Abstract

SEATON, GERALD ARTHUR. The Lattice of Equivalence Classes of Closed
Sets and the Stone-Cech Compactification. (Under the direction of Dr. Gary Faulkner.)

BX \ X is the remainder of the Stone-Cech compactification of a locally compact
space X. This paper introduces a lattice which we call L(X) that is constructed
using equivalence classes of closed sets of X. We then determine that St(L(X)) (the
set of ultrafilters on L(X)) is homeomorphic to X \ X. We subsequently give some
examples. Most notably, for X = H this now provides a lattice-theoretic approach

for representing SH \ H.

In addition, we expand and clarify some aspects of lattice theory related to our
constructions. We introduce the term "upwardly nonlinear” as a way to describe
lattices with a certain property related to the ultrafilters on it. We also investigate

some of the lattice properties of L(X).
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Chapter 1

PRELIMINARIES

1.1 DEFINITIONS — Topological

Knowledge of some of the basic concepts of topology (such as the separation axioms)
is assumed. General Topology by Willard [14] is a good source for topological defini-
tions not contained herein. Both Willard’s book [14] and FEzxtensions and Absolutes
of Hausdorff Spaces by Porter and Woods [9] are good references for the following

definitions.

A subset S of a topological space X is called clopen if S is both open and closed
with respect to the topology on X. A space X is called 0-dimensional provided that

the set of all clopen sets of X forms a base for the open sets of X.

A collection C' of sets of a space X is said to have the finite intersection property

if the intersection of any finite subcollection of elements of C' is non-empty.

A space X is said to be compact provided that every open cover of X has a finite
subcover. Equivalently, X is compact if every collection of closed sets of X with the

finite intersection property has non-empty intersection.
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A compactification aX of a space X is a compact Hausdorff space that contains X
as a dense subset. A space has a compactification if and only if it is Tychonoff. From
now on, unless otherwise noted, spaces will be assumed to be Tychonoff. aX \ X
denotes the remainder (i.e. the compactification X minus the original space X) of

the compactification aX.

A space X is said to be locally compact provided that every element of X has
a compact neighborhood. The one-point compactification of X, sometimes denoted
wX, is the compactification of X whose remainder consists of a single point. Locally
compact, non-compact spaces are precisely those that have a one-point compactifica-

tion.

The maximum compactification of a space X is called the Stone-Cech compact-
ification of X, and is denoted 3X. The Stone-Cech compactification of X can be
characterized as the unique compactification of X such that every bounded con-
tinuous function on X can be extended to a continuous function on X (i.e. X is
C*-embedded in $X). To see varying constructions of X, we recommend Chandler’s
Hausdorff Compactifications [1], and Rings of Continuous Functions by Gillman and

Jerison [5].

A space X is called connected if no two disjoint open sets of X cover X. If X is

compact and connected, it is called a continuum.

Additionally, a subset S of a space X is called a Gy if S is the countable intersection

of open sets, and S is called an F,, if S is the countable union of closed sets.
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1.2 DEFINITIONS — Lattice-theoretic

Many of the following definitions can be found in Koppelberg’s Handbook of Boolean
Algebras [7].

A partial order < is a binary relation that is reflexive, transitive, and antisym-
metric. A partially ordered set (P, <) is a set P paired with a partial order <. We

will usually just write P instead of (P, <).

Given a partially ordered set P and elements a,b € P, the supremum of a and
b (denoted a V b) is the least element that is greater than or equal to both a and b.
The infimum of a and b (denoted a A b) is the greatest element that is less than or
equal to both a and b. If L is a partially ordered set where a V b and a A b exist for

all a,b € L, then we call L a lattice.

A lattice L is called distributive if a A (bV ¢) = (aAD)V (aAc)and aV (bAc) =
(aVb)A(aVc)forall a,b,ce L.

A bounded lattice is a lattice with both a greatest and a least element (usually

denoted 1 and 0, respectively).

A filter p on a lattice L is a subset of L such that
(). 0¢p

(ii). a,b € p implies that a Ab € p

(iii). a € p and b € L with b > a implies that b € p.

An ultrafilter is a maximal filter (with respect to set inclusion).

Let a € L. Then d' € L is said to be the pseudocomplement of a if a A a’ = 0 and
bAa=0=b<d,Vbe L. Alattice L is called pseudocomplemented if every a € L

has a pseudocomplement.
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Let a € L. Then a¢ € L is said to be the complement of a if a A a® = 0 and
aVa® = 1. We say "the” complement because it is unique (if it exists). A lattice
B where every element of B has a complement is called a Boolean algebra. The
Handbook of Boolean Algebras [7] is an excellent reference for more background about

Boolean algebras.

The power set of w, denoted P(w), is a Boolean algebra. P(w)/fin denotes the

set of subsets of w mod the finite sets (also a Boolean algebra).

If B is a Boolean algebra, then the Stone space of B, denoted St(B), is the space
formed by the set of all ultrafilters on B. We also use this notation to describe the
collection of ultrafilters of a lattice (i.e. if L is a lattice, St(L) is the space of all
ultrafilters on L).

We use the notation CO(St(B)) to denote the set of clopen subsets of St(B).

1.3 BACKGROUND

M.H. Stone first introduced using Boolean algebras in the study of compact 0-dimensional

spaces in the late 1930’s. The following theorem is named for him:

Theorem 1.3.1. (Stone’s Representation Theorem) Let B be a Boolean Algebra.
Then:

1) St(B) is a compact, zero-dimensional space.

2) B is isomorphic to CO(St(B)) (the Boolean algebra of the clopen subsets of
St(B).

A detailed treatment of Stone’s theory can be found in the books of Porter and

Woods [9] and of Walker [12]. This theorem led to, in particular, the characterization
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of fw as the Stone space of the power set of w (i.e. St(P(w))). Additionally, the
Stone space of the Boolean algebra P(w)/ fin is homeomorphic to fw \ w. In general,
Stone-Cech compactifications and their remainders could be studied using Boolean

algebras — provided that they were zero-dimensional.

Also in the late 1930’s, H. Wallman worked on an alternate approach to studying
compact Tj-spaces, but he used lattices in general (without the additional structure
of Boolean algebras). In his paper Lattices and Topological Spaces [13], Wallman
considers the lattice L of closed sets of a Ti-space R. He defines the term "point”
(now referred to as "ultrafilter”) and shows that the set S of all "points” of a dis-

tributive lattice is a bicompact Ti-space. He also shows that R normal if and only if

S Hausdorfl.

Additionally, he defines in the paper a condition on the lattice L of the closed
sets of R that is inspired by the closed set definition of normality. Today, any lattice
satisfying this condition is usually referred to as a normal lattice. This version of
normality led to the definition of a Wallman base (a discussion about the concept of

Wallman bases can be found in Willard’s book [14]):

Definition 1.3.2. Let B be any base for the closed sets of X satisfying the following
conditions:

a) for each closed set F' and = ¢ F, there is some A € B such that z € A and
ANF =10,

b) B is closed under finite unions and intersections,

c) if A, B € B are disjoint, then there exists C, D € B such that A C X \ C,
BC X\ D,and (X\C)N(X\D)=0.

Then B is called a Wallman base for X.

Given a Wallman base B, the concept of a B-ultrafilter can be defined. Then, the
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set of all B-ultrafilters on X is called a Wallman compactification of X. It was once
believed that every Hausdorff compactification might be a Wallman compactification

for some Wallman base.

In the 1960’s, O. Frink worked with understanding Wallman bases (which he
called normal bases at the time) and the resulting Wallman compactifications. For
example, he proved the following about semi-normal spaces (i.e. spaces with at least

one Wallman base):
Theorem 1.3.3. A Tj-space is completely regular if and only if it is semi-normal.

The proof of this theorem can be found in his 1964 paper Compactifications and
Semi-Normal Spaces [4]. Also in this paper, Frink first posed the question of whether
every Hausdorff compactification can be obtained by taking the Wallman compacti-

fication for some Wallman base.

In 1974, L.B. Sapiro published a paper [10] which considered this question posed
by Frink. Sapiro broke this problem down to a set-theoretic one. He did not fully
answer the question, but his work paved the way for V.M. Ul'Janov. In Ul’Janov’s
1977 paper [11] on the subject, he determined that there are in fact compactifications
not of Wallman type.

In the meantime, use for Stone’s work had risen, thanks to the importance that
Parovicenko found in the space fw \ w. In his 1963 paper [8] on the subject,
Parovicenko proved that every compact set of weight < w; is a continuous image
of fw\ w. Assuming the Continuum Hypothesis, he showed that fw \ w is a universal
compact Hausdorff space of weight w;. This led to the definition of a space called a

Parovicenko space:

Definition 1.3.4. X is called a Parovicenko space provided that
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a) X is a zero-dimensional compact space without isolated points with weight c,
b) every two disjoint open F,’s in X have disjoint closures,

c¢) every nonempty Gs in X has nonempty interior.

Thus, Parovicenko showed that the Continuum Hypothesis implies that every

Parovic¢enko space is homeomorphic to fw \ w.

E.K. van Douwen and J. van Mill expanded on this work in their 1978 paper [2],
where they proved that Parovicenko’s characterization of fw \ w is equivalent to the
Continuum Hypothesis by showing that if every Parovicenko space is homeomorphic

to fw \ w, then the Continuum Hypothesis is true.

In 1991, K.P. Hart and A. Dow published a paper [6] in which they proved a
similar result to that of Parovicenko, but this time for the space SH \ H. They
showed that every continuum of weight w; is a continuous image of SH \ H. This

characterization provided new motivation for the further study of FH \ H.

The characterization of fw\w popularized the use of Boolean algebras in studying
compactifications (begun by Stone), as this technique allowed one to approach topo-
logical problems from an algebraic angle. On the other hand, the lattice approach
introduced by Wallman fell out of favor with the discovery that there are compact-
ifications that are not Wallman type. However, one of the overlooked advantages of
Wallman’s approach is that it could (at least hypothetically) handle more topological
cases, since the theory wasn’t restricted to the study of 0-dimensional spaces (as the

Boolean algebra approach was).

We use this advantage in our development of the lattice that we call L(X) (see
chapter 3), as we are motivated by the work of Hart and Dow to find an algebraic

approach with which to study SH \ H. Though used differently, the construction of



Chapter 1. PRELIMINARIES 8

L(X) was inspired, in part, by a similar lattice construction found in a 1994 paper

by Faulkner and Vipera [3].



