ABSTRACT

LONGEST, PHILIP WORTH, Jr. Computational Analyses of Transient Particle Hemodynamics with Applications to Femoral Bypass Graft Designs. (Under the direction of Clement Kleinstreuer.)

Mounting clinical and biological studies indicate that excessive blood particle interactions with a dysfunctional vascular surface trigger and sustain a cascade of biophysical processes which may lead to stenotic developments and/or thrombus formations, potentially resulting in vessel occlusion. Novel contributions of this work include the conceptualization and development of a particle-based hemodynamic parameter intended to quantify the likelihood of significant particle-to-wall interactions, including adhesion and deposition, based on local discrete near-wall residence times and concentrations. Particle-hemodynamic simulations have been conducted in multiple three-dimensional branching vascular geometries to validate the performance of the proposed near-wall residence time (NWRT) model and to further evaluate the biophysical mechanisms responsible for vascular diseases, including intimal hyperplasia (IH) formation in distal femoral anastomoses.

Based on comparisons to blood particle deposition studies, results indicate that: (a) the discrete element approach, which accounts for finite micro-particle size and inertia, is advantageous in the context of non-parallel flow domains including stagnation, recirculation, and reattachment; and (b) the likelihood of particle deposition may be effectively approximated as nonlinearly proportional to local particle concentration, residence time, and wall proximity. Including approximations for particle-to-surface hydrodynamic interactions, the NWRT-approach was found to be a particularly effective indicator for the deposition of monocytes ($r^2 = 0.74$) and platelets ($r^2 = 0.57$) given that nano-scale physical and biochemical effects must be greatly approximated in computational simulations involving relatively large-scale geometries and complex flow fields. In order to efficiently compute the large number of trajectories required to resolve regions of particle stasis, a highly effective and parallelized particle-tracking algorithm was implemented.

To account for reactive vascular surfaces, composite NWRT models have been proposed based on the hypothesis that blood particle deposition is most likely in regions of
near-wall particle stasis and/or elevated concentrations, coincident with regions of activated or dysfunctional endothelial cells. Local shear stress conditions have been used to assess factors such as endothelial expression of adhesive molecules, up-regulation of surface-bound coagulate and anti-coagulate proteins, and mechanical platelet activation. The resulting composite NWRT models have been evaluated in the rabbit aorto-ceeliac junction, the human carotid artery bifurcation, and the distal femoral anastomosis. Agreements with monocyte deposition data, sites of atherosclerotic lesion initialization, and IH occurrence suggest that the composite NWRT-based models are sufficiently detailed, yet computationally efficient, as required for application in complex branching blood vessels. Furthermore, results of the current study indicate that particle-to-wall interactions appear to be a significant component for intimal thickening (IT) initialization and progression in all systems considered, whereas relations to other hemodynamic wall parameters, such as low WSS and high OSI, were not consistent.

Considering a multiple-pathway model for IH-formation in distal femoral bypass anastomoses, the performances of currently implemented and virtually prototyped configurations have been assessed. Of the conventional anastomoses evaluated, straight and curved graft-end cuts and a graft-to-artery diameter ratio of 1.5:1 were found to significantly reduce the potential for IH development at locations critical to flow delivery, while maintaining a graft lumen sufficient to reduce the risk of early thrombotic occlusion. Considering the clinically successful Miller cuff, hemodynamically induced conditions appear to be partially responsible for the improved patency rates associated with below-the-knee applications. For virtually prototyped models, anatomic features consistent with venous anastomoses were found to reduce the particle-hemodynamic potential for IH at locations critical to flow delivery; however, implications for IH were not eliminated. In conclusion, the application of a multiple-pathway particle-hemodynamics model for IH in distal anastomotic designs indicates that occlusive formations are an inevitable consequence of the non-physiological distal end-to-side anastomosis, particularly for the case of proximal outflow. Nevertheless, surgical benefits of the end-to-side distal anastomosis, such as ease of construction and proximal revascularization, ensure its continued implementation until a more effective alternative is clinically proven.
COMPUTATIONAL ANALYSES OF TRANSIENT PARTICLE HEMODYNAMICS WITH APPLICATIONS TO FEMORAL BYPASS GRAFT DESIGNS

by

PHILIP WORTH LONGEST, Jr.

