
ABSTRACT

WATSON, ROBERT L. Lifting Automorphisms from Root Systems to Lie Algebras. (Under
the direction of Dr. Aloysius G. Helminck).

In 1996 and 2000 A.G. Helminck gave the first algorithms for computing some

of the structure of symmetric spaces. In this thesis we extend these results by designing

algorithms for other aspects of the structure of local symmetric spaces. We begin with an

involution on the root system. We would like to understand how this involution describes

an involution on the Lie algebra. To do so, we consider the concept of lifting. We say an

involution θ on the root system Φ can be lifted to an involution θ̄ on the algebra if we can

find θ̄ so that θ̄|Φ = θ. Success gives rise to a method to compute local symmetric spaces.

Accomplishing this task requires effort on multiple fronts. On a small scale we

consider a correction vector. A correction vector lives in the toral subalgebra of the Lie

algebra. A result due to Steinberg establishes a unique Lie algebra automorphism that can

always be defined. We can modify this map with the correction vector so that it becomes

an involution.

On a large scale, computing the correction vector is too cumbersome. We will

show how to “break apart” larger involutions on the root system by projecting the roots

into the local symmetric space, then “extracting” specific sub-systems. We can correct the

involution on each sub-system, then “glue” the pieces together to form the involution on

the whole algebra. This process not only vastly improves the timing of the lifting process,

but also gives rise to an argument that any involution on the root system can be lifted.

We then present an entire computer package (written for Mathematica) for working

with local symmetric spaces. This package includes the algorithms we devise, as well as

“helper” algorithms which are necessary for implementation.
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Chapter 1

Introduction

1.1 A Brief Introduction to Symmetric Spaces

Symmetric spaces can be used to describe a variety of symmetries in nature. We

think of them as “nice” spaces acted on by a group of symmetries or motions (a Lie group).

They are of importance in many areas of science. In particular, they play a large role in

mathematics and physics. They have been studied for over a century - initially over the real

numbers, but also in other fields such as C and the p-adics. Within mathematics we see

their application in differential geometry, singularity theory, the cohomology of arithmetic

subgroups, number theory, and representation theory to name a few.

The study of symmetric spaces is a branch of Lie theory. Hence, much of the

structure of symmetric spaces can be learned by examining the underlying Lie Algebras

and root systems. Symmetric spaces can be defined by an involution on a group. Let

G be a semisimple algebraic group defined over an algebraically closed field of non-zero

characteristic. Let θ̄ ∈ Aut(G) be an involution. (i.e. θ̄2 = 1). Let K be the fixed point

group of θ̄. Let

P = {χθ̄(χ)−1 | χ ∈ G}

P is known as a symmetric space. Note P ∼= G/K.

The involution θ̄ induces an involution θ on the roots of G. We can learn a great

deal about the symmetric space by looking closely at this involution. In particular, we

would like to recover as much of the structure of P starting with only knowing how θ acts
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on the roots.

We start by considering the underlying Lie algebra of G. Synonymous with study-

ing the structure of a Lie Group by examining its Lie Algebra, we can study the structure

of a symmetric space by considering its local symmetric space. Let g be the Lie Algebra

of G. Let dθ̄ ∈ Aut(g) be the involutorial automorphism induced by θ̄ on g. By abuse of

notation, we write θ̄ for dθ̄. θ̄ induces the same involution θ. Let

k = {X ∈ g | θ̄(X) = X}

We define the local symmetric space of g relative to θ̄, p, as

p = {X ∈ g | θ̄(X) = −X} (1.1)

k and p are the tangent spaces in the identity of K and P . k, the +1 eigenspace

relative to θ̄, is a subalgebra of g. p, the −1 eigenspace relative to θ̄, is not a subalgebra of

g. However, we can decompose g = k⊕ p. Relative to the Killing Form we have k ⊥ p.

For characteristic 6= 2, results obtained concerning the local symmetric space will

also correspond to the symmetric space. Hence, we can begin to learn about P by studying

p. Our primary task will be to recover as much as possible the structure of p with initial

knowledge of the roots and θ.

In this thesis we are concerned with the behavior of involutorial automorphisms

on the roots of a Lie algebra. We want to describe how the involution relates to the

corresponding involution on the algebra itself. In particular, we wish to recover the action

θ̄ in a fashion suitable for computation.

We then turn our attention to the roots of g. Recall the roots of g are the function-

als for which each vector in g not in t, the toral subalgebra, are associated. In our case, t is

maximal, and each root is associated with precisely one vector in g \ t. For the Lie Bracket

[·, ·], the roots α, β and their corresponding vectors Xα, Xβ satisfy the relationships

[Xα, Xβ] = Nα,βXα+β where Nα,β is a scalar

[Hα, Xβ] = β(Hα)Xβ where Hα ∈ t
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Let Φ denote the set of roots of g. For θ̄ ∈ Aut(g) and θ ∈ Aut(Φ) we also have

the relationship

θ̄(Xα) = cα,θXθ(α)

The constants cα,θ are the structure constants of θ.

1.2 Recovering the Action of an Involutorial Automorphism

on the Lie Algebra

We say θ ∈ Aut(Φ) can be lifted to an automorphism in Aut(g, t) if there is a

θ̄ ∈ Aut(g, t) such that θ̄|t = θ. Steinberg proved that this can always be done [4].

Suppose θ is an involutorial automorphism. Our primary goal will be to determine

if θ can be lifted to an automorphism in Aut(g, t) of the same order. This is not guaranteed.

In some cases lifting is “automatic,” that is, depending on the structure constants cα,θ

(see Definition 4.2), θ̄ may already be an involutorial automorphism. Our first task is to

determine if we are so lucky.

In the case that we are not, we must modify θ̄ in such a way that we still have an

automorphism. θ̄ can only be modified with an element of ad(t), because we do not want

to lose the condition that θ̄|t = θ. So our second task, should lifting not be “automatic,” is

to determine some vector H ∈ t so that we have the correct element of ad(t).

Finding the correction vector H ∈ t is computationally intensive. The “straight-

forward” approach to be introduced in Chapter 4 is sufficient for small cases, but is too

inefficient for larger cases. Most of our efforts will be spent describing a “divide-and-

conquer” approach which uses the original algorithm for the small pieces. In the process

we’ll describe how an involution on the roots can always be lifted.

1.3 A Brief Overview

We begin in Chapter 2 by establishing the notation and some key ideas we fre-

quently will refer to. In particular, we will set up a “library” of identities which will prove

useful establishing the “divide-and-conquer” approach to finding the correction vector.
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In Chapter 3 we establish important computational tools. We will spend most of

our efforts describing Groebner bases, which our first lifting algorithm will require.

In Chapter 4 we will give our first algorithm which accomplishes all tasks describes

above. That is, we will determine if lifting is necessary, and if so, the correction vector.

However, since we will rely on Groebner bases (the construction of which takes exponential

time), it will prove to be extraordinarily inefficient for even modest sized (exceeding 10

simple roots) root systems.

In Chapter 5 we will extend the above algorithm to establish the admissibility of

an involution on the roots. This algorithm will have the same drawbacks as that of which

we discuss in Chapter 4.

In Chapter 6 we will take a step back from our computational efforts and reflect

on the Weyl group 1. The results derived will lay the foundation for the proceeding work.

In Chapter 7 we seek an alternative procedure to determine if lifting is necessary.

This procedure will rely only on the Helminck diagram, a diagram which extends the Dynkin

diagram with additional information concerning θ. In the process of establishing this pro-

cedure, we discuss key ideas concerning how a diagram and its corresponding involution on

the roots can be “decomposed”. We will call this decomposition the restricted rank one

decomposition.

In Chapter 8 we extend our discussion from Chapter 7 and determine how involu-

tions on the Lie algebra can be “decomposed.” We propose an improved lifting algorithm

which works on each component from our restricted rank one decomposition, then “glues”

the components together again.

In Chapter 9 we provide supporting algorithms. These algorithms are not part of

the main theories and ideas we will discuss. However, they are needed if one is to implement

our algorithms. They provide the key components so that one may build a complete system

for constructing involutions in local symmetric spaces from involutions on the roots.

Finally, in Chapter 12 we give Mathematica source code for a local symmetric

spaces package. Our package provides enough procedures to implement all algorithms de-

scribed. Chapter 11 gives a complete manual for installation and operation of the package.

1Pun fully intended
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Chapter 2

Preliminary Topics in Lie Algebra

The goal of this chapter is to discuss relevant elementary topics in Lie Algebra,

and establish the environment in which we’ll be working in. We will first review some basic

concepts (primarily to establish the notation). Our basic reference for this aim will be

Humphreys’ Introduction to Lie Algebras and Representation Theory [1]. His notation and

terminology shall be used.

We will follow this discussion with some “advanced” concepts - primarily those

concerning Chevalley constants - which will be useful for the latter chapters. We have two

primary sources for this discussion: the papers of S. Klein [11] and Vavilov, Nikolai and

Eugene Plotkin [13]. We will conclude with an example that illustrates some issues we will

need to address in Chapter 4.

A separate preliminary chapter on computational techniques will follow. We’ll

begin with the root space decomposition.

2.1 The Root Space Decomposition

Let g be a non-zero, semisimple Lie Algebra over an algebraically closed field F .

This will be the case for the entirety of our discussion. Let t ⊂ g be a Cartan Subalgebra.

Then the root space decomposition of g with respect to t is given by

g = t⊕
∑
α∈Φ(t)

gα (2.1)
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Where

gα = {X ∈ g | [H,X] = α(H)X ∀ H ∈ t}

and

Φ(t) = {α ∈ t∗ | α 6= 0, gα 6= 0}

The existence of such a decomposition arrives as follows. Given that g is not

nilpotent, we can find some element x ∈ g whose semisimple part in the abstract Jordan

decomposition is nonzero. Recall the abstract Jordan decomposition lets us write x = xs+xn

for x ∈ g, where xs is the ad-semisimple part, and xn is the ad-nilpotent part. Hence, we

can find t, a maximal subalgebra (called toral) in g. Note that t is abelian. Hence, adg t

is simultaneously diagonalizable. Thus, g is the direct sum of the subspaces gα where α

ranges over t∗.

The linear functionals α are known as the roots of g with respect to t, and

{gα | α ∈ Φ(t)} the root space associated with α.

Note that g0 is the centralizer of t. Because in our case t is maximal, we write

g0 = t. Note 0 is not regarded as a root, and g0 is not regarded as a root space.

Hence, for every α ∈ Φ(t) we have dim(gα) = 1. We designate {Xα}, Xα ∈ g as a

basis for gα. Xα is known as the root vector associated with α. For our purposes, we can

think of the root as a “label” for the root vector which describes how it interacts with other

vectors. We will want to pay close attention to how the vectors in g are “labelled” by the

roots. In particular, we’ll soon introduce the notion of a Chevalley basis. The Chevalley

basis gives us an ideal basis for g and “labelling” of these vectors by the roots.

2.2 Root Systems

As suggested at the close of the previous section, understanding how the roots of

a Lie Algebra relate to each other will reveal much of the structure of the Lie Algebra itself.

In fact, with regards to the local symmetric space, this is the very subject of our entire

discussion! To begin, let us summarize some of the important properties. Please refer to

Humphreys’ text for a detailed development of these conclusions.
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Proposition 2.2.1 (Humphreys. [1], §8.5 ).

1. α ∈ Φ implies dim gα = 1.

2. If α ∈ Φ, then the only scalar multiples of α which are roots are α and −α.

3. If α, β ∈ Φ then β(Hα) ∈ Z, and β − β(Hα)α ∈ Φ.

4. If α, β, α+ β ∈ Φ, then [gα, gβ] = gα+β.

5. Let α, β ∈ Φ, β 6= ±α. Let r, q be (respectively) the largest integers for which β − rα,

β + qα are roots. Then all β + iα ∈ Φ, (−r ≤ i ≤ q), and β(Hα) = r − q.

6. g is generated (as Lie algebras) by the root spaces gα.

The proposition enables us to understand how vectors in g relate by associating

each vector with a root. To see how the roots themselves relate to one another, it will

be very beneficial to describe them as vectors in Rn. Doing so will enable us to use the

geometry of Rn to examine symmetries and combinatorial relations of our vectors.

This task is surprisingly tricky to accomplish, and requires a bit of work. We will

want to describe the roots as vectors in a real Euclidean space E. To do so, we will need to

define the appropriate inner product. We begin with the familiar Killing Form.

Definition 2.2.2 (Killing Form). Let g be a Lie Algebra over a field F . Define a bilinear

form κ on g as follows.

κ : g× g→ F

κ(X,Y ) = tr(adX · adY )

Clearly κ is a symmetric bilinear form, and is associative with respect to the Lie

Bracket. With regards to κ’s action on the torus, we have the following

Proposition 2.2.3 (Humphreys. [1], §8.2). The restriction of κ to t is nondegenerate

This proposition enables us to identify t∗ with t by means of an isomorphism. The

relation identifies each element α ∈ t with a unique vector tα ∈ t satisfying α(t) = κ(tα, t)

for all t ∈ t. We have the isomorphism
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τ : t∗ → t

τ(α) = tα

Hence if we apply τ to our roots, we have τ(Φ(t)) = {tα | α ∈ Φ(t)}. This allows

us to relate the killing form to t∗ in the following way:

Definition 2.2.4. Let α, β ∈ t∗. Define a bilinear form on t∗ as follows

(·, ·) : t∗ × t∗ → κ

(α, β) = κ(tα, tβ)

We have that (·, ·) is a symmetric bilinear form (as κ is), and is non-degenerate by

Proposition 2.2.3.

The following proposition enables us to begin constructing the Euclidean Space E.

Proposition 2.2.5 (Humphreys. [1], §8.3). Φ(t) spans t∗.

We then pick a basis for t∗. Let ∆ = {α1, α2, . . . , αn} ⊂ Φ(t) be our basis for t∗.

Proposition 2.2.1-(3). leads us to a second useful conclusion.

Proposition 2.2.6 (Humphreys. [1], §8.5). If α, β ∈ Φ(t), then 2(β,α)
(α,α) ∈ Z, and β −

2(β,α)
(α,α) α ∈ Φ(t).

In light of Proposition 2.2.1-(3), we refer to the integers 2(β,α)
(α,α) as the Cartan

Integers.

It turns out for any β ∈ Φ, we can write β uniquely as β =
∑n

i=1 kiαi. In fact,

ki ∈ Q. Let EQ denote the Q-span of α. We have the following statement.

Theorem 2.2.7 (Humphreys. [1], §8.5).

1. Each α ∈ Φ(t) is contained in EQ.

2. The Q-dimension of EQ equals dim t∗.

The assertion allows us to view our symmetric bilinear form (·, ·) over EQ. Another

result due to Humphreys is as follows.
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Proposition 2.2.8 (Humphreys. [1] §8.5).

1. (·, ·)|EQ is symmetric, positive-definite

2. For any α, β ∈ EQ, (α, β) ∈ Q.

We finish our construction by extending the base field from Q to R. Let E =

R
⊗

Q EQ. The form (·, ·) extends to E and is positive-definite. Hence E is a Euclidean

Space, Φ contains a basis of E, and dimR E = n.

The construction allows us to study the roots by means of their geometric proper-

ties via our real Euclidean inner product space. To summarize the construction, we have:

Theorem 2.2.9 (Humphreys. [1], §8.5). Let E be as defined above, with form (·, ·). Let g

be a Lie Algebra with maximal torus t and roots Φ(t). Then

1. Φ(t) spans E.

2. 0 6∈ t.

3. The only multiples of α ∈ Φ(t) are ±1.

4. For all α, β ∈ Φ(t), β − 2(β,α)
(α,α) α ∈ Φ(t).

5. For all α, β ∈ Φ(t), 2(β,α)
(α,α) α ∈ Z.

2.3 Root Systems in Rn

The stage is now set to begin our geometric description of the roots. Fix a Eu-

clidean space E with a symmetric positive-definite bilinear form (·, ·). We first define the

length of a vector and the angle between two vectors in the usual way:

Definition 2.3.1.

1. Let α ∈ E. Then |α| =
√

(α, α).

2. Let α, β ∈ E, and θ be the angle between α and β. Then cos(θ) = (α,β)
(α,α) .

A reflection in E is an invertible linear transformation constructed in a particular

way. Given a root α, we fix a reflecting hyperplane Pα = {β ∈ E | (β, α) = 0}. Any root

orthogonal to Pα is sent into its negative. We then define a reflection explicitly:
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Definition 2.3.2. Let α, β ∈ E. A reflection about the root α, denoted sα, is defined as

sα(β) = β − 2(β, α)
(α, α)

α (2.2)

For convenience, we usually write

〈β, α〉 =
2(β, α)
(α, α)

(2.3)

Then we have in place of equation 2.2

sα(β) = β − 〈β, α〉α (2.4)

We are now suitably equipped to define a root system in Rn.

Definition 2.3.3. A subset Φ of the Euclidean space E is called a root system in E if the

following five axioms are satisfied.

1. Φ is finite and spans E.

2. 0 6∈ Φ.

3. For α ∈ Φ, if kα ∈ Φ then k = ±1.

4. If α ∈ Φ, then sα leaves Φ invariant.

5. If α, β ∈ Φ then 〈β, α, 〉 ∈ Z.

The fifth axiom imposes severe restrictions on the possible angles between pairs of

roots. Considering Definition 2.3.1-(2). we have

〈β, α〉 · 〈α, β〉 = 4 cos2(θ) (2.5)

We note that 〈β, α〉 and 〈α, β〉 have the same sign. Since cos2(θ) ∈ [0, 1], then

there is a finite number of angles between pairs of roots. We can let |β| ≥ |α| without

loss of generality. Then the following table summarizes the possible angles between pairs of

roots that preserves the condition 〈β, α〉 ∈ Z.
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Table 2.1: Possible Angles Between Pairs of Roots

〈α, β〉 〈β, α〉 θ |β|2/|α|2

0 0 π/2 Undetermined

1 1 π/3 1

-1 -1 2π/3 1

1 2 π/4 2

-1 -2 3π/4 2

1 3 π/6 3

-1 -3 5π/6 3

As a remark, for a particular root system we are concerned more with the angle

between vectors than the vectors themselves. Hence, let Φ be a root system in Euclidean

space E with a given bilinear form. Then any form which leaves the Cartan integers invariant

maintains the structure of the root system up to scale.

As a second remark, we have the following theorem in Humphreys [1].

Theorem 2.3.4. Φ(t) is a root system in E.

This theorem is of enormous importance. It gives that every nonzero finite dimen-

sional semisimple Lie algebra g is characterized up to isomorphism by its root system. By

means of the root system we hope to study its corresponding algebra. We next show that

there are a finite number of classes of root systems. Hence, there are a finite number of

classes of nonzero finite dimensional semisimple Lie algebras.

2.4 Cartan Matrices and Dynkin Diagrams

An indispensable tool for understanding the structure of the root system will be

its Cartan matrix. Fix an ordering of the simple roots (those which are not the sum of any

other roots). The matrix whose (i, j) entry is given by (〈αi, αj , 〉) is the Cartan matrix for

the root system. The matrix depends on the ordering chosen. For our discussions we will

use the ordering given in Humphreys. However, our algorithms will work for any chosen

ordering.
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A second invaluable tool is the Dynkin diagram. The Dynkin diagram extends the

Coxeter graph with additional information concerning the roots. The roots αi and αj are

joined by 〈αi, αj〉〈αj , αi〉 number of edges. The possible values are 0, 1, 2, or 3. In the case

of a double or triple bond (2 or 3), an arrow points to the shorter of the two roots.

The Cartan matrix and Dynkin diagram can be easily determined from each other

- an idea we will make frequent use of in our algorithms. In particular, consider the roots αi

and αj . In the case of a single bond, both the (i, j) and (j, i) entries hold the value −1. In

the case of a double or triple bond, either the (i, j) entry or (j, i) entry holds the value −2

(double bond), or −3 (triple bond). The other entry holds the value −1. The value which

holds −1 falls on the row which the arrow points to. For instance, given the diagram

e e e e-
α1 α2 α3 α4

we can deduce the Cartan matrix in the following way. First, all entries on the

diagonal hold the value 2. Because we have single bonds between the pairs of roots (α1, α2)

and (α3, α4), the (1, 2), (2, 1), (3, 4), and (4, 3) entries hold the value −1. For the pair

(α2, α3), the arrow points toward α3. Hence, the (3, 2) entry (the entry on row 3) holds

the value −1. The (2, 3) entry holds the value −2. Remaining entries hold the value 0. We

have the Cartan matrix


2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2



The seven classification classes of possible Dynkin diagrams are listed in Humphreys

[1]. Because the diagrams classify the possible root systems, they classify the possible

nonzero finite dimensional semisimple Lie algebras. The ordering of the roots does not

matter - we will have the same classifications. However, because we will frequently rely

on these diagrams and matrices, we will want to pick one ordering for consistency. For

reference, the Cartan matrices and Dynkin diagrams relevant to our ordering are given in

Appendix A.
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2.5 Bases of the Root Systems

Considering our geometric description of the root systems, we are now able to

establish bases for each system in terms of orthonormal vectors which span Rn. The inner

product is the usual one

〈ei, ej〉 = δi,j

where

δi,j =

 1 if i = j;

0 else

Our usual basis for each of the root systems will be as follows.

Table 2.2: Usual Root System Bases

Name Basis

An ei − ei+1, i = 1 . . . n

Bn ei − ei+1, i = 1 . . . n− 1;

en

Cn ei − ei+1, i = 1 . . . n− 1;

2en

Dn ei − ei+1, i = 1 . . . n− 1;

en−1 + en

E6 {1
2(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), e1 + e2,

−e1 + e2,−e2 + e3,−e3 + e4,−e4 + e5}
E7 {1

2(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), e1 + e2,

−e1 + e2,−e2 + e3,−e3 + e4,−e4 + e5,−e5 + e6}
E8 {1

2(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), e1 + e2,

−e1 + e2,−e2 + e3,−e3 + e4,−e4 + e5,−e5 + e6,−e6 + e7}
F4 {e2 − e3, e3 − e4, e4,

1
2(e1 − e2 − e3 − e4)}

G2 {e1 − e2,−2e1 + e2 + e3}
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It should be emphasized that this is not the only choice of bases. Indeed, a question

we will need to later address is how one can identify which root system a given set of vectors

describes. A procedure, using Cartan matrices, can be found in Algorithms 9.1.1 and 9.1.2.

As an example, consider the basis ∆ = {1
2(e1 − e2 + e6 − e7), 1

2(e2 − e6)}. Let

αi denote the ith entry, and let α∨i denote the co-root of αi. Then the matrix formed by

[(αi, α∨j )]i,j=1,2 yields  2 −2

−1 2



which is precisely the Cartan Matrix for a root system of type B2.

2.6 Weyl Groups and the Longest Element

The subgroup of GL(E) generated by the reflections sα gives the Weyl group

(denoted by W ). The longest element, denoted w0, denotes the longest element of the Weyl

group which cannot be expressed as a shorter element. For example, consider the root

system A2, with two basis roots α and β. The longest element of the Weyl group is sαsβsα,

which has three elements. Because this is the longest element, any expression which is

longer can be expressed equivalently as a shorter element. sαsβsαsβ has four elements, but

is equivalent to sβsα.

The longest element is of particular interest to us in that it acts invariantly on an

“embedded root system.” An embedded root system is constructed by looking at the root

system described by part of a Dynkin diagram. Consider the Dynkin diagram for the root

system A4.

e e e e1 2 3 4

We can look at the sub-diagram constructed by removing the first and last roots.

e e2 3



15

This is an A2 root system embedded in A4. The longest element of this system

with respect to the two basis roots is w0 = sα2sα3sα2 .

The longest element has the property that roots of A4 which also lie in the em-

bedded root system will be mapped by w0 to another root in the embedded root system.

For instance,

w0(α2) = α3 ∈ embeddedA2

w0(α3) = α2 ∈ embeddedA2

This follows from the fact that w0 maps ∆ to −∆. So if ∆ is a basis for the roots

in the embedded root system, all root in the larger root system that are precisely linear

combinations of embedded basis elements must be mapped to the embedded system by w0.

2.7 Chevalley Constants

The advantage to identifying each basis vector in g with the correct root is that

we can quickly calculate the Lie bracket given two vectors. this is done in the following

manner. The relation between the root system and its corresponding Lie algebra gives us

that [Xα, Xβ] = kXα+β, where k is some constant. In general there are few cases where we

can tell the value of k knowing only the roots. However, it is possible to choose a basis for

g so that this is possible. We will often want to take a Chevalley basis of g, for which the

constant k has special properties. These properties allow us to quickly determine its value

for all pairs of root vectors. To construct a Chevalley basis, we choose root vectors satisfying

several properties. In particular, we have the following definition for this constant:

Definition 2.7.1. If α+β is a root and p is the greatest integer such that β− pα is a root,

then [Xα, Xβ] = Nα,βXα+β where Nα,β = ±(p+ 1).

We have the fundamental properties:

1. [Hαi , Hαj ] = 0

2. [Hαi , Xαj ] = 〈αj , αi〉Xαj

3. [Xα, X−α] = Hα

4. Nα,−β = −N−α,β



16

2.8 A Library of Identities on Chevalley Constants

Some of our algorithms (and justification of the underlying theory) will depend

on clever manipulation of the Chevalley constants. In particular, there may be more than

one Chevalley basis for a given Lie algebra. We’ll often want to manipulate the Chevalley

constants so that the particular choice of Chevalley basis becomes arbitrary. For this reason

we provide a list of the most useful identities. Enough are provided so that the particular

Chevalley constants we need can be computed from the root system. Our references for this

collection are the works of N. Vavilov and E. Plotkin [13], and S. Klein [11].

The proceeding set can be found in [13]. The first three identities help establish

the rest that follow. The first immediately follows from the definition of the Chevalley

constants. The second two allow us to manipulate the order of the roots in the subscripts.

We have the following.

Proposition 2.8.1. Let α, β ∈ Φ and α+ β 6= 0 then

1. If α+ β 6∈ Φ then

Nα,β = 0 (2.6)

2. If α+ β ∈ Φ then

Nα,β = −Nβ,α (2.7)

3. If α+ β ∈ Φ then

Nα,−β = Nβ,−α (2.8)

The next proposition gives us a foundation for determining specific values of the

Chevalley constants. Following from the definition of the Chevalley constants 2.7.1 (namely,

Nα,β = ±(p+ 1)), we have

Proposition 2.8.2. Let α, β ∈ Φ, α+ β ∈ Φ, and α+ β 6= 0 then

Nα,β N−α,−β = −(p+ 1)2 (2.9)
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Next, the Jacobi identity provides us two more “advanced” relations.

Proposition 2.8.3. Let α, β, γ, δ ∈ Φ. Then

1. If α+ β + γ = 0 then
Nα,β

(γ, γ)
=

Nβ,γ

(α, α)
=

Nγ,α

(β, β)
(2.10)

2. If α+ β + γ + δ = 0 then

Nα,βNγ,δ

(α+ β, α+ β)
+

Nβ,γNα,δ

(β + γ, β + γ)
+

Nγ,αNβ,δ

(γ + α, γ + α)
= 0 (2.11)

The next two results concern the matrix formed by the Chevalley constants. We

obtain this matrix by letting the (i, j) entry take the value Nαi,αj for α ∈ ∆, or α ∈ Φ.

First we have:

Proposition 2.8.4. From Equation 2.7 we have that the matrix

N+ = [Nαi,αj ]i,j=1...|Φ+| (2.12)

where αi, αj ∈ Φ+ is anti-symmetric.

A second proposition immediately follows, giving the Chevalley constants concern-

ing the negative roots.

Proposition 2.8.5. Following Equations 2.8 and 2.10, the matrix

N− = [Nαi,αj ]i,j=1...|Φ−| (2.13)

where αi, αj ∈ Φ− can be expressed via N+.
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More can be said about Equations 2.10 and 2.11 if all roots have the same length.

If this condition is met, we have:

Proposition 2.8.6. Let all roots have the same length. Then,

1. If α+ β + γ = 0 then

Nα,β = Nβ,γ = Nγ,α (2.14)

2. If α+ β + γ + δ = 0 then

Nα,β Nγ,δ +Nβ,γ Nα,δ +Nγ,α Nβ,δ = 0 (2.15)

The next three identities will prove useful when establishing relationships between

an automorphism on the roots and its corresponding automorphism on the Lie algebra. If

we call the preceding set of Chevalley relations the “basic” set, then what follows is the

“advanced”, as making use of them requires clever re-arrangement of the roots.

Proposition 2.8.7.

1.

Nβ,γ Nα,β+γ = Nα+β,γ Nα,β (2.16)

2.

Nα,β =


−Nαi,β−αi Nβ−αi,α if β − αi ∈ Φ+;

Nαi,α−αi Nα−αi,β if α− αi ∈ Φ+.

(2.17)

3.

Nα,−β =


Nα−β,β

(α−β,α−β)
(α,α) if α− β ∈ Φ+;

Nβ−α,β
(β−α,β−α)

(β,β) if β − α ∈ Φ+.

(2.18)
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Providing a means to begin calculating numerical values for the Chevalley con-

stants, let ∆ = {α1, . . . , αn} be a basis for the roots of g. We have the following scheme in

[14]. Set

Nαi,β = 1 if αi + β ∈ Φ+ (2.19)

provided there is no j < i such that αi + β = αj + β̄ for some β̄ ∈ Φ+.

An alternative means to compute the values of some Chevalley constants (via the

roots) can be related to Equation 2.9. Two claims will help us. First follows from [12]:

Lemma 2.8.8 (Knapp, A.). Let {α2 + kα1 | − p ≤ k ≤ q} be the α1-string through α2.

Then we have

N2
α1,α2

=
q(1 + p)

2
‖α1‖2

Second from [11].

Proposition 2.8.9 (Klein. Proposition 3.5-(2)). For every non-simple, positive root α ∈
Φ+ − ∆, fix a decomposition α = β1 + β2 such that β1, β2 ∈ Φ+. Then there exists a

Chevalley basis {Xα} with the property that for all α ∈ Φ+ we have Nβ1,β2 > 0.

The implication of Proposition 2.8.9 is that there is a Chevalley basis such that

we can compute some of the Chevalley constants (those for which the decomposition of the

proposition can be found) in the following way.

1. for the non-simple positive roots α ∈ Φ+ − ∆, fix a decomposition α = β1 + β2,

β1, β2 ∈ Φ+.

2. Let {β2 + kβ1 | − p ≤ k ≤ q} be the β1-string through β2.

3. Then Nβ1,β2 is given by

Nβ1,β2 =

√
q(1 + p)

2
‖β1‖ (2.20)
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Another result in Klein [11] extends Equation 2.18. It is possible to construct a

Chevalley basis so that we have the following.

Lemma 2.8.10 (Klein. Equation 3.5).

Nα,−β = −N−α,β =


Nβ−α,α if β − α ∈ Φ+;

Nα−β,β if β − α ∈ −Φ+ and N−α,−β = −Nα,β ;

0 else.

(2.21)

2.9 Example: Root Space Decomposition of sln(C)

Let g = sln(C). Recall sln(C) is the semisimple Lie Algebra of n×n matrices over

C with trace zero. The Lie Bracket [·, ·] on g is the commutator:

[X,Y ] = XY − Y X ∀ X,Y ∈ g

Let t ⊂ g be the set of diagonal matrices.

For i = 1 . . . n, let ei be the functionals on t given by

ei(


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · an

) = ai

We can compute that the set of roots of g is given by

Φ(t) = {ei − ej | i, j = 1 . . . n, i 6= j}

Define αi = ei − ei+1. Then ∆ = {α1, α2, . . . , αn−1} is a base for Φ(t). Denote by

Φ the set of roots Φ(t).

Consider the inner product 〈ei, ej〉 = δi,j . Then the reader can verify that 〈αi, αj〉
yields precisely the (i, j) entry in the Cartan Matrix for An−1. Hence, g is a Lie Algebra of

type An−1.

Let Ei,j denote the n × n matrix with 1 in the (i, j) entry and zero elsewhere.

Pick {Hαi = Ei,i − Ei+1,i+1} as a basis for t. We have the relation Hα+β = Hα + Hβ
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for every α, β ∈ Φ. Then for α = k1α1 + . . . + kn−1αn−1, α ∈ Φ, αi ∈ ∆, we have

Hα = k1Hα1 + . . .+ kn−1Hαn−1 .

Now that we have defined a basis for t, it is the remaining task to determine the

root vectors Xα with regards to t. Recall [Hαi , Xαi ] = 〈i, i〉Xαi , where 〈i, j〉 is the (i, j) entry

in the Cartan Matrix. Then 〈i, i〉 = 2. Thus, for each Hαi we compute the 2-Eigenspace of

ad(Hαi). Since t is maximal, the dimension of the 2-Eigenspace is 1, and a basis for this

space is given by {Ei,i+1}. Therefore we have Xαi = Ei,i+1 for all αi ∈ ∆.

To find the root vectors for the non-basis roots, we can make use of the fact

that [Xα, Xβ] is a multiple of Xα+β for α, β ∈ Φ, or we can repeat the same Eigenspace

computation for all Hα, α ∈ Φ. To save time in the computation, note that adHα+adHβ =

adHα+β for α, β ∈ Φ. To determine the root vectors for the negative roots, we repeat the

computations above, using the (-2)-Eigenspaces instead. We then arrive at the following

root space decomposition:

g = span(Hαi)⊕ span(M)

M =



0 Xα1 Xα1+α2 · · · Xα1+...+αn−2 Xα1+...+αn−1

X−α1 0 Xα2 · · · Xα2+...+αn−2 Xα2+...+αn−1

X−α1−α2 X−α2 0 · · · Xα3+...+αn−2 Xα3+...+αn−1

...
...

...
. . .

...
...

X−α1−...−αn−2 X−α2−...−αn−2 X−α3−...−αn−2 · · · 0 Xαn−1

X−α1−...−αn−1 X−α2−...−αn−1 X−α3−...−αn−1 · · · X−αn−1 0


(2.22)

Recall the constants Nα,β satisfy the relation [Xα, Xβ] = Nα,βXα+β, where Nα,β =

0 if and only if α+β is not a root. We can then use the root space decomposition to compute

these constants. In the case of sl3(C) we get the non-zero constants
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Root α Root β Constant Nα,β

α1 α2 1

α1 −α1 − α2 −1

α2 α1 −1

α2 −α1 − α2 1

α1 + α2 −α1 −1

α1 + α2 −α2 1

−α1 α1 + α2 1

−α1 −α2 −1

−α2 α1 + α2 −1

−α2 −α1 1

−α1 − α2 α1 1

−α1 − α2 α2 −1
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Chapter 3

Systems of Multivariate

Polynomial Equations

The goal of this chapter is to discuss computational techniques we’ll rely heavily

upon. In particular, we thoroughly discuss solutions to systems of multivariate polynomial

equations. Once described, we will have everything we need to determine if an automor-

phism of the roots can be lifted to one of the Lie Algebra. Our basic references will be Von

Zur Gathan and Gerhard’s Modern Computer Algebra [2], and Cox, Little, and O’Shea’s

Ideals, Varieties, and Algorithms [3].

We will rely on Groebner bases to solve these systems. Groebner bases are a

powerful computational tool. Unfortunately, algorithms which compute these bases tend

to be quite slow. Once we establish how Groebner bases are relevant to our goals, we will

next need to establish how to rely on them as little as possible.

3.1 Multivariate Division

Our first task is to introduce a procedure for division of multivariate polynomials

analogous to long division. In the single variable case, division of polynomial f(x) by g(x)

is accomplished in the following manner:

1. Divide the leading term of f(x) by the leading term of g(x). Add the resulting

monomial m(x), to the quotient..
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2. Multiply each term of g(x) by m(x). Subtract this result from f(x).

3. Repeat until no divisions are possible. The remaining terms of f(x) compose the

remainder.

A similar scheme for division with multivariate polynomials is given below. The

purpose of a monomial order will be discussed in the following section.

Algorithm 3.1.1 (Multivariate Polynomial Division).

Input Nonzero polynomials f , f1, . . . , fs ∈ F [x1, . . . , xn], where F is a field, and ≺, a

monomial order on F [x1, . . . , xn].

Output q1, . . . , qs, r ∈ F [x1, . . . , xn] such that f = q1f1 + . . . qsfs + r, and no monomial r

is divisible by the leading term (LT) of any f1, . . . fs.

1. r := 0; p := f ; qi := 0 for all i = 1, . . . , s.

2. while p 6= 0 do

if LT(fi) divides LT(p) for any i

then qi := qi + LT(p)
LT(fi)

; p := p− fi LT(p)
LT(fi)

else r := r + LT(p); p := p− LT(p)

3. return q1, . . . , qs, r

The algorithm must terminate because after each pass through step 2, the multi-

degree of f has decreased, where the multidegree of f is the maximum (with respect to the

order ≺) n−tuple formed by the powers of xi in each monomial of f .

3.2 Monomial Ordering

The leading term of a multivariate polynomial is ambiguous without defining an

order on the monomials. For instance, suppose f(x) = 3x3y2 + 2x2y5. Should the first

term be considered the leading term because the power of the first variable (x) is higher,

or should the latter term be considered leading because the sum of powers is higher?

To settle the issue, we define a monomial order as follows:
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Definition 3.2.1. A total order ≺ on Nn is a monomial order in F [x1, . . . , xn] if it

satisfies the following two conditions.

1. α ≺ β if α+ γ ≺ β + γ for all α, β, γ ∈ Nn

2. ≺ is a well order

Two common orders are lexicographical, and graded lexicographical. In lexico-

graphical order, α ≺ β if the left-most entry in α − β is negative. Hence, to determine if

α ≺ β, we look at the left-most entry. If α’s is the lowest, then α ≺ β. If there is a tie, we

move to the second left-most entry, or third, etc. In graded lexicographical order, we com-

pare the sums of the entries of α and β. In the case of a tie, we fall back to lexicographical

order.

Hence, for f(x) = 3x3y2 + 2x2y5, we have the tuples (3, 2) and (2, 5). Using

lexicographical order, (2, 5) ≺ (3, 2) and so 3x3y2 is the leading term. Using graded lexico-

graphical order, (3, 2) ≺ (2, 5) and 2x2y5 is the leading term.

3.3 Groebner Bases

With multivariate polynomial division we are now able to construct a Groebner

Basis. Let F be an algebraically closed field, and I = 〈f1, . . . , fs〉 a polynomial ring over F .

Our task is to find a finite subset G = {g1, . . . gt} such that 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.
G satisfying the above criteria describes a Groebner Basis. Equivalently, we can

define a Groebner Basis as follows:

Definition 3.3.1. A basis G of an ideal I in a polynomial ring over an algebraically closed

field F is a Groebner Basis if it satisfies

1. The ideal given by the leading terms of polynomials in I is itself generated by the

leading terms of the basis G

2. The leading term of any polynomial in I is divisible by the leading term of some

polynomial in the basis G

3. Multivariate division of any polynomial in the polynomial ring R by G gives a unique

remainder.
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4. Multivariate division of any polynomial in the ideal I by G gives 0

The classic algorithm for the computation of such a set G was given by Buch-

berger. His algorithm can be viewed as a generalization of the Euclidean Algorithm for

GCD computation, and Gaussian Elimination for linear systems. It is described below.

First, define the S-Polynomial of two polynomials f and g as follows.

S(f, g) = xγ

LT(f)f −
xγ

LT(g)g

where xγ = LCM(LM(f),LM(g))

The S stands for “subtraction”, or “syzygy.” It has the effect of “cancelling” the

leading terms of f and g. The objective is to remove polynomials whose leading terms are

not in the ideal generated by leading terms of G.

Let fG denote the remainder of polynomial f divided by polynomials in G.

Algorithm 3.3.2 (Buchberger’s Algorithm).

Input F = {f1, . . . , fs}

Output A Groebner Basis G = {g1, . . . , gt} for I.

1. G := F ; G′ := {}

2. while G′ 6= G do

G′ := G

for each pair (p, q) of polynomials in G′, p 6= q, do

S := S(p, q)
G′

if S 6= 0 then G := G ∪ {S}

3.4 Application to Systems of Multivariate Polynomials

Consider, for example, the ideal I = 〈xy+x2, x+y+z3, 2x−y〉. One can compute

the following Groebner Basis G = {3z+z6, 3y+ 2z3, 3x+z3}. The attractive property of G

is that one polynomial contains only the variable z. Each subsequent polynomial introduces,

for the first time, a new variable.
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What this implies is the following. Suppose we have a system of polynomial

equations fi = 0, i = 1, . . . , s. To solve this system, we consider the ideal I = 〈f1, f2, . . . , fs〉.
Computation of a Groebner Basis for this ideal will not change the solution set, because

each polynomial in G is a combination of polynomials in I. But G has the property that

we can use back-substitution.

To take advantage of this property, we introduce elimination ideals.

Definition 3.4.1. Let F be a field and I = 〈f1, . . . , fs〉 ⊂ F [x1, . . . , xn]. Then the lth

elimination ideal of I is given as Il = I ∩ F [xl, . . . , xn].

The above definition implies that, to find Il, we remove all polynomials except

those for which only the variables xl, . . . , xn are present. If we were to do the same for the

polynomials in G, we would be left with a Groebner Basis for Il as shown in the following

theorem.

Theorem 3.4.2. Let I be an ideal and G a Groebner Basis for I. Then

1. Il is an ideal for all l = 1, . . . , n

2. Gl = G ∩ F [x1, . . . , xn] is a Groebner Basis for Il

The theorem implies we can solve a system of equations fi(x1, x2, . . . , xn)− bi = 0

in the following manner.

Algorithm 3.4.3 (Solutions to Systems of Multivariate Polynomial Equations).

Input Polynomials g1, . . . , gs, where gi = fi(x1, x2, . . . , xn)− bi

Output All solutions to the system fi(x1, x2, . . . , xn)− bi = 0

1. Compute Gn; Solve the system gi = 0.

2. Compute Gn−1. For each solution, solve the system gi = 0.

3. Repeat for all Gi, i = n, . . . , 1.
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3.5 Existence of a Solution

The existence of a solution is more relevant to our interests than the solution itself.

Since a system of equations has no solution if and only if the corresponding Groebner Basis

contains 1, it suffices to check this condition. However, it will prove useful to introduce a

reduced Groebner Basis.

Definition 3.5.1. A reduced Groebner Basis for an ideal I is a Groebner Basis G of I

which satisfies

1. For all p ∈ G, the coefficient of the leading term of p is 1

2. For all p ∈ G, no monomial of p lies in 〈LT(G)− {p}〉

For any Groebner Basis G, a reduced Groebner Basis Ḡ can be computed in the

following manner.

1. For all p ∈ G, if LT(p) ∈ 〈LT(G)− {p}〉, then remove p from G.

2. For all p ∈ G, if some non-leading term in p is in 〈LT(G)− {p}〉, then replace p with

the remainder of p divided by the set G− {p}.

Step 2 above ensures the resulting Ḡ satisfies 3.5.1-(2). Hence, for every Groebner

Basis, a reduced Groebner Basis can be found. Fast Algorithms (e.g. Faugère F4 Algorithm)

exist for the computation of a Reduced Groebner Basis.

If a Groebner Basis contains 1, then 1 ∈ 〈LT(G)−{1}〉. Hence, the reduced Groeb-

ner Basis is {1}. The following lemma will provide us with a mechanism for determining

the existence of a solution to systems of multivariate polynomial equations.

Lemma 3.5.2. A system of polynomial equations fi(x1, x2, . . . , xn)− bi = 0 has a solution

if and only if the reduced Groebner Basis for the ideal 〈f1, f2, . . . , fs〉 does not reduce to {1}.
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Chapter 4

Involutorial Automorphisms With

a Maximal (-1)-Eigenspace

In 1988 Helminck [5] classified the local symmetric spaces over algebraically closed

fields. He found 24 cases which correspond to unique isomorphisms of involutions of Lie

Algebras with a maximal (-1)-eigenspace. Recall the local symmetric space for an arbitrary

Lie Algebra g and involution θ̄ ∈ Aut(g) is defined in Equation 1.1 as

p = {X ∈ g | θ̄(X) = −X}

The primary goal of this chapter is to study the structure of p by understanding

how the involution on the roots of g relates to θ̄. Specifically, for an involution θ ∈ Aut(Φ),

we want to determine how to modify θ̄ so that θ̄|t = θ. When the context is clear, we

write θ for θ̄. Studying this problem will lead to an algorithm for considering any involu-

torial automorphism. We’ll refer to this algorithm as the lifting algorithm throughout our

discussion.

4.1 Classification of the Local Symmetric Spaces

Helminck borrows the Dynkin diagram from finite dimensional semisimple theory.

He amends the diagram with additional information from which we can represent the action

of the involution on the roots of g. We call this diagram a Helminck Diagram.
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Figure 4.1: Helminck Diagram for DIIIb

u e1 u en u�� e
@@ eθ∗�
]

Colored black are those roots which are fixed by θ. Colored white are the roots

which project down to roots in p. The arrows represent the action of θ∗, the diagram

automorphism. In the diagram we omit showing the action on the roots denoted by black

dots, as they are fixed. The local symmetric spaces are classified by the Helminck Diagrams.

The 24 cases are given in Table B.1.

The action of θ can be recovered in the following way. We first look at the “embed-

ded root systems” found in the Helminck Diagrams. These are the root systems associated

with the Dynkin Diagrams formed by the black dots. For instance, in the diagram

u e u e u u uα1 α2 α3 α4 α5 α6 α7
-

we have the root systems B3 formed by the string of black dots encompassing the roots

α5, α6, and α7. We also have the root system A1 twice (formed by the roots α1 and α3.

