
ABSTRACT 

DAVIS, XIN YANG. Computational Modeling of Cell Signaling Network Using Hill 
Function and Markov Chain Monte Carlo Methods. (Under the direction of M. Todd See and 
Roger L. McCraw). 
 

Computational models have been successfully used by mathematicians, chemists and 

physicists, but rarely used by biologists. The reasons are probably related to the dynamics in 

biological systems and the uncertainty in a surrounding environment. Computational models 

can be very useful tools when they provide experimentally testable predictions. In this study, 

we developed a new mathematical modeling method using the Hill function (see glossary) 

and the Markov Chain Monte Carlo (MCMC) methods (see glossary). We modeled the 

epidermal growth factor receptor (EGFR) signaling transduction network with no 

experimental data available for the biochemical reactions. The model is based on the 

signaling directions and activation or inhibition information in the network. We also used this 

mathematical modeling method to model epidermal growth factor (EGF)-stimulated 

phosphoinositide transfer protein (PITP) to predict the structure of the signal transduction 

network at a systems level. The research was performed in two stages. First, we developed a 

new mathematical modeling method using the Hill function and MCMC methods, and 

modeled the EGFR signal transduction network. Experimental data of the response from 

extracellular-signal-regulated kinase (Erk) and Akt were used in fitting the EGFR model. 

Simulations were used to select parameters to generate family of solutions of responses from 

Erk and Akt based on regulatory activation or inhibition in the model. Transient response 

from Akt in the phosphoinositide 3-kinase (PI3K) pathway precedes the response from Erk in 

Mitogen -activated protein kinase (MAPK) pathway, and the response from Erk remains at 

its peak level for minutes. Statistical data analysis reveals the biological characteristics in the 



signaling network model that indicate that cell signaling is mainly enzymatic regulation. 

Second, we developed a model EGF-stimulated PITP in EGFR signaling network with four 

different structures. From statistical data analysis and by comparing the simulation results, 

we observed some common properties among these models. Ras GDP and GTP conversion, 

and phosphatidylinositol (PI) and phosphatidylinositol 3, 4-biphosphate (PIP2) conversion are 

more stable and balanced in the network for all four models. We simulated Ras, PI3K 

oncogenes and tumor suppressor phosphatase and tesin homolog (PTEN) and observed the 

dynamic behavior of the network at the system level. Observations of the behavior of this 

network can be related to cancer research. We made predictions that Model B and Model D 

would be more closely similar to experimental data. Simulation results demonstrated that our 

model, using this mathematical modeling method, can provide qualitative insights when 

information about chemical kinetics is unavailable for a complex signaling network.  
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GLOSSARY 

Markov Chain Monte Carlo method - simulate direct draws from some complex, 

nonstandard multivariate distributions of interest [Chib et al. 1995].  

Markov Chain - a sequence of random variables generated by the Markov process which is 

defined by its transition probabilities. The transition probability is a conditional distribution 

function that represents the probability of moving from the current point to a future point for 

the same parameter [Walsh 2004].  

Monte Carlo - sampling uses Bayesian inference that is based on random sampling. It was 

introduced by Metropolis [Metropolis et al. 1953] at Los Alamos National Laboratory.  

Hill function - in 1910, British physiologist Archibald Vivian Hill formulated the Hill 

function to describe the sigmoidal O2 binding curve of hemoglobin [Hill 1910].  

Hill coefficient - the Hill coefficient n quantifies the binding cooperativeness resulted from 

the interactions between binding sites. A coefficient of 1 indicates non-cooperative; a 

coefficient greater than 1 indicates positive cooperative binding; a coefficient less than 1 

indicates negative cooperative binding [Hill 1910].  

EGFR - epidermal growth factor receptor (EGFR) is a plasma membrane receptor protein, 

binds to EGF extracellular signaling molecule. The binding activates the receptor, and 

activates the intracellular signaling pathway. 

EGFR dimer - two activated EGFR form an EGFR dimer. 
 
Dimer auto-phosphorylation - once a receptor dimer is formed, it gains tyrosine kinase 

activity and can auto-phosphorylate on several tyrosine residues. Proteins Shc, Grb2, PTP-1B 
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and Gab1 are recruited by binding directly to tyrosine-phophorylated receptors [Birtwistle et 

al. 2007]. 

Grb2 - an adaptor protein and links receptor with the Ras-MAPK signaling pathway. It is 

recruited by binding directly to tyrosine phosphorylated EGFR dimer. 

Shc - an adaptor protein that contains both PTB and SH2 domains and becomes 

phosphorylated on tyrosine in response to many different extracellular stimuli. It is recruited 

by binding directly to tyrosine phosphorylated EGFR dimer, and inhibited by PTP-1B. 

PTP-1B - protein tyrosine phosphatase-1B (PTP-1B) is a negative regulator of insulin 

signaling. It is activated by tyrosine phosphorylated EGFR dimer, and inhibits Shc, tyrosine 

phosphorylated EGFR dimer, and Gab1. 

Gab1 - Grb2 associated binding protein 1 (Gab1), is secondary recruit and binding to Shc SH3 

domains of Grb2. It is also activated by Grb2. Gab1 can also be recruited to the membrane via 

its PH domain binding to PIP3 [Holgado-Madruga  et al. 2003]. 

Sos2 - son-of-sevenless (also called Ras-GEF, guanine nucleotide exchange factor) is an 

exchange factor, stimulates the inactive Ras protein to replace its bound GDP by GTP, which 

activates RasGDP to relay the signal downstream. SOS2 is secondary recruit, and binds to Src 

SH3 domains of Grb2. 

RasGDP - Ras protein in GDP-bond form and inactive. It becomes active when exchanges 

GDP for a GTP molecule in response to extracellular signals. 

RasGTP - Ras protein which relays signals from cell-surface receptors to downstream 

singling pathway. It is a molecular switch which operates in intracellular signaling pathway 

and cycling between two conformational states, active when bound with GTP and inactive 



 3 

when bound with GDP. RasGTP is converted back to RasGDP by RasGAP. RasGTP 

activates Raf1, and has link to PI3K. 

RasGAP - Ras GTPase-activating protein is a regulatory protein and controls GTP-binding 

proteins. It deactivates the proteins by hydrolysis of bound GTP. RasGAP is activated by 

tyrosine phosphorylated EGFR dimer and Gab1. 

Raf1 - (also called MAPKKK), a protein kinase, and receiving an activating signal directly 

from Ras, it phosphorylates and activates MEK (MAPKK). 

MEK - (also called MAPKK), a protein kinase. It is phosphorylated and activated by Raf1, 

and in turn activates MAPK. 

Erk - extracellular-signal-regulated kinase, (also called MAPK), a protein kinase, activated 

by Raf1 through MEK. Since the activation of Erk by MEK follows a distributed mechanism 

[Zha and Zhang, 2001] therefore use a full, mass action description for Erk activation. In the 

distributed mechanism, the substrate dissociates and rebinds the enzyme between catalysis 

steps and can lead to potential ultrasensitivity and bistability [Markvich et al. 2004, Ferrel et 

al. 1998]. 

PI 3-Kinase - phosphoinositide 3-kinase is plasma-membrane-bound enzyme. Gab1 binds to 

PI3K as a crosstalk in two different pathways. 

PIP2 - phosphatidylinositol 4,5-biphosphate is a phosphorylated inositol phospholipid. It is a 

substrate and binds to PI3K to produce PIP3. It is cleaved by PLCr to make IP3 and DAG. 

PI 3,4,5 P3 - phosphatidylinositol (3,4,5) P3 is a phosphoinositide produced by PIP2 when 

phosphorylated by PI3K. PIP3 binds to Gab1 via Gab1 PH domain to recruit Gab1 to the 

membrane. 
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PTEN - phosphatase and tensin homolog is a tumor suppressor. It is a negative regulator to 

regulate PIP3 and prevent PIP3 accumulation in the plasma membrane, therefore inhibiting 

PI3K signaling. 

Akt - (also called PKB) is a protein, converted by PIP3 from inactive form to active form. 

PITP - phosphoinositide transfer protein can bind and exchange one molecule of 

phosphatidylinositol (PI) and facilitate the transfer of these lipids between different 

membrane compartments. PITP is critical regulator of phosphoinositides in cellular 

compartments, and participate in signal transduction and in membrane traffic. Dysfunction of 

PITP may lead to neurodegeneration diseases. 

PI4K - PtdIns 4-OH kinase is an enzyme, activated by PITPa and converts PI to PIP2. 

PI – phosphatidylinositol is a lipid at cell membrane and in metabolic process. It is 

phosphorylated to form PIP. 

Sac - suppressor of actin is an enzyme, and converts PIP2 back to PI. 

PLCr - phospholipase C is a plasma-membrane-bound enzyme that cleaves PIP2 to produce 

IP3 and DAG. 

IP3 - inositol 1,4,5-trisphosphate is a small intracellular mediator. It diffuses through the 

cytosol and release Ca2+ from the endoplasmic reticulum (ER) by binding to and opens IP3 - 

gated Ca2+ - release channels (IP3 receptors) in the ER membrane. 

DAG - diacylglycerol is a small intracellular mediator, embedded in the plasma membrane. 
 
 
 
 
 
 



 5 

REFERENCES 

Alberts, B. et al. (2008) Molecular Biology of THE CELL, Fifth Edition. 

Ben-Shlomo I, Yu Hsu S, Rauch R et al. (2003) Signaling receptome: a genomic and 
evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci 
STKE 187:RE9. 
 
Berridge MJ, Bootman MD & Roderick HL (2003) Calcium signaling dynamics, 
homeostasis and remodeling. Nature Rev Mol Cell Biol 4:517-529. 
 
Birtwistle, MR et al. 2007. Ligand-dependet responses of the ErbB signaling network: 
experimental and modeling analyses. Mol Systems Biol 3:144. 
 
Bourne HR (1995) GTPases: a family of molecular switches and clocks. Philos Trans R Soc. 
Lond B Biol Sci 349:283-289. 
 
Bradshaw RA & Dennis EA (eds) (2003) Handbook of Cell Signaling. Elsevier: St. Louis. 
 
Bretscher, Otto (2005). Linear Algebra with Applications, 3rd ed. Upper Saddle River NJ: 
Prentice Hall. 
 
Burns ME & Baylor DA (2001) Activation, deactivation, and adaptation in vertebrate 
photoreceptor cells. Annu Rev Neurosci 24:779-805. 
 
Chen, S., Cowen, C.F.N, and Grant, P.M. (1991). IEEE TRANSACTIONS ON NEURAL 
NETWORKS, Vol. 2, No. 2. 
 
Chib, S. and Greenberg, E. (1995) Understanding the Metropolis-Hastings Algorithm. The 
American Statistician, Vol.  49, No. 4, 327-335. 
 
Dard N & Peter M (2006) Scaffold proteins in MAP kinase signaling: more than simple 
passive activating platforms. BioEssays 28:146-156. 
 
Dong, C. et al. (2002) MAP kinases in the immune response. Annu Rev Immunol 20:55. 
 
Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15:177-182. 
  
Ferrell JE. Jr. (2002) Self-perpetuating states in signal transduction: positive feedback, 
double-negative feedback and bistability. Curr Opin Cell Biol 14:140-148. 
 
Frenkel, D. (2004) Introduction to Monte Carlo Methods. NIC Series, Vol. 23, 29-60. 
 



 6 

Gelman, A., and D. B. Rubin. (1992). Inferences from iterative simulation using 
multiple sequences (with discussion). Statistical Science 7: 457 - 511. 
 
Geyer, C. J. 1992. Practical Markov chain Monte Carlo (with discussion). Stat. Sci. 
7: 473–511. 
 
Hastings, W.K. (1970) Monte Carlo sampling methods using Markov Chains and their 
applications. Biometrika 57:97-109. 
 
Metropolis, N. et al (1953) Equations of state calculations by fast computing machines. J. of 
Chemical Physics 21:1087-1091. 
 
Hill AV (1910) The possible effects of the aggregation of the molecules of hemoglobin on its 
dissociation curves. Proc Of The Phys Society. 
 
Holgado-Madruga  et al. (2003), Gab1 is an integrator of cell death versus cell survival 
signals in oxidative stress, Mol Cell Biol 13 (23) : 4471-84. 
 
Hudmon A & Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-
dependent protein kinase II. Biochem J 364:593-611. 
 
Kolch, W. et al. (2005) When kinases meet mathematics: the systems biology of MAPK 
signalling. FEBS Letters 579: 1891–1895. 
Liu, Y. and Bankaitis, V.A. (2010) Phosphoinositide phosphatases in cell biology and 
disease. Progress in Lipid Research 49:201-217. 
 
Luttrell LM (2006) Transmembrane signaling by Gprotein-coupled receptors. Methods Mol 
Bio 332:3-49. 
 
Mitin N, Rossman KL & Der CJ (2005) Signaling interplay in Ras superfamily function. 
Curr Biol 15:R563-574. 
 
Moghal, N. and Sternberg, P.W. (1999) Multiple positive and negative regulators of 
signaling by the EGF-receptor. Curr. Opin. Cell Biol. 11, 190-196. 
 
Mullschleger S, Leowith R & Hall MN (2006) OR signaling in growth and metabolism. Cell 
124:471-484. 
 
Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain 
interactions to complex cellular systems. Cell 116:191-203. 
 
Pierce KL, Premont RT & Lefkowitz RJ (2002) Seven-transmembrane receptors. Nature Rev 
Mol Cell Biol 3:639-650. 



 7 

Raftery, A. E., and S. Lewis. 1992b. Comment: One long run with diagnostics: 
Implementation strategies for Markov Chain Monte Carlo. Stat. Sci. 7: 493–497. 
 
Reddy, C.C. et al. (1994) Proliferative response of fibroblasts expressing internalization-
deficient epidermal growth factor (EGF) receptors is altered via differential EGF depletion 
effect. Biotechnol. Prog. 10, 377-384. 
 
Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev 
Biochem 70:281-312. 
 
Roberts, G.O. et al (1994) Weak Convergence and Optimal Scaling of Random Walk 
Metropolis Algorithms. Technical Report, University of Cambridge. 
 
Robishaw JD & Berlot CH (2004) Translating G protein subunit diversiy into functional 
specificity. Curr Opin Cell Biol 16:206-209. 
 
Roskoski R Jr (2004) Src protein-tyrosine kinase structure and regulation. Biochem Biophys 
Res Commun 324:1155-1164. 
 
Qi M & Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569-3572. 
 
Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211-225. 
 
Schwartz MA & Madhani HD (2004) Principles of MAP kinase signaling specificity in 
Saccharomyces cerevisiae. Annu Rev Genet 38:725-748. 
 
Science’s Signal Transduction Knowledge Environment (Stke): www.stke.org 
 
Seet BT, Kikic I, Zhou MM & Pawson T (2006) Reading protein modifications with 
interaction domains. Nature Rev Mol Cell Biol 7:473-483. 
 
Shaw RJ & Cantley IC (2006) Ras, PI(3)K and mTOR signaling controls tumour cell growth. 
Nature 44:424-430. 
 
Shaywitz AJ & Greenberg ME (1999) CREB: a stimulus-induced transcription factor 
activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821-861. 
 
van der Geer, P. et al. (1994) Receptor proteintyrosine kinases and their signal transduction 
pathways. Annu. Rev. Cell Biol. 10, 251–337. 
 
 
Walsh, B. (2004) Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 
581. 

http://www.stke.org/�


 8 

Wassarman DA, Therrien M & Rubin GM (1995) The ras signaling pathway in Drosophila. 
Curr Opin Genet Dev 5:44-50. 
 
Wells, A. (1999) EGF receptor. Int. J. Biochem. Chell Biol. 31, 637-643.  

Wetzels, R. et al. (2009) Bayesian Inference Using WBDev: A Tutorial for Social Scientists.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

Chapter One Background and Motivation 

INTRODUCTION 

Computational models have been successfully used by mathematicians, chemists and 

physicists, but are rarely used by biologists. The reason is probably due to the uncertainty of 

dynamic biological systems interacting with the surrounding environment. Computational 

models can be very useful tools when they provide experimentally testable predictions.  

Modeling complex intracellular signal transduction networks presents challenges. Models 

based on kinetics of chemical reactions most likely contain a large number of parameters, 

and rate constants for many parameters are unknown because of the difficulty of 

experimentally determining the rate constants for individual steps in these networks. [Brown 

et al. 2004]. It would be even more difficult when the signaling network involves a large 

number of protein-protein interactions.  

Our research objective was to model a signal transduction network using coarse-

grained computational modeling methodology. We believe that our research is the first 

attempt to study the Epidermal Growth Factor (EGF) receptor signal transduction network 

including all three major signaling pathways [von der Geer, P., 1994, Schlessinger, J., 2000] 

in the intracellular signal transduction network. The pathways involved are the 

phosphatidylinositol 3-kinase (PI3K) pathway, Mitogen activated protein kinase (MAPK) 

pathway, and phospholipids C (PLCr) pathway. In this study, our goals are to understand the 

dynamic behavior of epidermal growth factor (EGF) receptor signal transduction network by 

developing mathematical models to make experimentally testable predictions, and to explain 

novel experimental results. These predictions were validated by experimental data. The EGF 
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receptor (EGFR) is a useful test case for modeling cell signaling networks because EGF is in 

different cell types, and antibodies and reagents are available for testing [Wiley et al. 2003]. 

The most intensively studied signaling pathway is the MAPK pathway.  

We developed a new mathematical modeling method, a coarse-grained systems 

biology modeling method, using the Hill function (see glossary) and the Markov Chain 

Monte Carlo (MCMC) methods (see glossary). We modeled the epidermal growth factor 

receptor (EGFR) signaling transduction network with no experimental data available for the 

biochemical reactions. The model is based on the signaling directions and activation or 

inhibition information in the network. We also used this mathematical modeling method to 

model EGF-stimulated phosphoinositide transfer protein (PITP) to predict the structure of the 

signal transduction network at a systems level. The limitation is that some detailed 

information is not captured by the model. 

