ABSTRACT

WAN, BAOHONG. Traffic Simulation Failure Detection and Analysis. (Under the Direction of Dr. Nagui M. Rouphail.)

Microscopic, stochastic traffic simulation may yield simulation failures under multiple replications. The failed runs are not valid in the estimation of traffic performance and should be excluded from the final simulation output analysis. On the other hand, these failure runs provide important clues to perform a simulation flaw diagnosis. An unconventional failure detection and analysis methodology was proposed to comprise three layers: time series inspection, spatial analysis, and causal analysis. The process of time series inspection traces the variation of indicator variables over the time domain for the purpose of detection of simulation failures. The spatial analysis identifies failure occurrence patterns, and the subsequent causal analysis judge contributing factors to simulation failures using a tabular method in combination with other tools.

A widely-used traffic simulator, CORSIM, is used as the test-bed simulator. Three real-world traffic networks were simulated as the case studies for the proposed method. The study results indicated that the proposed failure detection and analysis method is valid and effective to improve traffic simulation from multiple perspectives. Its application in the evaluation of networks testified its utility in multiple aspects. The proposed procedure helped uncover the existing deficiencies in the current simulation models, and, therefore, provide important guidance for the organized model improvement efforts. On the other hand, the procedure was also applied in the analysis of a projected traffic scenario to testify its value in the identification of critical sites on the network from the traffic engineering perspective.
Traffic Simulation Failure Detection and Analysis

Dissertation

Presented in Partial Fulfillment of
the Requirements for the Degree Doctor of Philosophy
in the Graduate School of
North Carolina State University

By

Baohong Wan, B.S., M.S.

Department of Civil Engineering

North Carolina State University

2004

Approved by

________________________ ________________________
Nagui M. Rouphail Joseph E. Hummer
(Chair of Advisory Committee)

________________________ ________________________
Billy M. Williams Leonard A. Stefanski
VITA

1973 …………….. Born in Shandong, China
1995 …………….. B.S. from Beijing (Northern) Jiaotong University, Beijing, China
2002 …………….. M.S. from North Carolina State University, Raleigh, NC
2004 …………….. Ph.D. from North Carolina State University, Raleigh, NC

PUBLICATIONS

ACKNOWLEDGEMENTS

There are lots of people I would like to thank for a huge variety of reasons.

Firstly, I would like to thank my Supervisor, Dr. Nagui M. Rouphail. I could not have imagined having a better advisor and mentor for my PhD, and for the last four years without his common-sense, knowledge, perceptiveness and cracking-of-the-whip I would never have finished my research and study.

Thank-you to my committee members, Dr. Joseph Hummer (traffic operation and safety), Dr. Billy Willams (ITS) and Dr. Lenard Stefanski (statistics), for managing to read the whole thing so thoroughly, for supporting me academically and technically, and for a surprisingly enjoyable Viva. Special thanks to Dr. Jerome Sacks in Duke University, who has advised and sponsored this entire research.

I would also like to thank all the rest of the academic and support staff of the Institute of Transportation Research and Education, the NCSU Department of Civil Engineering, and the National Institute of Statistical Sciences, particularly those who have put up with my drifting a long way away from my original title.

The most thanks to my family: My wife Qing, and my two-years-old daughter Cassie. Without them I could not have gone thus far in my career and my life.
TABLE OF CONTENTS

List of Tables... vii

List of Figures... ix

Executive Summary.. x

Chapter 1 Introduction ... 1

1.1 Problem Statement .. 1

1.2 Simulation Failure Study .. 3

1.3 Analysis of Simulation Failures .. 8

1.4 Objectives of Research .. 13

1.5 Organization of the Dissertation ... 14

Chapter 2 Literature Review ... 17

2.1 Traffic Anomaly Detection Technologies ... 17

2.2 Simulation Failure Research .. 22

2.3 Summary of Literature .. 25

Chapter 3 Methodology ... 28

3.1 Overview .. 28

3.2 Data Preparation .. 30

3.3 Layer 1: Time Series Inspection ... 35

3.4 Layer 2: Spatial Analysis .. 41

3.5 Layer III: Causal Analysis .. 43

Chapter 4 Methodology Implementation in CORSIM ... 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 CORSIM Simulator</td>
<td>51</td>
</tr>
<tr>
<td>4.2 Methodology Implementation with CORSIM</td>
<td>59</td>
</tr>
<tr>
<td>4.3 Case Studies</td>
<td>65</td>
</tr>
<tr>
<td>Chapter 5 Evaluation of Simulators</td>
<td>67</td>
</tr>
<tr>
<td>5.1 Simulator Description and Study Design</td>
<td>67</td>
</tr>
<tr>
<td>5.2 CORSIM 4.32 Results</td>
<td>75</td>
</tr>
<tr>
<td>5.3 CORSIM 5.0 Results</td>
<td>78</td>
</tr>
<tr>
<td>5.4 CORSIM 5.1 Results</td>
<td>80</td>
</tr>
<tr>
<td>5.5 Summary and Discussion</td>
<td>83</td>
</tr>
<tr>
<td>Chapter 6 Evaluation of Networks I: PM Chicago Network</td>
<td>85</td>
</tr>
<tr>
<td>6.1 Network Description and Study Design</td>
<td>83</td>
</tr>
<tr>
<td>6.2 Base Network Study</td>
<td>88</td>
</tr>
<tr>
<td>6.3 Sensitivity Test for Failure Mitigation</td>
<td>97</td>
</tr>
<tr>
<td>6.4 Tuned Network Study</td>
<td>109</td>
</tr>
<tr>
<td>6.5 Summary</td>
<td>112</td>
</tr>
<tr>
<td>Chapter 7 Evaluation of Networks II: AM Chicago Network</td>
<td>114</td>
</tr>
<tr>
<td>7.1 Network Description and Study Design</td>
<td>114</td>
</tr>
<tr>
<td>7.2 Base Case Study</td>
<td>116</td>
</tr>
<tr>
<td>7.3 Tuned Case Study</td>
<td>119</td>
</tr>
<tr>
<td>7.4 Test Case Study</td>
<td>121</td>
</tr>
<tr>
<td>7.4 Supplemental TIP Study</td>
<td>126</td>
</tr>
<tr>
<td>7.5 Summary</td>
<td>129</td>
</tr>
</tbody>
</table>
Chapter 8 Evaluation of Networks III: NCSU Campus Network 131

8.1 Case Study Description ... 131
8.2 Initial Case Study ... 135
8.3 Base Case Study ... 139
8.4 Adjusted Case Study ... 142
8.5 Tuned Case Study ... 145
8.5 Summary ... 155

Chapter 9 Synthetic Summary of Application Results 158

9.1 Summary of Results ... 158
9.2 Findings and Conclusions .. 164
9.3 Limitations and Further Actions ... 170

Chapter 10 List of References .. 166

Appendix 1: Case Simulation Input Files 178
Appendix 2: Failure Detection Program Codes in VBA 226
LIST OF TABLES

3.1 Probability Values of LTO for Various First Interval Vehicle Counts 39
3.2 Example Calculation of the Expected Number of False Alarms 40
3.3 Exploratory Causal Analysis with Simulation Failure Occurrence Patterns 44
3.4 Summary of Detailed Simulation Failure Causal Analysis 48
4.1 Key Driver Behavioral Parameters in CORSIM 59
4.2 Selected Driver Behavior Parameters for Sensitivity Test 65
5.1 Study Design Regarding Three Recent CORSIM Releases 74
6.1 Critical First-Failing Links in the Base Case Study 95
6.2 Critical First-Failing Nodes in the Base Case Study 95
6.3 Key Behavioral Parameters Chosen for Failure Mitigation Study 100
6.4 Two Dimensional Projection of the SLTxDH Design 102
6.5 Experimental and Regression Results in Local Parameter Studies 103
6.6 SAS Analysis Results in the Local Parameter Test 104
6.7 Design Values in the Test of Global Variation Parameters 107
6.8 Experimental and Regression Results in the Global Parameter Test 108
6.9 SAS Analysis Results in the Global Parameter Test 109
6.10 Critical First-Failing Links in the Tuned Case Study 112
6.11 Critical First-Failing Nodes in the Tuned Case Study 112
7.1 Critical First-Failing Links in the Base Case Study 119
7.2 Critical First-Failing Nodes in the Base Case Study 119
7.3 Critical First Failing Links in the Test Case Study 124
7.4 Critical First Failing Nodes in the Test Case Study 125
7.5 Critical First Failing Links in the TIP Case Study 128
7.6 Critical First Failing Links in the TIP Case Study 129
8.1 Critical First-Failing links in the Initial Case Study 138
8.2 Critical First-Failing Nodes in the Initial Case Study 139
8.3 Critical First-Failing Links in the Base Case Study 142
8.4 Critical First-Failing Nodes in the Base Case Study 142
8.5 Critical First-Failing Links in the Adjusted Case Study 145
8.6 Critical First-Failing Nodes in the Adjusted Case Study 145
8.7 Critical First-Failing Links in the Tuned Case Study 155
8.8 Critical First-Failing Intersections in the Tuned Case Study 155
9.1 Summary Results in the Evaluation of Simulators 160
9.2 Summary Results in the Evaluation of Chicago PM Peak Network 161
9.3 Summary Results in the Evaluation of Chicago AM Peak Network 162
9.4 Summary Results in the Evaluation of NCSU Campus Network 164
LIST OF FIGURES

3.1 Multilayer Simulation Failure Analyses 28
3.2 Relationships between LTI, LTO and MTO 33
4.1 Simulation Process in CORSIM 54
4.2 Flowchart of Simulation Failure Detection Process in CORSIM 63
5.1 Test-bed Network in Chicago 72
5.2 Half-width of 95% CI versus Failure Probabilities 76
5.3 Distribution of System Queue Time in CORSIM 4.32 Simulation 77
5.4 Distribution of First-Failing Intersections in CORSIM 4.32 Simulation 78
5.5 Distribution of System Queue Time in CORSIM 5.0 Simulation 80
5.6 Distribution of First-Failing Intersections in CORSIM 5.0 Simulation 81
5.7 Distribution of System Queue Time in CORSIM 5.1 Simulation 82
5.8 Distribution of First-Failing Intersections in CORSIM 5.1 Simulation 83
6.1 Link-Node Map of the Chicago Simulation Network 87
6.2 Distribution of SQT in the Base Case Simulation 90
6.3 Snapshot of Failure Detection Output in the Base Case Study 92
6.4 Classified Distribution of SQT in the Base Case Study 94
6.5 Spatial Distribution of First-Failing Nodes in the Base Case Study 96
6.6 Distribution of SQT in Simulation with Adjusted Parameters 111
6.7 Spatial Distribution of FFF on the Tuned Network 113
7.1 Illustration of Demand Changes between AM and PM Periods 115
7.2 Distribution of SQT in the Base Case Simulation 118
7.3 Spatial Distribution of the First Failure Frequencies in the Base Case Study 120
EXECUTIVE SUMMARY

Microscopic, stochastic traffic simulation may yield unrecoverable traffic gridlock (referred to as simulation failures in this research) under multiple replications. The failed runs are not valid in the estimation of traffic performance and should be excluded from the final simulation output analysis. On the other hand, these failure runs provide important clues to perform a simulation flaw diagnosis.

The detection and diagnosis of failure runs is a challenging task, particularly when conducting a large number of replications. In contrast to the traditional methods of failure detection, we propose a times series analysis method to identify the occurrence of simulation failures through traffic flow anomaly detection. The observed phenomenon is a severe malfunction of one or more internal traffic links where outgoing vehicles can no longer discharge.

Once failure replications are identified, they are examined to determine the contributing factors to their occurrence. These factors can be attributed to three components, namely simulator-related, simulation-related, and network-related. If the right category can be determined, users can take appropriate actions to mitigate simulation failures by rectifying the choice of simulator (for simulator-related factors), improving user modeling process (for simulation-related factors), or proposing traffic improvement plans (for network-related factors).

The proposed analysis procedure is thus based on a time series inspection as well as a
spatial analysis. The process of time series inspection traces the variation of indicator variables over the time domain for the purpose of detection of simulation failures, while the spatial analysis identifies failure occurrence patterns and is the basis for the subsequent causal analysis using a tabular method.

A widely-used traffic simulator, CORSIM, is used as the test-bed simulator. Hence, the proposed methodology is actually implemented with CORSIM’s particular features. Three real-world traffic networks were simulated as the case studies for the proposed method. The first and the second network were geometrically identical to each other, except that they had different traffic demand features and traffic control plans. The first network testified to the utility of the failure detection method as a pre-calibration procedure, while the second network demonstrated its application for the purpose of network analysis. The third network had considerably different features from the previous two networks in both geometry and traffic demand features. These differences enabled us to test the transferability of the method between different networks.

The study results indicated that the proposed failure detection and analysis method is valid and effective to improve traffic simulation from multiple perspectives. Its application in the evaluation of networks testified its utility in the analysis of simulator features. In the network studies, the proposed procedure helped uncover the existing deficiencies in the current simulation models, and, therefore, provide important guidance for the organized model improvement efforts. Assuming a valid model and a competent simulator, the procedure was applied in the analysis of a projected traffic scenario to
testify its value in the identification of critical sites on the network from a traffic engineering perspective.

In conclusion, the method is valid and effective to help simulation users and model developers alike to identify existing flaws and deficiencies in the simulator, the modeling process, and the study network. The current findings led us to believe that continuing research along this direction is necessary and rewarding.
CHAPTER 1: INTRODUCTION

1.1 Problem Statement

Simulation is a key tool widely used in transportation engineering analyses. In order to properly reflect the random nature of traffic in the real world, most microscopic simulations are stochastic in nature. That is, traffic movements are described by statistical distributions as opposed to having fixed values. Correspondingly, repeated runs are necessary to explore the behavior of the system being studied.

Reliable use of traffic simulations is limited by a lack of methods for the assessment of their validity. Decision-makers frequently ask: can simulation fully represent the real world traffic situations? The answer to such a sweeping request is usually “no” (Bayarri, et al., 2002). Nevertheless, simulation can be used for making reliable predictions of traffic performance in particular settings.

When a simulation needs a large number of replicates, the problem becomes more complicated since some replications may result in unrealistic traffic congestion (herein called simulation failures). Obviously these failure runs (runs containing simulation failures) should be excluded from a traditional statistical analysis for the estimation of means and variances of particular traffic performance measures. Further, the occurrence of simulation failures may indicate flaws in the simulator or unaccounted factors in the simulation. The question is then how to sort out the possible explanations for these. Specifically:

1) What is the role of simulation failures in a stochastic simulation?
2) How can the consequences of simulation failures be addressed?

Detection and analysis of simulation failures should be a primary task in the successful use of traffic simulation. However, traditional traffic simulations are incapable of executing process surveillance and control in this field. Observation of animation files is commonly used to diagnose simulation. However, with the increased use of a large sample size, animation observation of many replicates may turn to an infeasible task.

This research is intended to providing quantitative solution paths for these questions. Specifically, the phenomena of simulation failures are to be studied to clarify the definition and patterns of them. In contrast to traditional methods (such as animation observation, etc.), a new method is to be devised that utilizes time histories of measured traffic variables to detect traffic anomalies for each simulation replication. This method identifies 1) the occurrence of failure and 2) the time of occurrence. The failure occurrence patterns are then aggregated across replications to derive 3) the critical places of failure occurrence. Occurrence patterns including factors 1), 2) and 3), are to be analyzed in an attempt to relate failures to potential contributing factors.

The significance of this research is threefold. First, successful detection of simulation failures can help simulation users to ascertain the validity of stochastic simulations and, therefore, improve the quality of simulation analysis by excluding bad data. Second, successful analyses of unexpected simulation failures (failures due to user/simulator errors) can provide hints to improve simulation by uncovering existing problems in the model and its use. Finally, successful analyses of expected simulation failures (failures
due to network capacity problems) can provide an alternate approach to the analysis of transportation capacities, which is often one of the major objectives of a simulation study.

1.2 Simulation Failure Study

Definition of Simulation Failures

To clarify the scope of this study, we define simulation failures as follows. In a stochastic traffic simulation, traffic gridlock may appear at one or more locations in the network. If these traffic gridlocks cannot recover in a reasonably short period, incoming traffic to the problem areas will contribute to added congestion and finally form “permanent” gridlocks on the network. Since the occurrence of permanent gridlocks contradicts engineering knowledge of real world traffic behavior, it is seen as unusual and referred to as simulation failures.

Simulation failures can be caused by a variety of factors, such as simulator algorithms, user coding errors, inadequate calibration, network capacity limits, etc. According to these different possibilities, the occurrence of simulation failures can be seen as unexpected and expected. Different contributing factors call for different user actions, as described below.

If the subject network under study is known to have no traffic gridlocks, the occurrence of simulation failures is seen as unexpected. In this case, failure occurrence is mostly due to inadequate, inaccurate, or even incorrect information in the process of simulation model development. Accordingly, the analysis of unexpected simulation failures is
intended to locate the contributing factors of simulation failures. The elimination of these factors can help to improve the validity of the subject simulation model.

On the other hand, if the subject network is known to have capacity problems, the occurrence of simulation failures is seen as expected. In this case, the goal of failure analysis is to find out critical locations on the network that are experiencing capacity problems, based on which specific traffic improvement plans can be proposed to rectify them.

Basic clues about the expectations of failure occurrence are obtained from the status of the subject simulation. Conventionally, the procedure of traffic simulation contains a series of stages such as simulator selection, data preparation, model construction, model calibration, model validation, and model application. If failures occur in an early stage of simulation (e.g., prior to model calibration), users should first assume the occurrence of simulation failures as unexpected, and then utilize the failure analysis results to improve their modeling efforts. In the study of a late stage simulation model, by contrast, users should assume the model as correct, and attribute simulation failures to capacity problems of the study network.

In reality, however, the occurrence of simulation failures is mostly due to a combined effect. That is, part of simulation failures is due to inadequate or incorrect modeling efforts, while others may be due to the network capacity problems. This is a common situation when an insufficiently calibrated model is used to predict a projected traffic scenario. In such cases, the failure occurrence patterns need to be studied to associate
them to different possible causes. This process begins with and is based on the successful detection of simulation failures.

Detection of Simulation Failures

By definition, simulation failures are both error-inducing and irrecoverable. Thus, the occurrence of simulation failures will yield invalid results in a stochastic simulation. Successful detection of simulation failures, therefore, can be used to refine a simulation by identifying these failures and evaluate the impact of them.

Use of conventional methods (such as animation observation) is infeasible if there are many replications to examine. In this research, we propose a new method to utilize the time histories of key link performance in order to quantitatively identify the occurrence of simulation failures. The proposed method and two conventional methods are discussed below.

- Animation Observation

Modern simulators are typically equipped with animation tools to allow for a visual examination of vehicle trajectory details. With a close examination, users can utilize these simulation animations to visually identify traffic anomalies and simulation failures in a simulation. However, when a stochastic simulation requires a large sample size, it is tedious and laborious to visually examine the extensive animations for all replications.

Further, in case of a large sample size simulation experiment, batch-mode running is frequently used to accelerate the simulation process by skipping the generation of large animation files. In this case, the method of animation observation consumes simulation
efficiency since analysts need to re-run the simulation in a normal mode using saved random number seeds.

In all, for a large-sample-size simulation, animation observation is not considered a practical approach since simulation animations are not only hard to generate, but also difficult to analyze. On the other hand, simulation animations are typically considered the “reality” of simulation. Observation of them is often seen as the final and most reliable way to solve any complicated problems in simulation. Therefore, when the occurrence of simulation failures is detected using another method, animation observation can serve as a supplementary tool for the purpose of failure analysis.

- **Outlier Detection**

The second method, outlier detection, identifies simulation failure runs by finding out their corresponding distributional outliers during the process of simulation output analysis. The success of this method is based upon the assumption of a one-to-one correspondence between failure replications and outlier data in simulation outputs. In other words, the outlier detection method assumes that all failure runs generate outlier simulation outputs, and, conversely, all outlier simulation outputs are generated by these failure runs. As long as this assumption holds true, failure runs in a simulation can be identified using this method.

The techniques of outlier detection are mature in the sense that there are currently some standard statistical methods, such as Dixon’s Test (e.g., Han, 2001), etc., that are readily available for the detection of distributional outliers. Other simplified methods exist, as well. For example, as an effective and easy-to-apply approach, a histogram can be
constructed to allow for the visual identification of outliers on a graphical plot.

Although the method of outlier detection is straightforward and easy to apply, its disadvantages are obvious as well. First of all, the outlier detection method is only capable of identifying failure replications. It needs supplementary methods to locate the site and the onset time of failure occurrence. Thus, the method alone is incapable to execute a high-level causal analysis which is based on such information.

Also, the assumption that the method is based upon is sometimes unrealistic. For example, simulation failures may occur very late in a simulation period; in such cases, they may have only minimal effects on the final simulation outputs (appearing not to be outliers). Conversely, some non-failure simulation runs may generate very poor traffic performance (appearing to be outliers) simply because of the coincidence of some adverse factors. The method of outlier analysis is inflexible in differentiating these extreme situations since it is based on the analysis of final simulation outputs only. Thus, this method would generate inaccurate results if such cases exist in a simulation.

- Traffic Anomaly Detection

By definition, the occurrence of simulation failures can be signaled by unrecoverable traffic gridlocks that will result in abnormal traffic behaviors (e.g., severe vehicle blockages, low speeds, fewer trips, high traffic densities, etc.) in the problem areas. Thus, the occurrence of simulation failures can be indicated by the onset of such traffic anomalies. In light of this, we propose a method of traffic anomaly analysis to detect simulation failures by identifying abnormal traffic performance at specific times and locations.
In essence, the method of traffic anomaly analysis traces the time history of selected indicator variables, and relates changes in an indicator variable to the occurrence of simulation failures. With the setting of appropriate indicator variables, once a detection function is satisfied, simulation failures will be reported.

Standard methods for detecting a change in a time series (e.g. Law & Kelton, 2000) may be useful in detecting traffic anomalies, but the role of such methods here is unclear. This is largely because of the complications of traffic networks where the space-time interactions and dependencies need to be considered among the multiplicity of performance measures at the link level. In this research, a series of thresholds are derived directly from the definition of simulation failures, and from the intention to avoid pitfalls of false alarms. These thresholds are then used to formulate a mathematical function that is able to identify the occurrence times and locations of simulation failures in a quantitative way.

One concern of the method of traffic anomaly analysis is that it may require substantial computation. This is due to the complexities in data acquisition (the derivation of traffic performance data at a specific resolution of time and space) and anomaly analysis (automatic analysis of variations of an indicator variable over time). As long as the application procedure is standardized, a computer program can be coded as an application program interface (API) for traffic simulation to save user calculation efforts.

1.3 Analysis of Simulation Failures

Since the occurrence of failures in a simulation model often implies the presence of unaccounted factors in it, once simulation failures are detected, the analysis of them can
provide an important approach to the flaw diagnosis of the simulation. Specifically, an
effective simulation failure analysis can help users to improve simulation development
and/or to enhance network analysis by identifying the different contributing factors of
simulation failures. The key to perform such an analysis is to sort out the possible causes
of simulation failures.

Causes of Simulation Failures

There are a variety of contributing factors that can lead to simulation failures. In general,
these factors are classified into three categories, simulator-related, simulation-related, and
network-related. The details of these categories are discussed below.

 Simulator-Related Factors

Simulator-related factors refer to the errors and limitations of the traffic model algorithms
in a simulator. These factors are often pre-decided and unchangeable once users have
chosen a simulator. Thus, the choice of simulators often predetermines the role of
simulator-related factors in the process of failure analysis for a traffic simulation.

Choosing an appropriate simulator is not as simple as it appears. Currently there are
many simulators available in the field of traffic simulation. These simulators are based on
different traffic flow theories and, therefore, can result in different results when modeling
the same traffic phenomena. It is the user’s responsibility to understand the features of
each simulator and apply them wisely. In the process of choosing a simulator, major
considerations include the modeling capabilities of a simulator, current traffic data
availability, the cost of simulation, individual experience, etc. In fact, it is rare for users
to find an ideal simulator that can satisfy all their requirements. Consequently, users often need to seek a balance between different considerations.

Once a simulator is chosen, users should be aware not only of the strengths of the simulator, but also of its weaknesses. For example, one known constraint of a widely-used simulator, CORSIM (CORridor SImulation Model), is its inability to simulate roundabouts. On the other hand, CORSIM is favorable to many simulation users since it allows for inputting traffic demand in the form of traffic counts, which is relatively inexpensive and easy to collect in the field. If users decide to use CORSIM because of the data availability in the field, they may have to approximate the geometry of a roundabout and its operation by modeling several consecutively curved links and intersections.

User knowledge about a simulator is mainly acquired through user experience and a review of the literature. Once users decide to use a simulator, they may have already been familiar with its strengths and weaknesses. In case that any unusual phenomenon occurs in a simulation run, users can easily judge the likelihood of simulator-related contributing factors based on their knowledge in this field.

- Simulation-related Factors

Simulation-related factors refer to incorrect or inadequate modeling during the process of simulation model development. Some common factors in this category include data collection errors, incorrect coding, inadequate calibration, etc. Correspondingly, the analysis of simulation failures can serve as an important tool to locate these contributing factors, and their removal can enhance the validity of any subsequent process (e.g.,
output analysis) in a simulation.

It is noted that lack of knowledge about traffic behavior is often the most common reason to lead to a poorly calibrated simulation. Simulation failures may occur as the result of it. Also, traffic simulation is such a complicated process that users often need to define multiple driver and vehicle parameters at the same time. Most simulators fail to provide guidance for the calibration of traffic parameters. When multiple parameters have a common effect on the same traffic behavior model, the problem of choosing the right parameters alone may become over complicated for normal users.

The analysis of simulation-related factors can be assisted by observing different patterns of failure occurrence. For example, if simulation failures are caused by the incorrect coding of a local element (e.g., number of lanes on a link), they are most likely to focus on the miscoded link. By contrast, if simulation failures occur as the result of insufficient calibration of global parameters (e.g., left-turn gap acceptance parameters), they are expected to occur at intersections throughout the network if their performance is affected by these inappropriate parameters.

- Network-Related Factors

Network-related factors refer to capacity constraints on the study network, which may be caused either by inadequate network geometry, or by a high level of projected traffic demand. These factors are commonly seen in simulation practice, particularly when simulation is used to predict traffic performance in a projected traffic environment. The analysis of factors in this area, thus, can help users gain awareness of the capacities of the study network, which forms the basis for the development of traffic improvement plans
In the study of a traffic network, it is an important task for simulation to identify a marginal demand level which denotes the capacity of the network. Under such a demand level, simulation failures are very likely to occur at the bottleneck areas on the network. Based upon such a failure analysis, users can then propose specific traffic improvement plans to improve these discovered bottleneck areas. Thus, failure analyses can benefit traffic engineers in answering at least two important questions: 1) under which circumstances should a traffic improvement plan be implemented; and 2) where should a traffic improvement plan be aimed at?

In summary, traffic simulation failures may be caused by a variety of contributing factors. In order to distinguish between these factors and use the information to benefit simulation development and network analysis, a causal analysis should be performed based on failure occurrence patterns, as discussed in the next section.

Causal Analysis

The fundamental motivation for a causal analysis is to determine the categories of contributing factors based on the failure occurrence patterns, specifically, the types, time, and locations of failure occurrence discovered in the stage of failure detection.

It is noted that simulation failures often result in vehicle spillback and cause vehicle blockages at many locations in a relatively short time. In order to identify the most critical link(s) among them, the time sequence of failure occurrence on these links should be analyzed first. As a general rule, those locations that have the earliest failure
occurrence will contain the most relevant information about simulation failures. An aggregation of the failure leading frequencies of these critical locations can then be performed across replications. Finally, a spatial distribution of critical sites can be derived upon which judgment of failure causes can be made.

The spatial distribution of simulation failure initiation locations is able to provide important hints about the types of simulation failures and their causal factors. For example, the above-mentioned simulator-related causes often lead to a scattered pattern of the critical failure-leading (in the time domain) sites, while a network-related cause typically leads to origination of simulation failures at critical links and corridors only. In consideration of this, a tabular method is a good way to summarize different failure contribution factors together with the likely features of their resulting failure occurrence patterns. The details of this approach are discussed in the methodology chapter.

1.4 Objectives of Research

The major technique used in this research is traffic anomaly detection that analyzes time histories of key link performance in order to detect simulation failures. A follow-on spatial analysis is then proposed to accumulate failure occurrence frequencies over critical network sites. The information gathered is used as the basis to execute a causal analysis that is aimed at diagnosing the contributing factors of failure occurrence. The final goal is to utilize the failure analysis results in order to effectively improve simulation development and network analysis, the immediate purpose being the mitigation of any unexpected failure occurrence.

The procedure is helped by the (unlimited, except for time) availability of simulation
output data. This brings in the possibility of an advanced failure analysis without considering the cost of data collection. Another advantage of simulation is its ability to duplicate an experiment even with the application of different test procedures. In this research, this denotes the availability to testify the effectiveness and features of the proposed detection method.

Specifically, the objectives of this research are listed below.

1. Develop a failure detection method that is practical, effective, and efficient;
2. Compare the proposed failure detection method with traditional methods, including animation observation and outlier detection, to demonstrate its advantages and weaknesses;
3. Develop a method that can effectively derive failure patterns and diagnose the contributing factors of failure occurrence;
4. Identify the role of the failure detection method in the framework of a conventional simulation process, particularly with the issues of simulation verification and validation;
5. Apply the methods to specific cases, summarize application results, and develop conclusions and recommendations for further research.

1.5 Organization of the Dissertation

This dissertation paper is currently comprised of ten chapters. The research problem has been introduced in Chapter One. Other highlights in this chapter include an overview of the study problems as well as a definition of research objectives.
A literature review is described in Chapter Two. Literatures from two fields are respectively discussed: the first covers existing techniques in the field of traffic anomaly detection in several analogous problems, and the second is about emerging research in the detection and analysis of simulation failures within the large framework of simulation model validation and verification.

Chapter Three focuses on the description of the proposed methodology, which is categorized into three layers: a time series inspection, a spatial analysis, and a causal analysis.

The implementation of the proposed method is introduced in Chapter Four. The test bed simulator chosen is CORSIM. Therefore, the realization of the method implementation is illustrated with the particular features of CORSIM simulator.

Chapter Five demonstrates an application of the proposed methodology in the evaluation of simulators. This is illustrated by comparing different versions of CORSIM, which has undergone significant upgrading in some of its traffic behavior models.

The study results of two case study networks are discussed in Chapters Six and Seven. These case studies consider a sub-network of downtown Chicago in the PM and AM peak, respectively. Chapter Eight discusses the application of the method to a different network on the NCSU campus in order to test its transferability across various networks. Each of the three chapters includes a discussion of the network features, a description of the case study design, the case study results, and a summary and discussion of these results.

Chapter Nine synthesizes the research results on the simulator evaluation and network
evaluation, summarizes key research findings, and provides research conclusions and recommendations for the future research.

Chapter Ten includes a list of bibliography. The appendices of this dissertation include VBA program codes, and three CORSIM input files that have been used in the case studies in this research.
CHAPTER 2: LITERATURE REVIEW

The literature review is carried out in two areas. The first one focuses on existing traffic anomaly detection technologies in some analogous fields to this research. It provides a technical background for the development of an effective failure detection methodology in this research. The second covers current research efforts in the field of simulation failure detection and analysis. It clarifies the role of failure detection and analysis in a framework of simulation validation and verification.

2.1 Traffic Anomaly Detection Technologies

Traffic anomaly detection is a predominant task in the field of network surveillance and management. Successful traffic anomaly detection has many meaningful applications in the studies of different types of traffic networks. In particular, traffic gridlock detection in communications networks and traffic incident detection in transportation networks have many similarities to the flaw detection issues addressed here. These problems are analogous to our study problem in the sense that the study objects are similar and the objective is analogous in detecting and diagnosing the anomalies. Thus, successful traffic anomaly detection technologies in these fields can provide useful hints for the development of a general, effective failure detection technique.

In all, the literature review focuses on three analogous problems including traffic gridlock detection (in the study of communication networks), traffic incident detection (in the study of transportation networks), and network breakdown analysis (in the study of transportation networks). These are discussed below.
Traffic Gridlock Detection

The emergence of large-scale computer networks has incurred an increasing demand of telecommunications between computer networks. However, the possibility of traffic gridlocks poses a potential threat to the reliability of these communication networks. Challenged with this problem, computer scientists have initiated many research efforts in the area of effective detection and prevention of traffic gridlocks.

Since visualizations are virtually impossible in communication networks, quantitative methods have played a primary role in the surveillance of communication traffic. In practice, most communication networks collect passive measurements of traffic at routers and switches. These passive traffic volumes at key points comprise the basic input for traffic gridlock detection technologies. As a result, the gridlock detection studies identify the onset of traffic gridlocks by tracing traffic anomalies during the process of data analysis.

With the passive traffic flow available, different analysis approaches have been researched to realize effective detection. The primary ones include 1) sample statistics, 2) time-series analysis, and 3) wavelet analysis methods.

One example of sample statistics methods is due to Feather, et al. (1993), who showed in their research that network faults can be detected by analyzing the statistical deviations of network traffic from regularly observed behavior. In the class of time series analysis methods, Brutlag (2000) performed an example study in which he derived a series of gridlock detection thresholds based on the exponential smoothing and Holt-Winters forecasting techniques. These thresholds were then applied in a time series model which
can successfully detect aberrant network behaviors using them. Barford, et al. (2002), as an illustration of the wavelet analysis techniques, similarly developed a detection mechanism based on the methods of time series and wavelet analysis. His method relies on the information of flow levels and frequency characteristics.

In summary, most traffic anomaly detection techniques use the measure of traffic volumes as the basic indicator variable in their detection models. This is related to the limited data availability in communication networks. Nevertheless, the successful applications of these technologies have shown that the analysis of traffic flow quantities is adequate to distinguish the occurrence of traffic anomalies and detect the onset of traffic gridlocks.

Traffic Incident Detection

The second analogous problem, incident detection, represents an important study field in traffic engineering analysis. Traffic incidents result in immediate traffic flow disruptions, which are the primary causes of non-recurring delay in transportation networks. Effective detection of traffic incidents can improve traffic performance by prompt incident management to mitigate traffic disruption and reduce the likelihood of secondary crashes.

The development of incident detection techniques relies primarily on the available data from roadway surveillance systems. For now, traffic surveillance systems are comprised of a combination of roadway traffic sensors, highway patrols, CCTV (Closed Circuit TV), micro-radars, and acoustic sensors. Some other unconventional sensor technologies are beginning to find their ways into the systems, as well. As a result, the available traffic performance data for the input of incident detection take different formats including
vehicle trips (counts), vehicle speeds, traffic density, etc. These various traffic data comprise the basis for the development of Automated Incident Detection (AID) systems.

In all, the family of incident detection algorithms includes 1) pattern recognition methods, 2) traffic model methods, 3) statistics derivation methods, and 4) artificial intelligence methods (Weill, et al., 1998). They adopt different formats of traffic data and rely on a variety of analysis techniques.

The pattern recognition method recognizes traffic incidents as unusual traffic patterns that differ from normal conditions. For example, the widely used California Algorithms (Courage, et al., 1968) are designed to perform incident detection by comparing the occupancies of neighboring traffic count stations with pre-defined incident detection thresholds. The traffic model method employs the macroscopic flow models in traffic flow theory. As an illustration, the McMaster Algorithm (McMaster, 1991) makes use of a catastrophe theory to detect traffic incidents, which are denoted by sharp changes in traffic flows. The third method, statistical deviation method, is applied by comparing the predicted traffic interval data against historical records. The class of this method includes traditional statistical fitting, Bayesian inference, time series, and filtering algorithms, all of which have been explored in terms of traffic anomaly detection. Compared to the conventional methods, the method of artificial intelligence is relatively new. Nevertheless, some researchers have made progress in the field of incident detection by the use of artificial neural networks (e.g., Ritchie, et al., 1992).

An extension of the incident detection problem is the evaluation of various detection techniques. Popularly-used evaluation functions consist of detection rate, false alarm rate,
and detection time. In reality, however, evaluation data are scarce in the field. As a result, some researchers have employed simulation to theoretically evaluate the emerging incident detection algorithms. As an illustration, Lee, et al. (2002) initiated an investigation of incident situations through data mining in the PARAMICS (Parallel Simulation Model, Quadstone Inc.) simulation.

In all, a large class of incident detection techniques has been developed due to the possibility of different traffic data types and formats. Despite the choice of different detection variables, time series techniques still play a primary role in the effective and prompt detection of traffic incidents.

Traffic Breakdown Analysis

Traffic breakdown analysis is another analogous problem to this research. Its purpose is to analyze traffic anomalies in order to detect the onset of traffic breakdown in congestion studies. Traffic breakdown is a major contributor to roadway capacity loss. For example, Forbes & Hall (1990) found that once breakdown occurs, there is a 5-8% capacity loss due to an increase in queue discharge headway.

The scarce empirical information in this field makes traffic breakdown analysis difficult for practical engineering studies. Currently, traffic breakdown analysis is aimed at an early detection of traffic breakdown occurrence and a speedy dissemination of that information. This is also an important task in congestion management.

The detection of traffic breakdown relies on a successful recognition of real time traffic flow states. A three-phase theory is widely accepted among researchers. It classifies
traffic states into: free flow state, stop-and-go state, and synchronized flow state (e.g., Jost, 2002), which are analogous to the gaseous phase, liquid phase, and transition phase in a gas-liquid system, respectively.

In particular, Click, et al. (1997) developed a method that is able to predict traffic breakdown along freeways based on an analysis of the speed changes of vehicles over time. Zou (2003) performed a similar study when he developed a special time series on the changing rates of cross correlation between density dynamics and flow rate. The application results displayed that the proposed algorithm was able to better detect the onset of traffic breakdown.

In summary, most current traffic breakdown analysis techniques are based on a variety of basic traffic performance measures (such as speed, density and flow rate) and time series analysis methods. This is possibly to the wide data availability of such performance measures at the network level.

2.2 Simulation Failure Research

It might be due to the relatively short history of modern traffic simulations that the research on failure detection and analysis is scarce in this field. Nevertheless, the impacts of simulation failures on the validity of stochastic simulations are beginning to draw research attention from individual researchers.

Simulation Verification and Validation
The problem of simulation verification and validation has received increased attention as the result of the proliferation of traffic simulation models. It is considered an important basis for the effective and efficient use of traffic simulation in practice. However, till now, formal and consistent guidelines have not been developed regarding the application of stochastic simulation models.

Nevertheless, some researchers (e.g., Rakha et al., 1996, Rao and Owen, 1998, Milam, 2000) have conducted studies to derive a set of tentative guidelines from particular applications. Most researchers agree that conceptual validation, implementation verification, and operational validation should be the core parts of a high-level simulation verification and validation framework.

Besides individual studies, one large-scale, ongoing research initiative, NGSIM (Next Generation Simulation Model), was launched in 2000 to study the future development and applications of simulation models. In the NGSIM program, the FHWA (Federal Highway Administration), acting in the role of a major stakeholder of simulation practice, intended to manage public resources in a focused way as the “market facilitator” (NGSIM, 2003). The overall purpose is to influence and stimulate the wide use of traffic simulations. Among many crucial products of NGSIM program, a high-level verification and validation plan was developed for stochastic simulations. In this plan, a detailed verification and validation process was proposed to include five phases, namely planning, conceptual validation, implementation verification, operational validation, and reporting.

At the same time, the stochastic nature of traffic simulations has been addressed in some statistical approaches by individual researchers. Most of these efforts were included in
some advanced topics that study the large complexities of stochastic, large scale computer models. For example, in an effort to address potential errors and uncertainties in traffic simulations, Bayarri, et al. (2002) proposed a six-step validation framework based upon a Bayesian statistical methodology. These are 1) specifying the input/uncertainty map, 2) determining evaluation criteria, 3) data collection and design of experiments, 4) approximation of model outputs, 5) analyses of model outputs, and 6) feedback information. In the research by Sacks, et al. (2002), a set of five essential ingredients, namely context, data, uncertainty, feedback, and prediction, was abstracted from a statistically-based validation process. The study results verified that with careful calibration and tuning, traffic simulation can be an effective predictor of traffic performance in the field.

Simulation Failure Analysis

The literature review in the field of simulation validation and verification revealed that although uncertainty analysis has begun to be addressed, the detection and analysis of simulation failures have not been formally considered in the framework of traditional simulation analyses. For example, the Smartest Project (Algters, et al., 1998) performed an analysis to evaluate over thirty traffic simulators worldwide. In the summary of evaluation functions, the project recognized five model evaluation categories of efficiency, environmental impact, safety, comfort, and technical performance.

Nevertheless, individual researchers have begun to notice the phenomenon of simulation failures and estimate their impacts on simulation analysis. As an illustration, research on a Genetic Algorithm Signal Optimization Method (GASOM) by Park, et al. (2001)
considered the impacts of outlier observations in simulation evaluation and, accordingly, adopted the median instead of the mean to mitigate their impacts. Rouphail, et al. (2002), in the study of variability-sensitive measures of effectiveness (MOE) in stochastic simulation, examined the tail probabilities resulting from unusual simulation runs that would bias the analyses. The research led to the proposal of using the measure of inter-quartile range (IQR) as the primary MOE to incorporate the impact of gridlock runs. In a parallel research, Sacks, et al. (2002) indicated the discrepancies of traffic gridlock occurrence between simulation and field observations. They pointed out that the presence of gridlock may be numerically indicated by low throughput and by large “run-to-run” variance, which can be further assisted by a close examination of animations to uncover the failure-leading circumstances.

In summary, the problem of failure detection and analysis has not received enough recognition in traditional simulation verification and validation techniques. Although recently simulation failures have been studied as an important phenomenon in stochastic simulation, there is still no effective guidelines to appropriately detect and address the occurrence of simulation failures.

2.3 Summary of Literature

The purpose of this research is to identify simulation failures through the detection of traffic anomalies in traffic simulation. The research is unique in the sense that, although the analysis of simulation failures should comprise a significant part in the framework of stochastic simulation verification and validation, little research has been performed along these lines. Since the surveillance of traffic behavior is one primary task in the field of
network management, this class of problems has been widely discussed in the study of some analogous problems. The common feature of these problems is the detection of traffic anomalies using quantitative methods. Therefore, the existing traffic anomaly detection techniques in these analogous problems provide an important technical background for the development of an effective and common failure detection and analysis procedure in this research.

The varying of input data availability results in different analysis algorithms in these fields. Among the analogous areas, the study of communication gridlock detection is based upon data of passive measures of network traffic (equivalent to traffic flow rates). It has been demonstrated that with appropriate analysis techniques, the study of changes in passive traffic alone is sufficient to detect network traffic anomalies. Although a simulation study does not have concerns with regard to the data availability, it is advisable to use the least amount of data to make any proposed failure detection method general and transferable across networks and simulators.

As for the analysis tools, it is a common practice to use the changes of indicator variables over time and/or space to recognize any unusual patterns in network traffic. Specifically, the practices in these analogous studies have shown that the method of time series analysis, which can trace the changes of sensitive variables over time, is able to accurately and promptly recognize the occurrence of network abnormalities.

In the field of traffic simulation, although much research has been invested in general-purpose simulation validation and verification, the phenomenon of simulation failures has received scarce attention. With the increased necessity of developing a formal and
comprehensive simulation verification and validation framework, the detection and analysis of simulation failures should not be limited to statistical methods only. In short, the literature points to the need for developing and evaluating robust techniques that will assist in detecting simulation model failures, which can be of great value to model developers and users alike.
CHAPTER 3: METHODOLOGY

3.1 Overview

A multi-layer approach to the problem of failure detection and analysis has been developed. It is founded on the use of key traffic performance measures that are tracked in time and space in the analysis of simulation. The approach comprises three layers: a time series inspection, a spatial analysis, and a causal analysis. The major tasks associated with each layer are depicted in Figure 3.1 below and are explained next.

Layer I: Time Series Inspection

- Major tasks:
 1. Collect key traffic performance data
 2. Analyze the change of indicator variables over time
 3. Identify extent of traffic anomalies and simulation failures

Layer II: Spatial Analysis

- Major tasks:
 1. Derive the time sequence of simulation failure occurrences
 2. Aggregate the first failure frequencies across replications
 3. Determine critical links over which earliest failures are detected

Layer III: Causal Analysis

- Major tasks:
 1. Classify the types of simulation failures
 2. Determine possible causal factors of simulation failures
 3. Identify solutions to the mitigation of simulation failures

Figure 3.1 Multilayer Simulation Failure Analyses

The first layer pertaining to the time series inspection is intended to perform a series of
tasks including

- the acquisition of time series data,
- tracking changes of traffic performance data over time,
- detection of traffic anomalies, and
- judgment of simulation failure occurrence.

In order to perform the time series inspection, the indicator variables should be sensitive to the occurrence of simulation failures. With the prescribed detection thresholds (described later in this chapter), once an indicator variable exceeds a pre-specified value, a simulation failure “alarm” is set. Thus, the main function of the first layer is to execute a successful detection of simulation failures, while avoiding the mislabeling of temporary congestion as an actual failure.

The second layer pertaining to spatial analysis takes the detection results identified in the first layer to assess the spatial pattern of failure occurrence. It is noted that the occurrence of simulation failures is very likely to result in spillback onto many links in a given simulation replication. In order to locate the most critical links, these links are ranked according to their failure occurrence time, and only those ones having the earliest failure occurrence are recorded as first failing links. For network nodes (or intersections), in addition, a first failing node is labeled as such if any (one-way) link ending at that node are first failing. The frequency of failures for each link and node is then aggregated across replications. Finally, the links and nodes having the highest first failure frequencies are labeled as critical links and nodes in the initiation of simulation failures. Thus, the purpose of the second layer is to analyze the failure patterns and to identify
critical links and nodes by solving their first failure frequencies.

The third and highest layer is a causal analysis. It is intended to determine the possible contributing factors of simulation failures. This is based upon examining those critical links identified in the second layer. The concept is to use the spatial distribution of the first-failing links and nodes to judge what changes in model inputs or parameters are useful to mitigate unexpected occurrence of simulation failures. In general, simulation failures can be attributed to (a) input errors in the data stream, or (b) improper calibration of local parameters at the link-level, or (c) the selection of network-wide parameters that do not reflect the empirical data. Each type of failures can be mitigated by the use of appropriate user treatments. The causal analysis assists in making the choice of treatments.

The above three layers comprise a complete procedure of traffic simulation failure detection and analysis. Details on an integrated application of the method are described next in a simulation environment.

3.2 Data Preparation

Choice of Indicator Variable

The proposed simulation failure detection and analysis procedure is fundamentally based upon the analysis of time series data that are comprised of traffic performance interval data. In the process of choosing an effective indicator variable, two principal criteria should be considered: (a) the availability of the variable in standard simulation outputs, and (b) its sensitivity to the occurrence of failures. Based on these selection criteria, the
measure of the number of vehicle trips discharged from a link in a specified time interval (hereafter termed link trips out) is deemed to be an appropriate choice for this procedure.

There are normally many outputs available in a traffic simulation. Among the many candidate variables, the measure of link trips is seen as of particular relevance. It is one of the most elementary traffic measures of effectiveness, so that it is widely available in all known traffic simulation models. In addition, it is important to note that most traffic simulation models report traffic performance measures on a link based on only those vehicles that have already exited the link. In this research since the occurrence of link failures will obstruct vehicles from discharging at a “normal” rate, the values of most other traffic performance measures (such as speed or delay) will become unavailable or biased for failure analysis. For example, a link could report zero delay in a time interval if no vehicles are observed to discharge from it, while in reality those vehicles may be blocked from exiting the link and therefore are experiencing large delays that go unreported.

From the perspective of sensitivity, once simulation failures occur, most reported traffic performance measures will tend to be affected. Among them, the measure of link trips is able to promptly indicate the onset of a simulation failure, since it quickly drops to zero and persists at that level for the remainder of the simulation once a simulation failure occurs, as per the definition of a simulation failure. Under normal traffic states, by contrast, the measure of link trips typically follows a Poisson distribution and has a very small chance of reaching zero unless traffic demand is extremely slight in combination with a short observation interval.
Description of Detection Variables

Unrecoverable loss of link discharging capabilities is associated with zero link trips. But in some cases, the analysis of link trips alone may not be sufficient for the accurate identification of traffic status. For example, once a simulation failure occurs, unrecoverable traffic gridlocks will result in traffic spillbacks in a very short time, and links that are downstream of the problem area may experience demand starvation since they are no longer able to receive vehicles from the upstream links. In this case, although the number of link trips on these downstream links will drop and may exceed the prescribed thresholds, they are not actually suffering a capacity loss. Thus, false alarms could be reported by applying a naïve failure detection method. In order to avoid this possibility, two supplemental variables, namely vehicle trips in and change in link content, are included in order to construct a more robust set of failure detection criteria.

By definition, link trips denote the number of vehicles discharged from the subject link during a given time interval. This measure is termed as link vehicle trips-out (LTO) in this research. Another variable, link vehicle trips in (LTI) is, by contrast, defined as the number of vehicles discharged onto the subject link during the study time interval. The third variable, the change in link content (CLC) is defined as the change in the number of vehicles remaining on the subject link at the end of each time interval. These three variables jointly comprise the time series data used in the procedure of failure detection and analysis.

In the data collection stage, link trips-in and link trips-out across adjacent links are related to each other through an intermediate variable, movement trips-out (MTO),
observed at the upstream and downstream links, as illustrated in the Figure 3.2. This, of course, assumes that there are no sinks or sources between the entering and exiting movement flows.

As shown in Figure 3.2, both \(LTI \) and \(LTO \) on the link \((i, j)\) can be aggregated over the corresponding \(MTO \). That is, \(LTI \) can be calculated as the aggregation of the \(MTO \) fed onto the subject link, while \(LTO \) can be calculated as the aggregation of the \(MTO \) discharged from it. In practice, movement trips are often easy to obtain from simulation outputs. For a specific time interval \(r \), thus, \(LTO \) and \(LTI \) on link \((i, j)\) can be calculated as:

\[
LTI_{(i,j)}^r = \sum_{h=1}^{m} MTO_{(h,i,j)}^r \\
LTO_{(i,j)}^r = \sum_{k=1}^{n} MTO_{(i,j,k)}^r
\]
Where \(LTI_{(i,j)} \) and \(LTO_{(i,j)} \) denote the \(LTI \) and \(LTO \) on link \((i, j)\) during time interval \(r \), \(MTO_{(h,i,j)} \) denotes the \(MTO \) on link \((h, i)\) destined to node \(j \), and \(MTO_{(i,j,k)} \) denotes the \(MTO \) on link \((i, j)\) destined to node \(k \) during \(r \). The indices \(m \) and \(n \) denote the number of upstream and downstream links for link \((i, j)\), respectively, which contribute flow to or receive flow from the link. The formulas are of practical use since most simulators provide only values of link trips \(LTO \) and movement trips \(MTO \) in their simulation output.

If there are no capacity problems or simulation failures, all link vehicle trips on a network link should be serviced without significant delay. As a result, the number of vehicles discharged onto the subject link should approximate the number of vehicles exiting it. Thus, the variable \(CLC \), which denotes the cumulative difference between \(LTI \) and \(LTO \), can be used to signify traffic states on a study link. Given values of \(LTI \) and \(LTO \) at any time interval \(r \), \(CLC \) is defined by the following equation:

\[
CLC_{(i,j)}^r = \sum_{s=1}^{r} LTI_{(i,j)}^s - \sum_{s=1}^{r} LTO_{(i,j)}^s,
\]

where \(CLC_{(i,j)}^r \) stands for the \(CLC \) on link \(i \Rightarrow j \) at the end of time period \(r \), and \(LTI_{(i,j)}^s \) and \(LTO_{(i,j)}^s \) denote the \(LTI \) and \(LTO \) on link \(i \Rightarrow j \) during time interval \(s \).

If \(CLC \) fluctuates around a stable level, it denotes the presence of an equilibrium state on the subject link; on the other hand, if \(CLC \) monotonically increases above a certain threshold and does not drop back, it would indicate the presence of persistent queues on the subject link, which would in turn signify the occurrence of a simulation failure. In
fact, one attribute of a blocked link is that once it is saturated with vehicles, its CLC will approach and stay at a value consistent with the link storage capacity (more precisely, the link storage capacity minus the number of initial vehicles on the link).

