
Abstract

DOUGHERTY, DANIEL PATRICK Deterministic and Semi-Mechanistic

Approaches in Predictive Fermentation Microbiology (Under the direction

of Sharon R. Lubkin)

Predictive fermentation microbiology utilizes deterministic and stochastic mathemat-

ical models to study the growth dynamics of microorganisms. If the components of

such models represent known or hypothesized biological growth processes then these

models can be used to refine existing hypotheses or generate new hypotheses about

the factors controlling growth.

Special techniques must be used when fitting such models to experimental data.

Methods are suggested for model re-parameterization and model fitting which im-

prove the estimation of model parameters. Once estimates of model parameters have

been made, temporal and multivariate sensitivity analyses can assess important rela-

tionships among the model parameters.

A deterministic dynamic model of batch growth by a homofermentative lactic acid

bacterium growing in a variable temperature environment was derived. This model

predicts cell growth as well as changes in the chemical composition of the medium.

This model was fit to experimental data. Analysis of the model revealed a quantitative

reversal in parameter sensitivities across temperatures. Although mechanistic, this

model neglected the effects of pH , organic acid dissociation and ionic strength of the

medium. It is shown that these chemical dynamics are important and can be modeled

through a convenient semi-mechanistic approach. The ability to model these chemical

dynamics appropriately allows for a modeling framework in which the acid tolerance

strategies commonly exhibited by bacteria can be studied.
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Chapter 1

Introduction

The study of the growth of bacterial cultures does not consti-
tute a specialized subject or branch of research: it is the basic
method of Microbiology. It would be a foolish enterprise, and
doomed to failure, to attempt reviewing briefly a “subject”
which covers actually our whole discipline. Unless, of course,
we considered the formal laws of growth for their own sake,
an approach which has repeatedly proved sterile.

Monod, J. (1949). The growth
of bacterial cultures. Annu.
Rev. Microbio. 3, 371–394

1.1 Early Models of Population Growth

Since Jacques Monod made the above statement in 1949, the field of microbiology

has greatly enlarged and diversified. The advent of molecular techniques, genomics,

and proteomics as well as our enhanced understanding of cellular and sub-cellular

fluid mechanics have created new avenues of research which in fact do not require
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a centralized focus on population growth. Microbiology has perhaps become more

mathematical than ever in order to tackle these new areas of research. At the same

time, mathematical modeling of microbial population growth has begun to emerge

as a distinct subdisclipline. The purpose of the review which follows is to give an

account of how mathematical techniques for predicting microbial growth evolved in

conjunction with experimental advances.

The development of mathematics greatly preceded the discovery of microorgan-

isms. It is not surprising, therefore, that the earliest mathematical models of popu-

lation growth were aimed at predicting human and animal population growth. It

is possible that the first instance of a mathematical equation being used to de-

scribe the growth a biological population was in 1202 when Fibonacci derived his

famous recursion relation. Eqn. 1.1 was found by Fibonacci to predict the number

of rabbits in a population that reproduced according to the following simple assump-

tions (Edelstein-Keshet, 1988, p.5)

• Each rabbit reaches sexual maturity after 1 month.

• Each pair of sexually mature rabbits produces 1 new pair of rabbits every month

• The mortality of the rabbits is 0.

Nt+2 = Nt + Nt+1, t = 1, 2, ... (1.1)

where N(1) = 0 and N(2) = 1 by convention. The ideas engendered in this recursive

relation are simple. The model suggests that the current reproductive capacity of a

population depends on its current size and there is a simple geometric relationship

relating the current population size to the new population size.
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There are of course several problems with the Fibonacci series as a model of popu-

lation growth. First, members of the population reproduce in unison at equal discrete

intervals of time. Members of microbial and human populations, however, exhibit re-

productive events asynchronously and need not always give rise to 2 offspring. The

second concern, and perhaps the more important, is that the model assumes that

there are no factors limiting the population such as death, disease, access to food etc.

The first objection to Fibonacci’s model could not be adequately addressed for

some 500 years. Continuous models of population growth were not possible until

the advent of Calculus. During the 2 years between 1665 and 1667 Isaac Newton

derived the basic foundations of Calculus while the first published work on Calculus

did not surface until Leibniz independently published the basic rules of Calculus in

1684 (Boyce and DiPrima, 1988, pp. 110-111). A century later, the first continuous

model of population growth would come into use.

Malthus in 1798 described the growth of human populations by stating only that

“Population, when unchecked, increases in a geometrical ratio. Subsistence increases

only in an arithmetical ratio.” The Calculus allowed mathematicians of the time to

write Malthus’ assumptions as the differential equation Eqn 1.2. In this form it is

clear that “Malthusian growth” implies that the rate of population growth is related

to the current population size by a constant proportion.

dN

dt
= µN (1.2)

The “Mathusian” growth model was the first continuous model of population growth.

The validity and implications of the model are still debated among economists and

social scientists. The population of humans has, in fact, showed no signs of leveling

3



off since the time of Malthus. Indeed, some have argued the population of humans is

growing even faster than exponentially (Cohen, 1995; Johansen and Sornette, 2001).

While Malthus clearly recognized that unchecked population growth could not

continue indefinitely, he did not provide any model to describe limited population

growth. Arguably, the first model to account for restricted population growth was

introduced in 1838 by the Belgian mathematician Pierre François Verhulst (Pearl,

1925, p. 4). Known as the discrete Logistic equation (or simply the Verhulst equation)

Eqn. 1.3 states that encounters between individuals in the population will result in

fatality at a rate of α while the population grows in a geometric fashion similar to

Eqn.1.2.

Nt+1 = µNt (1 − Nt) (1.3)

= µNt − µN2
t (1.4)

where Nt is the population scaled by its maximum potential density. In this model,

a dynamic steady state is possible (N ≡ 1) in which reproduction is exactly balanced

by mortality.

One of the initial benefits from the development of Calculus was a thorough under-

standing of the properties of logarithms1. For example, Gompertz (1825) wanted to

gain better predictions of human mortality for the purposes of adjusting annuities. He

supposed that the specific mortality rate, defined by −d ln(N)
dt

(or equivalently − 1
N

dN
dt

),

could be expressed in the form

− d ln(N)

dt
= aqt (1.5)

1Logarithms were originally discovered by Napier in 1614
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where a and q are constants and t represents age.

By utilizing the properties of logarithms we have that

ln(N) = −
∫

aqtdt (1.6)

= −
∫

aet ln qdt

= − a

ln q
et ln q + C

= − a

ln q
qt + C

So that

N = exp(− a

ln q
qt + C) (1.7)

= KBqt

where K is a constant and B = −a/ ln q. When used to model population growth,

Eqn. 1.5 is often re-written in the following way.

dN

dt
= aqtN (1.8)

= ae−αtN (1.9)

where a represents the specific growth rate at t = 0 and α is a constant controlling the

rate at which the population reaches steady-state. This makes clear the distinction

between Gompertz growth and Malthusian growth. In Gompertz growth, the growth

rate decreases exponentially over time and is independent of the population size. This

5



form is often integrated and re-parameterized into an explicit form

N = C exp (exp (−B (t − M))) (1.10)

where B is the relative growth rate at t = M , C is the upper asymptote of the popula-

tion as t → ∞ and M is the time at which the growth rate is maximal (McMeekin et al.,

1993, p. 45). Although the Gompertz model, in its many re-parameterizations, is

an improvement over unlimited population growth, it does not take into account

environmental factors which may also limit growth.

1.2 The Advent of Microbiological Models

Calculus was not the only major scientific break-though made during the 1600’s. In

1676, a 44 year old haberdasher living in Delft, Holland peered through a home-

made glass lens and observed bacteria, fungi and other microorganisms. Antony van

Leeuwenhoek’s discovery of what he originally called “animalcules” marked the begin-

ning of modern Microbiology. While some advances in taxonomy were made, bacteria

were not effectively cultured until nearly 200 years later.

Microorganisms provided scientists with unique opportunities for studying popula-

tion dynamics. Unlike many other populations, microbial populations could generally

be grown quickly, inexpensively and reproducibly. There was an impetus to quantify,

characterize, and compare microbial growth among various populations and across

different experimental conditions. Mathematical models were able to provide means

for accomplishing these goals. Unlike human or animal populations, however, micro-

bial populations generally exceed the resources of their experimental environments

6



within a day’s time. There was clearly a need for models more advanced than those

of Malthus or Verhulst.

The advantage in using Calculus to model the growth of bacteria over time did not

escape microbiologists. For example, the microbiologists M’Kendrick and Pai (1910)

suggested a continuous model based on the assumption that the rate of microbial

growth was proportional to the amount of available food left in the environment.

They also made the simplifying assumption that the amount of resources required

for maintenance was negligible when compared to the amount spent on growth. The

resulting model was

dN

dt
= β (So − N) N (1.11)

where So is the original concentration of nutrition available and β is a rate constant.

Note that the nutrient concentration has been scaled by the amount of nutrient re-

quired to produce a single cell. Thus, the units of S and N are taken to be equal.

Eqn. 1.11 reconciled a problem which the Verhulst equation shares with the Fi-

bonacci sequence, namely that the population grows at discrete times. This equation,

generally referred to as the Logistic equation, is however normally attributed to Pearl.

Pearl and Reed (1920) drew on new theory concerning the Calculus of autocatalyzed

chemical reactions and re-cast the discrete Verhulst equation as a continuous model

for the growth of human populations. Pearl also allowed for a second parameter (K)

to describe the limiting population size.

dN

dt
= µN

(
1 − N

K

)
(1.12)

7



Table 1.1: The 6 phases of microbial growth as originally defined by Monod (1949).
Note that the definitions are given in terms of instantaneous rates of change. One or
more of these phases may be absent and each phase could occur multiple times.

1 lag phase growth rate null
2 acceleration phase growth rate increases
3 exponential phase growth rate constant
4 retardation phase growth rate decreases
5 stationary phase growth rate null
6 phase of decline growth rate negative

Eqn. 1.11 is clearly Eqn 1.12 re-parameterized with µ = βSo and K = So.

Clearly, it was common knowledge among microbiologists of the early 1900’s that

if microorganisms were grown in rich media then, at least initially, the population

growth could be described by Eqn. 1.2 (hence the term exponential growth). How-

ever, a clear understanding of the subsequent phases of microbial growth was missing

due to the lack of consistent and rigorously defined set of criteria. Monod (1949) rec-

ognized 6 distinct phases of microbial growth (see Table 1.1). Monod, furthermore,

gave each definition in terms of the instantaneous rate of change of the microbial

density. Defining the phases of growth using the concept of a derivative allowed

direct exploration of microbial growth by more advanced mathematical models and

techniques.

While providing mathematical definitions for the phases of growth, Monod is also

recognized for his work in predictive microbiology and especially in continuous culture

of bacteria. In particular, Monod (1942) introduced a mathematical model of bacterial

growth limited by a single substrate. But unlike M’Kendrick and Pai, Monod drew

on the saturating kinetics of enzymes put forth by Michaelis and Menten (1913) and
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Figure 1.1: The 6 phases of microbial growth. 1) lag phase 2) acceleration phase 3)
exponential phase 4) retardation phase 5) stationary phase 6) phase of decline.

suggested that the specific growth rate should be considered a hyperbolic function of

substrate concentration.

dN

dt
=

α

Y

(
S

Ks + S

)
N (1.13)

Eqn. 1.13 blends the assets of Eqn. 1.11 and Eqn. 1.12. Here S is the concentration

of the substrate in the environment, Y is a parameter relating the amount substrate

required to produce a new cell, α is the maximum rate of substrate utilization and Ks

is the half-saturation constant for substrate utilization. When used in conjunction

with an equation describing the substrate utilization and exponential death of the

cells, say

dN

dt
=

α

Y

(
S

Ks + S

)
N − δN (1.14)

dS

dt
= −α

(
S

Ks + S

)
N (1.15)
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then the Monod equation can describe the exponential, retardation, stationary, and

death phase as well as the concentration of the limiting resource.

A limitation of Monod’s model is that growth often ceases in stationary phase

with a large amount of residual resource. Clearly, in these cases, substrate limitation

is not the only limiting factor. Ramkrishna et al. (1967) expanded Monod’s model to

include the production of growth inhibiting substances such as organic acids which

are the waste products of many fermentations.

dN

dt
=

α

Y

(
S

KS + S

)
N − δIN (1.16)

dS

dt
= −α

(
S

KS + S

)
N (1.17)

dI

dt
= γ

(
α

(
S

KS + S

))
N + τδIN (1.18)

Here I is the concentration of the inhibitor substance and S, N have the same mean-

ings used above. The inhibiting substance is produced in proportion to the number of

cells dying at time t while cells are killed by their interaction with the inhibitor at a

rate δ. Thus, Ramkrishna’s formulation assumes that inhibition occurs by increasing

the death rate of the microorganism.

A different approach to modeling the inhibition of growth was taken by Levenspiel

(1980) who simply multiplied Monod’s single-substrate limitation term by a saturat-

ing inhibition term.

dN

dt
= α

(
1 − I

MICI

)n
S

Ks + S
N (1.19)

Here I is the concentration of the inhibiting substance, MICI is the largest concentra-
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tion of inhibitor at which growth can still occur, and n is a constant. In the Levenspiel

modification, death of the microorganism only occurs for I > MICI .

In addition to ignoring growth inhibition, the Monod model also ignores the pro-

cess of nutrient uptake. In order for microorganisms to utilize a substrate they must

either actively channel or passively acquire the substrate within the cytoplasm. Droop

(1973) modeled microorganisms (originally algae) by considering an internal quota

of substrate (Q). Specifically, Q represents the amount of substrate “captured” by

the organism. The substrate uptake is considered to be mediated by an enzyme and

therefore follows saturation kinetics. The essential Droop model is as follows

dN

dt
= α

(
1 − Qmin

Q

)
N − δN (1.20)

dQ

dt
= −µmax

(
S

Ks + S

)
− α

(
1 − Qmin

Q

)
Q (1.21)

dS

dt
= −µmax

(
S

Ks + S

)
N (1.22)

where µmax is the maximum specific uptake rate,α is the maximum specific growth

rate, Qmin is the minimum Q required for growth and Ks is a half saturation con-

stant for substrate uptake. Although the Droop and Monod models are conceptually

different formulations of microbial growth, (Burmaster, 1979) has shown that in fact

under mild restrictions their solutions are equivalent at steady-state.

Nevertheless, the Droop model high-lighted the need for a new approach to mod-

eling the ecology of populations in dynamic environments. Building on the basic idea

of non-constant yield function Kooijman (2001, 2000) and others have developed

the theory of dynamic energy budget models. The basic idea of a dynamic energy

budget model is that Q is partitioned so that some fraction is reserved for growth

11
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Figure 1.2: Diagrammatic depiction of Kooijman’s κ–rule model.

processes but another fraction is reserved for maintenance. Thus, the yield is not

constant but that the way in which the yield is perturbed occurs in a deterministic

manner. The prototypical dynamic energy budget model is Kooijman’s κ–rule model

(See Figure 1.2). Kooijman (2000) has been able to show that the Monod and Droop

models are simplified cases of the κ–rule model.

1.3 Modeling Lag Phase

The models discussed in the previous section gave methods for modeling exponential,

stationary and death phase (see Table 1.1). The purpose of this section is to describe

methods for modeling lag phase. Lag phase corresponds to a period of metabolic

adaptation to new or stressful environmental conditions. Temperature, for example,

has a major effect on the duration of lag phase (Dufrenne et al., 1997). In order to

maintain optimal membrane fluidity bacteria must modify compounds such as lipids

and cholesterols. While energy is being diverted to synthesizing these compounds

cell division slows or ceases altogether. Similar responses occur during exposure to

acid or heat stress where special heat or acid “shock proteins” are synthesized which

increase tolerance of these stresses.

Lag phase can be identified graphically on a semi-log plot of cell density over time.

12



The end of lag phase can be identified as the time at which the second derivative of log

cell density with respect to time is maximized (Buchanan and Cygnarowicz, 1990).

lag duration = arg max
t

(
∂2 log(CFUmL−1)

∂t2

)
(1.23)

This method for calculating lag phase is illustrated in Figure 1.3. Estimations

of the second derivative can be very sensitive to the spacing of observations in

time and measurement error. A robust method for estimating the second deriva-

tive is to use local cubic regression in conjunction with iteratively re-weighted least

squares (Fan and Gijbels, 1996).

Lag phase can be modeled using delay differential equations (for an introduction

see MacDonald (1982)). However, to be mechanistic, a lag phase model must relate

the duration of lag phase to current environmental conditions (McKellar and Knight,
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Figure 1.3: Determination of lag phase duration using the second derivative method.
The end of lag phase is the time at which the second derivative of the log cell density
has its maximum.
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2000). The use of delay differential equations is also limited in that non-constant

and non-linear delays can not be solved easily with standard software (although

see Shampine and Thompson (2001)). Such equations, for example, can be re-cast

as partial differential equations treating “delay time” as an extra dimension. This

greatly increases the numerical complexity however. The mathematical analysis of

such delay differential equations also requires special attention. In particular, one

must take care in specifying the lag “history”. In general, it seems that delay differ-

ential equations are more popular in models of continuous culture in which population

oscillations are observed.

For constant lag, a delay differential equation for bacterial growth with a lag

phase can be written as a two compartment model (Baranyi, 1998). Specifically one

equation describes the population of cells still in lag phase and another equation

describes the population in exponential phase.

dNlag

dt
= −νNlag (1.24)

dNexp

dt
= µNexp + νNlag (1.25)

Nlag(0) = No (1.26)

Nexp(0) = 0 (1.27)

Other approaches to modeling lag involve modifications of existing models such

as the Monod, Droop and others presented earlier. For example, Gibson et al. (1987)

suggested a modification of the Gompertz model (Eqn. 1.7) where log(N) was modeled
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and a parameter A was used to set the value of the lower asymptote

log(N) = A + Dexp (−exp (−B(t − M))) (1.28)

One limitation of this model is that for data in which there is no lag phase a negative

estimate for A can be obtained. This, however, usually does not present a practical

problem.

Baranyi et al. (1995) suggests a model which combines aspects of the Droop

model (Eqn. 1.20) and logistic equation (Eqn. 1.12). They posit the existence of

a substance q which represents the physiological state of a cell. They assume that

during exponential phase, this substance should increase exponentially.

dq

dt
= νq (1.29)

dN

dt
= µmax

q

1 + q

(
1 − N

Nmax

)
N (1.30)

where µmax is given by a(T−Tmin)2 known as Ratkowsky’s square root model (McMeekin et al.,

1993, p.94). Here µmax is the maximum specific growth rate of the microorganisms

under the current environmental conditions, ν is specific growth rate of the substance

q (Baranyi et al. (1995) take it to equal µmax), Nmax is the carrying capacity of the

culture, b is the change in growth rate per unit T and Tmin is the extrapolated tem-

perature at which no growth occurs. Note that Tmin is not intended to coincide with

the true minimum temperature for growth. They found that accurate predictions of

lag phase and growth during dynamic shifts in temperature depended most strongly

on obtaining accurate estimates for the initial value of q.
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1.4 Comment on Predictive Food Microbiology

As noted by McMeekin et al. (1993, p.6) the importance of predictive microbiology

in the food industry arises out of the fact that the goals of predictive microbiology

coincide with those of HACCP (Hazard Analysis and Critical Control Points) systems

for identification of risks in food production processes. These include identifying

important organism(s), identifying the variables which have the greatest effect on

growth, predicting the number of organism at every point during growth, and re-

evaluating current culturing practices and ecological theories. It is not surprising

that one of the most active area of research for predictive microbiology is in the field

of Food Science (Baranyi and Roberts, 1995; Pruitt and Kamau, 1993; Skinner et al.,

1994).

An area of interest in predictive food microbiology is the effect that tempera-

ture has on the growth rate of bacteria. As mentioned above, temperature affects

the duration of lag phase and can therefore be a factor in determining shelf life and

spoilage. Also of concern is the affect the food micro-environment has on the survival

of food-borne pathogens. Models which restrict growth based on the accumulation

of toxic end-products such as Levenspiel’s modification of the Monod equation or

Ramkrishna’s model can be used to predict the outcome of competitive interactions

between microorganisms in food if expanded to include equations for the different mi-

croorganisms present. This may include, for example competition between a pathogen

and a naturally present microorganism.

The purpose of this thesis is to develop new techniques for predicting the growth

of microbial populations in variable environments. In Chapter 2 we discuss math-

ematical techniques for the construction of mathematical models and methods for
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estimating the parameters of such models from experimental data. In Chapter 3 a

mathematical model for the batch growth of lactic acid bacteria in variable temper-

ature fermentations is developed. We find that one of the limitations of this model

is that is does not account for the inhibitory effects of pH and organic acid accumu-

lation in a mechanistically accurate manner. The goal of Chapter 4 is therefore to

give a thorough development of a flexible technique for modeling the dynamics of

pH and organic acid accumulation in fermentations. Finally in Chapter 5 we apply

this technique to the dynamic model.
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Chapter 2

Model Parameterization, Model

Fitting and Model Analysis

The models presented in Chapter 1 are prototypical and based on fairly restrictive

assumptions. As such they are often adapted or included within larger systems of

equations. It is the goal of this chapter to discuss issues involved in applying such

models as tools in the analysis and characterization of experimental data. First,

methods of model re-parameterization are discussed which may improve estimation

properties of the model parameters. Second, practical issues encountered in esti-

mating the parameters of dynamical models from data are discussed. Lastly, some

techniques for analyzing a model once the parameters have been estimated are given.

2.1 Techniques for Model Re-parameterization

The manner in which parameters enter in a model is not unique. Depending on the

discretion of the investigator, algebraic manipulations can lead to parameterizations
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which for one reason or another are considered advantageous. In this section, 2

methods of re-parameterization are discussed and suggestions for their application

when formulating models are given.

2.1.1 The Method of Nondimensionalization

According to the Π theorem of Buckingham (1914), through a process known as

nondimensionalization, a model can be reduced to a form which possesses all of the

qualitative behavior of the dimensional model but has the fewest number of pa-

rameters possible, each of which is dimensionless. This method therefore has some

potentially nice properties. These are:

1. Improvement in the scaling (numerical properties) of the problem

2. Reduction in the number of free parameters

3. Elucidating or incorporating the important relationships among parameters

Unfortunately, nondimensionalization does not provide a unique mapping from

the dimensional parameter space to the nondimensional space. For ease of exposition

and in order to highlight some of the pitfalls, consider the equation of a line.

Y = βo + β1X (2.1)

Let’s consider this line to relate the height of a particular object (Y ) as measured in

meters to its weight (X) measured in kilograms. For now, it will be assumed that

βo = 3m and β1 = 10mkg−1. Looking at Fig. 2.1 it is clear that the scales of the

variables (X and Y ) are rather disparate. Supposing that this is undesirable for the
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Figure 2.1: Line with slope of 10 meters kilogram −1 and intercept of 3 meters. Note
the disparity in scales between the variables X and Y .

application it would be nice to have an equation that exhibits all of the qualitative

features of Eqn. 2.1 but permits the variables to be represented on nearly equal scale.

