
Abstract

BOYER, JOSEPH G. Topics Involving the Gamma Distribution: The Normal Coeffi-
cient of Variation and Conditional Monte Carlo. (Under the direction of William H.
Swallow).

A transformation of the sample coefficient of variation (CV ) for normal data is

shown to be nearly proportional to a χ2 random variable. The associated density is

applied to inference on the common CV of k populations, testing CV homogeneity

across populations, and confidence intervals for the ratio of two CV s. The resulting

tests and confidence intervals are shown via theory and simulation to be valid and

powerful.

In other work on the coefficient of variation, a sample of scientific abstracts is

used to characterize the values of the CV encountered in practice, point estimation

for a common CV in normal populations is studied, and the literature on testing CV

homogeneity in normal populations is reviewed.

There is very little literature on the problem of conducting inference in models for

continuous data conditional on sufficient statistics for nuisance parameters. This the-

sis explores Monte Carlo approaches to conditional p-value calculation in such models,

including Dirichlet data generation, importance sampling, Markov chain Monte Carlo,

and a method related to fiducial inference. Importance sampling is used to create a

conditional test of CV homogeneity in normal populations using the χ2 approximation

mentioned above. A Markov chain Monte Carlo solution is given to the long-standing

problem of testing the homogeneity of exponential populations subject to Type I cen-

soring. Conditional Monte Carlo algorithms are also applied to testing for an effect

of a factor in an experiment with exponential data, testing for a dispersion effect in

a replicated experiment with normal data, and testing a null value of a coefficient

in exponential regression with an inverse link; brief consideration is also given to the

problem of testing the homogeneity of k gamma distributions.
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Chapter 1

Introduction

Exponential families (Definition 1.3.4.1) are convenient probability models because the

theory of exponential families allows us to easily find similar, unbiased, and uniformly

most powerful inferential procedures (Definitions 1.3.3.1 - 1.3.3.3). This thesis is con-

cerned with two inquiries, one which applies the theory of exponential families to an

inferential problem, another which seeks to make the theory of exponential families

more practically useful. The gamma distribution (Definition 1.3.5.10), an example of

an exponential family, is another thread that unifies the inquiries. The gamma dis-

tribution has a number of applications in statistics [1]. It’s simplicity and flexibility

make it a convenient model for right-skewed nonnegative data, and it has become an

important model for life-testing experiments. It arises theoretically in several scenar-

ios: the sample variance from a normal sample is gamma; the exponential distribution,

a lifetime distribution with a constant hazard rate, is gamma; and the gamma distri-

bution has been suggested as an appropriate model for survival time in a sytem with

continuous maintenance [1].

1.1 Chapters

1.1.1 Chapter 1

Sections 2 and 3 serve as a reference to the reader. Section 2 explains the notation used,

while Section 3 contains a list of definitions and theorems which I shall cite throughout

the dissertation.

1.1.2 Chapter 2

The coefficient of variation, σ
μ
, measures variability in a way that is invariant to changes

of scale. Chapter 2 studies inference on the coefficient of variation (CV ) in normal

1



Chapter 1. Introduction

populations, which is based on the sample CV , S/X̄ ≡ ĈV .

Chapter 2 discovers that a transformation of the sample CV for a normal population

has an approximate gamma density and that the approximation is nearly exact. This

allows the development of convenient, valid, and theoretically powerful approaches to

three problems: inference on the common CV of k populations, constructing confidence

intervals for the ratio of two CV s, and testing CV homogeneity – the assumption that

the CV s of k populations are the same.

As regards inference on the common CV , tests are developed that are uniformly

most powerful (Definition 1.3.3.3) taking the approximating density as exact, and the

associated confidence intervals are shown via simulation to be shorter than those of

the existing fiducial approach and to provide confidence levels that are closer to the

nominal level than those of the existing approach. If the sizes of the different samples

are equal, the confidence limits based on the UMP test are analytical functions of χ2

percentiles; a Monte Carlo algorithm is provided to calculate the limits with unequal

sample sizes.

The confidence interval developed for ratios of CV s allows the assessment of bioe-

quivalence of two drug formulations to include consideration of the CV of quantities

such as the AUC. The interval is shown via simulation to have coverage close to

nominal, although they are slightly conservative if the sample sizes are unequal. The

confidence limits are analytical functions of F distribution percentiles.

Taking the approximating density to be exact, Chapter 2 obtains four useful results

for testing CV homogeneity:

• An existing test known as the modified Bennett (MB) test is unbiased if

the sample sizes are equal.

• If the sample sizes are equal, the MB test for k = 2 is UMP unbiased

among the class of tests that are invariant to the sample means and the

common CV .

• The chapter provides a Monte Carlo algorithm to obtain accurate p-values

for the MB test with equal sample sizes.

• Chapter 2 derives the UMP one-sided similar test for k = 2 with potentially

different sample sizes.

2



Chapter 1. Introduction

These results on testing CV homogeneity under normality bring theoretical closure to

that literature, which contains over a dozen papers starting in 1976.

Chapter 2 also explores inference based on the delta-method approximation to

the distribution of the sample CV . It develops delta-based confidence intervals for a

common CV and proves the asymptotic legitimacy of existing delta-based approaches

to assess differences among CV s. Simulations show that the delta-based confidence

interval for the common CV is a reasonable alternative to the UMP interval and

can be used to simplify calculations for unequal sample sizes. Delta-based inference

concerning differences among CV s is shown via simulations to possess competitive

power and to be accurate even for small sample sizes, though confidence intervals for

differences among CV s can have low coverage if sample sizes are unequal.

Asymptotic calculations confirm that like inference on the variance, inference on

the coefficient of variation is not robust to violations of the normality assumption.

For skewed populations, inference based on normal distribution theory will be slightly

conservative, while excess kurtosis can make normal-theory inference quite liberal.

1.1.3 Chapter 3

Chapter 3 presents additional work related to inference on the coefficient of variation.

It reports on a sample of the values of coefficients of variation drawn from scientific

abstracts. The sample provides justification for viewing 0 < CV < 0.33 as the “prac-

tical range” for values of CV ; a very high percentage of the CV s in the sample are in

this range.

The chapter conducts a study of point estimation for a common coefficient of varia-

tion in normal poulations. It derives a bias-corrected weighted average of sample CV s

with variance-minimizing weights, the maximum-likelihood estimator (MLE) of the

common CV from the approximate marginal density of the sample CV s, and a nearly-

exact analytical approximation for the MLE from the full likelihood. It compares the

theoretical bias, variance, and consistency of these estimators with an existing one,

and also compares the estimators via simulation. All of the estimators considered are

reasonably effective except for the full-likelihood MLE with small sample sizes. The

MLE from the marginal likelihood has the lowest mean squared error in simulations.

3



Chapter 1. Introduction

Another contribution in Chapter 3 is a review of the literature on testing CV

homogeneity across normal samples. The chapter argues that, of the dozen tests that

have appeared in the literature, two stand out as superior to the others. These are the

MB test and the delta-based test discussed above.

Finally, Chapter 3 explains how to use a stochastic representation for the sample

CV from a normal population in Monte Carlo calculations to obtain exact confidence

intervals for a common CV and approximate confidence intervals for the difference

between CV s. These methods are not competitive with the methods in Chapter 2;

they are reported simply to provide an example of how one might use Monte Carlo

methods to create confidence intervals.

1.1.4 Chapter 4

Chapter 2 solves the problem of getting accurate p-values for the MB test of CV

homogeneity only for the equal-sample size case. If sample sizes are not equal, a

problem arises: the common CV becomes a nuisance parameter; it does not vanish

from the distribution of the MB statistic.

In principle, one can always deal with nuisance parameters in exponential families

by conditioning them away. That is, one can find a statistic that is sufficient for the

nuisance parameter, and then calculate the p-value for a test statistic conditional on

the value of the sufficient statistic. By Definition 1.3.1.1, this p-value will be invariant

to the nuisance parameter, and the resulting test will be similar (Definition 1.3.3.1).

This is an effective way to deal with nuisance parameters as long as one can calculate

the conditional p-value. But this can be a difficult problem. If the nuisance parameter

vector is of dimension dnp and there are N observations in the dataset, the conditional

support of the data will typically be an N − dnp-dimensional surface, perhaps oddly

shaped, in �N . Calculating the p-value is equivalent to integrating a function over this

surface, which is typically a difficult problem.

Chapter 4 explores Monte Carlo approaches to this problem for continuous data

(see Definition 1.3.3.7). Monte Carlo is nontrivial here for the same reason that numer-

ical integration is difficult; the unconditional density assigns the conditional support

measure 0, so rejection sampling (Definition 1.3.5.15) will not work. Chapter 4 does

4



Chapter 1. Introduction

explain how one can turn the problem into one of generating data on a subset of �N−dnp

so that one does not have to deal with a support that has lower dimension than the

data vector. But this creates additional problems, so that neither Monte Carlo nor

numerical integration is straightforward in the transformed problem.

While alot of attention has been paid to Monte Carlo conditional p-value estima-

tion in certain models for discrete data – logistic regression, log-linear models, and

contingency tables – very little has been written on this problem concerning continu-

ous data. There are no review articles, and while tools developed for other purposes

can be applied, their application is not straightforward, and one must dig them out

from scattered sources. Chapter 4 fulfills the useful purposes of listing available op-

tions, explaining how to implement them, discussing some of their strengths and weak-

nesses, deriving some necessary formulas (including the standard errors of the p-value

estimates), suggesting solutions to some problems that arise in implementation, and

evaluating the options with simulations.

The Monte Carlo approaches discussed in Chapter 4 include Dirichlet data gener-

ation for the special case of gamma distributions with known shape parameter, im-

portance sampling (Definition 1.3.9.1), Markov Chain Monte Carlo (MCMC), and

a method that I shall call “fiducial Monte Carlo” due to its relationship to fiducial

inference (Definition 1.3.3.5). Except for fiducial Monte Carlo, these methods were de-

veloped for problems other than the one considered in Chapter 4 and must be adapted

to that particular problem.

The conditional distribution of gamma data given a value for Tα (see Definition

1.3.5.10) is Dirichlet (Definition 1.3.5.4), allowing convenient Monte Carlo p-value cal-

culation via Theorem 1.3.5.4. For a couple of problems concerning gamma data with

known shape, the Monte Carlo option has been overlooked.

The strategy behind importance sampling is to generate from a convenient gener-

ating density with the same support as the target density and then weight the data

by the ratio of the target density to the generating density; the weights serve a pur-

pose much like Census weights correcting for undercounting of certain populations. (In

our case the target density is that of the data conditional on the observed values of

the sufficient statistics.) To implement importance sampling one needs a generating

5



Chapter 1. Introduction

density (Definition 1.3.9.1). Chapter 4 suggests four ways to come up with one. If

the sufficient statistic is linear and one-dimensional, one can use the Dirichlet distribu-

tion. As has been pointed out in the discrete-data literature, the multivariate normal

distribution can serve as a generating density for the case where the sufficient statis-

tics are linear and multidimensional, because it is well-known how to generate normal

data subject to a linear constraint. Chapter 4 develops a third way, called estimated

likelihood sampling (ELS), that can be used for both linear and nonlinear sufficient

statistics; its generating density is essentially the unconditional likelihood with the

nuisance parameters set equal to their maximum likelihood values. ELS turns out to

be an implementation of a method called “conditional Monte Carlo” (CMC) that has

been described in general terms in the literature. To evaluate the generating density

for CMC, one needs to evaluate the Jacobian of a tansformation between �N−dnp and

a surface in �N (see Theorem 1.3.5.1); Chapter 4 provides a formula for calculating

Jacobians of such functions.

The Gibbs sampler (Definition 1.3.7.2) is a Markov chain (Definition 1.3.7.1) which

in principle can produce data that resembles a random sample from the target density.

To generate the jth element of the data vector in the ith step of the Gibbs sampler,

one generates a data point from the jumping density. Chapter 4 derives the jumping

density when the target is the density of the data conditional on a linear sufficient

statistic and discusses the evaluation of the jumping density for the case of nonlinear

sufficient statistics, where one may not be able to obtain it analytically. If such is the

case, Gibbs sampling cannot be implemented, but one can still construct a Markov

chain to provide an approximate random sample from the target density using the

Metropolis-within-Gibbs algorithm (Definition 1.3.7.9). However, such an algorithm

may be highly computationally intensive.

Fiducial Monte Carlo is related to fiducial inference, itself a Monte Carlo method

for unconditional inference (Definition 1.3.3.5). Fiducial Monte Carlo is a promising

strategy, but it does not generate from the exact conditional distribution in general,

and it has potentially prohibitive computational challenges.

One important benefit of these Monte Carlo methods is that typically the resulting

p-value estimate theoretically converges almost surely to the true p-value; the estimated

6
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p-value can be made as close as desired to exact by taking a large enough number

of draws. However, the number of draws necessary for acceptable precision may be

impracticably large, as demonstrated in some of the examples below. With importance

sampling, there are two key problems: the support of the target density may be only a

small subset of the support of the generating density, and the generating density may

be a poor match for the target. With Gibbs sampling, the correlation across steps may

be so high that it takes too many steps to approximate a random sample.

Chapter 4 illustrates methods for linear sufficient statistics by applying them to

several problems involving the gamma distribution. The chapter explains how Dirich-

let data generation can be applied to the problem of testing for a factor effect with

exponential experimental data and to testing for dispersion effects in normal data from

experiments with replication. Simulations suggest that the standard test for disper-

sion effects with replicated normal experimental data, which relies on the approximate

normality of the log sample variance, is liberal.

Importance sampling with a normal generating density is used to solve the problem

that motivated Chapter 4, that of executing a similar test of CV homogeneity with

normal samples of differing size. The approximate gamma density from Chapter 2 is

used to identify a sufficient statistic for the common CV .

ELS is used to calculate precise similar p-values for testing a null value for the

scale parameter of a gamma distribution with unknown shape. A method for doing

this exists in the literature, but it requires a complicated algorithm to evaluate messy

integrals.

Gibbs sampling is applied to a long-standing problem in life testing: testing the

equality of the scale parameter in exponential samples subject to Type I censoring.

For testing against a general alternative, the current test relies on the asymptotic

distribution of the likelihood ratio statistic (Theorem 1.3.6.13). Simulations indicate

that the p-value calculated via Gibbs sampling is slightly more accurate for the general

test; Gibbs sampling also allows straightforward calculation of a p-value for any specific

test. Chapter 4 also applies Gibbs sampling to exponential regression with an inverse

link function, where it can provide accurate similar p-values for testing a null value for

any coefficient vector of interest. Currently, exact testing of a coefficent in this model

7
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requires there to be no other predictors in the model.

In all these applications, the Monte Carlo methods are able to give precise esti-

mates of the true conditional p-values in a reasonable number of steps, although for

some applications a bound on sample size is identified beyond which the Monte Carlo

method chosen would not be practical. The tests conducted by utilizing Monte Carlo

conditional p-values have actual size very close to nominal size in simulations. Another

benefit of the Monte Carlo methods is that in all of the examples above, they can be

used to calculate a similar p-value for any goodness-of-fit statistic, allowing one to test

the validity of the gamma model used. Currently, only asymptotic goodness-of-fit tests

of the gamma distribution exist in the literature.

The chapter stops short of applying Monte Carlo methods to examples with non-

linear statistics, but does derive the kernel of the jumping density for Gibbs sampling

from a gamma distribution conditional on Tα and Tβ (Definition 1.3.5.10). The fact

that the target density may not be available analytically if the sufficient statistics are

nonlinear creates computational challenges for both importance sampling and MCMC

and weakens the key selling point of the latter – that it can be done without the need

to match a generating density to a target.

Applications and theoretical musings in Chapter 4 lead to the following tentative

conclusions:

• Gibbs sampling appears to be effective in that the p-value can apparently

converge in a practical number of steps even for large sample sizes.

• Two aspects of this application of Gibbs sampling increase its effectiveness.

First, under the null hypothesis the Gibbs sampler starts out in its station-

ary distribution. Second, if the data are from a random sample under the

null, one can randomly reorder the elements of the vectors drawn in the

steps of the Gibbs sampler, reducing correlation across steps.

• Importance sampling is subject to the curse of dimensionality – lack of a

match between the marginals of the generating and target densities becomes

a greater and greater problem as the sample size increases. For Gibbs sam-

pling, whether correlation across steps increases or decreases with sample

size is case dependent.
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• For linear sufficient statistics, the estimated likelihood generating density

produces a better match for importance sampling than does the normal

generating density, one that may not deteriorate as the sample size grows.

The match between the marginals of the ELS generating density and the

target density improves with sample size, potentially offsetting the curse of

dimensionality.

• ELS appears to be effective for large samples, but no comparison to Gibbs

sampling can be made because the sample size in the application of ELS

was smaller than in the applications of Gibbs.

• ELS will often be easier to implement than Gibbs sampling because it will

usually be easier to draw from the estimated likelihood generating density

for ELS than from the jumping density for Gibbs.

1.2 Notation and Conventions

Generic random variables will be denoted by upper case letters. Realizations of a

random variable from its support will be denoted by lowercase letters. If the random

variable is multivariate, a will represent its dimension.

Vectors (including vector-valued functions) and matrices will be denoted in bold-

face, while scalars will be denoted in plain text.

X will represent a data vector {X1, . . . ,XN} of independent random variables, and

Xi will refer to an element from a data vector. If the data are identically distributed,

X will be referred to as a “random sample from the density fX”. The population mean

will be denoted μ, and the variance and third and fourth moments of a univariate

random sample will be denoted σ2, μ3, and μ4 respectively. W will represent a matrix

of predictor variables, either design points or covariates or both. Wij will be the value

of the jth predictor variable for observation i.

If the data are a random sample, X̄ will refer to the sample mean, S2 will refer to

the sample variance
PN

i=1(Xi−X̄)2

N−1
of a univariate random sample, CV will refer to the

population coefficient of variation σ
μ

for a univariate random sample, and ĈV to the

sample coefficient of variation S/X̄ for a univariate random sample.

9
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θ will denote the d×1 parameter vector of a density and consists of two subvectors θpi

(d− dnp × 1) and θnp (dnp × 1). (The latter can be thought of as nuisance parameters,

and the formere can be thought of a parameters of interest.) θ̂MLE represents the

maximum likelihood estimate of θ.

Taking the random variable Z as an example, here is how I shall denote various

concepts. z represents a realized value from the support, fZ(· ; θ) is the parameterized

density function, FZ(· ; θ) is the cumulative distribution function, fZ|Y(· |y; θ) is the

density of Z conditional on Y = y, EZ(g(Z)) is the expectation of the function g

taken with respect to Z, EZ|Y(g(Z)|y) is the expecation of g(Z) conditional on Y = y,

V ar(Z) indicates the variance of Z, V arZ|Y(Z|y) is the variance of Z conditional on

Y = y, and the expression
∫
A h(z)dz indicates the integration of the function h over

the range A in the support of Z. Probθ∗(B) can be interpreted as the probability, if

the true parameter vector is θ∗, that the event B occurs. Probθ∗(B|G) indicates the

conditional probability of the event B given the event G. IB(z) is equal to 1 if z is in

the event B and 0 otherwise.

For any vector, a subscript simply indicates an element of the vector. For instance,

θi represents the ith element of θ, θnp, i represents the ith element of θnp, and Xij

represents the jth element of Xi. For a matrix, a subscript indicates a column of the

matrix. For instance, Wi is the ith column of W. The notation Y[r : p] will indicate

the vector formed by the rth through pth elements of the vector Y, and W[r : p] will

indicate the matrix formed by the rth through pth columns of the matrix W. If I

want to describe a p×1 vector Y by reference to its individual elements, I shall denote

the vector {Y1, . . . , Yp}. Similarly, {Y,Z} is the vector formed by concatenating the

vectors Y and Z.

Functions of a data vector denoted by T, T1, etc will be understood to be statistics.

A lowercase t will denote the observed value of the statistic.

In discussing hypothesis tests, rejection regions will have forms similar to T > b.

In such expressions, b, adorned by various stars or subscripts, will be understood to

be a constant that is determined by the significance level of the test. b does not retain

value across rejection regions; that is, the b in the discussion of one rejection region is

not the same b as in another rejection region.
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In all simulations to determine the actual size and power of hypothesis tests or the

coverage probability of confidence intervals, the tests will be conducted with nominal

size of 0.05 and the confidence intervals will be constructed with nominal confidence

level 0.95. Reported size is the proportion of datasets simulated under the null for

which the test rejects, reported power is the proportion of datasets simulated under

the alternative for which the test rejects, and reported coverage is the proportion of

simulated datasets for which the interval contains the true value. The default for-

mula for standard errors (SE) of all estimated sizes and coverage probabilities will be√
0.05(0.95)/s, where s is the number of simulationed datasets on which the estimate

is based. This is justified by substituting p̂ = 0.05 in the standard error formula in

Theorem 1.3.6.9. The default formula for the standard error of all estimated powers

will be 0.5√
s
, which is justified by substituting p̂ = 0.5 in the standard error formula

in Theorem 1.3.6.9; this gives an upper bound on the true standard deviation of the

estimated power.

When I wish to emphasize the fact that a random variable Z is the realization of

a random sequence indexed by m, I shall denote it Z(m). For instance, X̄(N) is a

random sequence indexed by N . The mth Monte Carlo draw of Z will be Z(m).

If g(y) is a differentiable function from �a to �b, ∂g(y)
∂y

will be the matrix whose

ijth element is the partial derivative of the ith element of g with respect to the jth

element of y.

1.3 Background Theory

Some of the definitions and theorems in this section are slightly modified from their

widespread use to make them more convenient for this thesis. For all theorems, I either

give sources or a short proof or justification.

The results in this section are either well-known or fairly obvious from well-known

results, except for Theorem 1.3.5.3, for which I absolutely take credit.
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1.3.1 Properties of statistics

Definition 1.3.1.1: Sufficient statistic

If fX|T(X|t; θ) is invariant to θnp, then T(X) is sufficient for θnp.

Definition 1.3.1.2: The Sufficiency Principle ([2], page 272)

Using the notation of Definition 1.3.1.1, the Sufficiency Principle states that since

the data contains no information about θnp apart from that contained in T, all inference

on θnp should depend on T alone.

Theorem 1.3.1.1: Sufficient statistics for normal data ([2], page 279)

If the data are a normal random sample, {X̄, S} is sufficient for {μ, σ}.

Definition 1.3.1.3: Minimal sufficient statistic

T is minimal sufficient for θnp if it is a sufficient statistic for θnp (Definition 1.3.1.1)

and it is a function of every other sufficient statistic for θnp.

Theorem 1.3.1.2: Finding minimal sufficient statistics ([2], page 281)

T is minimal sufficient for θnp if for every z and y in the support of X,
fX(z;θnp,θpi)

fX(y;θnp,θpi)
is

constant as a function of θnp if and only if T(z) = T(y).

Definition 1.3.1.4: Complete statistic

T(X) is complete if the only functions g which satisfy ET(g(T)) = 0 for every value

of θ in the parameter space are equal to 0 except on a set of measure 0.

Definition 1.3.1.5: Ancillary statistic

T(X) is ancillary for θnp if the distribution of T is invariant to θnp.
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Theorem 1.3.1.3: Basu’s Theorem ([2], page 287)

If T1 is complete (Definition 1.3.1.4) and minimal sufficient (Definition 1.3.1.3) for θnp

and T2 is ancillary (Definition 1.3.1.5) for θnp, then T1 and T2 are independent.

Theorem 1.3.1.4: Factorization Theorem ([2], page 276)

If fX(x; θ) = g(T(x), θnp)h(x, θpi), then T is sufficient for θnp.

1.3.2 Invariance

Let F be a group of transformations with the properties that

1. For each transformation in F , its inverse is in F

2. If g is in F and h is in F then h ◦ g is in F .

For example, F could be the group of positive scale transformations, which multiply

all the elements of X by the same positive scaling factor.

Definition 1.3.2.1: Orbit

An orbit O in the support X of X with respect to F is formed by applying all the

transformations in F to a point x in X and keeping the resulting points that are in

X . By the properties of F , if y is in O: it can be obtained from any other element in

O by applying a transformation in F , and if y = g(z) where z is in X and g is in F ,

then z is in O. For example, if F is the group of positive scale transformations above,

the orbit that contains x would be the set of all points y in X satisfying y = αx for

some constant α > 0.

Definition 1.3.2.2: Invariance Principle ([3], page 41)

If applying a transformation from the group F to X does not change the value of a

parameter, then inference on that parameter should depend on X only through which

orbit in the support X with respect to F that X falls into. In other words, all the

points in the same orbit (Definition 1.3.2.1) should provide the same inference. For
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example, if the data is a random sample, since the coefficient of variation of αX is
ασ
αμ

= σ
μ

= CV , inference on CV should be invariant to scale transformations.

Definition 1.3.2.3: Maximal invariant

A maximal invariant for a group F on X is a statistic T for which T(x) = T(y) if

and only if x and y are in the same orbit (Definition 1.3.2.1) in the support of X with

respect to F . For the example of positive scale transformations, T =
{

1, X2

X1
, . . . , XN

X1

}
is a maximal invariant ([3], page 161). The Invariance Principle (Definition 1.3.2.2)

implies that if a parameter is invariant to F , inference on that parameter should be

based solely on a maximal invariant for F .

Applying a member of the group F to the data will not change the value of a

maximal invariant.

Instead of considering the entire sample space, by the Sufficiency Principle (Def-

inition 1.3.1.2) we can conduct all inference via a statistic T that is sufficient for θ.

Let B(s) be the set of all points x in the support X of X for which T(x) = s. An

orbit in the support of the sufficient statistic with respect to F is the set of all points

t for which t = T(y) for some y in the same orbit as an element of B(s) for some

s. A maximal invariant on T is a function T1 defined on the support of the sufficient

statistic for which T1(t) = T1(s) if and only if t and s are in the same orbit. Now if

θpi is invariant to F , the Invariance Principle implies that inference on θpi should be

based solely on a “maximal invariant” for F on T.

Definition 1.3.2.4: Invariant inference

Inference based on a maximal invariant (Definition 1.3.2.3) for a group F is said to be

invariant to F , because it is not changed by transforming X by a member of F .

1.3.3 Inference

Definition 1.3.3.1: Similar test or confidence region

If the p-value of a test does not depend on the value of θnp, the test is called a similar

test and the p-value is called a similar p-value. A similar region is a confidence
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region whose confidence level does not depend on the value of θnp.

Definition 1.3.3.2: Unbiased test and confidence interval

A hypothesis test is unbiased if for every value of θ that satisfies the null, the proba-

bility of rejecting the null is smaller than for every value of θ that does not satisfy the

null. That is, the power function is always lower for a point in the null set than in the

alternative set.

The probability that an unbiased confidence interval contain any false value of

the parameter is less than the probability that it contains the true value.

Theorem 1.3.3.1: Similar unbiased test in gamma populations [4]

Let Xi ∼ Gamma(αi, βi), with the shape parameters known. Let Ho be that β1 =

. . . = βN = β. Here θnp = β. An unbiased similar test rejects the null if

∏N
i=1

(
Xi

αi

)αi

(PN
i=1 XiPN
i=1 αi

)PN
i=1 αi

< b,

where b is chosen to give the test the desired size.

Definition 1.3.3.3: Uniformly most powerful (UMP ) test

If θ is one-dimensional, a most powerful size α test of Ho : θ = θo against Ha : θ = θa

is a test that has greater power than any other size α test against that alternative. A

UMP size α test against a class of alternatives is a most powerful size α test for all

the alternatives in that class.

For two-sided alternatives typically no UMP test will exist. In this case, we would

look for tests that are UMP within the class of unbiased tests.

If θ is multidimensional we can refer to tests concerning a one-dimensional θpi that

are UMP within a certain class of tests, such as the class of similar tests or invariant

tests.
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Theorem 1.3.3.2: Reparameterization in UMP tests

Let θpi be one-dimensional. Let g be a monotonically increasing function. Let A be

the rejection region for the uniformly most powerful (UMP ) size α test in some class

of θpi = θo against the alternatives θpi > θo. A is also the rejection region for the UMP

size α test in that class of g(θpi) = g(θo) against the alternative g(θpi) > g(θo).

Proof. The null hypotheses are the same, and the set of alternatives for the latter test

is also the set of alternatives for the former test.

The analogous lemmas for decreasing functions and for alternatives in the other

direction are also true. It is also true, by the very same proof, that the UMP tests

within a class of Ho : θpi
1 = θpi

2 against two-sided alternatives are identical to tests of

Ho : g(θpi) = g(θo).

Definition 1.3.3.4: Uniformly most accurate (UMA) confidence intervals.

Again let θ be one-dimensional.

Suppose the statistics Tl(X), Tu(X) create a confidence interval for θ with confidence

level 1 − α. They create a UMA confidence interval of level 1 − α if for every

value θ∗ in the parameter space and θ‘ �= θ∗, Probθ∗(Tl < θ‘ < Tu) is smaller than

Probθ∗(T
∗
l < θ‘ < T ∗

u ) for any other confidence interval T ∗
l , T ∗

u of level 1 − α.

In less precise English, the UMA interval has the smallest probability of admitting

any wrong value.

Usually, we would only speak of intervals that are UMA within a certain class,

most commonly the class of all unbiased intervals.

A UMA lower confidence bound Tl of level 1−α satisfies the property that for all

θ∗ in the parameter space and θ‘ < θ∗, Probθ∗(Tl < θ‘) is smaller than Probθ∗(T
∗
l < θ‘)

for any other 1 − α lower confidence bound T ∗
l . Such a bound would minimize any

risk function for the underestimation of θ∗ ([5], page 90). The definition of the UMA

upper confidence bound is analogous to the lower bound.

If θ is multidimensional, we would look for intervals and bounds for a one-dimensional

θpi that are UMA within a certain class, such as the class of similar regions or the class

of invariant regions.
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Theorem 1.3.3.3: UMP test inversion ([5], page 91)

Again, let θ be one-dimensional.

Inverting the UMP test of size α of Ho : θ = θo against Ha : θ > θo will produce

the UMA lower confidence bound for θ of confidence level 1 − α.

Inverting the UMP test of Ho : θ = θo against Ha : θ < θo will produce the UMA

uppper confidence bound for θ of confidence level 1 − α.

Inverting the UMP unbiased size α test of Ho : θ = θo against Ha : θ �= θo will

produce the UMA unbiased confidence interval.

If there are nuisance parameters, and θpi is one-dimensional, inverting a test that

is UMP for its class among similar tests of the hypothesis Ho : θpi = θo will produce

confidence bounds that are UMA as just described among similar confidence bounds.

This theorem assumes that inverting the tests actually produces intervals. Exam-

ples where inverting UMP tests do not produce intervals are difficult to construct.

Definition 1.3.3.5: Fiducial inference

Suppose X = g(U, θ), where the generating vector U is a random vector whose

distribution is known. We can always find such a stochastic representation by letting

U be a vector of iid uniform(0, 1) random variables and letting gi(U) = F−1
Xi

(Ui; θ) ([2],

page 54). I shall call U the vector of latent variables. Suppose that T is a statistic

for inference on θ.

Traditional inference treats T as random and θ as fixed, and evaluates a null hy-

pothesis by calculating a p-value for t. Fiducial inference treats t as fixed and θ as

random, and evaluates a null hypothesis Ho : θ = θo by comparing θo to a reference

distribution of θ. The difference between Bayesian inference and fiducial inference is

that Bayesian inference uses a posterior distribution as the reference distribution, while

fiducial inference compares θo to draws from the fiducial distribution.

To draw a value θ(j) from the fiducial distribution, one draws a value u(j) of the

latent vector from distribution of U, then solves T(g(u(j), θ(j))) = t.
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Definition 1.3.3.6: More extreme symbol

The expression y <> x will mean “y is more extreme than x.” The definition of

extreme will depend on the context. The pronunciation of the expression will be “y is

extremer than x.”

Theorem 1.3.3.4: p-value as an expectation

The p-value associated with t for a test of the hypothesis θ = θo based on T is

EX(IT<>t). (see Definition 1.3.3.6).

Proof. The p-value is Probθo(T <> t). The proof follows from the fact that probabil-

ities of events are just the expected value of the indicator function that is 1 where the

event occurs.

Definition 1.3.3.7: Monte Carlo p-value

If one takes s independent draws of X from its known distribution under the null

hypothesis, the Monte Carlo p-value p̂MC associated with a value t for a statistic T

is is 1
s

∑s
i=1 IT(x(i))<>t (see Definition 1.3.3.6).

Since the Monte Carlo p-value is a sample proportion from a binomial experiment

(see Definition 1.3.5.1), it converges almost surely to the actual p-value p, and its

standard deviation is
√

p(1−p)
s

, by Theorems 1.3.6.9 and 1.3.6.10.

The Monte Carlo test rejects if the Monte Carlo p-value is less than the nominal

size.

1.3.4 Exponential families

In this section, I occasionally assume the existence of certain derivatives. These deriva-

tives will exist under broad regularity conditions.
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Definition 1.3.4.1: Exponential family

fX(x; θ) belongs to an exponential family if it can be written as

h(x)C(θ) exp

(
d∑

i=1

θiTi(x)

)
.

T will denote the vector {T1, . . . , Td}

Theorem 1.3.4.1: Mean and variance of statistics in exponential families

([2], page 112)

In the exponential family of Definition 1.3.4.1,

E(Ti) = − ∂

∂θi

ln(c(θ)).

V ar(Ti) = − ∂2

∂θ2
i

ln(c(θ)).

Theorem 1.3.4.2: Complete statistics in the exponential family ([2], page

288)

In the exponential family of Definition 1.3.4.1, as long as the parameter space contains

an open set in �d, Ti is complete (Definition 1.3.1.4).

Theorem 1.3.4.3: Minimal sufficient statistics in exponential family

In the exponential family of Definition 1.3.4.1, Ti is minimal sufficient for θi.

Proof.

fX(z; θ1, θ2, . . . , θd)

fX(y; θ1, θ2, . . . , θd)
=

h(z) exp
(∑d

i=2 θiTi(z)
)

h(y) exp
(∑d

i=2 θiTi(z)
) exp (θ1(T1(z) − T1(y))) .

This will be constant as a function of θ1 if and only if T1(z) = T1(y). Then by

Theorem 1.3.1.2, T1 is minimal sufficient for θ1.
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Theorem 1.3.4.4: Uniformly most powerful tests in a one-parameter expo-

nential family ([5], page 80)

Assume in the exponential family of Definition 1.3.4.1 that θ is one-dimensional. If T1

is a continuous random variable, the UMP size α test of θ = θo against the alternatives

θ > θo has the rejection region T1 > b, where b is chosen to give the test size α. The

UMP test of θ = θo against the alternatives θ < θo has a rejection region of the form

T1 < b.

This is slightly different from the form of the theorem stated in [5], but his result

implies this theorem here via Theorem 1.3.3.2.

Theorem 1.3.4.5: UMP unbiased tests in a one-parameter exponential fam-

ily ([5], page 136)

If in the exponential family of Definition 1.3.4.1 θ is one-dimensional, there exists a

UMP size α unbiased test of Ho : θ = θo against Ha : θ �= θo, and the rejection region

is T1 > bu ∪ T1 < bl. If φ is the power function of the test, bu and bl solve φ(θo = α)

and d
dθ

φ(θo) = 0, .

Theorem 1.3.4.6: UMP similar test in exponential families ([5], page 147)

In the exponential family of Definition 1.3.4.1, let θnp = {θ2, . . . , θd}. Then UMP sim-

ilar tests and UMP unbiased similar tests for Ho : θpi = θo have the forms in Theorem

1.3.4.4 and Theorem 1.3.4.5, with the constants determined by the distribution of T1

conditional on T2 = t2, . . . , Td = td.

Theorem 1.3.4.7: Finding UMP unbiased tests

Suppose we want to test Ho : θ = θo against Ha : θ �= θo in a one-parameter exponential

family. If a test of size α has rejection region of the form T1 > bu ∪ T1 < bl, and the

test is unbiased, then it is the UMP unbiased size α test.

Proof. By Theorem 1.3.4.5, this lemma will be true if the derivative of the power

function is 0 at θo. But unbiasedness implies that the power function has a minimum

at θo; thus, the derivative must be 0.
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This lemma also applies to finding UMP unbiased similar tests; in this case one

need only check that the test has size α conditional on T2 = t2, . . . , Td = td and the

test is unbiased conditional on T2 = t2, . . . , Td = td.

Theorem 1.3.4.8: Distribution conditional on sufficient statistics

In the exponential family of Theorem 1.3.4.1, fX|{Td−dnp+1,...,Td}(x|{td−dnp+1, . . . , td}; θ)
has the form

ITd−dnp+1=td−dnp+1,...,Td=tdB(θ1, . . . , θd−dnp , td−dnp+1, . . . , td)H(x) exp(

d−dnp∑
i=1

θiTi).

Also, fX|T(x|t; θ) =

IT=t(x)B(t)H(x).

Proof. I’ll present the proof for the latter statement. In the notation of Theorem

1.3.5.14, we can derive that g(t) = C(θ)exp(
∑d

i=1 θiti)
∫
T(y)=t

H(y)dy. Then from

that Theorem 1.3.5.14 and Definition 1.3.4.1 we can derive the result. We get B(t) =
1R

T(y)=t H(y)dy
.

1.3.5 Probability Theory

Definition 1.3.5.1: Bernoulli trial and binomial experiment

A Bernoulli trial is a random variable with two outcomes – 1 (success) or 0 (failure).

Let the probability of success be p. The mean of a Bernoulli trial is p and the variance

is p(1 − p) ([2], page 89). A binomial experiment is a random sample of N Bernoulli

trials. The sample proportion p̂ in a binomial experiment is the number of successes

over N . The mean of the sample proportion is p and the variance is p(1−p)
N

.

Definition 1.3.5.2: Jacobian

In abstract terms, the Jacobian of a one-to-one function f from a domain in �n to a

range in �m evaluated at a point z, denoted Jf (z), is the inverse of the ratio of the
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volume of an epsilon cube in the doman with a corner at z to the volume of the image

of the cube. By definition, Jf−1(y) = 1
Jf (f−1(y))

For a one-to-one function g from an n-dimensional subset of �n to an n-dimensional

subset of �n, Jg(z) is the absolute value of the determinant of ∂g
∂z

(z).

Theorem 1.3.5.1: Multivariate transformations ([2], page 185)

Suppose g is a one-to-one function from the support Z of Z onto some range. For

Y = g(Z), fY(y) = fZ(g−1(y))Jg−1(y).

This theorem assumes the existence of the Jacobian Jg−1 at the point y. (see

Definition 1.3.5.2)

Theorem 1.3.5.2: Generating uniform data on a sphere ([6], page 227)

If X is a random sample from a N(0, 1) population, the vector { X1√PN
i=1 X2

i

, . . . , XN√PN
i=1 X2

i

}
is uniformly distributed on the unit sphere.

Theorem 1.3.5.3 Time management theorem

You are wasting your time right now.

Proof. You are reading this theorem and its proof, which are irrelevant.

Definition 1.3.5.3: Marksmanship

Execution of a practical joke that would be worthy of Crosby Marks.

Definition 1.3.5.4: Dirichlet distribution

Z has a Dirichlet(θ) distribution if fZ(z; θ1, . . . , θa) = IPa
i=1 zi=1c(θ)

∏a
i=1 zθi−1

i .

Theorem 1.3.5.4: Generating a Dirichlet random variable ([7], page 582)

Let Xi ∼ Gamma(θi, 1) (Definition 1.3.5.10). Then the random vector whose ith

element is XiPN
i=1 Xi

is Dirichlet(θ).
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Theorem 1.3.5.5: Moment existence for bounded random variables

If Z is bounded, all of its moments exist.

Proof. For simplicity, I will assume Z is univariate. By definition, moments “exist”

if their absolute values are less than ∞. We can write the absolute value for the ith

moment as | ∫ bu

b1
zifZ(z)dz| ≤ ∫ bu

b1
|zi|fZ(z)dz ≤ M

∫ bu

b1
fZ(z)dz = M for some bounds

bl and bu, where M is the upper bound on |Zi|.

Theorem 1.3.5.6: Chebyshev’s Inequality ([2], page 122)

Prob
(

|X−μ|
σ

> ε
)
≤ 1

ε
.

Definition 1.3.5.5: Information matrix

The information matrix I(θ) for a data vector is −EX

(
∂2

∂θ∂θT ln (fX(x; θ))
)
.

Theorem 1.3.5.7: Information matrix for normal random sample ([8])

Letting θ = {μ, σ}, the information matrix (Definition 1.3.5.5) for a normal random

sample is

⎛⎝ N
σ2 0

0 2N
σ2

⎞⎠ .

Definition 1.3.5.6: Noncentral t distribution

Let Z ∼ N(0, 1) and U ∼ χ2
ν . Then Z+δ√

U
ν

has a noncentral t distribution with ν

degrees of freedom and noncentrality parameter δ.

Theorem 1.3.5.8: χ2 distribution ([2], page 623)

If Y ∼ χ2
ν , then fY (y) = Iy≥0

1

Γ( ν
2 )2

ν
2
y

ν
2
−1exp

(−y
2

)
.

Theorem 1.3.5.9: Distribution of a linear combination of normal variables

([9], page 62

If Xi ∼ N(μi, σ
2
i ) then

∑N
i=1 αiXi ∼ N

(∑N
i=1 αiμi,

∑N
i=1 α2

i σ
2
i

)
.
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In general, if Y ∼ N(μ, Σ), then AY + c ∼ N(Aμ + c, AΣAT ).

