ABSTRACT

WANG, HAIYAN. Processing and Properties of Nitride-Based Thin Film Heterostructures. (Under the direction of Prof. Jagdish Narayan.)

The goals of this work were to synthesize nitride-based thin film heterostructures by Pulsed Laser Deposition, study the structural, mechanical, electrical and optical properties of these heterostructures and establish structure-property relations for these materials in order to further improve their properties and design new structures. Domain matching epitaxy was explored in most of these heterostructures and studied in detail for each case.

Mechanical and electrical properties of TiN as a function of microstructure varying from nanocrystalline to single crystal TiN films deposited on (100) silicon substrates were investigated. By varying the substrate temperature from 25°C to 700°C during PLD, the microstructure of TiN films changed from nanocrystalline to a single crystal epitaxial film. As the grain size decreased, the hardness of TiN films decreased (negative Hill-Petch relationship) and the resistivity of TiN increased.

High-quality epitaxial B1 NaCl-structured TaN films were deposited on Si(100) and Si(111) substrates with TiN as buffer layer, using pulsed laser deposition. Our method exploits the concept of lattice-matching epitaxy between TiN and TaN and domain-matching epitaxy between TiN and silicon. XRD, TEM, and STEM experiments confirmed the single-crystalline nature of the films with cube-on-cube epitaxy. The
stoichiometry of TaN films was determined to be nitrogen deficient (TaN$_{0.95\pm0.05}$) by RBS. Resistivity of the TaN films was found to be \sim220$\mu\Omega$-cm at room temperature with temperature coefficient of resistivity of -0.005K$^{-1}$.

Diffusivity of copper in single-crystal (NaCl-structured) and polycrystalline TaN thin films grown by PLD was investigated. The polycrystalline TaN films were grown directly on Si(100), while single-crystal films were grown with TiN buffer layers. The diffusion distances in epitaxial TaN are found to be about 5nm at 650$^\circ$C for 30 min annealing. The diffusivity of Cu into single crystal TaN follows the relation $D = (160 \pm 9.5) \exp\left[-(3.27 \pm 0.1)eV/k_BT\right]cm^2s^{-1}$ in the temperature range of 600$^\circ$C to 700$^\circ$C. Cu diffusion in polycrystalline TaN thin films is found to be nonuniform with enhanced diffusivities along the grain boundary.

By PLD, TiN and TaN targets were arranged in a special configuration that they can be ablated in a sequential manner to obtain uniform Ta$_x$Ti$_{1-x}$N alloy (x=30% & 70%) and TaN(3nm)/TiN(2nm) superlattice structure(x=60%). TiN buffer layers were deposited first to achieve those epitaxial binary components. XRD and TEM analysis showed the epitaxial nature of these films. Microstructure and uniformity of the superlattice and alloy structures were studied by TEM and STEM. Nanoindentation results suggested high hardness and future hard coating applications for these TiN-TaN composites. Four point probe electrical resistivity measurements and Cu diffusion characteristics study prove that TiN-TaN binary components provide a superior diffusion barrier for copper.
Uniform Al\(_x\)Ti\(_{1-x}\)N alloys (x up to 70%) and highly aligned TiN/AlN superlattices were deposited by PLD. Microstructure and uniformity for the superlattice structures and alloys were studied by TEM and STEM. Nanoindentation results suggested high hardness for these new structures and four point probe electrical resistivity measurements showed overall insulating behavior for both alloys and superlattices.

The epitaxial wurtzite AlN thin films were grown on (0001) \(\alpha\)-\(\text{Al}_2\text{O}_3\) substrates by PLD. XRD and SAD in TEM revealed the epitaxial growth of AlN on (0001) \(\alpha\)-\(\text{Al}_2\text{O}_3\) substrate. These AlN films were post-deposition annealed at 1300\(^\circ\)C for 30mins. Bright field and dark field TEM and transmittance spectra from the samples before and after annealing prove the annealing can effectively improve the quality of the film. Post-deposition annealing for AlN on \(\alpha\)-\(\text{Al}_2\text{O}_3\) substrates could be a very promising procedure for high quality optical device fabrications.

