
ABSTRACT

MATTHEWS, JESSICA LOOCK. Sensitivity Analysis and Development of a Model that
Quantifies the Effect of Soil Moisture and Plant Age on Leaf Conductance. (Under the direction
of Ralph Smith.)

Global climate models are complex compilations of a number of inter-related submodels.

Typical implementations include modules for atmospheric, oceanic, sea ice, and land interac-

tions. Our focus is on the photosynthesis submodel of these larger global climate models, which

is lacking either by it’s omittance or it’s oversimplification in many climate models.

A recent model by Niyogi et al. [48] links environmental conditions and plant physiological

processes to closely coupled photosynthesis and leaf conductance rates. We start by carefully

describing this model and performing sensitivity analysis to characterize the response of model

state variables, namely photosynthetic rate, to changes in model parameter values. A novel

data set produced from a unique water stress field studying four different levels of watering

conditions with two different genotypes of soybeans over the course of two growing seasons is

employed for model validation. This data set is applied to the model of Niyogi et al. to test

model accuracy under varying soil moisture conditions. It is our conclusion that this model

requires refinement to accurately predict total leaf conductance.

To address this, we present a new model to characterize total leaf conductance as a function

of plant development and soil moisture conditions. This model is calibrated, via a two-step

methodology of global and local optimization algorithms, with the data set describing con-

ductance rates under varying water stress conditions. Estimation of confidence intervals for

model parameters and predictions is investigated using asymptotic theory, Monte Carlo meth-

ods, and bootstrap methods. For this model, where the residuals exhibit heteroscedasticity,

the confidence intervals estimated by the “wild” bootstrap method appear the most realistic of

the methods investigated. This new model effectively quantifies the effect of soil moisture and

plant age on leaf conductance.
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Chapter 1

Introduction

Climate change is a current topic of great controversy in today’s world. The arguments formed

by every side stem from the problem that no one can predict the future. Although we can not

tell with absolute certainty what the future holds for the earth, we do have the technology to

produce mathematical models to predict outcomes and their associated prediction variabilities.

Global climate models are complex compilations of a number of inter-related submodels.

Typical implementations include modules for atmospheric, oceanic, sea ice, and land interac-

tions. Currently, a number of models exist but, since every model is a simplification of reality,

improvements can always be made. Our focus is on the photosynthesis submodel of these larger

global climate models. This component is lacking either by it’s omittance or it’s oversimplifi-

cation in many climate models. In particular, we examine two models from the bank of models

used by the Intergovernmental Panel on Climate Change (IPCC) to generate climate change

predictions [55]. The model created by the National Oceanic and Atmospheric Administration

(NOAA) omits entirely any photosynthesis component and the inclusion of stomatal conduc-

tance does not account for water-stressed conditions [45]. The model created by the National

Center for Atmospheric Research (NCAR) includes a photosynthesis submodel based on the

formulation presented by Collatz et al. [21], however there is no mechanism for change in

stomatal conductance due to moisture conditions [53].

Much remains unknown about the particular causes and consequences of increasing ambient

carbon dioxide levels in our atmosphere but, what is known is that the levels are increasing.

Photosynthesis is the process by which carbon dioxide is converted to oxygen; therefore, the

characterization of the photosynthetic process is critical in climate modeling. If a model omits

a photosynthesis module entirely, prediction of carbon dioxide levels is not biologically rele-

vant. Inclusion of the mechanism alone is not sufficient since it is critical that the submodel is

accurate under varying environmental conditions. If photosynthetic capacity is overestimated,
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the model will return lower than actual predictions of ambient carbon dioxide. Conversely,

if photosynthetic capacity is underestimated, the carbon dioxide levels will be overpredicted.

Potential impacts of climate change include periods of drought as well as the greater possibility

of extreme precipitation events [44]. Because of the importance of correctly characterizing pho-

tosynthetic processes in the context of climate modeling, it is imperative that the response of

photosynthesis to drought and extreme precipitation events be well understood and correctly

modeled.

A number of models describing photosynthesis have been created over the years. Many

[2, 21, 47, 60] are based on the so-called Ball-Berry model

gs = m
Anhs
Cs

+ b, (1.1)

where gs represents stomatal conductance (mol air m−2 s−1), An represents the net photo-

synthesis rate (µmol CO2 m−2 s−1), hs is the decimal relative humidity at the leaf surface

(unitless), Cs is the CO2 concentration at the leaf surface (µmol mol−1 air), and m and b (mol

m−2 s−1) are the species-specific slope and intercept terms, respectively.

The model presented in Niyogi et al. [48] uses (1.1) as a basis for linking plant physiological

and ecological processes to stomatal conductance calculations. The model characterizes a num-

ber of biological mechanisms through the incorporation of dependencies on oxygen availability,

temperature, species-specific maximum assimilation rate, soil moisture, wind, ambient pres-

sure, leaf length, photosynthetically active radiation (PAR), and leaf scattering of PAR. Given

the inclusion of these many mechanisms and model validation under idealized environmental

conditions [48], we chose this model as a candidate for extension to accurately predict stomatal

conductance and photosynthesis rates under water-stressed conditions in soybeans.

In Chapter 2, we carefully describe this model and perform sensitivity analysis to quantify

the response of model state variables to changes in parameter values. In the words of Ball [5],

“...understanding how the system functions can permit one to predict how the system might

respond if portions of the system were altered; to consider whether or not the system is op-

timized with respect to specific criteria; and to develop rational strategies for improvement of

plants or management practices.” In Chapter 3, we consider a novel data set produced from a

unique water stress field examining four different levels of watering conditions with two different

genotypes of soybeans over the course of two growing seasons. This data set, supplied by Dr.

Edwin Fiscus, Plant Physiologist for the Agricultural Research Service (ARS) in the United

States Department of Agriculture (USDA), is applied to the model of Niyogi et al., analyzed

in Chapter 2, to test model accuracy under varying soil moisture conditions. In Chapter 4, we

develop a new model to characterize total leaf conductance as a function of plant development
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and soil moisture conditions. This model is calibrated with the data set discussed in Chapter

3. Estimation of confidence intervals for model parameters and predictions is explored using

asymptotic theory, Monte Carlo methods, and bootstrap methods. This new model effectively

quantifies the effect of soil moisture and plant age on leaf conductance.
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Chapter 2

Analysis of Existing Work

2.1 Background

The world of plants can be divided into three categories according to their photosynthetic

processes: C3, C4, and CAM.

The vast majority of plants perform C3 photosynthesis, which is named C3 because atmo-

spheric carbon dioxide (CO2) is first incorporated into a three-carbon molecule in this photo-

synthetic process. This carbon fixation is catalyzed by the Rubisco enzyme. Rubisco has dual

carboxylase and oxygenase activity, meaning that atmospheric oxygen (O2) instead of CO2 may

be consumed during the alternative process of photorespiration. This results in less photosyn-

thesis because the Rubsico enzyme is being utilized during the opposite reaction. However,

C3 photosynthesis is more efficient than C4 and CAM under cool, moist, and normal light

conditions because fewer enzymes are involved in the process. Common examples of C3 species

include soybeans, rice, and cotton.

C4 plants are considered to be more advanced than their C3 counterparts. Bypassing the

photorespiration pathway, C4 plants convert atmospheric CO2 to a four-carbon compound in the

mesophyll cells catalyzed by the phosphoenolpyruvate carboxylase (PEP-carboxylase) enzyme.

This compound is then shuttled to the bundle sheath cells where CO2 is delivered to continue

processing along the conventional C3 pathway. This alternative delivery method enables C4

plants to photosynthesize faster than C3 plants in high light and high temperature conditions

while avoiding photorespiratory losses. Figure 2.1 illustrates the anatomical differences between

C3 and C4 plants [49]. C4 plants also exhibit better water use efficiency because their stomata

do not need to remain open as long since their photosynthetic process is more efficient [10].

Corn, sugarcane, and crabgrass are a few of the thousands of identified C4 species.

Plant species performing Crassulacean acid metabolism (CAM) photosynthesis are mainly
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(a) (b)

Figure 2.1: Schematic transverse section of an (a) C3 and (b) C4 leaf.

succulents and differ from C3 and C4 plants because their stomata open at night rather than

during the day. Atmospheric CO2 entering the leaf is converted to an acid and stored overnight

until breaking down and releasing the CO2 to Rubisco for photosynthesis during the day when

abundant light energy is available. These plants thrive in arid conditions because their stomata

open at night thus avoiding transpirational losses due to radiative heating. The small fraction

of the plant kingdom which utilizes CAM photosynthesis includes many orchids, pineapple, and

all varieties of cactus.

With the modification of a few equations and parameters the model in [48], analyzed sub-

sequently, is applicable to both C3 and C4 plant species.

2.1.1 C3 Species

In plants, stomata are pores on the leaf and stem used for gas exchange. Oxygen produced

by photosynthesis exits through the stomata which also restricts the outward flux of water

(transpiration). Inward diffusion of air containing CO2 and O2 to sustain photosynthesis and

respiration, respectively, also occurs through the stomata. Environmental variables affecting

stomatal aperture include temperature, air humidity, wind speed, light intensity, water stress,

and CO2 concentration.

The model presented in Niyogi et al. [48] employs a stomatal model linking plant physio-

logical and ecological processes to stomatal conductance calculations. In particular, they use

the relative-humidity-based approach, introduced by Ball et al. [4] and expanded in Ball [5],

which yields the relation

gs = m
AnhsP

Cs
+ b. (2.1)
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Here gs represents stomatal conductance (mol air m−2 s−1), An represents the net photosyn-

thesis rate (mol CO2 m−2 s−1), hs is the decimal relative humidity at the leaf surface (unitless),

P is the surface pressure (Pa), Cs is the CO2 partial pressure at the leaf surface (Pa), and m

(unitless) and b (mol m−2 s−1) are the species-specific slope and intercept terms, respectively.

Note that we have included the surface pressure P , which was omitted from [48] but is required

for unit balance. This so-called Ball-Berry model given in (2.1) is frequently a basis for coupled

leaf photosynthesis and stomatal conductance models [2, 3, 21, 22, 47, 60]. The robustness

of this model was validated in [5] with more than 500 data points from plants of 13 different

species grown under varying light and nutrient conditions. It is noted that values for m and b

are species specific, where m tends to be smaller in the C4 species than C3. Also, as An tends

towards zero, as a result of low photon flux or low ambient CO2 concentrations, the stomatal

response is no longer linear meaning this model is not a good approximation of the kinetics.

Therefore when applying this model, one must take notice of these environmental conditions

[5].

Remark. To adhere to proper units in the calculation of gs, the surface pressure term P is

necessary. Although this term was omitted by [48], this corrected formulation is required when

Cs is defined as partial pressure rather than concentration.

The net photosynthesis rate is defined as

An = Ag −Rd (2.2)

where Ag is the gross carbon assimilation rate (mol CO2 m−2 s−1) and Rd is the rate of CO2

evolution resulting from processes other than photorespiration which is known as the dark

respiration rate (mol CO2 m−2 s−1). This equation seems to gain recognition with the work of

Farquhar et al. [29] and is recurrent in the modeling literature [3, 21, 22, 47, 60, 63, 66].

Gross Carbon Assimilation Rate

The gross carbon assimilation rate is determined by three limiting factors

• Rubisco (wc)

• Light (we)

• Plant capacity to utilize photosynthesis products (ws)

via the coupled set of quadratic equations
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β1w
2
p − wp(wc + we) + wewc = 0 (2.3)

β2A
2
g −Ag(wp + ws) +wpws = 0 (2.4)

where wp is an interim variable representing the rate limitation imposed by Rubisco and light,

and the β’s are coupling coefficients.

Rubisco limitation: Rubisco, the common name for Ribulose-1,5-bisphosphate carboxylase

oxygenase, is an enzyme used in the first step of the Calvin cycle, which is a series of biochemical

reactions that take place in photosynthetic organisms to convert CO2 into organic compounds

for use by the organism. Following Collatz et al. [21], the first limitation to the C3 gross

photosynthesis rate is quantified by the relation

wc = Vm
Ci − Γ∗

Ci +Kc(1 + O2

Ko
)

(2.5)

where Vm represents the catalytic Rubisco capacity for the leaf (mol CO2 m−2 s−1), Ci is the

partial pressure of CO2 in intercellular spaces (Pa), Γ∗ is the compensation point (Pa), Kc is

the Michaelis-Menten constant for CO2 (Pa), O2 is the oxygen availability in leaf cells (Pa),

and Ko is the oxygen inhibition constant (Pa). Similar formulations for the Rubisco limitation

on photosynthesis in C3 plants are found in [29, 47, 60, 63].

Niyogi et al. [48] developed the unique representation

Vm = Vmaxf(T )f(w2)2.1Q10 (2.6)

which includes dependencies on both temperature and soil moisture. Vmax defines the maximum

Rubisco catalytic capacity (mol CO2 m−2 s−1), f(T ) is the temperature-dependence (unitless),

and f(w2) is the soil moisture dependence (unitless). The unitless temperature-dependent term

Q10 is defined as

Q10 =
Ts − 298.0

10
(2.7)

where Ts defines the temperature at the leaf surface in degrees Kelvin. This response function

defines the proportional increase of a parameter value for a 10 degree increase in temperature.

Similar calculations to incorporate various parameter temperature-dependencies are found in

[21, 22, 29, 33, 60, 67]. The portion 2.1Q10 of (2.6) is unique to this model. An additional

temperature-dependency incorporated in the calculation of Vm, to mimic the whole plant re-

sponse, is
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f(T ) =
2Q10

(

1 + e0.3(S4−Ts)
)

1 + e0.3(Ts−S2)
(2.8)

where S2 and S4 are the high and low vegetation stress factors, respectively. The motivation

for including this formulation of temperature dependency is to approximate the response of

C4 plants to extreme temperatures [9]. A similar equation is utilized in Sellers et al. [60],

with the exception that the coefficient in the denominator has a value of 0.2 instead of 0.3.

The sensitivity of this coefficient value is explored in Section 2.3.24. Collatz et al. [22] also

incorporates a similar temperature dependency except both parenthesis-enclosed terms of (2.8)

occur in the denominator of their formulation.

The soil moisture-dependency of Vm is defined as

f(w2) =
w2 − wwilt
wfc − wwilt

(2.9)

where w2 is the deep soil moisture content, wwilt is the root soil moisture wilting value, and

wfc is the root level soil moisture field capacity value. The value of f(w2) is always between 0

and 1. This same regulation imposed by soil moisture stress appears throughout the literature,

but is applied not to the catalytic Rubisco capacity, but to surface resistance [50], mesophyll

conductance [16], and net carbon assimilation [2]. Sellers et al. [60] does incorporate a soil

moisture stress factor to their calculation of Vm and, although it is dependent on soil type, it

is significantly different than (2.9).

Before defining the CO2 partial pressure in the intercellular spaces, we first examine the

construction of the interaction between the leaf surface and the ambient environment controlled

by the leaf boundary layer conductance gb. The leaf boundary layer is a region of relatively still

air adjacent to the surface of the leaf. Any gas which enters or exits the leaf must pass through

this layer. The value of gb influences the environmental conditions at the leaf surface which

affects and is affected by stomatal conductance gs. In general, as gb decreases, the humidity

of leaf surface air increases because more transpired water vapor is present in the boundary

layer which causes gs to increase [21]. The overall leaf boundary layer conductance is taken to

be the maximum of forced and free convective conditions [47]. The conductance under forced

conditions is defined as

gbfc = cT 0.56
a

[

(Ta + 120)
u

dP

]0.5

(2.10)

where c is a transfer coefficient (mol m−2 s−1), Ta is the ambient temperature (K), u is the

wind speed (m s−1), and d is the leaf length scale (m) [47, 63]. This is considered forced due to

the affect of wind, which is external to the leaf itself. The conductance under free conditions is
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gbfr = cT 0.56
s

[

Ts + 120

P

]0.5 [ |Tvs − Tva|
d

]0.25

(2.11)

where Ts is the surface leaf temperature (K), Tvs is the virtual surface leaf temperature (K),

and Tva is the virtual ambient temperature (K) [47, 63].

In general, virtual temperatures are defined to be the temperature that dry air needs to

have the same density as air containing moisture. Teten’s formula

Tv = (1 + 0.61ω)T (2.12)

was used to compute Tvs and Tva where ω represents the mixing ratio (kg water vapor / kg dry

air). Note that ω is related to the saturation mixing ratio, ωs (kg water vapor / kg dry air), at

saturation, by the relation

hs =
ω

ωs
. (2.13)

Linear regression is performed to identify ω relating the values presented for ωs in Table 2.1 to

the values of hs, Ts, and Ta used in the model simulation.

An alternative way to compute virtual temperatures takes pressure into account for the

calculation (the previous method assumes pressure is 1000 millibars). First, find the saturation

vapor pressure of water (es) in kiloPascal as defined in Monteith and Unsworth [46]:

es = 0.611e17.27T−273

T−36 . (2.14)

Then find e from the relation hs = e
es

. Finally, we have

Tv =
T

1− 0.378 eP
. (2.15)

Table 2.1: Saturation mixing ratio (ωs) values at varying temperatures and P = 1000 millibars.

Temperature (K) ωs (g/kg)

273.15 3.84
283.15 7.76
293.15 14.85
303.15 27.69
313.15 49.81
323.15 88.12
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The carbon dioxide partial pressure at the leaf surface, Cs, is then calculated using the

relation

Cs = Ca −
AnP

gb
(2.16)

where Ca is the ambient carbon dioxide partial pressure (Pa). Therefore, the CO2 partial

pressure at the leaf surface is the partial pressure in the ambient air minus the CO2 diffusing

through the leaf boundary layer to be photosynthesized. Note that we have included P , which

was omitted from [48], but is required for unit balance. This formulation for Cs also appears

in [3, 63]. Nikolov et al. [47] and Sellers et al. [60] also use this formulation but suggest

introducing an additional coefficient to An, 1.6
2

3 , to describe the effect of molecular diffusivity

of H2O and CO2 under the influence of air flow in the leaf boundary layer.