Concerning the constraints speed of simulations and the difficulty of experimentally 

testing the predictions from the model, building a simple model that can explain complex 

biological processes is our ultimate goal. Our models made perturbations on phosphorylates 

PI (4,5) P2 to simulate a mutational study and explain the outcome of novel experimental 

data. Our focus is to investigate protein-protein interactions in the EGFR signal transduction 

network at the system level. 

In this chapter, the intracellular signal transduction network and systems biology are 

reviewed. Both intracellular signal transduction network and systems biology provide 

background for understanding the modeling effort on EGFR signal transduction network at a 
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systems level. Next, the outline of research is highlighted, and finally the major results of this 

research are summarized. 

INTRACELLULAR SIGNAL TRANSDUCTION NETWORK  

Cell communication is mediated by extracellular signal molecules through cell 

signaling pathways or cell signal transduction network. Some signals travel over long 

distances to cells far away via axons, and some signals are shared by immediate neighbors 

through gap junctions. Signal molecules can be proteins, small peptides, amino acids, or 

many other kinds of molecules. Most extracellular signal molecules are hydrophilic and, 

therefore, are not able to enter the plasma membrane of the target cell. They bind to specific 

cell-surface receptors in the cell membrane and the activated receptors generate signals inside 

the target cell [Bradshaw et al. 2003].  

There are different ways that signal proteins process and relay signals in the signaling 

network. Seven ways the protein may function are: (1) relay the signal to the next signaling 

protein in the pathway; (2) act as a scaffold to bring more signaling proteins together that 

then can interact quickly and efficiently; (3) transform or transduce the signal into different 

forms for the signal stimulating a cell response; (4) amplify the signals received by producing 

large amounts of a small intracellular mediator or by activating many copies of a downstream 

signaling protein; (5) integrate signals received from different signaling pathways then 

relaying a signal onward; (6) spread the signal from one pathway to another and create 

branch or cross links; it may anchor signals in the pathway; (7) modulate the activity of other 

signaling proteins and thereby regulate the strength of signaling along a pathway [Alberts et 

al. 2008].   
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Each cell is programmed to respond to specific combinations of extracellular signal 

molecules. They respond differently at different times and locations. Apoptosis is 

programmed cell death that is caused by deprived signals. Different cells respond to different 

extracellular signal molecules, and different types of cells respond differently to the same 

extracellular signal molecule. The response to extracellular signals from cells can be transient 

with duration of seconds to minutes or even hours, or oscillating, or remaining at steady state.  

How does a cell interpret a specific combination of signals and make the decision to divide, 

to grow, or to differentiate?  Answering this question poses a great challenge in cell biology, 

signaling modeling, and simulation. 

When extracellular signal molecules bind to specific cell-surface receptors in the cell 

membrane, the receptors activate downstream signals inside the target cell. The intracellular 

signal molecules relay signals to their effectors in the cell interior, thereby changing the 

behavior of the cell. Consider epidermal growth factor and its receptor, and three major 

signaling pathways in the intracellular signal transduction network, namely PI3K pathway, 

MAPK pathway and PLCr pathway. Each pathway may follow many different branches, 

depending on cell type and stimuli. Different branches may form different pathways that lead 

to the same effectors due to cross links between pathways. Signaling and regulatory 

pathways consist of genes, proteins and signaling molecules, interconnected as a complex 

network of interactions. 
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Figure 1: Schematic diagram of EGFR signal transduction network. Green line indicates 
activation, red line indicates consumption or inhibition. 
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Epidermal Growth Factor and Receptor 

Epidermal growth factor is present in various cell types and stimulates cell growth, 

proliferation, survival, or differentiation, and functions as an inductive signal in 

development. EGF is an extracellular signaling molecule and is hydrophilic, therefore, it is 

not able to enter the plasma membrane of the target cell. It binds to EGF receptor and the 

activated EGF receptor generates signals inside the target cell. 

The EGF receptor is an enzyme-coupled membrane receptor and it is activated by 

binding to EGF or other homologous ligands. The EGFR family consists of four receptors: 

ErbB1/EGFR/HER1, ErbB2/Neu/HER2, ErbB3/HER3, and ErbB4/HER4. EGFR has an 

important role in human diseases. An excess of ErbB1 and ErbB2 can cause cancer in 

humans. EGF receptors also play crucial roles in propagating signals that regulate cell 

proliferation, differentiation, motility, and apoptosis [Holbro, 2004 ]. EGF receptors are 

pursued as therapeutic targets. The EGFR system has been used in studies of oncogenesis, 

mitogen-activated-protein-kinase signaling pathways, and many others [Carpenter et al. 

2000]. It will continue to be the source of cell signaling studies involved in development and 

disease [Wells et al. 1999, Moghal et al. 1999]. The EGFR system has been a useful test case 

for modeling since it is present in different cell types and high-quality antibodies are widely 

available [Wiley et al. 2003].  

EGFR mutant with normal kinase activity but reduced internalization rates causes 

increased cell proliferation [Reddy et al. 1994]. The ligand-receptor complexes number 

remained the same for cells expressing mutant or wild-type receptors, but the number of 
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ligand-receptor complexes remained at higher levels longer for the mutant receptors [Albert 

et al. 2008, ].  

PI3-Kinase Pathway 

PI3-kinase (PI3K) pathway is involved in cell survival and growth. In this pathway 

EGF binds to EGF receptor which activates PI3K, in turn PI3K phosphorylates PI (4,5) P2 to 

produce the plasma membrane lipid second messenger phosphoinositide-3,4,5-trisphosphate 

PI (3,4,5) P3. Phosphatase and tensin homolog (PTEN) negatively regulates PI (3,4,5) P3 and 

converts PI (3,4,5) P3 back to PI (4,5)P2. Then PI (3,4,5) P3 swaps its role as an enzyme and 

activates Akt from inactivated form to activated form Akt. Akt phosphatase dephosphorylates 

Akt and converts Akt back to inactivated Akt. In the process of phosphorylation and 

dephosphorylation of Akt, Akt is neither consumed nor produced. This process is important 

in cell signaling because cell signaling is all about regulation of enzymatic reaction. 

Activated Akt phosphorylates various target proteins including p70s6 kinase and Bad. 

Activated Bad releases an inhibitory protein to block apoptosis and promote cell survival 

which is important in cancer research. In the nucleus, p70s6 kinase activates JUN. PTEN 

inhibits PI (3,4,5) P3. Activated Akt inhibits upstream PI3K via a negative feedback loop. 

PI3K also is an effector of RasGTP in the MAP-kinase pathway that is cross linked between 

RasGTP and PI3K. Akt also called protein kinase B, is important in mammalian cellular 

signaling and plays a key role in control of cell survival and growth. Akt inhibits the 

apoptosis process to allow cell survival, and induces protein synthesis to generate tissue 

growth and skeletal muscle hypertrophy. Akt was selected for modeling and experimental 
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measurements in part because of its importance in this signaling pathway and the 

convenience of obtaining readouts [Albert et al. 2008, Downward 2004, Shaw et al. 2006].  

MAP-Kinase Pathway 

The MAP-kinase (MAPK) pathway is one of the most intensely studied signaling 

pathways. It was one of the first connections between extracellular cues and changes in gene 

expression that was mapped in molecular detail, and it turned out to be involved in the 

control of a bewildering number of cellular processes including fundamental functions such 

as cell proliferation, survival, motility, and differentiation [Kolch et al. 2005]. 

In this pathway EGF binds to EGF receptor thereby activating guanine nucleotide 

exchange factors (GEFs). Son-of-sevenless (Sos2) is specific for Ras protein and functions as 

an enzyme because it speeds up the transformation process of converting the inactive Ras 

protein to replace its bound GDP by GTP. Ras functions as a molecular switch in two distinct 

conformational states, active when GTP is bound and inactive when GDP is bound. Ras 

GTPase-activating proteins (GAPs) induce activated Ras to inactivate itself by hydrolyzing 

its bound GTP to GDP. Because of the transient activation of Ras, short-lived signaling 

events are converted into long-lasting events that can relay the signal to the nucleus and alter 

gene expression, thereby stimulating cells to proliferate or differentiate. The MAP kinase 

module (Raf1, MEK, Erk) is used to effect this process. RasGTP phosphorylates downstream 

Raf1 (MapKKK), Raf1 activates MEK (MAPKK), and MEK activates Erk (MAPK). While 

Raf1 and MEK have a very restricted set of substrates, Erk features more than 70 substrates 

including nuclear transcription factors [Kolch et al. 2005]. RasGTP also phosphorylates 

PI3K pathway. Ras is an oncogene contained in about 25-30% of cancer cells. Therefore, Ras 
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plays an important role in cancer research and drug discovery, one of many reasons why this 

signaling pathway is extensively studied [Albert et al, 2008, Mitin et al. 2005, Bourne 1999]. 

Erk phosphorylates gene regulatory proteins FOS and JUN in the nucleus. These 

result in complex changes in gene expression and cell behavior. Erk also phosphorylates and 

inactivates Raf1 and SOS2, providing negative feedback loops to help shut off the MAP 

kinase module. Extracellular signals usually activate Erk transiently and the duration of 

activation influences the response. In a neural precursor cell line, Erk responds to EGF that 

peaks at 5 minutes and then rapidly declines, but the same cell line responds to NGF (Nerve 

Growth Factor) with hours of activation that the cells differentiate into neurons. 

Phosphorylation of Erk has been shown to be an important event in promoting T cell survival 

and proliferation [Dong et al. 2002]. Similarly to Akt, Erk was selected for modeling and 

experimental measurement in part because of its importance and the convenience of 

obtaining readouts.  

Phospholipids Cr Pathway 

Phospholipids C (PLCr) pathway is involved in cell migration. In this pathway EGF 

receptor binding complex activates PLCr which cleaves PI (4,5)P2 to produce diacylglycerol 

(DAG) and inositol 1,4,5-trisphosphate (IP3), hence this pathway branches into two 

pathways. When IP3 reaches the endoplasmic reticulum (ER), it opens IP3-gated Ca2+ - 

release channels (also called IP3 receptors) in the ER membrane and hence Ca2+ is released 

from ER to cytosol. DAG and Ca2+ bind to each site of protein kinase C (PKC). Activated 

PKC phosphorylates target proteins, including JUN, in the nucleus [Albert et al. 2008, Rhee 

2001].   
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Ca2+ is an important ion because it functions as a ubiquitous intracellular mediator. 

Many extracellular signals can trigger an increase in Ca2+ concentration in the cytosol. It is 

present in egg cells, muscle cells, and nerve cells. Ca2+ also can act as a signal because its 

concentration is very low in the cytosol and is high in the lumen of ER and sarcoplasmic 

reticulum (SR) in the muscle. A large gradient tends to drive Ca2+ from plasma membrane 

and the ER into the cytosol and may increase Ca2+ concentration 10-20 fold. In order to keep 

Ca2+ concentration low in the cytosol in resting cells, Ca2+ is actively pumped from the 

cytosol to the outside of cell or into the ER and mitochondria. Ca2+ responding to 

extracellular signals can oscillate in part because of a combination of positive and negative 

feedback loops by Ca2+ on IP3 receptors. The response also can be transient [Albert et al. 

2008, Berridge 2005, Berridge et al. 2003]. 

SYSTEMS BIOLOGY  

System biology is a new field of study that aims to understand interactions of genes, 

proteins and biochemical reactions at a system level. Components of the biological system 

are genetic, metabolic and signal transduction pathways. The biological system is very 

complex due to its dynamics and interaction within an environment of uncertainty. The 

systems may be cells, organisms, or human beings. A reductionist approach of study of basic 

components such as pathways is limited in its capacity to translate the effect of perturbations 

in these pathways to the cell as a whole.  It is often said that a biological system in its entirety 

presents more than a sum of all its parts. 

 Systems biology of necessity, involves multi-disciplinary research that requires 

collective efforts from multiple research areas:  molecular biology to understand regulatory 



 19 

relationship of genes, and interactions of proteins in the signal transduction and metabolism 

pathways; computer science to model the biological system, and find simulation results 

consistent with experimental data; analysis of the dynamics of the system to understand how 

stimuli and external perturbation affect system behavior; and technologies for high 

throughput and precision measurements [Kitano, 2000].   

 Systems biology was pursued by scientific community. In 1933, Walter Cannon 

proposed a concept of “homeostasis” [Cannon, 1933], a homeostatic system of dynamic 

equilibria controlled by a regulatory mechanism, and focused at the physiological level. The 

goal of systems biology is to fundamentally transform the traditional practice of medicine to 

predictive, preventive, and personalized medicine [Hood et al. 2004]. By examining an 

individual’s genomic makeup and protein markers, a physician can make predictions about 

the probability of having a particular disease and current status, and is able to provide 

guidance for preventive treatments, or customized therapeutic drugs.  It is well recognized 

that many mechanisms involved in complex diseases such as cancer cannot be understood on 

the basis of molecular parts. For example, Ras is found in 25-30% of cancer cells and has 

been a cancer drug target for over two decades, but no cure has been found yet, perhaps due 

to lack of system-level understanding of cellular dynamics. 

Exploring how protein-protein interactions change the dynamics of cellular signal 

transduction network is at the heart of computational systems biology and is the purpose of 

our research as well.  
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OUTLINE OF RESEARCH 

The goal of the research presented in this dissertation was to develop a mathematical 

modeling method using the Hill function and the Markov Chain Monte Carlo methods, and 

use this method to model EGFR signal transduction network and model PITP in EGFR signal 

transduction network. The research was performed in two stages presented in chapters 4 and 

5 following the literature review in Chapter 2 (computational modeling methods) and in 

Chapter 3 (parameter selection methods): 

Modeling Cell Signal Transduction Network Using Hill Function and Markov Chain 

Monte Carlo Methods (Chapter 4). The purpose of this study was to develop a mathematical 

modeling method using the Hill function and the Markov Chain Monte Carlo methods, and 

model epidermal growth factor receptor signal transduction network. Experimental data of 

response from Erk and Akt was used to fitting model. 

Modeling PITP Using Hill Function and Markov Chain Monte Carlo Methods 

(Chapter 5). The purpose of this study was to model four different PITP structures in EGFR 

signal transduction network using the Hill function and the Markov Chain Monte Carlo 

methods, and make predictions on which model is most likely close to experiment. 

Experimental data of response from Erk and Akt was used to fitting model. 

Future direction (Chapter 6).  

 

 

 

 



 21 

REFERENCES 

Alberts, B. et al. (2008) Molecular Biology of THE CELL, Fifth Edition. 

Aldridge B.B. (2006) Physicochemical modeling of cell signaling pathways. Nat Cell Biol 8: 
1195–1203. 
 
Baker MD, Wolanin PM & Stock JB (2006) Signal transduction in bacterial chemotaxis. 
BioEssays 28:9-22. 
 
Ben-Shlomo I, Yu Hsu S, Rauch R et al. (2003) Signaling receptome: a genomic and 
evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci 
STKE 187:RE9. 
 
Berridge MJ (2005) Unlocking the secrets of cell signaling. Annu Rev Physiol 67:1-21. 
 
Berridge MJ, Bootman MD & Roderick HL (2003) Calcium signaling dynamics, 
homeostasis and remodeling. Nature Rev Mol Cell Biol 4:517-529. 
 
Bourne HR (1995) GTPases: a family of molecular switches and clocks. Philos Trans R Soc. 
Lond B Biol Sci 349:283-289. 
 
Bradshaw RA & Dennis EA (eds) (2003) Handbook of Cell Signaling. Elsevier: St. Louis. 
 
Brown, K.S. et al. (2004) The statistical mechanics of complex signaling networks: nerve 
growth factor signaling. Phys. Biol. 184-195. 
 
Burns ME & Baylor DA (2001) Activation, deactivation, and adaptation in vertebrate 
photoreceptor cells. Annu Rev Neurosci 24:779-805. 
 
Cannon, W.B. (1933) The wisdom of the body. 

Carpenter, G. (2000) EGF receptor transactivation mediated by the proteolytic production of 
EGF-like agonists. Science STRK (15), PE1. 
 
Dard N & Peter M (2006) Scaffold proteins in MAP kinase signaling: more than simple 
passive activating platforms. BioEssays 28:146-156. 
 
Dong, C. et al. (2002) MAP kinases in the immune response. Annu Rev Immunol 20:55. 
 
Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15:177-182. 
  



 22 

Ferrell JE. Jr. (2002) Self-perpetuating states in signal transduction: positive feedback, 
double-negative feedback and bistability. Curr Opin Cell Biol 14:140-148. 
 
Hill AV (1910) The possible effects of the aggregation of the molecules of hemoglobin on its 
dissociation curves. Proc Of The Phys Society. 
 
Holbro, T. and Hynes, N.E. (2004) ErbB receptors: directing key signaling networks 
throughout life. Annu Rev Pharmacol Toxicol 44: 195–217.  
 
Hood, L. et al. (2004) Systems Biology and New Technologies Enable Predictive and 
Preventative Medicine. Science Vol. 306. No. 5696, pp. 640 – 643. 
 
Hudmon A & Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-
dependent protein kinase II. Biochem J 364:593-611. 
 
Kitano, H. et al. ( 2000) Fundations of systems biology. 
 
Kolch, W. et al. (2005) When kinases meet mathematics: the systems biology of MAPK 
signalling. FEBS Letters 579: 1891–1895. 
 
Luttrell LM (2006) Transmembrane signaling by Gprotein-coupled receptors. Methods Mol 
Bio 332:3-49. 
 
Mitin N, Rossman KL & Der CJ (2005) Signaling interplay in Ras superfamily function. 
Curr Biol 15:R563-574. 
 
Moghal, N. and Sternberg, P.W. (1999) Multiple positive and negative regulators of 
signaling by the EGF-receptor. Curr. Opin. Cell Biol. 11, 190-196. 
 
