
ABSTRACT

HAUGH, JANINE M. Mathematical Modeling of Cartilage Regeneration in Cell-
Seeded Scaffolds. (Under the direction of Dr. Mansoor Haider).

Articular cartilage is the hydrated orthopaedic soft tissue lining the surfaces of

bones in diarthrodial joints such as the knee, shoulder and hip. Cartilage degeneration

due to osteoarthritis or injury can lead to osteochondral defects in the cartilage layer.

Tissue engineering applications based on chondrocyte-biomaterial systems have the

potential to regenerate cartilage in a controlled environment, but the optimal combi-

nation of diverse factors required to successfully regenerate articular cartilage is not

known. Two approaches to mathematical modeling of articular cartilage regeneration

in cell-seeded scaffold materials are presented.

First, a spatio-temporal PDE model that combines a level set approach with a sys-

tem of reaction-diffusion equations is developed for modeling the local environment

of a single chondrocyte in a scaffold material. This approach accounts for spatial

variability in hydrogel scaffold density and degradation, and the associated changes

in diffusivities through the scaffold and regenerated extracellular matrix (ECM). The

diffusive quantities considered are nutrients and newly synthesized matrix, and the

creation of linked ECM is represented by an evolving gel-tissue interface. The model

is nondimensionalized and solutions are computed numerically via finite difference

methods. A parametric analysis is performed to quantify the effects of model param-

eters on a regeneration time for a targeted volume of regenerated ECM. A possible

model simplification is also presented, where the nutrient concentration is assumed

to remain constant.



Second, a phenomenological ODE model that differentiates the ECM into its col-

lagen and glycosaminoglycan (GAG) constituents, as well as the linked and unlinked

components of each is developed. This model is calibrated using experimental data

by way of a nonlinear least squares approach, and a parametric analysis to quantify

the effects of model parameters on a regeneration time for a targeted value of linked

ECM is performed. For both modeling approaches, results focus on characterizing the

relationships between scaffold design and regeneration times for accumulation of cell-

synthesized ECM to aid in cartilage regeneration optimization in tissue engineering

applications for chondrocyte-biomaterial systems.
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N̄H . (b) The case N̄H = 10, for which Tregen = 44.1 days. Successive curves
advance upwards at intervals of 6 days. (c) The case N̄H = 15, for which
Tregen = 22.5 days. Successive curves advance upwards at intervals of 3 days.
(d) The case N̄H = 20, for which Tregen = 15.2 days. Successive curves advance
upwards at intervals of 2 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.7 (a) A plot of regenerated volume fraction ṼECM(t̄) for three values of
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Chapter 1

Introduction and Background

1.1 Articular Cartilage

Articular cartilage is a soft, hydrated connective tissue which lines the surfaces

of bones in diarthrodial joints such as knees (Figure 1.1(a)), hips, and shoulders.

The functional role of cartilage is to provide load support, energy dissipation, and

lubrication within these joints [33]. It is a multiphasic tissue that is comprised of

roughly 80% water (by volume) saturating a solid extracellular matrix (ECM), and

is able to withstand high compressive stresses over the course of several decades [19].

The tissue is avascular (no blood vessels), aneural (no nerve endings), and has a

limited capacity for self-repair and growth [33]. Cartilage is interspersed with cells,

called chondrocytes, that are sparsely distributed throughout the tissue’s extracellular

matrix (Figure 1.1(b)) [4].

1.1.1 Chondrocytes

Chondrocytes occupy between roughly 1-10% of the mixture volume of articular

cartilage, but are crucial to maintaining the overall health of the joint. These unique

cells are responsible for regulating homeostasis in the tissue and repairing the ECM

constituents when alterations are detected in the local extracellular environment [34].

For example, in cell-biomaterial systems it has been observed that the rate for cellular
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biosynthesis of ECM constituents slows down as ECM accumulation progresses [5, 11].

1.1.2 Extracellular Matrix

The extracellular environment in articular cartilage can be viewed as a biphasic

(fluid-solid) continuum mixture that is comprised mostly of interstitial fluid with

dissolved ions (≈75-80% by wet weight). The remaining (solid) phase consists of a

cross-linked network of collagen fibers (mostly type II, ≈60% by dry weight) and

proteoglycan macromolecules (≈25-35% by dry weight) (Figure 1.2) that give rise to

a net negative fixed charge density in the tissue [4].

The ECM contributes to load support though a combination of strain in the

solid phase and pressurization of the interstitial fluid. The ECM also protects the

chondrocytes from damage due to the effects of joint loading, in part, via a specialized

ECM region called the pericellular matrix that encapsulates these cells, individually

or in small groups [19]. Additionally, the ECM can regulate the behavior of the

chondrocytes through binding of ECM receptors, and binding and release of soluble

mediators and growth factors like transforming growth factor (TGF) β [36].

1.2 Cartilage Damage

Each year, millions of Americans experience the debilitating effects of articular

cartilage damage caused by trauma, injury, and degenerative diseases such as os-

teoarthritis. In particular, osteoarthritis has symptoms such as joint pain and restric-

tion of motion that significantly impact quality of life [4]. Aging can cause degradation

in the composition of extracellular matrix and chondrocyte biosynthetic activity, and

a decrease in proteoglycan density. As a result, a loss of tissue structure and mechani-

cal integrity has been observed in diarthrodial joints. The risk of osteoarthritis is said

to greatly increase beginning at age 40 [17] and affects about 70% of people over the

age of 65 [18]. Repetitive high impact movement and loading in certain sports can

result in injury, and continuing these activities with undiagnosed injury also increases
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risk of degenerative diseases [4].

Osteoarthritis involves all of the tissues that form the synovial joint, but most

severely affects the articular cartilage. A decrease in proteoglycan concentration and

aggregation causes a decrease in tissue stiffness. Water content increases due to

increased permeability, further decreasing tissue resiliency. The load on the collagen

fibrils and proteoglycans increases, and chondrocytes could be injured as a result. As

the disease progresses, the cartilage begins to erode and deteriorate beyond the point

of self-repair (Figure 1.3) [4].

Cartilage

(a)

Surface

Chondrocytes

Bone
(b)

Figure 1.1: (a) Articular cartilage is a translucent orthopaedic soft tissue that lines

the surfaces of bones in diarthrodial joints, such as the knee. (b) Cross-section of a

layer of articular cartilage, indicating the presence of sparsely distributed cells, called

chondrocytes, which monitor and maintain the extracellular matrix. (Reprinted from

Osteoarthritis and Cartilage, 2/2, Farshid Guilak, B. Christoph Meyer, Anthony Rat-

cliffe and Van C. Mow, The effects of matrix compression on proteoglycan metabolism

in articular cartilage explants, 91-101, Copyright (1994), with permission from Else-

vier.)
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Collagen
    fibril

GAG

Proteoglycan

Hyaluronic acid

{

Interstitial water

Figure 1.2: The extracellular matrix of articular cartilage is a cross-linked network of

collagen and proteoglycans, and is saturated with interstitial fluid containing water

and dissolved ions.

Normal

(a)

Early Disease

(b)

Late Disease

(c)

Figure 1.3: (a) Healthy articular cartilage in which the red-purple staining indicates

the presence of proteoglycans. (b) In the early stages of osteoarthritis, proteoglycan

content decreases and initiates structural degradation of the extracellular matrix. (c)

In later stages of osteoarthritis, the tissue becomes less resilient and degrades beyond

a point where is has the ability to repair itself. (Photos courtesy of Dr. Lori Setton,

Duke University, Cartilage Mechanics and Tissue Engineering Laboratory.
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1.3 Tissue Engineering for Cartilage Regeneration

The debilitating effects of osteoarthritis affect a large portion of the population.

Consequently, research on tissue engineering for cartilage repair and regeneration has

seen great interest in the past few decades. Developing tissue engineering strategies

that preserve the unique and complex properties of native articular cartilage proves

to be a difficult task for biomedical researchers [18]. According to O’Driscoll [25],

the treatment options for damaged cartilage include “the four r’s”: restoration, re-

placement, relief, and resection. Cartilage regeneration, which falls under the first

category of restoration, has seen many developments in recent years and will be the

focus of this work.

Chondrocytes can be cultured or seeded into biodegradable and biocompatible

polymer or hydrogel scaffolds to aid in cartilage regeneration. The scaffolds provide

the needed support and framework for the cells to proliferate and/or recognize and

initiate the process of repair or regeneration of ECM. As the synthesis and accumula-

tion of ECM constituents progress, the scaffold slowly degrades [12]. To be successful,

the new tissue must be able to integrate, both structurally and functionally, with the

surrounding cartilage either by grafting of engineered tissue in vitro into defect sites,

or by way of tissue engineering strategies that can be applied in situ within the defect

regions. Many types of scaffolds are being studied for this purpose, including collagen-

based, polyglycolic acid (PGA), polylactic acid (PLA), fibrin, alginate, agarose, and

polyethlene oxide [13].

In Figure 1.4, an example of an in situ cartilage regeneration experiment is shown.

Nettles et al. [21, 22] used an injectable crosslinkable elastin-like polypeptide (ELP)

gel to fill osteochondral defects in goats (a). Chondrocytes were mixed with ELP

solution and cultured into gelatinous cylindrical molds (b). Via customizable design

of the ELP polymer, this solution can be tailored to exhibit a phase transition from

a liquid to a gelatinous solid phase near physiological temperature (c). This tissue

engineering strategy allows the gelling to occur in situ to properly fill the defect

with a stable and well-integrated scaffold (d). While many positive results were
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observed with this methodology, more work is needed to optimize the ELP design and

formulation process to, for example, slow down the degradation rate of the scaffold

[21, 22].

As Nettles et al. [21, 22] observed, the development of tissue engineering strategies

for cartilage regeneration depends on a diverse array of factors that require detailed

analysis and optimization to achieve targeted functional outcomes in the engineered

tissue. In applications involving cell-seeded scaffolds, there are numerous factors that

can be varied to alter outcomes. Some experiments expose the cells to a highly

dynamic environment, such as those in rotating bioreactors. Others are more static

in their nature and involve culturing or seeding cells into a scaffold material and

allowing the cell-biomaterial system to evolve under sustained exposure to nutrients

and/or growth factors such as TGF-β [28, 36]. The scaffolds themselves can be made

of many different materials with numerous porosities or cross-linking densities, and

they will not all degrade at the same rate. Chondrocyte seeding densities, rates

of cell proliferation, and effects due to osmotic loading are all examples of factors

that can play a role in affecting the resulting functional outcomes. Such outcomes

also depend on transport and utilization of nutrients, cellular biosynthesis of ECM

constituents, and the associated diffusivities of these components of the system. Given

the large number of parameters and the diverse set of interacting mechanisms at play,

mathematical models to quantify the importance of these mechanisms and predict

the outcome of experiments could prove to be extremely beneficial for eliminating (or

minimizing) trial and error and optimizing the scaffold design process [32].
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(a) (b)

(c) (d)

Figure 1.4: (a) An osteochondral defect prior to repair. (b) Chondrocytes and elastin-

like polypeptide (ELP) are mixed into a solution. (c) Tailored design of the ELPs

enable a phase transition forming a gel near physiological temperatures. (d) An os-

teochondral defect filled with the cell-biomaterial scaffold based on the combination

of ELP hydrogels with articular chondrocytes. (Reprinted from Tissue Engineering

Part A, 15/8, Dana L. Nettles, Ashutosh Cilkoti, and Lori A. Setton, Early metabolite

levels predict long-term matrix accumulation for chondrocytes in elastin-like polypep-

tide biopolymer scaffolds, 2113-2121, Copyright (2009), with permission from Mary

Ann Liebert, Inc.)
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1.4 Models for Cartilage Regeneration

1.4.1 Statio-Temporal (PDE) Models

Many of the mathematical models that have been developed for cartilage regener-

ation applications are based on the use of partial differential equations [1, 2, 3, 6, 7, 8,

9, 14, 23, 24, 27, 31, 35]. An advantage of these models is their formulation in terms of

physically meaningful parameters, many of which can be determined from associated

experiments. For example, mechanisms such as diffusion are modeled explicitly, and

diffusivities for various solute types and sizes are known or can be measured [15, 16].

Structural properties of cartilage ECM vary spatially, both with respect to depth

within the cartilage layer, and in proximity to the chondrocytes. Biphasic continuum

variables such as stress, strain, and osmotic pressure vary spatially as well [19]. Any

subset of these mechanisms and variables can be used to develop models of cartilage

regeneration based on the specific mechanisms or interactions of interest.

