-level or table-level access

control is not adequate for Web-based applications’ security requirements. For example,

in a health care system, patients’ records are often stored in one table, which may include

a patient’s identifier, name, date of birth, symptoms, etc. Typically, a user is only allowed

to access its own record. Similarly, a doctor should only be able to access his patients’

records, but not that of the patients of other doctors. Table-level access control either

allows a user to access the whole table (i.e., each record in the table), or have no access to

 2

the table at all. Clearly, such a coarse-grained access cannot express the increasingly

complex access control requirements.

To address the above problem, fine-grained access control (FGAC), also known

as row level access control, has been proposed [RMS04]. As the name suggests, the basic

access control elements in FGAC are the tuples of a table instead of the table itself.

FGAC allows a user to access a certain portion of a table. Therefore, it is natural to

support flexible access control policies such as those described above.

Several commercial database systems already provide support for FGAC.

Representative systems include Oracle’s Virtue Private Database (VPD) [Kyt] and DB2’s

low-level access control [Bir00]. Such features are widely used in Web-based

applications. On the other hand, existing FGAC mechanisms require access control

policies to be hard-coded into a database by programmers, which is a very error-prone

process. To realize the access control requirements of an application, it not only depends

on the policy maker to correctly specify access control policies, but also depends on how

well programmers understand those policies. If logic errors are introduced in the

enforcement code, due to either a programmer’ misunderstanding of the policy or his/her

negligence, the security of the whole system may be at grave risk. Thus, it is very

important to verify that access control policies are correctly enforced by an application.

However, since the policy enforcement program is written in general programming

languages and is embedded in applications, such verification is very hard.

Taking Oracle 9i as an example, an access control enforcement program may be

similar to the following:

 3

create function my_security_function(p_schema in varchar2,
 p_object in varchar2) return varchar2
as
begin
 if (sys_context(“userenv”, “role”) = 'MGR') then

return 'MGR = sys_context(“userenv”, “session_user”)
 OR
 EMP = sys_context(“userenv”, “session_user”)’;

 elsif(sys_context(“userenv”, “role”) = ‘EMP’) then
 return ‘EMP =sys_context(“userenv”, “session_user”)’;
 elseif(sys_context(“userenv”, “role”) = ‘CEO’) then
 return ‘1=1’
 else return ‘1=0’;
 end if;
end;

The above code states that if a login user is an employee, the user can read his/her

own record. If the user is a manager, then the user can access the records of all the

employees who work under him/her plus his/her own record. If the user is a CEO, he can

view everything within the table.

If there are thousands of such lines of codes, one can imagine how hard it will be

to verify that they have correctly enforced access control policies.

In this project, we address this challenge by developing an access control

enforcement toolkit (ACET) that can simplify the creation of access control enforcement

program and make access control policy analysis easier than analyzing policies written in

database programming language. The essential idea is that, since it is difficult to analyze

and verify access control enforcement code, it is desirable to have policies specified in a

high-level policy language, which can be formally analyzed. Then the toolkit

automatically generates access control enforcement program based on high-level access

 4

control policies, which will eliminate potential logic errors introduced by programmers.

The following figure (Figure 1.1) further illustrates the idea of this toolkit.

Access Control

Requirements (plain text)

Traditional Approach

Programmer

Security Officers

Database

Verify

Verify

Database

FGAC Policy

Code

Generates

Approach with the toolkit

Toolkit

Policy Specification Interface

Policy Translator

Policy Importer Security Officers

Database

FGAC Policy

Code

Generates

Create Ponder

Policy

Verify

Figure 1.1 General architecture of the ACET

Instead of letting a programmer create policy enforcement program directly from

access control requirements, this toolkit allows a policy maker to formally define a policy

by using a high-level policy language Ponder [DDL01]. After the formal policy has been

 5

verified and analyzed, they will be automatically translated into the enforcement

programand imported into a database server. The key to this toolkit is to develop a policy

specification model that is abstract enough so that it can be expressed by formal policy

languages. Meanwhile, the policy model also needs to be specific enough so that it can be

easily mapped into database management systems where data are stored.

Specifically, this toolkit has three major modules: a policy specification interface;

a policy translator that translates formal policies into enforcement code; and an importer

that imports generated enforcement program into a database system:

• Policy specification interface: This module allows users to define an access

control policy by using a high-level policy language such as Enterprise Privacy

Authorization Language (EPAL) [AHC03], Rei[KFJ03], or Ponder[DDL01]. This

interface will help a policy maker specify formal access control policies.

• Policy Translator: This module translates a formal access control into the

database enforcement code. In order to do so, the translator will analyze the

policy first and identify all the necessary access control elements, which need to

be mapped to corresponding database principals, objects and operations.

• Policy Importer: This module is responsible for generating auxiliary functions,

which are necessary for the automatically generated enforcement program to take

effect in database access control.

The developed toolkit offers the following benefits:

• This toolkit provides a user interface to allow a policy maker to create an abstract

data model to represent access control policies. We hope it can a policy maker to

check whether a policy has been properly specified.

 6

• Since policy enforcement program is automatically generated and imported into

databases, human errors are reduced.

• Instead of worrying about correct implementation of access control policies,

policy makers are able to focus more efforts on policy specification.

• We discuss in detail how to optimize the performance of machine-generated code.

Our preliminary experiment results show that automatically-generated

enforcement program yields comparable performance to that written by

programmers. Therefore, by using the toolkit, we hope policy makers can enjoy

ease of policy management as well as efficient access control

The rest of the thesis is structured as follows. Chapter 2 provides background

information about Oracle’s fine-grained access control mechanism and some current

existing policy languages. Chapter 2 also provides rationale for choosing policy

language. In chapter 3, we discuss how formal policy languages can be used to express

fine-grained access control policies for databases. We also describe the algorithm to

translate formal policies into Oracle policy enforcement code. Chapter 4 evaluates the

performance of the enforcement program generated by the toolkit, and discusses a variety

of optimization techniques. We briefly describe the toolkit’s user-interface in chapter 5.

We conclude this thesis in chapter 6 and discuss possible directions for future work.

 7

2 Background Information

In this section, we will compare the Oracle’s FGAC mechanism with DB2’s

FGAC mechanism and explain why we use Oracle instead of DB2. We will then describe

Oracle’s fine-grained access control mechanism and analyze its advantages and

disadvantages. This will help us identify the desirable properties that a formal policy

language should have in order to support database FGAC. We then examine several

policy languages in the literature, including Rei[KEF03], EPAL[AHC03] and

Ponder[DDL01] and analyze their suitability for specifying database fine-grained access

control policies.

2.1 DB2’s FGAC mechanism

Several commercial database systems provide mechanisms to support fine-grained

access control. Examples include Oracle’s virtual private database (VPD) [Kyt] and

DB2’s low level’s access control [Bir00].

DB2 uses views as the primary instrument to implement FGAC. For a list of

policies, DB2 creates a view for each policy. In each view, it defines the policy

constraints. In order to properly define who can access a view, DB2 binds an

authorization ID and a view together to form a package. The common representation of

authorization ID is a role name. In this package, it defines that the view can be accessed

only if a user has the authorization ID that is associated with the view. For example, in a

health system, there is a patient role and a doctor role. The policies are defined as the

following: a patient can view his own record and a doctor can view his patients’ records.

To implement these polices in DB2, we need create a view for patients (patient_view)

 8

and a view for doctors (doctor_view). The next step is to associate patient_view with the

patient role and doctor_view with the doctor role. These two views are granted to public.

Before a user can issue a query on patient_view, the DB2 has to verify that he assumes a

patient role first.

Instead of using views for each policy, Oracle uses query-rewriting to enforce

policies. When a user issues a query, based on his privileges, the Oracle database server

will attach a predicate to the query. This predicate reflects what the access privileges the

user has. The details of FGAC implementation in Oracle are described in the next

section. Compare with Oracle’s approach, DB2’s approach has the following

disadvantages: first of all, views are not always practical when we need a lot of them to

enforce security policy [KD02]. For example, if have want to use views to limit

customers’ access and there are 100,000 customers, it is not practical to cerate 100,000

views. Second, views may complicate administration of security policies [KD02]. It is

hard for a policy maker to tell the difference between a view definition based on database

relationship from that for security purpose. Based on above analysis, we decide to use

Oracle for this toolkit.

2.2 Access Control Enforcement

In this section, we describe the establishment of the VPD in Oracle.

2.2.1 Define and use of VPD

Traditional database access control is enforced by creating views for individual

users based on their privileges. Although it provides a secure environment for a database,

such an approach is very inefficient and costly with a large number of users, which is

 9

typical in today’s Web-based applications. For example, suppose there are a million

patients in a health-care information system. Assume that a user can only access his/her

own records. Then a million different views need to be defined. Even if those views do

not need to be materialized, creating and managing such a large number of views will be

very expensive. In Oracle 8i, a new access control mechanism, called Virtue Private

Database (VPD), was introduced. Instead of creating views for each individual, VPD

restricts users’ access to selected rows of tables through query rewriting. When a user

issues a query, based on his/her privilege, a predicate will be generated at run-time and be

attached to the query [Kyt]. Access control is enforced when the rewritten query is

executed by the database engine, since the attached predicate limits what a user can

access.

Figure 2.1 shows an example. The policy is that a user only can see his/her own

record unless the user is a ‘DBA’. When a common user Alice logs into a database, the

policy function will generate a predicate for Alice. Since Alice is not a DBA, the

generated predicate will enforce the policy that Alice can only see her own record. When

Alice issues a SELECT query against the table, this predicate will be attached to the

query. As a result, Alice’s access is restricted according to the access control policy.