Mullschleger S, Leowith R & Hall MN (2006) OR signaling in growth and metabolism. Cell 
124:471-484. 
 
Papin JA, Hunter T, Palsson BO & Subramaniam S (2005) Reconstruction of cellular 
signaling networks and analysis of their properties. Nature Rev Mol Cell Biol 6:99-111. 
 
Parker PJ (2004) The ubiquitous phosphoinositides. Biochem Soc Trans 32:893-898. 
 
Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain 
interactions to complex cellular systems. Cell 116:191-203. 
 
Pawson T & Scott JD (2005) Protein phosphoryation in signaling – 50 years and counting. 
Trends Biochem Sci 30:286-290. 
 



 23 

Pierce KL, Premont RT & Lefkowitz RJ (2002) Seven-transmembrane receptors. Nature Rev 
Mol Cell Biol 3:639-650. 
 
Pires-daSilva A & Sommer RJ (2003) The evolution of signaling pathways in animal 
development. Nature Rev Genet 4:39-49. 
 
Reddy, C.C. et al. (1994) Proliferative response of fibroblasts expressing internalization-
deficient epidermal growth factor (EGF) receptors is altered via differential EGF depletion 
effect. Biotechnol. Prog. 10, 377-384. 
 
Reiter E & Lefkowitz RJ (2006) GRKs and beta-arrestine roles in receptor silencing, 
trafficking and signaling. Trends Endocrino Metab 17:159-165. 
 
Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev 
Biochem 70:281-312. 
 
Robishaw JD & Berlot CH (2004) Translating G protein subunit diversiy into functional 
specificity. Curr Opin Cell Biol 16:206-209. 
 
Roskoski R Jr (2004) Src protein-tyrosine kinase structure and regulation. Biochem Biophys 
Res Commun 324:1155-1164. 
 
Qi M & Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569-3572. 
 
Sahin M, Greer PL, Lin MZ et al (2005) Eph-dependent tyrosine phosphorylation of 
ephexin1 modulates growth cone collapse. Neuron 46:191-204. 
 
Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211-225. 
 
Schwartz MA & Madhani HD (2004) Principles of MAP kinase signaling specificity in 
Saccharomyces cerevisiae. Annu Rev Genet 38:725-748. 
 
Science’s Signal Transduction Knowledge Environment (Stke): www.stke.org 
 
Seet BT, Kikic I, Zhou MM & Pawson T (2006) Reading protein modifications with 
interaction domains. Nature Rev Mol Cell Biol 7:473-483. 
 
Shaw RJ & Cantley IC (2006) Ras, PI(3)K and mTOR signaling controls tumour cell growth. 
Nature 44:424-430. 
 
Shaywitz AJ & Greenberg ME (1999) CREB: a stimulus-induced transcription factor 
activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821-861. 
 

http://www.stke.org/�


 24 

Singla V & Reiter JF (2006) The primary cilium as the cell’s antenna signaling at a sensory 
organelle. Science 313:629-633. 
 
van der Geer, P. et al. (1994) Receptor proteintyrosine kinases and their signal transduction 
pathways. Annu. Rev. Cell Biol. 10, 251–337. 
 
Wassarman DA, Therrien M & Rubin GM (1995) The ras signaling pathway in Drosophila. 
Curr Opin Genet Dev 5:44-50. 
 
Wells, A. (1999) EGF receptor. Int. J. Biochem. Chell Biol. 31, 637-643.  

Wiley, H.S. et al. (2003) Computational modeling of the EGF-receptor system: a paradigm 
for systems biology. Trends Cell Biol 13: 43–50. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

Chapter Two Computational Modeling Methods 

INTRODUCTION 

 Computational models can be very useful tools when they provide experimentally 

testable predictions. Modeling complex biological networks presents challenges. Models can 

generate hypothesis, predict and explain outcomes of novel experiments and guide 

experimental design. There are different types of modeling that can be theoretically 

exploration and data driven. Choosing the right tool is very important in modeling. The 

complexity of the biological problem dictates the scale and detail of the model to be 

considered. There is a variety of computational modeling methods for understanding 

signaling networks at the systems level. When modeling cellular signaling networks, a 

balance needs to be considered between details, ease of simulation and interpretation. The 

level of details is constrained by availability of experimental data. Models based on kinetics 

of chemical reactions most likely contain a large number of parameters, and the rate 

constants for many parameters are unknown because of the difficulty of experimentally 

determining individual rate constants [Brown et al. 2004]. It would be even more difficult 

when the signaling network involves a large number of protein-protein interactions. A 

network of N proteins it will consist of N protein concentrations, on average about 5N 

interactions per protein [Grigoriev, 2003], and the reaction-rate parameters for each 

connection of binding (two parameter) and enzyme-catalytic (three parameter) reactions. As 

recently a large scale signaling and proteomic data available, computational modeling can be 

useful for analyzing quantitative data especially for systems biology.  
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When considering the spectrum of computational modeling methods, from less detail 

to more detail, they may be specified as Boolean modeling method, coarse-grained modeling 

method, ordinary differential equation modeling method, and statistical mechanics method. 

Each method has its advantages and limitations. Here we introduce several computational 

modeling methods with examples, and compare their advantages and limitations. The choice 

of method or combination of methods for computational modeling depends on the biological 

questions to be addressed at the forefront and the measurement, definition and function of the 

networks [Janes et al. 2006]. The detail contained in the model is only that needed to capture 

and predict the biological questions.  

BOOLEAN METHOD 

Boolean method is a qualitative approach using Boolean (logic) function to simplify 

model with discrete time. Input and output are binary (1 or 0) values. A “1” means ON or 

present or active and “0” signifies OFF or absent or inactive. 

As early as 1969, Kauffman used Boolean networks to explore the impact of both 

number of genes, N, and connectivity of the network, K, on the cell cycle time and number of 

possible cell types [Kauffman, 1969]. There are some applicable cases of modeling biology 

using Boolean method. For example, many biological phenomena are ultimately Boolean, 

especially for cell cycle and development studies [de Jong, 2002]. A cell is switched from 

mass growth (G1 phase) to DNA replication (S phase) during cell division cycle, a cell is 

either alive or dead, and cells often have to make binary decisions of committing to apoptosis 

or not. 
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One advantage of computational modeling using Boolean method might be to 

understand the function and behavior of the systems at a much larger scale instead of details 

of rate constants. With the availability of high-throughput genomic measurements, we may 

be able to apply reverse engineering to map genetic networks inside cells. Investigation of 

the generic properties of network models is the utmost interest. Boolean networks have 

received much attention for several decades in these contexts, such as yeast transcriptional 

network [Kauffman et al. 2003]. These networks consist of nodes, representing genes and 

proteins, connected by directed edges, representing gene regulation. Kauffman and others 

modeled intercellular signaling networks using Boolean method to explore how 

communications among cells influence the genetic network dynamics in tissue simulations 

[Kauffman et al. 2004]. 

The limitation of Boolean method obviously is that information and accuracy are lost 

if the details are the biological questions to be addressed. If a phenomenon crucially depends 

on the continuous nature of the system, Boolean method is not appropriate.  

COARSE-GRAINED METHOD 

Coarse-grained method is a semi-quantitative method. It is currently mechanistically 

the most advanced method of modeling [Vayttaden, S.J. et al. 2004]. The coarse-grained 

models are at the level of biochemical representation of cellular signaling and functions. A 

large amount of data typically reduces to three model quantities: reaction schemes, rate 

constants, and concentrations of molecules. In more advanced modeling, the localization of 

molecules and their transport rates may be represented. The coarse-grained models can 
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identify the structure of the signaling pathway qualitatively as well as the dynamic behavior 

of the network quantitatively under many different conditions. 

The advantage of the coarse-grained method is that predictions from the modeling 

often help in refining theory and improving our understanding of a system. MAPK 

oscillatory model by Kholodenko is an example [Kholodenko, 2000]. This model made 

predictions about the behavior of the MAPK biochemical pathway and showed that the 

negative feedback loop in the MAPK cascade allows the system to undergo sustained 

oscillations. Some recent examples of oscillations in the MAPK system [Akhthar et al. 2002; 

Duffield et al. 2002] have shown that some genes encoding components of the MAPK 

signaling pathway do show the oscillatory peaks. Although results from the examples do not 

match the model predictions in the details of time-course and amplitude, the model still 

provides specific and testable predictions as the basis for better understanding of signaling 

events. 

 The limitation of coarse-grained modeling is that the predictions from the models are 

for a range of parameter values instead of precise parameter values. Therefore, a coarse-

grained method may not be suitable for detailed modeling if precise quantitative results are 

expected. 

ORDINARY DIFFERENTIAL EQUATION METHOD  

Ordinary differential equation (ODE) is an equation containing derivatives with 

respect to a single experimental variable, such as time. ODE modeling method is highly 

specified and dependent on prior knowledge of rate constants derived from experimental 
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data. The focus is on the detailed kinetics of the molecular interactions formalized on the 

basis of mass action kinetics. 

The advantage of ODE modeling method is that the models capture temporal and/or 

spatial dynamics at the level of individual reactions [Aldridge et al. 2006; Hlavacek et al. 

2006; Levchenko et al. 2000; Chakraborty et al. 2003; Wiley et al. 2003]. For example, the 

ODE method was used to model the ErbB (ErbB receptors are epidermal growth factor 

receptor family) signaling network with all four ErbB receptors and two ligands, epidermal 

growth factor (EGF) and heregulin (HRG). The model simulation analysis led to new insights 

as to how the ErbB signaling network functions in MCF-7 cancer cells [Birtwistle et al. 

2007]. There is a strong point of model validation from the ODE modeling when there is an 

agreement between the model prediction and an experimental data set.  

The limitation or difficulty of ODE modeling method is the necessity of obtaining 

rate constants from experimental measurements for individual steps in the network, which is 

especially difficult for highly interacted dynamic signaling networks. For the same example, 

the ErbB signaling network that has the ligand-binding domain, the dimerization site, the 

kinase domain, and 10 phosphorylation sites requires more than 106 differential equations. 

This phenomenon, referred as ‘combinatorial complexity’, is a fundamental problem in 

developing mechanistic, differential equation models of signal transduction networks 

[Godstein et al. 2004; Blinov et al. 2006]. With their simplified schematic representation of 

the model structure, the ODE model still consists of 117 species, 235 parameters, and 96 

(net) reactions [Birtwistle et al. 2007]. It would take 3 processor-years to simulate 135 

candidate sets from this ODE model, which is prohibitively long simulation time. 
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OTHER RELATED METHODS 

Another modeling method, Bayesian statistics, is modeling of causal relationships 

among random variables using conditional probabilities to associate correlations and 

influences between network components. The advantage is that the mechanistic information 

may be incomplete but the interacting biochemical species is informative in the network 

[Aldridge et al. 2009]. The limitation of Bayesian method is that the model cannot construct 

cyclical networks.  

CONCLUSION 

 Computational modeling is a tool to improve our understanding of complex 

biological systems. Sometimes a combination of the methods may be a better choice. For 

example, dividing a network into functional modules, a detailed method may be applied 

within the functional module, and a Boolean method may be applied between modules to 

switch on or off from one module to a neighboring module.  
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Chapter Three Parameter Selection Methods 

INTRODUCTION 

In cell signaling modeling, there are relatively limited data of stoichiometry and 

kinetics of the biochemical reactions about species in the signaling network available. 

Analysis of dynamic properties is limited to a few well characterized pathways. The classical 

method is to gather rate constants from experimental data. There are several concerns when 

gathering information in this fashion. First, it is difficult to measure the rate constants for a 

large network which has a large parameter set. Secondly, these data are collected from 

different laboratories, and, therefore, they may not be consistent. When the parameter 

information is not available, as the case is with our model, we must generate parameter 

values for our model data fitting. There are several methods for parameter selection in 

mathematical modeling. Two parameter selection methods are Least Squares Method, and 

Markov Chain Monte Carlo methods.  

LEAST SQUARES METHOD 

 The least squares method minimizes the sum of squared differences between the 

values of dependent variable and model predicted value. This method was first described by 

Karl Friedrich Gauss around 1794 [Bretscher, 2005].  

 Chen et al. [Chen et al. 1991] used Orthogonal Least Squares method for parameter 

selection of radial basis function centers one by one in a rational way until an adequate 

network had been constructed. The radial basis function is an alternative to the two-layer 

neural network signal processing. This approach provided a simple and efficient method for 

fitting the radial basis function networks. The researcher concluded that Orthogonal Least 

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss�
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Squares method is far superior to a random selection of centers in the radial basis function 

network. 

MARKOV CHAIN MONTE CARLO METHODS  

Markov Chain Monte Carlo (MCMC) methods simulate direct draws from some 

complex, nonstandard multivariate distributions of interest [Chib et al. 1995].  

Markov Chain is a sequence of random variables generated by the Markov process 

which is defined by its transition probabilities. These transition probabilities between 

different values in the sample space depend only on the random variable’s current state. Thus 

the only information about the past that predicts the future is the current state of the random 

variable. Knowledge of the earlier state of the random variable does not change the transition 

probability.  

For example [Walsh 2004], assume the state space is rainy, sunny, and cloudy.  Then 

weather follows a Markov process. The probability of tomorrow’s weather depends only on 

today’s weather and not the weather on any previous days. The observation that it has rained 

for three days does not alter the probability that tomorrow’s weather will be sunny. Suppose 

the transition probability given that today is rainy: 

P (rain tomorrow | rain today) = 0.5, read as the probability of rain tomorrow is 0.5 

given that today it is rainy. 

P (sunny tomorrow | rain today) = 0.25, read as the probability of that tomorrow will 

be sunny is 0.25 given that today it is rainy. 

P (cloudy tomorrow | rain today) = 0.25, read as the probability of that tomorrow will 

be is 0.25 given that today it is rainy. 
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Monte Carlo sampling uses Bayesian inference that is based on random sampling. It 

was introduced by Metropolis [Metropolis et al. 1953] at Los Alamos National Laboratory. 

Some systems cannot be computed exactly, and, therefore they are predicted on the basis of 

approximation. Examples are the van der Vaals equations for dense gases, and Boltzmann 

equations for dilute gases, among many others.   

 

Figure 1. Measuring the depth of the Nile: a comparison of conventional quadrature (left), 
with the Metropolis scheme (right) [Daan Frenkel, 2004]. 

 

Figure 1 illustrates a comparison of two ways of measuring the depth of the river 

Nile. On the left of side of the figure, depth is measured by conventional quadrature by which 
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a predetermined set of points is measured, understanding that some points maybe located 

outside of the water. The right side of the figure, illustrates measuring the depth by 

Metropolis sampling. This method involves the construction of an importance-weighted 

random walk. In this random walk, a trial is rejected if the measurement is not in the water 

and it is accepted if the measurement is in the water. The average of all these measurements 

yields an estimate of the average depth of the Nile [Daan Frenkel, 2004]. 

The Metropolis-Hastings Algorithm 

 The Metropolis-Hastings algorithm was introduced by Metropolis and extended by 

Hastings. Hastings (Hastings, 1970) generalized the Metropolis algorithm by using an 

arbitrary transition probability function and setting the acceptance probability for a candidate 

point [Walsh, 2004]. Physicists attempted to compute complex integrals by expressing them 

as expectations for some distribution and estimating the expectation by drawing samples 

from that distribution. 

The transition probability is a conditional distribution function that represents the 

probability of moving from the current point to a future point for the same parameter.   

The Metropolis-Hastings algorithm has the following steps [Walsh, 2004]: 

1. Start with any initial value x0 satisfying f (x0) > 0. 

2. Use current value x0, sample a random number z from some distribution (uniform, 

normal), and a standard deviation α for fine tuning, the candidate distribution y = x0 + α*z. 

3. Calculate the ratio of the density of candidate y and current x0 points. 

4. According to predefined criteria, accept and set x0 = y or reject candidate y, and return to 

step 2. 
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 Markov chain theory suggests that such a chain will eventually converge to a 

stationary or equilibrium distribution which is the target or posterior distribution. If we 

sample long enough, we will eventually be sampling from the posterior distribution itself 

after we discard some sets of samples from burn-in period. The burn-in period is the number 

of runs before the chain approaches stationarity or equilibrium. Determining the number of 

runs is a key issue in the successful implementation of Metropolis-Hastings or other MCMC 

methods. Typically the first 1000 to 5000 elements are thrown out, some applications may 

have more elements to be thrown out. The various convergence tests are used to assess 

whether stationary or equilibrium has been reached. The choice of starting values can greatly 

increase or decrease the required burn-in time. One suggestion is to start the chain as close to 

the center of the distribution as possible such as using an approximate Maximum Likelihood 

Estimator as the starting value [Walsh, B. 2004]. 

 Choosing a proposed distribution is another issue in the implementation of the 

Metropolis-Hastings algorithm. There are two general approaches: random walk and 

independent chain sampling. The proposed distribution based on a random walk chain 

requires that the new value y equals the current value x plus a random variable z, a standard 

deviation α for fine tuning.  

  y = x + α*z 

Density of random variable z is assumed to be symmetric with mean zero. Variance of the 

proposal distribution is a tuning parameter that can be adjusted to get better mixing.  
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 The proposal distribution based on independent chain assumes that candidate y is 

drawn from a distribution of interest and that it is independent of the current value. This 

proposal distribution is generally not symmetric.  

Convergence Diagnostics 

  Time series trace plot is one type of the tests for convergence. The plot is the number 

of iterations versus the number of sets of random variables being selected. The trace plot can 

show the evidence of well mixing or poor mixing [Walsh, 2004]. In a well mixing chain, the 

chain explores the parameter space and the time series looks like well spaced and has no long 

flat space (figure 2). In a poor mixing chain, it seems the chain stays in small regions of the 

parameter space for a long period of time or trapped and there are long flat periods in the 

time series corresponding to the random variables being rejected.  

 

 

Figure 2. The MCMC chain of 9000 draws from the posterior distribution [Wetzels et al. 
2009].  
 

