Abstract

Bao, Shengli. A Comparison of Two Algorithms for Clearing Multi-unit Bid Double Auctions. (Under the direction of Peter R. Wurman)

Auctions have rapidly achieved a prominent position as an online revenue model. As the number and diversity of participants grow, the complexity of choosing an efficient allocation mechanism for a specific situation increases. One aspect of running online auctions is the algorithms used by the auction server to manage bids. In this paper, we present two algorithms. We discuss how these two algorithms expedite the negotiations between buyers and sellers and under which situations they can achieve an efficient allocation for goods and services.
Biography

I was born in Luoyang, China, a beautiful city famous for its peony flowers, grottoes, and ancient history. After graduated from high school, I went to study at Zhengzhou University. I worked about three years in China and came to America to further my education in 1998. Grateful for the American Education Systems, I was free to study any subject I had interested in. I got one BS degree in Computer Science, one MBA degree concentrated on Finance and one MS degree in Computer Science during these five years of study.
Acknowledgement

I’d like to thank Dr. Peter R. Wurman for his guidance and advice. I am very glad to have him as my teacher and advisor.

I thank Dr. Singh and Dr. Chirkova for being on my thesis committee.

I thank my family for their love and support.
Table of Contents

List of Tables .. vi

List of Figures ... vii

1. Introduction .. 1

2. Formal Problem Specifications .. 2
 2.1. The Mth and (M+1) st Prices ... 2
 2.2. The Transaction Set .. 3
 2.3. The Four Auction Actions ... 4
 2.4. The Bid Priority Rules ... 4

3. The Multi-unit Bid 4-Heap Algorithm .. 5
 3.1. The Four Heaps .. 6
 3.2. The Mth and (M+1) st Prices in a Single Unit Bid Double Auction ... 7
 3.3. The Mth and (M+1) st Prices in a Multi-unit Bid Double Auction ... 7
 3.4. The 4-Heap Insert Action .. 8
 3.4.1. Examples for the Insert Action .. 8
 3.4.2. Inserting a New Bid into B_{in} .. 10
 3.4.3. Inserting a New Bid into S_{in} ... 12
 3.4.4. Insert Action Algorithm ... 13
 3.4.5. The Complexity Analysis of the 4-Heap Insert Action 13
 3.5. The 4-Heap Price Quote Action .. 14
 3.6. The 4-Heap Withdraw Action ... 15
 3.7. The 4-Heap Clear Action .. 15
 3.8. The Worst Case Complexity Analysis of the Four Auction Actions 16

4. The Multi-unit Bid IPR Tree Algorithm ... 16
 4.1. The IPR Tree .. 17
 4.2. Different Balanced Trees .. 19
 4.3. The IPR Tree Insert Action ... 20
 4.3.1. The Next Higher Priority Node of the Node T 21
 4.3.2. Examples for Finding the Next Higher Priority Node 21
 4.3.3. The Algorithm for Finding the Next Higher Priority Node ... 24
 4.3.4. The Previous Lower Priority Node of the Node T 25
 4.3.5. Move-up-q-units ... 25
 4.3.6. Unit Counter ... 27
 4.3.7. Move-up-q-units ... 29
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The worst case complexity analysis of the 4-Heap insert action</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>The worst case complexity analysis of the 4-Heap withdraw action</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>The worst case complexity analysis of the four auctions actions in the 4-Heap algorithm</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>The complexity analysis for different tree structures in insert, look-up and withdraw operations</td>
<td>19</td>
</tr>
<tr>
<td>4.2</td>
<td>The worst case complexity analysis for an AVL and an IPR tree</td>
<td>19</td>
</tr>
<tr>
<td>4.3</td>
<td>The worst case complexity analysis of the four auction actions in the IPR tree algorithm</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>The actual CPU time with different number of bids</td>
<td>36</td>
</tr>
<tr>
<td>5.2</td>
<td>The actual CPU time with different bid quantity</td>
<td>37</td>
</tr>
<tr>
<td>5.3</td>
<td>The actual CPU time for different clear intervals</td>
<td>39</td>
</tr>
<tr>
<td>5.4</td>
<td>The percentage of clear action CPU time</td>
<td>39</td>
</tr>
<tr>
<td>5.5</td>
<td>The actual CPU time for different bid distributions</td>
<td>41</td>
</tr>
</tbody>
</table>
List of Figures

2.1 The Mth and $(M+1)$st prices in a multi-unit bid auction 3

3.1 The four heaps in the 4-Heap algorithm .. 6
3.2 The original 4 heaps before inserting a new buy bid 8
3.3 The new 4 heaps after inserting a new buy bid 9
3.4 The general case for inserting a new buy bid into B_{in} 10
3.5 The general case for inserting a sell bid into S_{in} 12

4.1 The four balance rotations in the IPR tree 17
4.2 The next higher priority node ---example 1 21
4.3 The next higher priority node ----example 2 22
4.4 The next higher priority node ----example 3 23
4.5 Move-up-q-units example ... 26
4.6 The unit counters in an IPR tree .. 28
4.7 Withdrawing a node from an IPR tree .. 32

5.1 The impact of number of bids on algorithm performance 36
5.2 The exponential distribution ... 38
5.3 The diverge and converge of bid distributions 40
5.4 The different bid converge and diverge distributions 41
A Comparison of Two Algorithms for Clearing Multi-unit Bid Double Auctions
1. Introduction

In auctions, potential buyers and sellers submit bids for specific goods or services. Automated negotiations help to decide which buyers get which sellers’ goods or services and at which price. In this paper, two algorithms for managing bids in an auction are examined: the 4-Heap algorithm [1] and the IPR tree algorithm. These two algorithms are constructed for auctions with multiple buyers and sellers that do not clear instantaneously. They form price formation mechanisms to determine market clearing prices.

The 4-Heap algorithm is introduced by Wurman, Walsh, and Wellman [1]. This algorithm uses four heap structures to organize the bids, and the discussion of the 4-Heap algorithm is based on single unit bids. Here we extend their theory to include multi-unit bids.

In addition, I introduce an IPR tree algorithm for multi-unit bids. This algorithm exhibits improved efficiency for processing bids and calculating allocations under certain scenarios. A runtime comparison analysis of the two algorithms is presented, which points out each algorithm’s advantages and disadvantages.

Motivation

There are numerous applications of double auctions in electronic commerce, including stock exchanges, B2B commerce, and bandwidth allocation. However, not that much has been published on algorithms. This is our main motivation to implement and later examine the 4-Heap and the IPR tree algorithms.

What research has been done for double auction algorithms primarily considers single unit bids. In our algorithms, we allow multi-unit bids, though we require bids to be divisible.
The \(M \)th and \((M+1)\)st price rules are well known in the double auction theory and applications. They define the range of equilibrium prices, which balance the market demand and supply. In our algorithms, we examine how to keep track of the \(M \)th and \((M+1)\)st prices incrementally while processing the multi-unit bids.

