
Abstract

SEATON, GERALD ARTHUR. The Lattice of Equivalence Classes of Closed

Sets and the Stone-·Cech Compacti¯cation. (Under the direction of Dr. Gary Faulkner.)

¯X nX is the remainder of the Stone-·Cech compacti¯cation of a locally compact

space X. This paper introduces a lattice which we call L(X) that is constructed

using equivalence classes of closed sets of X . We then determine that St(L(X)) (the

set of ultra¯lters on L(X)) is homeomorphic to ¯X nX . We subsequently give some

examples. Most notably, for X = H this now provides a lattice-theoretic approach

for representing ¯H nH.

In addition, we expand and clarify some aspects of lattice theory related to our

constructions. We introduce the term "upwardly nonlinear" as a way to describe

lattices with a certain property related to the ultra¯lters on it. We also investigate

some of the lattice properties of L(X).
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Chapter 1

PRELIMINARIES

1.1 DEFINITIONS { Topological

Knowledge of some of the basic concepts of topology (such as the separation axioms)

is assumed. General Topology by Willard [14] is a good source for topological de¯ni-

tions not contained herein. Both Willard's book [14] and Extensions and Absolutes

of Hausdor® Spaces by Porter and Woods [9] are good references for the following

de¯nitions.

A subset S of a topological space X is called clopen if S is both open and closed

with respect to the topology on X. A space X is called 0-dimensional provided that

the set of all clopen sets of X forms a base for the open sets of X .

A collection C of sets of a space X is said to have the ¯nite intersection property

if the intersection of any ¯nite subcollection of elements of C is non-empty.

A space X is said to be compact provided that every open cover of X has a ¯nite

subcover. Equivalently, X is compact if every collection of closed sets of X with the

¯nite intersection property has non-empty intersection.
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Chapter 1. PRELIMINARIES 2

A compacti¯cation ®X of a space X is a compact Hausdor® space that contains X

as a dense subset. A space has a compacti¯cation if and only if it is Tychono®. From

now on, unless otherwise noted, spaces will be assumed to be Tychono®. ®X n X
denotes the remainder (i.e. the compacti¯cation ®X minus the original space X) of

the compacti¯cation ®X .

A space X is said to be locally compact provided that every element of X has

a compact neighborhood. The one-point compacti¯cation of X, sometimes denoted

!X , is the compacti¯cation of X whose remainder consists of a single point. Locally

compact, non-compact spaces are precisely those that have a one-point compacti¯ca-

tion.

The maximum compacti¯cation of a space X is called the Stone-·Cech compact-

i¯cation of X , and is denoted ¯X. The Stone-·Cech compacti¯cation of X can be

characterized as the unique compacti¯cation of X such that every bounded con-

tinuous function on X can be extended to a continuous function on ¯X (i.e. X is

C?-embedded in ¯X). To see varying constructions of ¯X , we recommend Chandler's

Hausdor® Compacti¯cations [1], and Rings of Continuous Functions by Gillman and

Jerison [5].

A space X is called connected if no two disjoint open sets of X cover X. If X is

compact and connected, it is called a continuum.

Additionally, a subset S of a spaceX is called a G± if S is the countable intersection

of open sets, and S is called an F¾ if S is the countable union of closed sets.
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1.2 DEFINITIONS { Lattice-theoretic

Many of the following de¯nitions can be found in Koppelberg's Handbook of Boolean

Algebras [7].

A partial order · is a binary relation that is re°exive, transitive, and antisym-

metric. A partially ordered set (P;·) is a set P paired with a partial order ·. We

will usually just write P instead of (P;·).

Given a partially ordered set P and elements a; b 2 P , the supremum of a and

b (denoted a _ b) is the least element that is greater than or equal to both a and b.

The in¯mum of a and b (denoted a ^ b) is the greatest element that is less than or

equal to both a and b. If L is a partially ordered set where a _ b and a ^ b exist for

all a; b 2 L, then we call L a lattice.

A lattice L is called distributive if a ^ (b _ c) = (a ^ b)_ (a ^ c) and a _ (b ^ c) =

(a _ b) ^ (a _ c) for all a; b; c 2 L.

A bounded lattice is a lattice with both a greatest and a least element (usually

denoted 1 and 0, respectively).

A ¯lter p on a lattice L is a subset of L such that

(i). 0 =2 p
(ii). a; b 2 p implies that a ^ b 2 p
(iii). a 2 p and b 2 L with b ¸ a implies that b 2 p.

An ultra¯lter is a maximal ¯lter (with respect to set inclusion).

Let a 2 L. Then a0 2 L is said to be the pseudocomplement of a if a^ a0 = 0 and

b ^ a = 0) b · a0, 8b 2 L. A lattice L is called pseudocomplemented if every a 2 L
has a pseudocomplement.
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Let a 2 L. Then ac 2 L is said to be the complement of a if a ^ ac = 0 and

a _ ac = 1. We say "the" complement because it is unique (if it exists). A lattice

B where every element of B has a complement is called a Boolean algebra. The

Handbook of Boolean Algebras [7] is an excellent reference for more background about

Boolean algebras.

The power set of !, denoted P (!), is a Boolean algebra. P (!)=fin denotes the

set of subsets of ! mod the ¯nite sets (also a Boolean algebra).

If B is a Boolean algebra, then the Stone space of B, denoted St(B), is the space

formed by the set of all ultra¯lters on B. We also use this notation to describe the

collection of ultra¯lters of a lattice (i.e. if L is a lattice, St(L) is the space of all

ultra¯lters on L).

We use the notation CO(St(B)) to denote the set of clopen subsets of St(B).

1.3 BACKGROUND

M.H. Stone ¯rst introduced using Boolean algebras in the study of compact 0-dimensional

spaces in the late 1930's. The following theorem is named for him:

Theorem 1.3.1. (Stone's Representation Theorem) Let B be a Boolean Algebra.

Then:

1) St(B) is a compact, zero-dimensional space.

2) B is isomorphic to CO(St(B)) (the Boolean algebra of the clopen subsets of

St(B).

A detailed treatment of Stone's theory can be found in the books of Porter and

Woods [9] and of Walker [12]. This theorem led to, in particular, the characterization
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of ¯! as the Stone space of the power set of ! (i.e. St(P (!))). Additionally, the

Stone space of the Boolean algebra P (!)=fin is homeomorphic to ¯! n!. In general,

Stone-·Cech compacti¯cations and their remainders could be studied using Boolean

algebras { provided that they were zero-dimensional.

Also in the late 1930's, H. Wallman worked on an alternate approach to studying

compact T1-spaces, but he used lattices in general (without the additional structure

of Boolean algebras). In his paper Lattices and Topological Spaces [13], Wallman

considers the lattice L of closed sets of a T1-space R. He de¯nes the term "point"

(now referred to as "ultra¯lter") and shows that the set S of all "points" of a dis-

tributive lattice is a bicompact T1-space. He also shows that R normal if and only if

S Hausdor®.

Additionally, he de¯nes in the paper a condition on the lattice L of the closed

sets of R that is inspired by the closed set de¯nition of normality. Today, any lattice

satisfying this condition is usually referred to as a normal lattice. This version of

normality led to the de¯nition of a Wallman base (a discussion about the concept of

Wallman bases can be found in Willard's book [14]):

De¯nition 1.3.2. Let B be any base for the closed sets of X satisfying the following

conditions:

a) for each closed set F and x =2 F , there is some A 2 B such that x 2 A and

A \ F = ;,
b) B is closed under ¯nite unions and intersections,

c) if A;B 2 B are disjoint, then there exists C;D 2 B such that A ½ X n C,

B ½ X nD, and (X n C) \ (X nD) = ;.
Then B is called a Wallman base for X.

Given a Wallman base B, the concept of a B-ultra¯lter can be de¯ned. Then, the
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set of all B-ultra¯lters on X is called a Wallman compacti¯cation of X. It was once

believed that every Hausdor® compacti¯cation might be a Wallman compacti¯cation

for some Wallman base.

In the 1960's, O. Frink worked with understanding Wallman bases (which he

called normal bases at the time) and the resulting Wallman compacti¯cations. For

example, he proved the following about semi-normal spaces (i.e. spaces with at least

one Wallman base):

Theorem 1.3.3. A T1-space is completely regular if and only if it is semi-normal.

The proof of this theorem can be found in his 1964 paper Compacti¯cations and

Semi-Normal Spaces [4]. Also in this paper, Frink ¯rst posed the question of whether

every Hausdor® compacti¯cation can be obtained by taking the Wallman compacti-

¯cation for some Wallman base.

In 1974, L.B. ·Sapiro published a paper [10] which considered this question posed

by Frink. ·Sapiro broke this problem down to a set-theoretic one. He did not fully

answer the question, but his work paved the way for V.M. Ul'Janov. In Ul'Janov's

1977 paper [11] on the subject, he determined that there are in fact compacti¯cations

not of Wallman type.

In the meantime, use for Stone's work had risen, thanks to the importance that

Parovi·cenko found in the space ¯! n !. In his 1963 paper [8] on the subject,

Parovi·cenko proved that every compact set of weight · !1 is a continuous image

of ¯! n!. Assuming the Continuum Hypothesis, he showed that ¯! n! is a universal

compact Hausdor® space of weight !1. This led to the de¯nition of a space called a

Parovi·cenko space:

De¯nition 1.3.4. X is called a Parovi·cenko space provided that
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a) X is a zero-dimensional compact space without isolated points with weight c,

b) every two disjoint open F¾'s in X have disjoint closures,

c) every nonempty G± in X has nonempty interior.

Thus, Parovi·cenko showed that the Continuum Hypothesis implies that every

Parovi·cenko space is homeomorphic to ¯! n !.

E.K. van Douwen and J. van Mill expanded on this work in their 1978 paper [2],

where they proved that Parovi·cenko's characterization of ¯! n ! is equivalent to the

Continuum Hypothesis by showing that if every Parovi·cenko space is homeomorphic

to ¯! n !, then the Continuum Hypothesis is true.

In 1991, K.P. Hart and A. Dow published a paper [6] in which they proved a

similar result to that of Parovi·cenko, but this time for the space ¯H n H. They

showed that every continuum of weight !1 is a continuous image of ¯H nH. This

characterization provided new motivation for the further study of ¯H nH.

The characterization of ¯!n! popularized the use of Boolean algebras in studying

compacti¯cations (begun by Stone), as this technique allowed one to approach topo-

logical problems from an algebraic angle. On the other hand, the lattice approach

introduced by Wallman fell out of favor with the discovery that there are compact-

i¯cations that are not Wallman type. However, one of the overlooked advantages of

Wallman's approach is that it could (at least hypothetically) handle more topological

cases, since the theory wasn't restricted to the study of 0-dimensional spaces (as the

Boolean algebra approach was).

We use this advantage in our development of the lattice that we call L(X) (see

chapter 3), as we are motivated by the work of Hart and Dow to ¯nd an algebraic

approach with which to study ¯H nH. Though used di®erently, the construction of
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L(X) was inspired, in part, by a similar lattice construction found in a 1994 paper

by Faulkner and Vipera [3].



Chapter 2

GENERAL LATTICES

Suppose that L is a lattice that is bounded (i.e. has a minimum and maximum with

respect to the partial order; generally we'll refer to these as 0 and 1) and distributive

(we assume all lattices are bounded and distributive unless noted otherwise). An

ultra¯lter on L is a ¯lter on L that is maximal. A ¯lter on L is said to be prime if

a_ b 2 L implies that a 2 L or b 2 L. With the help of the following lemma, we show

that every ultra¯lter is prime.

