
 

 

 
 
 
 

ABSTRACT 

 

KUTTAPPA, SANCHITH. XPath Hardware Accelerator. (Under the direction of 
Dr. Yannis Viniotis). 
 

   eXtensible Markup Language (XML) and XML Path Language (XPath) are 

increasing in importance significantly.  XML has become the language for 

structuring, storing and sending information between diverse sources, thus, 

becoming the language of choice for data exchange and data storage. XML is 

independent of software, hardware and applications, proving to be extremely 

versatile and flexible.  XML and XPath implement a non-trivial grammar. Parsing 

this grammar proves to be a high overhead for the CPU. This thesis presents 

hardware offload architecture; the XPath Offload Engine (XPOE) which 

essentially offloads the XPath string functions along with encoding-to and 

decoding-from UTF-8, which burn up a large number of CPU cycles. An analysis 

has been done which shows a reduction in the CPU overhead by as much as 

88%. 
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Chapter 1 
 
Introduction and Literature 

Review 

 
   This chapter provides the motivation and the main concepts behind XML, 

XPath, XQuery and hardware offloading. 

 

1.1 Importance of XML/XPath 
 
   The following sections will talk about XML, XPath and their growing versatility 

and importance in the real world. 

 
 
1.1.1 What is XML? 
 
   XML (eXtensible Markup Language) is a markup language much like HTML. 

However, XML was not designed to do anything it was only created to structure, 

store and to send information. XML is designed to describe data and to focus on 

what data is. According to the W3C Recommendation [1], XML describes a class 

of data objects called XML documents and partially describes the behavior of 
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computer programs which process them. XML documents are made up of 

storage units which contain either parsed or unparsed data, and these units are 

called entities. Parsed data is made up of characters, some of which form 

character data, and some of which form markup. Markup encodes a description 

of the document's storage layout and logical structure.  

   XML documents use a self-describing and simple syntax, like the example 

below which is a note to John from Sarah, stored as XML: 

<note> 

<to>John</to> 

<from>Sarah</from> 

<heading>Reminder</heading> 

<body>Don’t forget, meeting’s changed to 9:00am!</body> 

</note> 

The note has a header and a message body. It also has sender and receiver 

information. But still, this XML document does not DO anything. It is just pure 

information wrapped in XML tags. Someone must write a piece of software to 

send, receive or display it [1]. XML tags are not predefined; the author defines his 

own tags and his own document structure. The basic syntax for one element in 

XML is: <name attribute="value">content</name> 

 

 
1.1.2 Strengths of XML 
 
   The following points emphasize the strengths of XML and show why XML is 

going to be everywhere [1].  

1. One of the most time-consuming challenges for developers has been to 

exchange data between computer systems and databases that contain 

data in incompatible formats over the Internet. Converting the data to XML 

can greatly reduce this complexity and create data that can be read by 

many different types of applications.  
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2. XML is going to be the main language for exchanging financial information 

between businesses over the Internet. A lot of interesting B2B applications 

are under development. 

3. XML provides a software- and hardware-independent way of sharing data, 

as XML data is stored in plain text format. It also makes it easier to 

expand or upgrade a system to new operating systems, servers, 

applications, and new browsers.  

4. XML can also be used to store data in files or in databases. Applications 

can be written to store and retrieve information from the store, and generic 

applications can be used to display the data. 

5. Since XML is independent of hardware, software and application, data can 

be made available to other than only standard HTML browsers. Data can 

be made available to all kinds of "reading machines" (agents), and it is 

easier to make your data available for blind people, or people with other 

disabilities. 

6.  XML can be used to create new languages. The Wireless Markup 

Language (WML), used to markup Internet applications for handheld 

devices like mobile phones, is written in XML. 

 

 

1.1.3 Real world examples of XML 
 

   The following paragraphs talk about XML’s versatility and flexibility in the real 

world. There are a large number of applications that use XML and the rapid 

increase in these numbers is shown by examples from the IT/Software industry 

and the Telecom industry. 

   In the IT industry we see that the processing of XML documents has entered 

the mainstream of software application development. System and software 

configuration files, UI specifications and many office documents (such as 

spreadsheets, presentations, etc.) are being specified as XML. This is in addition 

to the exchange of XML messages in web-service oriented applications that are 
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used for enterprise application integration and financial interactions such as B2B 

transactions [4]. Hence, as XML is being used more and more as a common tool 

for all data manipulation and data transmission, XML will be extremely important 

to the future of the Web.  

   The increase in the number of applications based on XML messages and 

documents and the increased importance of XML processing is felt most 

significantly in the telecommunications industry with its ever expanding 

communications demand. XML is a powerful tool for describing service definition, 

activation, provisioning, and billing in next-generation communications 

infrastructure. It is also the technology of choice for related data interchange 

activities. Some of the applications and areas that XML is being used in are VoIP 

(Voice over IP) and its associated protocol SIP (Session Initiation Protocol), 

NOTIFY- SUBSCRIBE applications, videoconferencing and network games.  

 

 
1.1.4 Importance of XPath 
 
   As increasing amounts of information are stored, exchanged, and presented 

using XML, the ability to intelligently query XML data sources becomes 

increasingly important. One of the great strengths of XML is its flexibility in 

representing many different kinds of information from diverse sources. To exploit 

this flexibility, an XML query language must provide features for retrieving and 

interpreting information from these diverse sources [2]. 

   XPath 2.0/XQuery 1.0 (XML Path Language/XML Query Language) are 

designed to be flexible enough to query a broad spectrum of XML information 

sources, including both databases and documents. XPath makes it possible to 

refer to individual parts of an XML document and provides random access to 

XML data for other technologies. XPath 2.0/Xquery 1.0 operates on the abstract, 

logical structure (data model) of an XML document, rather than its surface 

syntax. XPath is an expression language for addressing portions of an XML 

document, or for computing values (strings, numbers, or boolean values) based 

on the content of an XML document. The XPath language is based on a tree 
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representation of the XML document, and provides the ability to navigate around 

the tree, selecting nodes by a variety of criteria [1]. 

   The utility of XPath suggests that its role in the repertoire of XML processing 

may well expand greatly in the future. Therefore we see that as XPath is 

fundamental to a lot of advanced XML usage, for example, sophisticated XSLT 

transformations, the importance of XPath is linked to the importance of XML. 

  

 

1.2 Current Implementations of XML/XPath 
 
   This section elaborates on the essential components that make up XML and 

XPath and how they are processed. 

 
1.2.1 Architecture of an XML Processor 
 
   The W3C Recommendation defines an XML Processor as a software module 

which reads XML documents and provides access to their content and structure. 

This processing work is done on behalf of another module called the application 

[1]. Figure 1.1 shows the software stack for XML processing in detail [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Generic Software Stack for XML Processing 
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   To manipulate an XML document, you need an XML parser. The parser loads 

the document into your computer's memory. Once the document is loaded, its 

data can be manipulated by treating the XML document as a tree. The following 

points describe in detail the function of the different modules of the parser and 

thus show why XML parsing forms the most CPU intensive section of the 

software stack. Figure 1.2 depicts the architecture of a typical XML Parser. Its 

architecture is composed of five individual modules [4].  

1. Decoder:  This module reads in UTF-8 or UTF-16 (UTF representation is 

defined in section 3.1) characters from the input stream and converts them 

to the character format of the host programming language. In addition, this 

module makes sure that the inputs characters are part of a valid XML 

character set. 

2. Scanner:  This classifies the characters in the XML input stream to locate 

(namespace qualified) element and attribute names, element content, 

attribute values and the like. In essence this implements the lexical 

analyzer corresponding to the XML grammar that searches for characters 

such as <, >, =, :, etc., to tokenize the XML document. 

3. Parser:  This is the module that checks for well-formedness of an XML 

document. Well-formedness requires that the begin- and end-element tags 

are properly nested and matched. This requires the implementation of a 

stack that contains all the begin-element names that have been seen so 

far but that have not been matched by a corresponding end-element tag. 

4. Validator:  Validation is an optional part of XML processing. It is often 

required that an XML document conform to a particular XML schema 

(schema defines the XML document structure and its legal building blocks) 

particularly in cases involving transactions between untrusted parties.  

5. API Implementor:  This layer provides the interface that is required by the 

calling application. In most cases, the same underlying parsing engine can 

be used to do the tokenization, well-formedness checking and validation 

while the API implementor can be customized to generate events, build a 

tree or supply nodes on demand. 
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Figure 1.2: Schematic of a typical XML Parser 
 

 
1.2.2 Architecture of XPath 
 
   The following are the main points the define XPath: 
 
• XPath is a syntax for defining parts of an XML document. 

• XPath uses path expressions to navigate in XML documents. 

• XPath contains a library of standard functions. 

• XPath is a W3C Standard. 
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   XPath is a language for finding information in an XML document. XPath is used 

to navigate through elements and attributes in an XML document, and thus its 

primary purpose is addressing parts of an XML document. In support of this it 

provides basic facilities for manipulation of strings, numbers and booleans. 

XQuery is built on XPath expressions. Compact, non-XML syntax is used to 

facilitate use of XPath within URIs and XML attribute values. XPath operates on 

the abstract, logical structure of an XML document, rather than its surface syntax. 

XPath gets its name from its use of a path notation as in URLs for navigating 

through the hierarchical structure of an XML document [2].  

   XPath includes over 100 built-in functions. There are functions for string values, 

numeric values, date and time comparison, node and QName manipulation, 

sequence manipulation, Boolean values, and more. XPath uses path expressions 

to select nodes or node-sets in an XML document. The node is selected by 

following a path or steps. In XPath, there are seven kinds of nodes: element, 

attribute, text, namespace, processing-instruction, comment, and document 

(root) nodes. XPath models XML documents as trees of nodes. The root of the 

tree is called the document node (or root node). The primary syntactic construct 

in XPath is the expression. An expression is evaluated to yield an object, which 

has one of the following four basic types [2]: 

• node-set (an unordered collection of nodes without duplicates) 

• boolean (true or false) 

• number (a floating-point number) 

• string (a sequence of characters) 

Expression evaluation occurs with respect to a context. The context consists of: 

• a node (the context node) 

• a pair of non-zero positive integers (the context position and the context size) 

• a set of variable bindings 

• a function library 

• the set of namespace declarations in scope for the expression 

   One important kind of expression is a location path, which selects a set of 

nodes relative to the context node. The result of evaluating an expression that is 



 

   9  
 

a location path is the node-set containing the nodes selected by the location 

path. Location paths can recursively contain expressions that are used to filter 

sets of nodes. A location path can be absolute or relative, and in both cases it 

consists of one or more steps, each separated by a slash [2]: 

• An absolute location path: /step/step/... 

• A relative location path: step/step/... 

Each step is evaluated against the nodes in the current node-set. A step consists 

of: 

• an axis (defines the tree-relationship between the selected nodes and the 

current node) 

• a node-test (identifies a node within an axis) 

• zero or more predicates (to further refine the selected node-set) 

The syntax for a location step is: axisname::nodetest[predicate] 

   An axis defines a node-set relative to the current node. A predicate filters a 

node-set with respect to an axis to produce a new node-set. For each node in the 

node-set to be filtered, the PredicateExpr is evaluated with that node as the 

context node, with the number of nodes in the node-set as the context size, and 

with the proximity position of the node in the node-set with respect to the axis as 

the context position; if PredicateExpr evaluates to true for that node, the node is 

included in the new node-set; otherwise, it is not included. 

