ABSTRACT

TESKE, JESSE ALEXANDER. Natural Product Synthesis via [2+2+2] Cyclotrimerization Reactions. (Under the direction of Dr. Alex Deiters).

The transition metal mediated [2+2+2] cyclotrimerization reaction of alkynes is a highly convergent approach to the synthesis of polysubstituted carbo- and heterocyclic aromatic ring systems. However, few examples of the application of cyclotrimerization reactions in natural product synthesis have been reported. In order to supplement the understanding of various aspects of the cyclotrimerization chemistry such as reactivity, regioselectivity, and chemoselectivity of advanced diyne intermediates, we explored the development of the [2+2+2] cyclotrimerization reaction towards benzene and pyridine derivatives as well as its application to the total synthesis of natural products.

As an approach to solve the chemoselectivity issues associated with the cyclotrimerization reaction, a solid supported cyclotrimerization reaction was utilized as the key step in the regioselective synthesis of an indanone natural product in only 11 steps. The development of microwave assisted nickel catalyzed cyclotrimerization reactions allowed for the rapid synthesis of fused benzene ring systems and led to the total synthesis of the isoquinoline natural product illudinine in only eight steps. Several strategies towards the synthesis of anthraquinone and anthracycline natural products were investigated. The efficiency of these reactions was sensitive to both the electronic and steric properties of the investigated diynes. A novel approach to the tricyclic cannabinoid ring structure via the cyclotrimerization reaction was developed and led to the total synthesis of three cannabinoid natural products all in >20% overall yield. Furthermore, easy access to cannabinoid analogues is possible with this strategy. Initial investigations into the synthesis of four
neolignan natural products from a common precursor were accomplished. The
cyclotrimerization reaction successfully provided the core structures; however, subsequent steps to yield the natural products are needed.

With respect to pyridine derivatives, the syntheses of the *Streptomyces* anticancer natural products streptonigrin and lavendamycin were explored. Several model routes, including the use of ynamides, were initiated to access the core structures, and further examination into the substitution of the diynes is necessary to realize the total synthesis of these two natural products. Attempts to synthesize two lycopodium alkaloids, lycopadine A and lycodine, via the cyclotrimerization reaction of alkyne-nitriles have been studied. However, access to the requisite alkyne-nitriles for the cyclotrimerization reaction has been problematic.
Natural Product Synthesis via [2+2+2] Cyclotrimerization Reactions

by

Jesse Alexander Teske

A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Chemistry

Raleigh, North Carolina

2009

APPROVED BY:

________________________________ ______________________________
Dr. Alex Deiters Dr. Daniel L. Comins
Committee Chair

_______________________________ __________________________
Dr. Jonathan S. Lindsey Dr. David Shultz
DEDICATION

To my father, for nourishing my interest in science…

To my mother, for support and encouragement…

And to my wife, for unfailing love and understanding…
BIOGRAPHY

The author, Jesse Alexander Teske, was born in Monterey, CA on November 18, 1982 to Dewey and Dori Teske. After living briefly in Connecticut and Virginia, he moved to Charleston, SC at the age of three and stayed through high school. After high school, Jesse attended the University of Georgia and graduated magna cum laude with honors with a BSCHEM degree in Chemistry and a BS degree in Biochemistry and Molecular Biology. During his undergraduate research under the direction of Professor George Majetich, his passion for Organic Chemistry developed and inspired him to pursue graduate studies in that discipline.

In 2004, Jesse began his graduate career at North Carolina State University under the supervision of Professor Alex Deiters. In July of 2005, Jesse married his high school sweetheart, Amber Mincey. Upon completion of his Ph.D. in 2009, he began a postdoctoral research position at Vanderbilt University under the direction of Professor Gary Sulikowski.
ACKNOWLEDGEMENTS

There are quite a few people worth mentioning from whom I have received help throughout the course of my education. First, I would like to thank my advisor, Dr. Alex Deiters, for relaying some of the finer intricacies of being an organic chemist, for the independence in the lab, and for the high expectations that will ultimately make me a better and more successful scientist.

My time in graduate school was enriched by the distinctive personalities of Dabney Hall. The members of the Deiters group, especially Doug, Ramesh, Wesleigh, Andrew, and Yan have contributed to my growth as a scientist as well as provided much needed comic relief. I thank the members of the Melander group, especially The Rob, EB, and VB; the Comins group; and the Lindsey group.

Finally, I would not be who or where I am today without my family. To my Mom and Dad, thank you for allowing me to choose my own path as you provided support and advice that continues to this day. To my brother, thanks for introducing me to things outside of school. And to my wife, you have stood by me these last five years and have provided me with your love, understanding, friendship, and support. This achievement is as much yours as it is mine.
TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

LIST OF SCHEMES ... xv

CH 1: The Transition Metal Catalyzed [2+2+2] Cyclotrimerization Reaction ...1

1.1 [2+2+2] Cyclotrimerization Reactions Towards Benzene Derivatives1
 1.1.1 Background and Mechanism ..1
 1.1.2 Regioselectivity of the Cyclotrimerization Reaction3
 1.1.3 Chemoselectivity in Cyclotrimerization Reactions7

1.2 [2+2+2] Cyclotrimerization Reactions Towards Pyridine Derivatives9
 1.2.1 Background and Mechanism ...9
 1.2.2 Regioselectivity of the Cyclotrimerization Reaction11
 1.2.3 Chemoselectivity of the Cyclotrimerization Reaction14

1.3 Natural Product Synthesis via [2+2+2] Cyclotrimerization Reactions15
 1.3.1 Synthesis of Benzene Containing Natural Products15
 1.3.2 Synthesis of Pyridine Containing Natural Products21

1.4 General Cyclotrimerization Considerations ...23

1.5 Microwave-assisted Cyclotrimerization Reactions25

CH 2: Total Synthesis of an Indanone Natural Product ..31

2.1 Background ..31
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Diyne Synthesis</td>
<td>33</td>
</tr>
<tr>
<td>2.3 Cyclotrimerization Studies and Completion of the Synthesis</td>
<td>35</td>
</tr>
<tr>
<td>2.4 Summary</td>
<td>38</td>
</tr>
<tr>
<td>2.5 Experimental</td>
<td>39</td>
</tr>
<tr>
<td>CHAPTER 3: Development of Microwave Assisted [2+2+2] Cyclotrimerization Reactions: Total Synthesis of Illudinine</td>
<td>47</td>
</tr>
<tr>
<td>3.1 Microwave Assisted Organic Synthesis</td>
<td>47</td>
</tr>
<tr>
<td>3.2 Nickel-catalyzed [2+2+2] Cyclotrimerization Reactions</td>
<td>50</td>
</tr>
<tr>
<td>3.2.1 Nickel-catalyzed [2+2+2] Cyclotrimerization Reactions in Literature</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2 Optimization of the Microwave-mediated Nickel-catalyzed Cyclotrimerization Reaction</td>
<td>52</td>
</tr>
<tr>
<td>3.2.3 Scope of the Microwave-mediated Nickel-catalyzed Cyclotrimerization Reaction</td>
<td>54</td>
</tr>
<tr>
<td>3.2.4 Development of Open-Vessel Microwave-Mediated [2+2+2] Cyclotrimerization Reactions</td>
<td>56</td>
</tr>
<tr>
<td>3.3 Total Synthesis of Illudinine</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1 Background and Retrosynthetic Analysis</td>
<td>59</td>
</tr>
<tr>
<td>3.3.2 Model Studies towards Illudinine</td>
<td>61</td>
</tr>
<tr>
<td>3.4 Total Synthesis of Illudinine</td>
<td>66</td>
</tr>
<tr>
<td>3.5 Summary</td>
<td>68</td>
</tr>
<tr>
<td>3.6 Experimental</td>
<td>69</td>
</tr>
</tbody>
</table>
CHAPTER 4: Progress Towards the Total Synthesis of Anthraquinone Natural Products

4.1 Background

4.1.1 The Anthracycline Antibiotics

4.1.2 Synthetic Approaches Towards the Anthracycline Antibiotics

4.2 Synthesis of Anthraquinone Natural Products

4.2.1 Towards the Synthesis of 1,4-Dihydroxyanthraquinone Natural Products

4.2.2 Installation of Hydroxy Groups on Anthraquinone

4.2.3 Investigation of Alternative Baeyer-Villiger Substrates

4.2.4 Alternative Methods for Phenol Introduction

4.3 Towards the Synthesis of the Anthracycline Tetracylic Core Structure

4.3.1 A [2+2+2] Cyclotrimerization/Ring Closing Metathesis Approach

4.3.2 [2+2+2] Cyclotrimerization/RCM Model Study Towards the Anthracyclinone Core

4.3.3 [2+2+2] Cyclotrimerization/RCM Model Study Towards the Pyrromycinone Core

4.4 Summary and Future Directions

4.5 Experimental

CHAPTER 5: A Cyclotrimerization Approach to Cannabinoids
5.1 Background ..165

5.1.1 Cannabinoids ..165

5.1.2 Retrosynthetic Analysis and Cyclotrimerization Studies167

5.2 Model Studies ..171

5.2.1 Diyne Synthesis ...171

5.2.2 Completion of Cannabinol Model Study174

5.3 Total Synthesis of Cannabinol, Cannabinol Methyl Ether, and Cannabinodiol ...176

5.3.1 Cannabinol and Cannabinol Methyl Ether176

5.3.2 Cannabinodiol ...179

5.4 Summary ...181

5.5 Experimental ..182

CHAPTER 6: Progress Towards the Total Synthesis of Neolignan Natural Products ..204

6.1 Background and Retrosynthetic Analysis204

6.1.1 Neolignan Natural Products ...204

6.1.2 Retrosynthetic Analysis ...205

6.2 Early Model Studies Toward Phenol Introduction207

6.3 Synthesis of the Common Intermediate 474209

6.3.1 Early Synthetic Attempts Towards 474209

6.3.2 Approach to a Common Intermediate Utilizing an Allyl-Group Surrogate ...212
CHAPTER 8: Progress Towards the Total Synthesis of Lycopodium Alkaloids

8.1 The Lycopodium Alkaloids

8.1.1 Background

8.1.2 Selected Syntheses of Lycopodium Alkaloids

8.2 Progress Towards the Total Synthesis of Lycopladine A

8.2.1 Background and Retrosynthetic Analysis

8.2.2 Synthesis of Model Alkyne-Nitriles Towards Lycopladine A

8.2.3 Cyclotrimerization Studies Towards Lycopladine A

8.3 Progress Towards the Total Synthesis of Lycodine

8.3.1 Background and Retrosynthetic Analysis

8.3.2 Current Progress Towards Lycodine

8.4 Summary and Future Directions

8.4.1 Lycopladine A

8.4.2 Lycodine

8.5 Experimental

References

x
LIST OF TABLES

Table 1.1 Ligand effect on regiochemistry ...12
Table 2.1 Comparison of NMR spectra for natural and synthetic 16137
Table 3.1 Radiation energies compared to bond energies48
Table 3.2 Optimization of microwave-mediated [2+2+2] cyclotrimerization reaction under Ni(CO)₂(PPh₃)₂ catalysis53
Table 3.3 Microwave-mediated Ni(CO)₂(PPh₃)₂ catalyzed cyclotrimerization reactions towards indanes and isoindolines54
Table 3.4 Microwave-mediated Ni(CO)₂(PPh₃)₂ catalyzed cyclotrimerization reactions of electron-deficient diynes56
Table 3.5 Closed- and open-vessel [2+2+2] cyclotrimerization reactions towards benzene formation58
Table 3.6 Cyclotrimerization reactions of protected amines 212-216 and 219 with the model diyne 193 ..62
Table 4.1 Cyclotrimerization reaction results with the dialdehyde 313108
Table 4.2 Cyclotrimerization reaction results with the diacetate 317109
Table 4.3 Cyclotrimerization reaction results with the diketone 316110
Table 4.4 Optimization of the cyclotrimerization reaction with the diketone 316 under Ni-catalysis ...111
Table 4.5 Oxidation of the diol 325 to the dialdehyde 327113
Table 4.6 Cyclotrimerization reaction of the diyne 339117
Table 4.7	Curtius rearrangement of the diacid 333 .. 121
Table 5.1	Investigation of the [2+2+2] cyclotrimerization key step with the diynes 416-421 .. 169
Table 5.2	Comparison of the 1H NMR spectrum of synthetic and natural 400 178
Table 7.1	Cyclotrimerization reaction of the diyne 602 .. 278
Table 7.2	Oxidation of the benzylic ether 611 .. 279
Table 8.1	Desilylation of 688 .. 313
Table 8.2	Cyclotrimerization studies of 5-hexynenitrile (706) ... 317
Table 8.3	Baylis-Hillman approach towards 724 ... 321
Table 8.4	Suzuki-Miyaura reaction of the iodoenone 687 .. 322
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Representative indanone natural products 158-161</td>
</tr>
<tr>
<td>2.2</td>
<td>Dimer 166 and trimer 167 by-products</td>
</tr>
<tr>
<td>3.1</td>
<td>Inverted temperature gradient produced during microwave heating (left) compared to oil bath heating (right)</td>
</tr>
<tr>
<td>3.2</td>
<td>Clitocybe illudens</td>
</tr>
<tr>
<td>4.1</td>
<td>Anthracycline numbering and representative structures</td>
</tr>
<tr>
<td>4.2</td>
<td>Structures of aklavinone (255) and pyrromycinone (256)</td>
</tr>
<tr>
<td>4.3</td>
<td>Possible Diels-Alder disconnections</td>
</tr>
<tr>
<td>4.4</td>
<td>Accessible 1,4-dihydroxyanthraquinone natural products</td>
</tr>
<tr>
<td>4.5</td>
<td>Anthraquinone structure necessary for benzylic hydroperoxide rearrangement</td>
</tr>
<tr>
<td>5.1</td>
<td>Examples of naturally occurring cannabinoids</td>
</tr>
<tr>
<td>5.2</td>
<td>Model diynes for cannabinol synthesis</td>
</tr>
<tr>
<td>6.1</td>
<td>Structures of magnolol (465) and honokiol (466)</td>
</tr>
<tr>
<td>6.2</td>
<td>Structures of simonsinol (467), macranthol (468), and dunnianol (469)</td>
</tr>
<tr>
<td>7.1</td>
<td>Streptonigrin (558)</td>
</tr>
<tr>
<td>7.2</td>
<td>Minimal structural requirements for biological activity</td>
</tr>
<tr>
<td>7.3</td>
<td>Lavendamycin (580)</td>
</tr>
<tr>
<td>7.4</td>
<td>Model diynes towards streptonigrin</td>
</tr>
</tbody>
</table>
Figure 7.5 Desired NOE signals for regioisomer determination..........................283
Figure 8.1 Representative lycopodium alkaloid structures for the four classes........308
LIST OF SCHEMES

Scheme 1.1	General [2+2+2] cyclotrimerization reaction ..1
Scheme 1.2	Possible [2+2+2] cyclotrimerization mechanisms2
Scheme 1.3	Sequential insertion and metathesis cascade reaction mechanisms..............3
Scheme 1.4	Regiochemical possibilities of [2+2+2] cyclotrimerizations4
Scheme 1.5	Partially intramolecular version of the [2+2+2] cyclotrimerization reaction enabling regiocontrol ..5
Scheme 1.6	Ligand control of regioselectivity in cyclotrimerization reactions5
Scheme 1.7	Electronic effect on regioselectivity ..6
Scheme 1.8	Electronic versus steric influences on regioselectivity6
Scheme 1.9	Regiocontrol under CpCo(CO)_2 catalysis ..7
Scheme 1.10	Chemoselectivity issues in the partially intramolecular cyclotrimerization reaction ...7
Scheme 1.11	Preformed metallacycle in [2+2+2] cyclotrimerization reaction8
Scheme 1.12	Utility of BTMSA as cyclotrimerization partner ...8
Scheme 1.13	Catalytic synthesis of pyridine derivatives ...9
Scheme 1.14	Mechanism of the [2+2+2] cyclotrimerization reaction towards pyridines10
Scheme 1.15	Zr/Ni mechanism for pyridine formation ..10
Scheme 1.16	Regiochemical outcome of the [2+2+2] cyclotrimerization reaction towards pyridines ...11
Scheme 1.17 Regioselective partially intramolecular pyridine synthesis12
Scheme 1.18 Regioselective alkyne-nitrile cyclotrimerization ..13
Scheme 1.19 Regiocontrolled synthesis of 2,2’-bipyridines ...13
Scheme 1.20 Potential electronic control of regioselectivity ..14
Scheme 1.21 Total synthesis of *dl*-estrone (61) ...16
Scheme 1.22 Witulski’s synthesis of hyellazole (64) and clausine C (67)16
Scheme 1.23 Synthesis of antiostatin A₁ (70) ...17
Scheme 1.24 Aryne [2+2+2] route to taiwanins C (75) and E (76)17
Scheme 1.25 Total synthesis of (−)-bruguierol A (80) ..18
Scheme 1.26 Intramolecular cyclotrimerization reactions towards
calamelanolactone (85) and pterosin Z (86) ..18
Scheme 1.27 Synthesis of (R)-alcyopterosin E (89) ...19
Scheme 1.28 Synthesis of (+)-rubiginone B₂ (93) ..19
Scheme 1.29 Sorenson’s synthesis of racemic viridin (98) ...20
Scheme 1.30 Synthesis of the advanced intermediate 101 towards
sporolide B via [2+2+2] cyclotrimerization reaction ...21
Scheme 1.31 Vollhardt’s synthesis of vitamin B₆ ...22
Scheme 1.32 Synthesis of ergot alkaloids ...22
Scheme 1.33 Total synthesis of dehydrotylophorine (115) and
(±)-tylophorine (116) ..23
Scheme 1.34 Effect of alkyne tether on cyclization ...24
Scheme 1.35 Purely thermal microwave mediated cyclotrimerization reaction25
Scheme 1.36 The first transition metal catalyzed microwave mediated cyclotrimerization reaction..25

Scheme 1.37 Synthesis of 5,6,7,8-tetrahydro-1,6-naphthyridines..26

Scheme 1.38 Solid-phase synthesis of benzenes and pyridines under microwave irradiation...27

Scheme 1.39 Synthesis of phenanthridines, anthracenes, and azaanthracenes28

Scheme 1.40 Synthesis of 6-pyridylpurines ..28

Scheme 1.41 Utilizing silyl-tethered diynes for pyridine synthesis29

Scheme 1.42 Synthesis of 6-oxa-allocolchicinoid derivatives ...29

Scheme 2.1 Retrosynthetic analysis of indanone 161 ...32

Scheme 2.2 Synthesis of the aldehyde 172 ...33

Scheme 2.3 Synthesis of the 1,6-diyne 175 ..34

Scheme 2.4 Attempted cyclotrimerization of the trityl ether 174 ..35

Scheme 2.5 Cyclotrimerization of the acetate 177 and conversion to the natural product analogue 179 ...36

Scheme 2.6 Completion of the synthesis of the indanone 161 ..36

Scheme 3.1 Retrosynthetic analysis of illudinine (205) ...60

Scheme 3.2 Synthesis of the protected homopropargyl amines 212-21661

Scheme 3.3 Addition of MeLi/CeCl₃ into the diesters 202 and 19563

Scheme 3.4 Addition of MeLi/CeCl₃ into the diester indanes 217, 218, 221, and 22264

Scheme 3.5 Conversion of the tertiary alcohol 227 into the isoquinoline 23165
Scheme 3.6 Synthesis of the diyne 233 ...66
Scheme 3.7 Total synthesis of illudinine (205) ..67
Scheme 4.1 Marschalk reaction mechanism ..94
Scheme 4.2 Krohn’s synthesis of (R)-rhodomycinone using the chiral
1,4-dialdehyde 252 ..95
Scheme 4.3 Kishi’s Keto-ester cyclization towards aklavinone (255)95
Scheme 4.4 Kinetic control of keto-ester cyclization ...96
Scheme 4.5 Tautomeric forms of 1,4-dihydroxyanthraquinone96
Scheme 4.6 Intermolecular nucleophilic addition towards
7,9-bisdeoxycarminomycinone (265) ..97
Scheme 4.7 Krohn’s intramolecular nucleophilic addition towards the known
daunomycinone intermediate (267) ..97
Scheme 4.8 Michael addition/Friedel-Crafts approach to daunomycinone98
Scheme 4.9 Anionic coupling towards aklavinone (255) ..98
Scheme 4.10 Diels-Alder approaches to the A ring ...100
Scheme 4.11 Regioselective Diels-Alder approach to the B ring100
Scheme 4.12 o-Quinodimethide strategy in C ring synthesis
Towards idarubicinone (288) ...101
Scheme 4.13 Friedel-Crafts approaches toward the C ring102
Scheme 4.14 Disconnecting via the “cobalt way” gives the
diyne 295 and the monoyne 296 ...102
Scheme 4.15 [2+2+2] cyclotrimerization reactions towards anthracyclinone core structures..............................103

Scheme 4.16 Variables explored in the [2+2+2] cyclotrimerization reaction towards anthraquinones.................................105

Scheme 4.17 Direct installation of an oxygen as an ether and attempted cyclotrimerization reactions..................................106

Scheme 4.18 Preparation of diynes for the Baeyer-Villiger approach...107

Scheme 4.19 Attempted cyclotrimerization reactions with the acetals 312 and 314...108

Scheme 4.20 Synthesis of the dialdehyde 327 for a Baeyer-Villiger rearrangement ..112

Scheme 4.21 Baeyer-Villiger rearrangement of the dialdehyde 327...114

Scheme 4.22 Decomposition of the tetrahedral intermediate 330...115

Scheme 4.23 Confirmation of the Baeyer-Villiger rearrangement product 333 ...115

Scheme 4.24 Synthesis of the methyl ketone derivatives 337-339 ..116

Scheme 4.25 Cyclotrimerization reaction of the diketone 338 ..116

Scheme 4.26 Attempted Baeyer-Villiger rearrangement of 341 and 342 ...118

Scheme 4.27 Iodoalkynes in [2+2+2] cyclotrimerization reactions ..118

Scheme 4.28 Preparation of iodoalkynes 346 and 347 ..119

Scheme 4.29 Cyclotrimerization reaction of the iodoalkyne 346 ...119

Scheme 4.30 Conversion of an aryl-silicon bond into an aryl-oxygen bond ...120

Scheme 4.31 An aryl-silicon approach to phenols ..120
Scheme 4.32 A Curtius rearrangement approach to diamines ..121
Scheme 4.33 Conversion of the diamine 350 into the
1,4-dihydroanthraquinone 351 ..122
Scheme 4.34 Synthesis of the diynes 354 and 355 ..123
Scheme 4.35 Cyclotrimerization reaction of the diester diyne 354123
Scheme 4.36 Cyclotrimerization reaction of the monoester diyne 355124
Scheme 4.37 Determination of the regioisomeric ratio of the
cyclotrimerization products 357a and 357b ...124
Scheme 4.38 Attempted addition of organometallic reagents to the diester 356125
Scheme 4.39 Synthesis and cyclotrimerization reaction of the diester 361125
Scheme 4.40 Addition of methylcerium to the diester 362126
Scheme 4.41 Attempted desilylation of the anthraquinone 340126
Scheme 4.42 Attempted desilylation/rearrangement of the anthraquinone 340127
Scheme 4.43 Synthesis of the diol 367 ...127
Scheme 4.44 [2+2+2] cyclotrimerization/RCM retrosynthetic analysis
of the anthracyclinones ...128
Scheme 4.45 Synthesis of monoynes for the [2+2+2]
cyclotrimerization/RCM model study ...130
Scheme 4.46 Cyclotrimerization reactions with the monoynes 375, 378, and 381......131
Scheme 4.47 [2+2+2] cyclotrimerization/RCM model study132
Scheme 4.48 Synthesis of the diynes 391 and 392 for the
pyrromycinone model study ..133
Scheme 4.49 Cyclotrimerization reactions with the nonsymmetrical diyne 392134

Scheme 4.50 Potential future routes to the 1,4-dihydroxyanthraquinone natural products ..135

Scheme 4.51 Marschalk approach to the tetracyclic core of the anthracyclines135

Scheme 5.1 Synthetic routes to cannabinoids (400) ..166

Scheme 5.2 Retrosynthetic analysis of cannabinoids (400) ..167

Scheme 5.3 Attempted synthesis of the diyne 411 ..168

Scheme 5.4 Modified retrosynthetic analysis of cannabinoids (400) ..168

Scheme 5.5 Synthesis of the diyynes 416-421 ...169

Scheme 5.6 Sonogashira coupling route to the model diyynes 428 and 429 ..172

Scheme 5.7 Stille coupling route towards the diyne 439 ..172

Scheme 5.8 Metal-halogen exchange route towards the benzaldehyde 440 ..173

Scheme 5.9 Salicylaldehyde route to the diyynes 428 and 429 ..173

Scheme 5.10 Corey-Fuchs route to the diyne 428 ..174

Scheme 5.11 Colvin rearrangement towards the diyne 428 ..174

Scheme 5.12 Model cyclotrimerization reactions towards the pyrans 447 and 448175

Scheme 5.13 Desilylation of the pyrans 447 and 448 ..175

Scheme 5.14 Installation of gem-dimethyl substituent at C-6 ...176

Scheme 5.15 Deprotection of the arylmethyl ether 453 ...176

Scheme 5.16 Total synthesis of cannabinoids methyl ether (401)

 and cannabinoids (400) ..178

Scheme 5.17 Attempted synthesis of cannabinodiol ...179
Scheme 5.18 Attempted synthesis of the bis-mesylate 463 .. 180
Scheme 5.19 Synthesis of the bismesylate 463 ... 180
Scheme 5.20 Completion of the total synthesis of cannabinodiol (402) 180
Scheme 5.21 Synthesis of azacannabinoids ... 181
Scheme 6.1 Previous syntheses of magnolol (465) .. 205
Scheme 6.2 Retrosynthetic analysis of magnolol (465) ... 206
Scheme 6.3 Model study towards magnolol core structure .. 207
Scheme 6.4 Model study towards the bisphenol moiety of the triphenyl-neolignans 208
Scheme 6.5 Attempts to substitute 4-allylanisole (475) ... 209
Scheme 6.6 Directed-ortho-metalation reactions with 485 ... 210
Scheme 6.7 Attempted synthesis of the phenol 474 and deprotection of the MOM-ether 489 .. 211
Scheme 6.8 Synthesis of the allyl-group surrogate 494 .. 212
Scheme 6.9 Synthesis of the diyne 496 .. 213
Scheme 6.10 Attempted synthesis of the selenide 498 ... 214
Scheme 6.11 Cyclotrimerization reaction using allylacetylene .. 215
Scheme 6.12 Utilizing pent-4-yn-1-ol in the cyclotrimerization event 216
Scheme 6.13 Conversion of the pyran 471 to the methyl-ketone 506 .. 216
Scheme 6.14 Attempts to manipulate the methyl-ketone 506 ... 217
Scheme 6.15 Isomerization of the pyrone 509 ... 217
Scheme 6.16 Synthesis and Baeyer-Villiger rearrangement of the triol 512 218
Scheme 6.17	Use of the bis-TBS-ether 514 towards magnolol	219
Scheme 6.18	Attempted desilylation of 502	220
Scheme 6.19	Retrosynthetic analysis of simonsinol (467)	220
Scheme 6.20	Attempted synthesis of the diyne 525	221
Scheme 6.21	Progress towards simonsinol (467)	222
Scheme 6.22	Alternative synthesis of 528	223
Scheme 6.23	Attempted iodide elimination towards simonsinol	224
Scheme 6.24	Attempted Chugaev elimination/Claisen rearrangement	225
Scheme 6.25	Retrosynthetic analysis of dunnianol (469)	225
Scheme 6.26	Synthesis of the propargyl alcohol 540a	226
Scheme 6.27	Synthesis of the diyne 538a	227
Scheme 6.28	Cyclotrimerization reaction of the diyne 538a	228
Scheme 6.29	Retrosynthetic analysis of macranthol (468)	229
Scheme 6.30	Synthesis of the diyne 551 and the monoynes 548a and 548b towards the synthesis of macranthol	230
Scheme 6.31	Cyclotrimerization reaction of the diyne 551	231
Scheme 6.32	Dimerization of the diyne 551	231
Scheme 6.33	Proposed routes to simonsinol, dunnianol, and macranthol	233
Scheme 7.1	Weinreb’s total synthesis of streptonigrin	269
Scheme 7.2	Kende’s approach to streptonigrin	270
Scheme 7.3	Boger’s formal synthesis of streptonigrin	271
Scheme 7.4	Kende’s synthesis of lavendamycin methyl ester	272
Scheme 7.5	Boger’s synthesis of lavendamycin methyl ester	273
Scheme 7.6	Behforouz’s synthesis of lavendamycin methyl ester	273
Scheme 7.7	Retrosynthetic analysis of streptonigrin (558)	275
Scheme 7.8	Attempted oxidations of 603	276
Scheme 7.9	Attempted synthesis of the ester 607	276
Scheme 7.10	Synthesis of the diyne 602	277
Scheme 7.11	Attempted synthesis of the amide 614 and the hydrazide 615	279
Scheme 7.12	Attempted rearrangement of the acid 616	281
Scheme 7.13	Comparison of cyclotrimerization strategies	282
Scheme 7.14	Synthesis of the ynamide 622	282
Scheme 7.15	Cyclotrimerization reaction of the diyne 622	283
Scheme 7.16	Attempted cyclotrimerization reaction of 622 with acetonitrile	284
Scheme 7.17	Attempts to open the pyran ring of 623a	284
Scheme 7.18	Attempted synthesis of the diyne 630	285
Scheme 7.19	Synthesis of the ynamide 633	286
Scheme 7.20	Modified route to the ynamide 630	287
Scheme 7.21	Attempted synthesis of the ynamide diyne 641	287
Scheme 7.22	Retrosynthesis of lavendamycin (580) and model study towards β-carbolines 646	289
Scheme 7.23	Attempted synthesis of the diyne 645	290
Scheme 7.24	Alternative attempted synthesis of the diyne 645	290
Scheme 7.25	Proposed mechanism for the formation of the indole 651	291
Scheme 7.26 Current route towards the diyne 645 ..291
Scheme 7.27 Future model study towards the synthesis of streptonigrin292
Scheme 7.28 Future model study towards lavendamycin ...293
Scheme 8.1 First enantioselective synthesis of lycopodine ...308
Scheme 8.2 Toste’s synthesis of fawcettimine ...309
Scheme 8.3 Sarpong’s synthesis of lyconadin A ...309
Scheme 8.4 First synthesis of (+)-lycopladine A ..310
Scheme 8.5 Retrosynthetic analysis of (+)-lycopladine A ..311
Scheme 8.6 Synthesis of the model alkyne-nitrile 686 ...311
Scheme 8.7 Attempted enolether formations from 688 ..312
Scheme 8.8 Use of 693 in the 1,4-addition of (trimethylsilyl)acetonitrile313
Scheme 8.9 Attempted synthesis of 697 ...314
Scheme 8.10 Synthesis of the alkyne-nitrile 699 ...314
Scheme 8.11 Attempted cyclotrimerization reactions of 689 and 695315
Scheme 8.12 Cyclotrimerization reaction of the alkyne-nitrile 699316
Scheme 8.13 Heathcock’s synthesis of (±)-lycodine (663) ...318
Scheme 8.14 Retrosynthetic analysis of lycodine (663) and structure of complanidine A (717) ...319
Scheme 8.15 Attempted Cu-catalyzed addition of TMSA into the enamine 719320
Scheme 8.16 Introduction of the amine side chain via Sonogashira coupling323
Scheme 8.17 Future work towards lycopladine A ...323
Scheme 8.18 Future work towards the model alkyne-nitrile 733324
CHAPTER 1: The Transition Metal Catalyzed [2+2+2] Cyclotrimerization Reaction

1.1 [2+2+2] Cyclotrimerization Reactions Towards Benzene Derivatives

1.1.1 Background and Mechanism

The [2π + 2π + 2π]-electron cyclotrimerization of alkynes into benzene derivatives is a powerful tool for the construction of polysubstituted aromatic compounds (Scheme 1.1). Compared with traditional methods for preparing substituted benzenes, e.g. electrophilic aromatic substitution or ortho-metallation, the [2+2+2] cyclotrimerization can offer a more flexible approach limited solely by alkyne synthesis. In a single operation multiple rings and three new carbon-carbon bonds can be formed.\(^1\)\(^-\)\(^9\)

![Scheme 1.1. General [2+2+2] cyclotrimerization reaction.](image)

Discovered by Berthelot in 1866, the first known cyclotrimerization reaction produced benzene from acetylene at ~400 °C (without the need of any metal catalyst).\(^10\) Such high temperatures essentially preclude the thermal [2+2+2] cyclotrimerization from synthetic utility despite the reaction being exothermic in nature.\(^11\) A major advance came in the late 1940’s when Reppe et al. reported the first transition metal catalyzed [2+2+2] cyclotrimerization reaction in which acetylene was converted into benzene in the presence of \((\text{PPh}_3)_2\text{Ni(CO)}_2\).\(^12\) Despite the formation of cyclooctatetraene as the major product, the discovery that under certain conditions transition metals could mediate the [2+2+2] cyclotrimerization of alkynes opened the door for the reaction to become synthetically useful.
Following this seminal finding, many other transition metals besides Ni have been identified as catalysts for the cyclotrimerization of alkynes including Co,13 Ru,14 Rh,15-17 and Pd.18

Depending upon the metal catalyst used, the reaction course can proceed by one of several mechanisms.19 With cobalt based catalysts, the most common mechanism involves the metallacyclopentadiene intermediate 2 formed by the coordination of two alkyne molecules to the metal surface as in 1 followed by oxidative cyclization (Scheme 1.2).1, 20 Once coordinated to the metal center as in 3, the third alkyne is added via a Diels-Alder type [4+2] cycloaddition to give the cobaltanorbornadiene intermediate 4. The final benzene product 5 is released after reductive elimination that also regenerates the catalyst.

\textbf{Scheme 1.2.} Possible [2+2+2] cyclotrimerization mechanisms. L = ligand.

When CpRuCl catalyst systems are employed, insertion of the third alkyne proceeds via a formal [5+2] cycloaddition between ruthenacycle 7 and the alkyne to first give the ruthenabicyclo[3.2.0]heptadiene complex 8 then the metallacycle 9 through cleavage of the
central Ru-C bond (Scheme 1.2). Reductive elimination to the \(\eta^2 \)-benzene complex 10 and replacement of the arene with two additional alkynes complete the catalytic cycle. When transition metal hydrides or halides are employed, a sequential insertion mechanism has been postulated (Scheme 1.3a). Each alkyne unit is incorporated by a \(\text{cis} \)-addition of the metal-halide or metal-carbon bond across the triple bond. Finally, a metathesis cascade is proposed using Grubbs’ catalyst where each alkyne is added in a series of [2+2] cycloadditions and cycloreversions (Scheme 1.3b). A ring closing metathesis reaction yields the benzene product.

![Scheme 1.3. Sequential insertion and metathesis cascade reaction mechanisms. M = metal center, X = halide.](image)

1.1.2 Regioselectivity of the Cyclotrimerization Reaction

Using the first mechanism as a model, the regiochemical outcome of the intermolecular reaction is influenced by two steps: metallacycle formation and insertion of the third alkyne. The oxidative cyclization step can produce three isomeric metallacyclopentadienes 11a, 11b, and 11c (Scheme 1.4). Only 11a and 11b need to be
considered, as 11c can be precluded from forming based on steric arguments. Experimental observation has shown that metallacycle 11a is preferred where the bulky substituents are placed in an α-position to the metal center. Only the 1,2,4-trisubstituted benzene 12 can form from this metallacycle irrespective of the orientation of insertion of the third alkyne. The minor metallacycle 11b can form the 1,2,4-isomer 12 as well as the 1,3,5-isomer 13 depending upon the third alkyne’s orientation. When two or three different alkynes are used, the product mixture can become quite complex.

\[
\text{2} \quad \text{R} \equiv \quad \text{[M]} \quad \text{R} \equiv \quad \text{M} \quad \text{R} \equiv \quad \text{M}
\]

Scheme 1.4. Regiochemical possibilities of [2+2+2] cyclotrimerization reactions.

A partially intramolecular cyclotrimerization reaction 2 (one diyne and one monoyne) provides a means of overcoming the regiochemistry issues as the orientation of two of the three alkynes is predetermined. In these cases, high degrees of ‘meta selectivity’ can be obtained when using Ru7 and Rh26 based catalysts with nonsymmetrical diynes 14 and 16 being cyclotrimerized into fused bicycles 15a and 17a, respectively, as opposed to 15b and 17b (Schemes (1.5).
Scheme 1.5. Partially intramolecular version of the [2+2+2] cyclotrimerization reaction enabling regiocontrol.

The regioselectivity of partially intramolecular cyclotrimerization reactions can be subject to ligand choice as well. For instance, Kezuka et al. obtained the meta-regioisomer 15a preferentially using an Ir precatalyst with 1,2-bis(diphenylphosphino)ethane (DPPE) as the phosphine ligand, however, when the ligand was changed to 1,1′-bis(diphenylphosphino)ferrocene (DPPF), a reversal in the regiochemistry resulted and ortho-isomer 15b was the major product (Scheme 1.6).27

Scheme 1.6. Ligand control of regioselectivity in cyclotrimerization reactions.
Instances where the electronic nature of the diyne exerts regiocontrol are also known. Yamamoto found that an electron-poor triple bond in the diynes 18a-c preferentially furnished the benzene products 19a-c where the substituent was oriented \(\text{para} \) to the carbonyl rather than 20a-c (Scheme 1.7). Furthermore, the higher the electron withdrawing ability of the carbonyl group (ketone > ester > amide) directly correlated with the degree of regioselectivity.

\[
\begin{array}{cccc}
\text{18a} (X = \text{NBn}) & \text{18b} (X = \text{O}) & \text{18c} (X = \text{C(Me)}_2) \\
1-\text{hexyne} & \text{Cp*Ru(cod)Cl} & \text{X} & \text{Yield (%)} & \text{ratio 19/20} \\
\text{NBn} & 76 & 63/37 \\
\text{O} & 93 & 70/30 \\
\text{C(Me)}_2 & 70 & 78/22
\end{array}
\]

Scheme 1.7. Electronic effect on regioselectivity.

This electronic effect could be overcome, however, with the introduction of a steric control element such as a methyl substituent in 21 yielding 22a as the major regioisomer (Scheme 1.8).

\[
\begin{array}{cccc}
\text{N} & \text{BnN} & \text{O} & \text{1-hexyne} \\
\text{21} & \text{Cp*Ru(cod)Cl} & (5 \text{ mol%}) & \text{DCE, rt} \\
\text{2h} & 68\% & \text{22a} & 82 \\
\text{22b} & 18
\end{array}
\]

Scheme 1.8. Electronic versus steric influences on regioselectivity.

The degree of regioselectivity obtained under CpCo(CO)$_2$ catalysis varies by substrate. While exclusive regioselectivity is obtained between the cyclotrimerization reaction of 23 with trimethylsilylmethoxyethyne to give 24 in 58\% yield, the similar cyclotrimerization reaction with 1-hexyne gives only a 5\% combined yield of a 1:1 mixture
of 25a and 25b (Scheme 1.9). Due to the low yield, however, no mechanistic significance can be placed on the lack of selectivity.29

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=0.8\textwidth]{scheme19.png}};
\end{tikzpicture}
\end{center}

\textbf{Scheme 1.9.} Regiocontrol under CpCo(CO)\textsubscript{2} catalysis.

1.1.3 Chemoselectivity in Cyclotrimerization Reactions

Besides the regioselectivity issues associated with the [2+2+2] cyclotrimerization reaction, chemoselectivity problems must be addressed with both inter- and intramolecular reactions. Mixtures of cyclotrimerization products will undoubtedly occur when alkynes of similar steric and electronic properties are involved due to their similar reactivities.2 The partially intramolecular version of the cyclotrimerization reaction is not void of chemoselectivity issues either. For example, the cyclotrimerization reaction between the diyne 26 and a generic monoyne 27 can furnish multiple products including the desired fused benzene product 28, dimer and trimer of the diyne (29 and 30), as well as trimers from the monoyne reacting with itself (12 and 13, Scheme 1.10).

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=0.8\textwidth]{scheme110.png}};
\end{tikzpicture}
\end{center}

\textbf{Scheme 1.10.} Chemoselectivity issues in the partially intramolecular cyclotrimerization reaction.
Müller et al. successfully used a partially intramolecular approach with the stoichiometrically preformed rhodacycle 31 to provide various anthraquinone derivatives 32 as one solution to the chemoselectivity challenge (Scheme 1.11).15,16

Scheme 1.11. Preformed metallacycle in [2+2+2] cyclotrimerization reaction.

Even with preformed metallacycles, the released metal is catalytically active and can cyclotrimerize the “third” alkyne resulting in by-products.30 To circumvent this issue, Vollhardt et al. has made use of a “third” alkyne that is incapable of cyclotrimerizing with itself, such as bis(trimethylsilylacetylene) (BTMSA, 33), providing access to a number of useful intermediates such as 34 and 35 from a cyclotrimerization reaction with 32 (Scheme 1.12).13

Scheme 1.12. Utility of BTMSA as cyclotrimerization partner.
1.2 [2+2+2] Cyclotrimerization Reactions Towards Pyridine Derivatives

1.2.1 Background and Mechanism

The synthesis of pyridine derivatives has received much interest from both academic and industrial laboratories owing to their wide dissemination in biologically active molecules.1, 31-34 In the early 1970’s, Wakatsuki and Yamazaki first showed the synthesis of pyridines 37 via a [2+2+2] cyclotrimerization reaction by replacing one alkyne unit with a nitrile 36 (Scheme 1.13). The earliest report utilized a stoichiometric amount of cobalt complex; however, it was found that the metal-complex could be used catalytically as well.35, 36

\begin{center}
\textbf{Scheme 1.13.} Catalytic synthesis of pyridine derivatives.
\end{center}

While most catalyst systems are based on CoI complexes, other metals such as Rh,37, 38 Ni,39 and Ru40 have been shown to produce pyridine derivatives from alkynes and nitriles.1-3, 8, 41-43

The mechanism of the [2+2+2] cyclotrimerization reaction towards pyridines proceeds in a similar fashion as towards benzenes.2, 41, 44 Coordination of the two alkynes to the metal complex as in 38 is followed by oxidative cyclization giving the common metallacyclopentadiene intermediate 39 (Scheme 1.14).

Next, coordination of the nitrile to the metallacycle giving 40 leads to insertion and the formation of the azametallacycloheptatriene 41. Finally, reductive elimination furnishes the pyridine product 42 and the active metal species. Species where one alkyne and one nitrile undergo oxidative cyclization at the metal center (as in 43) have been ruled out based on kinetic studies. With Zr/Ni catalyst systems, however, the formation of the analogous azametallacyclopentadiene 45 is postulated from 44 (Scheme 1.15). Two possible azametallacycloheptatrienes (46 or 47) can form upon insertion of the second alkyne, and reductive elimination furnishes the pyridine product 48.

Scheme 1.15. Zr/Ni mechanism for pyridine formation.
1.2.2 Regioselectivity of the Cyclotrimerization Reaction

The regiochemical outcome of the cyclotrimerization reaction towards pyridines mirrors the outcome towards benzenes. When terminal acetylenes are employed, only metallacycles 11a and 11b are formed in the oxidative cyclization step, as shown previously (Scheme 1.16). Insertion of the nitrile, however, can occur in two fashions. With the symmetrical metallacycle 11a, insertion can only produce the 2,3,6-trisubstituted pyridine derivative 49.

![Scheme 1.16. Regiochemical outcome of the [2+2+2] cyclotrimerization reaction towards pyridines.](image)

However, with the nonsymmetrical metallacycle 11b, two modes of insertion are possible leading to the 2,4,6- and 2,3,6-trisubstituted pyridine derivatives 50a and 50b, respectively. Experimentally, though, only the 2,4,6-trisubstituted pyridine derivative 50a is formed where the nitrogen atom is placed next to the higher substituted (sterically more hindered) carbon center. Therefore, the completely intermolecular reaction yields both 2,3,6- and 2,4,6-trisubstituted pyridine derivatives. This ratio can be tuned depending upon the electronic nature of the cobalt catalyst. However, in the case of two different alkynes, three additional metallacycles can be formed, none of which is symmetrical, leading to the potential formation of six different pyridine regioisomers.
The use of electron-poor cobalt catalysts (e.g. \(\text{CH}_3\text{COC}_5\text{H}_4\text{Co(cod)}\)) gives a regioselectivity ratio of 1.46:1 favoring the 2,4,6-trisubstituted regioisomer \(51\text{a}\) compared to the 2,3,6-trisubstituted regioisomer \(51\text{b}\) while electron-rich catalysts (e.g. \((\text{CH}_3)_5\text{C}_5\text{Co(cod)}\)) can increase the ratio to 3.51:1. (Entries 1-2, Table 1.1)\(^{42, 47, 48}\) The relative degree of activity of the catalysts however, is reversed with the electron-poor catalyst (\(\text{CH}_3\text{COC}_5\text{H}_4\text{Co(cod)}\)) being the most active. The steric environment of the cobalt-catalyst due to the ligands can also influence the regioselectivity of the intermolecular cyclotrimerization reaction (Entries 3-7)\(^{42, 43}\).

As with the benzene syntheses, the partially intramolecular cyclotrimerization reaction (one diyne and one nitrile or a tethered alkyne-nitrile and one alkyne) towards fused pyridines can be used to exert regioselectivity. Vollhardt successfully cyclotrimerized the non-symmetrical 1,7-diyne \(52\) in a highly regioselective fashion towards the tetrahydroisoquinoline derivative \(53\text{a}\) (Scheme 1.17)\(^{49}\).

\[\text{Scheme 1.17. Regioselective partially intramolecular pyridine synthesis.}\]
The cyclotrimerization reaction of alkyne-nitriles can produce fused pyridines such as 54 with high regioselectivity as the initial metallacyclopentadiene formation sets the orientation of the alkynes (Scheme 1.18).\(^5\)

![Scheme 1.18. Regioselective alkyne-nitrile cyclotrimerization.](image)

The electronic nature of the diyne may also influence the regiochemical outcome of the cyclotrimerization. Okamoto and coworkers obtained regioselectivity ratios of >99:1 when cyclotrimerizing the non-symmetrical diynes of type 55 with nitriles towards the bipyridines 56a and 56b (Scheme 1.19).\(^6\)

![Scheme 1.19. Regiocontrolled synthesis of 2,2'-bipyridines.](image)

Based on the selective formation of the 2,2'-bipyridines 56a over the 2,3'-bipyridines 56b, the authors suggest the regiocontrol is due to the different electronic nature of the alkyne carbons with one being electron-rich (H or Me substituted) and the other electron-poor (pyridyl substituted). Lining up the electron-rich alkyne carbon with the electron-poor carbon from the nitrile and the electron-poor alkyne carbon with the electron rich nitrogen produces the observed regioisomer (Scheme 1.20).
However, the general applicability of this concept is questionable, and it is surprising that the authors did not employ a stronger electron-withdrawing group. It is not clear why a pyridyl and not a more defined electron-withdrawing substituent, e.g. carbonyl or carboxyl, was used.

Scheme 1.20. Potential electronic control of regioselectivity.

1.2.3 Chemoselectivity of the Cyclotrimerization Reaction

The chemoselectivity of the [2+2+2] cyclotrimerization reaction towards pyridines is determined when either a “third” alkyne or the nitrile is incorporated into the metallacyclopentadiene. Being better σ-donors than alkynes, nitriles coordinate to Co(III) species more readily. As a result, nitriles are preferentially inserted into the metallacyclopentadiene with chemoselectivity ratios for intermolecular reactions on the order of 2:1 pyridine to benzene product.43, 52 Experimentally, using an excess of nitrile can enhance this selectivity.
1.3 Natural Product Synthesis via [2+2+2] Cyclotrimerization Reactions

1.3.1 Synthesis of Benzene Containing Natural Products

With the ability to produce fused ring systems and three carbon-carbon bonds in a single step, the [2+2+2] cyclotrimerization reaction has been the foundation of multiple total syntheses towards benzene natural products. Due to potential issues in controlling the regio- and chemoselectivity, the [2+2+2] cyclotrimerization reaction towards natural products has relied upon either partially or completely intramolecular cyclotrimerization events. A variety of natural products have been synthesized with the [2+2+2] cyclotrimerization reaction pointing to the reaction’s broad applicability as well as the creativity of the practitioners of total synthesis.

As mentioned previously, the partially intramolecular variation of the [2+2+2] cyclotrimerization reaction provides one means to control the chemo- and regioselectivity as the orientation of two of the alkynes is predetermined, and this form of cyclotrimerization has been used in several total syntheses of benzene based natural products. The lab of K.P.C. Vollhardt has contributed much to the understanding of the cobalt-catalyzed [2+2+2] cyclotrimerization reaction, and it produced the first total synthesis of a natural product, \(dl\)-estrone (61), using this reaction.\(^{53}\) The tetracyclic core of estrone was produced in a single step from the [2+2+2] cyclotrimerization reaction of the 1,5-hexadiyne 57 and BTMSA via the benzocyclobutene intermediate 58 and the \(\alpha\)-quinodimethane 59 furnishing 60 in 71% yield (Scheme 1.21). Further elaboration of the aromatic ring produced \(dl\)-estrone in only six steps and 15% overall yield.
Interestingly, between 1980 and 2000 no total syntheses employing partially intramolecular cyclotrimerization reactions were reported (however, selected completely intramolecular reactions are discussed below). In 2002, Witulski et al. reported the use of ynamides towards the synthesis of carbazoles under rhodium catalysis. The authors succeeded in synthesizing two naturally occurring carbazoles, hyellazole (64) and clausine C (67), in six and seven steps, respectively, with good regioselectivity from the diynes 62 and 65 and their cyclotrimerization reaction products 63 and 66 (Scheme 1.22).
Similarly, antiostatin A₁ (70), a natural antioxidant, was recently synthesized by Witulski utilizing the diyne 68 via 69 (Scheme 1.23).55

![Scheme 1.23. Synthesis of antiostatin A₁ (70).](image)

Making use of \textit{in situ} formed aryne intermediates (72), Sato and Mori synthesized a common precursor (74) to taiwanins C and E (75 and 76) via a Pd-catalyzed [2+2+2] cyclotrimerization reaction of the diyne 73 and aryne precursor 71 (Scheme 1.24).56

![Scheme 1.24. Aryne [2+2+2] route to taiwanins C (75) and E (76).](image)

Bridged natural products have also been accessed using the [2+2+2] cyclotrimerization reaction. The diyne 77, synthesized from geraniol acetate, was reacted with propargyl alcohol (78) to furnish a 1:1 regioisomeric mixture of 3,4-benzannulated-8-oxabicyclo[3.2.1]octanes 79a and 79b in 67\% yield using Wilkinson’s catalyst (Scheme 1.25).57 The mixture was then taken forward to (−)-bruguierol A (80).
The completely intramolecular variation of the [2+2+2] cyclotrimerization has also produced several expedient syntheses of complex benzene natural products. In these cases, complete control of the regiochemistry is possible. For example, Neeson and Stevenson used the triynes 81 and 82 towards the illudalane sesquiterpenes calomelanolactone (85) and pterosin Z (86), respectively, from intermediates 83 and 84 (Scheme 1.26).

Another illudalane sesquiterpene, (R)-alcyopterosin E (89), was synthesized in similar fashion by Witulski. In this synthesis, the triyne 87 is prepared from L-ascorbic acid and readily undergoes a cyclotrimerization reaction upon treatment with Wilkinson’s catalyst in 72% yield to give 88 (Scheme 1.27).
Scheme 1.27. Synthesis of (R)-alcyopterosin E (89).

Recently, a synthesis of the tetracyclic angucyclinone (+)-rubiginone B$_2$ (93) employing a cobalt catalyst was reported.$^{61, 62}$ Irradiation of the triyne 90 in the presence of CpCo(CO)$_2$ furnished a 74% yield of the anthracene derivative 92 via the intermediate dihydroanthracene 91 (Scheme 1.28). A subsequent oxidation step provided the natural product.

Scheme 1.28. Synthesis of (+)-rubiginone B$_2$ (93).

Taking a page from Vollhardt’s synthesis of dl-estrone, Sorensen et al. exploited the generation of a benzocyclobutene intermediate in the first total synthesis of (+)-viridin (98).63 The triyne 94 undergoes efficient intramolecular cyclotrimerization under rhodium catalysis to give the benzocyclobutene 95 (Scheme 1.29). Installation of the furan moiety to give 96 was followed by tandem electrocyclic ring-opening and 6π-electrocyclization to provide the
tetracyclic intermediate 97 after oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). Subsequent formation and elaboration of the fifth ring provided (±)-viridin (98).

Scheme 1.29. Sorenson’s synthesis of racemic viridin (98).

The regiocontrol exerted by halo-alkynes in the [2+2+2] cyclotrimerization was recently exploited by Nicolaou et al. towards the synthesis of sporolide B (102).64 The monoyne 100 and the diyne 99 undergo smooth cyclotrimerization in the presence of Cp*Ru(cod)Cl to furnish an 87% yield of the advanced intermediate 101 (Scheme 1.30). Complete regiocontrol was realized due to the sterical hindrance imposed by the chlorine atom compared to a hydrogen atom. Several more steps were required to transform 101 into sporolide B.
As these examples show, the [2+2+2] cyclotrimerization reaction has been invaluable to the synthesis of a wide variety of natural products. In addition to these syntheses, the [2+2+2] cyclotrimerization reaction has been utilized in approaches to many classes of natural products including taxanes, \(^{65}\) protoberberines, \(^{29}\) phyllocladanes, \(^{66}\) and kauranes. \(^{67, 68}\)

Another variation of the [2+2+2] cyclotrimerization reaction where one alkene is employed in the place of one alkyne has been used in approaches to terpenes, \(^{69, 70}\) steroids, \(^{71}\) and alkaloids such as strychnine \(^{72}\) and morphine. \(^{73}\)

1.3.2 Synthesis of Pyridine Containing Natural Products

While the use of the [2+2+2] cyclotrimerization reaction towards benzene natural products is quite diverse, its use towards pyridine containing natural products is less developed. As with the synthesis of benzene natural products, the lab of K.P.C. Vollhardt has made seminal contributions in this area as well. For example, cyclotrimerization reaction of the bis(trimethylstannyl)-diyne \(103\) with acetonitrile under cobalt catalysis gives the fused...
This pyridine is selectively monodestannylated with alumina to provide the pyridine product 105 in 76% yield over the two steps. Further manipulation of 105 provides vitamin B₆ (106).

Scheme 1.31. Vollhardt's synthesis of vitamin B₆.

The synthesis of ergot alkaloids has also been examined using the [2+2+2] cyclotrimerization reaction. The alkyne-nitrile 107 reacts with the monoalkyne 108 in low yield to give the tetracyclic structure 110 (Scheme 1.32). Lysergene (112) is obtained in 44% yield after methylation and reduction of the resulting pyridinium ion. Lysergic acid diethyl amide (113, LSD) is similarly synthesized using monoalkyne 109 via the cyclotrimerization product 111.

Scheme 1.32. Synthesis of ergot alkaloids.
Most recently, concise syntheses of the alkaloids dehydrotylophorine (115) and (±)-tylophorine (116) have been accomplished utilizing a convergent [2+2+2] cyclotrimerization/ring closure strategy from the diyne 114 (Scheme 1.33). Only five and six steps, respectively, were needed to produce the natural products in excellent yield.

Scheme 1.33. Total synthesis of dehydrotylophorine (115) and (±)-tylophorine (116).

1.4 General Cyclotrimerization Considerations

When planning a [2+2+2] cyclotrimerization reaction one must consider many factors including the nature of the metal catalyst and the steric and electronic properties of the three alkynes. In general, terminal alkynes are more active substrates and, consequently, react at faster rates than disubstituted alkynes. Specifically, cobalt-based catalyst systems, such as CpCoL₂, have been examined the most and show a broad scope in reactivity with various alkynes. Electron deficient alkynes cyclotrimerize extremely efficiently with Cp*Ru(cod)Cl as catalyst, as well as Pd based catalyst systems. The same Ru catalyst and Grubbs’ catalyst have recently been employed in reactions involving electronically neutral alkynes with good to excellent yields. For partially intramolecular reactions, the length and substitution of the tether must also be taken into account. Formation of 5,6-fused carb- and heterocyclic ring systems is facile with most catalysts including Co, Ni, Ru, Rh,
and Ir. 6,6-fused ring systems have also been prepared with varying degrees of success. Most systems require the assistance of the kinetic Thorpe-Ingold effect as shown by the failure of diyne 117 to cyclotrimerize and the successful cyclotrimerization reaction of the diyne 118 into the 6-6-fused product 119 (Scheme 1.34).

![Scheme 1.34. Effect of alkyne tether on cyclization.](image)

Larger fused ring systems (e.g. benzo-oxepins) are limited to completely intramolecular cases. Vollhardt et al. made use of 1,5-diynes to generate benzocyclobutenes that could be further elaborated through the subsequent o-quinodimethanes generated in situ. Despite these selectivity hurdles, with adequate planning and detailed study of the reaction mechanisms, most substrates can be cyclized in preparatively useful yields.
1.5 Microwave-assisted Cyclotrimerization Reactions

Following recent trends in organic chemistry, several groups have begun utilizing microwave irradiation to promote \([2+2+2]\) cyclotrimerization reactions (For a more detailed discussion on the use of microwave irradiation in organic synthesis see Chapter 3). In 2005, the Ley group successfully employed microwave irradiation to promote the purely thermal cyclotrimerization of the triynes \(120-123\) yielding the tricyclic arenes \(124-127\) in good yield (Scheme 1.35).

![Scheme 1.35. Purely thermal microwave mediated cyclotrimerization reaction.](image)

More importantly, the transition metal catalyzed \([2+2+2]\) cyclotrimerization reaction is also promoted by microwave irradiation. Hrdina et al. accessed bipyridines such as \(129\) via a \(\text{CpCo(CO)}_2\) catalyzed cyclotrimerization reaction of diynes (such as \(128\)) with nitriles under microwave irradiation (Scheme 1.36). This report represents the first transition metal catalyzed microwave mediated \([2+2+2]\) cyclotrimerization reaction.

![Scheme 1.36. The first transition metal catalyzed microwave mediated cyclotrimerization reaction.](image)
Other examples of the use of microwave irradiation followed shortly thereafter. For example, Zhou et al. synthesized 5,6,7,8-tetrahydro-1,6-naphthyridines (131) in good yield from tethered alkynylnitriles (130) under CpCo(CO)$_2$ catalysis (Scheme 1.37).85

![Scheme 1.37. Synthesis of 5,6,7,8-tetrahydro-1,6-naphthyridines.](image_url)

In 2007, the Deiters group produced several accounts of the application of microwave irradiation with cyclotrimerization reactions. The solid-phase synthesis of benzenes 136-139 and pyridines 142-144 from the immobilized substrates 132-135 and 140-141 allows for the rapid synthesis of an array of carbo- and heterocyclic ring structures in a combinatorial fashion (Scheme 1.38)$^{86, 87}$ The microwave irradiation does not alter the regioselectivity of the cyclotrimerization reactions. In order to achieve a high chemoselectivity, it was necessary to utilize the pseudo high-dilution conditions of the solid-support.
Immobilized Benzene Precursors

\[
\begin{align*}
&132 \\
&133 \\
&134 \\
&135 \\
&X = H \text{ or } CH_2OH
\end{align*}
\]

\[
\text{Cleavage Products}
\]

\[
\begin{align*}
&136 \\
&137 \\
&138 \\
&139
\end{align*}
\]

Immobilized Pyridine Precursors

\[
\begin{align*}
&140 \\
&141 \\
&Y = CH \text{ or } N
\end{align*}
\]

\[
\text{Cleavage Products}
\]

\[
\begin{align*}
&142 \\
&143 \\
&144
\end{align*}
\]

Scheme 1.38. Solid-phase synthesis of benzenes and pyridines under microwave irradiation.

The convergent synthesis of phenanthridine derivatives 147 was also achieved via the dihydrophanthridines 146 constructed by microwave mediated cyclotrimerization reactions of several diyynes 145 with monoynes (Scheme 1.39).\(^8^8\) Furthermore, the synthesis of the anthracene and azaanthracene analogues 150 with applications as fluorescent probes was accomplished starting with dipropargylbenzene 148 via the cyclotrimerization product 149 (Scheme 1.39).\(^8^9\)
a) Phenanthridines

\[\text{Phenanthridines} \]

145 (R\(_1\) = H, Me, TMS)

\[\text{Phenanthridines} \]

\[\text{RhCl(PPh}_3\) \text{)_3 or Cp*Ru(cod)Cl} \]

\[\text{PhCH}_3 \]

MW 300 W

10-30 min

30-91%

146

147

b) Anthracenes and azaanthracenes

\[\text{Anthracenes and azaanthracenes} \]

148

X = N, CH, CR

149

DDQ

PhCH\(_3\)

MW 300 W

5 min

53-85%

150

Scheme 1.40. Synthesis of 6-pyridylpurines.

Other groups have also employed microwave promoted cyclotrimerization reactions in the synthesis of various benzene and pyridine derivatives of pharmaceutical interest. Turek et al. produce an array of 6-pyridylpurines (152) via CpCo(CO)\(_2\) catalysis under microwave irradiation from the diynes 150 and 151 (Scheme 1.40).\(^9\) The authors note that several cyclotrimerization reactions were only possible under microwave irradiation.

\[\text{Silyl-tethered diynes} \]

153 were exploited in a cyclotrimerization reaction towards fused pyridine derivatives 154 capable of inhibiting neuregulin-induced neurite growth (Scheme 1.41).\(^9\) The tethers can then be cleaved under to provide the substituted pyridines
Similar tethering approaches have recently been realized for the synthesis of small molecule modifiers of developmental pathways (McIver & Deiters, unpublished results).

![Scheme 1.41. Utilizing silyl-tethered diynes for pyridine synthesis.](image)

Derivatives of 6-oxa-allocolchicinoids (157) have been accessed using microwave promoted cyclotrimerization reactions of triynes and alkynynitriles (156, Scheme 1.42). Several derivatives displayed selective apoptosis-inducing activity against BJAB tumor cells.

![Scheme 1.42. Synthesis of 6-oxa-allocolchicinoid derivatives.](image)

Even though the [2+2+2] cyclotrimerization reaction is very capable of generating highly functionalized benzene and pyridine derivatives, the reaction has been underutilized in the area of natural product synthesis with relatively few examples in the literature. We aim to further explore the microwave-mediated [2+2+2] cyclotrimerization reaction in the context of the total synthesis of several benzene containing natural products, such as an indanone natural product (Chapter 2), the sesquiterpene alkaloid illudinine (Chapter 3), anthraquinone based natural products (Chapter 4), cannabinoid natural products (Chapter 5), and neolignans (Chapter 6). Furthermore, we wish to investigate the [2+2+2] cyclotrimerization reaction towards pyridine natural products such as streptonigrin, lavendamycin, lycopladine, and
lycodine (Chapters 7 and 8). These explorations will not only provide routes to the natural products themselves, but will also supplement the understanding of various aspects of the cyclotrimerization chemistry such as reactivity, regioselectivity, and chemoselectivity of advanced diyne intermediates.
CHAPTER 2: Total Synthesis of an Indanone Natural Product

2.1 Background

As an extension of our approach to the regio- and chemoselective synthesis of benzene and pyridine derivatives via solid-supported [2+2+2] cyclotrimerization reactions, we sought to apply this methodology to the synthesis of biologically active structures. Natural products based upon the indanone core structure e.g. pterosin P (158), mukagolactone (159), and monachosorin A (160) display various biological activities including smooth muscle relaxant activity, inhibition of cyclooxygenase 2, and mast cell stabilization (Figure 2.1).

Due to the interesting biological activities as well as the multitude of diverse indanone natural products efficient and selective synthetic routes to indanones are desirable. Recently, the indanone natural product 161 has been isolated from the marine cyanobacterium Lyngbya majuscula and was found to inhibit hypoxia-induced activation of the vascular endothelial growth factor (VEGF) in vitro. Tumor cells express VEGF in response to their low oxygen environment in order to stimulate blood vessel formation (angiogenesis), therefore, inhibitors of this step in tumor development are important.
regulators of cancer growth. Cell culture studies with indanone 161, however, showed no inhibition of secretion of the human bioactive VEGF isoform. Further improvements to the biological activity would require structural modifications, thus providing an impetus to synthesize indanone 161 in a fashion amenable to analogue development.

Retrosynthetically, we envision obtaining indanone 161 from oxidation of the alcohol in 162 with simultaneous conversion of an R group into the aldehyde functionality (Scheme 2.1). The 5,6-fused ring system of the alcohol 162 would arise from a solid-supported [2+2+2] cyclotrimerization reaction between immobilized 1,6-diyne 163 and propyne (164). By conducting the key cyclotrimerization step on the solid-support unwanted byproducts, e.g. diyne dimer 166 or trimer 167, can be eliminated (Figure 2.2).

Scheme 2.1. Retrosynthetic analysis of indanone 161.

Synthesis of the 1,6-diyne 163 can be traced to 1,3-propanediol (165) through a series of protecting group manipulations and 1,2-additions of acetylides into aldehydes. No attempts to synthesize the optically active 1,6-diyne 175 were pursued as, although the isolated indanone rotates polarized light ([α]D = +1.3°), the angle of rotation was far different than that of the standard (−)-(3R)-3-hydroxyindan-1-one ([α]D = -101°) causing speculation that the isolated product is nearly racemic.101
2.2 Diyne Synthesis

Synthesis of the 1,6-diyne 175 began with the 1,2-addition of the Li-acetylide of propargyl aldehyde diethyl acetal into the known aldehyde 168,102, 103 prepared in two steps from 1,3-propanediol, to give the propargyl alcohol 169 in 74% yield (Scheme 2.2). Protection of the secondary alcohol as the triphenylmethyl ether 170 was accomplished using trityl chloride with DBU over two days in 93% yield.104 More classical conditions (TrtCl, TEA, 40 °C) gave the triphenylmethyl ether in only 24% yield. Two equivalents of trityl chloride were necessary to drive the reaction to completion as fewer equivalents gave lower yields (50% with 1.2 eq., 69% with 1.5 eq.). Removal of the TBS group with TBAF as the fluoride source furnished the primary alcohol 171 in an 83% yield.

Scheme 2.2. Synthesis of the aldehyde 172.
The alcohol \textbf{171} was then oxidized with Dess-Martin Periodinane (DMP)105 in 71% yield or \emph{via} the Swern protocol106 (84%) to give the aldehyde \textbf{172}. On larger scale a two-step TBAF deprotection followed by a Swern oxidation of the crude material was more convenient for the preparation of the aldehyde \textbf{172} (71% over two steps). The second alkyne moiety was installed at this point by 1,2-addition of ethynyl Grignard into the aldehyde \textbf{172} providing a ~1:1 diastereomeric mixture of the alcohol \textbf{173} in 86% yield (Scheme 2.3). Subsequent methylation using standard conditions (NaH, MeI) produced methyl ether \textbf{174} in an 83% yield. Synthesis of the diyne \textbf{175} only required the removal of the triphenylmethyl ether selectively in the presence of the diethyl acetal. Using 1.5% TFA in DCM for fifteen minutes gave the diyne \textbf{175} in a moderate 62% yield with an undetermined amount of acetal hydrolysis. Gratifyingly, treatment of \textbf{174} with 1% HCl in EtOH/DCM for 100 minutes cleanly afforded the desired alcohol \textbf{175} in a 94% yield with no hydrolysis of the acetal.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{scheme2.3.png}
\caption{Scheme 2.3. Synthesis of the 1,6-diyne \textbf{175}.}
\end{figure}
2.3 Cyclotrimerization Studies and Completion of the Synthesis

In order to determine the best conditions for the oxidation and unmasking of the aldehyde functionality, solution phase cyclotrimerization studies were undertaken. Towards this end, ether 174 was treated with 10 mol% Cp*Ru(cod)Cl and 1-hexyne at room temperature; however, no cyclotrimerization product was observed (Scheme 2.4).

![Scheme 2.4. Attempted cyclotrimerization reaction of the trityl ether 174.](image)

One plausible explanation for the lack of product formation is the steric demand of the triphenylmethyl ether and the diethyl acetal in 174 preventing formation of the metallacycle; if ruthenacycle 176 were to form, then the triphenylmethyl ether and diethyl acetal would undoubtedly be in close proximity and undergo undesired steric interactions.

