
ABSTRACT

CAPALDI, ALEX Exploring the Inverse Problem with Infectious Disease Models.
(Under the direction of Dr. Alun L. Lloyd).

In this dissertation, we explore multiple aspects of the inverse problem when ap-

plied to infectious disease models. First, we examine estimation of the parameters

of Susceptible-Infective-Recovered (SIR) models in the context of least squares (LS).

We review the use of asymptotic statistical theory and sensitivity analysis to obtain

measures of uncertainty for estimates of the model parameters and basic reproduc-

tive number (R0)—an epidemiologically significant parameter grouping. Uncertainty

estimates and sensitivity analysis are used to investigate how the frequency at which

data is sampled affects the estimation process and how the accuracy and uncertainty

of estimates improves as data is collected over the course of an outbreak. We assess

the informativeness of individual data points in a given time series with a view to

better understanding when more frequent sampling (if possible) would prove to be

most beneficial to the estimation process. We include a more general discussion of

parameter identifiablility in both the epidemic and seasonal endemic SIR settings. We

propose an algorithm to select parameter subset combinations that can be estimated

using an LS inverse problem formulation with a given data set. The algorithm selects

the parameter combinations that correspond to sensitivity matrices with full rank and

it involves uncertainty quantification by using the inverse of the Fisher Information

Matrix. We conclude with an application of the Akaike information criterion to select

a model from a series of epidemic models fitted to an outbreak of influenza in a boy’s

boarding school in England. We find that an uncommonly used epidemic model, a

Susceptible-Infective-Confined-Recovered (SICR), model is the best fitted model and

produces an estimate of R0 of 4.25.
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Chapter 1

Introduction

1.1 Initial Remarks

The use of mathematical models to interpret disease outbreak data has provided

many insights into the epidemiology and spread of many pathogens, particularly in the

context of emerging infections. The basic reproductive number, R0, which gives the

average number of secondary infections that result from a single infective individual

over the course of their infection in an otherwise entirely susceptible population (see,

for example, [4] and [34]), is often of prime interest. In many situations, the value of

R0 governs the probability of the occurrence of a major outbreak, the typical size of

the resulting outbreak and the stringency of control measures needed to contain the

outbreak (see, for example [20, 47, 57]).

While it is often simple to construct an algebraic expression for R0 in terms of

epidemiological parameters, one or more of these values is typically not obtainable

by direct methods. Instead, their values are usually estimated indirectly by fitting

a mathematical model to incidence or prevalence data (see, for example, [7, 23, 61,

77, 83, 84]), obtaining a set of parameters that provides the best match, in some

sense, between model output and data (this process of finding optimal parameters is

commonly referred to as solving the inverse problem). It is, therefore, crucial that we

have a good understanding of the properties of the process used to fit the model and
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its limitations when employed on a given data set. An appreciation of the uncertainty

accompanying the parameter estimates, and indeed whether a given parameter is even

individually identifiable based on the available data and model, is necessary for our

understanding.

Mathematical models have been used to study questions in epidemiology as early

as 1927 when Kermack and McKendrick introduced the SIR model [54]. However, a

strong appreciation of the uncertainty of parameter estimates did not take a foothold

in the field of mathematical epidemiology until much more recently. The studies of

Anderson and others of the bovine spongiform encephalopathy (mad-cow disease)

outbreak in the United Kingdom (UK) in 1996 was revolutionary in the field in terms

of the statistical tools employed [2]. The field advanced as epidemiologists covered

the emerging outbreaks of foot and mouth disease in the UK in 2001 [38, 53], SARS

in 2003 [24, 25, 74], avian influenza in 2006-7 [55, 82], H1N1 (swine flu) in 2009

(for example, [42]). New analyses of older outbreaks for which there was quality

data available also occurred; for instance, researchers have used statistical methods

of uncertainty measurement when modeling the 1918 Spanish flu pandemic [22, 68]

and the pre- and post-vaccination era measles data from the UK [21, 39, 41, 40].

The simultaneous estimation of several parameters raises questions of parameter

identifiability (see, for example, [5, 12, 30, 37, 43, 48, 72, 85, 88, 89, 90]), even if

the model being fitted is simple. Oftentimes, parameter estimates are highly cor-

related: the values of two or more parameters cannot be estimated independently.

For instance, it may be the case that, in the vicinity of the best fitting parameter

set, a number of sets of parameters lead to effectively indistinguishable model fits,

with changes in one estimated parameter value being able to be offset by changes

in another. To address the question of parameter identifiability, we will propose an

algorithm based on those introduced by [15, 17] to select parameter combinations

(vectors) based on the sensitivity of model states to the parameters and on the un-

certainty of estimates.

Even if individual parameters cannot be reliably estimated due to identifiability

issues, it might still be the case that a compound quantity of interest, such as the
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basic reproductive number, can be estimated with precision. This would occur, for

instance, if the correlation between the estimates of indivdual parameters was such

that the value of R0 varied little over the sets of parameters that provided equal

quality fits.

Statistical theory is often used to guide data collection, with sampling theory pro-

viding an idea of the amount of data required in order to obtain parameter estimates

whose uncertainty lies within a range deemed to be acceptable. In time-dependent

settings, sampling theory can also provide insight into when to collect data in order

to provide as much information as possible. Such analyses can be extremely helpful

in biological settings where data collection is expensive, ensuring that sufficient data

is collected for the enterprise to be informative, but in an efficient manner, avoiding

excessive data collection or the collection of uninformative data from certain periods

of the process.

In this work we discuss the use of sensitivity analysis [36] and asymptotic statis-

tical theory described in [80] and [8], to quantify the uncertainties associated with

parameter estimates obtained by the use of least squares model fitting. The theory

also quantifies the correlation between estimates of the different parameters, and we

discuss the implications of correlations on the estimation of R0. We investigate how

the magnitude of uncertainty varies with both the number of data points collected

and their collection times. We suggest an approach that can be used to identify

the times at which more intensive sampling would be most informative in terms of

reducing the uncertainties associated with parameter estimates.

Many model fits are often conducted with knowledge of the underlying model, that

is, the correct model was fit to the data. However, in scenarios with real data this

assumption is often not valid and results in a further layer of uncertainty. This type of

structural uncertainty has received far less attention but in some circumstances it has

been shown that it can dwarf uncertainty due to the noise in the data. As an example,

a number of authors have shown that estimates of the basic reproductive number

based on the initial growth of an outbreak can be highly sensitive to assumptions

made about the structure of the model [61, 71, 84]. We will present tools previously
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developed that can be used for selecting an empirically best model from a set of similar

models fit to a given data set. We will then use these tools on a set of outbreak data

to obtain the best possible estimate of R0.

The work is organized as follows: the different epidemiological models employed

throughout our study are outlined in the following Background section. Chapter 2

presents a discussion on parameter estimation and uncertainty quantification in the

case of a simple epidemic model. The selection of a subset of identifiable parameters

when conducting the inverse problem is discussed in Chapter 3. Chapter 4 will give

a case study of data from an influenza outbreak in a boys’ boarding school to an-

swer questions about how selecting the incorrect underlying model can severely affect

the interpretation of both quantitative and qualitative results. We conclude with a

discussion of the results and future work.

1.2 Background

1.2.1 The Basic SIR Model

We first choose to use a simple model containing a small number of parameters.

We employ the standard deterministic Susceptible-Infective-Recovered compartmen-

tal model (see, for example, [4, 33, 46]) for an infection that leads to permanent

immunity and that is spreading in a closed population (i.e., we ignore demographic

effects). The population is divided into three classes, susceptible, infectious and

recovered, whose numbers are denoted by S, I, and R, respectively. The closed pop-

ulation assumption leads to the total population size, N , being constant and we have

S + I +R = N .

We assume that transmission is described by the standard incidence term βSI/N ,

where β is the transmission parameter, which incorporates the contact rate and the

probability that contact (between an infective and susceptible) leads to transmission.

Individuals are assumed to recover at a constant rate, γ, which gives the average

duration of infection as 1/γ.
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Because of the equation S+I+R = N , we can determine one of the state variables

in terms of the other two, reducing the dimension of the system. Here, we choose to

eliminate R, and we so focus our attention on the dynamics of S and I. The model

can then be described by the following differential equations

dS

dt
= −βSI

N
(1.1)

dI

dt
=

βSI

N
− γI, (1.2)

together with the initial conditions S(0) = S0, I(0) = I0.

The behavior of this model is governed by the basic reproductive number. For this

SIR model, R0 = β/γ. The average number of secondary infections per individual

at the beginning of an epidemic is given by the product of the rate at which new

infections arise (β) and the average duration of infectiousness (1/γ). R0 tells us

whether an epidemic will take off (R0 > 1) or not (R0 < 1) in this deterministic

framework.

This SIR model is formulated in terms of the number of infectious individuals,

I(t), i.e., the prevalence of infection. Disease outbreak data, however, is typically re-

ported in terms of the number of new cases that arise in some time interval, i.e., the

disease incidence. The incidence of infection over the time interval (ti−1, ti) is given by

integrating the rate of infection over the time interval: z(ti) =
∫ ti
ti−1

βS(t)I(t)/N dt.

Notice that, since the SIR model does not distinguish between infectious and symp-

tomatic individuals—even though this is not the case for many infections—we equate

the incidence of new infections and new cases. For the simple SIR model employed

here, the incidence can be calculated by the simpler formula S(ti−1)−S(ti), since the

number of new infections is given by the decrease in the number of susceptibles over

the interval of interest.

We present a forward simulation of the SIR model when R0 > 1 in Figure 1.1

for illustrative purposes. Notice that once the epidemic has waned, there still remain

some susceptible individuals. We will refer to this horizontal asymptote as S(∞).
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Figure 1.1: Susceptibles (solid curve) and Infectives (dashed curve) against time for

the SIR model. Parameter values used were β = 3, γ = 1, and N = 10, 000 with

initial conditions S0 = 9900 and I0 = 100. R0 = 3.

1.2.2 The SEIR Model

One assumption of the SIR model is that once infected, an individual immediately

becomes infectious. In reality, there is often a latent period between getting infected

and becoming infectious. This is typically due to the parasite needing to reproduce

enough to spread between hosts (there is a minimum threshold of viral load necessary

for probable transmission). To simulate this delay, we can add an exposed class to

the SIR model to create the SEIR model.

If we take the latent period to be exponentially distributed with average duration

1/ν, then our model can be described as follows [63]

dS

dt
= −βSI

N
(1.3)

dE

dt
=

βSI

N
− νE (1.4)

dI

dt
= νE − γI. (1.5)
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Notice that the SIR model can be regained from this formulation simply by letting

ν → ∞, which removes the delay.

The basic reproductive number for this SEIR model is again R0 = β/γ, as neither

the rate of transmission, nor the average duration of infection have changed from the

SIR model. The fact that R0 is the same for both models is result of choosing the

simplest case for the SEIR model here. If there was be a way to leave the exposed

class besides entering the infectious class (such as death, or some kind of treatment),

we would have to multiple the R0 value from the SIR model by the probability of

continuing on to the infectious class to obtain the SEIR model’s formula for R0. With

this simple SEIR model, though, that probability is 1.

We present a forward simulation of the SEIR model in Figure 1.2. Notice that

despite similar parameter values as the plot of the SIR model, the prevalence curve

for the SEIR model has a later peak than the SIR model because of the latent period.

The peak prevalence value is also lower than in the SIR model, and the outbreak is

more spread out over time. In contrast, S(∞) is the same here as it is for the SIR

model. Even though the latent period changes the timing of the epidemic, it does

not change the outbreak size. Again, this is because we do not have other methods

of leaving the exposed class.

1.2.3 SIR Models for Endemic Infections

In an infectious disease model where the susceptible population is regularly re-

plenished (e.g. due to births, immigration, loss of immunity, etc.), an endemic ensues.

That is, the infection is able to persist indefinitely within the population. The sim-

plest example of this is when the infectious population achieves an equilibrium. We

shall examine the standard SIR model (Equation 1.1) with the inclusion of births and

deaths.

As with the standard SIR model, the population is divided into three classes,

susceptible, infectious and recovered, whose numbers are denoted by S, I, and R,

respectively. We choose to have the per capita birth rate, µ, equal the per capita death
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Figure 1.2: Forward simulation of the SEIR model. The curves of S (solid), E

(dot-dashed) and I (dashed) against time are shown. Parameter values used were

β = 3, γ = 1, ν = 2, and N = 10, 000 with initial conditions S0 = 9900, E0 = 0 and

I0 = 100. R0 = 3.
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rate to maintain a constant population. Such an assumption is a fair approximation

of the demographics in a developed world country. Including births and deaths is

typically only done on longer time scales (such as years)—it is typically acceptable

to ignore for a single outbreak on a short time scale.

The basic reproductive number, R0, can be expressed as the product of the trans-

mission parameter and the average duration of infection. For this model, the average

duration of infection is 1/(γ + µ), (the duration of infection is shorter than in the

standard SIR model since people can now leave the infectious class by two methods,

recovery or death/emigration) thus,

R0 =
β

γ + µ
. (1.6)

The model can be described by the following differential equations

dS

dt
= µN − βSI

N
− µS (1.7)

dI

dt
=

βSI

N
− γI − µI, (1.8)

together with the initial conditions S(0) = S0, I(0) = I0.

To find the equilibrium of the model, we simply set dS
dt

= dI
dt

= 0 and solve for S

and I. This gives us the equilibrium point

(S∗, I∗) =

(

N

R0

,
µN(1− 1/R0)

γ + µ

)

. (1.9)

Many infections that persist do not sit at an equilibrium, instead exhibiting some

sort of periodic dynamics—recurrent epidemics. These limit cycles can be brought

about from seasonal forcing, such as changes in transmission due to weather conditions

or the school year cycle. Such models have been developed and studied by a number

of authors (for example, [3, 4, 22, 29, 35, 39, 62]). We choose to study one of the

simplest endemic models with seasonal forcing, the SIR model with demography and

a periodic transmission parameter.

We modify the Equations 1.7-1.8 to introduce seasonal transmission by making β

a dynamic function of time. One such way to do this, and the one we will employ is
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Figure 1.3: Prevalence versus time for the SIR model with demography. Notice that

the system settles to its equilibrium after some time. Parameter values used were

β = 3, γ = 1, µ = 1/10, and N = 10, 000 with initial conditions S0 = 9900 and

I0 = 100.



11

to set

β(t) = β0 (1 + a sin 2π(t− t0)) , (1.10)

where β0 is the baseline transmission parameter, a is the strength of seasonality and t0

is the transmission phase shift (which is used to align the baseline transmission value

to the appropriate time point it occurs during the time course of a season). The period

of this transmission function is one, however, depending on the model parameters,

the prevalence curve could have a different period (“seasons” can be annual, biannual

or any number of different kinds of cycles, some chaotic, depending on a [62]).

When there is weak seasonal forcing (a low value of a), the system exhibits small

amplitude annual oscillations in phase space about the point (S∗, I∗) from Equation

1.9. This can be seen in Figure 1.4.

The basic reproductive number for the seasonal model is more complicated, but

it is similar to that of our non-seasonal, demographic model,

R0 ≈
β(t)

γ + µ
. (1.11)

There exists a maximum transmission potential in the above equation at any given

point in time since β is dynamic, but a true formulation for R0 involves some time

averaging to account for this fluctuation. However, there is disagreement within the

literature community whether that averaging should be arithmetic or geometric (for

example, [64, 86]).

With epidemic models, we have only considered the introduction of an infection

into a virgin population, assuming a known initial number of infectives in an otherwise

susceptible population. It is in this scenario where the basic reproductive number is

useful to determine the strength of the outbreak. For an endemic infection, such as

seasonal flu, only a fraction of the population would be susceptible at the start of

an outbreak. In such instances, the general reproductive number, Rt, the average

number of secondary infections at any point in time, is a more relevant quantity than

R0. For the SIR model, Rt is given by

Rt = R0
S(t)

N
. (1.12)
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Figure 1.4: The SIR model with demography and seasonal transmission when the

system has reached its limit cycle, a period one attractor. Specifically, the transient

behavior of the system has passed as we are looking at 900 years after the infection

was first introduced. The first plot displays prevalence versus time and the second is

a phase plot (I vs S). As time progresses, the trajectory in phase space is traversed

in a counter-clockwise direction. Parameter values used were a = 0.1, β0 = 15/14,

t0 = 0, γ = 1/14 days−1, µ = 1/70 years−1, and N = 100, 000. The value of γ and β0

are such that the model approximates measles (with an R0 ≈ 15), a highly-infectious

disease with seasonal transmission.
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In Chapter 3, we will investigate how much information about the model param-

eters we can obtain when we observe limit cycle behavior of an endemic infection.
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Chapter 2

Parameter Estimation

This chapter is an expanded version of the paper “Parameter Estimation and Un-

certainty Quantification for an Epidemic Model,” which has been accepted by the

journal Mathematical Biosciences and Engineering (MBE) for publication pending

minor revisions. The paper was co-authored by myself (the first author), Dr. Alun

Lloyd (the senior author) and the four students from our 2007 REU, Sam Behrend,

Ben Berman, Jason Smith and Justin Wright who conducted some of the initial in-

vestigations into the estimation issues described in this chapter.

An understanding of the uncertainty in parameter estimates is crucial. Therefore,

in this chapter, we present a methodology to calculate standard errors of parameter

estimates and other measures of uncertainty. We then give some methods of how

to sample data to increase the information one has about the model parameters,

reducing uncertainty in the estimates.

