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BURDIS, JOSEPH MICHAEL. Object-Image Correspondence of Under Projections.
(Under the direction of Irina A. Kogan.)

In this thesis we consider a problem of object-image correspondence under parallel

and central projections from a 3-dimensional space to a plane. The motivation comes

from an important problem in computer vision – determining the correspondence between

an object and its image obtained by a camera with unknown position and parameters.

Defining features of objects and images can often be represented by curves and by finite

ordered sets of points. Therefore. we concentrate on providing projection criteria for

object-image pairs for curves and finite ordered sets of points.

For parallel projections, a solution to the projection problem for finite ordered sets

of points was presented in [2, 1]. We review this solution and we provide a comparison

with a novel solution presented in this thesis. An algorithmic solution for the projection

problem for curves under parallel and central projection with a large number of unknown

parameter appears to be previously unknown.

The main result of the thesis reduces the projection problem under parallel and central

projections to a certain variation of the equivalence problem of planar objects under

affine and projective groups of transformations. The group-equivalence problem can be



solved by adapting known techniques from differential and algebraic invariant theory.

This leads to an algorithmic solution to the projection problem for curves, and for finite

ordered sets of points, under either parallel or central projections. We implemented this

algorithm using the computer algebra system Maple. We describe this implementation,

provide some examples and discuss possible further improvements of its efficiency. The

method presented here has a potential of being developed into a practically efficient

general algorithm for establishing object-image correspondence between real-life objects

and their images.
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Chapter 1

Introduction

In this thesis we introduce criteria and propose algorithms to decide correspondence be-

tween objects in 3-dimensional space and planar images. Areas of computer vision in

which these algorithms may prove useful include scene recognition, image reconstruc-

tion, motion analysis, and object recognition. In fact, the fundamental issue in object

recognition is to efficiently decide correspondence between an object and an image [17,

pp 254].

In this thesis, we consider objects and images represented by ordered sets of points,

and also consider objects and images represented by curves. Using an ordered set of

points is useful when an object has identifiable feature points [2, 1]. For example, an

airplane’s feature points include the front nose, wing tips, and various tail points. Using

curves to represent objects and images is useful when representing borders of surfaces

and for medical imaging applications. For example, determining when 3-D imaging of

vessels (MRI or CT) corresponds to 2-D X-ray imaging can be used to make a correct

diagnosis, plan therapy, and control therapy [10].

To provide a solution to the projection problem for curves and the projection prob-
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Chapter 1. Introduction

lem for finite ordered sets of points, we use a combination of algebraic and differential

geometry techniques. These techniques include group actions, differential and algebraic

invariants, computer algebra algorithms, and other methods for differential and algebraic

geometry.

Since the defining features of many objects can be represented by curves, obtaining

an algorithmic solution for the projection problem for curves is essential, but appears to

be unknown in the case of projections with a large number of unknowns. We address the

projection problem on curves and finite ordered sets of points for two classes of cameras:

finite projective cameras and affine cameras.

The set of finite projective cameras (also called finite cameras) has 11 parameters and

corresponds to the set of central projections. The set of affine cameras has 8 parameters

and corresponds to the set of parallel projections. As discussed in Section 2.2, an affine

camera can be obtained as a limit of a finite camera, as the camera center approaches

infinity along the perpendicular from the camera center to the image plane. See [14]

for more details on camera projections and the related geometry. An affine camera has

fewer parameters and provides a good approximation of a finite camera when the distance

between the camera and the object is significantly greater than the object depth [14, 2].

The projection problem for curves is formulated as follows:

Problem 1.0.1. Given a smooth curve CΓ in ℝ3 and a smooth curve C in ℝ2, does

there exist a finite or an affine camera that maps CΓ to C?

Previous works on related problems include [10], where a solution to Problem 1.0.1 is

given for finite cameras with known internal parameters, so the number of free parameters

is reduced from 11 to 6 parameters, which correspond to the position and orientation of

the camera. The method presented in [10] also uses an additional assumption that a

2



Chapter 1. Introduction

planar curve, C, has at least two points, whose tangent lines coincide. In the current

paper we assume that the internal parameters of the camera are unknown. A solution of

the projection problem for finite ordered sets of points under affine cameras appeared in

[2, 1] and served as an inspiration for this work.

In Chapter 2, after reviewing the geometry of finite and affine cameras, we define

actions of direct products of affine and projective groups on the sets of cameras. We use

these actions to reduce Problem 1.0.1 for finite and affine cameras to a certain variation

of the equivalence problem for planar curves under projective and affine transformations,

respectively. This leads to one of the main results of this thesis, projection criteria for

curves, formulated in Section 4.2. In Section 3.1, we review a solution for the group-

equivalence problem, based on differential signature construction [5]. In Section 4.3,

we combine our projection criteria and the differential signature construction in order

to obtain an algorithm for solving the projection problem. To demonstrate how the

algorithms are used we give examples in Section 4.4.

In Chapter 5, we adapt the solution of Problem 1.0.1 to produce a solution to the

projection problem for finite ordered sets of points. The projection problem for points is

formulated as follows:

Problem 1.0.2. Given an ordered set Z = (z1, . . . , zr) of r points in ℝ3 and an ordered

set X = (x1, . . . ,xr) of r points in ℝ2, does there exist a finite or an affine camera taking

Z to X?

In [2, 1] the authors present a solution to Problem 1.0.2 for affine projections, without

having to find a projection explicitly. In Chapter 5, we adapt the projection criteria to

obtain an algorithm for solving Problem 1.0.2 for both finite and affine projections, and

provide examples. Our solution reduces the projection problem for ordered sets of points

3



Chapter 1. Introduction

in ℝ3 to ℝ2 to an equivalence problem of ordered sets of points in ℝ2. In Section 5.5, we

compare the complexity of this algorithm to that found in [2, 1].

In Chapter 6, we discuss possible variations of our algorithm based on alternative

solutions of the group-equivalence problem, as well as possible adaptations to curves pre-

sented by samples of discrete points whose coordinates may be known only approximately.

A joint work with Irina Kogan, [4], has served as a foundation of this thesis.

1.1 Projective Space

To define projective space, we define the following equivalence relation ∼ on ℝn ∖ {0},

(x′1, . . . , x
′
n) ∼ (x1, . . . , xn)

if there ∃�∕=0 ∈ ℝ such that (x′1, . . . , x
′
n) = (�x1, . . . , � xn). [7].

Definition 1.1.1. (n)-dimensional projective space, denoted ℙn, is the set of equivalence

classes of ∼ on ℝn+1 ∖ {0}. Therefore,

ℙn = (ℝn+1 ∖ {0})/ ∼ .

Each non-zero point in ℝn+1 defines a point in ℙn. Also, there are many ways to

embed ℝn in ℙn. For the purpose of this thesis we will use the following embedding

(x1, . . . , xn)→ {(�x1, . . . , � xn, � )∣�∕=0 ∈ ℝ} (1.1)

and make use of the following notation.

4



Chapter 1. Introduction

Notation 1.1.2. Square brackets around matrices (and, in particular, vectors) will be

used to denote an equivalence class with respect to multiplication of a matrix by a nonzero

scalar. Multiplication of equivalence classes of matrices A and B of appropriate sizes is

well-defined by [A] [B] := [AB].

With this notation, a point (x, y) ∈ ℝ2 corresponds to a point [x, y, 1] = [�x, �y, �] ∈

ℙ2 for all � ∕= 0, and a point (z1, z2, z3) ∈ ℝ3 corresponds to [z1, z2, z3, 1] ∈ ℙ3. We will

refer to the points in ℙn whose last homogeneous coordinate is zero as points at infinity.

Embedding (1.1) provides a correspondence between curves in ℝn and curves in ℙn. We

will use the following notation.

Notation 1.1.3. Let  : IΓ → ℝn, where I ⊂ ℝ is an interval, be a smooth parametric

curve. Its image in ℝn will be denoted by C := {(t)∣t ∈ I}.

The corresponding set of points in ℙn (represented in homogeneous coordinates as

column (n + 1)-vectors) will be denoted by [C]. For example, if (t) = (x(t), y(t)) for

t ∈ I, then [C] := { [x(t), y(t), 1]tr∣ t ∈ I} ⊂ ℙ2.

If [P ] is a map from ℙn to ℙm then by [P ][C] we denote the image of the set [C]

under this map.

1.1.1 The Plüker Embedding

In this section, we introduce Grassmannians and the Plüker embedding which will be

used in Section 5.5 to review the work in [2, 1]. The Plüker embedding is not used for

the main results of this thesis, so it is not discussed in detail here. For more details see

[30].

Definition 1.1.4. The set of all m-dimensional subspaces of ℝn is called the Grassman-

nian, denoted Grass(m,n).
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Chapter 1. Introduction

Let
⋀mℝn be the m-th skew symmetric tensor power of ℝn. Then,

⋀mℝn is a

linear space isomorphic to ℝN , where N = Cn
m. Let ℙ (

⋀mℝn) denote the corresponding

projective space of dimension Cn
m − 1.

Definition 1.1.5. The Plüker embedding is a map from Grassmanian space to projective

space defined by

Grass(m,n) → ℙ

(
m⋀

ℝn

)
span{v1, ⋅ ⋅ ⋅ , vm} 7→ v1 ∧ ⋅ ⋅ ⋅ ∧ vm (1.2)

The image of the Plücker embedding is a projective variety. The vanishing ideal is

generated by a system of quadratic polynomials known as the Plücker relation.

Proposition 1.1.6. Let V,W ⊂ ℝr be subspaces with dim(V ) = l < dim(W ) = m. Then

V ⊂ W if and only if the relative system of Plücker relation polynomials vanish.

1.2 Geometric group actions on ℝn and ℙn

Since group actions and, in particular, actions of the affine and projective groups play a

crucial role in our construction, we review the relevant definitions:

Definition 1.2.1. An action of a group G on a set S is a map Φ: G × S → S that

satisfies the following two properties:

1. Φ(e, s) = s, ∀s ∈ S, where e is the identity of the group.

2. Φ(g1,Φ(g2, s)) = Φ(g1 g2, s), ∀ s ∈ S and ∀ g1, g2 ∈ G.

For g ∈ G and s ∈ S we sometimes write Φ(g, s) = g s.

6



Chapter 1. Introduction

Definition 1.2.2. For a fixed element s ∈ S the set Os = {g ⋅ s∣g ∈ G} ⊂ S is called the

orbit of s.

Definition 1.2.3. An action is called transitive if for all s1, s2 ∈ S there exists g ∈ G

such that s1 = g s2.

Definition 1.2.4. For a fixed element s ∈ S the set Gs = {g ∈ G∣gs = s} ⊂ G is called

the stabilizer of s.

Definition 1.2.5. Given an action of G on S, the global isotropy group,

G∗S = {g ∈ G∣g ⋅ s = s for all s ∈ S} (1.3)

is the set consisting of the group elements that fix all members of S.

It can be shown that a stabilizer, Gs, and the global isotropy group G∗S are subgroups

of G. In fact, G∗S is a normal subgroup.

Definition 1.2.6. A group acts effectively if G∗S = {e}.

If the group does not act effectively, i.e. G∗S ∕= {e}, one can consider the equivalent

action on G/G∗S.

Definition 1.2.7. A group acts freely if every stabilizer subgroup is trivial.

Definition 1.2.8. The projective group, PGℒ(n+ 1), is a quotient of the general linear

group GL(n+1), consisting of (n+1)×(n+1) non-singular matrices, by a 1-dimensional

abelian subgroup �I, where � ∕= 0 ∈ ℝ and I is the identity matrix. Elements of PGℒ(n+

1) are equivalence classes [B] = [�B], where � ∕= 0 and B ∈ GL(n+ 1).
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Chapter 1. Introduction

The affine group A(n) is a subgroup of PGℒ(n + 1) whose elements [B] have a rep-

resentative B ∈ GL(n+ 1) whose last row is (0, . . . , 0, 1).

The special affine group SA(n) is a subgroup of A(n) whose elements [B] have a

representative B ∈ GL(n+ 1) with determinant 1 and the last row equal to (0, . . . , 0, 1).

In homogeneous coordinates the standard action of the projective group PGℒ(n+ 1)

on ℙn is defined by:

Φ([B], [z1, . . . , zn, z0]tr) = [B] [z1, . . . , zn, z0]tr. (1.4)

The action (1.4) induces an almost everywhere defined linear-fractional action on ℝn. In

particular, for n = 2, [B] ∈ PGℒ(3) we have

(x, y)→
(
b11 x+ b12 y + b13

b31 x+ b32 y + b33

,
b21 x+ b22 y + b23

b31 x+ b32 y + b33

)
. (1.5)

The restriction of (1.4) to A(n) induces an action on ℝn consisting of compositions

of linear transformations and translations. In particular, for n = 2 and [B] ∈ A(2)

represented by a matrix B whose last row is (0, 0, 0, 1),

(x, y)→ (b11 x+ b12 y + b13, b21 x+ b22 y + b23) . (1.6)

8



Chapter 2

Cameras

This chapter discusses the geometry of pinhole camera models, and, in particular, how

finite and affine cameras are modeled by central and parallel projections respectively.

For real parameters pij, i = 1 . . . 3, j = 1 . . . 4, a generic projection maps a point

(z1, z2, z3) ∈ ℝ3 to a point in the image plane with coordinates

(x, y) =

(
p11 z1 + p12 z2 + p13 z3 + p14

p31 z1 + p32 z2 + p33 z3 + p34
,
p21 z1 + p22 z2 + p23 z3 + p24

p31 z1 + p32 z2 + p33 z3 + p34

)
(2.1)

A convenient matrix representation of this map is obtained by embedding ℝn into projec-

tive space ℙn and utilizing homogeneous coordinates on ℙn; the square bracket notation

was discussed in 1.1. In homogeneous coordinates, projection (2.1) is given by

[x, y , 1]tr = [P ] [z1, z2, z3, 1]tr, wℎere [P ] =

⎡⎢⎢⎢⎢⎣
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

⎤⎥⎥⎥⎥⎦ (2.2)

is a 3× 4 matrix of rank 3.
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Chapter 2. Cameras

Figure 2.1: Pinhole camera [20].

2.1 Finite cameras

A projection is called finite if its center is not at infinity. This corresponds to P having

a non-singular left 3 × 3 submatrix. Finite projections represent the action of taking a

picture with a pinhole camera.

Let (z1, z2, z3) be coordinates in ℝ3, relative to an orthonormal coordinate basis, such

that the camera is located at the origin on ℝ3, and the image plane is passing through

the point P = (0, 0, 1) perpendicular to the z3-axis. Assume the coordinate system on

the image plane is provided by the first two coordinate functions on ℝ3. We call the

coordinates on the image plane the x-axis and y-axis. This model corresponds to taking

a picture in the direction of the z3 axis. Then, a point (z1, z2, z3), such that z3 ∕= 0, is

projected to the point

(x, y) =

(
z1

z3

,
z2

z3

)
. (2.3)

Projection (2.3) models the simple pinhole camera illustrated in Figure 2.1 and is a

central projection.