This can be accomplished through nondimensionalization.

Let y = y′y∗ and x = x′x∗ where x′ and y′ are characteristic measurement values

(i.e. units) and x∗ and y∗ are dimensionless variables. Then

y = βo + β1x (2.2)

y∗y′ = βo + β1x
∗x′ (2.3)

y∗ =

[
βo

y′

]
+

[
β1x

′

y′

]
x′ (2.4)

Where dimensionless parameter clusters have been enclosed in [ ]. The units of the

data Y are scaled by setting Y ′ = βo. This has the effect of dividing the heights

by the intercept 3 m. The units of X are scaled by setting X ′ = βo/β1. This has
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Figure 2.2: Nondimensionalized line with slope of 1 and intercept of 1. Note the
parity of scales of the nondimensional variables X∗ and Y ∗.

the effect of dividing the weights by 3m/10 kg. These scaling relationships provide a

nondimensional equation of a line having both slope and intercept equal to 1.

The result is a functional relationship which can certainly be thought of as the

“canonical” form of a line. As promised by Buckingham’s Π theorem, it was possible

to eliminate 2 parameters by choosing appropriate scaling relationships with the 2

state variables.

Unfortunately, when the objective is inference, this nondimensionalization is not

useful. Indeed, there are no parameters to be estimated. Furthermore, this nondi-

mensionalization can be singular. In particular, if it were true that an object of height

zero also had weight zero (βo = 0), certainly not an unreasonable possibility, then the

inverse transformation would have an isolated singularity (i.e. y′ = βo

0
= ∞). Cer-

tainly, choosing a model with more terms, for example a quadratic, would leave some

parameters in the model after nondimensionalization. However, in order to perform
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inference on a space of nondimensional parameters the data must be scaled as set out

in the nondimensionalization. This can not be done without knowing the value of the

dimensional parameters involved in the scaling.

2.1.2 The “Parameters in the Denominator” Method

While it turns out that nondimensionalization is not useful in the context of param-

eter estimation there are other possibilities for model re-parameterization that may

be beneficial prior to model fitting. In many modeling applications, functional forms

which asymptote (or saturate) are used as surrogates for complicated biological pro-

cesses which are enzyme mediated or which for one reason or another are thought to

follow saturation kinetics. By far the most well-known functional form for saturation

kinetics is the Michaelis-Menten equation. The standard Michaelis-Menten equation

(see graph in Fig. 2.3) is

Vo =
Vmax [S]

KM + [S]
(2.5)

where Vo is the initial rate of reaction, Vmax is the maximum rate of reaction and

KM is the value of [S] at which Vo = Vmax /2. There are also various modifications

of the Michaelis-Menten equation useful for modeling situations where an inhibitor

substance reduces the rate (Vo). For example, competitive inhibition leads to an

increase in the apparent KM , non-competitive inhibition leads to a decrease in the

apparent Vmax and uncompetitive inhibition leads to an increase in the apparent

KM and a decrease in the apparent Vmax .

A practical problem which has received a great deal of attention is the poor estima-

tion properties of the parameters (Vmax , KM ) of the Michaelis-Menten form (Bates et al.,
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1987; Ratkowsky, 1986; Goovaerts et al., 2001; Bentzen and Taylor, 1991). The prob-

lem arises from the correlation between the model parameters. For example, in the

limit as [S] approaches zero the Michaelis-Menten equation reduces to that of a line.

Therefore, at low substrate concentrations it is only the ratio of Vmax to KM that

matters. Furthermore, it is often not possible for an experimentalist to ensure that

all regions of the curve (see Fig. 2.3) are represented in the data (Bentzen and Taylor,

1991). This is especially true when saturation kinetics are embedded in a dynami-

cal systems model where the dynamics control the levels of “substrate”. Recall for

example the Droop model (Eqn. 1.20) where the growth rate was determined by the

concentration of acquired substrate (Q). Since an increase in substrate acquisition

results in an increase in cell division, saturating levels of Q may never be attained. As

is clear from the examples given in Chapter 1, many of the equations used in math-

ematical models of bacterial growth involve Michaelis-Menten or related saturation

kinetics forms. As such, even if the number of data points is large, the information

about each of the parameters in the Michaelis-Menten form may not be sufficient to

provide accurate estimation.

The reason for this is as follows. Numerical methods used for estimating the

parameters in nonlinear equations require estimates of the gradient of the objective

function with respect to the parameters in the model. If the surface generated by

the objective function is smooth, has only a single minimum and is locally quadratic

about the minimum then the estimation procedure is generally efficient (Press et al.,

1992). Unfortunately, rather than being locally quadratic about the true values of the

parameters, the objective surface of the Michaelis-Menten equation is highly collinear.

This leads to inefficient estimation and bias and large uncertainty in the parameter

estimates.
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Figure 2.3: Standard Michaelis-Menten relationship between substrate concentration
and the initial reaction velocity. For this plot Vmax = 1 and KM = 0.5. Regions A,
B and C correspond to the first-order, non-linear and zero-order regions of the curve.

In an effort to improve the estimation procedure, Ratkowsky (1986) suggested

a standard reparameterization technique for the functional forms common in reac-

tion kinetics models (Hougen-Watson equations). This re-parameterization is called

the “parameters in the denominator” method. For example, Eqn. 2.5 can be re-

parameterized by dividing numerator and denominator by Vmax. Doing this gives

Vo =
[S]

α + β [S]
(2.6)

where α = KM

Vmax
and β = 1

Vmax
. Note that the denominator is linear in the param-

eters. Other common Michaelis-Menten forms and their “parameters in the denomi-

nator” re-parameterizations are given in Table 2.1. Note that if the denominator is

to be linear in the parameters the re-parameterization of the non-competitive form of

Michaelis-Menten results in 4 parameters. The introduction of an additional parame-
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ter which is by definition correlated with the other parameters may not outweigh the

cost of optimizing an additional parameter. For this reason, an alternate “parameters

in denominator” version is given.

Ratkowsky (1985) demonstrated the superiority of this re-parameterization method

in the estimation of kinetics parameters from 17 data sets taken from the literature.

This analysis of the “parameters in the denominator” method however, did not con-

sider the properties of the estimates when data only from a particular region of the

saturation curve are available. Thus, to compare the properties of the standard

parameterization to the “parameters in the denominator” re-parameterization a sim-

ulation study was performed.

Regions associated with the first order ([S] << KM ), nonlinear([S] ≈ KM )

and zero order ([S] >> KM ) portions of the Michaelis-Menten curve were selected.

The boundaries of regions A, B, and C were set at substrate concentrations [0,0.75),

(0.75,9.5) and (9.5,49.5] respectively. Within each region data was simulated and pa-

rameters estimated. Specifically, within a particular region of Fig. 2.3, 25 substrate

concentration levels were generated equally-spaced over the region. The velocity (Vo)

of each point was given by Eqn.2.5 with Vmax = 1 and KM = 0.5 plus a normally dis-

tributed deviate with mean 0 and standard deviation 0.02. To compare the standard

parameterization to the parameters in denominator re-parameterization the following

statistics were computed for each of the parameters in each of the substrate regions:

empirical variance (EV), average asymptotic variance (AAV), average bias (AB) and

the mean squared error (MSE). Averaged were calculated using 100 simulated data

sets.

As can be seen in Table 2.2 the “parameters in the denominator” method gives less

correlated parameter estimates and slightly more precise (see Table 2.3) estimates in
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Table 2.1: Covariance reducing re-parameterizations of common Michaelis-Menten
type kinetics equations. F = 1 + I/KI , α = KM /Vmax ,β1 = 1/Vmax γ =
KM /(Vmax KI ), and δ = 1/(KI Vmax )

Kinetics Standard Re-parameterized

Uninhibited Vo = Vmax [S]
KM +[S]

Vo = [S]
α+β[S]

Competitive Vo = Vmax S
FKM +S

Vo = [S]
α+β2[S]

+ γ [I]

Uncompetitive Vo = Vmax S
KM +FS

Vo = [S]
β0+β[S]+δ[I][S]

Non-competitive Vo = Vmax S
F (KM +S)

Vo = [S]
α+β[S]+γ[I]+δ[I][S]

or Vo = [S]
F (α+β[S])

Table 2.2: Correlations among parameter estimates of the uninhibited Michaelis-
Menten form obtained from 25 data points generated uniformly in the region indi-
cated with a simulated error variance of 0.02. The true Vmax and KM were 1 and 0.5
respectively. The boundaries of regions A, B and C were set at substrate concentra-
tions [0,0.75), (0.75,9.5) and (9.5,49.5] respectively. Reported values are the average
of 100 trials.

Region
Model A B C
Traditional 0.981 0.835 0.889
Re-parameterized -0.925 -0.788 -0.884
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Table 2.3: Comparison of emperical variance (EV), average asymptotic variance
(AAV), average bias (AB) and mean squared error (MSE) for uninhibited Michaelis-
Menten. Reported values are the average of 100 trials.

Region Statistic Vmax KM α β
EV 2.33×10−3 2.17×10−3 5.76×10−4 2.42×10−3

A AAV 2.16×10−3 2.02×10−3 5.37×10−4 2.25×10−3

AB 3.55×10−3 4.59 ×10−3 3.88×10−3 -5.90×10−3

MSE 2.34×10−3 2.19×10−3 5.91×10−4 2.45×10−3

EV 7.47×10−5 1.06×10−3 8.41×10−4 7.49×10−5

B AAV 6.48×10−5 9.69×10−4 7.76×10−4 6.47×10−5

AB -5.07×10−4 -2.23×10−3 -1.78×10−3 4.34×10−4

MSE 7.50×10−5 1.06×10−3 8.44×10−4 7.51×10−5

EV 6.19×10−5 3.35×10−2 3.25×10−2 6.22×10−5

C AAV 6.98×10−5 3.33×10−2 3.22×10−2 7.01×10−5

AB 8.11×10−4 1.52×10−2 1.61×10−2 -8.73×10
MSE 6.26×10−5 3.37×10−2 3.28×10−2 6.29×10−5
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all 3 regions of interest. Analogous simulation studies were performed for the 3 com-

mon Michaelis-Menten inhibition forms by allowing the concentration of the inhibitor

substance to range from 0 to 9*KI . In all cases the “parameters in the denominator”

version was estimated more efficiently than the traditional parameterization. For the

non-competitive and un-competitive Michaelis-Menten forms (defined in Table 2.1),

the Levenberg-Marquardt algorithm failed to converge for the standard parameter-

ization in many cases but converged in all cases for the re-parameterized version.

The results for the un-competitive and non-competitive results will not be discussed

further since the superiority of the parameters in denominator method is clear in

these cases. For competitive inhibition a simulation study analgous to that above

was conducted. The true Vmax and KM were 1 and 0.5 respectively. The boundaries

of regions A, B and C were set at substrate concentrations [0,0.75), (0.75,9.5) and

(9.5,49.5] respectively. The value of KI was set at 2 and the concentration of inhibitor

substance was allowed to vary from 0 to 9*KI . Table 2.4 shows that the “parameters

in the denominator” produces less correlated parameter estimates no matter which

region (A,B or C) the data are sampled from. The summary statistics in Table 2.5

suggest, however, only a slight improvement in the reparameterized version of the

model.

These simulation studies indicate that the “parameters in the denominator” ver-

sions of the models are more identifiable and have better convergence properties but

perform only slightly better in terms of variance and bias. Certainly in dynamic sys-

tems models convergence is major consideration. A limitation of this simulation study

is the assumption of independent and identically distributed Gaussian error. Typi-

cally the error in initial rate data is proportional to Voor may have some other error

structure depending on the method of measuring Vo. In such cases Ratkowsky (1986)
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Table 2.4: Correlations among competitive Michaelis-Menten parameter estimates
obtained from 25 data points generated uniformly in the region indicated with a
simulated error variance of 0.02. The true Vmax , KM and KI were 1 0.5, and 2
respectively. The region boundaries were set at substrate concentrations 0.75, 9.5
and 49.5. Reported values are the average of 100 trials.

Region
Model Parameters A B C
Traditional Vmax and KM 0.977 0.736 0.730

Vmax and KI 0.805 0.552 0.658
KM and KI 0.900 0.960 0.992

Re-parameterized α and β -0.912 -0.683 -0.721
α and γ -0.091 -0.256 -0.491
β and γ -0.133 -0.321 -0.098

recommends using weighted least squares rather than either linearization on a double-

reciprocal plot or use of a transformation. Since this method of re-parameterization

is easy to accomplish and seems superior in several respects to the standard param-

eterization, its use is recommended in dynamical systems modeling even if the full

range of dynamics are not directly observable in the data.
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Table 2.5: Comparison of emperical variance (EV), average asymptotic variance (AAV), average bias (AB) and
mean squared error (MSE) ( for uninhibited Michaelis-Menten. Reported values are the average of 100 trials.

Region Statistic Vmax KM KI α β γ
EV 1.03×10−3 1.01×10−3 5.23×10−3 2.66 ×10−4 9.96×10−4 8.18×10−6

A AAV 1.20×10−3 1.17×10−3 5.79×10−3 3.10×10−4 1.19×10−3 8.02×10−6

AB -5.77×10−3 -6.43×10−3 -1.60 ×10−2 -2.49×10−3 3.39×10−3 4.58 ×10−4

MSE 1.07×10−3 1.05×10−3 5.48×10−3 2.73×10−4 1.01×10−3 8.39×10−6

EV 6.35×10−6 1.76×10−4 3.34×10−3 1.64×10−4 6.94×10−6 2.82×10−6

B AAV 1.02×10−5 2.29×10−4 3.72×10−3 1.96×10−4 1.02×10−5 3.10×10−6

AB 4.10×10−4 3.09×10−3 1.33×10−2 1.20×10−3 -1.39×10−4 -1.82×10−4

MSE 6.52×10−6 1.85×10−4 3.52×10−3 1.66×10−4 6.96×10−6 2.85×10−6

EV 4.50×10−6 3.37×10−3 6.09×10−2 2.46×10−3 3.69×10−6 1.76×10−5

C AAV 4.47×10−6 3.19×10−3 5.72×10−2 3.12×10−3 4.49×10−6 1.78×10−5

AB 9.97×10−4 3.88×10−2 1.56×10−1 1.65×10−3 -1.83×10−5 7.54×10−4

MSE 5.50×10−6 4.87×10−3 8.54×10−2 2.46×10−3 3.69×10−6 1.81×10−5
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In conclusion, the following guidelines are suggested for applying model re-parameterizations

when the goals of modeling include inference about 1 or more model parameters.

1. Parameters to be estimated can be arranged in clusters so as to provide new

aggregate parameters. Parameter aggregation should be carried out so as to

produce parameters with good estimation properties (e.g. reduced covariance

with other parameter estimates).

2. A nondimensional parameter cluster should be eliminated (i.e. set to 1) only

if all parameters within the cluster are known. This will allow the data on the

variables involved to be scaled appropriately prior to model fitting.

3. If a nondimensional parameter cluster is to be eliminated prior to parameter

estimation, then the data values of the variables involved in the scaling must

be likewise scaled.

4. Subsequent to parameter estimation, the inverse scaling relationships must be

appropriately applied to parameter estimates as well as their standard errors.

This may require series approximations to the expectations and standard errors

of the original parameters (for example see Casella and Berger (1990)).

2.2 Model Fitting

2.2.1 Parameter Optimization

The simulation study presented in the previous section was carried out using a non-

linear least squares algorithm. It will be shown in this section that, unfortunately,

standard non-linear least squares algorithms are usually not suitable for estimating
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the parameters of many dynamical systems models. Furthermore, it will be shown

that the objective surfaces corresponding to such problems may contain large rela-

tively flat regions.

To illustrate some of the difficulties, consider the classic Lotka-Volterra system for

the interaction between a predator (N1) and its prey (N2).

dN1

dt
= κN1N2 − δN1 (2.7)

dN2

dt
= αN2 − γN1N2 (2.8)

with initial conditions N1(0) = N10 and N2(0) = N20. Here α is the growth rate of

the prey, γ is the rate of capture, κ is the conversion efficiency and δ is the predator

death rate. The solution of such a problem can be obtained by numerical integration.

Two approaches can be taken to maintain numerical stability and to maintain the

error of numerical integration below some acceptable tolerance. First, a time-step

can be chosen small enough so that these conditions are always satisfied. This is

computationally wasteful however since a larger time-step could be taken without

sacrificing accuracy in regions where the solution is changing slowly. The second

approach is to adaptively modify the time-step in the integration procedure – allowing

larger time-steps where the solution is changing slowly and smaller time-steps where

the solution is changing rapidly (Press et al., 1992). Since it is difficult to know ahead

of time what the minimum time-step requirement will be, the adaptive procedure is

the only reasonable method for obtaining accurate solutions for most applications.

While the adaptive procedure is beneficial in terms of maintaining accuracy during

the integration, its use has dire consequences when used within iterative parameter

estimation routines such as non-linear least-squares algorithms (Hairer et al., 1987,
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Figure 2.4: The Lotka-Volterra model with α = 0.01, γ = 0.009, κ = 0.1, and δ = 0.1.
In the bottom figure, the time-steps (in units of time) used by the solver are plotted
against time.

p. 183). Figure 2.4 shows a simulation of the Lotka-Volterra system and the corre-

sponding time-steps used by the adaptive integration procedure. These figures clearly

show that in regimes where the rate of change of a variable is larger, the adaptive

ODE solver takes smaller time steps. Conversely where the solution is changing more

slowly, the solver can maintain accuracy with a larger time step. Note the discontinu-

ous nature of the jumps in the step-size. Suppose the Lotka-Volterra model was to be

fit to data on predator and prey populations which had been taken over time. Sup-

pose also that a nonlinear least squares method was to be used to do the parameter

estimation. In many non-linear least squares algorithms it is necessary to calculate

the gradient of the objective function with respect to the parameters. This is used

in determining a favorable direction in parameter space in which to proceed with

the minimization of the least squares objective function. Fig. 2.5 shows the partial

derivative of the prey-predator population vector with respect to the parameter γ
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Figure 2.5: Partial derivative of the solution with respect to γ at t=100. The non-
smoothness of the gradient with respect to perturbations of the parameter spells
disaster for most non-linear least squares algorithms.

at t = 100. This choice of t = 100 is arbitrary and similar results are observed at

any other time point and with any of the other parameters. A centered finite differ-

ence was used with step size of 2.e-6 and the derivative estimates did not change if

the step size was decreased any further. The non-smoothness of the gradient with

respect to perturbations of the parameter arises from the internal switching of the

integration procedure between time-step sizes. This spells disaster for non-linear least

squares algorithms that depend on evaluation of gradients in the objective function.

Depending on the “jump” the algorithm will respond as if it had just found a value

much better or much worse than a nearby point. In either case, the optimization will

likely get trapped. The other problem which is encountered in estimating parame-

ters in dynamical systems is the sum of squared errors surface can be flat or can be

convoluted possessing many local minima. The sum of squares error surface for the

Lotka-Volterra system possesses both.
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Figure 2.6: Contour plot of the SSE surface of the 2-parameter Lotka-Volterra model.
The true parameter set (β = 0.6, Ω = 0.2) is indicated by the white “X”.

To illustrate these points the above Lotka-Volterra model will be nondimension-

alized so that it contains only 4 nondimensional model parameters Ω, β and 2 initial

conditions N∗
10 and N∗

20

dN∗
1

dt∗
= N∗

1 N∗
2 − ΩN∗

1 (2.9)

dN∗
2

dt∗
= βN∗

2 − N∗
1 N∗

2 (2.10)

where Ω = δt′ and β = αt′. This will simplify viewing the sum of squared errors

surface. Clearly, Ω or β could be eliminated by scaling time and have a model in

just 1 parameter, but this would mask the complexity of the fitness landscape for

the 4 parameter model too much. The residual sum-of-squares are used as the fitness

criterion. The calculated sum of squared errors surface is plotted in Fig. 2.6. The true

parameter set, indicated by the white “X”, is nestled in a locally quadratic minimum
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as desired. The problem is that there are many such depressions in this surface with

nearly the same minimum value. The appearance of troughs in the objective surface

are characteristic of periodic data in which the modes of the candidate solution “slide”

past the modes of the data as a particular parameter is varied. There are also large

flat areas to contend with. These aspects of the sum of squared errors surface make

finding the optimal parameter set nearly impossible for any direct-search method.

When presented with such a surface, it is advisable to use a search method which

does not rely on local gradients and is not easily “fooled” by local minima. Search

methods which embody these characteristics include Simulated Annealing, Nelder-

Mead Simplex and genetic algorithms (Press et al., 1992). While these methods are

less likely to be trapped in local minima they are not guaranteed to find the global

minimum. Also, unlike most non-linear least squares algorithms, these methods gen-

erally do not produce estimates of the parameter covariance matrix at convergence.

Estimates of parameter variance and covariance must therefore be calculated by some

other method subsequent to parameter estimation.

The Lotka-Volterra model is a pedagogical example of how difficult fitting a dy-

namical model to data can be. Without the use of an adaptive ODE solver the

accuracy of the solution is unknown. Use of a fixed ODE solver is not recommended

since its use would almost surely result in biased parameter estimates. The number

of local minima and the “flatness” of the surface about the minimum will depend in

large part on the number of model parameters and the degree of the non-linearity

in the model’s functional forms. The use of an iterative method which does not use

gradients (Nelder-Mead Simplex, genetic algorithms etc.) is recommended. In the

next section, some objective functions are introduced that may be more appropriate

to fitting dynamic model systems to data.
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2.2.2 Objective Functions for Fitting Dynamical Systems

Assuming that a suitable minimization algorithm can be found, it is still necessary

to specify the objective function to be minimized. When the dynamics of a single

population or quantity (state variable) is to be modeled and the underlying model to

be fit can be assumed to be true and has a known error structure, there are many

suitable measures of goodness-of-fit common in the statistical literature. The most

well-known are sum-of-squares error (SSE) and the method of maximum-likelihood.

When the underlying model can not be assumed to be true, as is always the case

in mechanistic models, the situation is quite different. Because the underlying model

can not be assumed to be true there is almost always systematic lack of fit in the

model predictions. The goodness-of-fit measures presented in Table 2.6 were compiled

by (Ross, 1996) and focus on particular qualities of the fit that may be desirable in

a mechanistic model context. These include measures that can be used to balance

over-prediction and under-prediction, minimize bias or minimize relative errors.

These measures may be limited when used in model fitting contexts where there

are multiple state variables. In particular, these measures do not address the fact

that the state variables may be on very different scales (recall the earlier discussion

of nondimensionalization). If these measures are used as presented, they can bias

an optimization toward state variables with greater variability and observations with

larger relative magnitude.

To deal with the issue of multiple state variables having different characteristic

scales (Omlin et al., 2001) suggested the following weighted least-squares measure as
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Table 2.6: Goodness-of-fit measures. In the explanation of each measure, P represents
the predicted values and O represents the observed values and N represents the
number of observations.