In order to make our presentation as clear as possible, we throughout employ the

simplest model for a single outbreak, the SIR model, and use synthetic data sets

generated using the model. This idealized setting should be the easiest one for the

estimation methodology to handle, so we imagine that any issues that arise (such as

non-identifiability of parameters) would carry over to, and indeed be more delicate
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for, more realistic settings such as more complex models or real-world data sets. The

use of synthetic data allows us to investigate the performance and behavior of the

estimation for infections that have a range of transmission potentials, providing a

broader view of the estimation process than would be obtained by focusing on a

particular individual data set.

2.1 Methodology: Asymptotic Statistical Theory

Estimating the parameters of the model given a data set (solving the inverse

problem) is here accomplished by using either ordinary least squares (OLS) or a

weighted least squares method known as either iteratively reweighted least squares or

generalized least squares (GLS) [32]. Uncertainty quantification is performed using

asymptotic statistical theory (see, for example, Seber and Wild [80]) then applied

to the statistical model that describes the epidemiological data set. We provide a

general summary of this theory here.

The statistical model assumes that the epidemiological system is exactly described

by some underlying dynamic model (for us, the deterministic SIR model) together

with some set of parameters, known as the true parameters, but that the observed data

arises from some corruption of the output of this system by noise (e.g., observational

errors). We write the true parameter set as the p-element vector θ0, noting that some

of these parameters may be initial conditions of the dynamic model if one or more

of these are unknown. The n observations of the system, Y1, Y2, . . . , Yn, are made at

times t1, t2, . . . , tn. We assume the statistical model can be written as

Yi = M(ti; θ0) + Ei, (2.1)

where M(ti; θ0) is our deterministic model (either for prevalence or incidence, as

appropriate) evaluated at the true value of the parameter, θ0, and the Ei depict the
errors. We write Y = (Y1, . . . , Yn)

T .

The appropriate estimation procedure depends on the properties of the errors Ei.
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We assume that the errors have the following form

Ei = M(ti; θ0)
ξεi, (2.2)

where ξ ≥ 0. The εi are assumed to be independent, identically distributed random

variables with zero mean and (finite) variance σ2
0. The random variables Yi have

means given by E(Yi) = M(ti; θ0) and variances Var(Yi) = M(ti; θ0)
2ξσ2

0.

If ξ is taken to equal 0 then Ei = εi, and the error variance is assumed to be

independent of the magnitude of the predicted value of the observed quantity. This

noise structure is often referred to as absolute noise in the literature, which we will

do. Positive values of ξ correspond to the assumption that the error variance scales

with the predicted value of the quantity being measured. If ξ = 1, the standard

deviation of the noise is assumed to scale linearly with M : the average magnitude of

the noise is a constant fraction of the true value of the quantity being measured. This

situation is often referred to as relative noise, which will we do. If, instead, ξ = 1/2,

the variance of the error scales linearly with M : we refer to this as Poisson noise.

The least squares estimator θ̂LS is a random variable obtained by consideration of

the cost functional

J(θ|Y ) =
n
∑

i=1

wi(Yi −M(ti; θ))
2, (2.3)

in which the weights wi are given by

wi =
1

M(ti; θ)2ξ
. (2.4)

If ξ = 0, then wi = 1 for all i, and in this case the estimator is obtained by

minimizing J(θ|Y ), that is

θ̂LS = argmin
θ

J(θ|Y ). (2.5)

In this case, known as ordinary least squares (OLS), all data points are of equal

importance in the fitting process.

When ξ > 0, the weights lead to more importance being given to data points that

have a lower variability (i.e., those corresponding to smaller values of the model).

If the values of the weights were known ahead of time, estimation could proceed



17

by a weighted least squares minimization of the cost functional (2.3). The weights,

however, depend on θ and so an iterative process is instead used, employing estimated

weights. An initial ordinary (unweighted) least squares is carried out and the resulting

model is used to provide an initial set of weights. Weighted least squares is then

carried out using these weights, providing a new model and hence a new set of weights.

The weighted least squares step is repeated with successively updated weights until

some termination criterion, such as the convergence of successive estimates to within

some specified tolerance, is achieved [32].

The asymptotic statistical theory, as detailed in [80], describes the distribution of

the estimator θ̂LS = θ̂
(n)
LS as the sample size n → ∞. (In this paragraph we include

the superscript n to emphasize sample size dependence.) Provided that a number

of regularity and sampling conditions are satisfied (discussed in detail in [80]), this

estimator has a p-dimensional multivariate normal distribution with mean θ0 and

variance-covariance matrix Σ0 given by

Σ0 = lim
n→∞

Σ
(n)
0 = lim

n→∞

σ2
0

(

nΩ
(n)
0

)

−1

, (2.6)

where

Ω
(n)
0 =

1

n
χ(n)(θ0)

TW (n)(θ0)χ
(n)(θ0). (2.7)

So, θ̂LS ∼ AN(θ0,Σ0).

We note that the existence and invertibility of the limiting matrix Ω0 = limn→∞Ω
(n)
0

is required for the theory to hold. In Equation (2.7), W (n)(θ) is the diagonal weight

matrix, with entries wi, and χ(n)(θ) is the n× p sensitivity matrix, whose entries are

given by

χ(n)(θ)ij =
∂M(ti; θ)

∂θj
. (2.8)

Because we do not have an explicit formula for M(ti; θ), the sensitivities must be

calculated using the so-called sensitivity equations. As outlined in [76], for the general

m-dimensional system

ẋ = F (x, t; θ), (2.9)
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with state variable x ∈ R
m and parameter θ ∈ R

p, the matrix of sensitivities, ∂x/∂θ,

satisfies
d

dt

∂x

∂θ
=

∂F

∂x

∂x

∂θ
+

∂F

∂θ
, (2.10)

with initial conditions
∂x(0)

∂θ
= 0m×p. (2.11)

Here, ∂F/∂x is the Jacobian matrix of the system. This initial value problem must

be solved simultaneously with the original system (2.9).

Sensitivity equations for the state variables with respect to initial conditions can

be derived in a similar way, except that the second term on the right side of Equation

(2.10) is absent and the appropriate matrix of initial conditions is Im×m.

Here we present the sensitivity equations that are relevant for SIR model-based es-

timation. If prevalence data is being used, then the relevant sensitivities are ∂I(ti)/∂θ.

Analysis of incidence data would instead make use of ∂S(ti−1)/∂θ − ∂S(ti)/∂θ. (Re-

call that, for the SIR model considered here, the number of cases that occur over a

time interval is equal to the decrease in the number of susceptibles over that time).

Writing the sensitivities of the state variables with respect to the model parameters

as φ1 = ∂S/∂β, φ2 = ∂S/∂γ, φ3 = ∂I/∂β, and φ4 = ∂I/∂γ, the following sensitivity

equations are obtained

dφ1

dt
= −βI

N
φ1 −

βS

N
φ3 −

SI

N
(2.12)

dφ2

dt
= −βI

N
φ2 −

βS

N
φ4 (2.13)

dφ3

dt
=

βI

N
φ1 +

(

βS

N
− γ

)

φ3 +
SI

N
(2.14)

dφ4

dt
=

βI

N
φ2 +

(

βS

N
− γ

)

φ4 − I, (2.15)

with the initial conditions φ1(0) = φ2(0) = φ3(0) = φ4(0) = 0.

For the sensitivities of the state variables with respect to initial conditions, writing
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φ5 = ∂S/∂S0, φ6 = ∂S/∂I0, φ7 = ∂I/∂S0, and φ8 = ∂I/∂I0, we have that

dφ5

dt
= −βI

N
φ5 −

βS

N
φ7 (2.16)

dφ6

dt
= −βI

N
φ6 −

βS

N
φ8 (2.17)

dφ7

dt
=

βI

N
φ5 +

(

βS

N
− γ

)

φ7 (2.18)

dφ8

dt
=

βI

N
φ6 +

(

βS

N
− γ

)

φ8, (2.19)

together with the initial conditions φ5(0) = φ8(0) = 1, and φ6(0) = φ7(0) = 0.

The observed data y1, y2, . . . , yn represent a realization of the observation process,

and our estimate of θ is a realization of the estimator θ̂LS. Residuals for the model

fit are defined as

ri(θ) =
yi −M(ti; θ)

M(ti; θ)ξ
, (2.20)

and, when θ = θ0, represent a realization of a set of independent draws from the εi

distribution. Plots of residuals against time t, or against the model M , are often ex-

amined as a diagnostic test to determine if the noise structure and other assumptions

of the statistical model are appropriate ([11, 29]).

Because the true parameter θ0 is usually not known, we use the estimate of θ in

its place in the estimation formulae. The value of σ2
0 is approximated by

σ2 =
1

n− p

n
∑

i=1

wi(M(ti; θ)− yi)
2, (2.21)

where the factor 1/(n− p) ensures that the estimate is unbiased. The matrix

Σ = σ2[χT (θ)W (θ)χ(θ)]−1 (2.22)

provides an approximation to the covariance matrix Σ0.

Standard errors for the components of the estimator θ̂LS are approximated by tak-

ing square roots of the diagonal entries of Σ, while the off-diagonal entries provide

approximations for the covariances between pairs of these components. The uncer-

tainty of an estimate of an individual parameter is conveniently discussed in terms of

the coefficient of variation (CV) given by
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CVθ̂i
=

σθ̂i

θ̂i
. (2.23)

The dimensionless property of the CV allows for easier comparison between un-

certainties of different parameters. In a related fashion, the covariances can be con-

veniently normalized to give correlation coefficients, defined by

ρθ̂i,θ̂j =
cov(θ̂i, θ̂j)

√

Var(θ̂i)Var(θ̂j)
. (2.24)

The asymptotic statistical theory provides uncertainties for individual parameters,

but not for compound quantities—such as the basic reproductive number—that are

often of interest. For instance, if we had the estimator θ̂LS = (β̂, γ̂)T , a simple point

estimate for R0 would be β/γ, where β and γ are the realized values of β̂ and γ̂. To

understand the properties of the corresponding estimator we examine the expected

value and variance of the estimator β̂/γ̂. Because this quantity is the ratio of two

random variables, there is no simple exact form for its expected value or variance in

terms of the expected values and variances of the estimators β̂ and γ̂. Instead, we have

to use approximation formulas derived using the method of statistical differentials

(effectively a second order Taylor series expansion, see [56]), and obtain

E

(

β̂

γ̂

)

≈ β0

γ0

(

1− cov(β̂, γ̂)

β0γ0
+

Var(γ̂)

γ2
0

)

, (2.25)

and

Var

(

β̂

γ̂

)

≈
(

β0

γ0

)2
(

Var(β̂)

β0
2 +

Var(γ̂)

γ02
− 2cov(β̂, γ̂)

β0γ0

)

. (2.26)

Here we have made use of the fact that E(β̂) = β0, the true value of the parameter,

and E(γ̂) = γ0.

The variance equation has previously been used in an epidemiological setting by

Chowell et al. [26]. Equation (2.25), however, shows us that estimation of R0 by

dividing point estimates of β and γ provides a biased estimate of R0. The bias factor

can be written in terms of the correlation coefficient and coefficients of variation giving
(

1− cov(β̂, γ̂)

β0γ0
+

Var(γ̂)

γ2
0

)

=
(

1− ρβ̂,γ̂CVβ̂CVγ̂ + CV 2
γ̂

)

. (2.27)
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This factor only becomes important when the CVs are on the order of one. In such a

case, however, the estimability of the parameters is already in question. Thus, under

most useful circumstances, estimating R0 by the ratio of point estimates of β and γ

suffices.

2.2 Generation of Synthetic Data, Model Fitting

and Estimation

In order to facilitate our exploration of the parameter estimation problem, we

choose to use simulated data. This “data” is generated using a known model, a known

parameter set and a known noise structure, putting us in an idealized situation in

which we know that we are fitting the correct epidemiological model to the data,

that the correct statistical model is being employed and where we can compare the

estimated parameters with their true values. Furthermore, since we know the noise

process, we can generate multiple realizations of the data set and hence directly assess

the uncertainty in parameter estimates by fitting the model to each of the replicate

data sets. As a consequence, we can more completely evaluate the performance of

the estimation process than would be possible using a single real-world data set.

The use of synthetic data also allows us to investigate parameter estimation for

diseases that have differing levels of transmissibility. We considered three hypothetical

infections, with low, medium and high transmissibility, using R0 values of 1.2, 3 and

10, respectively. In each case we took the recovery rate γ to equal 1, which corresponds

to measuring time in units of the average infectious period. The value of β was then

chosen to provide the desired value of R0. (In terms of the “true values” of our

statistical model, we have γ0 = 1 and β0 = R0). We took a population size of 10, 000,

of which 100 people were initially infectious, with the remainder being susceptible.

(Altering the initial number of infectives makes no qualitative difference to the results

that follow.)

The model was solved for S and I using the MATLAB ode45 routine, starting
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Figure 2.1: Synthetic prevalence data sets with R0 equal to (a) 1.2, (b) 3 and (c) 10.

Solid curves depict the prevalence I(t) obtained from the SIR model, while the dots

show the synthetic data generated by adding observational noise to I(t) at discrete

time points, as discussed in the text. Poisson noise was used (ξ = 1/2) where noise

variance σ2
0 equalled 1 and n = 50 data points. The initial conditions of the SIR

model were S0 = 9900, I0 = 100, where N = 10, 000 and γ was taken equal to one,

so β = R0.
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from t = 0, giving output at n + 1 evenly spaced time points (0, t1, ..., tn). The

duration of the outbreak depends on R0 and so, in order to properly capture the time

scale of the epidemic, we choose tn to be the time at which I(t) falls back to its initial

value. A data set for prevalence was then obtained by adding noise generated by

multiplying independent draws, ei, from a normal distribution with mean zero and

variance σ2
0 by I(ti, θ0)

ξ. Thus, our data,

y(ti, θ0) ≡ I(ti, θ0) + I(ti, θ0)
ξei, i = 1, 2, . . . , n, (2.28)

satisfies the assumptions made in the previous section and allows us to apply the

asymptotic statistical theory. Notice that, for convenience, we have chosen normally

distributed ei, but we re-emphasize that the asymptotic statistical theory does not

require this. Data sets depicting incidence of infection can be created in a similar

way, replacing I(ti) by S(ti)− S(ti−1), as discussed above, for i = 1, . . . , n.

Three different values of ξ, namely ξ = 0 (absolute noise), ξ = 1/2 (Poisson noise)

and ξ = 1 (relative noise), were used to generate synthetic data sets. Given that

prevalence (or incidence) increases with R0, the use of absolute noise, with the same

value of σ2
0 across the three transmissibility scenarios, leads to noise being much more

noticeable for the low transmissibility situation. This complicates comparisons of the

success of the estimation process between differing R0 values. Visual inspection of

real-world data sets, however, indicates that variability increases with either preva-

lence or incidence [41]. If this variability reflected reporting errors, with individual

cases being reported independently with some fixed probability, the variance of the

resulting binomial random variable would be proportional to its mean value. As a

result, we direct most of our attention to data generated using ξ = 1/2.

Because we know the true values of the parameters and the variance of the noise,

we can calculate the variance-covariance matrix Σ0 (Equation 2.6) exactly, without

having to use estimated parameter values or error variance. This provides a more

reliable value than that obtained using the estimate Σ, allowing us to more easily

detect small changes in standard errors, such as those that occur when a single data

point is removed from or added to a data set as we do in Section 6. This approach
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was employed to obtain many of the results that follow (in each instance, it will be

stated whether Σ0 or Σ was used to provide uncertainty estimates).

2.3 Results: Parameter Estimation

We could attempt to fit any combination of the parameters and initial conditions

of the SIR model, i.e., β, γ, N , S0 and I0. We shall concentrate, however, on the

simple situation in which we just fit β and γ, imagining that the other values are

known. This might be the case if a new pathogen were introduced into a population

at a known time, so that the population was known to be entirely susceptible apart

from the initial infective. Importantly, the estimation of β and γ allows us to estimate

the value of R0. We shall return to consider estimation of three or more parameters

in a later chapter.

The least squares estimation procedure works well for synthetic data sets generated

using the three different values of R0 (see Figure 2.1). Diagnostic plots of the residuals

were used to examine potential departures from the assumptions of the statistical

model: unsurprisingly, none were seen when the value of ξ used in the fitting process

matched that used to generate the data, and clear deviations were seen when the

incorrect value of ξ was used in the fitting process (results not shown).

A Monte Carlo approach can be used to verify the distributional results of the

asymptotic statistical theory. A set of point estimates of the parameter (β, γ) was

generated by applying the estimation process to a large number of replicate data sets

generated using different realizations of the noise process, allowing estimates of vari-

ances and covariances of parameter estimates to be directly obtained. Unsurprisingly,

good agreement was seen when the correct value of ξ was employed in the estimation

process and the distribution of (β, γ) estimates appears to be consistent with the

appropriate bivariate normal distribution predicted by the theory.

