

ABSTRACT

KUTTAPPA, SANCHITH. XPath Hardware Accelerator. (Under the direction of
Dr. Yannis Viniotis).

 eXtensible Markup Language (XML) and XML Path Language (XPath) are

increasing in importance significantly. XML has become the language for

structuring, storing and sending information between diverse sources, thus,

becoming the language of choice for data exchange and data storage. XML is

independent of software, hardware and applications, proving to be extremely

versatile and flexible. XML and XPath implement a non-trivial grammar. Parsing

this grammar proves to be a high overhead for the CPU. This thesis presents

hardware offload architecture; the XPath Offload Engine (XPOE) which

essentially offloads the XPath string functions along with encoding-to and

decoding-from UTF-8, which burn up a large number of CPU cycles. An analysis

has been done which shows a reduction in the CPU overhead by as much as

88%.

XPATH HARDWARE ACCELERATOR

by
SANCHITH KUTTAPPA

A thesis submitted to the Graduate Faculty of

North Carolina State University
in partial fulfillment of the

requirements for the Degree of
Master of Science

COMPUTER ENGINEERING

Raleigh, North Carolina

2007

Approved By:

___________________ __________________
Dr. Gregory Byrd Dr. Mihail Sichitiu

Dr. Yannis Viniotis

Chair Advisory Committee

ii

BIOGRAPHY

Sanchith Kuttappa was born in Bangalore, India in July 1980. She graduated

from Visveswaraiah Technological University, India, with a Bachelors degree in

Electronics and Telecommunications Engineering in June 2002. After

undergraduate studies, she worked with Infosys Technologies Ltd., Bangalore,

for two years. In August 2004, she joined North Carolina State University as a

graduate student in the Computer Engineering program. In Summer and Fall of

2005, she interned at Qualcomm Inc., RTP in the Processor Design Group. In

Summer of 2006, she interned at Ericsson IPI, Raleigh in the Dataplane Group.

While working towards the Masters degree, she worked on her thesis under the

guidance of Dr. Yannis Viniotis.

 iii

ACKNOWLEDGEMENTS

 I sincerely thank my advisor, Dr.Yannis Viniotis for his invaluable guidance and

support through my graduate studies. I am grateful to him for providing me with

the opportunity and encouraging me in pursuing my interests. I thank him for his

constant support, encouragement and patience.

 I am very grateful to Dr. Gregory Byrd, Dr. Paul Franzon and Dr. Mihail Sichitiu

for agreeing to be on my thesis committee and for the valuable feedback

regarding the thesis document.

 I’d like to mention my family, who were always encouraging and supportive at

all times. I would also like to mention Nitesh and all my friends, without whose

support I would never have been able to succeed in my endeavors.

 iv

Table of Contents
 Page

List of Figures ..vii

List of Tables ...viii

1 Introduction and Literature Review ..1

 1.1 Importance of XML/XPath………………………………………. 1
 1.1.1 What is XML?... 1
 1.1.2 Strengths of XML………………………………………… 2
 1.1.3 Real world examples of XML…………………………… 3
 1.1.4 Importance of XPath…………………………………….. 4
 1.2 Current Implementations of XML/XPath...5

 1.2.1 Architecture of an XML Processor... 5
 1.2.2 Architecture of XPath .. 7
 1.2.3 Examples of XPath Implementation ..9

 1.3 Maximizing performance via hardware offload.......................................12
 1.3.1 Issues with software processing..12
 1.3.2 Current approaches to challenges faced.....................................13
1.3.3 Industry examples ...14

 1.3.4 XPath Offload Engine..15
 1.4 Thesis organization..16

2 XPath ...17

 2.1 Introduction – XPath/XQuery ..17
 2.1.1 XPath Design Aspects ...18
 2.2 XPath Grammar and its complexity...18
 2.2.1 Lexical Analysis..19
 2.3 XPath Expressions and Functions ..20
 2.3.1 XPath Expression and Function format..20
 2.3.2 XPath Function types...22

 v

 2.3.3 XPath String Functions ..23
 2.4 Requirements for parsing XPath expressions/functions..........................26

3 Processor overhead savings analysis ...27

 3.1 Software approach to XPath function implementation27
 3.2 High level block diagram for hardware offload ..30
 3.3 Processor savings analysis...33
 3.3.1 Savings analysis for UTF-8 Encoding and Decoding33
 3.3.2 Savings analysis for each of the string functions37

4 Design Architecture ...53

 4.1 Introduction ...53
 4.2 Block diagram and explanation ...54
 4.2.1 Read Input Memory..55
 4.2.2 Read Main Memory..56
 4.2.3 Function Execute ...57
 4.2.4 Output Memory Write ...59
 4.3 Design Pipeline ...60

5 Design Module Description ...62

 5.1 Introduction ...62
 5.2 Module Read Input Memory..62
 5.2.1 Pin interface ...63
 5.2.2 Architecture..64
 5.3 Module Read Main Memory ..65
 5.3.1 Pin interface ...65
 5.3.2 Architecture..67
 5.4 Module Function Execute..69
 5.4.1 Pin interface ...69
 5.4.2 Architecture..71
 5.5 Module Output Memory Write ...72
 5.5.1 Pin interface ...72
 5.5.2 Architecture..74
 5.6 Controller ..75

6 Verification and Additional Design Details ..78

 6.1 Test environment description ..78
 6.2 Test architecture ...80

 vi

 6.2.1 Module Packet Generator ..80
 6.2.2 Module Reader ..81
 6.3 Verification Test Plan ..83
 6.3.1 Feature tests ..84
 6.4 Test results summary..84
 6.5 Additional Design Details ..85

7 Future Work and Conclusion ..86

 7.1 Feature Additions..86
 7.2 Verification ..87
 7.3 FPGA implementation and Architecture optimizations88
 7.3.1 Area optimizations..88
 7.3.2 Timing optimizations ..88
 7.4 Conclusion ..89

Bibliography ..90

 vii

List of Figures

 Page

1.1 Generic Software Stack for XML Processing..5
1.2 Schematic of a typical XML Parser...7

3.1 High level block diagram showing system level interaction.........................31
3.2 Plot of fraction of XPath functions offloaded onto hardware to the savings

achieved..51
3.3 Plot of fraction of XPath functions offloaded onto hardware to the speedup

achieved..52

4.1 Block Diagram of XPOE..54
4.2 Read Input Memory Implementation Diagram...55
4.3 Read Main Memory Implementation Diagram...57
4.4 Function Execute Implementation Diagram ..58
4.5 Memory Write Implementation Diagram..60

5.1 Interface waveform for Input Memory ...64
5.2 Internal counters and Read Main Memory interface timing.........................65
5.3 Timing relation with Main Memory ..68
5.4 Timing relation with Read Input Memory Interface......................................68
5.5 Internal counters and Function Execute Interface timing69
5.6 Timing relation with Read Main Memory Interface......................................71
5.7 Internal counters and Memory Write interface timing..................................72
5.8 Timing relation with Function Execute Interface ...74
5.9 Internal counters and output interface...75
5.10 Flowchart for XPOE ..76
5.11 State Machine Diagram ..77

6.1 Block diagram of testbench...79
6.2 Architectural Block Diagram of the Reader Module82

 viii

List of Tables

 Page

3.1 Format of the different octet types in UTF-8 encoding28
3.2 Cycles required for an all-software approach for encoding function...........34
3.3 Cycles required for an all-software approach for decoding function...........35
3.4 Cycles required for a hardware-offloaded approach36
3.5 Cycles required for an all-software approach: codepoints-to-string38
3.6 Cycles required for a hardware-offloaded approach: codepoints-to-string .39
3.7 Cycles required for an all-software approach: string-to-codepoints40
3.8 Cycles required for a hardware-offloaded approach: string-to-codepoints .41
3.9 Cycles required for an all-software approach: codepoint-equal42
3.10 Cycles required for a hardware-offloaded approach: codepoint-equal43
3.11 Cycles required for an all-software approach: substring44
3.12 Cycles required for a hardware-offloaded approach: substring..................45
3.13 Cycles required for an all-software approach: starts-with and ends-with ...46
3.14 Cycles required for a hardware-offloaded approach: starts-with and ends-

With...47
3.15 Cycles required for an all-software approach: substring-before and
 substring-after ..48
3.16 Cycles required for a hardware-offloaded approach: substring-before and
 substring-after ..49
3.17 Comparison of the savings achieved for each of the functions49
3.18 Comparison of fraction of string functions to the savings achieved............50
3.19 Comparison of fraction of string functions to the speedup achieved51

5.1 Interface with the system ...63
5.2 Interface with the input section of the memory...63
5.3 Interface with the Read Main Memory module...63
5.4 Interface with the system ...66
5.5 Interface with the Read Input Memory module...66
5.6 Interface with the Main Memory module ..66
5.7 Interface with the Function Execute module ..67
5.8 Interface with the system ...69
5.9 Interface with the Read Main Memory module...70

 ix

5.10 Interface with the Memory Write module..70
5.11 Interface with the system ...72
5.12 Interface with the Function Execute module ..73
5.13 Output Interface of the Memory Write module ...73

6.1 Interface with the system ...80
6.2 Interface with the DUT ...80
6.3 Interface with the system ...81
6.4 Interface with the DUT ...81
6.5 Feature tests ..84
6.6 Summary table of the test results...84

1

Chapter 1

Introduction and Literature

Review

 This chapter provides the motivation and the main concepts behind XML,

XPath, XQuery and hardware offloading.

1.1 Importance of XML/XPath

 The following sections will talk about XML, XPath and their growing versatility

and importance in the real world.

1.1.1 What is XML?

 XML (eXtensible Markup Language) is a markup language much like HTML.

However, XML was not designed to do anything it was only created to structure,

store and to send information. XML is designed to describe data and to focus on

what data is. According to the W3C Recommendation [1], XML describes a class

of data objects called XML documents and partially describes the behavior of

 2

computer programs which process them. XML documents are made up of

storage units which contain either parsed or unparsed data, and these units are

called entities. Parsed data is made up of characters, some of which form

character data, and some of which form markup. Markup encodes a description

of the document's storage layout and logical structure.

 XML documents use a self-describing and simple syntax, like the example

below which is a note to John from Sarah, stored as XML:

<note>

<to>John</to>

<from>Sarah</from>

<heading>Reminder</heading>

<body>Don’t forget, meeting’s changed to 9:00am!</body>

</note>

The note has a header and a message body. It also has sender and receiver

information. But still, this XML document does not DO anything. It is just pure

information wrapped in XML tags. Someone must write a piece of software to

send, receive or display it [1]. XML tags are not predefined; the author defines his

own tags and his own document structure. The basic syntax for one element in

XML is: <name attribute="value">content</name>

1.1.2 Strengths of XML

 The following points emphasize the strengths of XML and show why XML is

going to be everywhere [1].

1. One of the most time-consuming challenges for developers has been to

exchange data between computer systems and databases that contain

data in incompatible formats over the Internet. Converting the data to XML

can greatly reduce this complexity and create data that can be read by

many different types of applications.

 3

2. XML is going to be the main language for exchanging financial information

between businesses over the Internet. A lot of interesting B2B applications

are under development.

3. XML provides a software- and hardware-independent way of sharing data,

as XML data is stored in plain text format. It also makes it easier to

expand or upgrade a system to new operating systems, servers,

applications, and new browsers.

4. XML can also be used to store data in files or in databases. Applications

can be written to store and retrieve information from the store, and generic

applications can be used to display the data.

5. Since XML is independent of hardware, software and application, data can

be made available to other than only standard HTML browsers. Data can

be made available to all kinds of "reading machines" (agents), and it is

easier to make your data available for blind people, or people with other

disabilities.

6. XML can be used to create new languages. The Wireless Markup

Language (WML), used to markup Internet applications for handheld

devices like mobile phones, is written in XML.

1.1.3 Real world examples of XML

 The following paragraphs talk about XML’s versatility and flexibility in the real

world. There are a large number of applications that use XML and the rapid

increase in these numbers is shown by examples from the IT/Software industry

and the Telecom industry.