Remark. To adhere to proper units in the calculation of Cs, the surface pressure term P is

necessary. Although this term was omitted by [48], this corrected formulation is required when

Cs is defined as partial pressure rather than concentration.

Finally, the intercellular CO2 partial pressure, Ci is computed by

Ci = Cs −
ηAnP

gs
(2.17)

where η represents the ratio of molecular diffusivity of H2O and CO2 in still air through the

stomatal pores. This version of Ci appears in [4, 22, 60]. It is important to notice by the

formulations of Cs and Ci that the relationship Ci < Cs < Ca will always hold.

Remark. The formula for Ci (2.17) is identical to that reported in [48]. However, they report

the units as concentration whereas this formulation results in the calculation of partial pressure.

The compensation point

Γ∗ =
O2

2S
(2.18)

is defined as the intercellular CO2 partial pressure below which the leaf is unable to assimilate

because of photorespiration. Here O2 is the oxygen availability in leaf cells (Pa) and S is

the unitless Rubisco specificity for CO2 relative to O2. This same formulation appears in

[21, 60], both applied to modeling C3 photosynthesis. It is unclear why this dependency is also

incorporated into modeling of C4 photosynthesis because the issue of Rubisco competition with

oxygen is avoided.
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The Rubsico specificity for carbon dioxide relative to oxygen is defined as

S = 2600 · 0.57Q10 . (2.19)

The particular coefficient values in the expression for S are referenced to Collatz et al. [21].

Although no direct explanation is given for the derivation of these values, the work presented

by Woodrow and Berry [67] have similar values derived from published data [14, 35]. The

combination of (2.18) and (2.19) yield an exponential dependency of Γ∗ on temperature while

others formulate a polynomial dependency on temperature [14, 47].

The Michaelis-Menten constants of Rubisco for CO2 and O2 are defined as

Kc = 30 · 2.1Q10 (2.20)

and

Ko = 30000 · 1.2Q10 , (2.21)

respectively, having units in Pa. This Q10 formulation is also presented in [21, 60] and is likely

motivated by the Arrhenius equations proposed to characterize these constants in [29, 39, 47].

Light limitation: The second factor limiting the rate of gross carbon assimilation is the

amount of photosynthetically active radiation (PAR) absorbed by the leaf chlorophyll, which

we describe as light limitation. Light limitation is quantified by the relation

we = PARε(1− wπ)
Ci − Γ∗

Ci + 2Γ∗
(2.22)

where PAR is the photosynthetically active radiation (mol m−2 s−1), ε is the quantum efficiency

for CO2 uptake (mol mol−1), and wπ is the leaf-scattering coefficient for PAR (unitless). Similar

formulations for the C3 species are presented in [16, 21, 32, 33, 60]. Several models present a

different limiting factor in lieu of light limitation, namely limitation by the regeneration capacity

of Rubisco which is controlled by electron transport [3, 26, 47, 63].

Plant capacity to utilize photosynthesis products: The third, and final, factor we are

considering to limit the rate of gross carbon assimilation in C3 plants is the capacity of the

plant to utilize the products of photosynthesis. In particular this is the rate of sucrose and

starch (i.e., triose phosphate) synthesis. This limitation is expressed as

ws =
Vm
2

(2.23)
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which is identical to the formulations in [21, 47, 60]. More complex alternative formulations

are sometimes as used, an example of which is found in [26].

Dark Respiration Rate

To compute the net photosynthesis rate An, the dark respiration rate Rd is subtracted from the

gross photosynthesis rate Ag as described in (2.2). In the literature, a variety of formulations for

Rd are presented including temperature-based calculations [22, 29, 63] and linear relationships

with maximum carboxylation velocity (Vm) [21, 47, 60]. In Niyogi et al. [48], the observations

of van Heemst [64] motivate the expression

Rd =
Am
9.0

(2.24)

where Am is the net assimilation rate (mol m−2 s−1) limited by a deficit of CO2.

The approach introduced by Goudriaan et al. [32], and further developed by Jacobs [33]

and Calvet et al. [16], to compute Am is applied to yield

Am = Am,max

[

1− e−gm
Ci−Γ

∗

Am,maxP

]

(2.25)

where Am,max is the maximum net assimilation (mol m−2 s−1) and gm is mesophyll conductance

(m s−1). Others consider Am,max as a variable dependent on temperature, but here it is treated

as a species-dependent constant.

Remark. To adhere to proper units in the calculation of Am, the surface pressure term P is

necessary. Although this term was omitted by [48], this corrected formulation is required when

Ci and Γ∗ are defined as partial pressures rather than concentrations.

Mesophyll conductance, which describes the transport of CO2 between the sub-stomatal

cavity and the site of carboxylation, is quantified by the relation

gm = gmp

[

2Q10
1 + e0.3(Tc−S2)

1 + e0.3(S4−Tc)
f(w2)

]

(2.26)

where gmp is the species-specific maximum value of mesophyllic conductance (m/s). The de-

pendence of gm on soil moisture stress was first introduced in [16]. A critical difference between

Niyogi et al.’s approach and that presented in Jacobs [33] is that the expression 1 + e0.3(Tc−S2)

was in the denominator rather than the numerator. It is unclear why this change has been

incorporated. Further, the formulation for gm presented in [16, 33] is remarkably similar to the
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expression for the temperature-dependent, substrate-saturated Rubisco capacity in [22]. An-

other notable difference in Jacobs’ model is that the values of S2 and S4 are also species-specific

when calculating gm.

2.1.2 C4 Species

Model application to C4 species differs from that of C3 species in the three rate-limiting equa-

tions of gross photosynthetic rate as well as various parameter values. In particular the param-

eters which require species-dependent values are:

• Quantum efficiency for CO2 uptake, ε

• Leaf-scattering coefficient for PAR, ωπ

• Maximum catalytic Rubisco capacity for leaf, Vmax

• Maximum net assimilation rate, Am,max

• Potential maximum value of mesophyllic conductance, gmp

• Slope in stomatal conductance equation, m

• Intercept in stomatal conductance equation, b

The three factors limiting the gross photosynthetic rate in C4 species are: Rubisco (wc),

light (we), and PEP-Carboxylase (ws).

Rubisco limitation: The photosynthetic rate of C4 plants, due to their more evolved carbon

fixation mechanism, is limited by the Rubisco capacity but is not affected by utilization of

Rubisco to catalyze photorespiration (which uses O2 instead of CO2 as in photosynthesis).

Following Collatz et al. [22], the first limitation to the C4 gross photosynthesis rate is simply

wc = Vm. (2.27)

Light limitation: The second factor limiting the rate of gross carbon assimilation is the

amount of photosynthetically active radiation (PAR) absorbed by the leaf chlorophyll, which

we describe as light limitation. Light limitation is quantified by the relation

we = PARε(1− wπ) (2.28)
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where PAR is the photosynthetically active radiation (mol m−2 s−1), ε is the quantum efficiency

for CO2 uptake (mol mol−1), and wπ is the leaf-scattering coefficient for PAR (unitless). Similar

formulations to account for the light limitation of Ag in C4 species are presented in [22, 60, 63].

As explained in [33], this formulation for we is identical to that for C3 plants, (2.22), substituting

the CO2 compensation point Γ∗ = 0 because photorespiration is not an issue with C4 plants.

PEP-Carboxylase limitation The third, and final, factor we are considering to limit the

rate of gross carbon assimilation is the PEP-Carboxylase capacity of C4 vegetation. PEP-

Carboxylase, formally known as phosphoenolpyruvate carboxylase, is an enzyme that catalyzes

carbon fixation in the mesophyll cells of C4 plants. This limitation is expressed as

ws = 20000Vm
Ci
P
. (2.29)

Described instead as the CO2-limited capacity for C4 photosynthesis, this formulation appears

in [60]. A temperature-, CO2-, and pressure-dependent representation which unlike (2.29) is

notably independent of soil moisture, is described by [22].

2.2 Model Solution

Each simulation requires the parameters defined in Table 2.2. From these parameters we cal-

culate the following terms for either the C3 or C4 species:

• temperature-dependency term

Q10 =
Ts − 298.0

10
, (2.30)

• forced convection leaf boundary layer conductance

gbfc = cT 0.56
a

[

(Ta + 120)
u

dP

]0.5

, (2.31)

• free convective leaf boundary layer conductance

gbfr = cT 0.56
s

[

Ts + 120

P

]0.5 [ |Tvs − Tva|
d

]0.25

, (2.32)

• leaf boundary layer conductance

gb = max(gbfc, gbfr), (2.33)
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Table 2.2: Model parameters from Niyogi et al. [48].

Parameter (units) Physical representation Value

Ts (K) Surface temperature 297

Tc (K) Canopy temperature 293

Ta (K) Ambient temperature 295

P (Pa) Surface pressure 1.01 × 105

u (m/s) Wind speed 5

O2 (Pa) Oxygen availability in leaf cells 2.09 × 104

PAR (mol m−2 s−1) Photosynthetically active radiation 1.38 × 10−3

hs (-) Relative humidity at leaf surface 0.5

Ca (Pa) Ambient carbon dioxide partial pressure 34

wwilt (-) Root level soil moisture wilting value 0.25

wfc (-) Field capacity value 0.3

w2 (-) Deep soil moisture content 0.27

ε (mol mol−1) Quantum efficiency for CO2 uptake 0.08 (C3)
0.05 (C4)

wπ (-) Leaf-scattering coefficient for PAR 0.1 (C3)
0.2 (C4)

Kc (Pa) Michaelis-Menten constant for CO2 30 (C3)

Ko (Pa) Michaelis-Menten constant for O2 3. ×104 (C3)

η (-) Factor to account for different diffusivities 1.6
of H2O and CO2 in the stomatal pores

S2 (K) High vegetation stress factor 310

S4 (K) Low vegetation stress factor 280

Vmax (mol m−2 s−1) Maximum catalytic Rubsico 7.5 ×10−5 (C3)
capacity for leaf 3 ×10−5 (C4)

Am,max (mol m−2 s−1) Maximum net assimilation rate 9.8 ×10−5 (C3)
7.48 ×10−5 (C4)

gmp (m/s) Potential maximum value 7.× 10−3 (C3)
of mesophyllic conductance 17.5 × 10−3 (C4)

c (mol m−2 s−1) Transfer coefficient 4.322 × 10−3

d (m) Leaf length scale 41.× 10−3

β1 (-) Coupling coefficient 0.8

β2 (-) Coupling coefficient 0.99

m (-) Slope in stomatal conductance equation 9 (C3)
4 (C4)

b (mol m−2 s−1) Intercept in stomatal 0.01 (C3)
conductance equation 0.04 (C4)
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• Rubisco specificity for CO2 relative to O2

S = 2600 · 0.57Q10 , (2.34)

• CO2 compensation point

Γ∗ =
O2

2S
, (2.35)

• temperature dependency of Vm

f(T ) =
2Q10

(

1 + e0.3(S4−Ts)
)

1 + e0.3(Ts−S2)
, (2.36)

• soil moisture modulation

f(w2) =
w2 − wwilt
wfc − wwilt

, (2.37)

• maximum catalytic Rubisco capacity for the leaf

Vm = Vmaxf(T )f(w2)2.1Q10, (2.38)

• mesophyllic conductance

gm = gmp

[

2Q10
1 + e0.3(Tc−S2)

1 + e0.3(S4−Tc)
f(w2)

]

. (2.39)

Then, we begin by using the equation defining carbon dioxide partial pressure in the inter-

cellular spaces,

Ci = Cs −
ηAnP

gs
, (2.40)

and substituting the equation for stomatal conductance,

gs = m
AnhsP

Cs
+ b, (2.41)

into (2.40) yielding

Ci = Cs −
ηAnP

mAnhsPCs + b
. (2.42)

Further, inserting the equation for carbon dioxide at the leaf surface
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Cs = Ca −
AnP

gb
(2.43)

into (2.42) produces

Ci = Ca −
AnP

gb
− ηAnP

m AnhsP
Ca−

AnP
gb

+ b
. (2.44)

Next we substitute the definition for maximum assimilation rate

Am = Am,max

(

1− e−gm
Ci−Γ

∗

Am,maxP

)

(2.45)

along with (2.44) into the definition for leaf respiration rate to yield

Rd =
Am
9

=
Am,max

9

(

1− e−gm
Ci−Γ

∗

Am,maxP

)

=
Am,max

9















1− e

−gm
Am,maxP



Ca−
AnP
gb
− ηAnP

m
AnhsP

Ca−
AnP
gb

+b
−Γ∗



















. (2.46)

2.2.1 C3 Species

For the C3 species, we additionally calculate:

• Michaelis-Menten constant of Rubisco for CO2

Kc = 30 · 2.1Q10 (2.47)

• Michaelis-Menten constant of Rubisco for O2

Ko = 30000 · 1.2Q10 , (2.48)

• capacity of C3 vegetation to utilize the photosynthesis products

ws =
Vm
2
. (2.49)
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Substituting (2.44) into the definitions for Rubisco limitation of photosynthesis rate in C3

vegetation yields

wc = Vm
Ci − Γ∗

Ci +Kc(1 + O2

Ko
)

= Vm

Ca − AnPgb −
ηAnP

m AnhsP

Ca−
AnP
gb

+b
− Γ∗

Ca − AnPgb −
ηAnP

m AnhsP

Ca−
AnP
gb

+b
+Kc(1 + O2

Ko
)
, (2.50)

and light limitation of the photosynthesis rate in C3 vegetation yields

we = PARε(1− wπ)
Ci − Γ∗

Ci + 2Γ∗

= PARε(1− wπ)
Ca − AnPgb −

ηAnP

m AnhsP

Ca−
AnP
gb

+b
− Γ∗

Ca − AnPgb −
ηAnP

m AnhsP

Ca−
AnP
gb

+b
+ 2Γ∗

. (2.51)

Now we can define the minimum assimilation rate estimated between wc and we, namely wp.

Here wp is defined to be the smaller root of the quadratic equation

β1w
2
p − wp(wc + we) + wewc = 0. (2.52)

Since we are assuming the limiting factors on gross photosynthesis, wc, we, and ws, as well as

the coupling coefficient β1 are all greater than or equal to 0, the smallest root of (2.52) is

wp =
(wc + we)−

√

(wc + we)2 − 4β1wewc
2β1

. (2.53)

We then substitute (2.50) and (2.51) into (2.53), which produces an expression for wp where

An is the only unknown.

Recall that Ag is defined to be the smaller root of the quadratic equation

β2A
2
g −Ag(wp +ws) + wpws = 0. (2.54)

Since we are assuming the coupling coefficient β2 > 0, the smallest root of (2.54) is

Ag =
(wp + ws)−

√

(wp + ws)2 − 4β2wpws

2β2
. (2.55)
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Substituting (2.53) and (2.49) into (2.55) produces an expression for Ag where An is the only

unknown.

Finally, because the equation for gross photosynthetic rate is

Ag = An +Rd, (2.56)

we can substitute (2.55) and (2.46) into (2.56) to form an algebraic expression for C3 vegetation

where the only unknown remaining is An.

2.2.2 C4 Species

For the C4 species, we additionally calculate:

• Rubisco limitation of photosynthesis rate in C4 vegetation

wc = Vm, (2.57)

• light limitation of photosynthesis rate in C4 vegetation

we = PARε(1− wπ), (2.58)

• minimum assimilation rate estimated between wc and we

wp =
(wc + we)−

√

(wc + we)2 − 4β1wewc
2β1

. (2.59)

Then, using (2.44), for C4 vegetation we may define the PEP-Carboxylase limitation on pho-

tosynthesis as

ws = 20000Vm
Ci
P

= 20000
Vm
P






Ca −

AnP

gb
− ηAnP

m AnhsP
Ca−

AnP
gb

+ b






. (2.60)

Gross photosynthetic rate Ag, in terms of An, can be quantified with (2.55). Finally, substitut-

ing Ag and (2.46) into (2.56) forms an algebraic expression for C4 vegetation where the only

unknown remaining is An.
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2.2.3 Root Finding

Thus, the system of equations is combined into one algebraic expression

f(An) = 0 (2.61)

for the net photosynthesis rate An. Due to the highly complex and nonlinear nature of this

relation, analytic solution techniques are not feasible. Therefore we employ a numerical root

finding algorithm.

Previous efforts to solve the system appear to lack numerical robustness and adequate

measures to check for non-feasible state variables. We present an algorithm which is numerically

stable and yields model predictions which are in the defined physical domain. In particular we

impose the following constraints:

• An ≥ 0,

• Cs ≥ 0, and

• Ci ≥ Γ∗.

We must implement these constraints because, although it is obvious that if any of these are

violated the model is invalid (i.e., it does not make sense to consider negative photosynthetic

rates or partial pressures and by definition of the compensation point Γ∗, Ci can not be lower

than this minimum), mathematically it is possible to find roots of the system (2.61) which

violate these constraints.

To identify the roots, a general grid search method is employed. We begin by defining

possible An values

Ani =
i

107
for i=0,. . .,1000. (2.62)

Note that this definition for the possible domain for An inherently satisfies our first condition

that An ≥ 0. Then Cs is evaluated for each Ani using (2.16). The values Ani which yield

Cs < 0 are removed from the possible An solution domain to enforce our second condition,

Cs ≥ 0. Then Γ∗ is calculated and Ci is evaluated for each Ani using (2.17). The values Ani
which yield Ci < Γ∗ are removed from the possible An solution domain to enforce our third

constraint, Ci ≥ Γ∗.

