
ABSTRACT

TAYLOR, MONIQUE R. Dafermos Regularization of a Modified KdV–Burgers Equation.
(Under the direction of Dr. Stephen Schecter).

This project involves Dafermos regularization of a partial differential equation of

order higher than 2. The modified Korteweg de Vries–Burgers equation is

uT + f(u)X = αuXX + βuXXX ,

where the flux is f(u) = u3, α > 0, and β 6= 0. We show the existence of Riemann–Dafermos

solutions near a given Riemann solution composed of shock waves using geometric singular

perturbation theory. When β > 0, there is a possibility that the Riemann solution is

composed of two shock waves as opposed to one. In addition, we use linearization to study

the stability of the Riemann–Dafermos solutions.
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Chapter 1

Introduction

The modified KdV–Burgers equation that we study is

uT + f(u)X = αuXX + βuXXX , (1.1)

where f(u) = u3, α > 0, and β 6= 0. We are interested in solutions that satisfy a given
initial condition u(0, X) = u0(X) and boundary conditions

u(T,−∞) = u` and u(T,∞) = ur, (1.2)

for −∞ < X <∞, 0 ≤ T <∞, and u` 6= ur. Please note that (1.1) is invariant under the
transformation of replacing u by −u. Thus, we will consider u` > 0. We know from Shearer
et al. [6] that when β > 0, this equation admits travelling waves that are both compressive
and undercompressive. These individual waves were shown to be stable by Dodd in [5].
If we consider our equation with constant boundary conditions, only certain values of u`

and ur generate travelling wave solutions. Our concern is to determine the behavior of the
solutions for other values of u` and ur.

Numerics suggest that solutions of (1.1)–(1.2) approach a Riemann solution of

uT +
(
u3
)
X

= 0, (1.3)

with shock waves that satisfy the viscous profile criterion for the regularization (1.1). We
observe that convergence is evident in the compressed variable x = X

T . See Figures 1.1
and 1.2. We introduce the variable t = lnT for convenience. With these coordinates, (1.1)
becomes

ut + (3u2 − x)ux = αe−tuxx + βe−2tuxxx. (1.4)

As t→∞, (1.4) approaches
ut + (3u2 − x)ux = 0, (1.5)

which is simply the hyperbolic equation (1.3) in these new coordinates. The steady state
solutions of (1.5) are solutions of (1.3) that only depend on X

T . These steady state solutions
approach constants as x = X

T → ±∞ and correspond to Riemann solutions of (1.3).
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Figure 1.1: Above is a numerical solution of (1.1)–(1.2) subject to β = α = 1, t = 3, and
the indicated initial condition. This solution was obtained by the method of lines and it
converges to a Riemann solution with left and right states given by 0.7 and -0.3 respectively.
The speed of this Riemann solution derived from the Rankine–Hugoniot condition is 0.37.
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Figure 1.2: Here is another numerical solution of (1.1)–(1.2) subject to β = α = 1, t = 4,
and indicated initial condition. This solution was obtained by the method of lines and it
converges to a Riemann solution consisting of two shock waves with left, middle, and right
states given by 1.35, -0.8726, and -0.65 respectively. The Rankine–Hugoniot condition gives
the speed of the first shock wave as 1.40592 and the speed of the second wave as 1.75112.
From the formulas derived in [6], the middle state and speed of the first shock wave is
calculated to respectively be -0.878595 and 1.40833. So the numerical results are accurate
up two decimal places.
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Notice that for large t, e−t is small. We shall attempt to gain insight into the
long-time behavior of the solutions of (1.4) by replacing the exponential term, e−t, with a
small positive constant, ε. This substitution transforms (1.4) into

ut + (3u2 − x)ux = αεuxx + βε2uxxx. (1.6)

This freezing of time is a way to begin to study a time-dependent system. Equation (1.6)
can be regarded as a Dafermos regularization of (1.3). Dafermos regularization refers to
a technique introduced in 1973 by Constantine Dafermos. This process of regularization
gives rise to stationary solutions, called Riemann–Dafermos solutions, that converge almost
everywhere as ε → 0 to a weak solution of a corresponding Riemann problem. Lin and
Schecter in [7] have used this type of regularization to study conservation laws with a second-
order viscous term. However, no previous work has been done with higher order equations.
Furthermore, the stability of Riemann–Dafermos solutions with undercompressive waves
has not been looked at even for second order equations. Our plan is to study the stability
of some of the steady state solutions of (1.6).
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Chapter 2

Background

Recall the conservation law uT +
(
u3
)
X

= 0, equation (1.3). Special solutions of
interest of the conservation law are of the form u(x), where x = X

T . Substituting u(x) into
(1.3) yields (3u2 − x)ux = 0. This implies that u(x) is constant or ±

√
x
3 ; the latter are

rarefaction waves. In (X,T) coordinates, rarefaction waves fan out, or expand with time.
Shock waves are weak solutions of (1.3) of the form

u(X,T ) =
{
u− X

T < s

u+ X
T > s

.

The numbers u−, u+, and s must satisfy the Rankine-Hugoniot condition,

s =
f
(
u+
)
− f

(
u−
)

u+ − u−
=

(
u+
)3 − (u−)3
u+ − u−

=
(
u+
)2 + u−u+ +

(
u−
)2
.

It turns out that the speed, given by s, will always be positive for all of our
considered shock waves. In this thesis, admissible shock waves will be those that satisfy
the viscous profile criterion for (1.1). That is, we consider shock waves that correspond to
travelling wave solutions of (1.1) with the same speed satisfying the boundary conditions
u(−∞) = u− and u(∞) = u+. Travelling waves with speed s are solutions of (1.1) of the
form u(η), where η = X − sT . Substituting u(η) in (1.1) produces

(3u2 − s)uη = αuηη + βuηηη. (2.1)

The equation (2.1) is referred to as the travelling wave ordinary differential equation. We
are interested in solutions of this ordinary differential equation that satisfy the boundary
conditions

u(−∞) = u−, u(∞) = u+, uη(±∞) = 0, and uηη(±∞) = 0. (2.2)

A Riemann problem is a Cauchy problem for (1.3) with the piecewise constant
initial condition

u(X, 0) =
{
u`, X < 0
ur, X > 0

. (2.3)
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We look for Riemann solutions of the form u(x), x = X
T . This implies that u(x) must satisfy

u(x)→
{
u` as x→ −∞
ur as x→∞ . (2.4)

Riemann solutions are composed of constant parts, rarefaction waves, and/or shock waves.
We will only consider Riemann solutions that are composed of constant states and shock
waves.

In chapter 3, we use [6] to discuss the travelling waves of (1.1),(2.2). We then
introduce the system equations for the Riemann-Dafermos solutions, and show there exists
a Riemann–Dafermos solution near the considered Riemann solution. For β > 0, we were
able to find Riemann–Dafermos solutions that converge to a Riemann solution consisting of
two shock waves, one undercompressive and one compressive. In the succeeding chapters,
we investigate the stability of that Riemann–Dafermos solution by linearization. We were
able to discover properties that could potentially lead to stability results.
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Chapter 3

The Riemann–Dafermos Solution

3.1 Travelling Wave

The travelling wave ordinary differential equation is (3u2 − s)uη = αuηη + βuηηη.
Recall that admissible travelling waves should satisfy the four boundary conditions (2.2).
Considering the boundary conditions and integrating from −∞ to η yields

u3 − su− (u−)3 + su− = αuη + βuηη. (3.1)

Written as a system, (3.1) becomes

uη = v, (3.2)

vη =
u3 − su− z

β
− α

β
v, (3.3)

for z = (u−)3−su−. This is a 2-dimensional system parameterized by z and s for each fixed
α > 0 and β 6= 0. There are at most 3 equilibria for this system. We consider pairs (s, z)
with s > 0 so that 3 distinct equilibria are produced for this system. Since z = su−−(u−)3,
one equilibrium is (u−, 0). Given the s and u− one can determine the other equilibria by
solving uη = vη = 0.

Linearizing the system (3.2)-(3.3) about an equilibrium (u, 0) will give rise to two
eigenvalues

r1,2(u) =
−α
2β
±

√(
α

2β

)2

+
3u2 − s
β

. (3.4)

If the eigenvalues (3.4) have opposite signs, the corresponding equilibrium is called a saddle.
When the eigenvalues have negative real part, the equilibrium is referred to as an attractor.
When the eigenvalues have positive real part, the equilibrium is said to be a repeller.

For β < 0, if s < 3u2, the eigenvalues (3.4) have positive real part. However, if
3u2 < s, the eigenvalues have opposite signs. For β > 0, if s < 3u2, the eigenvalues (3.4)
have opposite signs. If 3u2 < s, eigenvalues with negative real part are produced. Please
note that s = 3u2 is the transitional case. As s increase through 3u2, a positive eigenvalue
becomes 0, then negative.
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Figure 3.1: Graphical representation of the types of equilibria.

Figure 3.2: Equilibria types in the xu-plane.
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3.1.1 Connecting orbits that start from (u−, 0) and their corresponding
Riemann Solutions

The information revealed in this section comes from Jacobs, McKinney, and Shearer
in [6]. In [6], the equilibria of the system (3.2)-(3.3) and connecting orbits are described.
The corresponding shock waves are used to construct Riemann solutions of (1.3), (2.3).
We begin by discussing orbits that connect the equilibrium (u−, 0) to another equilibrium
(u+, 0).

When β < 0, the equilibria are given by two repellers and one saddle for s > 0. The
only way to have a connection is to have the equilibrium (u−, 0) as one of the repellers and
the equilibrium (u+, 0) as the saddle. See Figure 3.3. In [6], shock waves that correspond
to the different types of travelling wave orbits from (u−, 0) to (u+, 0) are described. In this
case, the travelling wave orbit corresponds to a compressive shock wave with left and right
states given by u− and u+ respectively. A shock wave is referred to as compressive if it
satisfies the Lax entropy condition. The Lax entropy condition states that the left and right
states of a shock wave must satisfy f ′(u−) > speed > f ′(u+). A compressive shock is one
in which characteristics must enter the shock curve on both sides but not emanate from it.
These types of shock waves are often referred to as classical shocks. An undercompressive
shock is one in which characteristics enter the shock curve and pass through it. These
shocks satisfy one of the following conditions,

1. f ′(u−) > speed and f ′(u+) > speed, or

2. f ′(u−) < speed and f ′(u+) < speed.

Figure 3.3: Solution that connects the repelling equilibrium to the saddle equilibrium.

When β > 0, the equilibria are given by two saddles and one attractor for s > 0.
There are two ways in which one can find a solution that starts at (u−, 0) and ends at (u+, 0).
In either case, (u−, 0) must be a saddle. See Figure 3.4(a). According to [6], if (u+, 0) is a
saddle point, then the travelling wave orbit corresponds to an undercompressive shock wave.
However, if (u+, 0) is an attractor, then the corresponding shock wave is compressive. In
[6], it is explicitly determined that a saddle-to-saddle connection occurs when |u−| > 2α

√
2

3
√
β

and with a speed of s∗ = (u−)2 − α
√

2
3
√
β
|u−|+ 2α2

9β .
Now consider a Riemann problem (1.3), (2.3) for β > 0. The Riemann solution

is a classical solution for some pairs (u`, ur). Those pairs results in a saddle-to-attractor
connection from (u`, 0) to (ur, 0) for a certain s value. There is then a Riemann solution of
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(1.3), (2.3) that is a classical shock wave and takes the form

u(x) =
{
u` for x < s
ur for x > s

,

for x = X
T . According to [6], this occurs for 0 < u` < 2α

√
2

3
√
β

and −u`

2 < ur < u`.

Also, there are some pairs (u`, ur) that result in a Riemann solution consisting of
two shock waves. There is a possible saddle-to-saddle connection from (u`, 0) to the third
equilibrium (um, 0) for s = s2, and a saddle-to-attractor connection from (um, 0) to (ur, 0)
with a speed s = s3 > s2. See Figure 3.4(b). According to [6], this occurs when u` > 2α

√
2

3
√
β

and −u` + α
√

2
3
√
β
< ur < −u`

2 . Furthermore, the corresponding Riemann solution consists
of an undercompressive shock followed by a faster classical or compressive shock. This
Riemann solution is given as

u(x) =


u` for x < s2

um for s2 < x < s3

ur for x > s3

.

We will focus on β > 0 and the equilibrium (ur, 0) as an attractor.

(a) Direct Connection

(b) Indirect Connection

Figure 3.4: Connections from (u−, 0) to (u+, 0) when β > 0.

3.2 Riemann–Dafermos Equations

Riemann–Dafermos solutions are stationary solutions of (1.6) that satisfy the
boundary conditions,

u(−∞) = u` and u(∞) = ur. (3.5)
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Being stationary solutions of (1.6) imply that they satisfy

(3u2 − x)ux = αεuxx + βε2uxxx. (3.6)

Written as a system, (3.6) becomes

εux = v, (3.7)
εvx = w, (3.8)

εwx =
1
β

(3u2 − x)v − α

β
w, (3.9)

xx = 1. (3.10)

In singular perturbation theory, this system is referred to as the slow form of a slow-fast
system. The change of variable x = εξ converts (3.7)–(3.10) into

uξ = v, (3.11)
vξ = w, (3.12)

wξ =
1
β

(3u2 − x)v − α

β
w, (3.13)

xξ = ε. (3.14)

This is referred to as the fast form. Letting ε→ 0, the fast form becomes

uξ = v, (3.15)
vξ = w, (3.16)

wξ =
1
β

(3u2 − x)v − α

β
w, (3.17)

xξ = 0. (3.18)

This is commonly referred to as the fast limit system. We begin by studying the fast limit
system.

3.3 The Fast Limit System

The set of equilibria of (3.15)–(3.18) is the ux-plane. The linearization of the fast
limit system at one of these equilibria has the matrix

J(u, 0, 0, x) =


0 1 0 0
0 0 1 0
0 3u2−x

β −α
β 0

0 0 0 0

 .

The corresponding characteristic polynomial is C(r) = r2
(
r2 + α

β r −
1
β (3u2 − x)

)
. The

eigenvalues are 0, 0, and
−α
2β
±

√(
α

2β

)2

+
3u2 − x

β
.



11

Notice that as a system, the travelling wave ordinary differential equation (2.1) is
written as

uη = v, (3.19)
vη = w, (3.20)

wη =
1
β

(3u2 − s)v − α

β
w. (3.21)

This system has the same form as (3.15)–(3.18). Thus, the dynamics of the solutions of
(3.15)–(3.18) will be exactly the dynamics of the solutions of (3.19)–(3.21) when x = s.

We will now take what was observed in the 2-dimensional setting when β > 0 and
relate it to the dynamics of (3.15)–(3.18) in uvwx-space. A connecting orbit of (3.2)–(3.3)
from (u−, 0) to (u+, 0) corresponds to a connecting orbit of (3.15)–(3.18) from (u−, 0, 0, x)
and (u+, 0, 0, x) with x = s.

Let z = βw + xu− u3 + αv. Differentiating with respect to ξ results in

zξ =
d

dξ

(
βw + xu− u3 + αv

)
= βẇ + xv − 3u2v + αw

= 0.

We are now able to write the fast limit system as

uξ = v, (3.22)

vξ =
1
β

(u3 − xu+ z)− α

β
v, (3.23)

zξ = 0, (3.24)
xξ = 0. (3.25)

Since zξ = 0, z is constant in the system (3.22)-(3.25). Since the equilibria for the fast limit
system is the ux-plane, we may define z = xu∗ − (u∗)3 for each given u∗ and x. Please
observe that when x = s, the system (3.2)–(3.3) is the same as the system (3.22)–(3.23). We
will now show that the connections of interest of (3.15)–(3.18) can be viewed as transversal
intersections of invariant manifolds that persist for small ε > 0.

3.3.1 Manifolds

Recall that the system (3.15)–(3.18) has a 2-dimensional plane of equilibria, the
ux-space. For x < 3u2 the linearization of (3.15)–(3.18) at one of these equilibria has
one negative eigenvalue, one positive eigenvalue, and two 0 eigenvalues. For x > 3u2 the
linearization of (3.15)-(3.18) at one of these equilibria has two eigenvalues with real part
negative and two 0 eigenvalues. We will describe the stable and unstable manifolds of
certain 1- and 2- dimensional subsets of the ux-space.
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Ws
0(P ) - Stable manifold of P ={all saddle equilibria in the ux-plane such that

x < 3u2 − α2

3β }

On the parabola, x = 3u2, another 0 eigenvalue emerges. By considering x <
u2 − α2

3β , we insure that x stays away from 3u2. Each point in P has a 1-dimensional sta-
ble eigenspace. Each of these stable spaces has an invariant curve tangent to it, which is
referred to as the stable fiber for its corresponding point. We will denote Ws

0(P ) as the
manifold constructed by the union of all of the 1-dimensional stable fibers of each saddle
point in the ux-plane. Locally this manifold is given by:

uvwx-space


u ∈ an open set,
v = G1(u,w, x),
w ∈ an open set,
x ∈ an open set.

uvzx-space


u ∈ an open set,
v ∈ G(u, z, x),
z ∈ an open set,
x ∈ an open set.

Wu
0 (P ) - Unstable manifold of P

ConsiderWu
0 (P ) to be the manifold constructed by the union of the 1-dimensional

unstable fibers of each saddle point in P . This manifold is locally given by:

uvwx-space


u ∈ an open set,
v = F1(u,w, x),
w ∈ an open set,
x ∈ an open set.

uvzx-space


u ∈ an open set,
v ∈ F (u, z, x),
z ∈ an open set,
x ∈ an open set.

Wu
0 (Lu`) - Unstable manifold of the line Lu` =

{
(u`, 0, 0, x)|x < 3(u`)2 − α2

3β

}
The collection of the 1-dimensional unstable fibers of each point on Lu` will foliate

Wu
0 (Lu`). Locally, this manifold is given by:

uvwx-space


u ∈ a neighborhood of u`,
v = F1(u, f1(u, x), x),
w = f1(u, x),
x ∈ an open set.

uvzx-space


u ∈ a neighborhood of u`,
v = F (u, z(x), x),
z = xu` − (u`)3,
x ∈ an open set.

Wu
0 (Lum) - Unstable manifold of the line Lum =

{
(um, 0, 0, x)|x < 3(um)2 − α2

3β

}
The u` and ur are chosen so that the Riemann solution consists of two shock waves.

This determines the um value. After um is determined, we are able to consider the unstable
fibers of each point located on the line Lum . The collection of these fibers will be used to
foliate the manifold, Wu

0 (Lum). Locally this manifold is given by:
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uvwx-space


u ∈ a neighborhood of um,
v = G1(u, g1(u, x), x),
w = g1(u, x),
x ∈ an open set.

uvzx-space


u ∈ a neighborhood of um,
v = G(u, z(x), x),
z = xum − (um)3,
x ∈ an open set.

Ws
0 (Lur) - Stable manifold of the line Lur =

{
(ur, 0, 0, x)|x > 3(ur)2 + α2

3β

}
Each point on the line Lur is associated with a 2-dimensional stable eigenspace.

The 2-dimensional stable space at each point has a two-dimensional invariant manifold that
is tangent to it. Each of these 2-dimensional manifolds are considered to be a stable fiber
of its corresponding point. The collection of these fibers will foliate Ws

0 (Lur). The point
(ur, 0, 0, x∗) in uvxx-space corresponds to the point (ur, 0, urx∗ − (ur)3, x∗) in uvzx-space,
and the stable fiber of the latter is clearly the space (u, v, z∗, x∗) where z∗ = urx∗ − (ur)3.
Therefore, the manifold is locally given by:

uvwx-space


u ∈ a neighborhood of ur,
v ∈ an open set,
w = 1

β

(
x(ur − u) + u3 − (ur)3 − αv

)
,

x ∈ an open set.

uvzx-space


u ∈ a neighborhood of ur,
v ∈ an open set,
z = xur − (ur)3,
x ∈ an open set.

Theorem 1 For some fixed ŝ > 0, let L1 = {x : |x− s1| > ŝ}, and let L2 = {x : |x− s2| >
ŝ and |x−s3| > ŝ}. For β > 0, consider Γ1 =

{
(u`, ur)

∣∣0 < u` < 2α
√

2
3
√
β

and − u`

2 < ur < u`
}

and Γ2 =
{

(u`, ur)
∣∣u` > 2α

√
2

3
√
β

and ur > −u` + α
√

2
3
√
β

}
. Let (u`, ur) ∈ Γi. Then for small

ε > 0 there is a Riemann–Dafermos solution ûε(x) of (1.6); i.e., a solution of (3.6), (3.5).
As ε→ 0, ûε(x) approaches the Riemann solution of (1.3), (2.3) in the C1 sense on Li.

This theorem relies on information about the transversality of the manifolds, Fenichel’s
Theorems, [14], and the Exchange Lemma. For convenience we prove the supporting lemmas
of this theorem in the uvzx-coordinates. After the supporting lemmas are verified, we then
prove Theorem 1, in the uvwx-coordinates.

3.3.2 Saddle-to-Attractor Connections

Observe that the equilibrium (u, v, w, x)=(u∗, 0, 0, x) corresponds to (u, v, z, x)=
(u∗, 0, xu∗ − (u∗)3, x). For ε = 0, given (u`, ur) ∈ Γ1, there may exist a x-value, s1, such
that there is a solution to (3.22)-(3.25) that serves as a direct connection from (u`, 0, x1u

`−
(u`)3, s1) to (ur, 0, s1u

r−(ur)3, s1). Let’s denote this solution by the curve (ū1(ξ), v̄1(ξ), z, s1).
Please note that z = s1u

` − (u`)3 takes the same value as z = s1u
r − (ur)3; i.e. we have

s1u
` − (u`)3 = s1u

r − (ur)3. This follows from the fact that z is constant on solutions of
(3.22)-(3.25).
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Similarly, after discovering the value for um for the given (u`, ur) ∈ Γ2, there may
exist a x-value, s3, such that there is a solution to (3.22)-(3.25) that serves as a direct
connection from (um, 0, s3u

m − (um)3, s3) to (ur, 0, s3u
r − (ur)3, s3) for ε = 0. Denote this

curve by (ū3(ξ), v̄3(ξ), z, s3), where z = s3u
m − (um)3 = s3u

r − (ur)3.

