
Abstract

JOHN COURTNEY HAWS. Preconditioning KKT Systems. (Under the direction of
Professor Carl D. Meyer.)

This research presents new preconditioners for linear systems. We proceed from

the most general case to the very specific problem area of sparse optimal control.

In the first most general approach, we assume only that the coefficient matrix is

nonsingular. We target highly indefinite, nonsymmetric problems that cause diffi-

culties for preconditioned iterative solvers, and where standard preconditioners, like

incomplete factorizations, often fail. We experiment with nonsymmetric permutations

and scalings aimed at placing large entries on the diagonal in the context of precon-

ditioning for general sparse matrices. Our numerical experiments indicate that the

reliability and performance of preconditioned iterative solvers are greatly enhanced

by such preprocessing.

Secondly, we present two new preconditioners for KKT systems. KKT systems

arise in areas such as quadratic programming, sparse optimal control, and mixed

finite element formulations. Our preconditioners approximate a constraint precon-

ditioner with incomplete factorizations for the normal equations. Numerical experi-

ments compare these two preconditioners with exact constraint preconditioning and

the approach described above of permuting large entries to the diagonal.

Finally, we turn to a specific problem area: sparse optimal control. Many op-

timal control problems are broken into several phases, and within a phase, most

variables and constraints depend only on nearby variables and constraints. However,

free initial and final times and time-independent parameters impact variables and

constraints throughout a phase, resulting in dense factored blocks in the KKT ma-

trix. We drop fill due to these variables to reduce density within each phase. The

resulting preconditioner is tightly banded and nearly block tri-diagonal. Numerical

experiments demonstrate that the preconditioners are effective, with very little fill in

the factorization.

PRECONDITIONING KKT SYSTEMS

by

John Courtney Haws

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Department of Mathematics

Raleigh, North Carolina

2002

APPROVED BY:

Carl D. Meyer Ilse C. F. Ipsen
Chair of Advisory Committee

Jeffrey Scroggs Ernest Stitzinger

ii

Dedication

To my wife Susan,

and to my parents

Gene and Andra Haws.

iii

Biography

John Courtney Haws was born in Jackson, Tennessee, in 1968. He is a 1987

graduate of Maryville High School, in Maryville, Tennessee. In 1991, he obtained

a Bachelor of Science degree in Mathematical Sciences from Loyola University in

New Orleans, Louisiana. Prior to returning to Graduate School, he was a Teach For

America corp member in the Rio Grande Valley, Texas, from 1992-1994, and worked

from 1995-1997 as an analyst for First Commerce Corporation, in New Orleans. He

began graduate work at North Carolina State University in 1997, and obtained a

Master of Science degree in 2000.

iv

Acknowledgements

The advisement of Carl Meyer has been consistently thoughtful and wise, and I

am grateful for the opportunity to work with him. I also thank Becky Meyer for her

support.

The readers on my committee have been insightful, helpful, and professional, and

I am grateful for their support. I also thank the Graduate School Representative Dr.

Adriana Kirkman for her participation.

I am grateful to have benefitted from the guidance of Michele Benzi, who has

always been enthusiastic in his mentorship and generous with his knowledge. I also

thank Carol, Joyce, Carlo, and Sophia for their hospitality and friendship.

There are many fellow graduate students to thank: Jörg Gablonsky for his help and

support throughout; Rob, Jim, Brian and Chris; Tracy, Patrick, Mike and Michelle,

Amy, Peter, Jordan, Jason, Vicky, Xiang-Dao, Jennifer, Manfred, Bob, Peach, Brad,

Zager, Yaw, and Cab; and fellow gluttons-for-punishment David, Katie, Jörg, Kristy,

Todd, Kim, Neil, Matt, Lea.

Thanks to many professors, especially Erich Kaltofen, Jaime Niño, David Estes,

and Steve Scariano. I thank the organizers of the student seminar for inviting me to

join: Tim Kelley, Steve Campbell, Pierre Gremaud, Ilse Ipsen, and Carl Meyer.

Much of the work for Chapter 2 was performed while I was a Graduate Research

Assistant at Los Alamos National Laboratory: the hospitality and support of LANL

are greatly appreciated. Also, I thank Iain Duff and Jacko Koster for providing the

MC64 subroutines. I am indebted to Jane Cullum, Iain Duff, Daniel Szyld and two

anonymous referees for their constructive criticism of an early draft of Chapter 2.

I thank John Betts and Carsten Keller for providing many of the test matrices

used in the experiments in Chapter 3, and Dr. Ipsen for her thorough reading of an

early draft of the chapter.

v

Much of the work for Chapter 4 was completed while I was a member the Boeing

Company’s Mathematics and Engineering Analysis Group. The support of the entire

team and the Boeing Company is greatly appreciated. I am indebted to Dan’l Pierce,

John Lewis, Wei-Pai Tang, Jason Wu, and John Betts.

Finally, I thank Susan, whose love and support has been the cornerstone of this

work.

This work was funded in part by NSF grants CCR-ITR0113121, DMS9714811,

and CCR9731856.

vi

Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 GMRES . 4
1.2 Preconditioning . 5
1.3 KKT Linear Systems . 7
1.4 Optimal Control Problems . 7
1.5 Contributions of the Research . 8
1.6 Organization . 9

2 Preconditioning Highly Indefinite and Nonsymmetric Matrices 10
2.1 Introduction . 10

2.1.1 Motivation and focus . 10
2.1.2 Contributions of the research 12

2.2 ILU and approximate inverse preconditioners 13
2.3 Overview of algorithms for finding maximum transversals 16

2.3.1 Finding a maximum transversal 17
2.3.2 Finding a maximum product transversal 18
2.3.3 Finding a bottleneck transversal 19
2.3.4 Scaling . 20

2.4 Description of test problems . 21
2.5 Numerical experiments . 24

2.5.1 Testing reliability . 25
2.5.2 Timing results . 33
2.5.3 Further analysis of the results 37
2.5.4 Experiments with ILUTP and SPAI 39

2.6 Conclusions . 41

vii

3 Preconditioning KKT Systems 42
3.1 Introduction . 42
3.2 Approximate Constraint Preconditioner 44

3.2.1 Exact Constraint Preconditioning 45
3.2.2 Approximation of the Constraint Preconditioner 49
3.2.3 Permutation and Diagonal Scaling of the KKT Matrix 53

3.3 Permutations for ILU Preconditioners 55
3.4 Description of Test Problems . 57
3.5 Numerical Experiments . 59

3.5.1 Further Analysis of Results 63
3.6 Conclusions . 65

4 Preconditioning Linear Systems from Sparse Optimal Control 67
4.1 Introduction . 67
4.2 The Sparse Optimal Control Problem 68

4.2.1 Transcription . 69
4.3 A Preconditioner for Sparse Optimal Control 73

4.3.1 Locally Dependent Preconditioners 74
4.4 Description of Test Problems . 78

4.4.1 Two-Burn Orbit Transfer . 79
4.4.2 Other Optimal Control Problems 80

4.5 Numerical Experiments . 81
4.6 Conclusion . 84

5 Conclusion 86

Bibliography 88

A Appendix 97

viii

List of Figures

3.1 Increase for nonzeros for constraint matrix B and BBT for two-burn
orbit transfer problem brn201. 48

3.2 Decay away from the diagonal for mixed finite element matrix stiff3ns. 65
3.3 Lack of decay for sparse optimal control matrix traj01r1. 66

4.1 Typical Jacobian structure for a single phase. 70
4.2 Constraint matrix detailing local and global dependence. 72
4.3 Large dense diagonal blocks in a typical multiphase sparse optimal

control problem. 75
4.4 Structure of B̃B̃T , where B̃ approximates the Jacobian B 76
4.5 Locally dependent approximate Jacobian matrix and Cholesky factor. 77
4.6 Reordered locally dependent approximate Jacobian matrix and Cholesky

factor. 78
4.7 Original Hessian matrix and corresponding L factor. 79
4.8 Locally dependent approximate Hessian matrix and corresponding L̃

factor. 80

ix

List of Tables

2.1 Test problem information. 22
2.2 Iteration count, Jacobi preconditioning. 26
2.3 Iteration count, ILU(0) preconditioning. 28
2.4 Iteration count, ILU(1) preconditioning. 29
2.5 Iteration count, ILUT preconditioning. 31
2.6 Iteration count, AINV preconditioning. 32
2.7 Test results for ILUT preconditioning. 34
2.8 Test results for AINV preconditioning. 35
2.9 Conditioning and diagonal dominance statistics. 38

3.1 Complete LU factorization fill for for two-burn orbit transfer problem
brn201. 49

3.2 Description of KKT Test Problems 58
3.3 Comparison of preconditioners for mixed finite element and quadratic

programming problems. 62
3.4 Comparison of preconditioners for sparse optimal control problems. . 63

4.1 Comparison of preconditioners for sparse optimal control problems. . 83

1

Chapter 1

Introduction

This dissertation focuses on solving linear systems

Ax = b, (1.1)

where A ∈ IRn×n is a non-singular matrix, x ∈ IRn is the solution vector, and b ∈ IRn

is a given right-hand side. Linear systems lie at the heart of mathematical models from

such fields as circuit theory, management science, structural analysis, computational

fluid dynamics, optimization, and optimal control, and thus solving linear systems is

central in scientific computing.

From a theoretical point of view, (1.1) is trivially solved: if we represent the

inverse of A by A−1, where AA−1 = I with I denoting the identity matrix, then the

solution is given by x = A−1b. However, from a computational point of view, finding

the solution (or a reasonable approximation) can be very difficult, or even impossible.

In fact, explicitly computing the inverse to solve a large set of linear equations is

almost never the most efficient approach.

For many applications, the most efficient approach is one tailored to the specific

problem at hand. General approaches to solving linear systems certainly exist, but

when attributes of a specific problem are used to customize the solver, the general

approaches rarely outperform the customized approach. Nevertheless, specific infor-

2

mation about a problem is not always available or is difficult to obtain, and so there

is interest in fast solution techniques applicable to large linear systems. In this disser-

tation, we traverse the spectrum, developing efficient approaches for solving the most

general linear systems, and gradually move towards efficient approaches tailored to

specific linear systems.

One well-known approach for solving linear systems is Gaussian elimination. In

general, Gaussian elimination requires the storage of all n2 entries of the coefficient

matrix and approximately 2n3/3 arithmetic operations. Matrices that arise in prac-

tice, such as in the fields named above, are usually sparse, that is, they often have

only a few non-zeros per row. In many applications, the key to solving efficiently large

linear systems is exploiting the sparsity and thereby decreasing the required storage

and operations.

Methods for solving linear systems fall into two classes: direct methods and iter-

ative methods. Direct methods involve a fixed number of steps that require a finite

number of operations, and at the end of the process provide the solution. Iterative

methods begin with an initial approximation x(0) to the solution x, and try to con-

struct a sequence x(1),x(2), . . ., such that limn→∞ x(n) = x. In practice, the iteration

is stopped when a current iterate x(k) is judged to be sufficiently close to the true

solution. Often, this is determined by a measure of the residual

rk = b− Ax(k).

While the algorithms of direct methods can be very complicated, most methods are

based on Gaussian elimination and factor the coefficient matrixA into the components

L and U , with L lower triangular, U upper triangular, and A = LU . The factors are

used to solve (1.1) through the solution of Ly = b by forward substitution followed

by the solution of Ux = y via back substitution. In most cases, the rows and columns

of the coefficient matrix are permuted prior to the factorization in order to improve

the accuracy or sparsity of the factorization. Thus, the steps of direct methods for

3

solving Ax = b fall naturally into four phases:

1. A pre-ordering phase in which the rows and/or columns of the coef-
ficient matrix are interchanged in order to maintain sparsity in the
L and U factors; the reorderings may also focus on improving the
numerical stability of the factorization.

2. An analysis phase in which the matrix structure is analyzed in order
to set up appropriate storage schemes.

3. A factorization phase in which the numerical factorization is per-
formed.

4. A solve phase in which the system is solved using forward and back-
ward substitution.

For thorough treatments of direct methods, see [28] or [38]. The subject of this

dissertation tries to improve the performance of iterative methods, but many of the

techniques we employ are based in direct methods. In particular, steps one and four

above are of interest in our research. Forward and backward solves are important in

the application of our preconditioners, and we rely heavily on reorderings in order to

improve the efficiency of the solves.

To gain efficiency, sparsity in the matrix must be exploited. In the case where a

matrix has only a few non-zeros per row, forming the product of that matrix with a

vector requires only a few n operations; if sparsity is not exploited, the matrix-vector

product requires 2n2 arithmetic operations. In many applications, one does not have

access to the actual matrix A, but can only access the matrix implicitly through

matrix vector product Av, for a given vector v. For these reasons, approaches to

solving Ax = b using only matrix vector products have been developed. If one can

solve Ax = b with only a few matrix-vector multiplications, then such a procedure is

faster and user less storage than Gaussian elimination.

One such class of methods is Krylov subspace methods, which iteratively look for

solutions to (1.1) in the space

Kk = span
{
b,Ab, . . . ,Ak−1b

}
(1.2)

4

For nonsingular matrices A, the space (1.2) is closely tied to the inverse of A and is

therefore a good space in which to find an approximate solution [49].

1.1 GMRES

A well-known Krylov subspace method is the generalized minimal residual (GMRES)

algorithm [74], which minimizes the 2-norm of the residual rk of the Krylov space

r0 + span{Ar0,A2r0, . . . ,Akr0}.

GMRES constructs an orthonormal basis for the Krylov space via Arnoldi’s method

(Algorithm 1.1), a modified Gram-Schmidt-like process. Define the n × k matrix

Algorithm 1.1 Arnoldi’s Method

1: Given q1 with ‖q1‖2 = 1.

2: for j = 1, 2, . . . , n do

3: q̃j+1 = Aqj

4: for i = 1, . . . , j do

5: hij = q̃T
j+1qi

6: q̃j+1 ← q̃j+1 − hijqi

7: end for

8: hj+1,j = ‖q̃j+1‖2

9: qj+1 = q̃j+1/hj+1,j

10: end for

Qk = [q1, . . . , qk] and the k × k upper Hessenberg matrix Hk = [hij],

for j = 1, . . . , k, i = 1, . . . , min{j + 1, k}. Let ek be the kth unit vector, and Hk+1,k

be the matrix whose top k× k block is Hk and whose last row is zero, except for the

last (k + 1, k) element, which is hk+1,k. Then it is convenient to write the Arnoldi

process in matrix form as

AQk = QkHk + hk+1,kqk+1e
T
k = Qk+1Hk+1,k.

5

Iterate xk is defined to be xk = x0 + Qkyk, where yk solves the least squares problem

min
y
‖r0 − AQky‖,

using a QR factorization computed with Givens rotations.

GMRES is applicable to general linear systems, and its theoretical properties are

somewhat well understood, and we therefore choose GMRES for our experiments in

Chapters 3 and 4. Other Krylov subspace methods such as BiCGStab [75] or QMR

[37] are also suitable for general linear systems, but less understood. In Chapter 2,

we choose BiCGStab because it performed best in our experiments.

1.2 Preconditioning

A good approximation may not lie in the space (1.2) for a moderate sized k, or

finding the approximation may require too much work. When the coefficient matrix

A is close to the identity, almost any reasonable iterative method will converge very

rapidly. But when A is not close to the identity, or in general in order to obtain

reasonable convergence rates, we can replace the original system Ax = b with the

left-preconditioned system

P−1Ax = P−1b

or the right-preconditioned system

AP−1y = b, with x = P−1y.

The matrix P is called a preconditioner. The subject of this dissertation is finding

preconditioners P for linear systems. A preconditioner P should be chosen so that

• P is inexpensive to construct,

• solving linear systems with P is inexpensive, and

• P approximates A, such as P−1A is close to the identity.

6

While these points are somewhat vague, the bottom line is that the total cost of

constructing the preconditioner, applying it, and running the iterative method on

the preconditioned system, should be considerably less than the cost of running the

iterative method on the original system.

In our case, we will measure cost by the number of non-zeros that need to be

stored in constructing the preconditioner, floating point operations performed in the

entire process, and the number of iterations needed to converge. Another suitable

measure is computational time; however, many of our experiments are performed in

the MATLAB scientific computing environment. In these cases, our scripts cannot

compare with the compiled functions, and so we do not measure computation time.

Throughout this dissertation, whenever discussing numerical experiments, we specify

what costs are measured and the environment in which the experiments were run.

There exist general preconditioners that are applicable to general linear systems,

but often the most effective preconditioners are constructed for specific problems from

specific problem areas. In this dissertation, we look at preconditioning indefinite ma-

trices, beginning with the most general case, with no assumptions, and gradually

narrowing our focus to specific problems. In Chapter 2, we present a new approach

for preconditioning general linear systems from a variety of application areas. No as-

sumptions (other than nonsingularity) are made on the coefficient matrix. In Chapter

3, we consider KKT systems, that is systems where the coefficient matrix has the

structure

H =




H BT

B 0


 . (1.3)

KKT stands for Karush–Kuhn–Tucker, in reference to the Karush–Kuhn–Tucker first

order conditions for existence of a solution in optimization problems [65]. Such sys-

tems are common in application areas, and still represent a very general class of linear

systems. Our approach takes advantage of the structure of the system. In Chapter

4, we focus on a specific application area, sparse optimal control, and the matrices

7

that are produced by a specific software package SOCS. We take full advantage of

characteristics specific to these matrices in constructing effective preconditioners.

1.3 KKT Linear Systems

KKT linear systems Hx = b, where H is of the form 1.3, arise in applications such

as computational fluid dynamics, mixed finite element formulations of PDE problems,

electrical engineering, optimization, optimal control problems, image processing, and

many other areas.

For example, consider the following optimization problem of minimizing a quadratic

function subject to equality constraints, that is, find the vector x ∈ IRn satisfying

minimize f(x) = 1
2
xT Ax− bT x,

subject to Bx = d.
(1.4)

A solution x∗ to (1.4) is a stationary point of the Lagrangian

L(x, λ) =
1

2
xT Ax− bT x + λT (Bx− d). (1.5)

λT are called Lagrange Multipliers, and differentiating (1.5) with respect to x and λ

results in

Ax−BT λ = b

Bx = d,
(1.6)

equivalently expressed as the KKT linear system




A BT

B 0







x

−λ


 =




b

d


 .

1.4 Optimal Control Problems

In Chapter 4, we consider KKT systems that arise in optimal control problems,

and specifically those generated within Boeing optimal control software SOCS. The

8

optimal control problem minimizes or maximizes a performance index, subject to

boundary conditions, path constraints, and a nonlinear system of differential equa-

tions describing the motion or behavior of some physical process. The problem is

approximated in finite dimensions through direct transcription, which discretizes the

time parameter.

A nonlinear programming (NLP) algorithm is used to solve the optimization prob-

lem resulting from the transcription of the optimal control problem. SOCS currently

uses a direct method to solve the linear systems generated by the NLP algorithm,

but high amounts of fill in the factors often necessitate secondary storage. For large

problems, Boeing is looking to utilize iterative methods to solve the linear systems,

but effective preconditioners have not yet been developed for sparse optimal control

problems

1.5 Contributions of the Research

We present new preconditioners for general matrices, general KKT matrices, and

KKT matrices that arise in sparse optimal control. First, we experiment with one-

sided permutations and related scalings as a preprocessing step for constructing stan-

dard preconditioners. Our experiments show that iterative solvers can thereby be

effective for for highly indefinite and nonsymmetric linear systems. We also show

that this technique is applicable in a black-box manner for KKT systems. Second, we

present two new preconditioners for KKT systems based on a variation of robust fac-

torizations for the normal equations. These preconditioners approximate a constraint

preconditioner, defined in Chapter 3. Constraint preconditioned GMRES converges

fast, but the construction and application of the preconditioner can be expensive.

Our approximations greatly reduce the required storage, and for many problems, the

iterative method preconditioned with our new preconditioners converges nearly as

fast. Finally, we develop two new preconditioners for sparse optimal control prob-

9

lems. The preconditioners use information about the optimal control problem to

improve sparsity. Our preconditioners are extremely sparse and accurate, in that

GMRES iteration counts are kept low and few floating point operations are required,

when preconditioned with our preconditioners.