Bachrach et al. [3] used a biphasic model to study how mechanical changes in the

environment of a chondrocyte affect proteoglycan synthesis. Their model was able

to analyze how stress, strain, pressure, and flow in the surrounding tissue evolved

with cellular biosynthesis of ECM proteoglycans. Galban and Locke [7, 8, 9] took a

different approach and developed models for chondrocyte growth and nutrient con-

sumption. Reaction-diffusion models were employed, and cell growth was determined

by a moving boundary. They later extended this model to use volume-averaging

methods to study cell growth and effective diffusion profiles.

DiMicco and Sah [6] developed a one-dimensional continuum model to describe

the relationships between matrix formation, binding, degradation, and diffusion by

separating the matrix into three categories: soluble, bound, and degraded. Parame-

ters were interpreted from the literature, and the resulting steady-state solution was

spatially averaged for comparison with a single compartment model.

Obradovic et al. [24] isolated chondrocytes from bovine calf articular cartilage,

seeded them onto fibrous, biodegradable PGA scaffolds, and cultured them in ro-
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tating bioreactors. They used reaction-diffusion equations and Michaelis-Menten ki-

netics to model oxygen transport and consumption, and used similar equations to

model GAG production, degradation, transport, and deposition within a cylindrical

construct. Nikolaev et al. [23] later extended this work under the assumption that

newly synthesized proteoglycan, or “unbound GAG”, diffuses freely and is considered

separately from “bound GAG”, similar to DiMicco and Sah [6]. Tissue growth in this

model was quantified by the amount of bound GAG accumulation, or proteoglycan

aggregation.

Sengers et al. [31] focused on nutrient utilization of chondrocytes by developing

models for oxygen, glucose, and lactate diffusion and consumption. Pisu et al. [27]

employed reaction-diffusion equations to model oxygen, GAG, and collagen concen-

trations in a static system, which they validated against data for multiple types of

scaffolds, including PGA, PGA/poly L-lactic acid (PLLA), and collagen sponge. Al-

bro et al. [1] investigated the effects of osmotic loading on spherical gels in order to

draw conclusions about chondrocyte response. Kohles, Wilson, and Bonassar [14]

employed a composite spheres model to determine biomechanical and biochemical

behavior at the cellular level for chondrocytes seeded in PGA/PLLA scaffolds.

More recently, Ateshian et al. [2] developed a continuum model which addresses

cell division, effects of osmotic loading, tissue growth, fixed charge density, cell volume

regulation, and other effects within a continuum mixture theory framework. Also,

Trewanek et al. [35] developed a continuum model for soluble matrix components,

bound matrix components, and remaining scaffold material.

1.4.2 Phenomenological (ODE) Models

A challenge in application of the aforementioned PDE models is the difficulty in

obtaining spatial data in cell-biomaterial systems. In addition, cartilage regeneration

occurs on time scales that span many weeks to several months. As a result, many ex-

perimentalists have measured only scalar system variables such as scaffold or collagen

dry mass at a small number of time points. Consequently, a mathematical modeling
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approach based on ordinary differential equations (ODEs) appears to be a natural

choice for analysis of dynamic evolution of these system variables.

However, to date, significantly less work has been done with ordinary differential

equation models. Wilson et al. [38] developed models for scaffold degradation, ECM

production (differentiating between GAG and collagen), and the resulting total mass

of the construct. These models were then fitted to and validated against multiple sets

of data. Although the models were incredibly simple, they did fit reasonably well to

the data. Saha et al. [30] then extended this model to include the impact of growth

factors using stochastic methods. Vunjak-Novakovic et al. [37] used a dynamic model

to investigate ways to optimize seeding conditions.

In the chapters that follow, both the PDE and ODE approaches for modeling car-

tilage regeneration in cell-seeded scaffold materials will be examined. First, a PDE

model that combines a level set approach with a system of reaction-diffusion equa-

tions is developed for the local environment of a single chondrocyte. This approach

accounts for spatial variability in hydrogel scaffold density and degradation, and the

associated changes in diffusivities through the scaffold and regenerated ECM. Second,

a phenomenological ODE model extending the work of Wilson et al. [38] is developed.

This model differentiates the ECM into its collagen and GAG constituents, and also

into the linked and unlinked components of each. For both approaches, results focus

on characterizing the relationships between scaffold design and regeneration times for

accumulation of cell-synthesized ECM to aid in cartilage regeneration optimization

in tissue engineering applications for chondrocyte-biomaterial systems.
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Chapter 2

Reaction-Diffusion Model:

Development and Methods

2.1 Introduction

To gain a better understanding of the importance of spatial effects on cartilage

regeneration in a cell-seeded scaffold material, reaction-diffusion models are often used

to describe the evolving tissue construct (see Section 1.4.1). Within the context of

these models, two approaches have been used. In one approach, employed in several

previously published studies, macroscopic reaction-diffusion models were developed

for an entire cylindrical construct [23, 24, 27]. An alternate approach by Kohles et

al. [14] focuses on modeling tissue regeneration in the local environment of a single

chondrocyte seeded in a nutrient-rich hydrogel scaffold material, as seen in Figure

2.1.

The current study employs this second approach, and captures the interactions

among extracellular matrix (ECM) synthesis, accumulation, and diffusive transport

phenomena in a manner that also accounts for cell shape and the ratio of initial cell

to scaffold volume. It is assumed that this process is radially symmetric within a

spherical domain, and the ECM is synthesized, diffuses, and accumulates uniformly

around the periphery of the chondrocyte. Following the assumptions of DiMicco et
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al. [6], the unlinked matrix is synthesized inside the cell and diffuses freely until it

binds with the scaffold, eventually replacing the hydrogel. To simplify the model, the

process by which the synthesized matrix interacts with hydrogel to form linked ECM is

represented as an advancing interfacial region (Figure 2.2). Specifically, this interface

represents the evolving boundary between the newly formed linked ECM domain and

the degrading hydrogel region. Level set and phase field modeling techniques are

employed to capture the motion of this advancing region.

 

(a) (b) (c)

Figure 2.1: (a) A nutrient-rich hydrogel (light blue) is seeded with sparsely distributed

chondrocytes (green). (b) Over time, the chondrocytes absorb and utilize nutrients

(yellow) and synthesis new ECM (white). (c) The model described in this chapter

focuses on the complex interactions in the local environment of a single chondrocyte.
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2.2 Model Development

2.2.1 Introduction

There are four variables being considered in this model: nutrient concentration,

unlinked matrix concentration, hydrogel density, and the location of the gel-tissue

interfacial region. Note that the advancing interface location also, effectively, deter-

mines the amount of linked ECM volume that has been regenerated. The nutrients

and unlinked matrix are diffusing molecules, and are thus modeled via reaction-

diffusion equations. As a general strategy, assume that X = X(r, t) is a diffusing

molecule in a cell-seeded hydrogel. It can be said that

∂X

∂t
= ∇ · (DX(r)∇X) + f (X, Y ) , 0 < r < R, t > 0 (2.1)

where DX(r) is the diffusivity of X through conditions at point r in space, and

Y = Y (r, t) could represent any other relevant variables. Also note that R is the

outer boundary of the domain for a single chondrocyte (as in Figure 2.2(b)), and it

is assumed that R � a, where a is the cell radius, since chondrocytes are sparsely

distributed in articular cartilage ECM. Also, note that the diffusivity can vary spa-

tially. This concept will be discussed in greater detail in later sections. The function

f (X, Y ) could take a number of forms, and represents a reaction or interaction be-

tween X and Y that, locally, alters the amount of one or both quantities. If X is a

non-diffusing variable, such as the hydrogel, the equation would simply take on the

form

∂X

∂t
= f (X, Y ) , 0 < r < R, t > 0 (2.2)

The evolving nature of the ECM region is modeled using a different method, which

will be described in more detail in Section 2.2.4.
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Figure 2.2: An illustration of the local cartilage regeneration model is shown. (a)

Chondrocytes are seeded in a nutrient-rich hydrogel scaffold at t = 0. (b) As time

progresses, the cell utilizes nutrients to synthesize unlinked matrix that forms a linked

ECM region outside the cell. Note that φ = 0 is the location of the evolving gel-tissue

interfacial region, with φ < 0 denoting the regenerated tissue, and φ > 0 denoting

the hydrogel region.

2.2.2 Intracellular Region

Since hydrogel scaffolds are typically rich in nutrients, the hydrogel is initially

assumed to have nutrient concentration NH , which can be greater than the concen-

tration associated with healthy mature cartilage at homeostasis, N∗. It is assumed

that excess nutrients enter the chondrocyte by way of diffusion, where they are uti-

lized for synthesis of unlinked matrix proteins (Figure 2.3). These matrix proteins

assemble and accumulate inside the cell (i.e. 0 < r < a), and then re-enter the extra-

cellular region by way of diffusion. To capture the chondrocyte’s regulatory feedback

mechanism, it is assumed that synthesis of these matrix molecules continues as long

as the stiffness of the evolving extracellular region is less than a specified stiffness for

mature native cartilage. Based on these assumptions, the following model for nutri-

ent and unlinked matrix concentration, N = N(r, t) and M = M(r, t) respectively, is
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formulated for the intracellular region

∂N

∂t
= D

(1)
N ∇

2N − kN (N −N∗) , 0 < r < a, t > 0 (2.3)

∂M

∂t
= D

(1)
M ∇

2M + kM (EECM − Eagg(t)) (N −N∗) , 0 < r < a, t > 0. (2.4)

In (2.3) and (2.4), D
(1)
N and D

(1)
M are diffusivities of the nutrient and unlinked matrix

inside the cell, and kN and kM are physiological parameters representing nutrient ab-

sorption and matrix synthesis rates, respectively. The second term on the right hand

side of (2.3) accounts for utilization of nutrients required for synthesis of unlinked ma-

trix. Similarly, the second term on the right hand side of (2.4) models the mechanism

by which greater nutrient availability increases cellular synthesis of unlinked matrix.

It is also assumed that the stiffness of the evolving extracellular gel-tissue aggregate

is determined by the stiffness of the remaining hydrogel and the newly linked ECM.

This results in the relation

EECM − Eagg(t) = EECM −
(
VECM(t)

VH(0)
EECM +

VH(t)

VH(0)
EH(t)

)
(2.5)

= (EECM − EH(t))

(
1− VECM(t)

VH(0)

)
where VECM(t) is the volume of the regenerated ECM region at time t, VH(t) is the

volume of the remaining hydrogel, VH(0) is the initial hydrogel volume, EECM is the

stiffness of healthy native cartilage, and EH(t) is the average stiffness of the remaining

hydrogel. In deriving the simplified form of (2.5), the relation

V (t) = VH(0) = VH(t) + VECM(t) (2.6)

was employed, where the volume of the extracellular region V (t) is constant. It should

also be noted that hydrogel is non-diffusing, and thus hydrogel density H = H(r, t)

within the cell is defined to be exactly

H(r, t) = 0, 0 < r < a, t > 0. (2.7)
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Hydrogel Cell Linked matrixUnlinked matrixNutrients

Nutrients diffuse through
hydrogel and are absorbed

by the chondrocyte.

The cell synthesizes unlinked
matrix, which then diffuses
into the hydrogel region.

The unlinked matrix binds
or links with the hydrogel
and creates linked matrix.

Figure 2.3: An illustration of the primary variables in the local cartilage regeneration

model is shown. Nutrients, N(r, t), are absorbed by the cell and utilized in the

synthesis of unlinked matrix proteins, M(r, t). As these matrix proteins accumulate,

they diffuse back into the hydrogel, H(r, t), where they cross-link to create new ECM

(linked matrix). The interfacial region between the linked ECM and the hydrogel is

tracked using a level set function, φ(r, t).