The epitaxial wurtzite AlN thin films were grown on (111) Si substrates by PLD and Laser-MBE. XRD and SAD in TEM revealed the epitaxial growth of AlN on Si(111) substrate. The interface structure and growth mechanism were studied by high-resolution TEM. Fourier filtered image of cross-sectional AlN/Si(111) samples from both Si <112> zone axes revealed the domain matching epitaxy of 4:5 ratio between \(a_{\text{Si}(110)}\) and \(a_{\text{AlN}(2\overline{1}T0)}\).
Processing and Properties of Nitride-Based Thin Film Heterostructures

Haiyan Wang

A dissertation submitted to the Graduate Faculty of North Carolina State University, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Materials Science and Engineering

Raleigh, Fall 2002

Approved by:

Prof. Jagdish Narayan Prof. J. Michael Rigsbee
Chair of Advisory Committee

Prof. Carl C. Koch Prof. John Muth
This thesis is dedicated to my parents, my husband and my sister who give me wonderful support and encouragement all the way through my studies
Haiyan Wang was born on August 10th, 1976 in Hefei, China. She graduated from Hefei No.6 High School in 1994. In 1998 she graduated from the Dept. of Materials Science, Nanchang University in China. Her bachelor’s thesis work was focused on synthesis of Ultra-fine grains of ZnO and analysis of its properties. Due to her excellent academic record and research progress, she got the admission into master-degree-program without examination for the Institute of Metal Research, Chinese Academy of Sciences, in June 1998. She worked in Non-equilibrium and Fast-solidification National Laboratory headed by Dr. Lu and focused on magnetron sputtering deposition of nano-crystalline Cu thin film. She was accepted into the Ph.D. program by the Dept. of Materials Science and Engineering at North Carolina State University in Spring 2000. She worked under the direction of Prof. Jagdish Narayan for her Ph. D. Thesis.
ACKNOWLEDGEMENT

First, I would like to express my sincere appreciation to my thesis advisor Prof. Jagdish Narayan for his wonderful guidance and tremendous support during the past three years. He is not only a wonderful advisor, but also a father figure and a best friend in my eyes, who helped me go through all the difficulties that I encountered in my research, study and even life. It is my great honor to follow Prof. Jagdish Narayan, a great materials scientist, to learn from his broad materials science knowledge and his enthusiastic attitude in research. What I learned from him will benefit my whole life.

I would like to thank Prof. Carl C. Koch, Prof. J. Michael Rigsbee, and Prof. John Muth for serving on my committee. Prof. Koch is a world-famous scientist. His strict scientific attitude and invaluable suggestions benefit my whole Ph. D. research. His continuous support since the first day I joined NCSU is highly appreciated. I am thankful to Prof. Rigsbee for his instructive discussions and encouragements during my research. Prof. Muth is a talented young scientist who always generates new ideas. His cooperation and strong support in my research are greatly appreciated. Dr. Duscher is a great microscopiest who gave me a lot of helpful suggestion and guidance during my microscopy work, especially in STEM work.

The help provided by Dr. Wayne Holland of Oak Ridge National Labs for RBS and Dr. Sankar and Dr. Qiuming Wei in NCA&T for nanoindentation measurements are greatly appreciated. I would also like to thank Dr. Ashutosh Tiwari, who gave me a lot of
technical supports in electrical measurements and strong encouragement for publications throughout the second half of my research. Dr. Tapan Nath’s help in my TaN research lead to a major success in this project.

I want to give my special thanks to Dr. Ajay Sharma and Dr. Alex Kvit, who have taught me all the important research skills including PLD deposition and TEM, since the first day I joined the lab. I also apologize that I called Alex and Ajay several times in the middle of the night for help. Their endless support and instructive discussions are appreciated and remembered.

I feel so lucky to join this active group and have so many wonderful group members, Chunming Jin, Ravi Krishnan Venkatesan, Pallavi Katiyar, Honghui Zhou, Abhishek Gupta, Amit Chugh, Hugh Porter, Thomas Rawdanowich and Jason Haverkamp. Especially I would like to thank Chunming Jin for his endless help in PLD deposition and instructive discussions, Thomas Rawdanowich for his working incredibly hard in our III-nitride project and serving as my best English teacher, Abisheck Gupta for his strong cooperation and encouragements in TaTiN and AlTiN projects, Honghui Zhou for being my best friend and sister and giving me strong support. I would also express many thanks to Amit Chugh and Hugh Porter being my officemates for sharing 2141 small office and invaluable research discussions.
Many thanks to Edna Deas who gave me so much help on a daily basis. Also thanks to Linda Legnasky, Larisa Oktyabrsky for their kindly help during the course of my research.