 

 

1.2.3 Examples of XPath Implementation 
 

   We will use the following XML document to illustrate the concepts discussed so 

far:  

<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<bookstore> 
 
<book> 
     <title lang="eng">Harry Potter</title> 
     <price>29.99</price> 
</book> 
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<book> 
    <title lang="eng">Learning XML</title> 
    <price>39.95</price> 
</book> 
 
</bookstore> 
 

Example of nodes in the XML document above: 

• <bookstore>                                (document node) 

• <price>29.99</price>                  (element node) 

• lang="eng"                                   (attribute node) 

 

   Some path expressions with and without predicates and the result of the 

expressions: 

 

Path Expression  Result  

bookstore Selects all the child nodes of the bookstore element 

/bookstore Selects the root element bookstore 

bookstore/book Selects all book elements that are children of 

bookstore 

//book Selects all book elements no matter where they are in 

the document 

/bookstore/book[last()-1] Selects the last but one book element that is the child 

of the bookstore element 

//book[position()<=3] Selects the first three book elements 

//title[@lang='eng'] Selects all the title elements that have an attribute 

named lang with a value of 'eng' 

/bookstore/book[price>35.00]/title Selects all the title elements of the book elements of 

the bookstore element that have a price element with 

a value greater than 35.00 

 

Another example of how a function can be implemented can be shown by taking 

the string-join function as an example: 
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• fn:string-join($arg1 as string, $arg2 as string) returns a string 

This function will return a string created by concatenating the members of the 

$arg1 sequence using $arg2 as a separator. 

Assume an XML document: 

<doc> 

  <chap> 

    <section> 

    </section> 

  </chap> 

</doc> 

With the <section> as the context node, the expression: 

• fn:string-join(for $n in ancestor-or-self::* return name($n), '/') 

• returns " doc/chap/section " 

Later sections will show how string-join and various such functions are offloaded 

onto hardware. 

 

   We can take the example of the Microsoft XML parser to show how the above 

XPath examples are implemented in software. Microsoft's software includes 

integrated XPath support. Developers can load XML into a tree structure, and 

then query the structure with XPath to extract the data they are after. The 

software loads the XML document and then the selectNodes() function is used to 

select nodes from the XML document: 

 

xmlDoc.load("books.xml")                                // loads the XML doc “books.xml” 

xmlDoc.selectNodes(path expression)           // selects/filters nodes based on the                  

                                                                           path expression 

 

• xmlDoc.selectNodes("/bookstore/book") - selects all the book nodes under 

the bookstore element. 

• xmlDoc.selectNodes("/bookstore/book[0]") - selects only the first book node 

under the bookstore element. 
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• xmlDoc.selectNodes("/bookstore/book/price/text()") - selects the text from all the 

price nodes. 

• xmlDoc.selectNodes("/bookstore/book[price>35]/price") - selects all the price 

nodes with a price higher than 35. 

 

 

1.3 Maximizing performance via hardware offload 
 
1.3.1 Issues with software processing of XML/XPath 
 
   The two main issues with the software processing of XML and why XML 

processing is CPU intensive are: 

 

1. The emphasis on human readability of XML documents (where the nature 

or number of tags is not fixed). 

2. The use of UTF representation of data. 

 

   XML processing typically involves the use of an off-the-shelf parser program 

that has to perform lexical analysis, tokenization and character integrity checks 

on the XML stream. In addition it has to convert UTF characters to Unicode, 

verify well-formedness of the document and optionally validate against an XML 

Schema or Document Type Definition (DTD). Finally there is the stage that may 

construct a tree, perform transformations, bind to Java or C# objects and call in 

to the application program. All this consumes a fair amount of CPU cycles such 

that most of the time taken in a service-oriented application is spent in parsing 

XML [4]. The exchange of XML messages and the querying of XML documents 

and databases using XPath/XQuery are going to become equally commonplace 

and will also burn up a large number of CPU cycles. Thus, XML parsing and 

querying is a severe bottleneck in XML processing and manipulation of XML 

documents and databases. 

   A solution which eases this bottleneck is to transfer some aspects of XML 

parsing onto dedicated hardware, an approach called hardware offloading. With 
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this approach, there is a definite increase in performance as the hardware would 

process data much faster than software. The more tasks that are offloaded, the 

faster the data processing becomes.  

   The next section talks about the work being done in this area and about 

available XML Accelerators that offload XML parsing and some basic XML 

processing onto hardware. Further sections also exemplify hardware offloading 

by citing some industry proven techniques.  

 

 

1.3.2 Current approaches to challenges faced 
 
   There have been several different special purpose XML accelerators from 

companies such as DataPower (IBM), Tarari and Sarvega (Intel) to alleviate the 

problems faced by a purely software approach to XML processing. These have 

typically concentrated on narrow processing problems [4].  

 

Some examples of XML accelerators in the industry: 

• Tarari Hardware XML Processor 

• Datapower XA35 XML Accelerator 

• Sarvega XML Content Router 

• Reactivity 400 Series of XML enables networking products. 

 

   There were two main groups of engineers that worked on tackling the issues 

faced with XML processing: 

1. One group focused on large volumes of XML transformations - created 

specialized software or ASICs that performed transformations up to 100 times 

faster than basic software solutions. 

2. The second group focused on high-speed XML processing and security – 

created highly optimized applications that secured and integrated XML across 

many use cases. 

   Alternative terminology that describe more specific functionality of XML 

appliances: 
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• XML Accelerators - are devices that typically use custom hardware or 

software built on standards-based hardware to accelerate processing. The 

hardware typically provides a performance boost between 10 and 100 times 

in the number of messages per second that can be processed. 

• XML Security Gateways – (also known as XML firewalls) are devices that 

support the WS-Security standards. These appliances typically offload 

encryption and decryption to specialized hardware devices. 

• XML Enabled Networking – is an abstraction layer that exists alongside the 

traditional IP network. This layer addresses the security, incompatibility and 

latency issues encumbering XML messages, web-services and service-

oriented architectures (SOA). 

• Integration Appliance – (also known as application routers) are devices that 

are designed to make the integration of computer systems easier. 

 

 

1.3.3 Industry examples 
 
   Through industry examples this section elaborates on how hardware offloading 

has resulted in performance enhancements. The examples cited are TCP/IP and 

Encryption/Decryption algorithms. 

 

• TCP/IP Offload Engine (TOE) 

   TCP/IP processing speeds have not kept up with rapid growth in processor 

speeds. Processor speeds have increased from 60MHz to 3GHz. However, the 

rate of increase in the case of TCP/IP has not been in parallel with the scaling 

of the CPU clock speed. TCP/IP is memory intensive; hence memory and I/O 

subsystems become limiting factors. A significant amount of software is 

required to implement the various features of TCP/IP. TCP/IP processing 

involves a great deal of memory for storing connection state information.  

Hence, TCP/IP in software incurs a large overhead and involves significant 

amount of memory.  
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   Despite all efforts to increase TCP/IP performance via software modifications, 

the performance benefits that result fall behind the improvement achieved by 

hardware offloading. Terminator [7], a TCP offload engine developed by 

Chelsio Communications, Inc. highlights the advantages of TCP hardware 

offloading. During performance evaluation, the throughput achieved with offload 

was found to be almost four times than that without offload. 

 

• Encryption / Decryption Algorithms 

      Secure Socket Layer (SSL) handshakes require extensive compute resource. 

Security algorithms for encryption and decryption impose a significant 

performance penalty while protecting data traveling over the Internet. SSL is 

known to slow down an application or Web site considerably. The time required 

to establish a session and then encrypt and decrypt the data, degrades 

performance as all of it heavily use processor cycles. 

      To combat the high computational cost of the RSA public-key encryption 

algorithm several companies have developed offload devices that use 

encryption offload hardware to accelerate processing, such as, RSA-offload 

only devices, Hardware Security Modules and Internet Hardware Devices. 

      IBM designers have responded to the problems of security and 

responsiveness through the use of cryptographic accelerator hardware. This 

accelerator offloads encryption/decryption tasks from the central processor. 

 

 

1.3.4 XPath Offload Engine (XPOE) 

   XPath is used extensively by XML parsing software and its importance has 

been elaborated on in Section 1.1. As seen in previous sections several aspects 

of XML processing such as XML parsing have been offloaded onto hardware and 

have proven successfully the great increase in performance and the increased 

CPU cycles savings. We have also seen how hardware offloading boosts 

processing speed in TCP and Security algorithms. In anticipation of the growing 

importance of XPath in the processing of XML and related languages, it would be 
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a good idea to make advancements which would allow for faster processing of 

XPath. I chose to focus on those aspects of XPath2.0 that form the basic building 

blocks of an XPath expression and thus essentially XQuery1.0. These form the 

most common subset of the XPath processing problem: that of XPath functions. 

   How many XPath functions to offload is a complexity-performance tradeoff. If 

we offload all the functions, the complexity increases but so does the 

performance. To demonstrate the benefits of hardware offloading it is proposed 

to offload XPath string functions which involve encoding-to and decoding-from 

UTF-8 representation onto hardware. Chapter 3 demonstrates why these 

functions were chosen and through detailed analysis shows how such a limited 

offload can reduce CPU utilization significantly. 

 

 

1.4 Thesis organization 

 

   The organization of the rest of the thesis is described. Chapter 2 and its 

subsections introduce XPath and its components, expression formats and 

function types. Chapter 3 presents an analysis which describes the potential 

reduction in CPU utilization via hardware offload. Chapter 4 presents the 

architecture of the hardware which would be doing the offloaded processing. 

Chapter 5 presents a detailed description of all the modules involved in the 

design. Chapter 6 explains the software simulation and verification and also 

includes additional design features. Chapter 7 completes the thesis by identifying 

areas which have scope for further improvements. 
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Chapter 2 
 
XPath 
 
   This chapter briefly describes the structure of XPath expressions and functions 

and explains its components. 

 
 

2.1 Introduction 

 

   XPath became a W3C Recommendation 16 November 1999. XPath was 

designed to be used by the XML-based style sheet language for transforming 

XML documents into other formats, by the XML-based language that is used to 

create hyperlinks in XML documents and other XML parsing software. XPath is a 

language for finding information in an XML document, and is used to navigate 

through elements and attributes in an XML document [2]. A detailed description 

of XPath is given in section 1.2.2. 
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2.1.1 XPath Design Aspects 
 

   Two important design aspects of XPath are that it is functional and that it is 

typed. These two aspects play an important role in XPath Semantics [2]. 

1. XPath is a functional language . XPath is built from expressions, rather than 

statements. Every construct in the language is an expression and expressions 

can be composed arbitrarily. The result of one expression can be used as the 

input to any other expression, as long as the type of the result of the former 

expression is compatible with the input type of the latter expression with which it 

is composed. Expressions can be composed of functions in various forms.  As 

mentioned in section 1.2.2 XPath includes over 100 built-in functions, such as 

functions for string values, numeric values, date and time comparison, node and 

QName manipulation, sequence manipulation, boolean values, and more [2]. 

When such functions are used as part of path expressions, the nodes or node-

sets in an XML document that are selected by the expression will depend on the 

result returned by the functions.  

2. XPath is a typed language . XPath supports static type analysis. Static type 

analysis infers the output type of an expression based on the type of its input 

expressions. In addition to inferring the type of an expression for the user, static 

typing allows early detection of type errors, and can be used as the basis for 

certain classes of optimization. 

   The semantics and grammar of XPath is discussed in further sections. 

 

 

2.2 XPath Grammar and its complexity 

 

   Grammar can be defined as a set of rules by which a language can be 

constructed, essentially the syntax. It can be thought of as a tool that defines the 

form or structure of the language enabling accurate interpretation by all users. 