2.2.3 Extracellular Region

The rates of nutrient and unlinked matrix diffusion in the region surrounding

the chondrocyte are modeled to vary as the extracellular region transitions from

hydrogel to linked ECM. Since the location of the advancing linked ECM region will

be captured by a level set function φ = φ(r, t), the evolving extracellular diffusivities

are represented as functions DN(H,φ) and DM(H,φ) [15]. While, initially, there is no

unlinked matrix present in the system, as these molecules are synthesized and diffuse

out of the cell, they begin to link and bind with the hydrogel scaffold, at which point

they become stationary (non-diffusing). The rate at which these interactions remove

unlinked matrix and hydrogel from the system are captured via the parameters cM

and cH , respectively. It should also be noted that the hydrogel can exhibit additional

degradation, due to natural or external factors, that is independent of interactions

with unlinked ECM and occurs at a rate mH . Based on these assumptions, the
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following model is formulated for the extracellular region

∂N

∂t
= ∇ · (DN(H,φ)∇N) , a < r < R, t > 0, (2.8)

∂M

∂t
= ∇ · (DM(H,φ)∇M)− cMMH, a < r < R, t > 0, (2.9)

∂H

∂t
= −cHMH −mHH, a < r < R, t > 0. (2.10)

2.2.4 Level Set Model for ECM Regeneration

In order to measure the progression of cartilage regeneration in a cell-seeded scaf-

fold, a level set approach is used to track the accumulation of a linked ECM region by

modeling the location of the ECM-hydrogel interface. It is assumed that this inter-

face, represented by the level set φ(r, t) = 0, propagates in the normal direction with

velocity ~V [26]. The region φ > 0 lies ahead of the advancing interface and represents

the hydrogel region that does not yet contain any linked ECM. Similarly, the region

φ < 0 lies behind the interface and contains linked ECM and hydrogel that, together,

can alter diffusivities of the nutrients and unlinked matrix. Interface movement can

be represented by

∂φ

∂t
+ ~V · ∇φ = 0, where ~V = F~n = F

∇φ
|∇φ|

. (2.11)

It is assumed that linked matrix accumulation depends on the product of unlinked

matrix and hydrogel concentrations, with a linking rate k. A cellular regulatory

feedback mechanism (expressed, in this case, in terms of tissue stiffness as in (2.4)),

is also included so that linking ceases when a target extracellular stiffness is reached.

Based on these assumptions, the level set model is

∂φ

∂t
+ F |∇φ| = 0, where F = kMH (EECM − Eagg(t)) , a < r < R, t > 0.

(2.12)

As stated previously, diffusivity outside of the chondrocyte is dependent on the

amount of hydrogel present, and also differs between the ECM and hydrogel regions.

Assume that the diffusivity of a quantity i (i.e. N or M) through native mature
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cartilage ECM is D
(2)
i , and its diffusivity through the non-degraded hydrogel is D

(3)
i .

A phase field modeling approach can be used to represent the transition in diffusivities

in terms of a smooth function, specifically tanh, centered about the gel-tissue interface

φ = 0. The appropriate function Di(H,φ) is found to be

Di(H,φ) =
D

(3)
i (H)−D(2)

i (H)

2
tanh

(
φ

ε

)
+
D

(3)
i (H) +D

(2)
i (H)

2
(2.13)

where the effect of hydrogel density on diffusivity in region (j) (where j = 2 is ECM

and j = 3 is gel) is given by D
(j)
i (H). For this model, a linear relationship

D
(j)
i (H) = D

(j)
i

(
1− H

α

)
, j = 2, 3 (2.14)

was used to capture increasing hydrogel diffusivity with degradation of the scaffold

polymer.

2.2.5 Initial, Boundary, and Interface Conditions

The model is completed by specifying initial conditions on the spherical domain

(0 < r < R), boundary conditions at r = 0, R, and interface conditions along the

fixed interface r = a. At the start of the experiment, the chondrocyte has homeostatic

nutrient concentration, N∗, and there is no unlinked matrix in the system. The cell

is seeded within a nutrient rich (i.e. N = NH � N∗) hydrogel of known density H0.

The resulting initial conditions are

N(r, 0) =

N∗, 0 < r < a

NH , a < r < R
, (2.15)

M(r, 0) = 0, 0 < r < R, (2.16)

H(r, 0) =

0, 0 < r < a

H0, a < r < R
. (2.17)

The level set function, φ, is initialized as the signed distance function φ = ±d, where

d is the radial distance from the gel-tissue interface. Continuity is enforced along the
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cell boundary, r = a, for the concentrations

[[N ]]r=a = 0, t > 0 (2.18)

[[M ]]r=a = 0, t > 0, (2.19)

and for the fluxes

D
(2)
N

∂N

∂r

∣∣∣∣
r=a+

= D
(1)
N

∂N

∂r

∣∣∣∣
r=a−

, t > 0 (2.20)

D
(2)
M

∂M

∂r

∣∣∣∣
r=a+

= D
(1)
M

∂M

∂r

∣∣∣∣
r=a−

, t > 0. (2.21)

Zero flux conditions are enforced at the center of the cell for N and M ,

∂N

∂r

∣∣∣∣
r=0

= 0, t > 0 (2.22)

∂M

∂r

∣∣∣∣
r=0

= 0, t > 0. (2.23)

It is also assumed that the far-field nutrient concentration is NH , and the unlinked

matrix concentration is zero, resulting in the boundary conditions

N(R, t) = NH , t > 0 (2.24)

M(R, t) = 0, t > 0. (2.25)

The cartilage regeneration model then consists of the governing equations (2.3), (2.4),

(2.8)-(2.10), and (2.12) subject to the conditions in (2.15)-(2.25).

2.3 Nondimensionalization

To facilitate a parametric analysis of interactions among mechanisms captured in

the model, the system is nondimensionalized using the transformations

N̄ =
N

N∗
, M̄ =

M

M∗
, H̄ =

H

H∗
, ĒH =

EH
EECM

, (2.26)

t̄ =
tD

(2)
M

a2
, r̄ =

r

a
, φ̄ =

φ

a
, V̄ECM =

VECM
VH(0)

, (2.27)
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where M∗ and H∗ are interpreted as characteristic values of M and H, respectively,

that are chosen judiciously. Time, t, is scaled in terms of the slowest diffusivity D
(2)
M

in order to capture interactions on the slower scale of linked matrix accumulation

that is associated with cartilage regeneration in chondrocyte-biomaterial systems. In

the nondimensional system, diffusivities D
(i)
N and D

(i)
M are expressed by

δ
(i)
N =

D
(i)
N

D
(2)
M

, δ
(i)
M =

D
(i)
M

D
(2)
M

, i = 1, 2, 3. (2.28)

The reaction rates kN , kM , and k are now replaced with

κN =
kNa

2

D
(2)
M

, κM =
kMEECMN∗a

2

D
(2)
M M∗

, κ =
kEECMM∗H∗a

D
(2)
M

, (2.29)

the unlinked matrix-hydrogel reaction rates cM and cH become

γM =
cMH∗a

2

D
(2)
M

, γH =
cHM∗a

2

D
(2)
M

, (2.30)

and the hydrogel degradation rate mH becomes

µH =
mHa

2

D
(2)
M

. (2.31)

The initial nutrient concentration, NH , initial hydrogel density, H0, and the initial

hydrogel stiffness, EH0 , are now represented by

N̄H =
NH

N∗
, H̄0 =

H0

H∗
, ĒH0 =

EH0

EECM
, (2.32)

and the domain boundary R becomes R̄ = R
a

.

Substituting (2.26) and (2.27) into (2.3) and (2.4) yields the nondimensional model

∂N̄

∂t̄
= δ

(1)
N ∇

2N̄ − κN
(
N̄ − 1

)
, 0 < r̄ < 1, t̄ > 0,

(2.33)

∂M̄

∂t̄
= δ

(1)
M ∇

2M̄ + κM
(
1− ĒH(t̄)

) (
1− V̄ECM(t̄)

) (
N̄ − 1

)
, 0 < r̄ < 1, t̄ > 0.

(2.34)



21

Similarly, transformation of (2.8)-(2.10) gives

∂N̄

∂t̄
= ∇ ·

(
δ

(2,3)
N

(
H̄, φ̄

)
∇N̄

)
, 1 < r̄ < R̄, t̄ > 0, (2.35)

∂M̄

∂t̄
= ∇ ·

(
δ

(2,3)
M

(
H̄, φ̄

)
∇M̄

)
− γMM̄H̄, 1 < r̄ < R̄, t̄ > 0, (2.36)

∂H̄

∂t̄
= −γHM̄H̄ − µHH̄, 1 < r̄ < R̄, t̄ > 0. (2.37)

Substituting the scaled variables into (2.12) results in the nondimensional level set

equation

dφ̄

dt̄
+ F̄

∣∣∇φ̄∣∣ = 0, F̄ = κ
(
1− ĒH(t̄)

) (
1− V̄ECM(t̄)

)
M̄H̄, 1 < r̄ < R̄, t̄ > 0

(2.38)

To complete the nondimensionalized model, the initial conditions (2.15)-(2.17) trans-

form to

N̄(r̄, 0) =

1, 0 < r̄ < 1

N̄H , 1 < r̄ < R̄
(2.39)

M̄(r̄, 0) = 0, 0 < r̄ < R̄ (2.40)

H̄(r̄, 0) =

0, 0 < r̄ < 1

H̄0, 1 < r̄ < R̄.
(2.41)

Similarly, the interface continuity conditions (2.18)-(2.21) become[
[N̄ ]
]
r̄=1

= 0,
[
[M̄ ]

]
r̄=1

= 0, t̄ > 0, (2.42)

and

δ
(2)
N

∂N̄

∂r̄

∣∣∣∣
r̄=1+

= δ
(1)
N

∂N̄

∂r̄

∣∣∣∣
r̄=1−

, δ
(2)
M

∂M̄

∂r̄

∣∣∣∣
r̄=1+

= δ
(1)
M

∂M̄

∂r̄

∣∣∣∣
r̄=1−

, t̄ > 0. (2.43)

Lastly, the zero flux conditions (2.22)-(2.23) become

∂N̄

∂r̄

∣∣∣∣
r̄=0

= 0,
∂M̄

∂r̄

∣∣∣∣
r̄=0

= 0, t̄ > 0, (2.44)
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and the boundary conditions (2.24)-(2.25) are transformed into

N̄(R̄, t̄) = N̄H , M̄(R̄, t̄) = 0, t̄ > 0. (2.45)

The nondimensional model (2.33)-(2.38) subject to the conditions (2.39)-(2.45) will

be used throughout the rest of this chapter.

2.4 Numerical Methods

2.4.1 Finite Difference Method

In order to numerically approximate solutions to the reaction-diffusion equations,

(2.33) and (2.34) are discretized using implicit backward Euler schemes that are first-

order in time and second-order in space. Let N j
i = N(ri, tj) and M j

i = M(ri, tj)

for i = 1, 2, . . . , IC − 1, j = 1, 2, . . . , JT , where ri = i∆r̄, IC = 1
∆r̄

, and JT is the

total number of time steps. The index IC corresponds to the node located at the cell

boundary r = a. In our numerical scheme, the time step ∆t̄ will vary to allow for

efficient computations on the slow time scales associated with cartilage regeneration.

Details for choosing the values of ∆t̄ and ∆r̄ can be found in Section 2.4.3. The

resulting finite difference scheme for N j
i and M j

i in (2.33) and (2.34) are, respectively,(
δ

(1)
N

(∆r)2
− δ

(1)
N

2ri∆r

)
N j+1
i−1 +

(
−2δ

(1)
N

(∆r)2
− 1

∆t
− κN

)
N j+1
i +

(
δ

(1)
N

(∆r)2
+

δ
(1)
N

2ri∆r

)
N j+1
i+1

=
−N j

i

∆t
− κN , (2.46)(

δ
(1)
M

(∆r)2
− δ

(1)
M

2ri∆r

)
M j+1

i−1 +

(
−2δ

(1)
M

(∆r)2
− 1

∆t

)
M j+1

i +

(
δ

(1)
M

(∆r)2
+

δ
(1)
M

2ri∆r

)
M j+1

i+1

=
−M j

i

∆t
− κM

(
1− Ej

H

) (
1− V j

ECM

) (
N j+1
i − 1

)
. (2.47)
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Equations (2.35) and (2.36) are discretized in the same way, resulting in the fol-

lowing scheme for points outside of the cell, i = IC , IC + 1, . . . , IR (IR = R̄
∆r̄

) and

j = 1, 2, . . . , JT , (
αji

(∆r)2
− αji
ri∆r

−
αji,r
2∆r

)
N j+1
i−1 +

(
− 2αji

(∆r)2
− 1

∆t

)
N j+1
i

+

(
αji

(∆r)2
+

αji
ri∆r

+
αji,r
2∆r

)
N j+1
i+1 =

−N j
i

∆t
, (2.48)(

βji
(∆r)2

− βji
ri∆r

−
βji,r
2∆r

)
M j+1

i−1 +

(
− 2βji

(∆r)2
− 1

∆t
− γMHj

I

)
M j+1

i

+

(
βji

(∆r)2
+

βji
ri∆r

+
βji,r
2∆r

)
M j+1

i+1 =
−M j

i

∆t
, (2.49)

where αji = δ
(2,3)
N (ri, tj) and βji = δ

(2,3)
M (ri, tj). The derivatives of these diffusivity

expressions, denoted by αji,r and βji,r, respectively, are found by the chain rule. For

αji the result is

∂δ
(2,3)
N

∂r
=

∂δ
(2,3)
N

∂H

∂H

∂r
+
∂δ

(2,3)
N

∂φ

∂φ

∂r
, (2.50)

αji,r =
∂δ

(2,3)
N

∂H

∣∣∣∣∣H=H
j
i

φ=φji

Hj
i+1 −H

j
i−1

2∆r
+
∂δ

(2,3)
N

∂φ

∣∣∣∣∣H=H
j
i

φ=φji

φji+1 − φ
j
i−1

2∆r
, (2.51)

where
∂δ

(2,3)
N

∂H
is determined analytically. Similar derivatives are computed for βji . The

continuity conditions (2.42) and (2.43) are discretized to become

N j+1
IC−1 −N

j+1
IC

= 0, M j+1
IC−1 −M

j+1
IC

= 0, (2.52)

and

δ
(1)
N N j+1

IC−2 − δ
(1)
N N j+1

IC−1 − δ
(2)
N N j+1

IC
+ δ

(2)
N N j+1

IC+1 = 0, (2.53)

δ
(1)
M M j+1

IC−2 − δ
(1)
M M j+1

IC−1 − δ
(2)
M M j+1

IC
+ δ

(2)
M M j+1

IC+1 = 0. (2.54)

Similarly, the zero flux conditions (2.44) become

N j+1
1 −N j+1

2 = 0, M j+1
1 −M j+1

2 = 0, (2.55)
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and the boundary conditions (2.45) are given by

N j+1
IR

= N̄H , M j+1
IR

= 0. (2.56)

Subsequent to assembly, the equations in (2.46)-(2.56) form two linear systems of the

form

AN
~N = ~bN , AM

~M = ~bM , (2.57)

for each time step j = 1, 2, . . . , JT . The matrices AN and AM are sparse, with

entries only along diagonally central bands. Solutions to the linear systems (2.57) are

computed using the sparse matrix solver in MATLAB.