As the solid support contains an ester linker, the protecting group was changed to the acetate 177 to better approximate the steric demand in the solid-phase reaction (Scheme 2.5). Accordingly, the acetate 177 was prepared from the alcohol 175 under standard acetylation conditions and was tested with 1-hexyne in the [2+2+2] cyclotrimerization reaction. Gratifyingly, cyclotrimerization proceeded in 56% yield furnishing the benzene derivative 178 as the only regioisomer. The yield of the solution phase cyclotrimerization reaction is diminished due to unwanted dimerization of the diyne 177. Cleavage of the ester and oxidation of the resulting alcohol with 2-iodoxybenzoic acid functionalized polystyrene (IBX-polystyrene)\(^\text{107}\) gave a mixture of oxidized and acetal hydrolysis products. Further
oxidation with the more acidic reagent pyridinium chlorochromate (PCC) proceeded to give one homogeneous product, indanone 179. The 1H-NMR shifts are in good agreement with the corresponding protons in the natural product.

![Scheme 2.5. Cyclotrimerization of the acetate 177 and conversion to the natural product analogue 179.](image1)

With the endgame strategy established, the final steps in the synthesis of the natural product indanone were completed by Doug Young. Immobilization of the diyne 175 on a Tentagel carboxy resin under standard coupling conditions provided the immobilized diyne 163 with a typical loading of 0.2 mmol/g (Scheme 2.6).

![Scheme 2.6. Completion of the synthesis of the indanone 161.](image2)
Cyclotrimerization of the immobilized diyne 163 with propyne proceeded under ruthenium catalysis to afford the immobilized benzene product 180. Cleavage from the resin (K₂CO₃/MeOH) followed by oxidation of the resulting indanol with IBX-polystyrene with simultaneous acetal cleavage gave the natural product as the sole regioisomer in 72% yield over the final three steps. The NMR spectra (¹H and ¹³C) of natural and synthetic 161 are in excellent agreement (Table 2.1). With the successful synthesis of 161 accomplished, analogue development aimed at improving in vivo VEGF inhibition is feasible.

Table 2.1. Comparison of NMR spectra for natural and synthetic 161.

<table>
<thead>
<tr>
<th></th>
<th>Natural 161 (CDCl₃, 500 MHz)</th>
<th>Synthetic 161 (CDCl₃, 300 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹H NMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.01 (s, 1 H)</td>
<td>11.01 (s, 1 H)</td>
<td></td>
</tr>
<tr>
<td>7.86 (s, 1 H)</td>
<td>7.86 (s, 1 H)</td>
<td></td>
</tr>
<tr>
<td>7.74 (s, 1 H)</td>
<td>7.74 (s, 1 H)</td>
<td></td>
</tr>
<tr>
<td>5.01 (dd, J = 6.6 and 3.0 Hz, 1 H)</td>
<td>5.03-5.00 (m, 1 H)</td>
<td></td>
</tr>
<tr>
<td>3.52 (s, 3 H)</td>
<td>3.52 (s, 3 H)</td>
<td></td>
</tr>
<tr>
<td>3.06 (dd, J = 18.4 and 6.6 Hz, 1 H)</td>
<td>3.06 (dd, J = 18.6 and 6.3 Hz, 1 H)</td>
<td></td>
</tr>
<tr>
<td>2.73 (dd, J = 18.4 and 3.0 Hz, 1 H)</td>
<td>2.73 (dd, J = 18.6 and 3.0 Hz, 1 H)</td>
<td></td>
</tr>
<tr>
<td>2.52 (s, 3 H)</td>
<td>2.52 (s, 3 H)</td>
<td></td>
</tr>
<tr>
<td>¹³C NMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202.76</td>
<td>202.8</td>
<td></td>
</tr>
<tr>
<td>190.71</td>
<td>190.7</td>
<td></td>
</tr>
<tr>
<td>154.65</td>
<td>154.6</td>
<td></td>
</tr>
<tr>
<td>146.21</td>
<td>146.2</td>
<td></td>
</tr>
<tr>
<td>137.06</td>
<td>137.1</td>
<td></td>
</tr>
<tr>
<td>133.9</td>
<td>133.9</td>
<td></td>
</tr>
<tr>
<td>128.28</td>
<td>128.3</td>
<td></td>
</tr>
<tr>
<td>76.38</td>
<td>76.4</td>
<td></td>
</tr>
<tr>
<td>57.37</td>
<td>57.4</td>
<td></td>
</tr>
<tr>
<td>44.02</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>21.92</td>
<td>21.9</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Summary

In conjunction with the solid-phase synthesis of unnatural indanone derivatives, the synthesis of the natural indanone 161 was accomplished starting from 1,3-propanediol in 11 steps and 24% overall yield from known material. Key features of the synthesis include a solid-supported [2+2+2] cyclotrimerization reaction with complete regiocontrol and traceless cleavage of the product from the solid-support.
2.5 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Tetrahydrofuran, toluene, xylenes, and diethyl ether were distilled from sodium/benzophenone ketyl prior to use. Diisopropylamine, triethylamine, DMSO, DCM, DMF, 1,2-dichloroethane, CH$_3$CN and pyridine were distilled from calcium hydride and stored over 4 Å molecular sieves. Other reagents and solvents obtained from commercial sources were stored under nitrogen and used directly without further purification. n-BuLi and MeLi were titrated against N-pivaloyl-0-toluidine. Melting points were obtained from a Mel-Temp capillary melting point apparatus and are uncorrected. High resolution mass spectral analysis (HRMS) was performed at North Carolina State University. NMR spectra were obtained using a Varian Gemini GN-300 (300 MHz) or Varian Mercury 300 (300 MHz) spectrometer. Chemical shifts are in δ units (ppm) with TMS (0.0 ppm) used as the internal standard for 1H NMR spectra and the CDCl$_3$ absorption (77.2) for 13C NMR spectra. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer.

1-(((tert-Butyldimethylsilyl)oxy)-6,6-dioxy-hex-4-yn-3-ol (169). n-BuLi (1.6 M in hexanes, 331 µL, 0.64 mmol) was added dropwise to a solution of propargyl aldehyde diethyl acetal (88 mg, 0.69 mmol) in THF (1.5 mL) at −78 °C. After 30 min, a solution of 168 (100 mg, 0.53 mmol) in THF (1.1 mL) was added, and the reaction mixture was allowed to stir for 15 min before warming to room temperature over 30 min. Water (3 mL) and ether (3 mL) were added, and the layers were separated. The aqueous phase was extracted twice with ether (3 mL), and the combined organic phases were washed with H$_2$O (10 mL) and brine (10 mL),
dried (MgSO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (6:1), to give 125 mg (74%) of 169 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 5.31 (d, J = 1.4 Hz, 1 H), 4.74-4.64 (m, 1 H), 4.09-3.99 (m, 1 H), 3.90-3.53 (m, 5 H), 3.43 (d, J = 6.0 Hz, 1 H), 2.10-1.83 (m, 2 H), 1.25 (t, J = 7.0 Hz, 6 H) 0.92 (s, 9 H), 0.11 (s, 3 H), 0.10 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 91.5, 86.0, 80.3, 61.8, 61.1, 61.0, 38.6, 26.1, 18.4, 15.3, −5.3, −5.3; HRMS calcd for [M + Na]⁺ C₁₆H₃₂O₄SiNa 339.1962, found 339.1970.

1-((tert-Butyldimethylsilyl)oxy)-6,6-diethoxy-3-(triphenylmethoxy)-hex-4-yne (170). A solution of 169 (680 mg, 2.15 mmol) in DCM (6.75 mL) was added to a solution of TrtCl (1.20 g, 4.30 mmol) and DBU (707 µL, 4.75 mmol) in DCM (3 mL) at room temperature and was allowed to stir for 2 days. H₂O (15 mL) and DCM (15 mL) were added, and the layers were separated. The aqueous layer was extracted twice with Et₂O (20 mL), and the combined organic extracts were washed with H₂O (15 mL) and brine (15 mL), dried (Na₂SO₄), filtered and concentrated. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (20:1) to give 1.12 g (93%) of 170 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.48 (m, 6 H), 7.32-7.19 (m, 9 H), 4.98 (d, J = 1.1 Hz, 1 H), 4.21 (br t, J = 5.9 Hz, 1 H), 3.82-3.67 (m, 2 H), 3.61-3.37 (m, 4 H), 1.98-1.78 (m, 2 H), 1.19 (t, J = 7.0 Hz, 6 H), 0.83 (s, 9 H), 0.00 (s, 3 H), −0.01 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 144.3, 129.1, 127.7, 127.1, 91.4, 87.8, 85.7, 81.2, 62.0, 60.8, 60.8, 59.6, 39.8, 26.1, 18.5, 15.3, −5.1, −5.2; HRMS calcd for [M + Na]⁺ C₃₅H₄₆O₄SiNa 581.3058, found 581.3062.
6,6-Diethoxy-3-(triphenylmethoxy)hex-4-ynal (172). TBAF (1.0 M in THF, 6.04 mL, 6.03 mmol) was added over 15 min to 170 (1.12 g, 2.01 mmol) in THF (12 mL) at 0 °C, and the reaction mixture was allowed to warm to room temperature and was stirred for 2 h. H₂O (30 mL) was added, and the aqueous phase was extracted three times with Et₂O (30 mL). The combined organic extracts were washed with H₂O (25 mL) and brine (25 mL), dried (Na₂SO₄), filtered and concentrated to yield the crude alcohol. A solution of DMSO (264 µL, 3.72 mmol) in DCM (1.6 mL) was added dropwise to a solution of oxalyl chloride (179 µL, 2.09 mmol) in DCM (2.5 mL) at −78 °C, and the reaction mixture was allowed to stir at −78 °C for 1 h. A solution of the crude alcohol 171 in DCM (4.5 mL) was added dropwise, and the reaction mixture was stirred for at -78 °C for 1 h. TEA (955 µL, 6.80 mmol), was added dropwise, and the reaction mixture was allowed to stir at −78 °C for 30 min then warmed to room temperature. Water (40 mL) and DCM (40 mL) were added, and the layers were separated. The aqueous layer was extracted twice with DCM (40 mL), and the combined organic extracts were washed with H₂O (40 mL) and brine (40 mL), dried (Na₂SO₄), filtered and concentrated. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (6:1) to give 632 mg (71%) of 172 as a slightly yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 9.76 (t, J = 2.4 Hz, 1 H), 7.52-7.45 (m, 6 H), 7.33-7.20 (m, 9 H), 5.04 (d, J = 1.2 Hz, 1 H), 4.50 (dt, J = 1.2, 5.4 Hz, 1 H), 3.63-3.39 (m, 4 H), 2.42 (dd, J = 2.4, 5.4 Hz, 2 H), 1.20 (t, J = 7.2 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 200.0, 143.6, 128.9, 127.9, 127.4, 91.2, 88.6, 84.0, 82.7, 61.0, 60.1, 49.6, 15.3. HRMS calcd for [M + Na]⁺ C₂₉H₃₀O₄Na 465.2036, found 465.2040.
8,8-Diethoxy-5-(triphenylmethoxy)octa-1,6-diyn-3-ol (173). A solution of 172 (610 mg, 1.38 mmol) in THF (2.7 mL) was added to a solution of ethynyl Grignard (0.5 M in THF, 4.14 mL, 2.07 mmol) in THF (2.5 mL) at 0 °C, and the reaction mixture was allowed to warm to room temperature over 75 min. Saturated aqueous NH₄Cl (5 mL) was added, and the mixture was extracted with Et₂O (15 mL × 3). The combined organic extracts were washed with H₂O (15 mL) and brine (15 mL), dried (Na₂SO₄), filtered and concentrated. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (4:1) to give 533 mg (86%, dr = 1:1) of 173 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.44 (m, 6 H), 7.31-7.15 (m, 9 H), 4.97 (d, J = 1.3 Hz, 1 H), 4.73-4.63 (m, 0.5 H), 4.58-4.48 (m, 0.5 H), 4.30 (dt, J = 1.3, 5.5 Hz, 0.5 H), 4.22 (dt, J = 1.3, 6.6 Hz, 0.5 H), 3.59-3.33 (m, 4 H), 2.83 (d, J = 4.7 Hz, 0.5 H), 2.31 (d, J = 1.9 Hz, 1 H), 2.11 (d, J = 6.0 Hz, 0.5 H), 2.07-1.84 (m, 2 H), 1.22-1.10 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 143.9, 143.5, 129.0, 129.0, 127.9, 127.8, 127.4, 127.3, 91.3, 89.0, 88.3, 84.8, 84.3, 84.1, 84.0, 82.6, 82.4, 73.2, 73.1, 66.0, 62.6, 62.0, 61.0, 60.9, 59.9, 59.7, 44.3, 43.5, 15.5, 15.3. HRMS calcd for [M + Na]⁺ C₃₁H₃₂O₄Na 491.2193, found 491.2203.

(1,1-Diethoxy-6-methoxyocta-2,7-diyn-4-yloxy)triphenylmethane (174). NaH (60% suspension in mineral oil, 82 mg, 2.05 mmol), was added to a solution of 173 (600 mg, 1.28 mmol) in THF (7.2 mL) at 0 °C, and the reaction mixtures was allowed to warm to room temperature over 1 h. MeI (119 µL, 1.92 mmol) was added, and the resulting mixture was stirred for 24 h. H₂O (12 mL) was added, and the mixture was extracted with Et₂O (15 mL × 3). The combined organic extracts were washed with H₂O (15 mL) and brine (15 mL), dried
(Na₂SO₄), filtered and concentrated. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (11:1) to give 512 mg (83%, \(dr = 1:1\)) of 174 as a mixture of diastereomers as a colorless oil. \(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 7.55-7.48 (m, 6 H), 7.33-7.14 (m, 9 H), 4.97 (d, \(J = 1.1\) Hz, 0.5 H), 4.96 (d, \(J = 1.1\) Hz, 0.5 H), 4.25 (br t, \(J = 7.0\) Hz, 0.5 H), 4.21-4.14 (m, 0.5 H), 4.14-4.06 (m, 1 H), 3.61-3.34 (m, 4 H), 3.29 (s, 1.5 H) 3.21 (s, 1.5 H), 2.37 (d, \(J = 1.9\) Hz, 0.5 H), 2.32 (d, \(J = 1.9\) Hz, 0.5 H), 2.20-1.93 (m, 2 H), 1.24-1.13 (m, 6 H); \(^{13}\)C NMR (75 MHz, CDCl₃) \(\delta\) 144.1, 144.1, 129.1, 128.0, 127.7, 127.7, 127.2, 91.3, 88.0, 87.8, 85.3, 84.7, 82.2, 82.0, 81.9, 81.8, 74.2, 68.0, 67.4, 66.0, 61.8, 60.9, 60.8, 60.8, 56.5, 56.5, 42.9, 42.3, 15.5, 15.3. HRMS calcd for [M + Na]⁺ C₃₂H₃₄O₄Na 505.2349, found 505.2357.

1,1-Diethoxy-6-methoxyocta-2,7-diyn-4-ol (175). A solution of 1% HCl (9.2 mL), prepared by adding AcCl (200 µL, 2.82 mmol) to a solution of EtOH (3 mL) in DCM (6 mL) at 0 °C and stirring for 30 min, was added to neat 174 (470 mg, 0.97 mmol) at 0 °C, and the resulting mixture was stirred for 100 min while warming to room temperature. The reaction mixture was then poured into saturated NaHCO₃ (15 mL) and extracted with Et₂O (15 mL \(\times\) 3). The combined organic extracts were washed with H₂O (15 mL) and brine (15 mL), dried (MgSO₄), filtered and concentrated. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (3:1) to give 217 mg (94%, \(dr = 1:1\)) of 175 as a mixture of diastereomers as a colorless oil. \(^1\)H NMR (300 MHz, CDCl₃) \(\delta\) 5.32-5.29 (m, 1 H), 4.78-4.65 (m, 1 H), 4.42-4.36 (m, 0.5 H), 4.24-4.16 (m, 0.5 H), 3.81-3.66 (m, 2 H), 3.81-3.52 (m, 2 H), 3.45 (s, 1.5 H), 3.43 (s, 1.5 H), 2.52-2.48 (m, 1 H), 2.33-2.03 (m, 2 H), 1.24 (t, \(J = 7.0\) Hz, 6
\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 91.4, 91.3, 85.3, 85.3, 81.3, 80.7, 75.0, 74.9, 69.0, 68.8, 61.1, 61.1, 60.2, 60.0, 57.0, 56.8, 43.1, 42.3, 15.3. HRMS calcd for [M + Na]\(^+\) C\(_{13}\)H\(_{20}\)O\(_4\)Na 263.1254, found 263.1257.

1,1-Diethoxy-6-methoxyocta-2,7-diyn-4-yl acetate (177). Acetic anhydride (50 µL, 0.53 mmol) was added to a solution of 175 (14.8 mg, 0.062 mmol) in pyridine (100 µL) at 0 °C, and the reaction was allowed to stir for 45 min as it warmed to rt. Et\(_2\)O (1 mL) and H\(_2\)O (1 mL) were added, and the aqueous phase was extracted three times with Et\(_2\)O (2 mL). The combined organic extracts were washed with H\(_2\)O (3 mL) and brine (3 mL), dried (MgSO\(_4\)), filtered and concentrated. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (4:1) to give 13.7 mg (79%, \(dr = 1:1\)) of 177 as a mixture of diastereomers as a colorless oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 5.70-5.56 (m, 1 H), 5.31-5.22 (m, 1 H), 4.20-3.98 (m, 1 H), 3.80-3.50 (m, 4 H), 3.44-3.35 (m, 3 H), 2.53-2.48 (m, 1 H), 2.20-2.03 (m, 5 H), 1.33-1.18 (m, 6 H).

6-Butyl-4-(diethoxymethyl)-2,3-dihydro-1-methoxy-1\(^H\)-inden-3-yl acetate (178). Acetate 177 (13.7 mg, 0.049 mmol) in dry, degassed DCE (650 µL) was added to a solution of 1-hexyne (23 µL, 0.19 mmol) and Cp*Ru(cod)Cl (1.8 mg, 0.005 mmol) in dry degassed DCE (200 µL) over 20 minutes, and the reaction was allowed to stir. After consumption of starting material, the reaction was concentrated, and the residue was purified by flash chromatography, eluting with hexanes/EtOAc (6:1) to give 9.9 mg (56%, \(dr = 1:1\)) of 178 as a mixture of diastereomers as a colorless oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.37 (s, 1 H),
7.24 (s, 1 H), 6.50-6.20 (m, 1 H), 5.59-5.50 (m, 1 H), 5.11-4.65 (m, 1 H), 3.78-3.39 (m, 7 H), 2.65 (t, \(J = 7.6\) Hz, 2 H), 2.50-2.30 (m, 2 H), 2.20-2.02 (m, 3 H), 1.67-1.54 (m, 2 H), 1.43-1.15 (m, 8 H), 0.93 (t, \(J = 7.5\) Hz, 3 H).

6-Butyl-2,3-dihydro-1-methoxy-3-oxo-1\(H\)-indene-4-carbaldehyde (179). \(\text{K}_2\text{CO}_3\) (5 mg, 0.04 mmol), was added to a solution of acetylated indanol 178 (6.8 mg, 0.02 mmol) in MeOH (200 \(\mu\)L) and the reaction was stirred at rt. When the reaction was complete, the MeOH was removed under reduced pressure, and the residue was taken up in DCM, filtered and concentrated. To the crude alcohol in DCM (1 mL) was added polystyrene-IBX (85 mg, 0.093 mmol IBX), and the reaction was shaken overnight. TLC analysis indicated incomplete conversion, and the reaction was filtered, concentrated, taken up in DCM (500 \(\mu\)L). PCC (12 mg, 0.06 mmol) was added, and the reaction was stirred overnight. Filtration over silica gel eluting with hexanes/EtOAc (2:1) provided 4.6 mg, (100%) of indanone 179 as a colorless oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 11.02 (s, 1 H), 7.89 (s, 1 H), 7.75 (s, 1 H), 5.10-5.02 (m, 1 H), 3.55 (s, 3 H), 3.06 (dd, \(J = 18.5, 6.3\) Hz, 1 H), 2.85-2.75 (m, 3 H), 1.67-1.54 (m, 2 H), 1.44-1.26 (m, 2 H), 0.94 (t, \(J = 7.5\) Hz, 3 H).

2,3-Dihydro-1-methoxy-6-methyl-3-oxo-1\(H\)-indene-4-carbaldehyde (161). The resin 163 (100 mg, 0.023 mmol) was suspended in THF (500 \(\mu\)L) and degassed with three freeze-pump-thaw cycles. A balloon of propyne was then placed on the reaction, and propyne was bubbled through the solution for approximately 10 minutes. The Cp*Ru(cod)Cl catalyst (2 mg, 0.01 mmol) was added, and the reaction was stirred under a propyne atmosphere for 24
h. The resin was then transferred to a syringe filter, washed with alternating rinses of DCM and MeOH (4 × 3mL), and subsequently dried under vacuum. The product was cleaved from the resin by the addition of 4:1 THF/MeOH (500 µL) and K$_2$CO$_3$ (20 mg, 0.14 mmol) followed by 16 h of shaking at room temperature. The reaction mixture was filtered through a silica gel plug followed by a rinse with DCM (2 mL), and subsequently concentrated. The product was then re-suspended in DCM (1 mL) and shaken with IBX resin (35 mg) for 12 h. The solution was filtered and concentrated to yield the natural product 161 (3.4 mg, 0.017 mmol, 72% yield) as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 11.01 (s, 1H), 7.86 (s, 1H), 7.74 (s, 1H), 5.03-5.00 (m, 1H), 3.52 (s, 3H), 3.06 (dd, $J = 18.6, 6.3$ Hz, 1H), 2.73 (dd, $J = 18.6, 3.0$ Hz, 1H), 2.52 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 202.8, 190.7, 154.6, 146.2, 137.1, 133.9, 128.3, 76.4, 57.4, 44.0, 21.9. MS m/z 205.1 (M+H); HRMS calcd for C$_{12}$H$_{13}$O$_3$ [M+H] 205.0856, found 205.0851.
CHAPTER 3: DEVELOPMENT OF MICROWAVE ASSISTED [2+2+2] CYCLOTRIMERIZATION REACTIONS: TOTAL SYNTHESIS OF ILLUDININE

3.1 Microwave Assisted Organic Synthesis

Recently, the application of microwave irradiation has greatly improved the yield, lessened reaction time, and produced cleaner reaction profiles for many transition metal catalyzed reactions.109, 110 Despite this trend, at the time this work began the microwave promoted [2+2+2] cyclotrimerization had been slow to garner attention, and investigations into these reactions seemed warranted. With the first report in 1986 by Gedye111 and later by Giguere and Majetich,112 microwave assisted organic chemistry (MAOS) introduced to the synthetic community a faster alternative to traditional heating approaches to several classical reactions (e.g. Diels-Alder, Claisen rearrangement, esterification, etc.). Both groups used sealed vessels in domestic microwave ovens with no temperature control, often leading to unpredictable outcomes and explosions. Solvent free systems were developed in the 1990’s eliminating explosive risks but causing other technical difficulties related to non-uniform heating, mixing, and reaction temperature.113 Currently, technology advancements have introduced microwave reactors with temperature and power controls, as well as cooling options. These technological developments have helped microwave chemistry to become a less esoteric application in synthesis labs and contributed to the more than 3,000 examples of MAOS in the literature.114-116

Commercially available microwave reactors emit electromagnetic radiation at 2.45 GHz corresponding to 0.0016 eV of energy. Such a low energy output is not capable of cleaving carbon-carbon single bonds (3.61 eV) or even hydrogen bonds (0.04-0.44 eV).
therefore, the energy absorption itself cannot cause chemical reactions to occur as it does in photochemistry.114

<table>
<thead>
<tr>
<th>Radiation</th>
<th>Quantum Energy (eV)</th>
<th>Bond Type</th>
<th>Bond Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma rays</td>
<td>1.24×10^6</td>
<td>CC single</td>
<td>3.61</td>
</tr>
<tr>
<td>X-rays</td>
<td>1.24×10^5</td>
<td>CC double</td>
<td>6.35</td>
</tr>
<tr>
<td>UV</td>
<td>4.1</td>
<td>CO single</td>
<td>3.74</td>
</tr>
<tr>
<td>Visible</td>
<td>2.5</td>
<td>CO double</td>
<td>7.71</td>
</tr>
<tr>
<td>IR</td>
<td>0.012</td>
<td>CH</td>
<td>4.28</td>
</tr>
<tr>
<td>Microwave</td>
<td>0.0016</td>
<td>OH</td>
<td>4.80</td>
</tr>
<tr>
<td>Radiowaves</td>
<td>4.0×10^{-9}</td>
<td>H-bond</td>
<td>0.04-0.44</td>
</tr>
</tbody>
</table>

The mechanics of heating the reaction mixture, termed microwave dielectric heating, is the cornerstone of MAOS. This heating occurs by two mechanisms: dipolar polarization and ionic conduction.119, 120 In the dipolar polarization mechanism, molecules with dipole moments attempt to align themselves with the alternating electrical field. Heat is generated from molecular friction and dielectric loss. With ionic conduction, the ions in solution move back and forth with the electrical field colliding with other molecules or atoms. These collisions produce heat. How does microwave heating lead to enhanced rates for reactions as compared to conventional heating methods? The origin for the dramatic rate enhancements for reactions performed in microwaves is still a matter of debate. Most researchers agree that thermal effects accelerate the microwave reactions with certain specific microwave effects also noted. But, not all authors have the same opinion concerning so-called athermal or “nonthermal microwave effects”.121, 122 The majority of microwave reactions are accelerated due to thermal/kinetic effects. According to Arrhenius’ Law ($k = A \exp\{-E_a/RT\}$), the higher the temperature at which a reaction is performed, the higher the rate. In the microwave under
sealed tube conditions, solvents can be heated to points far above their respective boiling points at atmospheric pressure. Methanol, for instance, can be heated to >100 °C above its boiling point. These high temperatures can have a extraordinary effect on reaction rates. Through the Arrhenius equation, one can calculate the time necessary for a given reaction to proceed to a certain conversion level: if at 27 °C the reaction takes 68 days to reach 90% conversion, only 1.61 seconds is required if the reaction is performed at 227 °C. However, one would expect the same rate no matter if the reaction were refluxed under microwave irradiation or by conventional methods. Rate enhancements in this case are attributed partly to specific microwave effects.

Although still thermal in nature, specific microwave effects are claimed when the outcome of a reaction under microwave heating differs from the results of a reaction under conventional heating. Because the heating occurs within the solution and is not conducted through the vessel, an inverted temperature gradient arises (Figure 3.1) under microwave heating. Temperature sensitive reagents, such as catalysts, will remain active for longer periods, thereby increasing conversions. Also, specific reagents can selectively absorb the microwave radiation leading to an increased temperature at the catalyst surface (heterogeneous mixture) or at microscopic hotspots (homogeneous mixture). Finally, solvents, even in open-vessel situations, can be heated above their atmospheric boiling points. This superheating effect increases rates without the need for pressure. Controversy surrounds the last set of effects, the athermal or nonthermal microwave effects. Rate enhancements are attributed to direct coupling of the electrical component of the microwave radiation with reagents, intermediates, or catalysts.
Polar molecules can be oriented by the electrical field altering the preexponential factor A of the Arrhenius equation125 or the activation energy.126 Despite the uncertainty regarding the specific sources of rate enhancements observed for microwave reactions, microwave chemistry is a rapidly developing field that continues to gain popularity among chemists (for an overview of the application of microwave irradiation to [2+2+2] cyclotrimerization reactions see Chapter 1, Section 1.5).

3.2 Nickel-catalyzed [2+2+2] Cyclotrimerization Reactions

3.2.1 Nickel-catalyzed [2+2+2] Cyclotrimerization Reactions in Literature

The use of Ni complexes in [2+2+2] cyclotrimerizations can be traced to the first known transition metal catalyzed reaction performed by Reppe et al. in 1948 when he used Ni(CO)$_2$(PPh$_3$)$_2$ to cyclotrimerize acetylene to benzene.12 During the early 1960’s, Meriwether and coworkers published a series of articles describing the alkyne polymerization capabilities of this catalyst system among others.127-130 Typically, reactions were performed...
in refluxing benzene or cyclohexane for up to 24 h to give mixtures of aromatized product and linear polymers. The authors noted a general order of reactivity where acetylenic esters and ketones were more reactive than arylalkynes, and alkylalkynes were the least reactive. Disubstituted alkynes were typically inert.1 127 Cyclotrimerization reactions involving alkylalkynes were hindered by high levels of linear polymer formation. Moreover, the copolymerization of unconjugated diacetylenes with monoalkynes produced mixtures of linear polymers as well as fused benzenes. The ability to undergo intramolecular cyclotrimerization towards indanes was a factor of the tether length between the two alkyne moieties where indane formation was favored with 1,6-heptadiyne compared to tetralin formation with 1,7-octadiyne; 1,5-hexadiyne and 1,8-nonadiyne were least prone to forming fused benzene products.129 This trend, the authors suggest, points to an intermediate in the reaction mechanism where both alkynes of the diyne are coordinated to the metal center consistent with the “common mechanism” that was to be elucidated in subsequent years with other metal complexes.2,30 Due in part to its tendency to furnish mixtures of linear and cyclic polymerization products, the Ni(CO)\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} catalyst system has been limited in its synthetic applicability.131-134

Over the years, other nickel catalyst systems have been shown to enable cyclotrimerization reactions with alkynes. Smith and coworkers employed stoichiometric zero valent nickel in the form of Ni(PPh\textsubscript{3})\textsubscript{4} to cyclotrimerize diynes into tetralin derivatives in modest yield (46-78%) while Mori used catalytic (8-20%) Ni(cod)\textsubscript{2} in conjunction with chiral phosphine ligands to access enantioenriched isoindoline and tetrahydroisoquinoline derivatives.79,135-137 More recently, Ni(cod)\textsubscript{2} systems have been employed in the synthesis of
hexaborylbenzenes, helicenes, and perfluoroalkylarenes. In situ formed Ni0 catalyst systems generated through the reduction of NiX$_2$ (X = Cl, Br, I) with Zn, Al, Mg, or Na have also been reported.

3.2.2 Optimization of the Microwave-mediated Nickel-catalyzed Cyclotrimerization Reaction

Being aware of the beneficial effects of microwave irradiation on Co- and Ru-catalyzed cyclotrimerization reactions, we sought to overcome the limitations of the Ni(CO)$_2$(PPh$_3$)$_2$ catalyst system and enhance its cyclotrimerization reactivity through the application of microwave irradiation, thereby enabling its use in total synthesis. In order to find optimal reaction conditions, we conducted model [2+2+2] cyclotrimerization reactions of diethyl dipropargyl malonate (181), with 1-hexyne leading to the benzene 182 (Table 3.2). Conditions previously found to be optimal for microwave-assisted solid-supported cyclotrimerization reactions (10 mol% catalyst, PhCH$_3$, 10 min) served as a reference point for these investigations, and, indeed, gave the aromatic product 182 in 75% yield (Entry 1). 1H NMR analysis of the crude reaction mixture showed substantial polymerization of the 1-hexyne. Interestingly, in case of the Ni(CO)$_2$(PPh$_3$)$_2$ catalyst, decreasing the reaction time to 5 min (data not shown) and 2 min (Entry 2) still led to complete reaction of 181 and furnished 182 in 78% yield, with a final reaction temperature of 82 °C. By only irradiating for 2 minutes, polymerization of the 1-hexyne was greatly diminished. Conducting the identical reaction without microwave irradiation (82 °C final reaction temperature, 92°C oil bath temperature, 2 min; Entry 3) did not yield any cyclotrimerization product 182, thus
demonstrating the enhancing effects121, 147 of microwave irradiation on the Ni-catalyzed reaction.

Table 3.2. Optimization of microwave-mediated [2+2+2] cyclotrimerization reaction under Ni(CO)\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} catalysis.

<table>
<thead>
<tr>
<th>Entry</th>
<th>MW / W</th>
<th>Solvent</th>
<th>Time / min</th>
<th>Temp / °C</th>
<th>Yield / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>toluene</td>
<td>10</td>
<td>117</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>toluene</td>
<td>2</td>
<td>82</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>---a</td>
<td>toluene</td>
<td>2</td>
<td>82</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>THF</td>
<td>2</td>
<td>105</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>1,2-dichloroethane</td>
<td>2</td>
<td>133</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>acetonitrile</td>
<td>2</td>
<td>117</td>
<td>47</td>
</tr>
</tbody>
</table>

a The temperature profile inside the reaction vessel was identical to the microwave reaction with a final temperature of 82°C. The oil bath temperature was 92°C.

While Meriwether reported benzene, methanol, acetonitrile, and cyclohexane as optimal solvents for the catalyst under traditional heating,130 the wide range in microwave absorptivity of these solvents necessitated an investigation into potential solvent effects on the microwave-mediated cyclotrimerization reaction. Therefore, in addition to toluene, the cyclotrimerization was carried out in THF, 1,2-dichloroethane, and acetonitrile (Entries 4-6). In these cases the reaction temperatures raised above the 82 °C observed in the case of toluene, and generally lower yields (47-70%) were observed. Notably, no pyridine product was observed in the case of acetonitrile.
Thus, all subsequent [2+2+2] cyclotrimerization reactions were performed by microwave irradiation (300 W) of a solution of the diyne, monoyne (10 eq.), and Ni(CO)\(_2\)(PPh\(_3\))\(_2\) (10 mol%; lower catalyst loadings led to greatly diminished yields) in toluene for 2-5 min.

3.2.3 Scope of the Microwave-mediated Nickel-catalyzed Cyclotrimerization Reaction

We subsequently investigated the functional group compatibility of this reaction with several different alkynes (Table 3.3), including 1-hexyne, phenylacetylene, benzylated propargyl alcohol,\(^{148}\) Boc-protected propargyl amine,\(^{149}\) and an internal alkyne, 3-hexyne. The reaction of the diyne 181 proceeded smoothly, delivering the indanes 184-187\(^{150}\) in 50-82% yield (Entries 1-5). Unfortunately, isolation of the benzylated propargyl alcohol cycloadduct 185 was hampered by polymer formation. The much less reactive internal 3-hexyne delivered 187 in 63%, which is remarkable, since internal alkynes are completely unreactive under thermal conditions.\(^{127}\)

Table 3.3. Microwave-mediated Ni(CO)\(_2\)(PPh\(_3\))\(_2\) catalyzed cyclotrimerization reactions towards indanes and isoindolines.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cmpd.</th>
<th>X</th>
<th>R</th>
<th>R'</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>182</td>
<td>C(CO(_2)Et)(_2)</td>
<td>Bu</td>
<td>H</td>
<td>78%</td>
</tr>
<tr>
<td>2</td>
<td>184</td>
<td>C(CO(_2)Et)(_2)</td>
<td>Ph</td>
<td>H</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>185</td>
<td>C(CO(_2)Et)(_2)</td>
<td>CH(_2)OBn</td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>186</td>
<td>C(CO(_2)Et)(_2)</td>
<td>CH(_2)NH(_2)Boc</td>
<td>H</td>
<td>82%</td>
</tr>
<tr>
<td>5</td>
<td>187</td>
<td>C(CO(_2)Et)(_2)</td>
<td>Et</td>
<td>Et</td>
<td>63%</td>
</tr>
<tr>
<td>6</td>
<td>188</td>
<td>NBoc</td>
<td>Bu</td>
<td>H</td>
<td>80%</td>
</tr>
<tr>
<td>7</td>
<td>189</td>
<td>NBoc</td>
<td>Ph</td>
<td>H</td>
<td>75%</td>
</tr>
<tr>
<td>8</td>
<td>190</td>
<td>NBoc</td>
<td>CH(_2)OBn</td>
<td>H</td>
<td>76%</td>
</tr>
<tr>
<td>9</td>
<td>191</td>
<td>NBoc</td>
<td>CH(_2)NH(_2)Boc</td>
<td>H</td>
<td>80%</td>
</tr>
<tr>
<td>10</td>
<td>192</td>
<td>NBoc</td>
<td>Et</td>
<td>Et</td>
<td>55%</td>
</tr>
</tbody>
</table>
In order to investigate the Ni-catalyzed synthesis of isoindolines and the effect of a ring nitrogen-center on the cyclotrimerization reaction, we synthesized the Boc-protected dipropargylamine and subjected it to the same [2+2+2] cyclotrimerization conditions (Table 3.3, Entries 6-10). The isoindolines were obtained in good yields (55-80%). Here, all terminal alkynes display comparable levels of reactivity with the internal 3-hexyne providing in diminished yield.

Since Meriwether reported high reactivity of the Ni(CO)$_2$(PPh$_3$)$_2$ catalyst in the case of electron-poor triple-bonds, we examined the use of an electron-deficient diyne cyclotrimerization precursor bearing carboxylates on both triple bonds. To this end, substrate was prepared and subjected to the microwave-mediated Ni-catalyzed cyclotrimerization reactions with the same alkynes as before, delivering up to hexa-substituted benzenes in good to excellent yields (61-98%, Table 3.4, Entries 1-5). As before, the lowest yield was observed when the less reactive internal alkyne, 3-hexyne, was employed as the monoyne. However, the yields were generally higher compared to the electron-neutral diynes and . Moreover, we were able to construct tetralines using the homologous precursor . The tetralin [2+2+2] cyclotrimerization yields (58-70%) where slightly lower compared to the indane synthesis, and the reaction time needed to be extended to 5 min, due to the higher activation barrier when forming six-membered rings (Table 3.4, Entries 6-10).
Table 3.4. Microwave-mediated Ni(CO)$_2$(PPh$_3$)$_2$ catalyzed cyclotrimerization reactions of electron-deficient diynes.

![Diagram of cyclotrimerization reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cmpd.</th>
<th>n</th>
<th>R</th>
<th>R'</th>
<th>Yield</th>
<th>Entry</th>
<th>Cmpd.</th>
<th>n</th>
<th>R</th>
<th>R'</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>195</td>
<td>1</td>
<td>Bu</td>
<td>H</td>
<td>79%</td>
<td>6</td>
<td>200</td>
<td>2</td>
<td>Bu</td>
<td>H</td>
<td>70%</td>
</tr>
<tr>
<td>2</td>
<td>196</td>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>93%</td>
<td>7</td>
<td>201</td>
<td>2</td>
<td>Ph</td>
<td>H</td>
<td>64%</td>
</tr>
<tr>
<td>3</td>
<td>197</td>
<td>1</td>
<td>CH$_2$OBn</td>
<td>H</td>
<td>98%</td>
<td>8</td>
<td>202</td>
<td>2</td>
<td>CH$_2$OBn</td>
<td>H</td>
<td>60%</td>
</tr>
<tr>
<td>4</td>
<td>198</td>
<td>1</td>
<td>CH$_2$NHBOc</td>
<td>H</td>
<td>90%</td>
<td>9</td>
<td>203</td>
<td>2</td>
<td>CH$_2$NHBOc</td>
<td>H</td>
<td>61%</td>
</tr>
<tr>
<td>5</td>
<td>199</td>
<td>1</td>
<td>Et</td>
<td>Et</td>
<td>61%</td>
<td>10</td>
<td>204</td>
<td>2</td>
<td>Et</td>
<td>Et</td>
<td>58%</td>
</tr>
</tbody>
</table>

By conducting cyclotrimerization reactions using the Ni(CO)$_2$(PPh$_3$)$_2$ catalyst in conjunction with microwave irradiation we discovered efficient and rapid conditions with which to conduct these transformations. With a two minute reaction time, these examples represent the fastest cyclotrimerization reactions to date. We hypothesized that the discovered conditions are suitable for an application in total synthesis and set forth to prove this hypothesis by assembling a sesquiterpenoid alkaloid natural product using a microwave-assisted Ni-catalyzed [2+2+2] cyclotrimerization reaction as the key step (see Chapter 3.3).

3.2.4 Development of Open-Vessel Microwave-Mediated [2+2+2] Cyclotrimerization Reactions

As previously demonstrated by us, performing cyclotrimerization reactions on solid-supports provides one solution to achieve high levels of chemoselectivity and to eliminate dimer and trimer formation of the starting material diyne through the spatial separation of individual diyne molecules on the polymeric support (e.g. see the solid-supported indanone
synthesis in Chapter 2.3). However, using the solid-support creates new problems including the limited scale of solid-supported reactions as well as the fact that not all diynes are suitably functionalized to allow for immobilization. To circumvent these issues, we proposed performing microwave-mediated reactions under open-vessel conditions. By conducting the reactions at ambient pressure, one can slowly add reagents to the ongoing reaction. In this manner, the individual diyne molecules can be spatially separated similar to reactions conducted on the solid-support. Moreover, larger vessels (125 mL round bottom flask) can be used in the microwave reactor under open-vessel conditions compared to closed vessels (10 mL vial) allowing for larger scale reactions.

Initial experiments investigated the synthesis of fused benzenes from the reaction of the diyne 181 and the internal alkyne 3-hexyne under nickel catalysis. Being an internal alkyne, 3-hexyne has a reduced activity in cyclotrimerization reactions that leads to increased dimerization of diyne starting materials. This choice of monoyne will make for a more stringent test of the efficacy of the open-vessel approach towards solving polymerization of the diyne. Control experiments conducted under closed-vessel microwave conditions previously established for the microwave-mediated Ni-catalyzed cyclotrimerization reaction demonstrated the need for an alternate method giving the desired benzene product in poor yield as the number of equivalents of 3-hexyne is reduced (Entries 1-3, Table 3.5). Gratifyingly, when the diyne is slowly added to an irradiated solution of 10 equivalents of 3-hexyne and 10 mol% catalyst over 30 minutes, an 82% yield of benzene 182 was obtained (Entry 4). A decrease in equivalents of 3-hexyne to three still produced a highly efficient cyclotrimerization furnishing an 80% yield of the desired benzene (Entry 5). Using a 1:1
ratio of 3-hexyne to diyne led to a diminished 49% yield as well as unreacted starting material (Entry 6). Conducting the reaction under thermal conditions (oil bath, 110 °C) failed to produce the desired benzene product (Entry 7).

For comparison, benzene formation under Ru-catalysis was also explored. As with the Ni-catalyzed reactions closed-vessel controls gave poor yields of benzene product (Entries 8-10). As before, open-vessel conditions using 10 equivalents of 3-hexyne provided the benzene product in 81% yield (Entry 11). However, as the ratio of monoyne to diyne was decreased from 10 to 3 to 1, the yield suffered accordingly and more dramatically than under Ni-catalysis (Entries 12 and 14). Increasing the time of addition from 30 min to 90 min had no beneficial effect on reaction efficiency (Entries 13 and 15).

Table 3.5. Closed- and open-vessel [2+2+2] cyclotrimerization reactions towards benzene formation.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Equiv.</th>
<th>Syringe</th>
<th>Time/min</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>a</sup></td>
<td>Ni(Ph<sub>3</sub>P)<sub>2</sub>(CO)<sub>2</sub></td>
<td>10</td>
<td>-</td>
<td>30</td>
<td>63%</td>
</tr>
<tr>
<td>2<sup>a</sup></td>
<td>*</td>
<td>3</td>
<td>-</td>
<td>30</td>
<td>33%</td>
</tr>
<tr>
<td>3<sup>a</sup></td>
<td>*</td>
<td>1</td>
<td>-</td>
<td>30</td>
<td>18%</td>
</tr>
<tr>
<td>4</td>
<td>*</td>
<td>10</td>
<td>30</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>10</td>
<td>30</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>1</td>
<td>30</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>7<sup>b</sup></td>
<td>*</td>
<td>3</td>
<td>30</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Equiv.</th>
<th>Syringe</th>
<th>Time/min</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>8<sup>a</sup></td>
<td>Cp<sup>+</sup>Ru(COD)Cl</td>
<td>10</td>
<td>-</td>
<td>30</td>
<td>28%</td>
</tr>
<tr>
<td>9<sup>a</sup></td>
<td>*</td>
<td>3</td>
<td>-</td>
<td>30</td>
<td>10%</td>
</tr>
<tr>
<td>10<sup>a</sup></td>
<td>*</td>
<td>1</td>
<td>-</td>
<td>30</td>
<td>6%</td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>10</td>
<td>30</td>
<td>81%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>*</td>
<td>3</td>
<td>30</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>3</td>
<td>90</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>*</td>
<td>1</td>
<td>30</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>*</td>
<td>1</td>
<td>90</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>16<sup>b</sup></td>
<td>*</td>
<td>10</td>
<td>30</td>
<td>see text</td>
<td></td>
</tr>
</tbody>
</table>

^a Sealed-vessel reaction, ^b No microwave irradiation

Thus, the developed open-vessel microwave-mediated cyclotrimerization reactions have successfully addressed the chemoselectivity issue associated with cyclotrimerization.
reactions. By adding the diyne slowly to the reaction mixture, high dilution conditions can be maintained while under microwave irradiation. In addition, the scale of the cyclotrimerization reactions can be increased to allow for a more expedient preparation of intermediates in synthetic schemes. This protocol should translate to other microwave-mediated transition metal catalyzed reactions that display similar chemoselectivity and scale-up issues.

3.3 Total Synthesis of Illudinine

3.3.1 Background and Retrosynthetic Analysis

The sesquiterpene alkaloid illudinine (205) was isolated as a fungal metabolite from the basidiomycete Clitocybe illudens (also known as Omphalotus olearius or Jack-O-Lantern mushroom) and a biogenetic relationship to illudalic acid was suggested (Figure 3.2). Only two total syntheses of illudinine are known. One by Woodward and Hoye, requiring 15 steps from indane (including a necessary separation of regioisomers), and one by Rao and coworkers, requiring 14 steps from 6-methoxy-1,2,3,4-tetrahydronaphthalene. Because of the facile cyclotrimerization reaction of the diyne 193 towards indane derivatives 195-199, we hypothesized that the indane core of the sesquiterpene alkaloid illudinine (205) could be accessed via a [2+2+2] cyclotrimerization reaction.
Retrosynthetically, we envisioned deriving the illudinine isoquinoline framework from the oxidation of the tetrahydroisoquinoline 206 (Scheme 3.). In turn, the tetrahydroisoquinoline 206 would be accessed from a Pictet-Spengler ring closure of the homobenzylic amine 207. Installation of the phenol moiety in the amine 207 would necessitate differentiation of the two ester functionalities in the bicycle 208. Inspecting the bicycle 208, one can distinguish the imbedded indane skeleton that can be furnished by a [2+2+2] cyclotrimerization reaction between diester diyne 209 and a suitably protected homopropargyl amine 210. Preliminary investigations would focus on delineating suitable protecting groups for homopropargyl amine 210.

Scheme 3.1. Retrosynthetic analysis of illudinine (205). PG = protecting group.
3.3.2 Model Studies towards Illudinine

As with many syntheses, the careful choice of protecting groups is essential to effectively mask a functional group’s reactivity while also being sufficiently labile to allow facile deprotection at the appropriate juncture of the synthesis.159-161 Towards the synthesis of illudinine, a diprotected homopropargyl amine is required whose protecting groups must be acceptable not only in the cyclotrimerization key step, but also in subsequent steps as the architecture of illudinine is constructed. In this vein, a series of differentially protected homopropargyl amines were synthesized from 3-butyn-1-ol (211) in 1-3 steps in order to explore their reactivity in the cyclotrimerization step (Scheme 3.2).

\textbf{Scheme 3.2.} Synthesis of the protected homopropargyl amines 212-216. Ms = Mesyl, PMB = para-methoxybenzyl, Ns = 2-nitrobenzenesulfonamide.

Each protected amine was then subjected to cyclotrimerization reactions with the diyne 193, a model diyne for illudinine, using the previously developed microwave-mediated nickel
catalyzed cyclotrimerization protocol (Table 3.6). The phthalimide protected homopropargyl amine 212 cyclotrimerized smoothly yielding the indane 217 in 85% yield (Entry 1). Cyclotrimerization of the nosyl- and PMB-protected amine 216, however, was problematic (Entries 2-3). Full conversion of the diyne to the product indane 218 was realized (\(^1\)H NMR analysis of crude mixture), but purification from the excess monoyne was not possible. Using excess diyne, though, provided indane 218 in 79% yield based on the diyne. Despite the good yield, this stoichiometry would not be feasible when a complex diyne is being used. Monoprotected amine 219 had a deleterious effect on the cyclotrimerization reaction, and no reaction was observed when using six equivalents of monoyne (Entry 4). By once again using excess diyne and in this case 50 mol% catalyst loading, conversion to the indane 220 was observed in the crude mixture; however, the product was inseparable from the unreacted PMB-protected homopropargyl amine (Entry 5).

Table 3.6. Cyclotrimerization reactions of protected amines 212-216 and 219 with the model diyne 193.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>Eq. amine</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phth</td>
<td>--</td>
<td>10</td>
<td>217, 85%</td>
</tr>
<tr>
<td>2</td>
<td>Ns</td>
<td>PMB</td>
<td>8</td>
<td>full conv.</td>
</tr>
<tr>
<td>3</td>
<td>Ns</td>
<td>PMB</td>
<td>0.2</td>
<td>218, 79%</td>
</tr>
<tr>
<td>4</td>
<td>PMB</td>
<td>H</td>
<td>6</td>
<td>no rxn.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>Eq. amine</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PMB</td>
<td>H</td>
<td>0.17</td>
<td>pdt inseparable</td>
</tr>
<tr>
<td>6</td>
<td>Boc</td>
<td>PMB</td>
<td>6</td>
<td>221, 75%</td>
</tr>
<tr>
<td>7</td>
<td>Boc</td>
<td>H</td>
<td>6</td>
<td>222, 85%</td>
</tr>
<tr>
<td>8</td>
<td>PMB</td>
<td>PMB</td>
<td>6</td>
<td>pdt inseparable</td>
</tr>
</tbody>
</table>

The use of carbamates 213 and 215 led to efficient cyclotrimerization reactions providing indanes 221 and 222 in 75 and 85%, respectively (Entries 6-7). As before with the
mono-PMB-protected monoyne 219, the use of bis-PMB-protected monoyne 214 gave an inseparable mixture of product 223 and monoyne (Entry 8). Based on these cyclotrimerization studies, amides cyclotrimerizer readily providing indane derivatives in good yield while basic amines have a detrimental effect on the cyclotrimerization reaction. Further investigations into which protecting groups are compatible with later steps in the synthesis would still be necessary.

At this juncture of the model study, differentiation between the two ester groups was investigated. It was found that when the tetralin diester 202 was treated with excess methyllithium and CeCl₃, addition of the organocerium reagent would only occur at one ester group giving the tertiary alcohol 224 in 90% yield (Scheme 3.3). The same held true for indane diester 195 providing alcohol 225 in 92% yield. We speculate that this result is due to the unique steric environment of each ester, fully protecting the ortho-substituted ester group from nucleophilic addition due to steric hindrance.

![Scheme 3.3. Addition of MeLi/CeCl₃ into the diesters 202 and 195.](image)

The regioselectivity of the addition was confirmed by comparing the ¹H NMR spectrum of 195 and 205 where the signal of the lone aromatic proton in 225 is shifted downfield from
7.68 ppm in 195 to 7.18 ppm due to the loss of the electron withdrawing nature of the ester group in the ortho position.

When the model indanes were subjected to the MeLi/CeCl₃ conditions, the viable protecting groups became apparent. The phthalimide 217 reacted to yield a mixture of products which was not unexpected due to the instability of phthalimides towards organometallic reagents (Entry 1, Scheme 3.4).¹⁶¹ Reactions with the nosyl- and PMB-protected amine 218 were equally unrewarding (Entry 2). Carbamate 222, furnished the desired tertiary alcohol 226 in a disappointing 12% yield with 26% of unreacted starting material as well as unidentified by-products (Entry 3). On the other hand, indane 221 reacted cleanly with MeLi/CeCl₃ to deliver the required alcohol 227 in an excellent 92% yield (Entry 4). The use of only MeLi gave mixtures of the methyl ketone (not shown) derived from single addition of MeLi as well as the desired alcohol in 32 and 29%, respectively. From these results the PMB- and Boc-protected amine would provide the necessary protection of the amine functionality in the cyclotrimerization event as well as the compatibility with the organocerium reagent.

Scheme 3.4. Addition of MeLi/CeCl₃ into the diester indanes 217, 218, 221 and 222.

With the differentiation of the two ester groups solved, attention was turned to forming the tricyclic skeleton of illudinidine. Treatment of the tertiary alcohol with boron trifluoride etherate and hydrogen peroxide promoted a facile benzylic hydroperoxide rearrangement to a
phenol with simultaneous removal of the Boc protecting group to supply aminophenol 228 in 86% yield (Scheme 3.5).165 Initial experiments used the crude aminophenol in the Pictet-Spengler166 cyclization to give tetrahydroisoquinoline 229 in 67% yield over two steps. It was discovered, however, that the tetrahydroisoquinoline was unstable; therefore, methylation with diazomethane would provide the methylated tetrahydroisoquinoline 230 in 31% yield over three steps. When the Pictet-Spengler and methylation reactions were carried out in series with methylation by trimethylsilyldiazomethane instead of diazomethane, the methoxy derivative 230 was obtained in 59% yield over two steps.167

Scheme 3.5. Conversion of the tertiary alcohol 227 into the isoquinoline 231.

Oxidation of the tetrahydroisoquinoline 230 with Pd on carbon168 with concomitant removal of the PMB protecting group furnished ethyl-didemethyl illudinate 231 in 48% yield. The use of DDQ led to incomplete oxidation. Obtaining 231 drew a successful end to the model studies towards illudinine and provided answers to the nature of the protecting groups as well as the formation of the tricyclic core of illudinine.
3.4 Total Synthesis of Illudidine

Our synthesis commences with the known diyne \(233\) prepared in five steps from isophorone (\(232\), Scheme 3.6)\(^{169-171}\) which is lithiated at both terminal triple bonds and then carboxylated to form the diester \(209\) in 70% yield (Scheme 3.7).

As in case of the model studies with \(193\), this molecule underwent a smooth reaction with the monoyne \(213\) via the Ni(CO)\(_2\)(PPh\(_3\))\(_2\) catalyzed [2+2+2] cyclotrimerization reaction under microwave irradiation in toluene for 2 min at 300 W. The cyclotrimerization product \(235\) was isolated in 84% yield. Treatment of \(235\) with an excess of CH\(_3\)Li in the presence of CeCl\(_3\) delivered the tertiary alcohol \(236\) as the only product in 84% yield. Rearrangement of \(236\) and removal of the Boc group provided the phenol \(237\) in 92% yield. Pictet-Spengler cyclization with formaldehyde in the presence of a sodium acetate buffer furnished the corresponding tetrahydroisoquinoline, which was directly converted into the methyl ether \(238\) through exposure to trimethylsilyldiazomethane. The oxidation and deprotection of \(238\) to ethyl illudinate (\(239\)) progressed in 58% yield. Quantitative saponification of the ester with 40% aqueous KOH in EtOH/H\(_2\)O (95:5) completed the convergent and regioselective total synthesis of illudinine. The \(^1\)H NMR spectrum of synthetic \(205\) shows three aromatic signals.
(9.74, 9.02, and 8.53 ppm) indicative of pyridine ring protons of an isoquinoline structure as well as three singlets (3.28, 3.25, and 1.22 ppm) for two methylene units and two equivalent methyl groups suggesting a gem-dimethyl cyclopentane ring fused to the benzene of illudinine. The completely regioselective synthesis of 205 was completed in only eight steps from known material (13 from commercially available material) and represents the shortest synthesis of illudinine to date.

Scheme 3.7. Total synthesis of illudinine (205).
3.5 Summary

The use of Ni(PPh$_3$)$_2$(CO)$_2$ catalysis and microwave irradiation has proven to be an effective combination for the [2+2+2] cyclotrimerization reaction. The rapid synthesis of indanes, tetralins, and isoindolines is possible, and with a two minute reaction time, these examples represent the fastest cyclotrimerization reactions to date. This new methodology was showcased in the total synthesis of a sesquiterpene alkaloid, illudinine (205). The synthesis comprised eight steps from known material (13 from commercially available material) in a 17% overall yield and represents the shortest synthesis of illudinine to date. Key features of the synthesis include a [2+2+2] cyclotrimerization reaction, the regioselective addition of MeLi/CeCl$_3$ into an ester and the rearrangement of a tertiary benzylic alcohol to a phenol.
3.6 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Tetrahydrofuran, toluene, xylenes, and diethyl ether were distilled from sodium/benzophenone ketyl prior to use. Diisopropylamine, triethylamine, DMSO, DCM, DMF, 1,2-dichloroethane, CH$_3$CN and pyridine were distilled from calcium hydride and stored over 4 Å molecular sieves. Other reagents and solvents obtained from commercial sources were stored under nitrogen and used directly without further purification. n-BuLi and MeLi were titrated against N-pivaloyl-o-toluidine. Melting points were obtained from a Mel-Temp capillary melting point apparatus and are uncorrected. High resolution mass spectral analysis (HRMS) was performed at North Carolina State University. NMR spectra were obtained using a Varian Gemini GN-300 (300 MHz) or Varian Mercury 300 (300 MHz) spectrometer. Chemical shifts are in δ units (ppm) with TMS (0.0 ppm) used as the internal standard for 1H NMR spectra and the CDCl$_3$ absorption (77.2) for 13C NMR spectra. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer.

General cyclotrimerization protocol. To a flame-dried microwave vial equipped with a stir bar was added the diyne (0.085 mmol), the mono-alkyne (0.85 mmol), Ni(CO)$_2$(PPh$_3$)$_2$ (5.4 mg, 0.0085 mmol), and dry toluene (2.8 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 2-5 min in a CEM Discover microwave synthesizer at 300 W. After cooling to room temperature, the reaction mixture was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc to give the pure cyclotrimerization product.
Analytical data for compounds 186-192, 195-204.

tert-Butyl-(2,2-di(ethoxycarbonyl)-2,3-dihydro-1H-inden-6-yl)methylcarbamate (186). Isolated in 82% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.20-7.02 (m, 3 H), 4.78 (br s, 1 H), 4.30-4.16 (m, 6 H), 3.56 (s, 4 H), 1.47 (s, 9 H), 1.26 (t, $J = 7.2$ Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$) δ 171.7, 156.0, 140.7, 139.3, 137.9, 126.5, 124.4, 123.5, 79.6, 61.8, 60.6, 44.7, 40.5, 40.3, 28.5, 14.1. HRMS calcd for [M + Na]$^+$ C$_{21}$H$_{29}$NO$_6$Na 414.1887, found 414.1891.

5,6-Diethyl-indan-2,2-dicarboxylic acid diethyl ester (187). Isolated in 63% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.01 (s, 2 H), 4.21 (q, $J = 7.2$ Hz, 4 H), 3.56 (s, 4 H), 2.62 (q, $J = 7.7$ Hz, 4 H), 1.27 (t, $J = 7.2$ Hz, 6 H), 1.21 (t, $J = 7.7$ Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$) δ 172.0, 140.6, 137.7, 124.0, 61.7, 60.6, 40.4, 25.6, 15.5, 14.2. HRMS calcd for [M + H]$^+$ C$_{19}$H$_{27}$O$_4$ 319.1904, found 319.1908.

5-Butyl-1,3-dihydro-isoindole-2-carboxylic acid tert-butyl ester (188). Isolated in 80% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.23-7.00 (m, 3 H), 4.67 (s, 2H), 4.63 (s, 2 H), 2.63 (t, $J = 7.6$ Hz, 2 H), 1.69-1.50 (m, 11 H), 1.46-1.30 (m, 2 H), 0.95 (t, $J = 7.2$ Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$, rotamers) δ 154.6, 142.3, 142.2, 137.5, 137.1, 127.7, 127.6, 122.7, 122.6, 122.5, 122.3, 79.7, 52.4, 52.3, 52.1, 52.0, 35.7, 34.1, 28.8, 22.58, 22.55, 14.2. HRMS calcd for [M + Na]$^+$ C$_{17}$H$_{25}$NO$_2$Na 298.1778, found 298.1778.
5-Phenyl-1,3-dihydro-isindo1e-2-carboxylic acid tert-butyl ester (189). Isolated in 75% yield as a slight yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.64-7.26 (m, 8 H), 4.81-4.66 (m, 4 H), 1.57 (s, 9 H); 13C NMR (75 MHz, CDCl$_3$, rotamers) δ 155.6, 141.0, 140.9, 138.1, 137.7, 136.5, 136.1, 128.9, 127.4, 127.2, 126.6, 126.5, 123.1, 122.9, 121.6, 121.3, 79.9, 52.5, 52.3, 52.2, 52.0, 28.8. HRMS calcd for $[M + H]^+\ C_{19}H_{22}NO_2$ 296.1645, found 296.1653.

5-(Benzyloxymethyl)-1,3-dihydro-isindo1e-2-carboxylic acid tert-butyl ester (190). Isolated in 76% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.42-7.18 (m, 8 H), 4.70 (s, 2 H), 4.67 (s, 2 H), 4.59 (s, 2 H), 4.57 (s, 2 H), 4.57 (s, 2 H), 1.55 (s, 9 H); 13C NMR (75 MHz, CDCl$_3$, rotamers) δ 154.7, 138.3, 137.8, 137.4, 136.9, 136.6, 128.61, 128.58, 127.93, 127.85, 127.21, 127.17, 122.9, 122.6, 122.4, 122.1, 79.9, 72.5, 72.4, 72.3, 72.1, 71.8, 52.4, 52.3, 52.1, 52.0, 51.6, 51.5, 28.9, 28.5. HRMS calcd for $[M + Na]^+\ C_{21}H_{26}NO_3Na$ 362.1727, found 362.1742.

tert-Butyl (2-(tert-butoxycarbonyl)isoindolin-6-yl)methyl carbamate (191). Isolated in 80% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.26-7.10 (m, 3 H), 4.90 (br s, 1 H), 4.67 (s, 2 H), 4.64 (s, 2 H), 4.33 (s, 2 H), 4.31 (s, 2 H), 1.54 (s, 9 H), 1.48 (s, 9 H); 13C NMR (75 MHz, CDCl$_3$, rotamers) δ 155.6, 154.5, 138.5, 137.9, 137.5, 136.5, 136.1, 126.7, 122.9, 122.7, 121.8, 121.7, 79.8, 79.7, 52.4, 52.2, 52.1, 51.9, 44.7, 28.8, 28.6. HRMS calcd for $[M + Na]^+\ C_{19}H_{28}N_2O_4Na$ 371.1941, found 371.1939.
5,6-Diethyl-1,3-dihydro-isouindole-2-carboxylic acid tert-butyl ester (192). Isolated in 55% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.09 (s, 1 H), 7.04 (s, 1 H), 4.66 (s, 2 H), 4.62 (s, 2 H), 2.68 (q, $J = 7.4$ Hz, 4 H), 1.54 (s, 9 H), 1.25 (t, $J = 7.4$ Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$, rotamers) δ 154.7, 141.13, 141.06, 135.0, 134.7, 122.5, 122.3, 79.6, 52.4, 52.1, 28.8, 25.7, 15.7. HRMS calcd for [M + Na]$^+$ C$_{17}$H$_{25}$NO$_2$Na 298.1778, found 298.1778.

Diethyl-5-butyl-4,7-indanedicarboxylate (195). Isolated in 79% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.70 (s, 1 H), 4.48-4.28 (m, 4 H), 3.25 (t, $J = 7.4$ Hz, 2 H), 2.97 (t, $J = 7.4$ Hz, 2 H), 2.72 (t, $J = 7.7$ Hz, 2 H), 2.08 (p, $J = 7.7$ Hz, 2 H), 1.58 (p, $J = 7.7$ Hz, 2 H), 1.46-1.30 (m, 8 H), 0.93 (t, $J = 7.4$ Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 168.8, 166.8, 144.6, 144.5, 139.0, 132.9, 129.7, 127.9, 61.2, 61.0, 34.2, 33.9, 33.4, 32.4, 25.1, 22.9, 14.6, 14.5, 14.2. HRMS calcd for [M + H]$^+$ C$_{19}$H$_{27}$O$_4$ 319.1909, found 319.1919.

Diethyl-5-Phenyl-4,7-indanedicarboxylate (196). Isolated in 93% yield as a yellow solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.88 (s, 1 H), 7.46-7.30 (m, 5 H), 4.39 (q, $J = 7.2$ Hz, 2 H), 4.11 (q, $J = 6.9$ Hz, 2 H), 3.36 (t, $J = 7.6$ Hz, 2 H), 3.08 (t, $J = 7.6$ Hz, 2 H), 2.17 (p, $J = 7.6$ Hz, 2 H), 1.42 (t, $J = 7.2$ Hz, 3 H), 1.00 9t, $J = 6.9$ Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 168.8, 166.5, 146.4, 145.0, 140.5, 138.9, 132.5, 129.9, 128.4, 128.3, 127.9, 127.4, 61.2, 61.1, 34.0, 32.1, 25.1, 14.6, 13.9. HRMS calcd for [M + H]$^+$ C$_{21}$H$_{23}$O$_4$ 339.1596, found 339.1589.

Diethyl-5-(benzyloxymethyl)-4,7-indanedicarboxylate (197). Isolated in 98% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.92 (s, 1 H), 7.41-7.26 (m, 5 H), 4.74 (s, 2 H),
4.54 (s, 2 H), 4.45-4.29 (m, 4 H), 3.30 (t, $J = 7.6$ Hz, 2 H), 3.05 (t, $J = 7.6$ Hz, 2 H), 2.12 (p, $J = 7.6$ Hz, 2 H), 1.43 (t, $J = 7.2$ Hz, 3 H), 1.35 (t, $J = 7.2$ Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 168.2, 166.5, 147.2, 145.5, 138.1, 135.2, 132.0, 128.6, 128.4, 127.9, 127.8, 127.6, 72.6, 70.3, 61.3, 61.1, 33.9, 32.4, 25.1, 14.6, 14.4. HRMS calcd for [M + H]$^+$ C$_{23}$H$_{27}$O$_5$ 383.1858, found 383.1854.

tert-Butyl-(4,7-di(ethoxycarbonyl)-2,3-1H-inden-5-yl)methylcarbamate (198). Isolated in 90% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.88 (s, 1 H), 5.22 (br s, 1 H), 4.51-4.32 (m, 4 H), 3.29 (t, $J = 7.6$ Hz, 2 H), 3.06 (t, $J = 7.6$ Hz, 2 H), 2.10 (p, $J = 7.6$ Hz, 2 h), 1.54-1.37 (m, 15 H); 13C NMR (75 MHz, CDCl$_3$) δ 168.3, 166.3, 155.6, 147.1, 146.1, 136.2, 131.6, 129.6, 128.7, 79.4, 61.6, 61.1, 43.3, 33.8, 33.0, 28.6, 25.1, 14.6, 14.5. HRMS calcd for [M + H]$^+$ C$_{21}$H$_{30}$NO$_6$ 392.2073, found 392.2069.

Diethyl-5,6-diethyl-4,7-indanedicarboxylate (199). Isolated in 61% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 4.40 (q, $J = 7.2$ Hz, 4 H), 2.93 (t, $J = 7.4$ Hz, 4 H), 2.73 (q, $J = 7.5$ Hz, 4 H), 2.07 (p, $J = 7.4$ Hz, 2 H), 1.41 (t, $J = 7.2$ Hz, 6 H), 1.21 (t, $J = 7.5$ Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$) δ 169.5, 140.5, 138.0, 131.9, 61.1, 32.3, 25.0, 23.4, 16.3, 14.5. HRMS calcd for [M + H]$^+$ C$_{19}$H$_{27}$O$_4$ 319.1909, found 319.1910.

3-Butyl-5,7,6,8-tetrhydronaphthalene-1,4-dicarboxylic acid diethyl ester (200). Isolated in 70% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.49 (s, 1 H), 4.38 (m, 4 H), 3.02 (br s, 2 H), 2.74 (br s, 2 H), 2.55 (t, $J = 8.0$ Hz, 2 H), 1.85-1.73 (m, 4 H), 1.67-1.53 (m, 8 H), 1.41-1.37 (m, 3 H).
2 H), 1.47-1.30 (m, 8 H), 0.94 (t, J = 7.2 Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 169.7, 168.0, 137.3, 136.0, 135.9, 134.4, 131.7, 128.3, 61.3, 61.1, 33.6, 33.2, 27.9, 27.5, 22.9, 22.8, 22.4, 14.6, 14.5, 14.1. HRMS calcd for [M + H]$^+$ C$_{20}$H$_{29}$O$_3$ 333.2066, found 333.2073.