Chapter 2

GENERAL LATTICES

Suppose that L is a lattice that is bounded (i.e. has a minimum and maximum with
respect to the partial order; generally we’ll refer to these as 0 and 1) and distributive
(we assume all lattices are bounded and distributive unless noted otherwise). An
ultrafilter on L is a filter on L that is maximal. A filter on L is said to be prime if
aVb € L implies that a € L or b € L. With the help of the following lemma, we show

that every ultrafilter is prime.

Lemma 2.1. Let p be an ultrafilter of a lattice L. Suppose b € L and Va € p,
aANb#0. Then b € p.

Proof. Let g ={c € L:3a € p,c > a Ab}.(Show that q is a filter.)

(i). aANb#0,Va € p,s00¢&q.

(ii). Let ¢1,¢9 € ¢. Then ¢4 > a; Ab and g > ay A b for some a1, as € p. Hence
c1 ANeg > (ag Ab) A (ag Ab) = (ag Aag) Ab. So c1 A ey € g since ag A ay € p.

(iii). Let ¢; € g and ¢g > ¢;. Then ¢; > a A b for some a € p. Clearly co > a Ab.

Hence ¢, € q.

So, by (i), (ii), and (iii), ¢ is a filter. Let a € p. Since a > a Ab, then a € q. So p C g.
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But p is an ultrafilter, so p = ¢. Since for any a € p, b > b Aa, then b € q. But p =¢
=bep. O

Proposition 2.2. Suppose that p is a filter of a lattice L. Then p is maximal = p

is prime.

Proof. Let p be a maximal filter of L. Let x,y € L such that x Vy € p. Then
xVyep=(xVy Na#0,Yaep=(xAa)V(yANa)# 0,Va € p. Suppose that
da,b € p such that tAa =0and yAb=0. Then (zA(aAb))V(yA(aAb)) =0, which
contradicts above since a Ab € p. So either (x Aa # 0,Va € p) or (y Aa # 0,Va € p).

So by lemma 2.1, either x € p or y € p. [l

We denote the set of all ultrafilters on L by St(L) (In the case of a Boolean algebra
B, the set of all ultrafilters on B is usually referred to as the Stone space of B — we’ll
use this notation in tribute to that. We will also occasionally refer to St(L) as the
Stone space of L.). Now let’s define the topology on St(L) by considering a base for

the closed sets.

Notation 2.3. Let [f] ={p € St(L) : f € p},foreach f € L, and let B(St(L)) ={[f] :
feL}

Obviously, B(St(L)) is a base for the closed sets of some topology on St(L) (For
fisfo € L, [fi]U[f2] = [f1 V f2] € B(St(L)). Also, N[f] = 0 since [0] = 0). Let 75
be the topology that B(St(L)) is a base for the closed sets of. It will be understood
that St(L) has this topology on it. The following are fundamental properties of these

basic closed sets.

Lemma 2.4. [a]| U [b] = [a V b], Ya,b € L.
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Proof. There are two parts:

(C) Let p € [a] U [b]. Then a € por b € p. Since aVb > a and a Vb > b, then
aVbep. Hencep € [aVb].

(D) Let p € [aV b]. Then a Vb € p. Since p is prime, a € p or b € p. Hence
p € [a] U [b]. O

Lemma 2.5. [a] N [b] = [a A D], Ya,b € L.

Proof. There are two parts:

(C) Let p € [a]N[b]. Then a € p and b € p. Since p is a filter, a A b € p. Hence
p € [aAb].

(D) Let p € [a AD]. Then a Ab € p. Since a > aAband b > aAb, then a,b € p.
Hence p € [a] N [D]. O

With St(L) defined as a topological space, the obvious next step is to consider it’s
topological properties. We need a couple of preliminary results first, beginning with
a modified version of the Boolean prime ideal theorem, adjusted to suit our needs
here. The statement of the original theorem, with proof, can be found in Handbook
of Boolean Algebras [7]. The proof T provide here, paraphrased directly from the

Handbook, is included for the sake of completeness.

Theorem 2.6. A subset E of a lattice L has the fi.p. = F is contained in an
ultrafilter of L.

Proof. Assume E C L has the f.i.p. So, if pg is the filter generated by E, then py is
proper. Let P ={q: q 2 po,q is a filter of L}. Clearly, P is non-empty and can be
partially ordered by set inclusion. For any non-empty chain C'in P, |JC' is clearly a

filter containing each member of C. Finally, apply Zorn’s lemma. |
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This gives us the following fundamental result about filters:
Corollary 2.7. Any filter p of a lattice L is contained in an ultrafilter.

Proof. Filters have the f.i.p., thus this follows directly from theorem 2.6. |

With this corollary, we prove that St(L) is compact.
Proposition 2.8. St(L) is compact.

Proof. Let C be a collection of basic closed sets of St(L) with the finite intersection
property; denote C' ={[f,] : « € A}. Let S be the collection of all finite infimums of
the fu’s, @ € A. (Show that S is a filter base.)

(i). Let g € S. Then g = fa, A ... A fa,. Since C has the fi.p., Ip € [fo,]N... N
(farl = fars oo fa, EP= fau Ao A fa, €D = fay N oo A fo, # 0 since 0 & p.

(ii). Let g1,92 € S. Then ¢1 = fo, Ao A fo, and g2 = fa, Ao A fa,,. So
G ANGg2 = fay Ao A\ fa, Nfa, Ao A fa,, €S.
So, by (i) and (ii), S is a base for some filter p, and thus by corollary 2.7, 3 an ultrafilter
p' such that p’ O p. By construction, f, € p/,Va € A. Hence p' € [f.],Va € A. So
(N C # 0. Therefore St(L) is compact. O

Next, we’ll consider the following lattice property, labeled (x):

(x) If p,q € L such that p A g =0, then Ja,b € L such that pAa=0,¢gAb=0,
and a Vb=1.

This property can be found as a footnote in Wallman’s Lattices and Topological

Spaces ([13], pg.119). It also closely resembles a property used by Wallman in his
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definition of a Wallman base for a topological space (see Willard, [14], pg. 142). Tt is
used as an analagous condition in the setting of lattices to the condition of normality

in the topological setting. Thus, the motivation for our following definition:
Definition 2.9. A lattice L is called normal if L has the (x) property.

The use of the word normal becomes justified when considering the result of two

propositions, the first being:
Proposition 2.10. If L is normal, then St(L) is Tb.

Proof. Let p,q € St(L) such that p # ¢q. Then 3f € p and g € ¢ such that f Ag=0.
So by (%), Ja,b € L such that fAa=0,gAb=0,and aVb=1. Sop ¢ [a] and
q & [b]. Also, by lemma 2.4, [a] U [b] = [a V b] = [1] = St(L), so St(L) is Ts. O

Notice, however, that St(L) being Ty doesn’t guarantee that L is normal, as the

following example demonstrates:

Example 2.11. Let L be the lattice with 5 distinct elements defined in the following
way:

L = {0,a,b,a V b,1} where a Ab = 0. (See appendix A for proof that L is
distributive; see figure B.1 in appendix B for illustration.)

Let p ={a, aVb, 1} and ¢ ={b, a Vb, 1}. Because of the simplicity of the lattice,
it is easy to check that p and ¢ are each ultrafilters on L, and that there are no other
ultrafilters (i.e. St(L) ={p, ¢}). By construction, p is in the basic closed set [al,
and ¢ is in the basic closed set [b]. More to the point, [a] ={p} and [b] ={q}. So
l[a] N [b] = 0 and [a] U [b] = St(L), which implies that [a] and [b] are clopen (so [a] and

[b] are disjoint open sets containing p and ¢, respectively). Hence St(L) is Ts.
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L is, however, not normal. To see this, consider a,b € L. By definition, a A b = 0.
But there doesn’t exist two non-one elements in L whose supremum is 1. In other
words, if  Vy = 1 then either z =1 or y = 1. Since a A1 # 0 and bA 1 # 0, then L

clearly can’t be normal.

The key distinguishing feature of the above example is the linear nature of the top
part of the lattice. If we restrict ourselves to considering lattices that are different
from the example in this regard, then we can prove the desired result. We introduce
the following term to describe lattices that are different from our example with respect

to this feature.

Definition 2.12. A lattice L is called upwardly nonlinear provided that 1 is the only

element of L that is in every ultrafilter on L.

Although we first considered this property from a purely lattice-theoretic point
of view, we later noticed a connection between this property and a topological one.
This is explored in chapter 4.

For now, we use the property to prove the second of two propositions that show

that our intuitive reasons for using the term normal are well-founded.

Proposition 2.13. Assume that L is upwardly nonlinear. If St(L) is Ty, then L is

normal.

Proof. Suppose a,b € L such that a Ab = 0. Then [a] N [b] = @ (i.e. they have
no ultrafilters in common). Since St(L) is Ty (by assumption) and compact (by
proposition 2.8), St(L) is normal.

Note that the base B ={[a] : @ € L} for the closed sets of St(L) is closed under
finite intersections. This, combined with the fact that St(L) is normal and compact,

implies the following:
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(¢, [d] € B such that [a] N [c] =0, [b] N [d] =0, and [c] U [d] = St(L).
Suppose a A ¢ # 0. Then there exists an ultrafilter p € St(L) such that a A ¢ € p.
But then a, c € p (since a,c > a A ¢), which means that p € [a] N [¢], a contradiction.
Hence a A ¢ = 0.

Similarly, b A d = 0. Since St(L) = [¢c]U [d] = [¢ V d] (by lemma 2.4), and L is

assumed to be upwardly nonlinear, then ¢V d = 1. Hence L is normal. Il

Thus, since St(L) is always compact, propositions 2.10 and 2.13 can be summed

up by the following:

Corollary 2.14. Let L be upwardly nonlinear. L normal iff St(L) normal.