Studies by Roberts (Roberts et al. 1994) showed, that if the target and proposal 

densities are normal, the scale of the random walk proposal density should be tuned so that 
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 the acceptance rate is approximately 45% in one dimensional problems and approximately 

23% as the number of dimensions approaches infinity, with the optimal acceptance rate being 

around 25% for as few as six dimensions. In statistics, the number of parameters is often 

referred to as the dimension [Bretscher 2005]. 

CONCLUSION 

 Markov Chain Monte Carlo methods are useful methods for parameter selection, and 

Metropolis-Hastings algorithm is a powerful Markov Chain method to simulate multivariate 

distributions. Since there is limited amount of information of biochemical reactions available 

for modeling cell signaling, MCMC increasingly will be used as a parameter selection 

method.  

Issues in simulation of a single long chain [Geyer 1992, Raftery et al. 1992b], or 

multiple chains each starting from different initial values [Gelman et al. 1992], the initial 

value, the sample size, and how long the burn-in period should be, that are currently under 

active research. 

 

 

 

 

 

 

 

 



 40 

REFERENCES 

Bretscher, Otto (2005). Linear Algebra with Applications, 3rd ed. Upper Saddle River NJ: 
Prentice Hall. 
 
Chen, S., Cowen, C.F.N, and Grant, P.M. (1991). IEEE TRANSACTIONS ON NEURAL 
NETWORKS, Vol. 2, No. 2. 
 
Chib, S. and Greenberg, E. (1995) Understanding the Metropolis-Hastings Algorithm. The 
American Statistician, Vol.  49, No. 4, 327-335. 
 
Frenkel, D. (2004) Introduction to Monte Carlo Methods. NIC Series, Vol. 23, 29-60. 
 
Gelman, A., and D. B. Rubin. (1992). Inferences from iterative simulation using 
multiple sequences (with discussion). Statistical Science 7: 457 - 511. 
 
Geyer, C. J. 1992. Practical Markov chain Monte Carlo (with discussion). Stat. Sci. 
7: 473–511. 
 
Hastings, W.K. (1970) Monte Carlo sampling methods using Markov Chains and their 
applications. Biometrika 57:97-109. 
 
Metropolis, N. et al (1953) Equations of state calculations by fast computing machines. J. of 
Chemical Physics 21:1087-1091. 
 
Raftery, A. E., and S. Lewis. 1992b. Comment: One long run with diagnostics: 
Implementation strategies for Markov Chain Monte Carlo. Stat. Sci. 7: 493–497. 
 
Roberts, G.O. et al (1994) Weak Convergence and Optimal Scaling of Random Walk 
Metropolis Algorithms. Technical Report, University of Cambridge. 
 
Walsh, B. (2004) Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 
581. 
 
Wetzels, R. et al. (2009) Bayesian Inference Using WBDev: A Tutorial for Social Scientists.  
 
 
 
 
 
 
 

 



 41 

Chapter Four Modeling Cell Signal Transduction Network Using Hill Function and 

Markov Chain Monte Carlo Methods 

INTRODUCTION 

In this study, we developed a new mathematical modeling method to understand the 

dynamic behavior of Epidermal Growth Factor (EGF) Receptor signal transduction network 

at the system level. We constructed the network as a signaling regulatory network where 

there is a lack of biochemical reactions information but the direction of signaling information 

is known. The readouts of Erk and Akt from experiments are used to fit the model to the 

experimental data. We used the Hill function to formulate ordinary differential equations 

(ODE), and the Markov Chain Monte Carlo method for parameter selection. Given the 

difficulty of experimentally testing the predictions that some proteins may not be 

experimentally measurable at current technology, and the constraints speed of simulation that 

combinatorial models may not be feasible to simulate, building a simple model that can 

explain complex biological processes is an ultimate goal.  

Modeling EGFR Signal Transduction Network 

 Epidermal growth factor (EGF) regulates cell growth, differentiation, proliferation 

and survival. The EGF receptor (EGFR) is a useful test case for modeling cell signaling 

networks because it is present in different cell types. Also, antibodies and reagents are 

available for testing [Wiley et al. 2003]. Modeling complex cell signaling network presents 

challenges. Models based on the kinetics of chemical reactions most likely contain a large 

number of parameters and the rate constants for many parameters are unknown due to the 

difficulty of measuring them experimentally [Brown et al. 2004]. It would be even more 



 42 

difficult where a large number of protein-protein interactions are present in a signaling 

network. The most intensively studied signaling pathway is the Mitogen Activated Protein 

Kinase (MAPK) pathway. 

 

 

Figure 1: Schematic representation of EGFR signaling transduction network. Green line is 
activation, red line is inhibition, and dashed line is cross pathways. 
 

The EGFR signal transduction network is constructed as simplified model identified 

by experimental data in the literature [Birtwistle et al. 2007]. Molecules are species in the 

EGFR signal transduction network, and weights are interactions among species. The 

dynamics weights reflect the system behavior of species in the network. Initial values are set 
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to zero for some species and set to non-zero values for other species. The non-zero initial 

values are approximated by educated guess (Table 1). The model diagram (Figure 1) 

describes the regulatory functions and interactions among the species in the signaling 

network.  

Table 1: Protein initial values 

 Species Initial values 
1 EGF 0.5 
2 EGFR 0.7 
3 RasGDP 0.9 
4 PTEN 0.5 
5 PIP2 0.1 

 

In EGFR signaling transduction network, EGF is signaling molecule (ligand) and 

EGFR is plasma membrane receptor. When EGF binds to EGFR, the EGFR is activated and 

in turn it activates the intracellular signaling pathways. Two activated EGFR form an EGFR 

dimer. Once a receptor dimer is formed, it gains tyrosine kinase activity and can auto-

phosphorylate on several tyrosine residues. The homodimer undergoes rapid EGF-induced 

internalization and degradation through a multistep process.  

 There are two major signaling pathways in the network, MAPK pathway and PI3K 

pathway. The MAPK pathway is involved in cell proliferation. In this pathway activated 

EGFR activates the adaptor layer consisting of Grb2, Shc, PTP and Gab1. The function of the 

adaptor layer is to connect the receptor and the downstream pathway. PTP is an inhibitor 

which inhibits EGFR, Shc, and Gab1. Grb2 activates Sos2 which stimulates the inactive Ras 

protein to replace its bound GDP by GTP. Then GAP inhibits GTP to inactive Ras protein by 

replacing its bound GTP with GDP. RasGTP phosphorylates downstream Raf1 (MapKKK), 
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and Raf1 activates Mek (MapKK), in turn Mek activates Erk (MAPK). RasGTP also 

phosphorylates PI3K in the PI3K pathway. Erk has negative feedback loop to inhibit Sos2 

and EGFR. Since Ras is an oncogene, the MAPK pathway is an important research subject in 

cancer research.     

 The PI3K pathway is involved in cell survival. In this pathway activated EGFR 

activates PI3K, in turn PI3K produces PIP3 by inhibition on (consume) PIP2. PTEN inhibits 

PIP3 and PIP3 has a positive feedback loop to activate PIP2. PIP3 activates downstream Akt. 

The PI3K pathway is important in cancer research because PI3K and Akt are oncogenes and 

PTEN is a tumor suppressor.  We chose to fit the data response from Akt in this pathway 

because an Akt readout can be obtained experimentally.   

 

 

 

 

 

 

 

 

 

 

 

 



 45 

RESULTS AND DISCUSSION 

Model Formulation 

 In this study, we modeled EGFR signaling network as a regulatory model when 

biochemical kinetics are not available. The model can provide insight on network signaling 

qualitatively. There are 20 species, 68 parameters and 30 biochemical reactions in the model. 

Hill function was used to formulate ODE equations with time scaling coefficient and a decay 

term.  

 The circuit of the EGFR signaling network (Table 2) was translated from the EGFR 

signaling network diagram. The downstream species listed in the second column of Table 2 

are the species that receive the activation and/or inhibition from regulators which are 

upsteam species in the pathway listed in the third column. The plus sign corresponds to the 

green line in the diagram and indicates activation, and the minus sign corresponds to the red 

line in the diagram and indicates inhibition. Since EGF and PTEN do not receive any 

activation or inhibition from other species, they are treated as constants. 
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Table 2: Circuits of the EGFR signaling network, plus sign indicates activation received, 
minus sign indicates inhibition received. EGF and PTEN receive neither activation nor 
inhibition from other species, they are treated as constants. 
  
 

 Downstream species Regulators 
1 EGF  
2 EGFR + EGF 
3 Dimer + 2*EGFR 

4 Phos. dimer + Dimer – Erk  
5 Grb2 + Phos. dimer + Shc 
6 Shc + Phos. dimer + Gab1 – PTP 
7 PTP + Phos. dimer  
8 Gab1 + Grb2 – PTP – Erk + PIP3 
9 Sos2 + Grb2 – Erk 
10 RasGDP + RasGTP – Sos2 
11 RasGTP + RasGDP – RasGAP 
12 RasGAP + Phos. dimer + Gab1 
13 Raf1 + RasGTP 

14 Mek + Raf1 
15 Erk + Mek 
16 PI3K + Phos. dimer + Gab1 +RasGTP 
17 PIP2 + PI3K + PIP3  
18 PIP3 + PIP2 – PTEN 
19 PTEN  
20 Akt + PIP3 

 

Model Equations 

There are 20 species in the EGFR signaling network. However, there are only 18 equations 

translated from the circuit of the EGFR signaling network, since EGF and PTEN do not have 

any inputs. Therefore EGF and PTEN are treated as constants. In the following equations, r is 

time scaling coefficient, α is a constant, n is the Hill coefficient, Wactivation is the sum of the 

activation inputs and Winhibition is the sum of the inhibition inputs the species received from 

other species in the signaling network respectively. Each equation has a decay term. For 



 47 

example, in equation 2 the negative EGFR term is a decay term and accounts for 

dissociation, degradation, and internalization.  

EGF: dy(1) = 0. 

EGFR: dy(2) = r2*(((α*Wactivation) n2)/(1+ (α*Wactivation ) n2 ) – EGFR). 

Dimer: dy(3) = r3*(((α * Wactivation  ) n3)/(1 + (α * Wactivation ) n3 ) – dimer). 

Phos.dimer: dy(4)=r4*(((α*Wactivation  ) n4)/(1+ (α*Wactivation ) n4 +(α*Winhibition ) n4) – Pd). 

Grb: dy(5) = r5*(((α * Wactivation  ) n5)/ (1 + (α*Wactivation ) n5) – Grb). 

Shc: dy(6) = r6*(((α *Wactivation  ) n6)/ (1+( α*Wactivation ) n6 +( α *Winhibition ) n6) – Shc). 

PTP: dy(7) = r7*(((α * Wactivation  ) n7) / (1 + (α*Wactivation ) n7) – PTP). 

Gab: dy(8) = r8*(((α*Wactivation  ) n8)/(1 + (α*Wactivation ) n8 + (α*Winhibition ) n8) – Gab). 

Sos: dy(9) = r9*(((α *Wactivation  ) n9)/(1+( α *Wactivation ) n9 + (α *Winhibition ) n9) – Sos). 

RasGDP: dy(10)=r10*(((α*Wactivation ) n10)/(1+( α*Wactivation) n10+(α*Winhibition ) n10) –GDP). 

RasGTP: dy(11) = r11(*((α*Wactivation ) n11)/(1+(α*Wactivation ) n11+(α*Winhibitionn ) n11) – GTP). 

RasGAP: dy(12) = r12*(((α* Wactivation ) n12) / (1 + (α* Wactivation ) n12) – GAP). 

Raf: dy(13) = r13*((( α* Wactivation ) n13) / (1 + (α* Wactivation ) n13) – Raf). 

Mek: dy(14) = r14*(((α* Wactivation ) n14) / (1 + (α* Wactivation ) n14) – Mek). 

Erk: dy(15) = r15*(((α * Wactivation ) n15) / (1 + (α*Wactivation ) n15) – Erk). 

PI3K: dy(16) = r16*(((α * Wactivation ) n16 ) / (1 + (α*Wactivation ) n16) – PI3K). 

PIP2: dy(17)=r17*(((α*Wactivation ) n17)/(1+(α*Wactivation ) n17+(α*Winhibitionn ) n17) – PIP2). 

PIP3: dy(18)=r18*(((α*Wactivation ) n18)/(1+(α*Wactivation ) n18+(α*Winhibitionn ) n18) – PIP3). 

PTEN:  dy(19) = 0. 

Akt: dy(20) = r20*(((α* Wactivation  ) n20) / (1 + (α* Wactivation ) n20) – Akt). 
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Model Fitting 
 
 As in many cell signaling models, there are limited data pertaining to biochemical 

reactions. That is the case for our model. Consequently, we used the Markov Chain Monte 

Carlo method to select parameter values, as described in the Methods section (Markov Chain 

Monte Carlo Method).  We used data points from experimental data to fit Erk and Akt 

response in the model. After bringing the model response to the target region, 10,000 runs 

were simulated. Among the 10,000 sets, around 25% of sets met the criteria of experimental 

data points and were selected. The final result is an average of these selected parameter 

values.   

 Figure 2 shows the average EGF-stimulated response for all the parameter sets. The 

star is data points from experiment (from Beak). The top plot is response from Erk and the 

bottom plot is from Akt. The stars are data points from experiment, the plot is from 

simulation. The Y-axis is the normalized activity of concentration and the X-axis is the 

simulation time of 0 to 1800 seconds.  
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Figure 2: EGF-stimulated response averaged from selected parameter sets. Stars are data 
points from experiment. Stars are data points from experiment. 
 
Perturbation on Erk and Akt Activation 
 

In dose response to EGF, Erk activation is robust at high ligand dose and Akt 

activation is not. For Erk, set EGF to 0.9, 0.5 and 0.01, Erk activation does not show great 

impact in response to EGF perturbation. For Akt, using the same dose, Akt activation shows 

significant change in response to EGF perturbation. This difference in response to 

perturbation indicates that Erk is robust to parameter variation. This robustness in Erk most 

likely is due to saturation. Another possibility of this robustness in Erk may be due to the 

multiple feedback loops from Erk to EGFR and Sos2, and Akt has no such feedback loop. 

The same evidence was shown by [Birtwistle, M.R. et al. 2007] in their ErbB signaling 

network model. As the researcher concluded that from control theory, it is well known that 

negative feedback loops provide a system with robustness to disturbances [Ogunnaike, B.A. 

et al. 1994, Freeman, 2000]. Bistability investigation is necessary to confirm this possibility.     
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Statistical Data Analysis of Parameter Convergence 

To see if the posterior or target distribution has converged, the posterior distribution 

density and time series trace plots are analyzed by convergence tests. Figure 3 shows that the 

posterior distribution has converged. The Y-axis is the number of values from different 

parameter sets, and the X-axis is the weight. Notice that some parameters converged well and 

others have long tails. These parameter convergence data may provide insights to the 

signaling network as discussed below. The posterior distribution is not symmetric because 

negative concentration has no meaning in cell signaling. 

 
 
Figure 3: Histograms of posterior distribution showing parameter selection convergence. 
 
Figure 4 is a time series trace to show that the posterior distribution is converged with a well 

mixing and has no long flat periods. The Y-axis is the weight, and the X-axis is the number 

of iterations. Black is selected parameter sets, and white is rejected parameter sets. All 

parameters were tested with time series trace for convergence. Here only show three 

parameters for demonstration. 
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Figure 4: Time series trace of posterior distribution showing that the selected parameter 
values are well mixed. 
 

Table 3 shows the maxima, minima, means and standard deviations of weights in the 

EGFR signaling network. The simulation results are not unique, and are averaged from 

parameter sets selected from simulations. The standard deviation measures the variability of 

the data. The smaller standard deviation indicates less variability and stable, the larger 

standard deviation indicates more variability and has large range of values. From statistical 

data analysis, the standard deviation of weights may provide insights about the regulatory 

species in the signaling network. Parameters with larger standard deviations in comparison to 

other parameters in the network may suggest that those species might have the regulatory 

characteristics that these species are robust regulatory species in the network. Because these 

species can have wider range of weights, they are considered robust in cell signaling 

network. 
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Table 3: Weight parameter sets selected from simulations. Maxima, minima, means and 
standard deviations of parameter sets showing the degree of convergence. -> sign signifies 
activation, and -| sign signifies inhibition. 
 