Thesis Organization

Section 2 presents background concepts about double auctions, including the \(M \)th and \((M+1)\)st price rules, the four auction actions, and the bid tie-breaking rules. Section 3 explains the Multi-unit Bid 4-Heap Algorithm. It organizes the discussion of the algorithm around the four auction actions, and presents the complexity analysis for each action. Section 4 presents the Multi-unit Bid IPR Tree Algorithm. It also breaks down the algorithm according to the four auction actions and analyzes these actions’ performance complexity. Section 5 compares these two algorithms’ performance under different experiments. Section 6 concludes with each algorithm’s advantages and disadvantages.

2. Formal Problem Specification

2.1. The \(M \)th and \((M+1)\)st Prices

The \(M \)th and \((M+1)\)st prices determine the range of equilibrium prices and which bids are winning bids. Consider \(l \) single unit bids, of which \(m \) are sell bids, and the remaining \(n = l - m \) are buy bids. Single unit bids refer to the bids whose quantities are restricted to be one. Sorting the buy and sell bids in decreasing order by price, the \(M \)th price is the \(m \)th highest bid among all bids, and the \((M+1)\)st price is the \((m+1)\)st highest bid among all bids. The \(M \)th and \((M+1)\)st prices are necessarily set by different bids, though they may still have the same price.
For multi-unit, divisible bids, let \(q \) denote the total number of units offered in the \(m \) sell bids. Multi-unit bids refer to the bids whose quantities can be more than one. Again sort the buy and sell bids in decreasing order by price. The \(M \)th price is the price of the \(q \)th unit. And the \((M+1)\)st price is the price of \((q+1)\)st unit. The \(M \)th and \((M+1)\)st prices may be set by the same bid or by different bids.

Figure 2.1. The \(M \)th and \((M+1)\)st prices in a multi-unit bid auction.

An example is shown in Figure 2.1. There are 2 sell bids and 3 buy bids. Each sell bid has 3 units. Each buy bid has 2 units. Sort the bids in decreasing order by price. The \(M \)th price is the price of the 6th unit. The \((M+1)\)st price is the price of the 7th unit. The \(M \)th and \((M+1)\)st prices happen to be in the same buy bid.

2.2. The Transaction Set

Let \(s \) denote the number of sell units at or below the clearing price, and \(b \) the number of buy units at or above the clearing price. A transaction set consists of the \(b \) highest buy units and \(s \) lowest sell units under the condition that \(b \) is equal to \(s \). When a uniform
clearing price is selected, the buy and sell bids in the transaction set can be arbitrarily matched successfully.

In Figure 2.1, the transaction set includes all the buy units above $43 and 1 unit whose price is $43, and all the sell units below $43. Therefore this transaction set has 3 buy units and 3 sell units.

2.3 The Four Auction Actions

A bid management algorithm in a multi-unit bid double auction has to support four actions. The four actions are:

1. Insert:
 Inserts a new bid into the bid data structure, and updates the \(M \)th and \((M+1)\)st prices.

2. Price Quote:
 Generates the \(M \)th and \((M+1)\)st prices.

3. Withdraw:
 Removes an active bid from the bid data structure, and updates the \(M \)th and \((M+1)\)st prices.

4. Clear:
 Removes all the bids in the transaction set according to one clearing price.

In our analysis of the 4-Heap and IPR tree algorithms, we examine these two algorithms’ methods and efficiency in handling each action.

2.4 The Bid Priority Rules

In order to get the \(M \)th and \((M+1)\)st prices, we need a total order on bids. The bid priority rules determine the sorted order of bids, and compare bids based on the bid price, bid type and bid ID. Let \(p \) denote the bid price, \(t \) denote the bid type, and \(ID \) denote the bid ID. These rules for comparing bid \(i \) with bid \(j \) are:
If $p_i > p_j$, then $i > j$.
Else if $p_i < p_j$, then $i < j$.
Else
 If $t_i = \text{buy}$ & $t_j = \text{sell}$, then $i > j$.
 Else if $t_i = \text{sell}$ & $t_j = \text{buy}$, then $i < j$.
 Else if $ID_i > ID_j$, then $i > j$.
 Else $i < j$.

Since bid IDs are always unique for the auctioneers, there are no equal bids existed in the bid data structure. In practice, auctions often use time as the final tiebreaker, giving preference to the bids that arrive earlier.

3. The Multi-unit Bid 4-Heap Algorithm

One algorithm proposed to manage bids is the 4-Heap algorithm [1]. It involves two max-heaps and two min-heaps [Figure 3.1]. A max-heap refers to a heap structure whose root holds the biggest value. A min-heap refers to a heap structure whose root holds the smallest value. These four heaps are constructed in a manner that is consistent with the Mth and $(M+1)$ st prices.
3.1. The Four Heaps

![Diagram of four heaps]

Figure 3.1. The four heaps in the 4-Heap algorithm.

- **B_{in}**: B_{in} holds all the buy units whose prices are greater than or equal to the Mth price.\(^1\)
 B_{in} is implemented as a min-heap with the lowest price bid at the root.

- **B_{out}**: B_{out} holds all the buy units whose prices are less than or equal to the Mth price.\(^1\)
 B_{out} is implemented as a max-heap with the biggest price bid at the root.

- **S_{in}**: S_{in} holds all sell units whose prices are smaller than or equal to the $(M+1)$st price.\(^1\)
 S_{in} is implemented as a max-heap with the highest price bid at the root.

- **S_{out}**: S_{out} holds all the sell units whose prices are greater than or equal to the $(M+1)$st price.\(^1\)
 S_{out} is implemented as a min-heap with the smallest price bid at the root.

\(^1\) If the Mth and $(M+1)$st prices are equal, neither buyers nor sellers with offers at that price can determine whether they are winning or losing [1].
The 4-Heap algorithm enforces several constraints. Let \(pr \) denote the bid priority and \(u \) denote the number of units in each heap. The followings are the constraints:

- \(u(B_{in}) = u(S_{in}) \)
- \(pr(B_{in}) \geq pr(B_{out}) \)
- \(pr(S_{out}) \geq pr(S_{in}) \)
- \(pr(B_{in}) > pr(S_{in}) \)
- \(pr(S_{out}) > pr(B_{out}) \)

Equal priority may happen when the same buy bid is subdivided and put into \(B_{in} \) and \(B_{out} \) or the same sell bid is subdivided between \(S_{in} \) and \(S_{out} \).

3.2. The \(M \)th and \((M+1)\)st Prices in a Single Unit Bid Double Auction

In a single unit bid double auction, the \(M \)th and \((M+1)\)st prices are necessarily set by different bids, though they may still have the same price. The \(M \)th price is the price of the smallest bid among \(S_{out} \) and \(B_{in} \). And the \((M+1)\)st price is the price of the largest bid among \(S_{in} \) and \(B_{out} \). \(S_{in} \) and \(B_{in} \) form the transaction set and can be cleared at the clearing price.

3.3. The \(M \)th and \((M+1)\)st Prices in a Multi-unit Bid Double Auction

For multi-unit bids, bid price, bid type and bid quantity determine the \(M \)th and \((M+1)\)st prices. A single unit bid double auction is a special case of a multi-unit bid double auction, where all the bids’ quantities are restricted to be one.

