
Abstract

WAN, XIAOHAI. Numerical Simulation Methods for Biological Tissue
Interactions. (Under the direction of Dr. Sharon R. Lubkin and Dr. Zhilin Li.)

This thesis describes the Immersed Interface Method (IIM) coupled with the Level Set
Method (LSM) for solving viscous two-phase incompressible Stokes equations, with singu-
lar interface force and piecewise constant viscosity coefficient. Two-phase Stokes equations
appear in many physical and biological applications and we will focus on studying morpho-
genesis using incompressible Stokes equations.

In this thesis, Stokes equations are used to study the interactions between the mes-
enchymal and the epithelial tissue in branching morphogenesis. The Stokes equations are
decoupled into Poisson equations using the projection method. To use the IIM for the
decoupled Poisson equations, we first derive the jump conditions for both the pressure and
the velocity in the case where the two fluids may have unequal viscosity coefficients.

Since the jump conditions for the pressure and the velocity can be decoupled by intro-
ducing augmented variables, we use the Generalized Minimal Residual (GMRES) method
to solve for the augmented variables, and then solve the Stokes equations. For each GMRES
iteration, existing fast Poisson solvers can be used and the number of GMRES iterations
seems to be independent of the grid size. Thus our algorithm is efficient. Numerical ex-
periments using constructed exact solutions confirm the expected second order accuracy in
both 2D and 3D for the Stokes equations.

The interface between two fluid phases is implicitly represented using a level set function.
We couple the LSM with IIM for moving interface problems and test the coupled algorithm
using mean curvature flow problems for both 2D and 3D. Simulation results show that our
moving interface algorithm is efficient and can capture interface dynamics well.

We also study the interactions between mesenchymal and epithelial tissues in the case
where the contraction force of mesenchyme is modeled as a body force which deforms
the epithelium. We show simulation results for branching morphogenesis with varying
parameters.
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Chapter 1

Introduction

Morphogenesis is the generation of form in tissues, organs, and organisms. Understanding
morphogenesis is of fundamental importance in developmental biology [53, 2] and tissue
engineering research [41]. Many biological experiments involving tissue interactions have
been done in the fields of wound healing, angiogenesis and branching morphogenesis. In
general, we believe that to fully understand experimental observations made by biologists,
one also needs to construct and apply mathematical and physical models to help illustrate
underlying principles existing in such complicated biological systems. The ultimate goal of
this high level understanding is to help people invent new tools in both biotechnology which
involves the application of the principles of engineering and technology to the life sciences,
and biotechnics (i.e. organic model of technology).

In this thesis, we use the well-known fluids model to study the interactions of two early
embryonic tissues: epithelia and mesenchyme in the context of branching morphogenesis.

1.1 Biological Tissue Interactions

Epithelial tissue is composed of layers of cells and derives from either the ectoderm or
the endoderm [2]. Epithelial cells sit on a fibrous membrane called basal lamina secreted
by the epithelium. Mesenchyme (embryonic connective tissue), which develops from the
mesoderm, contains fibroblasts and a gelatinous extracellular matrix (ECM). Fibroblasts
are loosely-packed cells and can develop into various types of cells such as blood cells,
endothelial cells and smooth muscle cells. It is known that fibroblasts can secrete collagen
fibers, glycosaminoglycans and glycoproteins into the extracellular matrix [2, 8]. Fibroblasts
play an important role in both embryonic tissue development by providing ground substance
for the ECM and adult tissue regeneration such as wound healing [8].

Experiments on mouse hair follicles, lung, kidney, mammary gland and submandibular
gland (SMG) suggest that various components in mouse embryonic model system contribute
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to the observed epithelial morphogenesis [17]. For example, in the mouse SMG branching
morphogenesis experiments, mesenchymal cells of the SMG exert a traction force on collagen
fibers and collagen fibers gather and align along the cleft. It is suggested that this mechanical
traction force of fibroblasts is an important morphogenetic cue to the clefting and further
branching of the epithelium [17]. Also the flowing movement of fibroblasts in groups in the
cleft region is shown to be correlated with the branching process [17]. Other components
such as epithelial cell growth, epithelial microfilament contraction, epithelial cell adhesions,
the basal lamina of the epithelium and other ECM substances (e.g. growth factors) may or
may not play necessary roles in this morphogenesis process [17]. See Fig. 1.1 for an example
of mouse kidney branching morphogenesis. Note that the SMG epithelium branching is
characterized by the formation of narrow and deep clefts [17], which is not seen in the
figure.

(a) (b)

Figure 1.1: Digitized image of an E12 Hoxb7/GFP transgenic mouse kidney branching
morphogenesis. (b) is imaged approximately 30 hours after (a). Courtesy of Prof. John
Bertram with permission.

1.2 Mathematical Models

From previous centrifugation [43, 44, 45] and compression experiments [3, 6, 13, 14, 15] in
vitro, it is known that certain embryonic tissues behave both quantitatively and qualitatively
like viscoelastic fluids [43, 44, 45, 3, 6, 13, 14, 15], which implies that tissues deform as elastic
materials on short time scales and flow as viscous liquids on long time scales. For example,
embryonic tissue rounding is driven by surface tension and resisted by cell adhesion in the
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same way that hydrophobic oil droplets deform in water [36, 48]. Another good example is
that one embryonic tissue spreading over the surface of a different tissue mimics the sorting
of two immiscible fluids [3]. Therefore it is a good approximation to model embryonic tissue
dynamics using fluid mechanics equations in the limit of very viscous flow. Note that it
is not appropriate to model mature tissues as viscous fluids [38] since it is known that
mechanical responses are different for aged tissue and embryonic tissue [21] and that ECM
components become stabilized in maturity.

Existing approaches to modeling tissue dynamics may be grouped into either discrete
models or continuum models. In discrete models, tissues are treated as aggregates of cells
and empirical, physical, mechanical rules (such as the differential adhesion rule [43, 44]) are
enforced for both individual cells and cell-cell interactions. Cellular automata models [42],
cellular Potts models [36, 48] and viscoelastic cellular models [42] are all widely used for
various biological problems. It is relatively straightforward to incorporate cellular charac-
teristics and extracellular information into discrete models, but such models may produce
limited insight for physical reality, and the predictions from such discrete models often do
not correspond to physically measurable quantities.

In contrast, continuum models apply viscoelastic equations (e.g. Navier-Stokes equa-
tions [11], Stokes equations [34]) to study tissue interactions. Well established fluid models
such as multiphase flow theory can be applied with few modifications. Results of such
simulations usually have strong physical implications and may well capture the essence of
tissue interactions and morphogenesis. Some geometric models may also be considered as
continuum models where differential geometry plays a major role in studying morphogenesis
[18]. It is also possible to use a hybrid model with both discrete and continuum components
[42].

We will use continuum models to model the interactions between epithelial and mes-
enchymal tissues. Similar models exist in the mixture theory for multiphase material [10].
For example, Murray et. al. [37] have constructed a mathematical model of traction-
producing cells advecting within an elastic ECM. Let c be the cell number density per unit
volume, ρ be the ECM mass density per unit volume and u be the displacement of the
ECM, the balance equation for the cell density c is [37]

∂c

∂t
= −∇ ·

(
D2∇

(∇2c
)−D1∇c + αc∇ρ + c

∂u

∂t

)
+ rc (N − c) (1.2.1)

where D1, D2, α and r are constants. Here D2∇
(∇2c

) −D1∇c models random dispersal
and contact guidance (i.e. directed locomotion of cells to an anisotropy of the environment)
of cells, αc∇ρ represents the haptotaxis (i.e. directional motility of cells up the gradient

of cellular adhesion sites) movement of cells, c
∂u

∂t
is the advection term and rc (N − c)

models mitosis of cells with carrying capacity N (i.e. the largest equilibrium size for c).
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The balance equation for the matrix density ρ is [37]

∂ρ

∂t
= −∇ ·

(
ρ
∂u

∂t

)
. (1.2.2)

The force balance equation for both the matrix and the cells is [37]

∇ ·
(

µ
∂e

∂t
+ λ

∂θ

∂t
I +

E

2 (1 + ν)

(
e +

ν

1− 2ν
θI

)
+ τρcI

)
= 0 (1.2.3)

where e =
∇u + (∇u)T

2
is the strain tensor of the matrix, θ = ∇·u is the dilatation of the

matrix, µ and λ are viscosity coefficients, E is the Young’s modulus of the matrix and ν is
the Poisson ratio of the matrix material. τ measures the traction force for a single cell. I

is the identity matrix.

Lubkin et. al. [32] proposed a multiphase flow model of capsule formation in tumors. In
the multiphase flow model, the mesenchyme is modeled as a mixture of cell/fiber phase and
aqueous phase, and the velocity of the cells was allowed to be different from the velocity of
the aqueous phase. In the limit of a single phase tissue for which the cell/fiber phase is not
separable from the aqueous phase, the force balance equation in the model is reduced to

∇ · (λ(∇ · v)I + 2µē)−∇p = ∇(Υ−Ψ). (1.2.4)

Here λ and µ are viscosity coefficients, v is the phase velocity, ē =
∇v + (∇v)T

2
is the

strain rate tensor for the tissue phase, p is the pressure, Υ models the capillary pressure
and Ψ models the contractility.

1.3 Our Model for Branching Morphogenesis

We propose a two-phase fluid model for the SMG branching morphogenesis incorporating
(1) the viscous fluids model for both the mesenchyme and the epithelium [34], (2) the
contraction force fibroblasts exerted on the ECM [37], and (3) confluent flow of fibroblasts
along the clefting region of the epithelium [17]. Our model states that the two embryonic
tissues are idealized as two-phase Stokes flow where the viscosity coefficient may be different
for the two phases. Singular interface forces such as surface tension may exist along the
interface separating the two phases. Fibroblasts (tracked by the number density) advect
with the flow in the mesenchyme phase and produce a traction force driving the flow. This
traction force is modeled as a body force for the two-phase Stokes equations.

If we assume that both mesenchymal and epithelial tissues behave like viscous fluids,
from the multiphase flow model [32], we obtain our two-phase Stokes model for the two
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tissues with mesenchymal contractility as:

∂c

∂t
= −∇ · (cv) (1.3.1)

where c is the spatial number density of contractile mesenchymal cells, and

∇ · (σ + σ̄) = 0 (1.3.2)

where σ is the stress tensor for Stokes flow and σ̄ is the traction stress of mesenchymal cells
(as a function of contractile cell number density c). See Fig. 1.2 for the components of our
simplified model.

mesenchymeepithelium
�broblasts

Figure 1.2: Epithelium is modeled as the fluid phase inside the interface and mesenchyme
is outside the interface. Fibroblast density in the mesenchyme advects with the Stokes flow
and produces a traction force in the flow field.

The confluent flow of fibroblasts along the clefting region of the epithelium [17] is mod-
eled as an advection process. We track the number density of contracting fibroblasts in
the mesenchyme phase and the contraction force is treated as a body force term for the
two-phase Stokes equations. From Eq. (1.3.1), we have the advection equation in tensor
form as

∂c

∂t
= −∂

(
cui

)

∂xi
(1.3.3)

where c = c(x, t) is the mesenchymal cell number density, t is time coordinate, xi is spatial
coordinates, and ui is the advection velocity field which is obtained by solving the Stokes
flow equations. We use tensor notation throughout the thesis; see Appendix A for the
explanations of tensor symbols used. Since for incompressible Stokes flow the velocity field
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is solenoidal, i.e.
∂ui

∂xi
= 0, (1.3.4)

substituting Eq. (1.3.4) into Eq. (1.3.3), we get the advection equation in dimensionless
form

∂c

∂t
= −ui ∂c

∂xi
. (1.3.5)

Note that in the multiphase mixture model [32], the incompressibility condition Eq. (1.3.4)
is no longer valid and needs to be replaced by a mixture (or group) incompressibility con-
dition. If there is no growth or death for the mesenchymal cell population, we expect that
the total number of mesenchymal cells is conserved, i.e.

∫

Ω
c dx = c∗ (1.3.6)

where c∗ is a normalization constant.

An initial boundary value problem for mesenchymal cellular dynamics

Let the mesenchymal tissue occupy the space of Ω+ and the epithelial tissue occupy Ω−.
See Fig. 1.3 for the geometry of the problem.

@


+ �
� epitheliummesenchyme

Figure 1.3: Mesenchymal cells advect in Ω+ and epithelial cells in Ω− are in contact with
a layer called the basal lamina (Γ).

Given an initial condition for the number density c of mesenchymal cells, we solve the
advection equation (1.3.5) with periodic boundary condition on ∂Ω. This formulates the
initial boundary value problem (IBVP) for mesenchymal cellular dynamics.
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Mesenchymal-epithelial interactions

Mesenchymal-epithelial interactions have been studied extensively in biology. We assume
that the mesenchymal contractility can be modeled as a contractile stress

σ̄ij = pcδij (1.3.7)

where pc depends on the spatial number density c of contractile mesenchymal cells.

For branching morphogenesis using the two-phase Stokes flow model, we will not model
the swelling force and the simplest form of pc is just a linear function of c:

pc = τc (1.3.8)

where τ measures the traction force a fibroblast cell exerts on the ECM.

Incorporating the contractile stress in the Stokes flow, we can find that pc may be treated
as a body force gi for the Stokes flow with

gi =
∂pc

∂xi
. (1.3.9)

Therefore the mesenchymal cells are advected by the Stokes flow and the condensation of
mesenchymal cells feeds back as a body force for the Stokes flow.

To summarize, our branching morphogenesis model includes the incompressible Stokes
equations, the contraction force as a body force for the Stokes equations and the advection
equation for the contractile cell number density c:

− ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ gi = 0,

∂ui

∂xi
= 0,

gi =
∂(τc)
∂xi

,

∂c

∂t
= −ui ∂c

∂xi
.

(1.3.10)

1.4 Outline of the Thesis

In Chapter 2, classical fluid mechanics equations (i.e. Navier-Stokes equations and Stokes
equations) are derived using Einstein notation and the immersed interface problem for two-
phase flow is proposed in the end.

Local Cartesian parameterization of a curve in 2D or a surface in 3D is introduced in
Chapter 3 and this local parameterization approach is indispensable to the development of
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accurate sharp interface methods such as the immersed interface method (IIM) used in the
thesis. Jump conditions for Stokes equations are derived in Chapter 3 using both Einstein
notation and the local parameterization.

IIM for elliptic equations with interfaces in both 2D and 3D are derived in Chapter 4 with
emphasis on the case where the interface is represented implicitly using a level set function.
For the case where the viscosity coefficients of the two fluid phases are not equal, the
GMRES iteration method is used to solve for augmented variables of the Stokes equations
and this method is explained in Chapter 5. In Chapter 6, numerical implementation details
such as finite difference schemes and various interpolations are shown in detail.

Grid refinement analysis for fixed interface problems where exact solutions are con-
structed is shown in Chapter 7. For moving interface problems, the two-phase Stokes solver
is coupled with the level set method (LSM). In Chapter 8, we show the surface tension
relaxation test simulations in 2D with both ellipse and star interfaces, and in 3D with both
ellipsoid and sphere-ring interfaces. We study branching morphogenesis by incorporating
the mesenchyme contraction dynamics with the Stokes solver and show simulation results
with varying parameters in Chapter 9. Finally, in Chapter 10 we discuss the biological
implications of the branching simulations and some future work.
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Chapter 2

Incompressible Stokes Equations for Flows with

Two Viscous Tissues

We use fluid mechanics equations to model viscous tissues as a continuum. Under the
assumptions that tissues may be modeled as Newtonian fluids with very high viscosity
coefficient, we choose to study the two-phase Stokes flow and propose the mathematical
formulation for the problem.

2.1 Navier-Stokes Equations and Stokes Equations

2.1.1 Navier-Stokes Equations

Most real world objects are classified as solids and fluids. Fluids are different from solids
from a mechanics point of view in that a fluid takes the shape of its container while a solid
has a reference shape. Fluid dynamics has been studied extensively using a set of differential
equations derived from conservation of mass, momentum and energy. In our study, energy
dynamics are not of interest. So we will only study equations for conservation of mass and
linear momentum.

The mass conservation equation for a fluid is [46]

∂ρ

∂t
+

∂
(
ρui

)

∂xi
= 0 (2.1.1)

where ρ is fluid density, ui is fluid velocity, xi is Cartesian coordinates and t is the time co-
ordinate. The linear momentum conservation equation for a compressible or incompressible
fluid follows Cauchy’s equation [46]

ρ
Dui

Dt
=

∂σij

∂xj
+ ρgi (2.1.2)
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where gi is a body force such as gravity. The material derivative
Dui

Dt
is defined as [46]

Dui

Dt
=

∂ui

∂t
+ uj ∂ui

∂xj
. (2.1.3)

For an incompressible fluid, the mathematical statement of incompressibility is [46]

Dρ

Dt
=

∂ρ

∂t
+ uj ∂ρ

∂xj
= 0, (2.1.4)

plugging Eq. (2.1.4) into Eq. (2.1.1), we get the incompressibility or continuity equation

∂ui

∂xi
= 0. (2.1.5)

The stress tensor σij for an incompressible Newtonian fluid is

σij = −pδij + µ2eij (2.1.6)

where p is the thermodynamic fluid pressure, µ is a fluid dynamic viscosity coefficient, and
δij is the Kronecker delta symbol. The rate of deformation tensor eij is

eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.1.7)

Plugging Eqs. (2.1.3, 2.1.6, 2.1.7) into Eq. (2.1.2), we get the well-known Navier-Stokes
equation

ρ

(
∂ui

∂t
+ uj ∂ui

∂xj

)
= − ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ ρgi (2.1.8)

or in vector form

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇µ

(
∇u + (∇u)T

)
+ ρg. (2.1.9)

2.1.2 Nondimensionalization and the Reynolds number

It is expected that the velocity and pressure field for flows in similar domains may be deduced
from one another by simply rescaling [46]. Therefore it is helpful to nondimensionalize the
Navier-Stokes equations (2.1.8, 2.1.5) for incompressible Newtonian fluids. Assuming that
L is the characteristic space scale and U is the characteristic velocity scale, let us introduce
the dimensionless variables as follows

x̂i =
xi

L
, t̂ =

U

L
t, ûi =

ui

U
, p̂ =

1
ρU2

p, ĝi =
L

U2
gi (2.1.10)
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and plug them into the Navier-Stokes equations (2.1.8, 2.1.5) to get the dimensionless form

∂ûi

∂t̂
+ ûj ∂ûi

∂x̂j
= − ∂p̂

∂x̂i
+

∂

∂x̂j

(
1

Re

(
∂ûi

∂x̂j
+

∂ûj

∂x̂i

))
+ ĝi (2.1.11)

where the Reynolds number (with no units) is

Re =
ρUL

µ
=

UL

ν
. (2.1.12)

Here ν =
µ

ρ
is the kinematic viscosity coefficient. The dimensionless continuity equation is

∂ûi

∂x̂i
= 0. (2.1.13)

2.1.3 Stokes equations for Newtonian incompressible flows

Under the conditions of extremely low Reynolds number appropriate for modeling morpho-
genesis [33], viscosity coefficient µ is very large and velocity U is very small. Although it is
possible to work with the Navier-Stokes equations, we may be able to model the creeping
flow phenomenon using an approximated version of the Navier-Stokes equations, known as
the Stokes equations.

Note that the nondimensionalization of the Navier-Stokes equations (2.1.11, 2.1.13) is
not unique. For example, since the Reynolds number Re has no units, we may multiply
(or divide) any dimensionless variables (e.g. p̂) using Re to get new sets of dimensionless
variables. Of course, it is preferred to have a dimensionless form with physical meanings.
First we assume that the dimensionless forms of spatial coordinate xi, time coordinate t

and velocity ui are unambiguously chosen as

x̂i =
xi

L
, t̂ =

U

L
t, ûi =

ui

U
. (2.1.14)

And it is clear from Eq. (2.1.11) that the Reynolds number Re can be used to measure the
relative importance of inertial forces

Dûi

Dt
=

∂ûi

∂t̂
+ ûj ∂ûi

∂x̂j
(2.1.15)

and viscous forces
∂

∂x̂j

(
∂ûi

∂x̂j
+

∂ûj

∂x̂i

)
. (2.1.16)

If we have Re ¿ 1, it is expected that the inertial term in Eq. (2.1.11) may be neglected
without introducing noticeable errors to the solutions. The dimensionless form of pressure
p is rather arbitrary [46], for example,

p̂ =
1

ρU2
p (2.1.17)
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used in Eq. (2.1.10) surely is one version of the dimensionless forms for pressure. We can
also use Re to get other versions such as

p̂∗ =
Re

ρU2
p =

L

µU
p (2.1.18)

or more aggressively

p̂∗∗ =
(Re)2

ρU2
p =

ρL2

µ2
p. (2.1.19)

There are two major points observed here: (1) nondimensionalization of pressure p is arbi-
trary, therefore it is not right to say that we can get only the viscous term left by multiplying
Re at both sides of Eq. (2.1.11) and taking the limit of Re → 0; (2) from Eqs. (2.1.18,
2.1.19) it is clear that the pressure term scales as a viscous force and therefore must be kept
for the limit of very viscous flow. The same reasoning applies to the body force gi.

Now by ignoring only the inertia term, we can get the Stokes equation in dimensional
form

− ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ ρgi = 0 (2.1.20)

with the incompressibility condition
∂ui

∂xi
= 0. (2.1.21)

We will use the dimensionless form of (2.1.20, 2.1.21) with the same set of notations and
call

− ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ gi = 0 (2.1.22)

and
∂ui

∂xi
= 0 (2.1.23)

the incompressible Stokes equations.

2.2 The Immersed Interface Problem for Flows with Two

Viscous Tissues

We can model epithelio-mesenchymal interactions as creeping flow of two fluids in domains
Ω+ and Ω− separated by a massless interface Γ. See Fig. 2.1 for an illustration.

We assume that the Stokes equations describe tissue dynamics in both Ω− and Ω+, i.e.
Eqs. (2.1.22, 2.1.23) are valid for both x ∈ Ω− and x ∈ Ω+. Since the Stokes differential
equations only admit smooth solutions, we know that the pressure and the velocity for both
x ∈ Ω− and x ∈ Ω+ are smooth. But we do not know whether the pressure and the velocity

12



(a)

x�

@

x�
0


+
�


�

(b)

x� x�
x

0

@
�

�
+

Figure 2.1: Interface Γ divides Ω into two disjoint regions: Ω− and Ω+. Γ is (a) a closed
curve for 2D problems, and (b) a closed surface for 3D problems.

are smooth or not over the whole domain Ω. Also we know that a fluid property, such as the
viscosity coefficient µ, may be different for the two phases across the interface. To retain
generality, we express quantities such as pressure and velocity in terms of smooth functions
in Ω+ and Ω− separately. For example,

p =

{
p+, x ∈ Ω+,

p−, x ∈ Ω−
(2.2.1)

where p+ and p− are sufficiently smooth functions. Also note that
(

∂p

∂xi

)+

≡ ∂p+

∂xi
. (2.2.2)

For x∗ ∈ Γ, we can choose p(x∗) as either the limit from Ω− or the limit from Ω+. In
other words, p can be chosen as either “inner-continuous” or “outer-continuous”. To be
consistent, we choose p to be “outer-continuous” throughout the thesis, i.e.

p(x∗) = lim
x→x∗

p+(x). (2.2.3)

To summarize, the immersed interface problem for two viscous tissues may be formulated
as

−∂p+

∂xi
+

∂

∂xj

(
µ+

(
∂

(
ui

)+

∂xj
+

∂
(
uj

)+

∂xi

))
+

(
gi

)+ = 0, x ∈ Ω+, (2.2.4)
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∂
(
ui

)+

∂xi
= 0, x ∈ Ω+; (2.2.5)

and

−∂p−

∂xi
+

∂

∂xj

(
µ−

(
∂

(
ui

)−
∂xj

+
∂

(
uj

)−
∂xi

))
+

(
gi

)− = 0, x ∈ Ω−, (2.2.6)

∂
(
ui

)−
∂xi

= 0, x ∈ Ω−. (2.2.7)

Also, balancing of the surface force along the interface Γ requires [47]

[
σijn

j
]
+ f i = 0 (2.2.8)

where f i is the singular interface force (e.g. surface tension and Marangoni traction) and nj

is the unit interface normal vector pointing from Ω− to Ω+, σij is the stress tensor (2.1.6),
and the [·] symbol defines the difference of the limiting values across the interface for a given
quantity. For example, given x∗ ∈ Γ with Γ being the interface, [p] is defined as

[p] (x = x∗) = lim
x→x∗

p+ (x)− lim
x→x∗

p− (x)

= p+
Γ (x = x∗)− p−Γ (x = x∗) .

(2.2.9)
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Chapter 3

Coordinate Transformations and Jump Conditions

for Stokes Equations

3.1 Local Cartesian Coordinates and Transformations

We use local Cartesian coordinates defined along the interface and tensor notation to ad-
dress interface geometry in our problem. Compared with using a non-Cartesian curvilinear
coordinate system, our approach makes derivations rather elementary and requires less dif-
ferential geometry expertise. Note that local Cartesian coordinates and tensor notation are
used throughout the thesis.

3.1.1 Local Cartesian Coordinates

Stokes equations for two viscous tissues involve the interface Γ which is a closed smooth
curve for 2D problems or a closed smooth surface for 3D problems. For most interface
problems, we need to parameterize the interface in some way.

One method is to use non-Cartesian curvilinear coordinates. For example, a closed curve
in 2D may be parameterized naturally using the arc length parameter s as

(
xα(s), xβ(s)

)

and this parameterization is unique up to shift of parameter. As a special case, a unit circle
with center at the origin may be defined using the polar angle parameter θ as

(cos θ, sin θ)

where θ actually measures the arc length for the unit circle. Comparably, a closed surface in
3D may be parameterized under curvilinear coordinates such as cylindrical coordinates and
spherical coordinates. As an example, a sphere with center at the origin may be specified
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in spherical coordinates by
(
xα(θ, φ) = r cos θ sinφ, xβ(θ, φ) = r sin θ sinφ, xγ(φ) = r cosφ

)

where r is a given constant radius, θ is an azimuthal coordinate running from 0 to 2π and
φ is a colatitude coordinate running from 0 to π.

Another method to parameterize the interface Γ is to use a local Cartesian coordinate
system which is a special case of curvilinear coordinates. The reasons that we adopt lo-
cal Cartesian coordinates are: (1) Γ can be specified in a convenient form within a local
region surrounding the Cartesian coordinate origin [24], and (2) calculus operations such
as differentiation are straightforward for Cartesian coordinates. Since we have both the
original Cartesian coordinates and the “new” local Cartesian coordinates, it is necessary
to study the transformation rules between them. Using tensor notations, Cartesian coordi-
nates transformation rules are explained in detail for both 2D and 3D cases in the following
sections.

3.1.2 2D Geometry

Let x∗ ∈ Γ where Γ is the interface curve. We can build a local Cartesian coordinate system(
x̃α, x̃β

)
by using the unit normal direction ni (x∗) pointing from Ω− to Ω+ and the unit

tangential direction τ i (x∗) counter-clockwise of ni (x∗). See Fig. 3.1 for an illustration of
the coordinate transformation between the original Cartesian coordinates

(
xα, xβ

)
and the

local Cartesian coordinates
(
x̃α, x̃β

)
.

The coordinate transformation matrix A therefore is

A =

(
nα(x∗) τα(x∗)
nβ(x∗) τβ(x∗)

)
. (3.1.1)

Note that A is a special orthogonal matrix with detA = 1, and A−1 = AT . We define the
local Cartesian coordinate system as

(
x̃α, x̃β

)
and the coordinate transformation rule is [51]

x̃i =
(
A−1

)i

j

(
xj − xj

∗
)
. (3.1.2)

As a special case, the point x∗ in
(
xα, xβ

)
maps to the origin 0̃ in the local coordinate system(

x̃α, x̃β
)
. For vectors and vector fields such as the velocity field ui, the transformation rule

is [51]
ũi =

(
A−1

)i

j
uj . (3.1.3)

For any functions piecewise differentiable in both Ω+ and Ω−, such as the pressure p,
we have

p = p
(
xα, xβ

)
= p

(
x̃α, x̃β

)
. (3.1.4)
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Figure 3.1: Given a point x∗ ∈ Γ, a local Cartesian coordinate system
(
x̃α, x̃β

)
is built

using x∗ as the origin, the unit normal vector n and the unit tangential vector τ at that
point as the two coordinate axes. The normal vector n points from Ω− to Ω+ and the
tangent vector τ is counter-clockwise of n.

We know that p
(
xα, xβ

)
and p

(
x̃α, x̃β

)
represent the same physical quantity while the

former one is in terms of xi and the latter one is in terms of x̃i, and they are equivalent
under Eq. (3.1.2) and its inverse mapping:

xi = Ai
j x̃

j + xi
∗. (3.1.5)

To simplify our notation, we use the same symbol p for the two coordinate systems as in
Eq. (3.1.4). First-order coordinate derivatives for p follow the rule:

∂p

∂x̃i
= (A)j

i

∂p

∂xj
=

(
A−1

)i

j

∂p

∂xj
(3.1.6)

and transformation rules for higher order derivatives can be derived easily using the tensor
notation. The directional derivative such as the normal derivative for pressure p in

(
xα, xβ

)

is defined as
∂p

∂n
= ∇p · n =

∂p

∂xk
nk. (3.1.7)

Accordingly, in the local coordinates
(
x̃α, x̃β

)
, since n is a vector, we need to use Eq. (3.1.3)

to transform n to ñ and define the same directional derivative as

∂p

∂ñ
= ∇̃p · ñ =

∂p

∂x̃k
ñk. (3.1.8)
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The major benefit of introducing the local Cartesian coordinate system is that in the
neighborhood of the local origin 0̃, the interface curve Γ may be parameterized as [24]

Γ =
(
χ

(
x̃β

)
, x̃β

)
(3.1.9)

where χ is a sufficiently smooth function of x̃β. See Fig. 3.2 for an illustration of the local
parameterization of the interface curve Γ. Or we can represent the interface Γ using the

~0
~x�

~x� � = ��(~x�); ~x��

+
�

Figure 3.2: In the neighborhood of the local origin 0̃, Γ may be parameterized as(
x̃α = χ

(
x̃β

)
, x̃β

)
. We also know that χ (0) = 0 and

dχ

dx̃β
(0) = 0 (see text).

zero level set of the implicit function

ϕ
(
x̃α, x̃β

)
= x̃α − χ

(
x̃β

)
. (3.1.10)

Note that Γ passes through the local origin 0̃ [24], i.e.