I would like to thank all my families and friends in China. Their endless love and instructions led me to the Ph.D. of materials science. Finally I want to thank my husband, Dr. Xinghang Zhang, who makes me believe that if I want to do something, I can make it! His love and trust make me brave!
TABLE OF CONTENTS

LIST OF TABLES .. xii
LIST OF FIGURES .. xv
INTRODUCTION .. 1

CHAPTER 1. BACKGROUND .. 8

1.1 Introduction for Nitride-based materials .. 8

1.1.1 Transition-Metal-Nitrides .. 8

1.1.1.1 Database of Transition-Metal-Nitrides ... 9

1.1.1.2 Structures of TiN and TaN .. 16

1.1.1.3 Electronic properties of TiN and TaN ... 19

1.1.1.4 Mechanical properties of TiN and its hardcoatings ... 23

1.1.1.5 Diffusion property of TiN and TaN and diffusion barrier applications 26

1.1.1.6 Synthesis of TiN and TaN Thin Films ... 37

References .. 40

1.1.2 III-Nitride Materials ... 46

1.1.2.1 Structure of AlN ... 48

1.1.2.2 Electrical Properties of AlN ... 49

1.1.2.3 Optical Properties of AlN .. 51

1.1.2.4 Processing of AlN Thin Films .. 52

References .. 58
1.2 Mechanism of epitaxial growth...60

1.2.1 Epitaxy Theory and Lattice Matching Epitaxy.................................60

1.2.2 Domain Matching Epitaxy ...66

References..79

CHAPTER 2. RESEARCH METHODOLOGY

2.1 Thin Film Processing by Pulsed Laser Deposition (Basic principles and advantages)..81

References..92

2.2 Characterization Methods of Thin Film..94

2.2.1 X-ray Diffraction...95

References...103

2.2.2 Transmission Electron Microscopy ...104

References...116

2.2.3 Scanning Transmission Electron Microscopy and Electron Energy Loss Spectrum...117

References...122

2.2.4 Nanoindentation..124

References...126

2.2.5 Electrical Measurement...127

References...132
CHAPTER 3. MECHANICAL AND ELECTRICAL PROPERTIES OF
NANOCRYSTALLINE AND EPITAXIAL TiN THIN FILMS133
3.1 Abstract ...133
3.2. Introduction ...134
3.3. Experimental ..137
3.4. Results and Discussion ...137
3.5 Conclusion ..152
References ...153

CHAPTER 4. EPITAXIAL GROWTH OF TaN THIN FILM BY TiN BUFFER
LAYER ON Si(100) AND Si(111) ..155
4.1 Abstract ..155
4.2. Introduction ..155
4.3. Experimental ..157
4.4 Results and Discussion ...157
4.5 Conclusion ..165
References ...166

CHAPTER 5. COPPER DIFFUSION CHARACTERISTICS IN SINGLE
CRYSTAL AND POLYCRYSTALLINE TaN ...168
5.1 Abstract ...168
5.2 Introduction ..169
5.3 Experimental ..170
5.4 Results and Discussion ...170
5.5 Conclusion ..181
References ...182

CHAPTER 6. MICROSTRUCTURES AND PROPERTIES OF TiTaN ALLOY AND MULTILAYERS ...184
6.1 Abstract ...184
6.2 Introduction ..185
6.3 Experimental ..187
6.4 Results and Discussion ...189
6.5 Conclusion ..197
References ...198

CHAPTER 7. STRUCTURES AND PROPERTIES OF AlTiN ALLOY AND MULTILAYERS ..208
7.1 Abstract ...208
7.2 Introduction ..209
7.3 Experimental ..210
7.4 Results and discussion ...211
7.5 Conclusion ..229
CHAPTER 8. EPITAXIAL GROWTH OF AlN ON SAPPHIRE AND ANNEALING EFFECTS ... 231
 8.1 Abstract .. 231
 8.2 Introduction ... 232
 8.3 Experimental .. 233
 8.4 Results and Discussion ... 234
 8.5 Conclusion ... 237
References .. 238

CHAPTER 9. DOMAIN MATCHING EPITAXY GROWTH OF AlN on Si (111) ... 244
 9.1 Abstract ... 244
 9.2 Introduction ... 245
 9.3 Experimental .. 246
 9.4 Result and discussion .. 247
 9.5 Conclusion ... 252
References .. 253

SUMMARY ... 264
LIST OF TABLES

INTRODUCTION

Table 1. Thesis configuration. ...6

CHAPTER 1. BACKGROUND

1.1 Introduction for Nitride-based materials

1.1.1 Transition-metal-nitrides

1.1.1.1 Database of Transition-metal-nitrides

Table 1. Formula, formula weight, color, theoretical density, crystal structure and lattice parameters of transition metal nitrides..9