AF Accuracy fac-
tor

10
∑

(|log10(P/O))/N)| Gives a multiplicative
factor to generate an
“expected range” of
residuals. For example
if AF = 1.25 the the
expected range of devia-
tions is (P/1.25,P*1.25).

BF Bias factor 10
∑

(log10(P/O)/N) BF = 1 indicates no bias,
BF > 1 indicates over-
prediction. BF < 1 indi-
cated under-prediction.

MARR Mean abs. rel-
ative residual

(1/N)
∑

(|(O−P )/O|)
0.01

MARR is the average
percent difference of pre-
dictions from observed.

MRPR Mean relative
percent resid-
ual

(1/N)
∑

((O−P )/O)
0.01

MRPR > 0 indicate
under-prediction.
MRPR < 0 indicate
over-prediction.

RMSR Root mean
square residual

(
∑

((O − P )2)/N)1/2 Will be zero when both
the bias and variability
of the prediction are
zero. Penalizes equally
for over- prediction
and under-prediction
so is usually considered
inappropriate when pre-
dictions are constrained
to an interval.
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a goodness-of-fit objective function in model fitting.

WSS(θ) =

ny∑
k=1

nt,fit∑
j=1

nyk,z∑
i=1

(
ymeas,k,j,i − yk(zyk,i, tj, θ)

scyk

)2

(2.11)

Here ymeas,k,j,i is the measured value of the kth state variable yk under the ith treat-

ment scenario zyk,i at time tj and yk(zyk,i, tj, θ) is the corresponding model prediction

given model parameters θ. The quantity which allows this measure to be used across

all state variables is scyk
. Omlin et al. describes scyk

as a scaling factor “. . . to give

all measured variables similar influence on the estimates of parameters.” Unfortu-

nately Omlin et al. give no guidance on how to select such scales.

Experimentation has been done with taking scyk
equal to the range taken across

all observations on yk and with scyk
equal to the standard deviation over all obser-

vations on yk. While there was no clear advantage to either approach, the range may

be considered inferior since it is less robust to outliers. In either case, division by

scyk
leads to a non-dimensional measure of fit by normalizing the residuals on each

state variable so that they are all of the same order of magnitude. Since use of the

range may be inferior, the use of the standard deviation as the normalizing quantity

is recommended. Furthermore to make measures of fit less biased due to unequal

sampling frequencies across the data sets the scaling can be taken to be nyk(scyk
).

That is, each residual is normalized by the number of observations on the variable y

under conditions k.

In conclusion, the use of an iterative optimization procedure is suggested which

does not rely on gradients to optimize WSS with a scaled standard deviation as

a scaling factor as a suitable objective function for model fitting of systems with

multiple state variables.
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2.3 Model Analyses

Methods to evaluate model behavior and robustness after parameters have been ob-

tained are now considered. The most common approach is to measure the sensitivity

of model output to perturbations in the parameters. In this approach, a small, usually

relative, perturbation about the estimated value of a parameter is used to generate

new model predictions. If the new model predictions are close to those for the unper-

turbed parameter then the model is said to be robust with respect to that parameter.

In the case of bacterial growth, for example, one might be interested in determining

the sensitivity of cell density predictions. The sensitivity of the log10 of cell density

can be defined as

∂log10 N

∂Pi

≈ log10 N |Pi+0.05Pi
− log10 N |Pi−0.05Pi

0.1Pi

(2.12)

It is often the case, however, that the sensitivity of model output to perturbations

in 1 parameter depends to a large extent on the value of other parameters. To assess

dependencies in a sensitivity analysis one can use a technique similar to a multi-factor

ANOVA (Swartzman and Kaluzny, 1987).

A conceptually straight-forward way of designing such an experiment is to use

a 3n factorial arrangement of parameter perturbations where n is the number of

parameters in the analysis. The problem here, typical of factorial designs, is that a

very large number of simulations are needed for even moderate n.

There are several designs common in the response surface literature that can be

used to estimate the interactions with fewer number of design points. The design used

is a central composite design (Keuhl, 2000). A central composite design is constructed
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by first generating a 2n factorial and then “face points” in each of the cardinal di-

rections. There are also c “center points” placed at the location of the unperturbed

parameter set. A central composite design requires 2n + 2n + c design points com-

pared with the 3n required by the factorial design. Thus, when there are more than

2 parameters the central composite design can require fewer points (depending on

c). The utility of c > 1 is that it allows a better estimate of measurement error in

an experimental setting. In a sensitivity analysis, however, there is no measurement

error as such, so it is assumed that c = 1 (Swartzman and Kaluzny, 1987). A cen-

tral composite design for a 2 parameter model is displayed in Fig. 2.7. This design

has 9 points which is the same as the 32 factorial. For all dimensions higher than

2, however, the central composite offers a saving. A central composite design for

a 3 parameter model is displayed in Fig. 2.8. This design uses 15 points while the

factorial requires 33 = 27. The central composite design permits calculation of “main

effects”, “first-order interactions” and “quadratic effects.” This allows assessment of

the magnitude, direction and concavity of the sensitivity surface with respect to the

model parameters.
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Figure 2.7: Central composite design for 2 parameter multivariate sensitivity analysis.

Figure 2.8: Central composite design for 3 parameter multivariate sensitivity analysis.
Although it is not clear from this diagram, there is also a design point in the center
of the design.
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Chapter 3

An Energy-Based Dynamic Model

for Variable Temperature

Vegetable Fermentation by

Lactococcus lactis

In this chapter, some of the approaches to predictive microbiology described in Chap-

ters 1 and 2 are applied and extended. In particular, a mechanistic mathematical

model is developed for predicting the progression of batch fermentation of cucumber

juice by the homolactic bacterium Lactococcus lactis under variable environmental

conditions. In order to overcome the deficiencies of currently available models, a

dynamic energy budget approach is used to model the dependence of growth on

current as well as past environmental conditions. Using parameter estimates from

independent experimental data, the model is able to predict the outcomes of three

different temperature shift scenarios. Sensitivity analyses elucidate how temperature
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affects the metabolism and growth of cells through the lag, exponential, stationary

and death phases of fermentation and reveal that there is a qualitative reversal in

the factors limiting growth between low and high temperatures. The model has an

applied use as a predictive tool in batch culture growth. It has the added advantage

of being able to suggest plausible and testable mechanistic assumptions about the

interplay between cellular energetics and the modes of inhibition by temperature and

end product accumulation.

3.1 Derivation of Model Equations

There is some evidence to suggest that the adenine nucleotide content (ATP +

ADP + AMP) of bacteria partially reflects the capacity of the cell for growth and

is directly affected by environmental stresses such as pH, temperature and starva-

tion (Mercade et al., 2000; Metge et al., 1993; Chibib and Tholozan, 1999; Jetton et al.,

1991). While adenylate phosphates certainly contribute to the cell’s total “energy”,

this measure may not represent absolutely the cell’s ability to grow and cope with

environmental stresses (Kooijman, 2001). Therefore, a formalism similar to that of

Eqn. 1.20 is adopted and the internal quota of “energy” is denoted Q and the per-cell

fraction is denoted q.

Bacterial growth should cease when q reaches 0. But the growth rate of the

bacteria should be limited to some maximal rate α as the internal pool of “energy”

gets large. Conversely, the death rate of cells will approach a maximum rate δ1 when

q is zero but should vanish when q is large. These assumptions are satisfied by the
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following equation governing the growth of the bacteria whose density is N(t).

dN

dt
= α(

q

kq1 + q
)N − δ1exp(−δ2q)N (3.1)

The rate at which the death rate goes to zero for increasing q is controlled by δ2. Note

that in this formulation, the observed growth rate is the actual growth rate minus

the death rate.

Homolactic bacteria such as Lactococcus lactis derive the vast majority of their

“energy” by consuming the glucose present in the growth medium. Since an initial

pool of “energy” is needed to initiate glycolysis, the following saturating kinetics

equation is suggested for the consumption of glucose (S) by bacteria.

dS

dt
= −µ1(

q

kq2 + q
)NS (3.2)

Thus, as q grows large, the rate of glucose consumption approaches µ1. kq2 is the

value of q at which the glucose consumption rate is half its maximum µ1. In this

application, malic acid is present and malolactic conversion to lactic acid accounts

for about 1/3 of the total lactic acid produced during the fermentation. Therefore,

an equation similar to the above for the malolactic reaction is included.

dM

dt
= −µ2(

q

kq3 + q
)NM (3.3)

µ2 is the maximum malolactic rate and kq3 is the half-saturation value. The stoichiom-

etry of homolactic conversion of glucose to lactic acid (L) and malolactic conversion
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of malic acid to lactic acid is well known (Jay, 1992). It may state that

dL

dt
= 2 [glucose consumed] + 1 [malic reduced] (3.4)

where the glucose consumed and malic reduced are −dS/dt and −dM/dt respectively.

The internal pool of “energy” will increase in proportion to the glucose consumed.

However, “energy” must be used to cope with acidic conditions and temperature

changes. The following equation is a tentative sketch of the dynamics of the “energy”

state of the population (Q).

Change in Q

per hour
= Glucose consumed − Acid Toxicity

−Temperature adaptivity (3.5)

Specifically, the contribution to Q is taken to be proportional to the glucose consumed.

The acid toxicity is taken to be proportional to the total concentration of lactic acid

(ionic and molecular forms).

When glucose in the medium is brought inside the cell (Eqn. 3.2) to be converted

to “energy”, an adjustment is required in order to account for the change in volume

from the fermentation flask to cell. Since the volume of cells is not known precisely,

this adjustment factor is confounded with the glucose-to-energy conversion parameter.

It should be noted that this is actually a nice feature of the model because having to

know the precise volume of a cell would severely limit the extensibility of the model.

Modeling the “acid toxicity” term in Equation 3.5 is a difficult task and there is

currently a great deal of debate about what is the ultimate cause of acid toxicity.

There are clearly at least 2 main components to acidity for lactic acid bacteria.
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Figure 3.1: Accumulation of organic acid anions and proton imposes a drain on the
intracellular energy of a cell. A single ATP is hydrolyzed to transport out 3 protons.
Organic acid is actively transported out of the cell. The mechanism of acid transport
shown is electo-neutral symport.

The first is pH and the second is the intra-cellular concentration of lactic acid (see

Figure 3.1). These 2 quantities are themselves related by the Henderson-Hasselbach

equation (Butler and Cogley, 1998). However, in a complex growth medium many

other acids may be present and issues regarding shifts in buffer capacity and ionic

strength become important. Dealing with these issues will be delayed until Chapter 4.

For now it is assumed that dependence on total lactic acid is sufficient to explain end

product toxicity and suggest the functional form

Acid Toxicity = κqNL (3.6)

= κQL (3.7)
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where κ is the per-cell energy cost of lactic acid.

Focus is now on modeling the “temperature adaptivity” term in Eqn. 3.5. Al-

though the goal of Van Impe et al. (1995) to model temperature dynamically is shared

a different approach than the modified Ratkowsky model must be taken. First, tem-

peratures (T ) are limited below the optimal temperature of the bacterium (Topt) since

these are the ranges relevant to food production. As discussed in Chapter 1, it is rea-

sonable to assume that large deviations from the optimal temperature require large

physiological adjustments.

Temperature adaptivity = −τ(T − Topt)
2|dT

dt
|Q (3.8)

Based on purely enzyme kinetic theory, lower temperatures should also result in

reductions in the growth, glucose consumption, malic acid conversion and the acid

toxicity rates (recall the square root model of Ratkowsky). These trends were noted

by Chibib and Tholozan (1999) as well as in these data. A rate’s reduction due to

temperature (T ) can be modeled by dividing the rate by an inhibition term FT of the

form

FT = 1 +

(
T − Topt

KT ∗

)2

(3.9)

(3.10)

Where KT ∗ is a temperature sensitivity term (smaller values translate into greater

sensitivity). Thus a deviation from optimal temperature is considered to manifest

itself as a classical non-competitive inhibitor of these reactions (Cornish-Bowden,
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1995).

The resulting model consists of a system of five differential equations with depen-

dent variables for cell density (N), the extracellular concentrations of glucose (S),

lactic acid (L) and malic acid (M) and intra-cellular “energy” (Q). Independent

variables are time t and temperature T . The model parameters, their biological in-

terpretations, units and estimates are given in Table 3.2. The differential equations

are as follows:

CFU:
dN

dt
= α(

q

kq1 + q
)N − δ1exp(−δ2q)N

Glucose:
dS

dt
= − µ1

FT1

(
q

kq2 + q
)NS

Malic Acid:
dM

dt
= − µ2

FT1

(
q

kq3 + q
)NM

Energy:
dQ

dt
= β

[
µ1

FT1

(
q

kq2 + q
)NS

]
− κ

FT2

LQ

−γ

[
α(

q

kq1 + q
)N

]
− τ

dT

dt
(T − Topt)

2Q

Lactic Acid:
dL

dt
= 2

[
µ1

FT1

(
q

kq2 + q
)NS

]

+

[
µ2

FT1

(
q

kq3 + q
)NM

]

(3.11)
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Table 3.1: State variables of the modela.

Symbol Meaning Units Observed Range
t Time h 0–256
T Temperature ◦C 10–30
N Cell density CFU mL−1 1.0x106–2.0x109

S Glucose in the medium mM 0–35
M Malic acid in the medium mM 0–12
Q Intracellular energy fraction of initial “energy” 0–5
L Lactic acid in the medium mM 0–35

a Q/N was normalized to 1 at the time of inoculation (t=0). Therefore, Q/N
measures energy as a fraction of the energy quota that is typically present in an
overnight culture.

where

q = Q/Nand (3.12)

FT = 1 +

(
T − Topt

KT ∗

)2

(3.13)
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Table 3.2: Model parameter descriptions and estimates.

Parameter Description (unit) Estimate
α Maximal bacterial growth rate (h−1) 3.42
µ1 Maximal glucose consumption rate (CFU mL−1)(mM−1) 8.95 × 10−10

µ2 Maximal malate conversion rate (CFU mL−1)(mM−1) 2.41 × 10−9

kq1 Value of q at which cell growth rate equals α/2 (unitless) 8.03
kq2 Value of q at which glucose consumption rate equals µ1/2 (unitless) 1.07
kq3 Value of q at which glucose consumption rate equals µ2/2 (unitless) 1.35 × 10−2

δ1 Death rate when q = ∞(h−1) 7.02 × 10−2

δ2 Death rate sensitivity to changes in q (unitless) 3.73 × 103

β Conversion rate of glucose into energy (mM−1) 6.80 × 108

γ Energy required for cell division (CFU mL−1) 2.07
κ Energy cost per 1 mM lactic acid (mM−1h−1) 0.220
KT1 Sensitivity of metabolic processes to deviations from optimal temp (◦C ) 8.11
KT2 Sensitivity of lactic acid inhibition to deviations from optimal temp (◦C ) 6.28
Topt Optimal temp (◦C ) 37 (assumed)

τ Energy cost for transient temp adjustment (◦C −1) 1.60 × 10−3
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3.2 Materials and Methods

3.2.1 Bacterial strains and media.

Lactococcus lactis subsp. lactis strain LA221 transformed with the chloramphenicol

resistance gene pGK12 (Breidt and Fleming, 1998) was obtained from the USDA cul-

ture collection. LA221 was grown on M17 broth (Difco Laboratories, Detroit, Mich.)

containing 1.5% agar (Difco), 1% glucose (Sigma Chemical Co., St. Louis, Mo.) and

5 ug mL−1 chloramphenicol. Growth experiments were conducted in cucumber juice

medium. Cucumbers were pureed and pressed to render raw juice, which was frozen

until needed. The raw juice was thawed and then clarified by heating at 85◦C for 5

min, followed by centrifugation at 12,000 rpm for 20 min and filter sterilized. The CJ

medium was prepared by adding 600 mL juice to 400 mL dH2O. The diluted juice was

supplemented with 2% NaCl and then filter-sterilized as described by Daeshel et al.

(1984).

3.2.2 Fixed temperature experiments

Overnight cultures were prepared by growing LA221 in CJ at 30◦C . Water-jacketed

jars (Wheaton, Millville, N.J.) were filled with 200 mL of fresh CJ and inoculated

at 1 × 106 CFU mL−1 of bacterial culture. Each flask was sealed with a silicone

stopper that contained a sterile syringe sample port, through which an 18-gauge,

10 cm needle was passed. The growth medium was kept well-mixed by a magnetic

stirrer. Compressed nitrogen was humidified by sparging through deionized water,

filtered (0.2 um Millex-FG50 filter, Millipore Corp., Bedford, Mass.), and released into

the headspace of the fermenter jars at a rate of 1.3 L h−1. Temperature during the
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fermentation was controlled by a circulating water bath (NESlab RTE-211; NESlab,

Portsmouth, N.H.). The temperature of the growth medium was monitored directly

by sterile thermocouples inserted through the silicone stoppers and recorded by a

microcomputer (OM-3000; Omega, Stamford, Conn.). Growth observations at 10, 20

and 30◦C included quantification of CFU mL−1, glucose, malic acid, and lactic acid

concentrations. Growth at a particular temperature was monitored until all phases

of growth had been observed.

The data consisted of 2 replicates (jars) at each temperature. Each pair of repli-

cates was carried out side-by-side. Because only a single water bath was available to

maintain the desired temperatures, the experiments for different temperatures were

carried out on different days. The sampling of the jars at the different temperatures

resulted in a total of 22 sample points over time at 10◦C (a total of 44 samples), 14

samples points over time at 20◦C (a total of 28 observations) and 13 sample points

over time at 30◦C (a total of 26 observations). For each sample, cell density, glucose

concentration, malic acid, lactic acid and pH were measured and recorded. Thus the

data consisted of 98 5 × 1 vector-valued observations.

3.2.3 Biological assays

When a sample was desired, a sterile disposable syringe (1 cc, BectonDickinson, N.J.)

was used to withdraw a 1-mL sample from the fermentation flask sample port. Cells

were removed from 1-mL samples by centrifugation at 13,000 rpm for 1.5 min. High

performance liquid chromatography (HPLC) analyses of the supernatant quantified

total lactic acid, glucose and malic acid. HPLC was carried by the single injection

procedure of McFeeters (1993). The pH of the medium was determined using an
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electronic pH meter (IQ 200; IQ Scientific Instruments, Inc., San Diego, Calif.). Cell

density (CFU mL−1) was determined by the spiral plate count method using an

Autoplate 4000 Automated Spiral Plater (Spiral Biotech, Bethesda, Md.) and a

Protos Plus Colony Counter (Bioscience International, Rockville, Md.).

3.2.4 Statistics and programming

All computing was performed on a 300 Mhz Ultra Sparc 10 processor (Sun Microsys-

tems, Palo Alto, Calif.). MATLABTM(ver. 5.3, MATLAB functions are indicated in

all-caps) software was used to solve the system of equations 3.11 and for all other pro-

gramming. The equations were solved using the adaptive stiff ODE solver (ODE15S).

The ODE solver often required temperatures and rates of temperature change at times

different from when they were actually sampled. This problem was overcome simply

by using linear interpolation (INTERP1) to estimate the temperature values at the

times requested. The derivative of temperature with respect to time was calculated

prior to parameter estimation using a centered finite difference approximation (GRA-

DIENT) of the temperature data. During the solution of the ODEs, the gradient was

obtained by linear interpolation to the desired time point.

A single set of parameters was estimated from the fixed temperature data with the

intent that the fitted model would predict the data from each of the fixed-temperature

experiments equally well. Specifically, parameters were estimated using all of the

fixed temperature data at once via a weighted least-squares method (see Chapter 2

p. 39). In the following, it is assumed that i indexes the tempertures, j indexes

the runs within a particular temperature and k indexes the observations within a

run. For each of the a temperatures there are bi runs and within the jth run there
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are cj observations. The squared residual of a system variable was normalized by

the standard deviation of the observed data on that variable across all temperatures

(s∗). The number of samples taken during the fermentations was not constant across

temperatures or runs. Therefore, to make the fits have equal weight, the sum of

squared errors for a particular temperature (i) was divided by the number of sample

points taken for that temperature (
∑bi

j=1(cj)). The weighted squared residuals were

then summed to give a measure of total lack of fit. The following equation explicitly

describes the formulation of the weighted sum of squared errors.

WSS =
a∑

i=1

bi∑
j=1

ci,j∑
k=1

(log10(Obs. CFU/mLi,j,k) − log10(Pred. CFU/mLi,k))
2∑bi

j=1(ci,j)(sCFU/mL)

+
(Obs. Malici,j,k − Pred. Malici,k)

2∑bi

j=1(ci,j)(sMalic)

+
(Obs. Lactici,j,k − Pred. Lactici,k)

2∑bi

j=1(ci,j)(sLactic)

+
(Obs. Glucosei,j,k − Pred. Glucosei,k)

2∑bi

j=1(ci,j)(sGlucose)
(3.14)

Note in the above that the log of cell density was employed. The data for the cell

density was heteroscedastic, with sample variance approximately proportional to the

magnitude of the density. A flexible distribution that has this property (constant

coefficient of variation) is the Gamma distribution. Schaffner (1998) gives further

evidence why cell count data should be considered to have a Gamma distribution. To

approximately normalize the variance a log transform of the cell density was employed.

The HPLC data (lactic acid, malic acid and glucose), however, were assumed to have

normally distributed errors. Initial conditions were also estimated from the data for

each of the state variables except for Q which was initialized to the cell density so
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that q(0) = 1.

Since an adaptive ODE solver was used, neither the Jacobian nor the Hessian

of the likelihood function depends smoothly on perturbations in the parameters

(Hairer et al., 1987). As a result, traditional direct-search gradient-based algorithms

failed. Differential Evolution (Storn, 1996), a genetic algorithm, was used to achieve

a parameter set which approximately minimized WSS, followed by as many Nelder-

Mead Simplex (FMINSEARCH) iterations as required to obtain convergence. A

function tolerance of 1× 10−4 and a parameter tolerance of 1× 10−4 were used as the

convergence criteria of the Nelder-Mead Simplex procedure.

3.2.5 Validation studies

Validation of the calibrated model was accomplished by comparing predictions and

data from variable environment experiments. In all cases, two or more independent

replicates of the fermentations were carried out. In the first scenario, the temperature

of the medium was maintained at 30◦C for 3.75 h, and then it was dropped to 10◦C .

This temperature change was accomplished over a period of about 15 min. In order

to compare the model’s predictions about the effect of the previous energy state

on growth, a second scenario was conducted. In this scenario, cells were grown at

30◦C for 54.42 h. Then 100 µL of fermented broth were inoculated into 200 mL of

fresh CJ also at 30◦C for 68.5 h. In a third scenario cells were grown at 30◦C for 35.75

h and then 100 µL of fermented broth was inoculated into fresh medium coinciding

with a temperature drop from 30 to 10◦C .