χ
(
x̃β = 0

)
= 0 (3.1.11)

and the axis x̃β in the local coordinates is tangent to Γ at the local origin 0̃ [24], i.e.

dχ

dx̃β

(
x̃β = 0

)
= 0. (3.1.12)

Instead of using a global curvilinear coordinate system, we can define jump conditions for
quantities such as the pressure p in the local Cartesian coordinate system

(
x̃α, x̃β

)
as

[p] = p+
Γ

(
χ

(
x̃β

)
, x̃β

)
− p−Γ

(
χ

(
x̃β

)
, x̃β

)

= p+
Γ − p−Γ .

(3.1.13)
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For a function w with support only on the interface Γ, we have

w = wΓ

(
x̃β

)
. (3.1.14)

3.1.3 3D Geometry

Let x∗ ∈ Γ where Γ is the interface surface. We can build a local Cartesian coordinate
system

(
x̃α, x̃β, x̃γ

)
by using the unit normal direction ni (x∗) pointing from Ω− to Ω+ and

the two unit tangential directions τ i (x∗) and ηi (x∗) together forming a right-handed Carte-
sian coordinate system. See Fig. 3.3 for an illustration of the coordinate transformation
between the original Cartesian coordinates

(
xα, xβ, xγ

)
and the local Cartesian coordinates(

x̃α, x̃β, x̃γ
)
.

0x� x�x
 �
@


~0

+
�

~x
~x�
~x�

Figure 3.3: Given a point x∗ ∈ Γ, a local Cartesian coordinate system
(
x̃α, x̃β, x̃γ

)
is built

using x∗ as the origin, the unit normal vector n and two unit tangent vectors τ and η at
that point as the three coordinate axes in sequence. The normal vector n points from Ω−

to Ω+. n, τ and η form a right-handed Cartesian coordinate system
(
x̃α, x̃β, x̃γ

)
.

The coordinate transformation matrix A therefore is

A =




nα(x∗) τα(x∗) ηα(x∗)
nβ(x∗) τβ(x∗) ηβ(x∗)
nγ(x∗) τγ(x∗) ηγ(x∗)


 . (3.1.15)

Note that A is a special orthogonal matrix with detA = 1, and A−1 = AT . We define the
local Cartesian coordinate system as

(
x̃α, x̃β, x̃γ

)
and the coordinate transformation rule is
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[51]
x̃i =

(
A−1

)i

j

(
xj − xj

∗
)
. (3.1.16)

For vectors and vector fields such as the velocity field ui, the transformation rule is the
same as in the 2D case (3.1.3).

For any function piecewise differentiable in Ω+ and Ω−, such as the pressure p, we have

p = p
(
xα, xβ, xγ

)
= p

(
x̃α, x̃β, x̃γ

)
. (3.1.17)

Note that p
(
xα, xβ, xγ

)
and p

(
x̃α, x̃β, x̃γ

)
represent the same physical quantity while the

former one is in terms of xi and the latter one is in terms of x̃i, and they are equivalent
under Eq. (3.1.16) and its inverse mapping:

xi = Ai
j x̃

j + xi
∗. (3.1.18)

To simplify our notation, we use the same symbol p for the two coordinate systems. First-
order coordinate derivatives for p follow the same rule as in the 2D case (3.1.6). The
directional derivative such as the normal derivative for pressure p in

(
xα, xβ, xγ

)
is defined

in the same way as the 2D case (3.1.7).

The major benefit of introducing the local Cartesian coordinate system is that in the
neighborhood of the local origin 0̃, the interface surface Γ may be parameterized as [24]

Γ =
(
χ

(
x̃β, x̃γ

)
, x̃β, x̃γ

)
(3.1.19)

where χ is a sufficiently smooth function of x̃β and x̃γ . See Fig. 3.4 for an illustration of
the local parameterization of the interface surface Γ. Or we can represent the interface Γ
using the zero level set of the implicit function

ϕ
(
x̃α, x̃β, x̃γ

)
= x̃α − χ

(
x̃β, x̃γ

)
. (3.1.20)

Note that Γ passes through the local origin 0̃ [24], i.e.

χ
(
x̃β = 0, x̃γ = 0

)
= 0 (3.1.21)

and the two axes x̃β and x̃γ in the local coordinate system are tangent to Γ at the local
origin 0̃ [24], i.e.

∂χ

∂x̃β

(
x̃β = 0, x̃γ = 0

)
= 0,

∂χ

∂x̃γ

(
x̃β = 0, x̃γ = 0

)
= 0. (3.1.22)

Instead of using a global curvilinear coordinate system, we can define jump conditions for
quantities such as the pressure p in the local Cartesian coordinate system

(
x̃α, x̃β, x̃γ

)
as

[p] = p+
Γ

(
χ

(
x̃β, x̃γ

)
, x̃β, x̃γ

)
− p−Γ

(
χ

(
x̃β, x̃γ

)
, x̃β, x̃γ

)

= p+
Γ − p−Γ .

(3.1.23)
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Figure 3.4: In the neighborhood of the local origin 0̃, Γ may be parameterized as(
x̃α = χ

(
x̃β, x̃γ

)
, x̃β, x̃γ

)
. We also know that χ (0, 0) = 0 and

∂χ

∂x̃β
(0, 0) = 0,

∂χ

∂x̃γ
(0, 0) = 0

(see text).

For a function w with support only on the interface Γ, we have

w = wΓ

(
x̃β, x̃γ

)
. (3.1.24)

3D geometry is surely more complicated than the 2D case. Since we adopt the tensor
notation, it is much easier to show the similarities and differences between 3D problems and
their 2D counterparts.

3.2 Derivation of Jump Conditions for Stokes Equations

To use the Immersed Interface Method (IIM) for the Stokes equations, we need to know the
jump conditions of both pressure p and velocity ui. Since the jump conditions for interface
problems play almost the same role as boundary conditions for partial differential equations
(PDEs), it is necessary to derive jump conditions for a given interface problem in order to
capture the dynamics along the interfaces. Our result of jump conditions for the Stokes
equations is a generalization for the equal viscosity case [22, 56] and is consistent with
existing results [19, 20].
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3.2.1 Jump Conditions for Stokes Equations

The formulation for incompressible Stokes equations with two phases includes the Stokes
equations [46]

− ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ gi = 0, x ∈ Ω+ ∪ Ω−; (3.2.1)

the incompressibility condition [46]

∂ui

∂xi
= 0, x ∈ Ω+ ∪ Ω−; (3.2.2)

and the surface force balance equation [47]

[
σijn

j
]
+ f i = 0 (3.2.3)

across Γ. Note that the stress tensor σij for a Newtonian fluid is

σij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3.2.4)

Plugging Eq. (3.2.4) into Eq. (3.2.3), we can get
[
−pni + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
nj

]
+ f i = 0. (3.2.5)

We know that velocity across the interface is continuous, and this condition is stated in
terms of jump conditions as: [

ui
]

= 0. (3.2.6)

In order to use Immersed Interface Method (IIM) to solve the two-phase Stokes equations
in 2D and 3D numerically, we need to know the jump conditions for both pressure p and
velocity ui, i.e. the following jump conditions are needed [29]:

[p] ,
[

∂p

∂n

]
,

[
µui

]
,

[
∂

(
µui

)

∂n

]
. (3.2.7)

It might be possible to use
[
ui

]
,

[
∂ui

∂n

]
(3.2.8)

as a set of jump conditions for velocity ui and apply IIM, but we will not take this approach
in this thesis. In following sections, we will derive the jump conditions (3.2.7) (except for[
µui

]
) from Eqs. (3.2.1, 3.2.2, 3.2.5) for both 2D and 3D geometry.
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3.2.2 2D Geometry

Let x∗ ∈ Γ where Γ is the interface curve. We use a local Cartesian coordinate system(
x̃α, x̃β

)
introduced in Chapter 3.1. Note that the origin of the local coordinates is x∗ and

the two local coordinate axes are formed by normal vector ni and tangent vector τ i of the
interface Γ at point x∗. In the local coordinates

(
x̃α, x̃β

)
, the interface curve Γ may be

parameterized in the neighborhood of the local origin 0̃ as

Γ =
(
χ

(
x̃β

)
, x̃β

)
. (3.2.9)

The unit tangent is given by

τ̃ =
1√

1 +
(

dχ
dx̃β

)2

(
dχ

dx̃β
, 1

)
(3.2.10)

and the unit normal direction is

ñ =
1√

1 +
(

dχ
dx̃β

)2

(
1,− dχ

dx̃β

)
. (3.2.11)

First we have the following coordinate transformation results for normal directional
derivatives:

Lemma 3.2.1.
∂

(
µui

)

∂n
=

∂
(
µui

)

∂ñ
, i = α, β; x ∈ Ω+ or Ω−. (3.2.12)

Proof.
∂

(
µui

)

∂ñ
=

∂
(
µui

)

∂x̃k
ñk

= (A)l
k

∂
(
µui

)

∂xl

(
A−1

)k

j
nj

= δlj
∂

(
µui

)

∂xl
nj =

∂
(
µui

)

∂xj
nj =

∂
(
µui

)

∂n
.

(3.2.13)

Remark 3.2.2. This result is also true for general directional derivatives, e.g. tangential
directional derivatives.

The invariance of incompressibility for velocity under coordinates transformation states:

Lemma 3.2.3.
∂ui

∂xi
=

∂ũi

∂x̃i
= 0, x ∈ Ω+ or Ω−. (3.2.14)
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Proof.
∂ũi

∂x̃i
=

(
A−1

)i

k

∂uk

∂x̃i

=
(
A−1

)i

k
Al

i

∂uk

∂xl

=
∂ui

∂xi
= 0.

(3.2.15)

Lemma 3.2.4.
[

∂
(
µui

)

∂n

]
(0) =

[
∂

(
µui

)

∂x̃α

]
(0), i = α, β; x ∈ Ω+ or Ω−. (3.2.16)

Proof.
[

∂
(
µui

)

∂n

]
(0) =

[
∂

(
µui

)

∂ñ

]
(0)

=




1√
1 +

(
dχ
dx̃β

)2

(
∂

(
µui

)

∂x̃α
− ∂

(
µui

)

∂x̃β

dχ

dx̃β

)

 (0)

=

[
∂

(
µui

)

∂x̃α

]
(0).

(3.2.17)

Lemma 3.2.5. [
∂

(
µui

)

∂x̃β

]
(0) =

d
[
µui

]

dx̃β
(0), i = α, β. (3.2.18)

Proof.

d
[
µui

]

dx̃β
(0) =

d
(
µui

)+

Γ

dx̃β
(0)− d

(
µui

)−
Γ

dx̃β
(0)

=

(
∂

(
µui

)

∂x̃α

)+

Γ

(0)
dχ

dx̃β
(0) +

(
∂

(
µui

)

∂x̃β

)+

Γ

(0)

−
((

∂
(
µui

)

∂x̃α

)−

Γ

(0)
dχ

dx̃β
(0) +

(
∂

(
µui

)

∂x̃β

)−

Γ

(0)

)

=

[
∂

(
µui

)

∂x̃β

]
(0).

(3.2.19)
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Remark 3.2.6. Higher order derivatives with respect to x̃β have similar results, for exam-
ple,

d2
[
µui

]

dx̃βdx̃β
(0) =

[
∂2

(
µui

)

∂x̃β∂x̃β

]
(0) +

[
∂

(
µui

)

∂x̃α

]
(0)

d2χ

dx̃βdx̃β
(0), i = α, β. (3.2.20)

Note that

[
∂

(
µui

)

∂x̃α

]
(0) will be derived in the following theorem.

Theorem 3.2.7. For two-phase Stokes equations in 2D, given an arbitrary point x∗ ∈ Γ,

the following jump conditions for
∂

(
µui

)

∂n
hold at point x∗:




[
∂ (µuα)

∂n

]

[
∂

(
µuβ

)

∂n

]




= A




− (
A−1

)β

j

d
[
µuj

]

dx̃β

− (
A−1

)α

j

d
[
µuj

]

dx̃β
− f̃β




(3.2.21)

where A is the local coordinate transformation matrix.

Proof. Multiply τ i at both sides of Eq. (3.2.5) to get
[
µ

(
∂ui

∂xj
+

∂uj

∂xi

)
njτ i

]
+ f iτ i = 0 (3.2.22)

or [
µ

(
∂ui

∂n
τ i +

∂uj

∂τ
nj

)]
+ f iτ i = 0. (3.2.23)

Recast Eq. (3.2.23) in x̃i coordinate and use Lemma 3.2.1 for both the normal and tangential
derivatives to get [

µ

(
∂ũi

∂ñ
τ̃ i +

∂ũj

∂τ̃
ñj

)]
+ f̃ iτ̃ i = 0. (3.2.24)

Plugging Eqs. (3.2.10, 3.2.11) into Eq. (3.2.24) we get

µ

1√
1 +

(
dχ
dx̃β

)2

(
∂ũα

∂ñ

dχ

dx̃β
+

∂ũβ

∂ñ
+

∂ũα

∂τ̃
− ∂ũβ

∂τ̃

dχ

dx̃β

)

+

1√
1 +

(
dχ
dx̃β

)2

(
f̃α dχ

dx̃β
+ f̃β

)
= 0.

(3.2.25)
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We can evaluate Eq. (3.2.25) at x̃β = 0 to get
[
µ

(
∂ũβ

∂ñ
+

∂ũα

∂τ̃

)]
(0) + f̃β (0) = 0. (3.2.26)

Since the viscosity coefficient µ is piecewise constant, we can write Eq. (3.2.26) as
[

∂
(
µũβ

)

∂ñ
+

∂ (µũα)
∂τ̃

]
(0) + f̃β (0) = 0. (3.2.27)

Then we can expand the directional derivatives in Eq. (3.2.27) to get
[

∂
(
µũβ

)

∂x̃α
+

∂ (µũα)
∂x̃β

]
(0) + f̃β (0) = 0. (3.2.28)

From Lemma 3.2.3 we know that
[

∂
(
µũi

)

∂x̃i

]
(0) = 0. (3.2.29)

Eqs. (3.2.28, 3.2.29) form a system of equations for

[
∂

(
µui

)

∂x̃α

]
(0) and the coefficient matrix

is A−1 which is non-singular. By solving this system of equations, we can get




[
∂ (µuα)

∂x̃α

]
(0)

[
∂

(
µuβ

)

∂x̃α

]
(0)




= A




−
[
(
A−1

)β

j

∂
(
µuj

)

∂x̃β

]
(0)

−
[
(
A−1

)α

j

∂
(
µuj

)

∂x̃β

]
(0)− f̃β(0)




. (3.2.30)

Using Lemma 3.2.4, 3.2.5 and suppress the sign for evaluation at the local origin, we reach
Eq. (3.2.21).

For pressure p, we have the following result:

Theorem 3.2.8. For two-phase Stokes equations in 2D, given an arbitrary point x∗ ∈ Γ,
the following jump condition for pressure p holds at point x∗:

[p] = −2
(
A−1

)β

j

d
[
µuj

]

dx̃β
+ f̃α. (3.2.31)
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Proof. Multiply ni at both sides of Eq. (3.2.5) to get

[p] =
[
µ

(
∂ui

∂xj
+

∂uj

∂xi

)
njni

]
+ f ini

=
[
µ

(
∂ui

∂n
ni +

∂uj

∂n
nj

)]
+ f ini

= 2
[
µ

∂ui

∂n
ni

]
+ f ini

= 2

[
∂

(
µui

)

∂n
ni

]
+ f ini.

(3.2.32)

Recast Eq. (3.2.32) in x̃i coordinate and use Lemma 3.2.1 for the normal derivative to get

[p] = 2

[
∂

(
µũi

)

∂ñ
ñi

]
+ f̃ iñi. (3.2.33)

Plugging Eq. (3.2.11) into Eq. (3.2.33) we get

[p] = 2




1√
1 +

(
dχ
dx̃β

)2

(
∂ (µũα)

∂ñ
− ∂

(
µũβ

)

∂ñ

dχ

dx̃β

)

 +

1√
1 +

(
dχ
dx̃β

)2

(
f̃α − f̃β dχ

dx̃β

)
.

(3.2.34)
We can evaluate Eq. (3.2.34) at x̃β = 0 to get

[p] (0) = 2
[
∂ (µũα)

∂ñ

]
(0) + f̃α(0). (3.2.35)

Then we can expand the directional derivatives in Eq. (3.2.35) and use the incompressibility
to get

[p] (0) = 2
[
∂ (µũα)

∂x̃α

]
(0) + f̃α(0)

= −2

[
∂

(
µũβ

)

∂x̃β

]
(0) + f̃α(0).

(3.2.36)

From Lemma 3.2.5, we have

[p] (0) = −2
d

[
µũβ

]

dx̃β
(0) + f̃α(0). (3.2.37)

Using coordinate transformation rule and suppress the sign for evaluation at the local origin,
we reach Eq. (3.2.31).

The jump condition for the normal derivative of pressure p is shown here:
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Theorem 3.2.9. For two-phase Stokes equations in 2D, given an arbitrary point x∗ ∈ Γ,

the following jump condition for
∂p

∂n
holds at point x∗:

[
∂p

∂n

]
= −2

d2χ

dx̃βdx̃β

(
A−1

)β

j

d
[
µuj

]

dx̃β
+ 2

(
A−1

)α

j

d2
[
µuj

]

dx̃βdx̃β

+
d2χ

dx̃βdx̃β
f̃α +

df̃β

dx̃β
+ [g̃α] .

(3.2.38)

Proof. Multiply ni at both sides of Eq. (3.2.1) for x ∈ Ω+ and x ∈ Ω− to get
[

∂p

∂n

]
=

[
∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
ni

]
+

[
gini

]

=

[
∂2

(
µui

)

∂xj∂xj
ni

]
+

[
gini

]
.

(3.2.39)

Recast Eq. (3.2.39) in x̃i coordinate to get

[
∂p

∂n

]
=

[
∂2

(
µũi

)

∂x̃j∂x̃j
ñi

]
+

[
g̃iñi

]

=

[(
∂2

(
µũi

)

∂x̃α∂x̃α
+

∂2
(
µũi

)

∂x̃β∂x̃β

)
ñi

]
+

[
g̃iñi

]
.

(3.2.40)

Plugging Eq. (3.2.11) into Eq. (3.2.40) we get

[
∂p

∂n

]
=




1√
1 +

(
dχ
dx̃β

)2

(
∂2 (µũα)
∂x̃α∂x̃α

+
∂2 (µũα)
∂x̃β∂x̃β

−
(

∂2
(
µũβ

)

∂x̃α∂x̃α
+

∂2
(
µũβ

)

∂x̃β∂x̃β

)
dχ

dx̃β

)



+




1√
1 +

(
dχ
dx̃β

)2

(
g̃α − g̃β dχ

dx̃β

)

 .

(3.2.41)
We can evaluate Eq. (3.2.41) at x̃β = 0 to get

[
∂p

∂n

]
(0) =

[
∂2 (µũα)
∂x̃α∂x̃α

+
∂2 (µũα)
∂x̃β∂x̃β

]
(0) + [g̃α] (0). (3.2.42)

Now we take the derivative with respect to x̃β of both sides of Eq. (3.2.25) to get
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−

3

√
1 +

(
dχ

dx̃β

)2 (
dχ

dx̃β

)2

−
(

dχ

dx̃β

)2

− 3

√
1 +

(
dχ

dx̃β

)2

− 1


 d2χ

dx̃βdx̃β

/(
1 +

(
dχ

dx̃β

)2
) 5

2 [
∂ (µũα)

∂x̃α

]
+


3

dχ
dx̃β

1 +
(

dχ
dx̃β

)2 +
dχ
dx̃β√

1 +
(

dχ
dx̃β

)2




[
∂2 (µũα)
∂x̃α∂x̃α

dχ

dx̃β
+

∂2 (µũα)
∂x̃α∂x̃β

]
−




(
dχ

dx̃β

)2

+ 1 + 2

√
1 +

(
dχ

dx̃β

)2

 d2χ

dx̃βdx̃β

dχ

dx̃β

/(
1 +

(
dχ

dx̃β

)2
) 5

2 [
∂ (µũα)

∂x̃β

]
+




1√
1 +

(
dχ
dx̃β

)2
−

(
dχ
dx̃β

)2

1 +
(

dχ
dx̃β

)2




[
∂2 (µũα)
∂x̃α∂x̃β

dχ

dx̃β
+

∂2 (µũα)
∂x̃β∂x̃β

]
− 4

dχ
dx̃β

d2χ
dx̃βdx̃β(

1 +
(

dχ
dx̃β

)2
)2

[
∂

(
µũβ

)

∂x̃α

]

+
1−

(
dχ
dx̃β

)2

1 +
(

dχ
dx̃β

)2

[
∂2

(
µũβ

)

∂x̃α∂x̃α

dχ

dx̃β
+

∂2
(
µũβ

)

∂x̃α∂x̃β

]
+

d2χ
dx̃βdx̃β

(
1 +

(
dχ
dx̃β

)2
) 3

2

f̃α +
dχ
dx̃β√

1 +
(

dχ
dx̃β

)2

df̃α

dx̃β

−
dχ
dx̃β

d2χ
dx̃βdx̃β

(
1 +

(
dχ
dx̃β

)2
) 3

2

f̃β +
1√

1 +
(

dχ
dx̃β

)2

df̃β

dx̃β
= 0.

(3.2.43)
We can evaluate Eq. (3.2.43) at x̃β = 0 to get

4
d2χ

dx̃βdx̃β
(0)

[
∂ (µũα)

∂x̃α

]
(0) +

[
∂2 (µũα)
∂x̃β∂x̃β

]
(0) +

[
∂2

(
µũβ

)

∂x̃α∂x̃β

]
(0)

+
d2χ

dx̃βdx̃β
(0)f̃α(0) +

df̃β

dx̃β
(0) = 0.

(3.2.44)

From the incompressibility condition, we know that

∂ (µũα)
∂x̃α

+
∂

(
µũβ

)

∂x̃β
= 0, x ∈ Ω+, or Ω−. (3.2.45)

Taking the derivative of Eq. (3.2.45) with respect to x̃α we get

∂2 (µũα)
∂x̃α∂x̃α

+
∂2

(
µũβ

)

∂x̃α∂x̃β
= 0, x ∈ Ω+, or Ω−. (3.2.46)
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Therefore from Eqs. (3.2.44, 3.2.45, 3.2.46) we get

[
∂2 (µũα)
∂x̃α∂x̃α

]
(0) = −4

d2χ

dx̃βdx̃β
(0)

[
∂

(
µũβ

)

∂x̃β

]
(0) +

[
∂2 (µũα)
∂x̃β∂x̃β

]
(0)

+
d2χ

dx̃βdx̃β
(0)f̃α(0) +

df̃β

dx̃β
(0).

(3.2.47)

From Eqs. (3.2.42, 3.2.47), we have

[
∂p

∂n

]
(0) = −4

d2χ

dx̃βdx̃β
(0)

[
∂

(
µũβ

)

∂x̃β

]
(0) + 2

[
∂2 (µũα)
∂x̃β∂x̃β

]
(0)

+
d2χ

dx̃βdx̃β
(0)f̃α(0) +

df̃β

dx̃β
(0) + [g̃α] (0).

(3.2.48)

Using Lemma 3.2.5 and Eq. (3.2.20), we get

[
∂p

∂n

]
(0) = −4

d2χ

dx̃βdx̃β
(0)

(
A−1

)β

j

d
[
µuj

]

dx̃β
(0) + 2

(
A−1

)α

j

(
d2

[
µuj

]

dx̃βdx̃β
(0)− d2χ

dx̃βdx̃β
(0)

[
∂

(
µuj

)

∂x̃α

]
(0)

)

+
d2χ

dx̃βdx̃β
(0)f̃α(0) +

df̃β

dx̃β
(0) + [g̃α] (0).

(3.2.49)
From Eq. (3.2.45), Eq. (3.2.49) is simplified as

[
∂p

∂n

]
(0) = −2

d2χ

dx̃βdx̃β
(0)

(
A−1

)β

j

d
[
µuj

]

dx̃β
(0) + 2

(
A−1

)α

j

d2
[
µuj

]

dx̃βdx̃β
(0)

+
d2χ

dx̃βdx̃β
(0)f̃α(0) +

df̃β

dx̃β
(0) + [g̃α] (0).

(3.2.50)

Suppressing the sign for evaluation at the local origin, we reach Eq. (3.2.38).

To summarize, for 2D Stokes equations with an interface, we have derived the jump

conditions

[
∂

(
µui

)

∂n

]
, [p] and

[
∂p

∂n

]
as follows:
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


[
∂ (µuα)

∂n

]

[
∂

(
µuβ

)

∂n

]




= A




− (
A−1

)β

j

d
[
µuj

]

dx̃β

− (
A−1

)α

j

d
[
µuj

]

dx̃β
− f̃β




,

[p] = −2
(
A−1

)β

j

d
[
µuj

]

dx̃β
+ f̃α,

[
∂p

∂n

]
= −2

d2χ

dx̃βdx̃β

(
A−1

)β

j

d
[
µuj

]

dx̃β
+ 2

(
A−1

)α

j

d2
[
µuj

]

dx̃βdx̃β

+
d2χ

dx̃βdx̃β
f̃α +

df̃β

dx̃β
+ [g̃α] .

(3.2.51)

3.2.3 3D Geometry

Let x∗ ∈ Γ where Γ is the interface surface. We use a local Cartesian coordinate system(
x̃α, x̃β, x̃γ

)
introduced in Chapter 3.1. Note that the origin of the local coordinates is x∗

and the three local coordinate axes are formed by normal vector ni and two tangent vectors
τ i and ηi of the interface Γ at point x∗. In the local coordinates

(
x̃α, x̃β, x̃γ

)
, the interface

surface Γ may be parameterized in the neighborhood of the local origin 0̃ as

Γ =
(
χ

(
x̃β, x̃γ

)
, x̃β, x̃γ

)
. (3.2.52)

The two unit tangential directions are given by

τ̃ =
1√

1 +
(

∂χ
∂x̃β

)2

(
∂χ

∂x̃β
, 1, 0

)
(3.2.53)

and

η̃ =
1√

1 +
(

∂χ
∂x̃γ

)2

(
∂χ

∂x̃γ
, 0, 1

)
. (3.2.54)

The unit normal direction is

ñ =
τ̃ × η̃

‖τ̃ × η̃‖ =
1√

1 +
(

∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
1,− ∂χ

∂x̃β
,− ∂χ

∂x̃γ

)
. (3.2.55)

Most results we have shown for 2D geometry are also true for 3D geometry with few
modifications.
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Lemma 3.2.10.

∂
(
µui

)

∂n
=

∂
(
µui

)

∂ñ
, i = α, β, γ; x ∈ Ω+ or Ω−. (3.2.56)

Proof. See Lemma 3.2.1.

Lemma 3.2.11.
∂ui

∂xi
=

∂ũi

∂x̃i
= 0, x ∈ Ω+ or Ω−. (3.2.57)

Proof. See Lemma 3.2.3.

Lemma 3.2.12.
[

∂
(
µui

)

∂n

]
(0, 0) =

[
∂

(
µui

)

∂x̃α

]
(0, 0), i = α, β, γ; x ∈ Ω+ or Ω−. (3.2.58)

Proof.
[

∂
(
µui

)

∂n

]
(0, 0) =

[
∂

(
µui

)

∂ñ

]
(0, 0)

=




1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
∂

(
µui

)

∂x̃α
− ∂

(
µui

)

∂x̃β

∂χ

∂x̃β
− ∂

(
µui

)

∂x̃γ

∂χ

∂x̃γ

)

 (0, 0)

=

[
∂

(
µui

)

∂x̃α

]
(0, 0).

(3.2.59)

Lemma 3.2.13. [
∂

(
µui

)

∂x̃β

]
(0, 0) =

∂
[
µui

]

∂x̃β
(0, 0), i = α, β, γ. (3.2.60)
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Proof.

∂
[
µui

]

∂x̃β
(0, 0) =

∂
(
µui

)+

Γ

∂x̃β
(0, 0)− ∂

(
µui

)−
Γ

∂x̃β
(0, 0)

=

(
∂

(
µui

)

∂x̃α

)+

Γ

(0, 0)
∂χ

∂x̃β
(0, 0) +

(
∂

(
µui

)

∂x̃β

)+

Γ

(0, 0)

−
((

∂
(
µui

)

∂x̃α

)−

Γ

(0, 0)
∂χ

∂x̃β
(0, 0) +

(
∂

(
µui

)

∂x̃β

)−

Γ

(0, 0)

)

=

[
∂

(
µui

)

∂x̃β

]
(0, 0).

(3.2.61)

Remark 3.2.14. Similarly, we have
[

∂
(
µui

)

∂x̃γ

]
(0, 0) =

∂
[
µui

]

∂x̃γ
(0, 0), i = α, β, γ. (3.2.62)

Remark 3.2.15. For higher order derivatives, we have

∂2
[
µui

]

∂x̃β∂x̃β
(0, 0) =

[
∂2

(
µui

)

∂x̃β∂x̃β

]
(0, 0) +

[
∂

(
µui

)

∂x̃α

]
(0, 0)

∂2χ

∂x̃β∂x̃β
(0, 0), i = α, β, γ (3.2.63)

and

∂2
[
µui

]

∂x̃γ∂x̃γ
(0, 0) =

[
∂2

(
µui

)

∂x̃γ∂x̃γ

]
(0, 0) +

[
∂

(
µui

)

∂x̃α

]
(0, 0)

∂2χ

∂x̃γ∂x̃γ
(0, 0), i = α, β, γ. (3.2.64)

Note that

[
∂

(
µui

)

∂x̃α

]
(0, 0) will be derived in the following theorem.