Theorem 1.3.5.10: Distribution of a quadratic form ([10], page 135

If Y is normal with mean vector 0 and covariance matrix Σ, and AΣ has rank r and

is such that AΣAΣ = AΣ, then YT AY ∼ χ2
r.

Theorem 1.3.5.11: Consequences of Theorem 1.3.5.10

1. If Xi ∼ N(0, 1), then
∑N

i=1 X2
i ∼ χ2

r.

2. Let Xi ∼ χ2
ri
.
∑N

i=1 Xi ∼ χ2Pk
i=1 ri

.

3. If Y, an r × 1 vector, is N({μ, . . . , μ},V), where V is diagonal, and Ỹ be

a weighted average of the elements of Y, where the ith weight is 1
Vii

. Then∑k
i=1

(Yi−Ỹ)2

Vii
∼ χ2

r−1.

These results are immediate except for 3. A proof for 3 can be found in [11].

Theorem 1.3.5.12: Multivariate normal conditional distribution ([9], page

63

Let

⎛⎝ Z1

Z2

⎞⎠ ∼ N

⎛⎝⎛⎝ μ1

μ2

⎞⎠ ,

⎛⎝ Σ11 Σ12

ΣT
12 Σ22

⎞⎠⎞⎠ .

Then assuming Σ22 is nonsingular, conditional on Z2 = z2,

Z1 ∼ N
(
μ1 + Σ12Σ

−1
22 (z2 − μ2), Σ11 − Σ12Σ

−1
22 ΣT

12

)
.

Definition 1.3.5.7: Generalized linear model

The data are generated by a generalized linear model if the density is

h(x) exp

(
N∑

i=1

Q(W T
i β)xi + K(W T

i β)

)
,

where Q and K are functions, β is a vector of parameters.
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Definition 1.3.5.8: Canonical link

In Definition 1.3.5.7, the generalized linear model is said to have the canonical link

if Q(W T
i β) = W T

i β.

Definition 1.3.5.9: Skewness and Kurtosis

The population skewnewss γ1 ≡ μ3

σ3 , and the populaiton kurtosis γ2 ≡ μ4

σ4 − 3. Here

we are defining kurtosis as the excess over that of the normal distribution.

Definition 1.3.5.10: Gamma distribution

If Y ∼ gamma(α, β), then fY (y) = Iy≥0
1

Γ(α)βα yα−1 exp
(
− y

β

)
. α is known as the

shape parameter, and β is the scale parameter because changing β is tantamount to

re-scaling Y via multiplication by a positive number.

From Theorem 1.3.4.3, we can find sufficient statistics for α and β in a random

sample. These are Tα ≡∑N
i=1 ln(Xi) and Tβ ≡∑N

i=1 Xi.

Definition 1.3.5.11: Kernel of distribution

If fY(y) = Ck(y), where C is a constant with respect to y, then k(y) is a kernel of

fY(y).

C is called the constant of proportionality.

Theorem 1.3.5.13: Expected standard deviation of Monte Carlo p-value

under the null

Under the null, the expected value of the standard deviation of the Monte Carlo p-value

(Definition 1.3.3.7) is π
8
√

s
.

Proof. Under the null, the distribution of the p-value, which is a random variable that I

shall call U , is U(0, 1) (Theorem 1.3.5.19). The expected value of the standard deviation

of the Monte Carlo p-value is Ep̂MC
(
√

V ar(p̂MC)) = EU(Ep̂MC |U(
√

V ar(p̂MC)|U)) =

EU

(√
U(1−U)√

s

)
, by Definition 1.3.5.1. This is 1√

s

∫ 1

0

√
z(1 − z)dz = 1√

s
π
8
.
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Theorem 1.3.5.14: Distribution of data conditional on a statistic

The distribution of X conditional on T(X) = t is

IT(X)=tfX(x)

g(t)
,

where g(t) =
∫
T(y)=t

fX(y)dy.

Of note, IT(X)=tfX(x) is a kernel (Definition 1.3.5.11) of the conditional distribu-

tion.

Proof. The joint distribution of X and T is IT(X)=t(x)fX(x) . The conditional is this

over the marginal distribution of T evaluated at t, which is g(t).

Theorem 1.3.5.15: Uniformity of data conditional on statistic

If the density is a function of the data only through a statistic T, then the distribution

of the data conditional on T = t is uniform on the subset of the support of X on which

T = t.

Proof. We can write fX(x) = g(t). From Theorem 1.3.5.14, on the conditional support

the density is proportional to g(t), which is constant on that support.

Theorem 1.3.5.16: Marginal distribution of a coordinate of a one-dimensional

surface

Suppose that a surface S in �p is the set of all points that can be written as

y = {x1, g1(x1), . . . , gp−1(x1)}, x1 ∈ X

where g(x1) ≡ {g1(x1), . . . gp−1(x1)} is differentiable and one-to-one. The probability

density IY ∈ Sf(y) implies a marginal density for X1. That density is

Ix1∈ Xf({x1,g(x1)})
√√√√1 +

p−1∑
i=1

(
dgi

dx1

(x1)

)2

.
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Proof. The probability that x1 is in an interval [a, b] is equal to the probability that a

point on S is in the interval defined by {a,g(a)} and {b,g(b)}. From Theorem 1.3.8.14,

we can deduce that this probability is

∫ b

a

It∈ Xf({t,g(t)})
√√√√1 +

p−1∑
i=1

(
dgi

dx1

(t)

)2

dt.

Then the integrand must be the marginal density of X1.

Definition 1.3.5.12: Homogeneous function

A function g(x) is homogeneous of degree k if g(αx) = αkg(x) for any positive

constant α.

Definition 1.3.5.13: Accept/reject method of generating a random variable

Suppose we want to generate a random sample from a target density fX, and we

have a generating density fZ that has the same support. Let M = max
(

fX
fZ

)
over

the support. One step of the accept/reject algorithm would generate z from fZ and

accept this as an observation of X with probability
fX(z)

fZ(z)

M
.

Theorem 1.3.5.17: Independence and factorization ([2], page 153)

X1, . . . ,XN are independent if and only if fX(x1, . . . ,xN) =
∏N

i=1 fi(xi) for some func-

tions f1, . . . , fN .

Definition 1.3.5.14: Memoryless property

If the distribution of Y conditional on Y > c is the same for all c, then the distribution

of Y is said to possess the memoryless property.

Theorem 1.3.5.18: Conditional variance identity ([2], page 167)

If Y and Z are any univariate two random variables, V ar(Z) = EY (V arZ|Y (Z|Y )) +

V ar(EZ|Y (Z|Y )).
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Definition 1.3.5.15: Rejection sampling

One method of generating a random variable Z conditional on some event is rejection

sampling. One step of this algorithm generates a z from the unconditional distribution

of Z, but this value is included in the final sample only if it is in the event.

Theorem 1.3.5.19: Distribution of p-value under the null

The true p-value for any test is itself a random variable. If the test statistic is contin-

uous, the true p-value associated with it will be U(0, 1) under the null.

Proof. This is consequence of the probability integral transformation (see Casella and

Berger [2], page 54).

1.3.6 Asymptotic theory

Definition 1.3.6.1: Convergence in probability

L(n) converges in probability with n to plim(L), a random variable or constant,

if for any ε > 0 limn→∞(Prob(
√∑a

i=1(L(n)i − plim(L)i)2 > ε)) = 0.

I shall write L(n) →p plim(L).

Definition 1.3.6.2: Almost sure convergence

L(n) converges almost surely with n to alim(L), a random variable or constant, if

Prob(limn→∞(L(n)) = alim(L)) = 1.

One trivial example is that Z
g(N)

converges almost surely to 0 if g is a monotonically

increasing, unbounded function of N .

I shall write L(n) →as alim(L).

Definition 1.3.6.3: Multivariate convergence in distribution

L(n) converges in distribution with n to a random variable cd(L) if for any region

A in the support of cd(L), limn→∞(Prob(L(n) ∈ A)) = Prob(cd(L) ∈ A).

I shall write L(n) →d cd(L).
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Definition 1.3.6.4: Asymptotic normality

L(n) is asymptotically normal with n if there is a vector of constants L∗ such

that
√

n(L(n)−L∗) converges in distribution with n to a multivariate normal random

variable with mean 0 and some constant covariance matrix ΣL. We will write L(n) ∼
AN

(
L∗, 1

n
ΣL

)
.

Theorem 1.3.6.1: Relationship among types of convergence

1. If L(n) →as alim(L), then Ln →p alim(L). ([12], page 70)

2. If L(n) ∼ AN
(
L∗, 1

n
ΣL

)
, then L(n) →p L∗.

Proof. I will give a handwaving argument here, using the univariate case for

simplicity. For large n, Prob(|L(n) − L∗| > ε) = Prob

(
|L(n)−L|√

ΣL/n
>

√
n ε

ΣL

)
≈

Prob(|N(0, 1)| >
√

nc) for some constant c, which converges to 0.

Theorem 1.3.6.2: Asymptotic normality of the maximum likelihood estima-

tor MLE [8]

Under regularity conditions, θ̂MLE(N) ∼ AN (θ, I−1(θ)).

(I(θ) is defined in Definition 1.3.5.5.)

Theorem 1.3.6.3: Multivariate delta method ([9], page 52)

If L(n) ∼ AN
(
plim(L), 1

n
ΣL

)
, and g is differentiable at plim(L),

g(L(n)) ∼ ANn

(
g(plim(L)),

1

n

∂

∂L
g(plim(L))ΣL

∂

∂L
g(plim(L))T

)
.

Theorem 1.3.6.4: Slutsky’s Theorem ([2], page 239)

If L(n) →d cd(L), and Q(n) →p α, a constant, then L(n)Q(n) →d αcd(L) and L(n) +

Q(n) →d cd(L) + α.
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Theorem 1.3.6.5: Continuity and convergence

1. If L(n) →p plim(L), and gis a continuous function, then g(L(n)) →p g(plim(L)).

([2], page 233)

2. If L(n) →d cd(L), and gis continuous on the support of cd(L), then g(L(n)) →d

g(cd(L)). ([8])

3. If L(n) →as alim(L) and Q(n) →as alim(Q), and g is a continous function, then

g(L(n),Q(n)) →as g(plim(L), plim(Q)).

Proof. (Of part 3): This follows from Theorem 1.3.8.10.

By simple iteration, one can extend this theorem to any number of sequences.

Theorem 1.3.6.6: Slutsky-delta method of obtaining standard normal statis-

tics

If L(n) ∼ AN
(
μ, 1

n
g(θ)

)
, where g is continous at θ, and θ̂(n) →p θ, then

√
n

L(n) − μ√
g(θ̂(n))

→d N(0, 1).

Proof. From Definition 1.3.6.4,
√

nL(n)−μ√
g(θ)

→d N(0, 1). Also note that by Theorem

1.3.6.5 part 1,

√
g(θ)√
g(θ̂)

→p 1. Then by Slutsky’s Theorem (1.3.6.4),

√
n

L(n) − μ√
g(θ̂)

=
√

n
L(n) − μ√

g(θ)

√
g(θ)√
g(θ̂)

→d N(0, 1).

Theorem 1.3.6.7: Central Limit Theorem ([9], page 51)

If Σ is the covariance matrix for a random sample, X̄(N) ∼ AN
(
μ, 1

N
Σ
)
.
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Many extensions to the Central Limit Theorem have been developed (see [5], Chap-

ter 11). Extensions have been given for nonindependent data. Extensions have also

been given for cases where the Xis are not identically distributed. If the process gener-

ating the data is such that the average of the population means converges to a constant

and the average of the population covariance matrices converges to a constant, the sam-

ple mean will be asymptotically normal. And if the process generating the population

means and covariance matrices can be thought of as a random sample, this condition

will be fulfilled by the Strong Law of Large Numbers (Theorem 1.3.6.8.)

Theorem 1.3.6.8: Strong Law of Large Numbers ([2], page 235)

If X is a random sample, and its covariance matrix exists, then X̄(N) →as μ.

Theorem 1.3.6.9: Asymptotic normality of sample proportion

In a binomial experiment, p̂(N) ∼ AN
(
p, p(1−p)

N

)
.

Proof. Realizing that the sample proportion is the sample mean in a binomial exper-

iment, in which the individual observations have mean p and variance p(1 − p), this

follows from Definition 1.3.5.1 and the Central Limit Theorem (Theorem 1.3.6.7).

This gives an expression for the standard error for the sample proportion:
√

p̂(1−p̂)
N

.

Theorem 1.3.6.10: Convergence of sample proportion

In a binomial experiment (Definition 1.3.5.1), p̂(N) →as p.

Proof. The sample proportion is also the sample mean in a binomial experiment, in

which each observation has mean p and variance p(1−p). Then the result follows from

the Strong Law of Large Numbers (Theorem 1.3.6.7).

Theorem 1.3.6.11: Eventuality of success in a binomial experiment

If a binomial experiment (Definition 1.3.5.1) is repeated until the first success, the

probability that it eventually stops is 1 as long as the probability of success is greater

than 0.
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Proof. If this were not true, there would be a positive probability that the sample

proportion would not converge to the true proportion, which would violate Theorem

1.3.6.10.

Theorem 1.3.6.12: Asymptotics of χ2 distribution

If Y ∼ χ2
m, then Y

m
(m) ∼ AN(1, 2

m
), and Y

m
converges almost surely with m to 1.

Proof. We can write Y =
∑m

i=1 Z2
i , where the Zis are iid N(0, 1). Now, E(Z2

i ) =

1 and V ar(Z2
i ) = E(Z4

i ) − E(Z2
i )2 = 2. Then the results follow from the Central

Limit Theorem (Theorem 1.3.6.7) and the Strong Law of Large Numbers (Theorem

1.3.6.8).

Theorem 1.3.6.13: Asymptotic distribution of the likelihood ratio statistic

[8]

If L(N) is the likelihood ratio statistic for testing Ho : θpi = θo, and θpi is r × 1,

under the null hypothesis (and certain regularity conditions) −2 ln(L(N)) converges in

distribution (Definition 1.3.6.3) to a χ2
r.

Theorem 1.3.6.14: Joint asymptotic normality of sample mean and variance

[5]

Under regularity conditions, for a univariate random sample⎛⎝ X̄(N)

S2(N)

⎞⎠ ∼ AN

⎛⎝⎛⎝ μ

σ2

⎞⎠ ,
1

N

⎛⎝ σ2 μ3

μ3 μ4 − σ4

⎞⎠⎞⎠ .

Proof. Without loss of generality, I shall replace the N − 1 in the denominator of S2

with an N . We can rewrite the vector on the left hand side of the expression as⎛⎝ 1
N

∑N
i=1 Xi

1
N

∑N
i=1(Xi − μ)2

⎞⎠+

⎛⎝ 0

(μ − X̄)2

⎞⎠ .
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Now by the Strong Law of Large Numbers (Theorem 1.3.6.8), Theorem 1.3.6.5, part 3,

and Theorem 1.3.6.1, part 1, the second term converges in probability to the 0 vector.

So by Slutsky’s Theorem (1.3.6.4), the result can be shown by proving the asymptotic

normality of the first term. Now the vector⎛⎝ Xi

(Xi − μ)2

⎞⎠
has mean ⎛⎝ μ

σ2

⎞⎠
and covariance ⎛⎝ σ2 μ3

μ3 μ4 − σ4

⎞⎠ .

Then the result follows via the Multivariate Central Limit Theorem (1.3.6.7).

Theorem 1.3.6.15: Asymptotic unbiasedness of normal sample standard

deviation [13]
√

2Γ(N
2 )√

N−1Γ(N−1
2 )

converges to 1 as N → ∞.

1.3.7 Markov Chains

Definition 1.3.7.1: Markov chain

A Markov chain C is a stochastic process that produces, at step n, a random variable

Y(n) whose density function fC(y(n)|y(n − 1)) depends on the previous steps only

through the value of Y(n − 1).

The sequence of densities that define a chain, the rules for generating Y(n) once

Y(n−1) has been observed, imply a density fC,n for Y(n) which specifies probabilities of

events concerning Y(n) before Y(2) has been observed. I shall call this the predictive

density of the chain.
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Definition 1.3.7.2: Gibbs sampling Markov chain

The Gibbs sampler is a Markov chain (Definition 1.3.7.1) constructed in the following

way:

1. Y1(n) is drawn from the density fZ1|{Z2,...,Za}(y1(n)|{y2(n−1), . . . , ya(n−1)}), for

some random variable Z.

2. Y2(n) is drawn from the density fZ2|{Z1,Z3,...,Za}(y2(n)|{y1(n), y3(n−1), . . . , ya(n−
1)}).

3. And so on until Ya(n) is drawn from fZa|{Z1,...,Za−1}(ya(n)|{y1(n), . . . , ya−1(n)}).

I shall say that Yi(n) is drawn in the ith substep of the nth step. The density

from which Yi(n) is drawn in the ith substep of the nth step will be called the inth

jumping density. fZ will be called the target density.

Definition 1.3.7.3: Su sampling Markov chain

I know of no terminology for this useful construct, so I will propose one here.

The Su sampler is a Markov chain (Definition 1.3.7.1) constructed in the following

way:

{Ys(n), Ys+1(n), . . . Ys+u(n)} is drawn from

fZsu|Z−su({ys(n), . . . , ys+u(n)}|{y1(n − 1), . . . , ys−1(n − 1), ys+u+1(n − 1), . . . ya(1)}),

where Zsu = {Zs, . . . , Zu} and Z−su consists of the elements of Z not in Zsu. The other

elements of Y(n) are constant as a function of n.

Definition 1.3.7.4 Chaining of Markov chains

Two Markov chains C1 and C2 are chained into a stochastic process if the first sub-

step of the process produces Y(1) via the density fC1(y(1)|y(0)), the second substep

produces Y(2) via the density fC2(y(2)|y(1)), the third substep produces Y(3) via the

density fC1(y(3)|y(2)), etc.
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The even substeps of a stochastic process produced in this way are a Markov chain

(Definition 1.3.7.1), and the density function defining the chain is∫
E(y(n−1))

fC2(y(n)|y)fC1(y|y(n − 1))dy,

where E(y(n − 1)) is the support of the density fC1(·|y(n − 1)).

More than two Markov chains can be combined in this way to create a new Markov

chain; if b chains are combined, the bth substeps compose a chained Markov chain. I

shall refer to the outcome of the bth substep as a step.

Definition 1.3.7.5: Stationary distribution of Markov Chain

The density fZ is the stationary distribution of a Markov Chain C if∫
Z

fC(y(n)|z)fZ(z)dz = fZ(y(n)),

where Z is the support of Z.

Theorem 1.3.7.1: Stationary distribution of the Su sampler

The stationary distribution (Definition 1.3.7.5) of the Su sampler is fZ, where Z is as

defined in Definition 1.3.7.3.

Proof. We have fC(y(n)|z) = Iy(1)=z1,...,ys−1(n)=zs−1,ys+u+1(n)=zs+u+1,...ya(n)=za×

fZsu|Z−su({ys(n), . . . , ys+u(n)}|{z1, . . . , zs−1, zs+u+1, . . . , za}).

Now this is fZ|Z−su(y(n)|{z1, . . . , zs−1, zs+u+1, . . . za}).
To prove the result, we need to evaluate the integral in Definition 1.3.7.5. It is∫

Z
fZ|Z−su(y(n)|{z1, . . . , zs−1, zs+u+1, . . . za})fZ(z)dz =

∫
Z

fZ|Z−su({ys(n), . . . , ys+u(n)}|z−su)fZ−su(z−su)dz1 . . . dzs−1dzs+u+1 . . . dza.
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The integrand is the joint density of Z and Z−su, so integrating out the latter

random variable will leave the marginal density of Z, which is the result we wanted.

Theorem 1.3.7.2: Support of stationary distribution

Let fZ be the stationary density of a Markov chain C and let S be the set of all points

in the support of fC(y(n)|z) for at least one value z in the support Z of Z. Then S
equals Z up to a set which has measure 0 under the measure defined by fZ.

Proof. To see this, realize that one way to interpret Definition 1.3.7.5 is that the

marginal distribution of Y(n) from the random variable {Y(n),Z} is the same as the

marginal distribution of Z.

Theorem 1.3.7.3: Stationary distribution of chained Markov chains

If Markov chains C1, . . . , Cb have the same stationary distribution, then the Markov

chain that results from chaining them will have the same stationary distribution.

Proof. I will do the proof for the case b = 2. For general b, simply apply this proof

iteratively.

Let fZ be the stationary distribution of both chains. Call the new Markov chain

C12.

From Definition 1.3.7.4, fC12(y(n)|z) =
∫
E(z)

fC2(y(n)|y)fC1(y|z)dy.

To complete the proof, we need to evaluate the integral in Definition 1.3.7.5. It is∫
Z

∫
E(z)

fC2(y(n)|y)fC1(y|z)fZ(z)dydz,

where Z is the support of Z.

As a technical point, we can replace E(z) with the set S1 of all points in the support

of fC1(y|z) for at least one value of z, since fC1(y|z) is 0 outside E(z). That means by

Theorem 1.3.7.2, we can replace E(z) with Z.

Now write the expression as∫
Z

∫
Z

fC2(y(n)|y)fC1(y|z)fZ(z)dydz
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Changing the order of integration, and we get the expression∫
Z

fC2(y(n)|y)

(∫
Z

fC1(y|z)fZ(z)dz

)
dy,

which by Definition 1.3.7.5 equals∫
Z

fC2(y(n)|y)fZ(y)dy,

which by Definition 1.3.7.5 is fZ(y(n)), which completes the proof.

Theorem 1.3.7.4: Stationary distribution of Gibbs sampler

Using the notation of Definition 1.3.7.2, the stationary distribution of the Gibbs sam-

pler is fZ.

Proof. This follows from Theorem 1.3.7.1 and 1.3.7.3, since the Gibbs sampler is a

chain of the a Su samplers formed by setting s = 1, s = 2, etc. and u = 0.

Definition 1.3.7.6: Aperiodic

If there are no disjoint subsets D1, . . . ,Dc such that Prob(Y (n) ∈ D1|Y (n − 1) ∈
Dc) = 1, Prob(Y (n) ∈ Db|Y (n− 1) ∈ Db−1) = 1, and the probability that the chain

ever enters D1 is positive for some starting point, the chain is called periodic. A chain

that is not periodic is called aperiodic.

Basically, an aperiodic chain is one that does not get caught up into a recognizable

cycle.

Definition 1.3.7.7: Irreducibility

A Markov chain C with a stationary distribution fZ is irreducible if for any set E
for which

∫
E fZ(y)dy > 0 there exists an n such that

∫
E fC,n(y)dy > 0.(See Definition

1.3.7.1.)

37



Chapter 1. Introduction

Theorem 1.3.7.5: Convergence to stationary distribution [14]

If a Markov chain whose stationary distribution is fZ is aperiodic and irreducible,

Yn →d Z.

Actually, a result that is stronger than the simple pointwise convergence of the

distribution function of Y(n) can be given, but this is sufficient for our purposes.

This result is often used to justify taking the realized values of a Markov chain as the

values of a random sample for Z. Even if n is large enough that the distribution of Yn

is indistinguishable from that of Z, this is not precisely valid because the steps of the

chain are correlated. However, usually if we take a large enough sample it will behave

like a random sample. In any case, usually we are interested in the expected value of

a function of Z, and we can use the following theorems to justify the presumption of

independence for the purpose of approximating that expected value.

Theorem 1.3.7.6: Ergodic Theorem [14]

Let Nmc be the total number of steps taken in a Markov chain. If a Markov chain with

stationary distribution fZ is aperiodic and irreducible, 1
Nmc

∑Nmc

n=1 g(Y(n)) converges

almost surely with n to EZ(g(Z)).

Theorem 1.3.7.7 Central Limit Theorem for Markov chains [14]

Let Nmc be the total number of steps taken by a Markov chain.

Under regularity conditions, if a Markov chain with stationary distribution fZ is

aperiodic and irreducible, then 1
Nmc

∑Nmc

n=1 g(Y(n)) ∼ AN
(
EZ(g(Z)), 1

Nmc
τV ar(g(Z))

)
,

where τ is a correction factor that accounts for the fact that the draws from the Markov

chain are correlated. If the first draw of the chain is from its stationary distribution,

it is possible to derive τ = limNmc→∞
∑Nmc

n=1 Corr(g(Y(n)), g(Y(1))).

This theorem requires a regularity condition called geometric ergodicity [14].

It’s difficult to check this condition, so often the theorem is invoked as a justification

for the assumption of normality rather than as a proof.

Central limit theorems for correlated data can also be used to justify normality,

since for large Nmc Theorem 1.3.7.5 indicates that the marginals of the Yn behave like
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the stationary density.

Definition 1.3.7.8: Metropolis-Hastings Markov chain

Let fZ(z) be a target density, and let Q(n) be drawn from a generating density

fQ(n) with the same support as fZ. The Metropolis-Hastings Markov chain sets

Y(n) = Q(n) if B(n) = 1 and Y(n) = y(n− 1) if B(n) = 0, where B(n) is a Bernoulli

random variable with probability of success min(
fZ(q(n))fQ(n)(y(n−1))

fZ(y(n−1))fQ(n)(q(n))
, 1).

Definition 1.3.7.9: Metropolis-within-Gibbs Markov chain

The Metropolis-within-Gibbs Markov chain chains together Metropolis-Hastings

chains, where the equivalent of fZ (Definition 1.3.7.8) in the inth substep is the density

of a random variable V conditional on V1 = v1(n), . . . , Vi−1 = vi−1(n), Vi+1 = vi+1(n −
1), . . . , Va = va(n−1). This is the jumping density for a Gibbs sampling Markov Chain.

(see Definition 1.3.7.2).

Theorem 1.3.7.10: Stationary distribution of Metropolis-Hastings chain ([2],

page 255)

The stationary distribution of the Metropolis-Hastings chain is fZ from Definition

1.3.7.8. By Theorems 1.3.7.1 and Theorem 1.3.7.3, the stationary distribution of the

Metropolis-within-Gibbs Markov chain is fV.

1.3.8 Basic Math

Definition 1.3.8.1: Compact set

For our purposes, a compact set is a bounded set in �n that contains its boundary.

Theorem 1.3.8.1: The minimum-maximum theorem ([15], page 189)

A continuous function on a compact set is bounded.
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Definition 1.3.8.2: Convex set

A set is convex if the line segment connecting two points in the set is also contained

in the set.

Definition 1.3.8.3: Generalized inverse

A matrix Ag is a generalized inverse of a matrix A if AAgA = A.

Theorem 1.3.8.2: Generalized inverses of symmetric matrices ([16], page

115)

Every symmetric matrix has a symmetric generalized inverse.

Theorem 1.3.8.3: Particular generalized inverse ([16], page 167)

The matrix (ATA)gAT , where (ATA)g is a generalized inverse of ATA, is a generalized

inverse of A.

Combined with Theorem 1.3.8.2, this ensures that a generalized inverse always

exists.

Theorem 1.3.8.4: Solution to set of linear equations ([16], page 141)

Let A be an r×n matrix of rank r, let v be an r×1 vector, and let Ag be a generalized

inverse of A. A vector y satisfies

Ay = v

if and only if can be written

y = Agv + (I − AgA)z,

for some z in �n.

The set of solutions described by the equation above is a hyperplane in �n.
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Definition 1.3.8.4: Orthogonal matrix

An r × n matrix A is an orthogonal matrix if the columns are orthogonal to each

other and each column has norm 1. ATA = In×n.

Theorem 1.3.8.5: Eigenvectors and eigenvalues of symmetric matrix ([17],

page 294)

Every r × r symmetric matrix A can be written in the form PDPT , where P is an

r×n orthogonal matrix and D is an n×n diagonal matrix with real nonzero elements

on the diagonal.

This theorem implies AP = PD, because PTP = In×n.

Definition 1.3.8.5: Eigenvectors and eigenvalues

The columns of P in Theorem 1.3.8.5 are the eigenvectors of A, and the elements of

D are the eigenvalues of A.

Definition 1.3.8.6: Column space

The column space of a matrix A is the set of all points that can be written Ay for

some vector y. The column space of a collection of column vectors as the column space

of the matrix that they form.

Theorem 1.3.8.6: Column space as a subset

If all of the columns of A are contained within the column space of B, then the column

space of A is contained in the column space of B.

Proof. A = BZ for some matrix Z. Then Ay = BZy = By∗ for some vector y∗.

Theorem 1.3.8.7: Unique representation via an orthogonal matrix

For a point b in the column space of an orthogonal matrix P, there is a unique y that

solves Py = b.
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Proof. First realize that such a y exists by the definition of a column space (Definition

1.3.8.7). Next realize that PT is a generalized inverse of P (Definition 1.3.8.3). By

Theorem 1.3.8.4, all solutions are of the form y = PTb + (I − PTP)z = PTb.

Definition 1.3.8.7: Taylor expansion

The Taylor expansion of a function g(y) around a point a is g(a)+
∑∞

i=1

di

dyi g(a)

i!
(y−a)i.

For example, the Taylor expansion of 1
1+y

around 0 is
∑∞

i=0(−1)iyi.

The Taylor expansion, usually taken out to one or two terms, is used as an approx-

imation of g(y).

Definition 1.3.8.8: Method of bisection

Let b be a constant and g be a continuous monotonic function from � to �. To solve the

equation g(y) = b, one can employ the method of bisection, which I will illustrate

for an increasing g:

1. Choose U and L such that g(U) > b and g(L) < b, and choose a convergence

criterion cc > 0.

2. Let m = U+L
2

.

3. If g(m) > b, set U = m. Otherwise, set L = m.

4. Repeat steps 2 and 3 until |g(m) − b| < cc.

Theorem 1.3.8.8: Convergence of method of bisection

If there exist a starting U and L in Definition 1.3.8.8, the method of bisection always

stops.

Proof. By the fact that the function is monotonic, the solution is always between U

and L at every iteration. The distance between U and L as a function of the number s

of iterations is
(

1
2

)s
times a constant. This converges to zero with s. Thus, m converges

to the solution. Then by Theorem 1.3.8.10, in some finite step |g(m) − b| < cc.
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Theorem 1.3.8.9: Shape of y + 1
y

The function g(y) = y + 1
y

is U -shaped on the positive numbers. That is, it decreases

from infinity at y = 0 to a minimum at y = 1, then increases to infinity.

Proof. The function asymptotes to infinity as it approaches zero. The first derivative

is 1 − 1
y2 , which is negative for y < 1, 0 at y = 1, and positive for y > 1. Then the

function decreases to a minimum at 1 and increases thereafter.

Theorem 1.3.8.10: Convergence of a function of a sequence [15]

If limn→∞(Y(n)) = y, and g is continuous at y, then limn→∞(g(Y(n))) = g(y).

This theorem is so basic that it is sometimes given as the definition of continuity.

Theorem 1.3.8.11: Eigenvectors as a basis

The column space (Definition 1.3.8.6) of P from Definition 1.3.8.5 is the same as the

column space of A from Theorem 1.3.8.5.

Proof. If y = Az, then y = PDPTz = Pz∗ for some z∗, so the column space of A is

contained within that of P. Also, APD−1 = P, so by Theorem 1.3.8.6, the column

space of P is also contained within that of A.

Theorem 1.3.8.12: Nonnegativity and constrained sum imply boundedness

The set of points {z1, . . . , zp} that satisfy
∑p

i=1 αizi = c and z1 ≥ 0, . . . , zp ≥ 0, where

the αis are nonnegative constants, is bounded.

Proof. Suppose not and let z1 shoot off to ∞. Because of the constraint on the sum,

clearly at least one of the other terms must shoot off to negative ∞, so the proof follows

by contradiction.

Theorem 1.3.8.13: Sum of a geometric series ([2], page 31)

If 0 < t < 1,
∑∞

i=1 ti−1 = 1
1−t

.
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Theorem 1.3.8.14: Line integral ([18], page 1081)

Consider the one-dimensional surface S in �p that consists of all points that can be

written as g(t), where g is a differentiable, one-to-one function from an interval in �
to �p. Then the area underneath a scalar-valued function f between the points x and

y on S, called the line integral of f along S between x and y, is

∫ g−1(y)

g−1(x)

f(g(t))

√√√√ p∑
i=1

(
dgi

dt
(t)

)2

dt.

Theorem 1.3.8.15: Implicit function theorem ([19], page 202)

Let h(x,y) be a function from a domain in �n+m to a domain in �m, where x is n× 1

and y is m × 1. The equation h(x,y) = 0 often defines y as an implicit function l

of x, at least locally. The implicit function theorem allows us to calculate the partial

derivatives of l with respect to x:

If h(x∗,y∗) = 0 and det
(

∂h(x∗,y∗)
∂y

)
�= 0, there is a unique local differentiable

solution y = l(x), and ∂l(x∗)
∂x

= −
(

∂h(x∗,y∗)
∂y

)−1
∂h(x∗,y∗)

∂x
.

In the statement of the theorem, all derivatives are assumed to exist.

Definition 1.3.8.9: The orthogonal projection matrix

Let Z be an l × n matrix. The orthogonal projection matrix onto the column

space (Definition 1.3.8.6) of Z is Z(ZTZ)gZT , where (ZTZ)g is any generalized inverse

of (ZTZ). For any vector Y in �l, Z(ZTZ)gZTY is the orthogonal projection of Y

onto the column space of Z.

1.3.9 Importance Sampling

Definition 1.3.9.1: Importance sampling estimator

Suppose X is a random sample. The importance sampling estimator ĝZ of the

expected value of a scalar-valued function g of Z is
PN

i=1 g(Xi)
fZ(Xi)

fX(Xi)PN
i=1

fZ(Xi)

fX(Xi)

.

fX is called the generating density and fZ is the target random variable.
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Theorem 1.3.9.1: Convergence of importance sampling estimator

If g(Z) is a bounded random variable, fZ(X)
fX(X)

is bounded on �1, and EX

(
fZ(X)
fX(X)

)
�= 0,

then ĝZ(N) (Definition 1.3.9.1) converges almost surely with N to EZ(g(Z)).

Proof. For ease of notation, let all random variables be one-dimensional.

Rewrite ĝ(Z) as
1
N

∑N
i=1 g(Xi)

fZ(Xi)
fX(Xi)

1
N

∑N
i=1

fZ(Xi)
fX(Xi)

.

The boundedness assumptions imply that all moments exist for both numerator and

denominator, by Theorem 1.3.5.5.

The numerator is the sample mean of the variable g(X1)
fZ(X1)
fX(X1)

. Then by the Strong

Law of Large Number (Theorem 1.3.6.8), the numerator converges almost surely to

EX

(
g(X)

fZ(X)

fX(X)

)
=

∫
X

g(x)
fZ(x)

fX(x)
fX(x)dx,

where X is the support of X1. This integral is simply∫
X

g(x)fZ(x)dx.

Now by the fact that fZ(·)
fX(·) is bounded, the support of Z is contained within X , so

the integral is simply EZ(g(Z)).

The denominator is the sample mean of the variable fZ(X)
fX(X)

Also by the Strong Law

of Large Numbers, the denominator converges almost surely to

EX

(
fZ(X)

fX(X)

)
=

∫
X

fZ(x)

fX(x)
fX(x)dx =

∫
X

fZ(x)dx = 1.

(In the last step we need to use the fact that the support of Z is in X .)

Then Theorem 1.3.6.5 part 3, ĝZ converges almost surely to EZ(g(Z))
1

.
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Theorem 1.3.9.2: Asymptotic normality of importance sampling estimator

If g(Z) is a bounded random variable, fZ(X)
fX(X)

is bounded on �1, and EX

(
fZ(X)
fX(X)

)
�= 0,

then ĝZ(N) (Definition 1.3.9.1) ∼ AN
(
EZ(g(Z)), 1

N
V
)
, where

V = EX

(
g2(X)

f 2
Z(X)

f 2
X(X)

)
− 2EZ(g(Z))EX

(
g(X)

f 2
Z(X)

f 2
X(X)

)
+ EZ(g(Z))2EX

(
f 2
Z(X)

f 2
X(X)

)
.

Proof. Rewrite ĝ(Z) as
1
N

∑N1

i=1 g(Xi)
fZ(Xi)
fX(Xi)

1
N

∑N
i=1

fZ(Xi

fX(Xi)

.

The numerator Num is the sample mean of the variable g(X) fZ(X)
fX(X)

. We saw in the

proof of Theorem 1.3.9.1 that this has expected value EZ(g(Z)). It’s variance is Vnum ≡
EX

(
g2(X)

f2
Z(X)

f2
X(X)

)
− EZ(g(Z))2.

The denominator Den is the sample mean of fZ(X)
fX(X)

. We saw in the proof of Theorem

1.3.9.1 that this has expected value 1. It’s variance is Vden ≡ EX(
f2
Z(X)

f2
X(X)

) − 1.

The covariance of g(X) fZ(X)
fX(X)

and fZ(X)
fX(X)

is Cov ≡ EX

(
g(X)

f2
Z(X)

f2
X(X)

)
− EZ(g(Z)).

The boundedness assumptions imply that all moments exist for both numerator

and denominator, by Theorem 1.3.5.5. Then by the Central Limit Theorem (Theorem

1.3.6.7),⎛⎝ Num(N)

Den(N)

⎞⎠ ∼ AN

⎛⎝⎛⎝ EZ(g(Z))

1

⎞⎠ , 1
N

⎛⎝ Vnum Cov

Cov Vden

⎞⎠⎞⎠ .

Now ĝZ is a differentiable function of

⎛⎝ Num

Den

⎞⎠ at Den = 1. Then by the delta

theorem (Theorem 1.3.6.3), ĝZ is asymptotically normal, with mean and variance given

by the delta theorem. Working out those means and variances will produce the result

above.
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An Exponential Family for a Normal

Coefficient of Variation

A population’s CV provides a unitless measure of the variability in a population. It

is useful when relative variability is of more interest than absolute variability. This

can happen when the scales of measurement are arbitrary, or the populations being

compared are measured in different units entirely. For example, in a diet study the

variability in the ratio of total to HDL cholesterol might be compared to the variability

of blood vessel diameter [20]

Also, it is frequently the case that the variability of a population is expected to

increase with its mean, so that one might want to measure variability relative to the

mean rather than absolute variability. For instance, the larger the average price of

a stock, the larger the variance of the price day to day; the greater a person’s aver-

age weight, the greater the variance of that weight month to month; and the higher

the average blood concentration of HDL cholesterol, the greater the variance of that

concentration hour to hour. These common phenomena are consistent with the laws

of probability, which imply that the variances of sums of independent components in-

crease with the number of components, and that the variance of a scaled up version of

a random variable is larger than that of the original random variable.

The coefficient of variation is used in chemistry and medicine as a measure of the

reliability of an assay [21], in finance to quantify the riskiness of stocks [22], in clini-

cal trials to account for baseline variability of measurements [23], in ecology to assess

year-to-year variability in populations [24], in psychology in the study of choice under

uncertainty [25], in speech pathology to diagnose apraxia of speech [26], in meteorol-

ogy to compare rainfall variability over time [27], in physical therapy to determine

sincerity of effort [28], in genetics as a measure of evolvability [29], in quality control

to seek production processes with minimal dispersion [30], and in many other fields.

Typing “coefficient of variation” OR ”coefficients of variation” OR ”relative standard
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deviation” into the topic box in ISI Web of Science’s General Search page pulls up over

24, 600 hits, which is 2
3

the number of hits (37, 200) pulled up by “standard deviation.”

In this chapter, we shall be concerned about inference on the CV in normal popu-

lations.

2.1 Useful Facts about the CV of a Normal Popu-

lation

2.1.1 The CV in practice

What I shall call the “practical range” for the CV for normal populations is 0 < CV <

0.33. Cases where an investigator would be interested in CV s outside this range for

normal data are rare.

Figure 1 is a histogram of the values of 92 CV s reported in the abstracts of a sample

of 60 papers (see Chapter 4). The lion’s share of the CV s fall between 0 and 33.

In almost every case that occurs in practice where the CV is of interest, the data

are necessarily positive. In the sample of 60 studies, in 57 of the studies the variable in

question was necessarily positive (in the other 3, I could not understand the definition

of the variable). Any normal model for positive data would have to have a negligible

fraction of its density below zero. If the CV of a normal random variable is 1
3
, then 0 is

3 standard deviations from the mean, and 0.13% of the density is below 0. Increasing

CV increases the negative portion of the density. 1
3

is generally taken as the upper

bound on CV for a normal model to be acceptable for nonnegative data. ([31], [32],

[33]).

2.1.2 The sample CV as a maximal invariant

X̄, S is sufficient (Definition 1.3.1.1) for the parameters of a normal random sample

(Theorem 1.3.1.1). Also, CV is invariant to positive scale transformations of the data

(ie, multiplying X by a scalar α > 0 will not change CV ). This is what makes it a good

measure of relative variability. Lehman ([5], page 294) showed that ĈV is a maximal

invariant (Definition 1.3.2.3) for scale transformations on the space of the sufficient
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Figure 2.1: Histogram of CV s from the Scientific Literature

statistics. Then by the Invariance Principle (Definition 1.3.2.2), inference on CV from

a normal random sample should be based solely on ĈV .

Also, note that if X is a univariate normal random sample with mean μ and coeffi-

cient of variation CV , then X1 ∼ N(μ, μ2CV 2), which means that X = μZ, where Z is

a random sample with Z1 ∼ N(1, CV 2). In other words, when the normal population

is parameterized by { μ,CV } rather than { μ, σ2 }, μ becomes a scaling factor. The

distribution of the maximal invariant ĈV does not depend on μ.