Contrary to a single unit bid double auction, where the \(M \)th and \((M+1)\)st prices must be set by different bids, in a multi-unit bid double auction the \(M \)th and \((M+1)\)st prices may be set by different bids or by the same bid. This poses a slight problem for the 4-Heap algorithm that can be overcome by subdividing some bids into two different bids.\(^2\)

\(^2\) The idea is originally introduced by William E. Walsh
buy bid sets both the \(M \)th and \((M+1)\)st prices, it is divided between \(B_{in} \) and \(B_{out} \). If a sell bid sets both the \(M \)th and \((M+1)\)st prices, it is divided between \(S_{in} \) and \(S_{out} \).

3.4. The 4-Heap Insert Action

When inserting one multi-unit bid using the 4-Heap algorithm, bid price, bid type and bid quantity determine which heap this new bid belongs to. Different bid types cause different bid movements. When inserting a new buy bid into \(B_{in} \), the direction of the bid movements is downward from \(B_{in} \) to \(B_{out} \) or from \(S_{out} \) to \(S_{in} \). When inserting a new sell bid into \(S_{in} \), the direction of the bid movement is upward from \(S_{in} \) to \(S_{out} \) or \(B_{out} \) to \(B_{in} \).

3.4.1. Examples for the Insert Action

![Diagram of 4 heaps before inserting a new buy bid]

Figure 3.2. The original 4 heaps before inserting a new buy bid.

According to the auction data in Figure 2.1, we build the four heaps in Figure 3.2. There are altogether 6 sell units. The \(M \)th price is $43, which is the price of the 6\(^{th}\) highest unit when the bids are sorted according to the bid priority rules. The \((M+1)\)st price is $43, which is the price of the 7\(^{th}\) highest unit.
The bid whose price is $43 is subdivided into two bids. One bid is in B_{in} and becomes the Mth price bid. The other is in B_{out} and becomes the $(M+1)$ st price bid. The transaction set has 3 units. B_{in} has all the buy units whose prices are above 43 and the Mth price bid. S_{in} has all the sell units whose prices are below 43.

![Diagram](image)

Figure 3.3. The new 4 heaps after inserting a new buy bid.

In Figure 3.3 a new bid to buy 3 units at 50 is inserted. After inserting this new buy bid that has higher priority than the Mth price bid, the Mth and $(M+1)$ st prices are moved upward by the new bid quantity. The Mth price is moved upward by 3. Now the Mth price unit is the first unit in the sell bid with price at 50. The $(M+1)$ st price is also moved upward by 3 and is the second unit in the sell bid with price at 50.

Several bids have to be moved to retain the 4-heap consistency. First move the 43 buy bid down from B_{in} to B_{out}. The reason to move is due to this bid is smaller than the new Mth price bid, and it can not be kept in the B_{in}. The B_{in} now has 5 buy units. Subdivide the sell bid with price at 50 into two connected sell bids. 2 units move downward from S_{out} to S_{in}. The remaining one unit is kept in S_{out}. After these bid movements, the Mth price is 50, and the $(M+1)$ st price is also 50. The transaction set now has 5 units.
Complicated bid movements take place when inserting a new buy bid into B_{in} or inserting a new sell bid into S_{in}. Multiple $\log(n)$ operations happen under these two situations. Figure 3.4 and Figure 3.5 generalize the bid movements when inserting a new bid into B_{in} or S_{in}.

3.4.2. Inserting a New Bid into B_{in}

This situation takes place when we insert a new buy bid and this bid has higher priority than the current Mth price bid.

When we push a bid into a heap or pop a bid from a heap, in order to maintain the heap structure, we move either the highest priority bid or the lowest priority bid to the root of the heap depending on whether the heap is a max-heap or a min-heap. This operation takes $\log(n)$ time.

$q_1 + q_2 = q_i$

Figure 3.4. The general case for inserting a new buy bid into B_{in}.
Figure 3.4 shows the downward bid movements when inserting a new buy bid into B_{in}. \(q_1 \) denotes the number of units moved from B_{in} to B_{out}; \(q_2 \) denotes the number of units moved from S_{out} to S_{in}. \(q_i \) is the new buy bid quantity, which is equal to the sum of \(q_1 \) and \(q_2 \).

Let \(b \) denote bid, \(b_i \) denote the new bid, \(b_j \) denote the minimum bid among S_{out} and B_{in}, \(q \) denote bid quantity,

1. If \(q_i = q_j \), 3 \(\lg (n) \) operations take place.
 a. Push \(b_i \) into B_{in}.
 b. Pop \(b_j \) from B_{in} or S_{out}.
 c. Push \(b_j \) into B_{out} or S_{in}.

2. If \(q_i < q_j \), 2 \(\lg (n) \) operations take place.
 a. Push \(b_i \) into B_{in}.
 b. Subdivide \(b_j \) according to \(q_i \). Keep \(q_i \) units in B_{in} or S_{in}, and push \(q_j - q_i \) units into B_{out} or S_{out}.

3. If \(q_i > q_j \), multiple \(\lg (n) \) operations happen. In the worst case, \((2q+1) \lg (n) \) operations take place.
 a. Push \(b_i \) into B_{in}.
 b. Repeat if \(q_i \leq q_j \). In the worst case, \(q \) times are repeated.
 i. Pop \(b_j \) from B_{in} or S_{out}.
 ii. Push \(b_j \) into B_{out} or S_{in}.
 iii. Update \(b_j \) to be the minimum bid among S_{out} and B_{in} and continue moving \(b_j \). 2 \(\lg (n) \) operations are associated with each move.
 iv. If \((q_i = q_j) \), bid movements stop.
 c. Else subdivide \(b_j \) according to \(g \), where \(g \) is equal to \(q_i - (q_1 + q_2) \). Push \(g \) number of units into B_{in} or S_{in} and keep the remaining units in B_{out} or S_{out}.

11
The worst case occurs when in one auction all bids’ quantities are one. If we insert a new buy bid with quantity q into B_{in} and this bid has higher priority than the current Mth price bid, q times of popping one bid from one heap and pushed it into another heap take place. Each time takes $2\lg(n)$ operations. Adding the $\lg(n)$ operation to insert this new buy bid into B_{in}, $(2q+1)\lg(n)$ operations happen in the worst case.

3.4.3. Inserting a New Bid into S_{in}

This situation occurs when we insert a new sell bid and this bid has lower priority than the current $(M+1)$st price bid.

Inserting a new sell bid into S_{in} has the similar logic as inserting a new buy bid into B_{in}. The only difference is the direction of bid movements. The bids are popped from S_{in} or B_{out} and pushed into S_{out} or B_{in} as in Figure 3.5.

Figure 3.5. The general case for inserting a new sell bid into S_{in}.

$q_1 + q_2 = q_i$
3.4.4. Insert Action Algorithm

In general, when a new buy bid arrives, this buy bid is pushed into either B_{in} or B_{out}. When a new sell bid arrives, this sell bid is pushed into either S_{in} or S_{out}. The following algorithm generalizes the 4-Heap insert action:

1. Check the new bid type.
2. If the new bid is a buy bid, compare this bid with the current Mth price bid.
 a. If the new bid has higher priority, move bids according to the discussion of Inserting a New Bid into B_{in} in section 3.4.2.
 b. If the new bid has lower priority, insert the new bid into B_{out}.
3. If the new bid is a sell bid, compare this bid with the current $(M+1)$st price bid.
 a. If the new bid has higher priority, insert the new bid into S_{out}.
 b. If the new bid has lower priority, move bids according to the discussion of Inserting a New Bid into S_{in} in section 3.4.3.

