ABSTRACT

CAPALDI, MINDY BETH. Developing a New L., Algebra Using Symmetric Brace
Algebras. (Under the direction of Thomas Lada.)

Exploring the connections between L., algebras and symmetric brace algebras is
a relatively recent area of study. L., algebras are the skew symmetric analog of A,
algebras. The latter structures allow for a transfer of associativity from a DG-algebra to
a homotopic DG-module. Symmetric braces can greatly simplify the calculations involved
in proving an L, structure. We will investigate how to find a new L, algebra structure
when given an existing L., structure and a collection of maps {f;} with relations that
coincide with the definition of an L., morphism, all within the context of symmetric

brace algebra notation.
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Chapter 1

Introduction

1.1 Background

T. Lada and M. Markl have explored some ideas of transferring homotopy structures.
Consider a chain complex (V,dy) equipped with an L., structure and another chain
complex (W, dy ) with chain maps f : (V,dy) — (W,dw),g : (W,dw) — (V,dy) such
that the composition gf is chain homotopic to the identity Iy, : V' — V, via a chain-
homotopy h. Symmetric braces may be used to transfer the homotopy structure on V
to the space W [8]. In relation to other areas of mathematics and physics, R. Fulp, T.
Lada, and J. Stasheff showed in [4] that data describing particles of high spin can be
rewritten in the context of L., algebra structures. T. Lada and M. Markl went on to
demonstrate the more manageable interpretation of these results in terms of symmetric

brace algebras.



1.2 L, Algebras

Before defining L., algebras it is helpful to explain their predecessor, A, algebras.
The latter were a construction by J. Stasheff in the 1960s. A, algebras developed from
trying to transfer associativity from a differential graded algebra, A, to a DG-module, B,
that is homotopic to A. The algebra structure that B inherits from A will not in general
be associative, but only homotopy associative up to higher dimensional homotopies.

An L., algebra structure is the generalization of a graded Lie algebra in which the
Jacobi expression is only homotopic to zero, rather than equal to zero, and this structure

is the skew symmetric analog of an A, algebra.

1.2.1 Definition of an L., Algebra

An L, structure on a graded vector space V is a collection of skew symmetric linear

maps I, : V" — V of degree n — 2 that satisfy the relations

> ) X@O (=D)L (L(0s(1), s V(i) ) Vo(i1)s s V) = 0

i+j=n+1 o

where x (o) is the antisymmetric Koszul sign and o is taken over all (i, n—1) unshuffles [1].

This is the chain complex version, whereas the cochain complex version would require
that the maps have degree 2 — n.

The antisymmetric Koszul sign is defined as x (o) = sgn(o)-€(o; vy, ..., v,), or the sign
of the permutation times the sign that arises from the degrees of the permuted elements.

Example: (vy,vy) = —(—1)P2l(vy, 01), where |v;| =degree of v and |v,| = degree of

V2.



1.2.2 Examples For Small n

The following cases demonstrate the definition, including the signs involved, for n =

1,2,3.

n=1: (—1)1(1_1)lll1(1)1) = l1l1<U1) =0
This should automatically follow from the fact that [; is the differential in our

understood chain complex.

n=2: ((—1)2(1_1)1112 + (—1)1(2_1)l2l1)<1]1 X 1)2)

= ll (lQ(U]_ (29 Ug)) — lz (ll(’Ul) (29 Vg — (—1)'1}1'”2'[1(’02) (29 ’Ul) = O

n=3: ((-1)3(171”1[3 + (—1)2(272”2[2 + (—1)1(371)l3l1>(1}1 X v ® U3)
= 13 (ll(’l)l) &® V9 Q V3 — (—1)'”1””2”1(’02) ® v ® vz + (—1)|v3‘(|v1|+‘v2l)ll(Ug) Qv & 1)2)
+lo (la(v1 ® v2) @ v3 — (=1)21lly () @ v3) @ vy 4 (—1)IHIe2l D, (v @ v3) @ 1)

+l1 (lg(?)l ® v ® Ug) =0

From the n=2 case, we see that [, is a chain map. Also, the line expanding l5l5 from
the n=3 case is equivalent to the Jacobi expression, which is therefore chain homotopic
to zero via chain homotopy /3.

It is useful to look at the L, algebra definition without actually evaluating the maps
over (vy, ..., v,). In this case, we do not have to include the Koszul sign. The following is

a table of this interpretation of the definition for small n.

1.3 Symmetric Brace Algebras

It is advantageous to analyze L., algebra structures using symmetric brace algebras.

Many signs and unshuffles can be absorbed into the symmetric brace notation. First,



Table 1.1: L, Algebras

n=1 1111:0
n=2 l1l2—lgl1:O
n=3 lllg +l2l2 + l3l1 =0

n=4 lll4 — l2l3 + lglz - l4l1 =0
n=>5 l1l5 + lQl4 + l3l3 + l4l2 + l5l1 =0

let’s look at the symmetric brace algebra definition and some small examples.

1.3.1 Definition of a Symmetric Brace Algebra

A symmetric brace algebra is a graded vector space B together with a collection
of degree 0 multilinear braces x (1, ..., z,) that are graded symmetric in 2y, ..., 2, and

satisfy the identities

L1y ooy T ) Y1y ey Yn) =

E €T <:L‘1 <yz%7 7yz%1> ) <yz%7 ayz?2> R <yl’1na 7yszn> 7.%'71”“7 "'7yi;"++11>
m

where the sum is taken over all unshuffle sequences

-1 -1 m+1 m—+1
1 <...< Upyyeens ] < .. < Ztm+1

of 1,...,n and where € is the Koszul sign of the permutation



(xla <oy Tmy Y1, 73/71) = (1'1,%}, "'73/1'%1 y L2 yz%7 Sx) yi%: o T Yit, "'7yi?;nay7;71"+17 "'7yi:”++11)
m

of elements of B [§].

1.3.2 Examples of the Relations

o z(x1) (y) =z {z1(y)) + = (z1,9)

o x (w1, m) (y) = (—1)172WWla (w1 (y) , 20) + 2 (w1, 22 (y)) + @ (21, 32, 9)

The order of x1 and x2 never changes.
o 2 (z1) (i yj) = @ (1 (wi) ,y5) + (DWW (@1 (y) ,ws) + @ (@1 (yi ) + @ (21, i, 95)

If i = j, then x (x1 (vi),y;) = x (x1 (y;),vi) and there is a repeated term. This case ends up

being rather important, because in our application we will not want both terms.

1.4 Objectives

Suppose we are given an Lo, algebra structure on (V,dy ) and a collection of maps {f;} €
By(V) with relations that coincide with the definition of an L., morphism. From these as-
sumptions, we can achieve a new L, algebra structure on (V,dy ). This process includes many
calculations, a lot of induction, and numerous uses of combinatorics. In order to proceed, we
must know some details about the signs involved (see Chapter 2). It will also be beneficial to
understand the connections with L., morphisms and the techniques of unshuffling used there
(see Chapter 3). To reinforce comprehension of the main theorem, small general and concrete

examples are included (see Chapter 6).



Chapter 2

Connecting L., Algebras and

Symmetric Braces

2.1 Fundamental Example

T. Lada and M. Markl provide a useful example of a symmetric brace algebra, as seen in
[8]. It is given by the graded vector space composed of antisymmetric maps,
BS(V) = @p+k_1:$Hom(V®k, V)as

p

where V is a graded vector space and Hom(V®F, V)3 denotes the space of k-multilinear maps

of degree p that are antisymmetric in the sense that
f(Ul, ey Uiy Ui 1y oees ’Uk> = —(—1)‘””””1"]0(’01, ey Ui 15 Ugy oeey ’Uk),

for any vy, ..., v;, Vi11, .., 0 € Vand 1 <i < k — 1.

This is basically the antisymmetric Koszul sign at work. Keeping with the notation used in



the respective definitions, the {l,,} maps that compose an L., algebra structure and the {f;}
maps that make up a symmetric brace algebra both use the antisymmetric Koszul sign. The
braces themselves only use the Koszul sign, however.

Within this symmetric brace algebra example there is also a definition in [8] of how to

actually evaluate these braces on elements from V&*.

2.1.1 Definition of How to Evaluate Symmetric Braces

QSC

Given the graded vector space By, suppose we have a collection of maps f € Hom/(V®*, V)p

By 41(V) and g; € Hom(V®%, V)2 C By, _q,41(V),1 < i < n. Define the symmetric brace

f{g15s9n) € Hom(VE, V)es o, ,where 7 :=aj + ... + a, + k —n by

FAg1 s gn) (V1) =D (12X f1 @ -+ ® g @ 1¥F7") (3, o0y 03,

with the summation taken over all unshuffles
11 < <lay,lag+1 < <laytag, s lag+otap+l < <lp
of elements of V, where x is the antisymmetric Koszul sign of the permutation
(U1, ey ) = (Vg ey 05,)

and

S=(k-Da+(k-2+a)g+..+(k—nta+..+an1)gm+ Y, aa;+(n—1)a
1<i<j<n

—|—(n — 2)0,2 + ...t ap—1



Delta is needed to assure that we have skew-symmetry. This sign will be examined in more
detail later. In evaluating symmetric braces, we lose some of the simplifying benefits of the

notation, but this is what makes symmetric brace notation comparable to that of L., algebras.

2.2 Application to L., Algebras

An important and useful application of symmetric braces occurs in proving an L., alge-

bra structure ([8], Exercise 6). Suppose we are given maps I, € Hom(V®*, V)¢

5 and we let
=114+ 1o+ --. Then an L, algebra structure on V is given by the symmetric brace relation
[({l) = 0. This is a greatly simplified equation compared to the L, algebra definition. Why

does it work?