   Parsing is the process of analyzing a sequence of tokens in order to determine 

its grammatical structure with respect to a given formal grammar. Parsing is 
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usually conducted in two stages, first identifying the meaningful tokens in the 

input, and then building a tree from those tokens. Parsing too follows the same 

set of rules that make up the grammar. 

   The grammar of XPath uses the Extended Backus-Naur Form (EBNF) notation 

[12]. The version of Unicode that is used to construct expressions is 

implementation defined. It follows the UTF-8 or UTF-16 charset. The UTF-8 

charset is the same as ASCII for 00-7F and hence UTF-8 charset is assumed for 

this implementation. Sections 2.2.1 discusses the reasons why XPath grammar 

could be considered as significantly complex to parse. 

 

 

2.2.1 Lexical analysis 

 

   From a lexical perspective, the following points contribute to the complexity of 

XPath grammar [2]: 

 

1. Path Expression Syntax 

   Path expressions are composed of a node name, followed by a forward slash 

(“/”) to represent hierarchy, followed by another node name and so on till the 

desired level of hierarchy has been reached. The parser needs to be able to 

track the forward slash delimiters. The characters till the forward slash need to 

be buffered separately, as they form one node name and the characters after 

the forward slash form the next node name and are to be buffered separately. 

 

2.   Variable String Lengths 

   As the string length is not limited, this places a requirement on the parser that 

it should be able to buffer several characters at a stretch. The need for this 

buffer is eliminated in the XPOE by writing these characters directly into 

memory, with no intermediate storage required.    
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3.   Variable Number of Input Arguments 

   The number of input arguments to some XPath functions is not limited and 

hence poses a similar problem as that of the variable string length.  

 

4.   Depth of Hierarchy 

   The depth of hierarchy contained in a path expression is not limited. 

Sometimes the hierarchy can get really deep. This leads to buffering problems 

and cumbersome parsing. 

 

 

2.3 XPath Expressions and Functions 
   As explained in section 1.2.2 the primary syntactic construct in XPath is the 

expression. An expression is evaluated to yield an object, which has one of the 

following four basic types; node-set, boolean, number or string. Expression 

evaluation occurs with respect to a context, for example, a node (the context 

node), a pair of non-zero positive integers (the context position and the context 

size), a function library, etc. The function library consists of a mapping from 

function names to functions. Each function takes zero or more arguments and 

returns a single result. 

 

 

2.3.1 XPath Expression and Function Format 

   One important kind of expression is a location path. A location path selects a 

set of nodes relative to the context node. The result of evaluating an expression 

that is a location path is the node-set containing the nodes selected by the 

location path. Location paths can recursively contain expressions that are used 

to filter sets of nodes. Using the example of location paths we will see how 

functions can be used as part of expressions: 

• child::para[position()=last()-1]  selects the last but one para child of the 

context node. 
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The last function returns a number equal to the context size from the 

expression evaluation context. 

• /child::doc/child::chapter[position()=5]/child::sec tion[position()=2]  

selects the second section of the fifth chapter of the doc document 

element. 

The position function returns a number equal to the context position from 

the expression evaluation context. 

• child::para[attribute::type='warning'][position()=5 ] selects the fifth para 

child of the context node that has a type attribute with value warning 

• child::chapter[child::title='Introduction']  selects the chapter children of 

the context node that have one or more title children with string-value 

equal to Introduction. 

A location step has three parts: 

1. An axis, which specifies the tree relationship between the nodes selected by 

the location step and the context node, 

2. A node test, which specifies the node type and expanded-name of the nodes 

selected by the location step, and 

3. Zero or more predicates, which use arbitrary expressions to further refine the 

set of nodes selected by the location step. 

   The syntax for a location step is the axis name and node test separated by a 

double colon, followed by zero or more expressions each in square brackets. For 

example, in child::para[position()=1], child is the name of the axis, para is the 

node test and [position()=1] is a predicate. The node-set selected by the location 

step is the node-set that results from generating an initial node-set from the axis 

and node-test, and then filtering that node-set by each of the predicates in turn. 

The initial node-set is filtered by the first predicate to generate a new node-set; 

this new node-set is then filtered using the second predicate, and so on. The final 

node-set is the node-set selected by the location step. The axis affects how the 

expression in each predicate is evaluated and so the semantics of a predicate is 

defined with respect to an axis.  
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   A predicate filters a node-set with respect to an axis to produce a new node-

set. For each node in the node-set to be filtered, the predicate expression is 

evaluated with that node as the context node, with the number of nodes in the 

node-set as the context size, and with the proximity position of the node in the 

node-set with respect to the axis as the context position; if predicate expression 

evaluates to true for that node, the node is included in the new node-set; 

otherwise, it is not included. 

   A function call expression is evaluated by using the function name to identify a 

function in the expression evaluation context function library, evaluating each of 

the arguments, converting each argument to the type required by the function, 

and finally calling the function, passing it the converted arguments. It is an error if 

the number of arguments is wrong or if an argument cannot be converted to the 

required type. The result of the function call expression is the result returned by 

the function. 

   Another example of how a function can be implemented was shown in section 

1.2.3 and is reiterated here for clarity: 

• fn:string-join($arg1 as string, $arg2 as string) returns a string 

This function will return a string created by concatenating the members of the 

$arg1 sequence using $arg2 as a separator. 

 

 

2.3.2 XPath Function Types 

   XPath implementations contain a function library that includes functions used to 

evaluate expressions. Each function in the function library is specified using a 

function prototype, which gives the return type, the name of the function, and the 

type of the arguments. The function library includes the following types of built-in 

functions that are required for XPath2.0/Xquery1.0. 

• Functions on Numeric Values 

• Functions on Strings 

• Functions on Boolean Values 

• Functions on Durations, Dates and Times 
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• Accessor Functions 

• Error and Trace Functions 

• Functions for anyURI 

• Functions related to QNames 

• Functions on Nodes 

• Functions on Sequences 

• Context Functions 

 

 

2.3.3 XPath String Functions 

   In this implementation we concentrate on offloading the string functions onto 

hardware. Chapter 3 will present the motivation for offloading string functions 

onto hardware and an analysis of the processor overhead savings that was 

achieved by offloading specific string functions. The following paragraphs will talk 

briefly about the string functions that were chosen to be offloaded. 

 

• fn:codepoints-to-string( int,int,...)  

Returns a string from a sequence of code points 

Example: codepoints-to-string(84, 104, 233, 114, 232, 115, 101) 

Result: 'Thérèse'  

   Each of the input arguments to this function is an integer, which can have any 

value from 0 to 2097151 in decimal or from 0x000000 to 0x1FFFFF in hex. This 

function takes each one of the input arguments and encodes them to their 

respective char UTF-8 notation. These encoded characters will then together 

form the result string represented in UTF-8. Only character numbers between 

0x000000 to 0x1FFFFF (21 bits) can be represented in UTF-8 hence the 

restriction on the range of the input numbers. Sections 3.3.1 and 3.3.2 will further 

illustrate this concept and show the significant savings that can be achieved by 

offloading such functions onto hardware. 
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• fn:string-to-codepoints( string)  

Returns a sequence of code points from a string 

Example: string-to-codepoints("Thérèse") 

Result: 84, 104, 233, 114, 232, 115, 101 

   The input argument to the above function is a string in UTF-8 character 

representation. Each character of the input string is decoded from UTF-8 to give 

its equivalent character number. "Character number", also known as "code point" 

or “code position" is used to mean a non-negative integer that represents a 

character in some encoding. The result is a sequence of character numbers 

representing the individual characters of the input string, decoded from their 

UTF-8 representation to character numbers. Sections 3.3.1 and 3.3.2 

demonstrate that string functions that involve encoding to and decoding form 

UTF-8 character representation benefit from significant CPU cycles savings. 

 

• fn:codepoint-equal( comp1,comp2)  

Returns true if the value of comp1 is equal to the value of comp2 

   The input arguments to this function are strings. The two strings are compared 

byte for byte. If there is a mismatch false is returned else true. 

 

• fn:compare( comp1,comp2)  

Returns -1 if comp1 is less than comp2, 0 if comp1 is equal to comp2, or 1 if 

comp1 is greater than comp2 

   Although the compare function seems similar to the codepoint-equal function 

above, the difference is that instead of returning just a True or False 

corresponding to a match or mismatch, in case of a mismatch the two strings are 

compared to check which string is greater. In such cases the two strings are 

compared code-point to code-point based on a specified collation rule. 

   A collation is a specification of the manner in which character strings are 

compared and, by extension, ordered. When values whose type is string is 

compared (or, equivalently, sorted), the comparisons are inherently performed 

according to some collation (even if that collation is defined entirely on code point 
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values). Collations can indicate that two different code points are, in fact, equal 

for comparison purposes (e.g., "v" and "w" are considered equivalent in 

Swedish). Strings can be compared codepoint-by-codepoint or in a linguistically 

appropriate manner, as defined by the collation. 

   When the Unicode code point collation is used, this simply involves determining 

whether arg1 contains a contiguous sequence of characters whose code points 

are the same, one for one, with the code points of the characters in arg2. All 

collations support the capability of deciding whether two strings are considered 

equal, and if not, which of the strings should be regarded as preceding the other 

as required in functions such as compare(). 

 

• fn:substring( string,start,len); fn:substring( string,start)  

Returns the substring from the start position to the specified length. Index of the 

first character is 1. If length is omitted it returns the substring from the start 

position to the end 

Example: substring('Beatles',1,4) 

Result: 'Beat' 

Example: substring('Beatles',2) 

Result: 'eatles' 

   This function takes in a string in UTF-8 representation and start and length 

numbers are arguments. Although the string does not need to be decoded to 

return a substring, we however need to identify character boundaries as each 

character can be anywhere from one to four bytes. Identifying the number of 

octets per character will allow us to locate the character at the start index, and 

the substring starting at this index up to the length number of characters will be 

the result string of the function. 

 

• fn:translate( string1,string2,string3)  

Converts string1 by replacing the characters in string2 with the characters in 

string3. 
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Example: translate('12:30','0123','abcd') 

Result: 'bc:da' 

   The translate function also requires that the UTF-8 characters be decoded to 

their code points to be able to find all the instances of occurrence of characters of 

string2 in string1 and then replace each one of these with each corresponding 

character from string3. As this function involves decoding three input strings it 

benefits greatly from the CPU cycles savings achieved through offloading the 

decoding/encoding functions onto hardware as shown in sections 3.3.1 and 

3.3.2. In functions that involve character counting such as substring, string-length 

and translate functions, what is counted is the number of XML characters in the 

string (or equivalently, the number of Unicode code points). 

 

 

2.4 Requirements for parsing XPath Functions 

 

   An XPath string function essentially consists of a function call through the 

function name, a set of input arguments of a particular type and a return value of 

set of values of a corresponding type. Based on the XPath string functions, the 

following requirements apply. 

• Pre-compile and pre-load XPath expressions 

• When an appropriate XPath function that can be offloaded is identified by 

the compiler, the pointer to each input argument (located in main memory) 

along with corresponding argument lengths is written into the input section 

of the memory. Once this is done an opcode corresponding to the particular 

function, and an interrupt signal asking the accelerator to take over are 

issued by the CPU to the XPOE. 

• UTF-8 character set will be used for character representation 

• Unicode code point collation is used for string and substring matching and   

comparisons. 
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Chapter 3 
 
Processor overhead savings 

analysis 
 

   This chapter briefly discusses the drawbacks of XPath function implementation 

in software. It then presents an analysis which demonstrates how offloading 

specific XPath functions onto hardware will allow us to achieve significant 

processor cycle savings. 