All of the inferential procedures we shall consider in this chapter satisfy the require-

ment of depending on ĈV alone. In addition to guaranteeing invariant inference, this

also allows us to ignore μ in simulations, since it does not affect the size or power of

49



Chapter 2. An Exponential Family for a Normal Coefficient of Variation

procedures depending only on ĈV .

Since CV is the standard deviation of a population that has been rescaled to have

mean 1, a naive way to do inference on the CV in a normal sample would be to scale

the sample to have mean 1 by dividing each observation by X̄, and then assume that

the sample variance of the rescaled sample is CV 2

N−1
times a χ2

N−1 variable, as it would

be if the population were known to have mean 1. Unfortunately, this does not take

into account the variation in the scaling factor X̄, and leads to incorrect inference in

small samples.

2.1.3 The Distribution of ĈV

We can write
1

ĈV
=

X̄

S
=

μ + (X̄ − μ)

(σ/
√

N − 1)
√

(N−1)S2

σ2

=
μ + σ√

N
Z

σ√
N−1

√
U

,

where Z is an N(0, 1) random variable independent of U , which is χ2
N−1.

Dividing top and bottom by σ and multiplying by
√

N , we see that

√
N

ĈV
=

√
N

CV

1√
U

N−1

+
Z√

U
N−1

. (2.1)

Equation 2.1 was derived by Johnson and Welch [31]. From Definition 1.3.5.6, we

can see that
√

NdCV
is a noncentral t with N − 1 degrees of freedom and noncentrality

parameter
√

N
CV

.

We can also get a stochastic representation for ĈV :

ĈV =
CV
√

U
N−1

1 + CV√
N

Z
. (2.2)

Most statistical software packages have a noncentral t probability function. In SAS-

IML, to find P ≡ Prob(T < a), where T has a noncentral t distribution with ν degrees

of freedom and noncentrality parameter δ, the function is “P = cdf(′T ′, a, ν, δ)”. One

50



Chapter 2. An Exponential Family for a Normal Coefficient of Variation

can use such functions or noncentral t tables in this context via the following equations:

Prob(
1

ĈV
< a) = ΦNCT

N−1,
√

N
CV

(
√

Na)

Prob(ĈV < a) = 1 − ΦNCT

N−1,
√

N
CV

(√
N

a

)
. (2.3)

where ΦNCT
ν,δ is the cdf of the noncentral t with ν degrees of freedom and noncentrality

parameter δ.

The latter equation is valid only if there is a negligible probability that X̄ and thus

ĈV is negative. If μ > 0 and either CV is small or N large, there is virtually no

chance for a negative sample CV . Through simulations, I have verified that this is

not a problem for CV in the practical range; even for CV as high as 0.33 and N = 2,

Prob(ĈV < 0) = 0.00001. If there is a non-negligible probability that ĈV is negative,

to obtain the distribution function for ĈV one should take many draws of Z and U

and calculate an empirical distribution function using Equation 2.2.

2.1.4 The bias of ĈV

If we look at the stochastic representation of ĈV from Equation 2.2 as a function of
CV√

N
Z and take a Taylor expansion (Definition 1.3.8.7) around the point CV√

N
Z = 0 we

get

ĈV = CV

√
U

N − 1

∞∑
i=0

(−1)i CV i

N
i
2

Zi.

Using the independence of U and Z, we get

Proposition 1. Expected value of ĈV

E(ĈV ) ≈ γ(CV,N)CV,

where

γ(CV,N) =

√
2Γ
(

N
2

)
√

N − 1Γ
(

N−1
2

) (1 +
CV 2

N

)
.
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Table 2.1: Bias of ĈV as percentage of true CV

CV N Proposition 1 simulated pct bias standard error

0.05 2 −20.1 −20.0 0.2

0.05 5 −5.9 −5.9 0.1

0.05 20 −1.3 −1.2 0.1

0.33 2 −15.9 −14.9 0.2

0.33 5 −4.0 −4.0 0.1

0.33 20 −0.8 −0.7 0.1

The first factor in γ(CV,N) is E(S)
σ

, and the second factor is approximately E
(

μ
X̄

)
.

By Jentzen’s inequality, we know that S and 1/X̄ are both biased for their population

counterparts; these biases offest each other so that the overall bias in ĈV depends on

the value of CV . For values of CV in the practical range, Proposition 1 indicates the

contribution of the bias in 1/X̄ will be very small.

Table 2.1.4 was calculated by averaging the percentage
dCV −CV

CV
from a large num-

ber of normal samples to obtain the simulated percentage bias of ĈV to compare to

γ(CV,N) − 1, the percentage bias from Proposition 1. The table indicates that the

overall bias is downward in the practical range, is small for N > 5, but can be sub-

stantial for small N . The table also demonstrates that the approximate formula for

the bias agrees well with the simulated bias.

In any normal population, there will be some small probability that the sample

mean will be in a neighborhood of zero. The result of such an outcome would be a

huge sample CV . The possibility of such huge values is such that the moments of ĈV

do not exist, as shown by Iglewicz [34].

However, the probability of enormous values of ĈV is small enough for CV in the

practical range that the distribution function can be well-approximated by one that

has all its moments, as we shall see below; the discrepancy would come only in the

extreme upper tail, even with small samples. Table 2.1.4 confirms that Proposition 1
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accurately predicts the average value for ĈV over a large number of samples, and the

small standard errors for the simulated bias indicate that ĈV is reasonably stable.

2.2 Approximations to the Distribution of ĈV .

For the definitions of the different convergence concepts in Section 2.2, refer to Section

1.3.6.

2.2.1 χ2 approximations

By working directly with the density function of ĈV , McKay [33] derived

1 + CV 2

CV 2
(N − 1)M ≈ χ2

N−1, (2.4)

where

M =
ĈV

2

1 + N−1
N

ĈV
2 .

Computations by a number of authors ([35], [36], [37], [38]) have shown that

McKay’s approximation is quite good, even for N as small as 5, for CV in the practical

range. Warren [39] reported results that seemed to show that McKay’s approximation

was not as close as had been previously thought, but these are due to a misunderstand-

ing of the definition of McKay’s statistic [37].

Vangel [38] created an even more accurate approximation by numerically demon-

strating that

Prob

⎛⎜⎝1 + CV 2

CV 2
(N − 1)

ĈV
2

1 +
(

N−1
N

(
2

χ2
N−1, α

+ 1
))

ĈV
2 < χ2

N−1, α

⎞⎟⎠ (2.5)

is for all intents and purposes exactly α for N ≥ 5 and 0 < CV < 0.33. (Here χ2
N−1, α

is the 100αth percentile of the χ2
N−1 distribution.)

Both McKay’s and Vangel’s approximations imply distribution functions for ĈV :
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Proposition 2. Distribution functions from χ2 approximations

McKay’s approximation implies:

Prob(ĈV < a) = Φχ2

N−1

(
(N − 1)1+CV 2

CV 2

N−1
N

+ 1
a2

)
≡ ΦM(a),

Vangel’s approximation implies:

Prob(ĈV < a) = Φχ2

N−1

(
(N − 1)1+CV 2

CV 2 − 2N−1
N

N−1
N

+ 1
a2

)
≡ ΦV (a),

where Φχ2

N−1 is the cdf for the χ2 random variable with N − 1 degrees of freedom.

Proof. For McKay’s approximation, write

Prob(ĈV < a) = Prob(ĈV
2

< a2) = Prob

(
1

a2
<

1

ĈV
2

)

= Prob

(
1

a2
+

N − 1

N
<

1

ĈV
2 +

N − 1

N

)
= Prob

(
1

1
a2 + N−1

N

>
1

1dCV
2 + N−1

N

)

= Prob

(
(N − 1)1+CV 2

CV 2

1
a2 + N−1

N

> (N − 1)
1 + CV 2

CV 2

ĈV
2

1 + N−1
N

ĈV
2

)
,

which by McKay’s approximation is Φχ2

N−1

(
(N−1) 1+CV 2

CV 2
N−1

N
+ 1

a2

)
.

Vangel’s approximation can be written in a form slightly different Equation 2.5:

Prob

(
(N − 1)

1 + CV 2

CV 2

ĈV
2

1 +
(

N−1
N

(
2
z

+ 1
))

ĈV
2 ≤ z

)
= Φχ2

N−1(z).

Algebraic manipulations yield

Prob

(
ĈV ≤

√
1(

1+CV 2

CV 2 (N − 1) − 2N−1
N

)
1
z
− N−1

N

)
= Φχ2

N−1(z).
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Now Prob(ĈV ≤ a) = Φχ2

N−1(z
∗), where z∗ is the value of z that solves

a =

√
1(

1+CV 2

CV 2 (N − 1) − 2N−1
N

)
1
z
− N−1

N

.

Algebraic manipulations yield

z∗ =
1+CV 2

CV 2 (N − 1) − 2N−1
N

N−1
N

+ 1
a2

.

2.2.2 Delta-method approximations

If the normal distribution is parameterized by {μ, σ}, θ̂MLE = {X̄, S}. Then by The-

orem 1.3.6.2 and Theorem 1.3.5.7,⎛⎝ X̄(N)

S(N)

⎞⎠ ∼ AN

⎛⎝⎛⎝ μ

σ

⎞⎠ ,

⎛⎝ σ2

N
0

0 σ2

2N

⎞⎠⎞⎠ .

Then by the delta method (Theorem 1.3.6.3) we can deduce

ĈV (N) ∼ AN

(
CV,

CV 2

2N
+

CV 4

N

)
. (2.6)

In simulations, I found that using N − 1 rather than N in the denominator of the

approximate variance gave a better approximation, so henceforth I shall use that.

The delta-method approximation was derived by Cramér [40], but may have ap-

peared in a textbook before that. It implies an approximate cdf :

Prob(ĈV < a) = Φ

⎛⎝ a − CV√
CV 2

2(N−1)
+ CV 4

(N−1)

⎞⎠ ≡ ΦZ(a), (2.7)

where Φ is the standard normal cdf . Iglewicz and Myers [36] suggested on the basis
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of numerical calculations that the delta-method approximation is reasonable even for

small N .

One might question whether Equation 2.6 is inconsistent with the fact that the

moments of CV do not exist for any N , as explained in Section 2.1.3. There is no

inconsistency, because asymptotic normality means pointwise convergence of the dis-

tribution. (see Definitions 1.3.6.3 and 1.3.6.4). For any N , there is enough of a dis-

crepancy between the actual and asymptotic cdf that the moments of the actual cdf

do not exist, but the discrepancy gets pushed farther and farther out into the tail as

N increases.

It is convenient here to note that

Proposition 3. Consistency of sample coefficient of variation

ĈV (N) →p CV.

(see Definition 1.3.6.1.)

Proof. This follows from by Equation 2.6 and Theorem 1.3.6.1 part 2.

2.2.3 Numerical evaluation of the approximations

Using Equation 2.3, I calculated the exact cdf over a range of possible values for ĈV

for various combinations of CV and N and compared them to ΦM , ΦV , and ΦZ .

Table 2.2 illustrates two findings, that ΦM and ΦV are highly accurate and that

ΦV has accuracy of a higher order of magnitude. (CV = 0.33 actually minimizes the

accuracy of the approximations over the practical range.)

Figure 2.2 and Figure 2.3 compare ΦV and ΦZ to the exact cdf . We see that for

small values of N , there is substantial skewness in the distribution of ĈV , so that ΦZ

is inadequate. Nonetheless, for N = 10 the delta method approximation appears to

come close in the tails. Most importantly, ΦV is indistinguishable from the exact cdf

even for values of N as small as 2.

The findings in Table and the figures hold for all values of CV in the practical

range.
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Table 2.2: Exact cdf minus approximate cdf, CV = 0.33, N = 10

Exact cdf ΦM ΦV

0.01 −8 × 10−4 −8 × 10−5

0.05 −4 × 10−3 −2 × 10−4

0.10 −6 × 10−3 −3 × 10−4

0.25 −1 × 10−2 −3 × 10−4

0.50 −2 × 10−2 4 × 10−4

0.75 −1 × 10−2 1 × 10−3

0.90 −7 × 10−3 1 × 10−3

0.95 −4 × 10−3 1 × 10−3

0.99 −1 × 10−3 5 × 10−4

2.2.4 An exponential family model for inference on CV

With some algebra we can derive

Prob(M < m) = Prob

(
ĈV ≤

√
1

1
m
− N−1

N

)
.

Using ΦV as an approximate cdf for ĈV , we get

Prob(M < m) ≈ Φχ2

N−1

((
1 + CV 2

CV 2
(N − 1) − 2

N − 1

N

)
m

)
.

Recalling that U ∼ χ2
N−1, we can write this as

Prob(M < m) ≈ Prob

(
U <

(
1 + CV 2

CV 2
(N − 1) − 2

N − 1

N

)
m

)

= Prob

(
CV 2

1 + N−2
N

CV 2

U

N − 1
< m

)
,
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N=2, CV = 0.33
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Figure 2.2: Comparison of exact cdf, ΦV , and ΦZ

so that ΦV yields a stochastic representation for M :

M ≈ CV 2

1 + N−2
N

CV 2

U

N − 1
. (2.8)

From this we can derive the density of M using Theorem 1.3.5.1 and Theorem

1.3.5.8.

Proposition 4. An exponential family for ĈV

fM(m) ≈ φM(m) ≡ CM(θ)HM(m) exp(θT (m)),
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N=10, CV = 0.33
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Figure 2.3: Comparison of exact cdf, ΦV , and ΦZ

where

θ =
1 + CV 2

CV 2
,

CM(θ) =
1

Γ
(

N−1
2

) ((N − 1)
θ − 2

N

2

)N−1
2

,

HM(m) = Im≥0m
N−1

2
−1 exp

(
N − 1

N
m

)
,

T (m) = −N − 1

2
m.
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Since ΦV is a very accurate approximation for the cdf of ĈV , the resulting approx-

imation for the cdf of M should be very accurate and so should the probability models

in Equation 2.8 and Proposition 4. Since M is a monotonically increasing function of

ĈV and thus a one-to-one function, it is a maximal invariant (Definition 1.3.2.3) for

scale transformations, and by the Invariance Principle (Definition 1.3.2.2), all inference

on CV can be based on it. Furthermore, θ is a monotonically decreasing function of

CV , so all inferential questions concerning CV can be based on inference concerning

θ.

φM belongs to an exponential family (Definition 1.3.4.1), which will allow us to

apply the associated theory to inference on CV .

2.2.5 Asymptotic comparison of approximations

Vangel [38] claims that his approximation and McKay’s are asymptotically exact, but

a formal analysis has not been done.

Rewrite Equation 2.4 and Equation 2.8 as

1 + CV 2

CV 2
(N − 1)M(N) ≈ U(N),

(
1 + CV 2

CV 2
− 2

N

)
(N − 1)M(N) ≈ U(N)

where the N subscript simply emphasizes the fact that M is a random sequence indexed

by N .

From Equation 2.2, (
1 + CV 2

CV 2
− c

N

)
(N − 1)M(N) =

1 + CV 2

CV 2

CV 2U(N)(
1 + CV√

N
Z
)2

+ CV 2U(N)
N

−

c

N

CV 2U(N)(
1 + CV√

N
Z
)2

+ CV 2U(N)
N

.
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where c is any constant. Using algebra, Theorem 1.3.6.5, and Theorem 1.3.6.12, we

can show that

Proposition 5. Asymptotic behavior of McKay’s and Vangel’s approximations(
1+CV 2

CV 2 − c
N

)
(N − 1)M(N)

U(N)
→as 1

.

Thus, in some sense, both Equation 2.4 and Equation 2.8 are asymptotically justi-

fied.

We might be drawn to the conclusion, from Equation 2.8 and Theorem 1.3.6.12,

that

M(N) ∼ AN

(
CV 2

1 + CV 2
,

CV 4

(1 + CV 2)2

2

N

)
. (2.9)

However, Proposition 5 is about the ratio of 2 random variables that are both functions

of N ; it does not give us a function of M(N) that converges to a stationary distribution.

We can get a convergence in distribution result for M(N) from the delta theorem

(Theorem 1.3.6.3):

M(N) ∼ AN

(
CV 2

1 + CV 2
,
CV 4 + 2CV 6

(1 + CV 2)4

2

N

)
. (2.10)

So Equation 2.9 and by extension Equation 2.8 actually does not lead to the right

inference asymptotically, but it is very close. The ratio of the true asymptotic variance

to that in Equation 2.9 is 1+2CV 2

(1+CV 2)2
, which is bounded below by 0.99 for CV in the

practical range.

2.3 Inference on a common CV

The first problem we shall apply the exponential family model to is inference on the

common CV of populations with possibly different means.

Hypothesis tests of CV = CVo against either one-sided or two-sided alternatives

are occasionally useful.
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These tests are relevant when previous investigations have provided expectations

about what the CV should be. For instance, statisticians have come up with ways to

use prior knowledge of the CV to improve the efficiency of estimation ([41], [42], [43],

[44], [45]). Naturally, one would want to test the validity of any assumptions made

about CV for a certain population.

A variable that is logically non-negative should have a small CV in order to be

modelable as a normal variable, preferably with CV < 1
3
, as we have seen. This means

that a hypothesis test of the form Ho : CV = 1
3

against Ha : CV > 1
3

can be a quick

check of normality for positive variables.

Another example of the usefulness of hypothesis tests on CV is in verifying that

variability meets a certain standard. Quan and Shih [46] report that for biochemical

assays, CV s in the 0.10 to 0.20 range are considered “good”. Bohidar and Bohidar [47]

suggest a test for the purpose of certifying the content uniformity of pharmaceuticals.

To pass the requirement, a population of dosage units needs to have a CV for the

active ingredients that is “demonstrably less than 6 %.” This can be done by rejecting

the null CV = 0.06 against the alternative CV < 0.06.

Confidence intervals provide more information than hypothesis tests, and give the

investigator an idea of the possible range of the relative variability in the populations

he is working with. Confidence intervals for CV can be used in sensitivity analyses for

statistical methods that assume a value for CV or for methods, as in [48], [49], [50],

and [51], whose performance depends on the CV . Also, CV s are used in sample-size

planning for future studies [52], so confidence intervals can help provide upper and

lower bounds for sample sizes.

It is frequently the case that the CV we wish to do inference on is the common CV

of populations with different means. For instance, researchers might want to conduct

inference on the CV of a certain type of variable using available data from different

studies, or there might be more than one observation on each subject in the same

study. The latter situation arises frequently in medical studies, where the CV for the

distribution of a subject’s repeated measure is called the “within-subject coefficient of

variation” (WSCV ). In such studies, often the sample sizes (number of observations

per subject) are small, while the number of subjects is still large enough to allow for
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powerful inference; inferential procedures for the common CV need to work effectively

in this case.

2.3.1 Notation

In the remainder of Section 2.3, X = {X1, . . . ,Xk}, where Xi is an Ni × 1 vector of iid

normal random variables with mean μi and common coefficient of variation CV ; The

data can be thought of as arising from a one-way ANOVA setup where the cell means

are considered fixed effects. ĈV i will refer to the ith sample coefficient of variation,

and Mi =
dCV

2

i

1+
Ni−1

Ni
dCV

2

i

. Since these maximal invariants are invariant to the cell means,

the analysis is applicable to random effects models as well.

The constant α will refer to the size of a hypothesis test or to 1 minus the confidence

level of a confidence interval. If the Nis are equal, the common value will be called

N∗. Zi and Ui will refer to the ith sample’s value for the unobserved variables Z and

U from Equation 2.2.

2.3.2 Previous literature

There has been surprisingly little work on inference for a common CV . Zeigler [53]

explores the bias, variance, and mean squared error of various point estimates of the

common CV , and Chow and Tse [54] consider these issues in random effects models.

Neither treats the issue of how to construct confidence intervals or hypothesis tests.

Both Quan and Shih [46] and Tian [55] assume the random effects model μi = μ+αi,

where αi ∼ N(0, σ2
α), and that σi is equal to the constant σ. They call σ

μ
the “within-

subject coefficient of variation” and study inference on this parameter. This is not

how WSCV is defined above, or how it is defined by Chow and Tse [54]. The WSCV

thus defined is not a common CV ; in fact the CV s differ across the populations in

this setup, while the variances are the same. It’s questionable whether the WSCV

of Quan and Shih would be considered relevant to researchers, because if researchers

are interested in the CV at all, they would usually not be willing to assume constant

variance.

The only paper that studies hypothesis testing and confidence intervals for a com-
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mon CV is Tian [20], which uses fiducial inference. (see Definition 1.3.3.5.) Using

Equation 2.2, Weerahandi [56] derived

1

CV
=

1

ĈV i

√
Ui

Ni − 1
− Zi√

Ni

.

From this, Tian [20] observed that

CV =
ĈV i√

Ui

Ni−1
− ĈV i

Zi√
Ni

.

and thus

CV =
1∑k

i=1(Ni − 1)

k∑
i=1

(Ni − 1)
ĈV i√

Ui

Ni−1
− ĈV i

Zi√
Ni

. (2.11)

The fiducial inference approach treats the ĈV is as fixed quantities, and CV as a

random variable whose distribution can be calculated by taking repeated draws of the

Zis and Uis.

As explained by Tian, one can conduct a hypothesis test of Ho : CV = CVo against

Ha : CV > CVo using this approach:

1. Calculate the ĈV is.

2. Generate a large number of the vectors {Z1, . . . , Zk} and {U1, . . . Uk}.

3. For each draw of Zis and Uis, calculate a value of the right-hand side of Equation

2.11, treating the ĈV is as fixed. This will give you a set of “draws” of CV .

4. The p-value of the test is the proportion of the draws that are less than CVo.

Tian erroneously reports in her paper that the p-value is the proportion of draws that

are greater than CVo. For a test with power against Ha : CV < CVo, the p-value

would be the proportion of draws that are greater than CVo. For a two-sided test, the

p-value is 2 times the min of the proportion of draws less than CVo and the proportion

of draws greater than CVo.
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To construct a 1 − α confidence interval, take repeated draws of the Uis and Zis.

The α
2
th and 1 − α

2
th percentiles of the right hand side of Equation 2.11 are the lower

and upper bounds for a fiducial interval.

Fiducial inference is not guaranteed to give exact tests and confidence intervals.

The true significance level of the test needs to be evaluated by simulation.

Fiducial inference was introduced by Fisher [57]. Tian does not refer to her ap-

proach as “fiducial” inference but rather as “generalized” inference based on the “gen-

eralized” pivot CV − 1Pk
i=1(Ni−1)

∑k
i=1(Ni−1)

dCV ir
Ui

Ni−1
−dCV i

Zi√
Ni

. Generalized inference was

introduced by Tsui and Weerahandi [58]. Hannig et al. [59] later pointed out that

generalized inference is essentially identical to fiducial inference.

Naturally, in order to do inference on a common CV , one would have to assume

that the CV s are equal. If the assumption is in doubt, one way to proceed is by

first conducting an hypothesis test of the assumption, and then either accepting the

assumption as fact if the test fails to reject, or treating each CV as unique if the

test rejects. Alternative ways of “shrinking” individual ĈV is toward a pooled estimate

based on the strength of evidence from the test are suggested by Ahmed and co-authors

([60], [61], [62]), who explore the bias and variance of the resulting estimators under

various conditions.

2.3.3 Inference based on the normal approximation

Equation 2.6 suggests that a weighted average

C̄V =

∑k
i=1(Ni − 1)ĈV i∑k

i=1(Ni − 1)
(2.12)

should be approximately normal. Here I weight by degrees of freedom Ni − 1 rather

than sample size Ni, since the information we have about variation in the sample comes

from differences from the sample mean rather than from individual observations. In

order to avoid creating tests that are biased in small N , large k situations, we could

bias-correct by multiplying ĈV i by Bi =
√

Ni−1Γ(Ni−1

2 )√
2Γ(Ni

2 )
. This term corrects for the bias

induced by the fact that S tends to underestimate σ, which accounts for most of the
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bias in the sample CV . This bias correction factor converges to 1 with Ni (Theorem

1.3.6.15).

The weighted average with the adjusted weights is

ĈV ≡
∑k

i=1(Ni − 1)BiĈV i∑k
i=1(Ni − 1)

. (2.13)

We could further bias adjust by multiplying by the additional factor Ci = 1

1+
dCV

2

Ni

, to

correct for the second factor in the bias coefficient in Proposition 1.

To test the hypothesis that CV = CVo, one would use a standardized, bias-corrected

weighted average

Zcommon ≡
∑k

i=1(Ni − 1)(BiCiĈV i − CVo)√∑k
i=1(Ni − 1)2B2

i C
2
i

(
CV 2

o

2(Ni−1)
+ CV 4

o

(Ni−1)

) . (2.14)

Since CV is known under the null, in this expression we would set Ci = 1

1+
CV 2

o
Ni

. Since

we have subtracted off the mean and standardized by an approximate variance, this

statistic will be approximately N(0, 1). Then the p-values for the test statistic in

Equation 2.14 are approximately Φ(Zcommon) for Ha : CV < CVo, 1 − Φ(Zcommon) for

Ha : CV > CVo, and 2min(Φ(Zcommon), 1 − Φ(Zcommon)) for Ha : CV �= CVo.

For a two-sided confidence interval for CV , we can make use of the approximate

pivotal quantity ∑k
i=1(Ni − 1)(BiCiĈV i − CV )√∑k

i=1(Ni − 1)2B2
i C

2
i

( dCV
2

2(Ni−1)
+

dCV
4

(Ni−1)

) , (2.15)

which uses an estimate of the asymptotic variance of ĈV i in place of the true variance.

This will yield the approximate confidence interval

∑k
i=1(Ni − 1)BiCiĈV i∑k

i=1(Ni − 1)
±

√∑k
i=1(Ni − 1)2B2

i C
2
i

( dCV
2

2(Ni−1)
+

dCV
4

(Ni−1)

)
∑k

i=1(Ni − 1)
Z1−α

2
, (2.16)

where Zγ is the γth percentile of the standard normal distribution. The confidence
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level for the confidence interval in Equation 2.16 is approximately 1 − α.

To analyze the asymptotics of this approach, let the sample sizes be equal for

simplicity. With sample sizes equal, B1 = . . . = Bk = B, and C1 = . . . = Ck = C.

We can write the approximate pivotal quantity in Equation 2.15 as

P =
√

k(N∗ − 1)
1

BC

√(dCV
2

2
+ ĈV

4
) 1

k

k∑
i=1

(BCĈV i − CV ).

By Theorem 1.3.6.15, B(N) → 1. Also, by Proposition 3 and Theorem 1.3.6.5 part

1, C(N) →p 1. So for simplicity we will simply set them equal to 1 for the large N∗

case.

Equation 2.6, Proposition 3, and the Slutsky-delta theorem (Theorem 1.3.6.6) im-

ply that ith term Di ≡
√

N∗ − 1
dCV i−CVs„
dCV

2

2
+dCV

4
« converges in distribution with N∗ to a

N(0, 1). By Theorem 1.3.6.5 part 2 and Theorem 1.3.5.9,
√

k
k

∑k
i=1 Di will converge in

distribution with N∗ to a N(0, 1) variable.

Now thinking of P as a sequence indexed by k rather than N∗, the last factor
1
k

∑k
i=1(BCĈV i − CV ) is a sample mean and thus should approach normality as k

grows. We cannot technically use the Central Limit Theorem (1.3.6.7) to prove it,

however, since the moments of ĈV do not exist. Similarly, with sample sizes equal, from

Equation 2.13, ĈV is a sample mean of k sample coefficients of variation, so it’s density

should collapse around a constant as k grows, although we cannot use the Strong Law

of Large Numbers (Theorem 1.3.6.8) to give a technical proof. Then Theorem 1.3.6.5,

part 1, indicates that

√(dCV
2

2
+ ĈV

4
)

should become highly concentrated around a

constant. Then the definition of asymptotic normality (Definition 1.3.6.4), Slutsky’s

Theorem (1.3.6.4), and Theorem 1.3.5.9, indicate that P (k) should be approximately

normal with large k. The mean will be close to zero, because we have corrected for bias,

but the variance will not in general be 1, because in small samples the delta-method

expression for the variance is not correct.

The implication of this analysis is that the confidence interval in Equation 2.16 will

be valid for large N∗, but for small N∗, even for large k, may either under or over

67



Chapter 2. An Exponential Family for a Normal Coefficient of Variation

cover.

2.3.4 Inference based on the χ2 approximation

With k samples, since CVi is invariant to transformations that multiply each Xi by

a nonnegative scalar βi, inference should be based on a maximal invariant (Definition

1.3.2.3) to that group of transformations, which we have seen is M = {M1, . . . ,Mk}.
The distribution of this statistic depends on only one parameter, CV .

For simplicity of exposition, in the rest of Section 2.3.4 I shall speak of Proposition

4 as if it were exact. It implies a density φM for M:

φM(m) = CM(θ)HM(m) exp(θT (m)), (2.17)

where

θ =
1 + CV 2

CV 2
,

CM(θ) =
k∏

i=1

1

Γ
(

Ni−1
2

) ((Ni − 1)
θ − 2

Ni

2

)Ni−1

2

,

HM(m) = Im1≥0,...,mk≥0

k∏
i=1

m
Ni−1

2
−1

i exp

(
k∑

i=1

Ni − 1

Ni

mi

)
,

T (m) = −
k∑

i=1

Ni − 1

2
mi.

Proposition 6. Uniformly most powerful invariant test

The UMP invariant test (Definition 1.3.3.3 and Definition 1.3.2.4) of Ho : CV =

CVo against Ha : CV > CVo has rejection region

k∑
i=1

(Ni − 1)Mi > bu,

where ProbCVo

(∑k
i=1(Ni − 1)Mi > bu

)
= α, and the UMP invariant test of Ho :
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CV = CVo against Ha : CV < CVo has rejection region

k∑
i=1

(Ni − 1)Mi < bl,

where ProbCVo

(∑k
i=1(Ni − 1)Mi < bl

)
= α.

Proof. I will prove the latter statement.

From Definition 1.3.4.1 and Theorem 1.3.4.4, the UMP invariant test of Ho : θ = θo

against Ha : θ > θo is of the form T (M) > b∗u, where T is taken from Equation 2.17.

Multiply both sides of this inequality by −2 to get a rejection region of the form∑k
i=1(Ni − 1)Mi < b∗∗u .

Since θ is a monotonically decreasing function of CV , the result we are trying to

prove follows from Theorem 1.3.3.2.

For a two-sided test, we shall employ the rejection region

k∑
i=1

(Ni − 1)Mi > b2u ∪
k∑

i=1

(Ni − 1)Mi < b2l,

where

ProbCVo

(
k∑

i=1

(Ni − 1)Mi > b2u

)
=

α

2
, P robCVo

(
k∑

i=1

(Ni − 1)Mi < b2l

)
=

α

2
.

Now the power of a two-sided test against an alternative of interest is approximately

the probability under this alternative that the statistic is in the part of the rejection

region on the same side as the alternative. So Proposition 6 indicates that the two-sided

test above should have good power among two-sided tests with an equal probability

of being in either tail. However, the two-sided test above is not unbiased (Definition

1.3.2.2), so for detecting alternatives very near the null this test would not be optimal.

The flip side of UMP tests is uniformly most accurate confidence intervals (Defi-

nition 1.3.3.4). Theorem 1.3.3.3 and Proposition 6 imply that inverting the one-sided

tests above would give UMA upper and lower confidence bounds for CV . Inverting
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the two-sided test should also lead to accurate intervals, though they would not be

unbiased.

Theorem 1.3.4.5 gives us a way to find a UMP unbiased test based on
∑k

i=1(Ni −
1)Mi, by allowing the probability of rejection to differ across the tails. While unbi-

asedness is a good property, the property of equal probabilities of rejection in both

tails is also a good property; it creates confidence intervals for which the probability

of underestimating the parameter is the same as the probability of overestimating the

parameter.

To obtain p-values, Equation 2.8 gives us

k∑
i=1

(Ni − 1)Mi =
k∑

i=1

CV 2
o

1 + Ni−2
Ni

CV 2
o

Ui. (2.18)

If the sample sizes are equal,

k∑
i=1

(N∗ − 1)Mi =
CV 2

o

1 + N∗−2
N∗ CV 2

o

k∑
i=1

Ui =
CV 2

o

1 + N∗−2
N∗ CV 2

o

U∗, (2.19)

where U∗ ∼ χ2
k(N∗−1). This is convenient for calculating p-values.

Proposition 7. P -values for UMP test with equal sample sizes.

For Ha : CV < CVo, the p-value for the UMP test is

Φχ2

k(N∗−1)

((
1 + CV 2

o

CV 2
o

− 2

N∗

) k∑
i=1

(N∗ − 1)mi

)
.

For Ha : CV > CVo, the p-value for the UMP test is

1 − Φχ2

k(N∗−1)

((
1 + CV 2

o

CV 2
o

− 2

N∗

) k∑
i=1

(N∗ − 1)mi

)
.

For Ha : CV �= CVo, the p-value for the UMP test is 2 times the min of

Φχ2

k(N∗−1)

((
1 + CV 2

o

CV 2
o

− 2

N∗

) k∑
i=1

(N∗ − 1)mi

)
,
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1 − Φχ2

k(N∗−1)

((
1 + CV 2

o

CV 2
o

− 2

N∗

) k∑
i=1

(N∗ − 1)mi

)
.

If the sample sizes are not equal, one either sacrifices convenience or accuracy to

calculate the p-values. Section 3.5 presents some convenient approaches that may

sacrifice accuracy. One can obtain accurate Monte Carlo p-values (Definition 1.3.3.7)

in the following way:

Algorithm 1. P -values for UMP test with unequal sample sizes.

1. Take s independent draws of the vectors {Z1, . . . , Zk} and {U1, . . . , Uk}.

2. Substitue CVo in for CV in Equation 2.2, and use that equation along with

the randomly drawn Zis and Uis to calculate s independent draws of the vector

{ĈV 1, . . . , ĈV k}.

3. From the randomly drawn ĈV is, calculate s independent draws of the vector

{M1, . . . ,Mk}.

4. Calculate s independent draws of
∑k

i=1(Ni − 1)Mi.

5. Record the number of times NME an independent draw of
∑k

i=1(Ni − 1)Mi is

more extreme than the observed value.

6. The p-value is approximately NME
s

.

If the sample sizes are equal, we have a convenient way to create confidence intervals.

From Equation 2.19,

Prob

(
χ2

(N∗−1)k, α
2

<

(
1 + CV 2

o

CV 2
o

− 2

N∗

)
(N∗ − 1)

k∑
i=1

Mi < χ2
(N∗−1)k,1−α

2

)
= 1 − α.

From this, a (1 − α) interval for CV can be calculated:

Proposition 8. Confidence intervals from UMP test inversion, equal sample sizes
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The interval √√√√ ∑k
i=1(N

∗ − 1)Mi

χ2
(N∗−1)k,1−α

2
− (1 − 2

N∗
)∑k

i=1(N
∗ − 1)Mi

,

√√√√ ∑k
i=1(N

∗ − 1)Mi

χ2
(N∗−1)k, α

2
− (1 − 2

N∗
)∑k

i=1(N
∗ − 1)Mi

,

is a 1 − α confidence interval for CV .

To create confidence intervals with differing sample sizes, we again have a tradeoff

between convenience and accuracy. Convenient methods are described in Section 3.5.

Here I shall describe a simulation-based approach. I shall describe how to compute an

upper confidence bound, a value UB that satisfies ProbUB

(∑k
i=1(Ni − 1)Mi < O

)
=

α, where O is the observed value of the test statistic. A lower bound would be computed

analogously, and for a two-sided interval, upper and lower bounds associated with

confidence level α
2

would be computed.

Algorithm 2. Confidence intervals from UMP test inversion, unequal sample sizes

1. Take s independent draws of the vectors {Z1, . . . , Zk} and {U1, . . . , Uk}.

2. Set UBu equal to a number that is higher than thought possible for the upper

confidence bound to be.

3. Set UBl equal to a number that is lower than thought possible for the upper

confidence bound to be.

4. Determine a convergence criterion cc.

5. Set midpoint = UBu+UBl

2
.

6. Calculate the p-value pmid for a test of Ho : CV = midpoint against Ha : CV <

midpoint via steps 2 through 6 of Algorithm 1.

7. If |pmid − α| < cc, stop and set UB = midpoint.

8. If pmid < α, then set UBu = midpoint. Otherwise set UBl = midpoint.
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9. Repeat steps 5 through 8 until a stop occurs.

With s large enough the p-value calculated in step 6 is essentially a continuous

decreasing function of midpoint via Equation 2.2; then by Theorem 1.3.8.8 the method

of bisection in steps 5 through 8 will converge. (The p-value is actually a discrete

random variable, but as long as cc is not set ridiculously small we can ignore this

technicality.) The confidence level of the resulting interval can be made as close as

desired to α by setting s high enough and cc low enough. Notice that one does not

need to repeat step 1 of Algorithm 1 in order to carry out step 6 of Algorithm 2; one

can simply store the values of the Zis and Uis in a vector to allow rapid computation

of the p-value as a function of CV .

One should keep in mind that the results of Section 2.3.4 are approximate because

they are based on Proposition 4, which depends on the accuracy of ΦV . But since we

have seen that ΦV is a nearly exact cdf , the procedures in this section should yield

accurate and powerful inference.

One could also use asymptotics to calculate approximate p-values. For example,

let T ∗ ≡
Pk

i=1(N∗−1)Mi

k(N∗−1)
= 1

k

∑k
i=1 Mi, where we have assumed constant sample sizes for

simplicity. From Equation 2.10 above we can deduce

T ∗(N∗) ∼ AN

(
CV 2

1 + CV 2
,
CV 4 + 2CV 6

(1 + CV 2)4

2

kN∗

)
. (2.20)

2.3.5 Simulation comparison of two-sided confidence intervals

for CV

Table 2.3 and Table 2.4 display simulation results for two-sided 95% confidence inter-

vals, for the fiducial interval of Tian, the approximate normal interval, and the interval

based on the inversion of the UMP test. In each simulation, 10, 000 sets of k pop-

ulations with N∗ observations each were generated from normal distributions with a

common CV . Recall that since all of the procedures depend on the data only through

the ĈV is, their performance is invariant to the population means.

The UMP interval is the best overall interval, maintaining a coverage probability

very close to nominal even for small N∗ and k and for high CV , but having favorable
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Table 2.3: Coverage probability (CP ) and width (W ) of confidence intervals for CV = 0.05.
SE = 0.002 for CP , < 0.001 for width.

N∗ k CP fid CP norm CP UMP W fid W norm W UMP

2 2 0.999 0.848 0.952 1.042 0.123 0.255

2 4 1.00 0.902 0.951 1.207 0.087 0.107

2 8 1.00 0.935 0.951 1.296 0.061 0.060

2 16 1.00 0.953 0.950 1.315 0.043 0.038

3 2 0.965 0.890 0.948 0.219 0.078 0.107

3 4 0.947 0.921 0.951 0.178 0.055 0.060

3 8 0.889 0.943 0.951 0.145 0.039 0.038

3 16 0.739 0.951 0.947 0.119 0.028 0.026

5 2 0.958 0.915 0.946 0.082 0.052 0.060

5 4 0.950 0.938 0.950 0.060 0.037 0.038

5 8 0.910 0.944 0.945 0.044 0.026 0.026

5 16 0.805 0.948 0.948 0.032 0.018 0.018

10 2 0.955 0.932 0.947 0.041 0.034 0.036

10 4 0.950 0.944 0.949 0.029 0.024 0.024

10 8 0.933 0.946 0.950 0.021 0.017 0.017

10 16 0.889 0.95 0.950 0.015 0.012 0.012

15 2 0.950 0.938 0.946 0.030 0.027 0.028

15 4 0.953 0.944 0.95 0.021 0.019 0.019

15 8 0.944 0.949 0.952 0.015 0.013 0.013

15 16 0.910 0.954 0.951 0.011 0.009 0.009
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Table 2.4: Coverage probability (CP ) and width (W ) of confidence intervals for CV = 0.33.
SE = 0.002 for CP , < 0.01 for width.

N∗ k CP fid CP norm CP UMP W fid W norm W UMP

2 2 0.999 0.850 0.951 8.69 0.93 1.69

2 4 1.00 0.907 0.951 8.71 0.65 0.70

2 8 1.00 0.942 0.951 8.75 0.46 0.40

2 16 1.00 0.960 0.952 8.72 0.32 0.25

3 2 0.996 0.890 0.947 3.80 0.59 1.01

3 4 1.00 0.919 0.951 3.89 0.41 0.43

3 8 1.00 0.943 0.949 3.99 0.29 0.27

3 16 1.00 0.964 0.952 4.01 0.20 0.18

5 2 0.987 0.914 0.950 0.91 0.39 0.48

5 4 0.990 0.940 0.949 0.79 0.27 0.28

5 8 0.996 0.955 0.952 0.70 0.19 0.18

5 16 0.999 0.960 0.949 0.70 0.14 0.13

10 2 0.958 0.934 0.954 0.33 0.25 0.27

10 4 0.951 0.949 0.954 0.24 0.17 0.18

10 8 0.920 0.952 0.949 0.18 0.12 0.12

10 16 0.844 0.954 0.950 0.13 0.09 0.08

15 2 0.957 0.943 0.954 0.23 0.20 0.21

15 4 0.948 0.951 0.953 0.17 0.14 0.14

15 8 0.925 0.950 0.948 0.12 0.10 0.10

15 16 0.878 0.953 0.949 0.09 0.07 0.07
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width, as we would expect.

The fiducial interval breaks down for N = 2, and if CV = 0.33, the interval is

impracticably wide for N < 10. This is due to the fact that, in Equation 2.11, the

denominators of the terms on the right-hand side can be quite small if CV is this

large. Even for the cases for which the interval has close to nominal coverage, it is

substantially wider on average than the UMP interval.