1.6 Organization

In this dissertation, we describe preconditioners for general linear systems, with

a purely algebraic approach that assumes no structure in the coefficient matrix, we

describe preconditioners in which we assume the structure (1.3), and we also describe

preconditioners for the specific linear systems that arise in sparse optimal control

software. The organization of this document reflects this movement from the general

to the specific. Chapter 2 focuses on nonsymmetric indefinite linear systems, assuming

no structure whatsoever in the coefficient matrix. Chapter 3 considers a narrow class

of problems, those with a the specific KKT structure (1.3). In Chapter 4, we focus

on linear systems from sparse optimal control, and specifically those solved within

SOCS (Sparse Optimal Control Software).

The main chapters of this dissertation (Chapters 2, 3, and 4) also appear, in sim-

ilar form, as technical reports and journal articles. Chapter 2 was first published as

a technical report [5], and later appeared in [6]. Chapter 3 is also a Boeing Mathe-

matics and Computing Technology technical report [46], and has been submitted, in

abbreviated form, to the journal Numerical Linear Algebra with Applications. Chap-

ter [47] is also a Boeing Mathematics and Computing Technology technical report,

and will be submitted to a peer-reviewed journal shortly.

10

Chapter 2

Preconditioning Highly Indefinite

and Nonsymmetric Matrices

2.1 Introduction

2.1.1 Motivation and focus

We consider the solution of sparse linear systems Ax = b, where A is a general

sparse n × n nonsingular matrix, by preconditioned Krylov subspace methods [43],

[73]. A general sparse matrix is a matrix that has no special properties, such as

symmetry, positive definiteness, diagonal dominance, etc. In particular, we focus on

matrices that are highly unstructured, nonsymmetric (structurally as well as numeri-

cally) and indefinite, i.e., the eigenvalues of A can lie anywhere in the complex plane.

Such matrices arise frequently in the simulation of chemical engineering processes,

in economic modeling, in management science, in the analysis of circuits and power

system networks, and elsewhere. These problems are very different from the ones

arising from the numerical solution of elliptic partial differential equations (PDE’s),

and can cause serious difficulties for standard iterative methods and preconditioners.

There have been a few attempts to use preconditioned Krylov subspace methods in

11

these contexts, but in general the results have been far from satisfactory. For example,

in [23], various incomplete factorization (ILU) preconditioners and iterative solvers

were tested on a set of standard problems from chemical engineering. The main

conclusions of that study were that such linear systems are difficult to solve with

iterative methods (as indicated by the large number of reported failures) and that

realizing the potential of iterative solvers will require improvements in the reordering

and/or preconditioning schemes. Similar conclusions were reached in [61] for the use

of iterative methods in circuit simulations. The use of preconditioned Krylov subspace

methods for the solution of sparse linear systems arising in economic modeling has

been investigated in [67] and [40]. There the conclusion was that iterative solvers are

often superior to direct ones. However, some of the problems could not be solved by

iterative methods; see [67].

Preconditioned iterative methods work especially well when the coefficient ma-

trix is, at least to some degree, diagonally dominant. Reliable methods also exist

to handle matrices that are symmetric positive definite, or M -matrices. Matrices

with these properties arise frequently from the discretization of second-order, elliptic

PDE’s. Standard preconditioners, such as those based on incomplete factorizations

of the coefficient matrix, are usually reliable under these circumstances and typically

converge fast. However, they are often unstable or may not even be defined when

the coefficient matrix has zeros on the main diagonal and/or is highly nonsymmetric

(see the discussion in section 2). Furthermore, the presence of many eigenvalues with

arbitrary real part (positive, negative and zero) causes serious difficulties for many

Krylov subspace solvers. Matrices of this kind are loosely referred to as highly in-

definite, regardless of whether they are symmetric or not. Coefficient matrices from

chemical engineering, circuits, economics, etc., often exhibit a large number of zero

diagonal entries and poor spectral distributions, and they represent a challenge for

preconditioned Krylov subspace solvers.

12

2.1.2 Contributions of the research

In [66], Olschowka and Neumaier introduce new permutations and scaling strate-

gies for Gaussian elimination. The goal is to preprocess the coefficient matrix so as to

obtain an equivalent system with a matrix which is more diagonally dominant. This

preprocessing reduces the need for partial pivoting, thereby speeding up the solution

process, and increases the accuracy of the computed solution. Although the focus

in [66] is on dense systems, the sparse case and the case of incomplete factorizations

are also briefly discussed. These and other heuristics have been further developed

and efficiently implemented by Duff and Koster; see [30] and [31]. Some evidence of

the usefulness of these preprocessings in connection with sparse direct solvers and for

ILU preconditioning has been provided in [30] and [31]; see also [56]. Our contribu-

tion is to carry out a systematic experimental study of the use of these permutation

and scaling algorithms in the context of preconditioned iterative methods applied to

challenging linear systems. We consider a number of different preconditioners (di-

agonal, ILU, sparse approximate inverses) and the combined use of nonsymmetric

permutations to improve numerical stability with symmetric ones aimed at reducing

fill-in in the preconditioner. Our experiments indicate that this preprocessing, and

particularly maximum product transversals, enables the stable computation of the

preconditioners, resulting in an overall solution strategy that is both reliable and

cost-effective.

While we do not claim that this approach to preconditioning general sparse ma-

trices will always work, we hope that the results in this chapter will contribute to a

reassessment of the role of iterative solvers in areas where these methods had been

almost written off as unreliable, such as chemical engineering. We also hope that one-

sided permutations (and related scalings) will find widespread use for preconditioned

iterative solvers for highly indefinite and nonsymmetric linear systems.

The chapter is organized as follows. In section 2 we briefly discuss the precon-

13

ditioners used in the chapter. In section 3, which is based on [31], we recall the

one-sided permutations and scalings used to preprocess the matrices. The test prob-

lems used for the numerical experiments are described in section 4, and the numerical

experiments themselves in section 5. Finally, in section 6 we present our conclusions.

2.2 ILU and approximate inverse preconditioners

In this section we briefly discuss the preconditioners used in the numerical exper-

iments. We focus our attention on ILU–type techniques and on a sparse approximate

inverse preconditioner in factorized form, AINV. These are general-purpose, algebraic

preconditioners that have been used successfully to solve a wide range of problems,

particularly from PDE’s. A detailed treatment of ILU preconditioning is given in

[73]. For a recent survey of sparse approximate inverse preconditioners, see [10].

Incomplete factorization methods compute sparse approximations to the triangu-

lar factors L and U of A. The incomplete factors are obtained by dropping nonzero

entries generated in the course of the factorization process (fill-ins) according to some

rule. Different dropping rules give rise to different ILU preconditioners. The ILU(0)

preconditioner [62] discards all fill-in and retains only nonzeros in positions corre-

sponding to the nonzero entries of A. This preconditioner is easy to implement and

inexpensive to compute, but it is often not good enough, particularly for the kind of

challenging problems considered in this research. More powerful preconditioners can

be obtained by allowing more fill-in in the incomplete factors, or by dropping fill-ins

based on their value rather than position. These techniques include level-of-fills ILU,

denoted ILU(k). Here k ≥ 1 is the fill level. For example, with fill level k = 1, fill

entries created by the original entries in the matrix are retained; with fill level k = 2,

fill entries created by the first level of fill are retained, etc. Another technique is dual

threshold ILU, denoted ILUT(tol, p). For the ILUT preconditioner, tol ≥ 0 is a drop

tolerance and p ≥ 0 denotes the number of off-diagonal nonzeros which are retained

14

in each row of the incomplete factor (usually the p largest ones among those nonzeros

that are greater than tol in absolute value).

Although fairly robust in practice, ILU preconditioners often fail on general sparse

matrices because of instabilities (see below). In fact, the incomplete factors may not

even exist. One way to improve their robustness is by incorporating partial (column)

pivoting in the incomplete factorization. In the case of ILUT, this leads to a variant,

called ILUTP [73], which is sometimes successful when ILUT fails. However, even

ILUTP often fails when applied to general sparse matrices; see [22] and subsection

5.4 below.

ILU preconditioners may suffer from two types of instability. They are discussed in

detail in [22]; here we give a brief discussion only. Let L̄ and Ū denote the incomplete

factors of A, and let

R := L̄Ū − A

denote the residual matrix. Also, let

E := I − A(L̄Ū)−1

denote the error matrix, assuming that preconditioning is being applied on the right.

Notice that E = R(L̄Ū)−1. Let ‖ · ‖F denote the Frobenius matrix norm. In the

symmetric positive definite case, ‖R‖F is proportional to the rate of convergence of

the preconditioned conjugate gradient method [32]. On the other hand, in the case

of general sparse matrices, ‖R‖F alone is not a reliable indicator of the quality of the

preconditioner; instead, ‖R‖F and ‖E‖F should both be taken into account. Note

that ‖R‖F can be interpreted as a measure of the accuracy of the preconditioner,

regarded as an approximation to A, while ‖E‖F gauges the stability of the approx-

imation. In general, a large value of ‖R‖F means a poor approximation and hence

a poor preconditioner. This can be caused, for instance, by very small pivots en-

countered in the course of the incomplete factorization, and accounts for a first kind

of instability. However, even if ‖R‖F is small, it can happen that L̄−1 and/or Ū−1

15

have very large entries. Therefore ‖E‖F = ‖R(L̄Ū)−1‖F could be large, in which case

the preconditioned matrix is far from the identity, and the preconditioned iteration

either stagnates or diverges, leading to a second kind of instability. We stress that the

instability here is not in the incomplete factorization process, but in the solve step

with the incomplete factors. Ill-conditioned ILU factors occur frequently for matrices

that are far from symmetric and lack diagonal dominance; see [34], [22], [8].

For general sparse matrices, it is frequently the case that both kinds of instability

occur simultaneously, with a crippling effect on the quality of the preconditioner. In

general, the complete LU factorization of A may not even be defined without pivoting,

or it may be unstable. This can happen, for example, when there are zero or small

entries on the main diagonal. As long as A is nonsingular it has (in exact arithmetic)

an LU factorization with pivoting, but this is not true for incomplete factorizations

[71]. On the other hand, ILU factorizations which are both accurate and stable are

possible for diagonally dominant matrices.

Because of these and other limitations of ILU-type preconditioners, alternative

preconditioning techniques based on sparse approximate inverses have been inten-

sively developed in the past few years. The AINV algorithm [7], [9], based on an

incomplete biconjugation process, has been shown to be one of the most effective

techniques in this class. Here the preconditioner is the product of two triangular ma-

trices, which are sparse approximations to the inverses of the L and U factors of A.

Sparsity is preserved by using a drop tolerance. The approximate inverse factors are

computed directly from A; no knowledge of the factors L or U is needed. Factorized

approximate inverse preconditioners share one drawback with ILU-type techniques:

the construction phase is guaranteed to be breakdown-free only for special classes

of matrices. Sufficient conditions are that A be symmetric positive definite or an

H-matrix; see [54], [7], [53], [4]. For general sparse matrices, instabilities due to very

small or zero pivots can occur during the construction of the preconditioner, with

disastrous effects. This is perfectly analogous to the instability of the first kind for

16

ILU. Notice that, in contrast to ILU, the instability of the second kind—unstable ILU

solves—is not an issue here.

Like for ILU, the performance of approximate inverse preconditioners in factorized

form is sensitive to the ordering of the matrix. For (almost) structurally symmetric

matrices having a stable AINV preconditioner, it was shown in [21] and [12] that

symmetric reorderings that reduce fill-in in the inverse factors, like minimum degree

or (generalized) nested dissection, improve the performance of the preconditioner.

However, these symmetric reorderings alone are of little use for general sparse matri-

ces, because the AINV preconditioner may not even be defined. As we shall see, the

stability and effectiveness of AINV can be dramatically improved by nonsymmetric

permutations and scalings that place large entries on the main diagonal.

2.3 Overview of algorithms for finding maximum

transversals

In this section we give a summary of algorithms for determining permutations of

a matrix that place entries of large absolute value on the main diagonal. The codes

used to perform the permutations were taken from MC64, a set of Fortran routines

which included in a forthcoming release of the Harwell Subroutine Library. Further

details on the algorithms and implementations are provided in [31].

We examine three approaches for permuting large entries to the diagonal of matri-

ces. First, we discuss methods for permuting a matrix so that the diagonal contains

a maximum number of nonzeros; this method is referred to as finding a maximum

transversal or maximum matching. Second, we discuss a method that permutes a

matrix so that the product of the absolute value of the entries on the diagonal is

maximized. Third, we discuss a variant of the second method, where the matrix is

permuted so that the absolute value of the smallest entry on the diagonal is maxi-

17

mized.

Finally, we include discussion on how to permute and scale the entries of a matrix

so that its diagonal entries are 1 in absolute value, and its off-diagonal entries are all

less than or equal to 1 in absolute value.

In our experiments we found that, in general, the best results in terms of both

preconditioner fill and convergence rates were obtained when matrices were permuted

so as to maximize the product of the absolute value of the entries on the diagonal,

and scaled so that the diagonal entries are 1 in absolute value, and off-diagonal entries

are all less than or equal to 1 in absolute value. Also note that the timing behaviors

mentioned in the discussions of the algorithms below are worst-case scenarios. The

implementations in MC64 are efficient and the preprocessing phase is very fast, even

for relatively dense matrices.

2.3.1 Finding a maximum transversal

Let A = (aij) be a general n×n matrix. Let M denote a set of at most n ordered

index pairs (i, j), 1 ≤ i, j ≤ n, in which each row index i and each column index j

appears at most once. M is called a transversal or matching. When M has maxi-

mum cardinality (n for structurally nonsingular matrices), M is called a maximum

transversal or maximum matching. Note that the magnitudes of the nonzero entries

are not considered when simply finding a maximum transversal.

In the case where |M| = n, thenM defines an n×n permutation matrix Q = (qij),

where 



qji = 1, for (i, j) ∈M
qji = 0, otherwise,

and thus AQ and QA are matrices with the transversal entries on the diagonal.

Because our code is row-oriented, we limit our discussion to row permutations, i.e.,

permutations of the form QA.

18

One of the options in MC64 uses the algorithm MC21 implemented by Duff [27],

[26]. MC21 is a depth-first search algorithm with look-ahead; for a sparse matrix with

τ nonzero entries, the algorithm has worst-case complexity of O(nτ), but in practice

exhibits O(n + τ) behavior.

The use of such a reordering strategy is fundamental as the first step of permuting

sparse reducible matrices to block triangular form. As mentioned in the introduction,

permuting to a zero-free diagonal has been examined before as a reordering strategy

for preconditioning; see, for instance, [23] and [9]. Clearly, such a permutation will

prove beneficial when, under the original ordering, there are zeros lying on the di-

agonal. However, in our experiments, we found few cases where finding a maximum

transversal provided more benefit than finding a maximum product transversal.

2.3.2 Finding a maximum product transversal

In this subsection, we discuss permuting a matrix so that the product of the

absolute value of the entries along the diagonal is maximized. That is, we look for a

permutation σ that maximizes
n∏

i=1

|aσ(i)i|. (2.1)

This strategy, combined with the scalings mentioned below, was introduced in [66]

for pivoting in dense Gaussian elimination.

First, this maximization problem is translated into a minimization problem. Let

ai = maxj |aij| denote the maximum value in row i of the matrix A. Define the matrix

C = (cij) by

cij =





log ai − log |aij|, for aij 6= 0,

∞, otherwise.

Then maximizing (2.1) is equivalent to minimizing

n∑

i=1

cσ(i)i. (2.2)

19

Minimizing the sum (2.2) is equivalent to finding a minimum weight perfect match-

ing. In combinatorial optimization, this is known as the bipartite weighted matching

problem, or linear assignment problem. MC64 uses a sparse variant of the bipartite

weighted matching algorithm introduced in [66]. Fundamental to finding a minimum

weight perfect matching is finding a shortest augmenting path, which in turn relies on

a sparse variant of Dijkstra’s algorithm [25]. For a full n× n matrix, the assignment

problem can be solved in O(n3) time; for a sparse matrix with τ nonzero elements,

the problem can be solved in O(nτ log n) time.

We will use the following result for applying the bipartite weighted matching

algorithm to a matrix C [33]: A perfect matching M has minimum weight if and

only if there exist vectors u = (ui) and v = (vi), each of length n, such that




ui + vj = cij for (i, j) ∈M,

ui + vj ≤ cij, for (i, j) 6∈ M.
(2.3)

These vectors u and v are used in scaling the permuted matrix (see below).

2.3.3 Finding a bottleneck transversal

In this subsection we consider a simple variation of the method discussed in the

previous subsection. Here we are interested in finding a permutation of A such that

the smallest absolute value on the diagonal is maximized. That is, we look for a

permutation σ that maximizes

min
1≤i≤n

|aσ(i)i|, (2.4)

and define the matrix C = (cij) by

cij =





ai − |aij|, for aij 6= 0,

∞, otherwise.

Then maximizing (2.4) is equivalent to minimizing

max
1≤i≤n

cσ(i)i. (2.5)

20

Thus the maximum product transversal algorithm can be applied here, with only

minor modifications, such as to replace the sum operation (2.2) by the max operation

(2.5).

Note that this method regards only the smallest entry on the diagonal of the

permuted matrix. For example, as mentioned in [31], consider a matrix having a row

containing only one nonzero entry whose absolute value is the smallest in the matrix.

Then the bottleneck transversal algorithm may return a transversal with small values

on the diagonal. MC64 takes a somewhat different approach to avoid this problem;

see [30], [31] for details.

Scaling the matrix prior to finding a bottleneck transversal also alleviates this

problem. Ultimately, though, we found few examples where bottleneck transversal

permutations proved superior to maximum product transversal permutations.

2.3.4 Scaling

It is often beneficial to scale the matrices using the parameters ui and vj from (2.3)

obtained in the weighted matching algorithm. To this end, define diagonal matrices

D1 and D2 by

D1 = diag(d1
1, d

1
2, . . . , d

1
n), d1

j = exp(vj)/aj,

D2 = diag(d2
1, d

2
2, . . . , d

2
n), d2

i = exp(ui).
(2.6)

Then QD1AD2 is a matrix whose diagonal entries are one in absolute value, and

whose off-diagonal entries are all less than or equal to one, in absolute value. Such

a matrix is referred to as an I -matrix in [66]. By simply changing the sign of rows

(or columns) having a diagonal entry equal to −1 we obtain a matrix with unit

diagonal. The eigenvalues of such a matrix lie in discs centered at 1, with radii equal

to the sum of the absolute values of the off-diagonal entries in the corresponding row.

Therefore, the less the matrix deviates from a diagonally dominant matrix, the more

the eigenvalues cluster around 1. In the ideal case, all the discs of such a matrix have

21

radii less than 1, and the matrix is strictly row-wise diagonally dominant. In turn, this

guarantees that ILU and AINV preconditioners are well-defined. It is also a favorable

situation for Krylov subspace methods, since all the eigenvalues have positive real

part.

2.4 Description of test problems

In this section we describe the matrices that were used in the numerical exper-

iments. Most of these matrices are available in the public domain [29], [24], [64].

They are representative of problems from a variety of applications and are difficult

to solve with iterative methods. The matrices are listed in Table 2.1 below, together

with some basic information. In Table 2.9 we report the estimate for the condition

number returned by MATLAB (except for the three last problems, which are too

large).

The first eight matrices are from chemical engineering and represent simulations of

different chemical processes. They are not large, highly unstructured, and structurally

nonsymmetric, with most of the diagonal entries equal to zero. In addition, they are

highly indefinite and tend to be very ill-conditioned. Matrices similar to these have

been used to test ILU–type preconditioners in [23]. In that paper, MC21 was used to

obtain a zero-free diagonal: the results were poor.

The next five matrices come from mathematical economics and management.

These matrices are also highly unstructured, nonsymmetric, indefinite with most

diagonal entries equal to zero.

The next three matrices arise in circuit design. The first two problems are de-

scribed in [61] and are available from the Matrix Market [64]. The original matrices

WATSON4 and WATSON5 are rectangular; as in [61], we appended one row at the

bottom of these matrices to make them square (and we changed the names to WAT-

SON4a and WATSON5a). The row vector used was eT
n = (0, . . . , 0, 1). All diagonal

22

Table 2.1: Test problem information.