A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

MECHANICAL ENGINEERING

Raleigh

2002

APPROVED BY:

Chair of Advisory Committee

BIOGRAPHY

Philip Worth Longest, Jr. is the son of Philip and Georgia Longest and was born on May 12, 1974 in Wilmington, NC. Living in Wallace, NC, the author graduated from Wallace-Rose Hill High School in June of 1992. The following fall, he entered North Carolina State University in Raleigh, NC. Becoming a third-generation graduate of the NCSU College of Engineering, the author received a Bachelor of Science degree in Mechanical Engineering (December 1996) and a Master of Science degree in Mechanical Engineering (May 1999). The author continued study under the direction of Dr. Clement Kleinstreuer, beginning work on this dissertation in the summer of 1999.
ACKNOWLEDGMENTS

I express my gratitude to my committee chair, Dr. Clement Kleinstreuer, for his vision, guidance, and generous support. I thank the other members of my committee, Drs. Archie, Leach, Lyons, Reeves, and White, for their contributions to this work through excellent teaching, constructive reviews, and supportive comments. Dr. Archie has been an invaluable resource, and he contributed greatly to this project by constructing physical models of the end-to-side anastomoses. I am grateful to both past and present members of Dr. Kleinstreuer’s research group, including Dr. Jack Buchanan, Dr. Sinjae Hyun, Dr. Zhe Zhang, Dr. Ken Comer, and June Mo Koo, for their suggestions, helpful discussions, and critical analyses. I am indebted to Jack for his candor, foresight, and generosity, as well as for initializing the off-line particle-tracking code. Sinjae has remained an invaluable resource, providing insightful constructive reviews and encouragement. The aorto-celiac and carotid artery bifurcation models used in this research were generated by Drs. Buchanan and Hyun, respectively. I thank these aforementioned research colleagues, as well as Dr. Ming Lei, for allowing me to build upon their work.

I am personally grateful to my wife, Michelle, for her patience, love, and support throughout my graduate career. The gentle guidance of my parents, Philip and Georgia, has truly inspired the creativity within this work, as well as the persistence required to complete it. I thank Mr. Gene and Mrs. Donna, Mary Laine and Jason, as well as the Longest, Hall, and Pigford families, for their support and encouragement.

Financial support for this research has been provided by GAANN and NSF Graduate Fellowships, as well as NIH Grant No. HL41372. Use of the software package CFX4 from AEA Technology Engineering Software, Inc. (Pittsburg, PA) and access to the SGI Origin 2400 at the North Carolina Supercomputer Center (RTP, NC) are gratefully acknowledged. Mr. Brent Hickel (First Article Corp., New Hope, MN) generously and expertly assisted with the three-dimensional laser scanning.
TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES .. x

