
ABSTRACT

THERKELSEN, RYAN KENNETH. The Conjugacy Poset of a Reductive Monoid.
(Under the direction of Mohan S. Putcha).

The Bruhat-Renner decomposition of a reductive monoid tells us that a reductive

monoid may be partitioned into a union of double cosets with respect to a Borel

subgroup, indexed by elements from the Renner monoid. A more recent object of

study is the conjugacy decomposition of a reductive monoid. Here the disjoint subsets

in the decomposition are unions of conjugates of the double cosets by elements of the

unit group. The conjugacy poset of a reductive monoid is the indexing set for this

decomposition, with a partial order we call the conjugacy order.

The purpose of the research presented in this paper is to provide a better under-

standing of this poset. In our attempt to do so, we follow an approach analogous

to that for the study of the Renner monoid under the Bruhat-Chevalley order. We

begin by studying the order within classes indexed by certain idempotent elements in

the monoid. New results for the general case are presented before providing a more

thorough analysis for three well-studied types of reductive monoids: the set of n× n
matrices and the so-called canonical and dual canonical monoids. We then examine

the order between classes for these three types, finding order-preserving maps that are

generalizations of the maps between classes in the Renner monoid that have proven

quite useful in the study of the Bruhat-Chevalley order.
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Chapter 1

Introduction

The study of linear algebraic monoids began about 30 years ago, independently,

by Mohan Putcha and Lex Renner. The theory is a blend of topics from semigroups,

algebraic geometry, and algebraic groups. The linear algebraic monoids we consider

in this dissertation are reductive monoids. Reductive monoids are to the theory of lin-

ear algebraic monoids what reductive groups are to linear algebraic groups. Namely,

they are the most important and well-studied objects, with the nicest structure. Like

reductive groups, reductive monoids are important in several areas, such as represen-

tation theory and embedding theory, though they also have a beautiful structure that

makes them worthwhile objects of study on their own.

The first major result on reductive monoids concerned their structure: reductive

monoids are regular. A property of semigroups, regular here means that the monoid

is determined by its unit group and set of idempotents. With this result, the theory

really began to develop. We will summarize several of the bigger results relating to

the structure theory in greater detail in an upcoming chapter. For now, we provide

just enough background information to motivate the dissertation topic.

Motivation

It is well known that for a reductive group, the Weyl group plays a decisive role

in the structure theory. For reductive monoids, the analogous object is the Renner
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monoid. This monoid decomposes nicely into classes defined in terms of its unit group

and a certain subset of its idempotents. In semigroup jargon, these are called the J -

classes of the Renner monoid (from Green’s relations, in semigroup theory). In more

algebraic terms, these are the double cosets of the idempotent set by the unit group of

the Renner monoid. In [23], the structure of these classes is studied in detail. In [24],

the order between these classes is examined. In particular, an order-preserving map

is defined giving a precise description of the order between elements of two classes.

While the ideas above were being developed, the study of conjugacy classes in

reductive monoids was proceeding, having been inititated by Putcha in [17]. Theorem

4.1 of [17] shows there is an analogue of the Fitting decomposition for reductive

monoids. After the proof of the theorem, we find the following remark:

. . . thus the conjugacy problem in M reduces to the following three prob-
lems:

(A) Conjugacy problem for idempotents.

(B) Conjugacy problem within a reductive group.

(C) Conjugacy problem for nilpotent elements.

Much is known about (A) and (B). So we are left with problem (C).

The “attack” on problem (C) began with [18], followed by [21]. These contri-

butions laid the groundwork for a decomposition of a reductive monoid in terms of

unions of certain conjugacy classes, called the conjugacy decomposition. In [22], this

decomposition was formally defined and with it an associated partial order, the con-

jugacy order. This decomposition proved useful in the study of the variety consisting

of nilpotent elements of a reductive monoid (that is, the so-called nilpotent variety).

For example, it is used to obtain the irreducible components of the nilpotent variety

for certain classes of reductive monoids in [22], [26].

Chapter Outline

Chapter 2 is a brief summary of the background material necessary for the study

of reductive monoids. In addition to the basics from semigroups, algebraic geometry,
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and algebraic group theory, we cover the necessities regarding posets and Coxeter

groups, as well as an introduction to linear algebraic monoids. Chapter 3 continues

the background, with a more detailed description of the theory of reductive monoids.

In the final section of the chapter, we introduce a new description of the maps from

[24] for matrices.

The focus of this dissertation is on the poset associated with the conjugacy decom-

position of a reductive monoid. Chapter 4 provides an introduction to this topic. We

summarize the theory up to this point and provide a few new general results. The two

chapters that follow contain the bulk of the new results. The classes in the decom-

position from Chapter 4 are indexed by certain idempotent elements of the reductive

monoid. In Chapter 5, we examine the order within these classes, beginning with a

result for general reductive monoids and following with a more complete description

for three types of reductive monoids. Chapter 6 follows a similar approach to Chapter

5, though we now examine the order between the classes. Our primary results occur

here, where for three types of reductive monoids we provide a definitive answer to a

conjecture from [25], regarding the generalization of the maps from [24]. The final

chapter is Chapter 7, in which we summarize the results obtained and address the

next steps to undertake in the theory.
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Chapter 2

Preliminaries

This chapter outlines the basic background material necessary in the study of

reductive monoids. We begin with a review of posets. The material presented here

can be found in [33]. The general theory of linear algebraic monoids is a blend of

ideas from semigroup theory, algebraic geometry, and algebraic group theory. These

topics are the next to be reviewed. For semigroups, we rely heavily on [8] and [12].

For algebraic geometry, we use a number of sources, including [9], [11], and [29]. For

algebraic groups, we use [3], [6], [9], and [32]. Coxeter groups play an important role

in the theory of reductive monoids, and so we briefly review ideas central to that

theory, drawing largely from [1] and [10]. Finally, we close with a brief introduction

to linear algebraic monoids, using [19] and [32], in preparation for a more thorough

description of reductive monoids in the following chapter.

2.1 Posets

A partially ordered set (or poset) is a pair (P,≤) where P is a set and ≤ is a

partial order . That is, ≤ satisfies the following conditions:

1. For all x ∈ P , x ≤ x. (Reflexive)

2. For all x, y ∈ P , if x ≤ y and y ≤ x, then x = y. (Antisymmetric)
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3. For all x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z. (Transitive)

Usually, we will refer to (P,≤) simply as P , as in most cases the partial order

≤ is understood. If ambiguities arise, we will denote the partial order on P by ≤P .

Additionally, by x ≥ y we mean y ≤ x, by x < y we mean x ≤ y and x 6= y, and so

on. The elements x and y in P are said to be comparable if either x ≤ y or y ≤ x,

otherwise they are called incomparable. If every pair of elements in P are comparable,

we say ≤ is a total order and (P,≤) is a totally ordered set , or chain. Throughout

this dissertation, by “order” we will mean partial order (not total order).

If x ∈ P is such that y ∈ P with y ≤ x implies y = x, then x is called a minimal

element of P . Reversing the inequality gives the definition of maximal element . An

element x ∈ P is a minimum if x ≤ y for all y ∈ P . Likewise, x is a maximum if

y ≤ x for all y ∈ P . We denote the minimum and maximum elements of a poset by

0̂ and 1̂, respectively, or just 0 and 1 if the context is clear.

Example 2.1.1. The natural numbers N = {1, 2, 3, . . .} form a partially ordered set,

under the usual order for integers. N is a chain with minimum element 1 and no

maximal elements.

A partition of n ∈ N is a sequence α = (α1, . . . , αk) ∈ Zk
≥0 such that

∑
αi = n

and α1 ≥ . . . ≥ αk. We consider two partitions to be the same if they differ only in

the number of terminal 0’s. If α is a partition of n we write α ` n and we denote the

set of all partitions of n by Par(n).

Example 2.1.2. Given α, β ∈ Par(n), define α ≤ β if either α = β or for the

smallest i such that αi 6= βi, αi < βi. This order is called the lexicographic order.

Par(n) with this partial order is a chain for all n.

Example 2.1.3. Given α, β ∈ Par(n), define α�β if α1 + · · ·+αi ≤ β1 + · · ·+βi for

1 ≤ i ≤ n. This order is called the dominance order. Par(n) with this partial order

is a chain if and only if n ≤ 5. A generalization of this order will appear later in the

examination of the conjugacy poset of Mn(k).
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A map ϕ : P → Q of posets is order-preserving if x ≤P y implies ϕ(x) ≤Q ϕ(y)

and order-reversing if x ≤P y implies ϕ(y) ≤Q ϕ(x). An isomorphism of posets is an

order-preserving bijection whose inverse is also order-preserving. A bijection ϕ : P →
P is an automorphism if ϕ and ϕ−1 are order-preserving and an antiautomorphism

if ϕ and ϕ−1 are order-reversing. Given a poset P , let P ∗ be the poset such that

P ∗ = P as sets and x ≤ y in P ∗ if and only if y ≤ x in P . We then call P ∗ the dual

of P . If P and P ∗ are isomorphic, P is called self-dual .

An induced subposet of a poset P is a subset Q of P with the ordering on Q such

that x ≤ y in Q if and only if x ≤ y in P . The order on Q is called the induced order .

There is another notion of subposet, called a weak subposet . In this dissertation, by

“subposet” we will mean induced subposet. For x, y ∈ P with x ≤ y, we have an

important type of subposet, the closed interval [x, y] = {z ∈ P | x ≤ z ≤ y}. For

x, y ∈ P , we say that y covers x if x < y and [x, y] = {x, y}, and write x C y.

The length of a chain C is defined to be `(C) = |C| − 1. For a (finite) poset P ,

we define the length to be `(P ) = max{`(C) | C is a chain}. The length of a finite

interval is denoted `(x, y). If every maximal chain in P has the same length, then we

say P is graded . If P is graded, then there exists a unique rank function ρ : P → Z
such that ρ(x) = 0 if x is a minimal element of P and ρ(y) = ρ(x) + 1 if y covers x.

In a graded poset, `(x, y) = ρ(y)− ρ(x).

Example 2.1.4. Let X be a finite set, say |X| = n, and consider its power set

2X = {Y | Y ⊆ X}. 2X is a poset, with order given by set inclusion. This poset has

a minimum element, ∅, as well as a maximum element, X itself. Additionally, 2X is

graded, as the length of every maximal chain is n.

It is often useful to represent a (finite) poset via a Hasse diagram. This is a graph

whose vertices are the elements of the poset and whose edges are the cover relations,

following the rule that if y covers x then y is drawn “above” x.

Example 2.1.5. Let P = {1, A,B,AB,BA,ABA} with the partial order ≤ given by

the rule that x ≤ y if we may remove letters in y to obtain x, with the understanding



7

that “no letters” is represented by 1. The Hasse diagram for (P,≤) is given in Figure

2.1.

Figure 2.1: The Hasse diagram for (P,≤).

Let P be a poset and x, y ∈ P . If z ∈ P is such that x ≤ z and y ≤ z, then z

is called an upper bound of x and y. If there is an upper bound z of x and y such

that every other upper bound w of x and y satisfies z ≤ w, z is called a least upper

bound , or join, of x and y, denoted x ∨ y. If the join of x and y exists, it is unique.

Reversing the inequalities defines a lower bound and greatest lower bound , or meet ,

denoted x ∧ y. If the meet of x and y exists, it is unique. A lattice is a poset such

that every pair of elements has a join and meet. All lattices we will consider will be

finite lattices (that is, |P | <∞). Note that all finite lattices have a 0̂ and 1̂.

Example 2.1.6. (Par(n),�), from Example 2.1.3, is a self-dual lattice. It is graded

if and only if n ≤ 6. See [34] for details.

Example 2.1.7. The poset from Example 2.1.4 is a lattice. For U, V ∈ 2X , U ∨V =

U∪V and U∧V = U∩V . Since AB and BA both cover A and B and are incomparable,

the poset from Example 2.1.5 is not a lattice.



8

2.2 Semigroups

A semigroup is a pair (S, ·), consisting of a non-empty set S and an associative

operation, ·. Unless otherwise noted, we will write a ·b as ab and (S, ·) as S, since it is

usually clear how the operation is defined. If there exists 1 ∈ S such that 1x = x1 = x

for all x ∈ S, then 1 is called an identity element of S and S is called a monoid . If S

has no identity element, then we may adjoin an element 1 to S, defining 1s = s1 = s

for all s ∈ S and 11 = 1. Now S∪{1}, usually denoted S1, is a monoid. If a semigroup

S with |S| > 1 has an element 0 such that 0x = x0 = 0 for all x ∈ S, then 0 is called

a zero element of S and S is called a semigroup with 0. As with identity elements, if

S has no zero element, we can adjoin a zero to S to make it a semigroup with 0, with

multiplication defined as 0s = s0 = 0 for all s ∈ S and 00 = 0. Identity elements

and zero elements are unique and, since |S| > 1 for S to have a zero element, a zero

element is not an identity element.

Example 2.2.1. S = {. . . ,−2, 0, 2, 4, . . .}, under multiplication, is a semigroup. It

has a zero element but no identity element. S ∪ {1}, where 1 ∈ Z, is a monoid.

If A and B are non-empty subsets of a semigroup S, then by AB we mean {ab | a ∈
A, b ∈ B}. If A = {a}, we’ll write aB instead of {a}B (and likewise for B = {b}). If

T is a non-empty subset of a semigroup S such that for all x, y ∈ T we have xy ∈ T ,

then T is called a subsemigroup. Equivalently, T is a subsemigroup if T 2 ⊆ T . Note

that a subsemigroup T is itself a semigroup. If e ∈ S is such that e2 = e, then e is

called an idempotent . Let E(S) denote the set of all idempotent elements of S and

note that E(S) is a subsemigroup of S. There is a natural partial order on E(S),

defined for e, f ∈ E(S) as:

e ≤ f ⇐⇒ ef = e = fe (2.1)

If A is a non-empty subset of S, we call A a left ideal if SA ⊆ A, a right ideal if

AS ⊆ A, and a two-sided ideal (or just ideal) if A is both a left and right ideal. If A

is an ideal such that {0} ⊂ A ⊂ S, it is called a proper ideal.
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Let S be a semigroup with x, y ∈ S. The study of ideals in S leads naturally to

the following equivalence relations, called Green’s relations :

1. xLy if S1x = S1y.

2. xRy if xS1 = yS1.

3. xJ y if S1xS1 = S1yS1.

4. xHy if xRy and xLy.

5. xDy if xRz and zLy, for some z ∈ S1.

We denote the L-class of x by Lx, and likewise for R, J , H, and D. Additionally, we

note that there is a partial order on the set of J -classes of S1, defined by

Ja ≤ Jb ⇐⇒ a ∈ S1bS1. (2.2)

Example 2.2.2. Let M = Mn(k). Then xLy if and only if x and y are row equivalent,

xRy if and only if x and y are column equivalent, and xJ y if and only if rk(x) =

rk(y).

Green’s relations were first studied by J. A. Green in [7] and are of great im-

portance in the theory of semigroups. In the structure theory of reductive monoids,

presented in the next chaper, the J -classes will play a crucial role.

Let S be a semigroup. An element s ∈ S is said to have an inverse if there exists

an x ∈ S such that s = sxs and x = xsx. In contrast to the group setting, inverses

need not be unique. However, if every element s ∈ S has a unique inverse, denoted

s−1, then S is called an inverse semigroup.

Example 2.2.3. Let N ⊆ Mn(k) be the set of n × n matrices over k having at

most one non-zero entry in each row or column. N is an inverse semigroup, under

multiplication.
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2.3 Algebraic Geometry

For this paper, we will always assume that the fields we consider are algebraically

closed and that all rings are commutative with identity.

A ring R satisfies the ascending chain condition (ACC) on ideals if for every chain

I1 ⊆ I2 ⊆ · · · of ideals there is an n such that Ij = In for all j ≥ n. Such a ring is

called noetherian. A proof for the following can be found in [11].

Proposition 2.3.1. The following are equivalent.

1. R is noetherian.

2. For every ideal I of R, I and R/I are noetherian.

3. Every ideal of R is finitely generated.

4. Every non-empty collection of ideals has a maximal element (with respect to set

inclusion).

The following important result is also not proved here, though a proof can be

found in any book on algebraic geometry.

Theorem 2.3.2 (Hilbert Basis Theorem). If R is a commutative noetherian ring

with identity, then so is R[x1, . . . , xn].

Let I ⊆ k[x1, . . . , xn] be an ideal. Since k is noetherian, k[x1, . . . , xn] is noetherian

and hence I is finitely generated, say I = (f1, . . . , fm). Define the zero set of I,

denoted V(I), as:

V(I) = {a = (a1, . . . , an) ∈ kn | f(a) = 0 , ∀f ∈ I}.

Since I is finitely generated, V(I) is therefore the set of points a ∈ kn such that

f1(a) = f2(a) = · · · = fm(a) = 0.

An affine variety is a set V ⊆ kn that is the zero set of an ideal of k[x1, . . . , xn].

Let X and Y be affine varieties and k[X] = k[x1, . . . , xn]/I, where I = {f ∈
k[x1, . . . , xn] | f(X) = 0}. A morphism is a mapping ϕ : X → Y , with ϕ(x) =

ϕ(x1, . . . , xn) = (ψ1(x), . . . , ψm(x)), where each ψi ∈ k[X].
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Example 2.3.3. Let f ∈ k[x]. Then either f = 0 or f has finitely many zeros. That

is, either f(x) = 0 for all x or f(x) =
n∏
i=1

(x − ci) with ci ∈ k. Thus k and all finite

sets of k are affine varieties.

Example 2.3.4. Let X = {(x, y) | xy = 0} ⊆ k2. X is the zero set of f(x, y) = xy

and so it is an affine variety.

Example 2.3.5. The special linear group SLn(k) = {(aij) ∈ kn
2 | det(aij) = 1} is

an affine variety, as we see by this definition that it is the set of zeros of a single

polynomial equation.

Example 2.3.6. The general linear group GLn(k) = {(aij) ∈ kn
2 | det(aij) 6= 0} is an

affine variety. To see this, we observe that GLn(k) ∼= {(aij, b) ∈ kn
2+1 | b det(aij) = 1}

and so it is (isomorphic to) the set of zeros of a single polynomial equation.

Suppose that X ∈ kn. Let I(X) be the set of all polynomials in k[x1, . . . , xn]

having X as its zero set. Both V and I are reverse inclusion maps. That is, if I ⊆ I ′

then V(I) ⊇ V(I ′) and if X ⊆ X ′ then I(X) ⊇ I(X ′). Additionally, I(X) is an ideal

of k[x1, . . . , xn] and so we have the following set inclusions:

X ⊆ V(I(X)),

I ⊆ I(V(I)).

We have equality in the first case if and only if X is a variety. The conditions for

equality in the second case are given by Hilbert’s Nullstellensatz. Before stating this

result, we first note that the radical of an ideal I in R, denoted
√
I, is the set

√
I = {r ∈ R | rn ∈ I for some n ∈ N}.

This brings us to the aforementioned result:

Theorem 2.3.7 (Hilbert’s Nullstellensatz). If I is any ideal in k[x1, . . . , xn], then

√
I = I(V(I)).
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I is called a radical ideal if
√
I = I. So, there is a one-to-one correspondence

between the set of radical ideals of k(x1, . . . , xn) and the affine varieties in kn.

The next step is to define a suitable topology on kn. We do so by defining the

closed sets to be exactly the affine varieties of kn. It is a straight-forward matter

to check that the axioms for a topology are satisfied, [9]. This is called the Zariski

topology . In this topology, points are closed and every open cover contains a finite

subcover. However, all open sets of kn are dense, so any two non-empty open sets

intersect and thus this space is not Hausdorff. A topological space is noetherian if it

satisfies the descending chain condition on closed sets. While kn is not Hausdorff, as

noted, we do have the following:

Proposition 2.3.8. kn, with the Zariski topology, is a noetherian topological space.

A topological space is irreducible if it is not the union of two proper, non-empty,

closed sets. Hence a space X is irreducible if and only if any two non-empty open

sets in X have non-empty intersection, or equivalently, if any non-empty open set is

dense. A variety is therefore irreducible if it is non-empty and not the union of two

proper subvarieties.

Example 2.3.9. X = {(x, y) | xy = 0} ⊆ k2, from Example 2.3.4 above, is not

irreducible. Let X1 = {(x, y) | x = 0} ⊆ k2 and X2 = {(x, y) | y = 0} ⊆ k2. Both X1

and X2 are proper subvarieties of X, and X = X1 ∪X2.

The following can be found in [9]:

Proposition 2.3.10. A noetherian topological space X has only finitely many maxi-

mal irreducible subspaces. These subspaces are closed and their union is X.

These maximal irreducible subspaces are called the irreducible components of X.

An ideal I of a ring R is called prime if fg ∈ I implies f ∈ I or g ∈ I. The

following is shown in [9]:

Proposition 2.3.11. A closed set X in kn is irreducible if and only if its ideal I(X)

is prime. In particular, this means kn itself is irreducible.
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Example 2.3.12. Let I = (x2) ⊂ k[x]. X = V(I) = {0} and so X is clearly a closed

set and since it consists of a single point it must be irreducible. Now, I is clearly not

a prime ideal (as x2 = xx ∈ I though x /∈ I), however I(X) = (x) 6= (x2) = I and

(x) is prime, so {0} is indeed irreducible.