Assume the image plane is at some distance f , called the focal length, from the camera

center. Figure 2.2 illustrates how this camera projection works in the z3 z2-plane. The

camera center is at the origin, C = (0, 0, 0), and the image plane is at point P = (0, 0, f)

10



Chapter 2. Cameras

Figure 2.2: z3 z2-plane of pinhole camera model.

where f is the focal length. Here a point (z1, z2, z3), such that z3 ∕= 0, is projected to a

point

(x, y) =

(
f z1

z3

,
f z2

z3

)
.

Or, in homogeneous coordinates,

⎡⎢⎢⎢⎢⎣
f z1

f z2

z3

⎤⎥⎥⎥⎥⎦ = [K]

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
wℎere K =

⎛⎜⎜⎜⎜⎝
f 0 0

0 f 0

0 0 1

⎞⎟⎟⎟⎟⎠ . (2.4)

In (2.4), K represents the internal parameters of the camera. In general, we allow for

scaling, translation, and skew of the axes on the image plane, and view these changes

as internal features of the camera. This creates a total of 5 degrees of freedom on the

11
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internal parameters of the camera,

K =

⎛⎜⎜⎜⎜⎝
scalex skew t1

0 scaley t2

0 0 1

⎞⎟⎟⎟⎟⎠ . (2.5)

The focal length, or distance from the camera center to the image plane, is accounted

for with the scaling parameters. In general, a projection in homogeneous coordinates by

a general camera is decomposed into a product of the following linear maps

[P ] = [K][Rz3 ] [Rz1 ] [Rz2 ]

⎡⎢⎢⎢⎢⎣
1 0 0 −c1

0 1 0 −c2

0 0 1 −c3

⎤⎥⎥⎥⎥⎦ , (2.6)

where Rz1 , Rz2 , and Rz3 are rotations about the z1, z2, and z3 axis. In (2.6) matrix

K, with 5 parameters, represents the internal properties of the camera. The rotation

matrix, Rz3 , with 1 parameter, represents orientation of the camera (vertical, horizontal,

or other spin of the camera). Two rotation matrices, Rz1 and Rz2 , represent the possible

directions the camera could point; two degrees of freedom. The last matrix describes the

camera center location, C = (c1, c2, c3), that could be anywhere in ℝ3. To summarize,

the projection has 11 degrees of freedom, 5 from internal parameters and 6 corresponding

to the group of rigid motions, SE(3), in ℝ3.

An alternate interpretation arises from the fact that every element in GL(2) can be

written as a product of an invertible upper triangular matrix and an orthogonal matrix,

GL(2) = {Invertable Upper Triangular} × SO(2). Therefore, the set of all matrices of

the form, {K Rz3}, is equal to A(2). This leads to interpreting Equation 2.6 as moving

12
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the camera center to the origin, choosing the direction to take the picture, and applying

an affine change of coordinates on the image plane.

Any 3 × 4 matrix, whose left 3 × 3 minor is nonzero, can be decomposed into the

product (2.6). This leads to the following definition for a finite projection.

Definition 2.1.1. A finite projection is a rank 3 linear map from ℙ3 to ℙ2 that has a

representation given by

[Pf ] =

⎡⎢⎢⎢⎢⎣
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

⎤⎥⎥⎥⎥⎦ , wℎere det

⎛⎜⎜⎜⎜⎝
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎞⎟⎟⎟⎟⎠ ∕= 0. (2.7)

The set of all finite projections will be denoted, ℱP . In this thesis, it will be important

to refer to the most basic finite projection, so we make the following definition.

Definition 2.1.2. A projection represented by the matrix,

P 0
f :=

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎦ (2.8)

is called the standard finite projection.

In homogeneous coordinates, the pinhole camera projection in (2.3) is represented by

the standard finite projection. The term finite is used because the center of the camera

corresponds to a finite point of the projective space.

13



Chapter 2. Cameras

2.2 Affine cameras

On the contrary to finite, an infinite camera has its center at an infinite point, [a, b, c, 0],

of ℙ3, and, for reasons discussed in this section, the left 3× 3 submatrix of P is singular.

An infinite camera is called affine when the preimage of the line at infinity in ℙ2 is the

plane at infinity in ℙ3. In this case, [P ] is represented by a matrix whose last row is

(0, 0, 0, 1).

An affine camera can be obtained as a limit of the finite camera, when its center

moves to infinity and the image is scaled by the corresponding factor. In the projection

decomposition, (2.6), let R := Rz3 Rz1 Rz2 . Define the principal plane to be the plane

through the camera center that is parallel to the image plane. We cannot draw a line from

the camera center to these points through the image plane, so the principal plane consists

of the set of points mapped to the line at infinity of the image plane. In particular, the

principal plane consists of all points that satisfy [P ] [z1, z2, z3, 1]tr = [x, y, 0]tr. Notice

the third row of P is perpendicular to the principal plane. Consequently, the third row

of P is perpendicular to the image plane. This tells us that the picture is taken in the

direction given by the third row of P , or equivalently, the third row of R. So using (2.6),

moving the camera center in this direction corresponds to the family of projections

[Pt] = [K]

⎡⎢⎢⎢⎢⎣
r1∗ −r1∗ ⋅ (C + t rtr

3∗)

r2∗ −r2∗ ⋅ (C + t rtr
3∗)

r3∗ −r3∗ ⋅ (C + t rtr
3∗)

⎤⎥⎥⎥⎥⎦ (2.9)

where ri∗ is the row vector representing the i-th row of R, and C = (c1, c2, c3) is the

camera center. Note that ri∗ rj∗ = �i j. Define dt = −r3∗ ⋅ C+ t and scale the image plane

by a factor of dt
d0

, where d0 = −r3∗ ⋅ C, then

14
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[P̃t] =

⎡⎢⎢⎢⎢⎣
dt
d0

0 0

0 dt
d0

0

0 0 1

⎤⎥⎥⎥⎥⎦ [K]

⎡⎢⎢⎢⎢⎣
r1∗ −r1∗ ⋅ Ctr

r2∗ −r2∗ ⋅ Ctr

r3∗ dt

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
dt
d0

0 0

0 dt
d0

0

0 0 dt
d0

⎤⎥⎥⎥⎥⎦ [K]

⎡⎢⎢⎢⎢⎣
r1∗ −r1∗ ⋅ Ctr

r2∗ −r2∗ ⋅ Ctr

d0
dt

r3∗ dt
d0
dt

⎤⎥⎥⎥⎥⎦ .
(2.10)

The left most matrix is a member of the identity equivalence class, so,

[P̃t] = [K]

⎡⎢⎢⎢⎢⎣
r1∗ −r1∗ ⋅ Ctr

r2∗ −r2∗ ⋅ Ctr

d0
dt

r3∗ d0

⎤⎥⎥⎥⎥⎦ . (2.11)

As t→∞, the limiting result is the projection,

[P∞] = [K]

⎡⎢⎢⎢⎢⎣
r1∗ −r1∗ ⋅ Ctr

r2∗ −r2∗ ⋅ Ctr

0 d0

⎤⎥⎥⎥⎥⎦ , (2.12)

and this brings us to our definition of the affine projection.

Definition 2.2.1. An affine projection (also referred to as a generalized weak perspective

projection) is a rank 3 linear map from ℙ3 to ℙ2 that has a representation given by

[Pa] =

⎡⎢⎢⎢⎢⎣
p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (2.13)

In this thesis, it will be important to refer to the most basic affine projection, so we

make the following definition.

15
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Definition 2.2.2. The standard affine projection is the orthogonal projection on the

z1z2-plane. It is represented by the matrix

P 0
a :=

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (2.14)

The sets of finite and affine projections are disjoint. Projections that are not included

in these two classes are infinite non-affine projections. These are not frequently used in

computer vision and are not considered in this thesis.

2.3 Group actions on cameras

2.3.1 Action on finite cameras

A straightforward exercise in matrix multiplication shows that the map Φ : (PGℒ(3)×A(3))×

ℱP → ℱP defined by

Φ
(
([A], [B]), [P ]) = [A] [P ] [B−1] (2.15)

for [P ] ∈ ℱP and ([A], [B]) ∈ PGℒ(3)×A(3), satisfies Definition 1.2.1 of a group-action.

Proposition 2.3.1. The action of PGℒ(3)×A(3) on ℱP, defined by (2.15) is transitive.

Proof. According to Definition 1.2.3 we need to prove that for all [P1], [P2] ∈ ℱP there

exists ([A], [B]) ∈ PGℒ(3)×A(3) such that [A][P1][B−1] = [P2]. It is sufficient to prove

that for all [P ] ∈ ℱP there exists ([A], [B]) ∈ PGℒ(3)×A(3) such that [P ] = [A] [P 0
f ] [B],

where [P 0
f ] is the standard finite projection (2.8). A finite projection is given by a 3× 4

matrix P = (pij)
i=1...3
j=1...4 whose left 3× 3 submatrix is non-singular. Therefore there exist
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c1, c2, c3 ∈ ℝ such that p∗4 = c1 p∗2 + c2 p∗2 + c3 p∗3, where p∗j denotes the j-th column

of the matrix P . We define A := (pij)
i=1...3
j=1...3 to be the left 3× 3 submatrix of P and

B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 c1

0 1 0 c2

0 0 1 c3

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.16)

We observe that ([A], [B]) ∈ PGℒ(3)×A(3) and [A][P 0
f ][B] = [P ].

Corollary 2.3.2. The set ℱP of finite projections is diffeomorphic to the homogeneous

space (PGℒ(3)×A(3))/H0
f , where H0

f is the 9-dimensional stabilizer of [P 0
f ].

A straightforward computation shows that

H0
f =

⎧⎨⎩
⎛⎜⎝[A],

⎡⎢⎣ A 0tr

0 1

⎤⎥⎦
⎞⎟⎠
⎫⎬⎭ , where A ∈ GL(3). (2.17)

Remark 2.3.3. It follows from the proof of Proposition 2.3.1 that any finite projec-

tion is a composition of a translation in ℝ3 (corresponding to translation of the camera

center to the origin), the standard projection (2.8) (pinhole camera), and a projective

transformation on the image plane.

2.3.2 Action on affine cameras

Formula (2.15) with [P ] ∈ AP and ([A], [B]) ∈ A(2)×A(3) also defines an action of the

direct product A(2)×A(3) on the set of affine projections AP .

Proposition 2.3.4. The action of A(2)×A(3) on AP, defined by (2.15), is transitive.
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Proof. It is sufficient to prove that for all [P ] ∈ AP there exists ([A], [B]) ∈ A(2)×A(3)

such that [P ] = [A] [P 0
a ] [B], where P 0

a is the standard projection (2.14). An affine

projection P is given by the matrix

P =

⎛⎜⎜⎜⎜⎝
p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1

⎞⎟⎟⎟⎟⎠ (2.18)

of rank 3. Therefore there exist 1 ≤ i < j ≤ 3 such that the rank of the submatrix⎛⎜⎝ p1i p1j

p2i p2j

⎞⎟⎠ is 2. Then for 1 ≤ k ≤ 3, such that k ∕= i and k ∕= j, there exist c1, c2 ∈ ℝ,

such that

⎛⎜⎝ p1k

p2k

⎞⎟⎠ = c1

⎛⎜⎝ p1i

p2i

⎞⎟⎠+ c2

⎛⎜⎝ p1j

p2j

⎞⎟⎠. We define

A :=

⎛⎜⎜⎜⎜⎝
p1i p1j p14

p2i p2j p24

0 0 1

⎞⎟⎟⎟⎟⎠ (2.19)

and define B to be the matrix whose columns are vectors b∗i := (1, 0, 0, 0)tr, b∗j :=

(0, 1, 0, 0)tr, b∗k := (c1, c2, 1, 0)tr, b∗4 = (0, 0, 0, 1)tr. We observe that ([A], [B]) ∈ A(2) ×

A(3) and that [A][P 0
a ][B] = [P ].

Remark 2.3.5. Note that there are only three possible values of (i, j, k) in the above

proof:
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if (i, j, k) = (1, 2, 3), then

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 c1 0

0 1 c2 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
; (2.20)

if (i, j, k) = (1, 3, 2), then the corresponding matrix B is obtained by interchanging

the second and the third column in (2.20);

if (i, j, k) = (2, 3, 1), then the corresponding matrix B is obtained by a cyclic shift

(by one to the right) of the first three columns in (2.20).

Corollary 2.3.6. The set AP of affine projections is diffeomorphic to the homogeneous

space (A(2)×A(3))/H0
a , where H0

a is the 10-dimensional stabilizer of [P 0
a ].

A straightforward computation shows that

H0
a =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣
m11 m12 a1

m21 m22 a2

0 0 1

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 0 a1

m21 m22 0 a2

m31 m32 m33 a3

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬⎭
, (2.21)

where m33 (m11m22 −m12m21) ∕= 0.
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Equivalence Problems on the Plane

In Chapter 4 we will show that the problem of object-image correspondence under affine

and finite cameras can be reduced to a problem of equivalence of planar objects under

affine and projective group actions. In this chapter we review the existing methods for

solving such problems for curves and finite sets of ordered points.

3.1 Group-equivalence problem for curves

A variety of methods exist to solve the group-equivalence problem for curves. We base our

algorithm on the differential signature construction described in [5] which originates from

Cartan’s moving frame method [6]. We consider the possibility of using other methods in

Section 6. Using the notation discussed in Section 1.1 we make the following definition.

Definition 3.1.1. Given an action of a group G on ℝn, we say that two curves � : I� →

ℝn and � : I� → ℝn are G-equivalent if there exists an element g ∈ G such that C� =

g C�.
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We say that two curves have a G-overlap if there exists an element g ∈ G such that

curves C� and g C� overlap over a curve segment.

3.1.1 Differential invariants for planar curves

An action of a group G on ℝ2 induces an action on parametric curves (t) = (x(t), y(t)).

Using the chain rule this action can be prolonged to the k-th order jet space of curves

denoted by J k. Variables x, y, ẋ, ẏ, ẍ, ÿ, . . . , which represent the derivatives of x, y with

respect to the parameter of orders from 0 to k, serve as coordinate functions on J k.

Definition 3.1.2. Restriction of a function, ℱ , on J k, to a curve, (t) = (x(t), y(t)),

t ∈ I, is a single-variable function ℱ∣(t) := ℱ
(
x(t), y(t), dx(t)

dt
, dy(t)

dt
, d

2x(t)
dt2

, . . .
)

. A

function ℱ is invariant under reparameterizations if ℱ∣(�(�)) = ℱ∣̃(�), where ̃(�),

� ∈ Ĩ is a reparameterization of (t), i.e. (�(�)) = ̃(�) for a smooth map � : Ĩ → I.

For example, ẋ∣̃(�) = ẋ∣(�(�))�′(�), and hence ẋ is not invariant under reparame-

terizations, but ẋ
ẏ

is invariant under reparameterizations.

Definition 3.1.3. A k-th order differential invariant is a function on J k that depends

on k-th order jet variables and is invariant under the prolonged action of G and repa-

rameterizations of curves.