1 INTRODUCTION AND LITERATURE REVIEW .. 1
 1.1 Motivation .. 1
 1.2 Research Objectives ... 3
 1.3 Description of Vascular Diseases ... 5
 1.3.1 Hyperplasia .. 6
 1.3.2 Atherosclerosis .. 7
 1.3.3 Thrombosis .. 8
 1.3.4 Vessel Occlusion ... 10
 1.4 Role of Blood Particle Deposition in Vascular Diseases .. 11
 1.4.1 Critical Blood Particle Influence on Smooth Muscle Cell Proliferation 12
 1.4.2 A Current Alternative Theory of Intimal Thickening 13
 1.4.3 Interrelation Between Critical Blood Particle Deposition, Thrombosis,
 Intimal Thickening, and Vessel Failure ... 14
 1.5 Mechanisms for Blood Particle Deposition .. 15
 1.5.1 Deposition and Aggregation of Platelets ... 16
 Adhesion ... 16
 Activation .. 17
 Aggregation .. 18
 Coagulation .. 19
 Embolization ... 19
 Summary .. 19
 1.5.2 Attachment of Monocytes ... 21
 Mechanisms .. 21
 Adhesive Molecule Expression .. 22
 1.6 Models of Blood Particle Deposition and Embolism ... 22
 1.6.1 Thrombosis and Platelet Adhesion Models .. 22
 Experimental Models ... 24
 Mathematical Models of Arterial Thrombosis ... 31
 Math Models of Embolization .. 37
 1.6.2 Monocyte Attachment and Rolling Models .. 39
 Experimental Models ... 39
 Mathematical Models .. 40
 1.7 Collision Models for Blood Particle Transport .. 41
 1.7.1 Measured Radial Particle Dispersion Coefficients 43
 1.7.2 Effective Solute Diffusion Coefficient ... 45
 1.7.3 Unifying Particle Dispersion and Enhanced Solute Diffusion 46
 1.7.4 Particle Dispersion in a Non-Uniform Concentration Field 48
 Drift-Flux Modeling ... 49
 More Advanced Constitutive Relations ... 49
 CHAPTER 1 FIGURES .. 51
2 THEORY, METHODS, AND MODEL VALIDATION .. 67
 2.1 Introduction ... 67
 2.2 Governing Equations .. 67
 2.2.1 Fluid Flow and Boundary Conditions .. 67
 2.2.2 Equations of Particle Motion and Near-Wall Forces 73
 Basset-Boussinesq-Oseen Equation .. 73
 Relevant Forces in Blood Particle Free-Stream Flow 74
 Near-Wall Forces ... 77
 2.2.3 Hemodynamic Wall Parameters .. 82
 Wall Shear Stress ... 83
 Oscillatory Shear Index .. 83
 Wall Shear Stress Gradient ... 84
 Wall Shear Stress Angle Gradient .. 86
 Lagrangian Based Wall Parameters .. 88
 2.3 Methods ... 90
 2.3.1 Computational Fluid Dynamics Solution .. 90
 Solution of Governing Equations ... 90
 Mesh Construction and Grid Convergence .. 93
 2.3.2 Particle Trajectory Solution ... 95
 Blood Particle Properties and Simulation ... 95
 Particle Tracking Algorithm ... 97
 Code Performance ... 107
 Summary .. 108
 2.4 Model Validation ... 109
 2.4.1 Flow Field ... 109
 2.4.2 Luminal Trajectories .. 109
 2.4.3 Convergence of the NWRT Parameter ... 110

CHAPTER 2 FIGURES .. 114
3 A NEAR-WALL RESIDENCE TIME MODEL WITH CORRELATIONS TO PARTICLE DEPOSITION AND INTIMAL THICKENING .. 121

3.1 Introduction .. 121
3.2 Comparison of Particle Deposition Models for Non-parallel Flow Domains 124
 3.2.1 Overview .. 124
 3.2.2 Systems ... 124
 3.2.3 Results ... 125
 Platelet Adhesion in a Stagnation Flow Geometry 125
 Monocyte Deposition in a Stenotic Geometry .. 127
 3.2.4 Discussion ... 128
3.3 An Extended NWRT-Based Model for Cell-Wall Interactions 132
 3.3.1 A NWRT-Based Model for Monocyte Adhesion ... 132
 3.3.2 A NWRT-Based Model for Platelet-Wall Interactions 133
 Effective Dispersion .. 134
 Platelet Activation ... 134
 Surface Reactivity Considerations .. 136
 Surface Reactivity Model ... 138
3.4 Identifying Sites Susceptible to Early Lesion Growth in the Rabbit Aorto-Celiac 140
 3.4.1 Overview .. 140
 3.4.2 System ... 140
 3.4.3 Results ... 141
 WSS-Based Hemodynamic Parameters ... 141
 NWRT-Based Models ... 142
 3.4.4 Discussion .. 143
3.5 Identifying Sites of Intimal Thickening in the Human Carotid Artery Bifurcation 149
 3.5.1 Overview .. 149
 3.5.2 System ... 151
 3.5.3 Results ... 151
 WSS-Based Hemodynamic Parameters ... 151
 NWRT-Based Models ... 152
 3.5.4 Discussion .. 153
3.6 Identifying Sites of Intimal Hyperplasia and Possible Thrombosis Formation in Distal Femoral Anastomoses ... 155
 3.6.1 Overview .. 155
 3.6.2 System ... 157
 3.6.3 Results ... 158
 WSS-Based Hemodynamic Parameters ... 158
 NWRT-Based Model ... 158
 3.6.4 Discussion .. 160
CHAPTER 3 FIGURES .. 167
6 CONCLUSIONS AND FUTURE WORK... 261
 6.1 Discussion of Fundamental Contributions.. 262
 Development of the NWRT Approach... 262
 Conclusions Regarding the NWRT Concept .. 266
 6.2 Discussion of Applications.. 267
 Conventional End-to-Side Anastomoses.. 267
 Alternative End-to-Side Configurations... 268
 6.3 Future Directions ... 270