            Parameter Max. Min. Mean Std. dev. 
1 EGF -> EGFR 0.7871 0.5464 0.6625 0.0335 
2 EGFR -> Dimer 0.3804 0.2736 0.3224 0.0159 
3 Dimer -> Phos. Dimer 0.9782 0.6981 0.8309 0.0404 
4 PTP-| Phos. dimer 0.1835 0.1268 0.1515 0.0075 
5 Erk-| Phos. dimer 0.5740 0.4082 0.4850 0.0238 
6 Phos. Dimer->Grb2 0.4630 0.3111 0.3675 0.0183 
7 Shc-> Grb2 0.2651 0.1868 0.2236 0.0110 
8 Phos. Dimer->Shc 0.5832 0.4051 0.4885 0.0251 
9 PTP-| Shc 0.3267 0.2338 0.2759 0.0137 
10 Gab1 ->Shc 0.8702 0.5989 0.7144 0.0353 
11 Phos. Dimer->PTP 0.4426 0.3046 0.3604 0.0180 
12 Grb2 ->Gab1 0.6015 0.4185 0.5003 0.0250 
13 PTP-| Gab1 1.0753 0.7468 0.9027 0.0450 
14 Erk ->Gab1 0.4039 0.2936 0.3430 0.0172 
15 PIP3 ->Gab1 0.0273 0.0191 0.0227 0.0011 
16 Grb2 ->Sos2 0.3643 0.2572 0.3069 0.0153 
17 Erk ->Sos2 0.6732 0.4674 0.5557 0.0281 
18 Sos2 -| RasGDP 0.2876 0.2082 0.2446 0.0120 
19 RasGTP->RasGDP 0.7658 0.5349 0.6463 0.0319 
20 RasGDP->RasGTP 0.2826 0.2000 0.2409 0.0114 
21 RasGAP-| RasGTP 0.7708 0.5411 0.6363 0.0304 
22 Phos. Dimer ->RasGAP 0.4913 0.3348 0.4072 0.0201 
23 Gab1-> RasGAP 0.9958 0.6712 0.8293 0.0410 
24 RasGTP ->Raf1 0.5606 0.3766 0.4591 0.0227 
25 Raf1 ->Mek 0.4837 0.3351 0.3999 0.0196 
26 Mek ->Erk 0.4040 0.2855 0.3460 0.0171 
27 Phos. Dimer ->PI3K 0.1359 0.1016 0.1183 0.0052 
28 Gab1->PI3K 0.0545 0.0361 0.0460 0.0023 
29 RasGTP ->PI3K 0.2100 0.1506 0.1806 0.0089 
30 PI3K ->PIP2 0.2944 0.2125 0.2507 0.0120 
31 PIP3 -> PIP2 1.7879 1.2814 1.5291 0.0759 
32 PIP2 -> PIP3 0.2821 0.2103 0.2439 0.0103 
33 PTEN -| PIP3 3.4327 2.6055 2.9978 0.1295 
34 PIP3 -> Akt 2.1616 1.5107 1.7639 0.0850 
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We divided the standard deviations of weights into three categories in Table 3: larger 

standard deviation with value greater than 0.1 and colored red; smaller standard deviation 

with value smaller than 0.05 and colored with green; standard deviation with value smaller 

than 0.1 and greater than 0.05. Parameters with larger standard deviation may suggest stable 

enzymatic regulation in cell signaling network. In contrast, parameters with smaller standard 

deviation may suggest robust regulation in cell signaling network. We identified the weight 

of PTEN -| PIP3 that had larger standard deviation greater than 0.1 and colored as red. PTEN 

has inhibition on PIP3, which negatively regulates downstream species. This property 

indicates the importance of negative regulation in the cell signaling network. It may also 

suggest the robustness of these species in the network since these values have a wider range 

than other weights. We also identified the weight of RasGDP -> RasGTP that had smaller 

standard deviation less than or equal to 0.01 and colored as green. Ras is converted from 

GDP, an inactive form to GTP, an active form. This property indicates the importance of 

stable enzymatic regulation in the cell signaling network. 

Model Limitation 

 This methodology is useful for modeling cell signaling network qualitatively when 

there is limited experimental data. Like any modeling method, this method has its limitations 

that it does not provide precise quantitative parameter values.  

CONCLUSION 

In conclusion, we developed a regulatory model that used EGF as stimulus to activate 

Erk and Akt in cell signaling transduction network. The model construction is based on the 

information of the signaling directions and activation or inhibition in the signaling network. 
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Therefore this methodology provides qualitative insight pertaining to the cell signaling 

network. We chose Hill function to formulate ODEs because Hill function can determine the 

cooperativeness of the ligand and enzyme or receptor binding. Thus it provides biological 

information to the signaling network model. We developed an algorithm to select parameters 

using the Markov Chain Monte Carlo methods.  
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MATERIALS AND METHODS 

Model Development 

Figure 1 depicts the EGFR signal transduction network. Molecules are species and 

weights are interactions between two species. The dynamics of weights, scaling coefficient 

and Hill coefficient reflect the system behavior. The circuits of the network are translated 

into Ordinary Differential Equations (ODE). The initial values are educated guesses from the 

knowledge we have about the biological process. An example is that we know the 

concentration of RasGDP should be higher because this inactive form appears in abundance. 

The concentration is between 0 and 1. The weights are random numbers generated using 

Matlab [The Mathworks; Natick, MA] and selected by Markov Chain Monte Carlo method. 

The weights are positive values for both activation and inhibition. There are 20 species and 

71 parameters in the EGFR signaling network. The simulations perform a deterministic 

computation to select all possible combinations of weights, scaling coefficients and Hill 

coefficients based on the experimental data points from Erk and Akt readout.  

Governing Equations 

We used Hill function to formulate ODE for each species in the signal transduction 

network. Since Hill function is used to determine the cooperativity of the ligand binding to 

the enzyme or receptor, its use has biological meaning in the signaling network modeling. 

There are three types of equations: activation, inhibition, and both activation and 

inhibition. 

1. Activation equation:  

dx/dt = r* ((α*Wactivation) n / (1+ (α*Wactivation) n) – x). 
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2. Inhibition equation: 

dx/dt = r*((α*Winhibition) n / (1+ (α*Winhibition) n) – x). 

3. Activation and Inhibition equation: 

dx/dt = r*((α* Wactivation) n / (1+ (α*Wactivation) n +( α*Winhibition) n) – x). 

x – a species in the signal transduction network. A negative sign in front of x here 

indicates x is a decay term. The range of concentration is from 0 to 1.    

r – time scaling coefficient, ranging from 0 and 1. 

α – a constant with a value of eight. 

Wactivation – sum of activation weights is the total activation input a species received 

from other species in the network. The initial weight is between 0 and 1. It could be greater 

than 1 as a result of parameter selection. 

Winhibition – sum of inhibition weights is the total inhibitory input a species received 

from other species in the network. The initial weight is between 0 and 1. It could be greater 

than 1 as a result of parameter selection. 

n – Hill function coefficient. The initial Hill coefficient is greater than 1. 

Parameter Selection Using Markov Chain Monte Carlo Method 

In cell signaling modeling, there are relatively few data of stoichiometry and kinetics 

of the biochemical reactions. The classical method employed is to gather rate constants from 

experimental data. There are several concerns when gathering information in this fashion. 

First, it is difficult to measure the rate constants for a large network which has a large 

parameter set. Second, these data are collected from different laboratories and, therefore, they 
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may not be consistent. We used Markov Chain Monte Carlo method and developed an 

algorithm to efficiently simulate parameter selection in the EGFR signaling network model. 

Markov Chain Monte Carlo (MCMC) methods are used to simulate direct draws from 

some complex, nonstandard multivariate distributions of interest [Chib et al. 1995].  

Markov Chain is a sequence of random variables generated by Markov process which 

is defined by its transition probabilities. These transition probabilities between different 

values in the sample space depend only on the random variable’s current state. Thus the only 

information about the past used to predict the future is the current state of the random 

variable. Knowledge about earlier states of the random variable does not change the 

transition probability.  

Monte Carlo sampling uses Bayesian inference that is based on random sampling. It 

was introduced by Metropolis [Metropolis et al. 1953] at Los Alamos National Laboratory. 

Some systems cannot be computed exactly and consequently they are predicted on the basis 

of approximation. Examples are the van der Vaals equations for dense gases, or Boltzmann 

equations for dilute gases, among many others.   

Markov Chain Monte Carlo Simulation 

There are different MCMC algorithms depending on the applications. We chose the 

Metropolis-Hastings algorithm for our simulation. The usual approach is to start with any 

value and draw the sample space from uniform or normal distribution with specified mean 

and standard deviation.  

Since we do not have any known parameter values for any species in the signaling 

network, we selected a set of parameters from a uniform distribution to generate Erk and Akt 
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response as the starting point. Doing so required less burn-in period and more quickly brings 

the chain to the stationary or equilibrium state. 

In computer science, there is an efficient design approach named divide and conquer. 

This approach breaks a complex problem into sub-problems of similar type and solves sub-

problems in an efficient manner. We used this approach in the algorithm design to shorten 

burn-in period and bring the chain to convergence efficiently. We divided weight, scaling 

coefficient, and Hill coefficient into blocks with different standard deviations for each block 

and pathway.  

The equation: New = Old *exp (sd*randn).  

The algorithm has the following steps: 

1. Start with the selected parameter set mentioned above as the starting point.  

2. Determine a proposal distribution or a move to the target region. Parameters are 

divided into different groups according to their characteristics in the cell signal transduction 

network: pathways, weight, Hill coefficient, and scaling coefficient. Standard deviations are 

specified for different groups according to their influence on the data fitting.  

3. The candidate y is drawn from the process of y = x + sd*z, where x is the current 

or old value, sd is standard deviation and z is a random increment variable drawn from a 

normal distribution.  

4. The simulation calculates the system of ODEs that are interactions of species in the 

signaling network.  

5. Determine if the response from Erk and Akt is met the criteria of data points. If so, 

accept the set. Otherwise reject the set and go to step 3.   
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In our simulation experiments, it may take several trials to bring the model response 

to the target region. We noticed that by adjusting standard deviation in burn-in period, the 

burn-in period is shortened. Due to the complexity of this model, the weight, time scaling 

coefficient, and Hill coefficient have different functions that influence the model fitting. 

Once the response is in the target region, the parameter sets are selected if they met the 

criteria of the experimental data points.   
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Chapter Five Modeling PITP Using Hill Function and Markov Chain Monte Carlo 

Methods 

INTRODUCTION 

This study modeled cell signaling network to understand specifically the important 

role of PITP in the Epidermal Growth Factor (EGF) Receptor signal transduction network at 

the system level. We constructed the network as a signaling regulatory network. There is a 

lack of information on biochemical reactions but the directions of signaling information is 

known. Experimental data of response from Erk and Akt were used to fit the model. The 

methodology used for this model was previously developed using the Hill function to 

formulate ordinary differential equations (ODE) and the Markov Chain Monte Carlo method 

for parameter selection. Concerning the difficulty of experimental testing the predictions that 

some proteins may not be experimentally measurable at current technology, and the 

constraints speed of simulation that combinatorial models may not be feasible to simulate, 

building a simple model that can explain complex biological processes is our ultimate goal.  

Modeling PITP in EGFR Signal Transduction Network 

 Epidermal growth factor (EGF) regulates cell growth, differentiation, proliferation 

and survival. The EGF receptor (EGFR) is a useful test case for modeling cell signaling 

networks because it is present in different cell types. Additionally, antibodies and reagents 

are available for testing [Wiley et al. 2003]. Modeling complex cell signaling network 

presents challenges. Models based on the kinetics of chemical reactions most likely contain a 

large number of parameters and the rate constants of many parameters are unknown due to 

the difficulty of measuring them experimentally [Brown et al. 2004]. It would be even more 
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difficult where a large number of protein-protein interactions are present in a signaling 

network.  

The EGFR signal transduction network is constructed as a simplified model identified 

by experimental data in the literature [Birtwistle et al. 2007]. We combined the adaptor layer 

together with Sos2 to simplify modeling and to focus on how PITP influences the signaling 

network behavior. PITP was added in the network. Molecules are species in the EGFR signal 

transduction network. Weights are interactions among species. The dynamics weights reflect 

the system behavior of species in the network. The model diagrams describe the regulatory 

functions and interactions among the species in the signaling network.  

Phosphoinositide transfer protein (PITP) is a critical regulator of phosphoinositides in 

cellular compartments, signal transduction, and membrane traffic. PITP can bind and 

exchange one molecule of phosphatidylinositol (PI) and facilitate the transfer of these lipids 

between different membrane compartments. PITPα is expressed ubiquitously in all tissues 

and is very abundant in the brain. It is detected widely throughout the entire developing 

central nervous system and in almost all neurons in an adult brain. Dysfunction of PITP may 

lead to neurodegeneration diseases [Hsuan et al. 2001]. PtdIns 4-OH kinase (PI4K) is an 

enzyme that converts PI to PIP2. Suppressor of actin (SAC) is an enzyme that converts PIP2 

back to PI [Liu et al. 2010]. 

In an EGFR signaling transduction network, EGF is a signaling molecule (ligand) and 

EGFR is a plasma membrane receptor. When EGF binds to EGFR, the EGFR is activated 

and in turn it activates the intracellular signaling pathways.  
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 There are three major signaling pathways in the network, PI3K pathway, MAPK 

pathway, and PLCr pathway. The MAPK pathway is involved in cell proliferation. In this 

pathway activated EGFR activates Sos2 which stimulates the inactive Ras protein to replace 

its bound GDP by GTP. Then GAP inhibits GTP to inactive Ras protein by replacing its 

bound GTP with GDP. RasGTP phosphorylates downstream Raf1 (MapKKK). Raf1 then 

activates Mek (MapKK), and Mek activates Erk (MAPK). RasGTP also phosphorylates PI3K 

in the PI3K pathway. Erk has a negative feedback loop to inhibit Sos2 and EGFR. Since Ras 

and Erk are oncogenes, MAPK pathway is important in cancer research.     

 The PI3K pathway is involved in cell survival. In this pathway activated EGFR 

activates PI3K. In turn PI3K produces PIP3 by inhibition (consume) on phosphatidylinositol 

4,5-biphosphate (PIP2). PTEN inhibits PIP3 and PIP3 has a positive feedback loop to convert 

back to PIP2. PIP2 is a phosphorylated inositol phospholipid that is present in small amounts 

in the inner half of the plasma membrane lipid layer. It is produced by phosphorylation of 

phosphatidylinositol (PI). PIP3 activates downstream Akt. PITPα is a transfer protein that 

stimulates PI4K. PI4K inhibits (consumes) PI to produce PIP2. SAC is an enzyme that 

inhibits (consumes) PIP2 and converts it back to PI. The PI3K pathway is important in cancer 

research because PI3K and Akt are oncogenes and phosphatase and tensin homolog (PTEN) 

is a tumor suppressor. Experimental data of response from Akt is used to fit the model.   

 The PLCr pathway is involved in cell proliferation. In this pathway activated EGFR 

activates phospholipase C (PLCr). PITPα stimulates PI4K. PI4K inhibits (consumes) PI to 

produce PIP2. SAC is an enzyme that inhibits (consumes) PIP2 to convert it back to PI. PITPα 

was identified as an essential component in ensuring substrate supply to PLC [Hsuan et al. 
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2001]. PLCr is a plasma-membrane-bound enzyme that cleaves PIP2. PIP2 is then broken 

down in a signaling response and generates two intracellular mediators, IP3 and DAG. 

Inositol 1,4,5-trisphosphate (IP3 ) diffuses through the cytosol and release Ca2+ from the 

endoplasmic reticulum (ER) by binding to and opening IP3 - gated Ca2+ - releases channels 

(IP3 receptors) in the ER membrane. Diacylglycerol (DAG) is embedded in the plasma 

membrane.  

Since the structure of how PITP is connected to other species in the signaling network 

is not well understood, we constructed four different models designated A, B, C, and D. We 

present four different model structures here and point out the differences among them in 

terms of PITP connection to its immediate downstream species. Simulation results presented 

here are focused on Model B and Model D because our predictions of PITP structure are 

Model B and Model D. The reason is that PITP activates PI3K pathway and PLCr pathway in 

both Model B and Model D. The simulation results indicate an close agreement with PITP 

experimental data (not published) qualitatively. Results of Model A and Model C are in the 

supplement. 

Model A (Figure 1) PITP is activated by EGFR, and in turn activates PI4Ka. PI4Ka 

inhibits (consumes) PIa, and PIa produces PIP2a. SACa inhibits (consumes) PIP2a, and PIP2a 

is feedback to PIa. 
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Figure 1: PITP Model A, schematic representation of EGFR signaling transduction network. 
Green line represents activation, red line is inhibition, and dashed line indicates cross 
pathways. 
 

Model B (Figure 2), contains a negative feedback loop from PIP2a to EGFR. This 

feedback loop distinguishes Model B from Model A.  
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Figure 2: PITP model B, schematic representation of EGFR signaling transduction network. 
Green line indicates activation, red line is inhibition, and dashed line represents cross 
pathways. 
 

Model C (Figure 3) includes two PIP2 pools, PIP2a and PIP2b. PIP2a is downstream of 

PITPa and independent of PI3K pathway. There is a negative feedback loop from PIP2a to 

EGFR. PIP2b is downstream of PI3K and PLCr. PI4Kb inhibits (consumes) PIb, and PIb 

makes PIP2b. SACb inhibits (consumes) PIP2b, and PIP2b is feedback to PIb. PI3K inhibits 

(consumes) PIP2b, and makes PIP3. PLCr inhibits (cleaves) PIP2b and generates two second 

messengers IP3 and DAG. 
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Figure 3: PITP Model C, schematic representation of EGFR signaling transduction network. 
Green line indicates activation, red line signifies inhibition, and dashed line represents cross 
pathways. There are two PIP2 in this model, PIP2a and PIP2b. 

 

Model D (Figure 4) in contrast to Mode C, the two PIP2 are in two different 

pathways. PIP2a is downstream of PI3K pathway and PIP2b is downstream of PLCr. 
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Figure 4: PITP Model D, schematic representation of EGFR signaling transduction network. 
Green line indicates activation, red line signifies inhibition, and dashed line represents cross 
pathways. There are two PIP2 in this model, PIP2a and PIP2b. PIP2a is downstream of PI3K, 
and PIP2b is downstream of PLCr.  
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RESULTS AND DISCUSSION 

Model Formulation 

 This study modeled EGFR signaling network as a regulatory model when 

biochemical kinetics are not available. The model can provide qualitative insight on network 

signaling. The Hill function was used to formulate the ODE equations with time scaling 

coefficient and a decay term.  

 In Model A, there are 21 species, 68 parameters and 28 biochemical reactions in the 

model. The circuit of the EGFR signaling network (see supplement) was translated from the 

EGFR signaling network diagram Model A (Figure 1). Downstream species listed in the 

second column are the species that receive activations and/or inhibitions from regulators 

which are upsteam species listed in the third column. The plus sign corresponds to green line 

in the diagram and indicates activation. The minus sign corresponds to red line in the 

diagram and indicates inhibition. Since EGF, PTEN, and SACa do not receive any activation or 

inhibition from other species in the network, they are treated as constants. 