Finally, we note that since kn is irreducible any open set X in kn is dense. That is,

X = kn. This fact will be useful to keep in mind in the discussion of linear algebraic

monoids a few sections ahead.

2.4 Algebraic Groups

Let k be an algebraically closed field. An affine algebraic group over k is a set

G which is both an affine variety and a group such that the maps µ : G × G → G,

defined as µ(x, y) = xy, and ι : G → G, defined as ι(x) = x−1, are morphisms of

varieties. A map ϕ : G1 → G2 is a homomorphism of affine algebraic groups if it is a

morphism of varieties and a homomorphism of groups. ϕ is an isomorphism of affine

algebraic groups if it is a bijection such that ϕ and ϕ−1 are homomorphisms of affine

algebraic groups.

Example 2.4.1. In the previous section, we observed that SLn(k) and GLn(k) are

both affine varieties. The usual multiplication and inverse maps applied to elements

of these sets are morphisms and so both are affine algebraic groups.

A linear algebraic group is a closed subgroup of GLn(k), for some n. Every linear

algebraic group is therefore an affine algebraic group. On the other hand, it turns

out that every affine algebraic group is isomorphic to a linear algebraic group (for a

particularly nice proof of this, see Section 2 in MacDonald’s part of [4]). The terms

linear and affine are therefore interchangeable.

A linear algebraic group G, considered as an affine variety, is a union of irreducible

components. This union forms a nice structure, as we see in the following, from [4]:

Theorem 2.4.2. Let G be a linear algebraic group. Then G has a unique irreducible

component G◦ containing the identity element 1, and G◦ is a closed normal subgroup of
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finite index in G. The irreducible components of G are also the connected components

of G, and are the cosets of G◦ in G.

Thus for linear algebraic groups, irreducible and connected components are iden-

tical (this is not the case for linear algebraic monoids, as we will see). If G = G◦, we

say G is connected (instead of irreducible). Unless otherwise noted, we will always

assume a linear algebraic group G is connected.

The subgroups of a linear algebraic group that we are interested in are closed

subgroups. By this we mean that the subgroup is a closed set, with respect to the

Zariski topology. Any closed subgroup of a linear algebraic group is itself a linear

algebraic group.

Example 2.4.3. The following examples are important subgroups of GLn(k). All are

connected.

1. The group of diagonal matrices:

Dn(k) = {(xij) ∈ GLn(k) | xij = 0 if i 6= j}.

2. The group of upper triangular matrices:

Bn(k) = {(xij) ∈ GLn(k) | xij = 0 if i > j}.

3. The group of upper unipotent matrices:

Un(k) = {(xij) ∈ GLn(k) | xij = 0 if i > j;xii = 1}.

Example 2.4.4. The classical matrix groups are linear algebraic groups. In addition

to GLn(k) and SLn(k), these include:

1. The symplectic group:

Sp2n(k) = {x ∈ GL2n(k) | xTJx = J},

where J =

(
0 In

−In 0

)
with In the n× n identity matrix.
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2. The special orthogonal group, for char k 6= 2:

SO2n+1(k) = {x ∈ SL2n+1(k) | xT sx = s},

where s =


1 0 0

0 0 J

0 J 0

.

3. The special orthogonal group, for char k 6= 2:

SO2n(k) = {x ∈ SL2n(k) | xT sx = s},

where now s =

(
0 J

J 0

)
.

All examples here are connected, though this fact is not immediate (see [9]).

Let G be a connected linear algebraic group. G contains a unique maximal con-

nected solvable normal subgroup R(G), called the radical of G. An element x of G

is called unipotent if the only eigenvalue of x is 1. The set of all unipotent elements

of R(G) is a subgroup of G. This subgroup, denoted Ru(G), is the unique maximal

connected normal unipotent subgroup of G, and is called the unipotent radical of G.

If G 6= {1}, then G is called semisimple if R(G) = {1} and reductive if Ru(G) = {1}.
Hence any semisimple group is reductive, though not conversely.

Example 2.4.5. Both GLn(k) and SLn(k) are reductive groups.

Example 2.4.6. The set of invertible n × n upper triangular matrices, Bn(k) from

Example 2.4.3, is not a reductive group for n ≥ 2. The unipotent radical is the set

of n × n upper unipotent matrices, Un(k) from Example 2.4.3, which contains more

than one element for n ≥ 2.

An algebraic group isomorphic to k∗×· · ·×k∗ is called a torus . As a linear group,

this means it is isomorphic to a subgroup of Dn(k), for some n. A maximal torus

is a torus not properly contained in a larger torus. A Borel subgroup is a maximal

connected solvable subgroup of G (such a subgroup is closed). As a linear group, this
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means it is isomorphic to a subgroup of Bn(k), for some n. The following results are

proven in [9]:

Theorem 2.4.7. Let B be any Borel subgroup of G. Then all other Borel subgroups

are conjugate to B.

Corollary 2.4.8. The maximal tori of G are those of the Borel subgroups of G, and

are all conjugate.

If B and B− are Borel subgroups of G such that B ∩B− = T is a torus, then B−

is called the opposite Borel subgroup of B relative to T . The following is from [9]:

Proposition 2.4.9. Let G be a reductive group and T a torus in G. Then every

Borel subgroup containing T has a unique opposite Borel subgroup, relative to T .

Example 2.4.10. Let G = GLn(k). As noted in Example 2.4.5, G is reductive.

B = Bn(k) is a Borel subgroup of G containing maximal torus T = Dn(k). For this

choice of B and T , the opposite Borel subgroup B− is the set of lower triangular

matrices: B−n (k) = {(xij) ∈ GLn(k) | xij = 0 if i < j}. Clearly, the intersection of

Bn(k) and B−n (k) is Dn(k).

Given a group G with X ⊆ G, we next recall two important subgroups of G:

NG(X) = {g ∈ G | g−1Xg = X},

CG(X) = {g ∈ G | gx = xg for all x ∈ X}.

NG(X) is called the normalizer of X in G and CG(X) is called the centralizer of X

in G. The center of G is CG(G), denoted C(G). If x, y ∈ G, then x is conjugate to y,

denoted x ∼ y, if y = xg = g−1xg for some g ∈ G. If X, Y ⊆ G, then X is conjugate

to Y , denoted X ∼ Y , if every element of X is conjugate to an element of Y , and

vice versa.

To close this section, we describe the notion of a group with a BN -pair and state

important properties of such groups.

Let G be a group. G is called a group with a BN-pair if there are subgroups

B,N ⊆ G such that the following conditions hold:
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(BN1) G is generated by B and N .

(BN2) T = B ∩ N is normal in N , and the quotient group W = N/T is a finite

group generated by a set S of elements of order 2.

(BN3) nsBns 6= B if s ∈ S and ns is a representative of s in N .

(BN4) nsBn ⊆ BnsnB ∪BnB for any s ∈ S and n ∈ N .

(BN5)
⋂
n∈N

nBn−1 = T .

The description given here is that of [6]. The condition (BN5) is sometimes

omitted from the definition of a BN -pair (for example, it is not included in [9]).

W is called the Weyl group of G. We will have more to say regarding these groups

in the subsequent section. The important fact for us to note is that every reductive

group G has a BN -pair, where B is a Borel subgroup of G with N = NG(T ) for T a

maximal torus contained in B.

Example 2.4.11. Let G = GLn(k), with B = Bn(k) and T = Dn(k). The normalizer

of T in G is the set of monomial matrices in G (that is, the set of invertible matrices

having exactly one nonzero entry in each row and column). The Weyl group W =

NG(T )/T is isomorphic to the symmetric group on n elements, Sn.

Any reductive group G, as a group with a BN -pair, can be written as G =

BNB. One of the most important properties of a reductive group is that it can be

decomposed into a disjoint union of double cosets, indexed by elements from the Weyl

group W = N/T . This is called the Bruhat decomposition. Formally, we have:

Theorem 2.4.12. Let G be a reductive group, with Borel subgroup B containing a

maximal torus T and Weyl group W = NG(T )/T . Then

G =
⊔
w∈W

BwB (2.3)

with BwB = Bw′B if and only if w = w′ in W .
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There is a partial order on W , the Bruhat-Chevalley order , described in terms of

these B ×B-orbits as follows:

x ≤ y ⇐⇒ BxB ⊆ ByB (2.4)

where x, y ∈ W , and closure is with respect to the Zariski topology. We present an

alternate description, of a more combinatorial flavor, in the subsequent section.

Let G be a group with BN -pair with S the generating set of W . Let WI denote

the subgroup of W generated by I ⊆ S and let PI = BWIB (so P∅ = B and PS = G).

A subgroup of G is called parabolic if it contains a Borel subgroup. The following is

from [9]:

Theorem 2.4.13. 1. The only subgroups of G containing B are those of the form

PI , with I ⊆ S.

2. If PI is conjugate to PJ , then PI = PJ .

3. NG(PI) = PI .

4. If PI ⊆ PJ , then I ⊆ J .

According to the theorem, every parabolic subgroup of G is conjugate to PI for

some I ⊆ S. Additionally, given a Borel subgroup B of G, the subgroups of G

containing B form a lattice, isomorphic to 2S (ordered by set inclusion).

2.5 Coxeter Groups

Let S be a set and W the group generated by S, subject only to relations of the

form (ss′)m(s,s′) = 1, for all s, s′ ∈ S, where m(s, s) = 1 and m(s, s′) = m(s′, s) ≥ 2 for

s 6= s′. If no relation occurs for s, s′, we write m(s, s′) =∞. The pair (W,S) is called

a Coxeter system. |S| is called the rank of (W,S) and we call W a Coxeter group

when the presentation given by S and m is understood. Unless otherwise noted, the

Coxeter systems we will consider will be such that |S| <∞ and m(s, s′) <∞ for all

s, s′ ∈ S. By [10], we have the following:
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Proposition 2.5.1. Let (W,S) be a Coxeter system.

1. If s ∈ S, then s has order 2 in W .

2. If s, s′ ∈ S, then ss′ has order m(s, s′) in W .

Example 2.5.2. The example to keep in mind throughout any discussion of Coxeter

groups is the symmetric group, Sn. This group forms a Coxeter system with S the set

of adjacent transpositions S = {si = (i, i + 1) | 1 ≤ i ≤ n − 1}. For n = 4, we have

W = S4 with S = {(12), (23), (34)}.

Associated with a Coxeter system is the Coxeter graph. This is an undirected

graph having vertex set S with an edge connecting s and s′ if m(s, s′) ≥ 3. The edges

are labeled m(s, s′) with the convention that the label is omitted for m(s, s′) = 3. A

Coxeter system is called irreducible if its Coxeter graph is connected. As noted in the

example above, the Coxeter group we want to generally keep in mind is the symmetric

group, Sn. The Coxeter graph for Sn is a chain of n−1 vertices, corresponding to the

n− 1 adjacent transpositions that form S. In the classification of irreducible Coxeter

systems, this corresponds to Type An−1.

The finite Coxeter groups for which m(s, s′) ∈ {2, 3, 4, 6} for all distinct s, s′ in S

are called Weyl groups . If m(s, s′) ∈ {2, 3} for distinct s, s′ the Coxeter group is said

to be simply-laced . All Coxeter groups considered in this paper will be Weyl groups

and all examples will, in addition, be simply-laced.

Let (W,S) be a Coxeter system. Any element w ∈ W can be written as a product

of generators, w = s1s2 · · · sk for some si ∈ S. If k is as small as possible we say

the length of w is k, written `(w) = k, and say s1s2 · · · sk is a reduced expression for

w. Reduced expressions are, generally, not unique. The following properties of the

length function can be found in both [1] and [10]:

1. `(w) = `(w−1).

2. `(sw) = `(w)± 1.

3. `(ww′) ≡ `(w) + `(w′) (mod 2).
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4. `(ww′) ≤ `(w) + `(w′).

We emphasize that equality does not hold for the last property above, in general.

Assume now that W is an arbitrary group and that S ⊆ W is a generating subset

of W such that all elements of S have order 2. For w ∈ W , define length and reduced

expression as above and let ŝi denote the omission of si from an expression. We now

describe two important properties that (W,S) may have.

Exchange Property: Let w = s1s2 · · · sk be a reduced expression for w and s ∈ S.

If `(sw) < `(w) implies sw = s1 · · · ŝi · · · sk for some 1 ≤ i ≤ k, we say that

(W,S) has the Exchange Property .

Deletion Property: Let w = s1s2 · · · sk be an expression for w. If `(w) < k implies

w = s1 · · · ŝi · · · ŝj · · · sk for some 1 ≤ i < j ≤ k, we say that (W,S) has the

Deletion Property .

These properties are fundamental in the theory of Coxeter groups, in the sense

that they (each) characterize Coxeter groups. We make this explicit in the following

theorem. For additional details, see [1] or [10].

Theorem 2.5.3. Let W be a group and S a set of generators of order 2. Then the

following are equivalent:

1. (W,S) is a Coxeter system.

2. (W,S) has the Exchange Property.

3. (W,S) has the Deletion Property.

Let (W,S) be a Coxeter system and T the set of reflections of W . That is,

T = {wsw−1 | w ∈ W, s ∈ S}. For u,w ∈ W , we write u → w if `(u) < `(w)

and w = tu for some t ∈ T . Define u < w if there exist wi ∈ W such that u =

w0 → w1 → · · · → wk−1 → wk = w. This defines a partial order on W , called the

Bruhat-Chevalley order .
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A useful way to describe Bruhat order is in terms of subwords. A subword of a

reduced expression s1s2 · · · sk is an expression si1si2 · · · sij such that 1 ≤ i1 < · · · <
ij ≤ k. The following important result is from [1]:

Theorem 2.5.4 (Subword Property). Let w = s1s2 · · · sk be a reduced expression.

Then u ≤ w if and only if there exists a reduced expression u = si1si2 · · · sij , with

1 ≤ i1 < · · · < ij ≤ k.

Example 2.5.5. The set P from Example 2.1.5 is a Coxeter group, with Coxeter

graph A−B.

The identity element of a Coxeter group is a minimum element, with respect to

Bruhat order. In the case that the group is finite, Theorem 2.5.4 tells us that there

is also a maximum element. The usual notation for this element is w0. The following

properties of w0 are proved in [1]:

1. w2
0 = 1.

2. `(ww0) = `(w0)− `(w).

3. `(w0w) = `(w0)− `(w).

4. `(w0ww0) = `(w).

5. `(w0) = |T |.

6. w 7→ ww0 and w 7→ w0w are antiautomorphisms.

7. w 7→ w0ww0 is an automorphism.

Example 2.5.6. If W = Sn, then w0 is the permutation mapping i to n+ 1− i. For

n = 4, this is w0 = (14)(23).

Let (W,S) be a Coxeter system. Recall from the previous section that WI is the

subgroup of W generated by I ⊆ S. Such a group is called a parabolic subgroup of

W . Let `I be the length function of WI , with respect to I. The following is from [1]:
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Proposition 2.5.7. 1. (WI , I) is a Coxeter system.

2. `I(w) = `(w), for all w ∈ WI .

3. WI ∩WJ = WI∩J .

4. 〈WI ∪WJ〉 = WI∪J .

5. WI = WJ ⇒ I = J .

Finally, we note that cosets of parabolic subgroups have a unique member of

shortest length. The sets of shortest length coset representatives are called quotients

and are also very important in the structure theory of Coxeter groups. Given WI ,

the parabolic subgroup of W generated by I ⊆ S, we will denote these sets by DI

and D−1
I , where

DI = {x ∈ W | `(sw) = `(s) + `(w) for all w ∈ WI},

D−1
I = {x ∈ W | `(ws) = `(w) + `(s) for all w ∈ WI}.

These sets are denoted W I and IW , respectively, in [1].

The following result illustrates why parabolic subgroups and their associated quo-

tients are so important.

Proposition 2.5.8. Let I ⊆ S. Every w ∈ W has a unique factorization w = xy

such that x ∈ WI and y ∈ D−1
I , and `(w) = `(x) + `(y).

2.6 Linear Algebraic Monoids

Let k be an algebraically closed field. A linear algebraic monoid M is an affine

variety together with an associative morphism µ : M × M → M and an identity

element 1 ∈M for µ. Recall that for linear algebraic groups, our standard example is

GLn(k). For linear algebraic monoids, our example to remember is Mn(k). We have

seen that any affine algebraic group is isomorphic to a closed subgroup of GLn(k),

for some n. The analogous result holds for monoids, as shown in [19].
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Theorem 2.6.1. Let M be a linear algebraic monoid. Then M is isomorphic to a

closed submonoid of Mn(k) for some n.

A closed submonoid of Mn(k) is a linear algebraic monoid, so the converse to this

theorem holds as well.

If G is a linear algebraic group, then it is a closed subgroup of GLn(k), for some

n, and thus is contained in Mn(k). The closure of G in Mn(k), with respect to the

Zariski topology, is therefore a linear algebraic monoid. What’s more, the unit group

of M is exactly this group G.

Example 2.6.2. The following are linear algebraic monoids.

1. The set of diagonal matrices:

Dn(k) = {(xij) ∈Mn(k) | xij = 0 if i 6= j}.

2. The set of upper triangular matrices:

Bn(k) = {(xij) ∈Mn(k) | xij = 0 if i > j}.

A linear algebraic monoid is irreducible if it cannot be expressed as the union

of two proper, closed, non-empty subsets. The irreducible components of M are the

maximal, irreducible subsets of M . In our review of linear algebraic groups, we noted

that the irreducible and connected components are identical. This is not the case

for linear algebraic monoids. In general, irreducible implies connected, though not

conversely. The following example, from [19], illustrates this point.

Example 2.6.3. Let M = {(a, b) ∈ k2 | a2 = b2}, with multiplication (a, b) · (c, d) =

(ac, bd). M is a monoid and it is the zero set for the ideal I generated by f(x, y) =

(x− y)(x+ y) ∈ k[x, y], hence it is closed. M is therefore a linear algebraic monoid.

It is clearly connected though not irreducible (since I is not a prime ideal).

We can now reformulate Green’s relations for linear algebraic monoids. The fol-

lowing is from [19], as presented in [32].
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Proposition 2.6.4. Let M be an irreducible linear algebraic monoid with a, b ∈ M
and G the unit group of M . Then

1. aRb if and only if aG = bG.

2. aLb if and only if Ga = Gb.

3. aJ b if and only if GaG = GbG.

The third case is of most interest to us. This states that a and b are in the same

J -class if and only if they are in the same G×G orbit. Using our initial description

of Green’s relations in Section 2.2 we observe that

aJ b ⇐⇒ GaG = GbG ⇐⇒ MaM = MbM. (2.5)

Additionally, the partial order (2.2) can now be described as:

Ja ≤ Jb ⇐⇒ GaG = GbG ⇐⇒ a ∈MbM. (2.6)

where closure is with respect to the Zariski topology.

M is called a reductive monoid if M is an irreducible linear algebraic monoid

whose unit group G is a reductive group. M is regular if for each a ∈M there exists

x ∈ M such that axa = a and unit regular if M = GE(M), where E(M) is the

set of idempotents of M . By [19], any regular irreducible linear algebraic monoid is

unit regular. The following result, proved for the characteristic 0 case in [16] and

the characteristic p case in [30], is the first important result on the structure of a

reductive monoid.

Theorem 2.6.5. Let M be an irreducible monoid with unit group G and zero element

0 ∈M . The following are equivalent:

1. G is reductive.

2. M is regular.

3. M has no non-zero nilpotent ideals.
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Our interest is in reductive monoids. This theorem tells us that if M is a reductive

monoid, then M = GE(M). This is the only the starting point. It turns out that a

certain subset of E(M) is enough to give a nice description of M in terms of this set

of idempotents and the unit group of M . Additionally, there is a decomposition of

M and resulting partial order that generalize (2.3) and (2.4) above. We will pursue

these points in the next chapter.
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Chapter 3

Reductive Monoids

In the previous chapter, we observed that reductive groups have a very nice struc-

ture. Reductive monoids do as well, with the description given in terms of the (re-

ductive) unit group and idempotent set. In this chapter, we provide a description of

the general theory of reductive monoids. An attempt has been made to find a balance

between brevity and thoroughness. As a result, the basics required for this disseration

have been covered, though little more. For more details, one should consult [19], [32],

or [35].

Unless otherwise noted, for the remainder of this paper M will be a reductive

monoid with G its unit group. Additionally, B ⊆ G will be a Borel subgroup of G

with T ⊆ B a maximal torus contained in B. Finally, all closure is with respect to

the Zariski topology, in M .

3.1 Background

In this section we provide a brief introduction to the general theory of reductive

monoids. We begin with the description of a set of idempotents (the cross-section

lattice) and semigroup (the Renner monoid) that form the foundation upon which the

structure theory of reductive monoids is built. We then describe the generalization

of the Bruhat decomposition, (2.3), to reductive monoids. Next, we define a certain
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subset of a reductive monoid that will be important in Chapter 4, where we examine

the partial order associated with the conjugacy decomposition of a reductive monoid.

Finally, we describe two classes of monoids that, along withMn(k), will be the primary

objects of our more detailed examination of the conjugacy poset in the remaining

chapters.