Thus, the embedded root system is A1×A1×B3. w0(θ) is the longest element of the Weyl

group of the embedded root system. The longest element of B3 with respect to the roots

α5, α6, and α7 is sα5sα6sα5sα7sα6sα5sα7sα6sα7 . The longest element of A1 with respect to

the root α1 is sα1 . The longest element of A1 with respect to the root α3 is sα3 . Hence,

w0(θ) = sα1sα3sα5sα6sα5sα7sα6sα5sα7sα6sα7

In [5], Helminck showed θ∗ = − id ◦θ ◦ w0(θ). We have the following theorem.

Theorem 4.1.1.

θ∗ =

 id;

〈Dynkin Diagram automorphism of order 2〉

Since θ is an involution then θ−1 = θ. We have the same remark for θ∗. Then

we can recover the induced involution on the root system from the Helminck Diagram by

noting
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θ = − id ◦θ∗ ◦ w0(θ) (4.1)

For the example diagram above we have θ∗ is the identity mapping. Hence

θ = −w0(θ) = −sα1sα3sα5sα6sα5sα7sα6sα5sα7sα6sα7

The action of θ on the roots is given in the following matrix

θ =



1 −1 0 0 0 0 0

0 −1 0 0 0 0 0

0 −1 1 −1 0 0 0

0 0 0 −1 0 0 0

0 0 0 −2 1 0 0

0 0 0 −2 0 1 0

0 0 0 −2 0 0 1


Note that we have the identity mapping when we restrict θ to the roots denoted

by black dots.

4.2 The Structure Constants

For Xα the root vector in g associated with the root α, we have the following

θ̄(Xα) = cα,θ̄Xθ(α) (4.2)

We call the constants cα,θ̄ the structure constants of θ̄ with respect to g. The

prerequisite step to running the lifting algorithm is to determine these constants.

Definition 4.2.1. Let θ∆ be the unique automorphism in Aut(g, t) such that

θ∆(Xα) = Xθ(α) for all the basis roots α ∈ ∆

The existence and uniqueness of such an automorphism is given in [5]. Note that

the definition implies that for all α ∈ ∆ we have cα,θ∆ = 1.

We now establish two identities which will prove useful
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Lemma 4.2.2. For α, β ∈ Φ, cα,θ as in equation 4.2, and Nα,β as in definition 2.7.1 we

have

1.

c−α,θ = (cα,θ)−1 (4.3)

2.

cα+β,θ =
Nθ(α),θ(β)

Nα,β
cα,θ cβ,θ (4.4)

if α+ β is a root of g.

Proof. To show the first statement, first recall θ is a Lie Algebra homomorphism. Then

θ([Xα, X−α]) = [θ(Xα), θ(X−α)] = cα,θ cα,−θ [Xθ(α), Xθ(−α)] = cα,θ cα,−θ Hθ(α).

We also have θ([Xα, X−α]) = θ(Hα) = Hθ(α). Then cα,θ cα,−θ = 1 and so c−α,θ =

(cα,θ)−1.

To prove the second statement, we first recall that from Definition 4.2 we have

θ(Xα+β) = cα+β,θXθ(α+β). Recall that we have [Xα, Xβ] = Nα,βXα+β if α + β is a root.

Then Xα+β = 1
Nα,β

[Xα, Xβ]. Since θ is a Lie Algebra homomorphism, we write

θ(Xα+β) = θ( 1
Nα,β

[Xα, Xβ])

= 1
Nα,β

[θ(Xα), θ(Xβ)]

= 1
Nα,β

[cα,θXθ(α), cα,βXθ(β)]

= 1
Nα,β

cα,θ cα,β [Xθ(α), Xθ(β)]

= Nθ(α),θ(β)

Nα,β
cα,θ cα,β Xθ(α+β)

Then cα+β,θ = Nθ(α),θ(β)

Nα,β
cα,θ cβ,θ.

The two preceding lemmas lead us to a mechanism by which we can compute these

structure constants. If we know the structure constants cα,θ for the basis roots, then we
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can find the structure constants for all roots. The manner in which this is done is similar

to how one constructs the root system from the basis roots. The scheme to compute the

roots is given in [6]. A modified version of this algorithm is as follows

Algorithm 4.2.3 (Computation of the Structure Constants).

Input ∆, the basis roots, and cα,θ for all α ∈ ∆.

Output cα,θ for all α ∈ Φ.

1. n := 1; Φ := ∆; s := 1.

2. while |Φ| > s

s := |Φ|

for every element α =
∑

βi∈∆ kiβi ∈ Φ and every element of δ ∈ ∆ do

h :=
∑
ki

if h = n then

Compute r, the highest integer so that α− rδ is in Φ

q := r −
∑
kiMi,j, where Mi,j is the (i, j) entry in the Cartan Matrix

if q > 0 then

Φ := Φ ∪ (α+ δ)

cα+δ,θ := Nθ(δ),θ(α)

Nδ,α
cα,θ cδ,θ

c−(α+δ),θ := (cα+δ,θ)−1

3. return cα,θ for all α ∈ Φ

Theorem 4.2.4. Algorithm 4.2.3 computes all cα,θ for all α ∈ Φ

Proof. Proof that Algorithm 4.2.3 generates all the roots from the basis roots can be found

in [6]. Every time a new root is found, it is found by adding two previously known roots.

Hence, by computing the structure constant at the same time, for every new root found, we

find its corresponding structure constant. Because the algorithm computes all the roots, it

computes all the structure constants.

As a remark, all we need to supply to the algorithm are the structure constants

for the basis roots. From the remark made in Definition 4.2.1, we have cα,θ∆ = 1 for all

α ∈ ∆. Hence, we can compute cα,θ∆ = 1 for all α ∈ ∆.
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4.3 The Lifting Condition

The goal of this section is to describe the conditions for which θ ∈ Aut(Φ) can be

lifted in such a way that is suitable for computation. We begin with the following identity.

Lemma 4.3.1. Let H ∈ t and θ∆ as defined in definition 4.2.1. Then

θ∆ adH = ad(θ∆H)θ∆

and

θ∆ ad(θ∆H) = adH θ∆

Proof. Let X ∈ g.

θ∆ adH X = θ∆[H,X]

= [θ∆H, θ∆X]

= ad(θ∆H)θ∆X

θ∆ adH = ad(θ∆H)θ∆

Take H = θ∆H to write

θ∆ ad(θ∆H) = ad(θ2
∆H)θ∆

Since θ∆ is an involution on t, we get

θ∆ ad(θ∆H) = adH θ∆

In [5], Helminck characterized the involutions of Φ which can be lifted. The fol-

lowing proposition is obtained.
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Proposition 4.3.2. Let ∆ be a basis of Φ and θ ∈ Aut(Φ) be an involution. Then the

following are equivalent.

1. θ can be lifted.

2. There exists a vector H ∈ t such that θ = θ∆ ad(H) is an involution.

3. α(H) θ(α)(H) cθ(α),θ∆ cα,θ∆ = 1 for all α ∈ ∆.

Proof. That (1) and (2) are equivalent follows from the definition.

To show the equivalence of (2) and (3), let Xα ∈ g, where α ∈ Φ. We assume

θ2 = (θ∆ ad(H))2. Then

θ∆ ad(H) θ∆ ad(H) Xα = θ2Xα

As θ is an involution, we have

θ∆ ad(H) θ∆ ad(H) Xα = Xα

Use lemma 4.3.1 to write

ad(θ∆H) θ2
∆ ad(H) Xα = Xα

ad(θ∆H) ad(θ2
∆H) θ2

∆Xα = Xα

ad(θ∆H) adH θ2
∆Xα = Xα

Using definition 4.2, note

θ2
∆Xα = θ∆θ∆Xα = cα,θ∆ θ∆Xθ(α) = cθ(α),θ∆ cα,θ∆ Xθ2(α) = cθ(α),θ∆ cα,θ∆ Xα

Then

ad(θ∆H) adH θ2
∆Xα = cθ(α),θ∆ cα,θ∆ ad(θ∆H) ad(θ2

∆H) Xα

= cθ(α),θ∆ cα,θ∆ α(H) ad(θ∆H) Xα

= cθ(α),θ∆ cα,θ∆ α(H) α(θ∆H) Xα

Hence,
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Xα = cθ(α),θ∆ cα,θ∆ α(H) α(θ∆H) Xα

1 = cθ(α),θ∆ cα,θ∆ α(H) α(θ∆H)

4.4 The Correction Vector

Proposition 4.3.2 leads us to a mechanism with which we can determine if θ can

be lifted. θ can be lifted if we can find a vector H ∈ t satisfying statement 4.3.2-(3). We

call this vector the correction vector. For any given θ ∈ Aut(Φ), there are three possible

outcomes.

1. θ can be lifted. That is, we can compute a vector H satisfying statement 4.3.2-(3).

2. θ fails to lift. This is the case when such a vector H does not exist.

3. θ is already an involution on the Lie Algebra. A discussion on this case proceeds.

Under certain conditions it may not be necessary to compute a correction vector.

This is the case when the structure constants are “well-behaved,” as stated below.

Lemma 4.4.1. θ ∈ Aut(Φ) already lends itself to an involutorial automorphism on g if

cθ(α),θ∆ = 1 for all α ∈ ∆.

Proof. Let θ∆ be defined as in 4.2.1 and let α be a root in ∆.

θ2
∆(Xα) = θ∆(θ∆(Xα)) = cα,θ∆ θ∆(Xθ(α)) = cα,θ∆ cθ(α),θ∆ Xθ2(α) = cα,θ∆ cθ(α),θ∆ Xα

cα,θ∆ = 1 by definition of θ∆, and cθ(α),θ∆ = 1 by assumption. Then we have

θ2
∆Xα = Xα for all α ∈ ∆. Hence, θ2

∆ = 1 and θ∆ is an involution. Note that θ∆|Φ = θ,

which indicates θ can be lifted to an involutorial automorphism on Aut(g, t).

For cases where Lemma 4.4.1 applies there is no further work to be done. We

already have an involution on g. Since the process of computing the correction vector

requires computing the structure constants, a quick check to see that Lemma 4.4.1 applies

may save time. For cases where the lemma does not apply, we will have to proceed with

the rest of the procedure.
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4.5 Computation of the Correction Vector(s)

The goal of this section is to define an algorithm which will generate the correction

vector. We assume that at this point, we’ve already verified that Lemma 4.4.1 does not

apply. The first step is to interpret 4.3.2 in such a way that we have a system of equations

- the solution of which will provide us with the correction vector.

First we write

H = x1Hα1 + x2Hα2 + . . .+ xnHαn (4.5)

where t is of dimension n, H ∈ t, and Hαi ∈ t satisfies [Xαi , X−αi ] = Hαi (that is, Hαi is a

basis vector for t). The constants xi are the coordinates of H in t with respect to the basis

{Hαi}.
Let α be a root in Φ. Then

α(H) = α(x1Hα1 + x2Hα2 + . . .+ xnHαn)

Since the roots of g are linear functionals, we can write

α(H) = x1α(Hα1) + x2α(Hα2) + . . .+ xnα(Hαn)

where α(Hα1) are elements of our algebraically closed ground field F .

Let θ(α) =
∑

i kiαi for αi ∈ ∆. Then note that we also have

α(θ(H)) = α(θ(x1Hα1 + x2Hα2 + . . .+ xnHαn))

= α(x1Hθ(α1) + x2Hθ(α2) + . . .+ xnHθ(αn)))

= x1α(Hθ(α1)) + x2α(Hθ(α2)) + . . .+ xnα(Hθ(αn))

where
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α(Hθ(αi)) = α(Hk1α1+...+knαn)

= α(k1Hα1 + . . .+ knHαn)

= k1α(Hα1) + . . .+ knα(Hαn)

We can then define the following polynomials

Definition 4.5.1.

Fp,i := x1αi(Hθp(α1)) + x2αi(Hθp(α2)) + . . .+ x1αi(Hθp(αn))

where p ∈ Z≥0, i ∈ {0, 1, . . . , n}, and θ0 denotes the identity mapping

Of interest to us in the involution case are the polynomials F0,i and F1,i. These

are

F0,i = x1αi(Hα1) + x2αi(Hα2) + . . .+ xnαi(Hαn)

F1,i = x1αi(Hθ(α1)) + x2αi(Hθ(α2)) + . . .+ xnαi(Hθ(αn))

(4.6)

If we have a Chevalley basis for g, more can be said. Recall that a Chevalley basis

gives us

[Hαk , Xα] = α(Hαk)Xα

and

α(Hαk) = 〈α, αk〉

Then

α(H) =
n∑
k=1

xk〈α, αk〉

We re-define our “F-polynomials” as follows.
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Definition 4.5.2.

Fp,i :=
n∑
k=1

xk〈θp(αi), αk〉

where p ∈ Z≥0, i ∈ {0, 1, . . . , n}, and θ0 denotes the identity mapping

Then of immediate interest to us are

F0,i =
∑n

k=1 xk〈αi, αk〉

F1,i =
∑n

k=1 xk〈θ(αi), αk〉

(4.7)

For every αi, i = 1 . . . n, we replace αi(H) with F0,i and αi(θ(H)) with F1,i in

Proposition 4.3.2-(3). This yields a system of n multivariate polynomial equations in the

variables xi. Finding a solution implies θ can be lifted. The solution gives the coordinates

of the correction vector with respect to the basis of t. The full algorithm is described as

follows.
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Algorithm 4.5.3 (Check Lifting Algorithm, Order 2).

Input θ, an involutorial automorphism in Aut(Φ); g, a Lie Algebra with roots Φ, having

basis roots ∆

Output TRUE if θ can be lifted, N/A if the correction vector is not necessary, or

FALSE if the correction vector is necessary, but cannot be found.

1. Call Algorithm 4.2.3 or Algorithm 7.8.1 to compute the structure constants cα,θ for

every α ∈ Φ

2. if cθ(α),θ∆ = 1 for all α ∈ ∆ then return N/A

3. for i = 1 to n

fi := cα,θ∆ cθ(α),θ∆ F0,iF1,i − 1

4. I := 〈f1, . . . , fn〉

5. Compute G, the reduced Groebner Basis for I.

6. if G 6= {1} then return TRUE

else return FALSE

Theorem 4.5.4. Algorithm 4.5.3 works correctly

Proof. Recall that F0,i is precisely αi(H), and F1,i is αi(θ(H)).

Computation of a reduced Groebner Basis for the polynomials reduces to {1} if

and only if the system

cα,θ cθ(α),θ F0,iF1,i − 1 = 0 i = 1 . . . n

is unsolvable. Hence, if G 6= {1}, then there is a vector H satisfying proposition

4.3.2-(3).

For the purposes of doing computations in local symmetric spaces, we may wish

to retrieve vectors H satisfying Proposition 4.3.2. We modify the preceding algorithm to

return these vector(s).
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Algorithm 4.5.5 (Lifting Algorithm, Order 2).

Input θ∆ as in Definition 4.2.1; θ, an involutorial automorphism in Aut(Φ); g, a Lie

Algebra with roots Φ, having basis roots ∆

Output N/A if θ∆ is already an involution on g; All possible sets of coordinates of a

correction vector H ∈ t so that θ∆ ad(H) is an involution on g; or FAIL if such a

vector H is needed, but cannot be found.

1. Call Algorithm 4.2.3 or Algorithm 7.8.1 to compute the structure constants cα,θ for

every α ∈ Φ

2. if cθ(α),θ∆ = 1 for all α ∈ ∆ then return N/A

3. for i = 1 to n

fi := cα,θ∆ cθ(α),θ∆ F0,iF1,i − 1

4. I := 〈f1, . . . , fn〉

5. Compute G, the reduced Groebner Basis for I.

6. if G = {1} then return FAIL

7. return output of Algorithm 3.4.3 with g1, . . . , gs ∈ G as the arguments.

Theorem 4.5.6. Algorithm 4.5.5 works correctly

Proof. Justification for the first six steps has been discussed in the previous algorithm. That

the last step completes the process follows immediately from Algorithm 3.4.3.

To illustrate the above procedure, let us consider a simple example.

Example 4.5.7. Lifting an Involution on the roots of sl3(C) to an Involution on the Algebra

Consider the Helminck diagram describing an involution on the roots of sl3(C)

e uα1 α2
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We have no diagram automorphism, hence θ∗ = id. The embedded root system is

A1 with respect to α2. Hence, w0(θ) = sα2 . We have

θ = −sα2

and hence

θ(α1) = −α1 − α2

θ(α2) = α2

An ordered basis for the Lie algebra sl3(C) is

g = span{E1,1 − E2,2, E2,2 − E3,3, E1,1 − E2,2, E1,2, E2,3, E1,3, E2,1, E3,2, E3,1} (4.8)

We compute a Chevalley basis for this algebra and obtain the following assignments

for the root vectors

Root Root Vector Xα Torus Vector Hα

α1 E1,2 E1,1 − E2,2

α2 E2,3 E2,2 − E3,3

α1 + α2 E1,3 E1,1 − E3,3

−α1 E2,1 E2,2 − E1,1

−α2 E3,2 E3,3 − E2,2

−α1 − α2 E3,1 E3,3 − E1,1

We can then compute the Chevalley constants as given:
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Root α Root β Constant Nα,β

α1 α2 1

α1 −α1 − α2 −1

α2 α1 −1

α2 −α1 − α2 1

α1 + α2 −α1 −1

α1 + α2 −α2 1

−α1 α1 + α2 1

−α1 −α2 −1

−α2 α1 + α2 −1

−α2 −α1 1

−α1 − α2 α1 1

−α1 − α2 α2 −1

We have that θ∆ is a Lie algebra automorphism. Next we want to determine if it

is an involution. To compute the structure constants, we run through Algorithm 4.2.3 and

obtain the following.

Root α cα,θ∆

α1 1

α2 1

α1 + α2 −1

−α1 1

−α2 1

−α1 − α2 −1

If θ∆ is an involution, then we need cθ(α),θ∆ = 1 for α = α1 and α2. However,

θ(α1) = −α1 − α2, and hence, cθ(α1),θ∆ = c−α1−α2,θ∆ = −1. We have that θ∆ is not an

involution. To illustrate, below is the matrix for θ∆ relative to the ordered basis given in

4.8.
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[θ] =



−1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0


(4.9)

θ2
∆ = diag(1, 1, 1,−1,−1, 1,−1,−1). We will need to modify θ∆ with the right

correction vector satisfying Proposition 4.3.2.

As per Equation 4.5 we have H = x1Hα1 + x2Hα2 . x1 and x2 are the coordinates

of H relative to the basis for the torus given by {Hα1 , Hα2}.
From Definition 4.5.2 and Equation 4.7 We have

F0,1 = x1α1(Hα1) + x2α1(Hα2)

F1,1 = x1α1(Hθ(α1)) + x2α1(Hθ(α2))

F0,2 = x1α2(Hα1) + x2α2(Hα2)

F1,2 = x1α2(Hθ(α1)) + x2α2(Hθ(α2))

F0,1 and F0,2 simply become

F0,1 = 2x1 − x2

F0,2 = −x1 + 2x2

For F1,1 we have
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F1,1 = x1α1(Hθ(α1)) + x2α1(Hθ(α2))

= x1α1(H−α1−α2) + x2α1(Hα2)

= x1α1(−Hα1 −Hα2) + x2α1(Hα2)

= −x1 − x2

For F1,2 we have

F1,2 = x1α2(Hθ(α1)) + x2α2(Hθ(α2))

= x1α2(H−α1−α2) + x2α2(Hα2)

= x1α2(−Hα1 −Hα2) + x2α2(Hα2)

= −x1 + 2x2

Hence we have the system −(−x1 − x2)(2x1 − x2)− 1 = 0

(2x2 − x1)2 − 1 = 0

 (4.10)

which has four solution sets{
x1 = −

√
5

3
, x2 =

1
6

(
−3−

√
5
)}

(4.11)

{
x1 = −

√
5

3
, x2 =

1
6

(
3−
√

5
)}

(4.12)

{
x1 =

√
5

3
, x2 =

1
6

(
−3 +

√
5
)}

(4.13)
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{
x1 =

√
5

3
, x2 =

1
6

(
3 +
√

5
)}

(4.14)

If we consider the first solution set, then the correction vector is

H =


−
√

5
3 0 0

0
√

5
3 + 1

6

(
−3−

√
5
)

0

0 0 1
6

(
3 +
√

5
)
 (4.15)

and the corrected involution is

[θ∆ ad(H)] =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 1
2

(
−1−

√
5
)

0 0 0 0 0 0 1
2

(
−1 +

√
5
)

0

0 0 0 0 0 1 0 0

0 0 0 0 1
2

(
1 +
√

5
)

0 0 0

0 0 0 1
2

(
1−
√

5
)

0 0 0 0


(4.16)

and [θ∆ ad(H)]2 = I.

4.6 Correction Vectors for the Involutorial Automorphisms

with (-1)-Eigenspace

We now turn our attention to Local Symmetric Spaces over algebraically closed

fields. Recall that we have 24 isomorphism cases in the classification of involutorial auto-

morphisms with a maximal (-1)-eigenspace. Our aim in this section is to establish
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1. The action of θ ∈ Aut(Φ) described by the Helminck Diagrams.

2. The structure constants.

3. If θ∆ ∈ Aut(g, t) is an involution, or if it needs to be modified with a correction vector.

4. In the latter case above, what the possible correction vectors are.

As a remark, we should expect that under no circumstances in any of the 24 cases

will any involutions on the root systems need a correction vector which cannot be found.

That is, for the involutions θ described, if the map θ∆ is not an involution, it can always

be modified so that it is.

Diagrams for the 24 cases, and the conclusions, are given in table B.1.

To save some time we make the following claim.

Lemma 4.6.1. For a given Helminck Diagram, if there are no fixed roots (black dots), then

cθ(α),θ∆ = 1 for all α ∈ ∆.

Proof. If there are no black dots, then w0(θ) = id. Hence, θ = − id, or θ = −θ∗ in the

case of a diagram automorphism. In both instances θ maps α to another basis root. Thus,

θ(α) ∈ ∆. Then by the definition of θ∆ (4.2.1), cθ(α),θ∆ = 1.

Immediately we have that θ∆ is an involution for the cases of AI, AIIIb, CI, DI,

EI, EII, EV, EVIII, FI, and G.

For the remaining 14 cases we first compute all the structure constants. The

surprising result is that there are only two instances where lifting is necessary: DIIIb and

EIII. For all 22 remaining cases, we can take θ∆ to be an involution on the root system

satisfying the lifting condition. We give correction vectors immediately following Table B.1.

The results are summarized as follows.

Theorem 4.6.2. Let θ∆ be the involution defined by definition 4.2.1, with θ the involution

on the root system defined by the Helminck Diagrams in table B.1. Let H ∈ t. Then

1. The involutions θ described by DIIIb and EIII lift to involutions on the Lie Algebra.

A vector H satisfying Proposition 4.3.2 (1) can be found.

2. The involutions described by the remaining entries in Table B.1 are already involutions

on the Lie Algebra. i.e., the structure constants cθ(α),θ = 1 for all α ∈ ∆.
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At first glance it is surprising that in so many cases θ∆ was an involution. Indeed,

if it were not for DIIIb, for every classical case θ∆ would be an involution. There is much

more to be said about the conditions which imply θ∆ is an involution without lifting. This is

an issue which we will address in Chapter 7. In this chapter, we shall describe how one can

tell, simply by looking at the configuration of black and white dots in a Helminck diagram,

whether or not θ∆ will turn out to be an involution.

Beforehand, however, we would like to establish an algorithm to check for admis-

sibility - which will be a slight extension of that which we just established.
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Chapter 5

Admissibility

This short chapter is dedicated to a slight extension of the lifting algorithm we

previously established. In the discussion we will introduce several key concepts that will

be important to discussion in the subsequent chapters. In particular, we will define re-

stricted roots and projections, how they relate to θ-normality, and how θ-normality relates

to admissibility. We may be interested in knowing if an involution on the root system is

admissible, as it would imply several nice properties.

5.1 Root Projections

Recall that p is defined as the set of X ∈ g such that θ̄(X) = −X, where θ̄ is an

involutorial automorphism on g. Let a be a maximal torus in p. We expect the roots of p

to satisfy θ(α) = −α for all α ∈ Φ(a). We then define the projection of the roots of g onto

the roots of p via the following

π(α) =
1
2

(α− θ(α)) (5.1)

Since the roots denoted by black dots satisfy θ(α) = α, it is easy to see that they

project to zero. The roots denoted by white dots then form the projected root system. Let

us denote by Φ̄ all the roots in the image of π. In [5] we see that Φ̄ is indeed a root system.

The root system has basis ∆̄, satisfying
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∆̄ = {λ = π(α) | α ∈ ∆} (5.2)

To avoid confusion, we will use α for roots in Φ, and λ for roots in Φ̄. To illustrate

how Φ̄ indeed forms a root system, take as an example the Helminck diagram H below.

u e u e uα1 α2 α3 α4 α5

We note that H describes a root system of type A5. Hence, we have αi = ei−ei+1.

For αi with i odd, we have a fixed root, and hence π(αi) = 0. For αi with i even we have

λ1 = π(α2) = 1
2(e1 + e2 − e3 − e4)

λ2 = π(α4) = 1
2(e3 + e4 − e5 − e6)

Let λ∨i denote the co-root of λi. Then the matrix [〈λi, λ∨j 〉]i,j=1,2 gives 2 −1

−1 2


which is precisely the Cartan Matrix for a root system of type A2. Hence, Φ̄ is

a root system of type A2. Since we have |∆̄| = 2, we say the restricted rank of θ is 2.

Formally, we define the restricted rank as follows.

Definition 5.1.1 (Restricted Rank). Let θ be an involution on the root system of g, with

basis ∆. Then the restricted rank of θ is given by |∆̄|.

We denote by Φθ the set of restricted roots. That is,

Φθ = {π(α) | α ∈ Φ}
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5.2 θ-Normality

Let Φ′ = {α ∈ Φ | 1
2α 6∈ Φ} denote the set of indivisible roots. We then define

θ-normality as follows:

Definition 5.2.1. We say Φ is θ-normal if for all α ∈ Φ′ such that θ(α) 6= α we have

θ(α) + α 6∈ Φ.

One reason we may care about admissibility is due to the following results by

Helminck [5]. First, if Φ is θ-normal, then Φθ is a root system with Weyl group Wθ, the

restricted Weyl group with respect to the action of θ. Then we have the following:

Lemma 5.2.2. If θ ∈ Aut(Φ(t)) is an admissible involution then Φ(t) is θ-normal.

5.3 Admissibility Criteria

From Section 4.1 in [5] we have that θ is admissible if and only if it can be lifted to

θ̄ ∈ Aut(g, t) in such a way that cα,θ̄ = 1 for all roots fixed by θ. This criteria imposes some

additional restraint when compared to Proposition 4.3.2. We can modify the criteria for

lifting found in this proposition to give us the basis for a new algorithm. Our new algorithm

will check for admissibility via similar methods which we used to check for lifting.

A corollary to Proposition 4.3.2 from [5] gives us the following result.
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Corollary 5.3.1. Let θ ∈ Aut(Φ) and ∆ be a θ-basis of Φ. Then θ is admissible if and

only if there is some H ∈ t so that

1. α(H) θ(α)(H) cθ(α),θ∆ cα,θ∆ = 1 for all α ∈ ∆ which are not fixed by θ.

2. α(H) = 1 for all α ∈ ∆ fixed by θ.

We can set up and solve a very similar system of multivariate polynomial equations.

This works in the following way. For α ∈ ∆ not fixed by θ, we set up the equations we used

for lifting. That is, we can use the F0,i and F1,i polynomials (Equations 4.7). For these

roots we have

fi := cα,θ∆ cθ(α),θ∆ F0,iF1,i − 1

For the roots α which are fixed by θ we have much simpler polynomials. Let us

call them “G polynomials” and write

Gi := αi(x1Hα1 + x2Hα2 + . . .+ xnHαn) (5.3)

Due to the linearity of αi we can simplify this expression. We write

Gi := x1αi(Hα1) + x2αi(Hα2) + . . .+ xnαi(Hαn) (5.4)

We now have for the roots fixed by θ the polynomial

fi := Gi − 1

5.4 An Algorithm to Check for Admissibility

We are now able to present our algorithm. Because we only are concerned with

the existence of such a vector H, and not the vector itself, it suffices to only compute the

Groebner basis and check if it equals {1}. If it does not, such a vector H exists, and θ is

therefore admissible.
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Algorithm 5.4.1 (Admissibility Check).

Input θ, an involutorial automorphism in Aut(Φ); g, a Lie Algebra with roots Φ, having

basis roots ∆

Output TRUE if θ can be lifted, N/A if the correction vector is not necessary, or

FALSE if the correction vector is necessary, but cannot be found.

1. Call Algorithm 4.2.3 or Algorithm 7.8.1 to compute the structure constants cα,θ for

every α ∈ Φ

2. if cθ(α),θ∆ = 1 for all α ∈ ∆ then return N/A

3. for i = 1 to n

if αi corresponds to a white dot then fi := cα,θ∆ cθ(α),θ∆ F0,iF1,i − 1

if αi corresponds to a black dot then fi := Gi − 1

4. I := 〈f1, . . . , fn〉

5. Compute G, the reduced Groebner Basis for I.

6. if G 6= {1} then return TRUE

else return FALSE

Theorem 5.4.2. Algorithm 5.4.1 works correctly

Proof. That the system of equations corresponds to admissibility is established by Corollary

5.3.1 and [5]. Proof that computation of the reduced Groebner basis establishes that a

solution exists is given in Chapter 3.
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Chapter 6

Relations Between Structure

Constants and the Weyl Group

In Chapter 4 we introduced our lifting algorithm. While powerful, it will prove to

be quite slow on almost any implementation. Hence, its proper place will be for computation

of problems small size, where “size” is given by the number of basis roots (dots) in the

Helminck diagram. Consider, for example, the case of lifting θ as induced by the diagram:

e e e e u. . . -

where n denotes the number of basis roots. For n = 1 we have θ induced over the

root system A1. For larger n, we have θ induced over the root system Bn. As most computer

implementations of Groebner bases rely on Buchberger’s algorithm (or some variant), we

should expect an exponential increase in CPU processing time as the number of basis roots

(n) increases. Indeed, we obtain the times in the table that follows. The subsequent figure

suggests a linear relationship between n and log(CPU time).
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Table 6.1: CPU Timings For Lifting θ

n CPU sec LOG( CPU sec )

1 0.004 −5.521

2 0.012 −4.423

3 0.696 −0.362

4 2.984 1.093

5 19.829 2.987

6 153.714 5.035

Figure 6.1: CPU Timings For Lifting θ
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Our primary goal will be to quickly solve larger lifting problems. This will involve

breaking up the underlying system of equations by breaking into smaller pieces the Helminck

diagram, solving the lifting problem for each piece, and “gluing” the solutions together to

give the overall solution. Our basic method for accomplishing this task will be to make use

of relationships between the structure constants of θ and the Weyl group of the underlying

root system.

In this chapter we will establish some important facts concerning the Weyl group

and structure constants. In the chapters that follow we will reflect on our current discussion.

In particular, we will be able to determine some information about the structure constants

simply by looking at the configuration of black and white dots in the Helminck diagram.

6.1 Structure Constants for Roots Fixed by θ

If α is a root fixed by θ, then cθ(α),θ∆ = 1. This should be clear for the basis roots,

because we have cα,θ∆ = 1 for all α ∈ ∆. If α is a fixed root, then θ(α) = α. It then follows

that for any non-simple root α, if fixed by θ, yields cθ(α),θ∆ = 1.

Lemma 6.1.1. Let α be a root in Φ with basis ∆. Let θ be an involution on the roots.

Then if θ(α) = α then cθ(α),θ∆ = 1.

Proof. Having already established the hypothesis for the basis roots, let us induct on the

level of α. Assume for α of level n that cθ(α1+...+αn),θ∆ = 1. Then

cθ(α1+...+αn+αn+1),θ∆ =
Nθ(α1+...+αn),θ(αn+1)

Nα1+...+αn,αn+1
cθ(α1+...+αn),θ∆ cθ(αn+1),θ∆

=
Nα1+...+αn,αn+1

Nα1+...+αn,αn+1
cθ(α1+...+αn),θ∆ cαn+1,θ∆

= cθ(α1+...+αn),θ∆ cαn+1,θ∆

αn+1 ∈ ∆, so cαn+1,θ∆ = 1. Also cθ(α1+...+αn),θ∆ = 1 by assumption. Then

cθ(α1+...+αn+αn+1),θ∆ = 1.
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6.2 General Notes on the Action of w0(θ) on Projecting Roots

The action of w0(θ) on the roots fixed by θ is simply described. w0(θ) maps all

fixed roots α to the negative of some other fixed root. In the cases where θ∗, the diagram

automorphism, is the identity, then this other root is −α. In cases where θ∗ is non-trivial,

then θ∗ maps w0(θ)(α) to −α.

However, the action of w0(θ) on the roots which project to some root in the local

symmetric space is not so clear. It will be the goal of this section to establish what happens

to w0(θ)(α), where α is denoted by a white dot.

For all cases where α is denoted by a white dot, and is not neighboring a black

dot, the action is simple. For all roots βi which compose w0(θ), we have (α, βi) = 0. Hence,

w0(θ)(α) = α.

That said, the cases where α is the “neighbor” of a string of fixed roots are the

interesting ones. We will investigate these cases for each of the root systems of the classical

type (A, B, C, and D). We are not so interested in the E, F, and G cases, as there are only a

finite number of them. Arguments made in subsequent chapters will rely on the discussion

we are about to make. For the E, F, and G cases, however, argument by demonstration will

be our option of choice.

6.3 Action of w0(θ) on Projecting Roots Over Type A

As stated before, the only interesting case is that of α being denoted by a white

dot and neighboring a black dot. In this case, w0(θ) serves to sum α with all the fixed roots.

Let {β1, . . . , βk} give the set of all fixed basis roots composing a single A-string.

e u u e. . . . . . . . .
β1 βk

For the longest element of Ak, denoted by w0, we have from [15]

w0 = sβ1 sβ2sβ1 sβ3sβ2sβ1 . . . sβksβk−1
. . . sβ1

For convenience, let us define the following sequence of reflections

W (n,m) = sβnsβn−1sβn−2 . . . sβm+1sβm (6.1)
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Then we have for the longest element of Ak:

w0 = W (1, 1) W (2, 1) W (3, 1) . . .W (n, 1) (6.2)

Let ∆ = {α1, . . . , αn} denote the base of a root system of type A, with an embedded

A-string from αk to αm, 1 ≤ k,m ≤ n. Let α ∈ ∆. If α not a fixed root, nor is it a root not

immediately neighboring any fixed roots β, then (α, β) = 0 and W (m, k)(α) = α. Hence,

W (m, k)(αi) = αi if i < k − 1 or i > m+ 1.

Now for a root immediately to the right of the A-string, we have

W (m, k)(αm+1) = sαmsαm−1 . . . sαk+1
sαk(αm+1)

= sαmsαm−1 . . . sαk+1
sαk(αm+1)

= sαm(αm+1)

= αm + αm+1

(6.3)

Then we have

W (m− 1, k)(αm + αm+1) = sαm−1sαm−2 . . . sαk+1
sαk(αm + αm+1)

= sαm−1sαm−2 . . . sαk+1
sαk(αm)+

sαm−1sαm−2 . . . sαk+1
sαk(αm+1)

= sαm−1sαm−2 . . . sαk+1
sαk(αm) + αm+1

= sαm−1(αm) + αm+1

= αm−1 + αm + αm+1

(6.4)

If we continue applying the result ofW (m−i, k) toW (m−(i+1), k), we slowly build

a string of the sum of all roots αm−(i+1) + . . .+ αm+1. The suggestion is that w0(αm+1) =

αk + αk+1 + . . .+ αm+1.

Lemma 6.3.1. If {αk, αk+1, . . . , αm} gives an embedded A-string with longest element w0,

then w0(αm+1) = αk + αk+1 + . . .+ αm+1.
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Proof. If our embedded A-string is of length one, then we have

w0(αm+1) = sαm(αm+1) = αm + αm+1.

Let us proceed via induction. Assume w0(αm+1) = αk +αk+1 + . . .+αm+1. Then

we have

W (k, k) W (k + 1, k) . . . W (m− 1, k) W (m, k)(αm+1) = αk + αk+1 + . . .+ αm+1 (6.5)

We now add one fixed root to our A-string. Do this by coloring black the dot

corresponding to αk−1. Call the longest element of the new A-string v0. Then

v0 = W (k − 1, k − 1) W (k, k − 1) . . . W (m− 1, k − 1) W (m, k − 1)

Since (αm+1, αi) = 0 for i < m then

v0(αm+1) = W (k − 1, k − 1) W (k, k − 1) . . . W (m− 1, k − 1) W (m, k − 1)(αm+1)

= W (k − 1, k − 1) W (k, k) . . . W (m− 1, k) W (m, k)(αm+1)

= W (k − 1, k − 1) w0(αm+1)

= W (k − 1, k − 1) (αk + αk+1 + . . .+ αm+1)

= αk−1 + αk + αk+1 + . . .+ αm+1

Now if α is a root bordering the A-string on the left, we have similar behavior.

We have

sαi(αi−1 + αi + αi+1) = αi−1 + αi − αi + αi + αi+1

= αi−1 + αi + αi+1

(6.6)

Hence, it will be the case that

sαmsαm−1 . . . sαk+1
sαk(αk+1 + . . .+ αm−1) = αk+1 + . . .+ αm−1 (6.7)
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We have

W (m, k)(αk−1) = sαmsαm−1 . . . sαk+1
sαk(αk−1)

= αk−1 + αk + . . .+ αm−1 + αm
(6.8)

And hence, from Equation 6.7,

W (m− 1, k)(αk−1 + αk + . . .+ αm−1 + αm) = αk−1 + αk + . . .+ αm−1 + αm (6.9)

We can now make the following claim.

Lemma 6.3.2. If {αk, αk+1, . . . , αm} gives an embedded A-string with longest element w0,

then w0(αk−1) = αk−1 + αk + αk+1 + . . .+ αm.

Proof. We start with

w0(αk−1) = W (k, k) W (k + 1, k) . . . W (m, k)(αk−1)

By Equation 6.8 we have

w0(αk−1) = W (k, k) W (k + 1, k) . . . W (m− 1, k)(αk−1 + αk + . . .+ αm−1 + αm)

And by Equation 6.7 we have

w0(αk−1) = αk−1 + αk + . . .+ αm−1 + αm

We can now make a general conclusion.

Corollary 6.3.3. If {αk, αk+1, . . . , αm} gives an embedded A-string with longest element

w0, and αi is a root denoted by a white dot and neighboring the A-string, then w0(αi) =

αi + αk + αk+1 + . . .+ αm.

Proof immediately follows Lemmas 6.3.1 and 6.3.2.
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6.4 Action of w0(θ) on Projecting Roots Over Type B

Within a Helminck diagram of type B, the only configuration which gives α neigh-

boring an embedded B-string is if the B-string lies to the right (with respect to the diagram

below) of α.

eα u u u u-
For the longest element of Bk, we have from [15]

w0 = sβ1 sβ2sβ1 sβ3sβ2sβ1 . . . sβksβk−1
. . . sβ1

sβksβk−1
. . . sβ2 sβksβk−1

. . . sβ3 . . . sβk
(6.10)

Written in terms of W (m, k) as per Equation 6.1, we have

w0 = W (1, 1) W (2, 1) W (3, 1) . . .W (n, 1) W (n, 2) W (n, 3) . . .W (n, n) (6.11)

Because we are now working over type B, the action of W (m, k) on the roots is

slightly different than that of the action over type A. However, we still have sαi(αj) = αj

if |i− j| > 1.

Let ∆ = {α1, . . . , αn} denote the base of a root system of type B, with an embedded

B-string from αk to αm, 1 ≤ k. In order to have an embedded B-string, we have m = n.

Let α ∈ ∆. If α not a fixed root, nor is it a root not immediately neighboring any fixed

roots β, then W (m, k)(α) = α. Hence, W (m, k)(αi) = αi if i < k − 1.

If i = k − 1 then W (n, j)(αi) = αi for j = 2 . . . n. Hence, we can eliminate from

w0 the components W (n, 2),W (n, 3), . . . ,W (n, n). In effect, the action of w0 on the root

neighboring the B-string is precisely that of the longest element of an A-string with the

same length as the B-string. It should be clarified that the action of the longest element of

an A-string over the root system of type B is different. What we can do for the neighbor

root αk−1 is write
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w0(αk−1) = W (k, k) W (k + 1, k) W (k + 2, k) . . .W (n, k)

W (n, k + 1) W (n, k + 2) . . .W (n, n)(αk−1)

= W (k, k) W (k + 1, k) W (k + 2, k) . . .W (n, k)(αk−1)

(6.12)

From the n× n Cartan matrix over type B we can write

sαi(αj) =


−αj if i = j;

αi + αj if |i− j| = 1 and i 6= n ;

αi + 2αj if |i− j| = 1 and i = n;

αj else.

(6.13)

Then the action of W (i, k) is the same over the root system of type B as it is over

the root system of type A with the exception of the case i = n. For this case we have

W (n, k)(αk−1) = sαnsαn−1sαn−2 . . . sαk+1
sαk(αk−1)

= sαn(αk−1 + αk + αk+1 + . . .+ αn−1)

= αk−1 + αk + αk+1 + . . .+ αn−1 + 2αn

(6.14)

Then we have

W (n− 1, k)(αk−1 + αk + αk+1 + . . .+ αn−1 + 2αn) =

W (n− 1, k)(αk−1) +W (n− 1, k)(αk) +W (n− 1, k)(αk+1) + . . .+

W (n− 1, k)(αn−1) + 2W (n− 1, k)(αn) =

αk−1 + αk + αk+1 + . . .+ 2αn−1 + 2αn

(6.15)

And then

W (n− 2, k)(αk−1 + αk + αk+1 + . . .+ αn−1 + 2αn) =

αk−1 + αk + αk+1 + . . .+ 2αn−2 + 2αn−1 + 2αn
(6.16)
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If we continue applying W (i, k) to the result of W (i+ 1, k), decreasing until i = k,

the suggestion is that we have

αk−1 + 2αk + 2αk+1 + . . .+ 2αn−2 + 2αn−1 + 2αn

Let us make the following claim.

Lemma 6.4.1. If {αk, αk+1, . . . , αm} gives an embedded B-string with longest element w0,

and αi is a root denoted by a white dot and neighboring the B-string, then

w0(αi) = αi + 2αk + 2αk+1 + . . .+ 2αm, where i = k − 1.

Proof. From Equation 6.14 we have

W (n, k)(αk−1) = αk−1 + αk + αk+1 + . . .+ αn−1 + 2αn

Which, for notational convenience we shall write as

W (n− 0, k)(αk−1) = αk−1 + αk + αk+1 + . . .+ αn−1 + 2αn−0

Then let us then show that

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn) =

αk−1 + αk + . . .+ 2αn−i + . . .+ 2αn
(6.17)

where i > 0. Let us first write Equation 6.17 as

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn) =

W (n− i, k)(αk−1 + αk + . . .+ αn−i + . . .+ αn) +W (n− i, k)(αn−i+1 + . . .+ αn)
(6.18)

Now because k < n (as a root system of type B must have at least two basis

roots), and i > 0, then the Cartan matrix gives us W (n− i, k) acts on all roots as it would

if defined over a root system of type A. Hence
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W (n− i, k)(αk−1 + . . .+ αn) = αk−1 + . . .+ αn (6.19)

and

W (n− i, k)(αn−i+1 + . . .+ αn) = sαn−isαn−i−1 . . . sαk(αn−i+1 + . . .+ αn)

= sαn−i(αn−i+1 + . . .+ αn)

= αn−i + αn−i+1 + . . .+ αn

(6.20)

Then from Equations 6.19 and 6.20 we can write

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn) =

W (n− i, k)(αk−1 + αk + . . .+ αn−i + . . .+ αn) +W (n− i, k)(αn−i+1 + . . .+ αn) =

αk−1 + αk + . . .+ αn−i−1 + 2αn−i + 2αn−i+1 + . . .+ 2αn
(6.21)

The effect is that by applying W (n− i, k) for i = 1 to n− k in incrementing order

of i, we add to

αk−1 + αk + . . .+ αn

the root αn−i. Application of W (n− i, k) in this way is precisely the action of w0

on αk−1. Hence

w0(αk−1) = αk−1 + 2αk + 2αk+1 + . . .+ 2αm

6.5 Action of w0(θ) on Projecting Roots Over Type C

Within a Helminck diagram of type C, the only configuration which gives α neigh-

boring an embedded C-string is if the C-string lies to the right (with respect to the diagram
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below) of α. We are primarily interested in the configuration which gives an A-string of

length 1 to the left.

u eα u u u. . . �

Root systems of types B and C have same the longest element. Hence, recall the

longest element over type B is given in Equation 6.11.

w0 = W (1, 1) W (2, 1) W (3, 1) . . .W (n, 1) W (n, 2) W (n, 3) . . .W (n, n)

Note we are now working over type C, so the action of W (m, k) on the roots is

slightly different than that of the action over type B we previously discussed. We still have

sαi(αj) = αj if |i− j| > 1.