Hannig et al [59] proved that under regularity conditions, the nominal p-values and

confidence levels for fiducial inference converge to the true p-values and confidence levels

as N∗ grows with k fixed. And we do see in Table that with k fixed, the confidence level

of the fiducial interval gets closer to the nominal level as N∗ increases. However, the

coverage and width of the fiducial interval decline with k, with the coverage eventually

dropping far below the nominal level. The central point of the fiducial distribution

of CV is not equal to the true CV for small samples, so as the distribution collapses

around it by the addition of samples with fixed N∗, the probability increases that the

true CV is in the tails.

The findings for the fiducial interval are inconsistent with those in Tian’s original

paper, which examines the cases k = 3 and k = 5 for N ≥ 10. For comparable cases,

the coverage probabilities are slightly larger and the widths are substantially smaller

in the tables above than in Tian’s simulations; that is, I am finding that the fiducial

interval’s properties are better than those found by the original paper. There is an

objective reason not to trust Tian’s results, since the widths do not decrease with k in

her results, when clearly increasing the amount of data should cause the percentiles of

the fiducial distribution to move closer to its mode.

For small N∗ or k the approximate normal interval has coverage probability below

nominal. As N∗ increases for fixed k, the coverage appears to converge to the nominal

level, as predicted in Section 2.3.3. As k increases, the coverage probability initially

improves – an indication the estimator is converging toward the normality that the

nominal coverage assumes. For small N∗, the interval appears to become conservative

as k grows, an indication that the delta method variance expression is an underestimate

in small samples, but the deviation from the nominal coverage is slight. The width of

the normal interval is comparable to that of the UMP interval in cases where they
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have similar coverage.

In conclusion, if the sample sizes are equal and CV is in the practical range, for

accurate size and optimal power, the UMP tests and corresponding interval should be

used. If the sample sizes are unequal, confidence intervals and hypothesis tests based

on the UMP test can still be created, but the computation is sufficiently complicated

that it makes sense to use the approximate normal inference if the sample sizes and k

are large enough. The fiducial interval is not competitive.

2.4 Testing the Equality of the Coefficients of Vari-

ation of k Normal Populations

The need to compare relative variability across populations arises occasionally in statis-

tics.

In agriculture, medicine, and other fields, within-study CV serves as an indication

of whether two studies are comparable [11]; if one has much higher variability than the

other, it can be taken as an indication that different unobserved variables were at play

in the different studies.

Usually, the question of interest to experimenters is the effect of a treatment on

central tendency, but occasionally the response is relative variability as measured by

the CV . Researchers compare the precision of different assays ([63], [64]), financial

analysts compare the riskiness of different stocks, and quality control managers might

want to compare the consistency of different production processes. Paleontologists

compare the CV s of dental data from fossil finds to those of extant species in order

to determine if the fossils are from more than one species [65]. Epidemiologists have

considered the effects of smoking on the CV s of cardiac variables [66]. Climatologists

keep track of changes in rainfall CV over time [27]. Clinicans are sometimes concerned

about the effect of a disease or drug on the CV of a biological variable ([54], [67], [68],

[69]). Other examples where researchers consider the effect of some treatment on CV

can be found in [28], [29], [70], and [71].

In comparing relative variability across k populations, the first question to ask is

usually whether the CV s are different. This would mean conducting a hypothesis test
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of Ho : CV1 = . . . = CVk against the alternative that there is at least one difference,

which is the test we shall consider in Section 2.4.

Very often, this null hypothesis is reasonable. With regard to the WSCV , the

assumption of constant CV across subjects appears so natural that often researchers

don’t realize they are making an assumption. The equality null is consistent with

the assumption that one population is a rescaled version of another population. For

instance, one might model a body with larger mass as just a scaled-up version of a

body with smaller mass, although Allen’s Rule in biology is an example where this is

not the case.

In addition to being a reasonable assumption, it is one that researchers can make

use of to make more accurate or powerful inference ([72], [73], [74], [75], [76], [77]). For

instance, it allows a convenient answer to the question of how to model variances that

apparently differ across populations, which comes up time and again (see [78]). Tests

of the assumption are needed to ensure that convenience does not come at the expense

of validity.

2.4.1 Notation

Section 2.4 will use the notation of Section 2.3, with the exception that CVi willl refer

to the ith sample’s coefficient of variation, while CV will refer to the common value if

CV1 = . . . = CVk and a central value if there are differences.

2.4.2 Previous literature

There is a substantial literature on testing CV homogeneity against general alterna-

tives in normal populations, totalling 18 different papers. A dozen different tests have

appeared , but two clearly stand out as superior to the others. A thorough review is

given in Section 3.3.
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Feltz-Miller test

Feltz and Miller [11] proposed the statistic

FM =
k∑

i=1

⎛⎝ ĈV i − C̄V√
C̄V

2

2(Ni−1)
+ C̄V

4

Ni−1

⎞⎠2

, (2.21)

where C̄V is taken from Equation 2.12.

Feltz and Miller argued for using χ2
k−1 tables to evaluate the p-value for this statistic.

Here I shall give a formal asymptotic justification.

Proposition 9. Asymptotic χ2 distribution for FM statistic

Under the null hypothesis, FM converges in distribution to a χ2
k−1 as the sample

sizes converge to ∞.

Proof. For simplicity let Ni − 1 = βi(N
∗ − 1).

By Equation 2.6 and Definition 1.3.6.4,

Y(N∗) ≡
√

N∗ − 1√
CV 2

2
+ CV 4

⎛⎜⎜⎜⎝
ĈV 1 − CV

...

ĈV k − CV

⎞⎟⎟⎟⎠→d N(0,V(β)),

where V(β) is the diagonal matrix with V(β)ii = 1
βi

. Now by Proposition 3, clearly

C̄V N∗ →p CV , so by the Slutsky-delta method (Theorem 1.3.6.6), we can write

Y∗(N∗) ≡
√

N∗ − 1√
C̄V

2

2
+ C̄V

4

⎛⎜⎜⎜⎝
ĈV 1 − CV

...

ĈV k − CV

⎞⎟⎟⎟⎠→d N(0,V(β)).

Let Ỹ be the weighted average of the elements of Y ∗, where the weights are the βis.

Consider the function g(Y∗) =
∑k

i=1
(Y∗

i −Ỹ)2

V(β)ii
. Algebra shows that g(Y∗) = FM . Also,

since g is continuous, by Theorem 1.3.6.5 part 2, g(Y∗
N∗) converges distribution to
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g(Zβ), where Zβ ∼ N(0,V(β)). But Theorem 1.3.5.11, part 3 tells us that g(Zβ) ∼
χ2

k−1.

The asymptotic results that justify Proposition 9 apply to increasing sample sizes,

not increasing populations with sample sizes fixed. Increasing k with sample sizes fixed

may or may not improve the accuracy of the FM test; we would need simulations to

tell us.

Modified Bennett test

McKay’s approximation yields (Ni − 1)Mi ∼ Γ
(

Ni−1
2

, 2
ωi

)
, where ωi is the monotonic

function
1+CV 2

i

CV 2
i

. Bennett [79] pointed out that with this approximation, the null hy-

pothesis of equal coefficients of variation is equal to the null that the scale parameters

of the k gamma variables (Ni − 1)Mi are the same, and suggested using Pitman’s [4]

test. The version of Pitman’s test in Theorem 1.3.3.1 also turns out to be the likelihood

ratio test.

Bennett’s expression for the test statistic had a slight mistake; the correction, known

as the modified Bennett test statistic, was presented in Shafer and Sullivan [80]:

MB =

∏k
i=1 MNi−1

i(Pk
i=1(Ni−1)MiPk

i=1 Ni−1

)Pk
i=1 Ni−1

. (2.22)

Letting ωi = ω∗ + ci, where we restrict ck = −∑k−1
i=1 ci, the null hypothesis becomes

c1 = . . . = ck−1 = 0, and we can see by Theorem 1.3.6.14 that

−2 ln(MB) ≈ χ2
k−1, (2.23)

which is used to obtain the p-value for the MB test.

The χ2 approximation for the likelihood ratio test improves with increasing sample

size, and McKay’s χ2 approximation improves with increasing sample size, so we should

expect that the accuracy of the p-value of the MB test should improve with increasing
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sample size. As with the FM test, however, asymptotic theory does not guide us as

to the behavior of the test as k increases with the sample sizes fixed.

Simulations done by Feltz and Miller indicated that the MB test and the FM test

had about the same size and power for the scenarios considered.

2.4.3 Applying exponential family model to testing CV equal-

ity

We can apply the results in Section 2.2.4 to the problem of testing equality. For

simplicity of exposition, in Section 2.4.3 I shall speak of Section 2.2.4 as if it were

exact. Extending Equation 2.17 to the case of unequal coefficients of variation, the

density φ∗
M of M is

φ∗
M(m) = CM(θ)HM(m) exp(

k∑
i=1

θiTi(m)), (2.24)

where

θ = {c1, . . . , ck−1, ω
∗}

ck = −
k−1∑
i=1

ci,

CM(θ) =
2∏

i=1

1

Γ
(

Ni−1
2

) ((Ni − 1)
ω∗ + ci − 2

Ni

2

)Ni−1

2

,

HM(m) = Im1≥0,...,mk≥0

k∏
i=1

m
Ni−1

2
−1

i exp

(
k∑

i=1

Ni − 1

Ni

mi

)
,

Tk(m) = −
k∑

i=1

Ni − 1

2
mi,

Ti(m) =
Nk − 1

2
mk − Ni − 1

2
mi, i �= k.

Here I have used a parameterization in which ω∗ = 1+CV 2

CV 2 and ωi = ω∗ + ci.
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Properties of MB test with equal sample sizes

For the likelihood in Equation 2.24, if the sample sizes are equal, the likelihood ratio

statistic for testing the null turns out to be MB. Also, by Equation 2.8, if the sample

sizes are equal, (N∗ − 1)Mi ∼ Γ
(

N∗−1
2

, 2
ω∗+ci− 2

N∗

)
so testing the null hypothesis is

equivalent to testing the equality of the scale parameters of k gamma variables, so

that the likelihood ratio test is identical to Pitman’s test, which has the advantage

that it is unbiased (Theorem 1.3.3.1). Unbiasedness is more important in this context

than in testing the value of a common CV because the possible alternatives are more

complex here; in the Section 2.3, we would be worried about unbiasedness only for the

insignificant case of values of CV near the null.

Obtaining accurate p-values for MB statistic

The MB test relies on the large-sample theory for its p-values. The impediment to

calculating p-values that are valid in small samples is the existence of the nuisance

parameter CV , or ω∗ to be more exact.

If the sample sizes are equal, from Equation 2.8:

MB =

∏k
i=1

(
Ui

N∗−1

)N∗−1(
1
k

∑k
i=1

Ui

N∗−1

)k(N∗−1)
. (2.25)

Since CV does not appear in this expression, a similar test (Definition 1.3.3.1) can be

conducted by Monte Carlo:

Algorithm 3. p-values for MB test, equal sample sizes

1. Find the observed value mb of MB.

2. Take s draws of {U1, . . . , Uk}.

3. Calculate s draws of MB by using the draws of the Uis in Equation 2.25.

4. Record the number of times NMBE that a drawn value of MB is less than mb.

5. The p-value for the test is approximately NMBE
s

.
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NMBE
s

is a Monte Carlo p-value (Definition 1.3.3.7), and for s large enough will be

highly accurate.

If the sample sizes are unequal, we can condition on the sufficient statistic Tk to

“get rid” of the nuisance parameter. This is discussed in Chapter 4.

Most powerful similar inference for k = 2.

With k = 2, there are two parameters in φ∗
M, the nuisance parameter ω∗ and c1. Here

we shall derive hypothesis tests that are similar (as regards the nuisance parmeter),

invariant to positive scale transformations (because they are based on the maximal

invariant M), and UMP among tests that have those properties.

The null hypothesis is identical to Ho : c1 = 0. Ha : c1 > 0 is identical to Ha :
1+CV1

CV1
> 1+CV2

CV2
, or Ha : CV2 > CV1.

Proposition 10. UMP similar invariant tests for equality of two normal coefficients

of variation

If k = 2, the UMP similar invariant test of Ho : CV1 = CV2 against Ha : CV1 <

CV2 rejects Ho if M1 < bl, where Probc1=0(M1 < bl|T2 = t2) = α.

If k = 2, the UMP similar invariant test of Ho : CV1 = CV2 against Ha : CV1 >

CV2 rejects Ho if M1 > bu, where Probc1=0(M1 > bu|T2 = t2) = α.

Proof. For brevity I shall prove just the first result.

By Theorem 1.3.4.6, the UMP similar invariant test of Ho : c1 = 0 against Ha :

c1 > 0 has rejection region of the form T1 > b∗l , where Probc1=0 (T1 > b∗l |T2 = t2) = α.

(Recall that since we are conditioning on a sufficient statistic for ω∗, that probability

will not depend on ω∗.) We can rewrite the rejection region as N2−1
2

M2− N1−1
2

M1 > b∗l ,

which is −t2 − (N1 − 1)M1 > b∗l since we are conditioning on T2 = t2, or M1 <
−b∗l −t2
N1−1

.

We can view the right hand side as simply the constant bl.

Now Ho : c1 = 0 is identical to Ho : CV1 = CV2, and the set of alternatives of

the form c1 > 0 is identical to the set of alternatives of the form CV1 < CV2. Then

the rejection region we have just described is also the UMP similar invariant rejection

region for testing Ho : CV1 = CV2 against Ha : CV1 < CV2.
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To determine p-values with unequal sample sizes will require the use of a Monte

Carlo method described in Chapter 4. However, with equal sample sizes we get a test

that is like the F test for equal variances.

Proposition 11. Rejection region for UMP test of equality with k = 2, N1 = N2

If k = 2 and N1 = N2:

The UMP similar invariant test implied by Equation 2.24 of Ho : CV1 = CV2

against Ha : CV1 < CV2 rejects Ho if M2

M1
> FN∗−1,N∗−1

1−α ,

The UMP similar invariant test implied by Equation 2.24 of Ho : CV1 = CV2

against Ha : CV1 > CV2 rejects Ho if M1

M2
> FN∗−1,N∗−1

1−α ,

where F ν1,ν2
γ is the γth percentile of the F distribution with ν1, ν2 degrees of freedom.

Proof. For brevity, I shall prove the former result.

From Proposition 10, the rejection region is of the form M1 < bl. Recalling that we

are conditioning on t2, we can write this as M1

−t2
< bl

−t2
, where we can treat the right hand

side as a constant b∗l . We can rewrite this as M1

(N∗−1)M1+(N∗−1)M2
= 1

(N∗−1)+(N∗−1)
M2
M1

< b∗l ,

or M2

M1
>

1
b∗
l
−N∗+1

N∗−1
≡ b∗∗l , where Probc1=0

(
M2

M1
> b∗∗l |T2 = t2

)
= α.

Now by Theorem 1.3.4.3 T2 is complete. Also, by Theorem 1.3.4.2, T2 is minimal

sufficient for ω∗, and thus for CV . From Equation 2.8, under the null, M2

M1
=

U2
(N∗−1)

U1
(N∗−1)

,

an FN∗−1,N∗−1 variable, so its distribution does not depend on CV and it is ancillary

for CV . Then by Basu’s Theorem (Theorem 1.3.1.3), M2

M1
is independent of T2, so that

Probc=0

(
M2

M1
> b∗∗l |T2 = t2

)
is just the unconditional probability.

Then the result follows by the fact that
U2

N∗−1
U1

N∗−1

is FN∗−1,N∗−1.

From this Theorem, p-values for the UMP test with equal sample sizes would be

1 − φF
N∗−1,N∗−1

(
m2

m1

)
, Ha : CV1 < CV2 (2.26)

and

1 − φF
N∗−1,N∗−1

(
m1

m2

)
, Ha : CV1 < CV2,
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where φF
N∗−1,N∗−1 is the cdf of an FN∗−1,N∗−1 random variable.

Usually, we would like to test a two-sided alternative rather than a one-sided alterna-

tive. The two-sided test with equal probabilities of underestimating and overestimating

c has the rejection region

M1 < bl ∪ M1 > bu, (2.27)

where Probc=0 (M1 < bl|T2 = t2) = α
2

and Probc=0 (M1 > bu|T2 = t2) = α
2
. For unequal

sample sizes, this test will not be unbiased, though theory would lead us to believe

that it should be quite powerful against alternatives of interest, as explained in Section

2.3.4.

If the sample sizes are equal, we can calculate the two-sided bounds in Equation

2.27 explicitly using Propostion 11, and the p-value of the test is

2min

((
1 − φF

N∗−1,N∗−1

(
m2

m1

))
,

(
1 − φF

N∗−1,N∗−1

(
m1

m2

)))
. (2.28)

It turns out that with equal sample sizes that this is the UMP unbiased similar test

based on the maximal invariant.

Proposition 12. UMP unbiased similar invariant test of CV equality for k = 2,

N1 = N2

The UMP unbiased similar invariant test implied by Equation 2.24 of Ho : CV1 =

CV2 against Ha : CV1 �= CV2 rejects Ho if M2

M1
> FN∗−1,N∗−1

1−α
2

or if M1

M2
> FN∗−1,N∗−1

1−α
2

.

Proof. For k = 2 and N1 = N2, the rejection region for a test based on the MB

statistic can be written as (M1M2)
(M1+M2)2

< b, or M1M2

M2
1 +2M1M2+M2

2
< b. We can manipulate this

algebraically to get M1

M2
+ M2

M1
> b∗. By Theorem 1.3.8.9, this is equal to a region of the

form M2

M1
< b∗l ∪ M2

M1
> b∗u or M1

M2
> b∗∗l2 ∪ M2

M1
> b∗∗21.

By the fact that M1 and M2 enter the MB statistic symmetrically, the rejection

region must be of the form M1

M2
> b∗∗ ∪ M2

M1
> b∗∗. So a test based on the MB statistic

has the same form as the test we are contemplating if k = 2, N1 = N2.

Recall that the test based on the MB statistic (with accurate, not asymptotic,

p-values) is unbiased with equal sample sizes, so the test we are contemplating is

unbiased. Then by Theorem 1.3.4.7 and Proposition 11 the test is the UMP unbiased

similar invariant test.
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The proof also shows that the F test in Proposition 12 is based on the same test

statistic as the MB test; the difference is only in how the p-values are calculated.

One should keep in mind that the results in Section 2.4.3 are ultimately based on

the approximate cdf ΦV . But since we have seen that this approximation is highly

accurate, we can have a high degree of confidence in them.

2.4.4 Simulation results for equal sample sizes

For equal sample sizes, the discussion above suggests a third test to compare to the

MB and the FM , and that is the MB test with p-values corrected by either Algorithm

3 (for k > 2) or Equation 2.28.

Table 2.5 compares the sizes of the three tests. For each scenario, 10, 000 data

sets of k populations of sample size N∗ were generated from normal distributions with

coefficient of variation equal to the CV column.

The MB test and FM tests are reasonably accurate, but are slightly liberal for small

N , and this problem is worse with large k. The alternative approach for calculating

p-values for the MB statistic corrects the liberality, but may slightly overcorrect at the

extreme upper end of the practical range.

The discussion above would lead us to believe that tests based on the MB statistic

should have very good properties. In the model of Equation 2.24 with equal sample

sizes, it is the likelihood ratio test, it is unbiased in that model, and it is the UMP

unbiased similar invariant test for k = 2 once the p-values are corrected. Table 2.6

compares the powers of the MB test and the FM test. The appropriate comparison

here is between the uncorrected version of the MB test and the FM , since these two

tests have comparable sizes. Table 2.6 was computed in the same way as Table 2.5,

except that half of the populations had coefficient of variation equal to CV1 and half

had CV2.

The main result from Table 2.6 is that the MB test and the FM test have similar

power; the theoretical power advantages that come from using the MB statistic appear

to be minor.
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Table 2.5: Size of two-sided tests of CV homogeneity. (SE = 0.002)

CV k N MB FM Corrected MB

0.05 2 10 0.057 0.057 0.051

0.05 2 20 0.051 0.050 0.048

0.05 2 30 0.052 0.052 0.051

0.05 4 8 0.064 0.061 0.053

0.05 4 16 0.055 0.054 0.049

0.05 4 24 0.049 0.048 0.046

0.05 8 6 0.071 0.062 0.050

0.05 8 12 0.065 0.062 0.055

0.05 8 18 0.056 0.055 0.051

0.33 2 10 0.056 0.051 0.049

0.33 2 20 0.050 0.049 0.047

0.33 2 30 0.046 0.045 0.044

0.33 4 8 0.061 0.055 0.051

0.33 4 16 0.051 0.049 0.046

0.33 4 24 0.049 0.049 0.046

0.33 8 6 0.066 0.062 0.046

0.33 8 12 0.063 0.063 0.053

0.33 8 18 0.056 0.057 0.050
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Table 2.6: Power of two-sided tests of CV homogeneity. (SE = 0.005)

CV1 CV2 k N MB FM

0.05 0.10 2 10 0.52 0.52

0.05 0.10 2 20 0.84 0.84

0.05 0.10 2 30 0.96 0.96

0.05 0.10 4 8 0.55 0.55

0.05 0.10 4 16 0.89 0.89

0.05 0.10 4 24 0.98 0.98

0.05 0.10 8 6 0.58 0.59

0.05 0.10 8 12 0.94 0.94

0.05 0.10 8 18 0.99 0.99

0.165 0.33 2 10 0.483 0.472

0.165 0.33 2 20 0.814 0.811

0.165 0.33 2 30 0.941 0.940

0.165 0.33 4 8 0.50 0.50

0.165 0.33 4 16 0.86 0.86

0.165 0.33 4 24 0.97 0.97

0.165 0.33 8 6 0.54 0.55

0.165 0.33 8 12 0.91 0.91

0.165 0.33 8 18 0.99 0.99
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Table 2.7: Size of one-sided tests of CV homogeneity, k = 2. (SE = 0.002)

CV N1 N2 Miller UMP

0.10 10 10 0.054 0.049

0.33 10 10 0.051 0.049

Table 2.8: Power of one-sided tests of CV homogeneity, k = 2. (SE = 0.005)

CV1 CV2 N1 N2 Miller UMP

0.10 0.05 10 10 0.64 0.62

0.33 0.165 10 10 0.61 0.59

2.4.5 One-sided tests for k = 2

The literature focuses almost exclusively on two-sided tests. For testing the null against

Ha : CV1 > CV2, Miller [81] introduced the statistic

Z2 ≡ ĈV 1 − ĈV 2√
C̄V

2
(

1
2(N1−1)

+ 1
2(N2−1)

)
+ C̄V

4
(

1
N1−1

+ 1
N2−1

) .

By Equation 2.6, Theorem 1.3.6.5 part 2, and the Slutsky-delta method (Theorem

1.3.6.6), Z2 is asymptotically standard normal, so that the p-value of Miller’s one-sided

test is 1 − Φ(Z2).

Table 2.7 shows simulation results for the N1 = N2 case concerning the size of two

different tests of CV equality against Ha : CV1 > CV2: Miller’s test and the test of

Proposition 11. To generate the table, 10, 000 datasets with k = 2 and CV , N1, and

N2 as shown were randomly created. Table 2.7 indicates that both tests have close to

nominal size, even for fairly small sample sizes.

Table 2.8 was created in the same way as Table 2.7, except that CV1 was allowed
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to differ from CV2. The tests have essentially identical power.

2.5 Confidence Intervals for Differences Between

Two Coefficients of Variation

While the test whether population CV s are equal has been thoroughly studied, confi-

dence intervals for differences between CV s have received almost no attention. Miller

and Feltz [82] is the only paper that addresses the subject; it uses the delta-method

approximation to create a confidence interval for the difference between two coefficients

of variation.

There are several reasons why one might be interested in the ratio of two population

CV s rather than their difference. First, as shown in Section 2.1.2, the CV is the

standard deviation adjusted for mean differences, and usually confidence intervals for

ratios of standard deviations, not differences between them, are constructed. Second, it

is evidentily the ratio of two CV s, not their difference, which determines whether they

will be distinguishable in practice; in Table 2.6, the difference between 0.165 and 0.33 is

greater than that between 0.025 and 0.05, but we have about the same power for both

sets of CV s. Third, ratios are more important than differences in some applications.

For example, in deciding whether two formulations of the same drug are bioequivalent,

the customary procedure is to verify that confidence intervals for the ratios of certain

parameters for drug A to those of drug B fall between 0.8 and 1.25. Chow and Tse

[54] suggested that the CV of quantities such as AUC should be included among the

parameters examined.

The notation in Section 2.5 will be the same as in Section 2.4.
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2.5.1 Previous literature

Miller and Feltz propose a confidence interval based on the normal approximation of

Section 2.2.2. Consider the approximate pivot

ĈV 2 − ĈV 1 − (CV2 − CV1)√ dCV
2

1

2(N1−1)
+

dCV
4

1

N1−1
+

dCV
2

2

2(N2−1)
+

dCV
4

2

N2−1

(2.29)

Miller and Feltz argued that this should be approximately N(0, 1). I shall prove this

formally here.

Proposition 13. The approximate pivot in Equation 2.29 is asymptotically N(0, 1)

with increasing sample size.

Proof. For simplicity, let N1 = N2. From Equation 2.6 and Definition 1.3.6.4,

√
N∗ − 1(ĈV 1 − CV1) →d N

(
0,

CV 2
1

2
+ CV 4

1

)
and √

N∗ − 1(ĈV 2 − CV2) →d N

(
0,

CV 2
2

2
+ CV 4

2

)
.

Then by Theorem 1.3.6.5 part 2,
√

N∗ − 1 (dCV 2−dCV 1−(CV2−CV1))r
CV 2

1
2

+CV 4
1 +

CV 2
1

2
+CV 4

1

→d N(0, 1). Then the

result follows from Proposition 3 and the Slutsky-delta method (Theorem 1.3.6.6).

The upper and lower limits of the 1−α interval for CV2 −CV1 by Miller and Feltz

are:

ĈV 2 − ĈV 1 ± Z1−α
2

√
ĈV

2

1

2(N1 − 1)
+

ĈV
4

1

N1 − 1
+

ĈV
2

2

2(N2 − 1)
+

ĈV
4

2

N2 − 1
. (2.30)

No simulation results have been published regarding the performance of this interval.

Differencing alleviates the asymmetry and bias in ĈV i, improving the accuracy of

the normal approximation. To see this, consider that in the case where CV2 = CV1 and

the sample sizes are equal, ĈV 2−ĈV 1 will be symmetric around CV2−CV1 = 0. If the
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sample sizes are vastly different, we wind up differencing two variables with different

degrees of asymmetry and bias; we would expect that the coverage of this interval with

different sample sizes would not be as close to nominal as with similar sample sizes.

2.5.2 Confidence Interval for the ratio of two CV s

As with testing equality, the problem in constructing confidence intervals for ratios of

CV s is the presence of nuisance parameters, in this case CV1 and CV2.

From Equation 2.8 we get

CV 2
2

CV 2
1

1 + N1−2
N1

CV 2
1

1 + N2−2
N2

CV 2
2

M1

M2

≈ W, (2.31)

where W ∼ FN1−1, N2−1.

To get a pivot for CV2

CV1
, we need to estimate the factor

1+
N1−2

N1
CV 2

1

1+
N2−2

N2
CV 2

2

. We could estimate

it by replacing CV2 and CV1 with ĈV 2 and ĈV 1. This approach has the potential to

produce intervals with inadequate coverage, because the resulting random variable will

have extra variability induced by the variability in ĈV 1 and ĈV 2, above that modeled

by W . Another option, since this factor is close to 1 for CV in the practical range, is

simply to set it equal to 1. Simulation results not shown here indicate that the second

approach is slightly preferable. The resulting 1 − αth interval for CV2

CV1
is

upper bound =

√
M2

M1

√
FN1−1,N2−1

1−α
2

, (2.32)

lower bound =

√
M2

M1

1√
FN1−1,N2−1

1−α
2

. (2.33)

2.5.3 Simulation results

Simulation results for the two proposals above are shown in Table 2.9. For the case

where the sample sizes are not equal, it matters for the results which sample is labeled

1 and which is labeled 2.
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Table 2.9: Coverage probability and average width of two-sided confidence intervals. SE for
coverage = 0.001, for width < 0.001.

MF Corrected-F

CV1 CV2 N1 N2 coverage width coverage width

0.05 0.10 10 10 0.934 0.10 0.952 0.11

0.05 0.10 21 21 0.943 0.07 0.950 0.07

0.165 0.33 10 10 0.931 0.37 0.949 0.36

0.165 0.33 21 21 0.946 0.250 0.950 0.225

0.05 0.10 10 21 0.954 0.08 0.968 0.10

0.10 0.05 10 21 0.915 0.10 0.967 0.10

0.165 0.33 10 21 0.958 0.28 0.969 0.34

0.33 0.165 10 21 0.912 0.35 0.965 0.33

All simulations are based on 50, 000 randomly-generated datasets of two populations

with coefficients of variation CV1 and CV2 and sample sizes N1 and N2, for which

confidence intervals of level 0.95 were calculated by each method.

The width column is the average confidence interval width over the 50, 000 datasets.

The “width” associated with the F interval is calculated so as to be comparable to that

of the Miller-Feltz interval. Let Ru be the upper bound for the confidence interval for

the ratio CV2

CV1
calculated from one set of simulated data, and let Rl be the lower. The

width of the confidence interval for that dataset was calculated as 1
2
(RuĈV 1 − ĈV 1 −

(RlĈV 1 − ĈV 1) + 1
2

(
ĈV 2 − 1

Ru
ĈV 2 −

(
ĈV 2 − 1

Rl
ĈV 2

))
= 1

2
(Ru −Rl)ĈV 1 + 1

2
( 1

Rl
−

1
Ru

)ĈV 2.

The Miller-Feltz interval has close to nominal coverage but can under cover with

small samples or if there is a difference in sample sizes. The F interval for the ratios

has coverage close to nominal, but is slightly conservative if the sample sizes differ.
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2.6 The Normality Assumption

Boos and Brownie [83] do an asymptotic analysis that indicates that inference on the

variance that assumes normality is not robust to the underlying distribution. Assuming

that robustness in large samples is a reasonable guide to robustness in small samples,

I follow a similar approach here.

2.6.1 Robustness of inference that assumes normality

Applying the delta method (Theorem 1.3.6.3) to the result in Theorem 1.3.6.14, we

can derive the asymptotic distributions for ĈV and M from a general population.

Proposition 14. For a general population, under regularity conditions

ĈV (N) ∼ AN

(
CV,

1

N

(
CV 4 − μ3

μ3
+

μ4 − σ4

4μ2σ2

))
,

Equation 2.6 gives the large-N distribution of ĈV under normality. As shown in

Section 2.2.3, the asymptotic distribution of the transformation M(N) derived from

Equation 2.6 is practically the same as that derived from either of the χ2 approxima-

tions, which are asymptotically equivalent. So the inferential procedures that depend

on the χ2 approximations for M(N) will produce the same inference asymptotically

as those that depend on the delta-method approximation for ĈV . Since the fiducial

approach is known to be asymptotically valid with sample size, it is safe to assume

that it will also produce the same inference with large N .

Now the delta method allows us to infer that the large-N standard deviation of a

function of ĈV will be proportional to the large-N standard deviation of ĈV , with the

constant being a function of the true CV (Theorem 1.3.6.3). Thus, to conclude how

well any of the inferential procedures in this chapter would do in large samples with

a non-normal population, we can use the ratio of the asymptotic standard deviation

from Equation 2.6 to the standard deviation from Proposition 14 as a guide. We can

interpret this ratio as the ratio of the length a 1 − α confidence interval assuming

normality to that of a valid interval.
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Table 2.10: Ratio of confidence interval length assuming normality to valid length, CV = 0.05

γ2 0 1.5 3

γ1

0 1 0.76 0.63

1 1.05 0.78 0.65

2 1.12 0.80 0.66

Table 2.11: Ratio of confidence interval length assuming normality to valid length, CV = 0.33

γ2 0 1.5 3

γ1

0 1 0.79 0.67

1 1.48 0.96 0.77

2 NA 1.37 0.93

Writing this ratio in terms of the skewness (γ1) and kurtosis (γ2) (Definition 1.3.5.9)

of the underlying distribution, we get√
1 + 2CV 2

1 + 2CV 2 + γ2

2
− 2γ1CV

. (2.34)

With a skewed population of normal kurtosis the procedures in this chapter will pro-

duce conservative inference – confidence intervals that are too large. With symmetric

leptokurtotic distributions, inference will be liberal.

We can get an idea of the quantitative effect of altering the underlying distribution

by plugging in values of γ1 and γ2 to Equation 2.34. The Weibull distribution is viewed

as having moderate skewness (1) and kurtosis (1.5), while the double exponential is

viewed as having high kurtosis (3) and the exponential distribution has extreme skew-
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ness (2). Table 2.10 and Table 2.11 give us an idea of how well the normal-theory

procedures do with such values of skewness and kurtosis. The numbers reported are

the values of Equation 2.34.

With low CV , the effect of introducing skewness is small, but normal-theory infer-

ence appears unacceptably liberal with even moderate kurtosis.

With a high value of CV , skewness has a large effect, and normal-theory inference

is unacceptably conservative with moderate skewness if the underlying population has

normal kurtosis. Kurtosis appears to “cancel out” skewness, so that normal-theory

inference is reasonable for distributions with the same degree of skewness and kurtosis.

(γ1 = 2 and γ2 = 0 is theoretically impossible with CV = 0.33.)

2.6.2 The relevance of normal-theory inference

Although Table 2.10 and Table 2.11 indicate that normal-theory inference will not

be acceptable in a number of cases, inferential procedures that assume normality are

undoubtedly useful. It is frequently the case that the underlying distribution has

only mild skewness or kurtosis; and we have seen that in some cases, normal-theory

inference is reasonable even with substantial skewness or kurtosis. Often, we have good

a priori reasons to expect normality. A random variable (eg, adult height) which can

be thought of as a linear function of a number of random variables (eg, a large number

of genes from both the mother and father, diet, environment) can be expected, under

regularity conditions, to be approximately normal due to various central limit theorems

(see Theorem 1.3.6.7).

Where the normal model clearly does not apply, it is often still useful for modeling

either the transformed data or the bulk of the data once outliers are removed. And

robust and nonparametric methods frequently sacrifice power. The disadvantages of

using an incorrect probability model may be outweighed by the unsatisfactory power

of the alternative procedures. In any event, researchers typically conduct two analyses

– one that assumes normality, one robust approach – and so it is important that we

develop accurate and powerful inferential methods for the former case.
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Additional Work on the Coefficient of

Variation in Normal Populations

3.1 Sample of coefficients of variation from the sci-

entific literature

In Chapter 2, it was useful to know something about the values of the coefficient

of variation in situations that are encountered in practice. Presumably, the set of

CV s reported in the abstracts of papers in the ISI Web of Knowledge database are

representative of the CV s of interest in practice. Adopting that assumption, I created

a sample of scientific papers in the following way:

• I typed “coefficient of variation” into the topic box on ISI Web of Knowl-

edge’s General Search page and found that the current number of articles

was 9, 785. For “relative standard deviation,” the number was 8, 496, and

for “coefficients of variation NOT coefficient of variation,” the number was

5, 207.

• I decided to sample 60 papers referenced by ISI Web of Knowledge. So that

the proportions in the sample equaled the proportions in the population,

I sampled 25 papers from the “coefficient of variation” keyword search, 22

from the “relative standard deviation” search and 13 from “coefficients of

variation NOT coefficient of variation”.

• I randomly ordered the 9, 785 “coefficient of variation” papers, then went

to the abstracts in order. If there was a number reported for a coefficient of

variation in the abstract, I recorded it; if there was more than one number,

I recorded the max and the min. I continued until I had recorded at least

1 CV from 25 different papers. This required reading 36 abstracts.
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Table 3.1: Articles in random sample – coefficients of variation keyword

Journal Vol, page CVmin CVmax

Thorax 49, 500-503 0.075 0.173

Reproduction 121, 905-913 0.013 0.11

Biology of Reproduction 54, 1252-1260 0.03 0.125

Journal of Applied Physiology 94, 2448-2455 0.15 0.19

Environmental Toxicology and Water Quality 6, 63-75 0.11

Journal of Chromatography B 745, 373-388 0.03 0.06

Journal of AOAC International 85, 333-340 0.0037 0.0168

J of Irrig. and Drain. Eng. 117, 361-376 0.5 1

Remote Sensing of Environment 37, 181-191 0.25 0.5

Journal of Physiology 471, 637-657 0.06 0.16

Journal of Chromatography B 761, 237-246 0.07 0.21

Analytica Chimica Acta 276, 3-13 0.072 0.299

Eur. J of Clin. Chem and Clin Biochem. 30, 837-845 0.043 0.058

• I repeated the above procedure for “relative standard deviation”, randomly

ordering 8, 496 papers. It turned out that the first 22 abstracts all reported

at least one CV . I repeated the procedure to obtain CV s from 13 “coef-

ficients of variation NOT coefficient of variation” papers. Again, I needed

to read the minimum number of abstracts.

For each paper, I also recorded (if I could determine it) whether the variable in

question was one that necessarily had to be positive.

A histogram of values of the coefficient of variation is reported in Figure 2.1. The

lowest CV in the survey was 0.0017. There were four CV s less than 0.01. Over 1
3

were

between 0.01 and 0.05, and over 4
5

of the reported CV s were between 0.01 and 0.15.

Only three CV s were greater than 0.34, with the largest being 1.0.

Tables 3.1, 3.2, and 3.3 contain a full listing of the papers in the survey along

with their reported CV s. They provide further demonstration that CV is important
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Table 3.2: Articles in random sample – coefficient of variation keyword

Journal Vol, page CVmin CVmax

Zeitschrift fur Pflanzenernahrung und Bode. 161, 51-58 0.03 0.34

Journal of Pediatrics 144, 169-176 0.027

Cement Concrete and Aggregates 21, 23-30 0.07

Monatschrift Kinderheilkunde 150, 1095+ 0.26 0.3

Progress in Biochemistry and Biophysics 28, 118-120 0.096

Journal of Agricultural and Food Chemistry 54, 2154-2161 0.248 0.26

Therapeutic Drug Monitoring 16, 293-297 0.0413

Journal of Pediatric Hematology Oncology 25, 33-37 0.049 0.223

European J of Clin Chem and Clin Biochem 29, 549-554 0.03

Blood 85, 1897-1902 0.135

European Journal of Oral Sciences 105, 67-73 0.019 0.199

Tumor Biology 3, 169-175 0.10

Bulletin Du Cancer 80, 431-438 0.21

Drugs of Today 34, 141-152 0.065 0.073

Analytical Chemistry 69, 1038-1044 0.0042

Journal of Chromatography – Biomedical Apps 573, 43-48 0.065

Journal of the Pharma. Soc. of Japan 124, 135-139 0.0608

Japanese Journal of Crop Science 68, 63-70 0.07 0.11

Artzliche Laboratorium 37, 39-44 0.1 0.23

International Journal of Cancer 114, 791-796 0.0017 0.0029

Journal of Clinical Pathology 52, 430-434 0.11 0.195

Acta Pharmalogica Sinica 15, 197-201 0.0333 0.0697

Physics in Medicine and Biology 43, 2325-2336 0.044 0.128

Journal of Liquid Chromatography 17, 855-865 0.02 0.05

International Journal of Parasitology 31, 87-91 0.10
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Table 3.3: Articles in random sample – relative standard deviation keyword

Journal Vol, page CVmin CVmax

Journal of Chromatography 1035, 277-279 0.075

Journal of Analytical Atomic Spectrometry 9, 285-290 0.05

Talanta 52, 181-188 0.013

Chinese Chemical Letters 12, 799-782 0.024 0.041

Spectroscopy and Spectral Analysis 25, 113-115 0.02

Journal of the American Oil Chemists Society 69, 174-177 0.035

Spectroscopy Letters 29, 69-85 0.03

Bunseki Kagaku 40, T5-T8 0.018

International Journal of Mass Spectrometry 178, 73-79 0.03

Analyst 129, 15-19 0.04 0.15

Thermochimica Acta 224, 271-279 0.011

Analytical and Bioanalytical Chemistry 379, 764-769 0.031

Journal of Chromatrography 828, 95-103 0.1

Thermochimica Acta 326, 53-67 0.017 0.02

Fresenius Journal of Analytical Chemistry 366, 504-507 0.021 0.027

Analytical Letters 25, 1687-1692 0.015

Applied Microbiology and Biotechnology 46, 10-14 0.08

Rapid Communications in Mass Spectrometry 10, 1017-1023 0.071 0.63

Analytica Chimica Acta 404, 151-157 0.01 0.086

Talanta 50, 819-826 0.024 0.026

Mikrochimica Acta 111, 207-213 0.011

Analytica Chimica Acta 369, 157-161 0.03
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in a wide variety of fields. The papers for which I could not determine whether the

variable in question was necessarily positive were Cement, Concrete, and Aggregates,

Monatschrift Kinderheilkunde, and Journal of Chromatography (V. 828, p.95-103).

3.2 Point estimation of a common coefficient of vari-

ation in normal samples

In this section, the data come from k normal populations with different means but

the same CV , and the object is to come up with an effective point estimator of the

common CV . The notation used in this section will be the same as that in Section 2.3.

3.2.1 Estimators

The different point estimators can be grouped into the three categories: weighted aver-

ages, maximum likelihood estimators from the full likelihood, and maximum likelihood

estimators from the marginal likelihood of the sample CV s.