The function f(An) is evaluated for the Ani values satisfying Cs ≥ 0 and Ci ≥ Γ∗. Since our

goal is to locate the roots of f(An), we now identify the intervals where the function evaluation

crosses zero using Algorithm 1.
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This algorithm should return points Ani where each point defines the starting value of the

interval on the coarse grid for a root of f(An). Now, as described in Algorithm 2, the function

is evaluated from Ani incrementing by 10−10 until zero is crossed. Define Âni,1 and Âni,2 to be

the values, differing only by 10−10, which produce f(Âni,1) and f(Âni,2) on either side of zero.

The ith root of f(An) is

An,i = arg min
(Âni,1 ,Âni,2 )

[

|f(Âni,1)|, |f(Âni,2)|
]

. (2.63)

Input: A function file ‘fcn(An)’ representing the algebraic expression of f(An).
Input: A vector ‘An’ containing values in the domain of possible solutions to f(An) = 0.
Output: A vector ‘crossInd’ containing An values on the defined coarse grid

immediately before a zero crossing.
fval = feval(fcn,An);
/* changeInd is logical vector of length same as An, zeros where

fcn(An(i))>=0 and ones where fcn(An(i))<0 */

changeInd = fval < 0 ;
crossInd = [];
for k = 2:length(changeInd) do

if changeInd(k) 6= changeInd(k-1) then
crossInd = [crossInd An(k-1)];

end

end

Algorithm 1: Coarse grid search.
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Input: A function file ‘fcn(An)’ representing the algebraic expression of f(An).
Input: A vector ‘crossInd’ containing An values on the defined coarse grid immediately

before and after a zero crossing.
Output: A vector ‘roots’ containing An values within 10−10 of the roots of ‘fcn(An)’.
Output: A vector ‘vals’ containing the function evaluation associated with ‘fcn(roots)’.
inc = 10−10 ;
/* for each point defined on the coarse grid to be preceding a root,

increment slowly to find the An-value closest to the actual root */

for k=1:length(crossInd) do
rootStart = crossInd(k) ;
chgSgn = 1 ; /* track when we cross 0 */

valOld = feval(fcn,rootStart) ;
rootStart = rootStart + inc ;
while chgSgn do

valNew = feval(fcn,rootStart) ;
/* stop if we change signs, o.w. keep going */

if sign(valNew)*sign(valOld) < 0 then
chgSgn = 0 ;

else
rootStart = rootStart + inc ;

end

end
/* valNew and valOld are function values on either side of 0. identify

the one closest to 0 to be the root with tolerance < 10−6. */

if abs(valNew) < abs(valOld) then
roots(k) = rootStart ;
vals(k) = valNew ;

else
roots(k) = rootStart - inc ;
vals(k) = valOld ;

end

end

Algorithm 2: Fine grid search.
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2.3 Sensitivity Analysis

The key output of interest from this model is the photosynthesis rate An (mol m−2 s−1).

The sensitivity of An with respect to model parameters is studied by setting all parameters

to those prescribed in Niyogi et al. [48] (see Table 2.2) and evaluating the impact on An

as parameters are individually perturbed. In general, change in response was evaluated by

perturbing parameters by 10% unless otherwise indicated. In most cases, we present sensi-

tivity analysis for C3 and C4 jointly by computing the percent of change in An from the

respective baseline values. Using the parameter values in Table 2.2, the C3 model predicts

An = 5.3791 µmol m−2 s−1 and for the C4 model An = 9.6809 µmol m−2 s−1.

2.3.1 Surface Temperature Ts

Ts is an input parameter in the calculation of several other parameters, namely the tempera-

ture dependence (Q10), virtual surface temperature (Tvs), free convection leaf boundary layer

conductance (gbfr), and temperature impact on Vm (f(T )). None of these formulations restrict

the range of Ts values, so the sensitivity analysis of Ts, presented in Figure 2.2, examines a

large range of possible temperatures Ts = [260, 320].

Clearly the calculation of An is extremely sensitive to the input value of surface temperature.

In extreme heat, C3 photosynthesis rates tend towards zero, while as temperatures get cooler

the model predicts photosynthesis to significantly increase. The local minimum and maximum

present in Figure 2.2 are likely due to the change in sign around S2 and S4 within the exponential

of f(T ); see (2.8). In general, model application to C3 species results in more extreme behavior

as Ts varies compared to application to the C4 species. Notice that there is no feasible solution

to the C4 model when Ts > 300 K. This temperature range is typical, and the inability to

calculate a feasible solution within this range makes practical utilization of the model difficult

at best.

2.3.2 Canopy Temperature Tc

Tc is used in the calculation of mesophyllic conductance (gm), which yields no restrictions to

the possible range of Tc. We examine the region Tc = [265, 320] as shown in Figure 2.3.

Both the C3 and C4 models respond similarly to a change in Tc, with a slight monotonic

decrease in An as the value of Tc increases and a pronounced decrease in An with extremely

high canopy temperatures.
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Figure 2.2: Response of An to surface temperature Ts.
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Figure 2.3: Response of An to canopy temperature Tc.
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2.3.3 Ambient Temperature Ta

Ta is used in the calculation of the virtual ambient temperature Tva and the forced convection

leaf boundary layer conductance gbfc. Both of these variables impact the value of leaf boundary

layer conductance gb. As with the preceding other two temperature parameters, we examine

the range Ta = [260, 320] as shown in Figure 2.4.

Compared to the sensitivity exhibited to the other temperature parameters Ts and Tc, An is

not as reactive to the value of Ta. Here An increases with increasing Ta. For C3, this is nearly

a linear increase where for C4 it appears to be approaching an asymptote.
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Figure 2.4: Response of An to ambient temperature Ta.

2.3.4 Surface Pressure P

Standard air pressure at sea level, approximately 1010 millibars or 101 kPa, indicates a typical

value for P . Note that P is included in the calculation of the boundary layer conductance

terms gbfc and gbfr, stomatal conductance gs, net assimilation rate Am, CO2 partial pressure

at the leaf surface Cs, and in intercellular spaces Ci for both models. Additionally, the PEP-

Carboxylase limitation ws for C4 species also depends on P .

As shown in Figure 2.5, application of the model to the C3 species shows a slight, linear

decline in An as P increases. Because P is additionally involved in the limitation of the gross

photosynthetic rate in the C4 species, the impact of changing P is slightly more important and

nonlinear in the C4 as compared to the C3 species.
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Figure 2.5: Response of An to surface pressure P .

2.3.5 Wind Speed u

Typical values for u can range from 0 - 10 m/s. The wind speed is only used in the calculation

of gbfc in the model. The leaf boundary layer conductance gb is defined as the maximum of

the free (gbfr) and forced (gbfc) conditions. Of all the parameters involved in the calculation

of these two terms, the only instance where gb is defined by gbfr is when the value of u is less

than 0.4 m/s. Therefore, when u < 0.4, gb is defined by gbfr which is independent of u; hence

there is no change in An in this range of u.

Figure 2.6 shows that An exhibits strong sensitivity to the wind speed regardless of species.

When free conditions define the leaf boundary layer conductance gb, at u < 0.4 m/s, the value of

An is reduced by more than 40% as compared to our baseline value of u = 5 m/s. As wind speed

increases and forced conditions drive gb, the net photosynthetic rate also increases. C3 species

respond with continued increasing An through the maximum limit of the examined range (u

= 10 m/s). However C4 species appear to reach a maximum value for An which changes little

once wind speed reaches approximately 3 m/s. Also notice that there is no feasible solution to

the C4 model when u < 1 m/s. This environmental condition is typical, and the inability to

calculate a feasible solution within this range makes practical utilization of the model difficult

at best.
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Figure 2.6: Response of An to wind speed u.

2.3.6 Oxygen Availability in Leaf Cells O2

The utilized value for O2 in several published models [21, 29, 47, 59] ranges from 20.9 to 21 kPa.

Figure 2.7 illustrates the sensitivity of An to perturbing the baseline value of 2.09 × 104 Pa by

10%.

As expected, the C4 species exhibits nearly no change in An when varying this parameter.

Recall that only the C3 species is impacted by photorespiration and therefore increased oxygen

levels produce more oxygenase activity effectively inhibiting photosynthesis. This effect is

clearly illustrated in Figure 2.7 where increasing levels of O2 cause a reduction in An and

reciprocally decreasing levels of O2 allow An to increase.

2.3.7 Photosynthetically Active Radiation PAR

Photosynthetically active radiation is typically 45-65% net radiation depending on cloud cover

[43]. On a non-cloudy day, net radiation is around 600 W/m2, but on any given day can be

between 400 and 1000 W/m2. To convert from the energy units, W/m2, to the quantum units

employed in the model, mol m−2 s−1, we use the relationship

E =
hc

λ
(2.64)

where E = energy per photon (Joules), h = Planck’s constant = 6.63 × 10−34 J · s,

c = speed of light = 3 × 108 m/s, and λ = wavelength (m). Note also that 1 mol pho-
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Figure 2.7: Response of An to oxygen availability in leaf cells O2.

tons = 6.02 × 1023 photons (Avagadro’s number). Assuming daylight has a wavelength of

approximately 550 nm, which is midway in the range for PAR of 400-700 nm, then we have
1
E = λ

hc = 550×10−9m
(6.63×10−34J·s)(3×108m/s)

= 2.7652 × 1018 photons per Joule. Therefore, in daylight,

we have 2.7652×1018photons/Joule
6.02×1023photons/mol

= 4.6 × 10−6 mol/Joule. Since 1 Watt = 1 J/s, we can simply

convert any value from W/m2 to mol m−2 s−1 by multiplying by 4.6× 10−6. Thus we examine

the range of PAR associated with 0.45 · 400 = 180 and 0.65 · 1000 = 650 W/m2, or 8× 10−4 to

3× 10−3 mol m−2 s−1.

PAR is used in the calculation of the light limiting factor we of Ag for both the C3 and C4

species, although the species require different formulations; see (2.22) and (2.28). Figure 2.8

illustrates that An is not remarkably sensitive to the amount of light. This implies that the

remaining two limiting mechanisms, wc and ws, are more critical and that plants are not fully

utilizing the light available.

2.3.8 Relative Humidity at Leaf Surface hs

Normal atmospheric values for hs fall between 0.2 and 0.99. We chose to examine the full range

of possibility for hs, from 0 to 1, as illustrated in Figure 2.9. Relative humidity is used in the

model to relate stomatal conductance, net photosynthesis rate, and the CO2 concentration at

the leaf surface; see (2.1). Note that hs is also used to calculate virtual temperatures via Teten’s

formula; see (2.13).
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Figure 2.8: Response of An to photosynthetically active radiation PAR.
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Figure 2.9: Response of An to relative humidity at leaf surface hs.
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The model exhibits a great deal of sensitivity to relative humidity. In particular, as levels

approach 0 there is a significant decrease in An, ultimately resulting in approximately a 70%

decrease for the C3 species. Although increasing relative humidity levels results in increasing An

in both species, we again see the phenomenon of C4 species approaching a maximum possible

value while the C3 species appears to continually increase An in response. For C4 there is no

feasible solution to the C4 model when hs < 0.2. This environmental condition can occur, and

the inability to calculate a feasible solution within this range makes practical utilization of the

model difficult at best.

2.3.9 Ambient CO2 Partial Pressure Ca

The utilized value for Ca in several published models [2, 21, 37, 59, 66] ranges from 33 to

36 Pa. The sensitivity of photosynthetic rate to this parameter is especially of interest due

to current concerns regarding rapidly increasing atmospheric CO2 levels. Understanding how

plants respond to these changing environmental conditions will aid scientists in modeling the

phenomenon and possibly searching for ways to mitigate against negative climate impacts the

increasing CO2 levels may instigate.

The model uses Ca in the computation of carbon dioxide partial pressure at the leaf surface,

Cs. As shown in Figure 2.10, increasing ambient CO2 levels spurs an increase in An for both

species. The response is more significant in the C3 species and it appears that continually

increasing Ca will simply continually increase An. However, in the C4 species the model predicts

an approaching maximum An regardless of the increase in Ca. If the model predictions are

accurate, this implies that increasing the population of C3 species, rather than C4 species,

worldwide may help to regulate environmental ambient CO2 levels.

2.3.10 Root Level Soil Moisture Wilting Value wwilt, Field Capacity Value

wfc, and Deep Soil Moisture Content w2

Note that wwilt is the soil moisture percentage where the plant permanently wilts while wfc

represents the maximum water percentage which a soil can hold against the forces of gravity.

These parameters are dependent on soil type and may vary over time. Table 2.3 indicates values

of wwilt, wfc, and wsat (saturated moisture content) based on the soil classification of Clapp

and Hornberger [20].

Several other published models consider the impact of soil moisture through the utilization

of these soil-type based parameters. Calvet et al. [16] report values of wwilt within the range

of 0.15 - 0.34 m3 water/m3 soil and values for wfc ranging from 0.32 - 0.43 m3 water/m3 soil

[16, 17]. Others use a simple linear relationship to calculate wwilt and wfc values from wsat
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Figure 2.10: Response of An to ambient CO2 partial pressure Ca.

values; particularly, they employ wwilt = 0.3 · wsat and wfc = 0.6 · wsat [51] or a relationship

based on the clay content of soil [12].

The soil related parameter values of wwilt, wfc, and w2 are only used during the calculation

of f(w2) in this model by way of the relation

f(w2) =
w2 − wwilt
wfc − wwilt

. (2.65)

To satisfy 0 < f(w2) < 1, we require wwilt < w2 < wfc. In general, as f(w2) → 0, w2 → wwilt
and as f(w2)→ 1, w2 → wfc.

Note that f(w2) represents the soil moisture dependency for the catalytic Rubsico capacity

for the leaf, Vm. In Figure 2.11, we illustrate the sensitivity of An to the value of f(w2).

Clearly the model has strong sensitivity to the level of soil moisture. Under dry conditions, the

model predicts An will approach 0. Dry conditions will influence the stomata to remain closed

to minimize plant water loss, while at the same time minimizing the influx of CO2, so this effect

to An is realistic. Notice there is no feasible solution to the C4 model when f(w2) > 0.8. The

inability of the model to calculate a feasible solution for this range makes practical utilization

of the model difficult at best.
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Table 2.3: Soil moisture parameter values from Jacquemin and Noilhan [34]. Note that wfc
values are associated with a hydric conductivity of 0.1 mm/day and wwilt values correspond to
a moisture potential of -15 bar.

Soil type wfc (m3/m3) wwilt (m3/m3) wsat (m3/m3)

Sand 0.135 0.068 0.395
Loamy sand 0.150 0.075 0.410
Sandy loam 0.195 0.114 0.435
Silt loam 0.255 0.179 0.485
Loam 0.240 0.155 0.451
Sandy clay loam 0.255 0.175 0.420
Silty clay loam 0.322 0.218 0.477
Clay loam 0.325 0.250 0.476
Sandy clay 0.310 0.219 0.426
Silty clay 0.370 0.283 0.482
Clay 0.367 0.286 0.482
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Figure 2.11: Response of An to f(w2).
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2.3.11 Quantum Efficiency for Carbon Dioxide Uptake ε

The quantum efficiency ε is involved in the calculation of the light limited rate of assimilation

(we) for both the C3 and C4 species, although each species requires different formulations; see

(2.22) and (2.28). Collatz et al. [21, 22] present the cited C3 and C4 values, 0.08 mol/mol and

0.05 mol/mol respectively, which are also referenced in [61].

Figure 2.12 illustrates that An is not very sensitive to perturbations in the value for ε for

either species. This again implies, as seen before in the analysis for PAR, that Ag is not limited

by light and hence plants are not fully utilizing the potential of available light.
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Figure 2.12: Response of An to quantum efficiency for carbon dioxide uptake ε.

2.3.12 Leaf-Scattering Coefficient for PAR wπ

The leaf-scattering coefficient for PAR, wπ, also is involved in the calculation of the light-limited

rate of assimilation (we). Although the notation differs slightly, this concept seems to originate

in the Collatz et al. models for plant photosynthesis where wπ = 1 − a and a represents

leaf absorptance to photosynthetically active quantum flux density. Using this relationship,

they present wπ = 0.14 in C3 plants and 0.2 in C4 plants [21, 22]. The C4 value seems to

be approximately related to the measurements of PAR absorptance recorded by Norman and

Polley in C4 plants [52]. Values used by Niyogi et al. [48] are 0.1 for C3 plants and 0.2 for C4
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plants.

The sensitivity of An to wπ, as shown in Figure 2.13, is fairly insignificant for both C3 and

C4 species. Because wπ is only used in the calculation of we, as was similarly implied in the

analysis for PAR and ε, the model suggests that plants of both species are not fully utilizing

the available light, and An is being limited by other factors.
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Figure 2.13: Response of An to leaf-scattering coefficient for PAR wπ.

2.3.13 Factor to Account for Different Diffusivities of H2O and CO2 in the

Stomatal Pores η

Here η is the ratio of stomatal conductance to water vapor to that for CO2 [5]. It is used in

this model when applying Fick’s law of diffusion to calculate the partial pressure of CO2 in the

intercellular spaces (Ci).

Figure 2.14 shows that as η increases, An decreases slightly in both C3 and C4 species.

From (2.17) we see that increasing η will decrease the intercellular CO2 partial pressure Ci

which reduces that value of wc in both species and we for the C3 species as shown in (2.5) and

(2.22), respectively. The reduction of these limiting factors for Ag in turn decreases the value

of An. Therefore the trends illustrated here are plausible.
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Figure 2.14: Response of An to the factor to account for different diffusivities of H2O and CO2

in the stomatal pores, η.

2.3.14 Vegetation Stress Factors, S2 (high) and S4 (low)

S2 and S4 are factors used to incorporate temperature-dependence into the calculations for

catalytic Rubisco capacity for the leaf (Vm) and mesophyllic conductance (gm). Sellers et al.