Let ∆ = {α1, . . . , αn} denote the base of a root system of type C, with an embedded

C-string from αk to αm, 1 ≤ k. As in the B-string case, in order to have an embedded C-

string, we have m = n. Let α ∈ ∆. If α not a fixed root, nor is it a root not immediately

neighboring any fixed roots β, then W (m, k)(α) = α. Hence, W (m, k)(αi) = αi if i < k−1.

As with the B-string case, if i = k − 1 then W (n, j)(αi) = αi for j = 2 . . . n.

Hence, we can eliminate from w0 the components W (n, 2),W (n, 3), . . . ,W (n, n). The effect

is the same as previously stated. The action of w0 on the root neighboring the C-string is

precisely that of the longest element of an A-string with the same length as the C-string.

Again, it should be clarified that the action of the longest element of an A-string over the

root system of type C is different from both cases of over a system of type A or B. For the

neighbor root αk−1 we write

w0(αk−1) = W (k, k) W (k + 1, k) W (k + 2, k) . . .W (n, k)

W (n, k + 1) W (n, k + 2) . . .W (n, n)(αk−1)

= W (k, k) W (k + 1, k) W (k + 2, k) . . .W (n, k)(αk−1)

(6.22)

From the n× n Cartan matrix over type C we can write
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sαi(αj) =


−αj if i = j;

αi + αj if |i− j| = 1 and i 6= n− 1 ;

αi + 2αj if |i− j| = 1 and i = n− 1;

αj else.

(6.23)

Then the action of W (i, k) is the same over the root system of type C as it is over

the root system of type A with the exception of the case i = n− 1. For this case we have

W (n, k)(αk−1) = sαnsαn−1sαn−2 . . . sαk+1
sαk(αk−1)

= sαnsαn−1(αk−1 + αk + αk+1 + . . .+ αn−2)

= sαn(αk−1 + αk + αk+1 + . . .+ αn−2 + αn−1)

= αk−1 + αk + αk+1 + . . .+ αn−1 + αn

(6.24)

Then we have

W (n− 1, k)(αk−1 + αk + αk+1 + . . .+ αn−1 + αn) =

W (n− 1, k)(αk−1) +W (n− 1, k)(αk) +W (n− 1, k)(αk+1) + . . .+

W (n− 1, k)(αn−1) +W (n− 1, k)(αn) =

αk−1 + αk + αk+1 + . . .+ 2αn−1 + αn

(6.25)

And then

W (n− 2, k)(αk−1 + αk + αk+1 + . . .+ αn−1 + 2αn) =

αk−1 + αk + αk+1 + . . .+ 2αn−2 + 2αn−1 + αn
(6.26)

If we continue applying W (i, k) to the result of W (i+ 1, k), decreasing until i = k,

the suggestion is that we have

αk−1 + 2αk + 2αk+1 + . . .+ 2αn−2 + 2αn−1 + αn

Formally we state the following.



67

Lemma 6.5.1. If {αk, αk+1, . . . , αm} gives an embedded C-string with longest element w0,

and αi is a root denoted by a white dot and neighboring the C-string, then

w0(αi) = αi + 2αk + 2αk+1 + . . .+ 2αm−1 + αm, where i = k − 1.

Proof. From Equation 6.24 we have

W (n, k)(αk−1) = αk−1 + αk + αk+1 + . . .+ αn−2 + αn−1 + αn

Which, for notational convenience we shall write as

W (n− 0, k)(αk−1) = αk−1 + αk + αk+1 + . . .+ αn−2 + αn−1 + αn−0

Following from Equation 6.25 we have

W (n− 1, k)(αk−1) = αk−1 + αk + αk+1 + . . .+ αn−2 + 2αn−1 + αn−0

Then let us then show that

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn−1 + αn) =

αk−1 + αk + . . .+ 2αn−i + . . .+ 2αn−1 + αn
(6.27)

where i > 1. Let us first write Equation 6.27 as

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn−1 + αn) =

W (n− i, k)(αk−1 + αk + . . .+ αn−i + . . .+ αn) +W (n− i, k)(αn−i+1 + . . .+ αn−1)
(6.28)

Now because k < n (as a root system of type C must have at least three basis

roots), and i > 1, then the Cartan matrix gives us W (n− i, k) acts on all roots as it would

if defined over a root system of type C. Hence

W (n− i, k)(αk−1 + . . .+ αn) = αk−1 + . . .+ αn (6.29)
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and

W (n− i, k)(αn−i+1 + . . .+ αn−1) = sαn−isαn−i−1 . . . sαk(αn−i+1 + . . .+ αn−1)

= sαn−i(αn−i+1 + . . .+ αn−1)

= αn−i + αn−i+1 + . . .+ αn−1

(6.30)

Then from Equations 6.29 and 6.30 we can write

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn−1 + αn) =

W (n− i, k)(αk−1 + αk + . . .+ αn−i + . . .+ αn) +W (n− i, k)(αn−i+1 + . . .+ αn−1) =

αk−1 + αk + . . .+ αn−i−1 + 2αn−i + 2αn−i+1 + . . .+ 2αn−1 + αn
(6.31)

The effect is that by applying W (n − i, k) for i = 1 to n − k − 1 in incrementing

order of i, we add to

αk−1 + αk + . . .+ αn

the root αn−i. Application of W (n− i, k) in this way is precisely the action of w0

on αk−1. Hence

w0(αk−1) = αk−1 + 2αk + 2αk+1 + . . .+ 2αn−1 + αm

As a final remark, the involution θ induced by the diagram at the start of this

section includes an A-string of length one. Hence, the embedded root system is A1×Cn−2.

The longest element of A1 is sα1 . So we have

w0(α2) = α1 + α2 + 2α3 + 2α4 + . . .+ 2αn−1 + αn (6.32)
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6.6 Action of w0(θ) on Projecting Roots Over Type D

Within a Helminck diagram of type D, the only configuration which gives α neigh-

boring an embedded D-string is if the D-string lies to the right (with respect to the diagram

below) of α. We are primarily interested in the configuration described below.

eα u u u uu. . . ��HH

The longest element of a root system of type D can be conveniently written in one

of two slightly varying ways. The exact expression will depend on whether the number of

basis roots n is even or odd. However, one “scheme” to describe both variations can be

written. First recall Equation 6.1.

W (n,m) = sβnsβn−1sβn−2 . . . sβm+1sβm

We will introduce a second shorthand describing a similar series of reflections.

Y (n,m) = sβnsβn−2 . . . sβm+1sβm (6.33)

This series is the same as described via W (n,m) except the sβn−1 component has

been omitted. Based on [15], we then have for n even

w0 = W (1, 1)W (2, 1) . . .W (n− 1, 1)

Y (n, 1)W (n− 1, 2)Y (n, 3)W (n− 1, 4) . . .W (n− 1, n− 2)Y (n, n− 1)
(6.34)

The pattern starts in a similar manner as w0 does for the previous types. Specif-

ically, we have the usual W (1, 1)W (2, 1) . . . pattern. However, this component terminates

at W (n− 1, 1). Afterward, we alternate Y (n, i) and W (n− 1, i) components, incrementing

i from 1 on each step. The pattern stops when i reaches n − 1. This must be so because

the next component would be W (n− 1, n), which is not defined. The fact that Y (n, n− 1)
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is the last step is due to n being even. Should n be odd, we would have the variant with

W (n− 1, n− 1) being last. This is as follows:

w0 = W (1, 1)W (2, 1) . . .W (n− 1, 1)

Y (n, 1)W (n− 1, 2)Y (n, 3)W (n− 1, 4) . . .W (n− 1, n− 3)Y (n, n− 2)

W (n− 1, n− 1)

(6.35)

Next we would like to describe how the W (m, k) and Y (m, k) components act on

the roots. Due to the orientation of our Dynkin diagrams for our root systems, we must

only “step cautiously” for the roots near the “Y split” at the right end. That is, when our

reflections involve the last three roots. For the other roots, we have the usual properties

associated with the A type root systems. Namely, we still have sαi(αj) = αj if |i− j| > 1,

but also requiring i < n− 2 and j < n− 2. We always have sαi(αj) = αj if |i− j| > 2.

Let ∆ = {α1, . . . , αn} denote the base of a root system of type D, with an em-

bedded D-string from αk to αm, 1 ≤ k. In order to have an embedded D-string, we have

m = n. Let α ∈ ∆. If α not a fixed root, nor is it a root not immediately neighboring any

fixed roots β, then W (m, k)(α) = α. Hence, W (m, k)(αi) = αi if i < k − 1. (note that the

neighboring root is always a distance of at least two from the “split” because an embedded

D-string must include at least four roots).

With the condition i = k − 1, we would like to eliminate from w0 as many com-

ponents as possible. Thankfully, because this root lies to the “left” of the “split”, then we

can peel away many of the components that lie in the W ()Y ()W ()Y () alternating part. In

particular, for any component for which the second argument (of W () or Y ()) exceeds 1,

we have sαi(αj) = αj , |i − j| > 1, i < n − 2, and j < n − 2 for all reflections in the W ()

or Y () component. Hence, we eliminate everything to the right of (but not including) the

Y (n, 1) term of the sequence. For our purposes, we can write

w0 = W (k, k)W (k + 1, k) . . .W (n− 1, k)Y (n, k) (6.36)

From the n× n Cartan matrix over type D we can write
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sαi(αj) =



−αj if i = j;

αi + αj if (|i− j| = 1 and i 6= n− 1)

or (i = n− 2 and j = n)

or (i = n and j = n− 2);

αj else.

(6.37)

Hence, the action of Y (n, k) on αk−1 is given below. For all reflections except

those cases involving the roots n − 2, n − 1, or n, we can work as though we were in a

system of type A.

Y (n, k)(αk−1) = sαn sαn−2 sαn−3 . . . sαk+2
sαk+1

sαk(αk−1)

= sαn sαn−2 sαn−3 . . . sαk+2
sαk+1

(αk−1 + αk)

= sαn sαn−2(αk−1 + αk + . . .+ αn−3)

= sαn(αk−1 + αk + . . .+ αn−3 + αn−2)

= αk−1 + αk + . . .+ αn−3 + αn−2 + αn

(6.38)

If we take this result and apply it to W (n− 1, k) we get

W (n− 1, k)(αk−1 + αk + . . .+ αn−3 + αn−2 + αn) =

sαn−1sαn−2 . . . sαk(αk−1 + αk + . . .+ αn−3 + αn−2 + αn) =

sαn−1(αk−1 + αk + . . .+ αn−3 + αn−2 + αn) =

αk−1 + αk + . . .+ αn−3 + αn−2 + αn−1 + αn

(6.39)

Now we apply W (n− 2, k) to the result above.

W (n− 2, k)(αk−1 + αk + . . .+ αn−3 + αn−2 + αn−1 + αn) =

sαn−2sαn−3 . . . sαk(αk−1 + αk + . . .+ αn−3 + αn−2 + αn−1 + αn) =

sαn−2(αk−1 + αk + . . .+ αn−3 + αn−2 + αn−1 + αn) =

αk−1 + αk + . . .+ αn−3 + 2αn−2 + αn−1 + αn

(6.40)

Finally, apply W (n− 3, k) to the result above.
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W (n− 3, k)(αk−1 + αk + . . .+ αn−3 + 2αn−2 + αn−1 + αn) =

sαn−3sαn−4 . . . sαk(αk−1 + αk + . . .+ αn−3 + αn−2 + αn−1 + αn) =

sαn−3(αk−1 + αk + . . .+ αn−3 + αn−2 + αn−1 + αn) =

αk−1 + αk + . . .+ αn−4 + 2αn−3 + 2αn−2 + αn−1 + αn

(6.41)

If we continue applying W (i, k) to the result of W (i+ 1, k), decreasing until i = k,

the suggestion is that we have

αk−1 + 2αk + 2αk+1 + . . .+ 2αn−2 + αn−1 + αn

Formally we state the following.

Lemma 6.6.1. If {αk, αk+1, . . . , αm} gives an embedded C-string with longest element w0,

and αi is a root denoted by a white dot and neighboring the D-string, then

w0(αi) = αi + 2αk + 2αk+1 + . . .+ 2αm−2 + αm−1 + αm, where i = k − 1.

Proof. From Equation 6.38 we have

Y (n, k)(αk−1) = αk−1 + αk + . . .+ αn−3 + αn−2 + αn

then from Equation 6.39 we have

W (n− 1, k)(αk−1 + αk + . . .+ αn−3 + αn−2 + αn) =

αk−1 + αk + . . .+ αn−3 + αn−2 + αn−1 + αn

Now that we have filled in the “hole” left by the omission of αn−1 from Equation

6.38, we want to work our way down the rest of the terms W (n− i, k) where i increments

from 2 to k. We will establish that

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn−2 + αn−1 + αn) =

αk−1 + αk + . . .+ 2αn−i + . . .+ 2αn−2 + αn−1 + αn
(6.42)

where i > 1.
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Let us first write Equation 6.42 as

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn−2 + αn−1 + αn) =

W (n− i, k)(αk−1 + αk + . . .+ αn−i + . . .+ αn) +W (n− i, k)(αn−i+1 + . . .+ αn−2)
(6.43)

Now because k < n− 2 (as a root system of type D must have at least four basis

roots), and i > 1, then the Cartan matrix gives us W (n− i, k) acts on all roots as it would

if defined over a root system of type D. Hence

W (n− i, k)(αk−1 + . . .+ αn) = αk−1 + . . .+ αn (6.44)

and

W (n− i, k)(αn−i+1 + . . .+ αn−1) = sαn−isαn−i−1 . . . sαk(αn−i+1 + . . .+ αn−2)

= sαn−i(αn−i+1 + . . .+ αn−2)

= αn−i + αn−i+1 + . . .+ αn−2

(6.45)

Then from Equations 6.44 and 6.45 we can write

W (n− i, k)(αk−1 + αk + . . .+ αn−i + 2αn−i+1 + . . .+ 2αn−2 + αn−1 + αn) =

W (n− i, k)(αk−1 + αk + . . .+ αn−i + . . .+ αn) +W (n− i, k)(αn−i+1 + . . .+ αn−2) =

αk−1 + αk + . . .+ αn−i−1 + 2αn−i + 2αn−i+1 + . . .+ 2αn−2 + αn−1 + αn
(6.46)

The effect is that by applying W (n − i, k) for i = 1 to n − k − 1 in incrementing

order of i, we add to

αk−1 + αk + . . .+ αn
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the root αn−i. Application of W (n− i, k) in this way is precisely the action of w0

on αk−1. Hence

w0(αk−1) = αk−1 + 2αk + 2αk+1 + . . .+ 2αn−2 + αn−1 + αm

6.7 Identities on the Structure Constants over a Root Sys-

tem of Type A

Consider the Helminck diagram over a root system of type A depicted below, which

induces an involution θ:

Figure 6.2: Helminck Diagram for Restricted Rank One Involution of Type 5

eα1 uα2
. . .

αn−1u αne� �6 6θ∗

The structure constant cθ(α1),θ∆ will be of particular interest in upcoming discus-

sion. From Corollary 6.3.3 we know

w0(θ)(α1) = α1 + α2 + . . .+ αn−1

and hence

θ(α1) = −α2 − α3 − . . .− αn−1 − αn

Then

cθ(α1),θ∆ = c−α2−α3−...−αn−1−αn,θ∆ (6.47)

Because cα,θ∆ = c−1
−α,θ∆ then
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cθ(α1),θ∆ = cα2+α3+...+αn−1+αn,θ∆ (6.48)

We now claim that the value of this structure constant is always 1. To do so, we

make use of the identities in Section 2.8 and Lemma 4.2.2.

Lemma 6.7.1. Let θ be an involution induced by the Helminck diagram in Figure 6.2. Then

cθ(α1),θ∆ = cθ(αn),θ∆ = 1

Proof. Equivalently, we can show cα2+α3+...+αn−1+αn,θ∆ = 1. We can split this constant as

per Lemma 4.2.2-2. Then

cα2+α3+...+αn−1+αn,θ∆ = cα2+α3+...+αn−1,θ∆ cαn,θ∆
Nθ(α2+α3+...+αn−1),θ(αn)

Nα2+α3+...+αn−1,αn

Since α2 + α3 + . . . + αn−1 is a fixed root, then cα2+α3+...+αn−1,θ∆ = 1. Also,

αn ∈ ∆, so cαn,θ∆ = 1. Then we have

cα2+α3+...+αn−1+αn,θ∆ =
Nθ(α2+α3+...+αn−1),θ(αn)

Nα2+α3+...+αn−1,αn

which gives

cα2+α3+...+αn−1+αn,θ∆ =
Nα2+α3+...+αn−1,−α1−α2−...−αn−1

Nα2+α3+...+αn−1,αn

=
Nα1,α2+...+αn−1

Nα2+α3+...+αn−1,αn

(6.49)

via Equation 2.21. We have equality if

Nα1,α2+...+αn−1 = Nα2+...+αn−1,θ∗(α1)

To show equality, we first consider Equation 2.11 with

α = α1

β = α2 + . . .+ αn−1

γ = αn

δ = −α1 − . . .− αn
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This gives us that

Nα1,α2+...+αn−1 Nαn,−α1−...−αn +Nα2+...+αn−1 Nα1,−α1−...−αn+

Nαn,α1 Nα2+...+αn−1,−α1−...−αn = 0

But α1 + αn is not a root (since n must be at least three to have a fixed root in

the diagram), so Nαn,α1 = 0 and

Nα1,α2+...+αn−1 Nαn,−α1−...−αn +Nα2+...+αn−1 Nα1,−α1−...−αn = 0

which we write as

Nα1,α2+...+αn−1 Nαn,−α1−...−αn = −Nα2+...+αn−1 Nα1,−α1−...−αn

Applying Equation 2.21 we have

Nα1,α2+...+αn−1 Nα1+...+αn−1,αn = −Nα2+...+αn−1,αn Nα2+...+αn,α1 (6.50)

Next we want to show that Nα1,α2+...+αn = −Nα1+...+αn−1,αn . First consider

Nα1,α2+...+αn . This is equivalent to −Nα2+...+αn,α1 . Apply Equation 2.17 with

α = α2 + . . .+ αn

β = α1

αi = αn

α− αi = α2 + . . .+ αn−1

to get

Nα1,α2+...+αn = −Nα2+...+αn,α1

= −Nαn,α2+...+αn−1 Nα2+...+αn−1,α1

= −Nα2+...+αn−1,αn Nα1,α2+...+αn−1

rl (6.51)
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Then apply to Nα1+...+αn−1,αn Equation 2.17 with

α = α1 + . . .+ αn−1

β = αn

αi = α1

α− αi = α2 + . . .+ αn−1

rl

to get

Nα1+...+αn−1,αn = Nα1,α2+...+αn−1 Nα2+...+αn−1,αn rl (6.52)

The RHS of Equations 6.51 and 6.52 are negatives of each other. Then

Nα1,α2+...+αn = −Nα1+...+αn−1,αn

so it must follow from Equation 6.50 that

Nα1,α2+...+αn−1 = Nα2+...+αn−1,αn

or equivalently

Nα1,α2+...+αn−1 = −Nαn,α2+...+αn−1

Then from Equation 6.49 we can write

cα2+α3+...+αn−1+αn,θ∆ = 0

6.8 Identities on the Structure Constants over a Root Sys-

tem of Type B

Now consider the Helminck diagram over a root system of type B depicted below.

Again, we denote the induced involution by θ.
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Figure 6.3: Helminck Diagram for Restricted Rank One Involution of Type 6

eα1 uα2 uα3 uαn−1 uαn. . . -

As with the previous type, the structure constant cθ(α1),θ∆ will be of particular

interest. From Lemma 6.4.1 we have

w0(θ)(α1) = α1 + 2α2 + . . .+ 2αn

and hence

θ(α1) = −α1 − 2α2 − . . .− 2αn

Then

cθ(α1),θ∆ = c−α1−2α2−...−2αn,θ∆ (6.53)

We now claim that the value of this structure constant is always 1. To do so, we

make further use of the identities in Section 2.8 and Lemma 4.2.2.

Lemma 6.8.1. Let θ be an involution induced by the Helminck diagram in Figure 6.3. Then

cθ(α1),θ∆ = 1

Proof. Let n be the number of basis roots. The minimum number of basis roots which gives

us the appropriate diagram is three. For n at least three we have

cθ(α1),θ∆ = c−α1−2α2−...−2αn,θ∆

= cα1+2α2+...+2αn,θ∆

=
Nθ(α1+α2+...+αn),θ(α2+...+αn)

Nα1+α2+...+αn,α2+...+αn
cα1+α2+...+αn,θ∆ cα2+...+αn,θ∆

(6.54)

Now we have
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cα1+α2+...+αn,θ∆ =
Nθ(α1),θ(α2+...+αn)

Nα1,α2+...+αn

cα1,θ∆ cα2+...+αn,θ∆

Since α1 ∈ ∆, then cα1,θ∆ = 1. Also c2
α2+...+αn,θ∆

= 1, so we can continue Equation

6.54 by writing

cθ(α1),θ∆ =
Nθ(α1+α2+...+αn),θ(α2+...+αn)

Nα1+α2+...+αn,α2+...+αn

Nθ(α1),θ(α2+...+αn)

Nα1,α2+...+αn

= N−α1−α2−...−αn,α2+...+αn

Nα1+α2+...+αn,α2+...+αn

N−α1−2α2−...−2αn,α2+...+αn

Nα1,α2+...+αn

(6.55)

Now we can write

N−α1−α2−...−αn,α2+...+αn = −Nα2+...+αn,−α1−α2−...−αn

and by Equation 2.21, with α2 + . . .+αn as α and α1 +α2 + . . .+αn as β we have

N−α1−α2−...−αn,α2+...+αn = −Nα1,α2+...+αn

Then we continue Equation 6.55:

cθ(α1),θ∆ = −N−α1−2α2−...−2αn,α2+...+αn

Nα1+α2+...+αn,α2+...+αn

= Nα2+...+αn,−α1−2α2−...−2αn

Nα1+α2+...+αn,α2+...+αn

(6.56)

Appealing to Equation 2.21 once again, with α2 + . . .+ αn as α and

−α1 − 2α2 − . . .− 2αn as −β, we have

Nα2+...+αn,−α1−2α2−...−2αn = Nα1+α2+...+αn,α2+...+αn

Then

cθ(α1),θ∆ = 1
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6.9 Identities on the Structure Constants over a Root Sys-

tem of Type C

Consider the Helminck diagram over a root system of type C depicted below.

Again, we denote the induced involution by θ.

Figure 6.4: Helminck Diagram for Restricted Rank One Involution of Type 9

uα1 eα2 uα3 uαn−1 uαn. . . �

The structure constant cθ(α2),θ∆ will be of particular interest to us. From Lemma

6.5.1 and Equation 6.32 we have

w0(α2) = α1 + α2 + 2α3 + 2α4 + . . .+ 2αn−1 + αn

and hence

θ(α2) = −α1 − α2 − 2α3 − 2α4 − . . .− 2αn−1 − αn (6.57)

We can show that the value of this structure constant is always 1. To do so, we

again appeal to the identities in Section 2.8 and Lemma 4.2.2.

Lemma 6.9.1. Let θ be an involution induced by the Helminck diagram in Figure 6.4. Then

cθ(α2),θ∆ = 1

Proof. The smallest case is the condition of there being four roots. We can compute this

instance via Algorithm 4.2.3 and obtain 1.

We proceed via induction. Assume the case is so for n − 1 roots. For n roots we

have
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cθ(α2),θ∆ = c−α1−α2−2α3−...−2αn−1−αn

= cα1+α2+2α3+...+2αn−1+αn

= cα1,θ∆ cα2+2α3+...+2αn−1+αn,θ∆

Nθ(α1),θ(α2+2α3+...+2αn−1+αn)

Nα1,α2+2α3+...+2αn−1+αn

rl

Since α1 ∈ ∆, then cα1,θ∆ = 1. Then

cθ(α2),θ∆ = cα2+2α3+...+2αn−1+αn,θ∆ Nα1,−α1−α2 Nα1,α2+2α3+...+2αn−1+αn

= cα3 cα2+α3+2α4...+2αn−1+αn,θ∆
Nα1,−α1−α2

Nα1,α2+2α3+...+2αn−1+αn
Nθ(α3),θ(α2+α3+2α4+...+2αn−1+αn)

Nα3,α2+α3+2α4+...+2αn−1+αn

Since α3 ∈ ∆, then cα3,θ∆ = 1. By induction hypothesis,

cα2+α3+2α4...+2αn−1+αn,θ∆ = 1

Then we continue

cθ(α2),θ∆ =
Nα1,−α1−α2

Nα1,α2+2α3+...+2αn−1+αn

Nα3,−α1−α2−α3

Nα3,α2+α3+2α4+...+2αn−1+αn

Via Equation 2.21 we have

cθ(α2),θ∆ = Nα2,α1
Nα1,α2+2α3+...+2αn−1+αn

Nα1+α2,α3
Nα3,α2+α3+2α4+...+2αn−1+αn

= Nα1,α2
Nα1,α2+2α3+...+2αn−1+αn

Nα3,α1+α2
Nα3,α2+α3+2α4+...+2αn−1+αn

which gives 1 via Proposition 2.8.9 and Equation 2.19.

6.10 Identities on the Structure Constants over a Root Sys-

tem of Type D

Consider the Helminck diagram over a root system of type D depicted below.

Denote the induced involution by θ.
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Figure 6.5: Helminck Diagram for Restricted Rank One Involution of Type 10

eα1 uα2 uα3 uαn−2
uαn−1

u αn. . . ��HH

The structure constant cθ(α1),θ∆ will be of particular interest to us. From Lemma

6.6.1 we have

w0(α1) = α1 + 2α2 + 2α3 + 2α4 + . . .+ 2αn−2 + αn−1 + αn

and hence

θ(α1) = −α1 − 2α2 − 2α3 − 2α4 − . . .− 2αn−2 − αn−1 − αn (6.58)

We can show that the value of this structure constant is always 1. To do so, we

again appeal to the identities in Section 2.8 and Lemma 4.2.2.

Lemma 6.10.1. Let θ be an involution induced by the Helminck diagram in Figure 6.5.

Then cθ(α1),θ∆ = 1

Proof.

cθ(α1),θ∆ = c−α1−2α2−2α3−2α4−...−2αn−2−αn−1−αn,θ∆

= cα1+2α2+2α3+2α4+...+2αn−2+αn−1+αn,θ∆

= cα1+α2+α3+α4+...+αn−2+αn−1+αn,θ∆ cα2+...+αn−2,θ∆

Nθ(α1+...+αn),θ(α2+...+αn−2)

Nα1+...+αn,α2+...+αn−2

Since θ(α2 + . . .+ αn−2) = α2 + . . .+ αn−2 then cα2+...+αn−2,θ∆ = 1 Then

cθ(α1),θ∆ = cα1+α2+α3+α4+...+αn−2+αn−1+αn,θ∆

Nθ(α1+...+αn),θ(α2+...+αn−2)

Nα1+...+αn,α2+...+αn−2

= cα1,θ∆ cα2+...+αn,θ∆

Nθ(α1),θ(α2+...+αn)

Nα1,α2+...+αn

Nθ(α1+...+αn),θ(α2+...+αn−2)

Nα1+...+αn,α2+...+αn−2



83

Now α1 ∈ ∆, so cα1,θ∆ = 1. Also, θ(α2+. . .+αn) = α2+. . .+αn, so cα2+...+αn,θ∆ =

1. It then follows that

cθ(α1),θ∆ =
Nθ(α1),θ(α2+...+αn)

Nα1,α2+...+αn

Nθ(α1+...+αn),θ(α2+...+αn−2)

Nα1+...+αn,α2+...+αn−2

=
N−α1−2α2−2α3−...−2αn−2−αn−1−αn,α2+...+αn

Nα1,α2+...+αn

N−α1−α2−...−αn,α2+...+αn−2

Nα1+...+αn,α2+...+αn−2

=
Nα2+...+αn,−α1−2α2−2α3−...−2αn−2−αn−1−αn

Nα1,α2+...+αn

Nα2+...+αn−2,−α1−α2−...−αn
Nα1+...+αn,α2+...+αn−2

With α2 + . . .+ αn acting as α and −α1 − 2α2 − 2α3 − . . .− 2αn−2 − αn−1 − αn
as −β, then via Equation 2.21 we have

Nα2+...+αn,−α1−α2−2α3−...−2αn−2−αn−1−αn = Nα1+α2+...+αn−2,α2+...+αn

and with α2 + . . .+ αn−2 as α and −α1 − . . .− αn as −β we have

Nα2+...+αn−2,−α1−α2−...−αn = Nα1,α2+...+αn−2

Then

cθ(α1),θ∆ =
Nα1+α2+...+αn−2,α2+...+αn

Nα1,α2+...+αn

Nα1,α2+...+αn−2

Nα1+...+αn,α2+...+αn−2
(6.59)

Now let us consider how we can rewrite the term Nα1,α2+...+αn . First,

Nα1,α2+...+αnXα1+α2+...+αn = [Xα1 , Xα2+...+αn ]

Let us write X for Xα1+α2+...+αn . Hence,

Nα1,α2+...+αnX = [Xα1 , Xα2+...+αn ]

Then

Nα1,α2+...+αn

Nα2+...+αn−2,αn−1+αn

X = [Xα1 , [Xα2+...+αn−2 , Xαn−1+αn ]]
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Following from the Jacobi identity, we have

Nα1,α2+...+αn

Nα2+...+αn−2,αn−1+αn

X = −[Xα2+...+αn−2 , [Xαn−1+αn , Xα1 ]]−[Xαn−1+αn , [Xα1 , Xα2+...+αn−2 ]]

But αn−1 + αn + α1 is not a root, so [Xαn−1+αn , Xα1 ] = 0. Then

Nα1,α2+...+αn

Nα2+...+αn−2,αn−1+αn
X = −[Xαn−1+αn , [Xα1 , Xα2+...+αn−2 ]]

= −Nα1,α2+...+αn−2 [Xαn−1+αn , Xα1+...+αn−2 ]

= Nα1,α2+...+αn−2 Nαn−1+αn,α1+...+αn−2 X

Hence

Nα1,α2+...+αn = Nα2+...+αn−2,αn−1+αn Nα1,α2+...+αn−2 Nαn−1+αn,α1+...+αn−2 (6.60)

Next we can rewrite Nα1+...+αn−2,α2+...+αn in a similar fashion. Let X denote

Xα1+2α2+...+2αn−2+αn−1+αn . Then

Nα1+...+αn−2,α2+...+αnX = [Xα1+...+αn−2 , Xα2+...+αn ]

It follows that

Nα1+...+αn−2,α2+...+αn

Nα2+...+αn−2,αn−1+αn

X = [Xα1+...+αn−2 , [Xα2+...+αn−2 , Xαn−1+αn ]]

From the Jacobi identity we write

Nα1+...+αn−2,α2+...+αn

Nα2+...+αn−2,αn−1+αn
X = −[Xα2+...+αn−2 , [Xαn−1+αn , Xα1+...+αn−2 ]]

−[Xαn−1+αn , [Xα1+...+αn−2 , Xα2+...+αn ]]

which becomes
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Nα1+...+αn−2,α2+...+αn

Nα2+...+αn−2,αn−1+αn
X = −Nαn−1+αn,α1+...+αn−2 [Xα2+...+αn−2 , Xα1+...+αn ]

−Nα1+...+αn−2,α2+...+αn [Xαn−1+αn , Xα1+2α2...+2αn−2+αn−1+αn ]

Since α1 + 2α2 + . . .+ 2αn is not a root, then

[Xαn−1+αn , Xα1+2α2...+2αn−2+αn−1+αn ] = 0

Then

Nα1+...+αn−2,α2+...+αn

Nα2+...+αn−2,αn−1+αn

X = −Nαn−1+αn,α1+...+αn−2 [Xα2+...+αn−2 , Xα1+...+αn ]

Hence

Nα1+...+αn−2,α2+...+αnX = −Nα2+...+αn−2,αn−1+αn Nαn−1+αn,α1+...+αn−2

Nα2+...+αn−2,α1+...+αnX

and finally

Nα1+...+αn−2,α2+...+αn = Nα2+...+αn−2,αn−1+αn Nαn−1+αn,α1+...+αn−2 Nα1+...+αn,α2+...+αn−2

(6.61)

Using Equations 6.60 and 6.61, we can write Equation 6.59 as

cθ(α1),θ∆ =
Nα2+...+αn−2,αn−1+αn Nαn−1+αn,α1+...+αn−2 Nα1+...+αn,α2+...+αn−2

Nα2+...+αn−2,αn−1+αn Nα1,α2+...+αn−2 Nαn−1+αn,α1+...+αn−2

× Nα1,α2+...+αn−2

Nα1+...+αn,α2+...+αn−2

= 1
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Chapter 7

Classification of the 1-Consistent

Involutorial Helminck Diagrams

In Chapter 4 we focused significant attention on the condition of cα,θ∆ = 1 for all

α ∈ ∆. When working in local symmetric spaces, the condition that θ∆ as in Definition 4.2.1

is quite beneficial. While we left our previous discussion with an algorithm to compute the

structure constants, there remains much more to be said. Indeed, it is possible to determine

some of the structure constants simply by looking at the configuration of black and white

dots in a given Helminck diagram. These structure constants happen to be the ones which

we use to determine if θ∆ is an involution.

In order to propose such a scheme for computing the structure constants by way

of the Helminck diagram, we need to look closely at several new key ideas. In particular,

we will describe how one can “decompose” a diagram into smaller pieces. These pieces

represent involutions of restricted rank one. We will then need to describe how to take each

individual piece and “glue” them together to form the original involution.

Determining the values of the structure constants this way is a pleasant conse-

quence. The primary motivation, however, is to extend our decomposition and recomposi-

tion scheme to involutions on the Lie algebra itself. This will be the subject of Chapter 8.

This way we will be able to break apart the long Groebner basis calculation into smaller

parts. We can then lift each part, and glue the involutions on each component into the

bigger involution on the original algebra.

One additional benefit we will soon see is that we may be spared the necessity
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of computing the Chevalley constants. This will arise from the fact that the structure

constants do not change as we break the diagrams apart.

7.1 1-Consistency

Let us denote a Helminck Diagram as H. Let H(θ) denote the involution on the

roots recovered from H, and H(θ∆) be defined as in definition 4.2.1. Unless otherwise noted,

H(θ) should be taken to be an involution. The goal of this chapter is to thoroughly examine

the cases such that H(θ∆) is an involution on g. For convenience, we make the following

definition.

Definition 7.1.1 (1-Consistent). Let H be a Helminck Diagram over a root system with

basis ∆. We say H is 1-consistent if cθ(α),θ∆ = 1 for all α ∈ ∆.

Immediately following from the definition we have

1. H(θ∆) is an involution if and only if H is 1-consistent.

2. If H contains no black dots, then H is 1-consistent.

3. If H contains no white dots, then H is 1-consistent.

Statement 2 is due to Lemma 4.6.1. Statement 3 arises from Lemma 6.1.1. If all

the dots are black, then θ fixes every root. Then cθ(α),θ∆ = cα,θ∆ for all α ∈ ∆, the basis

for the root system. By Definition 4.2.1 we then have cθ(α),θ∆ = 1 for all α ∈ ∆.

The primary objective for this chapter will be to understand the conditions for

which H is 1-consistent. We will conclude with a classification scheme which can be easily

implemented into an algorithm to quickly check if θ∆ is an involution.

Unless otherwise noted, let θ = H(θ) and θ∆ = H(θ∆). As previously stated, the

black dots of H represent those roots which are fixed by θ. The white dots correspond to

roots which project to some root in the local symmetric space. Because for the fixed roots

α we have cθ(α),θ∆ = 1, we will want to focus our attention on those roots denoted by white

dots.
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7.2 Restricted Rank One Automorphisms

We now discuss how to build the restricted rank one components of θ. Recall that

Φθ denotes the set of restricted roots. Then for all λ such that 1
2λ 6∈ Φθ, let λ(Φ) denote

the set of all roots β ∈ Φ so that π(β) is an integral multiple of λ.

All fixed roots are zero multiples of λ. By construction, the restricted rank of

Φ(λ) is one. In [5] Helminck gave all the restricted rank one involution diagrams. These

are listed in Table C.1. We can view these diagrams as the “fundamental building blocks”

of involutorial automorphisms over both the root system and the corresponding lie algebra.

This table will be frequently referred to for this reason.

7.3 The Restricted Rank One Decomposition of an Involu-

tion

Our first discussion on the topic of restricted rank one automorphisms centers

around how one can view an involution in terms of its restricted rank one components. We

then do our computations on these components. Then we reconstruct the original involution

(which is the subject of the next section).

There are a surprising number of issues involved in this computation. Our aim

will be to resolve enough to present a fully working system. The first task is to determine

the basis for each restricted rank one component. We only want the roots denoted by white

dots. In most cases this means that, say, for a root α1 colored white, the only root denoted

white in restricted rank one component containing α1 is α1 itself. However, this is not

always so. Therefore, we need a procedure that captures all cases.

Let θ be the usual involution on the root system. For each root αi not fixed by θ

we compute the projection of αi into the roots of the local symmetric space. Call this root

λi:

λi = π(αi) =
1
2

(α− θ(α))

For each root λi we compute the set of roots α such that
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1. π(α) = kλi for some integer k.

2. α is not fixed by θ.

Call this set Ri. Let ∆0 denote the set of basis roots fixed by θ. We have

Ri = {α ∈ (∆−∆0) | π(α) = kλi, k ∈ Z}

Now we merge into Ri the fixed roots joining any α ∈ Ri ∩ (∆−∆0). By this we

mean the following. Start with α and trace the Helminck diagram through all the black

dots. Stop when another white dot is reached, or the end of the irreducible component α

resides in is reached. For α1 in the example diagram below (over A2 ×B5 ×B2 × A1), the

roots which are not in R1 are marked with an X.

e u e u e u u-
X X X α1

u u-A B

X X

Cu
X

In the above diagram we repeat this scheme three times, one for each root denoted

by white. However, a close study of this example will reveal that the two fixed roots in the

far right (composing the B2 irreducible component) will never be reached.

As we iterate through all the white roots, we want to keep a list of the roots

processed. As in the above case, it may be the case that an irreducible component consists

entirely of fixed roots. In this situation, the above process would overlook it! When we

have processed all white roots, a final step is to inspect the list of all roots which have not

been processed. These roots will always be fixed (black). Pick the first unprocessed root.

Call it the pivot root. This starts a new Ri set. Merge with this set all the black roots that

can be “reached” by tracing along the Helminck diagram starting from pivot root. In the

example above we start with A. Root B can be “reached” from A. So {A,B} compose one

Ri set. There is still one remaining root that has not been processed. Root C is in an Ri

set by itself.

The process is summarized as follows.
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Algorithm 7.3.1 (Restricted Rank One Decomposition).

Input θ, an involution over the root system with basis ∆.

Output Ri, set of restricted rank one (and zero) subsystems.

1. Φ† = {}

2. for every αi ∈ ∆−∆0.

λi := π(αi)

Ri = {α ∈ (∆−∆0) | π(α) = kλi, k ∈ Z}

3. for every Ri

for every fixed root α which neighbors by any β ∈ Ri or any fixed roots which

can be “reached” by tracing from β through another fixed root (or string of fixed

roots), compute Ri = Ri ∪ α.

4. for every Ri, Φ† := Φ† ∪Ri

5. for every αi ∈ ∆, αi 6∈ Φ†

Let Ri = {α}

for every fixed root β which neighbors α or can be “reached” by tracing from α

through another fixed root or string of fixed roots, compute Ri = Ri ∪ β.

6. return every Ri.

Example 7.3.2. Restricted rank one decomposition of an involution over Φ

Suppose we have the involution θ induced by the diagram over A5 ×A2 below.

e u e u eα1 α2 α3 α4 α5 u uα6 α7

which has the basis roots

∆ = {e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6, e7 − e8, e8 − e9}
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and αi is given by the ith entry in ∆.

We compute the projections of the three roots denoted by white dots

λ1 = π(α1) = e1 − 1
2e2 − 1

2e3

λ2 = π(α3) = 1
2e2 + 1

2e3 − 1
2e4 − 1

2e5

λ3 = π(α5) = 1
2e4 + 1

2e5 − e6

Next we iterate through the three λ roots. For λ1 the set of roots which are not

fixed and not perpendicular to λ1 is {α1}. The only fixed root joined to α1 is α2. So our

first restricted rank one component R1 is {α1, α2}.
The set of roots not fixed and not perpendicular to λ2 is {α3}. There are two fixed

roots joined to α3, one on each side. Then R2 is {α2, α3, α4}.
Finally, the set of roots not fixed and not perpendicular to λ3 is {α5}. There is

only one fixed root joined to α5. Then R3 is {α4, α5}.
We have only processed α1 through α5. We then choose the first unprocessed root,

which is α6. This root is joined to α7, so we merge them into the same set. After merging

all the roots joined to α6, there are no unprocessed roots remaining. The restricted rank

one decomposition is

e uα1 α2

u e uα2 α3 α4

u eα4 α5

u uα6 α7

7.4 Constructing Involutorial Automorphisms of Higher Rank

From Restricted Rank One Automorphisms

In this section we’ll demonstrate how to construct an involutorial automorphism

on the root system of higher rank from its restricted rank one components. Let θ be an
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involutorial automorphism on Φ. Suppose we have two roots α1 and α2 which are not fixed

by θ, and θ is restricted rank two. Let λi = π(αi). Label the involution induced on Φ(λ1)

by θ1. Similarly, let θ2 be the involution induced on Φ(λ2). We will show how to “glue” the

two involutions together to construct the original θ.

To begin, we make the claim that if a root resides in two different restricted rank-

one root systems, then it must be fixed by θ.

Lemma 7.4.1. If α ∈ Φ(λ1) ∩ Φ(λ2), and Φ(λ1) 6= Φ(λ2) then θ(α) = α.

Proof. We begin with the basis roots. Both Φ(λ1) and Φ(λ2) contain all fixed roots (black

dots). But they both contain a different white dot, not connected by a diagram automor-

phism. It follows then, if a basis root is in both systems, it must be represented by a black

dot. We have ∀ δ ∈ ∆, if δ ∈ Φ(λ1) ∩ Φ(λ2) then θ(δ) = δ.

The implication this that the “gluing” process will work as follows. To glue two

diagrams together, draw one on top of the other so that the black dots align. Then on the

bottom diagram, fill in blank spaces with the white dots that show in the upper diagram.

The result looks like this:

θ1
e u
α1 α2

+

θ2
u e
α2 α3

↓e u e
α1 α2 α3

Because we’ve seen that two restricted rank-one systems only share fixed roots,

then we must have that θ1 = θ2 when the involutions are restricted to the intersection of

their two respective systems.

Lemma 7.4.2. Let θ1 be the root system induced by the restricted rank-one system Φ(λ1).

Let θ2 be the root system induced by the restricted rank-one system Φ(λ2).

Then θ1|Φ(λ1)∩Φ(λ2) = θ2|Φ(λ1)∩Φ(λ2).
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Proof. Pick any α ∈ Φ(λ1) ∩ Φ(λ2). Suppose θ1(α) = α1 and θ2(α) = α2. Since θ(α) = α

and every α ∈ Φ(λ1) ∩ Φ(λ2), then α = α1 = α2.

In addition, we also have that every root lies in a restricted rank one system. The

idea is straightforward. Every root that isn’t fixed is contained in its own restricted rank

one system.

Lemma 7.4.3. Let ∆ be a basis for Φ. If α ∈ ∆ then there is a λi so that α ∈ Φ(λi).

Proof. Every fixed root is perpendicular to every λi, and hence, a zero multiple. So if α is a

fixed root, then α ∈ Φ(λi) for every λi. Otherwise, if α is not fixed, then α ∈ Φ(π(α)).

Corollary 7.4.4. Every α ∈ Φ can be written as a sum of elements in Φ(λi), i = 1 . . . n,

where n is the number of unique Φ(λi) systems. i.e. α = k1α1 + . . . ksαs where

αi ∈ Φ(λi), i = 1 . . . n.

Proof. This follows immediately from the previous lemma by the linearity of θ.

It now makes sense to describe how to “decompose” θ into its restricted rank one

components. We write the following for an involution θ of restricted rank k, where θi is the

involution induced by the Helminck diagram for Φ(λi).

θ(α) =

 θi(α) if α ∈ Φ(λi);

θs1(α) = θs2(α) = . . . = θsk(α) if α ∈ ∩kj=1Φ(λsj )
(7.1)

θ(α) as defined covers all roots. For roots neither in Φ(λi), nor the intersection of

any number of restricted systems, we apply the linearity of θ. For example, suppose α ∈
Φ(λ1), β ∈ Φ(λ2), and α+β 6∈ Φ(λ1)∩Φ(λ2). Then θ(α+β) = θ(α)+θ(β) = θ1(α)+θ2(β).

We refer to the definition of θ in terms of θi as the restricted rank one decomposition

of θ. The restricted rank one decomposition of θ can highlight many important properties

of θ itself. In the remaining sections of this chapter we will discuss how to determine

the structure constants from the decomposition. In particular, we have for α ∈ Φ(λi),

cθ(α),θ̄ = cθi(α),θ̄.

Relevant to Chapter 8, we have the following claim
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Theorem 7.4.5. Let θ1, . . . , θn give the restricted rank one decomposition of θ. Then θ is

an involution if and only if θi is an involution for all i = 1 . . . n.

Proof. If θ is an involution then θ2(α) = α for all α ∈ Φ. Since Φ(λi) ⊂ Φ for all i and

θ(α) = θi(α) for all α ∈ Φ(λi), then θ2
i (α) = α for all α ∈ Φ(λi).