REFERENCES.. 274

APPENDIX A: LUMENAL POINT-FORCE ANALYSIS... 307
 A.1 Modeling of Blood Cell Trajectories in a Non-Uniform Transient Flow Field 307
 A.2 Need for the Pressure Term in Bio-Particle Simulations....................................... 309

APPENDIX B: RED BLOOD CELL INDUCED DISPERSION .. 314
 B.1 Analysis of Possible Blood Cell Collision Models for Dense Suspensions 314
 B.1.1 Introduction... 314
 B.1.2 Attempted Models ... 315
 Flux Terms of Leighton and Acrivos (1987) .. 316
 Drift Flux Model of Eckstein and Belgacem (1991) 317
 A Variable Hematocrit Approach Based on Experimental Evidence 318
 B.1.3 Conclusions Regarding a Red Blood Cell Dispersion Model 320
 B.2 Effective Dispersion Coefficients... 320
 B.2.1 Shear Rate Models for Platelet Dispersion .. 320
 B.2.2 Shear Rate Model for Monocyte Dispersion ... 322
 B.2.3 Summary... 323
LIST OF TABLES

Chapter 2
Table 2.1 Reynolds Number Waveforms for the Mid-Femoral Artery70
Table 2.2 Frequency of Waveform Patterns at Time of Surgery71
Table 2.3 Mean Graft Flow Rates (Okadome et al., 1990)72
Table 2.4 Characteristics of the Selected Type I Waveform72
Table 2.5 Selected Studies that Model Lift Forces ...112
Table 2.6 Properties of Blood Constituents ..96
Table 2.7 Run Times for the f90 and CFX4.4 Particle Tracking Algorithms
Including Flow Field Solutions ..109

Chapter 4
Table 4.1 Representative Survey of Models that Evaluate the Effects of
Geometric and Boundary Variables on the Hemodynamics of a
Distal Bypass Configuration ...215

Appendix A
Table A1 Properties of the Hardened Red Blood Cell in the Karino and
Goldsmith (1977) Experiment ...307
LIST OF FIGURES