We now pause to make a few observations. Hart and Dow ([6], pg. 3) suggest that
Wallman’s paper Lattices and Topological Spaces [13] proves that if L is a distributive
lattice then there is a compact Ti-space X such that X is Hausdorff iff L is normal.
However, on reconsidering the Wallman paper, it appears that Wallman did not prove
this for all distributive lattices, but only for distributive lattices that are the lattice
of closed sets of some Ti-space. This would leave out any distributive lattice that
is not equivalent to the lattice of closed sets of a Tj-space (Note that the Birkhoff-
Stone Theorem (Porter and Woods, [9], pg.104) does guarantee that every distributive
lattice has a set representation, but doesn’t specify that the representation is a ring
of closed sets.). The disjunction property (as Wallman called it), also mentioned by
Hart and Dow [6], does appear to play a role in showing that St(L) is Ty = L is
normal. In fact, it is noted in the Wallman paper that any lattice of closed sets of a

Ti-space has the disjunction property.
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We now consider the disjunction property and how it relates to our upwardly non-

linear property. First let’s define the disjunction property as it is given by Wallman
(113], pg. 115).

Definition 2.15. A lattice L has the disjunction property provided that whenever
a,b € L such that a # b, there exists an element ¢ € L\{0} such that one of a A ¢ and
b A cis 0 and the other is not 0.

Wallman stated that ¢ should be taken out of L, but clearly ¢ would never be 0,
thus the reason for the modification. Wallman also stated the following theorem (as

lemma 3, [13], pg. 115) concerning the disjunction property.

Theorem 2.16. L has the disjunction property iff there is a 1-1 correspondence

between the elements of L and the elements of B(St(L)) ={[f]: f € L}.

Assume a lattice L has the disjunction property. So by this theorem, if a,b € L
such that a # b, then [a] # [b]. In particular, assume a = 1. Then b € L\{1} implies
that [b] # [1]. Since [1] = St(L), this is the same as stating that for every b € L\ {1},
there is an ultrafilter p € St(L) such that b ¢ p. In other words, 1 is the only element

of L that is in every ultrafilter on L. We have just shown the following:
Proposition 2.17. L has the disjunction property = L is upwardly nonlinear.

So if L is a lattice with the disjunction property, then no two distinct elements a
and b of L can have their associated closed sets [a] and [b] equal to each other. On
the other hand, if L is an upwardly nonlinear lattice, then no two distinct elements a
and b of L can have their associated closed sets [a] and [b] both equal to [1] — but that
doesn’t mean that [a] can’t equal [b]. Thus, it would intuitively seem that there is an

example of an upwardly nonlinear lattice that does not have the disjunction property.
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Now, in corollary 2.7, we showed that every filter on a lattice is contained in at
least one ultrafilter. The next proposition gives a condition under which a filter will

be contained in exactly one ultrafilter.

Proposition 2.18. If p is a prime filter of a normal lattice L , then p is contained

in a unique ultrafilter.

Proof. Suppose L is normal. Suppose p is a prime filter of L contained in distinct
ultrafilters ¢; and g2 (i.e. ¢; and ¢ are maximal, ¢ # @2, and p C ¢ N g2). Then
da € ¢1 \ g2 and b € ¢ \ ¢; such that a A b = 0. Since L is normal, Je, d € L such
that aAc=0,bAd =0, and ¢V d = 1. Since 1 € p, then either ¢ € p or d € p (by
prime). Either is a contradiction (W.L.O.G. assume ¢ € p. Then p C ¢; = ¢ € ¢,
but ¢ € ¢; and a A ¢ = 0 contradicts that a € ¢;.). O

In the context of Boolean algebras, if there is an embedding g between Boolean
algebras By and Bs, then the map h : St(By) — St(Bj) defined by h(p) = g~'(p) is a
surjective map. This h is well-defined because g~*(p) is an ultrafilter on B;. Our first
thought was to mimic this construction in the lattice setting to get a similar result.
This, however, proved difficult. Whether the inverse of a lattice embedding maps
a lattice ultrafilter to a lattice ultrafilter is a question we have not yet been able to
answer, at least given the usual assumption that the lattices involved are distributive.
The following example arose from an attempt to find a counterexample — it was later
noticed that the lattice L' (defined in example 2.19) is not distributive. Subsequent
attempts to modify the example to make it distributive have been unsuccessful. It
is presented here for the sake of completeness, and that it may eventually inspire a

solution to the problem.
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Example 2.19. Let L be the lattice with 4 distinct elements defined in the following
way:
L={0,2,y,1} where xt Ay =0 and x V y = 1. (See figure B.2 in appendix B for

illustration.)

Note that L is trivially normal. Now let L’ be the lattice with 5 distinct elements
defined as follows:

L' ={0,a,b,¢c,1'} where aAb = aNc = bAc = 0 and aVb = aVe = bVe = 1'.(Note
that L' is not distributive.)

Define f: L — L' by f(0) =0, f(1) =1, f(x) = a, and f(y) = b. Clearly f
is well-defined and 1-1. It is a little tedious, but easy, to check that f satisfies the
conditions of being a lattice homomorphism (namely that f(m VvV n) = f(m) V f(n)
and f(m An)= f(m)A f(n), for all m,n € L). So f is a lattice embedding.

Let p ={c,1'}. Much like in example 2.11, the finite setting makes it easy to see
that p is an ultrafilter on L'. Notice, though, that f~!(p) ={1}, which is not an

ultrafilter on L since it is properly contained in the ultrafilter {x, 1}.

Though we are uncertain if the inverse of a lattice embedding would map lattice
ultrafilters to lattice ultrafilters (and we suspect that, in general, it wouldn’t), we can

get the following somewhat weaker result:

Proposition 2.20. Suppose that f: L — L’ is a lattice embedding and that p is a
prime filter on L’. Then f~!(p) is a prime filter on L.

Proof. There are two parts:
1. f7Yp) is a filter:
(i). Suppose 0 € f~!(p). Then f(0) € p. But f(0) = 0, a contradiction. Hence

0¢ fp).
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(ii). Suppose a,b € f~'(p). Then f(a), f(b) € p. So f(a) A f(b) = f(a AD) € p.
Hence a Ab € f~(p).

(iii). Suppose b € L,a € f~!(p), such that b > a. Since b > a, f(b) > f(a) (lattice
homomorphisms preserve order). Since f(a) € p, then f(b) € p. Hence b € f~1(p).

2. f~Y(p) is prime: Let a Vb € f~(p). Then f(aVb) = f(a)V f(b) € p. Since p
is prime, f(a) € por f(b) € p. Hence a € f~1(p) or b € f~1(p). O

Though weaker, proposition 2.20 is good enough, when used with proposition 2.18,

to give us a comparable construction to the Boolean algebra case.

Definition 2.21. Suppose f : L — L’ is a lattice embedding and that L is normal.
Define f? : St(L') — St(L), the Stone-dual map of f, by fP(p) = g,, where g, is the

unique ultrafilter in L containing f~!(p).

If p € St(L'), then p is also prime (by proposition 2.2). By proposition 2.20,
f7(p) is a prime filter on L. Since L is normal, then proposition 2.18 gives us that

f~(p) is contained in a unique ultrafilter on L. Thus f? is well defined.
Furthermore,
Proposition 2.22. f” is onto.

Proof. Let ¢ € St(L). Since f is 1-1, without loss of generality we can assume that
f =idy (ie. L C L'). Since ¢ € St(L), q has the f.i.p and is a subset of L' . By
theorem 2.6, ¢ can be extended to an ultrafilter p of L’. Notice that f~1(p) is a
prime filter in L and f~'(p) D ¢. Since f~!(p) is prime, it is contained in a unique
ultrafilter g, (proposition 2.18). So ¢, 2 f~'(p) 2 ¢. But ¢ is maximal, so g, = ¢ (i.e.
fP(p) = q). Hence fP is onto. O
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The following theorem also deals with the effects normality has on the set of

ultrafilters of a lattice.

Proposition 2.23. Suppose L is a normal lattice with no complements, L is upwardly
nonlinear, and |L| < w;. Then St(L) is:

(i). compact

(ii). connected

(iii). of weight < wy

Proof. There are three parts:
(). St(L) is compact for any L (doesn’t need to be normal).

(ii). Suppose there exists F, G that are closed subsets of St(L) such that FNG = ()
and FUG = St(L). Since L is normal, then St(L) is Ty. Since St(L) is also compact,
then St(L) is normal. So there exists basic closed sets [a], [b] € St(L) such that
Fnla) =0, GN[b] =0, and [a] U [b] = St(L).

Since FN[a] =0 and F UG = St(L), then G D [a]. But [a] U [b] = St(L) and
GN b =0, so [a] 2 G. Hence [a] = G.

Similarly, [b] = F. Therefore §) = [a] N [b] = [a A b], which implies that a A b = 0.

Since St(L) = [a] U [b] = [a V b], and since 1 is the only element of L in every
ultrafilter on L, then a V b = 1. This contradicts the assumption that L has no

complements, hence L is connected.

(iii). Since B ={[a] : a € L} is a base for the closed sets of St(L) and |L| < wy,
then |B| < wy. Thus w(St(L)) < wy. O

Note that example 2.11 is a lattice with no complemented elements, and yet it’s
Stone space is disconnected (because there are two distinct ultrafilters on the lattice).

That is why the other assumptions are present in the statement of proposition 2.23.
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Incidentally, it is true that if a lattice L has complemented elements, that is enough
to guarantee that St(L) is disconnected (Let a,b € L such that aAb = 0and aVb = 1.
Thus [a] N [b] = 0 and St(L) = [1] = [a V b] = [a] U [b]. Therefore, [a] and [b] create a

disconnection of St(L)).



Chapter 3

L(X)

This chapter will begin by defining a lattice based on the closed sets of some topo-
logical space X. Ultimately the goal is to use this lattice, which we will call L(X),
to characterize 5X \ X.

Notation 3.1. Suppose X is a topological space and F is a closed subset of X. Then
we define: [F] ={G C X : G closed and Clx(F A G) is compact}.

Note that the use of brackets to define the above equivalence class is standard,
however it is also standard to use brackets to define the collection of ultrafilters
containing a given element of a lattice. It should be clear in context which meaning

is being used (or when both are being used).
Using the above defined equivalence classes, we can construct a lattice:

Definition 3.2. For a topological space X, let L(X) ={[F]: F is closed in X}, with
the operations A and V defined by [Fi] A [F2] = [FY N Fy] and [Fi] V [Fy] = [F1 U F.