Weighted averages

C̄V from Equation 2.12 is a simple weighted average. ĈV from Equation 2.13 is a

bias-corrected alternative, originally suggested by Zeigler [53]. A third alternative isPk
i=1(Ni−1)BiCi

dCV iPk
i=1 Ni−1

, where Bi and Ci are described in Section 2.3.3.

Rather than simply use the sample sizes as weights, we can find the variance-

minimizing weights ω1, . . . , ωk to use with the bias-corrected sample CV s. The weights

minimize
k∑

i=1

ω2
i B

2
i C

2
i V ar(ĈV i) s.t.

k∑
i=1

ωi = 1.

As discussed in Chapter 2, V ar(ĈV i) ≈ 1
Ni−1

(
CV 2

2
+ CV 4

)
. Plugging this in and

using the rules for minimizing a quadratic function with respect to a linear constraint
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[16], we can derive that the optimal weights are

ω∗
j =

Nj−1

C2
j B2

j∑k
i=1

Nj−1

C2
j B2

j

.

I shall call the weighted, bias-corrected average with the variance minimizing weights

CV MV .

Chow and Tse [54] suggested taking the square root of the weighted average of the

squared sample CV s:

CV S ≡

√√√√∑k
i=1 NiĈV

2

i∑k
i=1 Ni

. (3.1)

Maximum likelihood estimators from likelihood of ĈV is

One has a choice of maximizing the full likelihood of the data or maximizing the

marginal likelihood of the sample CV s. This is the product of the densities of the

individual sample CV s. The exact density of the sample CV can be obtained from

Equation 2.3, but it is inconvenient to work with, so we shall work with Equation 2.17.

The value of the common CV , ĈV
M

MLE, that maximizes Equation 2.17 solves

k∑
i=1

(Ni − 1)
CV 2

1 + Ni−2
Ni

CV 2
=

k∑
i=1

(Ni − 1)
ĈV

2

i

1 + Ni−1
Ni

ĈV
2

i

. (3.2)

Note that as CV tends to infinity, the left-hand side tends to
∑k

i=1
Ni(Ni−1)

Ni−2
. For any

practical situation, this will be larger than the right-hand side. As CV tends to 0, the

left-hand side tends to 0. Furthermore, the left-hand side is monotonic in CV . Thus,

for any practical situation, there will be a unique solution which can be found by the

efficient method of bisection (Definition 1.3.8.8).
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If N1 = . . . = Nk ≡ N∗, the analytical solution is

ĈV
M

MLE =

√√√√√√
∑k

i=1(N
∗ − 1)

dCV
2

i

1+ N∗−1
N∗ dCV

2

i

k(N∗ − 1) − N∗−2
N∗

∑k
i=1(N

∗ − 1)
dCV

2

i

1+ N∗−1
N∗ dCV

2

i

. (3.3)

Zeigler [53] suggested a similar estimator based on Mckay’s approximation, but he

gave a formula only for the constant sample size case. We will work with ĈV
M

MLE

because it is based on a more accurate approximate density.

Maximum likelihood estimators for full likelihood

The full log likelihood function for the data is a constant plus:

− ln(CV )
k∑

i=1

Ni −
k∑

i=1

Ni ln(μi) − 1

CV 2

k∑
i=1

1

2μ2
i

(
(Ni − 1)S2

i + Ni(X̄i − μi)
2
)
. (3.4)

Setting the partial derivatives of Equation 3.4 equal to zero, after some algebra we get

the following equations for ĈV MLE and μ̂i, MLE:

ĈV
2

MLE =

∑k
i=1

1
μ̂2

i, MLE
((Ni − 1)S2

i + Ni(X̄i − μ̂i, MLE)2)∑k
i=1 Ni

, (3.5)

ĈV
2

MLEμ̂2
i, MLE + X̄iμ̂i, MLE − (Ni − 1)

Ni

S2
i − X̄2

i = 0, i ∈ {1, . . . , k}. (3.6)

One root of Equation 3.6 will be negative. Since we are concentrating on the practical

range, where μ > 0, we can ignore this root. So we can rewrite the second likelihood

equation as

μ̂i, MLE = X̄i

⎛⎜⎜⎝
√

1 + 4ĈV
2

MLE

(
Ni−1

Ni
ĈV

2

i + 1
)
− 1

2ĈV
2

MLE

⎞⎟⎟⎠ , i ∈ {1, . . . , k}. (3.7)

Lohrding [72] gave an analytical formula for CVMLE for the case k = 2, N1 = N2 ≡
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N∗. His solution is

ĈV
L

MLE =

√
2

√
1 + a(ĈV 1)

√
1 + a(ĈV 2)

(√
1 + a(ĈV 1)

√
1 + a(ĈV 2) − 1

)
√

1 + a(ĈV 1) +

√
1 + a(ĈV 2)

where a(ĈV ) ≡ 2N∗−1
N∗ ĈV

2
. Zeigler [53] reports a slightly different result, but that is

a typo.

Gerig and Sen [73] and Sinha et al. [84] discuss the solution for the case k = 2,

N1 �= N2. A complicated analytical solution can be obtained using the equations they

provide.

Doornbos and Dijkstra [85] presented the first algorithm for obtaining an exact

MLE estimator for CV for the general case. It is inconvenient in that it requires

iteratively solving equation that are nonlinear in the parameters.

Gupta and Ma [86] developed a simpler alternative algorithm. They derived that

ĈV MLE solves the following equation:

Σk
i=1

Ni

(
1 +

√
1 + 4(1 + Ni−1

Ni
ĈV

2

i ) (CV )2

)
2(1 + Ni−1

Ni
ĈV

2

i )
= Σk

i=1Ni. (3.8)

Now if k = 1, one can show ĈV MLE =
√

N−1
N

ĈV . So the following result by Gupta

and Ma stands to reason:

Min

(√
N1 − 1

N1

ĈV 1 . . .

√
Nk − 1

Nk

ĈV k

)
≤ ĈV MLE ≤

Max

(√
N1 − 1

N1

ĈV 1 . . .

√
Nk − 1

Nk

ĈV k

)
.

(3.9)

Furthermore, the left-hand side of Equation 3.8 is monotonic in CV . Thus, Equation

3.8 can be solved by the efficient method of bisection, with the intial upper and lower

bounds given by Equation 3.9.
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Several authors have suggested approximating the MLE. Bennett’s [87] approx-

imation requires solving a nonlinear equation, just like the exact solution of Gupta

and Ma. Nairy and Rao [88] suggested using the second step in a Newton-Raphson

algorithm as an approximate solution for Equations 3.5 and Equation 3.6. Sinha et al.

[84] claim that for general k,

ĈV MLE ≈
√√√√1 − 1∑k

i=1 Ni

k∑
i=1

Ni

1 + Ni−1
Ni

ĈV
2

i

.

This approximation underestimates the MLE slightly. The difference is noticeable for

CV near the upper edge of the practical range.

An improved analytical approximation is

ĈV MLE ≈

√√√√√√
∑k

i=1 Ni −
∑k

i=1
Ni

1+
Ni−1

Ni
dCV

2

i∑k
i=1

Ni

1+
Ni−1

Ni
dCV

2

i

. (3.10)

Extensive computations indicate that for CV ≤ 0.4, this approximation is accurate to

the fourth nonzero decimal place, even for small Nis and k. Because of this accuracy,

I shall treat Equation 3.10 as the exact MLE.

3.2.2 Theoretical comparison of estimators

One good property that all the estimators share is that they are all functions of the

data only through the maximal invariant.

It is possible to derive approximate expected values and variances for each estima-

tor. These expressions are complicated and not all that informative, so I shall not rely

heavily on them. In any case, they are only approximations, and so the small-sample

biases and variances would have to be determined by simulation. However, we can still

make a few theoretical points.
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Bias of estimators

By design, the bias in CV MV should be small, in all samples.

Now ĈV
2

i =
CV 2 Ui

Ni−1„
1+2 CV√

Ni
Zi+

CV 2

Ni
Z2

i

« . Then E(ĈV
2

i ) = E

(
CV 2 1

1+2 CV√
Ni

Zi+
CV 2

Ni
Z2

i

)
, and

taking a second-order Taylor expansion (Definition 1.3.8.7) of the second factor around
1

1+ CV 2

N

, we get

E(ĈV
2

i ) ≈ CV 2 1

1 + CV 2

Ni

⎛⎜⎝1 +
2CV 2

Ni
+ CV 4

Ni(
1 + CV 2

Ni

)2

⎞⎟⎠ ≡ CV 2a(CV,Ni).

Now a(CV,Ni) will be slightly greater than 1, and will converge to 1 as Ni increases.

It’s largest value in the range of CV s we are considering is 1.07 for CV = 0.4, Ni = 2.

So
∑k

i=1 ĈV
2

i is essentially an unbiased estimator of CV 2; this makes sense since we

saw in the last chapter that the bias in ĈV is due largely to the bias in S, and S2 is

actually unbiased. However, by Jentzen’s inequality, E
√

Y <
√

E(Y ), so CV S should

have some downward bias, except perhaps for small Ni situations with a high CV .

From Equation 2.17 we can get

∂ ln(CM(θ))

∂θ
=

k∑
i=1

Ni − 1

2

CV 2

1 + Ni−2
Ni

CV 2
.

Then by Equation 2.17, Equation 3.2, and Theorem 1.3.4.1, we can derive

E

⎛⎝ k∑
i=1

(Ni − 1)(ĈV
M

MLE)2

1 + Ni−2
Ni

(ĈV
M

MLE)2

⎞⎠ ≡ E(b(ĈV
M

MLE))

≈ b(CV ) ≡
k∑

i=1

(Ni − 1)
CV 2

1 + Ni−2
Ni

CV 2
.

(3.11)

This approximation will be extremely close, since it is based ultimately on Proposition

4.

Now we essentially have E(b(ĈV
M

MLE)) = b(CV ). If the sample sizes are equal,
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Equation 3.3 gives us b−1. Taking the second derivative of b−1, we find that it will be

negative for all but extreme values of the ĈV is. Then b−1 is concave over the relevant

part of its domain, and then by Jentzen’s inequality

b−1
(
E(b(ĈV

M

MLE))
)

= CV > E
(
b−1(b(ĈV

M

MLE))
)

= E(ĈV
M

MLE), (3.12)

and we would expect ĈV
M

MLE to be downward biased.

To compare CV S and ĈV
M

MLE, set ĈV 1 = . . . = ĈV k = ĈV and N1 = . . . = Nk =

N∗ and take the ratio of Equation 3.1 over Equation 3.3. With some algebra, that

ratio is 1 + 1
N∗ ĈV

2
. The implications are that these two estimators should be very

close and that CV S > ĈV
M

MLE, and therefore presumably less biased.

From Equation 3.2 and Equation 3.10, we can derive

k∑
i=1

NiĈV
2

MLE

1 + ĈV
2

MLE

=
k∑

i=1

(Ni − 1)(ĈV
M

MLE)2

1 + Ni−2
Ni

(ĈV
M

MLE)2
. (3.13)

Consider the ratio
Ni

dCV
2

MLE

1+dCV
2

MLE

(Ni−1)(dCV
M

MLE)2

1+
Ni−2

Ni
(dCV

M

MLE)2

. (3.14)

If ĈV MLE = ĈV
M

MLE, then this ratio would be

Ni

Ni−1

(
1 + Ni−2

Ni
(ĈV

M

MLE)2
)

1 + (ĈV
M

MLE)2
=

Ni

Ni−1
+ Ni−2

Ni−1
(ĈV

M

MLE)2

1 + (ĈV
M

MLE)2

=
(1 + (ĈV

M

MLE)2)Ni − 2(ĈV
M

MLE)2

(1 + (ĈV
M

MLE)2)Ni − (1 + (ĈV
M

MLE)2)
.

(3.15)

This will be at least 1 as long as 2(ĈV
M

MLE)2 ≤ 1+(ĈV
M

MLE)2 or ĈV
M

MLE ≤ 1. But this

ratio increases if ĈV MLE increases, meaning that for values of CV near the practical

range, if ĈV MLE ≥ ĈV
M

MLE, then each term of the right hand side of Equation 3.13

will be greater than the corresponding term on the left hand side. Then in order for
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the equality to hold, ĈV MLE < ĈV
M

MLE. So ĈV MLE will have a greater downward

bias than ĈV
M

MLE.

Consistency of estimators

There are two different ways for the number of observations in our data to converge

to infinity: via increasing the sample sizes for individual populations, or by increasing

the number of populations. Here I shall simplify the reasoning by assuming that

N1 = . . . = Nk = N∗. Estimators that converge in probability with N∗ will be called

N∗-consistent, and those that converge in probability with k will be called k-consistent.

Each individual ĈV i has a bias that converges upward to 0 with N∗. Thus, increas-

ing k without increasing N∗ will cause the uncorrected weighted average to converge in

probability to a quantity that is less than the true CV , while increasing N∗ will bring

about convergence to the desired quantity.

Since CV MV is bias-corrected, the weighted average that we are working with should

be consistent whether we increase N∗ or k.

Now ĈV
2

i converges in probability with N∗ to CV 2, so CV S has N∗-consistency.

As we have seen, there is essentially no bias in ĈV
2

i , so the weighted average should

converge in probability to a quantity very close to CV 2 as k increases, imparting k-

consistency to CV S by Theorem 1.3.6.5 part 1. (There might be a slight upward bias

for high CV , low N∗ cases.)

By the basic properties of the MLE (Theorem 1.3.6.2 and Theorem 1.3.6.1 part 2),

ĈV MLE is N∗-consistent and ĈV
M

MLE is k-consistent. The N∗-consistency of ĈV
M

MLE

can be shown arithmetically from Equation 3.3 after applying Proposition 3.

We can show, however, that ĈV MLE is not k consistent. (The reason that k-

consistency of ĈV MLE does not follow from Theorem 1.3.6.2 is that the Theorem

assumes that the number of parameters does not grow with the sample size, but there

will be k sample means.) From Equation 3.13, setting Ni = N∗, conducting some

algebra, and using the fact that ĈV
M

MLE converges with k to CV, we get that ĈV MLE
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converges with k to √√√√√ N∗−1
N∗

CV 2

1+ N∗−2
N∗ CV 2

1 − N∗−1
N∗

CV 2

1+ N∗−2
N∗ CV 2

= CV

√
N∗ − 1

N∗ − CV 2
. (3.16)

ĈV MLE maintains a downward bias as k grows. This result is not surprising. Full-data

maximum likelihood underestimates standard deviations for a normal population by a

factor of
√

N∗−1
N∗ ; it ignores the loss in degrees of freedom from estimating the mean.

Adding a number of independent samples from different populations to the data will

not correct this bias, due to the need to estimate each mean. Using the marginal

likelihood of the ĈV is avoids this problem.

In summary, we would expect that for cases where N∗ is large, the various estimators

would be very similar, while for small N∗, large k situations, the downward bias in

ĈV MLE would make it less desirable.

Variance of Estimators

Under regularity conditions, the MLE is asymptotically efficient (see [2], Chapter 10).

This would lead us to expect that the MLEs and CV S, which is an approximation of

ĈV
M

MLE, will have a smaller variance than CV MV . This expectation is strengthened by

the fact that, if Equation 2.17 is valid, b(ĈV
M

MLE) is the minimum-variance unbiased

estimator of b(CV ), which can be shown using Corollary 7.3.15 of Casella and Berger

[2].

3.2.3 Simulation comparison of point estimators

The only simulation evidence in the literature is in Zeigler [53]. He compared the bias

and variance of
Pk

i=1 Ni
dCV iPk

i=1 Ni
, ĈV from Equation 2.13, and the MLE based on McKay’s

approximation. His simulations did not include small N∗, large k cases (defined here

as N∗ < 5) or cases where the sample sizes differed.

The simulation study here will compare the bias, standard deviation, and mean

squared error of CV MV , CV S, ĈV
M

MLE, and ĈV MLE, with combinations of k =
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2, 4, 8, 16, 32 and N∗ = 2, 3, 5, 10, 15, 20. These combinations were chosen to encompass

the range of situations where there might be noticeable difference among the estima-

tors, including the small N∗, large k case. I will show results for a small value of CV

(0.05), and a value that is above the upper end of the practical range (0.4). Recall that

since the estimators are functions of the data through the ĈV is only, the simulation

results will not depend on the μis.

The data in the simulations have been generated from a normal distribution that has

been truncated at 0. For the CV = 0.4, small N∗ cases, this was necessary to avoid the

problem of negative sample CV s. Also, because of the fact that in most cases the data

will have nonnegative support, a normal model for the data is effectively a truncated

normal model.

Tables 3.4 and 3.5 show the percentage bias in the various estimators for cases

where N1 = . . . = Nk = N∗. The largest standard error for any of the quantities

reported in the two tables is 0.4.

As expected, CV MV has almost no bias for small CV . But there is some bias

in CV MV due to the need to estimate the correction factor 1 + CV 2

Ni
, and as it turns

out, this source of bias is noticeable for high values of CV . CV S generally has the

smallest bias for high CV . The convergence of ĈV
M

MLE with k is slow with high CV ;

we notice some differences between CV S and ĈV
M

MLE with high CV , but not with low

CV . ĈV MLE turns out to have unacceptable bias; as predicted, increases in k do not

eliminate the bias.

Table 3.6 looks at the bias in cases where half the Nis equal Nl, and half equal Nh.

This table does not alter the conclusions from the equal-sample size case. The highest

standard error in Table 3.6 is 0.25.

Tables 3.7 through 3.9 have the square root of the mean squared errors of the point

estimators, expressed as a percentage of the underlying CV . The standard error of

the mean squared error for a scenario is
√

1
s

Ps
i=1(Ti−CV )4−s×MSE2

s
, where Ti is the value

of the point estimate of CV from the ith simulated dataset and s is the number of

simulated datasets. The standard error of the root mean squared error is 1
2RMSE

times

the standard error of the mean squared error. The largest standard error for a quantity

in the RMSE tables in 0.3. For low values of CV , CV S and ĈV
M

MLE have slightly
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Table 3.4: Bias in point estimate as percentage of common CV , CV = 0.05

N∗ k CV MV CV S ĈV
M

MLE ĈV MLE

2 4 0.3 -5.5 -5.7 -33.2

2 8 0.1 -2.8 -2.9 -31.3

2 16 -0.4 -1.8 -1.9 -30.6

2 32 -0.2 -0.7 -0.9 -29.9

3 2 0.0 -5.9 -6.0 -23.2

3 4 -0.4 -3.3 -3.4 -21.1

3 8 0.0 -1.3 -1.4 -19.5

3 16 0.0 -0.7 -0.8 -19.0

3 32 0.3 0.0 -0.1 -18.4

5 2 -0.3 -3.2 -3.3 -13.5

5 4 0.1 -1.4 -1.4 -11.8

5 8 0.1 -0.7 -0.8 -11.2

5 16 -0.1 -0.5 -0.5 -11.0

10 2 0.1 -1.3 -1.3 -6.3

10 4 0.1 -0.6 -0.6 -5.7

10 8 0.0 -0.3 -0.3 -5.4

10 16 -0.1 -0.2 -0.3 -5.4

lower RMSE than CV MV . For high values, the two low-RMSE estimators are CV MV

and ĈV
M

MLE. In light of the bias in ĈV MLE, it is not surprising that it has the highest

RMSE.

The estimators in the first three columns in the tables above are all very close in

terms of their bias and RMSE. ĈV
M

MLE can be a bit more tricky to compute if the

sample sizes are not equal. CV S is the most easily computed. On the whole, the

properties of the estimators in the first three columns offer only slight improvements
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Table 3.5: Bias in point estimate as percentage of common CV , CV = 0.40

N∗ k CV MV CV S ĈV
M

MLE ĈV MLE

2 4 -6.9 -0.2 -9.8 -33.1

2 8 -5.0 4.0 -6.8 -31.3

2 16 -4.4 5.5 -5.8 -30.7

2 32 -4.2 6.2 -5.5 -30.5

3 2 -5.7 -3.7 -8.9 -23.2

3 4 -3.9 0.6 -5.9 -20.9

3 8 -3.6 2.1 -5.0 -20.3

3 16 -3.5 2.8 -4.7 -20.1

3 32 -3.3 3.4 -4.3 -19.8

5 2 -3.9 -2.9 -5.9 -14.4

5 4 -3.6 -1.1 -4.9 -13.5

5 8 -3.4 -0.2 -4.3 -13.1

5 16 -3.1 0.5 -3.9 -12.7

10 2 -3.2 -2.8 -4.3 -8.5

10 4 -2.9 -1.7 -3.5 -7.8

10 8 -3.0 -1.4 -3.5 -7.7

10 16 -3.0 -1.3 -3.4 -7.7

over those explored by Zeigler [53].

3.3 Literature Review on Test of CV Homogeneity

in Normal Populations

Section 3.3 will use the notation of Section 2.4.

There is a rather large literature on testing CV homogeneity against a general
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Table 3.6: Bias in point estimate as percentage of common CV , sample sizes not identical

CV Nl Nh k CV MV CV S ĈV
M

MLE ĈV MLE

0.05 2 10 2 -0.2 -2.7 -2.6 -11.1

0.05 2 10 4 0.0 -1.3 -1.3 -9.9

0.05 2 10 8 0.0 -0.6 -0.6 -9.3

0.05 2 10 16 0.0 -0.2 -0.3 -9.0

0.05 2 10 32 -0.1 -0.2 -0.2 -8.9

0.05 10 20 2 -0.1 -0.9 -0.9 -4.3

0.05 5 10 4 0.0 -0.9 -0.9 -7.7

0.05 2 5 8 0.1 -1.1 -1.1 -16.4

0.05 2 5 16 0.1 -0.4 -0.5 -15.9

0.05 2 5 32 0.0 -0.1 -0.2 -15.6

0.4 2 10 2 -3.4 -2.8 -5.2 -12.6

0.4 2 10 4 -3.3 -1.2 -4.3 -11.8

0.4 2 10 8 -3.2 -0.5 -4.0 -11.5

0.4 2 10 16 -2.9 0.1 -3.6 -11.2

0.4 2 10 32 -3.0 0.2 -3.6 -11.1

0.4 10 20 2 -3.0 -2.7 -3.6 -6.4

0.4 5 10 4 -3.2 -1.6 -4.1 -9.8

0.4 2 5 8 -3.5 1.3 -4.8 -17.9

0.4 2 5 16 -3.4 1.9 -4.4 -17.7

0.4 2 5 32 -3.3 2.4 -4.2 -17.5
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Table 3.7: Root MSE as percentage of common CV , CV = 0.05

N∗ k CV MV CV S ĈV
M

MLE ĈV MLE

2 4 37.6 34.7 34.5 41.1

2 8 26.7 24.9 24.8 35.9

2 16 19.0 17.8 17.7 33.1

2 32 13.3 12.5 12.4 31.1

3 2 36.9 34.7 34.6 36.3

3 4 25.7 24.5 24.4 28.9

3 8 18.4 17.6 17.5 24.2

3 16 13.0 12.5 12.5 21.5

3 32 9.3 8.9 8.8 19.8

5 2 25.7 24.9 24.9 25.8

5 4 18.0 17.4 17.4 19.5

5 8 12.8 12.4 12.4 15.8

5 16 9.2 8.9 8.9 13.6

10 2 16.7 16.6 16.6 16.9

10 4 11.9 11.8 11.7 12.5

10 8 8.5 8.4 8.3 9.6

10 16 6.1 5.9 5.9 7.8

alternative that there is at least some difference. Proposed tests can be divided into 4

categories.

3.3.1 Tests based on the likelihood of the full data

The likelihood ratio (LR) test was first proposed by Miller and Karson [22] and further

explored by Bennett [87], Doornbos and Dijkstra [85], and Bhoj and Ahsanullah [89].

In this chapter, when I refer to the “likelihood ratio statistic,” I actually mean the
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Table 3.8: Root MSE as percentage of common CV , CV = 0.40

N∗ k CV MV CV S ĈV
M

MLE ĈV MLE

2 4 31.1 39.3 32.0 41.1

2 8 22.9 29.1 22.8 35.7

2 16 16.5 21.2 16.3 33.0

2 32 12.2 15.8 12.1 31.7

3 2 33.4 38.5 34.4 37.5

3 4 24.0 27.7 23.9 29.3

3 8 17.4 20.1 17.1 24.9

3 16 12.6 14.5 12.4 22.6

3 32 9.1 10.6 9.2 21.1

5 2 24.8 26.7 25.0 27.0

5 4 17.8 19.0 17.7 20.9

5 8 12.9 13.6 12.8 17.3

5 16 9.3 9.7 9.3 15.0

10 2 17.4 17.9 17.5 18.5

10 4 12.4 12.7 12.5 14.0

10 8 9.1 9.1 9.1 11.3

10 16 6.7 6.5 6.8 9.6

transformation of the statistic that is asymptotically χ2 (Theorem 1.3.6.13).

Gupta and Ma [86] also proposed a score test.

All proposed likelihood-based tests in the literature rely on the well-known asymp-

totic χ2 distributions of likelihood-based statistics for their p-values (see [8]). Also, all

of these tests utilize the full likelihood rather than the likelihood of the sample CV s.

Using the solutions to Equation 3.8 and Equation 3.6, Gupta and Ma’s formula for
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Table 3.9: Root MSE as percentage of common CV

CV Nl Nh k CV MV CV S ĈV
M

MLE ĈV MLE

0.05 2 10 2 22.8 22.6 22.2 23.0

0.05 2 10 4 16.0 16.1 15.7 17.4

0.05 2 10 8 11.6 11.6 11.3 13.9

0.05 2 10 16 8.1 8.1 8.0 11.5

0.05 2 10 32 5.7 5.7 5.6 10.3

0.05 10 20 2 13.4 13.3 13.3 13.5

0.05 5 10 4 14.1 13.9 13.8 15.0

0.05 2 5 8 16.4 16.2 15.8 21.2

0.05 2 5 16 11.7 11.5 11.3 18.5

0.05 2 5 32 8.3 8.1 8.0 17.0

0.4 2 10 2 22.9 24.9 22.9 24.5

0.4 2 10 4 16.3 17.6 16.2 18.8

0.4 2 10 8 11.6 12.4 11.6 15.4

0.4 2 10 16 8.6 8.9 8.6 13.3

0.4 2 10 32 6.4 6.4 6.6 12.3

0.4 10 20 2 14.0 14.2 14.0 14.8

0.4 5 10 4 14.3 14.9 14.3 16.4

0.4 2 5 8 15.9 18.1 15.6 22.3

0.4 2 5 16 11.6 13.0 11.5 20.1

0.4 2 5 32 8.5 9.4 8.5 18.7
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the actual likelihood ratio statistic to carry out the test is

−2 ln λ ≡ Σk
i=1Ni ln

⎛⎝ μ̂2
i, MLEĈV

2

MLE

Ni−1
Ni

S2
i

⎞⎠ . (3.17)

This statistic is asymptotically χ2
k−1.

Gupta and Ma also derived the score statistic:

ĈV
2

MLE(2ĈV
2

MLE + 1)

2
Σk

i=1

(
1

Ni

)⎛⎝ΣNi
j=1(Xij − μ̂i, MLE)2

μ̂2
i, MLEĈV

3

MLE

− Ni

ĈV MLE

⎞⎠2

, (3.18)

which again is approximately χ2
k−1.

Pardo and Pardo [90] developed tests based on Renyi’s divergence, which is a mea-

sure of the distance between two densities. For two multivariate densities on �p from

the same family f parameterized by θ1 and θ2 respectively, Renyi’s divergence between

them is 1
b(b−1)

ln
(∫

	a fY(y; θ1)
bfY(y; θ2)

1−bdy
)
, where b is arbitrarily chosen. If θ̂MLE

and θ̂R are substituted for θ1 and θ2, where θ̂R is the maximum likelihood estimate of

the parameters under r restrictions, Renyi’s divergence becomes a statistic for testing

the restrictions. Morales et al [91] proved that if certain regularity conditions hold, the

Renyi’s divergence statistic, multiplied by 2N , is asymptotically χ2
r.

If f represents an exponential family, then as b → 0, the scaled Renyi’s statistic

converges to −2 ln λ, where λ is the likelihood ratio. Thus, the test based on Renyi’s

divergence is a generalization of the likelihood ratio test. Different choices of b generate

different tests.

3.3.2 Tests based on the likelihood of the sample CV s.

Bennett’s test and the modified Bennett test were mentioned in Section 2.4.2. The

“slight mistake” in Bennett’s formula comes from the fact that he substitutes
√

N
N−1

ĈV

for ĈV in McKay’s approximation (Equation 2.4) before deriving the test statistic

using Pitman’s formula. The test statistics are likelihood ratios from an approximate

marginal likelihood for the sample CV s.
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3.3.3 Tests based on the delta method approximation

The Wald test of a hypothesis is based on a quadratic form of h(θ̂MLE, θ̂R, a function

that indicates how far away θ̂MLE is from the set of parameter vectors that would fulfill

the null hypothesis. One of the keys to the Wald test is that any nuisance parameters in

the expression for the statistic are replaced by a consistent estimate. Theorem 1.3.6.2,

Theorem 1.3.5.11, part 1, Theorem 1.3.6.5, and Theorem 1.3.6.6 together imply that

the Wald statistic for testing the null of CV homogeneity is asymptotically χ2
k−1, which

is how the p-value is calculated for the Wald test. The Wald statistic draws independent

justification in this case from the delta-method approximation for the sample CV in

Equation 2.6.

If k = 2, the Wald test statistic is√
N1−1

N1
ĈV 1 −

√
N2−2

N2
ĈV 2√

N1−1
N1

dCV
2

1

2N1
+
(

N1−1
N1

)2 dCV
4

1

N1
+ N2−1

N2

dCV
2

2

2N2
+
(

N2−1
N2

)2 dCV
4

2

N2

.

Closely-related test statistics were proposed independently by Rao and Vidya [92] and

Bhoj and Ahsanullah [89]. Gupta and Ma [86] extended the Wald test to general k

and sample sizes. Their statistic is

hT
(
HT G−1H

)−1
h,

where I have derived that

h ≡

⎛⎜⎜⎜⎜⎝
√

N1−1
N1

ĈV 1 −
√

N2−2
N2

ĈV 2

...√
Nk−1−1

Nk−1
ĈV k−1 −

√
Nk−1

Nk
ĈV k

⎞⎟⎟⎟⎟⎠ ,
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where

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

N1−1
N1

ĈV 1

(
1/X̄1

)
. . . 0√

N2−1
N2

ĈV 2

(
1/X̄2

)
. . . 0

0 . . . 0
... . . .

...

0 . . . −
√

Nk−1−1

Nk−1
ĈV k−1

(
1/X̄k−1

)
0 . . .

√
Nk−1

Nk
ĈV k

(
1/X̄k

)
1/X̄1 . . . 0

−1/X̄2 . . . 0

0 . . . 0
... . . .

...

0 . . . 1/X̄k−1

0 . . . 1/X̄k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

G−1 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1−1
N1

S2
1

N1
0 . . . 0 0 0 . . . 0

0
. . . . . . 0 0 0 . . . 0

0 . . .
. . . 0 0 0 . . . 0

0 . . . 0
Nk−1

Nk
S2

k

Nk
0 0 . . . 0

0 0 . . . 0
N1−1

N1
S2

1

2N1
0 . . . 0

0 0 . . . 0 0
. . . . . . 0

0 0 . . . 0 0 . . .
. . . 0

0 0 . . . 0 0 0 . . .
Nk−1

Nk
S2

k

2Nk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the CV s are equal under Ho, the efficiency of the Wald statistic can be

improved by substituting a weighted average of the ĈV is for each ĈV i in the expres-
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sions for H and G−1, thereby reducing the variation of the estimated variances of the

ĈV is. Miller [81] proposes a variant of the Wald statistic that does just this. He uses a

slightly different h, in which the ith element is ĈV i−ĈV k, with the H matrix modified

appropriately.

Feltz and Miller [11] pointed out that there is no “correct” h vector and that the

Wald test is not invariant to the choice of h. A researcher using the Wald test must not

change the h vector looking for the result he wants. The h vector whose ith element is

the difference of ĈV i from a sample size-weighted average would seem to be reasonable.

In keeping with this, Feltz and Miller proposed the statistic for their test mentioned

in Chapter 2. FM (Equation 2.21) is not technically a Wald statistic, because it does

not take covariance between terms of the form ĈV i − C̄V into account. Ahmed [60]

independently proposed a statistic that is identical to Feltz and Miller’s except thatPk
i=1 Ni

dCV iPk
i=1 Ni

is substituted for C̄V , and in keeping with this, Ni − 1 is replaced by Ni in

the denominator.

Both Ahmed’s and Feltz-Miller’s statistics are asymptotically χ2
k−1 under the null

as the sample sizes grow, as discussed in Chapter 2.

3.3.4 Tests based on 1
ĈV

Nairy and Rao [88] claim to create new tests by deriving the likelihood ratio and score

tests for the null hypothesis 1
CV1

= . . . = 1
CVk

. However, the likelihood ratio and

score tests are invariant to reparameterization, so their tests should not perform any

differently than Gupta and Ma’s.

They also present a Wald test based on the row vector

NR ≡

⎛⎜⎜⎜⎜⎝
1dCV 1

− 1dCV 2

. . .

1dCV 1
− 1dCV k

⎞⎟⎟⎟⎟⎠ .

The delta-method approximation of V ar( 1dCV i
) is 1

Ni

(
1 +

1
CVi

2

2

)
. Thus, an estimate of
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the covariance matrix of NR is⎛⎜⎜⎜⎜⎝
V̂ ar( 1dCV 1

) + V̂ ar( 1dCV 2
) V̂ ar( 1dCV 1

) . . . V̂ ar( 1dCV 1
)

...
. . .

...

V̂ ar( 1dCV 1
) . . . V̂ ar( 1dCV 1

) V̂ ar( 1dCV 1
) + V̂ ar( 1dCV k

)

⎞⎟⎟⎟⎟⎠ ,

where V̂ ar
(

1dCV i

)
= 1

Ni

(
1 +

1
dCV i

2

2

)
.

This statistic is asymptotically χ2
k−1.

Doornbos and Dijkstra [85] use a related statistic for their test:
∑k

i=1 Ni

(
1dCV i

− 1dCV

)2

,

where 1̄dCV
is the sample-size weighted average of the 1dCV i

s. They derive the mean and

variance of this statistic using the noncentral t distribution of the
√

NidCV i
s, and create a

standardized version of their statistic which has an asymptotic χ2
k−1 distribution.

Hedges and Olkin [93] follow a similar strategy. The difference is that their statis-

tic is a sum of squared standardized deviations, while Doornbos and Dijkstra’s is a

standardized sum of squared deviations.

3.3.5 Evaluating existing tests

Summarizing, we have a dozen tests.

• Likelihood-based tests: Likelihood ratio, Score, Renyi’s Divergence.

• McKay’s approximation: Bennett, Modified Bennett.

• Delta method tests: Wald, Miller, Feltz and Miller, Ahmed.

• Inverse CV tests: Wald, Doornbos and Dijkstra, Hedges and Olkin.

For practical reasons, a practitioner would report only a few of these in any analysis.

Here, I shall argue that there is no reason to keep more than two in the toolbox.

Three review studies have been done on the topic of testing CV homogeneity against

a general alternative in normal populations: Gupta and Ma [86], Fung and Tsang [94],

and Nairy and Rao [88]. These studies are helpful but do not present a complete

picture. In none of Gupta and Ma’s reported simulations are all of the population CV s

in the practical range. Also, they present their data in charts rather than in tables,
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so it is impossible to ascertain whether differences between tests in Type I or Type II

error are statistically significant. Fung and Tsang consider only two of the above tests

– the likelihood ratio test and Feltz/Miller. Nairy and Rao’s simulations consider more

tests, but only one of the two tests we shall identify as most promising.

We can rule out Renyi’s divergence statistic because it is not scale invariant. Pardo

and Pardo [90] show that Renyi’s divergence statistic is a monotonic function of

k∑
i=1

Ni(X̄i − μ̂i,MLE)2

(1 − b)Ni−1
Ni

S2
i + bμ̂2

i,MLECV 2
MLE

+
Ni

b(1 − b)
ln

(1 − b)Ni−1
Ni

S2
i + bμ̂2

i,MLECV 2
MLE

(Ni−1)1−b

N1−b
i

S2−2b
i + μ̂2b

i,MLECV 2b
MLE

.

Via simulation, I have verified that for general b, the distribution of this statistic

depends on the μis. Recall from Section 2.1.2 that from the invariance principle,

inference on the CV should not be dependent on the population means.

However, the remaining 11 test statistics are scale invariant. For the latter three

categories of tests, this can be seen from the fact that all are functions of the data

only through the ĈV is. (For the Wald test, this takes some straightforward matrix

multiplication to show.)

Consider the likelihood ratio statistic in Equation 3.17. Now ĈV MLE is a function

of the ĈV is alone, so we can write it as ĈV MLE(ĈV 1, . . . , ĈV k). Plugging this into

Equation 3.7, we can then write μ̂i, MLE = a(Ni, ĈV i, CV )X̄i. Then from 3.17 the

likelihood ratio statistic is

−2 ln λ = Σk
i=1Ni ln

(
a(Ni, ĈV i, CV )X̄2

i ĈV
2

MLE(ĈV 1, . . . , ĈV k)
Ni−1

Ni
S2

i

)
(3.19)

= Σk
i=1Ni ln

⎛⎝a(Ni, ĈV i, CV )ĈV
2

MLE(ĈV 1, . . . , ĈV k)

Ni−1
Ni

ĈV
2

i

⎞⎠ , (3.20)

which is a function of the data only through the ĈV is.
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To show that the distribution of the score statistic does not depend on the μis,

from Equation 3.18 it is sufficient to show that
(Xij−μ̂i, MLE)2

μ̂2
i, MLE

has a distribution that

does not depend on the μis. We can write this as(
μi

Xij

μi
− μ̂i, MLE

)2

μ̂2
i,MLE

=

(
μi

μ̂i, MLE

Xij

μi

− 1

)2

=
μi

X̄i

Xij

μi

1

a(Ni, ĈV i, CV )
− 1.

And from Section 2.1.2, we can deduce that the distribution of
Xij

μi
and thus X̄i

μi
is free

of μi.

However, both the score and LR tests have other shortcomings. Simulation results

from Doornbos and Dijkstra [85], Fung and Tsang [94], and Nairy and Rao [88] indicate

that the likelihood ratio test is unacceptably liberal – it over-rejects in small samples

(Ni ≤ 15). Nairy and Rao’s simulations indicate that the score test is the opposite –

unacceptably conservative.

We can also rule out Bennett’s test, since the modified Bennett test is more con-

sistent with the original motivation of the test. Simulations in Shafer and Sullivan

[80] and elsewhere indicate that in any case, the difference between the two versions is

miniscule.

Since the Feltz-Miller test bases its delta-method variance estimates on an estimate

of the common CV while the Wald test bases its variance estimates on the individual

ĈV is, the Feltz-Miller test will be less variable and presumably more powerful. For

the exact same reason, we would expect the Feltz-Miller test to be preferable to the

inverse Wald test.

Feltz-Miller is preferable to Miller’s original test because of the implicit choice of

h. Their h corrects the problem in Miller’s original test that the value of the statistic

depends on how one numbers the populations.

The differences between Ahmed’s test and Feltz and Miller’s will be small. Which

is preferable depends on whether weighting by degrees of freedom or by sample size

produces a better χ2 approximation. The fact that using degrees of freedom in the

expression for the approximate variance produces a more accurate delta-method ap-
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proximation would favor Feltz and Miller’s test.

Doornbos and Dijkstra as well as Feltz and Miller have done simulation studies of

the Doornbos-Dijkstra test based on the non-central t. One set of authors has a mistake

in their code, because Doornbos and Dijkstra find that their test is too conservative

while Feltz and Miller find that the test is too liberal. For instance, if CV = 0.1, k = 4,

and N1 = . . . = N4 = 10, for a test of nominal size 0.05, Doornbos and Dijkstra find

that the actual size is 0.034 (standard error 0.007) while Feltz and Miller’s results show

an actual size of 0.156 (standard error 0.002). (The conservatism of the Doornbos and

Dijkstra test is apparent in all the scenarios in their paper, so it is safe to conclude

that their code yields a conservative test despite the high standard error for that one

scenario.) Whichever set of authors is right, the Doornbos and Dijkstra test does not

have the right size.

Feltz and Miller provide simulation results for the Hedges and Olkin test. For k = 4,

it appears to have about the same size as the variants of Bennett’s test, but for k = 2

it has much smaller power.

Thus, we have seen strikes against the Likelihood ratio test, Renyi’s divergence test,

the Bennett test, the Wald test, Miller’s test, Ahmed’s test, the inverse CV Wald test,

Doornbos and Dijkstra’s test, and the Hedges and Olkin test. This leaves us with the

modified Bennett test and Feltz-Miller. Feltz and Miller found that their test and the

modified Bennett test had about the same Type I error and power.

3.4 Using a stochastic representation to obtain con-

fidence intervals

Section 3.4 explains an idea to create an exact (up to Monte Carlo error) confidence

interval for the common CV of k normal samples and a Monte Carlo idea to create an

approximate confidence interval for the difference between two CV s.
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3.4.1 Exact confidence interval for common CV

While Tian [20] based an approximate test on the weighted average of the sample CV s,

a fiducial test that turns out to be exact can be based on the weighted average of the

inverse sample CV s.