 

 

3.1 Software approach to XPath function implementation 

 

   This section elaborates on why XPath functions and hence XPath expressions 

are considered to be CPU intensive. XPath functions form part of path 

expressions that are used to filter required XML nodes or XML data from an XML 

document or database. We have seen the structure of XPath expressions in 

Chapter 2. Therefore, as XPath functions take XML data as arguments, the 

software implementation of these functions and expressions are a cumbersome 

task, owing to the following reasons: 
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1. Use of UTF representation of data.  

   XML uses UTF-8 or UTF-16 for representation of data and hence XPath and 

XQuery work on data that is represented in UTF. UTF or Unicode Transformation 

Format is a variable-length character encoding for Unicode. Unicode is an 

industry standard designed to allow text and symbols from all of the writing 

systems of the world to be consistently represented and manipulated by 

computers. UTF is able to represent any universal character in the Unicode 

standard, yet the initial encoding of byte codes and character assignments for 

UTF-8 is consistent with ASCII.  

   UTF-8 uses one to four bytes per character, depending on the Unicode symbol. 

Only one byte is needed to encode the 128 US-ASCII characters (Unicode range 

U+0000 to U+007F). Two bytes are needed for Latin letters with diacritics and for 

characters from Greek, Cyrillic, Armenian, Hebrew, Arabic, Syriac and Thaana 

alphabets (Unicode range U+0080 to U+07FF). Three bytes are needed for the 

rest of the Basic Multilingual Plane and four bytes are needed for characters in 

other planes of Unicode. 

 

   The table below summarizes the format of these different octet types. The letter 

x indicates bits available for encoding bits of the character number. 

 

Table 3.1: Format of the different octet types in UTF-8 encoding 

 

Num of free     |    Char. number range |    UTF-8 octet sequence 

bits                |    (hexadecimal)           |     (binary) 

-------------------+-------------------------------+------------------------------------------ 
    |           | 
7              | 0000 0000-0000 007F | 0xxxxxxx 

(5+6)=11         | 0000 0080-0000 07FF | 110xxxxx 10xxxxxx 

(4+6+6)=16     | 0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx 

(3+6+6+6)=21 | 0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 
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Examples 

• The character sequence U+0041 U+2262 U+0391 U+002E "A<NOT 

IDENTICAL TO><ALPHA>." is encoded in UTF-8 as follows: 

        --+------------+--------+--- 

        41 E2 89 A2 CE 91 2E 

        --+------------+--------+--- 

• The character sequence U+D55C U+AD6D U+C5B4 (Korean "hangugeo", 

meaning "the Korean language") is encoded in UTF-8 as follows: 

        ------------+-------------+------------ 

        ED 95 9C EA B5 AD EC 96 B4 

        ------------+-------------+------------ 

• The character sequence U+65E5 U+672C U+8A9E (Japanese "nihongo", 

meaning "the Japanese language") is encoded in UTF-8 as follows: 

        -----------+-------------+------------ 

        E6 97 A5 E6 9C AC E8 AA 9E 

        -----------+-------------+------------ 

 

2. Variable string lengths 

   The arguments to the string functions are of variable string length. As each 

string can have an extremely small or an extremely large number of characters, 

this poses a problem for the parser when it comes to buffering so many 

characters at a stretch. 

  

3. Variable number of arguments 

   The arguments to the string functions are variable in number. Although some 

string functions have a fixed number of arguments other functions can have a 

variable number of arguments, making it difficult for the parser to optimize each 

function. 

 

   Section 3.2 elaborates on the high level block diagram of the XPath Offload 

Engine (XPOE), which allows the CPU savings, discussed in section 3.3. 
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3.2 High level Block diagram for hardware offload 
 
   The high level block diagram which shows the interaction between the CPU, 

the memory and the XPOE is shown in Figure 3.1.  

 

1. Memory 

   The memory is shared between the CPU and the XPOE. It is implemented as a 

32-bit memory. The motivation behind choosing a 32-bit data width is the fact 

that UTF-8 uses a maximum of 4 bytes to represent each character.  

   The memory is divided into 3 distinct sections. Different information is stored at 

pre-decided memory locations. The first section is the main memory section that 

is read and written to by the CPU and can only be read by the XPOE. The 

remaining part of the memory outside of the main memory is divided into the 

input and output section of the memory.  

   As mentioned in section 2.4 when an appropriate XPath function that can be 

offloaded is identified by the compiler, the pointer to each input argument 

(located in main memory) along with corresponding argument lengths is written 

into the input section of the memory. The result or the output of the function 

execution is written into the output section of the memory by the XPOE. The 

result string will be stored at a predefined location in the output section of the 

memory. A counter is run while this result value is being stored. Once the entire 

value is stored, the value of the counter serves as the length of the result string. 

The pointer to the result and the length of the result are stored at the start of the 

output section.  

   When control returns to the CPU, the software can then easily use the string 

pointer which points to the start of the result string along with its length to obtain 

the result value. The CPU is aware of all these addresses and thus knows where 

to store the pointers to the input arguments and where to read the result from. An 

explanation of each of the main blocks that form the XPOE follows. 
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Figure 3.1: High level block diagram showing system level interaction 

 

2. XPOE 

   The XPOE is made up of 5 main modules. Each one is mentioned below with a 

brief description. A detailed description of the behavior and functionality of the 

XPOE and its modules is given in chapters 4 and 5. 

 

 

• Read Input Memory  

   This module is the interface between the input section of the memory and the 

rest of the XPOE. When the XPOE is interrupted by the CPU with a start signal 

the read input memory module will interpret the opcode received from the CPU 
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and appropriately read the required number of bytes from the input section of the 

memory. 

 

• Read Main Memory 

   This module receives the bytes read from the input memory and based on the 

opcode interprets the bytes read. It identifies the string pointers and using these 

pointers it reads the input arguments to the function from the appropriate location 

in main memory word by word. 

 

• Function Execute 

    This module implements the execution of the actual XPath function based on 

the opcode that is passed to the XPOE by the CPU. It operates on the character 

data passed to it from the main memory. The output of the operation on each 

input word is then delivered to be written to the output memory. 

 

• Memory Write Module 

   This module writes the result of the function execution into the output section of 

the memory. Once that is done a ‘complete’ signal goes high and wakes up the 

CPU, which will then read the result from the predefined location of the output 

section of memory. 

 

• Controller 

   This module implements the Finite State Machine (FSM). When the start 

interrupt goes high the FSM enables the read input module. Based on signals 

from the read main memory, function execute and memory write modules the 

FSM will enable the appropriate modules. When the complete signal goes high 

indicating that the XPOE has finished execution the CPU will be interrupted. 
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3.3 Processor savings analysis 
 
 
3.3.1 Encode-to and Decode-from UTF-8 representation 

   The analysis starts by showing the CPU cycles savings that is incurred in 

encoding-to and decoding-from UTF-8 character representation. XPath functions 

take XML data as arguments. As seen in section 3.1 one of the main reasons 

that XPath functions are CPU intensive is the UTF representation of XML 

character data. UTF-8 character representation is assumed for this 

implementation. A majority of the XPath string functions involve encoding-to or 

decoding-from UTF-8 representation to some extent or the other. Thus, we can 

infer that by offloading the encoding and decoding operations onto hardware a 

significant amount of CPU cycles can be saved by the majority of the XPath 

string functions. The following tables will elaborate on the encoding and decoding 

operations and present an analysis on the number of CPU cycles involved with 

the help of pseudo-code. An example input is used for analysis purposes. The 

input contains 6 character numbers in the case of encode or a string with a string 

length of 6 in the case of decode. The number of bytes/octets per character is 

taken as 3 for this example. The analysis will then compare the CPU utilization 

involved in the encoding-to and decoding-from UTF-8 representation of this 

example input for the following two methods: 

 

1) Complete software approach 

   The software reads the arguments and implements the encoding-to and 

decoding-from UTF-8 functions. 
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• Encoding a character number to a UTF-8 character 

1. Determine the number of octets required from the char number. 

2. Then, prepare the high order bits of the octets. 

3. Finally, fill in the appropriate bits from the bits of the character number, 

expressed in binary. 

 

Table 3.2: Cycles required for an all-software approach for encoding function 

 

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 

PER 
CHAR 
NUM 

Read the char numbers 
from memory L1: READ Reg1, 4 bytes READ 6 1 
Generate mask MOV Reg2, mask MOV 30 5 
Check how many octets 
are required per char COMPARE Reg1, Reg2 COMPARE 30 5 
Generate high-order 
and other bit masks Mov Reg2, mask MOV 24 4 
Left Shift appropriate no 
of bits to align num bits AND Reg1, Reg2 AND 18 3 
correctly with the high 
order bits of the octets SHIFTL Reg1, 2 SHIFT 12 2 
OR to get the num 
encoded in UTF-8 OR Reg1, bitpattern OR 24 4 
  LOOP L1 INCR 6 1 
      
Write encoded chars 
back into memory WRITE Reg1, writeaddress WRITE 6 1 
     SCALE 
  TOTAL READ 6 1 
   COMPARE 30 1 
   INCR 6 1 
   MOV 54 1 
   AND 18 1 
   SHIFT 12 1 
   OR 24 1 
   WRITE 6 1 

 
TOTAL INSTRUCTION 
CYCLES   156  
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• Decoding a UTF-8 character to a character number 

1. Initialize a number and set its bits to one. 

2. Determine how many bits are used to represent the character, that is, 

which bits encode the character. 

3. Finally, distribute the bits from the sequence to the initialized number, form 

the lower order bits, proceeding to the left. This number will now equal the 

character number. 

Table 3.3: Cycles required for an all-software approach for decoding function 

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
Read UTF-8 char from 
memory L1: READ Reg1, 4 bytes READ 6 1 
Generate mask MOV Reg2, mask MOV 6 1 
Check number of bytes 
per char L2: AND Reg1, Reg2 AND 18 3 
Generate value MOV Reg2, value MOV 66 11 
Mask and compare COMPARE Reg1, Reg2 COMPARE 66 11 
Shift right after each 
compare to check SHIFTR Reg1, 8 SHIFT 12 2 
subsequent higher 
bytes JumpNotEqual L2       
Generate octet bit 
masks to obtain only 
those L3: MOV Reg2, mask MOV 18 3 
bits that make the char 
number AND Reg1, Reg2 AND 18 3 
Right shift appropriate 
num of bits for correct  SHIFTR Reg1, 2 SHIFT 12 2 
Alignment OR Reg1, bitpattern OR 12 2 
OR with initialized num 
to get final char num LOOP L1 INCR 6 1 
      
Write decoded char 
nums back into memory 

WRITE Reg1, 
writeaddress WRITE 6 1 

    SCALE 
 TOTAL READ 6 1 
  AND 36 1 
  COMPARE 66 1 
  SHIFT 24 1 
  INCR 6 1 
  MOV 90 1 
  OR 12 1 
  WRITE 6 1 

 
TOTAL INSTRUCTION 
CYCLES   246  
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2) Hardware offload approach 

   The implementation of the encoding and decoding functions are offloaded onto 

dedicated hardware. The software does trivial address calculations to obtain the 

result output by the functions. 