Example: Let [ =11 + 1o + 3.

Then I (I) (z,y,2) = (I + 2 + 13) (I + la + 13) (2,9, 2)

= (ll <l1 + 1o + 13> + 19 <l1 + 1y + lg) + 13 <l1 + 1o + l3>)(x,y,z)

= (I () + i (l2) + 1 (Us) + 12 ({lh) + 12 (l2) + 12 ({l3) + 13 () + I3 (I2) + 13 (13))(2,y, 2)

But 2 = 0 since [; is a differential. Also, I (I3),l5 (l2), and I3 (I3) are all 0 since they
are acting on only the three terms (x,y,z). Two sets of brace combinations remain. One is

l1 (l2) + 12 (l1) = 0, which is equivalent to Lo (refer to Table 1.1) since
I (lo) + 1o (1) = (=1)°lly + (=1)%Iyly = (=)0 Y015 + (1) VDL = 111y — Il
and similarly

I (I3) + 1y (Ia) + 13 (1)) = (=) D3 05 + (1) V2150 + (=1)BDsly = 15 + lyly + I3l



which is equivalent to Lg.

2.3 L, Morphisms

My goal is to get a new L, algebra structure. To do so, I need to introduce a collection of

maps {l/,}. Eventually, I will show that these maps compose the new structure.

2.3.1 Definition of an L., Morphism

For f; € Hom(V® V)% I, € Hom(V®, V)%, 15 € Hom(V®, V)%, and (vy,...,v,) € V&,

i—27 Vg 7

the collection {f;}i>1 is an Lo, morphism if

S (=N (0 filli (Va1 - V() V(1) - - -5 Vo)) =

i+j=n-+1 o€S; i1

zn: S (—1) "2+ i)

j=1lri+-+r;j=n
r1<--<rj

Z X(U)B(O—)l;(fm (Ua(l)a s 7Ua(r1))7 te af?"j (Ua(n—rj-l—l)a s Ua(n)))

UEST<1

where S ;_1 denotes the set of j,7 — 1 unshuffles and S7’<17~--77"j the set of 71, ..., rj-unshuffles sat-

isfying o(ry +---+ri1+1) <o(ri+---+r;+ 1) if r; = r;41. Also, x(o) is the antisymmetric
Koszul sign for the permutation o and (o) is the sign from permuting ”v”s and ” f”s.

For example, B(0)l5 (f1, f3) (v1,v2, v3,va) = (=) Vsl (1 (1), f3(v2, v3,04)).

This is similar to the definition given in [3] with a few changes since I have already evaluated
the maps on the elements. Beta is a result of the alteration. Here the elements v, ;) have already

been unshuffled and put in place to be evaluated.



Sr<1,...,rj puts a condition on the unshuffles of r1,...r; that has not appeared in other defi-
nitions. To summarize the condition, if o(i) and o(j) denote the subscripts of the first terms
in two sets of the unshuffle, (i) < o(j) indicates that after unshuffling this ordering of the

subscripts is increasing.

Example: (2,2) unshuffles of 1234 with this restriction are (12)(34), (13),(24), and (14)(23),

leaving out the unshuffle (34)(12) since 3 > 1 and unshuffles (24)(13) and (23)(14) since 2 > 1.

2.4 Delta

I want to return to the delta sign used in Definition 2.1.1 for evaluating symmetric braces.

d=(k-1Da+k-24a1)g2+(k—3+a +a2)gs+ ...+ (a1 +az+ ... + an—1)qn +

Zl§i<j§n aja; + (n—1)ar + (n —2)ag + (n — 3)az + ... + an—1

This sign actually matches the signs given in the definition of an L., morphism.

2.4.1 Lemma

If | € Hom(V® V)%, f; € Hom(V®%, V)2 1 <i <n and
d=(k-1)qg+(k—24a1)g2+(k—3+a1 +a2)q3+...+(a1+a2+...+an_1)qn+zlgi<jgn a;a; +

(n—1)a; + (n —2)ag + (n — 3)az + ... + an—_1, then

-1

n(n—1) n ai(n—i
(=1 l(fars voos fan) = (=1) 7 2=t 600, (fo s fa,)

10



and

(1) fily = (=1)70V £t

Proof: The proof will be split into two sections, one for each of above equations.

Part 1: Show ¢§ = @ + 3 ai(n — i)

Part one of the proof is only for terms l,(fa,, ..., fa, ), which can be found in both Definition
2.1.1 and 2.3.1. For the morphisms involved we know that £ = n and ¢; = a; — 1. Plugging

that information into the original formula for §, we get

b = m—1(aa—1)+(n—24a1)(aza—1)+(n—3+a1+az)(az —1) + ...
+(a1 + a2+ ... +apn—1)(a, — 1)+ Z aa; + (n —1)ar + (n — 2)ag + (n — 3)az +
1<i<j<n

et ap—1

= (n—1a1—(n—=1)+(n—2)ag +ajas — (n—2+a1) + (n — 3)ag +
(a1 +az)as — (n—34+a; +a2) + ...+ (a1 +ag + ... + an—1)an
—(a14+ a2+ ...+ apn—1) + Z aiaj + (n—1)ar + (n —2)ag + (n — 3)az + ... + an—1

1<i<j<n

= —(n—l)—(n—2+a1)—(n—3+a1+a2)—...—(a1+a2+...+an,1)

+[ajaz + (a1 + az)as + ... + (a1 + ag + ... + ap—1)ay]

+ Z ajaj +2(n—1)ar +2(n — 2)az + 2(n — 3)as + ... + 2ap—1
1<i<j<n

All of the terms that are doubled can be ignored since they don’t affect the sign change.
Also, the middle terms that I bracketed above end up being the same as ), <i<j<n Gilj, SO that

too is doubled and can be left off.

11



= —(n—-1)—-(n—-24+a)—-(n—3+a1+az)—...— (a1 +az+..+an_1)+ Z a;a;

1<i<j<n
+ Z a;Q;
1<i<j<n
= —(n—l)—(n—2+a1)—(n—3+a1+a2)—...—(a1+a2+...+an_1)
= [-n-1)—-(n—=-2)—(n—-3)—...— 1]+ [-a1 — (a1 +a2) — ... — (a1 + a2 + ... + anp_1)]
- —w —[(n—1)ar — (n — 2)az — ... — 2an_2 — an_i]
~ n(n—1) i,
= —— —iz:ai(n—z)
n—1
= (DY )
1=1

This final line is exactly what I needed since the negative doesn’t matter.

Part 2: Show § = j(i — 1) for (—1)°f;l;

For f € Hom(V®* V)1 and | € Hom(V®% V), o, the § sign for 3 f(I) can be greatly

simplified from

o = (k:—1)q1+(k—2+a1)q2+(k—3—|—a1+a2)q3—|—...+(a1+a2+...+an_1)qn+

Zl§i<j§n aia;+(n—1)ar + (n —2)az + (n — 3)az + ... + an—1
to d = (k - 1)Q1

This is due to the fact that there is only one [;, which that reduces § to (k—1)g; immediately.
But g1 = a1 —2,80 6 = (k—1)(a1 — 2) = ka; — 2k — a1 +2 = a;(k — 1). Since we are dealing

with signs, we can leave off the terms that are doubled.

12



Now, if we use the common subscripts ¢ and j, we have that § = j(i — 1) for f; €

Hom(V®",V)i_1 and lj S Hom(V®j,V)j_2. |

13



Chapter 3

Developing a New L, Algebra

Structure

Suppose we are given two Lo, algebra structures over the graded vector space V, say (V1)
and (V,1))). Then [,, and I/, are in B_1(V'). Now consider an L., morphism {f;}, which are a
collection of skew symmetric maps fi : (V1) — (V,1},) of degree k — 1 in By(V). Then f (l)
and I’ (f) would both be in B_;(V), the same space that our original L, algebra structures
are in. This fact involving symmetric braces is useful. Suppose we don’t know the maps of the
second structure, {I],}7

What if we want to define I/, in terms of f and [? It turns out that this is possible! We
don’t even have to begin with the assumption that the {f;} collection is a morphism, although
that will follow.

Already, it has been shown that symmetric braces can help tremendously in L., algebra
proofs. Somehow, I need to convert the previous L., morphism definition to one using sym-

metric braces. To do so, the intricacies and problems of unshuffling must be examined further.

14



3.1 Unshuffle Argument

3.1.1 Lemma

For ¢y =--- =14, and k = i1 + ... + 7;,, with the following summation over all i1, %2, ..., it,-

unshuffles ,

1
Z @(fll R ® fitl)(vg(1)7 ...,”Uo.(k))

is equivalent to

Z (fh ®"'®fit1)(va(1)a'“ava(k))

UGSZ

where &,
Tyeenslt

) denotes the i1, ..., i, -unshuffles satisfying o (i1 +- - -+ip_1+1) < o(i1+---+ip+1)

if gy = i

Proof: This proof and lemma do not include any sign changes for the unshuffles. We
are assuming that f;, = fi, = --- = f;, . Start with } (fi; ® -+ ® fi, )(Vs(1), s Vo(r)) OVer

unrestricted unshuffles. Without loss of generality, look at the identity unshuffle
01 < - < 0y, Vi1 < v < Vi gy ey Vb 41 <t < Uk
Evaluate the unshuffle in this order to get
fir (V1,5 0iy) @ fiy (Vig 15 0y Vigin) @ -+ @ fiy (Vk—iy 415 0 Vk)

To complete all possible permutations of this identity unshuffle grouping, the set vy, ..., v;, moves

to each f;,. Since iy = -+ =iy, fi,(v1, ..., v;,) = fi,(V1,..0,05,) = -+ = fi, (v1,...,v;;) and we
J 1

15



end up with the equivalent of

t1fi (V155 03)) ® fin (Vin 41, o0 Vintin) © -+ @ fiy) (Vi +15 -+, Vk)

We do not want to have multiples. There are two ways to deal with the multiple terms: divide
by t1 or hold the unshuffle group vy, ..., v;, fixed with f;; so that no other f map evaluates this
group, which is what S< does.