Lemma 2.1. Let p be an ultra¯lter of a lattice L. Suppose b 2 L and 8a 2 p,

a ^ b6= 0. Then b 2 p.

Proof. Let q =fc 2 L : 9a 2 p; c ¸ a ^ bg.(Show that q is a ¯lter.)

(i). a ^ b6= 0, 8a 2 p, so 062 q.

(ii). Let c1; c2 2 q. Then c1 ¸ a1 ^ b and c2 ¸ a2 ^ b for some a1; a2 2 p. Hence

c1 ^ c2 ¸ (a1 ^ b) ^ (a2 ^ b) = (a1 ^ a2) ^ b. So c1 ^ c2 2 q since a1 ^ a2 2 p.

(iii). Let c1 2 q and c2 ¸ c1. Then c1 ¸ a ^ b for some a 2 p. Clearly c2 ¸ a ^ b.
Hence c2 2 q.

So, by (i), (ii), and (iii), q is a ¯lter. Let a 2 p. Since a ¸ a^ b, then a 2 q. So p µ q.

9
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But p is an ultra¯lter, so p = q. Since for any a 2 p, b ¸ b ^ a, then b 2 q. But p = q

) b 2 p.

Proposition 2.2. Suppose that p is a ¯lter of a lattice L. Then p is maximal ) p

is prime.

Proof. Let p be a maximal ¯lter of L. Let x; y 2 L such that x _ y 2 p. Then

x _ y 2 p ) (x _ y) ^ a6= 0; 8a 2 p ) (x ^ a) _ (y ^ a) 6= 0; 8a 2 p. Suppose that

9a; b 2 p such that x^a = 0 and y^b = 0. Then (x^(a^b))_(y^(a^b)) = 0, which

contradicts above since a^ b 2 p. So either (x^ a6= 0; 8a 2 p) or (y ^ a6= 0; 8a 2 p).
So by lemma 2.1, either x 2 p or y 2 p.

We denote the set of all ultra¯lters on L by St(L) (In the case of a Boolean algebra

B, the set of all ultra¯lters on B is usually referred to as the Stone space of B { we'll

use this notation in tribute to that. We will also occasionally refer to St(L) as the

Stone space of L.). Now let's de¯ne the topology on St(L) by considering a base for

the closed sets.

Notation 2.3. Let [f ] =fp 2 St(L) : f 2 pg, for each f 2 L, and letB(St(L)) =f[f ] :

f 2 Lg.

Obviously, B(St(L)) is a base for the closed sets of some topology on St(L) (For

f1; f2 2 L, [f1] [ [f2] = [f1 _ f2] 2 B(St(L)). Also,
T

[f ] = ; since [0] = ;). Let ¿B

be the topology that B(St(L)) is a base for the closed sets of. It will be understood

that St(L) has this topology on it. The following are fundamental properties of these

basic closed sets.

Lemma 2.4. [a] [ [b] = [a _ b], 8a; b 2 L.
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Proof. There are two parts:

(µ) Let p 2 [a] [ [b]. Then a 2 p or b 2 p. Since a _ b ¸ a and a _ b ¸ b, then

a _ b 2 p. Hence p 2 [a _ b].

(¶) Let p 2 [a _ b]. Then a _ b 2 p. Since p is prime, a 2 p or b 2 p. Hence

p 2 [a] [ [b].

Lemma 2.5. [a] \ [b] = [a ^ b], 8a; b 2 L.

Proof. There are two parts:

(µ) Let p 2 [a] \ [b]. Then a 2 p and b 2 p. Since p is a ¯lter, a ^ b 2 p. Hence

p 2 [a ^ b].

(¶) Let p 2 [a ^ b]. Then a ^ b 2 p. Since a ¸ a ^ b and b ¸ a ^ b, then a; b 2 p.
Hence p 2 [a] \ [b].

With St(L) de¯ned as a topological space, the obvious next step is to consider it's

topological properties. We need a couple of preliminary results ¯rst, beginning with

a modi¯ed version of the Boolean prime ideal theorem, adjusted to suit our needs

here. The statement of the original theorem, with proof, can be found in Handbook

of Boolean Algebras [7]. The proof I provide here, paraphrased directly from the

Handbook, is included for the sake of completeness.

Theorem 2.6. A subset E of a lattice L has the f.i.p. ) E is contained in an

ultra¯lter of L.

Proof. Assume E µ L has the f.i.p. So, if p0 is the ¯lter generated by E, then p0 is

proper. Let P =fq : q ¶ p0; q is a filter of Lg. Clearly, P is non-empty and can be

partially ordered by set inclusion. For any non-empty chain C in P ,
S
C is clearly a

¯lter containing each member of C. Finally, apply Zorn's lemma.
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This gives us the following fundamental result about ¯lters:

Corollary 2.7. Any ¯lter p of a lattice L is contained in an ultra¯lter.

Proof. Filters have the f.i.p., thus this follows directly from theorem 2.6.

With this corollary, we prove that St(L) is compact.

Proposition 2.8. St(L) is compact.

Proof. Let C be a collection of basic closed sets of St(L) with the ¯nite intersection

property; denote C =f[f®] : ® 2 ¢g. Let S be the collection of all ¯nite in¯mums of

the f®'s, ® 2 ¢. (Show that S is a ¯lter base.)

(i). Let g 2 S. Then g = f®1 ^ ::: ^ f®n. Since C has the f.i.p., 9p 2 [f®1] \ ::: \
[f®n ]) f®1 ; :::; f®n 2 p) f®1 ^ ::: ^ f®n 2 p) f®1 ^ ::: ^ f®n 6= 0 since 062 p.

(ii). Let g1; g2 2 S. Then g1 = f®1 ^ ::: ^ f®n and g2 = f¯1 ^ ::: ^ f¯m. So

g1 ^ g2 = f®1 ^ ::: ^ f®n ^ f¯1 ^ ::: ^ f¯m 2 S.

So, by (i) and (ii), S is a base for some ¯lter p, and thus by corollary 2.7, 9 an ultra¯lter

p0 such that p0 ¶ p. By construction, f® 2 p0; 8® 2 ¢. Hence p0 2 [f®]; 8® 2 ¢. So
T
C6= ;. Therefore St(L) is compact.

Next, we'll consider the following lattice property, labeled (?):

(?) If p; q 2 L such that p ^ q = 0, then 9a; b 2 L such that p ^ a = 0, q ^ b = 0,

and a _ b = 1.

This property can be found as a footnote in Wallman's Lattices and Topological

Spaces ([13], pg.119). It also closely resembles a property used by Wallman in his
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de¯nition of a Wallman base for a topological space (see Willard, [14], pg. 142). It is

used as an analagous condition in the setting of lattices to the condition of normality

in the topological setting. Thus, the motivation for our following de¯nition:

De¯nition 2.9. A lattice L is called normal if L has the (?) property.

The use of the word normal becomes justi¯ed when considering the result of two

propositions, the ¯rst being:

Proposition 2.10. If L is normal, then St(L) is T2.

Proof. Let p; q 2 St(L) such that p6= q. Then 9f 2 p and g 2 q such that f ^ g = 0.

So by (?), 9a; b 2 L such that f ^ a = 0, g ^ b = 0, and a _ b = 1. So p62 [a] and

q62 [b]. Also, by lemma 2.4, [a] [ [b] = [a _ b] = [1] = St(L), so St(L) is T2.

Notice, however, that St(L) being T2 doesn't guarantee that L is normal, as the

following example demonstrates:

Example 2.11. Let L be the lattice with 5 distinct elements de¯ned in the following

way:

L = f0; a; b; a _ b; 1g where a ^ b = 0. (See appendix A for proof that L is

distributive; see ¯gure B.1 in appendix B for illustration.)

Let p =fa; a_ b; 1g and q =fb; a_ b; 1g. Because of the simplicity of the lattice,

it is easy to check that p and q are each ultra¯lters on L, and that there are no other

ultra¯lters (i.e. St(L) =fp; qg). By construction, p is in the basic closed set [a],

and q is in the basic closed set [b]. More to the point, [a] =fpg and [b] =fqg. So

[a]\ [b] = ; and [a][ [b] = St(L), which implies that [a] and [b] are clopen (so [a] and

[b] are disjoint open sets containing p and q, respectively). Hence St(L) is T2.
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L is, however, not normal. To see this, consider a; b 2 L. By de¯nition, a^ b = 0.

But there doesn't exist two non-one elements in L whose supremum is 1. In other

words, if x _ y = 1 then either x = 1 or y = 1. Since a ^ 16= 0 and b ^ 16= 0, then L

clearly can't be normal.

The key distinguishing feature of the above example is the linear nature of the top

part of the lattice. If we restrict ourselves to considering lattices that are di®erent

from the example in this regard, then we can prove the desired result. We introduce

the following term to describe lattices that are di®erent from our example with respect

to this feature.

De¯nition 2.12. A lattice L is called upwardly nonlinear provided that 1 is the only

element of L that is in every ultra¯lter on L.

Although we ¯rst considered this property from a purely lattice-theoretic point

of view, we later noticed a connection between this property and a topological one.

This is explored in chapter 4.

For now, we use the property to prove the second of two propositions that show

that our intuitive reasons for using the term normal are well-founded.

Proposition 2.13. Assume that L is upwardly nonlinear. If St(L) is T2, then L is

normal.

Proof. Suppose a; b 2 L such that a ^ b = 0. Then [a] \ [b] = ; (i.e. they have

no ultra¯lters in common). Since St(L) is T2 (by assumption) and compact (by

proposition 2.8), St(L) is normal.

Note that the base B =f[a] : a 2 Lg for the closed sets of St(L) is closed under

¯nite intersections. This, combined with the fact that St(L) is normal and compact,

implies the following:
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9[c]; [d] 2 B such that [a] \ [c] = ;, [b] \ [d] = ;, and [c] [ [d] = St(L).

Suppose a ^ c6= 0. Then there exists an ultra¯lter p 2 St(L) such that a ^ c 2 p.
But then a; c 2 p (since a; c ¸ a ^ c), which means that p 2 [a] \ [c], a contradiction.

Hence a ^ c = 0.

Similarly, b ^ d = 0. Since St(L) = [c] [ [d] = [c _ d] (by lemma 2.4), and L is

assumed to be upwardly nonlinear, then c _ d = 1. Hence L is normal.

Thus, since St(L) is always compact, propositions 2.10 and 2.13 can be summed

up by the following:

Corollary 2.14. Let L be upwardly nonlinear. L normal i® St(L) normal.

We now pause to make a few observations. Hart and Dow ([6], pg. 3) suggest that

Wallman's paper Lattices and Topological Spaces [13] proves that if L is a distributive

lattice then there is a compact T1-space X such that X is Hausdor® i® L is normal.

However, on reconsidering the Wallman paper, it appears that Wallman did not prove

this for all distributive lattices, but only for distributive lattices that are the lattice

of closed sets of some T1-space. This would leave out any distributive lattice that

is not equivalent to the lattice of closed sets of a T1-space (Note that the Birkho®-

Stone Theorem (Porter and Woods, [9], pg.104) does guarantee that every distributive

lattice has a set representation, but doesn't specify that the representation is a ring

of closed sets.). The disjunction property (as Wallman called it), also mentioned by

Hart and Dow [6], does appear to play a role in showing that St(L) is T2 ) L is

normal. In fact, it is noted in the Wallman paper that any lattice of closed sets of a

T1-space has the disjunction property.
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We now consider the disjunction property and how it relates to our upwardly non-

linear property. First let's de¯ne the disjunction property as it is given by Wallman

([13], pg. 115).

De¯nition 2.15. A lattice L has the disjunction property provided that whenever

a; b 2 L such that a6= b, there exists an element c 2 Lnf0g such that one of a^ c and

b ^ c is 0 and the other is not 0.