During the Monte Carlo, it was verified that the bias factor for the estimation of

R0 (see Equation 2.27) was relatively insignificant, as its difference from 1 was on the

order of 10−7 in the each case we studied (R0 = 1.2, 3 and 10). It was summarily
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Table 2.1: Parameter estimates of β, γ, R0, and the correlation coefficient between

estimates of β and γ, ρβ̂,γ̂ , obtained using a Monte Carlo approach with 10, 000 re-

alizations. The coefficients of variation (CV) obtained from the Monte Carlo were

compared to those from the asymptotic stastical theory. The variance-covariance

matrix Σ0 was calculated exactly (i.e., no curve-fitting was carried out) for the “The-

ory” value and was calculated directly from the realizations of the Monte Carlo for the

“MC” value. Calculations were performed under a Poisson noise structure, ξ = 1/2,

with σ2
0 = 1, and n = 50 data points. Parameter values and initial conditions used

were β = R0, γ = 1, N = 10, 000, S0 = 9900, and I0 = 100.
Parameter True Value MC Estimate MC CV Theory CV

β 1.2 1.200047 0.0121 0.0121
γ 1 0.999992 0.111 0.0110
R0 1.2 1.200045 0.0023 0.0023
ρβ̂,γ̂ 0.9837 0.9840 - -

Parameter True Value MC Estimate MC CV Theory CV

β 3 2.999958 0.0020 0.0019
γ 1 0.999980 0.0034 0.0034
R0 3 3.000051 0.0037 0.0037
ρβ̂,γ̂ 0.1132 0.1302 - -

Parameter True Value MC Estimate MC CV Theory CV

β 10 9.999670 0.0035 0.0035
γ 1 0.999993 0.0027 0.0027
R0 10 9.999868 0.0050 0.0050
ρβ̂,γ̂ -0.3122 -0.3062 - -
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ignored and R0 was estimated by the ratio of the point estimates β and γ.

In particular, it is seen in Figure 2.2 that roughly 95% of the estimates fall within

the ellipse that is the level curve of the pdf of the bivariate normal distribution that

contains 95% of the mass of the distribution, namely

h1−α =
1

1− ρ2
β̂,γ̂

(

(β − β0)
2

σ2
β̂

−
2ρβ̂,γ̂(β − β0)(γ − γ0)

σβ̂σγ̂

+
(γ − γ0)

2

σ2
γ̂

)

, (2.29)

where h.95 = 5.991. Both the shape and orientation of this ellipse depend on the

correlation coefficient of β̂ and γ̂, i.e., on the extent to which these two estimates are

correlated [56].

Figure 2.3a demonstrates that estimates of β and γ are correlated, with the sign

and magnitude of the correlation coefficient depending strongly on the value of R0.

Standard errors for the estimates also depend strongly on the value of R0 (Figure

2.3b).

As R0 approaches 1, the correlation coefficient approaches 1 and the standard

errors become extremely large. It is, therefore, difficult to obtain good estimates

of the individual parameters in this case. Examination of the cost functional J in

the (γ, β) plane reveals the origin of the strong correlation and large standard errors

(Figure 2.4a). Near its minimum value, the contours of J are well approximated by

long thin ellipses whose major axes are oriented along the line β = R0γ. Thus there

is a considerable range of β and γ values that give almost identical model fits, but

for which the ratio β/γ varies relatively little. In a later section we shall see that

these long thin elliptical contours arise as a consequence of sensitivities of the model

to changes in β and γ being almost equal in magnitude but of opposite signs.

An explanation for the increased correlation of estimates of β and γ as R0 → 1

has to do with the increased symmetry of the epidemic curve as R0 → 1 (See Figure

2.1). The symmetry property of the epidemic curve is well known in the literature

and can be seen in early works such as [54].

For values of R0 that lead to lower correlation between estimates of β and γ,

the contours of J near its minimum point are closer to being circular and are less

tilted (Figure 2.4b), allowing for easier identification of the two individual parameters.
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Figure 2.2: Parameter estimates of β and γ obtained using a Monte Carlo approach

with 1000 realizations. The true parameter value point is given by a circle. Superim-

posed on the cloud of estimates is the 95% confidence ellipse. Calculations were done

under a Poisson noise structure, ξ = 1/2, with σ2
0 = 1, and n = 50 data points. Pa-

rameter values and initial conditions used were β = 3, γ = 1, N = 10, 000, S0 = 9900,

and I0 = 100.
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Figure 2.3: Dependence of the correlation coefficient and standard errors for esti-

mates of β and γ on the value of R0. Panel (a) displays the correlation coefficient,

ρ, between estimates of β and γ for a range of R0 values. Panel (b) shows, on a

log scale, standard errors for estimates of β (solid curve) and γ (dashed curve). The

variance-covariance matrix Σ0 was calculated exactly (i.e., no curve-fitting was car-

ried out) under a Poisson noise structure, ξ = 1/2, with σ2
0 = 1, and n = 250 data

points. Parameter values and initial conditions used were β = R0, γ = 1, N = 10, 000,

S0 = 9900, and I0 = 100.
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The standard error for the estimate of γ is seen to decrease with R0, while that of

β exhibits non-monotonic behavior. For a fixed value of γ, increasing R0 leads to

more rapid spread of the infection and hence an earlier and higher peak in prevalence

(Figure 2.5). For large values of R0, the majority of the transmission events occur over

the timespan of the first few data points, meaning that fewer points within the data

set are informative regarding the spread of the infection. Consequently, it becomes

increasingly difficult to estimate β as R0 is increased beyond some critical value.

A linear expansion of the cost functional J(β, γ) about its minimum, (β0, γ0),

will generically give elliptical contours, so it is not too unexpected that the elliptical

contours are closely related to the (1−α)-confidence ellipses in the local regime [50].

Specifically, if we expand J about its minimum, (β0, γ0), we get:

J(β, γ) =
n
∑

i=1

wi(I(ti; β, γ)− I(ti; β0, γ0))
2

≈
n
∑

i=1

wi

(

I(ti; β0, γ0) + (β − β0)
∂I(ti; β0, γ0)

∂β

+(γ − γ0)
∂I(ti; β0, γ0)

∂γ
− I(ti; β0, γ0)

)2

=
n
∑

i=1

wi

(

(β − β0)
∂I(ti; β0, γ0)

∂β
+ (γ − γ0)

∂I(ti; β0, γ0)

∂γ

)2

= (β − β0)
2

n
∑

i=1

wi

(

∂I(ti; β0, γ0)

∂β

)2

+ (γ − γ0)
2

n
∑

i=1

wi

(

∂I(ti; β0, γ0)

∂γ

)2

+

2(β − β0)(γ − γ0)
n
∑

i=1

wi

(

∂I(ti; β0, γ0)

∂β

)(

∂I(ti; β0, γ0)

∂γ

)

Using the finite n approximation to equations (2.6) and (2.7), we have that σ2
0Σ

−1
0 =

χTWχ. Specifying the elements of the inverse of the 2× 2 covariance matrix in this
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equation gives

σ2
0

σ2
β̂
σ2
γ̂(1− ρ2

β̂,γ̂
)





σ2
γ̂ −ρβ̂,γ̂σβ̂σγ̂

−ρβ̂,γ̂σβ̂σγ̂ σ2
β̂





=





∑n
i=1 wi

(

∂I
∂β

)2
∑n

i=1 wi

(

∂I
∂β

)(

∂I
∂γ

)

∑n
i=1 wi

(

∂I
∂β

)(

∂I
∂γ

)

∑n
i=1 wi

(

∂I
∂γ

)2



 .

The above matrix equation gives us three unique equations for the summations in our

formulation of J . For example,
∑n

i=1 wi

(

∂I
∂β

)2

=
σ2
0

σ2

β̂
(1−ρ2

β̂,γ̂
)
. Thus, near its minimum,

the cost function can be approximated by

J(β, γ) ≈ σ2
0

1− ρ2
β̂,γ̂

(

(β − β0)
2

σ2
β̂

−
2ρβ̂,γ̂(β − β0)(γ − γ0)

σβ̂σγ̂

+
(γ − γ0)

2

σ2
γ̂

)

. (2.30)

We see that contours of the cost function are indeed of the same form as the confidence

ellipses described above.

As seen in Table 2.1, estimates of β and γ have relatively large uncertainties

when R0 is small. It would, for instance, be difficult to accurately estimate the

average duration of infection, 1/γ, for an infection such as seasonal influenza—which

is typically found to have R0 about 1.3 (ranging from 0.9 to 2.1) [27]—using the

least squares approach. Importantly, however, the estimate of R0 has a much lower

variation (as measured by the CV) than the estimates of β and γ. The strong positive

correlation between the estimates of β and γ reduces the variance of the R0 estimate,

as can be seen in Equation (2.26), and reflecting the earlier observation concerning

the orientation of the contours of the cost functional along lines of the form β = R0γ.

To yield these lines with slope R0 is why we choose to plot in the (γ, β) plane rather

than (β, γ).
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Figure 2.4: Contours of the cost functional J in the (γ,β)-plane (solid curves) for R0

equal to (a) 1.2, (b) 3, and (c) 10. A Poisson noise structure was assumed (ξ = 1/2),

with σ2
0 = 1 and n = 50 data points. Parameter values and initial conditions used

were β = R0, γ = 1, N = 10, 000, S0 = 9900, and I0 = 100.
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2.4 Results: Sampling Schemes and Uncertainty

of Estimates

Biological data is often difficult or costly to collect, so it is desirable to collect

data in such a way to maximize its informativeness. Consequently it is important to

understand how parameter estimation depends on the number of sampled data points

and the times at which the data are collected. This information can then be used to

guide future data collection. In this section we examine two approaches to address

this question: sensitivity analysis and data sampling.

2.4.1 Sensitivity

The sensitivities of a system provide temporal information on how states of the

system (data is usually one or more state variables) respond to changes in the param-

eters [76]. They can, therefore, be used to identify time intervals where the system

is most sensitive to such changes. Noting that the sensitivities are used to calculate

the standard errors in estimates of parameters, direct observation of the sensitivity

function provides an indication of time intervals in which data points carry more or

less information for the estimation process [8]. For instance, if the sensitivity to some

parameter is close to zero in some time interval, changes in the value of the parameter

would have little impact on the state variable. Conversely, more accurate knowledge

of the state variable at that time could not cause the estimated parameter value to

change by much.

For low values of R0, for example R0 = 1.2, we see that the sensitivity functions of

I(t) with respect to β and γ are near mirror images of each other (Figure 2.5a). This

mirror image phenomenon allows a change in one parameter to be easily compensated

by a corresponding change in the other parameter, giving rise to the strong correlation

between the estimates of the two parameters. Early in the epidemic, we see a similar

phenomenon for all values of R0. We comment further on this observation in the next

section.
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As R0 increases, the two sensitivity functions take on quite different shapes. Preva-

lence is much less sensitive to changes in β than to changes in γ. The sensitivity of

prevalence to β is greatest just before the epidemic peak, before becoming negative,

but small, during the late stages of the outbreak. The sensitivity becomes negative

because an increase in β would cause the peak of the outbreak to occur earlier, re-

ducing the prevalence at a fixed, later time. I remains sensitive with respect to γ

throughout much of the epidemic, reaching its largest absolute value slightly later

than the time at which the outbreak peaks.

While the sensitivity functions provide an indication of when additional, or more

accurate data, is likely to be informative, they have clear limitations, not least be-

cause they do not provide a quantitative measure of how uncertainty estimates, such

as standard errors, are impacted. Being a univariate approach they cannot account

for any impact of correlation between parameter estimates, as we shall see below,

although they can indicate instances in which parameter estimates are likely to be

correlated. Furthermore, they do not account for the different weighting accorded to

different data points on account of the error structure of the model, such as the re-

lationship between error variance and the magnitude of the observation being made.

Another type of sensitivity function, the generalized sensitivity function (GSF) in-

troduced by Thomaseth and Cobelli [81], which is based on the Fisher information

matrix, does account for these two factors. While the GSF does provide qualitative

information that can guide data collection, its interpretation is not without its own

complications [8] and, given that we found that it provided little additional insight

in the current setting, we shall not discuss it further here.

2.4.2 Data Sampling

In order to gain quantitative information about sampling schemes on parameter

estimation, as opposed to the qualitative information provided by inspection of the

sensitivity functions, we carried out three numerical experiments in which different

sampling schemes were implemented. The first approach involves altering the fre-
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Figure 2.5: Sensitivities of I(t) (i.e., prevalence) with respect to the model param-

eters β (solid curves) and γ (dashed curves) are shown on the upper panels of the

graphs for a) R0 = 1.2, b) R0 = 3 and c) R0 = 10. The lower panel of each graph

displays the corresponding prevalence-time curve. The initial conditions of the SIR

model were S0 = 9900, I0 = 100, with N = 10, 000 and γ was taken equal to one, so

β = R0.



35

quency at which data are sampled within a fixed observation window (i.e., one that

covers the duration of the outbreak). The second approach considers sampling at a

fixed frequency but over observation windows of differing durations. The third ap-

proach examines increasing the sampling frequency within specified sub-intervals of

a fixed observation window.

In the first sampling method we alter the frequency at which observations are

taken while keeping the observation window fixed. In other words, we increase n

while fixing t0 = 0 and tn = tend. Under relative observational error (ξ = 1) there is a

corresponding change in the error variance, keeping a constant signal to noise ratio.

If ξ < 1, increasing n decreases the signal to noise ratio of the data.

Adding additional data points in this way increases the accuracy of parameter

estimates, with standard errors eventually decreasing as n−1/2 (Figure 2.6, in which

prevalence data is used), in accordance with the asymptotic theory [80]. We point out

that changing the sampling frequency will typically not be an option in epidemiolog-

ical settings because data will be collected at some fixed frequency, such as once each

day or week, although, conceivably, a weekly sampling frequency could be replaced

by daily sampling.

For real-time outbreak analysis, the amount of available data will increase over

time as the epidemic unfolds [13]. Wearing et al. look at how estimates of R0 varies

as additional data points are obtained in [84], but there is no mention of uncertainty

values in those estimates. However, it is of practical importance to understand how

much data—and hence observation time—is required to obtain reliable estimates and

the extent to which estimates will improve with additional data points. Previously,

Cauchemez et al. have looked at confidence intervals of estimates of R0 as an epidemic

unfolds by using a Bayesian statistical framework in [20]. We will approach the

problem using asymptotic statistical theory.

Using Equation (2.6) and the known values of the parameters, we calculated

standard errors for parameter estimates based on the first nused data points, where

p + 1 ≤ nused ≤ n. As seen in Figures 2.7a and 2.7b, when only one parameter is

fitted, the standard error decreases rapidly at first, but its decrease slows significantly
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2
on this log-log plot. The variance-covariance matrix

Σ0 was calculated exactly (i.e., no curve-fitting was carried out) with the disease

prevalence under a Poisson noise structure, ξ = 1/2, with σ2
0 = 1. Parameter values

and initial conditions used were β = 3, γ = 1, N = 10, 000, S0 = 9900, and I0 = 100.
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just before the peak of the epidemic. Once this point in time has been reached, sub-

sequent data points provide significantly less additional information than did earlier

data points. In this setting, the most important time interval extends from the initial

infection to just before the peak of the outbreak. However, when both β and γ are

fitted, the interval of steep descent extends slightly beyond the peak of the epidemic,

as seen in Figure 2.8a. This indicates that it would be useful to collect data over

a longer interval in this case. Notice the log scale on the vertical axis for each of

the aforementioned plots. These figures suggest that the amount of information con-

tained in the earliest portion of an outbreak is orders of magnitude higher than that

contained in later portions.

Figure 2.8b shows the correlation coefficient between estimates of β and γ as the

epidemic progresses. It can be seen that estimates of β and γ are highly correlated

until the first inflection point of the epidemic curve, causing the significantly higher

standard errors as seen in Figure 2.8a. This behavior is not unexpected due to the

two sensitivity curves for prevalence being near mirror images early in the outbreak,

during the exponential growth phase.

Our final sampling method investigates the impact of removing a single data point

as a means of identifying the data points which provide the most information for the

estimation of the parameters. A baseline data set consisting of fifty evenly-spaced

points taken over the course of the outbreak was generated. Fifty reduced data sets

were created by removing, in turn, a single data point from the baseline data set.

Standard errors were then computed using the true covariance matrix, Σ0 for the

reduced data set (Equation (2.6)). (For this experiment, use of the true covariance

matrix allowed us to accurately observe these effects on standard errors that resulted

from the removal of a single data point. Errors introduced by solving the inverse

problem would make it impossible to ascertain trends.) The largest standard error

values in this group of data sets correspond to the most informative data points since

the removal of such points leads to the largest increase in uncertainty of the estimate.

As Figure 2.9 shows, when β is the only parameter fitted, the local maxima of the

standard error curve occur at the same time as the local extrema of the sensitivity
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Figure 2.7: Impact of increasing the length of the observation window on standard

errors of estimates of (a) β and (b) γ when each is estimated separately from preva-

lence data. The observation window is [0, tnused
], i.e., estimation was carried out using

nused data points. Because data points are equally spaced, the horizontal axis depicts

both the number of data points used and time since the start of the outbreak. For

reference, the prevalence curve, I(t), is shown in the lower panel of each graph. Stan-

dard errors are plotted on a logarithmic scale. The exact formula for Σ0 was used,

with σ2
0 = 1, S0 = 9900, I0 = 100, N = 10, 000, β = 3 and γ = 1. The Poisson noise

structure, ξ = 1/2, was employed.
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Figure 2.8: Illustrated in graph (a) is the impact of increasing the length of the

observation window on standard errors of estimates of β (solid curve) and γ (dashed

curve) when both are estimated simultaneously. Graph (b) displays the effect on the

correlation coefficient between estimates of β and γ. The observation window consists

of nused data points in the time interval [0, tnused
]. For reference, the prevalence curve,

I(t), is shown on the lower panels. All parameter values and other details are as in

the previous figure.
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curve, and the local minima occur when the sensitivity is close to zero. In this case,

the sensitivity function correctly identifies subintervals in which data are most or

least informative about β.