 

Table 3.4: Cycles required for a hardware-offloaded approach 

 

PROPRIETARY 
SCHEME 
CALCULATIONS         

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
Write the string pointer 
and strlen into 

WRITE strptr, 
writeaddress WRITE 2 1 

the separate output 
section of the memory         
Read the result, ie., the 
encoded or 

ADD Offset base 
address, Index  READ 6 1 

decoded value that has 
been written READ Reg1, 4 bytes INCR 6 1 
into the output section 
of the memory by 

ADD Value base 
address, Reg1 ADD 2 1 

the accelerator. 
L1: READ Reg1, 4 
bytes COMPARE 6 1 

  
COMPARE Field 
Length,0       

  JumpNotEqual L1       
      SCALE 
 TOTAL READ 6 1 
   COMPARE 6 1 
  INCR 6 1 
  ADD 2 1 
   WRITE 2 1 

 

TOTAL 
INSTRUCTION 

CYCLES   22  
 

 

   From Tables 3.2, 3.3 and 3.4, it can be seen that the cycles required by the 

hardware-offload method (22 cycles) is significantly lower than those required 

when using an all-software approach (156 cycles for encoding and 246 cycles for 

decoding). This translates into a savings of over 85% for encoding and over 89% 

for decoding functions. 
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3.3.2 XPath string functions 

   In section 3.3.1 we saw the significant number of CPU cycles that can be 

saved by offloading encoding and decoding operations onto hardware. In this 

section we continue our analysis by examining example XPath string functions 

that involve encoding and decoding to some extent and hence could lead to 

similar CPU cycles savings. Each analysis will consider a sample XPath 

function and corresponding arguments. And similarly the analysis will follow two 

methods to compare the CPU utilization involved in the execution of the 

example XPath functions. The complete software approach and the hardware 

offload approach. A detailed description of all the example functions below is 

presented in section 2.3.3 

 

 

• Function to assemble strings: codepoints-to-string( int, int, …) 

Returns a string from a sequence of codepoints 

 Example: codepoints-to-string(84, 104, 233, 114, 232, 115, 101) 

 Result: 'Thérèse' 

 

� Type of input: character numbers / codepoints / integers 

� Number of character numbers / integer arguments: 6 

� Number of bytes/octets per character: 3 
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1) Complete software approach: codepoints-to-string function 

 

Table 3.5: Cycles required for an all-software approach: codepoints-to-string 

function 

 

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 

PER 
CHAR 
NUM 

Read the char nums from 
memory L1: READ Reg1, 4 bytes READ 6 1 
Generate mask MOV Reg2, mask MOV 30 5 
Check how many octets 
are required per char COMPARE Reg1, Reg2 COMPARE 30 5 
Generate high-order and 
other bit masks Mov Reg2, mask MOV 24 4 
Left Shift appropriate no of 
bits to align num bits AND Reg1, Reg2 AND 18 3 
correctly with the high 
order bits of the octets SHIFTL Reg1, 2 SHIFT 12 2 
OR to get the num 
encoded in UTF-8 OR Reg1, bitpattern OR 24 4 
  LOOP L1 INCR 6 1 
      
Write encoded chars back 
into memory 

WRITE Reg1, 
writeaddress WRITE 7 1 

     SCALE 
  TOTAL READ 6 1 
   COMPARE 30 1 
   INCR 6 1 
   MOV 54 1 
   AND 18 1 
   SHIFT 12 1 
   OR 24 1 
   WRITE 7 1 

 
TOTAL INSTRUCTION 
CYCLES   157  
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2) Hardware offload approach: codepoints-to-string function 

 

Table 3.6: Cycles required for a hardware-offloaded approach: codepoints-to-

string function 

PROPRIETARY SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
          
Write the string pointer 
and strlen into 

WRITE strptr, 
writeaddress WRITE 2   

the separate intput 
section of the memory         
Read the result, ie., the 
encoded or 

ADD Offset base 
address, Index  READ 6 1 

decoded value that has 
been written READ Reg1, 4 bytes INCR 6 1 
into the output section of 
the memory by 

ADD Value base 
address, Reg1 ADD 2   

The accelerator. 
L1: READ Reg1, 4 
bytes COMPARE 6 1 

  
COMPARE Field 
Length,0       

  JumpNotEqual L1       
      SCALE 
 TOTAL READ 6 1 
   COMPARE 6 1 
  INCR 6 1 
  ADD 2 1 
   WRITE 2 1 

 

TOTAL 
INSTRUCTION 
CYCLES   22  

 

 

• Function to disassemble strings: string-to-codepoin ts(string) 

Returns a sequence of code points from a string 

 Example: string-to-codepoints("Thérèse") 

 Result: 84, 104, 233, 114, 232, 115, 101 

 

� Type of input: string 

� Number of character numbers / integer arguments: 6 

� Number of bytes/octets per character: 3 
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1) Complete software approach: string-to-codepoints function 

 

Table 3.7: Cycles required for an all-software approach: string-to-codepoints 

function 

 

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
Read UTF-8 chars from 
memory L1: READ Reg1, 4 bytes READ 7 1 
Generate mask MOV Reg2, mask MOV 6 1 
Check number of bytes per 
char L2: AND Reg1, Reg2 AND 18 3 
Generate value MOV Reg2, value MOV 66 11 
Mask and compare COMPARE Reg1, Reg2 COMPARE 66 11 
Shift right after each 
compare to check SHIFTR Reg1, 8 SHIFT 12 2 
subsequent higher bytes JumpNotEqual L2    
Generate octet bit masks 
to obtain only those MOV Reg2, mask MOV 18 3 
bits that make the char 
number AND Reg1, Reg2 AND 18 3 
Right shift appropriate num 
of bits for correct  SHIFTR Reg1, 2 SHIFT 12 2 
alignment OR Reg1, bitpattern OR 12 2 
OR with initialized num to 
get final char num LOOP L1 INCR 6 1 
      
Write decoded char nums 
back into memory 

WRITE Reg1, 
writeaddress WRITE 6 1 

    SCALE 
 TOTAL READ 7 1 
  AND 36 1 
  COMPARE 66 1 
  SHIFT 24 1 
  INCR 6 1 
  MOV 90 1 
  OR 12 1 
  WRITE 6 1 

 
TOTAL INSTRUCTION 
CYCLES   247  
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2) Hardware offload approach: string-to-codepoints function 

 

Table 3.8: Cycles required for a hardware-offloaded approach: string-to-

codepoints function 

 

PROPRIETARY 
SCHEME 
CALCULATIONS         

FUNCTION PSEUDO CODE OPERATOR #CYCLES PER CHAR 
          
Write the string pointer 
and strlen into 

WRITE strptr, 
writeaddress WRITE 2 1 

the separate intput 
section of the memory         
Read the result, ie., the 
encoded or 

ADD Offset base 
address, Index  READ 6 1 

decoded value that has 
been written 

READ Reg1, 4 
bytes INCR 6 1 

into the output section of 
the memory by 

ADD Value base 
address, Reg1 ADD 2 1 

The accelerator. 
L1: READ Reg1, 4 
bytes COMPARE 6 1 

  
COMPARE Field 
Length,0       

  JumpNotEqual L1       
      SCALE 
 TOTAL READ 6 1 
   COMPARE 6 1 
  INCR 6 1 
  ADD 2 1 
   WRITE 2 1 

 

TOTAL 
INSTRUCTION 

CYCLES   22  
 

 

 

• Function to test equality and comparison of strings : codepoint-

equal(comp1,comp2) 

Returns true if the value of comp1 is equal to the value of comp2

 Example: codepoint-equal('Thérèse', 'Thérèse') 

 Result: true 
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� Type of input: strings 

� Number of character numbers / integer arguments: 6 

� Number of bytes/octets per character: 3 

 

 

1) Complete software approach: codepoint-equal 

 

Table 3.9: Cycles required for an all-software approach: codepoint-equal function 

 

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES PER CHAR 
Read string1 from 
memory L1: READ Reg1, 4 bytes READ 7 1 
Read string2 from 
memory READ Reg2, 4 bytes READ 7 1 
Compare the 2 strings 
byte per byte until COMPARE Reg1, Reg2 COMPARE 24 4 
not equal… else return 
true JumpEqual L1 INCR 6 1 
Write result into 
memory 

WRITE Reg1, 
writeaddress WRITE 1   

    SCALE 
 TOTAL READ 14 1 
  COMPARE 24 1 
  INCR 6 1 
  WRITE 1 1 

 
TOTAL INSTRUCTION 
CYCLES   45  
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2) Hardware offload approach: codepoint-equal 

 

Table 3.10: Cycles required for a hardware-offloaded approach: codepoint-equal 

function 

 

PROPRIETARY SCHEME 
CALCULATIONS         

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
Write the str pointer and 
strlen for each string 

WRITE strptr, 
writeaddress WRITE 4   

into the separate intput 
section of the memory         

Read the result 
READ Reg1, 4 
bytes READ 1   

      SCALE 
 TOTAL READ 1 1 
   WRITE 4 1 

 

TOTAL 
INSTRUCTION 

CYCLES   5  
 

 

 

• Functions on string values: substring(string,start, len), 

substring(string,start) 

Returns the substring from the start position to the specified length. Index 

of the first character is 1. If length is omitted it returns the substring from 

the start position to the end.  

Example: substring('Beatles',1,4) 

 Result: 'Beat' 

 Example: substring('Beatles',2) 

 Result: 'eatles' 

 

� Type of input: strings 

� Number of character numbers / integer arguments: 6 

� Number of bytes/octets per character: 3 
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1) Complete software approach: substring 

 

Table 3.11: Cycles required for an all-software approach: substring function 

 

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 

Read string from memory 
L1: READ Reg1, 4 
bytes READ 7 1 

Generate mask MOV Reg2, mask MOV 6 1 
Check number of bytes 
per char L2: AND Reg1, Reg2 AND 24 4 
Generate value MOV Reg2, value MOV 84 14 

Mask and compare 
COMPARE Reg1, 
Reg2 COMPARE 102 17 

Shift right after each 
compare to check SHIFTR Reg1, 8 SHIFT 18 3 
subsequent higher bytes JumpNotEqual L2 INCR 12 2 
Loop back for each char 
in the input string LOOP L1 INCR 6 1 
Write encoded chars 
back into memory 

WRITE Reg1, 
writeaddress WRITE 7 1 

    SCALE 
 TOTAL READ 7 1 
  AND 24 1 
  COMPARE 102 1 
  SHIFT 18 1 
  INCR 18 1 
  MOV 90 1 
  WRITE 7 1 

 

TOTAL 
INSTRUCTION 
CYCLES   266  
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2) Hardware offload approach: substring 

 

Table 3.12: Cycles required for a hardware-offloaded approach: substring 

function 

 

PROPRIETARY SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
Write the str ptr, strlen, start 
position and length args 

WRITE strptr, 
writeaddress WRITE 4 1 

into the separate intput 
section of the memory         
Read the resultant string that 
has been written 

ADD Offset base 
address, Index  READ 6 1 

into the output section of the 
memory by 

READ Reg1, 4 
bytes INCR 6 1 

the accelerator. 
ADD Value base 
address, Reg1 ADD 2 1 

  
L1: READ Reg1, 4 
bytes COMPARE 6 1 

  
COMPARE Field 
Length,0       

  JumpNotEqual L1       
      SCALE 
 TOTAL READ 6 1 
   COMPARE 6 1 
  INCR 6 1 
  ADD 2 1 
   WRITE 4 1 

 

TOTAL 
INSTRUCTION 
CYCLES   24  

 

 

• Functions on string matching: starts-with(string1,s tring2) 

Returns true if string1 starts with string2, otherwise it returns false 

Example: starts-with('XML','X') 

 Result: true 

ends-with(string1,string2) 

Returns true if string1 ends with string2, otherwise it returns false 

Example: ends-with('XML','X') 

Result: false 
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� Type of input: strings 

� String1 length: 8 

� String2 length: 4 

� Number of bytes/octets per character: 3 

 