In summary, three variables are used in the time series inspection. Among them, the indicator variable LTO counts discharging vehicles on the subject link, LTI counts entering vehicles onto the link, and the third variable CLC provides the change of number of vehicles occupying the link (assuming that the link starts from an under-capacity state at the beginning of the simulation). In the data collection process, the values of the variables LTO and LTI need to be tracked over time in each replication; CLC can then be derived from these intermediate variables.

In order to track the changes of the selected indicator variables, a simulation time period is divided into small, contiguous time intervals, and link performance data at each time interval are then requested during simulation. For example, if one hour simulation is divided into twelve five-minute intervals, a time series of twelve values on a performance measure can be obtained for every network link in every replication.

3.3 Layer 1: Time Series Inspection

Detection Function

For any network link that is in a normal (i.e., below capacity) state, the ratio between its cumulative statistics \(\sum_{j=1}^{r} LTI_{(i,j)} \) and \(\sum_{j=1}^{r} LTO_{(i,j)} \) will converge to 1 if the number of time intervals is chosen to be large enough. In such cases, CLC is expected to oscillate around 0 as \(r \) changes. By contrast, once a simulation failure occurs on a link, the value of LTO
will immediately decrease because of the sudden loss of its discharging capacity. While \(LTI \) is initially unaffected by spillback, the value of \(CLC \) on that link will monotonically increase until the subject link becomes full. At that time, \(LTI \) will drop to zero, and \(CLC \) will appear “stuck” at some positive number. A spillback will form and traffic on the upstream links will begin to be affected. Until (and unless) the initial vehicle blockages dissipate, incoming vehicles to the problem area will only exacerbate the problem.

Motivated by the above description, a failure detection function is defined as follows:

1. \(LTO \) decreases to 0 at the failure occurrence time, denoting that a complete link blockage (or a complete loss of link discharging capability) has occurred on the subject link,

2. \(CLC \) at the failure occurrence time is not 0, confirming that idle links (i.e. with very low demand) are not failure links, and

3. \(LTO \) remains 0 for all time periods later than the failure occurrence time, denoting that temporary capacity loss is not a failure.

Mathematically, for any eligible network link \((i, j)\), the following criteria are applied to detect whether any possible link blockage at time interval \(r \):

1) \(LTO_{(i,j)}^r = 0 \),

2) \(CLC_{(i,j)}^r > 0 \), \(\text{and} \)

3) \(LTO_{(i,j)}^t \leq LTO_{(i,j)}^r \) for any \(t > r \)
where \(CLC_{(i,j)}^r \) and \(LTO_{(i,j)}^r \) denote the \(CLC \) and \(LTO \) on the link \(i \) to \(j \) during time interval \(r \), and \(LTO_{(i,j)}^t \) denotes \(LTO \) on the link \(i \) to \(j \) during any following time interval \(t \).

Once a link meets all the above three criteria, a simulation failure on link \((i, j)\) in time interval \(r \) is reported. A simulation replication will be recorded as a failure replication, if it contains one or more links exhibits a simulation failure at the end of simulation.

The above detection function can be modified by specifying a less stringent criterion \(\delta \) for the lower boundary of \(LTO \) (say, \(LTO <= \delta, \delta >=0 \)). The modified function is used to track drops in discharge flows and to anticipate the occurrence of a full vehicle blockage on a link. Likewise, the alternative detection functions can be rewritten as follows:

1) \(LTO_{(i,j)}^r <= \delta \),
2) \(CLC_{(i,j)}^r > 0 \), and
3) \(LTO_{(i,j)}^t <= LTO_{(i,j)}^r \) for any \(t > r \).

False Alarm Rate

The proposed failure detection functions can be evaluated in terms of a false alarm rate: the proportion of links that are wrongfully reported as experiencing unrecoverable vehicle blockage, while in actuality they are operating in a normal (unsaturated) traffic state.

The false alarm rate can be approximated from a theoretical derivation. The estimation is based upon the assumption that link counts in any give time interval follow a Poisson distribution (e.g., May, 1990), with both the mean and variance equivalent to the average interval flow rate. In most cases the expectation of interval flow rate is unknown in the
beginning of simulation. However, as long as the duration of time intervals is appropriately defined, it can be assumed that there is no traffic gridlock in the first time interval. Therefore, the average interval flow rate can be estimated from the first interval count LTO^1. For any subsequent time interval r, thus, the probability mass function of LTO can be estimated as:

$$\Pr(LTO^r = x) = \frac{e^{-\hat{\lambda}^r} \hat{\lambda}^r_x}{x!}, \quad x = 0, 1, \ldots; \quad \hat{\lambda} = LTO^1$$

For any given small value δ, the probability of observing an LTO^i value below δ can be calculated as:

$$\Pr(LTO^i \leq \delta) = \sum_{x=0}^{[\delta]} \frac{e^{-\hat{\lambda}^i} \hat{\lambda}^i_x}{x!}$$

where $[\delta]$ denotes the largest integer less than δ. In a simulation experiment with n replications and m distinct time intervals, we would have $n \times m$ different values of LTO^r. Assume that each LTO^r is identically and independently distributed, the number of LTO^r with values less than s follows a negative binomial distribution, with the expected value being calculated as:

$$E = \Pr(LTO^r \leq s) \times n \times m = nm \sum_x \frac{e^{-\hat{\lambda}^r} \hat{\lambda}^r_x}{x!}, \quad x = 0, 1, \ldots, [s]$$

The calculations can be illustrated by a numerical example. Assuming the number of replications $n=100$ and the number of time intervals $m=12$ and that there is no correlation between the probabilities of different links, we evaluate two probabilities: $\Pr(LTO^i = 0)$
and $\Pr(LTO_i \leq 0.1\hat{\lambda})$, where LTO^i are the link trips recorded in time interval one. The results are summarized in Table 3.1 for various values of $\hat{\lambda}$, representing the average vehicle count in the first time interval on any link.

Using LTO^i as the estimate of $\hat{\lambda}$ is based on the fact that most traffic simulators are unable to generate time interval “expectations of link flows” for each time interval. Alternatively, one could estimate it from the simulator input data stream directly.

<table>
<thead>
<tr>
<th>$\hat{\lambda}$</th>
<th>Pr($LTO = 0$)</th>
<th>Pr($LTO \leq 0.1\hat{\lambda}$)</th>
<th>$n \times m$</th>
<th>$E(LTO = 0)$</th>
<th>$E(LTO \leq 0.1\hat{\lambda})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.007</td>
<td>0.007</td>
<td>1200</td>
<td>8.086</td>
<td>8.086</td>
</tr>
<tr>
<td>6</td>
<td>0.002</td>
<td>0.002</td>
<td>1200</td>
<td>2.975</td>
<td>2.975</td>
</tr>
<tr>
<td>7</td>
<td>0.001</td>
<td>0.001</td>
<td>1200</td>
<td>1.095</td>
<td>1.095</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1200</td>
<td>0.403</td>
<td>0.403</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1200</td>
<td>0.148</td>
<td>0.148</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1200</td>
<td>0.055</td>
<td>0.033</td>
</tr>
<tr>
<td>15</td>
<td>3.10E-07</td>
<td>1.80E-06</td>
<td>1200</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>20</td>
<td>2.10E-09</td>
<td>3.80E-08</td>
<td>1200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>9.40E-14</td>
<td>3.70E-12</td>
<td>1200</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.1 Probability Values of LTO for Various First Interval Vehicle Counts

Table 3.1 shows the theoretical derivation of the probability of false alarms for any network link, when the number of analysis intervals (m) is 12 and the number of replications (n) is 100. Thus, we can conclude that for links that have an average count of 5 vehicles per interval, the number of false alarms is calculated to be about 8; when the count exceeds 10, this number drops to about 0.033, a fairly negligible value.

For illustration purpose, we consider a simulation network that is comprised of 20 links. The first five-minute count for 6 links are 6, 6, 9, 15, 15, and 15 vehicles, respectively, and all other links have a count value larger than 20. The number of false alarms for this
simulation can then be calculated by summing the product of the expected number of false alarms of a link, $E(LTO_i = 0)$, and the frequency of links at the same demand level, $Freq$, as shown in Table 3.2. The expected number of overall false alarms is shown in the last column in the table.

<table>
<thead>
<tr>
<th>LTO</th>
<th>$E(LTO = 0)$</th>
<th>$Freq$</th>
<th>$E(# False Alarms)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8.086</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>2.975</td>
<td>2</td>
<td>6.0</td>
</tr>
<tr>
<td>7</td>
<td>1.095</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>0.403</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.148</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.055</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>0.001</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>≥ 20</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td></td>
<td>6.1</td>
</tr>
</tbody>
</table>

Table 3.2 Example Calculation of the Expected Number of False Alarms

It is important to note that the above calculations consider only the resulting false alarm rate from the first detection criterion only. Therefore, the actual false alarm rate should be less than the above calculated values when the additional two criteria are satisfied as well.

The above computations have demonstrated that for a traffic link with a very low traffic demand, the false alarm rate could be high considering the number of replications and time intervals analyzed. To avoid this risk, only those links that have a traffic demand level above a minimal threshold should be considered in the application of the failure detection procedure. For example, if we set the threshold to an interval flow rate of eight vehicles, those links having an hourly flow rate of less than 96 vehicles per hour will be excluded from the analysis (assuming there are 12 analysis intervals).
Based on such considerations, only those links with meaningful flows are actually evaluated with the proposed failure detection function. Since these excluded links are unlikely to initiate a traffic blockage (these links are typically on the periphery of the network), this exclusion will not significantly affect the validity of the failure detection procedure.

Furthermore, the above description demonstrates that the choice of time interval length (or, equivalently, the number of time intervals in a simulation) will play an important role in the determination of the effectiveness of failure detection. In general, the duration of a detection time interval cannot be too small, since this may either cause a high false alarm rate, or require the omission of many links that do not satisfy the demand threshold. On the other hand, long interval durations will cause longer detection time for the identification of traffic simulation failures. Thus, the choice of the time interval duration often requires a compromise between detection accuracy and false alarm rate. Typically, the duration of time intervals will be multiples of the common signal cycle length in the study network so as to preserve the identity of the traffic performance expectations under fixed control and demand conditions.

When simulation failures are detected, the affected replications are typically excluded from the subsequent data analyses because interpretation of their results may be misleading. By doing so, the failure detection process helps maintain the validity of simulation analyses. Our further goal is to use the failure detection process to help uncover flaws present in the simulator (or its use) and, potentially, correct the flaws, as discussed in the next layers.
3.4 Layer 2: Spatial Analysis

The spatial analysis of simulation failures is based on the aggregation and examination of the earliest failures (first failures) for links and nodes across replications. Its product is a spatial distribution of *first failing links* and *first failing nodes* which will be used to judge critical locations in the network and to identify contributing factors to the detected failures.

A simulation failure will typically result in spillback over a large part of the network and, therefore, blockages at a number of locations. The most critical links are usually those that are more likely to fail earliest. Thus, for a given replication, those links having the earliest failure time are referred to as first failing links, and the associated downstream nodes are referred to as first failing nodes. Accordingly, those links and nodes having later failure occurrence are referred to as next failing links, and those having no failures are referred to as no-failing links and nodes, respectively. It should be noted that there may be multiple first-failing links and nodes occurring in a single run of the computer model.

If a traffic link or node is the earliest one experiencing a failure, its first failure frequency is recorded as 1 in a given replication, zero otherwise. Obviously, in a successful replication there are no first-failing links. At the end of simulation, the first failure frequencies are aggregated across replications to derive the total first failure frequencies for each link and each node in the subject network, as shown below.
\[FFF_{(i,j)} = \sum_{r=1}^{n} FFF_{(i,j)}^r \]
\[FFF_k = \sum_{r=1}^{n} FFF_k^r \]

where \(FFF_{(i,j)} \) and \(FFF_k \) denote the total first failure frequencies on link \((i,j)\) and at node \(k\), and \(FFF_{(i,j)}^r \) and \(FFF_k^r \) denote the first failure frequencies on link \((i, j)\) and at node \(k\) in replication \(r\), respectively.

The total first failure frequencies for each link and each node can be plotted on a network map to illustrate the spatial pattern of failure occurrence. The plot enables users to visually study the failure initiation pattern, and to subsequently perform a causal analysis based on the findings of critical locations.

3.5 Layer III: Causal Analysis

Exploratory Analysis

The spatial distribution of failures derived from the second layer provides the basis for conducting a causal analysis. An initial approach to the problem begins by answering two questions: 1) are the simulation failure frequencies low or high? and 2) are the first-failing links distributed equally across the network, or confined to a small area of the network?

If a simulation is found to produce a large number of simulation failures, that may be due to many contributing factors, such as simulator algorithm limitations, simulation coding errors, etc. Thus, further analyses are needed to make a judgment based upon the spatial
patterns of the simulation failures. On the other hand, if the probability of simulation failures is low, it implies that the number of simulation replications may be too small for conducting any further analysis of simulation failures. In this case, even though there is still a non-zero chance of failures, it is often hard to make judgments based on these limited observations. Under such conditions, an increased number of replications is required if an in-depth analysis is to be carried out.

From another perspective, if the first failing links are scattered all over the network, this may possibly denote that the contributing factors/parameters have a global effect on all traffic movements in the simulation. Conversely, if there are only few links that have an apparently higher frequency of failures than all others, it signifies that traffic gridlocks are confined to a particular area. Correspondingly, different types of treatments may need to be considered at the local or global level to reduce the failure frequencies.

Thus, the answers to the above two questions provide basic clues for the causal analysis of detected simulation failures, as summarized in Table 3.3.

<table>
<thead>
<tr>
<th>Spatial Distribution Pattern of Simulation Failures</th>
<th>Frequency of Simulation Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local (few links)</td>
<td>Low: Not of interest</td>
</tr>
<tr>
<td></td>
<td>High: Input coding errors, inadequate calibrations of local traffic parameters, or network capacity problems</td>
</tr>
<tr>
<td>Global (many links)</td>
<td>Low: Possibly model algorithm errors, though more observations needed</td>
</tr>
<tr>
<td></td>
<td>High: Inadequate calibrations of global traffic parameters</td>
</tr>
</tbody>
</table>

Table 3.3 Exploratory Causal Analysis with Simulation Failure Occurrence Patterns
As the table shows, the contributions to simulation failures could be roughly estimated from the frequencies of failure occurrence and their spatial distribution patterns. Based on the failure category information, users can proceed to execute a detailed analysis within the resulting candidate fields. On the other hand, it should be noted that in reality when multiple factors exist, only the most significant ones will be evident in the determination of final failure occurrence patterns. In such cases, since the impacts of secondary factors are hidden, the proposed exploratory causal analysis can then be used to decide the most significant contributing factors in the current stage.

Detailed Analysis

As described in the first chapter, the contributing factors of simulation failures can be categorized into three areas: simulator-related, simulation-related, and network-related. Simulator-related and simulation-related factors are likely to yield unexpected simulation failures (though simulator-related factors are often irreducible), while network-related factors often result in expected failures (e.g., simulating projected traffic demands on a heavily loaded network). In addition, the contributing factors from the different categories are very likely to lead to different failure occurrence patterns.

- Simulator-Related Factors

The category of simulator-related factors refers mainly to errors or limitations in the traffic modeling algorithms of a simulator. From the perspective of end-users, it is of little interest to study the simulator-related factors since the model algorithms are hard-coded and remain mostly unchanged once the choice of a simulator is made. Meanwhile, some users may have some awareness of the simulator-related factors, since a literature
review before the simulation could disclose the various features of a choice simulator as well as its strengths and weaknesses.

Most simulation failures due to simulator-related factors are caused by the lack of proper modeling for a particular facility type (e.g., pedestrian crosswalk), or a special traffic behavioral situation (e.g., over-saturated condition). As a result, the occurrence of simulation failures will have a high correlation with facility type and/or traffic flow characteristics. Thus, if a correlation study shows that the simulation failure occurrence is related to a special transportation facility feature, or traffic flow characteristics, it is very probable that these failures are contributed by simulator-related factors.

Simulation-Related Factors

Simulation-related factors mainly include inadequate, insufficient, or incorrect user modeling elements in the process of the simulation model construction. The development of a simulation model is comprised of multiple stages, such as data collection, input coding (mainly completed in the stage of model construction), and parameter calibration. Among them errors in data collection may cause bias in the initial input of simulation, which can be evaluated by the method of uncertainty assessment (e.g., Bayarri, 2004). Incorrect coding of model inputs can be rectified in a debugging process. The determination of proper calibration values, by contrast, is a very challenging process that may or may not be possible depending on the resources available to the project.

In most cases, errors in data collection and incorrect coding of input will result in a local occurrence of simulation failures. Poor choice of calibration parameters can result in either a local or a global failure occurrence depending on the scope of the erroneous
value. In other words, errors in the setting of a global traffic parameter may result in global-level failure occurrence, while errors in the setting of a local parameter will mostly result in local-level occurrence of simulation failures.

Network-Related Factors

Network-related factors mainly refer to transportation capacity problems in the subject network. Simulation failures in this category mainly occur when a simulation model is used to study a future traffic scenario, where capacity problems could not be assessed by any other method.

Traffic congestion occurs at network locations that have the most critical capacity problems. Therefore, network capacity-related problems are very likely to result in failure occurrence at the local level. Further, the network areas where failures are noted are in most cases the cause (not the result) of the problem. In simulation studies, the identification of areas with capacity problems is often the major objective of the analysis.

In summary, the simulation failure causing factors and their resulting failure occurrence patterns are presented in Table 3.4.
<table>
<thead>
<tr>
<th>Category</th>
<th>Possible Cause</th>
<th>Likely results</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contributing Factors</td>
<td>User Awareness Level</td>
<td>Failure Freq.</td>
</tr>
<tr>
<td>Simulator-related</td>
<td>Simulation algorithm limitations</td>
<td>High/low</td>
<td>High/low</td>
</tr>
<tr>
<td></td>
<td>Data collection</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Input coding</td>
<td>Medium</td>
<td>High/low</td>
</tr>
<tr>
<td></td>
<td>Model parameters</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Network-related</td>
<td>Known capacity problems</td>
<td>High</td>
<td>High/low</td>
</tr>
<tr>
<td></td>
<td>Unknown capacity problems</td>
<td>Low</td>
<td>High/low</td>
</tr>
</tbody>
</table>

Table 3.4 Summary of Detailed Simulation Failure Causal Analysis

The above table supports the notion that studies of failure occurrence patterns can provide an important basis for the causal analysis of simulation failures. In addition, this can always be supplemented by the user knowledge of when and where the analysis is carried out. For example, if failure detection is performed right after the construction of the simulation model, the detection of simulation failures will most probably serve the purpose of debugging the simulation coding errors. This analysis can be the first step in addressing a large gap in current practice in terms of simulation model calibration. However, any judgment on the network performance is tentative since the simulation model has not been fully calibrated and validated.

Alternatively, if the detection procedure of simulation failures is applied to a fully calibrated and validated model for a projected traffic scenario (either for a new traffic demand or with some proposed network changes), the occurrence of failures is most
likely to denote transportation capacity problems in the subject network. This is built on the common assumption that the simulation remains valid even after the network or traffic demand change.

Finally, observation of the vehicle animations is always a useful way for validating and supplementing the above described failure detection and analysis procedure. Since the failure replications have been identified at the stage of traffic anomaly detection, the observation of animation is neatly simplified with much fewer runs to focus on.

Failure Mitigation

As simulation failures may be attributed to different factors, the mitigation process varies accordingly. For network-related cases, the occurrence of failures is seen as expected, and the failure analysis results are useful for indicating capacity problems in an actual physical network. Users can assess various capacity improvement plans targeted at the problem areas. On the other hand, if simulation failures are found to be unexpected and due to simulator- or simulation-related factors, users should consider the necessary measures to minimize the occurrence of simulation failures. This process is referred to as failure mitigation.

The process of failure mitigation is based upon the detected simulation occurrence patterns. Since simulator-related causes cannot be changed or modified in typical simulation runs by end-users, the goal of failure mitigation is restricted to the study of simulation-related factors. Specifically, the intermediate objective is to identify these inadequate, inappropriate, or incorrect factors in the simulation modeling process.
At that point, failure mitigation should not be confused with a traditional model review, during which the process of simulation modeling is scrutinized for any possible errors. In general, since key elements (such as failure areas, etc.) have already been identified in the causal analysis of simulation failures, the failure mitigation process overrides a general-purpose model review.

If simulation failures are found to originate locally, tools in failure mitigation can include a review of corresponding coding, an uncertainty assessment of specific inputs, a pre-calibration of traffic behavioral parameters, or a traffic improvement plan if applicable. By contrast, if traffic failures occur globally on the network, a global treatment is often required. As end-users can seldom modify simulation algorithms, a calibration of global-level traffic parameters should be performed.

The assessment of traffic model parameters is a major challenge in microscopic traffic simulations. This is due to the complexity in simulating driver behavioral models. In most cases, a class of traffic behavioral parameters needs to be closely scrutinized. Even though sometimes the problem can be initially simplified by a correlation study, the process remains complicated when there are many parameters to consider, particularly when they have a common effect on some vehicle behavior models.

With such considerations in mind, sensitivity testing may be the only tool available to analyze the suspected traffic behavioral parameters and to determine their significance in causing simulation failures in a mathematical way. Since such a sensitivity test is multivariate with a large sampling space, statistical sampling is often required to perform the test strategically. Because every simulator has a different set of traffic behavioral
parameters, the design of a sensitivity test is simulator-specific. In consideration of this feature, additional details about the sensitivity tests will be described in the next chapter as they pertain to the CORSIM simulation model.
CHAPTER 4: METHODOLOGY IMPLEMENTATION IN CORSIM

The proposed methodology described in Chapter 3 was implemented for a number of case studies to verify its validity and effectiveness. A commonly used traffic simulator, CORSIM, served as the test-bed simulator. Since CORSIM is widely used in traffic engineering practice, the implementation of method in that environment should provide a useful tool for model developers and users alike.

4.1 CORSIM Simulator

Overview

The proposed failure detection and analysis method is applicable to any microscopic simulator as long as it can generate the required time series data. Among many available simulators in the United States and around the world, CORSIM is considered as the best choice due to its wide use, proven validity, low cost, inexpensive input data requirements, and a large choice of output performance measures.

The development of CORSIM (CORridor SImulation Model) was rooted in the development of UTCS (Urban Traffic Control System) back in the 1970’s. (TSIS Reference Book, 2003) After generations of functional expansion and upgrading, it has now become the core part of the Traffic Software Integrated System (TSIS) package, whose development was originally supported by the Federal Highway Administration (FHWA). The most recent version of CORSIM, version 5.1, was recently released in 2003 as part of TSIS 5.1.

CORSIM uses entry volumes at network source nodes as the basic form for traffic
demand input. It performs a stochastic assignment at every intersection according to the prescribed turning probabilities, which can be calculated from the turning movement counts in the field. Since these probabilities are taken to be independent of vehicle origins, vehicles from different sources will have a similar likelihood of being assigned to a specified downstream link. In view of this feature, the major objective of CORSIM is to reproduce link traffic performance (such as flow, speed, delay, etc), and not to be concerned about trip or path-based characteristics (for example, trip travel time) (Wan, 2002). A typical simulation process in CORSIM is illustrated in Figure 4.1 below.
Nationwide applications have demonstrated that after careful calibration, CORSIM is able to reproduce traffic performance at the study sites, and to provide users with quantitative measures for the purpose of assessing current and projected traffic scenarios (e.g., Owen et al., 2000). Nonetheless, its dependence on the stochastic assignment method, which is based solely on prescribed turning probabilities, does prevent CORSIM from carrying out an evaluation of traffic scenarios with significant network changes. For
example, significant geometric changes such as adding or dropping links, could result in a different traffic routing pattern and, therefore, different turning probabilities from those originally collected.

Regarding this research, CORSIM allows the simulation of time-dependent demand and network features, so that users can designate a number of time intervals over the entire simulation period, and specify time-varying inputs in each interval. Accordingly, users can also request intermediate traffic performance data for each time interval, which is required to generate the time series for the purpose of failure detection and analysis in this research.

In addition, representing the animation tool in the simulation package TSIS, the Graphical User Interface (GUI) of TRAFVU (TRAFfic Visualization Utility) allows for the verification of the proposed failure detection method by means of visual observations. Another noticeable feature of CORSIM is that users can directly access the animation files which are originally generated for use in TRAFVU. This certainly needs some computer programming efforts in order to effectively read useful information from binary files. From the failure analysis perspective, nevertheless, this provides the potential for tracking vehicle trajectory data, which might be used to quantitatively seek the “truth” of simulation failures.

Traffic Behavior Models in CORSIM

A successful application of CORSIM requires users to have some knowledge of the vehicle behavioral models, so that they become aware of the constraints and weaknesses of their simulation applications. Only when users have sufficient confidence in the basic
mechanism of a simulator can they use it to construct and calibrate simulation models in an effective way. The principal vehicle behavior models include two car-following models, a lane-changing model, two gap acceptance models, and a series of congestion behavior models.

- **Car-Following Model**

CORSIM contains two different car-following models for the freeway component (FRESIM) and surface network model (NETSIM). FRESIM uses the Pitt car-following model developed at the University of Pittsburg in 1993 (Crowther, 2001). In NETSIM, CORSIM uses an enhanced UTCS-1 car-following model, which is analogous to the Pipes model (May, 1990). The basic mechanism in the car following model in CORSIM is to always maintain a safe following distance between vehicles to avoid collisions under the most extreme deceleration maneuvers.

From this perspective, the cars following parameters are key measures that require calibration to ensure a realistic representation of traffic flow. The principal parameters in the car-following model include driver reaction time, start-up lost time, queue discharge headway, and free flow speed. While these parameters together determine the expected vehicle behavior in a certain traffic situation, for a specific vehicle, the car following sensitivity factor plays an important role from the perspective of modeling driver aggressiveness.

- **Lane-Changing Model**

The lane-changing model in CORSIM separates the entire process into two parts: the first
is the decision making process to simulate the attempt of a lane-change, and the second is the maneuvering process to complete the lane change. Thus, the lane changing model not only determines the number of lane-changes in a simulation, but also determines how safe and fast a lane-change maneuver can be carried out.

A complex set of parameters is used to describe lane-changing behavior. The most important ones include the driver reaction time, driver cooperation percentage, acceptable acceleration rate, and acceptable deceleration rate for the leading vehicles in the original lane and the following vehicles in the target lane.

- **Gap Acceptance Model**

Due to the fact that gap acceptance maneuvers are modeled differently for signalized and un-signalized intersections, the gap acceptance model in CORSIM is defined separately for both types. For signalized intersections, there are prescribed distributions of the critical gaps for right turn on red (RTOR) vehicles and for permissive left-turn vehicles. For un-signalized intersections, different critical gaps are defined separately for left-turn and right-turn vehicles, under the situations of avoiding near-side and far-side collisions, respectively. The parameters in the gap acceptance model are the distributional parameters for critical gaps. These are expressed in terms of distributions that depend on driver types.

- **Congestion Behavior Model**

CORSIM has a set of ad hoc behavioral parameters to describe special maneuvers in case of severe congestion. These models include a vehicle spillback model, a left-turn
“sneaker” model, a yellow/red light running model, and the like. The major control parameters include

- spillback probabilities which regulate the chance of a vehicle joining an existing downstream queue into the intersection,
- left-turn jumper/lagger probabilities which specify the occurrence of left-turn sneakers at the start and the end of a permitted green phase, respectively, and
- amber interval response which determines the chance of yellow/red light running.

In all, there are a series of driver behavioral parameters that must be considered to ensure proper and valid running of CORSIM simulation. It should be noted that these parameters impact the simulation at different levels. That is, some factors (such as vehicle queue discharge headway, start-up lost time, free flow speed, etc.) are link specific, while most others (such as spillback probabilities, critical gap distributions, etc.) have a common value for the entire network and, thus, apply to all network links. A listing of key driver behavioral parameters in CORSIM is summarized in Table 4.1.
<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Rec Type</th>
<th>Function Category</th>
<th>Scope</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean value of start-up lost time</td>
<td>11</td>
<td>Car following model</td>
<td>Link specific</td>
<td>0-99</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>2</td>
<td>Mean queue discharge headway</td>
<td>11</td>
<td>Car following model</td>
<td>Link specific</td>
<td>14-99</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>3</td>
<td>Desired free-flow speed</td>
<td>11</td>
<td>Car following model</td>
<td>Link specific</td>
<td>0-65</td>
<td>Miles Per Hour</td>
</tr>
<tr>
<td>4</td>
<td>Duration of a lane-change maneuver</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>1-8</td>
<td>Seconds</td>
</tr>
<tr>
<td>5</td>
<td>Mean time for a driver to react to a sudden deceleration of the lead vehicle</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>1-30</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>6</td>
<td>Minimum deceleration for lane changing</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>1-10</td>
<td>Feet per Second Squared</td>
</tr>
<tr>
<td>7</td>
<td>Difference in maximum and minimum acceptable deceleration for a mandatory lane change</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>5-15</td>
<td>Feet per Second Squared</td>
</tr>
<tr>
<td>8</td>
<td>Difference in maximum and minimum acceptable deceleration for a discretionary lane change</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>5-15</td>
<td>Feet per Second Squared</td>
</tr>
<tr>
<td>9</td>
<td>Deceleration rate of lead vehicle</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>10-15</td>
<td>Feet per Second Squared</td>
</tr>
<tr>
<td>10</td>
<td>Deceleration rate of follower vehicle</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>10-15</td>
<td>Feet per Second Squared</td>
</tr>
<tr>
<td>11</td>
<td>Driver type factor used to compute driver aggressiveness</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>15-50</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>12</td>
<td>Urgency threshold</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>0-5</td>
<td>Tenths of a Second Squared per Foot</td>
</tr>
<tr>
<td>13</td>
<td>Safety factor X 10</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>6-10</td>
<td>Tenths of Units</td>
</tr>
<tr>
<td>14</td>
<td>Percentage of drivers who cooperate with a lane-changer</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>10-100</td>
<td>Percentage</td>
</tr>
<tr>
<td>15</td>
<td>Headway below which all drivers will attempt to change lanes</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>1-30</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>16</td>
<td>Headway above which no drivers will attempt to change lanes</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>30-100</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>17</td>
<td>Mean longitudinal distance over which drivers decide to perform one lane change</td>
<td>81</td>
<td>Lane change model</td>
<td>Global</td>
<td>50-2500</td>
<td>Feet</td>
</tr>
<tr>
<td>18</td>
<td>Probability of left-turn jumper</td>
<td>140</td>
<td>Congestion behavior</td>
<td>Global</td>
<td>0-100</td>
<td>Percentage</td>
</tr>
<tr>
<td>19</td>
<td>Left-turn maximum speed</td>
<td>140</td>
<td>Turn movement model</td>
<td>Global</td>
<td>0-44</td>
<td>Feet per Second</td>
</tr>
<tr>
<td>20</td>
<td>Right-turn maximum speed</td>
<td>140</td>
<td>Turn movement model</td>
<td>Global</td>
<td>0-26</td>
<td>Feet per Second</td>
</tr>
<tr>
<td>21</td>
<td>Probability of vehicle to join spill-back</td>
<td>141</td>
<td>Congestion behavior</td>
<td>Global</td>
<td>0-100</td>
<td>Percentage</td>
</tr>
<tr>
<td>22</td>
<td>Left-turn lagger probabilities</td>
<td>141</td>
<td>Congestion behavior</td>
<td>Global</td>
<td>0-100</td>
<td>Percentage</td>
</tr>
<tr>
<td>23</td>
<td>Near-side acceptable gap</td>
<td>142</td>
<td>Gap acceptance model</td>
<td>Global</td>
<td>15-75</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>24</td>
<td>Additional gap time for far-side street</td>
<td>143</td>
<td>Gap acceptance model</td>
<td>Global</td>
<td>10-75</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>25</td>
<td>Acceptable deceleration for amber interval response</td>
<td>144</td>
<td>Congestion behavior</td>
<td>Global</td>
<td>2-30</td>
<td>Feet per Second Squared</td>
</tr>
<tr>
<td>26</td>
<td>Acceptable gap for left-turn vehicles</td>
<td>145</td>
<td>Gap acceptance model</td>
<td>Global</td>
<td>10-100</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>27</td>
<td>Acceptable gap for right-turn vehicles</td>
<td>145</td>
<td>Gap acceptance model</td>
<td>Global</td>
<td>10-100</td>
<td>Tenths of Seconds</td>
</tr>
<tr>
<td>28</td>
<td>Free-flow speed percentage multipliers</td>
<td>147</td>
<td>Car following model & Lane change model</td>
<td>Global</td>
<td>0-1000</td>
<td>Percentage</td>
</tr>
<tr>
<td>29</td>
<td>Percentage multiplier for driver start-up lost time</td>
<td>149</td>
<td>Car following model</td>
<td>Global</td>
<td>0-1000</td>
<td>Percentage</td>
</tr>
<tr>
<td>30</td>
<td>Percentage multiplier for driver queue discharge headway</td>
<td>149</td>
<td>Car following model</td>
<td>Global</td>
<td>0-1000</td>
<td>Percentage</td>
</tr>
</tbody>
</table>

Table 4.1 Key Driver Behavioral Parameters in CORSIM
It is clear from the table that while some parameters may be directly estimated from field data, many others cannot. The CORSIM User Guide provides no guidance on how to calibrate these parameters that are difficult (sometimes impossible) to measure in the field. Given this limitation, the only recourse was to assess the sensitivity of these parameters to important traffic performance measures and to the likelihood of model failures.

4.2 Methodology Implementation in CORSIM

Simulation Failure Detection

CORSIM allows the division of a simulation period into multiple, shorter time intervals. For each time interval, users can specify time dependent geometry, traffic control, and traffic demand information. Accordingly, traffic performance measures for each intermediate time interval can be extracted from a CORSIM output file. Those are utilized to generate the time series data required for the implementation of the failure detection and analysis method.

CORSIM combines all simulation output into a single text file with the extension “.out”. To collect traffic performance measures at a specific time or location, users need to either continuously observe the simulation animation provided in TRAFVU, or extract the corresponding information in the output files. Since the time series inspection requires detailed output data at specific times and network locations, both of these methods are totally impractical for collecting and analyzing the time series data.

A computer code developed by the author is then utilized to extract, summarize, and
analyze the data from multiple CORSIM output files in an automated fashion. In consideration of the extended objectives of the failure detection and analysis methodology, the objectives of the computer code were to:

- collect time series data at the link and movement levels for each prescribed time interval and for each CORSIM replication,
- perform time series analyses to detect traffic anomalies according to the prescribed failure occurrence criteria, and
- summarize the occurrence sequence and derive the failure patterns over the spatial domain for the subsequent analyses.

The programming was originally performed using the REXX language (REXX User Guide, 1998). REXX is a programming language which is small in size and portable between operating systems and machines. One major advantage of REXX is that it has good capabilities in the manipulation of text strings, which is the major effort for text-in-text-out traffic simulations. Also, REXX allows for the execution of MS-DOS (Microsoft Disk Operating System) prompts in its own environment. Thus, it supports batch mode running of CORSIM as a subroutine in the program.

The code was later upgraded with a Visual Basic for Applications (VBA) environment, which is embedded in the Microsoft Office suite. One consideration for this upgrading is the relatively wide availability and use of VBA. The use of a more popular language can provide the proposed procedure with greater transferability. In addition, VBA has already been successfully applied in TSIS/CORSIM simulation, in the sense that there has been many application program interfaces (API) coded with VBA in the United States. For
example, Leonard (2004) at the Georgia Institute of Technology coded an analysis tool VBA at the simulation time interval and time step data levels. Thus, programming with VBA offers a practical value to CORSIM users.

It should be noted that Leonard’s coding work provided a basis for the tracking of vehicle trajectory data in CORSIM animation files. However, considering that tracking vehicle trajectory data requires much more programming and computation efforts, and that it is simulator specific, this research is limited to the analysis of traffic performance data at discrete time intervals only.

Figure 4.2 presents a flowchart describing the various steps involved in extracting the data needed for the simulation failure analysis.
Figure 4.2 Flowchart of Simulation Failure Detection Process in CORSIM
Failure Mitigation with Sensitivity Test

Once the simulation failures have been successfully detected, their occurrence patterns can be analyzed to diagnose the contributing factors. The final goal is to seek possible solutions to mitigate them, as discussed in the previous chapter. With CORSIM as the test-bed simulator, the process can now be executed considering the features in CORSIM.

The failure patterns have been derived using a time series inspection and spatial analysis. The major challenge is then to determine the traffic behavioral parameters in a specific simulation contribute to the occurrence of failures. The tuning of traffic behavioral parameters is often difficult to perform, since the combined effect of many parameters are not only difficult to predetermine in the simulation, but also virtually impossible to measure in the field.

The adjustment of traffic parameters is often very difficult to handle since in most cases many traffic parameters need to be adjusted all at the same time. Thus, different approaches are applied to the measurable and non-measurable parameters to simplify the process. For those measurable parameters, it is recommended that they be calibrated with field data if that can be done at a reasonable cost. For non-measurable parameters, the only restriction is to ensure that they can generate rational traffic performance measures. Sensitivity testing is a common tool in the evaluation of the significance of unknown traffic behavioral parameters. The results of the sensitivity tests, thus, can be used in the development of mitigation measures for the simulation failures.

In traffic simulation, there is a complex set of traffic behavioral parameters to be adjusted in the model tuning as evident from Table 4.1. Considering that if is not practical to
scrutinize all traffic parameters, it is standard practice to examine only the most important ones. The choice of traffic parameters is made based on the analyst’s experience about the simulator as well as the key attributes of the subject network. In light of the features of traffic behavioral models in CORSIM, the parameters recommended for the study of simulation failures include

- vehicle queue discharge headway (QDH),
- start-up lost time (SLT),
- spillback probability for the first vehicle and second in queue to join a spillback (SbPr1, SbPr2),
- left-turn jumper probability (LjPr),
- left-lagger probability (LlPr), and
- amber response acceptable decelerations for Driver Types one to 10 (ARD).

The key attributes of each parameter are listed in the Table 4.2.

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>Function Model</th>
<th>Sub-Function</th>
<th>Scope</th>
<th>CORSIM Range</th>
<th>Default</th>
<th>Proposed Range</th>
<th>Readily Measureable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean queue discharge headway</td>
<td>Car following model</td>
<td>Queue discharging</td>
<td>Link specific</td>
<td>14-99</td>
<td>18</td>
<td>(1.4, 3.5)</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Mean value of start-up lost time</td>
<td>Car following model</td>
<td>Queue discharging</td>
<td>Link specific</td>
<td>0-99</td>
<td>20</td>
<td>(0, 40)</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Probability of vehicle to join spill-back</td>
<td>Congestion behavior</td>
<td>general</td>
<td>Global</td>
<td>0-100</td>
<td>(80, 40, 0, 0) for forming spill-back comprised of (1, 2, 3, 4) vehicles</td>
<td>(0, 100)</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Left-turn lagger probabilities</td>
<td>Congestion behavior</td>
<td>Left-turn only</td>
<td>Global</td>
<td>0-100</td>
<td>(80, 15, 0) for staying at the stop bar within (2, 4, 5) seconds</td>
<td>(0, 100)</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Probability of left-turn jumper</td>
<td>Congestion behavior</td>
<td>Left-turn only</td>
<td>Global</td>
<td>0-100</td>
<td>38 for jumping across (1, 2, 3, 4, 5, 6, 7) oncoming lanes</td>
<td>(0, 100)</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Acceptable deceleration for amber interval response</td>
<td>Congestion behavior</td>
<td>General</td>
<td>Global</td>
<td>2-30</td>
<td>(21, 18, 15, 12, 9, 7, 5, 4, 3) for driver type 1 to 10</td>
<td>(4, 21)</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 4.2 Selected Driver Behavior Parameters for Sensitivity Test

It should be noted that the first two parameters, mean queue discharge headway and mean
value of start-up lost time, are theoretically measurable in the field. However, since these two parameters often vary across links in the same network, it is virtually impractical to collect field values for all of them. Thus, these two parameters are included in the sensitivity test to identify their appropriate values. Again, since almost all real-world simulation work cannot consider all traffic parameters, the stated simplification can be deemed as a representative of real-world simulation applications.

4.3 Case Studies

The test of the proposed methodology consists of two parts, test of simulators and test of networks. In the test of simulators section, three different versions of CORSIM were applied to the same traffic network. The advantages and limitations of these versions are literally known. In the application test of this research, however, we were trying to evaluate the simulators empirically, specially, the study of their limitations related to the emergence of simulation failures. The results of the test of simulators are discussed in Chapter 5.

In the test of networks, we assumed that we have full awareness of the simulator capabilities. Therefore, any application results in this test will be attributed to the network modeling process and the networks themselves. Three case networks were studied to test the utility of the failure detection and analysis procedure from different perspectives.

The first and the second networks have identical network geometries, but different traffic demand and traffic control schemes. The study network is a sub-network of downtown Chicago, which is characterized by commuter traffic and high traffic demand.
The first case study verified the application of the proposed method as a pre-calibration procedure during the stage of simulation construction and calibration. The results for this study are presented in Chapter 6. In the second network we investigate the value of the method for the purpose of network diagnosis, with the assumption being that the model was already calibrated and validated. The results for the second study are discussed in Chapter 7.

The third network had considerably different features in geometry and traffic demand from the previous two networks. It was taken from the simulation analysis of the North Carolina State University (NCSU) campus area. Representative of a typical university road network, it is characterized by a peaked though varying traffic demand, mixed transportation modes, and low travel speeds throughout the network. The application of the method for this site was used to test the transferability of the proposed method across different networks. These results are presented in Chapter 8.
CHAPTER 5: FAILURE DETECTION ACROSS SIMULATORS

This chapter describes the application of the proposed failure detection and analysis methodology to the evaluation of simulators. As the proposed methodology is generic in nature and not simulator-specific, the initial application is completed by contrasting the performance of three recent versions of the CORSIM model on a common data set.

5.1 Simulator Description and Study Design

Simulator Description

As introduced in Chapter 4, CORSIM is a comprehensive microscopic traffic simulator that is capable of modeling and assessing a variety of traffic management strategies on different transportation facilities. As the “official” FHWA model, CORSIM has undergone a number of upgrades to improve its functionalities and to address problems that have been discovered in the course of its applications.

When this research started in 2000, CORSIM version 4.32 was used as the test-bed simulator for the study. Later in 2001 FHWA released CORSIM version 5.0 with some major modifications made to its modeling capabilities. In 2003 CORSIM version 5.1 was released that contained several significant changes in its traffic behavioral algorithms as well as some improvements to its user interface.

The failure detection and analysis procedure in this research is intended to be a general and transferable method across different simulators. Thus, the fact that two major upgrades of CORSIM occurred in the course of this research did not significantly...
interrupt this research. Instead, it provided an opportunity to test the failure detection method across simulators.

While the most recent version (CORSIM 5.1) represents the most meaningful one to verify the user application value of the design method (as will be shown in the subsequent chapters), the available three versions contained some variations in their driver behavioral models. Thus, the applications of the proposed method in them can be viewed as a test of transferability across simulators. This is carried out by modeling an identical network (i.e. a standard data set) with the three versions.

Initially, in order to improve the understanding of the analysis results, the analyst conducted a review of the changes that have occurred across the three releases. It was found that both CORSIM versions 5.0 and 5.1 have some important changes in their functionalities and their driver behavior models. They are repetitively discussed below.

CORSIM 5.0 versus 4.32

In contrast to CORSIM 4.32, version 5.0 provides a major expansion in functionality. New capabilities include the simulation of freeway HOV operations (not relevant to this study which focuses on a signalized network), the calculation of control delay, and the modeling of vehicle-type-dependent turning percentages.

Also, CORSIM 5.0 had some enhancements in the driver behavior models and fixed some previously known bugs. According to the TSIS Website (http://www.fhwa-tsis.com/), key changes in driver behavior models in CORSIM 5.0 included:
Any configuration involving stop sign control can be modeled. Previously, some configurations involving stop sign control were not modeled correctly. Logic was also improved to model configurations involving both stop sign and yield sign control.

The probability of joining spillback, entered on Record Type 141, now also applies to left turning vehicles. It previously applied to through vehicles only.

These changes are expected to affect the failure occurrence pattern since they directly impact traffic operations under congested conditions.

CORSIM 5.1 versus 5.0

Release 5.1 of CORSIM offered additional capabilities in both ease of use and transportation modeling features. These include a new user interface, a new output data processor, and the support for an expanded network size.

Also, several known bugs were fixed and some reported errors in the driver behavior models corrected. According to the TSIS Website, key changes from 5.0 to 5.1 included:

- The logic for determining if a vehicle would join spillback was changed. Previously there was no way to prevent a vehicle from becoming the first vehicle in spillback. Record Type 141 now defines the probability that a vehicle will BECOME the first, second, third or fourth or later vehicle in spillback instead of JOINING the first, second, third or fourth or later vehicle in spillback.

- Corrected a problem that allowed vehicles to accelerate at 12 ft/sec/sec when discharging from a link, even when the performance table limited the acceleration to a smaller value.
- Corrected an error that caused NETSIM vehicles to stop immediately when cooperating with a lane changer.

- Corrected errors that caused some NETSIM vehicles to jump all the way to the stop-bar when they became first in queue, regardless of how far they had to jump.

It can be seen that several important changes have occurred in the driver behavior models. Regarding the spillback probabilities, it is important to note that the default values of the simulator have been adjusted as well as the definition change.

In general, appropriate driver behavior models are fundamental to the successful execution of micro-simulation models. Since the three versions of CORSIM have slightly different behavior models, they are expected to produce different results for the same input data set. The proposed failure detection and analysis procedure can then be applied to evaluate the impact of the driver model features of the three releases and, therefore, assess the true value of the upgrades.

Study Design

Test-bed Network

In this test, the three different versions of CORSIM were run on a common dataset representing a surface street sub-network in the City of Chicago. The network is depicted in Figure 5.1. It connects a major freeway with the central business district (CBD) which is located on the right, bottom side of this map. The network contained 24 signalized intersections and 8 un-signalized intersections. The simulation models inputs came from field data that were gathered on Thursday, May 25, 2000, from 17:00 to 18:00 PM, a
typical weekday peak time. Medium to high traffic volumes of about 13,000 vehicles entered the study network during the time period, causing traffic congestion at a local level on some key links. However, and this is important to note, there were no observations of any sustained gridlock during the entire hour, although some temporary spillback occurred at various points in the network.

![Diagram](image_url)

Figure 5.1 Test-bed Network in Chicago

It is important to accurately define what is meant by a “common” data set across the three CORSIM releases. Here, one needs to distinguish between 1) those inputs that come from the field and are necessary to run the code (e.g., traffic volumes, turning percentages, signal timing, network geometry among others), and 2) input values of the model parameters that specify vehicle and driver behavior under certain traffic situations. The first set is dependent on field data and indeed common across all replicate runs and simulator versions. The second, however, depends on driver behavior models of each
simulator, i.e., whether different simulators have the same types of parameters, and the
default values of them are the same.

If simulators have different default values for the same parameters, one can still re-code
the input model with a common set of default values. However, if a new parameter is
introduced, or an existing parameter is re-defined (as in the case of the different
definitions of spillback probability between versions 5.0 and 5.1 described above), it is
sometimes impossible to truly make the case that the dataset is “common”. This
limitation should be kept in mind as the results are analyzed.

Experiment Design

The purpose of this study is to evaluate the three simulators strictly from the perspective
of simulation failure detection and analysis. Thus, the problem is simplified by accepting
a common set of CORSIM default values for all unknown traffic parameters, while
keeping all the field-based inputs identical across different simulators. The failure
analysis focused on identifying network deficiencies is discussed in Chapters 7 through 8.

As noted above, CORSIM 5.1 has a different definition of spillback probabilities from
the former two versions. In order to account for both changes in default values and
parameter definitions, two sets are runs are possible for the version 5.1, one using the
“former” default values of its predecessors, and the other using the “new” defaults.
However, it is impossible for versions 4.32 and 5.1 to model CORSIM 5.1 defaults since
one key parameter that has been assigned a new value in version 5.1 is unchangeable in
the old versions. This gives rise to four studies over which a side-by-side comparison can
be made on CORSIM 4.32/5.0 defaults, as shown in Table 5.1 below.
From the table we can see that in order to maintain a common dataset for the comparison purpose, CORSIM 4.32/5.0 default parameter values were coded for all the three releases. The evaluation of the three simulators was then performed based on them. For the last case of CORSIM 5.1 with the new defaults, it will serve as the base case for the evaluation of PM Chicago network, as to be discussed in Chapter 6.

Determining the number of Replications

The analyst constructed the simulation models with the field-collected input data and the CORSIM 4.32/5.0 default values for all traffic parameters. The detection time interval was set to be five minute. With other factors decided, the main consideration in this section is to estimate the replicate sample size that can produce statistically valid conclusions. Since the analysis object in this research is the occurrence of simulation failures, the particular concern is to obtain a precise estimate of the probabilities of failure replications. In order to do that, a pilot study was used.

A pilot study was firstly performed with CORSIM 4.32. The study used 30 replications as a first-cut experiment, which is a commonly used sample size in traffic simulation studies. The failure detection and analysis procedure was then applied, and it showed that 4
replications resulted in simulation failures. Thus, in this pilot study, the failure probability was 4/30, or 13%.

The occurrence of one or more simulation failures in a single run can be assumed to follow a Geometric distribution $G(p)$. With multiple replications, the occurrences of simulation failures follow a binomial distribution $\text{Bi}(n, p)$ with the parameter n denoting the number of replications, and p denoting the expected failure probability. Accordingly, the standard deviation of p can be estimated as

$$\hat{\sigma} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where \hat{p} denotes the sample failure probability.

And, the $(1 - \alpha)\%$ confidence interval for the estimation of failure probability p can be written as

$$\left(\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

Thus, the accuracy of the estimation, which can be reflected by the half-width of the above confidence interval, is a function of the sample size n and sample failure probability p.

With the pilot study above, if we use a sample size of 100 replications and the sample failure probability p is 0.13, the half-width of a 95% confidence interval ($\alpha = 0.05$) for the estimation of p is:

$$\text{Halfwidth} = z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 \sqrt{\frac{0.13(1-0.13)}{100}} = 0.059$$
Likewise, for failure probabilities ranging from 0.1 to 0.9 and a fixed sample size of 100, we calculate the half-width values for their 95% confidence intervals, as shown in Figure 5.2.

![Figure 5.2 Half-width of 95% CI versus Failure Probabilities](image)

It is shown in the figure above that the sample size of 100 replications produces 95th confidence intervals for (p) within an acceptable range of ±0.1. Thus, to maintain consistency, we use 100 replications as the common sample size in all the subsequent experiments in this research. The simulation results using CORSIM 4.32, 5.0, and 5.1 are discussed in Sections 5.2, 5.3, and 5.4, respectively.

5.2 CORSIM 4.32 Results

Failure Detection Results

The CORSIM 4.32 release was used to simulate the test network with 100 replications. In this study, system queue time (SQT) was taken as the main measure of overall traffic performance. CORSIM defines SQT as the aggregation of “delay calculated by taking
vehicles having acceleration rates less than 2 feet per second and speed less than 9 feet per second” (CORSIM User’s Guide, 2003). Since queue time is defined as the aggregation of vehicle time in a slow-moving or stopped state, it is widely used to reflect the level of congestion in a transportation system. More importantly, this performance measure is not affected by the number of vehicles discharged from a link, which could otherwise bias the results when a link is partially or fully blocked.

The distribution of system queue time is shown in Figure 5.3. As the figure shows, most simulation replications are distributed to the left of the figure, though some ones (red ones) turn out to be outliers to them. The mean, median, and standard deviation are respectively 247, 196 and 154 vehicle hours.

![Distribution of System Queue Time](image)

Figure 5.3 Distribution of System Queue Time in CORSIM 4.32 Simulation

The failure detection procedure was applied and 13 failure runs were differentiated from good ones, as marked by the red bars in Figure 5.3. The 95% confidence interval for the failure probability in this test was 13±6.6%, or (6.4%, 19.6%). It is shown that in CORSIM 4.32 simulation, there are a high consistency between outliers (replications
distributed distantly right to others) and failure runs (replications containing irrecoverable, unrealistic traffic blockages).

Spatial Analysis Results

The failure analysis procedure performed a spatial analysis on the first-failing intersections (nodes) and segments (links). The results are shown on Figure 5.4.