According to the bid priority rules, there is no equal priority between bids. The reason to move bids among the four heaps is to avoid sorting bids to get the new Mth and $(M+1)$st prices. Sorting process takes $n \lg (n)$ time in the average case. These bid movements assure the Mth price is always at the root of either B_{in} or S_{out} and the $(M+1)$st price is always at the root of either B_{out} or S_{in}. They avoid sorting the entire bids and thus improve the algorithm performance for instantaneous price quotes.

3.4.5. The Complexity Analysis of the 4-Heap Insert Action

Table 3.1 lists the worst case complexity of inserting a bid. In the worst case, $(2q +1) \lg (n)$ operations occur.
<table>
<thead>
<tr>
<th>Insert Buy Bid</th>
<th>$q_i = q_j$</th>
<th>$q_i > q_j$</th>
<th>$q_i < q_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_i > b_j$</td>
<td>$3\lg(n)$</td>
<td>$(2q + 1) \lg(n)$</td>
<td>$2\lg(n)$</td>
</tr>
<tr>
<td>$b_i < b_j$</td>
<td></td>
<td>$\lg(n)$</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1. The worst case complexity analysis of the 4-Heap insert action.

3.5. The 4-Heap Price Quote Action

For the 4-Heap structure, generating the price quotes is very straightforward. The complexity of price quote action is constant time $O(1)$. The quotes are simply:

- Mth price = min (S_{out}, B_{in});
- $(M+1)$ st price = max (S_{in}, B_{out});

S_{out} and B_{in} always keep the min-heap structure and the lowest priority bid is always at the root. Only one comparison between the first bid in S_{out} and the first bid in B_{in} is needed to determine the Mth price.

S_{in} and B_{out} always keep the max-heap structure with the highest priority bid always at the root. Only one comparison between the first bid in S_{in} and the first bid in B_{out} is needed to determine the $(M+1)$ st price.
3.6. The 4-Heap Withdraw Action

Withdrawing an active bid is the opposite of inserting a new bid. The logic behind these operations is similar to the bid insert action. The only difference is the direction of bid movements, which is opposite to inserting a new bid. In the worst case, \((2q+1) \log(n)\) operations take place when withdrawing an active bid as in Table 3.2.

<table>
<thead>
<tr>
<th>Withdraw Buy Bid</th>
<th>(q_i = q_j)</th>
<th>(q_i > q_j)</th>
<th>(q_i < q_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_i > b_j)</td>
<td>(3\log(n))</td>
<td>((2q+1) \log(n))</td>
<td>(2\log(n))</td>
</tr>
<tr>
<td>(b_i < b_j)</td>
<td>(2\log(n))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Withdraw Sell Bid</th>
<th>(q_i = q_j)</th>
<th>(q_i > q_j)</th>
<th>(q_i < q_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_i < b_j)</td>
<td>(3\log(n))</td>
<td>((2q+1) \log(n))</td>
<td>(2\log(n))</td>
</tr>
<tr>
<td>(b_i > b_j)</td>
<td>(2\log(n))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2. The worst case complexity analysis of the 4-Heap withdraw action.

3.7. The 4-Heap Clear Action

A clear action happens when emptying the transaction set \(B_{in}\) and \(S_{in}\) according to one clearing price. Our implementation of the clear action is to set aside the bids in \(B_{in}\) and \(S_{in}\). This action takes constant time \(O(1)\). The clearing price can be set as the \(M\)th price, \((M+1)\)st price, or by the \(k^{th}\) double auction price [5].
3.8. The Worst Case Complexity Analysis of the Four Auction Actions

<table>
<thead>
<tr>
<th>Actions</th>
<th>Worst Case Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>((2q+1) \lg (n))</td>
</tr>
<tr>
<td>Withdraw</td>
<td>((2q+1) \lg (n))</td>
</tr>
<tr>
<td>Price Quote</td>
<td>1</td>
</tr>
<tr>
<td>Clear</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.3. The worst case complexity analysis of the four auctions actions in the 4-Heap algorithm.

Table 3.3 presents the worst case complexity for the four auction actions when applying the 4-Heap algorithm to manipulate bids. The insert and withdraw actions have the same worst case complexity \((2q+1) \lg (n)\), where \(q\) is quantity of the inserted or withdrawn bid. The price quote and clear actions take constant time \(O(1)\).

4. The Multi-unit Bid IPR Tree Algorithm

For the 4-Heap algorithm, when inserting a new buy bid into or withdrawing an active buy bid from \(B_m\), or inserting a new sell bid into or withdrawing an active sell bid from \(S_m\), \((2q+1) \lg(n)\) operations occur in the worst case for the insert and withdraw actions. Since the complexity of the 4-Heap algorithm price quote and clear actions are both constant time, if we reduce the number of \(q \lg(n)\) operations in the insert and withdraw actions, the algorithm performance will be improved subject to the effects of constant factors in the implementation. Thus, we introduce a bid management algorithm based on the IPR tree structure.
4.1. The IPR Tree

The **Internal Path Reduction** tree is a height-balanced binary search tree. The internal path length is defined to be the sum of the depth of all the nodes in the tree. This parameter determines the tree balance and thus the tree height. By reducing the internal path length of a tree, the number of retrieval probes and the time to retrieve a node is reduced.

The IPR tree is rebalanced when the difference between the numbers of children down two branches exceeds some threshold \(k \). There are four balance rotations to reduce the internal path length [Figure 4.1].

In the two single rotations, \(N_c \) refers to the number of children of the subtree C. \(N_a \) refers to the number of children of the subtree A. \(k \) is the balance parameter and represented by an integer. Single rotations occur when the number of children of the subtree C is greater than the number of children of the subtree A by \(k \).
In the two double rotations, N_b refers to the number of children of the node b. It includes the number of children of the subtree B_1, the number of children of the subtree B_2, and the node b. That is,

\[N_b = N_{B_1} + N_{B_2} + 1. \]

N_a refers to the number of children of the subtree A. k is the balance parameter and represented by an integer. Double rotations occur when the number of children of the node b is greater than the number of children of the subtree A by k.

Figure 4.1. The four balance rotations in the IPR tree.
4.2. Different Balanced Trees

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Average Case</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Search Tree</td>
<td>(\lg(n))</td>
<td>(n)</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>(\lg(n))</td>
<td>(\lg(n))</td>
</tr>
<tr>
<td>IPR Tree</td>
<td>(\lg(n))</td>
<td>(\lg(n))</td>
</tr>
</tbody>
</table>

Table 4.1. The complexity analysis for different tree structures in insert, look-up and withdraw operations.

<table>
<thead>
<tr>
<th>Worst Case Complexity</th>
<th>AVL Tree</th>
<th>IPR Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>(\leq 1.4402 \lg(n))</td>
<td>(\leq 1.4402 \lg(n))</td>
</tr>
<tr>
<td>Internal path length</td>
<td>(\geq 1.2793 n \lg(n))</td>
<td>(\geq 1.0515 n \lg(n))</td>
</tr>
</tbody>
</table>

Table 4.2. The worst case complexity analysis for an AVL and an IPR tree [3].