Table. 2. Enthalpy of formation, Gibbs free energy formation, entropy, melting point temperature, and heat of fusion. (Ref. 8) ...12

Table.3 Micro-hardness, Young’s Modulus, Poisson’s ratio, bend strength, compressive strength, tensile strength and fracture toughness date for transition metal nitrides. (Ref. 8) ..13

Table 4. Electrical resistivity, temperature coefficient of resistivity, Seeback coefficient, Hall coefficient, work function, and molar magnetic susceptibility. (Ref. 8)14

1.1.1.2 Structures of TiN and TaN

Table 5. The list of crystallography parameters for all the 8 phases of TaN. (Ref. 10) ...17

1.1.1.5 Diffusion property of TiN and TaN and diffusion barrier applications

Table 6. Nitrogen and argon diffusion in TiN(Ref. 37)...27

Table 7. Different metal diffusion in TiN ...29
1.1.2 III-nitride materials

1.1.2.1 Structure of AlN

Table 1. The properties of wurtzite AlN phase. (Ref. 3). ...48
Table 2. EPM values of the hole effective masses for the top three valence bands of AlN at G, and electron effective masses at relevant secondary minima. (Ref.15).......................50
Table 3 List of various deposition techniques and deposition parameters for AlN growth.
..53
Table 4. List of various substrates and films for AlN and their lattice mismatch.54

1.2 Mechanism of epitaxial growth

1.2.2 Domain Matching Epitaxy

Table 1. Schematic relationship between different epitaxy categories.67

CHAPTER 6 MICROSTRUCTURES AND PROPERTIES OF TiTaN ALLOYS AND MULTILAYERS

Table 1. Comparisons of various deposition concentrations and resultant structures for TaxTi1-xN alloys..189
Table 2. Hardness, rule-of-mixtures hardness and Young’s modulus of three different concentrations for Ta_xTi_{1-x}N. ...194

CHAPTER 7 STRUCTURES AND PROPERTIES OF AlTiN ALLOY AND MULTILAYERS

Table 1. Comparisons of various deposition concentrations and resultant structures.212
Table 2. Hardness, role-of-mixtures hardness and Young’s modulus of three different concentrations. ..225
LIST OF FIGURES

CHAPTER 1. BACKGROUND

1.1 Introduction for Nitride-based materials

1.1.1 Transition Metal Nitrides

Fig. 1. Unit cell of the NaCl crystal structure and the three low-index surfaces: (a) (100), (b) (110) and (c) (111) assuming perfect bulk truncation. The darker spheres present nonmetal atoms and the lighter spheres metal atoms. (Ref. 7) ...11

Fig. 2. Schematic diagram of crystal structure of TiN (Titanium Nitride) NaCl structure, lattice spacing: a=4.240 angstroms. ...16

Fig. 3. Schematic diagram of structure of ε-phase TaN...18

Fig. 4. Schematic diagram of structure of B1 NaCl-structured TaN.18

Fig. 5. Band structure of TiN calculated using the APW method. (Ref. 12).......................20

Fig. 6. Calculated (solid lines) and experimental (solid dots) bulk energy band dispersions along the <100> direction for TiN. The thin solid lines represent the Δ₁ final-state bands displaced downwards by the amounts indicated. (Ref. 17). ..21

Fig. 7. Ti 2p XPS spectra from TiNx and metallic titanium (Ref .21)22

Fig. 8. Schematic cross-section of back-end structure, showing interconnects, contacts, and vias, separated by dielectric layers (cross-hatched regions). (Ref. 60).31

Fig. 9. Si-Al contact region showing spiking of Al into Si active region. This is due to Si diffusion into Al to satisfy the solubility requirement, with Al filling the resulting voids in the Si substrate. (Ref. 60)...32
1.1.2 III-nitride materials

Fig. 1. The schematic diagram of the wurtzite AlN structure. (a=0.4982nm, and c=0.3112nm. (P63mc, 186)). ...48

Fig. 2. Calculated band structure of wurtzite AlN.(Ref. 14)...49

Fig. 3. Room-temperature absorption spectra of AlN films of varying thickness whose principle absorption edge occurs at 6.2eV. The bump near 4.5-4.8eV in the data of Pasternak et al. was attributed to oxygen absorption bands. (Ref. 16).................................51

Fig. 4. Schematic drawing of (0001) oxygen atoms plane of sapphire (large circle) and positions of Aluminum atoms just above and under this plane (small circles). (Ref.19) ..55