Now suppose θ2
i = 1 for all i. Then for all roots αi entirely within Φ(λi) we have

θ2(αi) = θ2
i (αi) = αi.

Let us proceed via an induction argument, and begin with the case n = 2. Let

α ∈ Φ(λ1) and β ∈ Φ(λ2). Then θ2(α+ β) = θ2
1(α) + θ2

2(β) = α+ β.

Now suppose α1 + . . .+ αn ∈ Φ and θ2(α1 + . . .+ αn) = α1 + . . .+ αn. We have

θ2(α1 + . . .+ αn + αn+1) = θ2(α1 + . . .+ αn) + θ2(αn+1)

= α1 + . . .+ αn + αn+1

To conclude this section, we’ll illustrate the restricted rank one decomposition with

a simple example.

Example 7.4.6. Reconstruction of an involution on the root system by its restricted rank

one components

Let us consider the involution θ on Φ induced by the Helminck diagram below

e u eα1 α2

λ1 λ2

Where λi = π(αi). Then Φ(λ1) and Φ(λ2) can be represented by the restricted

rank-one diagrams, which induce, respectively, involutions θ1 and θ2.

θ1
e u
λ1

θ2
u e

λ2

For αi ∈ ∆, a basis for Φ, we have
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θ1 : α1 → −α1 − α2

α2 → α2

θ2 : α2 → α2

α3 → −α2 − α3

Define

θ′(α) =


θ1(α) if α ∈ Φ(λ1);

θ2(α) if α ∈ Φ(λ2);

θ1(α) = θ2(α) if α ∈ Φ(λ1) ∩ Φ(λ2)

(7.2)

For the basis roots we have

θ′(α1) = θ1(α1) = −α1 − α2

θ′(α2) = θ1(α2) = θ2(α2) = α2

θ′(α3) = θ2(α3) = −α2 − α3

which is precisely the action of θ on the basis roots. By linearity, we have θ = θ′.

7.5 Involutions With Restricted Rank One

Let θ be an involution with Helminck Diagram H. In most cases, if H contains

precisely one white dot, then the restricted rank of θ is one. However, if H designates a

diagram automorphism of order 2, then H may contain two white dots and still designate

θ of restricted rank one.

As a brief example, consider the simple case of the root system A1×A1, with basis

∆ = {e1 − e2, e3 − e4} Let α1 = e1 − e2 and α2 = e3 − e4. Then

λ1 = π(α1) = α1 − α2 = e1 − e2 − e3 + e4

and
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λ2 = π(α2) = α2 − α1 = e3 − e4 − e1 + e2

Then {e1 − e2 − e3 + e4} gives the basis for Φλ1 and {e3 − e4 − e1 + e2} gives the

basis for Φλ2 . But as e1 − e2 − e3 + e4 = −(e3 − e4 − e1 + e2) then these are really bases of

the same system. Hence Φλ1 = Φλ2 .

Our next step will be to “decompose” a Helminck diagram by computing Φλi for

each αi denoted by a white dot. Each of these restricted rank one systems is denoted

by its own Helminck diagram consisting of either one (or in one case, two) white dots.

As given by Helminck in [5] and Table C.1, there are only eighteen restricted rank one

systems which represent involutions. What we will determine is that a Helminck diagram

is 1-consistent if and only if all of its restricted rank one components are. Hence, we can

compute 1-consistency via pre-computed table look-ups.

7.6 Restricted Rank and 1-Consistency

Let us begin by formalizing the last statement of the previous section.

Lemma 7.6.1 (Preservation of 1-Consistency via Reduction of Rank). Let H be a Helminck

diagram defined over a root system Φ. Let λi be a restricted root, and Φ↓λi denote the reduced-

rank restricted root system with respect to λi. Let Hλi be the Helminck diagram for Φ↓λi Then

H is 1-consistent if and only if Hλi is 1-consistent for all λi ∈ ∆̄.

Proof. Because all the fixed roots are perpendicular to λi, then all of these roots are present

in Φ↓λi . Hence, H and Hλi share the same longest Weyl element w0(θ). Reduction of rank

preserves symmetry, and so the action of θ∗ is preserved for the surviving roots. Hence, the

action of θ is preserved.

Clearly reduction of rank does not add new roots to H, nor are any roots denoted

by black dots changed to white dots (or vice-versa). So it remains to show that for a white

dot in H corresponding to αi, cθ(αi),θ∆ = 1 for the same root in Hλi .

Suppose H is 1-consistent. Let αi be a root denoted by a white dot. Then

cθ(αi),θ∆ = 1. Pick a root αj and reduce rank with respect to this root. Choose i 6= j

if possible. If the only option is to eliminate αi itself, then only fixed roots remain and Hλi
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is 1-consistent. Otherwise we note θ does not change, and hence the value of cθ(αi),θ∆ does

not change either. Since this is true for all white roots αi, then Hλi is 1-consistent for all i.

To show the converse, let us assume that cθ(αi),θ∆ 6= 1 for some αi. By the same

argument as before, the action of θ does not change via reduction of rank. Hence, cθ(αi),θ∆
has the same value, and Hλi is not 1-consistent.

To show the usefulness of this lemma, consider that each reduced restricted rank

component is 1-consistent if and only its own reduced restricted rank components are 1-

consistent. Hence, we can keep reducing the restricted rank until we break a diagram into

restricted rank one components.

Lemma 7.6.2. Preservation of 1-Consistency via Reduction to Restricted Rank One Let

H be a Helminck diagram defined over a root system Φ. Let λi be a restricted root, and Φλi

its restricted rank one root system with respect to λi. Let Hλi be the Helminck diagram for

Φλi. Then H is 1-consistent if and only if Hλi is 1-consistent for all λi ∈ ∆̄.

Proof. We proceed by induction over the restricted rank of the involution θ induced by H.

If the restricted rank is one, Lemma 7.6.1 gives us that H is 1-consistent if and only if Hλ1

is.

Assume the hypothesis is true for restricted rank n. If the restricted rank of θ

is n + 1, then take all restricted rank n components Φ↓λi . Lemma 7.6.1 gives us that H is

1-consistent if and only if H
Φ↓λi

is. By the assumption, H
Φ↓λi

is 1-consistent if and only if

its restricted rank one components are 1-consistent.

In the subsequent section we will classify all the 1-consistent Helminck diagrams.

Hence, no Chevalley constants will be needed to compute 1-consistency. First, however, we

need to address one issue regarding the classical cases.

Helminck gives a classification of the restricted rank one systems consisting of 18

types, but four represent 1-consistent systems with infinite possibilities for the number of

roots. These types are 5, 6, 9, and 10 in Table C.1.

In all four of these cases, the root of interest is the white dot. For the roots denoted

by black dots we have cθ(α),θ∆ = cα,θ∆ and hence, cθ(α),θ∆ = 1.

That the system given in entry 5 of Table C.1 is 1-consistent follows from Lemma

6.7.1.
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That the system given in entry 6 of Table C.1 is 1-consistent follows from Lemma

6.8.1.

That the system given in entry 9 of Table C.1 is 1-consistent follows from Lemma

6.9.1.

That the system given in entry 10 of Table C.1 is 1-consistent follows from Lemma

6.10.1.

7.7 A Classification Scheme for 1-Consistent Helminck Dia-

grams

In an unusual plot twist, justification of a classification scheme for 1-consistent

Helminck diagrams is more straightforward in the E, F, and G cases. Because there are

a finite number of these diagrams, it is sufficient to simply point to the computed results.

For the classical cases, a scheme is necessary. However, there are a large number of E cases

- enough that a simple table would prove burdensome. We will provide a scheme for type

E in an effort to render implementation less burdensome. For the classical systems, deeper

contemplation will be necessary.

We first consider the case of type G. Since there are only four possibilities, it is

easy to simply compute a list. The computations are given in Table 7.1, and suffice as a

proof via brute force for the following result.

Lemma 7.7.1. Let H be a Helminck diagram and H(θ) an involution over the root system

G2. Then H is 1-consistent if and only if the number of fixed roots is not one.

Next we will consider all the cases where θ∗ = id. First we consider the root

systems of type A. All diagrams have substrings of type A, so we shall hope to extend our

results to the other cases. Let H be a Helminck diagram for a root system of type A. Recall

that if we have an A-string of length exceeding 1, then θ is not an involution.

Of the remaining diagrams, we know cθ(α),θ∆ for α a fixed root (black dot) is 1.

This is because θ(α) = α and so θ(α) ∈ ∆, which is 1 by definition 4.2.1.

We turn our attention to the white dots. Whether cθ(α),θ∆ is +1 or −1 depends

on the number of neighboring black dots.
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Table 7.1: 1-Consistency States for G2, θ Involution

Diagram cθ(α1),θ∆ cθ(α2),θ∆ 1-Consistent

e eα1 α2
� 1 1 +

e uα1 α2
� −1 1 −

u eα1 α2
� 1 −1 −

u uα1 α2
� 1 1 +

Lemma 7.7.2. Let θ∗ = id. Let H be a Helminck diagram containing an A-string, and let

hi be a dot corresponding to the root αi.

1. If hi is bordered by one black dot, then cθ(αi),θ∆ = −1.

2. If hi is bordered by either zero or two black dots, then cθ(αi),θ∆ = 1.

Proof. Let λi = π(αi), and consider the Helminck diagram for the rank-one root system.

Call this diagram Hλi . If we erase all the black dots which have no bearing on αi. That is,

if (αi, αj) = 0 then Sαjαi = αi, and erasing αj from Hλi does not change the action of θ on

αi.

The surviving diagram is a rank-one diagram of type 2 (in case of zero neighbor-

ing black dots), type 3 (in case of one neighboring black dot), or type 4 (in case of two

neighboring black dots) in Table C.1. If it is of type 3, then as computed, cθ(αi),θ∆ = −1

Otherwise, we have cθ(αi),θ∆ = 1.

Helminck diagrams with a B-string behave in a slightly peculiar way. The B-

string has no effect on its neighbor. However, should a white dot (call it α) be bordering

a single black dot on one side, the presence of a B-string on the other side will ensure

that cθ(α),θ∆ = −1, since another A-string cannot be placed on the other side to “save” it.

Formally, we have as follows:
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Lemma 7.7.3. Let θ∗ = id. Let H be a Helminck diagram containing a B-string, and let

hi be a dot corresponding to the root αi. Should hi be neighboring a B-string of any length,

then the B-string has no bearing on the value of cθ(α),θ∆. The structure constant is entirely

determined by its other neighbor.

1. If hi is bordered on the other side by one black dot, then cθ(αi),θ∆ = −1.

2. If hi is bordered on the other side by zero black dots, then cθ(αi),θ∆ = 1.

Proof. First we should note that if αi is bordered on one side by a B-string, then the only

possible string that may reside on the other side, if any, is of type A.

Let λi = π(αi), and consider the Helminck diagram for the rank-one root system.

Call the Helminck diagram for the corresponding rank-one root system Hλi . As in Lemma

7.7.2, we erase all dots which have no bearing on cθ(αi),θ∆ . The surviving rank-one root

system is of type 6 (in case of zero black dots on the other side), or type 7 (in case of one

black dot on the other side) in Table C.1. In the case of type 6, cθ(αi),θ∆ = 1. In the case

of type 7, cθ(αi),θ∆ = −1.

Now let us consider the case of a C-string. It turns out that C-strings act precisely

in the same manner as an A-string. The difference is, of course, C-strings may be of any

length. However, the same principle as in Lemma 7.7.2 applies. We need only consider the

neighbors of a white dot, and in the case of a C-string, we can apply this lemma as if it

were an A-string.

Lemma 7.7.4. Let θ∗ = id. Let H be a Helminck diagram containing a C-string, and let

hi be a dot corresponding to the root αi.

1. If hi is bordered by only a C-string of any length, then cθ(αi),θ∆ = −1.

2. If hi is bordered by both a C-string of any length, and an A-string of length one, then

cθ(αi),θ∆ = 1.

Proof. We shall construct an argument similar to before. Let λi = π(αi), and consider

the Helminck diagram for the rank-one root system. Call the Helminck diagram for the

corresponding rank-one root system Hλi . As in Lemma 7.7.2 and 7.7.3, we erase all dots

which have no bearing on cθ(αi),θ∆ .
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What remains is a rank-one root system of type 8 (in case of only a C-string

neighbor), or type 9 (in case of both a C-string and A-string neighbor) in Table C.1. In the

case of type 8 we have cθ(αi),θ∆ = −1. In the case of type 9 we have cθ(αi),θ∆ = 1.

To wrap up the classical cases, let us consider type D. A D-string behaves in

the same manner as a B-string. That is, the D-string has no effect on the value of the

neighboring structure constant.

Lemma 7.7.5. Let θ∗ = id. Let H be a Helminck diagram containing a D-string, and let

hi be a dot corresponding to the root αi. Should hi be neighboring a D-string of any length,

then the D-string has no bearing on the value of cθ(α),θ∆. The structure constant is entirely

determined by its other neighbor.

1. If hi is bordered on the other side by one black dot, then cθ(αi),θ∆ = −1.

2. If hi is bordered on the other side by zero black dots, then cθ(αi),θ∆ = 1.

Proof. We shall use the rank-one reduction argument again. Let λi = π(αi), and consider

the Helminck diagram for the rank-one root system. Call the Helminck diagram for the

corresponding rank-one root system Hλi . As in Lemma 7.7.2, 7.7.3, and 7.7.4, we erase all

dots which have no bearing on cθ(αi),θ∆ .

Remaining is a rank-one root system of type 10 (in the case that there are no black

dots on the other side), or type 11 (in the case that there is an A-string on the other side)

in Table C.1. In the event of type 10, we have cθ(αi),θ∆ = 1. In the event of type 11 we have

cθ(αi),θ∆ = −1.

For type F we first point out that there are only three cases amongst the string

types to consider. We can not embed a D-string or an E-string. Then we only need to be

concerned about an A, B, or C-string. The only case that we do not have an A, B, or C

string is in the event of an F-string. But the only way to have an F-string is if there are no

white dots. Then we know H is 1-consistent. Otherwise, we proceed.

The F case is tricky and, in fact, reverses many of the rules we’ve established in

the previous lemmas. As there are only twelve cases where the F diagram is an involution

diagram, it is easier to simply provide a list of computed results. However, as a general

rule of thumb, the rules for A, B, C, and D strings are reversed. In effect, we only have a
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1-consistent Helminck diagram of type F if there is a B-string of length three, or all dots

are colored the same. The results are provided in Table 7.2.

To conclude all the cases of Helminck diagrams with θ∗ = id, we need to address

the E types. In a Helminck diagram of type E, the only strings are of type A, D, or E.

In most of the cases where we have an A-string or a D-string, we can refer to our

previous results. There is one new case, being that which the D-string is “pointing away”

from a white dot. Take this to be the case where the white dot is bordering the end of one

of the two branches, as illustrated below.

e
u
u u u u u∗

Let αi be the root corresponding to the white dot “behind” the D-string. In the

case that the D-string is of odd length, we do not have an involution diagram. In the case

of even length, the structure constant is not one. Note that in the case of a D-string of

length four, it is not possible to draw a white dot at the “back” of the string. In this case,

the neighboring structure constants are all one.

There is only one case where an E-string may be embedded. If we have a Helminck

diagram over the root system E8, it is only possible to have an E-string of length seven.

Any diagram with an E-string of length six will not be an involution diagram.

Lemma 7.7.6. Let θ∗ = id. Let H be a Helminck diagram containing an E-string, and let

hi be a dot corresponding to the root αi. Then

1. Should hi be neighboring one or two A-strings, then consider Lemma 7.7.2.

2. Should hi be neighboring a D-string, and the D-string is “pointed” toward hi, then

consider Lemma 7.7.5.

3. Should hi be neighboring a D-string, and the D-string is “pointed” away from hi, then

we have cθ(αi),θ∆ = −1.

4. Should hi be neighboring a E-string of length seven, then cθ(αi),θ∆ = −1.

Proof. The first two cases are handled by their respective lemmas. Let λi = π(αi), and

consider the Helminck diagram for the rank-one root system. Call the Helminck diagram
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for the corresponding rank-one root system Hλi . As in Lemma 7.7.2, 7.7.3, and 7.7.4, we

erase all dots which have no bearing on cθ(αi),θ∆ .

Should we have an embedded D-string of even length, and the root αi is “behind”

the D-string, the remaining rank-one root system is of type 13 in Table C.1. Then we have

cθ(αi),θ∆ = −1.

Should we have an embedded E-string of length seven, the remaining rank-one

root system is of type 14 in Table C.1. Then we have cθ(αi),θ∆ = −1.

Next we will consider the case that θ∗ is a Dynkin diagram automorphism of order

2. The presence of such θ∗ eliminates from consideration diagrams of types B, C, F, G,

and En6=6. While certain restrictions are no longer imposed (e.g. we may have A-strings

of length exceeding one), we require the diagram be symmetric. Certain cases, such as two

A-strings of length exceeding one, are still disallowed. In short, if reduction to rank-one

does not result in a diagram provided in Table C.1, then we do not have an involution

diagram.

Any Helminck diagram that is an involution diagram, has θ∗ as assumed, and

contains precisely one A-string, is 1-consistent. We see this because reduction to rank one

will only result in some diagram of type 5 in Table C.1. Cases where we may have θ∗ as

assumed, and 1-inconsistent Helminck diagrams do not represent involutions to begin with.

Lemma 7.7.7. Let θ∗ be a Dynkin diagram automorphism of order 2. Let H be a Helminck

diagram containing only an A-string, and let hi be a dot corresponding to the root αi. Then

cθ(αi),θ∆ = 1.

Proof. We use the usual rank-one reduction argument. Let λi = π(αi), and call the

Helminck diagram for the rank-one root system Hλi . We erase all dots which have no

bearing on cθ(αi),θ∆ .

Remaining is a rank-one root system of type 5 in Table C.1. Then we have

cθ(αi),θ∆ = 1.

In the case of a Helminck diagram of type D, we may have embedded either an

A-string or a D-string. In these cases, we actually preserve the properties we had in the

case of no diagram automorphism. Nothing more needs to be established, as reduction to

rank one results in the same entries in Table C.1. However, we should point out that the
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rule determining whether or not we have an involution diagram is “flipped.” In the case of

our θ∗, we have an involution diagram if the D-string is of odd length. If the D-string is of

even length, we do not have an involution diagram.

We conclude our classification scheme by establishing that, in the case of an E-

string, we only have 1-consistency if all roots are colored the same.

Lemma 7.7.8. Let θ∗ be a Dynkin diagram automorphism of order 2. Let H be an invo-

lutorial Helminck diagram of type E6. Let hi be a dot corresponding to the root αi. Then

cθ(αi),θ∆ = 1 if and only if H contains no black dots, or no white dots.

Proof. If H contains all black or all white dots, then we’ve already established H is 1-

consistent.

As usual, let λi = π(αi), and consider the Helminck diagram for the rank-one root

system. Call the Helminck diagram for the corresponding rank-one root system Hλi . Erase

all dots which have no bearing on cθ(αi),θ∆ .

If αi was in one of the five positions composing the “bottom” string (with respect

to how the diagrams are drawn in Table C.1), then we have a rank-one root system of a

previously established type. The new case is if αi is the single “top” dot. In this event, the

rank-one root system is of type 12 in Table C.1. Then we have cθ(αi),θ∆ = −1.

We have now covered every irreducible Helminck diagram. We will finish by stating

one more claim concerning reducible diagrams. These are diagrams which are constructed

from reducible Dynkin diagrams. In the case of a reducible diagram, it is 1-consistent if

and only if each irreducible component is.

Theorem 7.7.9. Let H be a reducible Helminck diagram with irreducible components

H1,H2, . . . ,Hn. Then H is 1-consistent if and only if Hi is 1-consistent for all i = 1 . . . n.

Proof. First let us consider the case that there is no diagram automorphism. Then the

action of θ is entirely determined by w0(θ). If αi is a root in one irreducible component,

and βi is a root in a different irreducible component, then (αi, βi) = 0. Hence, Sαi(βi) =

βi and Sβi(αi) = αi. This means we can “split” w0(θ) in the following way: w0(θ) =

wα0 (θ)wβ0 (θ), where wα0 (θ) is the longest element of the Weyl group generated by the set of

roots corresponding to the first irreducible component, and wβ0 (θ) the longest element with

respect to the second component. Therefore, cθ(α),θ∆ will only consist of structure constants
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with respect to the first component, and cθ(β),θ∆ will consist of structure constants with

respect to the second component.

In the case of a diagram automorphism between the two components, we remark

that the diagram automorphism does not “determine” the value of the structure constant.

By this we mean, if cθ(α),θ∆ = −1 and cθ(β),θ∆ = 1. and θ∗ swaps α and β, then cθ(α),θ∆ = 1

and cθ(β),θ∆ = −1. Hence, if for all white dots δ we have cθ(δ),θ∆ = 1, then swapping two

will not change their values.

7.8 Computation of the 1-Consistency Property

We will conclude with two a short algorithms. First, we’ll determine if H is 1-

consistent, and therefore, if θ∆ is an involution on the Lie algebra. Second, we’ll provide an

alternate way to compute the structure constants in the case of an involution. This alter-

native approach will use the classification scheme, and avoid using the Chevalley constants.

A scheme to compute the structure constants can be devised in a variety of ways.

We gave one in Section 4.2. See Algorithm 4.2.3. This algorithm is useful if one already

has the Chevalley constants. However, if these constants are unknown, we many not want

to compute them for the purpose of obtaining the structure constants.

One alternative method is to analyze the pattern of black and white dots in the

Helminck diagram by using our classification scheme. We already know the structure con-

stants for the fixed roots are 1. For each basis root corresponding to a white dot we can

analyze its neighbors.

A third approach is to use reduction to one of the rank one types in Table C.1.

We can obtain the values of the structure constants cθ(α),θ̄ in the following way.
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Algorithm 7.8.1 (Computation of the Structure Constants via Rank One Reduction).

Input Φ, the root system with basis ∆, and θ, involutorial automorphism on the roots.

Output cθ(α),θ̄ for all α ∈ ∆.

1. for every αi fixed by θ, let cθ(αi),θ̄ = 1.

2. for every αi not fixed by θ

Compute λi = π(αi).

Compute Φ(λi).

Use Table C.1 to look up the value of the structure constant corresponding to αi.

3. return cθ(αi),θ̄ for all αi ∈ ∆.

The algorithm provides an easy way to check for 1-consistency. If it returns all

ones, then the corresponding Helminck diagram is 1-consistent.

Algorithm 7.8.2 (Computation of 1-Consistency).

Input H, Helminck diagram corresponding to θ, the involutorial automorphism on the root

system Φ.

Output TRUE if H is 1-consistent. Else, FALSE .

1. Call Algorithm 7.8.1 with root system Φ and involution θ.

2. return TRUE if all ones are returned. Otherwise, return FALSE .
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Table 7.2: 1-Consistency States for F4, θ Involution

Diagram cθ(αi),θ∆ 1-Consistent

e e e eα1 α2 α3 α4
- 1 1 1 1 +

e e e uα1 α2 α3 α4
- 1 1 −1 1 −

e e u eα1 α2 α3 α4
- 1 1 1 −1 −

e u e eα1 α2 α3 α4
- −1 1 −1 1 −

e u e uα1 α2 α3 α4
- −1 1 −1 1 −

e u u eα1 α2 α3 α4
- 1 1 1 −1 −

e u u uα1 α2 α3 α4
- −1 1 1 1 −

u e e eα1 α2 α3 α4
- 1 −1 1 1 −

u e e uα1 α2 α3 α4
- 1 −1 −1 1 −

u e u eα1 α2 α3 α4
- 1 −1 1 −1 −

u u u eα1 α2 α3 α4
- 1 1 1 1 +

u u u uα1 α2 α3 α4
- 1 1 1 1 +
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Chapter 8

Classification of the Involutions on

The Root System Which Lift

In this chapter we will present a simple classification scheme classifying the invo-

lutions which lift.

If θ is an involution on the root system, then θ can be lifted to an involution on

the Lie algebra.

This result is a consequence of our primary objective. In a similar manner as

our restricted rank one decomposition of θ, we will decompose θ̄, an involution on the Lie

algebra. The decomposition works by restricting θ̄ to the torus (and hence, the roots), and

projecting the map onto each possible restricted rank one root system.

The goal is to break the problem of lifting an involution on the roots into several

pieces. Given θ, we construct restricted rank one involutions θi. We lift each θi to θ̄i. Then

we “glue” each θ̄i together, to give θ̄ in such a way that θ̄2 = 1 and θ̄|t = θ. Hence, we lift

θ to θ̄.

Since computation of Groebner bases can take exponential time, we stand to make

significant gains in efficiency. However, this may still not be enough. Some restricted rank

one systems can be very large. In particular, types 7, 8, and 11 in Table C.1 are not 1-

consistent (need to be lifted), but can be of any length. Hence, they can be of large length

and impractical for computation via the “direct” method presented in Chapter 4. We will

need to break these maps into even smaller components.

The end result will be a fairly complex, but fast, computation. The “classification
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scheme” introduced in this chapter is a result of what will be called the restricted rank one

decomposition of θ̄.

8.1 Examining the Lifting Condition

It may be the case that θ∆, as defined in Definition 4.2.1, is an involution on the

Lie algebra. If not, we will show a correction vector can always be found. However, it will

not be entirely useful to think of lifting θ in terms of finding a correction vector. Instead,

recall from Section 1.2 that θ can be lifted to an automorphism in Aut(g, t) if there is an

automorphism θ̄ ∈ Aut(g, t) such that θ̄|t = θ.

We will demonstrate how a satisfactory θ̄ can be constructed for any involution θ

by considering its restricted rank-one components. This will be done in much the same way

that we constructed θ from its restricted rank one components. Proposition 4.3.2 will then

guarantee a correction vector can be found, should it be necessary.

8.2 Involutions of Restricted Rank One

By demonstration, it is possible to find correction vectors for all the involutions of

restricted rank one of finite size (see Table C.1), should they be necessary. If they are not

necessary, take θ̄ = θ∆. Otherwise, take θ̄ = θ∆ ad(H).

Demonstration satisfies the claim that all restricted rank one involutions can be

lifted for most of the types. However, types 7, 8, and 11 are of infinite length, and require

correction vectors. For these types we can compute correction vectors for all cases up to

n = 4. We then proceed by an induction argument to claim that by adding one more fixed

root, the involution on the root system still lifts.

Lemma 8.2.1. If θ is an involution represented by a Helminck diagram of type 7 in Table

C.1, then θ lifts to an involutorial automorphism on the Lie algebra.

Proof. We shall consider an induction argument. A correction vector for θ of the minimum

length is given after Table C.1. Consider θ1 induced by the Helminck diagram over the root

system Φ1:

u e u u u-
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and θ induced over the root system Φ by

u e u u u uβ
-

where θ is constructed by adding one black dot (β) to the diagram of θ1. Define θ̄

as follows.

θ̄(Xα) =

 θ̄1(Xα) if α ∈ Φ1;

Xα if α = β.
(8.1)

Since θ̄2
1(Xα) = Xα then θ̄2(Xα) = Xα for α ∈ Φ1. Also θ̄2(Xβ) = Xβ since β is

fixed by θ. We need to establish θ̄2(Xα+β) = Xα+β.

θ̄2(Xα+β) = 1
Nα,β

θ̄2[Xα, Xβ]

= 1
Nα,β

[θ̄2(Xα), θ̄2(Xβ)]

= 1
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ [Xθ2(α), Xθ2(β)]

= 1
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ [Xα, Xβ]

= Nα,β
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β

= cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β

As α ∈ Φ1 then θ̄2(Xα) = θ̄2
1(Xα) = cα,θ̄ cθ(α),θ̄ Xα = Xα. Then cα,θ̄ cθ(α),θ̄ = 1

Also, β is fixed by θ, so cβ,θ̄ cθ(β),θ̄ = c2
β,θ̄

= 1.

Then cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β = Xα+β and θ̄ is an involution.

Now let θ1 be induced by a Helminck diagram of type 7 in C.1 of any length, and

induce θ by adding one new black dot β. We construct θ̄ precisely as in Equation 8.1, which

is an involution.

Lemma 8.2.2. If θ is an involution represented by a Helminck diagram of type 8 in Table

C.1, then θ lifts to an involutorial automorphism on the Lie algebra.
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Proof. We shall again consider an induction argument. A correction vector for θ of the

minimum length is given after Table C.1. Consider θ1 induced by the Helminck diagram

over the root system Φ1:

u e u u u�
and θ induced over the root system Φ by

u e u u u uβ
�

where θ is constructed by adding one black dot (β) to the diagram of θ1. Define θ̄

as follows.

θ̄(Xα) =

 θ̄1(Xα) if α ∈ Φ1;

Xα if α = β.
(8.2)

Since θ̄2
1(Xα) = Xα then θ̄2(Xα) = Xα for α ∈ Φ1. Also θ̄2(Xβ) = Xβ since β is

fixed by θ. We need to establish θ̄2(Xα+β) = Xα+β.

θ̄2(Xα+β) = 1
Nα,β

θ̄2[Xα, Xβ]

= 1
Nα,β

[θ̄2(Xα), θ̄2(Xβ)]

= 1
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ [Xθ2(α), Xθ2(β)]

= 1
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ [Xα, Xβ]

= Nα,β
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β

= cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β

As α ∈ Φ1 then θ̄2(Xα) = θ̄2
1(Xα) = cα,θ̄ cθ(α),θ̄ Xα = Xα. Then cα,θ̄ cθ(α),θ̄ = 1

Also, β is fixed by θ, so cβ,θ̄ cθ(β),θ̄ = c2
β,θ̄

= 1.

Then cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β = Xα+β and θ̄ is an involution.
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Now let θ1 be induced by a Helminck diagram of type 8 in C.1 of any length, and

induce θ by adding one new black dot β. We construct θ̄ precisely as in Equation 8.2, which

is an involution.

Lemma 8.2.3. If θ is an involution represented by a Helminck diagram of type 11 in Table

C.1, then θ lifts to an involutorial automorphism on the Lie algebra.

Proof. We shall once more consider an induction argument. A correction vector for θ of the

minimum length is given after Table C.1. Consider θ1 induced by the Helminck diagram

over the root system Φ1:

u e u u uu��HH

and θ induced over the root system Φ by

u e uβ u u uu��HH

where θ is constructed by adding one black dot (β) to the diagram of θ1. Define θ̄

as follows.

θ̄(Xα) =

 θ̄1(Xα) if α ∈ Φ1;

Xα if α = β.
(8.3)

Since θ̄2
1(Xα) = Xα then θ̄2(Xα) = Xα for α ∈ Φ1. Also θ̄2(Xβ) = Xβ since β is

fixed by θ. We need to establish θ̄2(Xα+β) = Xα+β.
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θ̄2(Xα+β) = 1
Nα,β

θ̄2[Xα, Xβ]

= 1
Nα,β

[θ̄2(Xα), θ̄2(Xβ)]

= 1
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ [Xθ2(α), Xθ2(β)]

= 1
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ [Xα, Xβ]

= Nα,β
Nα,β

cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β

= cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β

As α ∈ Φ1 then θ̄2(Xα) = θ̄2
1(Xα) = cα,θ̄ cθ(α),θ̄ Xα = Xα. Then cα,θ̄ cθ(α),θ̄ = 1

Also, β is fixed by θ, so cβ,θ̄ cθ(β),θ̄ = c2
β,θ̄

= 1.

Then cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β = Xα+β and θ̄ is an involution.

Now let θ1 be induced by a Helminck diagram of type 11 in C.1 of any length,

and induce θ by adding one new black dot β. We construct θ̄ precisely as in Equation 8.3,

which is an involution.

Because the remaining diagrams in Table C.1 are either 1-consistent, or are of

finite length, we can now conclude that every restricted rank one involution θ can be lifted.

Lemma 8.2.4. If θ is an involution of restricted rank one then θ lifts to an involution on

the Lie Algebra.

Proof. For the remaining types not discussed in Lemmas 8.2.1, 8.2.2, and 8.2.3, the Helminck

diagram is either of finite length (hence, proof by demonstration), or is 1-consistent (θ∆ as

defined in Definition 4.2.1 is suitable).

8.3 An Algorithm for Lifting Involutions of Restricted Rank

One

We will now present an algorithm for lifting involutions of restricted rank one. In

particular, we only need to focus on those of type 7, 8, or 11 in Table C.1. We make use of
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the arguments in the proofs of Lemmas 8.2.1, 8.2.2, and 8.2.3. The motivation will make

itself clear as we discuss restricted rank one decomposition in general. Recall our aim is to

“build” the involution θ̄ from involutions lifted from the restricted rank one components of

θ.

Given θ of restricted rank one and of type 7, 8, or 11 in Table C.1, we first consider

the diagram of minimum size (number of roots). For instance, suppose we are given θ of

type 7, and of size 6 roots. We start with θ′, an involution described by the Helminck

diagram of type 7 and of size 4 roots. This is a smaller system, and can be quickly lifted.

Suppose this lifts to θ̄′. We then add one black dot at a time, constructing the involution

on the Lie algebra via Equation 8.1.

Our algorithm will make several considerations. We assume at this point the

structure constants have been computed. Second, assume our involution on the roots, θ, is

of restricted rank one. We know there are 18 possible types. We can use Algorithm 9.3.1

to determine which type we have. As long as the type is not 7, 8, or 11, then we are mostly

done. For type not 7, 8, or 11, we may have that θ∆, as given in Definition 4.2.1 and with

respect to θ is an involution (the corresponding Helminck diagram is 1-consistent). If not,

then the number of roots is of finite length, and a suitable involution on the algebra can be

quickly computed or pre-computed on some computer algebra system package.

For types 7, 8, or 11, we proceed by starting with the involution of minimum

length, and add one fixed root at a time - applying an equation such as Equation 8.1 on

each iteration. In the proofs of Lemmas 8.2.1, 8.2.2, and 8.2.3, our new root β was always

placed to the right of the one white dot. For consistency and simplicity, we shall always

place the new root in this position, and hence can use the same equation for all three types.

Our algorithm proceeds as follows.

Algorithm 8.3.1 (Lifting Algorithm for Involutions of Restricted Rank One).

Input θ, an involution of restricted rank one on the root system Φ with basis ∆ of n number

of roots.

Output θ̄, an involution on the Lie algebra such that θ̄|t = θ and θ̄2 = 1

1. Call Algorithm 9.3.1 to determine the type of restricted rank one involution.
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2. if the corresponding Helminck diagram is 1-consistent, return θ∆ as in Definition

4.2.1.

3. if the type is not 7, 8, or 11, call Algorithm 4.5.5 to compute θ̄. return θ̄.

4. Remaining is an involution of type 7, 8, or 11. Let θ(1) be the involution of the same

type with the minimum possible size basis, over the subset of Φ denoted Φ(1).

5. Compute θ̄(1) by means of Algorithm 4.5.5.

6. for i = 2 . . . n

Add one new fixed root β to the Helminck diagram for θ(i−1). For consistency,

place this root to the right of the one white dot in the diagram for θ(i).

Adding one new fixed root in turn adds β to the basis for Φ(i−1). This gives the

root system Φ(i).

Compute θ̄(i) via:

θ̄(i)(Xα) =

 θ̄(i−1)(Xα) if α ∈ Φ(i−1);

Xα if α = β.
(8.4)

7. return θ̄(n).

Actually implementing the constructed involution has a tricky point worth explo-

ration. Suppose we have θ1 an involution on the root system Φ1, and that we lifted θ1 to

θ̄1. Now suppose we constructed θ̄ from θ̄1. θ̄|t gives θ, an involution over the root system

Φ. We have

θ̄(Xα) =

 θ̄1(Xα) if α ∈ Φ1;

Xα if α = β.
(8.5)

We can easily compute θ̄(Xα) and θ̄(Xβ). What may not be so clear is how to go

about computing θ̄(Xα+β). We need to “split” Xα+β.

A common trick used to “split” root vectors has been to appeal to the identity

found in the proof of Lemma 4.2.2:
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[Xα, Xβ] = Nα,βXα+β

We then have the following.

θ̄(Xα+β) = 1
Nα,β

θ̄[Xα, Xβ]

= 1
Nα,β

[θ̄(Xα), θ̄(Xβ)]

= 1
Nα,β

[θ̄1(Xα), Xβ]

= 1
Nα,β

cα,θ̄1 [Xθ1(α), Xβ]

= 1
Nα,β

cα,θ̄ [Xθ(α), Xβ]

= Nθ(α),β

Nα,β
cα,θ̄ Xθ(α+β)

Now recall from Lemma 4.2.2-(2) we have

cα+β,θ = Nθ(α),θ(β)

Nα,β
cα,θ cβ,θ

But the implication of our definition for θ̄ is that cβ,θ = 1. Also note θ(β) = β.

Then

cα+β,θ = Nθ(α),β

Nα,β
cα,θ

Then we have

θ̄(Xα+β) = cα+β,θ̄Xθ(α+β) (8.6)

To illustrate the above procedures, let us consider a simple example.

Example 8.3.2. Constructing an Involution of Restricted Rank One

Consider the involution θ on the root system Φ induced by the Helminck diagram
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u e u u u u-
We wish to lift θ to θ̄ ∈ Aut(g, t). We first consider the “smaller problem” of lifting

θ(1) induced by the minimum length diagram of type 7 in Table C.1.

u e u u-
We call Algorithm 4.5.5 to lift θ(1) and obtain

θ̄(1) = θ∆ ad(x1H1 + x2H2 + x3H3 + x4H4) where

x1 = 1
14

(
−7−

(
5
√

2 +
√

15
)√

13− 2
√

30
)

x2 = −1
7

(
5
√

2 +
√

15
)√

13− 2
√

30

x3 = −1
7

(
5
√

2 +
√

15
)√

13− 2
√

30

x4 = −
√

1
2

(
13− 2

√
30
)

Our next task is to add one fixed root at a time to the Helminck diagram for θ(1)

so that the induced involution is our original one. We add a new fixed root β1:

u e uβ1 u u-
which induces a new involution θ(2) on the root system. To lift θ(2) to θ̄(2) we

modify θ̄(1) as per Equation 8.4. Hence

θ̄(2)(Xα) =

 θ̄(1)(Xα) if α ∈ Φ(1);

Xα if α = β1.
(8.7)

which gives us

θ̄(2)(Xα) =

 θ∆ ad(x1H1 + x2H2 + x3H3 + x4H4)(Xα) if α ∈ Φ(1);

Xα if α = β1.
(8.8)

Now we add a final black dot to our previous Helminck diagram to obtain the

given one. We construct
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u e uβ2 uβ1 u u-
which induces θ. To lift θ to θ̄ we appeal to Equation 8.8. We have

θ̄(Xα) =

 θ̄(2)(Xα) if α ∈ Φ(2);

Xα if α = β2.
(8.9)

which we can write as

θ̄(Xα) =


θ̄(1)(Xα) if α ∈ Φ(1);

Xα if α = β1;

Xα if α = β2.

(8.10)

and finally

θ̄(Xα) =


θ∆ ad(x1H1 + x2H2 + x3H3 + x4H4)(Xα) if α ∈ Φ(1);

Xα if α = β1;

Xα if α = β2.

(8.11)

8.4 Reduction to Restricted Rank One

Let θ̄ ∈ Aut(g, t). We say θ̄ is of restricted rank one if the root system of the

algebra is of restricted rank one. We can reduce θ̄ to rank one in a similar manner as we

reduced θ. Namely, define

φ̂λ(Xα) =

 Xα if α ∈ Φ(λ);

0 else.
(8.12)

and

θ̄λ(Xα) =

 θ̄(Xα) if α ∈ Φ(λ);

0 else.
(8.13)
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φ̂λ projects a Lie algebra to one with the restricted rank-one root system Φ(λ). Call

this Lie algebra gλ, with maximal torus tλ. θ̄ describes an automorphism in the restricted

rank-one Lie algebra in terms of θ̄. In particular, we preserve the exact action of θ̄ for

elements which are in the restricted algebra. Other elements map to zero.

8.5 Constructing Automorphisms for Higher Restricted Ranks

We proceed by demonstrating how, for any Lie algebra, an involution θ̄ can be

constructed from involutions of lesser restricted rank. Let H be a Helminck diagram with

white roots αi, i = 1 . . . n. Let λi = π(αi), and Φ(λi) be the restricted rank one root system

relative to λi.

We denote by θ̄|λi the restriction of θ̄ to Φ(λi). For convenience, we will write θ̄i

for θ̄|λi . We then can decompose θ̄ in a similar way as we decomposed θ. For Xα ∈ g, define

θ̄(Xα) =

 θ̄i(Xα) if α ∈ Φ(λi);

θ̄s1(Xα) = θ̄s2(Xα) = . . . = θ̄sk(Xα) if α ∈ ∩kj=1Φ(λsj )
(8.14)

As with Equation 7.1, the linearity of θ̄ handles the cases where root vectors do

not fall in one particular restricted system or the intersections of any systems.

We refer to the definition of θ̄ in terms of θ̄i as the restricted rank one decompo-

sition of θ̄. This construction gives us a very powerful computational tool. In particular,

computation of Groebner bases can be very time consuming. Equation 8.14 allows us to

perform several smaller computations, then “glue” the results together.

To establish the validity of this construction, we need to make a few claims. First,

we need to ensure that “intersecting” structure constants retain the same value.

Lemma 8.5.1. If α ∈ Φ(λ1) ∩ Φ(λ2), and θ̄|Φ(λ1) = θ̄1, θ̄|Φ(λ2) = θ̄2 then cα,θ̄1 = cα,θ̄2.

Proof. Pick some root α ∈ Φ(λ1) ∩ Φ(λ2). Then

θ̄1(Xα) = cα,θ̄1Xθ1(α)
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θ̄2(Xα) = cα,θ̄2Xθ2(α)

Since α ∈ Φ(λ1) ∩ Φ(λ2), then from Equation 7.1 we have

cα,θ̄1Xθ1(α) = cα,θ̄1Xθ(α)

cα,θ̄2Xθ2(α) = cα,θ̄2Xθ(α)

Via restriction of θ̄, we have θ̄1 = θ̄2 for our chosen root. Then

cα,θ̄1Xθ(α) = cα,θ̄Xθ(α)

cα,θ̄2Xθ(α) = cα,θ̄Xθ(α)

Hence, cα,θ̄1 = cα,θ̄2 .

It then follows that if a root vector Xα resides in the intersection of two restricted

systems Φ(λ1) ∩ Φ(λ2), then θ̄1 and θ̄2 act on it in the same way.

Lemma 8.5.2. θ̄1|Φ(λ1)∩Φ(λ2) = θ̄2|Φ(λ1)∩Φ(λ2).

Proof. Pick some root α ∈ Φ(λ1) ∩Φ(λ2), and Xα the corresponding root vector. We have

θ̄1(Xα) = cα,θ̄1Xθ1(α)

θ̄2(Xα) = cα,θ̄2Xθ2(α)

From Equation 7.1, θ1(α) = θ2(α), Hence,

cα,θ̄1Xθ1(α) = cα,θ̄1Xθ(α)

cα,θ̄2Xθ2(α) = cα,θ̄2Xθ(α)

And from Lemma 8.5.1, cα,θ̄1 = cα,θ̄2 . Then

cα,θ̄1Xθ(α) = cα,θ̄2Xθ(α)

So

θ̄1(Xα) = θ̄2(Xα)
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Remaining is the task to ensure that θ̄, as constructed, is an involution.

Theorem 8.5.3. θ ∈ Aut(Φ) lifts to an involution θ̄ ∈ Aut(g, t) if and only if θλi lifts for

all i = 1 . . . n.

Proof. The =⇒ direction is less complicated. Suppose θ lifts. Then θ̄ is an involution,

and θ̄|t = θ. Note that Φ(λ) ⊂ Φ. Then since θ̄2(Xα) = Xα for all α ∈ ∆, we have that

θ̄2(Xα) = Xα for all α ∈ Φ(λ). Hence, θ̄2
λi

(Xα) = Xα for all α ∈ Φ(λ). Also, θ̄|t = θ. For

roots in Φ(λ) we have θ(α) = θλi(α). Hence, θ̄λi |tλi = θλi . Then θλi lifts.

To show the other direction, let us proceed with an induction argument. To begin,

we will demonstrate how to construct θ̄ given two restricted roots λ1 and λ2. Let θλ1 and

θλ2 lift. Then consider θ̄ as defined

θ̄(Xα) =

 θ̄λ1(Xα) if α ∈ Φ(λ1);

θ̄λ2(Xα) if α ∈ Φ(λ2)− Φ(λ1).
(8.15)

First,

θ̄|tλ1
+tλ2

= θ̄|tλ1
+ θ̄|tλ2

= θλ1 + θλ2

= θ

For α ∈ Φ(λ1) we have θ̄2(Xα) = θ̄2
λ1

(Xα) = Xα. We have a similar condition for

α ∈ Φ(λ2).