3-Phenyl-5,7,6,8-tetrahydronaphthalene-1,4-dicarboxylic acid diethyl ester (201). Isolated in 64% yield as a slight yellow solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.66 (s, 1 H), 7.44-7.32 (m, 5 H), 4.36 (q, J = 7.2 Hz, 2 H), 4.08 (q, J = 7.2 Hz, 2 H), 3.12 (br s, 2 H), 2.85 (br s, 2 H), 1.92-1.77 (m, 4 H), 1.39 (t, J = 7.2 Hz, 3 H), 1.01 (t, J = 7.2 Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 169.2, 167.6, 140.0, 137.7, 136.8, 136.6, 135.2, 131.8, 128.7, 128.5, 128.3, 127.6, 61.23, 61.17, 28.1, 27.7, 22.7, 22.4, 14.6, 14.0. HRMS calcd for [M + H]$^+$ C$_{22}$H$_{25}$O$_4$ 353.1747, found 353.1753.

3-(Benzyloxymethyl)-5,7,6,8-tetrahydronaphthalene-1,4-dicarboxylic acid diethyl ester (202). Isolated in 60% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.68 (s, 1 H), 7.40-7.28 (m, 5 H), 4.58 (s, 2 H), 4.51 (s, 2 H), 4.43-4.24 (m, 4 H), 3.08 (br s, 2 H), 2.80 (br s, 2 H), 1.89-1.75 (m, 4 H), 1.41 (t, J = 7.2 Hz, 3 H), 1.32 (t, J = 7.2 Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 169.1, 167.6, 138.5, 138.0, 136.5, 135.4, 132.2, 131.7, 128.4, 127.8, 127.7, 127.6, 72.5, 70.0, 61.4, 61.1, 28.1, 27.6, 22.7, 22.3, 14.6, 14.3. HRMS calcd for [M + Na]$^+$ C$_{24}$H$_{28}$O$_5$Na 419.1828, found 419.1836.

tert-Butyl-(5,8-di(ethoxycarbonyl)-1,2,3,4-tetrahydronaphthalen-7-yl)methylcarbamate (203). Isolated in 61% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.64 9s, 1 H),
4.92 (s, 1 H), 4.48-4.30 (m, 4 H), 4.27 (s, 2 H), 4.25 (s, 2 H), 3.05 (br s, 2 H), 2.77 (br s, 2 H), 1.86-1.75 (m, 4 H), 1.52-1.36 (m, 15 H); 13C NMR (75 MHz, CDCl$_3$) δ 169.3, 167.5, 155.5, 138.1, 136.6, 135.4, 132.6, 132.2, 128.0, 61.7, 61.2, 42.8, 28.6, 28.0, 27.7, 22.6, 22.3, 14.54, 14.46. HRMS calcd for [M + Na]$^+$ C$_{22}$H$_{31}$NO$_6$Na 428.2043, found 428.2051.

3,4-Diethyl-5,7,6,8-tetrahydronaphthalene-1,4-dicarboxylic acid diethyl ester (204). Isolated in 58% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 4.39 (q, $J = 7.2$ Hz, 4 H), 2.74-2.53 (m, 8 H), 1.85-1.71 (m, 4 H), 1.41 (t, $J = 7.2$ Hz, 6 H), 1.20 (t, $J = 7.6$ Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$) δ 170.2, 136.1, 135.8, 131.4, 61.1, 26.9, 23.6, 22.7, 16.1, 14.5. HRMS calcd for [M + H]$^+$ C$_{20}$H$_{29}$O$_4$ 333.2066, found 333.2075.

Experimental protocols and data for compounds 214, 216-218, 221, 222, 224-228, 230, 231, 234-239, and 205

N,N-Bis(4-methoxybenzyl)but-3-yn-1-amine (214). To a solution of N-(4-methoxybenzyl)but-3-yn-1-amine (219) (100 mg, 0.53 mmol) and DIPEA (184 µL, 1.06 mmol) in acetonitrile (900 µL) was added p-methoxybenzylchloride (107 µL, 0.79 mmol), and the reaction was heated to 70 °C for 5 h. After cooling, the solvent was removed in vacuo and the residue was taken up in H$_2$O (5 mL) and extracted three times with EtOAc (5 mL). The combined organic extracts were washed with H$_2$O (5 mL) and brine (5 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (12:1) to give 128 mg (78%) of 214 as a
colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.27 (d, J = 8.5 Hz, 4 H), 6.85 (d, J = 8.5 Hz, 4 H), 3.81 (s, 6 H), 3.55 (s, 4 H), 2.68 (t, J = 7.4, 2 H), 2.35 (dt, J = 7.4, 2.6, 2 H), 1.95 (t, J = 2.5, 1 H).

N-(But-3-ynyl)-N-(4-methoxybenzyl)-2-nitrobenzenesulfonamide (216). To a solution of N-(4-methoxybenzyl)-2-nitrobenzenesulfonamide173 (350 mg, 1.09 mmol), 3-butyn-1-ol (107 μL, 1.41 mmol), and PPh$_3$ (370 mg, 1.41 mmol) in DCM (7 mL) was added DIAD (296 μL, 1.41 mmol) dropwise and the reaction was stirred for 2 h. Additional 3-butyn-1-ol (53 μL, 0.71 mmol), PPh$_3$ (185 mg, 0.71 mmol), and DIAD (150 μL, 0.71 mmol) was added and the reaction was stirred for another 3 hr. After concentration, the residue was purified by silica gel chromatography, eluting with DCM/hexanes (3:1) to give 393 mg (96%) of 216 as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 8.10-7.97 (m, 1 H), 7.79-7.59 (m, 3 H), 7.20 (d, J = 8.8 Hz, 2 H), 6.83 (d, J = 8.8 Hz, 2 H), 4.53 (s, 2 H), 3.80 (s, 3 H), 3.43 (t, J = 7.5 Hz, 2 H), 2.28 (dt, J = 7.5, 2.7 Hz, 2 H), 1.89 (t, J = 2.7 Hz, 1 H).

Diethyl 2,3-dihydro-5-(2-(1,3-dioxoisooindolin-2-yl)ethyl)-1H-indene-4,7-dicarboxylate (217). A solution of diyne 193 (20.3 mg, 0.86 mmol), 212 (171 mg, 0.86 mmol), and Ni(PPh$_3$)$_2$(CO)$_2$ (5.5 mg, 0.009 mmol) in PhCH$_3$ (3 mL) was irradiated in a CEM Discover microwave synthesizer for 2 min. After cooling the reaction was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1 to 2:1) to give 31.9 mg (85%) of 217 as a white solid: Mp 176-179 °C; 1H NMR (300 MHz, CDCl$_3$) δ 7.92-7.64 (m, 5 H), 4.46 (q, J = 7.1 Hz, 2 H), 4.29 (q, J = 7.1 Hz, 2 H), 3.94 (t, J = 7.7 Hz,
2'H, 3.25 (t, J = 7.6 Hz, 2 H), 3.10 (t, J = 7.7 Hz, 2 H), 2.99 (t, J = 7.6 Hz, 2 H), 2.08 (p, J = 7.7 Hz, 2 H), 1.41 (t, J = 7.1 Hz, 3 H), 1.34 (t, J = 7.1 Hz, 3 H).

(2'- (4,7-Di(ethoxycarbonyl)-2,3-dihydro-1H-inden-6-yl)ethyl)-4-methoxybenzyl-2-nitrobenzenesulfonamide (218). A solution of diyne 193 (95 mg, 0.40 mmol), 216 (25 mg, 0.067 mmol), and Ni(PPh₃)₂(CO)₂ (21.3 mg, 0.20 mmol) in PhCH₃ (2.5 mL) was irradiated in a CEM Discover microwave synthesizer for 2 min. After cooling the reaction was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 32.3 mg (79%) of 218 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, J = 8.1 Hz, 1 H), 7.66-7.45 (m, 4 H), 7.26 (d, J = 8.7 Hz, 2 H), 6.85 (d, J = 8.7 Hz, 2 H), 4.58 (s, 2 H), 4.35 (m, 4 H), 3.80 (s, 3 H), 3.48 (t, J = 7.5 Hz, 2 H), 3.20 (t, J = 7.5 Hz, 2 H), 2.93 (t, J = 7.5 Hz, 2 H), 2.83 (t, J = 7.5 Hz, 2 H), 2.05 (p, J = 7.5 Hz, 2 H), 1.42 (t, J = 7.1 Hz, 3 H), 1.36 (t, J = 7.1 Hz, 3 H).

tert-Butyl 2-(4,7-di(ethoxycarbonyl)-2,3-dihydro-1H-inden-6-yl)ethyl-4-methoxybenzyl carbamate (221). In each of three microwave vials were added 193 (40 mg, 0.17 mmol), 213 (295 mg, 1.02 mmol), Ni(CO)₂(PPh₃)₂ (10.8 mg, 0.017 mmol), and PhCH₃ (4 mL). Each vial was irradiated for 2 min at 300 W in a CEM Discover microwave synthesizer. The reactions were combined and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1) to give 201 mg (75%) of 221 as a colorless oil. ¹H NMR (300 MHz, CDCl₃, rotamers) δ 7.74-7.62 (m, 1 H), 7.23-7.10 (m, 2 H), 6.83 (d, J = 8.7 Hz, 2 H), 4.41-4.20 (m, 6 H), 3.79 (s, 3 H), 3.49-3.30 (m, 2 H), 3.25 (t, J
= 7.5 Hz, 2 H), 3.03-2.84 (m, 4 H), 2.07 (p, \(J = 7.5 \) Hz, 2 H), 1.48 (s, 9 H), 1.44-1.33 (m, 6 H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 168.5, 166.6, 158.9, 155.9, 155.5, 145.6, 145.0, 135.9, 133.0, 130.8, 130.5, 129.4, 128.8, 128.2, 113.9, 79.7, 61.3, 61.0, 55.4, 50.6, 49.6, 48.3, 33.7, 32.6, 28.6, 25.0, 14.4.

tert-Butyl 2-(4,7-di(ethoxycarbonyl)-2,3-dihydro-1\(H\)-inden-6-yl)ethyl carbamate (222).

A solution of diyne 193 (19.5 mg, 0.083 mmol), 215 (84 mg, 0.50 mmol), and Ni(PPh\(_3\))\(_2\)(CO)\(_2\) (5.2 mg, 0.008 mmol) in PhCH\(_3\) (2.5 mL) was irradiated in a CEM Discover microwave synthesizer for 2 min. After cooling the reaction was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1) to give 28.3 mg (85%) of 222 as a white solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.72 (s, 1 H), 4.83 (bs, 1 H), 4.47-4.31 (m, 4 H), 3.48-3.33 (m, 2 H), 3.27 (t, \(J = 7.6 \) Hz, 2 H), 3.00 (t, \(J = 7.6 \) Hz, 2 H), 2.91 (t, \(J = 6.8 \) Hz, 2 H), 2.18-2.03 (p, \(J = 7.6 \)Hz, 2 H), 1.52-1.33 (m, 15 H).

Ethyl 2-((benzyloxy)methyl)-5,6,7,8-tetrahydro-4-(2-hydroxypropan-2-yl)naphthalene-1-carboxylate (224). To dry CeCl\(_3\) (37 mg, 0.15 mmol) at 0 °C was added THF (500 \(\mu \)L) and was stirred for 3 h at room temperature. The suspension was cooled to −78 °C, and MeLi (1.6 M in Et\(_2\)O, 95 \(\mu \)L, 0.15 mmol) was added dropwise. After stirring for 1 h at −78 °C, diester 202 (10 mg, 0.025 mmol) in THF (200 \(\mu \)L with 100 \(\mu \)L wash) was added dropwise, and the reaction was stirred for 2 h. At this point, the reaction was allowed to warm to −40 °C and was stirred an additional 2 h before being quench with NH\(_4\)Cl (sat.) (1 mL) and extracted with Et\(_2\)O (4 mL \(\times \) 3). The combined organic extracts were washed with H\(_2\)O (5
mL) and brine (5 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 9.1 mg (90%) of 224 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.24 (m, 6 H), 4.55 (s, 2 H), 4.51 (s, 2 H), 4.25 (q, J = 7.1 Hz, 2 H), 3.12-3.01 (m, 2 H), 2.84-2.73 (m, 2 H), 1.82-1.62 (m, 11 H), 1.30 (t, J = 7.1 Hz, 3 H).

Ethyl 5-butyl-2,3-dihydro-7-(2-hydroxypropan-2-yl)-1H-indene-4-carboxylate (225). CeCl₃ (139 mg, 0.56 mmol) was dried overnight in vacuo at 140 °C. While the flask was hot, nitrogen was introduced, and the flask was cooled to 0 °C. THF (1.8 mL) was added at once, the ice bath removed, and the suspension was stirred vigorously for 3 h at room temperature. The flask was cooled to −78 °C, and MeLi (0.6 M in Et₂O, 942 µL, 0.56 mmol) was added dropwise. After stirring for 1 h at −78 °C, 195 (30 mg, 0.094 mmol) was added over 5 min. After 8 min the reaction was quenched at −78 °C with sat. NH₄Cl (1 mL) and allowed to warm to room temperature. EtOAc (4 mL) and water (4 mL) were added, and the layers were separated. The aqueous layer was extracted with EtOAc (4 mL × 2), and the combined organic extracts were washed with H₂O (5 mL) and brine (5 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7:1) to give 26.2 mg (92%) of 225 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.18 (s, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 3.10 (t, J = 7.3 Hz, 2 H), 2.95 (t, J = 7.5 Hz, 2 H), 2.71 (t, J = 7.8 Hz, 2 H), 2.13 (m, 2 H), 1.64-1.52 (m, 8 H), 1.56-1.32 (m, 5 H), 0.93 (t, J = 7.3 Hz, 3 H).
tert-Butyl 2-(4-(ethoxycarbonyl)-2,3-dihydro-7-(2-hydroxypropan-2-yl)-1H-inden-5-yl)ethylcarbamate (226). CeCl$_3$ (81 mg, 0.33 mmol) was dried overnight in vacuo at 140 °C. While the flask was hot, nitrogen was introduced, and the flask was cooled to 0 °C. THF (1.1 mL) was added at once, the ice bath removed, and the suspension was stirred vigorously for 3 hrs at room temperature. The flask was cooled to −78 °C, and MeLi (1.35 M in Et$_2$O, 244 µL, 0.33 mmol) was added dropwise. After stirring for 1 h at −78 °C, 222 (26.7 mg, 0.066 mmol) was added over 5 min. After 7 min the reaction was quenched at −78 °C with sat. NH$_4$Cl (1 mL) and allowed to warm to room temperature. EtOAc (3 mL) and water (3 mL) were added, and the layers were separated. The aqueous layer was extracted with EtOAc (3 mL × 2), and the combined organic extracts were washed with H$_2$O (4 mL) and brine (4 mL), dried (MgSO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3:1 to 2:1) to give 3.2 mg (12%) of 226 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.19 (s, 1 H), 4.90 (bs, 1 H), 4.37 (q, $J = 7.1$ Hz, 2 H), 3.37 (dt, $J = 6.3$, 12.0 Hz, 2 H), 3.11 (t, $J = 7.4$ Hz, 2 H), 2.97 (t, $J = 7.4$ Hz, 2 H), 2.89 (t, $J = 6.3$ Hz, 2 H), 2.04 (p, $J = 7.4$ Hz, 2 H), 1.76 (bs, 1 H), 1.60 (s, 6 H), 1.43-1.36 (m, 12 H).

tert-Butyl 2-(4-(ethoxycarbonyl)-2,3-dihydro-7-(2-hydroxypropan-2-yl)-1H-inden-5-yl)ethyl4-methoxybenzyl carbamate (227). CeCl$_3$ (318 mg, 1.29 mmol) was dried overnight in vacuo at 140 °C. While the flask was hot, nitrogen was introduced, and the flask was cooled to 0 °C. THF (4.3 mL) was added at once, the ice bath removed, and the suspension was stirred vigorously for 3 h at room temperature. The flask was cooled to −78
81 °C, and MeLi (0.74 M in Et₂O, 961 µL, 1.29 mmol) was added dropwise. After stirring for 1 h at −78 °C, 221 (116 mg, 0.066 mmol) in THF (1.4 mL) was added over 10 min. After stirring 10 min the reaction was quenched at −78 °C with sat. NH₄Cl (3 mL) and allowed to warm to room temperature. EtOAc (5 mL) and water (5 mL) were added, and the layers were separated. The aqueous layer was extracted with EtOAc (5 mL × 2), and the combined organic extracts were washed with H₂O (5 mL) and brine (5 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 104 mg (92%) of 227 as a colorless oil. ¹H NMR (300 MHz, CDCl₃, rotamers) δ 7.25-7.06 (m, 3 H) 6.82 (d, J = 8.5 Hz, 2 H), 4.40-4.20 (m, 4 H), 3.79 (s, 3 H), 3.51-3.28 (m, 2 H), 3.10 (t, J = 7.4 Hz, 2 H), 3.03-2.84 (m, 4 H), 2.03 (p, J = 7.4 Hz, 2 H), 1.79 (s, 1 H), 1.58 (s, 6 H), 1.44 (bs, 9 H), 1.36 (t, J = 7.1 Hz, 3 H).

Ethyl 5-(2-(4-methoxybenzylamino)ethyl)-2,3-dihydro-7-hydroxy-1H-indene-4-carboxylate (228). BF₃·Et₂O (206 µL, 0.78 mmol) was added to H₂O₂ (50%, 13.3 µL, 0.2 mmol) and was stirred for 45 min at 0 °C. This solution was added to 227 (50 mg, 0.098 mmol) in dichloromethane (2.3 mL) at 0 °C. After stirring for 9 min at 0 °C, H₂O (2 mL) and EtOAc (2 mL) were added and the layers separated. The aqueous layer was extracted with EtOAc (2 mL × 2), and the combined organic extracts were washed with water (4 mL) and brine (4 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with CHCl₃/MeOH (10:1) to give 30.9 mg (86%) of 228 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, J = 8.6 Hz, 2 H), 6.87-6.72 (m, 3
H), 4.26 (q, J = 7.1 Hz, 2 H), 4.01 (s, 2 H), 3.71 (s, 3 H), 3.29-3.07 (m, 4 H), 3.04 (t, J = 7.5 Hz, 2 H), 2.79 (t, J = 7.5 Hz, 2 H), 2.00 (p, J = 7.5 Hz, 2 H), 1.33 (t, J = 7.1 Hz, 3 H).

Ethyl 2-(4-methoxybenzyl)-2,3,4,6,7,8-hexahydro-9-methoxy-1H-cyclopenta[g]isoquinoline-5-carboxylate (230). Formaldehyde (37% in H₂O, 31 µL, 0.42 mmol) was added to 228 (15 mg, 0.40 mmol) in MeOH (1.5 mL), 1 N NaOAc (570 µL), and 0.1 N HOAc (570 µL), and the reaction was stirred at room temperature for 1 h. The MeOH was removed and the aqueous layer was extracted with dichloromethane (4 mL × 4). The combined organic extracts were dried (Na₂SO₄), filtered and concentrated to dryness. The crude tetrahydroisoquinoline was then taken up in CH₂CN/MeOH (9:2, 231 µL), and DIPEA (28.5 µL, 0.16 mmol) followed by trimethylsilyldiazomethane (2 M in Et₂O, 273 µL, 0.55 mmol). After 2 h, the solvent was removed under reduced pressure, and the residue was taken up in H₂O (1 mL) and EtOAc (2 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 mL × 2). The combined organic extracts were washed with water and brine, dried (Na₂SO₄), filtered and concentrated. The residue was purified by silica gel chromatography, eluting with CHCl₃/MeOH (40:1) to give 12.8 mg (59%, 2 steps) of 230 as an oil. ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, J = 8.7 Hz, 2 H), 6.88 (d, J = 8.7 Hz, 2 H), 4.32 (q, J = 7.1 Hz, 2 H), 3.82 (s, 3 H), 3.79 (s, 3 H), 3.64 (bs, 4 H), 3.07-2.91 (m, 6 H), 2.63 (t, J = 5.9 Hz, 2 H), 2.05 (p, J = 7.5 Hz, 2 H), 1.36 (t, J = 7.1 Hz, 3 H).

Ethyl 7,8-dihydro-9-methoxy-6H-cyclopenta[g]isoquinoline-5-carboxylate (231). A mixture of 230 (11.8 mg, 0.030 mmol) and Pd/C (10%, 6 mg) was heated in mesitylene (240
µL) for 45 min. The reaction was cooled, diluted with EtOAc (2 mL) and a few drops of TEA, filtered over a silica plug eluting with EtOAc then MeOH, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:1) to give 3.8 mg (48%) of 231 as a white solid. 1H NMR (300 MHz, CDCl3) δ 9.57 (bs, 1 H), 8.55 (bs, 1 H), 8.28 (bs, 1 H), 4.49 (q, J = 7.1 Hz, 2 H), 4.11 (s, 3 H), 3.30 (t, J = 7.5 Hz, 2 H), 3.20 (t, J = 7.5 Hz, 2 H), 2.17 (p, J = 7.5 Hz, 2 H), 1.47 (t, J = 7.1 Hz, 3 H).

Diethyl-5,5-dimethyl-2,7-diyne-1,4-dioate (209). n-BuLi (2.4 M in hexanes, 880 µL, 2.11 mmol) was added dropwise to a solution of 233 (110 mg, 0.92 mmol) in THF (11 mL) at −10 °C. The solution was stirred for 30 min before ethyl chloroformate (228 µL, 2.4 mmol) was added rapidly. The reaction was stirred at −10 °C for 10 min, was warmed to room temperature, and was stirred for 1 hr. The reaction was quenched with sat. NH4Cl (2 mL) and extracted with Et2O (5 mL × 3). The combined organic extracts were washed with H2O (5 mL) and brine (5 mL), dried (MgSO4), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 167 mg (70%) of 209 as a yellow oil. IR (NaCl, thin film, neat) 2971, 2936, 2905, 2879, 2233, 1712, 1470, 1366, 1252, 1071; 1H NMR (300 MHz, CDCl3) δ 4.22 (q, J = 7.2 Hz, 2 H), 2.38 (s, 2 H), 1.31 (t, J = 7.2 Hz, 3 H), 1.14 (s, 3 H); 13C NMR (75 MHz, CDCl3) δ 153.7, 86.0, 75.6, 62.0, 34.6, 31.3, 26.7, 14.2. HRMS calcd for [M + H]+ C15H21O4 265.1434, found 265.1437.

1-[N-(tert-Butoxycarbonyl)-N-(4-methoxybenzyl)amino]-2-[2,2-dimethyl-4,7-di(ethoxycarbonyl)-inden-5-yl]ethane (235). In three microwave vials were added 209 (20
mg, 0.076 mmol), 213 (219 mg, 0.76 mmol), Ni(CO)$_2$(PPh$_3$)$_2$ (4.8 mg, 0.0075 mmol), and PhCH$_3$ (2.5 mL). Each vial was irradiated for 2 min at 300 W in a CEM Discover microwave synthesizer. The reactions were combined and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7:1) to give 105 mg (84%) of 235 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$, rotamers) δ 7.75-7.59 (m, 1 H), 7.25-7.09 (m, 2 H), 6.84 (d, J = 8.5 Hz, 2 H), 4.42-4.18 (m, 6 H), 3.79 (s, 3 H), 3.48-3.28 (m, 2 H), 3.08 (s, 2 H), 3.03-2.84 (m, 2 H), 2.79 (s, 2 H), 1.48 (s, 9 H), 1.43-1.33 (m, 6 H), 1.14 (s, 6 H); 13C NMR (75 MHz, CDCl$_3$, rotamers) δ 168.4, 166.6, 158.9, 155.9, 144.9, 144.4, 136.0, 133.2, 130.8, 130.5, 129.3, 128.7, 128.5, 113.9, 79.7, 61.3, 61.0, 55.4, 50.5, 49.6, 48.4, 48.3, 47.4, 39.5, 32.5, 32.2, 29.0, 28.6, 14.4. HRMS calcd for [M + Na]$^+$ C$_{32}$H$_{43}$NO$_7$Na 576.2932, found 576.2932.

1-[N-(tert-Butoxycarbonyl)-N-(4-methoxybenzyl)amino]-2-[2,2-dimethyl-4-(ethoxycarbonyl)-7-(2-hydroxypropan-2-yl)-indane-5-yl]ethane (236). CeCl$_3$ (69 mg, 0.28 mmol) was dried overnight in vacuo at 140 °C. While the flask was hot, nitrogen was introduced, and the flask was cooled to 0 °C. THF (950 µL) was added at once, the ice bath removed, and the suspension was stirred vigorously for 3 h at rt. The flask was cooled to −78 °C, and MeLi (0.9 M in Et$_2$O, 313 µL, 0.28 mmol) was added dropwise. After stirring for 1 h at −78 °C, 235 (26 mg, 0.047 mmol) was added over 5 min. After 9 min the reaction was quenched at −78 °C with sat. NH$_4$Cl (1 mL) and allowed to warm to room temperature. EtOAc (2 mL) and water (2 mL) were added, and the layers were separated. The aqueous layer was extracted with EtOAc (2 mL × 2), and the combined organic extracts were washed
with H₂O (3 mL) and brine (3 mL), dried (Na₂SO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:7) to give 21.3 mg (84\%) of 236 as a colorless oil. ¹H NMR (300 MHz, CDCl₃, rotamers) δ 7.24-7.01 (m, 3 H), 6.83 (d, J = 8.8 Hz, 2 H), 4.40-4.17 (m, 4 H), 3.78 (s, 3 H), 3.37 (br s, 2 H), 3.06-2.84 (m, 4 H), 2.78 (s, 2 H), 1.81 (s, 1 H), 1.56 (s, 6 H), 1.45 (s, 9 H), 1.35 (t, J = 7.2 Hz, 3 H), 1.13 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃, rotamers) δ 168.9, 158.8, 156.0, 155.5, 147.2, 144.6, 139.0, 136.1, 130.75, 129.4, 128.7, 128.2, 125.5, 79.5, 73.1, 60.8, 55.3, 50.3, 49.3, 48.7, 48.4, 48.0, 47.3, 39.6, 32.7, 30.4, 28.7, 28.6, 14.4. HRMS calcd for [M + Na]⁺ C₃₂H₄₅NO₆Na 562.3139, found 562.3141.

Ethyl-5-(2-(4-methoxybenzylamino)ethyl-7-hydroxy-2,2-dimethyl-4-carboxylate (237).

BF₃·Et₂O (83 µL, 0.71 mmol) was added to H₂O₂ (50\%, 5.4 µL, 0.079 mmol) and was stirred for 45 min at 0 °C. This solution was added to 236 (21.3 mg, 0.039 mmol) in dichloromethane (950 µL) at 0 °C. After stirring for 9 min at 0 °C, H₂O (2 mL) and EtOAc (2 mL) were added and the layers separated. The aqueous layer was extracted with EtOAc (2 mL × 2), and the combined organic extracts were washed with water (3 mL) and brine (3 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with CHCl₃/MeOH (12:1) to give 14.4 mg (92\%) of 237 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.78 (br s, 2 H), 7.35 (d, J = 8.4 Hz, 2 H), 6.78 (d, J = 8.4 Hz, 2 H), 6.71 (s, 1 H), 4.25 (q, J = 7.2 Hz, 2 H), 3.96 (s, 2 H), 3.68 (s, 3 H), 3.14 (m, 4 H), 2.85 (s, 2 H), 2.61 (s, 2 H), 1.31 (t, J = 7.2 Hz, 3 H), 1.10 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 160.2, 156.3, 148.1, 138.0, 131.6, 129.6, 123.6, 119.4, 116.6, 114.4,
HRMS calcd for [M + H]$^+$ $C_{24}H_{32}NO_4$ 398.2326, found 398.2334.

Ethyl-2-(4-methoxybenzyl)-2,3,4,6,7,8-hexahydro-9-methoxy-7,7-dimethyl-1H-cyclopenta[g]isoquinoline-5-carboxylate (238). Formaldehyde (37% in H$_2$O, 29 µL, 0.39 mmol) was added to 237 (14.4 mg, 0.036 mmol) in MeOH (1.2 mL), 1 N NaOAc (510 µL), and 0.1 N HOAc (510 µL), and the reaction was stirred at room temperature for 1 h. The MeOH was removed and the aqueous layer extracted with dichloromethane (2 mL × 4). The combined organic extracts were dried (Na$_2$SO$_4$), filtered and concentrated to dryness. The crude tetrahydroisoquinoline was then taken up in CH$_3$CN/MeOH (9:2, 160 µL), and DIPEA (18.9 µL, 0.11 mmol) followed by trimethylsilyldiazomethane (2 M in Et$_2$O, 181 µL, 0.36 mmol). After 4 h, 5 equivalents more trimethylsilyldiazomethane (90 µL) was added and the reaction was allowed to stir for 30 min. The solvent was then removed under reduced pressure, and the residue was taken up in H$_2$O (2 mL) and EtOAc (2 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 mL × 2). The combined organic extracts were washed with water (3 mL) and brine (3 mL), dried (Na$_2$SO$_4$), filtered and concentrated. The residue was purified by silica gel chromatography, eluting with CHCl$_3$/MeOH (45:1) to give 10.1 mg (66%, 2 steps) of 238 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.32 (d, $J = 8.7$ Hz, 2 H), 6.88 (d, $J = 8.7$ Hz, 2 H), 4.32 (q, $J = 7.2$ Hz, 2 H), 3.82 (s, 3 H), 3.76 (s, 3 H), 3.65 (s, 4 H), 3.00 (t, $J = 5.9$ Hz, 2 H), 2.82 (s, 2 H), 2.77 (s, 2 H), 2.64 (t, $J = 5.9$ Hz, 2 H), 1.35 (t, $J = 7.2$ Hz, 3 H), 1.13 (s, 6 H); 13C NMR (75 MHz, CDCl$_3$, not all quaternary carbon centers were observed) δ 166.6, 158.9, 155.3, 144.8, 134.3, 131.2,
Ethyl 7,8-dihydro-9-methoxy-7,7-dimethyl-6H-cyclopenta[g]isoquinoline-5-carboxylate (239). Pd/C (10%, 4.2 mg) was added to 238 (10.1 mg, 0.024 mmol) in mesitylene (190 µL) and the mixture was heated at 185 °C for 4 h. The reaction was cooled, diluted with EtOAc (1 mL) and a few drops of TEA, filtered over a silica plug eluting with EtOAc then MeOH, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:1) to give 4.1 mg (58%) of 239 as a white solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 9.56 (br s, 1 H), 8.54 (br s, 1 H), 8.31 (d, \(J = 4.7\) Hz), 4.49 (q, \(J = 7.2\) Hz, 2 H), 4.09 (s, 3 H), 3.10 (s, 2 H), 3.01 (s, 2 H), 1.47 (t, \(J = 7.2\) Hz, 3 H), 1.19 (s, 6 H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), not all quaternary carbon centers were observed) \(\delta\) 167.2, 155.4, 154.2, 146.9, 143.0, 135.6, 131.0, 119.1, 61.3, 61.0, 49.3, 44.9, 40.3, 28.5, 14.6. HRMS calcd for [M + H]\(^+\) C\(_{18}\)H\(_{22}\)NO\(_3\) 300.1594, found 300.1603.

Illudinine (205). To 239 (4.1 mg, 0.014 mmol) dissolved in 95% EtOH (400 µL) was added 40% aqueous KOH (20 drops), and the reaction was stirred for 20 h. Aqueous HCl (10%) was added to pH 3, the solution was poured into pH 7 buffer and extracted with Et\(_2\)O (4 mL × 5). The organic layer was dried (Na\(_2\)SO\(_4\)), filtered and concentrated to give 3.9 mg (100%) of pure illudinine (205) as a white solid. \(^1\)H NMR (300 MHz, MeOH-d\(_4\)) \(\delta\) 9.74 (s, 1 H), 9.02 (d, \(J = 6.9\) Hz, 1 H), 8.53 (d, \(J = 6.9\) Hz, 1 H), 4.30 (s, 3 H), 3.28 (s, 2 H), 3.25 (s, 2 H), 1.22 (s, 6 H); \(^{13}\)C NMR (75 MHz, MeOH-d\(_4\)) \(\delta\) 169.4, 164.6, 158.1, 144.2, 140.3, 134.6, 133.7,
124.8, 124.0, 121.6, 62.7, 51.7, 47.1, 42.1, 29.1. HRMS calcd for \([\text{M} + \text{H}]^+\) \(\text{C}_{16}\text{H}_{18}\text{NO}_3\) 272.1281, found 272.1283.

88
CHAPTER 4: Progress Towards the Total Synthesis of Anthraquinone Natural Products

4.1 Background

4.1.1 The Anthracycline Antibiotics

The anthracycline antibiotics are glycosidic polyketide natural products with an aglycone component consisting of a tetracyclic anthraquinone chromophore with varying degrees of oxygenation on the B and D rings and assorted substitution patterns on the A ring (Figure 4.1a and 4.1b). The first anthracycline discovered, β-rhodomycin II (240), was isolated by Brockman and Bauer in 1950 from the actinomycete Streptomyces purpurascens. This anthracycline showed high antibacterial activity, but its toxicity in mice prevented further development into a clinically useful chemotherapeutic agent. During the 1960’s, two key anthracyclines, daunorubicin (also termed daunomycin, 241) and doxorubicin (also termed adriamycin, 242), were discovered. Isolated independently by two laboratories, daunorubicin was shown to possess a novel sugar, daunosamine, identified as 3-amino-2,6-dideoxy-L-lyxo-hexose. Daunorubicin displayed potent antitumor activity especially towards leukemias but also exhibited dose-dependent cardiotoxicity limiting its application. Being more potent than daunorubicin, doxorubicin created much excitement when its biological activity was disclosed, however the high risk of cardiomyopathy and irreversible heart failure limits its use.
a) Numbering scheme

b) Representative structures

Figure 4.1. Anthracycline numbering and representative structures.

In 1984, Tewey et al. treated cells and cell free systems with adriamycin and discovered topoisomerase II as a target enzyme with the enzyme-DNA complex being stabilized after the cleavage reaction takes place thereby preventing re-ligation of the DNA.179 Crystal structures180-182 and models183 of the anthracycline-DNA complex indicate that the C-9 hydroxyl is positioned outside of the double helix in the minor groove and forms
a hydrogen bond with the DNA. This interaction helps stabilize the drug-DNA-topoisomerase II complex thereby preventing normal topoisomerase II activity. In addition, models of the ternary doxorubicin-DNA-Top II complex reveal key hydrogen bonds between two amino acids, serine-740 and threonine-744, with the C-12 carbonyl and the C-11 hydroxyl of doxorubicin. The synthesis of a variety of anthracyclines and anthracycline analogues resulted in detailed structure-activity relationship information supporting the aforementioned key interactions. Modifications of the C-9 side chain, either elongation or substitution, had a deleterious effect on activity while C-8 and C-10 substitution had no effect as long as the conformation of the A ring was maintained. Analogues that had a C-9 hydrogen in place of the hydroxyl group showed a marked reduction in activity, however, without reduction of DNA binding affinity. As expected, removal of the C-11 hydroxyl group led to decreased activity.

Currently, duanomycin, doxorubicin, epirubicin (243), and idarubicin (244) are amongst the most effective clinical agents for cancers of many types including acute myeloid leukemia (daunorubicin); solid tumors of the breast, bile ducts, liver, esophagus, and endometrial tissue (doxorubicin); ovarian, gastric, rectal, and pancreatic cancers (epirubicin); and acute nonlymphocytic leukemia (idarubicin). Ongoing studies consider the current understanding of the mode of action of anthracyclines as well as their mechanism for toxicity to develop higher generation analogues. Various groups have made deoxygenated and fluoro-derivatives, analogues with disaccharide moieties, 5-imino, and morpholino derivatives. Different formulations have been devised to specifically target the drugs to tumors such as liposomal anthracyclines, extracellular prodrugs, and polymer bound
Clearly, there have been many developments in the anthracycline field since their discovery over fifty years ago, but cardiotoxicity and questions concerning the precise mode of action sustain the still vigorous field of anthracycline research.

4.1.2 Synthetic Approaches Towards the Anthracycline Antibiotics

Owing to their importance as chemotherapeutic agents, the anthracyclines and their analogues have been popular synthetic targets by many research groups. Since the synthesis and coupling of the sugar moiety are well developed, the synthetic challenge resides in the efficient construction of the A-D ring system, the aglycone, with the class of molecules being termed anthracyclinones. The synthesis of the aglycone system itself poses several hurdles to the synthetic chemist. First, the A ring has two, three, or four stereocenters that must be correctly installed, with the stereochemistry of C-9 being especially important for biological activity. Also, there is a regiochemistry issue with respect to the A and D rings. Most anthracyclines have nonsymmetrically substituted D rings (e.g. aclacinomycin 245) relative to the A ring stereocenters. Nonsymmetrical B ring anthracyclines (e.g. pyrromycin 246) are also known. Solubility restraints and difficult separations of A/D ring regioisomers accentuate the need for a regiochemically controlled synthesis of the aglycone. With these intricacies in mind, a number of approaches towards the synthesis of anthracyclinones have been developed with three general synthetic plans utilized: anthraquinone based syntheses where anions play a key role; Diels-Alder strategies that can disconnect the A, B, and C rings in multiple ways; and cationic reactions where Friedel-Crafts chemistry takes the center
stage. These general strategies will be explored by examining several selected syntheses (for others see *Tetrahedron* 1984, 40, issue 22).

As anthraquinones are cheap, readily available compounds, and already contain three of the four rings of the aglycone, it is not surprising that many syntheses begin with various anthraquinones as starting material. There are two ways to elaborate onto the anthraquinone core structure: electrophilic or nucleophilic additions. With regards to electrophilic additions, the Marschalk reaction is perhaps the most important reaction in anthracycline syntheses beginning with anthraquinones. In the Marschalk reaction, as depicted in Scheme 4.1, an alkyl (or hydroxyl alkyl) group is attached to the anthraquinone core of hydroxy- or aminoanthraquinones exclusively *ortho* to the heteroatom. Marschalk noted several other features of the anthraquinone and aldehyde reaction partners that affected the reaction course: reduction to the hydroquinone (if not directly employed as the starting material) is necessary and formaldehyde is the most reactive aldehyde. The course of the reaction is depicted in Scheme 4.1 where after reduction and deprotonation of the anthraquinone, the hydroquinone adds to the aldehyde to yield the alkoxide. This step is accelerated in less protic solvents supporting the claim that the aldehyde and phenol are aligned through a hydrogen bond. Isomerization to and retro-Michael reaction to lose water yields the *ortho*-quinone methide.
These ortho-quinone methide intermediates have been isolated as intermediates in the metabolism of anthracyclines after biological reduction and elimination of the sugar.206 Subsequent tautomerization leads to the substituted anthraquinone 251. Since the retro-Michael reaction proceeds much slower than aldehyde addition, it is possible to reoxidize intermediates such as 249b using hydrogen peroxide to yield the hydroxyl alkyl anthraquinones.207, 208 This method is clearly very useful for anthracycline synthesis. In the first synthesis of (R)-β-rhodomycinone, two Marschalk reactions, one intermolecular and one intramolecular, are employed to install the A ring (Scheme 4.2).209 In this example, the 1,4-dialdehyde equivalent 252 was synthesized from (S)-2-aminobutyric acid as a chiral building block. The shown regioisomer 253 was produced in 44% yield in a 7:1 regioisomeric ratio. Deprotection set up the second Marschalk reaction to yield the aglycone 254.
Scheme 4.2. Krohn’s synthesis of (R)-rhodomycinone using the chiral 1,4-dialdehyde 252.

When only one phenol is present on the B ring, as with aklavinone (255) and pyrromycinone (256, Figure 4.2), a double Marschalk approach is not viable. In these cases, it has been advantageous to use dialkyl anthraquinones in a keto-ester cyclization event to form the A ring.

Figure 4.2. Structures of aklavinone (255) and pyrromycinone (256).

This biogenetic approach produces the acid-labile β-hydroxy ester functionality under basic conditions. In Kishi’s synthesis of aklavinone (255), for example, the keto-ester 257 is cyclized with potassium carbonate in methanol to yield the aglycones after deprotection in 44% yield and as a 1:1 mixture of stereoisomers of 255 and 258 (Scheme 4.3).

Scheme 4.3. Kishi’s keto-ester cyclization towards aklavinone (255).
In related systems, the stereoisomeric ratio can be controlled with the proper choice of reaction conditions (Scheme 4.4); lithium amides in aprotic solvents yield the cis-hydroxy ester products (260b) exclusively while the use of Triton B and pyridine leads to a ~10:1 trans/cis ratio of 260a/260b from the keto-ester 259.203, 211

![Scheme 4.4](image)

Scheme 4.4. Kinetic control of keto-ester cyclization.

The final case where anthraquinones are used as starting materials has the quinone’s role reversed: a nucleophile adds to the anthraquinone core. 1,4-Dihydroxyanthraquinone, quinizarin, has two tautomeric forms, 261a and 261b, with the equilibrium strongly favoring 261a. The reaction can be viewed as a Michael addition to tautomer 261b (Scheme 4.5). The 1,4-dihydroxy functionality allows for intermolecular additions to occur, compared to situations when only one hydroxyl group is present and only intramolecular reactions are possible.202

![Scheme 4.5](image)

Scheme 4.5. Tautomeric forms of 1,4-dihydroxyanthraquinone.

In the case of the intermolecular nucleophilic addition, Sutherland et al. synthesized 7,9-dideoxycarminomycinone (265) *via* addition of the nitro-compound 263 to 1,4,5-trihydroxyanthraquinone (262) in sodium methoxide/methanol under reflux (Scheme 4.6).
Scheme 4.6. Intermolecular nucleophilic addition towards 7,9-bisdeoxycarminomycinone (265).

Deprotection of 264 followed by a Marschalk reaction and a PCC oxidation afforded the desired deoxygenated tetracycle 265. Krohn synthesized the known daunomycinone intermediate 267 via an intramolecular nucleophilic addition of 266b by treatment with potassium carbonate/18-crown-6 in THF (Scheme 4.7).

Scheme 4.7. Krohn’s intramolecular nucleophilic addition towards the known daunomycinone intermediate (267).

As these examples illustrate, anthraquinones are valuable starting points for anthracyclinone syntheses, however, several of the syntheses are hampered by low yields and the need to separate regio- and stereoisomers. Additional examples of Marschalk reactions, keto-ester cyclizations, and nucleophilic additions towards various natural and synthetic anthracyclines are known.
When anthraquinones are not used as starting materials, anions can still be utilized in the formation of the B and C rings. Parker et al. synthesized the B ring precursor of daunomycinone 270 via Michael addition of the benzyl cyanide 268 onto the α,β-unsaturated ester 269 (Scheme 4.8).²¹⁵ Five steps completed the synthesis of the known intermediate 271.

![Scheme 4.8. Michael addition/Friedel-Crafts approach to daunomycinone.](image)

Likewise, the formation of the C ring can be accomplished by anionic coupling as well. Kende uses the dianion 272 and the benzaldehyde 273 as coupling partners to produce the intermediate lactone 274 (Scheme 4.9).²¹⁶ Several more steps are required to yield aklavinone (255). An advantage of these anionic cyclization strategies is the complete regiocontrol over the reactions. This method is very versatile as long as the appropriate, regioisomerically pure coupling partners can be synthesized.

![Scheme 4.9. Anionic coupling towards aklavinone (255).](image)
One of the most powerful tools in organic chemistry for the assembly of six-membered rings is the Diels-Alder reaction, and, therefore, it comes as no surprise that this reaction has been used extensively to construct rings A, B, or C through one of six possible disconnections (Figure 4.3).

Regiocontrol varies between each individual case with the 4,6-oxygenated anthracyclinone precursors showing more regiocontrol than 4,6,11-oxygenated precursors. Quinodimethanes provide one form of diene for the synthesis of ring A. Cava et al. reacted the \(o \)-quinodimethane 276 generated from the dibromide 275 with methyl vinyl ketone (277) to yield the 4-demethoxydaunomycinone intermediate 278 (Scheme 4.10a). Alternatively, the dienophile can be present on the B ring as in Kende’s synthesis of racemic daunomycinone. Here, 2-acetoxybutadiene (280) is reacted with the diquinone 279 to give a 1:1 mixture of adducts 281 in 71% yield. Cleavage of the enol acetates gives regioisomeric ketones separable by recrystallization (Scheme 4.10b).
Moving down the tetracyclic framework to ring B, most disconnections come at line d (Figure 4.3). Derivatives of juglone are used extensively to produce various 4,6-oxygentated anthracyclines with excellent regiocontrol. A known aklavinone intermediate was synthesized in a highly convergent manner by Rapaport et al. by cyclizing the bromojuglone 282 with the silyl ketene acetal 283. They obtained only the regioisomer 284 shown in 61% yield after fluoride treatment (Scheme 4.11).219

Ring C disconnections, as with ring A, typically involve σ-quinodimethane intermediates with disconnections at line e. Only derivatives of the 6,11-dihydroxy
Anthraclinone derivatives are available. A convenient synthesis of idarubicinone was achieved by Danishefsky et al. where the \(\alpha\)-quinone dimethide precursor 285 and the tetrahydronaphthoquinone 286 reacted at 50 °C to yield, after treatment with DDQ, the tetracyclic product 287 (Scheme 4.12). Oxidation and deprotection gave idarubicinone (288) in 65% yield over three steps.

Scheme 4.12. \(\alpha\)-Quinodimethide strategy in C ring synthesis towards idarubicinone (288).

A similar sequence with the 4-methoxy substituted 285 gave a 1:1 mixture of regioisomers one of which leads to daunomycinone. The Diels-Alder approach to the anthracyclines has provided a viable strategy to many different natural and non-natural anthracyclinones with much of the regio- and stereoselectivity questions taken into account before coupling.

The Friedel-Crafts route to anthraclinones only allows for one type of disconnection at line e (Figure 4.3). Certain limitations hamper the applicability of the Friedel-Crafts approach including harsh reaction conditions and regioisomer formation. The idarubicinone intermediate 291 has been prepared several times by reacting phthaloyl dichloride (289) with the AB ring synthon 290 (Scheme 4.13a).
Non-symmetrical D ring synthons have been utilized in a racemic synthesis of daunomycinone. To this end, 3-bromo-4-methoxyphthalide (292) and the AB ring synthon 293 react under SnCl₄ catalyzed conditions to give the lactone 294 which can be further elaborated to racemic daunomycinone in eleven steps (Scheme 4.13b). As can be seen from these limited examples, the Friedel-Crafts approach to anthracycline synthesis is narrow in scope, since only the disconnection ‘e’ in Figure 4.3 has been employed in these syntheses.

The synthesis of anthracyclines via the three bond disconnection in Scheme 4.14 is termed the “cobalt way” by Vollhardt.

This approach assembles the B and C rings in one step from a diyne and a monoyne under transition metal catalysis by way of a [2+2+2] cyclotrimerization reaction (initially
conducted using a cobalt catalyst). D ring symmetrical diynes are clearly the most useful reaction partners for this strategy as a regioisomeric mixture will undoubtedly result if no controlling factors (e.g. electronic or steric effects) are involved. Vollhardt et. al. reported the cyclotrimerization of the bis(alkynylketone) 297 with monoynes to give the anthraquinones 298 in poor yields under cobalt catalysis (Scheme 4.15a). Another approach applied the cyclotrimerization of dipropargylbenzenes such as 299 with bistrimethylsilylacetylene (BTMSA, 300) to give the dihydroanthracene derivative 301 in moderate yield (Scheme 4.15b). The low yields prevented any further exploration into elaboration towards the anthracyclinones (i.e. installation of the A ring) and requires further improvement.

Scheme 4.15. [2+2+2] cyclotrimerization reactions towards anthracyclinone core structures.

Many of the syntheses leading to the natural and non-natural anthracyclinones are limited by several factors including:

- low reaction yields,
- the formation of regio- and stereoisomer mixtures, and
- the lack of a combinatorial approach suitable for analog development.
By using the [2+2+2] cyclotrimerization reaction in conjunction with microwave irradiation, we will have the means to synthesize anthracyclinones in a rapid and highly convergent manner amenable to construction of focused compound arrays.

4.2 Synthesis of Anthraquinone Natural Products

4.2.1 Towards the Synthesis of 1,4-Dihydroxyanthraquinone Natural Products

As delineated above, the anthracycline antibiotics hold a very significant role in the realm of cancer therapy. Despite numerous syntheses, many of which contain regioisomer mixtures, a combinatorial approach suited for analog development has not been realized. Towards this goal, an innovative synthetic approach towards the anthracyclines was sought with the main focus on a novel, expedient, and flexible synthesis of the tetracyclic core structure. Moreover, the synthesis will be regioselective and offers several opportunities for introducing diversity into the molecule. The envisioned key step in the assembly of the tetracyclic core is a [2+2+2] cyclotrimerization reaction. A systematic investigation of all the factors associated with the cyclotrimerization event would need to be completed including: the diyne substitution pattern at the benzylic (α) position; the nature of the α’ substituent; the electronic properties of the diyne and/or monoyne; the nature of the metal catalyst; and reaction conditions such as temperature, oil bath _versus_ microwave heating, and order of reagent addition (Scheme 4.16). In the case of a nonsymmetrical diyne or monoyne, the proper control of regiochemistry will be crucial.
Scheme 4.16. Variables explored in the [2+2+2] cyclotrimerization reaction towards anthraquinones.

As all of the anthracyclines possess at least one phenolic hydroxyl group on the B ring, an efficient means to install this functional group needs to be included in the synthetic planning. In order to construct the A ring, an appropriately substituted synthetic handle must be incorporated into the molecule, preferably in the monoyne to maximize convergence in the cyclotrimerization event. Taking into account all these aspects, a tandem [2+2+2] cyclotrimerization reaction / ring closing metathesis strategy was devised (described below in detail) that potentially would form three of the four rings (A, B, and C rings) in a two-step, one-pot procedure. Initial studies commenced at a much more elementary level: synthesis of 1,4-dihydroxyanthraquinone natural products as model systems for the B-C-D ring system of the anthracyclinones.

We envisioned accessing several 1,4-dihydroxyanthraquinone natural products (302-306, Figure 4.4) as a testing ground for the cyclotrimerization event and the phenol introduction portions of the anthracyclinone core structure. Both the hybridization states at the α and α’ positions as well as the nature of the α’ substituent were investigated under different catalyst conditions.
Figure 4.4. Accessible 1,4-dihydroxyanthraquinone natural products.

Direct installation of the oxygen (that was to become the phenol group) as the α' atom was first explored (Scheme 4.17). The diacetate 309 was prepared in a two step sequence in 17% yield from o-phthalaldehyde (307). The low overall yield is most likely the result of the instability of the ethynyl ether adjacent to the hydroxyl functionality. Attempts to oxidize the diol 308 to the diketone derivative with MnO$_2$ or Dess-Martin Periodinane (DMP) failed. The reaction of the diol 308 or the diacetate 309 with either Grubbs’ 1$^{\text{st}}$ generation catalyst or Cp*Ru(cod)Cl towards 310 or 311 was equally unrewarding with both diynes decomposing rather than undergoing cyclotrimerization.

Scheme 4.17. Direct installation of an oxygen as an ether and attempted cyclotrimerization reactions.

At this juncture, the approach was modified to utilize an α' substituent more amenable to the cyclotrimerization that could also be modified later into a phenol. The Baeyer-Villiger rearrangement was chosen as a means to introduce the phenol and
investigations into the cyclotrimerization reaction of a new series of diynes ensued. As a prerequisite for the Baeyer-Villiger rearrangement, an aldehyde or ketone starting material is needed; for the diyne molecule, therefore, an aldehyde or a substituent that has the potential to be transformed into an aldehyde would need to be located at the \(\alpha' \) position. Accordingly, a series of diynes, 312-317, differing in substitution pattern were prepared from 307 (Scheme 4.18), and their ability to undergo a cyclotrimerization reaction was then probed.

Scheme 4.18. Preparation of diynes for the Baeyer-Villiger approach.

Neither acetals, 312 or 314, underwent cyclotrimerization with acetylene under \(\text{Cp}^*\text{Ru(cod)}\text{Cl} \) catalysis presumably due to the steric bulk of the tertiary \(\alpha' \) carbon center (Scheme 4.19), and only unreacted starting material was observed.
Scheme 4.19. Attempted cyclotrimerization reactions with the acetals 312 and 314.

Dialdehyde 313 underwent cyclotrimerization in low yield with TBS-protected propargyl alcohol or acetylene to furnish the protected 9,10-anthracenediols 318 and 319 (Table 4.1, Entries 1 and 4). The low yields were a result of the sensitive nature of the propargylaldehyde functionalities present in 313 leading to decomposition of the starting material.

Better cyclotrimerization results were obtained with the diacetate 317 to give the 9,10-diacetylated anthracenediols 320-322 (Table 4.2), but crude reaction mixtures were quite complex, hampering purification by flash-chromatography.
Table 4.2. Cyclotrimerization reaction results with the diacetate 317. *300 W until temperature reached, then 5-15 W thereafter.

![Cyclotrimerization reaction](diagram)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>R¹, R²</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15% cat. rt, THF</td>
<td>H, H</td>
<td>69%, 320</td>
</tr>
<tr>
<td>2</td>
<td>20% cat. rt, THF, o/n</td>
<td>H, n-Bu (6)</td>
<td>33%, 321</td>
</tr>
<tr>
<td>3</td>
<td>20% cat. rt, THF, o/n</td>
<td>CH₂OMe, CH₂OMe (6)</td>
<td>39%, 322</td>
</tr>
<tr>
<td>4</td>
<td>20% cat. MW, 50 °C 5 min</td>
<td>CH₂OMe, CH₂OMe (6)</td>
<td>trace 322</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>R¹, R² (eq.)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20% cat. MW, 80 °C 5 min</td>
<td>CH₂OMe, CH₂OMe (6)</td>
<td>trace 322</td>
</tr>
<tr>
<td>6</td>
<td>20% cat. MW, 140 °C 5 min</td>
<td>CH₂OMe, CH₂OMe (6)</td>
<td>trace 322</td>
</tr>
<tr>
<td>7</td>
<td>15% cat. rt, DCE, o/n</td>
<td>CO₂Me, CO₂Me (5)</td>
<td>No rxn.</td>
</tr>
</tbody>
</table>

Interestingly, 1,4-dimethoxy-2-butyne (Entry 3) cyclotrimerized with the same efficiency as 1-hexyne (Entry 2). Microwave conditions (Entries 4-6) gave only trace product due to decomposition of the diyne starting material. Other catalyst systems based on Mo(CO)₆, [Ir(cod)Cl]₂, or Ni(CO)₂(PPh₃)₂, gave trace product formation at best with 1-hexyne (10 eq) under oil bath (PhCH₃, 80 °C, 5 h) or microwave conditions (PhCH₃, 5-10 min, 300 W).

By far, the most promising results were obtained with the diketone 316 after extensive optimization. Initial results were similar to other diynes (Table 4.3). Using 15 mol% of the Cp*Ru(cod)Cl catalyst only provided a 22% yield of the desired anthraquinone 323 with 1-hexyne as the monoyne, while 1,4-dimethoxy-2-butyne gave no reaction under the same conditions towards the anthraquinone 324 (Entries 1 and 2). Continuing further optimizations using 1-hexyne as a model alkyne and heating the reactions in the microwave at 100 °C for five minutes or at an oil bath temperature of 80 °C gave low conversions (1:5 product/s.m. in crude ¹H NMR spectrum) (Entries 3 and 4). The molybdenum based catalyst system, Mo(CO)₆ gave no reaction, only polymerization of the 1-hexyne (Entry 5).
Using [Ir(cod)Cl]$_2$ as the catalyst, a 25% yield was obtained after microwave irradiation at 80 °C (5-15 W after reaching 80 °C at 300 W) for two ten minute time periods with two catalyst additions (10% each), while a 1:4 product/s.m. ratio was observed under oil bath heating at 50 °C for 18 h (Entries 6 and 7). With the Ni(CO)$_2$(PPh$_3$)$_2$ catalyst, the same catalyst used by Reppe12 for the cyclotrimerization of acetylene and by Meriwether for the cyclotrimerization of terminal electron poor alkynes,127 the best yield was obtained (30%, 10 mol% Ni(CO)$_2$(PPh$_3$)$_2$, 5 eq 1-hexyne, 80 °C, 2 h), and these conditions were the basis of future optimization studies (Entry 8). Through modifying the catalyst loading, equivalents of monoyne, and reaction temperature under microwave irradiation (Table 4.4), the optimal conditions were found to be 20 mol% catalyst with at least fifteen equivalents of monoyne irradiated in the microwave for twenty minutes at 50 °C using a standard mode setting. Consistent 55-60% yields of 32 can be obtained (Table 4.4).

Table 4.3. Cyclovimerization reaction results with the diketone 316.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>R^1, R^2 (eq.)</th>
<th>Result</th>
<th>Entry</th>
<th>Conditions</th>
<th>R^1, R^2 (eq.)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cp*Ru(cod)Cl (15%) DCE, rt, o/n</td>
<td>H, n-Bu (4)</td>
<td>22%, 323</td>
<td>5</td>
<td>Mo(CO)$_6$ (30%) 4-Cl-phenol (100%) PhCH$_3$, reflux</td>
<td>H, n-Bu (10)</td>
<td>No rxn.</td>
</tr>
<tr>
<td>2</td>
<td>Cp*Ru(cod)Cl (15%) DCE, rt, o/n</td>
<td>CH$_2$OMe, CH$_2$OMe (4)</td>
<td>No rxn.</td>
<td>6</td>
<td>[Ir(cod)Cl]$_2$ (10%) DPPE (20%) MW 80 °C, 10 min X 2</td>
<td>H, n-Bu (5)</td>
<td>25%, 323</td>
</tr>
<tr>
<td>3</td>
<td>Cp*Ru(cod)Cl (15%) MW, 100 °C, 5 min</td>
<td>H, n-Bu (6)</td>
<td>1:5 323/s.m.</td>
<td>7</td>
<td>[Ir(cod)Cl]$_2$ (10%) DPPE (20%) 50 °C, o/n</td>
<td>H, n-Bu (5)</td>
<td>1:4 323/s.m.</td>
</tr>
<tr>
<td>4</td>
<td>Cp*Ru(cod)Cl (15%) oil bath, 80 °C, o/n</td>
<td>H, n-Bu (6)</td>
<td>1:5 323/s.m.</td>
<td>8</td>
<td>Ni(CO)$_2$(PPh$_3$)$_2$ (10%) PhCH$_3$, 80 °C, 2 h</td>
<td>H, n-Bu (5)</td>
<td>30%, 323</td>
</tr>
</tbody>
</table>
Table 4.4. Optimization of the cyclotrimerization reaction with the diketone 316 under Ni-catalysis.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Eq. of 1-hexyne</th>
<th>Result</th>
<th>Entry</th>
<th>Conditions</th>
<th>Eq. of 1-hexyne</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10% cat., rt, o/n</td>
<td>5</td>
<td>11%</td>
<td>7</td>
<td>30% cat., MW 50 °C, 20 min</td>
<td>20</td>
<td>65%</td>
</tr>
<tr>
<td>2</td>
<td>10% cat., MW 120 °C, 10 min</td>
<td>5</td>
<td>pdt. with impurity</td>
<td>8</td>
<td>10% cat., MW 40 °C, 20 min</td>
<td>20</td>
<td>63%</td>
</tr>
<tr>
<td>3</td>
<td>2% cat., 80 °C, o/n</td>
<td>5</td>
<td>No rxn.</td>
<td>9</td>
<td>10% cat., MW 50 °C, 20 min</td>
<td>15</td>
<td>57%</td>
</tr>
<tr>
<td>4</td>
<td>10% cat., MW 85 °C, 20 min</td>
<td>5</td>
<td>38%</td>
<td>10</td>
<td>20% cat., MW 50 °C, 20 min</td>
<td>15</td>
<td>~60%</td>
</tr>
<tr>
<td>5</td>
<td>10% cat., MW 80 °C, 20 min</td>
<td>20</td>
<td>57%</td>
<td>11</td>
<td>100% cat., MW 120 °C, 10 min</td>
<td>5</td>
<td>no s.m. inseparable impurity</td>
</tr>
<tr>
<td>6</td>
<td>10% cat., MW 50 °C, 20 min</td>
<td>20</td>
<td>61%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher reaction temperatures resulted in monoyne polymerization (Entries 2, 4, 5, and 11), and stoichiometric catalyst loading resulted in inseparable impurities (Entry 11). When these optimal conditions are applied to the Cp*Ru(cod)Cl catalyst system, a 71% yield was obtained, however, separation of the product 323 from an unknown by-product was tedious, requiring multiple columns for purification. The ability of the microwave irradiation to produce higher yields and greatly reduced reaction times can be attributed in part to the alternative mechanism of microwaves heating. As the power of the microwaves was, for the most part, low (often only a few watts of output once the desired temperature was reached), a major contributing factor for the higher yields could be due to the increased catalyst stability in the absence of wall effects and more efficient heating of the entire reaction mixture. Running the reaction in power mode (300 W) led to competitive polymerization of the monoyne thereby reducing the yield of 323.
4.2.2 Installation of Hydroxy Groups on Anthraquinone 323

The conversion of the methylene-OTBS groups in the anthraquinone 323 to phenolic hydroxyl groups is a crucial step in the synthesis as structure-activity relationships showed the C-11 hydroxyl has a key interaction with topoisomerase-II that significantly contributes to the biological activity.187,188 Towards this end, removal of the two TBS groups affording the diol 325 was accomplished with six equivalents of TBAF and proceeded in an excellent 92% yield (Scheme 4.20).224 Lower equivalents of TBAF or the use of HF/pyridine gave mixtures of the diol 325 and the alcohol 326.

![Scheme 4.20. Synthesis of the dialdehyde 327 for a Baeyer-Villiger rearrangement.](image)

The oxidation of the diol 325 to the dialdehyde 327 proved troublesome. Oxidation with DMP (7 eq.) provided a 70% yield of the dialdehyde 327 with 18% of the monoaldehyde 328 (Table 4.5, Entry 1). Treatment of the diol 325 with a large excess of PDC (15 eq.) gave a mixture of starting material, monoaldehyde 328, and dialdehyde 327 (Entry 2). One of the problems impeding the oxidation as well as the TBAF deprotection is the steric hindrance of the hydroxymethylene group ortho to the n-butyl group. As revealed in previous experiments towards illudinine (Chapter 3.3), this position proves difficult to modify. Also, the solubility of the diol 325 was slight at best in typical organic solvents (DCM, EtOAc, and Et\textsubscript{2}O). Because of this fact, less common oxidation conditions were attempted (Entries 3 and 4) resulting in mixtures of starting material, 328 and 329. At this
point, microwave irradiation was explored. Using pyridinium chlorochromate (PCC) as the oxidant, an 88% yield of the dialdehyde 327 was obtained after irradiating at 200 W for two minutes in dichloromethane (Entry 5). Scaling up this reaction required an extended reaction time (3 min.) and cooling to maintain a temperature of ~50 °C and to prevent extreme temperatures (>130 °C are reached in DCM after less than 2 minutes of a 200 W irradiation of 700 µL of solvent) giving an 86% yield with an undetermined amount of the single oxidation product 328 (Entry 6). Solvents with higher boiling points such as dichloroethane gave decreased yields (30%). With the ability to scale up the sequence to the dialdehyde efficiently, studies on the Baeyer-Villiger rearrangement could commence.

Table 4.5. Oxidation of the diol 325 to the dialdehyde 327.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMP (7 eq) CH₃CN/THF: 0 °C to rt, 8 h</td>
<td>70%</td>
<td>5</td>
<td>PCC (4 eq) DCM, MW 200 W, 2 min (5 mg scale)</td>
<td>88%</td>
</tr>
<tr>
<td>2</td>
<td>PDC (15 eq) THF/DCM rt, 24 h</td>
<td>s.m./pdt mixture</td>
<td>6</td>
<td>PCC (4 eq) DCM, MW 200 W, 2 min (20 mg scale)</td>
<td>45%</td>
</tr>
<tr>
<td>3</td>
<td>NBS/pyr acetone/CCl₄ rt to 50 °C, 18 h</td>
<td>mixture</td>
<td>7</td>
<td>PCC (4 eq) DCM, MW 50 °C, 3 min</td>
<td>86%</td>
</tr>
<tr>
<td>4</td>
<td>DMSO, HBr 100 °C, 24 h</td>
<td>mixture</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment of 327 with excess m-CPBA (> 4 eq.) overnight led to a product insoluble in DCM and chloroform, but soluble in methanol and presumed to be the formate ester 329 based on MS data (Scheme 4.21).

1H-NMR analysis showed no aldehyde protons, but no formyl ester protons were detected either. However, silica gel chromatography with a polar eluent system (MeOH/EtOAc) gave a solid product with an M+1 of 353 m/z corresponding to the mass of the formate ester. This information led us to reconsider the absence of the formyl proton in the NMR. When using alternative reagents for the Baeyer-Villiger reaction (TFAA/H$_2$O$_2$) that could be removed under vacuum, the same results were obtained. Careful consideration of the reaction mechanism pointed to the breakdown of the tetrahedral intermediate 330 as the step under question (Scheme 4.22). The desired decomposition of intermediate 330 provides the formate ester 331 through migration of the anthraquinone moiety of 330. However, facile proton transfer is possible, leading to the formation of the carboxylic acid 332. The decomposition of the tetrahedral intermediate in this fashion is most likely due to the electron-withdrawing nature of the quinone structure as well as the second aldehyde functionality increasing the acidity of the benzylic protons thereby allowing abstraction of the proton and cleavage of the oxygen-oxygen bond.
4.2.3 Investigation of Alternative Baeyer-Villiger Substrates

In attempts to prevent rearrangement to the benzoic acid derivative, it was postulated that a methyl ketone moiety would allow Baeyer-Villiger rearrangement to proceed. In this vein, synthesis of diynes containing a methyl ketone or equivalent were pursued. Treatment
of the dialdehyde 307 with excess lithium acetylide derived from the TBS-ether 335 gave a 70% yield of the diol 336 as a mixture of stereoisomers (Scheme 4.24). Acetylation (Ac$_2$O, pyr., DMAP, 0 °C, 2.5 h) or oxidation (DMP, DCM, 0 °C 70 min) of the alcohols in 336 provided either the diacetate 337 or the diketone 338 in 89 and 77% yield, respectively. Oxidation of the diacetate with Jones reagent (acetone, 0 °C, 35 min) provided the alternative diketone 339 in 76% yield. Attempted oxidation of 336 with Jones reagent failed to provide a tetraketone derivative.

Cyclotrimerization reactions of the diynes were then investigated. Using the previously optimized conditions (15 eq 1-hexyne, 20 mol% Ni(CO)$_2$(PPh)$_3$)$_2$, PhCH$_3$, MW, 50 °C, 20 min, standard mode), the diketone 338 reacted with 1-hexyne in 75% yield to give the anthraquinone 340 (Scheme 4.25). Further oxidation to the tetraketone 341 using Jones reagent proceeded in 85% yield.
The cyclotrimerization of the diyne 339 proved more difficult. Microwave irradiation for 5 min only returned starting material (Entry 1, Table 4.6) while increasing the catalyst loading had no effect (Entry 2). Switching catalyst systems from Ni(CO)\(_2\)(PPh\(_3\))\(_2\) to Cp*Ru(cod)Cl provided the desired anthracenediol derivative 342 in 68% yield (20 mol% Cp*Ru(cod)Cl, 300 W, 5 min, PhCH\(_3\)) (Entry 3). Thermal heating also provided a similar yield of the anthracenediol product (67%, Entry 4).

Table 4.6. Cyclotrimerization reaction of the diyne 339.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10% Ni(CO)(_2)(PPh(_3))(_2) MW 300 W, 5 min</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>20% Ni(CO)(_2)(PPh(_3))(_2) MW, 80 °C, 20 min</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>20% Cp*Ru(cod)Cl MW 300 W, 5 min</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>20% Cp*Ru(cod)Cl 80 °C, o/n</td>
<td>67</td>
</tr>
</tbody>
</table>

With the Baeyer-Villiger substrates in hand, explorations into the rearrangement of 341 and 342 were conducted. Unfortunately, both the tetraketone 341 and the diacetate 342 failed to undergo any reaction when treated with \(m\)-CPBA (Scheme 4.26). Other Baeyer-Villiger reagents (TFAA/H\(_2\)O\(_2\), \(m\)-CPBA/p-TsOH, NaOH/H\(_2\)O\(_2\))\(^{226-228}\) were attempted with 341, however, each was unsuccessful at effecting the rearrangement with unreacted starting material obtained from each. The increased steric bulk of the methyl group as well as the decreased electrophilicity of the carbonyl most likely prevented 1,2-addition of the peroxide reagents.