The data consisted of 2 replicates (jars) for each scenario. Each pair of replicates

was carried out side-by-side. Because only a single water bath was available to main-
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tain the desired temperatures, the experiments for different scenarios were carried

out on different days. For the first scenario, 17 sample points over time (a total of

34 observations) were taken. For the second scenario, 19 samples were taken during

the first period of growth and 21 samples taken during the second period of growth

(a total of 80 observations). In the third validation scenario, 19 samples were taken

during the first period of growth and 25 samples were taken during the second period

(a total of 88 observations).

3.2.6 Sensitivity analyses

Sensitivity of a particular parameter was calculated as the relative change in the

model prediction for a 10% perturbation of that parameter with all other parameters

fixed at their estimated values (Haefner, 1996). The interest was in determining the

sensitivity of cell density predictions. In mathematical terms, the sensitivity of cell

density (log10(N)) to perturbations in the ith parameter (Pi) was calculated as the

centered finite approximation to ∂log10 N
∂Pi

given in Eqn.3.15.

∂log10 N

∂Pi

≈ log10 N |Pi+0.05Pi
− log10 N |Pi−0.05Pi

0.1Pi

(3.15)

Positive values of this measure indicated that when a parameter is perturbed

upward the model prediction for N is higher than when the unperturbed parameter is

used. Conversely, negative sensitivities indicated that a positive perturbation resulted

in a reduction in the predicted value for N . The advantage of this approach was that

it could be performed at each point in time over a simulated fermentation. When the

resulting sensitivity curve was plotted over time, it was easy to determine the relative
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importance of the model parameters at each of the different phases of bacterial growth.

Also interesting were the interactions between parameters that affected model

predictions. To examine interactions in sensitivities, a “multiple parameter sensitivity

analysis” (Swartzman and Kaluzny, 1987) was used. Obtained from the analysis were

the main effects, interaction terms, and higher order terms (analogous to a multi-way

ANOVA). A multiple parameter sensitivity analysis was performed on the observed

growth rate. The model 3.11 tracks both cell growth as well as cell death. Therefore,

to determine the observed growth rate a smoothing spline (CSAPS) was fit to the

cell density data from which the first derivative was calculated (FNDER). The largest

positive value of the first derivative during the exponential growth phase was taken as

the observed growth rate. For the ANOVA, a central composite design (Keuhl, 2000)

was used which allowed estimation of all main effects and first-order interactions. The

analysis of the observed growth rate was limited to the eight parameters determined

to be important in the temporal analyses. The resulting central composite design

required 28 + 2(8) + 1 = 273 function evaluations. P-values, it should be noted,

were meaningless in this context since there was technically no error in simulated

data (Swartzman and Kaluzny, 1987).

3.3 Results

3.3.1 Model development and calibration

The model links the mechanisms of nutrient acquisition, end-product accumulation,

temperature adaptation, and cell growth. In particular, the rates of glucose con-

sumption, malic acid reduction, and cell growth and death all depend on the current
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intra-cellular “energy” level (q). The convention of assigning the initial value of q

to 1 was used because the fermentations were inoculated from overnight cultures of

approximately the same age. This meant that q should be interpreted as a measure

of the fraction of the initial intra-cellular “energy” typical in an overnight bacterial

culture. The state variables of the model are summarized in 3.2, and the model

parameters along with their biological interpretations and estimated values are sum-

marized in 3.1.

To calibrate the model, 30◦C was used as a reference point, but growth was also

observed at 20 and 10◦C . It is important to note, however, that all overnight cultures

were grown at 30◦C prior to inoculation for an experiment. Thus, inoculation at lower

temperatures constituted a temperature shock to which the bacteria had to adapt.

Dependence on the rate of temperature change, as well as the magnitude of the

temperature change, was manifested in the model in the equation for cellular energy,

as well as in the rate-specific reductions in the glucose consumption rate, malic acid

reduction rate, and lactic acid inhibition rate. As can be observed in Fig. 3.2, the shift

to low temperatures produces a lag-phase effect. The lag-phase was less pronounced

at 20◦C (Fig. 3.3). and cells inoculated into fresh medium at 30◦C showed no lag (see

Fig. 3.4).

Model validation and analysis.

After estimating the model parameters from fixed temperature data, the model was

validated against three temperature scenarios. The first scenario consisted of variable

temperature regime. Bacteria were grown for 3.75 h at 30◦C , and then the temper-

ature was brought down to 10◦C over a period of approximately 15 min. Growth at

10◦C was continued for another 60 h. Model predictions closely matched the experi-
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Figure 3.2: Predictions of the calibrated model at 10◦C . Note that the culture was
incubated at 30◦C prior to inoculation. The duration of lag phase is indicated by
the arrow. The symbols ◦ (number of CFU/milliliter or concentration of malic acid
in millimolars), 4 (concentration of glucose in millimolars), and ¤ (concentration
of lactic acid in millimolars) represent experimental values, and the curves represent
predicted values. Dashed line = Q.
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Figure 3.3: Predictions of the calibrated model at 20◦C . Note that the culture was
incubated at 30◦C prior to inoculation. The duration of lag phase is indicated by
the arrow. The symbols ◦ (number of CFU/milliliter or concentration of malic acid
in millimolars), 4 (concentration of glucose in millimolars), and ¤ (concentration
of lactic acid in millimolars) represent experimental values, and the curves represent
predicted values. Dashed line = Q.
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Figure 3.4: Predictions of the calibrated model at 30◦C . The symbols ◦ (number
of CFU/milliliter or concentration of malic acid in millimolars), 4 (concentration of
glucose in millimolars), and ¤ (concentration of lactic acid in millimolars) represent
experimental values, and the curves represent predicted values. Dashed line = Q.
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Figure 3.5: Variable temperature validation (scenario #1). After 3.75 h, the tem-
perature was reduced from 30◦C to 10◦C over a period of about 15 min. Arrow
indicates temperature shift. The symbols ◦ (number of CFU/milliliter or concentra-
tion of malic acid in millimolars), 4 (concentration of glucose in millimolars), and
¤ (concentration of lactic acid in millimolars) represent experimental values, and the
curves represent predicted values. Dashed line = Q.

mental data. It can be seen in Fig. 3.5 that the model accurately predicted the period

of rapid growth at 30◦C , as well as the pronounced lag after the temperature shift.

A second scenario (Fig. 3.6) involved a batch growth at 30◦C , followed by re-

inoculation into fresh medium also at 30◦C . This scenario was meant to gauge the

ability of the bacterial population to rapidly recover from a toxic previous growth

environment once placed into fresh medium. At the point of re-inoculation, the

model predictions for the cell counts and internal pool of energy were adjusted for

63



0 50 100 150 200

10
5

10
10

C
F

U
/m

L

0 50 100 150 200
0

10

20

30

40

C
on

ce
nt

ra
tio

n 
(m

M
)

Glucose
Lactate             

0 50 100 150 200
0

5

10

15

Time (h)

M
al

at
e 

(m
M

)

0 50 100 150 200
0

1

2

3

4

5

Time (h)

q

0 50 100 150 200
10

−20

10
−10

10
0

10
10

Q

Figure 3.6: Re-inoculation validation experiment (scenario #2). After 55 h, the cells
were re-inoculated into fresh medium. The temperature was held at 30◦C throughout
the entire experiment. The symbols ◦ (number of CFU/milliliter or concentration
of malic acid in millimolars), 4 (concentration of glucose in millimolars), and ¤
(concentration of lactic acid in millimolars) represent experimental values, and the
curves represent predicted values. Dashed line = Q.

dilution and used as initial conditions for a second simulation run. The energy stores

of the bacteria were rapidly replenished once placed in fresh medium. There was no

noticeable lag phase, and the second profile nearly duplicated the behavior of the

first profile. In the third production scenario, the shift in temperature from 30 to

10◦C coincided with a re-inoculation into fresh medium. The results (see Fig. 3.7)

suggest an overall robustness of the model to perturbations in temperature and initial

conditions.
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Figure 3.7: Model predictions for scenario #3. Re-inoculation into fresh medium
at 3.75 h coincided with a shift in temperature from 30◦C to 10◦C . The symbols ◦
(number of CFU/milliliter or concentration of malic acid in millimolars), 4 (concen-
tration of glucose in millimolars), and ¤ (concentration of lactic acid in millimolars)
represent experimental values, and the curves represent predicted values. Dashed line
= Q.
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3.3.2 Sensitivity analyses

A sensitivity analysis was carried out to gain insight into which components of the

model are most important with respect to growth regulation in response to changes

in temperature. For example, in Figs. 3.8–3.10 a “temporal sensitivity analysis”

was used to measure sensitivity with respect to predicted cell density for the fixed

temperature fermentations. In general, the magnitudes of the sensitivities increase as

the temperature decreases. At 10◦C , cell counts during exponential and stationary

phase are positively affected by positive perturbations in β, µ1, KT1 and kq1, but are

negatively affected by positive perturbations in α, τ , γ, and kq2. δ1 is important only

in death phase, where it had an increasingly negative effect. There was a reversal in

the signs of all parameter sensitivities near the transition from stationary to death

phase (Fig. 3.8). This reversal occurs to a lesser extent at 20◦C (Fig. 3.9) and is

absent in the analysis at 30◦C (Fig. 3.10). Particularly striking are the curves for

parameters α and kq1, which represent growth rate and energy (respectively), and

experienced changes in sign from the analysis at 10◦C to the analysis at 30◦C .

Positive perturbations in κ (energy cost of acid stress) have a relatively larger negative

effect at 30◦C (Fig. 3.10) than in the lower temperatures (Fig. 3.8), and the positive

perturbations of kq1 were larger in magnitude, compared to other parameters, during

the exponential and stationary phases at 30◦C (Fig. 3.10).

While this kind of analysis is useful in exploring the effect of a single parameter,

understanding the interplay between parameters was also important. It was found

that the exponential and stationary phases were most sensitive to perturbations in

the parameters. Therefore, a multiple sensitivity analysis was conducted of the max-

imal observed growth rate to gain a better understanding of how the model behaves
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Figure 3.8: Temporal sensitivity profiles of cell density [log10(CFU mL−1)] with re-
spect to the model parameters at 10◦C (only the 10 most sensitive model parameters
shown). LE, ES and SD are reference points indicating approximate times of transi-
tion between lag, exponential, stationary and death phase, respectively.
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Figure 3.9: Temporal sensitivity profiles of cell density [log10(CFU mL−1)] with re-
spect to the model parameters at 20◦C (only the 10 most sensitive model parameters
shown). LE, ES and SD are reference points indicating approximate times of transi-
tion between lag, exponential, stationary and death phase, respectively.
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Figure 3.10: Temporal sensitivity profiles of cell density [log10 (CFU mL−1)] with
respect to each of the model parameters at 30◦C (only the 10 most sensitive model
parameters shown).

during these phases of growth. The main effects, interaction terms, and second-order

effects for simulations at 10 and 30◦C are reported in Tables 3.4 and 3.3, respectively.

Comparison of the data in Tables 3.4 and 3.3 reveals that µ1 and β are the most im-

portant parameters in determining the growth rate. The fact that the signs of α and

kq1 in Table 3.3 are the opposite of what they were in Table 3.4 suggests that growth

is limited in a fundamentally different manner at 10◦C than at 30◦C . This is also

supported by the fact that τ does not interact with any of the (other) parameters at

30◦C while at 10◦C the interactions are relatively strong. The observed growth rate,

irrespective of temperature, was most strongly influenced by the glucose consump-

tion rate (µ1), glucose-to-energy conversion rate (β), and maximal growth rate (α).

The growth rate is least affected by the energetic cost of reproduction (γ) and the

energy half-saturation constant for glucose consumption (kq2). The energetic cost of
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temperature adaptation (τ) is only important in the 10◦C analysis (Table 3.4), where

it tends to manifest a negative effect on growth rate through its negative interactions

with µ1, β, KT1, and kq1.
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Table 3.3: Multiple sensitivity (index) analysis for growth rate at 30◦C . The parameters considered here were also
found to be important in determining cell density during exponential and stationary phase (see Figure 3.10). Listed
are the coefficients describing the sensitivity surface about the estimated parameters. Constant terms indicate
the mean trend or “main effect” due to that parameter alone, whereas the interaction terms are a measure of
how a perturbation in one of the parameters affects model sensitivity to the other parameter involved in the
interaction. The terms on the main diagonal indicate concavity in the sensitivity surface with respect to that
particular parameter. The larger values are underlined.

Parameter Constant
Term (Main
Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 0.3300 -0.1491 0.0626 0.0299 -0.1202 0.2789 0 0.0379 0.0257
β 0.3310 -0.1445 0.0310 -0.1192 0.2786 0 0.0377 0.0259
KT1 0.1405 -0.1019 -0.0594 0.1260 0 0.0165 0.0106
kq1 -0.1666 0.0758 -0.0386 0 0.0790 0.0506
α 0.2721 -0.1565 0 -0.1458 -0.0938
τ -0.0000 Symmetric 0.0100 0 0
γ -0.0931 0.0089 -0.0189
kq2 -0.0738 -0.0073
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Table 3.4: Multiple sensitivity (index) analysis for growth rate at 10◦C . Comparison with Table 3.3 reveals that µ1

and β are the most important parameters in determining the growth rate. The fact that the signs of α and kq1 are
the opposite of what they were in Table 3.3 suggests that growth is limited in a fundamentally different manner at
10◦C than at 30◦C . The larger values are underlined.

Parameter Constant
Term (Main
Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 0.1754 -0.0435 0.1134 0.1044 -0.0863 0.0804 -0.0120 -0.0254 -0.0037
β 0.1756 -0.0447 0.1049 -0.0861 0.0802 -0.0123 -0.0256 -0.0038
KT1 0.1607 -0.0549 -0.0792 0.0738 -0.0106 -0.0227 -0.0044
kq1 0.0972 -0.1364 0.1964 -0.0071 0.1399 0.1408
α -0.1019 -0.0383 0.0070 -0.1375 -0.1410
τ 0.0005 Symmetric 0.0266 0.0065 0.0127
γ -0.1454 0.0434 -0.0490
kq2 -0.1276 0.0073
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Table 3.5: Multiple sensitivity (index) analysis for observed death rate at 10◦C .
Parameter Constant

Term (Main
Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 -0.0069 0.0394 0.158 0.150 0.120 -0.124 -0.007 -0.142 -0.141
β -0.0066 0.0383 0.145 0.116 -0.119 -0.0069 -0.137 -0.136
KT1 -0.0063 0.0375 0.110 -0.113 -0.0065 -0.130 -0.128
kq1 -0.0051 0.0345 -0.092 -0.0053 -0.104 -0.103
α 0.0053 0.0346 0.0053 0.107 0.106
τ 0.0003 Symmetric 0.0333 0.006 0.0061
γ 0.006 0.0357 0.122
kq2 0.0059 0.0357
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Table 3.6: Multiple sensitivity (index) analysis for observed death rate at 30◦C .

Parameter Constant Term
(Main Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 -7.88x10−7 -3.40x10−6 9.44x10−6 -2.86x10−5 -1.47x10−5 -1.38x10−5 -3.25x10−17 3.30x10−6 2.61x10−5

β -3.02x10−8 -5.76x10−6 7.91x10−6 5.73x10−6 -1.84x10−6 -5.10x10−16 -2.31x10−5 -5.77x10−6

KT1 -7.85x10−7 -3.44x10−6 -1.27x10−5 -1.40x10−5 9.78x10−17 2.94x10−6 2.28x10−5

kq1 -7.34x10−7 -5.56x10−6 -2.02x10−5 -1.84x10−16 7.56x10−7 1.18x10−5

α -8.65x10−7 -8.46x10−6 1.63x10−16 2.12x10−6 1.91x10−5

τ 4.94x10−18 Symmetric -3.34x10−6 -6.29x10−16 -2.06x10−16

γ -1.92x10−7 -9.38x10−6 -7.44x10−6

kq2 5.31x10−7 -3.62x10−6
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Table 3.7: Multiple sensitivity (index) analysis for max cell density at 10◦C .
Parameter Constant

Term (Main
Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 1.13 -2.46 -4.04 -3.72 -3.63 3.66 -2.93x10−3 3.70 3.98
β 1.54 -2.62 -3.63 -3.58 3.61 2.50x10−3 3.64 3.89
KT1 1.01 -2.10 -3.30 3.31 -0.0203 3.35 3.58
kq1 0.801 -1.97 3.45 -3.53x10−3 3.48 3.51
α -0.810 -1.23 -4.72x10−4 -3.50 -3.55
τ -1.90e-05 Symmetric -0.141 -5.53x10−3 -2.35x10−3

γ -1.30 -1.09 -3.55
kq2 -1.04 -1.33
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Table 3.8: Multiple sensitivity (index) analysis for max cell density at 30◦C .

Parameter Constant
Term (Main
Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 0.0795 -0.172 -0.209 -0.0762 -0.0350 0.0943 1.39x10−13 0.0778 0.125
β 0.481 -0.362 -0.0821 -0.0563 0.1048 1.39x10−13 0.0891 0.136
KT1 0.0194 -0.0294 -0.0221 0.0434 2.78x10−14 0.0419 0.0498
kq1 -0.260 0.0840 0.0572 2.00x10−13 0.0933 0.0315
α 0.317 -0.220 -9.99x10−14 -0.1242 -0.0317
τ 3.90x10−15 Symmetric 0.0182 3.28x10−13 4.44x10−14

γ -0.123 3.00x10−3 -0.0618
kq2 -0.0972 0.0131
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Table 3.9: Multiple sensitivity (index) analysis for terminal lactic acid concentration at 10◦C .

Parameter Constant
Term (Main
Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 0.724 -1.1098 -1.51 -1.39 -1.41 1.41 4.68x10−6 1.38 1.54
β 0.714 -1.08 -1.36 -1.39 1.39 -6.19x10−5 1.37 1.50
KT1 0.655 -0.963 -1.28 1.28 -5.89x10−4 1.25 1.38
kq1 0.557 -0.945 1.39 2.40x10−4 1.37 1.40
α -0.563 -0.403 1.53x10−4 -1.37 -1.41
τ -1.53x10−5 Symmetric -0.0214 -4.39x10−4 -1.43x10−5

γ -0.60278 -0.365 -1.39
kq2 -0.66791 -0.418
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Table 3.10: Multiple sensitivity (index) analysis for terminal lactic acid concentration at 30◦C .

Parameter Constant
Term (Main
Effect)

Interaction Terms

µ1 β KT1 kq1 α τ γ kq2

µ1 0.191 -0.171 -0.144 -0.0610 -0.0349 0.0388 7.21x10−16 0.0455 0.132
β 0.184 -0.162 -0.0582 -0.0340 0.0375 3.12x10−14 0.0459 0.122
KT1 0.0787 -0.0727 -0.0147 0.0163 1.16x10−18 0.0202 0.0515
kq1 0.0137 -0.0246 0.0331 2.22x10−14 0.0442 0.0228
α -0.0102 -0.0128 -1.32x10−14 -0.0484 -0.0222
τ -5.60x10−16 Symmetric 4.45x10−4 4.02x10−14 4.85x10−15

γ -0.0430 -0.00124 -0.0441
kq2 -0.155 0.0276
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3.4 Discussion

There is generally an inverse relationship between model complexity and model ro-

bustness (Baranyi and Roberts, 1995; Haefner, 1996). Kooijman (Kooijman, 2000),

however, argues that “a fair comparison of models should be based on the number of

parameters per variable described, not on absolute number.” A model was developed

which predicts not only cell density (N) but also reliably predicts glucose (S), lactic

acid (L), malic acid (M), and gives substantive and experimentally verifiable pre-

dictions of intracellular energy using only 14 model parameters. In this regard, the

model’s complexity is on par with that of currently available models. The parameter

γ is small and its elimination from the model was considered. Numerical experiments,

however, showed that it was not possible to obtain sharp resolution in lag phase or

stationary phase without this parameter.

Included in Figs. 3.2–3.7 are the predicted internal energy profiles (Q) and the

per-cell internal energy (q = Q/N) profiles. The model clearly predicted reductions

in “energy” available for growth immediately after a temperature shift or when end-

product inhibition ensues in stationary phase. Currently, no experiments have been

conducted with L. lactis (LA221) to support this, and this is the subject of future

work. However, Mercade et al. (2000) has shown that the yield (YATP) of ATP of

L. lactis decreased from 11.5 g mol−1 at a pH of 6.6 to 5 g mol−1 at a pH of 4.4,

thus demonstrating an energy drain due to acidic conditions. Jetton et al. (1991)

has shown that starved cells of Methanothrix soehngenii contained relatively high

levels of AMP (2.2 nmol mg−1 protein), but essentially no ADP or ATP during

acetate degradation. Addition of new substrate, however, quickly brought the ATP

levels back up to concentrations of about 1.4 nmol mg−1 protein. The Gram-negative
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bacterium Pectinatus frisingensis has been shown by Chibib and Tholozan (1999) to

experience decreases in ATP, ADP and AMP concentrations during cold shocks (30 to

20◦C ). The bacteria returned to a pre-shock metabolic state when returned to 30◦C in

the presence of glucose. Metge et al. (1993) showed that the total adenine nucleotide

content for a species of Pseudomonas decreased from 153x10−20 moles cell−1 during

exponential phase to 56x10−20 moles cell−1 during stationary phase.

Interpretation of the temporal sensitivity analyses in Figs. 3.8–3.10 is straightfor-

ward. By conducting the temporal sensitivity analyses at different temperatures, it

was possible to see how temperature affects the relative importance of each parameter

in relation to model predictions. The sensitivity of α (the maximum growth rate of the

cells) became negative at low temperatures, κ (the parameter which controls the en-

ergetic cost of cell division) became relatively unimportant at low temperatures, and

τ became important only at low temperatures. These results suggest that growth

at colder temperatures was limited primarily by the requirements for temperature

adaptation, while growth at 30◦C was limited primarily by acid stress. These results

also suggest that at low temperatures it was more advantageous to divert energy to

temperature adaptation. This idea is also supported by the large negative sensitivity

of parameter γ (at 10◦C ) seen in Fig. 3.8, since it is this parameter which controls

how much energy is spent on reproduction.

The sign reversal of nearly every parameter sensitivity at the end of stationary

phase in Fig. 3.8 is striking but entirely reasonable. This characteristic of the sen-

sitivity analysis comes from the fact that the factors that promote strong and rapid

growth also promote rapid end product accumulation and precipitate cell death. At

low temperatures, this phenomenon was enhanced by the increased energy demand

required for temperature adaptation. In general, 8 of the 14 model parameters were
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important in determining growth during exponential and stationary phase. These

were β, µ1, KT1, and kq1, which have positive sensitivities, and α, τ , γ and kq2,

which have negative sensitivities. Not surprisingly, these are the parameters that

control growth (α,kq1, and γ), sugar utilization (β, µ1, and kq2 ), and temperature

adaptivity (KT1 and τ) in the model.