Now suppose α ∈ Φ(λ1) and β ∈ Φ(λ2). We have

θ̄2(Xα+β) = 1
Nα,β

θ̄2[Xα, Xβ]

= 1
Nα,β

[θ̄2(Xα), θ̄2(Xβ)]

= cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄
1

Nα,β
[Xθ2(α), Xθ2(β)]

Since θ is an involution, we have
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θ̄2(Xα+β) = cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄
1

Nα,β
[Xα, Xβ]

= cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄
Nα,β
Nα,β

Xα+β

= cα,θ̄ cθ(α),θ̄ cβ,θ̄ cθ(β),θ̄ Xα+β

Recall that θ̄2
λ1

(Xα) = cα,θ̄ cθ(α),θ̄ Xα. Since θ̄λ1 is an involution, we have

cα,θ̄ cθ(α),θ̄ = 1. Similarly, we have cβ,θ̄ cθ(β),θ̄ = 1. Then θ̄2(Xα+β) = Xα+β, and θ̄ is an

involution.

Now let us assume θ̄2(Xα1+...+αn) = Xα1+...+αn . Then we have

θ̄2(Xα1+...+αn+αn+1) = 1
Nα1+...+αn,αn+1

θ̄2[Xα1+...+αn , Xαn+1 ]

= 1
Nα1+...+αn,αn+1

[θ̄2(Xα1+...+αn), θ̄2(Xαn+1)]

= cα1+...+αn,θ̄ cθ(α1+...+αn),θ̄ cαn+1,θ̄
cθ(αn+1),θ̄

1
Nα1+...+αn,αn+1

[Xθ2(α1+...+αn), Xθ2(αn+1)]

= cα1+...+αn,θ̄ cθ(α1+...+αn),θ̄ cαn+1,θ̄
cθ(αn+1),θ̄

1
Nα1+...+αn,αn+1

[Xα1+...+αn , Xαn+1 ]

= cα1+...+αn,θ̄ cθ(α1+...+αn),θ̄ cαn+1,θ̄
cθ(αn+1),θ̄

Nα1+...+αn,αn+1

Nα1+...+αn,αn+1
Xα1+...+αn+αn+1

= cα1+...+αn,θ̄ cθ(α1+...+αn),θ̄ cαn+1,θ̄
cθ(αn+1),θ̄ Xα1+...+αn+αn+1

By assumption, cα1+...+αn,θ̄ cθ(α1+...+αn),θ̄ must equal 1. Since θ̄λn+1 is an involu-

tion, we have cαn+1,θ̄
cθ(αn+1),θ̄ = 1.

Involutions of restricted rank zero can be lifted “by default.” (That is, θ∆ as

defined in Definition 4.2.1 is an involution). Since all involutions on Φ of restricted rank
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one can be lifted, and all involutions on Φ of restricted rank greater than one can be broken

down into restricted-rank one components, then all involutions on Φ can be lifted.

Corollary 8.5.4. Let θ be an involutorial automorphism in Aut(Φ). Then θ can be lifted

to an involutorial automorphism in Aut(g, t).

The proof immediately follows from Theorem 8.5.3 and the preceding remarks. As

a second corollary, suppose we have two disjoint Helminck diagrams. Then their rank-one

decompositions are disjoint. Then follows:

Corollary 8.5.5. Let θ be an involution on the root system induced from a reducible

Helminck diagram H = H1 + H2 + . . . + Hn. Let θi be an involution on the root system

induced by Hi. Then θ lifts if an only if θi lifts for all i = 1 . . . n.

Proof. Suppose θ lifts. Pick λi = π(αi) where αi ∈ Hi. Reduction to rank one isolates θ

into an involution on the roots of Hi. Call this new map θi. Then by Lemma 8.5.3, θi lifts.

Now suppose every θi induced by Hi lifts. Then every restricted rank one involution

θλi lifts. Then θ must lift by Theorem 8.5.3 and Corollary 8.5.4.

8.6 The Gluing Mechanism: θ̄ Involution Construction

While Equation 8.14 defines enough to apply it to every root vector in g, it may not

prove straight-forward for cases where the root of the vector is not in any of the restricted

rank one root systems. Indeed, consider α ∈ Φ(λ1), and β ∈ Φ(λ2). Then Xα+β is in

neither Φ(λ1) nor Φ(λ2).

A similar issue arises with Equation 7.1, but the linearity of the map handles the

case quite nicely. e.g. θ(α+ β) = θ(α) + θ(β). In the case of the involution on the algebra,

θ̄, it is not true that θ̄(Xα+β) = θ̄(Xα) + θ̄(Xβ).

As with the restricted rank one cases of any possible size, we will again appeal to

Lemma 4.2.2 to “split” the root vectors. Recall this is

[Xα, Xβ] = Nα,βXα+β

While this is suitable, it requires us to know the Chevalley constants Nα,β. We

would like to avoid computing these - especially because it is possible to get around needing

them for computing the structure constants.
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It is possible to remove the Chevalley constants. Unfortunately, this introduces

structure constants the algorithm presented in Chapter 7 is not equipped to produce.

We have, with α, β,Xα, Xβ, θ, θ̄ as previously mentioned, and θ̄1, θ̄2 components

of the restricted rank one decomposition of θ̄:

θ̄(Xα+β) = 1
Nα,β

θ̄[Xα, Xβ]

= 1
Nα,β

[θ̄(Xα), θ̄(Xβ)]

= 1
Nα,β

[θ̄1(Xα), θ̄2(Xβ)]

= 1
Nα,β

cα,θ̄1 cβ,θ̄2 [Xθ1(α), Xθ2(β)]

= 1
Nα,β

cα,θ̄ cβ,θ̄ [Xθ(α), Xθ(β)]

= Nθ(α),θ(β)

Nα,β
cα,θ̄ cβ,θ̄ Xθ(α+β)

Now recall from Lemma 4.2.2-(2) we have

cα+β,θ̄ = Nθ(α),θ(β)

Nα,β
cα,θ̄ cβ,θ̄

Then we have

θ̄(Xα+β) = cα+β,θ̄Xθ(α+β) (8.16)

Hence, we must know either the structure constants, or the Chevalley constants.

8.7 Involution Merge

In practice we will know the Chevalley constants. After lifting all restricted rank

one involutions (or a single restricted rank one involution of “minimal size” as in Section

8.3) we will want to quickly compute the remaining structure constants corresponding to

roots that are a sum of two roots - each residing in a separate restricted component.
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An effective means to accomplish this computation is to modify De Graaf’s root

system algorithm [6] as we did for computing the structure constants in Chapter 4. Because

this algorithm begins by constructing the roots of height two, we are guaranteed to be adding

two roots which reside completely in their own restricted rank one component (and hence,

the values of the structure constants known). We compute all height two roots before

moving on to the height threes, and so on. Therefore we are always adding together two

roots whose corresponding structure constants are known.

The modified algorithm is as follows.
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Algorithm 8.7.1 (Involution Merge).

Input ∆, the basis roots, and cα,θ̄ for all α ∈ ∆.

Output cα,θ for all α ∈ Φ.

1. n := 1; Φ := ∆; s := 1.

2. while |Φ| > s

s := |Φ|

for every element α =
∑

βi∈∆ kiβi ∈ Φ and every element of δ ∈ ∆ do

h :=
∑
ki

if h = n then

Compute r, the highest integer so that α− rδ is in Φ

q := r −
∑
kiMi,j, where Mi,j is the (i, j) entry in the Cartan Matrix

if q > 0 then

Φ := Φ ∪ (α+ δ)

cα+δ,θ := Nθ(δ),θ(α)

Nδ,α
cα,θ̄ cδ,θ̄

c−(α+δ),θ̄ := (cα+δ,θ̄)
−1

3. return cα,θ̄ for all α ∈ Φ

Theorem 8.7.2. Algorithm 8.7.1 computes all cα,θ̄ for all α ∈ Φ.

Proof. Proof that Algorithm 8.7.1 generates all the roots from the basis roots can be found

in [6]. Every time a new root is found, it is found by adding two previously known roots.

Hence, by computing the structure constant at the same time, for every new root found,

we find its corresponding structure constant. The structure constants corresponding to

the basis roots have been previous computed by the restricted rank one lifting algorithms.

Because this algorithm computes all the roots, it computes all the structure constants.
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8.8 The Polarity of the Involution θ̄

A nasty little surprise one may encounter is that, after lifting (or applying θ∆ in

the case of 1-consistency) is that the structure constant cα,θ̄ for a shared root α does not

turn out to be the same for each component. Take, for example, the following situation.

We wish to lift θ induced by the following diagram.

u e u eα1 α2 α3 α4

We have the following restricted rank one decomposition of θ into θ1 and θ2:

θ1
u e uα1 α2 α3

θ2
u eα3 α4

Now the diagram corresponding to θ1 is 1-consistent, hence we know immediately

θ1 = (θ∆)1. The second diagram requires work. Suppose we lift and obtain the following

results (the value of the structure constant cα,θ̄ has been printed below each root α):

θ̄1
u e uα1 α2 α3

1 1 1

θ̄2
u eα3 α4

−1 1
2

(1−
√

5)

The tricky point is recovering the involution θ̄ described in the previous sections.

The fix to our gluing scheme is to introduce the concept of the polarity of an involution

over g. Let us begin with the following lemma.

Lemma 8.8.1. Let θ̄ ∈ Aut(g, t) be an involution. Let α ∈ ∆ be a fixed root. Then

cα,θ̄ = ±1.

Proof. If θ̄ is an involution, then for all α ∈ ∆ we have cα,θ̄ cθ(α),θ̄ = 1. Since α is fixed,

θ(α) = α, so (cα,θ̄)
2 = 1. Then cα,θ̄ = ±1.

Fortunately, due to the rank one construction, if a root is shared by two restricted

rank one components, it must be fixed by θ. Also, that θ is an involution eliminates any

root strings of length exceeding one (except at the very ends of the diagram). Hence, if two

restricted rank one components share a common root, it will be a single fixed root at one

of the two ends. We define the polarity of θ̄ as follows:
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Definition 8.8.2. Let Φ be a root system with basis roots α1, . . . , αn. Then the polarity of

θ̄ is the ordered pair (p1, pn) where

pi =


0 if θ(αi) 6= αi;

+ if cαi,θ̄ = 1;

− if cαi,θ̄ = −1;

(8.17)

To join two restricted rank one components, the polarities must align. The polar-

ities are aligned if any of the following conditions are met:

1. The polarities of the shared root are the same.

2. The polarity of the end of one of the components is zero.

3. The restricted rank one components reside in separate irreducible root systems.

In the third case gluing is not an issue at all (this is merely a consideration when

implementing an algorithm dealing with polarity). In the second case, the components

cannot share a root. This is due to the fact that if the polarity of a root is zero, it cannot

be fixed (hence, cannot possibly collide with another component).

In the case of our previous example, we have the following polarities.

θ̄1
u e uα1 α2 α3

1 1 1

(+,+)

θ̄2
u eα3 α4

−1 1
2

(1−
√

5)

(−, 0)

The solution to our bind is to realize we can “switch” the polarity of an involu-

tion. This is done by switching the signs on the structure constants corresponding to the

basis roots, then recomputing the subsequent roots. First we need to show that such a

construction preserves an involution on the Lie algebra.
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Lemma 8.8.3. Let θ be an involution in Aut(Φ). Let θ̄1 be an involution in Aut(g, t) so

that θ̄1|Φ = θ. Define θ̄2 so that

θ̄2(Xα) = −cα,θ̄1Xθ(α) (8.18)

for all fixed roots α ∈ ∆, the basis roots of Φ. Then

1. θ̄2|Φ = θ.

2. θ̄2
2 = id.

Proof. Let α be a fixed root. Then we have

θ̄2
2(Xα) = cα,θ̄2 cθ(α),θ̄2

Xθ2(α)

= c2
α,θ̄2

Xα

= (−cα,θ̄1)2Xα

= Xα

Next, suppose α is not fixed. Then

θ̄2
2(Xα) = cα,θ̄2 cθ(α),θ̄2

Xθ2(α)

= cα,θ̄1 cθ(α),θ̄1
Xα

= Xα

Related to this claim is that if H is a correction vector, then −H must also be one.

In addition, using the correction vector −H in place of H accomplishes a polarity switch.

Lemma 8.8.4. Let H ∈ t be a vector satisfying for all α ∈ ∆
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α(H) θ(α(H)) cα,θ∆ cθ(α),θ∆ = 1

then −H also satisfies the above condition.

Proof. Write in place of H the vector −H. Then we have

α(−H) θ(α(−H)) cα,θ∆ cθ(α),θ∆

Since both α and θ and linear, we then have

(−1)2α(H) θ(α(H)) cα,θ∆ cθ(α),θ∆

which is 1 because H is a valid correction vector.

The natural follow-up question is how to actually compute θ̄2 given θ̄1 as described.

We would like to avoid as much computation as possible. Thus, we certainly do not want

to do any re-lifting. A quick means to accomplish a polarity change is to iterate along the

root height. For all the fixed basis roots (height 1), we have cα,θ̄2 = −cα,θ̄1 . Now let us take

two height one roots (α and β) and compute the structure constant for a height two root.

θ̄2(Xα+β) = Nθ(α),θ(β)

Nα,β
cα,θ̄2 cβ,θ̄2 Xθ(α+β)

= (−1)2Nθ(α),θ(β)

Nα,β
cα,θ̄1 cβ,θ̄1 Xθ(α+β)

= cα+β,θ̄1
Xθ(α+β)

Hence, for α height two, cα,θ̄2 = cα,θ̄1 . Now let us add a third basis root (γ):

θ̄2(Xα+β+γ) = Nθ(α+β),θ(γ)

Nα+β,γ
cα+β,θ̄2

cγ,θ̄2 Xθ(α+β+γ)

= (−1)Nθ(α+β),θ(γ)

Nα+β,γ
cα+β,θ̄1

cγ,θ̄1 Xθ(α+β+γ)

= −cα+β+γ,θ̄1
Xθ(α+β+γ)

Hence, for α height three, cα,θ̄2 = −cα,θ̄1 . Indeed, the heights alternate.
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Lemma 8.8.5. Let θ̄1 and θ̄2 be as in Lemma 8.8.3 and Equation 8.18. Let α be a fixed

root. Then all structure constants of θ̄2 are defined as follows:

cα,θ̄2 =

 cα,θ̄2 if the height of α is even;

−cα,θ̄2 if the height of α is odd;
(8.19)

Proof. We’ve demonstrated already that the sign changes as we move from height one to

height two roots. Suppose we have a root of height n. We compute the structure constants

for roots of height n+ 1. Let α be a fixed root of height n and β be a fixed basis root.

If n is even, then

θ̄2(Xα+β) = Nθ(α),θ(β)

Nα,β
cα,θ̄2 cβ,θ̄2 Xθ(α+β)

= (−1)Nθ(α),θ(β)

Nα,β
cα,θ̄1 cβ,θ̄1 Xθ(α+β)

= cα+β,θ̄1
Xθ(α+β)

because cα,θ̄2 = cα,θ̄1 . If n is odd, then

θ̄2(Xα+β) = Nθ(α),θ(β)

Nα,β
cα,θ̄2 cβ,θ̄2 Xθ(α+β)

= (−1)2Nθ(α),θ(β)

Nα,β
cα,θ̄1 cβ,θ̄1 Xθ(α+β)

= cα+β,θ̄1
Xθ(α+β)

because cα,θ̄2 = −cα,θ̄1 .

If α were not a fixed basis root, then there was no sign change. Hence, we have

the following claim.

Lemma 8.8.6. Let α be a root not fixed by θ whose sum decomposition contains no fixed

roots. Let θ̄1 and θ̄2 be as in Lemma 8.8.3 and Equation 8.18. Then cα,θ̄2 = cα,θ̄1.

Proof. Let α = α1 + α2 and neither α1 nor α2 are fixed. Then
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cα,θ̄2 =
Nθ(α1),θ(α2)

Nα1,α2
cα1,θ̄2

cα2,θ̄2

=
Nθ(α1),θ(α2)

Nα1,α2
cα1,θ̄1

cα2,θ̄1

= cα,θ̄1

Remains are the roots which are not fixed, and are the sum of a fixed root and

non-fixed root. Then the sign of the new structure constant depends on the sign of the fixed

root in its sum decomposition.

Lemma 8.8.7. Let α = α1 + α2 where α1 is a fixed root and α2 is not fixed. Then

cα,θ̄2 =

 cα,θ̄2 if the height of α1 is even;

−cα,θ̄2 if the height of α1 is odd;
(8.20)

Proof. We have, if the height of α1 is even

cα,θ̄2 =
Nθ(α1),θ(α2)

Nα1,α2
cα1,θ̄2

cα2,θ̄2

=
Nθ(α1),θ(α2)

Nα1,α2
cα1,θ̄1

cα2,θ̄1

= cα,θ̄1

If the height of α1 is odd, then

cα,θ̄2 =
Nθ(α1),θ(α2)

Nα1,α2
cα1,θ̄2

cα2,θ̄2

= −Nθ(α1),θ(α2)

Nα1,α2
cα1,θ̄1

cα2,θ̄1

= −cα,θ̄1

The following algorithm handles the switch.
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Algorithm 8.8.8 (Switching the Polarity of an Involution over the Lie Algebra).

Input θ̄, an involution over the Lie algebra with roots Φ.

Output θ̄2, an involution with the opposite polarity.

1. for every α ∈ Φ.

if α is fixed,

Compute H, the height of α.

Compute cα,θ̄2 as per Equation 8.20.

if α is not fixed, α = α1 + α2 where α1 is fixed

Compute H, the height of α1.

Compute cα,θ̄2 as per Equation 8.20.

if α is not fixed, α = α1 + α2 where neither α1 nor α2 is fixed

Compute cα,θ̄2 := cα,θ̄1

2. return {cα,θ̄2} for all α ∈ Φ.

8.9 An Illustration of θ̄ Involution Construction

To illustrate the theorems, let us expand Example 7.4.6.

Example 8.9.1. Reconstruction of an involution on the Lie algebra sl4(C) by its restricted

rank one components

Let g = sl4(C). Recall we presented the involution θ on Φ induced by the Helminck

diagram below.

e u eα1 α2

λ1 λ2

which had the following restricted rank one decomposition. Let λi = π(αi) and

Φ(λ1), Φ(λ2) be represented by the restricted rank-one diagrams below, inducing, respec-

tively, involutions θ1 and θ2.
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θ1
e u
λ1

θ2
u e

λ2

We have the involution on the roots given by

θ(α) =


θ1(α) if α ∈ Φ(λ1);

θ2(α) if α ∈ Φ(λ2);

θ1(α) = θ2(α) if α ∈ Φ(λ1) ∩ Φ(λ2)

(8.21)

Similarly, via Equation 8.14, we will define θ̄ as follows.

θ̄(Xα) =


θ̄1(Xα) if α ∈ Φ(λ1);

θ̄2(Xα) if α ∈ Φ(λ2);

θ̄1(Xα) = θ̄2(Xα) if α ∈ Φ(λ1) ∩ Φ(λ2)

(8.22)

Let θ∆ be as defined in Definition 4.2.1, and ∆ = {α1, α2, α3} be a basis for Φ. A

basis for Φ(λ1) is {α1, α2}, and a basis for Φ(λ2) is {α2, α3}.
Neither Helminck diagram for θ1 or θ2 is 1-consistent. So we will need to find

correction vectors. Due to the symmetry, we can perform this computation only once, then

“flip” the results for the second map.

Consider θ1. We have θ̄1 = θ
(1)
∆ ad(H1), where θ(1)

∆ is the automorphism defined

by Definition 4.2.1 with respect to the roots α1 and α2. Via Algorithm 4.5.5 we compute

H1 =
√

5
3 Hα1 + 1

6(3 +
√

5)Hα2

Similarly, let θ(2)
∆ be the automorphism defined by Definition 4.2.1 with respect to

the roots α2 and α3. We have θ̄2 = θ
(2)
∆ ad(H2), where

H2 = 1
6(3 +

√
5)Hα2 +

√
5

3 Hα3

From Equation 8.22, we now have θ̄ defined as follows.



135

θ̄(Xα) =


θ

(1)
∆ ad(

√
5

3 Hα1 + 1
6(3 +

√
5)Hα2)(Xα) if α ∈ Φ(λ1);

θ
(2)
∆ ad(1

6(3 +
√

5)Hα2 +
√

5
3 Hα3)(Xα) if α ∈ Φ(λ2);

θ̄1(Xα) = θ̄2(Xα) if α ∈ Φ(λ1) ∩ Φ(λ2)

(8.23)

Now let us consider the root vectors Xα and torus vectors Hα as given in the

example in Section 2.9. Namely, we have

Hαi = Ei,i − Ei+1,i+1

and Xα as defined in the matrix M (Equation 2.22).

Let {E2,3, E1,2, E1,3, E3,2, E2,1, E3,1} be an ordered basis for g|Φ(λ1). The matrix

for θ̄1 with respect to this basis is

[θ̄1] =



1 0 0 0 0 0

0 0 0 0 0 1
2

(
1 +
√

5
)

0 0 0 0 1
2

(
1−
√

5
)

0

0 0 0 −1 0 0

0 0 1
2

(
−1−

√
5
)

0 0 0

0 1
2

(
−1 +

√
5
)

0 0 0 0


(8.24)

Let {E3,4, E2,3, E2,4, E4,3, E3,2, E4,2} be an ordered basis for g|Φ(λ2). The matrix

for θ̄2 with respect to this basis is

[θ̄2] =



0 0 0 0 0 1
2

(
1 +
√

5
)

0 1 0 0 0 0

0 0 0 1
2

(
1−
√

5
)

0 0

0 0 1
2

(
−1−

√
5
)

0 0 0

0 0 0 0 −1 0
1
2

(
−1 +

√
5
)

0 0 0 0 0


(8.25)
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We see the expected behavior at the intersections. Namely, the action of θ̄1 and

θ̄2 on E2,3 and E3,2 is the same via both maps. Let an ordered basis for g be given by

{E3,4, E2,3, E2,4, E1,2, E1,3, E1,4, E4,3, E3,2, E4,2, E2,1, E3,1, E4,1}.
The action of θ̄ on Ei,j where Ei,j is in the basis for g|Φ(λ1) or g|Φ(λ2) is clear. For

the other vectors we must be more clever. Every root vector corresponding to a basis root

is in either Φ(λ1) or Φ(λ2), so for any root vector not in g|Φ(λ1) or g|Φ(λ2), its corresponding

root is non-simple and can be described as α+ β, where α ∈ Φ(λ1) and β ∈ Φ(λ2).

These root vectors are E1,4 and E4,1. To describe the roots of these vectors, let

∆ = {α1, α2, α3} be a basis for the roots of g, where α1, α2 ∈ Φ(λ1) and α2, α3 ∈ Φ(λ2).

Then

Xα1+α2+α3 = E1,4

and

X−α1−α2−α3 = E4,1

We can write Xα1+α2+α3 = X(α1+α2)+(α3) where (α1+α2) ∈ Φ(λ1) and α3 ∈ Φ(λ2).

Then following from Equation we have

θ̄(X(α1+α2)+(α3)) = cα1+α2+α3,θ̄
Xθ(α1+α2+α3)

= (1)X−α1−α2−α3

= E4,1

and similarly

θ̄(X(−α1−α2)+(−α3)) = c−α1−α2−α3,θ̄
Xθ(−α1−α2−α3)

= (1)Xα1+α2+α3

= E1,4

The matrix for θ̄ with respect to the basis

{E3,4, E2,3, E2,4, E1,2, E1,3, E1,4, E4,3, E3,2, E4,2, E2,1, E3,1, E4,1} is
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[θ̄] =



0 0 0 0 0 0 0 0 A 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 B 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 A 0

0 0 0 0 0 0 0 0 0 B 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 D 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 D 0 0 0 0 0 0 0

0 0 0 C 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0



(8.26)

where

A = 1
2

(
1 +
√

5
)

B = 1
2

(
1−
√

5
)

C = 1
2

(
−1 +

√
5
)

D = 1
2

(
−1−

√
5
)

Then [θ̄]2 = 1 and θ̄ is an involution.

8.10 An Improved Lifting Algorithm

As previously remarked, Equation 8.14 enables us to build involutions θ̄ from its

restricted rank one components. Computation of Groebner bases tends to exponential time,

so we stand to make significant improvements over the algorithm described in Chapter 4.

It should be noted that the original algorithm has its place in computing the small

cases we’ll need to use as “building blocks” for the larger ones. It should also be noted that

Algorithm 4.5.3 (Check Lifting Algorithm, Order 2) is also not without merit. It should be

able to be easily modified to handle larger orders, where, currently, lifting is not known to

be guaranteed. It was also crucial to the research leading up to Corollary 8.5.4. However,
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in the spirit of computational efficiency, an improved check lifting algorithm for order 2

should be provided.

Algorithm 8.10.1 (Check Lifting Algorithm, Order 2 (Improved)).

Input θ, an involutorial automorphism in Aut(Φ); g, a Lie Algebra with roots Φ, having

basis roots ∆

Output TRUE .

Design of an even faster algorithm is left as an exercise for the reader.

To design an improved lifting algorithm, we will consider θ̄ as decomposed via

Equation 8.14. We will compute every θ̄i for Φ(λi), and “glue” the pieces together. Com-

putation of θ̄i will rely on our original lifting algorithm.

An interesting problem does arise, however. In most cases the original lifting

algorithm provides multiple solutions. Implementation should keep this in mind. While the

gluing aspect can only be done in one way, we may have multiple “building blocks” to pick

from.

As a second consideration, recall that in some cases θ∆ as defined in Definition

4.2.1 is an involution. It will be useful to use θ∆ whenever possible - and hence, we will

want to keep our eyes focused on 1-consistency.
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Algorithm 8.10.2 (Lifting Algorithm, Order 2 (Improved)).

Input θ∆ as in definition 4.2.1 θ, an involutorial automorphism in Aut(Φ); g, a Lie Algebra

with roots Φ, having basis roots ∆

Output θ̄, an involutorial automorphism in Aut(g, t).

1. Call Algorithm 7.8.1 to compute the structure constants cα,θ for every α ∈ Φ

2. if cθ(α),θ∆ = 1 for all α ∈ ∆ then return θ∆

3. Compute all Φ(λi), i = 1 . . . s

4. For every i = 1 . . . s, call Algorithm 8.3.1 to compute θ̄i.

5.

θ̄(Xα) :=

 θ̄i(Xα) if α ∈ Φ(λi);

θ̄s1(Xα) = θ̄s2(Xα) = . . . = θ̄sk(Xα) if α ∈ ∩kj=1Φ(λsj )

6. return θ̄
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Chapter 9

Supporting Algorithms and Notes

on Implementation

This section arose during the development of a Mathematica package for computa-

tions in local symmetric spaces. Our aim will be to describe and discuss several algorithms

which, while not related to the primary theory, prove helpful. The algorithms we will

describe are not explicitly called by any previously mentioned scheme, but should be imple-

mented for a “complete system”. The context of the discussion will be in terms of problems

that need to be solved during the course of implementation, and their solution.

9.1 Retrieving the Action of an Involution on the Root Sys-

tem From the Helminck Diagram

We shall first discuss issues in retrieving the action of an involution θ ∈ Aut(Φ)

from its Helminck diagram. The theoretical aspect of this problem has already been given

by Helminck in [5]. Recall from Equation 4.1 we have

θ = − id ◦θ∗ ◦ w0(θ)

Computing the action of θ involves four primary steps.

1. Identifying the embedded root systems formed by the fixed roots

2. Computing w0(θ)
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3. Computing the action of w0(θ)

4. Computing the action of θ∗.

Once the root system is known. a good resource for implementation of step 2 can

be found in J. Stembridge’s Coxeter and Weyl Package [7]. Implementation of steps 3 and 4

are fairly straightforward. On the contrary, implementation of the first step is surprisingly

involved computationally. The goal is to describe the involutions with minimal input on

the part of the user. Given only the root system θ lives in, the set of fixed roots, and the

diagram automorphism, we want to construct the embedded root system. Consider, for

example, the Helminck diagram

e
u
u u u e e u1

2

3 5 6 7 8

While we can quickly observe we have the embedded root system D4 × A1, the

computer, by nature, is not so clever. One means of identification is to look at the basis

formed by the fixed roots. By the basis alone we cannot necessarily judge which root system

it forms. However, we can construct from the basis the Cartan matrix.

From the Cartan matrix we can determine the root system and type. Reducible

root systems form blocks along the diagonal. We can analyze each block to determine the

irreducible component. First, though, we must build the matrix from the root basis. The

following algorithm can be found in Stembridge’s Coxeter and Weyl Package [7].
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Algorithm 9.1.1 (Construction of the Cartan Matrix from Root System Basis).

Input ∆ = {δ1, . . . , δn}, basis for root system Φ

Output [ai,j ]i,j=1...n, the Cartan matrix.

1. for i, j = 1 . . . n

[ai,j ]i,j := 〈δi, δ∨j 〉

A straightforward way to analyze the Cartan matrix is by elimination. We can

count the number of single, double and triple bonds by counting in each row the number of

−1, −2, or −3 entries. If we have a row with a −3 entry, immediately we have G2.

If we have any rows with a −2 entry, we must have a root system of type B, C, or

F. We can then determine the exact position of the double bond, and in which direction it

is pointing. If the −2 entry is in position (2, 1) or (n− 1, n) then we have a root system of

type B. If the −2 entry is in the position (1, 2) or (n, n− 1) then we have a root system of

type C. Finally, if the −2 entry is in the position (2, 3), then we have the root system F4.

At this point, if we have not determined the root system, then we have eliminated

types B, C, F, and G. To distinguish between the remaining cases, we count the number

of single bonds (−1 entries) per row. If no row has more than two −1 entries, then we

must have a root system of type A. If there are three −1 entries in row 4 (Recall that we’re

using Humphrey’s numbering. Hence, row 4 corresponds to root 4), then we have one of

D6, E6, E7, E8. If n = 7 or 8 then we have E7 or E8 respectively. If n = 6 then we can

use the determinant of the matrix. The determinant of the Cartan matrix for D6 is 4. The

determinant of the Cartan matrix for E6 is 3. In all other cases, we have a root system of

type D.

To summarize these statements, we provide the following algorithm.
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Algorithm 9.1.2 (Identification of the Root System By Way of the Cartan Matrix).

Input M , the Cartan matrix for an irreducible root system.

Output Root system name Rn.

1. n := # of entries in each row ofM .

2. if M contains a −3 entry then return G2.

3. if M contains a −2 entry then

if the position of the −2 entry is (2, 1) or (n− 1, n) then return Bn.

if the position of the −2 entry is (1, 2) or (n, n− 1) then return Cn.

return F4.

4. if M contains a row with three −1 entries then

if the row is the fourth and n = 6 and det(M) = 3 then return E6.

if the row is the fourth and n = 7 then return E7.

if the row is the fourth and n = 8 then return E8.

return Dn

5. return An.

We call the algorithm for each block in the Cartan matrix. We can then retrieve

the action of θ in the following way.
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Algorithm 9.1.3 (Constructing the Action of an Involution on Aut(Φ) from its Helminck

Diagram).

Input H, Helminck Diagram describing an involution θ over root system Φ with basis ∆

Output θ.

1. Identify by β1, β2, . . . , βn the roots denoted by black dots.

2. Call Algorithm 9.1.1 to compute the Cartan matrix of the root system with basis

{β1, . . . , βn}.

3. For each block Mi in the Cartan matrix, i = 1 . . .m, call Algorithm 9.1.2 to determine

Ri.

4. w0(θ) := 〈longest element of R1 ×R2 × . . .×Rm〉

5. θ := − id θ∗w0(θ)

Example 9.1.4. Recovering the Involution From its Helminck Diagram

Consider the Helminck diagram below. We wish to recover the action of θ.

e
u
u u u e e u1

2

3 5 6 7 8

The diagram is based on the Dynkin diagram for E8. A basis for E8, corresponding

to the numbering of the diagram, is

∆ = {1
2(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), e1 + e2,−e1 + e2,−e2 + e3,−e3 + e4,

−e4 + e5,−e5 + e6,−e6 + e7}

We then want to look at only the roots denoted by black dots. We remove the

basis elements corresponding to the white dots. A basis for the fixed roots is given by

∆∗ = {e1 + e2,−e1 + e2,−e2 + e3,−e3 + e4,−e6 + e7}
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Now we want to identify the root system formed by this basis. To begin, we call

Algorithm 9.1.1 and obtain the Cartan matrix M .

M =



2 0 −1 0 0

0 2 −1 0 0

−1 −1 2 −1 0

0 0 −1 2 0

0 0 0 0 2


(9.1)

Observe we have two blocks.

M1 =


2 0 −1 0

0 2 −1 0

−1 −1 2 −1

0 0 −1 2

 (9.2)

and

M2 =
(

2
)

(9.3)

The matrix M1 has no −2 entries, hence, no double bonds. However, row 3 has

three −1 entries. Recall that row 3 corresponds to root 4 in the Helminck diagram. Hence,

we see that the fourth root has three bonds. We must have a system of type D or E. We

have four rows, and hence, the embedded root system is either D4 or E4. However, E4 is

not a root system. So we must have D4.

The matrix M2 has no −2 entries or rows with three −1 entries. So it must give

the root system A1.

The longest element of D4 with respect to the roots {2, 3, 4, 5} is

s2s3s2s4s3s2s5s3s2s4s3s5. The longest element of A1 with respect to the root {8} is s8.

Since there is no diagram automorphism, we have

θ = −s2s3s2s4s3s2s5s3s2s4s3s5s8
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9.2 Identifying the Type of the Restricted Root System

Another issue that will need attention concerns identifying the root system formed

by the restricted roots. Consider, for example, the Helminck diagram for DIIIb, n = 7:

u eλ1 u eλ2 u�� e
@@ eθ∗�
]

λ3

λ4

We label by white dots the roots which project down to some root λi in the

local symmetric space. We would like to identify the root system formed by the basis

∆† = {λ1, λ2, λ3, λ4}.
Considering the algorithms we discussed in Section 9.1, this is now a fairly straight-

forward task. Given a basis for the root system described by the Helminck diagram, we

can project the roots denoted by white dots. This gives us a basis for the restricted root

system. Algorithms 9.1.1 and 9.1.2 help us do the rest.

To summarize the procedure, we have the following algorithm:
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Algorithm 9.2.1 (Identify the Type of the Restricted Root System).

Input ∆, basis for the root system Φ described by the Helminck diagram, and B, the set of

fixed roots {β1, . . . βk}.

Output Root system name Rn.

1. Compute λi := π(βi) for all i = 1 . . . k.

2. ∆† := {λ1, . . . , λk}.

3. Call Algorithm 9.1.1 with ∆† to compute the Cartan matrix M .

4. Call Algorithm 9.1.2 with matrix M to compute the root system name Rn.

5. return Rn

To illustrate this procedure, we shall provide an example for the aforementioned

DIIIb case.

Example 9.2.2. Identifying the Root System Formed by the Restricted Roots of DIIIb,

n = 7

Recall that we are working with the Helminck diagram

u eλ1 u eλ2 u�� e
@@ eθ∗�
]

λ3

λ4

A basis for D7 is given by

∆ = {e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6, e6 − e7, e6 + e7}

The roots denoted by black dots are

B = {e1 − e2, e3 − e4, e6 − e7, e6 + e7}

Applying the projection π to each element in βi ∈ B we obtain
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∆† = {1
2(e1 + e2 − e3 − e4), 1

2(e3 + e4 − e5 − e6), 1
2(e6 + e7)}

Note that the restricted rank of the involution is 3, not 4 as the number of white

dots suggests. This is due to the diagram automorphism. Both β3 and β4 project to the

same root 1
2(e6 + e7).

We then call Algorithm 9.1.1 and obtain the Cartan matrix M . We obtain

M =


2 −1 0

−2 2 −1

0 −1 2

 (9.4)

which Algorithm 9.1.2 identifies as the Cartan matrix for B3.

9.3 Identifying the Table Entry in Table C.1

Another problem that may be encountered when working with any algorithms that

rely on the table of restricted rank one involutions (Table C.1) is determining a systematic

way to identify which of the 18 categories a restricted rank one root system falls into. Be-

cause these are the only 18 possibilities, a quick approach is to narrow down the possibilities

by identifying the root system.

Types B, C, and D are relatively easy to handle. We can simply look at the

position of the white dot. If it is not on the edge of the diagram, there is only one remaining

possibility.

Types F and G have a similar solution. We simply determine whether or not the

white dot is being “pointed to” by the double or triple bond arrow. Remember, we don’t

want to rely on left versus right, as the diagram being mirrored horizontally is technically

the same diagram.

There are a couple of tricks to determine if the white dot is being “pointed to.”

Recall the arrow in the Dynkin diagram points to the shorter of the two roots. For the G

case, we simply determine if the white dot is the longer or shorter of the two roots. For the

F case, we can look at the root system formed by the black dots. If we have C3, then we

have type 15. If we have B3, then this give type 16.
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There is only one type E case for each of the sizes n = 6, 7, or 8. So determining

which E case we have is simply a matter of counting the number of roots in the basis.

Remaining is the A case. If we have a reducible system, we must have Type 1.

The only other case with the presence of a diagram automorphism is Type 5. If there is

no diagram automorphism, we can count the number of roots in the basis to distinguish

between types 2, 3, and 4.

We provide the following algorithm.

Algorithm 9.3.1 (Identifying the Table Entry in Table C.1).

Input α, a root in the system Φ, θ∗, diagram automorphism

Output N , the entry number in C.1

1. Compute Φ(π(α)). Denote by ∆′ = {α1, . . . , αn} the basis of Φ(π(α)).

2. Call Algorithms 9.1.1 and 9.1.2 to identify the root system type Rn.

3. if R = A then

if θ∗ 6= id and ∆′ has two members with no bond then return Type 1

if θ∗ = id and n = 1 then return Type 2

if θ∗ = id and n = 2 then return Type 3

if θ∗ = id and n = 3 then return Type 4

if θ∗ 6= id and ∆′ has at least two members, all bonded then return Type 5

4. if R = B then

if α1 is not a fixed root, then return Type 6

else return Type 7

5. if R = C then

if α1 is not a fixed root, then return Type 8

else return Type 9

6. if R = D then
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if α1 is not a fixed root, then return Type 10

else return Type 11

7. if R = E then

if n = 6 then return Type 12

if n = 7 then return Type 13

if n = 8 then return Type 14

8. if R = F then

Let B = {β1, β2, β3} be the basis formed by the fixed roots.

Call Algorithms 9.1.1 and 9.1.2 to identify the root system type S3.

if S = C then return Type 15

if S = B then return Type 16

9. if R = G then

Let α denote the shorter of the two roots.

if α is a fixed root then return Type 17

else return Type 18

To illustrate the usefulness of this algorithm, we will provide an example which

employs the algorithm to compute the structure constant of the root corresponding to the

second white dot in the Helminck diagram for DIIIb.

Example 9.3.2. Computing a Structure Constant Using Table C.1 and Algorithm 9.3.1

The Helminck diagram for DIIIb, n = 5 is given by

u eλ1 u�� e
@@ eθ∗�
]

λ2

λ3

We wish to compute the structure constant cθ(α2),θ̄ where π(α2) = λ1. A basis for

D5 is
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∆ = {e1 − e2, e2 − e3, e3 − e4, e4 − e5, e4 + e5}

First we have

λ1 = π(α2) = 1
2(e1 + e2 − e3 − e4)

We compute all the roots in ∆ which project to an integral multiple of λ1. This

gives us the basis elements of Φ(λ1). These are

∆′ = {e1 − e2, e2 − e3, e3 − e4}

These elements correspond to the component of the Helminck diagram below:

u eλ1 u

Calling Algorithm 9.1.1 with ∆′, we get the Cartan matrix M .

M =


2 −1 0

−1 2 −1

0 −1 2

 (9.5)

which Algorithm 9.1.2 identifies as the Cartan matrix for A3. Since we have a root

system of type A, and the number of basis elements is 3, then Algorithm 9.3.1 identifies

this as Type 4:

u e u

Comparing the two diagrams, we see Algorithm 9.3.1 returns the correct entry.

Now this diagram is 1-consistent. Recall this means cθ(α),θ̄ = 1 for all roots α in the

diagram. Hence, since the white dot corresponds to α2, we have cθ(α2),θ̄ = 1.
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9.4 Determining if a Helminck Diagram Describes an Invo-

lution on the Roots

Just about every aspect of our work assumes that θ induced by a Helminck diagram

is an involution. Unfortunately, our algorithms do not “fail gracefully” if an input θ is not

an involution. In fact, our lifting algorithm (in particular, the Groebner-based Algorithm

4.5.5) will go so far as to return a solution. Of course, this correction vector is meaningless,

as Proposition 4.3.2 does not even apply if θ is not an involution.

In the name of avoiding any mishaps, it is a meaningful endeavor to devote some

attention to checking if θ is an involution to begin with. The straight-forward way is simply

to check that each basis root gets mapped back to itself by θ2. Depending on the particular

computer package in question, this may also be the easiest. This algorithm is as follows.
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Algorithm 9.4.1 (Verification That a Helminck Diagram Induces an Involution (Version

1)).

Input H, a Helminck diagram with respect to root system Φ, inducing θ ∈ Aut(Φ).

Output TRUE if θ is an involution. Otherwise, FALSE .

1. Let ∆ = {α1, . . . , αn} be a basis for Φ

2. for i = 1 . . . n

if θ2(αi) 6= αi then return FALSE

3. return TRUE

The downside to this algorithm is that it involves generating and implementing θ.

This is a particular nuisance if one wants to generate a large number of possible involution

diagrams - especially over very large root systems. For the purpose of checking conjectures

involving a large number of diagrams (amongst other motives), we shall provide a second

algorithm relying only upon the diagram itself.

In [5] Helminck gives us several points to consider. First, we have an involution

diagram if each fixed root is mapped onto itself. It is true that, for B representing those

basis roots fixed by θ, that we have θ(B) = B. However, this does not immediately imply

that for every β ∈ B we have θ2(β) = β. We must have, for W being the Weyl group of

the embedded root system, that − id ∈W .

Recall that we have two cases for θ∗, the diagram automorphism:

θ∗ =

 id;

〈Dynkin Diagram automorphism of order 2〉

In the case of θ∗ being the identity, we have a simple set of rules.

Lemma 9.4.2. Should a Helminck diagram not violate any of the conditions given, it will

induce an involution on the roots.

1. There should not be any embedded A-strings of length exceeding one.

2. There should not be an embedded D-string of odd length.
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3. There should not be an embedded E6 system.

The conditions should be fairly self-explanatory, and easily implemented on a

computer. Unfortunately, in the case of θ∗ being a diagram automorphism of order 2, the

rules become a bit more complicated. θ∗ of order 2 serves to “fix” the diagram should it

violate one of the above conditions.

For instance, if θ∗ is of order 2, then it is possible to have an A-string of length

exceeding one. An example is given below:

u
e
u u u u� �6 6θ∗

Even though we have an A-string of length 5, θ∗ serves to ensure that θ2(β) = β for

all fixed roots β. However, one must be cautious checking this condition. θ∗ must actually

act on the embedded roots in a non-trivial manner. For instance, consider E6, with root

positions 2 and 4 fixed.

e
u
e u e e� �6 6θ∗

This diagram still does not induce an involution. The problem goes like this:

Suppose for now we have θ∗ as the identity. Then θ2(β) 6= β for fixed roots β. θ∗ being

of order 2 does not remedy this, because θ∗ acts trivially on the second and fourth roots.

With the diagram automorphism represented as a mostly horizontal line (as it is depicted

in our two diagrams), the condition to check is that the A-string is “parallel” to θ∗.

Another word of caution is that in a Helminck diagram of type A, If we have θ∗

of order 2 and an A-string of length exceeding one, the A-string must be the only one. For

instance, the following is not allowed:

u u e u u� �6 6θ∗
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The task becomes more involved as we also need to ensure that θ∗ is actually a

diagram automorphism. The quick check here is to make sure that θ∗ maps black dots to

black dots, and white to white. We must also ensure the diagram is still drawn the same

way. (That is, we must have a diagram that is symmetric with respect to the action of θ∗).

Fortunately, this means we can immediately eliminate all Helminck diagrams of

types B, C, F, G, and E (for 7 or 8 basis roots). Since we’ve already discussed the A types,

we need to clear up any issues with D and E6.

For the E6 case we must verify that

1. there are not more than one A-string of length exceeding one

2. the diagram is symmetric

The second rule ensures we can only have an embedded A-string. An embedded

D-string (D4) is ruled out. We can then refer to the rules for the A case. For the D cases,

the presence of θ∗ 6= id means we must have only odd length.

We now introduce the following algorithm.
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Algorithm 9.4.3 (Verification That a Helminck Diagram Induces an Involution (Version

2)).

Input H, a Helminck diagram with respect to root system Φ, inducing θ ∈ Aut(Φ).

Output TRUE if θ is an involution. Otherwise, FALSE .

1. if θ∗ = id

if there is an embedded A-string of length exceeding one, return FALSE .

if there is an embedded D-string of odd length, return FALSE .

if there is an embedded E6 system, return FALSE .

2. else

if the diagram is not symmetric, return FALSE .

if there are two A-strings, return FALSE .

if θ∗ acts trivially on the embedded roots (the arrow denoting θ∗ is “perpendic-

ular” to the string of black dots), return FALSE .

if there is an embedded D-string of even length, return FALSE .

3. return TRUE

9.5 Representation of Involutions on the Lie Algebra

A result found in Helminck’s paper [5] is that the structure constants cα,θ̄ com-

pletely determine the action of θ̄ on the root vectors of a Lie algebra g. Thanks to the

involution merge algorithm (Algorithm 8.7.1), if the Chevalley constants are known, then

we can build from the basis structure constants {cα,θ̄ | α ∈ ∆} the structure constants

pertaining to the other roots.