For example, for the action of the 3-dimensional Euclidean group, consisting of ro-

tations, translations and reflections on the plane, the curvature � = ÿẋ−ẍẏ√
ẋ2+ẏ2

is (up to a

sign) a lowest order differential invariant. The sign of � changes when a curve is reflected,

rotated by � radians or traced in the opposite direction (�2 is invariant under the Eu-

clidean group). Higher order differential invariants are obtained by differentiation of cur-

vature with respect to Euclidean arclength ds =
√
ẋ2 + ẏ2 dt, i. e. �s = d �

d s
= 1√

ẋ2+ẏ2
d �
d t

.
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Any other Euclidean differential invariant can be locally expressed as a function of

�, �s, �ss, . . . .

For the majority of Lie group actions on ℝ2, a lowest order differential invariant

appears at order r − 1 where r = dimG. The group actions on the plane with this

property are called ordinary. All actions considered in this thesis are ordinary. A lowest

order differential invariant for an ordinary action of a group G is called G-curvature,

and a lowest order invariant differential form is called infinitesimal G-arclength. Any

differential invariant with respect to the G-action can be locally expressed as a functions

of G-curvature and its derivatives with respect to G-arclength. Affine and projective

curvatures and infinitesimal arclengths are well known, and can be expressed in terms

of Euclidean invariants [9, 16]. In particular, SA-curvature � and infinitesimal SA-

arclength d� are expressed in terms of their Euclidean counterparts as follows:

� =
3� (�ss + 3�3)− 5�2

s

9�8/3
, d� = �1/3ds. (3.1)

SA(2)-curvature has the differential order 4. Any SA-differential invariant can be locally

expressed as a function of � and its derivatives with respect to the SA-arclength: �� =

d�
d�
, ��� = d��

d�
, . . . . SA-curvature is undefined for straight lines (� = 0) and d

d�
is

undefined at the inflection points of a curve. It is shown, for instance, in [12] that �∣ is

constant if and only if C is a conic. Moreover, �∣ ≡ 0 if and only if C is a parabola,

�∣ is a positive constant if and only if C is an ellipse, and �∣ is a negative constant if

and only if C is a hyperbola.

By considering the effects of scalings and reflections on SA(2)-invariants we obtain
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two lowest order A(2)-invariants that are rational functions in jet variables:

Ja =
(��)2

�3
, Ka =

���
3�2

+ 5. (3.2)

Remark 3.1.4. Adding 5 to ���
3�2

in the definition of Ka is not necessary, but leads to a

more simple expression of Ka∣ for most curves. This leads to a faster computation of

the signature curve.

PGℒ(3)-curvature � and infinitesimal arclength d� are expressed in terms of their

SA-counterparts:

� =
6������ − 7�2

�� − 9�2
� �

6�
8/3
�

, d� = �1/3
� d�. (3.3)

The two lowest order rational PGℒ(3)-invariants

Jp = �3 and Kp = �� (3.4)

are of differential order 7 and 8, respectively. Explicitly,

�� =
36������

2
� − 144���� ��� �� + 36��� �

2
� �− 54�4

� + 112�3
��

36�4
�

. (3.5)

Definition 3.1.5. A curve  is called A(2)-exceptional if invariants (3.2) are undefined.

Equivalently C is (a part of) a straight-line or (a part of) a parabola. In the former case,

its Euclidean curvature �∣ ≡ 0, while in the latter case only its SA-curvature �∣ ≡ 0.

A curve  is called PGℒ(3)-exceptional if invariants (3.4) are undefined. Equivalently,

C is (a part of) a conic. In this case �∣ is a constant.
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3.1.2 Differential signature for planar curves

Following [5] we will use differential signatures to solve the equivalence problem for curves

under a group action.

Definition 3.1.6. Let JG and KG be differential invariants of orders r − 1 and r, re-

spectively, for an ordinary action of an r-dimensional Lie group G on the plane. A

G-signature of a non-exceptional parametric curve (t) = (x(t), y(t)), t ∈ I, is a para-

metric curve S(t) =
(
JG∣(t), KG∣(t)

)
.

Definition 3.1.7. A parametric curve (t) = (x(t), y(t)), t ∈ I, is G-regular if for all

t ∈ I the signature curve S(t) is defined and has a non-zero tangent.

AmongG-nonregular curves a special role is played by curves with constant signatures:

JG∣(t) ≡ j,KG∣(t) ≡ k for some j, k ∈ ℝ and all t ∈ I. These curves are symmetric

with respect to a one-dimensional subgroup of G. For example, circles and lines have

constant Euclidean signatures. A circle is symmetric under rotations about its center

and a line is symmetric under translations along itself.

It follows from the definition of invariants that the image S := {S(t)∣t ∈ I} is

invariant under reparametrizations of the curve  and that the following theorem holds:

Theorem 3.1.8. If planar curves � : I� → ℝ2 and � : I� → ℝ2 are G-equivalent then

the images of their signatures coincide: S� = S�.

The full converse of the theorem is not valid. For example, curves y = cos(x), x ∈

[0, 2�], and y = sin(x), x ∈ [0, 2�], have the same Euclidean signatures. These curves are

not Euclidean-equivalent, but have a Euclidean overlap (see Definition 3.1.1). A variety

of counter-examples for the converse of Theorem 3.1.8 that arise due to insufficient degree
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of smoothness are presented in [21]. The converse of Theorem 3.1.8 for analytic G-regular

curves y = y(x), x ∈ ℝ, that have analytic signatures is stated in Theorem 8.53 of [23].

We state the following partial converse of Theorem 3.1.9,

Theorem 3.1.9. Let � : I� → ℝ2 and � : I� → ℝ2 be sufficiently smooth regular curves.

If regular parts of the G-signatures S� and S� overlap or if � and � have the same

constant G-signatures, then the curves � and � G-overlap.

Remark 3.1.10. Signature construction reduces the problem of G-equivalence of curves

to the problem of deciding whether two parametric curves (that represent the signatures

of the given curves) have the same image. If a curve (t) has a rational parameterization

then the implicit equation Ŝ(K, J) = 0 for its signature can be computed by an elimina-

tion algorithm as outlined, for instance, in Section 3.3 of [7]. When comparing signatures

using their implicit equations, one has to be aware that for t ∈ ℝ, two non overlapping

regular signature curves can have the same implicit equation as shown by Example 8.69

in [23].

3.1.3 Examples

Example 3.1.11. This example illustrates that plane curves of the form

a(t) =

(
a t

1 + a2 t3
,

a t2

1 + a2 t3

)
, t ∈ ℝ, for ∀a ∕= 0 (3.6)
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are PGℒ(3)-equivalent. First, evaluate the invariants given in equation (3.4) on a(t):

Jp∣a(t) =

(
− 1

1350

(23 a8 t12 + 63 a6 t9 + 80 a4 t6 + 63 a2 t3 + 23)3 t3 a2

(1 + a2 t3)6 (a2 t3 − 1)8

) 1
3

, (3.7)

Kp∣a(t) =

(
(23 a6 t9 + 229 a4 t6 + 229 a2 t3 + 23)3 (1 + a2 t3)2

2700 (a2 t3 − 1)11

) 1
3

. (3.8)

If we reparametrize the curve with s = t
3
√
a2, our invariants are independent of a.

Therefore for all a ∕= 0, there exists a parametriztion of the curve with the following

invariants,

Jp∣(t) =

(
− 1

1350

t3 (23 t12 + 63 t9 + 80 t6 + 63 t3 + 23)3

(t3 + 1)6 (−1 + t3)8

) 1
3

, (3.9)

Kp∣(t) =

(
(23 t9 + 229 t6 + 229 t3 + 23)3 (t3 + 1)2

2700 (−1 + t3)11

) 1
3

. (3.10)

So, for all a ∕= 0 the signature of a(t) must be the same. Therefore, all curves of the

form given by (3.6) are PGℒ(3)-equivalent.

In the next example we use A(2)-signatures to determine A(2)-equivalence classes of

the family of curves, (x(t), y(t)), parameterized by third degree polynomials in t.

Example 3.1.12. Given a curve (t) = (x(t), y(t)), assume x(t) and y(t) are 3rd degree

polynomials in t. So,

x(t) = a3t
3 + a2t

2 + a1t+ a0, (3.11)

y(t) = b3t
3 + b2t

2 + b1t+ b0. (3.12)
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Restricting our invariants,

i1 = Ja∣ =
N1(t)

D(t)3
,

i2 = Ka∣ =
N2(t)

D(t)2
,

we find rational expressions in t with coefficients depending on a0, a1, a2, a3, b0, b1, b2, b3.

It turns out that the numerator and denominator of Ja∣ are 6-th degree polynomials in

t and the numerator and denominator of Ka∣ are 4-th degree polynomials in t. For

expressions of N1(t), N2(t) and D(t) see equations (3) of Appendix B.

When calculating the signature we arrive at the following implicit equation, shown on

Figure 3.1.

147000 i2 − 857500 + 9261 i21 − 26460 i1 i2 + 160 i32 + 10500 i22 = 0 (3.13)

When defined, the invariants for every curve from the family above lie on this curve. It

does not mean that every curve can be mapped to each other because the signature could

be a point on this curve or the curve itself. We determine the possible equivalance classes

of  by examining N1(t), N2(t) and D(t).

Case 0: a3b2 = b3a2 and a3b1 = b3a1. In this case D(t) ≡ 0 and (t) is a parabola

or a straight line. All straight lines are in the same equivalence class, and all parabolas

belong to either the equivalence class y = x2 or the equivalence class y = −x2.

Case 1: Another possibility is N1(t), N2(t), and D(t) ∕= 0 are all constants because

their coefficients of t are all 0. The only way this can happen is if a3b2 = b3a2 and
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Figure 3.1: Signature given by the implicit equation (3.13)

a3b1 ∕= b3a1. In this case, the invariants are

i1 =
−64

5
,

i2 =
−7

5
.

Case 2: The only other way the invariants can be constant is if the numerators

and denominators of i1 and i2 are constant multiples of each other. By examining the

coefficients, we observe that, when D(t) is not constant, it is a multiple of N1(t) if and

only if 3 (b3 a1 − a3 b1)2 − 4 (b3 a2 − a3 b2) (b2 a1 − b1 a2) = 0 and a3b2 ∕= b3a2. With these

conditions D(t)2 divides N2(t) and the invariants are given by

i1 = 25,

i2 =
35

2
.
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Case 3: The last possibility is that the invariants are not constant (depend on t),

and satisfy the implicit signature equation 3.13.

The constant invariants in cases 1 and 2 lie on the signature curve given by the more

general case 3, shown on Figure 3.1.

3.2 Group-equivalence problem for ordered sets of

points

The group-equivalence problem for ordered point sets is discussed in [22]. For the purpose

of this dissertation, we review the relevant results from this paper and other classical

results for sets of points on the plane.

Let ℝ2
×r = ℝ2 × ℝ2 ⋅ ⋅ ⋅ × ℝ2 denote r-fold Cartesian product of the plane. Given a

Lie Group G acting on ℝ2, we consider the joint action of G on ℝ2
×r given by

g ⋅ (x1, ⋅ ⋅ ⋅ ,xr) = (g ⋅ x1, ⋅ ⋅ ⋅ , g ⋅ xr), g ∈ G, x1, ⋅ ⋅ ⋅ ,xr ∈ ℝ2. (3.14)

Definition 3.2.1. An r-point rational joint invariant is a rational function on ℝ2
×r that

is invariant under the action defined by 3.14. I.e. I(x1, ⋅ ⋅ ⋅ ,xr) = I(g ⋅ x1, ⋅ ⋅ ⋅ , g ⋅ xr)

for all g ∈ G.

We use the notation of separating invariants from [25].

Definition 3.2.2. For a group G acting on ℝ2
×r, a set S of invariants is called separating

if there a Zariski open subset U ⊂ ℝ2
×r such that for every x, y ∈ U not on the same

orbit, there ∃I ∈ S such that I(x) ∕= I(y).
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To define these invariants we use areas of triangles. Given an ordered set X =

(x1, . . . ,xr) of r points in ℝ2 with coordinates xi = (xi, yi), define

A(i, j, k) =
1

2
det

∣∣∣∣∣∣∣∣∣∣
xi xj xk

yi yj yk

1 1 1

∣∣∣∣∣∣∣∣∣∣
(3.15)

to be the area of the triangle with vertices xi,xj,xk.

Remark 3.2.3. A(i, j, k) = 0 if and only if xi,xj,xk are collinear.

For the A(2)-action on ℝ2
×r, the well known generating set of rational joint invariants

is given by the following result in [31].

Theorem 3.2.4. Every joint invariant of A(2) acting on ℝ2 is a function of area ratios

A(i,j,k)
A(l,m,n)

.

Theorem 3.2.5. On the open subset where the first three points are non-collinear, in-

variants

B(2, k) =
A(1, 2, k)

A(1, 2, 3)
for k = 4, . . . , r (3.16)

and

B(3, k) =
A(1, 3, k)

A(1, 2, 3)
for k = 4, . . . , r (3.17)

always separate orbits with respect to the A(2)-action on ℝ2
×r.

Proof. Let two ordered sets, X = (x1, . . . ,xr), with x1,x2,x3 non-collinear, and U =

(u1, . . . ,ur), with u1,u2,u3 non-collinear, of r points in ℝ2 be given. Let the coordinates

for X be given by xi = (xi, yi) and the coordinates for U be given by ui = (ui, vi). Since
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x1,x2,x3 are non-collinear and u1,u2,u3 are non-collinear, we can find affine transfor-

mations A1 and A2 that map x1,x2,x3 and u1,u2,u3, respectively, to (0, 0), (0, 1), (1, 0).

The only affine transformation that maps (0, 0), (0, 1), (1, 0) to itself is the identity trans-

formation. Invariants (3.16) and (3.17) have the same values for X and A1 ⋅X and the

same values for U and A2 ⋅ U . For k ≥ 4, denote

A1 ⋅ xk = (x̃k, ỹk),

A2 ⋅ uk = (ũk, ṽk). (3.18)

A straightforward computation shows

B∣X(2, k) = x̃k,

B∣X(3, k) = −ỹk,

B∣U(2, k) = ũk,

B∣U(3, k) = −ṽk. (3.19)

Therefore, B∣X(2, k) = B∣U(2, k) and B∣X(3, k) = B∣U(3, k) if and only if x̃k = ũk

and ỹk = ṽk for all k such that 4 ≤ k ≤ r. This can only happen if X = (A−1
1 A2) ⋅ U .

Therefore, for ordered sets of r points, the set of invariants given by (3.16) and (3.17)

separate orbits on the open subset where the first 3 points are non-collinear.

In [22], using the moving frame method, it is stated that the set given by (3.16) and

(3.17) generates the field of A(2) joint r-point invariants. In [25], the following result is

given. Also, see [26] and [28] for more details.
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Theorem 3.2.6. Any separating set of rational invariants generates the field of rational

invariants.

As an example, we provide an algebraic proof for the following special case of this

result.

Example 3.2.7. It has been proved in [31] that area ratios, A(i,j,k)
A(l,m,n)

, generate affine

invariants. We will show how to express such ratios in terms of separating invariants

(3.16) and (3.17).