Theorem 3.2.16. For two-phase Stokes equations in 3D, given an arbitrary point x∗ ∈ Γ,

the following jump conditions for
∂

(
µui

)

∂n
hold at point x∗:




[
∂ (µuα)

∂n

]

[
∂

(
µuβ

)

∂n

]

[
∂ (µuγ)

∂n

]




= A




− (
A−1

)β

j

∂
[
µuj

]

∂x̃β
− (

A−1
)γ

j

∂
[
µuj

]

∂x̃γ

− (
A−1

)α

j

∂
[
µuj

]

∂x̃β
− f̃β

− (
A−1

)α

j

∂
[
µuj

]

∂x̃γ
− f̃γ




(3.2.65)

where A is the local coordinate transformation matrix.
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Proof. We can multiply τ i and ηi separately at both sides of Eq. (3.2.5) and use coordinate
transformation to get [

µ

(
∂ũi

∂ñ
τ̃ i +

∂ũj

∂τ̃
ñj

)]
+ f̃ iτ̃ i = 0 (3.2.66)

and [
µ

(
∂ũi

∂ñ
η̃i +

∂ũj

∂η̃
ñj

)]
+ f̃ iη̃i = 0. (3.2.67)

Plugging Eqs. (3.2.53, 3.2.55) into Eq. (3.2.66) we get
[

1√
1 +

(
∂χ
∂x̃β

)2

(
∂ (µũα)

∂ñ

∂χ

∂x̃β
+

∂
(
µũβ

)

∂ñ

)
+

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
∂ (µũα)

∂τ̃
− ∂

(
µũβ

)

∂τ̃

∂χ

∂x̃β
− ∂ (µũγ)

∂τ̃

∂χ

∂x̃γ

)]
+

1√
1 +

(
∂χ
∂x̃β

)2

(
f̃α ∂χ

∂x̃β
+ f̃β

)
= 0.

(3.2.68)
We can evaluate Eq. (3.2.68) at

(
x̃β, x̃γ

)
= (0, 0) to get

[
∂

(
µũβ

)

∂ñ
+

∂ (µũα)
∂τ̃

]
(0, 0) + f̃β(0, 0) = 0. (3.2.69)

Then we can expand the directional derivatives in Eq. (3.2.69) to get
[

∂
(
µũβ

)

∂x̃α
+

∂ (µũα)
∂x̃β

]
(0, 0) + f̃β(0, 0) = 0. (3.2.70)

Plugging Eqs. (3.2.54, 3.2.55) into Eq. (3.2.67) we get
[

1√
1 +

(
∂χ
∂x̃γ

)2

(
∂ (µũα)

∂ñ

∂χ

∂x̃γ
+

∂ (µũγ)
∂ñ

)
+

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
∂ (µũα)

∂η̃
− ∂

(
µũβ

)

∂η̃

∂χ

∂x̃β
− ∂ (µũγ)

∂η̃

∂χ

∂x̃γ

)]
+

1√
1 +

(
∂χ
∂x̃γ

)2

(
f̃α ∂χ

∂x̃γ
+ f̃γ

)
= 0.

(3.2.71)
We can evaluate Eq. (3.2.71) at

(
x̃β, x̃γ

)
= (0, 0) to get

[
∂ (µũγ)

∂ñ
+

∂ (µũα)
∂η̃

]
(0, 0) + f̃γ(0, 0) = 0. (3.2.72)

Then we can expand the directional derivatives in Eq. (3.2.72) to get
[
∂ (µũγ)

∂x̃α
+

∂ (µũα)
∂x̃γ

]
(0, 0) + f̃γ(0, 0) = 0. (3.2.73)
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From Lemma 3.2.11 we know that [
∂

(
µũi

)

∂x̃i

]
(0, 0) = 0. (3.2.74)

Eqs. (3.2.70, 3.2.73, 3.2.74) form a system of equations for

[
∂

(
µui

)

∂x̃α

]
(0, 0) and the coef-

ficient matrix is A−1 which is non-singular. By solving this system of equations, we can
get




[
∂ (µuα)

∂x̃α

]
(0, 0)

[
∂

(
µuβ

)

∂x̃α

]
(0, 0)

[
∂ (µuγ)

∂x̃α

]
(0, 0)




= A




−
[
(
A−1

)β

j

∂
(
µuj

)

∂x̃β

]
(0, 0)−

[
(
A−1

)γ

j

∂
(
µuj

)

∂x̃γ

]
(0, 0)

−
[
(
A−1

)α

j

∂
(
µuj

)

∂x̃β

]
(0, 0)− f̃β(0, 0)

−
[
(
A−1

)α

j

∂
(
µuj

)

∂x̃γ

]
(0, 0)− f̃γ(0, 0)




.

(3.2.75)
Using Lemma 3.2.12, 3.2.13 and suppress the sign for evaluation at the local origin, we
reach Eq. (3.2.65).

For pressure p, we have the following result:

Theorem 3.2.17. For two-phase Stokes equations in 3D, given an arbitrary point x∗ ∈ Γ,
the following jump condition for pressure p holds at point x∗:

[p] = −2
(
A−1

)β

j

∂
[
µuj

]

∂x̃β
− 2

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ
+ f̃α. (3.2.76)

Proof. We can multiply ni at both sides of Eq. (3.2.5) and use coordinate transformation
to get

[p] = 2

[
∂

(
µũi

)

∂ñ
ñi

]
+ f̃ iñi. (3.2.77)

Plugging Eq. (3.2.55) into Eq. (3.2.77) we get

[p] = 2




1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
∂ (µũα)

∂ñ
− ∂

(
µũβ

)

∂ñ

∂χ

∂x̃β
− ∂ (µũγ)

∂ñ

∂χ

∂x̃γ

)



+
1√

1 +
(

∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
f̃α − f̃β ∂χ

∂x̃β
− f̃γ ∂χ

∂x̃γ

)
.

(3.2.78)
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We can evaluate Eq. (3.2.78) at
(
x̃β, x̃γ

)
= (0, 0) to get

[p] (0, 0) = 2
[
∂ (µũα)

∂ñ

]
(0, 0) + f̃α(0, 0). (3.2.79)

Then we can expand the directional derivatives in Eq. (3.2.79) and use the incompressibility
to get

[p] (0, 0) = 2
[
∂ (µũα)

∂x̃α

]
(0, 0) + f̃α(0, 0)

= −2

[
∂

(
µũβ

)

∂x̃β

]
(0, 0)− 2

[
∂ (µũγ)

∂x̃γ

]
(0, 0) + f̃α(0, 0).

(3.2.80)

From Lemma 3.2.13, we have

[p] (0, 0) = −2
∂

[
µũβ

]

∂x̃β
(0, 0)− 2

∂ [µũγ ]
∂x̃γ

(0, 0) + f̃α(0, 0). (3.2.81)

Using coordinate transformation rule and suppress the sign for evaluation at the local origin,
we reach Eq. (3.2.76).

The jump condition for the normal derivative of pressure p is shown here:

Theorem 3.2.18. For two-phase Stokes equations in 3D, given an arbitrary point x∗ ∈ Γ,

the following jump condition for
∂p

∂n
holds at point x∗:

[
∂p

∂n

]
= −2

∂2χ

∂x̃β∂x̃β

(
A−1

)β

j

∂
[
µuj

]

∂x̃β
− 2

∂2χ

∂x̃γ∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ

− 2
∂2χ

∂x̃β∂x̃γ

(
A−1

)β

j

∂
[
µuj

]

∂x̃γ
− 2

∂2χ

∂x̃β∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃β

+ 2
(
A−1

)α

j

∂2
[
µuj

]

∂x̃β∂x̃β
+ 2

(
A−1

)α

j

∂2
[
µuj

]

∂x̃γ∂x̃γ

+
(

∂2χ

∂x̃β∂x̃β
+

∂2χ

∂x̃γ∂x̃γ

)
f̃α +

∂f̃β

∂x̃β
+

∂f̃γ

∂x̃γ
+ [g̃α] .

(3.2.82)

Proof. Multiply ni at both sides of Eq. (3.2.1) for x ∈ Ω+ and x ∈ Ω− to get
[

∂p

∂n

]
=

[
∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
ni

]
+

[
gini

]

=

[
∂2

(
µui

)

∂xj∂xj
ni

]
+

[
gini

]
.

(3.2.83)

Recast Eq. (3.2.83) in x̃i coordinate to get
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[
∂p

∂n

]
=

[
∂2

(
µũi

)

∂x̃j∂x̃j
ñi

]
+

[
g̃iñi

]

=

[(
∂2

(
µũi

)

∂x̃α∂x̃α
+

∂2
(
µũi

)

∂x̃β∂x̃β
+

∂2
(
µũi

)

∂x̃γ∂x̃γ

)
ñi

]
+

[
g̃iñi

]
.

(3.2.84)

Plugging Eq. (3.2.55) into Eq. (3.2.84) we get

[
∂p

∂n

]
=

[
1√

1 +
(

∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
∂2 (µũα)
∂x̃α∂x̃α

+
∂2 (µũα)
∂x̃β∂x̃β

+
∂2 (µũα)
∂x̃γ∂x̃γ

−
(

∂2
(
µũβ

)

∂x̃α∂x̃α
+

∂2
(
µũβ

)

∂x̃β∂x̃β
+

∂2
(
µũβ

)

∂x̃γ∂x̃γ

)
∂χ

∂x̃β

−
(

∂2 (µũγ)
∂x̃α∂x̃α

+
∂2 (µũγ)
∂x̃β∂x̃β

+
∂2 (µũγ)
∂x̃γ∂x̃γ

)
∂χ

∂x̃γ

)]

+

[
1√

1 +
(

∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
g̃α − g̃β ∂χ

∂x̃β
− g̃γ ∂χ

∂x̃γ

)]
.

(3.2.85)

We can evaluate Eq. (3.2.85) at
(
x̃β, x̃γ

)
= (0, 0) to get

[
∂p

∂n

]
(0, 0) =

[
∂2 (µũα)
∂x̃α∂x̃α

+
∂2 (µũα)
∂x̃β∂x̃β

+
∂2 (µũα)
∂x̃γ∂x̃γ

]
(0, 0) + [g̃α] (0, 0). (3.2.86)

Now we take the derivative with respect to x̃β of both sides of Eq. (3.2.68) and evaluate at(
x̃β, x̃γ

)
= (0, 0) to get

2
∂2χ

∂x̃β∂x̃β
(0, 0)

[
∂ (µũα)

∂x̃α

]
(0, 0) +

[
∂2 (µũα)
∂x̃β∂x̃β

]
(0, 0) +

[
∂2

(
µũβ

)

∂x̃α∂x̃β

]
(0, 0)

− 2
∂2χ

∂x̃β∂x̃β
(0, 0)

[
∂

(
µũβ

)

∂x̃β

]
(0, 0)− ∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂

(
µũβ

)

∂x̃γ

]
(0, 0)

− ∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂ (µũγ)

∂x̃β

]
(0, 0) +

∂2χ

∂x̃β∂x̃β
(0, 0)f̃α(0, 0) +

∂f̃β

∂x̃β
(0, 0) = 0.

(3.2.87)

Next we take the derivative with respect to x̃γ of both sides of Eq. (3.2.71) and evaluate
at

(
x̃β, x̃γ

)
= (0, 0) to get
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2
∂2χ

∂x̃γ∂x̃γ
(0, 0)

[
∂ (µũα)

∂x̃α

]
(0, 0) +

[
∂2 (µũα)
∂x̃γ∂x̃γ

]
(0, 0) +

[
∂2 (µũγ)
∂x̃α∂x̃γ

]
(0, 0)

− 2
∂2χ

∂x̃γ∂x̃γ
(0, 0)

[
∂ (µũγ)

∂x̃γ

]
(0, 0)− ∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂ (µũγ)

∂x̃β

]
(0, 0)

− ∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂

(
µũβ

)

∂x̃γ

]
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)f̃α(0, 0) +

∂f̃γ

∂x̃γ
(0, 0) = 0.

(3.2.88)

From the incompressibility condition, we know that

∂ (µũα)
∂x̃α

+
∂

(
µũβ

)

∂x̃β
+

∂ (µũγ)
∂x̃γ

= 0, x ∈ Ω+, or Ω−. (3.2.89)

Taking the derivative of Eq. (3.2.89) with respect to x̃α we get

∂2 (µũα)
∂x̃α∂x̃α

+
∂2

(
µũβ

)

∂x̃α∂x̃β
+

∂2 (µũγ)
∂x̃α∂x̃γ

= 0, x ∈ Ω+, or Ω−. (3.2.90)

Therefore from Eqs. (3.2.90, 3.2.87, 3.2.88) we get

[
∂2 (µũα)
∂x̃α∂x̃α

]
(0, 0) = −2

(
2

∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

)[
∂

(
µũβ

)

∂x̃β

]
(0, 0)

− 2
(

∂2χ

∂x̃β∂x̃β
(0, 0) + 2

∂2χ

∂x̃γ∂x̃γ
(0, 0)

)[
∂ (µũγ)

∂x̃γ

]
(0, 0)

+
[
∂2 (µũα)
∂x̃β∂x̃β

]
(0, 0) +

[
∂2 (µũα)
∂x̃γ∂x̃γ

]
(0, 0)

− 2
∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂

(
µũβ

)

∂x̃γ

]
(0, 0)− 2

∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂ (µũγ)

∂x̃β

]
(0, 0)

+
(

∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

)
f̃α(0, 0) +

∂f̃β

∂x̃β
(0, 0) +

∂f̃γ

∂x̃γ
(0, 0).

(3.2.91)
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From Eqs. (3.2.86, 3.2.91), we have

[
∂p

∂n

]
(0, 0) = −2

(
2

∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

) [
∂

(
µũβ

)

∂x̃β

]
(0, 0)

− 2
(

∂2χ

∂x̃β∂x̃β
(0, 0) + 2

∂2χ

∂x̃γ∂x̃γ
(0, 0)

) [
∂ (µũγ)

∂x̃γ

]
(0, 0)

+ 2
[
∂2 (µũα)
∂x̃β∂x̃β

]
(0, 0) + 2

[
∂2 (µũα)
∂x̃γ∂x̃γ

]
(0, 0)

− 2
∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂

(
µũβ

)

∂x̃γ

]
(0, 0)− 2

∂2χ

∂x̃β∂x̃γ
(0, 0)

[
∂ (µũγ)

∂x̃β

]
(0, 0)

+
(

∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

)
f̃α(0, 0) +

∂f̃β

∂x̃β
(0, 0) +

∂f̃γ

∂x̃γ
(0, 0) + [g̃α] (0, 0).

(3.2.92)
Using Lemma 3.2.13 and Eq. (3.2.92), we get

[
∂p

∂n

]
(0, 0) = −2

(
2

∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

) (
A−1

)β

j

∂
[
µuj

]

∂x̃β
(0, 0)

− 2
(

∂2χ

∂x̃β∂x̃β
(0, 0) + 2

∂2χ

∂x̃γ∂x̃γ
(0, 0)

) (
A−1

)γ

j

∂
[
µuj

]

∂x̃γ
(0, 0)

+ 2
(
A−1

)α

j

(
∂2

[
µuj

]

∂x̃β∂x̃β
(0, 0)− ∂2χ

∂x̃β∂x̃β
(0, 0)

[
∂

(
µuj

)

∂x̃α

]
(0, 0)

)

+ 2
(
A−1

)α

j

(
∂2

[
µuj

]

∂x̃γ∂x̃γ
(0, 0)− ∂2χ

∂x̃γ∂x̃γ
(0, 0)

[
∂

(
µuj

)

∂x̃α

]
(0, 0)

)

− 2
∂2χ

∂x̃β∂x̃γ
(0, 0)

(
A−1

)β

j

∂
[
µuj

]

∂x̃γ
(0, 0)− 2

∂2χ

∂x̃β∂x̃γ
(0, 0)

(
A−1

)γ

j

∂
[
µuj

]

∂x̃β
(0, 0)

+
(

∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

)
f̃α(0, 0) +

∂f̃β

∂x̃β
(0, 0) +

∂f̃γ

∂x̃γ
(0, 0) + [g̃α] (0, 0).

(3.2.93)
Using Eq. (3.2.89) and suppressing the sign for evaluation at the local origin, we reach Eq.
(3.2.82).

Remark 3.2.19. Notice that in Eq. (3.2.82), we have

− 2
∂2χ

∂x̃β∂x̃β

(
A−1

)β

j

∂
[
µuj

]

∂x̃β
− 2

∂2χ

∂x̃γ∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ
− 2

∂2χ

∂x̃β∂x̃γ

(
A−1

)β

j

∂
[
µuj

]

∂x̃γ

− 2
∂2χ

∂x̃β∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃β

(3.2.94)

39



which equals the trace of the following matrix product

−2




∂2χ

∂x̃β∂x̃β

∂2χ

∂x̃β∂x̃γ

∂2χ

∂x̃β∂x̃γ

∂2χ

∂x̃γ∂x̃γ







(
A−1

)β

j

∂
[
µuj

]

∂x̃β

(
A−1

)β

j

∂
[
µuj

]

∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃β

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ


 . (3.2.95)

To summarize, for 3D Stokes equations with interface, we have derived the jump condi-

tions

[
∂

(
µui

)

∂n

]
, [p] and

[
∂p

∂n

]
as follows:




[
∂ (µuα)

∂n

]

[
∂

(
µuβ

)

∂n

]

[
∂ (µuγ)

∂n

]




= A




− (
A−1

)β

j

∂
[
µuj

]

∂x̃β
− (

A−1
)γ

j

∂
[
µuj

]

∂x̃γ

− (
A−1

)α

j

∂
[
µuj

]

∂x̃β
− f̃β

− (
A−1

)α

j

∂
[
µuj

]

∂x̃γ
− f̃γ




,

[p] = −2
(
A−1

)β

j

∂
[
µuj

]

∂x̃β
− 2

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ
+ f̃α,

[
∂p

∂n

]
= −2

∂2χ

∂x̃β∂x̃β

(
A−1

)β

j

∂
[
µuj

]

∂x̃β
− 2

∂2χ

∂x̃γ∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ

− 2
∂2χ

∂x̃β∂x̃γ

(
A−1

)β

j

∂
[
µuj

]

∂x̃γ
− 2

∂2χ

∂x̃β∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃β

+ 2
(
A−1

)α

j

∂2
[
µuj

]

∂x̃β∂x̃β
+ 2

(
A−1

)α

j

∂2
[
µuj

]

∂x̃γ∂x̃γ

+
(

∂2χ

∂x̃β∂x̃β
+

∂2χ

∂x̃γ∂x̃γ

)
f̃α +

∂f̃β

∂x̃β
+

∂f̃γ

∂x̃γ
+ [g̃α] .

(3.2.96)
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Chapter 4

Immersed Interface Method for Elliptic

Differential Equation with Interfaces

We can solve the Stokes equations for two viscous tissues by solving an elliptic equation
with interfaces using the Immersed Interface Method (IIM). Although the IIM scheme for
both 2D and 3D elliptic problems can be found in the literature [26, 24, 27, 7], here we
show the derivation of the scheme with tensor notation and some new results.

We begin by considering the non-homogeneous elliptic equation in the invariant form

∇2u + λu + f = 0 (4.0.1)

with the constant λ ≤ 0. If λ = 0, we get the Poisson equation

∇2u + f = 0 (4.0.2)

and the Laplace equation is a special case of the Poisson equation with f = 0. Here f is a
known function of spatial variable x.

4.1 2D Geometry

The 2D elliptic equation is

∂2u

∂xα∂xα
+

∂2u

∂xβ∂xβ
+ λu + f = 0. (4.1.1)

We consider a rectangular domain Ω = [xα
b , xα

e ] × [xβ
b , xβ

e ] with a curved interface Γ ⊂ Ω.
Γ divides Ω into Ω+ outside the interface and Ω− inside the interface. For example, see
Fig. 4.1 for a case where an open curve cannot be used for Γ since Ω+ and Ω− are not well
defined. On the other hand, the interface curve Γ can be either simply connected, or not
simply connected; see Fig. 4.1 for examples.
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Figure 4.1: An open curve cannot be used for the interface Γ, since Ω+ and Ω− are not
defined (a). Ω− (shaded region) can be either simply connected (b) or not simply connected
(c,d).

42



Because u might be discontinuous or non-smooth across the interface Γ, it is more
convenient to express u in terms of smooth functions in Ω+ and Ω− separately. Namely,

u =

{
u+, x ∈ Ω+,

u−, x ∈ Ω−.
(4.1.2)

Similar notations are used for other discontinuous or non-smooth quantities. Eq. (4.1.1)
now becomes

(
∂2u

∂xα∂xα

)+

+
(

∂2u

∂xβ∂xβ

)+

+ λ+u+ + f+ = 0, x ∈ Ω+ (4.1.3)

and (
∂2u

∂xα∂xα

)−
+

(
∂2u

∂xβ∂xβ

)−
+ λ−u− + f− = 0, x ∈ Ω−. (4.1.4)

We also assume that the following two jump conditions are known:

[u] = w,

[
∂u

∂n

]
= v. (4.1.5)

Note that we have (
∂2u

∂xα∂xα

)+

=
∂2u+

∂xα∂xα
(4.1.6)

etc. Without loss of generality, we define

u(x), x ∈ Γ (4.1.7)

as the limit of u on the interface from the side of Ω+, which may be written as

u(x) = u+
Γ , x ∈ Γ. (4.1.8)

In other words, u (x) is defined to be continuous from the side of Ω+. The notation u−Γ
simply means the limit of u on the interface from the side of Ω−.

The domain Ω is discretized as

Ωh =
{(

xα
i = xα

b + ih, xβ
j = xβ

b + jh
) ∣∣∣i = 0, 1, . . . , m; j = 0, 1, · · · , n

}
(4.1.9)

using a uniform grid width h. A grid point
(
xα

i , xβ
j

)
, which is on one side of the interface Γ,

is called a regular grid point if the difference stencil centered at
(
xα

i , xβ
j

)
contains no grid

points on the other side of the interface. Intuitively, at those majority regular grid points,
if we use a finite difference scheme such as the five-point stencil

Ui,j−1 + Ui,j+1 + Ui−1,j + Ui+1,j − 4Ui,j

h2
+ λUi,j + fi,j = 0, (4.1.10)
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using Taylor expansion at grid point
(
xα

i , xβ
j

)
, we know that the local truncation error for

(xα
i , xβ

j ) ∈ Ω+ is

T =
u+

i,j−1 + u+
i,j+1 + u+

i−1,j + u+
i+1,j − 4u+

i,j

h2
+ λ+u+

i,j + f+
i,j

=
(

∂2u

∂xα∂xα

)+

(xα
i , xβ

j ) +
(

∂2u

∂xβ∂xβ

)+

(xα
i , xβ

j ) + λ+u+
i,j + f+

i,j + O(h2)

= O(h2).

(4.1.11)

The same conclusion holds for regular grid points in Ω−.

At those minority irregular grid points either close to or on the interface Γ, we hope that
the same second order scheme still works. To facilitate derivations, we locate an interface
point x∗ ∈ Γ close to the five stencil grid points and define a local Cartesian coordinate
system (x̃α, x̃β) centered at x∗ as

x̃i =
(
A−1

)i

j

(
xj − xj

∗
)

(4.1.12)

where the coordinate transformation matrix is

A =

(
nα(x∗) τα(x∗)
nβ(x∗) τβ(x∗)

)
. (4.1.13)

Here ni(x∗) is the unit normal direction pointing from Ω− to Ω+, τ i(x∗) is the unit tan-
gential direction counter-clockwise of ni(x∗). See Fig. 4.2 for an illustration of the change
of coordinates.

Lemma 4.1.1.
∂2u

∂x̃α∂x̃α
+

∂2u

∂x̃β∂x̃β
+ λu + f = 0. (4.1.14)

Proof.
∂2u

∂x̃α∂x̃α
+

∂2u

∂x̃β∂x̃β
=

∂2u

∂x̃i∂x̃i
=

∂

∂x̃i

(
(A)l

i

∂u

∂xl

)

= (A)l
i (A)k

i

∂2u

∂xk∂xl

=
(
A−1

)i

l
(A)k

i

∂2u

∂xk∂xl

= δkl
∂2u

∂xk∂xl
=

∂2u

∂xk∂xk
.

(4.1.15)

So
∂2u

∂x̃α∂x̃α
+

∂2u

∂x̃β∂x̃β
+ λu + f =

∂2u

∂xα∂xα
+

∂2u

∂xβ∂xβ
+ λu + f = 0. (4.1.16)
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Figure 4.2: Given a point x∗ ∈ Γ, a local Cartesian coordinate system
(
x̃α, x̃β

)
is built

using x∗ as the origin, the unit normal vector n and the unit tangential vector τ at that
point as the two coordinate axes. The normal vector n points from Ω− to Ω+ and the
tangent vector τ is counter-clockwise of n.

Remark 4.1.2. It is also possible to prove this lemma using the trace invariance under a
similarity transformation.

Let us consider an irregular grid point (xα
i , xβ

j ) ∈ Ω+, whose coordinates in the local

coordinate system
(
x̃α, x̃β

)
is denoted as (x̃α

i,j , x̃
β
i,j). Now the truncation error is

T =
ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4u+

i,j

h2
+ λ+u+

i,j + f+
i,j . (4.1.17)

For the other four stencil grid points, without loss of generality, we assume that only

(x̃α
i,j−1, x̃

β
i,j−1) ∈ Ω−. (4.1.18)

See Fig. 4.3 for an example of the difference stencil at the irregular grid point
(
xα

i , xβ
j

)
.

Now it is determined that

T =
u−i,j−1 + u+

i,j+1 + u+
i−1,j + u+

i+1,j − 4u+
i,j

h2
+ λ+u+

i,j + f+
i,j . (4.1.19)

Instead of applying Taylor expansion at grid point (x̃α
i,j , x̃

β
i,j), we can expand at the interface

point x∗, or equivalently the origin 0̃ in the local coordinates
(
x̃α, x̃β

)
. Note that the
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Figure 4.3: An example of the five-point stencil centered at an irregular grid point(
xα

i , xβ
j

)
∈ Ω+ with only

(
xα

i , xβ
j−1

)
∈ Ω−.

interface Γ is parameterized in the local coordinates as

Γ =
(
χ(x̃β), x̃β

)
(4.1.20)

and the limit on the interface for a 2D function from the side of either Ω+ or Ω− is param-
eterized only by x̃β. For example,

u−i,j−1 = u−Γ (0) +

(
x̃α

i,j−1

(
∂u

∂x̃α

)−

Γ

(0) + x̃β
i,j−1

(
∂u

∂x̃β

)−

Γ

(0)

)

+
1
2

(
(
x̃α

i,j−1

)2
(

∂2u

∂x̃α∂x̃α

)−

Γ

(0) + 2x̃α
i,j−1x̃

β
i,j−1

(
∂2u

∂x̃α∂x̃β

)−

Γ

(0)

+
(
x̃β

i,j−1

)2
(

∂2u

∂x̃β∂x̃β

)−

Γ

(0)

)
+ O(h3).

(4.1.21)

See Fig. 4.4 for an example of the Taylor expansion at the local coordinate system.

Note that the jump conditions (4.1.5) locally can be expressed as

[u] = wΓ(x̃β), or u+
Γ

(
χ(x̃β), x̃β

)
− u−Γ

(
χ(x̃β), x̃β

)
= wΓ(x̃β) (4.1.22)
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Figure 4.4: An example of the Taylor expansion at the local coordinate system
(
x̃α, x̃β

)
.

Note that the local origin must be on the interface Γ and close to the five stencil grid points.

and
[
∂u

∂n

]
= vΓ(x̃β), or

(
∂u

∂n

)+

Γ

(
χ(x̃β), x̃β

)
−

(
∂u

∂n

)−

Γ

(
χ(x̃β), x̃β

)
= vΓ(x̃β). (4.1.23)

We can take the derivative of Eq. (4.1.22) with respect to x̃β to get
(

∂u

∂x̃α

)+

Γ

(
dχ

dx̃β

)

Γ

+
(

∂u

∂x̃β

)+

Γ

−
((

∂u

∂x̃α

)−

Γ

(
dχ

dx̃β

)

Γ

+
(

∂u

∂x̃β

)−

Γ

)
=

(
dw

dx̃β

)

Γ

(4.1.24)

or in compact form [
∂u

∂x̃α

dχ

dx̃β
+

∂u

∂x̃β

]
=

(
dw

dx̃β

)

Γ

. (4.1.25)

Since
dχ

dx̃β
(0) = 0, (4.1.26)

Eq. (4.1.25) evaluated at the local origin 0̃ is
[

∂u

∂x̃β

]
(0) =

(
dw

dx̃β

)

Γ

(0) . (4.1.27)

Then we take the derivative of Eq. (4.1.24) with respect to x̃β to get:
[

∂u

∂x̃α

d2χ

dx̃βdx̃β
+

∂2u

∂x̃α∂x̃α

(
dχ

dx̃β

)2

+ 2
∂2u

∂x̃α∂x̃β

dχ

dx̃β
+

∂2u

∂x̃β∂x̃β

]
=

(
d2w

dx̃βdx̃β

)

Γ

(4.1.28)
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whose value at the local origin 0̃ is
[

∂u

∂x̃α

d2χ

dx̃βdx̃β
+

∂2u

∂x̃β∂x̃β

]
(0) =

(
d2w

dx̃βdx̃β

)

Γ

(0) . (4.1.29)

For the jump condition
[
∂u

∂n

]
, we first introduce the following result:

Lemma 4.1.3.
∂u

∂n
=

∂u

∂ñ
. (4.1.30)

Proof.
∂u

∂ñ
=

∂u

∂x̃k
ñk

= (A)l
k

∂u

∂xl

(
A−1

)k

j
nj

= δlj
∂u

∂xl
nj =

∂u

∂xj
nj =

∂u

∂n
.