3.1.1 Cross-Section Lattices

Let M be a reductive monoid and define U(M) to be the set of J -classes of M .

Recall that these are the G×G-orbits of M , (2.5). By [15], U(M) is a finite lattice,

with order (2.6), and there is a diagonal idempotent cross-section Λ ⊆ E(T ) of U(M)

that preserves this order. That is, there is a set Λ such that for all Ji ∈ U(M),

|Λ ∩ Ji| = 1 and

e1 ≤ e2 ⇐⇒ J1 ≤ J2, (3.1)

where ei ∈ Ji ∩ Λ and e1 ≤ e2 means e1e2 = e1 = e2e1, as in (2.1).

Λ is a finite lattice, called a cross-section lattice of M . The following result on

cross-section lattices first appears in [15].

Theorem 3.1.1. Let M be a reductive monoid with W the Weyl group of the unit

group G and T a maximal torus in G. Then

1. Cross-section lattices exist.

2. Any two cross-section lattices are conjugate by an element of W .

3. There is a one-to-one correspondence between cross-section lattices and Borel

subgroups of G containing T .

Given a Borel subgroup B with T ⊆ B, the correspondence from the theorem

above yields the following cross-section lattice:

Λ = {e ∈ E(T ) | Be = eBe}. (3.2)
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Since we usually have a specific B and T in mind when considering a reductive monoid

M , in any subsequent discussions by the cross-section lattice of M we mean the one

corresponding to B and T as in (3.2).

We may consider M as a union of its J -classes. A particularly nice way to do

this is by choosing the J -classes of the elements of the cross-section lattice Λ. This

gives us a disjoint union which, by (2.5), we may write as:

M =
⊔
e∈Λ

GeG. (3.3)

Example 3.1.2. Let M = Mn(k). Then G = GLn(k). If B = Bn(k) with T = Dn(k),

then Λ = {Ir ⊕ 0n−r | 0 ≤ r ≤ n}, where Ir is the r × r identity matrix and 0k is the

k × k zero matrix. We note that Λ is a chain and that each G × G orbit consists of

matrices of a given rank.

3.1.2 The Renner Monoid and Bruhat-Renner Decomposi-

tion

Let M be a reductive monoid with unit group G. Define R = NG(T )/T , where

NG(T ) is the Zariski closure of NG(T ) in M . R is a monoid, called the Renner monoid

of M . This monoid was introduced in [31], where it is shown that R is a finite inverse

semigroup with unit group W and idempotent set E(T ). The Renner monoid is an

important component of the theory. It plays the role in a reductive monoid that the

Weyl group plays in a reductive group.

Example 3.1.3. Let M = Mn(k). Then the Renner monoid is the set of n×n partial

permutation matrices (or rook monoid). By this we mean the set of {0, 1}-matrices

having at most one 1 in each column and each row. The unit group is the set of

permutation matrices, Sn. For the case of Mn(k), we denote the Renner monoid by

Rn.

Given σ ∈ Rn, we associate a sequence (s1 s2 . . . sn) with σ such that for 1 ≤
i ≤ n, si = 0 if σ has all zeros in the ith column and si = j if σji = 1. We call this
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the one-line notation for elements of Rn. As many of our results and examples come

from Mn(k), we will use this notation often throughout the remainder of the paper.

Example 3.1.4. Using the one-line notation, we identify

(3 0 4 1)↔


0 0 0 1

0 0 0 0

1 0 0 0

0 0 1 0


The Bruhat decomposition for reductive groups, (2.3), extends in a natural way

to reductive monoids. In this new setting, the B ×B-orbits are indexed by elements

of the Renner monoid. By [31], we may decompose M as:

M =
⊔
σ∈R

BσB. (3.4)

This is called the Bruhat-Renner decomposition of M . Furthermore, we may decom-

pose R into W ×W -orbits, as follows:

R =
⊔
e∈Λ

WeW. (3.5)

As usual, W is the Weyl group of G and Λ is the cross-section lattice of M . We will

often denote WeW by R(e).

Upon introduction of the Bruhat decomposition in the previous chapter, we de-

fined a partial order on the Weyl group in terms of B × B-orbits. This order, the

Bruhat-Chevalley order , (2.4), also extends to R in a natural way. For σ, θ ∈ R, we

have:

σ ≤ θ ⇐⇒ BσB ⊆ BθB. (3.6)

Figure 3.1 is the Hasse diagram for R3, the Renner monoid of M3(k), under

Bruhat-Chevalley order. The elements of R3 are labeled using the one-line notation.

In the next section, we will provide a description of this order in terms of the respective

orders on W and Λ.
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Figure 3.1: R3 under Bruhat-Chevalley Order.
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3.1.3 The Type Map and Parabolic Subgroups of W

Let S be the set of simple reflections of the Weyl group W of G. The type map

of M is the map λ : Λ → 2S such that λ(e) = {s ∈ S | es = se}. Closely related to

the type map are two maps, denoted λ∗ and λ∗, defined as follows:

λ∗(e) =
⋂
f≥e

λ(f),

λ∗(e) =
⋂
f≤e

λ(f).

In Section 2.5, we denoted the subgroup of W generated by I ⊆ S by WI . For

reductive monoids, we will describe subsets of S in terms of the type map and therefore

use the following notation for parabolic subgroups of W :

W (e) = Wλ(e) = {w ∈ W | ew = we} ,

W ∗(e) = Wλ∗(e),

W∗(e) = Wλ∗(e) = {x ∈ W | ex = e = xe} ,

and note that

W (e) = W ∗(e)×W∗(e), (3.7)

as shown in Chapter 10 of [19].

Elements of W (e) are the Weyl group elements that commute with the idempotent

e ∈ Λ. W∗(e) is the set of commuting elements which are absorbed by e and W ∗(e)

consists of those that commute where nothing is absorbed. Additionally, we note that

for e, f ∈ Λ with e ≤ f ,

W ∗(e) ⊆ W ∗(f) and W∗(f) ⊆ W∗(e). (3.8)

As noted in Example 3.1.2, if M = Mn(k) with B = Bn(k) and T = Dn(k), e ∈ Λ

is of the form e =

(
Ij 0

0 0

)
. For M = Mn(k), such an idempotent will be denoted by
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ej. Then

W (ej) =

{(
P 0

0 Q

)}
,

W ∗(ej) =

{(
P 0

0 In−j

)}
,

W∗(ej) =

{(
Ij 0

0 Q

)}
,

where P and Q are permutation matrices, of sizes j × j and (n − j) × (n − j),

respectively.

Example 3.1.5. Let W = S5 and e3 ∈ Λ. Then W (e3) = 〈(12), (23), (45)〉 with

W ∗(e3) = 〈(12), (23)〉 and W∗(e3) = 〈(45)〉. (13)(45) is an element of W (e3) with

(13) ∈ W ∗(e3) and (45) ∈ W∗(e3). That is, e3(13) = (13)e3 and e3(45) = e3 = (45)e3.
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We illustrate as follows:

e3(13)(45) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0





0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0



e3(45)(13) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0





0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1



e3(13) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0





0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1



e3(13) =



0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0


We use a corresponding notation for quotients of parabolic subgroups:

D(e) = Dλ(e) = {x ∈ W | `(xw) = `(x) + `(w) ∀w ∈ W (e)} ,

D∗(e) = Dλ∗(e) = {x ∈ W | `(xw) = `(x) + `(w) ∀w ∈ W∗(e)} .

Observe that x ∈ D(e) is equivalent to x having minimal length in the coset xW (e).

Likewise, x ∈ D∗(e) is equivalent to x having minimal length in the coset xW∗(e).
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Additionally, we define the set D(e)−1 as:

D(e)−1 = {x ∈ W | `(wx) = `(w) + `(x) ∀w ∈ W (e)}

= {x ∈ W | x−1 ∈ D(e)}.

Example 3.1.6. In the previous example, D(e)−1 is:

D(e3)−1 = {1, (34), (243), (345), (1432), (2453), (14532), (24)(35), (142)(35), (14253)}.

Now, (1325) ∈ S5. We may write this as (13)(45)(2453), where (13)(45) ∈ W (e3)

and (2453) ∈ D(e)−1. As noted in Proposition 2.5.8, this factorization is unique.

3.1.4 Gauss-Jordan Elements

Given an n×n matrix, the Gauss-Jordan algorithm produces a matrix in reduced

row echelon form. Such matrices classify the orbits corresponding to the action of

G = GLn(k) on Mn(k) by left multiplication. That is, if we call the set of reduced

row echelon matrices GJ then for any x ∈Mn(k) we have |Gx∩GJ | = 1. In [31], the

analogous subset is defined for a general reductive monoid. Our concern will be with

such elements that are also in the Renner monoid.

Let GJ = {x ∈ R | Bx ⊆ xB}. This is called the set of Gauss-Jordan elements

of R. By [31], W · GJ = R and for each x ∈ R, |Wx ∩ GJ | = 1. Gauss-Jordan

elements are a key part of the conjugacy decomposition of M , as we will show in the

next chapter. For now, we give an alternate description of GJ , in terms of quotients

of parabolic subgroups of W :

GJ = {ey ∈ R | e ∈ Λ , y ∈ D(e)−1}. (3.9)

We denote the Gauss-Jordan elements in WeW by GJ (e). Thus GJ =
⊔
e∈Λ

GJ (e).

If M = Mn(k), then the set of Gauss-Jordan elements of Rn, denoted GJ n, is the

set of n×n partial permutation matrices in row echelon form. The following example

illustrates.
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Example 3.1.7. Let M = M3(k). Then

D(e0)−1 = {1},

D(e1)−1 = {1, (12), (123)},

D(e2)−1 = {1, (23), (132)},

D(e3)−1 = {1}.

The Gauss-Jordan elements are therefore:

e0 =


0 0 0

0 0 0

0 0 0



e1 =


1 0 0

0 0 0

0 0 0

 , e1(12) =


0 1 0

0 0 0

0 0 0

 , e1(123) =


0 0 1

0 0 0

0 0 0



e2 =


1 0 0

0 1 0

0 0 0

 , e2(23) =


1 0 0

0 0 1

0 0 0

 , e2(132) =


0 1 0

0 0 1

0 0 0



e3 =


1 0 0

0 1 0

0 0 1


3.1.5 Canonical and Dual Canonical Monoids

The example to keep in mind when considering reductive monoids is Mn(k). There

are, however, two other well-studied classes of reductive monoids that we will consider.

Let Λ be a cross-section lattice for a reductive monoid M , with type map λ : Λ→
2S. As Λ is a finite lattice, it contains a minimum and maximum element, which we

denote 0 and 1, respectively. Let Λmin denote the minimal elements of Λ \ {0} and

Λmax the maximal elements of Λ \ {1}.
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Suppose |Λmin| = 1, say Λmin = {e0}, with λ(e0) = I. M is then called a J -

irreducible monoid of type I. Since its cross-section lattice is a chain, Mn(k) is an

example of such a monoid, in this case of type S \ {(12)}. If M is a J -irreducible

monoid of type ∅, M is called a canonical monoid . Canonical monoids are one of the

three classes of reductive monoids we consider in detail.

The following result appears in [27] for general J -irreducible monoids. We have

considered only the canonical monoid case here (that is, I = ∅), and have modified

the conclusions accordingly.

Theorem 3.1.8. Let M be a canonical monoid. Then

1. If e, f ∈ Λ \ {0}, then e ≤ f if and only if λ∗(e) ⊆ λ∗(f).

2. If e ∈ Λ \ {0}, then λ∗(e) = ∅.

3. If K ⊆ S, then K = λ∗(e) for some e ∈ Λ \ {0}.

Thus for a canonical monoid, Λ \ {0} is isomorphic to 2|S|, ordered by inclusion.

Canonical monoids were first studied in [28]. Their construction was modeled by the

canonical compactification of a reductive group, as in [5].

Example 3.1.9. Let G0 = {A ⊗ (A−1)t | A ∈ SL3(k)} and let M = kG0 ⊆ M9(k).

Then M is a canonical monoid with W = S3. This example appears in [19], [24], and

[26].

Suppose now that |Λmax| = 1, say Λmax = {e0}, with λ(e0) = I. M is then called

a J -coirreducible monoid of type I. Mn(k) is also an example of such a monoid, of

type S \ {(n− 1, n)}. If M is a J -coirreducible monoid of type ∅, we call M a dual

canonical monoid (or cocanonical monoid). Dual canonical monoids are the third,

and final, class of reductive monoids we will study.

The result from [27] referred to above dualizes for J -coirreducible monoids. We

consider only the dual canonical monoid case here (that is, I = ∅), and have modified

the conclusions accordingly, similar to above.
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Theorem 3.1.10. Let M be a dual canonical monoid. Then

1. If e, f ∈ Λ \ {1}, then e ≤ f if and only if λ∗(f) ⊆ λ∗(e).

2. If e ∈ Λ \ {1}, then λ∗(e) = ∅.

3. If K ⊆ S, then K = λ∗(e) for some e ∈ Λ \ {1}.

Hence for a dual canonical monoid, Λ\{1} is isomorphic to the dual of 2|S|, ordered

by inclusion. Dual canonical monoids also arise naturally, as the following example

shows.

Example 3.1.11. Let G0 = {A⊕ (A−1)t | A ∈ SL3(k)} and let M = kG0 ⊆M6(k).

Then M is a dual canonical monoid with W = S3. This example appears in [19],

[24], and [26].

Remark 3.1.12. From Theorems 3.1.8 and 3.1.10, it follows that:

1. The dual of a cross-section lattice for a canonical monoid is a cross-section

lattice for a dual canonical monoid.

2. If M is a canonical monoid, then W (e) = W ∗(e) and W∗(e) = {1} for all

e ∈ Λ \ {0}.

3. If M is a dual canonical monoid, then W (e) = W∗(e) and W ∗(e) = {1} for all

e ∈ Λ \ {1}.

Examples 3.1.9 and 3.1.11 show that there exist canonical and dual canonical

monoids having W = S3 as a Weyl group. Let A−B be the Coxeter graph of W with

λ(∅) = e0, λ({A}) = eA, λ({B}) = eB, and λ({A,B}) = eAB. The cross-section

lattice of the canonical monoid with W = S3 is shown in Figure 3.2. Figure 3.3 is the

cross-section lattice of the dual canonical monoid with W = S3.
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Figure 3.2: The cross-section lattice for the canonical monoid with W = S3.

Figure 3.3: The cross-section lattice for the dual canonical monoid with W = S3.
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3.2 The Bruhat-Chevalley Order in a Reductive

Monoid

Let R be the Renner monoid of M with σ ∈ R. By (3.5), σ ∈ WeW for a unique

idempotent e ∈ Λ. Thus σ = w1ew2 for some w1, w2 ∈ W . We may write w2 as

w2 = uy for u ∈ W (e) and y ∈ D(e)−1, by Proposition 2.5.8, and so σ = w1uey. Now

we may write w1u as w1u = xv for x ∈ D∗(e) and v ∈ W∗(e), again by Proposition

2.5.8, and so σ = xey. An element of the Renner monoid is said to be in standard

form if it is written this way. That is, the standard form of σ is:

σ = xey (3.10)

for a unique x ∈ D∗(e) and y ∈ D(e)−1. If M = Mn(k), y has the effect of shifting

certain non-zero columns of e to the right while x switches various rows with each

other.

We may now give a more combinatorial description of the Bruhat-Chevalley order

on R, in terms of the Weyl group and cross-section lattice. This was first identified

in [14].

Theorem 3.2.1. Let σ = xey and θ = ufv be in standard form. Then σ ≤ θ if and

only if e ≤ f and there exists w ∈ W (f)W∗(e) such that x ≤ uw and w−1v ≤ y.

Example 3.2.2. Let M = M4(k) with B = B4(k) and T = D4(k). Then W = S4 =

〈(12), (23), (34)〉. For e2 = Λ, we have:

W (e2) = {(1), (12), (34), (12)(34)} ,

W∗(e2) = {(1), (34)} ,

D(e2)−1 = {(1), (23), (234), (132), (1342), (13)(24)} ,

D∗(e2) = {(1), (12), (23), (123), (132), (243),

(13), (1243), (1432), (143), (13)(24), (1423)}.
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For e3 = Λ, we have:

W (e3) = {(1), (12), (23), (123), (132), (13)} ,

W∗(e3) = {(1)} ,

D(e3)−1 = {(1), (34), (243), (1432)} ,

D∗(e3) = W.

Additionally, we note that

W (e3)W∗(e2) = {(1), (12), (23), (123), (132), (13), (34),

(12)(34), (234), (1234), (1342), (134)}.

Let σ ∈ R4, with factorization in standard form as follows:

σ =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1



=


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


= (243)e2(13)(24)

= xe2y
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Let θ ∈ R4, with factorization in standard form as follows:

θ =


0 0 0 1

0 0 1 0

0 0 0 0

0 1 0 0



=


0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


= (143)e3(1432)

= ue3v

Obviously e2 ≤ e3. Choose w = (34) ∈ W (e3)W∗(e2). Then

x = (243) = (34)(23) ≤ (14) = (12)(34)(23)(12)(34) = (143)(34) = uw

and

w−1v = (34)−1(1432)

= (34)(34)(23)(12)

= (23)(12)

≤ (23)(34)(12)(23)

= (13)(24)

= y.

So σ ≤ θ.

Suppose instead that we compare σ with ψ ∈ R4, where ψ = (1)e3(1) in standard

form. Since e3 6≤ e2, ψ 6≤ σ. If σ ≤ ψ, then there is a w ∈ W (e3)W∗(e2) such that

(243) ≤ w and w−1 ≤ (13)(24). We rewrite the elements W (e3)W∗(e2) as follows:

W (e3)W∗(e2) = {(1), (12), (23), (12)(23), (23)(12), (23)(12)(23), (34),

(12)(34), (23)(34), (12)(23)(34), (23)(12)(34), (23)(12)(23)(34)}.
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Upon inspection, we observe that there is no w ∈ W (e3)W∗(e2) such that (243) =

(34)(23) ≤ w. So σ 6≤ ψ and thus σ and ψ are incomparable.

3.2.1 The Structure of W ×W -orbits

If σ, θ ∈ WeW with σ = xey and θ = uev in standard form, then Theorem 3.2.1

simplifies to:

σ ≤ θ ⇐⇒ x ≤ uw,w−1v ≤ y for some w ∈ W (e) (3.11)

Describing the structure of WeW using this order is manageable, however a more

useful description is given in [23]. For this description, we let I = λ(e) and K = λ∗(e)

and define

W∗I,K = DI ×WI\K ×D−1
I .

Then, for σ = (x,w, y), θ = (u, v, z) ∈ W∗I,K , define

σ ≤ θ if w = w1 ∗ w2 ∗ w3 with xw1 ≤ u,w2 ≤ v, w3y ≤ z. (3.12)

To be clear, ≤ here is not the Bruhat-Chevalley order on R. However,W∗I,K with this

order is isomorphic to the dual of WeW , by [23].

3.2.2 Order Between W ×W -orbits

Suppose now that we’re considering elements from different W ×W -orbits, say

σ ∈ WeW and θ ∈ WfW . Theorem 3.2.1 tells us how to determine if σ and θ are

comparable. To begin, e and f must be comparable. This is usually easy to check.

Verifying the remaining conditions from the theorem, however, is often much more

difficult. In [24], a description is obtained via maps between W ×W -orbits.

We describe these maps and summarize the main result of [24], illustrating why

the maps are useful. Before doing so, we need a few definitions.

To begin, if x1, . . . , xn ∈ W , then let

x1 ∗ · · · ∗ xn =

{
x1 . . . xn if `(x1 . . . xn) = `(x1) + · · ·+ `(xn)

undefined otherwise.
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Note that, by Proposition 2.5.8, if x ∈ W (e) and y ∈ D(e)−1 then x ∗ y = xy.

Next, for x, y ∈ W , define x ◦ y, x4y ∈ W as:

x ◦ y = max{xy′ | y′ ≤ y},

x4y = min{xy′ | y′ ≤ y}.

The following properties of these new operations on W are proved in [24]:

Lemma 3.2.3. Let x, y ∈ W . Then

1. x ◦ y = x1 ∗ y = x ∗ y1 for some x1 ≤ x, y1 ≤ y.

2. x ◦ y = max{xy′ | y′ ≤ y} = max{x′y | x′ ≤ x} = max{x′y′ | x′ ≤ x, y′ ≤ y}.

3. x4y = min{xy′ | y′ ≤ y} = min{x′y | x′ ≥ x} = min{x′y′ | x′ ≥ x, y′ ≤ y}.

Now we are equipped to define the aforementioned maps. Let e, f ∈ Λ with e ≤ f ,

and let σ = xey in standard form. Let ze denote the longest element in W∗(e) and let

zey = uy1, with u ∈ W (f) and y1 ∈ D(f)−1. The projection pe,f : WeW → WfW is

defined as:

pe,f (σ) = (x4u)fy1 (3.13)

As noted in [24], (x4u)fy1 ∈ WfW is in standard form.

Using these projection maps, a new description of the order between W×W -orbits

of R is given by the following theorem, from [24]:

Theorem 3.2.4. Let e, f ∈ Λ, e ≤ f . Then

1. pe,f : WeW → WfW is order-preserving and σ ≤ pe,f (σ) for all σ ∈ WeW .