Wallman stated that c should be taken out of L, but clearly c would never be 0,

thus the reason for the modi¯cation. Wallman also stated the following theorem (as

lemma 3, [13], pg. 115) concerning the disjunction property.

Theorem 2.16. L has the disjunction property i® there is a 1-1 correspondence

between the elements of L and the elements of B(St(L)) =f[f ] : f 2 Lg.

Assume a lattice L has the disjunction property. So by this theorem, if a; b 2 L
such that a6= b, then [a]6= [b]. In particular, assume a = 1. Then b 2 Lnf1g implies

that [b]6= [1]. Since [1] = St(L), this is the same as stating that for every b 2 Lnf1g,
there is an ultra¯lter p 2 St(L) such that b =2 p. In other words, 1 is the only element

of L that is in every ultra¯lter on L. We have just shown the following:

Proposition 2.17. L has the disjunction property ) L is upwardly nonlinear.

So if L is a lattice with the disjunction property, then no two distinct elements a

and b of L can have their associated closed sets [a] and [b] equal to each other. On

the other hand, if L is an upwardly nonlinear lattice, then no two distinct elements a

and b of L can have their associated closed sets [a] and [b] both equal to [1] { but that

doesn't mean that [a] can't equal [b]. Thus, it would intuitively seem that there is an

example of an upwardly nonlinear lattice that does not have the disjunction property.
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Now, in corollary 2.7, we showed that every ¯lter on a lattice is contained in at

least one ultra¯lter. The next proposition gives a condition under which a ¯lter will

be contained in exactly one ultra¯lter.

Proposition 2.18. If p is a prime ¯lter of a normal lattice L , then p is contained

in a unique ultra¯lter.

Proof. Suppose L is normal. Suppose p is a prime ¯lter of L contained in distinct

ultra¯lters q1 and q2 (i.e. q1 and q2 are maximal, q1 6= q2, and p µ q1 \ q2). Then

9a 2 q1 n q2 and 9b 2 q2 n q1 such that a ^ b = 0. Since L is normal, 9c; d 2 L such

that a ^ c = 0, b ^ d = 0, and c _ d = 1. Since 1 2 p, then either c 2 p or d 2 p (by

prime). Either is a contradiction (W.L.O.G. assume c 2 p. Then p µ q1 ) c 2 q1,

but c 2 q1 and a ^ c = 0 contradicts that a 2 q1.).

In the context of Boolean algebras, if there is an embedding g between Boolean

algebras B1 and B2, then the map h : St(B2)! St(B1) de¯ned by h(p) = g¡1(p) is a

surjective map. This h is well-de¯ned because g¡1(p) is an ultra¯lter on B1. Our ¯rst

thought was to mimic this construction in the lattice setting to get a similar result.

This, however, proved di±cult. Whether the inverse of a lattice embedding maps

a lattice ultra¯lter to a lattice ultra¯lter is a question we have not yet been able to

answer, at least given the usual assumption that the lattices involved are distributive.

The following example arose from an attempt to ¯nd a counterexample { it was later

noticed that the lattice L0 (de¯ned in example 2.19) is not distributive. Subsequent

attempts to modify the example to make it distributive have been unsuccessful. It

is presented here for the sake of completeness, and that it may eventually inspire a

solution to the problem.
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Example 2.19. Let L be the lattice with 4 distinct elements de¯ned in the following

way:

L = f0; x; y; 1g where x ^ y = 0 and x _ y = 1. (See ¯gure B.2 in appendix B for

illustration.)

Note that L is trivially normal. Now let L0 be the lattice with 5 distinct elements

de¯ned as follows:

L0 = f00; a; b; c; 10g where a^b = a^c = b^c = 00 and a_b = a_c = b_c = 10.(Note

that L0 is not distributive.)

De¯ne f : L ! L0 by f (0) = 00, f (1) = 10, f (x) = a, and f(y) = b. Clearly f

is well-de¯ned and 1-1. It is a little tedious, but easy, to check that f satis¯es the

conditions of being a lattice homomorphism (namely that f (m _ n) = f (m) _ f(n)

and f(m ^ n) = f(m) ^ f (n), for all m;n 2 L). So f is a lattice embedding.

Let p =fc; 10g. Much like in example 2.11, the ¯nite setting makes it easy to see

that p is an ultra¯lter on L0. Notice, though, that f¡1(p) =f1g, which is not an

ultra¯lter on L since it is properly contained in the ultra¯lter fx; 1g.

Though we are uncertain if the inverse of a lattice embedding would map lattice

ultra¯lters to lattice ultra¯lters (and we suspect that, in general, it wouldn't), we can

get the following somewhat weaker result:

Proposition 2.20. Suppose that f : L ! L0 is a lattice embedding and that p is a

prime ¯lter on L0. Then f¡1(p) is a prime ¯lter on L.

Proof. There are two parts:

1. f¡1(p) is a ¯lter:

(i). Suppose 0 2 f¡1(p). Then f (0) 2 p. But f(0) = 0, a contradiction. Hence

062 f¡1(p).
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(ii). Suppose a; b 2 f¡1(p). Then f(a); f(b) 2 p. So f (a) ^ f(b) = f(a ^ b) 2 p.
Hence a ^ b 2 f¡1(p).

(iii). Suppose b 2 L; a 2 f¡1(p), such that b ¸ a. Since b ¸ a, f (b) ¸ f(a) (lattice

homomorphisms preserve order). Since f (a) 2 p, then f (b) 2 p. Hence b 2 f¡1(p).

2. f¡1(p) is prime: Let a _ b 2 f¡1(p). Then f(a _ b) = f(a) _ f(b) 2 p. Since p

is prime, f(a) 2 p or f(b) 2 p. Hence a 2 f¡1(p) or b 2 f¡1(p).

Though weaker, proposition 2.20 is good enough, when used with proposition 2.18,

to give us a comparable construction to the Boolean algebra case.

De¯nition 2.21. Suppose f : L ! L0 is a lattice embedding and that L is normal.

De¯ne fD : St(L0)! St(L), the Stone-dual map of f , by fD(p) = qp, where qp is the

unique ultra¯lter in L containing f¡1(p).

If p 2 St(L0), then p is also prime (by proposition 2.2). By proposition 2.20,

f¡1(p) is a prime ¯lter on L. Since L is normal, then proposition 2.18 gives us that

f¡1(p) is contained in a unique ultra¯lter on L. Thus fD is well de¯ned.

Furthermore,

Proposition 2.22. fD is onto.

Proof. Let q 2 St(L). Since f is 1-1, without loss of generality we can assume that

f = idL (i.e. L µ L0). Since q 2 St(L), q has the f.i.p and is a subset of L0 . By

theorem 2.6, q can be extended to an ultra¯lter p of L0. Notice that f¡1(p) is a

prime ¯lter in L and f¡1(p) ¶ q. Since f¡1(p) is prime, it is contained in a unique

ultra¯lter qp (proposition 2.18). So qp ¶ f¡1(p) ¶ q. But q is maximal, so qp = q (i.e.

fD(p) = q). Hence fD is onto.
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The following theorem also deals with the e®ects normality has on the set of

ultra¯lters of a lattice.

Proposition 2.23. Suppose L is a normal lattice with no complements, L is upwardly

nonlinear, and jLj · !1. Then St(L) is:

(i). compact

(ii). connected

(iii). of weight · !1

Proof. There are three parts:

(i). St(L) is compact for any L (doesn't need to be normal).

(ii). Suppose there exists F , G that are closed subsets of St(L) such that F\G = ;
and F [G = St(L). Since L is normal, then St(L) is T2. Since St(L) is also compact,

then St(L) is normal. So there exists basic closed sets [a]; [b] µ St(L) such that

F \ [a] = ;, G \ [b] = ;, and [a] [ [b] = St(L).

Since F \ [a] = ; and F [ G = St(L), then G ¶ [a]. But [a] [ [b] = St(L) and

G \ [b] = ;, so [a] ¶ G. Hence [a] = G.

Similarly, [b] = F . Therefore ; = [a] \ [b] = [a ^ b], which implies that a ^ b = 0.

Since St(L) = [a] [ [b] = [a _ b], and since 1 is the only element of L in every

ultra¯lter on L, then a _ b = 1. This contradicts the assumption that L has no

complements, hence L is connected.

(iii). Since B =f[a] : a 2 Lg is a base for the closed sets of St(L) and jLj · !1,

then jBj · !1. Thus w(St(L)) · !1.

Note that example 2.11 is a lattice with no complemented elements, and yet it's

Stone space is disconnected (because there are two distinct ultra¯lters on the lattice).

That is why the other assumptions are present in the statement of proposition 2.23.
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Incidentally, it is true that if a lattice L has complemented elements, that is enough

to guarantee that St(L) is disconnected (Let a; b 2 L such that a^b = 0 and a_b = 1.

Thus [a] \ [b] = ; and St(L) = [1] = [a _ b] = [a] [ [b]. Therefore, [a] and [b] create a

disconnection of St(L)).



Chapter 3

L(X)

This chapter will begin by de¯ning a lattice based on the closed sets of some topo-

logical space X . Ultimately the goal is to use this lattice, which we will call L(X),

to characterize ¯X nX.

Notation 3.1. Suppose X is a topological space and F is a closed subset of X . Then

we de¯ne: [F ] =fG µ X : G closed and ClX(F 4G) is compactg.

Note that the use of brackets to de¯ne the above equivalence class is standard,

however it is also standard to use brackets to de¯ne the collection of ultra¯lters

containing a given element of a lattice. It should be clear in context which meaning

is being used (or when both are being used).

Using the above de¯ned equivalence classes, we can construct a lattice:

De¯nition 3.2. For a topological space X , let L(X) =f[F ] : F is closed in Xg, with

the operations ^ and _ de¯ned by [F1] ^ [F2] = [F1 \ F2] and [F1] _ [F2] = [F1 [ F2].

It may not be clear that L(X) as de¯ned is a lattice, so a partial proof is presented

here:

Proposition 3.3. The operations ^ and _ de¯ned above are well de¯ned.

22
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Proof. We'll just show this for _, as the proof that ^ is well de¯ned is nearly identical.

Suppose that [F1] _ [F2] = [F ] and [F1] _ [F2] = [G] (i.e. ClX(F 4 (F1 [ F2)) and

ClX(G4 (F1 [ F2)) are compact). We'd like to show that ClX(F 4 G) is compact.

We'll start by observing that F 4G = (F nG) [ (G n F ) µ (F n (F1 [ F2)) [ ((F1 [
F2) n F ) [ (G n (F1 [ F2)) [ ((F1 [ F2) nG).

(To verify this last set containment, suppose W.L.O.G. that x 2 (F n G). Then

x 2 F . If x62 (F n(F1[F2)) then x 2 (F1[F2). Since x62 G, then x 2 ((F1[F2)nG).)

So ClX((FnG)[(GnF )) µ ClX((Fn(F1[F2))[((F1[F2)nF )[(Gn(F1[F2))[((F1[
F2)nG)) µ ClX((F n(F1[F2))[((F1[F2)nF ))[ClX((Gn(F1[F2))[((F1[F2)nG)) =

ClX(F 4 (F1 [ F2)) [ ClX(G4 (F1 [ F2)).

Since the union of two compact sets is compact, then ClX(F 4 G) is a closed

subset of a compact set, and therefore compact. So [F ] = [G].

Proposition 3.4. L(X) with the given operations is a bounded distributive lattice.