(4.1.31)

The unit tangential direction is given by

τ̃ =
1√

1 +
(

dχ
dx̃β

)2

(
dχ

dx̃β
, 1

)
(4.1.32)

and the unit normal direction is

ñ =
1√

1 +
(

dχ
dx̃β

)2

(
1,− dχ

dx̃β

)
. (4.1.33)

Note that
∂u

∂ñ
=

∂u

∂x̃i
ñi

=
∂u

∂x̃α

1√
1 +

(
dχ
dx̃β

)2
− ∂u

∂x̃β

1√
1 +

(
dχ
dx̃β

)2

dχ

dx̃β
. (4.1.34)

So from Lemma 4.1.3 and Eq. (4.1.23) we have



∂u

∂x̃α

1√
1 +

(
dχ
dx̃β

)2
− ∂u

∂x̃β

1√
1 +

(
dχ
dx̃β

)2

dχ

dx̃β


 = vΓ (4.1.35)
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whose value at the local origin 0̃ is
[

∂u

∂x̃α

]
(0) = vΓ (0) . (4.1.36)

We can take the derivative of Eq. (4.1.23) or Eq. (4.1.35) with respect to x̃β to get



1√
1 +

(
dχ
dx̃β

)2

(
∂2u

∂x̃α∂x̃α

dχ

dx̃β
+

(
1−

(
dχ

dx̃β

)2
)

∂2u

∂x̃α∂x̃β
− ∂2u

∂x̃β∂x̃β

dχ

dx̃β
− ∂u

∂x̃β

d2χ

dx̃βdx̃β

)

− 1
(

1 +
(

dχ
dx̃β

)2
)3/2

dχ

dx̃β

d2χ

dx̃βdx̃β

(
∂u

∂x̃α
− ∂u

∂x̃β

dχ

dx̃β

)

 =

(
dv

dx̃β

)

Γ

(4.1.37)
whose value at the local origin 0̃ is simplified as

[
∂2u

∂x̃α∂x̃β
− ∂u

∂x̃β

d2χ

dx̃βdx̃β

]
(0) =

(
dv

dx̃β

)

Γ

(0) . (4.1.38)

To summarize, at the local origin 0̃, we have the following six jump conditions from Eqs.
(4.1.22, 4.1.27, 4.1.29, 4.1.36, 4.1.38) and Lemma 4.1.1:

[u] (0) = wΓ (0) , (4.1.39)

[
∂u

∂x̃β

]
(0) =

(
dw

dx̃β

)

Γ

(0) , (4.1.40)

[
∂u

∂x̃α

d2χ

dx̃βdx̃β
+

∂2u

∂x̃β∂x̃β

]
(0) =

(
d2w

dx̃βdx̃β

)

Γ

(0) , (4.1.41)

[
∂u

∂x̃α

]
(0) = vΓ (0) , (4.1.42)

[
∂2u

∂x̃α∂x̃β
− ∂u

∂x̃β

d2χ

dx̃βdx̃β

]
(0) =

(
dv

dx̃β

)

Γ

(0) , (4.1.43)

[
∂2u

∂x̃α∂x̃α
+

∂2u

∂x̃β∂x̃β
+ λu + f

]
(0) = 0. (4.1.44)

Lemma 4.1.4.
[λu] = u−Γ [λ] + λ+

Γ [u] . (4.1.45)
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Proof.
u−Γ [λ] + λ+

Γ [u] = u−Γ
(
λ+

Γ − λ−Γ
)

+ λ+
Γ

(
u+

Γ − u−Γ
)

= λ+
Γ u+

Γ − λ−Γ u−Γ
= [λu] .

(4.1.46)

Using algebraic manipulations and Lemma 4.1.4, we can decouple the six jump condi-
tions (4.1.39 - 4.1.44) to get:

[u] (0) = wΓ (0) , (4.1.47)

[
∂u

∂x̃α

]
(0) = vΓ (0) , (4.1.48)

[
∂u

∂x̃β

]
(0) =

(
dw

dx̃β

)

Γ

(0) , (4.1.49)

[
∂2u

∂x̃α∂x̃α

]
(0) = −

(
d2w

dx̃βdx̃β

)

Γ

(0) + vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)

− u−Γ (0) [λ] (0)− λ+
Γ (0)wΓ (0)− [f ] (0)

= −
(

d2w

dx̃βdx̃β

)

Γ

(0) + vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)

− (
u+

Γ (0)− wΓ (0)
)
[λ] (0)− λ+

Γ (0)wΓ (0)− [f ] (0) ,

(4.1.50)

[
∂2u

∂x̃β∂x̃β

]
(0) =

(
d2w

dx̃βdx̃β

)

Γ

(0)− vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0) , (4.1.51)

[
∂2u

∂x̃α∂x̃β

]
(0) =

(
dw

dx̃β

)

Γ

(0)
d2χ

dx̃βdx̃β
(0) +

(
dv

dx̃β

)

Γ

(0) . (4.1.52)
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Using the decoupled jump conditions (4.1.47 - 4.1.52), Eq. (4.1.21) becomes

u−i,j−1 = u+
Γ (0)− wΓ (0) + x̃α

i,j−1

(
∂u

∂x̃α

)+

Γ

(0)− x̃α
i,j−1vΓ (0) + x̃β

i,j−1

(
∂u

∂x̃β

)+

Γ

(0)

− x̃β
i,j−1

(
dw

dx̃β

)

Γ

(0) +
1
2

(
x̃α

i,j−1

)2
(

∂2u

∂x̃α∂x̃α

)+

Γ

(0)− 1
2

(
x̃α

i,j−1

)2
(
−

(
d2w

dx̃βdx̃β

)

Γ

(0)

+vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)− (
u+

Γ (0)− wΓ (0)
)
[λ] (0)− λ+

Γ (0)wΓ (0)− [f ] (0)
)

+ x̃α
i,j−1x̃

β
i,j−1

(
∂2u

∂x̃α∂x̃β

)+

Γ

(0)− x̃α
i,j−1x̃

β
i,j−1

((
dw

dx̃β

)

Γ

(0)
d2χ

dx̃βdx̃β
(0) +

(
dv

dx̃β

)

Γ

(0)
)

+
1
2

(
x̃β

i,j−1

)2
(

∂2u

∂x̃β∂x̃β

)+

Γ

(0)− 1
2

(
x̃β

i,j−1

)2
((

d2w

dx̃βdx̃β

)

Γ

(0)− vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)
)

+ O(h3).
(4.1.53)

We can collect terms related to jump conditions in Eq. (4.1.53) to get

u−i,j−1 = u+
Γ (0) + x̃α

i,j−1

(
∂u

∂x̃α

)+

Γ

(0) + x̃β
i,j−1

(
∂u

∂x̃β

)+

Γ

(0) +
1
2

(
x̃α

i,j−1

)2
(

∂2u

∂x̃α∂x̃α

)+

Γ

(0)

+ x̃α
i,j−1x̃

β
i,j−1

(
∂2u

∂x̃α∂x̃β

)+

Γ

(0) +
1
2

(
x̃β

i,j−1

)2
(

∂2u

∂x̃β∂x̃β

)+

Γ

(0)

−
(

wΓ (0) + x̃α
i,j−1vΓ (0) + x̃β

i,j−1

(
dw

dx̃β

)

Γ

(0) +
1
2

(
x̃α

i,j−1

)2
(
−

(
d2w

dx̃βdx̃β

)

Γ

(0)

+vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)− (
u+

Γ (0)− wΓ (0)
)
[λ] (0)− λ+

Γ (0)wΓ (0)− [f ] (0)
)

+x̃α
i,j−1x̃

β
i,j−1

((
dw

dx̃β

)

Γ

(0)
d2χ

dx̃βdx̃β
(0) +

(
dv

dx̃β

)

Γ

(0)
)

+
1
2

(
x̃β

i,j−1

)2
((

d2w

dx̃βdx̃β

)

Γ

(0)− vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)
))

+ O(h3).
(4.1.54)

Lemma 4.1.5.

x̃k
i,j−1 + x̃k

i,j+1 + x̃k
i−1,j + x̃k

i+1,j − 4x̃k
i,j = 0, k = α, β. (4.1.55)

Proof.
x̃k

i,j−1 =
(
A−1

)k

α
(xα

i − xα
∗ ) +

(
A−1

)k

β

(
xβ

j−1 − xβ
∗
)

=
(
A−1

)k

α
(xα

i − xα
∗ ) +

(
A−1

)k

β

(
xβ

j − h− xβ
∗
)

.
(4.1.56)
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So

x̃k
i,j−1 + x̃k

i,j+1 + x̃k
i−1,j + x̃k

i+1,j − 4x̃k
i,j

=
(
A−1

)k

α
(xα

i − xα
∗ + xα

i − xα
∗ + xα

i − h− xα
∗ + xα

i + h− xα
∗ − 4 (xα

i − xα
∗ ))

+
(
A−1

)k

β

(
xβ

j − h− xβ
∗ + xβ

j + h− xβ
∗ + xβ

j − xβ
∗ + xβ

j − xβ
∗ − 4

(
xβ

j − xβ
∗
))

=0.

(4.1.57)

Lemma 4.1.6.
(
x̃k

i,j−1

)2
+

(
x̃k

i,j+1

)2
+

(
x̃k

i−1,j

)2
+

(
x̃k

i+1,j

)2
− 4

(
x̃k

i,j

)2
= 2h2, k = α, β. (4.1.58)

Proof.
(
x̃k

i,j−1

)2
=

((
A−1

)k

α

)2
(xα

i − xα
∗ )

2 +
((

A−1
)k

β

)2 (
xβ

j − xβ
∗
)2

+ 2
(
A−1

)k

α

(
A−1

)k

β
(xα

i − xα
∗ )

(
xβ

j − xβ
∗
)
− 2

((
A−1

)k

β

)2
h

(
xβ

j − xβ
∗
)

+
((

A−1
)k

β

)2
h2 − 2

(
A−1

)k

α

(
A−1

)k

β
(xα

i − xα
∗ ) h

=
(
x̃k

i,j

)2
− 2

((
A−1

)k

β

)2
h

(
xβ

j − xβ
∗
)

+
((

A−1
)k

β

)2
h2

− 2
(
A−1

)k

α

(
A−1

)k

β
(xα

i − xα
∗ ) h.

(4.1.59)

So (
x̃k

i,j−1

)2
+

(
x̃k

i,j+1

)2
= 2

(
x̃k

i,j

)2
+ 2

((
A−1

)k

β

)2
h2. (4.1.60)

Similarly, (
x̃k

i−1,j

)2
+

(
x̃k

i+1,j

)2
= 2

(
x̃k

i,j

)2
+ 2

((
A−1

)k

α

)2
h2. (4.1.61)

Finally, (
x̃k

i,j−1

)2
+

(
x̃k

i,j+1

)2
+

(
x̃k

i−1,j

)2
+

(
x̃k

i+1,j

)2
− 4

(
x̃k

i,j

)2

= 2
((

A−1
)k

β

)2
h2 + 2

((
A−1

)k

α

)2
h2

= 2h2.

(4.1.62)

Lemma 4.1.7.

x̃α
i,j−1x̃

β
i,j−1 + x̃α

i,j+1x̃
β
i,j+1 + x̃α

i−1,j x̃
β
i−1,j + x̃α

i+1,j x̃
β
i+1,j − 4x̃α

i,j x̃
β
i,j = 0. (4.1.63)
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Proof.

x̃α
i,j−1x̃

β
i,j−1 = x̃α

i,j x̃
β
i,j −

(
A−1

)β

β
hx̃α

i,j −
(
A−1

)α

β
hx̃β

i,j +
(
A−1

)α

β

(
A−1

)β

β
h2. (4.1.64)

So
x̃α

i,j−1x̃
β
i,j−1 + x̃α

i,j+1x̃
β
i,j+1 = 2x̃α

i,j x̃
β
i,j + 2

(
A−1

)α

β

(
A−1

)β

β
h2. (4.1.65)

Similarly,
x̃α

i−1,j x̃
β
i−1,j + x̃α

i+1,j x̃
β
i+1,j = 2x̃α

i,j x̃
β
i,j + 2

(
A−1

)α

α

(
A−1

)β

α
h2. (4.1.66)

Finally,

x̃α
i,j−1x̃

β
i,j−1 + x̃α

i,j+1x̃
β
i,j+1 + x̃α

i−1,j x̃
β
i−1,j + x̃α

i+1,j x̃
β
i+1,j − 4x̃α

i,j x̃
β
i,j

= 2
(
A−1

)α

α

(
A−1

)β

α
h2 + 2

(
A−1

)α

β

(
A−1

)β

β
h2

= 0.

(4.1.67)

By expanding u−i,j−1, u
+
i,j+1, u

+
i−1,j , u

+
i+1,j , u

+
i,j and λ+, f+

i,j in a Taylor series about the
local origin 0̃ and applying Lemma 4.1.5 - 4.1.7, the truncation error (4.1.19) is found to be

T =
(

∂2u

∂x̃α∂x̃α

)+

Γ

(0) +
(

∂2u

∂x̃β∂x̃β

)+

Γ

(0) +




(
x̃α

i,j−1

)2

2h2
[λ] (0) + λ+

Γ (0)


u+

Γ (0)

+ f+
Γ (0) + C+ + O(h)

=

(
x̃α

i,j−1

)2

2h2
[λ] (0) u+

Γ (0) + C+ + O(h)

= C+ + O(h) (if [λ] = 0)

(4.1.68)

where

C+ = − 1
h2

(
wΓ (0) + x̃α

i,j−1vΓ (0) + x̃β
i,j−1

(
dw

dx̃β

)

Γ

(0) +
1
2

(
x̃α

i,j−1

)2
(
−

(
d2w

dx̃βdx̃β

)

Γ

(0)

+vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0) + wΓ (0) [λ] (0)− λ+
Γ (0)wΓ (0)− [f ] (0)

)

+x̃α
i,j−1x̃

β
i,j−1

((
dw

dx̃β

)

Γ

(0)
d2χ

dx̃βdx̃β
(0) +

(
dv

dx̃β

)

Γ

(0)
)

+
1
2

(
x̃β

i,j−1

)2
((

d2w

dx̃βdx̃β

)

Γ

(0)− vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)
))

.

(4.1.69)
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If −C+ is added to the difference scheme (4.1.10) at the irregular outer grid point
(
xα

i , xβ
j

)
,

the truncation error T = O(h). The consistency of the discretization is guaranteed. It is
also clear that −C+ needs to be added for each stencil point /∈ Ω+.

For an irregular grid point
(
xα

i , xβ
j

)
∈ Ω− with only

(
xα

i , xβ
j−1

)
∈ Ω+, following the

same steps we can show that

T =
(

∂2u

∂x̃α∂x̃α

)−

Γ

(0) +
(

∂2u

∂x̃β∂x̃β

)−

Γ

(0) +


−

(
x̃α

i,j−1

)2

2h2
[λ] (0) + λ−Γ (0)


u−Γ (0)

+ f−Γ (0) + C− + O(h)

= −

(
x̃α

i,j−1

)2

2h2
[λ] (0) u−Γ (0) + C− + O(h)

= C− + O(h) (if [λ] = 0)
(4.1.70)

where

C− =
1
h2

(
wΓ (0) + x̃α

i,j−1vΓ (0) + x̃β
i,j−1

(
dw

dx̃β

)

Γ

(0) +
1
2

(
x̃α

i,j−1

)2
(
−

(
d2w

dx̃βdx̃β

)

Γ

(0)

+vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)− λ+
Γ (0)wΓ (0)− [f ] (0)

)

+x̃α
i,j−1x̃

β
i,j−1

((
dw

dx̃β

)

Γ

(0)
d2χ

dx̃βdx̃β
(0) +

(
dv

dx̃β

)

Γ

(0)
)

+
1
2

(
x̃β

i,j−1

)2
((

d2w

dx̃βdx̃β

)

Γ

(0)− vΓ (0)
(

d2χ

dx̃βdx̃β

)

Γ

(0)
))

.

(4.1.71)
If −C− is added to the difference scheme (4.1.10) at the irregular inner grid point

(
xα

i , xβ
j

)
,

the truncation error T = O(h). The consistency of the discretization is guaranteed. It is
also clear that −C− needs to be added for each stencil point /∈ Ω−. Note that without the
1
2

(
x̃α

i,j−1

)2 wΓ (0) [λ] (0)
h2

term (which is the case if [λ] = 0), C+ = −C−.

To summarize, for the 2D elliptic equation (4.1.1) with an interface Γ and λ being a
constant, the consistent finite difference scheme is [24]

Ui,j−1 + Ui,j+1 + Ui−1,j + Ui+1,j − 4Ui,j

h2
+ λUi,j + fi,j + C = 0 (4.1.72)
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where the correction term C is

C =





0, (xα
i , xβ

j ) is a regular grid point,

−C+, (xα
i , xβ

j ) is an irregular grid point in Ω+,

−C−, (xα
i , xβ

j ) is an irregular grid point in Ω−.

(4.1.73)

4.2 3D Geometry

The 3D elliptic equation is

∂2u

∂xα∂xα
+

∂2u

∂xβ∂xβ
+

∂2u

∂xγ∂xγ
+ λu + f = 0. (4.2.1)

We consider a rectangular prism domain Ω = [xα
b , xα

e ] × [xβ
b , xβ

e ] × [xγ
b , xγ

e ] with a surface
interface Γ ⊂ Ω. Γ divides Ω into Ω+ which is outside the surface and Ω− which is inside the
interface. We require the surface Γ to be a closed orientable surface without singularities.
See Fig. 4.5 for examples of admissible surfaces.

(a) (b)

Figure 4.5: The surface Γ needs to be closed and smooth, for example: (a) ring torus (b)
union of two intersecting spheroids.

Because u might be discontinuous or non-smooth across the interface Γ, it is more
convenient to express u in terms of smooth functions in Ω+ and Ω− separately. Namely,

u =

{
u+, x ∈ Ω+,

u−, x ∈ Ω−.
(4.2.2)
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Similar notations are used for other discontinuous or non-smooth quantities. Eq. (4.2.1)
now becomes

(
∂2u

∂xα∂xα

)+

+
(

∂2u

∂xβ∂xβ

)+

+
(

∂2u

∂xγ∂xγ

)+

+ λ+u+ + f+ = 0, x ∈ Ω+ (4.2.3)

and
(

∂2u

∂xα∂xα

)−
+

(
∂2u

∂xβ∂xβ

)−
+

(
∂2u

∂xγ∂xγ

)−
+ λ−u− + f− = 0, x ∈ Ω−. (4.2.4)

We also assume that the following two jump conditions are known:

[u] = w,

[
∂u

∂n

]
= v. (4.2.5)

Note that we have (
∂2u

∂xα∂xα

)+

=
∂2u+

∂xα∂xα
(4.2.6)

etc. Without loss of generality, we define

u(x), x ∈ Γ (4.2.7)

as the limit of u on the interface from the side of Ω+, which may be written as

u(x) = u+
Γ , x ∈ Γ. (4.2.8)

In other words, u(x) is defined to be continuous from the side of Ω+. The notation u−Γ
simply means the limit of u on the interface from the side of Ω−.

The domain Ω is discretized as

Ωh =
{(

xα
i = xα

b + ih, xβ
j = xβ

b + jh, xγ
l = xγ

b + lh
) ∣∣∣i = 0, 1, . . . , m;

j = 0, 1, · · · , n; l = 0, 1, · · · , s
} (4.2.9)

using a uniform grid width h. A grid point (xα
i , xβ

j , xγ
l ), which is on one side of the interface

Γ, is called a regular grid point if the difference stencil centered at (xα
i , xβ

j , xγ
l ) contains no

grid points on the other side of the interface. Intuitively, at those majority regular grid
points, if we use a finite difference scheme such as the seven-point stencil

Ui,j,l−1 + Ui,j,l+1 + Ui,j−1,l + Ui,j+1,l + Ui−1,j,l + Ui+1,j,l − 6Ui,j,l

h2
+ λUi,j,l + fi,j,l = 0,

(4.2.10)
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using Taylor expansion at grid point (xα
i , xβ

j , xγ
l ), we know that the local truncation error

for (xα
i , xβ

j , xγ
l ) ∈ Ω+ is

T =
u+

i,j,l−1 + u+
i,j,l+1 + u+

i,j−1,l + u+
i,j+1,l + u+

i−1,j,l + u+
i+1,j,l − 6u+

i,j,l

h2
+ λ+u+

i,j,l + f+
i,j,l

=
(

∂2u

∂xα∂xα

)+

(xα
i , xβ

j , xγ
l ) +

(
∂2u

∂xβ∂xβ

)+

(xα
i , xβ

j , xγ
l ) +

(
∂2u

∂xγ∂xγ

)+

(xα
i , xβ

j , xγ
l )

+ λ+u+
i,j,l + f+

i,j,l + O(h2)

= O(h2).
(4.2.11)

The same conclusion holds for regular grid points in Ω−.

At those minority irregular grid points either close to or on the interface Γ, we hope that
the same second order scheme still works. To facilitate derivations, we locate an interface
point x∗ ∈ Γ close to the seven stencil grid points and define a local Cartesian coordinate
system (x̃α, x̃β, x̃γ) centered at x∗ as

x̃i =
(
A−1

)i

j

(
xj − xj

∗
)

(4.2.12)

where the coordinate transformation matrix is

A =




nα(x∗) τα(x∗) ηα(x∗)
nβ(x∗) τβ(x∗) ηβ(x∗)
nγ(x∗) τγ(x∗) ηγ(x∗)


 . (4.2.13)

Here ni(x∗) is the unit normal direction pointing from Ω− to Ω+, τ i(x∗) and ηi(x∗) are two
orthogonal unit tangential directions forming a right-handed Cartesian coordinate system
together with ni(x∗). See Fig. 4.6 for an illustration of the change of coordinates.

Lemma 4.2.1.
∂2u

∂x̃α∂x̃α
+

∂2u

∂x̃β∂x̃β
+

∂2u

∂x̃γ∂x̃γ
+ λu + f = 0. (4.2.14)

Proof. Similar to the 2D case; see Lemma 4.1.1.

Let us consider an irregular grid point (xα
i , xβ

j , xγ
l ) ∈ Ω+, whose coordinates in the local

coordinate system
(
x̃α, x̃β, x̃γ

)
are denoted as (x̃α

i,j,l, x̃
β
i,j,l, x̃

γ
i,j,l). Now the truncation error

is

T =
ui,j,l−1 + ui,j,l+1 + ui,j−1,l + ui,j+1,l + ui−1,j,l + ui+1,j,l − 6u+

i,j,l

h2
+ λ+u+

i,j,l + f+
i,j,l.

(4.2.15)
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Figure 4.6: Given a point x∗ ∈ Γ, a local Cartesian coordinate system
(
x̃α, x̃β, x̃γ

)
is built

using x∗ as the origin, the unit normal vector n and two unit tangential vectors τ and η
at that point as the three coordinate axes in sequence. The normal vector n points from
Ω− to Ω+. n, τ and η form a right-handed Cartesian coordinate system

(
x̃α, x̃β, x̃γ

)
.

For the other six stencil grid points, without loss of generality, we assume that only

(x̃α
i,j,l−1, x̃

β
i,j,l−1, x̃

γ
i,j,l−1) ∈ Ω−. (4.2.16)

See Fig. 4.7 for for an example of the difference stencil at the irregular grid point
(
xα

i , xβ
j , xγ

l

)
.

Now it is determined that

T =
u−i,j,l−1 + u+

i,j,l+1 + u+
i,j−1,l + u+

i,j+1,l + u+
i−1,j,l + u+

i+1,j,l − 6u+
i,j,l

h2
+ λ+u+

i,j,l + f+
i,j,l.

(4.2.17)
Instead of applying Taylor expansion at grid point (x̃α

i,j,l, x̃
β
i,j,l, x̃

γ
i,j,l), we can expand at the

interface point x∗, or equivalently the origin 0̃ in the local coordinates
(
x̃α, x̃β, x̃γ

)
. Note

that the interface Γ is parameterized in the local coordinates as

Γ =
(
χ

(
x̃β, x̃γ

)
, x̃β, x̃γ

)
(4.2.18)
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Figure 4.7: An example of the seven-point stencil centered at an irregular grid point(
xα

i , xβ
j , xγ

l

)
∈ Ω+ with only

(
xα

i , xβ
j , xγ

l−1

)
∈ Ω−.

and the limit on the interface for a 3D function from the side of either Ω+ or Ω− is param-
eterized only by

(
x̃β, x̃γ

)
. For example,

u−i,j,l−1 = u−Γ (0, 0) +

(
x̃α

i,j,l−1

(
∂u

∂x̃α

)−

Γ

(0, 0) + x̃β
i,j,l−1

(
∂u

∂x̃β

)−

Γ

(0, 0) + x̃γ
i,j,l−1

(
∂u

∂x̃γ

)−

Γ

(0, 0)

)

+
1
2

(
(
x̃α

i,j,l−1

)2
(

∂2u

∂x̃α∂x̃α

)−

Γ

(0, 0) +
(
x̃β

i,j,l−1

)2
(

∂2u

∂x̃β∂x̃β

)−

Γ

(0, 0)

+
(
x̃γ

i,j,l−1

)2
(

∂2u

∂x̃γ∂x̃γ

)−

Γ

(0, 0)

)
+

(
x̃α

i,j,l−1x̃
β
i,j,l−1

(
∂2u

∂x̃α∂x̃β

)−

Γ

(0, 0)

+x̃α
i,j,l−1x̃

γ
i,j,l−1

(
∂2u

∂x̃α∂x̃γ

)−

Γ

(0, 0) + x̃β
i,j,l−1x̃

γ
i,j,l−1

(
∂2u

∂x̃β∂x̃γ

)−

Γ

(0, 0)

)
+ O(h3).

(4.2.19)
See Fig. 4.8 for an example of the Taylor expansion at the local coordinate system.

Note that the jump conditions (4.2.5) locally can be expressed as

[u] = wΓ(x̃β, x̃γ), (4.2.20)

or
u+

Γ

(
χ(x̃β, x̃γ), x̃β, x̃γ

)
− u−Γ

(
χ(x̃β, x̃γ), x̃β, x̃γ

)
= wΓ(x̃β, x̃γ); (4.2.21)
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Figure 4.8: An example of the Taylor expansion at the local coordinate system
(
x̃α, x̃β, x̃γ

)
.

Note that the local origin must be on the interface Γ and close to the seven stencil grid
points.

and [
∂u

∂n

]
= vΓ(x̃β, x̃γ), (4.2.22)

or
(

∂u

∂n

)+

Γ

(
χ(x̃β, x̃γ), x̃β, x̃γ

)
−

(
∂u

∂n

)−

Γ

(
χ(x̃β, x̃γ), x̃β, x̃γ

)
= vΓ(x̃β, x̃γ). (4.2.23)

We can take the derivative of Eq. (4.2.20) with respect to x̃β to get
(

∂u

∂x̃α

)+

Γ

(
∂χ

∂x̃β

)

Γ

+
(

∂u

∂x̃β

)+

Γ

−
((

∂u

∂x̃α

)−

Γ

(
∂χ

∂x̃β

)

Γ

+
(

∂u

∂x̃β

)−

Γ

)
=

(
∂w

∂x̃β

)

Γ

(4.2.24)

or in compact form [
∂u

∂x̃α

∂χ

∂x̃β
+

∂u

∂x̃β

]
=

(
∂w

∂x̃β

)

Γ

. (4.2.25)

Since
∂χ

∂x̃β
(0, 0) = 0, (4.2.26)

Eq. (4.2.25) evaluated at the local origin 0̃ is
[

∂u

∂x̃β

]
(0, 0) =

(
∂w

∂x̃β

)

Γ

(0, 0) . (4.2.27)
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Similarly, we can take the derivative of Eq. (4.2.20) with respect to x̃γ to get
[

∂u

∂x̃α

∂χ

∂x̃γ
+

∂u

∂x̃γ

]
=

(
∂w

∂x̃γ

)

Γ

. (4.2.28)

Since
∂χ

∂x̃γ
(0, 0) = 0, (4.2.29)

Eq. (4.2.28) evaluated at the local origin 0̃ is
[

∂u

∂x̃γ

]
(0, 0) =

(
∂w

∂x̃γ

)

Γ

(0, 0) . (4.2.30)

Then we take the derivative of Eq. (4.2.24) with respect to x̃β to get
[

∂u

∂x̃α

∂2χ

∂x̃β∂x̃β
+

∂2u

∂x̃α∂x̃α

(
∂χ

∂x̃β

)2

+ 2
∂2u

∂x̃α∂x̃β

∂χ

∂x̃β
+

∂2u

∂x̃β∂x̃β

]
=

(
∂2w

∂x̃β∂x̃β

)

Γ

(4.2.31)

whose value at the local origin 0̃ is
[

∂u

∂x̃α

∂2χ

∂x̃β∂x̃β
+

∂2u

∂x̃β∂x̃β

]
(0, 0) =

(
∂2w

∂x̃β∂x̃β

)

Γ

(0, 0) . (4.2.32)

Taking the derivative of Eq. (4.2.24) with respect to x̃γ we get
[

∂u

∂x̃α

∂2χ

∂x̃β∂x̃γ
+

∂2u

∂x̃α∂x̃α

∂χ

∂x̃β

∂χ

∂x̃γ
+

∂2u

∂x̃α∂x̃γ

∂χ

∂x̃β
+

∂2u

∂x̃α∂x̃β

∂χ

∂x̃γ
+

∂2u

∂x̃β∂x̃γ

]
=

(
∂2w

∂x̃β∂x̃γ

)

Γ
(4.2.33)

whose value at the local origin 0̃ is
[

∂u

∂x̃α

∂2χ

∂x̃β∂x̃γ
+

∂2u

∂x̃β∂x̃γ

]
(0, 0) =

(
∂2w

∂x̃β∂x̃γ

)

Γ

(0, 0) . (4.2.34)

Taking the derivative of Eq. (4.2.28) with respect to x̃γ we get
[

∂u

∂x̃α

∂2χ

∂x̃γ∂x̃γ
+

∂2u

∂x̃α∂x̃α

(
∂χ

∂x̃γ

)2

+ 2
∂2u

∂x̃α∂x̃γ

∂χ

∂x̃γ
+

∂2u

∂x̃γ∂x̃γ

]
=

(
∂2w

∂x̃γ∂x̃γ

)

Γ

(4.2.35)

whose value at the local origin 0̃ is
[

∂u

∂x̃α

∂2χ

∂x̃γ∂x̃γ
+

∂2u

∂x̃γ∂x̃γ

]
(0, 0) =

(
∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0) . (4.2.36)

For the jump condition
[
∂u

∂n

]
, we first introduce the following result:
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Lemma 4.2.2.
∂u

∂n
=

∂u

∂ñ
. (4.2.37)

Proof. Same as the 2D case, see Lemma 4.1.3.