 In the IT industry we see that the processing of XML documents has entered

the mainstream of software application development. System and software

configuration files, UI specifications and many office documents (such as

spreadsheets, presentations, etc.) are being specified as XML. This is in addition

to the exchange of XML messages in web-service oriented applications that are

 4

used for enterprise application integration and financial interactions such as B2B

transactions [4]. Hence, as XML is being used more and more as a common tool

for all data manipulation and data transmission, XML will be extremely important

to the future of the Web.

 The increase in the number of applications based on XML messages and

documents and the increased importance of XML processing is felt most

significantly in the telecommunications industry with its ever expanding

communications demand. XML is a powerful tool for describing service definition,

activation, provisioning, and billing in next-generation communications

infrastructure. It is also the technology of choice for related data interchange

activities. Some of the applications and areas that XML is being used in are VoIP

(Voice over IP) and its associated protocol SIP (Session Initiation Protocol),

NOTIFY- SUBSCRIBE applications, videoconferencing and network games.

1.1.4 Importance of XPath

 As increasing amounts of information are stored, exchanged, and presented

using XML, the ability to intelligently query XML data sources becomes

increasingly important. One of the great strengths of XML is its flexibility in

representing many different kinds of information from diverse sources. To exploit

this flexibility, an XML query language must provide features for retrieving and

interpreting information from these diverse sources [2].

 XPath 2.0/XQuery 1.0 (XML Path Language/XML Query Language) are

designed to be flexible enough to query a broad spectrum of XML information

sources, including both databases and documents. XPath makes it possible to

refer to individual parts of an XML document and provides random access to

XML data for other technologies. XPath 2.0/Xquery 1.0 operates on the abstract,

logical structure (data model) of an XML document, rather than its surface

syntax. XPath is an expression language for addressing portions of an XML

document, or for computing values (strings, numbers, or boolean values) based

on the content of an XML document. The XPath language is based on a tree

 5

representation of the XML document, and provides the ability to navigate around

the tree, selecting nodes by a variety of criteria [1].

 The utility of XPath suggests that its role in the repertoire of XML processing

may well expand greatly in the future. Therefore we see that as XPath is

fundamental to a lot of advanced XML usage, for example, sophisticated XSLT

transformations, the importance of XPath is linked to the importance of XML.

1.2 Current Implementations of XML/XPath

 This section elaborates on the essential components that make up XML and

XPath and how they are processed.

1.2.1 Architecture of an XML Processor

 The W3C Recommendation defines an XML Processor as a software module

which reads XML documents and provides access to their content and structure.

This processing work is done on behalf of another module called the application

[1]. Figure 1.1 shows the software stack for XML processing in detail [4].

Figure 1.1: Generic Software Stack for XML Processing

User Application

Java/C# Standard APIs

XML Parsing APIs (SAX, DOM)

XML Parser

 6

 To manipulate an XML document, you need an XML parser. The parser loads

the document into your computer's memory. Once the document is loaded, its

data can be manipulated by treating the XML document as a tree. The following

points describe in detail the function of the different modules of the parser and

thus show why XML parsing forms the most CPU intensive section of the

software stack. Figure 1.2 depicts the architecture of a typical XML Parser. Its

architecture is composed of five individual modules [4].

1. Decoder: This module reads in UTF-8 or UTF-16 (UTF representation is

defined in section 3.1) characters from the input stream and converts them

to the character format of the host programming language. In addition, this

module makes sure that the inputs characters are part of a valid XML

character set.

2. Scanner: This classifies the characters in the XML input stream to locate

(namespace qualified) element and attribute names, element content,

attribute values and the like. In essence this implements the lexical

analyzer corresponding to the XML grammar that searches for characters

such as <, >, =, :, etc., to tokenize the XML document.

3. Parser: This is the module that checks for well-formedness of an XML

document. Well-formedness requires that the begin- and end-element tags

are properly nested and matched. This requires the implementation of a

stack that contains all the begin-element names that have been seen so

far but that have not been matched by a corresponding end-element tag.

4. Validator: Validation is an optional part of XML processing. It is often

required that an XML document conform to a particular XML schema

(schema defines the XML document structure and its legal building blocks)

particularly in cases involving transactions between untrusted parties.

5. API Implementor: This layer provides the interface that is required by the

calling application. In most cases, the same underlying parsing engine can

be used to do the tokenization, well-formedness checking and validation

while the API implementor can be customized to generate events, build a

tree or supply nodes on demand.

 7

Figure 1.2: Schematic of a typical XML Parser

1.2.2 Architecture of XPath

 The following are the main points the define XPath:

• XPath is a syntax for defining parts of an XML document.

• XPath uses path expressions to navigate in XML documents.

• XPath contains a library of standard functions.

• XPath is a W3C Standard.

Decoder

Scanner

Parser

Validator

API Implementor

XML Document

XML Parsing APIs

 8

 XPath is a language for finding information in an XML document. XPath is used

to navigate through elements and attributes in an XML document, and thus its

primary purpose is addressing parts of an XML document. In support of this it

provides basic facilities for manipulation of strings, numbers and booleans.

XQuery is built on XPath expressions. Compact, non-XML syntax is used to

facilitate use of XPath within URIs and XML attribute values. XPath operates on

the abstract, logical structure of an XML document, rather than its surface syntax.

XPath gets its name from its use of a path notation as in URLs for navigating

through the hierarchical structure of an XML document [2].

 XPath includes over 100 built-in functions. There are functions for string values,

numeric values, date and time comparison, node and QName manipulation,

sequence manipulation, Boolean values, and more. XPath uses path expressions

to select nodes or node-sets in an XML document. The node is selected by

following a path or steps. In XPath, there are seven kinds of nodes: element,

attribute, text, namespace, processing-instruction, comment, and document

(root) nodes. XPath models XML documents as trees of nodes. The root of the

tree is called the document node (or root node). The primary syntactic construct

in XPath is the expression. An expression is evaluated to yield an object, which

has one of the following four basic types [2]:

• node-set (an unordered collection of nodes without duplicates)

• boolean (true or false)

• number (a floating-point number)

• string (a sequence of characters)

Expression evaluation occurs with respect to a context. The context consists of:

• a node (the context node)

• a pair of non-zero positive integers (the context position and the context size)

• a set of variable bindings

• a function library

• the set of namespace declarations in scope for the expression

 One important kind of expression is a location path, which selects a set of

nodes relative to the context node. The result of evaluating an expression that is

 9

a location path is the node-set containing the nodes selected by the location

path. Location paths can recursively contain expressions that are used to filter

sets of nodes. A location path can be absolute or relative, and in both cases it

consists of one or more steps, each separated by a slash [2]:

• An absolute location path: /step/step/...

• A relative location path: step/step/...

Each step is evaluated against the nodes in the current node-set. A step consists

of:

• an axis (defines the tree-relationship between the selected nodes and the

current node)

• a node-test (identifies a node within an axis)

• zero or more predicates (to further refine the selected node-set)

The syntax for a location step is: axisname::nodetest[predicate]

 An axis defines a node-set relative to the current node. A predicate filters a

node-set with respect to an axis to produce a new node-set. For each node in the

node-set to be filtered, the PredicateExpr is evaluated with that node as the

context node, with the number of nodes in the node-set as the context size, and

with the proximity position of the node in the node-set with respect to the axis as

the context position; if PredicateExpr evaluates to true for that node, the node is

included in the new node-set; otherwise, it is not included.

1.2.3 Examples of XPath Implementation

 We will use the following XML document to illustrate the concepts discussed so

far:

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book>
 <title lang="eng">Harry Potter</title>
 <price>29.99</price>
</book>

 10

<book>
 <title lang="eng">Learning XML</title>
 <price>39.95</price>
</book>

</bookstore>

Example of nodes in the XML document above:

• <bookstore> (document node)

• <price>29.99</price> (element node)

• lang="eng" (attribute node)

 Some path expressions with and without predicates and the result of the

expressions:

Path Expression Result

bookstore Selects all the child nodes of the bookstore element

/bookstore Selects the root element bookstore

bookstore/book Selects all book elements that are children of

bookstore

//book Selects all book elements no matter where they are in

the document

/bookstore/book[last()-1] Selects the last but one book element that is the child

of the bookstore element

//book[position()<=3] Selects the first three book elements

//title[@lang='eng'] Selects all the title elements that have an attribute

named lang with a value of 'eng'

/bookstore/book[price>35.00]/title Selects all the title elements of the book elements of

the bookstore element that have a price element with

a value greater than 35.00

Another example of how a function can be implemented can be shown by taking

the string-join function as an example:

 11

• fn:string-join($arg1 as string, $arg2 as string) returns a string

This function will return a string created by concatenating the members of the

$arg1 sequence using $arg2 as a separator.

Assume an XML document:

<doc>

 <chap>

 <section>

 </section>

 </chap>

</doc>

With the <section> as the context node, the expression:

• fn:string-join(for $n in ancestor-or-self::* return name($n), '/')

• returns " doc/chap/section "

Later sections will show how string-join and various such functions are offloaded

onto hardware.

 We can take the example of the Microsoft XML parser to show how the above

XPath examples are implemented in software. Microsoft's software includes

integrated XPath support. Developers can load XML into a tree structure, and

then query the structure with XPath to extract the data they are after. The

software loads the XML document and then the selectNodes() function is used to

select nodes from the XML document:

xmlDoc.load("books.xml") // loads the XML doc “books.xml”

xmlDoc.selectNodes(path expression) // selects/filters nodes based on the

 path expression

• xmlDoc.selectNodes("/bookstore/book") - selects all the book nodes under

the bookstore element.

• xmlDoc.selectNodes("/bookstore/book[0]") - selects only the first book node

under the bookstore element.

 12

• xmlDoc.selectNodes("/bookstore/book/price/text()") - selects the text from all the

price nodes.

• xmlDoc.selectNodes("/bookstore/book[price>35]/price") - selects all the price

nodes with a price higher than 35.

1.3 Maximizing performance via hardware offload

1.3.1 Issues with software processing of XML/XPath

 The two main issues with the software processing of XML and why XML

processing is CPU intensive are:

1. The emphasis on human readability of XML documents (where the nature

or number of tags is not fixed).

2. The use of UTF representation of data.

 XML processing typically involves the use of an off-the-shelf parser program

that has to perform lexical analysis, tokenization and character integrity checks

on the XML stream. In addition it has to convert UTF characters to Unicode,

verify well-formedness of the document and optionally validate against an XML

Schema or Document Type Definition (DTD). Finally there is the stage that may

construct a tree, perform transformations, bind to Java or C# objects and call in

to the application program. All this consumes a fair amount of CPU cycles such

that most of the time taken in a service-oriented application is spent in parsing

XML [4]. The exchange of XML messages and the querying of XML documents

and databases using XPath/XQuery are going to become equally commonplace

and will also burn up a large number of CPU cycles. Thus, XML parsing and

querying is a severe bottleneck in XML processing and manipulation of XML

documents and databases.

 A solution which eases this bottleneck is to transfer some aspects of XML

parsing onto dedicated hardware, an approach called hardware offloading. With

 13

this approach, there is a definite increase in performance as the hardware would

process data much faster than software. The more tasks that are offloaded, the

faster the data processing becomes.

 The next section talks about the work being done in this area and about

available XML Accelerators that offload XML parsing and some basic XML

processing onto hardware. Further sections also exemplify hardware offloading

by citing some industry proven techniques.

1.3.2 Current approaches to challenges faced

 There have been several different special purpose XML accelerators from

companies such as DataPower (IBM), Tarari and Sarvega (Intel) to alleviate the

problems faced by a purely software approach to XML processing. These have

typically concentrated on narrow processing problems [4].

Some examples of XML accelerators in the industry:

• Tarari Hardware XML Processor

• Datapower XA35 XML Accelerator

• Sarvega XML Content Router

• Reactivity 400 Series of XML enables networking products.

 There were two main groups of engineers that worked on tackling the issues

faced with XML processing:

1. One group focused on large volumes of XML transformations - created

specialized software or ASICs that performed transformations up to 100 times

faster than basic software solutions.

2. The second group focused on high-speed XML processing and security –

created highly optimized applications that secured and integrated XML across

many use cases.

 Alternative terminology that describe more specific functionality of XML

appliances:

 14

• XML Accelerators - are devices that typically use custom hardware or

software built on standards-based hardware to accelerate processing. The

hardware typically provides a performance boost between 10 and 100 times

in the number of messages per second that can be processed.