We need to show A(i,j,k)
A(l,m,n)

can be expressed in terms of B(2, k)’s and B(3, k)’s,

A(i, j, k)

A(l,m, n)
=
A(i, j, k)

A(1, 2, 3)

A(1, 2, 3)

A(l,m, n)
.

Therefore, it suffices to express A(i,j,k)
A(1,2,3)

in terms of B(2, ⋅)’s and B(3, ⋅)’s. Without loss

of generality assume i < j < k. A straightforward computation shows

A(i, j, k)A(1, 2, 3) = A(1, 2, i) (A(1, 3, j)− A(1, 3, k)) (3.20)

−A(1, 2, j) (A(1, 3, i)− A(1, 3, k))

−A(1, 2, k) (A(1, 3, j)− A(1, 3, i)).

Dividing both sides by A(1, 2, 3)2 gives the desired relationship

A(i, j, k)

A(1, 2, 3)
= B(2, i) (B(3, j)−B(3, k)) (3.21)

−B(2, j) (B(3, i)−B(3, k))

−B(2, k) (B(3, j)−B(3, i)).
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Note that B(2, 1) = B(3, 1) = B(2, 2) = B(3, 3) = 0 and B(2, 3) = −B(3, 2) = 1, so

A(i,j,k)
A(1,2,3)

will only depend on B(2, k)’s and B(3, k)’s with k ≥ 4 as required.

The action of PGℒ(3) on ℝ2 becomes free on the 4-fold Cartesian product, but the

projective joint invariants depend on 5 points. The following theorems were derived in

[22] using the method of moving frames.

Theorem 3.2.8. Let PGℒ(3) act on ℝ2
×n. A generating set of projective joint invariants

is given by the following cross ratios of areas

C(i; j, k, l, n) =
A(i, j, k)A(i, l, n)

A(i, j, l)A(i, k, n)
. (3.22)

By a simialar technique to that used in Theorem 3.2.5 one can prove:

Theorem 3.2.9. On an open subset where no 3 of the first 4 points are collinear, the

fundamental area cross ratios:

C(1; 2, 3, 4, k), k = 5, 6, . . . (3.23)

and

C(2; 1, 3, 4, k), k = 5, 6, . . . (3.24)

separate orbits with respect to the PGℒ(3)-action on ℝ2
×r.

3.2.1 Examples

In this subsection, we illustrate how Theorems 3.2.5 and 3.2.9 provide a solution to the

equivalence problems for ordered sets of points.
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Example 3.2.10. Given three ordered sets of points in ℝ2,

X = (x1, . . . ,x4) wℎere x1 = (0, 0), x2 = (0, 1), x3 = (1, 1), and x4 = (1, 0),

U = (u1, . . . ,u4) wℎere u1 = (0, 1), u2 = (1, 2), u3 = (3, 2), and u4 = (2, 1),

V = (v1, . . . ,v4) wℎere v1 = (0, 0), v2 = (0, 1), v3 = (1, 1), and v4 = (2, 2),

decide which point sets are affinely-equivalent. Using Theorem 3.2.5, we first make the

following calculations. For X,

A∣X(1, 2, 3) = det

∣∣∣∣∣∣∣∣∣∣
0 0 1

0 1 1

1 1 1

∣∣∣∣∣∣∣∣∣∣
= −1 and

A∣X(1, 2, 4) = −1.

So,

B∣X(2, 4) =
A∣X(1, 2, 4)

A∣X(1, 2, 3)
= 1,

and similarly,

B∣X(3, 4) = 1.

For U ,

B∣U(2, 4) = 1,

B∣U(3, 4) = 1.
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For V ,

B∣V (2, 4) = 2,

B∣V (3, 4) = 0.

By comparing the values of B(2, 4) and B(3, 4) for the three ordered sets of points, we de-

termine that X and U are affinely-equivalent to each other, but are not affinely-equivalent

to V .

Example 3.2.11. Given three ordered sets of points in ℝ2,

X = (x1, . . . ,x5)

wℎere x1 = (−3, 0), x2 = (2, 2), x3 = (6, 1), x4 = (4, 1), and x5 = (3, 2),

U = (u1, . . . ,u5)

wℎere u1 = (−2,−2), u2 = (
5

3
,
7

3
), u3 = (4,

9

2
), u4 = (3,

7

2
), and u5 = (2,

8

3
),

V = (v1, . . . ,v5)

wℎere v1 = (−2,−2), v2 = (
5

3
,
7

3
), v3 = (4,

9

2
), v4 = (2,

7

2
), and v5 = (2,

8

3
),

decide which point sets are projectively-equivalent. Using Theorem 3.2.9, we first make

the following calculations. For X,

CX(1; 2, 3, 4, 5) =
26

27
,

CX(2; 1, 3, 4, 5) =
13

9
.
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For U ,

CU(1; 2, 3, 4, 5) =
26

27
,

CU(2; 1, 3, 4, 5) =
13

9
.

For V ,

CV (1; 2, 3, 4, 5) =
65

51
,

CV (2; 1, 3, 4, 5) =
65

17
.

By comparing the values of C(1; 2, 3, 4, 5) and C(2; 1, 3, 4, 5) for the three ordered sets of

points, we determine that sets X and U are projectively-equivalent to each other, but are

not projectively-equivalent to V .
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The Projection Problem for Curves

In this chapter we assume that objects and images are represented by smooth curves in

ℝ3 and ℝ2 respectively. We formulate criteria for the existence of a finite or an affine

projection. In Section 4.3 we provide algorithms that use these criteria, and in Section 4.4

we give examples.

4.1 Problem Formulation

First, we restate the problem given in Chapter 1.

Problem 4.1.1. Given a smooth curve CΓ in ℝ3 and a smooth curve C in ℝ2, does

there exist a finite or an affine camera that maps CΓ to C?

Using the notation discussed in Section 1.1, we give the following definition.

Definition 4.1.2. We say that a curve Γ: IΓ → ℝ3 projects onto  : I → ℝ2 if there

exists a 3× 4 matrix P of rank 3 such that [C] = [P ][CΓ].
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In the next section, we show that the projection problem for finite (or affine) cameras

can be reduced to the problem of equivalence of planar curves under projective (or affine)

actions on the plane. Before stating the projection criteria we make the following simple,

but important observation.

Proposition 4.1.3. (i) If Γ projects onto  by an affine projection then any curve

that is A(3)-equivalent to Γ projects onto any curve that is A(2)-equivalent to 

by an affine projection. In other words, affine projections are defined on affine

equivalence classes of curves.

(ii) If Γ projects onto  by a finite projection then any curve that is A(3)-equivalent to

Γ projects onto any curve that is PGℒ(3)-equivalent to  by a finite projection.

Proof. (i) Assume that there exists an affine projection [P ] ∈ AP such that [C] =

[P ][CΓ]. Then for all (A,B) ∈ A(2) × A(3) we have [A] [C] = [A] [P ] [B−1] ([B] [CΓ]).

Since [A] [P ] [B−1] ∈ AP , the curve [B][CΓ] projects onto [A][C]. (ii) is proved similarly

using Proposition 2.15.

It is not true, in general, that if Γ can be projected onto two planar curves 1 and 2

by an affine (or a finite) camera, then 1 is equivalent to 2 by an affine (or a projective)

transformation. (See Example 4.4.2 and Example 4.4.5)

4.2 Projection criteria for curves

4.2.1 Projection criterion for finite cameras

Theorem 4.2.1. A spatial curve Γ(s) =
(
z1(s), z2(s), z3(s)

)
, s ∈ IΓ, projects onto a

planar curve (t) =
(
x(t), y(t)

)
, t ∈ I, by a finite projection if and only if there exist

38



Chapter 4. The Projection Problem for Curves

c1, c2, c3 ∈ ℝ such that planar curves (t) and

�c1,c2,c3(s) =

(
z1(s) + c1

z3(s) + c3

,
z2(s) + c2

z3(s) + c3

)
(4.1)

are PGℒ(3)-equivalent.

Proof. (⇒)Assume there exists a finite projection [P ] such that [C] = [P ] [CΓ]. It was

established in the proof of Proposition 2.3.1 that [P ] = [A] [P 0
f ] [B] for some [A] ∈ PGℒ(3)

and [B] ∈ SA(3), where B is given by (2.16) for some c1, c2, c3 ∈ ℝ, and P 0
f is the standard

finite projection (2.8). Therefore [C] = [A][P 0
f ] [B] [CΓ]. Since

[P 0
f ] [B][z1(s), z2(s), z3(s), 1]tr = [z1(s) + c1, z2(s) + c2, z3(s) + c3]tr,

[C] = [A][C�c1,c2,c3 ], where �c1,c2,c3 is defined by (4.1) (z3(s) + c3 is non-zero except for

possibly a discrete set of values of s). Thus C = AC�c1,c2,c3 under the PGℒ(3)-action

(1.5).

(⇐) To prove the converse direction we assume that there exists [A] ∈ PGℒ(3)

and c1, c2, c3 ∈ ℝ such that [C] = [A][C�c1,c2,c3 ], where �c1,c2,c3 is defined by (4.1). A

direct computation shows that [CΓ] is projected onto [C] by the finite projection [P ] =

[A] [P 0
f ] [B], where B is given by (2.16) and [P 0

f ] is the standard finite projection (2.8).

4.2.2 Projection criteria for affine cameras

Theorem 4.2.2. A curve Γ(s) =
(
z1(s), z2(s), z3(s)

)
for s ∈ IΓ projects onto (t) =(

x(t), y(t)
)

for t ∈ I if and only if there exist c1, c2 ∈ ℝ and an ordered triple (i, j, k) ∈
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{(1, 2, 3), (1, 3, 2), (2, 3, 1)} such that the planar curves (t) and

�ijkc1,c2(s) =
(
zi(s) + c1 zk(s), zj(s) + c2 zk(s)

)
for s ∈ IΓ (4.2)

are A(2)-equivalent.

Proof. (⇒)Assume Γ projects onto . Then there exists an affine projection [P ] ∈ AP

such that [C] = [P ][CΓ]. Recall that the matrix P is of the form (2.18) and let (i, j, k) be

a permutation of numbers (1, 2, 3) such that i < j and the submatrix of P formed by the

i-th and j-th columns has rank 2. As it was established in the proof of Proposition 2.3.4

there exist [A] ∈ A(2) and [B] ∈ A(3), listed in Remark 2.3.5, such that [P ] = [A] [P 0
a ] [B],

where [P 0
a ] is the standard projection (2.14). Since [P 0

a ][B][CΓ] = [C�ijkc1c2
], then C =

AC�ijkc1,c2
under the A(2)-action(1.6) and the direct statement is proved.

(⇐) To prove the converse direction we assume that there exist [A] ∈ A(2), two real

numbers c1 and c2, and a triplet of indices such that (i, j, k) ∈ {(1, 2, 3), (1, 3, 2), (2, 3, 1)},

such that [C] = [A][C�ijkc1c2
], where a planar curve �ijkc1c2(s) is given by (4.2). Let B be a

matrix listed in Remark 2.3.5, corresponding to the (i, j, k)-triple. A direct computation

shows that [CΓ] is projected onto [C] by the affine projection [P ] = [A][P 0
a ][B].

The families of curves �ijkc1c2(s) given by (4.2) with (i, j, k) ∈ {(1, 2, 3), (1, 3, 2), (2, 3, 1)}

and c1, c2 ∈ ℝ have a large overlap. The following corollary eliminates this redundancy

and, therefore, is useful for practical computations.

Corollary 4.2.3. (Reduced affine projection criteria) A curve

Γ(s) =
(
z1(s), z2(s), z3(s)

)
for s ∈ IΓ projects onto (t) =

(
x(t), y(t)

)
for t ∈ I if

and only if there exist b, c, f ∈ ℝ such that the curve  is A(2)-equivalent to one of the

40



Chapter 4. The Projection Problem for Curves

following planar curves

�(s) = (z2(s), z3(s)
)
, (4.3)

�b(s) =
(
z1(s) + b z2(s), z3(s)

)
, (4.4)

�cf (s) =
(
z1(s) + c z3(s), z2(s) + f z3(s)

)
. (4.5)

Proof. We first prove that for any permutation (i, j, k) of numbers (1, 2, 3) such that i < j,

and for any c1, c2 ∈ ℝ a curve �ijkc1,c2 =
(
zi(s)+c1 zk(s), zj(s)+c2 zk(s)

)
is A(2)-equivalent

to one of the curves listed in (4.3)-(4.5).

Obviously, �123
c1c2

= �cf with c = c1 and f = c2.

For �132
c1c2

, if c2 ∕= 0 then

⎛⎜⎝ 1 − c1
c2

0 1
c2

⎞⎟⎠
⎛⎜⎝ z1 + c1z2

z3 + c2z2

⎞⎟⎠ =

⎛⎜⎝ z1 − c1
c2
z3

z2 + 1
c2
z3

⎞⎟⎠ and so �132
c1c2

is

A(2)-equivalent to �cf with c = − c1
c2

and f = 1
c2

. Otherwise, if c2 = 0, the �132
c1c2

(s) = �b(s)

with b = c1.

Similarly for �231
c1c2

, if c2 ∕= 0 then �231
c1c2

is A(2)-equivalent to �cf with c = 1
c2

and

f = − c1
c2

. Otherwise, if c2 = 0, the �231
c1c2

(s) = (z2(s) + c1z1(s), z3(s)). If c1 ∕= 0 then �231
c1c2

is A(2)-equivalent to �b with b = 1
c1

, otherwise c1 = 0 and �231
c1c2

= �.

We can reverse the argument and show that any curve given by (4.3)-(4.5) is A(2)-

equivalent to a curve from family (4.2). Then the reduced criteria follows from Theo-

rem 4.2.2.

4.3 Algorithms

In this section we present algorithms for solving the projection problem based on a com-

bination of the projection criteria of Section 4.2 and the group equivalence criteria of
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Section 3.1. We used Maple to implement these algorithms. In both algorithms, the

main bottleneck lies in symbolically solving polynomial equations over real numbers. Nu-

merical solvers are much faster, but are susceptible to round-off errors. Computing the

implicit equation of the signature is also a time consuming computation. For this com-

putation we used Gröbner basis algorithms, but alternative methods such as resultants

may greatly improve efficiency.

4.3.1 Projection of curves by finite cameras

We formulate an algorithm that provides a necessary condition for a given spatial curve

Γ to project onto a given planar curve  by a finite camera with unknown position and

parameters. For generic curves this also provides sufficient conditions that a segment of

Γ can be projected onto a segment of .

Algorithm 4.3.1. (Finite cameras.)

INPUT: a planar curve (t) = (x(t), y(t)), t ∈ ℝ, and a spatial curve

Γ(t) =
(
z1(s), z2(s), z3(s)

)
, s ∈ ℝ, with rational parameterizations.

OUTPUT: YES or NO answer to the question ”Is the necessary condition for existence

of finite projection [P ] such that [C] = [P ][CΓ] is satisfied?”.