We selected an IPR tree to represent our bid data structure because of its better performance in insert, look-up and withdraw operations when compared with other candidate binary search trees.

In Table 4.1, an AVL tree and an IPR tree are more efficient than a Binary Search Tree in the worst case. A Binary Search Tree is not a height-balanced tree. If the nodes are inserted in decreasing or increasing order, the insert, look-up and withdraw actions will traverse all the nodes in the tree. Thus, in the worst case, the complexity of these actions becomes linear \(O(n) \).

The height of an IPR tree is never worse than an AVL tree with the same number of nodes. The worst case performance for an IPR tree and an AVL tree is the same. From Table 4.2, the Internal Path Length of an IPR tree is about 10% better [3]. It means we need 10 percent fewer probes on the average to retrieve each node once with an IPR tree. This table shows an IPR tree is more efficient than an AVL tree.
An IPR tree also provides some flexibilities in that the degree of the tree imbalance can be varied by the parameter k. ($N_c-N_a > k$ and $N_b-N_a > k$). The greater the value of k, the greater will be the allowed imbalance. This in turn will reduce an IPR tree insertion effort though allowing longer insertion paths.

4.3. The IPR Tree Insert Action

When inserting a new bid, this new bid is wrapped up as a new node and placed into the bottom of an IPR tree branch. Insert actions assure the lower priority nodes are always in the left branches of an IPR tree; and the higher priority nodes are always in the right branches of an IPR tree.

Two pointers are introduced to keep track of the Mth and the $(M+1)$st prices. Similar to the Multi-unit Bid 4-Heap Algorithm, bid type, price and quantity are the main factors to determine the Mth and $(M+1)$st prices in an IPR tree. The challenge is to track how the Mth and $(M+1)$st price pointers move when inserting a new bid into or withdrawing an active bid from an IPR tree.

Two operations are applied in our IPR tree algorithm to keep track of the Mth and $(M+1)$st prices. One operation is move-up-q-units. This operation performs the same function as moving the Mth and $(M+1)$st price pointers upward by q units according to the nodes’ priority order. The other operation is move-down-q-units. This operation performs the same function as moving the Mth and $(M+1)$st price pointers downward by q units according to the nodes’ priority order. These two operations keep track of the Mth and $(M+1)$st price pointers’ movements as bids are inserted into or withdrawn from an IPR tree.
4.3.1. The Next Higher Priority Node of the Node T

For any node T, the next higher priority node refers to the lowest priority node among all the nodes that have higher priority than the node T in an IPR tree. How to find the next higher priority node plays an important role in the move-up-q-units operation. The move-up-q-units operation moves the Mth and $(M+1)$st price pointers upward by continuously finding the next higher priority node. Finding the next higher priority node is the key to move these two pointers correctly.

4.3.2. Examples for Finding the Next Higher Priority Node

Three examples are given to explain how to find the next higher priority node in an IPR tree. These examples also show the next higher priority node can reside in any place in an IPR tree.

![Figure 4.2. The next higher priority node ---example 1.](image-url)
Example 1:

The next higher priority node of a node T is this node’s right child node. Figure 4.2 shows an example in which we have inserted a new buy bid with price at $70 for 2 units into an IPR tree. If we sort the entire bids in decreasing order according to the bid priority rules, to get the new Mth price we move the Mth price pointer up by 2 units. The new Mth price pointer will point at the bid with the price at 50. This bid resides in the old Mth price node’s right child node.

![Figure 4.3. The next higher priority node ----example 2.](image)

Example 2:

The next higher priority node of a node T is the leftmost child node of this node’s right branch. The right branch guarantees all the nodes in this branch has higher priority than the node T. The leftmost child assures this node has the lowest priority among this branch.
In Figure 4.3, we have inserted a new buy bid with price at $70 for 2 units into an IPR tree. We move the old Mth price pointer up by 2 units in order to get the new Mth price. The new Mth price pointer will point at the bid with the price at 46. This bid resides in the leftmost child of the old Mth price node’s right branch.

Example 3:

The next higher priority node of a node T is this node’s parent node. For any node, if this node is in the right branches of an IPR tree, the child nodes in these branches always have higher priority than the parent nodes; if this node is in the left branches of an IPR tree, the parent nodes in these branches always have higher priority than the child nodes.
In Figure 4.4, we have inserted a new buy bid with price at $70 for 2 units into an IPR tree. Since the old Mth price node is in the left branch, the parent nodes in this branch always have higher priority than the child nodes. If we sort the entire bids in the decreasing order according to the bid priority rules, to get the new Mth price we move the Mth price pointer up by 2 units. The new Mth price pointer will point at the node with the price at 45, which is the first parent node that has higher priority than the old Mth price node. This node is old Mth price node’s next higher priority node.

4.3.3. The Algorithm for Finding the Next Higher Priority Node

The following algorithm generalizes how to find the node T’s next higher priority node in an IPR tree.

1. First check the node T’s right child node.
2. If the right child node exists, then check this right child node’s left child node.
 a. If the left child node does not exist, this right child node is the next higher priority node.
 b. If the left child node does exist, then traverse the left branch of this right child node to the leftmost child node. This leftmost child node is the next higher priority node.
3. If the right child node does not exist, then traverse the node T’s parents. The first parent that has higher priority than the node T is the next higher priority node.
4.3.4 The Previous Lower Priority Node of the Node T

For any node T, the previous lower priority node refers to the highest priority node among all the nodes that have lower priority than the node T in an IPR tree. How to find the previous lower priority node plays an important role in the move-down-q-units operation. The move-down-q-units operation moves the Mth and $(M+1)$st price pointers downward by continuously finding the previous lower priority node. To find the previous lower priority node is the key to move these two pointers correctly.

The following algorithm generalizes how to find the node T's previous lower priority node.

1. Check the left child of the node T.
2. If the left child node does exist, check this left child node’s right child node.
 a. If the right child node does not exist, this left child node is the previous lower priority node.
 b. If the right child node does exist, traverse the right branch of this left child node to the rightmost child node. This rightmost child node is the previous lower priority node.
3. If the left child node does not exist, then traverse the node T’s parent nodes. The first parent node that has lower priority than the node T is the previous lower priority node.

4.3.5 Move-up-q-units Operation

Sometimes finding the next higher priority node or the previous lower priority node is not enough to generate the correct Mth and $(M+1)$st prices. The complexity is due to the new bid quantity.
Figure 4.5 shows an example in which we have inserted a new buy bid at $70 for 10 units into an IPR Tree. To get the new Mth price we move the Mth price pointer up by 10 units according to the Mth price rule. The new Mth price pointer will point at the bid with the price at 60. This node does not reside in any of the positions we mentioned in section 4.3.2—Examples for Finding the Next Higher Priority Node. The explanation is there are many nodes that have higher priority than the old Mth price node and lower priority than the new buy node. The new buy bid quantity is much bigger than the quantities of those bids. Thus, the Mth price pointer must traverse several other bids before reaching the bid with the price at 60. In this Figure, we actually apply four times of finding the next higher priority node algorithm. The new buy bid quantity determines how many times to apply this algorithm.
4.3.6. Unit Counter

For each node, we keep a counter about the number of units in this node’s left and right subtrees. This counter helps us determine directly whether the new Mth and $(M+1)$ st prices will reside in this node’s subtrees or this node’s parents. We can avoid traversing this node’s subtrees if this counter determines that the Mth or $(M+1)$ st prices are in the parent nodes. This improvement avoids unnecessary computation.