Role is an important concept in VPD. Since it is infeasible to grant privileges to

each individual user, VPD often assigns privileges based on the roles. For each role, VPD

defines explicit privileges for it. A user can assume more than one role in VPD. When a

user logs into a database, based on the role he/she assumed, he/she will have different

privileges. The advantage of using roles in VPD is to simplify access control policy

specification.

 10

Figure 2.1 Access control enforcement in VPD

Since its introduction, VPD is widely used in Web-based applications, due to its

following advantages:

• Multiple security: By using VPD, we can enforce more than one policy to a table

at the same time without using views. It avoids using different views to enforce

different policies. Thus, it is easy to enforce database security by using VPD.

• Suitable for single user based applications: Single user based applications, such as

Web applications, allow a single user to connect to a database. It requires that

each individual user can see different results. By using VPD, row level security

can easily identify different users and retrieve information for them.

• No Back door: Since each policy is associated with a table, not an application, no

users can bypass those policies. By letting the policy directly associate with the

 11

table, regardless what applications the user is using, the database server will

always check the user’s privileges, before the user’s query is executed.

2.2.2 Setting up FGAC

There are five steps to setup fine-grained access control by using VPD.

1. Policy specification. In this step, the policy maker needs to state that for each role,

what privileges it has. For example, the policy maker may state that an employee

can issue SELECT statements on his own records. Managers can issue SELECT

statements on the records of employees who work under him as well as his own

record. The manager may also have the rights to update any employee’s record,

but not his own. For anyone else, he cannot perform any actions on that table.

2. Context creation. A context value is a text information that can be retrieved by

other Oracle functions and PL/SQL queries. It is often used to store some

information about the current login user. The second step is to create a context

space, which is used to store context values. Each policy can only have one

context. This context will be used to store some user information such as login

user information and some other values that are defined by a policy maker. Those

context values can be used by other Oracle functions. Creating context is usually

associate an Oracle procedure. This Oracle procedure is the only way to decide

what information will be stored and how to store/set up these context attributes.

For example, we may define a context by “CREATE OR REPLACE CONTEXT

example_context USING example_procedure”. Example_context is the name of

context we create. Example_procedure is an Oracle procedure that sets up context

values. In other words, in order to set context variables in example_context, we

 12

have to use the example_procedure to define those variables. By using only one

procedure to store context values, it can protect data consistency. For example, if

another procedure tries to set the context value and the database server finds out

this procedure is not example_procedure, the database server will rejects it. .

3. Create the procedure. After we defined the procedure name that is used to set the

context values, we are now going to show how to create such procedure. The

context values are defined by calling DBMS_SESSION.SET_CONTEXT within

the procedure. This statement is used to define and populate a context’s attributes.

It includes three parameters:

a. Namespace: the name of context that is used by an application.

b. Attributes: name of the attribute to be set in a context.

c. Value: the value of a context attributes. Those values can be retrieved by

calling function SYS_CONTEXT.

Let us look at the “example_context” example again. In this context, we

create an attribute in this context named “Role”. If we are going to assign a value

to the context attribute, we can use the statement:

Dbms_session.set_context (‘example_context’, ‘Role’, ‘Employee’)

In this example, the namespace is ‘example_context’, attribute is ‘Role’,

and value is ‘Employee’. In other words, this statement defines that in the context

‘example_context’ the context ‘Role’ has value ‘Employee’(or Role =

Employee’).

 13

4. Create a security policy procedure. This is the central step for establishing

FGAC, because the dynamic predicate will be generated by this security policy

procedure, which will be called by the database engine at run time. It restricts

what a user can see.

5. Associate the policy with a table. The last step is to associate the predicates with

each of the DML operations and the table itself. In order to define a policy, we

need to define the following attributes:

a. Object_schema: It defines the owner who created the table. If it is NULL,

the database will assume the current login user is the owner of the table.

b. Object_name: The table name where the policy will take effect.

c. Policy_name: The name of the policy to be added. The name is defined

by a security officer. It must be unique, since there may be more than one

policy applied to a table.

d. Policy_function: It refers to the name of security policy procedure that

generates the predicate for users.

e. Statement_types: Define the SQL statements that will be monitored by this

policy, such as SELECT, UPDATE, or DELETE. For each DML

operations, it has to have a different predicate function.

As mentioned before, a key step in enforcing access control polices is to create

security policy procedures by using Oracle procedure language (PL). Oracle PL is a

Turing-Complete language. Thus, it is very powerful and can be used to express very

sophisticated policies. On the other hand, access control policies are manually

implemented by programmers. Security flaws may be introduced, due to either a

 14

programmer’ misunderstanding of a policy specification or his/her negligence. Since the

Oracle PL is a Turing-Complete language, it is very hard for security officers to verify

implemented policies and detect potential vulnerabilities.

The above observation is the major motivation for this project. If policy

specification can be automatically implemented and enforced in the database, policy

verification and security flaw detections only need to be performed in policy specification

phase, which is much more manageable than checking policies written in Oracle PL. The

key question is to choose the appropriate formal policy language to specify fine-grained

access control in Oracle 9i. We have identified the following desirable properties for

policy languages. These properties are based on the characteristics of VPD. At the same

time, this policy language should also be easy to understand for a security officer.

• A policy language should have an easy-to–understand and concise syntax. Basic

access control elements, such as subjects, objects, access rights, etc., should be

clearly identified by using policy key words.

• The semantics of a policy language should support the close model, i.e., a subject

does not have access to a certain object unless it is explicitly allowed by access

control policies. This is desirable because VPD assumes a closed model.

• Negative policies should take precedence over positive policies. In other words, if

a subject is allowed by one policy to access an object, but is denied by another

policy, then the subject cannot access that object. This is also due to the semantics

of VPD.

• The access control policy language needs to support role-based access control. In

Oracle VPD, privileges are often granted based on users’ roles. And there is often

 15

more than one role defined in a policy. The policy language also needs to support

role hierarchies. Otherwise, the relationship between roles cannot be properly

identified in a formal policy specification.

Keeping in mind the above properties, we analyze three representative policy

languages: Rei [KFJ03], EPAL[AHC03], and Ponder[DDL01], from which we select the

most suitable one for specifying fine-grained access control in databases. We also

considered other policy languages such as Web Services Policy Language (WSPL)

[AA04] developed by SUN Microsystems and REWERSE (for REasoning on the WEb

with Rules and SEmantics) [REW04], but both of them are still under development.

2.3 Formal Policy Languages

This subsection provides an overview of the three most relevant policy

specification languages: Rei [KFJ03], EPAL[AHC03], and Ponder[DDL01].

2.3.1 Rei

Rei, a Japanese word that means “universal”, is a policy language developed by

Kagal, Finin, and Joshi [KFJ03, Kag02, KaFJ03]. It is an action based policy language.

It includes constructs for rights, prohibitions, obligations, and dispensations [KFJ03].

Since Rei is not designed for any specific applications, it permits domain specific

information to be added without modification of the language itself. Rei is implemented

in Prolog. The creators of Rei believe that a policy could be expressed as what an object

can/cannot and should/should not do in terms of actions, services etc. Rei includes two

parts: domain independent ontologies and domain dependent ontologies. The former

includes concepts such as permissions, obligations, actions, and operators etc. The latter

 16

is a set of ontologies, shared by the entities in a specific system, which defines domain

classes and it’s properties such as file directories and file names [KFJ03]. Rei includes

three types of constructs for domain independent ontologies: policy objects, meta

policies, and speech acts. Speech acts includes: request, cancellation, delegation and

revocation. They are used for decentralized control. For example, a user may have the

rights to send a request (request for an action) to other user, but he may not have the

rights to cancel the request he has sent.

The constructs are the core of the policy language. It describes the concepts of

rights, prohibitions, obligations, and dispensations. In this part, we are only to describe

rights and probations, because are not essential to authorization.

• Rights define the permission that a subject has. It allows a subject to perform one

or more actions. Rei defines rights as follows:

• has (subject, right (actionname, conditions)). This defines that if the

subject wants to perform the action, it has to satisfy conditions.

Actionname is defined separately which contains the object of the action.

Example:

has (employee, right(print, rank =3))

It defines that if an employee’s rank is 3, then he/she can perform print

action.

• Prohibitions define negative authorizations, meaning that a subject cannot

perform certain actions.

• has (subject, prohibition (actionname, conditions)). The subject is

prohibited from performing actionname if subject satisfies conditions.

 17

In Rei, actions can be represented as a tuple with parameters, as shown in the

following format:

action (actionname, targetobject, pre-conditions, effects)

In this tuple, actionname defines the name of action. It is used in the rights and

prohibitions policies to define the action that a user can perform. Targetobject is a list of

objects on which the action is performed. Pre-conditions are the conditions that need to

be true before the action can be performed and Effects are the results of the action. The

pre-conditions are defined only for the action not for any subjects.

Rei proposes two ways to resolve conflicts in policies. The first is to set priorities,

by using statement overrides (A, B), meaning policy A has priority over B. The second

way is to use precedence relations. The policy maker may decide certain precedences for

a set of actions, e.g., negative policies are stronger than positive ones.