The two unit tangential directions are given by

τ̃ =
1√

1 +
(

∂χ
∂x̃β

)2

(
∂χ

∂x̃β
, 1, 0

)
(4.2.38)

and

η̃ =
1√

1 +
(

∂χ
∂x̃γ

)2

(
∂χ

∂x̃γ
, 0, 1

)
. (4.2.39)

Note that these two tangential directions are orthogonal to each other at the local origin 0̃
and may not be so elsewhere. Since ‖τ̃ × η̃‖ > 0, we know that τ̃ and η̃ span the tangent
plane. The unit normal direction is

ñ =
τ̃ × η̃

‖τ̃ × η̃‖ =
1√

1 +
(

∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
1,− ∂χ

∂x̃β
,− ∂χ

∂x̃γ

)
. (4.2.40)

Note that

∂u

∂ñ
=

∂u

∂x̃i
ñi

=
∂u

∂x̃α

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2
− ∂u

∂x̃β

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

∂χ

∂x̃β

− ∂u

∂x̃γ

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

∂χ

∂x̃γ
.

(4.2.41)

So from Lemma 4.2.2 and Eq. (4.2.22) we have



∂u

∂x̃α

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2
− ∂u

∂x̃β

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

∂χ

∂x̃β

− ∂u

∂x̃γ

1√
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

∂χ

∂x̃γ


 = vΓ

(4.2.42)
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whose value at the local origin 0̃ is
[

∂u

∂x̃α

]
(0, 0) = vΓ (0, 0) . (4.2.43)

We can take the derivative of Eq. (4.2.42) with respect to x̃β to get
[
− 1

(
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2
)3/2

(
∂χ

∂x̃β

∂2χ

∂x̃β∂x̃β
+

∂χ

∂x̃γ

∂2χ

∂x̃βx̃γ

) (
∂u

∂x̃α
− ∂u

∂x̃β

∂χ

∂x̃β
− ∂u

∂x̃γ

∂χ

∂x̃γ

)

+
1√

1 +
(

∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
∂2u

∂x̃α∂x̃α

∂χ

∂x̃β
+

∂2u

∂x̃α∂x̃β
−

(
∂2u

∂x̃α∂x̃β

∂χ

∂x̃β
+

∂2u

∂x̃β∂x̃β

)
∂χ

∂x̃β

− ∂u

∂x̃β

∂2χ

∂x̃β∂x̃β
−

(
∂2u

∂x̃α∂x̃γ

∂χ

∂x̃β
+

∂2u

∂x̃β∂x̃γ

)
∂χ

∂x̃γ
− ∂u

∂x̃γ

∂2χ

∂x̃β∂x̃γ

) ]
=

∂vΓ

∂x̃β

(4.2.44)
whose value at the local origin 0̃ is simplified to

[
∂2u

∂x̃α∂x̃β
− ∂u

∂x̃β

∂2χ

∂x̃β∂x̃β
− ∂u

∂x̃γ

∂2χ

∂x̃β∂x̃γ

]
(0, 0) =

∂vΓ

∂x̃β
(0, 0) . (4.2.45)

Taking the derivative of Eq. (4.2.42) with respect to x̃γ we get
[
− 1

(
1 +

(
∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2
)3/2

(
∂χ

∂x̃β

∂2χ

∂x̃β∂x̃γ
+

∂χ

∂x̃γ

∂2χ

∂x̃γ x̃γ

)(
∂u

∂x̃α
− ∂u

∂x̃β

∂χ

∂x̃β
− ∂u

∂x̃γ

∂χ

∂x̃γ

)

+
1√

1 +
(

∂χ
∂x̃β

)2
+

(
∂χ
∂x̃γ

)2

(
∂2u

∂x̃α∂x̃α

∂χ

∂x̃γ
+

∂2u

∂x̃α∂x̃γ
−

(
∂2u

∂x̃α∂x̃β

∂χ

∂x̃γ
+

∂2u

∂x̃β∂x̃γ

)
∂χ

∂x̃β

− ∂u

∂x̃β

∂2χ

∂x̃β∂x̃γ
−

(
∂2u

∂x̃α∂x̃γ

∂χ

∂x̃γ
+

∂2u

∂x̃γ∂x̃γ

)
∂χ

∂x̃γ
− ∂u

∂x̃γ

∂2χ

∂x̃γ∂x̃γ

)]
=

∂vΓ

∂x̃γ

(4.2.46)
whose value at the local origin 0̃ is simplified to

[
∂2u

∂x̃α∂x̃γ
− ∂u

∂x̃β

∂2χ

∂x̃β∂x̃γ
− ∂u

∂x̃γ

∂2χ

∂x̃γ∂x̃γ

]
(0, 0) =

∂vΓ

∂x̃γ
(0, 0) . (4.2.47)

To summarize, at the local origin 0̃, we have the following ten jump conditions from
Lemma 4.2.1 and Eqs. (4.2.20, 4.2.27, 4.2.30, 4.2.32, 4.2.34, 4.2.36, 4.2.43, 4.2.45, 4.2.47):
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[u] (0, 0) = wΓ(0, 0), (4.2.48)

[
∂u

∂x̃β

]
(0, 0) =

(
∂w

∂x̃β

)

Γ

(0, 0) , (4.2.49)

[
∂u

∂x̃γ

]
(0, 0) =

(
∂w

∂x̃γ

)

Γ

(0, 0) , (4.2.50)

[
∂u

∂x̃α

∂2χ

∂x̃β∂x̃β
+

∂2u

∂x̃β∂x̃β

]
(0, 0) =

(
∂2w

∂x̃β∂x̃β

)

Γ

(0, 0) , (4.2.51)

[
∂u

∂x̃α

∂2χ

∂x̃β∂x̃γ
+

∂2u

∂x̃β∂x̃γ

]
(0, 0) =

(
∂2w

∂x̃β∂x̃γ

)

Γ

(0, 0) , (4.2.52)

[
∂u

∂x̃α

∂2χ

∂x̃γ∂x̃γ
+

∂2u

∂x̃γ∂x̃γ

]
(0, 0) =

(
∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0) , (4.2.53)

[
∂u

∂x̃α

]
(0, 0) = vΓ (0, 0) , (4.2.54)

[
∂2u

∂x̃α∂x̃β
− ∂u

∂x̃β

∂2χ

∂x̃β∂x̃β
− ∂u

∂x̃γ

∂2χ

∂x̃β∂x̃γ

]
(0, 0) =

(
∂v

∂x̃β

)

Γ

(0, 0) , (4.2.55)

[
∂2u

∂x̃α∂x̃γ
− ∂u

∂x̃β

∂2χ

∂x̃β∂x̃γ
− ∂u

∂x̃γ

∂2χ

∂x̃γ∂x̃γ

]
(0, 0) =

(
∂v

∂x̃γ

)

Γ

(0, 0) , (4.2.56)

[
∂2u

∂x̃α∂x̃α
+

∂2u

∂x̃β∂x̃β
+

∂2u

∂x̃γ∂x̃γ
+ λu + f

]
(0, 0) = 0. (4.2.57)

Using algebraic manipulations and Lemma 4.1.4, we can decouple the ten jump condi-
tions (4.2.48 - 4.2.57) as:

[u] (0, 0) = wΓ(0, 0), (4.2.58)

[
∂u

∂x̃α

]
(0, 0) = vΓ (0, 0) , (4.2.59)

[
∂u

∂x̃β

]
(0, 0) =

(
∂w

∂x̃β

)

Γ

(0, 0) , (4.2.60)

[
∂u

∂x̃γ

]
(0, 0) =

(
∂w

∂x̃γ

)

Γ

(0, 0) , (4.2.61)
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[
∂2u

∂x̃α∂x̃α

]
(0, 0) = vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0)−
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0) + vΓ(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0)

−
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0)− u−Γ (0, 0) [λ] (0, 0)− λ+
Γ (0, 0)wΓ(0, 0)− [f ] (0, 0)

= vΓ(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0)−
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0) + vΓ(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0)

−
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0)− (
u+

Γ (0, 0)− wΓ(0, 0)
)
[λ] (0, 0)

− λ+
Γ (0, 0)wΓ(0, 0)− [f ] (0, 0),

(4.2.62)
[

∂2u

∂x̃β∂x̃β

]
(0, 0) = −vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0) +
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0), (4.2.63)

[
∂2u

∂x̃γ∂x̃γ

]
(0, 0) = −vΓ(0, 0)

(
∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0), (4.2.64)

[
∂2u

∂x̃α∂x̃β

]
(0, 0) =

(
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0)

+
(

∂v

∂x̃β

)

Γ

(0, 0),

(4.2.65)[
∂2u

∂x̃α∂x̃γ

]
(0, 0) =

(
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0)

+
(

∂v

∂x̃γ

)

Γ

(0, 0),

(4.2.66)[
∂2u

∂x̃β∂x̃γ

]
(0, 0) = −vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃β∂x̃γ

)

Γ

(0, 0). (4.2.67)
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Using the decoupled jump conditions (4.2.58 - 4.2.67), Eq. (4.2.19) becomes

u−i,j,l−1 = u+
Γ (0, 0)− wΓ(0, 0) + x̃α

i,j,l−1

(
∂u

∂x̃α

)+

Γ

(0, 0)− x̃α
i,j,l−1vΓ(0, 0) + x̃β

i,j,l−1

(
∂u

∂x̃β

)+

Γ

(0, 0)

− x̃β
i,j,l−1

(
∂w

∂x̃β

)

Γ

(0, 0) + x̃γ
i,j,l−1

(
∂u

∂x̃γ

)+

Γ

(0, 0)− x̃γ
i,j,l−1

(
∂w

∂x̃γ

)

Γ

(0, 0)

+
1
2

(
x̃α

i,j,l−1

)2
(

∂2u

∂x̃α∂x̃α

)+

Γ

(0, 0)− 1
2

(
x̃α

i,j,l−1

)2
(

vΓ(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0)

−
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0) + vΓ(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0)−
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0)

− (
u+

Γ (0, 0)− wΓ(0, 0)
)
[λ] (0, 0)− λ+

Γ (0, 0)wΓ(0, 0)− [f ] (0, 0)
)

+
1
2

(
x̃β

i,j,l−1

)2
(

∂2u

∂x̃β∂x̃β

)+

Γ

(0, 0)− 1
2

(
x̃β

i,j,l−1

)2
(
−vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0)

+
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0)
)

+
1
2

(
x̃γ

i,j,l−1

)2
(

∂2u

∂x̃γ∂x̃γ

)+

Γ

(0, 0)− 1
2

(
x̃γ

i,j,l−1

)2

(
−vΓ(0, 0)

(
∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0)
)

+ x̃α
i,j,l−1x̃

β
i,j,l−1

(
∂2u

∂x̃α∂x̃β

)+

Γ

(0, 0)

− x̃α
i,j,l−1x̃

β
i,j,l−1

((
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0)

+
(

∂v

∂x̃β

)

Γ

(0, 0)
)

+ x̃α
i,j,l−1x̃

γ
i,j,l−1

(
∂2u

∂x̃α∂x̃γ

)+

Γ

(0, 0)− x̃α
i,j,l−1x̃

γ
i,j,l−1

((
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0) +
(

∂v

∂x̃γ

)

Γ

(0, 0)
)

+ x̃β
i,j,l−1x̃

γ
i,j,l−1

(
∂2u

∂x̃β∂x̃γ

)+

Γ

(0, 0)− x̃β
i,j,l−1x̃

γ
i,j,l−1

(
−vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃β∂x̃γ

)

Γ

(0, 0)
)

+ O(h3).

(4.2.68)
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We can collect terms related to jump conditions in Eq. (4.2.68) to get

u−i,j,l−1 = u+
Γ (0, 0) + x̃α

i,j,l−1

(
∂u

∂x̃α

)+

Γ

(0, 0) + x̃β
i,j,l−1

(
∂u

∂x̃β

)+

Γ

(0, 0) + x̃γ
i,j,l−1

(
∂u

∂x̃γ

)+

Γ

(0, 0)

+
1
2

(
x̃α

i,j,l−1

)2
(

∂2u

∂x̃α∂x̃α

)+

Γ

(0, 0) +
1
2

(
x̃β

i,j,l−1

)2
(

∂2u

∂x̃β∂x̃β

)+

Γ

(0, 0)

+
1
2

(
x̃γ

i,j,l−1

)2
(

∂2u

∂x̃γ∂x̃γ

)+

Γ

(0, 0) + x̃α
i,j,l−1x̃

β
i,j,l−1

(
∂2u

∂x̃α∂x̃β

)+

Γ

(0, 0)

+ x̃α
i,j,l−1x̃

γ
i,j,l−1

(
∂2u

∂x̃α∂x̃γ

)+

Γ

(0, 0) + x̃β
i,j,l−1x̃

γ
i,j,l−1

(
∂2u

∂x̃β∂x̃γ

)+

Γ

(0, 0)

−
(

wΓ(0, 0) + x̃α
i,j,l−1vΓ(0, 0) + x̃β

i,j,l−1

(
∂w

∂x̃β

)

Γ

(0, 0) + x̃γ
i,j,l−1

(
∂w

∂x̃γ

)

Γ

(0, 0)

+
1
2

(
x̃α

i,j,l−1

)2
(

vΓ(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0)−
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0)

+ vΓ(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0)−
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0)− (
u+

Γ (0, 0)− wΓ(0, 0)
)
[λ] (0, 0)

−λ+
Γ (0, 0)wΓ(0, 0)− [f ] (0, 0)

)

+
1
2

(
x̃β

i,j,l−1

)2
(
−vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0) +
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0)
)

+
1
2

(
x̃γ

i,j,l−1

)2
(
−vΓ(0, 0)

(
∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0)
)

+ x̃α
i,j,l−1x̃

β
i,j,l−1

((
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂v

∂x̃β

)

Γ

(0, 0)
)

+ x̃α
i,j,l−1x̃

γ
i,j,l−1

((
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0)

+
(

∂v

∂x̃γ

)

Γ

(0, 0)
)

+x̃β
i,j,l−1x̃

γ
i,j,l−1

(
−vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃β∂x̃γ

)

Γ

(0, 0)
))

+ O(h3).
(4.2.69)

Lemma 4.2.3.

x̃k
i,j,l−1 + x̃k

i,j,l+1 + x̃k
i,j−1,l + x̃k

i,j+1,l + x̃k
i−1,j,l + x̃k

i+1,j,l − 6x̃k
i,j,l = 0, k = α, β, γ. (4.2.70)

Proof. Similar to the 2D case, see Lemma 4.1.5.
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Lemma 4.2.4.
(
x̃k

i,j,l−1

)2
+

(
x̃k

i,j,l+1

)2
+

(
x̃k

i,j−1,l

)2
+

(
x̃k

i,j+1,l

)2
+

(
x̃k

i−1,j,l

)2
+

(
x̃k

i+1,j,l

)2
− 6

(
x̃k

i,j,l

)2
= 2h2,

k = α, β, γ.

(4.2.71)

Proof. Similar to the 2D case, see Lemma 4.1.6.

Lemma 4.2.5.

x̃p
i,j,l−1x̃

q
i,j,l−1 + x̃p

i,j,l+1x̃
q
i,j,l+1 + x̃p

i,j−1,lx̃
q
i,j−1,l + x̃p

i,j+1,lx̃
q
i,j+1,l + x̃p

i−1,j,lx̃
q
i−1,j,l + x̃p

i+1,j,lx̃
q
i+1,j,l

− 6x̃p
i,j,lx̃

q
i,j,l = 0, (p, q) = (α, β), (α, γ) or (β, γ).

(4.2.72)

Proof. Similar to the 2D case, see Lemma 4.1.7.

By expanding u−i,j,l−1, u
+
i,j,l+1, u

+
i,j−1,l, u

+
i,j+1,l, u

+
i−1,j,l, u

+
i+1,j,l, u

+
i,j,l and λ+, f+

i,j,l in a Tay-
lor series about the local origin 0̃ and applying Lemma 4.2.3 - 4.2.5, the truncation error
(4.2.17) is found to be

T =
(

∂2u

∂x̃α∂x̃α

)+

Γ

(0, 0) +
(

∂2u

∂x̃β∂x̃β

)+

Γ

(0, 0) +
(

∂2u

∂x̃γ∂x̃γ

)+

Γ

(0, 0)

+




(
x̃α

i,j,l−1

)2

2h2
[λ] (0, 0) + λ+

Γ (0, 0)


u+

Γ (0, 0) + f+
Γ (0, 0) + C+ + O(h)

=

(
x̃α

i,j,l−1

)2

2h2
[λ] (0, 0)u+

Γ (0, 0) + C+ + O(h)

= C+ + O(h) (if [λ] = 0)

(4.2.73)
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where

C+ = − 1
h2

(
wΓ(0, 0) + x̃α

i,j,l−1vΓ(0, 0) + x̃β
i,j,l−1

(
∂w

∂x̃β

)

Γ

(0, 0) + x̃γ
i,j,l−1

(
∂w

∂x̃γ

)

Γ

(0, 0)

+
1
2

(
x̃α

i,j,l−1

)2
(

vΓ(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0)−
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0) + vΓ(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0)

−
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0) + wΓ(0, 0) [λ] (0, 0)− λ+
Γ (0, 0)wΓ(0, 0)− [f ] (0, 0)

)

+
1
2

(
x̃β

i,j,l−1

)2
(
−vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0) +
(

∂2w

∂x̃β∂x̃β

)

Γ

(0, 0)
)

+
1
2

(
x̃γ

i,j,l−1

)2
(
−vΓ(0, 0)

(
∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃γ∂x̃γ

)

Γ

(0, 0)
)

+ x̃α
i,j,l−1x̃

β
i,j,l−1

((
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃β

)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0)

+
(

∂v

∂x̃β

)

Γ

(0, 0)
)

+ x̃α
i,j,l−1x̃

γ
i,j,l−1

((
∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0)

+
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0) +
(

∂v

∂x̃γ

)

Γ

(0, 0)
)

+x̃β
i,j,l−1x̃

γ
i,j,l−1

(
−vΓ(0, 0)

(
∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0) +
(

∂2w

∂x̃β∂x̃γ

)

Γ

(0, 0)
))

.

(4.2.74)
If−C+ is added to the difference scheme (4.2.10) at the irregular outer grid point

(
xα

i , xβ
j , xγ

l

)
,

the truncation error T = O(h). The consistency of the discretization is guaranteed. It is
also clear that −C+ needs to be added for each stencil point /∈ Ω+.

For an irregular grid point
(
xα

i , xβ
j , xγ

l

)
∈ Ω− with only

(
xα

i , xβ
j , xγ

l−1

)
∈ Ω+, following

the same steps we can show that

T =
(

∂2u

∂x̃α∂x̃α

)−

Γ

(0, 0) +
(

∂2u

∂x̃β∂x̃β

)−

Γ

(0, 0) +
(

∂2u

∂x̃γ∂x̃γ

)−

Γ

(0, 0)

+


−

(
x̃α

i,j,l−1

)2

2h2
[λ] (0, 0) + λ−Γ (0, 0)


u−Γ (0, 0) + f−Γ (0, 0) + C− + O(h)

= −

(
x̃α

i,j,l−1

)2

2h2
[λ] (0, 0)u−Γ (0, 0) + C− + O(h)

= C− + O(h) (if [λ] = 0)

(4.2.75)
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where

C− =
1
h2
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i,j,l−1vΓ(0, 0) + x̃β
i,j,l−1

(
∂w

∂x̃β

)

Γ

(0, 0) + x̃γ
i,j,l−1

(
∂w

∂x̃γ

)

Γ

(0, 0)

+
1
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)2
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(
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(0, 0)−
(

∂2w

∂x̃β∂x̃β
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Γ
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(
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(0, 0)
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(
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)
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∂2χ
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)

Γ
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(
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)

Γ

(0, 0)
)

+
1
2

(
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)
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)

Γ
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)
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β
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)

Γ

(0, 0)
(

∂2χ
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)

Γ

(0, 0) +
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ
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)

Γ

(0, 0)

+
(

∂v

∂x̃β

)

Γ

(0, 0)
)

+ x̃α
i,j,l−1x̃

γ
i,j,l−1
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∂w

∂x̃β

)

Γ

(0, 0)
(

∂2χ

∂x̃β∂x̃γ

)

Γ

(0, 0)

+
(

∂w

∂x̃γ

)

Γ

(0, 0)
(

∂2χ

∂x̃γ∂x̃γ

)

Γ

(0, 0) +
(

∂v

∂x̃γ

)

Γ

(0, 0)
)

+x̃β
i,j,l−1x̃

γ
i,j,l−1

(
−vΓ(0, 0)
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∂2χ
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Γ

(0, 0) +
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∂2w

∂x̃β∂x̃γ
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Γ

(0, 0)
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.

(4.2.76)

If −C− is added to the difference scheme (4.2.10) at the irregular inner grid point(
xα

i , xβ
j , xγ

l

)
, the truncation error T = O(h). The consistency of the discretization is guar-

anteed. It is also clear that −C− needs to be added for each stencil point /∈ Ω+. Note that

without the term
1
2

(
x̃α

i,j,l−1

)2 wΓ (0, 0) [λ] (0, 0)
h2

(which is the case if [λ] = 0), C+ = −C−.

To summarize, for the 3D elliptic equation (4.2.1) with an interface Γ and λ being a
constant, the consistent finite difference scheme is [24, 7]

Ui,j,l−1 + Ui,j,l+1 + Ui,j−1,l + Ui,j+1,l + Ui−1,j,l + Ui+1,j,l − 6Ui,j,l

h2
+ λUi,j,l + fi,j,l + C = 0

(4.2.77)
where the correction term C is

C =





0, (xα
i , xβ

j , xγ
l ) is a regular grid point,

−C+, (xα
i , xβ

j , xγ
l ) is an irregular grid point in Ω+,

−C−, (xα
i , xβ

j , xγ
l ) is an irregular grid point in Ω−.
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4.3 Level Set Approach

There are two main approaches to modeling moving geometric objects: Lagrangian and
Eulerian. The use of implicit surfaces is a popular Eulerian approach in many computer-
based 2D and 3D geometric models. From physical intuition, implicit surfaces may be
defined by the contour of a field, such as gravitational or electromagnetic field. The field
strength at any point in space is the sum of the field strengths due to each source point.
Mathematically, the level set of a differentiable function

ϕ : Rn → R (4.3.1)

corresponding to a real value c is the set of points

{
(x1, · · · , xn) ∈ Rn

∣∣ϕ (x1, · · · , xn) = c
}

. (4.3.2)

If n = 2, the level set is a plane curve known as a level curve. If n = 3, the level set is
known as a level surface. See Fig. 4.9 for an example of level curves.
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Figure 4.9: Contour plot of a 2D function ϕ(xα, xβ) =
√

(xα)2 + (xβ)2 − 1.0 whose zero
level set is the unit circle.
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4.3.1 2D Geometry

Irregular grid points

We denote

Ω+ =
{(

xα, xβ
) ∣∣∣∣ϕ(xα, xβ) ≥ 0

}
(4.3.3)

and

Ω− =
{(

xα, xβ
) ∣∣∣∣ϕ(xα, xβ) < 0

}
. (4.3.4)

For the five-point stencil, a grid point
(
xα

i , xβ
j

)
is an irregular inner grid point if and only

if
ϕ(xα

i , xβ
j ) < 0 (4.3.5)

and any of the following four inequalities is true:

ϕ(xα
i , xβ

j−1) ≥ 0, ϕ(xα
i , xβ

j+1) ≥ 0, ϕ(xα
i−1, x

β
j ) ≥ 0, ϕ(xα

i+1, x
β
j ) ≥ 0. (4.3.6)

Similarly, a grid point
(
xα

i , xβ
j

)
is an irregular outer grid point if and only if

ϕ(xα
i , xβ

j ) ≥ 0 (4.3.7)

and any of the following four inequalities is true:

ϕ(xα
i , xβ

j−1) < 0, ϕ(xα
i , xβ

j+1) < 0, ϕ(xα
i−1, x

β
j ) < 0, ϕ(xα

i+1, x
β
j ) < 0. (4.3.8)

Local Cartesian coordinates

For a given irregular grid point x =
(
xα

i , xβ
j

)
close to the interface, there is a corresponding

orthogonal projection point x∗ =
(
xα∗ , x

β
∗
)

on the interface satisfying

x∗ = x + an(x) (4.3.9)

where a is a real unknown variable and

n =
∇ϕ

‖∇ϕ‖ =
1√(

∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2

(
∂ϕ

∂xα
,

∂ϕ

∂xβ

)
(4.3.10)

is the unit outward normal direction at x. See Fig. 4.10 for an illustration.

Since
ϕ(x∗) = 0, (4.3.11)
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Figure 4.10: An irregular grid point x = (xα
i , xβ

j ) and its normal projection point

x∗ = (xα∗ , x
β
∗ ) on the interface Γ.

we have [31]

0 = ϕ(x + an) ≈ ϕ(x) + ‖∇ϕ‖a +
1
2

(
nT H (ϕ) n

)
a2 (4.3.12)

where the Hessian matrix H is defined as

H(ϕ) =




∂2ϕ

∂xα∂xα

∂2ϕ

∂xα∂xβ

∂2ϕ

∂xβ∂xα

∂2ϕ

∂xβ∂xβ


 . (4.3.13)

Eq. (4.3.12) can be solved explicitly to get an approximation of x∗ from Eq. (4.3.9).

The unit tangential direction τ is

τ =
1√(

∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2

(
− ∂ϕ

∂xβ
,

∂ϕ

∂xα

)
. (4.3.14)

Using calculated x∗, n(x∗) and τ (x∗), we can get the Cartesian coordinate transforma-
tion formulation which is indispensable to the calculation of the correction term.
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Correction term

To calculate the correction term, we need to explain how to calculate the second-order

surface derivative
d2χ

dx̃βdx̃β
(0). Let ϕ be the level set function and using the local coordinate

system (Chapter 3.1), we know that

ϕ(χ(x̃β), x̃β) = 0. (4.3.15)

Taking derivatives in the same fashion as deriving the jump conditions, we can get

∂ϕ

∂x̃α
(0)

d2χ

dx̃βdx̃β
(0) +

∂2ϕ

∂x̃β∂x̃β
(0) = 0 (4.3.16)

which leads to
d2χ

dx̃βdx̃β
(0) = − ∂2ϕ

∂x̃β∂x̃β
(0)

/
∂ϕ

∂x̃α
(0). (4.3.17)

To calculate
d2χ

dx̃βdx̃β
(0) using Eq. (4.3.17), note that

∂ϕ

∂x̃α
= (A)l

α

∂ϕ

∂xl
(4.3.18)

and
∂2ϕ

∂x̃β∂x̃β
=

∂

∂x̃β

(
(A)l

β

∂ϕ

∂xl

)
= (A)l

β (A)k
β

∂2ϕ

∂xk∂xl
. (4.3.19)

Curvature

It is often necessary to obtain extrinsic curvature values for problems such as modeling of
mean curvature flow. It is known that the curvature for a 2D curve given implicitly by

ϕ(xα, xβ) = 0 (4.3.20)

is [40]

κ = ∇ · ∇ϕ

‖∇ϕ‖ =
∂2ϕ

∂xα∂xα

(
∂ϕ
∂xβ

)2
− 2 ∂2ϕ

∂xα∂xβ
∂ϕ
∂xα

∂ϕ
∂xβ + ∂2ϕ

∂xβ∂xβ

(
∂ϕ
∂xα

)2

((
∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2
) 3

2

. (4.3.21)

Lemma 4.3.1.

κ = − d2χ

dx̃βdx̃β
(0) . (4.3.22)
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Proof. By definition, the curvature κ for a plane curve given by Cartesian parametric equa-
tions

x̃α = χ(x̃β), x̃β = x̃β (4.3.23)

at the origin of the local Cartesian coordinates
(
x̃α, x̃β

)
is

κ =

dx̃α

dx̃β

d2x̃β

dx̃βdx̃β
− dx̃β

dx̃β

d2x̃α

dx̃βdx̃β

((
dx̃α

dx̃β

)2

+
(

dx̃β

dx̃β

)2
) 3

2

(0) =
− d2χ

dx̃βdx̃β

((
dχ

dx̃β

)2

+ 1

) 3
2

(0) = − d2χ

dx̃βdx̃β
(0). (4.3.24)

Remark 4.3.2. For 2D geometry, the second-order surface derivative
d2χ

dx̃βdx̃β
(0) in the

correction term can be calculated using either the curvature formula (4.3.21) or the formula
(4.3.17).