Equations (2.37) and (2.38) are approximated using explicit first-order methods

via

Hj+1
i =

(
1−∆t

(
γHM

j+1
i + µH

))
Hj
i , (2.58)

and

φj+1
i = φji −

∆t

∆r
F j
i

∣∣φji − φji−1

∣∣ , (2.59)

F j
i = κ

(
1− (EH)ji

) (
1− (VECM)ji

)
M j

iH
j
i , (2.60)

where i, j are defined as before.

2.4.2 Initialization

The initial conditions (2.39)-(2.41) correspond to values for N , M , and H at time

t = 0 (i.e. the initial time step j = 1) that are set to be

N1
i =

1, i = 1, 2, . . . , IC − 1

N̄H , i = IC , IC + 1, . . . , IR

, (2.61)

M1
i = 0, i = 1, 2, . . . , IR, (2.62)

H1
i =

0, i = 1, 2, . . . , IC − 1

H̄0, i = IC , IC + 1, . . . , IR

. (2.63)
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Note that at t = 0, there is no linked ECM region and, hence, no natural spatial

location for the interface corresponding to the level set φ = 0. To prevent numerical

issues that could result from the creation of this region during early time steps, the

j = 2 step is taken with the assumption that the interface (φ = 0) has advanced by

an amount equal to 2% of the cell radius, or 4 grid points. This automatically creates

an ECM region with a volume of less than 0.05% of the target ECM volume that is

determined by the geometric parameter R̄. Because the initial step is so small, any

resulting inaccuracy in the linked matrix regeneration time will be roughly less than

a day (in true dimensional variables) and, thus, considered negligible on the longer

time scales of several weeks to a few months associated with cartilage regeneration

and scaffold degradation. Once N , M , H, and φ have been updated for j = 2, all

later iterations (j = 3, 4, . . . , JT ) are performed as described in Section 2.4.1 above.

2.4.3 Stability and Convergence

The Courant-Friedrichs-Lewy condition (or CFL condition) is used to enforce

stability in level set methods [26]. The time step, ∆t̄, is restricted by the expression

∆t̄

(
max

{
|F̄ |
}

∆r̄

)
= α (2.64)

where α is known as a CFL number, and is chosen such that 0 < α < 1, where

max
{
|F̄ |
}

is the maximum value of |F̄ |, from (2.38), over the entire domain. While

this condition helps to restrict the time step, it is also important that a sufficiently

small spatial step, ∆r̄, be used. A mesh refinement study was performed, and ∆r̄ =

0.005 was chosen in order to balance accuracy and efficiency in the model simulations

(see Figure 2.4).
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Figure 2.4: A mesh refinement study was performed in order to establish an ap-

propriate step size ∆r̄ that would balance accuracy and efficiency of the numerical

methods.

2.5 Reduced Model: Constant Nutrients

Because the hydrogel is nutrient-rich and nutrient solute size is much less than

that of unlinked matrix, nutrient diffusion is typically an order of magnitude faster

than unlinked matrix diffusion. This motivates the examination of a reduced model

in which the equations (2.33) and (2.35) and the corresponding initial, interface, and

boundary conditions are replaced by the uniform nutrient concentration assumption

N̄ (r̄, t̄) ≡ N̄H , 0 ≤ r̄ ≤ R̄, t̄ ≥ 0. (2.65)

This simplification eliminates the need to solve the spare matrix system AN
~N = ~bN

and can reduce computing time without significantly affecting model accuracy
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Chapter 3

Reaction-Diffusion Model:

Parametric Analysis and Results

3.1 Introduction

In this chapter, results are presented for the models described in Chapter 2. The

different types of parameters will be summarized, and the choice of values or ranges for

each parameter will be explained. A parametric analysis was also performed, focusing

on the dependence of ECM regeneration times on model parameters. In several cases,

these relationships can be described via power laws. Possible model reductions are also

briefly explored. One of the overall objectives of analyzing regeneration times is to use

the spatially-meaningful parameters to quantitatively categorize hydrogels in order

to streamline future cartilage regeneration experiments for accelerated realization of

optimal functional outcomes. Within this context, regeneration times for systems

with chondrocytes seeded into biomaterial scaffolds range from a few weeks to several

months. The analysis was calibrated to maintain values in these intervals.
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3.2 Selection of Model Parameters

Parameters contained in the model described in Chapter 2 can be separated into

three primary categories: biophysical parameters, scaffold design parameters, and

physiological parameters. There is also a fourth group of geometric parameters, which

are less meaningful from a tissue engineering standpoint, but necessary for computing

a solution. Since a = 5 µm is a typical radius of a chondrocyte [10], and R� a, the

cell-tissue interface in the non-dimensional model is located at r̄ = 1 and the outer

hydrogel boundary is located at R̄ = 5. The parameters ε and α in the phase field

model of diffusivity (2.13)-(2.14) are taken to be ε = 0.1 and α = 5.

3.2.1 Biophysical Parameters

The diffusivities fall under the category of biophysical parameters, and can be

chosen based on previous experimental studies. Leddy et al. [15, 16] have conducted

studies of molecular diffusion with varying solute size in several scaffolds and in

articular cartilage ECM via photobleaching techniques. As defined in (2.28), the

diffusivities in our model are normalized relative to the diffusivity of free matrix in

the ECM region, i.e.

δ
(2)
M = 1. (3.1)

The reference diffusivity used to nondimensionalize the others is taken to be D
(2)
M =

6 µm2s−1, which is the literature value of the diffusion coefficient for a 500 kDa

molecule in native cartilage [15]. Since diffusivity increases as particle size decreases,

and nutrients are much smaller than matrix molecules, we assume that

δ
(i)
M < δ

(i)
N for i = 1, 2, 3, (3.2)

where it is recalled that i = 1 denotes the intracellular region, i = 2 denotes the ECM

region, and i = 3 denotes the hydrogel region. Based on the literature [15],

δ
(2)
N = 15 (3.3)
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is determined to be a reasonable value for the diffusivity of nutrients in articular

cartilage ECM. Diffusivity in the hydrogel is dependent upon the characteristics of

the specific scaffold material, and we consider the range of possible parameter values as

60 < δ
(3)
N < 360 and 2 < δ

(3)
M < 50. The δ

(3)
N range was determined from experimental

values for small dextrans in different scaffolds, and the δ
(3)
M range was determined

from the measurements for larger dextrans [15]. The value

δ
(3)
M = 20 (3.4)

was chosen as the baseline value in this study, and based on (3.2), we chose

δ
(3)
N = 10δ

(3)
M = 200. (3.5)

At present, data is unavailable for solute diffusivity within a chondrocyte. For the

purposes of this study it is assumed that nutrient and free matrix diffusivities lie

between those for the hydrogel and the cartilage ECM so that

δ
(2)
j < δ

(1)
j < δ

(3)
j for j = N,M. (3.6)

This choice is motivated by the dense structure of the ECM relative to the cell, as well

as the observation that the inhomogeneous and complex intracellular environment

could inhibit diffusion as compared to the more homogenous environment of the

scaffold. As a result, the values chosen in this study are

δ
(1)
M = 10, (3.7)

δ
(1)
N = 10δ

(1)
M = 100. (3.8)

The choice for baseline values of all of the biophysical parameters, i.e. (3.1),(3.3)-

(3.5), and (3.7)-(3.8), are summarized in Table 3.1.

3.2.2 Scaffold Design Parameters

The scaffold design parameters include the initial scaffold nutrient concentration,

N̄H , as well as the initial density and stiffness of the hydrogel (H̄0 and ĒH0 , respec-

tively). These are measurable values that are dependent on the particular hydrogel
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being investigated, and are controlled by the experimentalist. Since hydrogels are

typically nutrient-rich, it is assumed that N̄H is one order of magnitude greater than

the homeostatic nutrient level, N̄∗ = 1, so that

N̄H = 10. (3.9)

It is also assumed that

H̄0 = 2.5, (3.10)

ĒH0 = 0.001. (3.11)

The initial stiffness is estimated from literature values for ECM and hydrogel Young’s

modulus [22]. The scaffold design parameter values are summarized in Table 3.2.

3.2.3 Physiological Parameters

Lastly, the physiological parameters represent the underlying cell biological mech-

anisms in the model which include the rates of nutrient utilization, matrix synthesis,

ECM linking, matrix and hydrogel reactions, and hydrogel degradation. These pa-

rameters are difficult to determine experimentally, but ultimately could be obtained

via parameter estimation in which models of cartilage regeneration are fit to exper-

imental data. Indeed, these parameters may often be the quantities of interest in

quantifying and comparing different cell-biomaterial systems in tissue engineering

applications. For the current study, it is assumed that all of these processes occur

on a slower scale than diffusion, and referring to (2.33)-(2.38), that the approximate

ordering of these parameters is

µH < γH < γM ≤ κ < κM < κN < 1. (3.12)

The nutrient utilization rate, κN is assumed to be the fastest of all of these rates and

is chosen to be

κN = 0.1. (3.13)
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The next fastest rate is assumed to be the rate of unlinked matrix synthesis,

κM = 0.01, (3.14)

followed by the hydrogel-ECM linking rate

κ = 0.001. (3.15)

It is assumed that the unlinked matrix reaction rate, γM , which describes the rate at

which unlinked matrix is taken out of the system as a result of linking guided by the

scaffold, is on the same order as the linking rate (3.15). Therefore,

γM = 0.001 (3.16)

is selected. The hydrogel reaction rate, which describes the rate at which hydrogel is

taken out of the system as a result of linking, is assumed to be much slower, and the

inherent hydrogel degradation is assumed to occur on an even slower scale, so that

γH = 0.00005, (3.17)

µH = 0.000001. (3.18)

Overall, the ECM accumulation and structural integrity of the regenerated tissue

is strongly influenced by the rate of hydrogel degradation. If the scaffold degrades

too quickly, defects could appear; if it degrades too slowly, it could inhibit ECM

accumulation by preventing timely diffusive transport of the ECM molecules [29]. Due

to the absence of detailed spatial and temporal data for estimation of the physiological

parameters in (3.13)-(3.18), the choices made above were also influenced by calibration

of linked matrix regeneration times to realistic ranges for engineered cartilage. The

physiological parameters are summarized in Table 3.3.
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Table 3.1: A table of baseline biophysical parameter values for analysis of the reaction-

diffusion model.

Parameter Definition Description Value

δ
(1)
N D

(1)
N /D

(2)
M N diffusion in cell 100

δ
(2)
N D

(2)
N /D

(2)
M N diffusion in ECM 15

δ
(3)
N D

(3)
N /D

(2)
M N diffusion in hydrogel 200

δ
(1)
M D

(1)
M /D

(2)
M M diffusion in cell 10

δ
(2)
M D

(2)
M /D

(2)
M M diffusion in ECM 1

δ
(3)
M D

(3)
M /D

(2)
M M diffusion in hydrogel 20

Table 3.2: A table of the baseline scaffold design parameter values for analysis of the

reaction-diffusion model.