The unshuffles v;, 41 < ... < Vijqig, s Vg—iy,+1 < +++ < vy are still causing repeats. We
can either fix the unshuffle group v;, 41, ..., vi; +i, to fi, or divide by t; — 1.

Continue this pattern until the unshuffle group vg—;, 41, ..., vj is fixed with f;, . Overall,
we either did not restrict unshuffles but instead divided by (¢1)!. Or we dealt with the problem
by the other method. Each unshuffle "group” already must be in increasing order. We can
fix/arrange the overall order by making the first element of each unshuffle group less than the
leading element of the following unshuffie group, with ranking based on the original order. This

is the same as using the restricted symmetric group S< for o above. B

3.1.2 Application Example

Ignoring signs,

(fo, fo) (@1, w2, m3,24) = (f2® f2) (21, 22, 23, 24)
= fa(z1,22) ® fo(xs, x4) + fo(x1,23) @ fa(w2, 24)
+fo(x1,24) ® fo(2,23) + fo(we, 23) ® fo(21,24)
+fo(z2, 1) ® fo(x1,23) + fo(xs, z4) @ fa(z1,22)
= 2[fa(w1, 22) ® fa(ws, 24) + fa(21,23) © faw2, 24)

+fa(z1,74) @ fo(z2,23)]

16



To avoid multiples, multiply by 1/2 (which is ﬁ in this case). In general, we have to

multiply by % for n number of repeating f;’s. Or the S< method implies that

<f2,f2>($1,£[}2,$3) = f2(1'1,$2)®f2($3,$4)
+fo(x1,23) ® fa(x2,24)

+fa(z1,24) ® fo(zo,x3)

3.2 Symmetric Brace Version of Morphism

I will use the definition of an L., morphism, but in terms of symmetric braces. So, I'm
essentially setting up the relation f(I) =1’ (f). I actually want to define these new !’ maps in

terms of the known [’s and f’s, but that is a later goal.

3.2.1 Theorem

For fi € Hom(V® V)%, I; € Hom(VE V)%, 1! € Hom(V® V)%, and (vy,...,0,) €

Ve {fi}i>1 is an Lo, morphism if

n

— / . .
;fi(ln—i+1> - Z Z Clj< i%)"w z‘%17 i%a"'?fi%a"’7fl'in7"7f’bgln>

J=lig=..=i} <if=..=i <iP=.=i]",
ip iyt Fif =n
ti+to+...+tm=j

where C' = Hﬁ,a =1,..m

and the sum is over all (ii, i, ..., i ) unshuffles when evaluated on elements.

We need the coefficient C to keep from repeating terms during our unshuffling, which happens

when there is more than one of the same f; map, as shown in the last lemma.
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Proof: Show that this definition of an L.,- morphism is equivalent to Definition 2.3.1.

First, show that the left sides are equivalent. Start with the left side the theorem stated above.

n n
D fillnip) (V1 s vn) = [(—1)(S D X fillnmign) @iy, 3,
i=1 i=1
where the second summation is over unshuffles iy < -+ < ip_it11,ip—it2 < ---ip (this could

be described as n — i + 1,7 — 1 unshuffles as well). This is true from Definition 2.1.1, where

r=n—i+1+7—1=mn. Continuing:

= > ST (0 fi (V1) - Vo)) Va(a1)s s Von))

i—i—j:n—i—l UESjyi_l
where S;;_1 denotes the set of j,i-1 unshuffles and § = j(i — 1) as shown in Lemma 2.4.1. Now

this is the same as the left side in Definition 2.3.1.

Now, start with the right side in this theorem, and show it is equivalent to the right side in

Definition 2.3.1.

n
Z Z Cl;< i%w"’fi%l? 7,'%7"'7fi§27"'7fi71"7"7fi%?n>(vl7"'7vn)

J=lil=..=i} <ij=..=if, <iP=..=i,
i} i+ i =n
ti+to+.. . A+tm=j

=) >
=1

i ==, <if=..=F, <iP'=..=i
ip+iyt. i =n
t1+t2+m+tm:j

S VN (fa 0y ©fp@ @ Ly @@ fip @ ® fip ) WUo(1), s Vo)

m

where the last summation is over all z}, i%, ..., ipv unshuffles. Now use Lemma 3.1.1 to show

that the above equals:
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n
=2 2. W
j=1 i%giég..‘gi%
ittiz+.. i =n
t1+to+...+tm=J

Z X(O’)ﬁ(()’)l; (fz% (va(l)7 () vo‘(i%)) X ® fl?fn (Ua(n—itm—l-l)a ey Uo(n)))

There is no longer an additional coefficient when f maps are equal so C' is gone, but the
necessary restriction on the unshuffles is there instead. The beta sign (same as in Definition
2.3.1) appeared from permuting some v elements over the f maps, and accounting for any sign
changes that ensued. By Lemma 2.4.1, delta is the same as the sign in Definition 2.3.1, so now

just rename the subscripts of the f’s to get the rest:

-3 > (—1)* 5T a0

J=1 i1+---+ij:n
11 <<ty

Z X(U)B(U)lj(fil (va(l)a s 7va(i1))7 T 7fij (va(n—ij—i—l)v R 7v0(n)))

where Si<1 s denotes the set of i1, ..., i;-unshuffles satisfying o (i1 + - +ix—1 + 1) < o(i1 +

i

---+ik+1) ifip =14 M

Example: For n =4, fi {la) + fo {ls) + f3 {l2) + fa{li) = 1§ (fa) + 15 {f1, fa) + 5115 {fo, o) +
LU fro f2) + R0 U f fu )
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3.3 More on Symmetric Braces

Special Case: Suppose we let fi=identity. Then when we are looking at a term like
%l% (f1, f1, -, f1) with n number of f; maps and C = ;. It would be much simpler if we
could leave off the identity maps. But in doing so, we lose n! unshuffles, so we must multiply
by that number in order to simplify to just I/,. Thus, the coefficients will cancel. Any time we
drop fi1 maps from a term, the associated % coefficient will be canceled.

Another interesting note about symmetric braces in the example B, (V):
l1 (I3 (f2)) is defined when acting on (z1,z2,z3), but Iy (l2 (f2)) = l1 (I2) (f2) — U1 (l2, f2) and

l1 (l2, f2) is not defined on those elements. For now, we must discount that last term, and say

that 1y (I2 (f2)) = l1 (l2) (f2). More generally, any x; (yi,, Yiy, ---, ¥i,,) i undefined when m > j.

3.4 Defining the [ Maps

The I/, maps in Theorem 3.2.1 generate a new L, algebra structure. I want to know how
these new !’ maps are defined, so simply solve for I/,. The following show the maps up to n=4,

also letting fi=identity.

o filh) =0 (f1)

:>1/1 211
o filla) + folli) =1 (f2) + 55 (f1, f1)
= Iy + fo (1) = L (f2) + (2) 5114

=1, = 12 + f2 <11> — 11 <f2>

The fraction % is the application of C from Theorem 3.2.1. I multiply by 2! because of the
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loss of unshuffles from leaving off f]s.

o fills)+ follo) + f3 (i) = U {f3) + 15 (f1, fo) + 2lb (f1, f1. fr)
= s+ fo(lo) + fs () =1 (fs) + 15 (fo) + (3) 515
= l% =13+ 1> <12> + f3 <11> -1 <f3> - 1/2 <f2>

o frlla) + falla) + fa (o) fall) = 1 Fa) + 15 (oo fo) + pla (For fo) + il (1 o o)
+ 4l (f1s f1, f1s 1)

= la+ fo{ls) + fo (o) + fa () =l (fa) + 15 (Fa) + 5113 {foo fo) + 05 () +14

= Ty = Lo+ f (Is) + 3 (Ia) + £a (1) = In (£a) = 15 (Fs) — 3115 (Fa, F2) — Ty (F2)
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Chapter 4

Main Theorem

4.1 Theorem

Assume that the collection {/;} € B_1(V) is an Ly, algebra structure and therefore [ (I) = 0.

Suppose there exists a collection { f;} € Bo(V') such that

n

Zfl <ln—i+1> = Z Z Cl;< i%""’f’i%’ i%u"‘ufi?27"‘7fi§n7"7fi?:n>
i=1

J=lij=..=i} <if=..=q <i'=.=i],
ijtig+.. i =n
t1+to+...tm=j

for some I} € B_1(V'), where C' =[] ﬁ, a=1,...,m. Also, let f; =identity.

Then the collection {I/} is an Lo, algebra structure.

Additionally, as a consequence of the above equation, the collection { f;} is an Lo, morphism.
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4.2 Proof

Show that I'(I') =0 for I" =1} + 15 + ... +1],. To simplify,

V(Y =0= U (U) + 1)+ 1 (o) + 4+ L () + 1, (1) =0

Solve for I/, to get

n n—1
l%:zfz<lnfl+1>_z Z Cl;< i%’“"fi%l’ i%,...,figz,...,fi{n,..,figzn>
i=1 I=lij= =i}, <ii=.=i <iP=.=i"

ijtiz+.. i =n
t1+to+...Htm=J

This proof will be completed in four parts.