4.3.2 3D Geometry

Irregular grid points

We denote

Ω+ =
{(

xα, xβ, xγ
) ∣∣∣∣ϕ(xα, xβ, xγ) ≥ 0

}
(4.3.25)

and

Ω− =
{(

xα, xβ, xγ
) ∣∣∣∣ϕ(xα, xβ, xγ) < 0

}
. (4.3.26)

For the seven-point stencil, a grid point
(
xα

i , xβ
j , xγ

l

)
is an irregular inner grid point if and

only if
ϕ(xα

i , xβ
j , xγ

l ) < 0 (4.3.27)

and any of the following six inequalities is true:

ϕ(xα
i , xβ

j , xγ
l−1) ≥ 0, ϕ(xα

i , xβ
j , xγ

l+1) ≥ 0, ϕ(xα
i , xβ

j−1, x
γ
l ) ≥ 0,

ϕ(xα
i , xβ

j+1, x
γ
l ) ≥ 0, ϕ(xα

i−1, x
β
j , xγ

l ) ≥ 0, ϕ(xα
i+1, x

β
j , xγ

l ) ≥ 0.
(4.3.28)

Similarly, a grid point
(
xα

i , xβ
j , xγ

l

)
is an irregular outer grid point if and only if

ϕ(xα
i , xβ

j , xγ
l ) ≥ 0 (4.3.29)

and any of the following six inequalities is true:

ϕ(xα
i , xβ

j , xγ
l−1) < 0, ϕ(xα

i , xβ
j , xγ

l+1) < 0, ϕ(xα
i , xβ

j−1, x
γ
l ) < 0,

ϕ(xα
i , xβ

j+1, x
γ
l ) < 0, ϕ(xα

i−1, x
β
j , xγ

l ) < 0, ϕ(xα
i+1, x

β
j , xγ

l ) < 0.
(4.3.30)
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Local Cartesian coordinates

For a given irregular grid point x =
(
xα

i , xβ
j , xγ

l

)
close to the interface, there is a corre-

sponding orthogonal projection point x∗ =
(
xα∗ , x

β
∗ , x

γ
∗
)

on the interface satisfying

x∗ = x + an(x) (4.3.31)

where a is a real unknown variable and

n =
∇ϕ

‖∇ϕ‖ =
1√(

∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2
+

(
∂ϕ
∂xγ

)2

(
∂ϕ

∂xα
,

∂ϕ

∂xβ
,

∂ϕ

∂xγ

)
(4.3.32)

is the unit outward normal direction at x. See Fig. 4.11 for an illustration.

(x�i ; x�j ; x
l )

(x�i+1; x�j ; x
l+1)
(x�i+1; x�j+1; x
l+1)

(x�� ; x�� ; x
�)

(x�i ; x�j+1; x
l+1)

(x�i+1; x�j+1; x
l )
(x�i+1; x�j ; x
l )

�

(x�i ; x�j+1; x
l )
(x�i ; x�j ; x
l+1)

Figure 4.11: An irregular grid point x = (xα
i , xβ

j , xγ
l ) and its normal projection point

x∗ = (xα∗ , x
β
∗ , x

γ
∗) on the interface Γ.

Since
ϕ(x∗) = 0, (4.3.33)

we have
0 = ϕ(x + an) ≈ ϕ(x) + ‖∇ϕ‖a +

1
2

(
nT H (ϕ) n

)
a2 (4.3.34)
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where the Hessian matrix H is defined as

H(ϕ) =




∂2ϕ

∂xα∂xα

∂2ϕ

∂xα∂xβ

∂2ϕ

∂xα∂xγ

∂2ϕ

∂xβ∂xα

∂2ϕ

∂xβ∂xβ

∂2ϕ

∂xβ∂xγ

∂2ϕ

∂xγ∂xα

∂2ϕ

∂xγ∂xβ

∂2ϕ

∂xγ∂xγ




. (4.3.35)

Eq. (4.3.34) can be solved explicitly to get an approximation of x∗ from Eq. (4.3.31).

Unlike the 2D case, there is freedom to choose two orthonormal tangential directions τ

and η satisfying (1) τ and η cannot be zero vectors, and (2) τ , η and n form a right-handed
Cartesian coordinate system. For example [7], if

(
∂ϕ

∂xα

)2

+
(

∂ϕ

∂xβ

)2

> 0, (4.3.36)

we can select τ as

τ =
1√(

∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2

(
∂ϕ

∂xβ
,− ∂ϕ

∂xα
, 0

)
, (4.3.37)

otherwise we choose

τ =
1√(

∂ϕ
∂xα

)2
+

(
∂ϕ
∂xγ

)2

(
∂ϕ

∂xγ
, 0,− ∂ϕ

∂xα

)
. (4.3.38)

Note that this strategy always works provided
(

∂ϕ

∂xα

)2

+
(

∂ϕ

∂xβ

)2

+
(

∂ϕ

∂xγ

)2

> 0, (4.3.39)

or equivalently ‖∇ϕ‖ > 0 which is true if surface normal exists. After we determine τ , we
can get η = n× τ accordingly as

1√(
∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2
+

(
∂ϕ
∂xγ

)2

1√(
∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2

(
∂ϕ

∂xα

∂ϕ

∂xγ
,

∂ϕ

∂xβ

∂ϕ

∂xγ
,−

(
∂ϕ

∂xα

)2

−
(

∂ϕ

∂xβ

)2
)

(4.3.40)
or

1√(
∂ϕ
∂xα

)2
+

(
∂ϕ
∂xβ

)2
+

(
∂ϕ
∂xγ

)2

1√(
∂ϕ
∂xα

)2
+

(
∂ϕ
∂xγ

)2

(
− ∂ϕ

∂xα

∂ϕ

∂xβ
,

(
∂ϕ

∂xα

)2

+
(

∂ϕ

∂xγ

)2

,− ∂ϕ

∂xβ

∂ϕ

∂xγ

)
.

(4.3.41)

Using calculated x∗, n(x∗), τ (x∗) and η(x∗), we can get the Cartesian coordinate
transformation formulation which is indispensable to the calculation of the correction term.
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Correction term

To calculate the correction term, we need to explain how to calculate the second-order

surface derivatives
∂2χ

∂x̃β∂x̃β
(0, 0),

∂2χ

∂x̃γ∂x̃γ
(0, 0) and

∂2χ

∂x̃β∂x̃γ
(0, 0). Let ϕ be the level set

function and using the local coordinate system, we know that

ϕ(χ(x̃β, x̃γ), x̃β, x̃γ) = 0. (4.3.42)

Taking derivatives in the same fashion as deriving the jump conditions, we can get

∂ϕ

∂x̃α
(0, 0)

∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2ϕ

∂x̃β∂x̃β
(0, 0) = 0 (4.3.43)

which leads to
∂2χ

∂x̃β∂x̃β
(0, 0) = − ∂2ϕ

∂x̃β∂x̃β
(0, 0)

/
∂ϕ

∂x̃α
(0, 0); (4.3.44)

and
∂ϕ

∂x̃α
(0, 0)

∂2χ

∂x̃β∂x̃γ
(0, 0) +

∂2ϕ

∂x̃β∂x̃γ
(0, 0) = 0 (4.3.45)

which leads to
∂2χ

∂x̃β∂x̃γ
(0, 0) = − ∂2ϕ

∂x̃β∂x̃γ
(0, 0)

/
∂ϕ

∂x̃α
(0, 0); (4.3.46)

and
∂ϕ

∂x̃α
(0, 0)

∂2χ

∂x̃γ∂x̃γ
(0, 0) +

∂2ϕ

∂x̃γ∂x̃γ
(0, 0) = 0 (4.3.47)

which leads to
∂2χ

∂x̃γ∂x̃γ
(0, 0) = − ∂2ϕ

∂x̃γ∂x̃γ
(0, 0)

/
∂ϕ

∂x̃α
(0, 0). (4.3.48)

For example, if we want to calculate
∂2χ

∂x̃β∂x̃β
(0, 0) using Eq. (4.3.44), note that

∂ϕ

∂x̃α
= (A)l

α

∂ϕ

∂xl
(4.3.49)

and
∂2ϕ

∂x̃β∂x̃β
=

∂

∂x̃β

(
(A)l

β

∂ϕ

∂xl

)
= (A)l

β (A)k
β

∂2ϕ

∂xk∂xl
. (4.3.50)

Curvatures

It is often necessary to obtain curvature values for problems such as modeling of mean
curvature flow. It is known that the extrinsic mean curvature κM for a 3D surface given
implicitly by

ϕ(xα, xβ, xγ) = 0 (4.3.51)
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is

κM =
1
2
∇ · ∇ϕ

‖∇ϕ‖ =
1
2

((
∂2ϕ

∂xβ∂xβ
+

∂2ϕ

∂xγ∂xγ

)(
∂ϕ

∂xα

)2

+
(

∂2ϕ

∂xα∂xα
+

∂2ϕ

∂xγ∂xγ

)(
∂ϕ

∂xβ

)2

+
(

∂2ϕ

∂xα∂xα
+

∂2ϕ

∂xβ∂xβ

) (
∂ϕ

∂xγ

)2

− 2
(

∂ϕ

∂xα

∂ϕ

∂xβ

∂2ϕ

∂xα∂xβ

+
∂ϕ

∂xα

∂ϕ

∂xγ

∂2ϕ

∂xα∂xγ
+

∂ϕ

∂xβ

∂ϕ

∂xγ

∂2ϕ

∂xβ∂xγ

))/((
∂ϕ

∂xα

)2

+
(

∂ϕ

∂xβ

)2

+
(

∂ϕ

∂xγ

)2
) 3

2

.

(4.3.52)
By definition, the intrinsic Gaussian curvature κG is given by

κG =
∇ϕ ·

(
∂ϕ
∂xα

(
∂(∇ϕ)
∂xβ × ∂(∇ϕ)

∂xγ

)
+ ∂ϕ

∂xβ

(
∂(∇ϕ)
∂xγ × ∂(∇ϕ)

∂xα

)
+ ∂ϕ

∂xγ

(
∂(∇ϕ)
∂xα × ∂(∇ϕ)

∂xβ

))

(∇ϕ · ∇ϕ)2

=

((
∂ϕ

∂xα

)2
(

∂2ϕ

∂xβ∂xβ

∂2ϕ

∂xγ∂xγ
−

(
∂2ϕ

∂xβ∂xγ

)2
)

+
(

∂ϕ

∂xβ

)2
(

∂2ϕ

∂xα∂xα

∂2ϕ

∂xγ∂xγ
−

(
∂2ϕ

∂xα∂xγ

)2
)

+
(

∂ϕ

∂xγ

)2
(

∂2ϕ

∂xα∂xα

∂2ϕ

∂xβ∂xβ
−

(
∂2ϕ

∂xα∂xβ

)2
)

+ 2
∂ϕ

∂xα

∂ϕ

∂xβ

(
∂2ϕ

∂xα∂xγ

∂2ϕ

∂xβ∂xγ
− ∂2ϕ

∂xα∂xβ

∂2ϕ

∂xγ∂xγ

)

+ 2
∂ϕ

∂xβ

∂ϕ

∂xγ

(
∂2ϕ

∂xα∂xβ

∂2ϕ

∂xα∂xγ
− ∂2ϕ

∂xβ∂xγ

∂2ϕ

∂xα∂xα

)

+2
∂ϕ

∂xα

∂ϕ

∂xγ

(
∂2ϕ

∂xα∂xβ

∂2ϕ

∂xβ∂xγ
− ∂2ϕ

∂xα∂xγ

∂2ϕ

∂xβ∂xβ

))/((
∂ϕ

∂xα

)2

+
(

∂ϕ

∂xβ

)2

+
(

∂ϕ

∂xγ

)2
)2

.

(4.3.53)

Theorem 4.3.3. The principal curvatures κ1 and κ2 relate to the Gaussian curvature κG

and mean curvature κM through

κ1 = κM +
√

κ2
M − κG (4.3.54)

and
κ2 = κM −

√
κ2

M − κG. (4.3.55)

Equivalently,
κG = κ1κ2 (4.3.56)

and
κM =

κ1 + κ2

2
. (4.3.57)

Lemma 4.3.4.

κM = −1
2

(
∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

)
, (4.3.58)
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κG =
∂2χ

∂x̃β∂x̃β
(0, 0)

∂2χ

∂x̃γ∂x̃γ
(0, 0)−

(
∂2χ

∂x̃β∂x̃γ
(0, 0)

)2

. (4.3.59)

Proof. By definition, the mean curvature κM for a 3D surface given by

ϕ
(
x̃α, x̃β, x̃γ

)
= x̃α − χ

(
x̃β, x̃γ

)
(4.3.60)

at the origin of the local Cartesian coordinates
(
x̃α, x̃β, x̃γ

)
is

κM =
1
2

(
∂2ϕ

∂x̃β∂x̃β
(0, 0) +

∂2ϕ

∂x̃γ∂x̃γ
(0, 0)

)

= −1
2

(
∂2χ

∂x̃β∂x̃β
(0, 0) +

∂2χ

∂x̃γ∂x̃γ
(0, 0)

)
.

(4.3.61)

By definition, the Gaussian curvature κG at the origin of the local Cartesian coordinates is

κG =
∂2ϕ

∂x̃β∂xβ
(0, 0)

∂2ϕ

∂x̃γ∂xγ
(0, 0)−

(
∂2ϕ

∂x̃β∂x̃γ
(0, 0)

)2

=
∂2χ

∂x̃β∂x̃β
(0, 0)

∂2χ

∂x̃γ∂x̃γ
(0, 0)−

(
∂2χ

∂x̃β∂x̃γ
(0, 0)

)2

.

(4.3.62)

Remark 4.3.5. Let the second-order surface derivative matrix be

S = −




∂2χ

∂x̃β∂x̃β

∂2χ

∂x̃β∂x̃γ

∂2χ

∂x̃β∂x̃γ

∂2χ

∂x̃γ∂x̃γ


 . (4.3.63)

Then
2κM = tr(S) (4.3.64)

and
κG = |S|. (4.3.65)

This result is well-known in differential geometry.
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Chapter 5

Solving Stokes Equations and Advection Equation

The incompressible Stokes equations may be solved using the projection method [4] which
decouples the Stokes equations into Poisson elliptic equations. The main difficulty for the
two-phase Stokes equations is that the jump conditions

[
µui

]
are not known except when

µ+ = µ−. We choose to solve for
[
µui

]
(i.e. the augmented variables [25, 27, 28, 30, 54, 29])

using iterative methods first and then solve the two-phase Stokes equations. The advection
equation is solved using an upwind scheme.

5.1 Solving Stokes Equations with an Interface

The momentum equation for the Stokes equations is

∂p

∂xi
=

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ gi, x ∈ Ω+ or Ω−

=
∂2

(
µui

)

∂xj∂xj
+

∂2
(
µuj

)

∂xj∂xi
+ gi (µ is piecewise constant)

=
∂2

(
µui

)

∂xj∂xj
+ gi. (incompressibility condition)

(5.1.1)

If we apply the divergence operator to both sides of Eq. (5.1.1) and make use of the
incompressibility condition in each fluid, we get an elliptic equation for p :

∂2p

∂xi∂xi
=

∂gi

∂xi
. (5.1.2)

We can solve Eq. (5.1.2) if we know the jump conditions [p] and
[

∂p

∂n

]
. After we solve the

pressure p, we can rewrite Eq. (5.1.1) as

∂2
(
µui

)

∂xj∂xj
=

∂p

∂xi
− gi. (5.1.3)
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If we know the jump conditions
[
µui

]
and

[
∂

(
µui

)

∂n

]
, we can solve the elliptic equation

(5.1.3) for µui. The velocity field ui may be recovered from µui by rescaling. This is called
the decoupled Poisson equations approach.

The jump conditions [p],
[

∂p

∂n

]
and

[
∂

(
µui

)

∂n

]
have been derived and they depend on

the unknown jump condition
[
µui

]
. Therefore if we know

[
µui

]
, the Stokes equations may

be solved using the immersed interface methods. Also notice that since
[
ui

]
= 0, we have

[
µui

]
=

(
ui

)+

Γ
[µ] =

(
ui

)−
Γ

[µ] . (5.1.4)

Eq. (5.1.4) shows that
[
µui

]
equals

(
ui

)+

Γ
(or

(
ui

)−
Γ
) rescaled by [µ].

Proposition 5.1.1. If, given a guess of
[
µui

]
for a Stokes flow with boundary conditions

on ∂Ω and with an interface, the solution of Eqs. (5.1.2, 5.1.3) with jump conditions

[
µui

]
,

[
∂

(
µui

)

∂n

]
, [p] ,

[
∂p

∂n

]
(5.1.5)

satisfies the continuity equation [
ui

]
= 0, (5.1.6)

then the given guess of
[
µui

]
is the actual jump condition for the problem.

Now we will show how to solve for
[
µui

]
numerically. Let us look at the discretized

Stokes equations using the immersed interface method. We denote the values of p and µui

at grid points as a vector X and
[
µui

]
for projection points of irregular grid points as a

vector Y .

Given Y , we can always use the immersed interface method to solve for X. This means
that

CY + DX = F (5.1.7)

where C and D are two matrices and F is a vector. Note that D is always invertible and the
inversion of D is to solve the Stokes equations with interface using the immersed interface
method given the jump conditions. So from Eq. (5.1.7)

X = D−1 (F − CY ) . (5.1.8)

Given X, we can interpolate
[
ui

]
for projection points of irregular grid points. We denote

the interpolated values of
[
ui

]
as a vector R and it depends on both X and Y linearly, i.e.

R = AY + BX − E (5.1.9)
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where A and B are two matrices and E is a vector. From Eqs. (5.1.8, 5.1.9), we have

R(Y ) = AY + BD−1 (F − CY )− E

=
(
A−BD−1C

)
Y +

(
BD−1F − E

)
.

(5.1.10)

From Proposition 5.1.1, we need to solve the Schur complement equation for Y

(
A−BD−1C

)
Y =

(
E −BD−1F

)
. (5.1.11)

To solve Eq. (5.1.11), we need to know the coefficient matrix
(
A−BD−1C

)
and the right

hand side vector
(
E −BD−1F

)
.

We choose to use the Generalized Minimum RESidual (GMRES) method [49] to invert(
A−BD−1C

)
. GMRES is a Krylov based iterative method which has been used to solve

large, sparse and non-Hermitian linear systems. To use GMRES, we need to know the
matrix-vector product

(
A−BD−1C

)
V for a given vector V and the vector

(
E −BD−1F

)
.

Theorem 5.1.1. Given a vector V , we have
(
A−BD−1C

)
V = R(Y = V )−R(Y = 0) (5.1.12)

and
E −BD−1F = −R(Y = 0). (5.1.13)

Proof. (
A−BD−1C

)
V =

(
A−BD−1C

)
V + BD−1F − E

− ((
A−BD−1C

)
0 + BD−1F − E

)

= R(Y = V )−R(Y = 0).

(5.1.14)

It is obvious that Eq. (5.1.13) is true.

After we solve Eq. (5.1.11) using GMRES (or other methods), we can plug the solution
of Y into Eq. (5.1.8) to solve X and this concludes the algorithm.

Since we know how to solve the unknown jump condition
[
µui

]
, now let us focus on

the forward problem, that is, assuming that
[
µui

]
is known, we want to solve the Stokes

equations with an interface. Here we explain the details for both 2D and 3D problems.

5.1.1 2D Geometry

For 2D problems, let the coordinate transformation matrix be

A =

(
nα τα

nβ τβ

)
. (5.1.15)
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We have the elliptic equation for pressure p :

∂2p

∂xα∂xα
+

∂2p

∂xβ∂xβ
=

∂gα

∂xα
+

∂gβ

∂xβ
(5.1.16)

with jump conditions

[p] = −2
(
A−1

)β

j

d
[
µuj

]

dx̃β
+ f̃α, (5.1.17)

and [
∂p

∂n

]
= −2

d2χ

dx̃βdx̃β

(
A−1

)β

j

d
[
µuj

]

dx̃β
+ 2

(
A−1

)α

j

d2
[
µuj

]

dx̃βdx̃β

+
d2χ

dx̃βdx̃β
f̃α +

df̃β

dx̃β
+ [g̃α] .

(5.1.18)

There are two elliptic equations for the velocity field
(
uα, uβ

)
:

∂2 (µuα)
∂xα∂xα

+
∂2 (µuα)
∂xβ∂xβ

=
∂p

∂xα
− gα (5.1.19)

and
∂2

(
µuβ

)

∂xα∂xα
+

∂2
(
µuβ

)

∂xβ∂xβ
=

∂p

∂xβ
− gβ (5.1.20)

with jump conditions
[µuα] ,

[
µuβ

]
(5.1.21)

and 


[
∂ (µuα)

∂n

]

[
∂

(
µuβ

)

∂n

]




= A




− (
A−1

)β

j

d
[
µuj

]

dx̃β

− (
A−1

)α

j

d
[
µuj

]

dx̃β
− f̃β




. (5.1.22)

It is clear that we need to call the IIM solver for elliptic equations three times in order
to solve the Stokes equations in 2D with known jump condition

[
µui

]
.

5.1.2 3D Geometry

For 3D problems, let the coordinate transformation matrix be

A =




nα τα ηα

nβ τβ ηβ

nγ τγ ηγ


 . (5.1.23)

We have the elliptic equation for pressure p :

∂2p

∂xα∂xα
+

∂2p

∂xβ∂xβ
+

∂2p

∂xγ∂xγ
=

∂gα

∂xα
+

∂gβ

∂xβ
+

∂gγ

∂xγ
(5.1.24)
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with jump conditions

[p] = −2
(
A−1

)β

j

∂
[
µuj

]

∂x̃β
− 2

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ
+ f̃α, (5.1.25)

and [
∂p

∂n

]
= −2

∂2χ

∂x̃β∂x̃β

(
A−1

)β

j

∂
[
µuj

]

∂x̃β
− 2

∂2χ

∂x̃γ∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃γ

− 2
∂2χ

∂x̃β∂x̃γ

(
A−1

)β

j

∂
[
µuj

]

∂x̃γ
− 2

∂2χ

∂x̃β∂x̃γ

(
A−1

)γ

j

∂
[
µuj

]

∂x̃β

+ 2
(
A−1

)α

j

∂2
[
µuj

]

∂x̃β∂x̃β
+ 2

(
A−1

)α

j

∂2
[
µuj

]

∂x̃γ∂x̃γ

+
(

∂2χ

∂x̃β∂x̃β
+

∂2χ

∂x̃γ∂x̃γ

)
f̃α +

∂f̃β

∂x̃β
+

∂f̃γ

∂x̃γ
+ [g̃α] .

(5.1.26)

There are three elliptic equations for the velocity field
(
uα, uβ, uγ

)
:

∂2 (µuα)
∂xα∂xα

+
∂2 (µuα)
∂xβ∂xβ

+
∂2 (µuα)
∂xγ∂xγ

=
∂p

∂xα
− gα, (5.1.27)

∂2
(
µuβ

)

∂xα∂xα
+

∂2
(
µuβ

)

∂xβ∂xβ
+

∂2
(
µuβ

)

∂xγ∂xγ
=

∂p

∂xβ
− gβ, (5.1.28)

and
∂2 (µuγ)
∂xα∂xα

+
∂2 (µuγ)
∂xβ∂xβ

+
∂2 (µuγ)
∂xγ∂xγ

=
∂p

∂xγ
− gγ (5.1.29)

with jump conditions
[µuα] ,

[
µuβ

]
, [µuγ ] (5.1.30)

and 


[
∂ (µuα)

∂n

]

[
∂

(
µuβ

)

∂n

]

[
∂ (µuγ)

∂n

]




= A




− (
A−1

)β

j

∂
[
µuj

]

∂x̃β
− (

A−1
)γ

j

∂
[
µuj

]

∂x̃γ

− (
A−1

)α

j

∂
[
µuj

]

∂x̃β
− f̃β

− (
A−1

)α

j

∂
[
µuj

]

∂x̃γ
− f̃γ




. (5.1.31)

It is clear that we need to call the IIM solver for elliptic equations four times in order
to solve the Stokes equations in 3D with known jump condition

[
µui

]
.
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5.2 Solving Advection Equation

For the hyperbolic advection equation

∂c

∂t
= −ui ∂c

∂xi
, (5.2.1)

we use the forward Euler method for the time derivative and upwinding for the advection
term. So

∂c

∂t
(t = tn) ≈ cn+1 − cn

∆t
. (5.2.2)

If ui > 0,
∂c

∂xi
(xi = xi

k) ≈
c(xi = xi

k)− c(xi = xi
k−1)

h
, (5.2.3)

otherwise
∂c

∂xi
(xi = xi

k) ≈
c(xi = xi

k+1)− c(xi = xi
k)

h
. (5.2.4)
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Chapter 6

Numerical Implementation: Differencing and

Interpolation

The elliptic solver using the immersed interface method enables us to use a widely available
fast Poisson solver to solve the discrete systems of equations. The fast Poisson solver, for
example the one from Fishpack [1], only requires O(Nlog(N)) operations, where N is the
total number of grid points. Therefore the Stokes equations with given jump condition

[
µui

]

can be solved in O(3Nlog(N)) operations for 2D problems and O(4Nlog(N)) operations
for 3D problems, which corresponds to the cost of one GMRES iteration.

One major step of the IIM solver is to calculate the correction term needed for irregular
grid points. For GMRES iterations, the major step is to calculate the residual vector. We
explain the details of those two major steps by showing the finite difference and interpola-
tions involved for both 2D and 3D problems.

6.1 2D Geometry

6.1.1 Differencing

To approximate the derivatives for a given grid function which is smooth in Ω such as the
level set function ϕ, we can use the central finite difference schemes:

∂ϕ

∂xα

∣∣∣∣
i,j

≈ ϕi+1,j − ϕi−1,j

2h
, (6.1.1)

∂ϕ

∂xβ

∣∣∣∣
i,j

≈ ϕi,j+1 − ϕi,j−1

2h
, (6.1.2)

∂2ϕ

∂xα∂xα

∣∣∣∣
i,j

≈ ϕi+1,j − 2ϕi,j + ϕi−1,j

h2
, (6.1.3)
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∂2ϕ

∂xβ∂xβ

∣∣∣∣
i,j

≈ ϕi,j+1 − 2ϕi,j + ϕi,j−1

h2
, (6.1.4)

∂2ϕ

∂xα∂xβ

∣∣∣∣
i,j

=
∂2ϕ

∂xβ∂xα

∣∣∣∣
i,j

≈ ϕi+1,j+1 + ϕi−1,j−1 − ϕi+1,j−1 − ϕi−1,j+1

4h2
. (6.1.5)

If the grid function may be discontinuous in Ω while sufficiently smooth in subregions
Ω+ and Ω−, such as the body force component gα in the Stokes equations, we choose to use
a one-sided least square scheme to approximate the derivatives at those grid points close to
or on the interface where the discontinuity happens. For example, given such a grid point
x =

(
xα

i , xβ
j

)
∈ Ω+ and its neighboring grid points

{(
xα

m, xβ
n

) ∣∣
(
xα

m, xβ
n

)
∈ Ω+

}
, we use

the following scheme: ∑
m,n

am,ngα
m,n (6.1.6)

where am,n is the coefficient to be determined. The Taylor expansion of gα
m,n at x is

gα
m,n = gα

i,j +
∂gα

∂xα

∣∣∣∣
i,j

(
xα

m − xα
i

)
+

∂gα

∂xβ

∣∣∣∣
i,j

(
xβ

n − xβ
j

)
+

1
2

∂2gα

∂xα∂xα

∣∣∣∣
i,j

(
xα

m − xα
i

)2

+
1
2

∂2gα

∂xβ∂xβ

∣∣∣∣
i,j

(
xβ

n − xβ
j

)2
+

∂2gα

∂xα∂xβ

∣∣∣∣
i,j

(
xα

m − xα
i

)(
xβ

n − xβ
j

)
+ · · · .

(6.1.7)

Substituting Eq. (6.1.7) into Eq. (6.1.6), to approximate
∂gα

∂xα

∣∣∣∣
i,j

,
∂gα

∂xβ

∣∣∣∣
i,j

,
∂2gα

∂xα∂xα

∣∣∣∣
i,j

,

∂2gα

∂xβ∂xβ

∣∣∣∣
i,j

and
∂2gα

∂xα∂xβ

∣∣∣∣
i,j

, the coefficients am,n in the interpolation scheme (6.1.6) are

seen to be the solution of the following linear systems of equations :



∑
m,n

am,n

∑
m,n

(am,n(xα
m − xα

i ))

∑
m,n

(
am,n(xβ

n − xβ
j )

)

∑
m,n

(
1
2
am,n(xα

m − xα
i )2

)

∑
m,n

(
1
2
am,n(xβ

n − xβ
j )2

)

∑
m,n

(
am,n(xα

m − xα
i )(xβ

n − xβ
j )

)




=




0
1
0
0
0
0




, · · · ,




0
0
0
0
0
1




. (6.1.8)

If we choose more than six grid points (including the point x) for the interpolation, then the
linear system of equations (6.1.8) is underdetermined, that is, there are an infinite number
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of solutions. We use the singular value decomposition (SVD) method [9] to get the unique
solution that has the least 2-norm among all feasible solutions. At the majority regular grid
points, the central finite difference schemes (6.1.1 - 6.1.5) can still be used.

6.1.2 Bilinear interpolation

To calculate the local coordinate transformation matrix, we need to approximate the level

set derivatives such as
∂ϕ

∂xα
at interface projection point x∗ ∈ Γ and we choose to use

bilinear interpolation here. We label the four grid points surrounding x∗ as
(
xα

i , xβ
j

)
,
(
xα

i+1, x
β
j

)
,
(
xα

i , xβ
j+1

)
,
(
xα

i+1, x
β
j+1

)
. (6.1.9)

If we define

a =
2

(
xα∗ − xα

i

)

h
− 1, b =

2
(
xβ
∗ − xβ

j

)

h
− 1, (6.1.10)

then we can use the following bilinear interpolation scheme

∂ϕ

∂xα
(x = x∗) ≈ 1

4

(
(1− a) (1− b)

∂ϕ

∂xα

∣∣∣∣
i,j

+ (1 + a) (1− b)
∂ϕ

∂xα

∣∣∣∣
i+1,j

+ (1− a) (1 + b)
∂ϕ

∂xα

∣∣∣∣
i,j+1

+ (1 + a) (1 + b)
∂ϕ

∂xα

∣∣∣∣
i+1,j+1

)
.