[61] lists multiple values for each of these vegetation dependent parameters. Values for S2 were

within the range of 303-313 K for the evaluated samples and S4 values ranged from 278 to

288 K.

Baseline values for both species, as noted in Table 2.2, are S2 = 310 K and S4 = 280 K.

Figures 2.15(a) and (b) present the response of An to S2 and S4, respectively. As the value

of S2 decreases and approaches the value of S4, An decreases in both species. Raising the S2

value above it’s baseline appears to have little effect on An in either species as an asymptotic

maximum is present soon thereafter. Analogously, as the value of S4 increases and approaches

the value of S2, An increases in both species. Reducing the S4 value below it’s baseline results

in a nominal decrease in An which reaches steady state below approximately 275 K. These

effects could be due to the expressions containing S2 and S4 being located on opposite sides of

the divisor as indicated in (2.8) and (2.26).
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Figure 2.15: Response of An to vegetation stress factors (a) S2 and (b) S4.

2.3.15 Maximum Catalytic Rubisco Capacity for Leaf Vmax

Vmax is used in the calculation of the catalytic capacity for the leaf, Vm, which is used to find

in both species the Rubisco limited assimilation rate (wc), the C3 plant capacity to utilize

photosynthesis products (ws), and the C4 PEP-Carboxylase limited (ws) assimilation rate.

Vmax is described as a physiological property of the leaf which is proportional to the Rubisco

reserves of the leaf, and therefore it’s nitrogen content [60]. This value differs for C3 and C4

vegetation and it appears the baseline values employed in Niyogi et al. [48] are approximated

from the measurements of Wilson et al. [66] assuming C4 plants comprise the understory and C3

plants make up the overstory for the canopies under study. The measurements of Vmax exhibit

great variability caused by light environment, species type, and seasonal effects on leaves.

Figure 2.16 illustrates the impact on An when perturbing the species-specific Vmax value

by 10%. The top x-axis denotes the values in the C4 species and the bottom x-axis denotes

the values in the C3 species. The general trend for both species is the same, that is, increasing

Vmax increases An. The sensitivity in C4 species is slightly more pronounced than in the C3

species. Notably An is fairly sensitive to this parameter indicating the importance of wc and

ws as limiting factors to the assimilation rate.
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Figure 2.16: Response of An to maximum catalytic Rubisco capacity for leaf Vmax.

2.3.16 Maximum Net Assimilation Rate Am,max

Am,max is used to calculate the maximum net assimilation rate, Am, to be used to find the dark

respiration rate Rd. In Figure 2.17, we show the sensitivity of An when perturbing the value of

Am,max. Changing the value of this parameter has essentially no effect on the value of An for

either species, possibly because these values for the maximum net assimilation rate are more

than ten times larger than the value for the net assimilation rate An in either species.

It should be noted that others have computed Am,max to simply be a linear function of

the maximum catalytic capacity of Rubisco, Vmax. According to Jacobs [33], Am,max may be

assumed to be proportional to Vmax; that is, Am,max = k ·Vmax. For C4 species, k = 1 while for

C3 species k = 0.5 [21, 22]. Therefore, this would imply we use a value for Am,max = Vmax =

30 µmol m−2 s−1 for C4 and Am,max = 0.5 ·Vmax = 37.5 µmol m−2 s−1 for C3 plants. However,

these Am,max values are still much higher than our An solutions, so modifying the formulation

of Am,max to use this method has little affect on An.

Sensitivity analysis is also performed to determine the impact of a temperature-dependent

formulation of Am,max. Niyogi’s model considers Am,max to be constant, where Jacobs includes

the temperature dependency
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Am,max =
x · 2.0Ts−298

10

(1 + e0.3(T1−Ts))(1 + e0.3(Ts−T2))
(2.66)

where x = 1.7 mg m−2 s−1, T1 = 286 K, and T2 = 311 K for C4 plants and x = 2.2 mg m−2 s−1,

T1 = 281 K, and T2 = 311 K for C3 plants. Because the model requires Am,max to have molar

units, we convert x to 38.6364 µmol m−2 s−1 for C4 plants and 50 µmol m−2 s−1 for C3 plants.

Figure 2.18 compares the response of An, when using the constant value of Am,max, to the

implementation of the temperature-dependent formulation in (2.66). Although the sensitivity

shown in this figure seems substantial, the results are nearly identical to the model sensitivity to

Ts (see Figure 2.2). Therefore, we may conclude that using the temperature-based formulation

of Am,max as shown in (2.66) does not substantially affect An as opposed to considering it as a

constant.
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Figure 2.17: Response of An to maximum net assimilation rate Am,max.
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Figure 2.18: Response of An to a different Am,max formulation based on temperature.

2.3.17 Potential Maximum Value of Mesophyllic Conductance gmp

In this model, gmp is denoted as a potential maximum value to modulate the mesophyllic

conductance, gm. The value for gmp is referenced to [33]; however, they do not use a value

representing a maximum in their gm formulation. The C3 species value of gmp = 7.× 10−3 m/s

and C4 species value of gmp = 17.5 × 10−3 m/s seems to originate from the gm values at Ts =

298 K, which are in fact not the maximum gm values possible in the Jacobs [33] model.

Figure 2.19 illustrates the impact on An when perturbing the species-specific gmp value by

10%. The top x-axis denotes the values in the C4 species and the bottom x-axis denotes the

values in the C3 species. The general trend for both species is the same, that is, changes in

gmp have little affect on An. This indicates that either the maximum net assimilation rate Am

is not sensitive to mesophyll conductance or that An is not very sensitive to changes in Rd.
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Figure 2.19: Response of An to potential maximum value of mesophyllic conductance gmp.

2.3.18 Transfer Coefficient c

This transfer coefficient is used in the calculation of boundary layer conductance under free

(gbfr) and forced (gbfc) convective conditions in the model. Niyogi’s model considers the value

of c to remain constant in the computations for gbfc and gbfr. However, Nikolov et al. [47]

uses different values of c amongst these. Further, both Niyogi et al. and Nikolov et al. present

unique values for c according to leaf type but not species type, meaning there are different

values prescribed for broad leaf and coniferous shoots. Of the four values presented in Nikolov

et al., the minimum is 0.8669 × 10−3 and the maximum is 4.322 × 10−3.

Figure 2.20 presents the sensitivity of An to c where we use the same c in both the calculation

for gbfc and gbfr, as presented in Niyogi et al. Here we examine the range of 10% below the

minimum through 10% above the maximum indicated for c in Nikolov et al. For both species,

there is a significant decrease in An as c decreases. In the model, decreasing c causes a decreased

leaf boundary layer conductance gb. This in turn decreases the intercellular CO2 partial pressure

Ci which increases Rd and decreases An. Notice there is no feasible solution to the C4 model

when c < 0.002.

We summarize the impact of using different c values in the calculation of gbfc and gbfr

in Table 2.4. As indicated in the sensitivity analysis for u, gb is only defined by gbfr when

u < 0.4 m/s. Since we are using the baseline value of u = 5 m/s, gbfr has no impact on the

calculation of An. However, for future implementations of the model, where u < 0.4, using

separate values for c could have a significant impact.
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Table 2.4: Comparison of An values for different uses of c for C3 plants.

c in gbfc c in gbfr An (µmol m−2 s−1)

Broad leaf example 4.322 × 10−3 4.322 × 10−3 5.3791
4.322 × 10−3 1.6361 × 10−3 5.3791

Coniferous shoot example 1.2035 × 10−3 1.2035 × 10−3 3.3775
1.2035 × 10−3 0.8669 × 10−3 3.3775
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Figure 2.20: Response of An to transfer coefficient c.

2.3.19 Leaf Length Scale, d

Niyogi’s model considers the value of d to remain constant in the computations for gbfc and

gbfr. However, Nikolov et al. [47] used different values of d depending on if the plant is a broad

leaf or coniferous species. For broad leaf species, in both instances d is defined to be leaf width.

However, in the computation of gbfc the needle diameter is used whereas in the computation

of gbfr, the shoot diameter is used. The reason for using the shoot diameter in free convection

conditions is because in the absence of forced air flow, the shoot behaves as an intact object

rather than a collection of needles [47]. Analogous to the analysis for c, since we are using the

baseline value of u = 5 m/s > 0.4 m/s, gbfr has no impact on the calculation of An. However,

for future implementations of the model where u < 0.4 using separate values for d could have

a significant impact.

Figure 2.21 shows the impact of leaf width from 1 mm to 10 cm on An. For both species,

increasing leaf width results in a decreased An value. This is a result of d having the reciprocal

effect that c has as explained in the previous section; see (2.10) and (2.11). The impact of

reducing leaf size from the baseline value has a more significant impact on the C3 species.
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Figure 2.21: Response of An to leaf length scale d.

2.3.20 Coupling Coefficients, β1 and β2

The coupling coefficients β1 and β2, whose values may range from 0 to 1, regulate the smoothness

of transition between the three limiting factors which regulate photosynthesis. The limiting

factors in C3 vegetation are (i) efficiency of Rubisco (wc), (ii) light limitation (we), and (iii)

plant capacity to utilize photosynthesis products (ws). The limiting factors in C4 vegetation

are (i) efficiency of Rubisco (wc), (ii) light limitation (we), and (iii) PEP-Carboxylase limitation

(ws). The gross assimilation rate, Ag, is defined as the smallest root of the system

β1w
2
p − wp(wc + we) +wewc = 0

β2A
2
g −Ag(wp + ws) + wpws = 0 (2.67)

where the coupling coefficients serve as smoothing terms.

Figures 2.22(a) and (b) illustrate the change in An as β1 and β2 vary from 0 to 1, respectively,

and the other parameters are fixed to baseline values. Figures 2.23 and 2.24 present the change

in An as both β1 and β2 vary for C3 and C4 plants, respectively. For both species, the value

of An is much more sensitive to a change in β2 than a perturbation of β1. Given the system

shown in (2.67), this implies that one of the terms, wc or we, has little impact as a limiting

factor.

Exploring this further, Table 2.5 presents the values for the limiting factors wc, we, and ws
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Figure 2.22: Response of An to coupling coefficients (a) β1 and (b) β2.

under baseline conditions. For both species, the model indicates that light is not a limiting

factor for An as is evident by the we values being more than two-fold larger than the other

two limiting factors. wp is the interim variable representing the combination of wc and we

which is controlled by β1. Clearly the value of wp is dominated by the effect of wc. Ag is then

determined by wp and ws with curvature controlled by β2. For both C3 and C4, wp, as driven

by wc, is the smaller of these values implying that the gross photosynthetic rate is controlled

by Rubisco limitation. This agrees with much of the sensitivity analysis we have seen thus far

and suggests that if the model predictions are accurate, there is an opportunity to bioengineer

the enzymatic capacities of plants to utilize the untapped potential of light energy.

Table 2.5: Comparison of values (µmol m−2 s−1) for limiting factors and resultant assimilation
rates.

C3 C4

wc 5.5788 10.252

we 55.300 55.2000

ws 12.815 18.493

wp 5.4592 9.8260

Ag 5.4195 9.7184

Rd 0.0405 0.0375

An 5.3791 9.6809
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Figure 2.23: Response of An to coupled changes in β1 and β2 in C3 species.
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Figure 2.24: Response of An to coupled changes in β1 and β2 in C4 species.

2.3.21 Slope m and Intercept b in Stomatal Conductance Equation

Several published models [2, 21, 60] cite the values of m = 4 and b = 0.04 for C4 species

and m = 9 and b = 0.01 for C3 species, referencing the original groundbreaking work of Ball

[5]. Other still use the methods of Ball to arrive at C4 value ranges of m = 2.4 − 3.6 and

b = 0.03 − 0.13 mol m−2 s−1 and C3 value ranges of m = 8.0 − 16.5 and b = −0.31 − 0.07 mol

m−2 s−1 [5, 22, 47, 52, 63].
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Noted to be species-specific, m as used in the original model by Ball is described as the

composite sensitivity of stomatal conductance to assimilation, CO2 concentration, humidity,

and temperature. It is apparent from the system of equations presented in Section 2.1 that in

this model, m further incorporates sensitivity to wind speed, ambient pressure, plant species

and leaf length scale. The free parameter b is the stomatal conductance that remains unaffected

by the atmospheric environment or leaf biochemistry.

In Figure 2.25(a), we examine the ranges m = 8− 17 for C3 species and m = 2− 4.5 for C4

species. Both species exhibit a similar response to changes in m, in particular as the value of

m increases, An increases as well. Figure 2.25(b) presents the sensitivity of An for the range of

b = −0.35 − 0.07 in C3 plants and b = 0.02 − 0.14 in C4 plants. C4 plants appear to exhibit

little sensitivity to the value of b when all other parameters are fixed to baseline values. The

response to perturbations in b in the C3 species is interesting, in part because the values were

permitted to be negative for a portion of the range examined.

Figures 2.26 and 2.27 illustrate the change in An as bothm and b vary for C3 and C4 plants,

respectively. The interesting trend in An in consistent across all values of m as b changes from

negative to positive values in C3 plants as indicated by Figure 2.26. Note that Figure 2.25(b)

shows little impact on An when b is varied using baseline values in C4 plants, and Figure

2.27 confirms this affect for most evaluated m values. The exception where more significant

sensitivity of An in C4 plants exists is for small values of m and b.
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Figure 2.25: Response of An to (a) slope m and (b) intercept b in stomatal conductance
equation.
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Figure 2.26: Response of An to m and b in C3 species.
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Figure 2.27: Response of An to m and b in C4 species.

2.3.22 Coefficient of ws Equation

Recall that gross carbon assimilation rate Ag is computed as a result of the smoothed limit of

three factors: wc, we, and ws. Although the Rubisco limitation wc and light limitation we have

different formulations between the C3 and C4 plant species, they in fact represent the same

physical phenomenon. However, ws represents different limitations based on plant species. For

C3 plants, ws represents the capacity of the plant to utilize the photosynthesis products while
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in C4 plants, ws quantifies the PEP-Carboxylase limitation on photosynthesis.

In C3 plants, the limitation by triose phosphate utilization, ws, is simply defined as

ws =
Vm
2
. (2.68)

The coefficient of interest to determine sensitivity of An to is 1/2. In the C4 equation for

PEP-Carboxylase limitation,

ws = 2× 104Vm
Ci
P
, (2.69)

which is first presented in [60]; there is no detailed description for the origin of the coefficient

2 ×104.

Figure 2.28 presents the sensitivity of An when perturbing these coefficient values by 10%.

Although both species have a slight increase in An as the coefficient of the ws equation is

increased, neither species is particularly sensitive to these coefficients. This is likely because ws

is not a limiting factor for either species as indicated in Table 2.5.
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Figure 2.28: Response of An to coefficient of ws equation.
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2.3.23 Coefficient of Rd Equation

Along with other published models [16, 33], the definition of leaf respiration rate Rd is referenced

to the original work of van Heemst [64]. van Heemst states that at normal temperatures, Rd

satisfies the relation

Rd =
Am
9
, (2.70)

where Am is the maximum net assimilation rate. Since no detailed evidence was presented to

validate the choice of the coefficient 1/9, we examine the effect on An when perturbing the

coefficient.

Figure 2.29 shows that neither species is incredibly sensitive to alteration of this value,

although a slight decrease in An occurs as the coefficient increases. Given the definition of

An = Ag − Rd, this impact is logical. Further, since Table 2.5 indicates that the magnitude

of Rd is much smaller than Ag, the small change in An when changing the value of Rd is

anticipated.
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Figure 2.29: Response of An to coefficient of Rd equation.
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Figure 2.30: Response of An to coefficient in (a) numerator and (b) denominator of gm equation.
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Figure 2.31: Response of An to coefficient in (a) numerator and (b) denominator of f(T )
equation.

2.3.24 Coefficients in Numerators and Denominators of gm and f(T ) Equa-

tions

Although these coefficients (all with a value of 0.3) appear in multiple models [16, 33], no

reference was found to indicate the origins of these values. Thus, Figures 2.30(a) and (b) il-

lustrate the perturbation of the coefficients in the numerator and denominator of the equation

for mesophyllic conductance gm, respectively. Further, Figures 2.31(a) and (b) illustrate the

perturbation of the coefficients in the numerator and denominator in the equation for temper-

ature dependence for maximum catalytic Rubisco capacity, f(T ), respectively. Perturbing the

coefficients by 10% had less than a 1% effect in both species for all occurances.
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2.3.25 Constants in S Equation

The Rubisco specificity for CO2 relative to O2, S, is quantified by the relation

S = 2600 · 0.57Q10 . (2.71)

S is then used to calculate the CO2 compensation point Γ∗ which is used to compute the

maximum assimilation rate Am in both plant species, as well as the limiting factors wc and we

in the C3 species. This exact formulation is presented in [21] and similar constant values are

presented for this expression in [67]. However, no direct explanation was found to explain the

determination of the constants 2600 and 0.57.

Therefore, Figures 2.32(a) and (b) illustrate the response of An to perturbation of these

values by 10% in both species. As one would expect, the An predictions for the C4 species

show little sensitivity to the calculation of S because O2 does not compete for Rubisco activity

in these plants. On the other hand, C3 plants are affected by the value of S, albeit to a small

degree within this range of perturbation.
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Figure 2.32: Response of An to (a) constant and (b) exponential base of S equation.