4.2.1 Partl

Write out the pairs I (I,) + 15 (I, _1) + 15(l_o) + -+ + 1,y (I5) + I, (I{) and substitute
the correct formula for the second map. The positive terms are from the first summation,

Z?Zl fi {ln—i+1). The negative terms follow from the double summation.

a b c

L) ) = b () & 10 (o () (s (e + oo 01 (o (00)) bl

e f
—h <C b <fiafj>> —h <C >oon <fi17fizvfi3>>
1<j i1 <i3<i3
i+j=n i1+i2+iz=n
) g
- mll <l;z—1 <f17 e J1, f2>>
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c d e

2.) Iy (1) =1 (et} + 1 (f2 gln—2>> + 1 (f3 (In-3)) + o + 1o (fo1 (1)) = I (i (1))

f g
—la<c > l’2<f@-,fj>>—zg<c > zg<fi1,fi2,fig>>
1<j 11 <i2<i3
1+j=n—1 i1+12+i3=n—1
1

h
—. — mlé <lfn—2 <f17f17 '-'7f17f2>>

3 1 (1) = 1 o)+ 8 (Fo (o)) + 8 (Fs (s oo 8y (e (12)) — 8 (11 (P}

f g
—lé<C Z lé<fi7fj>>_lg<0 Z lg<fi17fi2vfi3>>

1<j 11<i9<i3
i+j=n—2 i1+10+iz=n—2

h
= gt s Ui e 1)

a b c d
4) Ul ger) = U k) + 0, (2 Gnei)) + 1 (F3 (ko)) + oo+ 1 (kg ()

! g
—lz<l1<fn_k+1>>—l;<0 > 1’2<f@-,fj>>—z;<0 > lé<f¢1,f¢2,fig>>
1<j 11 <12<13
i+j=n7k‘+1 i1+ig+iz=n—k+1
h

— = (n—li—l)'l;“ (g (f1s f1o s f1, f2))

24



5.) 1 (Ig) = Ly (l2) + Ly (fo (1)) = Iy (L (f2))
6.) I (l) = I, (lh)

I will use the roman numeral part number (I), the numbers 1-5, and the letters within each
number for reference purposes. For instance, the notation 1.2.a means I} (l,,—2). Since [ is
a differential, I3 = 0 and we can ignore anything with consecutive l; maps. Also, I have set
f1 =id and I do not want to have to keep track of identity maps. Therefore, drop the f{s, and
in doing so the coefficients ﬁ will cancel with the new coefficient (¢1)! that I must multiply
by in order to account for the loss of unshuffles. For example, from I.1.g there must be n — 2

” f1”s in order for the total number of ” f”s to be n — 1 and C' = ﬁ But drop the ” f1”s and

multiply by (n — 2)! to get I, _; (f2).

4.2.2 Part 11
Step A

Expand [} (l,—p+1) for k = 2,...,n by replacing [}, with its definition. These are the Part L.a
terms. The motivation behind this is that they are similar to Iy (I,,) +12 (ln—1) +- - -+ 1n—1 (I2) +

77l77

ln (l1). These are exactly the terms from [ (l), which is zero since the ”{”s make up an Lo,

algebra structure.

1) (LLa): b (L) = b (1)

2) (L2.0): & (ot) = Ia (lot) + Fa (1) os) — 1y (F2) Uns)

3) (13.0): 1 (bys) = bs (Lns) + Fo {12) Uz + s () ns) — 1y (fs) s} — L (fa) (ins)
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a b c d

4.) (Ld.a): U (lkg1) = b (n—rt1) +f2 (Te=1) (1) + 3 (Te—2) (In—1) + -+ fie (1) i)

—_

e ! 9
—l (i) (Tnkrn) = o (fo1) Unekir) = C Y B (firs fin) nkia)
11+io=k
i1 #1
h
Z Cl;< i%a"'? 11 z% fi%a"'vfi{na'“:fi%><ln7k+1>
=..=il <i?=.=i2 <im=..=i"
ty 1 to 1 tm

i +ig4- i =k
tittot+Htm=j

I purposely separated terms f and g, although they derive from the same summation, because

the terms that have only a single f map will usually cancel in a different way than the rest.

5.) (Ls.a): I,

(o) = bos {1a) + fo (o) {Ia) & Fi (s} Ul & oot Fot (1) (12) = Ty (ot {I2)

- > 1 fz,fg lo)

i<j
i+j=n—1

Z Cl;( 1y.. 7f11 fl%77fz%2’7flyl)afl%><l2>

=3 ;1 _;1 2 ;2 m_  _;m
Jj=3 ==l <117...7zt2<21 ==

iftiz+.. i =n—1
ti+to+...+tm=J

a b

6.) (I1.6.a): I, (I1) = ln (1) + fo (ln—1) (l1) + f3 {ln— > (I2) + oot Frldty —lL (f > (l1)

-C Z f217f12 >

i1+i2=n
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f

n—1
72 Z Cl;( i}a'“afi%lvfi%v'--7fi?2""7f’i;n7“afimn><l1>
I=3 iy == <if=.=if) <iP=.=ip

it +ig+.. i =n
ti+to+...Htm=J

Step B

All of the ”a” terms in Part II, Step A are the relations that cancel since I am given
an L., algebra structure. Now rewrite all II.A.b,c,d, ... terms using symmetric brace rela-
tions. An example of the motivation for this comes from the b terms, within which we have
(l1) (ln—1) +(l2) (ln—2) +- - -+ (ln—1) (l2), which again is similar to the Lo, algebra relation (using

induction) that proves it to be zero.

I1.2.b: folli-m=ry= fo (i (ln—1)) + f2 {l1, ln—1)
11.2.c: —lAfr-tm=ry= —11 {fo (ln_1))

Recall from the note in 3.3 that {1 (f2,l,—1) is not defined, so I do not include that or similar

terms.

I1.3.b: fotboy-tbm=ay= fo (l2 (ln—2)) + f2 (l2,ln—2)

I1.3.d: —liFstln== —11 (f3 (ln—2))
IL.3.e: —ilfor-tln=ay= —15 (fa (ln—2)) — I5 (f2,ln—2)

IL4.b: fokbmr-thn=rrry = f2 (=1 (k1)) + f2 (=15 ln—k+41)
IL4.c: fsth=ar-th=trr = f3 (lh—2 (ln—k+1)) + f3 (=2, ln—pt1)
IL4.d: fikt-th=rrr = [ (b (n—k+1)) + fr (1o ln—k41)

ILd.e: —hLhrtbr=rrry = =l (fi (ln—k+1))

b=ty = =15 (fr—1 Gnmior1)) — 15 (fr—1, ln—kog1)
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1L4.g: —C S i, pinmt b Fim-thmprt)

i1#1

=—C N [l (fis (Unsr) s Fia) + 15 {irs Jia (ner))]
i1+io=k
i1#1

11.4.h:

7/ £ £ \
/

k-1 / £ £
-C Zj:g Zii:,,,:itll<¢§:_,,:if2<i?:,,_:i?:n TNTA g I g I o I
i +ig4- i =k
tittat - +Htm=j

k—1
--cY 3 (it Ghnsr) s oo Fig o Fizsvos fiz s fips o fin, )

I=3i==i <if=.=i) <iP==ip
it iyt Fil =k
titto++tm=j

+l_ly <fz%) fz% <ln—k+1> PREES) fi%l)fz‘%) vy fz%?a ceey fZT: ceey fz%>

+-+ l; < i}a ceey fitl17 i%7 "'7fi?2) "'7fi;n) 7flgln <ln—ks+1>>]

I1.5.b: Folbmeaibbay=1fo (ln_2 (12)) + fo (ln—2, l2)
IL5.c: fstbm=sitay= f3 (ln—3 (l2)) + f3 (ln—3,l2)
115.d: Fr=rtr-tay= fao1 (1 {(12)) + fn-1 (l1,12)
IL5.e: —bdfm=ri-tay= —l1 (f—1 (I2))

AW U /£ £ NN
H~5-f~ Lty Fiag=n—1 "2 \J115 J2/ \VIT

—C Y B{fa ), fu) = (fu, fio (12))

i1+12=n—1
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I1.5.g:

SIS T2 S S S S NN S
11* *Zt <117 *Zt2<21 =...= 7 \le7 7Jzt11J7,17 7J7,t27 ST ’Jltm/
7 +12+ +ztm—n 1
tit+ta+-+tm=j

::_c§: > 1 (i Gad o B s B S o i o Fis, )

1 -1 2 2 M M
Zl Sty <117...7zt2<21 ==

i +ig4-i =n—1
t1 ot Htm =]

+l; <f7,%7f15 <l2>7 7f11 y 127' 7f12 [T 7fz’1’”7)f’b?:n>

+l;< 17- 7f117 12 7fi%27"')fi7f17""fi?:n <l2>>]

I11.6.b: Folbm=r-y="ro (ln—1 (1)) + f2 (ln—1,11)
IL.6.c: Fsthm=ar-ty = f3 (ln—2 (1)) + f3 (ln—2,11)
11.6.d: —bdfmr-tiy=—1 (fn (1))

0 1!
1166 2 i1 Fia=n "2

-C Z l/2 <f11 <l1> vfi2> - l/2 <fi13fi2 <l1>>

i1+ia=n

.o Il
IIGf CZ ZZI— _Zt1<ll_ _Zt2<ll =. _Z?:n i
11+12+ +zt =n
t1Hta ot tm=]

fc§: > 1 (Fi ) By S B i By )

i1
zlf *Zt1<’1* —Zt2<21 =. *Ztm

11+12+ iy =n
titto+-Ftm=j

+l; <f1%, fl% <ll> g eeey fitl17 1?7 ceey fi?2""7 fl’ln) vy fz?:n>
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_|_...—i—l;-< i%""’fitll’ z’%?"'?fi%ﬂ"'7fi71"?"'7figln <l1>>]

Step C

Some patterns should be evident.

i) From the "a”s in Part II, Step A we get > p_; lg (ln—k+1) which = 0 since the ”{”s make up

an Lo-algebra structure.

ii) From the "b”s, we get Y771 fo (i (ln_)) = fo <ZZ;% Ui <ln—k>> = 0 since "I”s are an L

algebra structure.

iii) Similarly, from the ”¢”s, we get S-7=F f3 (Ix (ln_g+1)) = 0. This pattern continues for all

n—1n—i+1

D fille (ko)) = 0

and results in the cancellation of all of the first terms in the expansions of the f; (Ix) (l—k—i+2)

type symmetric braces.

iv) Those were not the only terms that appeared from the expansions of b, ¢, and d. The others

are:
n—1n—i+1

SO fillks lnmk—ita)

i=2 k=1
These are automatically 0 if K = n — k — ¢ + 2 because of the symmetry of symmetric
braces combined with the Koszul sign. For example, (lo, lo) = (=1)122l (15, 1) = — (I3, 15) = 0.