Model B, includes 21 species, 69 parameters and 29 biochemical reactions. The 

circuit of the EGFR signaling network (Table 1) was translated from the EGFR signaling 

network diagram Model B (Figure 2). Downstream species listed in the second column are 

the species that receive activation and/or inhibition from regulators which are upsteam 

species listed on the third column. The plus sign corresponds to green line in the diagram and 

indicates activation. The minus sign refers to the red line in the diagram and indicates 

inhibition. Since EGF, PTEN, and SACa do not receive any activation or inhibition from other 
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species in the network, they are treated as constants. The only difference between Model B 

and Model A is that Model B includes a negative feedback loop from PIP2a to EGFR. 

Table 1: Model B, Circuits of the EGFR signaling network. Plus sign indicates activation 
received, and minus sign indicates inhibition received. EGF, PTEN, and SACa receive 
neither activation nor inhibition from other species, and are treated as constants. The 
difference between Model B and Model A is that Model B contains a negative feedback loop 
from PIP2a to EGFR. 
  
 

 Downstream species Regulators 
1 EGF  
2 EGFR + EGF – PIP2a – Erk 
3 Sos2 + EGFR – Erk 
4 RasGDP + RasGTP – Sos2 
5 RasGTP + RasGDP – RasGAP 
6 RasGAP + EGFR 
7 Raf1 + RasGTP 
8 Mek + Raf1 
9 Erk + Mek 
10 PI3K + EGFR + RasGTP 
11 PIP2a + PIa + PIP3 – PI3K – PLCr – SACa 
12 PIP3 + PIP2a – PTEN 
13 PTEN  
14 Akt + PIP3 
15 PITP + EGFR 
16 PLCr + EGFR 
17 IP3 + PIP2a 
18 DAG + PIP2a 
19 PIKa + PITP 
20 PIa + PIP2a - PIKa 
21 SACa  

 

Model C, involves 25 species, 70 parameters and 33 biochemical reactions. The 

circuit of the EGFR signaling network (see supplement) was translated from the EGFR 

signaling network diagram for Model C (Figure 3). The downstream species listed in the 

second column are the species receive activation and/or inhibition from regulators which are 
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upsteam species listed on the third columns. The plus sign corresponds to green line in the 

diagram and indicates activation. The minus sign corresponds to red line in the diagram and 

indicates inhibition. Since EGF, PTEN, PIKb, SACa and SACb do not receive any activation 

or inhibition from other species in the network, they are treated as constants.  

Model D is composed of 25 species, 70 parameters and 33 biochemical reactions. The 

circuit of the EGFR signaling network (Table 2) was translated from the EGFR signaling 

network diagram for Model D (Figure 4). The downstream species listed in the second 

column are the species receive activation and/or inhibition from regulators which are 

upsteam species listed in the third column. The plus sign corresponds to green line in the 

diagram and indicates activation. The minus sign corresponds to red line in the diagram and 

indicates inhibition. Since EGF, PTEN, SACa and SACb do not receive any activation or 

inhibition from other species in the network, they are treated as constants.  
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Table 2: Model D, Circuits of the EGFR signaling network. Plus sign indicates activation 
received, and minus sign indicates inhibition received. EGF, PTEN, SACa and SACb receive 
neither activation nor inhibition from other species, and they are treated as constants. 
  
 

 Downstream species Regulators 
1 EGF  
2 EGFR + EGF – PIP2a – Erk 
3 Sos2 + EGFR – Erk 
4 RasGDP + RasGTP – Sos2 
5 RasGTP + RasGDP – RasGAP 
6 RasGAP + EGFR 
7 Raf1 + RasGTP 
8 Mek + Raf1 
9 Erk + Mek 
10 PI3K + EGFR + RasGTP 
11 PIP2a + PIa + PIP3 – PI3K – SACa 
12 PIP3 + PIP2a – PTEN 
13 PTEN  
14 Akt + PIP3 
15 PITP + EGFR 
16 PLCr + EGFR 
17 IP3 + PIP2b 
18 DAG + PIP2b 
19 PI4Ka + PITP 
20 PIa + PIP2a – PI4Ka 
21 SACa  
22 PIP2b + PIb – PLCr –  SACb 
23 PI4Kb + PITP 
24 PIb + PIP2b – PI4Kb 
25 SACb  

 

Model Equations 

The differential equation comprises two parts, activation or inhibition function, plus a 

term for decay. Wactivation is the sum of activation inputs and Winhibition is the sum of inhibition 

inputs the species received from other species in the signaling network, r is time scaling 

coefficient, α is a constant, and n is Hill coefficient. Each equation has a decay term, for 
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example, negative EGFR term in Equation 2 is the decay term and it accounts for 

dissociation, degradation, and internalization.  

Model A (see supplement) 

Model B 

There are 21 species in the EGFR signaling network but only 18 differential 

equations are translated from the circuit of the EGFR signaling network. The reason is that 

EGF, PTEN, and SACa do not have any inputs. Therefore they are treated as constants. The 

only difference between Model B and Model A is that Model B contains a negative feedback 

loop from PIP2 to EGFR and as reflected in the circuit of Model B in Table 2. 

EGF: dy(1) = 0. 

EGFR: dy(2)= r2*(((α *Wactivation  ) n2)/(1+ (α*Wactivation) n2+(α*Winhibition ) n2) – EGFR). 

Sos2: dy(3) = r3*(((α * Wactivation  ) n3)/(1 + (α * Wactivation ) n3 +(α*Winhibition ) n3) – Sos2). 

RasGDP: dy(4)=r4*(((α*Wactivation  ) n4)/(1+ (α*Wactivation ) n4 +(α*Winhibition ) n4) –GDP). 

RasGTP: dy(5)=r5*(((α*Wactivation  ) n5)/(1+(α*Wactivation ) n5+(α*Winhibition ) n5)–GTP). 

RasGAP: dy(6) = r6*(((α *Wactivation  ) n6)/ (1+( α*Wactivation ) n6) – GAP). 

Raf1: dy(7) = r7*(((α * Wactivation  ) n7) / (1 + (α*Wactivation ) n7) – Raf1). 

Mek: dy(8) = r8*(((α*Wactivation  ) n8)/(1 + (α*Wactivation ) n8) – Mek). 

Erk: dy(9) = r9*(((α *Wactivation  ) n9)/(1+(α *Wactivation ) n9) – Erk). 

PI3K: dy(10) = r10*(((α*Wactivation ) n10)/(1+( α*Wactivation ) n10) –PI3K). 

PIP2: dy(11)=r11*(((α *Wactivation ) n11)/(1+(α*Wactivation ) n11+(α*Winhibition) n11) – PIP2). 

PIP3: dy(12) = r12*(((α*Wactivation ) n12)/(1+(α*Wactivation ) n12+(α*Winhibition) n12) – PIP3). 

PTEN:  dy(13) = 0. 
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Akt: dy(14) = r14*(((α* Wactivation  ) n14) / (1 + (α* Wactivation ) n14) – Akt). 

PITP: dy(15) = r15*(((α * Wactivation  ) n15) / (1 + (α*Wactivation ) n15) – Erk). 

PLCr: dy(16) = r16*(((α * Wactivation  ) n16) / (1 + (α*Wactivation ) n16) – PI3K). 

IP3: dy(17) = r17*(((α *Wactivation ) n17)/(1+(α*Wactivation ) n17) – IP3). 

DAG: dy(18) = r18*(((α*Wactivation ) n18)/(1+(α*Wactivation ) n18) – DAG). 

PI4Ka:  dy(19) = r19*(((α*Wactivation ) n19)/(1+(α*Wactivation ) n19) – PI4Ka). 

PIa: dy(20) = r20*(((α*Wactivation  ) n20)/(1+(α*Wactivation ) n20 +(α*Winhibition) n20) – PIa). 

SACa: dy(21) = 0. 

Model C (see supplement) 

Model D 

There are 25 species in the EGFR signaling network but only 20 differential 

equations are translated from the circuit of the EGFR signaling network. The reason is that 

EGF, PTEN, PIKb, SACa and SACb do not have any inputs therefore they are treated as 

constants. In Model D, PITP stimulates both PIP2a and PIP2b. PIP2a is downstream from 

PI3K, and has its downstream species PIP3 and Akt. PIP2b is downstream from PLCr, and has 

its downstream species IP3 and DAG. The difference between Model D and Model C is that 

PITP stimulates PIP2a in Model C. PIP2a is independent of PI3K. PIP2b is downstream from 

both PI3K and PLCr. 

EGF: dy(1) = 0. 

EGFR: dy(2) = r2*(((α *Wactivation  ) n2)/(1+(α*Wactivation) n2 +(α*Winhibition ) n2) – EGFR). 

Sos2: dy(3) = r3*(((α *Wactivation  ) n3)/(1 + (α * Wactivation ) n3 +(α*Winhibition ) n3) – Sos2). 

RasGDP: dy(4)=r4*(((α*Wactivation  ) n4)/(1+ (α*Wactivation ) n4 +(α*Winhibition ) n4) –GDP). 
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RasGTP: dy(5)=r5*(((α*Wactivation  ) n5)/(1+(α*Wactivation ) n5+(α*Winhibition ) n5)–GTP). 

RasGAP: dy(6) = r6*(((α *Wactivation  ) n6)/ (1+( α*Wactivation ) n6) – GAP). 

Raf1: dy(7) = r7*(((α * Wactivation  ) n7) / (1 + (α*Wactivation ) n7) – Raf1). 

Mek: dy(8) = r8*(((α*Wactivation  ) n8)/(1 + (α*Wactivation ) n8) – Mek). 

Erk: dy(9) = r9*(((α *Wactivation  ) n9)/(1+(α *Wactivation ) n9) – Erk). 

PI3K: dy(10) = r10*(((α*Wactivation ) n10)/(1+( α*Wactivation ) n10) –PI3K). 

PIP2a: dy(11)=r11*(((α *Wactivation ) n11)/(1+(α*Wactivation ) n11+(α*Winhibition) n11) – PIP2a). 

PIP3: dy(12) = r12*(((α*Wactivation ) n12)/(1+(α*Wactivation ) n12+(α*Winhibition) n12) – PIP3). 

PTEN:  dy(13) = 0. 

Akt: dy(14) = r14*(((α* Wactivation  ) n14) / (1 + (α* Wactivation ) n14) – Akt). 

PITP: dy(15) = r15*(((α * Wactivation  ) n15) / (1 + (α*Wactivation ) n15) – PITP). 

PLCr: dy(16) = r16*(((α * Wactivation  ) n16) / (1 + (α*Wactivation ) n16) – PLCr). 

IP3: dy(17) = r17*(((α *Wactivation ) n17)/(1+(α*Wactivation ) n17) – IP3). 

DAG: dy(18) = r18*(((α*Wactivation ) n18)/(1+(α*Wactivation ) n18) – DAG). 

PI4Ka:  dy(19) = r19*(((α*Wactivation ) n19)/(1+(α*Wactivation ) n19) – PI4Ka). 

PIa: dy(20) = r20*(((α*Wactivation  ) n20)/(1+(α*Wactivation ) n20+(α*Winhibition) n20) – PIa). 

SACa: dy(21) = 0. 

PIP2b: dy(22)=r22*(((α *Wactivation ) n22)/(1+(α*Wactivation ) n11+(α*Winhibition) n22) – PIP2b). 

PI4Kb:  dy(23) = r23*(((α*Wactivation ) n23)/(1+(α*Wactivation ) n23) – PI4Kb). 

PIb: dy(24) = r24*(((α*Wactivation  ) n24)/(1+(α*Wactivation ) n24+(α*Winhibition) n24) – PIa). 

SACb: dy(25) = 0. 
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Model Fitting 
 

As in many cell signaling models, there is limited data of biochemical reactions 

available. Since that is true for our model, we used the Markov Chain Monte Carlo (MCMC) 

method to select parameter values (see methods). The initial values were set to non-zero for 

some species that do have basal activity (Table 3), others were set to zero. The non-zero 

initial values are approximation of educated guess. We used experimental data of wild type 

(from Beak) to fit Erk and Akt response in the model. After bringing the model response to 

the target region, 10,000 runs were simulated. Among the 10,000 sets, around 25% of the sets 

met the criteria of the experimental data points and were selected. The final result is an 

average of these selected parameter values.  

 Table 3: Protein initial values 
 

 Species Initial values 
1 EGF 0.5 
2 EGFR 0.7 
3 RasGDP 0.9 
4 PIP2 0.1 
5 PI4K 0.1 
6 PI 0.5 
7 PTEN 0.5 
8 SAC 0.5 

 

 Figure 5 shows the EGF-stimulated response from Erk and Akt resulting from 

averages of the parameter sets. The top plot is response from Erk, the bottom plot is from 

Akt. Transient response from Akt is faster and precedes response from Erk. The stars are data 

points from experiment, the plot is from simulation. The Y-axis is the normalized activity of 

concentration; the X-axis is the simulation time of 0 to 1800 seconds. 
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Figure 6 shows the EGF-stimulated response from PIP2 and PIP3 resulting from 

averages of the parameter sets. The top plot is the response from PIP2, the bottom plot is 

from PIP3. The stars are data points from experiment, the plot is from simulation. The Y-axis 

is the normalized activity of concentration; the X-axis is the simulation time of 0 to 1800 

seconds. The activity from PIP3 is 10% of activity from PIP2 at maximum from experimental 

data. The model shows about 13%. 

 
 
Figure 5: Model B, EGF-stimulated response Erk and Akt averaged from selected parameter 
sets. Stars are data points from experiment. 
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Figure 6: Model B, EGF-stimulated response from PIP2 and PIP3 averaged from selected 
parameter sets.  
 

Figure 7 and Figure 8 show the same type of results from Model D. The activity from 

PIP3 is 10% of activity from PIP2 at maximum from experimental data. The model shows 

about 13%. 
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Figure 7: Model D, EGF-stimulated response Erk and Akt averaged from selected parameter 
sets. Stars are data points from experiment. 

 

Figure 8: Model D, EGF-stimulated response from PIP2 and PIP3 averaged from selected 
parameter sets.  
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Statistical Data Analysis of Parameter Convergence 

Good methods for testing convergence of target distribution are the histograms of 

posterior distribution density and time series trace plots. Figure 9 and Figure 10 show that the 

histograms of the posterior distribution are converged. The Y-axis is the number of values 

from different parameter sets, and the X-axis is the weight. Notice that some parameters are 

converged well and some have long tails. This may provide insights to the signaling network 

(see below). The posterior distribution is not symmetric because negative concentration has 

no meaning in cell signaling.  

 
 
Figure 9: Model B, Histograms of posterior distribution showing the parameter selection 
convergence. 
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Figure 10: Model D, Histograms of posterior distribution showing the parameter selection 
convergence. 
 
 

Figures 11 and 12 show that the time series trace of the posterior distribution is 

converged. The trace is considered well mixing and has no long flat periods. The Y-axis is 

the weight, and the X-axis is the number of iterations. Black is selected parameter sets, and 

white is rejected parameter sets. All parameters were tested for convergence. Here only show 

three parameters for demonstration.  
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Figure 11: Model B, Time series trace of posterior distribution showing that the selected 
parameter values are well mixing. 
 
 

 
 
Figure 12: Model D, Time series trace of posterior distribution showing that the selected 
parameter values are well mixing. 
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Statistical Data Analysis of Weights in Relation to Signaling Regulation 
 

Tables 3, 4 show the maxima, minima, means and standard deviations of weights in 

the EGFR signaling network. The simulation results are not unique, and are averaged from 

parameter sets selected from simulations. The standard deviation measures the variability of 

the data. The smaller standard deviation indicates less variability and stable, the larger 

standard deviation indicates more variability and has large range of values. From statistical 

data analysis, the standard deviations of weights may provide insights about where the strong 

regulation occurs and where the more balanced part occurs in the signaling network. The 

parameters with smaller standard deviation in comparison with other parameters in the 

network may suggest that those species provide stable regulation in the network. The 

parameters with larger standard deviation in comparison with other parameters in the 

network may suggest that those species provide robust regulation in the network. 
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Table 4: Model B, Weight parameter sets selected from simulations. Maxima, minima, 
means and standard deviations of parameter sets show the convergence. -> sign indicates 
activation, -| sign represents inhibition. 
 

 Parameter Max. Min. Mean Std. dev. 
1 EGF ->EGFR 0.2866 0.2022 0.2442 0.0123 
2 Erk -> EGFR 0.2986 0.2155 0.2551 0.0126 
3 PIP2 -| EGFR 0.5544 0.3893 0.4576 0.0232 
4 EGFR -> Sos2 0.2055 0.1461 0.1755 0.0087 
5 Erk -| Sos2 0.2159 0.1549 0.1822 0.0091 
6 Sos2 -| RasGDP 0.2338 0.1589 0.1931 0.0096 
7 RasGTP ->RasGDP 0.0729 0.0507 0.0605 0.0030 
8 RasGDP ->RasGTP 0.1503 0.1119 0.1321 0.0062 
9 RasGAP -| RasGTP 0.0657 0.0464 0.0556 0.0028 
10 EGFR ->RasGAP 0.1473 0.1082 0.1266 0.0063 
11 RasGTP ->Raf1 0.3717 0.2622 0.3139 0.0154 
12 Raf1 ->Mek 0.3256 0.2344 0.2743 0.0136 
13 Mek ->Erk 0.5415 0.3770 0.4481 0.0220 
14 EGFR ->PI3K 0.0001 0.0001 0.0001 0.0000 
15 RasGTP ->PI3K 0.0322 0.0231 0.0272 0.0013 
16 PI3K -| PIP2a 0.2099 0.1481 0.1778 0.0090 
17 PIP3 -> PIP2a 0.7823 0.5575 0.6608 0.0317 
18 PIa -> PIP2a 0.0765 0.0563 0.0655 0.0032 
19 PLCr -| PIP2a 0.2423 0.1718 0.2009 0.0101 
20 PIP2a -> PIP3 0.1952 0.1492 0.1709 0.0068 
21 PTEN -| PIP3 0.8224 0.6005 0.6997 0.0314 
22 PIP3 -> Akt 1.9630 1.3304 1.6730 0.0809 
23 EGFR -> PITP 0.4541 0.3187 0.3750 0.0186 
24 PITP -> PIKa 0.3923 0.2678 0.3196 0.0157 
25 PIKa -| PIa 0.0826 0.0590 0.0702 0.0035 
26 EGFR -> PLCr 0.2402 0.1734 0.2016 0.0100 
27 PIP2a -> IP3 0.2266 0.1616 0.1929 0.0094 
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Table 5: Model D, Weight parameter sets selected from simulations. Maxima, minima, 
means and standard deviations of parameter sets show the convergence. -> sign indicates 
activation, -| sign represents inhibition. 
 