Proof. Since the union or the intersection of two closed sets is closed, L(X) is clearly

closed under the operations. It is also clear that the operations are commutative,

associative, and idempotent (i.e. [F ] _ [F ] = [F ] and [F ] ^ [F ] = [F ]). Additionally,

[F ] < [G] is equivalent to [F ]_ [G] = [G] (or [F ]^ [G] = [F ]). The lattice is bounded,

as [X ] and [;] are the 1 and 0 elements, respectively. The following equalities prove

that L(X) is distributive:

[F ] ^ ([G] _ [H ]) = [F ] ^ [G [ H ] = [F \ (G [ H)] = [(F \ G) [ (F \ H)] =

[F \G] _ [F \H] = ([F ] ^ [G]) _ ([F ] ^ [H])

[F ] _ ([G] ^ [H ]) = [F ] _ [G \ H ] = [F [ (G \ H)] = [(F [ G) \ (F [ H)] =

[F [G] ^ [F [H] = ([F ] _ [G]) ^ ([F ] _ [H])
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From this point on, unless otherwise stated, we will assume that our topological

spaces are locally compact. In what follows, we will show that for any space X,

¯X n X is homeomorphic to St(L(X)). We will ¯rst introduce some notation and

provide proofs of some necessary results related to ¯X nX . Then we will de¯ne the

candidate for our homeomorphism, show that it's well de¯ned, and show that it is,

in fact, a homeomorphism.

Notation 3.5. Let A be a subset of X. Then the notation A¤ means (Cl¯X(A)) nX.

Lemma 3.6. (F [G)¤ = F ¤ [G¤.

Proof. There are two parts:

(¶) Let x 2 F ¤ [ G¤. Then x 2 F ¤ or x 2 G¤. Let U be an open neighborhood

(in ¯X) of x. Then U intersects F or U intersects G. Hence U \ (F [ G) 6= ;. So

x 2 Cl¯X(F [G) and x62 X, so x 2 (F [G)¤.

(µ) Let x 2 ¯X n X such that x 62 (F ¤ [ G¤) (i.e. x 62 F ¤ and x 62 G¤). So

there exists an open (in ¯X) neighborhood V1 of x such that V1 \ F = ; and there

exists an open (in ¯X) neighborhood V2 of x such that V2 \G = ;. Let U = V1 \ V2.

Then U is an open neighborhood (in ¯X) of x such that U \ (F [G) = ;. Therefore

x62 (F [G)¤.

Lemma 3.7. (F \G)¤ = F ¤ \G¤.

Proof. There are two parts:

(¶) Let x 2 F ¤ \ G¤. Then x 2 F ¤ and x 2 G¤. Let U be an open neighborhood

(in ¯X) of x. Then U intersects F and U intersects G. So U intersects F \G. Hence

x 2 Cl¯X(F \G) and x62 X, so x 2 (F \G)¤.
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(µ) Let x 2 (F \ G)¤. Let U be an open neighborhood (in ¯X) of x. Then U

intersects F \ G, and thus U intersects F and U intersects G. Hence x 2 Cl¯X(F ),

x 2 Cl¯X(G), and x62 X . Therefore x 2 F ¤ \G¤.

Proposition 3.8. F =fF ¤ : F closed in Xg is a base for the closed sets of ¯X nX.

Proof. Let C be a closed set in ¯X nX and let x 2 (¯X nX) nC. Since X is locally

compact, C is closed in ¯X . Let V and W be open sets in ¯X such that x 2 V \W ,

Cl¯X(V ) µ W , and W \ C = ;. Note that V 0 = V \X is open in X.

Let F = X n V 0. Clearly F is closed in X . Since ¯X nX = X¤ = (V 0 [ F )¤ =

(V 0)¤ [ F ¤ and (V 0)¤ \ C = ; (because (V 0)¤ µ (Cl¯X(V ) nX) µ W ), then C µ F ¤.

Additionally, ¯X n V is a closed set in ¯X containing F ) Cl¯X(F ) µ ¯X n V )
F ¤ µ ¯X n V . Since x 2 V , then x62 F ¤. Therefore F is a base for the closed sets of

¯X nX.

Notation 3.9. Let Fp =fF ¤ : [F ] 2 pg.

Proposition 3.10. For any p 2 St(L(X)), jTFpj = 1.

Proof. We'll present the proof in two parts:

1. For any p 2 St(L(X)),
TFp6= ;:

Let p 2 St(L(X)). Suppose F ¤1 ; F
¤
2 ; :::; F

¤
n 2 Fp. Then [F1]; [F2]; :::; [Fn] 2 p )

[F1] ^ [F2] ^ ::: ^ [Fn] = [F1 \ F2 \ ::: \ Fn] 2 p. Hence, F ¤1 \ F ¤2 \ ::: \ F ¤n =

(F1 \ F2 \ ::: \ Fn)¤ 2 Fp. Therefore Fp is a family of closed sets with the ¯nite

intersection property. Since X is locally compact, ¯X n X is closed (Gillman and

Jerison, [5], pg. 90) and thus compact, so
TFp6= ;.

2. For any p 2 St(L(X)),
TFp contains only one point:
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Let p 2 St(L(X)). Suppose there exists r; s 2 TFp with r 6= s. Then there

exists some basic closed set G¤ (with G closed in X) with r 2 G¤ and s 62 G¤.

Then [G] 62 p because s62 G¤. Since p is maximal, there exists a [F ] 2 p such that

[;] = [F ] ^ [G] = [F \ G]. Hence F \ G is compact. So ; = (F \ G)¤ = F ¤ \ G¤ ¶
frg, a contradiction.

We are now ready to de¯ne our homeomorphism candidate.

De¯nition 3.11. Let h : St(L(X))! ¯X nX be de¯ned by h(p) = rp, where rp is

the unique point in
TFp.

By proposition 3.10, it is clear that h is well de¯ned. That it is a homeomorphism

comes from the results that follow.

Proposition 3.12. The function h : St(L(X))! ¯X nX as de¯ned above is 1-1.

Proof. Suppose that p 6= q, and that h(p) = rp, h(q) = rq (Show that rp 6= rq).

Suppose that rq 2 F ¤; 8[F ] 2 p. Let [G] 2 q. Then rq 2 F ¤\G¤ = (F\G)¤; 8[F ] 2 p.
So F \G is closed in X , but not compact, 8[F ] 2 p. This implies that [;]6= [F \G] =

[F ] ^ [G]; 8[F ] 2 p. Since p is maximal, [G] 2 p. Hence q µ p. Since q is maximal,

q = p, a contradiction. Therefore there exists a [F ] 2 p such that rq 62 F ¤. So

rq6= h(p) = rp. So h is 1-1.

Proposition 3.13. h is onto.

Proof. Let x 2 ¯X n X. Let G =fG¤ : G is closed in X and x 2 G¤g. Let

p =f[F ] : F ¤ 2 Gg.

Show that p 2 St(L(X)):
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1. p is a ¯lter:

(i). Since x62 ; = ;¤, then ;¤62 G and [;]62 p.
(ii). Suppose [F ]; [G] 2 p. So x 2 F ¤ \ G¤ = (F \ G)¤. Since F \ G is closed,

(F \ G)¤ 2 G. Thus [F \G] 2 p. But [F \G] = [F ] ^ [G].

(iii). Suppose [F ] 2 p and [G] 2 L(X) such that [F ] < [G]. So [F ] = [F ] ^ [G] =

[F \G]. So ClX(F 4 (F \G)) is compact ) ClX((F n (F \G))[ ((F \G) n F )) is

compact ) ClX((F nG)[ ;) is compact ) ClX(F nG) is compact) (F nG)¤ = ;.
Thus F ¤ = ((F n G) [ (F \ G))¤ = (F n G)¤ [ (F \ G)¤ = (F \ G)¤ = F ¤ \ G¤.
Therefore F ¤ µ G¤ ) x 2 G¤ ) [G] 2 p.

2. p is maximal:

Suppose [G]^ [F ]6= [;]; 8[F ] 2 p (Show [G] 2 p). Since [;]6= [G]^ [F ] = [G\F ],

then 8[F ] 2 p, G \ F is not compact. Hence ; 6= (G \ F )¤ = G¤ \ F ¤; 8[F ] 2 p.

Suppose that x 62 G. Then there exists a basic closed set of the form J¤ (with J

closed in X) such that x 2 J¤ and J¤ \ G¤ = ; (because ¯X n X is regular). But

x 2 J¤ ) [J] 2 p, which contradicts that G¤ \ F ¤6= ;; 8[F ] 2 p. Hence x 2 G¤, i.e.

[G] 2 p. Thus p is maximal.

Therefore by 1. and 2., p 2 St(L(X)) and h(p) = x, so h is onto.

Notation 3.14. In the following proofs, [[F ]] will be used as notation for the set

of ultra¯lters on L(X) that contain [F ] (i.e. [[F ]] =fp 2 St(L(X)) : [F ] 2 pg).
Although this notation may look a bit awkward, it is consistent with the notation

used in chapter 2 with ultra¯lters on a lattice. Additionally, as discussed in chapter

2, the [[F ]]'s form a base for the closed sets of St(L(X)).

Proposition 3.15. h is continuous.

Proof. Let F ¤ be a basic closed set in ¯X nX .
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The following will show that h¡1(F ¤) = [[F ]]:

(µ) Let p 2 h¡1(F ¤) (so h(p) 2 F ¤) and suppose that [F ]62 p. Then there exists

a [G] 2 p such that [;] = [F ] ^ [G] = [F \ G] (since p is maximal). So ClX(F \ G)

is compact. Hence, ; = (F \G)¤ = F ¤ \G¤, which contradicts that h(p) 2 F ¤ \G¤.
Hence [F ] 2 p, so p 2 [[F ]].

(¶) Let p 2 [[F ]]. Then [F ] 2 p ) h(p) 2 F ¤ (by de¯nition of h)) p 2 h¡1(F ¤).

Therefore, h¡1(F ¤) = [[F ]] and since [[F ]] is closed in St(L(X)), h is continuous.

Proposition 3.16. h is closed.

Proof. Let [[F ]] be a basic closed set in St(L(X)).

The following will show that h([[F ]]) = F ¤:

(µ) Suppose r 2 h([[F ]]). Then r = h(p) for some p 2 [[F ]]. So since [F ] 2 p,
then r 2 F ¤.

(¶) Suppose r 2 F ¤ and r62 h([[F ]]). Since h is onto, 9q 2 St(L(X)) such that

h(q) = r. But r62 h([[F ]]) ) q62 [[F ]] ) [F ]62 q.
However, h(q) = r ) r 2 G¤; 8[G] 2 q, and so r 2 F ¤ ) ; 6= F ¤ \ G¤ =

(F \ G)¤; 8[G] 2 q. So ClX(F \ G) = F \ G (since F \ G is already closed in X)

is not compact, 8[G] 2 q. It follows that, for all [G] 2 q, [;] 6= [F \ G] = [F ] ^ [G].

Since q is maximal, then [F ] 2 q, a contradiction. Hence r 2 h([[F ]]).

Therefore, h([[F ]]) = F ¤ and since F ¤ is closed, h is closed.

So by the previous four propositions, h is a homeomorphism (actually, the proposition

that h is closed was unnecessary since any bijective continuous function from a com-

pact space to a Hausdor® space is a homeomorphism). Thus we have the following

result:
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Big Proposition 3.17. St(L(X)) »= ¯X nX



Chapter 4

PROPERTIES OF L(X)

Here we will make various observations concerning our construction L(X). Ideally,

we'd like to ¯nd properties of the space X that characterize it's associated L(X).

For instance, from Faulkner and Vipera [3], we know that if a lattice L is pseudo-

complemented, then St(L) is 0-dimensional. Thus it would be useful to know when

a space X would have a pseudocomplemented L(X). While not a full characteriza-

tion, the following will develop a condition on X that will guarantee that L(X) is

pseudocomplemented. First, we'll start with some notation.