(6.1.11)

6.1.3 Interface interpolation

Calculation of the correction term involves both the local Cartesian coordinates
(
x̃α, x̃β

)
and

local derivatives of jump conditions such as
dw

dx̃β
where w is a jump condition. Given an in-

terface point x∗ =
(
xα∗ , x

β
∗
)
∈ Γ and its neighboring interface points

{(
xα

i , xβ
i

) ∣∣∣∣
(
xα

i , xβ
i

)
∈ Γ

}
,

using the local coordinate system centered at x∗, the least square interpolation scheme to

approximate
dw

dx̃β
at the local origin can be written as

∑

i

aiw(x̃β
i ) (6.1.12)

where ai are the coefficients to be determined and x̃β
i =

(
A−1

)β

j

(
xj

i − xj
∗
)
. Substituting

the Taylor expansion of w(x̃β
i ) at the local origin

w(x̃β
i ) = w(0) +

dw

dx̃β
(0)x̃β

i +
1
2

d2w

dx̃βdx̃β
(0)

(
x̃β

i

)2
+ · · · (6.1.13)
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into Eq. (6.1.12), the coefficients ai are the solution of the following linear system of
equations: 



∑

i

ai

∑

i

(
aix̃

β
i

)

∑

i

(
1
2
ai(x̃

β
i )2

)




=




0
1
0


 . (6.1.14)

We can also approximate w and
d2w

dx̃βdx̃β
at the local origin by changing the right hand side

vector to (1, 0, 0)T and (0, 0, 1)T in Eq. (6.1.14). If we choose more than three interface
points for the interpolation, then Eq. (6.1.14) is underdetermined and we use the SVD
method to solve it.

6.1.4 Residual interpolation

For projection points from irregular inner grid points, the values of unknown jump condi-
tions, such as

[
µui

]
for the Stokes equations, are discretized and denoted as Y and we use

interpolations (6.1.14) to approximate
[
µui

]
for projection points from irregular outer grid

points.

To solve for Y , we need to calculate the residual vector R and we use a two-sided
least square interpolation method. For example, for Stokes equations, the residual is

(
ui

)+

Γ

where ui is the velocity. Given an interface point x∗ =
(
xα∗ , x

β
∗
)
∈ Γ and its neighboring

grid points
{(

xα
m, xβ

n

) ∣∣∣∣
(
xα

m, xβ
n

)
∈ Ω

}
, we use the following scheme:

∑
m,n

am,nui
m,n + b (6.1.15)

where am,n are the coefficients to be determined and b is a correction term due to the
two-sided scheme. Using the local Cartesian coordinate system centered at x∗, the local
coordinates for the interpolation grid points are denoted as

(
x̃α

m,n, x̃β
m,n

)
. The Taylor

expansion of ui
m,n at the local origin is

ui
m,n =

(
ui

)± (0) +
∂

(
ui

)±
∂x̃α

(0)x̃α
m,n +

∂
(
ui

)±
∂x̃β

(0)x̃β
m,n +

1
2

∂2
(
ui

)±
∂x̃α∂x̃α

(0)
(
x̃α

m,n

)2

+
1
2

∂2
(
ui

)±
∂x̃β∂x̃β

(0)
(
x̃β

m,n

)2
+

∂2
(
ui

)±
∂x̃α∂x̃β

(0)x̃α
m,nx̃β

m,n + · · · .

(6.1.16)

The ± sign is determined according to whether
(
x̃α

m,n, x̃β
m,n

)
∈ Ω±. Substituting Eq.

(6.1.16) into Eq. (6.1.15), to approximate
(
ui

)+

Γ
(0), the coefficients am,n in the interpolation
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scheme (6.1.15) are the solution of the following linear system of equations:



∑
m,n

am,n

∑
m,n

(
am,nx̃α

m,n

)

∑
m,n

(
am,nx̃β

m,n

)

∑
m,n

(
1
2
am,n(x̃α

m,n)2
)

∑
m,n

(
1
2
am,n(x̃β

m,n)2
)

∑
m,n

(
am,nx̃α

m,nx̃β
m,n

)




=




1
0
0
0
0
0




. (6.1.17)

The correction term is

b =
∑�

x̃α
m,n,x̃β

m,n

�
∈Ω−

am,n

(
[
ui

]
(0) +

[
∂

(
ui

)

∂x̃α

]
(0)x̃α

m,n +

[
∂

(
ui

)

∂x̃β

]
(0)x̃β

m,n

+
1
2

[
∂2

(
ui

)

∂x̃α∂x̃α

]
(0)

(
x̃α

m,n

)2 +
1
2

[
∂2

(
ui

)

∂x̃β∂x̃β

]
(0)

(
x̃β

m,n

)2
+

[
∂2

(
ui

)

∂x̃α∂x̃β

]
(0)x̃α

m,nx̃β
m,n

)
.

(6.1.18)
We choose more than six grid points for the interpolation to get an underdetermined system
of equations (6.1.17) which is solved by the SVD method.

6.2 3D Geometry

6.2.1 Differencing

To approximate the derivatives for a given smooth grid function such as the level set function
ϕ, we use the central finite difference schemes:

∂ϕ

∂xα

∣∣∣∣
i,j,l

≈ ϕi+1,j,l − ϕi−1,j,l

2h
, (6.2.1)

∂ϕ

∂xβ

∣∣∣∣
i,j,l

≈ ϕi,j+1,l − ϕi,j−1,l

2h
, (6.2.2)

∂ϕ

∂xγ

∣∣∣∣
i,j,l

≈ ϕi,j,l+1 − ϕi,j,l−1

2h
, (6.2.3)
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∂2ϕ

∂xα∂xα

∣∣∣∣
i,j,l

≈ ϕi+1,j,l − 2ϕi,j,l + ϕi−1,j,l

h2
, (6.2.4)

∂2ϕ

∂xβ∂xβ

∣∣∣∣
i,j,l

≈ ϕi,j+1,l − 2ϕi,j,l + ϕi,j−1,l

h2
, (6.2.5)

∂2ϕ

∂xγ∂xγ

∣∣∣∣
i,j,l

≈ ϕi,j,l+1 − 2ϕi,j,l + ϕi,j,l−1

h2
, (6.2.6)

∂2ϕ

∂xα∂xβ

∣∣∣∣
i,j,l

=
∂2ϕ

∂xβ∂xα

∣∣∣∣
i,j,l

≈ ϕi+1,j+1,l + ϕi−1,j−1,l − ϕi+1,j−1,l − ϕi−1,j+1,l

4h2
, (6.2.7)

∂2ϕ

∂xα∂xγ

∣∣∣∣
i,j,l

=
∂2ϕ

∂xγ∂xα

∣∣∣∣
i,j,l

≈ ϕi+1,j,l+1 + ϕi−1,j,l−1 − ϕi+1,j,l−1 − ϕi−1,j,l+1

4h2
, (6.2.8)

∂2ϕ

∂xβ∂xγ

∣∣∣∣
i,j,l

=
∂2ϕ

∂xγ∂xβ

∣∣∣∣
i,j,l

≈ ϕi,j+1,l+1 + ϕi,j−1,l−1 − ϕi,j+1,l−1 − ϕi,j−1,l+1

4h2
. (6.2.9)

If the grid function may be discontinuous in Ω while still smooth in subregions Ω+

and Ω−, such as the body force component gα in the Stokes equations, we use a one-
sided least square scheme to approximate the derivatives at those grid points close to or
on the interface where the discontinuity happens. For example, given such a grid point
x =

(
xα

i , xβ
j , xγ

l

)
∈ Ω+ and its neighboring grid points

{(
xα

m, xβ
n, xγ

s

)
∈ Ω+

}
, we use the

following scheme: ∑
m,n,s

am,n,sg
α
m,n,s (6.2.10)

where am,n,s is the coefficient to be determined. The Taylor expansion of gα
m,n,s at x is

gα
m,n,s = gα

i,j,l +
∂gα

∂xα

∣∣∣∣
i,j,l

(xα
m − xα

i ) +
∂gα

∂xβ

∣∣∣∣
i,j,l

(
xβ

n − xβ
j

)
+

∂gα

∂xγ

∣∣∣∣
i,j,l

(
xγ

s − xγ
l

)

+
1
2

∂2gα

∂xα∂xα

∣∣∣∣
i,j,l

(xα
m − xα

i )2 +
1
2

∂2gα

∂xβ∂xβ

∣∣∣∣
i,j,l

(
xβ

n − xβ
j

)2

+
1
2

∂2gα

∂xγ∂xγ

∣∣∣∣
i,j,l

(
xγ

s − xγ
l

)2 +
∂2gα

∂xα∂xβ

∣∣∣∣
i,j,l

(xα
m − xα

i )
(
xβ

n − xβ
j

)

+
∂2gα

∂xα∂xγ

∣∣∣∣
i,j,l

(xα
m − xα

i )
(
xγ

s − xγ
l

)
+

∂2gα

∂xβ∂xγ

∣∣∣∣
i,j,l

(
xβ

n − xβ
j

) (
xγ

s − xγ
l

)
+ · · · .

(6.2.11)

Substituting Eq. (6.2.11) into Eq. (6.2.10), to approximate
∂gα

∂xα

∣∣∣∣
i,j,l

,
∂gα

∂xβ

∣∣∣∣
i,j,l

,
∂gα

∂xγ

∣∣∣∣
i,j,l

,

∂2gα

∂xα∂xα

∣∣∣∣
i,j,l

,
∂2gα

∂xβ∂xβ

∣∣∣∣
i,j,l

,
∂2gα

∂xγ∂xγ

∣∣∣∣
i,j,l

,
∂2gα

∂xα∂xβ

∣∣∣∣
i,j,l

,
∂2gα

∂xα∂xγ

∣∣∣∣
i,j,l

and
∂2gα

∂xβ∂xγ

∣∣∣∣
i,j,l

, the co-

efficients am,n,s in the interpolation scheme (6.2.10) are the solution of the following linear
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systems of equations:



∑
m,n,s

am,n,s

∑
m,n,s

(am,n,s(xα
m − xα

i ))

∑
m,n,s

(
am,n,s(xβ

n − xβ
j )

)

∑
m,n,s

(
am,n,s(xγ

s − xγ
l )

)

∑
m,n,s

(
1
2
am,n,s(xα

m − xα
i )2

)

∑
m,n,s

(
1
2
am,n,s(xβ

n − xβ
j )2

)

∑
m,n,s

(
1
2
am,n,s(xγ

s − xγ
l )2

)

∑
m,n,s

(
am,n,s(xα

m − xα
i )(xβ

n − xβ
j )

)

∑
m,n,s

(
am,n,s(xα

m − xα
i )(xγ

s − xγ
l )

)

∑
m,n,s

(
am,n,s(xβ

n − xβ
j )(xγ

s − xγ
l )

)




=




0
1
0
0
0
0
0
0
0
0




, · · · ,




0
0
0
0
0
0
0
0
0
1




. (6.2.12)

We choose more than ten grid points (including the point x) for the interpolation and solve
Eq. (6.2.12) using the SVD method. At the majority regular grid points, the central finite
difference schemes (6.2.1 - 6.2.9) can still be used.

6.2.2 Bilinear interpolation

To calculate the local coordinate transformation matrix, we need to approximate the level

set derivatives such as
∂ϕ

∂xα
at interface projection point x∗ ∈ Γ and we use the bilinear

interpolation method. We label the eight grid points surrounding x∗ as
(
xα

i , xβ
j , xγ

l

)
,

(
xα

i+1, x
β
j , xγ

l

)
,

(
xα

i , xβ
j+1, x

γ
l

)
,

(
xα

i , xβ
j , xγ

l+1

)
,

(
xα

i+1, x
β
j+1, x

γ
l

)
,

(
xα

i+1, x
β
j , xγ

l+1

)
,

(
xα

i , xβ
j+1, x

γ
l+1

)
,

(
xα

i+1, x
β
j+1, x

γ
l+1

)
.

(6.2.13)

If we define

a =
2

(
xα∗ − xα

i

)

h
− 1, b =

2
(
xβ
∗ − xβ

j

)

h
− 1, c =

2
(
xγ
∗ − xγ

l

)

h
− 1, (6.2.14)
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then we have the following bilinear interpolation scheme

∂ϕ

∂xα
(x = x∗) ≈ 1

8

(
(1− a)(1− b)(1− c)

∂ϕ

∂xα

∣∣∣∣
i,j,l

+ (1 + a)(1− b)(1− c)
∂ϕ

∂xα

∣∣∣∣
i+1,j,l

+ (1− a)(1 + b)(1− c)
∂ϕ

∂xα

∣∣∣∣
i,j+1,l

+ (1− a)(1− b)(1 + c)
∂ϕ

∂xα

∣∣∣∣
i,j,l+1

+ (1 + a)(1 + b)(1− c)
∂ϕ

∂xα

∣∣∣∣
i+1,j+1,l

+ (1 + a)(1− b)(1 + c)
∂ϕ

∂xα

∣∣∣∣
i+1,j,l+1

+(1− a)(1 + b)(1 + c)
∂ϕ

∂xα

∣∣∣∣
i,j+1,l+1

+ (1 + a)(1 + b)(1 + c)
∂ϕ

∂xα

∣∣∣∣
i+1,j+1,l+1

)
.

(6.2.15)

6.2.3 Interface interpolation

Calculation of the correction term involves both the local Cartesian coordinates
(
x̃α, x̃β, x̃γ

)

and local derivatives of jump conditions such as
∂w

∂x̃β
where w is a jump condition. Given

an interface point x∗ =
(
xα∗ , x

β
∗ , x

γ
∗
)
∈ Γ and its neighboring interface points

{(
xα

i , xβ
i , xγ

i

) ∣∣∣∣
(
xα

i , xβ
i , xγ

i

)
∈ Γ

}
,

using the local coordinate system centered at x∗, the least square interpolation scheme to

approximate
∂w

∂x̃β
at the local origin can be written as

∑

i

aiw(x̃β
i , x̃γ

i ) (6.2.16)

where ai are the coefficients to be determined and x̃k
i =

(
A−1

)k

j

(
xj

i − xj
∗
)
, k = β, γ.

Substituting the Taylor expansion of w(x̃β
i , x̃γ

i ) at the local origin

w(x̃β
i , x̃γ

i ) = w(0, 0) +
∂w

∂x̃β
(0, 0)x̃β

i +
∂w

∂x̃γ
(0, 0)x̃γ

i +
1
2

∂2w

∂x̃β∂x̃β
(0, 0)

(
x̃β

i

)2

+
1
2

∂2w

∂x̃γ∂x̃γ
(0, 0) (x̃γ

i )2 +
∂2w

∂x̃β∂x̃γ
(0, 0)x̃β

i x̃γ
i + · · ·

(6.2.17)
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into Eq. (6.2.16), the coefficients ai are the solution of the following linear system of
equations: 



∑

i

ai

∑

i

(
aix̃

β
i

)

∑

i

(aix̃
γ
i )

∑

i

(
1
2
ai(x̃

β
i )2

)

∑

i

(
1
2
ai(x̃

γ
i )2

)

∑

i

(
aix̃

β
i x̃γ

i

)




=




0
1
0
0
0
0




. (6.2.18)

We can also approximate w,
∂w

∂x̃γ
,

∂2w

∂x̃β∂x̃β
,

∂2w

∂x̃γ∂x̃γ
and

∂2w

∂x̃β∂x̃γ
at the local origin by

changing the right hand side vector in Eq. (6.2.18). If we choose more than six interface
points for the interpolation, then Eq. (6.2.18) is underdetermined and we use the SVD
method to solve it.

6.2.4 Residual interpolation

For projection points from irregular inner grid points, the values of unknown jump condi-
tions, such as

[
µui

]
for the Stokes equations, are discretized and denoted as Y and we use

interpolations (6.2.18) to approximate
[
µui

]
for projection points from irregular outer grid

points.

To solve for Y , we need to calculate the residual vector R and we use a two-sided least
square interpolation method. For example, for the Stokes equations, the residual is

(
ui

)+

Γ

where ui is the velocity. Given an interface point x∗ =
(
xα∗ , x

β
∗ , x

γ
∗
)
∈ Γ and its neighboring

grid points
{(

xα
m, xβ

n, xγ
s

) ∣∣∣∣
(
xα

m, xβ
n, xγ

s

)
∈ Ω

}
, we use the following scheme:

∑
m,n,s

am,n,s

(
ui

)
m,n,s

+ b (6.2.19)

where am,n,s are the coefficients to be determined and b is a correction term due to the
two-sided scheme. Using the local Cartesian coordinate system centered at x∗, the local
coordinates for the interpolation grid points are denoted as

(
x̃α

m,n,s, x̃
β
m,n,s, x̃

γ
m,n,s

)
. The
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Taylor expansion of
(
ui

)
m,n,s

at the local origin is

(
ui

)
m,n,s

=
(
ui

)± (0, 0) +
∂

(
ui

)±
∂x̃α

(0, 0)x̃α
m,n,s +

∂
(
ui

)±
∂x̃β

(0, 0)x̃β
m,n,s +

∂
(
ui

)±
∂x̃γ

(0, 0)x̃γ
m,n,s

+
1
2

∂2
(
ui

)±
∂x̃α∂x̃α

(0, 0)
(
x̃α

m,n,s

)2 +
1
2

∂2
(
ui

)±
∂x̃β∂x̃β

(0, 0)
(
x̃β

m,n,s

)2
+

1
2

∂2
(
ui

)±
∂x̃γ∂x̃γ

(0, 0)
(
x̃γ

m,n,s

)2

+
∂2

(
ui

)±
∂x̃α∂x̃β

(0, 0)x̃α
m,n,sx̃

β
m,n,s +

∂2
(
ui

)±
∂x̃α∂x̃γ

(0, 0)x̃α
m,n,sx̃

γ
m,n,s

+
∂2

(
ui

)±
∂x̃β∂x̃γ

(0, 0)x̃β
m,n,sx̃

γ
m,n,s + · · · .

(6.2.20)
The ± sign is determined according to whether

(
x̃α

m,n,s, x̃
β
m,n,s, x̃

γ
m,n,s

)
∈ Ω±. Substituting

Eq. (6.2.20) into Eq. (6.2.19), to approximate
(
ui

)+

Γ
(0, 0), the coefficients am,n,s in the

interpolation scheme (6.2.19) are the solution of the following linear system of equations:



∑
m,n,s

am,n,s

∑
m,n,s

(
am,n,sx̃

α
m,n,s

)

∑
m,n,s

(
am,n,sx̃

β
m,n,s

)

∑
m,n,s

(
am,n,sx̃

γ
m,n,s

)

∑
m,n,s

(
1
2
am,n,s(x̃α

m,n,s)
2

)

∑
m,n,s

(
1
2
am,n,s(x̃β

m,n,s)
2

)

∑
m,n,s

(
1
2
am,n,s(x̃γ

m,n,s)
2

)

∑
m,n,s

(
am,n,sx̃

α
m,n,sx̃

β
m,n,s

)

∑
m,n,s

(
am,n,sx̃

α
m,n,sx̃

γ
m,n,s

)

∑
m,n,s

(
am,n,sx̃

β
m,n,sx̃

γ
m,n,s

)




=




1
0
0
0
0
0
0
0
0
0




. (6.2.21)
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The correction term is

b =
∑�

x̃α
m,n,s,x̃β

m,n,s,x̃γ
m,n,s

�
∈Ω−

am,n,s

(
[
ui

]
(0, 0) +

[
∂

(
ui

)

∂x̃α

]
(0, 0)x̃α

m,n,s +

[
∂

(
ui

)

∂x̃β

]
(0, 0)x̃β

m,n,s

+

[
∂

(
ui

)

∂x̃γ

]
(0, 0)x̃γ

m,n,s +
1
2

[
∂2

(
ui

)

∂x̃α∂x̃α

]
(0, 0)

(
x̃α

m,n,s

)2 +
1
2

[
∂2

(
ui

)

∂x̃β∂x̃β

]
(0, 0)

(
x̃β

m,n,s

)2

+
1
2

[
∂2

(
ui

)

∂x̃γ∂x̃γ

]
(0, 0)

(
x̃γ

m,n,s

)2 +

[
∂2

(
ui

)

∂x̃α∂x̃β

]
(0, 0)x̃α

m,n,sx̃
β
m,n,s

+

[
∂2

(
ui

)

∂x̃α∂x̃γ

]
(0, 0)x̃α

m,n,sx̃
γ
m,n,s +

[
∂2

(
ui

)

∂x̃β∂x̃γ

]
(0, 0)x̃β

m,n,sx̃
γ
m,n,s

)
.

(6.2.22)
We choose more than ten grid points for the interpolation to get an underdetermined system
of equations (6.2.21) which is solved by the SVD method.
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Chapter 7

Numerical Examples with Fixed Interfaces:

Convergence and Efficiency Analysis

We implement the algorithms for Stokes equations with interfaces described in Chapters 5
and 6 in both 2D and 3D. First we show the convergence and efficiency analysis for problems
with fixed interfaces. All the computations are done on a P4 3.20GHz DELLTM desktop
PC with 2GB memory.

7.1 2D Geometry

The computational domain is Ω = [−1.5, 1.5]× [−1.5, 1.5]. We choose to fix µ+ = 1.0 while
varying µ−. The interface is an ellipse

ϕ
(
xα, xβ

)
= (xα)2 + 4

(
xβ

)2
− 1.0. (7.1.1)

The initial guess of GMRES for the augmented variable
[
µU i

]
takes non-informative zero

values. The tolerance of the GMRES iteration is set to be 10−5. Dirichlet boundary
conditions are used for both velocity and pressure.
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The exact solution of velocity u =
(
uα, uβ

)
and pressure p is constructed as

uα =





xβ if (xα)2 + 4
(
xβ

)2
< 1,

xβ

(
(xα)2 + 4

(
xβ

)2
)

if (xα)2 + 4
(
xβ

)2 ≥ 1;

uβ =





xα
(
−1 + (xα)2

)

4
if (xα)2 + 4

(
xβ

)2
< 1,

−xα
(
xβ

)2
if (xα)2 + 4

(
xβ

)2 ≥ 1;

p =




−

3xα
(
2 (xα)2 − 1

)
xβ

8
if (xα)2 + 4

(
xβ

)2
< 1,

0 if (xα)2 + 4
(
xβ

)2 ≥ 1.

(7.1.2)

The body force term g =
(
gα, gβ

)
is chosen to be

gα =




−

3
(
6 (xα)2 − 1

)
xβ

8
if (xα)2 + 4

(
xβ

)2
< 1,

−26µ+xβ if (xα)2 + 4
(
xβ

)2 ≥ 1;

gβ =




−

3xα
(
2 (xα)2 − 1 + 4µ−

)

8
if (xα)2 + 4

(
xβ

)2
< 1,

2µ+xα if (xα)2 + 4
(
xβ

)2 ≥ 1.

(7.1.3)

And the singular interface force terms are

fα =
(

3
4

(xα)3 xβ − 3
8
xαxβ − 4µ+xαxβ

)
nα

+
(
−µ+ (xα)2 − 11µ+

(
xβ

)2
+

3
4
µ− +

3
4
µ− (xα)2

)
nβ

(7.1.4)

and

fβ =
(

3
4

(xα)3 xβ − 3
8
xαxβ + 4µ+xαxβ

)
nβ

+
(
−µ+ (xα)2 − 11µ+

(
xβ

)2
+

3
4
µ− +

3
4
µ− (xα)2

)
nα.

(7.1.5)

Note that this is a very general fixed interface problem with non-homogeneous jumps for
both velocity and pressure.

We use linear regression analysis to find the convergence order of the solution. For this
purpose, we choose m = n = 100, 200, 400, 800 and 1600 to run the convergence analysis for
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µ− = 0.001, 0.1, 10 and 1000. For the special case when µ− = 1.0, no GMRES iterations
are needed. See Fig. 7.1 for the grid refinement analysis and CPU cost.
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Figure 7.1: For the equal viscosity case, (a) Convergence analysis in the L∞ norm, and
(b) CPU time cost.

Fig. 7.2 shows the grid refinement analysis of the test problem for the unequal viscosity
cases. The error is the L∞ error at all grid points. The slope of the linear regression line is
the order of the convergence. It is clear from these results that the algorithm is second order
or almost second order accurate in both velocity and pressure. For this problem, it also
seems that with larger µ−, the numerical solution for velocity tends to be more accurate
than the solution for pressure.

See Fig. 7.3 for the computed solution and error plots with 32 by 32 grids and µ− = 0.8
for pressure p and velocity component uα. Fig. 7.4 shows the algorithm efficiency analysis.
The number of GMRES iterations remain relatively constant with grid size. In Fig. 7.5,
we show the 2-norm condition number of the coefficient matrix for the augmented variable[
µU i

]
. It can be seen that the coefficient matrix is ill-conditioned and future research needs

to be done to discover preconditioner techniques for this problem. Note that the condition
number is a measure of stability of the coefficient matrix to numerical operations (see Fig.
7.2) and affects the number of GMRES iterations (see Fig. 7.4).

To enhance the performance of the algorithm, it is very useful to discover where the
code is spending time as it executes. We use a statistical sampling method to record the
location where the code is executing at a predetermined interval. Once we have discovered
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Figure 7.2: Convergence analysis in the L∞ norm for four cases in log-log scale. The slope
of the linear regression line is the convergence rate which is close to number 2.0 for all cases.
(a) µ− = 0.001 and µ+ = 1.0. (b) µ− = 0.1 and µ+ = 1.0. (c) µ− = 10 and µ+ = 1.0. (d)
µ− = 1000 and µ+ = 1.0. Linear regressions R2 > 0.98 for all cases.
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Figure 7.3: The computed solutions for (a) pressure p and (c) velocity component uα.
The error plot of the computed solutions (b) p − pexact and (d) uα − uα

exact. We choose
m = n = 32 and µ− = 0.8.
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Figure 7.4: Algorithm efficiency analysis for 100 by 100 through 1600 by 1600 grids. (a):
Number of GMRES iterations. (b): CPU cost with unit second.
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Figure 7.5: Grid size is 80 by 80 and the size of the coefficient matrix for the augmented
variable

[
µU i

]
is 232 by 232. Region A represents µ− < 1 where the fluid inside the interface

is less viscous than the fluid outside the interface, region B represents µ− > 1.
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heavily executed portions of the code, we will be able to either adopt a faster algorithm
for those portions or fine tune the current implementations. From Fig. 7.6 we can find
that a faster Singular Value Decomposition (SVD) implementation will help to improve the
performance of our algorithm for cases with either equal viscosity coefficients or unequal
viscosity coefficients.

(a)

Singular value decomposition: 81%

Fast Poission 
solver: 3%

Others: 16%

(b)

Singular value decomposition: 81%

Fast Poisson 
solver: 1%   

Others: 18%

Figure 7.6: Execution time percentage analysis for (a) µ− = 0.1, µ+ = 1.0 and (b)
µ− = µ+ = 1.0. We choose m = n = 100.

7.2 3D Geometry

The computational domain is Ω = [−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5]. We choose to fix
µ+ = 1.0 while varying µ−. The interface is an ellipsoid

ϕ
(
xα, xβ, xγ

)
= (xα)2 + 4

(
xβ

)2
+ 4 (xγ)2 − 1.0. (7.2.1)

The initial guess of GMRES for the augmented variable
[
µU i

]
takes non-informative zero

values. The tolerance of the GMRES iteration is set to be 10−5. Dirichlet boundary
conditions are used for both velocity and pressure.
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The exact solution of velocity u =
(
uα, uβ, uγ

)
and pressure p is constructed as

uα =





xβxγ
(
1− 4 (xγ)2

)
if (xα)2 + 4

(
xβ

)2 + 4 (xγ)2 < 1,

xβxγ

(
(xα)2 + 4

(
xβ

)2
)

if (xα)2 + 4
(
xβ

)2 + 4 (xγ)2 ≥ 1;

uβ =





−xαxγ
(
(xα)2 + 4 (xγ)2

)
if (xα)2 + 4

(
xβ

)2 + 4 (xγ)2 < 1,

−xαxγ

(
1− 4

(
xβ

)2
)

if (xα)2 + 4
(
xβ

)2 + 4 (xγ)2 ≥ 1;

uγ =





5xαxβ
(
−1 + (xα)2 + 4

(
xβ

)2
)

4
if (xα)2 + 4

(
xβ

)2 + 4 (xγ)2 < 1,

−5xαxβ (xγ)2 if (xα)2 + 4
(
xβ

)2 + 4 (xγ)2 ≥ 1;

p =




−

3xα
(
2 (xα)2 − 1

)
xβ (xγ)2

8
if (xα)2 + 4

(
xβ

)2 + 4 (xγ)2 < 1,

0 if (xα)2 + 4
(
xβ

)2 + 4 (xγ)2 ≥ 1.

(7.2.2)

The body force term g =
(
gα, gβ, gγ

)
is chosen to be

gα =




−

3xβxγ
(
6 (xα)2 xγ − xγ − 64µ−

)

8
if (xα)2 + 4

(
xβ

)2 + 4 (xγ)2 < 1,

−26µ+xβxγ if (xα)2 + 4
(
xβ

)2 + 4 (xγ)2 ≥ 1;

gβ =




−

3xαxγ
(
2 (xα)2 xγ − xγ − 80µ−

)

8
if (xα)2 + 4

(
xβ

)2 + 4 (xγ)2 < 1,

−8µ+xαxγ if (xα)2 + 4
(
xβ

)2 + 4 (xγ)2 ≥ 1;

gγ =




−

3xαxβ
(
2 (xα)2 xγ − xγ + 50µ−

)

4
if (xα)2 + 4

(
xβ

)2 + 4 (xγ)2 < 1,

10µ+xαxβ if (xα)2 + 4
(
xβ

)2 + 4 (xγ)2 ≥ 1.