The multiple sensitivity analysis of these parameters revealed that µ1 and β were

the most important parameters in determining the observed growth rate. The qualita-

tive shift in parameter sensitivity suggests that the observed growth rate was limited

in a fundamentally different manner at 10◦C than at 30◦C . In particular, these re-

sults support the previous suggestion that growth was limited at low temperatures by

the demand for temperature adaptation, while at warmer temperatures end-product

accumulation was the primary limiting force. For example, the parameter controlling

energy cost for temperature adaptation, τ , had virtually no bearing on the model

predictions at 30◦C .

Previous researchers (Brockelhurst et al., 1995; Bovill et al., 2000; Fu et al., 1991;

Van Impe et al., 1992, 1995), have developed models to predict growth during con-

tinuous changes in temperature. These models use an empirical function, such as

Gompertz or Ratkowsky relationships to describe temperature induced lag phase. In

the model, temperature is variable that controls the predicted metabolic activity of

the cell. Using this mechanistic approach, it is possible to predict how changes in cell

physiology produce a temperature induced lag phase. While some systematic lack

of fit was observed, Figs. 3.2–3.7 demonstrate the qualitative agreement of predicted

and experimental results. Understanding how physiological changes affect growth

with varying temperatures may lead to a rational method for selecting biocontrol or

starter cultures.
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In the formulation of the WSS it was assumed that the errors of one variable

were independent of the errors of another variable. This assumption allowed us to

combine the sum-of-squares of all the data in an additive manner. That the variables

themselves are not independent does not necessitate the dependence of the residuals.

However, it is likely that the underlying model is not absolutely correct – simpli-

fying assumptions were employed in the formulation of the model. The assumed

independence of model errors is therefore likely false. For example, under-estimation

of glucose consumption tended to coincide with under-estimation of lactic acid pro-

duction. Additionally, the single-injection method of (McFeeters, 1993) was used to

quantify the lactic acid, malic acid and glucose. In this method, a single sample is

processed to quantify all 3 components. Although different detectors were used to

quantify the acids and the sugars, measurement errors in such a case are more likely

to be correlated.

A more realistic framework for the dependence of errors in a coupled system of

equations is suggested by Phillips (2000). In this approach, a covariance matrix of

the errors is estimated. This covariance matrix can contain covariances among the

errors of diffent variables as well as covariances of observations taken over time on

the same experimental unit. Unfortunately, Phillips development is for linear systems

of simultaneous equations. The equations of the fermentation model are non-linear

differential equations and not amenable to the matrix formulation given by Phillips.

One must also weigh the cost of the many additional parameters which must be esti-

mated from the data in order to fit complicated error structures. Alternatively, one

may take the approach of (Wood, 2001) and (Jost and Ellner, 2000) in which the de-

sired distributional assumptions of normality and independence are met more closely

by adding a smoothing spline component to the model to account for systematic lack
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of fit. Such approaches are termed “semi-mechanisic” or “partially specified” and

currently being explored with regard to the fermentation model.

In this chapter, it has been shown that the energetic costs of temperature adapta-

tion can explain lag phase. The model predicted lag phase, death phase and maximal

growth rates. A quadratic temperature inhibition function (IT ) was used in the model,

however, the functional form may be improved to allow for temperature effects above

and below the optimal temperature for growth (Topt). Model components did not vary

independently of one another, and all affected and depended on the internal pool of

cellular energy (q). It was this dynamic energy budget aspect of the model that

allowed growth predictions across a range of continuously varying environmental con-

ditions for lag, exponential, and stationary phases of batch culture. The model was

validated using broth fermentations. This work may serve as the basis for modeling

more complex fermentation systems. Future research will be aimed at experimentally

determining intra-cellular ATP concentrations during batch growth of LA221.
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Chapter 4

Semi-Mechanistic Models for

Buffer Systems

4.1 Introduction

In the preceding chapter, a mathematical model was developed for batch fermenta-

tion in a variable temperature environment. The main features of this model are that

it can predict the dynamics of the cell population as well as changes in the chemical

composition of the medium during temperature shocks. This model is not without

mechanistic errors however. The model is unable to predict pH . Thus, the difference

in toxicity between the neutral and dissociated forms of an organic acid in the fermen-

tation medium is not addressed. The acid toxicity was taken to be proportional to the

total lactic acid concentration. But this is a convenient simplifying assumption which

will be shown is not correct. In this chapter, a more refined approach is provided

for modeling the underlying chemical equilibria that determine among other things

the pH , the buffer capacity and ion concentrations in fermentation media. Using

83



this method, a model is produced which more accurately reflects the biology of acid

toxicity.

To illustrate some of the difficulties involved in modeling the chemical dynamics,

a somewhat naive experiment will be presented which investigates the relationship

between pH , organic acid ion concentrations and the growth rate of the lactic acid

bacterium Lactococcus lactis. After discussing the results of this experiment and its

shortcomings, a flexible modeling framework is presented for dealing with the chemical

dynamics and suggest how to incorporate such processes into the model presented in

the preceding chapter.

4.2 Effects of pHand Protonated Acid Concentra-

tion on Growth Rate

Many fermentations involve the reduction of a sugar to a weak acid. The dissociation

equilibrium of an weak acid (HA) having a single dissociable proton (H+) is described

by

Ka =

[
H+

]
γ+ [A−] γ−

[HA] γo

(4.1)

where Ka is the dissociation constant of the acid and the γi are activity coeffi-

cients which depend on factors such as the temperature and salt content of the so-

lution (Pitzer, 1991). The dimensionless quantity pH is similarly defined in terms of

activity coefficients

pH = − log10(
[
H+

]
γ+) (4.2)

84



Thus, the dissociation of an acid depends in a direct way on the pH . For the time

being, it is assumed that the γ∗ are unity but a more general case will be dealt with

shortly.

As indicated above, the dissociation of a neutral molecule results in the production

of charged molecules called ions. The presence of ions can influence the chemical

and biological processes occurring in the solution. Actually, this activity affects the

dissociation equilibria of all species in solution. It turns out that the values of the γi

in Eqn.4.1 will depend in large part on the concentration of ions (Pitzer, 1991).

The standard measure of the chemical activity of ions in a solution is ionic strength

which is defined by

I =
1

2

n∑
i=1

ciz
2
i (4.3)

In this expression, n is the number of ionic species in solution, ci is the concentration of

of the ith ionic species and z2
i is its charge squared. Because solutions are electrically

neutral the condition that
∑n

i=1 ciz = 0 (charge balance) should also be met. In

practical terms, this means that one must remember to include all ions present in

the solution in the calculation of ionic strength not just the ones being measured. It

should be clear from this brief introduction that pH , acid ion concentration and ionic

strength are inter-related. It is not clear, however, how these factors are related with

respect to the growth rate of a bacterium in the solution.

To investigate the effects of pH and protonated acid on the growth of bacteria

Lactococcus lactis was grown in a rich medium at constant at various pH and proto-

nated lactic acid concentrations ([HL]). The initial ionic strength was set at 0.342 to

ensure that changes in ionic strength due to fermentation are negligible and I can be
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assumed constant. To determine the relationship between pH and protonated acid a

factorial experimental design was used. The primary difficulty in setting up this kind

of experiment is the inter-dependencies among pH , lactic acid dissociation and ionic

strength mentioned earlier. Thus, to achieve desired levels of [HL] the total amount

of lactic acid ([L−] + [HL]) added to the medium was adjusted and the medium was

supplemented with NaCl to maintain I at 0.342. The concentrations of lactic acid

and NaCl required were calculated for each different pH and desired [HL].

4.2.1 Materials and Methods

Cultures and Media

Lactococcus lactis subsp. lactis strain LA221 transformed with the chloramphenicol

resistance gene pGK12 (Breidt and Fleming, 1998) was obtained from the USDA

culture collection. LA221 was grown on M17 broth (Difco Laboratories, Detroit,

Mich.) containing 1.5% agar (Difco), 1% glucose (Sigma Chemical Co., St. Louis,

Mo.) and 5 ug mL−1 chloramphenicol. Growth experiments were conducted in M17

broth supplemented with 1% glucose (GM17) and in M17 broth supplemented with

1% glucose and 50mM succinic acid (GSM17). NaCl was added when necessary to

GSM17 to maintain constant ionic strength at 0.342 M across all treatments.

Succinic Acid Ionic Strength Contribution

Succinic acid has 2 dissociable protons. The 2 pKa of succinic acid are (pKa1 = 4.22

and pKa2 = 5.64). The following equilibria and mass balance equations were used to

determine the equilibrium concentrations of dissociated and undissociated forms of
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succinic acid.

[
C4H5O

−
4

]
= Ka1

[C4H6O4]

H+
(4.4)

[
C4H4O

2−
4

]
= Ka2

[
C4H5O

−
4

]
H+

(4.5)

50mM = [C4H6O4] +
[
C4H5O

−
4

]
+

[
C4H4O

2−
4

]
(4.6)

Equation 4.4 and 4.5 were substituted into 4.6 to give the following solutions to the

above equations

[C4H6O4] =
50mM

[
H+

]2[
H+

]2
+ Ka1

[
H+

]
+ Ka1Ka2

(4.7)

[
C4H5O

−
4

]
=

0.05 MKa1

[
H+

]
[
H+

]2
+ Ka1

[
H+

]
+ Ka1Ka2

(4.8)

[
C4H4O

2−
4

]
=

0.05 MKa1Ka2[
H+

]2
+ Ka1

[
H+

]
+ Ka1Ka2

(4.9)

(4.10)

Lactic Acid Ionic Strength Contribution

Lactic acid has a single dissociable proton with a pKa of 3.86. The concentration of

the lactate anion was calculated by

[
L−]

=
CKal[

H+
]
+ Kal

(4.11)

where C is the total lactic acid concentration ([L−] + [HL]).
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Required NaCl determination

After calculating the succinate and lactate ion concentrations using Eqns 4.7– 4.10

and Eqn. 4.11 for a particular set of conditions, the amount of NaCl required to

maintain the ionic strength at 0.342M was determined.

NaCl M = 0.342 − Ionic strength from succinic

−Ionic strength from lactic acid

Experimental Design

A factorial design was utilized with pH levels at 4.0, 4.3, 4.6, 4.9, 5.2, and 5.5 and

protonated lactic acid levels at 1.0, 2.0 ,3.0, 4.0 and 5.0 mM. For each combination of

levels, a sterile 15 mL screw-top tube was filled with 5 mL of 2X GSM17 broth and

the calculated volume of lactic acid and NaCl stock. The pH of each tube was then

adjusted to the desired level using 0.3N HCl and 0.3N NaOH. The final volume in each

tube was brought to 10mL using sterile de-ionized water. Corrective adjustments of

the pH were made using 0.3N HCl and 0.3N NaOH as needed. Table 4.2.1 provides

the concentrations of NaCl, succinic acid and lactic acid required to generate the

treatment levels.

Growth Experiments

L. lactis (LA221) was cultured overnight in GM17 broth to a cell density of ≈ 1 ×
109. To each 15 mL screw-top tube twice washed cells from the overnight stock was

resuspended at a concentration of ≈ 1 × 106CFU mL−1. From each tube, 3 200

µL aliquots were taken to fill 3 wells (assigned at random) of a 96 well microtitre
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Table 4.1: Calculated levels for the factorial experimental
design.

Desired pH Desired
[HL]
(mM)

Ionic
Contrib.
Succ.

Ionic
Contrib.
Lact.

Salt to add
(M)

Lactic
acid to
add (mM)

4 1 0.020 0.001 0.321 2.479
4.3 1 0.030 0.003 0.309 3.951
4.6 1 0.042 0.006 0.294 6.888
4.9 1 0.056 0.012 0.275 12.749
5.2 1 0.071 0.023 0.247 24.442
5.5 1 0.089 0.047 0.206 47.774
4 2 0.020 0.003 0.319 4.958
4.3 2 0.030 0.006 0.306 7.902
4.6 2 0.042 0.012 0.288 13.777
4.9 2 0.056 0.023 0.263 25.498
5.2 2 0.071 0.047 0.224 48.885
5.5 2 0.089 0.094 0.159 95.547
4 3 0.020 0.004 0.318 7.437
4.3 3 0.030 0.009 0.303 11.854
4.6 3 0.042 0.018 0.282 20.665
4.9 3 0.056 0.035 0.251 38.247
5.2 3 0.071 0.070 0.201 73.327
5.5 3 0.089 0.140 0.112 143.321
4 4 0.020 0.006 0.316 9.916
4.3 4 0.030 0.012 0.300 15.805
4.6 4 0.042 0.024 0.276 27.554
4.9 4 0.056 0.047 0.239 50.996
5.2 4 0.071 0.094 0.177 97.769
5.5 4 0.089 0.187 0.066 191.094
4 5 0.020 0.007 0.315 12.396
4.3 5 0.030 0.015 0.297 19.756
4.6 5 0.042 0.029 0.270 34.442
4.9 5 0.056 0.059 0.228 63.745
5.2 5 0.071 0.117 0.154 122.211
5.5 5 0.089 0.234 0.019 238.868
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plate. Each well was overlaid with 80 µL of mineral oil. Optical density of the wells

was measured every 30 minutes for 4 days. The temperature of the micro-well plate

was maintained at 30◦C.

Statistical Analysis

Treatments were randomly allocated to wells of a 96 well plate according to the

factorial design discussed above. The ln of the transmittance data for each well

of the 96 well plate was plotted against time and smoothed by local polynomial

regression (Fan and Gijbels, 1996). The specific growth rate was then measured as

the maximum positive observed slope along the growth curve. Stepwise polynomial

regression analysis on the rates was performed using pH and protonated lactic acid

concentration as candidate factors.

4.2.2 Results

The stepwise regression analysis suggested that polynomials higher in order than 2

did not explain significantly more variability than the following quadratic model

Ratei = β0 + β1pH + β2 [HL] + β3pH [HL] + β4pH 2 + β5 [HL]2 + εi (4.12)

ε ∼ N(0, σ2) (4.13)

The results of the regression analysis using this model are summarized in Table 4.2.2.

Parameter estimates from the analysis were used to plot the fitted surface in Fig-

ure 4.2.2.
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Table 4.2: Quadratic regression analysis of growth rate data. Significant (*) and
highly significant (**) factors are indicated.

Parameter Estimate T for H0: Pa-
rameter = 0

Pr >| T | Std Error of
Estimate

β0 -3.15 -8.83 0.0001∗∗ 0.357
β1 1.04 7.37 0.0001∗∗ 0.141
β2 0.209 14.83 0.0001∗∗ 0.014
β3 -0.0486 -18.37 0.0001∗∗ 0.003
β4 -0.0760 -5.45 0.0001∗∗ 0.014
β5 1.92 × 10−3 2.56 0.0132∗ 7.5 × 10−4
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Figure 4.1: Experimental growth rate data along with fitted quadratic polynomial.

4.2.3 Discussion

The quadratic model fit the data well and higher order models did not provide any

significant improvement in fit. The strongest effects were pH , protonated lactic acid

and the interaction between these two components. The high significance attributed

to the pH [HL] interaction strongly suggest that the physiological effects of protonated

lactic acid and pH are not independent (P-value = 0.003).
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This result suggests that care must be taken in designing experiments meant to

measure the effects of acids or pH on growth. For example, the standard practice of

calculating minimal-inhibitory values (MIC) of an acid can not be done by simply

adjusting the concentration of the acid alone. For example, the MIC for pH is only

accurate at a particular level of protonated lactic acid and vice versa. Care should

be taken when reporting MIC values in the literature.

There were, however, several limitations of the above analysis. First no account

of the ionic strength contribution from the growth medium was made. It was also

assumed that the ionic strength was constant throughout the experiment. Actually,

the ionic strength will change as fermentation acids are produced by the bacteria.

Secondly the pKa used in determining the required concentrations of lactic acid and

the ionic strength contributions from the lactate and succinate anions were based

on tabulated pKa . Such tabulated pKa are obtained by extrapolating experimental

estimates obtained at various ionic strengths to I = 0.

The Davies equation can be used to adjust zero-extrapolated pKa to reflect the

effects of ionic strength (Butler and Cogley, 1998) by estimating the γi. For the

charged ion pairs in the numerator of Eqn 4.1 the geometric mean of the single ion

activities is calculated by

− log(γ±) = A|z+z−|
( √

I

1 +
√

I
− bI

)
(4.14)

where the zi are the charges on the molecules and A = 1.825 × 106(εT )−3/2. ε is the

dielectric constant of the solvent (ε = 78.3808 for water), T is the temperature in

Kelvin and b is the “salting-out” parameter. However, if the ion is neutral (as in the
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denominator of Eqn 4.1) the activity is predicted by

− log(γo) = −bI (4.15)

Thus, the zero-extrapolated pKa commonly tabulated (pKo
a) are updated using the

formula

pKa = pKo
a − 2 log(γ±) + log(γo) (4.16)

In the case of molecules with multiple pKa , the log(γo) term is replaced by Az2
( √

I
1+

√
I
− bI

)
when the denominator term corresponds to a charged molecule. Here z corresponds

to the charge on the ion in the denominator.

If it is assumed that the ionic strength in the medium was 0.342 M and the

temperature is 25◦C the Davies equation adjusts the pKa of lactic acid to 3.58. The

percent error in predicting the protonated acid using the zero-extrapolated Ka (Ka0)

instead of the adjust Ka (Kaadj) is given by

%error = 100

[
H+

]
+ Kaadj

Kaadj

(
Ka0[

H+
]
+ Ka0

+
Kaadj[

H+
]
+ Kaadj

)
(4.17)

Thus at pH 5 the error in [HL] would have been about 1.0% and at pH 4 the error

would have been about 20.0%. This error would have propagated into the NaCl

calculations as well.

Clearly the levels of protonated lactic acid used in the experiment were subject to

rather large relative error. The conclusion about the independence of pH and [HL]

on growth rate are likely still valid since the ordering of the levels would not have
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been the same. The parameter estimates for the effects due to these components

however can not be trusted. In the next section, methods for overcoming some of the

limitations encountered in this experiment are discussed.

4.3 pH , Ionization, Chirality, and Bacterial Growth

As was demonstrated in the previous section, the pH (Eqn. 4.2) of a growth medium

directly affects the metabolic activities of the bacteria growing in it. There are sev-

eral biological reasons why this would be. The generation of energy (in the form of

ATP) requires a positive pH gradient across the bacterial membrane and a negative

membrane electrical potential (4ψ). Bacteria usually maintain these gradients using

electron transport processes following glycolysis. However, if the external pH drops

this gradient may dissipate and make it impossible for the cells to generate ATP.

Glycolysis is not, however, the only mechanism by which bacteria can generate a

pH gradient. For example, bacteria which can decarboxylate malic acid, an acid com-

mon in wines and fruits, to lactic acid may exhibit increased growth rates over simi-

lar bacteria grown in media without malic acid (Poolman et al., 1991; Versari et al.,

1999; Loubière et al., 1992). Malolactic fermentation proceeds in the cytoplasm with

the utilization of a proton during decarboxylation of malate to lactate. The result-

ing increase in cytoplasmic pH is thought to be capable of contributing to a positive

4pH across the cell membrane and thereby enhancing ATP production. For exam-

ple, when Leuconostoc mesenteroides cells were grown in the presence of malate they

showed a modest increase in growth rate over the control (Versari et al., 1999). Be-

cause malolactic fermentation proceeds by decarboxylation, it can also contribute

to the buffering of the media which can reduce the effect of organic acid accumula-
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tion (McFeeters et al., 1982).

Although a negative pH gradient constitutes a direct drain on cellular energy,

bacteria can be adversely affected by low pH in other ways. For example, pH has a

direct effect on the oxidation state of amino acids which can disrupt the function

of enzymes and other proteins. Similarly, pH affects the relative concentrations of

charged and uncharged forms of organic acids (recall Eqn. 4.1). This is important

since the uncharged forms of organic acids are generally nonpolar and able to diffuse

across the cell membrane. Russell (1992) has shown that modest 4pH can drive

the concentration of organic acid anions within a bacterium to molar levels. High

concentrations of intracellular organic acid anion such as this can have a deleterious

effect on bacteria.

Bacteria have developed various mechanisms for dealing with acid stress. For

example, Diez-Gonzalez and Russel (1997) have shown that cells of Escherichia coli

O157:H7 allow their internal pH to decrease during a fermentation. This prevents

the establishment of a large 4pH across the cell membrane thereby reducing the

net influx of weak acid anions. For example Lactobacillus crispatus maintains its

pH approximately 1 pH unit above ambient (Benthin and Villadsen, 1995). In con-

trast, cells of Lactococcus spp. actively maintain their pH in the range of 5.2-5.4 (Mercade et al.,

2000). McDonald et al. (1990) found that Lactobacillus plantarum maintains a mod-

erate 4pH in spite of high organic acid concentrations. They suggest that this con-

tributes to L. plantarum’s propensity to dominate the late stages of fermentation.

Many bacteria are known to have inducible acid stress responses which confer in-

creased acid tolerance. For example, if the pathogen E. coli O157:H7 is exposed to

acetate, butyrate or propionate at neutral pH some 26 genes are up-regulated con-

ferring increased acid tolerance at pH 3 (Arnold et al., 2001). Conversely, formate, a
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major end-product of E. coli ’s mixed acid fermentation, was found to suppress acid

tolerance.

Benthin and Villadsen (1995) determined that the chirality of a fermentation acid

(e.g. D- versus L-lactic acid) can greatly affect the relative toxicity of the acid. In

experiments with Lactobacillus delbruekii subsp. bulgaricus D-lactic acid was found

to be much more inhibitory than L-lactic acid. The main inhibitory effect was a

prolonged lag phase and a decrease in the maximum cell density, however, they found

no reduction the specific growth rate or biomass yield. It must be stressed, however,

that these studies were performed at a constant pH of 6.0. At this pH , virtually all of

the lactic acid (pKa = 3.86) in the media would have been in the anionic form. The

most likely mode of action of D-lactic acid was therefore as a competitive inhibitor

of the malate-lactate transporter which transports lactic acid out of the cytoplasm.

Thus, their results support the hypothesis that it is ultimately organic acid anion

accumulation within the cytoplasm which is the ultimate cause of acid toxicity. The

chirality of the acid, however, can greatly increase the rate at which acid accumulates

within the cytoplasm by inhibiting transport. Benthin and Villadsen caution that

the type of stereoisomer (D- or L-) and the extent to which acid export out of the

cell is inhibited varies from species to species.

The ability of microorganisms to cope with acid stress will translate into com-

petitive fitness when multiple species/strains are grown together. For example in

continuous alcoholic fermentation by yeast Bayrock and Ingledew (2001) found that

contaminating Lactobacillus paracasei were able to produce some 20 g/L of lactic

acid before reaching steady state. This led to a rapid yeast decline and caused a 44%

reduction in ethanol yield. Similarly van Beek and Preist (2002) found that whiskey

fermentations are characterized by 3 distinct phases. In the first the yeast dominate
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but are eventually overcome by Lactobacilli. In the final stages, the acid tolerant L.

acidophilus and L. crispatus appeared and dominated. Martens et al. (1999) found

that pH was the most important factor in determining the dominance of L. curvatus

over Enterobacter cloacae when these 2 bacteria were grown together in MRS broth.

