
ABSTRACT

JIANG, QUNLEI. Analysis and Computation for a Fluid Mixture Model of Tissue
Deformations. (Under the direction of Professors Zhilin Li and Sharon R. Lubkin).

A fluid mixture model of tissue deformations in one and two dimensions has been

studied in this dissertation. The model is a mixed system of nonlinear hyperbolic and elliptic

partial differential equations with interfaces. Both theoretical and numerical analysis are

presented. We found the relationship between physical parameters and the pattern of

tissue deformations via linear stability analysis. Several numerical experiments support our

theoretical analysis.

The solution of the system exhibits non-smoothness and discontinuities at the

interfaces. The conventional hight order finite difference methods (FDM), such as WENO

scheme and TVD Runge Kutta method, for the hyperbolic equation coupled with the central

FDM for the elliptic equation give spurious oscillations near the interfaces in our problem.

By enforcing the jump conditions across the interfaces, our approach, the immersed interface

method (IIM), eliminates non-physical oscillations, improves the accuracy of the solution,

and maintains the sharp interface as time evolves.

The IIM has been applied to solve a one dimensional linear advection equation

with discontinuous initial conditions. By building the jump conditions into the conventional

finite difference method, the Lax-Wendroff method, the solutions of second order accuracy

are observed. The IIM showed its robustness to solve the linear advection equation with

nonhomogeneous jump conditions across the moving interface.

The two dimensional fluid mixture model has been derived asymptotically from

the three dimensional model so that the thickness of the gel is taken into account. A lot of

numerical examples have been completed using Clawpack and expected numerical solutions

have been obtained.
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Chapter 1

Introduction

There are two themes in this dissertation: (1) theoretical analysis for a fluid mix-

ture model of tissue deformations, and (2) numerical computations using an immersed

interface method for this model with interfaces. Problems with interfaces widely arise in

the real world. For many applications the immersed interfaces are material interfaces, such

as bubbles in water, an elastic membrane, or cells and fibrous components of tissue. Due

to the differences in the properties of the different materials, the solutions to those kind of

problems are non-smooth, or even discontinuous, i.e., the solutions have jumps across the

interfaces. Our method, the immersed interface method, incorporating the jump conditions

for the solutions into some generally used numerical methods, gives sharp resolution of the

solution across the interface.

1.1 A Fluid Mixture Model of Tissue Deformations

A bio-artificial tendon development experiment, as shown in Fig. 1.1 [1], may

be constructed using the linear anchor and stem configuration. It takes 14 days to show

how cells consolidate the matrix and contract the gel over time. However, it is hard to

understand the origins and mechanisms of cells’ consolidation and gel’s contraction from

the experiments. Understanding the origins and mechanisms of the deformation may be

important in understanding the tendon development and treatment.

Partial differential equations (PDEs) are widely used to model many phenomena

in biological science to gain understanding. Those PDEs are generally very complicated

due to the different scales, non-regular shapes, heterogeneous media, etc. Hence there are
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Figure 1.1: A bio-artificial tendon (BAT) may be constructed using the linear anchor and
stem configuration. Cells consolidate the matrix and contract the gel over time. Garvin et
al, 2003 [1]

numerical difficulties in solving them.

In our study, we consider a mathematical model (a nonlinear system with a hyper-

bolic equation and elliptic equations coupled together) developed in [2, 3, 4] for modeling

deformations of contractile and/or growing and/or swelling mesenchymal tissues. The tis-

sues are considered to be composed of two inter-penetrating material phases: an aqueous

phase and a cell-fiber phase. The aqueous phase is composed of all the water and dissolved

extracellular components of the tissues. The cell-fiber phase consists of the cells and the

remaining, generally fibrous, extracellular components. It is assumed that: (1) the two

phases occupy complementary portions of the space, (2) the aqueous phase behaves as a

Stokes fluid, (3) the stresses in the cell-fiber phase are dissipated by permanent deformation

on the relevant time scale and can also be treated as a Stokes flow. These assumptions lead

to the following system of partial differential equations:

∂θ

∂t
+∇ · (θV ) = 0,

∇ · (θV + (1− θ)W ) = 0,

∇ · (θ(λ(∇ · V )I + 2µE))− θ∇p− ϕ
θ

1− θ
(V −W ) = ∇(θ(Υ−Ψ)),

− (1− θ)∇p− ϕ
θ

1− θ
(W − V ) = ∇((1− θ)Υ),

(1.1)
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where θ is volume fraction of cells and fibers, V is velocity of cell-fiber phase, W is velocity

of aqueous phase, p is interphase pressure, ϕ is specific drag coefficient, Ψ is the contractile

stress, and Υ is the solvation stress. µ is specific shear modulus of viscosity of the cell-fiber

fraction, λ is specific bulk modulus of viscosity of cell-fiber phase, I is the identity tensor,

and E = 1
2(∇V + (∇V )T ) is the strain rate tensor for the cell-fiber phase. A reasonable

range of dimensional and non-dimensional parameters are presented in the later chapters.

Note that 0 ≤ θ ≤ 1 and parameters ϕ, µ, λ, ψ, and Υ are nonnegative. Also note

that these parameters may vary in space and change with the time; they may explicitly

depend on θ or other variables.

The boundary conditions (BC) are given as follows

V |∂Ω = W |∂Ω = 0

∇θ · n̂|∂Ω = 0

∇p · n̂|∂Ω = 0

(1.2)

One way to model two phases in tissues is to simply include them in the same

equations and account for their different densities with θ. Thus a simple interaction between

two phases can be modeled with piecewise constant initial condition,

θ(x, 0) =





θl, if x ∈B, B⊂ Ω,

θu, if x ∈ Ω−B,
(1.3)

where we use θl for the smaller constant (lower), and θu for the larger constant (upper).

Note that the mathematical model for the tissue deformations is a non-linear,

mixed (hyperbolic and elliptic) system of differential equations. Shock waves may develop

in the time evolution. For cases with interfaces, special treatment is necessary to obtain

high resolution of solutions.

1.2 A Brief Review of Literature

The theory of mixtures, which combines continuum theories for the motion and

deformation of solids and fluids with general principles of chemistry, has been well applied to

the study of biological tissues and cells for over three decades. These studies mainly focused

on mechanics and transport of non-reacting mixtures, tissue growth and remodeling and

tissue engineering [5, 6, 7, 8, 9, 10, 11].
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In this field modeling itself is more important than numerical computation. Very

few of these studies have carried out numerical calculations. Stastna used an explicit finite

difference scheme (second order in space, first order in time) for the time-dependent case in

[11]. In [3], Lubkin and Jackson used a finite difference scheme with a one-step predictor-

corrector method: Lax-Wendroff method was used in the predictor and corrector steps to

advect the volume fraction of cells and fibers and the fraction of cell-fiber phase which

is neoplastic. Other quantities were solved via implicit differencing. They reported that

upwinding gave similar results. In [12], He and Dembo used a Galerkin finite element

method in cylindrical geometry with adaptive mesh. However, none of them have reported

the results of the accuracy analysis for the numerical method that they used. So on the

one hand, there is no way to know how accurate their approaches are; on the other hand,

we do not have a lot of knowledge about efficient methods for the model problems we are

working on.

However, when observing the PDEs in (1.1), we know that the system consists

of an advection-like hyperbolic equation for the volume fraction of cell and fiber phase

and elliptic equations for the velocities and pressure. There are many existing methods

for the hyperbolic equations and elliptic equation, respectively. Finite element methods

are popular among engineers, and there are many commercial packages implementing finite

element methods, for instance, COMSOL, ANSYS, FLUENT, etc. However, for a moving

interface or free boundary problems, the cost and limitations of possible remeshing at every

time step are major concerns. Finite volume methods are widely used in solving hyperbolic

equations. Finite difference methods are widely adopted in solving elliptic equations and

parabolic equations. We would like to use finite difference methods on our problem.

For a linear advection equation, the upwind scheme, Lax-Friedrichs method, Lax-

Wendroff method, Beam-Warming method, etc, are well used as explicit methods. Note that

the Lax-Wendroff method and Beam-Warming method are both second order accurate and

the dominant terms in the truncation errors depend on the third derivative of the variable,

whereas the upwind scheme and Lax-Friedrichs method are both first order accurate and the

dominant terms in the truncation errors depend on the second derivative of the variable.

Also note that the above statement is valid only for smooth solutions. LeVeque did an

informal analysis for a linear advection equation with a discontinuous solution solved by

an upwind scheme [13]. He showed that the 1-norm of the error decays only like (∆x)1/2

though the method is formally “first order accurate”.
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Both the Lax-Wendroff and Beam-Warming methods for the linear hyperbolic

system,

qt + Aqx = 0, (1.4)

are based on the Taylor series expansion:

q(x, tn+1) = q(x, tn) + ∆tqt(x, tn) +
1
2
(∆t)2qtt(x, tn) + · · · . (1.5)

From the differential equation (1.4) we have that qt = −Aqx, so qtt = −Aqxt = −Aqtx =

−A(−Aqx)xA2qxx. Using these expressions for qt and qtt in (1.5), we have

q(x, tn+1) = q(x, tn)−∆tAqx(x, tn) +
1
2
(∆t)2A2qxx(x, tn) + · · · . (1.6)

Both the Lax-Wendroff and Beam-Warming methods keep only the first three terms on

the right hand side and replace the spatial derivatives by the different finite difference ap-

proximations: the central finite difference for the spatial derivatives gives the Lax-Wendroff

method,

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1 −Qn
i−1) +

1
2
(
∆t

∆x
)2A2(Qn

i−1 − 2Qn
i + Qn

i+1), (1.7)

and the one-sided formula for the spatial derivatives gives the Beam-Warming method,

Qn+1
i = Qn

i −
∆t

2∆x
A(3Qn

i − 4Qn
i−1 + Qn

i−2) +
1
2
(
∆t

∆x
)2A2(Qn

i − 2Qn
i−1 + Qn

i−2), (1.8)

provided that all the eigenvalues of A are positive.

LeVeque’s work [13, 14] shows that excessive dissipation of the solution is evident

when the upwind scheme is used for the scalar advection equation qt + qx = 0 with periodic

boundary condition. His work also shows that the smooth pulse in the solution is captured

much better, but the square wave pulse in the solution gives rise to an oscillatory solution

when the Lax-Wendroff and Beam-Warming methods are used to solve the same advection

test. The oscillations come from the approximation of the methods: the dominant error

term, qttt = −A3qxxx, is a dispersive term. A flux-limiter method can help keep the so-

lution from smearing out too fast, and will significantly increase the resolution and keep

discontinuities fairly sharp [15, 16, 17, 18, 19, 20].

However, we can not apply the Lax-Wendroff or Beam-Warming method to our

problem. For the most simple case in one dimension, our problem can be written as

θt + (vθ)x = 0,

vxx + (ψθ)x + (σ ln(1− θ))x = 0,
(1.9)
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where ψ is contractility coefficient and σ is the swelling number.

It is easy to obtain θt = −(vθ)x. However, we do not have enough information

about θtt from the system. So we can not use the Lax-Wendroff or Beam-Warming method.

The Crank-Nicolson scheme is known as an implicit second order unconditionally

stable method. It is a fine method for a linear or nonlinear system of hyperbolic equations.

Applying the Crank-Nicolson scheme to (1.4) gives

Qn+1
i +

ν

4
(Qn+1

i+1 −Qn+1
i−1 ) = Qn

i −
ν

4
(Qn

i+1 −Qn
i−1), (1.10)

where ν = ∆t
∆xA, which is the Courant-Friedrichs-Lewy (or CFL) number. Consider the

time evolution of a single Fourier mode of wave-number k:

Qn
j = Q0λ

nei kj∆x,

where n is n-th time step, j is j-th grid point and i is
√−1.

A von Neumann stability analysis [21] of (1.10) yields the following expression for

the amplification factor

λ =
1− i (ν/2) sin(k ∆x)
1 + i (ν/2) sin(k ∆x)

.

Note that |λ| = 1 for all values of k regardless of the value of ν. This implies that the Crank-

Nicolson scheme is not subject to the CFL constraint and there is no spurious decay in the

Fourier harmonics of the solution. In other words, we would not expect the Crank-Nicolson

scheme to introduce strong numerical dispersion into the advection problem. However, the

price we need to pay for the high accuracy and unconditional stability of the Crank-Nicolson

scheme is having to invert a tri-diagonal matrix equation at each time-step. Usually, this

price is well worth paying. However, the Crank-Nicolson scheme can not be adapted to our

1D problem in (1.9) since v is nonlinearly coupled with θ.

Weighted essentially non-oscillatory (WENO) finite difference schemes, introduced

by Liu et al. [22, 23] have become one of the most popular methods for solving hyperbolic

conservation equations. WENO was developed from the essentially non-oscillatory (ENO)

schemes using a convex combination of all candidate stencils instead of just one as in the

original ENO [24, 25, 26, 22, 23, 27]. Both ENO and WENO schemes are high order accurate

finite difference schemes designed for problems with piecewise smooth solutions containing

discontinuities. Generally, those schemes couple with total variation diminishing (TVD)

Runge-Kutta method for the time discretizations [28, 29, 30, 31, 32, 33]. However, grid

refinements for error analysis published in the papers are for smooth solutions.



7

Recently, Henrick proposed a mapped WENO scheme [34] to achieve optimal order

near critical points. Zhang and Shu proposed a new smoothness indicator for the WENO

schemes to improve the post-shock oscillation [35]. Xu and Shu proposed anti-diffusive flux

corrections for high order WENO schemes to improve the resolution for contact disconti-

nuities [36]. However, those otherwise fine methods failed to achieve high order accuracies

for problems with shocks. Nominally, fifth order shock capturing algorithms converge at

roughly 5/6 order in the L1 norm for discontinuities in linearly degenerate fields [37]. We

applied the fifth order WENO with Roe flux for space discretization and the strong sta-

bility preserving optimal third order TVD Runge-Kutta method for time discretization to

the hyperbolic equation in our system and used the second order central finite difference

scheme for the elliptic equation. Similarly, we got second order accuracy for the system

when we computed the cases with continuous solutions and first order accuracy (error was

measured some distance (0.1) away from the interfaces) when we computed the cases with

piecewise smooth solutions. Non-physical oscillations were observed in the solutions.

For an elliptic equation without interfaces, the central finite difference methods are

usually adopted. Generally, the centered three-point stencil is used for a second order scheme

solving for a 1D problem. Like other finite difference methods, central finite difference

methods are based on Taylor series expansion. However, whenever the problem involves

interfaces in the domain, special treatments are necessary to get high order solution and

high resolution near the interfaces [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

The interface problems always introduce numerical difficulties in computation.

Currently, the smoothing method, harmonic averaging method, the immersed boundary

method, the immersed interface method, the ghost fluid method, etc., are the commonly

used finite difference methods for interface problems. The smoothing method is used for

discontinuous coefficients with the smoothed Heaviside function or the smoothing function

corresponding to the discrete hat delta function. The harmonic averaging method [48, 49,

50, 51] is another one for elliptic interface problems with discontinuous coefficients. The

immersed boundary method (IBM) was originally developed by Peskin to model blood flow

in a human heart. When the IBM was applied, the wall of a heart (modeled as the curve)

was immersed into a Cartesian grid with discrete delta function to distribute the singular

forces at the elastic boundary (the wall of the heart) to nearby grid points [52, 53, 54, 55].

The IBM has been applied to many other problems [56, 57, 58, 59, 60]. One of the most

important concerns of IBM is to find the best way to discretize a Dirac delta function,
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i.e., find a good discrete delta function, to distribute a singular source to nearby grid

points to get an accurate solution. The IBM is simple and robust. However, the IBM can

not achieve second order accuracy except in a few special situations [38]. The ghost fluid

method (GFM) is another notable method for interface problems. It is simple and relatively

easier to implement for compressible multi-medium flows which are generally challenging to

simulate. The key idea of the GFM-based algorithm is to properly define the ghost fluids at

the vicinities of the material interfaces. The original GFM was developed by Fedkiw [61, 62].

Liu, Khoo and Yeo proposed a modified GFM (MGFM) for a strong shock impacting on

a material interface that the original GFM does not work consistently and efficiently [63].

However, in [64] Liu et al found that there are ranges of conditions for each type of solution

where either the original GFM or the MGFM or both can not provide correct or consistent

Riemann waves in one of the real fluids.

For moving interface problems, another big issue is how to track the interfaces

accurately with the time. As mentioned, shock capturing methods, e.g., WENO schemes,

high resolution methods, etc., are used to capture discontinuities in the solutions automat-

ically without explicitly tracking them. However, the accuracy of shock capturing methods

is poor when the discontinuities are presented across the interfaces. One of the advantages

of shock capturing methods is that they are much simpler to implement. An alternative to

shock capturing methods where the schemes themselves are able to handle discontinuities

is shock tracking (or called front tracking) where the positions of shocks are explicitly fol-

lowed to allow a different numerical treatment in smooth regions and near discontinuities.

The front tracking methods track the interfaces (location of discontinuities) explicitly to

obtain a sharp interface profile as time evolves. Glimm et al proposed a fully conservative

front tracking algorithm for systems of nonlinear conservation laws [65]. They reported that

their algorithm has O(∆x) errors near the tracked discontinuities in the solution where the

O(1) errors were commonly found [66, 67]. Aslam used a level set algorithm for tracking

discontinuities in hyperbolic conservation laws [37, 68]. The zero-level of a level-set func-

tion presents the geometry of the front (interface). The author’s algorithm converged at

fifth order in both the L1 and L∞ norms for the a linear advection equation and Burger’s

equation with convex flux functions [37]. However, the author’s algorithm converged at

first order, like most shock capturing schemes, for systems of conservation laws, e.g., Euler

equations [68]. A level set formulation is a very useful and easy tool to present the interfaces

of problems, specially for the high dimensional problems.
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1.3 Our Strategy - the Immersed Interface Method

We use uniform Cartesian grids in our computations since the price paid for grid

generation is almost nothing, and the conventional finite difference schemes can be used

in the regions where the solution is smooth (away from the interface). Only the irregular

grid points, i.e., those where there is an interface somewhere within the supporting stencil,

need special treatment. Since the interface is codimension of the problem, the number of

irregular grid points is usually much fewer than that of the regular ones.

The immersed interface method (IIM) was developed by LeVeque and Li [46, 38,

47] for Poisson problems with discontinuous coefficients or singular source terms giving

rise to non-smooth solutions across the interfaces. Jump conditions were built into the

finite difference scheme near the interfaces, hence a solution of second order accuracy was

obtained. The same idea has been used for the heat equation with discontinuous heat

conduction coefficients, and for Stokes flows with moving interfaces [38, 39, 69, 70, 40, 71,

72, 73]. The idea of the IIM was adapted by Zhang to hyperbolic systems with discontinuous

coefficients [74], and by Lee to incompressible Navier Stokes flow with moving interface

[75, 76]. Chen applied the IIM to biharmonic equations defined on irregular domains [77].

Yang [78] and Gong [79] used the IIM for elasticity problems with interfaces. Gong built

the jump conditions into finite element method to achieve a second order solution for the

elliptic and elasticity interface problems.

All the studies about the IIM show that the IIM is a robust approach for many

types of interface problems. So we adapt this method to our particular problem.

The idea of the IIM mainly counts on Taylor expansion and builds jump conditions

into the stencil (irregular grid points) near the interface. So it is very important for the

IIM that we need to know the locations of interfaces and the jump conditions across the

interfaces. Deriving the jump conditions is not a trivial work for many problems, especially

for high dimension problems. Note that the correction for the irregular grid points depends

on the main theme of finite difference scheme used for the regular grid points.

1.3.1 The Process

Now consider our simple toy problem as shown in the equation (1.9). Our strategy

is simple:

• Initially, we know the distribution of θ and locations of the discontinuities of θ.
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Apply the standard central finite difference method, which is second order accurate, to the

elliptic equation for the velocity v at regular grid points which are away from the interfaces.

Derive the jump relations across the interface and find correction terms for the irregular

grid points which are near the interfaces to ensure the local truncation errors at irregular

grid points to the order of O((∆x)2), where ∆x is the mesh size. Modify the finite difference

scheme at those irregular grid points with the correction terms – build the jump conditions

into the standard finite difference scheme. Solve the resulting system of difference equations

to obtain the numerical solution of the elliptic equation. In this way, we use the IIM to

solve velocity to second order.

• Then from the computed velocity, we determine the new locations of the discon-

tinuities by solving
dX

dt
= v(X, t).

• We update θ piece by piece to the next time step. Apply the standard explicit

second order finite difference method to the hyperbolic equation for the volume fraction θ at

regular grid points. Derive the jump relations across the interfaces for the space and/or for

the time whenever crossing happens as time evolves from tn to tn+1. Find the corrections

for those irregular grid points. Modify the finite difference scheme at those irregular grid

points with the correction terms. In this way, we use the IIM to update the volume fraction

to the next time step.

• The process then is repeated till the final time for the problem.

Note that the IIM is a sharp interface method which relies on the fact that it is

possible to determine jump conditions for the solution and its derivatives at the interfaces.

Our goal is to achieve second order accuracy. So it is very important to find the jump

conditions for the solution and its first and second derivatives.

1.3.2 The Finite Difference Schemes for the Hyperbolic Equation

The conventional finite difference methods for the hyperbolic equation, for in-

stance, Lax-Wendroff method, Beam-Warming method, etc., are typically derived using

Taylor expansions and rely on the assumption that the solution to the problem is smooth

on the domain. Obviously, these approximations are not valid in the vicinity of an interface

where the solution is not smooth.

Furthermore, as we discussed above, for our particular problem, some of the con-
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ventional finite difference methods, e.g., Lax-Wendroff method, Beam-Warming methods,

and Crank-Nicolson method, can not be applied to the hyperbolic equation in our system.

Unfortunately, we can not use those two-level methods. Hence we have to use multi-level

methods (see Fig. 1.2) to get a classical solution of second order. We choose the leapfrog

method [80, 81, 14], which is a three-level second order method with neutral stability, for

the regular grid points which are away from the interfaces:

Θn+1
i −Θn−1

i

2∆t
= −(ΘV )n

i+1 − (ΘV )n
i−1

2∆x
. (1.11)

Figure 1.2: Diagram of the stencils. (a) Lax-Wendroff method; (b) Beam-Warming method;
(c) Leapfrog method.

Suppose we know the location of the interface and the jumps in the solution and

its derivatives at the interface. Then we can use that information to derive an algorithm

for the irregular grid points to improve the accuracy of the numerical solution.