Here I am using the symmetric brace degree for the maps, which is -1 since [; € B_1(V'). Notice
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that k and n — k — i 4+ 2 run over the same numbers, so these will cancel with each other!
Example: From I1.2.b we got f2 (l1,1l,—1) and we will also see fa (I,—1,01) from I1.6.b. Then

folln—1,11) + fo (l1,ln=1) = = fo (l1,ln=1) + fo (l1,ln—1) =0

v) From II.2.c, I1.3.d, I1.4.e, IL.5.e, 11.6.d, > ;o5 —l1 {fr (ln—k+1)) will cancel with the same

terms of the opposite sign in 1.2.b, ¢, d.

vi) From IL.3.e, IL.4.f, IL5. f, I1.6.e, 2;21 =15 (f (ln—k)) will cancel with the same terms of the

opposite sign in 1.3.D, c.

vii) Continue this pattern with S 722 —14 (fi (In_gs1)) through —1I_ (f2 (1)) (this term ap-
pears because the other n — 2 f maps must be f1), which cancels with I/, _; (f2 (1)) in I, _; (I5)

from Part I.

viii) We still have — 37270 1 (frr b)) — Sop=a Iy (frrbnr1) — - — Iy (fa,11). (i.e. the big

summations from Step B with all but one f; being identity maps.)

ix) We also still have all of the cases where there was more than one f map (once we leave off

the fi’s).
n—2
k=2

This was rewritten using symmetric brace relations, such as with 11.4.g, and some of 11.4.h,

11.5.h, and 11.6.e, f.

Therefore, from Part II, I have viii and ix to deal with and cancel at some point.
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4.2.3 Part 111

There are still a lot of terms from Part I that have not canceled yet. Return to those now.

Step A: Back to [; (I)) (i.e. Part I.1)

Everything up until I.1.e should be gone. We can’t cancel the rest of the terms e — h as

they are, so try rewriting them using symmetric brace relations.

1.) (Lle):

~I <0 > b <f@-,fj>> ==C >, h(lp){fify)
i<j 1<j
i+j=n i+j=n
I want to find

—C > b)) (fir f)
isg
1+j=n

because the two added together equal 0 by induction on the I’ maps composing an L, structure.

2.) (L1.f):

_ll <C Z lé <fi1’fi25fi3>> =-C Z ll <lé> <fi17fi27fi3>

i1 <io<ig 11 <io<ig
11+12+13=n 11+12+13=n

so I need to find

i1 <ia<is
11+e2+i3=n

to cancel.
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3.) Generally, for j=2,...,n-1:

< ¥ ill<zg<i},...,f@n>>:—c 3 Zh(l <Zl,.,fltm>

iTeTim=] it Ttm=]
ip<..<i ip <. i

I will need —C1l} <l;,1> + 14 <l372> + ... +1; (I1)] with the appropriate associated f’s. Note
that the C coefficient should match up when these terms appear, since the f’s will be the same.

There are no remaining terms in [} (I})) that have not been considered.

Step B: Back to I} (I/,_,) (i.e. Part 1.2)

a b
1.) (I.2.e): =I5l (fn-1)) = =15 (1) (fu—1) + 15 {l1, fn—1) Term a is one of the induction terms

needed. Also, the second term, b, will cancel with what was found in part viii of Step C when

k =n — 1 in the first summation.

2.) (L.2.f):

b c
—z;<0 S lé(fi,f]>=—0 5 ( U £+ 1 <fi>7fj>+l’2<l’2(fj),fi>>

1<j 1<j
i+j=n—1 i+j=n—1

Again, a is an induction term. The other two (b and ¢) will need to be manipulated later (the

beginning of Part IV) to cancel.

3.) Similar for

n—2
—C D 2 b (furn fi))
01<--<ij  j=3
i1+ +ij=n—1
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b

n—2 a
S0 Y Y B Ui i)+ (8 (o oty ) St

i1<---<ij  j=3 o
i1+-~~+i‘7:n—1

where o runs over all unshuffles such that o(i1) < --- < o(ij-1),0(i;).

I will not write out this part of the proof for the Part 1.3 section, because it is so similar to

the other steps here.

Step C: Back to I (I _, ;) (i.e. Part 1.4)

1.) (I4.e):

a

—l, (I (frrr1)) = =1 () (Frrr1)

This is another induction term.

2.) (L4.f):
l§g<0 > l,2<fiafj>>
i<j
i+j=n—k+1
a b c
=-C > (lz<’2><fz»fj>+lz<l§<fi>,fj>+l;€<l’2<fj>,fi>>
i+j:lr§z£k+1

3.) (L4.g):

-C > (B i fis))
11 <12<13
i1+ig+iz=n—k+1
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=C E : [_l;f <l1/’>> <fi17fi2>fi3>
11 <ig<i3
i1+io+ig=n—k+1

+ 3 Gl (Fotinys fotin) s Fotin)) + D e (5 {Fotin))  fotin)s fotis))]

4) (Lah): =1 (1 (f2)) = =1 (1) (f2)
Once this is completed, we can cancel:
o From IIL.A.1.a +1IL.B.1.a: (=11 (l5) — 15 (11)) (fn-1) =0

o From III.A.2.a and others not explicitly written: (=1 (I5) — 15 (15) — l5 (l1)) (fn—2) =

Continue for f,_s...fs and finally

o [~ Zhsth (U )] () =0

Some more work is required to use this trick when there is more than one f. Notice that
for 1.a above, we only have the induction term for f,_ ;41 since l; originally couldn’t act on
more than one f. Similarly, we are missing [}, (I5) on more than two ” f”s, and [} (I5) on more

than three ” f”s, and so on.

If we look at the individual ”k”s from the a pieces of the rewritten symmetric braces in
Part III, we have the following pieces that can be used for the induction argument on the I’s

being Lo, maps. (leaving off the summations):

V) (f) forj=1,...,n—1
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UAly) (f, f) for j=1,..,n—2
l;<lé> <f7f7f> fory:l,,n—?,

l (U _o) (fs..rr f) for j = 1,2, where there are n — 2 7 f7s.
y (U, _1){f,.... f) for j =1, where there are n — 1 ” f7s.

Much progress has been made, but I still need the other induction terms where there are
more ” f” maps, and the b,c, ... terms from Part III where the !, map within the symmetric
braces was not [y. If it was [1, then it canceled with II.C.viii. I still have left other cases from

II.viii and ix.

4.2.4 Part IV

Before finding the rest of the induction terms, note that I, (I}, f,—2) appears when f;, = fi
in I11.B.2.b, which is similar to =1 (f,,—2,l2) from II.C.viii.. How to use this:

Expand the second [, by its definition, in the first term mentioned above.

a b c
L) Ity fa=ay=15(l2, fa—2) + 15 (f2 (1) , fn—2) — 15 (l1 (f2) , frn—2)

e a cancels with —15 (f,—2,12) as described above.

e b cancels with the I1.6.e expansion in Part II.B where i1 = 2,50 =n — 2,5 = 1.

e c is going to give us an induction term:

b= =—15 (L) (f2, fao2) + 15 (L (fa—2) , f2)

and then the second term, I} (I1 (fn—2), f2) , will cancel with a similar step when we expand
(U, o, f2) and get —1 (I1 (fn—2) f2). Notice that we won’t need to rewrite that part of the
expansion (as was necessary in this step for ¢) to get the induction term. So it will actually

just cancel with the leftover term from ¢ without any rewriting.
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2.) Expand IIL.B.3.b when o(i1) = o(iz) = - = o(ij_1) = 1.

n—2 n—2 a b c d
S fag) = i )+ (fa (lia) ) oo 1 (5 (W) fag) =1 (L (F) s fas)
j=3 7j=3

e

f
_1/2 < Z CZIZ (firs fir) 7fn—j> - lé <l;'—1 (f2) 7fn—j>
i1+12
11 <i2

e ¢ cancels with I1.C.viii.

e b cancels with I1.4.g expansion in Part I1.B

e ¢ cancels with I.6.e in Part I1.B

e d: For j =3,..., %52 (if neven) or 252 (if n odd), rewrite —15 (I (f;), fa—j) = =1 (L) (fj fa—j)+
15 (1 ( f:,f,j> , fj)- Once j is large enough (the j and n — j subscripts will have ”switched places”)
then we will already have all of the induction terms needed. So instead of expanding these d
terms, they will cancel with the leftovers from the expansions for the smaller ”j”s (before they
switched places), as was described in 1.c above. Note the opposite sign for z compared to d.

e e¢: If none of the three ” f”s are the identity, then

l,2 < Z CZ,Q <fi1)fi2> ,fnj>

1112
11 <12

z y >
=-C Z [ZIQ <ll2> <fi17fi2afn—j> + 1/2 <l,2 <fi17fn—j>afi2> + lé <ll2 <fi2>fn—j> ?fi1>

If one f = f1, then do not rewrite and go ahead and cancel with Part III
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o z is needed for induction.

o y and z will cancel with later terms from this step once all induction pieces have

been found and expansion no longer needed for e.

e f: No need to rewrite this. It will cancel with I1I1.B.3.