The advantage of Rei is that it provides a variety of action primitives for access

control specification. Access control policies can be defined as what actions a user can

take; and many perimeters can be associated with this action. For example, when we

define what action a user can perform, we can also define operators for the action, such

as: repetition (allows the user to repeat the action) and once (defines that a user can only

perform this action once). Although Rei is relatively simple syntax, it does have some

disadvantages and therefore is not quite suitable for specifying access control policy for

databases. First of all, subjects are treated as un-interpreted symbols. No role hierarchy

can be defined in Rei. As a result, it will be difficult to define role-based fine-grained

access control policies.

 18

2.3.2 EPAL

Enterprise Privacy Authorization Language (EPAL) is developed by IBM

[AHC03, ASP02, KSW02]. EPAL is a “formal language to specify fine- grained

enterprise privacy policies. It concentrates on the core privacy authorization while

abstracting from all deployment detail such as data model or user-

authentication”[AHC03]. It is an XML-based policy language and allows developers to

enforce privacy policies directly into enterprise applications.

An EPAL policy is a set of privacy rules ordered with descending precedence. In

EPAL, rules are used to determine if the request is granted or not. If a rule applies,

subsequent rules are ignored. A rule may contain conditions and obligations. There are

four elements in a rule: a user category, an action, a data category, and a purpose.

• A user category defines the subject of a rule, such as an employee, a manager.

• Data category: the data category provides a high level classification of data, such

as employee information, medical record, etc. By classifying data into different

category, based on the privacy requirements, data can be treated differently.

EPAL itself does not define any actual data. Instead, it uses data category to

categorize data.

• Purpose is an important part in EPAL, because information should only be

disclosed for particular purposes. For each rule in EPAL, it has to state the

purpose for the use of certain information. Similarly, each information access

request also needs to specify the purpose for the access. Otherwise, it will be

rejected automatically.

• Action defines a privacy relevant action that can be referenced in rule definitions.

 19

Typically, privacy authorization rules also require context conditions. Each

container defines a data structure that contains context data that can be evaluated by

conditions associated with the context data. The container defines a list of attributes that

can be evaluated by conditions. Such attributes may include e g., one’s name, employee

number, and department. And based on instances of the attributes, the conditions will be

evaluated to be ‘true’ or ‘false’. Each condition statement represents one condition. If

there is more than one condition, all the conditions have to be true before the rule can be

applied. Otherwise the rule will be ignored.

Since EPAL does not define any specific data types, it is necessary to define a

vocabulary set defined as “infoType” , which contains all the vocabularies that will be

referenced in rules . There are three attributes in the definition of a vocabularies set. The

“id” attributes defines the name of the vocabulary. The “issuer” defines who issues these

vocabularies. And the “version-info” defines the version of this rule and other

management information such as date.

In order to establish an EPAL policy, a policy maker has to create a set of user

categories U, a set of data categories T, a set of purposes P, and a set of actions A. All of

them have to be defined in vocabulary and will be referenced by other parts of the policy.

A request to the system is in the form “Is the given user-category allowed to perform the

given action on the given data category for the given purpose?” The system determines

the ruling by processing each rule with descending precedence. By analyzing the tuple

(U, T, P, A), the system’s output will be either “allow”, “deny” or “not-applicable”.

 20

If an access control policy is “An employee can only see his own record and a

manager can view the records of all the employees who work in his department. In

EPAL, the policy will be defined as shown in Figure 2.2.

 21

<rule id =”Oracle_policy” ruling =”allow”>
<user-category refid = “employee table”/>
<data-category refind = “employee_record_table”/>
<prupose refind = “view table” />
<operation refined =”SELECT” />
<condition refid = “condition1”/>
<condition refid = “condition2”/>
</rule>

<rule id =”Oracle_policy_manager” ruling =”allow”>
<user-category refid = “employee table”/>
<data-category refind = “employee_record_table”/>
<prupose refind = “view table” />
<operation refined =”SELECT” />
<condition refid = “condition1”/>
<condition refid = “condition3”/>
</rule>

<container
id= “employeeTAB”>
<attribute
id =” employee _table.userID”
simpleType = http://www.w3.org/2001/XMLSchema#string>
</attribute>
<attribute
id = “employee _table.name”
simpleType = http://www.w3.org/2001/XMLSchema#string>
</attribute>
</container>

<container
id= “employeeREC”>
<attribute
id =” employee_record_table.userID”
simpleType = http://www.w3.org/2001/XMLSchema#string>
</attribute>
<attribute
id = “employee_record_table.name”
simpleType = http://www.w3.org/2001/XMLSchema#string>
</attribute>
<attribute
id = “employee_record_table.manager”
simpleType = http://www.w3.org/2001/XMLSchema#string>
</attribute>
</container>

 22

Figure 2.2 EPAL Policy Example

<condition id = “condition1”>
<predicate refid =http://www.research.ibm.com/privacy/epal#string-equal”>
<function
refind =”http://www.research.ibm.com/privacy/epal#string-bag-to-value”>
attributes-reference
container-refid = “employeeTAB”
attribute-refid = ““employee _table.name”/>
</function>
<attribute-value simType =http://www.w3.org/2001/XMLSchema#string>
<value> context.name</value>
</attribute-bag>
</predicae>
</condition>

<condition id = “condition2”>
<predicate refid =http://www.research.ibm.com/privacy/epal#string-equal”>
<function
refind =”http://www.research.ibm.com/privacy/epal#string-bag-to-value”>
<attributes-reference
container-refid = “employeeTAB”
attribute-refid = ““employee _table.ID”/>
<attributes-reference
container-refid = “employeeREC”
attribute-refid = ““employee_record_table.userID”/>
</attribute-bag>
</predicae>
</condition>

<condition id = “condition3”>
<predicate refid =http://www.research.ibm.com/privacy/epal#string-equal”>
<function
refind =”http://www.research.ibm.com/privacy/epal#string-bag-to-value”>
<attributes-reference
container-refid = “employeeTAB”
attribute-refid = ““employee _table.name”/>
<attributes-reference
container-refid = “employeeREC”
attribute-refid = ““employee_record_table.manager”/>
</attribute-bag>
</predicae>
</condition>

 23

As we can see, EPAL requires a formal definition for each attribute and condition

before they can be applied into policies. This requirement does offer the advantage of

keeping data references consistent, because each attribute has to be formally defined in

the vocabulary set. The drawback of this language is that it does not fully support role

hierarchy. EPAL only allows each role to have a single parent. As a result, we can not use

EPAL to express a relationship that a node has more than one parent. For example,

suppose a manager is also considered as an employee and a team leader. Then, it is

difficult to define the parent node for the manager in EPAL, since the manager role is an

extension of both the employee role and the team leader role.

2.3.3 Ponder

Ponder is a policy language developed by researchers at Imperial College[Dam02,

DDL01, DSL01]. It is a declarative, object-oriented language for specifying security and

management policies for distributed object systems[DDL 01]. Ponder is designed for

non-discretionary access control, where administrators have the authority to specify

security policies that are enforced by the access control system. Ponder supports

authorization, delegation, information filtering, refrain policies, and obligations.

In Ponder, the term subject refers to users. The term target refers to objects

(resources). The term action defines what action/actions can be performed on the target

and the term when states the constraints/conditions where a policy can be applied..

An authorization policy defines what actions a subject could perform against a set

of targets. Ponder allows two kinds of authorization policies. A positive authorization

police defines the actions that subjects are permitted to perform on target objects.

 24

 A negative authorization policy defines what actions that subjects are not allowed

to perform on target objects. The syntax of an authorization policy is shown in Figure 2.3.

Figure 2.3 Authorization Policy Syntax

Example 1. Positive and negative authorization policies

Inst auth+ employee_view
{
subject manager
target employee_record_table
action select
}
It defines that a manager can issue select statement on employee record table.

Inst auth- employee_view
{
subject manager
target employee_record_table
action delete, update
}
It defines a manager is forbidden to issue delete and update statement on the

employee record table.

Ponder explicitly supports the definition of roles and role hierarchies. Policies can

be grouped together based on roles to reflect the privileges of a group of users instead of

individuals. The syntax of roles is showed in Figure 2.4. For example, a manager will

always have the same privileges regardless who is assigned to this role.

Inst (auth+ | auth-) policyname{
Subject expression;
Target expression;
Action expression;
When constraints
}

 25

Figure 2.4 Role Policy Syntax

Example 3. Role Policy

type role employee
{
}
 inst auth+ emp_select
 {
 target /IBM/RECORD_TABLE/record
 action SELECT
 when subject.name=/IBM/REC_TB/record.name
 }

The above policy specifies that an employee only can view his own record in the

record_table. A role may include more than one basic policy, group or meta-policy. A

group definition groups related policies together for the purpose of policy organization.

Meta policies define policies about the policies within a composite policy and are used to

define application specific constraints. For example, the meta policy could be used to

define that the same person cannot submit and approve a budget. Subject domain

defines the set of subjects. The subject domain is specified following the @ sign. If a

subject domain is undefined, then a subject domain will be created with the same name as

role.

Role hierarchy can be defined through role extension. When a role extends from

another role (base role), it inherits all the privileges from the base role. New policies can

Type role roleName
{
{basic-policy-definition}
{group-definition}
{meta-policy-definition}
}[@ subject-domain]

 26

also be added to the extended role. If two policies have the same name, then the new one

will overwrite the old one. The keyword “extends” is used when a role extends another.

Formal parameters define the parameters for the newly created role and actual parameters

define the parameters that may have included in the base role. The inheritance syntax as

shown in Figure 2.5.