Hence, the minimal representation of θ̄ is

θ̄ ∼= {cα,θ̄ | α ∈ ∆}

where ∆ is the basis of the root system Φ.
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In practice, however, the involution merge algorithm may be too slow to call

whenever we need to know all the structure constants. It may very well be more practical

to store all the structure constants. However, if we wish to manipulate θ̄ in any way, it

is sufficient to manipulate only the structure constants pertaining to the roots of ∆, then

re-compute the remaining roots when our computation has finished.

A good application is the following. Suppose we start with θ∆, the automorphism

according to Definition 4.2.1. Recall that

θ∆
∼= {cα,θ∆ = 1 | α ∈ ∆}

and we can compute the structure constants for the remaining roots using the

involution merge algorithm. Now we wish to modify θ∆ with our correction vector H so

that it is an involution. We have for all basis roots α

θ̄(Xα) = θ∆ ad(H)(Xα)

= α(H)θ∆(Xα)

Then we compute cα,θ̄ = α(H)cα,θ∆ for all α ∈ ∆. The remaining structure

constants are computed via the involution merge algorithm, and stored in memory for

future use.
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Chapter 10

Summary of Conclusions and

Future Work

We have now completed our discussion. The chapters that follow gives a manual

and source code for an implementation of all the algorithms described, as well as supporting

code. To date it is not a complete package for computation in local symmetric spaces,

but provides a foundation. The appendix gives referenced tables (in particular, tables of

important Helminck diagrams we referred to).

We’ll conclude with a brief summary of conclusions, and a description of future

work to be done.

10.1 Conclusions

Our major results are as follows. Given an involution on the roots of a Lie alge-

bra, this involution can always be lifted to one of the algebra itself. Our first algorithm,

Algorithm 4.5.5, accomplishes two important tasks:

1. Determine if lifting is necessary. (That is, if θ∆ is already an involution).

2. If not, find all correction vectors by which we can modify θ∆ so that it is an involution.

The drawback to this algorithm is that finding the correction vector(s) is a slow

process. We can speed up the process via a “divide-and-conquer” approach using restricted
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rank one decomposition. This is the technique of Algorithm 8.3.1. Helminck ?? gives us

18 restricted rank one involutions. Some of these are 1-consistent (so θ∆ with respect to

the set of roots in the restricted rank one system is an involution). Some of these are not,

but they are much smaller in size (so Algorithm 4.5.5 runs relatively quickly). Hence, we

can construct a modified involution θ∆ ad(H) (again, with respect to the set of roots in

the restricted rank one system). We then “glue” all these involutions together to give an

involution defined over the original algebra.

10.2 Some Questions to Address

In the future, this work can be extended in multiple ways. Immediate questions

that arise are as follows.

First, it may be worth investigating if a particular choice of monomial order speeds

up computation. While our two algorithms provide a reasonably fast approach, restricted

rank one decomposition may not be feasible or applicable to generalizations of this work.

Second, we only addressed involutions. We can address higher order involutions

as well. Two questions immediately follow.

1. Can higher order involutions on the roots always be lifted?

2. If not, can these involutions be classified with respect to whether or not they lift?

3. Can higher order involutions on the roots be classified with respect to whether or not

θ∆ represents an automorphism of the same order as θ (e.g. 1-consistency schemes)

Third, in the spirit of Helminck’s work in [?], we can investigate commuting pairs

of involutions. The same three questions listed above apply. We can then generalize to any

group action.

Finally, we can recover an involution on the local symmetric space. However, we

would also like to lift even higher, to the symmetric space itself.



160

Chapter 11

Programming Interface for

Symbolic Computation in LiE

Groups and Symmetric Spaces

(Version 1.1 Manual)

The two chapters that follow describe the construction of a Local Symmetric Spaces

package for Mathematica. The package implements the algorithms we discussed. We shall

first present the full manual for installing and operating the package. Included is a discussion

of the data structures and algorithm design choices. Immediately following the manual is a

record of the source code used for the research presented.

11.1 Introduction

The Programming Interface for Symbolic Computation in LiE Groups and Sym-

metric Spaces package suite (PISCES ) provides about 160 Mathematica programs designed

to assist in the study of Lie groups and local symmetric spaces. While these procedures may

not be equipped to answer any question one may have about Lie groups or local symmetric

spaces, they should, at the very least, provide a foundation which can be built upon. With

this in mind, the goal is to provide a good quantity of small, generalized, flexible procedures
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which make as few assumptions as possible. Alternatives include the LiE package by van

Leeuwen, Cohen, and Lisser [9], the Atlas of Lie Groups and Representations [10], and the

Coxeter and Weyl packages by John Stembridge [7].

Some of the major features include:

• Functions for manipulating roots and root systems. These include procedures for

drawing Dynkin diagrams, constructing Cartan matrices, and identifying the type of

root system from the Cartan matrix.

• Functions for computing reflections between roots, inner products between roots, and

the longest element of the Weyl group.

• Functions for describing and computing with involutions on the root system. Included

are procedures for drawing the Helminck diagrams as in [5]. PISCES can also compute

projections onto the roots of a local symmetric space and print diagrams to help

visualize the action of the projections.

• PISCES can lift an involution on the root system to one on the Lie algebra. Hence

we produce an involution suitable for computations in a local symmetric space.

• For most of the diagram capabilities, a related command exists which gives LaTeX

source to draw the same diagram.

11.2 System Requirements

Much of the code for PISCES was developed on Mathematica 7.0, but has been

tested 6.0. Most of the code relies on the lists, matrices, and graphics primitives - all of

which have been available since the first versions. Hence, PISCES should work fine on

earlier versions. However, this has not been tested.

PISCES is OS-independent and conservative with CPU and RAM resources. How-

ever, some of the lifting functions rely on computationally expensive Groebner Bases pro-

cedures. Much effort has been made to keep this reliance to a minimum.

PISCES ’s visualization capabilities depend upon the standard GraphUtilities

package. This package is automatically loaded upon loading PISCES .
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There are two flavors from which to choose. A package edition (collection of .m

files) will allow easy integration into the Mathematica system. Installation of the package

edition allows the entire suite (or specific components) to be loaded via Mathematica’s

Needs command. The notebook edition provides several Mathematica notebook (.nb) files.

11.3 Organization

The suite of five packages is arranged in a dependency tree. The packages are:

• Root System and Lie Algebra Package (PI-ROOT)

• Chevalley Structure Package (PI-CHEVY)

• Weyl Package (PI-WEYL)

• Group Action Package (PI-GAP)

• Local Symmetric Spaces Package (PI-LOSS)

With the chevalley package removed, the four remaining packages form a depen-

dency chain, with PI-ROOT being the root-level package. PI-CHEVY depends only on

PI-ROOT. Loading a specific package will automatically load any dependencies. Hence, to

load PI-LOSS, it is not necessary to specifically ask for PI-ROOT, PI-WEYL, and PI-GAP.

11.4 Descriptions of Packages

The following guide will describe each package.

11.4.1 Root System and Lie Algebra Package (PI-ROOT)

PI-ROOT provides all root-level functionality to PISCES . This includes all utili-

ties (e.g. message generation, graphics primitives, utility macros). Also included are many

basic linear algebra routines which either provide functionality Mathematica does not have,

or functionality which has been optimized for the specific uses PISCES will need.

PI-ROOT also includes a vast array of programs designed to work with root sys-

tems and Lie algebras. These features include
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• Constructing root systems from bases, Cartan matrices, and names

• Identification of root system type

• Computing reflections of roots

• Constructing and utilizing automorphisms on root systems

• Constructing and utilizing automorphisms on semisimple Lie algebras

• Drawing and labeling Dynkin diagrams

11.4.2 Chevalley Structure Package (PI-CHEVY)

While PI-ROOT contains an algorithm to compute Chevalley structure constants

[11], PI-CHEVY adds additional programs to perform further analysis. Currently the set

of features is limited to working with and identifying special (and extra-special) pairs.

PI-CHEVY requires PI-ROOT.

11.4.3 Weyl Package (PI-WEYL)

PI-WEYL provides additional functionality geared toward working with and ana-

lyzing the Weyl group. PI-WEYL can

• Perform more complex Weyl group reflection operations

• Perform computations directly on Weyl group elements (e.g. compare, reduce)

• Analyze the Weyl group (e.g. compute the longest element)

Most of the functionality of PI-WEYL is based off of the functionality of the Weyl

package by J. Stembridge [7].

PI-WEYL requires PI-ROOT.

11.4.4 Group Action Package (PI-GAP)

PI-GAP extends both PI-ROOT and PI-WEYL with additional functionality for

working with group actions on the root system. PI-GAP can
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• Work with roots fixed by root-automorphisms

• Work with projections into eigenspaces of root-automorphisms (including bases and

root systems formed by projections)

• Extend the Dynkin diagram with additional information concerning fixed and pro-

jecting roots (e.g. Helminck diagram)

PI-GAP requires PI-WEYL and its dependency, PI-ROOT.

11.4.5 Local Symmetric Spaces Package (PI-LOSS)

PI-LOSS adds functionality for working with local symmetric spaces. PI-GAP can

be seen as a generalization of PI-LOSS, where PI-LOSS works specifically with projections

into the −1 eigenspace. PI-LOSS can

• Perform additional analysis on automorphisms on the roots which are of order 2

(involutorial)

• Perform additional analysis on the roots which project into the local symmetric space

• Lift involutions on the root system to the local symmetric space

PI-LOSS requires PI-GAP and all of its dependencies (PI-WEYL, PI-ROOT).

11.5 Definitions and Data Structures

Here follows a brief discussion of the important data structures. If one is not

careful, the choice of representations for the various elements (vectors, roots, etc.) can

be quite limiting. The aim in PISCES is to be as general as possible. The trade-off is

a weakened ability to check the types of arguments passed to a function. The user is

cautioned to make careful note of the arguments to the common functions, listed in the

following section.

The common data structures and representations are as follows:

• Vectors. Vectors are the most basic element, and are easily represented in Mathe-

matica as lists.
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• Matrix. Matrices are represented as sets of row vectors, e.g. {{1,2},{3,4}} gives

 1 2

3 4


Vectors and matrices are the primary components of most of the data structures in

PISCES .

• Root Systems. Root systems are named in three ways, and all of PISCES ’s functions

are equipped to handle all three as input. The human-readable string form gives a

root system as “Rn+Rn+...” where R is the root system and n is the dimension. For

example, the user can write the root system A4 × E6 × F4 as “A4+E6+F4”.

The list form denotes a root system as {{“R”,n},{“R”,n},...} where R and n are

as before. The root system from our previous example, A4 × E6 × F4, would then

be {{“A”,4},{“E”,6},{“F”,4}}. Note that the root system names are enclosed in

quotations. This form is more friendly for the programmer. Procedures to easily

convert between the two types are in place, as well as a procedure which takes both

types and converts to the single list form.

For any function which requires the input of a root system, its basis can

be given. Indeed, for higher-level packages (PI-GAP, PI-LOSS) this is often the

preferred calling method.

• Roots. Roots are denoted in two ways. As with root systems, the motivation is

to balance readability and usability. Unfortunately, both representations must use

Mathematics’s list data structure. Hence, one representation is used as the standard,

and the other for optional output. If a root is represented in Euclidean form, or e-

form, it is expressed as a vector residing in the span of a chosen basis for the root

system. For example, it is well known that a basis for a root system of type A4 is

given by

αi = ei − ei+1

where i ranges from 1 to 4. We say the root α3 is in Euclidean form if it is represented

as e3 − e4. Mathematica writes this vector as
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α3 = {0, 0, 1,−1, 0}

This form is more suitable for computation, and is the standard in PISCES . The

alternative form is alpha form. Alpha form gives the coordinates of the root with

respect to the basis. In our A4 example, α3 is represented as

α3 = {0, 0, 1, 0}

which are the coordinates of α3 with respect to the basis we gave.

The use of Euclidean form is primarily motivated by two factors. First, many of

the low level root and Weyl computations are much more straight-forward. Second,

projections into local symmetric spaces are much more easily handled. It is easy to

convert between the two formats. Because Mathematics is somewhat “blind” as to

which we are using, we will use Euclidean form as the standard.

• Weyl Group Elements. Weyl group elements are represented as a list of integers

which index the order of the reflections produced. An example may provide the most

straight-forward explanation. Suppose the user wishes to represent the element

sα1sα2sα5sα9

Then the reflection is represented as {1,2,5,9}.

• Basis. A basis is represented as either a set of vectors (typically seen for roots, in

Euclidean form), or a set of matrices (typically seen for Lie algebras). Note that a set

of vectors is itself a matrix. This speeds up many of the computations. When a basis

is given as a matrix, the individual elements form the rows of the matrix.

The RootBase command will compute the basis as described in Humphreys [?].

• Lie Algebras. A Lie algebra is represented as a collection of matrices which form the

basis of the algebra. The command printMatrixArray is useful for listing the elements

of the basis of a Lie algebra.
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• Automorphisms on the Root System. PI-ROOT requires that automorphisms

be designated by the matrices representing their action on the basis roots. Hence,

upon the basis is almost always required alongside the automorphism.

Please note a common error when working with non-standard bases (those which

do not match the basis given in Humphreys [1]): If a non-standard basis is used,

that basis must be used for every subsequent computation. This scenario is typical

when working with projections. For example, suppose a non-standard basis for A4

is produced by a projection. Next we compute the matrix for an automorphism on

this basis. If the next function call uses the name A4 in place of the specific basis,

then PISCES will compute the standard “Humphreys” basis which does not match

the matrix we use for our automorphism!

When working with involutions, additional functionality is offered.

The representation of an involution on the root system is per the information encoded

in the Helminck diagram [5]. A Helminck diagram encodes the pertinent information

concerning an involution θ over the roots (enough to recover the action on the roots)

in the following way. We extend the usual Dynkin diagram by coloring black dots cor-

responding to the roots fixed by θ. We show the action of the diagram automorphism

(θ∗) by drawing arrows showing which roots are exchanged. An example follows:

u e1 u en u�� e
@@ eθ∗�
]

In [5] Helmcink showed

θ∗ = − id ◦θ ◦ w0(θ)

where w0(θ) is the longest element of the Weyl group over the subsystem (“embedded”

root system) formed by the fixed roots, and

θ∗ =

 id;

〈Dynkin Diagram automorphism of order 2〉
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Because θ∗ is therefore an involution, and it is known w0(θ) is an involution, then we

can write

θ = − id ◦θ∗ ◦ w0(θ)

PISCES represents an involution over the roots by utilizing two sets. The set usually

named disks is a list of the simple roots fixed by θ. For example, if we say disks

= {1, 3, 4} then the roots fixed by theta are α1, α3, α4. The set usually named

arches describes the diagram automorphism. This automorphism is encoded as a list

of integer pairs, where each pair denotes which two roots are exchanged by θ∗. An

example should prove helpful. Suppose we have the diagram below:

α1 α2 α3 α4 α5e u u u e� �6 6θ∗

Then we encode θ∗ by setting arches = { {1,5 }, { 2,4 } }. It should be noted that in

[5] the arrows giving the action of θ∗ on the fixed roots is typically omitted. However,

the exchange of these pairs must be represented in the set arches. Hence, we have the

pair { 2,4 } listed.

The action of θ on the simple roots is represented as a matrix M , where Mα = θ(α).

PI-LOSS adds an additional option for specifying root system involutions. For any

argument which must be an involution on the roots, two arguments can be given in

place

– disks, a list of indices of fixed roots

– arches, the diagram automorphism

Upon loading PI-LOSS, this option is available system-wide. Hence, programs in

PI-ROOT will accept disks and arches in place of theta.

• Involutions on the Lie Algebra. A result found in [5] is as follows:
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Lemma 11.5.1. Let ∆ be a basis of a root system Φ, θ ∈ Aut(Φ) an involution, and

φ ∈ Aut(g, t) such that φ|t = θ. Then φ is uniquely determined by the tuple {cα,φ}α∈∆,

where

φ(Xα) = cα,φXθ(α)

We call cα,φ the structure constants of the involution φ. Due to the lemma, recording

these constants is a sufficient representation of the involution. Hence, PISCES stores

the involution as a list of these values. However, PISCES must also be given ∆ in

order to recover the involution.

11.6 List of Procedures

This is a brief introduction to the procedures provided in PISCES . For online

help, the command ?〈command name〉 will provide the brief descriptions below.

Each description is preceded by the command name and a list of the type of each

argument (e.g. string, integer, matrix, etc.). Optional arguments are italicized. Each

argument is separated by a pipe. (e.g. [string|integer|vector]).

In the event a command accepts multiple variations of arguments and types, each

variant is listed independently, along with its specific behavior. If the behavior is consistent

regardless of the type or number of arguments, there is only a single listing. In this case,

the acceptable types are separated by a comma. As a quick example, [string|vector,matrix]

denotes argument 1 must be a string, while argument 2 may be a vector or a matrix.

Commands for each package are separated into three categories. Primary com-

mands are geared toward end-users. Diagram commands are primarily for information

purposes only. Their outputs may not be used for further input. Internal commands may

be of use to developers, but likely not end-users.

11.6.1 Root Systems and Lie Algebra (PI-ROOT) Primary

• adMatrix [vector list|vector]

adMatrix[L,h] writes the matrix for ad(L)H where H is a vector in the Lie algebra L.
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• adMatrixDiagonal [vector list|vector]

adMatrixDiagonal[L,h] writes the matrix for ad(L)H where H is a vector in the Lie

algebra L. It is a specialized variant of adMatrix[] which is faster, but is only applicable

if the matrix for ad(L)H is known to be diagonal.

• AllRootBasisConnected [basis|root]

AllRootBasisConnected[basis,root] returns the set of all basis roots which are members

of the supplied basis and lie in the same irreducible root subsystem as the supplied

root.

• ApplyRootMap [root system|matrix|root]

ApplyRootMap[r,theta,root] applies root (denoting a single root or set of roots) to an

automorphism theta defined over a root system r. The root must lie in the system r,

but may be mapped out of r by theta.

• BasisCoefficients [basis|vector,matrix]

BasisCoefficients[b,x] gives the coordinates of x with respect to basis b. x is understood

to be either a vector or a matrix.

• CartanMatrix [root system]

CartanMatrix[r] gives the Cartan Matrix for root system r.

• CartanToRootSystem [matrix]

CartanToRootSystem[m] identifies the root system represented by Cartan Matrix m.

• ChevalleyLookup [list|root|root]

ChevalleyLookup[nconsts,a,b] looks up the Chevalley constant with respect to the pair

of roots (a,b). nconsts is a table of the form returned by kleinChevalley.

• ChevalleyLookup [root system|root|root]

ChevalleyLookup[r,a,b] looks up the Chevalley constant with respect to the pair of

roots (a,b) and the Lie algebra with root system r. WARNING: This variant of the

procedure may be slow. Recommended for multiple calls is computing the table of

Chevalley constants first, and using the “nconsts” variation.

• CoRoot [root]

CoRoot[r] gives the co-root of root r.
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• cvMinimalPolynomialList [root system|list]
cvMinimalPolynomialList[basis,cvals] writes {k,c} for every basis coordinate in the

basis structure constants list given by cvals so that the minimal polynomial of the

coordinate is x2 + kx+ c. If the minimal polynomial is degree 2, only c is returned (k

must be 1 due to the minimal polynomial being monic).

• e [integer|integer|integer]

e[n,r,c] forms an n * n matrix with a 1 in the (r,c) position, and zeroes elsewhere.

• e [integer|integer]

e[n,r] forms an 1 x n vector with a 1 in the r position.

• FundamentalDominantWeights [root system]

FundamentalDominantWeights[r] gives the fundamental dominant weights for a root

system r.

• gInvolutionListFormToMatrix [root system|roots|matrix|list]
gInvolutionListFormToMatrix[r,roots,theta,list] takes a list of the form

{ROOT,CCONST} denoting an involution on the Lie algebra, the list of all roots, and

the root system (r) involution theta and returns a matrix for the involution over the

Lie algebra with respect to the ordered basis of root vectors (arranged with respect

to the roots). The argument roots is optional. If omitted, the matrix will be set with

respect to the ordering of the roots resulting from the procedure RootSystem with r

as calling argument.

• gInvolutionListFormToMatrix [root system|roots|integer list|list|list]
(PI-LOSS) gInvolutionListFormToMatrix[r,roots,disks,arches,list] takes a list of the

form ROOT,CCONST denoting an involution on the Lie algebra, the list of all roots,

and the root system (r) involution theta (defined via fixed roots disks and diagram

automorphism arches) and returns a matrix for the involution over the Lie algebra

with respect to the ordered basis of root vectors (arranged with respect to the roots).

The argument roots is optional. If omitted, the matrix will be set with respect to

the ordering of the roots resulting from the procedure RootSystem with r as calling

argument.
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• gMergeInvolutions [basis|matrix|list|list]
gMergeInvolutions[cbasis,theta,invol,nvals] merges multiple involutions over the Lie

algebra g (denoted by invol in list form). invol is a list formed by joining the separate

involutions’ lists. This function then fills in the missing structure constants corre-

sponding to the roots in basis cbasis a+b, where a and b are roots residing in the

separate restricted root systems. nvals is a list of Chevalley constants. theta is the

involution over the root system.

• gMergeInvolutions [basis|integer list|list|list|list]
(PI-LOSS) gMergeInvolutions[cbasis,disks,arches,invol,nvals] merges multiple involu-

tions over the Lie algebra g (denoted by invol in list form). invol is a list formed by

joining the separate involutions’ lists. This function then fills in the missing struc-

ture constants corresponding to the roots in basis cbasis a+b, where a and b are

roots residing in the separate restricted root systems. nvals is a list of Chevalley con-

stants. theta is the involution over the root system, described via fixed roots disks

and diagram automorphism arches.

• HighestRoot [root system|root]

HighestRoot[d,roots] gives the highest root amongst the set roots in the root system

with basis d.

• HighestRoot [root system]

HighestRoot[r] gives the highest root in the root system r.

• IdentifyRootSystem [root system]

IdentifyRootSystem[r] identifies the type of root system where r is any form of a root

system data type (string, list form, basis, set of roots).

• InnerProduct [vector|vector]

InnerProduct[a,b] gives the inner product of vectors a and b.

• InnerProduct [vector]

InnerProduct[a] gives the inner product of vector a with itself.

• KleinChevalley [root system]

KleinChevalley[basis] takes the basis of a root system and returns a Chevalley basis
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for the relevant Lie algebra. The table returned is of the form TABLE A, TABLE

B. Table B lists the Chevalley constants N[i,j] where the (i,j) entry is the Chevalley

constant with respect to root i, root j in the list of all roots of the root system. Table

A lists all the roots in the root system, organized to match the order of roots for Table

B.

• LieBracket [vector|vector]

LieBracket[a,b] gives the Lie bracket defined as [a,b] = ab-ba.

• LinearOperatorMatrix [vector . . .]

LinearOperatorMatrix[l ,l1 ,...,ln] creates an n * n matrix for a linear operator with

respect to a basis B. The argument li denotes the coordinates of the vector the i basis

element is mapped to.

• LinearOperatorOrder [matrix]

LinearOperatorOrder[theta] determines the order of some linear operator theta rep-

resented by a matrix. If theta is not an automorphism of any order n, then -1 is

returned.

• MakeBasis [vector list]

MakeBasis[v] will return a basis for the collection of vectors v.

• MakeRootBasis [root list]

MakeRootBasis[r] will return a basis for the collection of root vectors r. MakeRoot-

Basis preserves the condition that one root is double (or hence, half) that of another.

• OperatorMatrixFromFunction [basis|function]

OperatorMatrixFromFunction[d,fn] applies each vector in a basis d to a function fn

and returns the matrix for the corresponding linear operator.

• PositiveRootSystem [root system|root list]

PositiveRootSystem[r,roots] returns the positive roots in the set ’roots’ under root

system r.

• PositiveRootSystem [root system]

PositiveRootSystem[r] returns all positive roots in the root system r.
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• PrintMatrixArray [matrix list]

PrintMatrixArray[l] creates a human-readable table of a set of matrices l.

• Reflect [root|root]

Reflect[a,b] computes the reflection of the vector b across the hyperplane formed by

a.

• Reflect [root]

Reflect[a] computes the reflection of vector a across its own hyperplane.

• Reflect [root list|root|boolean]

Reflect[aList,b,rev] computes the reflection of b across every vector listed in the or-

dered list aList. The optional argument rev, if True, will iterate through the list aList

backward.

• Reflect [root|root list]

Reflect[a,bList] computes the set of vectors formed by reflecting each vector in bList

across a.

• Reflect [root list|root list|boolean]

Reflect[aList,bList,rev] computes the set of vectors formed by reflecting each vector

in bList across every vector in the ordered list aList. The optional argument rev, if

True, will iterate through the list aList backward.

• RestrictedRootAut [root system|matrix|basis]

RestrictedRootAut[r,theta,sub] computes the matrix for an automorphism theta on

the root system r, restricted to the given sub-basis.

• RootAlphaForm [basis|root list]

RootAlphaForm[d,r] gives the coordinates of a root or set of roots r with respect to

basis d. (Writes root r in alpha form).

• RootBase [root system]

RootBase[r] gives a basis for a root system r.

• RootBasisConnectedSet [root system]

RootBasisConnectedSet[basis] returns a set of lists of basis vectors. The lists group
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together basis roots which are members of the same irreducible root subsystem.

• RootBasisConnectedQ [root system|root|root]

RootBasisConnectedQ[basis,a,b] returns True if two basis vectors a and b in the sup-

plied basis reside in the same irreducible root system.

• RootBasisQ [root system]

RootBasisQ[r] returns True if r is the basis of a root system.

• RootCoBase [root system]

RootCoBase[r] gives a co-basis for a root system r.

• RootDecomposition [root system]

RootDecomposition[basis] returns two tables TABLE A, TABLE B. The first table is

a list of all roots in a root system with the given basis. The second table is a list pairs

of roots. The i entry in table B is a set of two roots of a lower level such that they

sum to the root given in the i entry of table A. The table is not unique.

• RootFunctional [root system|root|vector]

RootFunctional[r,a,tv] computes a(tv) where a is a root and tv is a vector in the

Cartan subalgebra (given as coordinates with respect to basis of the root system r.

• RootHeight [root system|root]

RootHeight[d,r] gives the height of root r in the root system with basis d.

• RootLessQ [root system|root|root]

RootLessQ[r,a,b] returns True if root a ¡ root b with respect to root ordering and root

system r.

• RootSplit [root system|root|boolean]

RootSplit[d,r,forceb] returns for a root r in a system with basis d the pair a,b so that

r = a + b, where b is a basis root (if r is ¿ 0), or the negative of a basis root (if r ¡

0), and a is a shorter root. If r is height 1 or -1, then returned is 0,r. The optional

argument forceb ensures that b is always a basis element (for the case that the root

is negative), or that 0,r is returned.
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• RootString [root system|root|root]

RootString[roots,a,b], where roots is the set of all roots in a root system, a and b are

two roots, will compute the a-string through b

• RootStringBounds [root system|root|root]

RootStringBounds[roots,a,b], where roots is the set of all roots in a root system, a

and b are two roots, will compute positive integers p,q where b + ka — -p ¡= k ¡= q

is the a-string through b

• RootSumPath [root system|special|root]

RootSumPath[basis,addtable,root] computes a sequence of additions to root space

vectors such that: the start of the sequence is a simple root, each intermediate step

is a root, and the end result is the supplied root. The root system has the supplied

basis. The argument addtable is ”Table B” returned by RootDecomposition. The

sequence will correlate to that used by RootSystem.

• RootSumPath [root system|root]

RootSumPath[basis,root] computes a sequence of additions to root space vectors such

that: the start of the sequence is a simple root, each intermediate step is a root, and

the end result is the supplied root. The root system has the supplied basis. The

sequence may not correlate to the unique sequence produced by RootDecomposition,

but does not require computing the addition table.

• RootSystem [root system]

RootSystem[r] gives the roots for root system r.

• RootToString [root]

RootToString[r] converts from r, the list form representation of a root system, to the

human-readable string form. r is of the form A,n,B,n,C,n,... where A, B, C are the

root system type (A-G), n is an integer, representing the root system An+Bn+Cn+...

• StructureConstantsFromBasis [root system|special|list|matrix]

StructureConstantsFromBasis[r,sc,nconsts,theta] returns a list of structure constants

for an automorphism over the Lie algebra with root system r and root involution theta.

nconsts supplies the Chevalley constants. sc supplies the structure constants for the
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basis roots. The table returned is a list of elements of the form ROOT, CONSTANT.

If nconsts is omitted, the procedure KleinChevalley will be called. However, for re-

peated usage it is recommended to compute once and store the Chevalley constants

in memory.

• StructureConstantsLookup [list|root]

StructureConstantsLookup[cconsts,a] looks up the structure constant with respect to

the root a. cconsts is a table of the form returned by StructureConstants.

11.6.2 Root Systems and Lie Algebra (PI-ROOT) Diagram

• DrawRootSystem [root system|boolean]

DrawRootSystem[r,force] draws a 2D or 3D plot of all roots of a root system r that is

of dimension at most 3. Basis lines are represented in bold. The optional argument

force, if True, forces drawRootSystem to establish the diagram in a 3D plane. Because

a Graphics object is returned, this is useful for combining 2D and 3D plots.

• DynkinDiagram [root system]

DynkinDiagram[r] gives the Dynkin Diagram of root system r.

• gInvolutionDiagram [root system|matrix|list]
gInvolutionDiagram[r,theta,cvals] extends the Helminck diagram with the values c

and k necessary to recover the structure constants of an involution on the Lie algebra.

Each basis root is labelled with {c,k}. The minimal polynomial of the correspond-

ing structure constant is 1x2 + kx + c. r is the root system, theta the root system

automorphism, and cvals is the list of structure constants.

• gInvolutionDiagram [root system|integer list|list|list]
(S-LOSS) gInvolutionDiagram[r,disks,arches,cvals] extends the Helminck diagram with

the values c and k necessary to recover the structure constants of an involution on the

Lie algebra. Each basis root is labelled with {c,k}. The minimal polynomial of the

corresponding structure constant is 1x2 + kx + c. r is the root system, disks labels

the fixed roots, arches represents the diagram automorphism, and cvals is the list of

structure constants.
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11.6.3 Root Systems and Lie Algebra (PI-ROOT) Internal

• BasisCoefficientsMatrix [basis|matrix]

BasisCoefficientsMatrix[b,x] gives the coordinates of x with respect to basis b. x must

be a matrix.

• BasisCoefficientsVector [basis|vector]

BasisCoefficientsVector[b,x] gives the coordinates of x with respect to basis b. x must

be a vector.

• BasisToRootSystem [basis]

BasisToRootSystem[d] identifies the type of root system formed by a basis d.

• BlockAssemble [matrix list]

BlockAssemble[mlist] assembles square matrices listed in mlist into one large matrix

with each list element along the diagonal.

• BlockAssemble [matrix. . .]

BlockAssemble[a,b,...] assembles square matrices a, b,... into one large matrix with

each element along the diagonal.

• BlockList [matrix]

BlockList[matr] creates a list of each of the block matrices found in matrix matr.

• ByBasisSort [basis|list|sort algorithm]

ByBasisSort[basis,list,p] sorts a list of elements in the span of a given basis according

to their coordinate vectors.

• CartanMatrixFromBasis [basis|boolean]

CartanMatrixFromBasis[d,force] gives the Cartan Matrix formed by a basis of roots

d. The optional argument force, if True, will force a matrix to be generated even if

the given set of vectors does not form a basis.

• CartanNorm [matrix|basis|root|root]

CartanNorm[m,d,a,b] computes ¡a,b¿ where a is a root, b is a simple root, and m is

the Cartan Matrix for a root system with basis d.
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• CartanToRootSystemSimple [matrix]

CartanToRootSystemSimple[m] identifies the root system represented by Cartan Ma-

trix m if it is known to be an irreducible root system.

• Diagonalize [matrix]

Diagonalize[m] returns a matrix p and diagonal matrix d such that d = p−1mp.

• DynkinData [root system|integer list]

DynkinData[r,disks] returns relevant data for a Dynkin diagram with root system r.

The output is a list of elements of the form neighbor 1, edge type , neighbor 2, edge

type , ... describing the neighbors a simple root shares, and the connecting bond

type. The optional argument disks will throw out any data which points to a root

not in the set of disks, and return for any roots which are not in the set of disks. i.e.

Return data for only a sub-diagram defined by the roots of disks.

• DynkinDataNaturalOrdering [root system|integer list]

DynkinDataNaturalOrdering[r,disks] returns relevant data for a Dynkin diagram with

root system r. The output is a list of elements of the form neighbor 1, edge type

, neighbor 2, edge type , ... describing the neighbors a simple root shares, and the

connecting bond type. The optional argument disks will throw out any data which

points to a root not in the set of disks, and return for any roots which are not in the

set of disks. i.e. Return data for only a sub-diagram defined by the roots of disks.

This variant of dynkinData re-orders the labeling of the simple roots of type E. Roots

2 and 3 are swapped, then 3 and 4.

• DynkinEdgeCodes [root system type|integer]

DynkinEdgeCodes[type,dim] returns a list of codes where the i entry denotes the type

of edge between the i and (i+1) simple roots. The edge codes are: 10 = single line,

21 = double left line, 22 = double right line, 31 = triple left line. type denotes the

root system type, and dim denotes the dimension.

• DynkinEdgeCons [root system type|integer]

DynkinEdgeCons[type,dim] returns a list of pairs of simple roots which are joined

together. type denotes the root system type, and dim denotes the dimension.
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• DynkinEdgeConsNestedForm [root system type|integer]

DynkinEdgeCons[type,dim] returns a list of pairs of simple roots which are joined

together. type denotes the root system type, and dim denotes the dimension. If a

root shares multiple neighbors, then the entries are merged. e.g. 1,2,3 indicates root

1 is connected to both roots 2 and 3.

• DynkinHeight [root system]

DynkinHeight[r] gives the height of a Dynkin diagram of type r, where the height is

the number of simple roots along the tallest vertical line.

• DynkinPoints [root system]

DynkinPoints[r] provides a list of relative x,y positions of the dots of a Dynkin diagram

for a root system r.

• DynkinPoints [root system type|integer|integer|integer]

DynkinPoints[type,dim,xOff,yOff] provides a list of relative x,y positions of the dots

of a Dynkin diagram for a root system of type (type,dim). The points are offset along

the x and y axes by xOff and yOff respectively.

• DynkinOrientation [root system name|basis]

DynkinOrientation[r,basis] returns True if the Dynkin diagram corresponding to the

root system with the supplied basis is oriented in the direction standard to Pisces (See

Humphreys, Introduction to Lie Algebra and Representation Theory).

• DynkinOrientation [root system]

DynkinOrientation[r] returns 1 if r is oriented ’correctly’ (as per Humphreys), -1 if

oriented backward, or 0 if basis elements are not ordered. If r is the name of a root

system (not a basis), then 1 is always returned.

• DynkinToCartan [dynkin data]

DynkinToCartan[D] recovers the Cartan matrix from the Dynkin diagram information

D returned by dynkinData and dynkinDataNaturalOrdering.

• DynkinWidth [root system]

DynkinWidth[r] gives the width of a Dynkin diagram of type r, where the width is

the number of simple roots along the longest horizontal line.
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• eForm [root system|root]

eForm[d,r] translates a root or set of roots r in alpha form to Euclidean form, where

d is the basis of the root system.

• FindPivots [matrix]

FindPivots[m] indexes the columns containing pivots in RREF[m].

• GroebnerBackSolver [equations|symbol list]

GroebnerBackSolver[eqns,vars] finds all solutions to the multivariate polynomial sys-

tem given by eqns with set of variables vars.

• GroebnerOneSolution [equations|symbol list]

GroebnerOneSolution[eqns,vars] finds one solution to the multivariate polynomial sys-

tem given by eqns with set of variables vars.

• IrreducibleRootInput [root system]

IrreducibleRootInput[r] converts an irreducible root system r into a variant of list form

TYPE,DIM. An error message and is returned if r is not irreducible.

• LieMultTable [matrix list]

LieMultTable[L] gives the Lie Multiplication Table for a set of vectors L forming the

basis for a Lie algebra. The (i,j) entry of the table is the basis coordinate of the vector

v = [Li ,Lj ].

• LittleDynk [root system|integer|integer|integer|string list ]

LittleDynk[r,xOff,yOff,nOff,labels] draws the Dynkin diagram for an irreducible root

system r. xOff and yOff are, respectively, the x and y coordinate offsets of the diagram.

nOff provides the offset for automatic root numbering (starting value). The optional

argument labels allows custom labels for the simple roots.

• MatrixMinimalPolynomial [matrix|symbol]

MatrixMinimalPolynomial[a,x] gives the minimal polynomial for a square matrix a

with variable x.

Rowland,Todd and Weisstein,Eric W.”Matrix Minimal Polynomial.” From MathWorld–

A Wolfram Web Resource.

http://mathworld.wolfram.com/MatrixMinimalPolynomial.html
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• MatrixNorm [matrix]

MatrixNorm[x] normalizes a matrix x.

• RootInput [root system]

RootInput[r] converts r into the list form representation for a root system if r is in

string form. If r is in list form, then r itself is returned.

• RootInputQ [root system]

RootInputQ[r] returns True if r is the name of a root system in list or string form.

• RootListFormQ [root system]

RootListFormQ[r] returns True if r is the name of a root system in list form.

• RootStringFormQ [root system]

RootStringFormQ[r] returns True if r is the name of a root system in string form.

• RootSystemFromBasis [root system]

RootSystemFromBasis[d] gives the roots in the root system formed by basis roots d.

• RowSwap [matrix|integer|integer]

RowSwap[m,a,b] swaps rows and b in matrix m.

• SimpleRootBase [root system]

SimpleRootBase[r] gives a basis for an irreducible root system r.

• StringToRoot [string]

StringToRoot[str] converts a string str of the form An+Bn+Cn... to the list form

representation for a root system, where A, B, C are the root system type (A-G), and

n is an integer.

• TakeElements [list|integer list]

TakeElements[l,in] forms a sub-list of list l which contains the entries indexed in integer

list in.

• TakeRows [matrix|integer list]

TakeRows[m,r] creates from a given matrix m a second matrix consisting of rows listed

in a list r.
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• VectorPad [vector|integer|integer]

VectorPad[v,p,t] takes a vector v and pads it on the left with p number of zeroes and

enough zeroes on the right so that its total length is t.

• ZeroesAbove [matrix|integer]

ZeroesAbove[matr,i] returns True if each entry above the (i,i) entry in matrix matr is

zero.

• ZeroesBelow [matrix|integer]

ZeroesBelow[matr,i] returns True if each entry below the (i,i) entry in matrix matr is

zero.

• ZeroesLeft [matrix|integer]

ZeroesLeft[matr,i] returns True if each entry to the left of the (i,i) entry in matrix

matr is zero.

• ZeroesRight [matrix|integer]

ZeroesRight[matr,i] returns True if each entry to the right of the (i,i) entry in matrix

matr is zero.

11.6.4 Chevalley Structure Package (PI-CHEVY) Primary

• ExtraSpecialPairs [root system]

ExtraSpecialPairs[r] lists all pairs of roots which form extra special pairs.

• ExtraSpecialPairs [root system|root list]

ExtraSpecialPairs[r,rlist] lists all pairs of roots in the list rlist which form extra special

pairs.

• ExtraSpecialPairQ [root system|root|root]

ExtraSpecialPairQ[r,a,b] returns True if positive roots a and b (under root system r)

form an extra special pair.

• ExtraSpecialPairQ [root system|root list|root|root]

ExtraSpecialPairQ[r,rlist,a,b] returns True if positive roots a and b (under root system

r and members of the set rlist) form an extra special pair. For repeated uses of this
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procedure with the same root system, it is suggested to pre-compute a list of positive

roots and use this variation. WARNING: rlist is intended to be either the set of all

positive roots, or the entire root system. False will be returned if the sum a + b is

not a member of rlist. If rlist is not at least the set of all positive roots, False can be

returned in the incorrect circumstances.

• ExtraSpecialPairQ [root system|root list|root list|root|root]

ExtraSpecialPairQ[r,rlist,specs,a,b] returns True if positive roots a and b (under root

system r and members of the set rlist with list of special pairs ’specs’) form an extra

special pair. For repeated uses of this procedure with the same root system, it is sug-

gested to pre-compute a list of positive roots and special pairs, and use this variation.

The same warning concerning rlist as in the previous variation applies. There is no

such warning for the list ’specs’. If specs does not contain all special pairs in a root

system, then only the extra special pairs within the given list will be marked.

• SpecialPairs [root system]

SpecialPairs[r] lists all pairs of roots which form special pairs.

• SpecialPairs [root system|root list]

SpecialPairs[r,rlist] lists all pairs of roots in the list rlist which form special pairs.

• SpecialPairQ [root system|root|root]

SpecialPairQ[r,a,b] returns True if positive roots a and b (under root system r) form

a special pair.

• SpecialPairQ [root system|root list|root|root]

SpecialPairQ[r,rlist,a,b] returns True if positive roots a and b (under root system r and

members of the set rlist) form a special pair. For repeated uses of this procedure with

the same root system, it is suggested to pre-compute a list of positive roots and use

this variation. WARNING: rlist is intended to be either the set of all positive roots,

or the entire root system. False will be returned if the sum a + b is not a member of

rlist. If rlist is not at least the set of all positive roots, False can be returned in the

incorrect circumstances.
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11.6.5 Weyl Package (PI-WEYL) Primary

• LongestElement [root system]

LongestElement[r] computes the longest element of the Weyl group of root system r.

• LongestElement [root system|integer list]

LongestElement[r,disks] computes the longest element of the Weyl group of a subsys-

tem of root r which is formed by the basis roots indexed in disks.

• ReflectWeyl [root system|integer list|root]

ReflectWeyl[d,a,b] calculates Sα1Sα2 . . . Sαs(b) for root b and Weyl group element

a = {a1, a2, . . . , a2}, where all roots live in the set d.

• WeylCompare [root system|integer list|integer list]

WeylCompare[d,w1,w2] returns True if w1 = w2. w1, w2 are elements of Weyl(d).

• WeylLength [root system|integer list]

WeylLength[d,w] computes the length of Weyl group element w. w is in the Weyl

group for a root system with basis d.

• WeylReduce [root system|integer list]

WeylReduce[d,w] uses the Deletion Property to write a Weyl group element w reduced.

w is in the Weyl group for a root system with basis d.

11.6.6 Weyl Package (PI-WEYL) Internal

• InteriorPoint [root system]

InteriorPoint[r] computes an interior point in the fundamental chamber with respect

to root system r.

• FundamentalChamber [vector|root system]

FundamentalChamber[v,r] maps a vector v to the fundamental chamber with respect

to a root system r.

11.6.7 Group Action Package (PI-GAP) Primary

• ArchesListInvolution [root system|integer list|matrix]
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ArchesListInvolution[r,disks,theta] recovers the diagram automorphism from an invo-

lution theta defined over a root system r with fixed roots: disks.

• DiskList [root system|matrix]

DiskList[r,theta] is a variant of fixedBasis which lists the indices of the roots fixed by

an involution theta over a root system r.

• EigenspaceProject [root system|matrix|root|integer]

EigenspaceProject[r,theta,root,E] projects root into some root in the E-eigenspace of

the root automorphism theta over root system r.

• EigenspaceProject [root system|integer list|list|root|integer]

(S-LOSS) EigenspaceProject[r,disks,arches,root,E] projects root into some root in the

E-eigenspace of the root automorphism described by fixed roots disks and diagram

automorphism arches over root system r.

• EmbeddedRootGroups [root system|matrix]

EmbeddedRootGroups[r,theta] gives a list of the roots fixed by an automorphism theta

over root system r. The list groups together roots by membership in an embedded

root system.

• EmbeddedRootGroups [root system|integer list]

EmbeddedRootGroups[r,disks] gives a list of the roots fixed by an involution theta

defined with fixed roots disks and diagram involution arches over root system r. The

list groups together roots by membership in an embedded root system.

• EmbeddedRootIndices [root system|matrix]

EmbeddedRootIndices[r,theta] gives an index of the roots fixed by an involution theta

over root system r. The list groups together roots by membership in an embedded

root system.

• EmbeddedRootIndices [root system|integer list]

EmbeddedRootIndices[r,disks] gives an index of the roots fixed by an involution theta

defined with fixed roots disks and diagram involution arches over root system r. The

list groups together roots by membership in an embedded root system.
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• EmbeddedRootSystems [root system|matrix]

EmbeddedRootSystems[r,theta] gives the embedded root systems formed by the root

involution theta over a root system r.

• EmbeddedRootSystems [root system|integer list]

EmbeddedRootSystems[r,disks] gives the embedded root systems formed by the fixed

roots disks of a root involution over a root system r.

• FixedBasis [root system|matrix]

FixedBasis[r,theta] computes the set of all basis roots fixed by an involution theta

defined over root system r.

• FixedBasis [root system|integer list|list]
(S-LOSS) FixedBasis[r,disks,arches] computes the set of all basis roots fixed by an

involution defined over root system r with fixed roots disks and diagram automorphism

arches.

• FixedRootQ [root system|matrix|root]

FixedRootQ[r,theta,root] returns True if root is fixed by the involution theta defined

over the root system r.

• FixedRootQ [root system|integer list|list|root]

(S-LOSS) FixedRootQ[r,disks,arches,root] returns True if root is fixed by the involu-

tion defined over the root system r with fixed roots disks and diagram automorphism

arches.