• XML Security Gateways – (also known as XML firewalls) are devices that

support the WS-Security standards. These appliances typically offload

encryption and decryption to specialized hardware devices.

• XML Enabled Networking – is an abstraction layer that exists alongside the

traditional IP network. This layer addresses the security, incompatibility and

latency issues encumbering XML messages, web-services and service-

oriented architectures (SOA).

• Integration Appliance – (also known as application routers) are devices that

are designed to make the integration of computer systems easier.

1.3.3 Industry examples

 Through industry examples this section elaborates on how hardware offloading

has resulted in performance enhancements. The examples cited are TCP/IP and

Encryption/Decryption algorithms.

• TCP/IP Offload Engine (TOE)

 TCP/IP processing speeds have not kept up with rapid growth in processor

speeds. Processor speeds have increased from 60MHz to 3GHz. However, the

rate of increase in the case of TCP/IP has not been in parallel with the scaling

of the CPU clock speed. TCP/IP is memory intensive; hence memory and I/O

subsystems become limiting factors. A significant amount of software is

required to implement the various features of TCP/IP. TCP/IP processing

involves a great deal of memory for storing connection state information.

Hence, TCP/IP in software incurs a large overhead and involves significant

amount of memory.

 15

 Despite all efforts to increase TCP/IP performance via software modifications,

the performance benefits that result fall behind the improvement achieved by

hardware offloading. Terminator [7], a TCP offload engine developed by

Chelsio Communications, Inc. highlights the advantages of TCP hardware

offloading. During performance evaluation, the throughput achieved with offload

was found to be almost four times than that without offload.

• Encryption / Decryption Algorithms

 Secure Socket Layer (SSL) handshakes require extensive compute resource.

Security algorithms for encryption and decryption impose a significant

performance penalty while protecting data traveling over the Internet. SSL is

known to slow down an application or Web site considerably. The time required

to establish a session and then encrypt and decrypt the data, degrades

performance as all of it heavily use processor cycles.

 To combat the high computational cost of the RSA public-key encryption

algorithm several companies have developed offload devices that use

encryption offload hardware to accelerate processing, such as, RSA-offload

only devices, Hardware Security Modules and Internet Hardware Devices.

 IBM designers have responded to the problems of security and

responsiveness through the use of cryptographic accelerator hardware. This

accelerator offloads encryption/decryption tasks from the central processor.

1.3.4 XPath Offload Engine (XPOE)

 XPath is used extensively by XML parsing software and its importance has

been elaborated on in Section 1.1. As seen in previous sections several aspects

of XML processing such as XML parsing have been offloaded onto hardware and

have proven successfully the great increase in performance and the increased

CPU cycles savings. We have also seen how hardware offloading boosts

processing speed in TCP and Security algorithms. In anticipation of the growing

importance of XPath in the processing of XML and related languages, it would be

 16

a good idea to make advancements which would allow for faster processing of

XPath. I chose to focus on those aspects of XPath2.0 that form the basic building

blocks of an XPath expression and thus essentially XQuery1.0. These form the

most common subset of the XPath processing problem: that of XPath functions.

 How many XPath functions to offload is a complexity-performance tradeoff. If

we offload all the functions, the complexity increases but so does the

performance. To demonstrate the benefits of hardware offloading it is proposed

to offload XPath string functions which involve encoding-to and decoding-from

UTF-8 representation onto hardware. Chapter 3 demonstrates why these

functions were chosen and through detailed analysis shows how such a limited

offload can reduce CPU utilization significantly.

1.4 Thesis organization

 The organization of the rest of the thesis is described. Chapter 2 and its

subsections introduce XPath and its components, expression formats and

function types. Chapter 3 presents an analysis which describes the potential

reduction in CPU utilization via hardware offload. Chapter 4 presents the

architecture of the hardware which would be doing the offloaded processing.

Chapter 5 presents a detailed description of all the modules involved in the

design. Chapter 6 explains the software simulation and verification and also

includes additional design features. Chapter 7 completes the thesis by identifying

areas which have scope for further improvements.

 17

Chapter 2

XPath

 This chapter briefly describes the structure of XPath expressions and functions

and explains its components.

2.1 Introduction

 XPath became a W3C Recommendation 16 November 1999. XPath was

designed to be used by the XML-based style sheet language for transforming

XML documents into other formats, by the XML-based language that is used to

create hyperlinks in XML documents and other XML parsing software. XPath is a

language for finding information in an XML document, and is used to navigate

through elements and attributes in an XML document [2]. A detailed description

of XPath is given in section 1.2.2.

 18

2.1.1 XPath Design Aspects

 Two important design aspects of XPath are that it is functional and that it is

typed. These two aspects play an important role in XPath Semantics [2].

1. XPath is a functional language . XPath is built from expressions, rather than

statements. Every construct in the language is an expression and expressions

can be composed arbitrarily. The result of one expression can be used as the

input to any other expression, as long as the type of the result of the former

expression is compatible with the input type of the latter expression with which it

is composed. Expressions can be composed of functions in various forms. As

mentioned in section 1.2.2 XPath includes over 100 built-in functions, such as

functions for string values, numeric values, date and time comparison, node and

QName manipulation, sequence manipulation, boolean values, and more [2].

When such functions are used as part of path expressions, the nodes or node-

sets in an XML document that are selected by the expression will depend on the

result returned by the functions.

2. XPath is a typed language . XPath supports static type analysis. Static type

analysis infers the output type of an expression based on the type of its input

expressions. In addition to inferring the type of an expression for the user, static

typing allows early detection of type errors, and can be used as the basis for

certain classes of optimization.

 The semantics and grammar of XPath is discussed in further sections.

2.2 XPath Grammar and its complexity

 Grammar can be defined as a set of rules by which a language can be

constructed, essentially the syntax. It can be thought of as a tool that defines the

form or structure of the language enabling accurate interpretation by all users.

 Parsing is the process of analyzing a sequence of tokens in order to determine

its grammatical structure with respect to a given formal grammar. Parsing is

 19

usually conducted in two stages, first identifying the meaningful tokens in the

input, and then building a tree from those tokens. Parsing too follows the same

set of rules that make up the grammar.

 The grammar of XPath uses the Extended Backus-Naur Form (EBNF) notation

[12]. The version of Unicode that is used to construct expressions is

implementation defined. It follows the UTF-8 or UTF-16 charset. The UTF-8

charset is the same as ASCII for 00-7F and hence UTF-8 charset is assumed for

this implementation. Sections 2.2.1 discusses the reasons why XPath grammar

could be considered as significantly complex to parse.

2.2.1 Lexical analysis

 From a lexical perspective, the following points contribute to the complexity of

XPath grammar [2]:

1. Path Expression Syntax

 Path expressions are composed of a node name, followed by a forward slash

(“/”) to represent hierarchy, followed by another node name and so on till the

desired level of hierarchy has been reached. The parser needs to be able to

track the forward slash delimiters. The characters till the forward slash need to

be buffered separately, as they form one node name and the characters after

the forward slash form the next node name and are to be buffered separately.

2. Variable String Lengths

 As the string length is not limited, this places a requirement on the parser that

it should be able to buffer several characters at a stretch. The need for this

buffer is eliminated in the XPOE by writing these characters directly into

memory, with no intermediate storage required.

 20

3. Variable Number of Input Arguments

 The number of input arguments to some XPath functions is not limited and

hence poses a similar problem as that of the variable string length.

4. Depth of Hierarchy

 The depth of hierarchy contained in a path expression is not limited.

Sometimes the hierarchy can get really deep. This leads to buffering problems

and cumbersome parsing.

2.3 XPath Expressions and Functions
 As explained in section 1.2.2 the primary syntactic construct in XPath is the

expression. An expression is evaluated to yield an object, which has one of the

following four basic types; node-set, boolean, number or string. Expression

evaluation occurs with respect to a context, for example, a node (the context

node), a pair of non-zero positive integers (the context position and the context

size), a function library, etc. The function library consists of a mapping from

function names to functions. Each function takes zero or more arguments and

returns a single result.

2.3.1 XPath Expression and Function Format

 One important kind of expression is a location path. A location path selects a

set of nodes relative to the context node. The result of evaluating an expression

that is a location path is the node-set containing the nodes selected by the

location path. Location paths can recursively contain expressions that are used

to filter sets of nodes. Using the example of location paths we will see how

functions can be used as part of expressions:

• child::para[position()=last()-1] selects the last but one para child of the

context node.

 21

The last function returns a number equal to the context size from the

expression evaluation context.

• /child::doc/child::chapter[position()=5]/child::sec tion[position()=2]

selects the second section of the fifth chapter of the doc document

element.

The position function returns a number equal to the context position from

the expression evaluation context.

• child::para[attribute::type='warning'][position()=5] selects the fifth para

child of the context node that has a type attribute with value warning

• child::chapter[child::title='Introduction'] selects the chapter children of

the context node that have one or more title children with string-value

equal to Introduction.

A location step has three parts:

1. An axis, which specifies the tree relationship between the nodes selected by

the location step and the context node,

2. A node test, which specifies the node type and expanded-name of the nodes

selected by the location step, and

3. Zero or more predicates, which use arbitrary expressions to further refine the

set of nodes selected by the location step.

 The syntax for a location step is the axis name and node test separated by a

double colon, followed by zero or more expressions each in square brackets. For

example, in child::para[position()=1], child is the name of the axis, para is the

node test and [position()=1] is a predicate. The node-set selected by the location

step is the node-set that results from generating an initial node-set from the axis

and node-test, and then filtering that node-set by each of the predicates in turn.

The initial node-set is filtered by the first predicate to generate a new node-set;

this new node-set is then filtered using the second predicate, and so on. The final

node-set is the node-set selected by the location step. The axis affects how the

expression in each predicate is evaluated and so the semantics of a predicate is

defined with respect to an axis.

 22

 A predicate filters a node-set with respect to an axis to produce a new node-

set. For each node in the node-set to be filtered, the predicate expression is

evaluated with that node as the context node, with the number of nodes in the

node-set as the context size, and with the proximity position of the node in the

node-set with respect to the axis as the context position; if predicate expression

evaluates to true for that node, the node is included in the new node-set;

otherwise, it is not included.

 A function call expression is evaluated by using the function name to identify a

function in the expression evaluation context function library, evaluating each of

the arguments, converting each argument to the type required by the function,

and finally calling the function, passing it the converted arguments. It is an error if

the number of arguments is wrong or if an argument cannot be converted to the

required type. The result of the function call expression is the result returned by

the function.

 Another example of how a function can be implemented was shown in section

1.2.3 and is reiterated here for clarity:

• fn:string-join($arg1 as string, $arg2 as string) returns a string

This function will return a string created by concatenating the members of the

$arg1 sequence using $arg2 as a separator.

2.3.2 XPath Function Types

 XPath implementations contain a function library that includes functions used to

evaluate expressions. Each function in the function library is specified using a

function prototype, which gives the return type, the name of the function, and the

type of the arguments. The function library includes the following types of built-in

functions that are required for XPath2.0/Xquery1.0.

• Functions on Numeric Values

• Functions on Strings

• Functions on Boolean Values

• Functions on Durations, Dates and Times

 23

• Accessor Functions

• Error and Trace Functions

• Functions for anyURI

• Functions related to QNames

• Functions on Nodes

• Functions on Sequences

• Context Functions

2.3.3 XPath String Functions

 In this implementation we concentrate on offloading the string functions onto

hardware. Chapter 3 will present the motivation for offloading string functions

onto hardware and an analysis of the processor overhead savings that was

achieved by offloading specific string functions. The following paragraphs will talk

briefly about the string functions that were chosen to be offloaded.

• fn:codepoints-to-string(int,int,...)

Returns a string from a sequence of code points

Example: codepoints-to-string(84, 104, 233, 114, 232, 115, 101)

Result: 'Thérèse'

 Each of the input arguments to this function is an integer, which can have any

value from 0 to 2097151 in decimal or from 0x000000 to 0x1FFFFF in hex. This

function takes each one of the input arguments and encodes them to their

respective char UTF-8 notation. These encoded characters will then together

form the result string represented in UTF-8. Only character numbers between

0x000000 to 0x1FFFFF (21 bits) can be represented in UTF-8 hence the

restriction on the range of the input numbers. Sections 3.3.1 and 3.3.2 will further

illustrate this concept and show the significant savings that can be achieved by

offloading such functions onto hardware.