The picture is not quite as straightforward when β and γ are estimated simulta-

neously. Figure 2.10 shows that the local maxima of the standard error curves no

longer line up directly with the local extrema of the sensitivity curves. This is likely

due to the correlation between the estimates of β and γ: the off-diagonal terms of

χT(θ)W (θ)χ(θ) involve products of sensitivities with respect to the two different pa-

rameters. As a consequence, it is no longer sufficient to examine individual sensitivity

curves, but, as we have seen, the selective reduction method described here, based on

the asymptotic theory, can identify when additional data should ideally be sampled.

2.4.3 Data Sampling with Incidence Data

Previously, we presented our three data sampling methods using prevalence data.

In this section, we conduct the same experiments, but use incidence data.

In the first sampling method we alter the frequency at which observations are

taken while keeping the observation window fixed. In other words, we increase n

while fixing t0 = 0 and tn = tend. For incidence data, increasing the observation

frequency—i.e., reducing the period over which each observation is made—has the

important effect of reducing the values of the observed data and the corresponding

model values.

As before, adding additional data points in this way increases the accuracy of pa-

rameter estimates, with standard errors eventually decreasing as n−1/2 , in accordance

with the asymptotic theory [80]. This is still the case for incidence data even when

ξ < 1 where the signal to noise ratio decreases in n as can be seen in Figure 2.11.

The results of our second data sampling method, calculating standard errors for

parameter estimates based on the first nused data points, and third method, calculating

standard errors for parameter estimates based on removing a single data point, when

applied to incidence data can be seen in Figures 2.12-2.14.
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errors were calculated using Equation (2.6) and each is plotted at the time ti cor-

responding to the removed data point. For comparison, the sensitivity of I(t) with

respect to β is also shown (dotted curve). Synthetic data was generated using the

parameter values σ2
0 = 102, S0 = 9900, I0 = 100, N = 10, 000, β = 3 and γ = 1. The

additive noise structure, ξ = 0 was assumed.
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Figure 2.10: Standard errors for the simultaneous estimation of β and γ from

prevalence data using the single point removal method as discussed in the text (solid

curves). Standard errors were calculated using Equation (2.6), and each is plotted

at the time ti of the removed data point. Panel (a) shows the standard error for

the estimate of β (solid curve), together with the baseline standard error (without

removing any points) also plotted (dashed curve), and the sensitivity of I(t) with

respect to β (dashed curve). Panel (b) shows the standard error for the estimate of

γ (solid curve), together the baseline standard error also plotted (dashed curve), and

with the sensitivity of I(t) with respect to γ (dashed curve). All parameter values

and other details are as in the previous figure.
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Equation (2.6), using the true values of the parameters. The variance-covariance

matrix Σ0 was calculated exactly (i.e., no curve-fitting was carried out) with the

disease incidence under a Poisson noise structure, ξ = 1/2, with σ2
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I0 = 100.
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errors of estimates of β (dashed curve) and γ (solid curve) when each is estimated

separately from incidence data. The observation window is [0, tnused
], i.e., estimation

was carried out using nused data points. Because data points are equally spaced, the

horizontal axis depicts both the number of data points used and time since the start

of the outbreak. For reference, the incidence curve, z(t), is superimposed. Standard

errors are plotted on a logarithmic scale. The exact formula for Σ0 was used, with

parameter values σ2
0 = 1, S0 = 9900, I0 = 100, N = 10, 000, β = 3 and γ = 1. The

Poisson noise structure, ξ = 1/2, was employed.
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incidence data using the single point removal method as discussed in the text (solid
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γ (solid curve), together the baseline standard error also plotted (dashed curve), and

with the sensitivity of z(t) with respect to γ (dashed curve). All parameter values

and other details are as in the previous figure.
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2.5 Discussion

Parameter values estimated from real-world data will always be accompanied by

some uncertainty. Estimates of this uncertainty allow us to judge how reliable the

parameter estimates are and how much faith should be put in any predictions made

on their basis. As such, uncertainty estimates should always accompany estimates

of parameter values. The asymptotic statistical theory employed here provides a

reasonably straightforward way to obtain such information when least-squares fitting

is used as the estimation process.

The use of a number of synthetic data sets, generated under a number of different

scenarios concerning the transmissibility of infection, has allowed us to get a broader

understanding of the parameter estimation process than would have been possible

if we had limited attention to a single data set. As we have demonstrated, the un-

certainties that accompany parameter estimation, and even our ability to separately

identify parameters—even with this simplest of SIR models—can be extremely var-

ied based on the underlying parameter values and the parameter set being fitted. A

primary reason for difficulties in estimation stems from correlations between parame-

ter estimates. Even if individual parameter estimates have large uncertainties it can

still be possible to estimate epidemiologically important information, e.g., the basic

reproductive number R0, with much less uncertainty.

It should be noted that all experiments presented here were conducted with knowl-

edge that the underlying model was correct. However, in scenarios with real data this

assumption is not valid and results in a further layer of uncertainty. The effects on

estimation when using the wrong model have been explored by authors such as Wear-

ing and Lloyd [61, 84] but many questions still remain. We shall explore this issue

further in a later chapter.

Increasing the number of observations made at critical times during the epidemic

can provide a substantial gain in the precision of the estimation process. While the

sensitivity equations of the model provide a general idea of times at which additional

data will be most informative, they do not tell the whole story. The asymptotic
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statistical theory, together with the data point removal technique, can be used to

guide data collection. This approach can be employed once a parameter set is known:

this might be one based on a preliminary set of estimates, expert opinon, or even

a best-guess. Some aspects of our discussion do, however, require more detailed

information on the magnitude and nature of the noise in the data.

We chose to focus our attention on perhaps the simplest possible setting for the

estimation process, one for which the SIR model was appropriate. Unfortunately, few

real-world disease transmission processes are quite this simple; in most instances, a

more complex epidemiological model, accompanied by a larger set of parameters and

initial conditions, would be more realistic. It is not hard to imagine that many of

the issues discussed here would be much more delicate in such situations: parameter

identifiability, in particular, could be a major concern (we shall investigate problems

arising from parameter identifiability more in the following chapter). The approach

employed here would reveal whether such problems would accompany estimation

using a given model, and indeed can be used to guide the selection of models and/or

parameter sets that can be used or estimated reliably. Again, this emphasizes the need

for the estimation process to be accompanied by some account of the uncertainties,

but not only in terms of uncertainties of individual estimates but also of correlation

between estimates.
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Chapter 3

Parameter Identifiability and

Subset Selection

The first section of this chapter is an expanded version of one section of the pa-

per “Parameter Estimation and Uncertainty Quantification for an Epidemic Model,”

which has been accepted by the journal Mathematical Biosciences and Engineering

(MBE) for publication pending minor revisions. The second section of this chapter is

portions of the paper “A Sensitivity Matrix Based Methodology for Inverse Problem

Formulation” published in the Journal of Inverse and Ill-Posed Problems written to-

gether with Dr. Ariel Cintrón-Arias with senior authors Dr. H. T. Banks and Dr.

Alun. L. Lloyd [28]. My contributions to the paper include development of the subset

selection algorithm and the justification for the use of the condition number of the

sensitivity matrix as a metric of parameter identifiability.

Simultaneously estimating several parameters can bring into question the identi-

fiability of those parameters. Oftentimes, parameter estimates are highly correlated:

the values of two or more parameters cannot be estimated independently. For in-

stance, it may be the case that, in the vicinity of the best fitting parameter set, a

number of sets of parameters lead to effectively indistinguishable model fits, with

changes in one estimated parameter value being able to be offset by changes in an-

other. Thus, there may not be uniqueness to the solution to the inverse problem.
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When parameter identifiability is questionable, it may be prudent to perform subset

selection. That is, fixing insensitive parameters at some nominal values and then

estimating the remainder.

Section 3.1 of this chapter highlights specific situations with simple infectious

disease models where parameter identifiability can be problematic and offers a quan-

titative means of measuring identifiability. In Section 3.2, we present an algorithm

for performing subset selection.

3.1 Parameter Identifiability

In the previous chapter, it was shown that in the setting of R0 approaching one,

there can be considerable difficulty in independently estimating a pair of parameters.

It seems reasonable to expect that parameter identfiability would become a more

delicate issue if larger sets of parameters were estimated. In this section we shall

explore the identifiability of parameters when combinations of β, γ, S0 and I0 are

estimated. In the past, this concept has been explored by a number of authors (for

example, [15], [17], [28], [50]).

It has been shown by Evans et al. in [37] that the SIR model with demography

is identifiable for all model parameters and initial conditions (which are treated as

parameters). They use a strict definition of non-identifiability, where in such a model,

a change in one parameter can be compensated by changes in other parameters.

However, the authors also concede that while the model may be identifiable, that

property alone does not give insight into the ease of estimation of certain subsets of

parameters. For example, by their definition, two parameters whose estimates have

a correlation coefficient of 0.99 would be identifiable, yet they may not be easily

estimated separately. In this chapter, we use quantitative methods to assess ease of

parameter identifiability in the context of subset selection.

It was stated in the previous chapter that the asymptotic statistical theory re-

quires the limiting matrix Ω0 to be invertible. With a finite-sized sample, we instead

require this of Ω
(n)
0 . Non-identifiability leads to these matrices being singular, or close
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to singular [17], and so one method for determining whether model parameters are

identifiable involves calculating the condition number of Ω
(n)
0 , or, equivalently the

condition number of the matrix Σ(n) (this is elaborated on in Section 3.2). The con-

dition number, κ(X), of a nonsingular matrix X is defined to be the product of the

norm of X and the norm of X−1. If we take the norm to be the usual induced matrix

2-norm, we have that the condition number of X is the ratio of the largest singular

value (from a singular value decomposition) of X to the smallest singular value of X

[66].

3.1.1 Application to Epidemic Scenario

Initially, we investigate the case where only β and γ are fitted. In this situation,

we are able to find an expression for κ(Σ) by taking the ratio of the eigenvalues of

the 2× 2 Σ matrix as follows

κ(Σ) =
σ2
β̂
+ σ2

γ̂ +
√

σ4
β̂
+ σ4

γ̂ − 2σ2
β̂
σ2
γ̂ + 4ρ2

β̂,γ̂
σ2
β̂
σ2
γ̂

σ2
β̂
+ σ2

γ̂ −
√

σ4
β̂
+ σ4

γ̂ − 2σ2
β̂
σ2
γ̂ + 4ρ2

β̂,γ̂
σ2
β̂
σ2
γ̂

. (3.1)

For given standard errors, it is easy to show that as the correlation between estimates

of β and γ approaches one, the condition number goes to infinity. However, it is

not practical to construct a situation where the correlation changes while keeping

standard errors of the parameters constant, thus we examine the condition number

across multiple values of R0 in Figure 3.1. As Figure 3.1 illustrates, it is more difficult

to rely on estimates of β and γ when R0 approaches one. This corroborates what we

have previously seen for the correlation coefficient (see Figure 2.3a).

Numerical experiments show that when more parameters are fitted to the data,

identifiability becomes a more serious issue. In such cases, while we can no longer give

a simple expression for κ(Σ0) since it is a function of the parameters and even the data,

it provides insight into parameter identifiability. We examine κ(Σ0) across different

subsets of fitted parameters as seen in Table 3.1. As we increase the number of

parameters fitted, the condition number can increase by multiple orders of magnitude.
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Figure 3.1: Dependence of the condition number of the 2 × 2 variance-covariance

matrix (fitting β and γ) on the value of R0. The condition number is displayed on a

log scale. The variance-covariance matrix Σ0 was calculated exactly (i.e., no curve-

fitting was carried out) under a Poisson noise structure, ξ = 1/2, with σ2
0 = 1, and

n = 250 data points. Parameter values and initial conditions used were β = R0,

γ = 1, N = 10, 000, S0 = 9900, and I0 = 100.
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Table 3.1: Standard errors of β and γ, the correlation coefficient between estimates

of β and γ and the condition number of the χTWχ matrix when R0 = 3 when fitting

different sets of parameters. ξ = 1/2, N = 10, 000, S0 = 9900, I0 = 100, β = 3, γ = 1

and σ2
0 = 104.

Parameters Fitted σβ σγ ρ κ
β, γ 0.3419 0.1142 -0.2067 5.2211× 100

β, γ, S(0) 17.094 1.9936 -0.9984 5.5760× 109

β, γ, I(0) 1.7536 0.1176 0.3534 1.2000× 106

β, γ, S(0), I(0) 44.655 3.3060 -0.9548 1.4383× 1010

This is evident whenever we fit both β and S0. Notice that for the larger κ values, the

magnitude of ρ is very near to one, indicating strong correlation between estimates of

β and γ. Thus, we can surmise that as we increase the number of fitted parameters,

our ability to identify individual parameters decreases, especially if the parameters

added to θ have correlated estimates. Knowing exactly which parameters should be

removed from θ (and set to nominal values) to have an identifiable set is called subset

selection, and is the focus of Section 3.2.

3.1.2 Application to Endemic Scenario

Up to this point, we have considered the informativeness of data from a single

outbreak—i.e. an epidemic. As discussed in Subsection 1.2.3, many infections ex-

hibit endemic behavior, which could take the form of a stable equilibrium, periodic

oscillations, or more complex dynamics. We now ask the question of how much infor-

mation about model parameters can be extracted from data describing such endemic

settings. Many infections such as the seasonal flu, or measles outbreaks prior to

national vaccination campaigns, are persistent, so it is likely that data from these

outbreaks contain periodic oscillations. If this is the case, it would be very valu-

able to understand how much information these data contain about the transmission

parameter, average duration of infection and other model parameters.

We will use the demographic SIR model (Equation 1.7) with seasonal forcing
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(Equation 1.10), since it is a one of the simplest models that contain the dynamics

we would like to study. We will assume the transmission phase shift t0 is zero for

simplicity, which merely corresponds to measuring time from some particular point

in the year. Note that a = 0 corresponds to an endemic equilibrium rather than a

limit cycle.

If we have the demographic SIR model at equilibrium, our only datum is value

I∗ from Equation 1.9. Although this value is a combination of all model parameters

(R0 = β/γ, γ, µ, N) and thus would contain information about each of them, we

still have a dramatically underdetermined system. However, it is plausible to have

a priori information about N , 1/γ, and 1/µ. In such a case, obtaining R0 from this

single point is achieveable. If we have data about the approach to the equilibrium,

such as from a system perturbation, we gain some more information about the model

parameters. It is this fact that makes one wonder how much information can be

gleaned from a system that does not sit at equilibrium, but follows a limit cycle.

To perform uncertainty quantification on estimates of model parameters as ex-

plained in Section 2.1, the sensitivity equations must be obtained whether analytically

or numerically. Even though this system is non-autonomous, we are able to express

the sensitivities of this SIR model analytically.

Writing the sensitivities of the state variables with respect to the model parameters

as φ1 = ∂S/∂β0, φ2 = ∂S/∂γ, φ3 = ∂S/∂µ, φ4 = ∂S/∂a φ5 = ∂I/∂β0, φ6 = ∂I/∂γ,
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φ7 = ∂I/∂µ, and φ8 = ∂I/∂a, the following sensitivity equations are obtained

dφ1

dt
= −

(

µ+
β(t)I

N

)

φ1 −
(

β(t)S

N

)

φ5 −
SI

N
(1 + a sin 2πt) (3.2)

dφ2

dt
= −

(

µ+
β(t)I

N

)

φ2 −
(

β(t)S

N

)

φ6 (3.3)

dφ3

dt
= −

(

µ+
β(t)I

N

)

φ3 −
(

β(t)S

N

)

φ7 +N − S (3.4)

dφ4

dt
= −

(

µ+
β(t)I

N

)

φ4 −
(

β(t)S

N

)

φ8 −
β0SI sin 2πt

N
(3.5)

dφ5

dt
=

β(t)I

N
φ1 +

(

β(t)S

N
− (µ+ γ)

)

φ5 +
SI

N
(1 + a sin 2πt) (3.6)

dφ6

dt
=

β(t)I

N
φ2 +

(

β(t)S

N
− (µ+ γ)

)

φ6 − I (3.7)

dφ7

dt
=

β(t)I

N
φ3 +

(

β(t)S

N
− (µ+ γ)

)

φ7 − I (3.8)

dφ8

dt
=

β(t)I

N
φ4 +

(

β(t)S

N
− (µ+ γ)

)

φ8 +
β0SI sin 2πt

N
, (3.9)

with the initial conditions φi(0) = 0 for i = 1, ..., 8.

We ran multiple forward simulations of the seasonal model at various values of

the strength of seasonality to see how this parameter’s value affects the estimation

process. To ensure that we had arrived at the limit cycle, we initialized the system at

the endemic equilibrium point (Equation 1.9) and then allowed the system to run for

900 years to run off its transient behavior before we began using the model output.

We found that as the strength of seasonality parameter, a, is increased from 0 to

a qualitatively large value, 0.5, the magnitude of the correlations between pairs of

estimates the parameters β0, γ, µ and a all remain very close to 1 (results not shown).