![Spatial Distribution of First-Failing Intersections](image)

Figure 5.4 Distribution of First-Failing Intersections in CORSIM 4.32 Simulation

As the figure shows, it displays a local peaking pattern at the intersection Grand at Franklin. However, the Franklin Street is a two-lane two-way minor street that performs well in reality. Thus, we may conclude that the occurrence of simulation failures in that place would be caused by some abnormal factors in the simulation setting.

The animation check of the failure runs indicated that some left-turn vehicles on Franklin Street abnormally joined existing downstream queues at the end of their green time, blocked the intersection, and therefore disabled any conflicting flow at that intersection. The quick formation of spillback caused queues at neighboring intersections in that area.
Finally, a deadlock situation formed.

Obviously the vehicle blockage described above is inconsistent with the realistic driver behavior. This probability is governed jointly by the traffic parameters spillback probabilities and left-turn lagger probabilities. The above analysis indicated that the default values of these two parameters are too high, causing unrealistic driver aggressiveness in some vulnerable intersections and, therefore, irrecoverable simulation failures.

5.3 CORSIM 5.0 Results

Failure Detection Results

Likewise, CORSIM 5.0 was used to simulate the test network. Since the default parameter values are identical in both CORSIM 4.32 and 5.0, traffic parameters were taken as the model default values to maintain the same input dataset.

Similarly 100 replications were carried out in this test. As a result, the distribution of system queue time is shown in Figure 5.5. It is noted that the distribution of SQT has a very identical pattern to that in CORSIM 4.32 simulation (see Figure 5.3). Though, it has a slightly heavier tail on the right side. The mean, median, and standard deviation are 320, 202 and 231 vehicle hours, respectively.
The application results of the failure detection discovered 32 failure replications. The 95% confidence interval for the failure probability was then $32 \pm 9.1\%$, or $(22.9\%, 41.1\%)$. As the above figure shows with red bars, almost all failure replications are distributed on the right tail of the SQT distribution, displaying a close association with the outlier replications.

Failure Analysis Results

The failure analysis procedure was then applied to the CORSIM 5.0 simulation. Part of the results, the spatial distribution of first-failing intersections on the network is shown in Figure 5.6 below. As the figure shows, most failures still initiate along Franklin Street, which is the same most vulnerable link to that in the CORSIM 4.32 simulation.
Visual observation of simulation animations was performed for those failure replications. Again, it was discovered that vehicles joining spillback tended to occupy the box area and therefore blocked the entire intersection. Hence, although the literature review showed that CORSIM 5.0 has improved the consistency between left-turn lagger probabilities and through spillback probabilities, the default values remain too high in the model to endanger the effective running of simulation.

5.4 CORSIM 5.1 Results

Failure Detection Results

Finally, CORSIM 5.1 was applied to the simulation of the test network. As noted earlier, since the definition and default values of spillback probabilities in CORSIM 5.1 has been changed from its predecessors, the parameters were therefore adjusted according to the default values in CORSIM 4.32 and 5.0 to ensure that a similar dataset was used for the comparison of the three releases. For other unchanged parameters, the model used default
values.

With 100 replication runs, the distribution of system queue time is shown in Figure 5.7. As the figure shows, the SQT is distributed evenly between 200 to 500 vehicle hours, while having a much heavier tail on the right (beyond 500 vehicle hours). The mean, median, and standard deviation are 575, 515 and 294 vehicle hours. Compared to the CORSIM 4.32 and 5.0 results, the system queue time distribution apparently shift to the right side of the figure, which denotes a higher value of SQT and a higher level of congestion in the network.

![Distribution of System Queue Time](image)

Figure 5.7 Distribution of System Queue Time in CORSIM 5.1 Simulation

The failure detection results indicated that most replications (84 among 100) were failure replications that contain at least one link which has unrecoverable vehicle blockage for at least one time interval (or, five minutes). The 95% confidence interval for the failure probability was calculated as 84±7.2%, or (76.8%, 91.2%). Thus, with the CORSIM 4.32/5.0 default setting (except spillback probabilities), CORSIM 5.1 displayed an unexpected high likelihood of simulation failures.
Spatial Analysis Results

The failure analysis procedure was again applied to the CORSIM 5.1 simulation. As a result, the spatial distribution of first-failing intersections is plotted in Figure 5.8. It is important to note that the critical intersection has shifted from Franklin Street in the previous studies to the Orleans Street, which is a corridor characterized by heavy northbound through and southbound left-turn traffic in the southern part (near side part in the figure).

![Spatial Distribution of First-Failing Intersections](image)

Figure 5.8 Distribution of First-Failing Intersections in CORSIM 5.1 Simulation

Visual scrutiny of animation files showed that in the problem area, the left-turn traffic tended to be obstructed by its heavy opposing through traffic. The obstructed vehicles filled the left-turn bay and blocked through vehicles on the street. The oncoming vehicles to the problem area caused queues in that approach and spillback to its upstream links. Finally, a deadlock situation formed. These observations proved that with the current model setting, the simulator has insufficient capabilities in simulating this situation.
5.5 Summary and Discussion

This chapter describes an application of the proposed simulation failure and detection method to the evaluation of simulators. This was conducted by applying three different releases of CORSIM to the same input dataset, and executing a side-by-side comparison of their performance. Since CORSIM 5.1 has a different definition and default value in one important parameter from its predecessors, the CORSIM 4.32/5.0 defaults were then coded for the three releases to form a consistent comparison.

In the study, CORSIM 4.32 and 5.0 generated close outputs in their traffic performance, although CORSIM 5.0 generated a slightly higher level of SQT and a higher chance of simulation failures. By contrast, CORSIM 5.1 displayed a much higher level of network congestion and a much higher probability of failure runs. Thus, for the test dataset, the upgrading from CORSIM 4.32 to 5.0 had no momentous impact on the network traffic performance, while the upgrading from CORSIM 5.0 to 5.1 had a significantly negative effect on both traffic performance and simulation failure probabilities.

The applications results of failure analysis indicated that different occurrence patterns in the three CORSIM releases. In versions 4.32 and 5.0, the problem area concentrates along a two-lane two-way minor street, while in version 5.1, it is shown that showed that the problem area is a major street that is characterized by a high percentage of left-turn traffic off the street and heavy opposing through traffic along the corridor.

The extremely high failure probability in CORSIM 5.1 raised concern about its validity. This is due to the fact that CORSIM 4.32/5.0 defaults were coded in the simulation. Actually, CORSIM 5.1 has adopted much lower default values as well as it changed the
definition of spillback probability probabilities. This new data set was used to constitute a base case study for the evaluation of the Chicago PM peak network in Chapter 6. It is shown that the new model generated a much lower level of congestion and reduced the failure probabilities by more than half (from 84% to 38%). These are discussed in the next chapter.
CHAPTER 6: EVALUATION OF CHICAGO PM PEAK NETWORK

The first network evaluation study applies the proposed failure detection and analysis method to the Chicago PM test network, using the simulator CORSIM 5.1 described in Chapter 5. The failure detection procedure was applied immediately after the stage of model construction using minimal input and simulator default values for all model parameters. This application serves as a pre-calibration effort to identify simulation failures associated with an un-calibrated model. Subsequently, a causal analysis was performed along with a sensitivity test to identify and evaluate the critical traffic behavioral parameters that contribute to failures. The final goal was to derive an improved simulation model that had a low probability of yielding simulation failures.

6.1 Network Description and Study Design

Network Description

The test network has already been introduced in Chapter 5. It is a surface street sub-network in the city of Chicago, Illinois. It is comprised of 56 surface street segments, two freeway segments, 24 signalized intersections, and eight un-signalized intersections. It represents a typical urban traffic environment. The simulation used input data obtained on Thursday, May 25, 2000, from 17:00 to 18:00 PM, a typical weekday peak period. Medium to high traffic volumes of about 13,000 vehicles entered the study network during the time period, causing traffic congestion at a local level on some key links. The link-node map of the study network is depicted in Figure 6.1.
During the data collection stage, traffic counts for entry volumes and turning movements were obtained manually at many intersections and from video at central intersections (in the inner network defined by the dotted lines in Figure 6.1). Specification of the network geometry and traffic control was made from documents obtained from the Chicago Department of Transportation (CDOT) and verified through field observations. Details of the data collection efforts are discussed in Sacks, et al. (2002).

It was noted during the field observation that while the network was somewhat congested, there were no occurrences of traffic gridlocks during the entire hour. Thus, any simulation failures would not be representative of actual traffic conditions, but rather due to anomalies in the simulator and modeling process themselves.
A sample size of 100 replications was consistently used in the test (see Chapter 5). In order to generate the time series for failure detection and analysis, the one-hour time period was divided into 12 five minute (consecutive) time intervals, so that the time unit of failure studies was five minutes. Since traffic signals in this network operate on a common cycle length of 75 seconds, the simulation outputs in each time interval were aggregated over a period of four signal cycles. In an under-capacity situation, traffic performance for any time interval should be identically and independently distributed, assuming minimal spillback (from neighboring intersections) or leftover (from preceding cycles) queues.

For the base network simulation (described later in Section 6.2), each resulting output file from a single replication uses about 3 MB of space, and the simulation of 100 replications took about two hours (or about 36 seconds per run) in batch-mode on a personal computer (PC) with a Pentium IV 1.8 GHz processor. By contrast, an individual run in normal mode of CORSIM takes about two minutes to execute, and generates a set of animation files that are 100 MB each. Runs under the batch mode produced significant savings in both computer resource and computation time.

Study Design

The case study began with default settings for all traffic behavior parameters. This is a common practice to start a simulation, particularly when users have no previous knowledge of the subject network. Thus, in the initial stage of this study, CORSIM default values for all the traffic behavior parameters were temporarily accepted as being
representative of field conditions. The latest CORSIM release 5.1 is used in all experiments in this and all subsequent chapters.

In summary, the subject network was modeled with field-collected geometry, signal control, traffic demand, and turning probabilities, except that the traffic behavior parameters were set at their default values. This comprises a base network, the analysis of which serves to demonstrate the value of model calibration and can be viewed as a baseline to which subsequent refinement to the model can be compared. The detailed study results of the base network simulation are discussed in Section 6.2.

The immediate objective in the base network study was to mitigate the occurrence of simulation failures. Should they exist, and since many of the model parameters are unobservable in the field, sensitivity tests were performed on selected traffic behavior parameters. These tests help identify those critical factors and therefore improve the validity of the network. The failure mitigation effort through a sensitivity test is described in Section 6.3.

As the conclusion of the sensitivity tests, a set of “ideal” parameter values was identified and these values were then fed back into the simulator for another series of failure detection analysis. The modified model was then contrasted with the baseline network. This will be discussed in Section 6.4.

6.2 Base Network Study

In the base case study, it was expected that the analysis results could identify any coding errors in the process of model development, and to diagnose the current model to indicate
the particular need for further calibration. On the other hand, since the model had not been fully calibrated and validated, the analysis could not be used to make any firm conclusions regarding the network, other than the general capability of the model to represent the field observations (as described in Section 3.3).

Statistical Analysis

During the batch mode simulation running, the analysis procedure collected key network statistics each replication and stored the results into a separate text file. A statistical analysis was then performed to evaluate the distribution of simulation outputs of interest.

A histogram of system queue time (SQT) is shown in Figure 6.2, based on 100 runs of CORSIM simulation. In this figure, most replications exhibit a low level of congestion (i.e., low SQT). However, a few replications yield an unusually large system queue time. These replications result in a skewed distribution of SQT with a number of outliers (the threshold for outliers was determined to be 350 vehicle-hours based on a pilot study of the network and observation of several animation files) on the right tail.

![Distribution of System Queue Time](image)

Figure 6.2 Distribution of SQT in the Base Case Simulation
The average system queue time was 274 vehicle hours, the median was 252, and the standard deviation was 88 vehicle hours. The large standard deviation indicated that these outlier replications may not be representative of the observed flow patterns. In order to ascertain whether an outlier run truly represented a simulation failure, the proposed failure detection procedure was applied to the base network.

Failure Detection Results

As stated in Section 3.2, a simulation replication will be deemed as a failure replication when the following three criteria are satisfied: 1) zero link flow on at least one major network link; 2) the detected zero-flow link(s) does not recover in the following simulation interval(s) of simulation; and 3) the detected zero-flow link(s) has vehicles queuing on it.

The simulation results in the base case study were analyzed using the proposed simulation failure detection procedure. The time series inspection and spatial analysis were carried out in the procedure. A partial output of the results is shown in Figure 6.3 below. The figure shows that the failure detection procedure directly reports the status of each replication, the number of links that have failed, and the first time interval in which a link failure has occurred (out of twelve simulation intervals) on the computer screen.
Part II: Network flaw detection results:

Currently analyzing replication number 1... Replication Failure: TRUE # of Failure Links: 1 First Failure Time: 12
Currently analyzing replication number 2... Replication Failure: TRUE # of Failure Links: 15 First Failure Time: 9
Currently analyzing replication number 3... Replication Failure: TRUE # of Failure Links: 6 First Failure Time: 11
Currently analyzing replication number 4... Replication Failure: TRUE # of Failure Links: 12 First Failure Time: 6
Currently analyzing replication number 5... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 6... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 7... Replication Failure: TRUE # of Failure Links: 6 First Failure Time: 11
Currently analyzing replication number 8... Replication Failure: TRUE # of Failure Links: 6 First Failure Time: 9
Currently analyzing replication number 9... Replication Failure: TRUE # of Failure Links: 1 First Failure Time: 12
Currently analyzing replication number 10... Replication Failure: TRUE # of Failure Links: 5 First Failure Time: 11
Currently analyzing replication number 11... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 12... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 13... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 14... Replication Failure: FALSE # of Failure Links: 2 First Failure Time: 12
Currently analyzing replication number 15... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 16... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 17... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 18... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 19... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 20... Replication Failure: TRUE # of Failure Links: 10 First Failure Time: 10
Currently analyzing replication number 21... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 22... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 23... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 24... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 25... Replication Failure: TRUE # of Failure Links: 1 First Failure Time: 12
Currently analyzing replication number 26... Replication Failure: TRUE # of Failure Links: 1 First Failure Time: 12
Currently analyzing replication number 27... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 28... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13
Currently analyzing replication number 29... Replication Failure: FALSE # of Failure Links: 0 First Failure Time: 13

Figure 6.3 Snapshot of Failure Detection Output in the Base Case Study

The results indicated that among the 100 runs, thirty eight contained simulation failures, where one or more links failed to discharge any vehicles for at least one five-minute interval by the end of the simulation. These 38 replications were therefore judged to be invalid for the purpose of estimating traffic performance. The 95% confidence interval for this failure probability is 38±9.5%, or (28.5%, 47.5%). Considering the fact that no gridlock was observed in the field, the failure probability of around 30 to 50% appears to be too large.

For comparison purpose, the SQT distribution is re-plotted with failure and successful runs identified separately on the same graph. These are shown in Figure 6.4. An interesting and somewhat unexpected pattern emerges: while very large SQT are typically associated with failure, some simulation failures occurred even at moderate values of SQT. Consequently, the failure runs appear to spread over a wide range of SQT.
from 220 to 500 vehicle hours. This pattern rebuts the validity of strictly excluding “outlier” runs from the simulation. For example, if one would eliminate replications in the highest 10% of SQT, only 6 of the 38 failure runs would be excluded. The proposed failure detection method thus appears to provide the best screening approach for the elimination of unreliable simulation replications.

In summary, the proposed failure detection procedure has identified 38 out of 100 replications as failure runs. The high frequency of failure replications implies that there are still unaccounted factors in the current simulation. Since the base network uses default values for all its traffic behavior parameters, an examination of their impacts is warranted. Prior to that, however, there is a need to conduct a spatial analysis to identify the critical links on the network where simulation failures have initiated. This analysis is described next.
Spatial Analysis Results

A spatial analysis was performed for the base network simulation. The immediate goal was to derive the failure occurrence patterns and to ascertain whether the failure problems were systemic to the entire network, or focused on one or two intersections. The analysis was performed at a link level and a node level. The analysis was performed in parallel with the failure detection procedure.

A series of actions were performed to complete the spatial analysis of the most critical failure-initiating sites. First, the network links (or nodes) were ordered by their first (earliest) failure occurrence time (first time that $LTO^t=0$). Links with the smallest occurrence time were identified as FFL (first failing link). At the same time, if a link, says AB, failed in a given replication, then node B is also labeled as a FFN (first failing node). For a given link the frequency (in the 100 replications) in which that link appears as a FFL is calculated. Each link is associated with such a first failure frequency, FFF. Likewise, the FFF for each node is derived. Links and nodes with the highest FFF are identified as critical (here a threshold value needs to be specified to characterize what “highest” means).

A partial list of the most critical links and nodes (i.e., those resulting in more than 20 percent of all failures) is shown in Tables 6.1 and 6.2. From the tables it is shown that the intersection of Orleans at Grand (Node 9 in Figure 6.1) had the highest number of first failures (25 out of 38), and that most of the failures (19 out of 25) occurred on the southbound approach of the intersection.
Table 6.1 Critical First-Failing Links in the Base Case Study

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node 5</td>
<td>B-Node 9</td>
<td>Southbound Orleans at Grand</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>Southbound Orleans at Illinois</td>
<td>14</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>Eastbound Grand at Orleans</td>
<td>13</td>
</tr>
<tr>
<td>37</td>
<td>34</td>
<td>Northbound Kingsbury at Illinois</td>
<td>9</td>
</tr>
<tr>
<td>41</td>
<td>34</td>
<td>Southbound Kingsbury at Illinois</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 6.2 Critical First-Failing Nodes in the Base Case Study

<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Orleans at Grand</td>
<td>25</td>
<td>66%</td>
</tr>
<tr>
<td>33</td>
<td>Orleans at Illinois</td>
<td>18</td>
<td>47%</td>
</tr>
<tr>
<td>34</td>
<td>Grand at Orleans</td>
<td>9</td>
<td>24%</td>
</tr>
</tbody>
</table>

Note that the sum of the number of first failures for all nodes exceeds the total number of failures. This is due to that sometimes multiple links (and therefore nodes) failed in the same time interval. In this case, a failure run reported more than once for the first failing link and node.

These first failing links and nodes were analyzed to investigate the contributing factors to the detected failure occurrence. Since a spatial analysis may identify multiple critical intersections and links at the same time, the spatial relationship between them needs to be studied to consider the spillback effects from one link to the next. In order to do that, we construct a 3-D plot of first failure frequencies of each node on the network map. Figure 6.5 illustrates the spatial analysis results for the baseline network. As the figure shows, the first-failing links appear to be concentrated on the western portion of the network, with the intersection of Orleans at Grand and Illinois (Nodes 9 and 33 in Figure 6.1) figuring prominently as critical intersections. This led us to speculate that a local
calibration of traffic behavior parameters on links connected to these nodes may reduce
the occurrence of failures for the entire network.

![Spatial Distribution of First-Failing Intersections](image)

Figure 6.5 Spatial Distribution of First-Failing Nodes in the Base Case Study

Causal Analysis Results

The global pattern of simulation failures (as shown in Figure 6.5) exhibits local-peaking
at the intersection of Orleans at Grand. Thus, this intersection was the focal point for
further investigation into the contributing factors for those failures.

The entry approaches to the problem intersection were first studied. The spatial analysis
results in Table 6.1 indicated that the southbound and eastbound approaches (Links 5=>9
and 34=>9) had large occurrence of failures. It is unlikely that traffic on the links in the
opposite directions (i.e., 9=>5 and 9=>34) are contributing to those failures. Further,
since the plot in Figure 6.5 shows that there were no failures at the intersection east of
Orleans at Grand (i.e., Franklin at Grand), the most plausible cause of simulation failures
was blockage on the southbound downstream approach, which corresponds to the section of Orleans Street from Grand to Illinois (Link 9=>33 in Figure 6.1).

Once the problem area had been identified, further analysis was then necessary to judge the simulation dynamics leading to failures. We first checked the obvious. All the link input data associated with the section of Orleans from Grand to Illinois were checked and rechecked for possible coding errors, and none were found.

The analysis then turned to observation of the animation files, which was always the final and most reliable arbitrator for failure visualization. Only the 38 failure replications needed to be observed in the animation tool. To economize on the number of hours of observation, a random sample of the 38 failure replications was reviewed. These sample replications were rerun under normal (not batch) mode to generate the animation files. Consequently, visual observations showed that indeed the street section of Orleans from Grand to Illinois was actually the most common location where gridlock occurred. This confirms the conclusions in the above analysis.

Further investigation into the dynamics of the failure pointed to a capacity problem in the current model for the street section of Orleans from Grand to Illinois. With a permissive left-turn movement on this southbound approach, left-turn capacity was dependent on the flow of the opposing through traffic (northbound traffic on Orleans). During the evening peak, this opposing flow was significant, therefore yielding few adequate gaps for the southbound permitted left turns. These impeded left-turn vehicles then formed a queue in the left-turn bay which when filled, spilled back onto the through lanes, eventually blocking the link altogether. The spillback from this approach then propagated to
neighboring links, and finally resulted in the occurrence of a simulation failure.

From the above analysis, it is seen that the simulation failures originated in a single link (Link 9=>33 on the network map), and was related to the left-turn gap acceptance process and traffic spillback behavior under severe congestion. In reality, however, field observations indicated that the left turn was able to proceed through the intersection. This pointed to the need to investigate the relevant model parameters that may have erroneously contributed to the occurrence of simulation failures.

6.3 Sensitivity Test for Failure Mitigation

Test Design

The failure detection results in the base case study had indicated that the base case model generated an implausible value of nearly 40 percent failure runs. In addition, the failure analysis results showed that most of the network failures originated at the intersection of Orleans at Grand, and in particular due to the fact that the permissive SB left turn movement lacked adequate capacity. Thus, the analysis of mitigation factor began by looking into traffic parameters for the permissive left-turn vehicle behavioral models. In addition, since there was apparently spillback between intersections, which led to simulation failures in a short time, parameters regulating congestion behavior were also investigated.

The choice of test parameters considered three aspects. First, in CORSIM, left-turn behavior is governed jointly by several parameters including the left-turn critical gaps, the left-turn jumper probability, and the left-turn lagger probability. The length of left-
turn critical gaps was not considered since the animation showed that the key problems occurred at the beginning and the end of green time. Second, the key behavioral parameter regarding traffic congestion behavior is the vector of spillback probability. Finally, some of the most common calibration parameters for a signalized network such as queue discharge headway and start-up lost time, which are known to have a strong effect on approach capacity, were also included in the network tuning.

In all, seven specific traffic parameters were considered for a sensitivity study. These are:

- vehicle start-up lost time (SLT),
- vehicle queue discharge headway (QDH),
- probability that the first and second vehicles in queue will join a downstream traffic spillback (SbPr1, SbPr2),
- left-turn lagger probability for the first and second vehicles in queue (LlPr1, LlPr2), and
- left-turn jumper probability (LjPr).

Detailed definitions of these parameters are provided in Table 6.3.
Some of the sensitivity parameters shown in Table 6.3 can vary from link-to-link (locally), or have a single, global default value for all network links (globally). Among them, start-up lost time and queue discharge headway are link-specific parameters, which can be adjusted either at a link level or at the network level, while the other five parameters are global parameters that can only be adjusted at the network level. Thus, a local parameter test was performed to test the two local parameters on the problem link (9=>33) that was identified in the failure analysis in Section 6.2, followed by a global-variation test of the other five parameters.

The Statistical Analysis System (SAS) software package (SAS Inc.) was used to perform a regression analysis of the simulation results. The dependent variable was chosen to be the percentage of replication failures, and the independent variables were chosen as the seven traffic parameters depicted in Table 6.3.

SLT x QDH Design

We first treat SLT and QDH at the problem link (Link 9=>33 on the network map) by fixing the other parameters at their default values. The default value for SLT is 2.0
seconds, and the allowable range is (0, 4.0). From a traffic engineering perspective, we chose these test values \{1.4, 1.6, 1.8, 2.0, 2.2, 2.4\} for the SLT in this study. Likewise, the default value for QDH is 1.8 seconds, the allowable range is (0, 3.5), and the values \{1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2\} were chosen as the test points.

CORSIM does not have any restrictions to reflect the correlation between SLT and QDH. However, from a traffic engineering perspective, these two parameters are typically related. Primarily, the queue discharge headway reflects the roadway capacity, which is mostly governed by the physical properties of that roadway; start up lost time reflects the driver reaction time to a signal, therefore it is mostly governed by driver response time and aggressiveness. However, as a common sense, a population of aggressive drivers will tend to have smaller values of SLT and shorter QDH, and vice versa.

In consideration of this correlation, those inconsistent pairs of possibilities for QDH and SLT are seen as impractical and excluded from the test. A rough criterion is set to be that the difference between QDH and SLT cannot exceed 0.6 seconds. As a result, 32 pairs of (SLT, QDH) are tested. The resulting two dimensional projection of the design is shown in Table 6.4.
Table 6.4 Two Dimensional Projection of the SLTxQDH Design

The effective pairs are marked by grey cells in Table 6.4. For each choice of SLT and QDH we used 100 replicate runs of CORSIM. The primary output in this test is the proportion of failures, denoted by FlProb. Based on 100 test runs of CORSIM, we derived the failure probabilities for the 32 sets of experiments. The results are labeled in the third column in Table 6.5. The shaded row denotes the case when default parameter values are used.
<table>
<thead>
<tr>
<th>Test Parameters</th>
<th>FIProb Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDH</td>
<td>SLT</td>
</tr>
<tr>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>2.2</td>
<td>1.7</td>
</tr>
<tr>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>2.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 6.5 Experimental and Regression Results in Local Parameter Studies

It is noted from this table that the resulting failure probabilities range from 15 percent to 60 percent. The wide range proves that the test variables, QDH and SLT, are significant in the occurrence of simulation failures.

A regression analysis on the above results was performed using the SAS program. The
model entered SLT, QDH, SLT^2, QDH^2, and SLT*QDH as the test variables, and used a stepwise regression to identify their significance and the coefficient estimates. The regression results are shown in Table 6.6.

Summary of Stepwise Selection

<table>
<thead>
<tr>
<th>Step Entered</th>
<th>Removed</th>
<th>Vars In</th>
<th>R-Square</th>
<th>C(p)</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SLT</td>
<td></td>
<td>1</td>
<td>0.7604</td>
<td>16.55</td>
<td>101.54</td>
<td><.0001</td>
</tr>
<tr>
<td>2 QDH</td>
<td></td>
<td>2</td>
<td>0.0846</td>
<td>2.12</td>
<td>16.91</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Resulting Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
<th>Type II SS</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.86570</td>
<td>0.23709</td>
<td>79.87</td>
<td><.0001</td>
</tr>
<tr>
<td>QDH</td>
<td>0.13582</td>
<td>0.05020</td>
<td>16.91</td>
<td>0.0003</td>
</tr>
<tr>
<td>SLT</td>
<td>0.52136</td>
<td>0.28026</td>
<td>94.41</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Table 6.6 SAS Analysis Results in the Local Parameter Test

As the table shows, both SLT and QDH are significant in the determination of failure probabilities. Among the two SLT shows a higher level of sensitivity.

Based on the derived coefficients in the regression analysis, a prediction function was derived to reflect the relationship between the failure probabilities and the variation of queue discharge headway and start-up lost time at the problem link.

\[\text{FIProb} = -0.86570 + 0.13582 \times \text{QDH} + 0.52136 \times \text{SLT} \]
The positive coefficients denote that smaller values of QDH and SLT reduce the chance of simulation failures in the base network simulation. However, these must also be consistent with traffic engineering principles. For example, a QDH of 1.4 seconds corresponds to a saturation flow rate of 2571 vehicles per hour, which would be very rare to observe at a signalized intersection on an urban street network. Although it is acceptable in simulation, the adoption of such low values often compromises the credibility of the simulation.

Finally, in consideration of the characteristic of the subject network, values of (1.7, 1.8) were used for QDH and SLT, respectively. These values are lower than the model defaults (1.8, 2.0), but still seen as acceptable from a traffic engineering perspective. This adjustment is consistent with the aggressive driver characteristics of a commuter traffic network in a large urban area. The solution also coincides with the field measurement at some key locations on the same network (Lin, 2004).

For this vector of parameter values, the prediction function yielded a failure probability of 0.304. This is a slight improvement from the failure probability with model defaults, which is 0.421 in regression and 0.360 in simulation test (Table 6.5 value, slightly different from 0.38 in the base case test). However, the failure probability is obviously still too high considering that no breakdown was observed in the field. Thus, the adjustment of SLT and QDH alone cannot fully account for the occurrence of unexpected simulation failures. Further analyses are then needed to test other candidate traffic behavioral parameters, as described in the next section.
Other Traffic Behavioral Parameters

The test of other traffic behavioral parameters utilized the results of the test of SLT and QDH. That is, it fixed the local values of SLT and QDH on the subject link while varying other candidate traffic behavioral parameters at the network level. The parameters considered in this test are (a) spillback probabilities for the first and second vehicles in queue (SbPr1, SbPr2), (b) the left-turn lagger probabilities for the first and second vehicles in queue (LlPr1, LlPr2), and (c) a left-turn jumper probability (LjPr).

CORSIM allows all of the test parameters to vary from 0 to 100 percent. And there is no specification to regulate the correlations between the parameters. However, from a traffic engineering perspective, one would expect some correlation between SbPr1 and SbPr2 and between LlPr1 and LlPr2. In this test we specified higher test ranges for SbPr1 and LlPr1 and lower test ranges of SbPr2 and LlPr2. As for the left-turn jumper probability, it was reported that the default value of 0.38 for LJ in CORSIM is already too high for realistic traffic situations (Rouphail, et al., 2003). Thus, we limited the range of LJ to [0, 0.38]. The decision of these ranges is mostly based upon expert knowledge about the network and the CORSIM simulator. No guidance exists in the CORSIM User Manual on how these parameters should be calibrated. The test values for the five parameters are 0.05 for SbPr1, 0.1 for SbPr2, LlPr1 and LlPr2, and 0.08 for LjPr. The resulting test parameter sets are shown in Table 6.7.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Test Range</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SbPr1</td>
<td>0.80</td>
<td>[0.70, 0.90]</td>
<td>{0.70, 0.75, 0.80, 0.85, 0.90}</td>
</tr>
<tr>
<td>SbPr2</td>
<td>0.40</td>
<td>[0.20, 0.60]</td>
<td>{0.20, 0.30, 0.40, 0.50, 0.60}</td>
</tr>
<tr>
<td>LlPr1</td>
<td>0.50</td>
<td>[0.50, 0.90]</td>
<td>{0.50, 0.60, 0.70, 0.80, 0.90}</td>
</tr>
<tr>
<td>LlPr2</td>
<td>0.15</td>
<td>[0.05, 0.45]</td>
<td>{0.05, 0.15, 0.25, 0.35, 0.45}</td>
</tr>
<tr>
<td>LjPr</td>
<td>0.38</td>
<td>[0.00, 0.38]</td>
<td>{0.00, 0.08, 0.16, 0.24, 0.32, 0.38}</td>
</tr>
</tbody>
</table>

Table 6.7 Design Values in the Test of Global Variation Parameters

As the table shows, there are many possibilities for each test parameter. Thus, the overall test space is too large for a full factorial design (3750 combinations per replication). To overcome this problem, a Latin Hypercube Sampling (LHS) design is used to economize on the number of runs needed. Latin-Hypercube Sampling design (e.g. Kollig & Keller, 2002) is a space filling design method that is used to spread the points as evenly as possible around the operating space. The output of LHS are sets of design points that, for an \(N \) point design, project onto \(N \) (typically equally spaced) different levels for each factor.

The design used was a 30 pt Latin Hypercube to generate the sample values for the five test variables. For each design settings, 100 replicate runs of CORSIM were made and the observed proportions of failures are recorded in Table 6.8.
A stepwise regression using SAS was performed on these data. It considered the five test parameters without including the interactions terms. The results are shown in Table 6.9.
Among the five test parameters, SbPr1, SbPr2, and LJ are the only significant variables that have important impacts on the determination of failure probabilities. It was actually surprising to note that the left-turn lagger probability did not enter the final solution set. However, this can be partly explained by the fact that the actual values of LlPr are governed by the setting of SbPr.

With the coefficients from the above analysis, the resulting prediction function is summarized below.

$$\text{FlProb} = -0.92949 + 1.55668 \times \text{SbPr1} + 0.31202 \times \text{SbPr2} - 0.51523 \times \text{LjPr}$$
Clearly higher values of spillback probability lead to a larger chance of failures. This is because a larger probability of joining spillback increases the choice of vehicle lock-up in the intersection area. On the other hand, a larger left-turn jumper probability can help increase the capacity of a left turn movement, thus helps to ease the problem in this network. Thus, their boundary values should be used to mitigate the occurrence of unexpected failures. It should be noted, however, lower values of spillback probabilities may decrease the number of vehicles discharging from a link. As for left-turn jumpers, the adoption of an unrealistically high value would be inconsistent with observed driver behavior. Thus, caution should be paid in the final selection of these values.

A final solution set (1.7, 1.8, 0.70, 0.20, 0.38) for the test parameters (QDH, SLT, SbPr1, SbPr2, LjPr) was selected. The regression analysis predicted 3% chance of simulation failures under that scenario, which is a great improvement compared to the default value set of (1.8, 2.0, 0.80, 0.40, 0.38) which generated 38% failures in the base case study. Thus, the failure rate is much reduced but not totally eliminated with the adjustment of the selected parameters alone. Simulation results for the tuned method are discussed in the next section.

6.4 Tuned Case Study

The sensitivity test results had shown that by adjusting some key traffic parameters, the probability of failures could decrease substantially. Thus, the adjusted traffic parameter set was substituted in the case network study to generate an “after” case study, which is referred to as the tuned Chicago PM network.

The parameters adjustments included 1) a change in queue discharge headway from 1.8
seconds to 1.7 seconds at the problem link, 2) a change in the start-up lost time from 2.0 seconds to 1.8 seconds at the problem link, and 3) a reduction in the probability for the first and second vehicles in queue to join a downstream spillback from 80% and 40% percent to 70% and 20%, respectively. The first two adjustments are consistent with traffic engineering principles since commuter traffic in large metropolitan areas may exhibit a high level of aggressiveness in peak traffic conditions. The third change is only meaningful from the CORSIM perspective in the sense that these variables are very hard to calibrate in the field.

The model with adjusted parameters was simulated 100 times. The application of the failure detection procedure indicated that only eight replications still had simulation failures, an 80% drop from the baseline model results of 38 failure runs. Based on the sample, the 95% confidence interval for the failure probability is 8±5.3%, or from 2.7% to 13.3%. The results of the system queue time distribution are plotted in Figure 6.6.

![Distribution of System Queue Time](image)

Figure 6.6 Distribution of SQT in Simulation with Adjusted Parameters

It is shown that compared to the distribution of SQT in the baseline network study (as
shown in Figure 6.1), the right tail of SQT is now almost completely removed. In terms of basic statistics, the average system queue time for the “good” runs (denoted by blue bars) is now 208 vehicle hours, a 19% decrease from that in the base case simulation. The median is 207 vehicle hours. The standard deviation is 19 vehicle hours, which is only around one fifth that in the base case.

Once again, the detected failure replications were analyzed to identify the critical locations and the possible contributing factors to simulation failures. The analysis results are shown in Tables 6.10 and 6.11. It is noted that although the failure probability has dropped from 38 percent to eight percent, the spatial pattern of their occurrence is virtually identical to the base case. That is, the intersection of Orleans at Grand (Node 9) still plays a key role in the initiation of failures, and the problems still concentrated on the northbound and eastbound approaches.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node B-Node</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 9</td>
<td>Southbound Orleans at Grand</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>34 9</td>
<td>Eastbound Grand at Orleans</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>9 33</td>
<td>Southbound Orleans at Illinois</td>
<td>2</td>
<td>25%</td>
</tr>
<tr>
<td>37 33</td>
<td>Eastbound Kingsbury at Orleans</td>
<td>2</td>
<td>25%</td>
</tr>
</tbody>
</table>

Table 6.10 Critical First-Failing Links in the Tuned Case Study

<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Orleans at Grand</td>
<td>6</td>
<td>75%</td>
</tr>
<tr>
<td>33</td>
<td>Orleans at Illinois</td>
<td>3</td>
<td>38%</td>
</tr>
</tbody>
</table>

Table 6.11 Critical First-Failing Nodes in the Tuned Case Study

Figure 6.5 shows the spatial pattern of the first failure frequencies for every intersection on the tuned network. By the same reasoning as the base study, we could conclude that
the section of Orleans Street from Grand to Illinois (Link 9=>33) is still the major contributor to the much reduced simulation failures.

Figure 6.7 Spatial Distribution of FFF on the Tuned Network

The similarity in failure patterns in the base and tuned networks was not surprising since it was reasonable that the contributing factors to simulation failures comprise a series of factors. Although some of them had already been addressed by adjusting traffic behavioral parameters, these adjustments could not completely eradicate the occurrence of simulation failures.

6.5 Summary

The case study of Chicago PM peak network began with the use default values for all traffic behavior parameters. As expected for an un-tuned network, the failure detection results yielded a 38% failure probability, which formed sharp contrast with the observation of no breakdown in the field. Therefore, it was concluded that the modeling process needed to be improved by tuning some key traffic behavior parameters.
The analysis of simulation failures identified critical network sites in the initiation of simulation failures. By attributing the detected simulation failures to a permissive-left-turn movement in a major corridor, it designated several critical traffic parameters for a sensitivity analysis to mitigate the current high probability of simulation failures.

Using a combination of simplified regression models, an adjusted set of traffic behavioral parameters was conceived for this network. The regression analysis predicted that there would be a significant reduction in simulation failures when an adjusted set of parameters was used. The later verification test confirmed the mitigation effect on failure probabilities (38% to 8%), by feeding the solution parameters back into the baseline network.

The failure analysis on the tuned network shows a similar failure occurrence pattern as the base network analysis. The results indicated that although some contributing factors have been already adjusted, the simulation failures cannot be totally eradicated by solely adjusting the selected traffic parameters. This verified that the high probability of simulation failures is very likely to be due to a combination of simulator- and simulation-related factors.
CHAPTER 7: EVALUATION OF CHICAGO AM PEAK NETWORK

This case study is intended to demonstrate the effect of the propose failure detection and analysis method by applying it to the same traffic network under different demand and control conditions. It is focused on the analysis of the AM peak hour for the Chicago network described in Chapters 5 and 6.

7.1 Network Description and Study Design

Network Description

The AM Chicago network is geometrically identical to the PM network. However, the demand distribution over the network has been altered, as depicted in Figure 7.1.

Figure 7.1 Illustration of Demand Changes between AM and PM Periods

It is noted from the above figure that compared to PM, the AM network had more vehicles traveling southbound and eastbound, and fewer vehicles traveling northbound
and westbound. This corresponds to a higher inflow from outside the central business district (CBD), which is located on the south-eastern portion of the network.

In order to adapt to the changing traffic patterns, a different traffic signal control scheme was implemented in the AM peak. Changes in the signal plan were implemented to service the higher AM southbound and eastbound movements. Thus, the AM network described in this chapter is reconstructed based on the PM network, with a modified traffic input demand pattern and a new signal plan.

Case Study Design

Similar to the PM network simulation, the simulation of the AM Chicago network started with an un-tuned network with default traffic behavioral parameters. This initial network served as the base case network for the AM studies. The simulation detection procedure was applied for the diagnosis of simulation failures.

Even though the data indicate that the AM and PM networks had very different traffic demand patterns, it is reasonable to expect that both networks serve the same driver population. Thus, the driver behavioral parameters should be fairly consistent between the two networks. A set of selected traffic parameters has been developed from the PM network studies. These parameter values should be applicable to the AM network, as well. Thus, the base model was reconstructed with the solution parameter set derived from the PM studies in Chapter 6, resulting in a tuned network. The application was intended to assess whether the parameters developed for the PM analysis can be transferable and indeed improve model performance when applied to the AM peak.
It was observed both from the simulation and the field data that the AM network was operating under capacity. This lessens the chance of observing a significant number of simulation failures. To demonstrate the effectiveness of the method, demand volumes were artificially increased via a growth factor, so as to induce simulation failures. When a meaningful sample of failures was obtained for the un-tuned model, the failure detection procedure was re-applied and its validity re-checked.

The analysis for the base demand model is described in Section 7.2 and 7.3, while that pertaining to the increased demands is described in Section 7.4 and 7.5.

7.2 Base Case Study

Similarly, the simulation of the AM Chicago network began with an un-tuned network with default traffic parameters in CORSIM. Since the AM network was geometrically identical to the PM’s, the modeling process was completed by modifying the PM network with a new traffic demand pattern and associated signal control plans.

The model was simulated with 100 replications, and the summary statistics for each replication were collected for use in the statistical analysis. The system queue time (SQT) was similarly chosen as the representative traffic MOE. A plot of the system queue time distribution is shown by the solid blue bars in Figure 7.2. The figure shows the distribution is peaked to the left and has a thin right tail. Thus, most replications had a SQT distributed in a narrow band. The average system queue is 182 vehicle hours, the median is 181 vehicle hours, and the standard deviation is 9 vehicle hours.
The failure detection procedure was applied to diagnose the validity of each replication. The detection results, as depicted in the above figure by the red bars for failure runs, indicated that only three replications resulted in simulation failures, with two of them distributed on the right tail of the entire distribution (see Figure 7.2). Based on this sample, the 95% confidence interval for the failure probability is 3±3.3%, or (0, 6.3%). The exclusion of these three failure replications made the simulation outputs even more homogeneous between replications. The average system queue time for those good runs only is 180 vehicle hours, and the standard deviation is only 4 vehicle hours.

For the three failure replications, the failure occurrence patterns were analyzed with the proposed spatial analysis procedure. These links and nodes having the earliest failure occurrence are summarized in the following Tables 7.1 and 7.2. The tabular results show that Link 25=>26, which correspond to the section of Erie Street from Wells to LaSalle, experiences capacity problems and lead to simulation failures. However, as the number of
simulation failure observations was small, the current analysis does not yield an adequate sample size from which to derive solid conclusions.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node</td>
<td>B-Nnode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>25</td>
<td>Southbound Wells at Erie</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>Eastbound Erie at LaSalle</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Southbound Franklin at Ohio</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>Southbound Franklin at Grand</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>Northbound Franklin at Grand</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>Eastbound Erie at Wells</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>Southbound Franklin at Illinois</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>33</td>
<td>Eastbound Kingsbury at Orleans</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>84</td>
<td>Northbound Franklin Exit</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7.1 Critical First-Failing Links in the Base Case Study

<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Erie at Wells</td>
<td>2</td>
<td>67%</td>
</tr>
<tr>
<td>26</td>
<td>Erie at LaSalle</td>
<td>2</td>
<td>67%</td>
</tr>
<tr>
<td>6</td>
<td>Franklin at Ohio</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>10</td>
<td>Franklin at Grand</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>32</td>
<td>Franklin at Illinois</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>33</td>
<td>Orleans at Illinois</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>84</td>
<td>Franklin at Huron</td>
<td>1</td>
<td>33%</td>
</tr>
</tbody>
</table>

Table 7.2 Critical First-Failing Nodes in the Base Case Study

The spatial pattern of failures is plotted in the following Figure 7.2. It exhibits a scattered pattern on the network. This is partly due to the small number of failure observations, which are inadequate to identify the critical sites. Nevertheless, since the Erie, Franklin, and Illinois Streets were all minor streets on the network and susceptible to traffic spillback, the failure occurrence on these links could be possibly due to traffic spillback from upstream links.
7.3 Tuned Case Study

In the AM period, the majority of traffic was headed south and east to the Chicago CBD; while in the PM a larger portion of traffic was traveling north and west to the expressway away from the CBD (see Figure 7.1). Thus, it was reasonable to assume that both the AM and PM networks serve the same driver population, and that the driver behavioral parameters in CORSIM should be consistent in both peaks.

Subsequently, the base case network was tuned by applying the pre-calibrated driver behavioral parameters from the PM study (see Section 6.4). Specifically, the vehicle mean queue discharge headway was set at 1.7 seconds, the start-up lost time was set at 1.8 seconds, and the spillback probabilities were set at 70% and 20% for the first and second vehicles in queue, respectively.
This tuned model was simulated with 100 replications, and summary statistics for each replication were obtained to perform a statistical analysis. As the selected representative MOE, the distribution of system queue time is plotted in Figure 7.4. The mean, median, and standard deviation of SQT are respectively 173, 173, and 4 vehicle hours.

![Distribution of System Queue Time](image)

Figure 7.4 Distribution of SQT in the Tuned Case Simulation

The proposed failure detection method was applied to the simulation. It was not surprising to find that even with the same detection method and pre-calibrated thresholds, no failure replications were detected. Thus, the pre-calibrated traffic parameters eliminated all (albeit small number of) simulation failures in the AM simulation network.

The analysis of the input data indicated that the total entry volumes to the AM network were around 14,000 vehicles, while those for the PM were around 13,500 vehicles for PM. Thus, even with a slightly higher level of total demand, the AM network simulation demonstrated a much smaller probability of simulation failures than the PM network.
This observation can be explained by a more even distribution of traffic demand during the AM network. The subject network has only two major corridors for northbound traffic, both of which were two-way streets. By contrast, there were two one-way corridors and two two-way streets for southbound traffic. Since the traffic demand in the AM is characterized by a larger proportion of southbound traffic, it was more easily handled by the prevailing network configuration.

7.4 Test Case Study

Development of Test Case

The previous base case and tuned case studies had shown that the AM network was operating under capacity at the current traffic demand levels. In order to analyze the effect of the high demand-to-capacity ratios on simulation failures, a demand ratio test was performed by applying a uniform demand growth factor for all entering traffic. The intent was to (a) determine the point at which the network breaks down and to (b) obtain a larger sample size of simulation failures over which the detection procedure can be tested. It should be noted that this test assumes unchanged route selection and driver behavior in highly congested conditions. Thus, the turning probabilities and traffic behavioral parameter values in the tests were taken to be identical to the pre-tuned values.

The demand growth factor was applied at intervals of 5%. The test results are illustrated in the following Figure 7.5. It is shown in this figure that with a network demand ratio of 1.05, there are no simulation failures in both base and tuned case studies; when the demand ratio increases to 1.10, 20% of replications are reported as simulation failures in the base case, while no failures are found in the tuned case study. When the demand ratio
increased to 1.15, 85% of the base case runs and 40% of the tuned case runs are found to have simulation failures. When the demand ratio reaches beyond 1.2, all replications for both cases are found to be failure runs.

Thus, the demand ratio of 1.15 (which yielded around 40% of failure replications in the tuned case study and 85% failure replications in the base case study) denotes a marginal demand level for potential network breakdown. This ratio was used to construct the test case study. The test case was intended to perform network analysis from a traffic engineering perspective.

Simulation Analysis Results

The test case network was simulated with an expanded sample size of 100 replications, and the simulation outputs were analyzed again using the proposed failure detection and analysis. It was found that 43 replications resulted in failures. The 95% confidence
interval of it is 43±9.7%, or (33.3%, 52.7%). The distribution of system queue time is plotted in Figure 7.6 below, with good runs denoted by blue bars and failure replications by red bars. The mean, median and standard deviation are 343, 299 and 104 vehicle hours, respectively. Obviously the test case has a much increased level of SQT, which reflects the impact of the increased traffic demand on the network.

![Distribution of System Queue Time](image)

Figure 7.6 Distribution of SQT in the Test Case Simulation

The detected failure replications were analyzed using the proposed analysis procedure. The identified critical first-failure links and nodes are summarized in Tables 7.3 and 7.4, respectively.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node</td>
<td>B-Node</td>
<td>Eastbound Erie at Wells</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>Eastbound Erie at LaSalle</td>
<td>22</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>Eastbound Erie at Orleans</td>
<td>16</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>Northbound Franklin at Erie</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>Eastbound Erie at Franklin</td>
<td>15</td>
</tr>
<tr>
<td>85</td>
<td>25</td>
<td>Southbound Wells at Erie</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Northbound Franklin at Ontario</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Northbound Franklin at Ohio</td>
<td>12</td>
</tr>
<tr>
<td>84</td>
<td>24</td>
<td>Southbound Franklin at Erie</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 7.3 Critical First Failing Links in the Test Case Study
It was found that the simulation failures tended to originate along one minor street on the network, which is Erie Street (comprised of Nodes 23, 24, 25, 26, and 38 in the study area), a two-lane two-way facility. The street has stop sign controls at the intersections of Erie at Franklin (Node 24), Erie at Wells (Node 25), and Erie at Clark (Node 38). Since stop sign controlled intersections have lower capacity when the priority flows are heavy (which is the case for this analysis), it is plausible that this minor street will experience capacity problems with a uniformly increased demand ratio.

To study the relationship between the key intersections, the spatial distribution of first-failure intersections is plotted in the following Figure 7.7. It is shown in the plot that the intersection at Wells and Erie (Node 25) has the highest failure frequency, followed by its neighboring intersections LaSalle at Erie (Node 26) and Franklin at Erie (Node 24), which together form a local peak pattern of failure occurrence. Thus, the most critical location appears to be the intersection of Erie at Wells.

<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Erie at Wells</td>
<td>24</td>
<td>56%</td>
</tr>
<tr>
<td>26</td>
<td>Erie at LaSalle</td>
<td>22</td>
<td>51%</td>
</tr>
<tr>
<td>24</td>
<td>Erie at Franklin</td>
<td>19</td>
<td>44%</td>
</tr>
<tr>
<td>23</td>
<td>Erie at Orleans</td>
<td>16</td>
<td>37%</td>
</tr>
<tr>
<td>2</td>
<td>Franklin at Ontario</td>
<td>14</td>
<td>33%</td>
</tr>
<tr>
<td>6</td>
<td>Franklin at Ohio</td>
<td>13</td>
<td>30%</td>
</tr>
<tr>
<td>10</td>
<td>Franklin at Granck</td>
<td>11</td>
<td>26%</td>
</tr>
</tbody>
</table>
Figure 7.7 Spatial Distribution of the First Failure Frequencies in the Test Case Study

The graphical plot shows that among the three downstream links of the problem intersection (Node 25), the intersection LaSalle at Erie (Node 26) is the destination node that exhibited more simulation failures. Thus, the failure causing location appears to be the section of Erie Street from Wells to LaSalle (Link 25=>26).

Further analyses were performed by viewing the animation files of the detected failure replications. A sample of failure replications was rerun with a normal running mode to generate animation files. Visual observations of these animation files verified the above conclusions regarding the judgment on the decision of critical locations.

The analysis indicated that traffic congestion on the link of Erie from LaSalle to Clark (Link 26=>38 on the network map) initiated simulation failures by causing traffic spillback to the upstream intersection of Erie at LaSalle. Specifically, the problem link was controlled by a stop sign in the field, with the traffic priority given to traffic on Clark Street. When the traffic demand increased, vehicles on Erie formed long waiting queue while yielding to traffic on Clark Street and blocked the access to the problem link. This
blockage formed traffic spillback to the upstream node (26) and upstream links (86=>26,
25=>26, and 4=>26). Among the three upstream links, the Erie Street from Wells to
LaSalle (Link 25=>26) was the most vulnerable one in consideration of that it is a two-
lane two-way minor street with a fair level of traffic demand. Finally, incoming traffic
demand accumulated at the problem link, blocked nearby areas, and formed
unrecoverable gridlock in the simulation.

7.5 Supplemental Traffic Improvement Analysis

The above study results have shown that the critical link on the AM network was along
Erie Street from LaSalle to Wells, which is vulnerable to the traffic spillback from the
stop-sign controlled downstream intersection, Erie at Clark. To address this problem,
traffic improvement plans (TIP) can be proposed along two directions: one is to improve
the capacity of Erie Street to increase its resistance against traffic spillback, and the other
is to improve the performance of the intersection Erie at Clark so as to reduce the chance
of traffic spillback.

Among other options, optimizing traffic control at the key intersection is an inexpensive
treatment to improve its performance. Thus, we propose a yield control at the problem
intersection to replace the original stop sign. The impact of this change is evaluated using
the proposed failure detection and analysis procedure, and the case is labeled TIP.

Similarly as previous studies, the TIP case network was simulated with 100 CORSIM
replicate runs. The system queue time distribution is plotted in Figure 7.8. The mean,
median, and standard deviation are respectively 334, 290, and 124 vehicle hours. The
figures shows that the SQT in the TIP case study has displayed almost the same pattern to that of the test network (see Figure 7.6).