1.4 Contributions of the Dissertation

The immersed interface method has been used to solve other type of problems,

such as Poisson problems, the heat equation, wave equations with fixed interface and ho-

mogeneous jump conditions, etc. This is the first known extension of this idea to a system

combining hyperbolic and elliptic equations with moving interface and nonhomogeneous

jump conditions, resulting in a new high resolution sharp interface method for solving a

fluid mixture model of tissue deformations. The main contributions of this work are listed

as follows.

• The problems analyzed in this dissertation are systems of hyperbolic and elliptic

equations with four physical parameters which affect the behavior of the system. The

one dimensional systems with four types of parameters have been analyzed theoretically
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and numerically. We found the relationship between those parameters and the pattern

of tissue deformations via linear stability analysis. Numerical experiments support our

theoretical analysis. Discontinuities and non-smoothness in the solution introduce numerical

difficulties.

• To maintain accuracy for the velocity v near the discontinuities, we apply the

immersed interface method to the elliptic equation. In order to use the immersed interface

method, we need to derive the jump condition for the elliptic equation. According to our

analysis, the solution of v is non-smooth, piece-wise linear. So the jump conditions of v

across the interfaces are homogeneous but the jump conditions of first derivative of v across

the interfaces are nonhomogeneous.

• Comparison of two algorithms has been made for the one dimensional case.

One algorithm uses Runge-Kutta with WENO for the hyperbolic equation and the central

finite difference method for the elliptic equation without tracking the interfaces as time

evolves. Another one uses the immersed interface method for the elliptic equation with

interfaces tracked via Runge-Kutta method as time evolves. Oscillations are observed near

the interfaces when the interfaces are not tracked. The immersed interface method, with

the interfaces tracked, avoids non-physical oscillations, and gives high resolution solution.

• We have applied the immersed interface method to a linear advection equation

with nonhomogeneous jump conditions for a moving interface. Solutions of second order

resolution have been obtained.

• The immersed interface method has been applied to a one dimensional fluid

mixture model of tissue deformations with all constant physical parameters. Deriving the

jump conditions for both hyperbolic and elliptic equations is necessary and important. For

the system with other types of physical parameters, deriving the jump conditions becomes

very difficult, even impossible for some cases.

• The model system for the two dimension case is derived from the three dimension

model so that the thickness of the gel is taken into account.

• The two dimensional systems with four types of parameters have been analyzed

theoretically and numerically. We found the relationship between those parameters and

the pattern of tissue deformations via linear stability analysis. Discontinuities and non-

smoothness in the solution introduce numerical difficulties. A lot of numerical examples

give high resolution numerical solutions.
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1.5 Overview of the Dissertation

Chapter 2 contains the discussion about the one dimension mixture fluid model

for tissue deformation. Theoretical and numerical analysis has been performed for the one

dimension model with different physical parameters. The immersed interface method is used

to solve the elliptic equation only in this chapter. In chapter 3, an linear scalar advection

has been studied in order to clarify the application of the immersed interface method to a

hyperbolic equation with moving interface. In chapter 4, the immersed interface method has

been applied to the system: both the hyperbolic and elliptic equations. Chapter 5 contains

the discussion about the two dimension mixture fluid model for tissue deformations. Again

the theoretical and numerical analysis has been completed. The dissertation concludes in

Chapter 6.
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Chapter 2

WENO and IIM for a 1D Fluid

Mixture Model of Tissue

Deformation

2.1 The Mathematical Model

In this chapter, we consider a mathematical model developed in [2, 3, 4] for mod-

eling deformations of contractile mesenchymal tissues. The tissues are considered to be

composed of two inter-penetrating material phases: an aqueous phase and a cell-fiber phase.

The aqueous phase is composed of all the water and dissolved extracellular components of

the tissues. The cell-fiber phase consists of the cells and the remaining, generally fibrous,

extracellular components. It is assumed that: (1) the two phases occupy complementary

portions of the space, (2) the aqueous phase behaves as a Stokes fluid, (3) the stresses in

the cell-fiber phase are dissipated by permanent deformation on the relevant time scale and

can also be treated as a Stokes flow. These assumptions lead to the following system of

partial differential equations (in 1D):

∂θ

∂t
+

∂(θv)
∂x

= 0, 0 < x < L, (2.1)

∂

∂x

(
1− θ

ϕθ
· ∂p

∂x
− v

)
= 0, (2.2)

∂

∂x

(
2M

∂v

∂x
− p + θψ + σ ln(1− θ)

)
= 0, (2.3)
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where θ is the volume fraction of cells and fibers, v is the velocity of the cell-fiber phase, p

is the pressure, ϕ is the drag coefficient, ψ is the contractility coefficient, σ is the swelling

coefficient, and M is the viscosity coefficient of the cell-fiber fraction. Note that 0 < θ < 1

and the parameters ϕ, M , ψ and σ are nonnegative and can depend on time, space, and θ.

A reasonable range of dimensional and non-dimensional parameters are presented

in Table 2.1; see [2, 3] for the references.

Table 2.1: Expected ranges of parameter values [2, 3].
parameter symbol units range
specific drag coefficient ϕ kg/m3-sec 1012 − 1014

tissue viscosity M kg/m-sec 105

specific contractility coefficient ψ kg/m-sec2 103 − 104

swelling number σ kg/m-sec2 10− 103

volume fraction of cell-fiber phase θ0 - ε† − (1− ε†)
† ε is a small positive number.

The boundary conditions (BC) are given as follows

v(0, t) = v(L, t) = 0,
∂θ

∂x
(0, t) =

∂θ

∂x
(L, t) = 0,

∂p

∂x
(0, t) =

∂p

∂x
(L, t) = 0. (2.4)

Two types of initial condition (IC) are considered in this study. One is with

continuous data

θ(x, 0) = θ0 + ε cos(2πkx). (2.5)

This IC is used for studying pattern-forming instabilities.

One way to model two adjacent tissues is to simply include them in the same

equations and account for their different densities with θ. Thus a simple interaction between

two tissues can be modeled with piecewise constant initial condition (see Fig. 2.1),

θ(x, 0) =





θl, if 0 ≤ x < x1 or x2 < x ≤ L,

θu, if x1 ≤ x ≤ x2,
(2.6)

where we use θl for the smaller constant (lower), and θu for the larger constant (upper).

In this chapter, we will focus on simulating tissue deformations numerically for

the one dimensional model. Note that the mathematical model is a non-linear, mixed

(hyperbolic and elliptic) system of differential equations. Shock waves will be developed in

the time evolution process. The purpose of this research is to investigate the stability of

the equilibria, and to verify stability and accuracy of our numerical methods.
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We will present two numerical methods to solve the one-dimensional system. The

first one is to use high order numerical methods such as WENO (weighted essentially non-

oscillatory) schemes, for example [32, 31, 33] for the hyperbolic equation and the standard

central finite difference scheme for the elliptic equation. In the second approach, we use the

immersed interface method to track the shock waves, which avoids non-physical oscillations.

2.2 The Linear Stability Analysis

There are four physical coefficients, ϕ, M , ψ and σ, in the system (2.1)-(2.3).

In order to predict the overall behavior of the solution, it is necessary to carry out linear

stability analysis.

An obvious steady state of the model, which can be easily verified, is the following



θ

v

p


 =




θ0

v0

p0


 , (2.7)

where θ0 is a constant. For simplicity, we will take v0 = p0 = 0. We have the following

theorem about the stability of the equilibrium.

Theorem 1: Assume that the parameters ϕ, M , ψ and σ in (2.1)-(2.3) only

depend on θ. Then the solution (2.7) of the system (2.1)-(2.3) is unstable if

ψ +
∂ψ

∂θ
θ +

∂σ

∂θ
ln(1− θ) >

σ

1− θ
, (2.8)

where the functions ψ, σ, and their derivatives are evaluated at θ0.

Sketch of the proof. We consider small perturbations of the form



θ

v

p


 =




θ0

0

0


 + ε




θ1

v1

p1


 , 0 < ε << 1. (2.9)

Plugging it into (2.1), ignoring the higher order term O(ε2), we get the simplified

form for the O(ε) term
∂θ1

∂t
+ θ0

∂(v1)
∂x

= 0 (2.10)

Expanding the term of 1−θ
ϕθ via Taylor expansion, we get

1− θ

ϕθ
=

1− θ0

ϕ0θ0
+ O(ε),
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where ϕ0 = ϕ(θ0). Substituting the above equation along with (2.9) into (2.2) and ignoring

the higher order terms, we get the O(ε) terms

1− θ0

ϕ0θ0

∂2p1

∂x2
− ∂v1

∂x
= 0. (2.11)

Now expanding the term of ln(1− θ) in (2.3) via Taylor Expansion, we get

ln(1− θ) = ln(1− θ0)− 1
1− θ0

εθ1 + O(ε2).

Similarly, expanding the parameters at the steady state via Taylor expansion, we get

M(θ) = M0 + εθ1M
′(θ0) + O(ε2),

ψ(θ) = ψ0 + εθ1ψ
′(θ0) + O(ε2),

σ(θ) = σ0 + εθ1σ
′(θ0) + O(ε2),

where F0 = F (θ0), and F ′(θ0) = dF
dθ (θ0), in which F indicates M , ψ, and σ respectively.

Substituting the above equations along with (2.9) into (2.3) and ignoring the higher

order terms, we get the O(ε) terms

2M0
∂2v1

∂x2
− ∂p1

∂x
+ ψ0

∂θ1

∂x
+ θ0ψ

′(θ0)
∂θ1

∂x

+ ln(1− θ0)σ′(θ0)
∂θ1

∂x
− σ0

1− θ0

∂θ1

∂x
= 0.

(2.12)

Now we assume 


θ1

v1

p1


 =




c1

c2

c3


 eλt+ikx, (2.13)

where c1, c2 and c3 are constants and k is a typical Fourier mode.

Substituting (2.13) into (2.10), (2.11) and (2.12), we obtain the following linearized

system 


λ ikθ0 0

0 −ik A

B C −ik







c1

c2

c3


 =




0

0

0


 , (2.14)

where

A = −k2 1− θ0

ϕ0θ0
,

B = ik(ψ0 + θ0ψ
′(θ0) + σ′(θ0) ln(1− θ0)− σ0

1− θ0
),

C = −2M0k
2.

(2.15)
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To obtain non-trivial solutions to above system, λ needs to satisfy

λ =
ikABθ0

k2 + AC
. (2.16)

It follows that there exist infinite solutions to (2.14)



c1

c2

c3


 =



− θ0A

λ

− iA
k

1


 c3 (2.17)

Hence, 


θ1

v1

p1


 = c3e

λt






− θ0A

λ cos(kx)
A
k sin(kx)

cos(kx)


 + i



− θ0A

λ sin(kx)

−A
k cos(kx)

+ sin(kx)





 (2.18)

Substituting (2.15) into (2.16), we obtain

λ =
k2 1−θ0

ϕ0

(
ψ0 + ψ′(θ0)θ0 + σ′(θ0) ln(1− θ0)− σ0

1−θ0

)

1 + 2k2M0
1−θ0
ϕ0θ0

(2.19)

Note that λ is a function of k2, and it is a real number and bounded. The system

is unstable if λ > 0, which is true when

ψ0 + ψ′(θ0)θ0 + σ′(θ0) ln(1− θ0) >
σ0

1− θ0
. (2.20)

To analyze the system further, we need to choose specific ψ and σ. To facilitate

testing our method on various functional forms, we nondimensionalized the system using

length scale L of 1 cm and time scale 1 hour. We analyzed and simulated several choices

of the parameters listed in Table 2.2.

Table 2.2: Choices of the nondimensionalized functions M , ϕ, ψ, and σ.
Models M ϕ ψ σ

1 θ
0.5+θ 1.0 θ 1− θ

2 0.5 ε† C1 C2

3 0.5eθ eθ C1 C2

4 0.5eθ eθ 1.8e−θ e−θ

† ε is a small positive number.

Note that the stability condition (2.20) depends on θ0, ψ, σ, and derivatives of ψ

and σ with respect to θ. Hence we can treat Model 2 and 3 in the same way since in both
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models ψ and σ are constants. In these two models, λ can be expressed as

λ =
k2 1−θ0

ϕ0
(ψ0 − σ0

1−θ0
)

1 + 2k2M0
1−θ0
ϕ0θ0

. (2.21)

The system is unstable for all k if (2.20), which is reduced to

ψ0 >
σ0

1− θ0
,

that is, when contractility outweighs swelling, instability results.

We are also interested in the cases where the initial θ has a jump discontinuity as

plotted in Fig. 2.1, in which we take L = 1 for simplicity of the discussion and thereafter.

In general, the tissue will swell or contract to an equilibrium state. For such an initial θ, we

can determine ψ that makes the system be an equilibrium state. Note that ∂θ
∂t = 0 but θx

does not exist at the discontinuities. We use [θ] = limx→α+ θ(x)−limx→α− θ(x) = θ+−θ− to

denote the jump of θ at x = α. For Model 2, it is easy to get the relation of the parameters

in the equilibrium,

−ψ[θ]− σ[ln(1− θ)] = 0. (2.22)

Hence,

ψ = −σ[ln(1− θ)]
[θ]

= −σ(ln(1− θu)− ln(1− θl))
θu − θl

. (2.23)

For the other models, it is much more complicated to find such relation of the

parameters corresponding to equilibrium state.
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Figure 2.1: A typical initial data of θ.
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When ψ = σ
1−θ0

, we conclude that λ = 0 indicating a neutral stability. Fig. 2.2

shows the plot of the values ψ determined by (2.23), ψ(θl) = σ
1−θl

, and ψ(θu) = σ
1−θu

with

σ = 1, and θl = 0.1. Fig. 2.2 indicates that for the given σ and θl, the system will be at

0.1 0.45 0.8
1

2

3

4

5

θ
u

ψ

ψ(θ
u
) 

ψ(θ
l
) 

ψ
equiv.

 

Figure 2.2: Plot of stability regions of system with σ = 1, ψ = σ
1−θ , ψequiv. determined

by (2.23), and θl = 0.1. The dashed line and dash-dot line indicate the ψ with which the
system is neutrally stable for θu and θl, respectively; the solid line indicates the ψ value
with which the system is at equilibrium.

the steady state if one chooses ψ and θu along the solid curve; the system will be stable

if one chooses ψ under the dash-dot horizontal line; the system will be unstable if one

chooses ψ above the dashed curve; and the system will be un-settled with the solution near

θl appearing to be unstable and the solution near θu appearing to be stable if one chooses

ψ and θu from the region under the dashed curve and above the dash-dot horizontal line.

We will call this region an oscillation region. Note that the steady state curve always lies

between ψ(θl) and ψ(θu). This implies that any perturbation around the steady state with

the piecewise constant initial θ will be depressed at the middle part (the solution near θu)

but the solution will grow near the two ends (the solution near θl).

We demonstrate the stability analysis in Fig. 2.3 with the following initial condi-

tion

θ(x, 0) =





θl + ε cos(kx), if 0 ≤ x < x1 or x2 < x ≤ 1,

θu + ε cos(kx), if x1 ≤ x ≤ x2,
(2.24)

The parameters are σ = 1.0, θu = 0.5, θl = 0.1, ψ = 1.47, ε = 0.05, k = 60π, x1 = 0.4, and

x2 = 0.6.
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Figure 2.3: Solution plots with the perturbed initial data (2.24) with M = 0.5, ϕ = 0,
σ = 1, ψ = 1.47, θu = 0.5, θl = 0.1, ε = 0.05, k = 60π, x1 = 0.4, and x2 = 0.6. In both
plots, the dash-dot line shows the steady state; the dotted one shows the initial data and
the solid one shows the solution at t = 20.
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In Fig. 2.3, the dash-dot line in the plot shows the steady state solution; the dotted

line shows the initial data and the solid line shows the solution at t = 20. As discussed

above, the perturbation middle part decays in time and approaches steady state, and the

perturbation near the two ends grows with time.

For Models 1 and 4 of parameters, we still can find the eigenvalue relations for the

stability analysis, but it is difficult to find the exact steady state solutions in terms of the

parameters.

The parameters for Model 1 are

ψ = θ, σ = 1− θ. (2.25)

We have derived that

λ =
k2 1−θ0

ϕ0
(2θ0 − ln(1− θ0)− 1)

1 + 2k2M0
1−θ0
ϕ0θ0

. (2.26)

The system is unstable if (2.20), which is reduced to

2θ0 − ln(1− θ0)− 1 > 0

in this case. Using the MATLAB built-in function fzero, it is easy to find that λ > 0 when

θ0 > 0.31.

Suppose the frequency, k, is nonzero. Then rewrite λ in the following form

λ =
1−θ0
ϕ0

(2θ0 − ln(1− θ0)− 1)
1
k2 + 2M0

1−θ0
ϕ0θ0

Obviously, λ → C(θ0) as k → ∞, where C(θ0) is a constant for a given θ0. Suppose M

adopts the form of M = a1θ
a2+θ , where a1 and a2 are constants. Choose a1 = 1, a2 = 0.5 and

ϕ0 = 1 during the numerical calculation.

Now consider the range of solution for θ, which by definition has 0 ≤ θ ≤ 1.

θ = θ0 + εc3

1 + 2M0k
2 1−θ0

ϕ0θ0

2θ0 − ln(1− θ0)− 1
eλt(cos(kx) + i sin(kx)).

Hence

Re(θ) = θ0 + εc3

1 + 2M0k
2 1−θ0

ϕ0θ0

2θ0 − ln(1− θ0)− 1
eλt cos(kx).

The condition on θ implies that

0 ≤ θ0 + εc3

1 + 2M0k
2 1−θ0

ϕ0θ0

2θ0 − ln(1− θ0)− 1
eλt cos(kx) ≤ 1.



23

Consider the initial possible k, t = 0,

0 ≤ θ0 + εc3

1 + 2M0k
2 1−θ0

ϕ0θ0

2θ0 − ln(1− θ0)− 1
cos(kx) ≤ 1.

Since
1+2M0k2 1−θ0

ϕ0θ0
2θ0−ln(1−θ0)−1 > 0, cos(kx) ∈ [−1, 1], and choosing c3 = 1, we have

max(θ) = θ0 + ε
1 + 2M0k

2 1−θ0
ϕ0θ0

2θ0 − ln(1− θ0)− 1
≤ 1,

and

min(θ) = θ0 − ε
1 + 2M0k

2 1−θ0
ϕ0θ0

2θ0 − ln(1− θ0)− 1
≥ 0,

i.e.,

k2 ≤
1
ε (1− θ0)(2θ0 − ln(1− θ0)− 1)− 1

2M0
1−θ0
ϕ0θ0

= κ10 ,

and

k2 ≤
1
εθ0(2θ0 − ln(1− θ0)− 1)− 1

2M0
1−θ0
ϕ0θ0

= κ20 .

Hence, we obtain the initial possible maximum k as a function of the initial steady state

value θ0

k ≤
√

min(κ10 , κ20). (2.27)

Fig. 2.4 shows the initial possible maximum k for the different initial steady state

θ0 with ε = 0.001. Note that large k will induce very large condition numbers for the

coefficient matrices for v and p which cause the numerical methods difficulty in solving the

system.

The parameters for Model 4 are

M = 0.5eθ; ϕ = eθ; ψ = 1.8e−θ; σ = e−θ. (2.28)

We have shown that λ can be expressed as

λ =
k2θ0(1− θ0)e−2θ0f(θ0)

θ0 + k2(1− θ0)
, (2.29)

where

f(θ0) = 1.8(1− θ0)− ln(1− θ0)− 1
1− θ0

. (2.30)

Note that the sign of λ depends on the sign of f(θ0). Hence, the system is unstable if (2.20),

which is reduced to

1.8(1− θ0)− ln(1− θ0)− 1
1− θ0

> 0.
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Figure 2.4: Maximum frequency evaluated by (2.27) with M = θ
0.5+θ , ϕ = 1, ψ = θ,

σ = 1− θ, and ε = 0.001.
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Figure 2.5: Diagram indicates the sign of λ evaluated by 1.8(1− θ0)− ln(1− θ0)− 1
1−θ0

for
the system with M = 0.5eθ; ϕ = eθ, ψ = 1.8e−θ and σ = e−θ.
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The left hand side of the inequality is plotted in Fig. 2.5 against θ. For smaller θ, say,

θ < 0.37, we have λ > 0, and the linearized system is unstable. For larger θ, we have λ < 0,

and the linearized system is stable and will approach the equilibrium. For the piecewise

constant initial condition with θl < 0.37 and θu > 0.37, the situation is the same as in Model

2 and 3. The solution is unstable near the ends but stable in the middle. This presents a

challenge for numerical computations.

2.3 Numerical Methods

From (2.2), one can obtain

1− θ

ϕθ
px − v = c,

where c is a constant. Applying the boundary conditions for pressure and velocity, we have

c = 0, i.e.,
1− θ

ϕθ
px = v.

We can eliminate p from the system (2.1)-(2.3) to get

∂θ

∂t
+

∂(θv)
∂x

= 0, (2.31)

∂

∂x
(2M

∂v

∂x
)− ϕθ

1− θ
v +

∂(θψ)
∂x

+
∂(σ ln(1− θ))

∂x
= 0. (2.32)

Our numerical computation is based on the above simplified system. Finite differ-

ence methods (FDM) are employed to solve the system. A Runge-Kutta method is used for

time discretization. The upwind scheme or WENO scheme is used for spatial discretizaton

for the hyperbolic equation. We describe two approaches. The first approach assumes no

knowledge of the shock locations. The second approach is the immersed interface method

that uses the jump conditions to solve the differential equations to second order accuracy

assuming knowledge of the locations of the discontinuities.

2.3.1 The Upwind Scheme and Central FDM

The finite difference method(FDM), upwind scheme, has been employed to solve

for θ. This is the 1st order scheme. We apply this scheme to the PDE for θ

Θn+1
j =





Θn
j − ∆t

h (Θn
j V n

j −Θn
j−1V

n
j−1), if V n

j > 0,

Θn
j − ∆t

h (Θn
j+1V

n
j+1 −Θn

j V n
j ), if V n

j < 0,
(2.33)



26

where Θn
j is the numerical solution of volume fraction at time step n and mesh grid j, V n

j

is the numerical solution of velocity at time step n and mesh grid j, h is the mesh size and

∆t is the time step size.