• FixedRoots [root system|matrix]

FixedRoots[r,theta] returns the set of all roots fixed by the involution theta defined

over the root system r.

• FixedRoots [root system|integer list|list]
(S-LOSS) FixedRoots[r,disks,arches] returns the set of all roots fixed by the involution

defined over the root system r with fixed roots disks and diagram automorphism

arches.

• IsRootAutOrder [matrix|integer]
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IsRootAutOrder[theta,n] determines if an automorphism theta is of order n, or an

order that divides n.

• wInvolution [root system|matrix]

wInvolution[r,theta] computes the longest element of the root system formed by the

roots fixed by theta, a root system automorphism.

• wInvolution [root system|integer list]

wInvolution[r,disks] computes the longest element of the root system formed by the

embedded roots (disks).

• wInvolutionAction [root system|matrix]

wInvolutionAction[r,theta] computes the matrix representing the action of the longest

element of the Weyl group formed by the root system consisting of the roots fixed by

theta, the root system automorphism over root system r.

• wInvolutionAction [root system|integer list]

wInvolutionAction[r,disks] computes the matrix representing the action of the longest

element of the Weyl group formed by the embedded root systems (disks), where r is

the root system.

11.6.8 Group Action Package (PI-GAP) Diagram

• HelminckDiagram [root system|matrix|string list ]

HelminckDiagram[r,theta,labels] gives the Helminck Diagram of an involution theta

on the roots acting on root system r. The optional argument labels allows custom

labels for the simple roots.

• HelminckDiagram [root system|integer list|list|string list ]

HelminckDiagram[r,disks,arches,labels] gives the Helminck Diagram of an involution

on the roots acting on root system r. The involution is described by the fixed simple

roots (disks) and the roots swapped by the diagram automorphism (arches). The

optional argument labels allows custom labels for the simple roots.

• HelminckDiagramTeX [root system|matrix|string list ]

HelminckDiagramTeX[r,theta,labels] gives LaTeX code to draw the Helminck Diagram
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of an involution theta on the roots acting on root system r. The optional argument

labels allows custom labels for the simple roots.

• HelminckDiagramTeX [root system|integer list|list|string list ]

HelminckDiagramTeX[r,disks,arches,labels] gives LaTeX code to draw the Helminck

Diagram of an involution on the roots acting on root system r. The involution is

described by the fixed simple roots (disks) and the roots swapped by the diagram

automorphism (arches). The optional argument labels allows custom labels for the

simple roots.

11.6.9 Group Action Package (PI-GAP) Internal

• DynkinPointsTeX [root system type|integer|integer|integer]

DynkinPointsTeX[type,dim,xOff,yOff] provides a LaTeX-formatted list of relative x,y

positions of the dots of a Dynkin diagram for a root system of type (type,dim). The

points are offset along the x and y axes by xOff and yOff respectively.

•
HelminckDiagramSTeX [root system type|integer list|integer|integer|integer|

string list ]
HelminckDiagramSTeX[r,disks,xOff,yOff,nOff,labels] gives LaTeX code for the Helminck

diagram for an irreducible root system r with fixed roots listed in disks. xOff and yOff

are, respectively, the x and y coordinate offsets of the diagram. nOff provides the offset

for automatic root numbering (starting value). The optional argument labels allows

custom labels for the simple roots.

• ThetaComponents [root system|matrix]

ThetaComponents[r,theta] returns the components for a Helminck diagram to be

merged with the Dynkin diagram. r denotes the root system, and theta the invo-

lution over r.

• ThetaComponents [root system|integer list|list]
ThetaComponents[r,disks,arches] returns the components for a Helminck diagram to

be merged with the Dynkin diagram. r denotes the root system, disks denotes the

fixed roots, and arches denotes the diagram automorphism.



190

11.6.10 Local Symmetric Spaces Package (PI-LOSS) Primary

• AlignPolarities [root system|matrix|list|root system|matrix|list|integer ]

AlignPolarities[d1,theta1,cvals1,d2,theta2,cvals2,w] aligns the polarities of two invo-

lutions over the Lie algebra cvals1 and cvals2. Each is defined with respect to root

system involutions theta1 and theta2 over root systems d1 and d2. If the optional

argument w is omitted, or is set to 1, the involution cvals1 is returned, modified so

that its polarity aligns with cvals2. If w is 2, then cvals2 is returned, modified to align

with cvals1. Each instance of theta (1 or 2) can be replaced with two arguments:

disks, an integer index of the fixed roots, and arches, the diagram automorphism.

• ApplyRootInvolution [root system|integer list|list|root]

ApplyRootInvolution[r,disks,arches,root] applies root (denoting a single root or set

of roots) to an involution defined over a root system r, with fixed roots disks and

diagram automorphism arches.

• ApplyRootInvolution [root system|matrix|root]

ApplyRootInvolution[r,theta,root] applies root (denoting a single root or set of roots)

to an involution theta defined over a root system r.

• ApplyRootInvolutionBasis [root system|integer list|list|root]

ApplyRootInvolutionBasis[r,disks,arches,root] applies root (denoting a single root or

set of roots) to an involution defined over a root system with basis d, with fixed roots

disks and diagram automorphism arches.

• ApplyRootInvolutionBasis [root system|matrix|root]

ApplyRootInvolutionBasis[d,theta,root] applies root (denoting a single root or set of

roots) to an involution theta defined over a root system with basis d.

• ComplementRoot [root]

ComplementRoot[root] complements the given root.

• CorrectionVector [root|matrix|list|symbol]

CorrectionVector[r,theta,cvals,x] computes all involution correction vectors for an in-

volution theta over the root system r with structure constants cvals. x supplies the

name of the variable set for the toral vector coordinates.
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• DiagramInvolution [root system]

DiagramInvolution[r] gives a list of root pairs “arches” in root system r which are

swapped by the diagram automorphism of order 2.

• InvBasisTable [root system|matrix|list]
InvBasisTable[basis,theta,rrdl] gives a table of the structure constants necessary to

determine if the Lie algebra homomorphism rrdl lifted from root system involution

theta over the given root basis is an involution.

• InvBasisTableAlphaForm [root system|matrix|list]
InvBasisTable[basis,theta,rrdl] gives a table of the structure constants necessary to

determine if the Lie algebra homomorphism rrdl lifted from root system involution

theta over the given root basis is an involution. Roots are printed in alpha form.

• InvolutionPolarity [root system|matrix|list]
InvolutionPolarity[r,theta,cconsts] returns the polarity of an involution over the Lie

algebra with structure constants cconsts. The involution is defined with respect to an

involution theta over the root system r.

• InvolutionPolarity [root system|integer list|list|list]
InvolutionPolarity[r,disks,arches,cconsts] returns the polarity of an involution over the

Lie algebra with structure constants cconsts. The involution is defined with respect

to an involution theta (given as fixed roots disks and diagram automorphism arches)

over the root system r.

• LocalBasis [root system|matrix]

LocalBasis[r,theta] computes the set of basis roots which project down to some root

on the local symmetric space. r denotes the root system on which an involution theta

is defined.

• LocalBasis [root system|integer list|list]
(S-LOSS) LocalBasis[r,disks,arches] computes the set of basis roots which project

down to some root on the local symmetric space. r denotes the root system on which

an involution with fixed roots disks and diagram automorphism arches is defined.
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• LocalProject [root system|integer list|list|root]

LocalProject[r,disks,arches,root] projects root into some root in the local symmetric

space whose root system is determined over an involution over root system r with

fixed roots disks and diagram automorphism arches.

• LocalProject [root system|matrix|root]

LocalProject[r,theta,root] projects root into some root in the local symmetric space

whose root system is determined by an involution theta over root system r.

• OneCorrectionVector [root system|matrix|list|symbol|integer ]

OneCorrectionVector[r,theta,cvals,x,sn] computes one involution correction vector for

an involution theta over the root system r with structure constants cvals. x supplies

the name of the variable set for the toral vector coordinates. The optional argument

sn allows the user to specify solution, number sn, in the case multiple solutions are

present.

• OrthoComplement [root list|root]

OrthoCompement[roots,com] finds all roots in the set roots which are orthogonal to

the root or set of roots given in com.

• RankOneComponentBasis [root system|matrix|root]

RankOneComponentBasis[r,theta,root] if a variant of RankOneLocalBasis. This pro-

cedure computes the basis of the restricted rank one root system with respect to root,

defined by an involution theta over the root system r. Roots which are fixed by theta

are removed unless they are part of the same irreducible component of the rank one

restricted root system with respect to root. In effect, this procedure generates the

class of the rank one restricted root system found in Table I of ”Algebraic Groups

with a Commuting Pair of Involutions and Semisimple Symmetric Spaces” by A.G.

Helminck.

• RankOneComponentBasis [root system|integer list|list|root]

RankOneComponentBasis[r,disks,arches,root] if a variant of RankOneLocalBasis. This

procedure computes the basis of the restricted rank one root system with respect to

root, defined by an involution theta (described by fixed roots disks and diagram auto-

morphism arches) over the root system r. Roots which are fixed by theta are removed
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unless they are part of the same irreducible component of the rank one restricted root

system with respect to root. In effect, this procedure generates the class of the rank

one restricted root system found in Table I of ”Algebraic Groups with a Commuting

Pair of Involutions and Semisimple Symmetric Spaces” by A.G. Helminck.

• RankOneLocalBasis [root system|matrix|root]

RankOneLocalBasis[r,theta,root] if a variant of RankOneBasis. This procedure com-

putes the basis of the restricted rank one root system with respect to root, defined

by an involution theta over the root system r. Roots which are fixed by theta are

removed, leaving present only the roots which project down to some root in the local

symmetric space.

• RankOneLocalBasis [root system|integer list|list|root]

RankOneLocalBasis[r,disks,arches,root] if a variant of RankOneBasis. This procedure

computes the basis of the restricted rank one root system with respect to root, defined

by an involution theta (described by fixed roots disks and diagram automorphism

arches) over the root system r. Roots which are fixed by theta are removed, leaving

present only the roots which project down to some root in the local symmetric space.

• RankOneRootLift [root system|matrix|list|list]
RankOneRootLift[r,theta,cconsts,nvals] lifts a restricted rank one involution theta,

with respect to root system r, to an involution on its corresponding Lie algebra.

cconsts supplies the structure constants. nvals supplies the Chevalley constants.

• RankOneRootLift [root system|integer list|list|list|list]
RankOneRootLift[r,disks,arches,cconsts,nvals] lifts a restricted rank one involution

theta (described via fixed roots disks and diagram automorphism arches), with respect

to root system r, to an involution on its corresponding Lie algebra. cconsts supplies

the structure constants. nvals supplies the Chevalley constants.

• ReduceRestrictedRank [root system|integer list|list|root]

ReduceRestrictedRank[r,disks,arches,root] reduces the restricted rank of an involution

defined over root system r with fixed roots disks and diagram automorphism arches

by eliminating root.
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• ReduceRestrictedRank [root system|matrix|root]

ReduceRestrictedRank[r,theta,root] reduces the restricted rank of an involution theta

defined over root system r by eliminating root.

• RestrictedRankOneBasis [root system|integer list|list|root]

RestrictedRankOneBasis[r,disks,arches,root] computes the basis of the restricted rank

one root system with respect to root, defined by an involution over root system r with

fixed roots disks and diagram automorphism arches.

• RestrictedRankOneBasis [root system|matrix|root]

RestrictedRankOneBasis[r,theta,root] computes the basis of the restricted rank one

root system with respect to root, defined by an involution theta over root system r.

• RestrictedRankOneDecomp [root system|matrix]

RestrictedRankOneDecomp[r,theta] computes the restricted rank one decomposition

of an involution theta over a root system r.

• RestrictedRankOneSystem [root system|integer list|list|root]

RestrictedRankOneSystem[r,disks,arches,root] computes the restricted rank one root

system with respect to root, defined by an involution over root system r with fixed

roots disks and diagram automorphism arches.

• RestrictedRankOneSystem [root system|matrix|root]

RestrictedRankOneSystem[r,theta,root] computes the restricted rank one root system

with respect to root, defined by an involution theta over root system r.

• RestrictedRootBasis [root system|integer list|list]
RestrictedRootBasis[r,disks,arches] gives a basis for the restricted root system de-

termined by an involution over root system r with fixed roots disks and diagram

automorphism arches.

• RestrictedRootBasis [root system|matrix]

RestrictedRootBasis[r,theta] gives a basis for the restricted root system determined

by an involution theta over root system r.

• RestrictedRootRank [root system|integer list|list]
RestrictedRootRank[r,disks,arches] gives the rank of the restricted root system de-
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termined over an involution over root system r with fixed roots disks and diagram

automorphism arches.

• RestrictedRootRank [root system|matrix]

RestrictedRootRank[r,theta] gives the rank of the restricted root system determined

by an involution theta over root system r.

• RestrictedRootSystem [root system|integer list|list]
RestrictedRootSystem[r,disks,arches] computes the set of all roots composing the re-

stricted root system determined over an involution over root system r with fixed roots

disks and diagram automorphism arches.

• RestrictedRootSystem [root system|matrix]

RestrictedRootSystem[r,theta] computes the set of all roots composing the restricted

root system determined by an involution theta over root system r.

• RestrictedRootSystemType [root system|integer list|list]
RestrictedRootSystemType[r,disks,arches] identifies the type of the restricted root

system determined by an involution over root system r with fixed roots disks and

diagram automorphism arches.

• RestrictedRootSystemType [root system|matrix]

RestrictedRootSystemType[r,theta] identifies the type of the restricted root system

determined by an involution theta over root system r.

• RootCriticalValues [root system|matrix|list]
RootCriticalValues[d,theta,cconsts] returns a table of theta(d) where theta is an au-

tomorphism of the root system r, and cconsts is the table of all structure constants

returned by structureConstants.

• RootCriticalValues [root system|integer list|list|list]
RootCriticalValues[d,disks,arches,cconsts] returns a table of theta(d) where theta is

an automorphism of the root system r described by fixed roots disks and diagram

automorphism arches, and cconsts is the table of all structure constants returned by

structureConstants.
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• RootInvolution [root system|integer list|list]
RootInvolution[r,disks,arches] or RootInvolution[r,disks,arches] gives the matrix of an

involution acting on root system r, where disks are those points represented by solid

black disk, and arches is a list of elements a,b denoting the diagram automorphism

maps a to b.

• RRDLift [root system|matrix|list|list]
RRDLift[r,theta,cconsts,nvals] lifts an involution theta, with respect to root system

r, to an involution on its corresponding Lie algebra. cconsts supplies the structure

constants. Output is in list format. nvals supplies the Chevalley constants.

• RRDLift [root system|integer list|list|list|list]
RRDLift[r,disks,arches,cconsts,nvals] lifts an involution theta (described via fixed roots

disks and diagram automorphism arches), with respect to root system r, to an invo-

lution on its corresponding Lie algebra. cconsts supplies the structure constants.

Output is in list format. nvals supplies the Chevalley constants.

• RROITable [integer]

RROITable[n] generates the table of Helminck diagrams for involutions (over the root

systems) of restricted rank one and of minimal size. The optional argument n returns

the n entry (1 - 18), while the absence of an argument generates the entire table.

• RROITableEntry [root system|matrix]

RROITableEntry[r,theta] identifies the Restricted Rank One Involutions table entry

corresponding to an involution theta over root system r.

• RROITableEntry [root system|integer list|list]
RROITableEntry[r,disks,arches] identifies the Restricted Rank One Involutions table

entry corresponding to an involution theta (given by fixed roots disks and diagram

automorphism arches) over root system r.

• SimpleRootLift [root system|matrix|list|list|boolean]

SimpleRootLift[d,theta,cconsts,nvals,donly] lifts an involution theta with respect to

root system r to an involution on its corresponding Lie algebra. cconsts supplies the

structure constants. nvals supplies the Chevalley constants. The technique used is
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the simpler Groebner basis technique, which is slow. For a quicker calculation, use

RRDLift. simpleLift does not check for 1-consistency. Output is in list format. If the

optional argument donly is True, only the basis structure constants are returned.

• SimpleRootLift [root system|integer list|list|list|list|boolean]

SimpleRootLift[d,disks,arches,cconsts,nvals,donly] lifts an involution theta (defined

via fixed roots disks and diagram automorphism arches) with respect to root system

r to an involution on its corresponding Lie algebra. cconsts supplies the structure

constants. nvals supplies the Chevalley constants. The technique used is the simpler

Groebner basis technique, which is slow. For a quicker calculation, use RRDLift.

simpleLift does not check for 1-consistency. Output is in list format. If the optional

argument donly is True, only the basis structure constants are returned.

• SteinbergThetaDelta [root system|list|matrix]

SteinbergThetaDelta[r,nconsts,theta] returns a list of structure constants for the au-

tomorphism over the Lie algebra TD with root system r and root involution theta.

TD is the unique automorphism such that each basis root structure constant is 1.

nconsts supplies the Chevalley constants. The table returned is a list of elements of

the form ROOT, CONSTANT. If nconsts is omitted, the procedure KleinChevalley

will be called. However, for repeated usage it is recommended to compute once and

store the Chevalley constants in memory.

• SwitchPolarity [root system|matrix|list]
SwitchPolarity[r,theta,cconsts] reverses the polarity of an involution over the Lie al-

gebra defined by cconsts. theta is the involution on the root system r.

• SwitchPolarity [root system|integer list|list|list]
SwitchPolarity[r,disks,arches,cconsts] reverses the polarity of an involution over the

Lie algebra defined by cconsts. theta is the involution, described by fixed roots disks

and diagram automorphism arches, on the root system r.

• ThetaStable [vector list|root system|matrix]

ThetaStable[h,d,theta] returns True if theta(x) is in the set h for all x in h, where d

supplies the basis theta is defined over.
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11.6.11 Local Symmetric Spaces Package (PI-LOSS) Diagram

• RankOneDecompDiagram [root system|matrix]

RankOneDecompDiagram[r,theta] draws the restricted rank one decomposition dia-

gram for an involution theta over the root system r.

• ReduceRestrictedRankDiagram [root system|integer list|list|root]

ReduceRestrictedRankDiagram[r,disks,arches,root] gives a Helminck diagram which

illustrates the reduction of the restricted rank of an involution defined over root system

r with fixed roots disks and diagram automorphism arches by eliminating root.

• RestrictedRankOneDiagram [root system|integer list|list|root]

RestrictedRankOneDiagram[r,disks,arches,root] computes a Helmicnk diagram illus-

trating the restricted rank one root system with respect to root, defined by an invo-

lution over root system r with fixed roots disks and diagram automorphism arches.

• RestrictedRankOneDiagram [root system|matrix|root]

RestrictedRankOneDiagram[r,theta,root] computes a Helmicnk diagram illustrating

the restricted rank one root system with respect to root, defined by an involution

theta over root system r.

• RestrictedRootDiagram [root system|integer list|list]
RestrictedRootDiagram[r,disks,arches] draws a Helminck diagram and Dynkin dia-

gram for the restricted root system determined over an involution over root system r

with fixed roots disks and diagram automorphism arches.

• RestrictedRootDiagram [root system|matrix]

RestrictedRootDiagram[r,theta] draws a Helminck diagram and Dynkin diagram for

the restricted root system determined by an involution theta over root system r.

11.6.12 Local Symmetric Spaces Package (PI-LOSS) Internal

• DiagramInvolutionSimple [root system|integer]

DiagramInvolution[r,offset] gives a list of root pairs “arches” in an irreducible root

system r which are swapped by the diagram automorphism of order 2. The optional

argument offset shifts the indices by the specified number of units.
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11.7 Tutorial and Examples

Here we present a few examples which should also suffice as a “quick start guide”

to PISCES . Some prerequisite knowledge of Mathematica is assumed. At the very least, the

user should be familiar with the way Mathematica represents lists, vectors, and matrices.

A quick 20 minute introduction to Mathematica can be found on Wolfram’s website

at http://www.wolfram.com/broadcast/screencasts/handsonstart/. A one-page writ-

ten guide can also be found at www.gpc.edu/~dunmol/PDFHandouts/mathematica_quick_

start.pdf.

Example 11.7.1. Roots and Root Systems

As a first example, let us compute the basis of the root system A5. This is easily

accomplished with one command.

basis = RootBase["A5"]

which returns

{{1,−1, 0, 0, 0, 0}, {0, 1,−1, 0, 0, 0}, {0, 0, 1,−1, 0, 0}, {0, 0, 0, 1,−1, 0}, {0, 0, 0, 0, 1,−1}}

we can then compute all the roots in A5 in one of two ways. If we know the basis

above forms A5 we can call

roots = RootSystem["A5"]

However, if we had only the basis roots and did not know what root system they

formed, we can also call

roots = RootSystem[basis]

Both return the following set.
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{{0, 0, 0, 0, 1,−1}, {0, 0, 0, 1,−1, 0}, {0, 0, 0, 1, 0,−1}, {0, 0, 1,−1, 0, 0},
{0, 0, 1, 0,−1, 0}, {0, 0, 1, 0, 0,−1}, {0, 1,−1, 0, 0, 0}, {0, 1, 0,−1, 0, 0},
{0, 1, 0, 0,−1, 0}, {0, 1, 0, 0, 0,−1}, {1,−1, 0, 0, 0, 0}, {1, 0,−1, 0, 0, 0},
{1, 0, 0,−1, 0, 0}, {1, 0, 0, 0,−1, 0}, {1, 0, 0, 0, 0,−1}, {0, 0, 0, 0,−1, 1},
{0, 0, 0,−1, 1, 0}, {0, 0, 0,−1, 0, 1}, {0, 0,−1, 1, 0, 0}, {0, 0,−1, 0, 1, 0},
{0, 0,−1, 0, 0, 1}, {0,−1, 1, 0, 0, 0}, {0,−1, 0, 1, 0, 0}, {0,−1, 0, 0, 1, 0},
{0,−1, 0, 0, 0, 1}, {−1, 1, 0, 0, 0, 0}, {−1, 0, 1, 0, 0, 0}, {−1, 0, 0, 1, 0, 0},
{−1, 0, 0, 0, 1, 0}, {−1, 0, 0, 0, 0, 1}}

One command writes all the roots in alpha form.

RootAlphaForm[basis]

returns the following set of roots.

{{0, 0, 0, 0, 1}, {0, 0, 0, 1, 0}, {0, 0, 0, 1, 1}, {0, 0, 1, 0, 0},
{0, 0, 1, 1, 0}, {0, 0, 1, 1, 1}, {0, 1, 0, 0, 0}, {0, 1, 1, 0, 0},
{0, 1, 1, 1, 0}, {0, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {1, 1, 0, 0, 0},
{1, 1, 1, 0, 0}, {1, 1, 1, 1, 0}, {1, 1, 1, 1, 1}, {0, 0, 0, 0,−1},
{0, 0, 0,−1, 0}, {0, 0, 0,−1,−1}, {0, 0,−1, 0, 0}, {0, 0,−1,−1, 0},
{0, 0,−1,−1,−1}, {0,−1, 0, 0, 0}, {0,−1,−1, 0, 0}, {0,−1,−1,−1, 0},
{0,−1,−1,−1,−1}, {−1, 0, 0, 0, 0}, {−1,−1, 0, 0, 0}, {−1,−1,−1, 0, 0},
{−1,−1,−1,−1, 0}, {−1,−1,−1,−1,−1}}

We can easily construct the Cartan matrix. The command:

matrix = CartanMatrix[basis]

gives us the matrix:



2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2
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Note that we did not need to know the basis formed the root system A5. Of course,

we can also draw the Dynkin diagram.

DynkinDiagram["A5"]

produces the diagram

e e e e eα1 α2 α3 α4 α5

As a closing note, suppose we did not know the basis formed the system A5, and

we wished to identify this. We use the command

CartanToRootSystem[matrix]

and PISCES tells us the root system is

{ {A,5} }

Example 11.7.2. Involutions on the Root System

Suppose we have θ as induced by the Helminck diagram given below

e u e u eα1 α2 α3 α4 α5

The fixed roots are α2 and α4. These roots form a basis for a subsystem. We’ll

call this basis “basis2”:

basis2 = { basis[[2]], basis[[4]] }

This is the set of vectors that form basis2.

{{0, 1,−1, 0, 0, 0}, {0, 0, 0, 1,−1, 0}}

We construct the Cartan matrix from this set:

matrix2 = CartanMatrix[basis2]
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and obtain  2 0

0 2



The reader may immediately recognize this as the Cartan matrix for A1 × A1.

PISCES confirms this. The command

rootsystem2 = CartanToRootSystem[matrix2]

gives

{{A,1},{A,1}}

The longest element of A1×A1 with respect to α2 and α4 is given by the command

le = LongestElement[rootsystem2, {2, 4}]

and we learn

le = { 2, 4 }

hence

w0(θ) = sα2sα4

What PISCES needs to know are the fixed roots. We say

disks = { 2, 4 };

to denote that α2 and α4 are fixed by θ. There is no diagram automorphism, so

we denote the identity as

arches = { };

and PISCES can compute the action of θ:

theta = RootInvolution["A5",disks,arches];
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We receive as output the matrix giving the action of θ with respect to our basis.



−1 0 0 0 0

−1 1 −1 0 0

0 0 −1 0 0

0 0 −1 1 −1

0 0 0 0 −1


Example 11.7.3. Root Projections

The roots which are not fixed by θ project down to roots in some local symmetric

space. Recall the projection π is defined as

π(α) =
1
2

(α− θ(α))

PISCES can quickly compute the basis of this projected root system, given by

∆̄ = {λi = π(α) | α ∈ ∆, θ(α) 6= α}

The command

rbasis = RestrictedRootBasis["A5",disks,arches]

gives this set as

{{
0, 0, 0,

1
2
,
1
2
,−1

}
,

{
0,

1
2
,
1
2
,−1

2
,−1

2
, 0
}
,

{
1,−1

2
,−1

2
, 0, 0, 0

}}
The Cartan matrix formed by this basis is given by:

rmatrix = CartanMatrix[rbasis]

and is


2 −1 0

−1 2 −1

0 −1 2



PISCES identifies the restricted root system.
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CartanToRootSystem[rmatrix]

gives

{{A, 3}}

We can compute the entire root system.

RestrictedRootSystem["A5",disks,arches]

gives

{
0, 0, 0, 1

2 ,
1
2 ,−1

}
,
{

0, 1
2 ,

1
2 ,−

1
2 ,−

1
2 , 0
}
,
{

0, 1
2 ,

1
2 , 0, 0,−1

}
,{

1,−1
2 ,−

1
2 , 0, 0, 0

}
,
{

1, 0, 0,−1
2 ,−

1
2 , 0
}
, {1, 0, 0, 0, 0,−1},{

0, 0, 0,−1
2 ,−

1
2 , 1
}
,
{

0,−1
2 ,−

1
2 ,

1
2 ,

1
2 , 0
}
,
{

0,−1
2 ,−

1
2 , 0, 0, 1

}
,{

−1, 1
2 ,

1
2 , 0, 0, 0

}
,

{
−1, 0, 0, 1

2 ,
1
2 , 0
}
, {−1, 0, 0, 0, 0, 1}

Finally, PISCES provides a nice diagram mechanism to represent both the root

and restricted system. The command

RestrictedRootDiagram["A5",disks,arches]

produces the following figure.

e u e u eλ1 0 λ2 0 λ3

e e e1 2 3
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Example 11.7.4. Lifting to an Involution on the Lie Algebra

In this example we’ll construct an involution on the Lie algebra from an involution

on the root system. This is an example of lifting an involutorial automorphism on the roots.

In particular, we wish to construct from an involutorial automorphism on the roots (let’s

call it theta) an involution on the Lie algebra (let’s call it rrdl) so that rrdl, restricted to the

roots, is theta. The motivation for such a construction is to study local symmetric spaces.

Let’s begin with the involution on the roots, theta. First we define the root system,

mark the roots which are fixed (disks), and describe the diagram automorphism (arches).

r="B5+C5";

basis=RootBase[r];

roots=RootSystem[r];

disks={2,4,5,7,9,10};

arches={};

The involution described is illustrated below:

e u e u uα1 α2 α3 α4 α5
-

e u e u uα6 α7 α8 α9 α10
�

Let us construct the involution. The code below produces the matrix with respect

to the basis roots.

theta = RootInvolution[r, disks, arches];

theta // MatrixForm



−1 0 0 0 0 0 0 0 0 0

−1 1 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 −2 1 0 0 0 0 0 0

0 0 −2 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 1 −1 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −2 1 0

0 0 0 0 0 0 0 −1 0 1
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Next we can quickly verify that theta is, indeed, an involution.

LinearOperatorOrder[theta]

produces the result 2.

Let us define a map on the Lie algebra in the following way. Let T be our auto-

morphism on the Lie algebra, and Xa be the root vector corresponding to root a. Then

let

T(Xa) = X(theta(a)) for every basis root a.

A result due to Steinberg [4] is that T is unique and a Lie algebra homomorphism.

It is not, however, always an involution.

PISCES stores Lie algebra homomorphisms by storing their structure constants.

Our first goal is to build the homomorphism T and call its set of structure constants ”cvals”.

First, however, we need to build the Lie algebra itself. We shall construct a Chevalley basis

using Klein’s algorithm. [11]

The following command stores the Chevalley constants in the table ”nvals”.

nvals = KleinChevalley[basis];

Next we construct the structure constants for T, and store them in the table

”cvals”.

cvals = SteinbergThetaDelta[basis, nvals, theta];

cvals describes completely the homomorphism T. It is either order 2 (involution),

or order 4. If it is an involution we are done. Let us verify by constructing the matrix with

respect to the root vectors for the Lie algebra.

tMatrix = gInvolutionListFormToMatrix[r, roots, theta, cvals];

tMatrix is a very large matrix. However, we can quickly check the order of the

map it represents.

LinearOperatorOrder[tMatrix]

produces the value 4.

This should be expected, as the command below verifies that not every diagonal

entry of (tMatrix)2 is one.
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Diagonal[tMatrix.tMatrix]

produces {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1 ,1,1,-1,-1,-1,-1,-1,1,-

1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1 ,1,1,1,-

1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1, -1}.
The homomorphism T is not an involution. A result in Helminck [5] is that we can

modify T with a vector H (called the correction vector) in the Cartan subalgebra so that it

is an involution. We want to build this new automorphism (we call it rrdl) by computing

the correction vector. This can be done over the whole root system, but this is very slow.

Instead, we use a ”divide-and-conquer” approach that splits the involution theta into its

restricted rank one decomposition. We lift each piece, then ”glue” the pieces together to

form the entire Lie algebra homomorphism rrdl. rrdl will be an involution.

The restricted rank one decomposition of theta is given below.

e u
u e u u

α1 α2

α2α2 α3 α4 α5
-

e u
u e u u

α6 α7

α7 α8 α9 α10
�

We will now construct rrdl.

rrdl = RRDLift[basis, theta, cartanMatrix[r], cvals, nvals];

To check that rrdl is an involution, let us build the matrix for rrdl with respect to

the basis formed by the root vectors.

rMatrix = gInvolutionListFormToMatrix[r, roots, theta, rrdl];

The diagonal entries of (rMatrix)2 are given by the command below.

Diagonal[rMatrix.rMatrix] // FullSimplify

produces {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1}.
That the diagonal entries are all one implies rrdl is an involution. The order of

the matrix (and hence, rrdl itself) is easily computed.

LinearOperatorOrder[rMatrix]

produces the result 2.

11.8 Copyright

PISCES - A system for symbolic computation in Lie Groups and Symmetric Spaces

Copyright (C) 2010 Robert L. Watson

This program is free software: you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Foundation,

either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with

this program. If not, see http://www.gnu.org/licenses/.
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Chapter 12

Programming Interface for

Symbolic Computation in LiE

Groups and Symmetric Spaces

(Version 1.1.0 Source)

In this chapter we’ll provide Mathematica source code for actual implementation of

our discussed routines. Most of this code was written in 2009 - 2010 for use on Mathematica

7. There are three primary sections.

First we discuss some of the coding strategy (data structures, etc.), the justifica-

tion, and any words of caution. We follow this discussion with basic routines in Lie algebra

which we will require. Finally we provide implementation of the algorithms discussed in

this text.

12.1 Notes on Construction of The Mathematica Lie Algebra

and Local Symmetric Spaces Package

The code provides a complete system for implementation of the previously intro-

duced algorithms. However, it does have several limitations that should be noted.

1. A few of the routines are only equipped to work with irreducible root systems.
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2. Lie algebra elements must be matrices.

3. Chevalley constants must be provided by other software. One good procedure is given

in Klein [11]. An implementation is provided.

As discussed in the manual, five packages are provided. With the exception of the

Chevalley constants package, the packages form a dependency chain. At the top level of

the chain is the local symmetric spaces package. Each previous package is intended to be a

generalization of the one above it. The organization was chosen with future work in mind.

In particular, the group action package generalizes the local symmetric spaces package so

that projections onto other eigenspaces can be explored.

Data structures have been chosen to be efficient in speed. In particular, this

translates to working with Mathematica primitives (e.g. lists) as much as possible. In some

instances this approach hinders type-checking. This is particularly true when working with

different sorts of bases. To a limited degree the user will need to take responsibility for

ensuring the correct types are being worked with. Partially for this reason the diagram

capabilities are provided.

12.2 Root System and Lie Algebra Package (Primary)

12.2.1 adMatrix

adMatrix::usage=

”adMatrix[L,h] writes the matrix for ad(L)H where H is a vector in the Lie algebra L.”;

Write the matrix for adL(H).

(* REVISION:

Use LU Decomposition! We’re solving systems with the same coefficient \

matrix, with different RHS vectors *)

adMatrix[L_?ListQ, h_?MatrixQ] := Module[

{ad, bvec, v, i, bstd, bm, f, vf},

(* STAGE I -

Essentially copy the basisCoeffsM code to solve a linear system *)

\

(* 1. Write all the basis vectors in standard basis *)

For[i = 1, i <= Length[L], i++,

bstd[i] = L[[i]] // Flatten;

];
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(* 2. Form a matrix with bstd as rows *)

bm = Table[bstd[i], {i, 1, Length[L]}];

(* 3. Take the transpose *)

bm = Transpose[bm];

(* 4. Solve the Linear System generically *)

Quiet[f = LinearSolve[bm]];

(* STAGE II - Solve the system with varying RHS *)

For[i = 1, i <= Length[L], i++,

v = LieBracket[h, L[[i]]];

(* Write v in standard basis *)

vf = Flatten[v];

bvec[i] = f[vf];

];

(* Form the matrix *)

ad = Table[bvec[i], {i, 1, Length[L]}];

ad

];

adMatrix[a___] := InvalidArg["adMatrix", a];
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12.2.2 adMatrixDiagonal

adMatrixDiagonal::usage=

”adMatrixDiagonal[L,h] writes the matrix for ad(L)H where H is a vector in the Lie algebra

L. It is a specialized variant of adMatrix[] which is faster, but is only applicable if the matrix

for ad(L)H is known to be diagonal.”;

(* Here we know ahead of time the matrix for ad will be diagonal *)

adMatrixDiagonal[L_?ListQ, h_?MatrixQ] := Module[

{ad, v, b, soln, k, i},

ad = ConstantArray[0, {Length[L], Length[L]}];

For[i = 1, i <= Length[L], i++,

(* Diagonal ad matrix => [h,L[[i]]] = k L[[i]] *)

v = L[[i]] // Flatten;

b = LieBracket[h, L[[i]]] // Flatten;

soln = Solve[b == k*v, k] // Flatten;

ad[[i, i]] = k /. soln;

];

ad

];

adMatrixDiagonal[a___] := InvalidArg["adMatrixDiagonal", a];
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12.2.3 AllRootBasisConnected

AllRootBasisConnected::usage=

”AllRootBasisConnected[basis,root] returns the set of all basis roots which are members of

the supplied basis and lie in the same irreducible root subsystem as the supplied root.”;

AllRootBasisConnected[d_?ListQ, root_?VectorQ] := Module[

{bcs, index},

bcs = RootBasisConnectedSet[d];

If[! MemberQ[d, root], Return[Fail];];

For[index = 1, index <= Length[bcs], index++,

If[MemberQ[bcs[[index]], root],

Break[];

];

];

Return[bcs[[index]]];

];

AllRootBasisConnected[a___] :=

InvalidArg["AllRootBasisConnectedSet", a];
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12.2.4 ApplyRootMap

ApplyRootMap::usage=

”ApplyRootMap[r,theta,root] applies root (denoting a single root or set of roots) to an

automorphism theta defined over a root system r. The root must lie in the system r, but

may be mapped out of r by theta.”;

ApplyRootMap[r_?RootInputQ, theta_?MatrixQ, root_?ListQ] := Module[

{basis, kroot, i},

If[SameQ[Depth[root], 2],

basis = RootBase[r];

kroot = BasisCoefficients[basis, root];

Return[kroot.Transpose[theta].basis];

,

Return[

DeleteDuplicates[

Table[ApplyRootInvolution[r, theta, root[[i]]], {i, 1,

Length[root]}]]];

];

];

ApplyRootMap[d_?RootBasisQ, theta_?MatrixQ, root_?ListQ] := Module[

{kroot, i},

If[SameQ[Depth[root], 2],

kroot = BasisCoefficients[d, root];

Return[kroot.Transpose[theta].d];

,

Return[

DeleteDuplicates[

Table[ApplyRootInvolutionBasis[d, theta, root[[i]]], {i, 1,

Length[root]}]]];

];

];

(*

ApplyRootMap[r_?RootInputQ,theta_?MatrixQ,root_?ListQ]:=\

ApplyRootInvolution[r,theta,root];

*)

(*

ApplyRootMap[d_?RootBasisQ,theta_?MatrixQ,root_?ListQ]:=\

ApplyRootInvolution[d,theta,root];

*)

ApplyRootMap[a___] := InvalidArg["ApplyRootMap", a];
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12.2.5 BasisCoefficients

BasisCoefficients::usage=

”BasisCoefficients[b,x] gives the coordinates of x with respect to basis b. x is understood

to be either a vector or a matrix.”;

BasisCoefficients::nmember = "‘1‘ can not be expressed in the basis";

BasisCoefficients::arg2 = "‘1‘ is not a vector or a matrix.";

BasisCoefficients[b_?ListQ, x_?ListQ] := Module[

{},

Which[

VectorQ[x], Return[BasisCoefficientsVector[b, x]];,

MatrixQ[x], Return[BasisCoefficientsMatrix[b, x]];,

_, Message[BasisCoefficients::arg2, x];

];

Return[{}];

];

BasisCoefficients[a___] := InvalidArg["BasisCoefficients", a];
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12.2.6 CartanMatrix

CartanMatrix::usage=

”CartanMatrix[r] gives the Cartan Matrix for root system r.”;

CartanMatrix[R_?RootInputQ] := Module[

{basis, i, j, rin},

rin = RootInput[R];

basis = RootBase[R];

(*Table[Table[innerProduct[basis[[i]],cobasis[[j]]],{j,1,Length[

basis]}],{i,1,Length[basis]}]*)

Return[

Table[Table[

2*InnerProduct[basis[[i]],

basis[[j]]/InnerProduct[basis[[j]], basis[[j]]]], {j, 1,

Length[basis]}], {i, 1, Length[basis]}]];

];

CartanMatrix[R_?RootBasisQ] := CartanMatrixFromBasis[R];

CartanMatrix[a___] := InvalidArg["CartanMatrix", a];
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12.2.7 CartanToRootSystem

CartanToRootSystem::usage=

”CartanToRootSystem[m] identifies the root system represented by Cartan Matrix m.”;

CartanToRootSystem[matr_?MatrixQ] := Module[

{blocks, str, i},

str = "";

blocks = BlockList[matr];

For[i = 1, i <= Length[blocks], i++,

str = str <> CartanToRootSystemSimple[blocks[[i]]];

If[! SameQ[i, Length[blocks]],

str = str <> "+";

];

];

Return[str];

];

CartanToRootSystem[a___] := InvalidArg["CartanToRootSystem", a];
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12.2.8 ChevalleyLookup

ChevalleyLookup::usage=

”ChevalleyLookup[nconsts,a,b] looks up the Chevalley constant with respect to the pair of

roots (a,b). nconsts is a table of the form returned by kleinChevalley.

ChevalleyLookup[r,a,b] looks up the Chevalley constant with respect to the pair of

roots (a,b) and the Lie algebra with root system r. WARNING: This variant of the procedure

may be slow. Recommended for multiple calls is computing the table of Chevalley constants

first, and using the “nconsts” variation.”;

ChevalleyLookup::noroot =

"Root ‘1‘ or ‘2‘ not found in supplied table.";

ChevalleyLookup[d_?RootBasisQuietQ, a_?VectorQ, b_?VectorQ] :=

ChevalleyLookup[KleinChevalley[d], a, b];

ChevalleyLookup[nconsts_?ListQ, a_?VectorQ, b_?VectorQ] := Module[

{i, j},

For[i = 1, i <= Length[nconsts[[1]]], i++,

For[j = 1, j <= Length[nconsts[[1]]], j++,

If[SameQ[nconsts[[1, i]], a] && SameQ[nconsts[[1, j]], b],

Return[nconsts[[2, i, j]]];

];

];

];

Message[ChevalleyLookup::noroot, a, b];

Return[{}];

];

ChevalleyLookup[a___] := InvalidArg["ChevalleyLookup", a];
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12.2.9 CoRoot

CoRoot::usage=

”CoRoot[r] gives the co-root of root r.”;

CoRoot[x_?VectorQ] := 2*x/InnerProduct[x, x];

CoRoot[a___] := InvalidArg["CoRoot", a];
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12.2.10 cvMinimalPolynomialList

cvMinimalPolynomialList::usage=

”cvMinimalPolynomialList[basis,cvals] writes k,c for every basis coordinate in the basis

structure constants list given by cvals so that the minimal polynomial of the coordinate is

x2 + kx+ c. If the minimal polynomial is degree 2, only c is returned (k must be 1 due to

the minimal polynomial being monic).”;

cvMinimalPolynomialList[basis_?RootBasisQ, cvals_?ListQ] := Module[

{i, mlist, x, mpoly, clist, cval},

mlist = {};

For[i = 1, i <= Length[basis], i++,

cval = StructureConstantsLookup[cvals, basis[[i]]];

mpoly = MinimalPolynomial[cval, x];

clist = CoefficientList[mpoly, x];

If[SameQ[Length[clist], 3],

mlist = Join[mlist, {{clist[[1]], clist[[2]]}}];

,

mlist = Join[mlist, {clist[[1]]}];

];

];

Return[mlist];

];

cvMinimalPolynomialList[a___] :=

InvalidArg["cvMinimalPolynomialList", a];
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12.2.11 e

e::usage=

”e[n,r,c] forms an n * n matrix with a 1 in the (r,c) position, and zeroes elsewhere.

e[n,r] forms an 1 x n vector with a 1 in the r position.”;

e[n_?IntegerQ, r_?IntegerQ, c_?IntegerQ] :=

Transpose[{UnitVector[n, r]}].{UnitVector[n, c]};

e[n_?IntegerQ, r_?IntegerQ] := UnitVector[n, r];

e[a___] := InvalidArg["e", a];
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12.2.12 eForm

eForm::usage=

”eForm[d,r] translates a root or set of roots r in alpha form to Euclidean form, where d is

the basis of the root system.”;

eForm[basis_?RootBasisQ, roots_?ListQ] := Module[

{i},

If[SameQ[Depth[roots], 3],

Return[Table[basis.roots[[i]], {i, 1, Length[roots]}]];

,

Return[basis.roots];

];

];

eForm[a___] := InvalidArg["eForm", a];
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12.2.13 FundamentalDominantWeights

FundamentalDominantWeights::usage=

”FundamentalDominantWeights[r] gives the fundamental dominant weights for a root sys-

tem r.”;

FundamentalDominantWeights[r_?RootInputQ] :=

FundamentalDominantWeights[RootBase[r]];

FundamentalDominantWeights[d_?RootBasisQ] := Module[

{matr},

matr = CartanMatrix[d];

Return[Inverse[matr]];

];

FundamentalDominantWeights[a___] :=

InvalidArg["FundamentalDominantWeights", a];
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12.2.14 gInvolutionListFormToMatrix

gInvolutionListFormToMatrix::usage=

”gInvolutionListFormToMatrix[r,roots,theta,list] takes a list of the form ROOT,CCONST

denoting an involution on the Lie algebra, the list of all roots, and the root system (r)

involution theta and returns a matrix for the involution over the Lie algebra with respect

to the ordered basis of root vectors (arranged with respect to the roots). The argument

roots is optional. If omitted, the matrix will be set with respect to the ordering of the roots

resulting from the procedure RootSystem with r as calling argument.