![Distribution of System Queue Time](image)

Figure 7.8 Distribution of System Queue Time in the TIP Case Study

The failure detection procedure revealed that 36 among 100 replicate runs were actually failure runs (marked by the red bars in Figure 7.8). Compared to the original network, the sample failure probability has slightly dropped from 43% to 36%. The 95% confidence interval is 36±9.4%, or (26.6%, 47.4%), a little lower than that in the original network.

The failure analysis procedure identified the first-failing sites in the origination of simulation failures. The critical links and intersections are shown in Tables 7.5 and 7.6, respectively.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node</td>
<td>B-Nnode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>Eastbound Erie at LaSalle</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>Eastbound Erie at Wells</td>
<td>19</td>
</tr>
<tr>
<td>85</td>
<td>25</td>
<td>Southbound Wells at Erie</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 7.5 Critical First Failing Links in the TIP Case Study
<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Erie at LaSalle</td>
<td>23</td>
<td>64%</td>
</tr>
<tr>
<td>25</td>
<td>Erie at Wells</td>
<td>20</td>
<td>56%</td>
</tr>
<tr>
<td>24</td>
<td>Erie at Franklin</td>
<td>10</td>
<td>28%</td>
</tr>
</tbody>
</table>

Table 7.6 Critical First Failing Links in the TIP Case Study

It is shown in the above tables that the problem intersection is Erie at LaSalle (Node 26), and the problem approach is the eastbound approach of it (25=>26). This is similar to the results in the original network. Further, the spatial distribution of the first-failing intersections is plotted in Figure 7.9.

![Spatial Distribution of First-Failing Intersections](image)

Figure 7.9 Spatial Distribution of the First Failure Frequencies in the TIP Case Study

The spatial pattern in the above figure has almost the same peak at the intersections Erie at Wells and Erie at LaSalle. Also, the supplemental animation observation of these failure runs indicated that the problem still persists in the intersection Erie at Clark, causing traffic spillback to the problem area.
The above analysis indicated that the change of traffic control at the key intersection did not significantly solve the existing problem and reduce the number of simulation failures. Thus, additional traffic improvement plans should be considered to improve the traffic performance on the study network.

7.6 Summary

In the PM network simulation, an un-tuned network was first simulated as the base case study. The failure detection results showed that there was a fairly small chance (3%) of simulation failures occurrence. Although the failure occurrence patterns did show a local tendency of failure origination, the small number of observations did not allow the analyst to make any significant conclusions regarding the simulation process and the subject network.

Since AM and PM were observed to service the same driver population, the pre-calibration results in PM study was used to construct a tuned case model. It was shown that in this tuned network simulation, no failures occurred. This improvement shows that the pre-calibration product from the PM studies was similarly effective in the AM.

A demand ratio test demonstrated that the ratio of 1.15 was likely to result in a marginal traffic breakdown for the tuned traffic network. New demand at this ratio formed a test case study which was intended to investigate the capacity features of the subject network. It was shown that if the traffic assignment pattern was unchanged, the minor street on the north portion of the network was very vulnerable to traffic spillback caused by a stop controlled intersection.
A traffic improvement plan was proposed to change the traffic control at the problem intersection from stop to yield. However, the simulation results indicated that at this capacity level, the proposed adjustment of traffic control alone was not sufficient to solve the existing problem.

It is noted that since the simulation of AM was assumed in a different stage from PM, the failure detection and analysis procedure demonstrated different utilities. In the PM study, the analysis procedure mainly served as a pre-calibration procedure and the detection results were utilized to improve the simulation modeling process. By contrast, in the AM studies, the major purpose was used to analyze the subject network from a traffic engineering perspective, and the final goal was to predict and overcome capacity constraining areas on the study network.
CHAPTER 8: EVALUATION OF NCSU CAMPUS NETWORK

The North Carolina State University (NCSU) Campus is the third network application of the proposed failure detection and analysis procedure. As a typical university transportation environment, the NCSU network has special features in its geometric and traffic demand patterns that are very different from an urban traffic network simulated in the previous chapters. Despite the differences, the proposed failure detection and analysis methodology is as applicable to this network as to the Chicago networks.

8.1 Case Study Description

Network Description

The NCSU network is depicted in Figure 8.1. The network includes 82 major surface street segments and 43 at-grade intersections. Among them 18 intersections are controlled by traffic signals; the rest are controlled by traffic signs and an urban compact roundabout at the east entrance to the campus. The study time period was from 16:30 PM to 18:00 PM on a school day. Around 15,000 vehicles were input from 33 different network entries during the study time period. The campus network was known to experience severe traffic congestion at some critical sites during the peak.
The NCSU network represents a typical university transportation environment. It is characterized by low speed limits enforced by speed humps and the like installed at critical sites, shared paths with transit and non-motorized traffic, and roadside parking. As for traffic control, un-signalized intersections predominate in this network. These features were therefore considered in the CORSIM environment.

While CORSIM can simulate low speeds, it cannot model traffic calming devices (e.g., humps) which then need to be treated by other ways, such as a reduced free flow speed. CORSIM is capable of modeling high volume transit service (buses in particular). However, currently it cannot directly model roadside parking, but perhaps only its effect, on link capacities.
Simulation of pedestrians is a known difficulty for CORSIM (e.g., the Smartest, 1997). While CORSIM can approximate the impacts of pedestrians on conflicting vehicle movements at a signalized intersection, it is unable to simulate details of pedestrian behavior at, for example, sidewalks and crosswalks. This posed difficulty in the modeling of this network because the study period was a peak time for both vehicles and pedestrians. In view of this, dummy intersections sometimes were then coded to account for reduced capacity and increased vehicle delay at the crosswalk sites.

CORSIM is able to simulate conventional un-signalized intersections with a stop or yield sign. However, it has limited capabilities in simulating roundabouts. In the modeling process, the roundabout on the study network was approximated by a group of consecutive curved links and a series of un-signalized T-intersections.

Case Study Design

The NCSU Department of Transportation (NCSU DOT) began developing the campus network simulation in August, 2003. The project included two parts, a transportation planning model and a traffic operation model (Covington, 2003). In the blueprint of the project, the study objectives were to estimate the future travel demand and to identify critical transportation problems. Particularly, it was expected that a CORSIM model could 1) simulate current traffic conditions and find out critical transportation problems, and 2) apply forecasted travel demand from a TransCAD (Transportation Planning Software, Caliper inc.) model, and 3) provide an operational analysis for the prospective relocation of the engineering school in 2006. Our research focuses on the first objective only.
In the CORSIM model development stage, the network geometry was determined by traffic engineers using a GPS device. Part of traffic counts were directly obtained from the North Carolina Department of Transportation (NCDOT), the City of Raleigh Department of Transportation (RDOT), and others were manually collected by NCSU traffic engineers and transportation students. An incomplete model calibration was performed on critical gap parameters in order to match the observed queue length in simulation with the field. This partially-calibrated model was referred to as an initial network to begin our studies in Section 8.2.

The simulation of the initial network was analyzed using the proposed simulation failure detection and analysis procedure. The initial purpose was to debug the current simulation and to provide a more robust model for further analysis. With the identification of some errors in the initial network, the network was reconstructed using the information. This formed the base case network, as described in Section 8.3.

The initial network also benefited from a review by a panel of simulation experts. They provided critiques about the choice of free flow speeds on the network. These comments were again reviewed by the author. As a result, a more consistent set of free flow speeds were applied to the base case network, which constituted an adjusted network in Section 8.4.

The failure detection and analysis procedure indicated that all the above three networks generated an extremely high number of failure replications. Thus, a tuning study was performed on key traffic parameters. It was found that a high circulating speed in the roundabout could ease the problem and reduce the chance of simulation failures.
The analysis of the tuned network in Section 8.5 indicated that simulation failures were eased though still existing at a stop-sign controlled intersection. The problem was finally attributed to the inadequate ability of CORSIM to simulate un-signalized intersections.

8.2 Initial Network Study

The study began with an initial case network. This network was seen as incomplete in the sense that the modeler claimed it as a partially calibrated model, and implied the necessity for further tuning and improvement. The failure detection and analysis procedure was then applied to the network to diagnose the revised model.

One notable feature in the study is that the entire simulation period in this initial network was divided into six fifteen-minute intervals. This is a common unit in traffic engineering analyses (e.g., data collection, output analysis, HCM analysis, etc.). The use of a longer detection unit would possibly yield a lower chance of false alarms (Type I error), but a higher chance of missing failures (Type II error). In order to maintain consistency, the simulation period was redefined as 18 five-minute intervals.

One hundred replications were executed. System queue time was again chosen as the representative MOE. The distribution of system queue time in this study is plotted in Figure 8.2. As the figure shows, the system queue time distribution has a very long right tail. The mean, median, and standard deviation of SQT are 1441, 1490 and 520 vehicle hours, respectively.
The failure detection procedure identified 95 failure runs (shown above by the red bars). The 95% confident interval of this resulting failure probability is $95\pm4.3\%$, or $(90.7\%, 99.3\%)$. This was an unexpectedly large number, particularly in light of the long detection time unit in this study. Almost all the right-tail replications are failure runs that contain serious traffic blockage (evidenced by disabled link discharging capacities) for at least 5 minutes by the end of simulation. The detection results highlighted the need to diagnose the current simulation model from the perspective of simulation failure detection and analysis.

Since there was a high probability of failure replications, two supplemental response variables, the Number of Final Failure Links (FFL) and the Duration of Failure Time (FT), were added to analyze the degree of failures. For any given replication, The Number of Final Failure Links count the actual number of failure links in the last time interval, while the Duration of Failure Time count the time duration from the first failure interval to the end of simulation. For the initial case study, the average FFL of the 95
failure replications was 63 links, and the average FT was 43 minutes. Both values denoted a high degree of simulation failures occurred in those failure runs.

The failure analysis procedure identified critical links in the simulation. As shown in Tables 8.1 and 8.2, there is a long list of first-failing links and nodes. This is because the long detection interval allows for a great possibility of traffic spillback, so that many locations can be blocked in the same time interval. Nonetheless, the results demonstrate that the most critical site is the roundabout area comprised of Nodes 118, 119, and 120. Table 8.2 shows that among the top five critical nodes, three of them (119, 120, and 118) are the component nodes of the roundabout, and the other two (7 and 9) are its neighboring nodes.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node B-Node</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 119</td>
<td>Northbound Pullen at Stinson</td>
<td>85</td>
<td>89%</td>
</tr>
<tr>
<td>31 120</td>
<td>Eastbound Stinson at Pullen</td>
<td>84</td>
<td>88%</td>
</tr>
<tr>
<td>120 119</td>
<td>Pullen at Stinson Roundabout</td>
<td>83</td>
<td>87%</td>
</tr>
<tr>
<td>7 118</td>
<td>Southbound Pullen at Stinson</td>
<td>82</td>
<td>86%</td>
</tr>
<tr>
<td>119 118</td>
<td>Pullen at Stinson Roundabout</td>
<td>82</td>
<td>86%</td>
</tr>
<tr>
<td>118 120</td>
<td>Pullen at Stinson Roundabout</td>
<td>81</td>
<td>85%</td>
</tr>
<tr>
<td>24 7</td>
<td>Eastbound Primrose at Pullen</td>
<td>73</td>
<td>77%</td>
</tr>
<tr>
<td>6 7</td>
<td>Southbound Pullen at Primrose</td>
<td>64</td>
<td>67%</td>
</tr>
<tr>
<td>5 9</td>
<td>Northbound Pullen at Dunn</td>
<td>58</td>
<td>61%</td>
</tr>
<tr>
<td>115 9</td>
<td>Eastbound Dunn at Pullen</td>
<td>53</td>
<td>56%</td>
</tr>
<tr>
<td>4 5</td>
<td>Eastbound Cates at Pullen</td>
<td>30</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table 8.1 Critical First-Failing links in the Initial Case Study

<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>Pullen at Stinson Roundabout</td>
<td>87</td>
<td>92%</td>
</tr>
<tr>
<td>120</td>
<td>Pullen at Stinson Roundabout</td>
<td>85</td>
<td>89%</td>
</tr>
<tr>
<td>118</td>
<td>Pullen at Stinson Roundabout</td>
<td>83</td>
<td>87%</td>
</tr>
<tr>
<td>7</td>
<td>Pullen at Primrose</td>
<td>73</td>
<td>77%</td>
</tr>
<tr>
<td>9</td>
<td>Pullen at Dunn</td>
<td>64</td>
<td>67%</td>
</tr>
<tr>
<td>5</td>
<td>Pullen at Cates</td>
<td>35</td>
<td>37%</td>
</tr>
</tbody>
</table>

Table 8.2 Critical First-Failing Nodes in the Initial Case Study
A spatial distribution of the first failing intersections is plotted in Figure 8.3. The brown bar on the right side of the map denotes the location of the problem roundabout.

![Spatial Distribution of First-Failing Intersections](image.png)

Figure 8.3 Spatial Distribution of the First Failure Frequencies in the Initial Case Study

The analysis was intended to diagnose the current model and guide attempts for further improvements. Once the analysis indicated problems at the roundabout area, the coding of the roundabout was scrutinized. A review of the current coding found that a yield sign at the southbound approach of the roundabout was missing. Also, the animation files showed that the roundabout was poorly approximated by a triangle, and the lane width of the circulating lane was 12 feet.

Another problem noticed was the lane utilization. It was observed that some vehicles utilized wrong lanes in the animation files. Thus, the coding of lane utilization was checked. It was found that although the lane utilization in the first time interval was specified correctly, the following time intervals lacked any specification. Thus, after the first 15 minutes, there were actually no restrictions on the lane usage in the model.
As a correction, the traffic control features at the roundabout were first rectified. The component links were recoded with curved links with an increased lane width of 18 feet. Further, the lane utilization specifications in the first time interval were applied to the entire simulation period. These changes led to a new base network.

To permit failure detection at a more refined level, the simulation time period was re-divided into 18 five-minute time intervals, so that the failure detection unit in the base network study was five minutes. This new detection unit was used for all the thereafter studies in this chapter.

8.3 Base Case Study

The base case network was simulated with 100 replications and the failure detection process was applied thereafter. The resulting system queue time distribution is plotted in Figure 8.4. The mean, median and standard deviation of SQT are 1536, 1450 and 299 vehicle hours, respectively.

![Distribution of System Queue Time](image.png)

Figure 8.4 Distribution of SQT in the Base Case Simulation
It was surprising to note that again all replications displayed an extremely high SQT and were diagnosed to be failure replications by the proposed failure analysis procedure. This was associated with the debugging changes made to the base network. In the initial model, the lack of lane utilization specifications and traffic control at one approach of the roundabout exaggerated the overall link capacity. The correction of these errors, therefore, resulted in a higher level of traffic congestion.

As for the degree of failure, the average FFL of was 27 links, and the average FT was 24 minutes. They were apparently improved from those in the initial case study.

The failure analysis procedure identified the critical first failing sites in this corrected base model. As shown in Tables 8.3 and 8.4, the failure originating areas seem to have shifted from the roundabout area to other locations, which confirmed the positive effects of the changes made in the coding of the roundabout.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node</td>
<td>B-Node</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>29</td>
<td>Westbound Yarborough at Dan Allen</td>
<td>41</td>
</tr>
<tr>
<td>430</td>
<td>29</td>
<td>Dan Allen Deck Exit to Dan Allen</td>
<td>32</td>
</tr>
<tr>
<td>227</td>
<td>103</td>
<td>Pay Lot Exit to Dan Allen</td>
<td>28</td>
</tr>
<tr>
<td>117</td>
<td>430</td>
<td>Westbound Yarborough at Brooks</td>
<td>23</td>
</tr>
<tr>
<td>202</td>
<td>106</td>
<td>Northbound Nazareth at Western</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 8.3 Critical First-Failing Links in the Base Case Study

<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Dan Allen Deck Exit to Dan Allen</td>
<td>51</td>
<td>51%</td>
</tr>
<tr>
<td>103</td>
<td>Pay Lot Exit to Dan Allen</td>
<td>28</td>
<td>28%</td>
</tr>
<tr>
<td>430</td>
<td>Yarborough at Brooks</td>
<td>23</td>
<td>23%</td>
</tr>
<tr>
<td>106</td>
<td>Nazareth At Western</td>
<td>20</td>
<td>20%</td>
</tr>
</tbody>
</table>

Table 8.4 Critical First-Failing Nodes in the Base Case Study
The spatial distribution of the First Failure Frequencies (FFF) is plotted in Figure 8.5. As the figure shows, the failures are now concentrated at the intersection of Dan Allen parking deck at Dan Allen Road (the dark red bar). The intersection is located on a major corridor west of the campus. It is known to experience severe congestion (stop-and-go traffic) during the PM peak.

Field observations indicate that although Dan Allen Road is in a “stop and go” situation, forced yielding behavior can be observed in the field. Specifically, traffic from the minor streets (Dan Allen Deck Exit and Yarborough Street) is often allowed to intersection by cooperating drivers on the major street, so that there is no complete blockage on the minor streets in reality. Thus, there is a discrepancy between the simulation and the field behavior. The problem could be mitigated by changing the setting of free flow speeds, as discussed in the next section.
8.4 Adjusted Case Study

The initial network was reviewed by traffic simulation experts from HNTB consultants (HNTB North Carolina, 2004). They were concerned about the inconsistency of the free flow speeds between the simulation and the field. In the initial CORSIM model, the free flow speeds on the campus area were too high in most places compared to the field data. We reviewed these comments and agreed that the free-flow speeds should be recoded to match simulation settings with field observations. This alteration was made on the base network. The results comprised an adjusted network.

The setting of free flow speeds in the adjusted network included:

- Western Boulevard: 45 MPH, now consistent with the field posted speed
- Gorman Street: 35 MPH, now consistent with the field posted speed
- Hillsborough Street: 25 MPH along campus area (from Dan Allen to Pullen) while 35 MPH along non-campus area, now lower than the field posted speed
- Pullen, Dan Allen (except otherwise described), Morrill, and Sullivan Street: 25 MPH, now consistent the field posted speed
- Parking lot (deck): 10 MPH, Pedestrian walk (Sections of Dan Allen): 10 MPH, now consistent with the field posed speed
- Other university roads: 15 MPH, now consistent with the field posed speed

The adjusted network was simulated with 100 replications. The system queue time is plotted in Figure 8.6. The mean, median, and standard deviation are 981, 924 and 211 vehicle hours, respectively. It is noted that compared to the base network, lower system
queue time is achieved due to the altering of free flow speeds.

The failure detection procedure was again applied to the simulation. It indicated that there were one hundred percent failures. The average FFL was 37 links, and the average FT was 33 minutes. Compared to the base case network, the use of lower free flow speeds had a negative impact on the occurrence of simulation failures. In all, altering of free flow speeds above was not sufficient to reduce the failure probabilities and to generate any successful runs.

The failure analysis procedure identified the first-failing sites. As shown in Tables 8.5 and 8.6, the failure originating area shifted to include the intersection of Cates at Pullen (Node 5 on the network map), which is controlled by a stop sign on Cates Street.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node 4</td>
<td>Eastbound Cates at Pullen</td>
<td>46</td>
<td>46%</td>
</tr>
<tr>
<td>115</td>
<td>Collisium Deck to Cates</td>
<td>45</td>
<td>45%</td>
</tr>
<tr>
<td>3</td>
<td>Eastbound Cates to Collisium Deck</td>
<td>33</td>
<td>33%</td>
</tr>
<tr>
<td>122</td>
<td>Eastbound Cates at Morrill</td>
<td>24</td>
<td>24%</td>
</tr>
</tbody>
</table>

Table 8.5 Critical First-Failing Links in the Adjusted Case Study
The spatial distribution of the failure leading frequencies is plotted below in Figure 8.8. It is shown that the failure origination distribution has an apparent local peak. Though the intersection Pullen at Coliseum Deck at Cates (Node 4) has the highest number of first failure frequencies, the intersection of Cates at Pullen is most likely to be the failure causing site in initiating traffic blockages and spillbacks. Overall, the change of free flow speeds in the adjusted network had mitigated the previously identified problem on Dan Allen Drive (see purple bar in Figure 8.7).

Animations showed that the intersection Cates at Pullen, with a stop sign control, experienced capacity problems for left-turning vehicles from the minor street, thus causing spillback to block the upstream intersections. Field observations verified this
proposition. However, the 100% failure chance obviously amplified the problem. Thus, further tests were needed to improve the model by other tuning efforts.

Since the adjusted network still contained one hundred percent of simulation failures, further tuning studies were performed on selected traffic behavior parameters. The purpose was to mitigate the occurrence of failures and to generate successful runs in simulation. This is discussed in the next section.

8.5 Tuned Case Study

Parameter Test

Although the adjusted network did not provide any successful runs, the failure analysis demonstrated that with a more consistent setting of free flow speeds on the network, the locations of critical intersections matched field observations. Thus, it was used as the start point for further tuning of the model. The major purpose of tuning was to evaluate the sensitivity of selected traffic parameters and to achieve a lower level of failure probabilities.

Previous analysis indicated that the adjusted network had capacity problems in a stop sign controlled intersection. In order to address the problem related to the heavy left turn demand on the minor street, specific traffic parameters were included in the tuning test to seek solution to this problem.

In summary, the consideration traffic parameters included two groups. One was a collection of global traffic parameters that can impact the link capacities in the simulation, particularly the left-turn capacities. The other was some local control parameters, which
have potential to improve the situation at the problem intersection.

For the first group, previous studies indicated that 1) start-up lost time (SLT), 2) queue discharge headway (QDH), and 3) spillback probabilities (SbPr) are critical traffic parameters for an urban traffic network. For this campus network with many sign controlled intersections, the analyst also presumed that 4) critical gap values (CritGp) that govern gap acceptance behavior at un-signalized intersections should be reassessed.

As for the second group, previous studies indicated that the intersection of Cates at Pullen was the critical site. The intersection was evaluated from the perspective of the capacity on the minor street. The evaluation was carried out from two perspectives. One was to increase the performance of minor street traffic, which has already been taken into consideration above in the test of critical gaps. The other was to promote a smooth traffic flow on the major street, Pullen Street. The animation showed that the Pullen Street was somehow hindered by the low efficiency of the roundabout downstream of the problem intersection. Thus, additional test parameters were chosen that included 5) the free flow circulating speeds (FFCS) and 6) the lane width of the roundabout (LW), and 7) the free flow speeds (FFS) near the problem intersection on Pullen Street.

Every test case was simulated with 30 replicate runs. The results are shown below.

- Effects of SLT, QDH and SbPr

The tests of SLT, QDH, and SbPr were carried out simultaneously. Previous studies indicated that low values of SLT, QDH, and SbPr could result in smaller failure probabilities. Thus, we tested two set of parameters, and contrasted the resulting failure
probabilities with the start point network. The results are shown below in Figure 8.8.

![Figure 8.8 Effects of SLT, QDH, and SbPr Test](image)

In the figure, cases A1, A2, and A3 have (SLT, QDH, SbPr1, SbPr2) with values (2.0, 1.8, 80%, 40%), (1.8, 1.7, 70%, 20%) and (1.6, 1.4, 70%, 20%), where A1 denotes the start point network (or, the tuned case network in Section 8.4). The figure shows that the changes in SLT, QDH, and SbPr did not reduce the chance of simulation failures.

Effects of Critical Gaps

Since the test network is characterized by having a large number of un-signalized intersections, a test was performed on the values of critical gaps at un-signalized intersections. By default, the distributions of critical gap values for near-side and far-side crossings are (56, 50, 46, 42, 39, 37, 34, 30, 26, 20) and (12, 21, 26, 31, 35, 39, 42, 46, 49, 51) in units of tenth of a second for driver types 1 to 10, respectively. The allowable ranges for them are (15, 75) and (10, 75), respectively. Thus, we designed three set of values for test, and the results are shown in Figure 8.9.
In the above figure, the critical gaps in network B1 are inherited from the initial tuning by the original modeler, and their values are (44, 44, 40, 37, 35, 34, 30, 26, 20) and (10, 20, 26, 31, 35, 39, 42, 46, 49, 51) for the near side and far side critical gaps. This setting was kept in the start point network as well as all other previous studies. Two other possibilities including B2 with (35, 30, 30, 30, 30, 30, 30, 30, 26, 20) and (10, 20, 26, 31, 35, 35, 35, 35, 35, 35) for the near side and far side critical gaps, and B3 with (15, 15, 15, 15, 15, 15, 15, 15, 15, 15) and (10, 10, 10, 10, 10, 10, 10, 10, 10, 10), were tested. From this figure we can see that the change of critical gaps did not reduce the chance of failure probabilities, either.

Effects of Roundabout Circulating Speed

Simulation animation showed that the roundabout along Pullen Street was the key intersection that apparently constrained the transportation capacity on that street. Thus, a test was performed on the free flow circulating speeds at the roundabout. The results are shown in Figure 8.10 below.
In the figure, networks C1, C2, C3, and C4 have roundabout circulating speeds of 10, 15, 20, and 25 mph, respectively. The selection of a high circulating speed is not meaningful in traffic engineering since it is in conflict with the field speed. However, as the simulation of roundabout is a known difficulty in CORSIM, the test of a high circulating speed can be seen as a means to mitigate the poor approximation of roundabout operation in CORSIM.

As the figure shows, the use of a high circulating speed can actually reduce the chance of simulation failures from 100% at 10 and 15 mph to 93% at 20 mph, and to 70% at 25 mph. These results implied that the approximation of roundabouts in CORSIM may produce more reasonable values when an unrealistic high circulating speed is adopted.

Thus, the adjustment of circulating speed was accepted, and network C4 was used as a new start point for the successive tuning studies.

- Effects of Roundabout Lane Width
The next test was performed on the lane width of the roundabout. Its effect has rarely been mentioned in previous CORSIM studies. However, due to the fact that there is a fair amount of bus traffic in reality at the roundabout area, the selection of a larger lane width is meaningful from the perspective of traffic engineering principles. Three cases were tested, and the results are shown in Figure 8.11.

![Test of Roundabout Circulating Lane Width](image)

In Figure 8.11, networks D1, D2, and D3 have roundabout circulating lane widths of 12, 15, and 18 feet, respectively. Among them, D2 represented the value inherited from the previous studies (the new start point network). The figure shows that the sensitivity of the failure probability to lane width is low. Therefore, the roundabout circulating lane width of 15 feet was preserved in the next iteration.

Effects of Pullen Free Flow Speed

The above two studies focused on the roundabout on Pullen Street, and it was found that a high circulating speed could reduce the chance of simulation failures in this simulation.
Further, we were interested to determine if a change of free flow speeds in other areas along the key street could further reduce the failure probabilities. A trial test was then performed by changing free flow speeds for the upstream and downstream links of the problem intersection (Cates at Pullen). The test results are shown in Figure 8.12.

![Test of Pullen FFS](chart.png)

Figure 8.12 Effects of Pullen Free Flow Speed Test

In Figure 8.12, test networks E1, E2, E3, and E4 have free flow speeds of 15, 20, 25, and 30 for the links upstream and downstream of the problem intersection, where E3 denotes the new start point network. However, there is no apparent tendency (i.e., no statistically significant change) between the four cases. Thus, the free flow speed of 25 mph was preserved.

In summary, five tests were executed to test seven different traffic parameters in the NCSU network simulation. The results indicated that the selection of a high roundabout circulating speed was the only effective countermeasure that can significantly reduce the failure probabilities. As a result, a test was constructed using this high circulating speed to reevaluate the network. This comprised the tuned network.
Tuned Network Study Results

The tuned network was simulated with 100 replications. Like all the previous studies, we analyze the network results from two aspects, system queue time representing a conventional perspective and first failure frequency representing a failure detection and analysis perspective.

The distribution of system queue time is plotted in Figure 8.13 below, where failure runs are denoted by the red bars and good runs by the blue bars. The mean, median and standard deviation of SQT are 682, 613 and 252 vehicle hours, respectively. In the figure, the system queue time is apparently distributed to the left of that in the adjusted case study (see Figure 8.6), with the only change made to the roundabout circulating speed.

In total 76 failure runs are reported, which denotes a slightly higher failure probability than that in the pilot study (70%) in the parameter test part which only included 30 replications. Based on this sample study, the 95% confidence interval of the failure
probability is 76±8.4%, or (67.6%, 84.4%). As for the number of final failure links and the duration of failure time, the FFL was 14, and the FT was 15 minutes. Both of them were significantly improved from the previous cases. Thus, the use of an unusually high roundabout circulating speed can effectively promote the successful execution of the NCSU campus simulation.

The failure analysis procedure indicated that the problem persisted in the same area, at the intersection of Cates at Pullen (shown in Tables 8.7 and 8.8). Since this finding matched the field observations, the results indicated that the tuned network was similarly valid from the perspective of traffic engineering analysis.

<table>
<thead>
<tr>
<th>First-Failing Link</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Node B-Nnode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 5</td>
<td>Eastbound Cates at Pullen</td>
<td>39</td>
<td>51%</td>
</tr>
<tr>
<td>115 4</td>
<td>Collisium Deck to Cates</td>
<td>29</td>
<td>38%</td>
</tr>
<tr>
<td>3 4</td>
<td>Eastbound Cates to Collisium Deck</td>
<td>25</td>
<td>33%</td>
</tr>
<tr>
<td>122 3</td>
<td>Eastbound Cates at Morrill</td>
<td>20</td>
<td>26%</td>
</tr>
<tr>
<td>105 3</td>
<td>Northbound Cates at Morrill</td>
<td>13</td>
<td>17%</td>
</tr>
</tbody>
</table>

Table 8.7 Critical First-Failing Links in the Tuned Case Study

<table>
<thead>
<tr>
<th>First-Failing Node</th>
<th>Network Location</th>
<th># First Failures</th>
<th>Percentage of Total Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Cates at Pullen</td>
<td>39</td>
<td>51%</td>
</tr>
<tr>
<td>4</td>
<td>Floyd/Collisium Deck to Cates</td>
<td>39</td>
<td>51%</td>
</tr>
<tr>
<td>3</td>
<td>Cates at Morrill</td>
<td>25</td>
<td>33%</td>
</tr>
</tbody>
</table>

Table 8.8 Critical First-Failing Intersections in the Tuned Case Study

The spatial distribution of first-failing intersections is plotted in Figure 8.14. It shows an apparent local peak at the intersection Cates at Pullen, with the eastbound approach being the critical site for failure occurrence.
The tuned network simulation contained 23% good runs. Hence, the failure probability was still too high compared to reality. Since the tuned network had the most plausible set of parameter values, this high failure probability can be attributed to simulator-related factors (the poor ability of CORSIM in modeling un-signalized intersection operations) and network-related factors (insufficient capacity of the problem intersection).

8.5 Summary

The NCSU campus network was simulated as the third case study for the evaluation of failure occurrence. Since the network has quite different geometric and traffic demand features from a typical urban network, the simulation was intended to test the transferability of the proposed failure detection and analysis method.

The application of the proposed failure detection procedure showed that with a five-minute detection interval, around 95% of the runs resulted in simulation failures. The failure analysis procedure shows a local peaking failure pattern centered at the Pullen-
Stinson roundabout, which directed us to find out some coding errors in the problem area. The debugging of errors in the initial model formed a base case network. The simulation of it yielded a surprising 100% chance of simulation failures with the failure detection time unit of 5 minute. This was explained by the negative effect on transportation capacities of the debugging changes. The failure analysis procedure indicated that the problem area shifted from the roundabout to a distant corridor.

An adjusted network was constructed by modifying the free flow speeds in the base case network. The principle of speed changes was to match the simulation setting with empirical values from the field observations. The failure detection of the adjusted network again revealed a 100% failure probability. However, further network analysis verified the positive impact of these changes. Specifically, an apparent improvement in the network statistics (i.e. lower SQT) implied that the tuning of free flow speeds was effective in reducing the level of congestion on the network. Also, an in-depth failure analysis indicated that the critical area for failure origination was now at a stop-controlled intersection with a known heavy left-turn volume, which finding matched field observations of the congestion pattern on the network.

The adjusted network served as the start point for a parametric study. Seven different parameters were studied. It was found that coding a high free flow circulating speed at the roundabout is effective in reducing the failure probabilities. Thus, a tuned network was developed using this high circulating speed.

The simulation of tuned network yielded 76% simulation failures, which remained too high compared to reality. This was finally attributed to the apparent inability of CORSIM
in modeling un-signalized intersections and the inadequate capacity at the problem intersection.

Overall, the application of the proposed failure detection method highlights its value in identifying the problem areas for simulation debugging and model calibration. The successful application verified the transferability of the proposed method between different networks, even though the final results in terms of failure reduction were rather disappointing.
CHAPTER 9: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The likelihood of simulation failures poses a significant obstacle to the effective implementation of stochastic traffic simulation models. In this research, an extensive analytic procedure has been devised to detect, diagnose and offer solutions to mitigate the simulation failure problem in a mostly quantitative and automated fashion. The procedure is intended to be simulator-independent, although its application in this thesis is confined to the CORSIM model. This chapter provides a summary of the important findings derived from the research (section 9.1), highlights the major conclusions (section 9.2) and sets recommendations for future work in this and related areas (section 9.3).

9.1 Summary of Results

Results described herein pertain to (a) the assessment of simulators’ performance on a common data set, and (b) experiments on three real-world transportation networks in Chicago and Raleigh.

- Evaluation of Simulators

The proposed simulation failure detection method was first applied for the purpose of contrasting the performance of three recent releases of the CORSIM model (4.3.2, 5.1 and 5.2) using a common data set. System queue time (SQT) was the chosen performance measure. To ensure consistency between inputs, all simulations were based on the same field traffic data and using CORSIM 4.3.2 or 5.0 default traffic parameter values (there was an important change in defaults traffic parameters in version 5.1). The results are summarized in Table 9.1 below, and are based on 100 replications of a common data set.
As the table indicates, CORSIM 5.0 generates a slightly higher level of SQT and a higher probability of simulation failures than CORSIM 4.3.2, with CORSIM 5.1 producing a much higher level of congestion and failure runs than the former two releases. This demonstrates that with each upgrade, the simulator was generating more conservative estimate of system performance.

From the failure analysis perspective, the only difference between the three models is the set of driver behavioral model parameters, and not any network related features.

Specifically, in CORSIM 5.0, two previously uncorrelated behavioral parameters namely the spillback probabilities and left turn lagger probabilities were treated differently in this release. This change resulted in a higher probability of left turn lagers, therefore leading to more vehicle lock-up situations. In CORSIM 5.1, that phenomenon was further evaluated, and partially addressed by adjusting the default values of spillback probabilities. However, in this contrasting study, the parameters were reset according to CORSIM 4.32/5.0 defaults. Therefore, it appears that the changes in other driver behavioral algorithms in CORSIM 5.1 had a negative impact on the mitigation of simulation failures.

- Evaluation of Chicago PM Peak Network
The proposed failure detection and analysis method was then applied to evaluate the simulation of a test-bed network. Extensive data collection took place on that network in the year 2000, and there were no observations of gridlock at anytime. This evaluation was conducted in a before (Base, or un-tuned model) and after (tuned model) settings. The tuned parameters were estimated from the failure analysis of the un-tuned network. Similar to the previous section, Table 9.2 summarizes the findings of the simulation performance for the Base and Tuned cases. Again, the results are based on 100 replications of CORSIM 5.1 in all cases.

<table>
<thead>
<tr>
<th>Network</th>
<th>Features</th>
<th>SQT (Vehicle Hours)</th>
<th>Failure Detection Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Base Case</td>
<td>Default parameter values, including (1.8, 2.0, 80%, 40%) for (SLT, QDH, StPr1, StPr2)</td>
<td>274.49</td>
<td>252.47</td>
</tr>
<tr>
<td>Tuned Case</td>
<td>(1.7, 1.8, 70%, 20%) for (SLT, QDH, StPr1, StPr2)</td>
<td>207.76</td>
<td>207.22</td>
</tr>
</tbody>
</table>

Table 9.2 Summary Results in the Evaluation of Chicago PM Peak Network

The results in the above table show that a better choice of traffic behavioral parameters can significantly reduce the reported congestion level and likelihood of simulation failures. The large values of failure probabilities reported in the Before Case are due to inadequate parameter calibration, as the field data showed no propensity for vehicle lock-up. Still, even with the tuned network, the analyst was only able to remove some of, but not all of the failure runs.

Evaluation of the Chicago AM Peak Network

The Chicago AM peak network has identical geometry as the PM’s, but with different traffic demand patterns and traffic controls. Based on the observation that both networks service the same driver population, the calibration parameters derived in the PM studies
were applied to that network. Again, field data collected for this network indicated no occurrence of gridlock or lock up during the observation period. Four case studies were developed. The first two considered the observed field demand pattern, while the last two focused on a future traffic scenario in which entry demand levels were uniformly increased by 15%, in order to induce congestion and increase failure probability. The simulation and failure detection results are summarized in Table 9.3 below.

<table>
<thead>
<tr>
<th>Network</th>
<th>Features</th>
<th>SQT (Vehicle Hours)</th>
<th>Failure Detection Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Base Case</td>
<td>Default parameter values, including (1.8, 2.0, 80%, 40%) for (SLT, QDH, StPr1, StPr2)</td>
<td>182.44</td>
<td>181.49</td>
</tr>
<tr>
<td>Tuned Case</td>
<td>(1.7, 1.8, 70%, 20%) for (SLT, QDH, StPr1, StPr2)</td>
<td>173.29</td>
<td>173.02</td>
</tr>
<tr>
<td>Test Case</td>
<td>A uniform demand increase of 15%</td>
<td>342.85</td>
<td>298.85</td>
</tr>
<tr>
<td>TIP Case</td>
<td>Change of stop control to yield control at problem intersection</td>
<td>334.36</td>
<td>279.06</td>
</tr>
</tbody>
</table>

Table 9.3 Summary Results in the Evaluation of Chicago AM Peak Network

It is shown in the above table that under current demand levels, the likelihood of failure predicted by the model was consistent with the field observations, regardless of whether the Base or Tuned model parameters are used. However, the application of the adjusted driver parameters did eliminate all failures runs, although that reduction is somewhat trivial (from 3% to 0%). Regarding the projected demand scenarios, the spatial analysis indicated that the network tended to consistently fail along a minor street due to spillback generated at a stop-controlled intersection. In order to alleviate that problem, yield control was substituted at that intersection in the hopes of reducing the critical gap, and consequently queuing at that location. As the results in Table 9.3 indicate, this provides minimal relief, and no statistically significant decrease in failure occurrence.
It is important to note that in the latter two case studies, it was assumed that the simulation model has been finely tuned, and that the effect of simulator version on system performance known. Thus, the main consideration for these studies was to associate any detected failures with network capacity problems. While the quick solution that was tested did not perform adequately, the spatial analysis was able to pinpoint the problem intersection which should be the focus of any future traffic improvements that are deemed necessary to handle the increased traffic demand.

➢ Evaluation of the NCSU Campus Network

The third network simulated in CORSIM is that of the NCSU campus. Obviously, that network has very different geometric features and traffic demand patterns from the previous two cases. The purpose of this study was to assess the transferability of the proposed simulation failure detection and analysis method across networks. In total, four sets of simulation, each consisting of 100 replications were conducted. The results for these case studies are summarized in Table 9.4 below. It should be noted that there was no formal calibration of the model parameters based on field measurements in this study. To offer additional insights into the failure patterns, two additional columns are added. The FFL represents the average number of network links that fail first (out of a total of 253 network links). The column labeled FT represents the time from simulation start to the first failure, based on a simulation time of 60 minutes.
<table>
<thead>
<tr>
<th>Network</th>
<th>Features</th>
<th>SQF (Vehicle Hours)</th>
<th>Failure Detection Results</th>
<th>Mean</th>
<th>Median</th>
<th>STDEV</th>
<th>Sample FIPr</th>
<th>95% CI of FIPr</th>
<th>FFL</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Case</td>
<td>Ad-hoc calibration of model parameters, with arbitrary free flow speeds and minor tuning on critical gap distributions.</td>
<td>1440.86 1489.57 520.01</td>
<td>95.00</td>
<td>(90.73, 99.27)</td>
<td>63</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Case</td>
<td>Debugging efforts: change of roundabout coding, specification of lane utilization.</td>
<td>1466.47 1388.18 247.04</td>
<td>100.00</td>
<td>(100.00, 100.00)</td>
<td>27</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Case</td>
<td>Change of free flow speed according to network observations.</td>
<td>981.49 923.67 210.96</td>
<td>100.00</td>
<td>(100.00, 100.00)</td>
<td>37</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuned Case</td>
<td>Adoption of an unusually high roundabout circulating speed.</td>
<td>682.29 613.22 252.27</td>
<td>76.00</td>
<td>(67.63, 84.37)</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9.4 Summary Results in the Evaluation of NCSU Campus Network

It is evident from the results indicated in Table 9.4 that CORSIM was not able to successfully model the performance of this network. Regardless of what treatment was applied, the failure occurrences were very significant, ranging from 76 to 100%. However, the number of links affected and the first failure time varied according to treatment. There were many factors that contributed to simulation failures; chief among them was an inadequate representation of traffic operations at un-signalized intersections, which were very prevalent on this particular network. This problem was also evident in the analysis of the Chicago AM peak network, and points to the need for re-assessing the gap acceptance algorithms in CORSIM. In addition, there were observed capacity problems at a key intersection (at Pullen and Cates), and of course a lack of field calibration of many driver behavioral parameters.

Overall, the findings of this research confirm the utility of the proposed simulation failure detection and analysis procedure as a means to assess the utility of simulators and to highlight network related problems that are sometimes user-induced or due to the characteristics of the network environment itself. Over the long run, this scheme will be of value to both software developers and end-users of the model in producing a reliable
simulation model without the need to expend endless hours debugging for possible input and/or parameter value errors.

9.2 Findings and Conclusions

Key Findings

The series of findings derived from this research effort are discussed in terms of the stated research objectives specified in Chapter 1 of this document.

Objective 1: Developing and verifying a failure detection method for simulation models

The proposed failure detection method was based on an inspection of time series for key variables that are able to detect traffic anomalies. This was done by tracing key traffic performance on important network links over the time domain. Specifically, in this research the indicator variables chosen were the number of entering and exiting link vehicle trips as well as link occupancy.

The method was applied to real world case studies to verify its utility. The applications reported failure occurrence in each replication as well as its occurrence time and spatial distribution. The test results demonstrated that the proposed failure detection method was an effective and efficient way to identify the occurrence of simulation failures.

Objective 2: Identifying the role of simulation failures in the larger framework of simulation verification and validation

It is important to consider the role of the proposed method within the larger framework of the entire simulation process, since the problem of simulation failures is an integral part of simulation verification and validation. Traditionally, a complete simulation process is comprised of a number of stages including choice of the simulator, associated field data
collection, model construction, model calibration, model validation, and model prediction. This research indicated that the detection and analysis of simulation failures can be viewed as a significant supplement to the process of developing and implementing micro-simulation models.

In the early stages of simulation, the successful identification of simulation failures can provide important clues about a poor simulator choice, inaccurate input data, model coding errors, and inadequate user calibrations. In the later stages, the failure detection can assist transportation analysts evaluate the subject network by locating “vulnerable” locations on the network, which will serve as the basis for the identification and implementation of traffic improvement plans.

Objective 3: Developing and verifying contributing factors to simulation failures

In order to perform a higher-level analysis beyond simple detection of simulation failures, a synthetic method was developed to derive the spatial distribution of critical sites on a network, and to conduct a failure causal analysis based on its results. The first-failing links and nodes (those links and nodes having the earliest failure occurrence time) are aggregated across replications. The first failure frequencies for each site could then be plotted on the network map to illustrate the spatial pattern of failure occurrence. The resulting failure occurrence patterns were classified as global or local, with high or low frequency of failures. Possible parameters that are associated with different categories of contributing factors can be identified using this tabular method.

The latter application has demonstrated that the failure analysis results can provide important hints for the identification and mitigation of factors contributing to simulation failures. These findings can be further pursued by the user, using their own knowledge.
about the simulator, the modeling stage, and the network. In particular, the method enables the user to focus their observations on a limited set of animation files to hone in on the problem areas and possible contributing factors.

Specific Conclusions

Based on the results and findings described above, a series of conclusions emerge. Those conclusions are categorized into three areas regarding: (a) the stochastic traffic simulation algorithms, (b) the procedure and results of failure detection, and (c) the procedure and results of failure analysis. In addition, two specific conclusions are derived regarding the test-bed simulator of CORSIM.

➢ Regarding Stochastic Traffic Simulation Algorithms

1) Simulation failures are currently an inherent obstacle to the effective implementation of stochastic traffic simulations.

Stochastic traffic simulations always have the likelihood to yield simulation failures, particularly in congested conditions. These failures cause bring bias to the simulation modeling process and in the analysis results. Thus, these failures must be successfully addressed during the process of simulation. However, associated with the use of a large sample size, it is difficult to detect and analyze the onset of simulation failure in a convenient way. Thus, it is essential to devise an innovative method to address and evaluate the impact of simulation failures in the applications of stochastic simulation.

2) Failure detection and analysis should become an essential part of the framework of simulation development and analysis.

Successful exclusion of simulation failure runs can effectively remove biased output data
and, therefore, improve the quality of simulation analysis. On the other hand, simulation failures can be attributed to a variety of contributing factors. These different causes are likely to lead to different failure occurrence patterns. Thus, the detection and analysis of failure failures has the potential to perform a diagnosis of traffic simulation. By discovering these contributing factors, simulation failure detection and analysis can become a significant tool to improve the overall process of simulation development and analysis.

- Regarding Failure Detection

3) The method of time series inspection provides an effective way to the detection of simulation failures.

In this research, an extensive failure detection method was proposed to identify traffic anomalies using the technique of time series inspection. The detection mechanism of this method is to inspect the time series of key indicator variables including interval link trips-in, interval link trips-out, and cumulative link content. Later applications of this method verified that time series inspection is effective and efficient to detect simulation failures in a quantitative and automated way.

4) Compared to conventional methods, the method of time series inspection provides superior performance in simulation failure detection.

Traditional methods, including animation observation and outlier detection, are inadequate or infeasible to detect the occurrence of simulation failures. Animation observation is a time consuming process when there are large number of replications, and it is often impossible to detect the onset of failure, especially if it occurs simultaneously
on many links. The outlier method (defined as the identification of those replications on the right tail of the system performance measure) was shown to be unreliable. For example, in one of the test networks, it was found that 61% of the failures were not associated with outlier runs. The application of the time series inspection method is demonstrably superior to conventional methods in terms of accuracy and efficiency. Time series inspection method is able to differentiate extreme situations such as normal runs with a high level of congestion, failure runs with late failure occurrence, and so on. In addition, it employs a quantitative method to identify the detection. The procedure has been automated by computer programming. Thus, the proposed time series inspection method is recommended as a supplemental tool for any simulation model to assist in the detection of the onset of simulation failures during a simulation process.

- Regarding Failure Analysis

5) Spatial analysis provides an important basis to perform an effective simulation failure causal analysis.

The occurrence of simulation failures may be caused by various contributing factors. In order to distinguish these different factors, a tabular method is used to associate different failure occurrence patterns with the general categories of contributing factors, namely simulator-related, simulation-related, and network related. The determination of categories can be also be supplemented by user knowledge about the simulation stage and network features. For example, simulation failures can be attributed to network-related factors if the simulation model is known to be fully calibrated and validated, for example in an application to a projected traffic scenario.
6) In the early stages of simulation, simulation failure analysis can be used to diagnose the simulation modeling efforts and provide a pre-calibration effort to guide subsequent simulation improvement through calibration and tuning.

In the early stages of simulation, the major concern is to choose an appropriate simulator, collect accurate input data, and to properly construct a site-specific simulation model. The failure analysis procedure can be used to assist such efforts and locate any possible errors during the conduct of these tasks. The utility of this process was demonstrated in the case studies, where the proposed procedure successfully identified inadequate calibrations of two case networks, and a coding error in the initial simulation of the NCSU campus network.

7) In the later stages of the simulation process, simulation failure analysis can serve as a convenient tool to diagnose the simulators, inspect capacity constraints of the subject network, and evaluate different transportation improvement plans.

In the later stages of simulation, the simulation model is often assumed to be fully tuned and calibrated. Thus, the main focus is to apply a valid simulation model to the analysis of a projected traffic scenario. In such a situation, the proposed failure detection and analysis procedure can locate network capacity constraints and evaluate the effectiveness of transportation improvement plans.

Finally, the case studies of the proposed method are based on the most recent version of CORSIM (version 5.1). Regarding the simulator, an experiment was performed to evaluate three recent releases of CORSIM. Some specific conclusions are derived regarding the simulator.
Regarding CORSIM simulator

8) The upgrading of CORSIM tended to generate conservative estimates of traffic performance for the same standard input dataset.

Compared to versions 4.32 and 5.0, the suppliers of CORSIM 5.1 claimed to have incorporated an improved algorithm in the modeling of traffic spillback behavior. However, the application result demonstrated that with the same input dataset, CORSIM 5.1 generated a higher level of congestion and a higher probability of simulation failures.

9) CORSIM has limited capabilities in modeling un-signalized intersections, particularly for close-to-capacity traffic conditions.

The case studies indicate CORSIM has limited capabilities in modeling traffic behavior at un-signalized intersections, which would initiate simulation failures under heavy traffic demands. In addition, the tuning tests shows that the tuning of existing traffic parameters governing the performance of these intersections in CORSIM could not effectively eliminate the problem.

9.3 Limitations and Further Actions

The current findings in this research provide strong evidence that the proposed failure detection and analysis procedure represents a rigorous and defensible approach toward the path of establishing more reliable, effective and efficient traffic simulation models. However, it is also noted that a number of limitations still exist at the conclusions of the current research.

Regarding the method development, it is desirable for the users and model developers alike to be able to apply the entire failure detection and analysis method in automated
fashion. It is realized that the complexities of simulation process and the difficulty in deriving the exact failure contributing factors are major issues, specifically when the simulator algorithms are black-boxes to most users. The proposed failure pattern matrix developed in this research is a key step in that direction. However, this matrix provides only general guidelines, and as such must be supplemented with the user knowledge of other aspects of the model and simulator, which varies widely among users.

As for the method application, the effectiveness of the failure detection and analysis procedure has been confined to the evaluation of the most three recent leases of CORSIM and at only three real-world networks. Since the objective is to provide a general and transferable algorithm across simulators and networks, further tests are necessary to confirm its validity and effectiveness with other simulator environments.

Further more, other features in CORSIM not considered in this research, provide strong potential for further improvement of the current failure analysis methodology. Specifically, the CORSIM animation files are accessible to researchers and advanced simulation users through a supplemental that enable the analyst to read information from the binary files. This provides the potential to identify vehicle trajectory data, which would be significant to assist in developing a micro-analysis of simulation failures. However, the current research chose not to progress along this direction and, instead, limits the study to aggregate measures of traffic within the time series data generated in discrete time intervals.

In consideration of these limitations, additional efforts are proposed for future research, as listed below:

- Conduct further investigations on the failure occurrence mechanisms in order to
mathematically formulate the entire failure analysis method, particularly the
causal analysis procedure currently based on a tabular method. This could
possibly be achieved by studying the correlation between failure occurrence
patterns and factors such as transportation facility features and traffic demand
patterns

➢ Research the potential of using vehicle trajectory data to improve the current
analysis procedure; specifically, evaluate the role of vehicle trajectory data
analysis as a focused analysis tool after the failure locations and time have been
determined from the exploratory analysis.

➢ Apply the proposed failure detection and analysis method to other simulation
networks using a different simulator to verify its validity and transferability

➢ Incorporate the proposed procedure into the larger framework of traffic simulation
guidebooks, particularly under the ongoing NGSIM research program to highlight
its important role in the construction, calibration and validation of new generation
simulation models.