Figure 4.6 shows each node’s internal structure. The unit counter parameter is used to record the number of units for this node’s left and right subtrees.
Figure 4.6. The unit counters in an IPR tree.
4.3.7. Move-up-\textit{q}-units

After introducing the concepts of the next higher priority node and the unit counter, we present the move-up-\textit{q}-units algorithm.

1. Set an integer counter n that is equal to the new buy bid quantity. And get the current Mth price node’s right branch unit counter.

2. While n is greater than zero.
 a. If n is smaller than or equal to the right branch unit counter, continue finding the next higher priority node and subtract its quantity from n. If n is not greater than zero, this next higher priority node is the new Mth price node and the while loop stops.
 b. If n is greater than the right branch unit counter, subtract the right branch unit counter from n. Find the first parent node that has higher priority than the current Mth price node.
 i. If n is smaller than or equal to this parent node’s quantity, this parent node is the new Mth price node and the while loop stops.
 ii. If n is bigger than this parent node’s quantity, get this parent node’s right branch unit counter, and continue the loops.

4.3.8. Move-down-\textit{q}-units

Move-down-\textit{q}-units operation has the similar logic as move-up-\textit{q}-units operation. The only difference is we need to find the previous lower priority nodes instead of finding the next higher priority nodes.
4.3.9. The IPR Tree Insert Action Algorithm

For an IPR Tree insert action, we wrap the new bid into a new node, traverse one branch of the IPR tree and insert this new node at the bottom of this branch. Since adding the new node may change this IPR tree height, sometimes we have to rebalance the IPR tree according to the four balance rotation methods. If the new bid is a buy bid and this bid has higher priority than the current Mth price bid, or the new bid is a sell bid and this bid has lower priority than the current $(M+1)$st price bid, we have to update the Mth and $(M+1)$st price pointers by following the move-up-q-units or move-down-q-units operation.

In general, inserting a new node takes $\lg(n)$ time, balancing the IPR tree takes $\lg(n)$ time, and updating the Mth and $(M+1)$st price pointers in the worst case takes $2\lg(n)$ time. So the worst case for the IPR tree insert action takes $4\lg(n)$ time. Below is the IPR tree insert action algorithm:

1. Set a tree traversal pointer p point to the root node of the IPR tree.
2. While p is not null, compare this new node with the node pointed to by p.
 a. If the new node has lower priority, reset p to point to the left child of this node pointed to by p. If p is null, insert this new node as the node’s left child and the while loop stops.
 b. If the new node has higher priority, reset p to point to the right child of this node pointed to by p. If p is null, insert this new node as the node’s right child and the while loop stops.
3. For each node on the path from the parent of the newly inserted node to the root of the tree.
 a. Determine if the associated subtree has more nodes to the right or left or neither to know whether to perform a left or right rotation.
b. If $N_c - N_a > k$, then
 i. Perform a single rotation in the proper direction.
 ii. After a left or right rotation, check the subtree of the immediate left (right) descendant of the root of the rotated subtree for balance. If unbalanced, rotate and recursively test for and perform any additional rotations.

 c. Else if $N_b - N_a > k$, then
 i. Perform a double rotation in the proper direction.
 ii. Check both immediate descendants for an imbalance and recursively perform any needed rotations.

4. Check the data type of this new node,
 a. If the new node is a buy node, compare this new node with the node pointed by the Mth price pointer,
 i. If the new node has higher priority, apply the move-up-q-units operation in section 4.3.7.
 ii. If the new node has lower priority, keep the current Mth price pointer. If this new buy node has higher priority than the node pointed by the $(M+1)$ st pointer, update the $(M+1)$ st price pointer to point to this new node.

 b. If the new node is a sell node, compare this new node with the node pointed by the $(M+1)$ st price pointer,
 i. If the new node has lower priority, apply the move-down-q-units operation in section 4.3.8.
 ii. If the new node has higher priority, keep the current $(M+1)$ st price pointer. If this new node has lower priority than the node pointed by the Mth price pointer, update the Mth price pointer to point to this new node.
4.4. The IPR Tree Price Quote Action

Generating a price quote with the IPR tree algorithm is as straightforward as with the 4-Heap algorithm. Since the IPR Tree maintains two pointers to keep track of the \(M \)th and \((M+1)\)st prices, to get the price quote we just follow the two pointers and return the nodes’ prices. The complexity of the IPR tree price quote action is constant time \(O(1) \).

4.5. The IPR Tree Withdraw Action

The IPR tree withdraw action is opposite to its insert action. It traverses the tree to find the node, which takes \(\lg (n) \) time. After finding the node, removing this node has to consider its left and right children. If the left and right children are not empty, a replacement node is needed to replace the withdrawn node in order to maintain the IPR tree parent and children relations.

Figure 4.7. Withdrawing a node from an IPR tree.
In Figure 4.7(1), we want to withdraw the node at price $45 from an IPR tree. In order to maintain the valid parent and children relations, we move the node at price $43 to the empty slot. The IPR tree after the withdrawal is shown in Figure 4.7(2).

Not any node can replace the withdrawn node. The replacement node must be either the next higher priority node or the previous lower priority node. Finding such a replacement node takes \(\lg(n) \) time.

If withdrawing a buy node that has higher priority than the node pointed by the \(M \)th price pointer, or withdrawing a sell node that has lower priority than the node pointed by the \((M+1) \)st price pointer, the \(M \)th and \((M+1) \)st price pointers have to be updated after withdrawing this node. This update at worst takes \(2\lg(n) \) time. In general, the complexity of the IPR tree withdraw action is \(4\lg(n) \).

4.6. The IPR Tree Clear Action

The IPR tree clear action traverses the tree and, according to each bid price and type, either keeps the bid in the tree or removes the bid from the tree. The action is comprised of a series of withdraw actions. Each withdraw action removes one bid in the transaction set from the tree. The clear action is based on the in-order traversal. In-order traversal traverses the tree from left to right and from bottom to top. It guarantees the nodes are traversed in ascending order.

When clearing the auction, \(2n\lg(n) \) time operations take place. Traversing the tree and removing the nodes from the tree takes \(n\lg(n) \) time. After each bid removal, the tree has to be rebalanced according to the IPR tree balance parameter. The rebalance process in total also takes \(n\lg(n) \) time.
When removing a node from the tree, sometimes we need to find a replacement node to keep the parent and children relations. In our implementation, we prefer the previous lower priority nodes compared with the next higher priority nodes to replace the removed nodes. The reason is lower priority nodes are visited first. For any removed node, its previous lower priority node has already been visited and kept in the tree. If we choose the next higher priority node to replace a removed node, this replacement node may be removed later from the tree. Thus increases the computation cost.