2. If σ ∈ WeW , θ ∈ WfW , then σ ≤ θ if and only if pe,f (σ) ≤ θ.

3. If h ∈ Λ with e ≤ h ≤ f , then pe,f = ph,f ◦ pe,h.

4. pe,f is onto if and only if λ∗(e) ⊆ λ∗(f).

5. pe,f is one-to-one if and only if λ(f) ⊆ λ(e).
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Remark 3.2.5. The above theorem, combined with Theorems 3.1.8 and 3.1.10, tells

us that:

1. If M is a canonical monoid, then pe,f is onto.

2. If M is a dual canonical monoid, then pe,f is one-to-one.

3.2.3 Pennell’s Description for Mn(k)

We begin by noting the following from [13], as presented in [32]. These results

will be used at several points in the next section, where we provide an alternate

description of the projection maps for M = Mn(k).

Theorem 3.2.6 (Pennell’s Theorem). Let σ, θ ∈ R. Then σ ≤ θ if and only if there

exist θ0, θ1, . . . , θm ∈ R such that

σ = θ0 ≤ θ1 ≤ · · · ≤ θm = θ

and, for each k, either θk ∈ Bθk+1B or else θk+1 is obtained from k by a “Bruhat

interchange”.

If M = Mn(k), then A < B via a Bruhat interchange if and only if B is obtained

from A by interchanging two non-zero rows of A and, in the process of doing so, a

2 × 2 submatrix

(
1 0

0 1

)
of A ends up as

(
0 1

1 0

)
. We are concerned here with the

case of M = Mn(k) and so we will refrain from defining a Bruhat interchange for the

general setting (see [13] or [32] for details).

Recall that for M = Mn(k) we denote the Renner monoid of M by Rn. Using the

theorem, we therefore have the following description of the Bruhat-Chevalley order

on Rn.

Theorem 3.2.7. Let σ, θ ∈ Rn with `(σ) = `(θ)− 1. Then σ ≤ θ if and only if one

of the following holds:

1. θ is obtained from σ by setting some zero entry of σ to a non-zero.
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2. θ is obtained from σ by moving a non-zero entry either downward or to the left.

3. θ is obtained from σ via a Bruhat interchange.

Using the one-line notation, we have the following combinatorial description of

the Bruhat-Chevalley order on Rn.

Theorem 3.2.8. Let σ = (δ1 . . . δn), θ = (ε1 . . . εn) ∈ Rn. Then ≤ is the smallest

partial order on Rn generated by declaring σ < θ if either

1. δj = εj for j 6= i and δi < εi, or

2. (a) δk = εk if k 6= {i, j},

(b) i < j, and

(c) δi = εj, δj = εi and εi > εj .

The next example follows these results, as they are presented in [32].

Example 3.2.9. Let σ = (2 1 4 0 3) and θ = (3 5 2 0 1) in R5. Then σ < θ since

(2 1 4 0 3) < (3 1 4 0 2) < (3 4 1 0 2) < (3 5 1 0 2) < (3 5 2 0 1).

The first, second, and fourth inequalities follow from condition 2 in the theorem. The

third is by condition 1.

Finally, we revisit Example 3.2.2, using this new approach.

Example 3.2.10. Let σ, θ ∈ R4 be

σ =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1

 , θ =


0 0 0 1

0 0 1 0

0 0 0 0

0 1 0 0

 .

Using the one-line notation, σ = (0 0 1 4) and θ = (0 4 2 1). Then σ < θ since

(0 0 1 4) < (0 1 0 4) < (0 1 4 0) < (0 4 1 0) < (0 4 1 2) < (0 4 2 1).
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We note that for σ < θ in Rn, the sequence of inequalities from σ to θ is in general

not unique. Figure 3.4 illustrates this for the previous example (the solid lines follow

the path we chose). In addition, note that it is not necessary for all the relations to

be covers. For example,

(0 0 1 4) < (0 4 1 0) < (0 4 1 2) < (0 4 2 1)

satisfies the conditions of Theorem 3.2.6.

Figure 3.4: The interval [(0 0 1 4), (0 4 2 1)] in R4.
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3.3 An Alternate Description of W×W Projections

for Mn(k)

In this section, we describe (3.13) in terms of the combinatorial description of Rn

from the end of the last section. The procedure we develop is for WeiW → Wei+1W

whereas for (3.13) e ≤ f though e need not be covered by f . However, the procedure

can be repeated, as necessary, to find the projection WeW → WfW . We begin by

describing the procedure, with examples, before going on to verify that it is satisfies

the first two parts of Theorem 3.2.4.

3.3.1 The k-insertion Algorithm

Let σ ∈ Rn. Then σ = (α1 α2 . . . αn) where αj ∈ {0, 1, 2, . . . , n} and for

αi, αj 6= 0, αi 6= αj if i 6= j. Set k = min{c ∈ Z≥0 | c 6= αj, 1 ≤ j ≤ n} and let {bi} be

the longest decreasing subsequence, from right to left, in σ = (α1 . . . αn) such that

b1 < k. If k = 0, we do nothing. If k 6= 0, then we shift each term in the subsequence

one spot to the left in the subsequence. For both cases the last term is 0, so the final

step is to shift a 0 “out” of the sequence initially describing σ.

We call this the k-insertion algorithm. Given σ we denote the result of this process

by β(σ). By construction, if σ ∈ WeiW then β(σ) ∈ Wei+1W , unless i = n in which

case β(σ) = σ. Note that i = n if and only if k = 0.

In several of the proofs that follow, it will be convenient to keep track of what is

being inserted into the sequence of terms. We use a bar over the entry to show that it

is the entry being considered and denote what’s being inserted inside square brackets.

Note that from one step to the next, the corresponding sequence of [i]’s is decreasing

(they are the terms from {bi}). The following example illustrates this process.

Example 3.3.1. Suppose σ = (0 1 0 0 2 5 3 6). Then k = 4 and b1 = 3 > b2 = 2 >
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b3 = 0. We therefore obtain β(σ) as follows:

σ = (0 1 0 0 2 5 3 6)

= (0 1 0 0 2 5 3 6)[4]

→ (0 1 0 0 2 5 4 6)[3]

→ (0 1 0 0 3 5 4 6)[2]

→ (0 1 0 2 3 5 4 6)[0]

= (0 1 0 2 3 5 4 6)

= β(σ)

We emphasize that the bars and brackets are strictly for bookkeeping purposes.

For example, for (0 1 0 0 2 5 4 6)[3] the element we are considering is (0 1 0 0 2 5 4 6).

This will be important to keep in mind for future work involving inequalities.

3.3.2 Verifying the Alternate Description

If σ ∈ Rn is a Gauss-Jordan element, it is not difficult to see that this new

description coincides with the projection maps from [24]. To do so, we observe that

σ = eiy for some ei ∈ Λ and y ∈ D(ei)
−1, (3.9). Since W = Sn, y is a permutation

matrix of the form

(
y1

y2

)
, where y1 consists of i rows in row echelon form and the

non-zero columns of y2 are in row echelon form. If zei
is the longest element in W∗(ei),

then zei
= Ii ⊕ Jn−i, where Jn−i is the (n− i)× (n− i) permutation matrix with 1’s

on the top-right to bottom-left diagonal.

Row (i + 1) of zei
y therefore has a 1 in the rightmost column containing all 0’s

in rows 1 through i. In the one-line notation, this means the rightmost 0 in σ now

has an entry of i + 1. Factoring to uy′, with u ∈ W (ei+1) and y′ ∈ D(ei+1)−1, has

the effect of putting the first i + 1 rows of y′ in row echelon form (the permutation

matrix that does this, by switching appropriate rows, is u). This amounts to putting

the non-zero entries in increasing order, in the one-line notation. Hence pei,ei+1
and

the k-insertion algorithm yield the same output on Gauss-Jordan elements of Rn.
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Example 3.3.2. Let M = M4(k). If σ = (1 0 0 2) ∈ GJ , then β(σ) = (1 0 2 3). In

terms of idempotents and quotient elements, we have σ = e2(234), or

σ =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 .

Proceeding with the projection map procedure, we factor ze2y as follows:

ze2y =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0



=


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


= uy′

That is, uy′ = (23)(243) and so pe2,e3(σ) = e3(243) = β(σ).

We now show that the k-insertion algorithm and the projection maps from [24]

coincide for all of Rn. To begin, we have the following result.

Proposition 3.3.3. For σ ∈ Rn, σ ≤ β(σ).

Proof. The k-insertion algorithm is a repeated application of the first condition of

Theorem 3.2.8. Hence σ ≤ β(σ).
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We next want to show that β is order-preserving on W ×W -orbits. That is, we

want to show that for σ, θ ∈ WeiW , if σ ≤ θ then β(σ) ≤ β(θ). Since β(σ) = σ if

i = n, we will assume i < n.

If σ ≤ θ then σ = θ0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θt = θ, where θm+1 is obtained from

θm via a change corresponding to one of the two conditions given in Theorem 3.2.6.

The conditions given in Theorem 3.2.8 for this scenario can be stated equivalently as

follows:

1. θm = (α1 . . . αi . . . αn) and θm+1 = (α1 . . . (αi + c) . . . αn) for a permitted

c ∈ N.

2. θm = (α1 . . . αi . . . αj . . . αn) and θm+1 = (α1 . . . αj . . . αi . . . αn) with

αi > αj.

To show that order is preserved, we will show that β(θm) ≤ β(θm+1) in both cases,

as it then follows that β(σ) ≤ β(θ). In doing so, we will need the following lemma.

Lemma 3.3.4. Let σ = (α1 α2 . . . αn) ∈ Rn and c, d ∈ {0, 1, 2, . . . , n}\{αi | αi 6= 0},
such that 0 ≤ c < d ≤ n. Let σc denote σ after c is inserted via the process described

above (even though c might not be k), and σd likewise. Then σc < σd.

Proof. If c > αn then

(α1 α2 . . . αn−1 αn)[c] = (α1 α2 . . . αn−1 αn)[d]

(α1 α2 . . . αn−1 c)[αn] < (α1 α2 . . . αn−1 d)[αn]

where the inequality follows by Theorem 3.2.8 since c < d. For the rest of the process,

we end up with the same entries and so the claim holds for this case.

If d > αn > c then

(α1 α2 . . . αn−1 αn)[c] = (α1 α2 . . . αn−1 αn)[d]

(α1 α2 . . . αn−1 αn)[c] < (α1 α2 . . . αn−1 d)[αn]

where the inequality follows by Theorem 3.2.8 since αn < d, and we start the process

over, now at αn−1 (inserting c and an, respectively, as indicated). At some point,
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αi < c and so we have the case described above. For this next step, the relation will

not be equality, however the desired inequality is maintained.

If αn > d then nothing changes in the first step, so we start the process over, now

at αn−1 (still inserting c and d). At some point, αi < d and so one of the two cases

above holds. Again, the relation will not be equality at the next step, though we do

have the inequality we want.

This procedure eventually terminates and we have the inequality, as claimed.

Proposition 3.3.5. Let θm = (α1 α2 . . . αi . . . αn) and θm+1 = (α1 α2 . . . (αi +

c) . . . αn), for c ∈ N with 0 < c ≤ n− αi such that αi + c 6= αj for 1 ≤ j ≤ n. Then

β(θm) ≤ β(θm+1).

Proof. Let k = min{d ∈ Z≥0 | d 6= αj, 1 ≤ j ≤ n} and let k′ be likewise, for θm+1.

Case 1: k = k′

Everything proceeds the same for both until the ith entry, for some i. Therefore,

without loss of generality, we will assume i = n.

If k > αn + c, then we have:

(α1 α2 . . . αn−1 αn)[k] ≤ (α1 α2 . . . αn−1 (αn + c))[k]

(α1 α2 . . . αn−1 k)[αn] ≤ (α1 α2 . . . αn−1 k)[(αn + c)]

Note that at this stage, we actually have equality. However, by Lemma 3.3.4, at the

end of the procedure we will have a (strict) inequality.

Suppose that αn + c > k > αn. Then we have:

(α1 α2 . . . αn−1 αn)[k] ≤ (α1 α2 . . . αn−1 (αn + c))[k]

(α1 α2 . . . αn−1 k)[αn] ≤ (α1 α2 . . . αn−1 (αn + c))[k]

where again the inequality is preserved by Lemma 3.3.4, since what remains is equiv-

alent to

(α1 α2 . . . αn−1)[αn] ≤ (α1 α2 . . . αn−1)[k].
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Finally suppose that k < αn. We then have:

(α1 α2 . . . αn−1 αn)[k] ≤ (α1 α2 . . . αn−1 (αn + c))[k]

(α1 α2 . . . αn−1 αn)[k] ≤ (α1 α2 . . . αn−1 (αn + c))[k]

and for the remaining steps everything proceeds the same for both sides of the in-

equality, and so the inequality is preserved. We’ve considered all possibilities and have

shown the inequality holds, moving one step left. We repeat as necessary, eventually

obtaining β(θm) ≤ β(θm+1) for this case.

Case 2: k 6= k′

Suppose αi 6= 0. Then k′ = αi and k′ < k. We will assume that c is the smallest

value in {1, 2, . . . , n−αi} such that αi+c 6= αj for 1 ≤ j ≤ n. For example, we would

consider

(0 1 2 0 3)→ (0 5 2 0 3)

as first

(0 1 2 0 3)→ (0 4 2 0 3)

and then

(0 4 2 0 3)→ (0 5 2 0 3).

This assumption forces k = αi + c. Hence we want to show that the inequality is

preserved in

(α1 α2 . . . αi . . . αn)[αi + c] ≤ (α1 α2 . . . (αi + c) . . . αn)[αi].

Let {bj} be the largest decreasing subset of values in (α1 . . . αi . . . αn) from right

to left, starting with αi + c. That is, αi + c > b1 > . . . > 0. Let {dj} be likewise for

(α1 . . . (αi + c) . . . αn), starting with αi. Note that {dj} is a subsequence of {bj}.
In fact, the last |{dj}| terms of {bj} are exactly {dj}.

Suppose {dj} is a proper subsequence of {bj} and let b` be the smallest element in

{bj} larger than d1. For example, if we were considering (0 1 2 0 3) and (0 4 2 0 3), then

αi = k′ = 1 and αi + c = k = 4. The desired subsequences are 4 > b1 = 3 > b2 = 0

and 1 > d1 = 0 and b` = b1 = 3.
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Suppose αi 6∈ {bj}. If d1 is to the right of αi then:

(α1 . . . αi . . . d1 . . . b` . . . b2 . . . b1 . . . αn)[αi + c]
...

≤ (α1 . . . αi . . . b` . . . b`−1 . . . b1 . . . (αi + c) . . . αn)[d1]
...

≤ (α1 . . . αi . . . b` . . . b`−1 . . . b1 . . . (αi + c) . . . αn)

= β(θm).

However, we may “undo” the changes in these extra bj’s, obtaining the following chain

of inequalities:

β(θm) = (α1 . . . αi . . . b` . . . b`−1 . . . b1 . . . (αi + c) . . . αn)

≤ (α1 . . . αi . . . b` . . . b`−1 . . . (αi + c) . . . b1 . . . αn)
...

≤ (α1 . . . αi . . . b` . . . (αi + c) . . . b2 . . . b1 . . . αn)

≤ (α1 . . . αi . . . (αi + c) . . . b` . . . b2 . . . b1 . . . αn)

≤ (α1 . . . (αi + c) . . . αi . . . b` . . . b2 . . . b1 . . . αn)

= β(θm+1).

If d1 is to the left of αi then we would actually have αi ∈ {bj}, which we initially

assumed was not the case.

Suppose then that αi ∈ {bj}. Then b` = αi and

(α1 . . . d1 . . . αi . . . b`−1 . . . b2 . . . b1 . . . αn)[αi + c]
...

≤ (α1 . . . d1 . . . αi . . . b`−2 . . . b1 . . . (αi + c) . . . αn)[b`−1]

≤ (α1 . . . d1 . . . b`−1 . . . b`−2 . . . b1 . . . (αi + c) . . . αn)[αi].
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We next undo the changes due to b1 > . . . > b`−1

(α1 . . . d1 . . . b`−1 . . . b`−2 . . . b1 . . . (αi + c) . . . αn)[αi]

≤ (α1 . . . d1 . . . b`−1 . . . b`−2 . . . (αi + c) . . . b1 . . . αn)[αi]
...

≤ (α1 . . . d1 . . . (αi + c) . . . b`−1 . . . b2 . . . b1 . . . αn)[αi]

= (α1 . . . (αi + c) . . . αn)[αi].

Note that if {dj} = {bj} then there is no “undoing” of the extra bi’s and we arrive

at

(α1 . . . (αi + c) . . . b2 . . . αi . . . αn)[b1]

≤ (α1 . . . αi . . . b2 . . . (αi + c) . . . αn)[b1].

Hence, if αi 6= 0 we’ve shown β(θm) ≤ β(θm+1).

Suppose that αi = 0. Let k and k′ be as usual. If there exists αj = 0 for i 6= j

then k′ > k = c. That is

(α1 . . . αi . . . αn)[k] = (α1 . . . 0 . . . αn)[c]

and

(α1 . . . (αi + c) . . . αn)[k′] = (α1 . . . c . . . αn)[k′].

But now we have

(α1 . . . 0 . . . αn)[c] ≤ (α1 . . . 0 . . . αn)[k′] ≤ (α1 . . . c . . . αn)[k′]

where the first inequality holds by Lemma 3.3.4 and the second by Case 1 above.

If there is no αj = 0 for i 6= j, then k = c and k′ = 0. Let {bi} be as usual, where
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c > b1 > . . . > b` > 0 = αi. Then

(α1 . . . 0 . . . b2 . . . b1 . . . αn)[c]
...

≤ (α1 . . . 0 . . . b2 . . . b1 . . . αn)[c]

≤ (α1 . . . 0 . . . b2 . . . c . . . αn)[b1]
...

≤ (α1 . . . b` . . . b1 . . . c . . . αn)

= β(θm)

and

β(θm) = (α1 . . . b` . . . b1 . . . c . . . αn)

≤ (α1 . . . b` . . . c . . . b1 . . . αn)
...

≤ (α1 . . . c . . . b2 . . . b1 . . . αn)

= (α1 . . . c . . . αn)[0]

= β(θm+1).

So, if αi = 0 we’ve shown β(θm) ≤ β(θm+1).

Now, finally, all cases have been covered and so the proof is complete.

Example 3.3.6. Suppose θm = (0 2 0 3 1 4 5) and θm+1 = (0 2 0 6 1 4 5). Then

k = 6 and k′ = 3 and we have the sequences b1 = 5 > b2 = 4 > b3 = 1 > b4 = 0 and

d1 = 1 > d2 = 0. We note that d1 = 1 is to the right of αi = 3 (and so αi 6∈ {bi}).

Thus

θm = (0 2 0 3 1 4 5)→ (0 2 1 3 4 5 6) = β(θm)

and

θm+1 = (0 2 0 6 1 4 5)→ (0 2 1 6 3 4 5) = β(θm+1).

Since {bi} \ {di} = {5, 4}, we “undo” as follows (bold added for emphasis)

β(θm) = (0 2 1 3 4 5 6) ≤ (0 2 1 3 4 6 5) ≤ (0 2 1 3 6 4 5)
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and

(0 2 1 3 6 4 5) ≤ (0 2 1 6 3 4 5) = β(θm+1).

Example 3.3.7. Suppose θm = (0 0 1 0 2 3 6) and θm+1 = (0 0 1 0 4 3 6). Then

k = 4 and k′ = 2 and we have the sequences b1 = 3 > b2 = 2 > b3 = 0 and d1 = 0.

We note that αi = 2 ∈ {bi}. Thus

θm = (0 0 1 0 2 3 6)→ (0 0 1 2 3 4 6) = β(θm)

and

θm+1 = (0 0 1 0 4 3 6)→ (0 0 1 2 4 3 6) = β(θm+1).

Since {bi} \ {di} = {3, 2} and αi = 2, we “undo” as follows (again, bold added for

emphasis)

β(θm) = (0 0 1 2 3 4 6) ≤ (0 0 1 2 4 3 6) = β(θm+1).

Proposition 3.3.5 tells us that β(θm) ≤ β(θm+1) for the first case described above.

The following proposition addresses the second case.

Proposition 3.3.8. Suppose

θm = (α1 α2 . . . αi . . . αj . . . αn) < (α1 α2 . . . αj . . . αi . . . αn) = θm+1

where αi < αj. Then β(θm) ≤ β(θm+1).

Proof. Let k, respectively k′, be defined as in Proposition 3.3.5 for θm, respectively

θm+1. Note that k = k′. We start the process, noting that all is the same until we

get to the jth entry. So, without loss of generality, assume that j = n.

Case 1: k > αn

In this case we have:

(α1 α2 . . . αi . . . αn−1 αn)[k] ≤ (α1 α2 . . . αn . . . αn−1 αi)[k]

(α1 α2 . . . αi . . . αn−1 k)[αn] ≤ (α1 α2 . . . αn . . . αn−1 k)[αi]

where the inequality holds since αi < αn. But this is the same as

(α1 α2 . . . αi . . . αn−1 k)[αn] ≤ (α1 α2 . . . αn . . . αn−1 k)[αi].
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Considering αn as αi+c, we know by Proposition 3.3.5 that the inequality is preserved

throughout the process. That is, β(θm) ≤ β(θm+1).