1. If ∀t: x′′(t)y′(t)− y′′(t)x′(t) = 0 then

∙ compute the Euclidean curvature K(s) for the curve Γ;

∙ if ∀s: K(s) = 0 then OUTPUT: YES and exit the procedure,

else

– compute the Euclidean torsion T (s) for the curve Γ;
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– if ∀s: T (s) = 0 then OUTPUT: YES, else OUTPUT: NO

∙ exit the procedure;

else proceed to the next step.

2. Use (3.1) to evaluate the cube of SA-curvature �3∣(t). The result is a rational

function of t.

3. For arbitrary real c1, c2, c3 define a curve �c1,c2,c3(s) =
(
z1(s)+c1
z3(s)+c3

, z2(s)+c2
z3(s)+c3

)
.

4. If ∃ m ∈ ℝ s. t. ∀t ∈ ℝ: �∣(t) = m then

∙ Use (3.1) to evaluate �3∣�c1,c2,c3 (s). The result is a rational function of c1, c2, c3

and s.

∙ If ∃ a, c1, c2, c3 ∈ ℝ s. t. ∀s ∈ ℝ

�3∣�c1,c2,c3 (s) = a (4.6)

then OUTPUT : YES, else OUTPUT : NO.

∙ Exit the procedure.

else proceed to the next step.

5. Evaluate PGℒ(3)-invariants (3.4) on (t). Obtain two rational functions of t,

Jp∣(t) and Kp∣(t).

6. Evaluate PGℒ(3)-invariants (3.4) on �c1,c2,c3(s). Obtain two rational functions

Jp∣�(c1, c2, c3, s) and

Kp∣�(c1, c2, c3, s) of c1, c2, c3 and s.
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7. If ∃j, k ∈ ℝ s. t. ∀t ∈ ℝ: Jp∣(t) = j and Kp∣(t) = k, then

∙ If ∃ c1, c2, c3 ∈ ℝ s. t. ∀s ∈ ℝ,

J ∣�(c1, c2, c3, s) = j and Kp∣�(c1, c2, c3, s) = k, (4.7)

OUTPUT: YES, else OUTPUT: NO.

∙ Exit the procedure.

else proceed to the next step.

8. Compute the implicit equation Ŝ(i1, i2) = 0 for the PGℒ(3)-signature of  by

eliminating t from equations i1 = Jp∣(t) and i2 = Kp∣(t).

9. If ∃c1, c2, c3 ∈ ℝ s. t.:

∀s : Ŝ (Jp∣�(c1, c2, c3, s), Kp∣�(c1, c2, c3, s)) = 0 (4.8)

and

Jp∣�(c1, c2, c3, s) or Kp∣�(c1, c2, c3, s) are non-constant (4.9)

OUTPUT: YES, else OUTPUT: NO.

In the first step, we consider the possibility that the given planar curve (t) is a part

of a line. A spatial curve Γ(s) can be projected to a part of a straight line if and only if

it is a planar curve. To determine whether Γ(s) is a planar curve or not, we can use its

Euclidean curvature and torsion. If the curvature is zero, then Γ(s) belongs to a straight

line and the torsion is undefined. If the torsion is defined and identically zero, then Γ(s)

is a planar curve, but not a part of a line. In both cases Γ(s) can be projected to (a part
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of) a straight line, and the output is ”yes”. Otherwise, the output is ”no”. If (t) is not

a part of a line, we proceed to step 2 and compute �3 – the cube of the SA-curvature of

(t). We then define a family of planar curves �c1,c2,c3(s). The goal is to decide if there are

some values of the parameters c1, c2, c2 for which �c1,c2,c3(s) is PGℒ(3)-equivalent to (t).

In step 4 we consider a possibility that (t) is a part of a conic, or equivalently its SA-

curvature � is a constant. All conics on the plane are PGℒ(3)-equivalent, and, therefore,

if there exist a, c1, c2, c3 ∈ ℝ such that ��c1,c2,c3 (s) = a the output is ”yes”, otherwise it is

”no”. If we proceed to step 5 then  is not PGℒ(3)-exceptional and we can compute its

PGℒ(3)-invariants. In step 7 we address a possibility that these invariants are constant.

Otherwise, in the rest of the algorithm, we use the PGℒ(3)-signature of  to decide if

there are values of the parameters c1, c2, c2 for which �c1,c2,c3(s) is PGℒ(3)-equivalent to

(t).

Two well known, but challenging, computational procedures are involved in this al-

gorithm: (i) implicitization in step 8 and (ii) a real quantifier elimination problem that

may occur in steps 4, 7, or 9. The implcitization can be achieved by an appropriate

Gröbner basis computation, or by procedures based on resultants (see, for instance, [7, 8]

and references therein). Problem (ii), in our case, reduces to polynomial solving over real

numbers. In the case of finitely many solutions, they can be isolated using, for instance,

algorithms presented [24, 18]. In many cases Maple is able to solve these equations

explicitly.

If the output of Algorithm 4.3.1 is ”no” then there is no finite projection of Γ to

. An output of ”yes” provides a strong indication that Γ and  are related by a finite

projection. If c1, c2, c3 can be found explicitly then we can check that the signatures of

the curves (t) and �c1,c2,c3(s) not only have the same implicit equation, but, in fact,
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coincide (see Remark 3.1.10). This provides a strong indication that (t) and �c1,c2,c3(s)

are equivalent under a PGℒ(3)-transformation (1.5), or at least that these curves have a

PGℒ(3)-overlap. If we can confirm this equivalence then Γ and  are related by a finite

camera.

If [A] ∈ PGℒ(3) maps C to C�c1,c2,c3 , where c1, c2, c3 satisfy (4.8) and (4.9) (or (4.7),

or (4.6) when appropriate), then [P ] = [A][P 0
f ][B], where P 0

f is defined by (2.8) and

B is defined by (2.16), projects Γ onto . The center of the projection is located at

(−c1,−c2,−c3).

4.3.2 Projection of curves by affine cameras

The algorithm for curves under affine cameras is similar to Algorithm 4.3.1. It relies

on the reduced projection criterion stated in Corollary 4.2.3. The algorithm requires

deciding if a given planar curve  isA(2)-equivalent to curve (4.3), or at least to one of the

curves from 1-parametric family (4.4), or at least to one of the curves from 2-parametric

family (4.2). Affine invariants given by (3.2) are used to solve the A(2)-equivalence

problem. Although the algorithms for affine cameras require, in general, consideration

of three cases, the computations are less demanding due to lower differential order of the

invariants and fewer number of parameters. In the following algorithm, �(s), �(b, s), and

�(c, f, s) will be as defined in 4.2.3.

Algorithm 4.3.2. (Affine cameras.)

INPUT: a planar curve (t) = (x(t), y(t)), t ∈ ℝ, and a spatial curve

Γ(t) =
(
z1(s), z2(s), z3(s)

)
, s ∈ ℝ, with rational parameterizations.

OUTPUT: YES or NO answer to the question ”Is necessary condition for existence of

affine projection [P ] such that [C] = [P ][CΓ] satisfied?”.
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1. If ∀t: x′′(t)y′(t)− y′′(t)x′(t) = 0 then

∙ compute the Euclidean curvature K(s) for the curve Γ;

∙ if ∀s: K(s) = 0 then OUTPUT: YES and exit the procedure,

else

– compute the Euclidean torsion T (s) for the curve Γ;

– if ∀s: T (s) = 0 then OUTPUT: YES, else OUTPUT: NO

∙ exit the procedure;

else proceed to the next step.

2. Obtain two rational functions of t, Ja∣(t) and Ka∣(t).

3. If ∃ m ∈ ℝ s. t. ∀t ∈ ℝ: Ka∣(t) = m then

a. If ∃ n ∈ ℝ s. t. ∀t ∈ ℝ: Ja∣(t) = n then

– If ∀s ∈ ℝ: Ka∣�(s) = m AND Ja∣�(s) = n

OR

∃ b ∈ ℝ s. t. ∀s ∈ ℝ: Ka∣�(b, s) = m AND Ja∣�(b, s) = n

OR

∃ c, f ∈ ℝ s. t. ∀s ∈ ℝ: Ka∣�(c, f, s) = m AND Ja∣�(c, f, s) = n

then OUTPUT : YES and exit the procedure.

– Else, OUTPUT : NO and exit the procedure.

b. Else, the first invariant is not constant.

– If ∀s ∈ ℝ: Ka∣�(s) = m AND ∄ n ∈ ℝ s. t. ∀s ∈ ℝ Ja∣�(s) = n

OR
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∃ b ∈ ℝ s. t. ∀s ∈ ℝ: Ka∣�(b, s) = m AND ∄ n ∈ ℝ s. t.

∀s ∈ ℝ Ja∣�(b, s) = n

OR

∃ c, f ∈ ℝ s. t. ∀s ∈ ℝ: Ka∣�(c, f, s) = m AND ∄ n ∈ ℝ s. t.

∀s ∈ ℝ Ja∣�(c, f, s) = n

then OUTPUT : YES and exit the procedure.

– Else, OUTPUT : NO and exit the procedure.

4. Compute the implicit equation Ŝ(i1, i2) = 0 for the A(2)-signature of  by elimi-

nating t from equations i1 = Ja∣(t) and i2 = Ka∣(t).

5. Substitute Ja∣�(s) and Ka∣�(s) for i1 and i2, respectively, into Ŝ(i1, i2).

6. If Ŝ(Ja∣�(s), Ka∣�(s)) = 0 ∀s ∈ ℝ and ∄ m ∈ ℝ s. t. ∀s ∈ ℝ: Ka∣�(s) = m then

OUTPUT : YES and exit the procedure.

7. If ∃ b ∈ ℝ s. t. Ŝ(Ja∣�(b, s), Ka∣�(b, s)) = 0 ∀s ∈ ℝ and ∄ m ∈ ℝ s. t. ∀s ∈ ℝ:

Ka∣�(b, s) = m then OUTPUT : YES and exit the procedure.

8. If ∃ c, f ∈ ℝ s. t. Ŝ(Ja∣�(c, f, s), Ka∣�(c, f, s)) = 0 ∀s ∈ ℝ and ∄ m ∈ ℝ s. t. ∀s ∈ ℝ:

Ka∣�(c, f, s)) = m then OUTPUT : YES and exit the procedure.

else OUTPUT : NO and exit the procedure.

The algorithm for curves under affine cameras relies on the reduced projection cri-

terion stated in Corollary 4.2.3 and requires deciding if a given planar curve  is A(2)-

equivalent to curve (4.3), or at least to one of the curves from 1-parametric family (4.4),

or at least to one of the curves from 2-parametric family (4.2). Affine invariants given
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by (3.2) are used to solve the A(2)-problem. We first check if our plane curve is affine-

exceptional. In step 3, we check if the plane curve has a constant invariant. In the

constant invariant situation, the check for correspondence is more simple than the gen-

eral case.

4.4 Examples

A Maple implementation and more examples are posted at www.math.ncsu.edu/∼jmburdis.

Example 4.4.1. In order to decide whether the spatial curve

Γ(s) = (z1(s), z2(s), z3(s)) =
(
s4 + 1, s2, s

)
, s ∈ ℝ,

can be projected onto (t) = (t , t4 + t2) , t ∈ ℝ by an affine camera, we start by deter-

mining that  is not an A(2)-exceptional curve (neither a straight line nor a parabola).

The curve  has non-constant A(2)-invariants (3.2) that satisfy the following implicit

signature equation:

−448 i21 + (3780 i2 − 4375) i1 + 28125 i2 + 245 i32 − 5250 i22 = 0. (4.10)

Following Corollary 4.2.3 we first check whether (t) is A(2)-equivalent to �(s) =

(z2(s), z3(s)) = (s2, s). The answer is no, since �(s) is an A(2)-exceptional curve

(parabola) and (t) is not A(2)-exceptional. We next check whether there exists b ∈ ℝ

such that (t) is A(2)-equivalent to �b(s) =
(
z1(s) + b z2(s), z3(s)

)
=
(
s4 + 1 + b s2, s

)
.
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We evaluate invariants (3.2) on �b(s):

Ja∣�b(s) =
100 s2 (3 b− 14s2)2

(b− 14s2)3
, (4.11)

Ka∣�b(s) =
140 s2(2 s2 + b)

(b− 14 s2)2
. (4.12)

When b = 0 the invariants are constant: Ja∣�0(s) ≡ 50/7 and Ka∣�0(s) ≡ 10/7, and,

therefore, �0(s) is not A(2)-equivalent to (t). For all b ∕= 0 the invariants (4.11) and

(4.12) are non-constant and satisfy the signature equation (4.10). This provides a nec-

essary condition and a strong indication that (t) is A(2)-equivalent to �b(s) for g ∕= 0.

For b = 1 this A(2)-equivalence is obvious, and hence Γ(s) projects onto (t) by an affine

projection.

Example 4.4.2. We would like to decide if the spatial curve

Γ(s) = (z1(s) z2(s)z3(s)) =
(
s2 + s, s3 − 3 s2, s4

)
, s ∈ ℝ (4.13)

projects onto any of three given planar curves for t ∈ ℝ:

1(t) =
(
t4 + t , t2

)
,

2(t) =
(
t3 − t , t3 + t2

)
,

3(t) =
(
t/(1 + t3), t2/(1 + t3)

)
(Folium of Descartes).[19]

None of the given ’s are A(2)-exceptional and the implicit equations of their A(2)-
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signatures are given, respectively, by:

(−210 + 75 i2) i1 − 2023 + 1190 i2 − 175 i22 = 0,

−857500 + 147000i2 + 10500i22 − 26460i1i2 + 9261i21 + 160i32 = 0,

10 i2 − 49 = 0.

Following an algorithm based on Corollary 4.2.3 we establish that �(s) =
(
z2(s), z3(s)

)
and �b(s) =

(
z1(s)+b z2(s), z3(s)

)
, for all g ∈ ℝ, are not A(2)-equivalent to either of the

’s. We then establish that �cf (s) =
(
z1(s) + c z3(s), z2(s) + f z3(s)

)
is A(2)-equivalent

to 1 when c = 0 and f = 1/2 and is A(2)-equivalent to 2 when c = 0 and f = 0, but

there are no real values of f and c such that �cf (s) and 3 are A(2)-equivalent.

We conclude that there are affine projections of Γ(s) onto both 1(t) and 2(t), but

not onto 3(t).

We note that although Γ(s) affinely projects to both 1(t) and 2(t), the curves 1(t)

and 2(t) are not A(2)-equivalent because their signatures have different implicit equa-

tions.