Lemma 1 Wu
0 (Lu`) intersects Ws

0 (Lur) transversally along the curve (ū1(ξ), v̄1(ξ), z, s1)
when the underlying Riemann solution consist of one shock wave.

Lemma 2 Wu
0 (Lum) intersects Ws

0 (Lur) transversally along the curve (ū3(ξ), v̄3(ξ), z, s3)
when the underlying Riemann solution consist of two shock waves.

Proof (Lemma 1). Since the proofs of both lemmas are very similar, we will just prove
one. The manifolds Wu

0 (Lu`) and Ws
0 (Lur) are 2 and 3 dimensional respectively. In a

4 dimensional space, if the two intersect transversally, then they will intersect in a 1-
dimensional manifold. The two manifolds intersect along the curve (ū1(ξ), v̄1(ξ), z, s1). We
will show that for any point on this curve, the tangent vectors of Wu

0 (Lu`) and Ws
0 (Lur)

together will span R4. We will show this result in the uvzx-space.
The tangent space to Wu

0 (Lu`) at a point is the span of


1
Fu
0
0

 ,


0

Fx + u`Fz
u`

1


 = {q1, q2}.

The tangent space to Ws
0 (Lur) at a point is the span of


1
0
0
0

 ,


0
1
0
0

 ,


0
0
ur

1


 = {q3, q4, q5}.

Since the vector (1, Fu, 0, 0)T is dependent on the other vectors, we only need to verify that
the other four vectors are linearly independent. Assume that

∑4
i=1 ciqi+1 = 0.

⇒


c2 = 0,

c1(Fx + u`Fz) + c3 = 0,
c1u

` + c4u
r = 0,

c1 + c4 = 0.

⇒


c2 = 0,
c3 = −c1(Fx + u`Fz),
c4 = −c1,

c1(u` − ur) = 0.

Since u` 6= ur, c1 = 0. Hence, all ci = 0 for i = 1, 2, 3, 4. Therefore, {qi}5i=2 will span
R4. 2

Theorem 2 (Fenichel’s First and Second Theorem) Let Π ∈ Rn and ε ∈ R. Let M0

be an m-dimensional normally hyperbolic locally invariant manifold with compact closure
for the differential equation Π′ = f(Π, ε) when ε = 0. Let Wu(M0) and Ws(M0) be the
unstable and stable manifolds of M0 respectively, with dimensions m+k and m+`, where
m+k+` = n. Then for small ε > 0 there exist locally invariant manifolds Mε, Wu(Mε),
and Ws(Mε) of dimensions m, m+k, and m+` respectively, that are respectively C1 near
M0,Wu(M0) and Ws(M0).
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Theorem 3 (Fenichel’s Third Theorem) For ε = 0 and Π ∈ Rn, let M0 be a normally
hyperbolic locally invariant manifold for Π′ = f(Π, ε). When ε 6= 0, the nearby manifold
given by Theorem 2 is denoted Mε. Consider the yab-space where the y-, a-, and b- spaces are
m-, k-, and `- dimensional respectively with m+k+` = n. In appropriate yab-coordinates,
Mε is given by a = b = 0, the unstable manifold, Wu(Mε), is given by b = 0, and the stable
manifold, Ws(Mε), is given by a = 0. Also in these coordinates, y′ depends only on y and ε
when either a or b equals 0. If M0 consists of only equilibria, then the differential equation
on Mε can be written as

y′ = εf(y, ε) + g(y, a, b, ε)ab, (3.26)
a′ = A(y, a, b, ε)a, (3.27)
b′ = B(y, a, b, ε)b. (3.28)

(a) ε = 0 (b) ε > 0

Figure 3.5: Three dimensional representation of the direct connection from Lu` to Lur .
When ε > 0, the solution asymptotically converges back to Lu` and forward to Lur for large
|x|.

For the system (3.26)-(3.28), for any small ε, the point (y0, 0, 0) ∈ Mε has for its
unstable fiber the set {(y, a, b)|y = y0, b = 0}, and for its stable fiber the set {(y, a, b)|y =
y0, a = 0}. These sets are independent of ε. Hence, for Π′ = f(Π, ε), the unstable and
stable fibers depend in a C1 manner on the base point and ε.

Proof of Theorem 1 (One Wave Riemann Solution). For ε = 0, the set P defined
earlier is a normally hyperbolic manifold of equilibria for (3.11)-(3.14). By [14], for small
ε > 0 there is a nearby normally hyperbolic locally invariant manifold. This manifold
is again P with its points not given as equilibria. The line Lu` is contained in P . It is
invariant for each ε, and its unstable manifold Wu

ε (Lu`) is the union of the unstable fibers
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of its points. ThereforeWu
ε (Lu`) is C1 close toWu

0 (Lu`). Similarly, for small ε, we conclude
that Ws

ε (Lur) is C1 close to Ws
0(Lur).

Since Wu
0 (Lu`) and Ws

0 (Lur) meet transversally along the solution
(ū1(ξ), v̄1(ξ), w̄1(ξ), s1), for small ε > 0, Wu

ε (Lu`) and Ws
ε (Lur) meet transversally as well.

The intersection is a solution (ū1
ε (ξ), v̄

1
ε (ξ), w̄

1
ε (ξ), εξ) that asymptotically approaches Lu` as

ξ → −∞ and asymptotically approaches Lur as ξ → ∞. The Riemann–Dafermos solution
is ûε(x) = ū1

ε (
x
ε ). 2

3.3.3 Saddle-to-Saddle Connection

There exists a unique x = s2 that provides a connection of (3.22)-(3.25) from Lu`
to P for ε = 0. This connection goes from (u`, 0, s2u

`−(u`)3, s2) to (um, 0, s2u
m−(um)3, s2).

Denote this curve as (ū2(ξ), v̄2(ξ), z, s2), where z = s2u
` − (u`)3 = s2u

m − (um)3.

Lemma 3 W u
0 (Lu`) intersectsWs

0(P ) tranversally along the curve (ū2(ξ), v̄2(ξ), z, s2) when
the underlying Riemann solution consists of two shock waves.

Proof. Based on the dimensions of the two manifolds, we expect an intersection of dimension
1. The intersection is given by the curve (ū2(ξ), v̄2(ξ), z, s2). The tangent space to W u

0 (Lu`)
at a point is given by the span of


1
Fu
0
0

 ,


0

Fx + u`Fz
u`

1


 = {p1, p2}.

Please note that for a given x value, z = xu` − (u`)3. The tangent space to W s
0 (P ) at a

point is given by the span of


1
Gu
0
0

 ,


0
Gz
1
0

 ,


0
Gx
0
1

 ,

 = {q1, p3, p4}.

Remark 1 On the curve in the intersection of the two manifolds of concern, v = F (u, z, x) =
F (u, s2u

` − (u`)3, s2) must be the same as v = G(u, z, x) = G(u, s2u
` − (u`)3, s2). Thus, on

this common curve, Fu = Gu.

Suppose
∑4

i=1 cipi = 0.

⇒


c1 = 0,

c2(Fx + u`Fz) + c3Gz + c4Gx = 0,
c3 = −c2u

`,
c4 = −c2.

⇒ c2(Fx + u`Fz −Gx −Gzu`) = 0.
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Remark 2 To analyze the equation c2(Fx + u`Fz − Gx − Gzu`) = 0, we need to consider
a separation function denoted by S(x). In the uvzx-space, our system of equations are
defined on the uv-space since both x and z are constant in the system. In the uv-space,
we can consider the line Lu0 =

{
(u0, v)

}
for some fixed u0. The separation function S(x)

is designed to measure the distance between Wu
0 (Lu`) and Ws

0(P ). That is, it considers
the v coordinate values of each manifold intersected with the line Lu0, then measures the
difference of the two v-values. So S(x) = F (u0, xu` − (u`)3, x)−G(u0, xu` − (u`)3, x). The
derivative is given by S′(x) = (Fx+u`Fz)−(Gx+u`Gz). Since there is only one x-value, s2,
that gives a connection between the two manifolds, we know that S(s2) = 0. Thus, we are
interested in S′(s2). S′(s2) can be computed explicitly as a positive multiple of the Melnikov
integral. Thus, if the Melinkov integral is nonzero, S′(s2) is nonzero as well.

Recall the system (3.22)-(3.23)

uξ = v,

vξ =
1
β

(u3 − xu+ z)− α

β
v,

where z = xu` − (u`)3. This system may be viewed as

uξ = f(u, v, x),
vξ = g(u, v, x).

The matrix of the linerization at the arbitrary point (u, v) is

Ĵ =
[

0 1
1
β (3u2 − x) −α

β

]
.

So the trace(Ĵ) = −α
β , fx = 0, and gx = 1

β (u` − u). Let’s compute S′(s2) by a positive
multiple of the Melnikov integral.

S′(s2) = E

∫ ∞
−∞

e−
R ξ
0 traceĴ(τ)dτ

∣∣∣∣ uξ fx(u, v, s2)
vξ gx(u, v, s2)

∣∣∣∣ dξ
= E

∫ ∞
−∞

e−
R ξ
0 traceĴ(τ)dτ (uξgx(u, v, s2)− vξfx(u, v, s2))dξ

= E

∫ ∞
−∞

e
R ξ
0
α
β
dτ
(
v

1
β

(u` − u)
)
dξ

=
E

β

∫ ∞
−∞

e
α
β
ξ
(
v
(
u` − u

))
dξ.

We know from [6], that the connecting orbit from (u`, 0) is a parabola below the
u-axis. This implies that uξ = v < 0, so we are moving along the parabola from right to
left. Therefore, (u`, 0) is at the right of any point on the part of the parabola that we are
interested in. Hence, u` − u > 0. This gives us a negative integrand, which produces a
negative integral, since the integrand is an increasing function. Therefore, S′(s2) 6= 0.

Thus, ci = 0 for i = 1, 2, 3, 4, and {pi}41 is a linearly independent set. Therefore,
span {pi}41 = R4. 2
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Lemma 4 (Exchange Lemma) Consider the system (3.26)− (3.28) on yab-space where
y, a, and b are m−, k−, and `− dimensional respectively with m+k+` = n. In Rn, for ε = 0
let Σ0 be an invariant manifold of dimension k+1 that transversally intersects the yb-plane
at (y0, 0, b0). Let Σε be an invariant manifold of dimension k+ 1 as well for ε > 0. Assume
that as ε→ 0,Σε → Σ0, in the C1 sense. Then Σε meets the yb-space at the point, (yε, 0, bε),
near (y0, 0, b0), such that as ε→ 0, (yε, 0, bε)→ (y0, 0, b0).

For ε = 0, consider the linear differential equation y′ = f(y, 0) on the y-space, and
assume that f(y0, 0) 6= 0. Let φ(t) be the solution of y′ = f(y, 0) with φ(0) = y0. For some
t0 > 0 and small υ > 0, define I = [t0−υ, t0+υ] and U0 = {(y, a, 0) |y = φ(t), t ∈ I, ‖a‖ ≤ υ}.
Then for small ε > 0,part of Σε is C1 close to U0.

Figure 3.6: Graphical representation of the Exchange Lemma.

When the given Riemann solution consists of 2 shock waves for ε = 0, there is
no connection from Lu` to Lur . See Figure 3.7(a). When ε > 0, we rely on the Exchange
Lemma to track solutions on Wu

ε (Lu`) as ξ increase and on Wu
ε (Lur) as ξ decrease. See

Figure 3.3.3. This is done to find the one solution that is on both manifolds. This particular
solution is the Riemann–Dafermos solution for ξ = x

ε .
Proof of Theorem 1 (Two Waves Riemann Solution). We shall work in uvwx-

space. Please note that Lu` , P,Lum , and Lur are all contained in the ux-space which consists
of only equilibria. From [14] and Fenichel’s Theorems, we can conclude that for ε > 0 suffi-
ciently small,Wu

ε (Lu`),Ws
ε (P ), andWs

ε (Lur) are respectively C1 close toWu
0 (Lu`),Ws

0(P ),
and Ws

0(Lur).
In Fenichel’s Third Theorem, let Mε be P . Then in the Exchange Lemma,

P,Wu
ε (P ), and Ws

ε (P ) correspond respectively to y-space, ya-space, and yb-space. In addi-
tion, letWu

ε (Lu`) correspond to Σε. Recall that the dimensions ofWu
0 (Lu`) andWs

0(P ) are
2 and 3 respectively. So the two spaces intersect in a 1-dimentional space. By Lemma 3,
Wu

0 (Lu`) intersects Ws
0(P ) transversally along the curve (ū2(ξ), v̄2(ξ), w̄2(ξ), x2), which is
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the stable fiber of (um, 0, 0, s2). By Fenichel’s Theorems,Wu
ε (Lu`) intersectWs

ε (P ) transver-
sally along the curve (ū2

ε (ξ), v̄
2
ε (ξ), w̄

2
ε (ξ), εξ).

The system (3.11)–(3.14) on P, which is a portion of ux-space, is just u̇ = 0, ẋ = ε.
Now the solution of u̇ = 0, ẋ = 1, with (u, x)(0) = (um, 0), is (u, x)(τ) = (um, τ). Thus the
solution runs along the line Lum and the x-coordinate increases as τ increases.

For a small c∗ > 0, let I be the portion of Lum with s2 − c∗ < x < s3 + c∗. Since
s3 > s2, the Exchange Lemma implies that for small ε > 0, part of Wu

ε (Lu`) is C1 close to
Wu

0 (I). Now Wu
0 (Lum), and hence Wu

0 (I), meets Ws
0(Lur) transversally in a curve located

in the unstable fiber of (um, 0, 0, s3).
Observe that the Exchange Lemma gives the result that for small ε > 0, part of

Wu
ε (Lu`) is C1 close toWu

0 (I). Recall that for small ε > 0,Ws
ε (Lur) is C1-close toWs

0(Lur).
This implies that Wu

ε (Lu`) meets Ws
ε (Lur) transversally. The u-component of the curve of

intersection, after the substitution ξ = x
ε , is the Riemann–Dafermos solution. 2
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(a) ε = 0

(b) ε > 0

Figure 3.7: When ε = 0, there is no connection from Lu` to Lur . For ε > 0, shown in blue
are the corresponding curves in the two pairs of intersecting manifolds.
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Chapter 4

Linearization and Large
Eigenvalues

When studying the stability of dynamical systems, it is common to use the lin-
earization method. We begin by linearizing (3.6) about the Riemann–Dafermos solution.
We will then study the large eigenvalues associated with this linearization.

Let h(ε, x, t) = ûε(x) + Û(x, t), where ûε(x) is the Riemann–Dafermos solution.
Plugging h(ε, x, t) into the reguarization (1.6) yields

Ût + (6ûεÛ + 3Û2)û′ε + (3û2
ε − x)Ûx + (6ûεÛ + 3Û2)Ûx = αεÛxx + βε2Ûxxx.

Disregarding the nonlinear terms with respect to Û produces

Ût + 6ûεû′εÛ + (3û2
ε − x)Ûx = αεÛxx + βε2Ûxxx. (4.1)

Equation (4.1) is the linearization of the partial differential equation (3.6) at our Riemann–
Dafermos solution ûε(x). We look for solutions of the form Û(x, t) = eλtU(x).

Substituting in the linear partial differential equation gives rise to

λU + (3û2
ε − x)Ux + 6ûεû′εU = αεUxx + βε2Uxxx. (4.2)

The corresponding system is

εUx = V,

εVx = W,

εWx =
1
β

[ελU + (3û2
ε − x)V + 6εûεû′εU − αW ].

Substituting x = εξ into the system, produces

Uξ = V,

Vξ = W,

Wξ =
1
β

(ελU + (3u2 − x)V + 6uuξU − αW ).
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Introducing ρ = ελ, we can merge together the linear system with the fast system, (3.11)–
(3.14) and obtain the following 8-dimensional system

uξ = v, (4.3)
vξ = w, (4.4)

wξ =
1
β

(3u2 − x)v − α

β
w, (4.5)

xξ = ε, (4.6)
Uξ = V, (4.7)
Vξ = W, (4.8)

Wξ =
1
β

[ρU + (3u2 − x)V + 6uvU − αW ], (4.9)

ρξ = 0 (4.10)

For ε > 0, let x = εξ, and define uε(ξ) = ûε (εξ) where ûε(x) is a solution
of (3.6),(3.5), a Riemann–Dafermos solution of (1.6). Then for each ρ ∈ C, the sys-
tem (4.3)–(4.10) has the solution (uε(ξ), vε(ξ), wε(ξ), εξ, 0, 0, 0, ρ). If for some ρ the sys-
tem (4.3)–(4.10) has another solution (uε(ξ), vε(ξ), wε(ξ), εξ, U(ξ), V (ξ),W (ξ), ρ) such that
(U, V,W )→ (0, 0, 0) as ξ → ±∞ with U(ξ) 6≡ 0, then for λ = ρ

ε ,
(
λ,U(εξ)

)
is an eigenpair

for the linear equation (4.2).
For ε = 0, the equilibria of this system are dependent on the value of ρ. For

ρ 6= 0, the equilibria are the points in uxρ-space. For ρ = 0, the equilibria are the
points in uxU -space. In addition when ε = 0, u(ξ) is a travelling wave solution for (1.1)
with the speed x. Dodd shows in [5] that the only eigenvalue with real part nonnega-
tive of the linearization of (1.1) at a traveling wave is the simple eigenvalue 0. Thus,
for ε = 0 and each ρ with real part nonpositive, the system (4.3)–(4.10) has the solution
(u(ξ), v(ξ), w(ξ), x, U(ξ), V (ξ),W (ξ), ρ) such that (U, V,W ) → (0, 0, 0) as ξ → ±∞ with
U(ξ) 6≡ 0. For ρ with positive real part, the solution of (4.3)–(4.10) is (u(ξ), v(ξ), w(ξ), x, 0, 0, 0, ρ).

4.0.4 Jacobian

The Jacobian evaluated at one of the equilibria for ρ 6= 0 is

J(u, 0, 0, x, 0, 0, 0, ρ) =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 3u2−x

β −α
β 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 ρ

β
3u2−x
β −α

β 0
0 0 0 0 0 0 0 0


.
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Notice that this matrix is in the form of(
A0 0
0 A1

)
,

where A0 =


0 1 0 0
0 0 1 0
0 1

β (3u2 − x) −α
β 0

0 0 0 0

, and A1 =


0 1 0 0
0 0 1 0
ρ
β

3u2−x
β −α

β 0
0 0 0 0

 . We will

denote the matrix of the principal minor [A1]4,4 as A = A(ρ, u, x) =

 0 1 0
0 0 1
ρ
β

3u2−x
β −α

β

 .

The spectrum of J(u, 0, 0, x, 0, 0, 0, ρ) is simply the union of the spectra of A0 and of A1.
Since the spectrum of A0 is already computed, we only need to determine the spectrum of
A1. The characteristic polynomial of A1 is given by CA1(µ) = µ

(
µ3 + α

βµ
2 − 3u2−x

β µ− ρ
β

)
.

The nonzero eigenvalues of A1 and the eigenvalues of A are given as the roots of the cubic
g(µ) = µ3 + α

βµ
2 − 3u2−x

β µ− ρ
β .

4.1 Eigenvalues of A(ρ, u, x)

We first find conditions on ρ for which A(ρ, u, x) has an eigenvalue with 0 real
part. To do this we let µ = bi with b real, and solve the equation g(bi) = 0 for ρ. We obtain
ρ = −αb2 − ib(βb2 + 3u2 − x). Therefore Re(ρ) < 0 unless b = 0, in which case ρ = 0.

This tells us that when Re(ρ) ≥ 0 and ρ 6= 0, A(ρ, u, x) will have no pure imaginary
eigenvalues. Therefore for Re(ρ) ≥ 0 and ρ 6= 0, the number of eigenvalues of A(ρ, u, x) with
negative (respectively positive) real part never changes. We shall determine these numbers
by considering ρ ∈ R+.

If the three roots of g(µ) are given by µ1, µ2, and µ3, we can compare the product
of the factors to the expression for g(µ) and obtain the following relationships

−α
β

= µ1 + µ2 + µ3, (4.11)

x− 3u2

β
= µ1µ2 + µ1µ3 + µ2µ3,

ρ

β
= µ1µ2µ3.

Since both the leading coefficient of g(µ) and ρ are positive, then the vertical intercept is
negative and one of the roots must be positive. If we assume that µ1 > 0, then −α

β − µ1 =
µ2 +µ3 and ρ

µ1β
= µ2µ3. Since the sum of the remaining roots is negative and their product

is positive, those two roots must have negative real part.
So for all Re(ρ) > 0, two eigenvalues of A(ρ, u, x) will have real part negative and

one will have real part positive. Dodd tells us in [5], we know that ρ
ε such that Re(ρ) > 0 is

not an eigenvalue of the linearization of (1.1) at a travelling wave. We use this information
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to show that the ρ
ε values with Re(ρ) > 0 are not eigenvalues of the linear equation (4.2).

For ε = 0, we will investigate the behavior of the solutions of (4.3)–(4.10) when ρ > 0.
We begin by discussing appropriate manifolds in uvwxUVWρ-space, and their transversal
intersections for ρ > 0.

4.2 Transversal Intersections for ρ > 0

For ε = 0 and fixed ρ = ρ0 > 0, we define the following manifolds of equilibria:

K =
{

(u, 0, 0, x, 0, 0, 0, ρ0)
∣∣∣x < 3u2 − α2

3β

}
,

Ku`/m =
{

(u`/m, 0, 0, x, 0, 0, 0, ρ0)
∣∣∣x < 3(u`/m)2 − α2

3β

}
,

Kur =
{

(ur, 0, 0, x, 0, 0, 0, ρ0)
∣∣∣x > 3(ur)2 +

α2

3β

}
.

Observe that if ε = 0 and the u(ξ) component of a solution of (4.3)–(4.6) approaches
constants on the boundary, then u(ξ) is a travelling wave solution of (1.1). Consider the
point (u0, 0, 0, x0, 0, 0, 0, ρ0) where x0 is contained either in {x|x < 3u2 − α2

3β } or {x|x >

3u2 + α2

3β }. We will first describe the stable and unstable fibers of this point. We then
will describe the relevant stable and unstable manifolds of those manifolds of equilibria
mentioned above.