From Equation 2.1, we get

1

CV
=

k∑
i=1

(Ni − 1)

ĈV i

=

(
1

CV

k∑
i=1

(Ni − 1)3/2

√
Ui

+
k∑

i=1

(Ni − 1)3/2

√
Ni

Zi√
Ui

)

Let the observed value of
∑k

i=1
Ni−1dCV i

be denoted 1
CV O

. Then under Ho : CV = CVo,

ProbCVo

(
k∑

i=1

Ni − 1

ĈV i

>
1

CV O

)
=

Prob

(
1

CVo

k∑
i=1

(Ni − 1)3/2

√
Ui

+
k∑

i=1

(Ni − 1)3/2

√
Ni

Zi√
Ui

>
1

CV O

)
=

Prob

⎛⎝ 1

CVo

>

1
CV O

−∑k
i=1

(Ni−1)3/2
√

Ni

Zi√
Ui∑k

i=1
(Ni−1)3/2√

Ui

⎞⎠ =

Prob

⎛⎝CVo <

∑k
i=1

(Ni−1)3/2
√

Ui

1
CV O

−∑k
i=1

(Ni−1)3/2√
Ni

Zi√
Ui

≡ E

⎞⎠ . (3.21)

This is an exact p-value for testing the hypothesis Ho : CV = CVo against Ha :

CV < CVo using the rejection region of the form
∑k

i=1
Ni−1dCV i

> c. For the p-value for

the alternative Ha : CV > CVo, reverse the sign of the final inequality. For two-sided

p-values, multiply the smaller one-sided p-value by 2. Calculating these p-values can be

done via simulation, using a large number of draws of {Z1, . . . , Zk} and {U1, . . . , Uk}.
To create a confidence interval of level 1 − α, take a large number of draws of

{Z1, . . . , Zk} and {U1, . . . , Uk} and simply treat the α
2
th and 1− α

2
th percentiles of the

right-hand side of Equation 3.21 as the upper and lower limits of the interval.

Simulation results indicate that this interval is noncompetitively wide as compared
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to the intervals in the last two columns of Table 2.3.

3.4.2 Monte Carlo approximate intervals for CV2 − CV1

Suppose we seek to create a confidence interval by pivoting around ĈV 1 − ĈV 2. The

Miller-Feltz interval utilizes the normal approximation, inserting ĈV 1 and ĈV 2 for

the nuisance parameters CV1 and CV2. Here, I shall also utilize the sample CV s as

estimates of the true CV s, but I shall use the exact distribution rather than the normal

approximation as the basis for the calculations.

We would like to find Δl and Δu such that

Pr(Δl < ĈV 1 − ĈV 2 − (CV1 − CV2) < Δu) = 1 − α.

Plugging in Equation 2.2, this equation solves

Pr(Δl < CV1

⎛⎝
√

U1

N1−1

1 + CV1
Z1√
N1

− 1

⎞⎠− CV2

⎛⎝
√

U2

N2−1

1 + CV2
Z2√
N2

− 1

⎞⎠ < Δu) = 1 − α.

Now substituting in ĈV 1 and ĈV 2, Δl and Δu are approximately equal to the α
2
th and

1 − α
2
th percentiles of

ĈV 1

⎛⎝
√

U1

N1−1

1 + ĈV 1
Z1√
N1

− 1

⎞⎠− ĈV 2

⎛⎝
√

U2

N2−1

1 + ĈV 2
Z2√
N2

− 1

⎞⎠ ,

which we can find via simulation, taking a large number of draws of U1, Z1, U2, and

Z2.

Then the confidence interval for CV2 − CV1 is

lower bound = ĈV 2 − ĈV 1 + Δl,

upper bound = ĈV 2 − ĈV 1 + Δu.

Simulations indicate that this interval performs about as well in terms of width
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and coverage as the Miller-Feltz interval. But since this interval requires simulation to

compute, the Miller-Feltz interval is more convenient.

One might also consider fiducial intervals as a strategy for assessing assessing dif-

ferences between CV s. The strategy here is to obtain fiducial distributions (Definition

1.3.3.5) for CV1 −CV2 or CV2

CV1
by taking fiducial draws of CV1 and CV2 using Equation

2.11. The confidence interval bounds for either quantity would be the α
2
th and 1− α

2
th

percentiles of these distributions.

3.5 Convenient Inference on a Common CV Using

the χ2 Approximation

Section 2.3.4 presented Monte Carlo approaches to inference on a common CV with

unequal sample sizes based on the χ2 approximations in Section 2.2.4. The advantage

of the Monte Carlo approach is that the size of a test and the coverage probability

for an interval can be made as close as desired to nominal by choosing the number of

Monte Carlo draws large enough. Here I present approaches that are more convenient

but less true to Section 2.2.4.

One option with differing Nis would be to ignore the Ni−2
Ni

in Equation 2.18, which

would imply that 1+CV 2
o

CV 2
o

∑k
i=1(Ni − 1)Mi ≈ χ2Pk

i=1(Ni−1)
. This gives us a convenient

pivot for conducting tests and creating confidence intervals using χ2 tables. Here I

have essentially used McKay’s approximation to get an approximate distribution of∑k
i=1(Ni − 1)Mi.

Alternatively, adopting a Satterthwaite-type approach, we could assume
∑k

i=1(Ni−
1)Mi is distributed as a constant A times a χ2

B random variable, where A and B are
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calibrated to the expected value and variance of
∑k

i=1(Ni − 1)Mi. This would give us

A =

∑k
i=1

(
CV 2

o

1+
Ni−2

Ni
CV 2

o

)2

(Ni − 1)∑k
i=1

CV 2
o

1+
Ni−2

Ni
CV 2

o

(Ni − 1)
(3.22)

B =

(∑k
i=1

CV 2
o

1+
Ni−2

Ni
CV 2

o

(Ni − 1)

)2

∑k
i=1

(
CV 2

o

1+
Ni−2

Ni
CV 2

o

)2

(Ni − 1)

. (3.23)

We would round B to the nearest integer. We could obtain p-values for tests using

the χ2 tables, and we could obtain confidence limits by solving nonlinear equations for

CVo.

Limited simulations indicate that these two methods give outputs that are very

close to the Monte Carlo p-values and confidence limits.

Finally, from Equation 2.8 we get the following approximate pivot

k∑
i=1

(
1 + CV 2

o

CV 2
o

− 2

Ni

)
(Ni − 1)Mi ≈ χ2Pk

i=1(Ni−1)
.

The p-value for testing Ho : CV > CVo would be

Φχ2Pk
i=1(Ni−1)

(
k∑

i=1

(
1 + CV 2

o

CV 2
o

− 2

Ni

)
(Ni − 1)mi

)
.

The lower and upper confidence limits for CV would respectively solve the nonlinear

equations
k∑

i=1

(
1 + CV 2

CV 2
− 2

Ni

)
(Ni − 1)mi = χ2Pk

i=1(Ni−1),1−α
,

k∑
i=1

(
1 + CV 2

CV 2
− 2

Ni

)
(Ni − 1)mi = χ2Pk

i=1(Ni−1),α
.

Although such inference is quite convenient, it is not based on the UMP test in Pro-
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postion 6. Simulations would be needed to determine if these procedures sacrificed

power as compared to Section 2.3.4.
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Chapter 4

Monte Carlo Conditional p-value

Calculation for Continuous Data

Consider models of the form

fX(x) = C(θ)h(x)K(Tnp(x); θnp)G(x; θpi). (4.1)

Suppose one wants to test Ho : θpi = θo. By the Factorization Theorem (1.3.1.4),

Tnp is sufficient for θnp. Then by the definition of a sufficient statistic (1.3.1.1), the dis-

tribution of X conditional on Tnp = tnp is invariant to θnp. So we can conduct a similar

test using a test statistic Tpi (Definition 1.3.3.1) by calculating the p-value associated

with tpi conditional on Tnp = tnp. I shall refer to this p-value as pvTpi|Tnp(tpi|tnp). If

f belongs to an exponential family, conditioning on Tnp will lead to uniformly most

powerful similar inference, by Theorem 1.3.4.6.

If we have a goodness-of-fit statistic for testing the model in Equation 4.1, and

G = 1 (ie, we have a nontrivial sufficient statistic for the entire vector of unknown

parameters), then conditioning on Tnp will also allow us to conduct a pure (similar)

goodness-of-fit test.

But calculating p-values from the conditional distribution is problematic. Using

Theorem 1.3.5.14, we can a derive the conditional distribution of X implied by Equation

4.1:

fX|Tnp(x|tnp; θ) =
ITnp=tnph(x)G(x; θpi)∫

Tnp(y)=tnp
h(y)G(y; θpi)dy

. (4.2)

By Theorem 1.3.3.4, calculation of a conditional p-value requires evaluating an expec-

tation using this density. If Equation 4.1 is well-parameterized, the indicator function

in Equation 4.2 will define an (N − dnp)-dimensional surface in �N , which I shall call

the “support surface”. So calculating the conditional p-value would require integration

over this surface, which may be nonlinear. Such integration is not straightforward and
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is considered an “extremely difficult” [95] problem for conditional inference in general.

The support of the data may be further restricted by h and G, making the problem

even more complex.

This chapter will explore Monte Carlo approaches to calculating conditional p-

values. (see Definition 1.3.3.7). Just like numerical integration, Monte Carlo calcula-

tions are nontrivial because of the complicated support. Since the conditional support

has measure 0 under the unconditional distribution of the data, we cannot simply em-

ploy rejection sampling (Definition 1.3.5.15). While data generation on �p, a box in �p,

or a p-dimensional sphere (see Theorem 1.3.5.2) is manageable, and a few algorithms

have been published for generating data on more complicated geometric constructs

[96], there is no omnibus approach for generating data on arbitrarily-constrained sets.

WinBugs, a popular software for MCMC, limits the ability to constrain the support

to very special cases.

A special case of Equation 4.1 is

fX(x; θ) = C(θ)h(x)K

(
θ1

N∑
i=1

Wi1xi, . . . , θdnp

N∑
i=1

Widnpxi

)
G(x; θpi), (4.3)

where W would be full rank in a well-parameterized model. Such models encompass

generalized linear models (Definition 1.3.5.7) with canonical link functions (Definition

1.3.5.8). Here Tnp is the linear function WTX (Apply Theorem 1.3.1.4). The con-

ditional distribution of X given Tnp = tnp has the support WTX = tnp, which is an

(N − dnp)-dimensional hyperplane in �N if the density is well-parameterized. I shall

call this the “support hyperplane.” A kernel (Definition 1.3.5.11) for Equation 4.3 is

IWT X=tnp
h(x)G(x; θpi). (4.4)

(Apply the proof of Theorem 1.3.4.8). h and G may further restrict the support to

only part of the hyperplane.

This chapter will focus on models of the form of Equation 4.3. Monte Carlo calcu-

lation of conditional p-values will turn out to be tractable in these cases. Section 4.6

will discuss Monte Carlo conditional p-value calculation in the more general model of
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Equation 4.1.

4.1 Reduction to Data Generation on �N−dnp.

Equation 4.2 and Equation 4.4 describe the conditional density of the entire data

vector. But if the density is well-parameterized, it will be sufficient to generate from

the conditional density of the first N −dnp elements of the data vector (the meaningful

variables), since the value of the sufficient statistic determines the rest (the residual

variables). I shall call this the “marginal” conditional distribution.

Let Y = g(X), where Y1 = X1, . . . , YN−dnp = XN−dnp and Y [N−dnp+1 : N ] = Tnp.

The density of Y [1 : N − dnp] conditional on Y [N − dnp + 1 : N ] = tnp will be the

marginal conditional density we seek to derive.

If g is one-to-one, from Equation 4.1 and Theorem 1.3.5.1, the density of Y is

Ig−1(y)∈ 	N C(θ)h(g−1(y))K(y[N − dnp + 1 : N ], θnp)G(g−1(y), θpi)Jg−1(y).

The indicator function merely emphasizes that g−1 must exist at the given point.

Then using Theorem 1.3.5.14 we can deduce the kernel of the conditional distribution

of X[1 : N − dnp] given Tnp = tnp is

Ig−1({x[1:N−dnp],tnp})∈ 	N h(g−1({x[1 : N − dnp], tnp}))×
G(g−1({x[1 : N − dnp], tnp}); θpi)Jg−1({x[1 : N − dnp], tnp}).

(4.5)

We can simplify computations by noting that the first N − dnp elements of

g−1({x[1 : N − dnp], tnp})

will simply be x[1 : N − dnp].

If g is not one-to-one,

g(x) = y (4.6)

may have more than one solution for x. In this case we shall usually be able to divide

the domain of g up into m pieces B1, . . . , Bm on which it is one-to-one (see Casella

132



Chapter 4. Monte Carlo Conditional p-value Calculation for Continuous Data

and Berger [2] page 185). Then we can write g(x) ≡ ∑m
i=1 Ix ∈ Bi

gi(x), where gi is

one-to-one on Bi. The kernel of the marginal conditional is then

m∑
i=1

Ig−1
i ({x[1:N−dnp],tnp})∈ Bi

h(g−1
i ({x[1 : N − dnp], tnp}))×

G(g−1
i ({x[1 : N − dnp], tnp}); θpi)Jg−1

i
({x[1 : N − dnp], tnp}).

(4.7)

The support of the marginal conditional is a subset of �N−dnp , not an (N − dnp)-

dimensional surface in �N . This can potentially simplify the problem, but difficulties

remain. First, the N −dnp elements of the data vector are not independent, as one can

see from Equation 4.5 via Theorem 1.3.5.17. Second, especially if the h and G functions

embody constraints, the support may be an inconvenient subset of �N−dnp ; but since

it will not have measure 0, rejection sampling from the unconditional support of X[1 :

N − dnp] might be a viable option. Third, Equation 4.5 cannot be written analytically

if g−1 cannot be solved for analytically, and even then the analytical expression might

be impractical to write down because it requires evaluating a Jacobian.

With linear sufficient statistics, at least the third issue will not be a problem. In

that case, g will be the linear function AX, where the first N − dnp rows of A will

be the first N − dnp rows of the identity matrix, and the last dnp rows will be WT . If

the density is well-parameterized, A will be invertible and g will be one-to-one, and

g−1(y) = A−1y, Jg−1(y) = |det(A−1)| by Theorem 1.3.5.1. Then from Equation 4.5

the kernel of the marginal conditional will be

h({x[1 : N − dnp],A
−1[N − dnp + 1 : N ]{x[1 : N − dnp], tnp}})×

G({x[1 : N − dnp],A
−1[N − dnp + 1 : N ]{x[1 : N − dnp], tnp}}; θpi).

(4.8)

For an alternative way to reduce the problem if the sufficient statistic is linear, let

(WWT )g be a generalized inverse of WWT (Definition 1.3.8.3). By Theorem 1.3.8.2,

this will always exist. Computation of generalized inverses in matrix programming

languages such as SAS-IML is standard. By Theorem 1.3.8.3, (WWT )gW is a gen-

eralized inverse of WT . Then by Theorem 1.3.8.4, the support WTX = tnp can be
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written as the set of all points that satisfy

x = (WWT )gWtnp + (I − (WWT )gWWT )y (4.9)

for some y in �N .

Now let P be the matrix of eigenvectors (Definition 1.3.8.5) of the matrix (I −
(WWT )gWWT ). By the way I have defined it, P is N ×N − dnp. Again, calculation

of P in matrix programming languages is standard. By Theorem 1.3.8.11, we can

rewrite Equation 4.9 as

x = (WWT )gWtnp + Pz (4.10)

for some z in �N−dnp . Furthermore, by Theorem 1.3.8.7, there is a unique z in �N−dnp

that satisfies Equation 4.10 for a given value of x. Thus, Equation 4.10 defines a one-

to-one and onto transformation from the support hyperplane of X to �N−dnp . We can

generate X by first generating Z and then using Equation 4.10 to get X.

We can use Theorem 1.3.5.1 to get the kernel of the density of Z implied by Equation

4.10 and Equation 4.4. The kernel of the density must have the form

h((WWT )gWtnp + Pz)G((WWT )gWtnp + Pz, θpi)J(z).

The indicator function from Equation 4.4 is dropped because it is guaranteed by the

transformation. Because the transformation is between spaces of different dimension,

we cannot use the simple formula in Definition 1.3.5.2 to get the Jacobian. But since

the transformation is linear, J(z) will be a constant, so that the kernel of the density

of Z will be

h((WWT )gWtnp + Pz)G((WWT )gWtnp + Pz, θpi). (4.11)

In fact, J(z) = 1. This is due to the fact that P is an orthonormal set. By the fact that

they are orthogonal to each other, the columns of P point in the direction of coordinate

axes for the conditional support of X; by the fact that the columns have length 1, unit

movements along the axes of �N−dnp induce unit movements along the axes of the range

of Equation 4.10. In other words, consider the unit hyperbox defined by starting at

z and moving one unit along each axis in �N−dnp . The image of this hyperbox in the
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conditional support of X resulting from the transformation in Equation 4.10 will also

be a unit hyperbox.

To generate X from its conditional density, we can generate Z in �N−dnp from a

density whose kernel is Equation 4.11 and then obtain X using Equation 4.10. As with

the marginal conditional density, to generate directly from Equation 4.11 we would

have to solve the problem of generating correlated multivariate data with possibly

complicated support restrictions.

4.2 Assessment of the literature

There is a large literature on Monte Carlo methods for conditional inference, but it is

focused largely on problems involving discrete data (see [97] [98], [99]). I shall draw

on this literature and cite the relevant papers, but for the most part the methods are

either nongeneralizable to the continuous case or involve complications that can be

avoided with continuous data. There are two conditional Monte Carlo approaches of

which I am aware that have their origins outside the discrete-data literature, one which

has claimed the name “conditional Monte Carlo” and one which I shall call fiducial

Monte Carlo. Both of these have limitations; they will be discussed further below.

Statisticians have been largely content with approximate methods of calculating

conditional p-values for problems involving continuous data. Likelihood methods such

as the likelihood ratio test are asymptotically similar. (See Theorem 1.3.6.13). Higher-

order asymptotics (HOA), discussed in [100], were developed to improve the precision

of likelihood-based methods. A popular HOA approach to inference involving a uni-

variate Tpi conditional on Tnp in an exponential family uses an approximation to the

conditional cdf of Tpi (see [101], [102], [103], [104]). Other applications of HOA to

conditional inference are discussed in Bellio and Brazzale [100] and Reid [105].

There are several reasons why one might prefer Monte Carlo methods to approxi-

mate methods:

1. Approximate methods do not provide exact p-values.

p-values calculated via Monte Carlo methods typically converge almost surely

(see Definition 1.3.3.7), which means that they can be made as close as desired
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to the true p-values.

Certain HOA methods have been shown to be highly accurate in examples, and

have high orders of convergence theoretically. Claims of the near-exactness of

HOA are often made in the literature (see [100]). However, examples have also

been found where the accuracy of at least some popular HOA methods is inad-

equate [106].

2. Diagnostics are not available for how close the approximate p-values are, while

standard error formulas are available to let the investigator decide where to stop

Monte Carlo algorithms.

3. Goodness-of-fit testing with HOA methods is not straightforward.

But the Monte Carlo calculation of a p-value of a goodness-of-fit statistic con-

ditional on a sufficient statistic for θ is no different in principle from the Monte

Carlo calculation pvTpi|Tnp(tpi|tnp).

4. Monte Carlo methods are more broadly applicable

Equation 4.1 is more general than the model assumed by some higher-order

asymptotic methods.

5. HOA are complicated to use.

Quoting from [100],

...the derivation and evaluation of asymptotic expressions is typically a

direct but laborious task as it presents the combination of higher-order

expansions and ... multivariate situations which make it difficult to

perform the calculations by hand. Due to the forbidding mathematics

involved ... higher-order asymptotics are still under-used in practical

work.

Lengthy calculations require time, skill, and the risk of making a mistake. And

if expressions necessary for HOA such as the profiled log-likelihood or MLEs
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cannot be obtained analytically, the investigator is required to calculate them

numerically, which can be a nontrivial programming exercise.

The Monte Carlo methods in this chapter will typically require only minor hand

calculations. The programming can be nontrivial, but in the applications below

can be done in a surprisingly small number of lines. One might think that Monte

Carlo methods would require more computer time, but this may not be true

if the HOA expressions are not available analytically. Unfortunately, the more

accurate HOA methods are usually more difficult or computationally intensive.

Comparing HOA to Monte Carlo methods for conditional logistic regression,

which is a generalized linear model for discrete data with a canonical link, Cor-

coran et. al. [107] preferred Monte Carlo methods; they found that a highly

accurate approximate method was more computationally intensive than Monte

Carlo while a less accurate approximate method was unreliable. The lack of acces-

sibility of HOA methods for dealing with hypotheses about a multidimensional

θpi has led to attempts to build Monte Carlo algorithms ([108], [109]).

4.3 Special case: gamma distribution, known shape

parameter – Dirichlet data generation

Suppose X1, . . . , XN are independent gamma(αi, β) with the αis known (Definition

1.3.5.10). To generate X from its distribution conditional on Tβ = tβ, the following

algorithm will suffice:

Algorithm 4. Generating gamma variates conditional on their sum

1. Generate Y1, . . . YN , independent gamma(αi, 1) variables.

2. Obtain Xi = YiPN
i=1 Yi

tβ.

Proof. To see that this is the same as drawing from the distribution of X conditional
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on Tβ = tβ, from Equation 4.2 and Definition 1.3.5.10, the kernel of this distribution is

IPN
i=1 xi=tβ

N∏
i=1

xαi−1
i .

Then from Theorem 1.3.5.1 we get that the kernel of the conditional distribution of

{Z1, . . . , ZN} ≡ {X1

tβ
, . . . ,

XN

tβ
}

is

IPN
i=1 zi=1

N∏
i=1

zαi−1
i ,

which is Dirichlet (Definition 1.3.5.4). So we can generate X by generating a Dirichlet

Z and then multiplying Z by tβ. This is exactly what Algorithm 4 is doing, by Theorem

1.3.5.4.

By using algorithm 4, we can estimate a p-value for any statistic conditional on

Tβ via Monte Carlo. This is useful when β is a nuisance parameter and we want to

conduct a similar (Definition 1.3.5.1) test.

Although Algorithm 4 is straightforward, for certain problems that involve testing

the equality of gamma distributions with α known, conditional Monte Carlo has been

ignored as an option for calculating p-values. One such problem is testing for the

marginal effect of an experimental variable when there are nuisance factors.

Let i index a cell defined by the levels of factors whose effects are not of immediate

interest. This could represent the ith level of a single factor, or it could represent a

factor-level combination. Let there be I such cells. Let j index the levels of the factor

of interest, with k such levels, and let r index the replicates for the ijth combination,

with Rij in total. Suppose that α is known and we wish to test the null hypothesis

that the factor of interest has no effect on the scale parameter. The density of the data

under the null is a constant times

I∏
i=1

k∏
j=1

Rij∏
r=1

xα−1
ijr exp

⎛⎝−
I∑

i=1

k∑
j=1

Rij∑
r=1

1

βi

xijr

⎞⎠ . (4.12)
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In other words, under the null the data from the ijth cell are drawn from a gamma(α, βi)

distribution. Under a general alternative, βi would be replaced by βij.

Suppose we want to compute a similar p-value for a test statistic such as the

likelihood ratio statistic. We can do this by Monte Carlo, using Algorithm 4 to

generate data within each cell conditional on the value of the sufficient statistics

Tβi
=
∑k

j=1

∑Rij

r=1 Xijr.

Note that nothing requires the factor of interest to be discrete; ie, Monte Carlo

p-values will be valid if Rij = 1 (see Definition 1.3.3.7).

Since the exponential distribution is gamma with α = 1, one can apply this ap-

proach to testing for effects in survival experiments where the underlying data is as-

sumed exponential. Exponential models are frequently adopted for life-testing exper-

iments in industry ([110], [111], [112]) and occasionally for survival experiments in

medicine as well. With only one parameter, a constant hazard rate, and the memo-

ryless property (Definition 1.3.5.14), the exponential model is the simplest and most

convenient survival model. The memoryless assumption is often a good approximation

for actual data.

Very often, survival data are censored because it is expensive to carry out the

experiment until the last failure. But even though the censored data do not have an

exact exponential distribution, Algorithm 4 can still be used to conduct similar tests

for factor effects if the censoring is of Type II – observation of the ijth factor level

combination is terminated after the first fij failures are observed.

For exponential data subject to Type II censoring, Equation 4.12 becomes

exp

(
−

I∑
i=1

k∑
j=1

1

βi

Tij

)
,

where Tij is the sum of the first fij failure times plus Rij − fij times the fijth failure

time ([111], page 101). Under the general alternative, βi would be replaced by βij.

The likelihood is a function of the data only through the Tijs. Furthermore, the

Tijs are independent gamma(fij, βi) random variables under the null ([111], page 103).

Thus, we can calculate a similar p-value for any likelihood-based statistic for testing

a factor effect by using Algorithm 4 to generate the Tijs conditional on the sufficient
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statistics
∑k

j=1 Tij for the βis.

Exact tests of a factor effect for a one-way exponential experiment are well known

[113], but the ability to obtain an exact (up to Monte Carlo error) test of a marginal

effect with nuisance factors appears to have been overlooked. The standard practice

is to use Theorem 1.3.6.2 or Theorem 1.3.6.13 to conduct likelihood-based inference

([111], page 285). Lawless [114] creates a way to do an exact test of the marginal effect

of a single continuous factor when there are no covariates or nuisance factors; he opines

that the extension to more general cases is “not feasible” ([111], page 291).

If one wants to determine the effects of factors in an experiment with replication on

the variability of the response – “dispersion effects” – one can use the sample variance

calculated from the Nij observations for the ijth factor combination as the response

variable for that combination. This would create a new dataset where there is one

observation per factor combination. If the underlying data is normal, then

(Nij − 1)S2
ij ∼ gamma

(
Nij − 1

2
, 2σ2

ij

)
, (4.13)

where σ2
ij is the population variance for the ijth factor combination. The likelihood

of the variability response would have the form of Equation 4.12 with Rij = 1. So we

can use Algorithm 4 to acertain the significance of the dispersion effect of a factor of

interest in the presence of nuisance factors.

Bartlett’s test [115], is commonly used for testing the equality of variances of normal

populations. This problem is identical in our setup to testing for dispersion effects due

to a categorical variable within a single cell – I = 1. Bartlett’s test compares

k∑
j=1

(Nj − 1) ln

⎛⎝∑k
l=1(Nl − 1)S2

l

(Nj−1)S2
j

Nj−1

⎞⎠
to a scaled χ2

k−1 random variable. This approximation is often very good.

However, we can easily obtain a similar p-value for Bartlett’s statistic by using

Algorithm 4 to generate the (Nj − 1)S2
j variables conditional on their sum. Now since

Bartlett’s statistic is a function of a maximal invariant to positive scale transformations,

its distribution is invariant to σ2 (Definitions 1.3.2.3 and 1.3.2.4), so it is ancillary

140



Chapter 4. Monte Carlo Conditional p-value Calculation for Continuous Data

for σ2 (Definition 1.3.1.5). Then by Basu’s Theorem (1.3.1.3), Bartlett’s statistic is

independent of
∑k

j=1(Nj − 1)S2
j , so drawing it from its conditional distribution is the

same as drawing it from its unconditional distribution. Thus, the Monte Carlo p-value

calculated with with Algorithm 4 is actually an unconditional p-value.

Three authors ([116], [117], [118]) have published papers deriving the exact distri-

bution of Bartlett’s statistic and computing critical values; the Monte Carlo approach

here is simple and effective.

Testing dispersion effects in normal replicated experiments using sample variances

has long been of interest ([119], [120], [121], [122], [123]). Even in experiments without

replication, such as fractional factorial quality control studies popular in industrial

statistics, the issue often becomes relevant when insignificant factors are dropped from

the model. Davidian and Carroll [124] point out that using sample variances rather

than individual observations to test for dispersion effects entails a loss of efficiency.

The advantage, however, is that it makes the test invariant to location effects in the

experiment; to use individual observations requires using a model that is potentially

misspecified or inaccurately estimated [125].

Exact methods are available for a few special cases of testing dispersion effects. For

a one-way setup, I have mentioned Bartlett’s test. Interestingly, 4 other tests for the

one-way setup are commonly cited (see [123]). For all 4, researchers have derived exact

distributions and tabulated critical values; but all 4 could easily be handled by the

Monte Carlo strategy here. Wludyka and Nelson [123] suggest another one-way test;

they recognize the connection to the Dirichlet distribution, but use a more complicated

method to tabulate critical values. In the same paper, they suggest a way to handle

the test of a main dispersion effect while eliminating the effect of a second factor,

but it requires the assumption that the dispersion effects are additive. For testing

a dispersion effect in the presence of a single nuisance factor without the additivity

assumption, two tests have been proposed that are exact: an F test [126] and a Monte

Carlo method that generates the residuals of the experimental model from their null

distribution [127].

The Monte Carlo conditional approach of Algorithm 4 allows exact testing (up

to Monte Carlo error) for cases when there is more than one nuisance factor. Also,
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Table 4.1: Size of Bartlett-Kendall test for marginal dispersion effect. (SE = 0.002.)

Nij I 1 2 3 5 10

2 0.210

3 0.127 0.125

5 0.087 0.081 0.084 0.084

10 0.066 0.065 0.064 0.066 0.061

since it generates from the null conditional distribution, it is very simple to use the

approach here to calculate the p-value for ANY statistic that tests for differences,

including specific differences. Most of the exact tests in the literature are tests for

general differences. An example where a test is needed for specific differences can be

found in [128]. There the factor of interest is quantitative; if the levels of a factor can

be given quantitative values, we might want to test ordered hypotheses or to assume a

functional form for its relationship to dispersion.

Bartlett and Kendall’s [119] approach to testing for dispersion effects in replicated

factorial experiments with more than one nuisance factor is the longest standing and

possibly the most frequently-used in practice for normal data. They assume the loga-

rithm of the sample variance for the ijth variable combination is normal with variance
2

Nij−1
and regress this on the original design matrix. They use the standard F statistic

for testing the significance of a factor, modified for the fact that the variance of each

observation is known.

Table 4.1 displays the estimated size of this dispersion effect test. In the simulations

the degrees of freedom Nij − 1 were kept the same for all sample variances. The

design matrix contained I columns, each of which contained a 1 for observations in

the corresponding cell and a 0 otherwise, plus an additional column for the factor of

interest. It was assumed that σ2
i was constant. The factor of interest was assumed

to have two levels. In the cases shown in the table, the estimated power to detect a

doubling of the standard deviation across levels of the factor of interest ranged from

around 50% to 1. The estimated sizes were the about the same if the factor of interest
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was modeled as quantitative with a linear dispersion effect.

The table indicates that the size has considerable room for correction via Monte

Carlo calculation of the p-value. The validity of the Bartlett-Kendall test improves as

the individual sample sizes increase and the normal approximation of the log sample

variance becomes more accurate.

Another application of Algorithm 4 is testing the distributional assumption. As

long as the data are gamma with known shape parameters drawn from I different

populations, Algorithm 4 allows us to calculate a Monte Carlo p-value for any goodness-

of-fit test statistic conditional on the value of the Tβi
s. The resulting goodness-of-fit

test will be pure in the sense that it will be invariant to the unknown parameters.

A variety of exact one-sample goodness-of-fit tests for the exponential density have

been explored ([111], page 444), but it is not well appreciated that pure goodness-of-fit

testing for exponential regression models in factorial experiments is straightforward.

The existence of an exact pure goodness of fit test makes it almost obligatory try out

the exponential model in situations where it might apply, since frequentist statistics

proceeds by the progressive testing of simplifying assumptions.

For a goodness-of-fit test of Equation 4.12, we need Rij > 1. In the case of a test

of the χ2 assumption for sample variances, one must accept the null of no dispersion

effect of at least one factor in order to obtain the necessary replication.

While time is occasionally viewed as a drawback in Monte Carlo-based inference,

Algorithm 4 is very fast; with s = 1, 000, 000 and N = 100, it finishes in two minutes

in SAS-IML.

4.4 Importance Sampling

The idea behind importance sampling is that as long as the data has the correct

support, if we simply reweight it to reflect the correct density, it will tell us what we

want to know. More specifically, consider the following algorithm:

Algorithm 5. Importance Sampling

1. Take s independent draws y1, . . .ys of a random vector Y of the same dimension

as X and whose support is the support surface of X.
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2. Let g(yi) = 1 if Tpi(yi) <> tpi, g(yi) = 0 otherwise (see Definition 1.3.3.6).

3. Let p̂vIS =
Ps

i=1 g(yi)
kX|Tnp

(yi|tnp)

kY(yi)Ps
i=1

kX|Tnp
(yi|tnp)

kY(yi)

, where kX|Tnp is a kernel (Definition 1.3.5.11) of

fX|Tnp(x|tnp) and kY is a kernel of fY(y).

From Definition 1.3.5.11, fX|Tnp(y|tnp) = CnkX|Tnp(y|tnp), and fY(y) = CdkY(y)

for some constants Cn and Cd. Multiplying the numerator and denominator of p̂vIS by

Cn

Cd
, it is clear that p̂vIS =

Ps
i=1 g(yi)

fX|Tnp
(yi|tnp)

fY(yi)Ps
i=1

fX|Tnp
(yi|tnp)

fY(yi)

, so that by Definition 1.3.9.1, p̂vIS is an

importance sampling estimator of EX|Tnp(g(X)|tnp), with fY as the generating distri-

bution and fX|Tnp as the target distribution. Furthermore, g(y) is simply ITpi(y)<>tpi
,

so by Theorem 1.3.3.4, p̂vIS is estimating the conditional p-value for tpi. For the mo-

ment, assume
fX|Tnp (Y|tnp)

fY(Y)
is bounded; then by Theorem 1.3.9.1 p̂vIS converges almost

surely with s to pvTpi|Tnp(tpi|tnp), and Theorem 1.3.9.2 gives us a variance for p̂vIS.

In order to use Theorem 1.3.9.2, we need to estimate the quantities in the expression

for V . First, we need to estimate Cn

Cd
, because this does not drop out of the expression

for the variance as it does in the expression for the point estimate itself. To do so,

realize that ∫
X|tnp

CnkX|Tnp(y|tnp)

CdkY(y)
fY(y)dy =

∫
X|tnp

fX|Tnp(y|tnp)dy = 1,

where X|tnp is the support of fX|Tnp(x|tnp). So Cn

Cd
= 1

EY

„
kX|Tnp

(Y|tnp)

kY(Y)

« . Now assuming

that
fX|Tnp (Y|tnp)

fY(Y)
is bounded, by Theorem 1.3.5.5, all of its moments exist. Also, the

reciprocal function is continuous. So by the Strong Law of Large Numbers (Theorem

1.3.6.8) and Theorem 1.3.6.5, part 3,

ĉ ≡ s∑s
i=1

kX|Tnp (yi|tnp)

kY(yi)

→as
Cn

Cd

.

Now we can estimate V with its sample counterpart, giving us an expression for
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the standard error of p̂vIS:

1√
s

√√√√1

s

s∑
i=1

(1 − 2p̂vIS)

(
ITpi<>tpi

(yi)
ĉ2k2

X|Tnp
(yi|tnp)

k2
Y(yi)

)
+ p̂v2

IS

ĉ2k2
X|Tnp

(yi|tnp)

k2
Y(yi)

.

(4.14)

By the Strong Law of Large Numbers and Theorem 1.3.6.5, part 3, the term under the

radical sign converges almost surely to V . (The SLLN applies because all the random

variables are bounded, and thus have all of their moments.)

To justify the use of importance sampling and the standard error estimate, we

have relied on the assumption that
kX|Tnp (Yi|tnp)

kY(Yi)
is bounded. This is stronger than we

need; the existence of EY

((
kX|Tnp (y|tnp)

kY(y)

)2
)

is sufficient, and even this is not necessary.

Proving Theorems 1.3.9.1, 1.3.9.2, and the asymptotic validity of Equation 4.14 without

boundedness can be quite tricky, while cases where they do not hold are the exception,

so I shall not be overly concerned about justifying them.

The validity of Theorem 1.3.9.1 says nothing about the finite-s properties of Algo-

rithm 5. A practitioner can use Equation 4.14 to let him know when he has achieved

enough precison to stop Algorithm 5. But nothing guarantees that the s that provides

acceptable precision will be practicably small.

In this chapter, we care not just about implementing importance sampling once,

but also about assessing its performance at a prespecified s using simulations. To this

end we shall use two diagnostics.

1. Type I error of importance sampling test. The “importance sampling test” is

analogous to the Monte Carlo test (Definition 1.3.3.7). The properties of this

test can be evaluated in simulations just like any other test. For infinite s, the

size will be equal to the nominal size, but for finite s may be larger or smaller.

The Monte Carlo test (Definition 1.3.3.7) has size approximately equal to

∫ 1

0

Φ

(√
s(α − p)√
p(1 − p)

)
dp,

where α is the nominal size and Φ is the standard normal cdf . This converges

145



Chapter 4. Monte Carlo Conditional p-value Calculation for Continuous Data

with s to the nominal size, but it turns out that the Monte Carlo test is liberal

with small s. However, for any reasonable s the deviation from nominal size is

tiny. For s = 500, α = 0.05, the size of the Monte Carlo test is approximately

0.0509, and for s = 1000, the size is approximately 0.0504.

A deviation of the size of the importance sampling test from 0.05 will be partly

due to the liberality inherent in Monte Carlo tests but mainly due to bias in p̂vIS.

If the size of the importance sampling test is close to 0.05, we can take it as a

sign that s is large enough that the bias has been eliminated.

2. Average standard error (ASE) of p̂vIS under the null. We can evaluate the aver-

age standard error from Equation 4.14 across simulated datasets. For comparison

purposes, under the null hypothesis, the expected value of the standard deviation

of the Monte Carlo p-value is 1
s

π
8

(Theorem 1.3.5.13).

As an aside, an alternative way to compare the precision of any p-value estimator

p̂ with that of a Monte Carlo p-value would be to simulate s datasets under the null,

calculate p̂ for each, and then compare the sample variance of these values with the

theoretical value of the variance of the Monte Carlo p-value across simulated datasets.

From Definition 1.3.5.1, Theorem 1.3.5.18 and Theorem 1.3.5.19, we can derive that

this variance is s+2
12s

.

To implement importance sampling in practice requires one to obtain the kernel

of the conditional density and to find a suitable Y. For the former problem we can

use Equation 4.2, Equation 4.4, Equation 4.5, Equation 4.7, Equation 4.8, or Equation

4.11. For the latter problem, with linear sufficient statistics one of several approaches

can be tried. As we shall see, the performance of p̂vIS depends on the match between

the generating density and the target, so one would choose the approach that provides

the best match.

4.4.1 Importance sampling with linear sufficient statistics: gen-

erating data on a hyperplane

Equation 4.4 gives us the kernel of the full conditional distribution for the case of linear

sufficient statistics. For a generating density to be suitable, it’s support needs to be
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the hyperplane WTX = tnp. Here I suggest three practical-to-generate distributions

whose support is a hyperplane with dimension lower than the size of the data vector.

Dirichlet distribution

If the dimension of Tnp is 1, we have the option of using the Dirichlet distribution as

our generating distribution. If an N -dimensional Z ∼ Dirichlet(γ), then a Y with the

correct support can be obtained via the transformation Y1 = tnpZ1

W11
, . . . , YN = tnpZN

WN1
.

Using Theorem 1.3.5.1 and Definition 1.3.5.4, kY(y) = IWT y=tnp

∏N
i=1

(
Wi1yi

tnp

)γi−1

.

Conditional normal distribution

The second candidate for a generating distribution (Definition 1.3.9.1) is that of an N -

dimensional normal variable conditional on its belonging to the support hyperplane.

This is the idea of Booth and Butler ([129]), who used it for conditional inference in a

log-linear model of discrete data.

Consider the random variable Y∗, a normal N × 1 vector. Let A =

⎛⎝ IN

WT

⎞⎠
where IN is the N × N identity matrix. By Theorem 1.3.5.9,

AY∗ ∼ N

⎛⎝⎛⎝ EY∗(Y∗)

WT EY∗(Y∗)

⎞⎠ ,

⎛⎝ V ar(Y∗) V ar(Y∗)W

WT V ar(Y∗) WT V ar(Y∗)W

⎞⎠⎞⎠ .

And by Theorem 1.3.5.12, assuming that the relevant inverse exists, the distribution

of Y∗ conditional on WTY∗ = tnp is normal with mean

EY∗(Y∗) + V ar(Y∗)W(WTV ar(Y∗)W)−1(tnp − WT EY∗(Y∗)) (4.15)

and variance

V ar(Y∗) − V ar(Y∗)W(WTV ar(Y∗)W)−1WT V ar(Y∗). (4.16)

Let Y be the random variable whose distribution is the same as the conditional
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distribution of Y∗. To actually draw from the distribution of Y, we can employ the

following algorithm:

Algorithm 6. Drawing from conditional distribution of a normal random variable

1. Find B, a lower triangular matrix such that

BBT = V ar(Y∗) − V ar(Y∗)W(WTV ar(Y∗)W)−1WT V ar(Y∗).

This can be done by Cholesky decomposition, a standard matrix-programming

language algorithm.

2. Draw Z from a N(0, IN) distribution using a standard built-in algorithm.

3. Let yi = EY∗(Y∗) + V ar(Y∗)W(WTV ar(Y∗)W)−1(tnp − WT EY∗(Y∗)) + Bzi

Y will have the correct distribution by Theorem 1.3.5.9.