Application Area: Chemical Engineering
Matrix Description order nonzeros
WEST0655 Sixteen stage column section 655 2854
WEST0989 Seven stage column section 989 3537
WEST1505 Eleven stage column section 1505 5445
WEST2021 Fifteen stage column section 2021 7353
LHR01 Light hydrocarbon recovery 1477 18592
LHR02 Light hydrocarbon recovery 2954 37206
BAYER09 Chemical process simulation 3083 21216
BAYER10 Chemical process simulation 13436 94926

Application Area: Economic Models and Linear Programming
Matrix Description order nonzeros
MAHINDAS Economic model of Victoria 1258 7682
ORANI678 Economic model of Australia 2529 90158
BP200 Simplex method basis matrix 822 3802
GEMAT11 Power flow in 2400 bus system 4929 33185

– initial simplex method basis
GEMAT12 Power flow in 2400 bus system 4929 33111

– basis after 100 iterations

Application Area: Circuit Modeling
Matrix Description order nonzeros
WATSON4a Jacobian at step 4, 1 row added 468 2870
WATSON5a Jacobian at step 4, 1 row added 1854 10848
CIRCUIT3 Jacobian from nonlinear DAE system 12127 48137

Application Area: PDE problems
Matrix Description order nonzeros
SHERMAN2 Thermal simulation with steam injection 1080 23094
LNS3937 Linearized Navier-Stokes equations 3937 25407
UTM5940 Plasma physics, tokamak modeling 5940 83842
SLIDE Solid deformation model (ALE3D) 20191 1192535
TWO-DOM Solid deformation model (ALE3D) 22200 1188152
VENKAT25 2D unstructured Euler solver, time step=25 62424 1717792

23

entries are nonzero. The third circuit matrix was kindly provided by Wim Bomhof

of Utrecht University; see [19]. This matrix has some zero diagonal entries. All three

matrices are very sparse, and they exhibit a good deal of structural symmetry.

Finally, we included six matrices from the discretization of PDE’s. SHERMAN2

does not present any difficulty for ILU preconditioning, but appears to pose a chal-

lenge for sparse approximate inverse preconditioners; see, e.g., [2], [10], [44] and [42].

Matrix LNS3937 has a zero diagonal block corresponding to the divergence constraint

in the Navier-Stokes equations, and is challenging for both ILU and approximate in-

verse techniques; see, respectively, [22] and [2]. Zero diagonal blocks induced by

constraints also occur in the unstructured finite element matrices SLIDE and TWO-

DOM, which were kindly provided by Ivan Otero (Lawrence Livermore National Lab-

oratory). Matrix UTM5940 is fairly difficult to solve with ILU–type methods [22] and

even more so by sparse approximate inverse techniques. Matrix VENKAT25 was in-

cluded because it is difficult for AINV. These last two matrices have no zero diagonal

entries.

These matrices are just a selection from a larger set which was used for the tests;

the chosen problems are representative of the results observed. As we will see, prepro-

cessing makes all these problems solvable by iterative methods preconditioned with

ILUT and AINV, and in many cases even with ILU(0) or ILU(1) preconditioning.

We found, however, several systems cannot be solved by our techniques. In these

cases, the preconditioned iteration usually converged, but to an inaccurate solution.

Among these matrices are SHYY41 (also discussed in [22]), NNC666 and NNC1374,

GRAHAM1, several of the FIDAP matrices, and some of the LHR0∗c matrices from

chemical engineering, all available in [24] or [64]. We tried to solve these problems by

a direct method, namely, Gaussian elimination with partial pivoting, but again the

computed solution was not accurate. The same happened when we used the com-

plete factors computed with the direct method as preconditioners for Krylov subspace

methods—a form of iterative refinement. Not surprisingly, these matrices are severely

24

ill-conditioned. One cannot blame an algorithm for being unable to produce accurate

solutions to extremely ill-conditioned problems. In this chapter, we only present re-

sults for problems which could be solved with some accuracy, since these are the only

results that make sense.

2.5 Numerical experiments

The numerical experiments in this section assess how the MC64 permutation and

scaling routines impact the robustness and performance of preconditioned Krylov sub-

space methods. All algorithms were implemented in Fortran77 using double precision

arithmetic. The codes were compiled by f77 with the -O3 optimization option. Test

runs were performed on a Sun Ultra 5 workstation for all test problems except the

last three, for which one 250 MHz processor of an SGI Origin 2000 computer was

used.

We tried three different Krylov subspace solvers: BiCGStab [75], GMRES [74]

and TFQMR [36]. While the three algorithms performed similarly on most problems,

BiCGStab was somewhat better overall than the others. Therefore, we will present

results for BiCGStab only. The preconditioners used are diagonal (Jacobi) scaling,

ILU(0), ILU(1), ILUT and AINV. Besides these, we performed experiments also with

ILUTP [73] and SPAI [44]. In all cases, right preconditioning was used. The right-

hand side b was chosen so that the system Ax = b has the solution x = (xi) with

xi = i, 1 ≤ i ≤ n. We also tested other choices of b, with similar results. The

initial guess was always the zero vector, x0 = 0. The iteration was stopped when the

`2-norm of the initial residual was reduced by at least eight orders of magnitude, or

when a maximum number of iterations maxit = min{n, 2000} was reached.

Some comments on the accuracy of the approximate solutions corresponding to

this stopping criterion are in order. As reported in Table 2.9, many test matrices are

very ill-conditioned, and a small residual does not necessarily guarantee a small error

25

in the solution. Nevertheless, the stopping criterion produces solutions with good

relative accuracy except in a few cases (BAYER09, GEMAT12, CIRCUIT3), where

some of the components of the solution were incorrect. For these cases, reducing the

stopping tolerance from 10−8 to 10−12 resulted in accurate solutions, at the expense

of an increase in the number of iterations of roughly 30%. However, all the results

presented in the subsequent sections correspond to the stopping tolerance 10−8.

2.5.1 Testing reliability

Here we discuss the impact of the preprocessing on the reliability of preconditioned

BiCGStab. We only report iteration counts. In Table 2.2 we report the results of

runs using diagonal (Jacobi) preconditioning for the original matrix (under “orig”)

and for different preprocessings: the basic maximum transversal (under “mc21”),

the bottleneck transversal (under “bt”), the maximum product transversal without

scalings (under “mpd”) and with scalings (under “mps”).

A “‡” means that the preconditioner was not defined, due to zeros on the main di-

agonal. A “†” means failure to converge within the maximum number of allowed iter-

ations. A “bd” denotes a breakdown in the BiCGStab acceleration. Notice that mc21

leaves matrices WATSON4a, WATSON5a, SHERMAN2, UTM5940 and VENKAT25

unchanged, since these matrices have no zero diagonal entries.

The only problem that can be solved without any preprocessing is the small circuit

matrix WATSON4a, which requires a number of iterations almost equal to the order

of the matrix. While the maximum and bottleneck transversals lead to virtually

no improvements, the maximum product transversals result in convergence in nine

cases. In particular, six out of the eight chemical engineering problems and both

economics problems can be solved using Jacobi preconditioning combined with the

maximum product transversal and associated scalings. Notice that with mps, Jacobi

preconditioning simply has the effect of changing the sign of those matrix columns

26

Table 2.2: Iteration count, Jacobi preconditioning.

Matrix orig. mc21 bt mpd mps
WEST0655 ‡ † † † †
WEST0989 ‡ † † 239 171
WEST1505 ‡ † † 536 570
WEST2021 ‡ † † 342 455
LHR01 ‡ † † 421 238
LHR02 ‡ † † 1195 1109
BAYER09 ‡ † † † 244
BAYER10 ‡ † † † †
MAHINDAS ‡ † † 348 137
ORANI678 ‡ † 1133 217 196
BP200 ‡ † † † †
GEMAT11 ‡ † † † †
GEMAT12 ‡ † bd † †
WATSON4a 467 467 467 222 183
WATSON5a † † † † †
CIRCUIT3 ‡ † † † †
SHERMAN2 † † † 466 †
LNS3937 ‡ † † † †
UTM5940 † † † † †
SLIDE ‡ † † † †
TWO-DOM ‡ † † † †
VENKAT25 † † † † †

27

for which the corresponding diagonal entry is −1.

The next three tables report the results obtained for various ILU–type precon-

ditioners. These preconditioners are sensitive to the ordering of the equations and

unknowns. Therefore, after applying the various preprocessings, we also reorder the

matrix with a symmetric permutation. Consider for instance mps preprocessing. De-

note the row and column scalings associated with the maximum product transversal

with D1 and D2, respectively. Let Q denote the corresponding row permutation that

permutes the scaled matrix to a zero-free diagonal form. Then the symmetric per-

mutations are based on the adjacency graph of the symmetric matrix Â + ÂT , where

Â = QD1AD2. Once the permutation matrix P has been determined, one solves the

following linear system:

(P T QD1AD2P)y = P T QD1b.

The solution of the original linear system is then x = D2Py. The preconditioner

calculation is carried out on the scaled and reordered matrix

Ã = P T QD1AD2P.

The purpose of the scalings D1, D2 and of the one-sided permutation Q is to improve

stability. The purpose of the symmetric permutation P is to make the preconditioner

more accurate. For structurally symmetric matrices that are numerically unsym-

metric and far from diagonally dominant, it was found in [8] that the performance

and robustness of ILU–type preconditioners was generally improved by the reverse

Cuthill–McKee ordering [28], denoted “rcm” in the tables (see column “SO”). Thus,

we used rcm as the default ordering for ILU preconditioners. Although it is not

always the best ordering, rcm gave often good results, in agreement with the con-

clusions in [8]. Whenever rcm performed poorly we switched to another symmetric

ordering, like multiple minimum degree [58] (denoted “mmd”) or generalized nested

dissection [57] (denoted “gnd”). Occasionally, no symmetric reordering was the best

28

Table 2.3: Iteration count, ILU(0) preconditioning.

Matrix SO orig. mc21 bt mpd mps
WEST0655 gnd ‡ ‡ ‡ 157 144
WEST0989 gnd ‡ ‡ ‡ 51 60
WEST1505 mmd ‡ ‡ ‡ 1498 903
WEST2021 mmd ‡ ‡ ‡ 136 162
LHR01 rcm ‡ † † 52 49
LHR02 rcm ‡ ‡ ‡ 210 62
BAYER09 rcm ‡ ‡ ‡ 32 42
BAYER10 rcm ‡ ‡ ‡ † †
MAHINDAS rcm ‡ ‡ 167 34 32
ORANI678 rcm ‡ 83 50 28 21
BP200 mmd ‡ ‡ 126 510 603
GEMAT11 rcm ‡ † † 153 140
GEMAT12 rcm ‡ † † 702 838
WATSON4a rcm 131 131 127 60 89
WATSON5a rcm † † † † †
CIRCUIT3 rcm ‡ ‡ † † †
SHERMAN2 no 8 8 † 12 11
LNS3937 rcm ‡ † † † †
UTM5940 no † † † † †
SLIDE rcm ‡ † 628 335 335
TWO-DOM rcm ‡ † † 419 513
VENKAT25 rcm 90 90 † 88 117

option (denoted “no” in the tables). In these tables, a “‡” indicates a failure due to

pivot breakdown—i.e., a zero or exceedingly small pivot occurred in the incomplete

factorization.

The results for ILU(0) preconditioning are reported in Table 2.3. Again, using

just mc21 is ineffective, with the only exception of matrix ORANI678. Results for

the bottleneck transversal are not much better. However, the robustness of ILU(0)

is greatly improved when the maximum product transversal is used. No pivot break-

down occurs, and all but five problems can be solved. The five failures are due to very

slow convergence except for CIRCUIT3, for which the ILU(0) factors are unstable.

Using different symmetric reorderings for these problems did not help.

29

Table 2.4: Iteration count, ILU(1) preconditioning.

Matrix SO orig. mc21 bt mpd mps
WEST0655 gnd ‡ ‡ ‡ ‡ †
WEST0989 rcm ‡ ‡ ‡ 32 38
WEST1505 rcm ‡ ‡ ‡ 37 45
WEST2021 rcm ‡ ‡ ‡ 68 74
LHR01 rcm ‡ ‡ † 64 58
LHR02 rcm ‡ ‡ ‡ 143 104
BAYER09 rcm ‡ ‡ ‡ 10 14
BAYER10 rcm ‡ ‡ ‡ 1176 1707
MAHINDAS rcm ‡ ‡ 108 9 16
ORANI678 rcm ‡ ‡ 69 14 13
BP200 mmd ‡ 58 36 94 †
GEMAT11 rcm ‡ ‡ 107 43 46
GEMAT12 rcm ‡ ‡ † 183 55
WATSON4a rcm 126 126 92 27 26
WATSON5a no † † † † 932
CIRCUIT3 rcm ‡ ‡ † † †
SHERMAN2 rcm 8 8 † 4 4
LNS3937 gnd 379 bd † 264 355
UTM5940 no 151 151 † 168 119
SLIDE mmd ‡ ‡ † 226 259
TWO-DOM mmd ‡ ‡ † 151 155
VENKAT25 rcm 56 56 † 57 81

We notice that there are two matrices, SHERMAN2 and VENKAT25, which can

be easily solved with ILU(0) preconditioning without any preprocessing. Indeed,

using mps results in a slight deterioration in the rate of convergence. Clearly, if a

given combination of preconditioner and Krylov subspace solver gives good results,

the use of preprocessing is not necessary and should not be used.We further observe

that in several cases, mpd (without scalings) gives better results than mps. The same

phenomenon occurs also for Jacobi and ILU(1) preconditioning (see Tables 2.2 and

2.4).

In Table 2.4 we report the results obtained with ILU(1) preconditioning. Again,

mc21 and bt offer little benefit, whereas the use of mpd or mps allows all but

30

three problems to be solved. With mpd we had one failure due to pivot breakdown

(WEST0655), one due to slow convergence (WATSON5a), and one due to unstable

ILU factors (CIRCUIT3). For mps, unstable ILU solves were the cause of all three

failures. Notice that in a few cases, ILU(1) performs worse than ILU(0). However,

all PDE problems can be solved with ILU(1) when either mpd or mps is used, with

mpd giving somewhat better results on average.

It is already clear from these results that the reliability of preconditioned iterative

solvers is greatly enhanced by the use of one-sided permutations aimed at placing

large entries on the main diagonal, even when simple preconditioners like ILU(0) and

ILU(1) are used. There are, however, a few hard problems for which this approach

does not work. Additional robustness can be achieved by using a drop tolerance.

In Table 2.5 we present results for the popular dual-threshold ILUT(tol, p) pre-

conditioner. Our strategy for the experiments was the following. We used the default

parameters tol = 10−1 and p = 5, with rcm as the basic symmetric reordering. When-

ever this combination produced poor results, we switched to a different symmetric

reordering until a good one was found (in the following order: mmd, gnd, no reorder-

ing). When this didn’t work we changed the ILUT parameters by decreasing tol and,

if necessary, increasing p. We do not claim that this leads to an optimal, or even good

preconditioning strategy: rather, the purpose of these experiments is to demonstrate

that iterative solvers can be made reliable without much need for fine-tuning. We

emphasize that the values tol = 10−1 and p = 5 are not typical for ILUT. Usually, a

much smaller drop tolerance and a much larger value of p are used, particularly for

hard problems: see, e.g., [22]. In other words, we chose a very sparse preconditioner,

in many cases even sparser than the original matrix. We made this choice deliber-

ately, with the intent to show that most problems become very easy to solve once

the preprocessing phase is applied. In general, better results can be obtained with a

different choice of the parameters.

The results in Table 2.5 show that with mps, all problems can be solved with

31

Table 2.5: Iteration count, ILUT preconditioning.

Matrix SO tol, p orig. mc21 bt mpd mps
WEST0655 gnd 10−1, 5 ‡ ‡ ‡ 65 37
WEST0989 rcm 10−1, 5 ‡ ‡ 470 21 9
WEST1505 mmd 10−1, 5 ‡ ‡ † 513 53
WEST2021 rcm 10−1, 5 ‡ ‡ ‡ 110 34
LHR01 rcm 10−1, 5 ‡ ‡ ‡ 252 41
LHR02 rcm 10−1, 5 ‡ ‡ ‡ ‡ 78
BAYER09 rcm 10−1, 5 ‡ ‡ † † 14
BAYER10 mmd 10−4, 20 ‡ ‡ ‡ ‡ 65
MAHINDAS rcm 10−1, 5 ‡ † 959 8 9
ORANI678 rcm 10−1, 5 ‡ † 62 12 14
BP200 mmd 10−1, 5 ‡ † 28 17 11
GEMAT11 rcm 10−1, 5 ‡ ‡ † 1471 303
GEMAT12 rcm 10−1, 5 ‡ ‡ † 354 306
WATSON4a rcm 10−1, 5 457 457 457 208 31
WATSON5a rcm 10−5, 25 6 6 6 6 6
CIRCUIT3 rcm 10−4, 20 80 ‡ 516 36 90
SHERMAN2 rcm 10−1, 5 37 37 † 8 10
LNS3937 rcm 10−3, 10 ‡ ‡ † 776 24
UTM5940 no 10−4, 20 164 164 † 302 141
SLIDE rcm 10−1, 5 ‡ † † † 491
TWO-DOM rcm 10−1, 5 ‡ † † † 494
VENKAT25 rcm 10−2, 5 † † ‡ † 98

32

Table 2.6: Iteration count, AINV preconditioning.

Matrix SO tol orig. mc21 bt mpd mps
WEST0655 no 10−1 ‡ ‡ ‡ † 176
WEST0989 mmd 10−1 ‡ ‡ ‡ 141 32
WEST1505 mmd 10−2 ‡ ‡ † 1693 37
WEST2021 mmd 10−2 ‡ ‡ † 148 8
LHR01 mmd 10−1 ‡ † ‡ 251 74
LHR02 mmd 10−1 ‡ ‡ ‡ 385 127
BAYER09 mmd 10−1 ‡ ‡ † 15 8
BAYER10 no 3.5× 10−2 ‡ ‡ ‡ 781 43
MAHINDAS mmd 10−1 ‡ ‡ 29 15 7
ORANI678 no 10−1 ‡ † 251 10 9
BP200 mmd 5× 10−2 ‡ ‡ 20 ‡ 5
GEMAT11 mmd 10−1 ‡ ‡ † 802 230
GEMAT12 mmd 10−1 ‡ ‡ † † 389
WATSON4a mmd 10−1 21 21 21 14 20
WATSON5a mmd 10−3 51 51 51 51 114
CIRCUIT3 no 10−2 † ‡ † 268 43
SHERMAN2 mmd 10−1 † † † 50 14
LNS3937 gnd 10−1 ‡ † † † 112
UTM5940 gnd 10−1 1268 1268 † 1388 406
SLIDE mmd 10−1 † † † 603 306
TWO-DOM mmd 10−1 † † 965 491 224
VENKAT25 mmd 10−1 † † ‡ 385 411

ILUT preconditioning. In most cases the basic combination of rcm reordering with

tol = 10−1 and p = 5 was sufficient to solve the problem. In some cases, an alterna-

tive symmetric reordering and/or additional fill-in had to be used in order to achieve

convergence. The hardest problems for ILUT appear to be BAYER10, CIRCUIT3,

and UTM5940. Complementing the maximum product transversal with scalings im-

proves the reliability and performance of ILUT–preconditioned BiCGStab in nearly

all tested cases. The only exception is CIRCUIT3, for which the number of iterations

increases from 36 to 90.

In Table 2.6 we present results for the drop tolerance–based sparse approximate

inverse AINV preconditioner. Like ILU–type preconditioners, AINV is sensitive to

33

the ordering. In [21] and [12] it was shown that mmd is generally a good ordering for

AINV, with gnd a close second. On the other hand, rcm cannot be recommended in

general. Thus, the default parameters were mmd reordering and tol = 10−1. For a few

hard problems, it was necessary to switch to gnd reordering (or no reordering) and to

reduce the drop tolerance. However, no effort was made to tune the parameters for

optimal performance. As for the ILU preconditioner, failures due to pivot breakdowns

are denoted by “‡” slow convergence by “†”.

As for ILUT, we see that mps preprocessing enables BiCGStab preconditioned

with AINV to solve all our test problems. For instance, problem SHERMAN2, which

is notoriously difficult for approximate inverse methods, becomes very easy to solve.

We also see that in most cases, scalings improve the performance of the maximum

product transversal. More importantly, scalings improve reliability, as shown by the

fact that there are four problems that cannot be solved with mpd alone.