It may not be clear that L(.X) as defined is a lattice, so a partial proof is presented

here:

Proposition 3.3. The operations A and V defined above are well defined.

22
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Proof. We'll just show this for Vv, as the proof that A is well defined is nearly identical.

Suppose that [F}] V [Fp] = [F] and [F}] V [F3] = [G] (i.e. Clx(F A (Fy U Fy)) and
Clx(G A (Fy U Fy)) are compact). We'd like to show that Clx(F A G) is compact.
We'll start by observing that F A G = (F\G)U(G\ F) C (F\ (FyUF))U ((Fy U
F)\F)U(G\ (U Fp)) U ((FLU F) \ G).

(To verify this last set containment, suppose W.L.O.G. that z € (F'\ G). Then
xeF. Ife g (F\(F1UF,)) then x € (F1UFy). Since z € G, then z € ((F1UF3)\G).)

So Clx (F\G)U(G\F)) € Clx ((F\(FUF))U((FUF)\F)U(G\(F1UF))U((F1U
F)\G)) € Clx (F\(FLUF))U((FLUE)\F))UCL ((G\ (FUF) ) U((FUF)\G)) =
Clx(FA(FLUF))UCIx(GA (FLUE)).

Since the union of two compact sets is compact, then Clx(F A G) is a closed

subset of a compact set, and therefore compact. So [F] = [G]. O

Proposition 3.4. L(X) with the given operations is a bounded distributive lattice.

Proof. Since the union or the intersection of two closed sets is closed, L(X) is clearly
closed under the operations. It is also clear that the operations are commutative,
associative, and idempotent (i.e. [F|V [F] = [F] and [F] A [F] = [F]). Additionally,
[F] < [G] is equivalent to [F]V [G] = [G] (or [F]A[G] = [F]). The lattice is bounded,
as [X] and [(] are the 1 and 0 elements, respectively. The following equalities prove
that L(X) is distributive:

FIA(G]VI[H]) = [FIN[GUH] = [FN(GUH)] = [(FNG)U (FFNH)| =
[FNGlv [FnH] = (FIAG) V(F]A[H])

[FIV(GIAH]) = [FIvIGNH] = [FU(GNH)] = [(FUG) N(FUH)| =
[FUGIN[FUH] = ([F]VIG)A(F] vV [H]) O
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From this point on, unless otherwise stated, we will assume that our topological
spaces are locally compact. In what follows, we will show that for any space X,
BX \ X is homeomorphic to St(L(X)). We will first introduce some notation and
provide proofs of some necessary results related to fX \ X. Then we will define the
candidate for our homeomorphism, show that it’s well defined, and show that it is,

in fact, a homeomorphism.
Notation 3.5. Let A be a subset of X. Then the notation A* means (Clgx(A4)) \ X.
Lemma 3.6. (FUG)* = F*UG*.

Proof. There are two parts:

(D) Let x € F*UG*. Then z € F* or x € G*. Let U be an open neighborhood
(in BX) of . Then U intersects F or U intersects G. Hence U N (FUG) # 0. So
x € Clgx(FUG) and x ¢ X, s0 x € (FUG)*.

(C) Let x € pX \ X such that x € (F*UG") (i.e. * € F* and z ¢ G*). So
there exists an open (in $X) neighborhood V; of x such that V; N F = () and there
exists an open (in #X) neighborhood V3 of = such that Vo NG = 0. Let U = V; N V5.
Then U is an open neighborhood (in 3X) of x such that U N (F U G) = (). Therefore
r & (FUG)™. O

Lemma 3.7. (FNG)*=F*NG*.

Proof. There are two parts:

(D) Let v € F*NG*. Then x € F* and x € G*. Let U be an open neighborhood
(in X)) of x. Then U intersects F' and U intersects G. So U intersects F'NG. Hence
r€Clgx(FNG)and x ¢ X, s0x € (FNG)*™.
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(C) Let z € (FNG)*. Let U be an open neighborhood (in 5X) of z. Then U
intersects F' N G, and thus U intersects F' and U intersects G. Hence x € Clgx (F),
x € Clgx(G), and © ¢ X. Therefore x € F* NG*. O

Proposition 3.8. F ={F* : F closed in X} is a base for the closed sets of 5X \ X.

Proof. Let C be a closed set in fX \ X and let x € (X \ X) \ C. Since X is locally
compact, C'is closed in fX. Let V and W be open sets in X such that z € VNW,
Clgx(V) C W, and W N C = 0. Note that V' =V N X is open in X.

Let FF= X \ V'. Clearly F is closed in X. Since X \ X = X* = (VU F)* =
(VYy*U F* and (V')*NC =0 (because (V')* C (Clgx(V)\ X) C W), then C C F*.
Additionally, 5X \ V is a closed set in X containing F' = Clsx(F) C X\ V =
F* C X\ V. Since z € V, then x ¢ F*. Therefore F is a base for the closed sets of
BX\ X. O

Notation 3.9. Let F, ={F* : [F] € p}.
Proposition 3.10. For any p € St(L(X)), | Fp| = 1.

Proof. We'll present the proof in two parts:

1. For any p € St(L(X)), N F, # 0:

Let p € St(L(X)). Suppose Fy, Fy, ..., F € F,. Then [Fi],[Fs],....[F.] € p =
[FI]AN[Fo] AN o AN = [FrNEynN...NEF,] € p. Hence, Ffy NF;N...NEF =
(FiNFyNn..NF,)" € F, Therefore F, is a family of closed sets with the finite
intersection property. Since X is locally compact, X \ X is closed (Gillman and
Jerison, [5], pg. 90) and thus compact, so (| F, # 0.

2. For any p € St(L(X)), (| F, contains only one point:
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Let p € St(L(X)). Suppose there exists r,s € (| F, with r # s. Then there
exists some basic closed set G* (with G closed in X) with » € G* and s ¢ G*.
Then [G] € p because s ¢ G*. Since p is maximal, there exists a [F] € p such that
0] = [F] A [G] = [FNG]. Hence F NG is compact. So ) = (FNG)* = F*NG* D

{r}, a contradiction. O

We are now ready to define our homeomorphism candidate.

Definition 3.11. Let h: St(L(X)) — X \ X be defined by h(p) = r,, where r, is
the unique point in () F,.

By proposition 3.10, it is clear that A is well defined. That it is a homeomorphism

comes from the results that follow.
Proposition 3.12. The function h : St(L(X)) — X \ X as defined above is 1-1.

Proof. Suppose that p # ¢, and that h(p) = r,, h(q) = r, (Show that r, # r,).
Suppose that r, € F*, V[F] € p. Let [G] € q. Thenr, € F*NG* = (FNG)*, V[F] € p.
So FFNG is closed in X, but not compact, V[F] € p. This implies that [0] # [FNG] =
[F] A [G], V[F] € p. Since p is maximal, [G] € p. Hence ¢ C p. Since ¢ is maximal,
q = p, a contradiction. Therefore there exists a [F] € p such that r, € F*. So
ry # h(p) =r,. So his 1-1. O

Proposition 3.13. h is onto.

Proof. Let x € X \ X. Let G ={G* : G is closed in X and ©x € G*}. Let
p={[F]: F* € G}.
Show that p € St(L(X)):
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1. pis a filter:

(i). Since = & () = 0*, then 0* € G and [(] & p.

(ii). Suppose [F],[G] € p. So x € F*NG* = (FNG)*. Since F NG is closed,
(FNG)*€@G. Thus [FNG] €p. But [FNG] = [F]A[G].

(iii). Suppose [F] € p and [G] € L(X) such that [F] < [G]. So [F] = [F]| A [G] =
[FNG]. So Clx(FA(FNG)) is compact = Clx((F\ (FNG)U(FNG)\F)) is
compact = Cly((F\ G)U®) is compact = Clx(F \ G) is compact = (F'\ G)* = 0.
Thus F* = (F\G)U(FNG)* = (F\G)*U(FNG*=(FNG)* = F*NG~
Therefore F* C G* = x € G* = [G] € p.

2. p is maximal:

Suppose [G] A [F] # [0], V[F] € p (Show [G] € p). Since [0] # [G] A [F] = [GN F],
then V[F] € p, GN F is not compact. Hence § # (G N F)* = G* N F*, V[F] € p.
Suppose that * ¢ G. Then there exists a basic closed set of the form J* (with J
closed in X) such that € J* and J* N G* = @ (because fX \ X is regular). But
x € J* = [J] € p, which contradicts that G* N F* # (), V[F] € p. Hence z € G*, i.e.

[G] € p. Thus p is maximal.

Therefore by 1. and 2., p € St(L(X)) and h(p) = z, so h is onto. O

Notation 3.14. In the following proofs, [[F]] will be used as notation for the set
of ultrafilters on L(X) that contain [F] (i.e. [[F]] ={p € St(L(X)) : [F] € p}).
Although this notation may look a bit awkward, it is consistent with the notation
used in chapter 2 with ultrafilters on a lattice. Additionally, as discussed in chapter

2, the [[F]]’s form a base for the closed sets of St(L(X)).
Proposition 3.15. h is continuous.

Proof. Let F* be a basic closed set in 5X \ X.
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The following will show that A= (F*) = [[F]]:

(C) Let p € h™Y(F*) (so h(p) € F*) and suppose that [F] ¢ p. Then there exists
a [G] € p such that [0] = [F] A [G] = [F NG| (since p is maximal). So Clx(F N Q)
is compact. Hence, § = (F N G)* = F* N G*, which contradicts that h(p) € F* N G*.
Hence [F] € p, so p € [[F]].

(2) Let p € [[F]]. Then [F] € p = h(p) € F* (by definition of h) = p € h™!(F*).

Therefore, h=!(F*) = [[F]] and since [[F]] is closed in St(L(X)), h is continuous. [

Proposition 3.16. h is closed.

Proof. Let [[F]] be a basic closed set in St(L(X)).

The following will show that h([[F]]) = F*:

(C) Suppose r € h([[F]]). Then r = h(p) for some p € [[F]]. So since [F] € p,
then r € F™.

(D) Suppose r € F* and r & h([[F]]). Since h is onto, 3¢ € St(L(X)) such that
hq) =r. But r & h([[F]]) = ¢ € [[F]] = [F] € ¢

However, h(q) = r = r € G, V[G] € ¢, andsor € F* = 0 # FFNG" =
(FNG)*, V[G] € q. So Clx(FNG)=FNG (since FNG is already closed in X)
is not compact, V[G] € ¢. It follows that, for all [G] € q, [0] # [F NG] = [F] A [G].
Since ¢ is maximal, then [F'] € ¢, a contradiction. Hence r € h([[F1]]).