 24

• fn:string-to-codepoints(string)

Returns a sequence of code points from a string

Example: string-to-codepoints("Thérèse")

Result: 84, 104, 233, 114, 232, 115, 101

 The input argument to the above function is a string in UTF-8 character

representation. Each character of the input string is decoded from UTF-8 to give

its equivalent character number. "Character number", also known as "code point"

or “code position" is used to mean a non-negative integer that represents a

character in some encoding. The result is a sequence of character numbers

representing the individual characters of the input string, decoded from their

UTF-8 representation to character numbers. Sections 3.3.1 and 3.3.2

demonstrate that string functions that involve encoding to and decoding form

UTF-8 character representation benefit from significant CPU cycles savings.

• fn:codepoint-equal(comp1,comp2)

Returns true if the value of comp1 is equal to the value of comp2

 The input arguments to this function are strings. The two strings are compared

byte for byte. If there is a mismatch false is returned else true.

• fn:compare(comp1,comp2)

Returns -1 if comp1 is less than comp2, 0 if comp1 is equal to comp2, or 1 if

comp1 is greater than comp2

 Although the compare function seems similar to the codepoint-equal function

above, the difference is that instead of returning just a True or False

corresponding to a match or mismatch, in case of a mismatch the two strings are

compared to check which string is greater. In such cases the two strings are

compared code-point to code-point based on a specified collation rule.

 A collation is a specification of the manner in which character strings are

compared and, by extension, ordered. When values whose type is string is

compared (or, equivalently, sorted), the comparisons are inherently performed

according to some collation (even if that collation is defined entirely on code point

 25

values). Collations can indicate that two different code points are, in fact, equal

for comparison purposes (e.g., "v" and "w" are considered equivalent in

Swedish). Strings can be compared codepoint-by-codepoint or in a linguistically

appropriate manner, as defined by the collation.

 When the Unicode code point collation is used, this simply involves determining

whether arg1 contains a contiguous sequence of characters whose code points

are the same, one for one, with the code points of the characters in arg2. All

collations support the capability of deciding whether two strings are considered

equal, and if not, which of the strings should be regarded as preceding the other

as required in functions such as compare().

• fn:substring(string,start,len); fn:substring(string,start)

Returns the substring from the start position to the specified length. Index of the

first character is 1. If length is omitted it returns the substring from the start

position to the end

Example: substring('Beatles',1,4)

Result: 'Beat'

Example: substring('Beatles',2)

Result: 'eatles'

 This function takes in a string in UTF-8 representation and start and length

numbers are arguments. Although the string does not need to be decoded to

return a substring, we however need to identify character boundaries as each

character can be anywhere from one to four bytes. Identifying the number of

octets per character will allow us to locate the character at the start index, and

the substring starting at this index up to the length number of characters will be

the result string of the function.

• fn:translate(string1,string2,string3)

Converts string1 by replacing the characters in string2 with the characters in

string3.

 26

Example: translate('12:30','0123','abcd')

Result: 'bc:da'

 The translate function also requires that the UTF-8 characters be decoded to

their code points to be able to find all the instances of occurrence of characters of

string2 in string1 and then replace each one of these with each corresponding

character from string3. As this function involves decoding three input strings it

benefits greatly from the CPU cycles savings achieved through offloading the

decoding/encoding functions onto hardware as shown in sections 3.3.1 and

3.3.2. In functions that involve character counting such as substring, string-length

and translate functions, what is counted is the number of XML characters in the

string (or equivalently, the number of Unicode code points).

2.4 Requirements for parsing XPath Functions

 An XPath string function essentially consists of a function call through the

function name, a set of input arguments of a particular type and a return value of

set of values of a corresponding type. Based on the XPath string functions, the

following requirements apply.

• Pre-compile and pre-load XPath expressions

• When an appropriate XPath function that can be offloaded is identified by

the compiler, the pointer to each input argument (located in main memory)

along with corresponding argument lengths is written into the input section

of the memory. Once this is done an opcode corresponding to the particular

function, and an interrupt signal asking the accelerator to take over are

issued by the CPU to the XPOE.

• UTF-8 character set will be used for character representation

• Unicode code point collation is used for string and substring matching and

comparisons.

 27

Chapter 3

Processor overhead savings

analysis

 This chapter briefly discusses the drawbacks of XPath function implementation

in software. It then presents an analysis which demonstrates how offloading

specific XPath functions onto hardware will allow us to achieve significant

processor cycle savings.

3.1 Software approach to XPath function implementation

 This section elaborates on why XPath functions and hence XPath expressions

are considered to be CPU intensive. XPath functions form part of path

expressions that are used to filter required XML nodes or XML data from an XML

document or database. We have seen the structure of XPath expressions in

Chapter 2. Therefore, as XPath functions take XML data as arguments, the

software implementation of these functions and expressions are a cumbersome

task, owing to the following reasons:

 28

1. Use of UTF representation of data.

 XML uses UTF-8 or UTF-16 for representation of data and hence XPath and

XQuery work on data that is represented in UTF. UTF or Unicode Transformation

Format is a variable-length character encoding for Unicode. Unicode is an

industry standard designed to allow text and symbols from all of the writing

systems of the world to be consistently represented and manipulated by

computers. UTF is able to represent any universal character in the Unicode

standard, yet the initial encoding of byte codes and character assignments for

UTF-8 is consistent with ASCII.

 UTF-8 uses one to four bytes per character, depending on the Unicode symbol.

Only one byte is needed to encode the 128 US-ASCII characters (Unicode range

U+0000 to U+007F). Two bytes are needed for Latin letters with diacritics and for

characters from Greek, Cyrillic, Armenian, Hebrew, Arabic, Syriac and Thaana

alphabets (Unicode range U+0080 to U+07FF). Three bytes are needed for the

rest of the Basic Multilingual Plane and four bytes are needed for characters in

other planes of Unicode.

 The table below summarizes the format of these different octet types. The letter

x indicates bits available for encoding bits of the character number.

Table 3.1: Format of the different octet types in UTF-8 encoding

Num of free | Char. number range | UTF-8 octet sequence

bits | (hexadecimal) | (binary)

-------------------+-------------------------------+--
 | |
7 | 0000 0000-0000 007F | 0xxxxxxx

(5+6)=11 | 0000 0080-0000 07FF | 110xxxxx 10xxxxxx

(4+6+6)=16 | 0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx

(3+6+6+6)=21 | 0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

 29

Examples

• The character sequence U+0041 U+2262 U+0391 U+002E "A<NOT

IDENTICAL TO><ALPHA>." is encoded in UTF-8 as follows:

 --+------------+--------+---

 41 E2 89 A2 CE 91 2E

 --+------------+--------+---

• The character sequence U+D55C U+AD6D U+C5B4 (Korean "hangugeo",

meaning "the Korean language") is encoded in UTF-8 as follows:

 ------------+-------------+------------

 ED 95 9C EA B5 AD EC 96 B4

 ------------+-------------+------------

• The character sequence U+65E5 U+672C U+8A9E (Japanese "nihongo",

meaning "the Japanese language") is encoded in UTF-8 as follows:

 -----------+-------------+------------

 E6 97 A5 E6 9C AC E8 AA 9E

 -----------+-------------+------------

2. Variable string lengths

 The arguments to the string functions are of variable string length. As each

string can have an extremely small or an extremely large number of characters,

this poses a problem for the parser when it comes to buffering so many

characters at a stretch.

3. Variable number of arguments

 The arguments to the string functions are variable in number. Although some

string functions have a fixed number of arguments other functions can have a

variable number of arguments, making it difficult for the parser to optimize each

function.

 Section 3.2 elaborates on the high level block diagram of the XPath Offload

Engine (XPOE), which allows the CPU savings, discussed in section 3.3.

 30

3.2 High level Block diagram for hardware offload

 The high level block diagram which shows the interaction between the CPU,

the memory and the XPOE is shown in Figure 3.1.

1. Memory

 The memory is shared between the CPU and the XPOE. It is implemented as a

32-bit memory. The motivation behind choosing a 32-bit data width is the fact

that UTF-8 uses a maximum of 4 bytes to represent each character.

 The memory is divided into 3 distinct sections. Different information is stored at

pre-decided memory locations. The first section is the main memory section that

is read and written to by the CPU and can only be read by the XPOE. The

remaining part of the memory outside of the main memory is divided into the

input and output section of the memory.

 As mentioned in section 2.4 when an appropriate XPath function that can be

offloaded is identified by the compiler, the pointer to each input argument

(located in main memory) along with corresponding argument lengths is written

into the input section of the memory. The result or the output of the function

execution is written into the output section of the memory by the XPOE. The

result string will be stored at a predefined location in the output section of the

memory. A counter is run while this result value is being stored. Once the entire

value is stored, the value of the counter serves as the length of the result string.

The pointer to the result and the length of the result are stored at the start of the

output section.

 When control returns to the CPU, the software can then easily use the string

pointer which points to the start of the result string along with its length to obtain

the result value. The CPU is aware of all these addresses and thus knows where

to store the pointers to the input arguments and where to read the result from. An

explanation of each of the main blocks that form the XPOE follows.

 31

Figure 3.1: High level block diagram showing system level interaction

2. XPOE

 The XPOE is made up of 5 main modules. Each one is mentioned below with a

brief description. A detailed description of the behavior and functionality of the

XPOE and its modules is given in chapters 4 and 5.

• Read Input Memory

 This module is the interface between the input section of the memory and the

rest of the XPOE. When the XPOE is interrupted by the CPU with a start signal

the read input memory module will interpret the opcode received from the CPU

 CPU

 Main
Memory

 Input
Memory

Output

Memory

XPOE

PCI
BUS

 32

and appropriately read the required number of bytes from the input section of the

memory.

• Read Main Memory

 This module receives the bytes read from the input memory and based on the

opcode interprets the bytes read. It identifies the string pointers and using these

pointers it reads the input arguments to the function from the appropriate location

in main memory word by word.

• Function Execute

 This module implements the execution of the actual XPath function based on

the opcode that is passed to the XPOE by the CPU. It operates on the character

data passed to it from the main memory. The output of the operation on each

input word is then delivered to be written to the output memory.

• Memory Write Module

 This module writes the result of the function execution into the output section of

the memory. Once that is done a ‘complete’ signal goes high and wakes up the

CPU, which will then read the result from the predefined location of the output

section of memory.

• Controller

 This module implements the Finite State Machine (FSM). When the start

interrupt goes high the FSM enables the read input module. Based on signals

from the read main memory, function execute and memory write modules the

FSM will enable the appropriate modules. When the complete signal goes high

indicating that the XPOE has finished execution the CPU will be interrupted.

 33

3.3 Processor savings analysis

3.3.1 Encode-to and Decode-from UTF-8 representation

 The analysis starts by showing the CPU cycles savings that is incurred in

encoding-to and decoding-from UTF-8 character representation. XPath functions

take XML data as arguments. As seen in section 3.1 one of the main reasons

that XPath functions are CPU intensive is the UTF representation of XML

character data. UTF-8 character representation is assumed for this

implementation. A majority of the XPath string functions involve encoding-to or

decoding-from UTF-8 representation to some extent or the other. Thus, we can

infer that by offloading the encoding and decoding operations onto hardware a

significant amount of CPU cycles can be saved by the majority of the XPath

string functions. The following tables will elaborate on the encoding and decoding

operations and present an analysis on the number of CPU cycles involved with

the help of pseudo-code. An example input is used for analysis purposes. The

input contains 6 character numbers in the case of encode or a string with a string

length of 6 in the case of decode. The number of bytes/octets per character is

taken as 3 for this example. The analysis will then compare the CPU utilization

involved in the encoding-to and decoding-from UTF-8 representation of this

example input for the following two methods:

1) Complete software approach

 The software reads the arguments and implements the encoding-to and

decoding-from UTF-8 functions.

 34

• Encoding a character number to a UTF-8 character

1. Determine the number of octets required from the char number.

2. Then, prepare the high order bits of the octets.

3. Finally, fill in the appropriate bits from the bits of the character number,

expressed in binary.