2.5.2 Timing results

The experiments illustrate that mps preprocessing dramatically increases the

reliability and performance of Krylov subspace methods preconditioned with drop

tolerance–based preconditioners, like ILUT and AINV. But how expensive is the pre-

processing phase in practice? Because this preprocessing phase depends on the nu-

merical values of the matrix coefficients, is not easy to amortize, except when solving

a sequence of linear systems with the same coefficient matrix and different right-hand

sides. If the coefficient matrix changes, the preprocessing has to be applied anew.

Timing results for ILUT and AINV are presented in Tables 2.7 and 2.8, respec-

tively. We report the time for mps preprocessing (under NSO-time), the time for the

symmetric reordering (under SO-time), the time for computing the preconditioner

(under P-time), the time to perform the iterative solve phase (It-time) and, in the

last column, the total solution time (under Tot-time). Timings are in seconds, and

34

Table 2.7: Test results for ILUT preconditioning.

Matrix NSO-time SO-time P-time ρ Its It-time Tot-time
WEST0655 0.009 0.006 0.005 1.22 37 0.110 0.130
WEST0989 0.011 0.004 0.004 0.967 9 0.056 0.075
WEST1505 0.018 0.017 0.007 0.916 53 0.323 0.365
WEST2021 0.024 0.009 0.011 0.997 34 0.333 0.378
LHR01 0.091 0.019 0.013 0.349 41 0.369 0.494
LHR02 0.214 0.042 0.026 0.346 78 1.54 1.82
BAYER09 0.113 0.025 0.017 0.401 14 0.280 0.440
BAYER10 0.799 0.556 0.189 1.22 65 6.63 8.19
MAHINDAS 0.019 0.009 0.009 0.613 9 0.080 0.117
ORANI678 0.185 0.132 0.077 0.087 14 0.452 0.850
BP200 0.009 0.016 0.004 0.856 11 0.049 0.078
GEMAT11 0.079 0.038 0.038 0.632 303 8.05 8.21
GEMAT12 0.097 0.038 0.039 0.662 306 8.26 8.43
WATSON4a 0.006 0.004 0.004 0.799 31 0.063 0.078
WATSON5a 0.015 0.031 0.031 1.85 6 0.128 0.211
CIRCUIT3 0.127 0.106 0.610 2.02 90 7.08 7.88
SHERMAN2 0.053 0.021 0.020 0.228 10 0.111 0.206
LNS3937 0.131 0.030 0.129 2.59 24 0.973 1.27
UTM5940 0.223 — 1.50 3.13 141 14.5 16.2
SLIDE 0.977 0.938 0.588 0.090 491 67.1 69.6
TWO-DOM 0.976 0.956 0.595 0.100 494 69.5 72.0
VENKAT25 1.43 1.28 2.59 1.05 98 48.5 53.8

were measured with the dtime function. We also report the density ρ of the precondi-

tioner, defined as the ratio between the number of nonzeros in the preconditioner over

the number of nonzeros in the original coefficient matrix A. The number of iterations

to converge (Its) is also included. The parameters and symmetric reorderings are the

same as those used for the runs in Tables 2.5 and 2.6.

The cost of the preprocessing is usually small compared to the overall solution

costs. For the larger problems the cost of preprocessing, including the time to apply

the symmetric reordering, is negligible compared to the total solve time. We also

see that in most cases, the time for the nonsymmetric permutation and scaling is

comparable to the time required for the symmetric permutations, which are based on

35

Table 2.8: Test results for AINV preconditioning.

Matrix NSO-time SO-time P-time ρ Its It-time Tot-time
WEST0655 0.009 — 0.122 10.2 176 1.54 1.67
WEST0989 0.011 0.010 0.018 2.36 32 0.175 0.214
WEST1505 0.018 0.017 0.094 5.92 37 0.499 0.628
WEST2021 0.024 0.023 0.203 7.87 8 0.228 0.478
LHR01 0.091 0.108 0.499 2.67 74 1.56 2.26
LHR02 0.214 0.231 1.10 3.00 127 5.94 7.49
BAYER09 0.113 0.128 0.228 1.73 8 0.270 0.739
BAYER10 0.799 — 4.67 5.96 43 11.2 16.7
MAHINDAS 0.019 0.139 0.061 1.27 7 0.082 0.301
ORANI678 0.185 — 0.776 0.146 9 0.332 1.29
BP200 0.009 0.016 0.026 2.46 5 0.046 0.097
GEMAT11 0.079 0.057 0.172 1.62 230 8.57 8.88
GEMAT12 0.097 0.058 0.224 2.04 389 15.8 16.2
WATSON4a 0.006 0.014 0.011 1.01 20 0.049 0.080
WATSON5a 0.015 0.072 0.167 1.77 114 1.34 1.59
CIRCUIT3 0.127 — 3.82 1.89 43 3.43 7.38
SHERMAN2 0.053 0.071 0.094 0.352 14 0.148 0.366
LNS3937 0.131 0.059 0.971 5.89 112 7.05 8.22
UTM5940 0.223 0.158 2.80 2.77 406 45.0 48.2
SLIDE 0.977 1.39 12.0 0.273 306 50.4 64.8
TWO-DOM 0.976 1.68 11.8 0.254 224 36.1 50.6
VENKAT25 1.43 1.40 20.1 0.838 411 184. 207.

36

the (unweighted) graph of the matrix only.

The performance of ILUT preconditioning is impressive: in most cases, rapid

convergence is obtained with a very sparse preconditioner. For the few cases where

convergence is slow (GEMAT11, GEMAT12, SLIDE and TWO-DOM), we found that

much faster convergence and smaller timings result if more fill-in is allowed. For in-

stance, using ILUT(10−3, 10) on GEMAT11 results in convergence in 40 iterations

with preconditioner density ρ = 1.46, and the total solution time becomes 1.81 sec-

onds.

It is our opinion that ILUT preconditioning with mps preprocessing, can become

a useful tool for solving linear equations from chemical engineering applications. Be-

cause rapid convergence can be achieved with very sparse incomplete factorization

preconditioners, this approach may be competitive with sparse direct methods. This

approach also has considerable potential for matrices arising from economic modeling

and management science, although we have less experience with such problems.

On the other hand, it is unclear whether this approach is really useful for ma-

trices arising in circuit simulations. Sparse direct solvers suffer very little fill-in on

such problems when a good ordering is adopted. If iterative solvers are to compete

with direct methods, they must converge extremely fast with very sparse precondi-

tioners. From our test runs, this seems to be difficult to achieve unless the incomplete

factorization closely approaches a complete one. In [19] a combined direct/iterative

method is described in which the preconditioned iteration is applied to a relatively

small Schur complement matrix, which appears to be as fast as sparse direct solvers.

In terms of timings and storage requirements, AINV (Table 2.8) is generally more

expensive than ILUT, but an important advantage of AINV, its parallelizability, is

not captured by these one-processor experiments. For some matrices, the density of

the preconditioner is rather high. Sparser preconditioners can be obtained by using a

larger value of tol, but this may slow down convergence considerably. This is especially

true for the chemical engineering problems. On the other hand, we found that for

37

the PDE problems faster convergence and smaller overall timings can be obtained by

allowing more fill in the preconditioner. The same applies to the GEMAT∗ problems.

Notice the good performance of AINV on the matrices from economics, MAHINDAS

and ORANI678. As for the circuit matrices, similar remarks as for ILUT apply. The

main point here is that mps preprocessing dramatically increases the reliability of both

ILUT and AINV preconditioning, therefore considerably widening their applicability.

2.5.3 Further analysis of the results

In order to have a better understanding of the effect of the MC64 permutations

and scalings used for preprocessing, we collected the statistics presented in Table

2.9. Under “condest” we report the condition number (estimated with the MATLAB

function condest) for the original matrix and for the matrix scaled by the row and

columns scalings associated with mps preprocessing. The condition number could not

be estimated for the three largest matrices.

Under “d.d. rows” we report the number of (weakly) diagonally dominant rows in

the original matrix, in the matrix permuted with the maximum product transversal

(mpd), and in the matrix scaled and permuted with mps. Under “d.d. cols” sim-

ilar statistics are reported relative to the number of (weakly) diagonally dominant

columns.

The statistics show that the chemical engineering matrices greatly benefit from

the permutations and scalings: the number of diagonally dominant rows and columns

is greatly increased, and ill-conditioning is drastically reduced. Analogous remarks

apply to problems MAHINDAS, ORANI678, BP200 and GEMAT11. Hence, it is

not surprising that preconditioned iterative methods perform well on these problems

when mps preprocessing is used.

For problems GEMAT12 and CIRCUIT3, the scalings have the effect of increas-

ing the condition number. However, for GEMAT12 the number of weakly diagonally

38

Table 2.9: Conditioning and diagonal dominance statistics.

condest d.d. rows d.d. cols
Matrix orig. scaled orig. mpd mps orig. mpd mps

WEST0655 1.6E+12 2.0E+04 4 321 355 3 260 340
WEST0989 5.7E+12 1.9E+04 2 638 666 0 412 641
WEST1505 9.0E+12 2.5E+04 2 957 1004 0 619 969
WEST2021 7.5E+12 2.4E+04 2 1256 1340 0 808 1309

LHR01 5.4E+06 4.4E+04 20 323 438 0 766 710
LHR02 8.2E+06 5.5E+04 40 626 856 0 1532 1409

BAYER09 2.3E+21 1.1E+04 1 1610 1733 1 1737 2168
BAYER10 3.8E+15 1.5E+05 2 4653 7048 0 7081 7501

MAHINDAS 1.0E+13 5.0E+03 2 910 896 0 635 762
ORANI678 1.0E+07 1.1E+06 72 1866 1826 0 1653 1692

BP200 8.9E+08 3.8E+03 0 317 317 1 368 480
GEMAT11 3.7E+08 6.8E+06 2 1508 1536 2 1409 1238
GEMAT12 3.7E+08 1.2E+13 1 1465 1213 1 1398 1298

WATSON4a 8.8E+10 8.9E+07 161 374 270 377 161 261
WATSON5a 5.5E+07 3.2E+06 187 1264 1099 1268 187 332
CIRCUIT3 3.6E+07 3.0E+08 7865 7503 8245 7354 7650 8227

SHERMAN2 1.4E+12 3.3E+03 634 204 292 74 560 460
LNS3937 1.0E+17 1.9E+04 509 1283 689 307 892 701

UTM5940 1.9E+09 7.6E+08 762 915 882 925 766 926
SLIDE n/a n/a 1330 1203 1885 1201 1277 1274

TWO-DOM n/a n/a 2917 4627 4727 2917 4627 4700
VENKAT25 n/a n/a 0 0 0 0 0 0

39

dominant rows and columns is greatly increased by the mpd preprocessing. The

increase is somewhat smaller when scalings are used, but it is still a significant im-

provement. This makes the preconditioner computation stable, and therefore the net

effect is positive. Matrices WATSON4a and WATSON5a are better conditioned after

scaling and have a greater fraction of diagonally dominant rows after mpd. However,

the scalings have the effect of reducing the number of diagonally dominant rows as

compared to using mpd alone. Perhaps this explains why using mps often gives worse

results than using mpd alone for these matrices (see Tables 2.3 and 2.6).

For the matrices arising from PDE problems, the permutations and scalings are

generally beneficial. For VENKAT25, it is not clear from the results reported in

Table 2.9 that the preprocessing does any good. However, we know that ILUT and

AINV benefit from the preprocessing. Although no row or column became diagonally

dominant after the permutations and scalings, we found that the Gerschgorin bounds

on the real and imaginary parts of the eigenvalues were one order of magnitude

smaller after mps preprocessing, suggesting that the scaled and permuted matrix is

less far from diagonally dominant and has a more clustered spectrum than the original

matrix.

2.5.4 Experiments with ILUTP and SPAI

We also experimented with the ILUTP preconditioner (ILUT with partial piv-

oting) [73], which is generally more reliable than ILUT. However, we found that

ILUTP preconditioning applied to the original matrices, or even to those permuted

with mc21, is hardly better than ILUT, unless very large amounts of fill are allowed.

Moreover, we found several problems that could not be solved by ILUTP even with

very large amounts of fill (tol = 0, p = 30). These are WEST0655, LHR01, LHR02,

BAYER09, BAYER10, BP200, and LNS3937. The failure of ILUTP was due to pivot

breakdowns in all cases, except for LNS3937, where it appeared to be due to unsta-

40

ble ILU factors. It is mentioned in [22] that ILUTP with row pivoting (rather than

column pivoting) is able to solve LHR01, but it took 134 iterations of GMRES(50)

and a rather dense preconditioner. Using ILUT with mps, we can solve LHR01 in 41

iterations with a very sparse preconditioner (see Table 2.5). On the other hand, none

of the techniques used in [22] succeeded in solving problem LNS3937, which is easily

solved by ILUT with mps preprocessing. Hence, based on our experiments, using

standard ILUT with mps preprocessing is more reliable than using ILUTP alone.

A combination of ILUTP and mps gives fast convergence, sometimes better than

those obtained with ILUT for the same choice of the parameters. However, column

pivoting makes ILUTP slightly more expensive than ILUT, and it is unclear whether

ILUTP is worth using with mps preprocessing.

Additional experiments were performed with the sparse approximate inverse pre-

conditioner SPAI [44], based on adaptive Frobenius norm minimization. Because the

SPAI preconditioner is not factored, it is insensitive to the ordering of the equations

and unknowns. However, it is sensitive to scalings. We tested SPAI on the original

matrices and with mps preprocessing. Scalings appear to improve the reliability and

performance of SPAI. This was especially true for the chemical engineering matrices;

none of these matrices could be solved with SPAI, even with generous amounts of fill,

but all of them could be solved after applying mps preprocessing. The same happened

with MAHINDAS, BP200, SHERMAN2, LNS3937 and UTM5940.

In [2, p. 112], the authors give results for LNS3937 using a parallel implementation

of BiCGStab preconditioned with SPAI. This took 1942 iterations. The approximate

inverse contained 1588045 nonzeros, and had a density ρ = 61.3. The total solution

time was 567.3 seconds using 16 processors of a Cray T3E. Using SPAI with mps

preprocessing, we can solve LNS3937 in 660 iterations. The preconditioner contains

150270 nonzeros, and has a density ρ = 5.9, for a total solution time of 88.5 seconds

on a Sun Ultra 5 workstation. Nevertheless, SPAI is outperformed by ILU(1), ILUT

and AINV used in combination with mps. Furthermore, SPAI failed on GEMAT12

41

and CIRCUIT3 (with or without mps). Finally, we found that mps had a detrimental

effect on the convergence rate obtained with SPAI applied to matrices SLIDE, TWO-

DOM, and VENKAT25.

2.6 Conclusions

The experiments in this chapter illustrate that the reliability and performance of

Krylov subspace methods preconditioned with standard incomplete factorizations can

be dramatically enhanced by means of nonsymmetric permutations and scalings that

place large entries on the main diagonal. This is also true for other preconditioning

techniques, such as factorized sparse approximate inverses. The preprocessing phase

is inexpensive, both in absolute terms and when compared to the total solution costs.

Of the heuristics considered in this research, the maximum product transversal

algorithm gave the best results. With this preprocessing, many of the diagonal en-

tries are large relative to the off-diagonal ones, and the matrix is closer to being

diagonally dominant. This may have a stabilizing effect on the computation of the

preconditioner, and also can speed up convergence rates. In combination with scal-

ings, which often improve the conditioning of the problem, preconditioners based on

drop tolerances (like ILUT and AINV) become reliable.

Much work remains to be done before preconditioned iterative methods can be-

come a viable alternative to direct methods in areas such as chemical engineering,

economics and management, circuit design, etc. Nevertheless, it is now at least con-

ceivable to use iterative methods in such areas, and fair comparisons with direct

solvers can be established. Our experiments suggest that nonsymmetric permuta-

tions and scalings can improve the performance of iterative solvers even in areas

where these are already widely used, such as PDE problems.

42

Chapter 3

Preconditioning KKT Systems

3.1 Introduction

In this chapter, we solve real symmetric indefinite linear systems Hx = b, where

H =




H BT

B 0


 , (3.1)

via preconditioned Krylov subspace methods [43, 73]. Matrices of the form (3.1) are

called KKT matrices, in reference to the Karush-Kuhn-Tucker first-order necessary

optimality conditions for the solution of general nonlinear programming problems.

KKT matrices arise in equality constrained nonlinear programming [39, 65], sparse

optimal control [13], and mixed finite element discretization of partial differential

equations [35, 69]. We assume H is nonsingular, H ∈ IRn×n is nonsingular, sym-

metric and possibly indefinite, and B ∈ IRm×n, with m ≤ n. Note that when H is

nonsingular, B has full rank.

This paper describes three new preconditioners for KKT systems. The first two

preconditioners exploit the structure of the KKT matrix; we approximate the con-

43

straint preconditioner

P =




I BT

B 0


 (3.2)

applied via a factorization of its inverse

P−1 =




I −BT

0 I







I 0

0 −(BBT)−1







I 0

−B I


 . (3.3)

Our preconditioners approximate the solve with BBT . We use a modification of the

SAINV algorithm of Benzi, Cullum, and Tuma [4], to construct factors Z̃ and D̃ and

approximate

Z̃D̃−1Z̃ ≈ (BBT)−1,

and we use a modification of the RIF algorithm of Benzi and Tuma [11], to construct

factors L̃ and D̃ and approximate

L̃D̃L̃T ≈ BBT .

The SAINV and RIF algorithms are robust, in that the factorizations are guaranteed

to exist (in exact arithmetic) when the matrix (3.1) is nonsingular. We describe these

approximations in Section 3.2, below. The RIF and SAINV algorithms are closely

related, and they are do not break down in exact arithmetic for symmetric positive

definite matrices. We modify SAINV and RIF for BBT ; the algorithms require only

sparse matrix-vector products with the matrix BT .

The third approach arises out of efforts to improve robustness for preconditioning

general nonsymmetric, highly indefinite matrices, like the ones we examined in Chap-

ter 2. When applied to KKT systems, with a large zero (2,2) block, standard precon-

ditioning techniques such as LU factorizations and factorized approximate inverses

can breakdown due to zero pivots. Dynamic pivoting strategies to avoid breakdown

are examined in [71, 77], but still fail for many matrices [22]. In Chapter 2, permuta-

tions and scalings that place entries of large magnitude on the diagonal of a matrix

44

improve the robustness and effectiveness of standard preconditioning techniques. In

this chapter, we combine these permutations with ILU preconditioning [72] for KKT

systems. Our experiments show that this is an effective technique, albeit one that

destroys the structure of the original system.

The chapter is organized as follows. In Section 3.2 we describe constraint pre-

conditioners and their theoretical properties, and we describe how to approximate

constraint preconditioners with factorizations of (BBT)−1 and BBT . In Section 3.3

we describe algorithms for maximizing the product of entries on the diagonal of a

matrix, as a preprocessing step for improving ILU preconditioning. In Section 3.4, we

describe the test matrices used in our experiments. In Section 3.5, we compare exact

constraint preconditioning to our approximate constraint preconditioners described

in Section 3.2 and to standard ILU preconditioning combined with the permutations

of Section 3.3.

3.2 Approximate Constraint Preconditioner

In this section, we describe the constraint preconditioners, and the permuta-

tions and scalings, applied to the KKT matrix. We apply an approximation of the

constraint preconditioner (3.2) to a permuted and diagonally scaled KKT system

P T DHDPy = P T Db, with x = DPy. Our preconditioners are based upon factored

approximations to (BBT)−1 and BBT .

The factorization (3.3) shows that the application of the exact constraint precon-

ditioner involves a matrix-vector product with a lower-triangular matrix, a solve with

BBT , and matrix-vector product with an upper-triangular matrix. The solve with

BBT is the most computationally expensive aspect of applying the preconditioner.

For many of our problems, BBT is denser than B (see Table 3.2), and m is approxi-

mately equal to n, that is B is nearly square and BBT has dimensions approximately

equal to B. For these reasons, we approximate BBT and (BBT)−1 to speed up the

45

computation.