We can choose E(Y∗) and V ar(Y∗) to improve the agreement between the gener-

ating density and the target density; a reasonable choice is to set E(Y∗) equal to an

estimate of E(X) and V ar(Y∗) equal to an estimate of V ar(X).

We can choose V ar(Y∗) so that the support of Y will be the entire support hy-

perplane; this will be true if the Y ∗
i s are independent. Now the function

fX|Tnp (y|tnp)

fY(y)

will be continuous on that hyperplane. If h and G restrict the conditional support of

X to a compact (Definition 1.3.8.1) subset of the hyperplane, by Theorem 1.3.8.1 the

function
fX|Tnp (y|tnp)

fY(y)
will be bounded, and Theorems 1.3.9.1 and 1.3.9.2, which guaran-

tee convergence of p̂vIS and justify Equation 4.14, will hold. Furthermore, Equation

4.14 will be asymptotically valid. One important case where the conditional support

of X is compact is if the unconditional support of X is nonnegative and W contains a

column of 1s (see Theorem 1.3.8.12).

If the conditonal support of X is a subset of the supporting hyperplane, we will

need to throw out the draws of Y that are not in the correct subset of the hyperplane,

increasing the standard deviation of p̂vIS by effectively reducing the number of draws.

There’s no guarantee that the proportion of throwaway draws of Y will be small enough

to allow the algorithm to converge in a reasonable amount of time.
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In Algorithm 5, throwing out will be done automatically by indicator functions in

kX|Tnp that will have the value 0 outside the compact subset, and the effect on the

standard error will be captured by an increase ĉ. We see that the support requirement

for Algorithm 5 is not that generating and target density have the same support, but

that the support of the target density be contained in the support of the generating

density (and have nonzero measure under the generating density).

To implement Algorithm 5 using Algorithm 6, we need the density of Y. This is

([9], page 41)

fY(y) =
(2π)−

N−dnp−1

2√
λ1 × . . . × λN−dnp

exp

(
−1

2
(y − EY(y))T (V ar(Y)g)(y − EY(y))

)
,

(4.17)

where (V ar(Y))g is any generalized inverse (Definition 1.3.8.3) of V ar(Y), and the

vector of λis are the eigenvalues (Definition 1.3.8.5) of V ar(Y). (Since all of the values

drawn will be on the correct hyperplane, we don’t need an indicator function.)

Estimated likelihood sampling

The idea here is simple. Generate the first N −dnp elements of Y by the unconditional

likelihood of the first N − dnp elements of X, with θ = {θ̂np, MLE, θo}. Let the last dnp

elements of Y solve WT{y[1 : N − dnp],y[N − dnp + 1 : N ]} = tnp. If A is as defined

in Section 4.1, the last dnp elements will solve y[N − dnp + 1 : dnp] = A−1[N − dnp + 1 :

N ]{y[1 : N − dnp], tnp}. The density of Y will simply be the estimated unconditional

likelihood, ie fX[1:N−dnp](y[1 : N − dnp]; {θ̂np, MLE, θo}).
If h and G restrict the conditional support of X to a subset of the hyperplane, then

we may have the same problem as with the use of a normal generating density, in that

the conditional support of X may be a subset of the support of Y. While this might

allow us to prove Theorems 1.3.9.1 and 1.3.9.2 easily, it also forces us to throw out

some draws of Y.

ELS turns out to be a specific implementation of the method known as “conditional

Monte Carlo” referred to above.

Incidentally, we could use the marginal conditional distribution in Equation 4.8 as

the target rather than the full conditional. In this case, we would not need to calculate
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y[N − dnp + 1] after drawing y[1 : N − dnp].

4.4.2 Implementing importance sampling for testing CV equal-

ity

Section 4.4.2 will speak as if Equation 2.24 were exact.

Section 2.4.3 derived the UMP similar invariant one-sided test of CV homogeneity

for normal data with k = 2 and discussed p-value calculation for this test and the MB

test with equal sample sizes. Here we shall apply importance sampling using a normal

generating density to the problem of calculating conditional p-values for the MB and

UMP test with unequal sample sizes.

A test of CV equality is a test of Ho : c1 = . . . = ck−1 = 0 in Equation 2.24.

By Definition 1.3.1.3 and Theorem 1.3.4.3, Tk is a sufficient statistic for the nuisance

parameter ω∗. Then by Definition 1.3.1.1, the distribution of the Mis conditional on∑k
i=1(Ni − 1)Mi will not depend on the nuisance parameter. So we can turn the MB

test into a similar test by calculating the p-value from the conditional distribution.

From Theorem 1.3.4.8, under the null, the kernel of this conditional distribution is

ITk=tk(m)HM(m), (4.18)

where HM is as defined in Equation 2.24.

Because Tk is a linear function of the Mis, the density in Equation 4.18 is of the

form in Equation 4.4; W will be the column vector whose ith element is Ni − 1. We

can use a normal generating density as described in Section 4.4.1. Although we could

use the Dirichlet generating density here, we shall use the normal generating density

because Section 2.2.2 and the delta Theorem (1.3.6.3) suggest that the sample Mis

should be approximately normal.

Now the unconditional support of the data is Mi ≥ 0; the conditional support

will therefore be not only closed but bounded, by Theorem 1.3.8.12. With a compact

conditional support, Theorems 1.3.9.1 and 1.3.9.2 will hold and Equation 4.14 will be

asymptotically valid, as explained in the Section 4.4.1.

Under the null we are trying to test, CVi = CV , and we can estimate this with ĈV
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from Equation 2.13. Y∗ will be k × 1. From Theorem 1.3.4.1 and Proposition 4 we

can derive that

E(Mi) ≈ CV 2

1 + Ni−2
Ni

CV 2
(4.19)

V ar(Mi) ≈ CV 4

(1 + Ni−2
Ni

CV 2)2

2

Ni − 1
. (4.20)

So for E(Y∗
i ) it makes sense to use

dCV
2

1+
Ni−2

Ni
dCV

2 and for V ar(Y∗)ii it makes sense to use

dCV
4

(1+
Ni−2

Ni
dCV

2
)2

2
Ni−1

, and it makes sense to set V ar(Y∗)ij = 0 for i �= j since the Mi’s are

independent. We can then get the mean and variance of Y using Equation 4.15 and

Equation 4.16.

To calculate a conditional p-value for a test statistic, implement Algorithm 5 by

drawing from Y using Algorithm 6, obtaining the kernels for the weights from Equation

4.17 and Equation 4.18. For the MB test, Tpi = MB (Equation 2.22). For the one-

sided UMP test with Ha : CV2 > CV1, Tpi = M2.

Essentially what we are doing here is testing for an effect on CV in a one-way

experiment. By conducting importance sampling within cells in a way similar to that

explored in Section 4.3, we can calculate similar p-values for main effects on CV in

experiments with nuisance factors. Zacks [130] calculates such p-values by assuming a

normal approximation for the log sample CV ; his methodology requires the experiment

to be balanced. Wilson and Payton [131] derive the version of Equation 2.24 implied by

McKay’s approximation, then use Theorem 1.3.6.13 to get the p-value for a likelihood

ratio statistic. No exact method exists in the literature.

4.4.3 Simulation results for testing CV equality, unequal sam-

ple sizes

First I examine the properties of the MB test (using the asymptotic p-value) and the

FM test with unequal sample sizes. Table 4.2 was formed by simulating independent

datasets of k populations with coefficients of variation equal to CV , half with sample

size equal to N1 and half with sample size equal to N2 and . The sizes in this table
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Table 4.2: Size of two-sided tests of CV homogeneity

CV k N1 N2 MB FM std err

0.05 2 14 7 0.057 0.053 0.002

0.05 4 10 6 0.060 0.055 0.001

0.05 8 8 4 0.073 0.059 0.001

0.33 2 14 7 0.051 0.046 0.002

0.33 4 10 6 0.056 0.047 0.001

0.33 8 8 4 0.071 0.059 0.003

are similar to those in Table 2.5. Like Table 2.5, we see that the sizes diverge from

nominal as sample sizes decrease. The divergence is more rapid for the MB test. For

the large k, small N situations, MB appears to be unacceptably liberal.

Table 4.3 displays estimated powers of the two tests in various scenarios with un-

equal samples. For each scenario, a number of independent datasets were simulated,

some populations with CV1 and the rest with CV2; the entries under N1 and N2 in-

dicate the number of populations and the size of the sample drawn from each. If the

sample sizes in the populations with high CV s are similar to the sample sizes for the

populations with low CV s, the two tests have similar power, as in Table 2.6. For both

tests, introducing correlation between sample size and power changes the power of the

test, with the power of the FM test changing more dramatically. It appears to be

easier to discern differences in CV if there is negative correlation between CV and

sample size. The power in all of these scenarios hovers around 0.5.

Table 4.4 looks at the properties of the importance sampling test using the MB

statistic. The datasets for the simulation reported in Table 4.4 were created as in

Table 4.2 and 4.3. The size/power column indicates the proportion of datasets for

each scenario for which the test rejected the null. The standard error column is the

standard error of the estimate in the size/power column. With k = 2 or k = 4, the

test appears to have acceptable Type I error for relatively small s. (The s values in

Table 7 are much smaller than the s an investigator would choose in practice in order
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Table 4.3: Power of two-sided tests of CV homogeneity

CV1 N1 CV2 N2 MB FM std err

0.05 14 0.10 7 0.50 0.53 0.005

0.05 7 0.10 14 0.44 0.39 0.005

0.05 10, 10 0.10 6, 6 0.54 0.59 0.005

0.05 6, 6 0.10 10, 10 0.47 0.41 0.005

0.05 10, 6 0.10 10, 6 0.54 0.54 0.005

0.05 8, 8, 8, 8 0.10 4, 4, 4, 4 0.56 0.64 0.01

0.05 4, 4, 4, 4 0.10 8, 8, 8, 8 0.43 0.30 0.01

0.05 8, 4, 8, 4 0.10 8, 4, 8, 4 0.56 0.56 0.01

0.165 14 0.33 7 0.47 0.51 0.005

0.165 7 0.33 14 0.41 0.31 0.005

0.165 10, 10 0.33 6, 6 0.49 0.54 0.005

0.165 6, 6 0.33 10, 10 0.42 0.33 0.005

0.165 10, 6 0.33 10, 6 0.50 0.50 0.005

0.165 8, 8, 8, 8 0.33 4, 4, 4, 4 0.54 0.65 0.01

0.165 4, 4, 4, 4 0.33 8, 8, 8, 8 0.39 0.24 0.01

0.165 8, 4, 8, 4 0.33 8, 4, 8, 4 0.53 0.54 0.01

to attain a p-value estimate with an acceptably small standard error. ) The sizes less

than 0.05 for the CV = 0.33 case are consistent with the results reported in Section

2.4.4 and probably reflect a slight inaccuracy in the approximate density in Equation

2.24 rather than an inadequacy of importance sampling. For k = 8, the importance

sampling estimate of the p-value is biased downward for small s. s needs to be quite

large – 100, 000 – to eliminate the bias.

The ASE column shows the average (over the simulated datatsets) of the standard

errors of p̂vIS calculated using Equation 4.14. The expected standard deviation of the
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Table 4.4: Properties of importance sampling test

CV1 N1 CV2 N2 s size/power stderr ASE rej

0.05 14 0.05 7 1,000 0.050 0.002 0.013 0.02

0.05 10,6 0.05 10, 6 3,000 0.052 0.001 0.010 0.07

0.05 8, 4, 8, 4 0.05 8, 4, 8, 4 3,000 0.066 0.001 0.022 0.34

0.05 8, 4, 8, 4 0.05 8, 4, 8, 4 100,000 0.055 0.003 0.007 0.34

0.33 14 0.33 7 1,000 0.045 0.002 0.013 0.02

0.33 10, 6 0.33 10, 6 3,000 0.046 0.001 0.01 0.08

0.33 8, 4, 8, 4 0.33 8, 4, 8, 4 100,000 0.049 0.003 0.006 0.38

0.05 14 0.10 7 1,000 0.48 0.005 0.009 0.01

0.05 7 0.10 14 1,000 0.41 0.005 0.009 0.01

0.05 10, 10 0.10 6, 6 3,000 0.51 0.005 0.008 0.05

0.05 6, 6 0.10 10, 10 3,000 0.43 0.005 0.009 0.05

0.05 10, 6 0.10 10, 6 3,000 0.51 0.005 0.008 0.05

0.05 8, 8, 8, 8 0.10 4, 4, 4, 4 3,000 0.54 0.005 0.017 0.25

0.05 4, 4, 4, 4 0.10 8, 8, 8, 8 3,000 0.40 0.005 0.02 0.30

0.05 8, 4, 8, 4 0.10 8, 4, 8, 4 3,000 0.56 0.005 0.017 0.26

0.05 8, 8, 8, 8 0.10 4, 4, 4, 4 100,000 0.51 0.01 0.007 0.25

0.05 4, 4, 4, 4 0.10 8, 8, 8, 8 100,000 0.37 0.01 0.008 0.30

0.05 8, 4, 8, 4 0.10 8, 4, 8, 4 100,000 0.50 0.01 0.007 0.27

0.165 14 0.33 7 1,000 0.45 0.005 0.009 0.01

0.165 7 0.33 14 1,000 0.37 0.005 0.013 0.02

0.165 10, 10 0.33 6, 6 3,000 0.46 0.005 0.008 0.05

0.165 6, 6 0.33 10, 10 3,000 0.38 0.005 0.009 0.06

0.165 10, 6 0.33 10, 6 3,000 0.46 0.005 0.008 0.06

0.165 8, 8, 8, 8 0.33 4, 4, 4, 4 100,000 0.48 0.01 0.007 0.28

0.165 4, 4, 4, 4 0.33 8, 8, 8, 8 100,000 0.33 0.01 0.007 0.23

0.165 8, 4, 8, 4 0.33 8, 4, 8, 4 100,000 0.48 0.01 0.007 0.30
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Table 4.5: Size of test of CV1 = CV2 versus CV2 > CV1. (SE = 0.002)

CV N1 N2 Miller UMP

0.05 14 7 0.054 0.050

0.33 14 7 0.047 0.050

Monte Carlo p-value (Theorem 1.3.5.13) under the null is 0.0124 for s = 1000, 0.007

for s = 3000, and 0.001 for s = 100000. For k = 2, the importance sampling estimator

is about as efficient as the Monte Carlo estimator would be. For k = 4, it is slightly

less efficient; having the Monte Carlo estimator would reduce the standard error by

about 30%. For k = 8, the importance sampling estimator is highly inefficient; it has

a standard error orders of magnitude above the Monte Carlo standard deviation.

The last column tells us the proportion of times we have to throw out a draw of

Y because one of the drawn elements is negative. This is rare for k ≤ 4, but not

uncommon for k = 8.

The results for the importance sampling test when the null does not hold show that

the power for the importance sampling tests tends to be a few percentage points below

the power of the MB test, which is indicative of the fact that the importance sampling

test is correcting for the liberality of the MB test.

Table 4.5 looks at the actual size under the null of two one-sided tests of CV

equality: Miller’s test (Section 2.4.5) and the importance sampling test with Tpi = M2

with s = 1000. Both tests have close to nominal size.

Table 4.6 was created in the same way as Table 4.5, except that CV1 was allowed

to differ from CV2. The tests have essentially identical power.

As with the two-sided test, importance sampling seems to work well as a way to

calculate the p-values. The importance sampling test with s = 1000 has close to

nominal size. For the simulations under the null, ASE ≈ 0.013, essentially identical

to the expected value of the standard deviation for the Monte Carlo p-value of 0.012.

As in the applications of importance sampling for k = 2 above, fewer than 2% of the

samples drawn from the generating normal distribution need to be thrown out because
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Table 4.6: Power of one-sided tests of CV homogeneity, k = 2. (SE = 0.005)

CV1 CV2 N1 N2 Miller UMP

0.10 0.05 14 7 0.56 0.54

0.10 0.05 7 14 0.64 0.63

0.33 0.165 14 7 0.51 0.51

0.33 0.165 7 14 0.62 0.61

of negative values.

4.4.4 Implementing importance sampling for testing the scale

parameter of a gamma distribution

This example illustrates ELS and also shows that by using transformations, we can

turn some nonlinear sufficient statistics into linear ones.

Suppose Ui ∼ gamma(α, β), and we want to conduct a test of Ho : β = βo against

Ha : β > βo. From Definition 1.3.5.10, we can write the density of the data under the

null as a constant times

Iu1≥0,...,uN≥0 exp

(
(α − 1)

N∑
i=1

ln(ui) − 1

βo

N∑
i=1

ui

)
.

From Theorem 1.3.4.3, Tα =
∑N

i=1 ln(Ui) is sufficient for α. This is not a linear sufficient

statistic. But consider the data vector formed by log-transforming U: Xi = ln(Ui). By

Theorem 1.3.5.1, the density of the new dataset is a constant times

exp

(
α

N∑
i=1

xi − 1

βo

N∑
i=1

exp(xi)

)
. (4.21)

For this density, the sufficient statistic for the nuisance parameter is linear: Tnp =
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∑N
i=1 Xi; Equation 4.21 is an example of Equation 4.3 where

h(x) = 1, G(x, θpi) = exp

(
− 1

βo

N∑
i=1

exp(xi)

)
,

and W is simply a row vector of 1s. Notice that we have gotten rid of the nonnegativity

constraints via this transformation.

By Theorem 1.3.4.4, it would make sense to choose Tpi ≡
∑N

i=1 exp(Xi) as the test

statistic.

Equation 4.4 yields the kernel for the conditional density:

exp

(
− 1

βo

N−1∑
i=1

exp(xi) − 1

βo

exp(tnp −
N−1∑
i=1

xi)

)
.

The indicator function has been incorporated here by using it to eliminate xN .

It can be shown that the MLE for α solves

N∑
i=1

Xi − N ln βo = N�(α),

where � is the digamma function. This equation is readily solved by the method of

bisection (Definition 1.3.8.8).

To implement ELS, we would generate each draw of Y[1 : N−1] from the likelihood

exp

(
α̂MLE

N−1∑
i=1

yi − 1

βo

N−1∑
i=1

exp(yi)

)
. (4.22)

But recalling that this is the likelihood of iid log-transformed gamma variables, we can

do this by generating a random sample of N −1 gamma variables with scale parameter

βo and shape parameter α̂MLE and then log transforming them. We would obtain YN

by tnp −
∑N−1

i=1 yi = yN .

We now have everything we need to use Algorithm 5 to calculate a p-value for Tnp

conditional on the observed value of Tpi: the form of Tpi and Tnp, a way to generate

a suitable Y, and formulas for the kernels of the generating and target density. The
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Table 4.7: Performance of ELS to test β = βo. (SE of size: 0.002)

N α s size ASE

5 0.0625 500 0.054 0.027

5 0.0625 1000 0.049 0.019

5 1 500 0.052 0.024

5 1 1000 0.051 0.017

5 16 500 0.049 0.023

5 16 1000 0.050 0.016

30 0.0625 500 0.051 0.043

30 0.0625 1000 0.051 0.031

30 1 500 0.056 0.036

30 1 1000 0.052 0.026

30 16 500 0.048 0.035

30 16 1000 0.052 0.024

importance sampling test that results will converge to the UMP similar test.

Table 4.7 displays the performance of the ELS test. For each scenario in the table,

10, 000 datasets were generated with the specified N and α, with β = 1, and for each

dataset the estimated likelihood sampling test of the null β = 1 was conducted with

s at a prespecified level. The results of the simulations do not depend on the value of

β; since β is a scale parameter, one can test Ho is β = βo, by multiplying the data by
1
βo

and then testing β = 1. The values of α were chosen to create a wide range for the

coefficient of variation 1√
α

for a gamma variable, from 1
4

to 4.

The size of the ELS test is close to nominal even for small values of s, indicating

that there is little bias in the ELS p-value.

The last column reports the ASE, which is discussed in the introduction to Section

4.4. For comparison, the expected standard deviation of a hypothetical Monte Carlo

estimator is 0.018 for s = 500 and 0.012 for s = 1000. For N = 5, the ELS p-value
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appears to have about 1.3 times the standard deviation of the Monte Carlo estimator,

and for N = 30 it has about 2.1 times the Monte Carlo standard deviation. These

suggest that s should be set at 2 to 5 times the number of draws one would desire

for a traditional Monte Carlo estimator if N ≤ 30. Estimated likelihood sampling is

more computationally-intensive than traditional Monte Carlo would be, but is feasible

in this example.

As in the previous example, the properties of importance sampling appear to im-

prove as the sample size decreases, a characteristic which could potentially carve a

niche for it in statistics. The decrease in performance with increased dimension can

be interpreted as reflecting a deteriorating match between the target density and the

generating density. Table 4.4 highlights the fact that, with a large enough sample, the

match can be so poor that the s required for convergence can be impractical.

Notice that the upper bound on sample size for importance sampling to be feasible

in this example is clearly much higher than the upper bound in the previous example.

The question is raised whether ELS will be more efficient in general than importance

sampling with a normal generating density. We have some theoretical reasons to think

so. First, if h and G in Equation 4.3 put constraints on the support of X, those same

constraints will be built into the estimated likelihood generating density, but not into

the normal generating density. This means the discrepancy between the support of the

target density in Algorithm 5 and the support of the estimated likelihood generating

density should be less than the discrepancy between the target and a normal gener-

ating density, leading to fewer throwaway draws. Second, with the normal generating

density, the difference between the generating density and the target grows as N − dnp

increases due to the curse of dimensionality. But with ELS, opposing forces are at

work so that it’s not at all clear that the match should continue to get bad as N grows.

By Theorems 1.3.6.2 and 1.3.6.1 part 1, as N −dnp increases, θ̂np,MLE →p θnp, meaning

that for large N we are at least drawing from the “correct” marginal unconditional dis-

tribution. Because of this, by Theorem 1.3.6.1 part 2 and Central Limit Theorems (see

Theorem 1.3.6.7), for ELS 1
N−dnp

WTY should converge in probability to a constant

which of necessity must be consistent with the observed values of the sufficient statis-

tics; ie, for large samples, drawing from the unconditional marginal parameterized by
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{θo, θ̂np, MLE} should reproduce the observed values of the sufficient statistics, so the

“effect” of the condition Tnp = tnp on the marginal distribution of a given Xi should

be minor, giving us reason to think that the estimated likelihood generating density

should be a good match for the marginal conditional.

Table 4.7 indicates that the estimate likelihood sampling test provides an effective

way to get a valid test of β = βo. Engelhardt and Bain ([132]) took a different approach

to an exact test, effectively deriving the joint density of the sufficient statistics Tα and

Tβ for α and β in the model of Definition 1.3.5.10; with this, using Theorem 1.3.5.14,

one can get the conditional distribution of Tβ given Tα = tα, and then by numerical

integration obtain a conditional p-value for Tβ. To do the integration requires advanced

methods; one needs to track down several different sources to understand Engelhardt

and Bain’s calculations. The method here is simple by comparison. If nothing else, it

can be used to provide a check on Engelhardt and Bain’s tables.

4.5 Gibbs sampling

Gibbs sampling (Definition 1.3.7.2) is an attractive algorithm for generating from a

conditional distribution because if the first step of the sampler is in the support of the

target density, each step in the resulting Markov chain (Definition 1.3.7.1) will produce

a point in this support. Because it is designed to mimic sampling from the target

density, it ameliorates the concern about choosing a correct reference or generating

distribution, which we have seen causes problems for importance sampling. Typically,

the stationary distribution of the Gibbs sampler will be the target density (Definition

1.3.7.5 and Theorem 1.3.7.4), and it is rarely the case that it violates the assumptions

of the theorems (1.3.7.5, 1.3.7.6, and 1.3.7.7) that allow us to treat the steps of the

chain as a random sample from the stationary distribution. Theorem 1.3.7.7 allows us

to assess the standard error of the p-value estimate obtained with a finite number of

steps of the Gibbs sampler and thus to figure out when to stop.

Furthermore, in the problem of this chapter, under the null hypothesis the Gibbs

sampler starts out in the stationary distribution; theoretically, the predictive distribu-

tion (Definition 1.3.7.1) for any step in the chain would be the conditional distribution
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we are trying to draw from, although the resulting sample will not be random because

of correlation across steps. In other words, if the null is true, we should not need to

throw out many steps of the Gibbs sampler. When the Gibbs sampler is started from

an arbitrary point, as is the case in Bayesian applications, typically an investigator will

throw out the first bi steps and treat the remaining steps as a random sample from the

target density; steps 1 to bi are called a “burn-in” period.

In the Gibbs sampling algorithm of Kolassa and Tanner [108], the target density is

the approximate joint density of Tpi conditional on Tnp = tnp in exponential families

implied by the approximate univariate conditional cdfs of the elements of Tpi mentioned

in Section 4.2. The problem the paper addresses is that there is no approximation for

the joint density of Tpi, requiring MCMC to supplement higher-order asymptotics.

Here I am setting up Gibbs sampling algorithms whose target is in effect the actual

conditional density of Tpi.

As with importance sampling, we shall be interested in using simulations to assess

the performance of Gibbs sampling with a finite number s of steps. We shall be

especially interested in three outputs of these simulations: the Type I error of the

associated test, as explained in Section 4.4, the ratio of the standard error of the Gibbs

sampling p-value to the standard error of the Monte Carlo p-value (see Definition

1.3.3.7), and the effect of a burn-in period. As mentioned, a burn-in period might not

be needed under the null, but under the alternative using a burn-in period may increase

the power of the associated test by increasing the difference between the observed

sample and the sample taken as representative of the stationary distribution.

In our context, g(Y(i)) in Theorem 1.3.7.7 is the indicator function ITpi(Y(i))<>tpi
.

The approximate ratio of the standard error of the Gibbs sampling p-value to the

Monte Carlo standard error is given by
√

τ from Theorem 1.3.7.7. To calculate τ , I

shall assume that the correlation of g(Y(i)) across steps satisfies

Corr(g(Y(i)), g(Y(j))) = ρ|i−j|, (4.23)
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so that a reasonable estimate for τ is

τ̂ =
1

1 − ρ̂
, (4.24)

where ρ̂ as the average of the first-order autocorrelations of g(Y(i)) from the simulated

datasets.

Theorem 1.3.7.7 is taken from Roberts and Rosenthal [14]. (I have corrected a typo

that appears in the original.) Here I shall derive a slightly different approximation for

τ , but I shall use Theorem 1.3.7.7 in subsequent calculations.

Letting g and Z be as defined in Theorem 1.3.7.7,

V ar

(
1

s

s∑
i=1

g(Y(i))

)
≈ E

(
1

s

s∑
i=1

(g(Y(i)) − E(g(Z))

)2

=
1

s2

s∑
i=1

E(g(Y(i))−E(g(Z)))2+
2

s2

s∑
i=1

∑
j>i

E{(g(Y(i))−Eg(Z)))(g(Y(j))−E(g(Z)))}.

(4.25)

Now letting V ar(g(Z)) = σ2 and accepting the approximation

Cov(g(Y(i)), g(Y(j))) = ρ|i−j|σ2,

Equation 4.25 becomes

σ2

(
1

s
+

2

s2

s∑
i=1

∑
j>i

ρ|i−j|

)

= σ2

(
1

s
+

2

s2
(s − 1)ρ1 +

2

s2
(s − 2)ρs + . . . +

2

s2
ρs−1

)

= σ2

(
1

s
+

2

s2

s−1∑
i=1

(s − i)ρi

)

=
σ2

s

(
1 + 2

s−1∑
i=1

ρi − 2

s

s−1∑
i=1

iρi

)
. (4.26)

Now if the variance exists, the last term in parentheses converges to 0. Equation 4.26
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suggests the following approximation for τ :

τ ≈ 1 + 2
∞∑
i=2

Corr(g(Y(i)), g(Y(1))).

This is larger than the correction factor in Theorem 1.3.7.7.

4.5.1 Implementation of Gibbs sampling with linear sufficient

statistics

If we use the full conditional distribution as the target density (Definition 1.3.7.1),

we shall run into problems, because the jumping density (Definition 1.3.7.2) will be

degenerate due to the fact that the indicator function in Equation 4.4 determines

xi once the other elements of x are known. Furthermore, using the full conditional

distribution would lead to dnp unnecessary substeps (Definition 1.3.7.2) at each step,

since we can get the last dnp elements of x from the first N − dnp. We can get around

this problem either by using the marginal conditional distribution or the distribution

of Z from Equation 4.10 as the target.

If the marginal conditional density is the target, by Theorem 1.3.5.14 the ker-

nel of the ijth jumping density is simply Equation 4.8 with x1 = x1(j), . . . , xi−1 =

xi−1(j), xi+1 = xi+1(j − 1), . . . , xN−dnp = xN−dnp(j − 1). If the distribution of Z from

Equation 4.10 is the target, again by Theorem 1.3.5.14 the kernel of the jumping

density will be Equation 4.11 with z1 = z1(j), . . . , zi−1 = zi−1(j), zi+1 = zi+1(j −
1), . . . , zN−dnp = zN−dnp(j − 1). Generating from the jumping densities may not be

straightforward, but they are univariate densities, and the problem of generating from

univariate densities is much easier than that of generating correlated multivariate data

with potentially complicated support restrictions, which we would be faced with if we

wanted to generate directly from either of these target densities. The fact that we

know only the kernel can be dealt with either by using a generating method that does

not require knowledge of the constant of proportionality, or by using (unidimensional)

integration to calculate that constant. Note that the upper and lower bounds of the

support of the jumping density will not in general be infinite due to the constraints
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embodied in Equation 4.8 and Equation 4.11.

We can derive a simpler expression for the jumping density for a marginal condi-

tional target by what I shall call “minimal degrees of freedom” derivation. To simplify

the notation I’ll describe how it would work for the first substep of a step. The jump-

ing density we seek for the jth step would be the distribution of X1 conditional on

WTX = tnp,X[2 : N − dnp] = x[2 : N − dnp](j − 1). This is the marginal distri-

bution of X1 implied by what I shall call the “joint conditional”: the joint distribu-

tion of {X1, XN−dnp+1, . . . XN} conditional on WTX = tnp,X[2 : N − dnp] = x[2 :

N − dnp](j − 1). Looked at this way, we are solving the problem of defining an appro-

priate jumping density in the presence of constraints by allowing the minimum degrees

of freedom in the first substep necessary to prevent degeneracy, hence the name of the

approach. The minimal degrees of freedom approach to Gibbs sampling is very similar

to the approach for testing for independence in square contingency tables in Smith et.

al. [133].

By Theorem 1.3.5.14, the kernel of the joint conditional will be proportional to

Equation 4.4 with X[2 : N − dnp] set equal to x[2 : N − dnp](j − 1). If the Equa-

tion 4.3 has been well-parameterized, the support of the joint conditional will be a

one-dimensional hyperplane in �dnp+1. That hyperplane is described by the equation

WT
1 X1 +

∑N
i=N−dnp+1 WT

i Xi = tnp−
∑N−dnp

i=2 WT
i xi(j−1). If we pick a value x1 for X1,

we fix a point on the hyperplane, and the corresponding value of X[N − dnp + 1 : N ]

will be

(WT
N−dnp+1:N)−1(tnp −

N−dnp∑
i=2

WT
i xi(j − 1) − WT

1 x1). (4.27)

The inverse in Equation 4.27 will exist if the Equation 4.3 has been well parameter-

ized. Then we can derive the kernel of the jumping density for x1 by plugging Equation

4.27 into the kernel of the joint conditional and applying Theorem 1.3.5.16. The jump-

ing density kernel will be (recall that this is a function of x1 with X[2 : N − dnp] fixed

at its value for the previous step):

h(V(x1))G(V(x1), θpi), (4.28)
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where V(x1) is

{x1,x[2 : N − dnp](j − 1), (WT
N−dnp+1:N)−1(tnp −

N−dnp∑
i=2

WT
i xi(j − 1) − WT

1 x1)}.

Because of the linearity of Equation 4.27, the term under the radical in Theorem

1.3.5.16 will be a constant, so we don’t need to include it in the kernel. The jumping

densities for the other substeps will have analogous forms.

To obtain τ in order to use Theorem 1.3.7.7 to judge when to stop the Gibbs

sampler, a practitioner could use Equation 4.24, where ρ̂ would simply be the first-

order autocorrelation estimated from the steps of the Gibbs sampler. To decide on

the length of a burn-in period, a practitioner could simply increase bi from 1 until the

estimated p-value stabilized.

Throughout Section 4.5 I shall refer to the “Gibbs sampling p-value” and the “Gibbs

sampling test”. These terms are analogous to “Monte Carlo p-value” and “Monte Carlo

test” (Definition 1.3.3.7).

4.5.2 Application: exponential regression with inverse link

Suppose that Xi is exponential with mean 1Pp
j=1 Wijβj

. Such a model was proposed by

Davidov and Zelen [134]. The resulting density of the data is

fX(x; β) = Ix1≥0,...,xN≥0

N∏
i=1

(
p∑

j=1

Wijβj

)
exp

(
−β1

N∑
i=1

Wi1xi − . . . − βp

N∑
i=1

Wipxi

)
(4.29)

This model satisfies Equation 4.3. Using the inverse link creates a convenient model

in which the sufficient statistics are linear functions of the data and uniformly most

powerful tests of hypotheses can be readily identified using Theorems 1.3.4.4 through

1.3.4.7.

Section 4.3 obtained similar tests for a factor in an exponential-data experiment

without assuming any structure for the factor effects. Adopting the inverse link creates

a more versatile model. It allows us to condition away a nuisance factor even when

there is no replication within levels of the factor. It can reduce the number of sufficient
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statistics we need to condition on. For instance, if there are two nuisance factors with

3 levels each, the analysis of Section 4.3 requires conditioning on 9 sufficient statistics;

but if we adopt the inverse link model with only main effects, we need to condition on

only 2 sufficient statistics. Finally, with no assumed structure for the factor effects, no

UMP test exists except in very special cases.

For the case where E(Xi) = 1
β0+β1Wi

, Davidov and Zelen derived the exact distri-

bution of the sufficient statistic
∑N

i=1 WiXi for β1 conditional on the sufficient statistic∑N
i=1 Xi for β0. Their derivation involves knowledge of Laplace transforms and clever

derivation. It is interesting to note that, for testing the null that β1 = 0 in their

problem, one can simply use Algorithm 4 to condition away β0. But the larger point

here is that by implementing Gibbs sampling conditional Monte Carlo, without any

tedious calculations, we shall be able to conduct similar tests for hypotheses that place

null values on any number of βs of interest in the presence of any number of nuisance

predictors.

For a generalized linear model for any type of gamma data with known α, the

inverse link is the canonical link (Definition 1.3.5.8), resulting in exponential-family

models with trivial UMP tests and sufficient statistics. In particular, one might choose

inverse links to relate sample variances or sample coefficients of variation for normal

data to predictor variables; ie, if one wanted to model σ2
ij from Equation 4.13 or ω∗+ci

from Equation 2.24 as the inverse of
∑p

j=1 Wijβj one would get an exponential family

density with linear sufficient statistics for β. The Gibbs sampling approach developed

below for conducting similar tests can in principle be applied to any canonical-link glm

for gamma data, making such models worth exploring.

At least two other authors have pointed out the convenience of the inverse link

in modeling gamma variables ([122], [135]). An obvious question arises as to how of-

ten it will be appropriate; after all, the linear link seems simpler, and the log link

(ln(E(Xi)) =
∑p

j=1 W T
ij βj) ensures nonnegativity. But very often, there is no com-

pelling reason to choose one monotonic link over another. Nair and Pregibon [122]

argued that in modeling normal dispersion effects with sample variances,

If the sample variances are all of the same order of magnitude, any link

function can be reasonably approximated by a linear function. So although
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the interpretation of the dispersion effects may change as the link changes,

the broad qualitative conclusions concerning model identification will be

the same.

There is something to be said for using a model for which exact inference is possible; of

the two sources of error in inference – model misspecification and method inexactness

– one is eliminated as a concern. In any event, conditional Monte Carlo makes possible

a pure goodness of fit test of the inverse link model for gamma data with known shape

since there is a linear sufficient statistic for every unknown parameter, so one could

readily test the inverse link if one were to try it.

In this application of Gibbs sampling we seek to test Ho : βp+1 = 0 against Ha :

βp+1 < 0 (The alternative is that the pth variable has a positive effect on the mean.)

Equation 4.29 is then the model for the data under Ho. The UMP similar test has

the form Tpi ≡ WT
p+1X > b (Theorem 1.3.4.6), where Wp+1 is a column we would

add to W for the alternative model, with the p-value calculated from the conditional

distribution of X given the value of WTX.

We shall use the distribution of Z in Equation 4.10 as the target density. In Equa-

tion 4.29, under the null the density is a function of the data only through the sufficient

statistics for the nuisance parameters. Then applying Theorem 1.3.5.15, we find that

the conditional density of the data under the null is IWT x=tnp,x1≥0,...,xN≥0. From Equa-

tion 4.11 the kernel of the target density under the null is

I(WWT )gWtnp+Pz≥0. (4.30)

In other words, Z is uniform on the set SZ of points in �N−p that satisfies

(WWT )gWtnp + Pz ≥ 0.

From Section 4.5.1, the ijth jumping density will be constant on the set

I(WWT )gWtnp+P{z1(j),...,zi−1(j),zi,zi+1(j−1),...,zN−dnp (j−1)}≥0. (4.31)

We can expect SZ to be compact (Definition 1.3.8.1) and convex (Definition 1.3.8.2).
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For compactness, closedness follows from the inclusiveness of the constraint; to see that

the set is bounded, consider the set SX of points in �N that satisfy

IWT X=tnp, x1≥0,...,xN≥0 = 1 (4.32)

In Section 4.4.1 I argued that this set is compact if Wi1 = 1 for all i – if there is a

constant in the regression, which merely implies that the mean cannot be infinite. Now

from Theorem 1.3.8.7, SZ is the set of points satisfying

z = PT (x − (WWT )gWtnp),

for some x in SX. So the boundedness of SX implies the boundedness of SZ.

For convexity, let z1 ∈ SZ and let z2 ∈ SZ. Convexity will be proven if we can

show H(λ) = (WWT )gWtnp + P(λz1 + (1 − λ)z2) ≥ 0 for 0 ≤ λ ≤ 1. It is trivially

true for λ = 0 and λ = 1. Now ∂H
∂λ

= P(z1 − z2) – a constant. So for each element,

H(λ) has its smallest value at H(0) or H(1), and both of these are greater than 0.

Convexity allows us to infer that the support of the jumping density for zi(j), the set

described in Equation 4.31, is an interval containing zi(j−1). Compactness guarantees

that the uniform density on this support is well-defined. The following algorithm finds

the upper and lower limits on that interval and fills in the details of how the Gibbs

sampling p-value will actually be calculated.

Algorithm 7. Gibbs Sampling for conditional inference in exponential regression with

an inverse link

1. Solve x = (WWT )gWtnp + Pz for z. Call the solution z(1).

2. Draw z1(j) from a uniform distribution with upper bound U1(j) and lower bound

L1(j).

To find the upper and lower bounds for z1(j), find all values of z1 that set at least

one element of (WWT )gWtnp +
∑N−p

i=2 Pizi(j − 1) + P1z1 equal to 0. U1(j) will

be the smallest such value of z1 that is greater than z1(j − 1), and L1(j) will be

the largest such value of z1 that is less than z1(j − 1).
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3. Draw z2(j) from a uniform distribution with upper bound U2(j) and lower bound

L2(j).

To find the upper and lower bounds of the uniform distribution of z2(j), you

would proceed as in step 2, finding all values of z2 that set at least one element

of (WWT )gWtnp +
∑N−p

i=3 Pizi(j − 1) + P1z1(j) + P2z2 equal to 0.

4. And so on until zN−p(j) is drawn from a uniform distribution with upper bound

UN−p(j) and lower bound LN−p(j) calculated similarly.

5. Repeat steps 2-4 s − 1 times.

6. For each z(i) drawn in this way calculate Ind(z(i)) ≡ ITpi((WWT )gWtnp+Pz(i))≥tpi
,

where tpi is the observed value of Tpi.

7. Take p̂GS ≡
Ps

i=1 Ind(z(i))

s
as the estimate of the p-value

Steps 1 − 5 of Algorithm 7 form a Gibbs sampling algorithm (Definition 1.3.7.2)

whose target density is defined by Equation 4.30 and whose stationary distribution

(Definition 1.3.7.5) is therefore that of the variable Z, by Theorem 1.3.7.4. Algorithm

7 is clearly aperiodic (Definition 1.3.7.6). For a quick proof, for any epsilon ball around

the point z(i), there is a positive probability that z(i + 1) will be inside that ball. The

algorithm is also irreducible (Definition 1.3.7.7). Formally proving this is tedious, but

it is not hard to see. Recall that the support SZ is convex. For any convex set in

�N−p, one can move from any point A to any point B by a series of movements along

the axes. Now Algorithm 7 does precisely that – makes probabilistic movements along

the axes; clearly, if one takes an epsilon ball around any point A in the support of Z

and an epsilon ball around another point B in the support and starts Algorithm 7 at

A, there would be some positive probability of making a finite number of movements

that brought the algorithm into the epsilon ball around B. From Theorem 1.3.3.4 and

Equation 4.10, the p-value associated with tpi is EZ(Ind(Z)). Then p̂GS(s) converges

almost surely to the true conditional p-value by the Ergodic Theorem (1.3.7.6), we

can use Theorem 1.3.7.7 to obtain its standard error, and by transforming each (
¯
i)

by Equation 4.10 we obtain what we can treat as a random sample of X from its

conditional distribution .
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Table 4.8: Type I error of one-sided test of no effect of continuous predictor

p r s size std error

2 5 500 0.052 0.001

2 10 500 0.047 0.002

4 2 500 0.053 0.002

4 5 500 0.062 0.002

4 5 1000 0.054 0.002

4.5.3 Simulation evaluation of Gibbs sampling for inverse link

exponential regression

In the simulations in Section 4.5.3 under the null hypothesis, W will be a design matrix

for a factorial experiment where each of the p−1 factors has 2 levels, only main effects

are included in the model, and there are r replicates in each of the 2p−1 cells. Such

a matrix will have p linearly independent columns; the dimension of the sufficient

statistic will be p × 1, and X, the response, will be an 2p−1r × 1 vector. Each step of

Algorithm 7 will draw an 2p−1r − p-dimensional z vector.