Table 3.2: Cycles required for an all-software approach for encoding function

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES

PER
CHAR
NUM

Read the char numbers
from memory L1: READ Reg1, 4 bytes READ 6 1
Generate mask MOV Reg2, mask MOV 30 5
Check how many octets
are required per char COMPARE Reg1, Reg2 COMPARE 30 5
Generate high-order
and other bit masks Mov Reg2, mask MOV 24 4
Left Shift appropriate no
of bits to align num bits AND Reg1, Reg2 AND 18 3
correctly with the high
order bits of the octets SHIFTL Reg1, 2 SHIFT 12 2
OR to get the num
encoded in UTF-8 OR Reg1, bitpattern OR 24 4
 LOOP L1 INCR 6 1

Write encoded chars
back into memory WRITE Reg1, writeaddress WRITE 6 1
 SCALE
 TOTAL READ 6 1
 COMPARE 30 1
 INCR 6 1
 MOV 54 1
 AND 18 1
 SHIFT 12 1
 OR 24 1
 WRITE 6 1

TOTAL INSTRUCTION
CYCLES 156

 35

• Decoding a UTF-8 character to a character number

1. Initialize a number and set its bits to one.

2. Determine how many bits are used to represent the character, that is,

which bits encode the character.

3. Finally, distribute the bits from the sequence to the initialized number, form

the lower order bits, proceeding to the left. This number will now equal the

character number.

Table 3.3: Cycles required for an all-software approach for decoding function

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR
Read UTF-8 char from
memory L1: READ Reg1, 4 bytes READ 6 1
Generate mask MOV Reg2, mask MOV 6 1
Check number of bytes
per char L2: AND Reg1, Reg2 AND 18 3
Generate value MOV Reg2, value MOV 66 11
Mask and compare COMPARE Reg1, Reg2 COMPARE 66 11
Shift right after each
compare to check SHIFTR Reg1, 8 SHIFT 12 2
subsequent higher
bytes JumpNotEqual L2
Generate octet bit
masks to obtain only
those L3: MOV Reg2, mask MOV 18 3
bits that make the char
number AND Reg1, Reg2 AND 18 3
Right shift appropriate
num of bits for correct SHIFTR Reg1, 2 SHIFT 12 2
Alignment OR Reg1, bitpattern OR 12 2
OR with initialized num
to get final char num LOOP L1 INCR 6 1

Write decoded char
nums back into memory

WRITE Reg1,
writeaddress WRITE 6 1

 SCALE
 TOTAL READ 6 1
 AND 36 1
 COMPARE 66 1
 SHIFT 24 1
 INCR 6 1
 MOV 90 1
 OR 12 1
 WRITE 6 1

TOTAL INSTRUCTION
CYCLES 246

 36

2) Hardware offload approach

 The implementation of the encoding and decoding functions are offloaded onto

dedicated hardware. The software does trivial address calculations to obtain the

result output by the functions.

Table 3.4: Cycles required for a hardware-offloaded approach

PROPRIETARY
SCHEME
CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR
Write the string pointer
and strlen into

WRITE strptr,
writeaddress WRITE 2 1

the separate output
section of the memory
Read the result, ie., the
encoded or

ADD Offset base
address, Index READ 6 1

decoded value that has
been written READ Reg1, 4 bytes INCR 6 1
into the output section
of the memory by

ADD Value base
address, Reg1 ADD 2 1

the accelerator.
L1: READ Reg1, 4
bytes COMPARE 6 1

COMPARE Field
Length,0

 JumpNotEqual L1
 SCALE
 TOTAL READ 6 1
 COMPARE 6 1
 INCR 6 1
 ADD 2 1
 WRITE 2 1

TOTAL
INSTRUCTION

CYCLES 22

 From Tables 3.2, 3.3 and 3.4, it can be seen that the cycles required by the

hardware-offload method (22 cycles) is significantly lower than those required

when using an all-software approach (156 cycles for encoding and 246 cycles for

decoding). This translates into a savings of over 85% for encoding and over 89%

for decoding functions.

 37

3.3.2 XPath string functions

 In section 3.3.1 we saw the significant number of CPU cycles that can be

saved by offloading encoding and decoding operations onto hardware. In this

section we continue our analysis by examining example XPath string functions

that involve encoding and decoding to some extent and hence could lead to

similar CPU cycles savings. Each analysis will consider a sample XPath

function and corresponding arguments. And similarly the analysis will follow two

methods to compare the CPU utilization involved in the execution of the

example XPath functions. The complete software approach and the hardware

offload approach. A detailed description of all the example functions below is

presented in section 2.3.3

• Function to assemble strings: codepoints-to-string(int, int, …)

Returns a string from a sequence of codepoints

 Example: codepoints-to-string(84, 104, 233, 114, 232, 115, 101)

 Result: 'Thérèse'

� Type of input: character numbers / codepoints / integers

� Number of character numbers / integer arguments: 6

� Number of bytes/octets per character: 3

 38

1) Complete software approach: codepoints-to-string function

Table 3.5: Cycles required for an all-software approach: codepoints-to-string

function

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES

PER
CHAR
NUM

Read the char nums from
memory L1: READ Reg1, 4 bytes READ 6 1
Generate mask MOV Reg2, mask MOV 30 5
Check how many octets
are required per char COMPARE Reg1, Reg2 COMPARE 30 5
Generate high-order and
other bit masks Mov Reg2, mask MOV 24 4
Left Shift appropriate no of
bits to align num bits AND Reg1, Reg2 AND 18 3
correctly with the high
order bits of the octets SHIFTL Reg1, 2 SHIFT 12 2
OR to get the num
encoded in UTF-8 OR Reg1, bitpattern OR 24 4
 LOOP L1 INCR 6 1

Write encoded chars back
into memory

WRITE Reg1,
writeaddress WRITE 7 1

 SCALE
 TOTAL READ 6 1
 COMPARE 30 1
 INCR 6 1
 MOV 54 1
 AND 18 1
 SHIFT 12 1
 OR 24 1
 WRITE 7 1

TOTAL INSTRUCTION
CYCLES 157

 39

2) Hardware offload approach: codepoints-to-string function

Table 3.6: Cycles required for a hardware-offloaded approach: codepoints-to-

string function

PROPRIETARY SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR

Write the string pointer
and strlen into

WRITE strptr,
writeaddress WRITE 2

the separate intput
section of the memory
Read the result, ie., the
encoded or

ADD Offset base
address, Index READ 6 1

decoded value that has
been written READ Reg1, 4 bytes INCR 6 1
into the output section of
the memory by

ADD Value base
address, Reg1 ADD 2

The accelerator.
L1: READ Reg1, 4
bytes COMPARE 6 1

COMPARE Field
Length,0

 JumpNotEqual L1
 SCALE
 TOTAL READ 6 1
 COMPARE 6 1
 INCR 6 1
 ADD 2 1
 WRITE 2 1

TOTAL
INSTRUCTION
CYCLES 22

• Function to disassemble strings: string-to-codepoin ts(string)

Returns a sequence of code points from a string

 Example: string-to-codepoints("Thérèse")

 Result: 84, 104, 233, 114, 232, 115, 101

� Type of input: string

� Number of character numbers / integer arguments: 6

� Number of bytes/octets per character: 3

 40

1) Complete software approach: string-to-codepoints function

Table 3.7: Cycles required for an all-software approach: string-to-codepoints

function

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR
Read UTF-8 chars from
memory L1: READ Reg1, 4 bytes READ 7 1
Generate mask MOV Reg2, mask MOV 6 1
Check number of bytes per
char L2: AND Reg1, Reg2 AND 18 3
Generate value MOV Reg2, value MOV 66 11
Mask and compare COMPARE Reg1, Reg2 COMPARE 66 11
Shift right after each
compare to check SHIFTR Reg1, 8 SHIFT 12 2
subsequent higher bytes JumpNotEqual L2
Generate octet bit masks
to obtain only those MOV Reg2, mask MOV 18 3
bits that make the char
number AND Reg1, Reg2 AND 18 3
Right shift appropriate num
of bits for correct SHIFTR Reg1, 2 SHIFT 12 2
alignment OR Reg1, bitpattern OR 12 2
OR with initialized num to
get final char num LOOP L1 INCR 6 1

Write decoded char nums
back into memory

WRITE Reg1,
writeaddress WRITE 6 1

 SCALE
 TOTAL READ 7 1
 AND 36 1
 COMPARE 66 1
 SHIFT 24 1
 INCR 6 1
 MOV 90 1
 OR 12 1
 WRITE 6 1

TOTAL INSTRUCTION
CYCLES 247

 41

2) Hardware offload approach: string-to-codepoints function

Table 3.8: Cycles required for a hardware-offloaded approach: string-to-

codepoints function

PROPRIETARY
SCHEME
CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES PER CHAR

Write the string pointer
and strlen into

WRITE strptr,
writeaddress WRITE 2 1

the separate intput
section of the memory
Read the result, ie., the
encoded or

ADD Offset base
address, Index READ 6 1

decoded value that has
been written

READ Reg1, 4
bytes INCR 6 1

into the output section of
the memory by

ADD Value base
address, Reg1 ADD 2 1

The accelerator.
L1: READ Reg1, 4
bytes COMPARE 6 1

COMPARE Field
Length,0

 JumpNotEqual L1
 SCALE
 TOTAL READ 6 1
 COMPARE 6 1
 INCR 6 1
 ADD 2 1
 WRITE 2 1

TOTAL
INSTRUCTION

CYCLES 22

• Function to test equality and comparison of strings : codepoint-

equal(comp1,comp2)

Returns true if the value of comp1 is equal to the value of comp2

 Example: codepoint-equal('Thérèse', 'Thérèse')

 Result: true

 42

� Type of input: strings

� Number of character numbers / integer arguments: 6

� Number of bytes/octets per character: 3

1) Complete software approach: codepoint-equal

Table 3.9: Cycles required for an all-software approach: codepoint-equal function

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES PER CHAR
Read string1 from
memory L1: READ Reg1, 4 bytes READ 7 1
Read string2 from
memory READ Reg2, 4 bytes READ 7 1
Compare the 2 strings
byte per byte until COMPARE Reg1, Reg2 COMPARE 24 4
not equal… else return
true JumpEqual L1 INCR 6 1
Write result into
memory

WRITE Reg1,
writeaddress WRITE 1

 SCALE
 TOTAL READ 14 1
 COMPARE 24 1
 INCR 6 1
 WRITE 1 1

TOTAL INSTRUCTION
CYCLES 45

 43

2) Hardware offload approach: codepoint-equal

Table 3.10: Cycles required for a hardware-offloaded approach: codepoint-equal

function

PROPRIETARY SCHEME
CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR
Write the str pointer and
strlen for each string

WRITE strptr,
writeaddress WRITE 4

into the separate intput
section of the memory

Read the result
READ Reg1, 4
bytes READ 1

 SCALE
 TOTAL READ 1 1
 WRITE 4 1

TOTAL
INSTRUCTION

CYCLES 5

• Functions on string values: substring(string,start, len),

substring(string,start)

Returns the substring from the start position to the specified length. Index

of the first character is 1. If length is omitted it returns the substring from

the start position to the end.