3.) Expand similarly for all terms of the type [}, <l;, 1,1, f>, k = 3,...,n, which come from

II1.C.3 when all f’s in the piece l; <f,,(i1), vy fg(il)> are f1 =identity.

¢ Y (B foi)

o (ig1) < <o (iy)

a b

k-1
=-C>_ > I <lja fotiia)s -+ fa’(ij)> + 1 <f2 (Gim141) 5 folipir)s -+ fa’(ij)>

J=lo(ij1)<<o(iy)

C

4+ l;g <fj <l1> 7f0'(il+1)’ T f"(ij)>

e

d
_Z;Q<l1<fj>7fo’(il+1)7"'7f0'(ij)>_l;€<C Z l,2<f7‘17f7'2>7f2'17"'7fim>

r1<ry
ri1+re=y
f
_l/ C ll . . _ _ ll / g i i
k Z 3<f7“17f7“27fr3>7fa(zl+1)7~-7fa(z]~) k<j—1 <f2>7fz17'~7fzm>]
r1<ro<rz
r1+r2+r3=j

e ¢ cancels with I1.6.f in Part I1.B, when some ” f”’s = fi.

e b and ¢ cancel with I1.C.viii if only one f # f; and III.C.ix otherwise.
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e d must be rewritten as:

_l;§ <l1> <f]’ fo(il+1)) ey fo(ij)> + l;c <l1 <fcr(il+1)> 7fj7 23 fa(ij)>

et I <l1 <fg(i].)> 2 Jis Foive)s fG(ij—1)>

All terms, excluding the first one which is used for induction, will cancel in this same process

for a different j. We won’t have to rewrite to get the induction term for these f maps again.
Continue this process for e, f, and g, using the first term for induction and canceling the

rest as different j values are used. Eventually, this will take care of anything left in IL.viii and

ix as well as any other remaining terms from Part I1II. B
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Chapter 5

General Example Proof for n =4

The proof of the theorem will be greatly illuminated if it is demonstrated for a reasonably
small n. The smallest value that still allows insight into the complexities of the proof is n = 4.

I will follow the outline given in chapter 4 for this example proof. The theorem gives:
4

Z fi(ls—i) 24: Z CZ9< o Jit s iz iz s -,fi;n,--,figjn>

i=1 I=lip=..=i} <if=..=i <if'=.=i7,
it iy i =4
ti+to+...AHtm=J

for C' = H T @ = 1,...,m with f; =identity.

The formulas for {1, 15,15, and I/, were found in section 3.4. I relist them here:
[ ] lll = ll
o ly=1lr+ foll) =l (f2)

oI5 =13+ fa(la) + f3 (l1) — 11 (f3) — 15 (f2)

o Uy =1ly+ folls) + fa(la) + fa(lt) — 1 (fa) — Us (f3) — g7l (fa, fo) — U5 (f2)
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5.1 Proof

To prove that these maps compose an Lo, algebra structure, I have to show § (I}) +15 (1) +
15 (15) + U, (1) = 0. T want to start by expanding the second map using its definition as given

above.

5.1.1 Partl

L) Y () = U (la+ fo(ls) + f3(lo) + fa(ln) — 1 (fa) — iy (fo, fo) — 5 (f3))

a

c e f
=l (la) +1 <f2b<l3>> 1l (fs(l2) + 1 <ff<ll>)— bbfay —gih (g (fo, f2)) — L (g (fs))

g

—l (I3 (f2))

2.) Iy (I3) =I5 (Is + fa (l2) + f3(l1) — L1 (f3) — 15 (f2))

a b d e

= 1y {13) + 1 (fo {12)) + 1 (fs (1)) — B (1 Fs)) — 1 {15 (o))

3.) I3(15) =I5 (la+ fa(l1) — 11 (f2))

a

=g () + 0 U ) — 2 (i ()

a

4) Ty () =1y (In)
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Note that [1 o I; should always be zero because [; is a differential.

5.1.2 Part 11
Step A

To use the fact that I have an L, algebra structure, I need to find the terms that cancel
due to I (l) =0 for I =1y + Iz + I3 + l4. Try expanding I (I3) , 15 (l2), and I (I1) (the a terms),

using the definitions for the first maps.

L) 15(13) = (la + f2 (I1) — 11 (f2)) (I3)

a b c

= Iz (I3) + fa (l1) (I3) — 11 (f2) (I3)

2.) I5(l2) = (I3 + fa(l2) + f3(l1) — 11 (f3) — 15 (f2)) (l2)

a b c d e

= I3 (l2) + f2(l2) (I2) + f3 (l1) (l2) — 11 (f3) (l2) — l5 (fa) (l2)

3.) Yy () = (la+ fa(ls) + fa (l2) + fa () — I (fa) — 5l (fa, f2) — 15 (f3)) (In)

a b c d e

= Iy (I1) + fo (Is) (L) + f3 (la) (l)+ Fabbrrthy —l (fa) () — 15 (f3) (L) — 51lh <f2,§"2> (l1)

g

—15 (fa) (I1)

Step B

To find more terms to cancel, rewrite all Part II.A.b, ¢, ..., g terms using the definition of

symmetric braces.
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IL1.b: fotbtlsy = fo (i (l3)) + f2 (L1, 13)
IL.1.c: —dfardsy = 11 (f2 (I3))

IL.2.b: follad sy = fo (s (12)) + fo (Ia, o)
I1.2.c: fslrr-tloy = f3 (L (l2)) + f3 (I, 12)
I1.2.d: —hAfaptlay = —11 (f3 (l2))

IL.2.e: —difoltoy = 1 (fo (Io)) — 1 (f2,12)

I1.3.b: ottty = fo (I3 (L)) + f2 (I3, 11)
IL.3.c: fsbbotlry = f3 (l2 (l1)) + f3(l2, 1)

) =1y (f3,11)
IL3.f: —grbhtforfor-tbey = =515 (f2 (L), fo) — 35 (fo, fa (1)) = =I5 (fo (ln) , fo)
() = I3 (f2, 1)

Step C

Now there is enough information for some patterns to become noticeable:

i) From the a’s in Part II we get 13 (l4) + lo (I3) + I3 (l2) + l4 (l1) which = 0 since these maps

make up an L, algebra.

ii) From the b’s in Part IT we get fo (11 (I3))+f2 (I (I2))+f2 (I3 {I1)) = fa (l1 (I3) + l2 (o) + I3 (l1)) =
0
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111) Similarly, from II.2.c+I1.3.c we get f3 <l1 <l2>> + f3 <l2 <l1>> = f3 <l1 <l2> + s <l1>> =0

iv) From I1.2.b, fa (l2,l2) = 0 by symmetry of the braces (recall that the brace degree for Iy is -1
since Iy € B_1(V)). Also, f2(l1,13) and fa (I3,11) cancel and f3 (l1,l2) will cancel with f3 (I3, 1),

which takes care of all of the expansion terms from I1.1.b, I1.2.¢, and 11.3.b, c.

v) Notice that we can cancel —Iy (f2 (I3)) from II.1.c with I.1.b, —I; (f3 (l2)) from I1.2.d with

I.1.c., and finally —I; (f4 (l1)) from I1.3.d with I.1.d.

vi) Similarly, =1} (f2 (l2)) (I1.2.e) and =1}, (f3 (l1)) (I1.3.e) cancel with the terms of the opposite

sign in 1, (I5) (1.2.b, c).

vil) =15 (f2 (1)) (I1.3.g) cancels with 15 (f2 (11)) (1.3.b) from 1§ (15).

viil) We still have —1 (fa,l2) , =15 (f2,11) and —15 (f3,1;). T will return to these terms later.

ix) There is still the expansion of the term that had more than one f map, leaving us with

=l (f2 (L), fo) (IL3.f).

5.1.3 Part III
Step A: Back to [ (l}) (i.e. Part I.1)

o <fmf >> = _%ll <l/2> <f27f2>

I need to find —%Z’Q (I1) {f2, f2) to cancel by induction on the !’ maps composing an L
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algebra structure. Really, this only uses that the maps make up an Lo algebra structure.

2.) L1.f: —lbtfsh= —11 (1) (f3)

I want to find —1, (I1) (f3) for the induction argument.

3.) Ll.g: —hlifany = 11 (15) (f2)

Therefore, I need —15 (15) (f2) — 15 (I1) (f2)-

Step B: Back to [, (%) (i.e. Part 1.2)

1) 1.2.d: —Adfsyy = —15 () (fs) + 1 (I, f3)-

The first term is what I needed for induction with III.A.1! The second term cancels with

one of the parts in II.C.viii

2.) L2.e: —htbrtfony = —l5 (I5) (f2) + 15 (15, f2)

Again, the first term is part of what was needed for III.A.3. T will return to 1} (1}, f2) later.

Step C: Back to [} (l}) (i.e. Part 1.3)

1) L3.c: =i ifoyy = 15 (1) (fo) + 15 (11, fa)

Now all of the parts for ITI.A.3 are together. The second term cancels with —15 (f2, 1) from
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II.C.viii.