2.3.26 Constants in Kc and Ko Equations

Rubisco limitation of Ag in C3 plants, wc, incorporates the Michaelis-Menten constant for CO2

(Kc) and the oxygen inhibition constant (Ko). These constants, both with units in Pa, are

quantified by the relations

Kc = 30 · 2.1Q10 (2.72)
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and

Ko = 30000 · 1.2Q10 . (2.73)

Although several models utilize these equations to calculate Kc and Ko, little information

was found to motivate the choice of constant values (30, 2.1, 30000, and 1.2). Therefore

Figures 2.33 and 2.34 examine the affect on An when these constants vary by 10%. Because,

as indicated in Table 2.5, wc is the most limiting factor defining Ag with the baseline values,

perturbations of these constants which affect wc have an impact on An.
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Figure 2.33: Response of An to (a) constant and (b) exponential base of Kc equation.
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Figure 2.34: Response of An to (a) constant and (b) exponential base of Ko equation.
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2.3.27 Constants in gbfc and gbfr Equations

Leaf boundary layer conductance gb in both C3 and C4 plants is defined as the smaller of

conductance under forced conditions (gbfc) and free conditions (gbfr). Little explanation was

found for the equations defining these terms; see (2.10) and (2.11). Sensitivity analysis was

performed to examine the impact on An when the constants 120 K and 0.56 were perturbed in

these equations.

Figure 2.35(a) shows that neither species predicts significant change to An when the con-

stant 120 K is perturbed by 10%. Alternatively, as depicted in Figure 2.35(b), decreasing the

exponential term from 0.56 even slightly causes a noticeable decrease in An in both species. As

this value is increased from 0.56, the model predicts the value of An to approach a steady-state

in C4 plants while for C3 plants it appears to increase without bound within this range of

perturbation.
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Figure 2.35: Response of An to (a) constant and (b) exponent in gbfc and gbfr equations.

2.3.28 Comparison of Parameter Sensitivity

The previous subsections detail the model response in An to perturbation of individual pa-

rameters. To assess the comparative sensitivity of all these parameters, Figures 2.36 and 2.37

summarize the maximum percent change in An for the range examined of each parameter in C3

and C4 plants, respectively. Examining these figures allows us to assess to which parameters

An is most sensitive for each species.

In C3 plants, the top five most sensitive parameters are: Ts, b, S2, f(w2), and hs. The top

five most sensitive parameters for C4 plants are: S2, f(w2), Ts, S4, and β2.
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Figure 2.36: Maximum percent change in An over parameter ranges defined in previous sub-
sections for C3 plants.
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Figure 2.37: Maximum percent change in An over parameter ranges defined in previous sub-
sections for C4 plants.
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Chapter 3

Data Analysis and Niyogi Model

Performance

Every mathematical model is built upon a framework of assumptions. Data is required to

validate the formulation of any model. In Section 3.1 we present a new data set collected by

Dr. Edwin Fiscus, Plant Physiologist for the Agricultural Research Service (ARS) in the United

States Department of Agriculture (USDA). This conductance data along with the associated

environmental conditions is used to validate the Niyogi et al. model in Section 3.2. Further,

in Chapter 4, this conductance data is used to calibrate a new leaf conductance model based

solely on plant age and soil moisture conditions.

3.1 Data

3.1.1 Description of Experimental Procedure

The controlled water stress plot developed by the USDA/ARS Plant Science Research Unit is

located at the Inwood Road site in Raleigh, NC. The plot is approximately 23 meters long and 20

meters wide with rows oriented North to South. The overall slope of the field is approximately

0.5 meters from South to North and 0.2 meters from West to East. The field was plowed

and furrowed before planting so that any precipitation could flow downhill to a drainage ditch

at the northern end of the field. This field is comprised of four sections, three of which are

covered by 6 millimeter Polyethylene sheeting to prevent penetration of precipitation to the

soil underneath. A network of drip irrigation tubes was placed on the soil surface prior to

covering with sheeting allowing for careful control of water conditions beneath the soil surface.

The impact of differing water conditions on the stomatal conductance of soybean plants was

studied for the 2008 and 2009 growing seasons. Significant events of the growing seasons are
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summarized in Table 3.1.

The data under consideration is for two soybean genotypes: Haskell and N01. The Haskell

genotype was registered in 1993 after being developed for disease resistance and high produc-

tivity [11]. This line is one of the typical lines grown in the southeastern United States. During

conditions of increasing soil water deficit, the N01 genotype has been observed to exhibit slow

wilting [58]. Therefore, these two contrasting genotypes were selected under the hypothesis

that the N01 genotype would present more drought tolerance than the Haskell genotype.

The field is divided into four experimental studies for each soybean genotype: Dry, Medium,

Wet, and Open. Figures 3.1 and 3.2 diagram the field layout for 2008 and 2009, respectively.

Although tube and experiment locations remained the same for both study years, genotypic

placement was randomized each year. In general, the “dry” experiment subjected the soil to

drying cycles by withholding water to reach approximately 10% soil moisture. The “medium”

experiment was irrigated with 0.75 inches of water per week. The “wet” experiment was irri-

gated with 3 inches of water per week in the 2008 growing season and 1.5 inches in the 2009

growing season. The open experiment did not have plastic sheeting covering the surface of the

soil, so it received precipitation exposure as well as 3 inches of irrigation water treatment per

week during 2008 and 1.5 inches in 2009. For all studies, well-watered conditions were applied

in the beginning of the growing season to facilitate plant establishment.

Leaf conductance was measured with a model LI-1600M steady state porometer with a pho-

tosynthetically active radiation (PAR) sensor (LI-COR, Lincoln, NE). Additionally, the porom-

eter collected simultaneous barometric pressure, relative humidity, PAR, leaf temperature, and

cuvette temperature data. All measurements were made on the youngest, fully expanded leaf

of the plant. Environmental data including barometric pressure, ambient CO2 concentrations,

relative humidity, PAR, temperature, and wind speed was measured by a weather station in

close proximity to the controlled water stress plot.

3.1.2 Soil Moisture Data

Soil moisture measurements were taken by a HH2 Moisture Meter with a PR2 probe (Delta-

T Devices, Cambridge, England). Soil moisture data, described as m3 water/m3 soil, was

collected at three different depths: 20, 30, and 40 cm below the ground level surface. Eight

Table 3.1: Significant growing season events.

Field planted Irrigation stopped Field harvested

2008 May 21 October 6 November 6
2009 May 22 October 21 November 9
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Figure 3.1: Field diagram for 2008 growing season. Color coding of experiments is as follows:
Green (open), Red (wet), Yellow (medium), Brown (dry), Gray (border, unsampled). Hori-
zontal hashed areas represent Haskell plant areas and open sections represent N01 areas. The
white circles represent approximate locations of tubes where soil moisture measurements were
collected.

Figure 3.2: Field diagram for 2009 growing season. Color coding of experiments is as follows:
Green (open), Red (wet), Yellow (medium), Brown (dry), Gray (border, unsampled). Hori-
zontal hashed areas represent Haskell plant areas and open sections represent N01 areas. The
white circles represent approximate locations of tubes where soil moisture measurements were
collected.
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locations within each of the four experimental study regions were selected for soil moisture

measurements, as indicated by the white circle markings on Figures 3.1 and 3.2. Notice that

there is an even distribution of moisture tubes between the two soybean genotypes. At each

location and depth, three separate measurements were made by rotating the sensor by 120

degrees. Therefore, for each day, experiment, and depth, 8 × 3 = 24 measurements were made

throughout the experimental plot. Readings were taken on 73 days from May 23 through

December 30, 2008 and during 2009, readings were taken 78 times from January 14 through

December 1.

The data presented for each date in Figures 3.3 - 3.6 represent the average of these 24

observations at each depth during the 2008 growing season for the “dry”, “medium”, “wet”,

and “open” treatment groups, respectively. In each of these figures, there is a line representing

the average soil moisture value among the 20, 30, and 40 cm depths. Figure 3.7 summarizes

the averages for each treatment group on one graph for comparative purposes. Figures 3.8 -

3.12 are analogous for the 2009 growing season.

In general, the soil moisture content increases with depth from the soil surface. Note that

the “dry” and “medium” treatments began well-watered to establish the plants. From late June

to early August, drought stress was imposed on these treatment groups. Then, well-watered

conditions were maintained throughout the rest of the growing season.
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Figure 3.3: Soil moisture content for the “dry” experimental plot in 2008.
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Figure 3.4: Soil moisture content for the “medium” experimental plot in 2008.
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Figure 3.5: Soil moisture content for the “wet” experimental plot in 2008.
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Figure 3.6: Soil moisture content for the “open” experimental plot in 2008.
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Figure 3.7: Soil moisture content averages for all experimental plots in 2008.
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Figure 3.8: Soil moisture content for the “dry” experimental plot in 2009.
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Figure 3.9: Soil moisture content for the “medium” experimental plot in 2009.
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Figure 3.10: Soil moisture content for the “wet” experimental plot in 2009.
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Figure 3.11: Soil moisture content for the “open” experimental plot in 2009.
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Figure 3.12: Soil moisture content averages for all experimental plots in 2009.

3.1.3 Barometric Pressure

Independent barometric pressure data is available for both the 2008 and 2009 growing seasons.

The weather station records barometric pressure readings every few minutes with an Oakton

Aneroid Barometer located approximately 1.8 meters above grade and 14 meters from the

southeastern corner of the field. Additionally, the porometer requires barometric pressure as an

initial manual input. The technician read this value at a barometer separate from the weather

station and manually entered the value before taking conductance measurements. Therefore,

comparisons between weather station values can be made with the porometer data readings to

ensure reliability of the weather station measurements. Because the weather station provides

more precise and incremental measurements, this data will be used as model inputs. However,

comparing to the porometer technician’s independent barometric pressure ensures reliability of

the weather station measurements.

The porometer recorded the time of day when conductance measurements were calculated.

The mean barometric pressure reading within this time period, usually between the hours of

11:00 am and 2:00 pm, from the weather station is used. Figure 3.13 summarizes the barometric

pressure data from both the 2008 and 2009 growing seasons. The barometric pressure readings

as recorded by the weather station are remarkably consistent with the independent barometer

readings made by the porometer technician. Further note that the barometric pressure does

not vary much over the course of either growing season.
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Figure 3.13: Barometric pressure data from 2008 and 2009 growing seasons.

3.1.4 Ambient CO2 Levels

Ambient CO2 levels were quantified by a model LI-6252 CO2 analyzer (LI-COR, Lincoln, NE)

with an intake approximately 14 meters from the southeast corner of the controlled water stress

plot at a height of approximately 1 meter. Figures 3.14 and 3.15 illustrate the minimum, mean,

and maximum ambient CO2 level during the hours of 11:00 am through 2:00 pm, which is the

general time period of porometer data collection, on each date. The minimums and maximums

are shown by horizontal markings, while the mean is illustrated with the line connecting dates

of the study. All ambient CO2 concentrations for the experimental time period are between 340

and 380 ppm. However, it is interesting to note that ambient CO2 levels can vary greatly not

only amongst days but hours as well. For example, on July 1, 2009 the concentration varied

from approximately 347 to 374 ppm just within a 3 hour time period.
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Figure 3.14: Minimum, mean, and maximum ambient carbon dioxide levels during the 2008
growing season.
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Figure 3.15: Minimum, mean, and maximum ambient carbon dioxide levels during the 2009
growing season.
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3.1.5 Relative Humidity

Relative humidity data was measured both at the weather station and with the porometer at

the precise time and location of leaf conductance measurements. A model 41382VC aspirated

relative humidity/temperature probe (R.M. Young Company, Traverse City, MI) located ap-

proximately 10.7 meters from the southeast corner of the controlled water stress plot at a height

of approximately 4.4 meters was used for relative humidity measurements from the weather sta-

tion. The relative humidity data, as measured with the porometer, is used in Section 3.2 for

model testing as it is more closely related to the leaf conductance measurements. However, to

ensure reliability of the porometer relative humidity data values, it is compared with weather

station data in Figure 3.16.

For the most part, relative humidity values, as recorded with the porometer, are consistent

with the measurements taken at the weather station. On any given day the data points tend to

vary by less than 20% which is not atypical given the affect that haze, spotty cloud cover, and

wind can impose on relative humidity. However, note that the weather station has no reading

less than 0.2, while the porometer does have a grouping of multiple dates in 2008 where the

values were less than 0.2. All of these dates correspond to the first week of experimentation,

and these values are considered to be unreliable given the unrealistically low value for relative

humidity in this geographical region coupled with the probability that technicians were fairly

inexperienced with the equipment during this time period.

3.1.6 Photosynthetically Active Radiation (PAR)

PAR was measured both at the weather station and with the porometer at the precise time

and location of leaf conductance measurements. The PAR data measured with the porometer

is plotted in Figures 3.17 and 3.18 and is used in Section 3.2 for model testing. Given the

geometrical setup of the porometer instrument, PAR reading were made for both the upper

and lower surfaces of the leaf. However, here we are only utilizing the incident PAR as received

by the upper leaf surface.

Notice in Figures 3.17 and 3.18 that the values of PAR can significantly range over the course

of even the same day. This variation can be due to a number of factors including changing cloud

cover, haze, dust, and the angle of the sun.
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Figure 3.16: Relative humidity data. Stars are relative humidity values from the 2008 growing
season and circles are data from 2009.
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Figure 3.17: PAR data from 2008 growing season.
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Figure 3.18: PAR data from 2009 growing season.

3.1.7 Temperature

The weather station collects temperature values with the same relative humidity/temperature

probe used to collect relative humidity data at a height approximately 4.4 meters higher than

the field surface. The porometer collects the leaf and cuvette temperatures during conductance

calculation. The cuvette is the part of the porometer where conductance measures are made,

and the cuvette temperature is considered as ambient temperature.

Figure 3.19 illustrates the relationship of cuvette and leaf temperature values which are

measured simultaneously by the porometer. These values mostly differ by less than 5 degrees

Kelvin. Notice that the data illustrates that there is no rule dictating which of these values is

largest in magnitude.

Using the time period of conductance data collection (typically 11:00 am - 2:00 pm), we

summarize the mean temperature value as recorded by the weather station in Figure 3.20.

There is little difference between the temperature trends for these two growing seasons.

The model contains separate variables for three temperature values: canopy, ambient, and

leaf surface temperature. Oftentimes the canopy temperature Tc is set equal to the ambient

temperature Ta for model simulation. However, model testing in Section 3.2 uses the weather

station temperature readings as Tc, the porometer cuvette temperatures as Ta, and the porom-

eter leaf temperature readings as Ts.
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Figure 3.19: Cuvette temperature versus leaf temperature. Stars are values from the 2008
growing season, and circles are data from 2009.
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Figure 3.20: Weather station temperature readings during the 2008 and 2009 growing seasons.
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3.1.8 Wind

Wind speed is a necessary input into the model, and this data was gathered from the weather

station near the field. Wind direction and speed is measured with a model 12005 Gill Mi-

croVane and 3-cup anemometer system (R.M. Young Company, Traverse City, MI) located at

a height approximately 5.6 meters above grade and 10.7 meters from the southeast corner of

the controlled water stress plot. The mean wind speed during the time period of conductance

data collection was calculated for each day of the study. These mean wind speed values are

used for model testing in Section 3.2 and are plotted in Figures 3.21 and 3.22 for the 2008 and

2009 growing seasons, respectively.

Note the existence of several issues with interpreting this data and it’s relevance to the

model:

• The weather station is approximately 5.6 meters in the air which is significantly higher

than the plant height during any part of the growing season. Are winds at this height

even relevant for the purpose of wind speed input to the model?

• Using the time period of conductance data collection (typically 11:00 am - 2:00 pm), we

have found the mean wind speed value recorded during this time period. Wind speeds

are recorded as instantaneous measurements every few minutes. However, we do not have

an individual wind speed measurement for each leaf conductance data point.

• Does the clamp on the porometer itself make this part of the model useless anyway? Wind

speed controls boundary layer conductance, but if the clamp is blocking the wind’s inter-

action with the leaf surface, is wind even a relevant input given this type of conductance

data?
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Figure 3.21: Wind speed data from 2008 growing season.
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Figure 3.22: Wind speed data from 2009 growing season.
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3.1.9 Leaf Conductance

Figures 3.23 through 3.26 summarize the total leaf conductance from the 2008 growing season

for the “dry”, “medium”, “wet”, and “open” experiments, respectively. On each figure, red

markings illustrate data from the Haskell genotype and green markings data from the N01

genotype. Figure 3.27 summarizes the means for all experiments with the Haskell genotype in

2008 and Figure 3.28 summarizes the mean leaf conductance for all experiments with the N01

genotype in 2008. Both genotypes show decreased leaf conductance under conditions of soil

moisture stress. Figures 3.29 through 3.34 are analogous plots for the 2009 growing season.
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Figure 3.23: Conductance data from “dry” experimental plot in 2008. Red circles and lines
indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are indi-
vidual data points while lines represent means.
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Figure 3.24: Conductance data from “medium” experimental plot in 2008. Red circles and
lines indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are
individual data points while lines represent means.
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Figure 3.25: Conductance data from “wet” experimental plot in 2008. Red circles and lines
indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are indi-
vidual data points while lines represent means.
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Figure 3.26: Conductance data from “open” experimental plot in 2008. Red circles and lines
indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are indi-
vidual data points while lines represent means.
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Figure 3.27: Conductance data averages for all experimental plots with Haskell genotype in
2008.
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Figure 3.28: Conductance data averages for all experimental plots with N01 genotype in 2008.
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Figure 3.29: Conductance data from “dry” experimental plot in 2009. Red circles and lines
indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are indi-
vidual data points while lines represent means.
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Figure 3.30: Conductance data from “medium” experimental plot in 2009. Red circles and
lines indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are
individual data points while lines represent means.
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Figure 3.31: Conductance data from “wet” experimental plot in 2009. Red circles and lines
indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are indi-
vidual data points while lines represent means.
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Figure 3.32: Conductance data from “open” experimental plot in 2009. Red circles and lines
indicate Haskell genotype, Green stars and lines indicate N01 genotype. Stars/circles are indi-
vidual data points while lines represent means.
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Figure 3.33: Conductance data averages for all experimental plots with Haskell genotype in
2009.
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Figure 3.34: Conductance data averages for all experimental plots with N01 genotype in 2009.