Parameter Definition Description Value

N̄H NH/N∗ Initial hydrogel nutrients 10

H̄0 H0/H∗ Initial hydrogel density 2.5

ĒH0 EH0/EECM Initial hydrogel stiffness 0.001

Table 3.3: A table of baseline physiological parameter values for analysis of the

reaction-diffusion model.

Parameter Definition Description Value

κN kNa
2/D

(2)
M Nutrient absorption rate 0.1

κM kMEECMN∗a
2/D

(2)
M M∗ Unlinked matrix synthesis rate 0.01

κ kEECMM∗H∗a/D
(2)
M Hydrogel-ECM linking rate 0.001

γM cMH∗a
2/D

(2)
M Unlinked matrix reaction rate 0.001

γH cHM∗a
2/D

(2)
M Hydrogel reaction rate 0.00005

µH mHa
2/D

(2)
M Hydrogel degradation rate 0.000001
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3.3 Baseline Case

The baseline case for the model (2.33)-(2.38) subject to the conditions (2.39)-

(2.45) is defined by the parameter values summarized in Tables 3.1, 3.2, and 3.3.

Numerical solutions were computed using the techniques described in Section 2.4.

Two different representations for simulated spatial profiles of unlinked matrix con-

centration at multiple points in time are shown in Figures 3.1 and 3.2. Similar profiles

for nutrient concentration are shown in Figures 3.3 and 3.4.

Recalling that r̄ = 1 is the location of the cell boundary, it is first observed that

nutrient profiles remain almost unchanged. This is due to the fast diffusivities of

small solutes in all three regions, as well as the boundary condition in (2.45) which

sustains nutrient availability at the prescribed level N̄H = 10. Matrix profiles exhibit

significant spatial and temporal variations due to the slower rates associated with

the associated mechanisms. The model simulations exhibit steeper gradients in the

extracellular region due to the complex interactions between synthesized matrix and

the hydrogel.
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Figure 3.1: Spatial profiles of unlinked matrix concentration, M̄ , for the baseline

case. Note that the cell boundary is located at r̄ = 1, and successive curves advance

upwards at intervals of 6 days.
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Figure 3.2: Spatial maps of unlinked matrix concentration, M̄ , for the baseline case.

The black solid line represents the cell boundary, and the white dashed line represents

the location of the φ̄ = 0 interface separating the linked ECM and hydrogel regions.
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Figure 3.3: Spatial profiles of nutrient concentration, N̄ , for the baseline case. Note

that the cell boundary is located at r̄ = 1, and successive curves advance downwards

at intervals of 6 days.
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Figure 3.4: Spatial maps of nutrient concentration, N̄ , for the baseline case. The

black solid line represents the cell boundary, and the white dashed line represents the

location of the φ̄ = 0 interface separating the linked ECM and hydrogel regions.
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3.4 Parametric Analysis of Cartilage Regeneration

For the purposes of this study, it is assumed that the target regenerated tissue

volume is 10 times the volume of the chondrocyte, or Vtarget = 10Vcell. In nondi-

mensional coordinates, Vcell = 4
3
π, and thus the regenerated ECM volume fraction

is

ṼECM(t̄) =
r̄3
ECM − 1

10
, where φ (r̄ECM , t̄) = 0. (3.19)

Note that r̄ECM is the location of the hydrogel-ECM interfacial region at time t̄. The

regeneration time, Tregen is computed as the time at which the regenerated ECM

volume fraction first exceeds 95 %, or

min
{
Tregen : V̄ECM(Tregen) ≥ 0.95

}
. (3.20)

3.4.1 Biophysical Parameters

Based on Section 3.2, the rate of unlinked matrix diffusion through the hydrogel,

denoted by δ
(3)
M , was varied in the interval 2 < δ

(3)
M < 50, and on a slower time scale

than nutrient diffusion. Three values, δ
(3)
M = 15, δ

(3)
M = 20, δ

(3)
M = 25 were considered

in order to keep regeneration times in a realistic range. Regeneration curves are

shown in Figure 3.5(a). For δ
(3)
M = 15 the regeneration time was computed to be

Tregen = 28.5 days, for δ
(3)
M = 20 it was Tregen = 44.1 days, and for δ

(3)
M = 25 it

was Tregen = 67.2 days. Increasing δ
(3)
M slowed down the tissue regeneration process,

increasing Tregen. This might seem counterintuitive at first, but can be explained

by the unlinked matrix diffusing through the linked matrix interface and into the

hydrogel region. As a result, the formation of linked ECM near φ̄ = 0 occurs less

efficiently. Spatial profiles of the unlinked matrix concentration for these three cases

are shown in Figures 3.5(b)-(d). In the region near r̄ = 1 these profiles illustrate how

accumulation of unlinked matrix near the cell interface slows down with increasing

diffusivity of unlinked matrix.
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3.4.2 Scaffold Design Parameters

Since hydrogels tend to be nutrient-rich, the initial nutrient concentration of the

hydrogel, N̄H , is assumed to be much larger than the homeostatic nutrient level, i.e.

N̄H � 1. The values chosen for this study were N̄H = 10, N̄H = 15, and N̄H = 20.

Regeneration curves are shown in Figure 3.6(a). For N̄H = 10 the regeneration time

was Tregen = 44.1 days, for N̄H = 15 it was Tregen = 22.5 days, and for N̄H = 20

it was Tregen = 15.2 days. We observe that increasing N̄H has exactly the effect

one might expect; excess nutrients allow unlinked matrix to be synthesized more

quickly, which results in more rapid linking of ECM. Spatial profiles of the unlinked

matrix concentration for these three cases support this observation, as illustrated in

Figures 3.6(b)-(d), and reflected by increasing intracellular concentration of M̄ as N̄H

is increased.

Variations of the initial hydrogel stiffness, ĒH0 , had significantly less impact on

regeneration time when changed by two orders of magnitude. In particular, for ĒH0 =

0.0001, Tregen = 44 days, for ĒH0 = 0.001, Tregen = 44.1 days, and for ĒH0 = 0.01,

Tregen = 45.6 days. Increasing the parameter further, to a value of ĒH0 = 0.1 did

result in a large increase in regeneration time (Tregen = 66.5 days), but this large

value falls outside the reasonable range of hydrogel stiffness.

Perturbations to the initial hydrogel density, H̄0, were also studied. Regeneration

curves are shown in Figure 3.7(a) for the cases H̄0 = 2, H̄0 = 2.5, and H̄0 = 3. The

corresponding regeneration times were Tregen = 83.4 days, Tregen = 44.1 days, and

Tregen = 26.3 days, respectively. It is observed that increasing H̄0 while leaving the

other parameters fixed results in a decreased Tregen, suggesting that the gel-matrix

reaction occurs faster for an initially denser hydrogel scaffold.

3.4.3 Physiological Parameters

The hydrogel-ECM linking rate, κ, in (2.38) controls a mechanism that occurs

on a much slower time scale than diffusion, nutrient absorption, and unlinked ma-

trix synthesis. Therefore the three values chosen were κ = 0.001, κ = 0.002, and
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κ = 0.003, and the associated regeneration curves are shown in Figure 3.8(a). The

corresponding regeneration times were found to be Tregen = 44.1 days for κ = 0.001,

Tregen = 16.3 days for κ = 0.002, and Tregen = 10.0 days for κ = 0.003, reflecting a

high sensitivity in which regeneration time decreases significantly with increasing κ.

Spatial profiles of the unlinked matrix concentration for these three cases are shown

in Figures 3.8(b)-(d).

The unlinked matrix synthesis rate, κM , was examined in the cases κM = 0.01,

κM = 0.015, and κM = 0.02. Corresponding regeneration curves are shown in Figure

3.9(a). The regeneration times were found to be Tregen = 44.1 days for κM = 0.01,

Tregen = 23.7 days for κM = 0.015, and Tregen = 16.2 days for κM = 0.02. Note that

doubling the baseline value results in almost exactly the same change in regeneration

time as the same action in κ, above. Since increasing κM results in a faster production

of unlinked matrix available for linking, increasing this parameter decreases regener-

ation time. Spatial profiles of the unlinked matrix concentration for these three cases

are found in Figures 3.9(b)-(d).

The other four physiological parameters were not examined for this parametric

analysis. The nutrient absorption rate, κN , is on such a fast scale that its effect is

essentially negligible. This assumption is further supported by the results in Section

3.5. The unlinked matrix and hydrogel reaction rates, γM and γH , as well as the

hydrogel degradation rate, µH , were not studied because they are much slower un-

derlying mechanisms that are not directly responsible for the creation of new matrix

(linked or unlinked), as in (3.12).
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Figure 3.5: (a) A plot of regenerated volume fraction ṼECM(t̄) for three values of

δ
(3)
M . (b) The case δ

(3)
M = 15, for which Tregen = 28.5 days. Successive curves advance

upwards at intervals of 4 days. (c) The case δ
(3)
M = 20, for which Tregen = 44.1 days.

Successive curves advance upwards at intervals of 6 days. (d) The case δ
(3)
M = 25, for

which Tregen = 67.2 days. Successive curves advance upwards at intervals of 10 days.
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Figure 3.6: (a) A plot of regenerated volume fraction ṼECM(t̄) for three values of

N̄H . (b) The case N̄H = 10, for which Tregen = 44.1 days. Successive curves advance

upwards at intervals of 6 days. (c) The case N̄H = 15, for which Tregen = 22.5 days.

Successive curves advance upwards at intervals of 3 days. (d) The case N̄H = 20, for

which Tregen = 15.2 days. Successive curves advance upwards at intervals of 2 days.
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Figure 3.7: (a) A plot of regenerated volume fraction ṼECM(t̄) for three values of

H̄0. (b) The case H̄0 = 2, for which Tregen = 83.4 days. Successive curves advance

upwards at intervals of 12 days. (c) The case H̄0 = 2.5, for which Tregen = 44.1 days.

Successive curves advance upwards at intervals of 6 days. (d) The case H̄0 = 3, for

which Tregen = 26.3 days. Successive curves advance upwards at intervals of 4 days.
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Figure 3.8: (a) A plot of regenerated volume fraction ṼECM(t̄) for three values of κ.

(b) The case κ = 0.001, for which Tregen = 44.1 days. Successive curves advance

upwards at intervals of 6 days. (c) The case κ = 0.002, for which Tregen = 16.3 days.

Successive curves advance upwards at intervals of 2 days. (d) The case κ = 0.003, for

which Tregen = 10.0 days. Successive curves advance upwards at intervals of 1 day.
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Figure 3.9: (a) A plot of regenerated volume fraction ṼECM(t̄) for three values of

κM . (b) The case κM = 0.01, for which Tregen = 44.1 days. Successive curves advance

upwards at intervals of 6 days. (c) The case κM = 0.015, for which Tregen = 23.7 days.

Successive curves advance upwards at intervals of 3 days. (d) The case κM = 0.02, for

which Tregen = 16.2 days. Successive curves advance upwards at intervals of 2 days.
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3.4.4 Power Law Relationships

Dependence of the regeneration time, Tregen, on several model parameters was also

investigated. In Figure 3.10, regeneration times were plotted as points
(
N̄H , Tregen

)
for five values of κ: κ = 0.0005, κ = 0.00075, κ = 0.001, κ = 0.002, and κ = 0.003.

Power law fits were computed for each κ value, yielding the equations found in Table

3.4, and the solid curves in Figure 3.10.

Similarly, in Figure 3.11, regeneration times are plotted as points (κ, Tregen) for five

values of δ
(3)
M : δ

(3)
M = 5, δ

(3)
M = 10, δ

(3)
M = 15, δ

(3)
M = 20, and δ

(3)
M = 25. Corresponding

power law fits and R2 values are found in Table 3.5, and are denoted by the solid

curves in the figure.

Lastly, in Figure 3.12, regeneration times are plotted as points
(
N̄H , Tregen

)
, but

this time for the values of δ
(3)
M stated in the previous paragraph. Power law fits and

R2 values were computed and are found in Table 3.6, and are denoted by the solid

curves in the figure.

The power law curve fits presented above illustrate how effective responses or

outcomes of the cartilage regeneration process can be analyzed. Given the difficulties

associated with obtaining detailed spatio-temporal data over the long time scales,

such effective relations can aid in quantitatively characterizing controllable parts of

the process for optimal biomaterial design of the scaffold. With spatial models such

as the one that was developed in this study, similar analysis can be repeated for the

specific combination of parameters of interest to the experimentalist.
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Table 3.4: Power law fits of regeneration time, Tregen, as a function of N̄H for five

values of κ. Corresponding plots are found in Figure 3.10 (R2 is the coefficient of

determination).