➢ Integrate a user-friendly version of the failure detection method into the CORSIM
model to promote its use by software developers and end users.
CHAPTER 10: LIST OF REFERENCES

APPENDIX 1: CASE SIMULATION INPUT FILES

File 1: AM89Base.trf

Am89Base - am time period 8 to 9 base network
sink & source: no
nb LaSalle speed limit: 30 mph
turn probabilities on NB LaSalle at Huron (26=>86) changed:
 from (40,60,0) to (1,99,0)
Clark and Erie control type: 05
time interval length: 5 min
number of time intervals: 12

Frg Flaw Detection PROJECT 00
Baohong Wan 8 029000NISS 1
1 0 60 71892923 21 0000 308 2993602175667039 3
300 300 300 300 300 300 300 300 300 300 300 300 300
75
12 0 120 0 1 5
188 27 332 25 4 1 TTTT 28 4 20 18 35 111 11
8088 188 4 TTTT 27 0 11
8188 188 1 1 27 0 11
27 4 324 25 4 1 TTTT 8 3 15 20 18 35 111 11
4 3 322 25 4 1 TTTT 7 2 20 18 35 111 11
3 2 347 25 4 1 4TTT 6 1 24 20 18 35 122 11
2 1 326 4 4TTT 39 23 20 18 35 121 11
1 39 440 3 TTT 8000 20 18 35 1 13 11
5 6 335 45 45 3 1 1 TTT 2 7 10 20 18 35 111 11
6 7 338 45 3 1 TTT 8 11 20 18 35 111 11
7 8 324 45 45 3 1 1 TT8 4 28 12 20 18 35 111 11
8 28 347 45 3 1 TTT 8089 29 20 18 35 111 11
29 12 324 3 TT8 16 11 8 20 18 35 133 11
90 29 332 3 TT8 40 12 35 11
8090 90 4 TTTT 29 0 11
8190 90 1 1 29 0 11
87 38 243 3 TT8 8097 27 20 18 35 1 11
8087 87 3 T 38 0 11
8187 87 1 1 38 0 11
38 27 244 3 TTT 28 4 20 18 35 1 11
27 28 244 3 TT8 8089 29 20 18 35 1 11
28 29 245 3 TTT 40 12 20 18 35 1 11
29 40 240 3 TT8 80798091 20 18 35 1 11
12 11 322 3 TT1 31 10 20 18 35 111 11
11 10 347 2 78 32 9 6 9 20 18 35 111 11
10 110 200 2 TT 11 20 18 35 1 11
110 11 138 1 4 31 20 18 35 1 11
10 9 326 3 TTT 33 34 5 34 20 18 35 111 11
9 10 335 2 78 6 110 32 11 20 18 35 1 11
34 9 628 90 2 1 TT 5 10 33 10 20 18 35 111 11
9 34 667 2 78 378098 41 20 18 35 1 11
8098 34 2 78 41 9 37 0 11
23 1 243 2 T 39 20 18 35 1 11
1 23 244 90 2 1 TT 22 83 24 83 20 18 35 111 11
5 1 244 2 TT 23 20 18 35 111 11
5 9 245 90 1 1 7 10 33 34 33 20 18 35 111 11
9 5 249 3 781 13 1 6 20 18 35 111 11
<table>
<thead>
<tr>
<th>Pd</th>
<th>D</th>
<th>Di</th>
<th>assert</th>
<th>ini</th>
<th>by</th>
<th>Wa</th>
<th>h</th>
<th>o</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>32</td>
<td>243</td>
<td>1</td>
<td>9</td>
<td>31</td>
<td>948032</td>
<td>94</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>94</td>
<td>32</td>
<td>243</td>
<td>1</td>
<td>9</td>
<td>8032</td>
<td>10</td>
<td>31</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>94</td>
<td>243</td>
<td>1</td>
<td>9</td>
<td>829480948194</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>8094</td>
<td>94</td>
<td>T</td>
<td>32</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8194</td>
<td>94</td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8294</td>
<td>94</td>
<td>1</td>
<td>4</td>
<td>32</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>243</td>
<td>2</td>
<td>7T</td>
<td>7</td>
<td>2</td>
<td>20</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>244</td>
<td>90</td>
<td>2</td>
<td>1</td>
<td>TT</td>
<td>8</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>245</td>
<td>90</td>
<td>2</td>
<td>1</td>
<td>TT</td>
<td>31</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>244</td>
<td>90</td>
<td>3</td>
<td>1</td>
<td>TTT</td>
<td>28</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>244</td>
<td>90</td>
<td>3</td>
<td>1</td>
<td>TTT</td>
<td>3</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>245</td>
<td>3</td>
<td>7TT</td>
<td>16</td>
<td>11</td>
<td>20</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>245</td>
<td>3</td>
<td>7TT</td>
<td>4</td>
<td>28</td>
<td>20</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>92</td>
<td>30</td>
<td>243</td>
<td>2</td>
<td>7T</td>
<td>17</td>
<td>10</td>
<td>20</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>92</td>
<td>243</td>
<td>2</td>
<td>7T</td>
<td>829280928192</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>111</td>
</tr>
<tr>
<td>8092</td>
<td>92</td>
<td>TT</td>
<td>30</td>
<td>20</td>
<td>18</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8192</td>
<td>92</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>20</td>
<td>18</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>8292</td>
<td>92</td>
<td>1</td>
<td>4</td>
<td>30</td>
<td>20</td>
<td>18</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>243</td>
<td>90</td>
<td>2</td>
<td>1</td>
<td>T8</td>
<td>308093</td>
<td>92</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>38</td>
<td>347</td>
<td>2</td>
<td>7T</td>
<td>8097</td>
<td>27</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>347</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>24</td>
<td>85</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>324</td>
<td>1</td>
<td>9</td>
<td>86</td>
<td>38</td>
<td>14</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>347</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>23</td>
<td>84</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>338</td>
<td>1</td>
<td>9</td>
<td>85</td>
<td>26</td>
<td>3</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>347</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>22</td>
<td>83</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>335</td>
<td>1</td>
<td>9</td>
<td>84</td>
<td>25</td>
<td>2</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>331</td>
<td>1</td>
<td>7</td>
<td>21</td>
<td>82</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>315</td>
<td>1</td>
<td>9</td>
<td>83</td>
<td>24</td>
<td>1</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>333</td>
<td>1</td>
<td>7</td>
<td>20</td>
<td>81</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>333</td>
<td>1</td>
<td>8</td>
<td>82</td>
<td>23</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>334</td>
<td>1</td>
<td>9</td>
<td>368020</td>
<td>80</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>8020</td>
<td>20</td>
<td>1</td>
<td>9</td>
<td>80</td>
<td>21</td>
<td>36</td>
<td>0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>333</td>
<td>1</td>
<td>8</td>
<td>81</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>945</td>
<td>2</td>
<td>41</td>
<td>41</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>8000</td>
<td>88</td>
<td>3</td>
<td>TTT</td>
<td>77</td>
<td>0</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>77</td>
<td>841</td>
<td>3</td>
<td>TTT</td>
<td>5</td>
<td>20</td>
<td>18</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>5</td>
<td>550</td>
<td>500</td>
<td>3</td>
<td>2</td>
<td>TTT</td>
<td>1</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>37</td>
<td>33</td>
<td>527</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>32</td>
<td>95</td>
<td>133</td>
<td>20</td>
</tr>
<tr>
<td>33</td>
<td>37</td>
<td>489</td>
<td>1</td>
<td>9</td>
<td>96</td>
<td>34</td>
<td>20</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td>335</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>31</td>
<td>94</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>338</td>
<td>1</td>
<td>7</td>
<td>308093</td>
<td>20</td>
<td>18</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>347</td>
<td>1</td>
<td>9</td>
<td>948032</td>
<td>10</td>
<td>33</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>324</td>
<td>3</td>
<td>7TB</td>
<td>17</td>
<td>40</td>
<td>92</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>324</td>
<td>3</td>
<td>TTT</td>
<td>80798091</td>
<td>20</td>
<td>18</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>122</td>
<td>2</td>
<td>TT</td>
<td>1</td>
<td>20</td>
<td>18</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>122</td>
<td>2</td>
<td>11</td>
<td>39</td>
<td>20</td>
<td>18</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>8133</td>
<td>133</td>
<td>1</td>
<td>9</td>
<td>33</td>
<td>20</td>
<td>18</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>133</td>
<td>33</td>
<td>335</td>
<td>1</td>
<td>9</td>
<td>95</td>
<td>37</td>
<td>9</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>14</td>
<td>85</td>
<td>3</td>
<td>TTT</td>
<td>4</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>160</td>
<td>3</td>
<td>TTT</td>
<td>8</td>
<td>3</td>
<td>20</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>85</td>
<td>2</td>
<td>TT</td>
<td>26</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>160</td>
<td>90</td>
<td>3</td>
<td>1</td>
<td>TTT</td>
<td>25</td>
<td>86</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>85</td>
<td>3</td>
<td>TTT</td>
<td>30</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>160</td>
<td>150</td>
<td>3</td>
<td>1</td>
<td>TTT</td>
<td>40</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>85</td>
<td>2</td>
<td>TT</td>
<td>12</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>160</td>
<td>150</td>
<td>3</td>
<td>1</td>
<td>TTT</td>
<td>11</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>188</td>
<td>27</td>
<td>12</td>
<td>88</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8088</td>
<td>188</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8188</td>
<td>188</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>6</td>
<td>84</td>
<td>10</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>95</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>94</td>
<td>4</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>94</td>
<td>6</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>39</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>94</td>
<td>3</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>89</td>
<td>11</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>84</td>
<td>9</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>88</td>
<td>12</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>11</td>
<td>72</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>29</td>
<td>13</td>
<td>87</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8090</td>
<td>90</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8190</td>
<td>90</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>38</td>
<td>2</td>
<td>98</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8087</td>
<td>87</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8187</td>
<td>87</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>27</td>
<td>84</td>
<td>16</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>13</td>
<td>87</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>97</td>
<td>3</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>40</td>
<td>13</td>
<td>87</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>11</td>
<td>89</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>3</td>
<td>88</td>
<td>9</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>11</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>3</td>
<td>80</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>12</td>
<td>86</td>
<td>2</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>19</td>
<td>74</td>
<td>7</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>8</td>
<td>86</td>
<td>6</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8098</td>
<td>34</td>
<td>15</td>
<td>77</td>
<td>8</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>10</td>
<td>73</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>6</td>
<td>77</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>39</td>
<td>42</td>
<td>19</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>30</td>
<td>56</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>9</td>
<td>88</td>
<td>3</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>33</td>
<td>85</td>
<td>15</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>95</td>
<td>20</td>
<td>60</td>
<td>20</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8095</td>
<td>95</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8195</td>
<td>95</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8295</td>
<td>95</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>37</td>
<td>77</td>
<td>23</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>96</td>
<td>40</td>
<td>60</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8196</td>
<td>96</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>6</td>
<td>94</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>80</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8180</td>
<td>80</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>21</td>
<td>47</td>
<td>53</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>81</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8081</td>
<td>81</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8181</td>
<td>81</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8281</td>
<td>81</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>22</td>
<td>47</td>
<td>53</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>82</td>
<td>100</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>21</td>
<td>52</td>
<td>27</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>29</td>
<td>57</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>71</td>
<td>29</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>8</td>
<td>75</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>16</td>
<td>73</td>
<td>11</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>69</td>
<td>31</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>9</td>
<td>48</td>
<td>43</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>75</td>
<td>25</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>19</td>
<td>81</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>51</td>
<td>2</td>
<td>47</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8020</td>
<td>20</td>
<td>11</td>
<td>78</td>
<td>11</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>11</td>
<td>89</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>50</td>
<td>50</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8000	88	100	21		
88	77	100	21		
77	5	20	73	7	21
37	33	7	81	12	21
33	37	53	47	21	
33	32	8	83	9	21
32	31	84	16	21	
31	32	43	14	43	21
31	30	15	76	9	21
30	40	89	11	21	
5	13	100	21		
13	1	100	21		

8133	133	100	21		
133	33	85	15	21	
26	14	100	21		
14	4	88	12	21	
4	15	100	21		
15	26	3	87	10	21
12	16	100	21		
16	30	9	91	21	
30	17	100	21		
17	12	9	91	21	

1	0	2	23	5	13	12	3	27	3	1	25	3	1	0	0	0	0	0	0	35
2	1	3	24	6	35	3	1	32	3	1	0	0	0	0	0	0	0	0	35	
3	72	4	25	27	3	1	40	3	1	0	0	0	0	0	0	0	35			
4	43	27	14	8	7	3	34	3	1	23	3	1	0	0	0	0	35			
5	64	9	77	49	3	1	18	3	1	0	0	0	0	0	0	35				
6	68	5	2	10	54	3	15	3	0	0	0	0	0	0	35					
7	56	6	3	22	3	47	3	0	0	0	0	0	35							
8	18	7	4	12	40	3	1	5	3	20	3	0	0	0	0	35				
9	27	10	34	5	33	7	3	27	3	1	30	3	1	0	0	0	35			
10	15	11	9	6	32	27	3	1	40	3	1	0	0	0	0	0	35			
11	10	12	110	7	30	3	1	37	3	1	0	0	0	0	0	35				
12	63	29	8	17	39	3	1	28	3	1	0	0	0	0	0	0	35			
13	5	35																		
14	26	35																		
15	4	35																		
16	12	35																		
17	30	35																		
20	80	36	218020	35																
21	81	22	20	35																
22	82	23	21	35																
23	68	1	83	24	22	42	3	27	3	0	0	0	0	0	0	35				
24	84	2	25	23	35															
8092 92 748 7 50
8192 92 43 5 50
8292 92 40 5 50
8094 94 165 3 50
8194 94 53 6 50
8294 94 28 8 50
8095 95 639 5 50
8195 95 103 2 50
8295 95 20 0 50
8196 96 81 11 50
8098 34 915 2 50
8000 884192 2 50
8133 133 62 2 50
10 9 3000 80
34 9 3000 80
 5 1 3000 80
 9 5 3000 80
33 9 3000 80
 0 0 0 0 50 15 0 141
 0 170
 1 1 12 8 13 1 1 185
 2 1 12 11 13 1 1 185
 3 1 7 11 13 1 1 185
 4 1 10 110 50 1 1 185
 5 1 11 10 13 1 1 185
 6 1 9 10 13 1 1 185
 7 1 10 9 13 1 1 185
 8 1 9 5 13 1 1 185
 9 1 1 23 13 1 1 185
10 1 14 4 13 1 1 185
11 1 25 3 13 1 1 185
12 1 15 26 13 1 1 185
13 1 34 9 13 1 1 185
14 1 38 27 13 1 1 185
15 1 29 12 13 1 1 185
16 1 28 29 13 1 1 185
17 1 31 30 13 1 1 185
18 1 30 40 13 1 1 185
19 1 4 8 110 1 1 185
 1 20 186
 2 20 186
 3 20 186
 4 20 186
 5 20 186
 6 20 186
 7 20 186
 8 20 186
 9 20 186
10 20 186
11 20 186
12 20 186
13 20 186
14 20 186
15 20 186
16 20 186
17 20 186
18 20 186
<p>| 20 | 1356 | 2415 | 195 |
| 21 | 1690 | 2415 | 195 |
| 22 | 2019 | 2415 | 195 |
| 23 | 2341 | 2415 | 195 |
| 24 | 2678 | 2415 | 195 |
| 25 | 3016 | 2415 | 195 |
| 26 | 3349 | 2415 | 195 |
| 27 | 3681 | 2220 | 195 |
| 28 | 3681 | 1962 | 195 |
| 29 | 3681 | 1741 | 195 |
| 30 | 3349 | 1490 | 195 |
| 31 | 3016 | 1490 | 195 |
| 32 | 2678 | 1490 | 195 |
| 33 | 2341 | 1490 | 195 |
| 34 | 1690 | 1741 | 195 |
| 35 | 1429 | 2220 | 195 |
| 36 | 1836 | 1490 | 195 |
| 37 | 3681 | 2415 | 195 |
| 38 | 1905 | 2150 | 195 |
| 39 | 3681 | 1490 | 195 |
| 40 | 1555 | 1962 | 195 |
| 41 | 1841 | 1965 | 195 |
| 42 | 1000 | 1965 | 195 |
| 43 | 1356 | 2658 | 195 |
| 44 | 1189 | 2415 | 195 |
| 45 | 1356 | 2901 | 195 |
| 46 | 1523 | 2658 | 195 |
| 47 | 1690 | 2658 | 195 |
| 48 | 1690 | 2901 | 195 |
| 49 | 1857 | 2658 | 195 |
| 50 | 1690 | 2658 | 195 |
| 51 | 2019 | 2658 | 195 |
| 52 | 2019 | 2901 | 195 |
| 53 | 2186 | 2658 | 195 |
| 54 | 2019 | 2658 | 195 |
| 55 | 2341 | 2658 | 195 |
| 56 | 2341 | 2901 | 195 |
| 57 | 2508 | 2658 | 195 |
| 58 | 2341 | 2658 | 195 |
| 59 | 2678 | 2658 | 195 |
| 60 | 2678 | 2901 | 195 |
| 61 | 2845 | 2658 | 195 |
| 62 | 2678 | 2658 | 195 |
| 63 | 3016 | 2658 | 195 |
| 64 | 3016 | 2901 | 195 |
| 65 | 3184 | 2658 | 195 |
| 66 | 3349 | 2658 | 195 |
| 67 | 3349 | 2901 | 195 |
| 68 | 3516 | 2658 | 195 |
| 69 | 3681 | 2658 | 195 |
| 70 | 3681 | 2901 | 195 |
| 71 | 3848 | 2658 | 195 |
| 72 | 4013 | 2220 | 195 |
| 73 | 4180 | 2220 | 195 |
| 74 | 4013 | 1962 | 195 |</p>
<table>
<thead>
<tr>
<th>8099</th>
<th>4013</th>
<th>1962</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>4013</td>
<td>1741</td>
<td>195</td>
</tr>
<tr>
<td>8090</td>
<td>4180</td>
<td>1741</td>
<td>195</td>
</tr>
<tr>
<td>8190</td>
<td>4013</td>
<td>1657</td>
<td>195</td>
</tr>
<tr>
<td>8091</td>
<td>3681</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>92</td>
<td>3349</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8092</td>
<td>3349</td>
<td>1002</td>
<td>195</td>
</tr>
<tr>
<td>8192</td>
<td>3182</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8292</td>
<td>3516</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8093</td>
<td>3016</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>94</td>
<td>2678</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8094</td>
<td>2678</td>
<td>1002</td>
<td>195</td>
</tr>
<tr>
<td>8194</td>
<td>2511</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8294</td>
<td>2845</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>95</td>
<td>2341</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8095</td>
<td>2341</td>
<td>1002</td>
<td>195</td>
</tr>
<tr>
<td>8195</td>
<td>2174</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8295</td>
<td>2508</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>96</td>
<td>1997</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8196</td>
<td>2164</td>
<td>1245</td>
<td>195</td>
</tr>
<tr>
<td>8097</td>
<td>4026</td>
<td>2415</td>
<td>195</td>
</tr>
<tr>
<td>8098</td>
<td>1630</td>
<td>1741</td>
<td>195</td>
</tr>
<tr>
<td>8296</td>
<td>2247</td>
<td>1409</td>
<td>195</td>
</tr>
<tr>
<td>8096</td>
<td>2161</td>
<td>1010</td>
<td>195</td>
</tr>
<tr>
<td>8286</td>
<td>3349</td>
<td>2658</td>
<td>195</td>
</tr>
<tr>
<td>13</td>
<td>2336</td>
<td>2100</td>
<td>195</td>
</tr>
<tr>
<td>8032</td>
<td>2678</td>
<td>1490</td>
<td>195</td>
</tr>
<tr>
<td>8133</td>
<td>2678</td>
<td>1490</td>
<td>195</td>
</tr>
<tr>
<td>133</td>
<td>2678</td>
<td>1490</td>
<td>195</td>
</tr>
<tr>
<td>88</td>
<td>77</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>210</td>
</tr>
</tbody>
</table>
File 2: PM56Base.trf

Pm56Base - pm time period 5 to 6 base network
sink & source: no
nb LaSalle speed limit: 30 mph
Clark and Erie control type: 05
time interval length: 5 min
number of time intervals: 12

<table>
<thead>
<tr>
<th>TTTT</th>
<th>28</th>
<th>4</th>
<th>20 18 35 111 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>8088</td>
<td>188</td>
<td>4</td>
<td>TTTT 27 0 11</td>
</tr>
<tr>
<td>8188</td>
<td>188</td>
<td>1</td>
<td>1 27 0 11</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>324</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>322</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>347</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>326</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>39</td>
<td>440</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>335</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>338</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>324</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>347</td>
<td>45</td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>324</td>
<td>3</td>
</tr>
<tr>
<td>90</td>
<td>29</td>
<td>332</td>
<td>3</td>
</tr>
<tr>
<td>8090</td>
<td>90</td>
<td>4</td>
<td>TTTT</td>
</tr>
<tr>
<td>8190</td>
<td>90</td>
<td>1</td>
<td>1 29</td>
</tr>
<tr>
<td>87</td>
<td>38</td>
<td>243</td>
<td>3</td>
</tr>
<tr>
<td>8087</td>
<td>87</td>
<td>3</td>
<td>T</td>
</tr>
<tr>
<td>8187</td>
<td>87</td>
<td>1</td>
<td>1 38</td>
</tr>
<tr>
<td>38</td>
<td>27</td>
<td>244</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>244</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>245</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>40</td>
<td>240</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>322</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>347</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>110</td>
<td>11</td>
<td>138</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>326</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>335</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>628</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>667</td>
<td>2</td>
</tr>
<tr>
<td>8098</td>
<td>34</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>8095</td>
<td>95</td>
<td>3</td>
<td>TTT</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>39</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>15</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>6</td>
<td>74</td>
</tr>
<tr>
<td>90</td>
<td>29</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>8090</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8190</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>38</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>8087</td>
<td>87</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8187</td>
<td>87</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>27</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>40</td>
<td>16</td>
<td>84</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>11</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>3</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>83</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>28</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>7</td>
<td>88</td>
</tr>
<tr>
<td>8098</td>
<td>34</td>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>4</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>8</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>51</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>39</td>
<td>51</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>6</td>
<td>89</td>
</tr>
<tr>
<td>95</td>
<td>33</td>
<td>12</td>
<td>81</td>
</tr>
<tr>
<td>33</td>
<td>95</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>8095</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8195</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8295</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>37</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>37</td>
<td>96</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>8196</td>
<td>96</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>7</td>
<td>93</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>80</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8180</td>
<td>80</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>21</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>81</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8081</td>
<td>81</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8181</td>
<td>81</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8281</td>
<td>81</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>22</td>
<td>66</td>
<td>34</td>
</tr>
<tr>
<td>22</td>
<td>82</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8082</td>
<td>82</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8182</td>
<td>82</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8282</td>
<td>82</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>23</td>
<td>22</td>
<td>68</td>
</tr>
<tr>
<td>23</td>
<td>83</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
30 26 92 31 16 36 3 1 31 3 1 0 0 0 0 0 0 0 0 0 35
31 56 11 32 24 44 3 1 23 3 1 0 0 0 0 0 0 0 0 0 35
32 62 10 94 33 31 33 3 1 34 3 1 0 0 0 0 0 0 0 0 35
33 61 9 95 37 133 40 3 1 27 3 1 0 0 0 0 0 0 0 0 35
34 25 98098 37 41 23 3 1 44 3 1 0 0 0 0 0 0 0 0 35
36 41 20 1 35
37 96 34 33 35
38 87 26 35
39 1 35
40 26 29 30 37 3 1 30 3 1 0 0 0 0 0 0 35
41 34 36 35
77 88 35
88 8000 35
80 2080808180 35
81 218081818281 35
82 228082818282 35
83 2380838183823 35
84 2480848184824 35
85 2580858185 35
86 46 2680868186 44 3 1 23 3 1 0 0 0 0 0 0 0 35
87 1788078187 42 3 1 25 3 1 0 0 0 0 0 0 0 35
90 5180908190 30 3 1 37 3 1 0 0 0 0 0 0 35
92 22 3080928192892 43 3 1 24 3 1 0 0 0 0 0 0 35
94 32809481948294 35
95 60 33809881958295 35 3 1 18 3 1 10 3 1 0 0 35
96 378196 35
110 10 35
133 8133 35
188 6680888188 35 3 1 32 3 1 0 0 0 0 0 0 0 35
1 2772 2072 2272 2211 2200 2222 9222 0222 2222 0000 0000 0000 0000 0000 0000
2 211 200 222 122 022 222 000 000 000 000 000 000 000 000 000
3 21 20 22 12 02 22 00 00 00 00 00 00 00 00 00
4 221 221 211 200 222 122 022 222 000 000 000 000
5 21 20 22 12 02 22 00 00 00 00 00 00 00 00 00
6 122 022 211 200 000 000 000 000 000 000 000 000
7 21 20 12 02 00 00 00 00 00 00 00 00
8 122 022 222 212 212 211 200 000 000 000 000 000 000
9 2122 2122 1122 0022 2222 2211 2200 2222 0000 0000 0000 0000
10 2211 2200 2222 1122 0022 2222 0000 0000 0000 0000 0000 0000
11 222 220 222 112 002 222 000 000 000 000 000 000
12 211 200 222 122 022 222 000 000 000 000 000 000
13 1 36
14 1 36
15 1 36
16 1 36
17 1 36
20 5555 36
21 555 36
22 555 36
23 1122 0022 2211 2200 0000 0000 0000 0000 0000 0000
24 5555 36
25 122 022 222 211 200 222 000 000 000 000 000 000
26 121 020 222 212 202 222 000 000 000 000 000 000
27 21 20 22 12 02 22 00 00 00 00 00 00
28 12 02 21 20 00 00 00 00 00 00 00 00
29 21 20 22 12 02 22 00 00 00 00 00 00
30 121 020 222 212 202 222 000 000 000 000 000 000

PdD Dissertation by Wan, Baohong
8294 94 104 2
8095 951356 3
8195 95 195 3
8295 95 29 3
8196 96 47 2
8098 34 460 2
8000 881897 2
8133 133 62 2

10 9 3000 80
34 9 3000 80
 5 1 3000 80
 9 5 3000 80
33 9 3000 80

1 38 2 38 3 38 4 38 5 38 6 38 7 38
80 40 0 0 50 15 0
21 18 15 12 9 7 6 5 4 4
 0 78 66 60 54 48 45 42 39 36 27
1 100 88 80 72 64 60 56 52 48 36
10 90

0

1 1 12 8 13 1 1
2 1 12 11 13 1 1
3 1 11 7 13 1 1
4 1 10 110 50 1 1
5 1 11 10 13 1 1
6 1 9 10 13 1 1
7 1 10 9 13 1 1
8 1 9 5 13 1 1
9 1 1 23 13 1 1
10 1 14 4 13 1 1
11 1 25 3 13 1 1
12 1 15 26 13 1 1
13 1 34 9 13 1 1
14 1 38 27 13 1 1
15 1 29 12 13 1 1
16 1 28 29 13 1 1
17 1 31 30 13 1 1
18 1 30 40 13 1 1
19 1 4 8 110 1 1

1 20
2 20
3 20
4 20
5 20
6 20
7 20
8 20
9 20
10 20
11 20
12 20
13 20
14 20
15 20
16 20
17 20
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>3349</td>
<td>1540</td>
</tr>
<tr>
<td>20</td>
<td>1356</td>
<td>2415</td>
</tr>
<tr>
<td>21</td>
<td>1690</td>
<td>2415</td>
</tr>
<tr>
<td>22</td>
<td>2019</td>
<td>2415</td>
</tr>
<tr>
<td>23</td>
<td>2341</td>
<td>2415</td>
</tr>
<tr>
<td>24</td>
<td>2678</td>
<td>2415</td>
</tr>
<tr>
<td>25</td>
<td>3016</td>
<td>2415</td>
</tr>
<tr>
<td>26</td>
<td>3349</td>
<td>2415</td>
</tr>
<tr>
<td>27</td>
<td>3681</td>
<td>2220</td>
</tr>
<tr>
<td>28</td>
<td>3681</td>
<td>1962</td>
</tr>
<tr>
<td>29</td>
<td>3681</td>
<td>1741</td>
</tr>
<tr>
<td>30</td>
<td>3349</td>
<td>1490</td>
</tr>
<tr>
<td>31</td>
<td>3016</td>
<td>1490</td>
</tr>
<tr>
<td>32</td>
<td>2678</td>
<td>1490</td>
</tr>
<tr>
<td>33</td>
<td>2341</td>
<td>1490</td>
</tr>
<tr>
<td>34</td>
<td>1690</td>
<td>1741</td>
</tr>
<tr>
<td>36</td>
<td>1429</td>
<td>2220</td>
</tr>
<tr>
<td>37</td>
<td>1836</td>
<td>1490</td>
</tr>
<tr>
<td>38</td>
<td>3681</td>
<td>2415</td>
</tr>
<tr>
<td>39</td>
<td>1905</td>
<td>2150</td>
</tr>
<tr>
<td>40</td>
<td>3681</td>
<td>1490</td>
</tr>
<tr>
<td>41</td>
<td>1555</td>
<td>1962</td>
</tr>
<tr>
<td>77</td>
<td>1841</td>
<td>1965</td>
</tr>
<tr>
<td>88</td>
<td>1000</td>
<td>1965</td>
</tr>
<tr>
<td>8000</td>
<td>1000</td>
<td>1965</td>
</tr>
<tr>
<td>8079</td>
<td>4026</td>
<td>1490</td>
</tr>
<tr>
<td>80</td>
<td>1356</td>
<td>2658</td>
</tr>
<tr>
<td>8020</td>
<td>1189</td>
<td>2415</td>
</tr>
<tr>
<td>8080</td>
<td>1356</td>
<td>2901</td>
</tr>
<tr>
<td>8180</td>
<td>1523</td>
<td>2658</td>
</tr>
<tr>
<td>81</td>
<td>1690</td>
<td>2658</td>
</tr>
<tr>
<td>8081</td>
<td>1690</td>
<td>2901</td>
</tr>
<tr>
<td>8181</td>
<td>1857</td>
<td>2658</td>
</tr>
<tr>
<td>8281</td>
<td>1690</td>
<td>2658</td>
</tr>
<tr>
<td>82</td>
<td>2019</td>
<td>2658</td>
</tr>
<tr>
<td>8082</td>
<td>2019</td>
<td>2901</td>
</tr>
<tr>
<td>8182</td>
<td>2186</td>
<td>2658</td>
</tr>
<tr>
<td>8282</td>
<td>2019</td>
<td>2658</td>
</tr>
<tr>
<td>83</td>
<td>2341</td>
<td>2658</td>
</tr>
<tr>
<td>8083</td>
<td>2341</td>
<td>2901</td>
</tr>
<tr>
<td>8183</td>
<td>2508</td>
<td>2658</td>
</tr>
<tr>
<td>8283</td>
<td>2341</td>
<td>2658</td>
</tr>
<tr>
<td>84</td>
<td>2678</td>
<td>2658</td>
</tr>
<tr>
<td>8084</td>
<td>2678</td>
<td>2901</td>
</tr>
<tr>
<td>8184</td>
<td>2845</td>
<td>2658</td>
</tr>
<tr>
<td>8284</td>
<td>2678</td>
<td>2658</td>
</tr>
<tr>
<td>85</td>
<td>3016</td>
<td>2658</td>
</tr>
<tr>
<td>8085</td>
<td>3016</td>
<td>2901</td>
</tr>
<tr>
<td>8185</td>
<td>3184</td>
<td>2658</td>
</tr>
<tr>
<td>86</td>
<td>3349</td>
<td>2658</td>
</tr>
<tr>
<td>8086</td>
<td>3349</td>
<td>2901</td>
</tr>
<tr>
<td>8186</td>
<td>3516</td>
<td>2658</td>
</tr>
<tr>
<td>87</td>
<td>3681</td>
<td>2658</td>
</tr>
<tr>
<td>8087</td>
<td>3681</td>
<td>2901</td>
</tr>
<tr>
<td>8187</td>
<td>3848</td>
<td>2658</td>
</tr>
<tr>
<td>188</td>
<td>4013</td>
<td>2220</td>
</tr>
<tr>
<td>8088</td>
<td>4180</td>
<td>2220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>8188</td>
<td>4013</td>
<td>1962</td>
</tr>
<tr>
<td>8099</td>
<td>4013</td>
<td>1962</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>4013</td>
</tr>
<tr>
<td>8090</td>
<td>4180</td>
<td>1741</td>
</tr>
<tr>
<td>8190</td>
<td>4013</td>
<td>1657</td>
</tr>
<tr>
<td>8091</td>
<td>3681</td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>3349</td>
</tr>
<tr>
<td>8092</td>
<td>3349</td>
<td>1002</td>
</tr>
<tr>
<td>8192</td>
<td>3182</td>
<td>1245</td>
</tr>
<tr>
<td>8292</td>
<td>3516</td>
<td>1245</td>
</tr>
<tr>
<td>8093</td>
<td>3016</td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>2678</td>
</tr>
<tr>
<td>8094</td>
<td>2678</td>
<td>1002</td>
</tr>
<tr>
<td>8194</td>
<td>2511</td>
<td>1245</td>
</tr>
<tr>
<td>8294</td>
<td>2845</td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>2341</td>
</tr>
<tr>
<td>8095</td>
<td>2341</td>
<td>1002</td>
</tr>
<tr>
<td>8195</td>
<td>2174</td>
<td>1245</td>
</tr>
<tr>
<td>8295</td>
<td>2508</td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>1997</td>
</tr>
<tr>
<td>8196</td>
<td>2164</td>
<td>1245</td>
</tr>
<tr>
<td>8097</td>
<td>4026</td>
<td>2415</td>
</tr>
<tr>
<td>8098</td>
<td>1630</td>
<td>1741</td>
</tr>
<tr>
<td>8296</td>
<td>2247</td>
<td>1409</td>
</tr>
<tr>
<td>8096</td>
<td>2161</td>
<td>1010</td>
</tr>
<tr>
<td>8286</td>
<td>3349</td>
<td>2658</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2336</td>
</tr>
<tr>
<td>8032</td>
<td>2678</td>
<td>1490</td>
</tr>
<tr>
<td>8133</td>
<td>2678</td>
<td>1490</td>
</tr>
<tr>
<td>133</td>
<td>2678</td>
<td>1490</td>
</tr>
<tr>
<td>88</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
File 3: NcsuBaseE.trf

NCSU Campus simulation base network 4:30 to 6:00 PM

time interval length: 5 min

number of time intervals: 18

major changes so far based on project requirement and hntb advice

1. time interval specification: 5 min * 18
2. lane channelization
3. roundabout control type, turn probs, curve, lane width specification
4. speed limits

Frg Flaw Detection PROJECT

Baohong Wan 3 029000ITRE 1
1 0 60 19451623 0000 31630 4998951758987707 2
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 3
60

8008 209 2 16 0 11
209 16 967 121 2 1 7T 210 127 15 127 20 18 35 11 11
16 209 967 2 8008 20 18 35 11 11
16 127 566 2 17 20 18 35 11 11
127 16 566 180 2 1 7T 15 209 210 209 20 18 35 11 11
127 171351 1 408 400 407 20 18 35 11 11
17 1271351 2 16 20 18 35 11 11
17 400 892 1 9 18 20 18 35 11 11
400 17 892 2 7B 407 127 408 20 18 35 11 11
400 18 86 2 7B 401 19 402 19 20 18 35 11 11
18 400 86 2 17 20 18 35 11 11
18 19 442 168 2 1 TT 20 123 20 18 35 11 11
19 18 442 110 2 1 7T 402 400 401 400 20 18 35 11 11
19 20 384 164 2 1 213 21 124 21 20 18 25 1211 11
20 19 384 134 2 1 TT 123 18 18 20 18 25 11 11
20 21 682 2 216 128 128 20 18 25 1211 11
21 20 682 245 2 1 124 19 213 19 20 18 25 11 11
21 128 340 2 22 20 18 25 11 11
128 21 340 2 20 216 20 20 18 25 11 11
128 22 569 2 7T 23 126 23 20 18 25 11 11
22 128 569 2 21 20 18 25 11 11
22 23 318 2 219 24 24 20 18 25 11 11
23 22 319 2 T8 126 128 128 20 18 25 11 11
23 24 936 2 228 6 7 6 20 18 25 11 11
24 23 936 2 22 219 20 18 25 11 11
24 6 558 2 7B 404 25 7 25 20 18 35 11 11
6 24 558 2 7 23 228 23 20 18 35 11 11
6 25 302 120 2 1 416 220 220 20 18 35 11 11
25 6 302 125 2 1 7T 7 24 404 24 20 18 35 11 11
25 220 277 2 8016 20 18 35 11 11
220 25 277 3 4 6 416 20 18 35 21 11
8016 220 3 25 0 11 11
8030 404 1 9 6 0 11 11
404 6 146 1 9 25 7 24 20 18 25 11 11
6 404 146 1 9 8030 20 18 25 11 11
6 7 514 1 9 118 24 20 18 25 11 11
7 6 514 2 47 404 25 404 20 18 25 121 11
24 7 590 1 9 6 118 20 18 25 11 11
7 24 590 69 1 23 228 6 228 20 18 25 11 11
7 118 218 1 9 120 20 15 25 11 11
118 7 218 95 1 1 24 6 6 20 18 25 11 11
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9	Column 10	Column 11	Column 12	Column 13	Column 14	Column 15	Column 16	Column 17	Column 18	Column 19	Column 20	Column 21	Column 22	Column 23	Column 24	Column 25	Column 26	Column 27	Column 28	Column 29	Column 30	Column 31	Column 32	Column 33	Column 34	Column 35	Column 36	Column 37	Column 38	Column 39	Column 40	Column 41	Column 42	Column 43	Column 44	Column 45	Column 46	Column 47	Column 48	Column 49	Column 50	Column 51	Column 52	Column 53	Column 54	Column 55	Column 56	Column 57	Column 58	Column 59	Column 60	Column 61	Column 62	Column 63	Column 64	Column 65	Column 66	Column 67	Column 68	Column 69	Column 70	Column 71	Column 72	Column 73	Column 74	Column 75	Column 76	Column 77	Column 78	Column 79	Column 80	Column 81	Column 82	Column 83	Column 84	Column 85	Column 86	Column 87	Column 88	Column 89	Column 90	Column 91	Column 92	Column 93	Column 94	Column 95	Column 96	Column 97	Column 98	Column 99	Column 100	Column 101	Column 102	Column 103	Column 104	Column 105	Column 106	Column 107	Column 108	Column 109	Column 110	Column 111	Column 112	Column 113	Column 114	Column 115	Column 116	Column 117	Column 118	Column 119	Column 120	Column 121	Column 122	Column 123	Column 124	Column 125	Column 126	Column 127	Column 128	Column 129	Column 130	Column 131	Column 132	Column 133	Column 134	Column 135	Column 136	Column 137	Column 138	Column 139	Column 140	Column 141	Column 142	Column 143	Column 144	Column 145	Column 146	Column 147	Column 148	Column 149	Column 150	Column 151	Column 152	Column 153	Column 154	Column 155	Column 156	Column 157	Column 158	Column 159	Column 160	Column 161	Column 162	Column 163	Column 164	Column 165	Column 166	Column 167	Column 168	Column 169	Column 170	Column 171	Column 172	Column 173	Column 174	Column 175	Column 176	Column 177	Column 178	Column 179	Column 180	Column 181	Column 182	Column 183	Column 184	Column 185	Column 186	Column 187	Column 188	Column 189	Column 190
224	122	140	1	9	406	3	20	18	10	11																																																																																																																																																																																			
8020	224	1	9	122	20	18	0	11	11																																																																																																																																																																																				
122	3	976	60	1	1	4	105	20	18	15	11																																																																																																																																																																																		
3	122	976	1	9	224	406	406	20	18	15	11																																																																																																																																																																																		
3	4	495	1	9	115	5	5	20	18	15	11																																																																																																																																																																																		
4	3	495	150	1	1	105	122	122	20	18	15	11																																																																																																																																																																																	
4	5	792	1	9	9	109	20	18	15	11																																																																																																																																																																																			
5	4	792	1	9	3	115	20	18	15	11																																																																																																																																																																																			
9	115	842	1	9	223	4	20	18	15	11																																																																																																																																																																																			
115	9	842	1	9	119	5	20	18	15	11																																																																																																																																																																																			