Due to the unsuccessful Baeyer-Villiger rearrangements towards the phenol moieties of the anthraquinone natural products other means to install the phenols were then investigated.

4.2.4 Alternative Methods for Phenol Installation

In a recent paper by Yamamoto et al., the use of alkynyl halides such as 343 in [2+2+2] cyclotrimerization reactions towards dihaloarenes 344 and subsequent coupling reactions (Suzuki and Heck) were described (Scheme 4.27).\(^{229}\)

We postulated that if the cyclized anthraquinones or protected anthracenediols could be formed from alkynyl iodides, then the introduction of the phenolic hydroxyl groups could be accomplished either via lithium-halogen exchange followed by reaction with an electrophilic oxygen source or boronate,\(^{230}\) by Buchwald-Hartwig chemistry,\(^{231}\) or by a Suzuki coupling\(^{232}\) with a diboronate. To this end, the alkynyl iodides 346 and 347 were prepared from the diol 345 (Scheme 4.28).\(^{233}\) Acetylation (Ac\(_2\)O, DMAP, pyr, 0 °C, 4 h) of the diol 345 followed by iodination of the terminal triple bonds (NIS, AgNO\(_3\), DMF, rt, 1.5 h)\(^{234}\) provided the diiodide
in a 75% yield over two steps. The iodide 347 was prepared by first iodination (NIS, AgNO₃, DMF, rt, 1.5 h) of the terminal triple bonds then oxidation (Jones reagent, acetone, 0 °C, 30 min) of the hydroxyl groups to furnish 347 in 51% yield over two steps.

Scheme 4.28. Preparation of iodoalkynes 346 and 347.

Cyclotrimerization of the diacetate 346 with 1-hexyne proceeded in only 23% yield to give the protected 9,10-dihydroxy-anthracene derivative 348 under Cp*Ru(cod)Cl catalysis and microwave irradiation (Scheme 4.29).

Scheme 4.29. Cyclotrimerization reaction of the iodoalkyne 346.

Oil bath heating (80 °C) and Ni-based catalysis resulted in no reaction. The diketone 347 did not participate in a cyclotrimerization event with 1-hexyne (5-20 eq) under Cp*Ru(cod)Cl (15 mol%, DCE, MW, 80 °C, 15 min) or Ni(CO)₂(PPh₃)₂ (20 mol%, PhCH₃, MW, 80 °C, 20 min) catalysis most likely due to its low solubility in the reaction solvents.

The next option explored hinged upon a silicon-lead transmetallation reaction of an aryl-silicon bond followed by conversion to the trifluoroacetate. Subsequent hydrolysis of the trifluoroacetate would yield a phenol (Scheme 4.30).
Scheme 4.30. Conversion of an aryl-silicon bond into an aryl-oxygen bond.235

This procedure would require cyclotrimerization products similar to those obtained by Vollhardt (Scheme 4.15); however, higher yields would be desired. The diketone 297, prepared in 85\% yield over two steps according to the procedure of Vollhardt,78 unfortunately did not undergo cyclotrimerization with 1-hexyne (15 eq) under Ni(CO)\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} or Cp*Ru(cod)Cl catalysis (20 mol\%, PhCH\textsubscript{3}, MW, 50 °C, 20 min) with microwave irradiation to the anthraquinone 349 (Scheme 4.31). Low conversions were observed by 1H-NMR (~25\%) under CpCo(CO)\textsubscript{2} catalysis with microwave irradiation (xylenes, MW 300 W, 25 min, 120 °C) most likely due to the steric bulk of the TMS groups. Therefore, a new route to the phenols was sought.

Scheme 4.31. An aryl-silicon approach to phenols.

Another route attempted to the 1,4-dihydroxyanthraquinones has been met with minor success. This approach utilized the undesired Baeyer-Villiger rearrangement product 333, more efficiently obtained by a Jones oxidation of the cyclotrimerization product 323, as a precursor to the diamine 350 by virtue of a Curtius (or Schmidt) rearrangement (Scheme 4.32).
In this direction, the diacid 333 was treated with sodium azide in sulfuric acid at 80 °C to give less than 17% yield of the desired diamine 350\(^{236}\) (Table 4.7, Entry 1). Similar yields, 9-11%, were obtained using diphenylphosphoryl azide\(^{237}\) as the azide source (Entries 2 and 3). Using more classical Curtius reaction conditions, the acyl azide was first generated via the acid chloride. Azide formation followed by heating with water led to a 19% yield of the diamine 350 (Entry 4).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaN(_3), H(_2)SO(_4) heat</td>
<td><17%</td>
</tr>
<tr>
<td>2</td>
<td>1. DPPA, TEA 2. H(_2)O, heat</td>
<td>9%</td>
</tr>
</tbody>
</table>

The diamine 350 was converted to the 1,4-dihydroxyanthraquinone derivative 351\(^{207}\) by treatment with alkaline sodium dithionite in water at 80 °C followed by air oxidation overnight in 58% yield (Scheme 4.33). Due to the low yields of diamine formation, alternative precursors for the phenols were sought.
Scheme 4.33. Conversion of the diamine 350 into the 1,4-dihydroanthraquinone 351.

Based upon the success of the benzylic hydroperoxide rearrangement towards illudinine (Chapter 3), examination of its use towards the anthraquinones was initiated. Structurally, a benzylic hydroperoxide rearrangement substrate requires a secondary or tertiary benzylic alcohol. For the anthraquinones, this requirement would translate into a structure such as the diol 352 (Figure 4.5). Protected phenols could also be employed in the rearrangement provided that the protecting group is labile under Lewis acidic conditions (BF$_3$).

Figure 4.5. Anthraquinone structure necessary for a benzylic hydroperoxide rearrangement.

Towards this end, initial investigations relied upon ester derivatized diynes where the electron-withdrawing nature of the ester would, we hypothesized, increase the efficiency of the cyclotrimerization reaction as the benzylic ketones did in 316 towards 323. These cyclotrimerizations, we hypothesized, would proceed similarly as in the development of the microwave-mediated nickel-catalyzed cyclotrimerizations towards tetralins. 172 Accordingly, the diol 345 was protected as the bis-TBS ether 353 in 93% yield and treated with excess n-BuLi (THF, $-78 \degree C$, 1.5 h) followed by quenching with ethyl chloroformate to furnish the diester 354 in 55% yield (Scheme 4.34). Using less than a full equivalent of n-BuLi provided
the monoester 355 in a poor 24% yield along with a substantial amount of starting material (60%).

Scheme 4.34. Synthesis of the diynes 354 and 355.

As expected, cyclotrimerization of the diester diyne 354 with 1-hexyne (10 eq) proceeded efficiently under Ni(CO)$_2$(PPh$_3$)$_2$ catalysis (10 mol%, PhCH$_3$, MW 300 W, 5 min, 100 °C) to give the anthracenediol derivative 356 in 75% yield, however, using the Cp*Ru(cod)Cl catalyst system led to product mixtures (Scheme 4.35).

Scheme 4.35. Cyclotrimerization reaction of the diester diyne 354.

Cyclotrimerization with the monoester diyne 355 was less efficient, though, providing the anthracenediol derivative in 46 and 53% yield under Ni(CO)$_2$(PPh$_3$)$_2$ and Cp*Ru(cod)Cl catalysis, respectively, as a mixture of the regioisomers 357a and 357b (Scheme 4.36). The inefficiency in the cyclotrimerization reaction of the diyne 355 can potentially be attributed to competitive dimerization of the starting material due to the presence of the terminal alkyne in the diyne; however, we do not have experimental evidence for this hypothesis.
The regioisomer ratio was determined by first oxidizing the TBS-ethers to the anthraquinones (Jones reagent, acetone, 0 °C to rt) \(358\text{a}\) and \(358\text{b}\) and analyzing the mixture by GC/MS (Scheme 4.37). In conjunction with \(^1\)H NMR analysis of the mixture, the predominant regioisomer, as expected, was the meta-regioisomer \(358\text{a}\) for both catalysts with ratios of 4.8:1 when using the Ni catalyst and 6.4:1 when using the Ru catalyst.

Attempts to modify the ester groups in \(356\) did not yield the desired products. Treatment of \(356\) with excess methyllithium (THF, −78 °C to rt, 18 h) or methyllithium/CeCl\(_3\) (THF, −78 °C to rt, 45 min) either produced complex product mixtures or no reaction took place (Scheme 4.38). While this result was expected for the more hindered ester group, we anticipated that the less hindered ester group would be accessible to the organometallic reagents to provide \(359\).
Scheme 4.38. Attempted addition of organometallic reagents to the diester 356.

In order to investigate whether the TBS-ether contributed to the lack of reactivity of the esters, substrates lacking this functionality were explored. By removing all functionality at the two methylene units, we hypothesized facile addition of organometallic reagents into the less hindered ester. Toward this end, dipropargyl benzene (360)238 was synthesized according to known procedures and installation of the diester groups was accomplished upon treatment with excess EtMgBr (THF, rt) and ethylchloroformate to give the diester 361 in 42% yield (Scheme 4.39). An undetermined amount of the monoester 362 was also formed in this reaction. Attempts to optimize this reaction were unsuccessful with poor yields of 361 being obtained at various temperatures and with varying amounts of Grignard reagent.

Cyclotrimerization of the diester diyne 361 proceeded under microwave irradiation with either Cp*Ru(cod)Cl or Ni(CO)\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} as catalyst to furnish 362 in 66 and 71% yield, respectively. As before, the organometallic addition into the ester functionalities proved
troublesome. Using the methylcerium reagent, the alcohol 363 could be obtained in 41% yield with ~30% contaminated with an unknown by-product (Scheme 4.40).

Attempts to rearrange the alcohol 363 under Lewis-acidic conditions (BF$_3$·Et$_2$O, H$_2$O$_2$, DCM, 0 °C) gave impure phenol in low yields. A Baeyer-Villiger reaction for the conversion of 362 into the phenol has not been explored to date.

Recognizing the structural requirements for the rearrangement in anthraquinone 340, investigations into its rearrangement were assessed. Initially, we wished to utilize the diol 364 in the rearrangement step; however, upon treatment of the anthraquinone 340 with TBAF (THF, 0 °C to rt, 2 h) or HF/pyridine (DCM, 0 °C, 4 h), the oxidized desilylated anthraquinone 365 (~20%) was obtained amongst other undetermined side products (Scheme 4.41).

As TBS-ethers are labile under Lewis-acidic conditions,161 we envisioned a one-pot desilylation/rearrangement from the anthraquinone 340 to the desired bisphenol 351. However, the same oxidized anthraquinone 365 (39%) was obtained upon treatment with BF$_3$/H$_2$O$_2$ (Scheme 4.42).
In order to circumvent this oxidation side reaction, the diol 367 was synthesized via 366 with the hypothesis that, because it cannot undergo oxidation, rearrangement of its cyclotrimerization product would occur to give the desired dihydroxyanthraquinone 351 (Scheme 4.43). However, cyclotrimerization of the diyne 367 with 1-hexyne (15 eq) under Ni(CO)$_2$(PPh$_3$)$_2$ catalysis (20 mol%, PhCH$_3$, MW 50 °C, 20 min) was unsuccessful. No starting material was observed, however, 1H NMR analysis of the crude reaction mixture provided no evidence of anthraquinone formation.

Having fully explored multiple routes to install the phenol moieties with little success, further efforts in this direction were put on hold.
4.3 Towards the Synthesis of the Anthracycline Tetracyclic Core Structure

4.3.1 A [2+2+2] Cyclotrimerization/Ring Closing Metathesis Approach

As stated previously, the initial strategy towards the tetracyclic framework of the anthracyclinones featured a [2+2+2] cyclotrimerization followed by a ring closing metathesis (RCM) reaction. Considering the retrosynthetic analysis in Scheme 4.44, after removal of the tertiary hydroxyl function at C-9 of 368 to give the allylic alcohol 369, the anthracyclinone ring A is disconnected to give the tricycle 370. The fragments 371 and 372 would then result from a [2+2+2] cyclotrimerization disconnection.

\[\text{Scheme 4.44. [2+2+2] cyclotrimerization/RCM retrosynthetic analysis of the anthracyclinones. PG = protecting group.} \]

Depending upon the anthracyclinone of interest, the monoyne would be appropriately substituted. Under ideal conditions, the cyclotrimerization catalyst would be added to promote the cyclotrimerization event, and then Grubbs’ catalyst would be added to perform the ring closing metathesis. Theoretically, the two catalysts could be used at once as the ring closing event would only be possible after the [2+2+2] cyclotrimerization, or Grubbs’ catalyst itself could catalyze both reactions. However, competitive cross metathesis of the monoyne would be one factor that would require attention. Going in the synthetic direction,
the allylic alcohol in 369 would be used as a synthetic handle to install the tertiary hydroxyl function at C-9 via a directed epoxidation and ring opening. A model study aimed at synthesizing the deoxygenated A-B-C-D ring system form was undertaken to assess the feasibility of this approach.

4.3.2 [2+2+2] Cyclotrimerization/RCM Model Study Towards the Anthracyclinone Core

The model study commenced with the synthesis of several monoynes 375, 113, and 116, differing in substitution patterns at one of the propargylic sites (Scheme 4.45). The monoyne 375 was prepared in two steps from cinnamyl bromide (373) and the enyne 374 via successive copper catalyzed sp-sp³ coupling reactions and represents the simplest monoyne tested (Scheme 4.45a). The phenyl group serves a dual purpose in that it increases the molecular weight of the monoyne thereby increasing its boiling point, and it also regenerates Grubbs’ catalyst during the RCM reaction. The monoyne 378, substituted at one propargylic site with a benzoyl protected alcohol, was synthesized from acrolein (376) in three steps via 377 while the allyl propargyl ketone 381 was synthesized from 377 through the intermediates 379 and 380 via Jones oxidation of 380 (Scheme 4.45b and 4.45c). Other oxidation conditions (DMP, DCM, 0 °C, or PDC, DCM, rt) were slower and did not fully convert the starting material to product. The monoyne 378 would probe the steric tolerance of the cyclotrimerization event at the propargylic site. The ketone in monoyne 381 would demonstrate what effect, if any, the electronic nature of the monoyne has on the cyclotrimerization reaction.
The cyclotrimerization reaction of each monoyne was tested with the diacetate \(\text{382}^{233} \) and the diketone \(\text{383}^{78} \) as diynes. The monoynes \(\text{375} \) and \(\text{378} \) did not undergo cyclotrimerization under Ru catalysis with oil bath heating or microwave irradiation, while the monoyne \(\text{378} \) cyclized in poor yield (16%) with the diketone \(\text{383} \) to give the anthraquinone \(\text{384} \) (Scheme 4.46a and 4.46b). Being internal monoynes, the reactivity is expected to be lower compared to terminal monoynes, but the fact that there was no reaction even with the monoyne \(\text{375} \) indicates other factors may be involved that impede the cyclotrimerization reaction. The ring closing metathesis of the anthraquinone \(\text{384} \) was not investigated.
Due to the low yields in the cyclotrimerization event towards 384, a three step procedure utilizing the aldehyde 386 was devised. The aldehyde 386 was synthesized in two steps from cinnamyl bromide by copper catalyzed sp-sp3 coupling to give the acetal 385 followed by TFA deprotection (Scheme 4.47a). The crude aldehyde was used in the cyclotrimerization step as the yield was greatly reduced if purification by silica gel chromatography was attempted. In the cyclotrimerization event, the anthraquinone 387 was produced in up to 72% yield when the alkynes are added to the catalyst over 1.5 h. Diminished yields are obtained when the alkynes are added at a quicker rate or when the diyne is added to a mixture of the catalyst and the monoyne (Scheme 4.47b). The second olefin for the RCM reaction was installed via 1,2-addition of vinyl Grignard into the aldehyde 387 to give the secondary alcohol 388. In more advanced substrates one could envision using an enantioselective Nozaki-Hiyama-Kishi240 reaction to obtain control over the absolute stereochemistry.
Ring closing metathesis proceeded smoothly with 388 at room temperature to give the tetracycle 389 in 69% yield. A cyclotrimerization attempt (15 mol% Cp*Ru(cod)Cl, DCE, rt, 20 h) of the monoyne 386 with the internal diyne 316 gave no reaction.

4.3.3 [2+2+2] Cyclotrimerization/RCM Model Study Towards the Pyrromycinone Core

Pyrromycinone (256, Figure 4.2) contains only one phenol group on the B ring, thereby potentially allowing improved results in the [2+2+2] cyclotrimerization step as only a penta-substituted benzene is being formed instead of a hexa-substituted benzene. Studies toward the core structure of pyrromycinone without the D ring phenols began with the non-symmetrical diyne 390 synthesized from o-phthalaldehyde via consecutive additions of the Li-acetylide of TBS-protected propargyl alcohol and ethynyl Grignard (Scheme 4.48).
Acetylation (Ac₂O, DMAP, pyridine, 0 °C, 2 h) or oxidation (DMP, DCM, 0 °C, 1 h) gave the nonsymmetrical diacetate 391 or the diketone 392, respectively. The reactivity of these diynes in the [2+2+2] cyclotrimerization was then investigated using 1-hexyne as the monoyne. A good yield was obtained with the diketone 392 with only one regioisomer (393) detected (Scheme 4.49), while no reaction was observed with the diacetate 391. These results coincide with findings in the literature that electron-poor substrates are more reactive when using the Cp*Ru(cod)Cl catalyst. As in the model study above, the monoyne 386 was used as a reaction partner with the diketone 392 to give the anthraquinone derivatives 394a and 394b in 16 and 18% yield, respectively, under Ru catalysis. No starting material could be recovered. When Ni(CO)₂(PPh₃)₂ (10 mol%, PhCH₃, 80 °C, 1 h) is used as the catalyst, however, only an 18% yield of the regioisomer 394a is obtained despite complete consumption of starting material (Scheme 4.49). Decomposition of the starting material accounted for the low yield. Further studies towards the ring closing metathesis or phenol introduction need to be performed.
Scheme 4.49. Cyclotrimerization reactions with the nonsymmetrical diyne 392.

4.4 Summary and Future Directions

Work towards the synthesis of several 1,4-dihydroxyanthraquinone natural products as a proving ground for the cyclotrimerization approach to the anthracycline core structure has produced mixed results. The electronic and steric properties of the diyne and monoyne reaction partners have been examined in great detail in order to provide for an efficient cyclotrimerization reaction towards the anthraquinone structure, however the installation of the phenolic hydroxyl groups has impeded progress to the desired natural product structures. Potential access to the hydroxy-bearing anthraquinones may be possible utilizing 9,10-dihydroanthracene derivatives similar to 362 via a Baeyer-Villiger rearrangement or Curtius rearrangement of a suitably chosen R^1 group (Scheme 4.50). The previous Baeyer-Villiger route to the phenols was hindered by the electron deficient ring system of the anthraquinone. Alternatively, the Curtius rearrangement can be re-explored with 395 where the R^1 groups are carboxylic acids. Finally, oxidation of the 9,10-dihydroanthracene 396 to the anthraquinone 397 would provide the 1,4-dihydroxyanthraquinone natural products.
Scheme 4.50. Potential future routes to the 1,4-dihydroxyanthraquinone natural products.

The [2+2+2] cyclotrimerization/RCM approach to the tetracyclic core structure of the anthracyclines has been shown to be feasible in a simple model system. However, future work towards further developing this tandem approach into a viable route to the anthracycline core structure depends on the ability to introduce the phenolic hydroxyl groups on the B ring. Once this hurdle is overcome, investigations into a suitable monoyne that will produce an efficient cyclotrimerization reaction to construct the A ring will be necessary.

Alternatively, the approach to the 1,4-dihydroxyanthraquinones can be taken a few steps further, and the A ring of the anthracyclines could be formed via a Marschalk reaction. If the R^2 group of 398 contains an aldehyde, a facile intramolecular Marschalk reaction can occur to provide the tetracyclic structure 399 (Scheme 4.51).

Scheme 4.51. Marschalk approach to the tetracyclic core of the anthracyclines.
4.5 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Tetrahydrofuran, toluene, xylenes, and diethyl ether were distilled from sodium/benzophenone ketyl prior to use. Diisopropylamine, triethylamine, DMSO, DCM, DMF, 1,2-dichloroethane, CH$_3$CN and pyridine were distilled from calcium hydride and stored over 4 Å molecular sieves. Other reagents and solvents obtained from commercial sources were stored under nitrogen and used directly without further purification. n-BuLi and MeLi were titrated against N-pivaloyl-o-toluidine.108 Melting points were obtained from a Mel-Temp capillary melting point apparatus and are uncorrected. High resolution mass spectral analysis (HRMS) was performed at North Carolina State University. NMR spectra were obtained using a Varian Gemini GN-300 (300 MHz) or Varian Mercury 300 (300 MHz) spectrometer. Chemical shifts are in δ units (ppm) with TMS (0.0 ppm) used as the internal standard for 1H NMR spectra and the CDCl$_3$ absorption (77.2) for 13C NMR spectra. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer.

3-Ethoxy-1-[2-(3-ethoxy-1-hydroxyprop-2-ynyl)]-phenylprop-2-yn-1-ol (308). n-BuLi (895 µL, 1.12 mmol, 1.25 M in hexanes) was added dropwise to a solution of ethoxyacetylene (209 mg, 1.49 mmol, 50% in hexanes) in THF (400 µL) and the solution was stirred for 2 h at −78 °C. o-Phthalaldehyde (50 mg, 0.37 mmol) in THF (400 µL) was added and the solution stirred for 1 h. The reaction mixture was warmed to 0 °C, quenched with H$_2$O (4 mL) and extracted with EtOAc (3×5 mL). The combined organic extracts were washed with H$_2$O (5 mL) and brine (5 mL), dried (Na$_2$SO$_4$), filtered and concentrated to
dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3:2) to give 40 mg (40%) of 308 as a mixture of diastereomers as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.92-7.60 (m, 2 H), 7.46-7.30 (m, 2 H), 6.13-5.95 (m, 2 H), 4.34-4.05 (m, 4 H), 3.28-2.88 (m, 2 H), 1.53-1.34 (m, 6 H).

3-Ethoxy-1-[2-(3-ethoxy-1-acetoxyprop-2-ynyl)]-phenylprop-2-ynyl acetate (309). To a solution of 308 (76 mg, 0.28 mmol) and DMAP (cat.) in pyridine (600 µL) was added acetic anhydride (260 µL) at 0 °C, and the solution was stirred for 2 h as it warmed to rt. The reaction was diluted with DCM (5 mL) and H$_2$O (5 mL), the layers were separated, and the aqueous layer was extracted with DCM (3 × 5 mL). The combined organic extracts were washed with H$_2$O (5 mL) and brine (5 mL), dried (Na$_2$SO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting hexanes/EtOAc (3:1) to give 42 mg (42%) of 309 as a mixture of diastereomers as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.70-7.56 (m, 2 H), 7.43-7.31 (m, 2 H), 6.85-6.73 (m, 2 H), 4.25-4.04 (m, 4 H), 2.23-2.01 (m, 6 H), 1.48-1.30 (m, 6 H).

4,4-Diethoxy-1-[2-(4,4-diethoxy-1-acetoxybut-2-ynyl)]-phenylbut-2-ynyl acetate (312). To a solution of propargylaldehyde diethyl acetal (1.26 g, 9.8 mmol) in THF (8 mL) was added n-BuLi (5.6 mL, 8.9 mmol, 1.6 M in hexanes) dropwise, and the reaction was stirred at −78 °C for 1 h. α-Phthalaldehyde (400 mg, 3.0 mmol) was added in THF (4 mL). After 15 min, the reaction was warmed to 0 °C and was stirred for 45 min. Acetyl chloride (1.06 mL, 14.9 mmol) in THF (2 mL) was added dropwise, and the reaction was stirred for 2 h as it
warmed to rt. The reaction was quenched with H₂O (12 mL) and extracted with Et₂O (3 × 15 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (10 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3.5:1) to give 1.207 g (85%) of 312 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.78-7.59 (m, 2 H), 7.50-7.35 (m, 2 H), 6.86-6.75 (m, 2 H), 5.38-5.28 (m, 2 H), 3.85-3.49 (m, 8 H), 2.23-2.03 (m, 6 H), 1.15 (m, 12 H).

Phenyl-2-(4-acetoxybut-2-yn-1-al)-4-acetoxybut-2-yn-1-al (313). To a solution of 312 (73 mg, 0.15 mmol) in CHCl₃ (970 µL) was added H₂O (240 µL) and TFA (240 µL) and the reaction was stirred at 60 °C for 35 min. After cooling the reaction mixture to 0 °C, sat. NaHCO₃ (4 mL) was added and the aqueous solution was extracted with Et₂O (5 mL × 3). The combined organic extracts were washed with H₂O (5 mL) and brine (5 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2.5:1) to give 33 mg (66%) of 313 as a mixture of diastereomers as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 9.26 (s, 1 H), 9.24 (s, 1 H), 7.71-7.58 (m, 2 H), 7.55-7.44 (m, 2 H), 6.90 (s, 2 H), 2.19 (s, 3 H), 2.17 (s, 3 H).

4,4-Diethoxy-1-[2-(4,4-diethoxybut-2-yn-1-onyl)]-phenylbut-2-yn-one (314). To a solution of propargylaldehyde diethyl acetal (315 mg, 2.5 mmol) in THF (2 mL) was added n-BuLi (1.4 mL, 2.2 mmol, 1.6 M in hexanes) dropwise, and the reaction was stirred at −78 °C for 1 h. o-PhtHALaldehyde (100 mg, 0.75 mmol) was added in THF (1 mL). After 15 min,
the reaction was warmed to 0 °C, stirred for 45 min, and quenched with H₂O (4 mL). The aqueous mixture was extracted with Et₂O (5 mL × 3), and the combined organic extracts were washed with H₂O (10 mL) and brine (10 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 153 mg (53%) of 4,4-dioxy-1-[2-(4,4-diethoxy-1-hydroxybut-2-ynyl)]-phenylbut-2-yn-1-ol as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.84-7.60 (m, 2 H), 7.47-7.36 (m, 2 H), 6.13-5.94 (m, 2 H), 5.45-5.34 (m, 2 H), 3.94-3.53 (m, 8 H), 1.45-1.18 (m, 12 H). To a solution of 4,4-diethoxy-1-[2-(4,4-diethoxy-1-hydroxybut-2-ynyl)]-phenylbut-2-yn-1-ol (89 mg, 0.23 mmol) in DCM (2 mL) at 0 °C was added DMP (230 mg, 0.55 mmol), and the reaction was stirred for 1 h at 0 °C. The reaction was quenched with sat. NaHCO₃ (3 mL) and was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with H₂O (5 mL) and brine (5 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 66 mg (75%) of 314 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.80 (m, 2 H), 7.71-7.61 (m, 2 H), 5.46 (s, 2 H), 3.89-3.59 (m, 8 H), 1.28 (t, J = 7.1 Hz, 12 H).

4-(tert-Butyldimethylsiloxy)-1-[2-(4-(tert-butyldimethylsiloxy)-1-hydroxybut-2-ynyl)]-phenylbut-2-yn-1-ol (315). To a solution of tert-butyldimethyl(prop-2-nyloxy)silane (733 mg, 4.3 mmol) in THF (1.2 mL) was added n-BuLi (2.8 mL, 3.9 mmol, 1.4 M in hexanes) dropwise, and the reaction stirred for 1.5 h at −78 °C. o-Phthalaldehyde (175 mg, 1.3 mmol) in THF (1.75 mL) was added, the reaction stirred for 15 min and was warmed to 0
140

°C. After 30 min, H₂O (6 mL) and the aqueous solution was extracted with Et₂O (8 mL × 3). The combined organic extracts were washed with H₂O (8 mL) and brine (8 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3:1) to give 513 mg (83%) of 315 as a mixture of diastereomers as a yellow oil. IR (NaCl, thin film, neat) 3357, 3071, 2952, 2931, 2895, 2859, 1930, 1634, 1464, 1364, 1256, 1131, 1085, 1002, 836, 779 cm⁻¹; ᵃH NMR (300 MHz, CDCl₃) δ 7.87-7.77 (m, 1 H), 7.71-7.61 (m, 1 H), 7.46-7.33 (m, 2 H), 6.10-5.92 (m, 2 H), 4.55-4.38 (m, 4 H), 1.05-0.88 (m, 18 H), 0.27-0.09 (m, 12 H).

4-(tert-Butyldimethylsil oxy)-1-[2-(4-(tert-butyldimethylsil oxy)-but-2-yn-1-onyl)]-phenylbut-2-yn-one (316). To a solution of 315 (831 mg, 1.8 mmol) in DCM (22 mL) at 0 °C was added DMP (1.84 g, 4.4 mmol), and the reaction was stirred for 70 min at 0 °C. The reaction was quenched with sat. NaHCO₃ (12 mL) and was extracted with Et₂O (15 mL × 3). The combined organic extracts were washed with H₂O (12 mL) and brine (12 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (9:1) to give 706 mg (89%) of 316 as an off white solid: Mp 62-64 °C; IR (NaCl, thin film, DCM) 2957, 2931, 2894, 2853, 2220, 1650, 1469, 1364, 1256, 1095, 836, 721; ᵃH NMR (300 MHz, CDCl₃) δ 7.87-7.78 (m, 2 H), 7.68-7.58 (m, 2 H), 4.54 (s, 4 H), 0.93 (s, 18 H), 0.15 (s, 12 H).

4-(tert-Butyldimethylsil oxy)-1-[2-(1-acetoxy-4-(tert-butyldimethylsil oxy)but-2-ynyl)]-phenylbut-2-ynyl acetate (317). To a solution of 315 (30 mg, 0.063 mmol) and DMAP
(cat.) in pyridine (100 µL) was added acetic anhydride (50 µL) at 0 °C, and the solution was stirred for 2 h. The reaction was diluted with Et₂O (2 mL) and H₂O (2 mL), the layers separated, and the aqueous layer was extracted with Et₂O (2 mL × 2). The combined organic extracts were washed with H₂O (3 mL) and brine (3 mL), dried (Na₂SO₄), filtered and concentrated to dryness to give 30 mg (85%) of 317 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.60 (m, 2 H), 7.47-7.36 (m, 2 H), 6.82-6.72 (m, 2 H), 4.45-4.32 (m, 4 H), 2.22-2.05 (m, 6 H), 1.01-0.82 (m, 18 H), 0.20-0.02 (m, 12 H).

9,10-Diacetoxy-9,10-dihydro-1,4-diformyl-3-((tert-butylidimethylsilyloxy)methyl)anthracene (318). To a flame-dried microwave vial equipped with a stir bar was added 313 (15 mg, 0.046 mmol), tert-butyldimethyl(prop-2-ynyloxy)silane (47 mg, 0.46 mmol), Cp*Ru(cod)Cl (1.7 mg, 0.0046 mmol), and dry THF (2 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 5 min in a CEM Discover microwave synthesizer at 300 W under power mode. After cooling to room temperature, the reaction mixture was concentrated, and the residue was purified by silica gel chromatography, eluting with DCM/EtOAc (100:1) to give 6 mg (26%) of 318 as a mixture of diastereomers as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 10.77-10.42 (m, 2 H), 8.32-8.12 (m, 1 H), 7.91-7.63 (m, 3 H), 7.53 (s, 1 H), 7.50-7.39 (m, 2 H), 5.17-4.80 (m, 2 H), 2.30-1.98 (m, 6 H), 1.13-0.88 (m, 9), 0.22-0.14 (m, 6 H).
9,10-Diacetoxy-9,10-dihydro-1,4-diformylantracene (319). Degassed THF (6 mL) was added to 313 (21 mg, 0.64 mmol) and acetylene was bubbled into the solution for 25 min at 0 °C. Cp*Ru(cod)Cl (2.4 mg, 0.064 mmol) was added and the reaction was stirred at rt for 1.5 h. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 10 mg (44%) of 319 as a mixture of diastereomers as a yellow solid. 1H NMR (300 MHz, CDCl3) δ 10.54 (s, 1 H), 10.48 (s, 1 H), 8.11 (s, 1 H), 8.01 (s, 1 H), 7.87-7.80 (m, 1 H), 7.78 (s, 1 H), 7.71 (s, 1 H), 7.64-7.57 (m, 1 H), 7.50-7.42 (m, 2 H), 2.17-2.00 (m, 6 H).

9,10-Diacetoxy-9,10-dihydro-1,4-bis((tert-butyldimethylsilyloxy)methyl)anthracene (320). Degassed THF (27 mL) was added to 317 (154 mg, 0.28 mmol) and acetylene was bubbled into the solution for 30 min at 0 °C. Cp*Ru(cod)Cl (15.6 mg, 0.041 mmol) was added and the reaction was stirred at rt overnight. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (12:1) to give 111 mg (69%) of 320 as a mixture of diastereomers as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.75-7.67 (m, 2 H), 7.56 (s, 2 H), 7.40-7.32 (m, 2 H), 7.22 (s, 2 H), 5.05-4.67 (m, 4 H), 2.06-1.99 (m, 6 H), 1.03-0.90 (m, 18 H), 0.23-0.06 (m, 12 H).

9,10-Diacetoxy-9,10-dihydro-1,4-bis((tert-butyldimethylsilyloxy)methyl)-2-butylantracene (321). To a solution of 317 (15 mg, 0.027 mmol) and 1-hexyne (18.3 µL, 0.16 mmol) in THF (2 mL) was added Cp*Ru(cod)Cl (1 mg, 0.0025 mmol) and the reaction was stirred for 9 h. Additional 1-hexyne (18.3 µL, 0.16 mmol) and Cp*Ru(cod)Cl (1 mg,
0.0025 mmol) was added, and the reaction was stirred overnight. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1) to give 5.6 mg (33%) of 321 as a mixture of diastereomers as a yellow oil. \(^1H\) NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.78-7.67 (m, 2 H), 7.48-7.30 (m, 4 H), 7.18 (s, 1 H), 5.03-4.68 (m, 4 H), 2.88-2.68 (m, 2 H), 2.13-1.95 (m, 6 H), 1.75-1.53 (m, 2 H), 1.52-1.36 (m, 2 H), 1.09-0.86 (m, 21 H), 0.34-0.07 (m, 12 H).

9,10-Diacetoxy-9,10-dihydro-1,4-bis((tert-butyldimethylsilyloxy)methyl)-2,3-bis(methoxymethyl)anthracene (322). To a solution of 317 (15 mg, 0.027 mmol) and 1,4-dimethoxybut-2-yne (19.5 µL, 0.16 mmol) in THF (2 mL) was added Cp*Ru(cod)Cl (1 mg, 0.0025 mmol), and the reaction was stirred for 9 h. Additional Cp*Ru(cod)Cl (1 mg, 0.0025 mmol) was added after 9 h (1 mg), and the reaction was stirred overnight. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1) to give 7.0 mg (39%) of 322 as a mixture of diastereomers as a white solid. \(^1H\) NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.76-7.66 (m, 2 H), 7.43-7.30 (m, 4 H), 5.02-4.74 (m, 4 H), 4.67-4.58 (m, 4 H), 3.47 (s, 6 H), 1.99 (s, 6 H), 0.97 (s, 18 H), 0.27 (s, 6 H), 0.22 (s, 6 H).

1,4-Bis((tert-butyldimethylsilyloxy)methyl)-2-butylanthraquinone (323). To a solution of 316 (36 mg, 0.076 mmol) in degassed PhCH\(_3\) (2.2 mL) was added 1-hexyne (132 µL, 1.15 mmol) and Ni(PPh\(_3\))\(_2\)(CO)\(_2\) (4.9 mg, 0.0076 mmol) and the reaction was irradiated in a CEM Discover microwave at 50 °C for 20 min using standard mode. The reaction was
concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 24 mg (57%) of 323 as a yellow solid. \[^1\text{H}\] NMR (300 MHz, CDCl\(_3\)) \(\delta 8.20-8.07\ (m, 3\ H), 7.80-7.66\ (m, 2\ H), 5.32\ (s, 2\ H), 5.27\ (s, 2\ H), 3.04-2.88\ (m, 2\ H), 1.82-1.61\ (m, 2\ H), 1.56-1.40\ (m, 2\ H), 1.14-0.87\ (m, 21\ H), 0.30-0.11\ (m, 12\ H).

1,4-Bis(hydroxymethyl)-2-butylanthaquinone (325). To a solution of 323 (134 mg, 0.24 mmol) in THF (1.5 mL) was added TBAF (1.45 mL, 1.45 mmol, 1 M in THF) at 0 °C, and the reaction was stirred for 2.5 h as it warmed to rt. The reaction was quenched with sat. NH\(_4\)Cl (5 mL) and extracted with EtOAc (7 mL \(\times\) 3). The combined organic extracts were washed with H\(_2\)O (8 mL) and brine (8 mL), dried (Na\(_2\)SO\(_4\)), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2.8:1) to give 72 mg (92%) of 325 as a yellow solid. \[^1\text{H}\] NMR (300 MHz, CDCl\(_3\)) \(\delta 8.26-8.16\ (m, 2\ H), 7.85-7.76\ (m, 2\ H), 7.72\ (s, 1\ H), 4.98\ (d, \(J = 7.3\) Hz, 2\ H), 4.82\ (d, \(J = 7.9\) Hz, 2\ H), 4.16\ (t, \(J = 7.9\) Hz, 1\ H), 3.79\ (t, \(J = 7.3\) Hz, 1\ H), 3.01-2.89\ (m, 2\ H), 1.77-1.61\ (m, 2\ H), 1.56-1.41\ (m, 2\ H), 1.01\ (t, \(J = 7.3\) Hz, 3\ H).

2-Butyl-1,4-diformylanthaquinone (327). A solution of 325 (5 mg, 0.015 mmol) and PCC (13 mg, 0.061 mmol) in DCM (500 \(\mu\)L) was irradiated in a CEM Discover microwave synthesizer (power mode) for 2 min at 200 W. The reaction was diluted with DCM (2 mL) filtered through a plug of celite on top of a plug of silica gel, concentrated to dryness and purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 4.3 mg (88%) of 327 as a white solid. \[^1\text{H}\] NMR (300 MHz, CDCl\(_3\)) \(\delta 327\): 10.76\ (s, 1\ H), 10.56\ (s, 1
H), 8.36-8.22 (m, 2 H), 7.96 (s, 1 H), 7.94-7.83 (m, 2 H), 2.90-2.74 (m, 2 H), 1.73-1.54 (m, 2 H), 1.51-1.32 (m, 2 H), 0.97 (t, J = 7.2 Hz, 3 H); 328: 10.59 (s, 1 H), 8.32-8.19 (m, 2 H), 7.91-7.81 (m, 3 H), 4.91 (d, J = 8.0 Hz, 2 H), 4.13 (t, J = 8.0 Hz, 1 H), 3.04-2.91 (m, 2 H), 1.77-1.61 (m, 2 H), 1.56-1.40 (m, 2 H), 1.01 (t, J = 7.2 Hz, 3 H).

4-(tert-Butyldimethylsiloxy)-1-[2-(4-(tert-butyldimethylsiloxy)-1-hydroxypent-2-ynyl)]-phenylpent-2-yn-1-ol (336). To a solution of tert-butyl(3-yn-2-yl)dimethylsilane (600 mg, 3.3 mmol) in THF (1.5 mL) was added n-BuLi (1.3 mL, 2.6 mmol, 2.0 M in hexanes) dropwise, and the reaction was stirred 1 h at −78 °C. o-Phthalaldehyde (125 mg, 0.93 mmol) in THF (1.5 mL) was added, the reaction was stirred for 15 min and was warmed to rt. After 60 min, H₂O (5 mL) was added and the aqueous solution was extracted with Et₂O (6 mL × 3). The combined organic extracts were washed with H₂O (5 mL) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4.5:1) to give 330 mg (70%) of 336 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.88-7.77 (m, 1.5 H), 7.70-7.59 (m, 0.5 H), 7.45-7.31 (m, 2 H), 6.07-5.89 (m, 2 H), 4.73-4.57 (m, 2 H), 1.52-1.47 (m, 6 H), 0.96-0.90 (m, 18 H), 0.18-0.12 (m, 12 H).

4-(tert-Butyldimethylsiloxy)-1-[2-(4-(tert-butyldimethylsiloxy)-1-acetoxypent-2-ynyl)]-phenylpent-2-yny acetate (337). To a solution of 336 (100 mg, 0.20 mmol) and DMAP (cat.) in pyridine (240 µL) was added acetic anhydride (190 µL) at 0 °C, and the solution was stirred for 2.5 h. The reaction was diluted with Et₂O (5 mL) and H₂O (5 mL), the layers
separated, and the aqueous layer extracted with Et₂O (5 mL × 2). The combined organic extracts were washed with H₂O (5 mL) and brine (5 mL), dried (MgSO₄), filtered and concentrated to dryness to give 104 mg (89%) of 337 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.77-7.59 (m, 2 H), 7.45-7.34 (m, 2 H), 6.80-6.69 (m, 2 H), 4.65-4.50 (m, 2 H), 2.16-2.03 (m, 6 H), 1.47-1.33 (m, 6 H), 0.94-0.81 (m, 18 H), 0.14-0.01 (m, 12 H).

4-(tert-Butyldimethylsiloxy)-1-[2-(4-(tert-butyldimethylsiloxy)pent-2-yn-1-onyl)]-phenylpent-2-yn-one (338). To a solution of 336 (100 mg, 0.20 mmol) in DCM (2 mL) at 0 °C was added DMP (211 mg, 0.50 mmol), and the reaction was stirred for 70 min at 0 °C. The reaction was quenched with sat. NaHCO₃ (4 mL) and extracted with Et₂O (5 mL × 3). The combined organic extracts were washed with H₂O (4 mL) and brine (4 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (11:1) to give 76 mg (77%) of 338 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.86-7.76 (m, 2 H), 7.66-7.57 (m, 2 H), 4.72 (q, J = 6.6 Hz, 2 H), 1.52 (d, J = 6.6 Hz, 6 H), 0.92 (s, 18 H), 0.14 (s, 12 H).

1-[2-(1-Acetoxypent-2-yn-4-onyl)]-phenylpent-2-yn-1-ol-4-one acetate (339). To a solution of 337 (215 mg, 0.37 mmol) in acetone (5.4 mL) was added Jones reagent (1.3 mL) at 0 °C, and the reaction was stirred for 35 min. The reaction was diluted with H₂O (10 mL) and extracted with EtOAc (15 mL × 3). The combined organic extracts were washed with sat. NaHCO₃ (12 mL) H₂O (12 mL) and brine (12 mL), dried (MgSO₄), filtered and concentrated
to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 98 mg (76%) of \textbf{339} as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.71-7.57 (m, 2 H), 7.53-7.42 (m, 2 H), 6.87 (s, 2 H), 2.44-2.36 (m, 6 H), 2.23-2.13 (m, 6 H).

\textbf{1,4-Bis(1-(\textit{tert}-butyldimethylsilyloxy)ethyl)-2-butylanthaquinone (340).} To a solution of \textbf{338} (59 mg, 0.12 mmol) in degassed PhCH$_3$ (3.5 mL) was added 1-hexyne (200 µL, 1.18 mmol) and Ni(PPh$_3$)$_2$(CO)$_2$ (15.2 mg, 0.012 mmol), and the reaction was irradiated in a CEM Discover microwave at 50 °C for 20 min using standard mode. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 51 mg (75%) of \textbf{340} as a yellow solid. 1H NMR (300 MHz, CDCl$_3$) δ 8.20-8.01 (m, 3 H), 7.80-7.68 (m, 2 H), 6.22-5.70 (m, 2 H), 3.47-2.86 (m, 2 H), 1.88-1.38 (m, 10 H), 1.10-0.66 (m, 21 H), 0.16--0.32 (m, 12 H).

\textbf{1,4-Bis(ethanonyl)-2-butylanthaquinone (341).} To a solution of \textbf{340} (10 mg, 0.017 mmol) in acetone (500 µL) was added Jones reagent (200 µL) at 0 °C, and the reaction was stirred for 60 min. The reaction was diluted with H$_2$O (2 mL) and extracted with EtOAc (3 mL \times 3). The combined organic extracts were washed with sat. NaHCO$_3$ (2 mL) H$_2$O (2 mL \times 2) and brine (2 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 5.1 mg (85%) of \textbf{341} as a yellow solid. 1H NMR (300 MHz, CDCl$_3$) δ 8.29-8.20 (m, 2 H), 7.87-7.80 (m, 2 H), 7.42 (s, 1 H), 2.70-2.59 (m, 8 H), 1.80-1.55 (m, 2 H), 1.51-1.39 (m, 2 H), 0.97 (t, J = 7.2 Hz, 3 H).
1,4-Bis(ethanonyl)-2-butyl-9,10-dihydro-9,10-diacetoxyanthracene (342). To a solution of 339 (12 mg, 0.034 mmol) in PhCH$_3$ (1.1 mL) was added 1-hexyne (39 µL, 0.34 mmol) and Cp*Ru(cod)Cl (2.6 mg, 0.007 mmol), and the reaction was irradiated in a CEM Discover microwave at 300 W for 5 min using power mode. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 10.1 mg (68%) of 342 as a mixture of diastereomers as a yellow solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.79-7.65 (m, 2 H), 7.54 (s, 1 H), 7.42-7.32 (m, 2 H), 7.24 (s, 1 H), 6.82 (s, 1 H), 2.73-2.52 (m, 8 H), 2.04 (s, 6 H), 1.71-1.55 (m, 2 H), 1.50-1.33 (m, 2 H), 0.96 (t, J = 7.2 Hz, 3 H).

1-[2-(1-Acetoxy-3-iodoprop-2-ynyl)phenyl]-3-iodoprop-2-ynyl acetate (346). To a solution of 382 (50 mg, 0.18 mmol) in DMF (1.2 mL) was added NIS (97 mg, 0.43 mmol) and AgNO$_3$ (3 mg, 0.018 mmol), and the reaction was stirred for 105 min in the dark. H$_2$O (3 mL) was added, and the solution was extracted with EtOAc (4 mL × 3). The combined organic extracts were washed with H$_2$O (4 mL × 2) and brine (4 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3:1) to give 88 mg (91%) of 346 as a mixture of diastereomers as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.70-7.56 (m, 2 H), 7.49-7.38 (m, 2 H), 6.87-6.80 (m, 2 H), 2.21-2.09 (m, 6 H).
1-[2-(3-Iodoprop-2-yn-1-onyl)phenyl]-3-iodoprop-2-yn-1-one (327). To a solution of 345 (50 mg, 0.27 mmol) in DMF (1.8 mL) was added NIS (141 mg, 0.63 mmol) and AgNO₃ (4.5 mg, 0.027 mmol), and the reaction was stirred for 85 min in the dark. H₂O (4 mL) was added, and the solution was extracted with EtOAc (5 mL × 3). The combined organic extracts were washed with H₂O (5 mL × 2) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 75 mg (63%) of 1-[2-(1-hydroxy-3-iodo-prop-2-ynyl)- phenyl]-3-iodo-prop-2-yn-1-ol. ¹H NMR (300 MHz, CDCl₃) δ 7.83-7.71 (m, 1 H), 7.67-7.57 (m, 1 H), 7.48-7.34 (m, 2 H), 6.17-5.95 (m, 2 H). To a solution of 1-[2-(1-hydroxy-3-iodo-prop-2-ynyl)-phenyl]-3-iodo-prop-2-yn-1-ol (16 mg, 0.037 mmol) in acetone (300 µL) was added Jones reagent (50 µL) at 0 °C, and the reaction stirred for 30 min. The reaction was diluted with sat. NaHCO₃ (1 mL) and extracted with EtOAc (2 mL × 3). The combined organic extracts were washed with sat. NaHCO₃ (2 mL) H₂O (2 mL × 2) and brine (2 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3:1) to give 12.3 mg (78%) of 327 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.79 (m, 2 H), 7.72-7.60 (m, 2 H).

2-Butyl-1,4-diiodo-9,10-dihydro-9,10-diacetoxyanthracene (348). To a solution of 346 (10 mg, 0.019 mmol) in DCE (750 µL) was added 1-hexyne (11 µL, 0.096 mmol) and Cp*Ru(cod)Cl (1 mg, 0.0029 mmol), and the reaction was irradiated in a CEM Discover microwave at 300 W for 25 min using power mode. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (9:1)
to give 2.6 mg (23%) of 348 as a mixture of diastereomers as a yellow solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.96-7.82 (m, 2 H), 7.79 (s, 1 H), 7.47-7.34 (m, 2 H), 7.23-7.17 (m, 1 H), 7.07-6.99 (m, 1 H), 2.87-2.70 (m, 2 H), 2.11-2.00 (m, 6 H), 1.69-1.38 (m, 4 H), 1.05-0.94 (m, 3 H).

2-Butyl-1,4-dicarboxyanthraquinone (333). To a solution of 323 (156 mg, 0.28 mmol) in acetone (5 mL) was added Jones reagent (1.2 mL) at 0 °C, and the reaction was stirred for 1.5 h. The reaction was poured into cold H$_2$O (6 mL) and extracted with DCM (5 mL × 3). The combined organic extracts were concentrated to dryness to give 99 mg (100%) of 333 as an off-white solid. 1H NMR (300 MHz, DMSO-d$_6$) δ 8.19-8.08 (m, 2 H), 7.99-7.88 (m, 2 H), 7.78 (s, 1 H), 2.80-2.64 (m, 2 H), 1.68-1.52 (m, 2 H), 1.43-1.27 (m, 2 H), 0.90 (t, J = 7.2 Hz, 3 H).

1-(tert-Butyldimethylsiloxy)-1-[2-(1-(tert-butyldimethylsiloxy)prop-2-ynyl)]-phenylprop-2-yne (353). To a solution of TBDMSCl (763 mg, 5.1 mmol) and imidazole (574 mg, 8.4 mmol) in DMF (4.5 mL) was added 345 (314 mg, 1.7 mmol) in DMF (1.4 mL), and the reaction was stirred for 2 h. H$_2$O (15 mL) and Et$_2$O (15 mL) were added and the layers separated. The aqueous layer was extracted with Et$_2$O (15 mL × 2), and the combined organic extracts were washed with H$_2$O (10 mL × 2) and brine (10 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (50:1) to give 649 mg (93%) of 353 as a mixture of
diastereomers as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.76-7.58 (m, 2 H), 7.39-7.30 (m, 2 H), 5.94-5.85 (m, 2 H), 2.56-2.49 (m, 2 H), 1.03-0.89 (m, 18 H), 0.25-0.11 (m, 12 H).

1-$(\text{tert-Butyldimethylsiloxy})$-1-[2-$(\text{1-$(\text{tert-Butyldimethylsiloxy})$-3-ethoxycarbonylprop-2-yynyl})$]-phenyl-3-ethoxycarbonylprop-2-yne (354). To a solution of 353 (204 mg, 0.49 mmol) in THF (6 mL) was added n-BuLi (470 µL, 1.1 mmol, 2.4 M in hexanes) dropwise at $-78 \, ^{\circ}\text{C}$, and the reaction was stirred for 1.5 h. Ethyl chloroformate (118 µL, 1.2 mmol) was added at once, and the reaction was stirred for 10 min and warmed to rt. After 30 min, sat. NH$_4$Cl (5 mL) was added and the aqueous solution was extracted with Et$_2$O (8 mL \times 3). The combined organic extracts were washed with H$_2$O (10 mL) and brine (10 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (25:1) to give 152 mg (55%) of 354 as a mixture of diastereomers as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.73-7.65 (m, 0.5 H), 7.62-7.51 (m, 1.5 H), 7.42-7.32 (m, 2 H), 6.01-5.88 (m, 2 H), 4.20 (q, $J = 7.1 \, \text{Hz}$, 4 H), 1.28 (t, $J = 7.1 \, \text{Hz}$, 6 H), 1.01-0.89 (m, 18 H), 0.23 (s, 6 H), 0.15 (s, 6 H).

1-$(\text{tert-Butyldimethylsiloxy})$-1-[2-$(\text{1-$(\text{tert-Butyldimethylsiloxy})$prop-2-yynyl})$]-phenyl-3-ethoxycarbonylprop-2-yne (355). To a solution of 353 (300 mg, 0.72 mmol) in THF (8 mL) was added n-BuLi (270 µL, 0.65 mmol, 2.4 M in hexanes) dropwise at $-78 \, ^{\circ}\text{C}$, and the reaction was stirred for 1.5 h. Ethyl chloroformate (77 µL, 0.80 mmol) was added at once, and the reaction was stirred for 30 min and warmed to rt. After 90 min, sat. NH$_4$Cl (8 mL) is added and the aqueous solution extracted with Et$_2$O (12 mL \times 3). The combined organic
extracts were washed with H$_2$O (10 mL) and brine (10 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (30:1) to give 86 mg (24%) of 355 as a mixture of diastereomers as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.73-7.62 (m, 1.2 H), 7.57-7.48 (m, 0.8 H), 7.41-7.29 (m, 2 H), 6.16-6.06 (m, 1 H), 5.83-5.70 (m, 1 H), 4.19 (q, $J = 7.1$ Hz, 2 H), 2.55 (d, $J = 2.3$ Hz, 1 H), 1.33-1.23 (m, 3 H), 1.03-0.87 (m, 18 H), 0.28-0.10 (m, 12 H).

2-Butyl-1,4-bis(ethoxycarbonyl)-9,10-dihydro-9,10-bis(tert-butylidimethylsilyloxy)anthracene (356). To a solution of 354 (11 mg, 0.020 mmol) in PhCH$_3$ (650 µL) was added 1-hexyne (22 µL, 0.20 mmol) and Ni(PPh$_3$)$_2$CO$_2$ (1.2 mg, 0.002 mmol), and the reaction was irradiated in a CEM Discover microwave at 300 W for 5 min using power mode. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (30:1) to give 9.4 mg (75%) of 356 as a mixture of diastereomers as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.66-7.27 (m, 5 H), 6.84-6.71 (m, 1 H), 5.96 (s, 1 H), 4.66-4.21 (m, 4 H), 2.84-2.48 (m, 2 H), 1.68-1.51 (m, 2 H), 1.49-1.30 (m, 8 H), 1.00-0.68 (m, 21 H), 0.34--0.28 (m, 12 H).

2-Butyl-4-(ethoxycarbonyl)-9,10-dihydro-9,10-bis(tert-butylidimethylsilyloxy)anthracene (357a) and 2-Butyl-1-(ethoxycarbonyl)-9,10-dihydro-9,10-bis(tert-butylidimethylsilyloxy)anthracene (357b). To a solution of 355 (10 mg, 0.021 mmol) in PhCH$_3$ (650 µL) was added 1-hexyne (24 µL, 0.21 mmol) and Cp*Ru(cod)Cl (0.8 mg, 0.002 mmol), and the reaction was irradiated in a CEM Discover microwave at 300 W
for 5 min using power mode. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (45:1) to give 6.2 mg (53%) of 357a and 357b as a mixture of diastereomers.

1-[(2-[(3-ethoxycarbonylprop-2-ynyl)]-phenyl]-3-ethoxycarbonylprop-2-yne (361). To a solution of 360 (25 mg, 0.16 mmol) in THF (3.2 mL) was added EtMgBr (208 µL, 0.65 mmol, 40% in Et₂O), at rt. After stirring 1 hr. ethylchloroformate (77 µL, 0.81 mmol) was added, and the reaction was stirred for 2 h. The reaction was quenched with sat. NH₄Cl (2 mL) and extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with H₂O (4 mL) and brine (4 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (9:1) to give 20.2 mg (42%) of 361 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.37 (m, 2 H), 7.34-7.27 (m, 2 H), 4.24 (q, J = 7.1 Hz, 4 H), 3.77 (s, 4 H), 1.32 (t, J = 7.1 Hz, 6 H).

2-Butyl-1,4-bis(ethoxycarbonyl)-9,10-dihydroanthracene (362). To a solution of 361 (12.2 mg, 0.041 mmol) in PhCH₃ (1.4 mL) was added 1-hexyne (47 µL, 0.41 mmol) and Ni(PPh₃)₂(CO)₂ (2.6 mg, 0.004 mmol) and the reaction was irradiated in a CEM Discover microwave at 300 W for 6 min using power mode. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (35:1) to give 11 mg (71%) of 362 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (s, 1 H), 7.36-7.28 (m, 1 H), 7.26-7.17 (m, 3 H), 4.56-4.38 (m, 4 H), 4.33 (s, 1 H), 3.90 (s, 1 H), 2.67-2.57 (m, 2 H), 1.68-1.53 (m, 2 H), 1.51-1.31 (m, 8 H), 0.94 (t, J = 7.3 Hz, 3 H); ¹³C
NMR (75 MHz, CDCl$_3$) δ 169.6, 167.8, 137.1, 136.3, 136.2, 135.9, 135.5, 135.1, 130.4, 129.0, 127.7, 127.3, 126.6, 126.4, 61.5, 61.3, 34.0, 33.6, 33.3, 22.8, 14.5, 14.0.

2-Butyl-1-ethoxycarbonyl-4-(hydroxy-iso-propyl)-9,10-dihydroanthracene (363). CeCl$_3$ (43 mg, 0.17 mmol) was dried overnight in vacuo at 140 °C. While the flask was hot, nitrogen was introduced, and the flask was cooled to 0 °C. THF (600 µL) was added at once, the ice bath removed, and the suspension was stirred vigorously for 3 h at rt. The flask was cooled to −78 °C, and MeLi (108 µL, 0.17 mmol, 1.6 M in Et$_2$O) was added dropwise. After stirring for 1 h at −78 °C, 362 (11 mg, 0.029 mmol) in THF (300 µL) was added over 5 min. After 10 min MeLi (108 µL, 0.17 mmol, 1.6 M in Et$_2$O) was added, and after 5 min the reaction was quenched at −78 °C with sat. NH$_4$Cl (2 mL) and allowed to warm to room temperature. EtOAc (3 mL) and water (2 mL) were added, and the layers were separated. The aqueous layer was extracted with EtOAc (3 mL × 2), and the combined organic extracts were washed with H$_2$O (3 mL) and brine (3 mL), dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1) to give 4.3 mg (41%) of 363 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.37-7.30 (m, 1 H), 7.29-7.1 (m, 4 H), 4.47 (q, $J = 7.1$ Hz, 2 H), 4.29 (s, 2 H), 3.84 (s, 2 H), 2.64-2.55 (m, 2 H), 1.73 (s, 6 H), 1.65-1.30 (m, 7 H), 0.93 (t, $J = 7.3$ Hz, 3 H).

2-Butyl-1-(1-hydroxyethyl)-4-(ethanonyl)anthraquinone (365). BF$_3$Et$_2$O (59 µL, 0.46 mmol) was added to H$_2$O$_2$ (50%, 7 µL, 0.10 mmol) and was stirred for 45 min at 0 °C. This solution was added to 340 (15 mg, 0.026 mmol) in dichloromethane (850 µL) at 0 °C. After
stirring for 10 min at 0 °C, H₂O (2 mL) and EtOAc (2 mL) were added and the layers separated. The aqueous layer was extracted with EtOAc (2 mL \times 2), and the combined organic extracts were washed with water (3 mL) and brine (3 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 3.5 mg (39%) of 365 as a colorless oil. \(^1\)H NMR (300 MHz, CDCl₃) δ 8.28-8.17 (m, 2 H), 8.02 (s, 1 H), 7.87-7.74 (m, 2 H), 5.80 (q, \(J = 6.5\) Hz, 1 H), 2.71-2.56 (m, 5 H), 1.70-1.57 (m, 5 H), 1.51-1.34 (m, 2 H), 0.96 (t, \(J = 7.3\) Hz, 3 H).

4-Hydroxy-4-methyl-1-[2-(4-hydroxy-4-methyl-1-hydroxypent-2-ynyl)]-phenylpent-2-yn-1-ol (366). To a solution of 2-methylbut-3-yn-2-ol (188 mg, 2.2 mmol) in THF (18 mL) was added \(n\)-BuLi (1.9 mL, 4.6 mmol, 2.5 M in hexanes) dropwise, and the reaction was stirred for 2 h at −78 °C. \(o\)-Phthalaldehyde (100 mg, 0.75 mmol) in THF (2 mL) was added, the reaction was stirred for 1 h, warmed to rt, and was stirred overnight. Sat. NH₄Cl (10 mL) was added and the aqueous solution was extracted with EtOAc (15 mL \times 3). The combined organic extracts were washed with H₂O (10 mL) and brine (10 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2.5:1) to give 86 mg (38%) of 366 as a mixture of diastereomers as a colorless oil. \(^1\)H NMR (300 MHz, CDCl₃, mixture of stereoisomers) δ 7.77-7.70 (m, 1.2 H), 7.64-7.57 (m, 0.8 H), 7.43-7.34 (m, 2 H), 6.01 (s, 0.8 H), 5.90 (s, 1.2 H), 4.62 (br s, 0.5 H), 4.03 (br s, 1 H), 3.29 (br s, 0.5 H), 3.12 (br s, 1 H), 1.61-1.50 (m, 12 H).
4-Hydroxy-4-methyl-1-[2-(4-hydroxy-4-methylpent-2-yn-1-onyl)]-phenylpent-2-yn-1-one (367). To a solution of 366 (30 mg, 0.099 mmol) in DCM (1.1 mL) at 0 °C was added DMP (105 mg, 0.25 mmol), and the reaction was stirred for 75 min at 0 °C. The reaction was quenched with sat. NaHCO$_3$ (2 mL) and extracted with Et$_2$O (5 mL × 3). The combined organic extracts were washed with H$_2$O (4 mL) and brine (4 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:1) to give 12.9 mg (44%) of 367 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.80-7.75 (m, 2 H), 7.64-7.58 (m, 2 H), 1.60 (s, 12 H).

1-((E)-Octa-1,7-dien-4-ynyl)benzene (375). Allyl bromide (530 µL, 6.2 mmol) was added to a solution of 1-((E)-pent-1-en-4-ynyl)benzene239 (175 mg, 1.2 mmol), CuI (235 mg, 1.2 mmol), NaI (91 mg, 0.61 mmol), and K$_2$CO$_3$ (340 mg, 2.5 mmol) in DMF (4.9 mL), and the reaction was stirred overnight at rt. The reaction was diluted with Et$_2$O (40 mL), filtered over celite, washed with H$_2$O (15 mL × 2) and brine (15 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The crude mixture was submitted to the same conditions and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 176 mg (79%) of 375 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.48-7.16 (m, 5 H), 6.66 (dt, J = 1.7 and 15.5 Hz, 1 H), 6.20 (dt, J = 5.6 and 15.5 Hz, 1 H), 5.96-5.79 (m, 1 H), 5.37 (ddd, J = 1.7, 3.5 and 16.9 Hz, 1 H), 5.14 (ddd, J = 1.7, 3.4 and 9.9 Hz, 1 H), 3.25-3.14 (m, 2 H), 3.10-3.00 (m, 2 H).
Pent-4-en-1-yn-3-yl benzoate (377). Freshly distilled acrolein (500 mg, 8.9 mmol) was added to a solution of ethynyl Grignard (22.3 mL, 11.1 mmol, 0.5 M in THF), and the reaction was refluxed for 2 h. After cooling, sat. NH₄Cl (25 mL) was added and the mixture was extracted with Et₂O (25 mL × 3). The combined organic extracts were washed with H₂O (20 mL) and brine (20 mL), dried (MgSO₄) and filtered. The Et₂O was removed by distillation and the crude alcohol was dissolved in pyridine (8 mL). DMAP (cat.) and benzoyl chloride (5.2 mL, 44.8 mmol) were added at 0 °C, and the reaction was stirred for 1 h. H₂O (30 mL) was added and the aqueous mixture was extracted with Et₂O (30 mL × 3). The combined organic extracts were washed with sat. NaHCO₃ (30 mL), H₂O (20 mL) and brine (20 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1) to give 854 mg (51%) of 377 as a colorless oil. IR (NaCl, thin film, neat) 3295, 3092, 3066, 3035, 2988, 2921, 2127, 1971, 1915, 1723, 1650, 1604, 1453, 1261, 950 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.16-8.03 (m, 3 H), 7.64-7.54 (m, 1 H), 7.52-7.40 (m, 2 H), 6.17-6.13 (m, 1 H), 6.11-5.99 (m, 1 H), 5.69 (dt, J = 1.0 and 16.8 Hz, 1 H), 5.42 (dt, J = 1.0 and 10.0 Hz, 1 H), 2.65 (d, J = 2.2 Hz, 1 H).

Octa-1,7-dien-4-yn-3-yl benzoate (378). Allyl bromide (495 µL, 5.7 mmol) was added to a solution of 377 (150 mg, 0.81 mmol), CuI (150 mg, 0.81 mmol), NaI (60 mg, 0.4 mmol), and K₂CO₃ (218 mg, 1.62 mmol) in DMF (3 mL), and the reaction was stirred overnight. H₂O (20 mL) and Et₂O (20 mL) were added, and the layers were separated. The aqueous layer was extracted with Et₂O (20 mL × 2), and the combined organic extracts were washed with H₂O (15 mL × 2) and brine (15 mL), dried (MgSO₄), filtered and concentrated to dryness. The
residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (16:1) to give 154 mg (86%) of 378 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 8.18-8.02 (m, 2 H), 7.64-7.53 (m, 1 H), 7.53-7.39 (m, 2 H), 6.25-6.13 (m, 1 H), 6.13-5.98 (m, 1 H), 5.93-5.75 (m, 1 H), 5.63 (dt, $J = 1.2$ and 16.9 Hz, 1 H), 5.44-5.29 (m, 2 H), 5.15 (ddd, $J = 1.7$, 3.3 and 10.0 Hz, 1 H), 3.13-3.00 (m, 2 H).

(E)-8-Phenylocta-1,7-dien-4-yn-3-yl benzoate (379). Cinnamyl bromide (212 mg, 1.1 mmol) was added to a solution of 377 (400 mg, 2.2 mmol), CuI (204 mg, 1.1 mmol), NaI (81 mg, 0.55 mmol), and K$_2$CO$_3$ (372 mg, 2.7 mmol) in DMF (2.1 mL), and the reaction was stirred overnight at rt. The reaction was diluted with Et$_2$O (30 mL), filtered over celite, washed with H$_2$O (15 mL × 2) and brine (15 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (14:1) to give 206 mg (63%) of 379 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 8.14-8.07 (m, 2 H), 7.63-7.53 (m, 1 H), 7.51-7.41 (m, 2 H), 7.39-7.18 (m, 5 H), 6.65 (dt, $J = 1.7$ and 15.6 Hz, 1 H), 6.26-6.00 (m, 3 H), 5.72-5.63 (m, 1 H), 5.42-5.36 (m, 1 H), 3.24 (dt, $J = 1.7$ and 5.7 Hz, 1 H).

(E)-8-Phenylocta-1,7-dien-4-yn-3-ol (380). To a solution of 379 (75 mg, 0.25 mmol) in MeOH (8.3 mL) was added NaOH (59 mg, 1.5 mmol), and the reaction was stirred for 1 h. H$_2$O (5 mL) was added and the MeOH was removed under reduced pressure. The aqueous mixture was extracted with EtOAc (5 mL × 3), washed with H$_2$O (5 mL) and brine (5 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel
chromatography, eluting with hexanes/EtOAc (4:1) to give 39 mg (80%) of 380 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.47-7.17 (m, 5 H), 6.72-6.55 (m, 1 H), 6.28-5.91 (m, 2 H), 5.50 (dt, J = 1.2 and 17 Hz, 1 H), 5.24 (dt, J = 1.2 and 10 Hz, 1 H), 3.22 (dt, J = 1.9 and 5.7 Hz, 1 H), 1.92-1.79 (m, 1 H).

(E)-8-Phenylcta-1,7-dien-4-yne-3-one (381). To a solution of 380 (59 mg, 0.30 mmol) in acetone (3.2 mL) was added Jones reagent (200 µL) at 0 °C, and the reaction was stirred for 15 min. The reaction was diluted with sat. NaHCO$_3$ (2 mL) and extracted with EtOAc (3 mL × 3). The combined organic extracts were washed with sat. NaHCO$_3$ (2 mL) H$_2$O (2 mL × 2) and brine (2 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 34 mg (59%) of 381 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.45-7.21 (m, 5 H), 6.75-6.10 (m, 5 H), 3.39 (dt, J = 1.7 and 5.8 Hz, 2 H).