Fig. 5. The (0001) plane of AlN; Aluminum and nitrogen atoms belonging to the same plane are indicated by small and large circles correspondingly. (Ref. 19)55

1.2 Mechanism of epitaxial growth

Fig. 1. Schematic illustration of (a) lattice matched heteroepitaxy; (b)coherently strained lattice-matched heteroepitaxy; (c) relaxed lattice-mismatched heteroepitaxy.........................61

Fig. 2. Modes of growth of an overlayer on a substrate: a) layer-by-layer 2D (Frank-van der Merve); b) island growth 3D (Volmer-Weber); c) island growth on a thin layer 2D and 3D (Stranski-Krastanov). ..63

Fig. 3. Schematic illustration of two categories of relaxed lattice mismatched heteroepitaxy (a) relaxation happened after critical thickness; (b) relaxation happened at the interface (domain matching epitaxy). ...68

Fig. 4. Domain Matching Epitaxy plot of tensile strain vs. possible domain matching ratio. ...70
Fig. 5. HRTEM <110> cross-section image (a) and SAD (b) of epitaxial TiN on Si(100). Arrows marked two set set of extra half planes which compose one 90° dislocation. (Ref 19) ..72

Fig. 6 (a) High resolution cross-section TEM image of AlN/Si<110> to show the quality of the film, (b) Fast Fourier filtered HRTEM image using opposite AlN \{2\overline{1}10\} / Si \{220\}reflexes showing the match of the corresponding planes. Misfit dislocations at the interface are indicated. (AlN/Si<211>) It clarified the 5:4 matching between AlN \{2\overline{1}10\} / Si \{220\}lattice planes. (Ref. 20) ..74

Fig. 7. (a) High resolution TEM cross-sectional image of the ZnO film near the film/substrate interface (shown by black arrows). The terminating planes corresponding to the misfit dislocations are indicated by white arrows. (Ref. 21) ..76

Fig. 7. (b) Fourier filtered image using opposite ZnO \{01\overline{1}0\}//sapphire \{2\overline{1}10\} reflexes showing the match of the corresponding planes. Misfit dislocations at the interface are indicated. Numbers in the bottom of the picture correspond to the number of planes between the misfit dislocations. Note that every 7th or 6th \{2\overline{1}10\}plane of sapphire terminates at the interface. (Ref. 21) ..77

CHAPTER 2 RESEARCH METHODOLOGY

2.1 Thin Film Processing by Pulsed Laser Deposition (Basic principles and advantages)

Figure 1. Schematic diagram of the laser physical vapor deposition technique. (Ref.8). 83

Figure 2. Schematic representation of the stages of laser target interactions during short pulse high power laser interaction with a solid. (ref. 9) ..84
2.2 Characterization Methods of Thin Films - Basic Principles and applications

2.2.1 X-ray diffraction (Structural: XRD)

Figure 1. Schematic of X-ray spectrometer. ...96
Figure 2. Effect of fine particle size on diffraction curve. ...97
Figure 3. The atomic scattering factor of copper...99
Figure 4. Lorentz-polarization factor vs. Bragg angle..101
Figure 5. Effect of lattice strain on the line width and position...............................102

2.2.2 Transmission Electron Microscopy (Structural: TEM)

Figure 1. Objective aberration (a) Spherical, (b) chromatic, (c) astigmatism.107
Figure 2. The two basic operations of the TEM imaging system involve (A) Projecting
the diffraction pattern on the viewing screen and (B) projecting the image onto the
screen. In each case the intermediate lens selects either the back focal plane or the
image plane of the objective lens as its objects. (Ref. 4)..109

Figure 3. Schematic diagram representing the different phases present during irradiation
of a laser on a bulk target: (A) unaffected bulk target, (B) evaporated target materials, (C)
dense plasma absorbing the laser radiation, and (D) expanding plasma transparent to the
laser beam. (ref. 9) ...89
Figure 4. Schematic profile showing the density (n), pressure (P), and velocity (v)
gradients in the plasma in x direction, perpendicular to the target surface. The density and
plasma pressure are monotonically decreasing from the target surface, while the velocity
increases linearly. (ref. 9) ..91
Figure 3. Ray diagrams showing how the objective lens/ aperture are used in combination to produce (A) a BF image formed from the direct beam, (B) a displaced-aperture DF image formed with a specific off-axis scattered beam, and (C) a CDF image where the incident beam is tilted so that the scattered beam remains on axis. (Ref. 4).