8021	223	2	115	0	11	11								
223	115	234	2	41	4	9	4	20	18	10	11			
115	223	234	1	9	8021	20	18	10	11					
115	4	576	1	9	5	3	20	18	15	11				
4	115	576	1	9	9	223	20	18	15	11				
3	105	870	1	9	104	20	18	25	11					
105	3	870	80	1	1	122	4	20	18	25	11			
105	104	643	1	9	11	121	121	20	18	25	11			
104	105	643	1	9	3	20	18	25	11					
11	104	152	1	9	121	105	20	18	25	11				
104	11	152	2	48	106	203	12	203	20	18	25	222		
104	121	415	1	9	101	225	20	18	15	11				
121	104	415	1	9	105	11	20	18	15	11				
8018	225	1	9	121	20	18	0	11						
225	121	166	1	9	104	101	20	18	10	11				
121	225	166	1	9	8018	20	18	10	11					
121	101	738	1	9	12	111	102	20	18	15	11			
101	111	1151	1	9	150	112	20	18	25	11				
111	1501654	300	1	1	9	14	15	20	18	25	11			
111	112	526	1	9	27	226	20	18	15	11				
8017	226	1	9	112	0	11								
226	112	342	1	9	27	20	18	10	11					
112	226	342	1	9	8017	20	18	10	11					
112	27	487	1	9	15	405	20	18	15	11				
27	112	487	1	9	226	20	18	15	11					
123	124	385	1	9	20	125	214	20	18	15	11			
124	20	88	1	9	19	213	213	20	18	15	11			
20	124	88	1	9	125	214	214	20	18	15	11			
8025	214	1	9	124	0	11								
214	124	126	1	9	20	125	20	18	15	11				
124	214	126	1	9	8025	20	18	15	11					
124	125	672	1	9	21	126	20	18	15	11				
125	21	61	1	9	20	216	128	216	20	18	15	11		
125	126	914	1	9	22	218	20	18	15	11				
8024	218	1	9	126	0	11								
218	126	175	1	9	22	20	18	15	11					
126	218	175	1	9	8024	20	18	15	11					
126	22	79	1	9	128	23	20	18	15	11				
22	126	79	1	218	218	20	18	15	11					
8001	202	1	9	106	0	11								
202	106	711	1	9	11	10	25	11						
106	202	711	1	9	8001	25	11							
8002	203	2	11	0	11									
203	11	901	300	450	2	1	71	12	104	106	20	18	40	11
11	203	901	2	8002	20	18	40	11						
8004	205	1	9	13	0	11								
205	131218	1	9	450	12	20	18	30	11					
21	20	5	88	7	21									
21	128	100	21											
128	21	99	1	21										
128	22	95	5	21										
22	128	100	21											
22	23	2	98	21										
23	22	100	21											
23	24	5	85	10	21									
24	23	96	4	21										
24	6	98	2	21										
6	24	1	95	4	21									
6	25	32	68	21										
25	6	24	76	21										
25	220	100	21											
220	25	80	20	21										
8016	220	100	21											
8030	404	100	21											
404	6	10	55	35	21									
6	404	100	21											
6	7	100	21											
7	6	100	21											
24	7	100	21											
7	24	48	43	9	21									
7	118	100	21											
118	7	35	65	21										
118	120	68	32	21										
120	119	16	84	21										
119	118	18	82	21										
119	9	92	8	21										
9	119	100	21											
9	5	87	13	21										
5	9	4	96	21										
5	109	21	79	21										
109	5	11	89	21										
109	10	100	21											
10	109	100	21											
8000	201	100	21											
201	110	100	21											
110	201	100	21											
110	108	85	15	21										
108	107	100	21											
108	109	100	21											
109	107	100	21											
107	175	100	21											
175	106	13	87	21										
106	10	35	65	21										
10	110	100	21											
106	11	34	65	1	21									
11	106	100	21											
11	12	6	88	6	21									
12	11	4	71	25	21									
12	13	100	21											
13	12	10	89	1	21									
13	450	100	21											
450	13	100	21											
450	14	10	80	10	21									
14	450	100	21											
19 123 100 21														
8026 215 100 21														
215 29 18 4 78 21														
29 215 100 21														
29 430 100 21														
430 29 51 7 42 21														
430 117 100 21														
117 430 100 21														
117 222 100 21														
222 117 100 21														
8022 222 100 21														
8023 221 100 21														
221 31 100 21														
31 221 100 21														
31 30 100 21														
30 117 100 21														
117 116 100 21														
116 31 100 21														
31 120 100 21														
120 31 100 21														
2 406 100 21														
406 2 38 62 21														
406 122 100 21														
122 406 100 21														
122 224 100 21														
224 122 44 66 21														
8020 224 100 21														
122 3 44 56 21														
3 122 100 21														
3 4 10 90 21														
4 3 72 28 21														
4 5 37 63 21														
5 4 100 21														
9 115 100 21														
115 9 70 30 21														
8021 223 100 21														
223 115 45 55 21														
115 223 100 21														
115 4 100 21														
4 115 100 21														
3 105 100 21														
105 3 46 54 21														
105 104 100 21														
104 105 100 21														
11 104 100 21														
104 11 13 44 43 21														
104 121 100 21														
121 104 25 75 21														
8018 225 100 21														
225 121 75 25 21														
121 225 100 21														
121 101 100 21														
101 111 50 50 21														
111 150 50 50 21														
111 112 100 21														
8017 226 100 21														
226 112 100 21														
112	226	100												
112	27	68	32											
27	112	100												
123	124	100												
124	20	21	56	23										
20	124	100												
8025	214	100												
214	124	100												
124	125	100												
125	21	100												
125	126	100												
8024	218	100												
218	126	100												
126	218	100												
126	22	43	57											
22	126	100												
8001	202	100												
202	106	100												
106	202	100												
8002	203	100												
203	11	48	15	37										
11	203	100												
8004	205	100												
205	13	50	50											
13	205	100												
8010	211	100												
211	401	100												
401	211	100												
401	18	58	10	32										
18	401	100												
8011	403	100												
403	213	100												
213	403	100												
213	20	17	13	70										
20	213	100												
8012	216	100												
216	21	65	35											
21	216	100												
8013	217	100												
217	22	23	38	39										
8014	219	100												
219	23	5	95											
23	219	100												
8015	228	100												
228	24	14	66	20										
24	228	100												
8027	212	100												
212	402	100												
402	212	100												
402	18	56	25	10										
18	402	100												
8032	407	100												
407	17	74	26											
17	407	100												
8031	408	100												
408	17	63	10	27										
17 408 100 21
8033 420 100 21
420 128 50 50 21
128 420 100 21
8034 417 100 21
417 416 100 21
416 417 100 21
416 25 32 68 21
25 416 100 21
118 120 15 85 22
120 119 60 40 22
119 118 21 79 22
2 103 114 406 35
3 0 4 105 122 14 3 15 3 12 3 10 0 0 0 0 0 0 35
4 115 5 3 35
5 4 9 109 35
6 10 24 25 7 404 24 4 37 4 1 24 4 2 0 0 0 0 0 35
7 6 118 24 35
9 0 115 5 119 50 3 24 3 0 0 0 0 0 0 0 0 35
10 109 106 35
11 59 106 104 12 203 14 4 15 7 48 5 1 40 4 3 35 4 35
12 46 11 101 13 204 14 6 2 7 87 5 2 35 3 16 3 0 35
13 12 205 450 35
14 0 206 207 150 450 23 6 76 5 2 14 3 46 4 1 0 0 35
15 25 16 27 208 150 63 4 1 28 4 0 0 0 0 0 0 35
16 51 15 209 210 127 17 3 7 3 62 3 17 3 6 4 32 3 35
17 84 127 400 407 408 76 4 2 12 4 2 0 0 0 0 0 0 35
18 65 19 400 401 402 6 4 61 4 2 17 4 2 0 0 0 0 35
19 60 18 20 123 11 4 49 4 2 25 4 1 0 0 0 0 35
20 54 19 21 124 213 9 4 52 4 1 25 4 1 0 0 0 0 35
21 50 20 216 125 128 64 4 2 24 4 2 0 0 0 0 0 0 35
22 39 23 126 217 128 64 4 2 24 4 2 0 0 0 0 0 0 35
23 36 24 219 22 68 4 2 24 1 1 0 0 0 0 0 0 35
24 17 23 6 7 228 65 4 1 24 4 2 0 0 0 0 0 0 35
25 5 6 220 416 22 4 38 4 2 24 4 2 0 0 0 0 35
26 102 103 405 35
27 15 112 405 35
28 0 114 29 229 230 27 3 17 3 0 0 0 0 0 0 0 0 35
29 28 113 215 430 35
30 31 35
31 116 120 221 35
101 12 102 121 35
102 101 26 35
103 26 2 227 35
104 11 105 121 35
105 3 104 35
106 11 202 175 35
107 108 109 35
108 110 35
109 5 10 108 35
110 10 201 35
111 101 35
112 111 27 226 35
113 0 29 123 4 1 8 0 0 0 0 0 0 0 0 0 35
114 0 2 28 4 1 5 0 0 0 0 0 0 0 0 0 35
115 9 4 223 35
116 117 35
<table>
<thead>
<tr>
<th>450</th>
<th>14</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>132</td>
<td>002</td>
</tr>
<tr>
<td>4</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2132</td>
<td>2002</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>219</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4242</td>
<td>0202</td>
</tr>
<tr>
<td>12</td>
<td>4242</td>
<td>0202</td>
</tr>
<tr>
<td>13</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2424</td>
<td>2020</td>
</tr>
<tr>
<td>15</td>
<td>1221</td>
<td>0220</td>
</tr>
<tr>
<td>16</td>
<td>2424</td>
<td>2020</td>
</tr>
<tr>
<td>17</td>
<td>1122</td>
<td>0022</td>
</tr>
<tr>
<td>18</td>
<td>1222</td>
<td>0222</td>
</tr>
<tr>
<td>19</td>
<td>212</td>
<td>202</td>
</tr>
<tr>
<td>20</td>
<td>1222</td>
<td>0222</td>
</tr>
<tr>
<td>21</td>
<td>1229</td>
<td>0220</td>
</tr>
<tr>
<td>22</td>
<td>1229</td>
<td>0220</td>
</tr>
<tr>
<td>23</td>
<td>921</td>
<td>020</td>
</tr>
<tr>
<td>24</td>
<td>1122</td>
<td>0022</td>
</tr>
<tr>
<td>25</td>
<td>123</td>
<td>020</td>
</tr>
<tr>
<td>26</td>
<td>005</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1122</td>
<td>0022</td>
</tr>
<tr>
<td>29</td>
<td>1155</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>515</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>77</td>
<td>00</td>
</tr>
<tr>
<td>114</td>
<td>77</td>
<td>00</td>
</tr>
<tr>
<td>115</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Lines</td>
<td>Content</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>206</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>207</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>208</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>209</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>210</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>123</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>124</td>
<td>511</td>
<td>36</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>126</td>
<td>511</td>
<td>36</td>
</tr>
<tr>
<td>211</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>212</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>213</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>214</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>215</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>216</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>217</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>218</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>219</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>220</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>221</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>222</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>223</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>224</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>225</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>226</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>227</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>228</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>127</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>128</td>
<td>772</td>
<td>002 222 228 220 222 000 000 000 000 000 36</td>
</tr>
<tr>
<td>229</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>230</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>150</td>
<td>115</td>
<td>36</td>
</tr>
<tr>
<td>175</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>400</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>401</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>402</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>403</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>404</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>405</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>406</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>407</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>408</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>420</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>416</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>417</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>430</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>450</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>8000</td>
<td>201 850</td>
<td>3 100</td>
</tr>
<tr>
<td>8001</td>
<td>202 200</td>
<td>3 100</td>
</tr>
<tr>
<td>8002</td>
<td>203 635</td>
<td>3 100</td>
</tr>
<tr>
<td>8003</td>
<td>204 150</td>
<td>100</td>
</tr>
<tr>
<td>8004</td>
<td>205 0</td>
<td>100</td>
</tr>
<tr>
<td>8005</td>
<td>206 358</td>
<td>3 100</td>
</tr>
<tr>
<td>8006</td>
<td>207 740</td>
<td>3 100</td>
</tr>
<tr>
<td>8007</td>
<td>208 72</td>
<td>100</td>
</tr>
<tr>
<td>8008</td>
<td>209 760</td>
<td>3 100</td>
</tr>
<tr>
<td>8009</td>
<td>210 306</td>
<td>3 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>8017</td>
<td>226</td>
<td>400</td>
</tr>
<tr>
<td>8026</td>
<td>215</td>
<td>128</td>
</tr>
<tr>
<td>8027</td>
<td>212</td>
<td>156</td>
</tr>
<tr>
<td>8010</td>
<td>211</td>
<td>128</td>
</tr>
<tr>
<td>8025</td>
<td>214</td>
<td>110</td>
</tr>
<tr>
<td>8012</td>
<td>216</td>
<td>89</td>
</tr>
<tr>
<td>8013</td>
<td>217</td>
<td>89</td>
</tr>
<tr>
<td>8024</td>
<td>218</td>
<td>160</td>
</tr>
<tr>
<td>8014</td>
<td>219</td>
<td>84</td>
</tr>
<tr>
<td>8015</td>
<td>228</td>
<td>131</td>
</tr>
<tr>
<td>8023</td>
<td>221</td>
<td>250</td>
</tr>
<tr>
<td>8022</td>
<td>222</td>
<td>108</td>
</tr>
<tr>
<td>8021</td>
<td>223</td>
<td>160</td>
</tr>
<tr>
<td>8020</td>
<td>224</td>
<td>60</td>
</tr>
<tr>
<td>8019</td>
<td>227</td>
<td>150</td>
</tr>
<tr>
<td>8016</td>
<td>220</td>
<td>1094</td>
</tr>
<tr>
<td>8028</td>
<td>229</td>
<td>60</td>
</tr>
<tr>
<td>8029</td>
<td>230</td>
<td>36</td>
</tr>
<tr>
<td>8011</td>
<td>403</td>
<td>251</td>
</tr>
<tr>
<td>8030</td>
<td>404</td>
<td>10</td>
</tr>
<tr>
<td>8032</td>
<td>407</td>
<td>39</td>
</tr>
<tr>
<td>8031</td>
<td>408</td>
<td>11</td>
</tr>
<tr>
<td>8034</td>
<td>417</td>
<td>444</td>
</tr>
<tr>
<td>120</td>
<td>119</td>
<td>15</td>
</tr>
<tr>
<td>119</td>
<td>118</td>
<td>15</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>78</td>
<td>66</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>116</td>
<td>31</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>115</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>105</td>
</tr>
<tr>
<td>10</td>
<td>105</td>
<td>104</td>
</tr>
<tr>
<td>1</td>
<td>102</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>26</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>103</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>114</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>31</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>119</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>121</td>
<td>101</td>
</tr>
<tr>
<td>12</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>13</td>
<td>111</td>
<td>112</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>122</td>
</tr>
<tr>
<td>4</td>
<td>113</td>
<td>123</td>
</tr>
<tr>
<td>5</td>
<td>124</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
<td>126</td>
</tr>
</tbody>
</table>
19 1 127 17 400 1 1
14 1 27 405 200 1 1
25 1 122 406 200 1 1
22 15 25
7 15 10
16 15
23 15 75
24 15 25
9 30
10 15 25
1 10 50
21 10 50
2 10 25
20 10 50
3 15 10
17 10 25
8 10 25
15 15 50
11 10 25
12 10 25
13 20
18 20
4 15 25
5 45
6 10 25
19 15 50
14 20 10
25 15 25
28003 204 12 101 102 26 103 2 114 28 29 113 123 124 125 21 128 22
2 23 24 7 118 120 119 9 5 4 3 105 104 11 12 2048003
18002 203 11 12 101 102 26 103 2 114 28 29 113 123 124 125 126 22
1 23 24 7 118 120 119 9 5 4 3 105 104 11 12 2038002
38002 203 11 104 105 3 122 406 2 103 26 102 101 12 11 2038002
48007 208 15 27 405 26 103 2 114 28 29 113 123 124 125 126 22
4 24 7 118 120 119 9 5 4 3 105 104 11 12 13 450 14 2078006
58007 208 15 27 405 26 103 2 114 28 29 113 123 124 125 126 22
5 24 7 118 120 119 9 5 4 3 105 104 11 12 13 2058004
68008 209 16 127 17 400 18 19 20 124 125 21 20 19 18 400 17 127
6 16 2098008
78017 226 112 27 405 26 103 2 114 28 29 430 117 116 31 120 119
7 115 4 3 105 104 121 101 111 112 2288017
88005 206 14 150 15 16 127 17 400 18 19 20 124 125 21 128 22
8 24 7 118 120 119 9 5 4 3 105 104 11 2038002
98003 204 12 101 102 26 103 2 114 28 29 113 123 124 125 126 22
9 24 7 118 120 119 9 5 4 3 105 104 11 2038002
2 1 2 3 4 5 7 824 910
1 1 2 3 4 5 6 7 824 910
3 18252021
4 1514 2 3 4 5 6 7 824 910
5 1514 2 3 4 5 6 7 824 910
6 1922 5
7 14 2 31617 823 910111213
8 1922 5 7 824 910
9 1 2 3 4 5 6 7 824 910
2 900 660
1 600 180
3 980 360
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>900 780</td>
<td>189</td>
</tr>
<tr>
<td>5</td>
<td>900 360</td>
<td>189</td>
</tr>
<tr>
<td>6</td>
<td>900 720</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>600</td>
<td>189</td>
</tr>
<tr>
<td>8</td>
<td>900 240</td>
<td>189</td>
</tr>
<tr>
<td>9</td>
<td>900 600</td>
<td>189</td>
</tr>
<tr>
<td>2</td>
<td>9642 10668</td>
<td>195</td>
</tr>
<tr>
<td>3</td>
<td>11104 9838</td>
<td>195</td>
</tr>
<tr>
<td>4</td>
<td>11592 9757</td>
<td>195</td>
</tr>
<tr>
<td>5</td>
<td>12286 9375</td>
<td>195</td>
</tr>
<tr>
<td>6</td>
<td>13597 11121</td>
<td>195</td>
</tr>
<tr>
<td>7</td>
<td>13224 10766</td>
<td>195</td>
</tr>
<tr>
<td>9</td>
<td>12643 9847</td>
<td>195</td>
</tr>
<tr>
<td>10</td>
<td>12186 8539</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>9721 9112</td>
<td>195</td>
</tr>
<tr>
<td>12</td>
<td>8725 9621</td>
<td>195</td>
</tr>
<tr>
<td>13</td>
<td>7713 10146</td>
<td>195</td>
</tr>
<tr>
<td>14</td>
<td>6258 10561</td>
<td>195</td>
</tr>
<tr>
<td>15</td>
<td>6451 12007</td>
<td>195</td>
</tr>
<tr>
<td>16</td>
<td>7004 13617</td>
<td>195</td>
</tr>
<tr>
<td>17</td>
<td>8598 12553</td>
<td>195</td>
</tr>
<tr>
<td>18</td>
<td>9523 12239</td>
<td>195</td>
</tr>
<tr>
<td>19</td>
<td>9960 12171</td>
<td>195</td>
</tr>
<tr>
<td>20</td>
<td>10333 12075</td>
<td>195</td>
</tr>
<tr>
<td>21</td>
<td>10988 11885</td>
<td>195</td>
</tr>
<tr>
<td>22</td>
<td>11875 11680</td>
<td>195</td>
</tr>
<tr>
<td>23</td>
<td>12183 11598</td>
<td>195</td>
</tr>
<tr>
<td>24</td>
<td>13083 11339</td>
<td>195</td>
</tr>
<tr>
<td>25</td>
<td>13867 10984</td>
<td>195</td>
</tr>
<tr>
<td>26</td>
<td>9176 10220</td>
<td>195</td>
</tr>
<tr>
<td>27</td>
<td>8083 11148</td>
<td>195</td>
</tr>
<tr>
<td>28</td>
<td>9844 11080</td>
<td>195</td>
</tr>
<tr>
<td>29</td>
<td>9908 11353</td>
<td>195</td>
</tr>
<tr>
<td>30</td>
<td>11142 10861</td>
<td>195</td>
</tr>
<tr>
<td>31</td>
<td>12003 10766</td>
<td>195</td>
</tr>
<tr>
<td>101</td>
<td>8770 9700</td>
<td>195</td>
</tr>
<tr>
<td>102</td>
<td>8801 9762</td>
<td>195</td>
</tr>
<tr>
<td>103</td>
<td>9466 10500</td>
<td>195</td>
</tr>
<tr>
<td>104</td>
<td>9817 9229</td>
<td>195</td>
</tr>
<tr>
<td>105</td>
<td>10461 9252</td>
<td>195</td>
</tr>
<tr>
<td>106</td>
<td>10628 8774</td>
<td>195</td>
</tr>
<tr>
<td>107</td>
<td>11946 8738</td>
<td>195</td>
</tr>
<tr>
<td>108</td>
<td>12432 8656</td>
<td>195</td>
</tr>
<tr>
<td>109</td>
<td>12235 8952</td>
<td>195</td>
</tr>
<tr>
<td>110</td>
<td>12864 8352</td>
<td>195</td>
</tr>
<tr>
<td>111</td>
<td>7734 10202</td>
<td>195</td>
</tr>
<tr>
<td>112</td>
<td>7866 10712</td>
<td>195</td>
</tr>
<tr>
<td>113</td>
<td>9933 11664</td>
<td>195</td>
</tr>
<tr>
<td>114</td>
<td>9762 10873</td>
<td>195</td>
</tr>
<tr>
<td>115</td>
<td>11900 10245</td>
<td>195</td>
</tr>
<tr>
<td>116</td>
<td>11939 10426</td>
<td>195</td>
</tr>
<tr>
<td>117</td>
<td>11053 10543</td>
<td>195</td>
</tr>
<tr>
<td>118</td>
<td>13107 10580</td>
<td>195</td>
</tr>
<tr>
<td>119</td>
<td>13052 10474</td>
<td>195</td>
</tr>
<tr>
<td>120</td>
<td>13016 10565</td>
<td>195</td>
</tr>
<tr>
<td>121</td>
<td>9420 9349</td>
<td>195</td>
</tr>
<tr>
<td>122</td>
<td>10262 10335</td>
<td>195</td>
</tr>
<tr>
<td>PD</td>
<td>Di</td>
<td>assert</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>201</td>
<td>13833</td>
<td>8089</td>
</tr>
<tr>
<td>202</td>
<td>10502</td>
<td>8073</td>
</tr>
<tr>
<td>203</td>
<td>9245</td>
<td>8346</td>
</tr>
<tr>
<td>204</td>
<td>8139</td>
<td>8665</td>
</tr>
<tr>
<td>205</td>
<td>7277</td>
<td>9008</td>
</tr>
<tr>
<td>206</td>
<td>6194</td>
<td>9069</td>
</tr>
<tr>
<td>207</td>
<td>5263</td>
<td>10649</td>
</tr>
<tr>
<td>208</td>
<td>5635</td>
<td>12265</td>
</tr>
<tr>
<td>209</td>
<td>6206</td>
<td>14164</td>
</tr>
<tr>
<td>210</td>
<td>7382</td>
<td>14347</td>
</tr>
<tr>
<td>123</td>
<td>9934</td>
<td>11990</td>
</tr>
<tr>
<td>124</td>
<td>10320</td>
<td>11992</td>
</tr>
<tr>
<td>125</td>
<td>10971</td>
<td>11825</td>
</tr>
<tr>
<td>126</td>
<td>11857</td>
<td>11602</td>
</tr>
<tr>
<td>211</td>
<td>9612</td>
<td>12949</td>
</tr>
<tr>
<td>212</td>
<td>9411</td>
<td>11843</td>
</tr>
<tr>
<td>213</td>
<td>10365</td>
<td>12424</td>
</tr>
<tr>
<td>214</td>
<td>10294</td>
<td>11869</td>
</tr>
<tr>
<td>215</td>
<td>9653</td>
<td>11478</td>
</tr>
<tr>
<td>216</td>
<td>11035</td>
<td>12171</td>
</tr>
<tr>
<td>217</td>
<td>11921</td>
<td>11970</td>
</tr>
<tr>
<td>218</td>
<td>11863</td>
<td>11427</td>
</tr>
<tr>
<td>219</td>
<td>12235</td>
<td>11898</td>
</tr>
<tr>
<td>220</td>
<td>14137</td>
<td>10921</td>
</tr>
<tr>
<td>221</td>
<td>12106</td>
<td>10975</td>
</tr>
<tr>
<td>222</td>
<td>11108</td>
<td>10394</td>
</tr>
<tr>
<td>223</td>
<td>11975</td>
<td>10022</td>
</tr>
<tr>
<td>224</td>
<td>10180</td>
<td>10221</td>
</tr>
<tr>
<td>225</td>
<td>9508</td>
<td>9490</td>
</tr>
<tr>
<td>226</td>
<td>8135</td>
<td>10499</td>
</tr>
<tr>
<td>227</td>
<td>9642</td>
<td>10311</td>
</tr>
<tr>
<td>8000</td>
<td>14423</td>
<td>7890</td>
</tr>
<tr>
<td>8001</td>
<td>10471</td>
<td>7629</td>
</tr>
<tr>
<td>8002</td>
<td>8963</td>
<td>7904</td>
</tr>
<tr>
<td>8003</td>
<td>7782</td>
<td>8194</td>
</tr>
<tr>
<td>8004</td>
<td>7035</td>
<td>8499</td>
</tr>
<tr>
<td>8005</td>
<td>6057</td>
<td>8557</td>
</tr>
<tr>
<td>8006</td>
<td>4726</td>
<td>10673</td>
</tr>
<tr>
<td>8007</td>
<td>5147</td>
<td>12370</td>
</tr>
<tr>
<td>8008</td>
<td>5894</td>
<td>14544</td>
</tr>
<tr>
<td>8009</td>
<td>7660</td>
<td>14689</td>
</tr>
<tr>
<td>8010</td>
<td>9765</td>
<td>13399</td>
</tr>
<tr>
<td>8011</td>
<td>10417</td>
<td>12819</td>
</tr>
<tr>
<td>8012</td>
<td>11069</td>
<td>12674</td>
</tr>
<tr>
<td>8013</td>
<td>11965</td>
<td>12558</td>
</tr>
<tr>
<td>8014</td>
<td>12304</td>
<td>12457</td>
</tr>
<tr>
<td>228</td>
<td>13147</td>
<td>11848</td>
</tr>
<tr>
<td>8015</td>
<td>13174</td>
<td>12254</td>
</tr>
<tr>
<td>8016</td>
<td>14573</td>
<td>10818</td>
</tr>
<tr>
<td>8017</td>
<td>8325</td>
<td>10325</td>
</tr>
<tr>
<td>8018</td>
<td>9724</td>
<td>9630</td>
</tr>
<tr>
<td>8019</td>
<td>9751</td>
<td>10079</td>
</tr>
<tr>
<td>8020</td>
<td>10145</td>
<td>9934</td>
</tr>
<tr>
<td>8021</td>
<td>12060</td>
<td>9789</td>
</tr>
<tr>
<td>8022</td>
<td>11204</td>
<td>10224</td>
</tr>
<tr>
<td>8023</td>
<td>12291</td>
<td>11007</td>
</tr>
<tr>
<td>8024</td>
<td>11843</td>
<td>11224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>8025</td>
<td>10322</td>
<td>11616</td>
</tr>
<tr>
<td>8026</td>
<td>9538</td>
<td>11519</td>
</tr>
<tr>
<td>8027</td>
<td>9374</td>
<td>11720</td>
</tr>
<tr>
<td>127</td>
<td>7459</td>
<td>13280</td>
</tr>
<tr>
<td>128</td>
<td>11319</td>
<td>11805</td>
</tr>
<tr>
<td>229</td>
<td>9678</td>
<td>11115</td>
</tr>
<tr>
<td>230</td>
<td>9981</td>
<td>11019</td>
</tr>
<tr>
<td>8028</td>
<td>9609</td>
<td>11128</td>
</tr>
<tr>
<td>8029</td>
<td>10134</td>
<td>10936</td>
</tr>
<tr>
<td>150</td>
<td>6288</td>
<td>11006</td>
</tr>
<tr>
<td>175</td>
<td>10795</td>
<td>8809</td>
</tr>
<tr>
<td>400</td>
<td>9437</td>
<td>12248</td>
</tr>
<tr>
<td>401</td>
<td>9557</td>
<td>12679</td>
</tr>
<tr>
<td>402</td>
<td>9482</td>
<td>12020</td>
</tr>
<tr>
<td>403</td>
<td>10400</td>
<td>12638</td>
</tr>
<tr>
<td>404</td>
<td>13649</td>
<td>11257</td>
</tr>
<tr>
<td>8030</td>
<td>13680</td>
<td>11338</td>
</tr>
<tr>
<td>405</td>
<td>8744</td>
<td>10569</td>
</tr>
<tr>
<td>406</td>
<td>9963</td>
<td>10483</td>
</tr>
<tr>
<td>407</td>
<td>8462</td>
<td>12171</td>
</tr>
<tr>
<td>408</td>
<td>8697</td>
<td>13034</td>
</tr>
<tr>
<td>8031</td>
<td>8826</td>
<td>13422</td>
</tr>
<tr>
<td>8032</td>
<td>8333</td>
<td>11821</td>
</tr>
<tr>
<td>420</td>
<td>11412</td>
<td>12223</td>
</tr>
<tr>
<td>8033</td>
<td>11458</td>
<td>12464</td>
</tr>
<tr>
<td>416</td>
<td>13924</td>
<td>11543</td>
</tr>
<tr>
<td>8034</td>
<td>13884</td>
<td>12086</td>
</tr>
<tr>
<td>417</td>
<td>13929</td>
<td>11784</td>
</tr>
<tr>
<td>430</td>
<td>9993</td>
<td>11306</td>
</tr>
<tr>
<td>450</td>
<td>6477</td>
<td>10514</td>
</tr>
<tr>
<td>109</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>109</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>119</td>
<td>502</td>
</tr>
<tr>
<td>119</td>
<td>118</td>
<td>552</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>502</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>127</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>115</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>106</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>120</td>
<td>119</td>
<td>12</td>
</tr>
<tr>
<td>119</td>
<td>118</td>
<td>19</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>112</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>122</td>
<td>50</td>
</tr>
<tr>
<td>203</td>
<td>11</td>
<td>45</td>
</tr>
<tr>
<td>206</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>207</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>223</td>
<td>115</td>
<td>60</td>
</tr>
<tr>
<td>406</td>
<td>122</td>
<td>80</td>
</tr>
<tr>
<td>8000</td>
<td>2011010</td>
<td>3</td>
</tr>
<tr>
<td>8001</td>
<td>202</td>
<td>200</td>
</tr>
<tr>
<td>8002</td>
<td>203</td>
<td>706</td>
</tr>
<tr>
<td>8003</td>
<td>204</td>
<td>150</td>
</tr>
<tr>
<td>8004</td>
<td>205</td>
<td>0</td>
</tr>
<tr>
<td>8005</td>
<td>206</td>
<td>398</td>
</tr>
<tr>
<td>8006</td>
<td>207</td>
<td>822</td>
</tr>
<tr>
<td>8007</td>
<td>208</td>
<td>64</td>
</tr>
<tr>
<td>8008</td>
<td>209</td>
<td>883</td>
</tr>
<tr>
<td>8009</td>
<td>210</td>
<td>357</td>
</tr>
<tr>
<td>8017</td>
<td>226</td>
<td>445</td>
</tr>
<tr>
<td>8026</td>
<td>215</td>
<td>232</td>
</tr>
<tr>
<td>8027</td>
<td>212</td>
<td>180</td>
</tr>
<tr>
<td>8010</td>
<td>211</td>
<td>150</td>
</tr>
<tr>
<td>8025</td>
<td>214</td>
<td>118</td>
</tr>
<tr>
<td>8013</td>
<td>217</td>
<td>103</td>
</tr>
<tr>
<td>8024</td>
<td>218</td>
<td>186</td>
</tr>
<tr>
<td>8014</td>
<td>219</td>
<td>99</td>
</tr>
<tr>
<td>8015</td>
<td>228</td>
<td>154</td>
</tr>
<tr>
<td>8023</td>
<td>221</td>
<td>200</td>
</tr>
<tr>
<td>8022</td>
<td>222</td>
<td>128</td>
</tr>
<tr>
<td>8021</td>
<td>223</td>
<td>225</td>
</tr>
<tr>
<td>8019</td>
<td>227</td>
<td>80</td>
</tr>
<tr>
<td>8016</td>
<td>2201204</td>
<td>3</td>
</tr>
<tr>
<td>8028</td>
<td>229</td>
<td>96</td>
</tr>
<tr>
<td>8029</td>
<td>230</td>
<td>84</td>
</tr>
<tr>
<td>8011</td>
<td>403</td>
<td>292</td>
</tr>
<tr>
<td>8034</td>
<td>417</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>83</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>115</td>
<td>9</td>
<td>84</td>
</tr>
<tr>
<td>115</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>108</td>
<td>74</td>
</tr>
<tr>
<td>106</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>112</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>203</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>204</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>206</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>207</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>223</td>
<td>115</td>
</tr>
<tr>
<td>21</td>
<td>227</td>
<td>103</td>
</tr>
<tr>
<td>21</td>
<td>406</td>
<td>122</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
<td>450</td>
</tr>
<tr>
<td>21</td>
<td>450</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>450</td>
</tr>
<tr>
<td>50</td>
<td>8000</td>
<td>201</td>
</tr>
<tr>
<td>50</td>
<td>8001</td>
<td>202</td>
</tr>
<tr>
<td>50</td>
<td>8002</td>
<td>203</td>
</tr>
<tr>
<td>50</td>
<td>8003</td>
<td>204</td>
</tr>
<tr>
<td>50</td>
<td>8004</td>
<td>205</td>
</tr>
<tr>
<td>50</td>
<td>8005</td>
<td>206</td>
</tr>
<tr>
<td>50</td>
<td>8006</td>
<td>207</td>
</tr>
<tr>
<td>50</td>
<td>8007</td>
<td>208</td>
</tr>
<tr>
<td>50</td>
<td>8008</td>
<td>209</td>
</tr>
<tr>
<td>50</td>
<td>8009</td>
<td>210</td>
</tr>
<tr>
<td>50</td>
<td>8017</td>
<td>226</td>
</tr>
<tr>
<td>50</td>
<td>8026</td>
<td>215</td>
</tr>
<tr>
<td>50</td>
<td>8027</td>
<td>212</td>
</tr>
<tr>
<td>50</td>
<td>8010</td>
<td>211</td>
</tr>
<tr>
<td>50</td>
<td>8025</td>
<td>214</td>
</tr>
<tr>
<td>50</td>
<td>8013</td>
<td>217</td>
</tr>
<tr>
<td>50</td>
<td>8024</td>
<td>218</td>
</tr>
<tr>
<td>50</td>
<td>8014</td>
<td>219</td>
</tr>
<tr>
<td>50</td>
<td>8015</td>
<td>228</td>
</tr>
<tr>
<td>50</td>
<td>8023</td>
<td>221</td>
</tr>
<tr>
<td>50</td>
<td>8022</td>
<td>222</td>
</tr>
<tr>
<td>50</td>
<td>8021</td>
<td>223</td>
</tr>
<tr>
<td>50</td>
<td>8019</td>
<td>227</td>
</tr>
<tr>
<td>50</td>
<td>8016</td>
<td>220</td>
</tr>
<tr>
<td>50</td>
<td>8028</td>
<td>229</td>
</tr>
<tr>
<td>50</td>
<td>8029</td>
<td>230</td>
</tr>
<tr>
<td>50</td>
<td>8011</td>
<td>403</td>
</tr>
<tr>
<td>50</td>
<td>8034</td>
<td>417</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>210</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>210</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>210</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>115</td>
</tr>
<tr>
<td>21</td>
<td>115</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>110 108</td>
<td>85 15</td>
<td>21</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>120</td>
<td>119</td>
<td>13</td>
</tr>
<tr>
<td>119</td>
<td>118</td>
<td>18</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>67</td>
</tr>
<tr>
<td>112</td>
<td>27</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>122</td>
<td>40</td>
</tr>
<tr>
<td>201</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>203</td>
<td>11</td>
<td>48</td>
</tr>
<tr>
<td>206</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>207</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>209</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>223</td>
<td>115</td>
<td>45</td>
</tr>
<tr>
<td>127</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>406</td>
<td>122</td>
<td>65</td>
</tr>
<tr>
<td>122</td>
<td>406</td>
<td>100</td>
</tr>
<tr>
<td>450</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>8000</td>
<td>2011359</td>
<td>3</td>
</tr>
<tr>
<td>8001</td>
<td>202</td>
<td>200</td>
</tr>
<tr>
<td>8002</td>
<td>203</td>
<td>953</td>
</tr>
<tr>
<td>8003</td>
<td>204</td>
<td>150</td>
</tr>
<tr>
<td>8004</td>
<td>205</td>
<td>0</td>
</tr>
<tr>
<td>8005</td>
<td>206</td>
<td>537</td>
</tr>
<tr>
<td>8006</td>
<td>2071109</td>
<td>3</td>
</tr>
<tr>
<td>8007</td>
<td>208</td>
<td>112</td>
</tr>
<tr>
<td>8008</td>
<td>2091138</td>
<td>3</td>
</tr>
<tr>
<td>8009</td>
<td>210</td>
<td>459</td>
</tr>
<tr>
<td>8017</td>
<td>226</td>
<td>266</td>
</tr>
<tr>
<td>8026</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>8027</td>
<td>212</td>
<td>192</td>
</tr>
<tr>
<td>8010</td>
<td>211</td>
<td>233</td>
</tr>
<tr>
<td>8025</td>
<td>214</td>
<td>151</td>
</tr>
<tr>
<td>8013</td>
<td>217</td>
<td>133</td>
</tr>
<tr>
<td>8024</td>
<td>218</td>
<td>240</td>
</tr>
<tr>
<td>8014</td>
<td>219</td>
<td>126</td>
</tr>
<tr>
<td>8015</td>
<td>228</td>
<td>197</td>
</tr>
<tr>
<td>8023</td>
<td>221</td>
<td>325</td>
</tr>
<tr>
<td>8022</td>
<td>222</td>
<td>116</td>
</tr>
<tr>
<td>8021</td>
<td>223</td>
<td>236</td>
</tr>
<tr>
<td>8019</td>
<td>227</td>
<td>180</td>
</tr>
<tr>
<td>8016</td>
<td>2201204</td>
<td>3</td>
</tr>
<tr>
<td>8028</td>
<td>229</td>
<td>52</td>
</tr>
<tr>
<td>8029</td>
<td>230</td>
<td>40</td>
</tr>
<tr>
<td>8011</td>
<td>403</td>
<td>376</td>
</tr>
<tr>
<td>8034</td>
<td>417</td>
<td>544</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>115</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>108</td>
<td>87</td>
</tr>
<tr>
<td>106</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>120</td>
<td>119</td>
<td>13</td>
</tr>
<tr>
<td>119</td>
<td>118</td>
<td>19</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>67</td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>112</td>
<td>27</td>
<td>80</td>
</tr>
<tr>
<td>27</td>
<td>112</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>122</td>
<td>60</td>
</tr>
<tr>
<td>203</td>
<td>11</td>
<td>47</td>
</tr>
<tr>
<td>206</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>207</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>209</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>210</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>223</td>
<td>115</td>
<td>20</td>
</tr>
<tr>
<td>127</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>406</td>
<td>122</td>
<td>84</td>
</tr>
<tr>
<td>450</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

<p>| 8000 | 2011409 | 3 | 100 | 50 |
| 8001 | 202 | 200 | 100 | 50 | |
| 8002 | 203 | 988 | 3 | 100 | 50 |
| 8003 | 204 | 150 | 100 | 50 |
| 8004 | 205 | 0 | 100 | 50 |
| 8005 | 206 | 557 | 3 | 100 | 50 |
| 8006 | 2071150 | 3 | 100 | 50 |
| 8007 | 208 | 140 | 100 | 50 |
| 8008 | 2091180 | 3 | 100 | 50 |
| 8009 | 210 | 526 | 3 | 100 | 50 |
| 8017 | 226 | 339 | 100 | 50 |
| 8026 | 215 | 144 | 100 | 50 |
| 8027 | 212 | 242 | 100 | 50 |
| 8010 | 211 | 200 | 100 | 50 |
| 8025 | 214 | 157 | 100 | 50 |
| 8013 | 217 | 137 | 100 | 50 |
| 8024 | 218 | 249 | 100 | 50 |
| 8014 | 219 | 131 | 100 | 50 |
| 8015 | 228 | 205 | 100 | 50 |
| 8023 | 221 | 275 | 100 | 50 |
| 8022 | 222 | 164 | 100 | 50 |
| 8021 | 223 | 218 | 100 | 50 |
| 8019 | 227 | 250 | 100 | 50 |
| 8016 | 2201196 | 3 | 100 | 50 |
| 8028 | 229 | 104 | 100 | 50 |
| 8029 | 230 | 80 | 100 | 50 |
| 8011 | 403 | 390 | 100 | 50 |
| 8034 | 417 | 648 | 100 | 50 |
| 0 | | | | 170 |
| 0 | 3 | | | 210 |
| 0 | | | | 170 |
| 0 | 3 | | | 210 |</p>
<table>
<thead>
<tr>
<th>0</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>210</td>
</tr>
<tr>
<td>18 19 78 22</td>
<td>21</td>
</tr>
<tr>
<td>20 19 20 80</td>
<td>21</td>
</tr>
<tr>
<td>23 24 5 83 12</td>
<td>21</td>
</tr>
<tr>
<td>25 6 32 68</td>
<td>21</td>
</tr>
<tr>
<td>9 115 70 30</td>
<td>21</td>
</tr>
<tr>
<td>115 4 70 30</td>
<td>21</td>
</tr>
<tr>
<td>3 4 100</td>
<td>21</td>
</tr>
<tr>
<td>110 108 75 25</td>
<td>21</td>
</tr>
<tr>
<td>106 10 42 58</td>
<td>21</td>
</tr>
<tr>
<td>11 12 5 80 15</td>
<td>21</td>
</tr>
<tr>
<td>12 11 8 67 25</td>
<td>21</td>
</tr>
<tr>
<td>13 12 17 82 1</td>
<td>21</td>
</tr>
<tr>
<td>102 26 18 82</td>
<td>21</td>
</tr>
<tr>
<td>120 119 11 89</td>
<td>21</td>
</tr>
<tr>
<td>119 118 19 81</td>
<td>21</td>
</tr>
<tr>
<td>118 120 67 33</td>
<td>21</td>
</tr>
<tr>
<td>112 27 89 11</td>
<td>21</td>
</tr>
<tr>
<td>27 112 100</td>
<td>21</td>
</tr>
<tr>
<td>3 122 28 72</td>
<td>21</td>
</tr>
<tr>
<td>203 11 45 21 34</td>
<td>21</td>
</tr>
<tr>
<td>204 12 3 79 18</td>
<td>21</td>
</tr>
<tr>
<td>206 14 20 68 12</td>
<td>21</td>
</tr>
<tr>
<td>207 14 10 79 11</td>
<td>21</td>
</tr>
<tr>
<td>209 16 13 75 12</td>
<td>21</td>
</tr>
<tr>
<td>210 16 20 60 20</td>
<td>21</td>
</tr>
<tr>
<td>223 115 100</td>
<td>21</td>
</tr>
<tr>
<td>127 16 18 77 5</td>
<td>21</td>
</tr>
<tr>
<td>406 122 50 50</td>
<td>21</td>
</tr>
<tr>
<td>25 416 100</td>
<td>21</td>
</tr>
<tr>
<td>416 417 100</td>
<td>21</td>
</tr>
<tr>
<td>417 416 100</td>
<td>21</td>
</tr>
<tr>
<td>29 430 100</td>
<td>21</td>
</tr>
<tr>
<td>117 430 100</td>
<td>21</td>
</tr>
<tr>
<td>450 14 6 84 10</td>
<td>21</td>
</tr>
<tr>
<td>8000 2011035 3 100</td>
<td>50</td>
</tr>
<tr>
<td>8001 202 200 100</td>
<td>50</td>
</tr>
<tr>
<td>8002 203 811 3 100</td>
<td>50</td>
</tr>
<tr>
<td>8003 204 150 100</td>
<td>50</td>
</tr>
<tr>
<td>8004 205 0 100</td>
<td>50</td>
</tr>
<tr>
<td>8005 206 700 3 100</td>
<td>50</td>
</tr>
<tr>
<td>8006 207 945 3 100</td>
<td>50</td>
</tr>
<tr>
<td>8007 208 108 100</td>
<td>50</td>
</tr>
<tr>
<td>8008 209 970 3 100</td>
<td>50</td>
</tr>
<tr>
<td>8009 210 500 3 100</td>
<td>50</td>
</tr>
<tr>
<td>8017 226 160 100</td>
<td>50</td>
</tr>
<tr>
<td>8026 215 152 100</td>
<td>50</td>
</tr>
<tr>
<td>8027 212 199 100</td>
<td>50</td>
</tr>
<tr>
<td>8010 211 164 100</td>
<td>50</td>
</tr>
<tr>
<td>8025 214 129 100</td>
<td>50</td>
</tr>
<tr>
<td>8013 217 113 100</td>
<td>50</td>
</tr>
<tr>
<td>8024 218 204 100</td>
<td>50</td>
</tr>
<tr>
<td>8014 219 107 100</td>
<td>50</td>
</tr>
<tr>
<td>8015 228 168 100</td>
<td>50</td>
</tr>
<tr>
<td>8023 221 225 100</td>
<td>50</td>
</tr>
<tr>
<td>8022 222 148 100</td>
<td>50</td>
</tr>
<tr>
<td>Code</td>
<td>Value1</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>8021</td>
<td>223</td>
</tr>
<tr>
<td>8019</td>
<td>227</td>
</tr>
<tr>
<td>8016</td>
<td>220109 3</td>
</tr>
<tr>
<td>8028</td>
<td>229</td>
</tr>
<tr>
<td>8029</td>
<td>230</td>
</tr>
<tr>
<td>8011</td>
<td>403</td>
</tr>
<tr>
<td>8034</td>
<td>417</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX 2: FAILURE DETECTION PROGRAM CODES IN VBA

Module 1: ExpDesign

Option Explicit

Const RplNum = 100
Const CaseDir = "D:\flawdetection\Chapter7\"
Const CaseName = "Am89ErrieDr"

Sub ExpDesign()
 Dim BaseFile, BaseLine, OutFile, OutLine, RplFile, RplLine, InpFile As String
 Dim RecType, Title, FpBaseLine, RpBaseLine As String
 Dim RplCnt, TpdCnt, TpdNum, BaseFileNum, OutFileNum, RplFileNum As Integer
 Dim LnkNum, LnkCnt, TrnNum, TrnCnt, IntNum, IntCnt, DmdNum, DmdCnt As Integer
 Dim a, b, c, i, j, k, count, CursorRow, anode, bnode, cnode As Integer
 Dim cf, o, p, q As Object
 Dim Ending, LocalLink As Boolean

 ' control if the link stl and qdh change locally or globally
 LocalLink = False

 Dim ParFile, ParLine As String
 Dim ParNum, ParSetCnt, ParSetNum, ParFileNum As Integer
 Dim ParInp(30, 8), ParVal(30, 8)
 Dim LnkAnode(150), LnkBnode(150), LnkLnode(150), LnkTnode(150), LnkRnode(150)
 Dim LnkLength(150), LnkLanes(150), LnkLtPct(150), LnkThPct(150), LnkRtPct(150)
 Dim IntID(60), IntType(60), IntOffset(60), IntPhases(60), IntCycLng(60)
 Dim DmdSnode(40), DmdEnode(40), DmdFlRate(40), DmdHvPct(40)

 Dim r1, r2, r3 As String
 Dim rs1(RplNum), rs2(RplNum), rs3(RplNum)
 Dim l1, l2 As String
 Dim slt(RplNum), qdh(RplNum), sbp(RplNum), llp(RplNum), ljp(RplNum)

 Dim NewSheet As Object

 ' create worksheets for experiment data record
 Application.DisplayAlerts = False
 For a = 1 To Worksheets.count - 1
 If Worksheets(a).Name = "ExpDesign" Then
 Application.DisplayAlerts = False
 Worksheets(a).Delete
 Application.DisplayAlerts = True
 End If
 Next a
 Set NewSheet = Worksheets.Add
 NewSheet.Name = "ExpDesign"
 Application.DisplayAlerts = True

 ' record basic experiment information
 With Worksheets("ExpDesign").Range("B2", "E20")
 .Font.Bold = True
 Cells(2, 2).Value = "Corsim Analysis Experiment"
 End With
\
Cells(3, 2).Value = CaseDir & CaseName
Cells(5, 2).Value = Date & Space(3) & Time()
Cells(6, 2).Value = "by Baohong"
End With

' read parameter values from input file
ParNum = 8: ParSetNum = 0
ParFile = "D:\flawdetection\VBA\ExpCv Design_Oct 06.txt"
ParFileNum = FreeFile()
Open ParFile For Input Access Read As #ParFileNum

i = 0
While Not EOF(ParFileNum)
 Line Input #ParFileNum, ParLine
 i = i + 1
 For j = 1 To ParNum
 ParInp(i, j) = CSng(Mid(ParLine, j * 11 - 4, 9))
 Next j
Wend
ParSetNum = i
Close #ParFileNum

'transform parameter values into input values
For i = 1 To ParSetNum
 For j = 1 To ParNum
 Select Case j
 Case 1
 k = Int(ParInp(i, j) * 5) + 1
 If k > 5 Then k = 5
 Select Case k
 Case 1: ParVal(i, j) = 100
 Case 2: ParVal(i, j) = 105
 Case 3: ParVal(i, j) = 110
 Case 4: ParVal(i, j) = 115
 Case 5: ParVal(i, j) = 120
 Case Else
 End Select
 Case 2
 k = Int(ParInp(i, j) * 7) + 1
 If k > 7 Then k = 7
 Select Case k
 Case 1: ParVal(i, j) = 16
 Case 2: ParVal(i, j) = 17
 Case 3: ParVal(i, j) = 18
 Case 4: ParVal(i, j) = 19
 Case 5: ParVal(i, j) = 20
 Case 6: ParVal(i, j) = 21
 Case 7: ParVal(i, j) = 22
 Case Else
 End Select
 Case 3
 k = Int(ParInp(i, j) * 6) + 1
 If k > 6 Then k = 6
 Select Case k
 Case 1: ParVal(i, j) = 14
 Case 2: ParVal(i, j) = 17
 Case 3: ParVal(i, j) = 18
Case 4: ParVal(i, j) = 20
Case 5: ParVal(i, j) = 22
Case 6: ParVal(i, j) = 24
Case Else
End Select
Case 4
k = Int(ParInp(i, j) * 5) + 1
If k > 5 Then k = 5
Select Case k
Case 1: ParVal(i, j) = 70
Case 2: ParVal(i, j) = 75
Case 3: ParVal(i, j) = 80
Case 4: ParVal(i, j) = 85
Case 5: ParVal(i, j) = 90
Case Else
End Select
Case 5
k = Int(ParInp(i, j) * 5) + 1
If k > 5 Then k = 5
Select Case k
Case 1: ParVal(i, j) = 20
Case 2: ParVal(i, j) = 30
Case 3: ParVal(i, j) = 40
Case 4: ParVal(i, j) = 50
Case 5: ParVal(i, j) = 60
Case Else
End Select
Case 6
k = Int(ParInp(i, j) * 5) + 1
If k > 5 Then k = 5
 k = 1 ' Arbitrary value to test
Select Case k
Case 1: ParVal(i, j) = 50
Case 2: ParVal(i, j) = 60
Case 3: ParVal(i, j) = 70
Case 4: ParVal(i, j) = 80
Case 5: ParVal(i, j) = 90
End Select
Case 7
k = Int(ParInp(i, j) * 5) + 1
If k > 5 Then k = 5
 k = 2 ' Arbitrary value to test
Select Case k
Case 1: ParVal(i, j) = "05"
Case 2: ParVal(i, j) = 15
Case 3: ParVal(i, j) = 25
Case 4: ParVal(i, j) = 35
Case 5: ParVal(i, j) = 45
Case Else
End Select
Case 8
k = Int(ParInp(i, j) * 6) + 1
If k > 6 Then k = 6
Select Case k
Case 1: ParVal(i, j) = "00"
Case 2: ParVal(i, j) = "08"
Case 3: ParVal(i, j) = 16
Case 4: ParVal(i, j) = 24
Case 5: ParVal(i, j) = 32
Case 6: ParVal(i, j) = 38
Case Else
End Select
Case Else
End Select
Next j
Next i

'create replication batch input file
InpFile = CaseDir & CaseName & ".inp"
Set cf = CreateObject("Scripting.FileSystemObject")
Set o = cf.CreateTextFile(InpFile, True)

For RplCnt = 1 To RplNum
 'open corsim input file
 BaseFile = CaseDir & CaseName & ".trf"
 BaseFileNum = FreeFile()
 Open BaseFile For Input Access Read As #BaseFileNum

 'create replication input file
 RplFile = CaseDir & CaseName & CStr(RplCnt) & ".trf"
 o.WriteLine (RplFile)
 Cells(RplCnt + 7, 2).Value = RplFile
 Set cf = CreateObject("Scripting.FileSystemObject")
 Set p = cf.CreateTextFile(RplFile, True)

 ParSetCnt = Int(RplCnt / (RplNum + 1) * ParSetNum) + 1
 While Not EOF(BaseFileNum)
 Line Input #BaseFileNum, BaseLine
 RecType = 0
 If Trim(Mid(BaseLine, 78, 3)) <> "" Then RecType = CInt(Mid(BaseLine, 78, 3))
 Select Case RecType
 Case 2
 r1 = Mid(BaseLine, 22, 8)
 r2 = Mid(BaseLine, 61, 8)
 r3 = Mid(BaseLine, 69, 8)
 rs1(RplCnt) = *
 For i = 1 To 7
 rs1(RplCnt) = rs1(RplCnt) & CStr(Int(Rnd() * 10))
 Next i
 Ending = False
 While Ending = False
 a = Int(Rnd() * 5)
 If a <> 2 Then
 rs1(RplCnt) = rs1(RplCnt) & CStr(a * 2 + 1)
 Ending = True
 End If
 Wend
 rs2(RplCnt) = *
 For i = 1 To 7
 rs2(RplCnt) = rs2(RplCnt) & CStr(Int(Rnd() * 10))
 Next i
 Ending = False
While Ending = False
 a = Int(Rnd() * 5)
 If a <> 2 Then
 rs2(RplCnt) = rs2(RplCnt) & CStr(a * 2 + 1)
 Ending = True
 End If
Wend
rs3(RplCnt) = ''
For i = 1 To 7
 rs3(RplCnt) = rs3(RplCnt) & CStr(Int(Rnd() * 10))
Next i
Ending = False
While Ending = False
 a = Int(Rnd() * 5)
 If a <> 2 Then
 rs3(RplCnt) = rs3(RplCnt) & CStr(a * 2 + 1)
 Ending = True
 End If
Wend
Cells(RplCnt + 7, 4).Value = rs1(RplCnt)
Cells(RplCnt + 7, 5).Value = rs2(RplCnt)
Cells(RplCnt + 7, 6).Value = rs3(RplCnt)
RplLine = BaseLine
RplLine = Replace(RplLine, r1, rs1(RplCnt))
RplLine = Replace(RplLine, r2, rs2(RplCnt))
RplLine = Replace(RplLine, r3, rs3(RplCnt))
Case 11
 anode = CInt(Mid(BaseLine, 1, 4))
 bnode = CInt(Mid(BaseLine, 5, 4))
 If anode = 118 Or anode = 119 Or anode = 120 Then LocalLink = True
 If bnode = 118 Or bnode = 119 Or bnode = 120 Then LocalLink = True
 LocalLink = True
 If LocalLink = True Then
 l1 = Mid(BaseLine, 59, 2)
 l2 = Mid(BaseLine, 63, 2)
 slt(RplCnt) = ParVal(ParSetCnt, 2)
 qdh(RplCnt) = ParVal(ParSetCnt, 3)
 FpBaseLine = Left(BaseLine, 58)
 RpBaseLine = Right(BaseLine, 16)
 RplLine = FpBaseLine & slt(RplCnt) & Space(2) & qdh(RplCnt) &
 RpBaseLine
 Cells(RplCnt + 7, 9).Value = slt(RplCnt)
 Cells(RplCnt + 7, 10).Value = qdh(RplCnt)
Else
 RplLine = BaseLine
End If
LocalLink = False
Case 50
 l1 = Mid(BaseLine, 9, 4)
 l2 = CStr(Int(CInt(l1) * ParVal(ParSetCnt, 1) / 100 + 0.5))
l2 = Space(4 - Len(l2)) & l2
RplLine = Replace(BaseLine, l1, l2)
Cells(RplCnt + 7, 8).Value = ParVal(ParSetCnt, 1)

Case 140
 ljp(RplCnt) = ""
 For i = 1 To 7
 ljp(RplCnt) = ljp(RplCnt) & Space(3) & i & Space(2) & ParVal(ParSetCnt, 8)
 Next i
 RplLine = BaseLine
 l1 = Mid(RplLine, 1, 56)
 RplLine = Replace(RplLine, l1, ljp(RplCnt))
 Cells(RplCnt + 7, 13).Value = ljp(RplCnt)

Case 141
 RplLine = BaseLine
 l1 = Mid(RplLine, 1, 16)
 l2 = Mid(RplLine, 17, 12)
 sbp(RplCnt) = Space(2) & CStr(ParVal(ParSetCnt, 4))
 sbp(RplCnt) = sbp(RplCnt) & Space(2) & CStr(ParVal(ParSetCnt, 5))
 sbp(RplCnt) = sbp(RplCnt) & " 0 0"
 llp(RplCnt) = Space(2) & CStr(ParVal(ParSetCnt, 6))
 llp(RplCnt) = llp(RplCnt) & Space(2) & CStr(ParVal(ParSetCnt, 7))
 llp(RplCnt) = llp(RplCnt) & " 0"
 RplLine = Replace(RplLine, l1, sbp(RplCnt))
 RplLine = Replace(RplLine, l2, llp(RplCnt))
 Cells(RplCnt + 7, 11).Value = sbp(RplCnt)
 Cells(RplCnt + 7, 12).Value = llp(RplCnt)

Case Else
 RplLine = BaseLine
End Select
p.WriteLine (RplLine)
Wend
p.Close
Close #BaseFileNum
Next RplCnt
o.Close

End Sub
Module 2: Am89VbaAggCode

Option Explicit
Const RplNum = 100 ' total number of replications in an experiment
Const CaseDir = "D:\flawdetection\Chapter7" ' root directory for the experiment
Const CaseName = "Am89ErieDr" ' case name for the experiment
Const StRpl = 1 ' starting replication number for the run
Dim TpdNum ' time period number
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
 number of failure links
 number of initial trips
 number of fluctuation trips
Sub main()
 GetInfo ' subprogram for gathering experiment information
 FlwDtc ' subprogram for detecting simulation failures
 CslAnl ' subprogram for analyzing failure patterns
End Sub

Sub GetInfo()
 Dim BaseFile, BaseLine, OutFile, OutLine As String
 Dim RecType, Title As String
 Dim RplCnt, TpdCnt, BaseFileNum, OutFileNum As Integer
 Dim LnkNum, LnkCnt, TrnNum, TrnCnt, IntNum, IntCnt, DmdNum, DmdCnt As Integer
 Dim a, b, c, i, j, k, count, CursorRow, anode, bnode, cnode As Integer
 Dim LnkAnode(150), LnkBnode(150), LnkLnode(150), LnkTnode(150), LnkRnode(150)
 Dim LnkLength(150), LnkLanes(150), LnkLtPct(150), LnkThPct(150), LnkRtPct(150)
 Dim IntID(60), IntType(60), IntOffset(60), IntPhases(60), IntCycLng(60)
 Dim DmdSnode(40), DmdEnode(40), DmdFlRate(40), DmdHvPct(40)
 Dim NewSheet As Object
 Dim firstP1, firstP2, firstP3, firstP4, firstP5, firstP6, firstP7, firstP8 As Boolean
 'create worksheets for experiment data record
 Application.DisplayAlerts = False
 For a = 1 To Worksheets.count - 1
 If Worksheets(a).Name = "CorAnl" Then
 Application.DisplayAlerts = False
 Worksheets(a).Delete
 Application.DisplayAlerts = True
 End If
 Next a
 Set NewSheet = Worksheets.Add
 NewSheet.Name = "CorAnl"
 Application.DisplayAlerts = True
 'record basic experiment information
With Worksheets("CorAnl").Range("B2", "E30") ' initial worksheet as CorAnl
 .Font.Bold = True
 Cells(2, 2).Value = "Corsim Analysis Experiment"
 Cells(3, 2).Value = CaseDir & CaseName
 Cells(5, 2).Value = Date & Space(3) & Time()
 Cells(6, 2).Value = "by Baohong Wan, Phd Candidate, North Carolina University"

 Cells(7, 2).Value = "Start time: " & Time()
 Cells(11, 2).Value = "Beginning output data collection ... "
End With

' create excel file for analysis output
Workbooks.Add
ActiveWorkbook.SaveAs Filename:="Anl" & CaseName & ".xls" ' specify the workbook to save analysis outputs

' ***
' ********* corsim input file analysis ************
' ***
' create worksheets for input data analysis results
Application.DisplayAlerts = False
Worksheets("sheet1").Name = "InputInfo" ' specify the worksheet to save analysis outputs
Worksheets("sheet2").Name = "Validation" ' specify the worksheet to save validation results
Worksheets("sheet3").Delete
Application.DisplayAlerts = True
CursorRow = 0

' open corsim input file
BaseFile = CaseDir & CaseName & ".trf" ' Specify base experiment file to work with
BaseFileNum = FreeFile()
Open BaseFile For Input Access Read As #BaseFileNum
Range(Cells(1, 1), Cells(3, 10)).Font.Bold = True
Cells(2, 2).Value = "Name of Input File:" ' record base experiment file information
Cells(3, 2).Value = BaseFile
CursorRow = CursorRow + 5

' read corsim input file part 1 to 8
firstP1 = 1: firstP2 = 1: firstP3 = 1: firstP4 = 1
firstP5 = 1: firstP6 = 1: firstP7 = 1: firstP8 = 1
Tpdcnt = 0: Lnkcnt = 0: Trncnt = 0: Intcnt = 0: Dmdcnt = 0

While Not EOF(BaseFileNum)
 Line Input #BaseFileNum, BaseLine
 RecType = Mid(BaseLine, 78, 3)
 If RecType <> "" Then
 Select Case CInt(RecType)
 ' part 1: corsim input file header
 Case 0, 1
 ' judge if it is the first line of part 1
If firstP1 = 1 Then
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 1: Input File Header"
 End With
 CursorRow = CursorRow + 1
 firstP1 = 0
End If

' copy everything in the header
Cells(CursorRow, 2).Value = Left(BaseLine, 78)
CursorRow = CursorRow + 1

'part 2: corsim input general information
Case 2, 3, 4, 5
 ' judge if it is the first line of part 2
 If firstP2 = 1 Then
 CursorRow = CursorRow + 1
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 2: General Information"
 End With
 CursorRow = CursorRow + 1
 firstP2 = 0
 End If
End Case

Select Case CInt(RecType)
 ' gather values of random number seeds
 Case 2
 Cells(CursorRow, 2).Value = "Random number seeds:"
 Cells(CursorRow, 5).Value = Mid(BaseLine, 22, 8)
 Cells(CursorRow, 7).Value = Mid(BaseLine, 61, 8)
 Cells(CursorRow, 9).Value = Mid(BaseLine, 69, 8)
 CursorRow = CursorRow + 1
 Case 3
 Cells(CursorRow, 2).Value = "Time period lengths:"
 TpdCnt = 0
 While Not Trim(Mid(BaseLine, TpdCnt * 4 + 1, 4)) = ""
 TpdCnt = TpdCnt + 1
 Cells(CursorRow, 5 + (TpdCnt - 1) * 1).Value = Mid(BaseLine, (TpdCnt - 1) * 4 + 1, 4)
 Wend
 TpdNum = TpdCnt
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Number of time periods:"
 Cells(CursorRow, 5).Value = TpdNum
 CursorRow = CursorRow + 1
 Case 4
 If Trim(Mid(BaseLine, 17, 4)) <> "" Then
 Cells(CursorRow, 2).Value = "Time interval Duration:"
 Cells(CursorRow, 5).Value = Mid(BaseLine, 17, 4)
 End If
End Select
other information
Case 5
End Select

'part 3: corsim network links information
Case 11
' judge if it is the first line of part 3
If firstP3 = 1 Then
 CursorRow = CursorRow + 1
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 3: Network Links Information"
 End With
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Anode"
 Cells(CursorRow, 3).Value = "Bnode"
 Cells(CursorRow, 4).Value = "Lnode"
 Cells(CursorRow, 5).Value = "Tnode"
 Cells(CursorRow, 6).Value = "Rnode"
 Cells(CursorRow, 7).Value = "Length"
 Cells(CursorRow, 8).Value = "Lanes"
 CursorRow = CursorRow + 1
 firstP3 = 0
End If