Below is the clear action algorithm:

1. Traverse the tree. Check to see whether the nodes belong to the transaction set according to the Mth and $(M+1)$st prices.
 a. If a node belongs to the transaction set,
 i. Find a replacement node by choosing the previous lower priority node. Swap the bid part between this node and the replacement node, and maintain the node’s parent and children relations.
 ii. If the previous lower priority node is not found, find a replacement node by choosing the next higher priority node. Swap the bid part between this node and the replacement node, and maintain the node’s parent and children relations.
 iii. Delete the replacement node from the tree by applying the same process as above.

 b. If a node does not belong to the transaction set, keep the node in the tree.

 c. If the child subtrees become unbalance according to the balance parameter, first balance the subtrees by applying the IPR tree balance rotations. Then traverse the tree from the parent of this node to the root node and continue balancing the tree according to the balance parameter.
4.7. The Worst Case Complexity Analysis of the Four Auction Actions

<table>
<thead>
<tr>
<th>Actions</th>
<th>Worst Case Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>$4\lg(n)$</td>
</tr>
<tr>
<td>Withdraw</td>
<td>$4\lg(n)$</td>
</tr>
<tr>
<td>Price Quote</td>
<td>1</td>
</tr>
<tr>
<td>Clear</td>
<td>$2n\lg(n)$</td>
</tr>
</tbody>
</table>

Table 4.3. The worst case complexity analysis of the four auction actions in the IPR tree algorithm.

Table 4.3 lists the worst case complexity for the four auction actions when applying the IPR tree algorithm to manipulate bids. The insert and withdraw actions have the same worst case complexity $4\lg(n)$. The price quote action is constant time $O(1)$. The clear action takes $2n\lg(n)$ time and is the worst among the four auction actions.

5. Experimental Evaluation of the Two Algorithms

These two algorithms are written in C++. We test these two algorithms on UNIX machines with the size of bids ranging from 10,000 to 90,000. We perform four experiments to evaluate the complexity of the auction actions and study the impact of number of bids, bid quantity, clear interval and bid distribution on algorithm performance. These comparisons use CPU time as a performance measurement, and the CPU time is measured in seconds.
5.1. The Impact of the Number of Bids on Algorithm Performance

Figure 5.1. The impact of number of bids on algorithm performance.

<table>
<thead>
<tr>
<th>Number of Bids</th>
<th>The 4 Heap (seconds)</th>
<th>The IPR Tree (seconds)</th>
<th>Times (4 Heap / IPR Tree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.23</td>
<td>0.10</td>
<td>2.438</td>
</tr>
<tr>
<td>20000</td>
<td>0.51</td>
<td>0.19</td>
<td>2.705</td>
</tr>
<tr>
<td>30000</td>
<td>0.81</td>
<td>0.31</td>
<td>2.570</td>
</tr>
<tr>
<td>40000</td>
<td>1.09</td>
<td>0.42</td>
<td>2.587</td>
</tr>
<tr>
<td>50000</td>
<td>1.41</td>
<td>0.54</td>
<td>2.609</td>
</tr>
<tr>
<td>60000</td>
<td>1.71</td>
<td>0.69</td>
<td>2.481</td>
</tr>
<tr>
<td>70000</td>
<td>2.11</td>
<td>0.82</td>
<td>2.565</td>
</tr>
<tr>
<td>80000</td>
<td>2.43</td>
<td>0.93</td>
<td>2.609</td>
</tr>
<tr>
<td>90000</td>
<td>2.77</td>
<td>1.05</td>
<td>2.627</td>
</tr>
</tbody>
</table>

Table 5.1. The actual CPU time with different number of bids.

This experiment uses randomly generated multi-unit bids. High price bids and low price bids are mixed. Each bid quantity is also randomly generated between 1 and 10. 9 tests are performed with the number of bids ranging from 10,000 to 90,000.
Table 5.1 shows as the number of bids increases, the CPU time for both algorithms’ insert action also increases. The IPR tree algorithm is about three times faster than the 4-Heap algorithm. This result is due to their insert action complexity. For the 4-Heap algorithm, when a new bid arrives, in the worst case \((2q+1) \log (n)\) operations take place. For the IPR tree algorithm, the worst case for inserting a new bid is \(4\log (n)\).

For example, if we insert a new buy bid with quantity 6 into \(B_m\). If we apply the 4-Heap algorithm, in the worst case, \(13 \log (n)\) operations take place. If we apply the IPR tree algorithm, in the worst case \(4 \log (n)\) operations take place. The IPR tree algorithm is about 3 times faster than the 4-Heap algorithm, that is \(13\log (n) \approx 3 * 4\log (n)\). This explains why the IPR tree algorithm is more efficient than the 4-Heap algorithm for the insert action.

5.2. The Impact of Bid Quantity on Algorithm Performance

<table>
<thead>
<tr>
<th>Set</th>
<th>Bid Quantity</th>
<th>The 4-Heap (seconds)</th>
<th>The IPR Tree (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.229</td>
<td>0.085</td>
</tr>
<tr>
<td>2</td>
<td>1-100</td>
<td>0.233</td>
<td>0.101</td>
</tr>
<tr>
<td>3</td>
<td>1-500</td>
<td>0.246</td>
<td>0.177</td>
</tr>
<tr>
<td>4</td>
<td>1-1000</td>
<td>0.253</td>
<td>0.205</td>
</tr>
<tr>
<td>5</td>
<td>Exponential Distribution</td>
<td>0.227</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Table 5.2. The actual CPU time with different bid quantity.

Table 5.2 shows results for testing five sets of 10,000 bids with different bid quantity. The first set includes 10,000 single unit bids. The quantity of the bids in the second set is a randomly generated number between 1 and 100. For the third set, the quantity is a randomly generated number between 1 and 500. The quantity of the bids for the fourth set is between 1 and 1000. The fifth set is exponential distribution.
As the variations in bid quantity increases, the CPU time increases for both the 4-Heap algorithm and the IPR tree algorithm. Larger bid quantity variations have negative impact on the two algorithms’ performance.

For example, suppose there is one auction with 100 bids. Each bid quantity is one. We insert a new buy bid into \(B_{in} \) using 4-Heap algorithm. If this new buy bid quantity is one, in worst case \(3 \lg (n) \) operations take place. If this new bid quantity is 10, in worst case \(21 \lg (n) \) operations take place. The bigger variation in bid quantity incurs more bid movements, thus increases the computation cost.

The same logic applies to the IPR tree algorithm. For the IPR tree algorithm, the variation in bid quantity increases, the possibility to traverse more nodes becomes greater.

Exponential distribution of bid quantity refers to the situation as the bid quantity \(x \) increases, the possibility of such bids distributed in the auction \(P(x) \) decreases, and the cumulative distribution of such bids in the auction \(D(x) \) is close to 1.

![Figure 5.2. The exponential distribution.](image)

Given a rate of change \(\lambda \), the formula are:

\[
D(x) = 1 - \frac{(\lambda x)^0 e^{-\lambda x}}{0!} = 1 - e^{-\lambda x}
\]

\[
P(x) = D'(x) = \lambda e^{-\lambda x},
\]
In our exponential distribution experiment, we generate the bid quantity according to the formulas \(q = \frac{\ln(p)}{-\lambda} \) where \(\lambda = 0.001 \), and \(p \) is any random number between 0 and 1. The quantity generated is between 1 and 9,999. From Table 5.2, the CPU time of the exponential distribution is close to the CPU time of the random distribution of bid quantity between 1 and 100. The reason is small quantity bids generated by formulas \(q = \frac{\ln(p)}{-\lambda} \) occupy a much larger percentage than large quantity bids.