Case 2: k < αi

In this case, αi and αn remain fixed during the process. That is, if we let {bi} be

as in Proposition 3.3.5 then αn > αi > k > b1 > b2 > . . . > 0. Hence,

(α1 . . . b` . . . αi . . . b2 . . . b1 . . . αn)[k] ≤ (α1 . . . b` . . . αn . . . b2 . . . b1 . . . αi)[k]

(α1 . . . b` . . . αi . . . b2 . . . k . . . αn)[b1] ≤ (α1 . . . b` . . . αn . . . b2 . . . k . . . αi)[b1]
...

(α1 . . . b`−1 . . . αi . . . b1 . . . k . . . αn) ≤ (α1 . . . b`−1 . . . αn . . . b1 . . . k . . . αi)

And so for this situation, β(θm) ≤ β(θm+1).

Case 3: αi < k < αn

In this case we have:

(α1 α2 . . . αi . . . αn−1 αn)[k] ≤ (α1 α2 . . . αn . . . αn−1 αi)[k]

(α1 α2 . . . αi . . . αn−1 αn)[k] ≤ (α1 α2 . . . αn . . . αn−1 k)[αi].

However,

(α1 α2 . . . αi . . . αn−1 αn)[k] ≤ (α1 α2 . . . k . . . αn−1 αn)[αi]

where the inequality is maintained throughout the process, by Proposition 3.3.5 (con-

sidering k as αi + c). Additionally,

(α1 α2 . . . k . . . αn−1 αn)[αi] ≤ (α1 α2 . . . αn . . . αn−1 k)[αi]

where the inequality is maintained throughout the process, by Case 2 (since αi is

smaller than k and αn). Thus we have:

β(θm) ≤ β(α1 α2 . . . k . . . αn−1 αn) ≤ β(θm+1).

All the cases have been covered, hence θm ≤ θm+1.

As noted above, Propositions 3.3.5 and 3.3.8 imply the following.
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Theorem 3.3.9. For σ, θ ∈ WeiW , σ ≤ θ ⇒ β(σ) ≤ β(θ).

Example 3.3.10. Suppose θm = (0 1 0 2 3 5) and θm+1 = (0 5 0 2 3 1). Then

α2 = 1 ≤ k = 4 ≤ α6 = 5 and we have

(0 1 0 2 3 5)[4] ≤ (0 5 0 2 3 1)[4]

(0 1 0 2 3 5)[4] ≤ (0 5 0 2 3 4)[1]

but

(0 1 0 2 3 5)[4] ≤ (0 4 0 2 3 5)[1]
...

(0 1 2 3 4 5) ≤ (0 4 1 2 3 5)

and

(0 4 0 2 3 5)[1] ≤ (0 5 0 2 3 4)[1]
...

(0 4 1 2 3 5) ≤ (0 5 1 2 3 4)

and so

β(θm) = (0 1 2 3 4 5) ≤ (0 5 1 2 3 4) = β(θm+1)

This brings us to our final result.

Theorem 3.3.11. For σ ∈ WeiW , θ ∈ Wei+1W , σ ≤ θ ⇐⇒ β(σ) ≤ θ.

Proof. Suppose β(σ) ≤ θ. Then, by Proposition 3.3.3, σ ≤ β(σ) and so σ ≤ θ.

Suppose then that σ ≤ θ. By Theorem 3.2.6, there exist θ0, θ1, . . . , θm ∈ R such

that

σ = θ0 ≤ θ1 ≤ · · · ≤ θm = θ, (3.14)

where each term in the string of inequalities is obtained from the previous one via

one of the two described methods.
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Considering (3.14), we observe that there must exist a j, 0 ≤ j ≤ m − 1, such

that θj ∈ WeiW and θj+1 ∈ Wei+1W . θj+1 is therefore obtained from θj by changing

a 0 in θj to a suitable non-zero. That is,

θj = (α1 α2 . . . 0 . . . αn)

θj+1 = (α1 α2 . . . c . . . αn).

Now c ≥ k, where k = min{a ∈ Z≥0 | a 6= αj, 1 ≤ j ≤ n}, as previously defined.

If c > k, then θj ≤ θ∗j ≤ θj+1, where

θ∗j = (α1 α2 . . . k . . . αn).

Thus, without loss of generality, we may assume that c = k and so

θj+1 = (α1 α2 . . . k . . . αn).

Suppose there is a 0 to the right of the 0 identified in θj. Then θj ≤ θ∗j ≤ θj+1,

where

θj = (α1 α2 . . . 0 . . . 0 . . . αn)

θ∗j = (α1 α2 . . . 0 . . . k . . . αn)

θj+1 = (α1 α2 . . . k . . . 0 . . . αn).

Thus, without loss of generality, we may assume that there is no 0 to the right of the

0 identified in θj.

Let {bi} be the longest decreasing subsequence from right to left in θj, with b1 < k.

The final term at the end of this sequence, b` = 0, corresponds to the 0 under

discussion in θj. Now

θj = (α1 α2 . . . 0 . . . b2 . . . b1 . . . αn)
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and

β(θj) = (α1 α2 . . . b`−1 . . . b1 . . . k . . . αn)

< (α1 α2 . . . b`−1 . . . k . . . b1 . . . αn)
...

< (α1 α2 . . . k . . . b2 . . . b1 . . . αn)

= θj+1.

So β(θj) ≤ θj+1, and thus

σ ≤ θ1 ≤ · · · ≤ θj ≤ β(θj) ≤ θj+1 ≤ · · · ≤ θm = θ.

Now σ ≤ θj with σ, θj ∈ WeiW and so, by Theorem 3.3.9, β(σ) ≤ β(θj) and thus

β(σ) ≤ θ. This completes the proof.

Table 3.1 shows the projections from rank 1 elements to rank 2 elements in R3.

The first two columns are found using the method we’ve described. Observe that

they are indentical to the results of the last two columns, as given in [24]. Figure

3.5 is the Hasse diagram of R3 from Figure 3.1, but now with the W ×W orbits in

different colors with the projections between the orbits in dotted lines.
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Table 3.1: Projections from rank 1 to rank 2, in R3.

σ β(σ) σ pe1,e2(σ)

(1 0 0) (1 0 2)

1 0 0
0 0 0
0 0 0

 1 0 0
0 0 1
0 0 0


(0 1 0) (0 1 2)

0 1 0
0 0 0
0 0 0

 0 1 0
0 0 1
0 0 0


(0 0 1) (0 1 2)

0 0 1
0 0 0
0 0 0

 0 1 0
0 0 1
0 0 0


(2 0 0) (2 0 1)

0 0 0
1 0 0
0 0 0

 0 0 1
1 0 0
0 0 0


(0 2 0) (0 2 1)

0 0 0
0 1 0
0 0 0

 0 0 1
0 1 0
0 0 0


(0 0 2) (0 1 2)

0 0 0
0 0 1
0 0 0

 0 1 0
0 0 1
0 0 0


(3 0 0) (3 0 1)

0 0 0
0 0 0
1 0 0

 0 0 1
0 0 0
1 0 0


(0 3 0) (0 3 1)

0 0 0
0 0 0
0 1 0

 0 0 1
0 0 0
0 1 0


(0 0 3) (0 1 3)

0 0 0
0 0 0
0 0 1

 0 1 0
0 0 0
0 0 1
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Figure 3.5: R3 under Bruhat-Chevalley Order.
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Chapter 4

The Conjugacy Poset

The study of conjugacy classes of a reductive monoid was initiated by Putcha in

[18], with subsequent contributions in [21], [22], and [25]. In [18], for each (e, w) ∈
Λ ×W a subset Me,w ⊆ M is defined such that every x ∈ M is conjugate to some

y ∈ Me,w, for some (e, w) ∈ Λ × W . Furthermore, for each Me,w there exists a

reductive group Ge,w with ξ : Me,w → Ge,w such that if x and y are in Me,w, then

x ∼ y in M if and only if ξ(x) and ξ(y) are σ-conjugate in Ge,w (for an automorphism

σ of Ge,w). It turns out that

M =
⋃

(e,w)∈Λ×W, g∈G

gMe,wg
−1.

In [22], a subset of Λ ×W is found such that the union is disjoint. Additionally, a

partial order is defined on this subset. The resulting decomposition is therefore called

the conjugacy decomposition of M and we call the partial order the conjugacy order.

As motivation for the general theory, in Section 4.1 we describe this decomposition

and the associated partial order for the case that M = Mn(k). After this brief

introduction, we go on to describe the general theory, with some initial results, in

Section 4.2. The final three sections of the chapter consist of an initial analysis for

the three classes of monoids we will consider in this paper: Mn(k), dual canonical

monoids, and canonical monoids.
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4.1 The Motivating Example

Let M = Mn(k) with a, b ∈Mn(k). Define a ≡ b if the rank of ai equals the rank

of bi for 1 ≤ i ≤ n or, equivalently, if a and b have the same nilpotent blocks in the

Jordan form. This is an equivalence relation and we index the equivalence classes by

the partitions P = {α ` m | 0 ≤ m ≤ n}. Specifically, if we let X(α) denote the set

of matrices whose nilpotent blocks in the Jordan form correspond to α, we obtain the

following decomposition:

Mn(k) =
⊔
α∈P

X(α) (4.1)

This is the conjugacy decomposition of Mn(k).

Given α, β ∈ P with a ∈ X(α) and b ∈ X(β), we define a partial order on P by

declaring α ≤ β if rk(ai) ≤ rk(bi) for 1 ≤ i ≤ n. In terms of partitions, α ≤ β if for

α ` m with α = (α1, α2, . . .) and β ` ` with β = (β1, β2, . . .), we have:

n−m ≤ n− `

n−m+ α1 ≤ n− `+ β1

n−m+ α1 + α2 ≤ n− `+ β1 + β2

...

The poset (P ,≤) is the conjugacy poset of Mn(k). We will revisit this case in Section

4.3 before going on to a more thorough analysis in the following chapters.

4.2 Background

The first in depth analysis of the conjugacy decomposition of a reductive monoid

M appears in [22]. We therefore begin with a summary of these main results. We

follow with the description of the conjugacy order, as presented in [22]. Before going

on to describe new findings, we summarize a few results from [25] that describe the

order. In doing so, it will be necessary to restate some results presented above that

appear in [25] in a slightly different manner.
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4.2.1 The Conjugacy Decomposition of M

Let M be a reductive monoid, with unit group G and W the Weyl group of G.

Let S ⊆ W be the set of simple reflections of W . By K / I, for I ⊆ S, we mean that

K is a union of connected components of I. Let I, J ⊆ S and y ∈ D−1
I . Then, by [2],

WI ∩ yWJy
−1 is a standard parabolic subgroup of W . In particular, we have:

WI ∩ yWIy
−1 = WI1 , I1 ⊆ I

WI ∩ yWI1y
−1 = WI2 , I2 ⊆ I1

WI ∩ yWI2y
−1 = WI3 , I3 ⊆ I2

...

If K / I we therefore have:

WI ∩ yWKy
−1 = WK1 , K1 / I1

WI ∩ yWK1y
−1 = WK2 , K2 / I2

WI ∩ yWK2y
−1 = WK3 , K3 / I3

...

Using this, we now define a set D∗I (K) ⊆ D−1
I that will be crucial to the theory:

D∗I (K) = {y ∈ D−1
I | y ∈ DKj

for all j ≥ 0}.

Remark 4.2.1. Observe that D∗I (∅) = D−1
I and D∗I (I) = DI ∩D−1

I .

To emphasize the idempotents involved, we use a previously described notation

for parabolic subgroups of W . That is, we let W (e) = WI , where I = λ(e) for some

e ∈ Λ and W∗(e) = WK for K = λ∗(e) / I. Additionally, let

D(e) = DI , (4.2)

D∗(e) = D∗I (K), (4.3)

R∗ = {ey | e ∈ Λ, y ∈ D∗(e)}. (4.4)



66

Then, for y ∈ D(e)−1 we define

H = CG(zez−1 | z ∈ 〈y〉),

M(ey) = eHy,

X(ey) =
⋃
g∈G

gM(ey)g−1.

This brings us to the following theorem, from [22]. As usual, G is the unit group of

M with B a Borel subgroup of G.

Theorem 4.2.2. Let e ∈ Λ. Then

1. If y ∈ D(e)−1, then X(ey) =
⋃
g∈G

gBeyBg−1.

2. GeG =
⊔

y∈D∗(e)
X(ey).

3. M =
⊔

σ∈R∗
X(σ).

The third part of the theorem describes the conjugacy decomposition. It follows

immediately from the second part and (3.3). Note the similarity of this decomposi-

tion with the Bruhat-Renner decomposition of R, (3.4). Specifically, for the former

decomposition we have double cosets BσB while for the latter we have unions of

conjugates of BσB.

4.2.2 The Conjugacy Order of M

As previously noted, there is a partial order defined on the indexing set for the

conjugacy decomposition. Before describing this order, we first define the transitive

relation � on R generated by the following:

1. If σ ≤ θ, then σ � θ.

2. If y ∈ D(e)−1, x ∈ W , then eyx � xey.

This relation is very important to us. Namely, it describes the conjugacy order, once

we pick the correct subset of R. The following theorem, from [22], makes this clear.
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Theorem 4.2.3. 1. � is a partial order on R∗.

2. If σ, θ ∈ R∗, then σ � θ if and only if X(σ) ⊆ X(θ).

3. If σ ∈ R∗, then X(σ) =
⊔
σ′�σ

X(σ′).

Thus R∗ serves as our indexing set for the classes in the conjugacy decomposition

of M . Our first description of the Bruhat-Chevalley order on R, (3.6), said that if

σ, θ ∈ R, then σ ≤ θ if BσB ⊆ BθB. The conjugacy order is therefore the natural

generalization: for σ, θ ∈ R∗, σ � θ if
⋃
g∈G

gBσBg−1 ⊆
⋃
g∈G

gBθBg−1. We emphasize

that the relation � is a partial order on R∗, not all of R.

Example 4.2.4. Let M = M3(k) with σ = e1(123) = e1(12)(23) and θ = e1(12).

Since σ ≤ θ, σ � θ. On the other hand, since (23) ∈ W∗(e1), we have

θ = σ(23) � (23)σ = σ.

As σ 6= θ, we see that anti-symmetry does not hold and thus � is not a partial order

on R.

The structure theory of the conjugacy decomposition, as presented thus far, is

therefore the study of R∗ under �. In [25], the order is described in terms of Gauss-

Jordan elements (of which R∗ is a subset). We explore this approach now.

4.2.3 A Second Description of the Conjugacy Order

Let M be a reductive monoid, with unit group G, Borel subgroup B, and Renner

monoid R. For σ ∈ R, we let X(σ) be as before. That is,

X(σ) =
⋃
x∈G

x−1BσBx

and so

X(σ) =
⋃
θ≤σ

X(θ).
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As noted in [22], X(σ) is a closed irreducible subset of M . If σ, θ ∈ R, we define σ ≈ θ

if X(σ) = X(θ) and σ � θ if X(σ) ⊆ X(θ). Using this, we observe the following,

from [25]:

Theorem 4.2.5. 1. If σ ∈ R, then σ ≈ θ for some θ ∈ GJ .

2. If σ, θ ∈ GJ , then

σ ≈ θ ⇐⇒ σ ∼ θ in R ⇐⇒ X(σ) = X(θ) (4.5)

In the second part of the theorem, by σ ∼ θ in R we mean that wσw−1 = σ′ for

some w ∈ W . Using this relation, define R̃ = GJ / ∼ and denote the class containing

σ ∈ GJ by [σ]. That is, let

[σ] = {σ′ ∈ GJ | σ ∼ σ′}. (4.6)

By (3.9), if σ, σ′ ∈ GJ , then σ = ey and σ′ = fz for some e, f ∈ Λ, y ∈ D(e)−1, and

z ∈ D(f)−1. If σ ∼ σ′, then wσw−1 = σ′ and so we must have e = f and w ∈ W (e).

We may therefore write [σ] as:

[ey] = {ey′ | y′ ∈ D(e)−1 , ey ∼ ey′}. (4.7)

Now, for σ ∈ R we let p̃(σ) = [σ1], where σ1 ∈ GJ with σ ≈ σ1. This is well

defined, since if σ ≈ σ2 ∈ GJ as well, then σ1 ≈ σ2 and σ1 ∼ σ2 in R, by (4.5), and

hence [σ1] = [σ2]. By Theorem 4.2.5, � induces a partial order ≤ on R̃:

[σ1] ≤ [σ2] if σ1 � σ2. (4.8)

This brings us to the following result, from [25].

Theorem 4.2.6. 1. p̃ : R→ R̃ is an order-preserving map.

2. M =
⊔

[σ]∈R̃
X(σ).

3. If [σ] ∈ R̃, then X(σ) =
⊔

[θ]≤[σ]

X(θ).
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4. The decomposition in each part above is independent of the choice of the Borel

subgroup B.

As noted in [25], Theorem 4.2.6 yields an equivalence relation on M :

a ≡ b if a, b ∈ X(σ) for some [σ] ∈ R̃. (4.9)

The theorem also tells us that the elements of R̃ serve as an indexing set for the

conjugacy decomposition of M . This is convenient because of the next theorem, from

[25], which tells how we may describe the order on R̃ in terms of the Bruhat-Chevalley

order on R.

Theorem 4.2.7. Let [σ], [θ] ∈ R̃. Then [σ] ≤ [θ] if and only if aσa−1 ≤ θ for some

a ∈ W .

We can refine this, using the result of [14] described in Theorem 3.2.1:

Corollary 4.2.8. Let [σ] ∈ R̃(e), [θ] ∈ R̃(f). Then [σ] ≤ [θ] if and only if aσa−1 ≤ θ

for some a ∈ W (f)W∗(e).

Proof. Suppose [σ] ≤ [θ] with [σ] ∈ R̃(e) and [θ] ∈ R̃(f). Then [σ] = [ey] and

[θ] = [fy′] for some y ∈ D(e)−1 and y′ ∈ D(f)−1. By Theorem 4.2.7, aeya−1 ≤ fy′

for some a ∈ W . Then aeya−1 = aa1ey1, where a1 ∈ W (e), and y1 ∈ D(e)−1.

By Theorem 3.2.1, there exists w ∈ W (f)W∗(e) such that aa1 ≤ w, and hence

a ∈ W (f)W∗(e).

The other direction follows from Theorem 4.2.7 above, and is proved in [25].

We are now equipped for our analysis of the conjugacy poset. Because of Corollary

4.2.8, when discussing the conjugacy poset of M , we usually have (R̃,≤) in mind

rather than (R∗,�), though R∗ will be important in upcoming results.

In studying the Bruhat-Chevalley order on the Renner monoid, a successful ap-

proach has been to first examine WeW for e ∈ Λ, [24], and then find maps connecting

WeW to WfW , for e, f ∈ Λ, [25]. We follow a similar approach here. That is, we an-

alyze the structure within R̃(e) in Chapter 5 before attempting to make connections

between R̃(e) and R̃(f) in Chapter 6. However, as promised, to finish this chapter
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we provide further descriptions of R̃ for the three classes of reductive monoids we

will pursue in the following chapters: Mn(k), dual canonical monoids, and canonical

monoids.

4.3 Matrices

The first class of reductive monoids we consider is the most familiar one, Mn(k).

Let a, b ∈ Mn(k) and [a] denote the ≡-class of a, where ≡ is as in (4.9). For m ≥ 1,

let Jm(0) denote the m×m nilpotent Jordan block. Then

a ≡ I` ⊕ Jα1(0)⊕ · · · ⊕ Jαr(0) , α1 ≥ α2 ≥ · · · ≥ αr

b ≡ I`′ ⊕ Jβ1(0)⊕ · · · ⊕ Jβr(0) , β1 ≥ β2 ≥ · · · ≥ βs.

The following result is the combination of two theorems from Section 3 of [25].

Theorem 4.3.1. The following conditions are equivalent:

1. a ≡ b.

2. rk(ai) ≤ rk(bi) for i ≥ 1.

3. ` ≤ `′, `+ α1 ≤ `′ + β1, `+ α1 + α2 ≤ `′ + β1 + β2, . . .

4. [a] ⊆ [b].

This theorem tells us that the theory developed in Section 4.2 does in fact coincide

with the description of the conjugacy poset of Mn(k) in Section 4.1 that motivated

the theory. In the remainder of this section, we develop new ideas that when used

with this description will provide insight into the structure of R̃.

Conjugacy Classes of Gauss-Jordan elements in Rn

We begin with a description of the conjugacy classes of the Gauss-Jordan elements

in the Renner monoid Rn of Mn(k). Recall that these elements are the partial per-

mutation matrices of Mn(k), in row echelon form. Every element of Mn(k) is similar
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to a unique matrix in the Jordan form. For σ ∈ GJ n, we have

σ ∼ J1(1)⊕ · · · ⊕ J1(1)⊕ Jα1(0)⊕ · · · ⊕ Jαk
(0) (4.10)

where J1(1)⊕ · · · ⊕ J1(1) = Id for some d and α = (α1, . . . αk) is a partition of n− d.