For (u1, v1, w1, x0) ∈ Ws
0(u0, 0, 0, x0), let (u(ξ), v(ξ), w(ξ)) be the solution of (4.3)–

(4.5), with (u(0), v(0), w(0)) = (u1, v1, w1) and x ≡ x0. Define Ss0(u1, v1, w1, x0, ρ0) as the
set of all (U1, V 1,W 1) such that if (U(ξ), V (ξ),W (ξ)) is the solution of (4.7)–(4.9) with
(U(0), V (0),W (0)) = (U1, V 1,W 1) and (u, v, w, x, ρ) = (u(ξ), v(ξ), w(ξ), x0, ρ0), then
(U(ξ), V (ξ),W (ξ))→ (0, 0, 0) as ξ →∞. Each Ss0(u1, v1, w1, x0, ρ0) is a vector space of di-
mension 2, and Ws

0(u0, 0, 0, x0, 0, 0, 0, ρ0) is the set of all points

(u1, v1, w1, x0, U1, V 1,W 1, ρ0) such that (u1, v1, w1, x0) ∈ Ws
0(u0, 0, 0, x0)

and (U1, V 1,W 1) ∈ Ss0(u1, v1, w1, x0, ρ0).

For (u1, v1, w1, x0) ∈ Wu
0 (u0, 0, 0, x0), let (u(ξ), v(ξ), w(ξ)) be the solution of (4.3)–(4.5),

with (u(0), v(0), w(0)) = (u1, v1, w1) and x ≡ x0. Let Su0 (u1, v1, w1, x0, ρ0) be the set of all
(U1, V 1,W 1) such that if (U(ξ), V (ξ),W (ξ)) is the solution of (4.7)–(4.9) with
(U(0), V (0),W (0)) = (U1, V 1,W 1) and (u, v, w, x, ρ) = (u(ξ), v(ξ), w(ξ), x0, ρ0), then
(U(ξ), V (ξ),W (ξ))→ (0, 0, 0) as ξ → −∞. Each Su0 (u1, v1, w1, x0, ρ0) is a vector space of
dimension 1, and Wu

0 (u0, 0, 0, x0, 0, 0, 0, ρ0) is the set of all points

(u1, v1, w1, x0, U1, V 1,W 1, ρ0) such that (u1, v1, w1, x0) ∈ Wu
0 (u0, 0, 0, x0)

and (U1, V 1,W 1) ∈ Su0 (u1, v1, w1, x0, ρ0).
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The stable fiber of a point (u, 0, 0, x, 0, 0, 0, ρ0) ∈ K is given byWs
0(u, 0, 0, x, 0, 0, 0,

ρ0). The collection of all of the stable fibers of each point in K will foliate the stable manifold
of K,Ws

0(K). For a fixed ρ value, the dimension of Ws
0(K) is 5.

The unstable fiber of each point (u`/m, 0, 0, x, 0, 0, 0, ρ0) ∈ Ku`/m is given by
Wu

0 (u`/m, 0, 0, x, 0, 0, 0, ρ0). The collection of all of the unstable fibers of each point in
Ku`/m will foliate the unstable manifold of Ku`/m ,Wu

0 (Ku`/m). For a fixed ρ value, the
dimension of Wu

0 (Ku`/m) is 3.
The stable fiber of a point (ur, 0, 0, x, 0, 0, 0, ρ0) ∈ Kur is given byWs

0(ur, 0, 0, x, 0, 0,
0, ρ0). The collection of all of the stable fibers of each point in Kur will foliate the stable
manifold of Kur ,Ws

0(Kur). For a fixed ρ value, the dimension of Ws
0(Kur)is 5.

Theorem 4 If ρ has positive real part, then for small ε > 0, the linear equation (4.1)
does not have ρ

ε as an eigenvalue with an eigenfunction that approaches 0 as x→ ±∞.

Proof. Recall when β > 0 that the system (3.15)–(3.18) has 1 or 2 travelling wave
solution(s). There is a possible travelling wave solution that starts out Wu

0 (Lu`) and ends
in Ws

0(Lur). Alternatively, there are possible travelling wave solutions in which one starts
in Wu

0 (Lu`) and ends in Ws
0(P ), and the other starts in Wu

0 (Lum) and ends in Ws
0(Lur).

When ρ > 0, ρ is not an eigenvalue of the linearization of (1.1) at a travelling wave,
(Dodd, [5]). Thus, Su0 (u(ξ), v(ξ), w(ξ), s∗, ρ0) meets Ss0(u(ξ), v(ξ), w(ξ), s∗, ρ0) transver-
sally at the origin. When there is only one shock wave for the related Riemann solution,
Wu

0 (Ku`) will meet Ws
0(Kur) transversally at the curve (ū1(ξ), v̄1(ξ), w̄1(ξ), s1, 0, 0, 0, ρ0).

When there are two shock waves for the corresponding Riemann solution, there will be
two pairs of transverse intersections. Wu

0 (Ku`) will transversally intersect Ws
0(K) along the

curve (ū2(ξ), v̄2(ξ), w̄2(ξ), s2, 0, 0, 0, ρ) and Wu
0 (Kum) will transversally intersect Ws

0(Kur)
along the curve (ū3(ξ), v̄3(ξ), w̄3(ξ), s3, 0, 0, 0, ρ).

It was shown with Theorem 1 that when ε > 0 is sufficiently small, there exists
a curve, (uε(ξ), vε(ξ), wε(ξ), εξ), which lies in the intersection of Wu

ε (Lu`) and Ws
ε (Lur).

The u component for x = εξ, ûε(x) = uε
(
x
ε

)
, is the Riemann–Dafermos solution. Using the

Exchange Lemma, we can track solutions on a portion ofWu
ε (Ku`) to a portion ofWu

0 (Kum).
Recall that Wu

0 (Kum) meets Ws
0(Kur) transversally. Also, we know by Fenichel’s Theorems

thatWs
ε (Kur) is C1 close toWs

0(Kur). SoWs
ε (Kur) can be tracked backwards toWu

0 (Kum).
This leads us to the conclusion that Wu

ε (Ku`) meets Ws
ε (Kur) transversally. Based on

the dimensions and descriptions of these two manifolds in uxρ-space, the intersection of
Wu
ε (Ku`) with Ws

ε (Kur) contains only the curve (uε(ξ), vε(ξ), wε(ξ), εξ, 0, 0, 0, ρ0). Since
λ = ρ0

ε > 0 is associated with U(ξ) ≡ 0, λ is not an eigenvalue for the linear equation (4.2).
2
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Chapter 5

Small Eigenvalues

Substituting ρ = ελ back into the system (4.3)–(4.10) gives rise to the following
system

uξ = v, (5.1)
vξ = w, (5.2)

wξ =
1
β

(3u2 − x)v − α

β
w, (5.3)

xξ = ε, (5.4)
Uξ = V, (5.5)
Vξ = W, (5.6)

Wξ =
1
β

[ελU + (3u2 − x)V + 6uvU − αW ], (5.7)

λξ = 0. (5.8)

Studying (5.1)–(5.8) is equivalent to studying (4.3)–(4.10) for ρ = ελ, which is near 0 for
small enough ε. Suppose the system (5.1)–(5.8) has a family of solutions

(uε(ξ), vε(ξ), wε(ξ), εξ, U(ε, ξ), V (ε, ξ),W (ε, ξ), λ(ε)), (5.9)

where we recall that ûε(x) = uε(xε ) is the Riemann–Dafermos solution. Then
(
λ(ε), U

(
ε, xε

))
is an eigenpair for the linear equation (4.1) on any space to which U

(
ε, xε

)
belongs.

Without loss of generality, we assume that the small eigenvalues take the form
λ0 +ελ1 +O(ε2) for small ε > 0. So for sufficently small ε < 1, the eigenvalues are contained
in a neighborhood about λ0. We were able to calculate the only possible value of λ0. If the
Riemann solution consists of one shock wave and λ 6= −1 + ελ1 + O(ε2), then the linear
equation (4.1) does not have λ as an eigenvalue with an eigenfunction that approaches 0
rapidly as x→ ±∞. If the Riemann solution consists of two shocks and λ 6= λ0+ελ1+O(ε2)
where λ0 is given by the expression (5.66), the linear equation (4.1) does not have λ as an
eigenvalue with an eigenfunction that approaches 0 rapidly as x → ±∞. We will clarify
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what it means to “approach 0 rapidly” in subsection 5.1.2. By looking for solutions of (5.1)-
(5.8) of the form (5.9), with the property that (U, V,W )→ (0, 0, 0) rapidly as ξ → ±∞, we
were able to find more conditions on the eigenfunctions of (4.1). This is revealed at the end
of the chapter.

5.1 Manifolds of equilibria

When ε = 0, the space of equilibria is given by uxUλ-space. The Jacobian evalu-
ated at one of those equilibria is given as the block diag(A0, A0). The nonzero eigenvalues
are the exact same ones as from (3.4), each having algebraic multiplicity of 2. So for
x < 3u2− α2

3β , we have 4 zero eigenvalues, 2 negative eigenvalues, and 2 positive eigenvalues.

When x > 3u2 + α2

3β , we have 4 zero eigenvalues and 4 eigenvalues with negative real part.
Therefore, for ε = 0 the manifolds of equilibria

M−0 =
{

(u, 0, 0, x, U, 0, 0, λ)
∣∣x < 3u2 − α2

3β

}
,

M+
0 =

{
(u, 0, 0, x, U, 0, 0, λ)

∣∣x > 3u2 +
α2

3β

}
,

are normally hyperbolic. By Fenichel’s theorem these manifolds perturb to normally hy-
perbolic invariant manifolds M±ε for small ε > 0. The equations of these manifolds must
take the form

v = v(u, x, U, λ, ε),
w = w(u, x, U, λ, ε),
V = V (u, x, U, λ, ε),
W = W (u, x, U, λ, ε).

Of course we have

v(u, x, U, λ, 0) = w(u, x, U, λ, 0) = V (u, x, U, λ, 0) = W (u, x, U, λ, 0) = 0.

In fact we know v(u, x, U, λ, ε) = w(u, x, U, λ, ε) = 0 for any ε. We also know that
V (u, x, U, λ, ε) and W (u, x, U, λ, ε) must be linear in U for fixed (u, x, λ, ε). Therefore,
on M±ε , V = A(u, x, λ, ε)U and W = B(u, x, λ, ε)U , where

A(u, x, λ, ε) =
(
A0(u, x, λ) + εA1(u, x, λ) +O(ε2)

)
,

B(u, x, λ, ε) =
(
B0(u, x, λ) + εB1(u, x, λ) +O(ε2)

)
.

When ε = 0, A(u, x, λ, 0) = A0(u, x, λ) and B(u, x, λ, 0) = B0(u, x, λ). Since on M±0 ,
V (u, x, λ, 0)=W (u, x, λ, 0) ≡ 0, both A0(u, x, λ) and B0(u, x, λ) are 0. So actually the
equations of M±ε are

V =
(
εA1(u, x, λ) +O(ε2)

)
U,

W =
(
εB1(u, x, λ) +O(ε2)

)
U.
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5.1.1 Differential Equation on M±
ε

Let Q±(ξ, ε) be respective solutions on M±ε . Assume that Q±(ξ, ε) take the form

Q±(ξ, ε) = (u(ξ, ε), (ξ, ε), (ξ, ε), x(ξ, ε), U(ξ, ε), V (ξ, ε),W (ξ, ε), λ(ε)).

We can expand the U component of Q±(ξ, ε) in powers of ε by U = U0(ξ) + εU1(ξ) +O(ε2).
After differentiating, we obtain U̇ = U̇0(ξ) + εU̇1(ξ) + O(ε2). From (5.1)–(5.8), we know
that U̇ = V . Thus,

U̇0 + εU̇1(ξ) +O(ε2) =
(
εA1(u, x, λ) +O(ε2)

)
U

=
(
εA1(u, x, λ) +O(ε2)

)(
U0(ξ) + εU1(ξ) +O(ε2)

)
= εA1(u, x, λ)U0(ξ) +O(ε2) .

From this, we have

U̇0 = 0,
U̇1(ξ) = A1(u, x, λ)U0(ξ).

Therefore, U0(ξ) = U0 is constant in ξ. In addition,

V̇ = ε
(
DuA

1uξ +DxA
1xξ
)
U + εA1(u, x, λ)

(
U̇0 + εU̇1

)
+O(ε2)

= ε
(
DuA

1v + εDxA
1
)
U + εA1(u, x, λ)U̇0 +O(ε2)

= ε2DxA
1U + εA1(u, x, λ)U̇0 +O(ε2)

= εA1(u, x, λ)U̇0 +O(ε2)
= 0 +O(ε2).

Similarly, Ẇ = 0 + O(ε2). From (5.1)–(5.8), we are able equate the two equations for Vξ
and obtain,

0 +O(ε2) = W = εB1(u, x, λ)U +O(ε2).

This reveals to us that B1(u, x, λ) = 0. Therefore, the W components of Q±(ξ, ε) are 0 up
to the order of ε. Equating the two equations for Ẇ , we obtain

0 +O(ε2) =
1
β

(
ελU + (3u2 − x)V + 6uvU − αW

)
=

1
β

(
ελU + (3u2 − x)εA1(u, x, λ)U + 6uvU − αεB1(u, x)U +O(ε2)

)
=

1
β

((
λ+ (3u2 − x)A1(u, x, λ)

)
εU +O(ε2)

)
.

This informs us that A1(u, x, λ) = λ
x−3u2 . Thus, the equations of M±ε are

v = 0,
w = 0,

V =
ελ

x− 3u2
U +O(ε2),

W = O(ε2).
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The differential equations on M±ε are

uξ = 0, (5.10)
xξ = ε, (5.11)

Uξ =
ελ

x− 3u2
U +O(ε2), (5.12)

λξ = 0. (5.13)

5.1.2 The connection with solutions of (5.1)–(5.8).

Let

Mu` =
{

(u`, 0, 0, x, 0, 0, 0, λ)
∣∣x < 3(u`)2 − α2

3β

}
.

Notice that Mu` has dimension 2 and is an invariant subset of M−ε for every ε. (In mak-
ing dimension counts, we shall ignore the fact that λ is complex and not real and that
(U, V,W ) ∈ C3 and not R3. Considering this information simply doubles the dimension
counts for λ and (U, V,W ).) Let

Mur =
{

(ur, 0, 0, x, 0, 0, 0, λ)
∣∣x > 3(ur)2 +

α2

3β

}
.

Similarly, Mur has dimension 2 and is an invariant subset of M+
ε for every ε. We are

interested in solutions (5.9) of (5.1)–(5.8) that approach Mu` as ξ → −∞ and Mur as
ξ →∞. If we can find one with U(ε, ξ) 6≡ 0, then U(ε, ξ) is an eigenfunction.

For (u2, v2, w2, x0) ∈ Ws
0(ur, 0, 0, x0), let (u(ξ), v(ξ), w(ξ)) be the solution of (5.1)–

(5.3), with (u(0), v(0), w(0)) = (u2, v2, w2) and x ≡ x0. Let Ss0(u2, v2, w2, x0) be the set of
all (U2, V 2,W 2) such that if (U(ξ), V (ξ),W (ξ)) is the solution of (5.5)–(5.7) when ε = 0,
with (U(0), V (0),W (0)) = (U2, V 2,W 2) and (u, v, w, x) = (u(ξ), v(ξ), w(ξ), x0), then
(U(ξ), V (ξ),W (ξ))→ (0, 0, 0) as ξ →∞. Each Ss0(u2, v2, w2, x0) is a vector space of dimen-
sion 2, and Ws

0(ur, 0, 0, x0, 0, 0, 0, λ0) is the set of all points

(u2, v2, w2, x0, U2, V2,W2, λ0) such that (u2, v2, w2, x0) ∈ Ws
0(ur, 0, 0, x0)

and (U2, V 2,W 2) ∈ Ss0(u2, v2, w2, x0).

The stable fiber of a point (ur, 0, 0, x, 0, 0, 0, λ) ∈ Mur is a 4-dimensional manifold and is
given by Ws

0(ur, 0, 0, x, 0, 0, 0, λ). The collection of these fibers foliates the 6-dimensional
manifold Ws

0(Mur).
For (u2, v2, w2, x0) ∈ Wu

0 (u2, 0, 0, x0), let (u(ξ), v(ξ), w(ξ)) be the solution of (5.1)–
(5.3), with (u(0), v(0), w(0)) = (u2, v2, w2) and x ≡ x0. Let Su0 (u2, v2, w2, x0) be the
set of all (U2, V 2,W 2) such that if (U(ξ), V (ξ),W (ξ)) is the solution of (5.5)–(5.7) with
(U(0), V (0),W (0)) = (U2, V 2,W 2) and (u, v, w, x) = (u(ξ), v(ξ), w(ξ), x0), then
(U(ξ), V (ξ),W (ξ))→ (0, 0, 0) as ξ → −∞. Each Su0 (u2, v2, w2, x0) is a vector space of di-
mension 1, and Wu

0 (u0, 0, 0, x0, 0, 0, 0, λ0) is the set of all points

(u2, v2, w2, x0, U2, V 2,W 2) such that (u2, v2, w2, x0) ∈ Wu
0 (u0, 0, 0, x0)
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and (U2, V 2,W 2) ∈ Su0 (u2, v2, w2, x0).

The unstable fiber of a point (u`, 0, 0, x, 0, 0, 0, λ) ∈Mu` is a 2-dimensional manifold given
byWu

0 (u`, 0, 0, x, 0, 0, 0, λ). The collection of these fibers foliates the 4-dimensional manifold
Wu

0 (Mu`).
M−ε is a normally hyperbolic invariant manifold, so each of its points has an

unstable fiber. Wu
ε (Mu`) is the union of the unstable fibers of the points of Mu` , which

is a subset of M−ε . So Wu
ε (Mu`) is the set of points whose backwards orbit approaches

Mu` rapidly as ξ → −∞. There may be orbits in M−ε for small ε > 0 that approach Mu`

slowly as ξ → −∞. Then points in their unstable fibers would also approach Mu` slowly
as ξ → −∞. We will not consider such solutions in this chapter. In the next chapter we
consider solutions that go to zero at at least a certain rate. By considering solutions that
go to zero at at least a certain rate, we again omit any solutions that very slowly approach
Mu` .

In uvwxUVWλ-space, we expect that for small ε > 0, the intersection ofWu
ε (Mu`)

with Ws
ε (Mur) to be 2 dimensional. We will show that the set{

(uε(ξ), u̇ε(ξ), üε(ξ), εξ, 0, 0, 0, λ)
∣∣λ = λ0 + ελ1 +O(ε2)

}
, (5.14)

is contained in the intersection. If Wu
ε (Mu`) and Ws

ε (Mur) meet transversally at a point
on this 2-dimensional manifold with λ = λ0 + ελ1 + O(ε2), there are no other solutions
nearby. We now consider the possibility of having additional solutions.

The solutions of interest are those that rapidly approach a solution in Mu` as
ξ → −∞ and a solution in Mur as ξ →∞. On Mu` , a solution takes the form

Q−
u`

(ξ, ε) = (u`, 0, 0, x(ξ, ε), 0, 0, 0, λ),

and a solution on Mur takes the form

Q+
ur(ξ, ε) = (ur, 0, 0, x(ξ, ε), 0, 0, 0, λ).

In the two waves case, we must consider an additional condition for the solutions
of interest. We expect that when s2

ε ≤ ξ ≤
s3
ε , the solutions are near

Q∗um(ξ, ε) = (u(ε), v(ξ, ε), w(ξ, ε), x(ξ, ε), U(ξ, ε), V (ξ, ε),W (ξ, ε), λ(ε)),

a solution of Mum
ε where

Mum

ε =
{

(u(ε), v(ξ, ε), w(ξ, ε), x(ξ, ε), U(ξ, ε), V (ξ, ε),W (ξ, ε), λ(ε))
∣∣∣x(ξ, ε) < 3u2(ε)− α2

3β

}
.

Please note that Mum
ε is a 2-dimensional invariant subset of M−ε for every ε. Please note

that when ε = 0,

Mum

0 =
{

(um, 0, 0, x, 0, 0, 0, λ)
∣∣∣x < 3(um)2 − α2

3β

}
.
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5.2 Solution of Interest of System (5.1)-(5.8)

Consider the differential equation

Ẋ = F (X). (5.15)

Suppose that X(ξ) is a solution to (5.15). The corresponding linearized differential equation
at X(ξ) is

Ẏ = DF (X(ξ))Y. (5.16)

Differentiating both sides of (5.15) gives rise to Ẍ = DF (X)Ẋ. This implies that Ẋ solves
(5.16), the linearized differential equation. So if we let

(u, v, w) = (u∗(ξ), v∗(ξ), w∗(ξ), x∗)

be a solution of (5.1)–(5.3) for ε = 0, then one solution of (5.5)–(5.7) for ε = 0 is

(U, V,W ) = (u̇∗(ξ), v̇∗(ξ), ẇ∗(ξ)).

Since a multiple of a solution is again a solution, for the constant k, we have

(U, V,W ) = (ku̇∗(ξ), kv̇∗(ξ), kẇ∗(ξ))

as a solution.
Recall from Chapter 3 that when there is only one travelling wave present, it is

given by (ū1(ξ), v̄1(ξ), w̄1(ξ)) with speed s1. When there are two travelling waves present,
they are respectively given by (ū2(ξ), v̄2(ξ), w̄2(ξ)) and (ū3(ξ), v̄3(ξ), w̄3(ξ)) with respective
speeds s2 and s3. In (u, v, w, x, U, V,W, λ)-space with λ = λ0 fixed and with kj given as
constants such that k1 6= 0 and k2 and k3 are not both 0, we define the following 8 curves:

C1 =
{

(u`, 0, 0, x, 0, 0, 0, λ0)
∣∣x ≤ s1

}
,

C2 =
{

(ū1(ξ), v̄1(ξ), w̄1(ξ), s1, k1ū
1
ξ , k1v̄

1
ξ , k1w̄

1
ξ , λ0)

∣∣−∞ < ξ <∞
}
,

C3 =
{

(ur, 0, 0, x, 0, 0, 0, λ0)
∣∣x ≥ s1

}
,

C4 =
{

(u`, 0, 0, x, 0, 0, 0, λ0)
∣∣x ≤ s2

}
,

C5 =
{

(ū2(ξ), v̄2(ξ), w̄2(ξ), s2, k2ū
2
ξ , k2v̄

2
ξ , k2w̄

2
ξ , λ0)

∣∣−∞ < ξ <∞
}
,

C6 =
{

(um, 0, 0, x, 0, 0, 0, λ0)
∣∣s2 ≤ x ≤ s3

}
,

C7 =
{

(ū3(ξ), v̄3(ξ), w̄3(ξ), s3, k3ū
3
ξ , k3v̄

3
ξ , k3w̄

3
ξ , λ0)

∣∣−∞ < ξ <∞
}
,

C8 =
{

(ur, 0, 0, x, 0, 0, 0, λ0)
∣∣x ≥ s3

}
.