The approximation of (BBT)−1 is based on the algorithm SAINV [7, 4], which is

formulated for general symmetric positive definite matrices. Our first preconditioner

is

P−1
SAINV =




I −BT

0 I







I 0

0 −Z̃D̃−1Z̃T







I 0

−B I


 , (3.4)

where Z̃D−1Z̃T ≈ (BBT)−1. Z̃ and D̃ are computed with the SAINV algorithm, and

approximate the inverse of the exact L and D, respectively, in

LDLT = BBT (3.5)

The approximation of BBT is based on the related algorithm RIF [11], also for-

mulated for general symmetric positive definite matrices. Our second preconditioner

is

PRIF =




I

B I







I 0

0 −L̃D̃L̃T







I BT

I


 , (3.6)

where RIF computes L̃ and D̃ to approximate L and D, respectively, in (3.5), so

that L̃D̃L̃T ≈ BBT . We describe our versions of the SAINV and RIF algorithms in

Subsection 3.2.2, below.

3.2.1 Exact Constraint Preconditioning

The exact constraint preconditioner (3.2) can be effective for KKT systems [52, 59,

41, 69, 68, 70, 48]. We describe exact constraint preconditioning and give some the-

orems that justify using the preconditioner (3.2): constraint preconditioned GMRES

converges in a small number of iterations. The convergence rate depends on a sim-

ple relation between the dimensions of the constraint matrix B. Exact constraint

preconditioning has a serious drawback: as the size of the linear systems grows, the

application of (3.2) can become costly [69]. In this section, we provide examples that

demonstrate that this cost increases compared to the size of the matrix.

46

Convergence

Let H ∈ IR(n+m)×(n+m) be a symmetric indefinite, nonsingular matrix of the form

H =




H BT

B 0


 ,

with H ∈ IRn×n, B ∈ IRm×n, and m ≤ n. Recall that B then necessarily has full rank.

Let P ∈ IR(n+m)×(n+m) be a symmetric indefinite, nonsingular preconditioner of the

form

P =




I BT

B 0


 .

Lemma 1 Let P = B†B be an orthogonal projector. Then

P−1H =




(I −B†B)H + B†B 0

(B†)T I


 .

Proof. The proof follows from

P−1 =




I −B†B B†

(B†)T −(BBT)−1


 .

2

The following theorem describes the clustering of eigenvalues due to constraint

preconditioning, and is analogous to [52, Theorem 2.1].

Theorem 2 P−1H has at least 2m eigenvalues equal to 1.

Proof. Lemma 1 implies that the eigenvalues of P−1H are those of (I − P)H + P ,

where P = B†B is an orthogonal projector. P has eigenvalue 1 with multiplicity m

[63, p. 430]. We show that (I − P)H + P also has eigenvalue 1 with multiplicity

greater than or equal to m.

Let (I−P)HPy = 0, and hence (I−P)HPPy = 0. Since rank(P) = m, there are

m linearly independent null vectors Py of (I−P)H. Hence, Py = (I−P)HPy+Py =

47

[(I − P)H + P]Py. That is, there are m linearly independent vectors Py that are

eigenvectors of (I − P)H + P associated with eigenvalue 1. Then (I − P)H + P has

eigenvalue 1 with multiplicity ≥ m. 2

Theorem 3 If P−1H is diagonalizable, then any Krylov space of the linear system

P−1Hx = P−1b has dimension at most n−m + 1.

Proof. If a diagonalizable matrix A had d distinct eigenvalues, then any Krylov

space for Ax = b has dimension ≤ d [49].

Since P−1H is of order n + m with at least 2m eigenvalues equal to 1, it has at

most n −m + 1 distinct eigenvalues. Hence, a Krylov subspace for P−1Hx = P−1b

has dimension at most n−m + 1. 2

While we do not know if the matrices in this research are diagonalizable, when they

are, constraint preconditioned GMRES will converge in at most n−m + 1 iterations.

In Appendix A, we include theorems from [52] for the case where H is not assumed

to be diagonalizable, in which case constraint preconditioned GMRES will converge

in at most n−m + 2 iterations.

Complexity

As problem size grows, the factorization and application of the preconditioner

(3.2) becomes expensive. This was observed experimentally in [69]. Here, we examine

the growth of fill for constraint preconditioners for a matrix from a standard sparse

optimal control problem. The problem brn201 (two-burn orbit transfer) describes

the path of a spacecraft transferring from a low earth orbit to a mission orbit via

two separate propulsion burns. To examine the reduction in sparsity in B and BBT ,

we make the time discretization finer and finer, thereby increasing the size of the

matrix (see Chapter 4). Figure 3.1 illustrates the increase in nonzeros for B and

BBT compared to the dimension of the matrix. The horizontal axis represents the

row-dimension of B (which is nearly square). The vertical axis represents nonzeros.

48

The solid line represents a constant growth in nonzeros for brn201r1. The dotted line

shows the nonzeros for the constraint portion B for each matrix. The dashed line

shows the nonzeros for BBT .

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

10
x 10

5

m = nrows(B)

no
nz

er
os

nz(BBT)

nz(B)

Figure 3.1: Increase for nonzeros for constraint matrix B and BBT for two-burn orbit
transfer problem brn201.

For the 6 matrices, Table 3.1 shows the number of nonzeros for the constraint

matrix B compared to the number of nonzeros in the product BBT . For the smallest

matrix brn201r1, BBT has four times as many nonzeros as B. For the largest matrix,

brn201r6, BBT has almost 40 times as many nonzeros as B.

The increase in nonzeros illustrated by Figure 3.1 and Table 3.1 translates directly

to the Cholesky factors of BBT and motivates our search for an effective incomplete

factorization. In [69], the authors approximate the preconditioner with an incomplete

QR factorization. However, unlike our factorizations, incomplete QR factorizations

may break down [50, Appendix].

49

Table 3.1: Complete LU factorization fill for for two-burn orbit transfer problem
brn201.

matrix n m nz(B) nz(BBT) ratio
brn201r1 278 256 2309 9184 3.98
brn201r2 484 460 4261 33450 7.85
brn201r3 927 898 10208 119500 11.71
brn201r4 1670 1606 20776 458056 22.05
brn201r5 2206 2168 23871 622260 26.07
brn201r6 2482 2434 28321 979576 38.59

3.2.2 Approximation of the Constraint Preconditioner

We approximate (BBT)−1 and BBT by applying incomplete A-conjugation algo-

rithms to BBT , as described below. These factorizations are based on the algorithms

SAINV [7, 4] and RIF [11], which were originally proposed for symmetric positive

definite matrices. Our modifications construct approximations for BBT , but require

matrix-vector products with BT only. If the KKT matrix (3.1) is nonsingular, the

factorizations are guaranteed to exist in exact arithmetic.

We describe a variant of the SAINV algorithm for an efficient breakdown-free

factored approximation of (BBT)−1. A robust factorized approximate inverse for

general symmetric positive definite matrices is described in [4]; see also [54, 7, 9, 53].

SAINV for BBT

The SAINV (Stabilized Approximate Inverse) algorithm [4] is an incomplete A-

conjugation process. When applied to a real matrix BBT , with B ∈ IRm×n,m ≤ n,

and B full rank, the complete A-conjugation algorithm produces a LDLT factorization

of (BBT)−1,

(BBT)−1 = ZD−1ZT ,

where Z unit is upper triangular and D diagonal with positive diagonal elements.

The A-conjugation process is described in Algorithm 3.1 below, with ei denoting the

50

ith unit basis vector.

Algorithm 3.1 Complete A-conjugation applied to BBT

1: zi = ei, i = 1, . . . , m.

2: for i = 1, . . . ,m do

3: for j = i, . . . , m do

4: vj = BT zj

5: pj = vT
i vj

6: end for

7: for j = i + 1, . . . ,m do

8: zj = zj − pj

pi
zi

9: end for

10: Z = [z1, z2, . . . , zm]

11: D = diag(p1, p2, . . . , pm)

12: end for

If H is nonsingular, then B has full rank, BBT is symmetric positive definite, and

pi = zT
i BBT zi > 0 for zi 6= 0. (3.7)

Hence, there is no division by zero in exact arithmetic, and the resulting factorization

is positive definite, provided the zi’s are non-zero. Indeed, element i of zi is always 1:

Proposition 4 Let B ∈ IRm×n,m ≤ n be full rank. Let Z,D be given by Algorithm

3.1. Then Z is unit upper triangular, and D is positive definite.

Proof. The proof is elementary, and proceeds by induction.

Let z
(i)
k denote the vector zk at iteration i. At iteration i, the vectors z

(i)
1 through

z
(i)
i are already determined. The remaining vectors z

(i)
j , j = i + 1, . . .m are given by

z
(i)
j = z

(i−1)
j − pj

pi

z
(i−1)
i . (3.8)

51

We show that the ith element of zi is always 1, and that elements i + 1 through

m of zi are zero.

For i = 1, z
(1)
1 = e1, and z

(i−1)
0 = ej, j = 2, . . . ,m. In the update (3.8), only the

first element of each of the z0
j ’s is modified, and therefore element j of z

(1)
j is equal to

1, and elements j + 1 through m remain untouched and equal to zero.

We assume that the (i−1)th element of z
(i−1)
j is always 1, and that elements j +1

through m elements of z
(i−1)
j are zero.

At iteration i, z
(i)
j , j = i + 1, . . . m are given by (3.8). By assumption, the jth

element of z
(i−1)
j is 1, and elements i+1 through m are zero. Therefore, only elements

1 through i of z
(i−1)
j are modified. Since j > i for all j = i + 1, . . .m, element j of z

(i)
j

is zero, and elements j + 1 through m remain zero.

By induction, for all i = 1, . . . , m, the ith element of zi is always 1, and elements

i+1 through m of zi are zero. By the identity (3.7), p1, . . . , pm are positive. Therefore

Z = [z1, . . . , zm] is unit upper-triangular, and D = diag [p1, . . . , pm] is positive definite.

2

An incomplete A-conjugation process constructs a sparse Z̃ by dropping elements

in Z. In the SAINV algorithm, small off-diagonal elements of zj are dropped after

the update in step 7 of Algorithm 3.1, with no a-priori sparsity pattern determined.

When many entries in L−1 are small, the incomplete Z̃T is a good approximation to

L−1. Neither diagonal elements of Z nor pivots are dropped.

Algorithm 3.1 requires only matrix–vector products with BT ; one need not explic-

itly form BBT . In step 5, for example,

pj = zT
i (BBT)zj

= (BT zi)
T BT zj.

52

RIF for BBT

We obtain an incomplete factorization

L̃D̃L̃T ≈ (BBT)−1

by applying the same incomplete A-conjugation process with only slight modifica-

tions. Incomplete factorizations exist for certain classes of matrices. In [62], an

incomplete Cholesky factorization with arbitrary sparsity pattern was shown to exist

for M -matrices, and in [60] the result was extended to H-matrices. However, for

general symmetric positive definite matrices, general incomplete Cholesky factoriza-

tions can break down by encountering zero or negative pivots [50, Appendix]. Various

breakdown-free incomplete factorizations of symmetric positive definite matrices have

been proposed. For example, to avoid breakdowns, corrections to the diagonal en-

tries of the original matrix can be made to ensure a positive definite factorization.

Alternatively, incomplete orthogonalization can be implemented so as to lessen the

occurrence of breakdown; for example, see [1, 51, 73, 76], or the summary given in

[18]. We modify the RIF (Robust Incomplete Factorization) algorithm first proposed

in [11], which is a process nearly identical to the SAINV algorithm.

The key to the relation between the RIF and SAINV algorithms lies in how the

pivots are calculated, and in the fact that the Z matrices are upper-triangular. Recall

that in the exact A-orthogonalization process (without dropping), the factors Z and

D satisfy

ZD−1ZT = (BBT)−1.

In the factorization LDLT = BBT , we have LT = Z−1. Therefore,

D−1ZT BBT = LT

or

L = BBT ZD−1. (3.9)

53

The matrix D is a diagonal matrix of the pivots pi, i = 1, . . . , m, in (3.7). Let bT
i

denote the ith row of B; then bT
i BT is the ith row of BBT . Because Z is unit upper

triangular and BBT Z is lower triangular we can rewrite the pivots pi = zT
i BBT zi as

pi = bT
i BT zi

where zi denotes the ith column of Z. Likewise, we can write the intermediate pj’s

pj = bT
i BT zj, j ≥ i. (3.10)

Let lij denote entry (i, j) of L. We can equate the (i, j) element of each side in (3.9)

lij = p−1
j pi (3.11)

where i ≥ j. The elements of L are calculated column-wise as the multipliers lji = pj

pi

in step 8 of Algorithm 3.1, at no extra cost.

There are now two choices for maintaining sparsity in the L factors. We can

drop in the Z factors after updating, as before. But we can also implement a post-

filtration strategy, dropping small elements in L after updating the vectors zj in step

8 of Algorithm 3.1. This is post filtration, because once the multipliers that form

the column of L are computed, they are not used again in the process. It has been

observed in practice that an accurate and sparse factorization can be obtained using

only the former dropping tolerance [11, 3]. We found in our experiments that a single

drop tolerance is effective and simpler to manage, and thus we drop only in the z

vectors, with no post-filtration.

3.2.3 Permutation and Diagonal Scaling of the KKT Matrix

The structure of BBT is unaffected by reordering the columns of B: for any

permutation matrix P , BPP T BT = BBT . Also, the number of nonzeros in BBT

is unaffected by reordering the rows of B; however, we can reorder the rows of B

54

to produce a symmetric reordering P T BBT P . While the sparsity of (BBT)−1 is

independent of the ordering of the rows and columns of BBT , the sparsity of L−1 is

highly dependent on the ordering. In practical implementations of SAINV, sparsity

is preserved by combining the dropping of small elements with a sparse reordering

such as multiple minimum degree [58], reverse Cuthill-McKee [28], or generalized

nested dissection [57]. An ordering that limits sparsity in the inverse factors also

limits the loss of information due to dropping in an incomplete conjugation process.

Reorderings reduce construction and storage requirements for SAINV and improve the

effectiveness of the preconditioner [12, 21]; in particular, minimum degree orderings

are effective for SAINV. We apply a reordering P T to the rows of B so that P T BBT P

has minimum degree ordering.

When the (1,1) block H of the KKT matrix is positive definite, then it has only

positive diagonal elements (since eT
i Hei > 0, i = 1, . . . , n) and the identity matrix

in the (1,1) block of the constraint preconditioner (3.2) may be replaced with G =

diag(H). This preconditioner is at least as good as the unscaled version with identity

matrix in the (1,1) block [52]. For matrices H with positive diagonal elements, we

describe an approach in which we diagonally scale H so that the scaled matrix has

a unit diagonal in the (1,1) block. Note that diagonal scaling changes the B blocks

also.

We also scale the (2,1) and (1,2) blocks of the KKT matrix. In [4], diagonal

scaling improves the quality of the SAINV factorization for general symmetric positive

definite matrices. We employ a similar scaling and guard against the impact on

the B matrices of the scaling from the (1,1) block. We scale H so that BBT also

has unit diagonal, accounting for any scaling of the (1,1) block. We conducted our

experiments both with and without this scaling, and found that the scaling produced

preconditioners that converged faster than without the scaling.

55

To describe the scalings in detail, let bi denote the ith row of the matrix B. Then

(BBT)ii = ‖bi‖2
2, i = 1, . . . ,m.

The first block row and column of H are scaled by the n × n diagonal matrix D−1
H ,

where

DH =





√
diag(H) if diag(H) > 0,

I otherwise.

The second block row and column of H are scaled by the m×m diagonal matrix DB.

Let B̄T = DHBT = [b̄1, . . . , b̄m], and define the m×m diagonal matrix DB by

[DB]ii = ‖b̄i‖−1
2 .

The scaling matrix for H is

D =




DH 0

0 DB


 .

The scaling DHD is equivalent to including G = diag(H) in the (1,1) block of (3.2),

and also ensures BBT has a unit diagonal. That is, the scaled matrix H̄ = DHD is



Hs BT
s

Bs 0


 =




DH 0

0 DB







H BT

B 0







DH 0

0 DB


 , (3.12)

where diag(Hs) = I and diag(BsB
T
s) = I.

3.3 Permutations for ILU Preconditioners

In this section, we describe permutations and scalings that maximize the product

of the diagonal entries of a matrix. This technique deviates from the preconditioners

in the previous sections because it ignores the structure of H, and it applies to general

non-symmetric indefinite matrices.

ILU preconditioners can breakdown, unless the matrix in question has special

properties, such as when it is an H-matrix. In particular, ILU preconditioners are

56

guaranteed to exist for diagonally dominant matrices in exact arithmetic. Very small

or zero pivots can lead to instabilities during the construction of ILU precondition-

ers; instabilities associated with ILU preconditioners are described in detail in [22].

Because KKT matrices have a large zero block on the diagonal, such instabilities are

likely to occur when constructing ILU preconditioners for KKT matrices.

Chapter 2 illustrates that, for general nonsymmetric and highly indefinite systems,

nonsymmetric permutations that place large entries on the diagonal of a matrix

• allow breakdown-free construction of standard ILU preconditioners, and

• improve the convergence of preconditioned iterative solvers without significantly

increasing the cost of constructing the preconditioner.

The Maximum Product with Scalings (MPS) permutes and scales the matrix so that

the diagonal contains elements of absolute value one and the off–diagonal elements are

less than one in absolute value. This algorithm is part of the FORTRAN subroutines

MC64 [30, 31] from the Harwell Subroutine Library. The strategy was introduced in

[66] for pivoting in dense Gaussian elimination. Permuting and scaling a matrix with

MPS improves the convergence of ILU preconditioners for almost every matrix exam-

ined in Chapter 2. The other one-sided permutations also improve the convergence

of the iterative solvers, but are not as effective as the MPS permutations. Chapter 2

also demonstrates that the MPS orderings are effective in combination with sparsity-

preserving symmetric reorderings. In this chapter, we apply ILU preconditioners to

KKT systems, where H is permuted and scaled with MPS, and also permuted sym-

metrically to reduce fill. That is, we apply ILU preconditioners to permuted KKT

systems

(P T QD1HD2P)y = P T QD1b, (3.13)

where the original system is Hx = b; P and Q represent symmetric and one-sided

permutation matrices, respectively; D1 and D2 are diagonal scaling matrices; and the

57

solution is given by x = D2Py. The preconditioner is an incomplete LU factorization

of P T QD1HD2P .

3.4 Description of Test Problems

In this section, we describe the matrices used in our numerical experiments. The

matrices listed in Table 3.2 have the KKT structure

H =




H BT

B 0


 .

The matrices come from three sources. The first six matrices are stiffness matrices

and mass matrices from mixed finite element approximations of variational problems

[52]. The next three matrices come from convex quadratic programming problems

from the constrained and unconstrained testing environment (CUTE) test suite [20].

These nine matrices were also examined in [52], and the (1,1) block in these cases is

positive definite.

Our third set of matrices comes from sparse optimal control [13]. The matrices

were produced with SOCS (Sparse Optimal Control Software), commercial software

developed by the Boeing Company. The matrices were generated at iteration 2 of

a sequential quadratic programming method, applied to the nonlinear programming

problem derived from the sparse optimal control problem. For these problems, the

(1,1) block H represents an approximate Hessian of the Lagrangian for a nonlinear

optimization problem and is not guaranteed to be definite; the B blocks correspond

to constraints.

SOCS currently solves the linear systems with a highly–tuned multifrontal method.

Dynamic pivoting improves the stability of the algorithm. For many matrices, the

factors incur large amounts of fill, necessitating the use of secondary storage. This

motivates the inclusion of sparse optimal control problems in this study.