3.2 Niyogi Model Performance

During the 2008 growing season, there were 38 days for which leaf conductance data was

measured. On each day, 8 plants of each genotype were measured for each of the 4 stud-

ies, yielding a total of 32 conductance measurements. This would imply we could compare

38 × 32 = 1216 model predictions to data for each genotype. However, for some days we are

lacking either CO2, soil moisture, or environmental data which are required inputs for model

simulation. In particular, as summarized in Table 3.2, 96 comparisons could not be made for

each genotype due to lack of input data. For the 2009 growing season, there were 42 days

for which leaf conductance data was gathered. This would imply a total of 1344 data points

for 2009. However, due to rain events which resulted in incomplete data collection on several

days, a total of 1325 data points were gathered for the Haskell genotype and 1327 for the N01.

Moreover, 384 comparisons could not be made for each genotype because of a lack of input

data. Additionally, several of the model simulations did not have a solution given the input

data parameter values. These appear to happen in circumstances where the PAR reading was

zero, soil conditions were extremely dry, or relative humidity was very low.

For every date soil moisture data was available in the 2008 growing season, the soil moisture

content at 20, 30, and 40 cm was averaged. Therefore, for every date soil moisture data was

collected, we had one soil moisture value for each study (dry, medium, wet, and open). These

values were used as w2 values in (2.37) for model simulation. The wilting value wwilt was set to
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Table 3.2: Conductance data point summary.

2008 2009

Haskell N01 Haskell N01

Data used 1116 1116 935 937
No CO2 data 32 32 32 32
No soil moisture data 32 32 352 352
No weather data 32 32 0 0
No model root 4 4 6 6
Total data employed 1216 1216 1325 1327

be the minimum of all averaged values. The field capacity was set to be the mean of the averaged

values in the beginning of the growing season when all experiments were well-watered, but not

over-watered as appears to be the case for later dates. In particular, the field capacity wfc was

set to be the mean of the average of the dates May 23 - June 27, 2008 and June 1 - June 26,

2009, respectively, where there were different field capacity values for each experimental study.

Table 3.3 summarizes the values used for each respective grouping of simulations.

As described in Section 3.1.4, we have ambient carbon dioxide concentration values from

a data recorder in close proximity to the soybean field. This data is recorded in ppm (or

equivalently µmol CO2/mol air); however the model requires input values in partial pressure

with units of Pascal. To convert the readings from ppm to Pascals, Dalton’s law

Ca(Pa) = Ca

(

µmol CO2

mol air

)

· P (Pa) · 1 mol CO2

106µmol CO2
(3.1)

of partial pressure is used where P is the barometric pressure. The mean ambient CO2 value

for each date is used for simulation.

The barometric pressure, canopy temperature, and wind values are gathered from the

weather station data as described in Sections 3.1.3, 3.1.7, and 3.1.8, respectively. There is

one of each of these values for each date. Relative humidity, leaf surface temperature, ambient

Table 3.3: Soil parameter values derived from data.

2008 2009

wwilt wfc wwilt wfc
Dry 0.1005 0.2456 0.1252 0.2463
Intermediate 0.1005 0.2662 0.1252 0.2845
Wet 0.1005 0.2933 0.1252 0.3005
Open 0.1005 0.2785 0.1252 0.2915
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temperature, and PAR values are determined uniquely with each leaf conductance calculation

by the porometer. These values are used for model simulation and are compared with the

respective conductance data.

The model analyzed in Chapter 2 has 11 parameter values which may be tuned so simulation

is appropriate for a given species. A literature review was conducted to identify parameter values

specific to soybean. For seven of these 11 parameters, soybean values were found. General values

appropriate to C3 plants were used for the remaining four parameters. These values, as well as

their sources, are summarized in Table 3.4.

The conductance data, as collected by the porometer and detailed in Section 3.1.9, does

not correct for leaf boundary layer conductance gb. The data represents total leaf conductance

(g`) which is a combination of the stomatal (gs) and boundary layer (gb) conductances. Recall

that conductances are not additive, but resistances are. Further, conductance is merely the

reciprocal of resistance. Hence we can calculate total leaf resistance

r` = rs + rb =
1

gs
+

1

gb
=
gb + gs
gbgs

(3.2)

thus implying total leaf conductance

g` =
1

r`
=
gbgs
gb + gs

. (3.3)

Figures 3.35 through 3.38 illustrate the results of total leaf conductance predictions g`, using

(3.3) with the Niyogi et al. [48] model predictions of gb (2.33) and gs (2.41), versus data for

both genotypes of soybean and each growing season under study. As detailed in Table 3.2,

Figures 3.35 and 3.36 illustrate 1116 comparisons and Figures 3.37 and 3.38 each have 938.

Table 3.4: Species-specific model parameter values used for simulation.

Parameter (units) Value Source

m (-) 10.6 Leakey et al. (2006)
b (mol m−2 s−1) 0.008 Leakey et al. (2006)
Am,max (mol m−2 s−1) 3.311 × 10−5 Yu et al. (2004)
gmp (m/s) 0.0035 Bunce (1985)
S2 (K) 310 Sellers et al. (1996b) – for C3 species
S4 (K) 280 Sellers et al. (1996b) – for C3 species
c (mol m−2 s−1) 4.322 × 10−3 Nikolov et al. (1995) – for broad leaf C3 species
d (m) 0.1 Approximated
Vmax (mol m−2 s−1) 9.115 × 10−5 Vu et al. (2006), Parisi et al. (1998)
ε (mol mol−1) 0.0524 Boote et al. (1994), Ehlringer et al. (1977)
wπ (-) 0.18 Kasperbauer (1987)
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Figure 3.35: Conductance predictions g` versus data for all experimental plots with Haskell
genotype in 2008. The 45◦ line is superimposed to indicate the scale of underprediction.
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Figure 3.36: Conductance predictions g` versus data for all experimental plots with N01 geno-
type in 2008. The 45◦ line is superimposed to indicate the scale of underprediction.
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Figure 3.37: Conductance predictions g` versus data for all experimental plots with Haskell
genotype in 2009. The 45◦ line is superimposed to indicate the scale of underprediction.
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Figure 3.38: Conductance predictions g` versus data for all experimental plots with N01 geno-
type in 2009. The 45◦ line is superimposed to indicate the scale of underprediction.
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As is illustrated in Figures 3.35 through 3.38, the model underpredicts the total leaf con-

ductance as indicated by the location of all points above the 45◦ line imposed on the figures.

Table 3.5 depicts the sum of squared error (SSE) values for each experiment, broken down by

genotype and growing season. Define the input parameter vector pk to contain the necessary

environmental inputs, associated with the kth data point, for soil moisture w2, wilting value

wwilt, field capacity wfc, ambient CO2 concentration Ca, barometric pressure P , wind speed u,

relative humidity hs, PAR, canopy temperature Tc, ambient temperature Ta, and leaf surface

temperature Ts, that is,

pk = [w2,k wwilt,k wfc,k Ca,k Pk uk hs,k PARk Tc,k Ta,k Ts,k] . (3.4)

Further, define the vector φ to be comprised of the eleven parameters as summarized in Ta-

ble 3.4, that is,

φ = [m b Am,max gmp S2 S4 c d Vmax ε wπ] . (3.5)

Then we present the raw SSE computed as

Raw SSE =
n
∑

k=1

[yk − g`(pk ;φ)]2 (3.6)

where yk is the data point for k = 1, . . . , n and g`(pk;φ) is the model prediction using the input

environmental parameters pk and the species-specific parameters φ. The normalized SSE is

calculated as

Normalized SSE =
Raw SSE

n
(3.7)

where n is the number of data points.

By examining the sum of squared error values as normalized by number of data points, the

model fits the N01 genotype better than the Haskell genotype and the 2009 growing season

better than the 2008 season for both genotypes. Table 3.6 further illustrates the SSE values

Table 3.5: Sum of squared errors.

2008 2009

Haskell N01 Haskell N01

Raw SSE 5.3540 × 108 4.5684 × 108 3.6155 × 108 3.3720 × 108

No. data pts 1116 1116 935 937
Normalized SSE 4.7975 × 105 4.0936 × 105 3.8669 × 105 3.5987 × 105
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as separated by experimental plot. The model predictions agree with data from the “dry”

experiment better than the other scenarios.

As confirmed by both the visual comparison of model predictions to data as well as with

the quantitative evidence presented by the large SSE values, this model requires refinement to

adequately predict total leaf conductance. The conductance data show a strong relationship

with plant development. During the early vegetative stages, conductance increases, and during

senescence, the conductance declines. This model does not contain any dependence on plant

development which likely inhibits its performance. The data also suggest a relationship between

conductance and soil moisture status. Although the model does incorporate soil moisture status,

it is only through the calculation of catalytic Rubisco capacity for the leaf, Vm. It is unclear if

Vm is the correct or only state variable which is directly impacted by soil moisture. Further, the

formulation of this dependence as f(w2) in (2.9) may not be the correct relation to characterize

the relationship. Perhaps a formulation analogous to the temperature dependency f(T ) as

shown in (2.8) would yield more accurate predictions. The model as presented in Niyogi et al.

is a very detailed depiction of the coupled stomatal conductance and photosynthetic processes.

Without validation data to confirm predictions of the many internal state variables (i.e., net

photosynthesis rate An, CO2 partial pressure at leaf surface Cs and in intercellular spaces

Ci, etc), it is difficult to isolate the equations which require modification to improve model

prediction agreement with data.

Table 3.6: Normalized sum of squared errors. Each entry is the SSE value divided by 105. The
values in parenthesis are the number of data points used for that experiment.

Dry Medium Wet Open Total

2008 Haskell 3.2271 4.1472 5.9821 5.8277 4.7975
(279) (278) (279) (280) (1116)

2008 N01 2.9541 3.7792 4.7466 4.9021 4.0936
(280) (279) (280) (277) (1116)

2009 Haskell 2.8207 3.1353 4.5041 4.9882 3.8669
(232) (232) (239) (232) (935)

2009 N01 2.3767 3.0583 4.2454 4.6984 3.5987
(234) (231) (239) (233) (937)
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Chapter 4

Model Development and Calibration

4.1 Model Development

Whereas inadequacies in model predictions may be due to a number of factors, two critical

phenomenon that are presently lacking are model dependence on plant development and soil

moisture conditions. Therefore, we suggest that total leaf conductance (g`) can be modeled by

a relation of the form

g`(t, w2; θ) = f(t; θ) · h(w2; θ) (4.1)

where f(t; θ) is a scaling function valued between 0 and 1 that depends on plant age (t) and

h(w2; θ) is a function describing conductance with units of mmol m−2 s−1 based on soil moisture

fraction (w2).

To model the total leaf conductance data using (4.1), we employ a polynomial

f(t; θ) = α0 + α1t+ α2t
2 + α3t

3 (4.2)

to define the plant age dependency. Here t is the plant age in days and αk for k = 0, . . . , 3 are

coefficients to be estimated through a least squares fit to data.

The conductance-dependence on soil moisture is defined as a Gompertz-like function

h(w2; θ) = β1e
β2e
β3w2

(4.3)

where β1 is the maximum allowable conductance, β2 sets the displacement of the sigmoidal

curve along the w2 axis, and β3 represents the extent of dependence of conductance on w2 [56].

Both β2 and β3 are negative values. A more negative β2 value shifts the curve towards higher

w2 values, indicating that smaller soil moisture values will have lower conductance rates. A
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more negative β3 value increases the slope of the sigmoid implying that the region of w2 values

transitioning from the lowest value of conductance to the highest becomes more narrow. The

complete set of parameters is given by θ = [α0, α1, α2, α3, β1, β2, β3].

4.2 Model Calibration

Parameter estimation was performed in a two-step process. In the first step, we employed a

global search algorithm to obtain initial parameter values for a classical Nelder-Mead simplex

method used in the second step. The data was collected at times tk1
, k1 = 1, . . . , n1, and soil

moisture fractions w2,k2
, k2 = 1, . . . , n2, for a total of n measurements. Note that the total

number of measurements for each case is summarized in Table 4.2. The cost function used

throughout the optimization process is taken to be

SSE =
n1
∑

k1=1

n2
∑

k2=1

[yk1,k2
− g`(tk1

, w2,k2
; θ)]2 (4.4)

=
n
∑

k=1

[yk − g`(ek; θ)]2 (4.5)

where yk for k = 1, . . . , n are the measured leaf conductances and g`(tk1
, w2,k2

; θ) = g`(ek; θ)

are modeled values given by (4.1). Here ek denotes the unique input associated with the

measurement (tk1
, w2,k2

).

Because little information was known about feasible values for the unknown parameters,

we chose to use a global search algorithm, capable of searching a large parameter space, for

the first phase of optimization. In particular we used the Differential Evolution algorithm [62]

defining the possible parameter space as indicated in Table 4.1. This algorithm begins with a

Table 4.1: Parameter space regions utilized with initial global search.

Parameter Minimum value Maximum value

α0 -1000 1000

α1 -1000 1000

α2 -1000 1000

α3 -1000 1000

β1 0 10000

β2 -100 0

β3 -100 0
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large population NP (here we used NP=1000) of parameter vectors chosen randomly to cover

the entire parameter space. Essentially, this forms an NP × p matrix X where p is the length

of each parameter vector (here p=7). The rows of this matrix are randomly perturbed to form

three unique NP × p matrices X1, X2, and X3. Then an F value, where F ∈ [0, 2], is chosen

to control the amplification of the differential variation

X̂ = X3 + F · (X1 −X2). (4.6)

Our results reflect the choice of F=0.7. Equation 4.6 describes the mutation step of the algo-

rithm which is then followed by the crossover step which increases the diversity of the perturbed

vectors. In the crossover step, a CR value where CR ∈ [0, 1] is chosen. Our results reflect the

choice of CR=0.9. A random NP × p matrix Y containing values normally distributed over

[0,1] is created. Finally, a new matrix X̃ is created, using the Y , X̂, and X matrices, with

components

x̃ij =

{

x̂ij if yij < CR

xij if yij ≥ CR
(4.7)

for i = 1, . . . , n and j = 1, . . . , p. In general, a choice of a larger CR value creates a more

perturbed population in the crossover step. At this point, the resultant cost values for the ith

row of X are compared to the resultant cost values for the ith row of X̃ for i = 1, . . . , NP . If

the cost value for the parameter vector in X̃ is lower, the row of X̃ replaces that row of X.

This completes the first generation. The entire process is continued for a user-specified number

of generations (here 2000 generations were created). The parameter vector yielding the lowest

cost in this final generation is returned as the globally minimizing parameter vector.

After completion of the initial global search for each case, the globally minimizing parameter

vector was used as an initial guess for the Nelder-Mead simplex method which was subsequently

employed to achieve local convergence.

Each of the four scenarios representing all combinations of growing season and genotype

(that is, Haskell/2008, N01/2008, Haskell/2009, and N01/2009) were calibrated to the model

described in (4.1) - (4.3). Table 4.2 summarizes the parameter estimates and resultant sum of

squared error values. Figures 4.1 through 4.8 illustrate the model predictions as compared to

data.

Note that as described in Table 3.2, not all available conductance data have associated

soil moisture information. Figures 4.1 through 4.8 compare only conductance data having

the associated soil moisture values to model predictions. Therefore, when comparing these

figures to the raw data in Figures 3.23 - 3.34, one will notice the omission of some conductance
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measurements. This effect is particularly noticeable in the 2009 results depicted in Figures 4.6

and 4.8 where there were 11 days worth of conductance measurements for which associated soil

moisture values were not available.

Figure 4.9 depicts dependence on plant age of the modeled total leaf conductance. Each

genotype and growing season is included for comparison. Note that as indicated in (4.2), the

function f(t) is valued between 0 and 1 for the entire plant age range. In all cases, the scaling

imposed by plant age is lower in the early vegetative stage of growth, peaks at approximately

70 days of age, and declines again as the plant enters senescence. It is interesting to note the

similarity of modeled age dependence between growing seasons rather than genotypes. This

suggests that the model may be further improved by incorporating another mechanism such

as temperature. Figure 4.10 illustrates the modeled maximum allowable conductance rate

as a function of soil moisture fraction. Here the sigmoidal shape of (4.3) is evident for all

genotypes and growing seasons. In general, as the soil moisture fraction increases, the potential

conductance increases until it reaches a plateau. Again one may note the similarity of modeled

soil moisture dependence between growing seasons rather than genotypes. However, in both the

2008 and 2009 growing seasons the N01 genotype has a smaller maximum allowable conductance

rate than the Haskell genotype.

Table 4.2: Parameter estimates for each case.