In the case of a one-wave Riemann solution, we will look for values of λ0 for which
(5.1)–(5.8) has, for small ε > 0, a solution near

{
C1 ∪ C2 ∪ C3}. In the case of a two-wave

Riemann solution, we will look for values of λ0 for which (5.1)–(5.8) has, for small ε > 0, a
solution near

{
C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8

}
.
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Let (u∗(ξ), v∗(ξ), w∗(ξ), x∗) denote either

(ū1(ξ), v̄1(ξ), w̄1(ξ), s1), (ū2(ξ), v̄2(ξ), w̄2(ξ), s2), or (ū3(ξ), v̄3(ξ), w̄3(ξ), s3).

Let R(ξ, 0) = (u∗(ξ), v∗(ξ), w∗(ξ), x∗, kj u̇∗(ξ), kj v̇∗(ξ), kjẇ∗(ξ), λ0) be a solution of (5.1)-
(5.8) for ε = 0 that parameterizes the curve C2, C5 or C7. Let

R(ξ, ε) = (u(ξ, ε), v(ξ, ε), w(ξ, ε), x(ξ, ε), U(ξ, ε), V (ξ, ε),W (ξ, ε), λ(ε))

be a perturbation of this solution. Then

u(ξ, ε) = u∗(ξ) + εu1(ξ) +O(ε2), (5.17)
v(ξ, ε) = v∗(ξ) + εv1(ξ) +O(ε2), (5.18)
w(ξ, ε) = w∗(ξ) + εw1(ξ) +O(ε2), (5.19)
x(ξ, ε) = x∗ + εx1(ξ), (5.20)
U(ξ, ε) = kj u̇

∗(ξ) + εU1(ξ) +O(ε2), (5.21)
V (ξ, ε) = kj v̇

∗(ξ) + εV1(ξ) +O(ε2), (5.22)
W (ξ, ε) = kjẇ

∗(ξ) + εW1(ξ) +O(ε2), (5.23)
λ = λ0 + ελ1 +O(ε2). (5.24)

We investigate the solution of (5.1)–(5.8) when ε = 0. Differentiating (5.17)–(5.23) produces

u̇(ξ, ε) = u̇∗(ξ) + εu̇1(ξ) +O(ε2), (5.25)
v̇(ξ, ε) = v̇∗(ξ) + εv̇1(ξ) +O(ε2), (5.26)
ẇ(ξ, ε) = ẇ∗(ξ) + εẇ1(ξ) +O(ε2), (5.27)
ẋ(ξ, ε) = εẋ1(ξ), (5.28)
U̇(ξ, ε) = kj ü

∗(ξ) + εU̇1(ξ) +O(ε2), (5.29)
V̇ (ξ, ε) = kj v̈

∗(ξ) + εV̇1(ξ) +O(ε2), (5.30)
Ẇ (ξ, ε) = kjẅ

∗(ξ) + εẆ1(ξ) +O(ε2). (5.31)
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From (5.1)–(5.8) with substitutions from (5.17)–(5.23), we can conclude that

u̇(ξ, ε) = v∗(ξ) + εv1(ξ) +O(ε2), (5.32)
v̇(ξ, ε) = w∗(ξ) + εw1(ξ) +O(ε2), (5.33)

ẇ(ξ, ε) =
1
β

(3(u∗(ξ))2v∗(ξ) + 3ε(u∗(ξ))2v1(ξ) + 6εu∗(ξ)u1(ξ)v∗(ξ) (5.34)

−x∗v∗(ξ)− εx∗v1(ξ)− εx1(ξ)v∗(ξ)− αw∗(ξ)− εαw1(ξ) +O(ε2)),
ẋ(ξ, ε) = ε, (5.35)
U̇(ξ, ε) = kj v̇

∗(ξ) + εV1(ξ) +O(ε2), (5.36)
V̇ (ξ, ε) = kjẇ

∗(ξ) + εW1(ξ) +O(ε2), (5.37)

Ẇ (ξ, ε) =
1
β

(
εkjλ0u̇

∗(ξ) + 3kj(u∗(ξ))2v̇∗(ξ) + 3ε(u∗(ξ))2V1(ξ) (5.38)

+6kjεu∗(ξ)u1(ξ)v̇∗(ξ)− kjx∗v̇∗(ξ)− εx∗V1(ξ)− εkjx1(ξ)v̇∗(ξ)
+6kju∗(ξ)v∗(ξ)u̇∗(ξ) + 6εu∗(ξ)v∗(ξ)U1(ξ) + 6εkju∗(ξ)v1(ξ)u̇∗(ξ)

+6εkju1(ξ)v∗(ξ)u̇∗(ξ)− αkjẇ∗(ξ)− αεW1(ξ) +O(ε2)

)
.

Equating the common expressions from (5.25)–(5.31) and (5.32)–(5.38) yields

u̇1(ξ) = v1(ξ), (5.39)
v̇1(ξ) = w1(ξ), (5.40)

ẇ∗(ξ) + εẇ1(ξ) =
1
β

(
3(u∗(ξ))2v∗(ξ)− x∗v∗(ξ)− αw∗(ξ) (5.41)

+
∂

∂ξ

[
3ε(u∗(ξ))2u1(ξ)

]
− ε
(
x∗v1(ξ) + x1(ξ)v∗(ξ) + αw1(ξ)

))
,

ẋ1(ξ) = 1, (5.42)
U̇1(ξ) = V1(ξ), (5.43)
V̇1(ξ) = W1(ξ), (5.44)

kjẅ
∗(ξ) + εẆ1(ξ) =

kj
β

(
∂

∂ξ

[
3(u∗(ξ))2v∗(ξ)

]
− x∗v̇∗(ξ)− αẇ∗(ξ)

)
(5.45)

+
ε

β

(
λ0kj u̇

∗(ξ)− x∗V1(ξ)− kjx1(ξ)v̇∗(ξ)− αW1(ξ))

+
∂

∂ξ

[
3(u∗(ξ))2U1(ξ) + 6kju∗(ξ)v∗(ξ)u1)

])
.
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We are able to derive the following two equations from (5.39)–(5.45).

βẇ1(ξ) =
∂

∂ξ

[
3(u∗(ξ))2u1(ξ)

]
− x∗v1(ξ)− x1(ξ)v∗(ξ)− αw1(ξ) (5.46)

βẆ1(ξ) = λ0kj u̇
∗(ξ)− x∗V1(ξ)− kjx1(ξ)v̇∗(ξ)− αW1(ξ)) (5.47)

+
∂

∂ξ

[
3(u∗(ξ))2U1(ξ) + 6kju∗(ξ)v∗(ξ)u1)

]
.

Before we can investigate the equations (5.46)–(5.47), we need to determine the
behavior of V1 and W1 on the solution of interest. To do this, we must track this solution of
interest and determine the behavior of its limiting solutions. Since it is approaching these
limiting solutions, its long time behavior will be close to that of the limiting solutions.

5.3 Behavior of R(ξ, ε) near M±
ε

For small ε > 0, let Q−
u`

(ξ, ε) and Q+
ur(ξ, ε) be respectively solutions on Mu` and

Mur . So the nonzero coordinates of Q−
u`

(ξ, ε) take the form

u(ξ, ε) = u`,

x(ξ, ε) =
(
s∗ + εx∗1 +O(ε2)

)
+ εξ,

λ(ε) = λ0 + ελ1 +O(ε2),

where s∗ is s1 or s2. The nonzero coordinates of Q+
ur(ξ, ε) take the form

u(ξ, ε) = ur,

x(ξ, ε) =
(
sj + εx∗1 +O(ε2)

)
+ εξ,

λ(ε) = λ0 + ελ1 +O(ε2),

where sj is s1 or s3. In addition, for small ε > 0 onM−ε , we consider the solution Q∗um(ξ, ε)
with its nonzero coordinates given by

u(ξ, ε) = um + εum1 +O(ε2),
x(ξ, ε) =

(
s+ εx∗1 +O(ε2)

)
+ εξ,

U(ξ, ε) = εU1 +O(ε2),
V (ξ, ε) = O(ε2),
W (ξ, ε) = O(ε2),

λ(ε) = λ0 + ελ1 +O(ε2),

where s2 ≤ s ≤ s3.
We want to track Wu

ε (Mu`) as it passes near C5 and then arrives near the middle
of C6. Similarly we want to track Ws

ε (Mur) backwards as it passes near C7 and then
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arrives near the middle of C6. Define the portion of a solution of (5.1)–(5.7) that is located
in Wu

ε (Mu`) as

R−(ξ, ε) =
(
u(ξ, ε), v(ξ, ε), w(ξ, ε), x∗ + εξ, U(ξ, ε), V (ξ, ε),W (ξ, ε), λ(ε)

)
,

such that
(
U(ξ), V (ξ),W (ξ)

)
→ (0, 0, 0) as ξ → −∞. So we have R−(ξ, ε) → Q−

u`
(ξ, ε)

as ξ → −∞ and R−(ξ, ε) → Q∗um(ξ, ε) as ξ increases. Define the portion of a solution of
(5.1)–(5.7) that is located in Ws

ε (Mur) as

R+(ξ, ε) =
(
u(ξ, ε), v(ξ, ε), w(ξ, ε), x∗ + εξ, U(ξ, ε), V (ξ, ε),W (ξ, ε), λ(ε)

)
,

such that
(
U(ξ), V (ξ),W (ξ)

)
→ (0, 0, 0) as ξ →∞. Thus, we have R+(ξ, ε)→ Q+

ur(ξ, ε) as
ξ →∞ and R+(ξ, ε)→ Q∗um(ξ, ε) as ξ decreases.

As ξ → −∞, R−(ξ, ε) will converge to Q−
u`

(ξ, ε) component-wise.

u(ξ, ε) → u`,

v(ξ, ε) → 0,
w(ξ, ε) → 0,
x(ξ, ε) → s∗ + εx∗1 + εξ +O(ε2),
U(ξ, ε) → 0,
V (ξ, ε) → 0,
W (ξ, ε) → 0.

As ξ →∞, R+(ξ, ε) will converge to Q+
ur(ξ, ε) component-wise.

u(ξ, ε) → ur,

v(ξ, ε) → 0,
w(ξ, ε) → 0,
x(ξ, ε) → sj + εx∗1 + εξ +O(ε2),
U(ξ, ε) → 0,
V (ξ, ε) → 0,
W (ξ, ε) → 0.

In the two waves case, we must consider how close Wu
ε (Mu`) and Ws

ε (Mur) are to M−ε .
We will show in section 5.6.2 that as ξ increases, R−(ξ, ε) gets close to a solution on M−ε
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for a span of time, component-wise in the following manner

u(ξ, ε) → um + εum1 +O(ε2),
v(ξ, ε) → 0,
w(ξ, ε) → 0,
x(ξ, ε) → s2 + εx∗1 + εξ +O(ε2),
U(ξ, ε) → εU1 +O(ε2),
V (ξ, ε) → O(ε2),
W (ξ, ε) → O(ε2).

Recall in subsection 5.1.1 we expanded U as U0 + εU1 + O(ε2). Also recall that we have
shown in section 5.2 that for small ε > 0, U = u̇ = v. This implies that U0 = v. On
M±ε , v = 0 for all ε. Thus, U0 ≡ 0. Since U̇1 = A1(u, x, λ)U0, U1 must be a constant. So
we have both um1 and U1 as constants. We will show in section 5.6.2 that as ξ decreases,
R+(ξ, ε) gets close to a solution onM−ε for a span of time, component-wise in the following
manner

u(ξ, ε) → um + εum1 +O(ε2),
v(ξ, ε) → 0,
w(ξ, ε) → 0,
x(ξ, ε) → s3 + εx∗1 + εξ +O(ε2),
U(ξ, ε) → εU1 +O(ε2),
V (ξ, ε) → O(ε2),
W (ξ, ε) → O(ε2).

5.4 Riemann Solution: One Wave

Please observe that when the Riemann solution consists of one wave, we have
v(±∞, ε) = w(±∞, ε) = U(±∞, ε) = V (±∞, ε) = W (±∞, ε) = 0. Integrating equations
(5.46) and (5.47) over R will produce the following results:
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From Equation (5.46) we have,

β

∫ ∞
−∞

ẇ1(ξ)dξ =
∫ ∞
−∞

(
∂

∂ξ

[
3(u∗(ξ))2u1(ξ)

]

−x∗v1(ξ)− x1(ξ)v∗(ξ)− αw1(ξ)

)
dξ

0 = −
∫ ∞
−∞

x1(ξ)v∗(ξ)dξ

0 = −
∫ ∞
−∞

(x∗1 + ξ)v∗(ξ)dξ

0 = −x∗1(ur − u`)−
∫ ∞
−∞

ξv∗(ξ)dξ

⇒ x∗1 =

∫∞
−∞ ξv

∗(ξ)dξ
u` − ur

.

From Equation (5.47), we have

β

∫ ∞
−∞

Ẇ1(ξ)dξ =
∫ ∞
−∞

(
λ0u̇

∗(ξ)− x∗V1(ξ)− x1(ξ)v̇∗(ξ)

−αW1(ξ)) +
∂

∂ξ

[
3(u∗(ξ))2U1(ξ) + 6u∗(ξ)v∗(ξ)u1(ξ))

])
dξ

0 = λ0

∫ ∞
−∞

u̇∗dξ −
∫ ∞
−∞

x1(ξ)v̇∗(ξ)dξ

0 = λ0(ur − u`)− x1(ξ)v∗(ξ)
∣∣∣∞
−∞

+
∫ ∞
−∞

v∗(ξ)ẋ1dξ

0 = λ0(ur − u`) +
∫ ∞
−∞

v∗(ξ)dξ

0 = λ0(ur − u`) + (ur − u`)
⇒ λ0 = −1.

5.4.1 Discussion

Recall the descriptions ofWu
0 (Mu`) andWs

0(Mur) in subsection 5.1.2. For a fixed
λf , Wu

0 (Mu`) and Ws
0(Mur) are 3- and 5-dimensional respectively. To be transverse in

R7, the intersection must have dimension 1. Their intersection consists of the family of
curves C2, defined in section 5.2. The union of these curves is a manifold parameterized
by ξ, k1 ∈ R, so it is 2-dimensional. Having a 2-dimensional intersection implies that the
tangent spaces of Wu

0 (Mu`) and Ws
0(Mur) will not span R7. Thus, the two spaces will not

be transverse.
For small ε > 0 and λf 6= −1 + ελ1 + O(ε2), the intersection of Wu

ε (Mu`) and
Ws
ε (Mur) is given by (5.9). Having a 1-dimensional intersection implies that the tangent
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spaces of Wu
ε (Mu`) and Ws

ε (Mur) will span R7. So the interpretation of the calculation
in this section is that for small ε > 0 and fixed λf 6= −1 + ελ1 +O(ε2), the intersection of
Wu
ε (Mu`) and Ws

ε (Mur) becomes transverse.

5.5 The Adjoint Solution

Consider the system (3.22)–(3.23) with x = x∗. We assume that for u = u− and
z∗ = xu− − (u−)3, there is a solution (u∗(ξ), v∗(ξ)) of (3.22)–(3.23) that goes from the
equilibrium (u−, 0) to a second equilibrium (u+, 0) with u+ 6= u−. Then (u∗(ξ), v∗(ξ), z∗)
is a solution of (3.22)–(3.23) that goes from the equilibrium (u−, 0, z∗) to the equilibrium
(u+, 0, z∗). The linearization of (3.22)–(3.23) along this solution is

Ẋ = Â(ξ)X (5.48)

where X =

 U1

V1

Z1

 and Â =

 0 1 0
3(u∗(ξ))2−x∗

β −α
β

1
β

0 0 0

.

In this section we consider adjoint solutions of (5.48). This information is vital to under-
standing the solution of (5.1)–(5.8) when the Riemann solution consists of two waves.

The adjoint system corresponding to the given homogeneous system is Ψ′ =
−ΨÂ(ξ), where Ψ is in the form of a row vector. An equivalent system for Ψ given as
a column vector is Ψ′ = −Â(ξ)

ᵀ
Ψ. Either system can be written as

Ψ̇1 =
x∗ − 3u∗2

β
Ψ2,

Ψ̇2 = −Ψ1 +
α

β
Ψ2,

Ψ̇3 = − 1
β

Ψ2.

Since Ψ̇1 and Ψ̇2 are decoupled from Ψ3, one can try to use Ψ̇1 and Ψ̇2 to solve for Ψ1 and

Ψ2. Afterwards, one can use Ψ2 to find Ψ3. Furthermore, Ψ3 = − 1
β

∫
Ψ2(τ)dτ . Another

solution is given by the constant vector E3 = ( 0 0 1 ). For i = 1, 2, the adjoint solutions

are in the form of c0E3 +
∑2

i=1 ci

(
Ψi

1 Ψi
2 − 1

β

∫
Ψi

2(τ)dτ
)

. We now consider the 2-
dimensional system

(Ψ̇1, Ψ̇2) = (Ψ1,Ψ2)D(ξ), (5.49)

where

D(ξ) =

(
0 −1

x−3u2

β
α
β

)
.
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5.5.1 Ψ1(ξ) and Ψ2(ξ)

Consider the differential equation Ẋ = C(ξ)X, where X ∈ R2 and

C(ξ) =
(
a(ξ) b(ξ)
c(ξ) d(ξ)

)
. Suppose a solution to the differential equation is given by X =(

X1

X2

)
. The corresponding adjoint system is given by Ψ̇ = −ΨC(ξ).

Proposition 1 A solution to the adjoint system is

Ψ(ξ) =
(

Ψ1(ξ) Ψ2(ξ)
)

=
(
−e−

R ξ
0 trace{A(s)}dsX2 e−

R ξ
0 trace{A(s)}dsX1

)
.

Proof. Differentiating Ψ produces the following equations:

dΨ1

dξ
= (a(ξ) + d(ξ))e−

R ξ
0 (a(s)+d(s))dsX2 − e−

R ξ
0 (a(s)+d(s))dsẊ2

= (a(ξ) + d(ξ))e−
R ξ
0 (a(s)+d(s))dsX2 − e−

R ξ
0 (a(s)+d(s))ds(c(ξ)X1 + d(ξ)X2)

= a(ξ)e−
R ξ
0 (a(s)+d(s))dsX2 − e−

R ξ
0 (a(s)+d(s))dsc(ξ)X1,

dΨ2

dξ
= −(a(ξ) + d(ξ))e−

R ξ
0 (a(s)+d(s))dsX1 + e−

R ξ
0 (a(s)+d(s))dsẊ1

= −(a(ξ) + d(ξ))e−
R ξ
0 (a(s)+d(s))dsX1 + e−

R ξ
0 (a(s)+d(s))ds(a(ξ)X1 + b(ξ)X2)

= −d(ξ)e−
R ξ
0 (a(s)+d(s))dsX1 + e−

R ξ
0 (a(s)+d(s))dsb(ξ)X2.

The differential equation for the adjoint system is given by

Ψ̇ = −ΨA(ξ)

=
(
e−

R ξ
0 (a(s)+d(s))dsX2 −e−

R ξ
0 (a(s)+d(s))dsX1

)( aξ b(ξ)
c(ξ) d(ξ)

)
=

(
e−

R ξ
0 (a(s)+d(s))dsX2a(ξ)− e−

R ξ
0 (a(s)+d(s))dsX1c(ξ)

e−
R ξ
0 (a(s)+d(s))dsX2b(ξ)− e−

R ξ
0 (a(s)+d(s))dsX1d(ξ)

)ᵀ

.

This is the same result as the one found by calculating the derivatives directly. 2

Let

U∗ = u̇∗ = v∗ and V ∗ = v̇∗ =
1
β

(
z − x∗u∗(ξ) + (u∗)3(ξ)− αv∗(ξ)

)
.

Then (U∗, V ∗, 0) is a solution of (5.48). Hence by Proposition 1,

(Ψ1,Ψ2) = e−
R ξ
0 traceD(τ)dτ (−v̇∗, v∗) (5.50)

is a solution of the adjoint equation. Please note,

e−
R ξ
0 traceD(τ)dτ (−v̇∗, v∗) = e−

R ξ
0 (λ1(τ)+λ2(τ))dτ (−v̇∗, v∗),
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where λ1(τ), λ2(τ) are the eigenvalues of D(τ). As τ → ±∞, λi(τ)→ λ±i , for some nonzero
λ±i ’s. Furthermore, the λ−i values will have opposing signs and λ+

i values will be negative.
When τ → −∞, the equilibria are saddles, which indicates λ−1 < 0 < λ−2 . If

for nonzero constant d1 U
∗(ξ) ≈ d1e

λ−2 ξ, then there exists a nonzero constant d2 so that
V ∗(ξ) ≈ d2e

λ−2 ξ when ξ near −∞. This implies that for ξ near −∞,

e−
R ξ
0 traceD(τ)dτ (−v̇∗, v∗) ≈ e−

R ξ
0 (λ−1 +λ−2 )dτ (−v̇∗, v∗)

= e(−λ−1 −λ
−
2 )ξ(−v̇∗, v∗)

= e(−λ−1 −λ
−
2 )ξ(−d2e

λ−2 ξ, d1e
λ−2 ξ)

= (−d2e
−λ−1 ξ, d1e

−λ−1 ξ).

Notice that as ξ → −∞, (−d2e
−λ−1 ξ, d1e

−λ−1 ξ) → (0, 0). However, if we consider U∗(ξ) ≈
d1e
−λ−2 ξ when ξ near∞, then as ξ →∞ both U∗(ξ) and V ∗(ξ) will converge to 0. Therefore,

if we consider a solution that decays to 0 when ξ → ±∞, then its adjoint solution will also
decay to 0 when ξ → ±∞.