Therefore, h([[F]]) = F* and since F* is closed, h is closed. O

So by the previous four propositions, & is a homeomorphism (actually, the proposition
that h is closed was unnecessary since any bijective continuous function from a com-
pact space to a Hausdorff space is a homeomorphism). Thus we have the following

result:
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Big Proposition 3.17. St(L(X)) =2 X \ X
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Chapter 4

PROPERTIES OF L(X)

Here we will make various observations concerning our construction L(X). Ideally,
we’d like to find properties of the space X that characterize it’s associated L(X).
For instance, from Faulkner and Vipera [3], we know that if a lattice L is pseudo-
complemented, then St(L) is O-dimensional. Thus it would be useful to know when
a space X would have a pseudocomplemented L(X). While not a full characteriza-
tion, the following will develop a condition on X that will guarantee that L(X) is

pseudocomplemented. First, we’ll start with some notation.

Notation 4.1. The frontier of F' will be denoted Fr(F), and is defined by Fr(F) =
Clx(F)NClx(X \ F).

The following lemma is used in the proof of proposition 4.3.

Lemma 4.2. Suppose F'is a closed subset of X. Then F'N (X \ F°) = Clx(F)nN
Clx(X\ F) (= Fr(F)).

Proof. There are two parts:

(C) Let x € FN (X \ F°). Since z € F and Clx(F) = F, then x € Clx(F).
Suppose that ¢ Clx (X \ F'). So 3 an open neighborhood U of = such that U N (X \
F)=0 (i.e. UCF). So x € F°, a contradiction. Hence z € Clx (X \ F).

30
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(D) Let x € Fr(F). Soxz € Clx(F) and = € Cly(X \ F). Since F' is closed,
Clx(F)=F,sox € F. Also, X \ F' C X \ F° implies that Clx(X \ F') C Clx(X \
Foy=X\F° Sox e X\ F°. Hence z € FN (X \ F°). O

Proposition 4.3. Suppose that [F] € L(X). Fr(F) is compact <= [X \ F°| is the
pseudocomplement of [F] (i.e. [F]' =[X \ F?]).

Proof. There are two parts:

(=) Suppose that Fr(F')is compact. Then [F|A[X\F°] = [FN(X\F°)] = [Fr(F)]
(by lemma 4.2) = [0]. Let [V] € L(X) such that [F] A [V] = [#]. Then there exists
a compact K such that (V\ K)NF =0. So (V\K) C (X\F)C (X\F°. So
V] =[V\ K] <[X\ F°. Hence [X \ F°] is the pseudocomplement of [F].

(<) Suppose that [X \ F°] is the pseudocomplement of [F]. Then [#] = [X \ F°] A
[F]=[(X\F°)NF]. So (X \F°)NF (which is Fr(F) by lemma 4.2) is compact. O

The above results obviously lead to the following conclusion:

Corollary 4.4. If X is a space such that Fr(F') is compact for all closed F C X,

then L(X) is a pseudocomplemented lattice.

Additionally, the topological condition specified in corollary 4.4 will also lead to

L(X) being normal, as we now show:

Proposition 4.5. If X is a space such that Fr(F) is compact for all closed F' C X
then L(X) is normal.
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Proof. By corollary 4.4, if we assume that Fr(F') is compact for all closed F' C X,
then L(X) is pseudocomplemented. In particular, for any [F] € L(X), [F] = [X\ F°].
Suppose that [F], [G] € L(X) such that [F] A [G] = [0]. Let’s look at [F]" and [G]'.
Suppose that [X\ F°]V[X\G°] # [X]. Since [X\ F°]V[X\G°] = [(X\F°)U(X\G?)]
[ X\ (F° N G°)], then Clx(F° N G°) is not compact. Also, since Clx(F° N G°
Clx(F N G), then Clx(F N G) is not compact. But [0] = [F] A [G] = [F NG| =
Clx (FNG) is compact, a contradiction. Hence [X \ F°]V[X\G°] = [X]. Additionally,
[FIA X\ F°] = [0] and [G] A [X \ G°] = [0] (since they are pseudocomplements), so
L(X) is normal. O

)
)

-

So based on Faulkner and Vipera [3], and propositions 2.8 and 2.10, we know that
if X has the property that F'r(F') is compact for all closed F' C X, then St(L(X))
is compact, normal, and O-dimensional. But chapter 3 culminated with the fact that
St(L(X)) is really just the remainder of the Stone-Cech compactification of X. So
these results combine to give a way to characterize fX \ X for the aforementioned

class of spaces:

Proposition 4.6. If X is a space such that Fr(F') is compact for all closed F' C X

then X \ X is compact, normal, and 0-dimensional.

At this point, we’d like to insert a remark. Stone-Cech remainders that are 0-
dimensional have been studied extensively using Boolean algebras (and to a lesser
extent using general lattices). Every compact, Hausdorff space that is 0-dimensional
is the Stone space of some Boolean algebra (Koppelberg, [7], pg.100). However,
Stone-Cech remainders that are not O-dimensional cannot be studied in the parallel
setting of Boolean algebras, since Stone’s representation theorem essentially says that

the Stone space of any Boolean algebra is 0-dimensional. That is the motivation for
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generalizing Boolean algebras to general lattices, and specifically, the advantage of our
construction L(X). With L(X), we have a lattice whose Stone space is homeomorphic
to BX \ X, regardless of the connectedness of the remainder. How connected, or
disconnected, the remainder is seems to have to do with how many of the elements of
the lattice have complements or pseudocomplements (Specifically, it seems that the
greater the amount of complemented elements in L(X), the more disconnected SX \ X
will be.). If every element of L(X) has a complement (i.e. L(X) is a Boolean algebra),
then fX \ X is O-dimensional. Also, as we have noted, if every element of L(X) has
a pseudocomplement (i.e. L(X) is pseudocomplemented), then again X \ X is 0-
dimensional. However, from proposition 2.23, if L(X) is upwardly nonlinear, normal,
and no element of L(X') has a complement, then 5X\ X is connected. Of course, there
are a lot of possibilities in between L(X) having no complements and L(X) being
pseudocomplemented. The next two propositions directly lead to corollary 4.9, which
gives us a condition on X that will lead to being able to predict the disconnectedness
of X\ X. At the same time, the results will also provide more support to our theory
that the more complemented elements in L(X), the more disconnected X \ X is.

Proposition 4.7. Let X be a topological space. Assume that C ={F}, Fy, ..., F},} is
a finite collection of unbounded closed subsets of X such that | JC' = X and F; N F;

is compact for all 7,j < n, i # j. Then L(X) has at least n complemented elements.

Proof. By the assumptions and the definition of L(X), it follows that [F}] V [Fy] V
LV I[F)] = [X] and [Fi] A [Fy] AL A E,) = [0].

Consider [F] for i <n. Let [Fj|° =V, [F},] for j,, <n. Cleatly, [F] V [Fj]° =
[X]. Tt also follows that:
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Thus [F;]¢ is the complement of [F;]. Hence, L(X) has at least n complemented

elements. O

Though we’re currently concerned with L(X), the next proposition is true for

general lattices:

Proposition 4.8. Suppose that L is a lattice and S ={a1,as,...,a,} is a finite
collection of elements of L such that a; Vas V...V a, =1 and a; A a; = 0 for all

i,7 <m,i+# j. Then St(L) is disconnected with at least n components.

Proof. Since a; A a; = 0 for all 7, j <mn, ¢ # j, then no ultrafilter on L contains more
than one element of S. Note that the element 1 is in every ultrafilter on L and that
ultrafilters are prime (proposition 2.2). Now since a; V as V ... V a, = 1, then every
ultrafilter on L must contain exactly one element of S. Thus [a;] U [az] U ... Ua,] =
St(L) and [a;] N [a;] = O for all 4,5 < n, i # j. This demonstrates that St(L) is

disconnected with at least n components. O

Propositions 4.7 and 4.8 (and, of course, proposition 3.17) directly lead to the
following result concerning X \ X:

Corollary 4.9. Let X be a topological space. Assume that C' ={Fy, Fy, ..., F,,} is a
finite collection of unbounded closed subsets of X such that |JC = X and F; N F
is compact for all 4,7 < n, i # j. Then X \ X is disconnected with at least n

components.

Now let’s list a few other conditions that will allow us to determine that L(X) is
normal. To do so, we’ll first mention a condition on a space X that will guarantee

that the associated L(X) is upwardly nonlinear.
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Proposition 4.10. Suppose X is a locally compact metric space with the property
that for every unbounded U C X, there exists a closed FF C X such that F is
unbounded and F' C U. Then L(X) is upwardly nonlinear.

Proof. Suppose that 3 [F] € L(X) such that [F] # [X] (= 1) and [F] is in every
ultrafilter on L(X). Then since [F] # [X], X\ F is unbounded. So by our assumption,
there exists a closed unbounded G C X such that G C X \ F.

Since G is unbounded, [G] # 0. So there exists an ultrafilter p such that [G] € p.
Also, G C X \ F implies that FNG = (. So, 0 = [FNG] = [F] A[G]. Tt follows that
[F] ¢ p, a contradiction. Therefore, L(X) is upwardly nonlinear. O

From this, combined with a fact about general lattices from chapter 2, we have

the following result:

Corollary 4.11. Suppose X is a locally compact metric space. Then St(L(X)) is
Ty = L(X) is normal.

Proof. Since X is a locally compact metric space, then for every unbounded U C X,
there exists a closed F' C X such that F' is unbounded and F' C U. By proposition
4.10, L(X) is upwardly nonlinear. Since we also have that St(L(X)) is Tq, then by

proposition 2.13, L(X) is normal. O

Note that L(X), by construction, is always lower complete, regardless of X. How-
ever, L(X) is only upper complete if X is a space such that any arbitrary union of
closed sets of X is closed. An example of such a space is N with the discrete topol-

ogy. Many spaces, though, will not have this property. If we do have that L(X)
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is complete, then with one additional assumption, we can guarantee that L(X) is

normal.