1) Complete software approach: starts-with and ends-with 

 

Table 3.13: Cycles required for an all-software approach: starts-with and ends-

with functions 

  

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
          
Read string1 from 
memory L1: READ Reg1, 4 bytes READ 9 1 
Read string2 from 
memory READ Reg2, 4 bytes READ 5 1 
Compare the 2 strings 
byte per byte until COMPARE Reg1, Reg2 COMPARE 16 4 
not equal… else return 
true JumpEqual L1 INCR 4 1 

Write result into memory 
WRITE Reg1, 
writeaddress WRITE 1   

    SCALE 
 TOTAL READ 14 1 
  COMPARE 16 1 
  INCR 4 1 
  WRITE 1 1 

 
TOTAL INSTRUCTION 
CYCLES   35  
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2) Hardware offload approach: starts-with and ends-with 

 

Table 3.14: Cycles required for a hardware-offloaded approach: starts-with and 

ends-with functions 

 

PROPRIETARY SCHEME 
CALCULATIONS         

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
          
Write the str pointer and 
strlen for each string 

WRITE strptr, 
writeaddress WRITE 4   

into the separate intput 
section of the memory         
Read the result READ Reg1, 4 bytes READ 1   

      SCALE 
 TOTAL READ 1 1 
   WRITE 4 1 

 

TOTAL 
INSTRUCTION 

CYCLES   5  
 

 

 

• Functions on string matching: substring-before(stri ng1,string2) 

Returns the start of string1 before string2 occurs in it 

Example: substring-before('12/10','/') 

Result: ‘12’ 

substring-after(string1,string2) 

Returns the remainder of string1 after string2 occurs in it 

Example: substring-after('12/10','/') 

Result: ‘10’ 

 

� Type of input: strings 

� String1 length: 8 

� String2 length: 4 

� Number of bytes/octets per character: 3 
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1) Complete software approach: substring-before and substring-after 

 

Table 3.15: Cycles required for an all-software approach: substring-before and 

substring-after functions 

 

TRADITIONAL SCHEME CALCULATIONS       

FUNCTION PSEUDO CODE OPERATOR #CYCLES PER CHAR 
Read string1 from 
memory 

L1: READ Reg1, 4 
bytes READ 9 1 

Read string2 from 
memory 

READ Reg2, 4 
bytes READ 5 1 

Compare the 2 strings 
byte per byte until 

COMPARE Reg1, 
Reg2 COMPARE 32 4 

not equal… else return 
true JumpNotEqual L1 INCR 4 1 
Write result into 
memory 

WRITE Reg1, 
writeaddress WRITE 4 1 

    SCALE 
 TOTAL READ 14 1 
  COMPARE 32 1 
  INCR 4 1 
  WRITE 4 1 

 

TOTAL 
INSTRUCTION 
CYCLES   54  
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2) Hardware offload approach: substring-before and substring-after 

 

Table 3.16: Cycles required for a hardware-offloaded approach: substring-before 

and substring-after functions 

PROPRIETARY SCHEME 
CALCULATIONS         

FUNCTION PSEUDO CODE OPERATOR #CYCLES 
PER 

CHAR 
          
Write the str pointer and 
strlen for each string 

WRITE strptr, 
writeaddress WRITE 4 1 

into the separate intput 
section of the memory         

Read the result 
READ Reg1, 4 
bytes READ 4 1 

      SCALE 
 TOTAL READ 4 1 
   WRITE 4 1 

 

TOTAL 
INSTRUCTION 

CYCLES   8  
 

 

   From Tables 3.5 through 3.16, it can be seen that the cycles required by the 

hardware-offload method is significantly lower than those required when using an 

all-software approach for each one of the example XPath string functions. Below 

is a comparison of the savings achieved for each of the functions. 

Table 3.17: Comparison of the savings achieved for each of the functions 

XPath Function S/W Approach 

(#CYCLES) 

H/W Offload 

Approach (#CYCLES) 

Savings 

codepoints-to-string 157 22 86% 

string-to-codepoints 247 22 89% 

codepoint-equal 45 5 89% 

substring 266 24 91% 

starts-with 

ends-with 

35 5 86% 

substring-before 

substring-after 

54 8 84% 
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   From table 3.17 we see that the average savings achieved over all functions is 

around 88%. The feasibility and importance of this number is demonstrated in 

tables 3.18 and 3.19. Table 3.18 shows the percent savings achieved for varying 

percentages (taken from 10% to 100%) of the above functions in any XML 

document or documents. Table 3.19 similarly shows the speedup (from Amdahl’s 

law) that can be achieved for varying percentages of the above string functions. 

 

 

Table 3.18: Comparison of fraction of string functions to the savings achieved 

  

Maximum achievable savings = 88% 

Fraction (or % of string 

functions) 

Savings (%) 

0.1 9 

0.2 18 

0.3 26 

0.4 35 

0.5 44 

0.6 53 

0.7 62 

0.8 70 

0.9 79 

1.0 88 
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Figure 3.2: Plot of fraction of XPath functions offloaded onto hardware to the 

savings achieved 

 

 

Table 3.19: Comparison of fraction of string functions to the speedup achieved 

 

Maximum achievable speedup = s = 8.33 

Fraction (f) 

( % string functions ) 

Overall Speedup (S) 

( S = 1 / [ (1-f) + (f/s) ] ) 

0.1 1.10 

0.2 1.21 

0.3 1.36 

0.4 1.54 

0.5 1.76 

0.6 2.12 
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Table 3.19 continued: Comparison of fraction of string functions to the speedup 

 

0.7 2.60 

0.8 3.38 

0.9 4.81 

1.0 8.33 

 

 

 

 

Figure 3.3: Plot of fraction of XPath functions offloaded onto hardware to the 

speedup achieved 

 

 

   From the above tables and figures we can see that hardware offload results in 

significant CPU cycles savings and is thus highly favorable.  
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Chapter 4 

 

 

Design Architecture 

 

 

 

4.1 Introduction 

 

   In chapter 3 we saw the potential savings the XPOE could achieve. In this 

section we take a high level look at the design architecture. The block diagram 

will be discussed. Functions and implementation details of individual blocks will 

also be elaborated on. 

   The design examines the incoming opcode on being interrupted to identify the 

function to be implemented. The design also simultaneously starts reading the 

input section of memory to get the required pointers to the input arguments of the 

function, which are located in main memory.  The input arguments are read byte 

by byte and as per the opcode the appropriate function is executed. The result of 

the function execution is then written to the output section of the memory byte by 

byte. Storage occurs only at the final stage and hence no back pressure is 

exerted on the input. Once the writing of the result into output memory has been 
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successfully completed, the CPU is interrupted and it is assumed that the PCI 

device would read this result data, to be examined by the CPU. 

   The following sections list all the blocks involved in the design. Their functions 

and a brief idea of their implementation are given. 

 

 

4.2 Block Diagram and Explanation 

 

   The figure 4.1 shows the block level implementation of the XPath Offload 

Engine (XPOE). We shall discuss the functions and brief implementation in 

subsequent sections. 

 

 

Figure 4.1: Block Diagram of XPOE 
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4.2.1 Read Input Memory 
 
   The following sections list the functions and implementation of the Read Input 

Memory block. 

 

• Functions 

 

1. Interfaces to the input section of the memory on the input side. 

2. Examines the bytes stored at the input section of the memory by the 

compiler. 

3. Reads the bytes from the input section till end of valid byte stream is 

encountered. 

4. Passes the read input bytes to the read main memory block. 

 

• Implementation 
 

 

 

Figure 4.2: Read Input Memory Implementation Diagram 
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   The Read Input Memory module is the interface between the input section of 

the memory and the rest of the XPOE. When the XPOE is interrupted by the 

CPU with a start signal the read input memory module will interpret the opcode 

received from the CPU and appropriately read the required number of bytes from 

the input section of the memory. This module will continue reading bytes from the 

input section till an end of stream flag is encountered. 

   The start interrupt from the CPU will enable this module and when end of valid 

byte stream is encountered this module would have read all the required bytes 

from the input section of memory. These bytes are now ready to be passed to the 

Read Main Memory module for further processing. The end of valid byte stream 

flag is used because based on the opcode the number of input arguments and 

hence the number of bytes to be read from the input section of memory will vary. 

 

 

4.2.2 Read Main Memory 
 
   The following sections list the functions and implementation of the Read Main 

Memory block. 

 

• Functions 

 

1. Interfaces with the Read Input Memory module on the input side and with 

the Function Execution unit on the output side. 

2. Based on the opcode this module identifies which function is to be 

executed. 

3. As per the required function bytes from the input module are used 

appropriately as input argument pointers and associated lengths. 

4. Reads the main memory section with these pointers. 

5. Delivers the input argument bytes to the Function Execute module. 

 

 

 



 

   57  
 

• Implementation 
 
 

 

 

Figure 4.3: Read Main Memory Implementation Diagram 

 

   This module receives the bytes read by the Read Input Memory module. Based 

on the function corresponding to the opcode it interprets the bytes read. It 

identifies the string pointers and its corresponding lengths and reads from the 

appropriate location in main memory byte by byte. It then delivers the input 

arguments to the function byte by byte to the Function Execute module. 

 

 

4.2.3 Function Execute 
 
   The following sections list the functions and implementation of the Function 

Execute block. 

• Functions 
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1. Interfaces with the Read Main Memory module on the input side and with 

the Memory Write module on the output side. 

2. Based on the opcode this module decides which function to implement.  

3. If required it identifies the bytes of the input memory data other than string 

pointers that might be needed for function execution. 

4. It executes the appropriate function block on the input arguments passed 

to it by the Read Main Memory module. 

5. This module will deliver the output of the function execution, which is the 

data to be written to memory to the Memory Write module. 

6. It indicates whether a particular data value that is the output of the 

execution needs to be written to the output memory or not. 

 

 

• Implementation 
 
 

 

 

Figure 4.4: Function Execute Implementation Diagram 
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   This module implements the operation of the actual XPath function based on 

the opcode that is passed to the accelerator by the CPU. The input to this 

module is from the Read Main Memory module. The input arguments are read 

from the main memory byte by byte and the Function Execute module operates 

on these inputs. The output of this operation is character data that may or may 

not need to be written to the output section of the memory. This data value is 

passed to the Memory Write module. 

   A significant percentage of the CPU overhead savings is affected by this 

module. This module implements the encoding to and decoding from UTF-8, both 

of which consume the maximum number of CPU cycles.  

 

 

4.2.4 Memory Write 
 
   The following sections list the functions and implementation of the Memory 

Write block. 

 

• Functions 

 

1. Interfaces with the Function Execute module on the input side and with the 

output section of the memory on the output side. 

2. It receives the character data to be written to memory from the Function 

Execute module. 

3. Writes the input data value to the output section of the memory 

4. When the writing of the result has been completed this module will also 

write the pointer to the result string and its length at the beginning of the 

output section. 

5. Indicates when all writing has completed letting the CPU know that the 

result is ready to be read. 
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• Implementation 
 
 

 

 

Figure 4.5: Memory Write Implementation Diagram 
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predefined location of the output section of memory. The CPU software can 

easily use the index and length fields to access the value. 

 

 

4.3 Design Pipeline 

 

   The input can be considered as a continuous flow of input functions / opcodes. 

One approach to this design could be to first completely buffer the incoming 

functions, as in all the pointers to the input arguments, then process it, and then 
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wait for the next group of functions. In this case, there could be a situation where 

we would need to exert backpressure on the input. To avoid this scenario, we 

take a pipelined approach. In this approach there is no need to exert any 

backpressure and we achieve better throughput. 