Figure 4. Phase contrast imaging from a periodic object. The diffracted and transmitted beams recombine at the image plane.

Figure 5. Schematic representation of TEM as a transmission system.

2.2.3 Scanning Transmission Electron Microscopy and Electron Energy Loss Spectrum

Figure 1. Scanning the convergent probe for STEM image formation using two pairs of scan coils between the C2 lens (usually switched off) and the upper objective polepiece. The probe remains parallel to the optic axis as it scans [Ref 5].

Figure 2. STEM image formation: A BF detector is placed in a conjugate plane to the back focal plane to intercept the direct beam (A) and a concentric annular DF detector intercepts the diffracted electrons (B). The signals from either detector are amplified and modulate the STEM CRT. The specimen (Au islands on the C film) gives complementary ADF (C) and BF (D) images. [5]

Figure 3. Schematic of STEM and EELS.
2.2.4 Nanoindentation

Figure 1. The typical loading unloading curve of nanoindentation measurement.(Ref.5). 130
Figure 2. Standard spherical indenter loading-unloading curve and related parameters obtained by measurements.(Ref.5).................................124
Figure 3. Multiple point measurement and single point measurement results.(Ref.5) .125

2.2.5 Electrical Measurement

Figure 1. Schematic of 4-point probe configuration..127
Figure 2. van der Pauw resistivity measurement conventions.................................130
Figure 3. Plot of f vs. Q..131

CHAPTER 3. MECHANICAL AND ELECTRICAL PROPERTIES OF NANOCRYSTALLINE AND EPITAXIAL TiN THIN FILMS

Fig. 1. Bright-field plan-view TEM showing nanocrystalline TiN with average grain size ~8nm (Substrate Temperature doing deposition, T_S=25°C).138
Fig. 2. Selected-area-diffraction patterns of TiN films on Si (100) deposited at different temperatures (a) T_S=25°C, cross-section; (b) T_S=25°C, plan-view; and (c) T_S=200°C, plan-view...139
Fig. 3. (a) Selected-area-diffraction pattern of TiN film on Si(100) deposited at 700°C, cross-section, TiN <110>//Si<110>; (b) Simulated diffraction pattern showing cube-on-cube TiN epitaxial growth on Si(100). ...141
Fig. 4. (a) BF plan-view micrograph and (b) High Resolution image (showing triple junction in grain boundaries) in a crystalline film deposited at T_s=200°C......................142

Fig. 5. High Resolution <110> cross-section image of epitaxial TiN (T_s=700°C) on Si(100). Magnified images from two areas indicate different dislocation orders.144

Fig. 6. High Resolution <110> cross-section image of epitaxial TiN (Ts=700°C) on Si(100). Arrows marked two set set of extra half planes which compose one 90° dislocation with Burgers vector of $\frac{a}{2}(110)$...146

Fig. 7. XRD pattern showing (100) peaks from TiN film (T_s=700°C) and Si (100) substrate. ..147

Fig. 8. Hardness vs grain size plot of nanocrystalline TiN films deposited at different temperatures (from RT to 600°C); ..148

Fig. 9. Resistivity vs. inverse of grain size plot of nanocrystalline TiN films deposited at different temperatures (from RT to 600°C)...150
CHAPTER 4. EPITAXIAL GROWTH OF TaN THIN FILM BY TiN BUFFER LAYER ON Si(100) AND Si(111)

Fig. 1. (a) XRD pattern (intensity vs. 2θ) showing (200) peaks from TiN and TaN film on Si (100) substrate; (b) XRD pattern showing (111) peaks from TiN and TaN film on Si (111) substrate.

Fig. 2. (a) Low magnification <110> cross-section image of epitaxial TaN/TiN/Si (100); (b) STEM-Z contrast image from <110> cross-section sample of TaN / TiN / Si(100).

Fig. 3. (a) Selected-area-diffraction pattern of TiN and TaN films on Si(100), cross-section of TaN <110> // TiN <110> // Si<110>; (b) Selected-area-diffraction from TaN film <110> only; (c) Simulated selected-area-diffraction pattern of TiN and TaN films on Si(100) along the <110> direction (TaN <110> // TiN <110> // Si<110>).

Fig. 4. (a) High Resolution <110> cross-section image at interface of epitaxial TaN / TiN; (b) High Resolution <110> cross-section image of epitaxial TiN (Ts=700°C) on Si(100);

Fig. 5. Resistivity of epitaxial TaN film on MgO vs. temperature (range from 12K to 300K).