2-Acryloyl-3-cinnamylanthraquinone (384). A solution of 383 (7.6 mg, 0.042 mmol) and 381 (32.8 mg, 0.17 mmol) in DCE (1.7 mL) was added to a solution of Cp*Ru(cod)Cl (1.6 mg, 0.0042 mmol) in DCE (100 µL) over 65 min and the reaction was stirred for 2 h. The reaction was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/DCM (1:2) to give 2.6 mg (16%) of 384 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 8.40-8.28 (m, 3 H), 7.90-7.80 (m, 2 H), 7.40-7.18 (m, 5 H), 6.90-6.76 (m, 1 H), 6.53-6.12 (m, 4 H), 3.82 (d, J = 6.8 Hz, 2 H).
1-((E)-6,6-Diethoxyhex-1-en-4-ynyl)benzene (385). Cinnamyl bromide (500 mg, 2.5 mmol) was added to a solution of propargylaldehyde diethyl acetal (650 mg, 5.1 mmol), CuI (488 mg, 2.5 mmol), NaI (190 mg, 1.27 mmol), and K$_2$CO$_3$ (875 mg, 6.3 mmol) in DMF (5 mL), and the reaction was stirred for 2.5 h. The reaction was diluted with Et$_2$O (30 mL), filtered over celite, washed with H$_2$O (15 mL × 2) and brine (15 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (16:1) to give 492 mg (79%) of 385 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.41-7.19 (m, 5 H), 6.63 (dt, J = and 15.7 Hz, 1 H), 6.16 (dt, J = 5.7 and 15.7 Hz, 1 H), 5.34 (t, J = 1.6 Hz, 1 H), 3.88-3.55 (m, 4 H), 3.22 (dt, J = 1.6 and 5.7 Hz, 2 H), 1.28 (t, J = 7.1 Hz, 6 H).

(E)-6-Phenylhex-5-en-2-ynal (386). To a solution of 385 (75 mg, 0.31 mmol) in CHCl$_3$ (1 mL) was added H$_2$O (250 µL) and TFA (250 µL) and the reaction was stirred for 60 min. Sat. NaHCO$_3$ (4 mL) was added, and the aqueous solution was extracted with Et$_2$O (5 mL × 3). The combined organic extracts were washed with H$_2$O (5 mL) and brine (5 mL), dried (MgSO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (15:1) to give 25 mg (48%) of 386 as an orange oil. 1H NMR (300 MHz, CDCl$_3$) δ 9.25 (s, 1 H), 7.52-7.22 (m, 5 H), 6.66 (d, J = 15.8 Hz, 1 H), 6.15 (dt, J = 5.6 and 15.8 Hz, 1 H), 3.39 (d, J = 5.6 Hz, 2 H).

3-Cinnamyl-9,10-dihydro-9,10-dioxoanthracene-2-carbaldehyde (387). A solution of 383 (39.9 mg, 0.22 mmol) and 386 (150 mg, 0.88 mmol) in degassed DCE (8.3 mL) was added to
a solution of Cp*Ru(cod)Cl (8.3 mg, 0.022 mmol) in DCE (400 µL) over 85 min, and the reaction was stirred for 4 h. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/DCM (1:2) to give 55 mg (72%) of 387 as an off white solid: Mp 165-168 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 10.45 (s, 1 H), 8.80 (s, 1 H), 8.42-8.27 (m, 2 H), 7.92-7.80 (m, 2 H), 7.39-7.18 (m, 5 H), 6.56-6.36 (m, 2 H), 4.17 (d, \(J = 5.5\) Hz, 2 H).

2-Cinnamyl-3-(1-hydroxallyl)anthraquinone (388). Vinyl magnesium bromide (65 µL, 0.045 mmol, 0.7 M in THF) was added to a solution of 387 (15.9 mg, 0.045 mmol) in THF (1 mL) over 20 min at −78 °C. The reaction was warmed to rt and quenched after 1.5 h with sat. NH\(_4\)Cl (2 mL). The aqueous mixture was extracted with Et\(_2\)O (3 mL \(\times\) 3), washed with H\(_2\)O (5 mL) and brine (5 mL), dried (MgSO\(_4\)), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with DCM/EtOAc (33:1) to give 8.6 mg (50%) of 388 as a yellow solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.48 (s, 1 H), 8.39-8.26 (m, 2 H), 8.19 (s, 1 H), 7.88-7.76 (m, 2 H), 7.42-7.18 (m, 5 H), 6.52-6.31(m, 2 H), 6.21-6.06 (m, 1 H), 5.70-5.60 (m, 1 H), 5.47-5.31 (m, 2 H), 3.81 (d, \(J = 5.3\) Hz, 2 H), 2.12 (br s, 1 H).

7-Hydroxytetracene-5,12(7\(\text{H},10\text{H}\))-dione (389). To a solution of 388 (16.7 mg, 0.044 mmol) in degassed DCM (4 mL) was added Grubbs’ First Generation catalyst (3.5 mg, 0.0044 mmol), and the reaction was stirred at rt overnight. The reaction was concentrated and the residue was purified by silica gel chromatography, eluting with DCM/EtOAc (17:1) to give 8.4 mg (69%) of 389 as a yellow solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.56 (s, 1 H),
8.40-8.27 (m, 2 H), 8.14 (s, 1 H), 7.89-7.75 (m, 2 H), 6.25-6.12 (m, 2 H), 5.37-5.26 (m, 1 H),
3.77-3.45 (m, 2 H), 2.08 (d, J = 8.8 Hz, 1 H).

1-[2-(4-(tert-Butyldimethylsiloxy)-1-hydroxybut-2-ynyl)]-phenylprop-2-yn-1-ol (390). To
a solution of tert-butyldimethyl(prop-2-ynyloxy)silane (279 mg, 1.6 mmol) in THF (1 mL)
was added n-BuLi (1.2 mL, 1.6 mmol, 1.32 M in hexanes) dropwise, and the reaction was
stirred for 1 h at −78 °C. This solution was added to a solution of o-phthalaldehyde (200 mg,
1.5 mmol) in THF (2 mL), and the reaction was stirred for 10 min. Ethynylmagnesium
bromide (3.6 mL, 1.8 mmol, 0.5 M in THF) was added, and the reaction was warmed to rt.
After 60 min, NH₄Cl (10 mL) was added and the aqueous solution was extracted with Et₂O
(10 mL × 3). The combined organic extracts were washed with H₂O (10 mL) and brine (10
mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica
gel chromatography, eluting with hexanes/Et₂O (1:1) to give 208 mg (42%) of 390 as a
mixture of diastereomers as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.92-7.76 (m, 2 H),
7.49-7.35 (m, 2 H), 6.09-5.89 (m, 2 H), 4.52-4.40 (m, 2 H), 3.05 (d, J = 4.8 Hz, 1 H), 2.80 (d,
J = 4.8 Hz, 1 H), 2.76-2.74 (m, 1 H), 1.03-0.86 (m, 9 H), 0.21-0.09 (m, 6 H).

1-[2-(4-(tert-Butyldimethylsiloxy)-1-acetoxybut-2-ynyl)]-phenylprop-2-ynyl acetate
(391). To a solution of 390 (60 mg, 0.18 mmol) and DMAP (cat.) in pyridine (250 µL) was
added acetic anhydride (170 µL) at 0 °C, and the solution was stirred for 2 h as it warmed to
rt. The reaction was diluted with Et₂O (4 mL) and H₂O (4 mL), the layers separated, and the
aqueous layer was extracted with Et₂O (4 mL × 2). The combined organic extracts were
washed with H₂O (5 mL) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1) to give 53 mg (71%) of 391 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.73-7.61 (m, 2 H), 7.48-7.37 (m, 2 H), 6.82-6.72 (m, 2 H), 4.41-4.34 (m, 2 H), 2.74-2.60 (m, 1 H), 2.20-2.08 (m, 6 H), 0.99-0.83 (m, 9 H), 0.16-0.05 (m, 6 H).

1-[2-(4-(tert-Butyldimethylsiloxy)-but-2-yn-onyl)]-phenylprop-2-yn-one (392). To a solution of 390 (50 mg, 0.15 mmol) in DCM (1 mL) at 0 °C was added DMP (154 g, 0.36 mmol), and the reaction was stirred for 60 min at 0 °C. The reaction was quenched with sat. NaHCO₃ (2 mL) and extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with H₂O (4 mL) and brine (4 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1) to give 31 mg (63%) of 392 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.93-7.80 (m, 2 H), 7.71-7.61 (m, 2 H), 4.56 (s, 2 H), 3.43 (s, 1 H), 0.93 (s, 9 H), 0.16 (s, 6 H).

3-Butyl-1-(((tert-butyldimethylsiloxy)methyl)anthraquinone (393). A solution of 392 (10 mg, 0.031 mmol) and 1-hexyne (14 mg, 0.31 mmol) in degassed DCE (1.2 mL) was added to a solution of Cp*Ru(cod)Cl (1.1 mg, 0.0031 mmol) in DCE (100 µL) over 30 min, and the reaction was stirred for 35 min. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 10.8 mg (86%) of 393 as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.32-8.20 (m, 2 H), 8.13 (br s,
1 H), 8.11 (br s, 1 H), 7.84-7.72 (m, 2 H), 5.37 (s, 2 H), 2.84 (t, \(J = 7.2 \) Hz, 2 H), 1.84-1.65 (m, 2 H), 1.52-1.34 (m, 2 H), 1.20-0.91 (m, 12 H), 0.22 (s, 6 H).

3-Cinnamyl-1-((tert-butyldimethylsilyloxy)methyl)-9,10-dihydro-9,10-dioxoanthracene-2-carbaldehyde (394a) and 3-cinnamyl-4-((tert-butyldimethylsilyloxy)methyl)-9,10-dihydro-9,10-dioxoanthracene-2-carbaldehyde (394b). A solution of 392 (10 mg, 0.031 mmol) and 386 (21 mg, 0.12 mmol) in degassed DCE (1.2 mL) was added to a solution of Cp*Ru(cod)Cl (1.1 mg, 0.0031 mmol) in DCE (100 µL) over 30 min, and the reaction was stirred overnight. The reaction was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/DCM (1:1.5) to give 2.4 mg (16%) of 394a and 2.7 mg (18%) of 394b as yellow oils. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 394a: 10.53 (s, 1 H), 8.35-8.20 (m, 2 H), 7.88-7.75 (m, 2 H), 7.42-7.17 (m, 6 H), 6.53-6.23 (m, 2 H), 5.57 (s, 2 H), 3.80 (d, \(J = 6.6 \) Hz, 2 H), 0.97 (s, 9 H), 0.19 (s, 6 H); 394b: 10.46 (s, 1 H), 8.84 (s, 1 H), 8.35-8.20 (m, 2 H), 7.89-7.75 (m, 2 H), 7.35-7.14 (m, 5 H), 6.54-6.38 (m, 1 H), 6.31-6.18 (m, 1 H), 5.40 (s, 2 H), 4.34 (dd, \(J = 1.5 \) and 5.7 Hz, 2 H), 0.95 (s, 9 H), 0.22 (s, 6 H).
CHAPTER 5: A Cycotrimerization Approach to Cannabinoids

5.1 Background

5.1.1 Cannabinoids

The natural cannabinoids comprise a group of more than 60 terpenophenolic compounds present in Cannabis. Structurally, all phytocannabinoids contain a 5-alkyl (typically a five carbon-chain) resorcinol aromatic ring that is connected at the 2-position to a monoterpenoid motif. Biosynthetically this monoterpenoid unit undergoes cyclization yielding a diverse range of natural products including cannabinoi (400), cannabinol methyl ether (401), cannabinidiol (402), Δ⁹-tetrahydrocannabinol (THC, 403), and cannabichromene (404) (Figure 5.1).

![Cannabinoid Structures](image)

Figure 5.1. Examples of naturally occurring cannabinoids.

Besides the well known recreational use of the Cannabis plant for its psychotropic effects, medicinal applications have been known since the third millennium BC and include antiemetic, analgesic, antibacterial, and anticonvulsant properties among others. Cannabinoids act upon two cellular receptors, the central cannabinoid receptor,
CB₁, found mainly in the brain, and the peripheral cannabinoid receptor, CB₂, found almost exclusively in the immune system. Synthetic cannabinoids which selectively interact with only one receptor are highly desired, especially since CB₂ selective ligands should limit the side effects associated with CB₁ receptor activation.

Thus far, cannabinol derivatives have primarily been modified at positions C-1, C-3, and C-9. Previous syntheses of cannabinol and its derivatives have relied upon two general strategies; coupling 5-alkyl resorcinols with suitably substituted arenes followed by pyran formation or generating tetrahydrocannabinol derivatives first via a condensation of 5-alkyl resorcinols with appropriate cyclohexane derivatives followed by pyran formation and/or aromatization (Scheme 5.1).

Accessing broadly substituted C ring analogs would require more elaborate arene or cyclohexene starting materials. As an alternative, we develop a flexible synthetic route to the cannabinol core structure based on a [2+2+2] cyclotrimerization reaction that is amenable to the synthesis of various C ring analogs from easily accessible alkyne precursors.

Scheme 5.1. Synthetic routes to cannabinol (400).
5.1.2 Retrosynthetic Analysis and Cyclotrimerization Studies

Deconstructing the C ring of the cannabinol framework using the cyclotrimerization reaction reveals the diyne structure 405 necessary for the cyclotrimerization event (Scheme 5.2). In order to achieve a highly regioselective cyclotrimerization reaction a removable regiodirecting group in the form of the sterically demanding trimethylsilyl (TMS) group will be utilized. This diyne, in turn, will be derived from commercially available olivetol (406) and the propargyl alcohol 407.

Before embarking on the synthesis of cannabinol, we first investigated the cyclotrimerization reaction of the diyne 411 with 1-hexyne. Attempts towards the synthesis of the diyne 411, however, proved difficult (Scheme 5.3). Etherifications of o-ethynylphenol (408) with the alcohol 407, the chloride 409, or the alkene 410 were unsuccessful in producing 411.
Scheme 5.3. Attempted synthesis of the diyne 411.

Because of this stumbling block a modification in the retrosynthesis was necessary; installation of the geminal-dimethyl group will be accomplished after the cyclotrimerization event. This modification requires either a methylene or ester linkage in the tricyclic intermediate and diyne with olivetol maintaining its role as starting material (412-415, Scheme 5.4).

Scheme 5.4. Modified retrosynthetic analysis of cannabinoids (400).

In order to determine which diyne (414 or 415) would produce a more efficient and selective cyclotrimerization reaction, a series of diynes were synthesized that differed in their electronic and steric properties (Scheme 5.5). All of the diynes 416-421 were prepared from o-ethynylphenol under alkylation or coupling conditions in moderate to excellent yields.
These diynes were then subjected to Ru-catalyzed cyclotrimerization reactions with 1-hexyne under microwave irradiation (Table 5.1).

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>R¹</th>
<th>Yield (%), Cmpd</th>
<th>a / b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H²</td>
<td>H</td>
<td>61, 422</td>
<td>70 / 30</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>H</td>
<td>31, 423</td>
<td>76 / 24</td>
</tr>
<tr>
<td>3</td>
<td>H²</td>
<td>Me</td>
<td>96, 424</td>
<td>95 / 5</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>Me</td>
<td>71, 425</td>
<td>>95 / 5</td>
</tr>
<tr>
<td>5</td>
<td>H²</td>
<td>TMS</td>
<td>97, 426</td>
<td>>95 / 5</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>TMS</td>
<td>81, 427</td>
<td>>95 / 5</td>
</tr>
</tbody>
</table>

The terminal diyne 416 delivered the cyclotrimerization product 422 in a 61% yield as a 70:30 regioisomeric mixture of pyrans as determined by GC/MS and ¹H NMR analysis (Entry 1). The cyclotrimerization reaction of the ester analog 419 led to an increased
regioselectivity in favor of the isomer \(423a\) over the isomer \(423b\) (76:24 based on \(^1\)H NMR analysis) with a diminished yield of 31% (Entry 2). This result correlates well with Yamamoto’s findings under non-microwave irradiation conditions (41% yield, 82:18 regioisomer ratio of \(423a:423b\)).

The low yields in case of \(423a\) and \(423b\) are a result of di- and trimerization of the diyne starting material, a problem commonly seen in cyclotrimerization reactions of reactive (terminal) diynes. The introduction of a sterically more demanding methyl group \((R^1 = \text{CH}_3)\) on one of the triple bonds produced a highly efficient and regioselective cyclotrimerization reaction delivering \(424a\) (95:5) in 96% yield from the diyne \(417\) (Entry 3). The corresponding ester derivative \(420\) was converted into the pyrone \(425a\) in 71% yield with complete regioselectivity (Entry 4). These results indicate the ability to induce high levels of regioselectivity in the cyclotrimerization reaction towards the tricyclic cannabinoid core.

For the synthesis of the natural cannabinoids, a removable regiodirecting group was necessary. Towards this goal, the TMS-derivatized diynes \(418\) and \(421\) were investigated in the cyclotrimerization reaction. Continuing with the trend that increased steric bulk leads to a more efficient cyclotrimerization reaction, both diynes, \(418\) and \(421\), furnished the desired products \(426a\) (97% yield) and \(427a\) (81% yield), respectively, with complete regioselectivity (Entries 5 and 6). The ability to replace the TMS group with a hydrogen has previously been shown. These trends underscore the necessity to balance reactivity and sterical demand in order to achieve highly efficient [2+2+2] cyclotrimerization reactions. These cyclotrimerization results also show that diynes based on both \(418\) and \(421\) are suitable cyclotrimerization precursors for the synthesis of cannabinol. Which structural motif (ester or
methylenes would be utilized in the synthesis would require additional investigations into the subsequent transformations necessary to convert the cyclotrimerization product into cannabinol.

5.2 Model Studies

5.2.1 Diyne Synthesis

With the cyclotrimerization conditions in hand, attention was then turned to the synthesis of a model diyne, either 428 or 429, that lacked the amyl side chain present in the cannabinoids (Figure 5.2).

2-Iodosoresorcinol (430)275 was protected as the dimethyl ether 431,276 diacetate 432, and bis-TBS-ether 433 under standard conditions and subjected to Sonogashira coupling conditions with trimethylsilylacetylene (Scheme 5.6).277 The dimethyl ether 431 furnished a 50% yield of the aryl acetylene 434, and, as the steric bulk of the protecting group increased, the yield diminished accordingly with only a 34% yield of the aryl acetylene 435 from the diacetate 432 and a 28% yield of the mono-TBS-ether 436 from the bis-TBS-ether 433.
The low yields of the Sonogashira couplings prompted us to examine other palladium-catalyzed coupling reactions. However, Stille couplings towards 437 or 439 proved equally low yielding (Scheme 5.7). The coupling of the diester analogue of 438 was not investigated.

An alternative method of utilizing the iodide functionality via a metal-halogen exchange was also explored. Unfortunately, treatment of the aryl iodide 438 with \(n \)-butyllithium or \(t \)-butyllithium followed by quenching with DMF failed to produce the desired benzaldehyde 440 (Scheme 5.8). Preparation of the benzaldehyde via the Grignard reagent
was unsuccessful as well. In each case, starting material was recovered indicating the metal-halogen exchange was not occurring as expected.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
</table>
| 1. n-BuLi or t-BuLi
2. DMF | No Rxn |
| 1. Mg, THF
2. DMF | No Rxn |

Scheme 5.8. Metal-halogen exchange route towards the benzaldehyde 440.

The inability to take advantage of the aryl iodide functionality forced us to consider alternative means to functionalize the C-2 position of resorcinol. Thus, the known salicylaldehyde derivative 443 was explored as a starting material in order to access one of the desired diynes 428 or 429 (Scheme 5.9).

Scheme 5.9. Salicylaldehyde route to the diynes 428 and 429.

Early attempts relied upon the Corey-Fuchs reaction to convert the aldehyde 443 into the alkyne 428. Alkylation of 443 with 3-bromo-1-trimethylsilyl-1-propyne gave the propargyl ether 444 in 77% yield (Scheme 5.10). At this point the Corey-Fuchs protocol was attempted to deliver the desired diyne 428. Treatment of the aldehyde 444 with CBr₄ and PPh₃ provided the dibromide 445 in 72% yield. However, when the dibromide was treated with n-BuLi or LDA, a complex mixture of products was obtained.
Another route to obtain aryl acetylenes from aryl aldehydes involves treating the aldehyde with Colvin’s reagent, the lithium salt of trimethylsilyldiazomethane, and produces the desired alkyne in a single step. Gratifyingly, this reaction performed well with our system giving a 63% yield of the desired diyne 428 (Scheme 5.11).

With the successful synthesis of the diyne 428, studies into the key cyclotrimerization event as well as the endgame strategy could commence.

5.2.2 Completion of Cannabinol Model Study

Based on the cyclotrimerization studies carried out previously, we expected the key cyclotrimerization step to proceed smoothly with the diyne 428. Reaction of 428 with 1-hexyne or with a propyne equivalent, propargyltrimethylsilane (446), under ruthenium catalysis and microwave irradiation furnished the pyrans 447 and 448 in 92 and 85% yield,
respectively as the only regioisomers (Scheme 5.12). We used 446 as a reaction partner because the gaseous nature of propyne necessitated the use of a higher boiling reagent that could be converted to just a methyl group at a later stage.

![Scheme 5.12](image)

Scheme 5.12. Model cyclotrimerization reactions towards the pyrans 447 and 448.

At this point, attention was turned to the removal of the aryl-TMS groups in the pyran 447. Towards this end, 447 was treated with TBAF in THF. However, at room temperature and elevated temperatures no reaction occurred. Based on reaction conditions previously employed to desilylate aryl-TMS groups on indanone derivatives (TBAF, THF/DMF, MW 300 W, 2 min), removal of the TMS group in the pyran 447 was successful in 72% yield to give 449. These conditions translated well with the pyran 448 producing a 93% yield of the desilylated pyran 450 (Scheme 5.13).

![Scheme 5.13](image)

Scheme 5.13. Desilylation of the pyrans 447 and 448.

The next steps involved incorporation of the gem-dimethyl substituents at the 6-position of the pyran ring. First, a selective oxidation of the benzylic methylene group with PCC furnished the pyrones 451 and 452 in 77 and 84% yield, respectively (Scheme 5.14).\(^{282}\)
Then, addition of methyl-lithium followed by acid catalyzed ring closure produced 453, the desired tricyclic framework with the gem-dimethyl substituents in place.

![Scheme 5.14. Installation of gem-dimethyl substituent at C-6.](image)

Synthesis of the pyran 453 completed the model study for cannabinol methyl ether, and one more step remains in the model study towards cannabinol: deprotection of the methoxy ether. Treatment of the pyran 453 with BBr₃ effected deprotection of the phenol to provide the cannabinol analog 454 in 61% yield (Scheme 5.15).

![Scheme 5.15. Deprotection of the arylmethyl ether 453.](image)

5.3 Total Synthesis of Cannabinol, Cannabinol Methyl Ether, and Cannabinodiol

5.3.1 Cannabinol and Cannabinol Methyl Ether

Based on the previously described model studies, the syntheses of 400 and 401 commences with the known salicylaldehyde derivative 455²⁸³ (prepared in three steps from olivetol) which is alkylated with 3-bromo-1-trimethylsilyl-1-propyne to give the propargyl ether 456 in 89% yield (Scheme 5.16). Installation of the second triple bond was accomplished by treatment of 456 with the lithium salt of trimethylsilyldiazomethane²⁸⁰, ²⁸¹.
furnishing the diyne 457 in 71% yield. As in the case of the model study with the diyne 428, the compound 457 underwent an efficient and regioselective Cp*Ru(cod)Cl-catalyzed [2+2+2] cyclotrimerization reaction with propargyltrimethylsilane under microwave irradiation to deliver the pyran 458 in 88% yield as a single regioisomer. Removal of the aryl- and alkyl-TMS groups was rapidly accomplished by exposure to TBAF under microwave irradiation for 2 min to give the desilylated pyran 459 in 96% yield. Selective oxidation of the benzylic methylene group with PCC furnished the pyrone 460 in 98% yield. Addition of CH$_3$Li followed by an acid-catalyzed ring closure of the crude diol provided cannabinol methyl ether (401), a natural product observed in plant extracts from Cannabis sativa, in 91% yield over two steps. The structure of 401 is confirmed on the basis of the 1H NMR spectrum where five aromatic protons are present as well as a signal for the aryl-methyl ether (3.95 ppm). Qualitatively, the spectrum of 401 resembles that of synthetic cannabinol with the addition of the methyl ether signal and loss of the signal from the phenol proton. Subsequent deprotection of the methylphenol with aqueous HI in 77% yield completed the total synthesis of cannabinol (400). The use of BBr$_3$ in the demethylation gave similar results (78% yield).
Scheme 5.16. Total synthesis of cannabinol methyl ether (401) and cannabinol (400).

The 1H NMR spectrum of 400 correlates well with the reported shifts for cannabinol (Table 5.2). 285

Table 5.2. Comparison of the 1H NMR spectrum of synthetic and natural 400.

<table>
<thead>
<tr>
<th>Natural 400 (CDCl$_3$, 300 MHz)</th>
<th>Synthetic 400 (CDCl$_3$, 300 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.20 (s, 1 H)</td>
<td>8.17 (s, 1 H)</td>
</tr>
<tr>
<td>7.10 (m, 2 H)</td>
<td>7.19-7.03 (m, 2 H)</td>
</tr>
<tr>
<td>6.45 (d, 1 H)</td>
<td>6.45 (d, 1 H)</td>
</tr>
<tr>
<td>6.24 (d, 1 H)</td>
<td>6.30 (d, 1 H)</td>
</tr>
<tr>
<td>5.44 (s, 1 H)</td>
<td>5.14 (s, 1 H)</td>
</tr>
<tr>
<td>2.49 (t, 2 H)</td>
<td>2.49 (t, 2 H)</td>
</tr>
<tr>
<td>2.39 (s, 3 H)</td>
<td>2.39 (s, 3 H)</td>
</tr>
<tr>
<td>1.61 (s, 6 H)</td>
<td>1.68-1.58 (m, 8 H)</td>
</tr>
<tr>
<td>0.89 (t, 3 H)</td>
<td>0.89 (t, 3 H)</td>
</tr>
</tbody>
</table>
5.3.2 Cannabinodiol

We hypothesized not only that the cyclotrimerization route to cannabinol would pave the way for analogs, but also that the route would be flexible to produce the isomeric cannabinoid cannabinodiol (402).286 If, instead of the acid-catalyzed cyclization to the pyran 401, the crude diol could be dehydrated to a styrene derivative, then deprotection of the phenol would readily provide cannabinodiol. In this direction, the crude diol produced from the addition of methyl-lithium to the pyrone 460 was dehydrated via the methylsulfonate to give the mesylate 461 in 67\% yield over two steps. (Scheme 5.17). Deprotection of the mesylate with methyl-lithium followed by treatment of the crude mono-phenol with BBr\textsubscript{3} furnished, however, cannabinol 400 instead of cannabinodiol through acid catalyzed cyclization.

![Scheme 5.17. Attempted synthesis of cannabinodiol.](image)

Because of the high propensity for cyclization to the pyran under acid catalysis, deprotecting the phenol in the pyrone 460 was first accomplished followed by lactone opening and dehydration. Demethylation with aqueous HI in acetic anhydride smoothly provided the pyrone 462287 in a quantitative yield (Scheme 5.18). In this case, the lactone opening proved troublesome with methyl-lithium furnishing only a trace amount of the desired bismesylate 463.
Scheme 5.18. Attempted synthesis of the bis-mesylate 463.

By using the Grignard reagent MeMgBr in the sequence instead of methyllithium a 61% yield of the bismesylate 463 was obtained along with a 21% yield of mesylated cannabinol (464, Scheme 5.19).

Scheme 5.19. Synthesis of the bismesylate 463.

Completion of the synthesis of cannabinodiol was accomplished by deprotection of the phenols with methyl lithium288 to provide 402 in 72% yield (Scheme 5.20). The 1H NMR spectrum of synthetic 402 displays signals indicative of an ɑ-methylstylene derivative (4.93-4.89 and 1.80-1.78 ppm) as well as the signal for two equivalent phenol protons (4.44 ppm).

Scheme 5.20. Completion of the total synthesis of cannabinodiol (402).
5.4 Summary and Future Directions

A new route towards the cannabinoid framework based on the [2+2+2] cyclotrimerization reaction has been developed. Several diyne precursors for the synthesis of the tricyclic core structure were probed to investigate the steric and electronic effects on cyclotrimerization efficiency and regioselectivity. Three natural products, cannabinol (400), cannabinol methyl ether (401), and cannabinodiol (402), were synthesized to illustrate the flexibility of this approach to the cannabinoid architecture in high overall yields (37% for cannabinol, 48% for cannabinol methyl ether, and 23% for cannabinodiol). The developed cyclotrimerization approach enables the rapid introduction of a diverse set of substituents at the 7-, 8-, 9-, and 10-positions of the C ring through the reaction of substituted diynes with a variety of alkynes. Furthermore, if nitriles are utilized instead of alkynes in the cyclotrimerization step then azacannabinoids (465) could be accessed (Scheme 5.21).

![Scheme 5.21. Synthesis of azacannabinoids.](image)
5.5 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Tetrahydrofuran, toluene, xylenes, and diethyl ether were distilled from sodium/benzophenone ketel prior to use. Diisopropylamine, triethylamine, DMSO, DCM, DMF, 1,2-dichloroethane, CH$_3$CN and pyridine were distilled from calcium hydride and stored over 4 Å molecular sieves. Other reagents and solvents obtained from commercial sources were stored under nitrogen and used directly without further purification. n-BuLi and MeLi were titrated against N-pivaloyl-0-toluidine.108 Melting points were obtained from a Mel-Temp capillary melting point apparatus and are uncorrected. High resolution mass spectral analysis (HRMS) was performed at North Carolina State University. NMR spectra were obtained using a Varian Gemini GN-300 (300 MHz) or Varian Mercury 300 (300 MHz) spectrometer. Chemical shifts are in δ units (ppm) with TMS (0.0 ppm) used as the internal standard for 1H NMR spectra and the CDCl$_3$ absorption (77.2) for 13C NMR spectra. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer.

General cyclotrimerization protocol for diynes

In a flame-dried microwave vial equipped with a stir bar was added diyne (0.12 mmol), 1-hexyne (1.18 mmol), Cp*Ru(cod)Cl (0.012 mmol), and dry toluene (2.8 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 10 min in a CEM Discover microwave synthesizer at 300 W. After cooling, the solution was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc to give the product.
Experimental protocols and data for compounds 417, 417, 420, and 421

2-(1-Ethynyl)phenyl 2-butynyl ether (417). To a solution of 408 (100 mg, 0.85 mmol) in DMF (1.2 mL) at rt was added K₂CO₃ (234 mg, 1.69 mmol) and 1-bromo-2-butyne (148 μL, 1.69 mmol). The mixture was stirred for 2 h and diluted with Et₂O (6 mL). The organic layer was washed with H₂O (3 × 3 mL) and brine (3 mL), dried (MgSO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (35:1) to give 129 mg (90%) of 417 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (dd, J = 7.5 Hz and 1.8 Hz, 1 H), 7.37-7.28 (m, 1 H), 7.04 (d, J = 8.0 Hz, 1 H), 6.92 (dt, J = 7.5 Hz and 1.0 Hz), 4.76 (q, J = 2.3 Hz, 2 H), 3.31 (s, 1 H), 1.84 (t, J = 2.3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 134.3, 130.1, 121.1, 112.8, 112.0, 84.3, 81.4, 80.0, 73.9, 57.2, 3.8. HRMS calcd for [M + H]⁺ C₁₂H₁₁O 171.0804, found 171.0807.

2-Ethynyl-1-(3-trimethylsilyl-2-propynyl) benzene (418). To a solution of 408 (107 mg, 0.91 mmol) in DMF (1.2 mL) at rt was added K₂CO₃ (250 mg, 1.81 mmol) and 1-bromo-2-butyne (384 μL, 2.72 mmol). The mixture was stirred overnight at 50 °C. After cooling, the reaction was diluted with Et₂O (5 mL) and NH₄Cl (5 mL) and the layers were separated. The aqueous layer was extracted with Et₂O (5 mL × 2). The combined organic extracts were washed with H₂O (5 mL × 2) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (60:1) to give 150 mg (72%) of 418 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (dd, J = 7.5 Hz and 1.9 Hz, 1 H), 7.37-7.28 (m, 1 H), 7.07 (dd, J = 8.3 Hz and 0.9 Hz, 1 H), 6.94 (dt, J = 7.5 Hz and 0.9 Hz, 1 H), 4.80 (s, 2 H), 3.31 (s, 1 H), 0.16 (s, 9 H); ¹³C NMR (75
184 MHz, CDCl₃) δ 159.0, 134.3, 130.1, 121.4, 113.4, 112.2, 99.9, 93.5, 81.5, 80.0, 57.6, -0.2.

HRMS calcd for [M + H]^+ C₁₄H₁₇OSi 229.1043, found 229.1046.

Butynoic acid 2-ethynylphenyl ester (420). To a solution of 408 (40 mg, 0.34 mmol), 2-butylnoic acid (31 mg, 0.37 mmol), and DMAP (3 mg, 0.025 mmol) in DCM (700 µL) at 0 °C was added DCC (68 mg, 0.33 mmol) in DCM (200 µL with 200 µL rinse) dropwise. The reaction was stirred for 20 min before filtering, washing the solid with Et₂O, and concentrating. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (13:1) to give 49 mg (80%) of 420 as an colorless oil. ^1^H NMR (300 MHz, CDCl₃) δ 7.54 (dd, J = 7.8 Hz and 1.7 Hz, 1 H), 7.37 (dt, J = 7.8 Hz and 1.7 Hz, 1 H), 7.22 (dt, J = 7.8 Hz and 1.3 Hz, 1 H), 7.13 (dd, J = 7.8 Hz and 1.3 Hz, 1 H), 3.31 (s, 1 H), 2.08 (s, 3 H); ^1^C NMR (75 MHz, CDCl₃) δ 151.34, 151.31, 133.7, 130.2, 126.5, 122.3, 116.4, 88.6, 82.8, 78.2, 71.9, 4.2. HRMS calcd for [M + H]^+ C₁₂H₉O₂ 185.0597, found 185.0596.

2-Ethynylphenyl 3-(trimethylsilyl)propiolate (421). To a solution of 408 (30 mg, 0.25 mmol) and 3-(trimethylsilyl)-2-propynoic acid (72 mg, 0.51 mmol) in DCM (1.2 mL) at 0 °C was added DMAP (2 mg, 0.017 mmol) and EDCI (98 mg, 0.51 mmol), and the mixture was allowed to stir for 4 h at 0 °C. The mixture was filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 27 mg (44%) of 421 as a colorless oil. ^1^H NMR (300 MHz, CDCl₃) δ 7.54 (dd, J = 7.6 Hz and 1.6 Hz, 1 H), 7.37 (dt, J = 7.9 Hz and 1.6 Hz, 1 H), 7.22 (dt, J = 7.6 Hz and 1.1 Hz, 1 H), 7.12 (dd, J = 7.9 Hz and 1.1 Hz, 1 H), 3.32 (s, 1 H), 0.30 (s, 9 H); ^1^C NMR (75 MHz,
CDCl$_3$) δ 151.3, 150.6, 133.9, 130.2, 126.6, 122.3, 116.5, 97.3, 93.8, 83.0, 78.1, -0.8. HRMS calcd for [M + H]$^+$ C$_{14}$H$_{15}$O$_2$Si 243.0835, found 243.0835.

Analytical data for compounds 422 and 424-427

9-Butyl-6H-benzo[c]chromene (422). Isolated as a 70/30 mixture of regioisomers in 61% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.80-7.67 (m, 1 H), 7.64-7.48 (m, 1 H), 7.28-7.15 (m, 2 H), 7.14-6.94 (m, 3 H), 2.75-2.59 (m, 2 H), 1.71-1.58 (m, 2 H), 1.49-1.29 (m, 2 H), 1.01-0.90 (m, 3 H). HRMS calcd for [M − H]$^+$ C$_{17}$H$_{17}$O 237.1273, found 237.1279.

9-Butyl-7-methyl-6H-benzo[c]chromene (424). Isolated as a 95/5 mixture of regioisomers in 96% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.72 (dd, $J = $ Hz and Hz, 1 H), 7.38 (s, 1 H), 7.26-7.18 (m, 1 H), 7.09-6.92 (m, 3 H), 2.60 (t, $J = $ 7.7 Hz, 2 H), 2.28 (s, 3 H), 1.70-1.60 (m, 2 H), 1.50-1.32 (m, 2 H), 0.95 (t, $J = $ 7.3 Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 154.6, 142.6, 133.1, 129.9, 129.8, 129.2, 127.6, 123.5, 123.4, 122.1, 120.0, 117.2, 65.7, 35.8, 33.9, 22.6, 18.5, 14.1. HRMS calcd for [M − H]$^+$ C$_{18}$H$_{19}$O 251.1430, found 251.1431.

9-Butyl-7-methyl-6H-benzo[c]chromen-6-one (425). Isolated in 71% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 8.02 (dd, $J = $ 7.5 Hz and 1.5 Hz, 1 H), 7.78 (s, 1 H), 7.49-7.39 (m, 1 H), 7.35-7.25 (m, 2 H), 7.20 (s, 1 H), 2.84 (s, 3 H), 2.72 (t, $J = $ 7.8 Hz, 2 H), 1.80-1.62 (m, 2 H), 1.52-1.34 (m, 2 H), 0.95 (t, $J = $ 7.3 Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 160.6,

1 Only major regioisomer listed.
151.6, 149.7, 144.4, 136.2, 132.9, 130.2, 124.2, 123.1, 119.5, 118.5, 117.6, 117.4, 36.1, 33.3, 23.9, 22.6, 14.0. HRMS calcd for [M + H]$^+$ C$_{18}$H$_{19}$O$_2$ 267.1379, found 267.1382.

9-Butyl-7-(trimethylsilyl)-6H-benzo[c]chromene (426). Isolated in 97% yield as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.76 (d, J = 7.6 Hz, 1 H), 7.56 (s, 1 H), 7.32-7.20 (m, 2 H), 7.08 (t, J = 7.6 Hz, 1 H), 7.00 (d, J = 8.1 Hz, 1 H), 5.21 (s, 2 H), 2.68 (t, J = 7.9 Hz, 2 H), 1.74-1.56 (m, 2 H), 1.50-1.31 (m, 2 H), 0.98 (t, J = 7.3 Hz, 3 H), 0.38 (s, 9 H); 13C NMR (75 MHz, CDCl$_3$) δ 154.8, 142.2, 135.7, 134.4, 134.0, 129.8, 129.3, 123.7, 123.6, 122.2, 117.1, 68.7, 36.0, 34.0, 22.7, 14.1, 0.13. HRMS calcd for [M − H]$^+$ C$_{20}$H$_{25}$OSi 309.1669, found 309.1667.

9-Butyl-7-(trimethylsilyl)-6H-benzo[c]chromen-6-one (427). Isolated in 81% yield as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 8.09 (dd, J = 8.0 Hz and 1.4 Hz, 1 H), 7.96 (d, J = 1.4 Hz, 1 H), 7.67 (d, J = 1.4 Hz, 1 H), 7.52-7.42 (m, 1 H), 7.39-7.28 (m, 2 H), 2.81 (t, J = 7.7 Hz, 2 H), 1.81-1.65 (m, 2 H), 1.54-1.37 (m, 2 H), 1.00 (t, J = 7.3 Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 161.9, 151.3, 149.0, 146.1, 137.5, 135.5, 130.2, 124.4, 123.3, 123.0, 122.2, 118.7, 117.5, 36.5, 33.5, 22.6, 14.1, 0.6. HRMS calcd for [M + Na]$^+$ C$_{20}$H$_{24}$O$_2$SiNa 347.1437, found 347.1440.
Experimental procedures and analytical data for compounds 400-402, 428, 431-436, 438, 444, 445, 447-454, and 456-464

2-Iodo-1,3-dimethoxybenzene (431).276 MeI (53 µL, 0.85 mmol) was added to 2-iodoresorcinol (50 mg, 0.21 mmol) and K\textsubscript{2}CO\textsubscript{3} (64 mg, 0.47 mmol) in DMF (200 µL) and was stirred for 3 h. H\textsubscript{2}O (4 mL) and Et\textsubscript{2}O (4 mL) were added, the layers separated, and the aqueous layer was extracted with Et\textsubscript{2}O (4 mL \times 2). The combined organic extracts were washed with water (5 mL \times 2) then brine (5 mL), dried (MgSO\textsubscript{4}), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (9:1) to give 37 mg (65\%) of 431 as a white solid. 1H NMR (300 MHz, CDCl\textsubscript{3}) \delta 7.27 (t, \textit{J} = 8.3 Hz, 1 H), 6.51 (d, \textit{J} = 8.3 Hz, 2 H), 3.89 (s, 6 H).

1,3-Diacetoxy-2-iodobenzene (432). To a solution of 2-iodoresorcinol (54.4 mg, 0.23 mmol) and DMAP (cat.) in pyridine (900 µL) was added Ac\textsubscript{2}O at 0 °C and was stirred for 3 h as it warmed to rt. H\textsubscript{2}O (3 mL) and Et\textsubscript{2}O (3 mL) were added, the layers separated and the aqueous layer was extracted with Et\textsubscript{2}O (3 mL \times 2). The combined organic extracts were washed with water (4 mL) then brine (4 mL), dried (MgSO\textsubscript{4}), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1) to give 63 mg (85\%) of 432 as a colorless oil. 1H NMR (300 MHz, CDCl\textsubscript{3}) \delta 7.39 (t, \textit{J} = 8.0 Hz, 1 H), 7.00 (d, \textit{J} = 8.0 Hz, 2 H), 2.38 (s, 6 H).
1,3-Bis(tert-butyldimethylsilyloxy)-2-iodobenzene (433). 2-Iodoresorcinol (50 mg, 0.21 mmol) in DMF (100 µL × 2) was added to a solution of TBDMSCl (77 mg, 0.50 mmol) and imidazole (58 mg, 0.85 mmol) in DMF (100 µL) at 0 °C and allowed to stir as it warmed to rt. After completion, H₂O (3 mL) and Et₂O (3 mL) were added, the layers separated and the aqueous layer was extracted with Et₂O (3 mL × 2). The combined organic extracts were washed with water (5 mL) twice then brine (5 mL), dried (MgSO₄), filtered, and concentrated to dryness to give 92 mg (94%) of 433 as a white solid: Mp 96-99 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.03 (t, J = 8.1 Hz, 1 H), 6.45 (d, J = 8.1 Hz, 2 H), 1.07 (s, 18 H), 0.28 (s, 12 H).

(2-(2,6-Dimethoxyphenyl)ethynyl)trimethylsilane (434). Ethynyltrimethylsilane (21 µL, 0.15 mmol) was added to a solution of 431 (20 mg, 0.076 mmol), CuI (1.4 mg, 0.007 mmol), bis(triphenylphosphine) palladium dichloride (2.6 mg, 0.004 mmol), in DMF/TEA (1:1, 300 µL), and the reaction was heated at 80 °C overnight. After cooling, H₂O (2 mL) and Et₂O (2 mL) were added, the layers separated, and the aqueous layer was extracted with Et₂O (3 mL × 2). The combined organic extracts were washed with water (4 mL × 2) then brine (4 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (20:1) to give 9 mg (50%) of 434 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.21 (t, J = 8.4 Hz, 1 H), 6.51 (d, J = 8.4 Hz, 2 H), 3.87 (s, 6 H), 0.29 (s, 9 H).

(2-(2,6-Diacetoxyphenyl)ethynyl)trimethylsilane (435). Ethynyltrimethylsilane (44 µL, 0.31 mmol) was added to a solution of 432 (25 mg, 0.078 mmol), CuI (1.5 mg, 0.008 mmol),
bis(triphenylphosphine) palladium dichloride (2.7 mg, 0.004 mmol), in DMF/TEA (1:1, 320 µL), and the reaction was heated at 80 °C overnight. After cooling, H₂O (1 mL) and Et₂O (2 mL) were added, the layers separated, and the aqueous layer was extracted with Et₂O (2 mL × 2). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1) to give 7.7 mg (34%) of 435 as a yellow oil. \(^1\)H NMR (300 MHz, CDCl₃) δ 7.34 (t, \(J = 8.2\) Hz, 1 H), 7.01 (d, \(J = 8.2\) Hz, 2 H), 2.33 (s, 6 H), 0.25 (s, 9 H).

(2-(2-tert-Butyldimethylsilyloxy-6-hydroxyphenyl)ethynyl)trimethylsilane (436).

Ethynyltrimethylsilane (18 µL, 0.13 mmol) was added to a solution of 433 (30 mg, 0.065 mmol), CuI (1.2 mg, 0.006 mmol), bis(triphenylphosphine) palladium dichloride (2.3 mg, 0.003 mmol), in DMF/TEA (1:1, 260 µL), and the reaction was heated at 80 °C overnight. After cooling, H₂O (2 mL) and Et₂O (2 mL) were added, the layers separated, and the aqueous layer was extracted with Et₂O (2 mL × 2). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (60:1) to give 5.7 mg (28%) of 436 as a white solid. \(^1\)H NMR (300 MHz, CDCl₃) δ 7.08 (t, \(J = 8.2\) Hz, 1 H), 6.58 (d, \(J = 8.2\) Hz, 1 H), 6.37 (d, \(J = 8.2\) Hz, 1 H), 5.85 (s, 1 H), 1.04 (s, 9 H), 0.27 (s, 6 H).
1,3-Bis(3-(trimethylsilyl)prop-2-ynyloxy)-2-iodobenzene (438). 3-Bromo-1-trimethylsilyl-1-propyne (360 µL, 2.5 mmol) was added to 2-iodoresorcinol (200 mg, 0.85 mmol) and K₂CO₃ (468 mg, 3.4 mmol) in DMF (1.2 mL) and was stirred for 2 h. Saturated NH₄Cl (4 mL) and Et₂O (8 mL) were added, the layers separated, and the aqueous layer was extracted with Et₂O (8 mL X 2). The combined organic extracts were washed with water (5 mL × 2) then brine (5 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (70:1 to 50:1) to give 282 mg (73%) of 438 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.26 (t, J = 8.3 Hz, 1 H), 6.72 (d, J = 8.3 Hz, 2 H), 4.76 (s, 4 H), 0.17 (s, 18 H).

2-(3-(Trimethylsilyl)prop-2-ynyloxy)-6-methoxybenzaldehyde (444). 3-Bromo-1-trimethylsilyl-1-propyne (43 µL, 0.31 mmol) was added to a solution of 443 (24 mg, 0.16 mmol) and K₂CO₃ (43 mg, 0.31 mmol) in DMF (760 µL) at rt. The reaction was stirred for 14 h and quenched with NH₄Cl (1 mL). The aqueous mixture was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with water (3 mL × 2) then brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1) to give 31.5 mg (77%) of 444 as an off-white solid: Mp 85-88 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.53 (s, 1 H), 7.46 (t, J = 8.4 Hz, 1 H), 6.72 (d, J = 8.4 Hz, 1 H), 6.63 (d, J = 8.4 Hz, 1 H), 4.78 (s, 2 H), 3.91 (s, 3 H), 0.17 (s, 18 H).
(3-(2-(2,2-Dibromovinyl)-3-methoxyphenoxy)prop-1-ynyl)trimethylsilane (445). CBr₄ (38 mg, 0.11 mmol) was added to PPh₃ (59 mg, 0.23 mmol), in DCM (500 µL) at 0 °C, and the solution stirred for 10 min. To this solution was added 444 (15 mg, 0.06 mmol) in DCM (200 µL × 2), and the solution was stirred for 1 h at rt. The reaction mixture was concentrated to dryness and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (50:1) to give 17.3 mg (72%) of 445 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.28 (t, J = 8.3 Hz, 1 H), 6.69 (d, J = 8.3 Hz, 1 H), 6.58 (d, J = 8.3 Hz, 1 H), 4.70 (s, 2 H), 3.83 (s, 3 H), 0.16 (s, 9 H).

(3-(2-Ethynyl-3-methoxyphenoxy)prop-1-ynyl)trimethylsilane (428). n-BuLi (2.4 M in hexanes, 322 µL, 0.277 mmol) was added dropwise to a solution of trimethylsilyldiazomethane (2 M in Et₂O, 772 µL, 1.54 mmol) in THF (5 mL) at −78 °C. The solution was stirred for 30 min before 444 (135 mg, 0.51 mmol) in THF (900 µL with 300 µL wash) was added dropwise over 20 min. The reaction was stirred for 1 h, warmed to rt, and allowed to stir for 2.5 h before the reaction was quenched at 0 °C with sat. NH₄Cl (3 mL). The aqueous mixture was extracted with Et₂O (5 mL × 3). The combined organic extracts were washed with water (3 mL), brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (12:1) to give 83 mg (63%) of 428 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.27 (t, J = 8.5 Hz, 1 H), 6.73 (d, J = 8.5 Hz, 1 H), 6.59 (d, J = 8.5 Hz, 1 H), 4.79 (s, 2 H), 3.91 (s, 3 H), 3.57 (s, 1 H), 0.16 (s, 9 H).
1-Methoxy-7-(trimethylsilyl)-9-(butyl)-6H-benzo[c]chromene (447). To a flamed dried microwave vial equipped with a stir bar was added 428 (15.7 mg, 0.06 mmol), 1-hexyne (70 µL, 0.6 mmol), Cp*Ru(cod)Cl (2.3 mg, 0.006 mmol), and dry toluene (1.3 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 14 min in a CEM Discover microwave synthesizer at 300 W. After cooling, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 19.1 mg (92%) of 447 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 8.18 (d, J = 1.7 Hz, 1 H), 7.22 (d, J = 1.7 Hz, 1 H), 7.17 (t, J = 8.2 Hz, 1 H), 6.71-6.64 (m, 2 H), 5.07 (s, 2 H), 3.94 (s, 3 H), 2.66 (t, J = 7.5 Hz, 2 H), 1.72-1.58 (m, 2 H), 1.51-1.35 (m, 2 H), 0.97 (t, J = 7.3 Hz, 3 H), 0.35 (s, 9 H).

1-Methoxy-7-(trimethylsilyl)-9-((trimethylsilyl)methyl)-6H-benzo[c]chromene (448). To a flamed dried microwave vial equipped with a stir bar was added 428 (15 mg, 0.058 mmol), trimethyl(2-propynyl)silane (87 µL, 0.58 mmol), Cp*Ru(cod)Cl (2.2 mg, 0.0058 mmol), and dry toluene (1.2 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 14 min in a CEM Discover microwave synthesizer at 300 W. After cooling, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 18.3 mg (85%) of 448 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 8.00 (d, J = 1.6 Hz, 1 H), 7.16 (dt, J = 8.2, 0.5 Hz, 1 H), 7.05 (d, J = 1.6 Hz, 1 H), 6.70-6.63 (m, 2 H), 5.06 (s, 2 H), 3.92 (s, 3 H), 2.11 (s, 2 H), 0.34 (s, 9 H), 0.05 (s, 9 H).
1-Methoxy-9-butyl-6H-benzo[c]chromene (449). To a flame dried microwave vial equipped with a stir bar was added 447 (16.4 mg, 0.048 mmol), DMF (100 µL), THF (200 µL) and TBAF (1 M in THF, 250 µL, 0.25 mmol), and the mixture was irradiated for 2 min. in a CEM Discover microwave synthesizer at 300 W. After cooling, water (2 mL) and Et₂O (3 mL) were added and the aqueous phase was extracted three times. The combined organic extracts were washed with water (2 mL) twice, brine (2 mL), dried, filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 9.3 mg (72%) of 449 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.19 (s, 1 H), 7.17 (t, J = 8.2 Hz, 1 H), 7.12-7.08 (m, 2 H), 6.74-6.64 (m, 2 H), 4.98 (s, 2 H), 3.97 (s, 3 H), 2.68 (t, J = 7.5 Hz, 2 H), 1.74-1.58 (m, 2 H), 1.50-1.35 (m, 2 H), 0.96 (t, J = 7.3 Hz, 3 H).

1-Methoxy-9-methyl-6H-benzo[c]chromene (450). To a flame dried microwave vial equipped with a stir bar was added 448 (17.4 mg, 0.047 mmol), DMF (100 µL), THF (170 µL) and TBAF (1 M in THF, 280 µL, 0.28 mmol), and the mixture was irradiated for 2 min. in a CEM Discover microwave synthesizer at 300 W. After cooling, water (2 mL) and Et₂O (2 mL) were added, and the aqueous phase was extracted three times. The combined organic extracts were washed with water (2 mL) twice, brine (2 mL), dried, filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (50:1) to give 9.9 mg (93%) of 450 as a slight yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.18 (s, 1 H), 7.19 (t, J = 8.2 Hz, 1 H), 7.13-7.03 (m, 2 H), 6.74-6.63 (m, 2 H), 4.98 (s, 2 H), 3.97 (s, 3 H), 2.42 (s, 3 H).

193
1-Methoxy-9-butyl-6H-benzo[c]chromen-6-one (451). To 449 (9.3 mg, 0.035 mmol), dissolved in DCM (700 µL) was added PCC (7.5 mg, 0.035 mmol), and the mixture was heated to 40 °C. After 1 h, 7.5 mg of PCC was added, and the reaction was stirred at 40 °C. After 2 h, 15 mg of PCC was added and the reaction was stirred overnight at 40 °C. In the morning, 7.5 mg of PCC was added, and the reaction was stirred a further 2 h, after which it was diluted with Et₂O (5 mL) and filtered through a silica plug. The filtrate was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (12:1) to give 7.5 mg (77%) of 451 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.84 (s, 1 H), 8.35 (d, J = 8.3 Hz, 1 H), 7.48-7.34 (m, 2 H), 7.03 (d, J = 8.3 Hz, 1 H), 6.88 (d, J = 8.4 Hz, 1 H), 4.08 (s, 3 H), 2.81 (t, J = 7.5 Hz, 2 H), 1.72 (p, J = 7.5 Hz, 2 H), 1.42 (t, J = 7.5 Hz, 2 H), 0.98 (t, J = 7.5 Hz, 3 H).

1-Methoxy-9-methyl-6H-benzo[c]chromen-6-one (452). To 450 (9.9 mg, 0.044 mmol), dissolved in DCM (850 µL) was added PCC (9.4 mg, 0.044 mmol) and the mixture was heated to 40 °C. After 1 h, 9.4 mg of PCC was added, and the reaction was stirred at 40 °C. After 2 h, 18.8 mg of PCC was added and the reaction was stirred overnight at 40 °C. In the morning, 9.4 mg of PCC was added, and the reaction was stirred a further 2 h, after which it was diluted with Et₂O (5 mL) and filtered through a silica plug. The filtrate was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (12:1) to give 8.8 mg (84%) of 452 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.85 (s, 1 H), 8.34 (d, J = 8.1 Hz, 1 H), 7.46-7.36 (m, 2 H), 7.04 (dd, J = 8.3, 1.0 Hz, 1 H), 6.88 (d, J = 8.4 Hz, 1 H), 4.08 (s, 3 H), 2.57 (s, 3 H).
9-Butyl-1-methoxy-6,6-dimethyl-6H-benzo[c]chromene (453). A solution of 451 (7.5 mg, 0.027 mmol) in THF (100 µL, 100 µL wash) was added dropwise to a solution of MeLi (1.6 M in Et₂O, 100 µL, 0.16 mmol) in THF (200 µL) at 0 °C. The reaction mixture was stirred for 45 min, warmed to rt, and was stirred for 1 h. The reaction was then cooled to 0 °C and quenched with sat. NH₄Cl (1 mL). The aqueous layer was extracted with Et₂O (3 mL × 3). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (MgSO₄), filtered, and concentrated to dryness. The crude diol was taken up in DCM (200 µL), treated with TFA (one drop) and allowed to stir until complete by TLC. The reaction was diluted with Et₂O (3 mL) and washed with water (2 mL) and brine (2 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (45:1) to give 5.9 mg (75%) of 453 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.26 (d, J = 1.7 Hz, 1 H), 7.2-7.06 (m, 3 H), 6.67-6.62 (m, 2 H), 3.96 (s, 3 H), 2.66 (t, J = 7.5 Hz, 2 H), 1.74-1.58 (m, 8 H), 1.50-1.33 (m, 2 H), 0.96 (t, J = 7.3 Hz, 3 H).

9-Butyl-1-hydroxy-6,6-dimethyl-6H-benzo[c]chromene (454). BBr₃ (1 M in DCM, 22 µL, 0.022 mmol) was added to a solution of 453 (5.9 mg, 0.02 mmol) in DCM (200 µL), and the reaction was stirred for 35 min as it warmed to rt. The reaction was quenched with sat. NH₄Cl (1 mL) and extracted with Et₂O (3 mL × 3). The combined organic extracts were washed with water (1 mL × 2) then brine (1 mL), dried (Na₂SO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (16:1) to give 5.3 mg (61%) of 455 as a white solid. ¹H NMR (300 MHz,
CDCl₃) δ 8.20 (d, J = 1.7 Hz, 1 H), 7.22-7.00 (m, 3 H), 6.60 (dd, J = 8.1, 1.1 Hz, 1 H), 6.47 (dd, J = 8.1, 1.1 Hz, 1 H), 5.20 (s, 1 H), 2.66 (t, J = 7.5 Hz, 2 H), 1.71-1.60 (m, 8 H), 1.48-1.31 (m, 2 H), 0.95 (t, J = 7.3 Hz, 3 H).

2-(3-(Trimethylsilyl)prop-2-ynyloxy)-6-methoxy-4-pentylbenzaldehyde (456). 3-Bromo-1-trimethylsilyl-1-propyne (76 µL, 0.54 mmol) was added to a solution of 455 (60 mg, 0.27 mmol) and K₂CO₃ (75 mg, 0.54 mmol) in DMF (1.3 mL) at rt. The reaction was stirred for 14 h and quenched with NH₄Cl (2 mL). The aqueous mixture was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with water (3 mL × 2) then brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1) to give 80 mg (89%) of 456 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 10.46 (s, 1 H), 6.56 (s, 1 H), 6.43 (s, 1 H), 4.78 (s, 2 H), 3.90 (s, 3 H), 2.59 (t, J = 7.8 Hz, 2 H), 1.74-1.59 (m, 2 H), 1.46-1.28 (m, 4 H), 0.90 (t, J = 6.6 Hz, 3 H), 0.16 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ 189.0, 162.0, 160.7, 152.3, 113.1, 106.1, 105.0, 99.6, 93.7, 57.7, 56.1, 37.3, 31.6, 30.7, 22.6, 14.1, -0.22. HRMS calcd for [M + H]⁺ C₁₉H₂₉O₃Si 333.1880, found 333.1882.

2-Ethynyl-3-methoxy-5-pentyl-(3-(trimethylsilyl)prop-2-ynyloxy)benzene (457). n-BuLi (2.4 M in hexanes, 120 µL, 0.29 mmol) was added dropwise to a solution of trimethylsilyldiazomethane (2 M in Et₂O, 200 µL, 0.40 mmol) in THF (1.1 mL) at −78 °C. The solution was stirred for 30 min before 456 (40.8 mg, 0.12 mmol) in THF (300 µL with 2 × 300 µL wash) was added dropwise over 20 min. The reaction was stirred for 1 h, warmed
to rt, and allowed to stir for 1.5 h before the reaction was quenched at 0 °C with NH₄Cl (2 mL). The aqueous mixture was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with water (3 mL), brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (45:1) to give 28.7 mg (71%) of 457 as a slight yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 6.57 (d, J = 1.1 Hz, 1 H), 6.40 (d, J = 1.1 Hz, 1 H), 4.77 (s, 2 H), 3.89 (s, 3 H), 3.52 (s, 1 H), 2.59 (t, J = 7.8 Hz, 2 H), 1.72-1.55 (m, 2 H), 1.44-1.28 (m, 4 H), 0.91 (t, J = 6.9 Hz, 3 H), 0.16 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ 162.0, 160.3, 146.1, 106.2, 104.5, 100.2, 98.6, 93.3, 85.0, 76.5, 57.6, 56.2, 37.0, 31.6, 31.0, 22.6, 14.1, -0.20. HRMS calcd for [M + H]⁺ C₂₀H₂₉O₂Si 329.1931, found 329.1935.

1-Methoxy-7-(trimethylsilyl)-9-((trimethylsilyl)methyl)-3-pentyl-6H-benzo[c]chromene (458). To a flame-dried microwave vial equipped with a stir bar was added 457 (27.9 mg, 0.085 mmol), trimethyl(2-propynyl)silane (126 µL, 0.85 mmol), Cp*Ru(cod)Cl (3.1 mg, 0.0085 mmol), and dry toluene (2 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 14 min in a CEM Discover microwave synthesizer at 300 W. After cooling, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (60:1) to give 32.9 mg (88%) of 458 as a slight yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, J = 1.8 Hz, 1 H), 7.02 (d, J = 1.8 Hz, 1 H), 6.51 (d, J = 1.5 Hz, 1 H), 6.74 (d, J = 1.5 Hz, 1 H), 5.05 (s, 2 H), 3.92 (s, 3 H), 2.57 (t, J = 7.7 Hz, 2 H), 2.11 (s, 2H), 1.74-1.58 (m, 2 H), 1.45-1.30 (m, 4 H), 0.90 (t, J = 6.7 Hz, 3 H), 0.34 (s, 9 H), 0.05 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ 157.7, 156.7, 144.4, 138.7,
1-Methoxy-9-methyl-3-pentyl-6H-benzo[c]chromene (459). To a flame-dried microwave vial equipped with a stir bar was added 458 (34.4 mg, 0.078 mmol), DMF (100 µL), and TBAF (1 M in THF, 470 µL, 0.47 mmol) and the mixture was irradiated for 2 min in a CEM Discover microwave synthesizer at 300 W. After cooling, water (3 mL) and Et₂O (3 mL) were added, the layers were separated, and the aqueous phase was extracted with Et₂O (3 mL × 2). The combined organic extracts were washed with water (3 mL × 2), brine (3 mL), dried (Na₂SO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (60:1) to give 22.2 mg (96%) of 459 as a slight yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.14 (s, 1 H), 7.06 (s, 2 H), 6.53 (s, 1 H), 6.49 (s, 1 H), 4.96 (s, 2 H), 3.96 (s, 3 H), 2.56 (t, J = 7.7 Hz, 2 H), 2.41 (s, 3 H), 1.75-1.59 (m, 2 H), 1.47-1.29 (m, 4 H), 0.90 (t, J = 6.6 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 157.8, 156.8, 144.7, 137.6, 129.2, 128.9, 127.3, 126.9, 124.3, 110.5, 110.1, 105.6, 69.0, 55.8, 36.3, 31.7, 30.9, 22.7, 22.0, 14.2. HRMS calcd for [M + H]⁺ C₂₀H₂₅O₂ 297.1849, found 297.1848.

1-Methoxy-9-methyl-3-pentyl-6H-benzo[c]chromen-6-one (460). To 459 (19.4 mg, 0.065 mmol), dissolved in DCM (1.3 mL) was added PCC (14.2 mg, 0.065 mmol) and the mixture was heated to 40 °C. After 1 h, 14.2 mg of PCC were added and stirring was continued at 40 °C. After 2 h, 28.4 mg of PCC were added and the reaction was stirred overnight at 40 °C. In the morning, 14.2 mg of PCC were added, and the reaction was stirred a further 2 h, after
which it was diluted with Et₂O (3 mL) and filtered through a silica plug. The filtrate was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (15:1) to give 19.9 mg (98%) of 460 as a white solid.

\[
\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta 8.76 (s, 1 H), 8.29 (d, J = 8.25 Hz, 1 H), 7.32 (d, J = 8.25, 1 H), 6.85 (s, 1 H), 6.68 (s, 1H), 4.06 (s, 3 H), 2.65 (t, J = 7.7 Hz, 2 H), 2.54 (s, 3 H), 1.77-1.61 (m, 2 H), 1.47-1.30 (m, 4 H), 0.89 (t, J = 6.6 Hz, 3 H); \text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 161.9, 158.3, 152.8, 145.8, 145.6, 134.9, 130.3, 128.9, 127.4, 118.4, 110.2, 107.4, 106.1, 56.0, 36.2, 31.6, 30.7, 22.8, 22.7, 14.2. HRMS calcd for [M + H]+ \text{C}_{20}\text{H}_{23}\text{O}_3 311.1641, found 311.1646.
\]

Cannabinol methyl ether (401). A solution of 460 (18.5 mg, 0.060 mmol) in THF (300 µL, 2 × 200 µL wash) was added dropwise to a solution of MeLi (1.6 M in Et₂O, 373 µL, 0.60 mmol) in THF (200 µL) at 0 °C. The reaction mixture was stirred for 45 min, warmed to room temperature, and let stir for 1 h. The reaction was then cooled to 0 °C and quenched with sat. NH₄Cl (1 mL). The aqueous layer was extracted with Et₂O (3 mL × 3). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The crude diol was taken up in DCM (450 µL), treated with TFA (one drop) and allowed to stir until complete by TLC. The reaction was diluted with Et₂O (3 mL) and washed with water (3 mL) and brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (60:1) to give 17.6 mg (91%) of 401 as a white solid.

\[
\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta 8.23 (s, 1 H), 7.18-7.03 (m, 2 H), 6.49 (s, 1 H), 6.45 (s, 1 H), 3.95 (s, 3 H), 2.54 (t, J = 7.7 Hz, 2 H), 2.39 (s, 3 H), 1.70-1.58 (m, 8 H), 1.41-1.28 (m, 2 H); \text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 161.9, 158.3, 152.8, 145.8, 145.6, 134.9, 130.3, 128.9, 127.4, 118.4, 110.2, 107.4, 106.1, 56.0, 36.2, 31.6, 30.7, 22.8, 22.7, 14.2. HRMS calcd for [M + H]+ \text{C}_{20}\text{H}_{23}\text{O}_3 311.1641, found 311.1646.
\]
4 H), 0.88 (t, J = 6.7 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 157.5, 154.5, 144.5, 137.0, 136.6, 127.8, 127.6, 127.2, 122.4, 111.1, 110.0, 105.2, 77.2, 55.7, 36.3, 31.7, 30.8, 27.2, 22.7, 21.7, 14.2. HRMS calcd for [M + H]+ C22H29O2 325.2162, found 325.2161.

Cannabinol (400). To 401 (8.7 mg, 0.027 mmol) in Ac2O (200 µL) was added 47% aqueous HI (200 µL) at rt, and the mixture was heated at 120 °C for 7 h. After cooling, water (1 mL) and Et2O (2 mL) were added and the layers were separated. The aqueous layer was extracted with Et2O (3 mL × 2), and the combined organic extracts were washed with 20% Na2SO3 (3 mL), 1 M NaHCO3 (3 mL), and water (3 mL), dried (MgSO4), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (15:1) to give 6.4 mg (77%) of 400 as a colorless oil. 1H NMR (300 MHz, CDCl3) δ 8.17 (s, 1 H), 7.19-7.03 (m, 2 H), 6.45 (d, J = 1.65 Hz, 1 H), 6.30 (d, J = 1.65 Hz, 1 H), 5.14 (br s, 1 H), 2.49 (t, J = 7.7 Hz, 2 H), 2.39 (s, 3 H), 1.68-1.58 (m, 8 H), 1.41-1.28 (m, 4 H), 0.88 (t, J = 6.9 Hz, 3 H); 13C NMR (75 MHz, CDCl3)ii δ 154.8, 153.1, 144.7, 137.1, 127.7, 127.6, 126.5, 122.8, 111.0, 110.0, 108.8, 77.4, 35.8, 31.6, 30.6, 27.3, 22.7, 21.7, 14.2. HRMS calcd for [M + H]+ C21H27O2 311.2005, found 311.2005.