Figure 2.5 Role Extension Syntax

Example 4. Role inheritance

type role manager extends employee
{
 inst auth+ mgr_select
 {
target /IBM/REC_TB/record
action SELECT
when subject.name=/IBM/REC_TB/record.mgr
}
}

The above policy specifies that a manager role is extended from an employee role.

It not only inherits all the privileges of an employee role, but also extends the privileges

by allowing a manager to view the records of all the employees who work under him.

After analyzing the above three policy languages, we believe that Ponder meets

the requirements for specifying fine-grained access control policies for databases. Ponder

can be easily used to support role-based access control, which is the crucial for Oracle

VPD. While Rei and EPAL have their own advantages, they fall short in defining role

Type Role roleTypeNmae { formal Parameters }
Extends parentRoleType { atucalparameters}
{
role body
}

 27

hierarchies. Further, Ponder has a clear and concise syntax. Thus, a Ponder policy can be

mapped to Oracle policy enforcement program in a relatively straightforward manner.

Since Ponder is originally designed for distributed network service management,

it has features that are not completely suitable for database access control. For example,

the Ponder role policy requires the subject-domain to be formally defined, but FGAC

does not have such definition. Based on the above analysis, in this project we adopt

Ponder as a preliminary high-level policy language database fine-grained access control

policy specification. Although Ponder supports four types of policies: authorization,

obligation, delegation, and refrain policy. In our toolkit, as explained in this section, we

are only use authorization policy to express database access control policies. For other

type of the policies, they will not be used to define the access control policies. A further

study is needed to decide whether these type of polices can be properly translated into

database access control policies.

 28

3 Translating Access Control Policies to Oracle Enforcement Script

In this section, we first discuss how Ponder is used to specify database fine-

grained access control policies. Then, we introduce the new algorithm that translates

these Ponder policies into Oracle FGAC enforcement code.

3.1 Creating Access Control Policy in Ponder

This subsection provides an overview of how we use the Ponder policy languages

to create FGAC policies.

3.1.1 Choose the Policy Type

As mentioned in previous chapter, Ponder allows various policy types. Clearly,

authorization policies are the most relevant for access control policy specification. Since

roles are important component of FGAC, the Ponder role hierarchy should be used to

create access control policy specifications.

To illustrate how to create FGAC specifications, we assume we are going to

enforce a policy on the following table (HR table):

Name Manager Rank

… … …

Table 3.1 HR Table

Table 3.1 has three attributes: name stores an employee’s name, manager stores

the employee’s manager name, and rank stores the employee’s rank. This table will be

also used in the following examples, unless otherwise specified. There are three roles in

the policy: employee, manager, and CEO. The employee can only view his own record. A

 29

manager can view an employee’s record whose manager is him. A CEO can view the

whole table.

By setting the employee role as the base role for manager role, when a user is

trying to perform the manager role, he not only can have the manager privileges but also

can have employee privileges. A Ponder policy and role hierarchy could be expressed as

the following figure (Figure 3.1). It defines that role manager and role CEO are extended

from the employee role. Each of them has individual privileges in addition to employee

privileges. By using Ponder role definition and role hierarchy, we believe that an access

control relationship can be properly identified.

Figure 3.1 Role Hierarchies

For each access control policy, its subject, target, action and constraints need to be

defined properly. In our case, since we are trying to define the privileges for different

roles, the subject of an access control policy will be roles. In general, a target could refer

to a table, or the whole database. Since FGAC only supports a single tale, the target in

Type Role employee
{
 name = current login user
}

Type role manager extends employee
{
 manager = current login user
}

Type role CEO extends manager
{
 1=1
}

Employee

Manager

CEO

 30

this toolkit will also refer to a single table. For access control action keywords, there are

only a few action commands in Oracle database that a user can issue against a table, such

as “SELECT”, “INSERT”, “UPDATE” and “DELETE”. All these commands will act as

the action key words in Ponder. By using default Oracle action keywords as policy action

keyword, the translation between the Oracle and policy action key words can be

simplified, therefore it reduces the complexity of policy specification and increase the

performance of the toolkit.

3.1.2 Access Control Policy Interpretation

Given a set of authorization policies, it is possible that several policies concern

about a role’s privileges on the same object under different conditions. When enforcing

those policies in a database, we need to consider the overall effects of the set of

authorization policies.

Formally, positive authorization policies define a set of positive authorization

tuples (s, o, +a, c), where s is a role, o is a database object, a is an action, and c is a

predicate that specifies the constraints when s can take action a on o. Similarly, negative

authorization policies define a set of negative authorization tuples (s, o, -a, c), which

means that s cannot take action a on o if c is true. Let s be the current role of a user.

Given two authorization tuples (s1, o1, *a1, c1) and (s2, o2, *a1 and c2), where * can be

either + or –, if s1 and s2 are either the same as s or are extended from s, o1=o2, a1=a2,

then we say the two tuples are relevant to s. Otherwise, they are irrelevant to s.

In order to determine a user’s privileges, we need consider the combined effect of

authorization tuples. Suppose a user’s current role is s. Let T= {(s1, o, +a, c1), …, (sn, o,

+a, cn)} be a set of positive authorization tuples that are relevant to s. Then the user is

 31

allowed to take action a on object o as long as c1 OR … OR cn is true. Intuitively, since

the authorization tuples are positive, as long as one of the constraints is satisfied, the user

obtains the corresponding privilege. Similarly, let T= {(s1, o, -a, c1), …, (sn, o, -a, cn)} be

a set of negative authorization tuples that are relevant to s. Then the user is not allowed to

take action a on object o as long as c1 OR … OR cn is true.

When there are both positive and negative authorization tuples, we take the closed

authorization model, i.e., negative authorization overrides positive authorization.

Formally, given two relevant authorization tuples (s1, o, +a, c1) and (s2, o, -a, c2), the user

is allowed to take action a on object o only if c1 AND ¬ c2 is true.

In general, let T={(s1, o, *a, c1), …, (sn, o, *a, cn)} be a set of authorization tuples

relevant to s. The combined authorization constraints for s can be determined as follows.

Let T+ and T- be the sets of all the positive and negative authorization tuples in T

respectively. We can get the combined constraints C+ and C- of T+ and T- for s

respectively, as described above. Then the user is allowed to take action a on object o

only if C+ AND ¬ C- is satisfied.

3.2 The Architecture of the Toolkit

This toolkit has three components: Ponder policy specification interface, policy

translator, and policy importer. A policy maker can use the Ponder policy specification

interface to create Ponder authorization policies. The created Ponder policies are the

input for the policy translator, which translates Ponder policies into Oracle policy

enforcement program. The translation includes three steps: identifying role hierarchy,

access control elements translation and set context values. The policy importer is

 32

responsible for importing the created Oracle policy enforcement program into an Oracle

database by using JDBC. Figure 3.3 shows the architecture of the toolkit. In the

following, we describe the Policy translator and the importer in detail.

Figure 3.2 Toolkit Architecture

 33

3.3 Policy Translator and Policy Importer

Policy translator is the core of this toolkit. It is responsible for translating Ponder

policies into Oracle policy enforcement program. This program is written in Java and

contains three functions: identifying role hierarchy, access control elements translation

and set context values. The following subsections discuss how the policy translator

translates Ponder policies into Oracle scripts.

3.3.1 Role Hierarchy Identification Function

The purpose of role hierarchy identification function is to identify the role

relationship in a policy. This function analyzes the Ponder policy and records all the roles

existing in the policy. A text file will be generated and contain all the roles pairs

generated by the translator If a role is an extended from another one, it will be recorded

as (senior role, junior role) in the text file, where the senior role is the extended role and

the junior role is the base role. If a role is not extended from any other roles, this role will

be saved as (Senior Role, NULL) in the text file. This text file will be imported into an

Oracle server and a new table will be generated by the translator based on this text file. In

this table, it has two attributes: senior role and junior role. All the role pairs are mapped

into this table. The reason to create such a table is to allow the Oracle function to perform

a role hierarchy search among roles. The reason to create a text file for the policy roles is

to allow a policy maker to check whether the policy role relationship has been correctly

built. By doing so, a policy maker can check the role hierarchy first before a FGAC being

fully implemented.

The created role table is used by a role comparison function defined by this toolkit

The role comparison function takes two roles r1 and r2 as parameters and returns true if

 34

r1=r2 or r1 is senior to r2. This comparison function is based on the role table created by

the translator. When a role comparison function is called, the function will search the role

table by using SQL “start with…connect by…” query. An example of the syntax is shown

in Figure 3.5.

Figure 3.3 Role Hierarchy Search Query

If a user’s current role is senior to a given role, it means that the user can have the

privileges of the given role. For example, if a role table contains two pair of roles:

(Manager, Employee) and (CEO, Manager), and a user sets his role to CEO. The role

comparison function compares role CEO with role Employee and role manager. It returns

true in both cases. As the result, the CEO will have the privileges of both manager and

employee.

3.3.2 Mapping of Access Control Elements

The task of the second function is to scan through Ponder policies and identify all

the access control elements, including subject, target, action, and constraints. The

translator identifies each one of them and stored them in a Java array, which is used to

later create Oracle policy enforcement program.

In this project, we assume the roles defined in Ponder policies are from the same

ontology as those in a database. Further, we assume actions are the same as data

manipulation operations. Therefore, for subjects and actions, the translation is

select count(*)
from role table
where junior_role in (select junior_role from role table

start with senior role = current user role
connect by prior junior role = senior role)

and junior role = Give role name

 35

straightforward. If roles and actions are not defined using the same ontology, then

necessary mapping is needed. Additionally if a Ponder action is “retrieve”, then it needs

to be mapped to SELECTION operation to a database. The translation of target and

constraints is more challenging. In Ponder, objects are often organized into hierarchies.