 

   The above sections have discussed the main modules of the XPOE from a 

block level view by talking about the functionality and basic implementation. 

Chapter 5 will describe these modules in greater detail, such as, pin interfaces, 

timing waveforms and detailed architecture. 
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Chapter 5 

 

 

Design Module Description 
 
 
5.1 Introduction 

 
   In section 4, we had a top-level look at block-level architecture of the design. 

We saw the functions of the blocks and had a brief idea of how each block is 

implemented. The current section aims to provide more details. For each block, 

the pin interfaces with other blocks and a detailed implementation description are 

given. This would include the FSM, data structures, arithmetic units and specific 

logic involved. 

 

 

5.2 Module Read Input Memory 
 
   This section and its subsection sections present a detailed description of the 

Read Input Memory module. Section 5.2.1 presents the pin interfaces with blocks 

it interacts with. Section 5.2.2 describes its implementation in detail. 
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5.2.1 Pin Interface 
 
 
   This section describes the pin interfaces of the Read Input Memory block with 

the other blocks. 

 
Table 5.1: Interface with the system 

 
No. Pin Name Dirn. Width Description 
1 clk IN 1 Async system reset 
2 reset IN 1 System clock 

 
 
 

Table 5.2: Interface with the input section of the memory 
 

No. Pin Name Dirn Width Description 
1 enable_inputread IN 1 Indication to start 

reading Input memory. 
This signal is asserted 
when the start interrupt 
from CPU is issued.  

2 ReadBus1 IN 32 Data read from Input 
section of the memory. 

3 ReadAddress_IPMem OUT 32 Address generated  for 
reading the Input section 
of memory. 

 

 
 

Table 5.3: Interface with the Read Main Memory module 
 

No. Pin Name Dirn Width Description 
1 Inputread_done OUT 1 Indication that Input 

memory has been read 
and data is valid. A 
signal for Read Main 
Memory module to use 
this data to read the 
Main memory.  

2 Inputmem_data OUT 128 Data read from Input 
section of the memory. 
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5.2.2 Architecture 

 

   This section starts by discussing the interface timing between the Read Input 

Memory module and the blocks it interfaces with. It then proceeds to elaborate 

on the hardware implementation of the blocks in the logic schematic shown in 

section 4.2. 

 

• Input Memory Interface Timing 

 

 

 

Figure 5.1: Interface waveform for Input Memory 

 

   Figure 5.1 shows the behavior between the Read Input Memory module and 

the input memory. When the start interrupt signal from the CPU is sampled high 

the data from the input section of the memory is read into an internal register. As 

each data unit is read from the input memory it is first checked for the end of 

valid byte stream sequence. As long as the end of byte stream has not been 

reached, on each positive edge of the clock one word is read from the input 

section of the memory and is registered. Note that for this data to be valid the 

start signal should be high and the end of valid stream should not have been 

reached. Upon reaching the end of valid byte stream inputread_done is asserted 
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high. By this point all the data that was read from the input memory would have 

been registered and ready to be delivered to the Read Main Memory module. 

 

• Timing Waveform for internal counters and output interfaces 
 
 

 
 

 
Figure 5.2: Internal counters and Read Main Memory interface timing 

 
 
   Figure 5.2 above shows the timing waveform describing the behavior of the 

output interfaces and the interface with the Read Main Memory module. 

 

 

5.3 Module Read Main Memory 
 
   This section and its subsection sections present a detailed description of the 

Read Main Memory module. Section 5.3.1 presents the pin interfaces with blocks 

it interacts with and section 5.3.2 describes its implementation in detail. 

 

5.3.1 Pin Interface 
 
 
   This section describes the pin interfaces of the Read Main Memory block with 

the other blocks. 
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Table 5.4: Interface with the system 
 
No. Pin Name Dirn. Width  Description 
1 Clk IN 1 Async system reset 
2 Reset IN 1 System clock 

 
 
 

Table 5.5: Interface with the Read Input Memory module 
 
No. Pin Name Dirn Width  Description 
1 enable_readmm IN 1 Indication to start reading 

Main memory. This signal 
is asserted when the Input 
memory data is valid, i.e. 
when inputread_done 
goes high. 

2 inputmem_data IN 128 Data read from Input 
section of the memory. To 
be interpreted by the Read 
Main Memory module as 
pointers to input 
arguments in Main 
memory and their 
corresponding lengths. 

 
 
 

Table 5.6: Interface with the Main Memory module 
 
No. Pin Name Dirn Width  Description 
1 ReadBus1 IN 32 Data read from the Main 

memory section from the 
first memory read bus. 

2 ReadBus2 IN 32 Data read from the Main 
memory section from the 
second memory read bus. 

3 ReadAddress1_MMem OUT 32 Address generated from 
the Input memory data for 
reading the Main memory 

4 ReadAddress2_MMem OUT 32 Address generated from 
the Input memory data for 
reading the Main memory 
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Table 5.7: Interface with the Function Execute module 
 

No. Pin Name Dirn Width  Description 
1 readmm_done OUT 1 This signal is asserted 

when the Read Main 
Memory module has 
completed reading all 
input arguments from 
Main Memory for that 
particular function. 

2 readchar_done OUT 1 Indication that a word has 
been read from Main 
memory and is ready to be 
operated on by the 
Function Execute module. 

3 mmchardata1 OUT 32 Data read from Main 
memory. To be processed 
by the Function Execute 
module. 

4 mmchardata2 OUT 32 Data read from Main 
memory. To be processed 
by the Function Execute 
module. 

 
 
 

5.3.2 Architecture 

 

   This section starts by discussing the interface timing between the Read Main 

Memory module and the blocks it interfaces with. We start with the timing 

diagram between the Read Input Memory and the Main Memory input interface 

with the Read Main Memory module. This is then followed by the timing diagram 

with the Function Execute module. It then proceeds to elaborate on the hardware 

implementation of the blocks in the logic schematic shown in section 4.2. 

 

• Input Interface Timing with the Main Memory and Read Input Memory module  

   Figures 5.3 and 5.4 shows the timing relation between the Read Main Memory 

module and the Main Memory and Read Input Memory module. The main 

memory is read only after ‘enable_readmm’ goes high. Based on the function 

specified by the opcode the appropriate word from the byte stream passed from 
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the Read Input Memory is used as a pointer to the input argument located in 

main memory. At every successive positive edge of the clock values of the input 

arguments from the main memory are read until all required entries read as per 

function requirements. A character counter is maintained. After each character is 

read from main memory, the count is compared with string length ‘strlen’, 

obtained from the input memory, as this indicates end of input string has been 

reached. 

 

 

 
Figure 5.3: Timing relation with Main Memory 

 
 

 

 

 
Figure 5.4: Timing relation with Read Input Memory Interface 
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• Timing Waveform for internal counters and output interfaces 

   Figure 5.5 shows the timing waveform describing the behavior of the output 

interfaces and the interface with the Function Execute module. Each word that is 

read from the main memory is passed over to the Function Execute module.  

 

 

 
Figure 5.5: Internal counters and Function Execute Interface timing 

 

 

5.4 Module Function Execute 
 
   This section and its subsection sections present a detailed description of the 

Function Execute module. Section 5.4.1 presents the pin interfaces with blocks it 

interacts with and section 5.4.2 describes its implementation in detail. 

 

5.4.1 Pin Interface 
 
 
This section describes the pin interfaces of the Function Execute block with the 

other blocks. 

Table 5.8: Interface with the system 
 
No. Pin Name Dirn. Width  Description 
1 Clk IN 1 Async system reset 
2 Reset IN 1 System clock 
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Table 5.9: Interface with the Read Main Memory module 
 
No. Pin Name Dirn Width  Description 
1 enable_funcexe IN 1 Indication that a word has 

been read from Main 
memory and is ready to be 
operated on by the 
Function Execute module. 
Is asserted when 
readchar_done goes high. 

2 mmchardata1 IN 32 Data read from Main 
memory, to be processed 
by the Function Execute 
module. 

3 mmchardata2 IN 32 Data read from Main 
memory, to be processed 
by the Function Execute 
module. 

 

 
Table 5.10: Interface with the Memory Write module 

 
No. Pin Name Dirn Width  Description 
1 funcexe_done OUT 1 This signal is asserted 

when the Function 
Execute module has 
completed execution for 
that particular function. 

2 mem_write OUT 1 Indicates whether a 
particular word needs to 
be written to memory or 
not. 

3 DataToMem_ready OUT 1 When asserted this signal 
indicates that the 
processed data is ready to 
be written into the output 
section of the memory by 
the Memory Write module. 

4 DataToMem OUT 32 Data ready to be written to 
Output memory, after 
being processed by the 
Function Execute module. 
Delivered to the Memory 
Write module. 

 



 

   71  
 

5.4.2 Architecture 

 

   This section starts by discussing the interface timing between the Function 

Execute module and the blocks it interfaces with. We start with the timing 

diagram between the Read Main Memory input interface with the Function 

Execute module. This is then followed by the timing diagram with the Memory 

Write module. It then proceeds to elaborate on the hardware implementation of 

the blocks in the logic schematic shown in section 4.2. 

 

• Input Interface Timing with the Read Main Memory module  

   Figure 5.6 shows the timing relation between the Function Execute module and 

the Read Main Memory module. The functional unit is enabled to operate on the 

input character data only after 'enable_funcexe' goes high. Based on the opcode 

input by the CPU the appropriate function is implemented. The encode to and 

decode from UTF-8 modules are called as required by the functions.  

 

 

 

Figure 5.6: Timing relation with Read Main Memory Interface 
 

 

• Timing Waveform for internal counters and output interfaces 

   Figure 5.7 shows the timing waveform describing the details of the behavior of 

the output interface with the Memory Write module. After each character has 
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been appropriately operated on, 'DataToMem_ready' will go high to indicate that 

the result of the operation is ready to be written to the output section of the 

memory. After the functional unit has finished execution 'funcexe_done' will go 

high. 

 

 

 

 
Figure 5.7: Internal counters and Memory Write interface timing 

 

 

5.5 Module Memory Write 
 
   This section and its subsection sections present a detailed description of the 

Memory Write module. Section 5.5.1 presents the pin interfaces with blocks it 

interacts with and section 5.5.2 describes its implementation in detail. 

 

5.5.1 Pin Interface 
 
   This section describes the pin interfaces of the Memory Write block with the 

other blocks. 

Table 5.11: Interface with the system 
 
No. Pin Name Dirn. Width  Description 
1 Clk IN 1 Async system reset 
2 Reset IN 1 System clock 
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Table 5.12: Interface with the Function Execute module 
 

No. Pin Name Dirn Width  Description 
1 funcexe_done IN 1 This signal is asserted 

when the Function 
Execute module has 
completed execution for 
that particular function. 

2 enable_mem_write IN 1 This signal is asserted 
when DataToMem_ready 
goes high. Indicates that 
the word delivered by the 
Function Execute module 
needs to be written to 
Output memory. 

4 DataToMem IN 32 Data ready to be written to 
Output memory, after 
being processed by the 
Function Execute module. 
Delivered to the Memory 
Write module. 

 

 
 

Table 5.13: Output Interface of the Memory Write module 
 
 

No. Pin Name Dirn Width  Description 
1 Complete OUT 1 This signal is asserted 

when the XPOE has 
completed all operations 
and has finished writing 
into Output memory. It is 
an indication to the CPU 
to take over. 