We approximate the adjoint solutions to be

Ψ = (Ψ1,Ψ2,Ψ3) =
(
−e−

α
β
ξ
v̇∗, e

−α
β
ξ
v∗,

1
β

∫ ∞
ξ

e
−α
β
ξ
v∗dξ

)
. (5.51)

5.5.2 Inhomogeneous Equation

Consider the inhomogeneous equation

Ψ̇ = −ΨÂ(ξ) +H, (5.52)

where H =

 0
0

d
dξ (6u∗(ξ)u1(ξ)v(ξ) + λ0u(ξ)− x∗1v∗(ξ))− ξw∗(ξ)

.

Let X be a solution of (5.52), and let Ψ be a solution of Ψ̇ = −ΨÂ(ξ). Then∫ ∞
−∞

ΨHdτ =
∫ ∞
−∞

Ψ(Ẋ − Â(ξ)X)dξ

=
∫ ∞
−∞

(ΨẊ −ΨÂ(ξ)X)dξ

=
∫ ∞
−∞

(ΨẊ + Ψ̇X)dξ

=
∫ ∞
−∞

(ΨX)′dξ

= (ΨX)(∞)− (ΨX)(−∞)

Remark 3 This integral exists if one of the following occurs:
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1. Ψ(ξ) must be bounded when X(∞) 6= 0 or X(−∞) 6= 0,

2. Ψ(ξ) must not grow faster than X(ξ) decays to 0 at ±∞.

Observe that the first two components of H are 0 in (5.52). This implies
∫∞
−∞ΨHdξ =∫∞

−∞Ψ3H3dξ. Alternatively, for i = 1, 2, 3,

∫ ∞
−∞

ΨHdξ = (ΨX)(∞)− (ΨX)(−∞) =
3∑
i=1

(ΨiXi)(∞)− (ΨiXi)(−∞).

The previous subsection gives us a good candidate for the first 2 components of
our adjoint system. If we choose our solution U∗(ξ) that converges to 0 on the boundary,
V ∗(ξ) will also go to 0 on the boundary due to the nature of our problem. Moreover, the
corresponding first two components of our chosen adjoint solution will converge to 0 on the
boundary as well. Thus, (ΨiXi)(∞) = (ΨiXi)(−∞) = 0, for i = 1, 2. Therefore,∫ ∞

−∞
ΨHdξ = (Ψ3X3)(∞)− (Ψ3X3)(−∞). (5.53)

5.6 Riemann Solution: Two Waves

We denote RD1 as the portion of the solution of (5.1)-(5.3) that asymptotically
approaches Mu`

0 as ξ → −∞ and stays near Mum
0 as ξ increases from −∞. Let RD2 be

the portion of the solution that asymptotically approaches Mur
0 as ξ → ∞ and stays near

Mum
0 as ξ decreases from ∞. Similarly, we denote by LRD1, the portion of the solution of

(5.5)-(5.8) that is associated with RD1 and approaches zero as ξ → −∞, and LRD2 as the
portion of the solution that is associated with RD2 and approaches zero as ξ →∞.

5.6.1 Riemann–Dafermos solution portion

Under the change of coordinates

u1 = u1, v1 = v1, and z1(ξ) = w1 − αv1 − (3(u∗)2 − x∗)u1, (5.54)

(5.39)–(5.41) becomes

u̇1(ξ) = v1(ξ), (5.55)

v̇1(ξ) =
1
β

(
z1(ξ) + (3(u∗(ξ))2 − x∗)u1(ξ)− αv1(ξ)

)
, (5.56)

ż1(ξ) = −x1(ξ)v∗(ξ). (5.57)

This representation can be written in the matrix form,

Θξ = Â(ξ)Θ +H(ξ),
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where Θ =

 u1

v1

z1

 and H =

 0
0

−x1(ξ)v∗(ξ)

.

Let Ψ be a solution of the adjoint equation Ψ̇ = −ΨÂ(ξ).∫ ∞
−∞

Ψ(ξ)H(ξ)dξ =
∫ ∞
−∞

Ψ3(ξ)H3(ξ)dξ =
∫ ∞
−∞
−Ψ3(ξ)(x∗1 + ξ)v∗(ξ)dξ.

RD1

Let us first consider RD1. Take Ψ = E3.

−
∫ ∞
−∞

Ψ3(ξ)x1(ξ)v∗(ξ)dξ = −
∫ ∞
−∞

(x∗1 + ξ)v∗(ξ)dξ = −x∗1(um − u`)−
∫ ∞
−∞

ξv∗(ξ)dξ.

From equation (5.53) we have

−
∫ ∞
−∞

Ψ3(ξ)x1(ξ)v∗(ξ)dξ = Θ3(∞)−Θ3(−∞) = z1(∞)− z1(−∞).

Based on (5.54),
z1(∞)− z1(−∞) = −(3(um)2 − x∗)u1(∞).

Therefore,

−
∫ ∞
−∞

Ψ3(ξ)x1(ξ)v∗(ξ)dξ = −(3(um)2 − x∗)u1(∞) (5.58)

−x∗1(um − u`)−
∫ ∞
−∞

ξv∗(ξ)dξ = −(3(um)2 − x∗)u1(∞) (5.59)

Recall that Ψ = (Ψ1,Ψ2,Ψ3), given by equation (5.51). Then,

−
∫ ∞
−∞

Ψ3(ξ)x1(ξ)v∗(ξ)dξ = −x∗1
∫ ∞
−∞

Ψ3(ξ)v∗(ξ)dξ −
∫ ∞
−∞

Ψ3(ξ)ξv∗(ξ)dξ.

From equation (5.53),

−
∫ ∞
−∞

Ψ3(ξ)x1(ξ)v∗(ξ)dξ = −Ψ3(∞)(3(um)2 − x∗)u1(∞).

Hence,

−x∗1
∫ ∞
−∞

Ψ3(ξ)v∗(ξ)dξ −
∫ ∞
−∞

Ψ3(ξ)ξv∗(ξ)dξ = −Ψ3(∞)(3(um)2 − x∗)u1(∞).

The obtained information gives rise to the following equations

−(3(um)2 − x∗)u1(∞) = −x∗1(um − u`)−
∫ ∞
−∞

ξv∗(ξ)dξ, (5.60)



43

−Ψ3(∞)(3(um)2 − x∗)u1(∞) = −x∗1
∫ ∞
−∞

Ψ3(ξ)v∗(ξ)dξ (5.61)

−
∫ ∞
−∞

Ψ3(ξ)ξv∗(ξ)dξ.

Substituting (5.60) into (5.61) gives

x∗1 =

∫∞
−∞

(
Ψ3(ξ)ξv∗(ξ)−Ψ3(∞)ξv∗(ξ)

)
dξ

Ψ3(∞)(um − u`)−
∫∞
−∞Ψ3(ξ)v∗(ξ)dξ

= −
∫∞
−∞ (Ψ3(ξ)−Ψ3(∞)) ξv∗(ξ)dξ∫∞
−∞ (Ψ3(ξ)−Ψ3(∞)) v∗(ξ)dξ

.

Since Ψ3(ξ) is any antiderivative for − 1
βΨ2(ξ), we may choose the antiderivative so that

Ψ3(∞) = 0. With this choice of Ψ3,

x∗1 = −
∫∞
−∞Ψ3(ξ)ξv∗(ξ)dξ∫∞
−∞Ψ3(ξ)v∗(ξ)dξ

.

Recall from (5.50) that a good choice for the second component of our adjoint system is
e
−α
β
ξ
v∗(ξ). Also, observe that v∗(ξ) is the derivative of a travelling wave solution of (1.1).

On any trajectory that connects a point on the space of saddle equilibria to another saddle
point on that space, Jacob, McKinney, Shearer [6] points out that v∗(ξ) < 0. (Refer back
to subsection 3.3.3.) Thus,

Ψ3(ξ) = − 1
β

∫ ξ

∞
Ψ2(τ)dτ =

1
β

∫ ∞
ξ

e
−α
β
τ
v∗(τ)dτ.

Since Ψ3(ξ) 6≡ 0, x∗1 is well defined. Knowing the value of x∗1 will allow us to find the value
of u1(∞) from (5.60),

u1(∞) =
x∗1(um − u`) +

∫∞
−∞ ξv

∗(ξ)dξ
3(um)2 − x∗

.

RD2

Now we will consider RD2. Take Ψ = E3.

−
∫ ∞
−∞

Ψ3(ξ)x1(ξ)v∗(ξ)dξ = −
∫ ∞
−∞

x1(ξ)v∗(ξ)dξ

= −
∫ ∞
−∞

x∗1v
∗(ξ)dξ −

∫ ∞
−∞

ξv∗(ξ)dξ

= x∗1(um − ur)−
∫ ∞
−∞

ξv∗(ξ)dξ.

Equation (5.53) implies that,

x∗1(um − ur)−
∫ ∞
−∞

ξv∗(ξ)dξ = Θ3(∞)−Θ3(−∞)

= z1(∞)− z1(−∞)
= (3(um)2 − x∗)u1(−∞).
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Remark 4 Although u1(ξ) is defined to be two different functions for RD1 and RD2,
u1(∞) defined for RD1 will be the same value as u1(−∞) for RD2. So from the above
calculation

x∗1 =
(3(um)2 − x∗)u1(−∞) +

∫∞
−∞ ξv

∗(ξ)dξ
um − ur

.

5.6.2 Linearized portion

Defining Z1(ξ) = −(3(u∗(ξ))2 − x∗)U1(ξ) + αV1(ξ) + βW1(ξ) produces a new rep-
resentation of (5.43)–(5.45),

U̇1(ξ) = V1(ξ),

V̇1(ξ) =
1
β

(
Z1(ξ) + (3(u∗(ξ))2 − x∗)U1(ξ)− αV1(ξ)

)
,

Ż1(ξ) = kj

(
λ0v
∗(ξ)− x1(ξ)w∗(ξ) +

d

dξ
(6u∗(ξ)u1(ξ)v∗(ξ))

)
.

This representation can be written in the following matrix form Ω′ = Â(ξ)Ω +H(ξ), where

Ω =

 U1

V1

Z1

, Â(ξ) =

 0 1 0
3(u∗(ξ))2−x∗

β −α
β

1
β

0 0 0

, and

H(ξ) = kj

 0
0

λ0v
∗(ξ)− x1(ξ)w∗(ξ) + d

dξ (6u∗(ξ)u1(ξ)v∗(ξ))

.

The corresponding adjoint system for the homogeneous system is given by Ψ′ = −ΨA(ξ).
Let Ψ(ξ) be a solution to the adjoint system. Then∫∞
−∞Ψ(ξ)H(ξ)dξ =

∫∞
−∞Ψ3(ξ)H3(ξ)dξ.∫ ∞

−∞
Ψ3(ξ)H3(ξ)dξ = kj

∫ ∞
−∞

Ψ3(ξ)
(
−ξw∗(ξ) +

d

dξ

(
λ0u

∗(ξ) + 6u∗(ξ)u1(ξ)v∗(ξ)

−x∗1v∗(ξ)
))

dξ

= kjΨ3(ξ)
(
λ0u

∗(ξ) + 6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ)
)∣∣∣∞
−∞
−

kj

∫ ∞
−∞

Ψ̇3(ξ)
(
λ0u

∗(ξ) + 6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ)
)

+Ψ3(ξ)ξw∗(ξ)dξ

= kjλ0

(
Ψ3(∞)u∗(∞)−Ψ3(−∞)u∗(−∞)

)
−kj

∫ ∞
−∞

Ψ̇3(ξ)
(
λ0u

∗(ξ) + 6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ)
)

+Ψ3(ξ)ξw∗(ξ)dξ
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LRD1

Let us first consider the portion of the linearized solution that corresponds to RD1,
LRD1. Taking Ψ(ξ) = E3 implies∫ ∞

−∞
Ψ3(ξ)H3(ξ)dξ = Ω3(∞)− Ω3(−∞) (5.62)

= Z1(∞)− Z1(−∞)
= −(3(um)2 − x∗)U1(∞).

In addition, ∫ ∞
−∞

Ψ3(ξ)H3(ξ)dξ = kjλ0

(
um − u`

)
− kj

∫ ∞
−∞

ξw∗(ξ)dξ

= kjλ0

(
um − u`

)
− kj

(
u` − um

)
= kj (λ0 + 1)

(
um − u`

)
.

Equating this to the equation (5.62), we are able to conclude that U1(∞) has a finite value
and kj (λ0 + 1)

(
um − u`

)
= −(3(um)2 − x∗)U1(∞).

Now, take Ψ(ξ) to be given by (5.51).∫ ∞
−∞

Ψ3(ξ)H3(ξ)dξ = kjλ0

(
Ψ3(∞)um −Ψ3(−∞)u` +

1
β

∫ ∞
−∞

Ψ2(ξ)u∗(ξ)
)

+kj
∫ ∞
−∞

( 1
β

Ψ2(ξ) (6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ))

+ξΨ3(ξ)w∗(ξ)
)
dξ

Please note ∫ ∞
−∞

Ψ3(ξ)H3(ξ)dξ = Ψ3(∞)Ω3(∞)−Ψ3(−∞)Ω3(−∞) (5.63)

= Ψ3(∞)Z1(∞)−Ψ3(∞)Z1(−∞)
= Ψ3(∞)Z1(∞)
= −Ψ3(∞)(3(um)2 − x∗)U1(∞).

From equation (5.63) we obtain

−Ψ3(∞)(3(um)2 − x∗)U1(∞) = kjλ0

(
Ψ3(∞)um −Ψ3(−∞)u` +

1
β

∫ ∞
−∞

Ψ2(ξ)u∗(ξ)
)

+kj
∫ ∞
∞

( 1
β

Ψ2(ξ) (6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ))

+ξΨ3(ξ)w∗(ξ)
)
dξ.
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Thus, the following equations are generated,

kj (λ0 + 1)
(
um − u`

)
= −(3(um)2 − x∗)U1(∞), (5.64)

−Ψ3(∞)(3(um)2 − x∗)U1(∞) = kjλ0

(
Ψ3(∞)um −Ψ3(−∞)u`

+
1
β

∫ ∞
−∞

Ψ2(ξ)u∗(ξ)dξ
)

+kj
∫ ∞
−∞

( 1
β

Ψ2(ξ)
(
6u∗(ξ)u1(ξ)v∗(ξ)

−x∗1v∗(ξ)
)

+ ξΨ3(ξ)w∗(ξ)
)
dξ (5.65)

= kjλ0

∫ ∞
−∞

Ψ3(ξ)v∗(ξ)dξ − kj
∫ ∞
−∞

Ψ3(ξ)ξw∗(ξ)dξ

+kj
∫ ∞
−∞

1
β

Ψ2(ξ) (6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ)) dξ.

Substituting (5.64) into (5.65) produces,

Ψ3(∞)(λ0 + 1)
(
um − u`

)
= λ0

∫ ∞
−∞

Ψ3(ξ)v∗(ξ)dξ −
∫ ∞
−∞

Ψ3(ξ)ξw∗(ξ)dξ

+
1
β

∫ ∞
−∞

Ψ2(ξ)(6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ))dξ.

This implies that

λ0 =
Ψ3(∞)(u` − um) +

∫∞
−∞

1
βΨ2(ξ) (6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ))−Ψ3(ξ)ξw∗(ξ)dξ

Ψ3(∞)(um − u`)−
∫∞
−∞Ψ3(ξ)v∗(ξ)dξ

.

We may choose Ψ(ξ) so that Ψ3(∞) = 0. This produces,

λ0 =

∫∞
−∞−

1
βΨ2(ξ) (6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ)) + Ψ3(ξ)ξw∗(ξ)dξ∫∞

−∞Ψ3(ξ)v∗(ξ)dξ
.

Please observe that∫ ∞
−∞

Ψ3(ξ)ξw∗(ξ)dξ = Ψ3(ξ)(ξv∗(ξ)− u∗(ξ))
∣∣∣∞
−∞

+
1
β

∫ ∞
−∞

Ψ2(ξ)(ξv∗(ξ)− u∗(ξ)dξ

= Ψ3(−∞)u` −Ψ3(∞)um +
1
β

∫ ∞
−∞

Ψ2(ξ)(ξv∗(ξ)− u∗(ξ)dξ

= Ψ3(−∞)u` −Ψ3(∞)um + Ψ3(ξ)u∗(ξ)
∣∣∣∞
−∞
−
∫ ∞
−∞

Ψ3(ξ)v∗(ξ)dξ

+
1
β

∫ ∞
−∞

Ψ2(ξ)ξv∗(ξ)dξ

= −
∫ ∞
−∞

Ψ3(ξ)v∗(ξ)dξ +
1
β

∫ ∞
−∞

Ψ2(ξ)ξv∗(ξ)dξ.
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So we have,

λ0 =

∫∞
−∞−

1
βΨ2(ξ) (6u∗(ξ)u1(ξ)v∗(ξ)− x∗1v∗(ξ)) + Ψ3(ξ)ξw∗(ξ)dξ∫∞

−∞Ψ3(ξ)v∗(ξ)dξ
(5.66)

=

∫∞
−∞−

1
βΨ2(ξ) (6u∗(ξ)u1(ξ)v∗(ξ)− x1(ξ)v∗(ξ)) dξ∫∞

−∞Ψ3(ξ)v∗(ξ)dξ
− 1.

Observe that v∗(ξ) is the derivative of a travelling wave solution of (1.1). It was noted
in subsection 3.3.3 that on any trajectory that connects a point on the space of saddle
equilibria to another saddle point on that space, we have v∗(ξ) < 0. Thus, using (5.51),

Ψ3(ξ) = − 1
β

∫ ξ

∞
Ψ2(τ)dτ =

1
β

∫ ∞
ξ

e
−α
β
τ
v∗(τ)dτ 6≡ 0.

Since Ψ3(ξ) 6≡ 0, λ0 is well defined.

U1(∞) =
kj(λ0 + 1)(u` − um)

3(um)2 − x∗
.

LRD2

Now we will consider the portion of the linearized solution that corresponds to
RD2, LRD2. Please notice that,∫ ∞

−∞
Ψ3(ξ)H3(ξ)dξ = Ψ3(∞)Ω3(∞)−Ψ3(−∞)Ω3(−∞) (5.67)

= Ψ3(∞)Z1(∞)−Ψ3(∞)Z1(−∞)
= −Ψ3(−∞)Z1(−∞)
= Ψ3(−∞)(3(um)2 − x∗)U1(−∞).

When Ψ3(ξ) = E3, we have∫ ∞
−∞

Ψ3(ξ)H3(ξ)dξ = kjλ0 (ur − um)− kj
∫ ∞
−∞

ξw∗(ξ)dξ

= kj(λ0 + 1) (ur − um) .

Equating this equation with equation (5.67), we have the results that U(−∞) has a fi-
nite value and that kj(λ0 + 1) (ur − um) = Ψ3(−∞)(3(um)2 − x∗)U1(−∞). Since λ0 was
determined when viewing LRD1, U1(−∞) is determined as kj(λ0+1)(ur−um)

3(um)2−x∗ , a finite value.

5.6.3 Eigenfuncton for λ

Recall that on M±ε we have the system (5.10)–(5.13), or equivalently

ux = 0, (5.68)

Ux =
λ

x− 3u2
U +O(ε), (5.69)

λx = 0. (5.70)
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The solutions of (5.68)–(5.70) to lowest order are

u = u0, (5.71)
U = C̃(x− 3u2

0)λ0 , (5.72)
λ = λ0. (5.73)

Recall that x = s2 and x = s3 are the speeds of the two shock waves in the Riemann
solution, and recall that for the real number λ0 given by (5.66), we have found U1(∞) for
LRD1 and U1(−∞) for LRD2. Recall the curves from section 5.2, {C1, C2, ..., C8}. Notice
that the trajectory of reference for LRD1 when ε > 0 is simply a solution near {C4, C5, C6}.
The trajectory of reference for LRD2 when ε > 0 is near {C6, C7, C8}. Equating (5.72) with
the U(±∞) values derived earlier enables us to obtain the two constants. Let C̃j denote
the constant C̃ in (5.72) for the two solutions of concern. Then,

C̃1 =
k2(λ0 + 1)(um − u`)
(s2 − 3(um)2)λ0+1

and C̃2 =
k3(λ0 + 1)(um − ur)
(s3 − 3(um)2)λ0+1

Since we are interested in the continuous solution, we look to see when the two solutions lie
on the same trajectory (5.72). That is, we find conditions in which C̃1 = C̃2.

k2(λ0 + 1)(um − u`)
(s2 − 3(um)2)λ0+1

=
k3(λ0 + 1)(um − ur)
(s3 − 3(um)2)λ0+1

⇒
k2

(
um − u`

)
k3(s2 − 3(um)2)λ0+1

=
(um − ur)

(s3 − 3(um)2)λ0+1
, for k3 6= 0

⇒
k2

(
um − u`

)
k3 (um − ur)

=
(
s2 − 3(um)2

s3 − 3(um)2

)λ0+1

for k3 6= 0.

Please notice that since 0 < s2 < s3 < 3(um)2, s2−3(um)2

s3−3(um)2
> 1. Then

(
s2 − 3(um)2

s3 − 3(um)2

)λ0+1

> 0,

for all λ0 ∈ R. This implies that
k2(um−u`)
k3(um−ur) > 0.

In [6], it was proved that when u` > 2α
√

2
3
√
β

, we have the ordering um < ur < u`.

This gives the result that both um−u` and um−ur are negative, so the quotient is positive.

Since
k2(um−u`)
k3(um−ur) > 0, we have k2

k3
> 0 and ln

(
k2(um−u`)
k3(um−ur)

)
∈ R. Thus,

λ0 =
ln
(
k2(um−u`)
k3(um−ur)

)
ln
(
s2−3(um)2

s3−3(um)2

) − 1. (5.74)

We can observe the following from (5.74):
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1. If λ0 ≤ −1, then 0 < k2
k3
≤ um−ur

um−u` .

2. If λ0 > −1, then k2
k3
> um−ur

um−u` > 0.

We are able to define the range of values for k2 and k3 in terms of the other, for the given
λ0 value (5.66). Since the signs of k2 and k3 are the same, the related eigenfunction will
have a consistent sign as x varies.