Thus, a target not only includes the table name but also includes the directory path. For

example, in a Ponder policy, the target statement may be expressed as:

It refers to the table HR under IBM directory. The keyword record defines the particular

tuple/tuples that satisfied the constraints of the policy. On the other hand, in Oracle, a

table is simply referred by a unique name. We cannot directly map the target name

written in Ponder to a database object, because the Ponder table name is not uniquely

identified. In Ponder, two different tables can have the same name, as far as they have

different directory paths. In Oracle, a table name must be unique.

To solve this problem, we assumed there is a mapping file which explicitly maps

Ponder policy targets to database objects. A mapping file is a text file is created by a

policy maker and stores target names that are written in both Ponder format and Oracle

format. When the translator maps a target element, it looks up the mapping file and finds

the corresponding Oracle database objects. If no mapping exits in the file for a given

target element, an error message is returned.

For example, assume the mapping file has the following name pair:

(/IBM/HR/record, HR)

Target: /IBM/HR/record

 36

Once the translator encounters this pair, it knows “/IBM/HR/record” in a Ponder policy

refers to table HR in an Oracle database. Thus, the HR table will be used to generate

Oracle policy enforcement program.

The mapping file contains not only the mapping information for tables, but also

that of policy constraints. For example, if we have the following constraints:

This constraint states that the name attribute of a tuple in the HR table must match the

user’s name. When the translator translates this constraint, it breaks the constraint into

two parts; subject.name and /IBM/HR/record.name. For the /IBM/HR/record.name part,

as described above, the translator looks up the mapping file and maps it to database HR

table.

Thus, the constraint is translated as:

For the subject.name part, the translator needs to retrieve it from the subjects’ (i.e., the

current user) context value.

3.3.3 Setting context values

A context stores information about the current user connected to an Oracle

database. Oracle 9i provides functions to retrieve a user’s properties from its current

context In a Ponder policy, part of constraint is usually defined as “subject. X”, where

‘X’ represents an attribute of a user. For example, subject.name refers to the login user’s

Subject.name = HR.name

Subject.name = /IBM/HR/record.name

Subject.name = HR.name

 37

name and subject.rank refers to the rank of the user. Using the example from above again,

the constraint

refers to that the current login database user can only view his own information. When

the translator translates “subject.name”, it creates a context value to store the current

login user’s name. In Oracle, a context value is already created for a login user’s name,

which can be retrieved by calling “sys_context('userenv', 'session_user')”. Thus, the

constraint is translated into Oracle format as

It is necessary to set a context value for each individual “subject.X” elements to avoid

unnecessary nested query. For example, if we set current login user’s name as the only

context value. For the following constraint:

It states that the current login user can only view employee record whose rank is lower

than him. By using the name as the only context value, the above constraint has to be

translated as:

sys_context('userenv', 'session_user')= HR.name

Rank < ANY (select rank from HR

where name= sys_context('userenv',

 'session_user'))

Subject.rank < /IBM/HR/record.rank

 38

In above query, if we use name as the only context value, we need a nested query in order

to fully express the constraint. However, this nested query can be avoided. Instead of

using name as the only context value, we can create another context value for “rank”.

When the translator reads “subject.rank”, it will create a new context value for ‘rank’. As

the result, the constraint can be written as:

in above query, ‘db_context’ is the name we defined for the context, and ‘rank’ is a

context value. By storing “subject.X” as a context value and eliminating unnecessary

nested queries, the efficiency of query can be improved.

3.3.4 Oracle Script Generation

Once three functions have been executed, the translator is ready to generate

Oracle script. There are three Oracle functions need to be generated including: role

setting function, predicate setting function, and policy generating function. In the

following graphs, we are going to give a brief description about how the scripts are

generated.

The first Oracle function that needs to be generated for VPD is the setting role

function. The main goal for this procedure is to set context values for the user. Since each

user may have more than one role in a database, when a user logs in a database; a role has

to be set for him before he can issue any SQL query. In this procedure, it allows a user to

set his role and this role will be stored as an Oracle context value. After a user’s role has

been set, the role name will be available to other Oracle functions. Only after the role has

been set, the database server can attach the corresponding predicate to any user issued

Rank < sys_context('db_context', 'rank')

 39

query. For example, if a user requests to assume the employee role, the role setting

procedure will set the requested role for him. The assumption is that the user has passed

the role checking mechanism. This mechanism is to ensure a user will only assume roles

assigned to him. Since the role-checking mechanism is not the goal of this toolkit, the

toolkit will assume that role checking is done by other part of the system. Other context

values also need to be set in this function, such as name, rank etc.

 For each database application, a new context should be created and the role

setting function should bind to it. This function is the only way to set a context value. By

doing so, it ensures data integrity. Once a context value has been set, we know this value

has been validated and properly assigned to a user.

The second Oracle function is for setting predicates. A predicate is dynamically

attached to user’s query during run time. This function defines the predicate based on a

user’s privileges. In this toolkit, instead of returning a different predicate for each

different role, only one predicate is returned for all the roles. In this single predicate, it

contains all the role constraints. This predicate is generated by retrieving all the role

constraints that already translated into Oracle format by the translator. The generated

predicate has the following format:

Predicate =
Role1 constraints and
role comparison function (current user role, role1)

OR

Role2 constraints and
Role comparison function (current user role, role2)
.
.
.
RoleN constraints and
Role comparison function (current user role, roleN)

 40

Each role constraint is associated with the role comparison function generated by

the translator. The role comparison function compares the current user role with a given

role. Only if the role comparison result returns true, the associated role constraint will be

executed.

The reason, to return one predicate contains all the constraints instead of returning

a different predicate for each role, is the relationship between each role is disjunction. A

user could be an employee. He also could be an employee and manager at the same time.

An OR relationship ensures the current login user be able to view all the information

allowed by his privileges. For example, if the predicate is setting like following:

Assume the user’s role is employee. When this predicate is attached to the query

the user issue, the database server checks the Boolean variable returned by role

comparison functions. Since the result for role comparison function (employee, manager)

returns false, as the result, the predicate is equal to

This is because manager constraints are not executed due to the employee role is junior to

the manager role.

Predicate = Employee constraints

Predicate =
Employee constraints and
role comparison function (current user role, employee)

OR

Manager constraints and
Role comparison function (current user role, manager)

 41

The last Oracle function is to associate predicates with each of the DML

operations (SELECT, UPDATE, DELETE and UPDATE) and the targeting table itself.

In this function, it requires to define the policy name, function name(the function

generates the predicate), table name, and which DML statement it associates with. All

these information can be retrieved from policy model and previous Oracle functions. This

Oracle adding policy function will ensure for every each DML operation there is a

predicate setting function associate with it.

After all the necessary Oracle scripts have been generated, they will be imported

into Oracle database sever by using the script importer provided by the toolkit.

3.3.5 Oracle Script Importer

The importer connects the toolkit and an Oracle database by using JDBC. The

function of importer is to import all the generated scripts into an Oracle database sever.

3.4 A Simple Scenario

The example of employee, manager and CEO is used at here again. The policy is

defined in section 3.1. When the translator reads the Ponder policy, it creates the role

hierarchy file first. In this case, the role hierarchy is shown as the example in Table 3.1.

Senior Role Junior Role

Employee NULL

Manager Employee

CEO Manager

Table 3.2 Role Hierarchy Table

 42

The translator imports this role hierarchy relationship into Oracle and inserted into role

table.

 The next step is to create a function that sets roles in the application context.

The context will contain role name for current login user. The function allows users to set

the role to be “employee”, “manager”, or “CEO”. Assume that the current login user sets

to his role to “employee”. The role name “employee” is stored in application context

variable ‘rolename’ and if the application context name is “context_name’, the role-name

”employee” can be retrieved by calling following statement:

Once a role has been set, the predicate function generates the predicate for the employee

role. Since we include all three roles constraints in single predicate and the role name can

be retrieved by calling “Sys_context(context_name, ‘rolname’)” statement

The predicate is generated like the following:

Those condition expressions are generated by using the mapping file, which stores

policy constraints in Ponder format and Oracle format in pair. Assume such mapping file

Sys_context (context_name, ‘rolename’)

Predicate :=

Name = sys_context('userenv', 'session_user')
And role_comparsion function (current user RoleName, ‘Employee’)

OR

Manager = name= sys_context('userenv', 'session_user')
And role_comparsion function (current user RoleName, ‘Manager’)

OR

1=1
role_comparsion function (current user RoleName, ‘CEO’)

 43

already created. The translator extracts policy constraints from policy model and replaces

with the corresponding Oracle format one by scanning through the mapping file. After

these constrains have been translated, they are put into Oracle predicate setting function.

By using these condition expressions, the Oracle predicate setting function generates the

predicate for all the roles.

 After the user assumes an employee role, the comparison function compares

three pairs of roles. For (employee, employee) pair, the comparison function returns true.

But for (employee, manager) and (employee, CEO), the role comparison function returns

false due to employee role is not senior to either manager or CEO role. As the result, the

predicate becomes

This predicate ensures a user that is assuming employee role only have the

employee privileges, but not manager and CEO privileges.

The last step is to add a policy. This is be achieved by calling Oracle add_policy

function. The parameters of the function include: table name, predicate function name,

and action type. Once this policy is added, the Oracle FGAC is fully implemented.