Under the alternative hypothesis, W will contain an additional colum Wp+1, a

continuous variable that takes the values 1, 2, . . . , r within each cell, and the coefficient

associated with that variable will negative.

Table 4.8 displays the Type I error of the Gibbs sampling test implemented with

the reported value of s. To calculate Table 4.8, 10, 000 or more datasets were generated

for each scenario under the null hypothesis, with the βs set so that the mean response

is 1 and no factors have any effects.

We can see that even for a fairly small s, the test has approximately the correct

size. This is not surprising. Recall that under the null, the Gibbs sampling Markov

chain starts off in its stationary distribution, so we would not expect a systematic bias

in the p-value, although it would have a different variance than that given by Theorem

1.3.6.9. As the number of degrees of freedom in the data grows, the value of s required
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Table 4.9: Power of Gibbs sampling test with and without burn-in. (SE = 0.025)

p r s bi power

2 5 500 0 0.46

2 5 750 250 0.44

4 5 500 0 0.53

4 5 750 250 0.53

to obtain a test with the correct size grows.

Table 4.9 reports some preliminary findings as to the need for a burn-in period. This

table was generated in the same way as Table 4.8, except that the data were generated

under the alternative hypothesis, with the coefficient on the continuous predictor chosen

to make the power about 0.5. A burn-in period of size bi was thrown out before

conducting the Gibbs sampling test. The number of datasets for each scenario in this

table – 400 – was much smaller than the number of datasets for Table 4.8, because the

goal here was just to get a general feel for the power as a function of bi.

Table 4.9 indicates that the burn-in period need not be very large. To be safe,

one could choose an s that gives a desired p-value standard error, then double it and

throw out the first half. Alternatively, there is no need to use the observed data

as the starting point of Algorithm 7. If one wanted a starting point that would be

typical of the null distribution, one could pick any nonnegative point x that solved

WT
1 x = tnp, 1, . . . ,W

T
p x = tnp, p,W

T
p+1x = WT

p+1X̄. With a starting point that is

typical of the null, there is no reason to expect that any burn-in period would be

needed.

Table 4.10 displays the average across 20 simulated datasets of the estimated auto-

correlations of Ind(z(i)); for each scenario in the table the data were generated under

the null and s = 500 so that the estimated autocorrelations would be precise. We can

see that there is substantial autocorrelation which increases with p and r. Applying

Equation 4.24, our estimate of τ for the last scenario in Table 4.10 would be 1
1−0.8

, so

that the ratio of the standard error of the Gibbs sampling p-value to that of a hypothet-
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Table 4.10: Autocorrelations for Ind(z(i))

lag

p r 1 2 10 20

2 5 0.3 0.1 0.0 0.0

2 10 0.3 0.2 0.0 0.0

4 2 0.4 0.3 0.1 0.0

4 5 0.7 0.6 0.2 0.1

6 2 0.7 0.6 0.3 0.2

6 5 0.8 0.7 0.4 0.2

ical traditional Monte Carlo p-value would be
√

5; to obtain a desired standard error

would require 5 times as many steps in the Gibbs sampler (post burn-in) as traditional

Monte Carlo draws.

One caveat here is that the estimated autocorrelations in Table 4.10 are not con-

sistent with Equation 4.23. 0.810 = 0.1, and 0.820 = 0.0, lower than the estimated

autocorrelations in the Table. The autocorrelations assumed by Equation 4.23 evi-

dently decay too fast, so that our estimate of τ will be an underestimate. Practitioners

should be advised that they may need an approximation more complicated than Equa-

tion 4.24 to estimate τ .

An alternative assumption that would allow more flexibility for matching the ob-

served autocorrelations would be that Corr(Ind(z(i)), Ind(z(i))) = ρ1 for |i − j| = 1

and Corr(Ind(z(i)), Ind(z(i))) = ρ1ρ
|i−j−1| for |i − j| > 1 for some constants ρ1 and

ρ. For the last scenario in Table 4.10, ρ1 = 0.8 and ρ = 0.95 would be a conservative

choice – producing autocorrelations that are slightly larger than observed. Using The-

orem 1.3.8.13, this would yield an estimate τ̂ = 17. This suggests that in order for the

investigator to obtain the same degree of precision as obtained by traditional Monte

Carlo with s draws, the investigator would require 17s steps for Algorithm 7.

The effect of the correlation across draws in the Gibbs sampler on the standard error
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is quite dramatic in the last scenario in Table 4.10. One step of Algorithm 7 takes 0.23

seconds in SAS-IML. If one desired to estimate the p-value with a standard error of

0.002, one would need 10, 000 draws with traditional Monte Carlo and 170, 000 draws

with Algorithm 7, requiring almost 11 hours of computer time. This is not infeasible

for an investigator that needs just one run of the algorithm, but would require an

inconvenience such as running the algorithm overnight. This scenario can be thought

of as a minimally-practical scenario; problems with more than 6 nuisance parameters

and 150 degrees of freedom may be too much for Gibbs sampling to handle.

4.5.4 Application: comparing exponential populations with

Type I censoring

With survival data subject to Type I censoring, there is an upper bound L on the

lifetime. This would occur when there is a date at which observation must cease, so

that if an individual survives from the start of the experiment until the end date, all

we know about him is that his survival time is at least L.

If data are drawn from an exponential distribution with scale parameter β, under

Type I censoring the likelihood of the data is ([111], page 105)

I0≤x1≤L,...,0≤xN≤Lβ−PN
i=1 Ixi<L exp

(
− 1

β

N∑
i=1

Ixi=LL + Ixi<Lxi

)
.

For ease of notation, I shall call the number of fully-observed liftimes R, and O will be

the set of individuals whose lifetime is fully observed. Then the likelihood is

1

βr
exp

(
− 1

β

(
(N − r)L +

∑
O

xi

))
.

There is a small literature on such data (see [111], [113], [136], [137]). To conduct

similar inference, that does not depend on the value of the nuisance parameter β,

is surprisingly tricky in this model. The issue arises in testing whether the value of

β is the same across k populations and in goodness-of-fit testing of the exponential

assumption. No exact homogeneity or goodness of fit tests have appeared.
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As can be verified using Theorem 1.3.1.2, R and
∑

O Xi form a minimal sufficient

statistic for β ([111], page 106). Thus, the distribution of the data conditional on

R = r,
∑

O Xi = t2 does not depend on β. In fact, by Theorem 1.3.5.15, it is uniform

on the set of datasets yielding R = r,
∑

O Xi = t2. Elements of this set satisfy three

properties:

1. Exactly r of the observations are L.

2. The sum of the fully-observed lifetimes is t2.

3. Each fully-observed lifetime lies between 0 and L.

To generate uniform data satisfying these constraints is a two-part problem: select-

ing which observations are fully-observed and generating the fully-observed data. First

I shall consider the latter problem.

Let Z be a random variable with the same distribution as that of the fully-observed

data conditional on R = r,
∑

O Xi = t2. Consider an r-dimensional U that is uniform

on the support 0 ≤ U1 ≤ L, . . . , 0 ≤ Ur ≤ L. The density has the form of Equation

4.3 with h(u) = I0≤u1≤L,...,0≤ur≤L, K = 1, G = 1. Let W = {1, . . . , 1}. By Theorem

1.3.5.14, we can deduce that the distribution of U conditional on WTU = t2 is

IPr
i=1 ui=t2, 0≤u1≤L,...,0≤ur≤L.

This is a uniform density on the set satisfying items 2 and 3 above, so we shall be

generating Z[1 : r − 1] if we draw from the marginal conditional distribution of U.

We shall use Gibbs sampling to generate from this distribution. Applying Equation

4.28, the ijth jumping density is the indicator function for the event

0 ≤ u1(j) ≤ L, . . . , 0 ≤ ui−1(j) ≤ L, 0 ≤ ui ≤ L, 0 ≤ ui+1(j) ≤ L, . . . , 0 ≤ ur−1(j) ≤ L,

0 ≤ t2 −
i−1∑
l=1

ul(j) −
r−1∑

l=i+1

ul(j − 1) − ui ≤ L.

In other words, the jumping density is uniform on the intersection of the intervals

0 ≤ ui ≤ L and t2 −∑i−1
l=1 ul(j) −

∑r−1
l=i+1 ul(j − 1) − L ≤ ui ≤ t2 −∑i−1

l=1 ul(j) −
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∑r−1
l=i+1 ul(j − 1). The lower limit is max(0, t2 −

∑i−1
l=1 ul(j)−

∑r−1
l=i+1 ul(j − 1)−L) and

the upper limit is min(L, t2 −
∑i−1

l=1 ul(j) −
∑r−1

l=i+1 ul(j − 1)).

By the fact that the resulting Markov chain is a Gibbs sampler, Theorem 1.3.7.4

holds. Aperiodicity follows from the same argument as given for Algorithm 7. It’s also

not hard to see that the support of the chain is convex (use the reasoning in Section

4.5.2), so that irreducibility follows from the Algorithm 7 argument as well. Then by

Theorem 1.3.7.5, if we choose the number of steps s large enough we shall be on solid

ground for treating the draws as a random sample of Z[1 : r − 1].

For the first part of the problem of generating censored exponential data conditional

on a minimal sufficient statistic, the uniformity of the conditional distribution implies

that each set of r observations is equally likely to be the fully-observed observations.

To complete the job of generating the data, choose one of the 1

(N
r )

sets at random. The

next few paragraphs formally describe an MCMC algorithm for calculating the p-value

associated with the value t of a test statistic T(X) conditional on R = r,
∑

O Xi = t2.

Let A be the vector created by placing the digits 1 to N in random order in a

vector and then slicing off the last r elements. Let Umc be a random variable whose

distribution is that of Z[1 : r − 1]. Then, conditional on R = r,
∑

O Xi = t2 the data

follow the stochastic representation X = g(A,Umc), where g can be described in the

following way: the N − r elements of X indexed by the values in A are equal to L, and

the values of the vector {Umc, t2 −
∑r−1

i=1 Umc, i} are assigned in order to the remaining

values of X.

Let A(i) be the ith of s independent draws of the random vector A, and let Umc(i)

represent the ith step in the Gibbs sampler for the fully- observed data. {A(i),Umc(i)}
form an irreducible, aperiodic Markov chain whose stationary distribution is that of

{A,Z}, so Theorem 1.3.7.5 will apply. Then for s large enough, we have justification

for treating x(i) ≡ g(a(i),umc(i)) as a random sample from the conditional distribution

of X. Furthermore, by Theorem 1.3.7.6, the average of Ind(a(i),umc(i)) ≡ IT(x(i))<>t

across the s steps in the chain will converge almost surely to the conditional p-value

associated with the observed value t, and we can use Theorem 1.3.7.7 to obtain the

standard error of this estimated p-value.

Suppose the data are from k populations, and Xi is a vector of data from the
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Table 4.11: Size of LR test for equality of scale parameters under Type I censoring. (SE =
0.002)

k N∗ Asy MC

2 40 0.052 0.050

4 26 0.049 0.048

8 20 0.058 0.053

ith population, where all samples are subject to the Type I censoring with the same

maximum observed lifetime L. This kind of situation would arise in a time-constrained

one-way experiment. With the exponential model being the simplest survival model

and with Type I censoring a common reality, clearly it is of interest to be able to test

whether the scale parameter is the same across populations.

Let βi be the scale parameter for population i, ri be the number of fully-observed

lifetimes from the ith population, Oi be the set of observations from the ith population

for which lifetimes are fully-observed, and Ni be the sample size of the ith population.

The (log-transformed) likelihood ratio statistic for testing Ho : β1 = . . . = βk against

the alternative that there is at least one inequality is ([111], page 116)

LR − ET ≡ 2

(
k∑

i=1

ri

)
ln

(∑k
i=1

(
(Ni − ri)L +

∑
Oi

Xij

)∑k
i=1 ri

)

−2
k∑

i=1

ri ln

(
(Ni − ri)L +

∑
Oi

Xij

ri

)
.

We would reject the null for large values. Lawless [111] reports that it is “satisfactory”

to use the approximate χ2
k−1 distribution (Theorem 1.3.6.13) for this test unless the

number of fully-observed lifetimes is “quite small”. Under the null hypothesis, the data

are from one homogeneous exponential population subject to Type I censoring. Thus,

we can estimate similar p-values for LR − ET via MCMC as just described.

Table 4.11 reports the estimated Type I error of the tests resulting from two different
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Table 4.12: Power of MCMC test for equality of scale parameters under Type I censoring.
(SE = 0.02)

k N∗ burn-in s power

2 40 50 500 0.49

2 40 250 750 0.51

4 26 50 500 0.43

4 26 250 750 0.43

8 20 50 500 0.47

8 20 250 750 0.49

methods of calculating the p-values for LR − ET . For each scenario, 10, 000 datasets

were generated, each with k samples of size N∗, from exponential distributions with

β = 1 and L = 1.4, chosen so that E(R) = 0.75N∗. The “Asy column” reports the

estimated Type I error associated with the χ2
k−1 approximation, and the “MC” column

reports the Type I error associated with the MCMC conditional p-value with s = 500.

The scenarios in the table have been chosen so that the power to detect a difference

when half the populations have a scale parameter equal to 0.75 and half have one equal

to 1.25 is approximately 0.5.

The table shows that even for small values of s, conditional Monte Carlo produces

a test with accurate size. This is not surprising; it reflects the fact that under the

null, the Markov chain starts out in the stationary distribution and so should produce

p-values with low bias. For the sample sizes in the table, the asymptotic approximation

provides a valid test if k is small, but can be slightly liberal for large k.

Table 4.12 was generated in the same way as Table 4.11 except that half the pop-

ulations had a scale parameter equal to 0.75 and half had one equal to 1.25, and the

MCMC test was run with a burn-in period. Also, only 1000 datasets were generated

for each scenario. The fact that the proportion of rejections is not sensitize to the size

of the burn-in period indicates no apparent need for a large burn-in period.

Finally, in order to get an idea of how large s should be for the standard error of
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the estimated p-value to be reasonably small, we need the look at the autocorrelations

of the indicator function Ind(a(i),umc(i)). Averaging the estimated autocorrelations

obtained for each simulated dataset in the simulations in Table 4.11, we find that

there is no evidence that there is any autocorrelation at all. The average first-order

autocorrelation is less than 0.004 in absolute value. This indicates that the Monte

Carlo algorithm we have described should be about as efficient as drawing random

samples from the actual conditional distribution of the data, so that Theorem 1.3.6.9

should provide a valid standard error for the MCMC p-value.

The MCMC algorithm runs in a reasonable time. With total sample size equal

to 500, one step, including the generation of both A and Umc, runs in under 0.003

seconds in SAS-IML. This means that 100, 000 steps can be done in about 5 minutes.

Comparing the two applications we have seen, we have some indication that using a

marginal conditional target for Gibbs sampling may be preferable to using the distribu-

tion of Z from Equation 4.10, judging from the relationship between the computational

intensity of the various methods and the amount of data. If Z is the target, typically

each substep of the Gibbs sampler must satisfy N constraints – one for each element

of the original data vector. If we were to use the marginal conditional as the target,

typically we would need to satisfy only dnp + 1 constraints in each substep, one for the

generated variable and one for each sufficient statistic. Not only would this reduce the

computing time, but it might also “free up” the algorithm and allow for less correlation

across steps.

In the censored data example the correlation across steps is certainly reduced by the

random reallocation of fully-observed lifetimes. This creates a caveat to the conclusion

that the marginal conditional target eliminates correlation. However, it also suggests

a way to reduce such correlation if X is a random sample under the null: random

reallocation of the elements drawn in each step to indices of the data vector.

For the problem of testing scale equality against general alternatives, our simula-

tions indicate that for sample sizes allowing reasonable power to detect differences the

benefit of MCMC over the existing approximate approach is minor. However, the

MCMC algorithm can be quite useful. First, for very small samples the χ2 approxi-

mation is inadequate ([111], page 116). Second, we can use our algorithm to estimate

178



Chapter 4. Monte Carlo Conditional p-value Calculation for Continuous Data

a conditional p-value for any statistic designed to detect differences across populations,

which means that if we want to test the null against a specific hypothesis, as long as

we can come up with a reasonable statistic, we can get an essentially exact p-value.

For example, the problem of detecting an ordered alternative with exponential data

has arisen [138]. Even more generally, in any situation in which the investigator wants

to model the scale parameter as a function of predictors, we can use the MCMC algo-

rithm to get an exact p-value for testing whether the model has any explanatory power.

Third, we can use conditional Monte Carlo to conduct a pure goodness-of -fit test. As

emphasized in Section 4.3, such a test is extremely useful for a model as simple as the

exponential. It allows the investigator to try what is in effect the simplest possible

life-testing model before moving to more complicated models.

An extension of Type I censoring allows the upper bound to differ across obser-

vations. This type of censoring would apply to time-constrained experiments where

individuals enter at different dates. Introducing different time constraints for different

observations vastly complicates the problem of drawing from the distribution of expo-

nential data conditional on the minimal sufficient statistic for the scale parameter, so

it will be left to future research.

Commentary on Fang et. al. [139]

By setting γi = 1 in Definition 1.3.5.4, we can see that uniform data on the set∑r
i=1 Zi = 1 is a special case of the Dirichlet distribution; placing the limit Z1 ≤

L/t2, . . . , Zr ≤ L/t2 on such data creates a special case of what is known as the trun-

cated Dirichlet distribution. The Gibbs sampling algorithm above for generating the

fully-observed data conditional on their sum can be extended to generate truncated

Dirichlet data: simply divide the data vector by t2. This algorithm can also be obtained

as a special case of the Gibbs sampling algorithm for generating truncated Dirichlet

data suggested by Fang et. al. [139] for Bayesian purposes.

As an aside, that paper proposes a method for generating truncated Dirichlet data

directly rather than through a Markov chain. The method hinges on the theorem

provided in the paper that the marginal distribution of an element of a truncated

Dirichlet vector is a truncated beta distribution. Here I note that the theorem is not
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true. The mistake the authors make is that they integrate out the other variables

over the support of the non-truncated Dirichlet. Finding an analytical expression for

the integral over the support of the truncated Dirichlet would in fact be quite an

achievement. Thus, one cannot use the method in [139] for generating data directly

from the truncated Dirichlet; Gibbs sampling is the only existing way.

To provide a quick counterexample to the theorem in the paper, consider the Dirich-

let distribution with γi = 1 and a = 3, truncated so that Z1 < 0.5, Z2 < 0.5, Z3 < 0.5.

This can be generated via rejection sampling (Definition 1.3.5.15). The sample mean

of Z1 from 25, 119 draws was 0.332; the sample standard deviation was 0.118. The

theorem in [139] implies that Z1 is beta(1, 2) (see [2], page 623) truncated at 0.5. Gen-

erating 75, 096 values from this distribuiton via rejection sampling, the sample mean

was 0.222 and the sample standard deviation was 0.142. From the theorems in Section

1.3.6, it is acceptable to treat the difference between the two sample means as normal

with standard deviation
√

0.1182

25119
+ 0.1422

75096
= 0.0009. The difference in the sample means

is many, many times the standard deviation of that difference. So clearly, the two

distributions have different means, and the theorem in the paper is incorrect.

4.6 Future research: approaches for nonlinear suf-

ficient statistics

If the sufficient statistics are nonlinear, the problem becomes more difficult. There are

three different approaches we can turn to, none of which is a panacea.

4.6.1 Fiducial Monte Carlo

The fiducial Monte Carlo algorithm for drawing from fX|Tnp(x|tnp) works in the fol-

lowing way.

Algorithm 8. Fiducial Monte Carlo

1. Draw θnp(i) from the fiducial distribution (Definition 1.3.3.5) implied by tnp.

Record the latent variables U(i). (Definition 1.3.3.5)
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2. Calculate X(i) using θnp(i) and U(i). (θpi must be known.)

3. Repeat steps one and two s times for a sample of size s.

Fiducial Monte Carlo was pioneered by Engen and Lillegard [95]. Like fiducial

inference, this method is exact (draws from the actual conditional distribution) if one

can create a pivotal quantity out of Tnp and θnp [140], but it is not exact in general.

Engen and Lillegard provided a “proof” that the method is exact if θnp(i) is a unique

function of U(i) and tnp, but Lindqvist et. al. [141] subsequently disproved the result

by presenting a counterexample; they also stated that the gamma distribution provided

another example of where fiducial Monte Carlo is not exact.

However, since fiducial inference often gives close to exact inference, one might hope

that the approximate inference that stems from this method will be fairly accurate.

This was the finding in an application of this method to the Behrens-Fisher problem

[142].

Another drawback in addition to inexactness is that drawing from the fiducial

distribution is potentially nontrivial. While shortcuts may be available in special cases,

in general each draw would require the solution of a system of nonlinear equations

where one side may contain integrals that cannot be obtained analytically and must be

reevaluated each time a new solution is proposed. Solving these equations may require

programming skill and may be quite computationally intensive.

While I have listed this method in the nonlinear section, nothing prevents us from

using it with linear sufficient statistics. I have not used it in the applications above

because the methods chosen were more convenient.

4.6.2 Importance Sampling

Marginal conditional as the target

One option is importance sampling using the marginal conditional as a target. As

mentioned in Section 4.4, finding an acceptable generating density is not guaranteed;

among the problems are constraints on the support of the marginal conditional. The

estimated likelihood (defined in Section 4.4.1) is a promising candidate, but the theo-

retical musings in Section 4.4.4 are far from rock-solid.
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With nonlinear sufficient statistics, we often cannot obtain an analytical expression

for the kernel of the marginal conditional. Importance sampling, can still be done

because we just need to evaluate that kernel at the draws taken from the generating

density rather than to draw from that kernel. We can evaluate Equation 4.5 or Equation

4.7 by finding g−1 numerically and by employing the formula Jg−1(y) = 1
Jg(g−1(y))

,

which we should be able to calculate via an analytical expression for Jg.

But not having an analytical target still creates complications. The algorithm to

evaluate Equation 4.5 numerically would result in a computationally-intensive algo-

rithm. And g from Section 4.1 need not be one to one; the need to find multiple

inverse functions can complicate numerical computation. Finally, if we cannot derive

the support of the marginal conditional, finding a suitable target may be difficult;

we would have to choose one with a conservatively large support, leading to a high

proportion of throwaway draws.

Conditional Monte Carlo

The method that bears the name “conditional Monte Carlo” (CMC) due to its early

origins [143], is essentially a form of importance sampling [144] with the full conditional

as the target. CMC was not invented for the problem of interest in this chapter; in

fact, it seems to have been forgotten by the statistics literature, while having been

picked up on by physicists [145].

Suppose we want to estimate the p-value asspciated with tpi conditional on Tnp =

tnp. Suppose we can find a one-to-one differentiable function g such that g(X) =

{T(X),Tnp}. With Tnp fixed at tnp, g defines a one-to-one transformation between

the conditional support of X and the support of T. I shall write this function as

T = htnp(X); the function is undefined outside the conditional support of X.

In order to do importance sampling, at a minimum we need to be able to first,

generate data on the conditional support of X, and second, calculate the density of the

data so generated. If we can find a random variable Y with known density fY that has

the same support as the range of htnp , then Z = h−1
tnp

(Y) will have the same support

as that of X conditional on Tnp = tnp, and by Theorem 1.3.5.1 will have the density

fY(htnp(z))Jhtnp
(z).
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Whether we cand find a suitable g and a suitable Y is not at all guaranteed in

general. No guidance is provided in the statistics literature. However, one does have

the freedom to choose them to suit the purposes of importance sampling. One might

reasonably try g(X) = {X1, . . . , XN ,Tnp} and fY = fX[1:N−dnp](y; {θo, θ̂np,MLE}). This

would produce the same algorithm as estimated likelihood sampling. (Since the range

of h is most likely a subset of the unconditional support of X[1 : N − dnp], one would

need to throw out a number of draws of Y.

Having a g that is not one-to-one is not prohibitive, if it is one-to-one in pieces

(see Section 4.1). In this case, we could create a generating density out of fY by

probabilistically determining which value in the support of X to map a drawn value of

Y to.

Note that we must find a g and a Y that will not only create a random variable

whose support is the conditional support of X but that will also create one whose

density reasonably matches the full conditional. The difficulty in achieving all of this

probably accounts for the fact that there is only one application of this approach of

which I am aware in the statistics literature, which is to generate normal data subject

to a constraint that is homogeneous of degree 1 [143] (see Definition 1.3.5.12).

Calculating the Jacobian when the range is a surface.

An additional difficulty with CMC is that calculating Jhtnp
can be tricky. htnp goes

from �N to �N−dnp , so the formula in Definition 1.3.5.2 cannot be used. Since formulas

for Jacobians of functions between spaces of different dimension are hard to find – I

couldn’t even find them in texts entitled “Advanced Calculus” – I shall explain their

calculation here. I have no reference to provide, having not come across these results

in any publication, though would be surprised if they are original.

Consider a function f from �p to a surface in �l. Following Stewart ([18], page

1127), who handles the case of transformations from �2 to surfaces in �3, we would

like to know, for a small hypercube A(y) in the domain of f with a vertex at y, the

ratio of the volume of the corresponding hyperparallogram f(A(y)) anchored at f(y)

to the volume of A(y). We can calculate this with the following algorithm.

Algorithm 9. Calculating the Jacobian of a one-to-one function f from �p to a surface
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in �l at a point y.

1. Calculate the l × 1 vector ∂f(y)
∂y1

. Call this D1.

2. Calculate the l × 1 vector ∂f(y)
∂y2

.

3. Find the orthogonal projection of ∂f(y)
∂y2

onto ∂f(y)
∂y1

. This can be done by means of

the orthogonal projection matrix (Definition 1.3.8.9).

4. Find the vector D2
1 that is the difference between ∂f(y)

∂y2
and its orthogonal projec-

tion onto ∂f(y)
∂y1

.

5. Calculate ∂f(y)
∂y3

, its projection onto the column space of ∂f(y)
∂y1

and ∂f(y)
∂y2

(see Defi-

nition 1.3.8.6), and the difference D3
12 between ∂f(y)

∂y3
and its projection.

6. Likewise, obtain D4
123, . . . ,D

p
12...(p−1).

Speaking very loosely, if we made unit perturbations along each axis in the domain

starting at the point y, and we “straightened out” the corresponding hyperparal-

lelogram in the range, the lengths of the sides of the hyperbox in the range would

be the lengths of the D vectors. Therefore:

7. The value of the Jacobian is the product of the lengths of the D vectors.

We can actually conduct this algorithm by evaluating a single mathematical ex-

pression for Jf (y) for the Jacobian of a one-to-one function:

Jf (y) =

√√√√ p∏
i=1

(
∂f(y)

∂yi

)T

(I − P1...i−1)
∂f(y)

∂yi

, (4.33)

where P0 is the zero matrix and P1...i−1 is the orthogonal projection matrix (Definition

1.3.8.6) onto the column space of ∂f(y)
∂y1

, . . . , ∂f(y)
∂yi−1

.

Notice that if f is linear, then y does not appear in the expression for the Jacobian,

and the Jacobian will be a constant, a fact we have used above.

To calculate the Jacobian for a transformation f from a surface S1 in �p to a

surface S2 in �l is more complicated. However, if we can write f = goh, where g
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is a transformation from �k to S2 and h is a transformation from S1 to �k, then

Jf (z) = 1
Jh−1 (h(z))

Jg(h(z)), and both Jacobians on the right hand side can be evaluated

by Equation 4.33 (see Definition 1.3.5.1). Since htnp will be a function from a surface

to �N−dnp , we would calculate Jhtnp
(z) via the expression 1

J
h−1
tnp

(htnp (z))
, which we can

obtain using Equation 4.33.

To execute the calculation, we must evaluate
∂h−1

tnp
(htnp (z))

∂y
. Using the implicit func-

tion theorem (1.3.8.15), this will be the first N − dnp columns of −
(

∂g(z)
∂x

)−1

. We can

calculate ∂g(z)
∂x

analytically, and the inverse numerically.

4.6.3 Gibbs sampling

Gibbs sampling when the marginal conditional is analytical

If the marginal conditional is the target, by Theorem 1.3.5.14, the kernel of the jumping

density will be either Equation 4.5 or Equation 4.7 with the values of all but one of the

elements of X[1 : N − dnp] fixed. For a concrete example, I shall consider the problem

of testing whether two or more samples are from the same gamma distribution.

Under the null hypothesis of homogeneity, the combined sample comes from one

gamma distribution, with the sufficient statistics Tβ and Tα for the nuisance parameters

α and β (see Definition 1.3.5.10). Here the goal of Gibbs sampling would be to calculate

a p-value for a test statistic ( with power to detect differences ) conditional on Tα = tα

and Tβ = tβ.

We could also use data generated by the Gibbs sampler to conduct a pure goodness-

of-fit test for the gamma distribution.

Bhattacharya [1] reviews the literature on comparing gamma distributions with

unknown parameters. No exact tests exist. Also, no pure goodness-of-fit test has

been proposed for the gamma distribution. Pettit [146] and Dahiya and Gurland

[147] studied applications of common gof tests to the gamma distribution; these tests

require the estimation of the gamma parameters and rely on asymptotic theory for

their p-values.

Let g, X, and Y be as defined in Section 4.1. We have Y1 = X1, . . . , YN−2 = XN−2,

YN−1 = Tβ(X) ≡ ∑N−2
i=1 Xi + XN−1 + XN , YN = Tα ≡ ∑N−2

i=1 ln(Xi) + ln(XN−1) +
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ln(XN). Then g−1(Y)[1] = Y1, . . . ,g
−1(Y)[N − 2] = YN−2. To find g−1(Y)[N − 1] and

g−1(Y)[N ], we find the XN−1 and the XN that solve the equations

XN−1 + XN = YN−1 −
N−2∑
i=1

Yi

XN−1XN =
exp(YN)∏N−2

i=1 Yi

.

(4.34)

Solving the second equation for XN−1 and substituting into the first, we get a quadratic

equation whose solution is

XN =
YN−1 −

∑N−2
i=1 Yi ±

√
(YN−1 −

∑N−2
i=1 Yi)2 − 4 exp(YN )QN−2

i=1 Yi

2
. (4.35)

By the symmetry of the problem, we can see that there are two solutions to Equation

4.34, of the form

g−1
1 (Y)[N − 1] =

YN−1 −
∑N−2

i=1 Yi + A(YN−1, YN ,
∑N−2

i=1 Yi,
∏N−2

i=1 Yi)

2
,

g−1
1 (Y)[N ] =

YN−1 −
∑N−2

i=1 Yi − A(YN−1, YN ,
∑N−2

i=1 Yi,
∏N−2

i=1 Yi)

2
.

(4.36)

and

g−1
2 (Y)[N − 1] =

YN−1 −
∑N−2

i=1 Yi − A(YN−1, YN ,
∑N−2

i=1 Yi,
∏N−2

i=1 Yi)

2
,

g−1
2 (Y)[N ] =

YN−1 −
∑N−2

i=1 Yi + A(YN−1, YN ,
∑N−2

i=1 Yi,
∏N−2

i=1 Yi)

2
.

In other words, g is not one to one, but we can define g1 on XN ≤ XN − 1 and g2

on XN > XN−1 that will be one to one, so we would use Equation 4.7 rather than

Equation 4.5 to get the marginal conditional.

Now for the gamma distribution, in the notation of Equation 4.1, h = Ix1≥0,...,xN≥0

and G = 1. We can see that the data will enter Equation 4.7 only through the indicator

function h, the Jacobians of g−1
1 and g−1

2 , and the indicator function in Equation 4.7.

In order for either g−1
1 (Y) or g−1

2 (Y) to exist, we require the term under the radical

186



Chapter 4. Monte Carlo Conditional p-value Calculation for Continuous Data

in Equation 4.35 to be positive. So the expression that determines the indicator from

Equation 4.7 is

(tβ −
N−2∑
i=1

xi)
2 ≥ 4

exp(tα)∏N−2
i=1 xi

. (4.37)

Using the fact that Equation 4.35 is necessarily nonnegative and taking advantage

of symmetry, we get the following expression for the kernel of the marginal conditional:

2I
(tβ−

PN−2
i=1 xi)2>

exp(tα)QN−2
i=1

xi

×

Ix1≥0,...,xN−2≥0×
Jg−1

1
({x[1 : N − 2], tβ, tα})

(4.38)

To evaluate the Jacobian in Equation 4.38, we can employ the formula Jg−1
1

({x[1 :

N − 2], tβ, tα}) = 1
Jg1 (g−1

1 ({x[1:N−2],tβ ,tα})) . After some derivation, we find that the Jaco-

bian in Equation 4.38 is proportional to

1∏N−2
i=1 xi

√
(tβ −∑N−2

i=1 xi)2 − 4 exp(tα)QN−2
i=1 xi

. (4.39)

By Theorem 1.3.5.14, the ijth jumping density will be proportional to Equation

4.38, with all of the variables except the ith fixed. This will yield a kernel of the form

IL(i,j)<xi<U(i,j)Jg−1
1

({x1(j), . . . , xi−1(j), xi, xi(j + 1), . . . , xN−2(j − 1), tβ, tα}), (4.40)

where L(i, j) and U(i, j) are the smaller and larger positive solutions for

(tβ −
i−1∑
k=1

xk(j) − xi −
N−2∑

k=i+1

xk(j − 1))2 = 4
exp(tα)

xi

∏i−1
k=1 xk(j)

∏N−2
k=i+1 xk(j − 1)

. (4.41)

The constraint in Equation 4.40 is derived from the need to satisfy the first indicator

function in Equation 4.38. It can be shown, using graphical arguments, that except

on a set which the Gibbs sampler has probability 0 of reaching, Equation 4.41 will

always have two solutions and that xi must be between those two solutions to satisfy
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the constraint in Equation 4.37.

This example demonstrates that implementing Gibbs sampling can be challenging

even when the marginal conditional is analytically tractable. It may be difficult to

derive g−1, the possibility of multiple solutions to Equation 4.6 creates additional

work, it may be tedious to evaluate h or G at g−1(y) if either embodies constraints,

it may be difficult to express the indicator function in Equation 4.7, the expression

for the Jacobian may be quite long and complicated, especially if dnp is large, and one

must work to translate constraints on the support of Equation 4.7 into bounds on the

univariate jumping density. Finally, one needs to come up with a strategy for drawing

from that density.

When the marginal conditional cannot be written analytically

With nonlinear sufficient statistics, we might not be able to write the marginal condi-

tional analytically. If the marginal conditional kernel cannot be written analytically,

Gibbs sampling cannot be done, because we don’t have a jumping density to draw

from. But for the Metropolis-Hastings-within-Gibbs algorithm (Definition 1.3.7.9)

rather than pure Gibbs sampling, we don’t need to draw directly from the jumping

density; we just need to be able to evaluate it. By Theorem 1.3.7.10, the Metropolis-

within-Gibbs Markov Chain has the right stationary distribution, and typically Theo-

rems 1.3.7.5, 1.3.7.6, and 1.3.7.7 will hold so that the properties of the algorithm will

be similar to those of Gibbs sampling if we do enough steps.

Using Theorem 1.3.5.14, evaluating the marginal conditional kernel from Equations

4.5 or 4.7 will often be feasible, since we shall often be able to solve for g−1 numerically,

and since we can evaluate the Jacobian as 1
Jg(g−1({x[1:N−dnp],tnp})) , for which we can

derive the necessary derivatives analytically (see Definition 1.3.5.1). If g is not one-to-

one, finding multiple solutions without some analytical tractability can become quite

troublesome, however, especially if dnp is large.

Moreover, the Metropolis-within-Gibbs algorithm is not guaranteed to converge in

a practical number of steps. Like importance sampling, its efficiency depends crucially

how well the generating density matches the jumping density target (see Definition

1.3.7.8). We saw with importance sampling that picking a generating density can be
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hit or miss even if we have an analytical expression for the target, and it is made

more difficult here by the fact that we may have not even know the support, though

we might be able to identify bounds numerically. One aspect of this problem that

might make it easier than the problem of finding a generating density for importance

sampling is that the target in each substep is univariate. Even with a good generating

density, the resulting algorithm, which will have higher correlation across steps than

Gibbs sampling and which will require numerical calculations at each step, may be

quite computationally intensive if we desire a precise p-value estimate.

Minimal degrees of freedom approach

Recall from Section 4.4.1 that we can look at the jumping density as the marginal

distribution of xi(j) from the joint conditional, giving us an alternative way of deriving

it. Doing so will provide us with some beneficial insights.

For notational simplicity, here I shall assume that we are in the first substep of

the jth step. The jumping distribution for X1(j) is the marginal distribution of X1

from the joint distribution of {X1, XN−dnp+1, . . . , XN} conditional on Tnp = tnp and

X2 = x2(j−1), . . . , XN−dnp = xN−dnp(j−1). From Theorem 1.3.5.14 and Equation 4.2

the kernel of the joint conditional is

ITnp=tnp({x1,x[2 : N − dnp](j − 1), xN−dnp+1, . . . , xN})
h({x1,x[2 : N − dnp](j − 1), xN−dnp+1, . . . , xN})

G({x1,x[2 : N − dnp](j − 1), xN−dnp+1, . . . , xN}; θpi).

(4.42)

The support of this distribution will be a one-dimensional surface in �dnp+1. This

surface is described by the equation

Tnp({x1,x[2 : N − dnp](j − 1), xN−dnp+1, . . . , xN}) = tnp. (4.43)

Figure 4.1 provides an example of a one-dimensional surface in a higher-dimensional

space.

Fixing a value of x1 in Equation 4.43 will produce an equation that has a number

of solutions in general. In a well-behaved problem, by Theorem 1.3.8.15 the x[N −
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dnp + 1 : N ] that solves the equation will be a local differentiable function of x1 in the

neighborhood of any particular point on the surface except on a set of measure 0. In

other words, the surface will consist of m identifiable pieces for the ith of which we can

write x[N − dnp + 1 : N ] = fi(x1), and

∂fi(x1)

∂x1

= −∂Tnp({x1,x[2 : N − dnp](j − 1), fi(x1)})
∂x[N − dnp + 1 : N ]

−1

×
∂Tnp({x1,x[2 : N − dnp](j − 1), fi(x1)})

∂x1

.

(4.44)

For the surface in Figure 2, for each value of x there are two possible values of y

190



Chapter 4. Monte Carlo Conditional p-value Calculation for Continuous Data

(except for x = 0, which would have measure 0). The first piece of the surface runs

from the point (0, 0) to the point (1, 0.25), the second piece runs from (1, 0.25) to the

point (−1, 0.75), and the third piece from (−1, 0.75) to (0, 1). Along each piece, y is a

differentiable function of x. Clearly, along the ith piece the surface can be described

by a function y = fi(x). At the points x = 1 and x = −1, the derivative of y with

respect to x blows up, but this would be a set of mesure 0.

Using Theorem 1.3.5.16 and simplifying, the jumping density for X1(j) will be

proportional to

m∑
i=1

Ix1∈Xi
×

h({x1,x[2 : N − dnp](j − 1), fi(x1)})×
G({x1,x[2 : N − dnp](j − 1), fi(x1)}; θpi)×√

1 +
∂fi(x1)

∂x1

T ∂fi(x1)

∂x1

,

(4.45)

where Xi is the set of all values of x1 that map to the ith piece of the surface (which

will depend on the values of x[2 : N −dnp](j−1)). The m points fi(x1) are the possible

solutions to Equation 4.43 for the fixed value of x1.

Of necessity, this will be proportional to the expression that we would get by apply-

ing Theorem 1.3.5.14 to Equation 4.7, but one might allow for easier derivation than

the other. For instance, we saw in Section 4.4.1 that the minimal-degrees-of-freedom

approach allowed us to derive a more convenient expression for the jumping density

in the case of linear sufficient statistics. The last line of Equation 4.45 provides an

explicit expression for the Jacobian denoted Jg−1
i

in Equation 4.7. This may be more

convenient than direct derivation of the Jacobian, which requires the evaluation of a

determinant.

Recall from the previous discussion that if we need to use Equation 4.7 to get

the marginal conditional and it is not available analytically, we are faced with the

computational problem of finding multiple solutions to Equation ??. In the minimal

degrees of freedom approach, this becomes the problem of finding multiple solutions
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to Equation 4.43 for a given value of x1. But notice from Figure 4.1 that the “folds”

in the surface – the endpoints of the pieces discussed above – will all occur where

at least one element of ∂fi(x1)
∂x1

is infinite, which by Equation 4.44 would be all the

points on the surface for which det
(

∂Tnp({x1,x[2:N−dnp](j−1),fi(x1(j))})
∂x[N−dnp+1:N ]

)
= 0 or for which

∂Tnp({x1,x[2:N−dnp](j−1),fi(x1)})
∂x1

= ∞. Presumably, we could find these points numerically.

Knowing where the folds in the surface are would give us some idea of what the surface

looks like and of how many pieces it has. The minimal degrees of freedom approach has

provided us with a potentially useful strategy for one of the computational challenges

of MCMC.
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