58

Table 3.2: Description of KKT Test Problems

Application Area: Mixed Finite Element
Matrix N m n nz(H) nz(H) nz(B) nz(BBT)
stiff1ns 610 32 578 3168 2316 426 238
stiff2ns 2306 128 2178 13480 9740 1870 1166
stiff3ns 8686 236 8450 47146 39948 3599 1024

mass01ns 610 32 578 3980 3128 426 238
mass02ns 2306 128 2178 17140 13400 1870 1166
mass03ns 8686 236 8450 62646 55448 3599 1024

Application Area: Quadratic Programming
Matrix N m n nz(H) nz(H) nz(B) nz(BBT)

bloweyqp 1504 502 1002 8010 3004 2503 2508
cvxqp1qp 200 100 100 1262 672 295 1328
mosqp2qp 960 30 930 1316 1020 148 144

Application Area: Sparse Optimal Control
Matrix N m n nz(H) nz(H) nz(B) nz(BBT)

brn203r1 514 256 258 6982 2436 2273 9380
brn201r1 534 256 278 7044 2426 2309 9184
brn201r2 944 460 484 12772 4250 4261 33450
brn201r3 1825 898 927 28435 8019 10208 119500
brn201r4 3276 1606 1670 56768 15216 20776 458056
brn201r5 4374 2168 2206 66270 18528 23871 622260
brn201r6 4916 2434 2482 78100 21458 28321 979576
traj01r1 401 185 216 4502 2024 1239 6053
traj03r1 388 185 203 4603 1457 1573 6415
traj05r1 403 185 218 7260 3698 1781 6435

mirv01r1 2397 1151 1246 31520 9826 10847 240469
capt09r1 2063 1019 1044 22942 7064 7939 73907
gsoc01r1 1376 602 774 20144 7016 6564 48912
putt01r1 114 56 58 924 290 317 1552
lwbr01r1 2109 1014 1095 22545 6843 7851 81748

59

3.5 Numerical Experiments

In this section, we compare three preconditioning techniques for KKT systems. All

tests were performed on a Sun Ultra-4 SPARCstation with 2048 MB physical RAM

running Sun OS 5.6. Algorithms were implemented using MATLAB version 5.3. We

measure iteration counts, and we also count additional nonzeros that must be stored

in the incomplete factors. Due to the occasional use of built-in MATLAB commands,

and we do not measure CPU time, as to avoid comparing compiled built-in MATLAB

codes to interpreted MATLAB scripts. Instead, we further measure computational

costs by counting floating point operations using the MATLAB command flops.

Constraint preconditioning (CP) represents our benchmark, where the precondi-

tioner (3.2) is applied via the factorization

P =




I

B I







I 0

0 −BBT







I BT

I


 . (3.14)

The application of (3.14) requires multiplication by two triangular systems, since



I BT

I




−1

=




I −BT

I


 ,

and a solve with BBT . To perform the solve, we compute a Cholesky factor R for

BBT via the built-in MATLAB command R = qr(B’). The rows of B are reordered

so that BBT has MMD ordering.

When H is nonsingular and H is preconditioned by a matrix P of the form (3.2),

GMRES converges (in exact arithmetic) in at most n − m + 2 iterations, where

H ∈ IRn×n and B ∈ IRm×n [52, Theorem 3.5].

CP—SAINV refers to our approximation (3.4) of the exact constraint precon-

ditioner, where we approximate (BBT)−1 by the SAINV factorization, with a drop

tolerance of 0.1. The rows of B are reordered so that BBT has MMD ordering.

CP—RIF refers to our approximation (3.6) of the exact constraint precondi-

tioner, where we approximate BBT by a RIF factorization. We use a drop tolerance

60

of 0.1 for the Z factors and no a posteriori dropping in the L factors. Again, the rows

of B are reordered so that BBT has MMD ordering.

For CP, CP—SAINV, and CP—RIF, we scale the matrix as in (3.12). That is, for

the mixed finite element and quadratic programming matrices, we diagonally scale

the coefficient matrix so that H and BBT have unit diagonal. For the sparse optimal

control problems, H does not necessarily have positive diagonal, and we only scale

BBT to have a unit diagonal.

MC64—ILU (permuting large entries to the diagonal) represents a more general

approach that disregards any structure in the coefficient matrix. We apply the per-

mutations described in Section 3.3 and then construct a standard ILU factorization

with the built-in MATLAB command luinc(). We use a drop tolerance of 10−2, no

diagonal modifications, and no pivoting. To avoid breakdown, we replace zero pivots

(diagonal U entries) by the local drop tolerance. Breakdown occurs in 3 cases, which

we discuss below. Since the reverse Cuthill-McKee (RCM) ordering can increase the

accuracy of ILU preconditioners [8], we use this symmetric ordering after applying

the one-sided permutations and scalings to improve stability.

The iterative method is full GMRES with left preconditioning in order to compare

the preconditioning approaches under a norm-minimizing method. The initial guess

is the zero vector. Right-hand sides are constructed from the solution [1, 2, . . . , N]T ,

where N = n + m represents the dimension of the matrix H. Iterations are termi-

nated when the 2-norm of the relative residual was reduced by at least six orders of

magnitude, or when a maximum of 200 iterations was completed.

Tables 3.3 and 3.4 report our experiments. For each preconditioner, we list

GMRES iteration counts to convergence; “nc” indicates no convergence within 200

iterations. “bd” indicates breakdown in preconditioner construction. We report the

following nonzero ratios:

• For CP, ρ = nnz(R)/nnz(B) from the Cholesky decomposition RRT = BBT .

61

In general, R is much denser than B. ρ1 ≈ 1.0 represents an extremely sparse

factorization.

• For CP—SAINV ρ = nnz(Z̃)/nnz(B) where Z̃D̃Z̃T ≈ (BBT)−1, and Z̃, D̃

are computed with SAINV.

• For CP—RIF ρ = nnz(L̃)/nnz(B) where L̃D̃L̃T ≈ BBT , and L̃, D̃ are com-

puted with RIF.

• For MC64–ILU, ρ = nnz(L̄ + Ū)/nnz(H), where let L̄ and Ū denote the LU

factors for MC64–ILU. That is, ρ is the ratio of the total number of nonzeros

in the incomplete factors of the scaled and permuted matrix P T QD1HD2P to

the number of nonzeros in the original matrix H.

We also report total floating point operations for the preconditioner construction and

GMRES solve phases, as returned by the MATLAB command flops. The MC64

permutations and scalings were calculated via calls to MATLAB Fortran MEX files,

and the routines contain no facility for counting floating point operations. However,

as shown in Chapter 2, the computation of the permutations and scalings are cheap

compared to preconditioner construction and solve costs.

In Table 3.3, we report our experiments with the mixed finite element and quadratic

programming matrices. For each preconditioner, GMRES converges within 200 iter-

ations.

CP has the lowest iteration count among the constraint preconditioners (as ex-

pected); the iteration count also falls within the theoretical prediction of n−m + 2.

The Cholesky factor R for BBT is reasonably sparse for all problems. CP produces

the lowest flop counts for the mass matrices and the matrices bloweyqp and cvxqp1qp.

CP—SAINV produces equal or higher iteration counts, but for four problems

(stiff1ns, stiff3ns, mass03ns, and mosqp2qp), CP—SAINV produces the sparsest fac-

tors while requiring less than 25% additional iterations compared to CP. Flop counts

62

for these matrices are also low.

CP—RIF performes almost as well as CP for most problems, often with sparser

factors. For three problems (stiff1ns, stiff3ns, and mass03ns), CP—RIF produces

sparser factors and requires less than 25% additional iterations compared to CP.

MC64—ILU has the lowest iteration count for seven of the nine problems. How-

ever, except for cvxqp1qp, the factors are more dense. Often, the factors are more

than twice as dense. For the stiffness matrices, the iteration counts are significantly

lower than for the other preconditioners. Likewise, for the stiffness matrices and

mosqp2qp, MC64—ILU is the fastest in terms of floating point operations.

Table 3.3: Comparison of preconditioners for mixed finite element and quadratic
programming problems.

CP CP—SAINV CP—RIF MC64—ILU
matrix its ρ flops its ρ flops its ρ flops its ρ flops
stiff1ns 40 0.39 4.2e+06 47 0.35 5.6e+06 42 0.38 4.6e+06 8 3.35 8.4e+05
stiff2ns 72 0.68 4.5e+07 77 1.29 7.7e+07 73 0.68 4.9e+07 16 4.59 9.3e+06
stiff3ns 184 0.44 9.6e+08 184 0.24 9.7e+08 184 0.33 9.7e+08 24 2.83 3.5e+07

mass01ns 10 0.39 5.6e+05 12 0.65 9.4e+05 11 0.39 7.2e+05 5 2.22 5.7e+05
mass02ns 10 0.68 2.4e+06 16 1.29 1.3e+07 12 0.68 6.1e+06 7 2.56 4.2e+06
mass03ns 8 0.44 6.2e+06 10 0.24 1.8e+07 8 0.33 1.0e+07 4 1.79 6.6e+06
bloweyqp 4 0.80 5.4e+05 6 25.37 3.0e+08 4 0.80 8.4e+07 7 16.25 8.5e+07
cvxqp1qp 2 4.31 8.1e+04 38 5.28 6.0e+06 23 4.32 1.2e+06 3 2.35 8.5e+04
mosqp2qp 6 0.59 3.1e+05 6 0.40 3.0e+05 6 0.59 3.2e+05 3 1.82 1.6e+05

In Table 3.4, we report our experiments preconditioning sparse optimal control

problems. Exact constraint preconditioning CP solves every problem. However,

the factors are often quite dense; for four matrices (mirv01r1, brn201r4, brn201r5,

brn201r6), the R factor for BBT is over ten times as dense as B. This is due to

dense blocks in BBT , caused by coupling between phases and dense columns in B.

See Subsection 3.5.1 and Chapter 4, where we examine these matrices further.

CP-SAINV fails to converge for most matrices, and when convergence occurs,

the iteration count is high. CP-RIF fares somewhat better, in that more problems

are solved; however, the incomplete L factor for BBT is very dense, as the large ratio’s

63

ρ show. The factors are as dense as those in CP. However, the high iteration counts

indicate that the loss of information due to the dropping in the Z factor is severe.

MC64-ILU converges for most matrices. For five matrices, (brn201r4, traj03r1,

traj05r1, mirv01r1, and gsoc01r1), MC64-ILU produces the lowest iteration counts.

For ten of the 15 problems, flop counts are lowest. In contrast to the problems in

Table 3.3, for every problem that MC64-ILU solves, the LU factors are very sparse,

usually only slightly more dense than the original matrix H. The factorization breaks

down for capt09r1. Without the use of zero replacement in the factorization, the

factorization also breaks down for the trajectory matrices.

Table 3.4: Comparison of preconditioners for sparse optimal control problems.

CP CP—SAINV CP—RIF MC64—ILU
matrix its ρ flops its ρ flops its ρ flops its ρ flops

brn201r1 10 2.17 1.2e+06 74 3.62 1.8e+08 44 2.17 1.3e+07 16 0.98 1.5e+06
brn201r2 7 4.14 2.4e+06 181 3.11 1.0e+09 66 4.13 4.4e+07 13 1.00 2.1e+06
brn201r3 9 6.47 1.1e+07 152 2.90 1.8e+09 82 6.29 1.8e+08 20 1.88 1.2e+07
brn201r4 62 13.55 1.5e+08 nc — — nc — — 24 1.23 2.7e+07
brn201r5 10 13.84 5.3e+07 nc — — nc — — 21 1.42 2.8e+07
brn201r6 11 17.99 7.2e+07 nc — — nc — — 24 1.67 4.8e+07
brn203r1 4 2.25 5.9e+05 75 1.05 3.8e+07 43 2.24 9.1e+06 6 0.79 5.1e+05
traj01r1 10 2.62 7.5e+05 84 4.26 1.0e+08 30 2.63 6.1e+06 13 1.26 8.5e+05
traj03r1 15 2.19 1.1e+06 75 2.92 7.7e+07 34 2.19 7.2e+06 9 1.25 5.8e+05
traj05r1 11 1.94 1.0e+06 70 2.60 7.5e+07 29 1.94 7.2e+06 10 0.84 8.2e+05

mirv01r1 24 11.16 3.5e+07 nc — — nc — — 17 1.94 1.0e+07
capt09r1 4 4.77 3.1e+06 nc — — 151 4.76 3.4e+08 bd — —
gsoc01r1 21 3.83 8.5e+06 37 2.97 3.3e+08 28 3.83 5.9e+07 12 3.01 8.5e+06
putt01r1 4 3.53 8.7e+04 86 2.02 7.2e+06 26 2.84 6.8e+05 5 1.41 7.9e+04
lwbr01r1 9 6.58 9.5e+06 nc — — 108 6.54 3.5e+08 22 3.95 1.8e+07

3.5.1 Further Analysis of Results

In this subsection, we examine two matrices to understand the differences in per-

formance. The approximate constraint preconditioners work well for the mixed finite

element and quadratic programming matrices, but fail or work poorly for the sparse

64

optimal control problems.

When many of the entries of an inverse are small in absolute value, such as when

the magnitude of the entries decays away from the diagonal, a sparse approximate

inverse can be accurate. However, if there is little decay, and large entries are scattered

throughout the inverse, then sparse approximate inverses are not as accurate [10].

We explicitly formed BBT and (BBT)−1 for two matrices in our test set. The

nonzeros of the matrices are shown in Figures 3.2 and 3.3; zero entries are white.

Viewed in color, the magnitude of the entries is represented over a spectrum, with

red denoting entries large in absolute value, and blue denoting entries near zero. In

a greyscale, lighter shades represent large magnitudes, while darker shades represent

entries near zero; white again represents exact zeros.

Figure 3.2, shows the mixed finite element matrix stiff3ns, for which the approximate-

inverse based algorithms converge fast. The left portion of the figure is BBT , where

the rows of the constraint matrix B are ordered so that BBT has minimum degree

ordering. The right portion is the inverse (BBT)−1, with large entries on or clustered

near the diagonal. Most of the remaining entries in the matrix are small, and hence

the SAINV and RIF factorizations perform well.

Figure 3.3 shows the sparse optimal control matrix traj01r1, for which the

approximate-inverse based algorithms did not performed well. Again, the left portion

of the figure is BBT , where the rows of the constraint matrix B are ordered so that

BBT has minimum degree ordering. The inverse (BBT)−1 displayed on the right has

an even distribution of relatively large values. The inverse exhibits no decay, and as

expected, the approximate inverse-based techniques perform poorly.

The large dense blocks of BBT in Figure 3.3 occur frequently in sparse optimal

control problems, and arise from dense columns in B and coupling between phases

(see Chapter 4). A complete factorization produces a lot of fill, since the portions

of the factors corresponding to these blocks are dense. We discuss this further in

Chapter 4.

65

BBT (BBT)−1

Figure 3.2: Decay away from the diagonal for mixed finite element matrix stiff3ns.

3.6 Conclusions

We compare three approaches for preconditioning KKT systems Hx = b to exact

constraint preconditioning. Two approximate constraint preconditioners in factored

form approximate the products (BBT)−1 and BBT , and scale the matrices so that

BBT has unit diagonal. A third approach applies nonsymmetric permutations and

scalings to place large entries on the diagonal of the matrix, and constructs standard

ILU preconditioners.

Constraint preconditioners are effective for KKT systems. Our experiments show

that approximate constraint preconditioners with factorized approximate inverses or

incomplete factorizations, can outperform exact constraint preconditioning, because

they reduce the number of nonzeros in the preconditioner factors, without significantly

increasing iteration counts. However, the preconditioning often fails for sparse optimal

control problems.

We also experiment with permutations and scalings that maximize the product

of the entries along the diagonal of the matrix, in combination with a standard ILU

66

BBT (BBT)−1

Figure 3.3: Lack of decay for sparse optimal control matrix traj01r1.

preconditioner. While this approach ignores the structure of the original system, it

results in fast convergence. For most matrices, we are able to construct an incomplete

LU factorization and solve the systems with very sparse factors. However, sometimes

the factorizations break down, despite the permutations and scalings.

For the sparse optimal control problems, approximate constraint preconditioning

converges slowly, and the preconditioner factors for the exact constraint precondi-

tioner are very dense. In Chapter 4, we examine these problems more closely and

construct approximate constraint preconditioners using knowledge of problem depen-

dencies and discretization strategies.

67

Chapter 4

Preconditioning Linear Systems

from Sparse Optimal Control

4.1 Introduction

Constrained optimal control problems involve the minimization of an objective

function related to a dynamical system, subject to constraints on the variables. The

dynamical system is described by a system of ordinary differential equations (ODE’s).

The solution may be additionally constrained by simple bounds on variables and path

constraints. Sparse optimal control problems represent an extension of nonlinear

programming (NLP) problems to an infinite number of variables. In order to solve

optimal control problems numerically, the ODE’s are discretized, resulting in a finite

dimensional problem.

The finite–dimensional optimization problem can be solved by nonlinear program-

ming methods. The Boeing Company has developed SOCS (Sparse Optimal Control

Software), a collection of software tools that solve optimal control problems in this

manner. SOCS transforms the optimal control problem to a large, sparse nonlinear

program, which is solved via a sequential quadratic programming method or an in-

68

terior point (barrier) method. The solution of the nonlinear program requires the

solution of a KKT linear system




H BT

B 0






−p

λ̄


 =




g

c


 . (4.1)

SOCS currently solves these systems with a direct multifrontal solver. However,

when the matrices are large, a large amount of fill is created in the factorization of

the coefficient matrix, requiring secondary storage. In order to solve linear systems

with million of unknowns, Boeing would like to use iterative methods, which can

require less storage. For large problems, iterative methods can be faster than direct

methods, provided effective preconditioners are available.

At this point, few preconditioners for sparse optimal control problems have been

developed. This chapter contributes two new preconditioners for the linear systems

(4.1) solved in SOCS. The preconditioner uses knowledge of the underlying problem

and the numerical formulation. We discuss solution of the linear systems when the

nonlinear program is solved with sequential quadratic programming. However, the

linear systems solved when the barrier method is used have similar structure, and the

fundamental ideas of our preconditioners can be applied to those problems.

This chapter is organized as follows. Section 4.2 introduces the sparse optimal

control problem. We describe our preconditioner for sparse optimal control problems

in Section 4.3. We give general descriptions of the optimal control problems used

in our experiments in Section 4.4. In Section 4.5, we present numerical experiments

with several sparse optimal control problems.

4.2 The Sparse Optimal Control Problem

In this section, we describe the optimal control problem. For a detailed descrip-

tion, see [13]. The problem is formulated as a collection of phases, where within each

69

phase, the dynamics of a system are described by the dynamic state variables y(t)

and dynamic control variables u(t). tI ≤ t ≤ tF is an independent variable, which we

assume represents time, and we assume that the phases are sequential. tI and tF are

initial and final times, respectively, which may themselves be allowed to vary. The

phases are linked by boundary conditions ψ that relate the values of the dynamic

variables at the beginning and end of each phase.

The dynamics are explicitly defined by a set of ordinary differential equations

(ODE’s), the state equations

ẏ = f(y(t), u(t), p, t), (4.2)

which depend on the state and control variables, t, and time-independent parameters

p. A solution is required to satisfy path constraints and simple bounds on state and

control variables.

A simple optimal control problem can be stated as follows: find the control vec-

tors u and parameters p that minimize an objective function φ subject to the state

equations, path constraints, and simple bounds. The objective function φ depends

on the values computed at each phase.

4.2.1 Transcription

The infinite-dimensional problem can be converted to a finite-dimensional problem

by a process called transcription, which divides each phase into intervals

tI = t1 < t2 < . . . < tM = tF

The M ti’s are referred to as grid or mesh points within a particular phase.

To treat the values of the state and control variables as a set of NLP variables, we

replace the differential state equations by a set of defect constraints, by discretizing the

state equations. Further constraints are imposed by enforcing boundary conditions

70

directly at the grid points. A finite difference scheme or some other method can then

be used to approximate the Jacobian and Hessian.

Solving the sparse optimal control problem thus involves transcribing the continu-

ous optimal control problem into a finite–dimensional optimization problem, and solv-

ing the optimization problem. SOCS estimates the accuracy of the finite-dimensional

solution with respect to the continuous problem. If the error for the discrete method

is too large relative to the order of the discretization scheme, then SOCS constructs

a new refined mesh. The process for computing the error and refining the mesh is

very involved; for a details, see [17, 15, 13]. When the mesh is refined, the number of

variables grows and the matrices become larger.

struct(B) =




××× ××××××××××




Figure 4.1: Typical Jacobian structure for a single phase.

Figure 4.1 shows a typical structure for the Jacobian of the constraint matrix

71

for the KKT system that must be solved, and the structure is common to most of

the KKT systems from optimal control. The problem that generated this example

involved a variable final time, resulting in the dense first column. In general, when

initial or final times are allowed to vary, or when time-independent parameters are

present, all variables and constraints in the problem will depend on these time and

parameter variables. However, the remaining columns in the Jacobian each have

only a few nonzeros in consecutive rows. Because the Hessian is approximated by a

finite difference scheme, it will also have a similar structure. We describe in Section

4.3 how we take advantage of the structure present in the Hessian and Jacobian in

constructing sparse accurate preconditioners.