Example 4.4.3. Given the space curve

Γ(s) =

⎛⎜⎜⎜⎜⎝
z1(s)

z2(s)

z3(s)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
(

1−s2
1+s2

)2

s
1+s2

+ s (1−s2)
(1+s2)2

1−s2
1+s2

⎞⎟⎟⎟⎟⎠ (4.14)

and three plane curves
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1(t) =

(
1− t2

1 + t2
+

(
1− t2

1 + t2

)2

,
2t

1 + t2
+

2t (1− t2)

(1 + t2)2

)
,

2(t) =

(
1− t2

1 + t2
,

2t

1 + t2
+

2t (1− t2)

(1 + t2)2

)
,

3(t) =
(
t2 , t4 + t+ 1

)
.

where 1 is called the Cardioid. The signatures for 1, 2, and 3 and given, respec-

tively, by the following implicit equations:

−21296 i21 + (35640 i2 − 188900) i1 + 1960 i32

−556875 + 258750 i2 − 39300 i22 = 0,

(∗) = 0,

(−210 + 75 i2) i1 + 1190 i2 − 2023− 175 i22 = 0,

where (*) is given by equation (1) of Appendix A. Since the three signatures are different,

no two of these three planar curves are affinely-equivalent. Following our algorithm, there

exists an affine projection taking Γ(s) to 1 since �cf (s) =
(
z1(s)+c z3(s), z2(s)+f z3(s)

)
is affinely-equivalent to 1(t) for c = 1 and f = 0. Also, there exists an affine projection

taking Γ(s) to 2 since �(s) = (z2(s), z3(s)
)

is affinely-equivalent to 2(t). After going

through all three cases in Corollary 4.2.3 we determine there does not exist an affine

projection taking Γ(s) to 3(t).
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Example 4.4.4. Given the space curve

Γ(s) =

⎛⎜⎜⎜⎜⎝
z1(s)

z2(s)

z3(s)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
s

s+ 1
s

s2 + 1

⎞⎟⎟⎟⎟⎠ (4.15)

and three plane curves

1(t) =

(
t ,
t3 + 2 t2 + t+ 2

t

)
,

2(t) =

(
1 + t2

t
,
t3 + t

t

)
,

3(t) =
(
t2 , t4 + t+ 1

)
.

The signatures for 1, 2, and 3 are given, respectively, by the following implicit

equations:

(810 i32 − 19750 i2 − 5100 i22 + 85000) i1 + (9025− 550 i2) i
2
1

+i31 − 15625− 2025 i42 + 62500 i2 − 73750 i22 + 22500 i32 = 0,

1225 i21 + (31360− 6300 i2) i1 + 188356 + 8100 i22 − 78120 i2 = 0,

(−210 + 75 i2) i1 + 1190 i2 − 2023− 175 i22 = 0.

Since the three signatures are different, no two of these three planar curves are affinely-

equivalent. Following our algorithm, there exists an affine projection taking Γ(s) to 1

since �cf (s) =
(
z1(s) + c z3(s), z2(s) + f z3(s)

)
is affinely-equivalent to 1(t) for c = 0

and f = 1. In fact, it is affinely-equivalent for any f ∕= 0. Also, there exists an affine
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projection taking Γ(s) to 2 since �(s) = (z2(s), z3(s)
)

is affinely-equivalent to 2(t).

After going through all three cases in Corollary 4.2.3 we determine there does not exist

an affine projection taking Γ(s) to 3(t).

Example 4.4.5. Given the space curve

Γ(s) = (z1(s), z2(s), z3(s)) =
(
s3, s2, s

)
, s ∈ ℝ,

and three plane curves

1(t) =
(
t2, t

)
, t ∈ ℝ,

2(t) =

(
t3

t+ 1
,

t2

t+ 1

)
, t ∈ ℝ,

3(t) =
(
t, t5

)
, t ∈ ℝ,

determine correspondence under finite projections.

Clearly, Γ(s) projects to 1(t) by the standard finite projection

P 0
f :=

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎦ (4.16)

and to 2(t) by finite projection

P :=

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 1

⎤⎥⎥⎥⎥⎦ . (4.17)
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Note that curves 1 and 2 are not PGℒ(3)-equivalent: 1 parameterizes a parabola

y = x2 and is PGℒ(3)-exceptional, whereas the PGℒ(3)-invariants for 2 are

Jp∣2 =
250047

12800
and Kp∣2 = 0.

Note that an implicit equation for 2 is y2x+ y3−x2 = 0. Following Algorithm 4.3.1,

to determine if Γ(s) projects to 3(t) by a finite camera, we first calculate the PGℒ(3)-

invariants restricted to 3.

Jp∣3 =
1029

128
and Kp∣3 = 0.

We then restrict the PGℒ(3)-invariants to �c1,c2,c3(s) =
(
s3+c1
s+c3

, s
2+c2
s+c3

)
, s ∈ ℝ. J ∣�(c1, c2, c3, s)

and Kp∣�(c1, c2, c3, s) depend on s, c1, c2, and c3. We need to determine if there exist

c1, c2, c3 ∈ ℝ such that

J ∣�(c1, c2, c3, s) = Jp∣3 and Kp∣�(c1, c2, c3, s) = Kp∣3 . (4.18)

By substituting various values of s into equations (4.18) we conclude that there does not

exist c1, c2, c3 ∈ ℝ that satisfy equations (4.18) for all s. Therefore, �c1,c2,c3(s) can not be

PGℒ(3)-equivalent to 3(t), and Γ(s) can not be projected to 3(t) by a finite projection.

Remark 4.4.6. For the curves defined in Example 4.4.5, there does not exist an affine

projection taking Γ to 2. The implicit equation for the A(2)-signature of 2 is given

by equation (2) of Appendix A. By Corollary 4.2.3, if Γ projects to 2 under an affine
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projection then 2 is affinely-equivalent to one of the following curves,

�(s) =
(
s2, s

)
,

�b(s) =
(
s3 + b s2, s

)
,

�cf (s) =
(
s3 + c s, s2 + f s

)
.

�(s) is an affine-exceptional curve, and the signatures for curves of the form of �b(s)

and �cf (s) can be found in Example 3.1.12. By comparing the signatures, we observe that

none of these curves are affinely-equivalent to 2, and, therefore, there does not exist an

affine projection taking Γ to 2.
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Chapter 5

The Projection Problem for Finite

Ordered Sets of Points

In this chapter we assume that objects and images are represented by finite ordered

sets of points in ℝ3 and ℝ2 respectively. In Section 5.2 we introduce the criteria that

reduces the projection problem, for finite and affine projections, to a variation of the

equivalence problem of two ordered sets of r points in ℝ2 under the action of PGℒ(3)

and A(2) groups, respectively. Separating sets of invariants for sets of r ordered points

in ℝ2 under A(2)-action and under PGℒ(3)-action are listed in Chapter 3. In the case

of finite projections, we obtain a system of polynomial equations on c1, c2 and c3 that

have solutions if and only if the given set Z projects to the given set X and the analog

of Algorithm 4.3.1 follows. Affine projections are treated in a similar way.

5.1 Problem Formulation

First, we restate the problem given in Chapter 1.
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Problem 5.1.1. Given an ordered set Z = (z1, . . . , zr) of r points in ℝ3, an ordered

set X = (x1, . . . ,xr) of r points in ℝ2 and a class of projections, when does there exist a

projection from this class taking Z to X?

We use the notation discussed in Section 1.1 and give the following definition.

Definition 5.1.2. Given an ordered set Z = (z1, . . . , zr) of r points in ℝ3 with coordi-

nates zi = (zi1, z
i
2, z

i
3), i = 1 . . . r and given an ordered set X = (x1, . . . ,xr) of r points

in ℝ2 with coordinates xi = (xi, yi) we say Z projects to X if there exits a 3× 4 matrix

P of rank 3 such that

[xi, yi, 1]tr = [P ] [zi1, z
i
2, z

i
3, 1]tr for i = 1 . . . r. (5.1)

Figure 5.1 illustrates that a solution to the projection problem for ordered sets of

points does not, however, provide a solution to the discretization of the projection prob-

lem for curves. Indeed, if Z = (z1, . . . , zm) is a discrete sampling of a curve Γ and

X = (x1, . . . ,xm) is a discrete sampling of , these sets might not be in a correspondence

under a projection even when the curves are related by a projection.

Figure 5.1: Projection problem for curves vs. projection problems for finite ordered sets
of points
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5.2 Projection criteria

The projection criteria of Section 4.2 can be straightforwardly adapted to ordered sets of

points, reducing the projection problem to a variation of the group-equivalence problem

for ordered sets of points in ℝ2. The latter problem can be addressed using a separating

set of invariants discussed in Section 3.2.

5.2.1 Projection of ordered point sets by finite cameras

In this section we address Problem 5.1.1 for the finite camera.

Problem 5.2.1. Given an ordered set Z = (z1, . . . , zr) of r points in ℝ3 and an ordered

set X = (x1, . . . ,xr) of r points in ℝ2 when does there exist a finite projection taking Z

to X?

The finite projection criteria of Theorem 4.2.1 in the case of finite sets of points

reformulates as follows:

Theorem 5.2.2. A given ordered set Z = (z1, . . . , zr) of r points in ℝ3 with coordinates

zi = (zi1, z
i
2, z

i
3), i = 1 . . . r projects onto a given ordered set X = (x1, . . . ,xr) of r

points in ℝ2 with coordinates xi = (xi, yi) if and only if there exist c1, c2, c3 ∈ ℝ and

[A] ∈ PGℒ(3) such that

[xi, yi, 1]tr = [A] [zi1 + c1, z
i
2 + c2, z

i
3 + c3]tr for i = 1 . . . r. (5.2)

Proof. (⇒)Assume there exists a finite projection [P ] such that

[xi, yi, 1]tr = [P ] [zi1, z
i
2, z

i
3, 1]tr for i = 1 . . . r. (5.3)
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It was established in the proof of Proposition 2.3.1 that [P ] = [A] [P 0
f ] [B] for some [A] ∈

PGℒ(3) and [B] ∈ A(3), where B is given by (2.16) for some c1, c2, c3 ∈ ℝ, and P 0
f is the

standard finite projection (2.8). Therefore [xi, yi, 1]tr = [A] [P 0
f ] [B] [zi1, z

i
2, z

i
3, 1]tr for i =

1 . . . r. Since

P 0
f [B][zi1, z

i
2, z

i
3, 1]tr = [zi1 + c1, z

i
2 + c2, z

i
3 + c3]tr for i = 1 . . . r,

[xi, yi, 1]tr = [A] [zi1 + c1, z
i
2 + c2, z

i
3 + c3]tr for i = 1 . . . r. (5.4)

(⇐) To prove the converse direction we assume that there exists [A] ∈ PGℒ(3) and

c1, c2, c3 ∈ ℝ such that

[xi, yi, 1]tr = [A] [zi1 + c1, z
i
2 + c2, z

i
3 + c3]tr for i = 1 . . . r. (5.5)

A direct computation shows that [zi1, z
i
2, z

i
3, 1]tr is projected onto [xi, yi, 1]tr by the finite

projection [P ] = [A] [P 0
f ] [B], where B is given by (2.16) and [P 0

f ] is the standard finite

projection (2.8).

We note that the proof of Theorem 5.2.2 is a straightforward adaptation of the proof

of Theorem 4.2.1.

Theorem 5.2.2 reduces Problem 5.2.1 to a problem of equivalence of ordered sets of

points in the plane under PGℒ(3). We use Theorem 3.2.9 to solve this problem. For

at least 6 points, r ≥ 6, this theorem gives us 2 (r − 4) separating invariants. We can

use the first 6 points to find the 3 unknown parameters c1, c2, c3 ∈ ℝ. We then have to

check 2 (r − 4) equations to determine if two sets are in correspondence under a finite

projection. Finding c1, c2, c3 ∈ ℝ is a straightforward computation.
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Example 5.2.3. Given an ordered set of points in ℝ3, Z = (z1, . . . , z6) with coordinates

z1 =(1, 2,−1), z2 =(0, 2, 0), z3 =(2, 3, 2), z4 =(3, 4, 0), z5 =(1, 5, 1), and z6 =(1, 2, 3),

and given an ordered set of points in ℝ2, X = (x1, . . . ,x6) with coordinates

x1 = (2, 5), x2 = (
1

2
,
5

2
), x3 = (

3

4
,
3

2
), x4 = (2,

7

2
), x5 = (

2

3
,
8

3
), and x6 = (

2

5
, 1),

does there exists an finite projection taking Z to X?

Using Theorem 5.2.2 this is equivalent to deciding whether there exist c1, c2, c3 ∈ ℝ

and [A] ∈ PGℒ(3) such that

[xi, yi, 1]tr = [A] [zi1 + c1, z
i
2 + c2, z

i
3 + c3]tr for i = 1 . . . 6. (5.6)

Let Z̃c1,c2,c3 denote the ordered set of 6 points in ℝ2 with coordinates z̃i = (
zi1+c1
zi3+c3

,
zi2+c2
zi3+c3

).

Using the fundamental set of invariants from Theorem 3.2.9 we pick the first 3 invariants

to solve for c1, c2, c3 ∈ ℝ.

Equalities,

C∣X(1; 2, 3, 4, 5) = C∣Z̃c1,c2,c3 (1; 2, 3, 4, 5),

C∣X(2; 1, 3, 4, 5) = C∣Z̃c1,c2,c3 (2; 1, 3, 4, 5),

C∣X(1; 2, 3, 4, 6) = C∣Z̃c1,c2,c3 (1; 2, 3, 4, 6), (5.7)
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lead to equations on c1, c2, c3 ∈ ℝ;

− (−8 + c3 − 4 c2 + c1) (−13 + c1 + 6 c3 − 4 c2)

(2 c3 + 2 c1 − 6− 3 c2) (14 + 7 c1 − 3 c3 + 2 c2)
− 68

63
= 0, (5.8)

−(−8 + c3 − 4 c2 + c1) (2 c1 + 7 c3 − 6− 3 c2)

5 ((2 c3 + 2 c1 − 6− 3 c2) (−c3 + c1))
− 17

45
= 0, (5.9)

(2 (−8 + c3 − 4 c2 + c1))

2 c3 + 2 c1 − 6− 3 c2

− 34

9
= 0, (5.10)

whose solution is c1 = 1, c2 = 3, and c3 = 2. We substitute these into Z̃c1,c2,c3 to obtain

the set of points

z̃1 = (2, 5), z̃2 = (
1

2
,
5

2
), z̃3 = (

3

4
,
3

2
), z̃4 = (2,

7

2
), z̃5 = (

2

3
,
8

3
), and z̃6 = (

2

5
, 1).

We know that the first 3 invariants are equal for X and Z̃c1,c2,c3 by construction. All

there is left to do is to decide if the remaining separating invariants are the same for X

and Z̃c1,c2,c3. Indeed,

C∣X(2; 1, 3, 4, 6) = C∣Z̃c1,c2,c3 (2; 1, 3, 4, 6) =
731

171
. (5.11)

For c1 = 1, c2 = 3, and c3 = 2, by Theorem 3.2.9, X is equivalent to Z̃c1,c2,c3 under the

action of PGℒ(3), and by Theorem 5.2.2, Z projects onto X with a finite projection.

5.2.2 Projection of ordered point sets by affine cameras

We adapt the affine projection criteria for curves from Theorem 4.2.2 and Corollary 4.2.3

to give a solution to Problem 5.1.1 for affine cameras.

Problem 5.2.4. Given an ordered set Z = (z1, . . . , zr) of r points in ℝ3 and an ordered
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set X = (x1, . . . ,xr) of r points in ℝ2 when does there exist an affine projection taking

Z to X?