Proposition 4.12. Assume that L(X) is complete and that for every element [F] €
L(X) \ {0,1}, there is some other non-zero element [G] € L(X) \ {0} such that
[F] A [G] = 0. Then L(X) is normal.

Proof. Suppose [F] A [G] = [0]. Then [[F]]N[[G]] = 0 and [[F]] U [[G]] C St(L(X)).
For each p, € [[G]], let [F,] € p, such that [F] A [F,] = [0]. Similarly, for each
qs € [[F]], let [Gg] € g such that [G] A [Gg] = [0)].

Let U = St(L(X)) \ ([[F]] U [[G])-

So for each p € U, neither [F] nor [G] is in p. So for each p, € U, there exists
[H,] € p, such that [F] A [H,] = [0] and [G] A [H,] = [0] (this can be seen using the
following argument: Suppose there is a p € U such that each [H]| € p has non-zero
infimum with either [F] or [G]. Then [H| A ([F] V [G]) # [0] for all [H] € p. Hence
since p is maximal, [F]V [G] € p. But ultrafilters are prime, so either [F] € p or
|G] € p, a contradiction.).

So since L(X) is complete, denote [A] =V [F] and [B] = (\V/4[Gs]) v (V. [H,]).
Then,

[GI A [B] = [GI A ((VplGal) v (VL [HA)) = (IGT A (VlGal)) v (IGT A (VL [HA)) =
(Va(GIAGRD) v (VG A TH,])) = (V(0)) V (V,(0)) =0V 0 =0

Since every ultrafilter in St(L(X)) is represented by at least one element in the above
expression, then ((\V/,[Fu])V(VlGsl)V(V,[H,])) must be in every ultrafilter of L(X).

The only way that this expression representing [A] V [B] is not equal to [X] is if there
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exists an element [D] € L(X) such that [D] # [X] and St(L(X)) = [[D]] (i.e. [D] is
in every ultrafilter). But if such a [D] exists, then by assumption J[E] € L(X) \ {0}
such that [D] A [E] = [0]. Let p be an ultrafilter containing [E]. Then [D] ¢ p, which
contradicts St(L(X)) = [[D]]. Thus,

[A]V[B] = (V [Fa]) vV (VlGs]) vV (V, [H,]) = [X]

Hence the defined elements [A] and [B] witness to the (x) property. Therefore, L(X)

is normal. O



Chapter 5

EXAMPLES OF L(X)

Example 5.1. L(w)

We use the standard notation of w; to denote the sets of all countable ordinals.
In order to study the structure of the lattice L(w;) we first need to have an under-
standing of the closed sets of w;. The following proposition shows how any two closed
unbounded subsets of w; must have a substantial intersection, with respect to how

the equivalence classes that make up our lattice are defined.

Proposition 5.1.1. Assume H, K C w; such that H and K are both closed and

unbounded. Then H N K is not contained in a compact set.

Proof. Suppose H and K are closed and unbounded subsets of w; such that H N K
is contained in a compact set. This implies that H N K is bounded, so there exists
some o € wy such that HN K C o + 1.

Look at the tail w; — (6 + 1) ={a €wy :a > o+ 1}. Let Hy = HN(w; — (0 +1))
and K; = K N (w; — (0 4+ 1)). By construction, H; N K; = . Since w; — (0 + 1) is a
closed set in w; (Gillman and Jerison, [5], pg. 73), then H; and K are closed in w;.

Since H, and K are disjoint closed subsets of wy, then one of them must be bounded

38
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(Gillman and Jerison, [5], pg. 74). This is a contradiction since H; U (o + 1) 2O H,
KyU (04 1) 2 K, and both H and K were assumed to be unbounded. O

With this result about the closed sets of wy, we can conclude the following about

the elements of L(w1):
Corollary 5.1.2. For any [F],[G] € L(w)—{[0]}, [F] A [G] # [0].

Proof. Since [F] and [G] are each nonzero elements of L(w; ), then F' and G are closed
and noncompact. Any closed noncompact subset of w; is unbounded, hence FF NG
is not contained in a compact set (proposition 5.1.1). Thus [F N G| # [0]. But
[FNG] = [F] A[G], hence [F] A [G] # [0). O

Note that a consequence of corollary 5.1.2 is that for any [F] € L(wi)—{[0]}, the
pseudocomplement of [F] is 0. It turns out that lattices that have this property always

have trivial Stone spaces, as the following proposition of general lattices states.

Proposition 5.1.3. If L is a bounded lattice such that every non-zero element of L

has 0 as it’s pseudocomplement, then | St(L) |= 1.

Proof. Suppose there exists p,q € St(L) such that p # ¢q. Then there exists f € p
and g € ¢ such that f Ag =0. But f’ = 0 by assumption, so since g < f’, then g = 0.

This is a contradiction since 0 cannot be in an ultrafilter. Hence | St(L) |= 1. O

On the surface, this says that there is only one ultrafilter on the lattice L(wy).
When used in combination with proposition 3.17, it also determines that |fw; \ wi| =

1. In other words, the Stone-Cech compactification of w; is simply it’s one-point
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compactification. Of course, this is a well-known result, but we now have a lattice-

based technique of arriving at it.

Example 5.2. L(H)

Let H denote the halfline [0, co) with the usual topology. We now present a couple

of facts concerning the associated lattice L(H).
Proposition 5.2.1. L(H) is normal.

Proof. Let [F],[G] € L(H) \ {[0], [H]} and [F] A [G] = [0] (the case where either [F]
or [G] is [0] is trivial). Thus F N G is compact, which gives that F'N G is bounded
by some M € H.

So look at the subset [M,c0) of H and denote I} = F N [M,c0) and G; =
GN[M,00). So F1NG; C {M}. Consider Ff and G¢ (the set-theoretic complements
of Fand G, respectively). Each of these is a countable union of disjoint open intervals
in [M,o00). Since F; NGy C {M}, then Ff UGS 2 (M, 00).

Also note that neither F{ nor G§ can contain an interval of the form (a,c0)
(Without loss of generality, assume (a,00) C Ff. Then Fj is bounded by a, which
implies that F' is bounded by a. Thus since F' is closed and bounded in a metric
space, F' is compact. Therefore [F] = [()], a contradiction.). It is, however, possible
that either or both Ff and Gf will contain an interval of the form [M,b) (which is

open in [M, 0o) with respect to the subspace topology).

So we can write F and GY in the following way:

F{ =U,.c, Un. where each U, is of the form (a, b) (or possibly [M,b)) and U;NU; = ()
for any 7,5 € w.

G§ = U,new Um, where each U, is of the form (a, b) (or possibly [M, b)) and U;NU; = @)

for any 1,5 € w.
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Now look at FY N G¢. It can also be written as a countable union of disjoint open
intervals in [M, 00). Again, these intervals must be of the form (a,b) (or possibly
[M,b)). When indexing the open intervals that comprise Ff N G¢, let’s order the
intervals in the obvious way — namely, given m,n € w with V,, = (a,,,b,,) and

Vo = (an,by), then b, < a, & m < n.

So let’s write 7 N GY in the following way:
FyNGS = U,e, Vi, where each V,, is of the form (a,,b,) (or possibly Vi = [M,b;)),
V;NV; =0 for any i,j € w, and the V,, are ordered as described above.

For each n € w, let p, = (a, + b,)/2. We'll use these p,’s to define the closed
intervals [M, p1], [p1, p2], [p2,p3], etc. (Note that by the ordering of the V,’s, {p,} is a
strictly increasing sequence.). We want to next take these closed intervals and assign

each to one of two collections, F and G.

First put [M,p] in collection . Then, for each i > 2, put the interval [p;_1,p;] in
F provided that [p;_1,p;] N F1 = 0. Put the rest of the intervals [p;_1,p;], i > 2, in

collection Gi. Notice that for each interval [pic1,pi] € G, [pi_1, pi) NGy = 0.

In other words, each [p;_q,p;] for i > 2 will be disjoint with either Fy or G;. The

following argument will prove this:

Suppose for some i > 2, [p;_1,p;] intersects both Fy; and G;. Then Jp € F; N
[pi_1,pi] and 3q € G1 N [pi_1,pi]. We know that p # ¢, because M is the only point
that F; and G7 can possibly share and M € [p;_1, p;|]. So, without loss of generality,
assume that p < ¢. Since p € Fy, then p ¢ FY, and thus p ¢ F' N GY. So since V;_4
and V; are subsets of F{ N GY, then p ¢ V;_; and p ¢ V;. Similarly, ¢ ¢ Fy N G§,
so ¢ ¢ Viy and ¢ ¢ V;. In particular, using the notation V;_; = (a;_1,b;—1) and
Vi = (a;, b;), we get that p and ¢ are strictly between b;_; and a;.
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Also, FY UG{ DO (M,00) implies that p € G{ and ¢ € F{. So based on the
representations of FY and G as unions of disjoint open intervals, there exists some
Ny, Mg € w such that p € U,, and ¢ € Uy, . For ease of discussion, let’s label the
endpoints of these two intervals in the following way: U, = (a,,b,) and U,,, =

(ag,by). Let’s analyze the three cases that could occur:

(i). If a, < by, then (ap, b,) N (ay, by) = (ag,by) is a non-empty subset of Ff N GY.
As we've already observed, b;_1 < p < g < a; and neither p nor ¢ are in F{ N GY.
So p < a, < b, < q. However, there are no elements of Iy N G{ between b;_; and a;

(since V;_; and V; are consecutive intervals in the order). So we have a contradiction.

(ii). Suppose that b, < a,. Since (a,, b,) is one of the disjoint open intervals in our
union representation of G, then b, ¢ G (Suppose b, € G{. Then b, would be in one of

the U, from the union G§ = U, and that particular U,, would have to intersect

mew
(ap,b,) since b, € Cliar,0)((ap, by)). This contradicts that the U, are disjoint). Hence
b, € FY. So b, would be in one of the U, from the union Ff{ = J, ., Uy, and
that particular U, must intersect (ap,b,) (again, because b, € Clis,0)((ap,bp))). So
0 # U,N(apb,) C FFNGS. U, N (ap,b,) is another open interval, so call it (x,y).
As in case (i), since neither p nor ¢ are in F{ N GY, then p < x < y < ¢. This implies
that there are elements of Fy' N G between b;_; and a;, which is a contradiction.
(iii). Suppose that b, = a,. Since (a,,b,) is one of the disjoint open intervals in
our union representation of G5, then b, ¢ G (see case (ii) for proof of this). Similarly,

since (ag, by) is one of the disjoint open intervals in our union representation of FY,

then a, ¢ Fy. But b, = a,, so b, ¢ FYUGY, which contradicts that FTUGS 2 (M, c0).