' gather geometry information for each link
LnkCnt = LnkCnt + 1
LnkAnode(LnkCnt) = CInt(Mid(BaseLine, 1, 4))
LnkBnode(LnkCnt) = CInt(Mid(BaseLine, 5, 4))
If Trim(Mid(BaseLine, 9, 4)) <> "" Then LnkLength(LnkCnt) =
 CInt(Mid(BaseLine, 9, 4))
If Trim(Mid(BaseLine, 22, 1)) <> "" Then LnkLanes(LnkCnt) =
 CInt(Mid(BaseLine, 22, 1))
If Trim(Mid(BaseLine, 37, 4)) <> "" Then LnkLnode(LnkCnt) =
 CInt(Mid(BaseLine, 37, 4))
If Trim(Mid(BaseLine, 41, 4)) <> "" Then LnkTnode(LnkCnt) =
 CInt(Mid(BaseLine, 41, 4))
If Trim(Mid(BaseLine, 45, 4)) <> "" Then LnkRnode(LnkCnt) =
 CInt(Mid(BaseLine, 45, 4))

 Cells(CursorRow, 2).Value = LnkAnode(LnkCnt)
 Cells(CursorRow, 3).Value = LnkBnode(LnkCnt)
 Cells(CursorRow, 4).Value = LnkLnode(LnkCnt)
 Cells(CursorRow, 5).Value = LnkTnode(LnkCnt)
 Cells(CursorRow, 6).Value = LnkRnode(LnkCnt)
 Cells(CursorRow, 7).Value = LnkLength(LnkCnt)
 Cells(CursorRow, 8).Value = LnkLanes(LnkCnt)
 CursorRow = CursorRow + 1

' summarize number of links analyzed
LnkNum = LnkCnt
Cells(CursorRow, 2).Value = "Number of Links Analyzed : " & Str(LnkNum)

'part 4: corsim link turn percentage information
Case 21
 ' judge if it is the first line of part 4
 If firstP4 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 4: Turn Percentage Information"
 End With
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Anode"
 Cells(CursorRow, 3).Value = "Bnode"
 Cells(CursorRow, 4).Value = "LT Pct"
 Cells(CursorRow, 5).Value = "TH Pct"
 Cells(CursorRow, 6).Value = "RT Pct"
 CursorRow = CursorRow + 1
 firstP4 = 0
 End If
 ' gather link turning probability information
 anode = CInt(Mid(BaseLine, 1, 4))
 bnode = CInt(Mid(BaseLine, 5, 4))
 For LnkCnt = 1 To LnkNum
 ' match the link order in record type 21 to rt 11
 If anode = LnkAnode(LnkCnt) And bnode = LnkBnode(LnkCnt) Then
 TrnCnt = TrnCnt + 1
 If Trim(Mid(BaseLine, 9, 4)) <> "" Then LnkLtPct(LnkCnt) =
 CInt(Mid(BaseLine, 9, 4))
 If Trim(Mid(BaseLine, 13, 4)) <> "" Then LnkThPct(LnkCnt) =
 CInt(Mid(BaseLine, 13, 4))
 If Trim(Mid(BaseLine, 17, 4)) <> "" Then LnkRtPct(LnkCnt) =
 CInt(Mid(BaseLine, 17, 4))
 Cells(CursorRow, 2).Value = LnkAnode(LnkCnt)
 Cells(CursorRow, 3).Value = LnkBnode(LnkCnt)
 Cells(CursorRow, 4).Value = LnkLtPct(LnkCnt)
 Cells(CursorRow, 5).Value = LnkThPct(LnkCnt)
 Cells(CursorRow, 6).Value = LnkRtPct(LnkCnt)
 CursorRow = CursorRow + 1
 End If
 Next LnkCnt
 'summarize number of links whose turning probabilities analyzed
 TrnNum = TrnCnt
 Cells(CursorRow, 2).Value = " Number of Links Analyzed : " &
 Str(TrnNum)
 'part 5: corsim signal type and phase information
 Case 35, 36
 ' judge if it is the first line of part 5
 If firstP5 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 5: Signal Information"
 End With
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Intersection"
Cells(CursorRow, 3).Value = "Type"
Cells(CursorRow, 4).Value = "Offset"
Cells(CursorRow, 5).Value = "Phases"
Cells(CursorRow, 6).Value = "Cycle Length"
CursorRow = CursorRow + 1
firstP5 = 0
End If

' collect information about intersection control types
Select Case CInt(RecType)
Case 35
 IntCnt = IntCnt + 1
 IntID(IntCnt) = CInt(Mid(BaseLine, 1, 4))
 If Trim(Mid(BaseLine, 5, 4)) <> "" Then
 IntOffset(IntCnt) = CInt(Mid(BaseLine, 5, 4))
 IntType(IntCnt) = "Sig"
 IntPhases(IntCnt) = 0: IntCycLng(IntCnt) = 0
 While Trim(Mid(BaseLine, IntPhases(IntCnt) * 4 + 29, 4)) <>
 "" And Trim(Mid(BaseLine, IntPhases(IntCnt) * 4 + 29, 4)) <> "0"
 IntPhases(IntCnt) = IntPhases(IntCnt) + 1
 IntCycLng(IntCnt) = IntCycLng(IntCnt) + CInt(Mid(BaseLine,
 IntPhases(IntCnt) * 4 + 25, 4))
 Wend
 Else
 IntType(IntCnt) = "Unsig"
 End If

 Cells(CursorRow, 2).Value = IntID(IntCnt)
 Cells(CursorRow, 3).Value = IntType(IntCnt)
 Cells(CursorRow, 4).Value = IntOffset(IntCnt)
 Cells(CursorRow, 5).Value = IntPhases(IntCnt)
 Cells(CursorRow, 6).Value = IntCycLng(IntCnt)
 CursorRow = CursorRow + 1

' summarize number of intersections analyzed
 IntNum = IntCnt
 Cells(CursorRow, 2).Value = " Number of Intersections Analyzed :
 " & Str(IntNum)
Case 36
Case Else
End Select

' part 6: corsim network demand information
Case 50
 ' judge if it is the first line of part 6
 If firstP6 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 6: Network Demand Information"
 End With
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Source Node"
 Cells(CursorRow, 3).Value = "Entry Node"
 Cells(CursorRow, 4).Value = "Flow Rate"
 Cells(CursorRow, 5).Value = "HV Pct"
CursorRow = CursorRow + 1
firstP6 = 0
End If

' gather network demand information
DmdCnt = DmdCnt + 1
DmdSnode(DmdCnt) = CInt(Mid(BaseLine, 1, 4))
DmdEnode(DmdCnt) = CInt(Mid(BaseLine, 5, 4))
DmdFlRate(DmdCnt) = CInt(Mid(BaseLine, 9, 4))
DmdHvPct(DmdCnt) = CInt(Mid(BaseLine, 13, 4))
Cells(CursorRow, 2).Value = DmdSnode(DmdCnt)
Cells(CursorRow, 3).Value = DmdEnode(DmdCnt)
Cells(CursorRow, 4).Value = DmdFlRate(DmdCnt)
Cells(CursorRow, 5).Value = DmdHvPct(DmdCnt)
CursorRow = CursorRow + 1

' summarize number of demand analyzed
DmdNum = DmdCnt
Cells(CursorRow, 2).Value = "Number of Input Demand Analyzed : " & Str(DmdNum)

' part 7: corsim traffic parameter information
Case 81, 140, 141, 144, 145, 153
 ' judge if it is the first line of part 7
 If firstP7 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 7: Traffic Parameter Information"
 End With
 CursorRow = CursorRow + 1
 firstP7 = 0
 End If
End Select

' copy traffic parameter input line
Cells(CursorRow, 2).Value = Left(BaseLine, 80)
CursorRow = CursorRow + 1

' part 8: other corsim information
Case Else
End If

Wend
Close #BaseFileNum

' ***
' ********* corsim output file analysis ***********
' ***
Dim LnkTrips(150, 12), LnkVehStTime(150, 12), LnkCtDelay(150, 12)
Dim LnkVehQuTime(150, 12), LnkStPct(150, 12), LnkSpeed(150, 12)
Dim LnkLtTrips(150, 12), LnkThTrips(150, 12), LnkRtTrips(150, 12)
Dim LnkQuTime(150, 12), LnkStTime(150, 12)
Dim LnkLtQuTime(150, 12), LnkThQuTime(150, 12), LnkRtQuTime(150, 12)
Dim LnkLtStTime(150, 12), LnkThStTime(150, 12), LnkRtStTime(150, 12)
Dim LnkCntTrips(150, 12), LnkInpTrips(150, 12), LnkOutTrips(150, 12)
Dim SysQuTime, SysStTime, SysVehMile, SysVehHour
Dim VlLnkAnode(3), VlLnkBnode(3) As Integer
Dim VlLnkTrips(3, 12), VlLnkStTime(3, 12), VlLnkVehTrips(3), VlLnkVehStTime(3)

' input validation link information
VlLnkAnode(1) = 7: VlLnkBnode(1) = 8: VlLnkVehTrips(1) = 2790: VlLnkVehStTime(1) = 9
VlLnkAnode(2) = 4: VlLnkBnode(2) = 8: VlLnkVehTrips(2) = 1650: VlLnkVehStTime(2) = 14
VlLnkAnode(3) = 3: VlLnkBnode(3) = 7: VlLnkVehTrips(3) = 693: VlLnkVehStTime(3) = 33

'create corsim output analysis summary worksheet
For a = 1 To Worksheets.count - 1
 If Worksheets(a).Name = "Summary" Then
 Application.DisplayAlerts = False
 Worksheets(a).Delete
 Application.DisplayAlerts = True
 End If
Next a
Set NewSheet = Worksheets.Add
NewSheet.Name = "Summary"

' head info for output analysis
With Cells(2, 2)
 .Font.Bold = True
 .Value = "Summary output of the test case:"
End With
With Cells(3, 2)
 .Font.Bold = True
 .Value = CaseDir & CaseName
End With
With Cells(4, 2)
 .Font.Bold = True
 .Value = "Total number of replication analyzed:"
End With
Cells(6, 2).Font.Italic = True
Cells(6, 2).Value = "Network analysis started from " & Time() & ", " & Date
Range(Cells(7, 1), Cells(7, 8)).Font.Italic = True
Cells(7, 2).Value = "Replication"
Cells(7, 3).Value = "SysQuTime"
Cells(7, 4).Value = "SysStTime"
Cells(7, 5).Value = "SysVehHour"
Cells(7, 6).Value = "SysVehMile"

'extract corsim output information from .out files
For RplCnt = StRpl To RplNum
 OutFileNum = FreeFile()
 OutFile = CaseDir & CaseName & CStr(RplCnt) & ".out"
 Open OutFile For Input Access Read As #OutFileNum

 'create worksheet for corsim replicational output data
 For a = 1 To Worksheets.count - 1
 If Worksheets(a).Name = "OutputInfo" & CStr(RplCnt) Then
 Application.DisplayAlerts = False
 Worksheets(a).Delete
 Application.DisplayAlerts = True
 End If
 Next a

 Set NewSheet = Worksheets.Add
 NewSheet.Name = "OutputInfo" & CStr(RplCnt)
End For

 ' close file and output sheet
 Close #OutFileNum
Next RplCnt
End If
Next a
Set NewSheet = Worksheets.Add
NewSheet.Name = "OutputInfo" & CStr(RplCnt)
CursorRow = 0

' head information for replication analysis
With Cells(2, 2)
 .Value = "Output analysis results from the file:"
 .Font.Bold = True
End With
With Cells(3, 2)
 .Value = OutFile
 .Font.Bold = True
End With
CursorRow = 5
For i = 1 To LnkNum: For j = 1 To TpdNum
LnkCntTrips(i, j) = 0: LnkInpTrips(i, j) = 0: LnkOutTrips(i, j) = 0
Next j: Next i
a = 0: b = 0
While Not EOF(OutFileNum)
 Line Input #OutFileNum, OutLine

' header tagging the beginning of link output statistics table for time interval 1
If Mid(OutLine, 5, 46) = "LINK MILES TRIPS TIME TIME TIME" And a = 0 Then
 a = a + 1: count = 0

' exit loop after analyzing one complete cycle of corsim links
While count < LnkNum
 Line Input #OutFileNum, OutLine
 If Mid(OutLine, 2, 1) = "(" Then
 count = count + 1
 anode = CInt(Mid(OutLine, 3, 4))
 bnode = CInt(Mid(OutLine, 8, 4))

' collect interval output information for corresponding corsim links in input file analysis
 For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then LnkTrips(LnkCnt, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 92, 5)) <> "" Then LnkCtDelay(LnkCnt, a) = CSng(Mid(OutLine, 92, 5))
 If Trim(Mid(OutLine, 100, 5)) <> "" Then LnkVehQuTime(LnkCnt, a) = CSng(Mid(OutLine, 100, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then LnkVehStTime(LnkCnt, a) = CSng(Mid(OutLine, 108, 5))
 If Trim(Mid(OutLine, 113, 5)) <> "" Then LnkStPct(LnkCnt, a) = CSng(Mid(OutLine, 113, 5))
 If Trim(Mid(OutLine, 126, 5)) <> "" Then LnkSpeed(LnkCnt, a) = CSng(Mid(OutLine, 126, 5))
 End If
 Next LnkCnt
links for validation

For c = 1 To 3
 If VlLnkAnode(c) = anode And VlLnkBnode(c) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then VlLnkTrips(c, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then VlLnkStTime(c, a) = CSng(Mid(OutLine, 108, 5))
 End If
Next c
Wend
End If

'table title tagging interval specific link output for time intervals 2 and thereafter
If Mid(OutLine, 45, 26) = "SPECIFIC NETSIM STATISTICS" Then
 ' a denotes time interval number
 a = a + 1: count = 0

 ' exit loop after analyzing a complete cycle of corsim links
 While count < LnkNum
 Line Input #OutFileNum, OutLine
 If Mid(OutLine, 2, 1) = "(" Then
 count = count + 1
 anode = CInt(Mid(OutLine, 3, 4))
 bnode = CInt(Mid(OutLine, 8, 4))
 End If
 Wend
End If

' collect interval output information for corresponding corsim links in input file analysis
For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then LnkTrips(LnkCnt, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 92, 5)) <> "" Then LnkCtDelay(LnkCnt, a) = CSng(Mid(OutLine, 92, 5))
 If Trim(Mid(OutLine, 100, 5)) <> "" Then LnkVehQuTime(LnkCnt, a) = CSng(Mid(OutLine, 100, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then LnkVehStTime(LnkCnt, a) = CSng(Mid(OutLine, 108, 5))
 If Trim(Mid(OutLine, 113, 5)) <> "" Then LnkStPct(LnkCnt, a) = CSng(Mid(OutLine, 113, 5))
 If Trim(Mid(OutLine, 126, 5)) <> "" Then LnkSpeed(LnkCnt, a) = CSng(Mid(OutLine, 126, 5))
 End If
Next LnkCnt

' collect interval output information for corresponding corsim links for validation
For c = 1 To 3
 If VlLnkAnode(c) = anode And VlLnkBnode(c) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then VlLnkTrips(c, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then VlLnkStTime(c, a) = CSng(Mid(OutLine, 108, 5))
 End If
Next c
End If
Wend

End If

' title tagging corsim movement statistics table I for all time intervals
If Trim(Mid(OutLine, 10, 120)) = "NETSIM MOVEMENT SPECIFIC STATISTICS - TABLE I" Then
b = b + 1: count = 0
While count < LnkNum
Line Input #OutFileNum, OutLine
If Mid(OutLine, 6, 1) = "(" Then
count = count + 1
anode = CInt(Mid(OutLine, 7, 4))
bnode = CInt(Mid(OutLine, 12, 4))

For LnkCnt = 1 To LnkNum
If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
' link left-turn movement trips
If Trim(Mid(OutLine, 51, 4)) <> "" Then
LnkLtTrips(LnkCnt, b) = CSng(Mid(OutLine, 51, 4))
End If

'cumulate link discharged trips for downstream link input trips
For i = 1 To LnkNum
If LnkAnode(i) = LnkBnode(LnkCnt) And LnkBnode(i) = LnkLnnode(LnkCnt) Then
LnkLntTraits(i, b) = LnktLntTraits(i, b) +
LnkLntTraits(LnkCnt, b)
End If
Next i
End If

' link through movement trips
If Trim(Mid(OutLine, 59, 4)) <> "" Then
LnkThTrips(LnkCnt, b) = CSng(Mid(OutLine, 59, 4))
End If

'cumulate link discharged trips for downstream link input trips
For i = 1 To LnkNum
If LnkAnode(i) = LnkBnode(LnkCnt) And LnkBnode(i) = LnkTnode(LnkCnt) Then
LnkLntTraits(i, b) = LnktLntTraits(i, b) +
LnkLntTraits(LnkCnt, b)
End If
Next i
End If

' link right-turn movement trips
If Trim(Mid(OutLine, 68, 4)) <> "" Then
LnkRtTrips(LnkCnt, b) = CSng(Mid(OutLine, 68, 4))
End If

'cumulate link discharged trips for downstream link input trips
For i = 1 To LnkNum
If LnkAnode(i) = LnkBnode(LnkCnt) And LnkBnode(i) = LnkRnode(LnkCnt) Then
 LnkInpTrips(i, b) = LnkInpTrips(i, b) + LnkRtTrips(LnkCnt, b)
End If

Next i
End If

Next LnkCnt
End If

Wend

' title tagging corsim movement statistics table III for all time intervals
If Trim(Mid(OutLine, 10, 120)) = "NETSIM MOVEMENT SPECIFIC STATISTICS - TABLE III" Then
 count = 0
 ' exit loop after analyzing a complete cycle of links
 While count < LnkNum
 Line Input #OutFileNum, OutLine
 If Mid(OutLine, 6, 1) = "(" Then
 count = count + 1
 anode = CInt(Mid(OutLine, 7, 4))
 bnode = CInt(Mid(OutLine, 12, 4))
 'collect movement specific traffic MOE for corresponding links in input file analysis
 For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 If Trim(Mid(OutLine, 78, 7)) <> "" Then
 LnkLtQuTime(LnkCnt, b) = CSng(Mid(OutLine, 78, 7))
 If Trim(Mid(OutLine, 86, 7)) <> "" Then
 LnkThQuTime(LnkCnt, b) = CSng(Mid(OutLine, 86, 7))
 If Trim(Mid(OutLine, 95, 7)) <> "" Then
 LnkRtQuTime(LnkCnt, b) = CSng(Mid(OutLine, 95, 7))
 If Trim(Mid(OutLine, 107, 7)) <> "" Then
 LnkLtStTime(LnkCnt, b) = CSng(Mid(OutLine, 107, 7))
 If Trim(Mid(OutLine, 115, 7)) <> "" Then
 LnkThStTime(LnkCnt, b) = CSng(Mid(OutLine, 115, 7))
 If Trim(Mid(OutLine, 124, 7)) <> "" Then
 LnkRtStTime(LnkCnt, b) = CSng(Mid(OutLine, 124, 7))
 '!!!LnkQuTime(,) and LnkStTime(,) are both cumulative statistics for system info derivation
 End If
 End If
 End If
 End If
 End If
 Next LnkCnt
 End If
 End If
 Next count
 End If

Wend
End If

Wend
Close #OutFileNum

'cumulate system level statistics
SysQuTime = 0: SysStTime = 0: SysVehHour = 0: SysVehMile = 0
For LnkCnt = 1 To LnkNum
 For TpdCnt = 1 To TpdNum
 'cumulate system level statistics
 If LnkLength(LnkCnt) <> "" Then
 If TpdCnt = TpdNum Then
 SysQuTime = SysQuTime + LnkQuTime(LnkCnt, TpdCnt) / 60
 SysStTime = SysStTime + LnkStTime(LnkCnt, TpdCnt) / 60
 End If
 SysVehMile = SysVehMile + LnkTrips(LnkCnt, TpdCnt) * LnkLength(LnkCnt) / 5280
 If LnkSpeed(LnkCnt, TpdCnt) <> 0 Then
 SysVehHour = SysVehHour + LnkTrips(LnkCnt, TpdCnt) * LnkLength(LnkCnt) / 5280 / LnkSpeed(LnkCnt, TpdCnt)
 End If
 End If
 End If
 ' derive link output trips for each time interval
 If TpdCnt = 1 Then
 LnkOutTrips(LnkCnt, TpdCnt) = LnkTrips(LnkCnt, TpdCnt)
 Else
 LnkOutTrips(LnkCnt, TpdCnt) = LnkOutTrips(LnkCnt, TpdCnt - 1) + LnkTrips(LnkCnt, TpdCnt)
 End If
 ' derive link content trips for each time interval
 LnkCntTrips(LnkCnt, TpdCnt) = LnkInpTrips(LnkCnt, TpdCnt) - LnkOutTrips(LnkCnt, TpdCnt)
 Next TpdCnt
Next LnkCnt

'record corsim network link and system information
With Cells(CursorRow, 2)
 .Font.Bold = True
 .Font.Color = RGB(255, 0, 0)
 .Value = "Network cumulative statistics:"
End With
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Queue Time =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysQuTime: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Stop Time =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysStTime: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Vehicle Miles =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysVehMile: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Vehicle Hours =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysVehHour: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1

' record link MOE for each time interval
For i = 1 To 12
 For LnkCnt = 1 To LnkNum
 ' add header information
 If LnkCnt = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 Select Case i
 Case 1
 .Value = "Link vehicle trips by time period:
 Case 2
 .Value = "Link vehicle control delay by time period (sec/veh):
 Case 3
 .Value = "Link vehicle queue time by time period (sec/veh):
 Case 4
 .Value = "Link vehicle stop time by time period (sec/veh):
 Case 5
 .Value = "Link vehicle stop percentage by time period (%):
 Case 6
 .Value = "Link vehicle speed by time period (mph):
 Case 7
 .Value = "Link vehicle left turn trips by time period:
 Case 8
 .Value = "Link vehicle through trips by time period:
 Case 9
 .Value = "Link vehicle right turn trips by time period:
 Case 10
 .Value = "Link cumulative queue time by time period:
 Case 11
 .Value = "Link cumulative stop time by time period:
 Case 12
 .Value = "Link content trips by time period:
 Case Else
 End Select
 End With
 CursorRow = CursorRow + 1
 End If
 ' add link information
 Cells(CursorRow, 2).Value = LnkAnode(LnkCnt)
 Cells(CursorRow, 2).Font.Italic = True
 Cells(CursorRow, 3).Value = LnkBnode(LnkCnt)
 Cells(CursorRow, 3).Font.Italic = True
 Cells(CursorRow, 4) = "::"
' record link MOE for each time interval
For TpdCnt = 1 To TpdNum
 Select Case i
 Case 1
 Cells(CursorRow, TpdCnt + 4).Value = LnkTrips(LnkCnt, TpdCnt)
 Case 2
 Cells(CursorRow, TpdCnt + 4).Value = LnkCtDelay(LnkCnt, TpdCnt)
 Case 3
 Cells(CursorRow, TpdCnt + 4).Value = LnkVehQuTime(LnkCnt, TpdCnt)
 Case 4
 Cells(CursorRow, TpdCnt + 4).Value = LnkVehStTime(LnkCnt, TpdCnt)
 Case 5
 Cells(CursorRow, TpdCnt + 4).Value = LnkStPct(LnkCnt, TpdCnt)
 Case 6
 Cells(CursorRow, TpdCnt + 4).Value = LnkSpeed(LnkCnt, TpdCnt)
 Case 7
 Cells(CursorRow, TpdCnt + 4).Value = LnkLtTrips(LnkCnt, TpdCnt)
 Case 8
 Cells(CursorRow, TpdCnt + 4).Value = LnkThTrips(LnkCnt, TpdCnt)
 Case 9
 Cells(CursorRow, TpdCnt + 4).Value = LnkRtTrips(LnkCnt, TpdCnt)
 Case 10
 Cells(CursorRow, TpdCnt + 4).Value = LnkQuTime(LnkCnt, TpdCnt)
 Case 11
 Cells(CursorRow, TpdCnt + 4).Value = LnkStTime(LnkCnt, TpdCnt)
 Case 12
 Cells(CursorRow, TpdCnt + 4).Value = LnkCntTrips(LnkCnt, TpdCnt)
 Case Else
 End Select
 Next TpdCnt
 Next i
Next LnkCnt

' summarize replication system information
With Worksheets("Summary")
 .Cells(4, 6).Font.Size = 12
 .Cells(4, 6).Value = RplCnt
 .Cells(RplCnt + 7, 2).Value = RplCnt
 .Cells(RplCnt + 7, 3).Value = SysQuTime
 .Cells(RplCnt + 7, 4).Value = SysStTime
 .Cells(RplCnt + 7, 5).Value = SysVehHour
 .Cells(RplCnt + 7, 6).Value = SysVehMile
End With
For i = 1 To 3
 VLlnkVehTrips(i) = 0: VLlnkVehStTime(i) = 0
For j = 1 To 12
 c = VLlnkVehTrips(i) * VLlnkVehStTime(i) + VLlnkTrips(i, j) * VLlnkStTime(i, j)
 VLlnkVehTrips(i) = VLlnkVehTrips(i) + VLlnkTrips(i, j)
 VLlnkVehStTime(i) = c / VLlnkVehTrips(i)
Next j
Next i

With Worksheets("validation")
 If RplCnt = 1 Then
 .Cells(RplCnt + 1, 2).Value = "Anode(1)"
 .Cells(RplCnt + 1, 3).Value = "Bnode(1)"
 .Cells(RplCnt + 1, 4).Value = "Trips(1)"
 .Cells(RplCnt + 1, 5).Value = "Time(1)"
 .Cells(RplCnt + 1, 7).Value = "Anode(2)"
 .Cells(RplCnt + 1, 8).Value = "Bnode(2)"
 .Cells(RplCnt + 1, 9).Value = "Trips(2)"
 .Cells(RplCnt + 1, 10).Value = "StTime(2)"
 .Cells(RplCnt + 1, 12).Value = "Anode(3)"
 .Cells(RplCnt + 1, 13).Value = "Bnode(3)"
 .Cells(RplCnt + 1, 14).Value = "Trips(3)"
 .Cells(RplCnt + 1, 15).Value = "StTime(3)"
 End If
 .Cells(RplCnt + 2, 2).Value = VLlnkAnode(1)
 .Cells(RplCnt + 2, 3).Value = VLlnkBnode(1)
 .Cells(RplCnt + 2, 4).Value = VLlnkVehTrips(1)
 .Cells(RplCnt + 2, 5).Value = VLlnkVehStTime(1)
 .Cells(RplCnt + 2, 6).Value = "&"
 .Cells(RplCnt + 2, 7).Value = VLlnkAnode(2)
 .Cells(RplCnt + 2, 8).Value = VLlnkBnode(2)
 .Cells(RplCnt + 2, 9).Value = VLlnkVehTrips(2)
 .Cells(RplCnt + 2, 10).Value = VLlnkVehStTime(2)
 .Cells(RplCnt + 2, 11).Value = "&"
 .Cells(RplCnt + 2, 12).Value = VLlnkAnode(3)
 .Cells(RplCnt + 2, 13).Value = VLlnkBnode(3)
 .Cells(RplCnt + 2, 14).Value = VLlnkVehTrips(3)
 .Cells(RplCnt + 2, 15).Value = VLlnkVehStTime(3)
 .Cells(RplCnt + 2, 16).Value = "&"
 .Cells(RplCnt + 2, 17).Value = "&"
 .Cells(RplCnt + 2, 18).Value = "&"
End With
Next RplCnt

Worksheets("Summary").Activate
Cells(RplNum + 8, 2).Font.Italic = True
Cells(RplNum + 8, 2).Value = "Network analysis ended at " & Time() & ", " & Date
ActiveWorkbook.Close saveChanges:=True

Cells(12, 2).Value = "Part 1: collect information end time: " & Time()
ActiveWorkbook.Save

End Sub

Sub FlwDtc()
Dim BaseFile, Baseline, OutFile, OutLine As String
Dim NewSheet As Object
Dim Ending, FLSim As Boolean
Dim RpCnt, TpCnt, FLPtNum, FLPtNum2, BaseFileNum, OutFileNum As Integer
Dim LnkNum, LnkCnt, TrnNum, TrnCnt, IntNum, IntCnt, DmdNum, DmdCnt As Integer
Dim a, b, c, d, i, j, k, count, CursorRow, CursorCol, anode, bnode, cnode As Integer

Dim LnkAnode(150), LnkBnode(150), LnkLnode(150), LnkTnode(150), LnkRnode(150)
Dim LnkLength(150), LnkLanes(150), LnkLtPct(150), LnkThPct(150), LnkRtPct(150)
Dim IntID(60), IntType(60), IntOffset(60), IntPhases(60), IntCycLng(60)
Dim DmdSnod(40), DmdEnod(40), DmdFlRate(40), DmdHvPct(40)

Dim LnkTrips(150, 12), LnkVehStTime(150, 12), LnkCtDelay(150, 12)
Dim LnkVehQuTime(150, 12), LnkStPct(150, 12), LnkSpeed(150, 12)
Dim LnkLtTrips(150, 12), LnkThTrips(150, 12), LnkRtTrips(150, 12)
Dim LnkQuTime(150, 12), LnkStTime(150, 12)
Dim LnkLtQuTime(150, 12), LnkThQuTime(150, 12), LnkRtQuTime(150, 12)
Dim LnkLtStTime(150, 12), LnkThStTime(150, 12), LnkRtStTime(150, 12)
Dim LnkCntTrips(150, 12), LnkInpTrips(150, 12), LnkOutTrips(150, 12)
Dim LnkFlStTpd(150), FlLnkNum(RpCnt), FlStTpd(RpCnt)

Dim SysQuTime, SysStTime, SysVehMile, SysVehHour

For i = 1 To 150: For j = 1 To 12
 LnkCntTrips(i, j) = 0: LnkInpTrips(i, j) = 0: LnkOutTrips(i, j) = 0
Next j: Next i

' record experiment information
With Worksheets("CorAnl").Range("B2", "E20")
 Cells(13, 2).Value = "Beginning output data analysis ..."
End With

' open the target workbook generated by sub "GetInfo"
Workbooks.Open Filename:="Anl" & CaseName & ".xls"
Worksheets.Add before:=Worksheets("InputInfo")
ActiveSheet.Name = "FlwDtc"

' record header information
With Worksheets("FlwDtc")
 .Cells(2, 2).Font.Bold = True
 .Cells(2, 2) = Date & Time()
 .Cells(3, 2).Font.Bold = True
 .Cells(3, 2) = "Corsim Flaw Detection Procedure"
 .Cells(5, 2).Font.Italic = True
 .Cells(5, 2) = "Part II: Network flaw detection results: "
End With

' collect network links information from GetInfo output
Worksheets("InputInfo").Activate
CursorRow = 1: count = 0 ' counting the number of blank lines
' end loop after meeting 10 consecutive blank lines
While count < 10
 If Trim(Cells(CursorRow, 2).Value) <> "" Then
 i = 0
 If Cells(CursorRow, 2).Value = "Part 3: Network Links Information" Then
 CursorRow = CursorRow + 2
 End If
 End If
 CursorRow = CursorRow + 1
 count = count + 1
End While
While Left(Cells(CursorRow, 2).Value, 27) <> ' Number of Links Analyzed :
 i = i + 1
 LnkAnode(i) = CInt(Cells(CursorRow, 2).Value)
 LnkBnode(i) = CInt(Cells(CursorRow, 3).Value)
 LnkLnode(i) = CInt(Cells(CursorRow, 4).Value)
 LnkTnode(i) = CInt(Cells(CursorRow, 5).Value)
 LnkRnode(i) = CInt(Cells(CursorRow, 6).Value)
 CursorRow = CursorRow + 1
Wend
LnkNum = i: count = 0
End If
Else
count = count + 1
End If
CursorRow = CursorRow + 1
Wend

RplCnt & "..."
End With

Worksheets("OutputInfo" & RplCnt).Activate

' collect corsim link trips and content trips information from GetInfo output
count = 0: CursorRow = 1: Ending = False
' exit loop after meeting 10 consecutive blank lines
While Ending = False
CursorRow = CursorRow + 1
If Trim(Cells(CursorRow, 2).Value) <> "" Then
 ' collect link discharged trips for each time interval
 If Cells(CursorRow, 2).Value = "Link vehicle trips by time period:" Then
 CursorRow = CursorRow + 1
 While Trim(Cells(CursorRow, 4).Value) = "::"
 For i = 1 To LnkNum
 If LnkAnode(i) = Cells(CursorRow, 2).Value And LnkBnode(i) = Cells(CursorRow, 3).Value Then
 For j = 1 To 12
 LnkTrips(i, j) = Cells(CursorRow, j + 4).Value
 Next j
 End If
 Next i
 End While
 End If
 ' collect link content trips for each time interval
 If Cells(CursorRow, 2).Value = "Link content trips by time period:" Then
 CursorRow = CursorRow + 1
 While Trim(Cells(CursorRow, 4).Value) = "::"
 For i = 1 To LnkNum
 If LnkAnode(i) = Cells(CursorRow, 2).Value And LnkBnode(i) = Cells(CursorRow, 3).Value Then
 For j = 1 To 12
 LnkTrips(i, j) = Cells(CursorRow, j + 4).Value
 Next j
 End If
 Next i
 End While
 End If
End If
For j = 1 To 12
 LnkCntTrips(i, j) = Cells(CursorRow, j + 4).Value
Next j
End If
Next i
CursorRow = CursorRow + 1
Wend
End If

count = 0
Else
 count = count + 1
End If
If count > 10 Then Ending = True
Wend

'add header information for failure detection
With Cells(CursorRow, 2)
 .Font.Bold = True
 .Font.Color = RGB(255, 0, 0)
 .Value = "Network failure detection results:"
End With
CursorRow = CursorRow + 1

'judge occurrence of failure
For LnkCnt = 1 To LnkNum
 LnkFlStTpdsn(LnkCnt) = TpdNum + 1
 ' exclude source links, exit links, and minor links
 If LnkAnode(LnkCnt) < 8000 And LnkBnode(LnkCnt) < 8000 And LnkTrips(LnkCnt, 1) > DtcTsd Then
 For TpdCnt = 1 To TpdNum
 ' judge first time interval blockage
 If TpdCnt = 1 Then
 If LnkTrips(LnkCnt, TpdCnt) <= FlTsd And LnkCntTrips(LnkCnt, TpdCnt) > CntTsd Then
 LnkFlStTpdsn(LnkCnt) = 1
 Else
 LnkFlStTpdsn(LnkCnt) = TpdNum + 1
 End If
 Else
 ' judge the occurrence of link blockage
 If LnkFlStTpdsn(LnkCnt) > TpdCnt Then
 If LnkTrips(LnkCnt, TpdCnt) <= FlTsd And LnkCntTrips(LnkCnt, TpdCnt) > CntTsd Then
 LnkFlStTpdsn(LnkCnt) = TpdCnt
 Else
 ' judge the recovery of link blockage
 If LnkTrips(LnkCnt, TpdCnt) - LnkTrips(LnkCnt, LnkFlStTpdsn(LnkCnt)) > BbTsd Then
 LnkFlStTpdsn(LnkCnt) = TpdNum + 1
 End If
 End If
 End If
 End If
 Next TpdCnt
 ' judge the occurrence of link blockage
 If LnkFlStTpdsn(LnkCnt) > TpdCnt Then
 If LnkTrips(LnkCnt, TpdCnt) <= FlTsd And LnkCntTrips(LnkCnt, TpdCnt) > CntTsd Then
 LnkFlStTpdsn(LnkCnt) = TpdCnt
 Else
 ' judge the recovery of link blockage
 If LnkTrips(LnkCnt, TpdCnt) - LnkTrips(LnkCnt, LnkFlStTpdsn(LnkCnt)) > BbTsd Then
 LnkFlStTpdsn(LnkCnt) = TpdNum + 1
 End If
 End If
 End If
 End If
Next TpdCnt
End If
' record link blockage information for each link in each replication output
If LnkCnt = 1 Then
 Cells(CursorRow, 2).Value = "Link failure time period information:"
 CursorRow = CursorRow + 1
End If
Cells(CursorRow, 2).Value = LnkAnode(LnkCnt)
Cells(CursorRow, 3).Value = LnkBnode(LnkCnt)
Cells(CursorRow, 4).Value = '::'
Cells(CursorRow, 5).Value = LnkFlStTpd(LnkCnt)
CursorRow = CursorRow + 1
Next LnkCnt

' copy link blockage information
Range(Cells(CursorRow - 150, 2), Cells(CursorRow - 1, 5)).Select
Selection.Copy
Range(Cells(CursorRow - 150, 7), Cells(CursorRow - 1, 10)).Select
ActiveSheet.Paste

' sort link blockage information according to blockage time, Bnode, Anode
Selection.Sort Key1:=Columns("J"), Order1:=xlAscending, key2:=Columns("H"), _
 Order2:=xlAscending, key3:=Columns("G"), order3:=xlAscending

' derive the earliest link blockage time
FlStTpd(RplCnt) = Cells(CursorRow - 150, 10).Value

' conclude number of failure links and replication failure occurrence
FlSim = False: FlLnkNum(RplCnt) = 0
For LnkCnt = 1 To LnkNum
 If LnkFlStTpd(LnkCnt) < TpdNum + 1 Then
 FlSim = True: FlLnkNum(RplCnt) = FlLnkNum(RplCnt) + 1
 End If
Next LnkCnt

CursorCol = 2
For i = CursorRow - 150 To CursorRow - 1
 If Cells(i, 10) < TpdNum + 1 Then
 ' cumulate number of failure replications
 If i = CursorRow - 150 Then FlRplCnt = FlRplCnt + 1

 ' record first failed links in the summary worksheet
 With Worksheets("flwDtc")
 .Rows(RplNum + FlRplCnt + 8).Font.Italic = True
 .Rows(RplNum + FlRplCnt + 8).HorizontalAlignment = xlCenter
 End With

 ' add replication index info
 If CursorCol = 2 Then
 .Cells(RplNum + FlRplCnt + 8, CursorCol).HorizontalAlignment = xlRight
 .Cells(RplNum + FlRplCnt + 8, CursorCol).Value = "Repl'n " & CStr(RplCnt)
 .Cells(RplNum + FlRplCnt + 8, CursorCol + 1).Value = "::'
 .Cells(RplNum + FlRplCnt + 8, CursorCol + 1).Font.Bold = True
 End If
 End If
Next i

' record first failed link(s) in the replication
If FlSim = True And Cells(i, 10) = Cells(CursorRow - 150, 10) Then
If CursorCol <> 4 Then .Cells(RplNum + FlRplCnt + 8, CursorCol - 1).Value = ";"
 .Cells(RplNum + FlRplCnt + 8, CursorCol).Value = Cells(i, 7).Value
 .Cells(RplNum + FlRplCnt + 8, CursorCol + 1).Value = ">>>>"
 .Cells(RplNum + FlRplCnt + 8, CursorCol + 2).Value = Cells(i, 8).Value
End If

CursorCol = CursorCol + 4
End With
End If
Next i

' record failure detection results for each replication
With Worksheets("FlwDtc")
 .Cells(RplCnt + 5, 8).Font.Italic = True
 .Cells(RplCnt + 5, 8).Value = "Replication Failure:
 .Cells(RplCnt + 5, 10).Font.Bold = True
 .Cells(RplCnt + 5, 10).Value = FlSim
 .Cells(RplCnt + 5, 12).Font.Italic = True
 .Cells(RplCnt + 5, 12).Value = "+# of Failure Links:
 .Cells(RplCnt + 5, 14).Font.Bold = True
 .Cells(RplCnt + 5, 14).Value = FlLnkNum(RplCnt)
 .Cells(RplCnt + 5, 16).Font.Italic = True
 .Cells(RplCnt + 5, 16).Value = "First Failure Time:
 .Cells(RplCnt + 5, 18).Font.Bold = True
 .Cells(RplCnt + 5, 18).Value = FlStTpd(RplCnt)
End With

Next RplCnt
FlRplNum = FlRplCnt

With Worksheets("FlwDtc")
 .Cells(RplNum + 6, 2).Font.Italic = True
 .Cells(RplNum + 6, 2).Value = "There are " & CStr(FlRplNum) & " failures found.
 .Cells(RplNum + 7, 2).Font.Italic = True
 .Cells(RplNum + 7, 2).Value = "Network analysis ended at " & Time() & ", " & Date
End With

Worksheets("FlwDtc").Activate
ActiveWorkbook.Close saveChanges:=True

Cells(14, 2).Value = "Part 2: failure detection end time: " & Time()
ActiveWorkbook.Save
End Sub

Sub CslAnl()
Dim BaseFile, BaseLine, OutFile, OutLine, RecType As String
Dim NewSheet As Object
Dim Ending, FlSim As Boolean
Dim RplCnt, TpdCnt, FlRplCnt, FlRplNum, BaseFileNum, OutFileNum As Integer
Dim LnkNum, LnkCnt, TrnCnt, TrnCnt, IntCnt, IntCnt, DmdNum, DmdCnt As Integer
Dim a, b, c, i, j, k, count, CursorRow, CursorCol, anode, bnode, cnode As Integer
Dim firstP1, firstP2, firstP3, firstP4, firstP5, firstP6, firstP7, firstP8 As Boolean
Dim LnkAnode(150), LnkBnode(150), LnkLnode(150), LnkTnode(150), LnkRnode(150)
Dim LnkLength(150), LnkLanes(150), LnkLtPct(150), LnkThPct(150), LnkRtPct(150)
Dim IntID(60), IntType(60), IntOffset(60), IntPhases(60), IntCycLng(60)
Dim DmdSnode(40), DmdEnode(40), DmdFlRate(40), DmdHvPct(40)
Dim LnkFlFrq(150), IntFlFrq(60), IntAdded(150)

' record experiment information
With Worksheets("CorAnl").Range("B2", "E20")
 Cells(15, 2).Value = "Beginning failure causal analysis ..."
End With

' open the target workbook generated by sub 'FlwDtc'
Workbooks.Open Filename:="Anl" & CaseName & ".xls"
Worksheets("FlwDtc").Activate

With Worksheets("FlwDtc")
 .Cells(2, 12).Font.Bold = True
 .Cells(2, 12) = Date & Time()
 .Cells(3, 12).Font.Bold = True
 .Cells(3, 12) = "Corsim Flaw Detection Procedure started from " & Time() & ", " & Date
End With

' collect network links and nodes information
Worksheets("InputInfo").Activate
CursorRow = 1: count = 0 ' counting the number of blank lines
While count < 10
 If Trim(Cells(CursorRow, 2).Value) <> ""
 i = 0: j = 0
 ' collect network links information
 If Cells(CursorRow, 2).Value = "Part 3: Network Links Information" Then
 CursorRow = CursorRow + 2
 While Left(Cells(CursorRow, 2).Value, 27) <> " Number of Links Analyzed :"
 i = i + 1
 LnkAnode(i) = CInt(Cells(CursorRow, 2).Value)
 LnkBnode(i) = CInt(Cells(CursorRow, 3).Value)
 LnkLnode(i) = CInt(Cells(CursorRow, 4).Value)
 LnkTnode(i) = CInt(Cells(CursorRow, 5).Value)
 LnkRnode(i) = CInt(Cells(CursorRow, 6).Value)
 CursorRow = CursorRow + 1
 End If
 ' collect network nodes information
 If Cells(CursorRow, 2).Value = "Part 5: Signal Information" Then
 CursorRow = CursorRow + 2
 While Left(Cells(CursorRow, 2).Value, 27) <> " Number of Intersections Analyzed :"
 j = j + 1
 IntID(j) = CInt(Cells(CursorRow, 2).Value)
 IntType(j) = Cells(CursorRow, 3).Value
 CursorRow = CursorRow + 1
 End If
 End If
 CursorRow = CursorRow + 1
 count = count + 1
Wend
LnkNum = i: IntNum = j

End If
Wend
 IntNum = j: count = 0
End If
Else
 count = count + 1
End If
CursorRow = CursorRow + 1
Wend
Worksheets("FlwDtc").Activate
For i = 1 To LnkNum: LnkFlFrq(i) = 0: Next i
For i = 1 To IntNum: IntFlFrq(i) = 0: Next i
CursorRow = 1: count = 0: Ending = False
While Ending = False
 CursorRow = CursorRow + 1
 While Left(CStr(Cells(CursorRow, 2).Value), 22) = "Network analysis ended"
 CursorRow = CursorRow + 2
 Wend
 ' gather data for first blocked links in each replication
 While Left(CStr(Cells(CursorRow, 2).Value), 6) = "Repl'n"
 count = count + 1: CursorCol = 5
 For i = 1 To IntNum: IntAdded(i) = False: Next i
 While Cells(CursorRow, CursorCol) = ">>>>"
 anode = CInt(Cells(CursorRow, CursorCol - 1).Value)
 bnode = CInt(Cells(CursorRow, CursorCol + 1).Value)
 Wend
 ' cumulate frequency of first failures for each link
 For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 LnkFlFrq(LnkCnt) = LnkFlFrq(LnkCnt) + 1
 End If
 Next LnkCnt
 ' cumulate frequency of first failures for each node
 For IntCnt = 1 To IntNum
 If IntID(IntCnt) = bnode And IntAdded(IntCnt) = False Then
 IntFlFrq(IntCnt) = IntFlFrq(IntCnt) + 1
 IntAdded(IntCnt) = True
 End If
 Next IntCnt
 CursorCol = CursorCol + 4
 Wend
 CursorRow = CursorRow + 1
Wend
 Ending = True
Wend
Wend
FlRplNum = count
CursorRow = CursorRow + 1
With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part III: Network Causal Analysis Results (" & CStr(FlRplNum) & " failure replications analyzed)"
End With
CursorRow = CursorRow + 1
With Cells(CursorRow, 2)
 .Font.Italic = True
 .Value = "Network link failure frequencies:"
End With

' record link failure frequency information
For i = 1 To LnkNum
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = LnkAnode(i)
 Cells(CursorRow, 3).Value = ">>>>"
 Cells(CursorRow, 4).Value = LnkBnode(i)
 Cells(CursorRow, 5).Value = "::"
 Cells(CursorRow, 6).Value = LnkFlFrq(i)
Next i

Range(Cells(CursorRow, 6), Cells(CursorRow - LnkNum + 1, 2)).Select
Selection.Copy
Range(Cells(CursorRow, 12), Cells(CursorRow - LnkNum + 1, 8)).Select
ActiveSheet.Paste
Selection.HorizontalAlignment = xlCenter
Selection.Interior.ColorIndex = 19

Selection.Sort Key1:=Columns("L"), Order1:=xlDescending, key2:=Columns("J"), _
Order2:=xlAscending, key3:=Columns("H"), order3:=xlAscending

CursorRow = CursorRow + 1
With Cells(CursorRow, 2)
 .Font.Italic = True
 .Value = "Network intersection failure frequencies:"
End With

' record intersection failure frequency information
For i = 1 To IntNum
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Font.Italic = True
 Cells(CursorRow, 2).Value = IntID(i)
 Cells(CursorRow, 3).Font.Bold = True
 Cells(CursorRow, 3).Value = "::"
 Cells(CursorRow, 4).Value = IntFlFrq(i)
Next i

Range(Cells(CursorRow, 4), Cells(CursorRow - IntNum + 1, 2)).Select
Selection.Copy
Range(Cells(CursorRow, 8), Cells(CursorRow - IntNum + 1, 6)).Select
ActiveSheet.Paste
Selection.HorizontalAlignment = xlCenter
Selection.Interior.ColorIndex = 19

Selection.Sort Key1:=Columns("H"), Order1:=xlDescending, _
key2:=Columns("F"), Order2:=xlAscending

ActiveWorkbook.Close saveChanges:=True

Cells(16, 2).Value = "Part 3: causal analysis end time: " & Time()
ActiveWorkbook.Save
End Sub
Module 3: NcsuVbaAggCode

Option Explicit
Const RplNum = 30 ' total number of replications in an experiment
Const CaseDir = "D:\flawdetection\test\" ' root directory for the experiment
Const CaseName = "NcsuBaseF3" ' case name for the experiment
Const StRpl = 1 ' starting replication number for the run
Dim TpdNum ' time period number
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Const CaseDir = "D:\flawdetection\test\" ' root directory for the experiment
Const CaseName = "NcsuBaseF3" ' case name for the experiment
Const StRpl = 1 ' starting replication number for the run
Dim TpdNum ' time period number
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Const FlTsd = 0, CntTsd = 1, BbTsd = 0, DtcTsd = 5 ' failure detection threshold for link vehicle trips
Sub main()
 GetInfo ' subprogram for gathering experiment information
 FlwDtc ' subprogram for detecting simulation failures
 CslAnl ' subprogram for analyzing failure patterns
End Sub

Sub GetInfo()
 Dim BaseFile, BaseLine, OutFile, OutLine As String
 Dim RecType, Title As String
 Dim RplCnt, TpdCnt, BaseFileNum, OutFileNum As Integer
 Dim LnkNum, LnkCnt, TrnNum, TrnCnt, IntNum, IntCnt, DmdNum, DmdCnt As Integer
 Dim a, b, c, i, j, k, count, CursorRow, anode, bnode, cnode As Integer
 Dim LnkAnode(300), LnkBnode(300), LnkLnode(300), LnkTnode(300), LnkRnode(300)
 Dim LnkLength(300), LnkLanes(300), LnkLtPct(300, 18), LnkThPct(300, 18), LnkRtPct(300, 18)
 Dim IntID(150), IntType(150), IntOffset(150), IntPhases(150), IntCycLng(150)
 Dim DmdSnode(40), DmdEnode(40), DmdFlRate(40, 18), DmdHvPct(40, 18)
 Dim NewSheet As Object
 Dim firstP1, firstP2, firstP3, firstP4, firstP5, firstP6, firstP7, firstP8 As Boolean
 Dim TrnStRow, DmdStRow As Integer
 'create worksheets for experiment data record
 Application.DisplayAlerts = False
 For a = 1 To Worksheets.count - 1
 If Worksheets(a).Name = "CorAnl" Then
 Application.DisplayAlerts = False
 Worksheets(a).Delete
 Application.DisplayAlerts = True
 End If
 Next a
 Set NewSheet = Worksheets.Add
 NewSheet.Name = "CorAnl"
 Application.DisplayAlerts = True
End Sub
'record basic experiment information
With Worksheets("CorAnl").Range("B2", "E30") ' initial worksheet as
CorAnl
 .Font.Bold = True
 Cells(2, 2).Value = "Corsim Analysis Experiment"
 Cells(3, 2).Value = CaseDir & CaseName
 Cells(5, 2).Value = Date & Space(3) & Time()
 Cells(6, 2).Value = "by Baohong Wan, Phd Candidate, North Carolina State University"
 Cells(7, 2).Value = "Start time: " & Time()
 Cells(11, 2).Value = "Beginning output data collection ... "
End With
'create excel file for analysis output
Workbooks.Add
ActiveWorkbook.SaveAs Filename:="Anl" & CaseName & ".xls" ' specify the workbook to save analysis outputs

' ***
' ********* corsim input file analysis *************
' ***
'create worksheets for input data analysis results
Application.DisplayAlerts = False
Worksheets("sheet1").Name = "InputInfo" ' specify the worksheet to save analysis outputs
Worksheets("sheet2").Name = "Validation" ' specify the worksheet to save validation results
Worksheets("sheet3").Delete
Application.DisplayAlerts = True
CursorRow = 0
'open corsim input file
BaseFile = CaseDir & CaseName & ".trf" ' Specify base experiment file to work with
BaseFileNum = FreeFile()
Open BaseFile For Input Access Read As #BaseFileNum
Range(Cells(1, 1), Cells(3, 10)).Font.Bold = True
Cells(2, 2).Value = "Name of Input File:" ' record base experiment file information
Cells(3, 2).Value = BaseFile
CursorRow = CursorRow + 5
'read corsim input file part 1 to 8
firstP1 = 1: firstP2 = 1: firstP3 = 1: firstP4 = 1
firstP5 = 1: firstP6 = 1: firstP7 = 1: firstP8 = 1
TpdCnt = 0: LnkCnt = 0: TrnCnt = 0: IntCnt = 0: DmdCnt = 0
While Not EOF(BaseFileNum)
 Line Input #BaseFileNum, BaseLine
 RecType = Mid(BaseLine, 78, 3)
 If RecType <> "" Then
 Select Case CInt(RecType)
 'part 1: corsim input file header
 Case 0, 1
' judge if it is the first line of part 1
If firstP1 = 1 Then
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 1: Input File Header"
 End With
 CursorRow = CursorRow + 1
 firstP1 = 0
End If