Notation 4.1. The frontier of F will be denoted Fr(F ), and is de¯ned by Fr(F ) =

ClX(F ) \ ClX(X n F ).

The following lemma is used in the proof of proposition 4.3.

Lemma 4.2. Suppose F is a closed subset of X . Then F \ (X n F o) = ClX(F ) \
ClX(X n F ) (= Fr(F )).

Proof. There are two parts:

(µ) Let x 2 F \ (X n F o). Since x 2 F and ClX(F ) = F , then x 2 ClX(F ).

Suppose that x62 ClX(X nF ). So 9 an open neighborhood U of x such that U \ (X n
F ) = ; (i.e. U µ F ). So x 2 F o, a contradiction. Hence x 2 ClX(X n F ).

30
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(¶) Let x 2 Fr(F ). So x 2 ClX(F ) and x 2 ClX(X n F ). Since F is closed,

ClX(F ) = F , so x 2 F . Also, X n F µ X n F o implies that ClX(X n F ) µ ClX(X n
F o) = X n F o. So x 2 X n F o. Hence x 2 F \ (X n F o).

Proposition 4.3. Suppose that [F ] 2 L(X). Fr(F ) is compact () [X n F o] is the

pseudocomplement of [F ] (i.e. [F ]0 = [X n F o]).

Proof. There are two parts:

()) Suppose that Fr(F ) is compact. Then [F ]^[XnF o] = [F\(XnF o)] = [Fr(F )]

(by lemma 4.2) = [;]. Let [V ] 2 L(X) such that [F ] ^ [V ] = [;]. Then there exists

a compact K such that (V n K) \ F = ;. So (V n K) µ (X n F ) µ (X n F o). So

[V ] = [V nK] · [X n F o]. Hence [X n F o] is the pseudocomplement of [F ].

(() Suppose that [X nF o] is the pseudocomplement of [F ]. Then [;] = [X nF o]^
[F ] = [(X nF o)\F ]. So (X nF o)\F (which is Fr(F ) by lemma 4.2) is compact.

The above results obviously lead to the following conclusion:

Corollary 4.4. If X is a space such that Fr(F ) is compact for all closed F µ X,

then L(X) is a pseudocomplemented lattice.

Additionally, the topological condition speci¯ed in corollary 4.4 will also lead to

L(X) being normal, as we now show:

Proposition 4.5. If X is a space such that Fr(F ) is compact for all closed F µ X,

then L(X) is normal.
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Proof. By corollary 4.4, if we assume that Fr(F ) is compact for all closed F µ X,

then L(X) is pseudocomplemented. In particular, for any [F ] 2 L(X), [F ]0 = [XnF o].

Suppose that [F ]; [G] 2 L(X) such that [F ] ^ [G] = [;]. Let's look at [F ]0 and [G]0.

Suppose that [XnF o]_[XnGo]6= [X]. Since [XnF o]_[XnGo] = [(XnF o)[(XnGo)] =

[X n (F o \ Go)], then ClX(F o \ Go) is not compact. Also, since ClX(F o \ Go) µ
ClX(F \ G), then ClX(F \ G) is not compact. But [;] = [F ] ^ [G] = [F \ G] )
ClX(F\G) is compact, a contradiction. Hence [XnF o]_[XnGo] = [X ]. Additionally,

[F ] ^ [X n F o] = [;] and [G] ^ [X nGo] = [;] (since they are pseudocomplements), so

L(X) is normal.

So based on Faulkner and Vipera [3], and propositions 2.8 and 2.10, we know that

if X has the property that Fr(F ) is compact for all closed F µ X, then St(L(X))

is compact, normal, and 0-dimensional. But chapter 3 culminated with the fact that

St(L(X)) is really just the remainder of the Stone-·Cech compacti¯cation of X. So

these results combine to give a way to characterize ¯X n X for the aforementioned

class of spaces:

Proposition 4.6. If X is a space such that Fr(F ) is compact for all closed F µ X,

then ¯X nX is compact, normal, and 0-dimensional.

At this point, we'd like to insert a remark. Stone-·Cech remainders that are 0-

dimensional have been studied extensively using Boolean algebras (and to a lesser

extent using general lattices). Every compact, Hausdor® space that is 0-dimensional

is the Stone space of some Boolean algebra (Koppelberg, [7], pg.100). However,

Stone-·Cech remainders that are not 0-dimensional cannot be studied in the parallel

setting of Boolean algebras, since Stone's representation theorem essentially says that

the Stone space of any Boolean algebra is 0-dimensional. That is the motivation for



Chapter 4. PROPERTIES OF L(X) 33

generalizing Boolean algebras to general lattices, and speci¯cally, the advantage of our

construction L(X). With L(X), we have a lattice whose Stone space is homeomorphic

to ¯X n X, regardless of the connectedness of the remainder. How connected, or

disconnected, the remainder is seems to have to do with how many of the elements of

the lattice have complements or pseudocomplements (Speci¯cally, it seems that the

greater the amount of complemented elements in L(X), the more disconnected ¯XnX
will be.). If every element of L(X) has a complement (i.e. L(X) is a Boolean algebra),

then ¯X nX is 0-dimensional. Also, as we have noted, if every element of L(X) has

a pseudocomplement (i.e. L(X) is pseudocomplemented), then again ¯X n X is 0-

dimensional. However, from proposition 2.23, if L(X) is upwardly nonlinear, normal,

and no element of L(X) has a complement, then ¯XnX is connected. Of course, there

are a lot of possibilities in between L(X) having no complements and L(X) being

pseudocomplemented. The next two propositions directly lead to corollary 4.9, which

gives us a condition on X that will lead to being able to predict the disconnectedness

of ¯X nX . At the same time, the results will also provide more support to our theory

that the more complemented elements in L(X), the more disconnected ¯X nX is.

Proposition 4.7. Let X be a topological space. Assume that C =fF1; F2; :::; Fng is

a ¯nite collection of unbounded closed subsets of X such that
S
C = X and Fi \ Fj

is compact for all i; j · n, i6= j. Then L(X) has at least n complemented elements.

Proof. By the assumptions and the de¯nition of L(X), it follows that [F1] _ [F2] _
::: _ [Fn] = [X ] and [F1] ^ [F2] ^ ::: ^ [Fn] = [;].

Consider [Fi] for i · n. Let [Fi]
c =

W
jm6=i[Fjm ] for jm · n. Clearly, [Fi] _ [Fi]

c =

[X]. It also follows that:

[Fi] ^ [Fi]
c = [Fi]^ ([Fj1]_ [Fj2 ]_ :::_ [Fjn¡1 ]) = ([Fi]^ [Fj1 ])_ ([Fi]^ [Fj2 ])_ :::_

([Fi] ^ [Fjn¡1]) = 0
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Thus [Fi]
c is the complement of [Fi]. Hence, L(X) has at least n complemented

elements.

Though we're currently concerned with L(X), the next proposition is true for

general lattices:

Proposition 4.8. Suppose that L is a lattice and S =fa1; a2; :::; ang is a ¯nite

collection of elements of L such that a1 _ a2 _ ::: _ an = 1 and ai ^ aj = 0 for all

i; j · n, i6= j. Then St(L) is disconnected with at least n components.

Proof. Since ai ^ aj = 0 for all i; j · n, i6= j, then no ultra¯lter on L contains more

than one element of S. Note that the element 1 is in every ultra¯lter on L and that

ultra¯lters are prime (proposition 2.2). Now since a1 _ a2 _ ::: _ an = 1, then every

ultra¯lter on L must contain exactly one element of S. Thus [a1] [ [a2] [ ::: [ [an] =

St(L) and [ai] \ [aj] = ; for all i; j · n, i 6= j. This demonstrates that St(L) is

disconnected with at least n components.

Propositions 4.7 and 4.8 (and, of course, proposition 3.17) directly lead to the

following result concerning ¯X nX :

Corollary 4.9. Let X be a topological space. Assume that C =fF1; F2; :::; Fng is a

¯nite collection of unbounded closed subsets of X such that
S
C = X and Fi \ Fj

is compact for all i; j · n, i 6= j. Then ¯X n X is disconnected with at least n

components.

Now let's list a few other conditions that will allow us to determine that L(X) is

normal. To do so, we'll ¯rst mention a condition on a space X that will guarantee

that the associated L(X) is upwardly nonlinear.
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Proposition 4.10. Suppose X is a locally compact metric space with the property

that for every unbounded U µ X , there exists a closed F µ X such that F is

unbounded and F µ U . Then L(X) is upwardly nonlinear.

Proof. Suppose that 9 [F ] 2 L(X) such that [F ] 6= [X ] (= 1) and [F ] is in every

ultra¯lter on L(X). Then since [F ]6= [X ], XnF is unbounded. So by our assumption,

there exists a closed unbounded G µ X such that G µ X n F .

Since G is unbounded, [G]6= 0. So there exists an ultra¯lter p such that [G] 2 p.
Also, G µ X nF implies that F \G = ;. So, 0 = [F \G] = [F ]^ [G]. It follows that

[F ] =2 p, a contradiction. Therefore, L(X) is upwardly nonlinear.

From this, combined with a fact about general lattices from chapter 2, we have

the following result:

Corollary 4.11. Suppose X is a locally compact metric space. Then St(L(X)) is

T2 ) L(X) is normal.

Proof. Since X is a locally compact metric space, then for every unbounded U µ X,

there exists a closed F µ X such that F is unbounded and F µ U . By proposition

4.10, L(X) is upwardly nonlinear. Since we also have that St(L(X)) is T2, then by

proposition 2.13, L(X) is normal.

Note that L(X), by construction, is always lower complete, regardless of X . How-

ever, L(X) is only upper complete if X is a space such that any arbitrary union of

closed sets of X is closed. An example of such a space is N with the discrete topol-

ogy. Many spaces, though, will not have this property. If we do have that L(X)
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is complete, then with one additional assumption, we can guarantee that L(X) is

normal.

Proposition 4.12. Assume that L(X) is complete and that for every element [F ] 2
L(X) n f0; 1g, there is some other non-zero element [G] 2 L(X) n f0g such that

[F ] ^ [G] = 0. Then L(X) is normal.

Proof. Suppose [F ] ^ [G] = [;]. Then [[F ]] \ [[G]] = ; and [[F ]] [ [[G]] µ St(L(X)).

For each p® 2 [[G]], let [F®] 2 p® such that [F ] ^ [F®] = [;]. Similarly, for each

q¯ 2 [[F ]], let [G¯] 2 q¯ such that [G] ^ [G¯ ] = [;].

Let U = St(L(X)) n ([[F ]] [ [[G]]).

So for each p 2 U , neither [F ] nor [G] is in p. So for each p° 2 U , there exists

[H°] 2 p° such that [F ] ^ [H°] = [;] and [G] ^ [H°] = [;] (this can be seen using the

following argument: Suppose there is a p 2 U such that each [H] 2 p has non-zero

in¯mum with either [F ] or [G]. Then [H] ^ ([F ] _ [G]) 6= [;] for all [H] 2 p. Hence

since p is maximal, [F ] _ [G] 2 p. But ultra¯lters are prime, so either [F ] 2 p or

[G] 2 p, a contradiction.).

So since L(X) is complete, denote [A] =
W
®[F®] and [B] = (

W
¯ [G¯ ]) _ (

W
°[H°]).