The upwind scheme is a kind of method which smooths out the solution. After a

long-time run, the numerical solution via the upwind scheme will be totally different from

the exact solution for a linear shock propagation problem [13]. For our problem, the upwind

scheme works fine for the case with continuous data, but oscillation occurs at later time

near discontinuous points for the cases with parameters in the oscillation region.

The central finite difference method, known as 2nd order scheme, has been used to

solve for velocity. We apply this scheme to (2.32)

2Mj−1/2Vj−1 − 2(Mj−1/2 + Mj+1/2)Vj + 2Mj+1/2Vj+1

(∆x)2
− ϕjΘj

1−Θj
Vj

= −Θj+1ψj+1 −Θj−1ψj−1

2∆x
− σj+1 ln(1−Θj+1)− σj−1 ln(1−Θj−1)

2∆x

(2.34)

2.3.2 The WENO-Roe Scheme

Weighted essentially non-oscillatory (WENO) finite difference schemes, introduced

by Liu et al. [22, 23] have become one of the most popular methods for solving the hyperbolic

conservation equations. For the hyperbolic equation (2.31), we use the fifth order WENO

scheme with Roe flux (WENO-Roe) for the spatial discretization, combined with third

order TVD (total variation diminishing) Runge-Kutta method [30, 31, 32, 33] for the time

discretization.

We use a uniform grid

a = x0 < x1 < · · · < xN−1 < xN = L (2.35)

and define

xi+ 1
2

=
xi + xi+1

2
, i = 0, 1, . . . , N − 1. (2.36)

The conservative approximation to the spatial derivative is applied directly to (2.31)

dθi(t)
dt

= − 1
∆x

(f̂i+ 1
2
− f̂i− 1

2
), (2.37)

where θi(t) is the numerical approximation to θ(xi, t), and f̂i+ 1
2

is the numerical flux. Let

u(x) = f(θ(x, t)) = θv. Let the finite difference stencils be

Sr(i) = {xi−r, . . . , xi−r+R−1}, r = 0, . . . , R− 1. (2.38)
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We can get 2R different ENO reconstructions to form the upwind biased Rth order

approximations to the values u
(r)

i+ 1
2

and u
(r)

i− 1
2

, that is,

u
(r)

i+ 1
2

=
R−1∑

j=0

crjui−r+j , u
(r)

i− 1
2

=
R−1∑

j=0

c̃rjui−r+j , r = 0, . . . , R− 1. (2.39)

Note that

c̃rj = cr−1,j ,

where

crj =
R∑

m=j+1

∑R
l=0,l 6=m

∏R
q=0,q 6=m,l(r − q + l)

∏R
l=0,l 6=m(m− l)

(2.40)

for a uniform grid. We list the constants crj for R = 2 and 3 in Table 2.3.

Table 2.3: The constants crj .
R r j = 0 j = 1 j = 2

-1 3/2 -1/2
2 0 1/2 1/2

1 -1/2 3/2
-1 11/6 -7/6 1/3

3 0 1/3 5/6 -1/6
1 -1/6 5/6 1/3
2 1/3 -7/6 11/6

The WENO reconstruction will take a convex combination of all u
(r)

i+ 1
2

and u
(r)

i− 1
2

defined in (2.39), respectively, as the new approximations to u(xi+ 1
2
) and u(xi− 1

2
) with

(2R− 1)th order accuracy:

u−
i+ 1

2

=
R−1∑

r=0

ωru
(r)

i+ 1
2

, u+
i− 1

2

=
R−1∑

r=0

ω̃ru
(r)

i− 1
2

, (2.41)

where the weights ωr and ω̃r are defined as

ωr =
αr∑R−1

s=0 αs

, ω̃r =
α̃r∑R−1

s=0 α̃s

, r = 0, . . . , R− 1, (2.42)

with

αr =
dr

(ε + βr)2
, α̃r =

d̃r

(ε + βr)2
. (2.43)
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The values of dr are given by

d0 =
2
3
, d1 =

1
3
, R = 2;

d0 =
3
10

, d1 =
3
5
, d2 =

1
10

, R = 3,

and

d̃r = dR−1−r

from the symmetry. We choose the parameter ε = 10−6 in all the numerical tests. The

so-called “smooth indicators”, βr, of the stencil Sr(i) are given as follows

β0 = (ui+1 − ui)2,

β1 = (ui − ui−1)2
(2.44)

for R = 2, and

β0 =
13
12

(ui − 2ui+1 + ui+2)2 +
1
4
(3ui − 4ui+1 + ui+2)2,

β1 =
13
12

(ui−1 − 2ui + ui+1)2 +
1
4
(ui−1 − ui+1)2,

β2 =
13
12

(ui − 2ui−1 + ui−2)2 +
1
4
(3ui − 4ui−1 + ui−2)2

(2.45)

for R = 3.

Once the numerical fluxes fi+ 1
2

are obtained by the WENO reconstruction proce-

dures, the upwinding scheme is used in constructing the flux for stability. The Roe flux is

applied:

f̂i+ 1
2

=





u−
i+ 1

2

, if ai+ 1
2
≥ 0,

u+
i+ 1

2

, if ai+ 1
2

< 0,
(2.46)

where ai+ 1
2

is the Roe speed at xi+ 1
2

defined as

ai+ 1
2
≡ f(θi+1)− f(θi)

θi+1 − θi
. (2.47)

In recent years, Henrick proposed a mapped WENO scheme [34] to achieve optimal

order near critical points. Zhang and Shu proposed a new smoothness indicator for the

WENO schemes to improve the post-shock oscillation [35]. Xu and Shu proposed anti-

diffusive flux corrections for high order WENO schemes to improve the resolution for contact

discontinuities [36]. However, those methods failed to achieve high order accuracies for

problems with shocks. Nominally, fifth order shock capturing algorithms converge at roughly

5/6 order in the L1 norm for discontinuities in linearly degenerate fields [37].
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2.3.3 The Time Discretization Using the TVD Runge-Kutta Method

Now considering time discretization, we rewrite (2.37) as

θt = L(θ), (2.48)

where L(θ) is the WENO approximation to the derivative −(θv)x in the PDE (2.31). The

optimal strong stability preserving third order total variation diminishing (TVD) Runge-

Kutta method [82, 83, 84] is employed:

θ(1) = θn + ∆tL(θn),

θ(2) =
3
4
θn +

1
4
θ(1) +

1
4
∆tL(θ(1)),

θn+1 =
1
3
θn +

2
3
θ(2) +

2
3
∆tL(θ(2)),

(2.49)

with CFL (Courant-Friedrichs-Levy) coefficient c = 1.

Verification of the numerical method

We first test the numerical method using smooth solutions to check the order of

the accuracy. The set-up of the test example is the following:

θt + (vθ)x = 0,

vxx + (ψθ)x + (σ ln(1− θ))x = 0,

θ(0, t) = θ(1, t), v(0, t) = v(1, t),

θ0(x) =
1
2

+
1
8

cos(2πx),

(2.50)

where ψ = 1.8 and σ = 1.0. Since we do not know the exact solution of the system,

we compare the computed results against the one computed from the finest grid which is

N = 1280. The justification of such analysis can be found in [38].

Tables 2.4 and 2.5 list the grid refinement analysis against the solution computed

from the finest grid. In the tables, the error ratio is defined as

Ratio =
||U(2h)− U∗||
||U(h)− U∗|| ,

where U stands for θ or v, and U∗ is the solution computed from the finest grid. Tables

2.4 and 2.5 show the ratios for θ and v at t = 0.05, respectively. The ratio approaches the

number 5 indicating second order accuracy, while the number 3 would indicate first order

accuracy (see the justification in [38]). We can see that the proposed method is second
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order accurate in both the L∞ and L1 norms at t = 0.05 for smooth solutions before any

emerging shocks. The linear regression analysis of the convergence order in log-log scale for

the test problem with continuous initial condition at t = 0.05 is shown in Figs. 2.6 and 2.7

for θ and v, respectively. The average convergence order for the L∞ and L1 errors are 2.01

and 2.11 for θ, and 2.04 for v, respectively.

Table 2.4: Accuracy on θ in the System with θ0(x) = 1
2 + 1

8 cos(2πx).
N L∞ error L∞ ratio L1 error L1 ratio
10 7.98e-5 – 5.37e-5 –
20 2.73e-5 2.93 1.02e-5 5.26
40 6.48e-6 4.21 2.50e-6 4.08
80 1.65e-6 3.93 6.08e-7 4.12
160 4.11e-7 4.01 1.48e-7 4.12
320 9.82e-8 4.19 3.49e-8 4.24
640 1.96e-8 5.00 6.94e-9 5.02

Table 2.5: Accuracy on v in the System with θ0(x) = 1
2 + 1

8 cos(2πx).
N L∞ error L∞ ratio L1 error L1 ratio
10 2.65e-4 – 1.16e-4 –
20 6.97e-5 3.81 3.02e-5 3.84
40 1.74e-5 4.01 7.54e-6 4.00
80 4.37e-6 3.98 1.89e-6 4.00
160 1.08e-6 4.05 4.66e-7 4.05
320 2.57e-7 4.20 1.11e-7 4.20
640 5.13e-8 5.00 2.22e-8 5.00

When the initial data is piecewise constant, that is, with shock waves present, as

in the standard approach, we measure the errors conventionally at some distance (0.1 in

our test case) from the discontinuities. Tables 2.6 and 2.7 show the grid refinement results

(t = 0.05) for θ and v with the following initial data:

θ0(x) =





0.5, if 0.3 ≤ x ≤ 0.7,

0.1, if x < 0.3 or x > 0.7 .

We obtained first order convergence for θ and v. This is due to the delta function

singularity from ∂(θψ)
∂x and ∂(σ ln(1−θ))

∂x .

The linear regression analysis of the convergence order at t = 0.05 in log-log scale

for the test problem with the discontinuous initial condition is shown in Figs. 2.8 and 2.9
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Figure 2.6: Linear regression analysis of the convergence order of θ in log-log scale for the
system in (2.50) at t = 0.05. The average convergence order for the L∞ and L1 errors are
2.01 and 2.11, respectively.

Table 2.6: Accuracy on θ in the System with Discontinuous Initial Data.
N L∞ error L∞ ratio L1 error L1 ratio
10 5.28e-4 – 1.57e-4 –
20 2.65e-4 1.99 6.48e-5 2.42
40 1.32e-4 2.01 2.97e-5 2.18
80 6.65e-5 1.98 1.41e-5 2.10
160 3.32e-5 2.01 6.84e-6 2.06
320 1.56e-5 2.13 3.16e-6 2.16
640 5.66e-6 2.75 1.14e-6 2.77
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Figure 2.7: Linear regression analysis of the convergence order of v in log-log scale for the
system in (2.50) at t = 0.05. The average convergence order for the L∞, L1 and L2 errors
are 2.04 and 2.04, respectively.

Table 2.7: Accuracy on v in the System with Discontinuous Initial Data.
N L∞ error L∞ ratio L1 error L1 ratio
10 4.22e-3 – 1.26e-3 –
20 2.15e-3 1.96 5.91e-4 2.14
40 1.11e-3 1.94 2.91e-4 2.03
80 5.83e-4 1.91 1.49e-4 1.95
160 3.06e-4 1.91 7.74e-5 1.93
320 1.48e-4 2.07 3.71e-5 2.09
640 5.30e-5 2.79 1.33e-5 2.79
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for θ and v, respectively. The average convergence order for the L∞ and L1 errors are 1.06

and 1.15 for θ, and 1.02 and 1.06 for v, respectively.

Figure 2.8: Linear regression analysis of the convergence order of θ in log-log scale for the
system in (2.50) with the discontinuous IC at t = 0.05. The average convergence order for
the L∞ and L1 errors are 1.06 and 1.15, respectively.

2.3.4 Applying the Immersed Interface Method

We got second order accuracy for the system (2.50) with smooth initial condition

due to the smoothness of the solution. However, when the solution is not smooth or discon-

tinuous, conventional finite difference methods give poor approximation on differentiation.

We got first order accuracy for the system (2.50) with discontinuous initial condition. Hence

we will try the immersed interface method (IIM) in hopes of getting back to second order.

To maintain accuracy for the velocity v near the discontinuities, we apply the IIM

[41, 48]. The idea of the IIM mainly counts on Taylor expansion and builds jump conditions

into the stencil (irregular grid points) near the interface.
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Figure 2.9: Linear regression analysis of the convergence order of v in log-log scale for the
system in (2.50) with the discontinuous IC at t = 0.05. The average convergence order for
the L∞, L1 and L2 errors are 1.02 and 1.06, respectively.
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The idea is simple. Initially, we know the locations of the discontinuities of θ, so

we use the IIM to solve v to second order. Then from the computed velocity, we determine

the new locations of the discontinuities and solve θ piece by piece accurately. The process

then is repeated. We use Model 2 to illustrate the idea.

Jump conditions across the interface

Standard finite difference methods, for instance, Lax-Wendroff method, Beam-

Warming method [13], etc., are typically derived using Taylor expansions and rely on the

assumption that the solution to the problem is smooth on the domain of concern. Obviously,

these approximations are not valid in the vicinity of an interface where the solution is not

smooth. But if we know the location of the interface and the jumps in the solution and

its derivatives at the interface, then we can use this information to derive an algorithm to

achieve more accurate numerical solution.

The IIM is one of the sharp interface methods which relies on the fact that it is

required to specify jump conditions for the solution and its derivatives at the interfaces.

Our goal is to achieve second order accuracy. So it is very important to find the jump

conditions for the solution and its first and second derivatives.

Jump conditions in tissue interaction problems can take on many forms, and may

sometimes involve surface stresses or changes of state at the interface. In this study, we

will look at simpler jump conditions. For the problems we are solving we will require equal

velocities at the interface, and zero net tangential stress and zero net normal stress across

the interface. However, the PDE system does not supply enough information on jump

conditions needed for the numerical methods we are using to achieve high order accurate

solutions.

Starting from the given piecewise constant initial condition for θ, we know there

are jumps in θ, say

[θ]α,n ≡ lim
x→α+

θ(x, tn)− lim
x→α−

θ(x, tn) = θ(α+, tn)− θ(α−, tn),

where the + or − superscript denotes the right or left side of the interfaces in 1D problems.

This expression denotes the jump at location x = α and time step n for θ.

The elliptic equation for velocity in (2.50) shows that

vxx = −(ψθ)x − (σ ln(1− θ))x.
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First considering the case that solutions are continuous, by integrating, we have

vx = −ψθ − σ ln(1− θ) + c(t), v = −
∫ x

0
(ψθ + σ ln(1− θ))dx + c(t)x.

Applying the boundary condition, v(0, t) = v(1, t) = 0, we have

c(t) =
∫ 1

0
(ψθ + σ ln(1− θ))dx

So we obtain the analytic solution of velocity in term of θ

v = −
∫ x

0
(ψθ + σ ln(1− θ))dx + x

∫ 1

0
(ψθ + σ ln(1− θ))dx

When θ is constant on the domain, v is linear in space.

Now consider the case of θ piecewise constant. From the elliptic equation for v, it

is obvious that v is piecewise linear on the domain. We assume that the interfaces move with

the fluid and there is no fluid slip at the interface, so the velocity is continuous, i.e., [v] = 0

across the interfaces. So the analytic solution to v corresponding to piecewise constant θ

can be written as

v(x, t) =





a1(t)x + a0(t), if 0 ≤ x ≤ α1,

b1(t)x + b0(t), if α1 ≤ x ≤ α2,

c1(t)x + c0(t), if α2 ≤ x ≤ 1.

By the boundary condition for v, we get a0(t) = 0 and c0(t) = −c1(t). Applying the

continuity of v, we have b0(t) = a1(t)− b1(t). Then

(b1(t)− a1(t))α1 + (c1(t)− b1(t))α2 = c1(t) (2.51)

in which we have three unknowns and one equation. We need another two equations to find

the analytic solution to the elliptic equation.

The elliptic equation for v tells us

[vxx] = −[(ψθ)x]− [(σ ln(1− θ))x],

[vx] = −[ψθ]− [σ ln(1− θ)],

[v] = 0.

The jumps in first derivative of v across the interface give us two equations

b1(t)− a1(t) = −[ψθ]α1,t − [σ ln(1− θ)]α1,t,

c1(t)− b1(t) = −[ψθ]α2,t − [σ ln(1− θ)]α2,t.
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Along with (2.51), we obtain

a1(t) = [Λ]1(α1 − 1) + [Λ]2(α2 − 1),

b1(t) = [Λ]1α1 + [Λ]2(α2 − 1),

c1(t) = [Λ]1α1 + [Λ]2α2,

where [Λ]` denote −[ψθ]α`,t− [σ ln(1−θ)]α`,t at the interface `, and ` = 1, 2 in our problem.

Hence the analytic solution to v in term of θ is

v(x, t) =





([Λ]1(α1 − 1) + [Λ]2(α2 − 1))x, if 0 ≤ x ≤ α1,

([Λ]1α1 + [Λ]2(α2 − 1))x− [Λ]1α1, if α1 ≤ x ≤ α2,

([Λ]1α1 + [Λ]2α2)(x− 1), if α2 ≤ x ≤ 1.

(2.52)

Based on our analysis, we can conclude that the jumps for v are

[v] = 0, continuity of v,

[vxx] = 0, no jump in stress,

[vx] = −[ψθ]− [σ ln(1− θ)].

(2.53)

So the interface relations are

vxx(α+, t) = vxx(α−, t),

vx(α+, t) = vx(α−, t)− [ψθ]α,t − [σ ln(1− θ)]α,t,

v(α+, t) = v(α−, t).

(2.54)

Correction terms for irregular grids

Suppose θn
i , denoting θ at the grid point i and time tn, are known for all i in

the domain. And suppose the interfaces are at x = α`, ` = 1, 2, which lie in the intervals

between xj`
and xj`+1 (see Fig. 2.10).

Figure 2.10: 1-D interface.

We apply the central finite difference method (CFDM) for the elliptic equation for

v in (2.50) at regular grid points, i.e., those for which a interface does not lie in the interval
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of the 3-point stencil,

V n
i−1 − 2V n

i + V n
i+1

∆x2
= −(ψθ)n

i+1 − (ψθ)n
i−1

2∆x
− (σ ln(1− θ))n

i+1 − (σ ln(1− θ))n
i−1

2∆x
.

The local truncation error at regular grid points is O(∆x2)

The irregular grid points for the CFDM are j` and j` + 1 near the interface `. For

simplicity, we drop the subscript ` in the rest of this chapter. The CFDM is not valid at

those irregular points. We need to find the correction terms to make the method valid.

Since the parameters in our test problem in (2.50) are constant, the coefficients of the finite

difference equation are the same as those for the regular grid points except for the correction

term,

V n
J−1 − 2V n

J + V n
J+1

∆x2
= −(ψθ)n

J+1 − (ψθ)n
J−1

2∆x
− (σ ln(1− θ))n

J+1 − (σ ln(1− θ))n
J−1

2∆x
+ Cn

J ,

(2.55)

where J = j, j + 1.

The method to find the correction terms is based on the Taylor series expansion

at the interfaces. Consider the irregular point at J = j first. The local truncation error is

TJ =
v(xJ−1, t

n)− 2v(xJ , tn) + v(xJ+1, t
n)

∆x2
+

(ψθ)(xJ+1, t
n)− (ψθ)(xJ−1, t

n)
2∆x

+
(σ ln(1− θ))(xJ+1, t

n) + (σ ln(1− θ))(xJ−1, t
n)

2∆x
− Cn

J .

(2.56)

We want to make the magnitude of the truncation error as small as possible by choosing

the correction term. In order to obtain second order global accuracy, we need to ensure an

O(∆x) local truncation error at those irregular points [38]. In other words, we need to ex-

pand out v through O(∆x3) and expand out ψθ and σ ln(1−θ) through O(∆x2). We expand

v(xJ−1, t
n), v(xJ , tn), v(xJ+1, t

n), (ψθ)(xJ+1, t
n), (ψθ)(xJ−1, t

n), (σ ln(1−θ))(xJ+1, t
n) and

(σ ln(1− θ))(xJ−1, t
n) in Taylor series about the interface α relating to J . Dropping the tn

for simplicity due to no time evolution in the equation for v, and using the notation

v+ = lim
x→α+

v(x), v− = lim
x→α−

v(x),
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we obtain

v(xJ−1) = v− + v−x (xJ−1 − α) +
1
2
v−xx(xJ−1 − α)2 + O(∆x3),

v(xJ) = v− + v−x (xJ − α) +
1
2
v−xx(xJ − α)2 + O(∆x3),

v(xJ+1) = v+ + v+
x (xJ+1 − α) +

1
2
v+
xx(xJ+1 − α)2 + O(∆x3),

(ψθ)(xJ−1) = (ψθ)− + (ψθ)−x (xJ−1 − α) + O(∆x2),

(ψθ)(xJ+1) = (ψθ)+ + (ψθ)+x (xJ+1 − α) + O(∆x2),

(σ ln(1− θ))(xJ−1) = (σ ln(1− θ))− + (σ ln(1− θ))−x (xJ−1 − α) + O(∆x2),

(σ ln(1− θ))(xJ+1) = (σ ln(1− θ))+ + (σ ln(1− θ))+x (xJ+1 − α) + O(∆x2).

Plugging the above expansions into the local truncation error (2.56) and using

the interface relations for v (2.54), along with the following interface relations for ψθ and

σ ln(1− θ):

ψθx(α+, t) = ψθx(α−, t),

ψθ(α+, t) = ψθ(α−, t) + [ψθ]α,t,

σ ln(1− θ)x(α+, t) = σ ln(1− θ)x(α−, t),

σ ln(1− θ)(α+, t) = σ ln(1− θ)(α−, t) + [σ ln(1− θ)]α,t,

(2.57)

we can eliminate the quantities from one side in terms of those from the other side to get

the following expression for the local truncation error at grid point xJ

TJ =
v−xx((xJ+1 − α)2 − 2(xJ − α)2 + (xJ−1 − α)2) + O(∆x3)

∆x2

+
2∆x((ψθ)−x + (σ ln(1− θ))−x ) + O(∆x2)

2∆x
+

[Λ]α(xJ+1 − α)
(∆x)2

− [Λ]α
2∆x

− CJ

= v−xx + (ψθ)−x + (σ ln(1− θ))−x + [Λ]α(
xJ+1 − α

∆x2
− 1

2∆x
)− CJ + O(∆x)

(2.58)

where [Λ]α = −[ψθ]α − [σ ln(1 − θ)]α. From the elliptic equation itself, we know that

v−xx + (ψθ)−x + (σ ln(1− θ))−x = 0. Setting

CJ = [Λ]α(
xJ+1 − α

∆x2
− 1

2∆x
) =

1
2
[Λ]α(δ∆x(xJ − α)− δ∆x(xJ+1 − α))

where

δ∆x(x) =





∆x−|x|
∆x2 , if |x| < h,

0, otherwise,
(2.59)
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we get O(∆x) for the local truncation error at the irregular grid point xJ .