CHAPTER 5. COPPER DIFFUSION CHARACTERISTICS IN SINGLE CRYSTAL AND POLYCRYSTAL TALLLINE TaN

Fig. 1. XRD pattern (intensity vs. 2θ) showing (200) peaks from TiN, TaN, and room temperature deposited Cu film on Si (100) substrate;
Fig. 2. High Resolution <110> cross-section image showing the interface of epitaxial TaN / TiN.172

Fig. 3. High resolution TEM image of interface of <110> cross-section sample of Cu on single crystal TaN / TiN / Si(100) after 500°C annealing for 30 min. There is no indication of Cu diffusion into TaN. ...174

Fig. 4. High resolution TEM image of interface of <110> cross-section sample of Cu on single crystal TaN / TiN / Si(100) after 600°C annealing for 30 min. The markers show the diffusion layer is about 2nm; ...175

Fig. 5. (a) Low magnification TEM image of <110> cross-section sample of Cu on single crystal TaN / TiN / Si(100) after 700°C annealing for 30 min. The uniform diffusion layer ..176

Fig. 6. STEM-Z contrast image from <110> cross-section sample of Cu on polycrystalline TaN / Si(100) after 700°C annealing for 30 min, showing a nonuniform diffusion layer. ..177

Fig. 7. Arrhenius plot showing the diffusion coefficients of Cu in single crystalline cubic TaN barrier layer with temperature varying from 550 to 700°C. ..180

CHAPTER 6. MICROSTRUCTURES AND PROPERTIES OF TiTaN ALLOY AND MULTILAYERS

Fig. 1. Schematic diagram of target assembly of Ta_xTi_{1-x}N alloys and super lattice deposition. ..188
Fig. 2 X-ray diffraction pattern for (a) TaN/TiN superlattice (Ta_{0.6}Ti_{0.4}N), (b) Ta_{0.3}Ti_{0.7}N and (c) Ta_{0.7}Ti_{0.3}N alloys..199

Fig. 3. Low magnification TEM image of <110> cross-section sample of TaN/TiN superlattice (Ta_{0.6}Ti_{0.4}N) on Si(100) using TiN buffer layer. ..201

Fig. 4. High resolution and magnified high resolution TEM image of <110> cross-section sample of TaN(3nm)/TiN (2nm) superlattice (Ta_{0.6}Ti_{0.4}N) on Si(100) using TiN buffer layer..202

Fig. 5. Selected area diffraction pattern of <110> cross-section sample of TaN(3nm)/TiN (2nm) superlattice (Ta_{0.6}Ti_{0.4}N) on Si(100) using TiN buffer layer. (a) diffraction from films and substrate; (b) diffraction from film only; (c) magnified (200) diffraction set indicating the satellite feature for superlattice structures. ...203

Fig. 6. STEM (Z-contrast) image from <110> cross-section sample of TaN(3nm)/TiN (2nm) superlattice (Ta_{0.6}Ti_{0.4}N) on Si(100) using TiN buffer layer, indicating the uniform structure of TaN/TiN superlattice. ..204

Fig. 7. Low magnification TEM image and corresponding diffraction pattern of <110> cross-section sample of Ta_{0.7}Ti_{0.3}N alloy on Si(100) using TiN buffer layer, indicating the epitaxial growth of alloy structure. ...205

Fig. 8. Low magnification and high magnification TEM images of <110> cross-section sample of Cu/ Ta_{0.6}Ti_{0.4}N superlattice/ TiN/Si (100) after 700°C annealing for 30mins. 206

Fig. 9. (a). Low magnification and (b) high magnification and (c) STEM (Z-contrast) images of <110> cross-section sample of Cu/ Ta_{0.7}Ti_{0.3}N superlattice/ TiN/Si (100) after 700°C annealing for 30mins. ..207
CHAPTER 7. STRUCTURES AND PROPERTIES OF AlTiN ALLOY AND MULTILAYERS

Fig. 1. Target schematic diagram for Al₄Ti₃₋ₓN deposition by pulsed laser deposition. (a and β indicated the angle of the TiN and AlN targets, respectively.)211

Fig. 2. XRD patterns (intensity vs. 2θ) from (a) Al₀.₆Ti₀.₄N alloy and (b) superlattice structure (Al₀.₈Ti₀.₂N), showing (200) and (400) peaks TiN buffer layer and (200) peak from cubic Al₀.₆Ti₀.₄N and cubic AlN, respectively. ...213