When considering σ ∈ Rn, it will be useful to know the size of the diagonalizable

part (d above) in addition to the partition of the nilpotent part (α above). We

record this data by assigning to σ the pair (d;α), which we will usually write as

(d;α1, α2, . . . , αk). Although this (k + 1)-tuple is usually not a partition, as d < α1

is possible, we nevertheless call this the Jordan partition of σ. Two Gauss-Jordan

elements are conjugate if and only if they have the same Jordan partition, and so

when referring to the Jordan partition of [σ], we mean the Jordan partition of σ (or

any θ ∈ GJ with θ ∼ σ).

Let σ = (a1 a2 . . . an) ∈ Rn. We say the entries in σ are z-increasing if for

ai, aj 6= 0 with i < j we have ai < aj. That is, the non-zero entries are increasing,

from left to right. Gauss-Jordan elements in Rn are elements with z-increasing entries.

Suppose σ ∈ Rn with rk(σ) the rank of σ. Define the rank signature of σ, denoted

sig(σ), to be the n-tuple with ith entry equal to the rank of the ith power of σ. We

write this as:

sig(σ) = [rk(σ), rk(σ2), . . . , rk(σn)]. (4.11)

Using this new notation, we observe that for σ, θ ∈ GJ n, σ ∼ θ if and only if

sig(σ) = sig(θ). As with Jordan partitions, since the rank signature is the same for

any class representative, by sig([σ]) we mean sig(σ). We will usually describe elements

of R̃n in terms of either the associated Jordan partition or rank signature (it turns

out both will be useful).

Example 4.3.2. Let σ = (0 1 0 2 0 0). Then σ2 = (0 0 0 1 0 0) and σm =

(0 0 0 0 0 0) for m ≥ 3, so rk(σ) = 2, rk(σ2) = 1, and rk(σk) = 0 for k ≥ 3. Thus

sig(σ) = [2, 1, 0, 0, 0, 0]. The Jordan partition of σ is (0; 3, 1, 1, 1).

An element of R̃n is a set of conjugate Gauss-Jordan elements of Rn, and so when

considering elements of R̃n we will often need a representative of the class. Such
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representatives are elements of Rn, so we use the one-line notation to describe them.

In our analysis of the conjugacy poset, we will often need to move between rank

signatures, Jordan partitions, and class representatives in the one-line notation. We

now describe how to get from one to the other, first considering rank signatures and

the one-line notation.

Let σ ∈ GJ n. If i is in the jth position of σ, in the one-line notation, then i

occupies the position in σm+1 that j occupied in σm. Since the entries of σ are z-

increasing, if i is not in the ith position then it moves to the right with successive

powers of σ. Using this observation, we may obtain the rank signature of σ by quick

inspection. To begin, the rightmost non-zero value in the one-line notation is r1. If

we multiply σ by itself, every non-zero value in the last n − r1 positions is lost. So

the rank of σ2 (that is, r2 in the rank signature) is the rightmost non-zero value in

the first r1 positions. In general, rj is the rightmost non-zero value in the first rj−1

positions. We illustrate this process in the following example.

Example 4.3.3. Suppose σ = (1 2 0 3 4 0 5 0 6 0) ∈ GJ 10. Then r1 = 6 and so we

consider

(1 2 0 3 4 0 ∗ ∗ ∗ ∗)

Now the rightmost non-zero value is 4, so r2 = 4 and we consider

(1 2 0 3 ∗ ∗ ∗ ∗ ∗ ∗)

The rightmost non-zero value is 3, so r3 = 3 and we consider

(1 2 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗)

The rightmost non-zero value is now 2, so r4 = 2. Since the rightmost non-zero value

in the first two positions is again 2, we know that rj = 2 for all remaining j.

Thus sig(σ) = [6, 4, 3, 2, 2, 2, 2, 2, 2, 2].

On the other hand, if we know the rank signature of σ, we know roughly how σ

“looks”. Specifically, if sig(σ) = [r1, . . . , rn], then r2 + 1, r2 + 2, . . . , r1 must occur in

the rightmost n− r1 positions (again, in the one-line notation); r3 + 1, r3 + 2, . . . , r2
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must occur in the next r1 − r2 positions; and so on. The rank of σn is rn, and so

the first rn positions are filled with 1, 2, . . . , rn. After all this, we assign a 0 to all

remaining open positions. Any element of GJ with this rank signature must satisfy

these conditions, hence we have a way of describing all elements of [σ], given sig(σ).

The following example illustrates this idea. In this example, we separate the

ri − ri+1 positions with a vertical line for emphasis.

Example 4.3.4. Suppose n = 8 with sig(σ) = [5, 3, 2, 1, 1, 1, 1, 1]. Then 4 and 5 must

appear in the three rightmost positions, 3 must occur in one of the next two rightmost

positions, 2 must occur in the next position to the right, and 1 is in the first position.

Any element of [σ] must therefore have the form

(1 ∗ | 2 | ∗ ∗ | ∗ ∗ ∗)

with 4 and 5 in the rightmost part and 3 in the next part.

The elements of [σ] are therefore:

(1 0 2 3 0 4 5 0)

(1 0 2 3 0 4 0 5)

(1 0 2 3 0 0 4 5)

(1 0 2 0 3 4 5 0)

(1 0 2 0 3 4 0 5)

(1 0 2 0 3 0 4 5).

Suppose, in the process described above, that when given the choice for placing

non-zero values we always choose the rightmost allowable positions. Denote the ele-

ment of [σ] obtained this way by σm. By Theorem 3.2.8, if σ, θ ∈ GJ , then σ < θ if θ

may be obtained from σ by moving non-zero entries of σ to the left, while maintaining

the z-increasing condition on the entries. Every element of [σ] may be obtained from

σm in this manner. Hence we have the following:

Proposition 4.3.5. For M = Mn(k), every [σ] ∈ R̃n has a minimum element.
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Recall that σ ∈ GJ can be written as ey for some e ∈ Λ and y ∈ D(e)−1. We

note that the set {z ∈ D(e)−1 | [ez] = [σ]} has a minimum element, say y∗, and this

element is in D∗(e), by [22]. From this observation, and Theorem 3.2.1, it follows

that ey∗ ≥ ez for any ez ∼ ey∗. That is, every [σ] has a maximum element. We will

denote this element by σM and note that it may be obtained via the process described

above by choosing the leftmost allowable position at each step.

Example 4.3.6. In the previous example, σm = (1 0 2 0 3 0 4 5) and σM =

(1 0 2 3 0 4 5 0). Figure 4.1 is the Hasse diagram for the elements of [σ], as listed

in that example, under Bruhat-Chevalley order.

Figure 4.1: The interval [(1 0 2 0 3 0 4 5), (1 0 2 3 0 4 5 0)] in GJ 8.

We have shown that we may obtain the rank signature of a Gauss-Jordan element

from its one-line notation, and vice versa (up to conjugacy), with fairly minimal effort.

We now show how the Jordan partition description fits in. It turns out that the rank

signature and the Jordan partition are connected in a nice way.

Let σ have Jordan partition (d;α). Form a Young diagram corresponding to

the partition α (with the rows of the diagram corresponding to components of the
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partition). For a nilpotent Jordan block, successive powers decrease the rank by 1,

until we reach 0. Thus we may picture successive ranks of σ, in terms of the Young

diagram, as the number of boxes remaining in the diagram after removing the leftmost

column. The difference in rank between powers is the number of blocks we remove,

which corresponds to the size of the row for the Young diagram of the conjugate

partition of α. That is, the ith row of the conjugate partition of α is ri−1 − ri where

[r1, r2, . . . , rn] is the rank signature of σ, with r0 = n. Thus we may recover the rank

signature from the Jordan partition (and vice versa, working backwards).

The following example should clarify this process.

Example 4.3.7. Let σ ∈ GJ 15 with Jordan partition (d;α) = (1; 5, 3, 2, 2, 1, 1). The

ranks of successive powers of σ are therefore:

rk(σ) = 1 + 4 + 2 + 1 + 1 = 9

rk(σ2) = 1 + 3 + 1 = 5

rk(σ3) = 1 + 2 = 3

rk(σ4) = 1 + 1 = 2

rk(σk) = 1

for k ≥ 5. Hence sig(σ) = [9, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

On the other hand, the conjugate partition of α is (6, 4, 2, 1, 1) and so, by the

discussion above, we have

n− r1 = 6

r1 − r2 = 4

r2 − r3 = 2

r3 − r4 = 1

r4 − r5 = 1

rk − rk+1 = 0

for k ≥ 5. Since n = d +
∑
αi, we see that n = 1 + 14 = 15. We may now find the
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ri’s recursively:

r1 = 15− 6 = 9

r2 = 9− 4 = 5

r3 = 5− 2 = 3

r4 = 3− 1 = 2

r5 = 2− 1 = 1

r6 = 1− 0 = 1
...

r15 = 1

Hence sig(σ) = [9, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], as observed above.

4.4 Dual Canonical Monoids

We introduced dual canonical monoids in Section 3.1. In the literature these are

called J -coirreducible monoids of type ∅. This means that the cross-section lattice

Λ of M is such that Λ \ {1} has a unique maximal element, e0, with λ(e0) = ∅.
Theorem 4.2.2 tells us that the conjugacy decomposition of M is indexed by elements

of R∗ = {ey | e ∈ Λ, y ∈ D∗(e)}. If M is a dual canonical monoid, then Theorem

3.1.10 states that λ(e) = λ∗(e) for all e ∈ Λ \ {1}. Hence if λ(e) = I then D∗(e) =

D∗I (I) = DI ∩ D−1
I , as noted in Remark 4.2.1. For a dual canonical monoid then,

there is a one-to-one correspondence between R̃ and the set of elements that are both

left and right quotient elements for a parabolic subgroup of W .

Example 4.4.1. Let M be the dual canonical monoid from Example 3.1.11. That is,

the Weyl group W of M is isomorphic to S3. Let A−B be the Coxeter graph of W .

Table 4.1 shows the elements of D∗I = DI ∩D−1
I for all I ⊆ S.

If M is a dual canonical monoid with e ≤ f for e, f ∈ Λ\{1}, then λ(f) = λ∗(f) ⊆
λ∗(e) = λ(e), by Theorem 3.1.10. Thus W (f) ⊆ W (e). If [σ] ∈ R̃(e), [θ] ∈ R̃(f), then
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Table 4.1: Elements of R∗ for the dual canonical monoid M with W = S3.

I ⊆ S = {A,B} D∗I = DI ∩D−1
I

∅ {1, A,B,AB,BA,ABA}
A {1, B}
B {1, A}

{A,B} {1}

Corollary 4.2.8 now says that [σ] ≤ [θ] if and only if a−1σa ≤ θ for some a ∈ W (e).

We may choose any representative of [σ] when checking this inequality, and so we

choose ey ∼ σ with y ∈ D∗(e) = D(e) ∩D(e)−1. With this choice of y, a−1eya = eya

is in standard form for any a ∈ W (e). Since θ = fz for some z ∈ D(f)−1, we now

have [σ] ≤ [θ] if and only if eya ≤ fz for some a ∈ W (e). For this situation, Theorem

3.2.1 tells us that eya ≤ fz if and only if there exists w ∈ W (e) such that wz ≤ ya.

Thus

[σ] ≤ [θ] ⇐⇒ wz ≤ ya (4.12)

where w, a ∈ W (e), θ = fz, and ey is the unique element such that ey ∼ σ with

y ∈ D∗(e). We will have more to say about this in the following chapters. In

particular, in Section 5.2 we consider the case that e = f before going on to consider

the case that e < f in Section 6.2.

Using Corollary 4.2.8, it is not difficult to construct R̃ for small cases. For a

dual canonical monoid, we have just shown that there are even fewer calculations to

perform. We therefore conclude this discussion with such a construction. Figure 4.2

is the conjugacy poset for M from Example 4.4.1. By e0 we mean the idempotent

corresponding to ∅, via the type map, by eA we mean the idempotent corresponding to

{A}, by e0 AB we mean the element e∅AB, and so on. Additionally, the representative

for each vertex in the diagram is the (unique) element in the class that is also in R∗.

4.5 Canonical Monoids

The cross-section lattice of a dual canonical monoid is the dual of the cross-section

lattice of a canonical monoid, as noted in Remark 3.1.12. Thus for a canonical
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Figure 4.2: R̃ for the dual canonical monoid with W of Type A2.
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monoid Λ\{0} has a unique minimal element, e0, with λ(e0) = ∅. More generally, we

call a canonical monoid a J -irreducible monoid of type ∅. For a canonical monoid,

λ(e) = λ∗(e) for all e ∈ Λ \ {0}, by Theorem 3.1.8, hence if λ(e) = I then D∗(e) =

D∗I (I) = D−1
I , as noted in Remark 4.2.1. Thus for a canonical monoid there is a one-

to-one correspondence between R̃ and the set of Gauss-Jordan elements GJ . That

is, for [σ] ∈ R̃,

[σ] = {σ}.

Example 4.5.1. Let M be the canonical monoid from Example 3.1.9. That is, the

Weyl group W of M is isomorphic to S3. Let A − B be the Coxeter graph of W .

Table 4.2 shows the elements of D∗I = D−1
I for all I ⊆ S.

Table 4.2: Elements of R∗ for the canonical monoid M with W = S3.

I ⊆ S = {A,B} D∗I = D−1
I

∅ {1, A,B,AB,BA,ABA}
A {1, B,BA}
B {1, A,AB}

{A,B} {1}

If M is a canonical monoid with e ≤ f , for e, f ∈ Λ \ {0}, then λ(e) = λ∗(e) ⊆
λ∗(f) = λ(f), by Theorem 3.1.10. Thus W (e) ≤ W (f) and so if [σ] ∈ R̃(e), [θ] ∈
R̃(f), Corollary 4.2.8 now says that [σ] ≤ [θ] if and only if a−1σa ≤ θ for some

a ∈ W (f). As with the case for dual canonical monoids, we will soon examine this in

further detail for e = f and e < f (in Sections 5.3 and 6.3, respectively). For now,

we note that for a canonical monoid, we have fewer calculations to perform than it

first seems by Corollary 4.2.8, since [σ] = {σ}. We therefore conclude this subsection

as we did with the last, with a construction of R̃. Figure 4.3 is the conjugacy poset

for M from Example 4.5.1. The notation for the vertices (representing the classes) is

the same as in Figure 4.2.
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Figure 4.3: R̃ for the canonical monoid with W of Type A2.
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Chapter 5

The Structure of R̃(e) Classes

We begin our more in depth study of the conjugacy order with a description of

the order within R̃(e). This description is the generalization of a result proved in [25]

for the case that M is a canonical monoid. Before stating the theorem, we give three

lemmas that are used in its proof. The first is from [23] and the second and third are

from [25].

Lemma 5.0.2. Let x, y ∈ D(e)−1 and w, u ∈ W (e) such that wx ≤ uy. Then

w = w1 ∗ w2 with w1 ≤ u and w2x ≤ y.

Lemma 5.0.3. Let y, y1 ∈ D(e)−1, x ∈ W , and w ∈ W (e) such that yx = wy1. If

w′ < w, then w′y1 = yx′ for some x′ < x. In particular, x′ey ≤ xey and x′ey ∼ w′ey1.

Lemma 5.0.4. Let x, y ∈ D(e)−1, u,w ∈ W (e), such that xu = wy. Then y = xu′

for some u′ ≤ u. If xu = x ∗ u, then y = x ∗ u′.

Recall, (3.7), that the parabolic subgroup W (e) = {w ∈ W | we = ew} of W

can be written as W (e) = W ∗(e) ×W∗(e). In the following, it will be necessary to

factor w ∈ W (e) as a product of elements from these subgroups. We write w as ŵw̌

(or w̌ŵ), where ŵ ∈ W ∗(e) and w̌ ∈ W∗(e). Note that ŵ and w̌ here are unique and

ŵw̌ = ŵ ∗ w̌.

Theorem 5.0.5. Let e ∈ Λ and y, z ∈ D(e)−1. Then the following conditions are

equivalent:
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1. [ey] ≤ [ez].

2. ŵz ≤ yw for some w ∈ W (e).

3. ŵzw−1 ≤ y for some w ∈ W (e).

Proof. (1.⇒ 2.) Suppose [ey] ≤ [ez]. Then, by Corollary 4.2.8, w−1eyw ≤ ez for some

w ∈ W (e). Let yw = uy1 and u ∈ W (e). Then w−1eyw = ŵ−1eûy1 = ŵ−1ûey1 ≤ ez.

By Theorem 3.2.1, û−1ŵz ≤ y1. So

ŵz = û(û−1ŵz) ≤ û ◦ (û−1ŵz) ≤ û ◦ y1 = ûy1 ≤ uy1 = yw.

(2. ⇒ 3.) Suppose ŵz ≤ yw for some w ∈ W (e). Choose w minimal. Now

yw = y ∗ w′ for w′ ≤ w and ŵ′z ≤ ŵz ≤ yw ≤ y ◦ w = yw′. Since w is minimal,

w′ = w and so yw = y ∗ w. Thus ŵz = y1w1 for some y1 ≤ y and w1 ≤ w. Since

z ∈ D(e)−1,

ŵ1z ≤ ŵz = y1w1 ≤ y1 ◦ w1 ≤ y ◦ w1 = y ∗ w2

for some w2 ≤ w1. So ŵ2z ≤ ŵ1z ≤ yw2. By minimality of w, w2 = w and so w1 = w.

Hence ŵz = y1w and thus ŵzw−1 = y1 ≤ y.

(3.⇒ 2.) Suppose ŵzw−1 ≤ y for some w ∈ W (e). Then

ŵz = ŵzw−1w ≤ (ŵzw−1) ◦ w ≤ y ◦ w = yw1

for some w1 ≤ w. Since z ∈ D(e)−1, ŵ1z ≤ ŵz ≤ yw1.

(2. ⇒ 1.) Suppose ŵz ≤ yw with w ∈ W (e). Choose w minimal. Let yw = uy1,

for u ∈ W (e) and y1 ∈ D(e)−1. By Lemma 5.0.4, y1 = yv for some v ≤ w. Since

ŵz ≤ yw = uy1, we see by Lemma 5.0.2 that ŵ = u1 ∗ v1 with u1 ≤ u and v1z ≤ y1.

So ŵz = (u1v1)z = u1 ∗ (v1z) ≤ u1y1. Suppose u1 < u. Since uy1 = yw, we see by

Lemma 5.0.3 that u1y1 = yw1 for some w1 = ŵ1w̌1 < ŵw̌ = w, and hence ŵ1 ≤ ŵ.

So ŵ1z ≤ ŵz ≤ u1y1 = yw1, contradicting the minimality of w. Hence u = u1, and

so v1 = u−1ŵ. Since v1z ≤ y1,

w−1eyw = (w̌ŵ)−1eyw = ŵ−1euy1 = ŵ−1uey1 ≤ ez.

by Theorem 3.2.1. That is, [ey] ≤ [ez]. This completes the proof.
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5.1 Matrices

Theorem 5.0.5 describes the order in R̃(e) for a general reductive monoid M . In

the case of M = Mn(k), we have the following:

Corollary 5.1.1. Let M = Mn(k), with ei ∈ Λ and y, z ∈ D(ei)
−1. Then the

following conditions are equivalent:

1. [eiy] ≤ [eiz].

2. ŵz ≤ yw for some w ∈ W (ei).

3. ŵzw−1 ≤ y for some w ∈ W (ei).

This description is satisfactory, however we wish to examine R̃n(ei) in more detail,

in terms of the new vocabulary introduced in the previous chapter.

Let σ ∈ GJ n. Then σ ∼ Id⊕N , where N =
k∑
i=1

Jαi
(0) for some α ` (n− d), as in

(4.10). Now

rk(N) = (α1 − 1) + (α2 − 1) + · · ·+ (αk − 1)

= α1 + α2 + · · ·+ αk − k

= (n− d)− k

and so rk(σ) = rk(Id) + rk(N) = d + (n − d − k) = n − k. If σ, θ ∈ GJ (ei), then

rk(σ) = rk(θ) = i. Thus

k = n− rk(σ) = n− rk(θ) = n− i

and so we have the following:

Lemma 5.1.2. If [σ], [θ] ∈ R̃n(ei), then the partitions corresponding to the nilpotent

blocks of σ and θ have the same number of parts, n − i. Equivalently, the Jordan

partitions of σ and θ have the same number of parts, n− i+ 1.

Define p(n) to be the number of partitions of n and pk(n) to be the number of

partitions of n into k parts, as in [33]. Observe that pn(n) = pn−1(n) = p1(n) = 1 for
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n > 0 and pk(n) = 0 for k > n. Additionally, we follow the convention that p0(k) = 0

for k > 0 and p0(0) = 1.

Proposition 5.1.3. The number of elements in R̃n(ei) is∣∣∣R̃n(ei)
∣∣∣ =

n∑
j=k

pk(j) =
n∑
j=0

pk(j)

where k = n− i.