Likewise, we can find the correction term for the irregular grid point xJ+1 by

analyzing the local truncation error at that point:

CJ+1 =
1
2
[Λ]α(δ∆x(xJ+1 − α)− δ∆x(xJ − α))

Note that all the analysis above for the jump conditions across the interfaces and

the correction terms for the irregular grid points are valid for the cases with parameters of

Model 2 listed in Table 2.2. For the cases with parameters of other models listed in Table

2.2, it is nearly impossible to derive sufficient jump conditions from the given PDE system

for the numerical method. This implies that we can not apply the IIM to those case unless

all the necessary jump conditions are given.

The IIM gives more accurate results for both θ and v and eliminates non-physical

oscillations (the Gibbs phenomenon). But in order to use this method, we need a prior

knowledge of the shock locations.

2.4 Numerical Results

We take L = 1 for simplicity in this section. We have done a number of numerical

experiments for different parameters and initial conditions. All the cases are listed in Table

2.8. We use continuous initial condition in Cases (a-d) to understand the pattern formation.

In the other cases, we use discontinuous initial condition. We want to know the long time

behavior of the solution and whether θ will grow and then stabilize. Our results indicate

that θ in Model 2 grows faster compared with other models. In all cases presented here,

we use dotted lines to represent the initial data, dash-dotted lines to represent the solution

at the final time (often T = 5), and solid lines to represent the intermediate solution

between initial and final time. The initial θ is piecewise constant with the discontinuities

at x1 = 0.35, x2 = 0.65 with θl = 0 or 0.1 and θu = 0.5.

2.4.1 Cases with parameters of Model 1

First we consider the continuous initial condition described in (2.5) to find out the

pattern of tissue deformation.

Using the parameters of Model 1 in Table 2.2 for M , ψ and σ, we apply a central

finite difference scheme to set up the system of difference equations for v at each time step.
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Table 2.8: List of Numerical Experiments.

case M ϕ ψ σ N T IC θl θu alg. fig. ref.
(a-d) θ

0.5+θ 1.0 θ 1− θ 160 5 (2.5) - - 1 Fig. 2.11
(1) 0.5 0 1.8 1.0 640 5 (2.6) 0 0.5 1 Fig. 2.13
(2) 0.5 0 1.8 1.0 640 5 (2.6) 0 0.5 3 Fig. 2.13
(3) 0.5 0 1.8 1.0 640 15 (2.6) 0 0.5 1 Fig. 2.14
(4) 0.5 0 1.8 1.0 80 15 (2.6) 0 0.5 1 Fig. 2.14
(5) 0.5 0 2.5 1.0 640 5 (2.6) 0 0.5 1 Fig. 2.15
(6) 0.5 0 1.0 1.0 80 20 (2.6) 0 0.5 1 Fig. 2.15
(7) 0.5 0 1.8 1.0 640 5 (2.6) 0 0.5 2 Fig. 2.16
(8) 0.5 0 1.8 1.0 320 15 (2.6) 0 0.5 2 Fig. 2.16
(9) 0.5 0 2.5 1.0 640 5 (2.6) 0.1 0.5 2 Fig. 2.17
(10) 0.5 0 1.0 1.0 80 20 (2.6) 0.1 0.5 2 Fig. 2.17
(11) 0.5 0 1.8 1.0 640 5 (2.6) 0.1 0.5 3 Fig. 2.18
(12) 0.5eθ eθ 1.8 1.0 640 5 (2.6) 0 0.5 3 Fig. 2.19
(13) 0.5eθ eθ 1.8 1.0 640 5 (2.6) 0 0.5 1 Fig. 2.19
(14) 0.5eθ eθ 1.8 1.0 640 15 (2.6) 0 0.5 1 Fig. 2.19
(15) 0.5eθ eθ 1.8e−θ e−θ 640 5 (2.6) 0 0.5 3 Fig. 2.20
(16) 0.5eθ eθ 1.8e−θ e−θ 640 5 (2.6) 0 0.5 1 Fig. 2.20
(17) 0.5eθ eθ 1.8e−θ e−θ 640 15 (2.6) 0 0.5 1 Fig. 2.20
(18) 0.5eθ eθ 1.8e−θ e−θ 640 5 (2.6) 0 0.5 2 Fig. 2.21
(19) 0.5eθ eθ 1.8e−θ e−θ 320 15 (2.6) 0 0.5 2 Fig. 2.21
Algorithm 1: upwind + CFDM;
Algorithm 2: WENO + CFDM;
Algorithm 3: upwind + IIM;

Fig. 2.11 shows the numerical solutions for θ, v and p by the upwind scheme along with

central FDM for t ≤ 5. Four cases with different initial spatial frequencies, k=2, 6, 8 and

18 respectively, are used in the computations.

It is observed that it takes longer for the case with lower frequency to blow up.

The value of θ will be greater than 1 when t ≥ 4.3 for k = 6 and t ≥ 3.0 for k = 8. k = 18 is

very close to the possible maximum k for θ0 = 0.5 (see Fig. 2.4). Hence after several time

steps, t ≥ 0.1, the solution blows up very quickly, i.e., θ > 1, .

2.4.2 Cases with parameters of Model 2 and θl = 0

In this subsection, we consider the cases with the piecewise constant initial condi-

tion (2.6). Using the parameters of Model 2 in Table 2.2 for M = 0.5, ψ = 1.8 and σ = 1
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Figure 2.11: Computed solutions of (2.1), (2.2) and (2.3) along with IC in (2.5) and pa-
rameters in (2.25) by the upwind scheme along with CFDM. (a) – the solutions of θ (left),
velocity (middle) and pressure (right) for the case with ε = 0.001, t ≤ 5.0, and k = 2; (b),
(c) and (d) – similar to (a), but with k=6, 8 and 18, respectively. In all plots, the dotted
lines represent the initial data, the solid lines represent the intermediate solutions between
initial and final time, and the ∗ lines in (a) represent the solutions at t = 5.0, those in (b),
(c) and (d) are the solutions when θ ≥ 1. In (d), solutions blow up at t = 0.1. N = 160.
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and choosing x1 = 0.35, x2 = 0.65, θl = 0, initial θu = 0.5, we employ several numerical al-

gorithms to compute the system. For the given parameters, we can use (2.22) to determine

the value of θu which makes the system reach steady state. Fig. 2.12 shows the curve for

(2.22) as a function of θu.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

θ

[v
x]

Figure 2.12: [vx] for the case with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0

Using the command fzero in MATLAB, one can easily find the value of θu that

makes [vx] = 0, which is θu = 0.73 for our case.

Computations are completed for T = 5. Fig. 2.13 shows the solutions for θ and

v to the system with the parameters indicated above via the upwind scheme along with

CFDM (case 1) and the upwind scheme along with IIM (case 2).

The maximum difference of θ between two time steps near the last time step is

about 3.6e−5 for the upwind scheme along with IIM, i.e., the solution converges to the

steady state. The maximum difference of θ between two time steps near last time step

for the upwind scheme along the CFDM is about 5e−5. Oscillations at the discontinuities

at later time were observed in θ (2.14). This could be induced by the initial data and

the numerical method although the upwind scheme does not produce oscillations near the

interface for the advection equations. As discussed in the linear stability analysis section,

θ at two side regions, θl, always stays in the region where the system is unstable, but the θ

in the middle region, θu, stays in the region where the system is stable to approach to the

steady state for the parameters and initial data we used. The upwind scheme is known to

be first order accurate. The numerical errors accumulate with time. The discontinuities in

the numerical solution will be smoothed out at later times by this scheme. However, when
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the upwind scheme and CFDM are applied to our problem, oscillations are observed. Our

study shows that oscillation spreads out widely in the domain if coarser grids are used (see

case 4 with coarser grids, N = 80, in Fig. 2.14). When the set of parameters chosen stays

in the region that under the horizontal line or above the dashed curve in Fig. 2.2, there are

no oscillations observed for longer time computations, i.e., t À 20.
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Figure 2.13: Computed solutions of (2.31), (2.32) along with IC in (2.6) and M = 0.5,
ϕ = 0, ψ = 1.8, σ = 1 for T = 5. (1) – the solutions of θ (left) and velocity (right) of Case 1
solved via the upwind scheme along with CFDM; (2) – the solutions of θ (left) and velocity
(right) of Case 2 solved via the upwind scheme along with IIM. Fine meshes, N = 640.

To test our conclusion about the system’s stable region, two other computations

for the system with constant parameters are completed. Same parameters were chosen

except that ψ = 2.5 in case 5, in which the system is totally unstable, and ψ = 1.0 in case 6,
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Figure 2.14: Computed solutions of (2.31), (2.32) along with IC in (2.6) and M = 0.5,
ϕ = 0, ψ = 1.8, σ = 1 for T = 15 by the upwind scheme along with CFDM. (3) – the
solutions of θ and velocity of Case 3 with fine meshes, N = 640; (4) – the solutions of θ and
velocity of Case 4 with coarse meshes, N = 80.
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in which the system is stable. Fig. 2.15 shows the computed solutions for both cases. Note

that the dashed lines in Fig. 2.15 (5) indicate the solution while passing the neutral stable

(the dashed line in Fig. 2.2) at t = 0.9 to approach to the equilibrium. Oscillation was

observed in the case 5 at later time. This is because at very beginning with given initial data

and chosen parameter, the system is in the unstable region (see Fig. 2.2), hence θu grows

with time. However, when θu > 0.6, the system transfers from the unstable region into the

oscillation region and approaches to the equilibrium. We find that the oscillation occurs

when the system is reaching equilibrium. For case 6, one can observe that θ decreases with

time. The system will always stay in the stable region. No oscillation will occur for a long

time run. These numerical experiments support our conclusions in linear stability analysis.

Fig. 2.16 shows the computed solutions solved by WENO-Roe scheme along with

optimal third order TVD Runge-Kutta method for the hyperbolic equation and CFDM for

the elliptic equation with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1. In Case 7, computation is

completed with T = 5 and N = 640. Oscillation is observed for a longer time computation

with this algorithm. See Case 8 in Fig. 2.16, in which computation is completed with

T = 15 and N = 320.

2.4.3 Cases with parameters of Model 2 and θl = 0.1

In this subsection, we consider the cases with all the same conditions as those in

the last subsection except θl = 0.1. We employ two numerical algorithms to compute the

system.

In Fig. 2.17 and Fig. 2.18, we show the computed results using the two different

numerical methods with different parameters. By choosing the parameters according to our

stability analysis, we obtained the desired results with θ in the middle part growing (the

first plot in Fig. 2.17 and Fig. 2.18) or decaying (the lower bottom plot in Fig. 2.17). The

solution will approach the steady states after some time.

From the computed results, we can conclude that the two methods, (1) the WENO

and central finite difference scheme and (2) the IIM approach, give qualitatively the same

results in the solution except at the discontinuities. The IIM approach eliminates the non-

physical oscillations by enforcing the jump conditions in the finite difference scheme.
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Figure 2.15: Computed solutions of (2.31), (2.32) along with IC in (2.6) and M = 0.5,
ϕ = 0, σ = 1 by the upwind scheme along with CFDM. (5) – the solutions of θ (left) and
velocity (right) of Case 5 with ψ = 2.5 and fine meshes, N = 640, T = 5; (6) – the solutions
of θ (left) and velocity (right) of Case 6 with ψ = 1 and coarse meshes, N = 80, T = 20. In
plots of Case 5, the dashed lines indicate the computed solutions while passing the neutral
stable state at t = 0.9 (referring the dashed line in Fig. 2.2).
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Figure 2.16: Computed solutions of (2.31), (2.32) along with IC in (2.6) and M = 0.5,
ϕ = 0, ψ = 1.8, σ = 1 by the WENO-Roe scheme along with TVD Runge-Kutta method
and CFDM. (7) – the solutions of θ (left) and velocity (right) of Case 7 with N = 640,
T = 5; (8) – the solutions of θ (left) and velocity (right) of Case 8 with N = 320, T = 15.



49

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

θ
IC

0 0.5 1
−0.06

−0.03

0

0.03

0.06

x

v

IC

(9)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

θ

IC

0 0.5 1
−0.06

−0.03

0

0.03

0.06

x

v

IC

(10)

Figure 2.17: Computed solutions using the WENO scheme and central finite difference
scheme with different parameters. The top two plots are computed with ψ = 2.5, σ = 1,
and N = 640. The solution θ grows in the middle. Some oscillations developed near the
discontinuities. The bottom plots are computed with ψ = 1, σ = 1, and N = 80. The
solution θ decays and no oscillations occurred so we take a coarse grid. The final time is
T = 5 for the top plots while it is T = 20 for the bottom ones since it takes a longer time
to reach the steady state solution.
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Figure 2.18: Computed solution using the IIM scheme. The results are computed with
ψ = 1.8, σ = 1, and N = 640. The final time is T = 5. There are no oscillations in the
computed solution.

2.4.4 Cases with parameters of Model 3

Now we consider the system, (2.31) - (2.32), with the parameters of Model 3 in

Table 2.2. Again we choose x1 = 0.35, x2 = 0.65, θl = 0, initial θu = 0.5 and use the

same approaches as used for Section 2.4.2 to solve the system for comparison. Note that

the assumptions about M and ϕ imply that those parameters are discontinuous across the

interface and implicitly depend on time since they are functions of θ. For this model, it

is difficult to find a set of parameters that make system at the steady state. Computed

solutions to the system solved by the upwind scheme along with IIM (Case 12) and upwind

scheme along with CFDM (Case 13 with T = 5 and Case 14 with T = 15) are shown in

Fig. 2.19.

The maximum difference of θ between two time steps near final time step is less

than 1.6e−4 for the upwind scheme along with IIM, i.e., the solution is also approaching

the steady state. The maximum difference of θ between two time steps is less than 1e−4

for the upwind scheme along with CFDM. Compared with the solutions to the system with

constant parameters (see Section 2.4.2), θ, the computed solution to the system with Model

3 in Table 2.2, grows more slowly. Case 14 in Fig. 2.19 shows the solutions by the upwind

scheme along with CFDM for a long time run (T=15). Oscillation is observed again at a

later time. However, the amplitude of oscillation becomes smaller in this case.
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Figure 2.19: Computed solutions of (2.31), (2.32) along with IC in (2.6) and parameters of
Model 3 in Table 2.2. (12) – the solutions of θ (left) and velocity (right) of Case 12 with
T = 5 and N = 640, solved by the upwind scheme along with IIM; (13) – the solutions
of θ (left) and velocity (right) of Case 13 with T = 5 and N = 640, solved by the upwind
scheme along with CFDM; (14) – the solutions of θ (left) and velocity (right) of Case 14
with T = 15, solved by the upwind scheme along with CFDM.



52

2.4.5 Cases with parameters of Model 4

In this example, we consider the system, (2.31) - (2.32), with the parameters of

Model 4 in Table 2.2. We assume that the contractility and swelling coefficients, ψ and σ,

exponentially decrease with θ. The solutions solved by the upwind scheme along with IIM

and upwind scheme along with CFDM are shown in Fig. 2.20.

It is quite obvious that θ in the middle part of the domain is approaching the

steady state with the slowest speed comparing with other choices of parameters. In case

15, θu is far away from the equilibrium at T = 5. The maximum difference of θ between

two time steps is about 2.1e−4 for the upwind scheme along with IIM. Case 16 shows the

computed solution to the system by the upwind scheme along with CFDM for T = 5. No

oscillations are observed by T = 5. In this case, θu is also far away from the equilibrium

at T = 5. The maximum difference of θ between two time steps is about 1.1e−4 by the

upwind scheme along with CFDM. Case 17 shows the solution by the upwind scheme along

with CFDM for T = 15. The oscillation has not appeared by the final computation time

(T = 15 in this case) because the θ are still away from the equilibrium. But unfortunately,

oscillations will occur for the long-time evolution [85] as long as we are using CFDM to

solve the elliptic equation for v. The numerical error from v will contaminate the solution

of the hyperbolic equation for θ.

Fig. 2.21 shows the computed solutions solved by WENO-Roe scheme along with

TVD Runge-Kutta method and CFDM for the system with parameter of Model 4 in Table

2.2.

2.5 Conclusions

In this chapter, we have studied a one dimensional mixed model for tissue de-

formation. The linear stability analysis has been conducted which gives the range of the

parameters for the stability and their relations with parameters. Many numerical experi-

ments have been completed to support our stability analysis. Several different numerical

methods have been studied. The first one is the standard first order upwind scheme for the

volume fraction of cells and fibers θ and a central finite difference scheme for the velocity v.

The second one is the standard high order (fifth order) WENO scheme with strong stability

preserving optimal third order TVD Runge-Kutta method for the volume fraction of cells
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Figure 2.20: Computed solutions of (2.31), (2.32) along with IC in (2.6) and parameters
in (2.28). (15) – the solutions of θ (left) and velocity (right) of Case 15 with T = 5 and
N = 640, solved by the upwind scheme along with IIM; (16) – the solutions of θ (left)
and velocity (right) of Case 16 under same conditions as Case 15 but solved by the upwind
scheme along with CFDM; (17) – the solutions of θ (left) and velocity (right) of Case 17
similar to Case 16 but with T = 15.



54

(18)

(19)

Figure 2.21: Computed solutions of (2.31), (2.32) along with IC in (2.6) and parameters
in (2.28) solved via the WENO-Roe scheme along with TVD Runge-Kutta method and
CFDM. (18) – the solutions of θ (left) and velocity (right) of Case 18 with T = 5 and
N = 640; (19) – the solutions of θ (left) and velocity (right) of Case 19 with T = 15 and
N = 320.
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and fibers θ and a central finite difference scheme for the velocity v. In the third approach,

we used the immersed interface method to enforce the jump conditions. The three methods

give qualitatively the same results, but the third method using IIM for velocity v eliminates

non-physical oscillations by using the knowledge of the locations of the shocks.
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Chapter 3

IIM for a Linear Advection

Equation

3.1 A Linear Advection Equation

In this chapter, we consider a linear scalar advection equation (in 1D):

qt + vqx = 0, 0 ≤ x ≤ L, (3.1)

where q represents some physical quantity, v is the speed of the advection, v = constant.

We choose L = 1 and v = 1 in the computations. We know that the analytical solution to

this advection equation is

q(x, t) = q0(x− vt), (3.2)

no matter whether the initial condition q0 is continuous or not. For this toy problem, we

consider the cases that q is discontinuous, i.e., we impose nonhomogeneous jump conditions

[q] 6= 0, [qx] 6= 0, and/or [qxx] 6= 0,

at x = α.

To avoid other sources of error, for instance, improper boundary conditions, we

use the analytical solution at x = 0 as the boundary conditions.

Three types of initial condition (IC) are considered in this study; see Fig. 3.1:

q(x, 0) =





0, if 0 ≤ x ≤ α

0.5, if α < x ≤ L,
(3.3)
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q(x, 0) =





0.2 sin(2πx), if 0 ≤ x ≤ α,

0.5 + 0.2 sin(2πx), if α < x ≤ L.
(3.4)

and

q(x, 0) =





0.2 sin(πx), if 0 ≤ x ≤ α,

0.5 + 0.2 sin(2πx), if α < x ≤ L.
(3.5)

In Fig. 3.1, the top left plot shows piecewise constant initial condition described

in (3.3) with [q] 6= 0, [qx] = 0 and [qxx] = 0. The top right plot shows piecewise C∞ initial

condition described in (3.4) with [q] 6= 0 only. The bottom left plot shows piecewise C∞

initial condition described in (3.5) with [q] 6= 0, [qx] 6= 0 and [qxx] 6= 0. The bottom right

plot shows derivatives of the initial condition described in (3.5). The interfaces in all the

plots are at α = 1/3.
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Figure 3.1: Initial condition for the computations. Top left: piecewise constant initial
condition described in (3.3). Top right: piecewise C∞ initial condition described in (3.4)
with [q] 6= 0 only. Bottom left: piecewise C∞ initial condition described in (3.5) with
[q] 6= 0, [qx] 6= 0 and [qxx] 6= 0. Bottom right: derivatives of the initial condition described
in (3.5).
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Note that the jump conditions for the linear advection problem with the initial

conditions described in (3.3) and (3.4) are the same:

[q] = 0.5, [qx] = 0, [qxx] = 0,

whereas the jump conditions for the linear advection problem with the initial condition

described in (3.5) are all non-homogeneous:

[q] =0.5, [qx] = 0.2π(2 cos(2πα)− cos(πα)),

[qxx] = −0.2π2(4 sin(2πα)− sin(πα)).

We discretize the space uniformly

0 = x0 < x1 < · · · < xN−1 < xN = L = 1, (3.6)

where xi = x0 + i∆x.

There are many ways to solve a advection equation. We use the Lax-Wendroff

method, known as a second order method, to illustrate our basic idea. The Lax-Wendroff

method gives

Qn+1
i = Qn

i −
v∆t

2∆x
(Qn

i+1 −Qn
i−1) +

1
2
(
v∆t

∆x
)2(Qn

i−1 − 2Qn
i + Qn

i+1), (3.7)

where Qn
i ≈ Q(xi, t

n), tn = n∆t.

The Lax-Wendroff method is based on the Taylor series expansion. So the above

difference expression for Qn+1
i is valid for all the regular grid points, i.e., the solution is

continuous in the interval of the three-point stencil. Suppose the interface lies in

xJ ≤ α < xJ+1.

Then the irregular grid points are J and J + 1. See Fig. 3.2.

Figure 3.2: Diagram of the stencils for irregular grid points.
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3.2 The Immersed Interface Method - Modification for Lax-

Wendroff Method

We know that the Lax-Wendroff method works well to approximate Qn+1
i to sec-

ond order accuracy when the solution is smooth on the supporting stencil {xi−1, xi, xi+1}.
However, the central finite difference approximations in (3.7) for grid points J and J + 1

yields no accuracy at all. Hence, we need to find correction terms to assure at least first

order accuracy at those irregular grid points.