4.4 Functional Forms for Common Acid Tolerance

Strategies

As mentioned above, there are 2 common strategies that bacteria use for dealing

with the toxic effects of organic acids. The first strategy is based on maximizing the

potential to make energy in the form of ATP. This is done by maintaining the pH of the

cytoplasm above that of the medium. A problem with this strategy is that it promotes

organic anion accumulation within the cytoplasm. The second common strategy is

based on varying the cytoplasmic pH with the pH of the media. This reduces the

risk of organic anion accumulation but still allows a modest 4pH sufficient for ATP

synthesis.

One of the problems encountered with modeling such strategies is that quantifying

intracellular levels of organic acid, and intracellular pH is problematic. Fortunately,

with only a few mild assumptions, it is possible to easily model these 2 acid tolerance

strategies with only knowledge about the extracellular concentrations or organic acids

and pH .

A mathematical model for the intracellular partitioning of a toxic ionizing molecule

at constant intracellular pH is given by Kooijman (2000, p.193-194). This model can

be used to estimate the toxic effects of organic acids and bases. Letting cytoplasmic
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lactic acid and its anion be given by [HL]0 and [L−]0 respectively and the quantities

in the medium be given by [HL]1 and [L−]1 the partition coefficient is defined as

P01 =
[L−]

0
+[HL]0

[L−]1+[HL]1
. This may be written as

P01 =

a + b

(
1 +

[L−]
1

[HL]1

)
1 +

[L−]1
[HL]1

(4.18)

where a and b are the lumped constants
1+

[L−]
0

[HL]0

k1+k2
[L−]0
[HL]0

k1
ρ2
0

ρ2
1

and
1+

[L−]
0

[HL]0

k1+k2
[L−]0
[HL]0

k2
ρ2
0

ρ2
1

respec-

tively (Kooijman, 2000). Here k1 is the rate of export out of the cell, k2 is the rate of

uptake and ρ0 is the affinity coefficient for the substance in the cytoplasm and ρ1 is

the affinity coefficient for the substance in the medium. Thus, a simple 2 parameter

model can explain the accumulation of organic acid by a cell regulating its pH at a

constant value.

If, on the other hand, the cytoplasmic pH is allowed to vary with the pH of the

medium, the expressions a and b can no longer be considered lumped constants. How-

ever, the assumption that the cytoplasmic pH is maintained in constant proportion to

the pH of the medium still allows the intracellular quantity
[L−]

0

[HL]0
to be eliminated from

a and b. Mathematically the derivative control of intracellular pH can be expressed

as

[
H+

]
1[

H+
]
0

= χ (4.19)

where χ is a constant. This may be re-written using the definition of Ka as

[L−]0
[HL]0

= χ
[L−]1
[HL]1

(4.20)
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Substituting this into Eqn. 4.18

P01 =
1 + χ

[L−]
1

[HL]1

k1 + k2χ
[L−]1
[HL]1

k1 + k2
[L−]

1

[HL]1

1 +
[L−]1
[HL]1

ρ2
0

ρ2
1

(4.21)

It should be noted that the dimensionless quantity χ
[L−]

1

[HL]1
may be relatively small or

large so it can not be immediately eliminated. To make this clear note that

χ
[L−]1
[HL]1

=
Ka[
H+

]
0

(4.22)

If χ
[L−]

1

[HL]1
is large, then

[
H+

]
0

<< Ka and

P01 ≈
(

1

k2

ρ2
0

ρ2
1

) k1 + k2
[L−]

1

[HL]1

1 +
[L−]1
[HL]1

(4.23)

If on the other hand χ
[L−]

1

[HL]1
is small, then

[
H+

]
0

>> Ka and

P01 ≈
(

1

k1

ρ2
0

ρ2
1

) k1 + k2
[L−]

1

[HL]1

1 +
[L−]1
[HL]1

(4.24)

Lastly if χ
[L−]

1

[HL]1
= 1 then

[
H+

]
0

= Ka and

P01 ≈
(

2

k1 + k2

k2
ρ2

0

ρ2
1

) k1 + k2
[L−]

1

[HL]1

1 +
[L−]1
[HL]1

(4.25)

These findings are summarized in Table 4.3. Thus, it has been found that a hyperbolic

functional form results in each of the limiting cases of derivative pH control. This is the
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Table 4.3: Partition coefficients for derivative regulation of pH . The parameters c–h
are lumped parameters.

Condition Approx.P01 Lumped Model

[
H+

]
0

<< Ka
1
k2

ρ2
0

ρ2
1

k1+k2
[L−]

1
[HL]1

1+
[L−]1
[HL]1

c+d
[L−]

1
[HL]1

1+
[L−]1
[HL]1[

H+
]
0

>> Ka
1
k1

ρ2
0

ρ2
1

k1+k2
[L−]

1
[HL]1

1+
[L−]1
[HL]1

e+f
[L−]

1
[HL]1

1+
[L−]1
[HL]1[

H+
]
0

= Ka
2

k1+k2
k2

ρ2
0

ρ2
1

k1+k2
[L−]

1
[HL]1

1+
[L−]1
[HL]1

g+h
[L−]

1
[HL]1

1+
[L−]1
[HL]1

same functional form that was derived for when the internal pH is constant although

the parameterizations have completely different interpretations.

4.4.1 A Model for Competitive Inhibition of Acid Trans-

porters

As discussed by Benthin and Villadsen (1995) the presence of a stereoisomer can

act as an inhibitor of acid export. Competitive inhibition of the membrane trans-

porters can be modeled by dividing the appropriate partition coefficient (a P01 taken

from Table 4.3 for example) by a Michaelis-Menten type competitive inhibition term.

This approach to modeling competitive inhibition of the lactate export mechanism

is illustrated by Eqn. 4.26 where L∗ represents the concentration of the inhibiting

stereoisomer in the media and KI is a sensitivity coefficient.

P ∗
01 =

P01

1 + KL∗
L∗

(4.26)
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4.5 Semi-Mechanistic Approaches to Modeling pHand

Buffer Capacity

The simplifications permitted under derivative pH regulation shed light on why mod-

eling acid toxicity as simply proportional to total extracellular acid is incorrect. Recall

that in Chapter 3 the following functional form was assumed to describe the energetic

cost associated with lactic acid.

acid toxicity = −κ(
[
L−]

+ [HL])Q (4.27)

In particular, it is clear from Eqn. 4.21 that modeling acid toxicity as proportional

to the total acid concentration implicitly assumes that the intracellular and extra-

cellular pH are equivalent and that the partition coefficient (P01) is constant. Since

Lactococcus lactis maintains its internal pH at ≈ 5.1 (Russell, 1992) the toxicity in

the late stages of fermentation (when typically pH → 3.9) will be systematically

underestimated rather than overestimated. Clearly a different approach is needed.

The preceding sections demonstrated that a more accurate method of predicting

pH and acid dissociation is required. Also, if such a method were available, it could be

used to model the common acid tolerance strategies of bacteria in a mechanistically

accurate way.

A unified approach to modeling changes in pH during batch fermentation will

now be developed. A flexible semi-mechanistic approach is presented which uses local

polynomial regression to model the buffering influence of complex or undefined compo-

nents in the growth media while defined or measurable components are modeled using

expressions based on acid-base theory. When applied to homolactic batch fermenta-
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tion, this method can be implemented using only a single titration of the unfermented

medium to give accurate predictions throughout a fermentation. Because models of

the buffering capacity of a growth medium can be parameterized independently from

the growth data, this approach may reduce the number of parameters which need

to be estimated from growth data. The semi-mechanistic approach is validated by

seeing how well it predicts pH given the outputs from an existing fermentation model.

This approach may be applicable to modeling other bacterial fermentations, including

competitive growth among strains with different acid tolerance strategies.

4.5.1 Existing Methods for Modeling pH

Mathematical modeling has become a popular method for exploring the effect of pH on

the dynamics of growth and the outcome of inter-specific competition (Breidt and Fleming,

1998; McDonald and Sun, 1999; Versari et al., 1999; Martens et al., 1999; Malakar et al.,

1999). Clearly, the extent to which the accumulation of an end product will affect the

progression of a fermentation will depend in a large part on how much it influences the

pH of the growth medium. A common approach is to model pH as a simple function

of the end product with adjustable parameters. The parameters of such models are

estimated from experimental growth data for a particular species of bacteria growing

in a specific medium. For example, Martens et al. (1999) studied the competitive

interactions between Lactobacillus curvatus and Enterobacter cloacae. They used the

following simple nonlinear functional form to predict pH

pH =
pH i + a1P

1 + a2P
(4.28)
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where P is the concentration of lactate, pH i is the initial pH and a1 and a2 are

adjustable parameters which must be estimated from experimental data.

They then used the pH predictions to modify the growth rate of L. curvatus using

Eqn. 4.29

µl = 4µoptl

S

KSl + S
(4.29)

+
(pH − pH minl)(pH maxl − pH )

(pH maxl − pH minl)
2

− b2P (4.30)

Here S is the concentration of glucose and P is the concentration of lactate, pH minl is

the minimum pH for growth, pH maxl is the maximum pH for growth, KSl is the half

saturation constant of glucose with respect to the maximum growth rate µoptl and b2

is an adjustable parameter. Martens et al. found that the inhibition term for lactate

was not required for Enterobacter cloacae and they used an equation analogous to

Eqn. 4.29 to model the specific growth rate.

µ = 4µopte

S

KSe + S
(4.31)

+
(pH − pH mine)(pH maxe − pH )

(pH maxe − pH mine)
2

(4.32)

They found that the minimum pH for growth for E. cloacae was 5.6 while that for L.

curvatus was 4.3 indicating that E. cloacae is more sensitive to pH . Eqn 4.28 clearly

depends on the concentration of lactate alone. Unfortunately, it is not clear how to

extend this formula for a situation in which several acid (or base) species are present.

Change in pH has also been modeled in the context of differential equations.

Breidt and Fleming (1998) were interested in describing the competitive interactions

between Lactococcus lactis and Listeria monocytogenes. Their model consisted of a
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system of 5 differential equations. In their approach, the concentration of hydrogen

ions was modeled using a simple logistic form.

dP

dt
= ρC(1 − P

kp
) − κ

dM

dt
(4.33)

where P represents the hydrogen ion (i.e. proton) concentration, C is the concentra-

tion of total lactic acid, M is the malic acid concentration which removes κ protons

as it is fermented and kp is a saturation parameter. The κdM
dt

term describes the

alkalinization of the medium by malolactic fermentation and ρC(1 − P
kp

) describes

acidification of the medium by homolactic fermentation. They were then able to cal-

culate the concentrations of protonated and un-protonated acids using the Henderson-

Hasselbach equation (Butler and Cogley, 1998). A weakness of this approach is that

dP
dt

is not zero when dC
dt

is zero. Thus, this approach to modeling pH may not be

appropriate if, for example, a lag phase is expected.

There have been only a few attempts to predict pH in complex dynamic environ-

ments. Horiuchi et al. (2001) used a 3-layer neural network with a back-propagation

algorithm to model changes in product distribution as a function of pH in chemostat

cultures. This method involved training the neural network during controlled step

changes in pH . Once trained, the neural network could predict transient changes in

product distribution for continuously varying pH . Van Vooren et al. (2001) has re-

cently introduced a method called “automatic model building” to accomplish similar

goals. This method attempts to infer the constituents of a solution by estimating in-

dividual pKa and concentrations of potential components from titration data. Limits

can be placed on the number of components to be estimated.

Here a method is presented that is straightforward, broadly applicable, and allows
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the modeler to link pH dynamics directly to the metabolic activities of bacteria. The

method uses a generalization of standard acid-base calculations so that calculations

involving simple buffers with known dissociation constants can be executed conve-

niently. When complex buffers such as those common in foods and in microbiological

media must be considered. Local polynomial regression is used in order to extend

the standard approaches. To make these techniques relevant for dynamic systems

modelling, a simple algorithm is also presented for updating pH during the course of

a simulated fermentation.

4.5.2 Computational Approach

The basic formula useful in modeling pH and buffer capacity will now be presented.

The approach is to use algebraic expressions of the dynamics rather than differential

equations. Without any loss of flexibility it is assumed that the pH is fixed and known

in all calculations. Further justification for this assumption is given in the discussion

of generalized titrations.

Brønsted-Lowry Acids and Bases

The general concept of what kind of molecule constitutes and “acid” or “base” is

given by the Lewis theory of acids and bases. This approach considers and acid to

be an electron pair acceptor (for example boron triflouride BF3) and a base to be an

electron pair doner (for example trimethylamine N(CH3)3). A more limited concept

is the Brønsted-Lowry theory which regards an acid as a proton (H+) doner (for

example (HCl) and a base as a proton acceptor (for example NaOH). The Lewis theory

of acids and bases is considerably more complex than that due to Brønsted-Lowry.
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Fortunately for most microbiological experiements, the simpler Brønsted-Lowry is

usually sufficient. In the development which folows it will always be assumed the

acid or base reactions can be explained with the Brønsted-Lowry theory and that

the results of this development are not sufficient to explain reactions involving strict

Lewis acids or bases.

Van Slyke (1922) introduced buffer capacity as a measure of the ability of a buffer

to resist change in pH with the addition of base during a titration. He defined the

buffer capacity (β) of a solution as

β ≡ ∂Cb

∂pH
(4.34)

where Cb is the number of moles of base added per liter of solution. Van Slyke (1922)

was also the first to demonstrate the additivity of buffer capacities. For example if a

solution consists of n compounds each of which contribute to β, then a decomposition

of the form

β = β1 + β2 + . . . + βn (4.35)

is admissible where βi is called the ith partial buffer capacity component.

When the dissociation constants for various compounds are known, the partial

buffer contribution of that compound can be expressed explicitly. For example, the

buffer capacity of an acid with a single dissociable proton has the form

β = ln(10)

(
C

Ka

[
H+

]
(
[
H+

]
+ Ka)2

)
+ ln(10)

(
Kw[
H+

] +
[
H+

])
(4.36)

where C is the concentration of the acid, Ka is the dissociation constant of the single
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proton and Kw is the ion-product constant of water (Kw ≈ 1.8 × 10−16 at 25◦C and

zero ionic strength). Here ln(10)(Kw/
[
H+

]
+

[
H+

]
) is the partial buffer contribution

of water and ln(10)C(Ka

[
H+

]
)/(

[
H+

]
+ Ka)

2) is the partial contribution due to the

acid. For an acid with 2 dissociable protons the expression for β becomes

β = ln(10)C


Ka1

[
H+

]3
+ 4Ka1Ka2

[
H+

]2
+ K2

a1Ka2

[
H+

]
([

H+
]2

+ Ka1

[
H+

]
+ Ka1Ka2

)2


 (4.37)

+ ln(10)

(
Kw[
H+

] +
[
H+

])
(4.38)

where Ka1 and Ka2 are the acid dissociation constants for the primary and secondary

dissociable protons respectively. Notice that the partial contribution of a diprotic acid

is not equivalent to the sum of 2 monoprotic acids (Butler and Cogley, 1998, p.134).

Similar formulae may be derived for buffers with any number of dissociable groups.

Eqn. 4.39 is a computational formula useful in the computation of the partial buffer

capacity of a compound with an arbitrary number (n) of dissociable groups.

Cb = ln (10)
[
H+

] C
∑n

i=1

[
(n + 1 − i)

[
H+

]i−1 ∏n+1−i
j=1 (Kaj)

]
∑n+1

i=1

[[
H+

]i−1 ∏n+1−i
j=1 (Kaj)

] (4.39)

Theorem 1. The partial contribution of a single n-protic acid having molar concen-

tration C in a solution containing Cb moles of base is

C
∑n

i=1

[
(n + 1 − i)

[
H+

]i−1 ∏n+1−i
j=1 (Kaj)

]
∑n+1

i=1

[[
H+

]i−1 ∏n+1−i
j=1 (Kaj)

] (4.40)
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Proof of 4.39. Proof is by induction. For clarity, Xj−
n is defined to be a molecule

having j dissociated groups out of a total of n and Ck to equal
∑k

p=1[X
p
k ]. Follow-

ing the development by (Butler and Cogley, 1998, pp.130-134) it is noted that for a

monoprotic weak acid (n = 1), in a solution containing strong acid at a concentration

of Ca the equilibrium and conservation equations

Ka1 =

[
H+

]
X1−

1

X
(4.41)

C = [X1] +
[
X1−

1

]
(4.42)

Kw =
[
H+

] [
OH−]

(4.43)

along with the the charge balance

Cb =
[
X1−

1

]
+

[
OH−]

+ Ca −
[
H+

]
(4.44)

(4.45)

gives

Cb =
CKa1[

H+
]
+ Ka1

+
Kw[
H+

] + Ca −
[
H+

]
(4.46)

Here Kw/
[
H+

]−[
H+

]
is the partial contribution due to the dissociation of water and

Ca is the partial contribution due to strong acid. Therefore, the partial contribution

of the weak acid is

Cb1 =
Ka1[

H+
]
+ Ka1

(4.47)

which is 4.39 evaluated at n = 1. Now, assuming that ( 4.39) is true for n = m, which
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gives

Cbm =
C

∑m
i=1

[
(m + 1 − i)

[
H+

]i−1 ∏m+1−i
j=1 (Kaj)

]
∑m+1

i=1

[[
H+

]i−1 ∏m+1−i
j=1 (Kaj)

] (4.48)

it must be proven that 4.39 is true when n = m + 1.

Note that

Cb(m+1) = Cbm + (m + 1)
[
X

(m+1)−
m+1

]
(4.49)

From Cbm it is clear that

[
X

(m+1)−
m+1

]
= C(m+1)

∏m+1
j=1 (Kaj)∑m+1+1

i=1

[[
H+

]i−1 ∏m+1+1−i
j=1 (Kaj)

] (4.50)

so that

Cb(m+1) =
Cm+1

∑m
i=1

[
(m + 1 − i)

[
H+

]i−1 ∏m+1−i
j=1 (Kaj)

]
∑m+1+1

i=1

[[
H+

]i−1 ∏m+1+1−i
j=1 (Kaj)

] (4.51)

+(m + 1)C(m+1)

∏m+1
j=1 (Kaj)∑m+1+1

i=1

[[
H+

]i−1 ∏m+1+1−i
j=1 (Kaj)

] (4.52)

=
C

∑m+1
i=1

[
(m + 1 + 1 − i)

[
H+

]i−1 ∏m+1+1−i
j=1 (Kaj)

]
∑m+1+1

i=1

[[
H+

]i−1 ∏m+1+1−i
j=1 (Kaj)

] (4.53)

which is 4.39 evaluated at n = m + 1 completing the proof.

Along with the fact that d
[
H+

]
/dpH = − ln (10)

[
H+

]
, Eqn. 4.39 can be differ-

entiated with respect to
[
H+

]
to give a formula for the buffer capacity of an n-protic
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acid.

β = ln (10)
[
H+

] [
BA′ − AB′

B2

]
(4.54)

where

A = C
n∑

i=1

[
(n + 1 − i)

[
H+

]i−1
n+1−i∏

j=1

(Kaj)

]

B =
n+1∑
i=1

[[
H+

]i−1
n+1−i∏

j=1

(Kaj)

]

A′ = C
n∑

i=2

[
(n + 1 − i)(i − 1)

[
H+

]i−2
n+1−i∏

j=1

(Kaj)

]

B′ =
n+1∑
i=2

[
(i − 1)

[
H+

]i−2
n+1−i∏

j=1

(Kaj)

]

Note that Eqn. 4.54 reduces to Eqn. 4.36 for n = 1 and reduces to Eqn. 4.37 for

n = 2.

Van Slyke (1922) points out that the formulae corresponding to a base of concen-

tration C is obtained by simply replacing the Ka in the preceding expressions with

Kw/Kb. Also, for a compound having both acid and base components (amphoteric)

the expression for β is simply the summation of its acid and base components. If the

titration is by acid then Eqn. 4.39 can still be used assuming the convention that Cb

take on negative values with magnitude equal to the number of moles of acid added

per liter of solution.
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Ionic Strength

The partial ionic strength contribution can be obtained by a slight modification of

the formula for Cb. As defined in Eqn. 4.3

I =
1

2

n∑
i=1

ciz
2
i (4.55)

therefore Eqn. 4.39 can be modified in the following way to give the partial ionic

strength contribution (I).

I =
0.5C

∑n
i=1

[
(n + 1 − i)2

[
H+

]i−1 ∏n+1−i
j=1 (Kaj)

]
∑n+1

i=1

[[
H+

]i−1 ∏n+1−i
j=1 (Kaj)

] (4.56)

The ionic strength contributions from water however must be calculated as

I = 0.5

(
Kw[
H+

] +
[
H+

])
(4.57)

Concentrations of All Ionic Species

By a similar alterations to Eqn. 4.39 formulae for the concentrations of all ionic species

can be found. This is done by simply realizing that each term in the summation relates

to the concentration a particular ion. Due to its derivation from a charge balance

expression, each term in the summation in Eqn. 4.39 refers to an ion concentration

multiplied by its charge (n+1− i). To obtain the concentrations of ions the n+1− i

term is simply set to 1 and each term is taken as an element in a list rather than

summed. The concentration of the uncharged form may be gotten by subtraction from

the total concentration (C) the sum of the concentrations of all the ionic species.
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Generalized Titrations

Normally, the titrants used in performing titrations are strong acids or strong bases.

Because these titrants dissociate essentially completely, their contribution to Cb is

easily calculated. In many instances (e.g. food grade applications) strong acids or

bases are undesirable and weak acids or bases are used instead. In order to still use the

data from such titrations in calculating buffer capacities, a more general approach to

calculating Cb must be taken. When a weak acid or weak base is used as the titrant

the process of inferring a relationship between pH and Cb will be referred to as a

generalized titration.

The contribution to Cb from a weak acid or base will vary depending on the

extent to which it dissociates and thereby depend on the pH and the ionic strength.

For clarity, let Cb (pH ) indicate Cb at a particular pH . If the partial contribution of

the weak titrant to Cb (pH ) is denoted by Cτ (pH ) then

Cb (pH ) = −Cτ (pH ) (4.58)

That is, the moles of base added is the negative of the moles of base that would

be required to bring the buffer τ to the pH in question. Similarly, for complex buffers

containing more than 1 buffering compound τ1,τ2,. . ., the additivity of the partial

Cb can be exploited and the following definition made

Cb (pH ) = −(Cτ1(pH ) + Cτ2(pH ) + . . . + Cτn(pH )) (4.59)

That is, the moles of base added is equal to the negative of the sum of the con-
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tributions from the weak acids or bases. To illustrate these points consider Fig. 4.2

which is a plot of the partial Cb of a 0.01M NaOH (pKb ≈ -3) solution over the

pH range 2–12. Over this interval the contribution to Cb remains a constant 0.01

M because NaOH is a strong base and its dissociation is essentially complete over

this pH range. In contrast consider Fig. 4.3 which gives the partial contributions to

Cb from a 0.01M solution of gluconic acid (pKa ≈ 3.6). At low pH, this weak acid

is completely protonated and therefore makes no contribution to Cb . Conversely at

high pH all of the gluconic acid is dissociated and its contribution to Cb is equivalent

to the negative of its concentration (i.e. the conjugate base of a weak acid is a strong

base). Clearly to determine the moles of base available for titration the dissociation

of the weak titrant at the particular pH in question needs to be considered. Thus, for

generalized titrations, determination of a mathematical relationship between Cb and

pH requires a function which maps pH to Cb (an approach which at first may seem

counter-intuitive to those acquainted only with strong acid or strong base titrants).