2008 2009

Parameter Haskell N01 Haskell N01

α0 -1.5602 × 100 -1.4194 × 100 -1.6634 × 10−1 -1.2527 × 10−1

α1 8.8321 × 10−2 8.2211 × 10−2 3.4967 × 10−2 3.4066 × 10−2

α2 -9.4367 × 10−4 -8.6564 × 10−4 -3.0269 × 10−4 -2.9766 × 10−4

α3 2.9187 × 10−6 2.6421 × 10−6 5.8304 × 10−7 5.7756 × 10−7

β1 1.0173 × 103 9.0622 × 102 8.8439 × 102 8.5056 × 102

β2 -5.4780 × 101 -3.1492 × 101 -1.3280 × 101 -1.0871 × 101

β3 -3.3652 × 101 -3.2794 × 101 -1.7424 × 101 -1.6729 × 101

SSE 3.9567 × 107 3.0781 × 107 2.2497 × 107 1.9445 × 107

No. data pts 1184 1184 973 975
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Figure 4.1: Conductance predictions versus data for all experimental plots with the Haskell
genotype in 2008. The 45◦ line is superimposed to indicate scale.
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Figure 4.2: Conductance predictions (dotted lines) compared to mean data by date (solid lines)
for the Haskell genotype in 2008.
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Figure 4.3: Conductance predictions versus data for all experimental plots with the N01 geno-
type in 2008. The 45◦ line is superimposed to indicate scale.
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Figure 4.4: Conductance predictions (dotted lines) compared to mean data by date (solid lines)
for the N01 genotype in 2008.
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Figure 4.5: Conductance predictions versus data for all experimental plots with the Haskell
genotype in 2009. The 45◦ line is superimposed to indicate scale.
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Figure 4.6: Conductance predictions (dotted lines) compared to mean data by date (solid lines)
for the Haskell genotype in 2009.
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Figure 4.7: Conductance predictions versus data for all experimental plots with the N01 geno-
type in 2009. The 45◦ line is superimposed to indicate scale.
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Figure 4.8: Conductance predictions (dotted lines) compared to mean data by date (solid lines)
for the N01 genotype in 2009.
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Figure 4.9: Model plant age dependence curves f(t; θ) as described by (4.2) and Table 4.2.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

200

400

600

800

1000

Soil moisture fraction w
2
 (m3/m3)

h(
w

2;θ
) 

(m
m

ol
 m

−
2  s

−
1 )

 

 

2008 Haskell
2008 N01
2009 Haskell
2009 N01

Figure 4.10: Model soil moisture dependence curves h(w2; θ) as described by (4.3) and Table
4.2.
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4.3 Confidence Intervals for Parameter Estimates

In Table 4.2 we present the parameter estimates for the seven unknown parameters of the model

described by (4.1). These values are only point estimates and it is important to understand

the accuracy and reliability of these parameter values. Confidence intervals for the parameter

estimates provide an indication of this reliability. For example, if the derived confidence interval

for a given parameter is large, this indicates to the modeler that the parameter estimate may

be unreliable. Reciprocally, a small confidence interval indicates the parameter is likely well

estimated.

We begin by applying traditional asymptotic theory to establish confidence intervals for the

estimated parameters. However, as shown in Section 4.3.1, this method does not provide a

computationally feasible solution. We then describe bootstrap methods in general and choose

in particular the wild bootstrap, which is applicable to our case where the residuals exhibit

heteroscedasticity, in Section 4.3.2.

4.3.1 Asymptotic Theory

We let n denote the number of data points, p the number of estimated parameters, and θ̂ the

estimated parameter vector. Then, define the n × p sensitivity matrix χ(θ̂) to have components

χij(θ̂) =
∂g`(ei; θ)

∂θj

∣

∣

∣

∣

∣

θ=θ̂

(4.8)

for i = 1, . . . , n and j = 1, . . . , p. The variance-covariance matrix V may then be estimated as

V = s2
(

χT (θ̂)χ(θ̂)
)−1

(4.9)

where the variance estimate is s2 = SSE
n−p , with SSE defined in (4.5).

Oftentimes, a 1−α joint inference region for estimated parameters within a nonlinear model

can be adequately approximated via the inequality

(

θ − θ̂
)T
V −1

(

θ − θ̂
)

≤ pF (p, n− p;α) (4.10)

where F represents the F distribution [8, 57]. The associated 1 − α confidence interval for an

individual estimated parameter θ̂j is

θ̂j ±
√

Vjj t(n− p;α/2) (4.11)

where t represents the Student’s T distribution.
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Calculating (4.9) was the first step taken to approximate confidence intervals for the esti-

mated parameters. Partial derivatives of the model, as described in (4.1), with respect to each

of the parameters are

χi,1 =
∂g`(ei; θ)

∂α0
= β1e

β2e
β3w2,i

(4.12)

χi,2 =
∂g`(ei; θ)

∂α1
= tiβ1e

β2e
β3w2,i

(4.13)

χi,3 =
∂g`(ei; θ)

∂α2
= t2i β1e

β2e
β3w2,i

(4.14)

χi,4 =
∂g`(ei; θ)

∂α3
= t3i β1e

β2e
β3w2,i

(4.15)

χi,5 =
∂g`(ei; θ)

∂β1
= (α3t

3
i + α2t

2
i + α1ti + α0)eβ2e

β3w2,i
(4.16)

χi,6 =
∂g`(ei; θ)

∂β2
= β1(α3t

3
i + α2t

2
i + α1ti + α0)eβ2e

β3w2,i
eβ3w2,i (4.17)

χi,7 =
∂g`(ei; θ)

∂β3
= β1β2w2,i(α3t

3
i + α2t

2
i + α1ti + α0)eβ2e

β3w2,i
eβ3w2,i . (4.18)

These values yield the n × p sensitivity matrix χ

χ =















χ1,1 χ1,2 χ1,3 χ1,4 χ1,5 χ1,6 χ1,7

χ2,1 χ2,2 χ2,3 χ2,4 χ2,5 χ2,6 χ2,7

...
...

χn,1 χn,2 χn,3 χn,4 χn,5 χn,6 χn,7















. (4.19)

This matrix χ was formed for the case of the Haskell genotype for the 2008 growing season.

Using the parameter values indicated in Table 4.2 for this case we have
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χTχ =































1× 109 2× 1011 5× 1013 1× 1016 4× 106 5× 106 −4× 107

2× 1011 5× 1013 1× 1016 3× 1018 1× 109 1× 109 −1× 1010

5× 1013 1× 1016 3× 1018 7× 1020 3× 1011 3× 1011 −3× 1012

1× 1016 3× 1018 7× 1020 2× 1023 7× 1013 8× 1013 −7× 1014

4× 106 1× 109 3× 1011 7× 1013 4× 104 4× 104 −3× 105

5× 106 1× 109 3× 1011 8× 1013 4× 104 4× 105 −3× 106

−4× 107 −1× 1010 −3× 1012 −7× 1014 −3× 105 −3× 106 2× 107































.

Note that the order of magnitude of the entries in χTχ varies from 104 to 1023, which is a

difference of 19 orders of magnitude. Based on the singular value decomposition of χTχ, Matlab

computes that rank(χTχ) = 3. Since this matrix is not full rank, we can not compute (χTχ)−1 as

required by the linear approximation parameter confidence interval formula in (4.9). Therefore,

asymptotic theory for this example does not provide a computationally feasible solution.

This problem of singularity of the χTχ matrix is not uncommon for inverse problems with

nonlinear models. A method to handle singularity of the Fisher Information Matrix (χTχ) as

a result of poor parameter identifiability and estimability has recently been introduced in [19].

This algorithm determines which parameter axes lie closest to the ill-conditioned directions

of χTχ and then implements a reduced-order estimation by fixing these associated parameter

values at prior estimates. Because reasonable ranges for the estimated parameters in this

application are unknown, we were unable to employ this method.

4.3.2 Bootstrap Method

As an alternative to the asymptotic theory to derive confidence intervals for the estimated

parameters, we turn to a form of bootstrapping. This nonparametric approach to statistical

inference substitutes intensive computation for more traditional asymptotic results and can be

used to derive confidence intervals [30].

In particular, we apply the bootstrap to the residuals of our model. This method treats the

model dependent variables (i.e., soil moisture, plant age) as fixed rather than random because

they may be a product of experimental design.

Assume that the experimental data (y1, e1), . . . , (yn, en) are from an underlying observation

process

Yk = g`(ek; θ0) + Ek (4.20)

for k = 1, . . . , n where the errors Ek are assumed to be independent and identically distributed
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(iid) from a distribution F with mean 0 and constant variance, and θ0 is the “true” parameter

value.

First, the ordinary least squares estimate θ̂ is estimated by minimizing (4.5). Then, the

residuals

uk = yk − g`(ek; θ̂) (4.21)

for k = 1, . . . , n are computed. Bootstrapped data values ȳmk are formed by

ȳmk = g`(ek; θ̂) + ūmk (4.22)

where ūmk is an element randomly selected with replacement from the residual vector u and

m = 1, . . . ,M where M is a sufficiently large number. Thus, each bootstrap error term ūmk
can take on n possible values, that is, the values in u, each with probability 1/n. Finally, the

ordinary least squares estimate θ̂m is determined by

θ̂m = arg min
θ

n
∑

k=1

[ȳmk − g`(ek; θ)]2 . (4.23)

In the results presented here, we choseM = 1000. This technique of bootstrapping the residuals

and re-estimating the parameter vector θ M times is referred to as residual bootstrapping

[27, 30, 41].

However, the residual bootstrap as described is not valid if the error terms Ek are not

iid because if the heteroscedasticity is of an unknown form, it cannot be emulated with the

bootstrap distribution [24, 41]. Note that if the residuals are iid, a plot of residual values versus

the associated model predictions will appear random [7, 18, 25]. As shown in Figure 4.11, the

pattern in all cases does not appear random and therefore we conclude that the residuals are

heteroscedastic.

Consider next the case where the experimental data (y1, e1), . . . , (yn, en) are from an

underlying observation process

Yk = g`(ek; θ0)(1 + Ek) (4.24)

for k = 1, . . . , n where the Ek are iid from a distribution F with mean 0 and non-constant

variance, and θ0 is the “true” parameter value.

Several sophisticated variants of bootstrapping exist to address this case of heteroscedastic

residuals. Among the many options are the generalized least squares (GLS) method and the wild

bootstrap. GLS is well documented as a good theoretical alternative approach to parameter

estimation in the presence of non-constant variance [6, 18, 23, 30, 31]. Briefly, in GLS, one
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Figure 4.11: Conductance predictions versus residuals. (a) Haskell genotype in 2008, (b) N01
genotype in 2008, (c) Haskell genotype in 2009, and (d) N01 genotype in 2009.

searches for θ which minimizes

SSE =
n
∑

k=1

ŵk [yk − g`(ek ; θ)]2 (4.25)

where ŵk are weights designed to give greater weight to observations with smaller variance.

Unfortunately, in practice, the GLS method often does not live up to the theoretical advantages.

Because the weights ŵk are unknown and must be estimated, there is a possibility that the GLS

regression may in fact “miss” the data entirely [57].

Hence, the method chosen to address the heteroscedastic residuals is the wild bootstrap

method. This method was originally proposed by Wu and rigorously expanded by Liu as a

general method for resampling residuals in the presence of error variance heteroscedasticity

[40, 68]. The method is referred to as “wild” because n different distributions are estimated

from only n observations. The procedure is identical to that described above for the residual

bootstrap with the exception that (4.22) is replaced by

ȳmk = g`(ek; θ̂) + h(uk)vk (4.26)

where h(uk) is a transformation of the kth residual and vk is a random variable from a distri-

bution satisfying E(vk)=0, E(v2k)=1, and E(v3k)=1. Clearly there are many options for how one
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may choose to define h(uk) and the distribution of vk. A simple choice for h(uk), and the one

we chose, is the identity relation h(uk) = uk. A commonly employed two-point distribution for

vk is

vk =







−(
√

5−1)
2 with probability p = (

√
5 + 1)/(2

√
5)

√
5+1
2 with probability 1− p

(4.27)

[24, 41, 42]. Clearly this distribution satisfies the aforementioned requirements because

E(vk) =
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√
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E(v3k) =
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√
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Figures 4.12 - 4.15 illustrate the resultant histograms of parameter estimates from the wild

bootstrap withM=1000 applied to the 2008 Haskell study, the 2008 N01 study, the 2009 Haskell

study, and the 2009 N01 study, respectively. The vertical lines present in each subplot indicate

the original θ̂ values.
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Figure 4.12: Histograms of bootstrapped parameter estimates of α0 − α3 and β1 − β3 for the
Haskell genotype in 2008.
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Figure 4.13: Histograms of bootstrapped parameter estimates of α0 − α3 and β1 − β3 for the
N01 genotype in 2008.
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Figure 4.14: Histograms of bootstrapped parameter estimates of α0 − α3 and β1 − β3 for the
Haskell genotype in 2009.
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Figure 4.15: Histograms of bootstrapped parameter estimates of α0 − α3 and β1 − β3 for the
N01 genotype in 2009.

From the bootstrap simulations, there are M estimates of θ as illustrated in the previous

histograms. The percentiles of these histograms may be used to construct confidence intervals

for the original estimate θ̂ [27]. Since in these studies M = 1000, the vector of M estimates is

ordered and the 25th and 975th entry define the 95% confidence interval for each parameter.

Table 4.3 summarizes the 95% confidence intervals for each parameter for each of the four

studies.

The results of the bootstrap method may also be used to approximate the parameter co-

variance matrix using the relation

cov(θ̂) =
1

M − 1

M
∑

m=1

(θ̂m − θ̂boot)
T (θ̂m − θ̂boot) (4.28)

where

θ̂boot =
1

M

M
∑

m=1

θ̂m (4.29)

is the mean of all M bootstrapped parameter vector estimates [18]. Using the definition given

by (4.28) for the covariance matrix, the standard errors for each of each of the j = 1, . . . , p

estimated parameters are [30]
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SE(θ̂j) =
√

cov(θ̂)jj . (4.30)

In (4.11), the substitution of SE(θ̂j) for
√

Vjj yields our confidence intervals.

Recall that this equation defined confidence intervals for the estimated parameters as moti-

vated by asymptotic theory. The bootstrap method was chosen because of the matrix singularity

which rendered calculation of the covariance matrix via sensitivities based methods impossible.

However, since the covariance matrix may be estimated from the bootstrap method, the confi-

dence intervals as derived directly from the bootstrap method and as estimated with asymptotic

theory may be compared. The 95% confidence intervals for the estimated parameters computed

with the asymptotic theory method are summarized in Table 4.4.

Comparison of Tables 4.3 and 4.4 reveals that, in general, the confidence intervals derived

from the asymptotic methods summarized in (4.11) and (4.30) are similar in size yet slightly

positively shifted compared to those using the percentile method with the bootstrap simulation

results. In practice, the confidence intervals from the percentile method with the bootstrap

simulation results are likely more reliable. The asymptotic theory method inherently makes

a number of assumptions and approximations mainly with the estimation of the covariance

matrix and the assumption regarding the distribution choice of (4.11), while the percentile

method bypasses these assumptions.

Table 4.3: 95% confidence intervals derived from the wild bootstrap method using the percentile
method for each case.

2008 2009

Parameter Haskell N01 Haskell N01

α0 -1.6573 × 100 -1.5187 × 100 -3.7670 × 10−1 -3.4876 × 10−1

-1.4441 × 100 -1.3062 × 100 4.7696 × 10−2 7.6688 × 10−2

α1 8.3599 × 10−2 7.7591 × 10−2 2.5110 × 10−2 2.5257 × 10−2

9.2630 × 10−2 8.6427 × 10−2 4.4253 × 10−2 4.3850 × 10−2

α2 -1.0024 × 10−3 -9.2411 × 10−4 -4.3117 × 10−4 -4.3493 × 10−4

-8.8282 × 10−4 -8.0216 × 10−4 -1.6569 × 10−4 -1.7769 × 10−4

α3 2.6616 × 10−6 2.3810 × 10−6 1.1779 × 10−8 6.8845 × 10−8

3.1532 × 10−6 2.8748 × 10−6 1.1333 × 10−6 1.1425 × 10−6

β1 9.9378 × 102 8.8432 × 102 8.5196 × 102 8.1909 × 102

1.0444 × 103 9.2835 × 102 9.2745 × 102 8.9339 × 102

β2 -1.1524 × 102 -7.3537 × 101 -2.0646 × 101 -1.6948 × 101

-2.9177 × 101 -1.3917 × 101 -9.0897 × 100 -7.1306 × 100

β3 -3.9562 × 101 -4.0057 × 101 -2.0620 × 101 -1.9915 × 101

-2.8460 × 101 -2.6202 × 101 -1.4632 × 101 -1.3886 × 101

102



Table 4.4: 95% confidence intervals derived from (4.11) and (4.30) applying wild bootstrap
simulations to estimate covariance matrices for each case.

2008 2009

Parameter Haskell N01 Haskell N01

α0 -1.6662 × 100 -1.5274 × 100 -3.8401 × 10−1 -3.3513 × 10−1

-1.4542 × 100 -1.3114 × 100 5.1325 × 10−2 8.4589 × 10−2

α1 8.3842 × 10−2 7.7622 × 10−2 2.5264 × 10−2 2.4693 × 10−2

9.2801 × 10−2 8.6800 × 10−2 4.4669 × 10−2 4.3439 × 10−2

α2 -1.0039 × 10−3 -9.2707 × 10−4 -4.3536 × 10−4 -4.2627 × 10−4

-8.8341 × 10−4 -8.0420 × 10−4 -1.7001 × 10−4 -1.6906 × 10−4

α3 2.6749 × 10−6 2.3959 × 10−6 3.4382 × 10−8 4.4807 × 10−8

3.1626 × 10−6 2.8883 × 10−6 1.1317 × 10−6 1.1103 × 10−6

β1 9.9117 × 102 8.8349 × 102 8.4674 × 102 8.1372 × 102

1.0434 × 103 9.2895 × 102 9.2203 × 102 8.8739 × 102

β2 -9.7630 × 101 -6.4482 × 101 -1.9181 × 101 -1.5873 × 101

-1.1930 × 101 1.4992 × 100 -7.3786 × 100 -5.8689 × 100

β3 -3.9099 × 101 -3.9769 × 101 -2.0314 × 101 -1.9698 × 101

-2.8206 × 101 -2.5819 × 101 -1.4534 × 101 -1.3760 × 101

4.4 Confidence Intervals for Model Predictions

Figures 4.2, 4.4, 4.6, and 4.8 illustrate the model predictions as compared to mean data as

a function of date. The individual conductance data points exhibit significant scatter, as is

typical for any biological data set. Therefore, it is useful for a model to not only provide point

estimates, but also the associated confidence intervals for the model predictions.