From the jump conditions, we have the following interface relations

q(α+, t) = q(α−, t) + [q]α,t,

qx(α+, t) = qx(α−, t) + [qx]α,t,

qxx(α+, t) = qxx(α−, t) + [qxx]α,t.

(3.8)

For the irregular grid point J , we use the following expression to approximate

Qn+1
J

Qn+1
J −Qn

J

∆t
= − v

2∆x
(Qn

J+1 −Qn
J−1) +

1
2

v2∆t

(∆x)2
(Qn

i−1 − 2Qn
i + Qn

i+1) + CJ , (3.9)

where CJ is the correction term to improve the order of accuracy for the approximation.

Consider the local truncation error at xJ :

TJ =
q(xJ , tn+1)− q(xJ , tn)

∆t
+

v

2∆x
(q(xJ+1, t

n)− q(xJ−1, t
n))

−1
2

v2∆t

(∆x)2
(q(xJ−1, t

n)− 2q(xJ , tn) + q(xJ+1, t
n))− CJ .

(3.10)

Consider two cases as shown in Fig. 3.3. In Case 1, the interface stays in the

interval, xJ ≤ α < xJ+1, as time evolves from tn to tn+1. In case 2, the interface crosses

the grid line at xJ+1 at some time τ , tn < τ < tn+1, i.e., the interface locates in the

interval,xJ+1 ≤ α < xJ+2, at time tn+1.

Correction for Case 1 - no crossing (nc)

We first consider the case without crossing. Taylor series expansion at x = α and
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Figure 3.3: Diagram of the interface location. (a) no crossing, (b) crossing a grid line.

tn gives

Tnc
J =

1
∆t

(q(α−, tn) + qx(α−, tn)AJ + qt(α−, tn)∆t + qxx(α−, tn)BJ

+
1
2
qtt(α−, tn)(∆t)2 + qxt(α−, tn)AJ∆t + O((∆x)3, (∆t)3)

− (q(α−, tn) + qx(α−, tn)AJ + qxx(α−, tn)BJ) + O((∆x)3)

+
v

2∆x
(q(α+, tn) + qx(α+, tn)AJ+1 + qxx(α+, tn)BJ+1 + O((∆x)3)

− (q(α−, tn) + qx(α−, tn)AJ−1 + qxx(α−, tn)BJ−1 + O((∆x)3)))

− 1
2

v2∆t

(∆x)2
(q(α−, tn) + qx(α−, tn)AJ−1 + qxx(α−, tn)BJ−1 + O((∆x)3)

− 2(q(α−, tn) + qx(α−, tn)AJ + qxx(α−, tn)BJ + O((∆x)3))

+ q(α+, tn) + qx(α+, tn)AJ+1 + qxx(α+, tn)BJ+1 + O((∆x)3))− Cnc
J ,

where Ak = xk − α, Bk = (xk − α)2/2 for k = J − 1, J, J + 1, and J + 2.

Applying the interface relations in (3.8) gives

Tnc
J =qt(α−, tn) +

1
2
qtt(α−, tn)(∆t) + qxt(α−, tn)AJ + O((∆x)2, (∆t)2)

+
v

2∆x
([q]α,n + [qx]α,nAJ+1 + [qxx]α,nBJ+1) + vqx(α−, tn) + vqxx(α−, tn)AJ)

− 1
2

v2∆t

(∆x)2
([q]α,n + [qx]α,nAJ+1 + [qxx]α,nBJ+1)− 1

2
v2∆tqxx(α−, tn))− Cnc

J

=
1
2

∆x− v∆t

(∆x)2
v([q]α,n + [qx]α,nAJ+1 + [qxx]α,nBJ+1)− Cnc

J + O((∆x)2, (∆t)2).

So it will suffice for second order accuracy if the correction term for grid points J is

Cnc
J =

1
2

∆x− v∆t

(∆x)2
v([q]α,n + [qx]α,nAJ+1 + [qxx]α,nBJ+1). (3.11)

Similarly, at the grid point J + 1 we obtain the correction term as follows

Cnc
J+1 =

1
2

∆x + v∆t

(∆x)2
v([q]α,n + [qx]α,nAJ + [qxx]α,nBJ). (3.12)
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Correction for Case 2 - crossing

Now we consider the case that the interface location cross the grid line at some

time τ as time evolves from tn to tn+1. In our numeric experiments, we just consider the

cases with v > 0, i.e., wave travels to the right. For the cases that have v < 0, all the

processes are similar. Looking at the diagram part (b) in Fig. 3.3, we understand that

crossing does not affect the correction for grid point J when the wave travels to the right,

i.e.,

Cc
J = Cnc

J =
1
2

∆x− v∆t

(∆x)2
v([q]α,n + [qx]α,nAJ+1 + [qxx]α,nBJ+1). (3.13)

The grid crossing only affects the grid J + 1. Here we use l instead of J + 1 to

simplify the expression. Taylor series expansion at x = α and τ gives

q(xl, t
n+1) = q(xl, τ

+) + qt(xl, τ
+)(tn+1 − τ) +

1
2
qtt(xl, τ

+)(tn+1 − τ)2 + O((∆t)3)

= q(xl, τ
+)− vqx(xl, τ

+)(tn+1 − τ) +
1
2
v2qxx(xl, τ

+)(tn+1 − τ)2 + O((∆t)3)

= q(α−, tn) + qx(α−, tn)Al + qt(α−, tn)(τ − tn) + qxx(α−, tn)Bl

+
1
2
qtt(α−, tn)(τ − tn)2 + qxt(α−, tn)Al(τ − tn)

− v(qx(α−, tn) + qxx(α−, tn)Al + qxt(α−, tn)(τ − tn))(tn+1 − τ)

+
1
2
v2qxx(α−, tn)(tn+1 − τ)2 + O((∆x)3, (∆t)3)

= q(α−, tn) + qx(α−, tn)Al − vqx(α−, tn)(τ − tn) + qxx(α−, tn)Bl

+
v2

2
qxx(α−, tn)(τ − tn)2 − vqxx(α−, tn)Al(τ − tn)

− v(qx(α−, tn) + qxx(α−, tn)Al − vqxx(α−, tn)(τ − tn))(tn+1 − τ)

+
1
2
v2qxx(α−, tn)(tn+1 − τ)2 + O((∆x)3, (∆t)3),

= q(α−, tn) + qx(α−, tn)Al − vqx(α−, tn)∆t + qxx(α−, tn)Bl

+
v2

2
qxx(α−, tn)(∆t)2 − vqxx(α−, tn)Al∆t + O((∆x)3, (∆t)3),

q(xl, t
n) = q(α+, tn) + qx(α+, tn)Al + qxx(α+, tn)Bl + O((∆x)3)
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Applying those expressions and the interface relations in (3.8) gives

T c
l =

q(xl, t
n+1)− q(xl, t

n)
∆t

+
v

2∆x
(q(xl+1, t

n)− q(xl−1, t
n))

− 1
2

v2∆t

(∆x)2
(q(xl−1, t

n)− 2q(xl, t
n) + q(xl+1, t

n))− Cc
l ,

= − 1
∆t

([q]α,n + [qx]α,nAl + [qxx]α,nBl) + v([qx]α,n + [qxx]α,nAl − v∆t

2
[qxx]α,n)

+
1
2

∆x + v∆t

(∆x)2
v([q]α,n + [qx]α,nAl−1 + [qxx]α,nBl−1)− Cc

l + O((∆x)2, (∆t)2)

So it will suffice for second order accuracy if the correction term for grid points J + 1 is

Cc
J+1 = − 1

∆t
([q]α,n + [qx]α,nAJ+1 + [qxx]α,nBJ+1)

+ v([qx]α,n + [qxx]α,nAJ+1 − v∆t

2
[qxx]α,n)

+
1
2

∆x + v∆t

(∆x)2
v([q]α,n + [qx]α,nAJ + [qxx]α,nBJ).

(3.14)

For the cases with [qx] = [qxx] = 0, (3.11), (3.12) and (3.14) can be simplified as

follows:

Cnc
J = Cc

J =
1
2

∆x− v∆t

(∆x)2
v[q]α,n,

Cnc
J+1 =

1
2

∆x + v∆t

(∆x)2
v[q]α,n,

Cc
J+1 = − 1

∆t
[q]α,n +

1
2

∆x + v∆t

(∆x)2
v[q]α,n.

3.3 Numerical Examples

We take L = 1 for simplicity in this section. Three numerical computations have

been completed to demonstrate how well the immersed interface method works for linear

advection equations. In all cases presented here, we use solid lines to represent the exact

solutions and the symbol ’o’ to represent the numerical solutions. The initial interface is

located at α = 1/3.

Example 1

First we consider the piecewise constant initial condition described in (3.3) for this

example.

Fig. 3.4 shows the exact solution and numerical solutions at t = 0.1, t = 0.2,

t = 0.3, and t = 0.4 respectively. The immersed interface method keeps the interface sharp

as time evolves. No errors are observed in the computed solution at all the grid points.
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Figure 3.4: 1-D linear advection with v = 1 and initial condition in (3.4). Comparison of
computed solution and exact solution at t = 0.1, 0.2, 0.3, and 0.4 respectively. The solid
line represents the exact solution and the symbol ’o’ represents the numerical solutions.
The mesh size for the computation is h = 1/80.
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Example 2

In this example, we consider the cases with the piecewise C∞ initial condition

described in (3.4). We employ the immersed interface method (modified Lax-Wendroff

method) to compute the partial differential equation for T = 0.5. Fig. 3.5 shows the exact

solution and computed solution at t = 0.1, t = 0.2, t = 0.3, and t = 0.4 respectively.

Table 3.1 shows the grid refinement result at T = 0.5 which shows second order accuracy

in L∞, L1 and L2 norms obtained when the immersed interface method is used. The linear

regression analysis of the convergence order in log-log scale for Example 2 at t = 0.5 is

shown in Fig. 3.6. The average convergence order for the Linfty, L1 and L2 errors are 2,

2.02 and 2.03, respectively.

Table 3.1: Accuracy of IIM for solving a linear advection equation with initial condition in
(3.4).

N L∞ error L∞ ratio L1 error L1 ratio L2 error L2 ratio
40 1.54e-3 – 6.81e-4 – 8.22e-4 –
80 3.91e-4 3.95 1.64e-4 4.15 2.00e-4 4.10
160 9.73e-5 4.02 4.02e-5 4.09 4.93e-5 4.07
320 2.42e-5 4.01 9.93e-6 4.04 1.22e-5 4.03
640 6.06e-6 4.00 2.47e-6 4.02 3.04e-6 4.01
1280 1.51e-6 4.00 6.16e-7 4.01 7.59e-7 4.01

Example 3

In this example, we consider the cases with the piecewise C∞ initial condition

described in (3.5) with which the solution of the linear advection equation has jumps in the

solution, the first and second derivatives of the solution. We employ the immersed interface

method (modified Lax-Wendroff method) to compute the partial differential equation for

T = 0.5. Fig. 3.7 shows the exact solution and computed solution at t = 0.1, t = 0.2,

t = 0.3, and t = 0.4 respectively. Table 3.2 shows the grid refinement result at T = 0.5

which shows second order accuracy in L∞, L1 and L2 norms obtained when the immersed

interface method is used. The linear regression analysis of the convergence order in log-log

scale for Example 3 at t = 0.5 is shown in Fig. 3.8. The average convergence order for the

Linfty, L1 and L2 errors are 1.99, 2.04 and 2.03, respectively.
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Figure 3.5: 1-D linear advection with v = 1 and initial condition in (3.4). Comparison of
computed solution and exact solution at t = 0.1, 0.2, 0.3, and 0.4 respectively. The solid
line represents the exact solution and the symbol ’o’ represents the numerical solutions.
The mesh size for the computation is h = 1/80.

Table 3.2: Accuracy of IIM for solving a linear advection equation with initial condition in
(3.5).

N L∞ error L∞ ratio L1 error L1 ratio L2 error L2 ratio
40 2.50e-3 – 4.45e-4 – 7.67e-4 –
80 6.48e-4 3.89 1.02e-4 4.37 1.80e-4 4.27
160 1.62e-4 4.00 2.47e-5 4.12 4.37e-5 4.11
320 4.03e-5 4.02 6.11e-6 4.04 1.08e-5 4.04
640 1.01e-5 4.00 1.51e-6 4.04 2.68e-6 4.03
1280 2.52e-6 4.00 3.76e-7 4.03 6.67e-7 4.02
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Figure 3.6: Linear regression analysis of the convergence order in log-log scale for 1-D linear
advection with v = 1 and initial condition in (3.4) at t = 0.5. The average convergence
order for the L∞, L1 and L2 errors are 2, 2.02 and 2.03, respectively.
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Figure 3.7: 1-D linear advection with v = 1 and initial condition in (3.5). Comparison of
computed solution and exact solution at t = 0.1, 0.2, 0.3, and 0.4 respectively. The solid
line represents the exact solution and the symbol ’o’ represents the numerical solutions.
The mesh size for the computation is h = 1/80.
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Figure 3.8: Linear regression analysis of the convergence order in log-log scale for 1-D linear
advection with v = 1 and initial condition in (3.5) at t = 0.5. The average convergence
order for the L∞, L1 and L2 errors are 1.99, 2.04 and 2.03, respectively.
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3.4 Conclusions

In this chapter, we have studied the accuracy of the immersed interface method for

solving a one dimensional linear advection equation with three different types of discontin-

uous initial conditions. The well-known Lax-Wendroff method is used for the regular grid

points. We have derived the correction terms for the irregular grid points near the moving

interface and the corrections due to the grid crossing as time evolves from tn to tn+1 when-

ever it is applicable. By enforcing the jump conditions across the interfaces, the immersed

interface method improves both the resolution and accuracy of the numerical solution to

the linear advection problem with moving interface comparing to other conventional meth-

ods. For the advection problem with piecewise constant initial condition, no errors at grid

points have been observed. The other two numerical experiments with piecewise C∞ initial

conditions have shown that second order accuracy is obtained.
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Chapter 4

IIM for a 1D Fluid Mixture Model

of Tissue Deformation with

Constant Physical Parameters

One of the main interests of this study is to use the immersed interface method

to solve the fluid mixture model of tissue deformation with discontinuous initial conditions.

As we discussed in Chapter 1, the immersed interface method is a fine method for solving a

variety of interface problems. Here we extend this method to handle some nonlinear system

combined with hyperbolic and elliptic equations.

Note that prior knowledge of the locations of the shocks (interfaces) is required to

apply the immersed interface method. The proper jump conditions are extremely important

in formulating the special finite difference scheme at the irregular grid points near the

interfaces. For a general fluid mixture model of tissue deformations with four physical

parameters, the drag coefficient ϕ, the contractility coefficient ψ, the swelling coefficient

σ, and the viscosity coefficient of the cell-fiber fraction M , may depend on time, space,

and θ. The system is very complicated to deduce the necessary jump conditions across

the interface from the partial differential equations to meet the need when the immersed

interface method is applied in order to achieve second order accurate solutions. Hence, in

this chapter, we consider implementing the immersed interface method to solve the most

simple case, a one dimensional fluid mixture model of tissue deformation with constant
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physical parameters:

θt + (vθ)x = 0,

vxx + (ψθ)x + (σ ln(1− θ))x = 0,
(4.1)

with a periodic boundary condition

θ(0, t) = θ(1, t), v(0, t) = v(1, t),

and a piecewise constant initial condition

θ0(x) =





θu, if α1 ≤ x ≤ α2,

θl, if 0 ≤ x < α1 or α2 < x ≤ 1,
(4.2)

where we use θl for the smaller constant (lower), and θu for the larger constant (upper),

and α1 and α2 indicate the locations of two interfaces, ψ and σ are constants.

4.1 Numerical Methods

In Chapter 2, we have already shown the work required to apply the immersed

interface method only to the elliptic equation for the velocity v. So we will not repeat

that explanation in this chapter. We focus here on how to apply the immersed interface

method to the hyperbolic equation. Applying the immersed interface method to only the

elliptic equation gives more accurate results than applying the conventional finite difference

methods to the system for both θ and v and eliminates non-physical oscillations (the Gibbs

phenomenon). But the order of accuracy is poor (first order accuracy when the errors are

measured 0.1 away from the interfaces) when the shock capturing method, WENO, along

with the Runge-Kutta method for time evolution, is used to solve the hyperbolic equation

for the volume fraction of the cell and fiber phase θ.

4.1.1 The Conventional Finite Difference Method for Regular Grid Points

As we discussed in Chapter 1, we cannot take advantage of the conventional two-

level second order accurate methods, such as Lax-Wendroff method, or Beam-Warming

method, to apply to the hyperbolic equation at the regular grid points due to a lack of

information of vt. In order to achieve a second order algorithm, we need a second order

method for the regular grid points. The three-level method, the leapfrog method [80, 81, 14]
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shown in (4.3), and two-step MacCormack’s method [86, 13], shown in (4.4), respectively,

are used for the regular grid points:

Θn+1
i −Θn−1

i

2∆t
= −(ΘV )n

i+1 − (ΘV )n
i−1

2∆x
, (4.3)

Θ∗
i = Θn

i −
∆t

∆x
((ΘV )n

i+1 − (ΘV )n
i ),

Θ∗∗
i = Θ∗

i −
∆t

∆x
((ΘV )∗i − (ΘV )∗i−1),

Θn+1
i =

1
2
(Θn

i + Θ∗∗
i ).

(4.4)

Note that we do not have information at −∆t. So we need a two-level method

to generate the numerical initial data when we use the leapfrog method. We use the first

order upwind scheme for the first time step.

Θn+1
j =





Θn
j − ∆t

h ((ΘV )n
j − (ΘV )n

j−1), if V n
j > 0,

Θn
j − ∆t

h ((ΘV )n
j+1 − (ΘV )n

j ), if V n
j < 0,

(4.5)

When the two-step MacCormack method is used, note that we need to solve the

elliptic equation at each step to maintain second order accuracy for the method. The method

would be of first order accuracy if we use V n instead of V ∗ at the second step. For the

proof, see Appendix A. This implies extra work to solve the system of difference equations

for velocity at each time step. When the viscosity coefficient of the cell-fiber fraction is

constant, as we study in this chapter, this does not increase computing cost a lot since we

can find the inverse of the coefficient matrix for the system of difference equations once at

the beginning and do the matrix-vector multiplication for later time steps. However, when

the viscosity coefficient of the cell-fiber fraction depends on θ, we need to find the inverse

of the coefficient matrix for the system of difference equations at each time step. Then

MacCormack’s method doubles the cost of the computation.

4.1.2 Applying the Immersed Interface Method

We apply the immersed interface method to the irregular grid points based on the

methods used for the regular grid points.

Recall that for the given system in (4.1) with chosen physical parameters and

the initial condition, the square-wave pulse in θ increases as time evolves (see numerical

examples in Chapter 2). This implies that the jump conditions change with time. We
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use [θ]k,n, [θt]k,n and [θtt]k,n to represent the jump conditions of θ and its first and second

derivatives at interface αk and time tn. So the interface relations are

θ(α+
k , tn) = θ(α−k , tn) + [θ]k,n,

θt(α+
k , tn) = θt(α−k , tn) + [θt]k,n,

(θv)x(α+
k , tn) = (θv)x(α+

k , tn) + [(θv)x]k,n,

θtt(α+
k , tn) = θtt(α+

k , tn) + [θtt]k,n.

(4.6)

To maintain accuracy for the volume fraction of cell and fiber phase θ near the

discontinuities, we apply the immersed interface method. The idea of the immersed interface

method mainly counts on Taylor expansion and builds jump conditions into the methods for

the irregular grid points near the interface. Note that correction terms to the conventional

numerical methods for the irregular grid points depend on those methods. The correction

terms are found via the Taylor series expansion by enforcing the jump conditions across the

interfaces.

Consider the upwind scheme. Suppose θn
i and vn

i , denoting the θ and v at the

grid point i and time tn, are known for all i in the domain. And suppose the interfaces are

located at x = αi, i = 1, 2, which lie in the intervals between xJi and xJi+1 at time tn;

see Fig. 4.1. There are three possible cases as time evolves: no crossing, crossing to left or

crossing to the right.

Figure 4.1: Diagram of the interface location for a two-level method. (a) no crossing, (b)
crossing a grid line as αi(t) increases with time, (c) crossing a grid line as αi(t) decreases
with time.

The irregular grid points for the upwind scheme are Ji or Ji + 1 at time tn.

Θn+1
l+1 −Θn

l+1

∆t
= − 1

∆x
((ΘV )n

l+1 − (ΘV )n
j ) + Cl+1, if V n

l+1 > 0, (4.7)

Θn+1
l −Θn

l

∆t
= − 1

∆x
((ΘV )n

l+1 − (ΘV )n
l ) + Cl, if V n

l < 0, (4.8)

where l = Ji.
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In order to find the correction terms we do the Taylor series expansion at the

interfaces. Consider the irregular point at l first. The local truncation error is

Tl =
θ(xl, t

n+1)− θ(xl, t
n)

∆t
+

1
∆x

((θv)(xl+1, t
n)− (θv)(xl, t

n))− Cl, if V n
l < 0, (4.9)

We want to make the magnitude of the truncation error as small as possible by choosing

the correction term. In order to obtain second order global accuracy, we need to ensure an

O(∆x) local truncation error at those irregular points [38]. Consider the Case (a) in Fig.

4.1 first. Expanding all the terms in (4.9) at αk and tn and applying the interface relations

in (4.6) gives

Tnc
l =

1
∆t

(θ(α−k , tn) + θx(α−k , tn)(xl − αk) + θt(α−k , tn)∆t + O((∆x)2, (∆t)2)

− (θ(α−k , tn) + θx(α−k , tn)(xl − αk) + O((∆x)2)))

+
1

∆x
(((θv)(α+

k , tn) + (θv)x(α+
k , tn)(xl+1 − αk) + O((∆x)2)

− ((θv)(α−k , tn) + (θv)x(α−k , tn)(xl − αk) + O((∆x)2)))− Cnc
l

=θt(α−k , tn) +
1

∆x
[θv]k,n +

xl+1 − αk

∆x
[(θv)x]k,n + (θv)x(α−k , tn)− Cnc

l + O(∆x,∆t)

=
1

∆x
[θv]k,n +

xl+1 − αk

∆x
[(θv)x]k,n − Cnc

l + O(∆x,∆t),

So it will suffice for first order accuracy if the correction term for grid points l is

Cnc
l =

1
∆x

[θv]k,n +
xl+1 − αk

∆x
[(θv)x]k,n. (4.10)

We get O(∆x,∆t) for the local truncation error at the irregular grid point xl.