That is, they are not easily uniquely identifiable. Although the correlation between

estimates of all the parameters remains high, the coefficients of variation of all the

model parameters are reduced as the strength of seasonality increases. Specifically,

when examining the CV for the parameter combination β0/γ (the baseline trans-

missibility), we see that it becomes substantially easier to estimate as the strength

of seasonality increases (see Figure 3.2). So as with the simple SIR model from the
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previous chapter when R0 approached 1, we had that the constituent parts of R0 were

difficult to estimate, yet we still had a relatively easier time estimating R0. A similar

scenario is true in this instance, where we have a seasonal model at its limit cycle.

Thus, for seasonal endemics at limit cycles, it can be difficult, if not impossible, to

uniquely identify the basic model parameters but obtaining a useful estimate of β0/γ

is still possible.

3.2 Subset Selection Algorithm

In the last section, we highlighted situations where some parameters provide re-

dundant information about the data. Redundant information can imply that some

parameters may be impossible to determine uniquely—this is the issue of parameter

identifiability. When one attempts to solve the inverse problem for a parameter set

that is non-identifiable, one can obtain parameter estimates that are dramatically dif-

ferent, but still produce the same, or nearly the same, states. This can be problematic

when conducting the inverse problem to determine parameters that have real inter-

pretations, such as wanting to determine 1/γ, the average duration of infection. We

have given some ways to recognize when parameters are non-identifiable (correlation

between two parameter estimates is near one in magnitude or the condition num-

ber of the covariance matrix is large). It would be beneficial, however, to formalize a

quantitative approach to find, a priori, a subset of parameters that are identifiable, so

that the inverse problem can be solved more easily. This section will present a subset

selection algorithm, which was developed by the author together with Ariel Cintrón-

Arias in [28]. The remainder of this chapter is in large part based on that work. To

remain consistent with the original paper some introductory material is reiterated

and some notation may differ slightly (we will highlight this when it occurs).

In particular, in this section we investigate the problem of finding multiple so-

lutions for unknown parameters from observations with a statistical error structure

(a more practical setting than one assuming noise free observations). We address

parameter identifiability by exploiting properties of both the sensitivity matrix and
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Figure 3.2: Plots of the coefficients of variation for the model parameters β0, γ, µ, a

and R0 versus the strength of seasonality a when the system has reached its limit cycle.

The highest curve is the coefficient of variation of R0, which is significantly decreased

as the strength of seasonality increases. Parameter values used were β0 = 15/14,

γ = 1/14 days, µ = 1/70 years, and N = 100, 000. The value of γ and β0 are such

that the model approximates measles (with an R0 ≈ 15), a highly-infectious disease

with seasonal transmission. The exact formula for Σ0 was used with σ2
0 = 1. The

absolute noise structure, ξ = 0, was employed.



58

uncertainty quantifications in the form of standard errors. We propose an algorithm

inspired by [15, 17], to select parameter combinations (vectors) in two stages. In the

first stage, all possible parameter combinations (i.e., subsets of all parameters) are

considered and only those with a full rank sensitivity matrix are selected. In the

second stage, a score involving uncertainty quantification (standard errors) is calcu-

lated for each parameter vector selected in the first stage. Then parameter subset

combinations are examined in view of their score and the condition number of cor-

responding sensitivity matrices. We believe that some form of this type of practical

identifiability analysis [5] could be carried out a priori, i.e., before any attempt to

solve inverse problems (from experimental observations) is made. We illustrate the

ideas and methodology with a seasonal epidemic model.

The Fisher information matrix,

F = χTWχ, (3.10)

whose inverse appears in Equation 2.22, has historically been the target of studies

of identifiability (for example, [9, 81]). If χT (θ0)χ(θ0) (henceforth in this chapter we

will use the OLS approach which, sets W = I) is nearly singular, then θ̂ may be very

sensitive to observation errors. Moreover, near-singularity (or ill-conditioning [44]) of

F may also affect the approximation of the covariance matrix Σ, and consequently the

calculation of standard errors for estimated parameters as we have seen in Section 3.1.

Yet, while there are many experiments that can be done using the Fisher information

matrix, our approach will rely on properties of the sensitivity matrix χ and the

standard errors calculated using Equation 2.22.

We discuss the singular value decomposition approach and justify the use of the

condition number of χ, rather than χTχ as a diagnostic tool below.

To motivate the role singular value decomposition plays in uncertainty assessment,

we consider another linearization that relates the estimator θ̂ to the singular values

of the rectangular sensitivity matrix χ.

Suppose the model output M(θ) is well approximated by its linear Taylor expan-
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sion around θ0, i.e.,

M(θ) ≈ M(θ0) + χ(θ0)(θ − θ0). (3.11)

This first order Taylor expansion can be used to reduce Y −M(θ) to an affine trans-

formation of θ, by using Equations 3.11 and 2.1:

Y −M(θ) = −χ(θ0)(θ − θ0) + E , (3.12)

where χ(θ0) ∈ R
n×p, θ − θ0 ∈ R

p, E is an R
n-valued random variable, and n > p.

The singular value decomposition (SVD) of the sensitivity matrix χ(θ0) is denoted

as

χ(θ0) = U

[

Λ

0

]

V T , (3.13)

where U is an n× n orthogonal matrix, Λ is a p× p diagonal matrix and V denotes

an orthogonal p × p matrix. Specifically, since U is orthogonal, UTU = UUT = In,

and U1 contains the first p columns of U and U2 contains the last n − p columns,

U = [U1 U2]; we define Λ = diag(s1, . . . , sp), with s1 ≥ s2 ≥ · · · ≥ sp ≥ 0; 0 denotes

an (n − p) × p matrix of zeros; and since V is orthogonal, V TV = V V T = Ip (more

details about SVD can be found in [44, 66] and references therein).

The Euclidean norm is invariant under orthogonal transformations. In other

words, for any vector w ∈ R
n we have that |w|2 = wTw = wT Iw = wTUUTw =

|UTw|2. According to [44, 70] this invariance of the Euclidean norm implies

|−χ(θ0)(θ − θ0) + E|2 =
∣

∣UT (−χ(θ0)(θ − θ0) + E)
∣

∣

2
(3.14)

=

∣

∣

∣

∣

∣

−
[

Λ

0

]

V T (θ − θ0) +

[

UT
1

UT
2

]

E
∣

∣

∣

∣

∣

2

(3.15)

=
∣

∣−ΛV T (θ − θ0) + UT
1 E
∣

∣

2
+
∣

∣UT
2 E
∣

∣

2
. (3.16)

The estimator θ̂OLS minimizes |Y − M(θ)|2 and according to equations (3.12)

and (3.16) can be calculated by solving
∣

∣−ΛV T (θ − θ0) + UT
1 E
∣

∣

2
= 0, for θ and thus

obtaining

θ̂OLS = θ0 + V Λ−1UT
1 E = θ0 +

p
∑

i=1

1

si
viu

T
i E , (3.17)
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where vi ∈ R
p and ui ∈ R

n denote the ith columns of V and U , respectively (the

matrix V has column partitioning V = [v1, . . . , vp] ∈ R
p×p, while U = [u1, . . . , un] ∈

R
n×n).

At this point we need a couple of definitions. The range of a matrix C ∈ R
n×p

with column partitioning C = [c1, . . . , cp] is defined as the subspace spanned by its

columns, i.e.,

R(C) =

{

p
∑

j=1

qjcj ∈ R
n : qj ∈ R

}

. (3.18)

The rank of a matrix C ∈ R
n×p is equal to the dimension of R(C):

rank(C) = dim(R(C)). (3.19)

If rank(C) < p (because we are assuming there are more observations than parame-

ters, i.e., n > p) the matrix C ∈ R
n×p is said to be rank deficient. On the other hand,

if rank(C) = p we say the matrix C ∈ R
n×p has full (column) rank [44].

For a full rank sensitivity matrix χ(θ0) ∈ R
n×p (assuming rank(χ(θ0)) = p and

s1 ≥ s2 ≥ · · · ≥ sp > 0) its condition number κ is defined as the ratio of the largest

to smallest singular value [44]:

κ(χ(θ0)) =
s1
sp
. (3.20)

We note that if the matrix χ(θ0) has full rank and a large condition number

(a feature known as ill-conditioning [44]), then the Fisher information matrix F =

χ(θ0)
Tχ(θ0) inherits a large condition number. Equation 3.13 implies the SVD of

χ(θ0)
Tχ(θ0) is

χ(θ0)
Tχ(θ0) = V Λ2V T , (3.21)

and therefore

κ(χ(θ0)
Tχ(θ0)) =

s21
s2p

=

[

s1
sp

]2

= κ(χ(θ0))
2. (3.22)

As discussed in [44], the columns of χ(θ0) are nearly dependent if and only if

κ(χ(θ0)) is large. In other words, if κ(χ(θ0)) is not large (the matrix χ(θ0) is well-

conditioned) then the columns of the sensitivity matrix are not nearly dependent,
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suggesting one could use the condition number of χ(θ0) as a criterion to select pa-

rameter combinations.

Now we propose an algorithm for parameter selection which is based on the rank

and condition number of the sensitivity matrix rather than the Fisher information

matrix.

The identifiability analyses developed by Brun, et al., [15], and Burth, et al.,

[17], motivate the subset selection algorithm introduced in this section. Both of

these approaches use submatrices of the Fisher information matrix in their selection

procedures. Burth, et al., implemented a reduced-order estimation by determin-

ing which parameter axes lie closest to the ill-conditioned directions of the Fisher

information matrix, and then by fixing the associated parameter values at priori es-

timates throughout an iterative estimation process. The subset selection keeps the

well-conditioned parameters (those that can be estimated with little uncertainty from

given measurements) active in the optimization, subject to having the corresponding

Fisher information submatrix with a small condition number. Brun, et al., determine

identifiability of parameter combinations using the eigenvalues of submatrices that

result from excluding columns from of the Fisher information matrix. They quan-

tify the near dependence of columns in the sensitivity submatrix using the smallest

eigenvalue of the Fisher information submatrix.

We propose an algorithm that searches all possible parameter combinations and

selects some of them, based on two main criteria: the full rank of the sensitivity

matrix, and uncertainty quantification as embodied in asymptotic standard errors.

Our approach is numerical and we illustrate its use with the SEIRS model intro-

duced in the next section. To carry out the algorithm we require prior knowledge of

nominal variance and nominal parameter values.

Henceforth, we use the terms “parameter combination” and “parameter vector”

interchangeably. Parameter vectors θ ∈ R
p will be considered for different fixed values

of p.
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The set

Sp = {θ = (λ1, λ2, . . . , λp) ∈ R
p| λk ∈ I, λk 6= λm∀ k,m = 1, . . . , p} (3.23)

collects the parameter vectors explored by a combinatorial search.

We define the set

Θp = {θ| θ ∈ Sp ⊂ R
p, rank(χ(θ)) = p}, (3.24)

where χ(θ) denotes the n× p sensitivity matrix, and its rank is defined by Equation

3.19. By construction, the elements of Θp are parameter vectors that give sensitivity

matrices with independent columns.

An important step in the selection procedure involves the calculation of standard

errors (uncertainty quantification) using the asymptotic theory described in Section

2.1. For every θ ∈ Θp, we define a vector of coefficients of variation ν(θ) ∈ R
p such

that for each i = 1, . . . , p,

νi(θ) =

√

(Σ(θ))ii
θi

,

and

Σ(θ) = σ2
0

[

χ(θ)Tχ(θ)
]

−1 ∈ R
p×p.

Next, define

α(θ) = |ν(θ)|.

We call α(θ) the parameter selection score, and remark that α(θ) near zero indicates

lower uncertainty possibilities in the estimation while large values of α(θ) suggest

that one could expect to find wide uncertainty in at least some of the estimates.

In the optimization literature the term “feasible” usually denotes a vector sat-

isfying inequality or equality constraints. Here we use this term in the context of

identifiability: a feasible parameter vector denotes a combination that can be esti-

mated from data with reasonable to little uncertainty. More precisely, we say a given

θ ∈ Θp is a feasible parameter vector if both α(θ) and κ(χ(θ)) are relatively small.

We summarize the steps of the algorithm as follows:
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• Combinatorial Search Let I be the set of all possible parameters λi. For a

fixed p calculate the set

Sp = {θ = (λ1, ..., λp) ∈ R
p|λk ∈ I, λk 6= λm∀ k,m = 1, ..., p} . (3.25)

The set Sp collects all the parameter vectors obtained from a combinatorial

search.

• Full Rank Test Calculate the set of viable parameters Θp as

Θp = {θ|θ ∈ Sp ⊂ R
p, rank(χ(θ)) = p} . (3.26)

• Standard Error Test For every θ ∈ Θp calculate a vector of coefficients of

variation ν(θ) ∈ R
p×p by

νi(θ) =

√

Σ(θ)i,i
θi

, (3.27)

for i = 1, ..., p, and Σ(θ) = σ2
0

[

χT (θ)χ
]

−1 ∈ R
p. Calculate the parameter

selection score as α(θ) = |ν(θ)|.

We will now apply this algorithm in the next section.

3.2.1 Application to Endemic Scenario

We introduce a specific model, the standard Susceptible-Exposed-Infective-Recovered-

Susceptible (SEIRS) model, to illustrate the algorithm from the previous section. In

particular we consider a seasonal model for disease spread and progression in a pop-

ulation. Seasonal patterns of disease incidence are observed in epidemics of influenza

[35], meningococcal meningitis [73], measles [3], and rubella [87], to mention a few.

Many temporal factors play a role in the formation of cyclical patterns, for instance

[45]: (i) survival of the pathogen outside the host, (ii) host behavior and (iii) host

immune function.

Cyclical incidence patterns are often modeled with a transmission parameter being

a function of time. We denote the time-dependent transmission parameter by β(t);



64

it is traditionally defined by [35, 52]

β(t) = β0 [1 + β1 cos(2π(t− t0))] , (3.28)

where β0 is called the baseline level of transmission, β1 is known as the amplitude of

seasonal variation or simply the strength of seasonality, and t0 denotes the transmis-

sion parameter phase shift. (This is similar to the transmission function described by

Equation 1.10, only that we previously employed the sine curve and β1 = a. We shall

remain consistent here with the notation of the original publication [28].) We may,

for convenience, derive an equivalent formulation. Because

β1 cos(2π(t− t0)) = a1 cos(2πt) + b1 sin(2πt),

where a1 = β1 cos(2πt0) and b1 = β1 sin(2πt0), we may re-write Equation 3.28 as

β(t) = β0 (1 + a1 cos(2πt) + b1 sin(2πt)) . (3.29)

The time-dependent transmission parameter β(t), as defined in Equation 3.29, is

used in the seasonal epidemic model introduced here.

Four main epidemiological events are described: latent infection, active infection,

recovery, and loss of immunity. It is assumed that individuals becoming infected

undergo latency, a period of time during which they are incapable of effectively trans-

mitting the infectious agent, before progressing into active infection. People recover

from active infection and develop temporary immunity (they will eventually become

susceptible once again). Four epidemiological classes are considered, and at time t

the number of: susceptible is denoted by S(t); latent or exposed is denoted by E(t);

infectious is denoted by I(t); and recovered or temporarily immune is denoted by
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R(t). The nonlinear differential equations [59, 79]

dS

dt
=

1

P
N +

1

L
R(t)− β(t)S(t)

I(t)

N
− 1

P
S(t) (3.30)

dE

dt
= β(t)S(t)

I(t)

N
− 1

M
E(t)− 1

P
E(t) (3.31)

dI

dt
=

1

M
E(t)− 1

D
I(t)− 1

P
I(t) (3.32)

dR

dt
=

1

D
I(t)− 1

L
R(t)− 1

P
R(t) (3.33)

N = S(t) + E(t) + I(t) +R(t) (3.34)

S(t0) = S0 (3.35)

E(t0) = E0 (3.36)

I(t0) = I0 (3.37)

R(t0) = N − S0 − E0 − I0, (3.38)

define the epidemic dynamics known as an SEIRS model. This formulation takes into

account demographic processes (the birth rate is N/P and the average life span is P )

while assuming the total population size N remains constant.

The mean latency period is denoted by M , while the average length of active

infection is denoted by D. It is also assumed immunity lasts an average of L units of

time.

(Notice that 1/P = µ, 1/M = ν and 1/D = γ from our earlier formulation of the

SEIR model and SIR model with demography in Chapter 1.)

As in the previous section, we consider a scenario where the initial conditions of

the SEIRS model (S0, E0, and I0) may be unknown, and may need to be estimated,

along with all the other model parameters. We apply inverse problem methodologies

to determine estimates of the vector parameter

θ = (S0, E0, I0, N, L,D,M, P, β0, a1, b1)
T ∈ R

p = R
11, (3.39)

according to an ordinary least squares criterion.

The subset selection algorithm is illustrated first by solving inverse problems from

synthetic observations. We construct a synthetic data in a similar way to the process
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Table 3.2: Nominal parameter values for the SEIRS model.
Parameter Nominal Value Units

S0 2.78× 105 people
E0 1.08× 10−1 people
I0 1.89× 10−1 people
N 1× 106 people
L 5 years
D 9.59× 10−3 years
M 5.48× 10−3 years
P 75 years
β0 375 years−1

a1 2× 10−2 1
b1 −2× 10−2 1

in Section 2.2. We suppose a nominal parameter vector and a nominal error variance

are equal to θ0 (true parameter vector) and σ2
0 (true variance), respectively. Random

noise is then added to the model output (incidence, in this case) as follows:

Yi = z(ti; θ0) + εi, (3.40)

where εi is a normal random variable, i.e., εi ∼ N (0, σ2
0). A realization yi of the

observation process Yi, is calculated by drawing independent samples ei from the

normal distribution so that

yi = z(ti; θ0) + ei for i = 1, . . . , n.