In general, the structure of the Hessian is determined by dependencies among and

between differential variables on algebraic variables, and the structure of the Jacobian

is governed by the dependence of “differential” and “algebraic” constraints (that is,

the constraint equations derived from differential and algebraic variables) on variables

at other grid points.

With few exceptions, nearly all the variables and equations within a phase are

“locally dependent,” that is, they depend only on variables at nearby grid points.

The sparsity of the resulting matrix reflects this with a banded structure. For the

constraint portion of the matrix, this is most often exhibited as block bi-diagonal,

since most discretization schemes produce constraints that, at node k, depend only

on information at node k and k + 1. Furthermore, because the phases are sequen-

tial, linkage boundary conditions depend principally on final time variables from the

previous phase and initial time variables in the current phase.

As noted above, the exception to this local dependence is on the time independent

parameters and free initial or free final times. Each row of the matrix represents

an equation or variable at a time grid point, but since the parameters are time-

independent, each variable and equation must account for every parameter. Likewise,

when the initial or final times are allowed to be free, every mesh point then becomes

72

dependent upon the free time variables, and dense columns and rows result. We refer

to time independent parameters and free initial and final times as global variables.

When there are no global variables, we say the matrix is locally dependent.

We are ultimately interested in how these dependencies affect the nonzero struc-

ture of the resulting KKT matrix. Figure 4.2 presents a detailed sparsity pattern

for the Jacobian from a problem constructing an optimal trajectory for an aircraft.

The problem is broken into five phases. The dense columns at the beginning of each

nz = 1239

 phase 5 phase 4 phase 3 phase 2 phase 1

 global time variable and/or
 parameter dependence

 phase linkage conditions

Figure 4.2: Constraint matrix detailing local and global dependence.

phase show the global dependence on time variables and parameters; at the end of

each phase, phase linkage conditions couple consecutive phases. We discuss in the

73

next section how to handle these dense columns and phase couplings.

4.3 A Preconditioner for Sparse Optimal Control

In this section, we describe two preconditioners for KKT matrices

H =




H BT

B 0


 ,

where H ∈ IRn×n, B ∈ IRm×n,m ≤ n.

The motivation for our preconditioners is the exact constraint preconditioner de-

scribed in Chapter 3,

P =




I BT

B 0


 , (4.3)

which is applied via the factorization




I BT

B 0


 =




I

B I







I 0

0 −BBT







I BT

I


 . (4.4)

As noted in Chapter 3, the principal cost in applying (4.3) is the solve with BBT .

Consider the typical B block shown in Figure 4.1 for single-phase sparse optimal

control problems. A close examination of the structure reveals that BBT is dense.

For the m× n constraint matrix B = [Bij], the (i, j) element of BBT is given by

[
BBT

]
ij

=
n∑

k=1

BikBkj

= Bi1B1j +
n∑

k=2

BikBkj.

The first column of B is dense, and hence without cancellation all elements in BBT

will be nonzero. For a multiphase problem, the matrix contains dense blocks along

the diagonal. The sparsity of BBT is independent of the ordering of the rows or

columns of B.

74

As described in the previous section, the presence of global variables, that is

independent variables upon which every equation and variable in a phase depend,

result in dense columns. For example, if a phase is modeled with a free final time and

s independent parameters, the corresponding blocks of the Hessian and Jacobian will

have s + 1 dense columns.

4.3.1 Locally Dependent Preconditioners

Our preconditioners

• remove global dependencies from the KKT matrix, and

• reorder the equations in the Jacobian portion of the matrix so that local depen-

dence is preserved.

Our first preconditioner is

P1 =




I B̃T

B̃ 0


 , (4.5)

where B̃ ≈ B preserves sparsity in the factorization focusing in particular on B̃B̃T .

We will refer to the preconditioner (4.5) as a Local Constraint Preconditioner (Local–

CP).

To see how we construct B̃, consider the example presented in Figure 4.2. Denote

the Jacobian matrix as B. The left half of Figure 4.3, shows the sparsity structure of

BBT . The right half shows the sparsity structure of R from a Cholesky factorization

RRT = BBT . The dense columns of B result in dense diagonal blocks in BBT

for each phase. As the figure illustrates, the Cholesky factors are at least as dense.

The experiments on sparse optimal control problems in Chapter 3 illustrate this

phenomenon. The density of the factorized constraint preconditioner results in high

computational costs, both in the construction and application of the factorization

75

nz = 6053 nz = 4071

Figure 4.3: Large dense diagonal blocks in a typical multiphase sparse optimal control
problem.

(4.4). We emphasize that the density of BBT (and hence of its Cholesky factors) is

independent of the ordering of the rows and columns of B.

We first remove this global dependence by replacing the dense rows and columns

corresponding to time variables and parameters with appropriate multiples of unit

vectors. To explain this, we return to the example Jacobian B shown in Figure 4.1.

We replace the first column of B by [B1,1, 0, . . . , 0], and denote the new matrix B̃.

The structure of the resulting B̃B̃T is shown in Figure 4.4. In the multiphase case,

and in cases when the matrix has more multiple dense columns, we replace the dense

columns in a similar manner. This can be thought of as a dropping strategy, in

which we discard fill from off-diagonal entries for the global variables. That is, we

compute an approximation R̃ to the exact Cholesky factor R for BBT . Entries of R

attributable to global variables (included the off-diagonal global entries themselves)

are dropped.

Applying this dropping strategy to the Jacobian B from Figure 4.2 gives the

resulting sparsity pattern of B̃B̃T and its Cholesky factor R̃ shown in Figure 4.5.

76

struct(B̃B̃T) =




×××




.

Figure 4.4: Structure of B̃B̃T , where B̃ approximates the Jacobian B

The large dense diagonal blocks are no longer present.

The linkage boundary conditions appear at the end of each phase but depend on

data from the end of the previous phase and information at the beginning of the current

phase. We reorder the constraint equations so that the linkage conditions appear

at the beginning of the phase. This ordering leads to much more sparse Cholesky

factors and an efficient factorization, since little fill occurs outside the blocks along

the diagonal. as illustrated in Figure 4.6.

Of course, by removing the global dependence, we lose considerable information.

Because the global dependence within phases is also present in the Hessian portion

of the KKT matrix, we construct a second preconditioner which includes Hessian

information but applies an analogous dropping strategy.

77

nz = 2355 nz = 2403

Figure 4.5: Locally dependent approximate Jacobian matrix and Cholesky factor.

The second preconditioner is

P2 =




H̃ B̃T

B̃ 0


 , (4.6)

where B̃ is defined as before, and H̃ ≈ H.

The preconditioner (4.6) is applied via the factorization



H̃ B̃T

B̃ 0


 =




H̃

B̃ −S







I H̃−1B̃T

I


 , (4.7)

where S is the Schur complement

S = B̃H̃−1B̃T . (4.8)

We refer to the preconditioner (4.6) as a Local Schur Complement Preconditioner

(Local-SC).

Figure 4.7 shows the Hessian for the problem in Figures 4.2—4.6. The left half of

Figure 4.7 shows the sparsity of the Hessian H from the original KKT matrix; the

right portion shows the factor L from an LU factorization of H.

78

nz = 2355
0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

nz = 1541

Figure 4.6: Reordered locally dependent approximate Jacobian matrix and Cholesky
factor.

Figure 4.8 shows H̃, the approximate Hessian with global dependencies removed,

and the corresponding L̃ factor, where fill from the global variables is dropped.

Removing the global dependence for each phase dramatically improves the sparsity of

the Hessian and provides a sparse factorization. Our experiments below demonstrate

that this is an effective preconditioner.

4.4 Description of Test Problems

In this section, we describe in more detail the sparse optimal control problems for

the matrices used in the numerical experiments. Most of the problems are industry

problems and not only of academic interest. The are part of a Boeing test suite

of challenging optimal control problems. Many of the problems are described in

[13]; others are described in [16]. Some problems are not formally documented, and

our description comes from [14]. The matrices used in this chapter were also used

in Chapter 3; for information on dimension and nonzeros, see Table 3.2. All the

79

nz = 2024 nz = 3991

Figure 4.7: Original Hessian matrix and corresponding L factor.

matrices come from multi-phase problems. The last digit of the matrix name refers

to the ODE mesh (time discretization) at which the matrices were generated.

4.4.1 Two-Burn Orbit Transfer

The matrices brn203r1 and brn201r1—brn201r6 are from a two-burn orbit

transfer problem [13, page 152]. In this problem, a first propulsion “burn” moves

a vehicle from an initial orbit to a transfer orbit. After coasting for an unspecified

time, a second burn places the vehicle in a geosynchronous orbit. The problem is to

construct the optimal steering during the thrusts such that fuel usage is minimized.

There are four phases: two coast arcs, and two burn arcs. The location, duration,

and steering of the burns must be chosen to maximize the weight in the final orbit,

thereby minimizing the fuel used. Initial and final times for all intermediate phases

are free, as are the final time for the initial phase and initial time for the final phase.

The matrices traj01r1,traj03r1, and traj05r1 also are based on maximizing the

final weight of a two-burn orbit transfer problem. In this case, there are five phases.

80

nz = 1502 nz = 957

Figure 4.8: Locally dependent approximate Hessian matrix and corresponding L̃
factor.

The problems are described in detail in [16].

4.4.2 Other Optimal Control Problems

The problem mirv01r1 is based on a maneuverable independent reentry vehicle

trajectory, which models the trajectory of a ballistic missile from launch point to

target. The objective is to maximize a deviation from a direct trajectory in order to

avoid anti-missile defenses. The trajectory is broken into five phases.

The problem capt09r1 determines the fuel-minimizing trajectory of a commer-

cial airliner. The trajectory is broken down into fifteen phases describing the var-

ious stages of climbing, cruising, and descending at different altitudes and speeds.

Global parameters include initial and final times for each phase and mission final

time. Phases are linked by boundary conditions specifying altitude, velocity, state

continuity, etc. The problem is described in detail in [16].

The matrix gsoc01r1 comes from an eight-phase problem based on a high-performance

81

aircraft mission of an aircraft flying among various waypoints, where at some inter-

mediate point, the aircraft must launch a glide weapon.

The matrix putt01r1 is from a golf-putter problem, based on the trajectory a

golf ball follows on a putting green; see [13, pages 72–75]. The problem is divided

into two phases, representing the path of the ball on the green, and then once it falls

into the hole.

The problem lwbr01r1 is based on a kinetic model of a chemical reactor system,

described in [55]. The problem is formulated as an optimal control problem with stiff

DAE’s, three phases, inequality path constraints, equality and inequality boundary

conditions, and a variable terminal time.

4.5 Numerical Experiments

In this section, we present experiments with the preconditioners described in Sec-

tion 4.3, applied to sparse optimal control problems. All tests were performed on a

Sun Ultra-4 SPARCstation with 2048 MB physical RAM running Sun OS 5.6. Al-

gorithms were implemented using MATLAB version 5.3. As in Chapter 3, we count

GMRES iterations, fill for the preconditioners, and floating point operations. We do

not measure CPU time, since our implementations of the algorithms rely on both

built-in MATLAB functions and our own MATLAB scripts.

For every problem, the coefficient matrices are of the form

H =




H BT

B 0


 ,

where B ∈ IRm×n,m ≤ n has full rank. The matrices were generated in SOCS at

iteration 2 of a sequential quadratic programming method associated with a sparse

optimal control problem.

The iterative method is full GMRES with left preconditioning. The initial guess

is the zero vector. Right-hand sides are constructed with the solution [1, 2, . . . , N]T ,

82

where N = n + m represents the dimension of the coefficient matrix H. In all cases,

iterations were terminated when the 2-norm of the relative residual was reduced by at

least six orders of magnitude, or when a maximum of 200 iterations was completed.

We compare three different preconditioners to exact constraint preconditioning

CP, described in Chapter 3.

Local–CP reorders the phase linkage constraints to the beginning of each phase

and approximates the constraint preconditioner with dropping in the Jacobian B.

Local–SC discards fill in both the Hessian H and Jacobian B. For both precondi-

tioners, the dropping strategy is as described in 4.3.

We also include results with the MC64–ILU approach described in Chapter 2,

in which scalings and permutations are applied to the KKT matrix, to improve the

stability and accuracy of ILU factorizations. The experiments in Chapter 3 showed

MC64–ILU preconditioning applied to optimal control matrices is effective provided

a preconditioner can be constructed. However, the preconditioner breaks down in

construction for one matrix.

Table 4.1 contains the data from our experiments. Each row of the table represents

one problem. The first column contains the matrix name. Subsequent columns con-

tain iteration counts and sparsity information for each preconditioner. CP is exact

constraint preconditioning; Local–CP is the local constraint preconditioner (4.5);

and Local–SC is the local Schur Complement preconditioner (4.6).

We include sparsity information for each preconditioner, compared to the original

KKT matrix. We report the following nonzero ratios:

• For CP, ρ = nnz(R)/nnz(B) from the Cholesky decomposition RRT = BBT .

We compute R using the built-in MATLAB qr() command. In general, R is

much denser than B. ρ1 ≈ 1.0 represents an extremely sparse factorization.

• For Local-CP ρ = nnz(R̃)/nnz(B) from the Cholesky decomposition R̃R̃T =

B̃B̃T . Again we compute R̃ using the built-in MATLAB qr() command.

83

• For Local–SC, ρ = nnz(L̃+ Ũ)/nnz(H), where L̃, Ũ represent the factors from

(4.7) and H denotes the original KKT matrix. For a general LU factorization

of K, ρ is much larger than 1; ρ ≤ 2 represents a very sparse factorization.

• For MC64–ILU, ρ = nnz(L̄ + Ū)/nnz(H), where let L̄ and Ū denote the LU

factors for MC64–ILU.

Table 4.1: Comparison of preconditioners for sparse optimal control problems.

CP Local—CP Local—SC MC64—ILU
matrix its ρ flops its ρ flops its ρ flops its ρ flops

brn201r1 10 2.17 1.2+e06 18 0.95 1.7+e06 9 1.55 1.3+e06 16 0.98 1.5+e06
brn201r2 7 4.14 2.4+e06 16 0.98 2.6+e06 9 1.55 2.3+e06 13 1.00 2.1+e06
brn201r3 9 6.47 1.1+e07 26 1.55 1.1+e08 30 2.02 3.1+e08 20 1.88 1.2+e07
brn201r4 62 13.55 1.5+e08 134 1.47 4.2+e08 12 1.95 5.6+e08 24 1.23 2.7+e07
brn201r5 10 13.84 5.3+e07 30 1.72 6.5+e08 30 2.05 7.3+e08 21 1.42 2.8+e07
brn201r6 11 17.99 7.2+e07 29 1.65 7.4+e08 46 2.03 8.2+e08 24 1.67 4.8+e07
brn203r1 4 2.25 5.9+e05 17 0.97 1.5+e06 14 1.44 1.8+e06 6 0.79 5.1+e05
traj01r1 10 2.62 7.5+e05 19 1.24 1.3+e06 11 2.51 1.7+e06 13 1.26 8.5+e05
traj03r1 15 2.19 1.1+e06 24 1.16 1.8+e06 11 1.76 9.8+e05 9 1.25 5.8+e05
traj05r1 11 1.94 1.0+e06 20 1.04 1.7+e06 11 2.96 3.5+e06 10 0.84 8.2+e05

mirv01r1 24 11.16 3.5+e07 31 1.04 1.6+e07 9 1.65 6.0+e06 17 1.94 1.0+e07
capt09r1 4 4.77 3.1+e06 34 1.06 1.5+e07 29 1.52 1.4+e07 bd — —
gsoc01r1 21 3.83 8.5+e06 33 1.18 1.2+e07 17 1.56 6.4+e06 12 3.01 8.5+e06
putt01r1 4 3.53 8.7+e04 8 1.23 1.1+e05 5 1.66 9.3+e04 5 1.41 7.9+e04
lwbr01r1 9 6.58 9.5+e06 20 1.92 9.7+e06 8 2.42 5.7+e06 22 3.95 1.8+e07

As noted in the previous chapter, the sparsity of the exact constraint precondi-

tioner (CP) suffers from the dense blocks caused by the global variables. For four

problems (brn201r4, brn201r5,brn201r6, and mirv01r1), the number of nonzeros in

the Cholesky factor of BBT is an order of magnitude larger than the number of

nonzeros in B. However, iteration counts are consistently low, except for the matrix

brn201r4, which also caused problems for Local–CP. Thus, while CP converges ac-

cording to the theoretical predictions of Chapter 3, the storage requirements for the

preconditioner are high.

Local–CP is the sparsest preconditioner, with density in the Cholesky factor for

84

B̃B̃T close to that of the original Jacobian B. Iteration counts are higher in general

than for exact constraint preconditioning (as expected, since Local–CP approximates

CP). However, iteration counts are generally low, especially for the larger problems.

The preconditioner is very sparse. While considerable information may be discarded

in constructing the preconditioner, experiments suggest little information is lost, and

the extremely sparse preconditioner is effective. The high flop counts are attributable

to the increased iteration counts.

The experiments in Table 4.1 suggest that the inclusion of the incomplete Hessian

in the preconditioner Local–SC provides a good balance between sparsity and fast

convergence. For every problem, the preconditioner is roughly one or two times as

sparse as the original matrix. For six of the 15 problems, the iteration counts are

also the lowest among the preconditioners tested. In all cases, iteration counts are

low. The worst cases for the Local–SC preconditioner are brn201r5 and brn201r6,

for which GMRES required 30 and 46 iterations, respectively, to converge. In fact,

Local–SC is worse than Local–CP for these two matrices. However, in general,

Local–SC is the most effective preconditioner in terms of sparsity and convergence

rate.

The application of Local–SC is more expensive than Local–CP. In particular,

the explicit formulation and solve with the Schur complement factor (4.8) can be

expensive. However, for the matrices considered here, H̃ is nearly block-tridiagonal,

and B̃ is tightly banded, so the Schur complement is nearly block-tridiagonal. For

most problems, including the Hessian information is worth in increased flop counts.

4.6 Conclusion

In this chapter, we have narrowed our focus from developing preconditioners for

general KKT systems to constructing preconditioners for special KKT systems. We

develop two preconditioners for matrices arising in sparse optimal control problems,

85

when the transcribed problem is solved with sequential quadratic programming. Our

preconditioners use information about the problem and the numerical formulation in

order to construct sparse approximations of the original KKT matrix.

The first preconditioner Local–CP is based on exact constraint preconditioning

described in Chapter 3. The variables are reordered, and we apply a dropping strategy

to the Jacobian portion of the KKT matrix, which eliminates dense blocks in the

factorization of the preconditioner. Experiments demonstrate that the preconditioner

is extremely sparse. Local–CP preconditioned GMRES requires more iterations than

with exact constraint preconditioning, but iteration counts are still low.

The second preconditioner applies the same dropping strategy to the Hessian

portion of the KKT matrix, in addition to the reordering and dropping applied to

the Jacobian. The application uses a factorization of an explicit Schur complement,

which increases the cost of the preconditioner. However, the preconditioner is very

sparse, and the preconditioned iteration converges fast, outperforming exact con-

straint preconditioning for most of our problems. For many matrices, including the

approximation to the Hessian block is worth the added cost.

The problems we experiment on are industrial problems generated with Boeing’s

sparse optimal control software SOCS. The linear systems that arise are currently

solved with an efficient direct method, but the high amounts of fill in the direct

factorizations motivate this investigation into finding effective preconditioners for

iterative methods. As shown by our experiments, iterative methods are a realistic

option when combined with preconditioners such as those presented in this research.

86

Chapter 5

Conclusion

This dissertation presents several new preconditioners for linear systems. First,

we present an innovative approach to preconditioning general nonsingular matrices,

for which no structure is assumed. The approach involves nonsymmetric permuta-

tions and scalings which place large entries on the diagonal. We choose matrices for

which iterative methods have so far been unsuccessful, due to failures in constructing

preconditioners. Experiments show that preprocessing the matrices with these per-

mutations and scalings allows stable construction of preconditioners. In particular,

permutations and scalings which maximize the product of the entries of the diagonal,

combined with fill-reducing symmetric reorderings, result in reliable preconditioners

based on drop tolerances (like ILUT and AINV).