Likewise, we can find the correction term for the irregular grid point xl+1 when

V n
l+1 > 0 by analyzing the local truncation error at that point if no grid line crossing

happens:

Cnc
l+1 =

1
∆x

[θv]k,n +
xl − αk

∆x
[(θv)x]k,n. (4.11)

Now consider the cases where grid line crossing happens as time evolves from tn

to tn+1. Note that Case (b) in Fig. 4.1 happens only when V n
l+1 > 0 and Case (c) happens

only when V n
l+1 < 0. Again, using Taylor series expansion at αk and tn and enforcing the

jump conditions across the interfaces, we obtain the following correction terms for l (Case

(c)) and l + 1 (Case (b))

Cc
l =

1
∆t

[θ]k,n +
xl − αk

∆t
[θx]k,n +

1
∆x

[θv]k,n +
xl − αk

∆x
[(θv)x]k,n, (4.12)
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Cc
l+1 = − 1

∆t
[θ]k,n − xl+1 − αk

∆t
[θx]k,n +

1
∆x

[θv]k,n +
xl+1 − αk

∆x
[(θv)x]k,n. (4.13)

Note that all the analysis above for the correction terms for the irregular grid

points when the upwind scheme is used are suitable when MacCormack’s method is used.

We need to use (4.10) or (4.12) for the first step and (4.11) or (4.13) for the second step as

time evolves from tn to tn+1.

The leapfrog method is a three-level method. Hence there are more possible cross-

ing cases than a two-level method; see Fig. 4.2. For Case (a), no crossing, the correction

comes from the space discretization. For Cases (b) - (g), different possible crossings happen,

and the correction comes from both the space and time discretization.

The irregular grid points for the leapfrog method are Ji and Ji + 1 at time tn.

Θn+1
l −Θn−1

l

2∆t
= − 1

2∆x
((ΘV )n

l+1 − (ΘV )n
l−1) + Cl, (4.14)

where l = Ji, Ji+1. The local truncation error at l is

Tl =
θ(xl, t

n+1)− θ(xl, t
n−1)

2∆t
+

1
2∆x

((θv)(xl+1, t
n)− (θv)(xl−1, t

n))− Cl.

Expanding all the terms and applying the interface relations for l = Ji gives

T
(a)
l =

1
2∆t

(θ(α−k , tn) + θx(α−k , tn)(xl − αk) + θt(α−k , tn)∆t +
1
2
θxx(α−k , tn)(xl − αk)2

+
1
2
θtt(α−k , tn)(∆t)2 + θxt(α−k , tn)(xl − αk)∆t)

− (θ(α−k , tn) + θx(α−k , tn)(xl − αk)− θt(α−k , tn)∆t +
1
2
θxx(α−k , tn)(xl − αk)2

+
1
2
θtt(α−k , tn)(∆t)2 − θxt(α−k , tn)(xl − αk)∆t) + O((∆x)2, (∆t)2)

+
1

2∆x
(((θv)(α+

k , tn) + (θv)x(α+
k , tn)(xl+1 − αk) +

1
2
(θv)xx(α+

k , tn)(xl+1 − αk)2

− ((θv)(α−k , tn) + (θv)x(α−k , tn)(xl−1 − αk) +
1
2
(θv)xx(α−k , tn)(xl−1 − αk)2)))− C

(a)
l

=
1

2∆x
[θv]k,n +

xl+1 − αk

2∆x
[(θv)x]k,n +

(xl+1 − αk)2

4∆x
[(θv)xx]k,n − C

(a)
l + O((∆x)2, (∆t)2).

So it will suffice for second order accuracy if the correction term for grid points Ji is

C
(a)
Ji

=
1

2∆x
[θv]k,n +

xl+1 − αk

2∆x
[(θv)x]k,n +

(xl+1 − αk)2

4∆x
[(θv)xx]k,n. (4.15)

We get O((∆x)2, (∆t)2) for the local truncation error at the irregular grid point xJi .



76

Figure 4.2: Diagram of the interface location for a three-level method. (a) no crossing, (b)
crossing a grid line as αi(t) increases with time at tn < τ2 < tn+1 only, (c) crossing a grid
line as αi(t) increases with time at tn−1 < τ1 < tn only, (d) crossing a grid line as αi(t)
increases with time at both tn−1 < τ1 < tn and tn < τ2 < tn+1, (e) crossing a grid line as
αi(t) decreases with time at tn < τ2 < tn+1 only, (f) crossing a grid line as αi(t) decreases
with time at tn−1 < τ1 < tn only, (g) crossing a grid line as αi(t) decreases with time at
both tn−1 < τ1 < tn and tn < τ2 < tn+1.
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Likewise, we can find the correction term for the irregular grid point xJi+1 by

analyzing the local truncation error at that point if no grid line crossing happens:

C
(a)
Ji+1 =

1
2∆x

[θv]k,n +
xl − αk

2∆x
[(θv)x]k,n +

(xl − αk)2

4∆x
[(θv)xx]k,n. (4.16)

Dealing with grid crossing

If there is no grid crossing (see Case (a) in Fig. 4.2) as time evolves from tn−1

to tn+1, the above work shows that the corrections to the leapfrog method come from the

space discretization for the irregular grid points (l = Ji, Ji + 1) and

θ(xl, t
n+1)− θ(xl, t

n−1)
2∆t

= θt(xl, t
n) + O((∆t)2)

However, if the interface crosses the grid line xJi when a shock travels to the left

or crosses the grid line xJi+1 when a shock travels to the right at some time τ as time

evolves (see Cases (b)-(g) in Fig. 4.2), then the time discretization need to be corrected.

Consider Case (b) first. Let D
(b)
l denote the correction from the time discretization, where

l = Ji, Ji + 1. The correction from the time discretization is needed for grid point Ji + 1

only, i.e., D
(b)
Ji

= 0, but D
(b)
Ji+1 6= 0. Expanding θ(xl, t

n+1), where l = Ji + 1 for simplicity,

in Taylor series at αk and tn gives

θ(xl, t
n+1) =θ(α−k , tn) + θx(α−k , tn)(xl − αk) + θt(α−k , tn)∆t +

1
2
θxx(α−k , tn)((xl − αk))2

+
1
2
θtt(α−k , tn)(∆t)2 + θxt(α−k , tn)(xl − αk)∆t + O((∆x)3, (∆t)3).

Applying the interface relations gives

θ(xl, t
n+1) =θ(α+

k , tn) + θx(α+
k , tn)(xl − αk) + θt(α+

k , tn)∆t +
1
2
θxx(α+

k , tn)((xl − αk))2

+
1
2
θtt(α+

k , tn)(∆t)2 + θxt(α−k , tn)(xl − αk)∆t + [∗]k,n + O((∆x)3, (∆t)3),

where

[∗]k,n =− [θ]k,n − [θx]k,n(xl − α)− [θt]∆t− 1
2
[θxx]k,n(xl − α)2

− 1
2
[θtt]k,n(∆t)2 − [θxt]k,n(xl − α)∆t

=− [θ]k,n − [θx]k,n(xl − α) + [(θv)x]∆t− 1
2
[θxx]k,n(xl − α)2

+
1
2
[(θv)xt]k,n(∆t)2 + [(θv)xx]k,n(xl − α)∆t.
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Now expanding θ(α+
k , tn), θx(α+

k , tn), θt(α+
k , tn), θxx(α+

k , tn), θtt(α+
k , tn), and θxt(α−k , tn) at

xl and tn gives

θ(xl, t
n+1) =θ(xl, t

n) + θx(xl, t
n)(αk − xl) +

1
2
θxx(xl, t

n)(αk − xl)2

+ θx(xl, t
n)(xl − αk) + θxx(xl, t

n)(αk − xl)(xl − αk)

+ θt(xl, t
n)∆t + θtx(xl, t

n)(αk − xl)∆t +
1
2
θxx(xl, t

n)((xl − αk))2

+
1
2
θtt(xl, t

n)(∆t)2 + θxt(xl, t
n)(xl − αk)∆t + [∗]k,n + O((∆x)3, (∆t)3)

=θ(xl, t
n) + θt(xl, t

n)∆t +
1
2
θtt(xl, t

n)(∆t)2 + [∗]k,n + O((∆x)3, (∆t)3),

Expanding θ(xl, t
n−1) in Taylor series at xl and tn gives

θ(xl, t
n−1) = θ(xl, t

n)− θt(xl, t
n)∆t +

1
2
θtt(xl, t

n)(∆t)2

Thus it follows that

θ(xl, t
n+1)− θ(xl, t

n−1)
2∆t

= θt(xl, t
n) +

[∗]k,n

2∆t
+ O((∆x)2, (∆t)2).

So the correction from the time discretization for Case (b) is

D
(b)
Ji+1 =

[∗]k,n

2∆t

=− [θ]k,n

2∆t
− xJi+1 − α

2∆t
[θx]k,n +

[(θv)x]
2

− (xJi+1 − α)2

4∆t
[θxx]k,n

+
∆t

4
[(θv)xt]k,n +

xJi+1 − α

2
[(θv)xx]k,n.

Hence, the correction for Case (b) is

C
(b)
Ji

=C
(a)
Ji

,

C
(b)
Ji+1 =C

(a)
Ji+1 + D

(b)
Ji+1,

(4.17)

Likewise, we can find the correction term for Cases (c) - (g) by analyzing the local truncation

errors:

C
(c)
Ji

=C
(a)
Ji

+ D
(c)
Ji

,

C
(c)
Ji+1 =C

(a)
Ji+1,

(4.18)

where

D
(c)
Ji

=− [θ]k,n

2∆t
− xJi − α

2∆t
[θx]k,n − [(θv)x]

2
− (xJi − α)2

4∆t
[θxx]k,n

+
∆t

4
[(θv)xt]k,n − xJi − α

2
[(θv)xx]k,n.
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C
(d)
Ji

=C
(a)
Ji

+ D
(c)
Ji

,

C
(d)
Ji+1 =C

(a)
Ji+1 + D

(b)
Ji+1,

(4.19)

C
(e)
Ji

=C
(a)
Ji

+ D
(e)
Ji

,

C
(e)
Ji+1 =C

(a)
Ji+1,

(4.20)

where

D
(e)
Ji

=
[θ]k,n

2∆t
+

xJi − α

2∆t
[θx]k,n − [(θv)x]

2
+

(xJi − α)2

4∆t
[θxx]k,n

− ∆t

4
[(θv)xt]k,n − xJi − α

2
[(θv)xx]k,n.

C
(f)
Ji

=C
(a)
Ji

,

C
(f)
Ji+1 =C

(a)
Ji+1 + D

(f)
Ji+1,

(4.21)

where

D
(f)
Ji+1 =

[θ]k,n

2∆t
+

xJi+1 − α

2∆t
[θx]k,n +

[(θv)x]
2

+
(xJi+1 − α)2

4∆t
[θxx]k,n

− ∆t

4
[(θv)xt]k,n +

xJi+1 − α

2
[(θv)xx]k,n.

C
(g)
Ji

=C
(a)
Ji

+ D
(e)
Ji

,

C
(g)
Ji+1 =C

(a)
Ji+1 + D

(f)
Ji+1,

(4.22)

Note that the PDE system does not supply the information about vt. So we

can not deduce [(θv)xt]k,n from the PDE system. And [(θv)xt]k,n is hard to approximate

correctly by numerical methods due to the explicit methods used in our study. So we

drop this term in our correction to make the local truncation errors at those irregular

grid points near the interfaces to be O((∆x)2,∆t). Away from the interfaces, the local

truncation errors for the finite difference methods (the leapfrog method and MacCormack’s

method) are O((∆x)2, (∆t)2). The correction terms will assure the local truncation errors

for the grid points near the interfaces are O((∆x)2,∆t). The global accuracy of the finite

difference method is second order, based on the fact that the local truncation errors of a

finite difference method on a boundary can be one order lower than those of interior points

without affecting global second order accuracy [38, 48]. But the above claim may not be

true for some problems with moving interface.
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4.2 Numerical Example

In our computations, we choose ψ = 1.8, σ = 1.0, and initially θu = 0.5, θu = 0,

α1 = 1/3 and α2 = 2/3. Since we do not know the exact solution of the system in (4.1),

we compare the computed results against the one computed from the finest grid which is

N = 1280.

4.2.1 The IIM and the Leapfrog Method

Fig. 4.3 and 4.4 show the solutions of θ and v solved by the immersed interface

method based on the leapfrog method for the system in (4.1) with M = 0.5, ϕ = 0, ψ = 1.8,

σ = 1, and θl = 0, θu = 0.5 at t = 0.1 (top left), t = 0.2 (top right), t = 0.3 (bottom left),

and t = 0.4 (bottom right). The solid line represents the solution computed with mesh size

h = 1/1280 and the symbol ’o’ represents the numerical solutions computed with the mesh

size h = 1/40. The computed solutions exhibit high resolution near the interfaces.

Fig. 4.5 shows the computed solutions (T = 0.1) solved by the immersed interface

method based on the leapfrog method. Those on the bottom row have high resolution near

the interface whereas, on the top row, the computed solutions solved by the leapfrog method

without enforcing the jump conditions at the irregular grid points have poor resolution near

the interface (oscillations at the discontinuities were observed in θ). Fig. 4.6 shows the

computed solutions solved by the immersed interface method based on the leapfrog method

for T = 5.

The grid refinement analysis has been completed to check the convergence rate of

our approach. We did not obtain second order convergence as we expected from the local

truncation error analysis. As discussed earlier in this chapter, we have second order local

truncation error at regular grid points and first order truncation error at a few irregular

grid points. We expected the one order lower truncation error at the irregular grid points

would not affect the global error. However, no good results have been obtained although the

numerical error with the immersed interface method has much smaller magnitude compared

to the method without enforcing the jump conditions to the stencils with interfaces. See

Tables 4.1 - 4.3.
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Figure 4.3: Comparison of solution of θ solved by the IIM based on the leapfrog method
for the system in (4.1) with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0, θu = 0.5 at
t = 0.1 (top left), t = 0.2 (top right), t = 0.3 (bottom left), and t = 0.4 (bottom right).
The solid line represents the solution computed with mesh size h = 1/1280 and the symbol
’o’ represents the numerical solutions computed with the mesh size h = 1/40.

Table 4.1: Accuracy of θ solved by the IIM based on the leapfrog method for the system in
(4.1) with constant physical parameters.

N L∞ error L∞ ratio L1 error L1 ratio L2 error L2 ratio
40 8.74e-4 – 2.84e-4 – 4.98e-4 –
80 1.33e-8 6.57e4 4.49e-9 6.33e4 7.72e-9 6.45e4
160 5.42e-9 2.45 1.80e-9 2.50 3.12e-9 2.48
320 1.09e-4 4.97e-5 3.58e-5 5.01e-5 6.25e-5 4.99
640 5.46e-5 2.00 1.80e-5 1.99 3.13e-5 2.00
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Figure 4.4: Comparison of solution of v solved by the IIM based on the leapfrog method
for the system in (4.1) with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0, θu = 0.5 at
t = 0.1 (top left), t = 0.2 (top right), t = 0.3 (bottom left), and t = 0.4 (bottom right).
The solid line represents the solution computed with mesh size h = 1/1280 and the symbol
’o’ represents the numerical solutions computed with the mesh size h = 1/40.

Table 4.2: Accuracy of v solved by the IIM based on the leapfrog method for the system in
(4.1) with constant physical parameters.

N L∞ error L∞ ratio L1 error L1 ratio L2 error L2 ratio
40 5.95e-5 – 2.13e-5 – 2.93e-5 –
80 1.26e-7 4.71e2 5.36e-8 3.97e2 6.43e-8 4.56e2
160 6.01e-8 2.10 2.52e-8 2.13 3.03e-8 2.12
320 7.63e-6 7.87e-3 2.63e-6 9.58e-3 3.63e-6 8.35e-3
640 3.81e-6 2.00 1.31e-6 2.01 1.81e-6 2.01
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Figure 4.5: Computed solutions of (4.1) with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0,
θu = 0.5 for T = 0.1. (1) – the solutions of θ (left) and v (right) solved via the leapfrog
method; (2) – the solutions of θ (left) and v (right) solved via the IIM based on leapfrog
method. Fine meshes, N = 640.

Table 4.3: Accuracy of θ solved by the leapfrog method for the hyperbolic equation in (4.1)
with constant physical parameters.

N L∞ error L∞ ratio L1 error L1 ratio L2 error L2 ratio
40 3.00e-2 – 2.75e-3 – 8.11e-3 –
80 4.39e-2 0.685 2.27e-3 1.21 9.68e-3 0.838
160 9.39e-2 0.467 1.64e-3 1.38 1.08e-2 0.895
320 2.66e-1 0.353 2.39e-3 0.685 2.16e-2 0.501
640 1.88e-1 1.42 1.57e-3 1.53 1.41e-2 1.53
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Figure 4.6: Computed solutions of (4.1) with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0,
θu = 0.5 for T = 5 solved by the IIM based on the leapfrog method (the solutions of θ:
left plot, and v: right plot). The dotted lines represent the initial data, dash-dotted lines
represent the solution at the final time (T = 5), and solid lines represent the intermediate
solution between initial and final time. Fine meshes, N = 640.

4.2.2 The IIM and MacCormack’s Method

As we discussed early in this chapter, MacCormack’s method doubles the work of

computing v in order to make the algorithm to be of second order accuracy for our problem.

To save the computing time, we used the formula for the exact solution of v we derived in

the Chapter 2 to compute the velocity and determine the jump conditions. We used this

information to solve the hyperbolic equation using the immersed interface method based on

MacCormack’s method.

Figs. 4.7 and 4.8 show the solutions of θ and v solved by the immersed interface

method based on MacCormack’s method for the system in (4.1) with M = 0.5, ϕ = 0,

ψ = 1.8, σ = 1, and θl = 0, θu = 0.5 at t = 0.1 (top left), t = 0.2 (top right), t = 0.3

(bottom left), and t = 0.4 (bottom right). The solid line represents the solution computed

with mesh size h = 1/1280 and the symbol ’o’ represents the numerical solutions computed

with the mesh size h = 1/40. The computed solutions show good resolution near the

interfaces. However, oscillations are observed near the interface when the figure is enlarged

(see Fig. 4.9). The oscillation develops quickly with time. This may be due to the nature

of MacCormack’s method: taking the simple averaging process of MacCormack’s method

after the two-step predictor-corrector procedure. It will introduce big errors whenever

the interface crosses grid lines. This could be approved by the grid refinement analysis
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informally. See the Table 4.4. Note that finer mesh has more opportunities to experience

the grid line crossing. Hence the simple averaging process will bring in more errors for the

grid points near the interfaces.
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Figure 4.7: Comparison of solution of θ solved by the IIM based on MacCormack’s method
for the system in (4.1) with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0, θu = 0.5 at
t = 0.1 (top left), t = 0.2 (top right), t = 0.3 (bottom left), and t = 0.4 (bottom right).
The solid line represents the solution computed with mesh size h = 1/1280 and the symbol
’o’ represents the numerical solutions computed with the mesh size h = 1/40.

Fig. 4.10 shows solutions computed by regular MacCormack’s method (left) and

the immersed interface method based on MacCormack’s method (right) for T = 5. Unfor-

tunately, non-physical oscillations are observed in both algorithms. However, the immersed

interface method obviously damps down the oscillation more than regular MacCormack’s
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Figure 4.8: Comparison of solution of v solved by the IIM based on MacCormack’s method
for the system in (4.1) with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0, θu = 0.5 at
t = 0.1 (top left), t = 0.2 (top right), t = 0.3 (bottom left), and t = 0.4 (bottom right).
The solid line represents the solution computed with mesh size h = 1/1280 and the symbol
’o’ represents the numerical solutions computed with the mesh size h = 1/40.

Table 4.4: Accuracy of θ solved by the IIM based on MacCormack’s method for the hyper-
bolic equation in (4.1) with constant physical parameters.

N L∞ error L∞ ratio L1 error L1 ratio L2 error L2 ratio
40 8.74e-4 – 2.84e-4 – 4.98e-4 –
80 2.65e-4 3.30 6.64e-6 42.8 4.18e-5 11.9
160 4.19e-4 0.633 8.53e-6 0.778 5.53e-5 0.756
320 3.10e-3 0.135 6.86e-5 0.124 2.76e-4 0.200
640 2.59e-3 1.20 4.16e-5 1.65 2.25e-4 1.23
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Figure 4.9: Enlargement of simulations from Fig. 4.7. Partial computed solution of θ near
the interface solved by the IIM based on MacCormack’s method for the system in (4.1)
with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and θl = 0, θu = 0.5 at t = 0.1 (top left), t = 0.2
(top right), t = 0.3 (bottom left), and t = 0.4 (bottom right). The solid line represents the
solution computed with mesh size h = 1/1280 and the symbol ’o’ represents the numerical
solutions computed with the mesh size h = 1/40. Oscillations are observed in the enlarged
plots.
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Figure 4.10: Computed solutions θ of (4.1) with M = 0.5, ϕ = 0, ψ = 1.8, σ = 1, and
θl = 0, θu = 0.5 for T = 5 solve by two algorithms. Left: using MacCormack’s method;
right: using the IIM based on MacCormack’s method. The dotted lines represent the initial
data, dash-dotted lines represent the solution at the final time (T = 5), and solid lines
represent the intermediate solution between initial and final time. Fine meshes, N = 640.
Oscillations are observed.

4.3 Conclusions

In this chapter, the immersed interface method has been applied to a one dimen-

sional fluid mixture model of tissue deformations with all constant physical parameters

based on the three-level leapfrog method and two-step MacCormack’s method. Deriving

the jump conditions for both hyperbolic and elliptic equations is necessary and important.

We have found out the correction terms for different cases corresponding to the different

conventional finite difference methods used for the regular grid points away from the in-

terfaces. The solutions of high resolution near the interface have been obtained. However,

we did not get solutions of second order accuracy as we expected from the local truncation

error analysis. And when MacCormack’s method is used, oscillation is observed near the

interface, and the oscillation developed with time. The immersed interface method mostly

damps down the oscillation.
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Chapter 5

A 2D Fluid Mixture Model of

Tissue Deformations

5.1 Introduction

In this chapter, we consider a three dimensional mathematical model developed in

[2], [3] for modelling tissue deformations in two dimensions. The tissues are considered to be

composed of two inter-penetrating material phases: an aqueous phase and a cell-fiber phase.