Case κ Tregen
(
N̄H ;κ

)
R2

I 0.0005 Tregen = 12877
(
N̄H

)−1.91
0.995

II 0.00075 Tregen = 4333.7
(
N̄H

)−1.76
0.989

III 0.001 Tregen = 2343
(
N̄H

)−1.68
0.985

IV 0.002 Tregen = 484.51 (NH)−1.43 0.989

V 0.003 Tregen = 208.89 (NH)−1.29 0.995
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Figure 3.10: Plots of regeneration time, Tregen, as a function of N̄H for five values of

κ. Each * represents the regeneration time for a
(
N̄H ;κ

)
pair, while the corresponding

solid lines represent the power law fits. Equations and R2 values are found in Table

3.4.
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Table 3.5: Power law fits of regeneration time, Tregen, as a function of κ for five

values of δ
(3)
M . Corresponding plots are found in Figure 3.11 (R2 is the coefficient of

determination).

Case δ
(3)
M Tregen

(
κ; δ

(3)
M

)
R2

VI 5 Tregen = 0.0035κ−1.12 0.999

VII 10 Tregen = 0.003κ−1.26 0.995

VIII 15 Tregen = 0.0009κ−1.53 0.972

IX 20 Tregen = 0.0017κ−1.49 0.992

X 25 Tregen = 0.0018κ−1.52 0.996
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Figure 3.11: Plots of regeneration time, Tregen, as a function of κ for five values of δ
(3)
M .

Each * represents the regeneration time for a
(
κ; δ

(3)
M

)
pair, while the corresponding

solid lines represent the power law fits. Equations and R2 values are found in Table

3.5.
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Table 3.6: Power law fits of regeneration time, Tregen, as a function of N̄H for five

values of δ
(3)
M . Corresponding plots are found in Figure 3.12 (R2 is the coefficient of

determination).

Case δ
(3)
M Tregen

(
N̄H ; δ

(3)
M

)
R2

XI 5 Tregen = 151.5
(
N̄H

)−1.28
0.996

XII 10 Tregen = 592.03
(
N̄H

)−1.51
0.988

XIII 15 Tregen = 841.84
(
N̄H

)−1.45
0.994

XIV 20 Tregen = 2343
(
N̄H

)−1.68
0.985

XV 25 Tregen = 2905.7
(
N̄H

)−1.66
0.992
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Figure 3.12: Plots of regeneration time, Tregen, as a function of N̄H for five values

of δ
(3)
M . Each * represents the regeneration time for a

(
N̄H ; δ

(3)
M

)
pair, while the

corresponding solid lines represent the power law fits. Equations and R2 values are

found in Table 3.6.
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3.5 Reduced Model: Constant Nutrients

It was observed in previous sections that nutrient diffusion occurs on a much faster

time scale than the other mechanisms included in the model. Specifically, in Figure

3.3 it was observed that N̄(r̄, t̄) remains close to N̄H . A model simplification can

be considered in which N̄ is taken to be constant, as in (2.65). This eliminates four

parameters: the nutrient diffusivities, δ
(1)
N , δ

(2)
N , δ

(3)
N , and the nutrient absorption rate,

κN .

The resulting changes in regeneration time for the original and simplified models

are essentially negligible in the nondimensional time domain. Differences are on the

order of only a few hours, with the largest being for the case where H̄0 = 2 resulting

in a change in regeneration time from 83.41 days in the original model to 83.17 days

in the reduced model - a difference of less than 6 hours. Differences were larger for

greater regeneration times, but the percent difference stayed consistently less than

0.5%. Comparisons were made for all of the parameter values studied in Section 3.4,

and can be found in Table 3.7. Spatial profiles are close to identical to those of the

original model, and therefore are not reproduced here.

Based on these findings, the reduced model could serve as an accurate simplifi-

cation of the original model, and has the advantages of containing fewer parameters

and being less computationally intensive. The simplified model still incorporates the

effects of nutrient concentration via the parameter N̄H , but since nutrient-related phe-

nomena occurred on such comparatively fast time scales, the subtle spatial differences

in nutrient concentration have a negligible effect on the end result for calculation of

ECM regeneration times.
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Table 3.7: Comparison of regeneration times from the original model, Tregen, and

the reduced case where N̄(r̄, t̄) ≡ N̄H , denoted as T̂regen. The percent difference was

consistently far less than 0.5% and the largest change was less than 6 hours.

Changing Parameter Value Tregen T̂regen Change % Difference

– – 44.13 days 44.04 days 2 hrs, 10 min 0.20%

N̄H 15 22.53 days 22.49 days 58 min 0.18%

N̄H 20 15.17 days 15.15 days 29 min 0.13%

H̄0 2 83.41 days 83.17 days 5 hr, 46 min 0.29%

H̄0 3 26.35 days 26.29 days 1 hr, 26 min 0.23%

δ
(3)
M 15 28.51 days 28.46 days 1 hr, 12 min 0.18%

δ
(3)
M 25 67.19 days 67.01 days 4 hr, 19 min 0.27%

κ 0.002 16.27 days 16.24 days 43 min 0.18%

κ 0.003 9.98 days 9.96 days 29 min 0.20%

κM 0.015 23.69 days 23.64 days 1 hr, 12 min 0.21%

κM 0.02 16.23 days 16.20 days 43 min 0.18%
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3.6 Summary

The reaction-diffusion models presented in this study have proven able to capture

many of the important biophysical, physiological, and scaffold-design aspects of carti-

lage regeneration. In the context of hydrogel scaffolds seeded with chondrocytes, they

can provide a framework for quantitative characterization of hydrogel biomaterial de-

sign. Developing such a framework is important because the associated experiments

can be costly and time-intensive; using mathematical models could streamline the

hydrogel-design process, making it more effective and efficient.

While, in this model, it was determined that the availability of excess nutrients

is crucial, and that increasing the nutrient level significantly decreases the regener-

ation time, the subtle spatial differences in nutrient concentration due to diffusion

and absorption do not play a major role in tissue regeneration. Approximating the

reaction-diffusion models for nutrient concentration with a constant function had a

negligible effect on the end result for overall ECM regeneration times (only a few

hours difference, in dimensional time).
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Chapter 4

A Phenomenological Approach to

Modeling Cartilage Regeneration

4.1 Introduction

While partial differential equation models such as the reaction-diffusion model

developed and discussed in Chapters 2 and 3 are useful in terms of their direct rel-

evance to biophysical and biomechanical processes involved in tissue engineering, an

argument can be made for the development of more phenomenological ordinary dif-

ferential equation models. While only a few ODE models have been published (see

Section 1.4.2), there are many challenges to the experimentalist in obtaining adequate

spatial data sets over the lengthy time scales associated with cartilage regeneration.

Consequently, experimental data in most studies tends to be purely temporal, and

PDE model results are typically spatially averaged in order to validate against this

data. In this chapter, the concept of directly analyzing cartilage regeneration via a

temporal model is investigated, motivated by its clear advanatages with respect to

efficiency and simplicity relative to the spatio-temporal models.

Wilson et al. [38] developed models for scaffold degradation, ECM production

(delineating between GAG and collagen), and the resulting total mass of the tissue

construct. Scaffold degradation and ECM production were assumed to be indepen-



52

dent processes, dependent only on the remaining mass of each quantity,

d[ECM]

dt
= kECM ([ECM]SS − [ECM]) , (4.1)

d[Scaffold]

dt
= −kScaffold[Scaffold]. (4.2)

This linear uncoupled model is highly advantageous because its simplicity yields the

analytical solution

[ECM](t) = [ECM]SS
(
1− e−t/τECM

)
, (4.3)

[Scaffold](t) = [Scaffold]0e−t/τScaffold , (4.4)

where [Scaffold]0 is the initial scaffold mass, [ECM]SS is the steady state ECM concen-

tration, and τScaffold = 1/kScaffold and τECM = 1/kECM are characteristic time constants.

Lastly, Wilson et al. described the total mass, M(t), of the construct as the sum of

its constituent masses as,

M(t) = cell mass + [GAG]SS
(
1− e−t/τGAG

)
+[Collagen]SS

(
1− e−t/τCollagen

)
+[Scaffold]0e−t/τScaffold (4.5)

These models were then validated against multiple sets of data by curve-fitting. Al-

though the models were simple, they fit quite well to the data [38]. Some of the

assumptions, however, could be neglecting potentially important interaction mecha-

nisms in the tissue regeneration process.

The regeneration rate and structural integrity of the tissue depend on the rate of

hydrogel degradation: if the scaffold degrades too quickly, defects could appear, while

if it degrades too slowly it could inhibit tissue growth by preventing timely distribution

and linking of the ECM molecules [29]. Obradovic et al. [24] observed that matrix

synthesis depends on both the availability of nutrients and some regulatory feedback

mechanism. In this chapter, the Wilson et al. [38] model is extended to delineate ECM

into its “unlinked” (soluble, unbound, diffusing) and “linked” (bound, non-diffusing)

constituents, and to capture the coupled nature of the relationships between the

hydrogel scaffold, matrix, and nutrients.
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4.2 Model Development

In the model to be considered, there are six dependent variables: intracellular nu-

trient level, matrix (separated into unlinked collagen, unlinked GAG, linked collagen,

and linked GAG), and scaffold. For consistency with the experimental data to be

considered in this chapter, all variables except for the nutrient level are measured as

dry mass. The nutrients and unlinked matrix are diffusing molecules, while the other

three dependent variables are bound.

4.2.1 Nutrient Absorption and Utilization

The intracellular nutrient level, N = N(t), can be modeled by an equation of the

form

dN

dt
= f1(S)

(
M∗ −MC

L −MG
L

)
− g(N), (4.6)

where S is the mass of scaffold material, and MC
L and MG

L are the masses of linked

collagen and GAG, respectively. The parameter M∗ is the steady-state total linked

ECM dry mass and is the sum of steady-state values for both collagen and GAG.

The first term on the right hand side of (4.6) models the inhibitory mechanism that

slows nutrient absorption within the cell as ECM accumulates in the extracellular

environment, and is motivated by the work of Wilson et al. [38], particularly (4.1).

As the scaffold degrades, it is assumed that nutrient absorption is enhanced due to

increased diffusivity, and we model f1(S) as a linear decreasing function,

f1(S) = d1 (S∗ − S) . (4.7)

The parameter S∗ is a saturation value intrinsic to the hydrogel design that signifies

a point at which the hydrogel scaffold can no longer sustain additional nutrients. The

g(N) term in (4.6) models that rate at which excess nutrients are utilized by the

chondrocytes, and is modeled by

g(N) = c1 (N −N∗) . (4.8)
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This algebraic form is motivated by the reaction-diffusion model from Chapters 2 and

3, and particularly by the intracellular nutrient concentration equation, (2.3), where

N∗ represents the homeostatic nutrient level.

4.2.2 Matrix Synthesis and Linking: Collagen and GAG

The unlinked collagen and GAG, or MC
U = MC

U (t) and MG
U = MG

U (t), respectively,

are modeled by equations of the form

dMC
U

dt
= f2(N)

(
M∗ −MC

L −MG
L

)
− kCMC

U S, (4.9)

dMG
U

dt
= f3(N)

(
M∗ −MC

L −MG
L

)
− kGMG

U S. (4.10)

The first term on the right hand side of both (4.9) and (4.10) models the regulatory

feedback mechanism of a chondrocyte’s ability to synthesize matrix. Just as in (4.6)

and (4.1), as the ECM accumulates in the extracellular environment, cell regulated

biosynthesis of unlinked ECM constituents is inhibited. Also, unlinked matrix syn-

thesis has been shown to increase with increasing intracellular nutrient levels, hence

the terms f2(N) and f3(N) are modeled by

f2(N) = d2 (N −N∗) , (4.11)

f3(N) = d3 (N −N∗) . (4.12)

The second term on the right hand side in both (4.9) and (4.10) models the binding

of unlinked matrix with the scaffold in the ECM linking process. When unlinked

collagen or GAG bind with the scaffold, they are essentially taken out of the system

and become linked. This process is modeled by the equations

dMC
L

dt
= kCM

C
U S, (4.13)

dMG
L

dt
= kGM

G
U S. (4.14)
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4.2.3 Scaffold Degradation

Scaffold is not created during the cartilage regeneration process; it degrades due

to the binding process described above, and other inherent degradation mechanisms

independent of the ECM and intracellular nutrient levels. Scaffold degradation is

modeled by

dS

dt
= −lCMC

U S − lGMG
U S − c2S, (4.15)

where lC < kC and lG < kG. The first two terms take the same form as (4.13) and

(4.14), but these two degradation rate constants are smaller because it is assumed

that degradation due to linking is slower than the linking process itself. The third

term results from the scaffold’s inherent degradation rate and is motivated by (4.2).