We also present two new preconditioners for KKT systems. The preconditioners

exploit the KKT the structure of the coefficient matrix and approximate exact con-

straint preconditioners by applying A-conjugate algorithms based on AINV and RIF

to the constraint portion of the KKT matrix. Experiments show that the approximate

constraint preconditioners are much sparser than the exact constraint preconditioner,

and for many problems are just as effective as the exact constraint preconditioner

in reducing GMRES iterations. However, for sparse optimal control problems, the

87

approximate constraint preconditioners are ineffective. We also apply the maximum-

diagonal permutations and scalings to the KKT matrices, and use a standard ILU

preconditioner. The ILU preconditioner constructed from the scaled and permuted

matrix is sparse and effective, but construction breaks down for several matrices. We

apply no fine-tuning for the ILU preconditioner; with some adjustments, an effective

preconditioner could likely be constructed.

Finally, we describe preconditioners for sparse optimal control problems; the pre-

conditioners above are less effective for these matrices, and in fact few effective precon-

ditioners exist for sparse optimal control problems. The matrices in our experiments

are generated by a sequential quadratic programming method applied to the tran-

scribed optimal control problem, and our preconditioners used information about the

problem formulation and discretization. This information is used to control sparsity

via reorderings and dropping in two new approximate constraint preconditioners. One

preconditioner applies the dropping strategy and a reordering only to the constraint

portion of the KKT matrix, resulting in an extremely sparse preconditioner. GM-

RES iteration counts are low for this preconditioner. The second preconditioner for

optimal control problems includes the Hessian information, using the same reorder-

ings and dropping for the constraints, and also applies the dropping strategy to the

Hessian block of the KKT matrix. This preconditioner is most effective for the sparse

optimal control problems, offering a good balance between GMRES iteration counts

and sparsity.

88

Bibliography

[1] M. A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradient

algorithm. Internat. J. Numer. Methods Engrg., 20(5):949–966, 1984.

[2] S. T. Barnard, L. M. Bernardo, and S. H. D. An mpi implementation of the

spai preconditioner on the t3e. Int. J. High. Perf. Comput. Applic., 13:107–123,

1999.

[3] M. Benzi. personal communication, January 2002.

[4] M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse precondition-

ing for the conjugate gradient method. SIAM J. Sci. Comput., 22(4):1318–1332

(electronic), 2000.

[5] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and

nonsymmetric matrices. Technical Report LA-UR-99-4857, Los Alamos National

Laboratory, Los Alamos, New Mexico, August 1999.

[6] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and

nonsymmetric matrices. SIAM J. Sci. Comput., 22(4):1333–1353 (electronic),

2000.

[7] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse precondi-

tioner for the conjugate gradient method. SIAM J. Sci. Comput., 17(5):1135–

1149, 1996.

89

[8] M. Benzi, D. B. Szyld, and A. van Duin. Orderings for incomplete factorization

preconditioning of nonsymmetric problems. SIAM J. Sci. Comput., 20(5):1652–

1670 (electronic), 1999.

[9] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for non-

symmetric linear systems. SIAM J. Sci. Comput., 19(3):968–994 (electronic),

1998.

[10] M. Benzi and M. Tůma. A comparative study of sparse approximate inverse

preconditioners. Appl. Numer. Math., 30(2-3):305–340, 1999. Iterative methods

and preconditioners (Berlin, 1997).

[11] M. Benzi and M. Tůma. A robust factorization preconditioner for positive defi-

nite matrices. submitted to Numerical Linear Algebra with Applications, 2001.

[12] M. Benzi and M. Tuma. Orderings for factorized sparse approximate inverse

preconditioners. SIAM J. Sci. Comput., 21(5):1851–1868, Sept. 2000.

[13] J. T. Betts. Practical methods for optimal control using nonlinear programming.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

[14] J. T. Betts. personal communication, February 2002.

[15] J. T. Betts, N. Biehn, S. L. Campbell, and W. P. Huffman. Compensating for

order variation in mesh refinement for direct transcription methods. J. Comput.

Appl. Math., 125(1-2):147–158, 2000. Numerical analysis 2000, Vol. VI, Ordinary

differential equations and integral equations.

[16] J. T. Betts, S. K. Eldersveld, and W. P. Huffman. Sparse nonlinear programming

test problems (release 1.0). Technical Report BCSTECH-93-047, Mathematics

and Computing Technology (formerly Boeing Computer Services), P.O. Box 3707

MC 7L-21, Seattle, WA 98124-2207, 1993.

90

[17] J. T. Betts and W. P. Huffman. Mesh refinement in direct transcription methods

for optimal control. Optimal Control Appl. Methods, 19(1):1–21, 1998.

[18] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

[19] C. W. Bomhof and H. A. van der Vorst. A parallel linear system solver for cir-

cuit simulation problems. Numer. Linear Algebra Appl., 7(7-8):649–665, 2000.

Preconditioning techniques for large sparse matrix problems in industrial appli-

cations (Minneapolis, MN, 1999).

[20] I. Bongartz, A. Conn, N. Gould, and P. Toint. Cute: Constrained and uncon-

strained testing environment. ACM Trans. Math. Software, 21:123–160, 1995.

[21] R. Bridson and W.-P. Tang. Ordering, anisotropy, and factored sparse approxi-

mate inverses. SIAM J. Sci. Comput., 21(3):867–882, 1999.

[22] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite

matrices. J. Comput. Appl. Math., 86(2):387–414, 1997.

[23] H. N. Cofer and M. A. Stadtherr. Reliability of iterative linear equations solvers

in chemical process simulation. Computers Chem. Engng., 20:1123–1132, 1996.

[24] T. Davis. University of Florida sparse matrix collection. available online at

http://www.cise.ufl.edu/research/sparse/matrices.

[25] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.

Math., 1:269–271, 1959.

[26] I. S. Duff. Algorithm 575: Permutations for a zero-free diagonal. ACM

Trans. Math. Software, 7:387–390, 1981.

[27] I. S. Duff. On algorithms for obtaining a maximum transversal. ACM

Trans. Math. Software, 7:315–330, 1981.

91

[28] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Clarendon Press, Oxford, 1986.

[29] I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford–Boeing sparse matrix

collection. Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory,

1997.

[30] I. S. Duff and J. Koster. The design and use of algorithms for permuting large en-

tries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20(4):889–

901 (electronic), 1999. Sparse and structured matrices and their applications

(Coeur d’Alene, ID, 1996).

[31] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal

of a sparse matrix. SIAM J. Matrix Anal. Appl., 22(4):973–996 (electronic), 2001.

[32] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate

gradients. BIT, 29(4):635–657, 1989.

[33] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. J. Res.

Nat. Bur. Standards Sect. B, 69B:125–130, 1965.

[34] H. C. Elman. A stability analysis of incomplete LU factorizations. Math. Comp.,

47(175):191–217, 1986.

[35] H. C. Elman, D. J. Silvester, and A. J. Wathen. Iterative methods for problems

in computational fluid dynamics. In Iterative methods in scientific computing

(Hong Kong, 1995), pages 271–327. Springer, Singapore, 1997.

[36] R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-

Hermitian linear systems. SIAM J. Sci. Comput., 14(2):470–482, 1993.

[37] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for

non-Hermitian linear systems. Numer. Math., 60(3):315–339, 1991.

92

[38] A. George, J. W. H. Liu, and E. Ng. Computer solution of large sparse positive

definite systems. Revision of George and Liu (1981), to be published., March

2001.

[39] P. E. Gill, W. Murray, and M. H. Wright. Numerical linear algebra and optimiza-

tion. Vol. 1. Addison-Wesley Publishing Company Advanced Book Program,

Redwood City, CA, 1991.

[40] M. Gilli and G. Pauletto. Krylov methods for solving models with forward-

looking variables. J. Econom. Dynam. Control, 22(8-9):1275–1289, 1998. Algo-

rithms and economic dynamics (Geneva, 1996).

[41] N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality

constrained quadratic programming problems arising in optimization. SIAM J.

Sci. Comput., 23(4):1375–1394, 2001.

[42] N. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners us-

ing norm-minimization techniques. SIAM J. Sci. Comput., 19(2):605–625 (elec-

tronic), 1998.

[43] A. Greenbaum. Iterative methods for solving linear systems. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[44] M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate

inverses. SIAM J. Sci. Comput., 18(3):838–853, 1997.

[45] I. Gustafsson. A class of first order factorization methods. BIT, 18(2):142–156,

1978.

[46] J. C. Haws, A. J. Booker, J. G. Lewis, and J. Wu. Evaluating tunable precon-

ditioners with design explorer. Technical Report M&CT-TECH-01-020, Math-

ematics and Computing Technology, The Boeing Company, P.O. Box 3707 MC

7L-21, Seattle, WA 98124-2207, December 2001.

93

[47] J. C. Haws and C. D. Meyer. Preconditioning KKT systems. Technical Report

M&CT-TECH-01-021, Mathematics and Computing Technology, The Boeing

Company, P.O. Box 3707 MC 7L-21, Seattle, WA 98124-2207, December 2001.

[48] L. Hemmingsson-Frändén and A. Wathen. A nearly optimal preconditioner for

the Navier-Stokes equations. Numer. Linear Algebra Appl., 8(4):229–243, 2001.

[49] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov methods. Amer. Math.

Monthly, 105(10):889–899, 1998.

[50] D. James. Conjugate Gradient Methods for Constrained Least Squares Problems.

PhD thesis, North Carolina State University, Department of Mathematics, 1990.

[51] A. Jennings and M. A. Ajiz. Incomplete methods for solving AT Ax = b. SIAM

J. Sci. Statist. Comput., 5(4):978–987, 1984.

[52] C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for

indefinite linear systems. SIAM J. Matrix Anal. Appl., 21(4):1300–1317 (elec-

tronic), 2000.

[53] S. A. Kharchenko, L. Y. Kolotilina, A. A. Nikishin, and A. Y. Yeremin. A robust

AINV-type method for constructing sparse approximate inverse preconditioners

in factored form. Numer. Linear Algebra Appl., 8(3):165–179, 2001.

[54] L. Y. Kolotilina and A. Y. Yeremin. Factorized sparse approximate inverse

preconditionings. I. Theory. SIAM J. Matrix Anal. Appl., 14(1):45–58, 1993.

[55] D. Leineweber. Efficient reduced methods for the optimization of chemical pro-

cesses described by large sparse DAE models. PhD thesis, Interdisziplinäres Zen-

trum fr Wissenschaftliches Rechnen, Universität Heidelberg, Heidelberg, Ger-

many, 1998.

94

[56] X. S. Li and J. W. Demmel. Making sparse Gaussian elimination scalable by

static pivoting. In Proceedings of SuperComputing 98 Conference, Association

for Computing Machinery, 1998 [CD-ROM], 1998.

[57] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM

J. Numer. Anal., 16(2):346–358, 1979.

[58] J. W. H. Liu. Modification of the minimum-degree algorithm by multiple elimi-

nation. ACM Trans. Math. Software, 11(2):141–153, 1985.

[59] L. Lukšan and J. Vlček. Indefinitely preconditioned inexact Newton method

for large sparse equality constrained non-linear programming problems. Numer.

Linear Algebra Appl., 5(3):219–247, 1998.

[60] T. A. Manteuffel. An incomplete factorization technique for positive definite

linear systems. Math. Comp., 34(150):473–497, 1980.

[61] W. D. McQuain, C. J. Ribbens, L. T. Watson, and R. C. Melville. Preconditioned

iterative methods for sparse linear algebra problems arising in circuit simulation.

Comput. Math. Appl., 27(8):25–45, 1994.

[62] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear

systems of which the coefficient matrix is a symmetric M -matrix. Math. Comp.,

31(137):148–162, 1977.

[63] C. D. Meyer. Matrix analysis and applied linear algebra. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 2000. With 1 CD-ROM

(Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.).

[64] National Institute of Standards. Matrix market. Available online at

http://math.nist.gov/MatrixMarket.

95

[65] J. Nocedal and S. J. Wright. Numerical optimization. Springer-Verlag, New

York, 1999.

[66] M. Olschowka and A. Neumaier. A new pivoting strategy for Gaussian elimina-

tion. Linear Algebra Appl., 240:131–151, 1996.

[67] G. Pauletto. Solution and Simulation of Macroeconometric Models. PhD thesis,

University of Geneva, Switzerland, Department of Econometrics, 1995.

[68] I. Perugia and V. Simoncini. An optimal indefinite preconditioner for a mixed

finite element method. Technical Report 1098, IAN-CNR, November 1998.

[69] I. Perugia and V. Simoncini. Block-diagonal and indefinite symmetric precon-

ditioners for mixed finite element formulations. Numer. Linear Algebra Appl.,

7(7-8):585–616, 2000. Preconditioning techniques for large sparse matrix prob-

lems in industrial applications (Minneapolis, MN, 1999).

[70] M. Rozložńık and V. Simoncini. Short–term recurrences for indefinite precondi-

tioning of saddle point problems. Technical Report 1181, IAN-CNR, February

2001.

[71] Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear sys-

tems. J. Comput. Appl. Math., 24(1-2):89–105, 1988. Iterative methods for the

solution of linear systems.

[72] Y. Saad. ILUT: a dual threshold incomplete LU factorization. Numer. Linear

Algebra Appl., 1(4):387–402, 1994.

[73] Y. Saad. Iterative methods for sparse linear systems. PWS, Boston, MA, 1996.

[74] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–

869, 1986.

96

[75] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of

Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput., 13(2):631–644, 1992.

[76] X. Wang, K. A. Gallivan, and R. Bramley. CIMGS: an incomplete orthogonal

factorization preconditioner. SIAM J. Sci. Comput., 18(2):516–536, 1997.

[77] J. Zhang. A multilevel dual reordering strategy for robust incomplete LU fac-

torization of indefinite matrices. SIAM J. Matrix Anal. Appl., 22(3):925–947

(electronic), 2000.

97

Appendix A

Appendix

We recall theorems from [52] which describe properties of the constraint precon-

ditioned system. In [52], the authors consider a constraint preconditioner with a

nonsingular (1,1) block. When that block is assumed to be the identity matrix, many

of the results simplify.

We will prove certain properties about the eigenvalues of the preconditioned sys-

tem by looking at similar matrices. Recall that similar matrices have the same spec-

trum [63, p. 508].

The following theorem describes the clustering of eigenvalues due to constraint

preconditioning.

Theorem 5 (Theorem 2.1 in [52]) Let H ∈ IR(n+m)×(n+m) be a symmetric indefinite,

nonsingular matrix of the form

H =




H BT

B 0


 ,

with H ∈ IRn×n, B ∈ IRm×n, and m ≤ n. Let P ∈ IR(n+m)×(n+m) be a symmetric

indefinite, nonsingular preconditioner of the form

P =




I BT

B 0


 .

98

Let Q2 ∈ IRn×(n−m) be a matrix whose columns span the nullspace of B. Then the

preconditioned matrix P−1H has 2m eigenvalues with value 1, and (n−m) eigenvalues

given by the eigenvalues of QT
2 HQ2.

Proof. Denote the QR factorization of BT by BT = QR, where Q ∈ IRn×n, R ∈
IRn×m and

Q =
[

Q1 Q2

]
.

The columns of Q1 ∈ IRn×m form an orthonormal basis for the range of BT , and the

rows of Q2 ∈ IRn×(n−m) form an orthonormal basis for the nullspace of B; therefore,

BQ2 = 0m×(n−m), and

QT
2 Q2 = I(n−m)×(n−m)

and since BT is the orthogonal complement to Q2,

I −Q2(Q
T
2 Q2)

−1QT
2 = BT (BBT)−1B. (A.1)

Define the n × m (right-hand) pseudo-inverse of B by B† = BT (BBT)−1 [63], and

note that

BB† = Im×m, and

(B†)T Q2 = 0.

Let M1 ∈ IRn×n be given by

M1 =
[

B† Q2

]
,

and note

M−1
1 =




B

QT
2


 .

It is clear that M−1
1 M1 = I. The reverse product is not so clear:

M1M
−1
1 =

[
B† Q2

]



B

QT
2




99

= BT (BBT)−1B + Q2Q
T
2

= I −Q2(Q
T
2 Q2)

−1QT
2 + Q2Q

T
2 (from A.1)

= I −Q2Q
T
2 + Q2Q

T
2

= I.

Define the (m + n)× (m + n) matrix

M =




M1

Im×m


 .

Then

MTHM =




(B†)T

QT
2

I







H BT

B







B† Q2

I


 (A.2)

=




(B†)T HB† (B†)T HQ2 I

QT
2 HB† QT

2 HQ2 0

I 0 0




. (A.3)

Likewise,

MTPM =




(BBT)−1 0 I

0 I 0

I 0 0




. (A.4)

The inverse of (A.4) is easy to compute; it is

(MTPM)−1 =




0 0 I

0 I 0

I 0 −(BBT)−1




. (A.5)

and note that (MTPM)−1 = M−1P−1M−T . Multiplying (A.5) and (A.3),

(MTPM)−1MTHM =




0 0 I

0 I 0

I 0 −(BBT)−1







(B†)T HB† (B†)T HQ2 I

QT
2 HB† QT

2 HQ2 0

I 0 0




100

=




I 0 0

QT
2 HB† QT

2 HQ2 0

(B†)T HB† − (BBT)−1 (B†)T HQ2 I




= M−1P−1HM.

Thus the matrix M−1P−1HM has 2m eigenvalues with value 1, and n−m eigenvalues

given by QT
2 HQ2, where the columns of Q2 form a basis for the nullspace of B. The

similar matrix P−1H has the same eigenvalues. 2

Hence, the eigenvalues of interest for the constraint-preconditioned system are

given by QT
2 HQ2, where the columns of Q2 form a basis for the nullspace of B. It is

not immediately clear that this leads to larger, or tighter, clusters of eigenvalues. To

prove that constraint preconditioning does lead to a tighter clustering of eigenvalues,

we need Cauchy’s Interlace Theorem.

Theorem 6 Let T ∈ IRN×N by a symmetric matrix with leading principal submatrix

T ∈ IRn×n. Denote the eigenvalues and eigenvectors by

T zi = αizi, i = 1, . . . , N, α1 ≤ α2 ≤ . . . ≤ αN

Tyi = λyi, i = 1, . . . , n, λ1 ≤ λ2 ≤ . . . ≤ λn.

Then

αk ≤ λk ≤ αk+(N−n), k = 1, . . . , n.

Proof. See [63, p. 552]. 2

Thus, the eigenvalues of T are bound by those of T . The following proposition

shows that, through a similar relationship, constraint preconditioning can lead to

more tightly clustered eigenvalues.

Proposition 7 Let H ∈ IR(n+m)×(n+m) be a symmetric indefinite, nonsingular matrix

of the form

H =




H BT

B 0


 ,

101

with H ∈ IRn×n, B ∈ IRm×n, and m ≤ n. Let Q2 ∈ IRn×(n−m) be a matrix whose

columns span the nullspace of B. Then the eigenvalues of H bound the eigenvalues

of QT
2 HQ2.

Proof. Let λ ∈ σ(H), and let u be the associated eigenvector, i.e. Hu = λu. Denote

the QR factorization of BT by BT = QR, where

Q =
[

Q1 Q2

]
.

The the rows of Q2 ∈ IRn×(n−m) form an orthonormal basis for the nullspace of B.

Define the permutation matrix P =




0 I

I 0


. Since Q is orthonormal

P TQT HQPu = λP TQTQPu = λu. (A.6)

In block form, the matrix on the left of A.6 looks like

P TQT HQP =




QT
2 HQ2 QT

2 HQ1

QT
1 HQ2 QT

1 HQ1


 .

By Theorem 6, the eigenvalues of P TQT HQP bound those of QT
2 HQ2. Since similar

matrices have the same eigenvalues, the eigenvalues of H bound those of QT
2 HQ2. 2

Finally, constraint preconditioning guarantees that, in exact arithmetic, GMRES

will converge in at most n + m− 2 iterations for KKT matrices of the form (3.1).

Theorem 8 (Theorem 3.5 from [52]) Let H ∈ IR(n+m)×(n+m) be a symmetric indefi-

nite nonsingular matrix of the form

H =




H BT

B 0


 ,

where H ∈ IRn×n and B ∈ IRm×n, with m ≤ n. Let P be a preconditioner given by

P =




I BT

B 0


 .

Then the dimension of the Krylov subspace associated with the preconditioned system

P−1Hx = P−1b is at most n−m + 2.

102

Proof. See [52]. 2

Thus, exact constraint preconditioning is an effective approach to preconditioning

linear systems, in that GMRES is guaranteed to converge in n−m + 2 iterations.