Predicate :=

Name = sys_context('userenv', 'session_user')
And true

OR

Manager = name= sys_context('userenv', 'session_user')
And false

OR

false

 44

When a user issues a query, assume the table name is “table_name” and the query

is following:

The predicate generated by predicate setting function will be attached to this query. As

the result after the predicate is attached, the query will look like:

Which is equal to

As the result, an employee can only view his own record.

In this section, we have discussed how to define a VPD policy by using Ponder.

We also discussed the necessary steps for a translator to translate a Ponder policy into

Oracle scripts. In next section, we are going to analyze the performance of this toolkit.

Select * from table_name;

Select * from table_name;
Where name = sys_context('userenv', 'session_user')
And TURE
OR
Manager = name= sys_context('userenv', 'session_user')
And FALSE
OR
FALSE

Select * from table_name;
Where name = sys_context('userenv', 'session_user')

 45

4 The Toolkit User Interface

The interface of the toolkit is designed to help policy makers easily translate

formal access control policies to policy enforcement programs. It allows a policy maker

to specify access control policies, create corresponding enforcement programs and import

the program into Oracle database. In this section, we give a brief description of the

interface.

After successfully logging in, the policy maker is prompted with the major

working interface, as shown in Figure 4.1. The policy maker can create new access

control policies or edit previously saved policies on the left side text window. After he is

satisfied with the contents of the policy, he can click the translate button, which invokes

the policy transaction function of the toolkit. The resulting Oracle policy enforcement

program will be displayed in the text pad located at right side of the window. The

generated program has three parts: role setting function, predicate setting function, and

policy generating function. The policy maker can review any of them by clicking view

and choosing different functions. By displaying the access control policy and the

corresponding enforcement program side by side, the toolkit gives the policy maker a

visual view on how the policy is interpreted by Oracle.. Once the policy maker is

satisfied with the enforcement program, he/she can click the import button, and the

enforcement program will be imported into an Oracle database.

 46

Figure 4.1 Generating Policies

This toolkit connects to the Oracle database by using JDBC with the same

username/password that the policy maker uses to login into the toolkit. After the

enforcement program has been successfully imported, the policy maker can test its

effectiveness. The testing window is shown in Figure 4.2. During the testing, different

user names with different roles can be used to issue queries. The testing window serves as

a simple front end to the database management system. It submits testing questions to the

database engine, and retrieve and display query results.

 47

Figure 4.2 Testing Window

 48

5 Performance Analysis and Optimization

In this chapter, we are going to examine the correctness of the automatically

generated policy enforcement program. It is important that this toolkit can translate

various policies correctly. If this toolkit cannot perform such duty, then there is a little

value for this toolkit. It is also very important to consider its quality, i.e., whether access

control policies can be enforced efficiently by using the toolkit. If after adopting the

machine-generated policy enforcement program, the performance of a database

management system deteriorates severely, then the toolkit is of little value. In the rest of

the thesis, we refer to the policy enforcement program written by a programmer the

human-generated program, and that generated by the toolkit the machine-generated

program. It is reasonable to assume that human-generated program is efficient, since a

programmer can carefully analyze a policy first and find the optimal way to create the

policy enforcement program.

5.1 Experiment Setup

In this experiment, we use a P4 2.8 GHz computer with 512 Mb RAM. The

database management system is Oracle 9i version 9.2.0.1.0.

5.2 Policy Translation

In this subsection, we are going to analyze several policies and demonstrate these

policies can be correctly translated by the toolkit.

 49

5.2.1 Hospital Example

This example is for a hospital system and we only consider the information

retrieval process. The schema of the table and its access control policies are defined as

the following:

• The patient record table (patient_table) contains following attributes:

“Doctor_ID” defines which doctor this patient belongs to; “patient_ID “stores the

id number for the patient; “patient_name” stores the name of the patient;

“disease” stores the disease name of the disease.

• There are two roles in this example: doctors and patients.

• Each user in the system has to assume at least one of the above two roles before

she can access the database. We assume that login authentication and role

authentication are handled by other part of the system.

• The policy is like the following: a patient can only view his own information. A

doctor can view all his patients’ records.

• The Ponder policy will be generated like the following:

 50

 In the above policy, we only defined two roles and there is no role hierarchy

relationship between them. The reason is patients may have different doctors. If we let

the doctor role extend from the patient role, it means a doctor can view every patient’s

record even if that patient does not belong to him.

5.2.2 School Example

This example is for a school system. It demonstrates how the role hierarchy

relationship can be expressed. The schema of the table and its access control policies are

defined as the following:

• The student record table (student_table) contains following attributes: “name”

stores the name of a student; “teacher_name” stores the name of the teacher;

“class_name” stores the class the student is currently taken; “TA” stores the

teaching assistant’s name for that class; and “grade” stores the grade for the

student.

Type role patient {}
Type role doctor{}

inst auth+ patient_select
{
subject patient
target patient_table/record
action SELECT
when subject.name = patient_table/record.name
}

inst auth+ doctor_select
{
subject doctor
target patient_table/record
action SELECT
when subject.ID = patient_table/record.Doctor_ID

 51

• There are three roles can issue select statement to this table: teacher, TA, and

student.

• Each user in the system has to assume at least one of the above three roles before

she can access the database. We assume that login authentication and role

authentication are handled by other part of the system.

• The policy is like the following: a student can only view his own record. A TA

can view everybody’s record who he is TAing for. A teaching assistant is also a

student. A teacher can view everybody’s record.

• The ponder policy will be generated like the following:

Type role student {}
Type role TA extends

employee{}
Type role teacher extends

TA{}

inst auth+ student_select
{
subject student
target student_table/ record
action SELECT
when
subject.name= student_table/

record.name
}

inst auth+ TA_select
{
subject TA
target student_table/ record
action SELECT
when subject.name=

student_table/ record.TA
}

inst auth+ Teacher_select
{
subject teacher
target student_table/ record
action SELECT}

Teacher

TA

Student

 52

In above example, we demonstrate that the role hierarchy relationship can be

properly expressed. In this example, a teacher can have all the privileges that a student

and a TA can have.

5.3 Toolkit Performance Evaluation and Analysis

The database of the experiment is for an employee management system. In

particular, we consider the access control for the employee record table of the database.

For simplicity, we only consider the enforcement of access control policies for

information retrieval (i.e., SELECTION statements). The schema of the table and its

access control policies are defined as the following:

• The employee record table (emp_table) contains the following attributes: “name”,

the name of an employee; “manager”, the name of an employee’s manager;

“department_ID”, the department that an employee is in; “rank”, the rank of an

employee; “salary”, an employee’s salary; and “ project”, the project that an

employee is currently working on. The integrity constraints of the table require

that an employee can only belong to one department and work on one project at a

time.

• There are seven roles defined in the database: employee (EMP), manager (MGR),

human-resource staff (HR), research and development staff (RD), human resource

manager (HR_MGR), research and development manager (RD_MGR), and CEO.

• Each user in the system has to assume at least one of the above seven roles before

she can access the database. We assume that login authentication and role

authentication are handled by other part of the system.

 53

• A user with an employee role is allowed to view her own record. The predicate

generated by a programmer is:

name = sys_context (‘userenv’, ‘session_user’);

• A user with a manager role is allowed to view the records of all the employees

that he manages. The predicate generated by a programmer is:

manager = sys_context (‘userenv’, ‘session_user’)

• A user with a human resource staff role is allowed to view the records of all the

employees whose ranks are lower than hers. The predicate generated by a

programmer is:

rank < ANY (select rank from emp_table

where name= sys_context('userenv', 'session_user'))

• A user with a research and development staff role is allowed to view the records

of all the employees who work on the same project as him. The predicate

generated by a programmer will be:

where project in (select project from emp_table

where name = sys_context (‘userenv’, ‘session_user’)

• A user with a human resource manager role has the privileges of a manger and a

human resource staff. No further privileges are given to this role.

• A user with a research and development manager role has the privileges of a

manager and a research development staff. No further privileges are given to this

role.

• The CEO is allowed to view the entire table.

The figure below shows the role hierarchy of the experiment.

 54

Figure 5.1 Role Hierarchies for the Experiment

 55

5.3.1 A Review of Machine-Generated Policy Enforcement Program

Once a user issues a query, a human-generated program typically attaches a single

predicate to the query. The predicate is specific to the user’s current role. On the contrary,

the machine-generated program described in Chapter 3 takes a simple and holistic

approach. No matter what role the user assumes, the program attaches to the query a

constant predicate, which encodes the access control constraints for all roles. Remember

that the predicate contains invocation of the role comparison function. Therefore, during

query execution, when the predicate is evaluated by the database engine, the returned

value of role comparison functions will dynamically determines which constraints should

take effect, based on the user’s current role.

 Table 5.1 shows an example to illustrate the difference between the predicates of

a human-generated program and that of a machine-generated program. In this example,

the user’s current role is ‘employee’ and the issued query is “select * from emp_table”.