We assume the observation error variance is σ2
0 = 500, and assume the nominal

parameter values for the SEIRS model that are presented in Table 3.2.

For the purposes of this example, we slightly modify the algorithm presented in

the previous section as follows. When p = 11 the parameter combination

θ = (S0, E0, I0, N, L,D,M, P, β0, a1, b1) ∈ R
11, (3.41)

with the nominal parameter values given in the next section, produces a rank defi-

cient sensitivity matrix χ(θ) for the SEIRS model. For p = 3 the only parameter
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combination considered here is that of the transmission parameters, i.e.,

θ = (β0, a1, b1) ∈ R
3. (3.42)

Other parameter vectors for fixed values of p = 4, . . . , 10 are considered in the fol-

lowing way. For each fixed j = 1, . . . , 7, and therefore fixed p = 3 + j, we explore

parameter vectors of the form

θ = (λ1, λ2, . . . , λj, β0, a1, b1) ∈ R
p, (3.43)

where for k = 1, . . . , j,

λk ∈ {S0, E0, I0, N, L,D,M, P} = I,

such that no entries of θ in Equation 3.43 are repeated.

To illustrate the algorithm we consider several values of p, while using the MAT-

LAB (The Mathworks, Inc.) routine rank (this routine computes the number of

singular values that are greater than “machine tolerance”).

Results for p = 5 (using the nominal parameter values) are displayed in Figure 3.3

(on logarithmic scales), where α(θ) is depicted as a function of κ(χ(θ)) for all θ ∈ Θ5.

The pairs in the lower-left corner of Figure 3.3 correspond to feasible parameter

vectors, because α(θ) and κ(χ(θ)) are here relatively small.

The subset selection algorithm was applied for p = 4, . . . , 10, while using the

nominal variance and parameter values. We find that there is not a single parameter

combination with p = 10 that has a full rank sensitivity matrix. For p = 9, only

three parameter vectors pass the full rank test, and none of which can be considered

feasible. We summarize the feasible parameter vectors in Table 3.2.1 for p = 4, . . . , 8,

where each feasible θ ∈ Θp is displayed along with κ(χ(θ)) and α(θ). The cutoffs

used to select the parameter combinations in Table 3.2.1 were somewhat arbitrary

but relative to the smallest values computed for the two criteria (condition number

and selection score) in each example.

The OLS inverse problems were solved by implementing a subspace trust region

method (based on an interior-reflective Newton method [70]). We used the MATLAB



68

10
6

10
7

10
8

10
9

10
10

10
11

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Condition number of sensitivity matrix

Se
le

ct
io

n 
sc

or
e

Figure 3.3: Parameter selection score α(θ) versus the condition number κ(χ(θ)) of

the n×p sensitivity matrix, for all parameter vectors θ ∈ Θp with p = 5. Logarithmic

scales are used on both axes. Nominal parameter values used are listed in Table 3.2.
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Table 3.3: Feasible parameter vectors obtained while applying the subset selection

algorithm for p = 4, . . . , 8, using nominal values as listed earlier in the text. For

each selected parameter vector θ ∈ Θp the condition number of the sensitivity matrix

κ(χ(θ)), and the selection score α(θ) are displayed.

Parameter vector θ Condition number κ(χ(θ)) Selection score α(θ)

(L, β0, a1, b1) 2.047×105 5.019×10−2

(M,β0, a1, b1) 1.420×105 6.386×10−2

(P, β0, a1, b1) 3.176×105 7.044×10−2

(L,D, β0, a1, b1) 4.034×106 1.332×10−1

(D,M, β0, a1, b1) 1.233×107 1.897×10−1

(D,P, β0, a1, b1) 7.781×106 2.987×10−1

(N,L,D, β0, a1, b1) 1.829×1010 1.670×10−1

(S0, N,D, β0, a1, b1) 1.454×1010 2.026×10−1

(S0, L,D, β0, a1, b1) 1.828×1010 2.375×10−1

(S0, D,M, β0, a1, b1) 2.152×1010 3.301×10−1

(S0, D, P, β0, a1, b1) 1.828×1010 4.832×10−1

(N,D,M, β0, a1, b1) 2.166×1010 5.739×10−1

(N,D, P, β0, a1, b1) 1.829×1010 9.658×10−1

(N,L,D,M, β0, a1, b1) 2.166×1010 5.960×100

(S0, L,D,M, β0, a1, b1) 2.167×1010 5.970×100

(N,D,M,P, β0, a1, b1) 2.166×1010 1.153×101

(S0, D,M, P, β0, a1, b1) 2.167×1010 1.159×101

(S0, N, L,D,M, β0, a1, b1) 6.333×1012 5.044×101

(S0, N,D,M, P, β0, a1, b1) 6.561×1012 2.950×102
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(The Mathworks, Inc.) routine lsqnonlin. For the purposes of this demonstration

we initialized every optimization routine at the nominal parameter vector θ0. This

prevents the optimization routine from stopping in a local minimum that is not the

global minimum, should multiple local minima exist.

The nominal error variance and nominal parameter values are those given above.

The parameter vectors estimated from synthetic data are those appearing on top of

each subtable in Table 3.2.1, for each value of p, where parameter combinations are

sorted in ascending order of their selection score (from top to bottom). In other

words, all the parameter vectors estimated from synthetic observations have reason-

able condition numbers and relatively small selection scores. Five inverse problems

(for p = 8, 7, 6, 5, 4) were solved from the same realization of the observation process,

to estimate the parameter vectors

θ = (S0, N, L,D,M, β0, a1, b1),

θ = (N,L,D,M, β0, a1, b1),

θ = (N,L,D, β0, a1, b1),

θ = (L,D, β0, a1, b1),

θ = (L, β0, a1, b1).

Results of these numerical experiments are summarized in Table 3.2.1.

We analyze the results using the coefficient of variation. For instance in Table

3.2.1, when θ = (S0, N, L,D,M, β0, a1, b1) it is seen for D that the standard error is

nearly one third of the estimate, suggesting lower uncertainty. For the other param-

eters S0, N , L, M , β0, a1, and b1 the standard error can be nearly four times (and

up to eleven times) the estimate (for b1 its SE is |4 × Est|, because b1 < 0). These

values indicate substantial uncertainty. Figure 3.4(a) displays the residual plot (see

[7] for a discussion of the effective use of residual plots) for this parameter combi-

nation: yj − z(tj; θOLS) versus time tj, where j = 1, . . . , n. The temporal pattern

in the residuals together with large standard errors suggest that estimation of this

parameter combination from observations (with a statistical error structure) would

be meaningless.
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Table 3.4: Results of solving five inverse problems from a single synthetic data set

generated as described in the text using nominal values listed earlier. For each pa-

rameter combination we display the estimate (Est.), the standard error (SE) and the

coefficient of variation (standard error divided by the estimate, CV = SE/Est.). For

notational convenience we use here the notation e to denote exponentiation to the

base 10; i.e., 2.8e5 denotes 2.8× 105, etc.
Parameter vector θ = (S0, N, L,D,M, β0, a1, b1)

S0 N L D M β0 a1 b1
Est. 2.8e5 1.0e6 5.0e0 9.6e-3 5.5e-3 3.7e2 2.0e-2 -2.0e-2
SE 1.5e6 5.0e6 4.5e1 3.1e-3 6.2e-2 3.4e3 7.7e-2 8.4e-2
CV 5.5e0 5.0e0 9.1e0 3.2e-1 1.1e1 9.0e0 3.8e0 -4.2e0

Parameter vector θ = (N,L,D,M, β0, a1, b1)
Est. 1.0e6 5.0e0 9.6e-3 5.5e-3 3.7e2 2.0e-2 -2.0e-2
SE 2.7e4 2.7e0 2.5e-3 2.2e-2 5.9e2 3.1e-2 2.5e-2
CV 2.7e-2 5.4e-1 2.6e-1 4.1e0 1.6e0 1.6e0 -1.3e0

Parameter vector θ = (N,L,D, β0, a1, b1)
Est. 1.0e6 5.0e0 9.6e-3 3.8e2 2.0e-2 -2.0e-2
SE 2.7e4 1.7e-1 5.8e-4 1.5e1 1.3e-3 1.2e-3
CV 2.7e-2 3.4e-2 6.1e-2 3.9e-2 6.3e-2 -6.1e-2

Parameter vector θ = (L,D, β0, a1, b1)
Est. 5.0e0 9.6e-3 3.8e2 2.0e-2 -2.0e-2
SE 7.4e-2 5.8e-4 9.8e0 1.2e-3 1.2e-3
CV 1.5e-2 6.1e-2 2.6e-2 6.2e-2 -6.0e-2

Parameter vector θ = (L, β0, a1, b1)
Est. 5.0e0 3.8e2 2.0e-2 -2.0e-2
SE 1.4e-2 2.6e0 2.0e-4 7.9e-4
CV 2.7e-3 6.8e-3 9.9e-3 -4.0e-2
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The residual plots for all the other parameter combinations in Table 3.2.1 do not

have temporal structure. For the sake of illustration we display in Figure 3.4(b) the

residuals versus time for θ = (L,D, β0, a1, b1).

Improvements in uncertainty quantification are observed with the removal of some

key parameters. It is not just reducing the number p of parameters, but rather

which parameters are to be estimated that matters. The near dependence in the

columns of the sensitivity matrix χ reflects correlations between parameter estimates

which make a parameter combination unsuitable for estimation. This can be seen

rather obviously by the magnitude and temporal dependence of the residuals in Fig-

ure 3.4(a). However, consider the removal of S0 from the estimation, and compare

θ = (S0, N, L,D,M, β0, a1, b1) with θ = (N,L,D,M, β0, a1, b1) in Table 3.2.1. The

standard error for N is seen to drop from 500% to approximately 3% of the estimate.

Another substantial improvement when dropping S0 is obtained for L, for which its

standard error reduces from being nine times the estimate to one half of its value.

Lower uncertainty improvements are also obtained for the parameters M , β0, a1, and

b1.

The next numerical experiment considered here is the removal of S0 and M . We

compare the results for θ = (S0, N, L,D,M, β0, a1, b1) with those for θ = (N,L,D,

β0, a1, b1), in Table 3.2.1. There are uncertainty improvements for all parameters.

The least (but still substantial) improvement is for D, where its standard error drops

from being nearly 30% to being just 6% of the estimate. For the parameters N , L,

β0, a1, and b1 an improvement of two orders of magnitude is seen. Improvements in

uncertainty are more pronounced after removing S0, N , and M : for this we compare

θ = (S0, N, L,D,M, β0, a1, b1) and θ = (L,D, β0, a1, b1) in Table 3.2.1.

Undoubtedly, the best case scenario of uncertainty quantification we obtained is

that of estimating θ = (L, β0, a1, b1) from the same synthetic data set. In Table 3.2.1,

it is seen that the standard errors reduce to less than 1% of the estimates for L, β0,

and a1, and to 4% from nearly 400% of the estimate for b1.



73

2002 2003 2004 2005 2006 2007
−1000

0

1000

2000

3000

4000

5000

Time

R
es

id
ua

l

(a)

2002 2003 2004 2005 2006 2007
−80

−60

−40

−20

0

20

40

60

80

Time

R
es

id
ua

l

(b)

Figure 3.4: Residual plots: yi − z(ti; θOLS), versus time, ti, for i = 1, . . . , n. Graph

(a) displays residuals obtained for θ = (S0, N, L,D,M, β0, a1, b1), while Graph (b)

depicts residuals for θ = (L,D, β0, a1, b1).
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3.3 Discussion

We have discussed a computational methodology for inverse problem formulation

in the context of parameter identifiability. Using an OLS scheme based on a constant

variance statistical model for the observation process and a seasonal SEIRS epidemics

model for illustration, we have proposed a prior-analysis algorithm that we believe

might profitably precede efforts on parameter estimation from data. The algorithm

can be used if reasonable ranges for the sought after parameters are either known

a priori, or can be assumed by the user much in the same way one must assume

reasonable ranges in inverse problem formulations and initiation of algorithms for the

resulting estimation procedures.

The subset selection [67] algorithm we gave is based on two main criteria for a fixed

number of parameters: (i) full rank of the sensitivity matrix; and (ii) calculation of

standard errors. We proposed to first select according to the sensitivity matrix rank,

because those parameter combinations for which χ has full rank will have a non-

singular Fisher information matrix χTχ, and its inverse is used in the calculation of

the standard errors (see Equation 2.22).

The near dependence of the sensitivity matrix columns can be a fingerprint of

parameter correlations—a pertinent feature for subset selection [67]. In chapter 2,

we determined identifiability of parameters in a simple SIR model, and showed how

correlation between parameter estimates can impede the estimation of parameters and

parameter combinations, such as the basic reproductive number. Moreover, Brun, et

al., [15] explain that if the columns of χ are nearly dependent, then changes in the

model output due to small changes in a single parameter can be compensated by

appropriate changes in other parameters.

We have presented illustrations of the how the removal of nearly dependent columns

of the sensitivity matrix can provide substantial improvements in uncertainty quan-

tification. This feature involves more than just reducing the number p of parameters,

it relates to excluding certain key parameters. For instance, if we assume a linear

Taylor expansion of the model output, the estimator θ̂OLS ∈ R
p is given by Equation
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3.17, where the sensitivity matrix χ(θ0) has singular values s1 ≥ · · · ≥ sp−1 ≥ sp > 0.

If sp ≈ 0 and sp−1 > 1, then submatrices with singular values s2 ≥ · · · ≥ sp > 0, and

s1 ≥ · · · ≥ sp−1, have different conditioning when quantifying the sensitivity of re-

duced order estimations that only involve p− 1 parameters. The condition number of

the former submatrix is s2/sp, which is large if sp ≈ 0, while for the latter submatrix

the condition number satisfies 1 ≤ s1/sp−1 < s1, because sp−1 > 1.

In our numerical experiments, we calculate sensitivity matrices χ(θ) evaluated at

different realizations of the estimator θ = θ̂OLS. When θ = (S0, N, L,D,M, β0, a1, b1)

the singular values of the sensitivity matrix range from 4.7× 106 to 4.6× 10−6 while

for θ = (L, β0, a1, b1) the singular values of χ(θ̂OLS) range from 1.9× 106 to 9.3× 100.

The smallest singular value changes from 4.6 × 10−6 to 9.3 × 100 while the largest

remain on the order of 106. This improvement in conditioning is reflected in the

standard error for L, β0, and a1, which reduces to less than 1% of the estimate, from

nearly 900% and 380% (see Table 3.2.1).

Although in this section we only discuss OLS, the selection algorithm can be easily

applied when using a generalized least squares scheme as seen in Section 2.1. We also

carried out numerical experiments (for brevity not discussed here) involving use of

synthetic nonconstant variance data sets in GLS formulations, and obtained results

absolutely consistent with those of the OLS formulation presented here.

We have focused on identifiability in the least squares context, but one cannot

escape a lack of parameter identifiability simply by using a different method of pa-

rameter estimation. Bayesian inference and Markov Chain Monte Carlo (e.g. [60]

and [21]) are two other commonly used methods to solve the inverse problem. Yet,

since identifiability is a feature of the mathematical model and not the statistical

model nor the fitting process, switching estimation techniques does not remove the

problem of parameter identifiability, so it remains an important concern when solving

the inverse problem in any respect.
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Chapter 4

Model Selection

In the previous chapters we discussed the pitfalls associated with estimating model

parameters. All previous discussions, however, hinged on the assumption that the un-

derlying model was correct. This was the primary reason for the use of synthetic data

for the experiments done in Chapters 2 and 3. Yet, with real data, the assumption

that the model chosen to fit to the data is, in fact, the true underlying process has

the potential to be wrong. Depending on the question being asked, such structural

uncertainty has the potential to outweigh the uncertainty due to noise [61, 71, 84].

Rather than choosing a single model to describe a process in question, one can

come up with a set of potential models and then use an iterative modeling process

where one uses information gained from the inverse problem to tell how good (in

some sense) each model is. There are many measures used throughout the theory

of statistics to do so. The more useful measures are ones that reward goodness of

fit while also penalizing the number of parameters used in a model. The latter is

necessary since as the number of parameters increases, the easier it is to fit a model

to data. (As John von Neumann is attributed to saying, “with four parameters I

can fit an elephant, and with five I can make him wiggle his trunk.”) Two of the

more common such measures are the Bayes information criterion (BIC) [65] and the

Akaike information criterion (AIC) [1].
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The Bayes information criterion is calculated by

BIC = k lnn− 2 lnL, (4.1)

where k is the number of estimated parameters, n is the number of data points and L

is the maximum likelihood for the model. Similarly, the Akaike information criterion

is calculated by

AIC = 2k − 2 lnL. (4.2)

The number of estimated parameters, k, for the type of problem we consider is typi-

cally p+1, as one estimates σ2
0 from Equation 2.21 in addition to the p free parameters

in the model (often called the structural parameters).

Recall that when using the ordinary least squares theory, our statistical model of

the observations Yi is given by the mathematical model M(t; θ) plus some noise εi.