Example: substring('Beatles',1,4)

 Result: 'Beat'

 Example: substring('Beatles',2)

 Result: 'eatles'

� Type of input: strings

� Number of character numbers / integer arguments: 6

� Number of bytes/octets per character: 3

 44

1) Complete software approach: substring

Table 3.11: Cycles required for an all-software approach: substring function

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR

Read string from memory
L1: READ Reg1, 4
bytes READ 7 1

Generate mask MOV Reg2, mask MOV 6 1
Check number of bytes
per char L2: AND Reg1, Reg2 AND 24 4
Generate value MOV Reg2, value MOV 84 14

Mask and compare
COMPARE Reg1,
Reg2 COMPARE 102 17

Shift right after each
compare to check SHIFTR Reg1, 8 SHIFT 18 3
subsequent higher bytes JumpNotEqual L2 INCR 12 2
Loop back for each char
in the input string LOOP L1 INCR 6 1
Write encoded chars
back into memory

WRITE Reg1,
writeaddress WRITE 7 1

 SCALE
 TOTAL READ 7 1
 AND 24 1
 COMPARE 102 1
 SHIFT 18 1
 INCR 18 1
 MOV 90 1
 WRITE 7 1

TOTAL
INSTRUCTION
CYCLES 266

 45

2) Hardware offload approach: substring

Table 3.12: Cycles required for a hardware-offloaded approach: substring

function

PROPRIETARY SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR
Write the str ptr, strlen, start
position and length args

WRITE strptr,
writeaddress WRITE 4 1

into the separate intput
section of the memory
Read the resultant string that
has been written

ADD Offset base
address, Index READ 6 1

into the output section of the
memory by

READ Reg1, 4
bytes INCR 6 1

the accelerator.
ADD Value base
address, Reg1 ADD 2 1

L1: READ Reg1, 4
bytes COMPARE 6 1

COMPARE Field
Length,0

 JumpNotEqual L1
 SCALE
 TOTAL READ 6 1
 COMPARE 6 1
 INCR 6 1
 ADD 2 1
 WRITE 4 1

TOTAL
INSTRUCTION
CYCLES 24

• Functions on string matching: starts-with(string1,s tring2)

Returns true if string1 starts with string2, otherwise it returns false

Example: starts-with('XML','X')

 Result: true

ends-with(string1,string2)

Returns true if string1 ends with string2, otherwise it returns false

Example: ends-with('XML','X')

Result: false

 46

� Type of input: strings

� String1 length: 8

� String2 length: 4

� Number of bytes/octets per character: 3

1) Complete software approach: starts-with and ends-with

Table 3.13: Cycles required for an all-software approach: starts-with and ends-

with functions

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR

Read string1 from
memory L1: READ Reg1, 4 bytes READ 9 1
Read string2 from
memory READ Reg2, 4 bytes READ 5 1
Compare the 2 strings
byte per byte until COMPARE Reg1, Reg2 COMPARE 16 4
not equal… else return
true JumpEqual L1 INCR 4 1

Write result into memory
WRITE Reg1,
writeaddress WRITE 1

 SCALE
 TOTAL READ 14 1
 COMPARE 16 1
 INCR 4 1
 WRITE 1 1

TOTAL INSTRUCTION
CYCLES 35

 47

2) Hardware offload approach: starts-with and ends-with

Table 3.14: Cycles required for a hardware-offloaded approach: starts-with and

ends-with functions

PROPRIETARY SCHEME
CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR

Write the str pointer and
strlen for each string

WRITE strptr,
writeaddress WRITE 4

into the separate intput
section of the memory
Read the result READ Reg1, 4 bytes READ 1

 SCALE
 TOTAL READ 1 1
 WRITE 4 1

TOTAL
INSTRUCTION

CYCLES 5

• Functions on string matching: substring-before(stri ng1,string2)

Returns the start of string1 before string2 occurs in it

Example: substring-before('12/10','/')

Result: ‘12’

substring-after(string1,string2)

Returns the remainder of string1 after string2 occurs in it

Example: substring-after('12/10','/')

Result: ‘10’

� Type of input: strings

� String1 length: 8

� String2 length: 4

� Number of bytes/octets per character: 3

 48

1) Complete software approach: substring-before and substring-after

Table 3.15: Cycles required for an all-software approach: substring-before and

substring-after functions

TRADITIONAL SCHEME CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES PER CHAR
Read string1 from
memory

L1: READ Reg1, 4
bytes READ 9 1

Read string2 from
memory

READ Reg2, 4
bytes READ 5 1

Compare the 2 strings
byte per byte until

COMPARE Reg1,
Reg2 COMPARE 32 4

not equal… else return
true JumpNotEqual L1 INCR 4 1
Write result into
memory

WRITE Reg1,
writeaddress WRITE 4 1

 SCALE
 TOTAL READ 14 1
 COMPARE 32 1
 INCR 4 1
 WRITE 4 1

TOTAL
INSTRUCTION
CYCLES 54

 49

2) Hardware offload approach: substring-before and substring-after

Table 3.16: Cycles required for a hardware-offloaded approach: substring-before

and substring-after functions

PROPRIETARY SCHEME
CALCULATIONS

FUNCTION PSEUDO CODE OPERATOR #CYCLES
PER

CHAR

Write the str pointer and
strlen for each string

WRITE strptr,
writeaddress WRITE 4 1

into the separate intput
section of the memory

Read the result
READ Reg1, 4
bytes READ 4 1

 SCALE
 TOTAL READ 4 1
 WRITE 4 1

TOTAL
INSTRUCTION

CYCLES 8

 From Tables 3.5 through 3.16, it can be seen that the cycles required by the

hardware-offload method is significantly lower than those required when using an

all-software approach for each one of the example XPath string functions. Below

is a comparison of the savings achieved for each of the functions.

Table 3.17: Comparison of the savings achieved for each of the functions

XPath Function S/W Approach

(#CYCLES)

H/W Offload

Approach (#CYCLES)

Savings

codepoints-to-string 157 22 86%

string-to-codepoints 247 22 89%

codepoint-equal 45 5 89%

substring 266 24 91%

starts-with

ends-with

35 5 86%

substring-before

substring-after

54 8 84%

 50

 From table 3.17 we see that the average savings achieved over all functions is

around 88%. The feasibility and importance of this number is demonstrated in

tables 3.18 and 3.19. Table 3.18 shows the percent savings achieved for varying

percentages (taken from 10% to 100%) of the above functions in any XML

document or documents. Table 3.19 similarly shows the speedup (from Amdahl’s

law) that can be achieved for varying percentages of the above string functions.

Table 3.18: Comparison of fraction of string functions to the savings achieved

Maximum achievable savings = 88%

Fraction (or % of string

functions)

Savings (%)

0.1 9

0.2 18

0.3 26

0.4 35

0.5 44

0.6 53

0.7 62

0.8 70

0.9 79

1.0 88

 51

Figure 3.2: Plot of fraction of XPath functions offloaded onto hardware to the

savings achieved

Table 3.19: Comparison of fraction of string functions to the speedup achieved

Maximum achievable speedup = s = 8.33

Fraction (f)

(% string functions)

Overall Speedup (S)

(S = 1 / [(1-f) + (f/s)])

0.1 1.10

0.2 1.21

0.3 1.36

0.4 1.54

0.5 1.76

0.6 2.12

 52

Table 3.19 continued: Comparison of fraction of string functions to the speedup

0.7 2.60

0.8 3.38

0.9 4.81

1.0 8.33

Figure 3.3: Plot of fraction of XPath functions offloaded onto hardware to the

speedup achieved

 From the above tables and figures we can see that hardware offload results in

significant CPU cycles savings and is thus highly favorable.

 53

Chapter 4

Design Architecture

4.1 Introduction

 In chapter 3 we saw the potential savings the XPOE could achieve. In this

section we take a high level look at the design architecture. The block diagram

will be discussed. Functions and implementation details of individual blocks will

also be elaborated on.

 The design examines the incoming opcode on being interrupted to identify the

function to be implemented. The design also simultaneously starts reading the

input section of memory to get the required pointers to the input arguments of the

function, which are located in main memory. The input arguments are read byte

by byte and as per the opcode the appropriate function is executed. The result of

the function execution is then written to the output section of the memory byte by

byte. Storage occurs only at the final stage and hence no back pressure is

exerted on the input. Once the writing of the result into output memory has been

 54

successfully completed, the CPU is interrupted and it is assumed that the PCI

device would read this result data, to be examined by the CPU.

 The following sections list all the blocks involved in the design. Their functions

and a brief idea of their implementation are given.

4.2 Block Diagram and Explanation

 The figure 4.1 shows the block level implementation of the XPath Offload

Engine (XPOE). We shall discuss the functions and brief implementation in

subsequent sections.

Figure 4.1: Block Diagram of XPOE

 Main
Memory

 Input
Memory

 Output
Memory

Read
Input

Memory

Read
Main

Memory

Output

Memory
Write

Function
Execute

Unit

XPOE

Controller

 55

4.2.1 Read Input Memory

 The following sections list the functions and implementation of the Read Input

Memory block.

• Functions

1. Interfaces to the input section of the memory on the input side.

2. Examines the bytes stored at the input section of the memory by the

compiler.

3. Reads the bytes from the input section till end of valid byte stream is

encountered.

4. Passes the read input bytes to the read main memory block.

• Implementation

Figure 4.2: Read Input Memory Implementation Diagram

Input Mem
Interface

Logic

Read
Main Mem
Interface
Logic

Registering
Input Mem
Data Logic

End of Valid Byte
Stream Logic

 Input

 Memory

Read Main
Memory

Interface

 56

 The Read Input Memory module is the interface between the input section of

the memory and the rest of the XPOE. When the XPOE is interrupted by the

CPU with a start signal the read input memory module will interpret the opcode

received from the CPU and appropriately read the required number of bytes from

the input section of the memory. This module will continue reading bytes from the

input section till an end of stream flag is encountered.

 The start interrupt from the CPU will enable this module and when end of valid

byte stream is encountered this module would have read all the required bytes

from the input section of memory. These bytes are now ready to be passed to the

Read Main Memory module for further processing. The end of valid byte stream

flag is used because based on the opcode the number of input arguments and

hence the number of bytes to be read from the input section of memory will vary.

4.2.2 Read Main Memory

 The following sections list the functions and implementation of the Read Main

Memory block.

• Functions

1. Interfaces with the Read Input Memory module on the input side and with

the Function Execution unit on the output side.

2. Based on the opcode this module identifies which function is to be

executed.

3. As per the required function bytes from the input module are used

appropriately as input argument pointers and associated lengths.

4. Reads the main memory section with these pointers.

5. Delivers the input argument bytes to the Function Execute module.

 57

• Implementation

Figure 4.3: Read Main Memory Implementation Diagram

 This module receives the bytes read by the Read Input Memory module. Based

on the function corresponding to the opcode it interprets the bytes read. It

identifies the string pointers and its corresponding lengths and reads from the

appropriate location in main memory byte by byte. It then delivers the input

arguments to the function byte by byte to the Function Execute module.

4.2.3 Function Execute

 The following sections list the functions and implementation of the Function

Execute block.

• Functions

Mem Add
Interface

Logic

Mem Data
Registering
Logic

String
Length
Calc
Logic

Function Selection
Logic

 Main

 Memory

Main
Memory

Valid
Data

Main Mem
Interface

Logic

Opcode

Input Mem

Data Valid

 58

1. Interfaces with the Read Main Memory module on the input side and with

the Memory Write module on the output side.

2. Based on the opcode this module decides which function to implement.

3. If required it identifies the bytes of the input memory data other than string

pointers that might be needed for function execution.

4. It executes the appropriate function block on the input arguments passed

to it by the Read Main Memory module.

5. This module will deliver the output of the function execution, which is the

data to be written to memory to the Memory Write module.

6. It indicates whether a particular data value that is the output of the

execution needs to be written to the output memory or not.

• Implementation

Figure 4.4: Function Execute Implementation Diagram

Memory Data
Interpretation

Logic

Memory
Write
Interface
Logic

Function
Execution

logic

Decode from UTF-8
logic

 Main

 Memory

Memory
Write

Interface

Encode to UTF-8
logic

 Opcode

 59

 This module implements the operation of the actual XPath function based on

the opcode that is passed to the accelerator by the CPU. The input to this

module is from the Read Main Memory module. The input arguments are read

from the main memory byte by byte and the Function Execute module operates

on these inputs. The output of this operation is character data that may or may

not need to be written to the output section of the memory. This data value is

passed to the Memory Write module.

 A significant percentage of the CPU overhead savings is affected by this

module. This module implements the encoding to and decoding from UTF-8, both

of which consume the maximum number of CPU cycles.

4.2.4 Memory Write

 The following sections list the functions and implementation of the Memory

Write block.

• Functions

1. Interfaces with the Function Execute module on the input side and with the

output section of the memory on the output side.

2. It receives the character data to be written to memory from the Function

Execute module.

3. Writes the input data value to the output section of the memory

4. When the writing of the result has been completed this module will also

write the pointer to the result string and its length at the beginning of the

output section.

5. Indicates when all writing has completed letting the CPU know that the

result is ready to be read.

 60

• Implementation

Figure 4.5: Memory Write Implementation Diagram

 This module writes the result word by word into the output section of the

memory. When the entire result string has been written, a pointer to the start

address of the string along with the length of the result string are written into the

start of the output section of the memory. Once that is done a complete signal

goes high and wakes up the CPU, which will then read the result from the

predefined location of the output section of memory. The CPU software can

easily use the index and length fields to access the value.