Three different methodologies are explored to determine confidence intervals for the model

predictions. We begin in Section 4.4.1 by applying traditional asymptotic theory to establish

confidence intervals for the model predictions. In Section 4.4.2, confidence intervals are esti-

mated using Monte Carlo simulations. Finally, Section 4.4.3 details the bootstrap method to

ascertain confidence intervals for model predictions.
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4.4.1 Asymptotic Theory

Consider the gradient vector

∇g`(t, w2; θ) =













































∂g`(t,w2;θ)
∂α0

∂g`(t,w2;θ)
∂α1

∂g`(t,w2;θ)
∂α2

∂g`(t,w2;θ)
∂α3

∂g`(t,w2,θ)
∂β1

∂g`(t,w2,θ)
∂β2

∂g`(t,w2,θ)
∂β3













































(4.31)

whose definitions are explicitly given in (4.12) through (4.18). The (1 - α) confidence interval

for the conductance prediction can then be defined as

g`(t, w2; θ̂)± t(n− p;α/2)
√

∇T g`(t, w2; θ̂) cov(θ̂) ∇g`(t,w2 ; θ̂) (4.32)

which is commonly known as the delta method [30, 57]. The matrix cov(θ̂) is calculated as

indicated in (4.28). For the Haskell genotype in 2008,

cov(θ̂) =































3 · 10−3 −1 · 10−4 2 · 10−6 −6 · 10−9 −4 · 10−1 −7 · 10−2 −9 · 10−3

−1 · 10−4 5 · 10−6 −7 · 10−8 3 · 10−10 1 · 10−2 2 · 10−3 1 · 10−4

2 · 10−6 −7 · 10−8 9 · 10−10 −4 · 10−12 −2 · 10−4 −6 · 10−6 6 · 10−7

−6 · 10−9 3 · 10−10 −4 · 10−12 2 · 10−14 5 · 10−7 −9 · 10−9 −8 · 10−9

−4 · 10−1 1 · 10−2 −2 · 10−4 5 · 10−7 2 · 102 1 · 102 2 · 101

−7 · 10−2 2 · 10−3 −6 · 10−6 −9 · 10−9 1 · 102 5 · 102 6 · 101

−9 · 10−3 1 · 10−4 6 · 10−7 −8 · 10−9 2 · 101 6 · 101 8 · 100































,

for the N01 genotype in 2008,
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cov(θ̂) =































3 · 10−3 −1 · 10−4 2 · 10−6 −6 · 10−9 −4 · 10−1 −8 · 10−3 −7 · 10−3

−1 · 10−4 5 · 10−6 −7 · 10−8 3 · 10−10 1 · 10−2 −1 · 10−3 −8 · 10−5

2 · 10−6 −7 · 10−8 1 · 10−9 −4 · 10−12 −2 · 10−4 3 · 10−5 5 · 10−6

−6 · 10−9 3 · 10−10 −4 · 10−12 2 · 10−14 7 · 10−7 −2 · 10−7 −3 · 10−8

−4 · 10−1 1 · 10−2 −2 · 10−4 7 · 10−7 1 · 102 7 · 101 2 · 101

−8 · 10−3 −1 · 10−3 3 · 10−5 −2 · 10−7 7 · 101 3 · 102 6 · 101

−7 · 10−3 −8 · 10−5 5 · 10−6 −3 · 10−8 2 · 101 6 · 101 1 · 101































,

for the Haskell genotype in 2009,

cov(θ̂) =































1 · 10−2 −5 · 10−4 7 · 10−6 −3 · 10−8 −8 · 10−1 −4 · 10−2 −3 · 10−2

−5 · 10−4 2 · 10−5 −3 · 10−7 1 · 10−9 4 · 10−2 3 · 10−3 2 · 10−3

7 · 10−6 −3 · 10−7 5 · 10−9 −2 · 10−11 −5 · 10−4 −4 · 10−5 −3 · 10−5

−3 · 10−8 1 · 10−9 −2 · 10−11 8 · 10−14 2 · 10−6 2 · 10−7 1 · 10−7

−8 · 10−1 4 · 10−2 −5 · 10−4 2 · 10−6 4 · 102 4 · 101 2 · 101

−4 · 10−2 3 · 10−3 −4 · 10−5 2 · 10−7 4 · 101 9 · 100 4 · 100

−3 · 10−2 2 · 10−3 −3 · 10−5 1 · 10−7 2 · 101 4 · 100 2 · 100































,

and for the N01 genotype in 2009,

cov(θ̂) =































1 · 10−2 −5 · 10−4 7 · 10−6 −3 · 10−8 −4 · 10−1 9 · 10−3 9 · 10−4

−5 · 10−4 2 · 10−5 −3 · 10−7 1 · 10−9 2 · 10−2 −8 · 10−5 2 · 10−4

7 · 10−6 −3 · 10−7 4 · 10−9 −2 · 10−11 −3 · 10−4 −2 · 10−6 −4 · 10−6

−3 · 10−8 1 · 10−9 −2 · 10−11 7 · 10−14 1 · 10−6 1 · 10−8 2 · 10−8

−4 · 10−1 2 · 10−2 −3 · 10−4 1 · 10−6 4 · 102 4 · 101 2 · 101

9 · 10−3 −8 · 10−5 −2 · 10−6 1 · 10−8 4 · 101 6 · 100 4 · 100

9 · 10−4 2 · 10−4 −4 · 10−6 2 · 10−8 2 · 101 4 · 100 2 · 100































.

Table 4.5 summarizes the percentages of data points covered by the estimated 95% con-

fidence regions computed with (4.32) for each respective case. Figures 4.16-4.19 graphically

depict each of the four studies for the Haskell genotype in 2008, the N01 genotype in 2008, the

Haskell genotype in 2009, and the N01 genotype in 2009, respectively. Although the percentages

of coverage indicated in the table seem very low, because of the scatter of the data as seen in

Figures 3.23-3.34, the size of the confidence regions as illustrated in these figures is reasonable.
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Table 4.5: Percentage of data points covered by estimated 95% confidence regions computed
using (4.32).

Study year Genotype Dry Medium Wet Open

2008 Haskell 13.85 13.18 11.15 9.12

2008 N01 10.81 13.85 14.19 13.18

2009 Haskell 13.53 13.33 10.88 14.11

2009 N01 11.89 12.50 14.58 15.57
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Figure 4.16: 95% confidence regions computed with (4.32) (dotted lines) compared to mean
data by date (solid lines) for the Haskell genotype in 2008.
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Figure 4.17: 95% confidence regions computed with (4.32) (dotted lines) compared to mean
data by date (solid lines) for the N01 genotype in 2008.
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Figure 4.18: 95% confidence regions computed with (4.32) (dotted lines) compared to mean
data by date (solid lines) for the Haskell genotype in 2009.
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Figure 4.19: 95% confidence regions computed with (4.32) (dotted lines) compared to mean
data by date (solid lines) for the N01 genotype in 2009.

4.4.2 Monte Carlo Method

A different method to estimate confidence intervals for model predictions involves Monte Carlo

simulations. This method utilizes the estimated parameter vectors summarized in Table 4.2.

Under the assumption that these estimated parameters originate from a normal distribution

where the mean is the estimated parameter vector θ̂ and the covariance amongst parame-

ters is quantified by the estimated covariance matrices cov(θ̂), 1000 parameter vectors θ̂m for

m = 1, . . . , 1000 are randomly chosen. Then, the associated model predictions g`(t, w2; θ̂m) are

calculated. Hence, for each ek, k = 1, . . . , n, there are 1000 model predictions g`(ek; θ̂m). These

1000 predictions are sorted in ascending order and, using the percentile method to establish

the 95% confidence region, the 25th and 975th predictions are selected as the lower and upper

bounds, respectively.

Occasionally the randomly selected vectors were infeasible. In particular, we define β2 < 0

and β3 < 0. If by chance the random selection procedure produced a parameter vector which

did not meet these criterion, a new vector was randomly selected until the criterion were met.

Also, occasionally a randomly selected parameter vector would result in a negative conductance

prediction g`, which is also infeasible. Upon this event, a new vector was randomly selected

until a positive prediction g` was achieved.
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Table 4.6 summarizes the percentages of data points covered by the estimated 95% con-

fidence regions computed by this Monte Carlo method for each respective case. Figures 4.20

through 4.23 are analagous to Figures 4.16 - 4.19 of the previous section. Notice the 95%

confidence regions predicted via this Monte Carlo method are larger than those derived via

asymptotic theory, as indicated by the larger percentage of data points covered by the esti-

mated confidence region. For example, the confidence region for the “dry” experiment for the

Haskell genotype in 2006, as shown in Figure 4.20, indicates that at soil moisture of 0.12 m3/m3

and plant age of 61 days, the confidence region is approximately 330 mmol m−2 s−1 to 660

mmol m−2 s−1. For a scientist, this information is fairly useless because of the large range.

The failure of this method is likely due to the assumption of the normal distribution of the

estimated parameters which the histograms in Figures 4.12 through 4.15 illustrate not to be

true in many cases.

Remark. The reader should note that θ̂m defined for this Monte Carlo method is different

from the θ̂m defined in (4.23) for the bootstrap method.

Table 4.6: Percentage of data points covered by estimated 95% confidence regions computed
with Monte Carlo methods.

Study year Genotype Dry Medium Wet Open

2008 Haskell 27.70 13.51 9.12 7.43

2008 N01 26.69 15.54 12.16 8.78

2009 Haskell 17.62 10.42 8.47 12.86

2009 N01 16.80 13.75 13.36 13.12
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Figure 4.20: 95% confidence regions computed with Monte Carlo methods (dotted lines) com-
pared to mean data by date (solid lines) for the Haskell genotype in 2008.
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Figure 4.21: 95% confidence regions computed with Monte Carlo methods (dotted lines) com-
pared to mean data by date (solid lines) for the N01 genotype in 2008.
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Figure 4.22: 95% confidence regions computed with Monte Carlo methods (dotted lines) com-
pared to mean data by date (solid lines) for the Haskell genotype in 2009.
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Figure 4.23: 95% confidence regions computed with Monte Carlo methods (dotted lines) com-
pared to mean data by date (solid lines) for the N01 genotype in 2009.
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4.4.3 Bootstrap Method

As described in (4.23), applying the wild bootstrap method yields the estimated parameter

vectors θ̂m for m = 1, . . . , 1000. Using these estimated parameter vectors, the associated model

predictions g`(t, w2; θ̂m) can be calculated. Hence, for each ek, k = 1, . . . , n, there are 1000

model predictions g`(ek; θ̂
m). These 1000 predictions are sorted in ascending order, and using

the percentile method to establish the 95% confidence region for model predictions, the 25th

and 975th predictions are selected as the lower and upper bounds, respectively.

Table 4.7 summarizes the percentages of data points covered by the estimated 95% con-

fidence regions computed by the percentile method with bootstrap simulations. Figures 4.24

through 4.27 are analagous to Figures 4.16-4.19 and Figures 4.20-4.23 for the asymptotic and

Monte Carlo methods, respectively. Although the percentages of coverage indicated in the table

seem very low, because of the scatter of the data as seen in Figures 3.23 - 3.34, the size of the

confidence regions as illustrated in Figures 4.24 through 4.27 is reasonable.

Although the range of these confidence regions is similar to those derived by asymptotic

theory, recall that the delta method relies on the assumption for the distribution of model

predictions; see (4.32). The confidence regions determined by the Monte Carlo method have

the tendency to be overestimated due to violation of the normality assumption for estimated

parameter distributions. Therefore, it is our opinion that of the three methods presented for

estimating 95% confidence regions for model predictions, the bootstrap method is the most

reliable. Coverage of data may be improved with continued model improvement as detailed in

Chapter 5.

Table 4.7: Percentage of data points covered by estimated 95% confidence regions computed
with percentile methods and bootstrap simulations.

Study year Genotype Dry Medium Wet Open

2008 Haskell 13.51 9.80 9.46 7.43

2008 N01 12.16 11.15 11.49 8.78

2009 Haskell 13.93 9.58 7.66 11.62

2009 N01 14.34 11.67 11.34 11.48
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Figure 4.24: 95% confidence regions computed with percentile methods and bootstrap simu-
lations (dotted lines) compared to mean data by date (solid lines) for the Haskell genotype in
2008.
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Figure 4.25: 95% confidence regions computed with percentile methods and bootstrap sim-
ulations (dotted lines) compared to mean data by date (solid lines) for the N01 genotype in
2008.
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Figure 4.26: 95% confidence regions computed with percentile methods and bootstrap simu-
lations (dotted lines) compared to mean data by date (solid lines) for the Haskell genotype in
2009.
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Figure 4.27: 95% confidence regions computed with percentile methods and bootstrap sim-
ulations (dotted lines) compared to mean data by date (solid lines) for the N01 genotype in
2009.
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4.5 Comparison of Proposed Model to Niyogi’s Model

As summarized in Chapter 3, the model presented by Niyogi et al. [48] did not predict the total

leaf conductance well. In this chapter, a new model is introduced that characterizes the con-

ductance response to plant development and soil moisture conditions. The differences between

these two models are vast. Niyogi’s model is a complicated system of equations, each describing

a biological process involved in the coupled photosynthesis-conductance relationship. There are

a number of model parameters and inputs required for simulation. The model presented here

is very simple and includes only one equation incorporating soil moisture and plant age inputs.

The comparison of the formulations of these two models exhibits a common dilemma faced by

modelers. Many times the modeler must choose between a more complex highly-parameterized

model depicting processes in a physical way as a opposed to a simple phenomenological formu-

lation which is easy for scientists to implement and apply. By introducing the simple model we

abide by Ockham’s razor, the principle that entities must not be multiplied beyond necessity.

Visual comparison of Figures 3.35 - 3.38 depicting accuracy of Niyogi’s model to Figures 4.1 -

4.8 implies that the current model is likely more representative of these data sets. For statistical

rigor, Akaike’s information criterion (AIC) is used to select the best model. The AIC for each

model and case is calculated using the relation

AIC = 2 · npar + ndata

(

loge

(

sse

ndata

))

(4.33)

where npar is the number of estimated parameters, ndata is the number of data points used

to calculate the SSE value, and SSE is calculated according to (4.5) [1]. These results are

summarized in Table 4.8 where for every case the AIC test chooses the simpler model introduced

in (4.1) over Niyogi’s model.

Table 4.8: AIC model selection test results.

2008 2009

Model Value Haskell N01 Haskell N01

Niyogi

sse 5.3540 × 108 4.5684 × 108 3.6155 × 108 3.3720 × 108

ndata 1116 1116 935 937
npar 0 0 0 0
AIC 1.4598 × 104 1.4421 × 104 1.2029 × 104 1.1988 × 104

Matthews

sse 3.9567 × 107 3.0781 × 107 2.2497 × 107 1.9445 × 107

ndata 1184 1184 973 975
npar 7 7 7 7
AIC 1.2348 × 104 1.2050 × 104 9.7912 × 103 9.6671 × 103

Model choice Matthews Matthews Matthews Matthews
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Chapter 5

Conclusions and Future Work

Potential impacts of climate change include periods of drought as well as the greater possibility

of extreme precipitation events [44]. Because of the importance of correctly characterizing

photosynthetic processes in the context of climate modeling, it is imperative that the response

of stomatal conductance to drought and extreme precipitation events be well understood and

applicably modeled.

In Chapter 2 an analysis of existing work was performed. Literature review and sensitivity

analysis of a particular recent model [48] was presented. The chapter explicitly presents the

parameters, equations, and solution algorithm for the model as applied to both C3 and C4

plants. Sensitivity analysis reveals that in C3 plants, the top five most sensitive parameters

are: Ts, b, S2, f(w2), and hs. The top five most sensitive parameters for C4 plants are: S2,

f(w2), Ts, S4, and β2. This analysis raises concerns about the practicality of application of this

model due to the inability to arrive at feasible solutions under a variety of typical environmental

conditions.

Chapter 3 describes a novel data set containing conductance measurements of two genotypes

of soybean under different water stress conditions. Environmental data collected simultaneously

with conductance allowed testing of the model analyzed in Chapter 2 under varying soil moisture

conditions. In general this model was found to underpredict conductance.

Under the hypothesis that the inadequacies of the model predictions for this data set are

rooted in the absence or mischaracterization of two critical phenomenon (plant development

and soil moisture conditions), a new model is presented. Model calibration and subsequent

performance is summarized in Chapter 4. Statistical testing confirms that this model is superior

in predicting conductance values under varying water stress conditions to that presented in [48].

Multiple methods, including the wild bootstrap, are explored to generate confidence intervals

for the new model’s parameters and predictions.
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This work can be extended in several ways: model improvement, additional experimentation,

and further exploration of statistical methods for confidence interval estimation.

Although the model presented herein describes the data set fairly well, improvements to a

model are always possible. One suggestion to be explored in future work is the inclusion of

an additional dependency on ambient temperature. Including the dependency on temperature

may alleviate the difference between parameter values amongst growing seasons. As shown in

Figures 4.9 and 4.10, the plant age and soil moisture dependencies were similar by growing

season, when it would have been expected to see stronger similarities by genotype.

A suggestion for future experimentation is to collect coupled photosynthetic rate data along

with conductance. The interdependency of these two processes is well documented, and it would

be interesting to better understand their relationship under varying water stress conditions.

This extended data set would allow for more complete testing of the model by Niyogi et al.,

as this model was only tested for conductance prediction. Identifying the relationship between

conductance and photosynthetic rate under different watering scenarios may suggest a soil

moisture dependency in the Ball-Berry formulation which could improve the predictive power of

the Niyogi et al. model. Additionally, eliciting the relationship of conductance to photosynthesis

would enable extension of the model presented herein to also predict photosynthetic rates.

As applied to the model presented in Chapter 4, bootstrap methods to estimate confidence

intervals appear to be very promising. This field of research in the statistical community is

still very active and novel methods are still being discovered. Further exploration of the many

flavors of bootstrap methods available is warranted.
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