Under our previous noise assumptions, the εi are assumed to be independent, iden-

tically distributed random variables with zero mean and (finite) constant variance

σ2
0. Here we shall add the assumption that the εi are normally distributed, which

then makes the MLE equivalent to the OLS estimate of the structural parameters.

While the estimates of the structural parameters are the same under both optimiza-

tion schemes with the aforementioned assumptions, one should note that the least

squares estimate for σ2
0 differs from the maximum likelihood estimate (which equals

J/n), though this difference is trivial for large sample sizes. To stay consistent with

information theory, which is based on likelihood theory, we shall use the MLE for σ2

in such a context and shall denote it σ2
MLE. We continue to use the unbiased least

squares estimate σ2 in the same contexts used in previous chapters.

To calculate these selection scores, we need the maximum of the likelihood function

of θ, which is given according to [16]

L =

(

1√
2πσMLE

)n

exp

(−n

2

)

(4.3)

lnL =
−n

2
ln σ2

MLE − n

2
ln 2π − n

2
. (4.4)

There also exists a version of the AIC for small samples. It is a second-order

(from the Taylor expansion) information criterion, is named the AICc [49], and is
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Table 4.1: Here is a hypothetical example of model selection using AIC. Suppose we

have four models fit to the same data set, Mi, with respective information criteria

AICi. Using the ∆i values for comparison we see that, model M2, having the min-

imum AIC value is the best model; model M3 is second best, and is still strongly

plausible; model M3 is considerably less plausible and model M4 has essentially no

empirical support.
Model AIC ∆i

M1 180 6
M2 174 0
M3 175 1
M4 185 11

calculated by

AICc = AIC +
2k(k + 1)

n− k − 1
= 2k − 2 lnL+

2k(k + 1)

n− k − 1
. (4.5)

Burnham and Anderson [16] suggest using AICc when the ratio n/k < 40. We will

use AICc when performing our model selection, as we have a small sample size. This

data set is discussed in the following section.

When multiple models fit to the same data are compared, the model with the

lowest (ordinally, not in magnitude) value of selection score (e.g. BIC, AIC or

AICc) is the one that best explains the data while using the least number of free

parameters. The actual value of the selection score is unimportant. It is the relative

differences that describe the plausibility of each model. We will calculate the AIC

differences using

∆i = AICi − AICmin. (4.6)

Burnham and Anderson [16] suggest the following rules of thumb for determining

model plausibility (which is “particularly useful for nested models”): For 0 ≤ ∆i ≤ 2

there is a substantial level of empirical support, 4 ≤ ∆i ≤ 7 has considerably less

support while ∆i > 10 has essentially no empirical support. We present a brief

example of model selection in Table 4.1.
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Table 4.2: Influenza epidemic data from a boys boarding school, which was garnered

via the DataThief program from the figure in the 1978 paper [6]. The numbers given

are those students who were “confined to bed.” N = 763.
Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Confined 3 8 28 75 222 291 256 236 191 125 70 28 12 5

4.1 The Boarding School Data

Throughout this chapter, we will examine a case study of data obtained from

an outbreak of influenza in an English boys boarding school [6] and see how well a

number of different epidemic models fit these data. The data given (see Table 4.2 and

Figure 4.1) is the number of students who were confined to bed over the course of the

epidemic, which lasted a fortnight. The total population was 763 boys. In addition

to the 763 boys, the author mentions that there were 130 adults with limited contact

with the boys and only one adult became ill, so the adults were omitted from the

data. The boys resided in eleven different dormitory houses.

Beyond being confined to bed, the treatment the boys received was minimal. Ten

of the 512 ill boys received antibiotics. 630 of the 763 boys had received an influenza

vaccine about four months earlier, but it was for strains different than that which

caused this outbreak.

The boys reportedly spent between three and seven days away from class, but this

does not necessarily tell us the time spent in the infectious or confined to bed class,

as the author also reports that symptoms quickly ended once the boys were confined

to bed and that boys were typically allowed out of bed 36 hours after symptoms

subsided. If this information did apply directly to information about average duration

of infection or other model parameters, it would be possible to incorporate such

information into the fitting process by using a Bayesian method.

This is a famous data set and is well-worn, having been used in the past by a

number of authors (including but not limited to [68, 69, 75, 84]). The main reason

why this data has seen so much use is because of the conditions under which it was
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Figure 4.1: A plot of the data of an influenza outbreak in a boys boarding school

[6] also presented in Table 4.2. The horizontal axis measures time in days while the

vertical axis measures the number of students confined to bed on that day.
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collected. This outbreak was in a closed population, a scenario that is typically very

unlikely, and helpful when most compartmental models assume a closed population.

Also the boys were closely monitored, which substantially reduces, if not removes,

uncertainty in the data with regards to under reporting of cases of infection. This

data is probably much better than is typically obtained from outbreaks across cities,

states or countries. While better than average, this data is not without difficulties in

interpretation.

The fact that the data is students who were “confined to bed” is somewhat prob-

lematic as its interpretation of which state variable of a model is rather vague. This

is clearly not incidence data, as the sum of the values exceeds N . This could be

prevalence data, however the exact nature of their confinement is unclear. If this was

a true quarantine, the confined students could not infect the susceptibles remaining

in the population, which would imply that the data does not represent infectious

individuals (at least not infectious individuals in a well mixed population). Addition-

ally, the symptomatic individuals in the population are not necessarily the infectious

individuals, which complicates the issues of using this data. We shall try several

models and see which model fits best with a hope that it will shed some light on what

interpretation is likely.

The author also reports numbers of convalescent students, which perhaps repre-

sents the number of individuals in a recovered class. As with infectious individuals

not being biologically identical to symptomatic individuals, convalescent individuals

are not necessarily the same as recovered, so there remains a level of uncertainty with

this class and fitting to this class as well as the confined to bed individuals increases

the difficulty of an already difficult model selection problem. Finally, epidemic data

is usually fitted to incidence or prevalence data rather than convalescent individuals,

so we will not investigate this portion of the data further.

Another concern about this data set is that it is only 14 data points, which is

a relatively small amount. With such few data points, the complexity of the model

to be fit to the data is significantly hindered (as we want the ratio of p/n to be as

close to 0 as possible to avoid the effects of bias). With this in mind, we will restrict
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ourselves to models containing p ≤ 5 structural parameters.

4.1.1 Previous Work

Previous analyses of this data were performed by a number of authors who attempt

to estimate R0. Murray [69] finds the equivalent of R0 = 3.77 for the SIR model.

Wearing et al. [84] also fits an SIR and a variant on the SEIR model. They posit that

their SEIR model fits significantly better than the SIR model, and have obtained

an estimate of R0 of 35.9 and 3.74 respectively. Ross [75] uses density dependent

Markov population processes (rather than OLS) to fit variants of the SIR and SEIR

models and receive estimates of R0 of 4.38 and 16.9 respectively. It is also possible

to estimate R0 from the total outbreak size [54] (i.e. number of people that ever get

infected), ytotal = 1− S(∞)
N

, by using the formula

exp (−R0ytotal) = 1− ytotal. (4.7)

Mills et al. point out in the supplement to [68] that an R0 estimate of much higher

than 3 is unlikely when one considers the fact that only 67% of the population was

eventually infected, which results in R0 = 1.66 from Equation 4.7. Thus, Wearing’s

estimate of 35.9 seems extremely high; the authors attribute this to the possibilities

for stronger mixing in the small population size in the boarding school compared to

the level of mixing in cities or countries, from which most R0 estimates have been

obtained. So, there remains controversy over not just the interpretation of data

(though all four authors assume the data represents prevalence), but also what the

value of R0 is for the epidemic. We attempt to resolve these questions by using the

AICc model selection technique on a series of models.
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4.2 Fitting Compartmental Models to the Data

4.2.1 The SEICR Model and Sub-models

We would like to gain an understanding of what underlying process governs the

dynamics of the boarding school influenza outbreak. To do so, we begin by comparing

a set of ordinary differential equation models. The most general model we employ

in this subsection is a Susceptible-Exposed-Infective-Confined-Recovered, an SEICR,

model. The exposed class contains all individuals who have contracted the infection,

but are not yet infectious, while the confined class is everyone that has been confined

to bed, which we assume is a true quarantine meaning they are no longer infectious.

The S, I and R classes remain as before from SIR model (see Chapter 1). The infection

leads to permanent immunity and we have a closed population size, N , and ignore

the effects of births and deaths (this is acceptable because of the short time scale of

the outbreak).

We will fit the SEICR model and its sub-models, the SEIR, SICR and SIR model

to the data. Whenever the C class is present (when we are dealing with the SICR or

SEICR models), we assume that the data refers to that class. In the absense of the C

class (when we are dealing with the SEIR or SIR models), we assume the data refers

to the I class.

The parameters are as follows: β is the transmission parameter, 1/ν is the average

duration of latency, 1/γ is the average duration of infectiousness, and 1/ω is the

average duration of confinement. This yields an R0 of β/γ for the all four models.

The SEICR model can be described by the following differential equations

dS

dt
= −βSI

N
(4.8)

dE

dt
=

βSI

N
− νE (4.9)

dI

dt
= νE − γI (4.10)

dC

dt
= γI − ωC, (4.11)

together with the initial conditions S(0) = S0, E(0) = E0, I(0) = I0 and C(0) = C0.



84

For completeness, we also present the SICR model,

dS

dt
= −βSI

N
(4.12)

dI

dt
=

βSI

N
− γI (4.13)

dC

dt
= γI − ωC, (4.14)

with its initial conditions S(0) = S0, I(0) = I0 and C(0) = C0; the SIR and SEIR

models appear in Sections 1.2.1 and 1.2.2 respectively.

It should be noted that in the SIR model, the transition from the infectious class

to the recovered class is not necessarily the process of recovery, but could also simply

be considered “removal from infectiousness”. This could imply that the SIR model,

where the R class is fit to data could be a possibility for some situations where the data

is the cumulative number of people put into quarantine. However, such a situation

then does not allow for removal from this removed class, whether by recovery from

the disease or ceasing quarantine. This is why we will use the SICR model here, to

allow for loss from the confined class.

To fit the models to the data, we use the MATLAB Nelder Mead minimization tool

fminsearch on the typical OLS cost function (see Equation 2.3 where wi = 1). We

report the results of the model fits in Table 4.3 and Figure 4.2. As our methodology

in Section 2.1 suggests, we also display the residual plots for the fit of the SIR model

in Figure 4.3 to verify that the zero mean and constant variance assumptions about

the noise are valid.

From the results, it can be seen that the SIR model is the best from this set of

models as it has the lowest AICc value. However, both the SEIR and SICR models

have higher AICc, but the difference from the minimum is less than one. The model

selection process does not make much of a distinction between these two model. In

such a case, it is important to use the biological knowledge of the system to make

decisions on model selection. The fact that a latent period is known to biologically

exist makes us seriously consider choosing the SEIR model. Interestingly though, the

SICR model has an even lower value of R0 than the “optimistically” low value from
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Table 4.3: A list of the results from four different models fit using OLS to the boarding

school data. The listed values are the number of free structural parameters p for the

model, the estimate of R0, the cost functional value J and the model’s AICc. The

lowest AICc gives the model that fits the data the best while using the least number

of free parameters, which is the SIR model.
Model p R0 J AICc

SIR 2 3.7627 3960.8 127.1624
SEIR 3 11.6263 3157.9 128.0351
SICR 3 3.0745 3147.5 127.9891
SEICR 4 10.5652 2816.8 131.4903

SIR, bringing it more in line with the estimate of R0 from Equation 4.7. When we

increase the model dimension one more to the SEICR model, we notice that the AICc

value increases by more than 4, making it a less likely choice of a model.

Just as the the addition of the exposed class imposes a latency period causing

the epidemic to be slower to start, adding the confined class after the infectious

class causes the infectious class to peak earlier, but the individuals are removed from

infectiousness much more quickly.

4.2.2 Time-Dependent Parameters

By including, and fitting to, a confined class, the epidemic is clearly right-skewed

in terms of infectious individuals (see Figure 4.4). Perhaps this phenomenon could be

better explained by a model that has different transmission parameters for the early

portion and late portion of the epidemic. Such a model also has the ability to account

for changes in behavior in the population, such as a decreased amount of interaction

between individuals or increased preventative hygiene activities once the population

is aware of the presence of the disease.

Alternatively, we could create a model that has different recovery parameters for

the early and late portions of the outbreak. This model could account for, in a model

without a confined class, treatment being applied. In a model with a confined class,
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Figure 4.2: Plot of the number of students confined to bed from the OLS fit of

the four models (solid curves) against time together with the boarding school data

(dots). The number of students “confined to bed” corresponds to the I class for the

SIR and SEIR models and the C class for the SICR and SEICR models. Estimates

of R0 can be found in Table 4.3. N = 763 and the initial conditions are I0 = 3 for

the SIR and SEIR models and I0 = 1 for the SICR and SEICR models, C0 = 3 and

S0 = N − C0 − I0.
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Figure 4.3: The residuals against time and against the model values of prevalence

from the OLS fit of the SIR model to the boarding school data. Notice in both plots

that the values are centered around 0 and the variation from the mean appears to

not follow a particular pattern dependent on t or I(t) which does not provide any

evidence that the assumptions about the noise are not upheld. N = 763 and the

initial conditions are S0 = 760, I0 = 3.
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Figure 4.4: Plots of the infectious class of the SIR and SICR models against time

using the best fit parameters to the boarding school data. Notice that the SICR model

has prevalence right-skewed in comparison to the SIR model. For SIR, β = 1.6924,

γ = 0.4498, N = 763, S0 = 760 and I0 = 3. For SICR, β = 2.8519, γ = 0.9276,

ω = 0.4461, N = 763, S0 = 759, I0 = 1 and C0 = 3

the rate leaving the infectious class is not recovery, but is the rate of confining a sick

student so they do not continue being infectious; this rate would likely change as

attitudes and/or quarantine policies about the disease change. Finally, we can also

construct models with varying latency parameters and durations of confinement.

To explore this first scenario, we fit SIR, SEIR and SICR models with a step-

function for the transmission parameter to the boarding school data. The transmis-

sion parameter will be written as

β(t) =

{

β1 : t < tswitch

β2 : t ≥ tswitch

.
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Thus, this adds two additional structural parameters. This SIR model has four free

parameters: β1, β2, γ and tswitch; the SEIR and SICR have five (adding ν and ω

respectively). The SEIR and SICR models with step-function transmission are not

very plausible models as they have AICc values of 136.0361 and 139.9037, respectively.

However, with an AICc score of 128.1192, the step-function transmission SIR model

is a very plausible choice of model, though not necessarily the best. Though, when

compared to the SEICR model which is the only other model with the same number of

structural parameters fitted thusfar, the piece-wise transmission model is empirically

much superior. Interestingly, the best fit parameter values are not ones that we would

expect. We find that β1 is less than β2, which means people are more infectious later

in the outbreak while we might have expected more people would be aware of the

disease and would likely be taking precautionary measures. Also notice that the best

fit value of tswitch = 6.3423 is just after the peak of the epidemic, meaning the two β

values correspond to the increasing and decreasing portions of the epidemic. Perhaps

the model is simply trying to find the two rates for the (approximately) exponential

growth and exponential decay portions of the curve.

We shall now attempt to fit SIR, SEIR and SICR models with a constant trans-

mission parameter β, but with a step-function for the per capita recovery rate to the

boarding school data. The recovery parameter is defined by

γ(t) =

{

γ1 : t < tswitch

γ2 : t ≥ tswitch

.

The results of fitting these models can be seen in Table 4.4. The SIR model with a

step-function γ(t) has the lowest AICc value of any presented model thusfar, so it

is the best (presented) model to describe the data. The best fit two γ values were

γ1 = 0.4351 and γ2 = 0.9637, which translates to an average duration of infectiousness

of about 2.3 days for the first period and about 1 day for the second period. Since

tswitch was found to be 9.3651, which is rather late in the outbreak, it is unlikely that

this threshold time could be interpreted as people noticing that there is an outbreak.

Perhaps the reduction in average duration of being confined to bed could be attributed

to the nurses knowing that the epidemic has waned, so they are likely to let students
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Table 4.4: A list of the results from six different models with time-dependent param-

eters fit using OLS to the boarding school data. The listed values are the number

of free structural parameters p for the model, the cost functional value J and the

model’s AICc. The lowest AICc gives the model that fits the data the best while

using the least number of free parameters, which is the SIR model with piece-wise

γ(t).
Model p J AICc

SIR (piece-wise β) 4 2214.0 128.1192
SEIR (piece-wise β) 5 2449.8 136.0361
SICR (piece-wise β) 5 3229.3 139.9037
SIR (piece-wise γ) 4 1974.5 126.5165
SEIR (piece-wise γ) 5 1647.2 130.4788
SICR (piece-wise γ) 5 1444.6 128.6420

free earlier. It should be noted, though, that the duration of confinement was said to

be 3 to 7 days in most cases, which are far longer than the model predicts.

Finally, we fit an SEIR model with a similarly defined step-function for ν and an

SICR model with a step-function for ω. Again, we find a new best model, the new

SICR model with an AICc of 123.1824 and an R0 = 4.2547. The new SEIR model

has an AICc of 124.9049 (R0 = 7.8621), which is still lower than the previous models

presented. The fit of this SICR model can be seen in Figure 4.5.