5.6.4 Discussion

Recall the description of Wu
0 (Mu`) and Ws

0(M−0 ) in section 5.1. For a fixed λf ,
Wu

0 (Mu`) and Ws
0(M−0 ) are 3 and 5 dimensional respectively. Their intersection consists

of the curve C5, defined in section 5.2. The curve C5 is defined for all ξ, k2 ∈ R, making
it 2-dimensional. Having a 2-dimensional intersection implies that the two spaces are not
transverse. The calculation of λ0 given by (5.66), leads us to conclude that for small ε > 0
and fixed λf 6= λ0 + ελ1 + O(ε2), the intersection of Wu

ε (Mu`) and Ws
ε (M−0 ) becomes

transverse. This intersection is given by the curve (5.9).
Recall that for a fixed λf ,Ws

0(Mur) and Wu
0 (M−0 ) are both 5-dimensional. So

Ws
0(Mur) and Wu

0 (M−0 ) are transverse if their intersection is 3-dimensional. Observe that
for each x, there is saddle-to-attractor connection denoted by u(ξ). The intersection contains
the family of curves C7. Since there are multiples of u̇, v̇, and ẇ in the linear portion, another
dimension is added to the intersection. So the intersection is parameterized by the triple
(x, ξ, k3). Thus, the two manifolds are transverse for fixed λf and small ε > 0.

Notice that the dimensions of both Wu
ε (Mu`) and Wu

0 (Mum) are 3 for a fixed
λf . To verify that a portion of Wu

ε (Mu`) is C1 close to a portion of Wu
0 (Mum) we need

an extended version of the Exchange Lemma. Schecter creates in [12] an extended version
of the Exchange Lemma. We should be able to use this extended Exchange Lemma to
track Wu

ε (Mu`) as ξ increases and track Ws
ε (Mur) as ξ decreases. As we track Ws

ε (Mur)
as ξ decreases, we will see that it will be close to Ws

0(M−0 ). As we follow Wu
ε (Mu`) as ξ

increases, we will find that it becomes close to Wu
0 (Mum) ⊂ Wu

0 (M−0 ). Since Wu
0 (Mum)

andWs
0(M−0 ) are transverse, C1 spaces near by the two manifolds will be transverse as well.

So for small ε > 0 and fixed λf , Wu
ε (Mu`) and Ws

ε (Mur) are transverse. The intersection
of Wu

ε (Mu`) and Ws
ε (Mur) is a curve that starts out near C4 and ends near C8. It is given

by (5.14), which has a 0 U -component. Thus, λf is not an eigenvalue of (4.1). This means
that when λf 6= λ0 + ελ1 +O(ε2), then Wu

ε (Mu`) and Ws
ε (Mur) becomes transverse. The

details of this have not been worked out.
We will now examine the linear system (4.7)–(4.10) further. Analyzing this system

will assist us in finding properties possessed by the eigenpairs of (4.1).
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Chapter 6

Resolvent Set

Recall the linear equation (4.2),

λU + (3û2
ε − x)Ux + 6ûεû′εU = αεUxx + βε2Uxxx.

We can write this as the system Yξ = BY , where Y = (U, V,W )T and

B(ρ, u, v, x) =

 0 1 0
0 0 1

ρ+6uv
β

3u2−x
β −α

β

 .

In addition, recall from Chapter 4 that

A(ρ, u, x) =

 0 1 0
0 0 1
ρ
β

3u2−x
β −α

β

 .

From Chapter 5, we know that uε(ξ), ξ = x
ε , is the Riemann–Dafermos solution, and vε(ξ) =

u̇ε(ξ). So we have

B̂(ρ, ε, ξ) = B(ρ, uε, vε, εξ) =

 0 1 0
0 0 1

ρ+6uεvε
β

3u2
ε−εξ
β −α

β

 .

Let u∗ be either u` or ur. We define

Â(ρ, ε, ξ) = A(ρ, u∗, εξ) =

 0 1 0
0 0 1
ρ
β

3(u∗)2−εξ
β −α

β

 .

For x = εξ, the linear equation (4.2), can also be written as

Yξ = B̂(ρ, ε, ξ)Y. (6.1)



51

For the sparse matrix

Ã(ε, ξ) =

 0 0 0
0 0 0

6uεvε
β

3(u2
ε−(u∗)2)
β 0

 ,

B̂(ρ, ε, ξ) is a sum of Â(ρ, ε, ξ) and Ã(ε, ξ).
We begin by studying the matrix A(ρ, u∗, x). Information discovered about the

system,
Yξ = A(ρ, u∗, x)Y, (6.2)

when x = εξ will lead to discovering vital properties of (6.1). We show that there exists a
spectral gap between the eigenvalues of A(ρ, u∗, x) for |x| large. Consider H such that its
columns constitutes the eigenspace of A(ρ, u∗, x). This spectral gap property leads to the
system Yξ = H−1Â(ρ, ε, ξ)HY having a pseudoexponential dichotomy. We then are able to
show that the system Yξ = H−1B̂(ρ, ε, ξ)HY has a pseudoexponential dichotomy as well
with a nearby projection matrix. Consequently, we are able to locate the eigenvalues with
geometric multiplicity one and resolvent values of the operator,

T ξ[U ] = βUξξξ + αUξξ − (3u2
ε − εξ)Uξ − 6uεu̇εU.

This allows us to determine the location the corresponding eigenvalues and resolvent values
of the operator form of (4.1),

E [U ] = βε2Uxxx + αεUxx − (3û2 − x)Ux − 6ûûxU,

which is our interest.

6.1 Spectral Gap

For θ, ω, a, b ∈ R, let ρ = θ+ iω and let µ = a+ ib be an eigenvalue of A(ρ, u∗, x).
Recall that the characteristic equation of A(ρ, u∗, x) is

0 = µ3 +
α

β
µ2 +

x− 3u∗2

β
µ− ρ

β
.

Substituting the expressions for µ and ρ into this equation results in

0 = (a+ bi)3 +
α

β
(a+ bi)2 +

x− 3u∗2

β
(a+ bi)− θ + iω

β
,

0 =
[
a3 − 3ab2 +

α

β
(a2 − b2) +

a(x− 3u∗2)
β

− θ

β

]
+i
[
3a2b− b3 +

2abα
β

+
b(x− 3u∗2)

β
− ω

β

]
.
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This gives rise to the two equations

0 = a3 − 3ab2 +
α

β
(a2 − b2) +

a(x− 3u∗2)
β

− θ

β
, (6.3)

0 = 3a2b− b3 +
2abα
β

+
b(x− 3u∗2)

β
− ω

β
. (6.4)

From (6.3) we have, b2 = βa3+αa2+a(x−3u∗2)−θ
3aβ+α . If a > − α

3β , then βa3+αa2+a(x−3u∗2)−θ >
0. This implies that θ < −a(−βa2 − αa+ 3u∗2 − x). Consider m > 0 such that m >> α2

3β .
We consider m sufficiently large so that

1. if x ≤ 3u∗2 −m, then x is close to −∞, or

2. if x ≥ 3u∗2 +m, then x is close to ∞.

Please notice that if x ≤ 3u∗2 − m, then x < 3u∗2 − α2

3β and if x ≥ 3u∗2 + m, then

x > 3u∗2 + α2

3β .

Lemma 5 For 0 < δ < α3

192β2 , if a ∈ I1 = [a1, b1] =
[

48βδ
α2 ,

α
4β

]
and x ∈ J1 = {x|x ≤

3u∗2 −m}, then θ < −δ.

Proof. For each δ > 0, the assumptions a ∈ I1 and x ∈ J1 gives us the following conclusion:

δ =
48βδ
α2

(
α2

48β

)
≤ a

(
α2

48β

)
= a

(
− α2

16β
− α2

4β
+
α2

3β

)
< a(−βa2 − αa+ 3u∗2 − x) < −θ.

2

Lemma 6 For 0 < δ < α3

192β2 , if a ∈ I2 = [a2, b2] =
[
− α

4β ,−
48βδ
α2

]
and x ∈ J2 = {x|x ≥

3u∗2 +m}, then θ < −δ.

Proof. For each δ > 0, the assumptions a ∈ I2 and x ∈ J2 gives us the following conclusion:

−δ ≥ a

(
α2

48β

)
= −a

(
− α2

48β

)
= −a

(
α2

16β
+
α2

4β
− α2

3β

)
> −a

(
−βa2 − αa+ 3u∗2 − x

)
> θ.

2
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Theorem 5 For δ > 0 define Kδ = {ρ|Re(ρ) ≥ −δ}. Then for 0 < δ < α3

192β2 and x ∈ Jj,
two eigenvalues of A(ρ, u∗, x) have real part less than aj, and one eigenvalue of A(ρ, u∗, x)
has real part greater than bj when ρ ∈ Kδ.

Proof. Note that 0 ∈ Kδ. The eigenvalues of A(0, u∗, x) satisfy the following for u = u∗:

0 = µ3 +
α

β
µ2 +

x− 3u∗2

β
µ = µ

(
µ2 +

α

β
µ+

x− 3u∗2

β

)
= µ(µ− µ−)(µ− µ+).

The nonzero roots are given by

µ± = − α

2β
±

√(
α

2β

)2

+
3u∗2 − x

β
.

First we consider x ∈ J1. This will result in µ− and µ+ having opposing signs. In addition,
we have the following result:

3u∗2 − x >
α2

3β
,

⇒ α2

4β2
+

3u∗2 − x
β

>
7α2

12β2
>

9α2

16β2
,

⇒

√
α2

4β2
+

3u∗2 − x
β

>
3α
4β
,

⇒ − α

2β
+

√
α2

4β2
+

3u∗2 − x
β

>
α

4β
,

⇒ µ+ >
α

4β
.

Hence for x ∈ J1, the eigenvalues of A(0, u∗, x) divide into two sets:

Set 1: {0, µ−} – The real parts are less than 48βδ
α2 = a1.

Set 2: {µ+} – The real part is greater than α
4β = b1.

Now consider x ∈ J2. The assumption x > 3u∗2 +
α2

3β
implies that Re(µ±) =

− α
2β < −

α
4β . When x ∈ J2, the eigenvalues of A(0, u∗, x) split into the following sets:

Set 1: {µ−, µ+} – The real parts are less than − α
4β = a2.

Set 2: {0} – The real part is greater than −48βδ
α2 = b2.

We have shown that for x ∈ Jj , two eigenvalues of A(0, u∗, x) have real part less
than aj and one has real part greater than bj . Moreover, from Lemmas 5 and 6, we know
that when x ∈ Jj and ρ ∈ Kδ, no eigenvalue has real part in Ij . Since the eigenvalues
depend continuously on (ρ, u∗, x), two eigenvalues of A(ρ, u∗, x) have real part less than aj
and one has real part greater than bj , for all x ∈ Jj and ρ ∈ Kδ. 2
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6.2 Pseudoexponential Dichotomy

Let the eigenvalues of A(ρ, u∗, x) be denoted as
{
µj = µj(ρ, u∗, x)

}3

j=1
. We will

first look at the behavior of these eigenvalues for |x| large. This is done to determine the
appropriate scale of the eigenvectors so that they remain bounded as |x| → ∞. This in turn
will lead to (6.1) having a pseudoexponential dichotomy on Jj .

6.2.1 Eigenvalues of A(ρ, u∗, x) for |x| Large

Let q = 1
x . As x→ ±∞, q → 0±. Multipying (6.3) and (6.4) by q generates

0 = −qa3 + 3aqb2 − qα

β
(a2 − b2) +

3qau∗2

β
− a

β
+
qθ

β
(6.5)

= f1(a, b, q),

0 = −3qa2b+ qb3 − 2qabα
β

+
bq3u∗2

β
− b

β
+
qω

β

= f2(a, b, q).

Denote f(a, b, q) =
(
f1(a, b, q), f2(a, b, q)

)
. One solution to f(a, b, q) = (0, 0) is given by

(a, b, q) = (0, 0, 0). The Jacobian evaluated at this solution is

Df(0, 0, 0) =

(
− 1
β 0 θ

β

0 − 1
β

ω
β

)
.

Notice that D(a,b)f(0, 0, 0) =

(
− 1
β 0

0 − 1
β

)
is nonsingular. The Implicit Function Theo-

rem tells us that near (0, 0, 0), the solutions of the equation f(a, b, q) = 0 are given by
(a, b) = (π1(q), π2(q)) = π(q), with π(0) = (0, 0). So we have

0 = f1(a, b, q) ≈ −a
β

+
qθ

β
,

0 = f2(a, b, q) ≈ − b
β

+
qω

β
.

This implies that a ≈ qθ and b ≈ qω. This tells us that one of the eigenvalue is given
by µ = a + bi = (θ + iω)q + O(q2) = ρq + O(q2). Without loss of generality, we will let
µ3 = ρq +O(q2). This eigenvalue is close to zero as x→ ±∞ for any given ρ.

From the relationships (4.11) we have

µ1 + µ2 = −α
β
− µ3 = −α

β
− βq +O(q2),

µ1µ2 =
ρ

βµ3
=

ρ

βq +O(q2)
.
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This tells us that as |x| → ∞, µ1 + µ2 and |µ1µ2| approaches −α
β and ∞ respectively. This

reveals that 1
|µ1µ2| → 0 as x → ±∞. Also from the equations (4.11), we can conclude that

ρ
βµ1µ3

= −α
β − µ1 − µ3. This implies that 0 = βµ3µ

2
1 + (α + βµ3)µ3µ1 + ρ. This forces the

values of µ1 and µ2 to be

µ1,2 = −α+ βqρ

2β
+O(q2)±

√(
α+ βqρ

2β

)2

+O(q2)− 1
βq +O(q2)

= O(q0) +O(q1) +O(q2)±
√
O(q0) +O(q1) +O(q2) +O(q−1)

= O(q0)±
√
O(q−1)

= O(q−
1
2 ).

Please note that as |x| → ∞, |µ1|, |µ2| → ∞ for any given ρ.

6.2.2 Pseudostable Projector

Lemma 7 Let 0 < δ < α3

192β2 . If x ∈ Jj and ρ ∈ Kδ, the eigenvalues of A(ρ, u∗, x) are
distinct.

Proof. We know from Theorem 5 that if ρ ∈ Kδ = {ρ|Re(ρ) ≥ −δ, δ > 0} and x ∈ Jj , the
eigenvalues will split into two disjoint sets. Thus, all 3 eigenvalues will not be the same.
Assume that µ1 has algebraic multiplicity 2.

Observe from 4.11 that,

ρ

β
= µ2

1µ3

α

β
= −2µ1 − µ3 ⇒ µ3 = −α

β
− 2µ1,

⇒ x− 3u∗2

β
= −3µ2

1 −
2α
β
µ1,

⇒ 0 = µ2
1 +

2α
3β
µ1 +

x− 3u∗2

3β
.

Hence, the two possibilities for µ1 are − α

3β
±

√(
α

3β

)2

+
3u∗2 − x

3β
. This gives rise to two

corresponding possibilities for µ3

−α
β
− 2µ1 = − α

3β
∓ 2

√(
α

3β

)2

+
3u∗2 − x

3β
.
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For x ∈ J2, x ≥ 3u∗2 +m > 3u∗2 + α2

3β , we have

x− 3u∗2 >
α2

3β
,

⇒ x− 3u∗2

3β
≥

(
α

3β

)2

,

⇒ 0 ≥
(
α

3β

)2

+
3u∗2 − x

3β
,

⇒ Re(µk) = − α

3β
for k = 1, 2, 3 with µ1 = µ2.

This contradicts the result of Theorem 5. One of the eigenvalues must have real part greater
than b2.

For x ∈ J1, x is close to −∞. we know that when x is close to −∞, there is one
eigenvalue of A that is close to 0. However, as x gets close to −∞, µ1 gets close to ±∞ and
the related µ3 gets close to ∓∞. This contradicts the fact that one eigenvalue is close to 0
as x gets close to −∞.

Since the assumption that an eigenvalue of A(ρ, u∗, x) has multiplicity greater
than one leads to a contradiction, all eigenvalues of A(ρ, u∗, x) are distinct on Jj when
ρ ∈ Kδ. 2

The eigenvectors of A(ρ, u∗, x) are
 1

µ1

µ2
1

 ,

 1
µ2

µ2
2

 ,

 1
µ3

µ2
3

 .

Please note that when x ∈ J1, we can order the eigenvalue by Re(µ1) < Re(µ3) < a1 <
b1 < Re(µ2). However, for x ∈ J2, we can order the eigenvalue by Re(µ1) < Re(µ2) < a2 <
b2 < Re(µ3). The pseudostable space is the space spanned by the eigenvectors associated
with the eigenvalues of A(ρ, u∗, x) with real part less than aj . The pseudounstable space is
spanned by the eigenvector associated with the eigenvalue with real part greater than bj .

For a fixed ρ ∈ Kδ and x ∈ J1, we define

H1(ρ, u∗, x) =


1
µ2

1
1 1

µ2
2

1
µ1

µ3
1
µ2

1 µ2
3 1

 .

Its inverse is given by

H−1
1 (ρ, u∗, x) =


µ2

1µ2µ3

(µ3−µ1)(µ2−µ1) − µ2
1(µ2+µ3)

(µ3−µ1)(µ2−µ1)
µ2

1
(µ3−µ1)(µ2−µ1)

µ1µ2

(µ3−µ2)(µ3−µ1) − µ1+µ2

(µ3−µ2)(µ3−µ1)
1

(µ3−µ2)(µ3−µ1)

− µ1µ2
2µ3

(µ3−µ2)(µ2−µ1)
µ2

2(µ1+µ3)
(µ3−µ2)(µ2−µ1) − µ2

2
(µ3−µ2)(µ2−µ1)

 .
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For a fixed ρ ∈ Kδ and x ∈ J2, define

H2(ρ, u∗, x) =


1
µ2

1

1
µ2

2
1

1
µ1

1
µ2

2
µ3

1 1 µ2
3

 ,

and its inverse as

H−1
2 (ρ, u∗, x) =


µ2

1µ2µ3

(µ3−µ1)(µ2−µ1) − µ2
1(µ2+µ3)

(µ3−µ1)(µ2−µ1)
µ2

1
(µ3−µ1)(µ2−µ1)

− µ1µ2
2µ3

(µ3−µ2)(µ2−µ1)
µ2

2(µ1+µ3)
(µ3−µ2)(µ2−µ1) − µ2

2
(µ3−µ2)(µ2−µ1)

µ1µ2

(µ3−µ2)(µ3−µ1) − µ1+µ2

(µ3−µ2)(µ3−µ1)
1

(µ3−µ2)(µ3−µ1)

 .

The columns of Hj are the eigenvectors of A on Jj . The projection for the pseu-
dostable space is given as P(ρ, u∗, x) = HjP2H

−1
j , where P2 = diag(1, 1, 0). For fixed

ρ ∈ Kδ, each entry of P(ρ, u∗, x) is well defined and is a continuous function of x. There-
fore, P(ρ, u∗, x) is continuous with respect to x.

Proposition 2 Let Ω be a compact set of C. Then there exists a constant k > 0 such that
for 0 < δ < α3

192β2 , ρ ∈
(
Kδ ∩ Ω

)
, and x ∈ Jj , ‖P(ρ, u∗, x)(I − P2)‖ ≤ k.

Proof. Observe that as ξ → −∞,

H1 →

0 1 0
0 0 0
1 0 1

 and H−1
1 (I − P2) =


0 0 µ2

1
(µ3−µ1)(µ2−µ1)

0 0 1
(µ3−µ2)(µ3−µ1)

0 0 − µ2
2

(µ3−µ2)(µ2−µ1)

→
0 0 1

2
0 0 0
0 0 1

2

 .

As x→∞, we have

H2 →

0 0 1
0 1 0
1 0 0

 , and H−1
2 (I − P2) =


0 0 µ2

1
(µ3−µ1)(µ2−µ1)

0 0 − µ2
2

(µ3−µ2)(µ2−µ1)

0 0 1
(µ3−µ2)(µ3−µ1)

→
0 0 1

2
0 0 1

2
0 0 0

 .

Since both Hj and H−1
j (I − P2) approach constant matrices when |x| → ∞, there exists

nonzero constants k1j , k2j > 0 such that ‖Hj‖ ≤ k1j and ‖H−1
j (I − P2)‖ ≤ k2j . Let

k =
√

2 max {k2
1j , k

2
2j , k1jk2j}. Since P(ρ, u∗, x) = HjP2H

−1
j , then

‖P(ρ, u∗, x)(I − P2)‖ = ‖HjP2H
−1
j (I − P2)‖ ≤ ‖Hj‖‖P2‖‖H−1

j (I − P2)‖ ≤ k.

Therefore, for all x ∈ Jj and for fixed ρ ∈ Kδ ∩ Ω, we have ‖P(ρ, u∗, x)(I − P2)‖ bounded
by k. 2
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6.2.3 Pseudoexponential Dichotomy Property

Definition 1 Suppose T (ξ, ζ) be a family of state transition matrices for the given system
Yξ = D(ξ)Y . That system is said to have pseudoexponential dichotomy on J with
spectral gap (â, b̂) if there exist C > 0 and projections P(ξ), for ξ ∈ J , such that the
following holds:

(i) P(ξ) is continuous on J and uniformly bounded on J .

(ii) T (ξ, ζ)P(ζ) = P(ξ)T (ξ, ζ).

(iii) If ys ∈ R(P(ζ)), and ξ > ζ, then ‖T (ξ, ζ)ys‖ ≤ Ceâ(ξ−ζ)‖ys‖.

(iv) If yu ∈ R(I − P(ζ)), and ξ < ζ, then ‖T (ξ, ζ)yu‖ ≤ Ceb̂(ξ−ζ)‖yu‖.

Theorem 6 (Coppel’s Roughness Theorem) Suppose Yξ = D(ξ)Y has a pseudoex-
ponential dichotomy on J with given projections P (ξ). Let C0 and γ be positive num-
bers. Then there exist positive numbers ε0 and L such that the following is true. Suppose
the pseudoexponential dichotomy has constants C > 0 and â < b̂ so that C < C0 and
b̂− â > γ. Let 0 < ε < ε0. If ‖E(ξ)‖ < ε for all ξ ∈ J , then the linear differential equation
Yξ = (D(ξ) + E(ξ))Y has a pseudoexponential dichotomy on J with projections P̃ (ξ) close
to P (ξ), constant C̃ close to C, and exponents ã and b̃ with ã < b̃ and

‖P̃ (ξ)− P (ξ)‖ < εL for all ξ ∈ J,
|C̃ − C| < εL,

|ã− â| < εL,

|b̃− b̂| < εL.