The aqueous phase is composed of all the water and dissolved extracellular components of

the tissues. The cell-fiber phase consists of the cells and the remaining, generally fibrous,

extracellular components. It is assumed that: (1) the two phases occupy complementary

portions of the space, (2) the aqueous phase behaves as a Stokes fluid, (3) the stresses in the

cell-fiber phase are dissipated by permanent deformation on the relevant time scale and can

also be treated as a Stokes flow. These assumptions lead to the following three dimensional

system of partial differential equations:

∂θ

∂t
+∇ · (θV ) = 0, (5.1)

∇ · (θV + (1− θ)W ) = 0, (5.2)

∇ · (θ(λ(∇ · V )I + 2µE))− θ∇p− ϕ(θ)(V −W ) = ∇(θ(Υ− ψ)), (5.3)

−(1− θ)∇p− ϕ
θ

1− θ
(V −W ) = ∇((1− θ)Υ). (5.4)

where θ is volume fraction of cells and fibers, V is velocity of cell-fiber phase, W is velocity

of aqueous phase, p is interphase pressure, ϕ is specific drag coefficient, ψ is contractility
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coefficient, Υ is the solvation stress. µ is specific shear modulus of viscosity of the cell-fiber

fraction, λ is specific bulk modulus of viscosity of cell-fiber phase, I is the identity tensor,

and E = 1
2(∇V + (∇V )T ) is the strain rate tensors for the cell-fiber phase.

Note that 0 ≤ θ ≤ 1 and parameters ϕ, µ, λ, ψ, Υ and h are nonnegative. Also

note that these parameters may vary in space and change with the time, and they may

explicitly depend on θ.

Note also that either phase alone, θ = 0 or 1, would be incompressible. But

when the phases are mixed, only the mixture is incompressible; the individual phases in the

mixture are compressible.

The boundary conditions (BC) are given as follows

V |∂Ω = W |∂Ω = 0 (5.5)

∇θ · n̂|∂Ω = 0 (5.6)

∇p · n̂|∂Ω = 0 (5.7)

Three types of initial condition (IC) are considered in this study. One is with

continuous data as follows

θ(x, y, 0) = θ0(1 + ε cos(πx) cos(πy)), (5.8)

where we choose ε = 0.01 for the computations. The second type of initial condition is with

random perturbation as follows

θ(x, y, 0) = θ0(1 +
j=nqf∑

j=1

εj cos(λ1jπx) cos(λ2jπy)), (5.9)

where λij = integer of (namp ∗ ζij), nqf and namp are integers, εj and ζij are the random

numbers generated from a uniform (0, 1) distribution.

The third type of initial condition is with random perturbation at each grid point

as follows

θ(xi, yj , 0) = θ0(1 +
k=nqf∏

k=1

(ζk − 0.5)), (5.10)

where nqf is integer, and ζk is the random number generated from a uniform (0, 1) distri-

bution.

A reasonable range of dimensional and non-dimensional parameters is presented

in Table 5.1.
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Table 5.1: Expected ranges of parameter values [2, 3].

parameter symbol units range
specific drag coefficient ϕ kg/m3-sec 1012 - 1014

tissue viscosity µ, λ kg/m-sec 105

specific contractility coefficient ψ kg/m-sec2 103 - 104

thickness of gel h cm ∼ 0.3
volume fraction of cell-fiber phase θ0 - 0.1 - 0.3
gel size xf , yf cm 5

The mathematical model is a non-linear, mixed (hyperbolic and elliptic) system of

differential equations. Shocks will be developed in the time evolution process. The purpose

of this study is to investigate the stability of the equilibria, and to show the utility of our

numerical methods in simulating this stiff pattern-formation problem.

5.1.1 Deriving Body Force

In this chapter, we will focus on simulating pattern formation by contractile force

in a gel (two dimensions). Starting with the three dimensional system, we need to find the

proper body force by reducing the system to two dimensions with a lubrication approxima-

tion assuming the third dimension is shallow [87], [88], [89]. Solving (5.4) for W , one gets

the following expression

W = V − (1− θ)∇p +∇((1− θ)Υ)
ϕ(θ)

.

Substituting the above expression into (5.2),

∇ ·
(

V − (1− θ)2∇p + (1− θ)∇(1− θ)Υ)
ϕ(θ)

)
= 0. (5.11)

Combining (5.3) and (5.4), one can obtain

∇ · (θ(λ(∇ · V )I + 2µE))−∇p = ∇(Υ− θψ). (5.12)

Let the thickness of the gel be h(x, y), and V = (v1, v2, v3). One can scale z, v3 to

z = δz′, v3 = δv′3 with δ ¿ 1.

The following boundary conditions were used in derivation

(v1, v2, v3)(z′ = 0) = (0, 0, 0), no motion,
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∂v1

∂z
(z′ = h) =

∂v2

∂z
(z′ = h) = 0, no shear stress,

∂v3

∂x
(z′ = h) =

∂v3

∂y
(z′ = h) = 0, no ⊥ stress.

Note that ∇ =
(

∂
∂x , ∂

∂y , ∂
∂z

)
=

(
∂
∂x , ∂

∂y , 1
∂

∂
∂z′

)
. We apply the scaling to the simplified

system. The steady form of (5.1) becomes

∂

∂x
(θv1) +

∂

∂y
(θv2) +

∂

∂z′
(θv′3) = 0. (5.13)

Equation (5.11) becomes

∂v1

∂x
+

∂v2

∂y
+

∂v′3
∂z′

− ∂

∂x

{
1

ϕ(θ)

[
(1− θ)2

∂p

∂x
+ (1− θ)

∂

∂x
((1− θ)Υ)

]}

− ∂

∂y

{
1

ϕ(θ)

[
(1− θ)2

∂p

∂y
+ (1− θ)

∂

∂y
((1− θ)Υ)

]}

− 1
δ2

∂

∂z′

{
1

ϕ(θ)

[
(1− θ)2

∂p

∂z′
+ (1− θ)

∂

∂z′
((1− θ)Υ)

]}
= 0.

(5.14)

Equation (5.12) becomes

∇·





θ




λ

(
∂v1

∂x
+

∂v2

∂y
+

∂v′3
∂z′

)
I + 2µ




∂v1
∂x

(
∂v1
∂y

+
∂v2
∂x

)

2

1
δ

∂v1
∂z′ +δ

∂v′3
∂x

2
∂v1
∂y

+
∂v2
∂x

2
∂v2
∂y

1
δ

∂v2
∂z′ +δ

∂v′3
∂y

2

1
δ

∂v1
∂z′ +δ

∂v′3
∂x

2

1
δ

∂v2
∂z′ +δ

∂v′3
∂y

2
∂v′3
∂z′











−




∂p
∂x
∂p
∂y

1
δ

∂p
∂z′


 =




∂(Υ−θψ)
∂x

∂(Υ−θψ)
∂y

1
δ

∂(Υ−θψ)
∂z′


 .

(5.15)

Expanding (5.15), one obtains

∂

∂x

{
θλ

(
∂v1

∂x
+

∂v2

∂y
+

∂v′3
∂z′

)}
+ 2

∂

∂x

{
θµ

∂v1

∂x

}
+

∂

∂y

{
θµ

(
∂v2

∂x
+

∂v1

∂y

)}

+
1
δ

∂

∂z′

{
θµ

(
1
δ

∂v1

∂z′
+ δ

∂v′3
∂x

)}
− ∂p

∂x
=

∂

∂x
(Υ− θψ),

(5.16)

∂

∂y

{
θλ

(
∂v1

∂x
+

∂v2

∂y
+

∂v′3
∂z′

)}
+

∂

∂x

{
θµ

(
∂v2

∂x
+

∂v1

∂y

)}
+ 2

∂

∂y

{
θµ

∂v2

∂y

}

+
1
δ

∂

∂z′

{
θµ

(
1
δ

∂v2

∂z′
+ δ

∂v′3
∂y

)}
− ∂p

∂y
=

∂

∂y
(Υ− θψ),

(5.17)
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and

1
δ

∂

∂z′

{
θλ

(
∂v1

∂x
+

∂v2

∂y
+

∂v′3
∂z′

)}
+

∂

∂x

{
θµ

(
δ
∂v′3
∂x

+
1
δ

∂v1

∂z′

)}
+

2
δ

∂

∂z′

{
θµ

∂v′3
∂z′

}

∂

∂y

{
θµ

(
1
δ

∂v2

∂z′
+ δ

∂v′3
∂y

)}
− 1

δ

∂p

∂z′
=

1
δ

∂

∂z′
(Υ− θψ).

(5.18)

Equation (5.18) can be simplified further by multiplying δ

∂

∂z′

{
θλ

(
∂v1

∂x
+

∂v2

∂y
+

∂v′3
∂z′

)}
+

∂

∂x

{
θµ

(
δ2 ∂v′3

∂x
+

∂v1

∂z′

)}
+ 2

∂

∂z′

{
θµ

∂v′3
∂z′

}

∂

∂y

{
θµ

(
∂v2

∂z′
+ δ2 ∂v′3

∂y

)}
− ∂p

∂z′
=

∂

∂z′
(Υ− θψ).

(5.19)

The only way that (5.16), (5.17), and (5.19) will not reduce to a triviality as δ → 0 is if p

is rescaled with 1
δ2 . Thus we write p = p′

δ2 and, to lowest order, the equations are

∂

∂x
(θv1) +

∂

∂y
(θv2) +

∂

∂z′
(θv′3) = 0, (5.20)

∂

∂z′

{
1

ϕ(θ)
(1− θ)2

∂p′

∂z′

}
= 0, (5.21)

∂

∂z′

{
θµ

∂v1

∂z′

}
− ∂p′

∂x
= 0, (5.22)

∂

∂z′

{
θµ

∂v2

∂z′

}
− ∂p′

∂y
= 0, (5.23)

∂p′

∂z′
= 0. (5.24)

Note that (5.21) is always true due to (5.24). From (5.24), we know that

p′ = p′(x, y). (5.25)

By integrating (5.22) over z′ from 0 to h(x, y), we obtain

θµ
∂v1

∂z′
=

∂p′

∂x
z′ + c1.

Applying the boundary condition that ∂v1
∂z (z = h) = 0, we can obtain c1 = −∂p′

∂x h. So

∂v1

∂z′
=

1
θµ

∂p′

∂x
(z′ − h).

Assume µ is a constant, and θ = θ(x, y, t). Integrating the above expression over z′ from 0

to h(x, y) again, we obtain

v1 =
∫ h

0

1
θµ

∂p′

∂x
(z′ − h)dz′ =

1
θµ

∂p′

∂x

[
(z′)2

2
− hz′

]h

0

.
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Hence,

v1 =
1
θµ

∂p′

∂x

[
−(h)2

2

]
. (5.26)

Likewise, we can obtain

v2 =
1
θµ

∂p′

∂y

[
−(h)2

2

]
. (5.27)

Rewriting (5.26) and (5.27), we get

−



∂p′
∂x
∂p′
∂y


 =

2θµ

h2


 v1

v2


 . (5.28)

Hence, we find the proper body force term, i.e., 2µ
h2 θV .

Taking the body force into account and ignoring solvation stress, one obtains the

two dimensional version model of tissue deformations as follows:

∂θ

∂t
+∇ · (θV ) = 0, x0 < x < xf , y0 < x < yf (5.29)

∇ · (θV + (1− θ)W ) = 0, (5.30)

∇ · (θ(λ(∇ · V )I + 2µE))− θ∇p− ϕ(θ)(V −W ) = ∇(−θψ) +
2µ

h2
θV , (5.31)

(1− θ)∇p− ϕ
θ

1− θ
(V + W ) = 0. (5.32)

5.1.2 Simplification

Solving (5.32), one can obtain

W = V − (1− θ)2

ϕθ
∇p.

W can be eliminated entirely by plugging the expression of W into (5.30)

∇ ·
(

V − (1− θ)3

ϕθ
∇p

)
= 0. (5.33)

Note that (5.31) and (5.32) can be combined to give

∇ · (θ(λ(∇ · V )I + 2µE))−∇p = −∇(θψ) +
2µ

h2
θV . (5.34)

So the two dimensional version system can be summarized as

∂θ

∂t
+∇ · (θV ) = 0, x0 < x < xf , y0 < y < yf , (5.35)

∇ ·
(

V − (1− θ)3

ϕθ
∇p

)
= 0, (5.36)

∇ · (θ(λ(∇ · V )I + 2µE))−∇p = −∇(θψ) +
2µ

h2
θV . (5.37)
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5.1.3 Nondimensionalization

We nondimensionalize the model (5.35) - (5.37) by letting t = t̃t0, X = X̃X0 ,

V = Ṽ V0 = Ṽ X0
t0

, p = p̃p0, ψ = ψ̃p0, where t̃, X̃, Ṽ , p̃, and ψ̃ are nondimensional variables,

and t0, X0, V0, and p0 are dimensional constants. Note that ∇ = 1
X0
∇̃, ∂θ

∂t = ∂θ
∂t̃

∂t̃
∂t = 1

t0
∂θ
∂t̃

.

Similarly, ∇p = p0

X0
∇̃p̃. The nondimensional model is then written

∂θ

∂t̃
+ ∇̃ · (θṼ ) = 0, (5.38)

∇̃ ·
(

Ṽ − (1− θ)3

θ

(
p0t0
ϕX2

0

)
∇̃p̃

)
= 0, (5.39)

∇̃ · (θ( λ

p0t0
(∇̃ · Ṽ )I +

2µ

p0t0
Ẽ))− ∇̃p̃ = −∇̃(θψ̃) +

2µX2
0

p0t0h2
θṼ , (5.40)

where Ẽ = 1
2(∇̃ṽ + (∇̃ṽ)T ).

Note that p0t0
ϕX2

0
, λ

p0t0
, 2µ

p0t0
, and 2µX2

0
p0t0h2 must be nondimensional ratios.

Choose X0, p0, t0 to simplify above nondimensional ratios. Choose X0 = ~ =

average of h, then p0t0
ϕ~2 , λ

p0t0
, 2µ

p0t0
, and 2µ

p0t0
~2
h2 . Now choose either p0t0 = λ or p0t0 = ϕ~2 or

p0t0 = 2µ. Pick p0t0 = λ, then
p0t0
ϕ~2

=
λ

ϕ~2
≡ β,

2µ

p0t0
=

2µ

λ
≡ α,

where β is known as dimensionless permeability. Dropping tildes, the nondimensional model

is then written
∂θ

∂t
+∇ · (θV ) = 0, (5.41)

∇ ·
(

V − (1− θ)3

θ
β∇p

)
= 0. (5.42)

∇ · (θ((∇ · V )I + αE))−∇p = −∇(θψ) + α(
~
h

)2θV , (5.43)

This nondimensional model, (5.41) - (5.43), has only three dimensionless parameters.

5.1.4 Stability Analysis

There are four physical coefficients, ϕ, µ, λ and ψ in the system, (5.35) - (5.37). In

our study, we assume µ, λ and ϕ are constants. We assume ψ is nonlinear and θ dependent

only. A possible distribution of ψ is ψ = ψ̄ sin(nπθ) with ψ̄ a constant. See Fig. 5.1. In
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this figure, the distributions with n = 1.1, n = 1.2, n = 1.3, and n = 1.4, respectively, are

shown. To understand the behavior of the system, (5.35) - (5.37), linear stability analysis

was completed.
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Figure 5.1: Possible distribution of ψ

In 2D, V =


 u

v


. We write the system, (5.35) - (5.37), in detail under Cartesian

coordinate system
∂θ

∂t
+

∂

∂x
(θu) +

∂

∂y
(θv) = 0, (5.44)

∂u

∂x
+

∂v

∂y
− ∂

∂x

(
(1− θ)3

ϕθ

∂p

∂x

)
− ∂

∂y

(
(1− θ)3

ϕθ

∂p

∂y

)
= 0, (5.45)

∂

∂x

[
θ

(
(λ + 2µ)

∂u

∂x
+ λ

∂v

∂y

)]
+

∂

∂y

[
θµ

(
∂u

∂y
+

∂v

∂x

)]
− ∂p

∂x
= − ∂

∂x
(θψ) +

2µ

h2
θu, (5.46)

∂

∂x

[
θµ

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂y

[
θ

(
λ

∂u

∂x
+ (λ + 2µ)

∂v

∂y

)]
− ∂p

∂y
= − ∂

∂y
(θψ) +

2µ

h2
θv. (5.47)

One of the steady states of the model, which can be easily verified, is as follows



θ

u

v

p




=




θ0

u0

v0

p0




=




θ0

0

0

0




, (5.48)

where θ0 is a constant.

Theorem: Given the system, (5.35) - (5.37), with µ, λ, ϕ and h of constants and ψ

depending on θ only, the system is unstable to spatially periodic disturbances if

ψ|θ0 + θ0
∂ψ

∂θ
|θ0 > 0. (5.49)
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Sketch of the proof. Linearizing the system at the steady state to first order of a small

quantity ε, i.e., letting



θ

u

v

p




=




θ0

0

0

0




+ ε




θ1

u1

v1

p1




, 0 < ε << 1, (5.50)

and plugging it into (5.44), ignoring the higher order term O(ε2), we get the simplified form

for O(ε) term
∂θ1

∂t
+ θ0

∂(u1)
∂x

+ θ0
∂(v1)
∂y

= 0 (5.51)

Expanding the term of (1−θ)3

ϕθ via Taylor expansion, we get

(1− θ)3

ϕθ
=

(1− θ0)3

ϕθ0
+ O(ε),

where ϕ is assumed as a constant. Substituting above equation along with (5.50) into (5.45)

and ignoring the higher order terms similar with what we did to (5.44), we get the O(ε)

terms
∂u1

∂x
+

∂v1

∂y
− (1− θ0)3

ϕθ0

∂2p1

∂x2
− (1− θ0)3

ϕθ0

∂2p1

∂y2
= 0. (5.52)

Now expanding ψ at the steady state via Taylor expansion, we get

ψ = ψ(θ0) +
∂ψ

∂θ
(θ0)εθ1 + O(ε2).

Substituting the above expression along with (5.50) into (5.46) and ignoring the higher

order terms similar to what we did to (5.44), we get the O(1) terms

∂

∂x
(θ0ψ0) = 0, (5.53)

which is true if ψ depends on θ only, and O(ε) terms

θ0(λ + 2µ)
∂2u1

∂x2
+ θ0µ

∂2u1

∂y2
+ θ0(λ + µ)

∂

∂x

∂v1

∂y
− ∂p1

∂x

= −θ0
∂

∂x

(
∂ψ

∂θ
(θ0)θ1

)
− ∂

∂x
(ψ(θ0)θ1) +

2µ

h2
θ0u1.

(5.54)

Similarly, substituting the above expression along with (5.50) into (5.47), we get

the O(1) terms
∂

∂y
(θ0ψ0) = 0, (5.55)
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and O(ε) terms

θ0(λ + µ)
∂

∂x

∂u1

∂y
+ θ0µ

∂2v1

∂x2
+ θ0(λ + 2µ)

∂2v1

∂y2
− ∂p1

∂y

= −θ0
∂

∂y

(
∂ψ

∂θ
(θ0)θ1

)
− ∂

∂y
(ψ(θ0)θ1) +

2µ

h2
θ0v1.

(5.56)

For the purpose of doing linear stability analysis, we assume that



θ1

u1

v1

p1




=




c1

c2

c3

c4




eγt+ik1x+ik2y, (5.57)

where c1, c2 c3 and c4 are constants and k1 and k2 are real.

Substituting (5.57) into (5.51), (5.52), (5.54) and (5.56), we obtain the following

linearized system 


γ ik1θ0 ik2θ0 0

0 ik1 ik2 F

A B C ik1

D C E ik2







c1

c2

c3

c4




=




0

0

0

0




, (5.58)

where

A = −i

(
θ0

∂ψ

∂θ
(θ0) + ψ(θ0)

)
k1,

B = θ0

(
(λ + 2µ)k2

1 + µk2
2 +

2µ

h2

)
,

C = θ0(λ + µ)k1k2,

D = −i

(
θ0

∂ψ

∂θ
(θ0) + ψ(θ0)

)
k2,

E = θ0

(
µk2

1 + (λ + 2µ)k2
2 +

2µ

h2

)
,

F =
(1− θ0)3

ϕθ0
(k2

1 + k2
2).

To obtain non-trivial solutions to the above system, γ needs to satisfy

γ =
iθ0F (k1(AE − CD)− k2(AC −BD))
BEF − C2F + k2

1E + k2
2B − 2k1K2C

. (5.59)
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It follows that there exists a family of solutions to (5.58)



c1

c2

c3

c4




=




Fθ0
γ

− ik1k2γ+iCFγ+k2AFθ0

γ(k1C−k2B)

− ik2
1γ+iBFγ+k1AFθ0

γ(k1C−k2B)

1




c4 (5.60)

Substituting the expressions of A, B, C, D, E and F into (5.59), we obtain

γ =
(1− θ0)3(k2

1 + k2
2)

(
ψ(θ0) + θ0

∂ψ
∂θ (θ0)

)

(1− θ0)3
[
(λ + 2µ)(k2

1 + k2
2) + 2µ

h

]
+ ϕ

(5.61)

Note as a result that γ is always real and γ(k2
1 + k2

2) is bounded. Note also that (1− θ)3 is

always greater than 0 when 0 < θ < 1, k2
1 + k2

2 > 0, λ, µ, ϕ, and h are positive. Hence the

sign of γ depends on the following expression:

ξ = ψ(θ0) + θ0
∂ψ

∂θ
(θ0). (5.62)

In the range where γ > 0 patterns will grow. γ > 0 when

ψ(θ0)
θ0

> −∂ψ

∂θ
(θ0)

Note that the above inequality depends only upon the values of θ0, ψ(θ0) and ∂ψ
∂θ (θ0). From

this relationship, we can find the region of the θ for a given function of ψ in which the

pattern increases.

5.2 Numerical Methods

The system of equations is a combination of hyperbolic equation and elliptic equa-

tions. It shows that state variables, u, v and p, are implicitly dependent on t. Numerical

computation is based on the nondimemsional system, (5.41) - (5.43).