2-Methanesulfonyloxy-6-methoxy-2'-((prop-1-en-2-yl)-5'-methyl-4-pentyl-biphenyl (461). A solution of 460 (12.1 mg, 0.039 mmol) in THF (300 µL, 200 µL wash) was added dropwise to a solution of MeLi (1.6 M in Et2O, 243 µL, 0.39 mmol) in THF (150 µL) at 0 °C. The reaction mixture was stirred for 45 min, warmed to room temperature, and was

ii Not all quaternary carbons were observed.
stirred for 1 h. The reaction was then cooled to 0 °C and quenched with sat. NH₄Cl (1 mL). The aqueous layer was extracted with Et₂O (3 mL × 3). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (MgSO₄), filtered, and concentrated to dryness. The crude diol was taken up in DCM (400 µL) and treated with TEA (33 µL, 0.23 mmol) and MsCl (12 µL, 0.16 mmol) at 0 °C. After 1 h at 0 °C, the reaction was diluted with H₂O (1 mL) and Et₂O (2 mL), the layers separated, and extracted with Et₂O (2 mL × 2). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (16:1) to give 10.5 mg (67%) of 461 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, J = 8.0 Hz, 1 H), 7.20-7.08 (m, 2 H), 6.85 (s, 1 H), 6.70 (s, 1 H), 4.90-4.85 (m, 1 H), 4.67-4.63 (m, 1 H), 3.75 (s, 3 H), 2.65 (t, J = 7.5 Hz, 2 H), 2.47 (s, 3 H), 2.36 (s, 3 H), 1.89-1.88 (m, 3 H), 1.76-1.60 (m, 2 H), 1.46-1.31 (m, 4 H), 0.93 (t, J = 6.7 Hz, 3 H).

1-Hydroxy-9-methyl-3-pentyl-6H-benzo[c]chromen-6-one (462). To 460 (19.3 mg, 0.062 mmol) in Ac₂O (500 µL) was added 47% aqueous HI (600 µL) at rt, and the mixture was heated to 120 °C for 5 h. After cooling, water (2 mL) and Et₂O (3 mL) were added and the layers were separated. The aqueous layer was extracted with Et₂O (3 mL × 2), and the combined organic extracts were washed with 20% Na₂SO₃ (3 mL), 1 M NaHCO₃ (3 mL), and water (3 mL), dried (MgSO₄), filtered and concentrated to give 18.5 mg (100%) of 462 as a white solid.
2,6-Bis-(methanesulfonyloxy)-2’-(prop-1-en-2-yl)-5’-methyl-4-pentyl-biphenyl (463). The lactone 462 (10.9 mg, 0.037 mmol) was dissolved in THF/Et₂O (1:2, 900 µL, 2 × 250 µL wash) and was added to a solution of MeMgBr (2.5 M in Et₂O, 370 µL, 0.919 mmol) in Et₂O (1.0 mL) at rt. The mixture was heated at 45 °C for 2 h then stirred at rt overnight. After cooling to 0 °C, the reaction was quenched with 10% NH₄Cl (1 mL), diluted with Et₂O (2 mL), and the layers were separated. The aqueous layer was extracted with Et₂O (2 mL × 2), and the combined organic extracts were washed with water (2 mL) and brine (2 mL), dried (Na₂SO₄), filtered, and concentrated to give the crude triol which was used directly for the next step.

To the crude triol in DCM (500 µL) at 0 °C was added triethylamine (51 µL, 0.368 mmol) then methanesulfonyl chloride (17 µL, 0.221 mmol) dropwise. The mixture was allowed to stir for 75 min at 0 °C, was diluted with H₂O (1 mL) and Et₂O (2 mL), and the layers were separated. The aqueous layer was extracted with Et₂O (2 mL × 2), and the combined organic extracts were washed with water (2 mL) and brine (2 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1 to 4:1) to give 10.4 mg (61%) of 463 as a colorless oil and 3.1 mg (22%) of 464 as a white solid. 463: ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.28 (m, 1 H), 7.24-7.18 (m, 4 H), 4.97-4.92 (m, 1 H), 4.63 (s, 1 H), 2.65 (t, J = 8.0 Hz, 2 H), 2.60 (s, 6 H), 2.37 (s, 3 H), 2.01-1.96 (m, 3 H), 1.76-1.60 (m, 2 H), 1.47-1.30 (m, 4 H), 0.90 (t, J = 6.7 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 147.3, 145.2, 143.3, 141.4, 136.4, 132.5, 129.6, 128.8, 128.2, 126.3, 121.8, 116.3, 38.6, 35.6, 31.5, 30.5, 23.5, 22.6, 21.0, 14.1. HRMS calcd for [M + H]⁺ C₂₃H₃₁O₆S₂ 467.1556, found 467.1558. 464: ¹H NMR (300 MHz, CDCl₃) δ 8.02 (s, 1 H),
7.21-7.10 (m, 2 H), 6.90 (d, \(J = 1.2 \) Hz, 1 H), 6.80 (d, \(J = 1.2 \) Hz, 1 H), 2.94 (s, 3 H), 2.60 (t, \(J = 7.3 \) Hz, 2 H), 2.40 (s, 3 H), 1.72-1.58 (m, 8 H), 1.41-1.29 (m, 4 H), 0.94 (t, \(J = 6.8 \) Hz, 3 H).

Cannabinodiol (402). To a solution of **463** (10.4 mg, 0.022 mmol) in THF (1.1 mL) was added MeLi (1.6 M in Et₂O, 170 µL, 0.267 mmol) dropwise at 0 °C. The reaction was stirred for 18 min and quenched with 10% NH₄Cl (1 mL). The aqueous layer was extracted with Et₂O (2 mL × 3). The combined organic extracts were washed with water (2 mL), then brine (2 mL), dried (Na₂SO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography deactivated with TEA, eluting with hexanes/Et₂O (4:1) to give 5.0 mg (72%) of **402** as a colorless oil. \(^1\)H NMR (300 MHz, C₆D₆) \(\delta \) 7.15-7.10 (m, 1 H), 6.91-6.85 (m, 1 H), 6.83-6.79 (m, 1 H), 6.52 (s, 2 H), 4.93-4.89 (m, 2 H), 4.44 (br s, 2 H), 2.40 (t, \(J = 7.7 \) Hz, 2 H), 1.97 (s, 3 H), 1.80-1.78 (m, 3 H), 1.61-1.46 (m, 2 H), 1.28-1.12 (m, 4 H), 0.81 (t, \(J = 6.7 \) Hz, 3 H); \(^{13}\)C NMR (75 MHz, C₆D₆) \(\delta \) 154.1, 145.4, 145.2, 143.3, 138.4, 133.2, 130.2, 129.9, 128.9, 115.9, 113.6, 108.0, 36.2, 31.8, 31.2, 23.2, 22.9, 20.8, 14.3. HRMS calcd for [M + H]⁺ C₂₁H₂₇O₂ 311.2005, found 311.2006.
CHAPTER 6: Progress Towards the Total Synthesis of Neolignan Natural Products

6.1 Background and Retrosynthetic Analysis

6.1.1 Neolignan Natural Products

The use of botanicals for medicinal purposes dates back thousands of years and continues today. While one does not need to know the active component(s) of the plant to benefit from its effects, scientists continually seek better therapies for numerous ailments, and active ingredients in herbal extracts have been profitable starting points. Within Chinese and Japanese folk medicine, the extract of the bark of *Magnolia officinalis* has been used for the treatment of bronchitis and emphysema.

Studies on the extracts revealed two compounds, magnolol (465) and honokiol (466) (Figure 6.1), were able to inhibit Epstein-Barr virus early antigen activation. These isomeric biphenyl-neolignan natural products have also shown anti-oxidant, anti-anxiety, anti-depressant, anti-inflammatory, anti-cancer, and anti-bacterial properties. The related triphenyl-neolignans simonsinol (467), macranthol (468), and dunnianol (469) have been isolated from various *Illicium* species (Figure 6.2). Among these, macranthol has shown neuroprotective activity.
Figure 6.2. Structures of simonsinol (467), macranthol (468), and dunnianol (469).

Previous syntheses of magnolol have relied on couplings of the monomeric allylphenol (470) or derivatives thereof (Scheme 6.1). Also, the use of the enzyme peroxidase provided magnolol and dunnianol, albeit in low yields.

Scheme 6.1. Previous syntheses of magnolol (465).

6.1.2 Retrosynthetic Analysis

While these syntheses are succinct, we sought to synthesize the four neolignans 465 and 467-469 via one unified approach relying upon the [2+2+2] cyclotrimerization reaction.
Using strategies from both the synthesis of illudinine and the cannabinoids, we envisioned deriving magnolol through the opening of the dibenzopyran intermediate followed by oxidative rearrangement via a Baeyer-Villiger reaction or benzylic hydroperoxide rearrangement (Scheme 6.2). The dibenzopyran intermediate would be derived from a [2+2+2] cyclotrimerization reaction between a suitably substituted diyne and allylacetylene. As with the cannabinoids, a trimethylsilyl- group will be used to induce regiocontrol in the cyclotrimerization event. The diyne would be prepared from the common intermediate which in turn would be derived from commercially available 4-allylanisole. Other diynes and monoynes would be necessary for the other three neolignans, however, we foresaw the use of the common intermediate in each of the syntheses.

![Scheme 6.2. Retrosynthetic analysis of magnolol (465).](image-url)
6.2 Early Model Studies Toward Phenol Introduction

Before embarking on the syntheses of the neolignans, we first explored the installation of the second phenol from dibenzopyran intermediates. Compounds 427 and 425 were available from the cannabinoid model study and would provide simplified systems to determine whether introduction of a second phenol would be practical. Towards this end, desilylation of 427 with TBAF under microwave irradiation provided the pyrone 423a in 93% yield, and opening of the lactone ring with excess MeLi furnished the diol 476 in 75% yield. Being aware of the sensitivity of the diol towards acid catalyzed ring closure, the phenol was first selectively protected as the pivaloate ester to provide the monoalcohol 477 in 94% yield. Subsequent treatment of 477 with BF₃/H₂O₂ in DCM effected the benzylic hydroperoxide rearrangement¹⁶⁵ to produce the phenol 478 in 91% yield. Hydrolysis of the pivaloate ester with 2 N NaOH afforded the bisphenol 479 (Scheme 6.3). These results indicated that formation of the bisphenolic core of magnolol was indeed feasible.

Scheme 6.3. Model study towards magnolol core structure.

The triphenyl-neolignans, on the other hand, contain substitutions ortho to the phenol in the central ring. This substitution will affect the MeLi addition, and, therefore, it was
necessary to investigate a route to the substituted bisphenol core. Compound 425, where a methyl group is present, served as the model system in this situation. Treatment of 425 with excess MeLi gave a quantitative yield of the methyl-ketone 480. This single addition of MeLi into the lactone was expected based on the results from the total synthesis of illudinine.172 As no cyclization with the phenol could occur, direct oxidation of the methyl-ketone 480 was accomplished with \textit{m}-CPBA (\textit{meta}-chloroperbenzoic acid) to provide the crude acetate 481.223 Methanolysis of the ester provided the bisphenol 482 in 72\% yield over two steps (Scheme 6.4).

\begin{center}
\textbf{Scheme 6.4.} Model study towards the bisphenol moiety of the triphenyl-neolignans.
\end{center}

With the success of the model studies, the synthesis of the common intermediate 474 could commence.
6.3 Synthesis of the Common Intermediate 474

6.3.1 Early Synthetic Attempts Towards 474

By having one allyl group already installed in the starting material, additional steps for its introduction can be avoided. Fortuitously, 4-allylanisole (475) is commercially available and, as only the ethynyl group needs to be installed, could hypothetically provide an entry into the common intermediate 474 in short order. Towards this end, functionalization of the 2-position of 4-allylanisole that would provide a handle to introduce the alkyne moiety was investigated. Iodination\(^\text{310}\) of 475 towards the iodide 483 and formylation under Vilsmeier-Haack\(^\text{311, 312}\) conditions towards the benzaldehyde 484 were unsuccessful, and directed-ortho-metalation\(^\text{313}\) utilizing \(t\)-BuLi as base only gave ~20% conversion to 484 (Scheme 6.5).

\[
\begin{align*}
\text{475} & \xrightarrow{\text{I}_2, \text{CAN, CH}_3\text{CN, 4 h or DMF, POCl}_3, 0^\circ\text{C, 18 h}}} \text{483} (R = \text{I}) \\
\text{475} & \xrightarrow{1. \text{t-BuLi, -78 }^\circ\text{C, 2. DMF, -78 }^\circ\text{C, THF}} \text{484} (R = \text{CHO})
\end{align*}
\]

Scheme 6.5. Attempts to substitute 4-allylanisole (475).

4-Allylphenol (470)\(^\text{307}\) was equally unreactive under various Vilsmeier-Haack conditions\(^\text{311, 312}\) and gave a mixture of mono- and di-iodinated products when treated with I\(_2/\text{NaHCO}_3\).\(^\text{314}\)

Being aware of the ability of MOM-ethers to direct lithiation\(^\text{315}\), we prepared the known MOM-ether 485 and explored iodination and formylation conditions. According to
literature precedent, treatment of 485 with \(t\)-BuLi followed by I\(_2\) provided the desired aryl iodide 486 in 90% yield (Scheme 6.6). However, in our hands, only an approx. 40% conversion was obtained. The issue was further complicated by the fact that the product and starting material could not be separated by flash-chromatography.

Attempts to formylate 485 were similarly inefficient. The benzaldehyde 487 could be obtained in ~40% yield using either DMF or N-methylformanilide (MFA) as the electrophile (Scheme 6.6). Deuteration studies showed complete incorporation of deuterium when the MOM-ether 485 was deprotonated with \(t\)-BuLi and the subsequent anion was quenched with deuterated methanol. This result pointed to the formylation event as the problem with impure reagents most likely to blame. However, neither the use of freshly distilled DMF or MFA dried over sieves improved the yield of 487.

Despite the low yields, efforts to elaborate the benzaldehyde 487 to the common intermediate were continued. Treatment of 487 with the lithium salt of trimethylsilyldiazomethane effected a Colvin rearrangement to provide the acetylene derivative 488 in a poor 40% yield. Only deprotection of the MOM-ether remained to complete the synthesis of the common intermediate, however, the acidic cleavage conditions led to competitive decomposition of the product phenol 474 (Scheme 6.7). Using the Corey-Fuchs reaction provided 488 in a slightly better yield from the benzaldehyde
487 via the dibromide 489,279 but further inquests utilizing this route were suspended as the deprotection of 488 failed to cleanly provide the phenol 474 (Scheme 6.7). To circumvent the decomposition of the common intermediate under acidic conditions, we explored the use of the vinyl dibromide as a masked acetylene, and, thereby, a surrogate to the original common intermediate 474. In this direction, the MOM-ether 489 was deprotected with 6 N HCl to furnish the phenol 490 in 95% yield (Scheme 6.7). Further details into the use of 490 in the synthesis of the neolignans will be detailed below.

Scheme 6.7. Attempted synthesis of the phenol 474 and deprotection of the MOM-ether 489.
6.3.2 Approach to a Common Intermediate Utilizing an Allyl-Group Surrogate

Due to the unforeseen problems associated with employing allylacetylene in the cyclotrimerization step (see Scheme 6.11 below), another strategy towards a common intermediate relied upon using a surrogate for the allyl group which could then be installed either before or after the cyclotrimerization event. The commercially available methyl 3-(4-hydroxyphenyl)propanoate (491) served as the starting point. Iodination of 491 using Ag$_2$SO$_4$ as the catalyst smoothly provided the iodide 492 in 72% yield. Installation of the first alkyne via Sonogashira coupling with TMS-acetylene gave the arylacetylene 493 in 92% yield. The alkyne was then deprotected with KF to provide the o-ethynylphenol derivative 494 in 89% yield (Scheme 6.8).

\[
\begin{align*}
\text{OH} & \xrightarrow{\text{Ag$_2$SO$_4$, I$_2$, DCM, rt, 24 h, 72\%}} \text{OH} \\
& \xrightarrow{\text{Pd(PPh$_3$)$_2$Cl$_2$, CuI, TEA/dioxane, rt, 4 h, 92\%}} \text{OH} \\
& \xrightarrow{\text{KF, MeOH, rt, 3 h, 89\%}} \text{OH}
\end{align*}
\]

Potential Common Intermediate

6.4 Progress Towards the Neolignan Natural Products

Because the order and conditions for several steps in the synthesis of the neolignans were in question, the simplest neolignan, magnolol (465), would be used as a model for the other neolignans. Each neolignan synthesis, though, contained its own unique challenges that would need to be addressed in due course. The magnolol synthesis would provide answers to...
the cyclotrimerization event as well as the installation of the phenol functionalities. It was hoped that these conditions would be applicable to all the neolignans.

6.4.1 Progress Towards the Synthesis of Magnolol

Preparation of a diyne to be used in the synthesis of magnolol began with intermediate 494. Several factors needed to be considered to properly choose the structure of the diyne. First, we required a removable regiodirecting group during the cyclotrimerization reaction, and this functionality would need to be present in the diyne. The use of a TMS-group as a removable regiodirecting is well known in the literature and would satisfy this requirement.53, 154, 309 Also, the linkage (either ether or ester) that connects the second alkyne to the phenol must be compatible with installation of the allyl group. If an ester linkage were used, reactions that manipulate the ester in the side chain would undoubtedly alter a lactone structure; therefore, the less reactive ether linkage would be more advantageous. With these requirements in mind, the diyne 496 was synthesized in one step and 90\% yield from 494 via the Mitsunobu reaction with 3-(trimethylsilyl)prop-2-yn-1-ol (495) (Scheme 6.9).

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{diyne.png}
\caption{Synthesis of the diyne 496.}
\end{figure}

At this juncture, installation of the allyl functionality was explored. We envisioned forming the double bond via elimination of an alcohol. Towards this end, reduction of the ester group in 496 with lithium aluminum hydride (LAH) gave the alcohol 497 in 83\% yield.
Conversion to the phenylselenide 498 proceeded well, however, purification from the selenocyanate reagent proved difficult (Scheme 6.10).

Other means to eliminate an alcohol (e.g. xanthate pyrolysis or halide elimination) were not investigated with this substrate. Studies concurrent with these investigations focused on the cyclotrimerization reaction of the diyne 496; the formation of the allyl group would then occur at a later point in the synthesis.

Disconnecting intermediate 471 from the retrosynthesis using the [2+2+2] cyclotrimerization transform gives allylacetylene as the monoyne reaction partner in the cyclotrimerization reaction. The diyne 496 was reacted with excess allylacetylene under Cp*Ru(cod)Cl catalysis and microwave irradiation for 15 minutes to furnish the dibenzopyran 499 in 28% yield along with unreacted starting material. Increasing the reaction time to 30 minutes led to complete consumption of starting material, but only a 50% yield of 499 (Scheme 6.11). Because of the low yield, we speculated that the double bond in the monoyne decreases the efficiency of the cyclotrimerization reaction. Nevertheless, progress towards magnolol was continued. Reduction of the ester with LAH provided the alcohol 500 in 94% yield which was converted to the phenylselenide 501 in 71% yield. The
oxidation of the selenide and elimination to the double bond, however, gave a complex mixture.

To overcome the low yield in the cyclotrimerization event, a different monoyne was used that contained a functional group amenable to double bond installation at a later stage. Pent-4-yn-1-ol would provide the necessary elements for a high yielding cyclotrimerization reaction and could participate in the same reactions as the other alcohol towards double bond formation. The diyne cyclotrimerized with pent-4-yn-1-ol (10 eq) under Cp*Ru(cod)Cl catalysis (10 mol%) and microwave irradiation (300 W, 30 min, 140 °C) to provide the desired dibenzopyran 502 in 85% yield as one regioisomer. Continuing as previously, reduction with LAH to give the diol 503 proceeded in quantitative yield, and conversion to the bisphenylselenide 504 was accomplished in 84% yield. Oxidation and elimination of both phenylselenides gave the tricyclic diallyl derivative 471 in 49% yield (Scheme 6.12). The next steps in the synthesis of magnolol would only require opening the pyran moiety in order to install the second phenol.
As stated previously, we hypothesized opening the pyran as achieved in the cannabinoid syntheses via a lactone intermediate. In this direction, the pyran 471 was oxidized with PCC to furnish the pyrone 505 in 87% yield. Opening of the lactone ring with methyllithium provided the methyl-ketone 506 in 68% yield. A second addition of the methyllithium reagent was thwarted by the congested steric environment created by the TMS-group and phenyl ring in the ortho positions (Scheme 6.13).

The methyl-ketone 506 was then treated with basic hydrogen peroxide in the hopes of providing the bisphenol 507, however, no reaction occurred. Steric hindrance of the methylketone most likely prevented formation of the tetrahedral intermediate (Scheme 6.14).
Attempts were then made to desilylate 506 in order to allow for a more facile rearrangement. Treatment of 506 with TBAF under microwave irradiation led to complete desilylation, however analysis of the crude 1H NMR spectrum revealed isomerization of one of the double bonds to give 508. The allyl group para to the ketone is more prone to isomerization due to the increased acidity of the methylene proton.

![Scheme 6.14. Attempts to manipulate the methyl-ketone 506.](image)

Isomerization of the double bond also occurred when the pyrone 505 was treated under the same conditions giving 509 (Scheme 6.15).

![Scheme 6.15. Isomerization of the pyrone 509.](image)

Other means to remove the silyl group were not investigated as attempts to remove an aryl-TMS from indanone derivatives were only successful under the microwave
conditions, therefore the route was modified to postpone double bond formation until after desilylation. The alcohols in 503 were protected as acetates in 91% yield, and oxidation of the resulting pyran 510 with PCC gave the pyrone 511 in 94% yield. Addition of excess methyllithium provided the triol 512 in 80% yield. Treatment of this triol with \(m \)-CPBA did lead to rearrangement with full conversion of the starting material on the basis of \(^1\text{H} \) NMR analysis; however, isolation of the product 513 proved problematic due to its similar polarity as compared to the reactants and/or reaction by-products (Scheme 6.16). Alternative ways to purify 513 were not attempted.

\[
\text{Scheme 6.16. Synthesis and Baeyer-Villiger rearrangement of the triol 512.}
\]

In order to make the compounds less polar, a different protecting group was sought that would allow for separation of the rearranged product from the other reagents. The tert-butyldimethylsilyl protecting group was chosen as it could be removed in the same step as the TMS group, thereby maintaining an efficient route. The bis-TBS-ether 514 was prepared in 84% yield from 503 under standard conditions. Oxidation of this material was plagued by
side reactions, and only a 60% yield of the pyrone 515 could be obtained when using KMnO₄ as the oxidant. The use of PCC led to TBS removal, and 515 could only be isolated in 21% yield; using PCC/pyridine led to an increased yield of 42%. Addition of MeLi into the lactone provided the methyl ketone 516 in 90% yield (Scheme 6.17). Rearrangement of 517 with m-CPBA was attempted, but only led to decomposition. Attempts to deprotect the alcohols and remove the TMS group with TBAF under microwave irradiation also led to decomposition.

![Scheme 6.17. Use of the bis-TBS-ether 514 towards magnolol.](image)

One again, moving the desilylation step to earlier in the synthesis was explored. When the alcohol 502 was treated with TBAF under microwave irradiation, complete desilylation to 518 occurred as evidenced by the loss of the TMS signal in the crude ¹H NMR, however impurities from the TBAF reagent prevented isolation (Scheme 6.18).
Investigations into the desilylation at other points in the synthesis along with other desilylating reagents are currently underway.

6.4.2 Progress Towards the Synthesis of Simonsinol

In addition to the steps required for the synthesis of magnolol, the synthesis of the neolignan simonsinol (467) must incorporate a third phenolic ring that contains an allyl group *ortho* to the phenol. The proper placement of this allyl group, we hypothesized, would be accomplished via a Claisen rearrangement of the allylphenol 519 (Scheme 6.19). Within this tetracyclic intermediate can be found the core structure from the magnolol synthesis (bold) with the TMS replaced by the *p*-O-allyl-phenyl moiety.

This phenyl ring should provide enough steric bulk to control regioselectivity in the [2+2+2] cyclotrimerization reaction. The diyne 520 would be required for the cyclotrimerization event, and explorations into its synthesis were the first step towards simonsinol.

Beginning with the dibromide 490, a Mitsunobu reaction with the propargylic alcohol 523 (prepared from 4-iodophenol (521) via 522) provided the propargylic ether 524 in 80% yield. In attempts toward the diyne 525, treatment of 524 with LDA led to no reaction while treatment with n-BuLi gave a complex mixture with multiple spots by TLC analysis (Scheme 6.20).

At this time, the use of the common intermediate 494 was explored. Mitsunobu reaction with 494 gave the diyne 526 in 99% yield (Scheme 6.21). Reduction of the ester group with LAH furnished the alcohol 527 in 74% yield. The cyclotrimerization reaction with this alcohol, however, was inefficient. Only a 40% yield of 528 as a single regioisomer could be obtained with allylacetylene as the monoyne under microwave irradiation and Cp*Ru(cod)Cl catalysis. Preparation of the alcohol for elimination was accomplished by converting it to the phenylselenide 529 in 78% yield. Oxidation and elimination proceeded in a 45% yield to give the tetracyclic intermediate 530. Claisen rearrangement was necessary at
this point as any attempt to oxidize the benzylic ether could potentially oxidize the allylic ether as well. In this direction, the allyl ether 530 was heated under microwave irradiation in DMF for 30 minutes. Unfortunately, the rearranged product 531 was not obtained. Crude 1H NMR analysis showed a shift in the allyl signals, but GC/MS analysis showed several peaks, none of which corresponded to the product.

Alternatively, a cyclotrimerization reaction of the ester derivative 526 with allylacetylene provided 532 in 47% yield. Reduction of 532 then gave the alcohol 528 in 88% yield (Scheme 6.22).
Scheme 6.22. Alternative synthesis of 528.

In order to produce sufficient material to more fully investigate the Claisen rearrangement, a more efficient cyclotrimerization reaction was investigated. As with magnolol, pent-4-yn-1-ol was chosen. It underwent a smooth cyclotrimerization reaction with 526 giving the tetracycle 533 in 77% yield as a single regioisomer. LAH reduction then provided the diol 534 that needed to be eliminated to the double bond (Scheme 6.23). Because of the low yields obtained with the selenide elimination in other substrates (see Schemes 6.12 and 6.21), other methods of elimination were investigated. Treatment of the diol with iodine, imidazole, and triphenylphosphine furnished the diiodide 535 in 99% yield. Elimination with t-BuOK, while successful, led to isomerization of the double bonds furnishing 536. Other bases such as TEA or Hunig’s base were not investigated in the elimination step and may lead to the desired elimination without isomerization.
Scheme 6.23. Attempted iodide elimination towards simonsinol.

Alternatively, a Chugaev elimination sequence would also produce the allyl group, and, it was hypothesized, also allow for a Claisen rearrangement of the allyl ether under the same conditions. In this direction, the bisxanthate 537 was prepared under standard conditions in 78% yield, and conditions for the tandem elimination/Claisen rearrangement were investigated (Scheme 6.24). Prolonged heating of 537 under microwave irradiation in 1,2-dichlorobenzene with Hunig’s base led to decomposition of the starting material. Conventional heating at 200 °C did not fully eliminate the xanthate groups, and several products were produced. No clean product could be isolated. Work towards simonsinol was suspended at this point due to the numerous setbacks faced throughout the various routes.
6.4.3 Progress Towards the Synthesis of Dunnianol

Towards the synthesis of dunnianol, a different propargyl alcohol was required to make the diyne 539 that would be used in the cyclotrimerization towards 538. We envisioned synthesizing the alcohol 540 from the same starting material as the common intermediate 494 by using a different alkyne in the Sonogashira coupling and protecting the phenol (Scheme 6.25).

Scheme 6.25. Retrosynthetic analysis of dunnianol (469).
Synthesis of 540 began with a Sonogashira coupling of the iodide 492 and propargyl alcohol to provide the propargyl alcohol 541 in 83% yield. Protection of the phenol as the methyl ether 540a (R = Me) was unsuccessful under standard conditions as well as less conventional methods such as trimethylsilyldiazomethane. Therefore, the order of the reactions was switched. Methylation of the phenol proceeded in 93% yield to furnish the methyl ether 542, and Sonogashira coupling with propargyl alcohol gave the desired alcohol 540a in 83% yield (Scheme 6.26).

Incorporation of 540 into the diyne via Mitsunobu reaction with 494 went to completion, however the desired product 538a (R = Me) was inseparable from the hydrazine by-product (Scheme 6.27). Because of this problem, the alcohol in 540a was converted to the bromide with CBr4/PPh3 to provide 543 in 93% yield. Alkylation of the phenol 494 then proceeded smoothly with 543 to furnish the desired diyne 538a in 88% yield (Scheme 6.27).
Based on the results from the cyclotrimerization reactions towards magnolol and simonsinol, allylacetylene was not utilized as the monoyne. Cyclotrimerization reaction with pent-4-yn-1-ol successfully constructed the tricycle 544 in 78% yield. Reduction of the two ester groups with LAH provided the triol 545 in 91% yield (Scheme 6.28). Further investigations into the conversion of 545 into dunnianol were not conducted as issues described above would need to be addressed.
6.4.4 Progress Towards the Synthesis of Macranthol

Investigating the tetracyclic intermediate 546 necessary for the synthesis of macranthol (468) reveals that the monoyne required for the cyclotrimerization step would need to be an arylacetylene derivative (Scheme 6.29). Conveniently, we envisioned both the diyne 547 and the monoyne 548 being derived from the common intermediate 474. Simple protection of the phenol on the common intermediate would provide the monoyne 548, while alkylation of the phenol with the known propargyl alcohol 549 would provide the diyne 547. The preparation of these two fragments would initiate the studies toward the synthesis of macranthol.
Scheme 6.29. Retrosynthetic analysis of macranthol (468).

Initial investigations into the synthesis of 547 began with the dibromide 490. Mitsunobu coupling with 549 furnished the ether 550 in 90% yield. Attempted rearrangement of the vinyldibromide to the alkyne using n-BuLi as the base gave a low yield (<50%) of the desired alkyne 547 accompanied by an inseparable by-product. Switching to the ester 494 as the starting material, the diyne 551 was constructed via Mitsunobu reaction with the alcohol 549 in 87% yield (Scheme 6.30). Protection of the phenol as either the methyl ether or the tert-butyldimethylsilyl ether gave 548a or 548b in 90 or 97% yield, respectively.
Scheme 6.30. Synthesis of the diyne 551 and the monoynes 548a and 548b towards the synthesis of macranthol.

The cyclotrimerization reaction of the diyne 551 and the monoyne 548a was then explored. Because the monoyne had to be synthesized, less than the usual ten equivalents were utilized in the cyclotrimerization reaction. In the event, 551 was reacted in the presence of five equivalents of 548a under Cp*Ru(cod)Cl catalysis and microwave irradiation (Scheme 6.31). While all of the starting material diyne was consumed, the isolation of the tetracyclic product 552a was difficult as the dimer of 551 could not be separated by flash chromatography. The pyran product could be obtained with a small amount of dimer impurity in roughly 67% yield. Increasing the number of equivalents of 548a led to less dimerization, however the product was still contaminated with dimer. Fortunately, unreacted monoyne could be recovered.
Scheme 6.31. Cyclotrimerization reaction of the diyne 551.

The use of the TBS-ether 548b in the cyclotrimerization reaction should produce a dramatically less polar dimer, and would, therefore, simplify purification. The cyclotrimerization reaction of 551 in the presence of five equivalents of 548b provided 552b in 58% yield with no dimer contamination.

Recognizing the diyne as an alternatively protected monoyne, we attempted to take advantage of the dimerization of the diyne to construct the tetracyclic intermediate 553. However, attempted dimerization of 551 via a cyclotrimerization reaction led to a mixture of several products (Scheme 6.32).

At this point, further investigations into the synthesis of macranthol were suspended.

Scheme 6.32. Dimerization of the diyne 551.
6.5 Summary and Future Directions

While the [2+2+2] cyclotrimerization reaction towards the synthesis of the neolignan natural products was successful at constructing the desired core structures, the installation of the second phenol group and the double bonds have caused much difficulty. Modified routes to the neolignans must address these issues for any hopes of success. In the case of magnolol, removing the aryl-TMS group in 503 will allow for a benzylic hydroperoxide rearrangement to the bis-phenol after oxidation and addition of methyllithium (see Scheme 6.12).

The other neolignans each have differences that will need to be addressed individually. Due to the presence of either aryl or alkyl groups ortho to the lactone carbonyl (R² in 554), treatment with methyllithium will furnish a ketone (555). If Baeyer-Villiger rearrangement fails due to the steric environment, reduction of the ketone to the secondary alcohol 556 will provide a substrate for the benzylic hydroperoxide rearrangement to 557 (Scheme 6.33). Subsequent modifications to the R² group (i.e. Claisen rearrangement) and installation of the double bonds will provide simonsinol, dunnianol, and macranthol. To this end, Claisen rearrangements under Lewis acid catalysis can be explored. Elimination reactions towards the double bonds may be successful with a base other than potassium tert-butoxide as in Scheme 6.23.
Scheme 6.33. Proposed routes to simonsinol, dunnianol, and macranthol.
6.6 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Tetrahydrofuran, toluene, xylenes, and diethyl ether were distilled from sodium/benzophenone ketyl prior to use. Diisopropylamine, triethylamine, DMSO, DCM, DMF, 1,2-dichloroethane, CH$_3$CN and pyridine were distilled from calcium hydride and stored over 4 Å molecular sieves. Other reagents and solvents obtained from commercial sources were stored under nitrogen and used directly without further purification. n-BuLi and MeLi were titrated against N-pivaloyl-o-toluidine108 Melting points were obtained from a Mel-Temp capillary melting point apparatus and are uncorrected. High resolution mass spectral analysis (HRMS) was performed at North Carolina State University. NMR spectra were obtained using a Varian Gemini GN-300 (300 MHz) or Varian Mercury 300 (300 MHz) spectrometer. Chemical shifts are in δ units (ppm) with TMS (0.0 ppm) used as the internal standard for 1H NMR spectra and the CDCl$_3$ absorption (77.2) for 13C NMR spectra. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer.

9-Butyl-6H-benzo[c]chromen-6-one (423a). To a flame-dried microwave vial equipped with a stir bar was added 427 (18.3 mg, 0.056 mmol), DMF (100 μL), THF (200 μL) and TBAF (1 M in THF, 340 μL, 0.234 mmol), and the mixture was irradiated for 2 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction vessel to rt, water (2 mL) and Et$_2$O (3 mL) were added and the layers separated. The aqueous layer was extracted with Et$_2$O (3 mL × 2). The combined organic extracts were washed with water (2 mL × 2), brine (3 mL), dried (MgSO$_4$) filtered, and concentrated to dryness. The residue was
purified by silica gel chromatography, eluting with hexanes/EtOAc (25:1) to give 14.2 mg (93%) of 423a as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 8.31 (d, $J = 8.1$ Hz, 1 H), 8.08 (dd, $J = 8.1$ and 1.4 Hz, 1 H), 7.92 (d, $J = 1.4$ Hz, 1 H), 7.57-7.29 (m, 4 H), 2.88-2.77 (m, 2 H), 1.80-1.64 (m, 2 H), 1.52-1.34 (m, 2 H), 0.98 (t, $J = 7.3$ Hz, 3 H).

2-Hydroxy-5'-butyl-2'-(1-methyl-1-hydroxyethyl)-1,1'-biphenyl (476). A solution of 423a (13.2 mg, 0.052 mmol) in THF (900 µL) was added dropwise to a solution of MeLi (1.6 M in Et$_2$O, 392 µL, 0.63 mmol) in THF (200 µL) at 0 °C. The reaction mixture was stirred for 45 min, warmed to room temperature, and stirring was continued for 1 h. The reaction was then cooled to 0 °C and quenched with 10% NH$_4$Cl (2 mL). The aqueous layer was extracted with Et$_2$O (3 mL \times 3). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 11.2 mg (75%) of 476 as a colorless oil. 1H NMR (300 MHz, C$_6$D$_6$) δ 7.47 (d, $J = 8.1$ Hz, 1 H), 7.12-7.00 (m, 4 H), 6.91-6.89 (m, 1 H), 6.85-6.78 (m, 1 H), 2.42-2.33 (m, 2 H), 1.49-1.33 (m, 5 H), 1.28-1.12 (m, 5 H), 0.81 (t, $J = 7.3$ Hz, 3 H).

5'-Butyl-2'-(1-methyl-1-hydroxyethyl)-2-pivaloyloxy-1,1'-biphenyl (477). To a solution of 476 (11.2 mg, 0.039 mmol) and TEA (10.9 µL, 0.079 mmol) in DCM (200 µL) at 0 °C was added pivaloyl chloride (5.3 µL, 0.043 mmol) dropwise. The reaction was allowed to stir for 2.5 h as it warmed to rt, and was quenched with H$_2$O (1 mL). The aqueous layer was extracted with Et$_2$O (3 mL \times 3). The combined organic extracts were washed with water (2
mL) then brine (2 mL), dried (MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (9:1) to give 13.7 mg (94%) of 477 as a colorless oil.

\[^1\text{H NMR (300 MHz, CDCl}_3\text{) }\delta 7.40-7.20 (m, 4 H), 7.12 (d, J = 8.0 \text{ and } 1.8 \text{ Hz, 1 H}), 7.05 (d, J = 8.0 \text{ Hz, 1 H}), 6.82 (d, J = 1.8 \text{ Hz, 1 H}), 2.66 (s, 1 H), 2.61-2.49 (m, 2 H), 1.70-1.45 (m, 8 H), 1.44-1.29 (m, 2 H), 1.08-0.87 (m, 12 H). \]

5'-Butyl-2'-hydroxy-2-pivaloyloxy-1,1'-biphenyl (478). BF₃·Et₂O (38 µL, 0.30 mmol) was added to H₂O₂ (50%, 5.1 µL, 0.074 mmol) and was stirred for 45 min at 0 °C. This solution was added to 477 (13.7 mg, 0.037 mmol) in dichloromethane (950 µL) at 0 °C. After stirring vigorously for 15 min at 0 °C, H₂O (2 mL) and EtOAc (4 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (4 mL × 2), and the combined organic extracts were washed with water (4 mL) and brine (4 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 11.0 mg (91%) of 478 as a colorless oil.

\[^1\text{H NMR (300 MHz, CDCl}_3\text{) }\delta 7.29-7.21 (m, 2 H), 7.17 (d, J = 2.1 \text{ Hz, 1 H}), 7.10 (dd, J = 7.5 \text{ and } 1.7 \text{ Hz, 1 H}), 7.04 (d, J = 8.2 \text{ Hz, 1 H}), 6.97 (dd, J = 8.2 \text{ and } 1.1 \text{ Hz, 1 H}), 6.92 (dd, J = 7.5 \text{ and } 1.1 \text{ Hz, 1 H}), 5.03 (s, 1 H), 2.74-2.59 (m, 2 H), 1.72-1.55 (m, 2 H), 1.47-1.29 (m, 2 H), 1.05 (s, 9 H), 0.94 (t, J = 7.3 \text{ Hz, 3 H}). \]

5'-Butyl-2,2'-dihydroxy-1,1'-biphenyl (479). To a solution of 478 (7.6 mg, 0.023 mmol) in MeOH (200 µL) was added 2 N NaOH (100 µL), and the reaction was stirred for 2 h. 10% HCl was added to acidify the reaction mixture, and the solution was extracted with EtOAc (2
mL × 3). The combined organic extracts were washed with water (2 mL) and brine (2 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4.5:1) to give 5.2 mg (93%) of 479 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.12 (m, 2 H), 7.08-6.89 (m, 4 H), 6.82 (dd, J = 8.1 Hz, 1 H), 5.26 (br s, 2 H), 2.61-2.39 (m, 2 H), 1.63-1.38 (m, 2 H), 0.81 (t, J = 7.2 Hz, 3 H).

2'-Acetyl-5'-butyl-2-hydroxy-3'-methyl-1,1'-biphenyl (480). A solution of 425 (17.1 mg, 0.064 mmol) in THF (400 µL, 300 µL wash × 2) was added dropwise to a solution of MeLi (1.6 M in Et₂O, 482 µL, 0.77 mmol) in THF (300 µL) at 0 °C. The reaction mixture was stirred for 45 min, warmed to room temperature, and stirring was continued for 1 h. The reaction was then cooled to 0 °C and quenched with 10% NH₄Cl (2 mL). The aqueous layer was extracted with Et₂O (3 mL × 3). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (Na₂SO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7:1) to give 18.1 mg (100%) of 480 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 7.8 Hz, 1 H), 7.43 (s, 1 H), 7.28-7.19 (m, 1 H), 7.09-6.96 (m, 3 H), 3.22 (s, 1 H), 2.66-2.61 (m, 2 H), 2.56 (s, 3 H), 1.73 (s, 3 H), 1.72-1.57 (m, 2 H), 1.48-1.32 (m, 2 H), 0.97 (t, J = 7.3 Hz, 3 H).

5'-Butyl-2,2'-dihydroxy-3'-methyl-1,1'-biphenyl (482). m-CPBA (70%, 16 mg, 0.064 mmol) was added to a solution of 480 (9 mg, 0.032 mmol) in DCM (250 µL), and the reaction was stirred for 75 min. The reaction was concentrated and taken up in MeOH (300 µL). K₂CO₃ (32 mg, 0.23 mmol) was added, and the mixture was stirred for 2 h. HCl (10%)
was added until the solution was acidic, and the mixture was extracted with EtOAc (2 mL × 3). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1) to give 5.9 mg (72%) of 482 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.39-7.23 (m, 2 H), 7.10-7.00 (m, 3 H), 6.90 (s, 1 H), 5.21 (br s, 2 H), 2.62-2.49 (m, 2 H), 2.31 (s, 3 H), 1.67-1.51 (m, 2 H), 1.46-1.29 (m, 2 H), 0.93 (t, $J = 7.3$ Hz, 3 H).

5-Allyl-2-(methoxymethoxy)benzaldehyde (487). To a solution of 485 (82 mg, 0.46 mmol) in Et$_2$O (820 µL) at −78 °C was added t-BuLi (1.6 M in pentane, 411 µL, 0.69 mmol) dropwise, and the reaction was stirred for 3 h. N-methylformanilide (170 µL, 1.38 mmol) was added, and the mixture was stirred for 1.5 h before warming it to rt. After 12 h, the reaction was quenched with sat. NH$_4$Cl (5 mL) and extracted with Et$_2$O (5 mL × 3). The combined organic extracts were washed with cold 1 M HCl (3 mL × 3), water (2 mL) then brine (2 mL), dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (20:1) to give 34.1 mg (38%) of 487 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 10.50 (s, 1 H), 7.67 (d, $J = 2.3$ Hz, 1 H), 7.35 (dd, $J = 8.6$ and 2.3 Hz, 1 H), 7.15 (d, $J = 8.5$ Hz, 1 H), 6.03-5.83 (m, 1 H), 5.28 (s, 2 H), 5.12-5.09 (m, 1 H), 5.07-5.03 (m, 1 H), 3.52 (s, 3 H), 3.39-3.33 (m, 2 H); 13C NMR (75 MHz, CDCl$_3$) δ 189.9, 158.3, 136.9, 136.2, 133.8, 128.1, 125.4, 116.4, 115.4, 94.8, 56.5, 39.2.
4-Allyl-2-ethynyl-1-(methoxymethoxy)benzene (488). n-BuLi (2.3 M in hexanes, 130 µL, 0.30 mmol) was added to a solution of TMSCHN$_2$ (2 M in Et$_2$O, 225 µL, 0.45 mmol) in THF (1.3 mL) at −78 °C dropwise, and the solution was stirred for 30 min. Then, 487 (31 mg, 0.15 mmol) in THF (600 µL) was added dropwise, and stirring was continued for 1 h at −78 °C before warming the reaction mixture to rt. After 1.5 h at rt, the reaction was cooled to 0 °C and quenched with sat. NH$_4$Cl (3 mL), followed by extraction with Et$_2$O (3 mL × 3). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (22:1) to give 12.1 mg (40%) of 488 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.30 (d, $J = 1.9$ Hz, 1 H), 7.12 (dd, $J = 8.3$ and 1.9 Hz, 1 H), 7.07 (d, $J = 8.3$ Hz, 1 H), 6.02-5.85 (m, 1 H), 5.26 (s, 2 H), 5.13-5.03 (m, 2 H), 3.53 (s, 3 H), 3.34-3.29 (m, 2 H), 3.27 (s, 1 H).

4-Allyl-2-(2,2-dibromovinyl)-1-(methoxymethoxy)benzene (489). To a solution of CBr$_4$ (305 mg, 0.92 mmol) in DCM (900 µL) at 0 °C was added PPh$_3$ (483 mg, 1.84 mmol) in two portions. After 10 min, 487 (95 mg, 0.46 mmol) in DCM (500 µL) was added dropwise, and the reaction was stirred for 30 min. H$_2$O (3 mL) was added, and the aqueous layer was extracted with DCM (4 mL × 3). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (Na$_2$SO$_4$), filtered through a silica plug (eluting with DCM), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (45:1) to give 125 mg (75%) of 489 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.59 (s, 1 H), 7.51 (d, $J = 1.9$ Hz, 1 H), 7.10 (dd, $J = 8.4$ and 1.9 Hz, 1 H),
7.04 (d, $J = 8.4$ Hz, 2 H), 6.05-5.86 (m, 1 H), 5.17 (s, 2 H), 5.12-5.03 (m, 2 H), 3.48 (s, 3 H), 3.39-3.32 (m, 2 H).

4- Allyl-2- ethynyl-1-(methoxymethoxy) benzene (488). Alternative synthesis from 489: n-
BuLi (2.3 M in hexanes, 92 µL, 0.21 mmol) was added dropwise to a solution of 489 (25.5 mg, 0.070 mmol) in THF (300 µL) at −78 °C. After 1 h, the solution was warmed to 0 °C, stirred for 15 min, and quenched with sat. NH$_4$Cl (2 mL). The aqueous layer was extracted with Et$_2$O (3 mL \times 3). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (30:1) to give 10 mg (70%) of 488.

4- Allyl-2- (2,2-dibromovinyl)phenol (490). 6 N HCl (277 µL) was added to a solution of 489 (25.2 mg, 0.070 mmol) in THF (330 µL), and the reaction was stirred overnight. H$_2$O (3 mL) and Et$_2$O (3 mL) were added, and the layers were separated. The aqueous layer was extracted with Et$_2$O (3 mL \times 2). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1) to give 21 mg (95%) of 490 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.54 (s, 1 H), 7.35 (d, $J = 2.0$ Hz, 1 H), 7.05 (dd, $J = 8.2$ and 2.0 Hz, 1 H), 6.76 (d, $J = 8.2$ Hz, 1 H), 6.06-5.86 (m, 1 H), 5.15-5.02 (m, 2 H), 4.89 (br s, 1 H), 3.39-3.30 (m, 2 H).
Methyl 3-(4-hydroxy-3-iodophenyl)propanoate (492). To a solution of I$_2$ (78 mg, 0.31 mmol) and Ag$_2$SO$_4$ (62 mg, 0.31 mmol) in DCM (5 mL) was added 491 (50 mg, 0.28 mmol) in DCM (2 mL), and the reaction was stirred for 24 h, filtered, washed with 10% Na$_2$S$_2$O$_3$ (15 mL), H$_2$O (10 mL), brine (10 mL), dried (MgSO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1) to give 352 mg (61%) of 492 as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.49 (d, J = 2.0 Hz, 1 H), 7.07 (dd, J = 8.3 and 2.0 Hz, 1 H), 6.90 (d, J = 8.3 Hz, 1 H), 5.18 (s, 1 H), 3.66 (s, 3 H), 2.85 (t, J = 7.6 Hz, 2 H), 2.57 (t, J = 7.6 Hz, 2 H).

Methyl 3-(4-hydroxy-3-(2-(trimethylsilyl)ethynyl)phenyl)propanoate (493). To a solution of 492 (191 mg, 0.62 mmol) in TEA/dioxane (1:1, 1.5 mL) was added Pd(PPh$_3$)$_2$Cl$_2$ (8.4 mg, 0.012 mmol), CuI (4.6 mg, 0.025 mmol) and ethynyltrimethylsilane (176 µL, 1.25 mmol). After 4 h, the reaction was concentrated, taken up in H$_2$O (10 mL) and Et$_2$O (10 mL), and the layers were separated. The aqueous layer was extracted with Et$_2$O (10 mL \times 2). The combined organic extracts were washed with water (10 mL) then brine (10 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/Et$_2$O (4:1) to give 159 mg (92%) of 493 as a yellow solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.18 (d, J = 2.2 Hz, 1 H), 7.07 (dd, J = 8.4 and 2.2 Hz, 1 H), 6.86 (d, J = 8.4 Hz, 1 H), 5.72 (s, 1 H), 3.66 (s, 3 H), 2.84 (t, J = 7.7 Hz, 2 H), 2.57 (t, J = 7.7 Hz, 2 H), 0.27 (s, 9 H); 13C NMR (75 MHz, CDCl$_3$) δ 173.3, 155.8, 132.4, 131.3, 130.9, 114.8, 109.6, 102.4, 99.1, 51.7, 35.9, 30.0, 0.1.
Methyl 3-(3-ethynyl-4-hydroxyphenyl)propanoate (494). KF (170 mg, 2.93 mmol) was added to a solution of 493 (232 mg, 0.836 mmol) in MeOH (3.9 mL), and the reaction was stirred for 3 h. DCM (15 mL) and H₂O (10 mL) were added and the layers separated. The aqueous layer was extracted with DCM (10 mL × 2). The combined organic extracts were washed with water (10 mL) then brine (10 mL), dried (Na₂SO₄), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 153 mg (89%) of 494 as a reddish solid. ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, J = 2.1 Hz, 1 H), 7.10 (dd, J = 8.4 and 2.1 Hz, 1 H), 6.87 (d, J = 8.4 Hz, 1 H), 5.67 (s, 1 H), 3.67 (s, 3 H), 3.45 (s, 1 H), 2.86 (t, J = 7.7 Hz, 2 H), 2.58 (t, J = 7.7 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 156.1, 132.5, 131.7, 131.1, 115.1, 108.4, 84.2, 78.5, 51.8, 35.8, 29.9.

Methyl 3-(4-(3-(trimethylsilyl)prop-2-yn-1-yloxy)-3-ethynylphenyl)propanoate (496). To a solution of 494 (100 mg, 0.49 mmol), PPh₃ (169 mg, 0.64 mmol), and 3-(trimethylsilyl)prop-2-yn-1-ol (109 µL, 0.73 mmol) in DCM (2.4 mL) was added DIAD (126 µL, 0.73 mmol) at 0 °C, and the reaction was stirred overnight. The reaction was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (12:1) to give 139 mg (90%) of 496 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, J = 2.3 Hz, 1 H), 7.10 (dd, J = 8.5 and 2.3 Hz, 1 H), 6.87 (d, J = 8.5 Hz, 1 H), 4.75 (s, 2 H), 3.67 (s, 3 H), 3.28 (s, 1 H), 2.87 (t, J = 7.7 Hz, 2 H), 2.60 (t, J = 7.7 Hz, 2 H), 0.15 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ 173.2, 157.5, 133.9, 133.5, 130.0, 113.5, 112.1, 100.0, 93.4, 81.4, 79.9, 57.7, 51.7, 35.7, 29.9, −0.2.
3-(4-(3-(Trimethylsilyl)prop-2-ynyloxy)-3-ethynylphenyl)propan-1-ol (497). LAH (10.6 mg, 0.28 mmol) was added to a solution of 496 (58.6 mg, 0.19 mmol) in THF (900 µL) at 0 °C, and the reaction was stirred for 1 h. Et₂O (2 mL), H₂O (17 µL), 15% NaOH (17 µL), and H₂O (34 µL), were added successively, and the mixture was stirred for 30 min. The mixture was filtered over celite, dried (Na₂SO₄), filtered, and concentrated to dryness to give 44.4 mg (83%) of 497 as a colorless oil. \(^1\)H NMR (300 MHz, CDCl₃) δ 7.30 (d, \(J = 2.3\) Hz, 1 H), 7.14 (dd, \(J = 8.5\) and 2.3 Hz, 1 H), 6.98 (d, \(J = 8.5\) Hz, 1 H), 4.76 (s, 2 H), 3.64 (t, \(J = 6.3\) Hz, 2 H), 3.28 (s, 1 H), 2.63 (t, \(J = 7.4\) Hz, 2 H), 1.92-1.78 (m, 2 H), 0.14 (s, 9 H); \(^13\)C NMR (75 MHz, CDCl₃) δ 157.3, 134.9, 134.0, 130.1, 113.6, 112.0, 100.1, 93.3, 81.3, 80.1, 62.1, 57.8, 34.2, 31.0, −0.2.

Methyl 3-(9-allyl-7-(trimethylsilyl)-6\(^H\)-benzo[c]chromen-2-yl)propanoate (499). To a flame-dried microwave vial equipped with a stir bar was added 496 (16.1 mg, 0.051 mmol), allylacetylene (46 µL, 0.51 mmol), Cp*Ru(cod)Cl (1.9 mg, 0.0051 mmol), and dry toluene (1.6 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 30 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction vessel to room temperature, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (16:1) to give 10 mg (50%) of 499 as a colorless oil. \(^1\)H NMR (300 MHz, CDCl₃) δ 7.54 (d, \(J = 2.1\) Hz, 1 H), 7.52 (d, \(J = 1.5\) Hz, 1 H), 7.26-7.24 (m, 1 H), 7.06 (dd, \(J = 8.2\) and 2.1 Hz, 1 H), 6.90 (d, \(J = 8.2\) Hz, 1 H), 6.10-5.92 (m, 1 H), 5.23-5.07 (m, 4 H), 3.68 (s, 3 H), 3.49-3.41 (m, 2 H), 2.96 (t, \(J = 7.8\) Hz, 2 H), 2.66 (t, \(J = 7.8\) Hz, 2 H), 0.35 (s, 9 H).
3-(9-Allyl-7-(trimethylsilyl)-6H-benzo[c]chromen-2-yl)propan-1-ol (500). LAH (1 mg, 0.026 mmol) was added to a solution of 499 (5.2 mg, 0.014 mmol) in THF (200 µL) at 0 °C, and the reaction was stirred for 1 h. Et₂O (0.4 mL), H₂O (3 µL), 15% NaOH (3 µL), and H₂O (6 µL), were added successively, and the mixture was stirred for 30 min. The mixture was filtered over celite, dried (Na₂SO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:1.5) to give 4.5 mg (94%) of 500 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.50 (m, 2 H), 7.27-7.23 (m, 1 H), 7.06 (dd, J = 8.2 and 2.0 Hz, 1 H), 6.90 (d, J = 8.2 Hz, 1 H), 6.11-5.93 (m, 1 H), 5.23-5.07 (m, 4 H), 3.72 (dt, J = 11.3 and 5.6 Hz, 2 H), 3.48-3.41 (m, 2 H), 2.78-2.68 (m, 2 H), 2.00-1.87 (m, 2 H), 1.29 (t, J = 5.6 Hz, 1 H), 0.35 (s, 9 H).

(9-Allyl-2-(3-(phenylselanyl)propyl)-6H-benzo[c]chromen-7-yl)trimethylsilane (501). Tri-n-butylphosphine (6.3 µL, 0.026 mmol) was added to a solution of 500 (4.5 mg, 0.013 mmol) and phenylselenocyanate (3.1 µL, 0.026 mmol) in THF (200 µL) at rt, and the reaction was stirred for 30 min. After concentration, the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:0 to 80:1) to give 4.5 mg (71%) of 501 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.57 (m, 1 H), 7.55-7.43 (m, 3 H), 7.31-7.19 (m, 5 H), 7.01 (dd, J = 8.2 and 2.0 Hz, 1 H), 6.88 (d, J = 8.2 Hz, 1 H), 6.11-5.92 (m, 1 H), 5.23-5.07 (m, 4 H), 3.49-3.41 (m, 2 H), 2.94 (t, J = 7.3 Hz, 2 H), 2.81-2.70 (m, 2 H), 2.14-1.97 (m, 2 H), 0.35 (s, 9 H).
Methyl 3-(9-(3-hydroxypropyl)-7-(trimethylsilyl)-6H-benzo[c]chromen-2-yl)propanoate (502). To two flame-dried microwave vials equipped with a stir bar was added 496 (40.2 mg, 0.128 mmol), pent-4-yn-1-ol (120 µL, 1.28 mmol), Cp*Ru(cod)Cl (4.5 mg, 0.013 mmol), and dry toluene (3.2 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 30 min in a Discover microwave synthesizer at 300 W. After cooling the reaction vessel to room temperature, the solutions were combined, concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/Et₂O (2:1) to give 86.6 mg (85%) of 502 as a colorless oil. ^1H NMR (300 MHz, CDCl₃) δ 7.60-7.51 (m, 2 H), 7.26 (s, 1 H), 7.06 (dd, J = 8.2 and 2.0 Hz, 1 H), 6.90 (d, J = 8.2 Hz, 1 H), 5.16 (s, 2 H), 3.75-3.66 (m, 5 H), 2.97 (t, J = 7.7 Hz, 2 H), 2.79-2.72 (m, 2 H), 2.66 (d, J = 7.7 Hz, 2 H), 2.04-1.87 (m, 2 H), 1.49 (br s, 1 H), 0.35 (s, 9 H); ^13C NMR (75 MHz, CDCl₃) δ 173.5, 153.2, 141.1, 135.9, 134.7, 134.2, 133.9, 129.8, 129.2, 123.4, 123.2, 117.1, 68.5, 62.3, 51.7, 36.1, 34.5, 32.3, 30.6, 0.0.

2,9-Di(3-hydroxypropyl)-7-(trimethylsilyl)-6H-benzo[c]chromene (503). LAH (26.5 mg, 0.70 mmol) was added to a solution of 502 (139.3 mg, 0.35 mmol) in THF (2 mL) at 0 °C, and the reaction was stirred for 1 h. Et₂O (10 mL), H₂O (33 µL), 15% NaOH (33 µL), and H₂O (66 µL), were added successively, and the mixture was stirred for 30 min The mixture was filtered over celite, dried (Na₂SO₄), filtered, and concentrated to dryness to give 129 mg (100%) of 503 as a colorless oil. ^1H NMR (300 MHz, CDCl₃) δ 7.59-7.52 (m, 2 H), 7.26 (s, 1 H), 7.06 (dd, J = 8.2 and 2.0 Hz, 1 H), 6.90 (d, J = 8.2 Hz, 1 H), 5.16 (s, 2 H), 3.81-3.66 (m, 4 H), 2.84-2.67 (m, 4 H), 2.04-1.88 (m, 4 H), 1.38-1.27 (m, 2 H), 0.35 (s, 9 H); ^13C NMR
(75 MHz, CDCl$_3$) δ 152.9, 141.0, 135.9, 135.5, 134.7, 133.9, 129.9, 129.4, 123.3, 116.9, 68.6, 62.2, 62.1, 34.53, 34.47, 32.3, 31.7, 0.0.

(2,9-Bis(3-(phenylselanyl)propyl)-6H-benzo[c]chromen-7-yl)trimethylsilane (504). Tri-n-butylphosphine (200 µL, 0.80 mmol) was added to a solution of 503 (74.6 mg, 0.20 mmol) and phenylselenocyanate (99 µL, 0.80 mmol) in THF (2.3 mL) at 0 °C, and the reaction was stirred for 30 min at rt. After concentration, the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:0 to 50:1) to give 110.1 mg (84%) of 504 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.60-7.48 (m, 5 H), 7.32-7.22 (m, 8 H), 7.06 (dd, J = 8.2 and 2.0 Hz, 1 H), 6.94 (d, J = 8.2 Hz, 1 H), 5.21 (s, 2 H), 3.02-2.93 (m, 4 H), 2.90-2.74 (m, 4 H), 2.20-2.03 (m, 4 H), 0.39 (s, 9 H); 13C NMR (75 MHz, CDCl$_3$) δ 153.0, 140.5, 135.9, 134.94, 134.86, 133.9, 132.7, 132.6, 130.4, 130.3, 129.9, 129.5, 129.1, 126.9, 126.8, 123.4, 123.3, 117.0, 68.6, 35.9, 35.3, 31.9, 31.8, 27.3, 27.2, 0.1.

(2,9-Diallyl-6H-benzo[c]chromen-7-yl)trimethylsilane (471). To a solution of 504 (20 mg, 0.031 mmol) in THF (600 µL) was added H$_2$O$_2$ (62 µL, 0.68 mmol) at 0 °C. The reaction was warmed to rt and after 1 h was heated at 60 °C for 45 min. After cooling to reaction vessel to room temperature, H$_2$O (2 mL) and Et$_2$O (3 mL) were added and the layers separated. The aqueous layer was extracted with Et$_2$O (3 mL × 2). The combined organic extracts were washed with sat. NaHCO$_3$ (2 mL), water (3 mL) and brine (3 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:0 to 60:1) to give 5 mg (49%) of 471 as a
yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.56-7.50 (m, 2 H), 7.26-7.24 (m, 1 H), 7.05 (dd, $J = 8.2$ and 2.0 Hz, 1 H), 6.91 (d, $J = 8.2$ Hz, 1 H), 6.11-5.93 (m, 2 H), 5.23-5.04 (m, 6 H), 3.50-3.37 (m, 4 H), 0.35 (s, 9 H).

2,9-Diallyl-7-(trimethylsilyl)-6H-benzo[c]chromen-6-one (505). To 471 (5 mg, 0.015 mmol), dissolved in DCM (300 µL) was added PCC (3.2 mg, 0.015 mmol) and the mixture was heated at 40 °C. After 2 h, 7.5 mg of PCC was added, and the reaction was stirred at 40 °C. After 4 h more, 15 mg of PCC was added and the reaction stirred overnight at 40 °C. The reaction was diluted with Et$_2$O (7 mL) and filtered through a silica plug. The filtrate was concentrated to dryness to give 4.5 mg (87%) of 505 as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.96 (s, 1 H), 7.86 (s, 1 H), 7.67 (s, 1 H), 7.28-7.27 (m, 2 H), 6.14-5.94 (m, 2 H), 5.27-5.07 (m, 4 H), 3.65-3.47 (m, 4 H), 0.40 (s, 9 H).

2'-Acetyl-5,5'-diallyl-2-hydroxy-3'-(trimethylsilyl)-1,1'-biphenyl (506). A solution of 505 (4.5 mg, 0.013 mmol) in THF (300 µL, 300 µL wash) was added dropwise to a solution of MeLi (1.3 M in Et$_2$O, 120 µL, 0.16 mmol) in THF (100 µL) at 0 °C. The reaction mixture was stirred for 15 min and quenched with 10% NH$_4$Cl (1 mL). The aqueous layer was extracted with Et$_2$O (3 mL \times 3). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (20:1) to give 3.2 mg (68%) of 506 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.58-7.43 (m, 3 H), 7.06 (d, J
= 8.1 Hz, 1 H), 6.92 (d, J = 8.2 Hz, 1 H), 6.20-5.84 (m, 2 H), 5.28-5.02 (m, 4 H), 3.58-3.35 (m, 4 H), 3.18 (s, 1 H), 1.58 (s, 3 H), 0.38 (s, 9 H).

2,9-Di(3-acetoxypropyl)-7-(trimethylsilyl)-6\(H\)-benzo[e]chromene (510). To a solution of 503 (48.6 mg, 0.13 mmol) and a catalytic amount of DMAP in pyridine (500 µL) was added Ac\(_2\)O (500 µL) at 0 °C. After 1 h, the reaction was diluted with H\(_2\)O (4 mL) and extracted with Et\(_2\)O (4 mL × 3). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (Na\(_2\)SO\(_4\)), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 54.5 mg (91%) of 510 as a colorless oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.55-7.50 (m, 2 H), 7.23 (d, J = 1.8 Hz, 1 H), 7.05 (dd, J = 8.2 and 1.8 Hz, 1 H), 6.90 (d, J = 8.2 Hz, 1 H), 5.15 (s, 2 H), 4.20-4.08 (m, 4 H), 2.81-2.63 (m, 4 H), 2.15-1.91 (m, 10 H), 0.35 (s, 9 H).

2,9-Di(3-acetoxypropyl)-7-(trimethylsilyl)-6\(H\)-benzo[e]chromen-6-one (511). To 510 (20.4 mg, 0.045 mmol), dissolved in DCM (900 µL) was added PCC (9.5 mg, 0.045 mmol), and the mixture was heated at 40 °C. After 2 h, 9.5 mg of PCC was added, and the reaction was stirred at 40 °C. After 4 h more, 19 mg of PCC was added and the reaction was stirred overnight at 40 °C. In the morning, 9.5 mg of PCC was added, and the reaction was stirred for an additional 2 h. It was diluted with Et\(_2\)O (7 mL) and filtered through a silica plug. The filtrate was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 19.7 mg (94%) of 511 as a colorless oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.95 (br s, 1 H), 7.86 (br s, 1 H), 7.64 (br s, 1 H), 7.23 (d, J = 1.8 Hz, 1 H), 7.05 (dd, J = 8.2 and 1.8 Hz, 1 H), 6.90 (d, J = 8.2 Hz, 1 H), 5.15 (s, 2 H), 4.20-4.08 (m, 4 H), 2.81-2.63 (m, 4 H), 2.15-1.91 (m, 10 H), 0.35 (s, 9 H).
7.31-7.21 (m, 2 H), 4.22-4.07 (m, 4 H), 2.98-2.71 (m, 4 H), 2.20-1.93 (m, 10 H), 0.38 (s, 9 H).

2′-Acetyl-5,5′-di(3-hydroxypropyl)-2-hydroxy-3′-(trimethylsilyl)-1,1′-biphenyl (512). A solution of 511 (19.7 mg, 0.042 mmol) in THF (400 µL, 400 µL wash) was added dropwise to a solution of MeLi (1.3 M in Et₂O, 390 µL, 0.50 mmol) in THF (400 µL) at 0 °C. The reaction mixture was stirred 15 min, warmed to rt for 1 h, and quenched with sat. NH₄Cl (2 mL). The aqueous layer was extracted with Et₂O (5 mL × 3). The combined organic extracts were washed with water (3 mL) then brine (3 mL), dried (Na₂SO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 13.4 mg (80%) of 512 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.51 (m, 2 H), 7.48 (d, J = 1.8 Hz, 1 H), 7.05 (dd, J = 8.2 and 1.8 Hz, 1 H), 6.90 (d, J = 8.2 Hz, 1 H), 3.81-3.64 (m, 4 H), 3.56 (br s, 1 H), 2.84-2.66 (m, 4 H), 2.04-1.85 (m, 5 H), 0.38 (s, 9 H).

2,9-Di-(3-(tert-butyldimethylsilyloxy)propyl)-7-(trimethylsilyl)-6H-benzo[c]chromene (514). To a solution of 503 (44.2 mg, 0.12 mmol) in DMF (150 µL) was added imidazole (50 mg, 0.72 mmol) and TBDMSCl (52 mg, 0.24 mmol), and the reaction was stirred overnight. H₂O (3 mL) and Et₂O (4 mL) were added and the layers separated. The aqueous layer was extracted with Et₂O (4 mL × 2), and the combined organic extracts were washed with water (3 mL × 2) then brine (3 mL), dried (Na₂SO₄), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 60.1 mg
(84%) of 514 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.52 (s, 2 H), 7.28-7.25 (m, 1 H), 7.03 (dd, J = 8.2 and 1.8 Hz, 1 H), 6.85 (d, J = 8.2 Hz, 1 H), 5.16 (s, 2 H), 3.68-3.59 (m, 4 H), 2.73-2.60 (m, 4 H), 1.91-1.79 (m, 4 H), 0.91 (s, 18 H), 0.32 (s, 9 H), 0.04 (s, 12 H).

2,9-Di(3-(tert-butyldimethylsilyloxy)propyl)-7-(trimethylsilyl)-6H-benzo[c]chromen-6-one (515). To a solution of 514 (26.6 mg, 0.044 mmol) in CH$_3$CN (1.1 mL) was added KMnO$_4$ (28 mg, 0.18 mmol), and the reaction was stirred for 24 h at rt. More KMnO$_4$ (28 mg, 0.18 mmol) was added, and the reaction was stirred for another 24 h. After removing the CH$_3$CN under reduced pressure, the residue was taken up in H$_2$O (4 mL) and extracted with EtOAc (4 mL × 3). The combined organic extracts were washed with water (3 mL × 2) then brine (3 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (40:1) to give 16.1 mg (60%) of 515 as a yellow oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.90 (br s, 1 H), 7.80 (br s, 1 H), 7.59 (br s, 1 H), 7.23-7.17 (m, 2 H), 3.70-3.53 (m, 4 H), 2.88-2.66 (m, 4 H), 1.97-1.74 (m, 4 H), 0.90-0.82 (m, 18 H), 0.33 (s, 9 H), 0.05--0.05 (m, 12 H).