 Parameter Max. Min Mean Std. dev. 
1 EGF ->EGFR 0.2852 0.1745 0.2267 0.0183 
2 Erk -> EGFR 0.2805 0.1584 0.2073 0.0163 
3 PIP2 -| EGFR 0.6228 0.3402 0.4571 0.0370 
4 EGFR -> Sos2 0.2520 0.1508 0.1971 0.0156 
5 Erk -| Sos2 0.2667 0.1485 0.2025 0.0163 
6 Sos2 -| RasGDP 0.2351 0.1367 0.1798 0.0145 
7 RasGTP ->RasGDP 0.0665 0.0378 0.0489 0.0040 
8 RasGDP ->RasGTP 0.2384 0.1380 0.1850 0.0145 
9 RasGAP -| RasGTP 0.0619 0.0349 0.0453 0.0037 
10 EGFR ->RasGAP 0.1188 0.0733 0.0947 0.0075 
11 RasGTP ->Raf1 0.4968 0.2950 0.3806 0.0304 
12 Raf1 ->Mek 0.2971 0.1768 0.2282 0.0181 
13 Mek ->Erk 0.6035 0.3506 0.4611 0.0361 
14 EGFR ->PI3K 0.0001 0.0001 0.0001 0.0000 
15 RasGTP ->PI3K 0.0692 0.0401 0.0539 0.0043 
16 PI3K -| PIP2a 0.2947 0.1633 0.2243 0.0184 
17 PIP3 -> PIP2a 1.1981 0.6948 0.9057 0.0668 
18 PIa -> PIP2a 0.0844 0.0503 0.0652 0.0053 
19 PLCr -| PIP2b 0.5320 0.3115 0.4167 0.0339 
20 PIP2a -> PIP3 0.1421 0.0800 0.1050 0.0083 
21 PIb -> PIP2b 0.2370 0.1460 0.1906 0.0126 
22 PTEN -| PIP3 1.1430 0.6812 0.8624 0.0630 
23 PIP3 -> Akt 3.1166 1.8432 2.3457 0.1855 
24 EGFR -> PITP 0.2687 0.1482 0.1992 0.0156 
25 PITP -> PIKa 0.4875 0.2844 0.3694 0.0291 
26 PIKa -| PIa 0.0883 0.0513 0.0689 0.0055 
27 EGFR -> PLCr 0.3580 0.2048 0.2629 0.0212 
28 PIKa -| PIa 0.1037 0.0603 0.0811 0.0066 
29 PIP2b -> IP3 0.3244 0.1845 0.2389 0.0199 

 
 

The simulation results from four models are fitted to the experimental data of 

response from wild type of Erk and Akt. By comparing the simulation results from these four 

models, we recognized that there are properties in common among these four models. As 
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shown in Table 2 (Model B) and Table 3 (Model D), maxima, minima, means and standard 

deviations of weights in the EGFR signaling network may provide insights on the regulation 

of the network (Model A and Model C, see supplement). We divided the standard deviation 

into three categories: larger standard deviation with value greater than 0.03 and colored red; 

smaller standard deviation with value smaller than 0.01 and colored with green; standard 

deviation with value greater than 0.01 and smaller than 0.03. Parameters with larger standard 

deviation may suggest stable enzymatic regulation in cell signaling network. In contrast, 

parameters with smaller standard deviation may suggest robust regulation in cell signaling 

network. 

In Table 2 (Model B), we identified several weights that resulted in standard 

deviations greater than 0.1. Two of these weights, PIP2 -| EGFR and PTEN -| PIP3, exhibit 

inhibition which negatively regulate downstream species. This property may indicate the 

importance of negative regulation in the cell signaling transduction network. The two 

weights, PIP2 -> PIP3, and PIP3 -> Akt, demonstrate activation, which positively regulates 

downstream species. The larger standard deviations and the wider range of weights may 

suggest, in biological system, the indication of robustness of the regulation in the network.  

Based on standard deviations of the weights, we divided them into three groups and 

colored the EGFR signaling network diagrams for better understanding. Red indicates that 

the parameter has a larger standard deviation greater than 0.03 and a wider range of weights.  

Green indicates that the parameter has a smaller standard deviation less than 0.01 and a 

narrower range of weights. Blue indicates that the parameter has a standard deviation 
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between 0.03 and 0.01. Do these differences in pathways impart significant biological 

information?  

Two common properties are observed from colored diagrams of the four models are: 

that both RasGDP, RasGTP conversion, and PI, PIP2 conversion are colored with green. 

Statistical analysis indicate that these enzymatic reactions are stable and balanced parts in the 

signaling network, perhaps suggesting a biological characteristic that cell signaling is all 

about enzymatic regulation in the network. Another common property is that PTEN 

inhibition on Akt is colored with red, indicating that inhibition has a wider range of weights. 

From [Li and Sun, 1997, Li et al. 1997; Steck et al. 1997], we know that PTEN is a tumor 

suppressor and Akt is an oncogene [Staal, 1987; Bellacosa, 1995; Cheng, 1996]. It has been 

shown that Akt was amplified in a number of human tumors through indirect means such as 

amplification of PI3K, or, more commonly deletion of PTEN [Vivanco I, 2002]. This 

characteristic may also be an indication in biology that PTEN has strong local regulation of 

Akt via PIP3. Figure 13 (Model B) and Figure 14 (Model D) show the colored diagrams. The 

colored diagrams for Model A and Model C are shown in the supplement. 
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Figure 13: Model B, colored EGFR signaling network indicating the range of the parameter 
value. Red indicates a standard deviation greater than 0.03; blue signifies a standard 
deviation between 0.01 and 0.03; and green represents a standard deviation less than 0.01. 
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Figure 14: Model D, colored EGFR signaling network indicating the range of the parameter 
value. Red indicates a standard deviation greater than 0.03; blue signifies a standard 
deviation between 0.01 and 0.03; and green represents a standard deviation less than 0.01. 
 
 
Simulation of Mutated Oncogenes and Tumor Suppressors in Cancer Research 

Ras [Barbacid, 1987; Bos, 1989] and PI3K [Carpenter, 1990] are oncogenes. PTEN is 

a tumor suppressor [Li and Sun, 1997, Li et al. 1997; Steck et al. 1997], and cells lacking 

PTEN function exhibit a two fold increase in PtdIns-3,4,5-P3 levels [Stambolic et al. 1998; 

Sun et al. 1999]. We used different parameter values to simulate these oncogenes and tumor 

suppressors, and observed the dynamic behavior of the network at a systems level. When the 

weight was increased in RasGDP, RasGTP conversion cycle, simulation results show that 
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response from Erk becomes sustained, which is similar to the experimental data reported in a 

study by [Birtwistle et al. 2007]. They reported that cancer cells have sustained response 

from Erk. In modeling, the sustained response most likely is due to saturation. To confirm the 

possibility of the sustained response caused by oncogene, bistability investigation is 

necessary. As a consequence of global inhibition from Erk to EGFR and Sos2, Akt response 

becomes more transient.  Figure 15 (Model B) and Figure 16 (Model D) show Erk and Akt in 

response to mutated oncogene Ras. 

 

Figure 15: Model B, simulation of mutated oncogene Ras. Erk response becomes sustained, 
and, as a consequence of global inhibition from Erk, Akt response becomes more transient. 
Stars are data points from experiment. 
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Figure 16: Model D, simulation of mutated oncogene Ras. Erk response becomes sustained, 
and, as a consequence of global inhibition from Erk, Akt response becomes more transient. 
Stars are data points from experiment. 

 

Another oncogene PI3K, shows similar dynamic behavior. We increased the weight 

for the PI3K, PIP2 conversion cycle, and simulation results showed that response from Akt 

becomes sustained which is similar to experimental data from studies by [Staal, 1987; 

Bellacosa, 1995; Cheng, 1996]. Their results indicated that cancer cells have sustained 

response from Akt. In modeling, the sustained response most likely is due to saturation. To 

confirm the possibility of the sustained response caused by oncogene, bistability 

investigation is necessary. No change in Erk response is observed. Figure 17 (Model B) and 

Figure 18 (Model D) show Erk and Akt in response to mutated oncogene PI3K. 
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Figure 17: Model B, simulated mutated oncogene PI3K showing that Akt response became 
sustained with no change from Erk response. Stars are data points from experiment. 

 
 

 
 

Figure 18: Model D, simulated mutated oncogene PI3K showing that Akt response became 
sustained with no change from Erk response. Stars are data points from experiment. 
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For tumor suppressor PTEN, we decreased weight from PTEN to PIP3 to simulate 

mutated PTEN. Results showed that the amplitude of Akt response increased and the Akt 

response became more sustained. This result may suggest that PTEN as a tumor suppressor 

has stronger negative regulation on Akt. Even though our model does not quantify the level 

of dysfunction of mutated PTEN, it does provide an indication that PTEN has an important 

role on regulation of Akt. Figure 19 (Model B) and Figure 20 (Model D) show Erk and Akt 

in response to mutated tumor suppressor PTEN. 

 

 

Figure 19: Model B, simulate PTEN as a tumor suppressor. Akt response amplitude 
increased and became more sustained. Stars are data points from experiment. 
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Figure 20: Model D. Simulate PTEN as a tumor suppressor. Akt response amplitude 
increased and became more sustained. Stars are data points from experiment. 

 

Perturbation of PITP 

We perturbed PITP as knock out PITP, by setting the weight from EGFR to PITP as zero. 

The simulation results showed that the perturbation on PITP had no affect on PIP2. 

Therefore, no effect on downstream species PIP3 and Akt were evident. From standard 

deviation analysis, we have discussed that PI and PIP2 conversion is a stable and balanced 

part of the PI3K pathway. This finding may suggest that PI and PIP2 conversion is more self -

sustained due to basal activity and positive feedback loops from PIP2 to PI and from PIP3 to 

PIP2 as well. This simulation results indicate an close agreement with PITP experimental data 

(not published) qualitatively. Another possibility, as pointed out by [Tanaka, S., et al 1994, 

Cunningham, E., et al. 1996], may be that in functional studies in mammalian cells, 
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ectopically expressed Sec14p can be used to compensate for the loss of PITPs. Our studies 

did not model this. 

Model Prediction and Limitation 

 From the simulation results and data analysis of four models, our predictions are that 

Model B and Model D may represent the PITP structure in the EGFR signaling network and 

in a closer agreement with the experimental data (not published). The reason for our 

prediction is that in both Model B and Model D, the PI3K pathway and the PLCr pathway are 

stimulated by PITPα. In Model B, PITPα stimulates both PIP2a, and PIP2a is accessed by 

PI3K pathway and PLCr pathway. In Model D, PITPα stimulates both PIP2a and PIP2b, PIP2a 

is accessed by the PI3K pathway, and PIP2b is accessed by PLCr pathway. But in Model C, 

PI3K pathway and PLCr pathway are not stimulated by PITPα. As Hsuan et al. (2001) 

pointed out, that PITPα was identified as an essential component in ensuring substrate supply 

to PLC. 

 The methodology used for our modeling may be good for theoretical exploration, 

hypothesis generation, and prediction formulation. Like any modeling method, our model has 

its limitations. It does not provide detailed quantitative information about the signaling 

network, such as, the level of mutated PTEN necessary to cause PTEN dysfunction.  

Conclusion  

In conclusion, we were first to develop a regulatory model using EGF as stimulus to 

activate Erk and Akt in PITP signaling transduction network. The model construction is 

based on the information of the signaling directions and activation or inhibition in the 
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signaling network. Therefore this methodology provides qualitative insights about cell 

signaling network.  

We chose the Hill function to formulate ODEs because Hill coefficient can determine 

the cooperativeness of the ligand and enzyme or receptor binding, thus providing biological 

information to the signaling network model. We developed an algorithm to select parameters 

using Markov Chain Monte Carlo methods, and tested parameter convergence. The analysis 

of standard deviations of weights does provide some insights. Notably, the stable enzymatic 

regulation of Ras and PI and strong negative regulation of PTEN on Akt in the signaling 

network. Oncogene simulation results show the relationship to cancer research.       

From the simulation results of four models, our prediction of PITP structure in the 

EGFR signaling network is Model B. The reason is that PITP activates PI3K pathway and 

PLCr pathway in Model B which may closely represent experimental data (not published).  

The statistical data analysis shows that the standard deviations of weights in Model B are 

more stable. Model B can be the starting point for future modeling on EGF-stimulated PITP 

signaling network, more realistic kinetics modeling can be used to gain additional insights. 

Our model has its limitation in that it does not provide detailed quantitative 

information about the signaling network. 
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MATERIALS AND METHODS 

Model Development 

Figure 1-4 depict PITP Model A through Model D of the EGFR signal transduction 

networks. Molecules are species, and weights are interactions between two species. The 

dynamics of weights, scaling coefficients, and the Hill coefficient reflect the system 

behavior. Circuits of the network are translated into Ordinary Differential Equations (ODE). 

The initial values are educated guesses from what we know about the biological process. For 

example we know that the concentration of RasGDP should be higher because this inactive 

form is present in abundance. The concentration is between 0 and 1. The weights are random 

numbers generated by Matlab [The Mathworks; Natick, MA] and selected by Markov Chain 

Monte Carlo method. Weights are positive values for both activation and inhibition. There 

are 20 species and 70 parameters in the EGFR signaling network. Simulations perform a 

deterministic computation to select all possible combinations of weights, scaling coefficients 

and Hill coefficients based on the experimental data points from Erk and Akt readout.  

Governing Equations 

We used the Hill function to formulate ODEs for each species in the signal 

transduction network. Since the Hill function is used to determine the cooperativeness of the 

ligand binding to the enzyme or receptor, there is biological meaning to justify use of the Hill 

function in the signaling network modeling. 

There are three types of equations: activation, inhibition, and both activation and 

inhibition. 
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1. Activation equation:  

dx/dt = r* ((α*Wactivation) n / (1+ (α*Wactivation) n) – x). 

2. Inhibition equation: 

dx/dt = r*((α*Winhibition) n / (1+ (α*Winhibition) n) – x). 

3. Activation and Inhibition equation: 

dx/dt = r*((α* Wactivation) n / (1+ (α*Wactivation) n +( α*Winhibition) n) – x). 

x – a species in the signal transduction network. A negative sign preceding x here 

indicates x is a decay term. The range of concentration is between 0 and 1.    

r – time is a scaling coefficient in the range of 0 to 1. 

α –a is constant with value eight. 

Wactivation – sum of activation weights is the total amount of activation input a species 

received from other species in the network. The initial weight is between 0 and 1. It could be 

greater than 1 as a result of parameter selection. 

Winhibition – sum of inhibition weights is the total amount of inhibition input a species 

received from other species in the network. The initial weight is between 0 and 1. It could be 

greater than 1 as a result of parameter selection. 

n – Hill function coefficient. The initial Hill coefficient is greater than 1. 

Parameter Selection Using Markov Chain Monte Carlo Methods 

In cell signaling modeling, there is relatively limited pool of data on stoichiometry 

and kinetics of the biochemical reactions. The classical method is to gather rate constants 

from experimental data. There are several issues when gathering information in this fashion. 

First, it is difficult to measure the rate constants for a large network which has a large 
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parameter set. Second, these data are collected from different laboratories which may lead to 

inherent inconsistencies. We used the Markov Chain Monte Carlo (MCMC) method and 

developed an efficient algorithm to simulate parameter selection in EGFR signaling network 

model. 

Markov Chain Monte Carlo (MCMC) methods are used to simulate direct draws from 

some complex, nonstandard multivariate distributions of interest [Chib et al. 1995].  

A Markov Chain is a sequence of random variables generated by a Markov process 

which is defined by its transition probabilities. These transition probabilities between 

different values in the sample space depend only on the random variable’s current state. 

Thus, the only information about the past available to predict the future is the current state of 

the random variable. Knowledge about an earlier state of the random variable does not 

change the transition probability [Walsh, 2004].  

Monte Carlo sampling uses Bayesian inference that is based on random sampling. It 

was introduced by Metropolis [Metropolis et al. 1953] at Los Alamos National Laboratory. 

Some systems cannot be computed exactly and therefore they are predicted on the basis of 

approximation. Some examples are the van der Vaals equations for dense gases, and 

Boltzmann equations for dilute gases, among many others.   

Markov Chain Monte Carlo Simulation 

There are different MCMC algorithms depending on the applications. We chose 

Metropolis-Hastings algorithm for our simulation. The usual approach is to start with any 

value and draw the sample space from a uniform or normal distribution with specified mean 

and standard deviation.  
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Since we do not have any known parameter values in the signaling network, we 

selected a set of parameters from the uniform distribution, which can generate Erk and Akt 

response as the starting point. Doing so requires a shorter burn-in period and brings the chain 

to the stationary state. 

We used a design approach named divide and conquer. It is well known in computer 

science field and is the basis for binary search, quick sort, among others. This approach 

breaks a complex problem into sub-problems of similar type and solves sub-problems in an 

efficient manner. We applied this approach in the algorithm design to shorten the burn-in 

period and bring the chain to convergence more quickly. Parameters were divided into 

blocks: pathways, weight, scaling coefficient, and Hill coefficient. The standard deviation 

may be different for each block and pathway. 