We utilized the upwind scheme in CLAWPACK [13, 90, 75], to solve the hyperbolic

equation (5.41) for volume fraction of cells and fibers θ. The central finite difference method,

known as a second order scheme, has been used to solve the elliptic equations, (5.42) and

(5.43), for velocities and pressure. The multigrid DMGD9V solver [91, 92] has been used

to solve for the system of difference equations for velocity.
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Following is the upwind scheme for two dimensional hyperbolic equation:

Θn+1
i,j =





Θn
i,j − ∆t

∆x((ΘU)n
i+1,j − (ΘU)n

i,j)− ∆t
∆y ((ΘV )n

i,j+1 − (ΘV )n
i,j), if Un

i,j < 0, V n
i,j < 0,

Θn
i,j − ∆t

∆x((ΘU)n
i+1,j − (ΘU)n

i,j)− ∆t
∆y ((ΘV )n

i,j − (ΘV )n
i,j−1), if Un

i,j < 0, V n
i,j > 0,

Θn
i,j − ∆t

∆x((ΘU)n
i,j − (ΘU)n

i−1,j)− ∆t
∆y ((ΘV )n

i,j+1 − (ΘV )n
i,j), if Un

i,j > 0, V n
i,j < 0,

Θn
i,j − ∆t

∆x((ΘU)n
i,j − (ΘU)n

i−1,j)− ∆t
∆y ((ΘV )n

i,j − (ΘV )n
i,j−1), if Un

i,j > 0, V n
i,j > 0,

(5.63)

where Θn
i,j is the numerical solution of volume fraction at time step n and mesh grid (xi, yj),

Un
i,j , V

n
i,j are the numerical solution of velocities at time step n and mesh grid (xi, yj), ∆x

and ∆y are the mesh sizes and ∆t is the time step size.

The central finite difference method, known as a 2nd order scheme, has been used

to solve for the velocities and pressure. We apply this scheme to (5.42) and (5.43):

α̃i−1/2,j

(∆x)2
Ui−1,j +

α̃i+1/2,j

(∆x)2
Ui+1,j +

β̃i,j−1/2

(∆y)2
Ui,j−1 +

β̃i,j+1/2

(∆y)2
Ui,j+1

−(
α̃i−1/2,j + α̃i+1/2,j

(∆x)2
+

β̃i,j−1/2 + β̃i,j+1/2

(∆y)2
+2β̃i,j)Ui,j

=
Pi+1,j − Pi−1,j

2∆x
− Θψi+1,j −Θψi−1,j

2∆x

− 1
4∆x∆y

((γ̃i+1,j + β̃i,j+1)Vi+1,j+1 − (γ̃i+1,j+β̃i,j−1)Vi+1,j−1

−(γ̃i−1,j + β̃i,j+1)Vi−1,j+1 + (γ̃i−1,j + β̃i,j−1)Vi−1,j−1),

(5.64)

β̃i−1/2,j

(∆x)2
Vi−1,j +

β̃i+1/2,j

(∆x)2
Vi+1,j +

α̃i,j−1/2

(∆y)2
V i, j − 1 +

α̃i,j+1/2

(∆y)2
Vi,j+1

−(
β̃i−1/2,j + β̃i+1/2,j

(∆x)2
+

α̃i,j−1/2 + α̃i,j+1/2

(∆y)2
+2β̃i,j)Vi,j

=
Pi,j+1 − Pi,j−1

2∆y
− Θψi,j+1 −Θψi,j−1

2∆y

− 1
4∆x∆y

((β̃i+1,j + γ̃i,j+1)Ui+1,j+1 − (β̃i+1,j+γ̃i,j−1)Ui+1,j−1

−(β̃i−1,j + γ̃i,j+1)Ui−1,j+1 + (β̃i−1,j + γ̃i,j−1)Ui−1,j−1),

(5.65)

ρi−1/2,j

(∆x)2
Pi−1,j +

ρi+1/2,j

(∆x)2
Pi+1,j +

ρi,j−1/2

(∆y)2
Pi,j−1 +

ρi,j+1/2

(∆y)2
Pi,j+1

−(
ρi−1/2,j + ρi+1/2,j

(∆x)2
+

ρi,j−1/2 + ρi,j+1/2

(∆y)2
)Pi,j

=
Ui+1,j − Ui−1,j

2∆x
+

Vi,j+1 − Vi,j−1

2∆y
,

(5.66)
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where α̃ = Θ(1 + α), β̃ = Θα/2, γ̃ = Θ and ρ = (1−Θ)3

Θ β.

Fig. 5.2 shows the numerical solutions for θ, u, v and p at t = 0, 3, 6, 9, and

12 (mesh size is 82 by 82) for the case with piecewise constant initial condition which is

comparable with the experimental result for a bioartificial tendon shown in Fig. 1.1 [1] in

which the cells contract the gel over time.

5.3 Numerical Examples

The simulations have been done on the nondimensional system, (5.41) - (5.43),

with a variety of initial conditions. In all the computation, we choose α = 2, β = 50/9, and

ψ = 0.5 sin(1.2πθ). And we consider the problem in the domain 0 < x < xf , 0 < y < 5,

where xf = 5 or xf = 15.

5.3.1 Cases with Regular Initial Data

In all computations under this subsection, we consider the problem with initial

conditions described in (5.8).

We employ a central finite difference scheme to set up the discrete system for u,v

and p at each time step. Fig. 5.3 - Fig. 5.4 show the numerical solutions of θ, u, v and p at

t = 0, 5, 10, 15 and 20 (mesh size is 82 by 82) for the system (5.41) -(5.43) with the initial

condition in (5.8), in which θ0 = 0.2 and ε = 0.01. The algorithm crashed when t > 49.1

presumably due to the large gradient of θ. We do the calculation for the case with regular

initial condition in order to test the numerical methods. As expected, the cells and fibers

contract over time.

5.3.2 Cases with Random Initial Data

In the real world, the perturbation to the initial distribution is not of a regular

pattern, but randomly distributed. Hence, in this subsection, we consider the problem with

initial conditions described in (5.9) and (5.10) for all computations.

Figs. 5.5 - 5.6 show the numerical solutions for θ, u, v and p to the system (5.41)

- (5.43) with initial condition described in (5.9), in which θ0 = 0.2 nqf = 5 and namp = 1,

and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0,

5, 10, 15 and 20 (mesh size is 82 by 82) for the case with nqf = 5 and namp = 1. The
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Figure 5.2: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with piecewise constant initial condition, in which
θ0 = 0.5, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0, 3, 6, 9, and 12 (pcolor plot:
82× 82).
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Figure 5.3: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.8), in which
θ0 = 0.2 and ε = 0.01, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0, 5, 10, 15 and 20
(pcolor plot: 82× 82).
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Figure 5.4: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.8), in which
θ0 = 0.2 and ε = 0.01, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0, 5, 10, 15 and 20
(mesh plot: 82× 82).
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algorithm crashed when t > 32.1 presumably due to the large gradient of θ.

Figs. 5.7 - 5.8 show the numerical solutions for another sample with different

initial distribution of θ. This case is similar to the last one except that the magnitudes

of perturbations are randomly chosen from a uniform (0, 1) distribution. This results in a

more randomly perturbed initial distribution. The contraction of tissue is observed over

time.

Figs. 5.9 - 5.10 show the numerical solutions for θ, u, v and p at t = 0, 5, 10, 15

and 20 (mesh size is 82 by 82) for the case with nqf = 7 on a 5× 5 domain. The algorithm

crashed when t > 28.02 presumably due to the large gradient of θ. In this calculation,

random perturbation has been added to each grid point. This may cause numerical difficulty

in calculations.

Fig. 5.11 - Fig. 5.12 show the numerical solutions for θ, u, v and p at t = 0, 5, 10,

15 and 20 (mesh size is 194 by 66) for the case with h(x) = 0.1 + 0.4
15 x, and nqf = 7 on a

15× 5 domain. The algorithm crashed when t > 29.6 presumably due to the large gradient

of θ. In this calculation, we have shown how the thickness of gel affects the pattern formed

by contraction of the tissue.

5.4 Conclusions

In this chapter, we have studied a two dimensional fluid mixture model for tissue

deformations. The linear stability analysis has been conducted which gives the range of the

parameters for the stability of the system. Two different numerical methods were employed

for different types of partial differential equations. CLAWPACK was utilized to solve the

volume conservation equation for the volume fraction of cells and fibers θ, and a central finite

difference scheme for the velocity u, v and pressure p. The expected numerical solutions

have been obtained.
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Figure 5.5: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.9), in which
θ0 = 0.2 nqf = 5 and namp = 1, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0, 5, 10,
15 and 20 (pcolor plot: 82× 82).
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Figure 5.6: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.9), in which
θ0 = 0.2 nqf = 5 and namp = 1, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0, 5, 10,
15 and 20 (mesh plot: 82× 82).
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Figure 5.7: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.9), in which
θ0 = 0.2 nqf = 5 and namp = 1, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0, 5, 10,
15 and 20 (pcolor plot: 82× 82).
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Figure 5.8: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.9), in which
θ0 = 0.2 nqf = 5 and namp = 1, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), at t = 0, 5, 10,
15 and 20 (mesh plot: 82× 82).
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Figure 5.9: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.10), in which
θ0 = 0.2 and nqf = 7, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), on a 5 × 5 domain, at
t = 0, 5, 10, 15 and 20 (pcolor plot: 82× 82).
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Figure 5.10: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.10), in
which θ0 = 0.2 and nqf = 7, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), on a 5× 5 domain,
at t = 0, 5, 10, 15 and 20 (mesh plot: 82× 82 ).
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Figure 5.11: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.10), in
which θ0 = 0.2 and nqf = 7, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), and dimensional
parameters h(x) = 0.1 + 0.4

15 x, on a 15× 5 domain, at t = 0, 5, 10, 15 and 20 (pcolor plot: 194× 66).
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Figure 5.12: Solution of θ, u, v and p to nondimensional system (5.41) - (5.43) with initial condition described in (5.10), in
which θ0 = 0.2 and nqf = 7, and with nondimensional parameters α = 2, β = 50/9, and ψ = 0.5 sin(1.2πθ), and dimensional
parameters h(x) = 0.1 + 0.4

15 x, on a 15× 5 domain, at t = 0, 5, 10, 15 and 20 (mesh plot: 194× 66 ).
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Chapter 6

Conclusions and Future Work

6.1 Current Work

Theoretical and numerical analysis for a fluid mixture model of tissue deformation

have been performed in this dissertation.

The immersed interface method has been used to solve other type of problems,

such as Poisson problems, heat equations, wave equations with fixed interface and homo-

geneous jump conditions, etc. This is the first known extension of this idea to a system

combining hyperbolic and elliptic equations with moving interface and nonhomogeneous

jump conditions, resulting in a new high resolution sharp interface method for solving a

fluid mixture model of tissue deformations.

The problems analyzed in this dissertation are systems of hyperbolic and elliptic

equations with four physical parameters which affect the behavior of the system. In Chapter

2, the one dimensional systems with four types of parameters have been analyzed theoreti-

cally and numerically. We found the relationship between those parameters and the pattern

of tissue deformations via linear stability analysis. Several numerical experiments support

our theoretical analysis. The discontinuities and non-smoothness in the solution introduce

numerical difficulties. To maintain accuracy for the velocity v near the discontinuities, we

applied the immersed interface method to the elliptic equation in Chapter 2. In order to use

the immersed interface method, we need to derive the jump condition for the elliptic equa-

tion. According to our analysis, the solution of v is non-smooth, piece-wise linear. So the

jump conditions of v across the interfaces are homogeneous but the jump conditions of first

derivative of v across the interfaces are nonhomogeneous. By enforcing the jump conditions
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across the interfaces at the irregular grid points, the immersed interface method, one of the

sharp interface methods, helps eliminate non-physical oscillations near the interfaces.

Comparison of two algorithms has been made for the one dimensional case. One

algorithm uses Runge-Kutta with WENO for the hyperbolic equation and central finite

difference method for the elliptic equation without tracking the interfaces as time evolves.

Another one is using the immersed interface method for the elliptic equation with inter-

faces tracked via Runge-Kutta method as time evolves. Oscillations are observed near

the interfaces when the interfaces are not tracked. The immersed interface method avoids

non-physical oscillations, and gives a high resolution solution.

In Chapter 3, we have applied the immersed interface method to a one dimensional

linear advection equation with nonhomogeneous jump conditions across a moving interface.

Three types of discontinuous initial conditions have been tested: piecewise constant, piece-

wise C∞ function (constant + sin function) with the same frequencies on two pieces, and

piecewise C∞ function (constant + sin) with different frequencies on two pieces. For the

linear advection equation with a piecewise constant initial condition, we obtained the exact

solution. No errors are observed at all. For the linear advection equation with piecewise

C∞ functions (constant + sin), solutions of second order (in L∞, L1 and L2 norms) were

obtained. Our results showed that the immersed interface method is a robust approach for

a linear advection equation with discontinuous initial condition and prior knowledge of the

jump condition across the interface.

In Chapter 4, the immersed interface method has been applied to a one dimensional

fluid mixture model of tissue deformations with all constant physical parameters based on

the three-level leapfrog method and two-step MacCormack method. Deriving extra jump

conditions for both hyperbolic and elliptic equations is necessary and important. For some

types of physical parameters, deriving the extra jump conditions can be very difficult, even

impossible for some cases. Solutions of high resolution near the interface have been obtained

for a simple physical situation.

In Chapter 5, we derived the model system for a thin two dimensional case from

the three dimensional model so that the thickness of the gel is taken into account. The

two dimensional systems with constant parameters have been analyzed theoretically and

numerically. We found the relationship between those parameters and the pattern of tissue

deformations via linear stability analysis. Numerical examples have been completed and

the numerical solutions are qualitatively consistent with experimental observation.
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6.2 Future Work

In this dissertation, the immersed interface method has been applied to solve a

fluid mixture model of tissue deformations which is a system combined with hyperbolic and

elliptic equations in one dimension. This method eliminates non-physical oscillations near

the interfaces. This work can be extended to multi-dimensional cases with interfaces.

6.2.1 Problems with Variable Coefficients

The physical parameters in the system can vary with the volume fraction of cell

fiber phase. Currently, the immersed interface method is used to solve the problem with

constant parameters. We can solve similar problems with discontinuous variable parameters

equally effectively. The conventional finite difference methods for problems with variable

parameters can be used in the smooth region, i.e., away from the discontinuities. The main

issue is to find all necessary jump conditions across the interfaces. However, this is not a

trivial work to get enough jump conditions to allow the finite difference methods to achieve

second order accurate solutions.

6.2.2 Theoretical Analysis for the Immersed Interface Method

For the problems discussed in this dissertation, the local truncation errors near

the interface are one order lower than at the rest of the regular grid points. It is commonly

believed that the convergence rate of the global error will not be affected. This claim

has been proved to be true for some problems [38]. However, it is a challenge to find out

whether the above claim is true for all different interface problems (fixed interface or moving

interface problems) or whether there are certain conditions under which the claim above

is true. More rigorous analysis for the convergence of the immersed interface method is

needed.

The application of the immersed interface method to our fluid mixture model

for tissue deformations with constant physical parameters and piecewise constant initial

condition does not support the claim above. Given an initial distribution of volume fraction

of cell and fiber phase θ, the errors of the velocity v solved by the immersed interface method

are very small ( around e− 16). But the error of v is randomly distributed. For the moving

interface problem, such distribution can cause an aliasing instability. We are not sure

whether this will affect the order of accuracy of the θ or not for our problem. The immersed
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interface method did eliminate the non-physical oscillations near the interface and achieve

high resolution solution compared with other conventional finite difference methods.

6.2.3 Two Dimensional Problem with Discontinuous Initial Conditions

In our current work, the immersed interface method is implemented for the one

dimensional system with constant parameters and discontinuities in initial conditions. This

can be extended to the similar two dimensional problem with discontinuous initial condi-

tions, such as the example in Figs 1.1 (from [1]) and 5.2. Working out the jump conditions

across the interfaces up to second order derivatives may be challenging. The level set

method is needed to implicitly represent the interface in 3D. Keeping track of the irregular

grid points near the interface of discontinuities will be another component of the implemen-

tation.

6.2.4 Two Dimensional Problem with Non-Discontinuous Initial Condi-

tions

We used the upwind scheme and central finite difference method to solve the

fluid mixture model of tissue deformations with continuous initial conditions or randomly

distributed initial conditions. We observed that the derivatives of θ grew with the time

almost exponentially (see Fig. 6.1), which makes the numerical algorithm fail at late time

steps. One proposed solution is using η = ln θ instead of θ to solve the problem.

Let η = ln θ. So θ = eη. Replacing θ in model (5.35) - (5.37) with eη, we can

rewrite the model as

∂η

∂t
+∇ · (ηV ) + (1− η)∇ · V = 0, x0 < x < xf , y0 < y < yf ,

∇ ·
(

V − (1− eη)3

ϕeη
∇p

)
= 0,

∇ · (η (
λ(∇ · V )I + 2µE

))
+ (1− η)∇ · (λ(∇ · V )I + 2µE

)

−e−η∇p = −∇(ηψ)− (1− η)∇ψ +
2µ

h2
V .

Note that this may or may not work since ηx = (ln θ)x = θx
θ > θx due to 0 < θ < 1.

We did not pursue this line of work. It is desirable to find an efficient finite difference method

to handle the problems with spikes in the domain.
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Figure 6.1: Maximum of minimum values of ∆θ along with time 82 × 82. The simulation
crashes at t = 17.7. The plot on the left is a plot of |∆θ|max vs time. The plot on the right
is a plot of |∆θ|min vs time. Here ∆θ is the difference between adjacent grid points.

Many biological problems involving tissues can be modeled by mixtures of Stokes

fluids. It is expected that our algorithm will be used for various mathematical biology

problems.
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Appendix A

Accuracy of MacCormack’s Method

for a Fluid Mixture Model of Tissue

Deformations

MacCormack’s method is known as a two-step approach with second order ac-

curacy. The problem with MacCormack’s method is that it typically produces spurious

oscillations. For a linear system, MacCormack’s method is equivalent to the Lax-Wendroff

method.

For a conservation law, qx + f(q)x = 0, applying MacCormack’s method gives

Q∗
i = Qn

i − ν(f(Qn
i+1)− f(Qn

i )),

Q∗∗
i = Q∗

i − ν(f(Q∗
i )− f(Q∗

i−1)),

Qn+1
i =

1
2
(Qn

i + Q∗∗
i ),

(.1)

where ν = k
h , in which k denotes the time step size whereas h the space mesh size. Consider

a fluid mixture model of tissue deformations with constant physical parameters

θt + (vθ)x = 0,

vxx + (ψθ)x + (σ ln(1− θ))x = 0.
(.2)

Note that v implicitly depends on time and θ. Applying MacCormack’s method to the

hyperbolic equation in (.2) gives

Θ∗
i = Θn

i − ν((ΘV )n
i+1 − (ΘV )n

i ),

Θ∗∗
i = Θ∗

i − ν((ΘV )∗i − (ΘV )∗i−1),

Θn+1
i =

1
2
(Θn

i + Θ∗∗
i ).

(.3)

As a two-step approach applies to the hyperbolic equation in (.2), we need to

compute v at time t∗ since it is needed in the second step’s calculation.
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Claim: MacCormack’s method is of first order accuracy provided that v is not updated at

the first step when this approach is applied to the hyperbolic equation in (.2).

Proof:

At the first step, MacCormack’s method gives

θ(xi, t
∗) = θ(xi, t

n)− ν((θv)(xi+1, t
n)− (θv)(xi, t

n)),

θ(xi−1, t
∗) = θ(xi−1, t

n)− ν((θv)(xi, t
n)− (θv)(xi−1, t

n)).

Applying the Taylor series expansion at xi and tn gives

θ(xi, t
n+1) = θ(xi, t

n) + θt(xi, t
n)k +

k2

2
θtt(xi, t

n) + O(k3),

θ(xi−1, t
n) = θ(xi, t

n)− θx(xi, t
n)h +

h2

2
θxx(xi, t

n) + O(h3),

v(xi−1, t
n) = v(xi, t

n)− vx(xi, t
n)h +

h2

2
vxx(xi, t

n) + O(h3),

(θv)(xi+1, t
n) = (θv)(xi, t

n) + (θv)x(xi, t
n)h +

h2

2
(θv)xx(xi, t

n) + O(h3),

(θv)(xi−1, t
n) = (θv)(xi, t

n)− (θv)x(xi, t
n)h +

h2

2
(θv)xx(xi, t

n) + O(h3).

Suppose that k = ch, where |c| < 1. Then O(kn) is equivalent to O(hn). So

θ(xi, t
∗) =θ(xi, t

n)− ν((θv)x(xi, t
n)h +

h2

2
(θv)xx(xi, t

n) + O(h3)),

θ(xi−1, t
∗) =θ(xi, t

n)− θx(xi, t
n)h +

h2

2
θxx(xi, t

n) + O(h3)

− ν((θv)x(xi, t
n)h− h2

2
(θv)xx(xi, t

n)).

Hence at the second step using the vn
i gives

θ(xi, t
∗∗) =θ(xi, t

n)− ν((θv)x(xi, t
n)h +

h2

2
(θv)xx(xi, t

n) + O(h3))

− ν((θ(xi, t
n)− ν((θv)x(xi, t

n)h +
h2

2
(θv)xx(xi, t

n)))v(xi, t
n)

− (θ(xi, t
n)− θx(xi, t

n)h +
h2

2
θxx(xi, t

n)

− ν((θv)x(xi, t
n)h− h2

2
(θv)xx(xi, t

n))

(v(xi, t
n)− vx(xi, t

n)h +
h2

2
vxx(xi, t

n)))),

=θ(xi, t
n)− 2νh(θv)x(xi, t

n) + νkh((θv)xv)x(xi, t
n) + O(h3).
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So the local truncation error for MacCormack’s method is

θ(xi, t
n+1)− 1

2(θ(xi, t
n) + θ(xi, t

∗∗))
k

=
1
k
(θ(xi, t

n) + θt(xi, t
n)k +

k2

2
θtt(xi, t

n)

− 1
2
(2θ(xi, t

n)− 2νh(θv)x(xi, t
n) + νkh((θv)xv)x(xi, t

n) + O(h3)))

=
k

2
θtt(xi, t

n)− νh

2
((θv)xv)x(xi, t

n) + O(h2)

= −k

2
(θvt)x(xi, t

n) + O(h2).

(.4)

We can see that the dominant local truncation error is of O(k). So MacCormack’s method

is of first order accuracy when it is applied to the system (.2) without updating the v after

the first step and before the second step.
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