Since all three possible cases led to contradictions, our assumption that "for some
i > 2, [pi_1, pi] intersects both F} and G;” must be false. So we have proven that

each [p;_1, p;| for i > 2 will be disjoint with either F; or G;.
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We needed the above fact so that our construction of F and G will allow us to
arrive at candidates in L(H) that will be suitable to demonstrate normality. We can

now state the following facts about F and G:
L FN(UF)CMp]

2.G:N(JG)=0

3. (UF)UUG) =M o)

To conclude the proof, let
A=[0,MUUF)
B=[0,MUG)

Thus AN F C [0, p1], which is compact in H, so [A] A [F] = [0]. Also, BNG C
[0, M], which is also compact, so [B] A [G] = []. Additionally, by the construction of
Fand G, AUB = H, hence [A] V [B] = [H]. Therefore, by using [A], [B] € L(H), we
have shown that L(H) is normal. d

Proposition 5.2.2. L(H) is not pseudocomplemented.

Proof. Look at the closed set C' C H given by C' = [1,2] U [3,4] U [5,6] U ... =
U[2¢ — 1,24] , Vi € w. Clearly C is not compact, hence [C] # [#]. Suppose that [F]
is the pseudocomplement of [C]. Then C'N F is compact. Since C' N F C H, then
C'N F is bounded — call the upper bound M (€ H). Let G = FU[a,a+ 1] U S, where

a is some odd integer greater than M and S is defined in the following way:

For each [2i — 1,2:] C C with ¢ > (a4 1)/2, we know that 2i & F'. So look at the
sequence ((2i),) defined by (2i),, = 2i + (1/2n). Since (2i),, — 2i, then there exists
an my; € w such that (2i),,,, € F. Let S ={(2i)m,, : © > (a+ 1)/2}. Notice that for
any n € w, 2i < 2i+ (1/2n) < 2i+ 1,50 SNC = 0.
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Since S is closed, unbounded, and S N F = (), then Clg(G \ F) = G \ F is not
compact. This implies that [G] # [F]. Since G D F, then [G] > [F].

But by construction, GNC = (FUJ[a,a+1]US)NC = (FNC)U([a,a+1]N
O)YU(SNC)=(FNC)Ula,a+1]Uud = (FNC)U][a,a+ 1], which is compact. Thus
[G] N [C] = [0], which contradicts that [F] is the pseudocomplement of [C]. Therefore

C' has no pseudocomplement, and thus L(H) is not pseudocomplemented. O

Notice that L(H) gives us an example of a lattice that is normal without being
pseudocomplemented. Not only are there elements of L(H) that fail to have pseudo-
complements, but we can say something much stronger than that about the elements

of L(H). First, we prove the following fact about closed, unbounded subsets of H.

Proposition 5.2.3. There does not exist two closed, unbounded subsets F' and G

of H such that F'N G is compact and Clg(H \ (F U G)) is compact.

Proof. Assume there exists closed, unbounded F, G C H such that F NG is compact
and Clg(H\ (FUG)) is compact. In H, compact sets are bounded. Thus there exists
M, N € H such that FNG C [0, M) and Clg(H\ (FUG)) C [0, N).

Let x = max{M, N}. Consider F'N[x,oc0) and GN[x,00). Clearly F'N|x,0c0) and
G N [x,00) are closed in the subspace [z,00). Since F NG C [0,x), then F N [z, 00)
and G'N [z, 00) are disjoint. Since Clg(H\ (FUG)) C [0, ), then (FN[z,00))U(GN
[x,00)) = [x,00). Therefore [z, 00) is the disjoint union of closed sets F' N [z, 00) and
G N [z, 00), which implies that F'N [z, 00) and G N [z, 00) are clopen in [z, 00).

Since [z, 00) is homeomorphic to H, let h : [z,00) — H be a homeomorphism.
Since h is injective, h(F N [z,00)) N h(G N [z,00)) = (). Since h is surjective, h(F N
[z,00)) UR(GN[x,00)) = H. Homeomorhisms are closed maps, so h(F N [x,00)) and
h(G N [x,00)) are closed in H. So H is the disjoint union of closed sets h(F N[z, 00))
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and h(G N [z, 00)), thus h(F N [z,00)) and h(G N [z, 00)) are clopen in H. This is a
contradiction, as H is connected (Willard, [14], pg. 191). O

Based on our definition of L(X'), proposition 5.2.3 gives us that the lattice L(H)
has no complemented elements. Now we go about showing that L(H) is upwardly

nonlinear.
Proposition 5.2.4. L(H) is upwardly nonlinear.

Proof. First we must note that H has the property that for every unbounded U C H,
there exists a closed F' C H such that F' is unbounded and F C U (One way to see
this is as follows: Suppose that U C H and U is unbounded. Choose any z; € U.
Now consider U\ [0, 21 +1], and choose x5 € U\ [0, 21 +1]. Then consider U\ [0, x5+ 1],
and choose x3 € U \ [0, 22 4+ 1]. Continue this process inductively on w to create the
sequence F' ={x, : n € w}. By construction, ' C U and F is an unbounded sequence
of points where successive terms are at least one unit apart. So the complement
of F'is a union of open intervals, implying that F' is closed.). Since H is a locally
compact metric space, we can now apply proposition 4.10 to get that L(H) is upwardly

nonlinear. O

This leads to our lattice-based proof that SH \ H is connected.
Proposition 5.2.5. SH \ H is connected.

Proof. By propositions 5.2.1, 5.2.3, and 5.2.4, we have what is required to use propo-
sition 2.23(ii) to conclude that St(L(H)) is connected. With proposition 3.17, we get
that SH \ H is connected. O



Chapter 5. EXAMPLES OF L(X) 46

Example 5.3. L(R)

Let R denote the real line (—o0, 00) with the usual topology. The following three
results concerning the lattice L(R) are presented without proof; their proofs are nearly

identical to the corresponding proofs involving L(H).
Proposition 5.3.1. L(R) is normal.

Proposition 5.3.2. L(R) is not pseudocomplemented.
Proposition 5.3.3. L(R) is upwardly nonlinear.

However, not everything about L(R) and L(H) is the same. For example, whereas
L(H) has no complemented elements, L(R) certainly does. To see this, take the sub-
sets F' = (—00,0] and G = [0, 00) of R. These subsets are closed noncompact subsets
of R, they are almost disjoint, and their symmetric difference is not compact. That
means that in L(R), the corresponding elements [F| and [G] are distinct elements
with the properties that [F] A [G] = [0] and [F] V [G] = [R] (since F UG = R). Thus
[F] and [G] are complements in L(R). By corollary 4.9, we can thus conclude that
BR \ R is disconnected with at least 2 components.

So we have once again used our lattice results to provide an alternate derivation
of a fact concerning the Stone-Cech remainder of a space. To see why SR \ R is
disconnected with exactly 2 components, consider that F' = (—o0,0] and G = [0, 00)
are each homeomorphic to H. So fF \ F and G \ G are each connected. Let S =
BF UBG. S is clearly a compact set containing R. Now let f € C*(R). Thus f |r€
C*(F), so it has an extension (f |r)? € C*(8F). Similarly, f |¢c€ C*(G), so it has an
extension (f |¢)? € C*(BG). Let f¥ = (f |r)? U (f |c)’ (Le. f(x) = (f [p)*(2) if
x € BF and f%(x) = (f |q)°(x) if x € BG). Notice that since (f |¢)?(0) = (f |a)?(0),
1% is both well-defined and continuous on S. Thus f° € C*(S). Since f was chosen
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arbitrarily, then R is C*-embedded in S. Thus, by Porter and Woods ([9], pg. 284),
S must be fR. So SR\ R = (BF UBG)\ R = (BF \ F) U (BG \ G), which is the
union of two disjoint, connected sets (so there can’t be more than 2 components to

BR\ R). So we can conclude:

Proposition 5.3.4. SR\ R is disconnected with 2 components.

Example 5.4. Non-normal lattices

Back in example 2.11, we defined a special five element lattice L = {0, a,b,aVb, 1}
with a A b = 0, and we determined that the lattice L was not normal. This was of
interest because St(L) is T, which showed the usefulness of the concept of upwardly
nonlinear. The example was originally constructed, however, to answer a question
concerning the relationship between the concepts of normal and pseudocomplemented.
Namely, the question was — does either condition imply the other?

In example 5.2, we showed that the lattice L(H) is normal but not pseudocomple-
mented. So we know in general that normal lattices aren’t necessarily psuedocomple-
mented. Our five element lattice answers the opposite question. Notice that 1" = 0,
(aVb) =0,d =0bb=a,and 0’ = 0. So L is, in fact, pseudocomplemented. In
chapter 2 we showed that L is not normal. Therefore, the conditions of normal and

pseudocomplemented are independent in general.

For completeness sake, we present an example of a topological space whose asso-

ciated L(X) has as a sublattice the five element lattice from example 2.11.

Example 5.4.1. Let w be the set of all natural numbers with the usual (discrete)
topology (Note: L(w) = P(w)/fin). Let A, B, and C be subsets of w where C' is the
set of all even natural numbers, A is the set of all evens that are divisible by 4, and B

is the set of all evens that are not divisible by 4. Let S ={[0], [4], [B], [C], [w]} < L(w).
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S is clearly a sublattice of L(w), as it is closed under V and A. It is easy to see that
S is really just the five element lattice from example 2.11, where 0 = [0], a = [A],
b=[B],aVb=|[C], and 1 = [w].

Now note the following:
Proposition 5.4.2. L(w) is upwardly nonlinear.