To summarize the cancellation by induction:

o —l1 (Ig) (f3) = Iy () (f3) = (=l (lg) — 15 (ln)) {f3) = 0.

o —li(I3) (f2) — I (o) (f2) — I3 () (fo) = —(la (I5) + 1o (o) + 15 (I2)) (f2) = O

What terms are left?
o —1}(f2,12) from II.C.viii
o Iy (fa(l1), fo) from ix

o —11 (1) {fo, fo) from IIT.A.1

o 15 (l}, f2) from IIL.B.2.

5.1.4 Part IV

Expand the second I in I (I, f2) (from II1.B.2) by the definition of the map.

ey = I (o + fa () — L (f2), f2) = U5 (la, fo) + 15 (fa (1), f2) — U5 (11 (f2) , f2)

The first two terms cancel immediately with II.C.viii and ix.

Finally, rewrite —1 (I1 (f2), fo) as —a;ly (l1) {fa, fo), and it will cancel with the only other
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remaining term (III.A.1) because of induction on {"”’s being L. This works since

b (1) (fo, fo) = By {f2) fo) +a (L (o) fo) = 203 (a {f2) , o) W
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Chapter 6

Concrete Example for n =4

6.1 Setting Up the Example

Using a known L, algebra structure and a collection of { f;} maps that I concocted, I will

demonstrate the theorem for n = 4.

Original Lo, Algebra Structure: Use the Lo, algebra (up to n = 4) given by Daily in [1].
Let V=V, ® V_q, Vh =< v1,v3 > and V_; =< w > with the following relations:

e l1(v1) =1li(ve) =w

o [y(v1,v2) =11

(
(
o ly(vi,w) =
(
(

I3(w,w,v9) = w
o [y(w,w,w,vy) = w
e /;,i=1,2,3,4 defined to be 0 on any element not listed above.

Every [ map is skew symmetric, implying that ly(ve,v1) = —la(v1, v2) = —v;.

Collection {f;}: Use Lo, morphism f € Hom(V®* V)% defined by:

e f1 = identity
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o fi(w®) =wfori=234

o fi(w¥ l®u) =v,i=2,3,4

o fi(w® Tl ®@uy) =wy,i=2,3,4

e f;,i=2,3,4 defined to be 0 on any element not listed above.

Every f map is skew symmetric.

New Lo, Algebra Structure: I want to prove that the following maps make up an L4 algebra
by showing I’ (I') =0 for I =1} + 15 + 15 + 1.
o= 1
o ly=fi(l2) + fa(lr) — li {f2)
= b+ fo(li) =l (f2)
o ly=fi(ls) + follo) + f3 () — L (f3) = 15 (f2, fu)
= I3+ falle) + f3(l1) — L (f3) = 15(f2)
o ly= fill)+ fals) + falla) + falla) — L (fa) — & {fa, fu) — 515 (f2, fo) — Uy (fou fu, fu)
= U+ fo(ls)+ fa(lo) + fa(li) — L (fa) = U (f3) — 315 (fo, fo) — U5 (fa)
Note that the degrees of the elements are |w| = —1 and |v1| = |v2| = 0. Also, the degree of
fiis |fil =i —1 and the degree of I/ is the same as the degree of /;, which is ¢ — 2. This will be

important for calculating signs.

6.1.1 Signs to Consider

There are several factors to consider before starting, mostly involving sign changes.

Evaluating Sign

Remember that permuting elements and maps (i.e. moving elements over a map) causes a
sign change.

Example: (fo ® fo)(w,w,v1,v2) = (—1)|f2|(|w|+|w|)f2(w,w) ® fa(v1,v2)
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For this reason, it is helpful to rearrange the subscripts of the ” f”s in decreasing order (as
I did above), so that the f; identity maps are last and won’t change the sign if elements are

moved over them. Then we can essentially ignore fi.

Koszul Sign

We must also use the antisymmetric Koszul sign whenever we permute the elements.
Examples:

(w,v1) = —(=D)II (01, w) = —(v1,w)

(w,v2) = —(=1)1I2l (03, w) = —(v3,w)

(v1,09) = —(=1)ll02l (0, 01) = —(v2, 01)

(w,w) = =(=1)*"|(w, w) = (w,w)

Delta

When evaluating symmetric braces, a ¢ sign factors in. This can happen in three cases:
1) For f; (l;) use j(i — 1).
Forl <fr1,. .,frj> use 12/ Zl 173(]—@)
3) For I} <l;> use the actual 0 formula found in Definition 2.1.1. As shown in Lemma 2.4.1, this
matches the sign in the L..-algebra definition which is good since we are proving that the [”’s

make up such an algebra.

6.1.2 Evaluating !’

This example will demonstrate the case where I’ is evaluated on (w,w,v1,v9) because it is
the most interesting case. It will be easier to prove if we already know what the I’ maps are

once evaluated on certain elements. I will work out the first few terms in detail, but then will
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only include ones (after permuting with Koszul sign) that are nonzero when evaluated, instead
of listing all of the unshuffles.

Cases we need to know:

o Uw) = U(ve) = L(vr) = L (v2) = w
o li(w)= L(w)=0
o Lh(w,v1) = (o4 fa(l) — b (f2))(w,v1)
= —la(v,w) + f2 (l1) (w,v1) = l1 (f2) (w, v1)
= —w+ (=1 foly (w,01) = (=)D fo(w, 01)
= —w— fo((li(w),v1) = (l(v1), w)) =l fa(w, v1)
= —w— f2(0 — (w,w)) — li(v2)
- —wtw-—w
o lh(w,v2) = (a4 fo(l) — b (f2))(w,v2)
= la(w,v2) — fo(li(w,v2)) — Li(fa(w,v2))
= 0= fa((l(w),v2) = (la(v2), w)) = i (f2(w,v2))
= fo(w,w) — {1 (v1)
=0
o lh(vi,v2) = (la+ f2 (L) — L1 (f2))(v1, 02)
= la(vi,v2) = f2((la(v1), v2) — (li(v2), v1)) — [ fa(v1, v2)
= v — fa(w,v2) + fo(w,v1) —11(0)
= v —vF 0
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(s + f2 (l2) + f3 (I1) — L (f3) — 15 (f2)) (w,w, v1)

la(w, w,01) + (=1)C7Y fola(w, w, v1) + (=1 faly (w, w, v7)
—(=)MDRY fa(w, w, 01) = (=1)2CDER2CTILE o (w, w, 01)
0+ f2(2a(vi,w),w) + fs(l1(v1), w, w) — 1 (v2) + 5 ((fo(w, w), v1)
—2fa(w, v1), w))

f2Qw, w) + f3(w, w, w) — w + ly(w, v1) + 15(2v2, W)
2w+w—w—w+0

w

(I3 + f2 (l2) + f3 (L) — b (f3) — 15 (f2)) (w, w, v2)

I3(w,w, v2) + falo(w, w,v2) + fali(w, w, v2) = l1 fs(w, w,v2) + 5 fo(w, w, v2)
w+ f2(0) + f3(li(v2), w,w) = li(vi) + B ((fa(w, w), v2) = 2fa(w, v2), w))
w+ f3(w,w, w) —w + ly((w, v2) = 2(vy,w))

w~+ 0 — 2w

(I3 + fo(l2) + f3 (l) — i (f3) — I3 (f2))(w, v1, v2)

I3(w, v1,v2) + fa((l2(ve, v2), w) — (I2(v1, w), v2))

+f3((=l(v1), w,v2) 4 (L (v2), w,v1)) = L f3(w, v1,v2)

+5((fa(w, v1),v2) = (fa(w, v2),v1))

0+ fo((v1, w) — (w,v2)) + fs((—w, w, v2) + (w,w,v1)) = 11(0)

+15((v2, v2) — (v1,v1)) — va — V1 — V1 + V2

—2?)1
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o l)(w,w,v1,v9) =

(s + fo (I3) + f3 (o) + fali) — li (fa) — U {f3) — 115 (fo, fo)
=I5 (f2))(w,w, vy, v2)

la(w, w, v1,v2) + (—=1)3C7 fy (I3(—w, w, v2), v1)
+(=1)26=D f3[(Iy (v1, va), w, w) + (I2(201, W), w, vo)]
FD) O ful(ln (0n), w,w,02) = (a(02), w,w, 1)

—(=)YA=D72] 4 (w, w, v1, v9)

—(=

—(=1)2@=02R2ED L (=)W fo (w, w), fo (v, va))

F(=1)DOF0) £ (11 vg), fow, w) — 2L((— 1)) o (w, v1), folw, v2))
+20 (1)) fo (w, vg), fo(w, v1))]

—(—1)3@=D/202B=DHG=2) 1L [( fo(w, w), v1,v2) — 2(fo(w, v1)w, va)
+2(f2(w, v2), w, v1)]
0+ fo(w,v1) + f3((v1, w, w) + 2(w, w,v2)) — fa((w,w,w,vs)

)
)
)
1)2@=0/243C=110[( f3(w, w,v1),v2) — (f3(w, w, v2),v1)]
)X
)
(=
)

—(w,w,w,v1)) = 11(0) = I5((v2, v2) — (v1,01))
+315((w, 0) + (0,w) + 2(v2, 1)

—2(v1,v2)) — I5((w,v1,v2) — 2(v2, w, v2) + 2(vi,w,v1))
vo 4+ vy + 201 — vy + vo + %(—21}2 — 209) + 2u1

3v1 + v
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o l)(w,w,w,v) =

o l)(w,w,w,v) =

la(w,w,w,v1) = f2(0) + fs(=3la (v, w), w,w) — fa(=l1(v1), w, w,w)
—li fa(w, w,w, v1) = BI(=3fs(w, w,v1), w) + (f3(w, w,w), v1)]
+3B((=1)ID fo(w, w), fo(w, v1))