It is therefore the convention to treat pH as the predictor variable and Cb as the

response variable.

Dynamic Systems Modeling

The buffer capacity measure is also useful for dynamic system modeling. It can

provide a simple mechanism for updating pH predictions over time. To develop an

updating formula, simply re-write β as

∂pH

∂t
=

1

β

∂Cb

∂t
(4.60)
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Figure 4.2: Partial contributions to Cb from the components of a 0.01M NaOH solu-
tion. The partial Cb (solid line) is nearly constant and represents the amount of the
species available for titration.
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Figure 4.3: Partial contributions to Cb derived from the components of a 0.01M glu-
conic acid solution. The partial Cb (solid line) is the relevant quantity in a generalized
titration since it represents the amount of the species available for titration.
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It may be assumed that
[
H+

]
is constant during the small time interval ∂t so that the

partial contribution to the change in pH due to a small change in the concentration

of an n-protic acid is

∂pH

∂t
=

1

βt


 dC

dt

∑n+1
i=2

(∏i−1
j=1 Kaj

[
H+

]n+1−i
)

∑n+1
i=1

(∏i−1
j=1 Kaj

[
H+

]n+1−i
)


 (4.61)

βt is the buffer capacity given the concentration of the acid at time t and dC/dt is

the instantaneous rate of change in the concentration of the acid. βt indicates that

the buffer capacity is calculated given the concentrations of weak acids and bases

at time t. Consider this simplistic Monod type model for single substrate limited

batch fermentation. The bacteria (N) produce a weak acid (L) as a metabolic waste

product of glucose (G) fermentation. The production of lactic acid should change

(decrease) the pH .

Cell Density:
dN

dt
=

µmax
Y

(
G

KG + G

)
N − δN

Glucose:
dG

dt
= −µmax

(
G

KG + G

)
N

Lactic Acid:
dL

dt
= µmax

(
G

KG + G

)
N

pH :
dpH

dt
=

1

βt

dCb (
dL

dt
)

dt

(4.62)

where µmax is the maximum glucose consumption rate, Y is the cell yield, δ is the

specific death rate and KG is the half-saturation constant for glucose consumption.

While this model gives the basic mathematical formalism there are obstacles which

need to be overcome to make this approach viable. The paramount difficulty in

applying this approach directly is the fact that microbial growth media is often quite
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complex consisting of undefined components such as yeast extract, peptic digests etc.

In order to predict pH continuously in time a way for calculating βt at any required

time is needed.

Local Polynomial Modeling of Buffers

Eqns. 4.39 and 4.54 are applicable so long as the concentrations of all acids and bases

and their dissociation equilibria are known. Unfortunately, these requirements are

usually not met in biological applications due to the complexity and undefined na-

ture of most growth media and biological buffers. Although the buffer capacities of

such solutions can be quite complex chemically, it is reasonable to assume that the

relationship between Cb and pH should be smooth and continuous. While a titration

can be used to determine the relationship between Cb and pH there is error in mea-

surement. It is also not possible to observe the effect of adding a small amount of

base at every possible pH value. A flexible regression procedure is required which will

provide a continuous differentiable prediction function for Cb given pH .

In order to obtain such a predictor, local polynomial regression is used (for an

introduction to the subject see (Fan and Gijbels, 1996, pp.57-107)) to predict pH as

a function of Cb . In this type of regression analysis, a model of the form

Yi = Xiβi + εi (4.63)

is assumed as in standard linear least squares but the procedure is carried out lo-

cally by regressing only on a neighborhood of points about Yi. This is practically
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implemented by weighted least squares where the weighted equations

WiYi = WiXiβi + εi (4.64)

result in the least-squares estimator

Ŷi =
(
Xi(X

′
iWiXi)

−1X ′
iWi

)
Yi + εi (4.65)

The weights in W are generally functions of a distance metric between the pre-

diction point and all other data points. These functions, called smoothing kernels,

typically give more weight to points closer to the prediction point Xi. Many common

kernels also give zero weight to points farther than a distance h from the prediction

point. This distance h is called the bandwidth. The magnitude of the bandwidth

controls the number of linearly independent β̂i and thus controls the overall model

complexity.

There are several reasons for choosing local polynomial regression over other

smoothing methods.

• Automatically controls for model complexity

• Automatically adjusts for unevenly spaced design points

• Behaves well at the boundaries of the data

• Estimates of the derivative are easily obtained

The ease with which derivative estimates are obtained is especially nice since it

allows for the straightforward calculation of β from experimental titration data. Pre-

dictors of Cb and β for mixtures of undefined and defined buffers consist of summations
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of local polynomial regression estimators for the complex components and algebraic

predictors (i.e. Eqn. 4.54) of defined buffer components as described above. Thus,

the local polynomial regression procedure provides a transparent means of extend-

ing the computational formula given for buffers with known dissociation constants to

complex buffers containing undefined components.

One important consideration relating to the estimation of derivatives from exper-

imental data is the influence of spurious data points. For example, most pH probes

manifest drift in measurement during use and must be re-calibrated. Re-calibrations

should also be performed whenever the pH exceeds the calibration pH . The occur-

rences of drift, re-calibration or incorrectly recorded data can lead to small jumps

in the titration data that can create spurious jumps in the estimation of β. For

this reason, iteratively re-weighted least squares is used to down-weight unlikely data

points.

Generalized Additive Modeling of Buffer Mixtures

The smoothing afforded by local polynomial regression allows titration relations of

complex buffers to be included in pH and buffer capacity calculations. However, in

many instances buffers solutions are mixtures of defined as well as undefined compo-

nents. In this section, some formal statistical approaches for modeling such mixtures

are developed.

Consider the titration of weak acid at concentration C in a complex buffer. In

the previous section, the additivity of Cb was noted. This will be used to advantage

here where the solution contains simple as well as complex buffer components. Let

Cb i be the sum of the contributions from the simple and complex buffer components
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at pH i.

Cb i =
CKa1[

H+
]
i
+ Ka1

+ F(pH i) + εi (4.66)

where εi ∼ N(0, σ2) and F(pH 〉) is the contribution from the complex media in which

the weak acid is dissolved.

To fit this model to titration data the following algorithm is employed. The simple

buffer contributions, which are assumed to be known without error, are subtracted

from the observed Cb . The result of this subtraction is the partial contribution to

Cb from the unknown components. F(pH i) is then regressed on the residuals using

local polynomial regression. Currently a global smoothing parameter is determined by

generalized cross-validation. As the smoothing parameter is decreased, F(pH i) tends

to interpolate the n data points and approaches a (n − 1)th order polynomial. For

larger values of the smoothing parameter F(pH i) smooths the data and approaches

a pth order polynomial where p is the underlying order of polynomial model. Since

estimates of the first derivative of Cb are needed for calculating the buffer capacity, p

is taken to be 3. Although a linear or quadratic polynomial could also give derivative

estimates, this choice has been shown to reduce variance in the prediction of the

derivative (Fan and Gijbels, 1996).

This procedure has several benefits. First even if the concentrations C of the

weak acid are in error the prediction of the over-all model will still fit the data well

(albeit with potentially an increase in variance). Secondly, the extent of smoothing by

F(pH i) can be used as a measure of the importance of the contributions of the simple

buffer components. In other words, F(pH i) can be used in statistical inference.

In particular, the significance of each buffer’s contribution to the overall buffering
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of the solution can be determined. This is carried out by re-estimation of F after the

particular defined component in question is removed from the model. The new fit is

then compared to the old and significance of the indicates significance of the buffering

component. In addition one can test for the contribution to buffering of the undefined

components by testing the standard null hypothesis that F(pH i) is everywhere 0.

Basic methods of inference for local polynomial regression estimators was given

by Cleveland et al. (1988). Let H represent the projection matrix which maps the

observations to predictions (the Hat matrix)

ŷ = Hy (4.67)

In the case of local polynomial regression the Hat matrix is of the form

H = X(X ′WX)−1X ′W (4.68)

Letting RH = (I −H)

ε̂ = RHy (4.69)

Thus the variance covariance matrix for the vector ŷ is σ2HH′ and the variance

covariance matrix for ε is σ2RHR′
H. Using the fact that the trace of a projection

matrix is equivalent to its rank, the following degrees of freedom can be calculated

and an F test for the difference between the fit of a null model and alternative model

can be formulated. Consider, for example, H1 to represent the smooth which results

by regressing on observed Cb after all measured buffer contributions are adjusted

for and let H2 represent the smooth which results when 1 or more of the measured
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components is not adjusted for (ignored). In order to test for the significance of these

components the following procedure is carried out.

ν1 = tr(RH2 − RH1) (4.70)

ν2 = tr((RH2 − RH1)(RH2 − RH1)
′ (4.71)

δ1 = tr(RH1) (4.72)

δ2 = tr(RH1R
′
H2) (4.73)

Then to test model 2 against model 1 formulate the variance ratio

F̂ =

RSS2−RSS1

df2−df1

RSS1

df1

(4.74)

=
(y′RH2y − y′RH1y)/ν1

(y′RH1y)/δ1

(4.75)

which is distributed approximately as F with numerator degrees of freedom ν2
1/ν2 and

δ2
1/δ2 (Cleveland et al., 1988).

Ionic Strength and Temperature Adjustments

Recall that ionic strength is a measure of the electrical interactions occurring within

a solution. For relatively dilute solutions (see Pitzer (1991) for more general cases)

ionic strength is adequately defined by

I =
n∑

i=1

(ciz
2
i ) (4.76)

where ci is the concentration of the ith ion in the solution and zi is its charge.

Debye and Hückle derived thermodynamic equations governing the properties of
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non-ideal solutions of electrolytes. However, the Debye-Huckle equations are well

known to behave poorly for ionic strengths above 0.1 (Butler and Cogley, 1998).

The standard Davies equation (see Eqn. 4.14) can predict with acceptable accuracy

ion activities for ionic strengths up to 0.5. At higher ionic strengths there is an

increased tendency for ion-ion pairing. This reduces the number of ions contributing

to the ionic strength. In such regimes, the Davies equation over-estimates the decrease

in the pKa (see Fig. 4.4). Higher ionic strengths can be modeled by reducing the

“salting out” parameter b. However this reduces accuracy at low ionic strength.

Samson et al. (1999), fortunately, give a simple modification of the standard Davies

equation that reduces b linearly in proportion to the ionic strength.

− log(γi) = Az2
i

( √
I

1 +
√

I
− ((−1/30)I + b)I

)
(4.77)

Samson et al. suggest that this modified version yields reliable results up to an ionic

strength of 1.2 M.

Although the Davies and Samson equations can be used to calculate the activity

coefficients, they require ionic strength as an input. The activity coefficients, how-

ever, affect the extent of dissociation in the buffer components and therefore affect

ionic strength. In order to achieve optimal activity coefficient predictions an itera-

tive refinement procedure can be used. It was found that 3-4 iterations are usually

sufficient for convergence of activity coefficient estimation.

To demonstrate the flexibility of this approach a theoretical buffer was simulated

containing 6 dissociable protons. The pKa of the acid at I = 0 are 3,5,7,9,11, and 12.

Eqn. 4.77 was used to predict the activity coefficients over the pH range [1,13]. First

the buffer capacity was simulated to verify that all peaks were resolved (see Fig. 4.5).
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Figure 4.4: Comparison of the Davies equation with the modification due to
Samson et al. (1999).

Next the ionic strength changes that would occur during a titration of such a solution

(see Fig. 4.6) were determined.

Ionic Strength of Complex Buffers

In this section a useful lower bound for the ionic strength contribution from a complex

buffer is introduced. Consider, the charge balance of a solution of NaOH and C moles

L− monoprotic weak acid HA.

[
Na+

]
+

[
H+

]
=

[
OH−]

+
[
A−]

(4.78)
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Figure 4.5: Partial buffer capacity diagram of a 15 mM solution of a theoretical acid
with 6 pKa . To account for the changes in ionic strength, the pKa ’s were modified
by their activities as calculated by the Davies equation. The pKa of the acid at I=0
are 3,5,7,9,11, and 12.

which is re-arranged to give Cb .

[
Na+

]
=

[
OH−]

+
[
A−] − [

H+
]

(4.79)

Cb =
CKa

Ka +
[
H+

] +
Kw

[OH−]
− [

H+
]

(4.80)

Comparing this to the ionic strength of the solution

I = 0.5(
[
Na+

]
+

[
OH−]

+
[
A−]

+
[
H+

]
) (4.81)

it is noticed that I = Cb +
[
H+

]
. Unfortunately this relationship does not hold when

compounds with multiple dissociable groups or salts containing ions with charges

greater than 1 or -1 are present. However, in such cases it will always be the case
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Figure 4.6: Partial ionic strength diagram of a 15 mM solution of a theoretical acid
with 6 pKa. To account for the changes in ionic strength, the pKa ’s were modified
by their activities as calculated by the Davies equation. The pKa of the acid at I=0
are 3,5,7,9,11, and 12. Clearly, as the pH increases, the predominant species are more
negatively charged and have greater affect on the ionic strength.
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that I ≥ Cb +
[
H+

]
. This fact leads us to suggest Cb +

[
H+

]
as a lower

bound for the ionic strength in complex buffers. This is viewed as a convenient

improvement over the zero ionic strength assumption for complex buffers containing

undefined components.

4.5.3 Initial pHprediction

A natural question to ask after constructing such a buffer is what should the initial

pH of such a solution be if it were actually constructed. Initial pH determination may

be accomplished by determining the pH at which 4.39 is zero. Practically speaking

this is the pH at which no acid or base has been added. This is efficiently done for

simple or complex buffers using scalar zero–finding algorithm.

4.5.4 Discussion

The approach that has been taken in modeling pH and buffer capacity in complex

buffers is an example of semi-mechanistic modeling. Semi-mechanistic models contain

both explicit as well as partially specified functional relationships (Wood, 2001) and

are analogous to statistical models such as partial splines and generalized additive

models. Typically a spline or some other “automatic” smoothing approach is used

to model parts of a system about which little is known or which can not be easily

quantified. Semi-mechanistic models usually also contain side-conditions which limit

the complexity and smoothness of this component. The approach is to use generalized

cross-validation to select the degree of smoothing.

Semi-mechanistic modeling is advantageous in the context of predictive fermenta-

tion biology because of the batch-to-batch variation that is typical in the growth media
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or food product. For example, sunlight and high temperatures can result in variability

in sugar content, acidity, oil levels and mineral content in fruits. The stage of veg-

etable and fruit maturity also has a direct impact on the chemical state of the food.

Future research will focus on including within this framework uncertainties about

the measured concentrations of defined components, the values of their dissociation

constants and the relationship between temperature, ionic strength solvent properties

and their dissociation constants. In the next Chapter, this semi-mechanistic approach

is applied to modeling the pH changes during the fermentation of vegetable broth.
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Chapter 5

Application of Semi-Mechanistic

Buffer Modeling to Batch

Fermentation

In the previous chapter, a semi-mechanistic method was developed for predicting

pH in complex solutions containing both defined and undefined components. This

method allows prediction of pH during a fermentation in a mechanistically realistic

manner. The ability to predict pH reliably at any given time during a fermentation

allows the common acid toxicity tolerance strategies exhibited by bacteria (recall

Table 4.3) to be modeled mechanistically. It is the goal of this chapter to determine

if such semi-mechanistic models of buffers can be embedded within a system of ODEs

describing batch growth.

Specifically, the semi-mechanistic approach will be applied as part of a revision

of the energy-based model for batch fermentation by Lactococcus lactis that was

presented in Chapter 3. Except where noted, the data and fitting procedure used are
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the same as that described for the “fixed temperature experiments” in Chapter 3.

We also present a variation of the model useful for modeling the batch growth of

the pathogen Listeria moncytogenes. Comparison of the model parameter estimates

indicate some key differences in the growth kinetics between the two species.

5.1 Re-evaluation of the Energy-Based Dynamic

Model of Lactococcus lactis

The system of equations 3.11 introduced in Chapter 3 was modified to incorporate the

“parameters in the denominator” reparameterization of the Michaelis-Menten terms

mentioned in Chapter 1. In addition, the inhibition term due to total lactic acid (L)

was replaced by inhibition due to the intra-cellular concentration of lactic acid (IP ).

Depending on the medium, Lactococcus lactis maintains its intracellular pH nearly

constant at a pH above 5.2 (Russell, 1992; Foucaud et al., 1995; Siegumfeldt et al.,

2000). As a consequence, the energetic cost associated with the intracellular concen-

tration of lactic acid can be modeled as proportional to the partition of lactic acid

[[HL] + [L−]] P01 (recall Eqn. 4.18). A computationally convenient representation for

inclusion of this functional form in a system of differential equations is obtained by

rewriting [[HL] + [L−]] P01 as

k1 + k2
[L−]

L−[L−]

1 + [L−]
L−[L−]

L (5.1)

where L − [L−] has replaced [HL]. If the constant of proportionality relating the

partition to the energetic cost is lumped together with k1 and k2, 2 new lumped pa-
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rameters result. These 2 new parameters are called κ1 and κ2 respectively. The result

is an expression relating the intracellular lactic acid concentration to the extracellular

concentration.

IP =
κ1 + κ2

[L−]
L−[L−]

1 + [L−]
L−[L−]

L (5.2)

Taking the derivative of the resulting expression with respect to time gives

dIP

dt
= κ1

dL

dt
+ (κ2 − κ1)

d [L−]

dt
(5.3)

where IP is the intracellular concentration of lactic acid (both anion and undis-

sociated form), L is the extracellular concentration of lactic acid (both anion and

undissociated form) and [L−] is the extracellular concentration of lactic acid anion.

It is important to note, however, that
d[L−]

dt
is really just a function of dL

dt
and

[
H+

]
.

This is so because [L−] = LKa

[H+]+Ka
. Therefore, within the context of a numerical

solution of the ODE system,
d[L−]

dt
is obtained through the evaluation of Ka

[H+]+Ka

d[L]
dt

.

dIP

dt
= κ1

dL

dt
+ (κ2 − κ1)

Ka[
H+

]
+ Ka

d [L]

dt
(5.4)

The differential equations representing the changes in pH and the intracellular

lactic acid concentration over time were added to the model. Remembering that the

“parameters in the denominator” reparameterization is being used, the revised model

130



Table 5.1: State variables of the revised modela.

Symbol Meaning Units Observed Range
t Time h 0–256
T Temperature ◦C 10–30
N Cell density CFU mL−1 1.0x106–2.0x109

S Glucose in the
medium

mM 0–35

M Malic acid in
the medium

mM 0–12

Q Intracellular
energy

fraction of initial “energy” 0–20

L Lactic acid in
the medium

mM 0–35

IP Intracellular
concentration
of lactic acid

mM 0–600

a Q/N was normalized to 1 at the time of inoculation (t=0). Therefore,
Q/N measures energy as a fraction of the energy quota that is typically
present in an overnight culture.
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is expressed by the following set of equations

CFU:
dN

dt
=

q

Ω1 + ν1q
N − δ1exp(−δ2q)N

Glucose:
dS

dt
= − 1

FT1

(
q

Ω2 + ν2q

)
NS

Malic Acid:
dM

dt
= − 1

FT1

(
q

Ω3 + ν3q
)NM

Energy:
dQ

dt
= β

[
1

FT1

(
q

Ω2 + ν2q

)
NS

]
− IP

FT2
Q

−γ

[
α

(
q

kq1 + q

)
N

]
− τ

dT

dt
IT Q

Lactic Acid:
dL

dt
= 2

[
1

FT1

(
q

Ω2 + ν2q

)
NS

]

+

[
1

FT1

(
q

Ω3 + ν3q
)NM

]

pH
dpH

dt
=

1

Bt

∂Cb (dL/dt,dM/dt,pH )
∂t

IP:
dIP

dt
= κ1

dL
dt

+ (κ2 − κ1)
Ka

[H+]+Ka

d[L]
dt

(5.5)

where

q = Q/N,

Ω1 = kq1

α
, Ω2 = kq2

µ1
,

Ω3 = kq3

µ2
, ν1 = 1

α

ν2 = 1
µ1

, ν3 = 1
µ2

, and

FT∗ = 1 +
(

T−Topt

KT∗

)2

(5.6)

A description of the variables and their units is given in Table 5.1. Bt represents the
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buffer capacity of the solution evaluated at time t and Cb (dL/dt, dM/dt, pH ) is the

moles of base added. As discussed in the previous chapter, Bt and Cb (dL/dt, dM/dt, pH )

are calculated using local polynomial regression estimates, obtained from titration

data, as well as the corresponding theoretical relations for lactic acid and malic acid.

5.1.1 Model Parameter Optimization

As it was pointed out above, the application of Eqn. 5.5 requires estimation of the

ODE model parameters as well as a semi-mechanistic model of the growth medium’s

buffering. The parameterization of the buffering component of the model must be

carried out prior to estimation of the model parameters. To make completely clear

the order of operations, the following procedural outline summarizes the overall com-

putational approach used in estimation of the parameters of the ODE system given

by Eqn. 5.5.

Note that in the following, the titration and development of a semi-mechanistic

model of the growth medium may be done in advance of or subsequent to the growth

experiment(s). In particular, the estimation of the buffer model is carried out on

titration data and is independent of the estimation of the parameters in the ODE

system which is carried out on growth data. An important consequence of this is that

the number of parameters needing to be estimated from the growth data does not

increase when pH prediction is incorporated into the modeling framework.

1. Develop semi-mechanistic model of unfermented cucumber juice medium

(a) Perform titration of medium to obtain observed Cb (Cb
obs) at various pH

(b) Quantify malic acid and lactic acid in the medium by HPLC to obtain

contributions to Cb from measurable buffer components (Cb
∼)
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(c) Subtract measurable contributions to Cb from malic and lactic acid (Cb
∗ =

Cb
obs − Cb

∼)

(d) Carry out local polynomial regression on Cb
∗ using pH as the predictor

variable

(e) Let the predicted titration (Ĉb ) be given by Ĉb = Cb
∗ + Cb

∼

2. Fit ODE system to the growth data by minimizing a WSS (see Eqn. 3.14)

(a) Solve ODE system obtaining predictions of CFU/mL, glucose, pH , energy,

intracellular lactic acid and extracellular malic and lactic acid.