The equation: New = Old * exp (sd*randn).  New is the candidate parameter value, 

Old is the current parameter value, sd is the standard deviation of the posterior distribution, 

and randn is the command in Matlab [The Mathworks; Natick, MA] to generate a random 

normalized variable. 

The algorithm we developed has the following steps: 

1. Start with the selected parameter set mentioned above as the starting point.  

2. Determine a proposal distribution or a move to the target region. Parameters are 

divided into different groups according to their characteristics in the cell signal transduction 

network: pathways, weight, Hill coefficient, and scaling coefficient. Standard deviations are 

specified for different groups according to their influence on the data fitting.  
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3. The candidate y is drawn from the process of y = x + sd*z, where x is the current 

or old value, sd is standard deviation and z is an increment random variable drawn from 

normal distribution.  

4. The simulation calculates the system of ODEs that are interactions of species in the 

signaling network.  

5. Determine if the response from Erk and Akt meets the criteria of data points from 

experience. If so, accept the set; otherwise reject the set and go to step 3.   

In our simulation experiments, it may take several trials to bring the model response 

to the target region. We noticed that by adjusting standard deviation in the burn-in period, the 

burn-in period could be shortened. This result is due to the complexity of this model that the 

weight, time scaling coefficient, and Hill coefficient have different functions in influence the 

model fitting. Once the response is in the target region, the parameter sets are selected, if 

they meet the criteria of the experimental data points.   
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Supplement 

Table 1: Model A, Circuits of the EGFR signaling network. Plus sign indicates activation 
received, minus sign indicates inhibition received. EGF, PTEN, and SACa receive neither 
activation nor inhibition from other species, they are treated as constants.  
  

 
 
 
 
 
 
 
 
 
 
 
 

 Downstream species Regulators 
1 EGF  
2 EGFR + EGF – Erk 
3 Sos2 + EGFR – Erk 
4 RasGDP + RasGTP – Sos2 
5 RasGTP + RasGDP – RasGAP 
6 RasGAP + EGFR 
7 Raf1 + RasGTP 
8 Mek + Raf1 
9 Erk + Mek 
10 PI3K + EGFR + RasGTP 
11 PIP2a + PIa + PIP3 – PI3K – PLCr –SACa 
12 PIP3 + PIP2a – PTEN 
13 PTEN  
14 Akt + PIP3 
15 PITP + EGFR 
16 PLCr + EGFR 
17 IP3 + PIP2a 
18 DAG + PIP2a 
19 PIKa + PITP 
20 PIa + PIP2a – PIKa 
21 SACa  
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Table 2: Model C, Circuits of the EGFR signaling network. Plus sign indicates activation 
received, minus sign indicates inhibition received. EGF, PTEN, PIKb, SACa and SACb 
receive neither activation nor inhibition from other species, they are treated as constants. 
  
 

 Downstream species Regulators 
1 EGF  
2 EGFR + EGF – Erk – PIP2a 
3 Sos2 + EGFR – Erk 
4 RasGDP + RasGTP – Sos2 
5 RasGTP + RasGDP – RasGAP 
6 RasGAP + EGFR 
7 Raf1 + RasGTP 
8 Mek + Raf1 
9 Erk + Mek 
10 PI3K + EGFR + RasGTP 
11 PIP2a + PIa – SACa 
12 PIP3 + PIP2b – PTEN 
13 PTEN  
14 Akt + PIP3 
15 PITP + EGFR 
16 PLCr + EGFR 
17 IP3 + PIP2b 
18 DAG + PIP2b 
19 PIKa + PITP 
20 PIa + PIP2a – PIKa 
21 SACa  
22 PIP2b + PIb + PIP3 – PI3K – PLCr – SACb 
23 PIKb  
24 PIb + PIP2b – PIKb 
25 SACb  

 
 
Model Equations 
 
Model A 

There are 21 species in the EGFR signaling network but only 18 differential 

equations are translated from the circuit of the EGFR signaling network. The reason is that 
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EGF, PTEN, and SACa do not have any inputs. Therefore they are treated as constants. For 

completeness, their equations are equal to zero. 

EGF: dy(1) = 0. 

EGFR:  dy(2) = r2*(((α*Wactivation) n2)/(1+(α*Wactivation ) n2 +(α*Winhibition ) n2) – EGFR). 

Sos2: dy(3) = r3*(((α * Wactivation  ) n3 )/(1 + (α * Wactivation ) n3 +(α*Winhibition ) n3) – Sos2). 

RasGDP: dy(4)=r4*(((α*Wactivation ) n4 )/(1+ (α*Wactivation ) n4 +(α*Winhibition ) n4) –GDP). 

RasGTP: dy(5)=r5*(((α*Wactivation ) n5)/(1+(α*Wactivation ) n5 +(α*Winhibition ) n5)–GTP). 

RasGAP: dy(6) = r6*(((α *Wactivation ) n6)/ (1+( α*Wactivation ) n6) – GAP). 

Raf1: dy(7) = r7*(((α * Wactivation  ) n7) / (1 + (α*Wactivation ) n7) – Raf1). 

Mek: dy(8) = r8*(((α*Wactivation  ) n8)/(1 + (α*Wactivation ) n8) – Mek). 

Erk: dy(9) = r9*(((α *Wactivation  ) n9)/(1+(α *Wactivation ) n9) – Erk). 

PI3K: dy(10) = r10*(((α*Wactivation ) n10)/(1+( α*Wactivation ) n10) –PI3K). 

PIP2: dy(11)=r11*(((α *Wactivation ) n11)/(1+(α*Wactivation ) n11+(α*Winhibition) n11) – PIP2). 

PIP3: dy(12) = r12*(((α*Wactivation ) n12)/(1+(α*Wactivation ) n12+(α*Winhibition) n12) – PIP3). 

PTEN:  dy(13) = 0. 

Akt: dy(14) = r14*(((α* Wactivation  ) n14) / (1 + (α* Wactivation ) n14) – Akt). 

PITP: dy(15) = r15*(((α * Wactivation  ) n15) / (1 + (α*Wactivation ) n15) – PITP). 

PLCr: dy(16) = r16*(((α * Wactivation  ) n16) / (1 + (α*Wactivation ) n16) – PLCr). 

IP3: dy(17) = r17*(((α *Wactivation ) n17)/(1+(α*Wactivation ) n17) – IP3). 

DAG: dy(18) = r18*(((α*Wactivation ) n18)/(1+(α*Wactivation ) n18) – DAG). 

PIKa: dy(19) = r19*(((α*Wactivation ) n19)/(1+(α*Wactivation ) n19) – PIKa). 

PIa: dy(20) = r20*(((α*Wactivation  ) n20)/(1+(α*Wactivation ) n20 +(α*Winhibition) n20) – PIa). 
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SACa: dy(21) = 0. 

Model C 

There are 25 species in the EGFR signaling network but only 20 differential 

equations are translated from the circuit of the EGFR signaling network. The reason is that 

EGF, PTEN, PIKb, SACa and SACb do not have any inputs. Therefore they are treated as 

constants. For completeness, their equations are equal to zero.  

EGF: dy(1) = 0. 

EGFR:  dy(2) = r2*(((α*Wactivation) n2)/(1+(α*Wactivation ) n2+(α*Winhibition ) n2) – EGFR). 

Sos2: dy(3) = r3*(((α * Wactivation  ) n3 )/(1 + (α * Wactivation ) n3 +(α*Winhibition ) n3) – Sos2). 

RasGDP: dy(4)=r4*(((α*Wactivation  ) n4 )/(1+ (α*Wactivation ) n4 +(α*Winhibition ) n4) –GDP). 

RasGTP: dy(5)=r5*(((α*Wactivation  ) n5)/(1+(α*Wactivation ) n5+(α*Winhibition ) n5)–GTP). 

RasGAP: dy(6) = r6*(((α *Wactivation  ) n6)/ (1+( α*Wactivation ) n6) – GAP). 

Raf1: dy(7) = r7*(((α * Wactivation  ) n7) / (1 + (α*Wactivation ) n7) – Raf1). 

Mek: dy(8) = r8*(((α*Wactivation  ) n8)/(1 + (α*Wactivation ) n8) – Mek). 

Erk: dy(9) = r9*(((α *Wactivation ) n9)/(1+(α *Wactivation ) n9) – Erk). 

PI3K: dy(10) = r10*(((α*Wactivation ) n10)/(1+( α*Wactivation ) n10) –PI3K). 

PIP2a: dy(11)=r11*(((α *Wactivation ) n11)/(1+(α*Wactivation ) n11+(α*Winhibition) n11) – PIP2a). 

PIP3: dy(12) = r12*(((α*Wactivation ) n12)/(1+(α*Wactivation ) n12+(α*Winhibition) n12) – PIP3). 

PTEN:  dy(13) = 0. 

Akt: dy(14) = r14*(((α* Wactivation  ) n14 ) / (1 + (α* Wactivation ) n14) – Akt). 

PITP: dy(15) = r15*(((α * Wactivation  ) n15) / (1 + (α*Wactivation ) n15) – PITP). 

PLCr: dy(16) = r16*(((α * Wactivation  ) n16 ) / (1 + (α*Wactivation ) n16) – PLCr). 
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IP3: dy(17) = r17*(((α *Wactivation ) n17)/(1+(α*Wactivation ) n17) – IP3). 

DAG: dy(18) = r18*(((α*Wactivation ) n18)/(1+(α*Wactivation ) n18) – DAG). 

PI4Ka:  dy(19) = r19*(((α*Wactivation ) n19)/(1+(α*Wactivation ) n19) – PI4Ka). 

PIa: dy(20) = r20*(((α*Wactivation  ) n20 )/(1+(α*Wactivation ) n20 +(α*Winhibition) n20) – PIa). 

SACa: dy(21) = 0. 

PIP2b: dy(22)=r11*(((α *Wactivation ) n22)/(1+(α*Wactivation ) n11+(α*Winhibition) n22) – PIP2b). 

PI4Kb:  dy(23) = 0. 

PIb: dy(24) = r24*(((α*Wactivation  ) n24)/(1+(α*Wactivation ) n24 +(α*Winhibition) n24) – PIa). 

SACb: dy(25) = 0. 

 

 

Figure 1: Model A, EGF-stimulated response averaged from selected parameter sets. Stars 
are data points from experiment. 
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Figure 2: Model C, EGF-stimulated response averaged from selected parameter sets. Stars 
are data points from experiment. 
 

 
 
Figure 3: Model A, Histograms of posterior distribution showing the parameter selection 
convergence. PIP2-| EGFR is zero. 
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Figure 4: Model C, Histograms of posterior distribution showing the parameter selection 
convergence. 
 
 
 

 
 
Figure 5: Model A, Time series trace of posterior distribution showing that the selected 
parameter values are well mixed. 
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Figure 6: Model C. Time series trace of posterior distribution showing that the selected 
parameter values are well mixed. 
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Table 3: Model A, Weight parameter sets selected from simulations. Maxima, minima, 
means and standard deviations of parameter sets show the convergence. -> sign signifies 
activation, -| sign signifies inhibition. 
 

 Parameter Max. Min. Mean Std. dev. 
1 EGF ->EGFR 0.2930 0.2031 0.2441 0.0125 
2 Erk -> EGFR 0.2987 0.2128 0.2548 0.0127 
3 EGFR -> Sos2 0.2116 0.1480 0.1760 0.0089 
4 Erk -| Sos2 0.2177 0.1541 0.1821 0.0091 
5 Sos2 -| RasGDP 0.2257 0.1637 0.1926 0.0097 
6 RasGTP ->RasGDP 0.0719 0.0507 0.0605 0.0029 
7 RasGDP ->RasGTP 0.1576 0.1137 0.1328 0.0062 
8 RasGAP -| RasGTP 0.0661 0.0474 0.0554 0.0028 
9 EGFR ->RasGAP 0.1520 0.1068 0.1265 0.0063 
10 RasGTP ->Raf1 0.3740 0.2589 0.3133 0.0154 
11 Raf1 ->Mek 0.3240 0.2339 0.2744 0.0135 
12 Mek ->Erk 0.5799 0.3748 0.4482 0.0224 
13 EGFR ->PI3K 0.0002 0.0001 0.0001 0.0000 
14 RasGTP ->PI3K 0.0330 0.0219 0.0272 0.0014 
15 PI3K -| PIP2a 0.2141 0.1478 0.1778 0.0089 
16 PIP3 -> PIP2a 0.7684 0.5478 0.6603 0.0313 
17 PIa -> PIP2a 0.0775 0.0547 0.0656 0.0033 
18 PLCr -| PIP2a 0.2370 0.1658 0.2012 0.0099 
19 PIP2a -> PIP3 0.1965 0.1458 0.1712 0.0074 
20 PTEN -| PIP3 0.8196 0.5967 0.6978 0.0324 
21 PIP3 -> Akt 2.0888 1.4766 1.7610 0.0880 
22 EGFR -> PITP 0.4647 0.3186 0.3744 0.0190 
23 PITP -> PIKa 0.3701 0.2683 0.3200 0.0159 
24 PIKa -| PIa 0.0844 0.0593 0.0703 0.0034 
25 EGFR -> PLCr 0.2391 0.1683 0.2017 0.0100 
26 PIP2a -> IP3 0.2312 0.1617 0.1932 0.0097 
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Table 4: Model C, Weight parameter sets selected from simulations. Maxima, minima, 
means and standard deviations of parameter sets show the convergence. -> sign signifies 
activation, -| sign signifies inhibition. 
 

 Parameter Max. Min. Mean Std. dev. 
1 EGF ->EGFR 0.2525 0.1838 0.2157 0.0109 
2 Erk -> EGFR 0.2730 0.1991 0.2298 0.0113 
3 PIP2 -| EGFR 0.5506 0.3916 0.4638 0.0232 
4 EGFR -> Sos2 0.2186 0.1541 0.1846 0.0091 
5 Erk -| Sos2 0.2608 0.1796 0.2164 0.0109 
6 Sos2 -| RasGDP 0.2166 0.1552 0.1821 0.0090 
7 RasGTP ->RasGDP 0.0617 0.0455 0.0528 0.0026 
8 RasGDP ->RasGTP 0.1918 0.1414 0.1639 0.0075 
9 RasGAP -| RasGTP 0.0590 0.0413 0.0494 0.0025 
10 EGFR ->RasGAP 0.1237 0.0865 0.1040 0.0052 
11 RasGTP ->Raf1 0.4603 0.3339 0.3879 0.0192 
12 Raf1 ->Mek 0.2820 0.2011 0.2409 0.0118 
13 Mek ->Erk 0.5124 0.3451 0.4164 0.0208 
14 EGFR ->PI3K 0.0001 0.0001 0.0001 0.0000 
15 RasGTP ->PI3K 0.0618 0.0422 0.0501 0.0025 
16 PI3K -| PIP2b 0.3134 0.2182 0.2651 0.0139 
17 PIP3 -> PIP2b 1.1620 0.8111 0.9737 0.0474 
18 PIa -> PIP2a 0.0895 0.0629 0.0750 0.0038 
19 PLCr -| PIP2b 0.3851 0.2768 0.3318 0.0163 
20 PIP2b -> PIP3 0.1549 0.1099 0.1293 0.0064 
21 PIb -> PIP2b 0.2589 0.1871 0.2227 0.0104 
22 PTEN -| PIP3 1.2397 0.8387 1.0160 0.0489 
23 PIP3 -> Akt 3.0673 2.1879 2.5855 0.1275 
24 EGFR -> PITP 0.2936 0.1976 0.2389 0.0119 
25 PITP -> PIKa 0.5271 0.3722 0.4488 0.0221 
26 PIKa -| PIa 0.0922 0.0673 0.0793 0.0038 
27 EGFR -> PLCr 0.3802 0.2570 0.3097 0.0151 
28 PIKa -| PIa 0.0995 0.0724 0.0855 0.0042 
29 PIP2b -> IP3 0.3401 0.2318 0.2879 0.0148 
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Figure 7: Model A, colored EGFR signaling network indicating the range of the parameter 
value. Red indicates a standard deviation greater than 0.03; blue signifies a standard 
deviation between 0.01 and 0.03; green represents a standard deviation less than 0.01. 
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Figure 8: Model C with colored EGFR signaling network indicating the range of the 
parameter value. Red indicates a standard deviation greater than 0.03; blue signifies a 
standard deviation between 0.01 and 0.03; green represents a standard deviation less than 
0.01. 
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Chapter Six Future Direction 

INTRODUCTION 

When there is limited amount of data available in cell signaling network, the Hill 

function and the Markov Chain Monte Carlo (MCMC) methods can model the network 

without having biochemical reaction information. The model is constructed on the 

information of signaling direction, and is able to provide insight on the network and make 

predictions qualitatively.  

In the future, we plan to improve this method by setting some parameters as fixed 

values, and select other parameter values. This modification may provide more balanced and 

more quantitative details on the dynamic behavior of the network.  

We hope to collaborate with experimental researchers who use our model to guide 

experiment design and use the experimental data to fine tune our model. This approach will 

permit model predictions to be validated by experimental data. 

We would like to develop more modeling methods for cell signaling, neurobiology, 

and cancer research.  We hope to add more modeling methods to our repertoire.    

 To gain greater efficiency, we suggest that parallel simulations be performed 

whenever possible. Parallel simulation can be data parallel, thread parallel, or component 

parallel. Data parallel involves dividing a big data file (one or several million sets) into 

several data files and simulate them at the same time. Thread parallel is accomplished by 

dividing a big simulation into several subprograms that do not have dependency (numerator 

and denominator) and running the subprograms in parallel. Component parallel involves 

decomposing a big simulation into different modules which belong to different levels. 
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Modules are then simulated at the same level in parallel and the results passed back to 

modules. 

 We also suggest that a combination of modeling methods can be used in cell signaling 

network modeling. The cell signaling network can be divided into components or modules 

depending on how detail we want to model different parts of the network. The different 

modeling methods can be applied to different components. This approach will allow more 

details for some parts of the cell signaling network and speed up simulations for other parts 

of the network.  
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