For finite sets of ordered points we formulate the following analog of Corollary 4.2.3:

Theorem 5.2.5. A given ordered set Z = (z1, . . . , zr) of r points in ℝ3 with coordinates

zi = (zi1, z
i
2, z

i
3), i = 1 . . . r projects onto a given ordered set X = (x1, . . . ,xr) of r points

in ℝ2 with coordinates xi = (xi, yi) if and only if there exist b, c, f ∈ ℝ and [A] ∈ A(2)

such that at least one of the following relationships hold

[
xi, yi, 1

]tr
= [A] [zi2, z

i
3, 1]tr for i = 1 . . . r, (5.12)[

xi, yi, 1
]tr

= [A] [zi1 + b zi2, z
i
3, 1]tr for i = 1 . . . r, or (5.13)[

xi, yi, 1
]tr

= [A] [zi1 + c zi3, z
i
2 + f zi3, 1]tr for i = 1 . . . r. (5.14)

Again, the proof of Theorem 5.2.5 is a straightforward adaptation of the proofs of

Theorem 4.2.2 and Corollary 4.2.3. Theorem 5.2.5 reduces Problem 5.2.4 to a problem

of A(2)-equivalence of ordered sets of points on the plane. Let,

Z̃ represent the ordered set of r points in ℝ2 with coordinates z̃i = (zi2, z
i
3, ),

Z̃b represent the ordered set of r points in ℝ2 with coordinates z̃i = (zi1 + b zi2, z
i
3) and

Z̃c,f represent the ordered set of r points in ℝ2 with coordinates z̃i = (zi1 +c zi3, z
i
2 +f zi3).

For at least 5 points, r ≥ 5, Theorem 3.2.5 gives us 2 (r − 3) separating invariants.

We only have to use the first 5 points to solve for the 3 unknown potential parameters. If

the sets of r points correspond under an affine projection, then clearly the first 5 points
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must correspond under the same affine projection. From

B∣X(2, 4) = B∣Z̃b(2, 4) (5.15)

B∣X(3, 4) = B∣Z̃b(3, 4) (5.16)

it follows that

b =
A1,2,4C1,3,4 − A1,3,4C1,2,4

A1,3,4D1,2,4 − A1,2,4D1,3,4

. (5.17)

Similarly, from

B∣X(2, 4) = B∣Z̃c,f (2, 4), (5.18)

B∣X(3, 4) = B∣Z̃c,f (3, 4), (5.19)

B∣X(2, 5) = B∣Z̃c,f (2, 5), (5.20)

B∣X(3, 5) = B∣Z̃c,f (3, 5), (5.21)

it follows that

c =
A1,2,5 (C1,3,5B1,2,4 −B1,3,5 C1,2,4) +A1,2,4 (C1,2,5B1,3,5 −B1,2,5 C1,3,5)−A1,3,5 (C1,2,5B1,2,4 −B1,2,5 C1,2,4)

A1,2,5 (D1,2,4 C1,3,5 −D1,3,5 C1,2,4)−A1,3,5 (D1,2,4 C1,2,5 −D1,2,5 C1,2,4) +A1,2,4 (D1,3,5 C1,2,5 −D1,2,5 C1,3,5)
,

f =
A1,2,5 (D1,3,5B1,2,4 −D1,2,4B1,3,5)−A1,3,5 (D1,2,5B1,2,4 −D1,2,4B1,2,5) +A1,2,4 (D1,2,5B1,3,5 −D1,3,5B1,2,5)

A1,2,5 (D1,2,4 C1,3,5 −D1,3,5 C1,2,4)−A1,3,5 (D1,2,4 C1,2,5 −D1,2,5 C1,2,4) +A1,2,4 (D1,3,5 C1,2,5 −D1,2,5 C1,3,5)
,

(5.22)
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where

Ai,j,k = det

∣∣∣∣∣∣∣∣∣∣
xi xj xk

yi yj yk

1 1 1

∣∣∣∣∣∣∣∣∣∣
, Bi,j,k = det

∣∣∣∣∣∣∣∣∣∣
zi1 zj1 zk1

zi2 zj2 zk2

1 1 1

∣∣∣∣∣∣∣∣∣∣
,

Ci,j,k = det

∣∣∣∣∣∣∣∣∣∣
zi1 zj1 zk1

zi3 zj3 zk3

1 1 1

∣∣∣∣∣∣∣∣∣∣
, Di,j,k = det

∣∣∣∣∣∣∣∣∣∣
zi2 zj2 zk2

zi3 zj3 zk3

1 1 1

∣∣∣∣∣∣∣∣∣∣
.

5.3 Algorithms

In this section we write down the algorithms for using Theorems 5.2.2 and 5.2.5 to decide,

for ordered sets of points, the existence of finite and affine projections. We used Maple

to implement the algorithms. They are less complex than the algorithms for curves, and

are linear in the number of equations needed to determine equivalence.

Algorithm 5.3.1. (Finite cameras.)

INPUT: An ordered set X = (x1, . . . ,xr) of r points, with no 3 of x1,x2,x3, ,x4 on the

same line, in ℝ2 with coordinates xi = (xi, yi) and an ordered set Z = (z1, . . . , zr) of r

points in ℝ3 with coordinates zi = (zi1, z
i
2, z

i
3).

OUTPUT: YES or NO answer to the question ”Does Z project onto X with a finite

projection?”.

1. Define the ordered set Z̃c1,c2,c3 = (z̃1, . . . , z̃r) of r points in ℝ2 to have coordinates

z̃i = (
zi1+c1
zi3+c3

,
zi2+c2
zi3+c3

).

2. Compute c1, c2, and c3 using Equations 5.7.
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3. For every pair of area cross-ratios, C(1; 2, 3, 4, k) and C(2; 1, 3, 4, k) given by The-

orem 3.2.9

∙ Compute C∣X(1; 2, 3, 4, k) and C∣X(2; 1, 3, 4, k).

∙ Compute C∣Z̃c1,c2,c3 (1; 2, 3, 4, k) and C∣Z̃c1,c2,c3 (2; 1, 3, 4, k).

∙ If C∣X(i; j, 3, 4, k) ∕= C∣Z̃c1,c2,c3 (i; j, 3, 4, k) then OUTPUT : NO and exit the

procedure.

If C∣X(i; j, 3, 4, k) = C∣Z̃c1,c2,c3 (i; j, 3, 4, k) for every fundamental area cross ratio

then OUTPUT : YES and exit the procedure.

As in Example 5.2.3, this algorithm uses the first 3 invariants to find c1, c2, c3 ∈ ℝ.

Once found, the ordered set of points Z̃ does not depend on unknowns, and we use the

remaining invariants from Theorem 3.2.9 to determine if Z̃ is PGℒ(3)-equivalent to X.

If so, there exists a finite projection taking Z to X.

Algorithm 5.3.2. (Affine cameras.)

INPUT: an ordered set, X = (x1, . . . ,xr), with x1,x2,x3 non-collinear, of r points in ℝ2

with coordinates xi = (xi, yi) and an ordered set Z = (z1, . . . , zr) of r points in ℝ3 with

coordinates zi = (zi1, z
i
2, z

i
3).

OUTPUT: YES or NO answer to the question ”Does Z project onto X with an affine

projection?”.

1. Define an ordered set Z̃ = (z̃1, . . . , z̃r) of r points in ℝ2 with coordinates z̃i =

(zi2, z
i
3).

2. For every fundamental area ratio, B(i, k) given by Theorem 3.2.5 do
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∙ Compute B∣X(i, k), the fundamental simplex area ratio for the set of points

X.

∙ Compute B∣Z̃(i, k), the fundamental area ratio for the set of points Z̃b.

∙ If B∣X(i, k) ∕= B∣Z̃(i, k) then exit the loop and proceed to step 3.

If B∣X(i, k) = B∣Z̃(i, k) for every fundamental area ratio then OUTPUT : YES

and exit the procedure.

3. Define the ordered set Z̃b = (z̃1, . . . , z̃r) of r points in ℝ2 to have coordinates z̃i =

(zi2 + b zi2, z
i
3).

4. Compute b using equation (5.17).

5. For every fundamental simplex area ratio, B(i, k) given by Theorem 3.2.5 do

∙ Compute B∣Z̃b(i, k), the fundamental simplex area ratio for the set of points

Z̃.

∙ If B∣X(i, k) ∕= B∣Z̃b(i, k) then exit the loop and proceed to step 6.

If B∣X(i, k) = B∣Z̃b(i, k) for every fundamental simplex area ratio then OUTPUT :

YES and exit the procedure.

6. Define the ordered set Z̃c,f = (z̃1, . . . , z̃r) of r points in ℝ2 to have coordinates

z̃i = (zi1 + c zi3, z
i
2 + f zi3, ).

7. Compute c and f using equation (5.22).

8. For every fundamental simplex area ratio, B(i, k) given by Theorem 3.2.5 do
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∙ Compute B∣Z̃c,f (i, k), the fundamental simplex area ratio for the set of points

Z̃c,f .

∙ If B∣X(i, k) ∕= B∣Z̃c,f (i, k) then OUTPUT : NO and exit the procedure.

If B∣X(i, k) = B∣Z̃c,f (i, k) for every fundamental simplex area ratio then OUTPUT

: YES and exit the procedure. Else, OUTPUT : NO and exit the procedure.

This algorithm uses equations (5.17) and (5.22) to find b, c, f ∈ ℝ. Once found, the

three ordered sets of points from Theorem 5.2.5 no longer depend on unknowns. We use

Theorem 3.2.5 to determine if one of these 3 ordered sets of points is A(2)-equivalent to

X.

5.4 Examples

To illustrate how the algorithms in Section 5.3 are used we provide the following examples.

Example 5.4.1. Given an ordered set of points in ℝ3, Z = (z1, . . . , z5), where

z1 = (1, 2,−1), z2 = (0, 2, 0), z3 = (2, 3, 2), z4 = (3, 4, 0), and z5 = (1, 5, 1),

and given an ordered set of points in ℝ2, X = (x1, . . . ,x5), where

x1 = (0, 6), x2 = (0, 4), x3 = (4, 2), x4 = (3, 8), and x5 = (2, 8),

does there exists an affine projection taking Z to X?

Following Algorithm 5.3.2 and using Theorem 3.2.5, we first make the following
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calculations:

B∣X(2, 4) =
3

4
,

B∣X(3, 4) =
5

2
,

B∣X(2, 5) =
1

2
,

B∣X(3, 5) = 2.

Defining Z̃ as in step 1, we have z̃1 = (2,−1), z̃2 = (2, 0), z̃3 = (3, 2), z̃4 = (4, 0) and

z̃5 = (5, 1). Computing

B∣Z̃(2, 4) = 2 ∕= 3

4
,

we know that Z̃ is not affinely equivalent to X and proceed to step 3. Define Z̃b with

coordinates z̃1 = (zi1 + b zi2, z
i
3) and use equation (5.17) to calculate b. Determine that

b = 0 and z̃1 = (1,−1), z̃2 = (0, 0), z̃3 = (2, 2), z̃4 = (3, 0), and z̃5 = (1, 1). Computing

B∣Z̃b(2, 4) =
3

4
,

B∣Z̃b(3, 4) =
5

4
∕= 5

2
,

we know that Z̃b is not affinely equivalent to X and proceed to step 6. Define Z̃c,f with co-

ordinates z̃1 = (zi1+c zi3, z
i
2+f zi3) and use equation (5.22) to calculate c and f . Determine

that c = 1, f = −1, and z̃1 = (0, 3), z̃2 = (0, 2), z̃3 = (4, 1), z̃4 = (3, 4), and z̃5 = (2, 4).
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Computing

B∣Z̃c,f (2, 4) =
3

4
,

B∣Z̃c,f (3, 4) =
5

2
,

B∣Z̃c,f (2, 4) =
1

2
,

B∣Z̃c,f (3, 4) = 2,

we observe that Z̃c,f is affinely equivalent to X, and therefore, there exists an affine

projection taking Z to X.

Example 5.4.2. Given an ordered set of points in ℝ3, Z = (z1, . . . , z5) where

z1 = (1, 2,−1), z2 = (0, 2, 0), z3 = (2, 3, 2), z4 = (3, 4, 0), and z5 = (1, 5, 1),

and given an ordered set of points in ℝ2, X = (x1, . . . , x5)

wℎere x1 = (−3, 0), x2 = (2, 2), x3 = (6, 1), x4 = (4, 1), and x5 = (3, 2)

does there exists an affine projection taking Z to X?

Following Algorithm 5.3.2 and using Theorem 3.2.5, we first make the following
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calculations:

B∣X(2, 4) =
9

13
,

B∣X(3, 4) = − 2

13
,

B∣X(2, 5) =
2

13
,

B∣X(3, 5) = −12

13
.

Defining Z̃ as in step 1, we have z̃1 = (2,−1), z̃2 = (2, 0), z̃3 = (3, 2), z̃4 = (4, 0) and

z̃5 = (5, 1). Computing

B∣Z̃(2, 4) = 2 ∕= 9

13
,

we know that Z̃ is not affinely equivalent to X and proceed to step 3. Define Z̃b with

coordinates z̃1 = (zi1 + b zi2, z
i
3) and use equation (5.17) to calculate b. Determine that

b = −12
23

and z̃1 = (− 1
23
,−1), z̃2 = (−24

23
, 0), z̃3 = (10

23
, 2), z̃4 = (21

23
, 0), and z̃5 = (−37

23
, 1).

Computing

B∣Z̃b(2, 4) =
1

2
∕= 9

13
,

we know that Z̃b is not affinely equivalent to X and proceed to step 6. Define Z̃c,f with

coordinates z̃1 = (zi1 + c zi3, z
i
2 + f zi3) and use equation (5.22) to calculate c and f .

Determine that c = −5
7
, f = −23

7
, and z̃1 = (12

7
, 37

7
), z̃2 = (0, 2), z̃3 = (4

7
,−25

7
), z̃4 =

(3, 4), and z̃5 = (2
7
, 12

7
). Computing

B∣Z̃c,f (2, 4) =
1

2
∕= 9

13
,
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we observe that Z̃c,f is not affinely equivalent to X, and therefore, there DOES NOT

exists an affine projection taking Z to X.

Example 5.4.3. Given an ordered set of points in ℝ3, Z = (z1, . . . , z6) with coordinates

z1 = (1, 2,−1), z2 = (0, 2, 0), z3 = (2, 3, 2), z4 = (3, 4, 0), z5 = (1, 5, 1), and z6 = (1, 2, 3),

and given an ordered set of points in ℝ2, X = (x1, . . . ,x6) with coordinates

x1 = (2, 5) , x2 =

(
1

2
,
5

2

)
, x3 =

(
1,

3

2

)
, x4 =

(
2,

7

2

)
, x5 =

(
2

3
,
8

3

)
, and x6 =

(
2

5
, 1

)
,

does there exists an finite projection taking Z to X?