(b) Calculate WSS (recall Eqn. refeqn:wssenergy) using data for CFU/mL,

glucose, pH , and extracellular malic and lactic acid

Note that in the above procedure, the pH is predicted using the ODE’s current

prediction of dL
dt

and dM
dt

in Eqn. 4.61. The observed lactic and malic acid are not

used in updating the pH prediction. It is not advantageous to use the observed lactic

and malic acid directly in solution of the ODE system since values at times requested

by the numerical integration routine are not available. Interpolation, as was used

in the temperature data could be used to obtain intermediate values but unlike the

temperature data the HPLC measurements are subject to greater variability and

may give less reliable estimates. In short, using observed data to modify the pHwould

only serve to decouple the pH equation from the system and offers no computational

advantage.

After several preliminary numerical experiments it was determined that the lumped

parameter κ1 was always estimated near zero. This is biologically reasonable since κ1

represents the flux of the molecular (uncharged) form of lactic acid across the mem-

134



brane at low extracellular pH . Since the pKa of lactic acid is ≈ 3.86 the majority

of the lactic acid is present in the anionic form in the medium. Therefore, κ1 was

eliminated from the model and the following ODE system was used.

CFU:
dN

dt
=

q

Ω1 + ν1q
N − δ1exp(−δ2q)N

Glucose:
dS

dt
= − 1

FT1

(
q

Ω2 + ν2q

)
NS

Malic Acid:
dM

dt
= − 1

FT1

(
q

Ω3 + ν3q
)NM

Energy:
dQ

dt
= β

[
1

FT1

(
q

Ω2 + ν2q

)
NS

]
− IP

FT2
Q

−γ

[
α

(
q

kq1 + q

)
N

]
− τ

dT

dt
IT Q

Lactic Acid:
dL

dt
= 2

[
1

FT1

(
q

Ω2 + ν2q

)
NS

]

+

[
1

FT1

(
q

Ω3 + ν3q
)NM

]

pH
dpH

dt
=

1

βt

∂Cb (dL/dt,dM/dt,pH )
∂t

IP:
dIP

dt
= κ2

Ka

[H+]+Ka

d[L]
dt

(5.7)
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where

q = Q/N,

Ω1 = kq1

α
, Ω2 = kq2

µ1
,

Ω3 = kq3

µ2
, ν1 = 1

α

ν2 = 1
µ1

, ν3 = 1
µ2

, and

FT∗ = 1 +
(

T−Topt

KT∗

)2

(5.8)

5.1.2 Results

The parameter estimates for the revised model Eqn. 5.7 are given in Table 5.2. Pa-

rameters were converted fro the “parameters in the denominator” parameterization

back to their original parameterization. The estimate for α was obtained as 1/ν1,

the estimate for µ1 was obtained as 1/ν1, the estimate for kq1 was obtained as αΩ1

and the estimate for kq2 was obtained as αµ1. As can be observed in Fig. 5.1, the

shift to low temperatures produces a lag-phase effect which is well-matched by model

predictions. There is noticeable systematic lack of fit with regards to the cell density

predictions. Conversely, the predictions for pH , lactic and malic acid are extremely

good. Of particular note is the predictions for pH at 20◦C (see Fig. 5.2) and 10◦C (see

Fig. 5.1). At these temperatures, the malolactic reaction proceeds relatively faster

than the lactic acid fermentation because the net glucose consumption decreases dur-

ing lag phase. There is a corresponding momentary increase in pH . Fig. 5.3 shows

the calibrated model fit for the 30◦C scenario.
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Table 5.2: Model parameter descriptions and estimates for the revised model of L. lactis.

Parameter Description (unit) Estimate
α Maximal bacterial growth rate (h−1) 1.52
µ1 Maximal glucose consumption rate (CFU mL−1h−1) 3.64 × 10−8

µ2 Maximal malate conversion rate (CFU mL−1h−1) 2.18 × 10−7

kq1 Value of q at which cell growth rate equals α/2 (unitless) 9.26
kq2 Value of q at which glucose consumption rate equals µ1/2 (unitless) 2.23
kq3 Value of q at which malate consumption rate equals µ2/2 (unitless) 2.59 × 10−7

δ1 Death rate when q = ∞(h−1) 2.22 × 10−2

δ2 Death rate sensitivity to changes in q (unitless) 1.87
β Conversion rate of glucose into energy (mM−1) 7.54 × 108

γ Energy required for cell division (CFU mL−1) 2.45
κ2 Energy cost per 1 mM IP (mM−1h−1) 4.24
KT1 Sensitivity of metabolic processes to deviations from optimal temp (◦C ) 1.26
KT2 Sensitivity of lactic acid inhibition to deviations from optimal temp (◦C ) 1.30
Topt Optimal temp (◦C ) 37 (assumed)

τ Energy cost for transient temp adjustment (◦C −1) 1.37 × 10−6
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Figure 5.1: Predictions of the calibrated L. lactis model at 10◦C . Note that the
culture was incubated at 30◦C prior to inoculation. The symbols ◦ (number of
CFU/milliliter or concentration of malic acid in millimolars), 4 (concentration of
glucose in millimolars), and ¤ (concentration of lactic acid in millimolars) represent
experimental values, and the curves represent predicted values. Dashed line = Q

Temporal sensitivity analyses of the revised model revealed that a few parameters

dominated the model predictions. Therefore the 5 most sensitive parameters were

ranked in order of decreasing value. The 5 most influential parameters at 10◦C in

terms of predicting cell density were τ , δ1 KT1, γ and δ2. At 30◦C the 5 most sensitive

model parameters were δ1, KT2, ν1, KT1 and κ2.
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Figure 5.2: Predictions of the calibrated L. lactis model at 20◦C . Note that the
culture was incubated at 30◦C prior to inoculation. The symbols ◦ (number of
CFU/milliliter or concentration of malic acid in millimolars), 4 (concentration of
glucose in millimolars), and ¤ (concentration of lactic acid in millimolars) represent
experimental values, and the curves represent predicted values. Dashed line = Q
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Figure 5.3: Predictions of the calibrated L. lactis model at 30◦C . Note that the
culture was incubated at 30◦C prior to inoculation. There was no discernable lag
phase. The symbols ◦ (number of CFU/milliliter or concentration of malic acid in
millimolars), 4 (concentration of glucose in millimolars), and ¤ (concentration of
lactic acid in millimolars) represent experimental values, and the curves represent
predicted values. Dashed line = Q
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5.1.3 Discussion

The goal of this research was to determine if by embedding a semi-mechanistic model

of pH dynamics into a mechanistic model of batch fermentation reasonable estimates

of pH and fermentation acids could be obtained. It is clear from the simulation

results in Figs. 5.1–5.3 that semi-mechanistic method of modeling pH worked very

well. In particular, fine details such as the increase in pH during lag phase due to

the malolactic fermentation at 10◦C were well–matched by the model predictions (see

Fig. 5.1). Perhaps even more satisfying is that highly accurate predictions of not only

pH but concentrations of lactic acid and glucose were obtained at 10, 20 and 30◦C (see

Figs. 5.1–5.3).

The optimal fit of the model did however leave something to be desired. The

model did not predict well in all cases stationary phase cell densities or rates of cell

death during death phase. The model does, however, predict the qualitative trends

nicely. It is hoped that when more growth data are available the goodness of fit can be

assessed more rigorously. Future efforts will be focused on refining the equations for

cell growth so that the details of stationary phase and death phase are modeled in a

more robust manner. While it is likely that the model does contain some mechanistic

errors it is also possible that batch-to-batch variability in the medium is contributing

to the variations in bacterial growth kinetics.

One possible source of model error is that the titration data used to parameterize

the semi-mechanistic components of the model did not result from titrations of the

same batch of media used in the growth studies. These growth experiments were

conducted prior to the development of the semi-mechanistic approach so a titration

of newly prepared CJ was used. While the model predictions for pH and fermentation
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acids are promising, more accurate accounting of the buffer of the medium could

be obtained by titration of the medium actually used in each run of the growth

experiment.

In the next section we attempt to modify this model of L. lactis for the food

pathogen Listeria monocytogenes.

5.2 Simplified Energy-Based Dynamic Model for

Listeria monocytogenes Growth in Vegetable

Broth

The goal of this section is to determine how well the semi-mechanistic method for

predicting pH will work on another bacterial species. Listeria monocytogenes is a

pathogen which has been implicated in spontaneous abortion of fetuses and can lead to

fatality in the elderly, very young and immuno-compromised individuals (Wijtzes et al.,

1993). There is interest, therefore, in determining environmental factors which in-

hibit the growth of this organism. Listeria has the potential to be a food-borne

pathogen and therefore its growth at abuse temperatures should be studied. Growth

experiments were conducted with Listeria monocytogenes (B0164) at 30◦C and 10◦C .

5.2.1 Materials and Methods

Cultures and Media

Listeria monocytogenes strain B0164 transformed with the erythromycin resistance

gene pGKe (Breidt and Fleming, 1998) was obtained from the USDA culture collec-
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tion. B0164 was grown on TSA broth (Difco Laboratories, Detroit, Mich.) containing

1.5% agar (Difco), 1% glucose (Sigma Chemical Co., St. Louis, Mo.) and 5 ug mL−1

erythromycin. Growth experiments were conducted in cucumber juice medium. Cu-

cumbers were pureed and pressed to render raw juice, which was frozen until needed.

The raw juice was thawed and then clarified by heating at 85◦C for 5 min, followed by

centrifugation at 12,000 rpm for 20 min and filter sterilized. The CJ medium was pre-

pared by adding 600 mL juice to 400 mL dH2O. The diluted juice was supplemented

with 2% NaCl and then filter-sterilized as described by Daeshel et al. (1984).

Experimental Set-up

Overnight cultures were prepared by growing B0164 in CJ at 30◦C . The data con-

sisted of 2 replicates (jars) from which 25 sample points over time (a total of 50

observations) were taken. Water-jacketed jars (Wheaton, Millville, N.J.) were filled

with 200 mL of fresh CJ and inoculated at 1 × 106 CFU mL−1 of bacterial culture.

Each flask was sealed with a silicone stopper that contained a sterile syringe sample

port, through which an 18-gauge, 10 cm needle was passed. The growth medium

was kept well-mixed by a magnetic stirrer. Compressed nitrogen was humidified by

sparging through deionized water, filtered (0.2 um Millex-FG50 filter, Millipore Corp.,

Bedford, Mass.), and released into the headspace of the fermenter jars at a rate of

1.3 L h−1. Temperature during the fermentation was controlled by a circulating wa-

ter bath (NESlab RTE-211; NESlab, Portsmouth, N.H.). The temperature of the

growth medium was monitored directly by sterile thermocouples inserted through

the silicone stoppers and recorded by a microcomputer (OM-3000; Omega, Stam-

ford, Conn.). Growth observations at 10 and 30◦C included quantification of CFU

mL−1, glucose, malic acid, pH and lactic acid concentrations. Growth at a particular
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temperature was monitored until all phases of growth had been observed.

Computational Details

The methods for solving the ODE’s and updating the pH were the same as those

mentioned in the previous section. However, as it will be discussed below, L. mono-

cytogenes (B0164) did not ferment malic acid. The malic acid equation was therefore

eliminated from the model. For the purposes of updating pH estimates the average

measured malic acid level was used.

As discussed below, L. monocytogenes (B0164) was found to form biofilms at

10◦C . Therefore only data from the 30◦C run could be used. Since only growth at

30◦C was used, the temperature adaptation terms from the original model were also

eliminated (i.e. τ was set to zero and, FT∗ was set to 1). The model resulting from
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these simplifications is given by the following system of equations.

CFU:
dN

dt
=

q

Ω1 + ν1q
N − δ1exp(−δ2q)N

Glucose:
dS

dt
= − q

Ω2 + ν2q
NS

Energy:
dQ

dt
= β

[(
q

Ω2 + ν2q

)
NS

]
− (IP )Q

−γ

[
α

(
q

kq1 + q

)
N

]

Lactic Acid:
dL

dt
= 2

[
1

FT1

(Ω2 + ν2q) NS

]

+

[
1

FT1

(
q

Ω3 + ν3q
)NM

]

pH :
dpH

dt
=

1

Bt

∂Cb (dL/dt,dM/dt,pH )
∂t

IP:
dIP

dt
= κ1

dL
dt

+ (κ2 − κ1)
d[L−]

dt

(5.9)

where

q = Q/N

Ω1 = kq1

α
, Ω2 = kq2

µ1

ν1 = 1
α
, ν2 = 1

µ1

FT = 1 +
(

T−Topt

KT∗

)2

(5.10)

Because of the simplifications of the model with regards to malolactic fermenta-

tion a slightly different WSS function was used to optimized the model parameter

estimates. The following equation explicitly describes the formulation of the weighted

sum of squared errors used in fitting the simplified model to the L. monocytogenes

data. It is similar to that given by Eqn. 3.14. Recall that i indexes the temperatures,
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j indexes the runs within a particular temperature and k indexes the observations

within a run.

WSS =
a∑

i=1

bi∑
j=1

ci,j∑
k=1

(log10(Obs. CFU/mLi,j,k) − log10(Pred. CFU/mLi,k))
2∑bi

j=1(ci,j)(sCFU/mL)

+
(Obs. Lactict,j,p − Pred. Lactici,k)

2∑bi

j=1(ci,j)(sLactic)

+
(Obs. Glucoset,j,p − Pred. Glucosei,k)

2∑bi

j=1(ci,j)(sGlucose)

+
(Obs. pH i,j,k − Pred. pH i,k)

2∑bi

j=1(ci,j)(spH )
(5.11)

Note that malic acid is no longer included in the calculation of WSS.

5.2.2 Results

During the 10◦C fermentations, the formation of thick mucoid strands in the fermen-

tation flask was noted. Phase contrast microscopy revealed that L. monocytogenes

(B0184) formed biofilms. The films displayed a clear delineation between an inner

layer of sessile cells and an outer layer of motile cells (see Fig. 5.4). Since the forma-

tion of biofilms prevents the accurate determination of cell density, only fermentations

at 30◦C were considered.

The results of the 30◦C fermentation are displayed in Figure 5.5. These data

indicate that L. monocytogenes experiences a long stationary phase at 30◦C and

that its death rate subsequent to stationary phase is relatively small compared to its

growth rate. Parameter estimates for the model 5.9 are given in Table 5.3. For ease

of comparison, the estimates for the L. monocytogenes model are given along side

those that were obtained for L. lactis.
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Table 5.3: Comparison of model parameter estimates L. lactis and L. monocytogenes.

Parameter Description (unit) L. lactis L. mono.
α Maximal bacterial

growth rate (h−1)
1.52 1.48

µ1 Maximal glucose con-
sumption rate (CFU
mL−1h−1)

3.64 × 10−8 3.77 × 10−11

µ2 Maximal malate conver-
sion rate (CFU mL−1h−1)

2.18 × 10−7 –

kq1 Value of q at which cell
growth rate equals α/2
(unitless)

9.26 4.86

kq2 Value of q at which
glucose consumption rate
equals µ1/2 (unitless)

2.23 3.41 × 10−2

kq3 Value of q at which
malate consumption rate
equals µ2/2 (unitless)

2.59 × 10−7 –

δ1 Death rate when q =
∞(h−1)

2.22 × 10−2 6.60 × 10−2

δ2 Death rate sensitivity to
changes in q (unitless)

1.87 354.2

β Conversion rate of glu-
cose into energy (mM−1)

7.54 × 108 3.29 × 109

γ Energy required for cell
division (CFU mL−1)

2.45 2.05

κ2 Energy cost per 1 mM IP
(mM−1h−1)

4.24 4.10

KT1 Sensitivity of metabolic
processes to deviations
from optimal temp (◦C )

1.26 –

KT2 Sensitivity of lactic acid
inhibition to deviations
from optimal temp (◦C )

1.30 –

Topt Optimal temp (◦C ) 37 (assumed) –

τ Energy cost for transient
temp adjustment (◦C −1)

1.37 × 10−6 –
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Figure 5.4: Phase contrast image of Listeria monocytogenes biofilm. Cells which
appear dark are motile while lighter cells are sessile.

5.2.3 Discussion

By modifying the model introduced in Chapter 3 to include the dynamic prediction

of pH and acid stress only 2 additional model parameters were required. These were

κ2 and the initial condition for IP (assumed to be zero). This savings is largely due

to the fact that the parameters relating pH to the buffering of the growth medium

were derived independently using data from HPLC quantification and titration of the

medium. This suggests that a great advantage of this approach over current methods

for predicting pH is that the number of new parameters which must be estimated

from the growth data is minimized.

Although more experimental data is needed, these preliminary results suggest that

the modified model of batch growth is able to provide useful diagnostic information
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Figure 5.5: Predictions of the calibrated L. monocytogenes model at 30◦C . Note
that the culture was incubated at 30◦C prior to inoculation. The symbols ◦ (number
of CFU/milliliter or concentration of malic acid in millimolars), 4 (concentration of
glucose in millimolars), and ¤ (concentration of lactic acid in millimolars) represent
experimental values, and the curves represent predicted values. Dashed line = Q
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about the differences between the two bacteria. The maximum cell density observed

for Listeria was approximately 3 × 108 CFU mL−1 and was lower than that for

Lactococcus. The tendency of L. monocytogenes to form biofilms may explain why

the cell counts were approximately one order of magnitude less than the maximum

counts observed for Lactococcus lactis (LA221). If this is the case, and the cell

densities were equal then a majority of L. monocytogenes cells (approx. 90%) would

have been engaged in biofilms.

Comparison of Figures 5.3–5.5 reveals that the growth kinetics of L. monocyto-

genes were very different from those of L. lactis. In particular, the specific growth

rate (α) of L. monocytogenes was about 3% less than that of L. lactis. The estimated

specific rate of lactic acid influx (κ2) was about 3% less in L. monocytogenes. Also,

perhaps due to this increased acid resistance, the stationary phase of L. monocyto-

genes was much longer. The stationary phase of L. lactis was about 20 h while that

for L. monocytogenes was nearly 100 h. Greater acid resistance in L. monocytogenes

also corresponded with a higher estimate of δ2 and a lower estimate γ than what were

found for L. lactis.

An interesting feature of the parameter estimates given in Table 5.3 is that the

maximum specific rate of glucose consumption (µ1) is three orders of magnitude less

than that for L. lactis. Visual inspection of the data, however, would indicate that

glucose utilization by L. monocytogenes is approximately one order of magnitude less

than that of L. lactis. This apparent discrepancy derives from the fact that the model

for L. lactis under estimates the stationary phase cell density at 30 ◦C (see Fig. 5.3)

by approximately 1 order of magnitude and that kq1 for L. lactis is nearly twice that

estimated for L. monocytogenes. The model for L. lactis does not under-estimate the

maximum cell densities at 20 and 10◦C . This therefore is an example where lack-
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of-fit of a model (or bias) can skew interpretations of model parameter comparisons.

Although model parameter comparisons correctly indicate a smaller specific rate of

glucose consumption by L. monocytogenes the difference is exaggerated by the under-

estimates of cell density by the L. lactis model at 30◦C .

Comparisons between the parameter estimates for the L. lactis and L. monocyto-

genes models indicate that L. monocytogenes survives longer during stationary phase

by reducing the net accumulation of lactic acid and also reducing the energy required

to grow. It would be interesting to compare experimentally measured intracellular

lactic acid concentrations to the model predictions of IP . Future work will be focused

in this area as well as assessing model performance for bacteria with different acid

tolerance strategies and different fermentative pathways.
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Chapter 6

Conclusions

In this thesis, new techniques for predicting the growth of microbial populations

in variable environments have been developed. In Chapter 2, currently available

mathematical techniques for the construction of mathematical models and methods

for estimating the parameters of such models from experimental data were reviewed.

The “parameters in denominator” method appears to produce models with more

identifiable parameters (less correlated) and to thereby improve convergence. Because

the re-parameterization is easy to implement its use should be encouraged. This is

especially true in mechanistic models where data over the entire functional range may

not be available.

The models of batch fermentation of Lactococcus lactis and Listeria monocyto-

genes provide predictions on several variables each on perhaps different scales and

with different error structures. The weighted least squares approach used to estimate

the parameters in these models assumes independence and the cell densities were log

transformed to allow all variables to follow a normal distribution more closely. While

more complicated (realistic) approaches to modeling the error structure of this system
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of differential equations should be investigated this is beyond the scope of the present

research. Furthermore, such investigations will require substantially more data in or-

der to estimate the many parameters (variance components) that would be required.

In order to combine the model fits to data on each of the variables and across different

treatments, a weighted sum of squares which uses the standard deviation multiplied

by the number of observations for a given treatment as a weighting factor was recom-

mended. To minimize this weighted sum of squares, a genetic algorithm was found to

be superior to direct search gradient based methods. It is the discrete adaptiveness of

ODE solvers which necessitates the use the of a genetic algorithm. Fixed step ODE

solvers are not recommended since the error of integration is not controlled.

In Chapter 3, a mathematical model for the batch growth of lactic acid bacteria in

variable temperature fermentations was developed and fit to experimental data. This

model was limited because the way in which acid toxicity was modeled did not coin-

cide with current biological theory. More useful models, however, require the ability

to predict pH continuously during a fermentation and in response to the accumulation

of fermentation acids. Chapter 4 dealt with this issue and a semi-mechanistic method

was developed. In this method, local polynomial regression is used to model the com-

ponents of the media which can not be measured while measured components whose

dissociation constants are known are modeled using traditional acid-base theory. An

important advantage of this method is the ease with which the dissociation equilibria

of the acids and bases can be adjusted for ionic strength and temperature.

The semi-mechanistic procedure also lends itself nicely to testing for the impor-

tance of buffer components with respect to the overall buffering of the medium. One

of the limitations of this inference procedure (outlined in Section 4.5.2) is that the

precision of estimates of the concentrations and dissociation constants of defined or
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measurable components is not addressed. Future research will be directed at incor-

porating a priori estimates of measurement variability of such components into the

inference procedures.

The ability to predict pH continuously in complex growth media allows greater

flexibility in modeling acid toxicity. In particular, functional forms for some of the

common acid toxicity responses observed in bacteria were developed. Finally in Chap-

ter 5 the semi-mechanistic approach was applied in conjunction with a model of in-

tracellular lactic acid accumulation to a more advanced model of batch fermentation.

This model gave good predictions of the extracellular pH and fermentation acids.

Furthermore, the model was able to predict the intracellular concentration of lactic

acid. Future research will be directed at assessing the accuracy of these theoretical

predictions.

Lastly, a model for the batch growth of Listeria monocytogenes was developed

based on the more advanced model of L. lactis just mentioned. Similar quality of

predictions were obtained for this system even though the growth kinetics of L. mono-

cytogenes were qualitatively different from L. lactis. Future research will be directed

at modeling the competitive growth of these 2 species as well as other species which

possess different acid tolerances and fermentative pathways.
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Van Impe, J. F., B. M. Nicoläi, T. Martens, J. D. Baerdemaeker, and J. Vandewalle

(1992). Dynamic mathematical model to predict microbial growth and inactivation

during food processing. Appl. Environ. Microb. 58(9), 2901–2909.
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