Chapter 1

Figure 1.1.1 Sequence of plaque development in atherosclerosis ..51
Figure 1.1.2 (a) Occluded femoral artery and other vessels; (b) typical below-knee femoropopliteal bypass (in red) to restore blood flow to the lower vasculature ..51
Figure 1.1.3 Illustration of a conventional end-to-side distal anastomosis52
Figure 1.1.4 Flow events, biological processes and methodology governing improved graft-end designs ...53
Figure 1.3.1 The natural history of atherosclerosis ...54
Figure 1.3.2 The updated response to injury hypothesis of Ross (1986)55
Figure 1.3.3a Plaque fissuring and thrombus in human coronary artery56
Figure 1.3.3b Arterial thrombus including red blood cells, activated platelets, and fibrin mesh ..57
Figure 1.3.4 Simplified schematic of the currently understood mechanisms of arterial thrombosis ..58
Figure 1.3.5 Possible outcomes following plaque cap rupture (from Davies, 1994)59
Figure 1.5.1 Length scales associated with blood particle deposition60
Figure 1.5.2 The recruitment and migration of leukocytes (from O’Brien and Chait, 1994) ..61
Figure 1.6.1 Shear stress and exposure time required for the activation of platelets in vitro as compiled by Hellums (1994) ..62
Figure 1.6.2 Observations of platelet deposition in an ex vivo collagen coated stenosis with a 4 mm upstream diameter from Markou et al. (1993) . 63
Figure 1.6.3 Time course of platelet accumulation on collagen-coated tubes in the ex vivo experiment of Markou et al. (1993) ..64
Figure 1.6.4 Average platelet accumulation rates from popular ex vivo experiments ..65
Figure 1.7.1 Empirical correlation of Aarts et al (1986) for the diffusivity of platelets at various mean hematocrits ...66
Chapter 2

Figure 2.2.1 Shear rate dependent absolute viscosity for H = 40% using the Quemada model ... 114
Figure 2.2.2 Sample femoral-style waveforms used in other studies 114
Figure 2.2.3 Classification of femoral waveforms (Okadome et al., 1991) 115
Figure 2.2.4 Selected Type I waveform for numeric analysis 115
Figure 2.3.1 Computational mesh for a 1.5:1 graft-to-artery diameter ratio configuration ... 116
Figure 2.3.2 Control-volume vertex locations based on block orientation 116
Figure 2.3.3 Representation of f90 particle trajectory code with parallel components .. 117
Figure 2.3.4 Speedup and computational efficiency of the f90 particle trajectory code .. 118
Figure 2.4.1 Comparison of: (a) experimental observation of a red blood cell trajectory; and (b) computational simulation of an idealized spherical particle trajectory .. 119
Figure 2.4.2 Laser illumination images of neutrally buoyant particle pathlines (St = 3.14 \times 10^{-3}) and comparable snapshots of simulated pathlines in a sinusoidal flow .. 119
Figure 2.4.3 Convergence of the NWRT-parameter based on monocyte trajectories with and without dispersion ... 120

Chapter 3

Figure 3.2.1 System configuration of Affeld et al. (1995) 167
Figure 3.2.2 System configuration of Hinds et al. (2001) 167
Figure 3.2.3 Comparison of simulated wall shear stress magnitude to the experimental results of Affeld et al. (1995) 168
Figure 3.2.4 Comparison of platelet flux calculated with the multicomponent mixture model to the experimental results of Affeld et al. (1995) 168
Figure 3.2.5 Comparison of simulated deposition fraction based on a surface contact model to the experimental results of Affeld et al. (1995) 168
Figure 3.2.6 Comparison of NWRT-values computed with near-wall forces to the experimental results of Affeld et al. (1995) 168
Figure 3.2.7 Comparison of the magnitude of the time-averaged wall shear stress to the experimental results of Hinds et al. (2001) 169
Figure 3.6.5 Convergent NWRT contours based on platelet trajectories with and without PSH and SR factors ... 185

Chapter 4

Figure 4.1.1 (a) Occluded femoral artery and other vessels; (b) typical below-knee femoropopliteal bypass (in red) to restore blood flow to the lower vasculature ..216

Figure 4.1.2 Peripheral arteries subject to occlusion and long-term patency rates after revascularization ... 217

Figure 4.1.3 Illustration of various end-to-side distal anastomosis 218

Figure 4.1.4 Realistic in vitro anastomotic flow models from casts 218

Figure 4.2.1 Three widely used graft-end cuts for the construction of end-to-side anastomoses ... 219

Figure 4.2.2 Geometric surface models of four commonly implemented anastomotic configurations ... 219

Figure 4.2.3 Representative post-anastomotic input waveform for the femoral bypass .. 220