' copy everything in the header
Cells(CursorRow, 2).Value = Left(BaseLine, 78)
CursorRow = CursorRow + 1

' part 2: corsim input general information
Case 2, 3, 4, 5
 ' judge if it is the first line of part 2
 If firstP2 = 1 Then
 CursorRow = CursorRow + 1
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 2: General Information"
 End With
 CursorRow = CursorRow + 1
 firstP2 = 0
 End If
Select Case CInt(RecType)
 ' gather values of random number seeds
 Case 2
 Cells(CursorRow, 2).Value = "Random number seeds:"
 Cells(CursorRow, 5).Value = Mid(BaseLine, 22, 8)
 Cells(CursorRow, 7).Value = Mid(BaseLine, 61, 8)
 Cells(CursorRow, 9).Value = Mid(BaseLine, 69, 8)
 CursorRow = CursorRow + 1

 ' gather parameters of simulation time period
 Case 3
 Cells(CursorRow, 2).Value = "Time period lengths:"
 While Not Trim(Mid(BaseLine, TpdCnt * 4 + 1, 4)) = ""
 TpdCnt = TpdCnt + 1
 Cells(CursorRow, 5 + (TpdCnt - 1) * 1).Value = Mid(BaseLine, (TpdCnt - 1) * 4 + 1, 4)
 Wend
 TpdNum = TpdCnt: TpdCnt = 1
 Cells(CursorRow, 2).Value = "Number of time periods:"
 Cells(CursorRow, 5).Value = TpdNum
 CursorRow = CursorRow + 1

 ' gather parameters of simulation time interval
 Case 4
 If Trim(Mid(BaseLine, 17, 4)) <> "" Then
 Cells(CursorRow, 2).Value = "Time interval Duration:"
 Cells(CursorRow, 5).Value = Mid(BaseLine, 17, 4)
 CursorRow = CursorRow + 1
 End If
End Select
other information
Case 5
End Select

' part 3: corsim network links information
Case 11
If TpdCnt = 1 Then
 ' judge if it is the first line of part 3
 If firstP3 = 1 Then
 CursorRow = CursorRow + 1
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 3: Network Links Information"
 End With
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = 'Anode'
 Cells(CursorRow, 3).Value = 'Bnode'
 Cells(CursorRow, 4).Value = 'Lnode'
 Cells(CursorRow, 5).Value = 'Tnode'
 Cells(CursorRow, 6).Value = 'Rnode'
 Cells(CursorRow, 7).Value = "Length"
 Cells(CursorRow, 8).Value = "Lanes"
 CursorRow = CursorRow + 1
 firstP3 = 0
 End If
 ' gather geometry information for each link
 LnkCnt = LnkCnt + 1
 LnkAnode(LnkCnt) = CInt(Mid(BaseLine, 1, 4))
 LnkBnode(LnkCnt) = CInt(Mid(BaseLine, 5, 4))
 If Trim(Mid(BaseLine, 9, 4)) <> "" Then LnkLength(LnkCnt) =
 CInt(Mid(BaseLine, 9, 4))
 If Trim(Mid(BaseLine, 22, 1)) <> "" Then LnkLanes(LnkCnt) =
 CInt(Mid(BaseLine, 22, 1))
 If Trim(Mid(BaseLine, 37, 4)) <> "" Then LnkLnode(LnkCnt) =
 CInt(Mid(BaseLine, 37, 4))
 If Trim(Mid(BaseLine, 41, 4)) <> "" Then LnkTnode(LnkCnt) =
 CInt(Mid(BaseLine, 41, 4))
 If Trim(Mid(BaseLine, 45, 4)) <> "" Then LnkRnode(LnkCnt) =
 CInt(Mid(BaseLine, 45, 4))
 Cells(CursorRow, 2).Value = LnkAnode(LnkCnt)
 Cells(CursorRow, 3).Value = LnkBnode(LnkCnt)
 Cells(CursorRow, 4).Value = LnkLnode(LnkCnt)
 Cells(CursorRow, 5).Value = LnkTnode(LnkCnt)
 Cells(CursorRow, 6).Value = LnkRnode(LnkCnt)
 Cells(CursorRow, 7).Value = LnkLength(LnkCnt)
 Cells(CursorRow, 8).Value = LnkLanes(LnkCnt)
 CursorRow = CursorRow + 1
 ' summarize number of links analyzed
 LnkNum = LnkCnt
 Cells(CursorRow, 2).Value = " Number of Links Analyzed : " &
 Str(LnkNum)
End If
'part 4: corsim link turn percentage information

Case 21
If TpdCnt = 1 Then
 ' judge if it is the first line of part 4
 If firstP4 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 4: Turn Percentage Information"
 End With
 End If
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Anode"
 Cells(CursorRow, 3).Value = "Bnode"
 Cells(CursorRow, 4).Value = "LT Pct"
 Cells(CursorRow, 5).Value = "TH Pct"
 Cells(CursorRow, 6).Value = "RT Pct"
 CursorRow = CursorRow + 1: TrnStRow = CursorRow - 1
 firstP4 = 0
End If

' gather link turning probability information
anode = CInt(Mid(BaseLine, 1, 4))
bnode = CInt(Mid(BaseLine, 5, 4))
For LnkCnt = 1 To LnkNum
 ' match the link order in record type 21 to rt 11
 If anode = LnkAnode(LnkCnt) And bnode = LnkBnode(LnkCnt) Then
 TrnCnt = TrnCnt + 1
 If Trim(Mid(BaseLine, 9, 4)) <> "" Then LnkLtPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 9, 4))
 If Trim(Mid(BaseLine, 13, 4)) <> "" Then LnkThPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 13, 4))
 If Trim(Mid(BaseLine, 17, 4)) <> "" Then LnkRtPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 17, 4))
 End If
End For

'summarize number of links whose turning probabilities analyzed
TrnNum = TrnCnt
Cells(CursorRow, 2).Value = Str(TrnNum)

Else
 ' gather link turning probability information
 anode = CInt(Mid(BaseLine, 1, 4))
 bnode = CInt(Mid(BaseLine, 5, 4))
 For LnkCnt = 1 To LnkNum
 ' match the link order in record type 21 to rt 11
 If anode = LnkAnode(LnkCnt) And bnode = LnkBnode(LnkCnt) Then
 TrnCnt = TrnCnt + 1
 If Trim(Mid(BaseLine, 9, 4)) <> "" Then LnkLtPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 9, 4))
 If Trim(Mid(BaseLine, 13, 4)) <> "" Then LnkThPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 13, 4))
 If Trim(Mid(BaseLine, 17, 4)) <> "" Then LnkRtPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 17, 4))
 End If
 End For
End If
If anode = LnkAnode(LnkCnt) And bnode = LnkBnode(LnkCnt) Then
 If Trim(Mid(BaseLine, 9, 4)) <> "" Then LnkLtPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 9, 4))
 If Trim(Mid(BaseLine, 13, 4)) <> "" Then LnkThPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 13, 4))
 If Trim(Mid(BaseLine, 17, 4)) <> "" Then LnkRtPct(LnkCnt, TpdCnt) = CInt(Mid(BaseLine, 17, 4))
 Cells(TrnStRow + LnkCnt, 1 + TpdCnt * 3).Value = LnkLtPct(LnkCnt, TpdCnt)
 Cells(TrnStRow + LnkCnt, 2 + TpdCnt * 3).Value = LnkThPct(LnkCnt, TpdCnt)
 Cells(TrnStRow + LnkCnt, 3 + TpdCnt * 3).Value = LnkRtPct(LnkCnt, TpdCnt)
End If
Next LnkCnt
End If

' part 5: corsim signal type and phase information
Case 35, 36
 ' judge if it is the first line of part 5
 If firstP5 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 5: Signal Information"
 End With
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Intersection"
 Cells(CursorRow, 3).Value = "Type"
 Cells(CursorRow, 4).Value = "Offset"
 Cells(CursorRow, 5).Value = "Phases"
 Cells(CursorRow, 6).Value = "Cycle Length"
 CursorRow = CursorRow + 1
 firstP5 = 0
 End If
' collect information about intersection control types
Select Case CInt(RecType)
Case 35
 IntCnt = IntCnt + 1
 IntID(IntCnt) = CInt(Mid(BaseLine, 1, 4))
 If Trim(Mid(BaseLine, 5, 4)) <> "" Then
 IntOffset(IntCnt) = CInt(Mid(BaseLine, 5, 4))
 IntType(IntCnt) = "Sig"
 IntPhases(IntCnt) = 0: IntCycLng(IntCnt) = 0
 While Trim(Mid(BaseLine, IntPhases(IntCnt) * 4 + 29, 4)) <> ""
 IntPhases(IntCnt) = IntPhases(IntCnt) + 1
 IntCycLng(IntCnt) = IntCycLng(IntCnt) + CInt(Mid(BaseLine, IntPhases(IntCnt) * 4 + 25, 4))
 Wend
 Else
 IntType(IntCnt) = "Unsig"
 End If
 Cells(CursorRow, 2).Value = IntID(IntCnt)
 Cells(CursorRow, 3).Value = IntType(IntCnt)
Cells(CursorRow, 4).Value = IntOffset(IntCnt)
Cells(CursorRow, 5).Value = IntPhases(IntCnt)
Cells(CursorRow, 6).Value = IntCycLng(IntCnt)
CursorRow = CursorRow + 1

'summarize number of intersections analyzed
IntNum = IntCnt
Cells(CursorRow, 2).Value = " Number of Intersections Analyzed :" & Str(IntNum)

Case 36
Case Else
End Select

'part 6: corsim network demand information
Case 50
If TpdCnt = 1 Then
 ' judge if it is the first line of part 6
 If firstP6 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 6: Network Demand Information"
 End With
 CursorRow = CursorRow + 1
 Cells(CursorRow, 2).Value = "Source Node"
 Cells(CursorRow, 3).Value = "Entry Node"
 Cells(CursorRow, 4).Value = "Flow Rate"
 Cells(CursorRow, 5).Value = "HV Pct"
 CursorRow = CursorRow + 1: DmdStRow = CursorRow - 1
 firstP6 = 0
 End If

 ' gather network demand information
 DmdCnt = DmdCnt + 1
 DmdSnode(DmdCnt) = CInt(Mid(BaseLine, 1, 4))
 DmdEnode(DmdCnt) = CInt(Mid(BaseLine, 5, 4))
anode = CInt(Mid(BaseLine, 1, 4))
bnode = CInt(Mid(BaseLine, 5, 4))
 If Mid(BaseLine, 9, 4) <> " " Then
 DmdFlRate(DmdCnt, TpdCnt) = CInt(Mid(BaseLine, 9, 4))
 Else: DmdFlRate(DmdCnt, TpdCnt) = 0: End If
 If Mid(BaseLine, 13, 4) <> " " Then
 DmdHvPct(DmdCnt, TpdCnt) = CInt(Mid(BaseLine, 13, 4))
 Else: DmdHvPct(DmdCnt, TpdCnt) = 0: End If

 Cells(DmdStRow + DmdCnt, 2).Value = DmdSnode(DmdCnt)
 Cells(DmdStRow + DmdCnt, 3).Value = DmdEnode(DmdCnt)
 Cells(DmdStRow + DmdCnt, 2 + TpdCnt * 2).Value = DmdFlRate(DmdCnt, TpdCnt)
 Cells(DmdStRow + DmdCnt, 3 + TpdCnt * 2).Value = DmdHvPct(DmdCnt, TpdCnt)

 CursorRow = CursorRow + 1

'summarize number of demand analyzed
DmdNum = DmdCnt
Cells(CursorRow, 2).Value = " Number of Input Demand Analyzed : " & Str(DmdNum)

Else
' gather network demand information
anode = CInt(Mid(BaseLine, 1, 4))
bnode = CInt(Mid(BaseLine, 5, 4))
For DmdCnt = 1 To DmdNum
 If DmdSnode(DmdCnt) = anode And DmdEnode(DmdCnt) = bnodel Then
 If Mid(BaseLine, 9, 4) <> " " Then
 DmdFlRate(DmdCnt, TpdCnt) = CInt(Mid(BaseLine, 9, 4))
 Else: DmdFlRate(DmdCnt, TpdCnt) = 0: End If
 If Mid(BaseLine, 13, 4) <> " " Then
 DmdHvPct(DmdCnt, TpdCnt) = CInt(Mid(BaseLine, 13, 4))
 Else: DmdHvPct(DmdCnt, TpdCnt) = 0: End If
 Cells(DmdStRow + DmdCnt, 2 + TpdCnt * 2).Value = DmdFlRate(DmdCnt, TpdCnt)
 Cells(DmdStRow + DmdCnt, 3 + TpdCnt * 2).Value = DmdHvPct(DmdCnt, TpdCnt)
 End If
Next DmdCnt
End If
'part 7: corsim traffic parameter information
Case 81, 140, 141, 142, 143, 144, 145, 153
' judge if it is the first line of part 7
 If firstP7 = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 .Value = "Part 7: Traffic Parameter Information"
 End With
 CursorRow = CursorRow + 1
 firstP7 = 0
 End If
' copy traffic parameter input line
Cells(CursorRow, 2).Value = Left(BaseLine, 80)
CursorRow = CursorRow + 1

Case 170
 firstP1 = 1: firstP2 = 1: firstP3 = 1: firstP4 = 1
 firstP5 = 1: firstP6 = 1: firstP7 = 1: firstP8 = 1
 TpdCnt = TpdCnt + 1
'part 8: other corsim information
Case Else
End Select
End If
Wend
Close #BaseFileNum

' **
' ******** corsim output file analysis ********
' **
Dim LnkQuTime(300, 18), LnkStTime(300, 18)
Dim LnkLtQuTime(300, 18), LnkThQuTime(300, 18), LnkRtQuTime(300, 18)
Dim LnkLtStTime(300, 18), LnkThStTime(300, 18), LnkRtStTime(300, 18)
Dim LnkCntTrips(300, 18), LnkInpTrips(300, 18), LnkOutTrips(300, 18)

Dim SysQuTime, SysStTime, SysVehMile, SysVehHour

Dim VlLnkAnode(3), VlLnkBnode(3) As Integer
Dim VlLnkTrips(3, 18), VlLnkStTime(3, 18), VlLnkVehTrips(3), VlLnkVehStTime(3)

' input validation link information
VlLnkAnode(1) = 4: VlLnkBnode(1) = 5: VlLnkVehTrips(1) = 2790: VlLnkVehStTime(1) = 9
VlLnkAnode(2) = 105: VlLnkBnode(2) = 104: VlLnkVehTrips(2) = 1650: VlLnkVehStTime(2) = 14
VlLnkAnode(3) = 26: VlLnkBnode(3) = 102: VlLnkVehTrips(3) = 693: VlLnkVehStTime(3) = 33

' create corsim output analysis summary worksheet
For a = 1 To Worksheets.count - 1
 If Worksheets(a).Name = "Summary" Then
 Application.DisplayAlerts = False
 Worksheets(a).Delete
 Application.DisplayAlerts = True
 End If
Next a
Set NewSheet = Worksheets.Add
NewSheet.Name = "Summary"

' head info for output analysis
With Cells(2, 2)
 .Font.Bold = True
 .Value = "Summary output of the test case:"
End With
With Cells(3, 2)
 .Font.Bold = True
 .Value = CaseDir & CaseName
End With
With Cells(4, 2)
 .Font.Bold = True
 .Value = "Total number of replication analyzed:"
End With

Cells(6, 2).Font.Italic = True
Cells(8, 2).Value = "Network analysis started from " & Time() & ", " & Date
Range(Cells(7, 1), Cells(7, 8)).Font.Italic = True
Cells(7, 2).Value = "Replication"
Cells(7, 3).Value = "SysQuTime"
Cells(7, 4).Value = "SysStTime"
Cells(7, 5).Value = "SysVehHour"
Cells(7, 6).Value = "SysVehMile"

' extract corsim output information from .out files
For RplCnt = StRpl To RplNum
 OutFileNum = FreeFile()
 OutFile = CaseDir & CaseName & CStr(RplCnt) & ".out"
 Open OutFile For Input Access Read As #OutFileNum
'create worksheet for corsim replicational output data
For a = 1 To Worksheets.Count - 1
 If Worksheets(a).Name = "OutputInfo" & CStr(RplCnt) Then
 Application.DisplayAlerts = False
 Worksheets(a).Delete
 Application.DisplayAlerts = True
 End If
Next a
Set NewSheet = Worksheets.Add
NewSheet.Name = "OutputInfo" & CStr(RplCnt)
CursorRow = 0

' head information for replication analysis
With Cells(2, 2)
 .Value = "Output analysis results from the file:"
 .Font.Bold = True
End With
With Cells(3, 2)
 .Value = OutFile
 .Font.Bold = True
End With
CursorRow = 5

For i = 1 To LnkNum: For j = 1 To TpdNum
 LnkCntTrips(i, j) = 0: LnkInpTrips(i, j) = 0: LnkOutTrips(i, j) = 0
Next j: Next i

a = 0: b = 0
While Not EOF(OutFileNum)
 Line Input #OutFileNum, OutLine

 'header tagging the beginning of link output statistics table for time
 interval 1
 If Mid(OutLine, 5, 46) = "LINK MILES TRIPS TIME TIME TIME" And
 a = 0 Then
 a = a + 1: count = 0
 ' exit loop after analyzing one complete cycle of corsim links
 While count < LnkNum
 Line Input #OutFileNum, OutLine
 If Mid(OutLine, 2, 1) = '(' Then
 count = count + 1
 anode = CInt(Mid(OutLine, 3, 4))
 bnode = CInt(Mid(OutLine, 8, 4))
 End If
 End While

 'collect interval output information for corresponding corsim
 links in input file analysis
 For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then LnkTrips(LnkCnt, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 92, 5)) <> "" Then LnkCtDelay(LnkCnt, a) = CSng(Mid(OutLine, 92, 5))
 If Trim(Mid(OutLine, 100, 5)) <> "" Then LnkVehQuTime(LnkCnt, a) = CSng(Mid(OutLine, 100, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then LnkVehStTime(LnkCnt, a) = CSng(Mid(OutLine, 108, 5))
 End If
 Next LnkCnt
If Trim(Mid(OutLine, 113, 5)) <> "" Then LnkStPct(LnkCnt, a) = CSng(Mid(OutLine, 113, 5))
End If
If Trim(Mid(OutLine, 126, 5)) <> "" Then LnkSpeed(LnkCnt, a) = CSng(Mid(OutLine, 126, 5))
Next LnkCnt

' collect interval output information for corresponding corsim links for validation
For c = 1 To 3
If VlLnkAnode(c) = anode And VlLnkBnode(c) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then VlLnkTrips(c, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then VlLnkStTime(c, a) = CSng(Mid(OutLine, 108, 5))
End If
Next c
End If
Wend

' collect interval output information for corresponding corsim links in input file analysis
For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then LnkTrips(LnkCnt, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 92, 5)) <> "" Then LnkCtDelay(LnkCnt, a) = CSng(Mid(OutLine, 92, 5))
 If Trim(Mid(OutLine, 100, 5)) <> "" Then LnkVehQuTime(LnkCnt, a) = CSng(Mid(OutLine, 100, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then LnkVehStTime(LnkCnt, a) = CSng(Mid(OutLine, 108, 5))
 If Trim(Mid(OutLine, 113, 5)) <> "" Then LnkStPct(LnkCnt, a) = CSng(Mid(OutLine, 113, 5))
 If Trim(Mid(OutLine, 126, 5)) <> "" Then LnkSpeed(LnkCnt, a) = CSng(Mid(OutLine, 126, 5))
 End If
Next LnkCnt

' table title tagging interval specific link output for time intervals 2 and thereafter
If Mid(OutLine, 45, 26) = "SPECIFIC NETSIM STATISTICS" Then
 ' a denotes time interval number
 a = a + 1: count = 0
 ' exit loop after analyzing a complete cycle of corsim links
 While count < LnkNum
 Line Input #OutFileNum, OutLine
 If Mid(OutLine, 2, 1) = "(" Then
 count = count + 1
 anode = CInt(Mid(OutLine, 3, 4))
 bnode = CInt(Mid(OutLine, 8, 4))
 End If
 Wend
End If

' collect interval output information for corresponding corsim links for validation
For c = 1 To 3
If VlLnkAnode(c) = anode And VlLnkBnode(c) = bnode Then
 If Trim(Mid(OutLine, 22, 5)) <> "" Then VlLnkTrips(c, a) = CSng(Mid(OutLine, 22, 5))
 If Trim(Mid(OutLine, 108, 5)) <> "" Then VlLnkStTime(c, a) = CSng(Mid(OutLine, 108, 5))
End If
Next c
End If
Wend

' title tagging corsim movement statistics table I for all time intervals
If Trim(Mid(OutLine, 10, 120)) = "NETSIM MOVEMENT SPECIFIC STATISTICS - TABLE I" Then
 b = b + 1: count = 0
 While count < LnkNum
 Line Input #OutFileNum, OutLine
 If Mid(OutLine, 6, 1) = '(' Then
 count = count + 1
 anode = CInt(Mid(OutLine, 7, 4))
 bnode = CInt(Mid(OutLine, 12, 4))
 For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 ' link left-turn movement trips
 If Trim(Mid(OutLine, 51, 4)) <> "" Then
 LnkLtTrips(LnkCnt, b) = CSng(Mid(OutLine, 51, 4))
 'cumulate link discharged trips for downstream link input trips
 For i = 1 To LnkNum
 If LnkAnode(i) = LnkBnode(LnkCnt) And LnkBnode(i) = LnkLnnode(LnkCnt) Then
 LnkInpTrips(i, b) = LnkInpTrips(i, b) + LnkLtTrips(LnkCnt, b)
 End If
 Next i
 End If
 ' link through movement trips
 If Trim(Mid(OutLine, 59, 4)) <> "" Then
 LnkThTrips(LnkCnt, b) = CSng(Mid(OutLine, 59, 4))
 'cumulate link discharged trips for downstream link input trips
 For i = 1 To LnkNum
 If LnkAnode(i) = LnkBnode(LnkCnt) And LnkBnode(i) = LnkTnode(LnkCnt) Then
 LnkInpTrips(i, b) = LnkInpTrips(i, b) + LnkThTrips(LnkCnt, b)
 End If
 Next i
 End If
 ' link right-turn movement trips
 If Trim(Mid(OutLine, 68, 4)) <> "" Then
LnkRtTrips(LnkCnt, b) = CSng(Mid(OutLine, 68, 4))

'cumulate link discharged trips for downstream link
input trips
For i = 1 To LnkNum
 If LnkAnode(i) = LnkBnode(LnkCnt) And LnkBnode(i) = LnkRnode(LnkCnt) Then
 LnkInpTrips(i, b) = LnkInpTrips(i, b) + Lnkrtrips(LnkCnt, b)
 End If
Next i
End If
Next LnkCnt
End If

' title tagging corsim movement statistics table III for all time intervals
If Trim(Mid(OutLine, 10, 120)) = "NETSIM MOVEMENT SPECIFIC STATISTICS - TABLE III" Then
 count = 0
 ' exit loop after analyzing a complete cycle of links
 While count < LnkNum
 Line Input #OutFileNum, OutLine
 If Mid(OutLine, 6, 1) = "(" Then
 count = count + 1
 anode = CInt(Mid(OutLine, 7, 4))
 bnode = CInt(Mid(OutLine, 12, 4))

 'collect movement specific traffic MOE for corresponding links in input file analysis
 For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 If Trim(Mid(OutLine, 78, 7)) <> "" Then
 LnkLtQuTime(LnkCnt, b) = CSng(Mid(OutLine, 78, 7))
 End If
 If Trim(Mid(OutLine, 86, 7)) <> "" Then
 LnkThQuTime(LnkCnt, b) = CSng(Mid(OutLine, 86, 7))
 End If
 If Trim(Mid(OutLine, 95, 7)) <> "" Then
 LnkRtQuTime(LnkCnt, b) = CSng(Mid(OutLine, 95, 7))
 End If
 If Trim(Mid(OutLine, 107, 7)) <> "" Then
 LnkLtStTime(LnkCnt, b) = CSng(Mid(OutLine, 107, 7))
 End If
 If Trim(Mid(OutLine, 115, 7)) <> "" Then
 LnkThStTime(LnkCnt, b) = CSng(Mid(OutLine, 115, 7))
 End If
 If Trim(Mid(OutLine, 124, 7)) <> "" Then
 LnkRtStTime(LnkCnt, b) = CSng(Mid(OutLine, 124, 7))
 End If
 End If
 Next LnkCnt
 Wend
End If

'!!!LnkQuTime(,) and LnkStTime(,) are both cumulative statistics for system info derivation
If Trim(Mid(OutLine, 78, 21)) <> "" Then
 LnkQuTime(LnkCnt, b) = LnkLtQuTime(LnkCnt, b) + LnkThQuTime(LnkCnt, b) + LnkRtQuTime(LnkCnt, b)
End If
If Trim(Mid(OutLine, 107, 21)) <> "" Then
 LnkStTime(LnkCnt, b) = LnkLtStTime(LnkCnt, b) + LnkThStTime(LnkCnt, b) + LnkRtStTime(LnkCnt, b)
End If
End If
Next LnkCnt
End If
Wend
End If

Wend
Close #OutFileNum

'cumulate system level statistics
SysQuTime = 0: SysStTime = 0: SysVehHour = 0: SysVehMile = 0
For LnkCnt = 1 To LnkNum
 For TpdCnt = 1 To TpdNum
 'cumulate system level statistics
 If LnkLength(LnkCnt) <> "" Then
 If TpdCnt = TpdNum Then
 SysQuTime = SysQuTime + LnkQuTime(LnkCnt, TpdCnt) / 60
 SysStTime = SysStTime + LnkStTime(LnkCnt, TpdCnt) / 60
 End If
 SysVehMile = SysVehMile + LnkTrips(LnkCnt, TpdCnt) * LnkLength(LnkCnt) / 5280
 If LnkSpeed(LnkCnt, TpdCnt) <> 0 Then
 SysVehHour = SysVehHour + LnkTrips(LnkCnt, TpdCnt) * LnkLength(LnkCnt) / 5280 / LnkSpeed(LnkCnt, TpdCnt)
 End If
 End If
 Next TpdCnt
Next LnkCnt

' derive link output trips for each time interval
If TpdCnt = 1 Then
 LnkOutTrips(LnkCnt, TpdCnt) = LnkTrips(LnkCnt, TpdCnt)
Else
 LnkOutTrips(LnkCnt, TpdCnt) = LnkOutTrips(LnkCnt, TpdCnt - 1) + LnkTrips(LnkCnt, TpdCnt)
End If

' derive link content trips for each time interval
LnkCntTrips(LnkCnt, TpdCnt) = LnkInpTrips(LnkCnt, TpdCnt) - LnkOutTrips(LnkCnt, TpdCnt)
Next TpdCnt
Next LnkCnt

' record corsim network link and system information
With Cells(CursorRow, 2)
 .Font.Bold = True
 .Font.Color = RGB(255, 0, 0)
 .Value = "Network cumulative statistics:"
End With
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Queue Time =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysQuTime: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Stop Time =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysStTime: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Vehicle Miles =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysVehMile: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1
Cells(CursorRow, 2).Value = "System Vehicle Hours =": Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 5).Value = SysVehHour: Cells(CursorRow, 5).Font.Color = RGB(255, 0, 0)
CursorRow = CursorRow + 1

' record link MOE for each time interval
For i = 1 To 12
For LnkCnt = 1 To LnkNum
 ' add header information
 If LnkCnt = 1 Then
 CursorRow = CursorRow + 2
 With Cells(CursorRow, 2)
 .Font.Bold = True
 Select Case i
 Case 1
 .Value = "Link vehicle trips by time period:"
 Case 2
 .Value = "Link vehicle control delay by time period (sec/veh):"
 Case 3
 .Value = "Link vehicle queue time by time period (sec/veh):"
 Case 4
 .Value = "Link vehicle stop time by time period (sec/veh):"
 Case 5
 .Value = "Link vehicle stop percentage by time period (%)"
 Case 6
 .Value = "Link vehicle speed by time period (mph):"
 Case 7
 .Value = "Link vehicle left turn trips by time period:"
 Case 8
 .Value = "Link vehicle through trips by time period:"
 Case 9
 .Value = "Link vehicle right turn trips by time period:"
 Case 10
 .Value = "Link cumulative queue time by time period:"
 Case 11
 .Value = "Link cumulative stop time by time period:"
 Case 12
 .Value = "Link content trips by time period:"
 Case Else
 End Select
 End With
 CursorRow = CursorRow + 1
 End If
 ' add link information
 Cells(CursorRow, 2).Value = LnkAnode(LnkCnt)
Cells(CursorRow, 2).Font.Italic = True
Cells(CursorRow, 3).Value = LnkBnode(LnkCnt)
Cells(CursorRow, 3).Font.Italic = True
Cells(CursorRow, 4) = "::"

' record link MOE for each time interval
For TpdCnt = 1 To TpdNum
 Select Case i
 Case 1
 Cells(CursorRow, TpdCnt + 4).Value = LnkTrips(LnkCnt, TpdCnt)
 Case 2
 Cells(CursorRow, TpdCnt + 4).Value = LnkCtDelay(LnkCnt, TpdCnt)
 Case 3
 Cells(CursorRow, TpdCnt + 4).Value = LnkVehQuTime(LnkCnt, TpdCnt)
 Case 4
 Cells(CursorRow, TpdCnt + 4).Value = LnkVehStTime(LnkCnt, TpdCnt)
 Case 5
 Cells(CursorRow, TpdCnt + 4).Value = LnkStPct(LnkCnt, TpdCnt)
 Case 6
 Cells(CursorRow, TpdCnt + 4).Value = LnkSpeed(LnkCnt, TpdCnt)
 Case 7
 Cells(CursorRow, TpdCnt + 4).Value = LnkLtTrips(LnkCnt, TpdCnt)
 Case 8
 Cells(CursorRow, TpdCnt + 4).Value = LnkThTrips(LnkCnt, TpdCnt)
 Case 9
 Cells(CursorRow, TpdCnt + 4).Value = LnkRtTrips(LnkCnt, TpdCnt)
 Case 10
 Cells(CursorRow, TpdCnt + 4).Value = LnkQuTime(LnkCnt, TpdCnt)
 Case 11
 Cells(CursorRow, TpdCnt + 4).Value = LnkStTime(LnkCnt, TpdCnt)
 Case 12
 Cells(CursorRow, TpdCnt + 4).Value = LnkCntTrips(LnkCnt, TpdCnt)
 Case Else
 End Select
 Next TpdCnt
 CursorRow = CursorRow + 1
Next LnkCnt
Next i

' summarize replication system information
With Worksheets("Summary")
 .Cells(4, 6).Font.Size = 12
 .Cells(4, 6).Value = RplCnt
 .Cells(RplCnt + 7, 2).Value = RplCnt
Cells(RplCnt + 7, 3).Value = SysQuTime
.Cells(RplCnt + 7, 4).Value = SysStTime
.Cells(RplCnt + 7, 5).Value = SysVehHour
.Cells(RplCnt + 7, 6).Value = SysVehMile
End With

For i = 1 To 3
 VlLnkVehTrips(i) = 0: VlLnkVehStTime(i) = 0
 For j = 1 To TpdNum
 c = VlLnkVehTrips(i) * VlLnkVehStTime(i) + VlLnkTrips(i, j) * VlLnkStTime(i, j)
 VlLnkVehTrips(i) = VlLnkVehTrips(i) + VlLnkTrips(i, j)
 If VlLnkVehTrips(i) <> 0 Then VlLnkVehStTime(i) = c / VlLnkVehTrips(i)
 Next j
Next i

With Worksheets("validation")
If RplCnt = 1 Then
 .Cells(RplCnt + 1, 2).Value = "Anode(1)"
 .Cells(RplCnt + 1, 3).Value = "Bnode(1)"
 .Cells(RplCnt + 1, 4).Value = "Trips(1)"
 .Cells(RplCnt + 1, 5).Value = "Time(1)"
 .Cells(RplCnt + 1, 7).Value = "Anode(2)"
 .Cells(RplCnt + 1, 8).Value = "Bnode(2)"
 .Cells(RplCnt + 1, 9).Value = "Trips(2)"
 .Cells(RplCnt + 1, 10).Value = "StTime(2)"
 .Cells(RplCnt + 1, 12).Value = "Anode(3)"
 .Cells(RplCnt + 1, 13).Value = "Bnode(3)"
 .Cells(RplCnt + 1, 14).Value = "Trips(3)"
 .Cells(RplCnt + 1, 15).Value = "StTime(3)"
End If

.Cells(RplCnt + 2, 2).Value = VlLnkAnode(1)
.Cells(RplCnt + 2, 3).Value = VlLnkBnode(1)
.Cells(RplCnt + 2, 4).Value = VlLnkVehTrips(1)
.Cells(RplCnt + 2, 5).Value = VlLnkVehStTime(1)
.Cells(RplCnt + 2, 6).Value = "&"
.Cells(RplCnt + 2, 7).Value = VlLnkAnode(2)
.Cells(RplCnt + 2, 8).Value = VlLnkBnode(2)
.Cells(RplCnt + 2, 9).Value = VlLnkVehTrips(2)
.Cells(RplCnt + 2, 10).Value = VlLnkVehStTime(2)
.Cells(RplCnt + 2, 11).Value = "&"
.Cells(RplCnt + 2, 12).Value = VlLnkAnode(3)
.Cells(RplCnt + 2, 13).Value = VlLnkBnode(3)
.Cells(RplCnt + 2, 14).Value = VlLnkVehTrips(3)
.Cells(RplCnt + 2, 15).Value = VlLnkVehStTime(3)
End With

Next RplCnt

Worksheets("Summary").Activate
.Cells(RpLNum + 8, 2).Font.Italic = True
.Cells(RpLNum + 8, 2).Value = "Network analysis ended at " & Time() & ", " & Date
ActiveWorkbook.Close saveChanges:=True

.Cells(12, 2).Value = "Part 1: collect information end time: " & Time()
ActiveWorkbook.Save

End Sub

Sub FlwDtc()
 Dim BaseFile, BaseLine, OutFile, OutLine As String
 Dim NewSheet As Object
 Dim Ending, FLSim As Boolean
 Dim RplCnt, TpdCnt, FlRplCnt, FlRplNum, BaseFileNum, OutFileNum As Integer
 Dim a, b, c, i, j, k, count, CursorRow, CursorCol, anode, bnode, cnode As Integer
 Dim LnkAnode(300), LnkBnode(300), LnkLnode(300), LnkTnode(300), LnkRnode(300)
 Dim LnkLength(300), LnkLanes(300), LnkLtPct(300), LnkThPct(300), LnkRtPct(300)
 Dim IntID(150), IntType(150), IntOffset(150), IntPhases(150), IntCycLng(150)
 Dim DmdSnode(40), DmdEnode(40), DmdFlRate(40), DmdHvPct(40)
 Dim a, b, c, i, j, k, count, CursorRow, CursorCol, anode, bnode, cnode As Integer
 Dim LnkTrips(300, 18), LnkVehStTime(300, 18), LnkCtDelay(300, 18)
 Dim LnkVehQuTime(300, 18), LnkStPct(300, 18), LnkSpeed(300, 18)
 Dim LnkLtTrips(300, 18), LnkThTrips(300, 18), LnkLtStPct(300, 18)
 Dim LnkQuTime(300, 18), LnkStTime(300, 18)
 Dim LnkLtQuTime(300, 18), LnkThQuTime(300, 18), LnkRtQuTime(300, 18)
 Dim LnkLtStTime(300, 18), LnkThStTime(300, 18), LnkRtStTime(300, 18)
 Dim LnkCntTrips(300, 18), LnkInpTrips(300, 18), LnkOutTrips(300, 18)
 Dim LnkFlStTpd(300), FlLnkNum(RplNum), FlStTpd(RplNum)
 Dim SysQuTime, SysStTime, SysVehMile, SysVehHour
 For i = 1 To 300: For j = 1 To 18
 LnkCntTrips(i, j) = 0: LnkInpTrips(i, j) = 0: LnkOutTrips(i, j) = 0
 Next j: Next i
 'record experiment information
 With Worksheets("CorAnl").Range("B2", "E20")
 Cells(13, 2).Value = "Beginning output data analysis ..."
 End With
 'open the target workbook generated by sub "GetInfo"
 Workbooks.Open Filename:="Anl" & CaseName & ".xls"
 Worksheets.Add before:=Worksheets("InputInfo")
 ActiveSheet.Name = "FlwDtc"
 'record header information
 With Worksheets("FlwDtc")
 .Cells(2, 2).Font.Bold = True
 .Cells(2, 2) = Date & Time()
 .Cells(3, 2).Font.Bold = True
 .Cells(3, 2) = "Corsim Flaw Detection Procedure"
 .Cells(5, 2).Font.Italic = True
 .Cells(5, 2) = "Part II: Network flaw detection results: ">
 End With
 'collect network links information from GetInfo output
 Worksheets("InputInfo").Activate
 CursorRow = 1: count = 0 'counting the number of blank lines
 'end loop after meeting 10 consecutive blank lines
 While count < 10
 ...
If Trim(Cells(CursorRow, 2).Value) <> "" Then
 i = 0
 If Cells(CursorRow, 2).Value = "Part 3: Network Links Information" Then
 CursorRow = CursorRow + 2
 While Left(Cells(CursorRow, 2).Value, 27) <> " Number of Links Analyzed :
 i = i + 1
 LnkAnode(i) = CInt(Cells(CursorRow, 2).Value)
 LnkBnode(i) = CInt(Cells(CursorRow, 3).Value)
 LnkLnode(i) = CInt(Cells(CursorRow, 4).Value)
 LnkTnode(i) = CInt(Cells(CursorRow, 5).Value)
 LnkRnode(i) = CInt(Cells(CursorRow, 6).Value)
 CursorRow = CursorRow + 1
 Wend
 LnkNum = i: count = 0
 End If
Else
 count = count + 1
End If
CursorRow = CursorRow + 1
Wend

FlRplCnt = 0: FlRplNum = 0
'collect corsim output information
For RplCnt = StRpl To RplNum
 With Worksheets("FlwDtc")
 .Cells(RplCnt + 5, 2).Font.Italic = True
 .Cells(RplCnt + 5, 2).Value = "Currently analyzing replication number " & RplCnt & "..."
 End With
 Worksheets("OutputInfo" & RplCnt).Activate
 'collect corsim link trips and content trips information from GetInfo output
 count = 0: CursorRow = 1: Ending = False
 ' exit loop after meeting 10 consecutive blank lines
 While Ending = False
 CursorRow = CursorRow + 1
 If Trim(Cells(CursorRow, 2).Value) <> "" Then
 ' collect link discharged trips for each time interval
 If Cells(CursorRow, 2).Value = "Link vehicle trips by time period:" Then
 CursorRow = CursorRow + 1
 While Trim(Cells(CursorRow, 4).Value) = "::"
 For i = 1 To LnkNum
 If LnkAnode(i) = Cells(CursorRow, 2).Value And LnkBnode(i) = Cells(CursorRow, 3).Value Then
 For j = 1 To 18
 LnkTrips(i, j) = Cells(CursorRow, j + 4).Value
 Next j
 End If
 Next i
 Wend
 End If
 ' collect link content trips for each time interval
 If Cells(CursorRow, 2).Value = "Link content trips by time period:" Then
 CursorRow = CursorRow + 1
 End If
 Next i
 End If
 Wend
End If
While Trim(Cells(CursorRow, 4).Value) = '::'
 For i = 1 To LnkNum
 If LnkAnode(i) = Cells(CursorRow, 2).Value And LnkBnode(i) = Cells(CursorRow, 3).Value Then
 For j = 1 To 18
 LnkCntTrips(i, j) = Cells(CursorRow, j + 4).Value
 Next j
 Next i
 Wend
 If count > 10 Then Ending = True
 Else
 count = count + 1
 End If
Wend

'add header information for failure detection
With Cells(CursorRow, 2)
 .Font.Bold = True
 .Font.Color = RGB(255, 0, 0)
 .Value = "Network failure detection results:"
End With
CursorRow = CursorRow + 1

'judge occurrence of failure
For LnkCnt = 1 To LnkNum
 LnkFlStTpd(LnkCnt) = TpdNum + 1
 ' exclude source links, exit links, and minor links
 If LnkAnode(LnkCnt) < 8000 And LnkBnode(LnkCnt) < 8000 And LnkTrips(LnkCnt, 1) > DtcTsd Then
 For TpdCnt = 1 To TpdNum
 ' judge first time interval blockage
 If TpdCnt = 1 Then
 If LnkTrips(LnkCnt, TpdCnt) <= FlTsd And LnkCntTrips(LnkCnt, TpdCnt) > CntTsd Then
 LnkFlStTpd(LnkCnt) = 1
 Else
 LnkFlStTpd(LnkCnt) = TpdNum + 1
 End If
 Else
 ' judge the occurrence of link blockage
 If LnkFlStTpd(LnkCnt) > TpdCnt Then
 If LnkTrips(LnkCnt, TpdCnt) <= FlTsd And LnkCntTrips(LnkCnt, TpdCnt) <= FlTsd Then
 LnkFlStTpd(LnkCnt) = TpdCnt
 Else
 LnkFlStTpd(LnkCnt) = TpdNum + 1
 End If
 Else
 ' judge the recovery of link blockage
 If LnkFlStTpd(LnkCnt) - LnkTrips(LnkCnt, TpdCnt) > BbTsd Then
 LnkFlStTpd(LnkCnt) = TpdCnt + 1
 Else
 LnkFlStTpd(LnkCnt) = TpdNum + 1
 End If
 End If
 End If
 Next TpdCnt
 End If
End If
End If
Next TpdCnt
End If

' record link blockage information for each link in each replication output
If LnkCnt = 1 Then
 Cells(CursorRow, 2).Value = "Link failure time period information:
 CursorRow = CursorRow + 1
End If
Cells(CursorRow, 2).Value = LnkAnode(LnkCnt)
Cells(CursorRow, 3).Value = LnkBnode(LnkCnt)
Cells(CursorRow, 4).Value = '::
Cells(CursorRow, 5).Value = LnkFlStTpd(LnkCnt)
CursorRow = CursorRow + 1
Next LnkCnt

' copy link blockage information
Range(Cells(CursorRow - LnkNum, 2), Cells(CursorRow - 1, 5)).Select
Selection.Copy
Range(Cells(CursorRow - LnkNum, 7), Cells(CursorRow - 1, 10)).Select
ActiveSheet.Paste

' sort link blockage information according to blockage time, Bnode, Anode
Selection.Sort Key1:=Columns("J"), Order1:=xlAscending, key2:=Columns("H"), _
Order2:=xlAscending, key3:=Columns("G"), order3:=xlAscending

' derive the earliest link blockage time
FlStTpd(RplCnt) = Cells(CursorRow - LnkNum, 10).Value

' conclude number of failure links and replication failure occurrence
FlSim = False: FlLnkNum(RplCnt) = 0
For LnkCnt = 1 To LnkNum
 If LnkFlStTpd(LnkCnt) < TpdNum + 1 Then
 FlSim = True: FlLnkNum(RplCnt) = FlLnkNum(RplCnt) + 1
 End If
Next LnkCnt

CursorCol = 2
For i = CursorRow - LnkNum To CursorRow - 1
 If Cells(i, 10) < TpdNum + 1 Then
 ' cumulate number of failure replications
 If i = CursorRow - LnkNum Then FlRplCnt = FlRplCnt + 1

 ' record first failed links in the summary worksheet
 With Worksheets("flwDtc")
 .Rows(RplNum + FlRplCnt + 8).Font.Italic = True
 .Rows(RplNum + FlRplCnt + 8).HorizontalAlignment = xlCenter
 End With
 ' add replication index info
 If CursorCol = 2 Then
 .Cells(RplNum + FlRplCnt + 8, CursorCol).HorizontalAlignment = xlRight
 .Cells(RplNum + FlRplCnt + 8, CursorCol).Value = "Repl'n " & CStr(RplCnt)
 .Cells(RplNum + FlRplCnt + 8, CursorCol + 1).Value = '::
 .Cells(RplNum + FlRplCnt + 8, CursorCol + 1).Font.Bold = True
 End If
 CursorCol = CursorCol + 2
' Record first failed link(s) in the replication
If FLSim = True And Cells(i, 10) = Cells(CursorRow - LnkNum, 10) Then
 If CursorCol <> 4 Then .Cells(RplNum + FLRplCnt + 8, CursorCol -
1).Value = ";"
 .Cells(RplNum + FLRplCnt + 8, CursorCol).Value = Cells(i,
7).Value
 .Cells(RplNum + FLRplCnt + 8, CursorCol + 1).Value = ">>>>"
 .Cells(RplNum + FLRplCnt + 8, CursorCol + 2).Value = Cells(i,
8).Value
End If

CursorCol = CursorCol + 4
End With
End If
Next i

' record failure detection results for each replication
With Worksheets("FlwDtc")
 .Cells(RplCnt + 5, 8).Font.Italic = True
 .Cells(RplCnt + 5, 8).Value = "Replication Failure:
 .Cells(RplCnt + 5, 10).Font.Bold = True
 .Cells(RplCnt + 5, 10).Value = FLSim
 .Cells(RplCnt + 5, 12).Font.Italic = True
 .Cells(RplCnt + 5, 12).Value = "# of Failure Links:
 .Cells(RplCnt + 5, 14).Font.Bold = True
 .Cells(RplCnt + 5, 14).Value = FLLnkNum(RplCnt)
 .Cells(RplCnt + 5, 16).Font.Italic = True
 .Cells(RplCnt + 5, 16).Value = "First Failure Time:
 .Cells(RplCnt + 5, 18).Font.Bold = True
 .Cells(RplCnt + 5, 18).Value = FLStTp(RplCnt)
End With
Next RplCnt
FLRplNum = FLRplCnt

With Worksheets("FlwDtc")
 .Cells(RplNum + 6, 2).Font.Italic = True
 .Cells(RplNum + 6, 2).Value = "There are " & CStr(FLRplNum) & " failures found."
 .Cells(RplNum + 7, 2).Font.Italic = True
 .Cells(RplNum + 7, 2).Value = "Network analysis ended at " & Time() & ", " & Date
End With
Worksheets("FlwDtc").Activate
ActiveWorkbook.Close saveChanges:=True

Cells(14, 2).Value = "Part 2: failure detection end time: " & Time()
ActiveWorkbook.Save
End Sub

Sub CslAnl()
Dim BaseFile, Baseline, OutFile, OutLine, RecType As String
Dim NewSheet As Object
Dim Ending, FLSim As Boolean
Dim RplCnt, TpdCnt, FlRplCnt, FlRplNum, BaseFileNum, OutFileNum As Integer
Dim LnkNum, LnkCnt, TrnNum, TrnCnt, IntNum, IntCnt, DmdNum, DmdCnt As Integer
Dim a, b, c, i, j, k, count, CursorRow, CursorCol, anode, bnode, cnode As Integer
Dim firstP1, firstP2, firstP3, firstP4, firstP5, firstP6, firstP7, firstP8 As Boolean

Dim LnkAnode(300), LnkBnode(300), LnkLnode(300), LnkTnode(300), LnkRnode(300)
Dim LnkLength(300), LnkLanes(300), LnkLtPct(300), LnkThPct(300), LnkRtPct(300)
Dim IntID(150), IntType(150), IntOffset(150), IntPhases(150), IntCycLng(150)
Dim DmdSnode(40), DmdEnode(40), DmdFlRate(40), DmdHvPct(40)
Dim LnkFlFrq(300), IntFlFrq(150), IntAdded(300)

'record experiment information
With Worksheets("CorAnl").Range("B2", "E20")
 Cells(15, 2).Value = "Beginning failure causal analysis ...
End With

'open the target workbook generated by sub 'FlwDtc"
Workbooks.Open Filename:="Anl" & CaseName & ".xls"
Worksheets("FlwDtc").Activate
With Worksheets("FlwDtc")
 .Cells(2, 12).Font.Bold = True
 .Cells(2, 12) = Date & Time()
 .Cells(3, 12).Font.Bold = True
 .Cells(3, 12) = "Corsim Flaw Detection Procedure started from " & Time() & ", " & Date
End With

'collect network links and nodes information
Worksheets("InputInfo").Activate
CursorRow = 1: count = 0 'counting the number of blank lines
While count < 10
 If Trim(Cells(CursorRow, 2).Value) <> "" Then
 i = 0: j = 0
 'collect network links information
 If Cells(CursorRow, 2).Value = "Part 3: Network Links Information" Then
 CursorRow = CursorRow + 2
 While Left(Cells(CursorRow, 2).Value, 27) <> " Number of Links
 Analyzed :
 i = i + 1
 LnkAnode(i) = CInt(Cells(CursorRow, 2).Value)
 LnkBnode(i) = CInt(Cells(CursorRow, 3).Value)
 LnkLnode(i) = CInt(Cells(CursorRow, 4).Value)
 LnkTnode(i) = CInt(Cells(CursorRow, 5).Value)
 LnkRnode(i) = CInt(Cells(CursorRow, 6).Value)
 CursorRow = CursorRow + 1
 Wend
 LnkNum = i: count = 0
 End If

 'collect network nodes information
 If Cells(CursorRow, 2).Value = "Part 5: Signal Information" Then
 CursorRow = CursorRow + 2
 While Left(Cells(CursorRow, 2).Value, 35) <> " Number of Intersections
 Analyzed :
 i = i + 1
 IntID(i) = CInt(Cells(CursorRow, 2).Value)
 IntType(i) = CInt(Cells(CursorRow, 3).Value)
 IntOffset(i) = CInt(Cells(CursorRow, 4).Value)
 IntPhases(i) = CInt(Cells(CursorRow, 5).Value)
 IntCycLng(i) = CInt(Cells(CursorRow, 6).Value)
 CursorRow = CursorRow + 1
 Wend
 IntNum = i: count = 0
End If
j = j + 1
IntID(j) = CInt(Cells(CursorRow, 2).Value)
IntType(j) = Cells(CursorRow, 3).Value
CursorRow = CursorRow + 1
Wend
IntNum = j: count = 0
End If
Else
 count = count + 1
End If
CursorRow = CursorRow + 1
Wend
Worksheets("FlwDtc").Activate
For i = 1 To LnkNum: LnkFlFrq(i) = 0: Next i
For i = 1 To IntNum: IntFlFrq(i) = 0: Next i
CursorRow = 1: count = 0: Ending = False
While Ending = False
 CursorRow = CursorRow + 1
 While Left(CStr(Cells(CursorRow, 2).Value), 22) = "Network analysis ended"
 CursorRow = CursorRow + 2
 Wend
 ' gather data for first blocked links in each replication
 While Left(CStr(Cells(CursorRow, 2).Value), 6) = "Repl'n"
 count = count + 1: CursorCol = 5
 For i = 1 To IntNum: IntAdded(i) = False: Next i
 While Cells(CursorRow, CursorCol) = ">>>>"
 anode = CInt(Cells(CursorRow, CursorCol - 1).Value)
 bnode = CInt(Cells(CursorRow, CursorCol + 1).Value)
 Wend
 ' cumulate frequency of first failures for each link
 For LnkCnt = 1 To LnkNum
 If LnkAnode(LnkCnt) = anode And LnkBnode(LnkCnt) = bnode Then
 LnkFlFrq(LnkCnt) = LnkFlFrq(LnkCnt) + 1
 End If
 Next LnkCnt
 ' cumulate frequency of first failures for each node
 For IntCnt = 1 To IntNum
 If IntID(IntCnt) = bnode And IntAdded(IntCnt) = False Then
 IntFlFrq(IntCnt) = IntFlFrq(IntCnt) + 1
 IntAdded(IntCnt) = True
 End If
 Next IntCnt
 Wend
 CursorCol = CursorCol + 4
 Wend
 CursorRow = CursorRow + 1
 Wend
 Ending = True
 Wend
FlRplNum = count
CursorRow = CursorRow + 1
With Cells(CursorRow, 2)
Part III: Network Causal Analysis Results

Failure replications analyzed

Network link failure frequencies:

Network intersection failure frequencies:

Record link failure frequency information

Record intersection failure frequency information

Selection.Sort Key1:=Columns("L"), Order1:=xlDescending, key2:=Columns("J"), Order2:=xlAscending, key3:=Columns("H"), order3:=xlAscending
ActiveWorkbook.Close saveChanges:=True

Cells(16, 2).Value = 'Part 3: causal analysis end time: ' & Time()
ActiveWorkbook.Save

End Sub