2'-Acetyl-5,5'-di(3-(tert-butyldimethylsilyloxy)propyl)-2-hydroxy-3'-(trimethylsilyl)-1,1'-biphenyl (516). A solution of 515 (12.2 mg, 0.020 mmol) in THF (400 µL, 400 µL wash) was added dropwise to a solution of MeLi (1.3 M in Et$_2$O, 100 µL, 0.13 mmol) in THF (100 µL) at 0 °C. The reaction mixture was stirred for 30 min and quenched with 10% NH$_4$Cl (1 mL). The aqueous layer was extracted with Et$_2$O (3 mL × 3). The combined organic extracts were washed with water (2 mL) then brine (2 mL), dried (Na$_2$SO$_4$), filtered, and
concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 11.3 mg (90%) of **516** as a colorless oil.

\[^1H \text{NMR} (300 \text{ MHz, CDCl}_3) \delta 7.54 (d, J = 1.5 \text{ Hz, 1 H}), 7.52 (d, J = 2.0 \text{ Hz, 1 H}), 7.45 (d, J = 1.5 \text{ Hz, 1 H}), 7.05 (dd, J = 8.2 \text{ and } 2.0 \text{ Hz, 1 H}), 6.89 (d, J = 8.2 \text{ Hz, 1 H}), 3.72-3.58 (m, 4 H), 3.18 (s, 1 H), 2.80-2.60 (m, 4 H), 1.95-1.77 (m, 4 H), 0.90 (s, 18 H), 0.36 (s, 9 H), 0.08-0.01 (m, 12 H). \]

4-(3-Hydroxyprop-1-ynyl)phenol (522). To a solution of 4-iodophenol (100 mg, 0.45 mmol) in TEA/dioxane (1:1, 720 µL) was added \(\text{Pd(PPh}_3\text{)}_2\text{Cl}_2 \) (3.2 mg, 0.0045 mmol), CuI (1.7 mg, 0.0091 mmol), and propargyl alcohol (32 µL, 0.55 mmol), and the reaction stirred at rt overnight. The reaction was concentrated and taken up in \(\text{H}_2\text{O} \) (7 mL) and \(\text{Et}_2\text{O} \) (7 mL). 1 N HCl (500 µL) was added and the layers separated. The aqueous layer was extracted with \(\text{Et}_2\text{O} \) (7 mL \(\times \) 2). The combined organic extracts were washed with water (5 mL) then brine (5 mL), dried (\(\text{Na}_2\text{SO}_4 \)), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:1) to give 56.1 mg (84%) of **522** as a white solid.

\[^1H \text{NMR} (300 \text{ MHz, CD}_3\text{CN}) \delta 7.27 (d, J = 8.7 \text{ Hz, 2 H}), 6.78 (d, J = 8.7 \text{ Hz, 2 H}), 4.35 (s, 2 H); \]

\[^{13}C \text{NMR} (75 \text{ MHz, CD}_3\text{CN}) \delta 158.3, 134.1, 118.4, 116.5, 115.0, 87.4, 85.2, 51.2. \]

3-(4-(Allyloxy)phenyl)prop-2-yn-1-ol (523). Allyl bromide (79 µL, 0.91 mmol) was added to a solution of **522** (54 mg, 0.36 mmol) in DMF (800 µL), and the reaction was stirred overnight. \(\text{H}_2\text{O} \) (5 mL) was added, and the aqueous layer extracted with \(\text{Et}_2\text{O} \) (6 mL \(\times \) 3). The combined organic extracts were washed with water (3 mL \(\times \) 2) then brine (3 mL), dried
(MgSO₄), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3.5:1) to give 57.6 mg (84%) of 523 as a white solid: Mp 67-70 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, J = 8.9 Hz, 2 H), 6.85 (d, J = 8.9 Hz, 2 H), 6.13-5.96 (m, 1 H), 5.41 (ddt, J = 17.5, 2.4, and 1.5 Hz, 1 H), 5.30 (ddt, J = 10.3, 2.4, and 1.4 Hz, 1 H), 4.54 (ddd, J = 5.3, 1.5, and 1.4 Hz, 2 H), 4.48 (d, J = 6.1 Hz, 2 H), 1.61 (t, J = 6.1 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 158.8, 133.3, 133.0, 118.0, 114.9, 114.8, 86.0, 85.7, 68.9, 51.8.

1-(3-(4-(Allyloxy)phenyl)prop-2-ynyloxy)-4-allyl-2-(2,2-dibromovinyl)benzene (524). To a solution of 490 (20.2 mg, 0.064 mmol), PPh₃ (25 mg, 0.095 mmol), and 523 (14.6 mg, 0.078 mmol) in DCM (310 µL) was added DIAD (19.9 µL, 0.095 mmol) at 0 °C, and the reaction was stirred overnight at rt. The reaction was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (50:1) to give 24.9 mg (80%) of 524 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (br s, 1 H), 7.55 (br s, 1 H), 7.36 (d, J = 8.9 Hz, 2 H), 7.14 (dd, J = 8.4 and 2.1 Hz, 1 H), 7.02 (d, J = 8.4 Hz, 1 H), 6.83 (d, J = 8.9 Hz, 2 H), 6.12-5.84 (m, 2 H), 5.40 (ddt, J = 17.3, 2.9, and 1.6 Hz, 1 H), 5.29 (ddt, J = 10.5, 2.9, and 1.3 Hz, 1 H), 5.12-5.03 (m, 2 H), 4.90 (s, 2 H), 4.53 (ddd, J = 5.3, 1.6, 1.3 Hz, 2 H), 3.41-3.31 (m, 2 H).

Methyl 3-(4-(3-(4-(allyloxy)phenyl)prop-2-ynyloxy)-3-ethynylphenyl)propanoate (526). To a solution of 494 (50 mg, 0.24 mmol), PPh₃ (83 mg, 0.32 mmol), and 523 (65 mg, 0.34 mmol) in DCM (1.2 mL) was added DIAD (63 µL, 0.32 mmol) at 0 °C, and the reaction was
stirred overnight at rt. The reaction was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6.5:1) to give 90.5 mg (99%) of 526 as a colorless oil. \(^1H \) NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.38-7.29 (m, 3 H), 7.16 (dd, \(J = 8.5 \) and 2.3 Hz, 1 H), 7.05 (d, \(J = 8.5 \) Hz, 1 H), 8.83 (d, \(J = 8.9 \) Hz, 2 H), 6.12-5.94 (m, 1 H), 5.39 (ddt, \(J = 17.3, 2.3, 1.5 \) Hz, 1 H), 5.29 (ddt, \(J = 10.4, 2.3, \) and 1.4 Hz, 1 H), 4.98 (s, 2 H), 4.52 (ddd, \(J = 5.3, 1.5, 1.5 \) and 1.4 Hz, 2 H), 3.66 (s, 3 H), 3.30 (s, 1 H), 2.88 (t, \(J = 7.8 \) Hz, 2 H), 2.60 (t, \(J = 7.8 \) Hz, 2 H); \(^{13}C\) NMR (75 MHz, CDCl\(_3\)) \(\delta \) 173.2, 159.0, 157.6, 134.0, 133.4, 133.3, 132.9, 130.0, 117.9, 114.8, 114.6, 113.3, 112.1, 87.6, 82.5, 81.4, 80.0, 68.8, 57.6, 51.6, 35.6, 29.9.

3-(4-(3-(4-(Allyloxy)phenyl)prop-2-ynyloxy)-3-ethynylphenyl)propan-1-ol (527). LAH (13.1 mg, 0.34 mmol) was added to a solution of 526 (85.8 mg, 0.23 mmol) in THF (1.1 mL) at 0 °C, and the reaction was stirred for 1 h. Et\(_2\)O (6 mL), H\(_2\)O (21 µL), 15% NaOH (21 µL), and H\(_2\)O (42 µL), were added successively, and the mixture was stirred for 30 min. The mixture was filtered over celite, dried (Na\(_2\)SO\(_4\)), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/Et\(_2\)O (1:1.5) to give 56.9 mg (72%) of 527 as a colorless oil. \(^1H \) NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.42-7.29 (m, 3 H), 7.14 (dd, \(J = 8.5 \) and 2.3, 1 H), 7.04 (d, \(J = 8.5 \) Hz, 1 H), 6.82 (d, \(J = 8.9 \) Hz, 2 H), 6.12-5.93 (m, 1 H), 5.38 (ddt, \(J = 17.3, 2.3, 1.6 \) Hz, 1 H), 5.28 (ddt, \(J = 10.5, 2.3, 1.4 \) Hz, 1 H), 4.97 (s, 2 H), 4.51 (ddd, \(J = 5.3, 1.6, \) and 1.4 Hz, 2 H), 3.64 (t, \(J = 6.4 \) Hz, 2 H), 3.30 (s, 1 H), 2.65-2.60 (m, 2 H), 1.91-1.76 (m, 2 H), 1.62)br s, 1 H); \(^{13}C\) NMR (75 MHz, CDCl\(_3\)) \(\delta \) 158.9,
3-(9-Allyl-7-(4-(allyloxy)phenyl)-6H-benzo[c]chromen-2-yl)propan-1-ol (528). To a flame-dried microwave vial equipped with a stir bar was added 527 (12.5 mg, 0.036 mmol), allylacetylene (32 µL, 0.36 mmol), Cp*Ru(cod)Cl (1.4 mg, 0.0036 mmol), and dry toluene (1.2 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 15 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction vessel to room temperature, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/Et₂O (1:2) to give 6 mg (40%) of 528 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.60 (br s, 1 H), 7.51 (br s, 1 H), 7.20 (d, J = 8.7 Hz, 2 H), 7.13-7.04 (m, 2 H), 6.97 (d, J = 8.7 Hz, 2 H), 6.90 (d, J = 8.2 Hz, 1 H), 6.20-5.93 (m, 2 H), 5.51-5.40 (m, 1 H), 5.37-5.29 (m, 1 H), 5.21-5.08 (m, 2 H), 5.04 (s, 2 H), 4.65-4.56 (m, 2 H), 3.73 (br s, 2 H), 3.53-3.44 (m, 2 H), 2.80-2.69 (m, 2 H), 2.03-1.88 (m, 2 H), 1.33 (br s, 1 H).

9-Allyl-7-(4-(allyloxy)phenyl)-2-(3-(phenylselanyl)propyl)-6H-benzo[c]chromene (529). Tri-n-butylphosphine (6.3 µL, 0.026 mmol) was added to a solution of 528 (7.5 mg, 0.018 mmol) and phenylselenocyanate (4.4 µL, 0.036 mmol) in THF (250 µL) at rt, and the reaction was stirred for 30 min. After concentration, the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:0 to 70:1) to give 7.8 mg (78%) of 529 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.44 (m, 4 H), 7.29-7.16 (m, 4 H), 7.09 (d, J
= 1.5 Hz, 1 H), 7.05-6.95 (m, 4 H), 6.88 (d, \(J = 8.2 \) Hz, 1 H), 6.24-5.92 (m, 2 H), 5.45 (ddd, \(J = 17.3, 2.9, \) and 1.5 Hz, 1 H), 5.32 (ddd, \(J = 10.5, 2.9, \) and 1.4 Hz, 1 H), 5.21-5.08 (m, 2 H), 5.04 (s, 2 H), 4.60 (ddd, \(J = 5.3, 1.5, \) and 1.4 Hz, 2 H), 3.55-3.43 (m, 2 H), 2.96 (t, \(J = 7.3 \) Hz, 2 H), 2.77 (t, \(J = 7.4 \) Hz, 2 H), 2.14-2.00 (m, 2 H).

2,9-Diallyl-7-(4-(allyloxy)phenyl)-6\(H \)-benzo[c]chromene (530). To a solution of 529 (7.8 mg, 0.014 mmol) in THF (300 \(\mu \)L) was added \(\text{H}_2\text{O}_2 \) (23 \(\mu \)L, 0.21 mmol). The reaction was heated at 60 °C overnight. After cooling the reaction vessel to room temperature, \(\text{H}_2\text{O} \) (2 mL) and \(\text{Et}_2\text{O} \) (3 mL) were added and the layers were separated. The aqueous layer was extracted with \(\text{Et}_2\text{O} \) (3 mL \(\times \) 2). The combined organic extracts were washed with sat. \(\text{NaHCO}_3 \) (2 mL), water (3 mL) and brine (3 mL), dried (\(\text{Na}_2\text{SO}_4 \)), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (50:1) to give 2.5 mg (45%) of 530 as a yellow oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.58 (s, 1 H), 7.50 (s, 1 H), 7.20 (d, \(J = 8.8 \) Hz, 2 H), 7.13-7.03 (m, 2 H), 6.98 (d, \(J = 8.8 \) Hz, 2 H), 6.91 (d, \(J = 8.2 \) Hz, 1 H), 6.20-5.93 (m, 2 H), 5.53-5.39 (m, 1 H), 5.38-5.27 (m, 1 H), 5.23-5.08 (m, 2 H), 5.04 (s, 2 H), 4.66-4.56 (m, 2 H), 3.53-3.37 (m, 4 H).

Methyl 3-(9-allyl-7-(4-(allyloxy)phenyl)-6\(H \)-benzo[c]chromen-2-yl)propanoate (532). To a flame-dried microwave vial equipped with a stir bar was added 526 (16.6 mg, 0.044 mmol), allylacetylene (40 \(\mu \)L, 0.44 mmol), \(\text{Cp}^*\text{Ru(cod)}\text{Cl} \) (1.6 mg, 0.0044 mmol), and dry toluene (1.4 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 15 min in a CEM Discover microwave synthesizer at 300 W. After cooling the
reaction vessel to room temperature, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1:12) to give 9.1 mg (47%) of 532 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.60 (s, 1 H), 7.49 (s, 1 H), 7.19 (d, J = 8.7 Hz, 2 H), 7.09-7.03 (m, 2 H), 6.98 (d, J = 8.7 Hz, 2 H), 6.89 (d, J = 8.2 Hz, 1 H), 6.22-5.93 (m, 2 H), 5.45 (ddd, J = 17.3, 2.9, and 1.6 Hz, 1 H), 5.32 (ddd, J = 10.5, 2.9, and 1.4 Hz, 1 H), 5.22-5.07 (m, 2 H), 5.03 (s, 2 H), 4.59 (ddd, J = 5.3, 1.6, and 1.4 Hz, 2 H), 3.69 (s, 3 H), 3.49-3.45 (m, 2 H), 2.98 (t, J = 7.8 Hz, 2 H), 2.67 (t, J = 7.8 Hz, 2 H).

3-(9-Allyl-7-(4-(allyloxy)phenyl)-6H-benzo[c]chromen-2-yl)propan-1-ol (528). LAH (1.2 mg, 0.032 mmol) was added to a solution of 532 (9.1 mg, 0.021 mmol) in THF (200 µL) at 0 °C, and the reaction was stirred for 1 h. Et$_2$O (600 µL), H$_2$O (3 µL), 15% NaOH (3 µL), and H$_2$O (6 µL), were added successively, and the mixture was stirred for 30 min. The mixture was filtered over celite, dried (Na$_2$SO$_4$), filtered, and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/Et$_2$O (1:1.5) to give 7.5 mg (88%) of 528 as a colorless oil.

Methyl 3-(7-(4-(allyloxy)phenyl)-9-(3-hydroxypropyl)-6H-benzo[c]chromen-2-yl)propanoate (533). To two flame-dried microwave vials equipped with a stir bar was added 526 (45 mg, 0.12 mmol), pent-4-yn-1-ol (113 µL, 1.20 mmol), Cp*Ru(cod)Cl (4.5 mg, 0.013 mmol), and dry toluene (3 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 15 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction vessel to room temperature, the solutions were
combined, concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/Et₂O (1:3) to give 84.7 mg (77%) of 533 as a colorless oil.

\[\text{1H NMR (300 MHz, CDCl}_3) \] \(\delta 7.59 (d, J = 2.0 \text{ Hz}, 1 \text{ H}), 7.51 (br s, 1 \text{ H}), 7.19 (d, J = 8.7 \text{ Hz}, 2 \text{ H}), 7.13-7.03 (m, 2 \text{ H}), 6.98 (d, J = 8.7 \text{ Hz}, 2 \text{ H}), 6.89 (d, J = 8.2 \text{ Hz}, 1 \text{ H}), 6.20-6.00 (m, 1 \text{ H}), 5.45 (ddd, J = 17.2, 2.9, and 1.5 \text{ Hz}, 1 \text{ H}), 5.32 (ddd, J = 10.5, 2.9, and 1.4 \text{ Hz}, 1 \text{ H}), 5.03 (s, 2 \text{ H}), 4.59 (ddd, J = 5.2, 1.5, and 1.4 \text{ Hz}, 2 \text{ H}), 3.79-3.67 (m, 5 \text{ H}), 2.98 (t, J = 7.7 \text{ Hz}, 2 \text{ H}), 2.83-2.76 (m, 2 \text{ H}), 2.68 (t, J = 7.8 \text{ Hz}, 2 \text{ H}), 2.04-1.90 (m, 2 \text{ H}), 1.33 (t, J = 5.3 \text{ Hz}, 1 \text{ H}); \]

\[\text{13C NMR (75 MHz, CDCl}_3) \] \(\delta 173.5, 158.1, 153.4, 141.6, 139.0, 134.2, 133.3, 133.2, 132.2, 130.6, 130.1, 129.4, 129.2, 127.1, 123.5, 123.4, 121.3, 117.9, 114.6, 68.9, 66.4, 62.1, 51.7, 36.1, 34.3, 32.1, 30.6.

7-(4-(Allyloxy)phenyl)-2,9-di(3-hydroxypropyl)-6H-benzo[c]chromene (534). LAH (17 mg, 0.45 mmol) was added to a solution of 533 (82.1 mg, 0.18 mmol) in THF (1.5 mL) at 0 °C, and the reaction was stirred for 1 h. Et₂O (5 mL), H₂O (15 µL), 15% NaOH (15 µL), and H₂O (30 µL), were added successively, and the mixture was stirred for 30 min. The mixture was filtered over celite, dried (Na₂SO₄), filtered, and concentrated to dryness to give 66.9 mg (87%) of 534 as a colorless oil.

\[\text{1H NMR (300 MHz, CDCl}_3) \] \(\delta 7.60 (br s, 1 \text{ H}), 7.52 (br s, 1 \text{ H}), 7.20 (d, J = 8.7 \text{ Hz}, 2 \text{ H}), 7.14-7.04 (m, 2 \text{ H}), 6.98 (d, J = 8.7 \text{ Hz}, 2 \text{ H}), 6.90 (d, J = 8.2 \text{ Hz}, 1 \text{ H}), 6.19-6.00 (m, 1 \text{ H}), 5.45 (ddd, J = 17.3, 2.9, and 1.4 \text{ Hz}, 1 \text{ H}), 5.32 (ddd, J = 10.5, 2.9, and 1.4 \text{ Hz}, 1 \text{ H}), 5.04 (s, 2 \text{ H}), 4.59 (ddd, J = 5.3, 1.4, and 1.4 \text{ Hz}, 2 \text{ H}), 3.81-3.66 (m, 4 \text{ H}), 2.90-2.66 (m, 4 \text{ H}), 2.06-1.86 (m, 2 \text{ H}), 1.48 (br s, 2 \text{ H}); \]

\[\text{13C NMR (75 MHz, CDCl}_3) \] \(\delta \)
158.1, 153.1, 141.6, 139.1, 135.5, 133.3, 132.3, 130.8, 130.2, 129.4, 127.1, 123.44, 123.42, 121.3, 117.9, 117.1, 114.7, 69.0, 66.4, 62.14, 62.10, 34.5, 34.3, 32.1, 31.7.

7-(4-(Allyloxy)phenyl)-2,9-di(3-iodopropyl)-6H-benzo[c]chromene (535). To a solution of 534 (13.1 mg, 0.030 mmol) in THF (200 µL) at 0 °C was added PPh$_3$ (24 mg, 0.091 mmol), imidazole (6.7 mg, 0.097 mmol) and I$_2$ (23 mg, 0.091 mmol), and the reaction was stirred for 45 min as it warmed to rt. Brine (2 mL) was added, and the aqueous layer was extracted with EtOAc (3 mL × 3). The combined organic extracts were washed with water (3 mL) and brine (3 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (14:1) to give 18.4 mg (99%) of 535 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.59 (d, $J = 1.9$ Hz, 1 H), 7.52 (s, 1 H), 7.19 (d, $J = 8.7$ Hz, 2 H), 7.10-7.03 (m, 2 H), 6.99 (d, $J = 8.7$ Hz, 2 H), 6.90 (d, $J = 8.2$ Hz, 1 H), 6.18-6.01 (m, 1 H), 5.45 (ddd, $J = 17.3$, 2.9, and 1. Hz, 1 H), 5.32 (ddd, $J = 10.5$, 2.9, and 1.4 Hz, 1 H), 5.04 (s, 2 H), 4.60 (ddd, $J = 5.3$, 1.5, and 1.4 Hz, 2 H), 3.31-3.18 (m, 4 H), 2.90-2.71 (m, 4 H), 2.33-2.10 (m, 4 H).

7-(4-(Allyloxy)phenyl)-2,9-di((3-S-methylcarbonodithioatyl)-propyl)-6H-benzo[c]chromene (537). NaH (60%, 10 mg, 0.25 mmol) was added to a solution of 534 (20 mg, 0.046 mmol) in THF (1 mL) at 0 °C. After 1 h, CS$_2$ (28 µL, 0.46 mmol) was added, and the reaction was stirred at rt for 1.5 h. After cooling to 0 °C, MeI (14.5 µL, 0.23 mmol) was added, and the reaction was stirred for 1.5 h as it warmed to rt. The reaction was quenched with sat. NH$_4$Cl (2 mL) and extracted with Et$_2$O (3 mL × 3). The combined organic extracts
were washed with water (3 mL) and brine (3 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (12:1) to give 22.2 mg (78%) of 534 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.59 (d, $J = 1.8$ Hz, 1 H), 7.52 (s, 1 H), 7.19 (d, $J = 8.7$ Hz, 2 H), 7.13-7.00 (m, 2 H), 6.99 (d, $J = 8.7$ Hz, 2 H), 6.91 (d, $J = 8.2$ Hz, 1 H), 6.21-6.02 (m, 1 H), 5.53-5.41 (m, 1 H), 5.38-5.28 (m, 1 H), 5.04 (s, 2 H), 4.74-4.65 (m, 4 H), 4.62-4.59 (m, 2 H), 2.92-2.75 (m, 4 H), 2.59 (s, 3 H), 2.57 (s, 3 H), 2.30-2.12 (m, 4 H).

Methyl 3-(4-hydroxy-3-(3-hydroxyprop-1-ynyl)phenyl)propanoate (541). To a solution of 492 (100 mg, 0.33 mmol) in TEA/dioxane (1:1, 500 µL) was added Pd(PPh$_3$)$_2$Cl$_2$ (11.4 mg, 0.016 mmol), CuI (6.2 mg, 0.033 mmol) and propargyl alcohol (29 µL, 0.98 mmol), and the reaction was heated at 55 °C. After 5 h, the reaction was concentrated, taken up in H$_2$O (7 mL) and Et$_2$O (7 mL), and the layers separated. The aqueous layer was extracted with Et$_2$O (7 mL × 2). The combined organic extracts were washed with water (5 mL) then brine (5 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1) to give 63.4 mg (83%) of 541 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.42-7.35 (m, 2 H), 7.11 (dd, $J = 8.5$ and 1.7 Hz, 1 H), 6.61 (s, 1 H), 4.76 (d, $J = 6.3$ Hz, 2 H), 3.67 (s, 3 H), 3.04 (t, $J = 7.7$ Hz, 2 H), 2.66 (t, $J = 7.7$ Hz, 2 H), 1.86 (t, $J = 6.3$ Hz, 1 H); 13C NMR (75 MHz, CDCl$_3$) δ 173.5, 157.0, 154.1, 135.3, 128.5, 125.0, 120.6, 111.2, 104.1, 58.3, 51.7, 36.5, 31.0.
Methyl 3-(3-iodo-4-methoxyphenyl)propanoate (542). To a solution of 492 (100 mg, 0.33 mmol) in DMF (550 µL) was added K₂CO₃ (90 mg, 0.66 mmol) and MeI (51 µL, 0.82 mmol). When complete, the reaction was diluted with H₂O (5 mL) and extracted with Et₂O (5 mL × 3). The combined organic extracts were washed with water (3 mL × 2) then brine (5 mL), dried (Na₂SO₄), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 97.8 mg (93%) of 542 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, J = 2.1 Hz, 1 H), 7.14 (dd, J = 8.4 and 2.1 Hz, 1 H), 6.74 (d, J = 8.4 Hz, 1 H), 3.86 (s, 3 H), 3.67 (s, 3 H), 2.85 (t, J = 7.7 Hz, 2 H), 2.59 85 (t, J = 7.7 Hz, 2 H).

Methyl 3-(3-(3-hydroxyprop-1-ynyl)-4-methoxyphenyl)propanoate (540a). To a solution of 542 (100 mg, 0.31 mmol) in TEA/dioxane (1:1, 590 µL) was added Pd(PPh₃)₂Cl₂ (4.3 mg, 0.006 mmol), CuI (2.3 mg, 0.012 mmol) and propargyl alcohol (37 µL, 0.62 mmol), and the reaction was stirred at rt. After 1.5 h, the reaction was concentrated, taken up in H₂O (5 mL) and Et₂O (5 mL), and the layers separated. The aqueous layer was extracted with Et₂O (5 mL × 2). The combined organic extracts were washed with water (5 mL) then brine (5 mL), dried (Na₂SO₄), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (1.5:1) to give 65 mg (84%) of 540a as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.24 (m, 1 H), 7.13 (dd, J = 8.5 and 2.3 Hz, 1 H), 6.79 (d, J = 8.5 Hz, 1 H), 4.53 (d, J = 6.3 Hz, 2 H), 3.86 (s, 3 H), 3.66 (s, 3 H), 2.86 (t, J = 7.7 Hz, 2 H), 2.59 85 (t, J = 7.7 Hz, 2 H), 1.71 (t, J = 6.3 Hz, 1 H); ¹³C NMR (75 MHz,
Methyl 3-(3-(3-bromoprop-1-ynyl)-4-methoxyphenyl)propanoate (543). To a solution of 540a (63.8 mg, 0.26 mmol) in DCM (1.3 mL) was added PPh₃ (101 mg, 0.39 mmol) and CBr₄ (128 mg, 0.39 mmol) at 0 °C. The reaction was stirred for 1.5 h as it warmed to rt and was concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7:1 to 5:1) to give 74.3 mg (93%) of 543 as a colorless oil. 1H NMR (300 MHz, CDCl₃) δ 7.29 (d, J = 2.3 Hz, 1 H), 7.14 (dd, J = 8.5 and 2.3 Hz, 1 H), 6.80 (d, J = 8.5 Hz, 1 H), 3.87 (s, 3 H), 3.66 (s, 3 H), 3.30 (s, 1 H), 2.86 (t, J = 7.7 Hz, 2 H), 2.58 (t, J = 7.7 Hz, 2 H); 13C NMR (75 MHz, CDCl₃) δ 173.2, 158.9, 133.7, 132.6, 130.4, 111.2, 110.9, 88.1, 83.3, 55.9, 51.7, 35.7, 29.8, 15.8.

Methyl 3-(4-(3-(2-methoxy-5-(2-(methoxycarbonyl)-ethyl)-phenyl)prop-2-ynyloxy)-3-ethynylphenyl)propanoate (538a). To a solution of 494 (42 mg, 0.21 mmol) and 543 (74.3 mg, 0.24 mmol) in DMF (700 µL) was added K₂CO₃ (55 mg, 0.40 mmol), and the reaction was stirred overnight. The reaction was diluted with H₂O (4 mL) and extracted with Et₂O (5 mL × 3). The combined organic extracts were washed with water (3 mL × 2) then brine (5 mL), dried (Na₂SO₄), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (10:1) to give 76.3 mg (88%) of 538a as a colorless oil. 1H NMR (300 MHz, CDCl₃) δ 7.31 (d, J = 1.7 Hz, 1 H), 7.23-7.07 (m, 4 H), 6.77 (d, J = 8.5 Hz, 1 H), 5.03 (s, 2 H), 3.83 (s, 3 H), 3.66 (s, 3 H), 3.65 (s, 3 H), 3.29 (s, 1
H, 2.95-2.78 (m, 4 H), 2.66-2.50 (m, 4 H); 13C NMR (75 MHz, CDCl$_3$) δ 173.1, 158.9, 157.6, 133.9, 133.5, 133.3, 132.5, 130.1, 130.0, 113.4, 112.0, 111.4, 110.9, 87.7, 84.1, 81.3, 80.0, 57.7, 55.9, 51.6, 35.7, 35.6, 29.82, 29.77.

Methyl 3-(7-(5-(2-(methoxycarbonyl)ethyl)-2-methoxyphenyl)-9-(3-hydroxypropyl)-6H-benzo[c]chromene-2-yl)propanoate (544). To a flame-dried microwave vial equipped with a stir bar was added 538a (29.6 mg, 0.068 mmol), pent-4-yn-1-ol (63 µL, 0.68 mmol), Cp*Ru(cod)Cl (2.6 mg, 0.0068 mmol), and dry toluene (1.7 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 15 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction vessel to room temperature, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/Et$_2$O (1:5) to give 27.6 mg (78%) of 544 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.61 (s, 1 H), 7.53 (s, 1 H), 7.19 (dd, J = 8.4 and 2.2 Hz, 1 H), 7.06-7.02 (m, 3 H), 6.89-6.83 (m, 2 H), 4.98-4.66 (m, 2 H), 3.83-3.64 (m, 11 H), 3.06-2.89 (m, 4 H), 2.83-2.75 (m, 2 H), 2.71-2.59 (m, 4 H), 2.06-1.92 (m, 2 H), 1.73 (br s, 1 H).

2,9-Di(3-hydroxypropyl)-7-(5-(2-(methoxycarbonyl)ethyl)-2-methoxyphenyl)-6H-benzo[c]chromene (545). LAH (5.5 mg, 0.14 mmol) was added to a solution of 544 (25 mg, 0.048 mmol) in THF (500 µL) at 0 °C, and the reaction was stirred for 1 h. Et$_2$O (1.3 mL), H$_2$O (5 µL), 15% NaOH (5 µL), and H$_2$O (10 µL), were added successively, and the mixture was stirred for 30 min. The mixture was filtered over celite, dried (Na$_2$SO$_4$), filtered, and concentrated to dryness to give 20.4 mg (91%) of 545 as a colorless oil. 1H NMR (300 MHz,
Methyl 3-(3-(2,2-dibromovinyl)-4-(hex-5-en-2-ynyloxy)phenyl)propanoate (550). To a solution of 490 (21 mg, 0.066 mmol), PPh₃ (22.5 mg, 0.086 mmol), and 549 (7.8 mg, 0.081 mmol) in DCM (310 µL) was added DIAD (16.9 µL, 0.086 mmol) at 0 °C, and the reaction was stirred for 2 h. More PPh₃ (3.5 mg, 0.017 mmol), DIAD (2.6 µL, 0.017 mmol) and 549 (2.5 mg, 0.026 mmol) were added, and the reaction was stirred overnight. The reaction was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (80:1) to give 23.5 mg (90%) of 550 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.61 (s, 1 H), 7.54 (d, J = 2.1 Hz, 1 H), 7.13 (dd, J = 8.4 and 2.1 Hz, 1 H), 6.95 (d, J = 8.4 Hz, 1 H), 6.05-5.70 (m, 2 H), 5.28 (ddd, J = 17.0, 3.4, and 1.8 Hz, 1 H), 5.16-5.01 (m, 3 H), 4.72 (t, J = 2.1 Hz, 2 H), 3.42-3.30 (m, 2 H), 3.03-2.97 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 153.4, 137.6, 133.0, 132.6, 132.0, 129.8, 129.5, 125.1, 116.6, 116.0, 112.7, 90.0, 85.0, 57.1, 39.4, 23.2.

Methyl 3-(3-ethynyl-4-(hex-5-en-2-ynyloxy)phenyl)propanoate (551). To a solution of 494 (67.3 mg, 0.33 mmol), PPh₃ (129.6 mg, 0.49 mmol), and 549 (47.5 mg, 0.49 mmol) in DCM (1.7 mL) was added DIAD (93.2 µL, 0.49 mmol) at 0 °C, and the reaction was stirred overnight at rt. The reaction was concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1) to give 86.8 mg (87%) of 551.
as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.30 (d, $J = 2.3$ Hz, 1 H), 7.14 (dd, $J = 8.5$ and 2.3 Hz, 1 H), 6.98 (d, $J = 8.5$ Hz, 1 H), 5.87-5.68 (m, 1 H), 5.26 (ddd, $J = 17.0$, 2.5, and 1.8 Hz, 1 H), 5.09 (ddd, $J = 10.0$, 2.5, and 1.7 Hz, 1 H), 4.79 (t, $J = 2.1$ Hz, 2 H), 3.67 (s, 3 H), 3.28 (s, 1 H), 3.03-2.94 (m, 2 H), 2.87 (t, $J = 7.7$ Hz, 2 H), 2.59 (t, $J = 7.7$ Hz, 2 H); 13C NMR (75 MHz, CDCl$_3$) δ 173.2, 157.5, 134.0, 133.3, 131.9, 130.0, 116.5, 113.1, 112.0, 85.1, 81.3, 80.0, 57.2, 51.7, 35.7, 29.9, 23.2.

Methyl 3-(3-ethynyl-4-methoxyphenyl)propanoate (548a). To a solution of 494 (181 mg, 0.89 mmol) in DMF (1.5 mL) at rt was added K$_2$CO$_3$ (245 mg, 1.77 mmol) and MeI (138 μL, 2.22 mmol), and the reaction was stirred for 20 h. H$_2$O (6 mL) and Et$_2$O (6 mL) were added, and the layers separated. The aqueous layer was extracted with Et$_2$O (6 mL \times 2). The combined organic extracts were washed with water (5 mL \times 2) then brine (5 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 174.7 mg (90%) of 548a as a reddish solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.29 (d, $J = 2.3$ Hz, 1 H), 7.14 (dd, $J = 8.5$ and 2.3 Hz, 1 H), 6.80 (d, $J = 8.5$ Hz, 1 H), 3.87 (s, 3 H), 3.66 (s, 3 H), 3.30 (s, 1 H), 2.86 (t, $J = 7.7$ Hz, 2 H), 2.58 (t, $J = 7.7$ Hz, 2 H); 13C NMR (75 MHz, CDCl$_3$) δ 173.1, 159.2, 133.9, 132.5, 130.2, 111.1, 110.8, 81.1, 80.1, 55.9, 51.6, 35.7, 29.8.

Methyl 3-(3-ethynyl-4-(tert-butyldimethylsilyloxy)phenyl)propanoate (548b). 494 (50 mg, 0.24 mmol) in DMF (200 μL) was added to a solution of TBDMSI (55.3 mg, 0.37 mmol) and imidazole (50 mg, 0.73 mmol) in DMF (150 μL) at 0 °C, and the reaction was
stirred overnight. H$_2$O (3 mL) and Et$_2$O (5 mL) were added and the layers separated. The aqueous layer was extracted with Et$_2$O (5 mL × 2), and the combined organic extracts were washed with water (3 mL × 2) then brine (3 mL), dried (Na$_2$SO$_4$), and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1) to give 74.2 mg (96%) of 548b as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.24 (d, J = 2.3 Hz, 1 H), 7.03 (dd, J = 8.3 and 2.3 Hz, 1 H), 6.73 (d, J = 8.3 Hz, 1 H), 3.66 (s, 3 H), 3.16 (s, 1 H), 2.85 (t, J = 7.8 Hz, 2 H), 2.58 (t, J = 7.8 Hz, 2 H), 1.02 (s, 9 H), 0.21 (s, 6 H).

Methyl 3-(9-(5-(2-(methoxycarbonyl)ethyl)-2-methoxy phenyl)-7-allyl-6H-benzo[c]chromen-2-yl)propanoate (552a). To a flame-dried microwave vial equipped with a stir bar was added 551 (15.8 mg, 0.056 mmol), 548a (122 mg, 0.56 mmol), Cp*Ru(cod)Cl (2.1 mg, 0.0056 mmol), and dry toluene (1.4 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 15 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction vessel to room temperature, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1) to give 18.8 mg (67%) of 552a as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.71 (br s, 1 H), 7.56 (d, J = 2.0 Hz, 1 H), 7.27 (br s, 1 H), 7.21-7.14 (m, 2 H), 7.06 (dd, J = 8.2 and 2.0 Hz, 1 H), 6.97-6.88 (m, 2 H), 6.07-5.88 (m, 1 H), 5.18-4.99 (m, 4 H), 3.81 (s, 3 H), 3.69 (s, 3 H), 3.67 (s, 3 H), 3.48-3.40 (m, 2 H), 3.02-2.89 (m, 4 H), 2.71-2.60 (m, 4 H).
Methyl 3-(9-(5-(2-(methoxycarbonyl)ethyl)-2-(tert-butyldimethylsilyloxy)phenyl)-7-allyl-6H-benzo[c]chromen-2-yl)propanoate (552b). To a flame-dried microwave vial equipped with a stir bar was added 551 (12 mg, 0.043 mmol), 548b (56 mg, 0.18 mmol), Cp*Ru(cod)Cl (1.7 mg, 0.0045 mmol), and dry toluene (1.1 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 15 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction vessel to room temperature, the solution was concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1) to give 15.1 mg (58%) of 552b as a colorless oil. 1H NMR (300 MHz, CDCl3) δ 7.70 (br s, 1 H), 7.57 (d, J = 2.2 Hz, 1 H), 7.29-7.24 (m, 1 H), 7.17 (d, J = 2.2 Hz, 1 H), 7.10-7.01 (m, 2 H), 6.91 (d, J = 8.2 Hz, 1 H), 6.85 (d, J = 8.2 Hz, 1 H), 6.03-5.84 (m, 1 H), 5.19-4.92 (m, 4 H), 3.71-3.61 (m, 6 H), 3.46-3.36 (m, 2 H), 3.01-2.86 (m, 4 H), 2.70-2.57 (m, 4 H), 0.79 (s, 9 H), −0.05 (s, 6 H).
CHAPTER 7: Progress Towards the Total Synthesis of Streptomyces Anticancer Natural Products

7.1 Streptomyces Antitumor Natural Products

7.1.1 Streptonigrin

Streptomyces species produce a wide variety of biologically active natural products including polyketides, peptides, and polysaccharides. In 1960, Rao and Cullen isolated a novel metabolite, streptonigrin (558), from *Streptomyces flocculus*.\(^{322}\) Streptonigrin showed broad-spectrum antibiotic activity against gram-positive and gram-negative bacteria as well as antitumor activity (Figure 7.1). The same compound was isolated in France as rufochromomycin from *S. rufochromogenes* and *S. echinatus* and in the Soviet Union as bruneomycin from *Actinomyces albus var. bruneomycini*.\(^{323-325}\) In 1963, Rao, Biemann, and Woodward unveiled the structure of streptonigrin.\(^{326}\) The phenylpyridylquinolinequinone core structure was unique for secondary metabolites from *Streptomyces*, and subsequent studies showed a novel biochemical pathway was responsible for the production of streptonigrin.\(^{327-330}\)

![Streptonigrin (558)](image)

Figure 7.1. Streptonigrin (558).

The promise of its anticancer activity was short lived as clinical trials showed it to be highly toxic.\(^{327, 330}\) In efforts to produce less toxic analogues, structure-activity studies were...
conducted by various groups to determine the key components for biological activity. Rao compiled the various studies and determined the partial structure 559 as the minimum structure required for activity (Figure 7.2). Interestingly, this partial structure contains possible metal binding groups. In fact, a redox active metal such as Fe or Cu is necessary for full anticancer activity.

![Figure 7.2. Minimal structural requirements for biological activity.](image)

The intriguing structure and promising biological activity of streptonigrin made its synthesis quite desirable from both the chemical and biological perspectives. Accordingly, many approaches to the core structure have been developed including models of the C-, AB-, CD-, ABC-, and ABCD-ring systems (see G. Bringmann et al. *Tetrahedron* 2004, 60, 3539–3574 for details). To date, there have been two total syntheses of streptonigrin. The first, by Weinreb, took 20 years and more than 30 steps to complete in 1980 and was followed by Kende’s total synthesis in 1981. The Boger group completed a formal synthesis of streptonigrin in 1985.

7.1.2 Previous Syntheses of Streptonigrin

As mentioned above, there have been two total syntheses of streptonigrin as well as one formal synthesis. Weinreb’s synthesis of streptonigrin was accomplished in 30 steps and in 0.013% overall yield. A key transformation involved the imino Diels-Alder cycloaddition of the diene 561 (prepared in 6 steps from 560) and the hydantoin 562 towards the C-D ring.
precursor 563a. A fourteen step sequence then supplied phosphonate 564 which underwent a Horner-Wadsworth-Emmons reaction with the aldehyde 565 to provide the enone 566. This enone then underwent a modified Friedlander reaction to 567 to construct the A-B ring system (Scheme 7.1). A further seven steps was required to furnish synthetic streptonigrin. 342

Scheme 7.1. Weinreb’s total synthesis of streptonigrin.

Shortly after Weinreb’s report, Kende disclosed his group’s approach to streptonigrin. Condensation of the known ketoamine 568 with methylacetoacetate (569) to 570 provided access to the C and D rings. Further elaboration to 571 in five steps set the stage for the introduction of the A and B rings via reaction with 572 to give the complete core structure of streptonigrin 573. Another 15 steps is required to obtain synthetic streptonigrin (Scheme
Despite the length, a total yield of 0.13%, an order of magnitude better than Weinreb’s synthesis, was obtained.

Boger’s formal synthesis of streptonigrin relies upon two sequential inverse demand Diels-Alder reactions. The first, between 574 and 575, provides the tricycle 576 in 82% yield and constructs the A and B rings of streptonigrin. The second Diels-Alder reaction forms the C ring by bringing together the A and B rings in 576 with the D ring in 577 to give the tetracycle 578 and its regioisomer in a 1:1 ratio. Four additional steps provide entry into an intermediate previous prepared by Kende (579, Scheme 7.3).
7.1.3 Lavendamycin

In 1982, Doyle reported the isolation of lavendamycin (580) from *Streptomyces lavendulae* and established its structure as a tricyclic β-carboline subunit attached to a 7-aminoquinolinequinone (Figure 7.3).\(^{345,346}\) The structural similarity with streptonigrin is clearly distinguished and lavendamycin’s role in the biosynthetic pathway of streptonigrin as an intermediate or a shunt metabolite is a possibility.\(^{341}\) As streptonigrin, lavendamycin displayed antibiotic activity as well as antitumor activity\(^{332,345}\) and has attracted much synthetic interest. Several formal syntheses\(^{347-352}\) and three total syntheses of lavendamycin methyl ester have been reported.\(^{353-356}\)

Figure 7.3. Lavendamycin (580).
7.1.4 Previous Syntheses of Lavendamycin

The first total synthesis of lavendamycin methyl ester (585) was accomplished by Kende’s group in 1984. Their strategy involved coupling of the acid 581 with β-methyltryptophan (582) to provide the amide 583 in 92% yield. Formation of the β-carboline structure was achieved via a Bischler-Napieralski condensation to 584. Four more steps provided the methyl ester (Scheme 7.4).³⁵³

![Scheme 7.4. Kende's synthesis of lavendamycin methyl ester.](image)

Similar to his synthesis of streptonigrin, Boger takes advantage of an inverse demand Diels-Alder reaction to form the C ring of lavendamycin. In the event, the triazine 586 and the enamine 587 cyclize with loss of nitrogen to give 588. After nine steps, the D ring is formed via Pd-catalyzed arylamine formation from the bromide 589 giving 590 in 89% yield. Friedlander condensation with the aldehyde 591 provides the pentacyclic structure 592 that is taken on to lavendamycin methyl ester in four subsequent steps (Scheme 7.5).³⁵⁴
Scheme 7.5. Boger’s synthesis of lavendamycin methyl ester.

Recently, Behforouz reported an efficient synthesis of lavendamycin methyl ester in only 8 steps and >30% overall yield. Key to the synthesis is the rapid synthesis of the A and B ring precursor 594 from 593 in only six steps. Condensation of 593 with β-methyltryptophan effectively constructs the C ring furnishing 595 in 79% yield. Treatment with acid provides 585 quantitatively (Scheme 7.6).355, 356

Scheme 7.6. Behforouz’s synthesis of lavendamycin methyl ester.
7.2 Progress Towards the Total Synthesis of Streptonigrin

7.2.1 Retrosynthetic Analysis

At first glance, a route towards streptonigrin utilizing a [2+2+2] cyclotrimerization strategy does not seem feasible given the lack of a fused ring system. However, drawing on experience from the synthesis of illudinine and the cannabinoids, we envisioned generating streptonigrin from the opening of the tricyclic lactone 596 followed by a Curtius or a Hofmann rearrangement to the amine (Scheme 7.7). This tricyclic lactone 596 contains the familiar diarylpyran (or pyrone) structure seen previously in the cannabinoid syntheses (see Scheme 5.16). We hypothesized that the pyridine ring (shown in bold) could be formed from a regioselective [2+2+2] cyclotrimerization between the diyne 597 and the nitrile 598. This diyne would be prepared from the commercially available salicylaldehyde derivative 599 and the suitably substituted quinolinequinone 600. Initial investigations would focus on the [2+2+2] cyclotrimerization event towards tricyclic lactones similar to 596 and their subsequent transformations to install the amino functionality on C-6’.
7.2.2 Early Model Studies Towards Streptonigrin

The first part of the model studies towards streptonigrin focused on the cyclotrimerization reaction of the diyne 601 or 602, where the pyridine ring replaces the quinolinequinone portion of streptonigrin and where the methyl group from the C ring is absent (Figure 7.4). The ester diyne 602 would allow for a more streamlined synthesis, and, therefore, its synthesis was explored first.

In hopes of coupling a carboxylic acid and a phenol to form 601, attempts to oxidize the known propargyl alcohol 603357 to the acid 604 were investigated. Unfortunately, Jones oxidation (Jones reagent, acetone, 0 °C) of 603 failed to give any isolable product. Two step
procedures where PCC (DCM, rt) or MnO₂ (DCM, rt) were used to first oxidize the alcohol to the aldehyde 605 were equally unsuccessful resulting in decomposition of the starting material (Scheme 7.8). Disconnection in this fashion was abandoned, and other means to make the ester were then explored.

Scheme 7.8. Attempted oxidations of 603.

Alkylation of the lithium acetylide of ethynylpyridine with the chloroformate formed from the known phenol 606 was unsuccessful towards 607. A two-step approach was then attempted. Coupling of the phenol 606 with propiolic acid provided the ester 608 in 51% yield. However, Sonogashira (2-bromopyridine, K₂CO₃, CuI, Pd(PPh₃)₂Cl₂, THF, 60 °C) or Negishi (2-bromopyridine, ZnBr₂, TEA, Pd(PPh₃)₂Cl₂, THF, 60 °C) coupling with 2-bromopyridine failed to yield the desired ester 607 (Scheme 7.9).

Scheme 7.9. Attempted synthesis of the ester 607.
Turning our attention to the synthesis of the ether 602, the alcohol 603 was coupled with either 606 or 408 under Mitsunobu reaction conditions. Both of the phenols were fully converted to the product ethers, 609 or 602, respectively, however isolation of the ether 609 from the hydrazine by-product proved difficult. On the other hand, the desilylated ether 602 could be readily isolated in 93% yield (Scheme 7.10). With 602 in hand, an examination of the [2+2+2] cyclotrimerization reaction was conducted.

![Scheme 7.10. Synthesis of the diyne 602.](image)

Initial cyclotrimerization studies employed acetonitrile as the nitrile component. Under closed vessel microwave conditions, a 42% yield of the desired tetracycle 611 as one regioisomer was obtained using the CpCo(CO)$_2$ catalyst (Entry 1, Table 7.1). This regioisomer is expected on the basis mechanism of the cyclotrimerization reaction giving pyridines and was confirmed by the 1H NMR chemical shift of the lone proton on the newly formed pyridine ring. Increasing the equivalents of acetonitrile and the catalyst loading each led to an increase in yield of 611 (Entries 2 and 3). Performing the reaction under open vessel microwave conditions led to a diminished yield (Entry 4), while performing the reaction with acetonitrile as the solvent afforded a similar result (Entry 5). Methoxyacetonitrile cyclotrimerized in a similar fashion, providing a 51% yield of the tetracycle 612 (Entry 6).
Table 7.1. Cyclotrimerization reaction of the diyne 602. \(^a\) open vessel

\[
\begin{array}{cccc}
\text{Entry} & \text{R, eq} & \text{Co mol\%} & \text{Solvent} & \text{Yield (\%)} \\
1 & H, 10 & 10 & Xylenes & 42 \\
2 & H, 20 & 10 & Toluene & 54 \\
3 & H, 20 & 20 & Toluene & 57 \\
4 & H, 20 & 20 & Xylenes & 43^a \\
5 & H, 20 & 20 & CH_3CN & 46 \\
6 & OMe, 20 & 20 & Toluene & 51 \\
\end{array}
\]

On the basis of the oxidation of 459 to 460 for the synthesis of cannabinol (see Scheme 5.16), PCC was selected as the first reagent to affect the oxidation of the benzylic ether 611. Unfortunately, no reaction occurred, and other means to oxidize the methylene unit were surveyed (Entry 1, Table 7.2). Ruthenium catalyzed oxidation\(^{359}\) was more successful; however, starting material remained (Entry 2). Other chromium based oxidants\(^{360}\) fully converted the starting material, but isolation of the desired product was low (Entry 3). Oxidation with excess KMnO\(_4\) proved to be the most reliable method,\(^{318}\) providing the lactone 613 in a modest 49\% yield (Entry 4). Attempts to oxidize 612 with KMnO\(_4\) were unsuccessful.
Table 7.2. Oxidation of the benzylic ether 611.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCC, 40 °C DCM, 24 h</td>
<td>no rxn</td>
</tr>
<tr>
<td>2</td>
<td>RuO₂/NaIO₄ CCl₄, H₂O, CH₃CN 24 h</td>
<td>3:2 pdt/s.m.</td>
</tr>
<tr>
<td>3</td>
<td>CrO₃ AcOH/H₂O 65 °C, 16 h</td>
<td>low recovery</td>
</tr>
<tr>
<td>4</td>
<td>KMnO₄, CH₃CN rt, 2 d</td>
<td>49%</td>
</tr>
</tbody>
</table>

At this point, conditions to open the lactone ring and to form the amine functionality were needed. We hypothesized that access to the amine function would be possible through a Hofmann or Curtius rearrangement. For the Hofmann rearrangement, an amide is required while for the Curtius rearrangement an acyl azide intermediate is necessary. Converting the lactone 613 into an amide for the Hofmann rearrangement was first explored. Treatment of 613 with NH₃ in MeOH gave a mixture of starting material and the desired amide 614 (Scheme 7.11). Despite exposing the mixture to further NH₃/MeOH, full conversion was never realized. Furthermore, the amide underwent facile ring closure back to 613 under acidic conditions. Even when using the more nucleophilic hydrazine, full conversion to the hydrazide 615 was not accomplished. Because of these issues, efforts toward implementing a Curtius rearrangement were then attempted.

Scheme 7.11. Attempted synthesis of the amide 614 and the hydrazide 615.
Due to the facile ring closure back to the lactone, protection of the phenol after opening the lactone ring was deemed necessary prior to Curtius rearrangement. Basic hydrolysis of the lactone followed by quenching of the resultant phenoxide and carboxylate anions with benzyl bromide provide a bis-benzylated product that was saponified with KOH/EtOH to give the acid 616 in 40% yield over three steps (Scheme 7.12). Treatment of 616 with DPPA (diphenylphosphoryl azide) and TEA in toluene at 90 °C furnished a new compound whose 1H NMR spectrum did not provide conclusive evidence for the desired amine. Mass analysis, however, provided the necessary information to discern the outcome of the reaction. The new compound gave the m/z of [M + H]$^+$ as 394, 26 units higher than the expected product. This mass difference indicated an additional carbonyl group with the loss of two hydrogen atoms. On the basis of this result and the literature precedence for alternative Schmidt rearrangement products, the new compound was determined to be either 617 or 618. This result was surprising as these reaction conditions were successfully employed in previous syntheses of streptonigrin. Even if the rearrangement were successful on our model system, the low yields of the preceding steps were cause enough for concern, and attention was turned to alternative cyclotrimerization strategies to synthesize the core of streptonigrin.
7.2.3 An Ynamide Approach to Streptonigrin

A re-examination of our desired [2+2+2] cyclotrimerization reaction towards the core of streptonigrin and the subsequent manipulations needed to install the amine functionality led to an alternative approach to linking the phenyl-pyridyl ring structure that is to be formed in the cyclotrimerization event other than with a precursor to an amine (as in the original retrosynthetic analysis Scheme 7.7). This new linker would contain the functionality to be converted into streptonigrin’s C ring methyl group from 619. This strategy would require a nitrogen-alkyne bond in the diyne 620 and would preclude the need to install the amine functionality at a later point, as it would already be present (Scheme 7.13). Encouraged by the work of Witulski54 and others364 in the area of ynamide cyclotrimerizations toward benzenes, we set out to extend this methodology to the formation of pyridines. Further support for the potential success of this approach came with the recently published reports of the cyclotrimerization of ynamides with alkynes and nitriles.365
The most expedient route to a ynamide diyne utilized the diyne 417 as starting material as it had previously been prepared for the cannabinoid methodology. Bromination of the alkyne with NBS/AgNO$_3$ provided the alkynyl bromide 621 in 85% yield and set up the formation of the sp-C–N bond via Cu catalysis. Reaction of 621 with N-benzyl-p-toluenesulfonamide using CuSO$_4$·5 H$_2$O as the catalyst smoothly furnished the ynamide 622 in 89% yield (Scheme 7.14).

The cyclotrimerization of 622 with 2-cyanopyridine acting as the model nitrile for the quinolinequinone portion of streptonigrin could now be attempted. In this direction, 622 and
2-cyanopyridine were microwave irradiated in the presence of CpCo(CO)$_2$ to provide a single cyclotrimerization product (623a) in 63% yield (Scheme 7.15).

Scheme 7.15. Cyclotrimerization reaction of the diyne 622.

Assignment as this regioisomer instead of the regioisomer 623b was based upon the electronics of the diyne and nitrile systems51 where the nitrile nitrogen forms a bond with the least electron rich alkyne carbon. In this instance, the nitrogen of the ynamide increases the electron density about the adjacent carbon center more than the methyl substituent. This fact is visualized in the 13C NMR spectrum of 622 where the peak for the carbon adjacent to the ynamide is shifted upfield. Attempts were made to confirm the regioisomer assignment by detecting the through space coupling of the pyridine protons with either the benzyl methylene or the methyl group via 1D-NOESY experiments, but neither interaction was observed (Figure 7.5).

Figure 7.5. Desired NOE signals for regioisomer determination.

To lend credence to the regioisomer assignment, attempts to cyclotrimerize the diyne 622 with acetonitrile towards 624a or 624b were conducted (Scheme 7.16). We hypothesized that
the interaction between the protons of the two methyl groups in \textbf{624b} would be more easily observed in the NOESY experiment leading to a more definitive assignment of the regiochemical outcome of the cyclotrimerization reaction. Unfortunately, the cyclotrimerization with acetonitrile was unsuccessful with a large proportion of starting material remaining after irradiation. Thus, the regioselectivity of the cyclotrimerization reaction of \textbf{622} to \textbf{623} remains uncertain, however, a single regioisomer was obtained.

\begin{center}
\textbf{Scheme 7.16. Attempted cyclotrimerization reaction of \textbf{622} with acetonitrile.}
\end{center}

Attempts to cleave the ether linkage between the aryl rings were then explored. Hydrogenation of \textbf{623a} in MeOH/AcOH failed to open the pyran ring to \textbf{625}, but debenzylolation of the amide did occur based on the mass of the crude product (Scheme 7.17). Cleavage of the ether with BBr$_3$ towards \textbf{626} was also unsuccessful leading to decomposition of the starting material. Other substrates more amenable to ring-opening were then pursued.

\begin{center}
\textbf{Scheme 7.17. Attempts to open the pyran ring of \textbf{623a}.}
\end{center}

Because opening of the lactone in \textbf{613} was successful, the synthesis of the analogous compound for the ‘ynamide strategy’ was undertaken (Scheme 7.18). Towards this end, the phenol \textbf{408268} was coupled with the carboxylic acid \textbf{627} to provide a 68\% yield of the ester
Bromination of the terminal alkyne in **628** furnished **629** in 93% yield. Attempts to form the desired ynamide diyne **630** from **629** were unsuccessful with decomposition of the starting material occurring instead. The instability of the starting material most likely arises from the alkynoate structure, and a new route towards **630** was necessary. The bromide **629** failed to undergo cyclotrimerization with 2-cyanopyridine (CpCo(CO)$_2$, PhCH$_3$, MW 300 W, 30 min), however, the starting material **629** was recovered.

![Scheme 7.18. Attempted synthesis of the diyne 630.](image)

A modified route to **630** would form the ynamide functionality first and then form the ester linkage to install the second alkyne. Bromination of the TBS-protected phenol **631** gave the alkynylbromide **632** in 83% yield (Scheme 7.19). At this point, formation of the C–N bond was tried as before, however only a 22% yield of the desired ynamide **633** was obtained. The benzofuran side product **634** (<40%) was also present in the reaction mixture, however, purification proved difficult due to its co-elution with another side product.
Speculating that a more stable protecting group would provide a higher yield in the ynamide coupling step, the tri-iso-propylsilyl protected material was synthesized from 606 (Scheme 7.20). In this case, removal of the alkynyl-TMS group in 635 was accomplished in the same step as the bromination to provide 636 in 85% yield. Just as expected, ynamide formation towards 637 proceeded in a more efficient 57% yield although the reaction progressed at a slower rate. The benzofuran by-product 634 was detected as well. Fluoride-mediated deprotection gave a crude phenol that was used in the coupling step without purification. Under these esterification conditions, however, only the benzofuran by-product 634 could be detected. Similar cyclizations to benzofurans promoted by base, transition metal catalysts (e.g. Pd, Cu, and Pt), and TBAF are known. In fact, benzofuran formation from TBS-protected substrates similar to 633 is known.
Attempts to synthesize the ynamide diyne 641 with the ester and ether positions switched from 638 through 639 and 640 were unsuccessful (Scheme 7.21). Once again the sensitive nature of the alkynoate led to decomposition.

Current model studies towards streptonigrin are focusing on the ester 630 and derivatives.
7.3 Progress Towards the Total Synthesis of Lavendamycin

7.3.1 Retrosynthetic Analysis

Inspired by Witulski’s synthesis of carbozoles,54 we envisioned deriving lavendamycin (280) from a [2+2+2] cyclotrimerization reaction of the diyne 642 and a cyanoformate (Scheme 7.22). This diyne would be obtained by linking 643 and 644 via an equivalent of acetylene. In order to determine the most efficient means to synthesize the diyne, model studies were undertaken. These model studies would not only determine the best conditions for the diyne synthesis, but would also provide crucial information on the cyclotrimerization event towards β-carbolines 646, including the regioselectivity and efficiency with different nitriles. For this model study, the diyne 645 ($R^4 = Ts$) was chosen as a model substrate where the pyridine ring replaces the quinolinequinone structure present in lavendamycin.
Retrosynthetic Analysis:

![Retrosynthetic diagram]

Model Study:

![Model study diagram]

Scheme 7.22. Retrosynthesis of lavendamycin (580) and model study towards β-carbolines 646.

7.3.2 Current Progress Towards Lavendamycin

Beginning with the known tosylamide 647, an expedient means to install the alkynylpyridine structure of the diyne 645 was investigated. Reaction of 647 with the known iodonium salt 648 effectively incorporated the second alkyne to provide 649 in 61% yield (Scheme 7.23). Attempts to append the pyridine portion of the diyne via Sonogashira reaction with 2-bromopyridine, however, were unsuccessful due to decomposition of the ynamide 649, and an alternative approach to the diyne 645 was sought.
Scheme 7.23. Attempted synthesis of the diyne 645.

By disconnecting the N-alkynyl bond in the diyne 645, the previously used Cu-mediated coupling could potentially provide access to the desired diyne structure. In this direction, 647 and freshly prepared known alkynylbromide 650376 were heated in the presence of CuSO\textsubscript{4}·5H\textsubscript{2}O/K\textsubscript{3}PO\textsubscript{4}/1,10-phenanthroline to presumably give the diyne 645 in a modest 55% yield (over 3 steps from 2-(2-(trimethylsilyl)ethynyl)pyridine377 (Scheme 7.24). However, the spectral data for the isolated product matched the structure of 651 instead.

Not surprisingly, the indole 652, formed via Cu-catalysis, was also detected in the reaction mixture.378 We postulated that Cu-catalyzed indole formation led first to the intermediate 653 (Scheme 7.25). This intermediate then underwent coupling with the alkynylbromide 650 to provide the 3-alkynylindole 651.
While the related one-pot transformations between α-alkynyl amides and vinyl triflates or aryl halides under palladium catalysis are known, this copper catalyzed variation was unprecedented. Other metals such as Zn and Au have been shown to effect indole formation and subsequent coupling to electrophiles. Further investigations into this novel strategy towards 2,3-substituted indoles are underway. Extension of this methodology to the formation of 2,3-substituted benzofurans and indenes is also being explored.

Despite the new-found methodology, the route for the synthesis of the diyne towards lavendamycin needed to be revised. Current explorations towards the diyne focus on installing the ethynylpyridine portion of the diyne to give followed by formation of the second alkyne from the known amide (Scheme 7.26). Alternatively, a formamide derivative could be transformed into the ynamide via the Corey-Fuchs protocol and the pyridine unit added via Sonogashira reaction.
7.4 Summary and Future Directions

7.4.1 Streptonigrin

Two approaches towards the synthesis of streptonigrin via a [2+2+2] cyclotrimerization reaction have been devised and investigated through model studies. The first model study relies on the cyclotrimerization reaction between the pyridyl-substituted diyne 610 and a nitrile; however, subsequent transformations towards appropriately substituting the C ring were troublesome (See Scheme 7.11 and 7.12). The second model study utilized diynes containing an ynamide (622) representing the amino functionality on the C ring. Initial results were promising, but the synthesis of more elaborate diynes has been problematic (See Scheme 7.18 and 7.21). Future studies will focus on the ynamide 656 whose cyclotrimerization reaction with an appropriate nitrile will provide the fully substituted C ring as in 657 with synthetic handles to install the correct functionality (Scheme 7.27)

![Scheme 7.27. Future model study towards the synthesis of streptonigrin.](image)

7.4.2 Lavendamycin

Several routes to synthesize the model diyne 645 for the lavendamycin model studies have unsuccessfully attempted to furnish the desired ynamide structure. Future model studies will take an alternative approach to lavendamycin and mirror the first approach investigated
for streptonigrin (see Scheme 7.7). Instead of an ether linkage as in 597, an amine or amide linker will be taken advantage of to provide the model diyne 658 (Scheme 7.28). After cyclotrimerization reaction with a nitrile, cleavage of the benzylamine linker of the 5,6-dihydro-benzo[c][2,7]naphthyridine 659 to 660 will set the stage for an intramolecular Buchwald-Hartwig amination reaction384, 385 to form the tricyclic β-carboline core of lavendamycin (661, Scheme 7.28). The use of alkynylhalides in cyclotrimerization reactions towards pyridine derivatives is unknown; however, their use in cyclotrimerization reactions towards halogenated benzenes has been reported.229

\[
\begin{align*}
&\text{CpCo(CO)}_2 \quad \text{MW} \\
&\text{cleavage}
\end{align*}
\]

\[
\begin{align*}
&\text{Scheme 7.28. Future model study towards lavendamycin.}
\end{align*}
\]
7.5 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Tetrahydrofuran, toluene, xylenes, and diethyl ether were distilled from sodium/benzophenone ketyl prior to use. Diisopropylamine, triethylamine, DMSO, DCM, DMF, 1,2-dichloroethane, CH$_2$CN and pyridine were distilled from calcium hydride and stored over 4 Å molecular sieves. Other reagents and solvents obtained from commercial sources were stored under nitrogen and used directly without further purification. n-BuLi and MeLi were titrated against N-pivaloyl-o-toluidine. Melting points were obtained from a Mel-Temp capillary melting point apparatus and are uncorrected. High resolution mass spectral analysis (HRMS) was performed at North Carolina State University. NMR spectra were obtained using a Varian Gemini GN-300 (300 MHz) or Varian Mercury 300 (300 MHz) spectrometer. Chemical shifts are in δ units (ppm) with TMS (0.0 ppm) used as the internal standard for 1H NMR spectra and the CDCl$_3$ absorption (77.2) for 13C NMR spectra. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer.

2-(2-(Trimethylsilyl)ethynyl)phenyl propiolate (608). To a solution of 606 (20 mg, 0.11 mmol) and DMAP (1 mg, 0.007 mmol) in DCM (210 µL) was added DCC (24 mg, 0.12 mmol) in DCM (200 µL × 2), and the reaction was stirred for 20 min. Et$_2$O (2 mL) was added, and the solution was filtered over celite and concentrated. The residue was purified by flash chromatography, eluting with hexanes/EtOAc (20:1), to give 12.9 mg (51%) of 608 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.52 (dd, J = 7.6 and 1.5 Hz, 1 H), 7.37 (dt, J =
7.6 and 1.5 Hz, 1 H), 7.23 (dt, \(J = 7.6 \) and 1.5 Hz, 1 H), 7.13 (dd, \(J = 7.6 \) and 1.5 Hz, 1 H), 3.07 (s, 1 H), 0.27 (s, 9 H).

2-(3-(2-Ethynylphenoxy)prop-1-ynyl)pyridine (602). To a solution of 408 (19.5 mg, 0.17 mmol), 603 (20 mg, 0.15 mmol) and PPh\(_3\) (51 mg, 0.20 mmol) in DCM (750 µL) was added DIAD (38 µL, 0.20 mmol) dropwise at rt. The reaction was stirred for 25 min and concentrated. The residue was purified by flash chromatography on SiO\(_2\), eluting with hexanes/EtOAc (3:1 to 1:1), to give 32.7 mg (93%) of 602 as a slight yellow solid. IR (NaCl, thin film, DCM) 1563, 1487, 1464, 1448, 1429, 1372, 1291, 1265, 1225, 1165, 1110, 1048, 1023, 778, 754, 616; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 8.64-8.54 (m, 1 H), 7.64 (ddd, \(J = 7.6, 7.6, \) and 1.8 Hz, 1 H), 7.49 (dd, \(J = 7.6 \) and 1.7 Hz, 1 H), 7.41 (ddd, \(J = 7.6, 1.1, \) and 1.1 Hz, 1 H), 7.35 (ddd, \(J = 8.4, 7.6, \) and 1.7 Hz, 1 H), 7.27-7.21 (m, 1 H), 7.15 (dd, \(J = 8.4 \) and 0.9 Hz, 1 H), 6.97 (ddd, \(J = 7.6, 7.6, \) and 1.1 Hz, 1 H), 5.06 (s, 2 H), 3.33 (s, 1 H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 158.7, 150.0, 142.4, 136.2, 134.3, 130.2, 127.4, 123.3, 121.4, 112.8, 112.0, 86.7, 83.5, 81.6, 79.8, 57.0.