Fig. 3(a) Low magnification TEM and (b) high magnification TEM from <110> cross-section sample of Al₀.₆Ti₀.₄N on TiN/Si(100). ..215

Fig. 4(a) Low magnification TEM and (b) high magnification TEM from plan-view sample of Al₀.₆Ti₀.₄N on TiN/Si(100) showing the average grain size is in the range of 10-20nm...216

Fig. 5(a) Selected area diffraction pattern of Al₀.₆Ti₀.₄N from plan-view sample of Al₀.₆Ti₀.₄N/TiN/Si(100) showing slightly texture formed in nano grains. (b) Selected area diffraction pattern of Al₀.₆Ti₀.₄N/TiN/Si(100) from <110> cross-section sample of Al₀.₆Ti₀.₄N on TiN/Si(100), showing the texture relations..217

Fig. 6(a) SEM image and (b) back scattering image from the surface of Al₀.₆Ti₀.₄N alloy ..219

Fig. 7(a). Low magnification <110> cross-section image of superlattice of AlN(4nm)/TiN(1nm) on TiN/Si(100). ..222

Fig. 7(b) STEM-Z contrast image from <110> cross-section sample shows the uniformity of superlattice structure. ...223
CHAPTER 8. EPITAXIAL GROWTH OF AlN ON SAPPHIRE AND ANNEALING EFFECTS

Fig. 1. X-ray diffraction of AlN on a-Al$_2$O$_3$ at substrate temperature of 750°C.239

Fig. 2. Selected area diffraction patterns of (a) film and substrate, (b) film only from cross-section AlN/sapphire (0001) in [1010] zone of sapphire. The marked epitaxial relations are (0003)sapphire//(0001)AlN, (2 $\overline{1}$ T0) sapphire//(01 $\overline{1}$ 0)AlN.240

Fig. 3. Low magnification TEM images of cross-section AlN/sapphire (0001) in [1010] zone of sapphire before annealing. (a) Bright field image, (b) dark field image..............241

Fig. 4 Low magnification TEM images of cross-section AlN/sapphire (0001) in [1010] zone of sapphire after 1300°C annealing for 30mins. (a) Bright field image, (b) dark field image..243

Fig. 5. Transmission measurements for AlN on sapphire (a) before annealing, (b) after annealing at 1300°C for 30mins..243
CHAPTER 9. DOMAIN MATCHING EPITAXY GROWTH OF AlN on Si (111)

Fig. 1. X-ray diffraction of AlN on Si(111)...255

Fig. 2. Low magnification TEM image of <110> cross-section AlN/Si(111)..............256

Fig. 3. (a) Selected-area-diffraction pattern of AlN film on Si (111) in <110> zone axis with epitaxial relations: AlN[0002] // Si[111], AlN [2 1 1 0] // Si[110], and AlN [0 1 1 2] // Si[111]; (b) Selected-area-diffraction pattern of AlN film only. (c) Simulated diffraction pattern showing hex-on-cube AlN epitaxial growth on Si(111);257

Fig. 4(a) High resolution TEM image of cross-section sample of AlN/Si(111) from <110> zone axis. White arrows indicate the stacking faults. (b) Magnified image showing marked the transition region of AlN stacking sequence from ABCABC to ABAB.258

Fig. 5 High resolution TEM image on interface of AlN/Si deposited by PLD at 800°C showing interfacial precipitation formation. ...259

Fig. 6. Fast Fourier Transformations of figure 5 from (a) Si<110>, (b) AlN<2 1 1 0>, and (c) precipitate. ..260

Fig. 7. (a) Selected area diffraction pattern of AlN and Si from <112> cross-section AlN/Si(111) and the epitaxial relations are marked as AlN [2 1 1 0]// Si[220] and AlN [0002]// Si[111]. (b) The diffraction pattern of AlN film only.261

Fig. 8. (a) High resolution TEM image and (b) corresponding FFT of (a) from <112> cross-section sample of AlN/Si(111) showing that AlN <0 1 1 0>// Si<211> and other two direction relations are marked as AlN [0002] // Si[111], AlN [2 1 1 0]// Si[110].262

Fig. 9. (a) Fast Fourier filtered HRTEM image using opposite AlN {2 1 1 0}/Si {220}reflexes showing the match of the corresponding planes. (b) magnified FFT image.
Misfit dislocations at the interface are indicated. (AlN/Si<211>) It clarified the 5:4 matching between AlN $\{2\overline{1}T0\}$ / Si $\{220\}$ lattice planes.