Using Theorem 5.2.2 this is equivalent to deciding whether there exist c1, c2, c3 ∈ ℝ

and [A] ∈ PGℒ(3) such that

[xi, yi, 1]tr = [A] [zi1 + c1, z
i
2 + c2, z

i
3 + c3]tr for i = 1 . . . 6. (5.23)

Let Z̃c1,c2,c3 denote the ordered set of 6 points in ℝ2 with coordinates z̃i = (
zi1+c1
zi3+c3

,
zi2+c2
zi3+c3

).

Using the fundamental set of invariants from Theorem 3.2.9 we pick the first 3 invariants

to solve for c1, c2, c3 ∈ ℝ.

Equalities,

C∣X(1; 2, 3, 4, 5) = C∣Z̃c1,c2,c3 (1; 2, 3, 4, 5),

C∣X(2; 1, 3, 4, 5) = C∣Z̃c1,c2,c3 (2; 1, 3, 4, 5),

C∣X(1; 2, 3, 4, 6) = C∣Z̃c1,c2,c3 (1; 2, 3, 4, 6), (5.24)
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lead to equations on c1, c2, c3 ∈ ℝ;

(8− c3 + 4 c2 − c1) (−13 + c1 + 6 c3 − 4 c2)

(2 c3 + 2 c1 − 6− 3 c2) (14 + 7 c1 − 3 c3 + 2 c2)
− 22

21
= 0, (5.25)

(8− c3 + 4 c2 − c1) (2 c1 + 7 c3 − 6− 3 c2)

5 (2 c3 + 2 c1 − 6− 3 c2) (−c3 + c1)
− 11

27
= 0, (5.26)

2 (−8 + c3 − 4 c2 + c1)

(2 c3 + 2 c1 − 6− 3 c2)
− 11

6
= 0, (5.27)

whose solution is c1 = −549
575
, c2 = −224

115
, and c3 = 504

575
. We substitute these into Z̃c1,c2,c3

to obtain the set of points

z̃1 =

(
−26

71
,−30

71

)
, z̃2 =

(
−61

56
,

5

84

)
, z̃3 =

(
601

1654
,

605

1654

)
, z̃4 =

(
7

3
,
295

126

)
,

z̃5 =

(
2

83
,
135

83

)
, and z̃6 =

(
26

2229
,

10

743

)
.

By construction, we know that the first 3 invariants are equal for X and Z̃c1,c2,c3. All

there is left to do is to decide if the remaining separating invariants are the same for X

and Z̃c1,c2,c3. This is not the case;

C∣X(2; 1, 3, 4, 6) =
273

153
∕= 731

171
= C∣Z̃c1,c2,c3 (2; 1, 3, 4, 6). (5.28)

By Theorem 3.2.9, X is not equivalent to Z̃c1,c2,c3 under the action of PGℒ(3), and by

Theorem 5.2.2, Z DOES NOT project onto X with a finite projection.
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5.5 Comparison with previous works

In [2, 1] the authors present a solution to this problem for the class of affine projections,

without finding a projection explicitly. These papers refer to affine projections as Gen-

eralized Weak Perspective Projections. They identify the sets of points, Z = (z1, . . . , zr),

in ℝ3 and sets of points, X = (x1, . . . ,xr), in ℝ2 as elements of certain Grassmanian

spaces. They use the Plüker embedding to embed Grassmanians into projective spaces,

and to explicitly define the algebraic variety that characterizes object-image pairs that

can be related by an affine projection. We review the solution given in [2, 1].

Given an ordered set Z = (z1, . . . , zr) of r points in ℝ3 and an ordered set X =

(x1, . . . ,xr) of r points in ℝ2, define

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

z1
1 z2

1 . . . zr1

z1
2 z2

2 . . . zr2

z1
3 z2

3 . . . zr3

1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, N =

⎛⎜⎜⎜⎜⎝
x1

1 x2
1 . . . xr1

x1
2 x2

2 . . . xr2

1 1 . . . 1

⎞⎟⎟⎟⎟⎠ . (5.29)

The following proposition shows that the kernels of the above matrices represent the

sets Z and X up to affine transformations.

Proposition 5.5.1. If M1 and M2 are two (n + 1) × r matrices with the last row all

ones, the ker(M1) = ker(M2) if and only if M1 = AM2 for some A ∈ A(n).

Proof. Clearly, if M1 = AM2 then ker(M1) = ker(M2). If ker(M1) = ker(M2), then the

row space of M1 is also the row space of M2 because the kernel is the orthogonal compli-

ment to the row space. Therefore, the rows of M2 can be written as linear combinations

of rows of M1, and hence, M1 = AM2 for some A ∈ A(n).
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From Proposition 5.5.1, the affine equivalence classes of ordered sets of points Z and

X can be uniquely represented by the kernels of the matrices they create. The kernels

are subspaces of ℝr, and can be identified with points in Grassmanian spaces. Since the

last row of both M and N consists of all ones, the

ker(M), ker(N) ⊂ Hr−1 := {(a1, . . . , ar) ∈ ℝr∣
r∑
i=1

ai = 0}. (5.30)

Hr−1 is an (r − 1)-dimensional space containing both ker(M) and ker(N). Assume

non-collinearity for the points in ℝ2 and non-coplanarity for the points in ℝ3. By this

assumption, M and N are full rank. By identifying a basis for Hr−1, one can view ker(M)

and ker(N) as points of r − 4 and r − 3 Grassmannians of Hr−1, respectively;

ker(M) ∈ Grass(r − 4, Hr−1) and ker(N) ∈ Grass(r − 3, Hr−1).

As discussed in Section 1.1 the Plücker embedding maps elements of a Grassmannian

to projective space. The image of the Plücker embedding is a projective variety. The

vanishing ideal is generated by a system of quadratic polynomials known as the Plücker

relation.

Proposition 5.5.2. The ordered set of points, Z, in ℝ3 projects to the ordered set of

points, X, in ℝ2 with an affine projection if and only if

ker(M) ⊂ ker(N) ⊂ Hr−1 ⊂ ℝr. (5.31)

Using this proposition and Plücker relations discussed in Section 1.1, the following

projection criteria can be derived.
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Chapter 5. The Projection Problem for Finite Ordered Sets of Points

Theorem 5.5.3. For Z, X, M and N as above. For 1 ≤ i1 < i2 < i3 < i4 ≤ r and

1 ≤ j1 < j2 < j3 ≤ r define

mi1,i2,i3,i4 = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

zi11 zi21 zi31 zi41

zi12 zi22 zi32 zi42

zi13 zi23 zi33 zi43

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and nj1,j2,j3 = det

⎛⎜⎜⎜⎜⎝
xj11 xj21 xj31

xj12 xj22 xj32

1 1 1

⎞⎟⎟⎟⎟⎠ .

Then X is an ordered image of Z under an affine projection if and only if

∑
1≤�1<�2≤r

��1,�2m�1,�2,�1,�2n123 = 0 (5.32)

for all choices of 1 ≤ �1 < �2 ≤ r and all choices of 1 ≤ �1 < �2 < . . . < �r−5 ≤ r where

1 ≤ 1 ≤ 2 ≤ 3 ≤ r, {�1, �2, �1, . . . , �r−5, 1, 2, 3} = {1, . . . , r} and ��1,�2 is the sign

of the permutation of (1, 2, 3, �1, �2, �1, . . . , �r−5).

In the case of 5 points, the projection criteria from Theorem 5.5.3 is given by the

following system of 10 equations.

Example 5.5.4. Given an ordered set Z = (z1, z2, z3, z4, z5) of points in ℝ3 and an

ordered set X = (x1,x2,x3,x4,x5) of points in ℝ2 an affine projection takes Z to X if

and only if

m1,2,3,4 n1,2,5 −m1,2,3,5 n1,2,4 +m1,2,4,5 n1,2,3 = 0,

m1,2,3,4 n1,3,5 −m1,2,3,5 n1,3,4 +m1,3,4,5 n1,2,3 = 0,

m1,2,3,4 n1,4,5 −m1,2,4,5 n1,3,4 +m1,3,4,5 n1,2,4 = 0,

m1,2,3,5 n1,4,5 −m1,2,4,5 n1,3,5 +m1,3,4,5 n1,2,5 = 0,
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m1,2,3,4 n2,3,5 −m1,2,3,5 n2,3,4 +m2,3,4,5 n1,2,3 = 0,

m1,2,3,4 n2,4,5 −m1,2,4,5 n2,3,4 +m2,3,4,5 n1,2,4 = 0,

m1,2,3,5 n2,4,5 −m1,2,4,5 n2,3,5 +m2,3,4,5 n1,2,5 = 0,

m1,2,3,4 n3,4,5 −m1,3,4,5 n2,3,4 +m2,3,4,5 n1,3,4 = 0,

m1,2,3,5 n3,4,5 −m1,3,4,5 n2,3,5 +m2,3,4,5 n1,3,5 = 0,

m1,2,4,5 n3,4,5 −m1,3,4,5 n2,4,5 +m2,3,4,5 n1,4,5 = 0. (5.33)

For r points system 5.32 consists of
(
r
r−2

) (
r−2
r−5

)
= r (r−1)...(r−4)

12
equations. In com-

parison, from Theorem 5.2.5 of this thesis only r (r − 3) equations must be satisfied to

establish existence of an affine projection between sets Z and X. For large r the differ-

ence is significant (see Table 5.5), and thus the algorithm based on Theorem 5.2.5 may

have a practical advantage.

Table 5.1: Comparison of Methods

Number of Equations to Check
Number of Points Current Approach Arnold and Stiller [1]
5 4 10
10 14 2520
100 194 752875200

r 2 (r − 3) r (r−1)...(r−4)
12

One of the essential contributions of [2, 1] is the definition of an object/image distance

between ordered sets of r points in ℝ3 and ℝ2 such that the distance is zero if and only

if these sets are related by a projection. Obtaining an object-image metric based on the

criteria developed in this thesis is one of our future goals.
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Chapter 6

Conclusions and Future Work

The projection criteria developed in Chapter 4 for curves and Chapter 5 for points reduce

the object-image correspondence problems to variations of group-equivalence problems

in ℝ2. For curves, we use differential signature construction [5] to address the group-

equivalence problem. In practical applications, curves are often represented by samples

of points. In this case, invariant numerical approximations of differential invariants pre-

sented in [5, 3] may be used to obtain signatures. Differential invariants and their approx-

imations are highly sensitive to image perturbations and, therefore, are not practical in

many situations. Other types of invariants, such as semi-differential (or joint) invariants

[29, 22], integral invariants [27, 13, 11] and moment invariants [15] are less sensitive to

image perturbations and may be employed to solve the group-equivalence problem. One

future project is to develop variations of Algorithm 4.3.1 and its affine counterpart that

are based on alternative solutions of the group-equivalence problem.

For finite ordered sets of points, we use the separating invariants discussed in [22]

and Section 3.2 to address the group-equivalence problem on the plane. Our projection

criteria do not account for image perturbations or inexact positions of points. In practice
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we are only given an approximate position of points. A “good” object/image distance

provides a tool for deciding whether a given set of points in ℝ2 is a good approximation

of some projection of a given set of points in ℝ3. In [2, 1], such a distance is given for

affine projections of finite ordered sets of points. Defining such object/image distance

based on the projection criteria given in this thesis for curves and points under finite and

affine projections is an important direction of further research. As pointed out in [2],

determining what locally continuous surface could have been projected to a given set of

points on the plane also remains open.

Although the projection algorithms presented here may not be immediately applica-

ble to real-life images, we consider this work to be a first step toward the development

of more efficient algorithms to determine projection correspondence for curves and other

continuous objects. An algorithmic solution to this problem, for classes of projections

with large degrees of freedom, does not seem to appear in the literature. We also consider

this thesis to be a good addition to the the work done in [2, 1] on projection correspon-

dence of finite ordered sets of points.
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APPENDIX A

The missing signature in Example 4.4.3.

− 5030912 i71 + (−5940251520 i2 + 151925420675)i61 + (30636630990000 + 1861338396750 i2

− 10638397440 i32 − 38468841600 i22)i
5
1 + (422436606250 i32 − 14727073554375 i22

− 216957629137500 i2 − 217263340800 i42 + 1112560285921875)i41 + (17624874881250000

− 39010642600000 i32 + 1187479883250000 i22 + 40479436800 i62 + 1373185440000 i52

− 8403282904218750 i2 − 3436007880000 i42)i
3
1 + (34434326738671875 i22

− 108767888437500000 i2 − 5868698027343750 i32 + 143469615761718750 + 562755420187500 i42

+ 791528760000 i62 − 303595776000 i72 − 26046416850000 i52)i
2
1 + (−14048100000000 i72

− 85526942238281250 i32 + 16256399934375000 i42 + 192765985000000 i62 − 2087189006250000 i52

− 610997087988281250 i2 + 592675576171875000 + 758989440000 i82 + 294121178789062500 i22)i1

− 330778550390625000 i32 + 990472686767578125 + 817322075683593750 i22

+ 2711566100000000 i62 − 632491200000 i92 + 18242928000000 i82 − 18680146558593750 i52

− 1277944475097656250 i2 + 92753599658203125 i42 − 276624382500000 i72

= 0 (1)

The affine signature of 2 in Remark 4.4.6.

− 13824 i51 + (112320 i2 − 582525) i41 + (−8910000 + 2560 i32 − 360000 i22 + 3510000 i2) i
3
1

− 1200 (16 i22 − 465 i2 + 2025) (i2 − 5)2 i21 + 24000 (2 i2 − 15) (i2 − 5)4 i1 − 40000 (i2 − 5)6

= 0 (2)
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APPENDIX B

The functions in the numerators and denominators of the invariants in Example 3.1.12.

N1(t) = 400 (2 (b3 a2 − b2 a3) t+ b3 a1 − b1 a3)2 ((b3 a2 − b2 a3)2 t2 + ((b3 a2 − b2 a3)(b3 a1 − b1 a3)) t

− 2 (b3 a1 − a3 b1)2 + 3 (b3 a2 − a3 b2) (a1 b2 − a2 b1)

N2(t) = 280 (b3 a2 − b2 a3)4 t4 + 560(b3 a2 − b2 a3)3 (b3 a1 − b1 a3) t3

− 140 (b3 a2 − b2 a3)(8 (a3 b2 − b3 a2) (−b1 a2 + b2 a1) + 3 (−a3 b1 + b3 a1)2) t2

+ 140 (b2 a3 − b3 a2)(b3 a1 − b1 a3) (5 (−a3 b1 + b3 a1)2 + 8 (a3 b2 − b3 a2) (−b1 a2 + b2 a1)) t

35 (−(b3 a1 − a3 b1)4 − 4 (b3 a2 − a3 b2) (a1 b2 − a2 b1) ((b3 a1 − a3 b1)2 − 2 (b3 a2 − a3 b2) (a1 b2 − a2 b1)))

D(t) = 4 (b3 a2 − b2 a3)2 t2 + 4 (b3 a2 − b2 a3)(b3 a1 − b1 a3) t− 5 (−a3 b1 + b3 a1)2 + 8 (a3 b2 − b3 a2) (b1 a2 − b2 a1)

(3)
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