4.2.4 Initial Conditions

The initial conditions for this model are analagous to (2.15)-(2.17). Initially, the

chondrocyte contains a homeostatic level of nutrients,

N(0) = N∗, (4.16)

there is no unlinked or linked matrix present in the system,

MC
U (0) = 0, MG

U (0) = 0, (4.17)

MC
L (0) = 0, MG

L (0) = 0, (4.18)

and the initial scaffold mass is known,

S(0) = S0. (4.19)
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4.2.5 Cartilage Regeneration Model

The cartilage regeneration model then consists of the governing equations

dN

dt
= d1 (S∗ − S)

(
M∗ −MC

L −MG
L

)
− c1 (N −N∗) , (4.20)

dMC
U

dt
= d2 (N −N∗)

(
M∗ −MC

L −MG
L

)
− kCMC

U S, (4.21)

dMG
U

dt
= d3 (N −N∗)

(
M∗ −MC

L −MG
L

)
− kGMG

U S, (4.22)

dMC
L

dt
= kCM

C
U S, (4.23)

dMG
L

dt
= kGM

G
U S, (4.24)

dS

dt
= −lCMC

U S − lGMG
U S − c2S, (4.25)

subject to the conditions (4.16)-(4.19).

4.2.6 Steady State Analysis

The steady states of the model in (4.20)-(4.25) in the limit as t → ∞ were

analyzed. In the scaffold equation (4.25), observe that at steady state, S = 0 or

c2 = −lCMC
U − lGMG

U . Since c2, lC , lG are all nonnegative parameters and MC
U (t) ≥ 0

and MG
U (t) ≥ 0 for t ≥ 0, it follows that S = 0 at steady state. Using this result and

(4.21)-(4.22) it is observed that N = N∗ or MC
L +MG

L = M∗. From (4.20), using the

fact that f1(0) = S∗ > 0 at steady state, it is observed that both of these conditions

must be true. In summary, in the limit as t→∞,

N = N∗, (4.26)

MC
L +MG

L = M∗, (4.27)

S = 0, (4.28)

meaning that the intracellular nutrient level returns to homeostasis, the amount of

linked ECM has reached its target amount, and the scaffold has fully degraded. Note

that MC
U and MG

U are free to remain at constant levels in the system. While it is
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difficult to assess the accuracy of this steady state property, it arises in our model

since the regulation of cellular biosynthesis of ECM constituents is determined by the

mass of linked matrix in the system. Since unlinked matrix is an intermediate species

in our model, it is also assumed that unlinked matrix mass will be small relative to

scaffold and linked matrix mass as the cartilage regeneration process progresses.

4.3 Model Calibration

The model was calibrated using experimental data from the Wilson et al. [38]

study. In this study, data was provided for means values of the dry mass of scaffold,

as well as the percent dry mass of GAG and collagen. The percent dry mass GAG at

time t, G(t), is computed by

G(t) =
MG

U (t) +MG
L (t)

Mass(t)
× 100, (4.29)

where the total mass in the cell-biomaterial system is given by

Mass (t) = cell mass +MG
U (t) +MG

L (t)︸ ︷︷ ︸
GAG

+MC
U (t) + +MC

L (t)︸ ︷︷ ︸
Collagen

+S(t). (4.30)

The percent dry mass collagen, C(t), is computed similarly by

C(t) =
MC

U (t) +MC
L (t)

Mass(t)
× 100. (4.31)

Note that the mass contribution due to the nutrients is considered negligible. Wilson

et al. reported a constant cell mass value of 0.21 mg, and an initial scaffold dry mass

of S0 = 18.04 mg [38].

To aid in fitting the experimental data to the current model, a least squares cost

function was formulated. The cost, J , for a set of parameters, q, is given by

J(q) =
1

nS

nS∑
i=1

 Ŝi − S(ti; q)

max
{
Ŝi

}
2

+
1

nG

nG∑
i=1

Ĝi −G(ti; q)

max
{
Ĝi

}
2

+
1

nC

nC∑
i=1

Ĉi − C(ti; q)

max
{
Ĉi

}
2

, (4.32)



58

where nS is the number of scaffold data points Ŝi, and nG, Ĝi, nC , and Ĉi are defined

analogously. In this case, the number of data points are equal; that is,

n = nS = nG = nC , (4.33)

and (4.32) becomes

J(q) =
1

n

n∑
i=1

 Ŝi − S(ti; q)

max
{
Ŝi

}
2

+

Ĝi −G(ti; q)

max
{
Ĝi

}
2

+

Ĉi − C(ti; q)

max
{
Ĉi

}
2 .(4.34)

For a fixed set of parameter values, q, solutions to equations (4.20)-(4.25) subject to

initial conditions (4.16)-(4.19) are approximated using the MATLAB routine ode15s.

Optimization of the cost function was done with the MATLAB routine fminsearch,

a Nelder-Meader direct search simplex method [20].

Without loss of generality, the intracellular nutrient level variable was normalized

so that N∗ = 1. Taking into consideration the constraints S∗ > S0, lC < kC , and

lG < kG, the initial parameter estimates for use in the optimization routine were set

at

d1 = 0.1, d2 = 0.1, d3 = 0.1, (4.35)

M∗ = 1, S∗ = 2S0, c1 = 0.1, c2 = 0.1, (4.36)

kC = 0.1, kG = 0.1, lC = kC/3, lG = kG/3. (4.37)

The resulting optimal parameter values are shown in Table 4.3, and the corresponding

cost function value and coefficients of determination for the scaffold, collagen, and

GAG are shown in Table 4.3.

In Figure 4.1, solutions to this model for the parameters in Table 4.3 are shown.

Note that the intracellular nutrient level peaks early, and around the same time the

linked ECM reaches its target value, M∗. The unlinked matrix also peaks early, and is

completely converted to linked ECM by the time target ECM is reached. The excess

nutrients in the system are removed on a slower scale, but return to homeostasis

eventually. Overall, the scaffold degradation occurs on the slowest scale. It should
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also be noted that there are features of the data (represented by the red dots in

the Figure 4.1(d)-(f)) that don’t appear to be captured by the ODE model. It is

unclear whether these are inaccuracies associated with the experimental procedure,

the simplicity of the model, or a combination of both. In particular, the behavior of

the model around the 30 day mark in plots (d) and (f) plots differ noticeably from the

data. Since, at this point in the process, all variables other that S(t) are near steady-

state, there could be an additional mechanism involved in the scaffold degradation

that has been neglected in the current model.

Table 4.1: Parameter values and corresponding units resulting from minimizing the

cost function, J , subject to the initial parameter estimates.

c1 c2 d1 d2 d3 kC kG lC lG M∗ S∗

0.164 0.027 0.155 0.136 0.034 0.101 0.110 0.026 0.052 0.381 49.3

s−1 s−1 mg−2s−1 s−1 s−1 mg−1s−1 mg−1s−1 mg−1s−1 mg−1s−1 mg mg

Table 4.2: Resulting minimum value of the cost function, J , subject to the initial

parameter estimates, and coefficient of determination, R2, for each data set.

J R2
Scaffold R2

Collagen R2
GAG

0.059 0.891 0.758 0.948
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Figure 4.1: Model variables for the case of optimal parameter values of Table 4.3

(a) intracellular nutrient level, N(t), (b) dry mass of unlinked and linked collagen

and GAG, and (c) total linked ECM (collagen and GAG) dry mass. Results of least

squares fit (blue line) to the Wilson et al. [38] data (red dots) and corresponding R2

values for (d) scaffold dry mass, (e) GAG % dry mass, and (f) collagen % dry mass.
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4.4 Parametric Analysis

Just as in Section 3.4 with the PDE model, a parametric analysis was conducted

in terms of a regeneration time, Tregen. As there is no characteristic volume for this

model, Tregen was computed as the time at which the total linked ECM dry mass first

exceeds 95% of the target value, or

min
{
Tregen : MC

L (Tregen) +MG
L (Tregen) ≥ 0.95M∗

}
. (4.38)

4.4.1 Scaffold Properties

In the Wilson et al. [38] experiment, the large majority of the dry mass was made

up of the scaffold. Therefore it seems of significant interest to investigate the impact

of changes in the initial scaffold mass, S0, or the scaffold saturation value, S∗, on

the model responses and regeneration time. Solutions to the model were found for

equally spaced values of S0 and S∗. Three S0 values,

S0 = 0.6(18.04) = 10.82 mg, S0 = 18.04 mg, S0 = 1.4(18.04) = 25.26 mg, (4.39)

were considered, and results are shown in Figure 4.2.

In Figure 4.2(a), observe that increasing the initial scaffold mass also increases

the regeneration time. For S0 < 10, however, the regeneration times seem to increase

as S0 decreases. It is unclear whether this is due to more complex interactions, or is

a weakness in that the model is producing unrealistic responses in some parameter

ranges. In particular, in Figure 4.2(b) the intracellular nutrient level drops below its

homeostasic level. It was stated previously that Rice and Anseth [29] found that the

rate and integrity of the regenerated ECM depends on the rate of scaffold degradation:

if the scaffold degrades too quickly, defects could appear, while if it degrades too slowly

it could inhibit tissue growth by preventing timely distribution of the ECM molecules.

It follow that if the experiment begins with too little scaffold, it could have a similar

effect to fast degradation, and the chondrocytes could suffer as a result.

It is also observed that for early time, a greater initial scaffold mass results in

a lower peak intracellular nutrient level. This could be due to inhibited diffusion
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through the scaffold. In Figure 4.2(c), the total linked ECM dry mass is shown (i.e.

MC
L (t) +MG

L (t)). In each of the three cases, the steady-state value of M∗ is reached,

but at a slower rate for the cases of greater scaffold mass. This also appears to be

due to inhibited diffusion.

In examining the scaffold saturation parameter, the values

S∗ = 0.8(49.30) = 39.44 mg, S∗ = 49.30 mg, S∗ = 1.2(49.30) = 59.16 mg. (4.40)

were studied. In Figure 4.3(a), observe that increasing S∗ decreases the regeneration

time. This has a similar impact to decreasing S0, since initial activity is largely

determined by the term (S∗ − S0) in (4.20). In 4.3(b)-(c) this effect is also observed;

increasing the scaffold saturation value increases the peak intracellular nutrient level,

just as it did when the initial scaffold mass was decreased, and it causes the target

linked ECM level to be reached faster. Scaffold degradation, shown in Figure 4.3(d),

is not significantly affected by changes in S∗.

4.4.2 Binding and Degradation Rates

The binding and degradation parameters, kC , kG, lC , and lG, control the terms

representing the interactions between the unlinked matrix, linked matrix, and scaffold.

Varying these parameters between 20% and 240% of the values shown in Table 4.3

had a negligible effect on the regeneration time, as is shown in Figure 4.4. The

parameters were also varied as groups: binding rates (kC , kG), degradation rates (lC ,

lG), collagen rates (kC , lC) and GAG rates (kG, lG), but the change in regeneration

time was still small. It is noted that all model terms containing these parameters

involve the unlinked matrix variables. Based on Figure 4.1, it is evident that these

intermediate (unlinked) species become negligible on early time scales. Consequently,

their effect on overall regeneration times for linked ECM is less significant relative to

other model parameters.
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4.4.3 Physiological Parameters

The target linked ECM dry mass, M∗, can contribute to large changes in the

regeneration time. It was varied between 20% and 240% of the Table 4.3 value, and

the values

M∗ = 0.4(0.38) = 0.15 mg, M∗ = 0.38 mg, M∗ = 1.6(0.15) = 0.61 mg, (4.41)

were considered, as is shown in Figure 4.5. Due to its presence in (4.20), increasing M∗

increases the peak intracellular nutrient level, as shown in Figure 4.5(b). Increasing

M∗ also appears to accelerate matrix synthesis, allowing linking to happen faster

and decreasing the regeneration time. This effect is seen in Figures 4.5(a) and (c).

Changes in M∗ also have a negligible effect on scaffold degradation.

The parameter d1 can be interpreted as the intracellular nutrient mobilization

rate, and appears in (4.20). Varying d1 by the same percentages as M∗, above, results

in a similar effect on regeneration time and nutrient levels, as seen in Figure 4.6(a)

and (b). Increasing d1 also results in a greater linked ECM dry mass (c), but has no

discernible impact on scaffold degradation (d).

The parameter c1 also appears in (4.20), and describes the rate at which excess

nutrients are utilized by the chondrocyte to maintain the integrity of the ECM, and

helps the cell return to homeostasis. Increasing c1 results in a greater regeneration

time, as shown in Figure 4.7(a), as the cell expends more nutrients in the biosynthesis

of ECM constituents. Decreasing it greatly increases the intracellular nutrient level

for later time, as shown in 4.7(b). This has a weaker effect on linked ECM mass

(c), however, since the target linked ECM level is reached early, and these additional

(unused) nutrients are no longer needed for matrix synthesis. In this case the effects

on scaffold mass (d) are negligible.