 56

Table 5.1 Comparison of Manually Generated Code and Machine Generated Code

Manually Generated Code Machine Generated Code
Select * from table_name
Where name =

sys_context('userenv', 'session_user');

Select * from table_name
Where name = sys_context('userenv',

'session_user')
And 1= role_comparison_function

(‘‘context_name’’, ‘rolename’’, “EMP’’)

OR
Manager= sys_context('userenv',

'session_user')
 And 1= role_comparison_function

(‘‘context_name’’, ‘rolename’’, “MGR’’)

OR
Rank = Sys_context (context_name,

‘rank’)
 And 1= role_comparison_function

(‘‘context_name’’, ‘rolename’’, “HR’’)

OR
Project = sys_context(contxt_name,

‘project’
 And 1= role_comparison_function

(‘‘context_name’’, ‘rolename’’, “RD”)

OR
Manager= sys_context('userenv',

'session_user')
AND Rank = Sys_context

(context_name, ‘rank’)
 And 1= role_comparison_function
(‘‘context_name’’, ‘rolename’’, “HR_MGR’’)

OR
Manager= sys_context('userenv',

'session_user')
AND Project =

sys_context(contxt_name, ‘project’
 And 1= role_comparison_function

(‘‘context_name’’, ‘rolename’’, “RD_MGR’’)

OR
 And 1= role_comparison_function

(‘‘context_name’’, ‘rolename’’, “CEO’’)

 57

 5.3.2 Performance Evaluation and Analysis

 We compare the performances when adopting human-generated policy programs

and machine generated programs. In the experiment, the employee record table has 2000

tuples. We measure the query execution time of users with different roles, when issuing

query “Select * from emp_table”. The performance results are shown in Table 5.2.

Table 5.2 Results of Initial Approach with Table Size 500-2000

The results show that the machine-generated program is far inferior to the human-

generated program in terms of efficiency. For example, for a user with an employee role,

the performance of the machine-generated program is more than 150 seconds slower than

that of the human-generated program.

We need to identify the performance bottleneck and optimize the machine-

generated program accordingly. Remember that each clause of the predicate produced by

the machine-generated program contains two parts: the constraint for a specific role and

Table Size /Role

500
(Manually
Generated)

(Machine
Generated)

1000
(Manually
Generated)

(Machine
Generated)

EMP 0 44.04 0 92.07
MGR 0.01 43.01 0 83.07
HR 0.01 3.02 0 5.07
RD 0 31.09 0 59.09

HR_MGR 0 16 0 31.07
RD_MGR 0 32.07 0 71.11

CEO 0 15.06 0.01 34.08

1500
(Manually
Generated)

(Machine
Generated)

2000
(Manually
Generated)

(Machine
Generated)

EMP 0 135.07 0 193.03
MGR 0 118 0 174.01
HR 0.01 8.02 0.01 11.06
RD 0 101.07 0 141.02

HR_MGR 0.01 57.04 0.01 73.02
RD_MGR 0 109.06 0.01 149.05

CEO 0.01 56.02 0.01 63.04

 58

an invocation of the role comparison function. Only when the role comparison function

returns true will the corresponding constraint limit a user’s access Since the role

comparison function is also implemented through a SELECT query, a user’s query after

rewritten becomes a nested query, which usually yields sub-optimal performance. For

example, if a role constraint returns 200 tuples, the role comparison function will be

executed 200 times. If a tuple does not satisfy the role –specific constraint, the role-

comparison function will be invoked.

Note that a user’s role remains the same during a session (i.e., from the user

logons into the database until she logs out). Therefore, repeated invocation of the

expensive role comparison function is unnecessary during query execution. One way to

optimize the machine-generated program is to pre-set the results of the role comparison

function as context values. Once a user sets her role, we will compare the user’s role with

all the defined roles in the system. The results returned by the role comparison function

are stored as context variables for the user. For example, for the employee record

management system used in the experiment, we define the following context variables for

each user: isEmployee, isManager, isHRManager, isRD, isRDManager, isHR and is

CEO. Intuitively, if the user’s current role is the same or senior to a given role, then the

corresponding context variable is set to be true. We call such context variables role

membership variables.

To determine whether a constraint for a specific role should take effect, the

generated predicate simply needs to retrieve the corresponding role membership variable

for the context. Since retrieving a context value is much faster than the invocation of the

role comparison function, the query execution time should be significantly reduced.

 59

Based on this observation, we further improve the predicate setting function.

Instead of including the context variables as part of the generated predicate, the context

variables are used to decide whether the corresponding constraints should be included int

the predicate. The major part of the predicate setting function is like the following:

Pred = ‘’;
Employee conditions = ‘name = sys_context('userenv', 'session_user')’;
Manager conditions = Manager= sys_context('userenv', 'session_user')
HR conditions = ‘Rank = Sys_context (context_name, ‘rank’)’
CEO conditions = ‘1=1’;

If (1= Sys_context (context_name, ‘compared_value1’))
Then predicate := CONCAT (pred, ‘employee conditions’);
End if;

If (1= Sys_context (context_name, ‘compared_value2’))
Then predicate:= CONCAT (pred, ‘manager conditions’);
End if;

If (1= Sys_context (context_name, ‘compared_value3’))
Then predicate: = CONCAT (pred, ‘HR conditions’);
End if;
.
.
.
IF(1= Sys_context (context_name, ‘compared_value7’))
Then predicate:= CONCAT (pred, ‘CEO conditions’);
End if;

By using this approach, if a user’s role is employee, the role comparison function

sets the role membership variable isEmployee to be true, but those for other roles to be

false. As the result, only constraint specific for the employee role will be included in the

returned predicate. The query after rewritten will be the following, which is very similar

to the one returned by the human-generated program:

Select * from table_name
Where name = sys_context('userenv', 'session_user');

 60

The following table shows the time difference between the human-generated

program and machine-generated program:

Table Size
/Role

500
(Manually
Generated)

(Machine
Generated)

1000
(Manually
Generated)

(Machine
Generated)

EMP 0 0 0 0
MGR 0.01 0.01 0 0.01
HR 0.01 0.01 0 0.01
RD 0 0.01 0 0.01

HR_MGR 0 0 0 0
RD_MGR 0 0.01 0 0.01

CEO 0 0.01 0.01 0.01

1500
(Manually
Generated)

(Machine
Generated)

2000
(Manually
Generated)

(Machine
Generated)

EMP 0 0 0 0
MGR 0 0.01 0 0.01
HR 0.01 0.01 0.01 0.01
RD 0 0.01 0 0.01

HR_MGR 0.01 0.01 0.01 0.01
RD_MGR 0 0.01 0.01 0.01

CEO 0.01 0.01 0.01 0.01

Table 5.3 Third Approach Results

We see the performance difference between the human-generated and machine-

generated program is almost negligible.

 61

6. Related Work

This work is related to many areas, including: relational database management

system (RDBMS), access control, and policy languages. Much work has been done in

each of these areas. In this chapter, we describe the work that most heavily influences

database access control.

6.1 Access Control Policies

There are two types of access control policies: discretionary access control (DAC)

[BJS 95] [TY03] and mandatory access control (MAC) [BJS 95] [TY03].

DAC restricts a user’s access privileges to an object. Access policies are decided

by the owner of the object. Different user may have different access privileges for a same

object. Most database systems support DAC [BJS 95]. We can define a database table as

an object. The creator of the table will automatically get all privileges on it. The creator

can pass different access privileges of this table to other users.

In MAC, access control policies are decided by administrators instead of object

owners. In MAC, each object has an access level such as secret, classified, and

unclassified, etc. Each user is assigned to have a clearance level. A user can only access

those objects that he has clearance. The difference between MAC and DAC is in MAC

the privileges are static, not based on content. However, an organization structure cannot

be easily interpreted by using classification levels. As the result, role based access control

(RBAC) [GB98], [BBU99] is introduced.

In RBAC, access control privileges are associated with roles and users are

assigned to roles based on their responsibilities and qualifications. For RBAC, the roles

and role hierarchy are based on the structure of an organization. For example, roles in a

 62

school may include teacher, student, teaching assistant, etc. Based on a user’s

responsibility, he/she may assume more than one role. In the above example, a user can

be a student and a teaching assistant at the same time. When assigning roles, the principle

of least privilege should be followed. A user should only have the minimum privileges

that are enough to perform his duty. With RBAC, a user’s roles can be easily changed.

Privileges can be granted or revoked from roles as needed. Further, role and role

hierarchy can be mapped to the operational activity of an organization.

6.2 Database Access Control

Although most database systems support RBAC, MAC, and DAC, many different

strategies have been proposed to provide a more secure environment for database

systems. In this section, we examine some of these approaches, including rule based

access control [TD97], IBM’s sticky policy [AHC03, AA04] and information disclosure

management [YW04]

The general idea of rule-based access control [TD97] is as follows. An

enterprise’s organizational structure is created as a table. For example, if we have a

structure like “manager-> employee” where manager is the parent node of employee, the

table will be created as followings:

Role Name Symbol

Manager A

Employee A1

Table 6.1 Role Hierarchy Table

The employee role uses the symbol (A1) that is similar to the manager’s

symbol(A). When a manager issues a query, the SQL keyword ‘LIKE’ will be used to

 63

identify that employee node is the sub-node of the manager. For each unit in an

organizational structure, a set of privileges is defined with the organizational structure

table symbol attributes. The database users’ name/roles will be mapped to nodes in the

organizational structure. When a user issues a query, the database server will check

whether the user has clearance to retrieve data by looking up the organizational structure

table. The problem for the rule based access control is that if we have a very large

organization structure, the symbol we used to represent each node will be getting very

long and complicated. Since the SQL ‘LIKE’ operation is a string comparison function,

the performance of this access control mechanism is going to be decline.