4.3 Design Pipeline

 The input can be considered as a continuous flow of input functions / opcodes.

One approach to this design could be to first completely buffer the incoming

functions, as in all the pointers to the input arguments, then process it, and then

Func Exe
Interface

Logic

Output
Mem
Interface
Logic

Result
and

Pointer
Addr
Calc

 Function

 Execute

Output
Length
Calc
Logic

Output

Memory

 Opcode

 61

wait for the next group of functions. In this case, there could be a situation where

we would need to exert backpressure on the input. To avoid this scenario, we

take a pipelined approach. In this approach there is no need to exert any

backpressure and we achieve better throughput.

 The above sections have discussed the main modules of the XPOE from a

block level view by talking about the functionality and basic implementation.

Chapter 5 will describe these modules in greater detail, such as, pin interfaces,

timing waveforms and detailed architecture.

 62

Chapter 5

Design Module Description

5.1 Introduction

 In section 4, we had a top-level look at block-level architecture of the design.

We saw the functions of the blocks and had a brief idea of how each block is

implemented. The current section aims to provide more details. For each block,

the pin interfaces with other blocks and a detailed implementation description are

given. This would include the FSM, data structures, arithmetic units and specific

logic involved.

5.2 Module Read Input Memory

 This section and its subsection sections present a detailed description of the

Read Input Memory module. Section 5.2.1 presents the pin interfaces with blocks

it interacts with. Section 5.2.2 describes its implementation in detail.

 63

5.2.1 Pin Interface

 This section describes the pin interfaces of the Read Input Memory block with

the other blocks.

Table 5.1: Interface with the system

No. Pin Name Dirn. Width Description
1 clk IN 1 Async system reset
2 reset IN 1 System clock

Table 5.2: Interface with the input section of the memory

No. Pin Name Dirn Width Description
1 enable_inputread IN 1 Indication to start

reading Input memory.
This signal is asserted
when the start interrupt
from CPU is issued.

2 ReadBus1 IN 32 Data read from Input
section of the memory.

3 ReadAddress_IPMem OUT 32 Address generated for
reading the Input section
of memory.

Table 5.3: Interface with the Read Main Memory module

No. Pin Name Dirn Width Description
1 Inputread_done OUT 1 Indication that Input

memory has been read
and data is valid. A
signal for Read Main
Memory module to use
this data to read the
Main memory.

2 Inputmem_data OUT 128 Data read from Input
section of the memory.

 64

5.2.2 Architecture

 This section starts by discussing the interface timing between the Read Input

Memory module and the blocks it interfaces with. It then proceeds to elaborate

on the hardware implementation of the blocks in the logic schematic shown in

section 4.2.

• Input Memory Interface Timing

Figure 5.1: Interface waveform for Input Memory

 Figure 5.1 shows the behavior between the Read Input Memory module and

the input memory. When the start interrupt signal from the CPU is sampled high

the data from the input section of the memory is read into an internal register. As

each data unit is read from the input memory it is first checked for the end of

valid byte stream sequence. As long as the end of byte stream has not been

reached, on each positive edge of the clock one word is read from the input

section of the memory and is registered. Note that for this data to be valid the

start signal should be high and the end of valid stream should not have been

reached. Upon reaching the end of valid byte stream inputread_done is asserted

 65

high. By this point all the data that was read from the input memory would have

been registered and ready to be delivered to the Read Main Memory module.

• Timing Waveform for internal counters and output interfaces

Figure 5.2: Internal counters and Read Main Memory interface timing

 Figure 5.2 above shows the timing waveform describing the behavior of the

output interfaces and the interface with the Read Main Memory module.

5.3 Module Read Main Memory

 This section and its subsection sections present a detailed description of the

Read Main Memory module. Section 5.3.1 presents the pin interfaces with blocks

it interacts with and section 5.3.2 describes its implementation in detail.

5.3.1 Pin Interface

 This section describes the pin interfaces of the Read Main Memory block with

the other blocks.

 66

Table 5.4: Interface with the system

No. Pin Name Dirn. Width Description
1 Clk IN 1 Async system reset
2 Reset IN 1 System clock

Table 5.5: Interface with the Read Input Memory module

No. Pin Name Dirn Width Description
1 enable_readmm IN 1 Indication to start reading

Main memory. This signal
is asserted when the Input
memory data is valid, i.e.
when inputread_done
goes high.

2 inputmem_data IN 128 Data read from Input
section of the memory. To
be interpreted by the Read
Main Memory module as
pointers to input
arguments in Main
memory and their
corresponding lengths.

Table 5.6: Interface with the Main Memory module

No. Pin Name Dirn Width Description
1 ReadBus1 IN 32 Data read from the Main

memory section from the
first memory read bus.

2 ReadBus2 IN 32 Data read from the Main
memory section from the
second memory read bus.

3 ReadAddress1_MMem OUT 32 Address generated from
the Input memory data for
reading the Main memory

4 ReadAddress2_MMem OUT 32 Address generated from
the Input memory data for
reading the Main memory

 67

Table 5.7: Interface with the Function Execute module

No. Pin Name Dirn Width Description
1 readmm_done OUT 1 This signal is asserted

when the Read Main
Memory module has
completed reading all
input arguments from
Main Memory for that
particular function.

2 readchar_done OUT 1 Indication that a word has
been read from Main
memory and is ready to be
operated on by the
Function Execute module.

3 mmchardata1 OUT 32 Data read from Main
memory. To be processed
by the Function Execute
module.

4 mmchardata2 OUT 32 Data read from Main
memory. To be processed
by the Function Execute
module.

5.3.2 Architecture

 This section starts by discussing the interface timing between the Read Main

Memory module and the blocks it interfaces with. We start with the timing

diagram between the Read Input Memory and the Main Memory input interface

with the Read Main Memory module. This is then followed by the timing diagram

with the Function Execute module. It then proceeds to elaborate on the hardware

implementation of the blocks in the logic schematic shown in section 4.2.

• Input Interface Timing with the Main Memory and Read Input Memory module

 Figures 5.3 and 5.4 shows the timing relation between the Read Main Memory

module and the Main Memory and Read Input Memory module. The main

memory is read only after ‘enable_readmm’ goes high. Based on the function

specified by the opcode the appropriate word from the byte stream passed from

 68

the Read Input Memory is used as a pointer to the input argument located in

main memory. At every successive positive edge of the clock values of the input

arguments from the main memory are read until all required entries read as per

function requirements. A character counter is maintained. After each character is

read from main memory, the count is compared with string length ‘strlen’,

obtained from the input memory, as this indicates end of input string has been

reached.

Figure 5.3: Timing relation with Main Memory

Figure 5.4: Timing relation with Read Input Memory Interface

 69

• Timing Waveform for internal counters and output interfaces

 Figure 5.5 shows the timing waveform describing the behavior of the output

interfaces and the interface with the Function Execute module. Each word that is

read from the main memory is passed over to the Function Execute module.

Figure 5.5: Internal counters and Function Execute Interface timing

5.4 Module Function Execute

 This section and its subsection sections present a detailed description of the

Function Execute module. Section 5.4.1 presents the pin interfaces with blocks it

interacts with and section 5.4.2 describes its implementation in detail.

5.4.1 Pin Interface

This section describes the pin interfaces of the Function Execute block with the

other blocks.

Table 5.8: Interface with the system

No. Pin Name Dirn. Width Description
1 Clk IN 1 Async system reset
2 Reset IN 1 System clock

 70

Table 5.9: Interface with the Read Main Memory module

No. Pin Name Dirn Width Description
1 enable_funcexe IN 1 Indication that a word has

been read from Main
memory and is ready to be
operated on by the
Function Execute module.
Is asserted when
readchar_done goes high.

2 mmchardata1 IN 32 Data read from Main
memory, to be processed
by the Function Execute
module.

3 mmchardata2 IN 32 Data read from Main
memory, to be processed
by the Function Execute
module.

Table 5.10: Interface with the Memory Write module

No. Pin Name Dirn Width Description
1 funcexe_done OUT 1 This signal is asserted

when the Function
Execute module has
completed execution for
that particular function.

2 mem_write OUT 1 Indicates whether a
particular word needs to
be written to memory or
not.

3 DataToMem_ready OUT 1 When asserted this signal
indicates that the
processed data is ready to
be written into the output
section of the memory by
the Memory Write module.

4 DataToMem OUT 32 Data ready to be written to
Output memory, after
being processed by the
Function Execute module.
Delivered to the Memory
Write module.

 71

5.4.2 Architecture

 This section starts by discussing the interface timing between the Function

Execute module and the blocks it interfaces with. We start with the timing

diagram between the Read Main Memory input interface with the Function

Execute module. This is then followed by the timing diagram with the Memory

Write module. It then proceeds to elaborate on the hardware implementation of

the blocks in the logic schematic shown in section 4.2.

• Input Interface Timing with the Read Main Memory module

 Figure 5.6 shows the timing relation between the Function Execute module and

the Read Main Memory module. The functional unit is enabled to operate on the

input character data only after 'enable_funcexe' goes high. Based on the opcode

input by the CPU the appropriate function is implemented. The encode to and

decode from UTF-8 modules are called as required by the functions.

Figure 5.6: Timing relation with Read Main Memory Interface

• Timing Waveform for internal counters and output interfaces

 Figure 5.7 shows the timing waveform describing the details of the behavior of

the output interface with the Memory Write module. After each character has

 72

been appropriately operated on, 'DataToMem_ready' will go high to indicate that

the result of the operation is ready to be written to the output section of the

memory. After the functional unit has finished execution 'funcexe_done' will go

high.

Figure 5.7: Internal counters and Memory Write interface timing

5.5 Module Memory Write

 This section and its subsection sections present a detailed description of the

Memory Write module. Section 5.5.1 presents the pin interfaces with blocks it

interacts with and section 5.5.2 describes its implementation in detail.

5.5.1 Pin Interface

 This section describes the pin interfaces of the Memory Write block with the

other blocks.

Table 5.11: Interface with the system

No. Pin Name Dirn. Width Description
1 Clk IN 1 Async system reset
2 Reset IN 1 System clock

 73

Table 5.12: Interface with the Function Execute module

No. Pin Name Dirn Width Description
1 funcexe_done IN 1 This signal is asserted

when the Function
Execute module has
completed execution for
that particular function.

2 enable_mem_write IN 1 This signal is asserted
when DataToMem_ready
goes high. Indicates that
the word delivered by the
Function Execute module
needs to be written to
Output memory.

4 DataToMem IN 32 Data ready to be written to
Output memory, after
being processed by the
Function Execute module.
Delivered to the Memory
Write module.

Table 5.13: Output Interface of the Memory Write module

No. Pin Name Dirn Width Description
1 Complete OUT 1 This signal is asserted

when the XPOE has
completed all operations
and has finished writing
into Output memory. It is
an indication to the CPU
to take over.

2 WE OUT 1 This signal is asserted
when data to be written to
output memory is ready.
Enables writing into
memory.

3 WriteBus OUT 32 Contains the word to be
written to Output memory.

4 WriteAddress OUT 32 Output Memory Address
generated to write each
result word into the output
section of the memory.

 74

5.5.2 Architecture

 This section starts by discussing the interface timing between the Memory

Write module and the blocks it interfaces with. We start with the timing diagram

between the Memory Write module and its interfaces. Its interface with the

Function Execute module and the Memory Write module’s output interface. It

then proceeds to elaborate on the hardware implementation of the blocks in the

logic schematic shown in section 4.2.

• Input Interface Timing with the Function Execute module

 Figure 5.8 shows the timing interface between the Memory Write module and

the Function Execute module. The Memory Write module unit is enabled only

after ‘enable_mem_write’ goes high. Based on the counter value the character

data passed from the Function Execute unit is written to the appropriate memory

location in the output section of the memory.

Figure 5.8: Timing relation with Function Execute Interface

• Timing Waveform for internal counters and output interfaces

 Figure 5.9 shows the timing waveform describing the details of the Memory

Write module’s output Interface. When the writing of the result into the output

 75

memory section has been completed, along with writing the pointer to the start of

the result and its associated length, the ‘complete’ signal is asserted high to

indicate that the accelerator has completed it operation and it’s time for the CPU

to take over.