Theorem 7 For each compact subset Ω of C, there exist positive constants ε0 and L such
that the following is true. If 0 < δ < α3

192β2 , ρ ∈
(
Kδ ∩ Ω

)
, and 0 < ε < ε0 then

Zξ = H−1
j (ρ, u∗, εξ)B̂(ρ, ε, ξ)Hj(ρ, u∗, εξ)Z

has a pseudoexponential dichotomy on both J̄j = {ξ|εξ ∈ Jj} with projections near P2,
constant C near 1, and exponents ãj < b̃j with |ãj − aj | < εL and |b̃j − bj | < εL.

Lemma 8 For 0 < δ < α3

192β2 , ρ ∈ Kδ, and any ε > 0, the system

Zξ = H−1
j (ρ, u∗, εξ)Â(ρ, ε, εξ)Hj(ρ, u∗, εξ)Z

has an pseudoexponential dichotomy on J̄j. The projection in the dichotomy is P2. The
constant C is 1. The constants â and b̂ for the intervals Jj are respectively aj and bj.
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Proof (Lemma). Choose 0 < δ < α3

192β2 , ρ ∈ Kδ and ε > 0. Consider x ∈ Jj . Let µk(ρ, u∗, x),
k = 1, 2, 3, be the eigenvalues of A(ρ, u∗, x). Denote µk(x) = µk(ρ, u∗, x). For x = εξ, the
eigenvalues take the form µk(εξ) = µk(ρ, u∗, εξ). Let N = H−1

j AHj . We have

N |J̄1
=

 µ1(εξ) 0 0
0 µ3(εξ) 0
0 0 µ2(εξ)

 ,

N |J̄2
=

 µ1(εξ) 0 0
0 µ2(εξ) 0
0 0 µ3(εξ)

 .

Notice that the eigenvalues of N are the same as those of Â(ρ, ε, ξ). Consider the system

Zξ = N(ρ, ε, ξ)Z. (6.6)

Consider the system (6.6) on J̄1. The solution of (6.6) with constant initial condi-
tion Z(ξ0) = (Z1(ξ0), Z2(ξ0), Z3(ξ0)) is

Z1(ξ, ε) = Z1(ξ0, ε)e
R ξ
ξ0
µ1(ετ)dτ

,

Z2(ξ, ε) = Z2(ξ0, ε)e
R ξ
ξ0
µ3(ετ)dτ

,

Z3(ξ, ε) = Z3(ξ0, ε)e
R ξ
ξ0
µ2(ετ)dτ

.

The state transition matrix for (6.6) is given by

R(ξ, ξ0, ε) = diag

(
e

R ξ
ξ0
µ1(ετ)dτ

, e
R ξ
ξ0
µ3(ετ)dτ

, e
R ξ
ξ0
µ2(ετ)dτ

)
.

Denote ~0 as a column vector of zeros and Ri,∗ and R∗,j as the ith row and jth column of

R(ξ, ξ0, ε) respectively. Observe that the two matrices

 R1,∗
R2,∗
~0>

 and
(
R∗,1 R∗,2 ~0

)
are

equal. Thus, the equation R(ξ, ξ0, ε)P2 = P2R(ξ, ξ0, ε) is satisfied.
For ξ ∈ J̄1 and ξ > ξ0, we observe the following:

|Z1(ξ, ε)| =
∣∣∣∣Z1(ξ0, ε)e

R ξ
ξ0
µ1(ετ)dτ

∣∣∣∣
= |Z1(ξ0, ε)|e

R ξ
ξ0
Re
(
µ1(ετ)

)
dτ

≤ |Z1(ξ0, ε)|e
R ξ
ξ0

48βδ

α2 dτ

= |Z1(ξ0, ε)|e
48βδ

α2 (ξ−ξ0)
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|Z2(ξ, ε)| =
∣∣∣∣Z2(ξ0, ε)e

R ξ
ξ0
µ3(ετ)dτ

∣∣∣∣
= |Z2(ξ0, ε)|e

R ξ
ξ0
Re
(
µ3(ετ)

)
dτ

≤ |Z2(ξ0, ε)|e
R ξ
ξ0

48βδ

α2 dτ

= |Z2(ξ0, ε)|e
48βδ

α2 (ξ−ξ0)

For ξ < ξ0,

|Z3(ξ, ε)| = |Z3(ξ0, ε)|e
R ξ
ξ0
Re
(
µ2(ετ)

)
dτ

= |Z3(ξ0, ε)|e
R ξ0
ξ −Re

(
µ2(ετ)

)
dτ

≤ |Z3(ξ0, ε)|e
R ξ0
ξ −

α
4β
dτ

= |Z3(ξ0, ε)|e
α
4β

(ξ−ξ0)

For j = 1, 2 and ξ > ξ0,
|Zj(ξ, ε)| ≤ |Zj(ξ0, ε)|e

48βδ

α2 (ξ−ξ0).

We have for ξ < ξ0,
|Z3(ξ, ε)| ≤ |Z3(ξ0, ε)|e

α
4β

(ξ−ξ0)
.

Now consider ξ ∈ J̄2. The solution of (6.6) with constant initial condition Z(ξ0, ε) =(
Z1(ξ0, ε), Z2(ξ0, ε), Z3(ξ0, ε)

)
is

Z1(ξ, ε) = Z1(ξ0, ε)e
R ξ
ξ0
µ1(ετ)dτ

,

Z2(ξ, ε) = Z2(ξ0, ε)e
R ξ
ξ0
µ2(ετ)dτ

,

Z3(ξ, ε) = Z3(ξ0, ε)e
R ξ
ξ0
µ3(ετ)dτ

.

The state transition matrix for (6.6) is given by

R(ξ, ξ0, ε) = diag

(
e

R ξ
ξ0
µ1(ετ)dτ

, e
R ξ
ξ0
µ2(ετ)dτ

, e
R ξ
ξ0
µ3(ετ)dτ

)
.

Clearly,

 R1,∗
R2,∗
~0>

 and
(
R∗,1 R∗,2 ~0

)
are equal. This implies that the equation

R(ξ, ξ0, ε)P2 = P2R(ξ, ξ0, ε) is satisfied.
For j = 1, 2 and ξ > ξ0

|Zj(ξ, ε)| ≤ |Zj(ξ0, ε)|e−
α
4β

(ξ−ξ0)
.

When ξ < ξ0,
|Z3(ξ, ε)| ≤ |Z3(ξ0, ε)|e−

48βδ

α2 (ξ−ξ0).
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We conclude that the system (6.6) has a pseudoexponential dichotomy on each J̄j .
The projection is P2. The constants are given in the statement of the lemma. 2

Proof (Theorem). Recall that B̂(ρ, ε, ξ) = Â(ρ, ε, ξ) + Ã(ε, ξ). Under the change of variable
Y = HjZ, the system (6.1) becomes

Zξ = (H−1
j Y )ξ = (H−1

j Â(ρ, ε, ξ)Hj +H−1
j Ã(ε, ξ)Hj −H−1

j Hξ)Z. (6.7)

The derivative of Hj is given by

Hξ|J̄1
=

−
2µ̇1

µ3
1

0 −2µ̇2

µ3
2

− µ̇1

µ2
1

µ̇3 − µ̇2

µ2
2

0 2µ3µ̇3 0

 and Hξ|J̄2
=

−
2µ̇1

µ3
1
−2µ̇2

µ3
2

0

− µ̇1

µ2
1
− µ̇2

µ2
2

µ̇3

0 0 2µ3µ̇3

 .

Please note that µ̇j = dµj
dξ = dµj

dq
dq
dx

dx
dξ = −εq2 dµj

dq . This give rise to the following derivatives:

dµ1,2

dξ
= −εq2

(
− ρ

2
+O(q)±

(
ρ(α+ βqρ)

4β
+O(q)− 1

2q2(β +O(q))

)((
α+ βqρ

2β

)2

+O(q2)

− 1
βq +O(q2)

)− 1
2
)

= −εq2
(
O(q0)±O(q−2)(O(q−1))−

1
2

)
= −εq2O(q−

3
2 )

= εO(q
1
2 ),

dµ3

dξ
= −εq2(ρ+O(q))

= εO(q2).

So as |x| → ∞, Hξ|J̄j approaches the zero matrix. This implies that there exists k3, such

that
∥∥∥Hξ|J̄j

∥∥∥ < k3. Please observe that although H−1
j are not bounded on J̄j , both

H−1
1 Hξ|J̄1

=


µ̇1(−2µ3µ2+µ1(µ2+µ3))
µ1(µ2−µ1)(µ3−µ1)

µ̇3µ2
1(µ3−µ2)

(µ3−µ1)(µ2−µ1)
µ̇2µ2

1(µ2−µ3)

µ2
2(µ3−µ1)(µ2−µ1)

µ̇1(µ1−µ2)
(µ3−µ1)(µ3−µ2)

−µ̇3(µ1+µ2−2µ3)
(µ3−µ1)(µ3−µ2)

µ̇2(µ2−µ1)
µ2

2(µ3−µ1)(µ3−µ2)
µ̇1µ2

2(µ3−µ1)

µ2
1(µ3−µ2)(µ2−µ1)

µ̇3µ2
2(µ1−µ3)

(µ3−µ2)(µ2−µ1)
−µ̇2(−2µ1µ3+µ2(µ3+µ1))

µ2(µ3−µ2)(µ2−µ1)

 ,

H−1
2 Hξ|J̄2

=


µ̇1(−2µ3µ2+µ1µ2+µ1µ3)

µ1(µ3−µ1)(µ2−µ1) − µ̇2µ2
1(µ3−µ2)

µ2
2(µ3−µ1)(µ2−µ1)

µ̇3µ2
1(µ3−µ2)

µ2
2(µ3−µ1)(µ2−µ1)

µ̇1µ2
2(µ3−µ1)

µ2
1(µ3−µ1)(µ3−µ2)

µ̇2(2µ1µ3−µ1µ2−µ2µ3)
µ2(µ3−µ2)(µ2−µ1)

µ̇3µ2
2(µ1−µ3)

(µ3−µ2)(µ2−µ1)
µ̇1(µ1−µ2)

µ2
1(µ3−µ2)(µ3−µ1)

µ̇2(µ2−µ1)
µ2

2(µ3−µ2)(µ3−µ1)
− µ̇3(µ1+µ2−2µ3))

(µ3−µ2)(µ3−µ1)


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approach the zero matrix as |ξ| → ∞. Moreover, the product H−1
j Hξ = O(ε) on J̄j .

The matrix product H−1
1 Ã(ε, ξ)H1 on J̄1 is

H−1
1 Ã(ε, ξ)H1 =


6uv+3µ2

1(u2−(u∗)2)
β(µ3−µ1)(µ2−µ1)

6uvµ2
1+3µ2

1µ3(u2−(u∗)2)
β(µ3−µ1)(µ2−µ1)

6uvµ2
1+3µ2(u2−(u∗)2)

βµ2
2(µ3−µ1)(µ2−µ1)

6uv+3µ1(u2−(u∗)2)
βµ2

1(µ3−µ2)(µ3−µ1)
6uv+3µ3(u2−(u∗)2)
β(µ3−µ2)(µ3−µ1)

6uv+3µ2(u2−(u∗)2)
βµ2

2(µ3−µ2)(µ3−µ1)
−6µ2

2uv−3µ1(u2−(u∗)2)

βµ2
1(µ3−µ2)(µ2−µ1)

−6µ2
2uv−3µ3(u2−(u∗)2)
β(µ3−µ2)(µ2−µ1)

−6uv−3µ2(u2−(u∗)2)
β(µ3−µ2)(µ2−µ1)

 .

On J̄2,

H−1
2 Ã(ε, ξ)H2 =


6uv+3µ2

1(u2−(u∗)2)
β(µ3−µ1)(µ2−µ1)

6uvµ2
1+3µ2

1µ2(u2−(u∗)2)

βµ2
2(µ3−µ1)(µ2−µ1)

6uvµ2
1+3µ2

1µ3(u2−(u∗)2)
β(µ3−µ1)(µ2−µ1)

−6uvµ2
2+3µ1µ2

2(u2−(u∗)2)

βµ2
1(µ3−µ2)(µ2−µ1)

−6uv+3µ2(u2−(u∗)2)
β(µ3−µ2)(µ2−µ1) −6uvµ2

2+3µ2
2µ3(u2−(u∗)2)

β(µ3−µ2)(µ2−µ1)
6uv+3µ1(u2−(u∗)2)
βµ2

1(µ3−µ2)(µ3−µ1)
6uv+3µ2(u2−(u∗)2)
βµ2

2(µ3−µ2)(µ3−µ1)
6uv+3µ3(u2−(u∗)2)
β(µ3−µ2)(µ3−µ1)

 .

As |ξ| → ∞, H−1
j Ã(ε, ξ)Hj approach the zero matrix. This implies that the product

H−1
j Ã(ε, ξ)Hj is uniformly bounded on J̄j ; i.e. there exists l > 0 so that ‖H−1

j Ã(ε, ξ)Hj‖ ≤
l. Observe that Ã(ε, ξ) decrease exponentially on J̄j . Although H−1

j increases algebraically
on J̄1, the product H−1

j Ã(ε, ξ) will still decrease exponentially on J̄j . Thus, for a suffi-
ciently small ε > 0, H−1

j Ã(ε, ξ) is small in norm. Moreover, for a sufficiently small ε > 0,
‖H−1

j Ã(ε, ξ)Hj‖ = O(ε). Thus, there exists a constant M > 0 so that for all ξ ∈ J̄j , we
have

‖H−1
j Ã(ε, ξ)Hj −H−1

j Hξ‖ ≤ εM.

The result follows from Coppel’s Roughness Theorem and Lemma 8. The system
(6.7) has a pseudoexponential dichotomy on J̄j with projections Q̃j(ρ, ε, ξ) that are near
P2. Since Q̃j(ρ, ε, ξ) are near P2, Q̃(ρ, ε, ξ) will be uniformly bounded on J̄j}. 2

We denote the projection for the pseudoexponential dichotomy of (6.7) on J̄j by
Qj(ρ, ε, ξ). To simplify the notation, we suppress the ε and ρ. Since (6.7) has a pseudo-
exponential dichotomy, for small δ > 0, there exists constants C > 0 and aj(δ) < bj(δ) so
that for ξ > ζ

‖Φ(ξ, ζ)Q̃j(ζ)‖ ≤ Ceaj(δ)(ξ−ζ), (6.8)

and for ξ < ζ
‖Φ(ξ, ζ)(I − Q̃j(ζ))‖ ≤ Cebj(δ)(ξ−ζ). (6.9)

Observe that a solution of (6.7) is represented by Z(ξ) = Φ(ξ, ζ)Z(ζ). Since
Y (ζ) = Hj(ζ)Z(ζ), the solution representation is actually

H−1
j (ξ)Y (ξ) = Φ(ξ, ζ)H−1

j (ζ)Y (ζ).

This implies that
Y (ξ) = Hj(ξ)Φ(ξ, ζ)H−1

j (ζ)Y (ζ).

So the state transition matrix for (6.7) in Y -space is

T (ξ, ζ) = Hj(ξ)Φ(ξ, ζ)H−1
j (ζ). (6.10)
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Since (6.7) has a pseudoexponential dichotomy, Φ(ξ, ζ)Q̃j(ζ) = Q̃j(ξ)Φ(ξ, ζ). This implies
that

Hj(ξ)Φ(ξ, ζ)H−1
j (ζ)Hj(ζ)Q̃j(ζ)H−1

j (ζ) = Hj(ξ)Q̃j(ξ)H−1
j (ξ)Hj(ξ)Φ(ξ, ζ)H−1

j (ζ).

Therefore, for
Qj(ρ, ε, ξ) = Qj(ξ) = Hj(ξ)Q̃j(ξ)H−1

j (ξ), (6.11)

T (ξ, ζ)Qj(ζ) = Qj(ξ)T (ξ, ζ).
This information will help us to explore the solutions of both the homogeneous

and nonhomogeneous versions of (6.1). Knowing the behavior of these solutions combined
with using the information revealed about λ for ρ = ελ will help us to locate the eigenvalues
of the operator form of (4.1).

6.3 Resolvent Set

For u given as the Riemann–Dafermos solution ûε(x), we consider the following
linear operator

T x[U ] = βε3Uxxx + αε2Uxx − ε(3û2 − x)Ux − 6εûûxU.

For x = εξ, this operator is

T ξ[U ] = βUξξξ + αUξξ − (3u2 − εξ)Uξ − 6uuξU.

We consider both the eigenvalue problem(
T ξ − ρI

)
U = 0, (6.12)

and the nonhomogeneous problem (
T ξ − ρI

)
U = f. (6.13)

We will denote T ξ and T ξ − ρI as T and Tρ respectively. The weighted space,
C(εγ,Rξ), is the space of continuous functions on R such that the weighted norm is given
by ||U ||εγ = supξ |U(ξ)|eεγ|ξ| <∞. The resolvent set of T consists all the ρ’s for which the
following are satisfied:

1. T −1
ρ exists.

2. T −1
ρ is bounded.

3. C(εγ,Rξ) is the domain of T −1
ρ .

Notice that the system
Yξ = B(ρ, ε, ξ)Y + F (6.14)

is equivalent to (6.13) with F =
(

0 0 f
)T . We will use properties of the system (6.1)

to locate the resolvent set of T .
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Theorem 8 Let Ω be a compact subset of C, ε0 and L be the positive constants given by
Theorem 7, and δ0 = min

(
ε0
L ,

α3

192β2

)
. Let γ > L + 48β

Lα2 . Let 0 < ε < Lδ0 and δ = ε
L .

Then if ρ ∈
(
Kδ ∩Ω

)
, ρ is either a eigenvalue of T ξ with geometric multiplicity 1 or in the

resolvent set of T ξ, where T ξ operates on C(εγ,Rξ).

Proof. Fix ρ ∈ Kδ∩Ω. Notice that δ = ε
L < δ0 ≤ α3

192β2 and ε < Lδ0 ≤ ε0. Hence by Theorem
7, (6.7) has a pseudoexponential dichotomy on J̄j , with projections Qj(ξ) = Qj(ρ, ε, ξ).
According to [7], this result can be extended back from ±∞ to 0.

Let Λ = R(Q2(0))∩R(I−Q1(0)). Since R(Q2(0)) has dim 2 and R(I−Q1(0)) has
dim 1, Λ has dim 0 or 1. First suppose Λ has dim 1. If Y0 ∈ Λ, let Y (ξ) = (U(ξ), V (ξ),W (ξ))
be the solution of Yξ = B(ρ, ε, ξ)Y with Y (0) = Y0. Then U(ξ) is an eigenfunction of T ξ
for the eigenvalue ρ, and all eigenfunctions arise in this way. Since Λ has dim 1, ρ is an
eigenvalue of T ξ of geometric multiplicity one.

Now we will assume that Λ only contains the zero vector. Since R(Q2(0)) has
dimension 2 and R(I−Q1(0)) has dimension 1, we have R(Q2(0))⊕R(I−Q1(0)) = R3. Let
f ∈ C(εγ,R). Assume that Y (ξ) is a solution to (6.14) in C(εγ,R). Let Ys = Q2(0)Y (0), and
let Yu = (I −Q1(0))Y (0). Let T (ξ, ζ) denote the family of state transition matrices for the
homogeneous system (6.1). We will show that when Λ has dimension 0 and f ∈ C(εγ,Rξ),
ρ ∈ Kδ ∩ Ω is a resolvent value for T ξ if and only if Y ∈ C(εγ,Rξ).

Let 0 ≤ ξ < ∞ and τ > ξ. Using the variation of parameters formula and then
allowing τ to approach infinity, we can write

Y (ξ) = Q2(ξ)Y (ξ) + (I −Q2(ξ))Y (ξ)

= Q2(ξ)T (ξ, 0)Y (0) +
∫ ξ

0
Q2(ξ)T (ξ, ζ)F (ζ)dζ + (I −Q2(ξ))T (ξ, τ)Y (τ)

+
∫ ξ

τ
(I −Q2(ξ))T (ξ, ζ)F (ζ)dζ

= T (ξ, 0)Q2(0)Y (0) +
∫ ξ

0
T (ξ, ζ)Q2(ζ)F (ζ)dζ +

∫ ξ

∞
T (ξ, ζ)(I −Q2(ζ))F (ζ)dζ

= T (ξ, 0)Ys +
∫ ξ

0
T (ξ, ζ)Q2(ζ)F (ζ)dζ +

∫ ξ

∞
T (ξ, ζ)(I −Q2(ζ))F (ζ)dζ.

Please notice that as τ → ∞, the term (I − Q2(ξ))T (ξ, τ)Y (τ) → 0. This can be seen by
looking at its norm. Based on the fact that (6.7) has a pseudoexponential dichotomy on
J̄2, and on the equations (6.10), (6.11), we have

‖(I −Q2(ξ))T (ξ, τ)Y (τ)‖ = ‖T (ξ, τ)(I −Q2(ξ))Y (τ)‖
= ‖H2(ξ)Φ(ξ, τ)H−1

2 (τ)(I −H2(τ)Q̃2(τ)H−1
2 (τ))Y (τ)‖

= ‖H2(ξ)Φ(ξ, τ)H−1
2 (τ)

(
H2(τ)(I − Q̃2(τ))H−1

2 (τ)
)
Y (τ)‖

= ‖H2(ξ)Φ(ξ, τ)(I − Q̃2(τ))H−1
2 (τ)Y (τ)‖

≤ ‖H2(ξ)‖‖Φ(ξ, τ)(I − Q̃2(τ))‖‖H−1
2 (τ)‖‖Y (τ)‖
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Recall that for ξ ≤ τ, ‖Φ(ξ, τ)(I − Q̃2(τ)‖ ≤ Ceb̃2(ξ−τ) with b̃2 given in the statement of
Theorem 7. Then

εγ + b̃2 > εγ + b2 + Lε = εγ − 48βδ
α2

+ Lε

= εγ − 48βε
Lα2

+ Lε

= ε

(
γ −

(
48β
Lα2

− L
))

> 0.