Several access control projects have been under going in IBM. One of them is

called “sticky policy paradigm”[AHC 03]. In sticky policy, the policy will be enforced on

data. “Policy” includes the conditions and requirements of data usages and must be

always associated with data instances. Even when the data is transferred from one

database to another, the policy is still attached with the data and always true. The only

time that policy could be invalidated is when data owner issue a policy invalidation

statement. The disadvantage of stick policy is when the policy attached to the data is

updated, the user’s data is still managed by the old policy, not to the new policy. As the

result, it may cause security risk. The first attempt to implement such policy is on Tivoli

Privacy Manager, a privacy policy management tool developed by IBM. According to

IBM, this is the first enterprise privacy management solution that automates privacy

policy enforcement and monitoring.

Watanabe[YW04] from IBM purposed a model for information disclosure

management. The model has two parts: a centralized information disclosure decision

 64

center and policy enforcement agents. There are two functions in the model: Access

Enforcement Function (AEF) and Access Decision Function (ADF). The AEF always

associates with data and ADF is located with the central server. When a user is trying to

access a database, AEF will check his login information and send it to ADF. The ADF

will check the user’s information with the stored policy. If the login information meets

the access control requirements, the user can precede and successfully retrieve

information from the database. However, since all the decision will be made by the

central server, if a central server has a large number of enforcement agents associate it, it

may cause a bottleneck issue.

 65

7 Conclusions and Future Work

7.1 Conclusion

 In this thesis, we present the design and implementation of the access control

enforcement toolkit (ACET) that automatically translates database access control policy

specifications to Oracle policy enforcement programs. Instead of letting a programmer

create access control code, which is an error prone process and may introduce security

risks because the access control code is hard to analyze, this toolkit may help a policy

maker create policy enforcement programs more easily. We evaluate the performance of

the toolkit and identify a variety of ways to optimize the performance of the

automatically generated policy enforcement program.

 This toolkit is composed of two parts: a policy specification model and a

policy enforcement program translator. After comparing several formal policy

specification languages, we choose Ponder as a preliminary language for this project

because it has a concise and intuitive syntax for policy specification. It also supports role

hierarchy definition and role-based access control in a straightforward manner as

previously discussed.

Taking the Ponder policy as the input, the enforcement program translator

generates three functions: role setting, predicate setting, and policy generation.

The automatically generated policy enforcement program can correctly enforce

database access control policies. At the same time, the preliminary results suggest it may

do it efficiently. After applying several optimization techniques, our preliminary

experiment suggests that the machine-generated program yields comparable performance

to that created by a database programmer.

 66

7.2 Limitation of this Toolkit

Although this toolkit offers basic functionalities to automatically translate abstract

database access control policies into Oracle policy enforcement programs, it has several

limitations that require further investigation.

First, because the policy language is limited, this toolkit cannot express some

complicated queries. For example, suppose a policy states that a manager can view the

records of the employees who report directly or indirectly to her. Such a policy can be

easily expressed by SQL by using the following statement:

However, this query cannot be directly expressed in Ponder, unless a more

complex abstract data model is defined to represent the relationship between tables in a

database.

Second, the mapping file for translating Ponder policy variables to Oracle

database variables has to be predefined. Generating such a mapping file requires

comprehensive knowledge of both the formal access control policies and the details of

the database implementation. Thus, in some sense, it shifts the burden from programmers

to policy makers. Also, since it requires a policy maker to create such file and stores them

a safe place, the situation of mishandling such file could happen.

Third, this toolkit assumes that a policy maker has some database privileges, such

as granting procedures, adding and dropping policies, which typically are the privileges

of database administrators. Although the access control enforcement program is

SELECT *
FROM table_name
START WITH manager = sys_context
(…)
CONNECT BY PRIOR name = manager

 67

automatically generated, and it does not require the policy maker to manually create any

Oracle functions, the possibility of misusing these privileges does exist.

7.3 Future Work

To make the toolkit completely suitable for practical usage, several issues that

need to be further investigated.

First of all, a formal policy model and a policy language for database fine-

grained access control are needed. The existing policy languages are not designed

specifically for databases. Therefore, they are not expressive enough to fully support

database access control policies. For example, though Ponder is the preliminary formal

language for the toolkit, certain extension to Ponder is required in order to support some

commonly used database access control policies.

Besides row-level access control, many web applications further require cell-

level access control, i.e., even a single record may be only partially accessible to a user.

For example, though an employee can access some common attributes of other

employees in the same group, their salary information should only be accessible to the

manager of the group. Cell-level access control can be achieved through the combination

of row-level access control and column-based access control. Another approach is to

partition a table vertically into several sub tables. After applying row-level access control

on each sub table, we may enforce cell-level access control through outer joins between

those sub tables. How to translate abstract access control policies to automatically

enforce cell-level access control is a challenging problem we would like to investigate in

the future.

 68

Reference

[AA04] A. Anderson. An Introduction to the Web Services Policy Language
(WSPL). Sun Microsystems Laboratories, Jun 2004

[AHC03] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter, Enterprise
Privacy Authorization Language (EPAL 1.1). IBM Research Report,
October 1, 2003.

[ASP02] P. Ashley, M. Schunter and C. Powers, "From Privacy Promises to Privacy
Management - A New Approach for Enforcing Privacy Throughout an
Enterprise", Proceedings of the New Security Paradigms Workshop
(NSPW), Virginia, 23-26 September 2002.

[BBU99] J. Barkley, C. Beznosov, Uppal, "Supporting Relationships in Access
Control using Role Based Access Control" , Fourth ACM Workshop on
Role-Based Access Control 1999

[BCF03] E. Bertino, B. Catania, E. Ferrari and P. Perlasca. A Logical Framework for
Reasoning about Access Control Models. In ACM Transactions on
Information and System Security, 6(1), pp.71-127, February 2003.

[Bir00] P. Bird. Implementing Low Level Access Control with DB2 UDB. The
IDUG solution journal, Volume 7 Number 3, Winter 2000

[BJS 95] E.Bertino, S.Jajodia, and P.Samarati. Database Security: Search and
Practice. Information Systems. VOL 20 No. 7 pp 537-556

[Dam02] N. Damianou .A Policy Framework for Management of Distributed
Systems, University of London, Feb 2002.

[DDL01] N. Damianou, N. Dulay, E. Lupu, M Sloman, The Ponder Specification
Language. Workshop on Policies for Distributed Systems and Networks
(Policy2001), HP Labs Bristol, 29-31 Jan 2001.

[DHH02] G. Della-Libera,P. Hallam-Baker, M. Hondo etc. Web Services Security
Policy (WS-SecurityPolicy).
http://www.ibm.com/developerworks/library/ws-secpol/index.html
Dec 2002

[DLS01] N. Dulay, E. Lupu, M Sloman, N. Damiano. A Policy Deployment Model
for the Ponder Language Proc. IEEE/IFIP International Symposium on
Integrated Network Management (IM’2001), Seattle, May 2001.

 69

[FGL92] D. Ferraiolo., D. Gilbert, and N. Lynch Assessing Federal and Commercial
Information Security Needs. NISTIR 4976. Gaithersburg, MD: National
Institute of Standards and Technology. 1992.

[FKC95] D.F. Ferraiolo, J. Cugini, D.R. Kuhn "Role Based Access Control: Features
and Motivations" , Computer Security Applications Conference, 1995

[GB 98] S. Gavrila, J. Barkley, "Formal Specification for Role Based Access
Control User/Role and Role/Role Relationship Management" (1998), Third
ACM Workshop on Role-Based Access Control.

[GOK02] M. P. Gallaher, A. C. O’Connor, and B.Kropp. The Economic Impact of
Role-Based Access Control Research Triangle Park, NC: Research
Triangle Park Institute. 2001

[Kag02] Lalana Kagal, "Rei : A Policy Language for the Me-Centric Project,
TechReport, HP Labs, September 2002.

[KD02] Kristy Browder and Mary Ann Davidson, The Virtual Private Database in
Oracle9iR2 Oracle Corporation, Redwood Shores, CA 94065 2002

[KFJ03] L. Kagal, T.Finin, and A.Joshi. A Policy Based Approach to Security for
the Semantic Web, InProceedings, 2nd International Semantic Web
Conference (ISWC2003), September 2003.

[KaFJ03] L. Kagal, T. Finin, and A. Joshi. A Policy Language for A Pervasive
Computing Environment, InCollection, IEEE 4th International Workshop
on Policies for Distributed Systems and Networks, June 2003.

[KSW02] G. Karjoth, M. Schunter and M. Waidner. Platform for Enterprise Privacy
Practices: Privacy-Enabled Management of Customer Data. In Proceedings
of the Second International Workshop on Privacy Enhancing Technologies
(PET 2002), LNCS 2482, pp. 69-84, 2003.

[Kyt] T. Kyte, Fine Grained Access Control and Application Contexts.
http://govt.oracle.com/~tkyte/article2

[REW04] REWERSE (Reasoning on the Web with Rules and Semantics)
http://rewerse.net/

[RMS04] S.Rizvi, A.Mendelzon, S.Sudarshan,and P.Roy. Extending query rewriting
techniques for fine-grained access control, International Conference on
Management of Data Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, Pages: 551 - 562 2004

[Sch01] D. Scherer. Fine Grained Access Control with Oracle 8i’s virtual private

 70

database features.
http://www.coreparadigm.com/conferenceDocs/vpd/vpd.ppt.pdf

[TD97] T. Didriksen. Rule based database access control—a practical approach
ACM Workshop on Role Based Access Control Proceedings of the second
ACM workshop on Role-based access control Fairfax, Virginia, United
States Pages: 143 - 151 1997

[TY03] Ting Yu: “Automated Trust Establishment In Open Systems”. University
of Illinois at Urbana-Champaign, October, 2003.