Computing pk(n) is, in general, quite difficult. However, the following recursive

formula, as presented in [33], makes the computations easier:

pk(n) = pk−1(n− 1) + pk(n− k). (5.1)

Example 5.1.4. Using Table 5.1, the number of elements of R̃8(e5) is 1 + 1 + 2 +

3 + 4 + 5 = 16. This is the sum of entries in the row for k = 8− 5 = 3 from column

n = 0 to column n = 8. The Hasse diagram for R̃8(e5) is shown in Figure 5.1. Each

vertex in the diagram is denoted by the Jordan partition of the corresponding class.

Observe that R̃8(e5) is not graded.

Table 5.1: pk(n) for n ≤ 10.

k\n 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1
2 0 0 1 1 2 2 3 3 4 4 5
3 0 0 0 1 1 2 3 4 5 7 8
4 0 0 0 0 1 1 2 3 5 6 9
5 0 0 0 0 0 1 1 2 3 5 7
6 0 0 0 0 0 0 1 1 2 3 5
7 0 0 0 0 0 0 0 1 1 2 3
8 0 0 0 0 0 0 0 0 1 1 2
9 0 0 0 0 0 0 0 0 0 1 1
10 0 0 0 0 0 0 0 0 0 0 1
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Figure 5.1: The conjugacy poset of rank 5 elements in R8, labeled by Jordan parti-
tions.
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5.2 Dual Canonical Monoids

Recall that for a dual canonical monoid, W (e) = W∗(e) for all e ∈ Λ. By Theorem

5.0.5, we therefore have the following description for the conjugacy order in R̃(e):

Corollary 5.2.1. Let e ∈ Λ and y, z ∈ D(e)−1. If W (e) = W∗(e), then the following

conditions are equivalent:

1. [ey] ≤ [ez].

2. z ≤ yw for some w ∈ W (e).

3. zw ≤ y for some w ∈ W (e).

Let w ∈ W with J ⊆ S. Then w = wjwj, where wj ∈ WJ and wj ∈ DJ . Define

P J : W → DJ by P J(w) = wj. This map is order-preserving, as shown in [1]. That

is, if w1, w2 ∈ W then:

w1 ≤ w2 ⇒ wj1 ≤ wj2. (5.2)

Now, suppose e ∈ Λ \ {1}. Then λ(e) = I for some I ⊆ S and, since M is a

dual canonical monoid, λ∗(e) = I by Theorem 3.1.10. Thus D∗(e) = D∗I (I) and so

D∗(e) = D(e) ∩ D(e)−1, by Remark 4.2.1. As we have noted, D∗(e) serves as our

indexing set for R̃(e), where

R̃(e) =
⊔

y∈D∗(e)

[ey]. (5.3)

By Corollary 5.2.1, [ey] ≤ [ex] if and only if x ≤ yw for some w ∈ W (e). If x, y ∈
D∗(e), then x ≤ yw implies x ≤ y, by (5.2). On the other hand, if x ≤ y then x ≤ yw,

since y ≤ yw because y ∈ D(e). Thus, [ey] ≤ [ex] if and only if x ≤ y.

Let I ⊆ S with WI = 〈I〉 ⊆ W , as usual, and consider the double quotient

WI\W/WI . Recall that for one-sided quotients of W by WI , the minimum coset

representatives form an important set (either DI or D−1
I , depending on the side). We

follow a similar approach here. That is, given the double coset WIxWI , choose the

minimum y ∈ W such that WIyWI = WIxWI . This element is unique, and the set of

such elements is exactly DI ∩D−1
I , see [1]. There is a partial order on these double
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cosets, in terms of the Bruhat-Chevalley order on the described representatives. That

is, for x, y ∈ DI ∩D−1
I :

WIxWI ≤ WIyWI ⇐⇒ x ≤ y. (5.4)

Hence for a dual canonical monoid, we may describe R̃(e) in terms of double quotients

of W by Wλ(e).

Theorem 5.2.2. Let M be a dual canonical monoid with e ∈ Λ \ {1}. Then R̃(e) is

isomorphic to the dual of W (e)\W/W (e). That is,

[ey] ≤ [ex] ⇐⇒ W (e)xW (e) ≤ W (e)yW (e),

for x, y ∈ D∗(e) = D(e) ∩D(e)−1.

In [36], double quotients of maximal parabolic subgroups are studied. The result-

ing posets here are generally quite nice. Most we would probably initially consider

are graded. This is not true in general though, as John Stembridge has pointed out

that WI\W/WI is not graded for W of Type E6 with I = S \ {s}, where s is the

vertex of degree 3 in the Coxeter graph of E6, [37]. We do not restrict ourselves

to maximal parabolic subgroups. As one might expect, the resulting posets are not

always so nicely behaved.

Example 5.2.3. Let M be a dual canonical monoid with Weyl group of type A4,

with Coxeter graph (12) − (23) − (34) − (45). Note that we may explicitly construct

such a monoid following the description of 3.1.11. Choose e ∈ Λ such that λ(e) =

{(12), (34)}. Then

D∗(e) = {1, (23), (45), (23)(45), (2345), (2543),

(13)(24), (13)(245), (13)(254), (25), (13)(25)}.

Figure 5.2 shows R̃(e). Note that this poset is not graded.
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Figure 5.2: R̃(e) for the dual canonical monoid with λ(e) = {(12), (34)} for W = S5.
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5.3 Canonical Monoids

As expected, our first description of the conjugacy order within an idempotent

class is a corollary of Theorem 5.0.5. This result was originally proved in [25] and

served as the motivation for the theorem.

Corollary 5.3.1. Let e ∈ Λ and y, z ∈ D(e)−1. If W (e) = W ∗(e), then the following

conditions are equivalent:

1. [ey] ≤ [ez].

2. wz ≤ yw for some w ∈ W (e).

3. wzw−1 ≤ y for some w ∈ W (e).

As previously noted, D∗(e) = D(e)−1 for a canonical monoid, and so there is

a one-to-one correspondence between vertices in GJ (e) under the Bruhat-Chevalley

order and R̃(e) under the conjugacy order. However, unlike the dual canonical case,

the conjugacy order here does not coincide with the Bruhat-Chevalley order and so

the posets are not isomorphic. In general, ey ≤ ez implies [ey] ≤ [ez], though not

necessarily conversely. The following example, originally from [25], makes this clear.

Example 5.3.2. Let M be a canonical monoid with Weyl group of type A3, with

Coxeter graph A−B−C. Let I = λ(e) = {B}. Then GJ (e) under Bruhat-Chevalley

order is isomorphic to a (weak) subposet of R̃(e) under conjugacy order. The addi-

tional relations in R̃(e) are [eABC] ≤ [eCB] and [eCBA] ≤ [eAB]. Figure 5.3 shows

the Hasse diagram for R̃(e). The additional, non-Bruhat relations are identified by

dashed lines.
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Figure 5.3: R̃(e) for the canonical monoid with λ(e) = {B} for S : A−B − C.
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Chapter 6

Order Between R̃(e) Classes

One of the goals of this paper is the answer to the following, from [25]:

Conjecture 2.13: Let e, f ∈ Λ, e,< f . Then there exists a map pe,f :
R̃(e) → R̃(f) such that for σ ∈ R̃(e), θ ∈ R̃(f), σ ≤ θ if and only if
pe,f (σ) ≤ θ.

The maps proposed in the conjecture are generalizations of the projection maps

defined by (3.13) and satisfy conditions analogous to those in Theorem 3.2.4. We

therefore also call these maps projections. As pe,f was used for the projection from

R(e)→ R(f), we denote the projection map from R̃(e) to R̃(f) by p̃e,f . The projection

maps for R are a very useful tool. We would like to describe p̃e,f in terms of pe,f and

a representative of [ey] ∈ R̃(e), if possible. We will again consider three classes of

reductive monoids: matrices, dual canonical monoids, and canonical monoids. For all

three, we show that p̃e,f exists. For dual canonical and canonical monoids, we provide

an explicit description for the maps.

6.1 Matrices

As mentioned above, an ideal description of p̃e,f for R̃n would make use of pe,f for

Rn. Previously, we described pe,f for the case of M = Mn(k) in terms of the one-line

notation for partial permutation matrices (that is, the elements of Rn). This was the
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k-insertion algorithm, from Section 3.3. Recall that for σ ∈ Rn(ei), the algorithm

produces β(σ), which we have shown to equal pei,ei+1
(σ). Our hope then is for a

description of p̃e,f that is similar to β. For M = Mn(k), we therefore denote this

proposed map by β̃.

The natural first attempt for a definition of β̃ is β̃([σ]) = [β(σ)]. Unfortunately,

the k-insertion algorithm is not constant on conjugacy classes in GJ n, and so this

map is not well defined. The following example illustrates. (Note that when using

the one-line notation, we will denote β((a1 · · · an)) simply by β(a1 · · · an).)

Example 6.1.1. Let M = M4(k) and consider [(0 1 0 0)] ∈ R̃4(e1). We observe that

[(0 1 0 0)] = {(0 1 0 0) , (0 0 1 0) , (0 0 0 1)}

however

β(0 1 0 0) = (0 1 0 2)

β(0 0 1 0) = (0 0 1 2)

β(0 0 0 1) = (0 0 1 2)

and (0 1 0 2) 6∼ (0 0 1 2), hence [β(0 1 0 0)] 6= [β(0 0 0 1)].

In the previous example, it turns out that [β(0 0 0 1)] = [(0 0 1 2)] is the element

we want. That is, it is the (unique) least element in R̃4(e2) such that [(0 1 0 0)] ≤
[(0 0 1 2)]. We note that (0 0 0 1) is the minimum element in the class and that, by

Proposition 4.3.5, such elements always exist. Recall that we denoted the minimum

element in [σ] by σm. Our next attempt for a definition of β̃ is therefore the class

containing σm after the k-insertion algorithm. That is, β̃([σ]) = [β(σm)]. This is a

reasonable approach (indeed, it works for the dual canonical case) that does not fall

prey to the previous problem, since β̃([σ]) is well defined. However, it too ultimately

fails, as for this definition β̃ is not necessarily order-preserving.

Example 6.1.2. Let [σ], [θ] ∈ R̃8(e5) with sig([σ]) = [5, 2, 1, 0, 0, 0, 0, 0] and sig([θ]) =

[5, 3, 1, 0, 0, 0, 0, 0]. So [σ] ≤ [θ]. Using previously described techniques, we observe
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that

σm = (0 1 0 0 2 3 4 5)

θm = (0 0 1 2 3 0 4 5)

and so, using the k-insertion algorithm,

β(σm) = (0 1 0 2 3 4 5 6)

β(θm) = (0 0 1 2 3 4 5 6).

Thus sig(β(σm)) = [6, 4, 2, 1, 0, 0, 0, 0] and sig(β(θm)) = [6, 4, 2, 0, 0, 0, 0, 0], and so

β̃([σ]) = [β(σm)] 6≤ [β(θm)] = β̃([θ]), even though [σ] ≤ [θ].

To describe β̃ : R̃n(ei) → R̃n(ei+1), it turns out that we need a different decom-

position of R̃n.

A Decomposition of R̃n by Partitions

A natural way to group elements of R̃n is by the rank of a class representative.

This gives the decomposition

R̃n =
⊔
ei∈Λ

R̃n(ei). (6.1)

For this decomposition, [σ] and [θ] are in the same class if they have identical first

entries in their corresponding rank signatures. We form an alternate decomposition

of R̃n in terms of the Jordan partitions of elements. We do this by grouping together

elements that have the same first entry in their corresponding Jordan partitions.

Equivalently, two elements will be in the same class if they have identical final entries

in their rank signatures. That is, we define

R̃j
n = {[σ] ∈ R̃n | [σ]←→ (j;α)}

= {[σ] ∈ R̃n | rk(σn) = j}

and so we have a new decomposition:

R̃n =
⊔

0≤j≤n

R̃j
n. (6.2)
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Suppose [σ], [θ] ∈ R̃j
n. Then, by (4.10),

σ ∼ Id ⊕ Jα1(0)⊕ · · · ⊕ Jαk
(0)

θ ∼ Id′ ⊕ Jγ1(0)⊕ · · · ⊕ Jγk′
(0).

Since rk(σn) = rk(θn) = j, we have d = d′ = j. Hence α, γ ∈ Par(n− j). The order

given in Section 4.1 is now the usual dominance order on partitions, from Example

2.1.3. That is, [σ] ≤ [θ] if

α1 ≤ γ1

α1 + α2 ≤ γ1 + γ2

α1 + α2 + α3 ≤ γ1 + γ2 + γ3

...

where α corresponds to the nilpotent blocks of σ, and γ to θ, as usual. This observa-

tion, along with results in Example 2.1.6, yields the following:

Proposition 6.1.3. Let R̃j
n = {[σ] ∈ R̃n | rk(σn) = j} with ≤ the conjugacy order.

Then

1. (R̃j
n,≤) ∼= (Par(n− j),�).

2. (R̃j
n,≤) is a lattice.

3. (R̃j
n,≤) is self-dual.

4. (R̃j
n,≤) is graded if and only if n− j ≤ 6.

5.
∣∣∣R̃j

n

∣∣∣ = p(n− j).

The classes in this decomposition are crucial in describing projection maps between

R̃n(e) classes. They are, however, also interesting in their own right. Of particular

interest is the set of nilpotent elements of R̃n, denoted R̃nil, where

R̃nil = {[σ] ∈ R̃ | (σ)n = 0}. (6.3)
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For Rn, R̃nil is just R̃0
n in our notation. Figure 6.1 shows the set of nilpotent elements

of R̃7 (that is, R̃0
7), labeled by rank signature. As noted above, this poset is isomorphic

to (Par(7),�). Note as well that it is not graded.

Figure 6.1: The conjugacy poset of nilpotent elements in R7, labeled by rank signa-
ture.

Projection Maps for R̃n(e)

We now show that Conjecture 2.13 from [25] is true for the case of M = Mn(k).

As noted, R̃j
n holds the key. Our first description is in terms of rank signatures.

Let σ ∈ GJ n(ei) with i < n and sig(σ) = [r1, r2, . . . , rn]. Consider θ ∈ GJ n with

sig(θ) = [t1, t2, . . . , tn] defined as

t1 = r1 + 1 (6.4)
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and, for 1 < t ≤ n,

ti = min{x ∈ Z≥0 | x ≥ ri, ti−1 − x ≤ ti−2 − ti−1} (6.5)

where we define t0 = n.

We observe that (6.4) tells us that θ ∈ GJ n(ei+1) and (6.5) tells us that this non-

increasing sequence is a rank signature. By construction, [θ] is the smallest element

of R̃n(ei+1) with [σ] < [θ]. That is, [θ], constructed as we have described, is exactly

the projection of [σ] from R̃n(ei) to R̃n(ei+1). We therefore denote this by β̃([σ]).

Example 6.1.4. Let σ ∈ GJ 7(e4) with sig(σ) = [4, 1, 0, 0, 0, 0, 0]. Then

t1 = 5

t2 = min{x ∈ Z≥0 | x ≥ 1, 5− x ≤ 7− 5}

= min{x ∈ Z≥0 | x ≥ 1, 3 ≤ x}

= 3

t3 = min{x ∈ Z≥0 | x ≥ 0, 3− x ≤ 5− 3}

= min{x ∈ Z≥0 | x ≥ 0, 1 ≤ x}

= 1

t4 = min{x ∈ Z≥0 | x ≥ 0, 1− x ≤ 3− 1}

= min{x ∈ Z≥0 | x ≥ 0,−1 ≤ x}

= 0

and t5 = t6 = t7 = 0. Thus β̃([σ]) = [5, 3, 1, 0, 0, 0, 0].

So, the projection maps exist and we may describe them in terms of rank signa-

tures. We next provide a description in terms of Jordan partitions.

Suppose σ ∈ GJ n(ei), and σ has exactly one nilpotent Jordan block in its Jordan

form. By Lemma 5.1.2, we have i = n− 1 and thus β̃([σ]) = [In]. Suppose then that

σ has more than one nilpotent Jordan block.

Proposition 6.1.5. If σ ∈ GJ n and the Jordan form for σ has more than one

nilpotent Jordan block, then both [σ] and β̃([σ]) are in R̃j
n, for some 1 ≤ j ≤ n.
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Proof. Let [σ] and β̃([σ]) have rank signatures [r1, r2, . . . , rn] and [t1, t2, . . . , tn], re-

spectively, with ti defined as in (6.4), (6.5). By definition, [σ] and β̃([σ]) are in the

same R̃j
n-class if rn = tn.

If tn−1 6= tn, then we must have sig(β̃([σ])) = [n− 1, n− 2, . . . , 2, 1, 0]. Since tn ≥
rn ≥ 0, we have tn = rn and the claim follows. Suppose then that tn−1 = tn. By (6.5),

tn is the minimum non-negative integer satisfying tn ≥ rn and tn−1− tn ≤ tn−2− tn−1.

Since tn−1 = tn, the latter condition is satisfied. Hence tn is the smallest such that

tn ≥ rn. That is, tn = rn.

If σ has rank n, then σ = In and β̃([In]) = [In]. If σ has rank n − 1, then

˜β([σ]) = [In], by the remarks preceding the proposition. Otherwise, in studying the

projections of elements of R̃n we need only examine R̃j
n, for some j. This amounts to

studying the set of partitions of n− j, under dominance order. We next show how to

find β̃([σ]) in this lattice.

Let α ` m ≤ n with α = [α1, . . . , αk], k > 1. Define

α′ = (α1, α2, . . . , αj + 1, . . . , αk−1, αk − 1) (6.6)

where j is the largest such that α1 ≥ α2 ≥ · · · ≥ αj + 1 ≥ . . . ≥ αk−1 ≥ αk − 1. If

ak − 1 > 0, then repeat this process, following the same rules. Eventually, we have a

0 in the last entry. We stop the process here and denote our result by β̃(α). At each

step in the process we have a partition of m. What’s more, each partition corresponds

to an element in R̃
(n−m)
n .

Suppose γ = (γ1, γ2, . . . , γk−1) ` n with α� γ. Let j be as in (6.6) and suppose

α1 + α2 + · · ·+ αj + 1 = γ1 + γ2 + · · ·+ γj. (6.7)

Then (αj+1, . . . , αk), (γj+1, . . . , γk−1) `
(
n−

j∑
i=1

αi

)
and, since α�γ, (αj+1, . . . , αk)�

(γj+1, . . . , γk−1). The condition on j forces

αj−1 > αj = αj+1 = · · · = αk−1 ≥ αk

and so (αj+1, . . . , αk) = (αk−1, . . . , αk−1, αk) � (γj+1, . . . , γk−1). This forces γj+1 >

αj+1 = αj. However, α � γ tells us that α1 + · · · + αj−1 ≤ γ1 + · · · + γj−1 and so

γj ≤ αj, by (6.7). But now γj < γj+1, a contradiction, and so we must have α′ ≤ γ.



98

We repeat this process, as necessary. Eventually, we arrive at β̃(α) ≤ γ. Thus for

[σ] ∈ R̃n with corresponding nilpotent block partition α, β̃(α) corresponds to β̃([σ]).

Example 6.1.6. Starting with (3, 2, 2), the process above leads us to the projection

as follows

(3, 2, 2) −→ (3, 3, 1) −→ (4, 3)

Figure 6.2 is the Hasse diagram for R̃0
7, with vertices labeled by their corresponding

nilpotent block partition. By inspection, we see that (4, 3) is indeed the smallest pair

greater than the triple (3, 2, 2). Figure 6.1, from earlier in the section, is the same

poset labeled by rank signature. Comparing the figures, we see that (3, 2, 2) corre-

sponds to [4, 1, 0, 0, 0, 0, 0] and (4, 3) corresponds to [5, 3, 1, 0, 0, 0, 0], confirming the

conclusion of Example 6.1.4.

Figure 6.2: The conjugacy poset of nilpotent elements in R7, labeled by partitions.
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6.2 Dual Canonical Monoids

We next examine the order between R̃(e) classes for dual canonical monoids. It

turns out, as hoped, that p̃e,f may be defined in terms of the projection maps for

W ×W -orbits, (3.13). For a dual canonical monoid, recall that if e ≤ f for e, f ∈ Λ,

then λ(f) ⊆ λ(e), and so the projection map from WeW to WfW is one-to-one, by

Theorem 3.2.4. Such maps are therefore not class functions and so in using them to

define projections between conjugacy classes, we must be careful in our choice of class

representative.

Suppose M is a dual canonical monoid. Then W (e) = WI = W∗(e), by Theorem

3.1.10, and D∗(e) = D(e) ∩ D−1(e). Suppose [σ] ∈ R̃(e) and choose (the unique)

ey ∼ σ such that y ∈ D∗(e). Let WK = WI

⋂
(y−1WIy) and wI , wK be the longest

elements in WI , WK , respectively.

Proposition 6.2.1. ywKwI ∈ D(e)−1 .

Proof. By Proposition 2.5.8, ywKwI = wy′ for some w ∈ W (e) and y′ ∈ D(e)−1.

Since ey ∼ ey′, we have y′ = yv for some v ∈ WI . Let wK = y−1vKy and so

ywKwI = wy′ = wyv. (6.8)

Keeping in mind that y ∈ D∗(e) = D(e) ∩D(e)−1 and yv ∈ D(e)−1, we observe the

following:

`(ywKwI) = `(wyv)

`(y) + `(wKwI) = `(w) + `(yv)

`(y) + `(wKwI) = `(w) + `(y) + `(v)

`(wKwI) = `(w) + `(v)

On the other hand, we may rewrite (6.8) as

vwI = y−1w−1ywK = y−1w−1yy−1vKy = y−1w−1vKy.
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Now, since y−1w−1vKy ∈ WK , by definition y−1w−1vKy ≤ wK . Both elements are

in WI as well, so v = y−1w−1vKywI ≥ wKwI , since multiplication on the right by wI

is an antiautomorphism.