4.3 Distributed Delays

4.3.1 Generally Distributed Delays

It is unlikely that an individual’s duration of infection is exponentially distributed

[78]. Since R0 can be taken as the product of the strength of transmission times the

average duration of infection, to accurate estimate the basic reproductive number,

we require knowledge of the distribution of recovery time. Thus, we shall discard the

assumption of a constant rate of recovery. A more general distribution of recovery



91

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300
Flu Outbreak at English Boarding School 1978

time

co
nf

in
ed

 to
 b

ed

 

 
data
SICR piecewise ω

Figure 4.5: Plot of the number of students confined to bed from the OLS fit of the

SICR model with an ω(t) step-function (solid curve) against time together with the

boarding school data (dots). The best fit parameters are β = 2.7614, γ = 0.6490,

ω1 = 0.4360, ω2 = 1.0875, and tswitch = 9.3362. The model selection score is AICc =

123.1824 and the cost functional value is J = 978.12. Initial conditions are the same

as previous SICR model fits.
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times is desired. There are many ways to approach distributed delays of the latency

and recovery processes in an SEIR model.

If we take fE(τE) and fI(τI) as the probability density functions (p.d.f.s) of the

distribution of latency time and recovery time, respectively, we can convolve these

distributions with the rate of entering the class τ time units ago. This results in the

following system of integro-differential equations:

dS

dt
= −βS(t)I(t)

N
(4.15)

dE

dt
=

βS(t)I(t)

N
−
∫

∞

0

βS(t− τE)I(t− τE)

N
fE(τE) dτE (4.16)

dI

dt
=

∫

∞

0

βS(t− τE)I(t− τE)

N
fE(τE) dτE (4.17)

−
∫

∞

0

∫

∞

0

βS(t− τE − τI)I(t− τE − τI)

N
fE(τE) dτEfI(τI) dτI , (4.18)

the initial condition E(0) = E0 and we are required to know the entire previous

history of S(t) and I(t) for t ≤ 0. Similar models have been used by in the past in

disease settings (for example, [14, 33, 58]) and solved by a variety of different methods,

including transforming the integro-differential equation system into abstract evolution

equations [10].

For an individual that has been in the E class for τ time units, the hazard function

gives the rate of change of the probability that we remain in the E class. It is a central

concept in survival analysis that the hazard function can be written as [19]

λE(τ) =
fE(τ)

1− FE(τ)
, (4.19)

where fE(τ) is the p.d.f. of the distribution of time spent in the E class and FE(τ) is

the cumulative density function (c.d.f.) of said distribution.

Using hazard functions, we can create an alternative formulation of the distrubted

delay SEIR model. Rather than having just E(t) and I(t) we can account for the

time since entering the class, and model the distribution of numbers of E (and I)

that have been in the class for that amount of time. We call that time τ and now we

have the classes E and I dependent on two independent variables, t and τ . To obtain
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E(t) and I(t), we integrate across all delay times like so

E(t) =

∫

∞

0

E(t; τ) dτ (4.20)

I(t) =

∫

∞

0

I(t; τ) dτ. (4.21)

We then use the following system of partial differential equations (PDEs) to describe

the distributed delay SEIR model:

dS

dt
= −βS(t)I(t)

N
(4.22)

∂E

∂t
+

∂E

∂τ
= −λE(τ)E(t; τ) (4.23)

∂I

∂t
+

∂I

∂τ
= −λI(τ)I(t; τ), (4.24)

together with the boundary conditions E(t; 0) = βS(t)I(t)
N

and I(t; 0) =
∫

∞

0
λE(τ)E(t; τ) dτ

and initial conditions S(0) = S0, E(0; τ) = φE(τ) and I(0; τ) = φI(τ). The func-

tions λE and λI are the hazard functions for the distributions of times spent in the

respective state.

The benefit of the above model (in either formulation) is that there is far less re-

striction in the distribution associated with the latency and recovery times. However,

both formulations have difficulties in terms of their implementation or simulation.

The integro-differential equation form is rather complicated to solve even from a

numerical perspective when delays are nonlinear and the PDE is computationally

intensive, potentially requiring a significant amount of time when one has to per-

form on the order of thousands or more iterations to solve the inverse problem. To

proceed with the inverse problem, we shall try to add a level of specification in our

distributions to circumvent numerical difficulties—we can assume gamma distributed

delays.

4.3.2 Gamma Distributed Delays

The gamma distribution has the p.d.f.

g(t; a, b) =
1

Γ(a)ba
ta−1e−t/b, (4.25)
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Figure 4.6: Gamma distributed latency/infectious periods. The graphs represent

the p.d.f.s of the gamma distributions with a = 1 (dotted), a = 2 (dot-dashed), a = 5

(dashed) and a = 50 (solid). The mean of the distribution in each case is two. When

a = 1, we have the exponential distribution. When a = 50, the curve approaches the

p.d.f. of the normal distribution.

where t ≥ 0, Γ(a) is the Gamma function, and a is called the shape parameter

and b is called the scale parameter and are both positive. The reciprocal of b is

sometimes called the rate parameter. The expected value of a gamma distributed

random variable is ab and the variance is ab2 [19]. Example plots of the p.d.f of the

gamma distribution are illustrated in Figure 4.6.

Conveniently, a gamma distributed random variable with integral shape parameter

is the sum of independent, identically distributed exponential random variables [19].

It is possible to create a gamma distributed duration of infection by subdividing the

infective class into stages in series, each with an exponentially distributed sojourn
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(with identical means). Specifically, when an individual becomes infectious, they

enter the I1 compartment and depart it with rate nγI1 where n is the number of

stages in the aggregate I class. The individual would proceed through each of the n

stages until they recover by leaving the last compartment In. This is referred to as

the method of stages [31, 51, 63, 84]. It should be noted that this subdivision of the I

class into n compartments is simply a mathematical construct to produce the desired

distribution and does not necessarily have a biological interpretation.

This same process can be used to obtain a gamma distributed latent period. Doing

so yields the SEmInR [63, 84] model

dS

dt
= −βSI

N
(4.26)

dE1

dt
=

βSI

N
−mνE1 (4.27)

dE2

dt
= mνE1 −mνE2 (4.28)

... (4.29)

dEm

dt
= mνEm−1 −mνEm (4.30)

dI1
dt

= mνEm − nγI1 (4.31)

dI2
dt

= nγI1 − nγI2 (4.32)

... (4.33)

dIn
dt

= nγIn−1 − nγIn. (4.34)

Note that the standard SIR and SEIR models are nested within the SEmInR

model; let ν → ∞ and set n = 1 to obtain the SIR and set m = n = 1 to obtain the

SEIR.

While this formulation is convenient from a forward problem perspective, it has

a glaring issue when conducting the inverse problem. The gamma shape parameters

m and n must be whole numbers. Wearing et al. fit the SEmInR model when m ∈
{0, 1, 2, 3} and n ∈ {1, 2, 3, 4}. When attempting to find a globally optimal parameter
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set, however, it is useful to have m,n ∈ R
+. To conduct such an experiment, we

require a slightly more general formulation of the model with gamma distributed

delays.

We choose to return to the PDE formulation (Equations 4.22-4.24) and accept

the computational time required to gain the desired versatility. We maintain our

assumption of gamma distributions, so λE and λI represent the hazard functions

of the gamma distribution with shape parameters aE and aI and scale parameters

(aEν)
−1 and (aIγ)

−1 respectively. Thus, the average duration of latency is 1/ν and

1/γ is the average duration of infectiousness.

We shall approximate a solution to the PDE using the Foward Euler (FE) method

with step-size identical in both the t and τ direction (∆t = ∆τ). The FE scheme for

this SEIR PDE model is

ti = t0 + i∆t (4.35)

τj = τ0 + j∆t (4.36)

S0 = S(0) (4.37)

Si+1 = Si −∆t
βSi

N

∞
∑

j=0

Ii,j (4.38)

E0,0 = E(0) (4.39)

E0,j>0 = 0 (4.40)

Ei+1,0 = ∆t
βSi

N

∞
∑

j=0

Ii,j (4.41)

Ei+1,j+1 = Ei,j −∆tλE(τj)Ei,j (4.42)

I0,0 = I(0) (4.43)

I0,j>0 = 0 (4.44)

Ii+1,0 = ∆t
∞
∑

j=0

λE(τj)Ei,j (4.45)

Ii+1,j+1 = Ii,j −∆tλI(τj)Ii,j, (4.46)

where Si, Ei,j and Ii,j are the approximations of S(ti), E(ti, τj) and I(ti, τj) respec-
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tively. We also consider that the population is entirely susceptible except for E0

newly exposed individuals and I0 newly infectious individuals who arrived at time 0.

The convergence rate of FE is dependent on the step-size, ∆t, and is O(∆t2). To test

the accuracy of this FE scheme, we used synthetic data generated from the SEmInR

model with various sets of parameters. We chose ∆t = 0.005, which gave a relative

error of about 0.5% and only requires a reasonable amount of computational time (on

the order of 2 seconds for one model solution, of which thousands could be necessary

for the inverse problem).

We first examine the cost function J of the SEIR model when fit to the boarding

school data while fixing the scale parameters at specific values. The parameters β,

1/ν and 1/γ were fitted using OLS at each point (aE, aI). The results can be seen

in Figure 4.7. Notice that the surface is relatively smooth and convex, allowing the

minimization routine an easy time (at least in the aE and aI directions) an easy time

to find the minimum.

We then fit the SEIR PDE model to the boarding school data allowing aE and aI

to also be fitted by the OLS routine. The results of the fitting procedure can be seen in

Figure 4.8. For the same number of fitted parameters as Wearing et al. used in their

SE2I2R model, this model was able to obtain a better fit to the boarding school data.

Our estimated value of R0 = 56.8670, is significantly higher than Wearing et al.’s

estimate of 35.9. The estimated value of the average duration of latency, 2.8610 days,

seems reasonable, as there was about a three day period between when the sick boy

returned from Hong Kong and the initial three cases were reported in the boarding

school. The estimate for the average duration of infection seems low, however, at

2.0763 days when the article states that in most cases boys were bed-ridden for three

to seven days.

In the end, our model selection score, AICc = 135.2282, is more than 12 points

above the minimum AICc value obtained, which was for the step-function ω(t) SICR

model which also has 5 structural parameters, implying that this is not a model

well-suited to describing the data.
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Figure 4.7: The cost function surface J across values of the shape parameters aE

and aI of the gamma distribution for the PDE SEIR model with gamma distributed

duration of latency and infection. The model was fit to the boarding school data

using OLS at the fixed aE and aI values, while fitting β, 1/ν and 1/γ.
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Figure 4.8: Plot of predicted prevalence from the OLS fit of the SEIR PDE model

(solid curve) against time together with the boarding school data (dots). The best

fit parameters are β = 27.3887, aE = 2.5448, aI = 1.9559, 1/ν = 2.8610, and

1/γ = 2.0763. The basic reproductive number was found to be R0 = 56.8670. The

model selection score is AICc = 135.2282 and the cost functional value is J = 2312.4.

N = 763 and the initial conditions are S(0) = 760, E(0; τ) = 0 and I(0; τ) = 3.
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Table 4.5: A list of the results from all of the models in this chapter that were fit

using OLS to the boarding school data. The listed values are the number of free

structural parameters p for the model, the estimate of the basic reproductive number

R0, the cost functional value J , the model’s AICc and the AIC differences, ∆i. The

models are listed (top to bottom) most plausible to least plausible.
Model p R0 J AICc ∆i

SICR (piece-wise ω) 5 4.2547 978.1 123.1824 0
SEIR (piece-wise ν) 5 7.8621 1106.2 124.9049 1.7225
SIR (piece-wise γ) 4 - 1974.5 126.5165 3.3341
SIR 2 3.7627 3960.8 127.1624 3.9800
SICR 3 3.0745 3147.5 127.9891 4.8067
SEIR 3 11.6263 3157.9 128.0351 4.8527
SIR (piece-wise β) 4 - 2214.0 128.1192 4.9368
SICR (piece-wise γ) 5 - 1444.6 128.6420 5.4596
SEIR (piece-wise γ) 5 - 1647.2 130.4788 7.2964
SEICR 4 10.5652 2816.8 131.4903 8.3079
SEIR (gamma delays) 5 56.8670 2312.4 135.2282 12.0458
SEIR (piece-wise β) 5 - 2449.8 136.0361 12.8537
SICR (piece-wise β) 5 - 3229.3 139.9037 16.7213

4.4 Discussion

Model selection methods give us a means of reducing structural uncertainty when

fitting a model to data. The boarding school data is a classic example of a data

set having a vague underlying process, so it was an obvious choice for a case study

of model selection. We employed the use of the small sample version of the Akaike

information criterion AICc to a fit series of 13 compartmental models with both

constant and time dependent step-function parameters as well as a gamma distributed

latency and recovery SEIR model. The results of the OLS fitting for all 13 models

have been summarized in Table 4.5, where they are ranked according to AICc.

It can be seen that the SICR model with piece-wise ω was the best fitted model and

carried an estimate of R0 = 4.2547. However, many of the models are in the plausible

range given their ∆i values. We can only safely reject the gamma distributed delay
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SEIR model (which estimated an extremely high value of R0) and the piece-wise β

SEIR and SICR models. Of the remaining models, there is still a relatively wide-range

of estimates of R0 from 3.0745 to 11.6263.

It is interesting that the gamma distributed SEIR model was rejected by the

model selection process. Biologically, there is known to exist a latent period before

an individual becomes infectious, thus a strong justification for the E class. Also,

it is well-known that recovery (and likely the latency) process is not expoentially

distributed and that gamma is a likely distribution. Burnham and Anderson [16]

suggest that if there is a priori system information known (such as the existence

of latency), then that should certainly be included in the model selection process.

However, this makes the process more subjective. Perhaps the models with superior

descriptions of the system produced poorer fits simply because of the small size of

the data set.
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Chapter 5

Conclusions and Future Directions

5.1 Concluding Remarks

This dissertation has primarily focused on presenting the utility of uncertainty

quantifying tools that accompany the inverse problem. These methods were given

in the context of infectious disease models. However, we have attempted to present

these methods in such a way that it would be easy to extend them to other systems.

In the first chapter, we give the motivation for studying uncertainty quantifying

techniques, parameter identifiability and subset and model selection, especially in the

context of epidemic models. We also present a brief background of some compart-

mental epidemic models used throughout the work, the basic SIR model, SEIR model

and two endemic SIR models.

Chapter 2 contains a methodology we apply throughout the dissertation, asymp-

totic statistical theory. A method of using synthetic data to study difficulties in the

parameter estimation process for a given model is presented. We use sensitivity func-

tions and data sampling techniques to discern the informativeness of individual data

points and use this to guide how future data could be optimally sampled.

In Chapter 3, we highlight the difficulties of identifying parameters whose esti-

mates are correlated. We then present a subset selection algorithm that is used to

prune less informative parameters from the set of fitted parameters.
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In Chapter 4, we discuss the issue of structural uncertainty and how one can reduce

it by using proper model selection techniques. We used a case study of data from an

influenza outbreak in a boarding school to which we fit a series of epidemic models

to find the best fit model. We found that the most general models were rejected,

including a gamma distributed SEIR model while the SICR model with piece-wise ω

was the best fitted model and estimated of R0 for the outbreak at 4.2547.

5.2 Future Directions

As the methods presented in this dissertation are primarily data analysis driven,

it is important that we know that the data we have is representative of the system

we are trying to study and describe. That is why we chose to use synthetic data

in Chapters 2 and 3 and performed model selection on data from a well-defined

population in Chapter 4. However, in the infectious disease scenario, it is very likely

that not all infected individuals report to doctors or health centers, like the Centers for

Disease Control. Thus, data is oftentimes under reported, and thus not necessarily

representative of the actual number of cases. Not taking such a phenomenon into

account could possibly dramatically alter the results of parameter estimation. We

leave this issue as an open question that we desire to pursue in the future.

Another question that remains is the impact of having so few data points in the

case study in Chapter 4. Could the fact that some models with more structural

parameters received very low AICc scores simply due to the fact that adding a single

additional model parameter dramatically reduces that score when there is so little

data? Perhaps if the outbreak had more data points available, but was otherwise the

same, different models would have been selected.
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[17] M. Burth, G. C. Verghese, and M. Vélez-Reyes, Subset selection for improved

parameter estimation in on-line identification of a synchronous generator, IEEE

Trans. Power Syst. 14 (1999), 218–225.

[18] A. Capaldi, S. Behrend, B. Berman, J. Smith, J. Wright, and A. L. Lloyd, Pa-

rameter estimation and uncertainty quantification for an epidemic model, Tech.

Report CRSC-TR09-18, Center for Research in Scientific Computation, North

Carolina State Unversity, August 2009.

[19] G. Casella and R. L. Berger, Statistical Inference, 2 ed., Duxbury, Pacific Grove,

CA, 2002.
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Hyman, The basic reproductive number of ebola and the effects of public health

measures: the cases of Congo and Uganda., J. Theor. Biol. 229 (2004), 119–126.

[27] G. Chowell, M. A. Miller, and C. Viboud, Seasonal influenza in the United States,

France and Australia: transmission and prospects for control, Epidemiol. Infect.

136 (2008), 852–864.

[28] A. Cintrón-Arias, H. T. Banks, A. Capaldi, and A. L. Lloyd, A sensitivity matrix

based methodology for inverse problem formulation, J. Inv. Ill-Posed Problems 17

(2009), 545–564.
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