Figure 4.3.1 Midplane velocity vectors, contours of velocity magnitude, and streamlines of secondary motion for Grafts 1 through 4 during accelerating flow (t1) .. 221

Figure 4.3.2 Midplane velocity vectors, contours of velocity magnitude, and streamlines of secondary motion for Grafts 1 through 4 during decelerating flow (t2) .. 222

Figure 4.3.3 Selected monocyte trajectories indicating transient vortical flow features .. 223

Figure 4.3.4 Wall shear stress based hemodynamic parameters for Graft 1 225

Figure 4.3.5 Wall shear stress based hemodynamic parameters for Graft 2 225

Figure 4.3.6 Wall shear stress based hemodynamic parameters for Graft 3 226

Figure 4.3.7 Wall shear stress based hemodynamic parameters for Graft 4 226

Figure 4.3.8 NWRT contours based on platelet trajectories in Grafts 1-4 with and without platelet stimulation history (PSH) and surface reactivity (SR) conditions ... 227

Figure 4.3.9 NWRT contours based on monocyte trajectories for Grafts 1-4 with and without a WSS-limiter condition ... 228
Chapter 5

Figure 5.1.1 Expanded graft-end configurations intended to reduce DAIH formation...248

Figure 5.2.1 Geometric surface models including the currently implemented Miller cuff as well as virtually prototyped anastomotic configurations ..248

Figure 5.2.2 Graft and artery configurations for the Miller cuff and prototype geometries ...248

Figure 5.2.3 Representative post-anastomotic input waveform for the femoral bypass ..249

Figure 5.3.1 Midplane velocity vectors, contours of velocity magnitude, and streamlines of secondary motion during accelerating flow \(t_1\) 250

Figure 5.3.2 Midplane velocity vectors, contours of velocity magnitude, and streamlines of secondary motion during decelerating flow \(t_2\) 251

Figure 5.3.3 Selected monocyte trajectories indicating transient vortical flow features..252

Figure 5.3.4 Wall shear stress based hemodynamic parameters for the Miller cuff ..254

Figure 5.3.5 Wall shear stress based hemodynamic parameters for Model A 254

Figure 5.3.6 Wall shear stress based hemodynamic parameters for Model B 255

Figure 5.3.7 Wall shear stress based hemodynamic parameters for Model C 255

Figure 5.3.8 Wall shear stress based hemodynamic parameters ..255

Figure 5.3.9 NWRT contours based on platelet trajectories in Miller style and virtually prototyped models ...256

Figure 5.3.10 NWRT contours based on monocyte trajectories in Miller style and virtually prototyped models ...257

Figure 5.3.11 Wall shear stress based hemodynamic parameters for Model B without proximal outflow ...258

Figure 5.3.12 Wall shear stress based hemodynamic parameters for Model C without proximal outflow ...258

Figure 5.3.13 NWRT contours based on platelet trajectories for Models B and C with and without PSH and SR conditions for the case of no proximal outflow ...259

Figure 5.4.1a A potentially viable ETE anastomotic configuration intended to minimize DAIH and facilitate non-invasive procedures260
Figure 5.4.1b Technique for patient specific tailoring of commonly available grafts providing the necessary taper needed to alleviate graft-to-artery diameter mismatch in ETE applications... 260

Appendices

Figure A.1 Annular expansion geometry of Karino and Goldsmith (1977) and the sinusoidal input pulse... 312

Figure A.2 Hardened red blood cell motion in the Karino and Goldsmith (1977) annular expansion as simulated using a pathline and various particle motion equation approximations ... 313

Figure B.1 Correlation of Zydney and Colton (1988) for red blood cell dispersion... 324

Figure B.2 Experimental results of Goldsmith and Marlow (1979) for the dispersion of red blood cells ... 324

Figure B.3 Empirical correlation of Aarts et al (1986) for the diffusivity of platelets at various mean hematocrits... 325

Figure B.4 Sample of curves possible for a shear based model of monocyte dispersion... 325