Putting everything together, we see that `(w) + `(v) = `(wKwI) ≤ `(v) and hence

`(w) = 0. Therefore w = 1 and we have ywKwI = wy′ = y′ ∈ D(e)−1. That is,

ywKwI ∈ D(e)−1. This completes the proof.

This proposition tells us that each conjugacy class has a minimum element. For

[ey], we denote this element by eym. For e, f ∈ Λ, e ≤ f , we define the projection of

[ey] in R̃(f) as:

p̃e,f ([ey]) = [pe,f (eym)] . (6.9)

The following theorem shows that this map does indeed satisfy the conditions of

Conjecture 2.13 from [25].

Theorem 6.2.2. Let e, f ∈ Λ, e ≤ f . Then

1. p̃e,f : R̃(e)→ R̃(f) is order-preserving.

2. [ey] ≤ p̃e,f ([ey]).

3. [ey] ≤ [fz] if and only if p̃e,f ([ey]) ≤ [fz].

Proof. 1. Let [ey] ≤ [ey′]. Then w−1eymw ≤ ey′m for some w ∈ W (e), by Corollary

4.2.8. Hence eymw ≤ ey′m or eymw = eu1y1 = ey1 ≤ ey′m, where u1 ∈ W (e),

y1 ∈ D(e)−1. But eym ∼ ey1 and so eym ≤ ey1 ≤ ey′m. Then pe,f (eym) ≤
pe,f (ey

′
m) and hence [pe,f (eym)] ≤ [pe,f (ey

′
m)] or p̃e,f ([ey]) ≤ p̃e,f ([ey

′]).

2. Since eym ≤ pe,f (eym), by Theorem 3.2.4, we have

[ey] = [eym] ≤ [pe,f (eym)] = p̃e,f ([ey]).

3. Suppose [ey] ≤ [fz] and let p̃e,f ([ey]) = [fy′]. Then weymw
−1 ≤ fzm and

eym ≤ fy′m. But eym ∼ weymw
−1 = ey2 so eym ≤ ey2 and hence eym ≤ fzm.

Thus pe,f (eym) ≤ fzm from which it follows that p̃e,f ([ey]) ≤ [fz].
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The other direction follows from the previous part.

We conclude by noting that although the conjugacy order on R̃(e) corresponds

to the Bruhat-Chevalley order on R∗(e) = {ey | e ∈ Λ, y ∈ D∗(e)} for M a dual

canonical monoid, this is not the case for all of R̃. For example, recall the dual

canonical monoid shown in Figure 4.2. Here [eAB] < [e∅ABA], since eAB ∼ eABA

and peA,e∅(eABA) = e∅ABA. However, eAB 6≤ e∅ABA.

6.3 Canonical Monoids

Our focus remains on obtaining a description of the proposed map from Conjecture

2.13 of [25]. Before doing so, we observe a pleasant generalization of Theorem 5.0.5.

The proof depends on the fact that for canonical monoids, if e, f ∈ Λ with e ≤ f then

W (e) ⊆ W (f). The last case in the proof also uses the following lemmas (the second

of which is a generalization of Lemma 5.0.4). An analogous result does not hold for

general reductive monoids.

Lemma 6.3.1. Let M be a canonical monoid and e, f ∈ Λ with e ≤ f . If x ∈ W (f)

and x = x1x2 with x1 ∈ W (e) and x2 ∈ D(e)−1, then x2y ∈ D(e)−1 for all y ∈ D(f)−1.

Proof. Let x ∈ W (f) with x = x1x2 for some x1 ∈ W (e) and x2 ∈ D(e)−1 and let

y be any element in D(f)−1. We first note that since M is a canonical monoid and

e ≤ f , we have W (e) ⊆ W (f) and thus x−1
1 x = x2 ∈ W (f). Since y ∈ D(f)−1, this

means that `(x2y) = `(x2) + `(y). Now, suppose u ∈ W (e). Then ux2 ∈ W (f) and so

`(ux2y) = `(ux2)+`(y). On the other hand, x2 ∈ D(e)−1 and so `(ux2) = `(u)+`(x2).

Putting everything together, we observe

`(ux2y) = `(ux2) + `(y)

= `(u) + `(x2) + `(y)

= `(u) + `(x2y)

Since u ∈ W (e) was arbitrary, this means that x2y ∈ D(e)−1, completing the proof.
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Lemma 6.3.2. Let x, y ∈ D(e)−1, u ∈ W , and w ∈ W (e), such that xu = wy. Then

y = xu′ for some u′ ≤ u. If xu = x ∗ u, then y = x ∗ u′.

Proof. The proof is by induction on the length of w. If `(w) = 0 then w = 1 and

the result follows. So let `(w) > 0 and let w = s ∗ w1, s ∈ λ(e) = I ⊆ S. Then

`(sxu) = `(w1y) < `(wy) = `(xu). By Theorem 2.5.3 and the Exchange Property,

either sxu = x′u for some x′ < x or else sxu = xu′ for some u′ < u. In the first

case x = s ∗ x′, s ∈ I, a contradiction since x ∈ D(e)−1. Hence w1y = sxu = xu′,

`(w1y) = `(wy) − 1. If xu = x ∗ u, then `(xu′) = `(xu) − 1 and hence xu′ = x ∗ u′.
This completes the proof.

Finally, before stating the theorem, we recall the following descriptions of x ◦ y,

from Lemma 3.2.3:

x ◦ y = x1 ∗ y = x ∗ y1 for some x1 ≤ x, y1 ≤ y

and

x ◦ y = max{xy′ | y′ ≤ y}

= max{x′y | x′ ≤ x}

= max{x′y′ | x′ ≤ x, y′ ≤ y}.

Theorem 6.3.3. Let e, f ∈ Λ with e ≤ f , y ∈ D(e)−1, and z ∈ D(f)−1. If W (e) =

W ∗(e) and W (f) = W ∗(f), then the following conditions are equivalent:

1. [ey] ≤ [fz].

2. wz ≤ yw for some w ∈ W (f).

3. wzw−1 ≤ y for some w ∈ W (f).

Proof. (1.⇒ 2.) By Corollary 4.2.8, w−1eyw ≤ fz for some w ∈ W (e)W (f) = W (f).

Let yw = uy1, u ∈ W (e), and y1 ∈ D(e)−1. Then w−1uey1 ≤ fz. By Theorem 3.2.1,

u−1wz ≤ y1. So

wz = u(u−1wz) ≤ u ◦ (u−1wz) ≤ u ◦ y1 = uy1 = yw.
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(2.⇒ 3.) Let wz ≤ yw with w ∈ W (f). Choose w minimal. Then wz = y1w1 for

some y1 ≤ y and w1 ≤ w. Since z ∈ D(f)−1,

w1z ≤ wz = y1w1 ≤ y1 ◦ w1 ≤ y ◦ w1 = y ∗ w2

for some w2 ≤ w1. So w2z ≤ w1z ≤ yw2. By minimality of w, w2 = w. So w1 = w

and wz = y1w. So wzw−1 = y1 ≤ y.

(3.⇒ 2.) Suppose wzw−1 ≤ y for some w ∈ W (f). Then

wz = (wzw−1)w ≤ (wzw−1) ◦ w ≤ y ◦ w = yw1

for some w1 ≤ w. Since z ∈ D(f)−1, w1z ≤ wz ≤ yw1.

(2. ⇒ 1.) Suppose wz ≤ yw for some w ∈ W (f). Choose w minimal. Let

yw = uy1, y1 ∈ D(e)−1, and u ∈ W (e). By Lemma 6.3.2, y1 = yv for some v ≤ w.

Since wz ≤ yw = uy1, wz ≤ uy1. Let w = w1w2 with w1 ∈ W (e) and w2 ∈ D(e)−1.

Since w2 ∈ W (f), we have wz = w1z1 where w1 ∈ W (e) and z1 = w2z ∈ D(e)−1,

by Lemma 6.3.1. Then w1z1 ≤ uy1 and, by Lemma 5.0.2, w1 = u1 ∗ v1 with u1 ≤ u

and v1z1 ≤ y1. Thus w1z1 = u1v1z1 ≤ u1y1. Suppose u1 < u. Since uy1 = yw, if

u1 < u then u1y1 = yw3 for some w3 < w, by Lemma 5.0.3. So w3z < wz = w1z1 ≤
u1y1 = yw3, contradicting the minimality of w. Hence u = u1 and so u ∗ (v1z1) =

uv1z1 = w1z1 = wz ≤ uy1 = u ∗ y1. Now, by Lemma 5.0.2, v1z1 ≤ y1 and so

u−1w1z1 = u−1wz ≤ y1. Hence

w−1eyw = w−1euy1 = w−1uey1 ≤ fz

and so [ey] ≤ [fz], completing the proof.

We are close to defining the projection map we desire. We first need two lemmas

that will be important in proving that the maps we will define are the projection

maps we seek. Both lemmas have to do with a new relation, ≤I .
Suppose z ∈ D−1

I and y ∈ W . Define

z ≤I y if wzw−1 ≤ y for some w ∈ WI .
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Note that by the Theorem 6.3.3,

z ≤I y ⇐⇒ [e∅y] ≤ [eIz] ⇐⇒ wz ≤ yw

for some w ∈ WI , where e∅, eI are the (unique) idempotents in Λ \ {0} such that

λ(e∅) = ∅ and λ(eI) = I.

Lemma 6.3.4. Let y ∈ D−1
I , u ∈ WI , and z ∈ W . Then z ≤I uy if and only if

z ≤I y ◦ u.

Proof. Suppose z ≤I uy. Then wzw−1 ≤ uy for some w ∈ WI . Choose u1 ≤ u

minimal such that wzw−1 ≤ u1y. Then, since u1 is minimal, wzw−1 = u1y1 for some

y1 ≤ y. So wz = u1y1w and thus y1w = w1z, where w1 = u−1
1 w ∈ WI . We now have

wz = u1y1w

u1w1z = u1y1u1w1

w1z = y1u1w1

w1zw
−1
1 = y1u1

≤ y1 ◦ u1

≤ y ◦ u.

Hence z ≤I y ◦ u.

Conversely, suppose z ≤I y ◦ u. Then wzw−1 ≤ y ◦ u for some w ∈ WI and so

wzw−1 = y1u1 for some y1 ≤ y and u1 ≤ u. Now

(u1w)z(u1w)−1 = u1wzw
−1u−1

1

= u1y1

≤ u1 ◦ y1

≤ u ◦ y

= uy

and since u1w ∈ WI , z ≤I uy. This completes the proof.
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Lemma 6.3.5. Let WK =
⋂
i≥0

(y−iWIy
i). Let y, z ∈ D−1

I and u ∈ WK. Then z ≤I uy

if and only if z ≤I y.

Proof. Suppose z ≤I y. Then wzw−1 ≤ y for some w ∈ WI . Since u ∈ Wk ⊆ WI ,

y ≤ uy and so wzw−1 ≤ uy. That is, z ≤I uy.

Conversely, suppose z ≤I uy. So wzw−1 ≤ uy for some w ∈ WI . By a previous

theorem, this means wz ≤ uyw for some w ∈ WI . Let U ⊆ (WK ,WI) such that

U = {(u,w) | wz ≤ uyw}. Define `(u,w) = `(u) + `(w), where `(x) for x ∈ W is

the usual length function. Choose (u,w) ∈ U such that `(u,w) is minimal. Now,

yw ≤ y ◦ w = yw′ for some w′ ≤ w. Hence w′z ≤ wz ≤ uyw ≤ uyw′. Hence z ≤I uy
and since `(u,w′) ≤ `(u,w) and w′ ≤ w, we have w′ = w. Thus yw = y ∗ w. We also

have uy = u ∗ y, since u ∈ WK ⊆ WI , and so uyw = u ∗ y ∗ w.

Since wz ≤ u ∗ y ∗ w, wz = u′y1w
′ for some u′ ≤ u, y1 ≤ y, and w′ ≤ w.

But then wz ≤ u′yw and so z ≤I u′y. Hence `(w) + `(u′) ≤ `(w) + `(u) and so

u′ = u. So wz = uy1w
′. However, now we have w′z ≤ wz ≤ uyw′. So z ≤I uy with

`(w′) + `(u) ≤ `(w) + `(u), and hence w′ = w. Thus we have wz = uy1w, for some

y1 ≤ y.

Let w1 = u−1w ∈ WI . Then w = uw1 and w1z = y1w. But w = uw1 ≤ u ◦ w1 =

u2 ∗ w1 for some u2 ≤ u, and so now we have

wz = uw1z

≤ (u ◦ w1)z

= u2w1z

= u2y1w

≤ u2 ◦ (y1w)

= u3 ∗ (y1w)

≤ u3yw

for some u3 ≤ u2. So z ≤I u3y and since `(w)+`(u3) ≤ `(w)+`(u) with u3 ≤ u2 ≤ u,

we have u3 = u2 = u. Since w = uw1 ≤ u2 ∗ w1, we also know that w = u ∗ w1.
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Since wz = uy1w we have u−1wz = y1w, or w1z = y1uw1. But y1uw1 ≤ y ◦
(uw1) = yu4w2 for some u4 ≤ u and w2 ≤ w1 ≤ w. So w2z ≤ yu4w2. Since

u4 ∈ WK , u4 = y−1u5y for some u5 ∈ WI . What’s more, since for any k ≥ 2 we have

u4 = y−ku6y
k for some w6 ∈ WI , u5 = yu4y

−1 = y−(k−1)u6y
k−1 and so u5 ∈ WK .

Putting everything together, we have w2z ≤ u5yw2 and so z ≤I u5y. Since

u5 ∈ WK , we must have `(u) + `(w) ≤ `(u5) + `(w2). But u5y = yu4 and `(u5y) =

`(u5) + `(y), since u5 ∈ WI , so `(u5) ≤ `(u4) ≤ `(u). Hence

`(u) + `(w) ≤ `(u5) + `(w2) ≤ `(u) + `(w2).

Since w2 ≤ w1 ≤ w, we conclude that w2 = w1 = w. Since w = u ∗ w1, we must have

u = 1.

Thus wz ≤ yw and so z ≤I y, completing the proof.

Let e, f ∈ Λ with e ≤ f . Let y ∈ D(e)−1 and y = u1y1 with u1 ∈ W (f),

y1 ∈ D(f)−1. Consider y1 ◦ u1 = max{y1u
′
1 | u′1 ≤ u1}. Then y1 ◦ u1 = y1 ∗ u′1 for

some u′1 ≤ u1 and y1 ∗ u′1 = u2y2 for some u2 ∈ W (f), y2 ∈ D(f)−1. Furthermore, by

Lemma 5.0.4, y2 = y1 ∗ v1 for some v1 ≤ u′1, and hence `(u1) ≥ `(u′1) ≥ `(u2).

We repeat this process. That is, we next consider y2 ◦ u2 = y2 ∗ u′2 = u3y3 where

y3 = y2 ∗ v2 = y1 ∗ v1 ∗ v2. Hence `(u1) ≥ `(u′1) ≥ `(u2) ≥ `(u′2) ≥ `(u3) ≥ · · · .
Continuing, we eventually have `(uj) = `(uj+1) for all j ∈ Z greater than m. Thus

ym ◦ um = ym ∗ u′m = um+1ym+1 = um+1ym ∗ vm

with

`(ym ∗ u′m) = `(ym) + `(u′m) = `(um+1) + `(ym+1)

and so `(ym) = `(ym+1). But now `(ym) = `(ym ∗ vm) = `(ym) + `(vm). So `(vm) = 0

and hence vm = 1 and thus yj+1 = yj for all j ≥ m. In the following, by ym we mean

the element obtained from u1 and y1 as described here.

In the above construction, we note that ym ◦ um = ymum = um+1ym. Thus um =

y−1
m um+1ym. Furthermore, ym◦um+1 = ymum+1 = um+2ym and so um+1 = y−1

m um+2ym,

from which it follows that um = y−2
m um+2y

2
m. This continues on, and so we see that

um ∈
⋂
i≥0

(y−imWIy
i
m).
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For e, f ∈ Λ, e ≤ f , we define the projection of [ey] in R̃(f) as:

p̃e,f ([ey]) = [fym]

where y = u1y1 with u1 ∈ W (f) and y1 ∈ D(f)−1 and ym is as noted.

Theorem 6.3.6. Let e, f ∈ Λ, e ≤ f . Then

1. [ey] ≤ p̃e,f ([ey]).

2. [ey] ≤ [fz] if and only if p̃e,f ([ey]) ≤ [fz].

3. p̃e,f : R̃(e)→ R̃(f) is order-preserving.

Proof. 1. We note that for y = u1y1, y1 ◦ u1 = u2y2 for some u2 ∈ W (f) and

y2 ∈ D(f)−1, and in general yj−1 ◦ uj−1 = ujyj. By Lemma 6.3.5, ym ≤J umym,

where J = λ(f). Now, applying Lemma 6.3.4, we have

ym ≤J umym = ym−1 ◦ um−1

⇐⇒ ym ≤J um−1ym−1 = ym−2 ◦ um−2

...

⇐⇒ ym ≤J u2y2 = y1 ◦ u1

⇐⇒ ym ≤J y = u1y1.

Hence ym ≤J y, and so by Theorem 6.3.3, [ey] ≤ [fym] = p̃e,f ([ey]).

2. Suppose [ey] ≤ [fz] and let p̃e,f ([ey]) = [fym]. By Theorem 6.3.3, wzw−1 ≤ y

for some w ∈ W (f). That is, z ≤J y, where J = λ(f). Using Lemma 6.3.4, we

have

z ≤J y = u1y1

⇐⇒ z ≤J y1 ◦ u1 = u2y2

...

⇐⇒ z ≤J ym−2 ◦ um−2 = um−1ym−1

⇐⇒ z ≤J ym−1 ◦ um−1 = umym
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and, by Lemma 6.3.5,

z ≤J ym

Hence z ≤J ym, and so by Theorem 6.3.3, [fym] = p̃e,f ([ey]) ≤ [fz].

The other direction follows from the previous part.

3. Suppose [ey] ≤ [ey′]. By the first part above, [ey′] ≤ p̃e,f ([ey
′]) and hence

[ey] ≤ p̃e,f ([ey
′]). By the second part above, p̃e,f ([ey]) ≤ p̃e,f ([ey

′]).
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Chapter 7

Conclusion

The conjugacy poset of a reductive monoid is a relatively new object of study.

This dissertation has been an attempt towards a better understanding of this poset.

We began our analysis by looking at the classes for a fixed idempotent, denoted R̃(e).

Theorem 5.0.5 gave conditions equivalent to the conjugacy order, but strictly in terms

of relevant Weyl group elements and the (well known) Bruhat-Chevalley order. In

our study of the order between R̃(e) classes, we followed an approach similar to that

of [24] by finding order-preserving maps between the classes with specific properties.

These are the projection maps conjectured in [25]. We found that such maps exist for

matrices, dual canonical monoids, and canonical monoids, but were unable to obtain

a description for the general case. If such maps exist, such a description seems likely

to be a combination of the approaches for dual canonical and canonical monoids. The

following is a possible description:

Conjecture 7.0.7. Suppose e, f ∈ Λ with e ≤ f and choose [σ] ∈ R̃(e). Assume [σ]

has a minimal element, call it ey. Factor y as u1y1 with u1 ∈ W (f) and y1 ∈ D(f)−1.

Next, consider y1 ◦ û1, where u1 = û1ǔ1 with û1 ∈ W ∗(f) and ǔ1 ∈ W∗(f), and

rewrite this as u2y2. Proceed likewise until eventually obtaining umym, similar to the

procedure described in Section 6.3. Then p̃e,f ([ey]) = [fym].

This proposed description coincides with the dual canonical and canonical cases
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presented in Chapter 6. Additionally, it satisfies the desired conditions for matrices

for computations completed so far, for small n.

Regarding matrices, we would also like to obtain an alternate description. Much

effort was spent in Chapter 3 establishing the description of the projection maps

for Rn in terms of the one-line notation (this was the “k-insertion algorithm”). We

seek a similar description for R̃n in the one-line notation, preferably making use of

this algorithm. As noted in the examples from Section 6.1, the difficulty here lies in

finding the right element on which to apply the algorithm.

Finally, we plan to continue the general study of these posets, making use of the

results presented in this dissertation. For matrices and dual canonical monoids, the

conjugacy poset is usually not graded, as we have observed in several examples. The

case is not as clear with canonical monoids. The examples of R̃ and R̃(e) presented

here are both graded and preliminary reports suggest that this is the case in general.

In [24], the projection maps are used to show that for a canonical monoid, the poset

R∗ = R \ {0} is Eulerian. We see in Figure 4.3 that R̃ \ {[0]} is not Eulerian (for

example, the interval [[e∅BA], [eA]] is not balanced), but other poset properties might

be uncovered using techniques similar to those from [24].
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