2 WE OUT 1 This signal is asserted 
when data to be written to 
output memory is ready. 
Enables writing into 
memory. 

3 WriteBus OUT 32 Contains the word to be 
written to Output memory. 

4 WriteAddress OUT 32 Output Memory Address 
generated to write each 
result word into the output 
section of the memory. 
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5.5.2 Architecture 

 

   This section starts by discussing the interface timing between the Memory 

Write module and the blocks it interfaces with. We start with the timing diagram 

between the Memory Write module and its interfaces. Its interface with the 

Function Execute module and the Memory Write module’s output interface. It 

then proceeds to elaborate on the hardware implementation of the blocks in the 

logic schematic shown in section 4.2. 

 

 

• Input Interface Timing with the Function Execute module  

   Figure 5.8 shows the timing interface between the Memory Write module and 

the Function Execute module. The Memory Write module unit is enabled only 

after ‘enable_mem_write’ goes high. Based on the counter value the character 

data passed from the Function Execute unit is written to the appropriate memory 

location in the output section of the memory.  

 

 

 
Figure 5.8: Timing relation with Function Execute Interface 

 
 

• Timing Waveform for internal counters and output interfaces 

   Figure 5.9 shows the timing waveform describing the details of the Memory 

Write module’s output Interface. When the writing of the result into the output 
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memory section has been completed, along with writing the pointer to the start of 

the result and its associated length, the ‘complete’ signal is asserted high to 

indicate that the accelerator has completed it operation and it’s time for the CPU 

to take over. 

 

 

 

Figure 5.9: Internal counters and output interface 
 

 

5.6 Controller 
 

   This module implements the Finite State Machine (FSM). This section begins 

with a flowchart, depicting the way the logic proceeds in the design. This is 

followed by the State Machine Diagram, shown in Figure 5.11 and its transition 

table. 

  The overall flowchart for the design is shown in Figure 5.10. Each block in the 

flowchart can be thought of as a module. 
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Figure 5.10 Flowchart for XPOE 

 

 

   Figure 5.11 shows the state machine for the XPOE. When the start interrupt 

goes high the FSM enables the read input module. Based on signals from the 

read main memory, function execute and memory write modules, the FSM will 

enable the appropriate modules. When the complete signal goes high indicating 

that the XPOE has finished execution the CPU will be interrupted. Based on the 

current state, various counters and interfaces are driven. 
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Figure 5.11 State Machine Diagram 

 

 

   The next chapter discusses the verification strategy in detail. 
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Chapter 6 
 
 
Software Simulation and 
Verification 
 
   This chapter describes the test environment developed, the testbench 

components and the verification strategy. It also talks about the additional design 

features. 

 
 
 

6.1 Test Environment Description 
 

• Block Diagram 

 

   Figure 6.1 shows the architectural block diagram of the testbench. 
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Figure 6.1: Block diagram of testbench 

 
 

• Inputs 

   A black-box approach is taken to verify the Device-Under-Test (DUT). 

 

• Outputs 

   The DUT reads from the main and the input section of memory and after 

executing the appropriate function as per the opcode it populates the output 

section of the memory. 

   After this, it asserts a ’complete’ indication to the external world, indicating 

that the result of the requested XPath function is ready to be read out from the 

output section of the memory. The testbench will then read the output memory 

and outputs a text file result.out. The contents of this result file are formatted 

and can be examined for correctness of the DUT operation. 

 

 

• Components 

   The main components of the testbench are briefly described below: 
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1. Packet Generator 

   The Packet Generator loads all the bytes in the input file memdata.hex into the 

memory. 

2. Reader 

   The Reader reads out all locations of the output section of the memory, formats 

the data to increase readability and writes to the file result.out. 

 

 

6.2 Testbench Architecture 

 

   This section describes the testbench components in greater detail. 

 

 

6.2.1 Module Packet Generator (pktgen) 

 

   • Pin Interface 

 

Table 6.1: Interface with the system 
 

No. Pin Name Dirn. Width  Description 
1 Clk IN 1 Async system reset 
2 Reset IN 1 System clock 

 
 
 

Table 6.2: Interface with the DUT 
 

No. Pin Name Dirn. Width  Description 
1 start_int IN 1 Indicates to the DUT that it 

can start reading from the 
Input section of the 
memory. 

2 Opcode IN 32 Function opcode 
indicating which specific 
function implementation 
has been requested. 
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   The Packet Generator reads in all the data from the input file and populates the 

memory with this data. The memory width is equal to 4 bytes, as UTF-8 uses a 

maximum of 4 bytes for character representation. 

   The pin ‘start_int’ is then asserted to make data available to the DUT. An 

opcode value is also fed which will correspond to the particular XPath function 

under test. When the DUT read all the bytes from the input section of memory 

and reached the end of the valid byte stream the inputread_done signal is 

asserted. The DUT will then use the data read from the input memory as pointers 

to the input arguments located in main memory, and these arguments are read 

byte by byte and supplied to the remaining blocks of the DUT. 

   Once all the input arguments are read from main memory or the execute unit 

has sufficient information to form the output of the function under test the DUT 

will assert its ‘complete’ signal. 

 

 

6.2.2 Module Reader (reader) 

 
   • Pin Interface 

 

Table 6.3: Interface with the system 
 

No. Pin Name Dirn. Width  Description 
1 Clk IN 1 Async system reset 
2 Reset IN 1 System clock 

 

 
 

Table 6.4: Interface with the DUT 
 
 

No. Pin Name Dirn. Width  Description 
1 Complete IN 1 Indication that the DUT is 

done execution and that 
the result is now ready in 
the Output Memory. 

2 read_enable OUT 1 Enable/request signal 



 

   82  
 

Table 6.4 continued: Interface with the DUT 
 

No. Pin Name Dirn. Width Description 
3 read_address OUT 32 The address that is 

generated to perform the 
read from the memory. 

4 read_data OUT 32 The data read from the 
Output Memory. 

5 read_valid OUT 1 Read data is validated 
when this signal is 
asserted. 

 
 
 
 

• Architecture 
 
 

 
 
 

Figure 6.2: Architectural Block Diagram of the Reader Module 
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   The Reader module has to wait for the DUT structure done indication, i.e. the 

‘complete’ signal, before it can start to read the output section of the memory. 

Once this handshake is asserted, it starts reading every location of the output 

memory, and formats the data received and writes it to the file result.out. This file 

is examined to verify DUT functionality.  

 

 

6.3 Verification Test Plan 

 

   The verification test plan is described in this section. The goal is to test the 

DUT using a set of input script files. Each version of the input file memdata.hex 

represents a test case/script for a different XPath function that is being tested. 

The DUT can be tested for a set of features. Typically, one input script would test 

these features/functions, depending on the contents of the input file. These 

functions, in no particular order, can be listed as: 

 

1. CPU – ASIC Interaction  

– Start interrupt 

– Complete signal 

– Reset 

2. Individual Block Testing  

– Reading Input data from the input memory 

– Reading Input arguments from the main memory 

– Writing the result to the output section of memory 

– Result string length calculation 

– Encoding, decoding and string compares 

– Which Output signals are activated corresponding to changing 

function/opcode 

3. Functional Verification  

– For each of the functions implemented 

– Encoding to UTF-8 from character number 
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– Decoding from UTF-8 character string 

– codepoints-to-string function 

– string-to-codepoints function 

– codepoint-equal function 

– substring function 

– starts-with and ends-with functions 

4. Controller Operation 

– No illegal states visited 

– The states visited for different functions 

– Number of states visited 

 

 

6.3.1 Feature Tests 

 

   To test some/all features of the DUT, feature tests are employed. The scripts 

that are run on the DUT test all the features listed. These tests are run with one 

XPath function contained in one script. The tests are rerun for each and every 

one of the XPath function that is implemented. 

 

Table 6.5: Feature tests 
 

No. Script Name Features covered from the list 
1 Memdata1.hex 1,2,3,4 and all subsections 
2 Memdata2.hex 1,2,3,4 and all subsections 

 

 

 

6.4 Test Results Summary 

 

Table 6.6 summarizes the tests run on a PASS/FAIL basis. 
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Table 6.6: Summary table of the test results 
 

No.  Category Script Name Result/Comments 

1 Feature tests memdata1.hex PASS 

2 Feature tests memdata2.hex PASS 

 

 

6.5 Additional Design Features 

 

• Clock Period: 38.25 ns 

• Maximum operating frequency: 26.14 MHz 

• Total equivalent area for design: 502,301 

• Total data throughput supported: 1.7 Gbps 
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Chapter 7 

 

 

Future Work and Conclusion 

 

 

   This chapter describes the future scope of the work presented in terms of 

feature additions and optimizations to the existing design. 

 

 

7.1 Feature Additions 

 

   This section talks about the features that could be added to the existing design 

for further improvements. 

 

1. We could look into other XPath functions, other than string functions which 

might give us similar CPU cycle savings. 

 

2. We could offload more XPath string functions onto hardware and calculate 

the tradeoff. 

 

3. We could optimize the compiler, thus optimizing XPOE’s interactions with 

the system. 
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4. We could look into offloading some of the pre-processing also onto 

hardware. 

 

5. We could extend the encode and decode offload units to include the UTF-

16 representation. 

 

6. We could look into incorporating these XPath functions into Xquery 

expressions and thus offload aspects of Xquery onto hardware. 

 

7. We could extend the implementation to include all collations. 

 

 
7.2 Verification 

 

   Enhanced testing capabilities could be added to the existing test environment. 

 

• Randomization:  

   The existing test environment can be randomized to generate different 

combinations of XPath functions that follow. The input arguments to the 

function could also be randomly generated before storing in the input section 

of the memory. 

 

• Introduce Error Conditions: 

   Different error conditions could be created while data is stored in the 

memory and then the functionality of the DUT could be tested. For example, 

errors introduced could be on the lines of specifying incorrect number of input 

arguments, omitting end of valid byte stream, incorrect UTF representation, 

etc. 
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• Assertions: 

   The existing test environment verifies the correctness of the design by 

examining the output of the XPOE which is the result of the function after the 

XPOE has completed execution and the result is ready. However, assertions 

could be used within the code, to catch bugs earlier, as and when they occur 

in the testing phase. 

 

 

7.3 FPGA Implementation and Architecture Optimizations 

 

   This section talks about improvements to the architecture such area and timing 

optimizations of the FPGA implementation. 

 

 

7.3.1 Area Optimizations 

 

  An FPGA consists of an array of configurable logic blocks (CLBs) and routing 

channels. A typical FPGA logic block consists of a 4-input lookup table (LUT), 

and a D flip-flop. There is only one output, which can be either the registered or 

the unregistered LUT output. The logic block has four inputs for the LUT and a 

clock input. Thus, the LUT can implement a 4-input function. Area optimizations 

can be achieved when the LUT is used as a shift register or a register array. 

Advanced place-and-route techniques and FPGA primitives can also be used to 

reduce area. Techniques such as register packing and register placements can 

pack more logic together thus optimizing area. 

 

 

7.3.2 Timing Optimizations 

 

   Timing optimizations can be done in several ways. Advanced place-and-route 

algorithms along with the FPGA Floorplanner can be used for register packing, 

register retiming and placing communicating modules closer together. Critical 
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paths are dominated by interconnect delay and are frequently highly circuitous. 

Such paths can be ‘straightened’ out using advanced techniques. Optimize all 

short- and long-path timing constraints in an FPGA. These methods are among a 

few that could lead to better timing. 

 

 

7.4 Conclusion 

 

   The correctness of the design is proved through functional verification, and the 

analysis of the hardware offload approach demonstrates the CPU cycles saved. 

Hence, it can be concluded that it is desirable and possible to offload XPath 

function processing onto hardware. 
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