Then,

[F ] ^ [A] = [F ] ^ (
W
®[F®]) =

W
®([F ] ^ [F®]) =

W
®(0) = 0

[G] ^ [B] = [G] ^ ((
W
¯ [G¯]) _ (

W
°[H°])) = ([G] ^ (

W
¯ [G¯])) _ ([G] ^ (

W
°[H°])) =

(
W
¯([G] ^ [G¯ ])) _ (

W
°([G] ^ [H°])) = (

W
¯(0)) _ (

W
°(0)) = 0 _ 0 = 0

[A] _ [B] = (
W
®[F®]) _ (

W
¯[G¯ ]) _ (

W
°[H° ])

Since every ultra¯lter in St(L(X)) is represented by at least one element in the above

expression, then ((
W
®[F®])_(

W
¯[G¯ ])_(

W
°[H°])) must be in every ultra¯lter of L(X).

The only way that this expression representing [A]_ [B] is not equal to [X] is if there
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exists an element [D] 2 L(X) such that [D] 6= [X] and St(L(X)) = [[D]] (i.e. [D] is

in every ultra¯lter). But if such a [D] exists, then by assumption 9[E] 2 L(X) n f0g
such that [D]^ [E] = [;]. Let p be an ultra¯lter containing [E]. Then [D] =2 p, which

contradicts St(L(X)) = [[D]]. Thus,

[A] _ [B] = (
W
®[F®]) _ (

W
¯[G¯ ]) _ (

W
°[H° ]) = [X ]

Hence the de¯ned elements [A] and [B] witness to the (?) property. Therefore, L(X)

is normal.



Chapter 5

EXAMPLES OF L(X)

Example 5.1. L(!1)

We use the standard notation of !1 to denote the sets of all countable ordinals.

In order to study the structure of the lattice L(!1) we ¯rst need to have an under-

standing of the closed sets of !1. The following proposition shows how any two closed

unbounded subsets of !1 must have a substantial intersection, with respect to how

the equivalence classes that make up our lattice are de¯ned.

Proposition 5.1.1. Assume H;K µ !1 such that H and K are both closed and

unbounded. Then H \K is not contained in a compact set.

Proof. Suppose H and K are closed and unbounded subsets of !1 such that H \K
is contained in a compact set. This implies that H \ K is bounded, so there exists

some ¾ 2 !1 such that H \K µ ¾ + 1.

Look at the tail !1¡ (¾+ 1) =f® 2 !1 : ® ¸ ¾+ 1g. Let H1 = H \ (!1¡ (¾+ 1))

and K1 = K \ (!1 ¡ (¾ + 1)). By construction, H1 \K1 = ;. Since !1 ¡ (¾ + 1) is a

closed set in !1 (Gillman and Jerison, [5], pg. 73), then H1 and K1 are closed in !1.

Since H1 and K1 are disjoint closed subsets of !1, then one of them must be bounded

38
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(Gillman and Jerison, [5], pg. 74). This is a contradiction since H1 [ (¾ + 1) ¶ H,

K1 [ (¾ + 1) ¶ K, and both H and K were assumed to be unbounded.

With this result about the closed sets of !1, we can conclude the following about

the elements of L(!1):

Corollary 5.1.2. For any [F ]; [G] 2 L(!1)¡f[;]g, [F ] ^ [G]6= [;].

Proof. Since [F ] and [G] are each nonzero elements of L(!1), then F and G are closed

and noncompact. Any closed noncompact subset of !1 is unbounded, hence F \ G
is not contained in a compact set (proposition 5.1.1). Thus [F \ G] 6= [;]. But

[F \G] = [F ] ^ [G], hence [F ] ^ [G]6= [;].

Note that a consequence of corollary 5.1.2 is that for any [F ] 2 L(!1)¡f[;]g, the

pseudocomplement of [F ] is 0. It turns out that lattices that have this property always

have trivial Stone spaces, as the following proposition of general lattices states.

Proposition 5.1.3. If L is a bounded lattice such that every non-zero element of L

has 0 as it's pseudocomplement, then j St(L) j= 1.

Proof. Suppose there exists p; q 2 St(L) such that p 6= q. Then there exists f 2 p
and g 2 q such that f ^g = 0. But f 0 = 0 by assumption, so since g · f 0, then g = 0.

This is a contradiction since 0 cannot be in an ultra¯lter. Hence j St(L) j= 1.

On the surface, this says that there is only one ultra¯lter on the lattice L(!1).

When used in combination with proposition 3.17, it also determines that j¯!1 n !1j =
1. In other words, the Stone-·Cech compacti¯cation of !1 is simply it's one-point
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compacti¯cation. Of course, this is a well-known result, but we now have a lattice-

based technique of arriving at it.

Example 5.2. L(H)

Let H denote the hal°ine [0;1) with the usual topology. We now present a couple

of facts concerning the associated lattice L(H).

Proposition 5.2.1. L(H) is normal.

Proof. Let [F ]; [G] 2 L(H) n f[;]; [H]g and [F ] ^ [G] = [;] (the case where either [F ]

or [G] is [;] is trivial). Thus F \ G is compact, which gives that F \ G is bounded

by some M 2 H.

So look at the subset [M;1) of H and denote F1 = F \ [M;1) and G1 =

G\ [M;1). So F1 \G1 µ fMg. Consider F c
1 and Gc

1 (the set-theoretic complements

of F and G, respectively). Each of these is a countable union of disjoint open intervals

in [M;1). Since F1 \G1 µ fMg, then F c
1 [ Gc

1 ¶ (M;1).

Also note that neither F c
1 nor Gc

1 can contain an interval of the form (a;1)

(Without loss of generality, assume (a;1) µ F c
1 . Then F1 is bounded by a, which

implies that F is bounded by a. Thus since F is closed and bounded in a metric

space, F is compact. Therefore [F ] = [;], a contradiction.). It is, however, possible

that either or both F c
1 and Gc

1 will contain an interval of the form [M; b) (which is

open in [M;1) with respect to the subspace topology).

So we can write F c
1 and Gc

1 in the following way:

F c
1 =

S
n2! Un, where each Un is of the form (a; b) (or possibly [M; b)) and Ui\Uj = ;

for any i; j 2 !.

Gc
1 =

S
m2! Um, where each Um is of the form (a; b) (or possibly [M; b)) and Ui\Uj = ;

for any i; j 2 !.
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Now look at F c
1 \Gc

1. It can also be written as a countable union of disjoint open

intervals in [M;1). Again, these intervals must be of the form (a; b) (or possibly

[M; b)). When indexing the open intervals that comprise F c
1 \ Gc

1, let's order the

intervals in the obvious way { namely, given m;n 2 ! with Vm = (am; bm) and

Vn = (an; bn), then bm < an , m < n.

So let's write F c
1 \ Gc

1 in the following way:

F c
1 \ Gc

1 =
S
n2! Vn, where each Vn is of the form (an; bn) (or possibly V1 = [M; b1)),

Vi \ Vj = ; for any i; j 2 !, and the Vn are ordered as described above.

For each n 2 !, let pn = (an + bn)=2. We'll use these pn's to de¯ne the closed

intervals [M;p1], [p1; p2], [p2; p3], etc. (Note that by the ordering of the Vn's, fpng is a

strictly increasing sequence.). We want to next take these closed intervals and assign

each to one of two collections, F̂ and Ĝ.

First put [M; p1] in collection F̂. Then, for each i ¸ 2, put the interval [pi¡1; pi] in

F̂ provided that [pi¡1; pi] \ F1 = ;. Put the rest of the intervals [pi¡1; pi], i ¸ 2, in

collection Ĝ. Notice that for each interval [pi¡1; pi] 2 Ĝ, [pi¡1; pi] \G1 = ;.

In other words, each [pi¡1; pi] for i ¸ 2 will be disjoint with either F1 or G1. The

following argument will prove this:

Suppose for some i ¸ 2, [pi¡1; pi] intersects both F1 and G1. Then 9p 2 F1 \
[pi¡1; pi] and 9q 2 G1 \ [pi¡1; pi]. We know that p6= q, because M is the only point

that F1 and G1 can possibly share and M =2 [pi¡1; pi]. So, without loss of generality,

assume that p < q. Since p 2 F1, then p =2 F c
1 , and thus p =2 F c

1 \ Gc
1. So since Vi¡1

and Vi are subsets of F c
1 \ Gc

1, then p =2 Vi¡1 and p =2 Vi. Similarly, q =2 F c
1 \ Gc

1,

so q =2 Vi¡1 and q =2 Vi. In particular, using the notation Vi¡1 = (ai¡1; bi¡1) and

Vi = (ai; bi), we get that p and q are strictly between bi¡1 and ai.
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Also, F c
1 [ Gc

1 ¶ (M;1) implies that p 2 Gc
1 and q 2 F c

1 . So based on the

representations of F c
1 and Gc

1 as unions of disjoint open intervals, there exists some

np;mq 2 ! such that p 2 Unp and q 2 Umq . For ease of discussion, let's label the

endpoints of these two intervals in the following way: Unp = (ap; bp) and Umq =

(aq; bq). Let's analyze the three cases that could occur:

(i). If aq < bp, then (ap; bp) \ (aq; bq) = (aq; bp) is a non-empty subset of F c
1 \Gc

1.

As we've already observed, bi¡1 < p < q < ai and neither p nor q are in F c
1 \ Gc

1.

So p < aq < bp < q. However, there are no elements of F c
1 \ Gc

1 between bi¡1 and ai

(since Vi¡1 and Vi are consecutive intervals in the order). So we have a contradiction.

(ii). Suppose that bp < aq. Since (ap; bp) is one of the disjoint open intervals in our

union representation ofGc
1, then bp =2 Gc

1 (Suppose bp 2 Gc
1. Then bp would be in one of

the Um from the union Gc
1 =

S
m2! Um, and that particular Um would have to intersect

(ap; bp) since bp 2 Cl[M;1)((ap; bp)). This contradicts that the Um are disjoint). Hence

bp 2 F c
1 . So bp would be in one of the Un from the union F c

1 =
S
n2! Un, and

that particular Un must intersect (ap; bp) (again, because bp 2 Cl[M;1)((ap; bp))). So

; 6= Un \ (ap; bp) µ F c
1 \ Gc

1. Un \ (ap; bp) is another open interval, so call it (x; y).

As in case (i), since neither p nor q are in F c
1 \Gc

1, then p < x < y < q. This implies

that there are elements of F c
1 \ Gc

1 between bi¡1 and ai, which is a contradiction.

(iii). Suppose that bp = aq. Since (ap; bp) is one of the disjoint open intervals in

our union representation of Gc
1, then bp =2 Gc

1 (see case (ii) for proof of this). Similarly,

since (aq; bq) is one of the disjoint open intervals in our union representation of F c
1 ,

then aq =2 F c
1 . But bp = aq, so bp =2 F c

1 [Gc
1, which contradicts that F c

1 [Gc
1 ¶ (M;1).

Since all three possible cases led to contradictions, our assumption that "for some

i ¸ 2, [pi¡1; pi] intersects both F1 and G1" must be false. So we have proven that

each [pi¡1; pi] for i ¸ 2 will be disjoint with either F1 or G1.
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We needed the above fact so that our construction of F̂ and Ĝ will allow us to

arrive at candidates in L(H) that will be suitable to demonstrate normality. We can

now state the following facts about F̂ and Ĝ:

1. F1 \ (
S

F̂ ) µ [M; p1]

2. G1 \ (
S

Ĝ ) = ;

3. (
S

F̂ ) [ (
S

Ĝ ) = [M;1)

To conclude the proof, let

A = [0;M ] [ (
S

F̂ )

B = [0;M ] [ (
S

Ĝ )

Thus A \ F µ [0; p1], which is compact in H, so [A] ^ [F ] = [;]. Also, B \ G µ
[0;M ], which is also compact, so [B]^ [G] = [;]. Additionally, by the construction of

F̂ and Ĝ, A[B = H, hence [A]_ [B] = [H]. Therefore, by using [A]; [B] 2 L(H), we

have shown that L(H) is normal.