5.3. The Impact of the Clear Action on Algorithm Performance

<table>
<thead>
<tr>
<th>Clear Interval</th>
<th>The 4-Heap (seconds)</th>
<th>The IPR Tree (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.235</td>
<td>0.082</td>
</tr>
<tr>
<td>5000</td>
<td>0.236</td>
<td>0.076</td>
</tr>
<tr>
<td>10000</td>
<td>0.225</td>
<td>0.071</td>
</tr>
</tbody>
</table>

Table 5.3. The actual CPU time for different clear intervals.

<table>
<thead>
<tr>
<th>Bid Size</th>
<th>The 4-Heap (seconds)</th>
<th>The IPR Tree (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert & Clear (seconds)</td>
<td>90000</td>
<td>2.690</td>
</tr>
<tr>
<td>Clear (seconds)</td>
<td>90000</td>
<td>0.004</td>
</tr>
<tr>
<td>Clear / Insert & Clear (percentage)</td>
<td>90000</td>
<td>0.159%</td>
</tr>
</tbody>
</table>

Table 5.4. The percentage of clear action CPU time.

Table 5.3 shows the clear action slows the performance for both the 4-Heap algorithm and the IPR tree algorithm. For the IPR tree algorithm, the worst case complexity of the clear action is \(2n\lg(n) \). The clear action for the 4-Heap algorithm in the worst case takes constant time \(O(1) \).
From Table 5.4, the clear action occupies 14.8% of the total CPU time for the insert and clear action combined in the IPR tree algorithm. In the 4-Heap algorithm, the clear action occupies 0.2% of the total CPU time for the insert and clear actions combined.

However when considering the actual CPU time for the two algorithms in Table 5.3, the IPR tree algorithm takes only 0.975 seconds to insert 90,000 bids and clear its transaction set. The 4-Heap algorithm takes 2.69 seconds to insert 90,000 bids and clear its transaction set. Even though the actual clear action takes the IPR tree algorithm 0.144 seconds and takes the 4-Heap algorithm 0.004 seconds, the IPR tree algorithm is still more efficient than the 4-Heap algorithm in total CPU time spent when the insert and clear actions are combined.

5.4. The Impact of Bid Ordering on Algorithm Performance

In real market, bids do not always occur randomly. We don’t know what real buyers do, so we simulate two scenarios. A price converge happens when buyers and sellers try to win the auction by bidding their prices that are very close to the auction clearing price. A price diverge occurs when buyers and sellers’ bid prices are away from the auction clearing price.
We test 5 scenarios to compare the two algorithms’ performance. In these five scenarios, the number of bids is 10,000. The quantity of each bid is randomly generated between 1 and 10.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Bid Distributions</th>
<th>The 4-Heap (seconds)</th>
<th>The IPR Tree (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>Diverge</td>
<td>0.131</td>
<td>9.808</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Diverge</td>
<td>0.122</td>
<td>4.911</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>Converge</td>
<td>0.121</td>
<td>4.831</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>Converge</td>
<td>0.507</td>
<td>4.865</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>Random</td>
<td>0.492</td>
<td>0.089</td>
</tr>
</tbody>
</table>

Table 5.5. The actual CPU time for different bid distributions.

Figure 5.4. The different bid converge and diverge distributions.

The horizontal axis in Figure 5.4 is bid order, and the vertical axis is bid price. The shaded area identifies bids that transact. For scenario 1, 2, 3, and 4, the bid price is increased or decreased by 1 for each new bid.

The size of the transaction set has big impact on the IPR tree algorithm performance. The CPU time doubles when the size of the transaction set doubles. For scenario 1, all 10,000 bids are in the transaction set, while for scenarios 2 and 4, the transaction set has 5,000 bids. The increased CPU time is necessary because bids added to the transaction set are the ones that require Mth and $(M+1)$st prices to move.
The random bid distribution means high price bids and low price bids are mixed. From Table 5.5, the IPR tree algorithm is more efficient than the 4-Heap algorithm if the bids are randomly distributed.

For the IPR tree algorithm, the increasing or decreasing arrival order of bids has a big negative impact on performance. When the bids are arrived in either of these two orders, the tree becomes a linear chain of nodes, and the same operations take linear worst case time. The performance suffers due to more CPU time spent on traversal, insertion and balance. The CPU time for these scenarios is much greater than the random bid distribution scenario.

For the 4-Heap algorithm, the increasing or decreasing arrival order of bids has a big positive impact on CPU time in various scenarios except scenario 4. Below we explain the differences among these scenarios.

In scenario 3, buy and sell bids are not in the transaction set, thus there is no involvement with S_{in} and B_{in} heaps. All the sell bids are in S_{out} and S_{out} is a min-heap structure. All the buy bids are in B_{out} and B_{out} is a max-heap structure. The sell bids are arrived in decreasing order and have already maintained the min-heap structure. The buy bids are arrived in increasing order and have already maintained the max-heap structure. Since no further operations are needed to manipulate the heap property for S_{out} and B_{out}, the CPU time is smallest among the five scenarios. Similar logic explains why scenarios 2 and 3 both have better performance than the random bid distribution.

In scenario 4, the first 5,000 bids are not in the transaction set. The sell bids are in S_{out} and the buy bids are in B_{out}. The later 5,000 bids are in the transact set. Repetitious bid insert and withdraw actions take place among the four heaps for the later 5,000 bids. For example, if the 5001st bid is a buy bid, the 4-Heap algorithm pops one sell bid from S_{out} and pushes this bid into S_{in}. If the 5002nd bid is a sell bid, the 5002nd bid is inserted into S_{in}, and the original bid in S_{in} has to be removed and reinserted into S_{out}. This repetition explains the biggest CPU time spent compared with other scenarios.
6. Conclusions

Compared with the 4-Heap algorithm, the IPR tree algorithm has some advantages. In the IPR tree algorithm, the bids can be inserted and cleared much faster than in the 4-Heap algorithm if the bids are randomly distributed. In addition, the IPR tree algorithm has storage advantages. The IPR tree algorithm requires much less memory to process the bids. In our implementation, we use arrays to represent the four heaps. The 4-Heap algorithm memory allocation is about 4 times as big as the IPR tree algorithm memory allocation.

The IPR tree allows stored data to be processed in many different ways relatively efficiently, such as in-order traversal, pre-order traversal, and post-order traversal. The heap structure does not provide this benefit.

However, the IPR tree algorithm has some constraints. If the bids arrive in increasing or decreasing order, the algorithm’s performance deteriorates quickly.

Thus, there is no definite answer as to which algorithm is better. Whenever we apply auction algorithms in real world applications, we need to study the environment characteristics, including the expected bid distributions and the auction’s clear policies. According to these studies, we can choose the proper algorithm to achieve our goal – providing a fast and efficient online service to customers.
7. References