Hence,

‖(I −Q2(ξ))T (ξ, τ)Y (τ)‖ ≤ ‖H2(ξ)‖‖Φ(ξ, τ)(I − Q̃2(τ))‖‖H−1
2 (τ)‖‖Y (τ)‖

≤ D̃eb̃2(ξ−τ)−εγτ‖H−1
2 (τ)‖‖Y (τ)‖

≤ D̃e−(εγ+b̃2)τ‖H−1
2 (τ)‖‖Y (τ)‖

Since ‖H−1
2 (τ)‖ grows algebraically as τ →∞, the decaying exponential term will dominate

the behavior of the product as τ →∞. Thus as τ →∞, ‖(I −Q2(ξ))T (ξ, τ)Y (τ)‖ → 0.
Similarly, for τ < ξ and allowing τ → −∞, we can write Y (ξ) on −∞ < ξ ≤ 0 as

Y (ξ) = Q1(ξ)Y (ξ) + (I −Q1(ξ))Y (ξ)

= Q1(ξ)T (ξ, τ)Y (τ) +
∫ ξ

τ
Q1(ξ)T (ξ, ζ)F (ζ)dζ + (I −Q1(ξ))T (ξ, 0)Y (0)

+
∫ ξ

0
(I −Q1(ξ))T (ξ, ζ)F (ζ)dζ

=
∫ ξ

−∞
T (ξ, ζ)Q1(ζ)F (ζ)dζ + T (ξ, 0)(I −Q1(0))Y (0)

+
∫ ξ

0
T (ξ, ζ)(I −Q1(ζ))F (ζ)dζ

=
∫ ξ

−∞
T (ξ, ζ)Q1(ζ)F (ζ)dζ + T (ξ, 0)Yu +

∫ ξ

0
T (ξ, ζ)(I −Q1(ζ))F (ζ)dζ.

As τ → −∞, ‖Q1(ξ)T (ξ, τ)Y (τ)‖ → 0. This can be seen by observing that

‖Q1(ξ)T (ξ, τ)Y (τ)‖ = ‖T (ξ, τ)Q1(τ)Y (τ)‖
= ‖H1(ξ)Φ(ξ, τ)H−1

1 (τ)H1(τ)Q̃1(τ)H−1
1 (τ)Y (τ)‖

≤ ‖H1(ξ)‖‖Φ(ξ, τ)Q̃1(τ)‖‖H−1
1 (τ)‖‖Y (τ)‖.

Recall that for ξ ≥ τ, ‖Φ(ξ, τ)Q̃1(τ)‖ ≤ Ceã1(ξ−τ) with ã1 given in the statement of Theorem
7. Then

εγ − ã1 > εγ − (a1 + Lε) = εγ − 48βδ
α2
− Lε

= εγ − 48βε
Lα2

− Lε

= ε

(
γ −

(
48β
Lα2

+ L

))
> 0.
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So we have,

‖Q1(ξ)T (ξ, τ)Y (τ)‖ ≤ ‖H1(ξ)‖‖Φ(ξ, τ)Q̃1(τ)‖‖H−1
1 (τ)‖‖Y (τ)‖

≤ C̃e(ã1(ξ−τ)−εγ|τ |)‖H−1
1 (τ)‖‖Y (τ)‖εγ

≤ C̃e(εγ−ã1)τ‖H−1
1 (τ)‖‖Y (τ)‖εγ .

Since ‖H−1
1 (τ)‖ grows algebraically as τ → −∞, the decaying exponential term will dom-

inate the behavior of the product as τ → −∞. Therefore ‖Q1(ξ)T (ξ, τ)Y (τ)‖ → 0 as
τ → −∞.

We conclude that if equation (6.14), with f ∈ C(εγ,Rξ), has a solution Y ∈
C(εγ,Rξ), then Y must be given by expression∫ ξ

−∞
T (ξ, ζ)Q1(ζ)F (ζ)dζ + T (ξ, 0)Yu +

∫ ξ

0
T (ξ, ζ)(I −Q1(ζ))F (ζ)dζ

for ξ ≤ 0 and the expression

T (ξ, 0)Ys +
∫ ξ

0
T (ξ, ζ)Q2(ζ)F (ζ)dζ +

∫ ξ

∞
T (ξ, ζ)(I −Q2(ζ))F (ζ)dζ

for ξ ≥ 0. It is easy to check that these formulas define solutions of (6.14) on ξ ≤ 0 and
ξ ≥ 0 respectively. If Y ∈ C(εγ,Rξ), then it must be continuous at 0. We will find a
condition on Yu and Ys that guarantees that Y is continuous at 0. In addition, we will show
that the ‖Y (ξ)‖εγ ≤ K‖f‖εγ , for some constant K. This will aid in verifying that the ρ
values in Kδ ∩ Ω for the 0-dimensional Λ are the resolvent values of T ξ.

Using the fact that (I − P2)F = F , we observe when ξ ≥ 0, the norm of Y (ξ) is
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bounded in the following way,

‖Y (ξ)‖ ≤ ‖T (ξ, 0)Ys‖+
∫ ξ

0
‖T (ξ, ζ)Q2(ζ)(I − P2)F (ζ)‖dζ

+
∫ ∞
ξ
‖T (ξ, ζ)(I −Q2(ζ))(I − P2)F (ζ)dζ‖

= ‖H2(ξ)Φ(ξ, 0)H−1
2 (0)Ys‖

+
∫ ξ

0
‖H2(ξ)Φ(ξ, ζ)H−1

2 (ζ)H2(ζ)Q̃2(ζ)H−1
2 (ζ)(I − P2)F (ζ)‖dζ

+
∫ ∞
ξ
‖H2(ξ)Φ(ξ, ζ)H−1

2 (ζ)H2(ζ)(I − Q̃2(ζ))H−1
2 (ζ)(I − P2)F (ζ)‖dζ

= ‖H2(ξ)Φ(ξ, 0)H−1
2 (0)Ys‖+

∫ ξ

0
‖H2(ξ)Φ(ξ, ζ)Q̃2(ζ)H−1

2 (ζ)(I − P2)F (ζ)‖dζ

+
∫ ∞
ξ
‖H2(ξ)Φ(ξ, ζ)(I − Q̃2(ζ))H−1

2 (ζ)(I − P2)F (ζ)dζ‖

≤ ‖H2(ξ)‖‖Φ(ξ, 0)‖‖H−1
2 (0)‖‖Ys‖

+
∫ ξ

0
‖H2(ξ)‖Φ(ξ, ζ)Q̃2(ζ)‖‖H−1

2 (ζ)(I − P2)‖‖F (ζ)‖dζ

+
∫ ∞
ξ
‖H2(ξ)‖‖Φ(ξ, ζ)(I − Q̃2(ζ))‖‖H−1

2 (ζ)(I − P2)‖‖F (ζ)dζ‖

≤ D̂1e
ã2ξ‖Ys‖+ D̂2‖F‖εγ

∫ ξ

0
eã2(ξ−ζ)−εγζdζ + D̂3‖F‖εγ

∫ ∞
ξ

eb̃2(ξ−ζ)−εγζdζ

≤ D̂1e
ã2ξ‖Ys‖+ D̂4‖F‖εγ(e−εγξ − eã2ξ) + D̂5‖F‖εγe−εγξ.

Multiplying ‖Y (ξ)‖ by eεγξ, gives eεγξ‖Y (ξ)‖ ≤ C2‖Ys‖+ c‖F‖εγ .
Again using the fact that (I − P2)F = F , we observe when ξ ≤ 0, the norm of

Y (ξ) is bounded in the following manner,
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‖Y (ξ)‖ = ≤
∫ ξ

−∞
‖T (ξ, ζ)Q1(ζ)F (ζ)‖dζ + ‖T (ξ, 0)Yu‖+

∫ 0

ξ
‖T (ξ, ζ)(I −Q1(ζ))F (ζ)‖dζ

=
∫ ξ

−∞
‖H1(ξ)Φ(ξ, ζ)H−1

1 (ζ)H1(ζ)Q̃1(ζ)H−1(ζ)(I − P2)F (ζ)‖dζ

+‖H1(ξ)Φ(ξ, 0)H−1
1 (0)Yu‖

+
∫ 0

ξ
‖H1(ξ)Φ(ξ, ζ)H−1

1 (ζ)H1(ζ)(I − Q̃1(ζ))H−1(ζ)(I − P2)F (ζ)‖dζ

=
∫ ξ

−∞
‖H1(ξ)Φ(ξ, ζ)Q̃1(ζ)H−1(ζ)(I − P2)F (ζ)‖dζ + ‖H1(ξ)Φ(ξ, 0)H−1

1 (0)Yu‖

+
∫ 0

ξ
‖H1(ξ)Φ(ξ, ζ)(I − Q̃1(ζ))H−1(ζ)(I − P2)F (ζ)‖dζ

≤
∫ ξ

−∞
‖H1(ξ)‖‖Φ(ξ, ζ)Q̃1(ζ)‖‖H−1(ζ)(I − P2)‖‖F (ζ)‖dζ

+‖H1(ξ)‖‖Φ(ξ, 0)‖‖H−1
1 (0)‖‖Yu‖

+
∫ 0

ξ
‖H1(ξ)‖‖Φ(ξ, ζ)(I − Q̃1(ζ))‖‖H−1(ζ)(I − P2)‖‖F (ζ)‖dζ

= Ĉ1‖F‖εγ
∫ ξ

−∞
eã1(ξ−ζ)−εγ|ζ|dζ + Ĉ2e

b̃1ξ‖Yu‖+ Ĉ3‖F‖εγ
∫ 0

ξ
eb̃1(ξ−ζ)−εγ|ζ|dζ

= Ĉ4‖F‖εγeεγξ + Ĉ2e
b̃1ξ‖Yu‖+ Ĉ5‖F‖εγ(eεγξ − eb̃1ξ).

Multiplying by eεγ|ξ| gives eεγ|ξ|‖Y (ξ)‖ ≤ C1‖Ys‖+ k‖F‖εγ .
The values Ys and Yu are chosen so that Y (ξ) is continuous at 0. So for ξ = 0, we

have

Ys − Yu =
∫ 0

−∞
T (0, ζ)Q1(ζ)F (ζ)dζ +

∫ ∞
0

T (0, ζ)(I −Q2(ζ))F (ζ)dζ.

Since R(Q2(0)) and R(I −Q1(0)) are complementary, we can define a projection Q̂ on R3

with R(Q̂) = R(Q2(0)) and R(I − Q̂) = R(I −Q1(0)). Let Ŷ denote the right hand side of
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the previous equation. Then Q̂Ŷ = Ys and (I − Q̂)Ŷ = −Yu. Therefore:

‖Q̂Ŷ ‖ ≤
∫ 0

−∞
‖Q̂Q1(0)T (0, ζ)F (ζ)‖dζ +

∫ ∞
0
‖Q̂(I −Q2(0))T (0, ζ)F (ζ)‖dζ

=
∫ 0

−∞
‖Q̂H1(0)Q̃1(0)H−1

1 (0)H1(0)Φ(0, ζ)H−1
1 (ζ)(I − P2)F (ζ)‖dζ

+
∫ ∞

0
‖Q̂H2(0)(I − Q̃2(0))H−1

2 (0)H2(0)Φ(0, ζ)H−1
2 (ζ)(I − P2)F (ζ)‖dζ

=
∫ 0

−∞
‖Q̂H1(0)Q̃1(0)Φ(0, ζ)H−1

1 (ζ)(I − P2)F (ζ)‖dζ

+
∫ ∞

0
‖Q̂H2(0)(I − Q̃2(0))Φ(0, ζ)H−1

2 (ζ)(I − P2)F (ζ)‖dζ

≤
∫ 0

−∞
||Q̂‖‖H1(0)‖‖Q̃1(0)Φ(0, ζ)‖‖H−1

1 (ζ)(I − P2)‖‖F (ζ)|dζ

+
∫ ∞

0
‖Q̂‖‖H2(0)‖‖(I − Q̃2(0))Φ(0, ζ)‖‖H−1

2 (ζ)(I − P2)‖‖F (ζ)‖dζ

≤ Ê1‖F‖εγ
∫ 0

−∞
e−ã1ζ−εγ|ζ|dζ + Ê2‖F‖εγ

∫ ∞
0

e−b̃2ζ−εγζdζ

= E1‖F‖εγ

‖(I − Q̂)Ŷ ‖ ≤
∫ 0

−∞
‖(I − Q̂)Q1(0)T (0, ζ)F (ζ)‖dζ +

∫ ∞
0
‖(I − Q̂)(I −Q2(0))T (0, ζ)F (ζ)‖dζ

=
∫ 0

−∞
‖(I − Q̂)H1(0)Q1(0)H−1

1 (0)H1(0)Φ(0, ζ)H−1
1 (ζ)(I − P2)F (ζ)‖dζ

+
∫ ∞

0
‖(I − Q̂)H2(0)(I −Q2(0))H−1

2 (0)H2(0)Φ(0, ζ)H−1
2 (ζ)(I − P2)F (ζ)‖dζ

=
∫ 0

−∞
‖(I − Q̂)H1(0)Q1(0)Φ(0, ζ)H−1

1 (ζ)(I − P2)F (ζ)‖dζ

+
∫ ∞

0
‖(I − Q̂)H2(0)(I −Q2(0))Φ(0, ζ)H−1

2 (ζ)(I − P2)F (ζ)‖dζ

≤
∫ 0

−∞
‖I − Q̂‖‖H1(0)‖‖Q1(0)Φ(0, ζ)‖‖H−1

1 (ζ)(I − P2)‖‖F (ζ)||dζ

+
∫ ∞

0
‖I − Q̂‖‖H2(0)‖‖(I −Q2(0))Φ(0, ζ)‖‖H−1

2 (ζ)(I − P2)‖‖F (ζ)‖dζ

≤ Ê3‖F‖εγ
∫ 0

−∞
e−ã1ζ−εγ|ζ|dζ + Ê4‖F‖εγ

∫ ∞
0

e−b̃2ζ−εγζdζ

= E2‖F‖εγ

So we have, ‖Ys‖ ≤ E1‖F‖εγ for ξ ≥ 0 and ‖Yu‖ = ‖ − Yu‖ ≤ E2‖F‖εγ for
ξ < 0. This implies that, ‖Y (ξ)‖εγ = eεγξ|Y (ξ)| is bounded by a positive multiple of ‖F‖εγ .
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Therefore, Y (ξ) ∈ C(εγ,Rξ) for all ξ ∈ R. Since solving TρU = f is equivalent to solving
(6.14), U is the first component of the solution of (6.14), which is Y1(ξ). Thus, there exists a
constant K > 0 so that ‖U‖εγ ≤ K‖F‖εγ = K‖f‖εγ . Therefore, T −1

ρ exists and is bounded
on C(εγ,Rξ). 2

6.3.1 Discussion

The purpose of the section is to analyze the eigenpairs of the linear operator given
by the equation (4.1) denoted by

Eε(U) = Ut =
1
ε
T x.

The eigenpairs of Eε satisfy (4.2). Please observe that U(ξ) ∈ C(εγ,Rξ) implies that the
function Ũ(x) = U

(
x
ε

)
is in C(γ,Rx). Ũ(x) ∈ C(γ,Rx) implies that supx |Ũ(x)|eγ|x| < ∞.

As a result, ρ is an eigenvalue or resolvent value of T ξ on C(εγ,Rξ) is equivalent to ρ being
an eigenvalue or resolvent value of T x on C(γ,Rx). Then the corresponding λ(ε) = ρ

ε is an
eigenvalue or resolvent value of Eε on C(γ,Rx).

Please note that since δ is defined to be ε
L in the Theorem 8, 1

εKδ is simply the set
of complex numbers with real part at least − 1

L . Theorem 8 tells us that if ρ = ελ ∈ Kδ ∩Ω,
then ρ is an eigenvalue of T x with geometric multiplicity 1 and eigenfunction located in
C(γ,Rx) or a resolvent value of T x. Since ρ = ελ, we have

λ ∈ 1
ε

(Kδ ∩ Ω) =
(
K 1

L
∩ 1
ε

Ω
)
.

Since Ω is given as any arbitrary compact set in C, the space
(
K 1

L
∩ 1

εΩ
)

is relatively large.
The result from Theorem 8 simply implies that the above λ values are either eigenvalues of
Eε with geometric multiplicity 1 and eigenfunctions in C(γ,Rx) or resolvent values of Eε.

In Chapter 5, we mentioned for sufficiently small ε > 0 that the small eigenvalues
of the operator Eε whose eigenfunctions go to 0 rapidly as x → ±∞, were contained in a
small neighborhood about the calculated λ0. The corresponding eigenfunctions that go to
0 rapidly as x → ±∞ are those whose values at 0 are in the space Λ. Thus the eigenpairs
discussed in Chapter 5 are precisely those in which the related eigenfunctions are located
in C(γ,Rx). So these eigenpairs are the very ones mentioned in Theorem 8.

We pointed out in Chapter 5 that Wu
ε (Mu`) and Ws

ε (Mur) are transverse for
fixed λ 6= λ0 + ελ1 +O(ε2). We are able to make an inference that if λ is a resolvent value
of Eε, then Wu

ε (Mu`) and Ws
ε (Mur) are transverse for each λ. So the resolvent values in(

K 1
L
∩ 1

εΩ
)

, will produce a solution that starts in Wu
ε (Mu`) and ends in Ws

ε (Mur).
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Chapter 7

Concluding Thoughts and Future
Endeavors

7.1 Conclusions

7.1.1 Existence of a Riemann–Dafermos Solution

We began by considering a modified version of the KdV-Burgers equation (1.1),

uT + 3u2uX = αuXX + βuXXX .

Motivated by the suggestion of numerical approximations, we applied the change of variables

x =
X

T
t = lnT, (7.1)

to (1.1) to produce equation (1.4),

ut + (3u2 − x)ux = αe−tuxx + βe−2tuxxx.

Instead of focusing on (1.4) directly, we replaced the time dependent coefficients
in (1.4) with small positive constants and obtained (1.6),

ut + (3u2 − x)ux = αεuxx + βε2uxxx.

One can view those substituted constants as the exponentials evaluated at some large time
t0. So when time is near t0, the solutions (1.6) are near those of (1.4) for ε = e−t0 .

Motivated by (1.1) subject to

u(T,−∞) = u` and u(T,∞) = ur,

we turned our interests to the steady state solution of (1.6), subject to the conditions

u(−∞) = u`, and u(∞) = ur.
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We refer to this solution as the Riemann–Dafermos solution.
We learned from [6] that select pairs of boundary conditions give rise to shock

waves,

u(x) =
{
u` for x < s
ur for x > s

,

that are either compressive or undercompressive. These shock waves solutions are weak
solutions of (1.3), the underlying conservation law of (1.1) in (x, t)-coordinates

ut + (3u2 − x)ux = 0.

For β > 0, it was shown by Jacobs, McKinney, and Shearer in [6] that the shock wave was
compressive when

u` ∈

(
0,

2α
√

2
3
√
β

)
and ur ∈

(
−u

`

2
, u`
)
.

It was also shown in [6] that a dispersion phenomenon occurred when β > 0,

u` >
2
√

2α
3
√
β
, and ur > −u` +

α
√

2
3
√
β
.

This phenomenon is one in which a compressive shock splits into an undercompressive shock
followed by a faster compressive shock. For β > 0 and these pairs of boundary conditions,
we were able to show, for a Riemann solution consisting of either 1 or 2 shock wave(s)
and for small ε > 0, the existence of a Riemann–Dafermos solution that is C1 close to the
corresponding Riemann solution away from its discontinuities.

7.1.2 Stability Properties

We studied the stability of the Riemann–Dafermos solution by means of lineariza-
tion. After finding the corresponding linear partial differential equation (4.1),

Ut + 6ûεû′εU + (3û2
ε − x)Ux = αεUxx + βε2Uxxx,

we used Dodd results in [5] to be able to conclude that for ε > 0 and Re(λ) > 0, λ will not
be an eigenvalue of (4.1). The operator form of (4.1) is given by Ut = EεU , where

EεU = βε2Uxxx + αεUxx − 6ûεû′εU − (3û2
ε − x)Ux.

We consider Ω as any given compact subset of C and K 1
L

=
{
λ
∣∣Re (λ) ≥ − 1

L , L > 0
}

.

For sufficiently small ε > 0, we were able to show that the set
(
K 1

L
∩ 1

εΩ
)

contains only
resolvent values of Eε and eigenvalues of Eε with geometric multiplicity of one.

We assume that the eigenvalues take the form λ0+ελ1+O(ε2). Thus for sufficiently
small ε > 0, the eigenvalues are contained in a neighborhood about λ0. Let N denote the
portion of the neighborhood about λ0 that contains all small eigenvalues of Eε with geometric
multiplicity 1. Then

(
K 1

L
∩ 1

εΩ
)
\N would contain the resolvent set of Eε.
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As ε > 0 gets smaller, N gets smaller and
(
K 1

L
∩ 1

εΩ
)

gets larger. Thus, as ε > 0

gets smaller,
(
K 1

L
∩ 1

εΩ
)
\N gets larger. The intersection

(
K 1

L
∩ 1

εΩ
)

is simply a subset

that lies completely in K 1
L

. As ε → 0, the intersection
(
K 1

L
∩ 1

εΩ
)
→ K 1

L
. This implies

that as ε → 0, K 1
L

will only contain resolvent values. That is, as ε → 0, the number
of eigenvalues with geometric multiplicity 1 goes to 0. There is no way to guarantee the
existence of a sufficiently small ε∗ value so that for every fixed ε smaller than ε∗, the
intersection

(
K 1

L
∩ 1

εΩ
)

contains only resolvent values. If we could provide this, then any
of those sufficiently small ε values less than ε∗ would create that neighborhood about λ0 so
that if λ is in it then Re(λ) < − 1

L < 0.

7.2 Next

The natural next step is to investigate the spectrum more to get those stability
results and determine how to relate our results about solutions of (1.6) to those of (1.4),
solutions of (1.1) under the change of variables (7.1). Another equation of interest is a thin
film model studied by Bertozzi, Münch, Shearer, (1999). This model is given by

hT (h2 − h3)X = −ε3(h3hXXX)X . (7.2)

This equation models the movement of a thin liquid film of thickness h up an inclined plane
due to a temperature gradient on the plane. This equation has been studied subject to the
conditions:

h(−∞, T ) = h∞ h(∞, T ) = b 0 < b < h∞ ε > 0 (small) . (7.3)

The constant h∞ represents the depth of the film at the bottom of the plane. The constant
b is the depth of a thin precursor layer above the climbing liquid. Numerical simulations of
(7.2)− (7.3), as well as experiments, show that after a large time the solution is close to a
Riemann solution of the conservation law of concern. A future project is to use Dafermos
regularization to investigate this model further.
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