Proposition 5.2.2. L(H) is not pseudocomplemented.

Proof. Look at the closed set C µ H given by C = [1; 2] [ [3; 4] [ [5; 6] [ ::: =
S

[2i ¡ 1; 2i] ; 8i 2 !. Clearly C is not compact, hence [C]6= [;]. Suppose that [F ]

is the pseudocomplement of [C]. Then C \ F is compact. Since C \ F µ H, then

C \F is bounded { call the upper bound M(2 H). Let G = F [ [a; a+ 1][S, where

a is some odd integer greater than M and S is de¯ned in the following way:

For each [2i¡ 1; 2i] µ C with i > (a+ 1)=2, we know that 2i62 F . So look at the

sequence ((2i)n) de¯ned by (2i)n = 2i + (1=2n). Since (2i)n ! 2i, then there exists

an m2i 2 ! such that (2i)m2i 62 F . Let S =f(2i)m2i : i > (a+ 1)=2g. Notice that for

any n 2 !, 2i < 2i+ (1=2n) < 2i+ 1, so S \ C = ;.
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Since S is closed, unbounded, and S \ F = ;, then ClH(G n F ) = G n F is not

compact. This implies that [G]6= [F ]. Since G ¶ F , then [G] > [F ].

But by construction, G \ C = (F [ [a; a + 1] [ S) \ C = (F \ C) [ ([a; a + 1] \
C)[ (S \C) = (F \C)[ [a; a+ 1][; = (F \C)[ [a; a+ 1], which is compact. Thus

[G]^ [C] = [;], which contradicts that [F ] is the pseudocomplement of [C]. Therefore

C has no pseudocomplement, and thus L(H) is not pseudocomplemented.

Notice that L(H) gives us an example of a lattice that is normal without being

pseudocomplemented. Not only are there elements of L(H) that fail to have pseudo-

complements, but we can say something much stronger than that about the elements

of L(H). First, we prove the following fact about closed, unbounded subsets of H.

Proposition 5.2.3. There does not exist two closed, unbounded subsets F and G

of H such that F \G is compact and ClH(H n (F [G)) is compact.

Proof. Assume there exists closed, unbounded F;G µ H such that F \G is compact

and ClH(Hn (F [G)) is compact. In H, compact sets are bounded. Thus there exists

M;N 2 H such that F \G µ [0;M) and ClH(H n (F [ G)) µ [0; N).

Let x = maxfM;Ng. Consider F \ [x;1) and G\ [x;1). Clearly F \ [x;1) and

G \ [x;1) are closed in the subspace [x;1). Since F \ G µ [0; x), then F \ [x;1)

and G\ [x;1) are disjoint. Since ClH(Hn (F [G)) µ [0; x), then (F \ [x;1))[ (G\
[x;1)) = [x;1). Therefore [x;1) is the disjoint union of closed sets F \ [x;1) and

G \ [x;1), which implies that F \ [x;1) and G \ [x;1) are clopen in [x;1).

Since [x;1) is homeomorphic to H, let h : [x;1) ! H be a homeomorphism.

Since h is injective, h(F \ [x;1)) \ h(G \ [x;1)) = ;. Since h is surjective, h(F \
[x;1))[ h(G\ [x;1)) = H. Homeomorhisms are closed maps, so h(F \ [x;1)) and

h(G\ [x;1)) are closed in H. So H is the disjoint union of closed sets h(F \ [x;1))
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and h(G \ [x;1)), thus h(F \ [x;1)) and h(G \ [x;1)) are clopen in H. This is a

contradiction, as H is connected (Willard, [14], pg. 191).

Based on our de¯nition of L(X), proposition 5.2.3 gives us that the lattice L(H)

has no complemented elements. Now we go about showing that L(H) is upwardly

nonlinear.

Proposition 5.2.4. L(H) is upwardly nonlinear.

Proof. First we must note that H has the property that for every unbounded U µ H,

there exists a closed F µ H such that F is unbounded and F µ U (One way to see

this is as follows: Suppose that U µ H and U is unbounded. Choose any x1 2 U .

Now consider U n[0; x1+1], and choose x2 2 U n[0; x1+1]. Then consider U n[0; x2+1],

and choose x3 2 U n [0; x2 + 1]. Continue this process inductively on ! to create the

sequence F =fxn : n 2 !g. By construction, F µ U and F is an unbounded sequence

of points where successive terms are at least one unit apart. So the complement

of F is a union of open intervals, implying that F is closed.). Since H is a locally

compact metric space, we can now apply proposition 4.10 to get that L(H) is upwardly

nonlinear.

This leads to our lattice-based proof that ¯H nH is connected.

Proposition 5.2.5. ¯H nH is connected.

Proof. By propositions 5.2.1, 5.2.3, and 5.2.4, we have what is required to use propo-

sition 2.23(ii) to conclude that St(L(H)) is connected. With proposition 3.17, we get

that ¯H nH is connected.
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Example 5.3. L(R)

Let R denote the real line (¡1;1) with the usual topology. The following three

results concerning the lattice L(R) are presented without proof; their proofs are nearly

identical to the corresponding proofs involving L(H).

Proposition 5.3.1. L(R) is normal.

Proposition 5.3.2. L(R) is not pseudocomplemented.

Proposition 5.3.3. L(R) is upwardly nonlinear.

However, not everything about L(R) and L(H) is the same. For example, whereas

L(H) has no complemented elements, L(R) certainly does. To see this, take the sub-

sets F = (¡1; 0] and G = [0;1) of R. These subsets are closed noncompact subsets

of R, they are almost disjoint, and their symmetric di®erence is not compact. That

means that in L(R), the corresponding elements [F ] and [G] are distinct elements

with the properties that [F ]^ [G] = [;] and [F ]_ [G] = [R] (since F [G = R). Thus

[F ] and [G] are complements in L(R). By corollary 4.9, we can thus conclude that

¯R nR is disconnected with at least 2 components.

So we have once again used our lattice results to provide an alternate derivation

of a fact concerning the Stone-·Cech remainder of a space. To see why ¯R n R is

disconnected with exactly 2 components, consider that F = (¡1; 0] and G = [0;1)

are each homeomorphic to H. So ¯F n F and ¯G n G are each connected. Let S =

¯F [ ¯G. S is clearly a compact set containing R. Now let f 2 C?(R). Thus f jF2
C?(F ), so it has an extension (f jF )¯ 2 C?(¯F ). Similarly, f jG2 C?(G), so it has an

extension (f jG)¯ 2 C?(¯G). Let fS = (f jF )¯ [ (f jG)¯ (i.e. fS(x) = (f jF )¯(x) if

x 2 ¯F and fS(x) = (f jG)¯(x) if x 2 ¯G). Notice that since (f jF )¯(0) = (f jG)¯(0),

fS is both well-de¯ned and continuous on S. Thus fS 2 C?(S). Since f was chosen
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arbitrarily, then R is C?-embedded in S. Thus, by Porter and Woods ([9], pg. 284),

S must be ¯R. So ¯R n R = (¯F [ ¯G) nR = (¯F n F ) [ (¯G n G), which is the

union of two disjoint, connected sets (so there can't be more than 2 components to

¯R nR). So we can conclude:

Proposition 5.3.4. ¯R nR is disconnected with 2 components.

Example 5.4. Non-normal lattices

Back in example 2.11, we de¯ned a special ¯ve element lattice L = f0; a; b; a_b; 1g
with a ^ b = 0, and we determined that the lattice L was not normal. This was of

interest because St(L) is T2, which showed the usefulness of the concept of upwardly

nonlinear. The example was originally constructed, however, to answer a question

concerning the relationship between the concepts of normal and pseudocomplemented.

Namely, the question was { does either condition imply the other?

In example 5.2, we showed that the lattice L(H) is normal but not pseudocomple-

mented. So we know in general that normal lattices aren't necessarily psuedocomple-

mented. Our ¯ve element lattice answers the opposite question. Notice that 10 = 0,

(a _ b)0 = 0, a0 = b, b0 = a, and 00 = 0. So L is, in fact, pseudocomplemented. In

chapter 2 we showed that L is not normal. Therefore, the conditions of normal and

pseudocomplemented are independent in general.

For completeness sake, we present an example of a topological space whose asso-

ciated L(X) has as a sublattice the ¯ve element lattice from example 2.11.

Example 5.4.1. Let ! be the set of all natural numbers with the usual (discrete)

topology (Note: L(!) = P (!)=fin). Let A, B, and C be subsets of ! where C is the

set of all even natural numbers, A is the set of all evens that are divisible by 4, and B

is the set of all evens that are not divisible by 4. Let S =f[;]; [A]; [B]; [C]; [!]gµ L(!).
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S is clearly a sublattice of L(!), as it is closed under _ and ^. It is easy to see that

S is really just the ¯ve element lattice from example 2.11, where 0 = [;], a = [A],

b = [B], a _ b = [C], and 1 = [!].

Now note the following:

Proposition 5.4.2. L(!) is upwardly nonlinear.

Proof. Suppose that [Q] 6= [!] and that [Q] is in every ultra¯lter on L(!). Let

Q0 = ! n Q. Since ! has the discrete topology, Q0 is closed. Since [Q] 6= [!], Q0 is

in¯nite (not compact). So [Q0]6= [;]. Thus there is an ultra¯lter p 2 St(L(!)) such

that [Q0] 2 p. Since [Q0] ^ [Q] = [Q0 \Q] = [;], then [Q] =2 p, a contradiction.

So the following conclusion can be drawn:

Corollary 5.4.3. An upwardly nonlinear lattice can have a sublattice that fails to

be upwardly nonlinear.
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QUESTIONS

In general, there is much to learn about L(X). Of particular interest is the example

L(H), as an understanding of this lattice could lead to a characterization of ¯H nH

in much the same way that the Boolean algebra P (!)=fin has been used to help

characterize ¯! n !. As we have mentioned in section 1.3, Hart and Dow [6] showed

that ¯H nH is a universal continuum of weight !1, thus assuring the importance of

¯nding a characterization of ¯H nH.

Other lattice-oriented questions have arisen in the process of this research. One

such question involves the concept of upwardly nonlinear, which we presented as

de¯nition 2.12. We have determined that if L is a lattice with the disjunction property

then L is upwardly nonlinear, however we don't know whether the converse of this is

true or not. We suspect that the converse is not true (i.e. that L upwardly nonlinear

does not imply that L has the disjunction property). The intuition for this hypothesis

is as follows:

Suppose L is upwardly nonlinear. Since 1 is the only element in every ultra¯lter

on L, if a 2 L such that a6= 1, then [a]6= [1]. However, if we instead suppose that L

has the disjunction property, then given distinct a; b 2 L, [a]6= [b] (so the upwardly

nonlinear case can be thought of as ¯xing b = 1). This would appear to be a stronger

49



Chapter 6. QUESTIONS 50

assumption.

Another question arose in the process of arriving at de¯nition 2.21; namely, does

the inverse of a lattice embedding map lattice ultra¯lters to lattice ultra¯lters? An-

swering this question turned out to be unnecessary for what we were trying to do,

but the answer may still be of interest.

Also, when considering the disconnectedness of Stone spaces of lattices, we at one

point thought to consider whether the Stone space of a complete lattice would be

fundamentally di®erent from the Stone space of a complete Boolean algebra. If B is

a complete Boolean algebra, then the Stone space of B is extremally disconnected.