2-Methyl-4-(pyridin-2-yl)-5H-chromeno[3,4-c]pyridine (611). To a flame-dried microwave vial equipped with a stir bar was added 602 (22 mg, 0.094 mmol), CH\(_3\)CN (98 µL, 1.89 mmol), CpCo(CO)\(_2\) (2.2 µL, 0.019 mmol), and dry toluene (2.3 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 30 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction to rt, the solution was concentrated, and the residue was purified by silica gel chromatography, eluting with
DCM/EtOAc (4:1 to 3:1), to give 14.7 mg (57%) of 611 as an off white solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.74-8.60 (m, 1 H), 8.13 (d, \(J = 8.1\) Hz 1 H), 7.85 (dt, \(J = 7.7\) and 1.8 Hz, 1 H), 7.77 (dd, \(J = 7.7\) and 1.5 Hz, 1 H), 7.47 (s, 1 H), 7.40-7.27 (m, 2 H), 7.09 (dt, \(J = 7.5\) and 1.1 Hz, 1 H), 7.01 (dd, \(J = 8.1\) and 1.1 Hz, 1 H), 5.49 (s, 2 H), 2.67 (s, 3 H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 157.7, 157.2, 156.1, 152.8, 148.3, 139.3, 136.8, 131.4, 124.14, 124.09, 123.3, 123.1, 122.2, 121.3, 117.6, 115.7, 66.1, 24.8.

2-(Methoxymethyl)-4-(pyridin-2-yl)-5H-chromeno[3,4-c]pyridine (612). To a flame-dried microwave vial equipped with a stir bar was added 602 (30 mg, 0.13 mmol), methoxyacetonitrile (191 µL, 2.57 mmol), CpCo(CO)\(_2\) (3.0 µL, 0.026 mmol), and dry toluene (3.1 mL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 30 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction to rt, the solution was concentrated, and the residue was purified by silica gel chromatography, eluting with DCM/EtOAc (3:1 to 1:1), to give 20 mg (51%) of 612 as an off white solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.73-8.62 (m, 1 H), 8.14 (dt, \(J = 8.0\) and 0.9 Hz, 1 H), 7.91-7.80 (m, 2 H), 7.76 (s, 1 H), 7.40-7.27 (m, 2 H), 7.10 (dt, \(J = 7.6\) and 1.2 Hz, 1 H), 7.02 (dd, \(J = 8.0\) and 0.9 Hz, 1 H), 5.54 (s, 2 H), 4.70 (s, 2 H), 3.54 (s, 3 H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 157.5, 156.1, 152.8, 148.4, 139.9, 136.9, 131.6, 124.9, 124.4, 124.2, 123.2, 122.3, 121.4, 117.6, 113.7, 75.7, 66.1, 59.0.

2-Methyl-4-(pyridin-2-yl)-5H-chromeno[3,4-c]pyridin-5-one (613). To a solution of 611 (8.0 mg, 0.029 mmol) in CH\(_3\)CN (740 µL) was added KMnO\(_4\) (27 mg, 0.17 mmol), and the
reaction was stirred for 36 h. More KMnO₄ (9 mg, 0.058 mmol) was added and stirring was continued for 24 h. At this point, the reaction mixture was concentrated, H₂O (3 mL) was added and extracted with EtOAc (6 mL × 3). The combined organic extracts were washed with H₂O (5 mL × 2) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness to give 4.1 mg (49%) of 613 as a white solid. ¹H NMR (300 MHz, CD₃CN) δ 8.68-8.55 (m, 1 H), 8.28 (d, J = 7.9 Hz, 1 H), 8.10 (s, 1 H), 7.88 (t, J = 7.7 Hz, 1 H), 7.65 (t, J = 7.7 Hz, 1 H), 7.56-7.30 (m, 4 H), 2.71 (s, 3 H).

4-(2-(Benzyl oxy)phenyl)-6-methyl-2-(pyridin-2-yl)pyridine-3-carboxylic acid (616). To a solution of 613 (8.0 mg, 0.028 mmol) in DMSO (240 µL) was added 4 N LiOH (78 µL) and the reaction was heated to 60 °C for 7 h. Benzyl bromide (20 µL, 0.17 mmol) was added and heating was continued overnight. The reaction was cooled to rt, and sat. NH₄Cl (2 mL) was added. The aqueous layer was extracted with EtOAc (4 mL × 3). The combined organic extracts were washed with H₂O (2 mL) and brine (2 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The crude ester was taken up in EtOH (170 µL), treated with saturated aqueous KOH (170 µL), and heated at 80 °C overnight. After cooling the reaction to rt, the pH was adjusted to 7.4 using HCl (1 M) and NaOH (1 M). The aqueous layer was extracted with EtOAc (4 mL × 3), and the combined organic layers were concentrated to dryness to give 4.2 mg (40%, 3 steps) of 616 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.57-8.47 (m, 1 H), 8.26 (d, J = 8.1 Hz, 1 H), 7.96 (t, J = 7.9 Hz, 1 H), 7.50-7.17 (m, 9 H), 7.04 (t, J = 7.6 Hz, 1 H), 6.96 (d, J = 8.1 Hz, 1 H), 5.10 (s, 2 H), 4.71 (s, 1 H), 2.66 (s, 3 H).
1-(2-Bromoethynyl)-2-(but-2-ynyloxy)benzene (621). To a solution of 417 (50.0 mg, 0.29 mmol) and NBS (63 mg, 0.35 mmol) in DMF (1.2 mL) was added AgNO₃ (5.0 mg, 0.029 mmol). The reaction was stirred for 2 h and diluted with H₂O (4 mL). The aqueous layer was extracted with Et₂O (6 mL × 3). The combined organic extracts were washed with H₂O (5 mL × 2) and brine (5 mL), and the aqueous layer was extracted with Et₂O (5 mL). The combined organic extracts were dried (Na₂SO₄), filter and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (35:1), to give 62.1 mg (85%) of 621 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.42 (dd, J = 7.6 and 1.7 Hz, 1 H), 7.34-7.26 (m, 1 H), 7.03 (d, J = 8.1 Hz, 1 H), 6.92 (dt, J = 7.6 and 1.0 Hz, 1 H), 4.74 (q, J = 2.3 Hz, 2 H), 1.85 (t, J = 2.3 Hz, 3 H).

N-Benzyl-2-(2-(but-2-ynyloxy)phenyl)-N-tosylethynamine (622). A mixture of 621 (24.7 mg, 0.01 mmol), N-benzyl-p-toluenesulfonamide (26 mg, 0.099 mmol), CuSO₄·5H₂O (2.5 mg, 0.001 mmol), powdered K₃PO₄ (43 mg, 0.20 mmol), and 1,10-phenanthroline (3.6 mg, 0.020 mmol) in PhCH₃ (200 µL) was heated to 75 °C for 18 h. After cooling the reaction to rt, the mixture was diluted with EtOAc (3 mL) and filtered through a plug of celite on top of a plug of silica gel eluting with EtOAc. The filtrate was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1), to give 37.8 mg (89%) of 622 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2 H), 7.45-7.35 (m, 2 H), 7.34-7.26 (m, 5 H), 7.19 (d, J = 8.4 Hz, 2 H), 6.95 (d, J = 7.9 Hz, 1 H), 6.87 (dt, J = 7.7 and 1.1 Hz, 1 H), 4.64 (q, J = 2.3 Hz, 2 H), 4.60 (s, 2 H), 2.43 (s, 3 H), 1.84 (t, J = 2.3 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 157.9, 144.5, 134.9, 134.7, 132.7, 129.7,
129.2, 128.7, 128.6, 128.3, 128.0, 121.1, 113.1, 113.0, 86.8, 84.0, 74.2, 67.8, 57.2, 56.0, 21.8, 3.9.

N-Benzyl-4-methyl-2-(pyridin-2-yl)-N-tosyl-5H-chromeno[3,4-c]pyridin-1-amine (623a).

To a flame-dried microwave vial equipped with a stir bar was added 622 (15 mg, 0.035 mmol), 2-cyanopyridine (36.4 mg, 0.35 mmol), CpCo(CO)$_2$ (0.82 µL, 0.0070 mmol), and dry toluene (900 µL). The vial was flushed with nitrogen, capped with a microwave vial septum, and irradiated for 30 min in a CEM Discover microwave synthesizer at 300 W. After cooling the reaction to rt, the solution was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3:1 to 2:1), to give 11.7 mg (63%) of 623a as an off white solid. 1H NMR (300 MHz, CDCl$_3$) δ 8.69-8.64 (m, 1 H), 8.52 (dd, $J = 8.0$ and 1.5 Hz, 1 H), 7.76-7.62 (m, 3 H), 7.36-7.16 (m, 5 H), 7.13-6.85 (m, 7 H), 5.06 (d, $J = 14.2$ Hz, 1 H), 4.95 (d, $J = 14.2$ Hz, 1 H), 4.87 (d, $J = 12.9$ Hz, 1 H), 4.55 (d, $J = 12.9$ Hz, 1 H), 2.47 (s, 3 H), 2.43 (s, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 158.0, 155.5, 153.1, 148.1, 145.2, 145.1, 143.3, 136.3, 136.1, 134.3, 130.3, 129.8, 129.1, 128.4, 128.1, 127.8, 127.4, 125.4, 124.8, 122.9, 122.4, 120.1, 116.9, 65.3, 54.8, 21.7, 15.0.

4-(Benzyloxy)but-2-ynoic acid (627). To a solution of benzylpropargyl alcohol (200 mg, 1.4 mmol) in THF (700 µL) at −78 °C was added n-BuLi (2.47 M in hexanes, 554 µL, 1.4 mmol) dropwise. After 1 h a stream of dry CO$_2$ (generated from dry ice and passed through a drying tube containing drierite) was bubbled into the solution for 10 min. After warming to rt, the reaction was quenched with H$_2$O (4 mL) and extracted with EtOAc (3 mL × 2) to remove
starting material. The aqueous layer was acidified with aq. HCl (1 M) and extracted with EtOAc (5 mL × 3). The combined organic extracts were washed with brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness to give 239 mg (92%) of 627 as a white solid.

\[^1H \text{ NMR (300 MHz, CDCl}_3 \] \[\delta 7.45-7.28 (m, 5 H), 4.63 (s, 2 H), 4.32 (s, 2 H); \]
\[^{13}C \text{ NMR (75 MHz, CDCl}_3 \] \[\delta 157.3, 136.5, 128.7, 128.4, 86.1, 77.8, 72.3, 56.7. \]

2-Ethynylphenyl 4-(benzyloxy)but-2-ynoate (628). To a solution of 408 (52 mg, 0.44 mmol), 627 (94 mg, 0.49 mmol) and DMAP (spatula tip) in DCM (1 mL) was added DCC (112 mg, 0.54 mmol) in DCM (500 µL, 300 µL wash) dropwise at 0 °C. The reaction was warmed to rt and after 30 min was diluted with Et₂O (4 mL). The solution was filtered over celite, concentrated to dryness, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (9:1), to give 86 mg (68%) of 628 as a colorless oil. \[^1H \text{ NMR (300 MHz, CDCl}_3 \] \[\delta 7.57 (dd, J = 7.6 and 1.6 Hz, 1 H), 7.47-7.30 (m, 6 H), 7.25 (dt, J = 7.6 and 1.1 Hz, 1 H), 7.16 (dd, J = 8.1 and 1.1 Hz, 1 H), 4.65 (s, 2 H), 4.37 (s, 2 H), 3.31 (s, 1 H); \]
\[^{13}C \text{ NMR (75 MHz, CDCl}_3 \] \[\delta 151.2, 150.7, 136.7, 133.9, 130.3, 128.7, 128.3, 126.7, 122.2, 116.4, 86.3, 83.1, 78.1, 72.3, 56.9. \]

2-(2-Bromoethynyl)phenyl 4-(benzyloxy)but-2-ynoate (629). To a solution of 628 (20.5 mg, 0.071 mmol) and NBS (16 mg, 0.085 mmol) in DMF (350 µL) was added AgNO₃ (1.3 mg, 0.007 mmol). The reaction was stirred for 25 min in the dark, followed by addition of H₂O (2 mL). The aqueous layer was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with H₂O (3 mL × 2) and brine (2 mL), and the aqueous layer was
extracted with Et₂O (3 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1), to give 24.5 mg (93%) of 629 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.52 (dd, J = 7.7 and 1.7 Hz, 1 H), 7.43-7.31 (m, 6 H), 7.26-7.20 (m, 1 H), 7.16 (d, J = 8.1 Hz, 1 H), 4.67 (s, 2 H), 4.38 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 151.3, 150.8, 136.7, 133.8, 130.1, 128.7, 128.4, 128.4, 126.7, 122.3, 116.9, 86.4, 77.6, 74.8, 72.3, 56.9, 55.8.

(2-(2-Bromoethynyl)phenoxy)(tert-butyldimethylsilane (632). To a solution of 631 (83.0 mg, 0.36 mmol) and NBS (76 mg, 0.43 mmol) in DMF (1.4 mL) was added AgNO₃ (6.1 mg, 0.036 mmol). The reaction was stirred in the dark for 25 min and diluted with H₂O (6 mL). The aqueous layer was extracted with Et₂O (6 mL x 3). The combined organic extracts were washed with H₂O (5 mL x 2) and brine (5 mL), and the aqueous layer was extracted with Et₂O (6 mL). The combined organic extracts were dried (Na₂SO₄), filter and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (100:1), to give 92.2 mg (83%) of 632 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (dd, J = 7.6 and 1.7 Hz, 1 H), 7.21 (ddd, J = 8.1, 7.5, and 1.8 Hz, 1 H), 6.89 (ddd. J = 7.6, 7.6, and 1.0, 1 H), 6.81 (dd, J = 8.1 and 1.0 Hz, 1 H), 1.04 (s, 9 H), 0.22 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 157.5, 133.7, 130.0, 121.3, 120.0, 115.4, 77.6, 52.8, 25.8, 18.4, −4.2.

N-Benzyl-2-(2-(tert-butyldimethylsilyloxy)phenyl)-N-tosylethynamine (633). A mixture of 632 (40 mg, 0.13 mmol), N-benzyl-p-toluenesulfonamide (33.5 mg, 0.13 mmol),
CuSO$_4$·5H$_2$O (3.2 mg, 0.013 mmol), powdered K$_3$PO$_4$ (55 mg, 0.26 mmol), and 1,10-phenanthroline (4.6 mg, 0.026 mmol) in PhCH$_3$ (350 µL) was heated at 75 °C for 18 h. After cooling the reaction to rt, the mixture was diluted with EtOAc (3 mL), and filtered through a plug of celite on top of a plug of silica gel eluting with EtOAc. The filtrate was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (25:1), to give 13.9 mg (22%) of 633 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.77 (d, J = 8.4 Hz, 2 H), 7.40-7.20 (m, 8 H), 7.14 (ddd, J = 8.1, 7.5, and 1.8 Hz, 1 H), 6.85 (dt, J = 7.5 and 1.0 Hz, 1 H), 6.77 (dd, J = 8.1 and 1.0 Hz, 1 H), 4.60 (s, 2 H), 2.44 (s, 3 H), 0.91 (s, 9 H), 0.12 (s, 6 H).

2-(2-(Tri-iso-propylsilyloxy)phenyl)-ethynyltrimethylsilane (635). To a solution of 606 (51 mg, 0.27 mmol) and imidazole (55 mg, 0.80 mmol) in DMF (300 µL) at 0 °C was added TIPSCl (86 µL, 0.40 mmol). After 1 h, the reaction was diluted with H$_2$O (4 mL) and extracted with Et$_2$O (4 mL × 3). The combined organic extracts were washed with H$_2$O (5 mL × 2) and brine (5 mL), dried (Na$_2$SO$_4$), filtered and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (100:1), to give 86.6 mg (93%) of 635 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.40 (dd, J = 7.6 and 1.8 Hz, 1 H), 7.20-7.11 (m, 1 H), 6.91-6.79 (m, 2 H), 1.40-1.20 (m, 3 H), 1.20-1.06 (m, 3 H), 1.20-1.06 (m, 18 H), 0.22 (s, 9 H).

(2-(2-Bromoethynyl)phenoxy)tri-iso-propylsilane (636). To a solution of 635 (84.7 mg, 0.24 mmol) and NBS (54 mg, 0.31 mmol) in DMF (1.2 mL) was added AgNO$_3$ (4.1 mg,
0.024 mmol). The reaction was stirred in the dark for 7 h and diluted with H₂O (6 mL). The aqueous layer was extracted with Et₂O (6 mL × 3). The combined organic extracts were washed with H₂O (5 mL × 2) and brine (5 mL), and the aqueous layer was extracted with Et₂O (6 mL). The combined organic extracts were dried (Na₂SO₄), filter and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (175:1), to give 73.6 mg (85%) of 636 as a colorless oil.

\[^1H \text{NMR (300 MHz, CDCl}_3 \delta 7.36 (dd, J = 7.6 \text{ and } 1.8 \text{ Hz, 1 H}), 7.22-7.13 (m, 1 H), 6.93-6.76 (m, 2 H), 1.42-1.21 (m, 3 H), 1.20-1.06 (m, 18 H). \]

N-Benzyl-2-(2-(tri-iso-propylsilyloxy)phenyl)-N-tosylethynamine (637). A mixture of 636 (70.7 mg, 0.20 mmol), N-benzyl-p-toluenesulfonamide (52.2 mg, 0.20 mmol), CuSO₄·5H₂O (5.0 mg, 0.020 mmol), powdered K₃PO₄ (85 mg, 0.40 mmol), and 1,10-phenanthroline (7.2 mg, 0.040 mmol) in PhCH₃ (400 µL) was heated to 75 °C for 18 h. After cooling the reaction to rt, the mixture was diluted with EtOAc (3 mL) and filtered through a plug of celite on top of a plug of silica gel eluting with EtOAc. The filtrate was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (30:1), to give 61 mg (57%) of 637 as a colorless oil.

\[^1H \text{NMR (300 MHz, CDCl}_3 \delta 7.76 (d, J = 8.4 \text{ Hz, 2 H}), 7.40-7.20 (m, 8 H), 7.12 (ddd, J = 8.2, 7.5, and 1.9 Hz, 1 H), 6.89-6.73 (m, 2 H), 4.59 (s, 2 H), 2.43 (s, 3 H), 1.32-1.10 (m, 3 H), 1.09-0.95 (m, 18 H). \]

Trimethyl(2-(2-(prop-2-ynyloxy)phenyl)ethynyl)silane (638). To a solution of 606 (100 mg, 0.53 mmol) and K₂CO₃ (145 mg, 1.05 mmol) in DMF (600 µL) was added propargyl
bromide (80% in PhCH₃, 117 µL, 1.05 mmol), and the reaction was heated to 50 °C for 4 h. After cooling the reaction mixture, sat. NH₄Cl (3 mL) was added, and the mixture was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with H₂O (4 mL × 2) and brine (4 mL), dried (Na₂SO₄), filter and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (50:1), to give 97 mg (81%) of 638 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, J = 7.5 Hz, 1 H), 7.29 (m, 1 H), 7.03 (d, J = 8.3 Hz, 1 H), 6.95 (t, J = 7.5 Hz, 1 H), 4.79 (d, J = 1.8 Hz, 2 H), 2.53 (br s, 1 H), 0.27 (s, 9 H).

Ethyl 4-(2-(2-(trimethylsilyl)ethynyl)phenoxy)but-2-ynoate (639). To a solution of 638 (63 mg, 0.28 mmol) in THF (1.5 mL) at −78 °C was added n-BuLi (2.47 M in hexanes, 123 µL, 0.30 mmol) dropwise. After 30 min, ethylchloroformate (32 µL, 0.33 mmol) was added, the reaction was stirred for 1 h and warmed to rt. Sat. NH₄Cl (4 mL) was added, and the aqueous layer was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with H₂O (4 mL) and brine (4 mL), dried (Na₂SO₄), filter and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (20:1), to give 58.8 mg (71%) of 639 as a colorless oil. IR (NaCl, thin film, neat) 3071, 2962, 2900, 2247, 2159, 1717, 1593, 1573, 1484, 1448, 1370, 1251, 1199, 1116, 1017, 867, 841, 753; ¹H NMR (300 MHz, CDCl₃) δ 7.45 (dd, J = 7.8 and 1.8 Hz, 1 H), 7.33-7.25 (m, 1 H), 7.01-6.93 (m, 2 H), 4.90 (s, 2 H), 4.23 (q, J = 7.2 Hz, 2 H), 1.30 (t, J = 7.2 Hz, 3 H), 0.27 (s, 9 H).
Ethyl 4-(2-(2-bromoethynyl)phenoxy)but-2-ynoate (640). To a solution of 639 (21 mg, 0.070 mmol) and NBS (16 mg, 0.087 mmol) in DMF (350 µL) was added AgNO₃ (1.2 mg, 0.0070 mmol). The reaction was stirred in the dark for 3 h and diluted with H₂O (3 mL). The aqueous layer was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with H₂O (3 mL × 2) and brine (3 mL), and the aqueous layer was extracted with Et₂O (4 mL). The combined organic extracts were dried (Na₂SO₄), filter and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7:1), to give 15.7 mg (73%) of 640 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.44 (dd, J = 7.8 and 1.6 Hz, 1 H), 7.37-7.26 (m, 1 H), 7.00-6.92 (m, 2 H), 4.90 (s, 2 H), 4.23 (q, J = 7.1 Hz, 2 H), 1.30 (t, J = 7.1 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 153.0, 134.4, 130.1, 122.1, 113.0, 81.4, 79.2, 76.0, 62.4, 56.3, 54.0, 14.1.

N-Ethynyl-2-(prop-1-ynyl)-N-tosylbenzenamine (649). To a solution of 647 (30.5 mg, 0.11 mmol) in DMF (2.1 mL) was added Cs₂CO₃ (46 mg, 0.14 mmol), and the mixture was stirred for 30 min. To this solution was added 648 (62 mg, 0.14 mmol) in DCM (900 µL) and the reaction was stirred for 2 h. Et₂O (5 mL) and H₂O (4 mL) was added and the layers separated. The aqueous layer was extracted with Et₂O (5 mL × 2), and the combined organic extracts were washed with H₂O (3 mL × 2) and brine (3 mL), dried (Na₂SO₄), filter and concentrated. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (8:1), to give 20.2 mg (61%) of 649 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2 H), 7.45-7.24 (m, 6 H), 2.84 (s, 1 H), 2.46 (s, 3 H), 1.81 (s, 3 H).
2-Methyl-3-(2-(pyridin-2-yl)ethynyl)-1-tosyl-1H-indole (651). A mixture of 647 (228 mg, 0.80 mmol), 2-bromoethynylpyridine (prepared in 2 steps from 2-trimethylsilylpyridine, 112 mg, 0.61 mmol), CuSO$_4$·5H$_2$O (20.0 mg, 0.080 mmol), powdered K$_3$PO$_4$ (340 mg, 1.60 mmol), and 1,10-phenanthroline (29 mg, 0.16 mmol) in PhCH$_3$ (1.3 mL) was heated at 75 °C for 18 h. After cooling the reaction to rt, the mixture was diluted with EtOAc (5 mL) and filtered through a plug of celite on top of a plug of silica gel eluting with EtOAc. The filtrate was concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1), to give 181 mg (55%) of 651 as an off white solid over 3 steps. 1H NMR (300 MHz, CDCl$_3$) δ 8.67-8.58 (m, 1 H), 8.24-8.14 (m, 1 H), 7.76 (m, 4 H), 7.55-7.51 (m, 1 H), 7.38-7.17 (m, 5 H), 2.81 (s, 3 H), 2.35 (s, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 150.3, 145.4, 143.6, 142.1, 136.3, 135.9, 130.2, 129.5, 127.2, 126.6, 125.1, 124.1, 122.8, 119.8, 114.6, 104.4, 95.1, 81.3, 21.7, 14.9.
CHAPTER 8: Progress Towards the Total Synthesis of Lycopodium Alkaloids

8.1 The Lycopodium Alkaloids

8.1.1 Background

The lycopodium alkaloids comprise a group of more than 250 quinolizine or pyridine and α-pyridone type alkaloids isolated from club mosses of the genus *Lycopodium*. The structural framework usually consists of 16 carbon atoms, but some members contain fewer carbons, while dimers containing 32 carbon atoms are known as well. The first Lycopodium alkaloid, lycopodine (662), was identified in 1881 by Bodeker from *Lycopodium complanatum*. During the late 1980’s, it was found that several lycopodium alkaloids, especially huperzine A, were inhibitors of acetylcholinesterase activity prompting a renewed interest in this family of alkaloids. Unfortunately, club mosses are not abundant plants and grow slowly in only specific habitats thereby limiting their availability. Furthermore, cultivation of these plants has not been realized. With only 53 of the 500 species of club moss having been studied, the diversity of the lycopodium alkaloids is likely yet to be fully uncovered.

According to Ayer, the lycopodium alkaloids are divided into four structural classes: the lycopodine class, the lycodine class, the fawcettimine class, and the miscellaneous class (Figure 8.1). Each class has its own representative compound, lycopodine (662), lycodine (663), fawcettimine (664), and phlegmarine (665), respectively, with carbon numbering based upon Conroy’s biogenetic hypothesis. These structural classes have provided the inspiration for many total syntheses as well as the development of novel synthetic methods.
8.1.2 Selected Syntheses of Lycopodium Alkaloids

The original member of the lycopodium alkaloids, lycopodine (662) has been synthesized seven times in racemic fashion. Recently, Yang et al. reported the first enantioselective synthesis of 662 (Scheme 8.1). Cross metathesis of 666 (prepared in three steps) with 3-penten-2-one provided 667 that smoothly underwent an intramolecular Michael reaction when treated with base to provide the cyclohexanone 668 as the only product. A subsequent intramolecular Mannich reaction provided the tricyclic compound 669 that was taken on to lycopodine in four more steps.398

Toste recently reported the first asymmetric synthesis of fawcettimine (Scheme 8.2). His group’s route utilized the vinyl iodide 670 (prepared in five steps) as a precursor to the
nine-membered ring intermediate 671. A further five steps then provided fawcettimine (664).\(^{396}\)

Scheme 8.2. Toste’s synthesis of fawcettimine.

A member of the miscellaneous class of lycopodium alkaloids, lyconadin A (677) was synthesized by Sarpong in 2008 in the hopes to provide a single strategy for this class of alkaloids. Intramolecular Heck coupling of 673 (prepared in two steps from 2-methoxy-5-bromopyridine) provided the key intermediate 674 in 91% yield (Scheme 8.3). Twelve steps then provided the intermediate 675 that upon reduction formed the tetracyclic structure 676. Two subsequent steps furnished racemic lyconadin A.\(^{395}\)

Scheme 8.3. Sarpong’s synthesis of lyconadin A.
8.2 Progress Towards the Total Synthesis of Lycopladine A

8.2.1 Background and Retrosynthetic Analysis

A recent addition to the growing number of Lycopodium alkaloids, (+)-lycopladine A (680), was isolated in 2006 from Lycopodium complantum. Grouped with the fawcettimine alkaloids, lycopladine A showed modest cytotoxicity against murine lymphoma L1210 cells but not against human epidermoid carcinoma KB cells. The unique skeleton of lycopladine A is unlike any other C_{16}N-type alkaloids. One total synthesis of (+)-lycopladine A was reported in 2006 utilizing a gold-catalyzed cyclization of the silylenol ether 678 towards 679 (Scheme 8.4). The starting material 678 was assembled in 5 steps from (R)-(+) -5-methyl-2-cyclohexen-1-one, and the synthesis of 680 was completed in 3 steps from the intermediate 679.

![Scheme 8.4. First synthesis of (+)-lycopladine A.](image)

Retrosynthetically, we envisioned synthesizing lycopladine A from the silylenol ether 681 via selective alkylation to install the three carbon side chain (Scheme 8.5). This silylenol ether would in turn be derived from a transition metal mediated [2+2+2] cyclotrimerization reaction between the alkyne-nitrile 682 and acetylene. We hypothesize that the cyclotrimerization reaction of 682 will be more efficient than the corresponding cyclohexane derivative 683 due to the constraint in the system as imposed by the double bond of the silylenol ether and would provide a means to install the side chain.
The synthesis of the key alkyne-nitrile 682 would start with the known iodoenone 684 available in four steps from commercially available (R)-(+-3-methylcyclohexanone (685).

\[
\begin{align*}
&\text{Me} & \text{H} & \text{HO} \\
&\text{Me} & \text{H} & \text{OTBS} & \text{CN} \\
&\text{Me} & \text{H} & \text{OTBS} & \text{CN} \\
&\text{Me} & \text{H} & \text{OTBS} & \text{CN}
\end{align*}
\]

\[
\text{Me} & \text{H} & \text{I} & \text{Me} \\
\text{Me} & \text{H} & \text{I} & \text{Me}
\]

\[
\text{Me} & \text{H} & \text{CN} & \text{Me} \\
\text{Me} & \text{H} & \text{CN} & \text{Me}
\]

Scheme 8.5. Retrosynthetic analysis of (+)-lycopladine A.

In order to investigate the key cyclotrimerization step towards the core structure 681, we initiated a model study that lacked the stereogenic center in 681, e.g. the alkyne-nitrile intermediate 686 which will be assembled from 687 (Scheme 8.6).

\[
\begin{align*}
&\text{Me} & \text{H} & \text{OTBS} & \text{CN} \\
&\text{Me} & \text{H} & \text{OTBS} & \text{CN} \\
&\text{Me} & \text{H} & \text{OTBS} & \text{CN}
\end{align*}
\]

\[
\text{Me} & \text{H} & \text{I} & \text{Me} \\
\text{Me} & \text{H} & \text{I} & \text{Me}
\]

Scheme 8.6. Synthesis of the model alkyne-nitrile 686.

8.2.2 Synthesis of Model Alkyne-Nitriles Towards Lycopladine A

Steps towards the synthesis of 686 began with the known enone 688 synthesized in two steps from 2-cyclohexen-1-one via 687. Installation of the nitrile group was accomplished by the 1,4-addition of lithiated (trimethylsilyl)acetonitrile followed by trapping of the resulting enolate as the silylenol ether furnishing 689 in 56% yield as a mixture of diastereomers (Scheme 8.7). As the steric bulk of the TMS-group may prevent the
cyclotrimerization reaction (see Scheme 8.11 below), attempts to selectively deprotect the alkyne towards 690 were explored. However, the use of K$_2$CO$_3$ in methanol led to decomposition. Quenching the 1,4-addition reaction with allyl bromide to provide a more stable enol ether was unsuccessful since no enolether 691 or ketone 692 could be isolated. Successful C- or O-alkylation towards the allyl derivatives 691 or 692 would provide a handle that could potentially be converted into the carbon chain at C-12. More reactive electrophiles, e.g. methyl iodide, were not investigated due to a potential C-alkylation.

![Scheme 8.7. Attempted enol ether formations from 688.](image)

To circumvent the decomposition of 689, we investigated the removal of the alkynyl-TMS group prior to the 1,4-addition. More traditional161 approaches to effect the removal of TMS-groups from alkynes were first examined, but only led to decomposition of the starting material (Entries 1-4, Table 8.1). As each of these reactions was carried out under basic conditions, we reasoned acidic conditions may favor product formation. The use of HF/pyridine resulted in a slow reaction towards the desired alkyne 693 without decomposition. Furthermore, it was found that the use of a mixture of TBAF and aqueous HF lead to efficient desilylation providing 693 in 76% yield.
Table 8.1. Desilylation of 688.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K$_2$CO$_3$, MeOH, Et$_2$O, rt, 1 h</td>
<td>decomp</td>
</tr>
<tr>
<td>2</td>
<td>KF, MeOH, rt, 30 min</td>
<td>decomp</td>
</tr>
<tr>
<td>3</td>
<td>AgNO$_3$, lutidine, THF/Et$_2$O/H$_2$O, 5 min</td>
<td>decomp</td>
</tr>
<tr>
<td>4</td>
<td>TBAF, -40 °C, THF, 1 h</td>
<td>decomp</td>
</tr>
<tr>
<td>5</td>
<td>HF/pyr, THF, 0 °C, 24 h</td>
<td>sluggish rxn</td>
</tr>
<tr>
<td>6</td>
<td>TBAF/HF, THF, 0 °C to rt 3 h</td>
<td>76%</td>
</tr>
</tbody>
</table>

Attempts to isolate the ketone 694 from a 1,4-addition into the α,β-unsaturated system of 693 were unsuccessful, and by-products consistent with allene formation were detected. Additionally, trapping of the enolate as before with TBDMSCl furnished 695 in only 29% yield as a mixture of diastereomers (Scheme 8.8).

Scheme 8.8. Use of 693 in the 1,4-addition of (trimethylsilyl)acetonitrile.

In attempts to overcome the difficulties with the 1,4-addition, attention was turned to the iodide 687 in the hope that installation of the nitrile moiety followed by the introduction of the alkyne would be more advantageous. Treatment of 687 with lithiated (trimethylsilyl)acetonitrile405 followed by trapping of the enolate with acetic anhydride furnished the vinyl acetate 696 in 80% yield as a mixture of diastereomers (Scheme 8.9). Sonogashira coupling to install the alkyne,277 however, proved problematic, as the starting material and the product 697 could not be separated by flash chromatography.
Since trapping the enolate as the acetate was more efficient than trapping as the silyl ether, attention was once more turned to 688 with the expectation that removing the alkyne-TMS group under the previously determined desilylation conditions toward 693 would be possible. Thus, the vinyl acetate 698 was isolated in 73% yield from 688 as a mixture of diastereomers (Scheme 8.10). Removal of the alkyne-TMS group was realized with the aforementioned TBAF/HF mixture to give the alkyne-nitrile 699 in 90% yield. Interestingly, this reaction required warming to room temperature to effect desilylation of the alkyne-TMS group while the alkyl-TMS group was removed at 0 °C. With a suitable alkyne-nitrile in hand, investigations into the key [2+2+2] cyclotrimerization step could commence.

8.2.3 Cyclotrimerization Studies Towards Lycopladine A

With several alkyne-nitriles already accessed, attempts to form the tricyclic core of lycopladine A were explored. The TMS-protected compound 689 did not undergo cyclotrimerization with ethynyltrimethylsilane (TMSA) or acetylene towards the tricyclic
pyridines 700 or 701, however, the starting material 689 was recovered (Scheme 8.11). This result is not surprising due to the steric bulk of the TMS-group.

![Reaction Scheme](image)

Scheme 8.11. Attempted cyclotrimerization reactions of 689 and 695.

Similar cyclotrimerizations with the alkyne-nitrile 695 towards 702 or 703 were equally unfruitful (Scheme 8.11). Despite complete consumption of starting material, complex reaction mixtures were obtained. Results from LC/MS analysis of the reaction mixture indicated the presence of 702, however it could not be isolated in quantities sufficient for NMR analysis. Attempts to globally desilylate the crude material towards 704 (TBAF, THF, rt) did not yield a product of the correct mass by LC/MS analysis.

The cyclotrimerization of the alkyne-nitrile 699 with TMSA, however, did yield cyclotrimerization products 705a and 705b (Scheme 8.12). The favored regioisomer 705a with the TMS-group in the α-position to the pyridine nitrogen center was isolated, but could not be fully purified by silica gel chromatography. 1H NMR analysis showed two doublets in the aromatic region consistent with the product, but impurities in the aliphatic region were present. Even with the impurities the yield was less than 20% of 705a. Likewise, the other regioisomer 705b could also be detected by 1H NMR spectroscopy as evidenced by two
aromatic singlets with one shifted downfield due to its α-position to the pyridine nitrogen, but impurities were present.

\[
\begin{array}{c}
\text{OAc} \quad \text{CpCo(CO)}_2 \quad \text{TMS} \\
\text{PhCH}_3 \quad \text{MW} \\
300 \text{ W, } 150 \text{ °C} \\
30 \text{ min, <20%}
\end{array}
\]

\[\text{Scheme 8.12. Cyclotrimerization reaction of the alkyne-nitrile 699.}\]

Due to the inefficient cyclotrimerization reactions of 689, 695, and 699 towards the tricyclic core of lycopladine A, a simplified model for only the cyclotrimerization reaction was sought to be used in the optimization of the cyclotrimerization reaction. Here, the cyclotrimerization reaction of 5-hexynenitrile (706) was chosen as a model system because the 1,4-relationship of the alkyne and nitrile is maintained. While the cyclotrimerization reaction with bis-trimethylsilylacetylene (BTMSA) is known under light irradiation to give 707 in 77% yield, we intended to use microwave irradiation and wished to modify the known procedure accordingly. Despite the good yield of 707 under light irradiation, the synthesis of fused pyridines via tethered alkyne-nitriles is generally a difficult and low yielding transformation, as the initial metallacycle formation requires the coordination of two untethered alkynes.

Initial experiments involved microwave irradiation of 706 with ten equivalents of BTMSA under closed vessel conditions and CpCo(CO)$_2$ catalysis and gave the fused pyridine 707 in 23% yield (Entry 1, Table 8.2). Open vessel microwave conditions where the 5-hexynenitrile and Co-catalyst were added to an irradiated solution of BTMSA in xylenes over 30 min furnished a 27% yield of the fused pyridine 708 with loss of the TMS
group alpha to the nitrogen (Entry 2). Using thermal heating and tetramethylammonium oxide (TMAO) as a catalyst activator led to only a 7% yield of 708 with 29% of the dimer 709 (Entry 3). Employing the less sterically encumbered TMS-acetylene gave slightly better results furnishing a 40% yield of 710 under closed vessel microwave conditions (Entry 4). Open vessel conditions produced only a 12% yield of 710 with the benzene side product 711 also forming in 12% yield (Entry 5). The results of these model cyclotrimerization reactions mirror those of the more complex alkyne-nitrile cyclotrimerization reactions shown in Scheme 8.12 (see above), and further investigations towards a more efficient cyclotrimerization of alkyne-nitriles is needed before more progress towards lycopladine A can be made.

Table 8.2. Cyclotrimerization studies of 5-hexynenitrile (706). aSlow addition of 706 and Co to BTMSA; bOil-bath heating.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BTMSA (10) PhCH₂, MW 300 W, 30 min</td>
<td>707, R¹ = R² = TMS, 23%</td>
</tr>
<tr>
<td>2</td>
<td>BTMSA (5) MW, o.v., 140 °C xylenes a</td>
<td>708, R¹ = TMS, R² = H, 27%</td>
</tr>
<tr>
<td>3</td>
<td>BTMSA (1.2) TMAO (0.2) xylenes, 140 °C b</td>
<td>709, 29%</td>
</tr>
<tr>
<td>4</td>
<td>TMSA (10) PhCH₂, MW 300 W, 30 min</td>
<td>708, 7%</td>
</tr>
<tr>
<td>5</td>
<td>TMSA (5) MW, o.v., 140 °C xylenes a</td>
<td>710, R¹ = H, R² = TMS, 40%</td>
</tr>
</tbody>
</table>

8.3 Progress Towards the Total Synthesis of Lycodine

8.3.1 Background and Retrosynthetic Analysis

First isolated in 1958 by Anet and Eves, lycodine (663) is the simplest member of the dinitrogen lycopodium alkaloids.409, 410 No biological activity of lycodine has been reported to date, however, all the lycopodium alkaloids that possess acteylcholinesterase inhibitory activity are members of this class.386 To date, only one total synthesis of (±)-lycodine has been reported.411, 412 Heathcock’s synthesis relies on an intramolecular Mannich reaction of the amine 712 to provide the BCD-ring structure (Scheme 8.13). Conversion of the homoallyl side chain in 713 to the pyridine ring furnishes (±)-lycodine in 13% yield and only eight steps.

![Scheme 8.13. Heathcock's synthesis of (±)-lycodine (663).](image)

Deconstructing the pyridine ring of lycodine reveals the alkyne-nitrile 714 as a potential precursor for a [2+2+2] cyclotrimerization reaction with acetylene (Scheme 8.14). We envisioned deriving 714 from the trisubstituted cyclohexanone 715 via ring formation and installation of the alkyne moiety. This cyclohexanone should be accessible via the same starting material as for lycopladine A (685) via introduction of the amine side chain and conjugate addition of acetonitrile to the enone 716. The methyl substituent whose orientation will be set in the starting material will be used to control the stereochemistry of the other two substituents on the cyclohexanone ring via stereoelectronic effects.413 Model studies towards
the synthesis of the essential alkynylnitrile intermediate focused on introduction of the nitrile and amine side chains without stereocontrol from cyclohexenone. In addition to lycodine, we sought to synthesize the dimeric Lycopodium alkaloid complanidine A (717) via a second [2+2+2] cyclotrimerization reaction.

Scheme 8.14. Retrosynthetic analysis of lycodine (663) and structure of complanidine A (717).

8.3.2 Current Progress Towards Lycodine

Before embarking on the total synthesis of lycodine, we sought an expedient route to the desired alkyne-nitrile cyclotrimerization precursor 714. Model studies aimed at synthesizing 714 were initiated and focused on two aspects of 714: introduction of the ethynyl group and installation of the cyano and amino side chains of 715. We envisioned forming the necessary propargylamine via a Cu-catalyzed alkynylation of an enamine based on methodology developed by Knochel (Scheme 8.15). In this direction, the bicyclic enamine 719 was prepared via known procedures from cyclohexanone (718) to be used as a model system for the alkyne introduction (Scheme 8.15). Treatment of 719 with catalytic
CuBr and excess TMSA under thermal or microwave heating conditions gave low yields (~10%) of the desired propargylamine 720. Purification of the product was difficult due to the presence of a reaction byproduct presumably the TMSA dimer as only a singlet was present in the 1H NMR spectrum. Attempts to remove the alkynyl-TMS groups from 720 to give 721 before purification through the use of fluoride agents (TBAF or KF) or under basic conditions (K_2CO_3 or NaOH) were unsuccessful with unreacted starting material recovered. On the basis of these results, a stepwise approach to the introduction of the alkyne may be necessary.

Scheme 8.15. Attempted Cu-catalyzed addition of TMSA into the enamine 719.

Turning to the installation of the amino and cyano side chains, we directed our efforts first towards the amine side chain via a Baylis-Hillman reaction. Treatment of 2-cyclohexen-1-one (722) and the known aldehyde 723 with various nitrogen bases led to low conversion of the desired alcohol 724 (Table 8.3). Due to the low yields others means to install the side chain were explored.
Table 8.3. Baylis-Hillman approach towards 724.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DBU (1 eq) rt, 18 h</td>
<td>17%</td>
</tr>
<tr>
<td>2</td>
<td>DMAP (0.2 eq) THF/H$_2$O rt, 4 d</td>
<td>11%</td>
</tr>
<tr>
<td>3</td>
<td>DABCO (0.01 eq) dioxane, 0 °C</td>
<td>no rxn</td>
</tr>
<tr>
<td>4</td>
<td>DABCO (1 eq) dioxane/H$_2$O rt</td>
<td>no rxn</td>
</tr>
</tbody>
</table>

We hypothesized that the Suzuki-Miyaura reaction423 would provide an efficient means to introduce the amine side chain starting with the previously utilized iodoenone 687 and Boc-protected allylamine (725). In this reaction, the B-alkyl species is generated \textit{in situ} via hydroboration, followed by coupling with a vinyl iodide under Pd-catalysis. Hydroboration at room temperature, in this case, was slow and no reaction was seen under a variety of conditions (Entries 1-4, Table 8.4).$^{400, 423, 424}$ Allowing the hydroboration to proceed at 60 °C before addition of the iodide, did furnish the desired enone product 726 in a low 25% yield (Entry 5). Modifying the Pd source, solvent, and ligands was ineffective (Entries 6-7). Troubleshooting the reaction pointed to the hydroboration step as the source of the low yields, however even using excess hydroboration reagent was unrewarding possibly due to decomposition or dilution of the borane reagent. Use of the 9-BBN dimer may improve the hydroboration step.
Table 8.4. Suzuki-Miyaura reaction of the iodoenone 687.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9-BBN, Pd(PPh₃)₄, NaOH, THF/H₂O, rt to 60 °C</td>
<td>no rxn</td>
</tr>
<tr>
<td>2</td>
<td>9-BBN, Pd(dppf)Cl₂, Cs₂CO₃, AsPh₃, THF/DMF, rt to 60 °C</td>
<td>no rxn</td>
</tr>
<tr>
<td>3</td>
<td>9-BBN, Pd(PPh₃)₄, NaOH, dioxane, rt</td>
<td>no rxn</td>
</tr>
<tr>
<td>4</td>
<td>BH₃, THF, Pd(dppf)Cl₂, Cs₂CO₃, AsPh₃, DMF/H₂O, rt to 60 °C</td>
<td>no rxn</td>
</tr>
<tr>
<td>5</td>
<td>9-BBN, Pd(dppf)Cl₂, Cs₂CO₃, AsPh₃, THF/DMF, 60 °C</td>
<td>25%</td>
</tr>
<tr>
<td>6</td>
<td>9-BBN, Pd(PPh₃)₄, NaOH, THF/H₂O, 60 °C</td>
<td>no rxn</td>
</tr>
<tr>
<td>7</td>
<td>9-BBN, Pd(dppf)Cl₂, Cs₂CO₃, AsPh₃, DMF, 60 °C</td>
<td>no rxn</td>
</tr>
</tbody>
</table>

Looking towards other Pd-catalyzed reactions to append the side chain, we chose the Sonogashira reaction. Coupling of 687 with the protected propargyl amine 727 furnished 728 in a 78% yield thereby successfully introducing the amine side chain (Scheme 8.16). The next step would involve 1,4-addition of (trimethylsilyl)acetonitrile. In this direction, the enone 728 was treated with the lithium salt of (trimethylsilyl)acetonitrile to give a 35% yield of the cyclohexanone derivative 729 as a mixture of stereoisomers. Analysis of the ¹H NMR spectrum was complicated by the three stereocenters present in 729, but LC/MS analysis of the purified material confirmed the desired product. Efforts towards a model system for lycodine are ongoing.
Scheme 8.16. Introduction of the amine side chain via Sonogashira coupling.

8.4 Summary and Future Directions

8.4.1 Lycopladine A

Initial model studies towards the synthesis of lycopladine A produced several tethered alkyne-nitriles that were tested for cyclotrimerization efficiency. However, the model substrates either underwent cyclotrimerization with low yield or completely failed to react. Future studies focusing on the cyclotrimerization of the alkyne-nitrile \(699\) are warranted as only a few reaction conditions were investigated. The use of light instead of microwave irradiation may be necessary to promote the cyclotrimerization reaction, and alternative catalyst systems (e.g. \(\text{Ni(cod)}_2/\text{NHC}, \text{CpCo(cod)}\))\(^{39, 42}\) can be explored to optimize the yield of the fused pyridine (Scheme 8.17).

Scheme 8.17. Future work towards lycopladine A.
8.4.2 Lycodine

Progress towards lycodine has been hampered by the synthesis of a model alkyne-nitrile suitable for cyclotrimerization studies. Several approaches have been explored to install the nitrile moiety as well as the amine side chain. Continuing with the enone 728, quenching of the intermediate enolate to give the acetate 730 may increase the efficiency of the 1,4-addition as seen in the model studies towards lycopladine A (Scheme 8.18). Global reduction\(^\text{426}\) would then provide the protected cyclohexanol derivative 731 that could be further elaborated towards lycodine. The stereochemistry of the cyanomethyl substituent in the actual system will be determined by the methyl group at C-15, while the stereochemistry of the amine chain will be determined in the reduction barring any epimerization. Installation of the alkyne functionality and ring formation from 732 would then provide the model alkyne-nitrile 733 ready for cyclotrimerization reactions.

\[
\text{Scheme 8.18. Future work towards the model alkyne-nitrile 733.}
\]
8.5 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Tetrahydrofuran, toluene, xylenes, and diethyl ether were distilled from sodium/benzophenone ketyl prior to use. Diisopropylamine, triethylamine, DMSO, DCM, DMF, 1,2-dichloroethane, CH$_3$CN and pyridine were distilled from calcium hydride and stored over 4 Å molecular sieves. Other reagents and solvents obtained from commercial sources were stored under nitrogen and used directly without further purification. n-BuLi and MeLi were titrated against N-pivaloyl-o-toluidine.108 Melting points were obtained from a Mel-Temp capillary melting point apparatus and are uncorrected. High resolution mass spectral analysis (HRMS) was performed at North Carolina State University. NMR spectra were obtained using a Varian Gemini GN-300 (300 MHz) or Varian Mercury 300 (300 MHz) spectrometer. Chemical shifts are in δ units (ppm) with TMS (0.0 ppm) used as the internal standard for 1H NMR spectra and the CDCl$_3$ absorption (77.2) for 13C NMR spectra. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer.

1-(tert-Butyldimethylsilyloxy)-3-((1-cyano-1-trimethylsilylmethyl)methyl)-2-(2-trimethylsilylethynyl)cyclohex-1-ene (689). To a solution of (trimethylsilyl)acetonitrile (29 µL, 0.22 mmol) in THF (2 mL) at −78 °C was added n-BuLi (1.13 M in hexanes, 190 µL, 0.22 mmol) dropwise. After 45 min, a solution of 688 (34.5 mg, 0.18 mmol) in THF (300 µL with 300 µL wash) was added, and the reaction was stirred for 1 h. At this point TBDMSCl (41 mg, 0.27 mmol) in THF (500 µL) was added, and the reaction was allowed to stir as it warmed to rt overnight. In the morning the reaction was cooled to 0 °C and quenched with
sat. NH₄Cl (3 mL). The aqueous layer was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with water (5 mL) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (30:1), to give 42.2 mg (56%) of 689 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 2.93-2.79 (bm, 1 H), 2.75-2.64 (m, 1 H), 2.26-1.83 (m, 4 H), 1.39-1.14 (m, 2 H), 0.96 (s, 9 H), 0.29-0.14 (m, 24 H).

2-Ethynylcyclohex-2-enone (693). To a solution of 688 (92 mg, 0.48 mmol) in THF (6.7 mL) in a polyethylene vial was added a mixture of TBAF (1 M in THF, 540 µL, 0.54 mmol) and aq. HF (47%, 45 µL) at rt. After 2 h, sat. NaHCO₃ (6 mL) was added, and the aqueous layer extracted with EtOAc (6 mL × 3). The combined organic extracts were washed with water (5 mL) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (6:1), to give 43.5 mg (76%) of 693 as an off white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (t, J = 4.4 Hz, 1 H), 3.07 (s, 1 H), 2.58-2.40 (m, 4 H), 2.12-1.98 (m, 2 H).

1-(tert-Butyldimethylsilyloxy)-3-((1-cyano-1-trimethylsilyl)methyl)-2-ethynyl-cyclohex-1-ene (695). To a solution of (trimethylsilyl)acetonitrile (27 µL, 0.20 mmol) in THF (1.9 mL) at −78 °C was added n-BuLi (1.1 M in hexanes, 180 µL, 0.20 mmol) dropwise. After 45 min, a solution of 693 (20.0 mg, 0.17 mmol) in THF (300 µL with 150 µL wash) was added, and the reaction was stirred for 1 h. At this point, TBDMSCl (38 mg, 0.25 mmol) in THF (500 µL) was added, and the reaction was allowed to stir as it warmed to rt overnight. In the
morning the reaction was cooled to 0 °C and quenched with sat. NH₄Cl (3 mL). The aqueous layer was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with water (5 mL) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (30:1), to give 16.8 mg (29%) of 695 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.21-3.07 (m, 1 H), 2.94-2.81 (bm, 1 H), 2.71-2.60 (m, 1 H), 2.24-1.83 (m, 5 H), 1.43-1.22 (m, 1 H), 0.98-0.94 (m, 9 H), 0.32-0.17 (m, 15 H).

3-(Cyano(trimethylsilyl)methyl)-2-iodocyclohex-1-enyl acetate (696). To a solution of (trimethylsilyl)acetonitrile (74 µL, 0.54 mmol) in THF (1.1 mL) at −78 °C was added n-BuLi (2.5 M in hexanes, 216 µL, 0.54 mmol) dropwise. After 45 min, a solution of 687 (100.0 mg, 0.45 mmol) in THF (900 µL with 400 µL wash) was added, and the reaction was stirred for 1 h. At this point Ac₂O (64 µL, 0.68 mmol) was added, and the reaction was allowed to stir as it warmed to rt over 3 h. The reaction was cooled to 0 °C and quenched with sat. NH₄Cl (3 mL). The aqueous layer was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with water (5 mL) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7.5:1), to give 137 mg (80%) of 696 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.17-3.02 (bm, 0.5 H), 2.81-2.65 (m, 1.5 H), 2.52-2.15 (m, 6 H), 2.02-1.59 (m, 3 H), 0.39-0.20 (m, 9 H).
3-(Cyano(trimethylsilyl)methyl)-2-(2-(trimethylsilyl)ethynyl)cyclohex-1-enyl acetate (698). To a solution of (trimethylsilyl)acetonitrile (37.4 µL, 0.27 mmol) in THF (550 µL) at −78 °C was added n-BuLi (2.5 M in hexanes, 110 µL, 0.27 mmol) dropwise. After 45 min, a solution of 688 (43.8 mg, 0.23 mmol) in THF (400 µL with 300 µL wash) was added, and the reaction was stirred for 1 h. At this point Ac₂O (33 µL, 0.34 mmol) was added, and the reaction was allowed to stir as it warmed to rt over 3 h. The reaction was cooled to 0 °C and quenched with sat. NH₄Cl (3 mL). The aqueous layer was extracted with Et₂O (4 mL × 3). The combined organic extracts were washed with water (5 mL) and brine (5 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (9:1), to give 58 mg (73%) of 698 as a mixture of diastereomers as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 2.99-2.50 (m, 2 H), 2.46-1.77 (m, 10 H), 1.75-1.31 (m, 2 H), 0.39-0.12 (m, 18 H).

3-(Cyanomethyl)-2-ethynylcyclohex-1-enyl acetate (699). To a solution of 698 (32.6 mg, 0.094 mmol) in THF (1.3 mL) in a polyethylene vial a 0 °C was added a mixture of TBAF (1 M in THF, 212 µL, 0.21 mmol) and aq. HF (47%, 18 µL), and the reaction was stirred for 20 min before warming to rt. After 20 min, H₂O (3 mL) was added, and the aqueous layer was extracted with EtOAc (4 mL × 3). The combined organic extracts were washed with water (3 mL) and brine (3 mL), dried (Na₂SO₄), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (4:1), to give 17.1 mg (90%) of 699 as a slight yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.18 (s, 1 H), 2.84 (dd, J =
16.6 and 3.6 Hz, 1 H), 2.76-2.62 (bm, 1 H), 2.46 (dd, J = 16.6 and 9.6 Hz, 1 H), 2.32-2.22 (m, 2 H), 2.18 (s, 3 H), 2.10-1.52 (m, 6 H).

7,8,8a,9-tetrahydro-2-(trimethylsilyl)-6H-indeno[2,1-b]pyridin-5-yl acetate (705a) and 7,8,8a,9-tetrahydro-3-(trimethylsilyl)-6H-indeno[2,1-b]pyridin-5-yl acetate (705b). A solution of 699 (8.2 mg, 0.040 mmol), TMSA (57 µL, 0.40 mmol), and CpCo(CO)$_2$ (0.9 µL, 0.008 mmol) in xylenes (1.0 mL) was irradiated in a CEM Discover microwave synthesizer for 30 min. After cooling, the reaction mixture was filtered over a silica plug, concentrated, and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7:1 to 5:1), to give 2.5 mg (20%) of 705a and 2 mg (16%) of 705b. Key 1H NMR shifts (300 MHz, CDCl$_3$) δ 705a: 7.48 (d, J = 7.6 Hz, 1 H), 7.30 (d, J = 7.6 Hz, 1 H), 3.36-3.16 (m, 1 H), 3.01 (br s, 1 H), 2.86-2.70 (m, 1 H), 2.46-2.34 (m, 2 H), 2.42 (s, 3 H), 0.30 (s, 9 H); 705b: 8.40 (s, 1 H), 7.70 (s, 1 H), 2.25 (s, 3 H), 0.28 (s, 9 H).

6,7-Dihydro-3-(trimethylsilyl)-5H-cyclopenta[b]pyridine (708). A solution of 5-hexynenitrile (15 mg, 0.16 mmol) and CpCo(CO)$_2$ (3.8 µL, 0.032 mmol) in xylenes (1.1 mL) was added over 35 min to a solution of BTMSA (182 µL, 0.81 mmol) in xylenes (1 mL) irradiated in a CEM Discover microwave synthesizer. After 15 min of heating, the reaction was cooled, concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (50:1 to 15:1), to give 8.2 mg (27%) of 708 as a white solid. 1H NMR (300 MHz, CDCl$_3$) δ 8.41 (s, 1 H), 7.60 (s, 1 H), 3.00 (t, J = 7.7 Hz, 2 H), 2.93 (t, J = 7.4 Hz, 2 H), 2.14-2.04 (m, 2 H), 0.28 (s, 9 H).
6,7-Dihydro-2-(trimethylsilyl)-5H-cyclopenta[b]pyridine (710). A solution of 5-hexynenitrile (13.5 mg, 0.14 mmol), TMSA (202 µL, 1.4 mmol), and CpCo(CO)₂ (3.4 µL, 0.029 mmol) in PhCH₃ (2.6 mL) was irradiated in a CEM Discover microwave synthesizer at 300 W for 30 min. The reaction was cooled, concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1 to 1:1), to give 11.5 mg (40%) of 710 as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, J = 7.4 Hz, 1 H), 7.25 (d, J = 7.4 Hz, 1 H), 3.07 (t, J = 7.6 Hz, 2 H), 2.92 (t, J = 7.4 Hz, 2 H), 2.18-2.05 (m, 2 H), 0.32 (s, 9 H).

4-(2,5-Bis(trimethylsilyl)phenyl)butanenitrile (711). A solution of 5-hexynenitrile (13.9 mg, 0.15 mmol) and CpCo(CO)₂ (3.5 µL, 0.030 mmol) and TMSA (105 µL, 0.75 mmol) in xylenes (1.6 mL) was added over 30 min to xylenes (1 mL) irradiated in a CEM Discover microwave synthesizer. After 15 min of heating, the reaction was cooled, concentrated and the residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (7:1), to give 5.3 mg (12%) of 711 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 7.3 Hz, 1 H), 7.38 (dd, J = 7.3 and 1.1 Hz, 1 H), 7.31 (d, J = 1.1 Hz, 1 H), 2.94-2.84 (m, 2 H), 2.45 (t, J = 7.1 Hz, 2 H), 2.07-1.91 (m, 2 H), 0.34 (s, 9 H), 0.27 (s, 9 H).

Benzyl tert-buty 3-(6-oxocyclohex-1-enyl)-3-hydroxypropylcarbamate (724). To a mixture of 722 (30 mg, 0.31 mmol) and 723 (82 mg, 0.31 mmol) was added DBU (47 µL, 0.31 mmol), and the reaction was stirred for 24 h. Et₂O (5 mL) was added, and the organic layer was washed with H₂O (3 mL) and brine (3 mL), dried (Na₂SO₄), filtered and
concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (2:1), to give 18.8 mg (17%) of 724 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.36-7.20 (m, 5 H), 7.13-7.02 (bm, 1 H), 4.83-4.09 (m, 4 H), 3.89-3.63 (bm, 1 H), 3.15-2.90 (bm, 1 H), 2.51-2.33 (m, 4 H), 2.12-1.90 (m, 3 H), 1.46 (bs, 9 H).

tert-Butyl 3-(6-oxocyclohex-1-enyl)propylcarbamate (726). To 725 (31.8 mg, 0.20 mmol) was added 9-BBN (0.5 M in THF, 270 μL, 0.14 mmol), and the solution was heated at 60 °C for 4 h. The reaction was cooled, and 687 (15 mg, 0.068 mmol), Pd(dppf)Cl$_2$ (2.8 mg, 0.003 mmol), AsPh$_3$ (1 mg, 0.003 mmol), Cs$_2$CO$_3$ (44 mg, 0.14 mmol), and DMF (800 μL) were added. The reaction was heated at 60 °C for a further 2 h and diluted with H$_2$O (2 mL). The aqueous layer was extracted with Et$_2$O (3 mL x 3), and the combined organic extracts were washed with H$_2$O (2 mL x 2) and brine (2 mL), dried (Na$_2$SO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3:1), to give 4.3 mg (25%) of 726 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 6.75 (t, J = 4.1 Hz, 1 H), 4.77-4.29 (m, 1 H), 3.15-3.01 (m, 2 H), 2.48-2.30 (m, 4 H), 2.25-2.16 (m, 2 H), 2.06-1.90 (m, 2 H), 1.72-1.54 (m, 2 H), 1.44 (s, 9 H).

tert-Butyl benzyl 3-(6-oxocyclohex-1-enyl)prop-2-ynylcarbamate (728). To a solution of 687 (27 mg, 0.12 mmol), 727 (60 mg, 0.24 mmol), Pd(PPh$_3$)$_4$Cl$_2$ (4.2 mg, 0.006 mmol), and CuI (2.3 mg, 0.012 mmol) in THF (300 μL) was added i-Pr$_2$NH (51 μL, 0.36 mmol) slowly. After 45 min, Et$_2$O (5 mL) was added, and the organic layer was washed with H$_2$O (2 mL) and brine (2 mL), dried (Na$_2$SO$_4$), filtered and concentrated to dryness. The residue was
purified by silica gel chromatography, eluting with hexanes/EtOAc (5:1 to 4:1), to give 32.2 mg (78%) of 728 as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.50-7.04 (m, 6 H), 4.59 (s, 2 H), 4.51-3.93 (m, 2 H), 2.56-2.38 (m, 4 H), 2.12-1.96 (m, 2 H), 1.48 (bs, 9 H).

tert-Butyl benzyl 3-(2-((1-cyano-1-trimethylsilyl)methyl)-6-oxocyclohexyl)prop-2-ynylcarbamate (729). To a solution of (trimethylsilyl)acetonitrile (13.9 µL, 0.10 mmol) in THF (1 mL) at −78 °C was added n-BuLi (1.1 M in hexanes, 92 µL, 0.10 mmol) dropwise. After 45 min, a solution of 728 (28.7 mg, 0.085 mmol) in THF (200 µL with 200 µL wash) was added, and the reaction was stirred for 1 h. At this point, sat. NH$_4$Cl (2 mL) was added, and the aqueous layer was extracted with Et$_2$O (4 mL \times 3). The combined organic extracts were washed with water (5 mL) and brine (5 mL), dried (Na$_2$SO$_4$), filtered and concentrated to dryness. The residue was purified by silica gel chromatography, eluting with hexanes/EtOAc (3.5:1), to give 13.3 mg (35%) of 729 as a mixture of diastereomers as a colorless oil. 1H NMR (300 MHz, CDCl$_3$) δ 7.47-7.12 (m, 5 H), 5.89-5.55 (m, 1 H), 4.78-4.21 (m, 3 H), 3.98-3.60 (m, 2 H), 3.15-1.68 (m, 7 H), 1.47 (bs, 9 H), 0.40-0.07 (m, 9 H).
References

(57) Ramana, C. V.; Salian, S. R.; Gonnade, R. G. "An Expeditious Assembly of 3,4-
Chemistry 2007, 5483-5486.

(58) Neeson, S. J.; Stevenson, P. J. "Rhodium Catalyzed [2+2+2] Cyclo-Additions - an
Efficient Regiospecific Route to Calomelanolactone" Tetrahedron Lett. 1988, 29, 813-
814.

(59) Neeson, S. J.; Stevenson, P. J. "Rhodium Catalyzed Synthesis of Illudalanes"
Tetrahedron 1989, 45, 6239-6248.

(60) Witulski, B.; Zimmermann, A.; Gowans, N. D. "First Total Synthesis of the Marine
Illudalane Sesquiterpenoid Alcyopterosin E" Chemical Communications 2002, 2984-
2985.

(61) Kalogerakis, A.; Groth, U. "Total Synthesis of the Angucyclinone Antibiotic (+)-
Rubiginone B-2(1)" Synlett 2003, 1886-1888.

(63) Anderson, E. A.; Alexanian, E. J.; Sorensen, E. J. "Synthesis of the Furanosteroidal

(65) Petit, M.; Chouraqui, G.; Phansavath, P.; Aubert, C.; Malacria, M. "New Efficient
Construction of the ABC Core of the Taxoids Via a Sequence of Consecutive Cobalt(I)-

(121) Perreux, L.; Loupy, A. "A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium, and Mechanistic Considerations"

(126) Berlan, J.; Giboreau, P.; Lefeuvre, S.; Marchand, C. "Organic-Synthesis in Microwave Field - 1st Example of Specific Activation Under Homogeneous Conditions"

(135) Duckworth, D. M.; LeeWong, S.; Slawin, A. M. Z.; Smith, E. H.; Williams, D. J. "Co-Cyclizations of Nitrogen-Containing Acetylenes Induced by a Nickel

(159) Kocienski, P. J. In *Protecting Groups*; Georg Thieme: Stuttgart, 2004; .

(174) Brockmann, H.; Bauer, K. "Rhodomycin, Ein Rotes Antibioticum Aus Actinomyceten"

(188) Capranico, G.; Zunino, F.; Kohn, K. W.; Pommier, Y. "Sequence-Selective
Topoisomerase-Ii Inhibition by Anthracycline Derivatives in Sv40 Dna - Relationship

(190) Arcamone, F. C. In Anthracyclines; Cragg, G. M., Kingston, D. G. I. and Newman, D.

(191) Sessa, C.; Valota, O.; Geroni, C. "Ongoing Phase I and II Studies of Novel
Anthracyclines" Cardiovascular Toxicology 2007, 7, 75-79.

(192) Lo-Coco, F.; Ammatuna, E.; Montesinos, P.; Angel Sanz, M. "Acute Promyelocytic
Leukemia: Recent Advances in Diagnosis and Management" Semin. Oncol. 2008, 35,
401-409.

(194) Pasqui, F.; Canfarini, F.; Giolitti, A.; Guidi, A.; Pestellini, V.; Arcamone, F. "Synthesis

(195) Animati, F.; Arcamone, F.; Berettoni, M.; Cipollone, A.; Franciotti, M.; Lombardi, P.
"New Anthracycline Disaccharides. Synthesis of L-Daunosaminyl-Alpha(1->4)-2-
Deoxy-L-Rhamnosyl and of L-Daunosaminyl-Alpha(1->4)-2-Deoxy-L-Fucosyl
Daunorubicin Analogues" Journal of the Chemical Society-Perkin Transactions 1 1996,
1327-1329.

(196) Tong, G. L.; Henry, D. W.; Acton, E. M. "S-Iminodaunorubicin - Reduced Cardiotoxic

358

(221) Rho, Y. S.; Ko, H. K.; Sin, H.; Yoo, D. J. "A Facile Total Synthesis of Idarubicinone"

(246) Chang, A. E.; Shiling, D. J.; Stillman, R. C.; Goldberg, N. H.; Seipp, C. A.; Barofsky, I.; Simon, R. M.; Rosenberg, S. A. "Delta-9-Tetrahydrocannabinol as an Anti-Emetic in

(279) Corey, E. J.; Fuchs, P. L. "Synthetic Method for Formyl-[Ethynyl Conversion (Rcho-]

(280) Colvin, E. W.; Hamill, B. J. "One-Step Conversion of Carbonyl-Compounds into

(282) Bowman, W. R.; Mann, E.; Parr, J. "Bu3SnH Mediated Oxidative Radical

Omega-Carboxy Substituents - the Cannabidiols, Cannabinol and Delta-1-

Tetrahydrocannabinols and Delta-6-Tetrahydrocannabinols of this Series" *Journal of the Chemical Society-Perkin Transactions 1* **1988**, 1255-1262.

(324) Kudrina, E. S.; Olkhovatova, O. L.; Muravieva, L. I.; Gauze, G. F. *Antibiotiki (Moscow)* **1966**, *11*, 400.

(327) Gould, S. J.; Weinreb, S. M. In Herz, W., Grisebach, H. and Kirby, G. W., Eds.;

(329) Gould, S. J.; Chang, C. C.; Darling, D. S.; Roberts, J. D.; Squillacote, M.

(330) Hibino, S. "Synthetic Approaches to Streptonigrin and Biological-Activities on Quinolinequinone Systems" Heterocycles 1977, 6, 1485-1507.

(341) Bringmann, G.; Reichert, Y.; Kane, V. V. "The Total Synthesis of Streptonigrin and Related Antitumor Antibiotic Natural Products" *Tetrahedron* **2004**, *60*, *3539-3574*.

(367) Huang, W.; Shen, Q.; Wang, J.; Zhou, X. "One-Step Synthesis of Substituted Dihydro- and Tetrahydroisoquinolines by FeCl3 Center Dot 6H(2)O Catalyzed Intramolecular

(418) Lutz, C.; Lutz, V.; Knochel, P. "Enantioselective Synthesis of 1,2-, 1,3- and 1,4-Aminoalcohols by the Addition of Dialkylzincs to 1,2-, 1,3- and 1,4-Aminoaldehydes" *Tetrahedron* **1998**, *54*, 6385-6402.