Proof. Suppose that [@Q] # [w] and that [@Q] is in every ultrafilter on L(w). Let
Q' = w )\ Q. Since w has the discrete topology, @' is closed. Since [Q] # [w], Q' is
infinite (not compact). So [Q'] # [0]. Thus there is an ultrafilter p € St(L(w)) such
that [Q'] € p. Since [Q'] A [Q] = [@ N Q] = [0], then [Q] ¢ p, a contradiction. O

So the following conclusion can be drawn:

Corollary 5.4.3. An upwardly nonlinear lattice can have a sublattice that fails to

be upwardly nonlinear.
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QUESTIONS

In general, there is much to learn about L(X). Of particular interest is the example
L(H), as an understanding of this lattice could lead to a characterization of fH \ H
in much the same way that the Boolean algebra P(w)/fin has been used to help
characterize fw \ w. As we have mentioned in section 1.3, Hart and Dow [6] showed
that SH \ H is a universal continuum of weight w;, thus assuring the importance of

finding a characterization of SH \ H.

Other lattice-oriented questions have arisen in the process of this research. One
such question involves the concept of upwardly nonlinear, which we presented as
definition 2.12. We have determined that if L is a lattice with the disjunction property
then L is upwardly nonlinear, however we don’t know whether the converse of this is
true or not. We suspect that the converse is not true (i.e. that L upwardly nonlinear
does not imply that L has the disjunction property). The intuition for this hypothesis
is as follows:

Suppose L is upwardly nonlinear. Since 1 is the only element in every ultrafilter
on L, if a € L such that a # 1, then [a] # [1]. However, if we instead suppose that L
has the disjunction property, then given distinct a,b € L, [a] # [b] (so the upwardly

nonlinear case can be thought of as fixing b = 1). This would appear to be a stronger
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assumption.

Another question arose in the process of arriving at definition 2.21; namely, does
the inverse of a lattice embedding map lattice ultrafilters to lattice ultrafilters? An-
swering this question turned out to be unnecessary for what we were trying to do,

but the answer may still be of interest.

Also, when considering the disconnectedness of Stone spaces of lattices, we at one
point thought to consider whether the Stone space of a complete lattice would be
fundamentally different from the Stone space of a complete Boolean algebra. If B is
a complete Boolean algebra, then the Stone space of B is extremally disconnected.
Porter and Woods [9] present a standard proof of this. The proof is heavily reliant
on the presence of complements in the Boolean algebra. In a general lattice, elements
would not necessarily have complements, thus it seems reasonable to wonder if the
assumption of complements is necessary to arrive at the conclusion that the Stone
space is extremally disconnected. If so, perhaps a complete lattice can be constructed

whose Stone space is not extremally disconnected (perhaps even connected).
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Appendix A

Distributivity of Example 2.11

What follows is the proof that the lattice defined in example 2.11 is distributive:

Proposition A.1. Define a lattice L in the following way:
L=1{0,a,b,aVb,1} where a ANb=0.

Then L is distributive.

Proof. For brevity and clarification, let ¢ = aV b. Then there are two conditions that
need to be satisfied for L to be distributive:

DzA(xVy) =(zANz)V(2Ay), forall z,y,z € L

2) zV(zAy)=(2Va)AN(zVy), forall z,y,z € L
We’ll begin with the proof of 1):

First note that for any z,y € L, 1IN (xVy)=aVy = (1Az)V (1l Ay). Also,
OAN(zVy)=0=0vV0=(0Az)V(0AY) forall z,y € L.

The following list of calculations covers the cases where a, b, and ¢ are equal to
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aN(OVb)=aANb=0=0V0=(aA0)V(aAb)
ANOVe)=aANc=a=0Va=(aN0)V(aAc)
ANOV]1)=aAl=a=0Va=(aN0)V(aAl)
ANlaVa)=aNa=a=aVa=(aNa)V (aAa)
aN(aVb)=aNc=a=aV0=(aNa)V(aADb)
AN aVe)=aNc=a=aVa=(aNa)V(aAc)
ANaVl)=aANl=a=aVa=(aNa)V(aA])
aN(bVDh)=aNb=0=0V0=(aAb)V (aAD)
aN(bVe)=aNc=a=0Va=(aNb)V(aAc)
aN(bVl)=anl=a=0Va=(aAb)V(aN]1)
ANeve)=aNc=a=aVa=(aNc)V(aAc)
ANlev])=aANl=a=aVa=(aNc)V(aN])
ANlVl)=aANl=a=aVa=(aAN1l)V(aA])
AOVO) =bA0=0=0V0=(bA0)V(bAO)

)
A(0Va)
AOVD)=bAb=b=0Vb=(bA0)V (bAD)
)=bAc=b=0Vb=(bA0)V(bACc)
=bA1=b=0Vb=(bA0)V(bA1)
ANaVa)=bANa=0=0vV0=(bAa)V(bAa)

(

( =bANa=0=0Vv0=(bA0)V(bAa)

(

(

(

(
AN(aVvb)=bANc=b=0Vb=(bAa)V (bAD)

(

(

(

(

(

(

A(OVe
AOV1

)
)

)
ANaVe)=bAc=b=0Vb=(bAa)V (bAc)
AlaV1)=bAl=b=0Vb=(bAa)V (bA1)

ANbVD)=bAb=b=bVb=(bAD bADb)

) )V (DA
AbVe)=bAc=b=bVvb=(bAb)V(bAc)
AbV1)=bAl=b=bVvb=(bAb)

)

ANevVe)=bAe=b=bVb=(bAc)

(bA1)
(bAc)

< < < <
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0V0)=cA0=0=0V0=(cAD)V(cAO)
OVa)=cNha=a=0Va=(cAN0)V(cAa)
OVD)=cAb=b=0Vb=(cAO0)V (cADb)
OVe

Ov1

)

J=cANc=c=0Vc=(cAN0)V(cAc)
J=cANl=c=0Ve=(cAN0)V(cAl)

aVa)=cNa=a=aVa=(cANa)V(cNa)

aVb)=cANc=c=aVb=(cANa)V(cADb)

aV1)=cANl=c=aVec=(cNa)V(cA1)
bVb)=cANb=b=bVb=(cAb)V(cADb)

bVe)=cANc=c=bVe=(cAb)V(cAc)
bV1)=cAl=c=bVec=(cAb)V(cA])

cV])=cANl=c=cVec=(cNc)V(cA])

e (

e (

e (

e (

e (

e (

cA(aVh)
chN(aVe)=cNec=c=aVec=(cNa)V(cAc)
A1)

e (

e (

e (

e (

e (

e ( (cN1)

) Y

) Y
cVe)=cNc=c=cVe=(cNc)V(cAc)

) Y

) Y

(cAc)
IVl)=cAl=c=cVec=(cN1)

Now we present the proof of 2):
First note that for any z,y € L, 1V(x Ay)=1=1A1=(1Vz)A(1Vy). Also,
OV(zAy)=xzAy=(0Vz)A0Vy)forall z,y € L.

The following list of calculations covers the cases where a, b, and ¢ are equal to

” 0.
Z

aV(OAN0)=aVO=a=aANa=(aVO0)A (aVO0)
aV(OAa)=aVO0=a=aNa=(aVO)A(aVa)
aV(OAb)=aVO0=a=aAc=(aV0)A(aVD)
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VbAD) =bVb=b=bAb=(bVb)A(bVb)
VbAe)=bVvb=b=bAc=(bVb)A(

) A

) A(bVe)

V(IbAL)=bVb=b=bA1=(bVDb) A(bV])

V(cAe)=bVe=c=chc=(bVec)N(bVe)
) A

(bv1)

V(OAc)=aV0=a=aANc=(aVO)A(aVc)
VOAL)=aVO0=a=aAl=(aVO)A(aV1)
V(eANa)=aVa=a=aNa=(aVa)A(aVa)
aV(aANb)=aV0=a=aANc=(aVa)A(aVb)
V(eAc)=aVa=a=aAhc=(aVa)A(aVc)
V(eAl)=aVa=a=aANl=(aVa)A(aV1)
V((bAbD)=aVb=c=cANc=(aVb)A(aVD)
aV(bANc)=aVb=c=cANc=(aVb)A(aVc)
aV(bAl)=aVb=c=cAl=(aVb) A(aV1])
V(cAe)=aVe=c=cAhc=(aVc)A(aVe)
V(cAl)=aVe=c=cANl=(aVe)A(aV1)
V(IAl) =aVl=1=1Al=(aV1)A(aV1)
VOAD) =bVO=b=bAb=(bVO)A (bVD0)
VOAa)=bV0=b=bAc=(bVO)A(bVa)
VOAD)=bV0O=b=bAb=(bVO)A(bVD)
VOAc)=bV0=b=bAc=(bVO)A(bVc)
VOAL) =bV0O=b=bA1=(bVO)A(bV])
V(eANa)=bVa=c=cANc=(bVa)A(bVa)
V(aAb)=bv0=b=cAb=(bVa)A(bVDb)
V(iaeAce)=bVa=c=cNhc=(bVa)A(bVc)
V(eAl)=bVa=c=cANl=(bVa)A(bV1)
(
(
(
(
(

V(cAl)=bVe=c=cAN1l=(bVe)
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bV (AL =bV1=1=1A1=(0bVI)A(bVI)

cVIOAND)=cVO=c=cAc=(cVO)A(cVD0)
cV(O0Aa)=cVO=c=cAc=(cVO)A(cVa)
cVOAD)=cVO=c=cAc=(cVO)A(cVb)
cV(O0Ac)=cVO=c=cAc=(cVO)A(cVe)
cV(OAL)=cVO=c=cAl=(cVO)A(cV])
cV(aNa)=cVa=c=cAhc=(cVa)A(cVa)
cV(aAb)=cVO=c=cAc=(cVa)A(cVDb)
cV(aNc)=cVa=c=cAhc=(cVa)A(cVc)
cV(aNl)=cVa=c=cANl=(cVa)A(cV])
cV(bAb)=cVb=c=cANc=(cVb)A(cVD)
cV(bANe)=cVb=c=cANc=(cVb) AN(cVc)
cVbANL)=cVb=c=cANl=(cVb A(cV])
cV(cANe)=cVe=c=chc=(cVec)N(cVe)
cV(cANl)=cVe=c=cANl=(cVec)A(cV1)
cV(IAl)=cvli=1=1A1=(cV1)A(cV])

Since conditions 1) and 2) are satisfied, L is distributive.
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Illustrations of Examples

aVvh

Figure B.1. Lattice from example 2.11
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y

Figure B.2. Lattice from example 2.19
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