+30 (1)) fy (w, 01), fow, w))]

—15[3(fa(w, w), w, v1) + 3(f2(w, vi)w, w)]

0= 3f3(w,w,w) + fa(w, w,w,w) = l1(v2) = l5(=3(v2, w) + (w,v1))
+315[3(w, v2) — 3(v2,w)] = 15(3(w, w, v1) + 3(v2, w, w))

—3w+w —w+w+ 5(0) — 3w + 3w

—2uw

la(w, w,w,v2) — fa(=3(I3(w, w,v2), w)) + f3(0) — fa(—l1(v2), w, w, w)
—li fa(w, w,w, v2) — BI(=3fs(w, w, v2), w) + (f3(w, w,w), v2)]
+3BL((=1)DD fo(w, w), fo(w, vs))

+31((= )"0 fo(w, v2), fo(w, w))] = BB(fa(w, w), w, v2)
+3(fo(w, v2)w, w)]

w + 3 fo(w, w) + fa(w, w, w,w) =l (v1) = 15(=3(v1,w) + (w,v2))
+3[315(w, v1) = 3l (v1, )] — I5(3(w, w, v2) + 3(v1, w, w))
w+3w+w—w+3w—0+ 1(—6w) + 3w — 3w

4w

Table 6.1: Summary of Values for [/,

Case (W '®@uv;) (W '@uvy) (W2 Qv ® vy)

n=1 w w 0
n=2 —w 0 Vg
n=23 w —w —2v;
n =4 —2w 4w 3u1 + Vo
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6.1.3 Show that § (I}}) + 15 (l5) + 15 (l5) + U, ([}) =0
The following evaluations will use
o Iy () (w,w,v1,v2) = (=1)0 V201 (w, w, v1,v2)
— 1301+ v)
= Jw+tw

= 4w

o Uy (15) (w,w,v1,02) = (1)1 (w, w,v1), v9) = (I (w, w, v2), 1)
+(2l5(w, v1, v2), w)]
= —15((w,v2) + (w,v1) — 4(v1,w))
— (00— w—dw)

= bw

b lé <l/2> (w7 w, vy, UQ) - (_1)(371)013[(215 (Ulv w)? w, UQ) + (ZIQ(Ulv 1)2), w, w)]
= 152w, w,v2) + (v2, w,w)) = l5(3(w, w, v2))

= 3w

o I (1) (w,w,v1,v9) = (=1)EDEDU L (w, w, vy, v9)
= Ul (v1), w,w,v2) — (1 (ve), w, w,vy)]
= —l[(w,w,w,v2) — (w,w,w,v1)]
= —(4w+ 2w)

= —6w

And the total is: 1} (I)}) + 15 (I5) + 15 (15) + I} (I}) = 4w + 5w — 3w — 6w = 0!
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6.2 [’ Maps for General n

After slightly altering the last example, it is possible to get a formula for I/, that is not recursive,
but only includes some nasty nested summations that give us a coefficient for w or v;.

The following are my assumptions for this example.

From [1]: V is a graded vector space such that V =V + Vi, Vo = {w}, and Vi = {v1, v2}.

Let V=Vy®V_q, Vh =< v1,v2 > and V_1 =< w > with the following relations:

) l1<’l)1) = l1<’l)2) w

ol (v2® w®mn— 1)) By,w,n>3

(n—2)(n—3)

B, = (-1)" 2" (n - 3)!

Collection {fi}: Use Lo, morphism f € Hom(V®* V)% defined by:
o fi = identity

o fu(vr @ w1y =y,

o fa(vy @ w®M=V) =y,

and when evaluated on anything not listed, f, =0

Use the recursive formula

Ji{ln) + fo (1) + -+ fu (L)

n
/
:Z Z Cl; ( ey 1 _ 12 7f12 7fl§"77fl?:n>
I=lip=..=i} <if=..=i <if'=..=i"
i1+t i =n
ti+to+...+Htm=J
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where C' =[] ﬁ,a =1,...,m. Solve for I},.

For this example, the only interesting cases to evaluate are I/, acting on (v; ® w®("_1)),

(v2 ® WP and (v; @ vy @ WD),

There are three big sets of nested summations. First I’ll write the general formula, then the

specific case for n=6.

n—1 i1—1 .
_ i -1 (i 11 — 1
l;l v ®w®(n 1) — _ _ _1 TL(’ll 1)(” ‘ ) _1 o _1 21(22 1)< ) ) _1
(v e M e ) e M (|
i, io — 1
DI Gl (b G R %
i3=2 12 — 13
n—1 n 1
_ _ 1yn(ii—1) - o
[i;a( g <”—Z'1>[BZ1
i1—1 i 1 i9—1 i 1
Z;( ) 1] — &2 ;( ) 19 — i3 [Bis
13—1 i 1 ig—1 ; 1
-1 Z'3(2'4—1)('3_' ) 1 i4(i5—1)<'4_. > B —---
St (27 0) S (Bl
n—1
: —1 i1
_ ERAVICES N L _yi 1 _
e (T i (i,
1=
7:1*1 Z 1 igfl Z 1
-1 il(ig—l) 1= 1 ig(ig—1) 2 —
.24( ) (i1 — 12 Z:s( ) i9 — i3
t9= i3=
. i3—1 .
(2 25) - e (B2
Z.3 -2 : i3 — i4
i4=4
ig—1 . .
iai -1 (s —1
1 Z4(151)(.@4 _ > 1 15<'5 > — M
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Il (v ® w®(”_1))

i1=3
i1—1 4
(5
=2 2
= iy — 1
o (ig— 2 —
S vt (2T e
ig=2 2 —13
n—1 n 1 i1—1 il 1
- 1 n(il—l)( o > 1 i1(i2—1)<‘ T ) B, —
D g D 3 ey
i2—1 . ig—1 .
1223(_1)@(1‘3—1) <22 — 1> 322(_1)13(14—1) (23 - 1> B, —
zi i2 —i3) = i3 — i4 *
ig—1 . i5—1 i
42:(_1)2‘4(2‘571) (24 - 1> Zﬁ(_l)i5(i671) <15 - 1> [Bz o ]mw
is=4 1’4 - 15 i6=3 15 — 16 6
_[Tf(—l)nm—l) (” - 1) ilf(—l)%(w—n <i1 - 1)(2’2 ~ 11—
i =4 n—i/) = i — 12
ig—1 . ig—1 ,
22(—1)1'2“3‘” (.22 B 1) 32(—1)@‘3@‘4—1) <,7’3 - ,1>(2'4 -
iz=4 12 — 13 ia=3 13 — 14
ig—1 . is—1 ,
I ( ) .1) 3 (~1yste (?5 ) .l)uﬁ — 11—
is=4 14 — 15 i6=3 15 — 16

Note that the first B, is only for n > 3. For n = 6, the formula is as follows:
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N

~

N\

o —

N———

|

—

L

™ 3 3

N— _|_)_|_

_ w\w/\)
= o

PO =8 =

N~ \}341

< & <A

N~
™ ™ +

(43(\ﬁ —
i _ +)\/\)
A I A )
~——

= - aea

w@5141<(

= — N~ ~— S ———

e _ + + _ |

Il

~—~

0

®

3

®

N

>

~—

=

where n = 2 is distinct from the pattern for higher

Finally, I give the last formula. The case

n, so I list it separately.
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For n > 3,

I (v @ vy ® w®”_2) =

n—1
S (1) B b+ (0= 2o+ (1) )

Jj1=3 Ji—
o n—2
+ > (—1n 12“10(, )(4111 — 209) +
11+io=n = 1
1<i1 <12

n—2
> X ymmee(RT (M0
11 — 1 19 — 1

k1=3t1+i2=n—k1+2
1<21 <12

ky—1 ' P
[Z (—1)32“( ! >Bj2v2 +v2 + (k1 — 2)v1 + (=17 (=1 + vg)

Jjo=3 j2—1
o ki — 92
Y, (D Z4+13)C<.1 )(4111 —2vp) +
i3+ig=k i3 =1
1<iz<ig
k1—2

Z Z (_l)m(ig—l)C(l’fl — 2> <k1 - iz — 1)2
ko=3 i3+ig=k1—ko+2 i3—1 14— 1
1<izg<iq

ko—1
. ko — 2
1 2
> (o (j3 _ 1>Bj3v2 02+ (ks = 2o + (1) (—or +v)
J3=3

o ko — 2
* Y. (Fyns DC( 2 >(4vl — 2vg) +

i5+ig=ko—k3+2 i5—1
1<i5<i6
el ko — 2\ [k
o 0 — —is—1

Z o Z (—1)1615 16+Z5)C<i B 1)( 2. _51 >2[H]
k3=3 is+ig=ka—k3+2 5 6
1<i5<16
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4
lg(v1 ® v2 @ w® <2>3302 — ( >B4U2 + Bsvg + v + 4vy +v1 — v +

(- Q- () oo

1 1/2
— B 2 — 4v1 — 2
91 <1> (1) [ 3V + Vo + 201 + V1 — V2 + = 5 <1>( 7 ’Ug)]

I have not yet discovered a pattern among the small ”n” values for any of the three formulas

that would allow one to avoid the unfortunately messy nested summations.

Table 6.2: [/ Values Forn=1,...,6

Case (v @ w1 (vy @wW®"™ 1) (v; ® vy @ WI?)

n=2 0 —w 201 — vy
n=23 —3w 0 2v9
n=4 2w Tw Tv1 — 160y
n=>5 63w 71w 12v9 — 1694
n==~6 —316w —459w —58v9 + 9314
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