Porter and Woods [9] present a standard proof of this. The proof is heavily reliant

on the presence of complements in the Boolean algebra. In a general lattice, elements

would not necessarily have complements, thus it seems reasonable to wonder if the

assumption of complements is necessary to arrive at the conclusion that the Stone

space is extremally disconnected. If so, perhaps a complete lattice can be constructed

whose Stone space is not extremally disconnected (perhaps even connected).
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Appendix A

Distributivity of Example 2.11

What follows is the proof that the lattice de¯ned in example 2.11 is distributive:

Proposition A.1. De¯ne a lattice L in the following way:

L = f0; a; b; a _ b; 1g where a ^ b = 0.

Then L is distributive.

Proof. For brevity and clari¯cation, let c = a_ b. Then there are two conditions that

need to be satis¯ed for L to be distributive:

1) z ^ (x _ y) = (z ^ x) _ (z ^ y), for all x; y; z 2 L
2) z _ (x ^ y) = (z _ x) ^ (z _ y), for all x; y; z 2 L

We'll begin with the proof of 1):

First note that for any x; y 2 L, 1 ^ (x _ y) = x _ y = (1 ^ x) _ (1 ^ y). Also,

0 ^ (x _ y) = 0 = 0 _ 0 = (0 ^ x) _ (0 ^ y) for all x; y 2 L.

The following list of calculations covers the cases where a, b, and c are equal to

"z":

a ^ (0 _ 0) = a ^ 0 = 0 = 0 _ 0 = (a ^ 0) _ (a ^ 0)

a ^ (0 _ a) = a ^ a = a = 0 _ a = (a ^ 0) _ (a ^ a)
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a ^ (0 _ b) = a ^ b = 0 = 0 _ 0 = (a ^ 0) _ (a ^ b)
a ^ (0 _ c) = a ^ c = a = 0 _ a = (a ^ 0) _ (a ^ c)
a ^ (0 _ 1) = a ^ 1 = a = 0 _ a = (a ^ 0) _ (a ^ 1)

a ^ (a _ a) = a ^ a = a = a _ a = (a ^ a) _ (a ^ a)

a ^ (a _ b) = a ^ c = a = a _ 0 = (a ^ a) _ (a ^ b)
a ^ (a _ c) = a ^ c = a = a _ a = (a ^ a) _ (a ^ c)
a ^ (a _ 1) = a ^ 1 = a = a _ a = (a ^ a) _ (a ^ 1)

a ^ (b _ b) = a ^ b = 0 = 0 _ 0 = (a ^ b) _ (a ^ b)
a ^ (b _ c) = a ^ c = a = 0 _ a = (a ^ b) _ (a ^ c)
a ^ (b _ 1) = a ^ 1 = a = 0 _ a = (a ^ b) _ (a ^ 1)

a ^ (c _ c) = a ^ c = a = a _ a = (a ^ c) _ (a ^ c)
a ^ (c _ 1) = a ^ 1 = a = a _ a = (a ^ c) _ (a ^ 1)

a ^ (1 _ 1) = a ^ 1 = a = a _ a = (a ^ 1) _ (a ^ 1)

b ^ (0 _ 0) = b ^ 0 = 0 = 0 _ 0 = (b ^ 0) _ (b ^ 0)

b ^ (0 _ a) = b ^ a = 0 = 0 _ 0 = (b ^ 0) _ (b ^ a)

b ^ (0 _ b) = b ^ b = b = 0 _ b = (b ^ 0) _ (b ^ b)
b ^ (0 _ c) = b ^ c = b = 0 _ b = (b ^ 0) _ (b ^ c)
b ^ (0 _ 1) = b ^ 1 = b = 0 _ b = (b ^ 0) _ (b ^ 1)

b ^ (a _ a) = b ^ a = 0 = 0 _ 0 = (b ^ a) _ (b ^ a)

b ^ (a _ b) = b ^ c = b = 0 _ b = (b ^ a) _ (b ^ b)
b ^ (a _ c) = b ^ c = b = 0 _ b = (b ^ a) _ (b ^ c)
b ^ (a _ 1) = b ^ 1 = b = 0 _ b = (b ^ a) _ (b ^ 1)

b ^ (b _ b) = b ^ b = b = b _ b = (b ^ b) _ (b ^ b)
b ^ (b _ c) = b ^ c = b = b _ b = (b ^ b) _ (b ^ c)
b ^ (b _ 1) = b ^ 1 = b = b _ b = (b ^ b) _ (b ^ 1)

b ^ (c _ c) = b ^ c = b = b _ b = (b ^ c) _ (b ^ c)
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b ^ (c _ 1) = b ^ 1 = b = b _ b = (b ^ c) _ (b ^ 1)

b ^ (1 _ 1) = b ^ 1 = b = b _ b = (b ^ 1) _ (b ^ 1)

c ^ (0 _ 0) = c ^ 0 = 0 = 0 _ 0 = (c ^ 0) _ (c ^ 0)

c ^ (0 _ a) = c ^ a = a = 0 _ a = (c ^ 0) _ (c ^ a)

c ^ (0 _ b) = c ^ b = b = 0 _ b = (c ^ 0) _ (c ^ b)
c ^ (0 _ c) = c ^ c = c = 0 _ c = (c ^ 0) _ (c ^ c)
c ^ (0 _ 1) = c ^ 1 = c = 0 _ c = (c ^ 0) _ (c ^ 1)

c ^ (a _ a) = c ^ a = a = a _ a = (c ^ a) _ (c ^ a)

c ^ (a _ b) = c ^ c = c = a _ b = (c ^ a) _ (c ^ b)
c ^ (a _ c) = c ^ c = c = a _ c = (c ^ a) _ (c ^ c)
c ^ (a _ 1) = c ^ 1 = c = a _ c = (c ^ a) _ (c ^ 1)

c ^ (b _ b) = c ^ b = b = b _ b = (c ^ b) _ (c ^ b)
c ^ (b _ c) = c ^ c = c = b _ c = (c ^ b) _ (c ^ c)
c ^ (b _ 1) = c ^ 1 = c = b _ c = (c ^ b) _ (c ^ 1)

c ^ (c _ c) = c ^ c = c = c _ c = (c ^ c) _ (c ^ c)
c ^ (c _ 1) = c ^ 1 = c = c _ c = (c ^ c) _ (c ^ 1)

c ^ (1 _ 1) = c ^ 1 = c = c _ c = (c ^ 1) _ (c ^ 1)

Now we present the proof of 2):

First note that for any x; y 2 L, 1 _ (x ^ y) = 1 = 1 ^ 1 = (1_ x)^ (1_ y). Also,

0 _ (x ^ y) = x ^ y = (0 _ x) ^ (0 _ y) for all x; y 2 L.

The following list of calculations covers the cases where a, b, and c are equal to

"z":

a _ (0 ^ 0) = a _ 0 = a = a ^ a = (a _ 0) ^ (a _ 0)

a _ (0 ^ a) = a _ 0 = a = a ^ a = (a _ 0) ^ (a _ a)

a _ (0 ^ b) = a _ 0 = a = a ^ c = (a _ 0) ^ (a _ b)
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a _ (0 ^ c) = a _ 0 = a = a ^ c = (a _ 0) ^ (a _ c)
a _ (0 ^ 1) = a _ 0 = a = a ^ 1 = (a _ 0) ^ (a _ 1)

a _ (a ^ a) = a _ a = a = a ^ a = (a _ a) ^ (a _ a)

a _ (a ^ b) = a _ 0 = a = a ^ c = (a _ a) ^ (a _ b)
a _ (a ^ c) = a _ a = a = a ^ c = (a _ a) ^ (a _ c)
a _ (a ^ 1) = a _ a = a = a ^ 1 = (a _ a) ^ (a _ 1)

a _ (b ^ b) = a _ b = c = c ^ c = (a _ b) ^ (a _ b)
a _ (b ^ c) = a _ b = c = c ^ c = (a _ b) ^ (a _ c)
a _ (b ^ 1) = a _ b = c = c ^ 1 = (a _ b) ^ (a _ 1)

a _ (c ^ c) = a _ c = c = c ^ c = (a _ c) ^ (a _ c)
a _ (c ^ 1) = a _ c = c = c ^ 1 = (a _ c) ^ (a _ 1)

a _ (1 ^ 1) = a _ 1 = 1 = 1 ^ 1 = (a _ 1) ^ (a _ 1)

b _ (0 ^ 0) = b _ 0 = b = b ^ b = (b _ 0) ^ (b _ 0)

b _ (0 ^ a) = b _ 0 = b = b ^ c = (b _ 0) ^ (b _ a)

b _ (0 ^ b) = b _ 0 = b = b ^ b = (b _ 0) ^ (b _ b)
b _ (0 ^ c) = b _ 0 = b = b ^ c = (b _ 0) ^ (b _ c)
b _ (0 ^ 1) = b _ 0 = b = b ^ 1 = (b _ 0) ^ (b _ 1)

b _ (a ^ a) = b _ a = c = c ^ c = (b _ a) ^ (b _ a)

b _ (a ^ b) = b _ 0 = b = c ^ b = (b _ a) ^ (b _ b)
b _ (a ^ c) = b _ a = c = c ^ c = (b _ a) ^ (b _ c)
b _ (a ^ 1) = b _ a = c = c ^ 1 = (b _ a) ^ (b _ 1)

b _ (b ^ b) = b _ b = b = b ^ b = (b _ b) ^ (b _ b)
b _ (b ^ c) = b _ b = b = b ^ c = (b _ b) ^ (b _ c)
b _ (b ^ 1) = b _ b = b = b ^ 1 = (b _ b) ^ (b _ 1)

b _ (c ^ c) = b _ c = c = c ^ c = (b _ c) ^ (b _ c)
b _ (c ^ 1) = b _ c = c = c ^ 1 = (b _ c) ^ (b _ 1)
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b _ (1 ^ 1) = b _ 1 = 1 = 1 ^ 1 = (b _ 1) ^ (b _ 1)

c _ (0 ^ 0) = c _ 0 = c = c ^ c = (c _ 0) ^ (c _ 0)

c _ (0 ^ a) = c _ 0 = c = c ^ c = (c _ 0) ^ (c _ a)

c _ (0 ^ b) = c _ 0 = c = c ^ c = (c _ 0) ^ (c _ b)
c _ (0 ^ c) = c _ 0 = c = c ^ c = (c _ 0) ^ (c _ c)
c _ (0 ^ 1) = c _ 0 = c = c ^ 1 = (c _ 0) ^ (c _ 1)

c _ (a ^ a) = c _ a = c = c ^ c = (c _ a) ^ (c _ a)

c _ (a ^ b) = c _ 0 = c = c ^ c = (c _ a) ^ (c _ b)
c _ (a ^ c) = c _ a = c = c ^ c = (c _ a) ^ (c _ c)
c _ (a ^ 1) = c _ a = c = c ^ 1 = (c _ a) ^ (c _ 1)

c _ (b ^ b) = c _ b = c = c ^ c = (c _ b) ^ (c _ b)
c _ (b ^ c) = c _ b = c = c ^ c = (c _ b) ^ (c _ c)
c _ (b ^ 1) = c _ b = c = c ^ 1 = (c _ b) ^ (c _ 1)

c _ (c ^ c) = c _ c = c = c ^ c = (c _ c) ^ (c _ c)
c _ (c ^ 1) = c _ c = c = c ^ 1 = (c _ c) ^ (c _ 1)

c _ (1 ^ 1) = c _ 1 = 1 = 1 ^ 1 = (c _ 1) ^ (c _ 1)

Since conditions 1) and 2) are satis¯ed, L is distributive.
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Illustrations of Examples

Figure B.1. Lattice from example 2.11
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Figure B.2. Lattice from example 2.19