The parameters d2 and d3 are interpreted similarly: they describe the rate at

which the chondrocyte uses nutrients to synthesize unlinked collagen and GAG (re-

spectively) in (4.21) and (4.22). It is shown in Figure 4.8(a) that increasing d2 results

in faster tissue regeneration. Since unlinked matrix is synthesized faster for greater

d2, the chondrocyte mobilizes fewer nutrients (b). As observed earlier, increased un-
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linked matrix synthesis allows for faster development of linked ECM (c). Varying d3

results in similar behavior, but to a far lesser degree, as shown in Figure 4.9. This

is most likely due to GAG making up a smaller percentage of the total mass in the

data used to calibrate the model. Once again, neither of these parameters have a

noticeable effect on on scaffold degradation (Figure 4.8(d) and 4.9(d)).

The inherent scaffold degradation rate, c2, was also studied. As shown in Figure

4.10(a)-(c), even large variations in c2 had little to no effect on regeneration time,

intracellular nutrient level, and linked ECM mass. Smaller values of c2, as would be

expected, do result in slower scaffold degradation (d). Because the scaffold makes up

the majority of the total construct mass, this will have a large effect on the percent

dry mass, G(t) and C(t), (4.29) and (4.31), that were used when fitting to the data.
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Figure 4.2: (a) A plot of regeneration times for different values of S0 found by vary-

ing the optimal parameters found previously. For the three cases denoted by the

yellow/blue circles (S0 = 10.82 mg, S0 = 18.04 mg, and S0 = 25.26 mg) plots of (b)

intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold dry mass

are shown.
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Figure 4.3: (a) A plot of regeneration times for different values of S∗ found by vary-

ing the optimal parameters found previously. For the three cases denoted by the

yellow/blue circles (S∗ = 39.44 mg, S∗ = 49.30 mg, and S∗ = 59.16 mg) plots of (b)

intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold dry mass

are shown.



67

0 0.05 0.1 0.15 0.20

5

10

15

kC

R
eg

en
er

at
io

n 
tim

e 
(d

ay
s)

(a)

0 0.1 0.2 0.30

5

10

15

kG

R
eg

en
er

at
io

n 
tim

e 
(d

ay
s)

(b)

0 0.02 0.04 0.060

5

10

15

lC

R
eg

en
er

at
io

n 
tim

e 
(d

ay
s)

(c)

0 0.05 0.10

5

10

15

lG

R
eg

en
er

at
io

n 
tim

e 
(d

ay
s)

(d)

Figure 4.4: Plots of regeneration times for different values of the parameters (a) kC ,

(b) kG, (c) lC , and (d) lG.
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Figure 4.5: (a) A plot of regeneration times for different values of M∗ found by

varying the optimal parameters found previously. For the three cases denoted by the

yellow/blue circles (M∗ = 0.15 mg, M∗ = 0.38 mg, and M∗ = 0.61 mg) plots of (b)

intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold dry mass

are shown.
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Figure 4.6: (a) A plot of regeneration times for different values of d1 found by vary-

ing the optimal parameters found previously. For the three cases denoted by the

yellow/blue circles (d1 = 0.06 mg−2s−1, d1 = 0.15 mg−2s−1, and d1 = 0.25 mg−2s−1)

plots of (b) intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold

dry mass are shown.
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Figure 4.7: (a) A plot of regeneration times for different values of c1 found by vary-

ing the optimal parameters found previously. For the three cases denoted by the

yellow/blue circles (c1 = 0.03 s−1, c1 = 0.16 s−1, and c1 = 0.30 s−1) plots of (b)

intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold dry mass

are shown.
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Figure 4.8: (a) A plot of regeneration times for different values of d2 found by vary-

ing the optimal parameters found previously. For the three cases denoted by the

yellow/blue circles (d2 = 0.05 s−1, d2 = 0.14 s−1, and d2 = 0.22 s−1) plots of (b)

intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold dry mass

are shown.
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Figure 4.9: (a) A plot of regeneration times for different values of d3 found by varying

the optimal parameters found previously. For the three cases denoted by the yel-

low/blue circles (d3 = 0.007 s−1, d3 = 0.034 s−1, and d3 = 0.060 s−1) plots of (b)

intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold dry mass

are shown.
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Figure 4.10: (a) A plot of regeneration times for different values of c2 found by

varying the optimal parameters found previously. For the three cases denoted by the

yellow/blue circles (c2 = 0.005 s−1, c2 = 0.027 s−1, and c2 = 0.049 s−1) plots of (b)

intracellular nutrient level, (c) total linked ECM dry mass, and (d) scaffold dry mass

are shown.
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4.5 Discussion

In experiments associated with cartilage tissue engineering, obtaining spatial ex-

perimental data sets at multiple time points over the course of several days or weeks

can be a formidable task. As a result, spatial model results are typically spatially

averaged in order to validate against data that is predominantly temporal. In this

chapter, the use of an exclusively temporal model was analyzed as an efficient and po-

tentially beneficial alternate modeling approach. The phenomenological ODE model

presented here has extended the work of Wilson et al. [38] to delineate between un-

linked (diffusing) and linked (bound) ECM. The Wilson et al. model was based on

highly simplified assumptions about the underlying mechanisms controlling the car-

tilage regeneration process, but research has shown that the mechanisms at play are

more complex.

Rice et al. [29] claimed that the rate and integrity of the regenerated tissue de-

pends on the rate of hydrogel degradation: if the scaffold degrades too quickly, defects

could appear, while if it degrades too slowly it could inhibit tissue growth by pre-

venting timely distribution of the ECM molecules. The Wilson et al. model was a

fully uncoupled system that did not capture the effects of product inhibition in the

scaffold, and thus was explored in this current model. Obradovic et al. [24] observed

that matrix synthesis depends on both the availability of nutrients and some regula-

tory feedback mechanism. Wilson et al. neglected the presence of nutrients entirely,

but intracellular nutrient availability was included in the new model, although no

experimental data was available for comparison.

The model developed in this chapter was also designed to capture the binding

and linking interactions between unlinked collagen, linked collagen, and the scaffold

(and similarly for GAG). After calibrating the model to the Wilson et al. data set, a

parametric analysis was performed to explore the effect each parameter had on the

overall cartilage regeneration time. While this modeling approach has the advantages

of fast numerical computation times and availability of data, the lack of spatially-

meaningful parameters could prove to be limiting. In the data set, the scaffold mass
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made up a large percentage of the total construct mass, and some of the matrix-

related mechanisms failed to be captured accurately as a result. Rescaling the model

or changing the weights in the cost function could potentially reduce the influence

of the scaffold and yield better fits. Additional mechanisms for scaffold degradation

could also be explored, as the model didn’t fully capture some of the data.
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Chapter 5

Conclusions

In the preceding chapters, two approaches for modeling cartilage regeneration in

cell-seeded scaffold materials were explored. In Chapters 2 and 3, a spatio-temporal

PDE model was developed to model tissue regeneration in the local environment of

a single chondrocyte seeded in a nutrient-rich hydrogel scaffold material. Recall that

this model captured the interactions among extracellular matrix (ECM) synthesis,

accumulation, and diffusive transport phenomena in a manner that also accounted

for cell shape and the ratio of initial cell to scaffold volume. It was assumed that this

process is radially symmetric within a spherical domain, and the ECM was synthe-

sized, diffused, and accumulated uniformly around the periphery of the chondrocyte.

The unlinked matrix was synthesized inside the cell and diffused freely until it bound

with the scaffold, eventually replacing the hydrogel. The process by which the syn-

thesized matrix interacted with hydrogel to form linked ECM was represented as an

advancing interfacial region representing the evolving boundary between the newly

formed linked ECM domain and the degrading hydrogel region. Level set and phase

field modeling techniques were employed to capture the motion of this advancing

region.

An advantage of this modeling approach is its formulation in terms of physically

meaningful parameters, many of which can be determined from associated exper-

iments. For example, mechanisms such as diffusion were modeled explicitly, and
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diffusivities for various solute types and sizes are known or can be measured [15, 16].

Structural properties of cartilage ECM vary spatially, and this approach accounted

for spatial variability in hydrogel scaffold density and degradation, and the associ-

ated changes in diffusivities through the scaffold and regenerated ECM. A parametric

analysis was also performed, focusing on the dependence of ECM regeneration times

on model parameters. The model proved able to capture many of the important

biophysical, physiological, and scaffold-design aspects of cartilage regeneration. In

the context of hydrogel scaffolds seeded with chondrocytes, this modeling approach

can provide a framework for quantitative characterization of hydrogel biomaterial

design. This is important because the associated experiments can be costly and time-

intensive; using mathematical models could streamline the hydrogel-design process,

making it more effective and efficient.

This approach is not without limitations, however. For example, numerical com-

putations are intensive. Each simulation in Chapter 3 took on the order of hours

to complete, making the full parametric analysis and power law fitting quite time-

intensive. Another challenge in the application of this type of model is the difficulty

in obtaining spatial data in cell-biomaterial systems. Cartilage regeneration occurs

on time scales that span many days to a few weeks to several months, and many ex-

perimentalists have measured only scalar system variables such as scaffold or collagen

dry mass at a small number of time points. Spatial models are typically averaged

in order to validate against this data, which seems to ignore much of the potential

insight that could be gained by spatial modeling.

In Chapter 4, a second approach was used to develop a phenomenological ODE

model that extended previous work by Wilson et al. [38]. Since, as mentioned earlier,

experimental data tends to be purely temporal, development of a simplified temporal

model could prove to be both efficient and sufficiently accurate. The model presented

here delineated the ECM into its collagen and GAG constituents, and the linked

(bound) and unlinked (diffusing) components of each. It has been shown that the rate

and integrity of the regenerated tissue depends on the rate of hydrogel degradation

[29]. It has also been observed that matrix synthesis depends on both the availability
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of nutrients and some regulatory feedback mechanism [24]. The model was developed

to capture all of these effects, as well as the binding and linking interactions between

unlinked collagen, linked collagen, and the scaffold (and similarly for GAG).

The ODE model was calibrated against the Wilson et al. data set [38], and a

parametric analysis similar to the one in Chapter 3 was performed to explore the

effect of each parameter on the overall cartilage regeneration time. While this mod-

eling approach holds the advantages of very fast numerical computation times and

availability of data, the lack of spatially-meaningful parameters could prove to be

limiting. The model failed to effectively describe certain matrix-related mechanisms.

Approaches such as employing a new cost function or rescaling the model could allow

these aspects to be captured. The model didn’t fully capture the scaffold degradation,

and additional degradation mechanisms could also be explored.

For both approaches, the models could be extended by employing Michaelis-

Menten kinetics to model nutrient consumption, as has been done by Obradovic

et al. [24]. Also, since nutrient diffusion was shown to occur on a very fast time

scale during analysis of the PDE model, it could reasonably be neglected in favor of

a constant nutrient profile with little effect on the overall ECM regeneration time.

While this could be carried over to the ODE approach, it is noted that the ODE

model provides a simulation of the intracellular nutrient level through the competi-

tion between nutrient mobilization from the extracellular environment and nutrient

utilization for biosynthesis of ECM constituents. Another possible simplification for

the PDE model would be to treat the chondrocyte as a “black box”. It could be

represented as a boundary condition, described by an ODE, rather than a set of

reaction-diffusion equations over an entire spatial region. Diffusivities within cells

and other intracellular behavior are not well-understood and are difficult to measure,

so this simplification could significantly decrease numerical computation time.

Future extensions could separate the unlinked matrix in the PDE model into its

collagen and GAG constituents, as was done for the ODE model in Chapter 4. Both

models could potentially be improved by explicitly modeling the presence of growth

factors [36, 28]. Since the ODE model fit reasonably well to experimental data, in
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future work the PDE model could be spatially averaged to compare with the ODE

model and similar data sets. The available data is constraining, however, since each

lab measures different quantities in a multitude of different units, and the number

of data points is very small. For example, the Wilson et al. data was the only set

studied here that reported scaffold mass, although some other groups did report ECM

in units of percent dry mass.

As more data becomes available, the models could be calibrated and then used

to predict performance of new hydrogel scaffolds. While computationally intensive,

the PDE model could predict regeneration times and characteristics of the resulting

cartilage on a time scale that remains significantly more efficient than the trial and

error process of iterating and refining experiments. In particular, a full parametric

study for specific material parameters could take anywhere from a few hours to a

few days, but this is considerably faster than the several weeks or months it takes to

physically regenerate articular cartilage in cell-seeded scaffolds.
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