(7.2.3)
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And the singular interface force terms are

fα =
(

3
4

(xα)3 xβ (xγ)2 − 3
8
xαxβ (xγ)2 − 4µ+xαxβxγ

)
nα +

(
−µ+ (xα)2 xγ

−16µ+
(
xβ

)2
xγ + µ+xγ + µ−xγ − 8µ− (xγ)3 − 3µ− (xα)2 xγ

)
nβ

+
(
−µ+ (xα)2 xβ − 4µ+

(
xβ

)3
+ 5µ+xβ (xγ)2 − 1

4
µ−xβ − 12µ−xβ (xγ)2

+
15
4

µ− (xα)2 xβ + 5µ−
(
xβ

)3
)

nγ ,

(7.2.4)

fβ =
(
−µ+ (xα)2 xγ − 16µ+

(
xβ

)2
xγ + µ+xγ + µ−xγ − 8µ− (xγ)3 − 3µ− (xα)2 xγ

)
nα

+
(

3
4

(xα)3 xβ (xγ)2 − 3
8
xαxβ (xγ)2 − 16µ+xαxβxγ

)
nβ +

(
µ+xα − 4µ+xα

(
xβ

)2

+5µ+xα (xγ)2 +
1
4
µ− (xα)3 − 12µ−xα (xγ)2 − 5

4
µ−xα + 15µ−xα

(
xβ

)2
)

nγ

(7.2.5)
and

fγ =
(
−µ+ (xα)2 xβ − 4µ+

(
xβ

)3
+ 5µ+xβ (xγ)2 − 1

4
µ−xβ − 12µ−xβ (xγ)2 +

15
4

µ− (xα)2 xβ

+5µ−
(
xβ

)3
)

nα +
(

µ+xα − 4µ+xα
(
xβ

)2
+ 5µ+xα (xγ)2 +

1
4
µ− (xα)3

−12µ−xα (xγ)2 − 5
4
µ−xα + 15µ−xα

(
xβ

)2
)

nβ +
(

3
4

(xα)3 xβ (xγ)2

−3
8
xαxβ (xγ)2 + 20µ+xαxβxγ

)
nγ .

(7.2.6)
Note that this is a very general fixed interface problem with non-homogeneous jumps for
both velocity and pressure.

We use linear regression analysis to find the convergence order of the solution. For this
purpose, we choose m = n = s = 32, 56, 80, 104 and 128 to run the convergence analysis for
µ− = 0.001, 0.1, 10 and 100. For the special case when µ− = 1.0, no GMRES iterations are
needed and see Fig. 7.7 for the grid refinement analysis and CPU cost.

Fig. 7.8 shows the grid refinement analysis of the test problem for the unequal viscosity
cases. The error is the L∞ error at all grid points. The slope of the linear regression line
is the order of the convergence. It is clear from these results that the algorithm is higher
than second order accurate in both velocity and pressure. For this problem, it also seems
that with larger µ−, the numerical solution for velocity tends to be more accurate than the
solution for pressure.
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Figure 7.7: For the equal viscosity case, (a) Convergence analysis in the L∞ norm, and
(b) CPU time cost.

See Fig. 7.9 for the sliced solution and error plots with 323 grids and µ− = 0.8 for
pressure p and velocity component uα. Fig. 7.10 shows the algorithm efficiency analy-
sis. The number of GMRES iterations remains relatively constant with grid size for finer
grids. In Fig. 7.11, we show the 2-norm condition number of the coefficient matrix for
the augmented variable

[
µU i

]
. It can be seen that the coefficient matrix is ill-conditioned

and future research needs to be done to discover preconditioner techniques for this prob-
lem. Note that the condition number is a measure of stability of the coefficient matrix to
numerical operations (see Fig. 7.8) and affects the number of GMRES iterations (see Fig.
7.10).

We use the statistical sampling technique to quantify the CPU cost for different portions
of the algorithm. From Fig. 7.12 we can find that a faster SVD implementation will help
to improve the overall performance of our algorithm for both equal and unequal viscosity
cases.
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Figure 7.8: Convergence analysis in the L∞ norm for four cases in log-log scale. The slope
of the linear regression line is the convergence rate which is larger than number 2.0 for all
cases. (a) µ− = 0.001 and µ+ = 1.0. (b) µ− = 0.1 and µ+ = 1.0. (c) µ− = 10 and µ+ = 1.0.
(d) µ− = 100 and µ+ = 1.0. Linear regressions R2 > 0.95 for all cases.
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Figure 7.9: The computed solutions sliced at xγ = 0.0938 for (a) pressure p and (c)
velocity component uα. The sliced error plot of the computed solutions (b) p − pexact and
(d) uα − uα

exact. We choose m = n = s = 32 and µ− = 0.8.
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Figure 7.10: Algorithm efficiency analysis for 323 through 1283 grids. (a): Number of
GMRES iterations. (b): CPU cost with unit second.

−3 −2 −1 0 1 2 3
2

3

4

5

6

log
10

(µ−)

lo
g

10
(C

on
di

tio
n 

nu
m

be
r)

A B

Figure 7.11: Grid size is 103 and the size of the coefficient matrix for the augmented
variable

[
µU i

]
is 102 by 102. Region A represents µ− < 1 where the fluid inside the

interface is less viscous than the fluid outside the interface, region B represents µ− > 1.
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(a)

Singular value decomposition: 88%

Others: 12%

(b)

Singular value decomposition: 87%

Others: 13%

Figure 7.12: Execution time percentage analysis for (a) µ− = 0.1, µ+ = 1.0 and (b)
µ− = µ+ = 1.0. We choose m = n = s = 40.
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Chapter 8

Moving Interface Problems: Two-Phase Flow with

Surface Tension

In order to test our two-phase Stokes flow solver for moving interface problems, we choose to
use the well-known mean curvature flow cases where the surface tension f ini is proportional
to the mean curvature of the interface and the tangential interface force is zero. For the
mean curvature flow, in terms of jump condition for pressure p, we have the Young-Laplace
equation

[p] = ξκM (8.0.1)

where ξ is the surface tension constant and κM is the mean curvature of the interface Γ.
We solve the nondimensional incompressible Stokes equations for all the two-phase flow
simulations with surface tension.

8.1 Level Set Method for Interface Advection

The interface between two fluid phases is represented implicitly using the level set function
as

ϕ(xi, t) = 0 (8.1.1)

where ϕ(·) is the level set function, xi is the spatial coordinates and t is the time coordinates.
Since the solution xi of Eq. (8.1.1) is the interface which depends on t, we can take the
derivative of Eq. (8.1.1) with respect to t to get the level set equation [40]

0 =
dϕ

dt
=

∂ϕ

∂t
+

∂ϕ

∂xi

dxi

dt
=

∂ϕ

∂t
+

∂ϕ

∂xi
ui (8.1.2)

where ui is the advection velocity. We use the third-order accurate Hamilton-Jacobi essen-

tially nonoscillatory (HJ ENO) scheme [40] for the spatial derivative term
∂ϕ

∂xi
with upwind
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differencing. The time advancing scheme is the first-order accurate total variation diminish-
ing (TVD) Runge-Kutta (RK) scheme, which is just the forward Euler method. Stability
of the time stepping scheme is enforced using the Courant-Friedrichs-Lewy condition (CFL
condition) [40]

∆t = α
h∑

i max|ui| (8.1.3)

where h is the grid size and α is a constant chosen to be 0.5.

It is necessary to keep the level set function ϕ close to a signed distance function [50]
satisfying ∣∣∣∣

∂ϕ

∂xi

∣∣∣∣ = 1. (8.1.4)

This is enforced by solving the reinitialization equation [40]

∂ϕ

∂t
+ S(ϕ0)

(∣∣∣∣
∂ϕ

∂xi

∣∣∣∣− 1
)

= 0 (8.1.5)

where
S(ϕ0) =

ϕ0√
ϕ2

0 + h2
. (8.1.6)

In the reinitialization equation (8.1.5), t is the pseudo-time variable for iterations and ϕ0 is
the initial input of the level set function for this iteration. Eq. (8.1.5) is discretized using
the Godunov scheme for the level set motion in the normal direction [40].

Volume or area conservation for the two fluid phases separated by the zero level sets is
a non-trivial research topic [12, 52, 40]. We adopt the method [16] which iteratively solves
the following equation

M(ϕ + ε < 0) = M0 (8.1.7)

for ε. Here M(·) is the volume or area measure and M0 is the value of this measure at the
initial time of the simulation.

We use the Level Set Method Library (LSMLIB) [5] developed by Kevin T. Chu and
Masa Prodanovic and this library is freely available through the Internet.

8.2 2D Geometry

8.2.1 Ellipse interface

The computational domain is [−1, 1] × [−1, 1] with periodic boundary condition, and the
grid size is 64× 64. The initial condition of the interface for the two phases is chosen to be
an ellipse

ϕ(xα, xβ) =
(xα)2

0.82
+

(
xβ

)2

0.42
− 1.0 = 0, (8.2.1)
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and the surface tension constant ξ is chosen to be 0.1. We run the simulation to equilibrium
(or close to equilibrium) at t = 100. We first show the time evolution results for the case
when µ− = µ+ = 1.0 in Fig. 8.1 and the final pressure profile in Fig. 8.2. Note that for the
equal viscosity coefficient case, no GMRES iterations are needed.
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Figure 8.1: Starting from the ellipse, the interface evolves to a circle under surface tension.
(a) The interface plotted at t = 0 and t = 100. (b) Colored pressure profile with streamlines
of the velocity field at t = 25. Since the pressure is not continuous across the interface, the
color plot for the pressure is not smooth near the interface.

We run the same simulations with µ− = 0.5 and µ− = 2.0. For µ− = 0.5, the fluid
inside the interface is less viscous than the fluid outside and for µ− = 2.0 it is the opposite.
GMRES iterations per time step for both cases are in the range of 2-5. The computation
time for the equal viscosity case is 504 seconds, for µ− = 0.5 is 940 seconds and for µ+ = 2.0
is 978 seconds. See Fig. 8.3 for the pressure color plot and velocity streamlines of these two
cases. The comparison between Fig. 8.3 and Fig. 8.1(b) clearly illustrates the effects of the
viscosity difference for the two-phase flow.

8.2.2 Star interface

It is interesting to see whether our Stokes solver coupled with the LSM can handle flow
with complex interfaces such as the five-star interface in the literature [23, 55]. For this
experiment, the initial shape of the interface between two fluids with µ− = µ+ = 1.0 is
expressed in the polar coordinates (r, θ) as

r(θ) = 0.5(1 + 0.4 sin(5θ)), 0 ≤ θ ≤ 2π. (8.2.2)
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Figure 8.2: Equilibrium pressure field at t = 100. Notice the sharp interface for the
pressure field. No noise filtering is used to maintain the sharp interface.
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Figure 8.3: Colored pressure profile with streamlines of the velocity field at t = 25 for (a)
µ− = 0.5 and (b) µ− = 2.0.
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The computational domain is [−1, 1]×[−1, 1] with periodic boundary condition, and the grid
size is 320×320. The surface tension constant ξ is chosen to be 0.05. We run the simulation
to equilibrium which is set as t = 98. See Fig. 8.4 for the time evolution results. From Fig.
8.5, it is clear that our algorithm can capture the highly localized discontinuous pressure
profile, which is critical for simulating the pressure driven interface. The computation cost
is 3350 seconds.
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Figure 8.4: Starting from the five-star shape, the interface relaxes to a circle under surface
tension. (a) The interface plotted at t = 0 and t = 98. The interface with streamlines of
the velocity field at (b) t = 7 (c) t = 21 and (d) t = 35.
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Figure 8.5: Pressure field at t = 7. Our algorithm captures the highly localized pressure
gradient with the presence of complex five-star interface.
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8.3 3D Geometry

8.3.1 Ellipsoid interface

The computational domain is [−1, 1]3 with periodic boundary condition, and the grid size
is 643. The initial condition of the interface for the two phases is chosen to be an ellipsoid

ϕ(xα, xβ, xγ) =
(xα)2

0.82
+

(
xβ

)2

0.52
+

(xγ)2

0.42
− 1.0 = 0, (8.3.1)

and the surface tension constant ξ is chosen to be 0.1. We run the simulation to equilibrium
(or close to equilibrium) at t = 100. First we show the time evolution results for the case
when µ− = µ+ = 1.0 in Fig. 8.6. See Fig. 8.7 for a cone plot of the velocity field at t = 30.
Note that for the equal viscosity coefficient case, no GMRES iterations are needed.

We run the same simulations with µ− = 0.5 and µ− = 2.0. For µ− = 0.5 we have the
less viscous fluid inside the interface and for µ− = 2.0 it is the opposite. GMRES iterations
per time step for both cases are in the range of 5-6. The computation time for the equal
viscosity case is 3079 seconds, for µ− = 0.5 is 10818 seconds and for µ+ = 2.0 is 9033
seconds.

We compare the evolved interface at t = 50 for these three cases and the effects of the
viscosity coefficients for the fluid phase inside the interface are clearly seen.
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Figure 8.6: Starting from the ellipsoid, the interface evolves to a sphere under surface
tension. The interface plotted at (a) t = 0 and (b) t = 100 with µ− = 1.0.
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Figure 8.7: Cone plot of the velocity field at t = 30 with µ− = 1.0.
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Figure 8.8: Comparison of the evolved interface at t = 50 for (a) µ− = 0.5, (b) µ− = 1.0
and (c) µ− = 2.0.
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8.3.2 Cell aggregation implanted in a 3D model gel

Organ printing is a proposed new technology to assemble vascularized 3D soft organs using
computer-aided jet-based 3D printing technology [35]. It is necessary for this new tech-
nology to show tissue tube formation as a result of cell aggregate fusion in 3D. Cell-based
mathematical models have been used to predict cell aggregation behavior when implanted
in a 3D model gel [39]. In this example, we start with ten attached cell aggregates and
simulate the transient dynamics of these cell aggregates under surface tension.

We choose to solve the nondimensional incompressible Stokes equations. The computa-
tional domain is chosen to be [−1, 1]3 with periodic boundary conditions, and the grid size
is 643. The initial condition of the interface is chosen to be 10 spheres with radius 0.2. The
centers of the spheres are evenly distributed on a circle

(xα)2 + (xβ)2 = 0.642, xγ = 0. (8.3.2)

See Fig. 8.9 for the interface initial condition sliced at xγ = 0.0.

xα

xβ

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 8.9: Interface initial condition sliced at xγ = 0.0 for cell aggregation fusion simu-
lation.

The surface tension constant ξ is chosen to be 0.1. We run the simulation to t = 8 for
three cases where µ− = 1.0, 0.5 and 2.0 with µ+ fixed at 1.0. See Fig. 8.10 for the initial
interface and the evolved interface at end of the simulation for three different viscosity
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coefficient cases. Also see Fig. 8.11 for the evolved interface at t = 2 and t = 4 for the
equal viscosity case. The computation cost for µ− = 1.0, 0.5 and 2.0 is 2307 seconds, 9202
seconds and 7215 seconds. The number of GMRES iterations for µ− = 0.5 is in the range
of 8-24 and for µ− = 2.0 is in the range of 7-31.

(a) (b)

(c) (d)

Figure 8.10: The initial interface (a) and comparison of the evolved interface at t = 8 for
(b) µ− = 1.0, (c) µ− = 0.5 and (d) µ− = 2.0.
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(a) (b)

(c)

Figure 8.11: Comparison of the evolved interface at (a) t = 0, (b) t = 2 and (c) t = 4 for
µ− = 1.0.
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Chapter 9

Branching Morphogenesis:

Epithelium-Mesenchyme Interactions

To simulate branching morphogenesis, we model both epithelium and mesenchyme as in-
compressible Stokes flow

− ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ gi = 0, x ∈ Ω+ ∪ Ω−, (9.0.1)

∂ui

∂xi
= 0, x ∈ Ω+ ∪ Ω−. (9.0.2)

Here p is the pressure, ui is the velocity, µ is the viscosity coefficient and gi is the body
force. Across the interface Γ separating the two embryonic tissues, we have the surface force
balancing condition [

σijn
j
]
+ f i = 0 (9.0.3)

where f i is the interface force such as surface tension, nj is the unit interfacial normal vector
pointing from Ω− to Ω+, σij is the stress tensor for Stokes flow defined as

σij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
. (9.0.4)

We assume that some mesenchymal cells are contracting and advecting with the Stokes
flow. The advection of mesenchymal cells is modeled using the advection equation

∂c

∂t
= −ui ∂c

∂xi
(9.0.5)

where c is the number density of contracting mesenchymal cells. The contraction force
generated by those mesenchymal cells is modeled as a body force for the Stokes flow as

gi =
∂(τc)
∂xi

(9.0.6)
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where τ measures the isotropic traction force per fibroblast cell.

During branching morphogenesis, it is hypothesized [17] that some mesenchymal cells
produce contraction forces which lead to clefting and further branching of epithelium.
Therefore we assume that mesenchymal cells are distributed everywhere in the mesenchyme
phase, but we only keep track of those cells which are contractile. We will study the two-
tissue interactions given initial distributions of contractile mesenchymal cells with varying
parameters. For branching morphogenesis simulations, we solve the nondimensional Stokes
equations and advection equation. It is possible to estimate the parameters in the model
such as tissue viscosity coefficients, mesenchymal cell number density and traction force per
fibroblast cell [34].

9.1 2D Geometry

The computational domain is chosen to be [−1, 1]2 with periodic boundary condition, and
the grid size is 2002. The initial condition of the interface is a circle with radius 0.4:

ϕ
(
xα, xβ

)
=

√
(xα)2 /0.42 + (xβ)2 /0.42 − 1.0, (9.1.1)

and the initial condition for mesenchymal cell number density is chosen as

c(xα, xβ) = IA(x) (9.1.2)

where A = {(0.42 ≤ r ≤ 0.62,−π/12 ≤ θ ≤ π/12)}, and (r, θ) is the polar coordinates.
IA(x) is the indicator function defined as

IA(x) =





1 if x ∈ A,

0 if x /∈ A.
(9.1.3)

For numerical reasons, we use a diffusion smoother to filter out the roughness of the indicator
function. See Fig. 9.1 for the initial mesenchymal cell number density and interface.

The surface tension coefficient is chosen as 0.001 and the traction force constant τ is
chosen as 100.0. We run the simulation to t = 1 for µ− = 1.0, t = 0.2 for µ− = 0.1 and t = 2
for µ− = 10.0 with µ+ fixed at 1.0. See Fig. 9.2 for the simulation results with µ− = 0.1,
Fig. 9.3 with µ− = 1.0 and Fig. 9.4 with µ− = 10.0.

The computation cost for µ− = 1.0, 0.1 and 10.0 is 909 seconds, 1911 seconds and 3316
seconds respectively. The number of GMRES iterations for µ− = 0.1 is in the range of
9− 15 and for µ− = 10.0 is in the range of 10− 15. GMRES iteration is not needed for the
equal viscosity case.
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Figure 9.1: Initial number density of contractile mesenchymal cells c
(
xα, xβ

)
(red) and

initial interface (green circle) separating epithelium and mesenchyme.

It is clear from the simulation results that viscosity ratio plays a role in the interactions
of the two phases across the interface. Also see Fig. 9.5 for the comparison of the interface
and cell number density profile with different viscosity ratio and similar clefting depth. Note
that due to the numerical inaccuracy of the discretized advection equation, the contractile
mesenchymal cells may bleed into the epithelium phase, which is biologically incorrect.
Also the integrated number density of contractile mesenchymal cells is non-constant due to
numerical dissipations. For future work, a high order conservative scheme for the advection
equation may help solve the problem. It is also desirable to solve the advection equation
with the interface Γ treated as an impermeable boundary. It is seen in Fig. 9.5 that the
cleft width is not monotonic with respect to the viscosity ratio. We suspect that numerical
inaccuracy of solving the advection equation may be the major factor causing this result
which needs further studies.
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(a) (b)

(c) (d)

Figure 9.2: The interface with contractile cell number density profile with µ− = 0.1 at (a)
t = 0.05 (b) t = 0.10 (c) t = 0.15 and (d) t = 0.20.
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(a) (b)

(c) (d)

Figure 9.3: The interface with contractile cell number density profile with µ− = 1.0 at (a)
t = 0.25 (b) t = 0.5 (c) t = 0.75 and (d) t = 1.0.
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(a) (b)

(c) (d)

Figure 9.4: The interface with contractile cell number density profile with µ− = 10.0 at
(a) t = 0.5 (b) t = 1 (c) t = 1.5 and (d) t = 2.
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(a) (b)

(c)

Figure 9.5: Comparison of the interface with contractile cell number density profile with
(a) µ− = 0.1 at t = 0.2 (b) µ− = 1.0 at t = 0.5 (c) µ− = 10.0 at t = 2.
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9.2 3D Geometry

The computational domain is chosen as [−1, 1]3 with periodic boundary condition, and the
grid size is 643. The initial condition of the interface is a sphere with radius 0.4:

ϕ
(
xα, xβ, xγ

)
=

√
(xα)2 /0.42 + (xβ)2 /0.42 + (xγ)2 /0.42 − 1.0, (9.2.1)

and the initial condition for mesenchymal cell number density is chosen as

c
(
xα, xβ, xγ

)
= IA(x) (9.2.2)

where A = {(0.42 ≤ r ≤ 0.62,−π/12 ≤ θ ≤ π/12, 0 ≤ φ ≤ π)}, (r, θ, φ) is the spherical coor-
dinates, and IA(x) is the indicator function. As in the 2D case, we use a diffusion smoother
to get the approximated indicator function. See Fig. 9.6 for the initial interface and the
level surface of the initial number density of the contractile mesenchymal cells.

Figure 9.6: Level surface (level value: 0.5) of the initial contractile mesenchymal cell
number density c

(
xα, xβ, xγ

)
(red) and initial interface (green) separating epithelium and

mesenchyme.

The surface tension coefficient is chosen as 0.001 and the traction force constant τ is
100.0. We run the simulation to t = 0.4 for µ− = 1.0, t = 0.2 for µ− = 0.2 and t = 1 for
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µ− = 5.0 with µ+ fixed at 1.0. See Figs. 9.7, 9.8 for the simulation results with µ− = 0.2,
Figs. 9.9, 9.10 with µ− = 1.0 and Figs. 9.11, 9.12 with µ− = 5.0.

The computational cost for µ− = 1.0, 0.2 and 5.0 is 1008 seconds, 3880 seconds and
7257 seconds respectively. The number of GMRES iterations for µ− = 0.2 is in the range
of 9-14 and for µ− = 5.0 is in the range of 10-16. No GMRES iterations are needed for the
case when µ+ = µ−.
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Figure 9.7: Interface evolution with µ− = 0.2 at (a) t = 0.05 (b) t = 0.1 (c) t = 0.15 and
(d) t = 0.2.

To summarize, we have shown the simulation results for the interactions of epithelium
and mesenchyme by solving the two-phase Stokes equations with discontinuous viscosity
coefficients and singular interface force (surface tension), with the mesenchymal contrac-
tion force modeled as a body force. Our simulations show epithelium clefting due to the
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(a) (b)

(c) (d)

Figure 9.8: The interface sliced at xγ = 0 (a,c) and xα = 0 (b,d) and sliced color plot of
contractile cell number density profile (red) with µ− = 0.2 at (a,b) t = 0.05 (c,d) t = 0.2.
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Figure 9.9: Interface evolution with µ− = 1 at (a) t = 0.1 (b) t = 0.2 (c) t = 0.3 and (d)
t = 0.4.
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(a) (b)

(c) (d)

Figure 9.10: The interface sliced at xγ = 0 (a,c) and xα = 0 (b,d) and sliced color plot of
contractile cell number density profile (red) with µ− = 1.0 at (a,b) t = 0.1 (c,d) t = 0.4.
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Figure 9.11: Interface evolution with µ− = 5 at (a) t = 0.25 (b) t = 0.5 (c) t = 0.75 and
(d) t = 1.0.
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(a) (b)

(c) (d)

Figure 9.12: The interface sliced at xγ = 0 (a,c) and xα = 0 (b,d) and sliced color plot of
contractile cell number density profile (red) with µ− = 5.0 at (a,b) t = 0.25 (c,d) t = 1.0.
Note that (c,d) is non-physical since the advection equation solver returns negative values
for the number density c. We truncated the negative values as zero for comparison with
(a,b).
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mesenchymal contraction. The geometry of the cleft is consistent with the geometry in vivo.

As in the 2D case, we need to adopt a better scheme for solving the advection equation.
In Fig. 9.12, we get negative values for cell number density c which is non-physical. For
future work, we propose to use a high order conservative scheme for the advection equation
and it is also possible to enforce the impermeable boundary condition on the interface for
the cell number density c.
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Chapter 10

Discussion

We have developed an immersed interface method (IIM) coupled with the level set method
(LSM) for solving two-phase Stokes equations with an interface. Our numerical solver can
handle two-phase flow problems with complicated interface geometry and discontinuous
viscosity coefficients. Numerical experiments show the expected second-order accuracy for
our method. We have applied the method to study branching morphogenesis focusing on
the interactions between epithelium and mesenchyme tissues. We have presented simulation
results of epithelium clefting due to mesenchymal contraction force in both 2D and 3D.

On a foundation of the immersed interface method, we have combined the local Cartesian
coordinates transformation with tensor analysis to derive jump conditions for the general
two-phase Stokes flow problems in Chapter 3. In Chapter 4, we have derived the IIM scheme
for elliptic equations in both 2D and 3D. Approaches we have taken can be used to study
various interface problems both theoretically and numerically.

Using level set functions to represent the interface implicitly, we can couple the IIM
with the LSM for moving interface problems. Simulations of interface deformations due
to surface tension clearly show that the numerical solver is very efficient and can capture
complicated geometrical changes well.

We have tested our algorithm in Chapter 7 for general fixed interface problems where
exact solutions are constructed. Numerical experiments have showed that the two-phase
Stokes solver is very efficient with second-order accuracy in the infinity norm.

In Chapter 8, the two-phase Stokes solver for moving interface problems was tested using
surface tension relaxation cases and our results compare favorably with existing results in
the literature and also may be used to study cell aggregation dynamics in a 3D model
gel. We have studied branching morphogenesis by coupling the two-phase Stokes flow with
cellular advection. Clefting of epithelium is simulated with the contraction force supplied
by mesenchymal cells.

Our method is based on fixed Cartesian grids and does not involve complicated and
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expensive meshing and re-meshing steps. Using level set functions and operations defined
for those functions (e.g. union, subtraction), we can model very complicated and rather
arbitrary interface deformations. The finite difference scheme we derived allows us to use
existing fast Poisson solvers for interface problems and this boosts the overall performance
of our algorithm. Level set methods also allow one to solve moving interface problems by
simply advecting the level set functions. By deriving and incorporating the jump conditions
for the Stokes equations, we are able to construct the algorithm for Stokes flow with second-
order accuracy. The jump condition results are applicable to other numerical methods (e.g.
finite element methods) for solving the Stokes equations.

Since the interface is implicitly defined by the level set function, it is very critical to
start the simulation with a smooth level set function close to the distance function. In
order to approximate the second-order derivative terms such as the mean curvature with
accuracy and avoid stiffness of the moving interface problem, it is necessary to use some
reinitialization schemes to maintain the level set function as a distance function. Area con-
servation for the level set methods still needs more investigation. Also since the immersed
interface scheme uses surface derivative terms to calculate the correction term, numerical
accuracy and stability depend on the adopted numerical differentiation methods. Simula-
tions also show that for cases with unequal viscosities, because the coefficient matrix for
the augmented variables has very large condition number, GMRES iterations may not be
able to invert the coefficient matrix with good accuracy. Increased number of GMRES
iterations due to high contrast of viscosity coefficients also slows the numerical solver. In
the branching morphogenesis simulations, the epithelium center of mass drifts which may
be an artifact of the area conservation scheme we used. The drifting may also be an effect
of implementing the contraction force as a body force.

For future work, we first need to implement a high order conservative scheme for the
advection equation. It is also possible to solve the advection equation with an irregular
boundary and enforce the impermeable boundary condition. We also hope to use the
same methods developed in this thesis to solve two-phase Navier-Stokes equations with
interfaces. It is worthwhile to combine various numerical techniques such as staggered
or/and adaptive grids with our two-phase fluid solver. We also need to adopt LSM variants
such as local level set methods to improve the overall efficiency and different methods for
volume conservation. Many biological problems involving cells and tissues can be modeled
as multiphase flow problems and it is expected that our solver will be used for various
mathematical biology problems such as cellular fluid dynamics and tissue interactions. We
use periodic boundary conditions for all the moving interface problems in the thesis; we
plan to extend our numerical solver for various boundary conditions.
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Appendix A

Note: Einstein Notation

Indicial notation, or Einstein notation is used extensively in this thesis. Einstein notation is
used to (1) simplify expressions involving tensors and vectors, and (2) facilitate derivations
involving tensor and vector calculus. See [51] for a short exposition of tensor analysis.

Both upper and lower indices are used. Most lower indices are used in grid discretiza-
tions. Indices we use include i, j, k and l. Major indicial notation rules we adopt here
are:

(1) Unless otherwise noted, for 2D problems, all indices take on the values α and β;
for 3D problems, all indices take on the values α , β and γ. For example, the Cartesian
coordinate for a 2D point x takes the form of

(
xα, xβ

)
and for a 3D point x it takes the

form of
(
xα, xβ, xγ

)
.

(2) Repeated indices of i, j, k and l (not index values: α, β and γ) implies summation.
For example, the Laplacian operator

∆ = ∇2 = ∇ · ∇

can be represented using
∂2

∂xi∂xi
which in 2D is

∂2

∂xα∂xα
+

∂2

∂xβ∂xβ

and in 3D is
∂2

∂xα∂xα
+

∂2

∂xβ∂xβ
+

∂2

∂xγ∂xγ
.

(3) Free (non-repeated) indices in each term of an expression should match. For example,
i and j are both free indices in the following expression

∂ui

∂xj
+

∂uj

∂xi
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where u is a vector-valued function.

Our notations are different from existing notations used in the literature in the following
ways:

(1) Since we only use Cartesian coordinates and Cartesian transformations, we can use
upper indices without worrying about covariant and contravariant tensor notations in which
superscripts and subscripts may have different meanings.

(2) Because it is customary to use lower indices in finite difference discretizations, to
avoid overcrowding of subscripts, we choose upper positions for Einstein indices.

(3) It is often seen that Einstein indices take on the values 1,2 and 3. We find that
numbers appearing in the upper positions of a symbol can be confusing. For example,

∂2u2

∂x1∂x2

may be interpreted in many different ways. Therefore we use α, β and γ for indicial values
instead. For example,

∂2uβ

∂xα∂xβ

is the second-order cross derivative of the second Cartesian component of a vector-valued
function u with respect to coordinates xα and xβ.

(4) For a 2× 2 or 3× 3 Cartesian coordinate transformation matrix A = (aij), we use

Ai
j

to denote the matrix element at the ith row and jth column. For example,

Aα
β

is indeed a12.
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