Figure 5.9: Internal counters and output interface

5.6 Controller

 This module implements the Finite State Machine (FSM). This section begins

with a flowchart, depicting the way the logic proceeds in the design. This is

followed by the State Machine Diagram, shown in Figure 5.11 and its transition

table.

 The overall flowchart for the design is shown in Figure 5.10. Each block in the

flowchart can be thought of as a module.

 76

Figure 5.10 Flowchart for XPOE

 Figure 5.11 shows the state machine for the XPOE. When the start interrupt

goes high the FSM enables the read input module. Based on signals from the

read main memory, function execute and memory write modules, the FSM will

enable the appropriate modules. When the complete signal goes high indicating

that the XPOE has finished execution the CPU will be interrupted. Based on the

current state, various counters and interfaces are driven.

START

Read Input
Memory

Read Main
Memory

Function
Execution

Output
Memory Write

No
Mem
write

Mem
write

Read
Main
Mem
not
done

 77

Figure 5.11 State Machine Diagram

 The next chapter discusses the verification strategy in detail.

Start

Read
Input
Mem

Function
Execute

 Mem
 Write

Done

Start
intrpt

inputread_
done

readchar_done OR
readmm_done

mem_write = 0

mem_write = 1

func_exe =0

complete

readmm_done = 0
AND
funcexe_done = 0

DataToMem_ready = 0
AND
funcexe_done = 0

readchar_done=0
AND
readmm_done=0

Read
Main
Mem

readmm_done=1
AND
funcexe_done=1

 78

Chapter 6

Software Simulation and
Verification

 This chapter describes the test environment developed, the testbench

components and the verification strategy. It also talks about the additional design

features.

6.1 Test Environment Description

• Block Diagram

 Figure 6.1 shows the architectural block diagram of the testbench.

 79

Figure 6.1: Block diagram of testbench

• Inputs

 A black-box approach is taken to verify the Device-Under-Test (DUT).

• Outputs

 The DUT reads from the main and the input section of memory and after

executing the appropriate function as per the opcode it populates the output

section of the memory.

 After this, it asserts a ’complete’ indication to the external world, indicating

that the result of the requested XPath function is ready to be read out from the

output section of the memory. The testbench will then read the output memory

and outputs a text file result.out. The contents of this result file are formatted

and can be examined for correctness of the DUT operation.

• Components

 The main components of the testbench are briefly described below:

Reader

Packet
Gen

memdata.hex

Compare
and Verify

 DUT

result.out

File Read

Read
Mem

Populate
Mem

Store
Results

 80

1. Packet Generator

 The Packet Generator loads all the bytes in the input file memdata.hex into the

memory.

2. Reader

 The Reader reads out all locations of the output section of the memory, formats

the data to increase readability and writes to the file result.out.

6.2 Testbench Architecture

 This section describes the testbench components in greater detail.

6.2.1 Module Packet Generator (pktgen)

 • Pin Interface

Table 6.1: Interface with the system

No. Pin Name Dirn. Width Description
1 Clk IN 1 Async system reset
2 Reset IN 1 System clock

Table 6.2: Interface with the DUT

No. Pin Name Dirn. Width Description
1 start_int IN 1 Indicates to the DUT that it

can start reading from the
Input section of the
memory.

2 Opcode IN 32 Function opcode
indicating which specific
function implementation
has been requested.

 81

 The Packet Generator reads in all the data from the input file and populates the

memory with this data. The memory width is equal to 4 bytes, as UTF-8 uses a

maximum of 4 bytes for character representation.

 The pin ‘start_int’ is then asserted to make data available to the DUT. An

opcode value is also fed which will correspond to the particular XPath function

under test. When the DUT read all the bytes from the input section of memory

and reached the end of the valid byte stream the inputread_done signal is

asserted. The DUT will then use the data read from the input memory as pointers

to the input arguments located in main memory, and these arguments are read

byte by byte and supplied to the remaining blocks of the DUT.

 Once all the input arguments are read from main memory or the execute unit

has sufficient information to form the output of the function under test the DUT

will assert its ‘complete’ signal.

6.2.2 Module Reader (reader)

 • Pin Interface

Table 6.3: Interface with the system

No. Pin Name Dirn. Width Description
1 Clk IN 1 Async system reset
2 Reset IN 1 System clock

Table 6.4: Interface with the DUT

No. Pin Name Dirn. Width Description
1 Complete IN 1 Indication that the DUT is

done execution and that
the result is now ready in
the Output Memory.

2 read_enable OUT 1 Enable/request signal

 82

Table 6.4 continued: Interface with the DUT

No. Pin Name Dirn. Width Description
3 read_address OUT 32 The address that is

generated to perform the
read from the memory.

4 read_data OUT 32 The data read from the
Output Memory.

5 read_valid OUT 1 Read data is validated
when this signal is
asserted.

• Architecture

Figure 6.2: Architectural Block Diagram of the Reader Module

D Q

DUT ready

‘complete’
high

Address

Generation
Logic

result.out

DUT

Memory
Data

D Q

Q D

 83

 The Reader module has to wait for the DUT structure done indication, i.e. the

‘complete’ signal, before it can start to read the output section of the memory.

Once this handshake is asserted, it starts reading every location of the output

memory, and formats the data received and writes it to the file result.out. This file

is examined to verify DUT functionality.

6.3 Verification Test Plan

 The verification test plan is described in this section. The goal is to test the

DUT using a set of input script files. Each version of the input file memdata.hex

represents a test case/script for a different XPath function that is being tested.

The DUT can be tested for a set of features. Typically, one input script would test

these features/functions, depending on the contents of the input file. These

functions, in no particular order, can be listed as:

1. CPU – ASIC Interaction

– Start interrupt

– Complete signal

– Reset

2. Individual Block Testing

– Reading Input data from the input memory

– Reading Input arguments from the main memory

– Writing the result to the output section of memory

– Result string length calculation

– Encoding, decoding and string compares

– Which Output signals are activated corresponding to changing

function/opcode

3. Functional Verification

– For each of the functions implemented

– Encoding to UTF-8 from character number

 84

– Decoding from UTF-8 character string

– codepoints-to-string function

– string-to-codepoints function

– codepoint-equal function

– substring function

– starts-with and ends-with functions

4. Controller Operation

– No illegal states visited

– The states visited for different functions

– Number of states visited

6.3.1 Feature Tests

 To test some/all features of the DUT, feature tests are employed. The scripts

that are run on the DUT test all the features listed. These tests are run with one

XPath function contained in one script. The tests are rerun for each and every

one of the XPath function that is implemented.

Table 6.5: Feature tests

No. Script Name Features covered from the list
1 Memdata1.hex 1,2,3,4 and all subsections
2 Memdata2.hex 1,2,3,4 and all subsections

6.4 Test Results Summary

Table 6.6 summarizes the tests run on a PASS/FAIL basis.

 85

Table 6.6: Summary table of the test results

No. Category Script Name Result/Comments

1 Feature tests memdata1.hex PASS

2 Feature tests memdata2.hex PASS

6.5 Additional Design Features

• Clock Period: 38.25 ns

• Maximum operating frequency: 26.14 MHz

• Total equivalent area for design: 502,301

• Total data throughput supported: 1.7 Gbps

 86

Chapter 7

Future Work and Conclusion

 This chapter describes the future scope of the work presented in terms of

feature additions and optimizations to the existing design.

7.1 Feature Additions

 This section talks about the features that could be added to the existing design

for further improvements.

1. We could look into other XPath functions, other than string functions which

might give us similar CPU cycle savings.

2. We could offload more XPath string functions onto hardware and calculate

the tradeoff.

3. We could optimize the compiler, thus optimizing XPOE’s interactions with

the system.

 87

4. We could look into offloading some of the pre-processing also onto

hardware.

5. We could extend the encode and decode offload units to include the UTF-

16 representation.

6. We could look into incorporating these XPath functions into Xquery

expressions and thus offload aspects of Xquery onto hardware.

7. We could extend the implementation to include all collations.

7.2 Verification

 Enhanced testing capabilities could be added to the existing test environment.

• Randomization:

 The existing test environment can be randomized to generate different

combinations of XPath functions that follow. The input arguments to the

function could also be randomly generated before storing in the input section

of the memory.

• Introduce Error Conditions:

 Different error conditions could be created while data is stored in the

memory and then the functionality of the DUT could be tested. For example,

errors introduced could be on the lines of specifying incorrect number of input

arguments, omitting end of valid byte stream, incorrect UTF representation,

etc.

 88

• Assertions:

 The existing test environment verifies the correctness of the design by

examining the output of the XPOE which is the result of the function after the

XPOE has completed execution and the result is ready. However, assertions

could be used within the code, to catch bugs earlier, as and when they occur

in the testing phase.

7.3 FPGA Implementation and Architecture Optimizations

 This section talks about improvements to the architecture such area and timing

optimizations of the FPGA implementation.

7.3.1 Area Optimizations

 An FPGA consists of an array of configurable logic blocks (CLBs) and routing

channels. A typical FPGA logic block consists of a 4-input lookup table (LUT),

and a D flip-flop. There is only one output, which can be either the registered or

the unregistered LUT output. The logic block has four inputs for the LUT and a

clock input. Thus, the LUT can implement a 4-input function. Area optimizations

can be achieved when the LUT is used as a shift register or a register array.

Advanced place-and-route techniques and FPGA primitives can also be used to

reduce area. Techniques such as register packing and register placements can

pack more logic together thus optimizing area.

7.3.2 Timing Optimizations

 Timing optimizations can be done in several ways. Advanced place-and-route

algorithms along with the FPGA Floorplanner can be used for register packing,

register retiming and placing communicating modules closer together. Critical

 89

paths are dominated by interconnect delay and are frequently highly circuitous.

Such paths can be ‘straightened’ out using advanced techniques. Optimize all

short- and long-path timing constraints in an FPGA. These methods are among a

few that could lead to better timing.

7.4 Conclusion

 The correctness of the design is proved through functional verification, and the

analysis of the hardware offload approach demonstrates the CPU cycles saved.

Hence, it can be concluded that it is desirable and possible to offload XPath

function processing onto hardware.

 90

Bibliography

[1] Extensible Markup Language (XML) 1.0. Tim Bray, Jean Paoli, C. M.

 Sperberg-McQueen, Eve Maler, François Yergeau, W3C Recommendation

 16 August 2006.

[2] XML Path Language (XPath) 2.0. Anders Berglund, Scott Boag, Don

 Chamberlin, Mary F. Fernández, Michael Kay, Jonathan Robie, Jérôme

 Siméon, W3C Recommendation 23 January 2007.

[3] XQuery 1.0: An XML Query Language. Scott Boag, Don Chamberlin, Mary

 F. Fernández, Daniela Florescu, Jonathan Robie, Jérôme Siméon, W3C

 Recommendation 23 January 2007.

[4] Acceleration Techniques for XML Processors. Biswadeep Nag,

 XMLConference 2003.

[5] FPGA Acceleration of Information Management Services. Richard

 Linderman, Mark Linderman, Chun-Shin Lin, Air Force Research Laboratory

 Information Directorate, 2005

[6] TCP offload to the rescue. A. Currid, ACM Queue, 2004.

[7] “Time for toe,” Chelsio Communications, Tech. Rep.

 91

[8] XML Accelerator Engine. Jan van Lunteren, Ton Engbersen, Joe Bostian,

 Bill Carey, Chris Larsson, First International Workshop on High

 Performance XML Processing, 2004,

[9] XML Parsing: A Threat to Database Performance. Matthias Nicola, Jasmi

 John. CIKM'03, November 3-8, 2003, New Orleans Louisiana 2003.

[10] How Much Pain for XML’s Gain? Michael Champion, XML 2004

 Proceedings by SchemaSoft.

[11] FPGA Implementation of a SIP Message Processor Raja Nimmelapelli,

 Dissertation, NCSU, 2006.

[12] Augmented BNF for Syntax Specifications: ABNF. Request for Comments

 2234, 1997.

[13] UTF-8, a transformation format of ISO 10646. Request for Comments

 3629, 2003.

[14] UTF-16, an encoding of ISO 10646. Request for Comments 2781,

 2000.

[15] Virtex-2 Platform FPGA User Guide, 2005.