(PI-LOSS) gInvolutionListFormToMatrix[r,roots,disks,arches,list] takes a list of

the form ROOT,CCONST denoting an involution on the Lie algebra, the list of all roots,

and the root system (r) involution theta (defined via fixed roots disks and diagram auto-

morphism arches) and returns a matrix for the involution over the Lie algebra with respect

to the ordered basis of root vectors (arranged with respect to the roots). The argument

roots is optional. If omitted, the matrix will be set with respect to the ordering of the roots

resulting from the procedure RootSystem with r as calling argument.”;

gInvolutionListFormToMatrix[r_?RootInputQ, inroots_: {},

theta_?MatrixQ, rlist_?ListQ] :=

gInvolutionListFormToMatrix[RootBase[r], inroots, theta, rlist];

gInvolutionListFormToMatrix[d_?RootBasisQ, inroots_: {},

theta_?MatrixQ, rlist_?ListQ] := Module[

{n, ret, i, s, t, root, troot, k, roots},

If[SameQ[inroots, {}],

roots = RootSystem[d];

,

roots = inroots;

];

n = Length[roots];

ret = ConstantArray[0, {n, n}];

For[i = 1, i <= Length[roots], i++,

root = roots[[i]];

k = StructureConstantsLookup[rlist, root];

troot = ApplyRootInvolution[d, theta, root];

For[s = 1, s <= n, s++,

If[roots[[s]] == troot, Break[];];

];

For[t = 1, t <= n, t++,

If[roots[[t]] == root, Break[];];

];
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ret[[s, t]] = k;

];

Return[ret];

];

gInvolutionListFormToMatrix[a___] :=

InvalidArg["gInvolutionListFormToMatrix", a];

(*

gInvolutionListFormToMatrixOLD[r_,roots_,theta_,rlist_]:=Module[

{n,ret,i,s,t,root,troot,k},

n=Length[roots];

ret=ConstantArray[0,{n,n}];

For[i=1,i<=Length[rlist],i++,

root=rlist[[i,1]];

k=rlist[[i,2]];

troot=applyInvolution[r,theta,root];

For[s=1,s<=n,s++,

If[roots[[s]]==troot,Break[];];

];

For[t=1,t<=n,t++,

If[roots[[t]]==root,Break[];];

];

ret[[s,t]]=k;

];

Return[ret];

];

*)
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12.2.15 gMergeInvolutions

gMergeInvolutions::usage=

”gMergeInvolutions[cbasis,theta,invol,nvals] merges multiple involutions over the Lie alge-

bra g (denoted by invol in list form). invol is a list formed by joining the separate involutions’

lists. This function then fills in the missing structure constants corresponding to the roots

in basis cbasis a+b, where a and b are roots residing in the separate restricted root systems.

nvals is a list of Chevalley constants. theta is the involution over the root system.

(PI-LOSS) gMergeInvolutions[cbasis,disks,arches,invol,nvals] merges multiple in-

volutions over the Lie algebra g (denoted by invol in list form). invol is a list formed by

joining the separate involutions’ lists. This function then fills in the missing structure con-

stants corresponding to the roots in basis cbasis a+b, where a and b are roots residing in

the separate restricted root systems. nvals is a list of Chevalley constants. theta is the

involution over the root system, described via fixed roots disks and diagram automorphism

arches.”;

gMergeInvolutions[cbasis_?ListQ, theta_?MatrixQ, invol_?ListQ,

nvals_?ListQ] := Module[

{k, p, n, h, i, j, r, t, q, s, size, m,

ret, c1, c2, n1, n2},

(* 1. Init *)

p = cbasis;

ret = invol;

n = 1;

m = CartanMatrixFromBasis[cbasis];

size = 1;

(* 2. Construct *)

While[Length[p] > size,

size = Length[p];

For[i = 1, i <= Length[p], i++,

For[j = 1, j <= Length[cbasis], j++,

t = p[[i]];

(* 2.1.

Get the basis coefficients and check height of the root *)

k = BasisCoefficients[cbasis, t];

h = Sum[k[[s]], {s, 1, Length[k]}];

If[h == n,

(* 2.2. Determine the integer r *)

r = 0;

While[MemberQ[p, t - r*cbasis[[j]]], r++];

r = r - 1;
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(* 2.3. Define q *)

q = r - Sum[k[[s]]*m[[s, j]], {s, 1, Length[cbasis]}];

(* 2.4. Ammend p? *)

If[q > 0,

p = Union[p, {t + cbasis[[j]]}];

(* MOD to De Graaf: merge involution lists here *)

Off[StructureConstantsLookup::noroot];

(* POSITIVE ROOTS *)

If[SameQ[

StructureConstantsLookup[ret, t + cbasis[[j]]], {}],

c1 = StructureConstantsLookup[ret, t];

c2 = StructureConstantsLookup[ret, cbasis[[j]]];

n1 = ChevalleyLookup[nvals,

ApplyRootInvolutionBasis[cbasis, theta, t],

ApplyRootInvolutionBasis[cbasis, theta, cbasis[[j]]]];

n2 = ChevalleyLookup[nvals, t, cbasis[[j]]];

ret = Union[ret, {{t + cbasis[[j]], c1*c2*n1/n2}}];

];

(* NEGATIVE ROOTS *)

If[SameQ[StructureConstantsLookup[ret, -t - cbasis[[j]]], {}],

c1 = StructureConstantsLookup[ret, -t];

c2 = StructureConstantsLookup[ret, -cbasis[[j]]];

n1 = ChevalleyLookup[nvals,

ApplyRootInvolutionBasis[cbasis, theta, -t],

ApplyRootInvolutionBasis[cbasis, theta, -cbasis[[j]]]];

n2 = ChevalleyLookup[nvals, -t, -cbasis[[j]]];

ret = Union[ret, {{-t - cbasis[[j]], c1*c2*n1/n2}}];

];

On[StructureConstantsLookup::noroot];

];

];

];

];

n = n + 1;

];

(*

Print[Length[ret]];

*)

Return[ret];

];

gMergeInvolutions[a___] := InvalidArg["gMergeInvolutions", a];
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12.2.16 HighestRoot

HighestRoot::usage=

”HighestRoot[d,roots] gives the highest root amongst the set roots in the root system with

basis d.

HighestRoot[r] gives the highest root in the root system r.

HighestRoot[d] gives the highest root in the root system with basis d.”;

HighestRoot[r_?RootInputQ] := HighestRoot[RootBase[r], RootSystem[r]];

HighestRoot[d_?RootBasisQ] := HighestRoot[d, RootSystemFromBasis[d]];

HighestRoot[d_?RootBasisQ, roots_?ListQ] := Module[

{high, i},

high = roots[[1]];

For[i = 1, i <= Length[roots], i++,

If[RootHeight[d, roots[[i]]] > RootHeight[d, high],

high = roots[[i]];

];

];

Return[high];

];

HighestRoot[a___] := InvalidArg["HighestRoot", a];
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12.2.17 IdentifyRootSystem

IdentifyRootSystem::usage=

”IdentifyRootSystem[r] identifies the type of root system where r is any form of a root

system data type (string, list form, basis, set of roots).”;

IdentifyRootSystem[r_?RootStringFormQ] := r;

IdentifyRootSystem[r_?RootListFormQ] := RootToString[r];

IdentifyRootSystem[r_?RootBasisQuietQ] := Module[

{rb},

Return[BasisToRootSystem[rb]];

];

IdentifyRootSystem[r_?MatrixQ] := Module[

{rb},

rb = MakeRootBasis[r];

Return[BasisToRootSystem[rb]];

];

IdentifyRootSystem[a___] := InvalidArg["IdentifyRootSystem", a];
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12.2.18 InnerProduct

InnerProduct::usage=

”InnerProduct[a,b] gives the inner product of vectors a and b.

InnerProduct[a] gives the inner product of vector a with itself.”;

InnerProduct::length =

"vectors ‘1‘ and ‘2‘ do not have the same length.";

InnerProduct[a_?VectorQ] := InnerProduct[a, a];

InnerProduct[a_?VectorQ, b_?VectorQ] := Module[{},

If[Length[a] != Length[b],

Message[InnerProduct::length, a, b];

Return[Fail];

];

Sum[a[[i]]*b[[i]], {i, 1, Length[a]}]

];
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12.2.19 KleinChevalley

KleinChevalley::usage=

”KleinChevalley[basis] takes the basis of a root system and returns a Chevalley basis for the

relevant Lie algebra. The table returned is of the form TABLE A, TABLE B. Table B lists

the Chevalley constants N[i,j] where the (i,j) entry is the Chevalley constant with respect

to root i, root j in the list of all roots of the root system. Table A lists all the roots in the

root system, organized to match the order of roots for Table B.

KleinChevalley[r] computes the table above, with r being the name of a root sys-

tem.”;

KleinChevalley[r_?RootInputQ] := KleinChevalley[RootBase[r]];

KleinChevalley[d_?RootBasisQ] := Module[

{i, j, a, b, c, l, p, q, rs, gm, de, gmIndex, deIndex, c2,

roots, at, posroots, negroots, max, root, index, at1, at2, gamma,

delta},

rs = RootDecomposition[d];

roots = rs[[1]];

at = rs[[2]];

posroots = Take[roots, Length[roots]/2];

negroots = Take[roots, -Length[roots]/2];

(* From RECONSTRUCTING THE GEOMETRIC STRUCTURE OF A RIEMANNIAN \

SYMMETRIC SPACE FROM ITS SATAKE DIAGRAM - Sebastian Klein *)

(* All positive roots *)

For[i = 1, i <= Length[posroots], i++,

For[j = 1, j <= Length[posroots], j++,

a = posroots[[i]];

b = posroots[[j]];

If[! MemberQ[posroots, a + b],

c[a, b] = 0;

];

];

];

max = RootHeight[d, HighestRoot[d, roots]];

For[l = 2, l <= max, l++,

For[i = 1, i <= Length[posroots], i++,

root = posroots[[i]];

If[RootHeight[d, root] != l, Continue[];];

(* Get the index of root *)

index = Position[posroots, root][[1, 1]];

(* Root_index = Sum of roots at1 and at2 *)
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(*

Note for cartanNorm, it is only linear in first variable.

So the second must be a simple root.

rootSystemAT is designed to build root sums this way.

The algorithm is designed to call at2 as the first variable.

So switch. *)

at1 = at[[index, 1]];

at2 = at[[index, 2]];

(* Find the smallest integer so that at2 - ( p +

1 ) at1 NOT IN roots holds

Start with p = -1 and keep adding until the above expression is \

not a root *)

p = 0;

(*While[MemberQ[roots,at2-p*at1],

p=p+1;

];

*)

While[MemberQ[roots, at2 - (p + 1)*at1],

p = p + 1;

];

(*

p=0;

While[MemberQ[roots,at2-p*at1],p++];

p=p-1;

*)

(*

p=max;

While[!MemberQ[roots,at2-(p+1)*at1],

p=p-1;

];

p++;

*)

q = p - 2*InnerProduct[at2, at1]/(InnerProduct[at1, at1]);

c[at1, at2] = Sqrt[(q*(1 + p))/2]*Sqrt[InnerProduct[at1, at1]];

(*

If[c[at1,at2]==0,Print["ERROR. (q*(1+p))=",(q*(1+p)),

". innerProduct[at1,at1]=",InnerProduct[at1,at1]"."];];

*)

c[at2, at1] = -c[at1, at2];

(* For all pairs (gm,de) of positive roots with gm + de = root,

where neither gm nor de are in {at1,at2} *)

For[gmIndex = 1, gmIndex <= Length[roots]/2, gmIndex++,

For[deIndex = 1, deIndex <= Length[roots]/2, deIndex++,

gm = roots[[gmIndex]];

de = roots[[deIndex]];

(*

If[MemberQ[{at1,at2},gm],Continue[];];

If[MemberQ[{at2,at2},gm],Continue[];];

*)

If[MemberQ[{at1, at2}, gm], Continue[];];
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If[MemberQ[{at1, at2}, de], Continue[];];

If[gm + de != root, Continue[];];

c2[1, 1] = Which[

MemberQ[posroots, gm - at2], c[at2, gm - at2],

MemberQ[-posroots, gm - at2], c[gm, at2 - gm],

True, 0];

c2[1, 2] = Which[

MemberQ[posroots, at1 - de], c[de, at1 - de],

MemberQ[-posroots, at1 - de], c[at1, de - at1],

True, 0];

c2[2, 1] = Which[

MemberQ[posroots, at1 - gm], c[at1 - gm, gm],

MemberQ[-posroots, at1 - gm], c[gm - at1, at1],

True, 0];

c2[2, 2] = Which[

MemberQ[posroots, de - at2], c[at2, de - at2],

MemberQ[-posroots, de - at2], c[de, at2 - de],

True, 0];

c[gm,

de] = (1/c[at1, at2])*(c2[1, 1]*c2[1, 2] +

c2[2, 1]*c2[2, 2]);

]; (* End deIndex loop *)

]; (*

End gmIndex loop *)

]; (* End loop on i *)

]; (*

End loop on l *)

(* Now get the other roots *)

For[i = 1, i <= Length[posroots], i++,

For[j = 1, j <= Length[posroots], j++,

c[posroots[[i]], -posroots[[j]]] = Which[

MemberQ[posroots, posroots[[j]] - posroots[[i]]],

c[posroots[[j]] - posroots[[i]], posroots[[i]]],

MemberQ[-posroots, posroots[[j]] - posroots[[i]]],

c[posroots[[i]] - posroots[[j]], posroots[[j]]],

True, 0];

c[-posroots[[i]],

posroots[[j]]] = -c[posroots[[i]], -posroots[[j]]];

c[-posroots[[i]], -posroots[[j]]] = -c[posroots[[i]],

posroots[[j]]];

];

];

Return[{roots,

Table[Table[

c[roots[[i]], roots[[j]]], {j, 1, Length[roots]}], {i, 1,

Length[roots]}]}];

];

KleinChevalley[a___] := InvalidArg["KleinChevalley", a];
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12.2.20 LieBracket

LieBracket::usage=

”LieBracket[a,b] gives the Lie bracket defined as [a,b] = ab-ba.”;

LieBracket[a_?MatrixQ, b_?MatrixQ] := a.b - b.a;

LieBracket[a___] := InvalidArg["LieBracket", a];
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12.2.21 LinearOperatorMatrix

LinearOperatorMatrix::usage=

”LinearOperatorMatrix[l ,l1 ,...,ln ] creates an n * n matrix for a linear operator with respect

to a basis B. The argument li denotes the coordinates of the vector the i basis element is

mapped to.

LinearOperatorMatrix[l__?VectorQ] := Module[

{n, vlist},

vlist = List[l];

n = Length[vlist];

Return[Transpose[vlist]];

];

LinearOperatorMatrix[a___] := InvalidArg["LinearOperatorMatrix", a];



236

12.2.22 LinearOperatorOrder

LinearOperatorOrder::usage=

”LinearOperatorOrder[theta] determines the order of some linear operator theta represented

by a matrix. If theta is not an automorphism of any order n, then -1 is returned.”;

LinearOperatorOrder[theta_?MatrixQ] := Module[

{polyn, x, clist, degree, i},

(* Add one... explanation later *)

polyn = 1 + MatrixMinimalPolynomial[theta, x];

clist = CoefficientList[polyn, x];

(* Degree is one less the length of the coefficient list *)

degree = Length[clist] - 1;

(* Hacque *)

If[SameQ[degree, 1] && SameQ[theta[[1, 1]]^2, 1],

Return[1];

];

(* Now we want to see if the minimal polynomial is of the form -1+

x^n. If this is so,

our own polynomial should only have a 1 in the last entry in the \

Coefficient List. (because we added one to the polynomial) *)

For[i = 1, i <= Length[clist] - 1, i++,

If[! SameQ[clist[[i]], 0],

Return[-1];

];

];

Return[degree];

];

LinearOperatorOrder[a___] := InvalidArg["LinearOperatorOrder", a];
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12.2.23 MakeBasis

MakeBasis::usage=

”MakeBasis[v] will return a basis for the collection of vectors v.”;

MakeBasis[v_?MatrixQ] := Module[

{pb, plist, i, d},

(* Row reduce echelon form *)

pb = RowReduce[Transpose[v]];

(* Find the pivots *)

plist = FindPivots[pb];

(* Pivot locations correspond to basis vectors *)

d = {};

For[i = 1, i <= Length[plist], i++,

d = Join[d, {v[[plist[[i]]]]}];

];

Return[d];

(* Remove the zero vectors *)

(*

b={};

For[i=1,i<=Length[pb],i++,

If[!SameQ[Norm[pb[[i]]],0],

b=Join[b,{pb[[i]]}];

];

];

Return[b];

*)

];

MakeBasis[a___] := InvalidArg["MakeBasis", a];
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12.2.24 MakeRootBasis

MakeRootBasis::usage=

”MakeRootBasis[r] will return a basis for the collection of root vectors r. MakeRootBasis

preserves the condition that one root is double (or hence, half) that of another.”;

MakeRootBasis[v_?MatrixQ] := Module[

{basis, rbasis, i, j, bc},

(* First make a ‘‘preliminary’’ basis *)

rbasis = MakeBasis[v];

basis = rbasis;

bc = False;

(* Check if any roots are 2x multiples of each other. *)

For[i = 1, i <= Length[v], i++,

For[j = 1, j <= Length[v], j++,

If[SameQ[v[[i]], 2*v[[j]]] || SameQ[2*v[[i]], v[[j]]],

bc = True;

];

];

];

(* Preserve BC: Next,

if any roots in the given system are twice that of a basis vector,

add it in. *)

If[bc,

For[i = 1, i <= Length[rbasis], i++, (* For all basis vectors *)

For[j = 1, j <= Length[v], j++, (* For all rots *)

If[SameQ[rbasis[[i]], 2*v[[j]]] ||

SameQ[2*rbasis[[i]], v[[j]]],

basis = Join[basis, {v[[j]]}];

];

];

];

];

Return[basis];

];

MakeRootBasis[a___] := InvalidArg["MakeRootBasis", a];
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12.2.25 OperatorMatrixFromFunction

OperatorMatrixFromFunction::usage=

”OperatorMatrixFromFunction[d,fn] applies each vector in a basis d to a function fn and

returns the matrix for the corresponding linear operator.”;

OperatorMatrixFromFunction[d_?ListQ, fn_] := Module[

{i, v},

For[i = 1, i <= Length[d], i++,

(*v[i]=alphaForm[d,fn[d[[i]]]];*)

v[i] = BasisCoefficients[d, fn[d[[i]]]];

];

Return[Transpose[Table[v[i], {i, 1, Length[d]}]]];

];

OperatorMatrixFromFunction[a___] :=

InvalidArg["OperatorMatrixFromFunction", a];
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12.2.26 PositiveRootSystem

PositiveRootSystem::usage=

”PositiveRootSystem[r,roots] returns the positive roots in the set ’roots’ under root system

r.

PositiveRootSystem[r] returns all positive roots in the root system r.”;

PositiveRootSystem[r_?RootInputQ, {argroots__?VectorQ}] :=

PositiveRootSystem[RootBase[r], List[argroots]];

PositiveRootSystem[d_?RootBasisQ, {argroots__?VectorQ}] := Module[

{roots, posroots, ht, i},

roots = List[argroots];

posroots = {};

For[i = 1, i <= Length[roots], i++,

ht = RootHeight[d, roots[[i]]];

If[ht > 0,

posroots = Join[posroots, {roots[[i]]}];

];

];

Return[posroots];

];

PositiveRootSystem[r_?RootInputQ] := PositiveRootSystem[RootBase[r]];

PositiveRootSystem[d_?RootBasisQ] := Module[

{k, p, n, h, i, j, r, t, q, s, size, time, cntr, m},

(* 1. Init *)

p = d;

n = 1;

m = CartanMatrixFromBasis[d];

size = 1;

time = TimeUsed[];

cntr = time;

(* 2. Construct *)

While[Length[p] > size,

size = Length[p];

For[i = 1, i <= Length[p], i++,

For[j = 1, j <= Length[d], j++,

t = p[[i]];

(* 2.1.

Get the basis coefficients and check height of the root *)

k = BasisCoefficients[d, t];

h = Sum[k[[s]], {s, 1, Length[k]}];

If[h == n,

(* 2.2. Determine the integer r *)
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r = 0;

While[MemberQ[p, t - r*d[[j]]], r++];

r = r - 1;

(* 2.3. Define q *)

q = r - Sum[k[[s]]*m[[s, j]], {s, 1, Length[d]}];

(* 2.4. Ammend p? *)

If[q > 0,

p = Union[p, {t + d[[j]]}];

];

(*

If[TimeUsed[]-cntr>10,

Print["(rootSystem) CPU Time:[",TimeUsed[]-time,"] Roots:[",

2*Length[p],"]"];

cntr=TimeUsed[];

];

*)

];

];

];

n = n + 1;

];

Return[p];

];

PositiveRootSystem[a___] := InvalidArg["PositiveRootSystem", a];
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12.2.27 PrintMatrixArray

PrintMatrixArray::usage=

”PrintMatrixArray[l] creates a human-readable table of a set of matrices l.”;

PrintMatrixArray[{larg__?MatrixQ}] := Module[{i, l},

l = List[larg];

Table[l[[i]] // MatrixForm, {i, 1, Length[l]}]

];

PrintMatrixArray[a___] := InvalidArg["PrintMatrixArray", a];
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12.2.28 Reflect

Reflect::usage=

”Reflect[a,b] computes the reflection of the vector b across the hyperplane formed by a.

Reflect[a] computes the reflection of vector a across its own hyperplane.

Reflect[aList,b,rev] computes the reflection of b across every vector listed in the

ordered list aList. The optional argument rev, if True, will iterate through the list aList

backward.

Reflect[a,bList] computes the set of vectors formed by reflecting each vector in

bList across a.

Reflect[aList,bList,rev] computes the set of vectors formed by reflecting each vector

in bList across every vector in the ordered list aList. The optional argument rev, if True,

will iterate through the list aList backward.”;

Reflect[a_?VectorQ] := Reflect[a, a];

Reflect[a_?VectorQ, b_?VectorQ] := Module[

{},

b - 2*(InnerProduct[a, b]/InnerProduct[a, a])*a

];

Reflect[{arga_?VectorQ}, b_?VectorQ, reverse_: False] := Module[

{i, v, a},

a = List[arga];

If[reverse,

For[i = Length[a], i >= 1, i--,

v = Reflect[a[[i]], b];

];

,

For[i = 1, i <= Length[a], i++,

v = Reflect[a[[i]], b];

];

];

Return[v];

];

Reflect[a_?VectorQ, {argb_?VectorQ}] := Module[

{i, b},

b = List[argb];

Return[Table[Reflect[a, b[[i]]], {i, 1, Length[b]}]];

];

Reflect[{arga_?VectorQ}, {argb_?VectorQ}, reverse_: False] := Module[

{i, a, b},

a = List[arga];
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b = List[argb];

Return[Table[Reflect[a, b[[i]], reverse], {i, 1, Length[b]}]];

];

Reflect[a___] := InvalidArg["Reflect", a];
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12.2.29 RestrictedRootAut

RestrictedRootAut::usage=

”RestrictedRootAut[r,theta,sub] computes the matrix for an automorphism theta on the

root system r, restricted to the given sub-basis.”;

RestrictedRootAut[r_?RootInputQ, theta_?MatrixQ, sub_?RootBasisQ] :=

RestrictedRootAut[RootBase[r], theta, sub];

RestrictedRootAut[basis_?RootBasisQ, theta_?MatrixQ,

sub_?RootBasisQ] := Module[

{rMatr, i, keeplist},

keeplist = {};

For[i = 1, i <= Length[basis], i++,

If[MemberQ[sub, basis[[i]]],

keeplist = Join[keeplist, {UnitVector[Length[basis], i]}];

];

];

(*{{0,1,0,0},{0,0,0,1}}.m.Transpose[{{1,0,0,0},{0,0,1,0}}]//

MatrixForm

keeps rows 2 and 4 of m, and columns 1 and 3. *)

rMatr = keeplist.theta.Transpose[keeplist];

Return[rMatr];

];

RestrictedRootAut[a___] := InvalidArg["RestrictedRootAut", a];
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12.2.30 RootAlphaForm

RootAlphaForm::usage=

”RootAlphaForm[d,r] gives the coordinates of a root or set of roots r with respect to basis

d. (Writes root r in alpha form).”;

RootAlphaForm[basis_?RootBasisQ, roots_?ListQ] := Module[

{i},

If[SameQ[Depth[roots], 3],

Return[

Table[BasisCoefficients[basis, roots[[i]]], {i, 1,

Length[roots]}]];

,

Return[BasisCoefficients[basis, roots]];

];

];

RootAlphaForm[a___] := InvalidArg["RootAlphaForm", a];
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12.2.31 RootBase

RootBase::usage=

”RootBase[r] gives a basis for a root system r.”;

RootBase[r_?RootInputQ] := Module[

{i, j, basis, sbasis, nbasis, totalLen, vLen, rin},

rin = RootInput[r];

basis = {};

(* Build all the simple bases *)

For[i = 1, i <= Length[rin], i++,

sbasis[i] = SimpleRootBase[rin[[i]]];

];

(* Find the total vector length needed *)

totalLen = 0;

vLen = 0;

For[i = 1, i <= Length[rin], i++,

totalLen = totalLen + Length[sbasis[i][[1]]];

];

(* Pad. For each simple basis, make a new basis with padding *)

For[i = 1, i <= Length[rin], i++,

nbasis =

Table[VectorPad[sbasis[i][[j]], vLen, totalLen], {j, 1,

Length[sbasis[i]]}];

basis = Join[basis, nbasis];

vLen = vLen + Length[sbasis[i][[1]]];

];

Return[basis];

];

RootBase[a___] := InvalidArg["RootBase", a];
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12.2.32 RootBasisConnectedSet

RootBasisConnectedSet::usage=

”RootBasisConnectedSet[basis] returns a set of lists of basis vectors. The lists group to-

gether basis roots which are members of the same irreducible root subsystem.”;

RootBasisConnectedSet[r_?RootInputQ] :=

RootBasisConnectedSet[RootBase[r]];

RootBasisConnectedSet[d_?ListQ] := Module[

{group, gnum, i, todo, didchange, j},

If[SameQ[d, {}],

Return[{}];

];

todo = d; (* Every root needs to be processed *)

gnum = 0; (* Start with group 1 *)

While[! SameQ[todo, {}], (* Process every root *)

(*

Start a new group *)

gnum++;

group[gnum] = {todo[[1]]};

todo = Complement[todo, {todo[[1]]}];

didchange = True;

While[didchange,

didchange = False; (* If we add a new root to the group,

flip this to indicate another run needed *)

For[i = 1, i <= Length[todo], i++,

(* If (root i, root j) is not zero for some j,

then add it to the group *)

For[j = 1, j <= Length[group[gnum]], j++,

If[InnerProduct[todo[[i]], group[gnum][[j]]] != 0,

didchange = True;

group[gnum] = Join[group[gnum], {todo[[i]]}];

todo = Complement[todo, {todo[[i]]}];

Break[];

]; (* END IF *)

]; (* END FOR j *)

If[didchange, Break[];]; (*

Need to reset the iteration due to todo changing *)

]; (*

END FOR i *)

];

];

Return[Table[group[i], {i, 1, gnum}]];

];

RootBasisConnectedSet[a___] := InvalidArg["RootBasisConnectedSet", a];

(* Bad strategy. Use inner products.;

RootBasisConnectedSet[d_?ListQ]:=Module[
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{blist,cMatr,set,lens,i,j,iset,cntr},

If[SameQ[d,{}],Return[{}]];

cMatr=CartanMatrix[d];

blist=BlockList[cMatr];

(* size of each irred component *)

lens={};

For[i=1,i<=Length[blist],i++,

lens=Join[lens,{Length[blist[[i]]]}];

];

(* list of indices *)

cntr = 1;

For[i=1,i<=Length[lens],i++, (* FOR every irred component *)

set[i]={};

For[j=1,j<=lens[[i]],j++, (* FOR every root in irred component *)

\

set[i]=Join[set[i],{cntr}];

cntr++;

];

];

Return[Table[Table[d[[set[i][[j]]]],{j,1,Length[set[i]]}],{i,1,Length[\

lens]}]];

];

*)

RootBasisConnectedSet[a___] := InvalidArg["RootBasisConnectedSet", a];
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12.2.33 RootBasisConnectedQ

RootBasisConnectedQ::usage=

”RootBasisConnectedQ[basis,a,b] returns True if two basis vectors a and b in the supplied

basis reside in the same irreducible root system.”;

RootBasisConnectedQ[d_?ListQ, rlw_?VectorQ, eaw_?VectorQ] := Module[

{bcs, index},

bcs = RootBasisConnectedSet[d];

If[! MemberQ[d, rlw] || ! MemberQ[d, eaw], Return[Fail];];

For[index = 1, index <= Length[bcs], index++,

If[MemberQ[bcs[[index]], rlw],

Break[];

];

];

Return[MemberQ[bcs[[index]], eaw]];

];

RootBasisConnectedQ[a___] := InvalidArg["IsRootBasisConnected", a];
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12.2.34 RootBasisQ

RootBasisQ::usage=

”RootBasisQ[r] returns True if r is the basis of a root system.”;

RootBasisQ::basis = "Supplied set is not a root system basis:\n‘1‘";

RootBasisQ[d_?StringQ] := False;

RootBasisQ[d_?MatrixQ] := Module[

{},

If[RootInputQ[d],

Return[False];

];

If[SameQ[Length[d], Length[MakeRootBasis[d]]],

Return[True];

,

Message[RootBasisQ::basis, d];

Return[False];

];

];

RootBasisQ[a___] := False;

RootBasisQuietQ[d_?MatrixQ] := Module[

{},

If[SameQ[Length[d], Length[MakeRootBasis[d]]],

Return[True];

,

Return[False];

];

];

RootBasisQuietQ[a___] := False;
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12.2.35 RootCoBase

RootCoBase::usage=

”RootCoBase[r] gives a co-basis for a root system r.”;

RootCoBase[r_?RootInputQ] := Module[{basis, i},

basis = RootBase[r];

Table[2*basis[[i]]/InnerProduct[basis[[i]], basis[[i]]], {i, 1,

Length[basis]}]

];

RootCoBase[a___] := InvalidArg["RootCoBase", a];
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12.2.36 RootDecomposition

RootDecomposition::usage=

”RootDecomposition[basis] returns two tables TABLE A, TABLE B. The first table is a list

of all roots in a root system with the given basis. The second table is a list pairs of roots.

The i entry in table B is a set of two roots of a lower level such that they sum to the root

given in the i entry of table A. The table is not unique.”;

RootDecomposition[d_?RootBasisQ] := Module[

{k, p, n, h, i, j, r, t, q, s, m, size, time, cntr, at, attable,

roots},

(* 1. Init *)

p = d;

n = 1;

size = 1;

time = TimeUsed[];

cntr = time;

m = CartanMatrixFromBasis[d];

(* Initialize AT *)

For[i = 1, i <= Length[d], i++,

at[d[[i]]] = {d[[i]], 0};

at[-d[[i]]] = {-d[[i]], 0};

];

(* 2. Construct *)

While[Length[p] > size,

size = Length[p];

For[i = 1, i <= Length[p], i++,

For[j = 1, j <= Length[d], j++,

t = p[[i]];

(* 2.1.

Get the baiss coefficients and check height of the root *)

k = BasisCoefficients[d, t];

h = Sum[k[[s]], {s, 1, Length[k]}];

If[h == n,

(* 2.2. Determine the integer r *)

r = 0;

While[MemberQ[p, t - r*d[[j]]], r++];

r = r - 1;

(* 2.3. Define q *)

q = r - Sum[k[[s]]*m[[s, j]], {s, 1, Length[d]}];

(* 2.4. Ammend p? *)

If[q > 0,

p = Union[p, {t + d[[j]]}];

(* AT version: data for addition table *)
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at[t + d[[j]]] = {d[[j]], t};

at[-t - d[[j]]] = {-d[[j]], -t};

(*Print["root=",t+d[[j]]," table entry=",at[t+d[[j]]],

" d[[j]]=",d[[j]]," t=",t];*)

];

(*

If[TimeUsed[]-cntr>10,

Print["(rootSystemAT) CPU Time:[",TimeUsed[]-time,

"] Roots:[",2*Length[p],"]"];

cntr=TimeUsed[];

];

*)

];

];

];

n = n + 1;

];

(* If[TimeUsed[]-time>10,

Print["(rootSystem) CPU Time:[",TimeUsed[]-time,"] Roots:[",2*

Length[p],"] (done)"];

]; *)

roots = Join[p, -p];

(* AT version: construct addition table *)

attable = Table[at[roots[[i]]], {i, 1, Length[roots]}];

(*

Print["(rootSystemAT) Used ",TimeUsed[]-time,

"s CPU Time to find ",2*Length[p],

" roots and construct the addition table."];

*)

(* RETURN *)

{roots, attable}

];

RootDecomposition[a___] := InvalidArg["RootDecomposition", a];
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12.2.37 RootFunctional

RootFunctional::usage=

”RootFunctional[r,a,tv] computes a(tv) where a is a root and tv is a vector in the Cartan

subalgebra (given as coordinates with respect to basis of the root system r.”;

RootFunctional[r_?RootInputQ, root_?VectorQ, tv_?VectorQ] :=

RootFunctional[RootBase[r], root, tv];

RootFunctional[d_?RootBasisQ, root_?VectorQ, tv_?VectorQ] := Module[

{kf, i},

(* oops! Backward...

kf=2*innerProduct[tv.d,root]/innerProduct[

root,root];

*)

kf =

Sum[tv[[i]]*2*

InnerProduct[root, d[[i]]]/InnerProduct[d[[i]], d[[i]]], {i, 1,

Length[d]}];

Return[kf];

];

RootFunctional[a___] := InvalidArg["RootFunctional", a];
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12.2.38 RootHeight

RootHeight::usage=

”RootHeight[d,r] gives the height of root r in the root system with basis d.”;

RootHeight[d_?RootBasisQ, root_?VectorQ] := Module[{k, i},

k = BasisCoefficients[d, root];

Sum[k[[i]], {i, 1, Length[k]}]

];

RootHeight[a___] := InvalidArg["RootHeight", a];
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12.2.39 RootLessQ

RootLessQ::usage=

”RootLessQ[r,a,b] returns True if root a ¡ root b with respect to root ordering and root

system r.”;

RootLessQ[r_?RootInputQ, a_?VectorQ, b_?VectorQ] :=

RootLessQ[RootBase[r], a, b];

RootLessQ[d_?RootBasisQ, a_?VectorQ, b_?VectorQ] := Module[

{hta, htb},

hta = RootHeight[d, a];

htb = RootHeight[d, b];

If[hta < htb,

Return[True];

];

If[hta > htb,

Return[False];

];

Return[BasisOrder[a, b]];

];

RootLessQ[a___] := InvalidArg["RootLessQ", a];
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12.2.40 RootSplit

RootSplit::usage=

”RootSplit[d,r,forceb] returns for a root r in a system with basis d the pair a,b so that r =

a + b, where b is a basis root (if r is ¿ 0), or the negative of a basis root (if r ¡ 0), and a

is a shorter root. If r is height 1 or -1, then returned is 0,r. The optional argument forceb

ensures that b is always a basis element (for the case that the root is negative), or that 0,r

is returned.”;

RootSplit[d_?RootBasisQ, r_?VectorQ, forceb_: False] := Module[

{i},

If[RootHeight[d, r] > 0 || forceb, (* POSITIVE ROOT *)

(*

Iterate backward so that we can easily decompose a root into sums \

of basis elements in lexicographic order. *)

For[i = Length[d], i >= 1, i--,

(* Lemma 9.4 in Humphreys *)

If[InnerProduct[r, d[[i]]] > 0,

Return[{r - d[[i]], d[[i]]}];

];

];

, (* NEGATIVE ROOT *)

(*

Iterate backward so that we can easily decompose a root into sums \

of basis elements in lexicographic order. *)

For[i = Length[d], i >= 1, i--,

(* Lemma 9.4 in Humphreys *)

If[InnerProduct[r, -d[[i]]] > 0,

Return[{r + d[[i]], -d[[i]]}];

];

];

];

Return[{0, r}];

];

RootSplit[a___] := InvalidArg["RootSplit", a];
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12.2.41 RootString

RootString::usage=

”RootString[roots,a,b], where roots is the set of all roots in a root system, a and b are two

roots, will compute the a-string through b”;

RootString[{argroots__?VectorQ}, a_?VectorQ, b_?VectorQ] := Module[

{roots, bounds, rstr, i},

roots = List[argroots];

rstr = {};

bounds = RootStringBounds[roots, a, b];

For[i = -bounds[[1]], i <= bounds[[2]], i++,

rstr = Join[rstr, {b + i*a}];

];

Return[rstr];

];

RootString[a___] := InvalidArg["RootString", a];
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12.2.42 RootStringBounds

RootStringBounds::usage=

”RootStringBounds[roots,a,b], where roots is the set of all roots in a root system, a and b

are two roots, will compute positive integers p,q where b + ka — -p ¡= k ¡= q is the a-string

through b”;

RootStringBounds[{argroots__?VectorQ}, a_?VectorQ, b_?VectorQ] :=

Module[

{p, q, roots, i, k},

roots = List[argroots];

(* Find -p *)

k = 0;

While[MemberQ[roots, b + k*a],

k--;

];

(* b + ka is no longer a root. Add one back to k so that it is *)

k++;

(* Found -p *)

p = k;

(* Find q *)

k = 0;

While[MemberQ[roots, b + k*a],

k++;

];

(* b + ka is no longer a root. Add one back to k so that it is *)

k--;

(* Found q *)

q = k;

(* Return -

p because we want to return the postive integer for the lower \

bound *)

Return[{-p, q}];

];

RootStringBounds[a___] := InvalidArg["RootStringBounds", a];
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12.2.43 RootSumPath

RootSumPath::usage=

”RootSumPath[basis,addtable,root] computes a sequence of additions to root space vectors

such that: the start of the sequence is a simple root, each intermediate step is a root, and

the end result is the supplied root. The root system has the supplied basis. The argument

addtable is ”Table B” returned by RootDecomposition. The sequence will correlate to that

used by RootSystem.

RootSumPath[basis,root] computes a sequence of additions to root space vectors

such that: the start of the sequence is a simple root, each intermediate step is a root, and

the end result is the supplied root. The root system has the supplied basis. The sequence

may not correlate to the unique sequence produced by RootDecomposition, but does not

require computing the addition table.”;

RootSumPath[d_?RootBasisQ, at_?ListQ, root_?VectorQ] :=

RootSumPath[d, RootSystemFromBasis[d], at, root];

RootSumPath[d_?RootBasisQ, roots_?ListQ, at_?ListQ, root_?VectorQ] :=

Module[{ret},

If[MemberQ[Union[d, -d], root],

ret = root;

,

(*ret={atSplit[d,roots,at,at[[i]][[1]]],atSplit[d,roots,at,at[[

i]][[2]]]};*)

ret = {RootSumPath[d, roots, at,

at[[Position[roots, root][[1, 1]], 1]]],

RootSumPath[d, roots, at,

at[[Position[roots, root][[1, 1]], 2]]]};

];

ret

];

RootSumPath[d_?RootBasisQ, root_?VectorQ] :=

CreateDialog[{TextCell[

"TO DO: Implement root sum path using Humphreys Lemma (ch9)"],

DefaultButton[]}];

RootSumPath[a___] := InvalidArg["RootSumPath", a];
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12.2.44 RootSystem

RootSystem::usage=

”RootSystem[r] gives the roots for root system r.”;

RootSystem[r_?RootInputQ] := RootSystemFromBasis[RootBase[r]];

RootSystem[r_?RootBasisQ] := RootSystemFromBasis[r];

RootSystem[a___] := InvalidArg["RootSystem", a];
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12.2.45 RootToString

RootToString::usage=

”RootToString[r] converts from r, the list form representation of a root system, to the

human-readable string form. r is of the form A,n,B,n,C,n,... where A, B, C are the root

system type (A-G), n is an integer, representing the root system An+Bn+Cn+...”;

RootToString[r_?ListQ] := Module[

{i, str},

(* If user forgets double brace on an irreducible system... e.g.

passes {A,4} instead of {{A,4}} *)

If[SameQ[Depth[r], 2], Return[r[[1]] <> ToString[r[[2]]]];];

str = "";

For[i = 1, i <= Length[r], i++,

If[i > 1, str = str <> "+";];

str = str <> r[[i, 1]] <> ToString[r[[i, 2]]];

];

Return[str];

];

RootToString[a___] := InvalidArg["RootToString", a];
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12.2.46 StructureConstantsFromBasis

StructureConstantsFromBasis::usage=

”StructureConstantsFromBasis[r,sc,nconsts,theta] returns a list of structure constants for

an automorphism over the Lie algebra with root system r and root involution theta. nconsts

supplies the Chevalley constants. sc supplies the structure constants for the basis roots.

The table returned is a list of elements of the form ROOT, CONSTANT. If nconsts is

omitted, the procedure KleinChevalley will be called. However, for repeated usage it is

recommended to compute once and store the Chevalley constants in memory.”;

StructureConstantsFromBasis::badroot = "N_‘1‘,‘2‘ is zero.";

StructureConstantsFromBasis[d_?RootBasisQ, sc_?VectorQ,

theta_?MatrixQ] :=

StructureConstantsFromBasis[d, sc, KleinChevalley[d], theta];

StructureConstantsFromBasis[r_?RootInputQ, sc_?VectorQ,

theta_?MatrixQ] := Module[

{d},

d = RootBase[r];

Return[

StructureConstantsFromBasis[d, sc, KleinChevalley[d], theta]];

];

StructureConstantsFromBasis[r_?RootInputQ, sc_?VectorQ,

nconsts_?ListQ, theta_?MatrixQ] :=

StructureConstantsFromBasis[RootBase[r], sc, nconsts, theta];

(* remove the variable c_ and return a list described in the TODO \

section *)

StructureConstantsFromBasis[d_?RootBasisQ, sc_?VectorQ,

nconsts_?ListQ, theta_?MatrixQ] := Module[

{k, p, n, h, i, j, r, t, q, s, size, time, cntr, m,

root1, root2, r1, r2, r3, r4, num, b, nn, ao, ap, c, roots, cTbl,

nc12, nc34},

(* 0. Init *)

p = d;

n = 1;

size = 1;

time = TimeUsed[];

cntr = time;

m = CartanMatrixFromBasis[d];

(* 1. Basis *)

For[i = 1, i <= Length[d], i++,

c[d[[i]]] = sc[[i]];

c[-d[[i]]] = Power[sc[[i]], -1];

];

(*Print["OK"];*)

(* 2. Construct *)
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While[Length[p] > size,

size = Length[p];

For[i = 1, i <= Length[p], i++,

For[j = 1, j <= Length[d], j++,

t = p[[i]];

(* 2.1.

Get the basis coefficients and check height of the root *)

k = BasisCoefficients[d, t];

h = Sum[k[[s]], {s, 1, Length[k]}];

If[h == n,

(* 2.2. Determine the integer r *)

r = 0;

While[MemberQ[p, t - r*d[[j]]], r++];

r = r - 1;

(* 2.3. Define q *)

q = r - Sum[k[[s]]*m[[s, j]], {s, 1, Length[d]}];

(* 2.4. Ammend p? *)

If[q > 0,

p = Union[p, {t + d[[j]]}];

(* Write the root in "[Alpha] notation" *)

root1 = BasisCoefficients[d, d[[j]]];

root2 = BasisCoefficients[d, t];

(* Apply theta and convert back to "[Epsilon], i]

notation" *)

r1 = d[[j]];

r2 = t;

r3 = root1.Transpose[theta].d;

r4 = root2.Transpose[theta].d;

nc12 = ChevalleyLookup[nconsts, r1, r2];

nc34 = ChevalleyLookup[nconsts, r3, r4];

If[nc12 == 0,

Message[StructureConstantsFromBasis::badroot, r1, r2]];

If[nc34 == 0,

Message[StructureConstantsFromBasis::badroot, r3, r4]];

c[t + d[[j]]] = (nc34/nc12)*c[t]*c[d[[j]]];

c[-(t + d[[j]])] = 1/c[t + d[[j]]];

];

];

];

];

n = n + 1;

];

(* p is the set of all positive roots. Return p and -

p along with the structure constants *)

roots = Join[p, -p];
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cTbl = {};

For[i = 1, i <= Length[roots], i++,

cTbl = Join[cTbl, {{roots[[i]], c[roots[[i]]]}}];

];

Return[cTbl];

];

StructureConstantsFromBasis[a___] :=

InvalidArg["StructureConstantsFromBasis", a];
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12.2.47 StructureConstantsLookup

StructureConstantsLookup::usage=

”StructureConstantsLookup[cconsts,a] looks up the structure constant with respect to the

root a. cconsts is a table of the form returned by StructureConstants.”;

StructureConstantsLookup::noroot =

"Root ‘1‘ not found in supplied table.";

StructureConstantsLookup[cconsts_?ListQ, a_?VectorQ] := Module[

{i},

For[i = 1, i <= Length[cconsts], i++,

If[SameQ[cconsts[[i, 1]], a],

Return[cconsts[[i, 2]]];

];

];

Message[StructureConstantsLookup::noroot, a];

Return[{}];

];

StructureConstantsLookup[a___] :=

InvalidArg["StructureConstantsLookup", a];

12.3 Root System and Lie Algebra Package (Diagram)

12.3.1 DrawRootSystem

DrawRootSystem::usage=

”DrawRootSystem[r,force] draws a 2D or 3D plot of all roots of a root system r that is of

dimension at most 3. Basis lines are represented in bold. The optional argument force, if

True, forces drawRootSystem to establish the diagram in a 3D plane. Because a Graphics

object is returned, this is useful for combining 2D and 3D plots.”;

DrawRootSystem::dim = "dimension of ‘1‘ is too high. Max is 3.";

DrawRootSystem[basis_?RootBasisQ, force_: False] := Module[

{rin, roots, dim, rootlines, basislines, g1, g2},

dim = Length[basis[[1]]];

If[dim > 3,

Message[DrawRootSystem::dim, dim];

];

roots = RootSystem[basis];

Switch[dim,

1,
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If[force,

basislines =

Table[Line[{{0, 0, 0}, {basis[[i, 1]], 0, 0}}], {i, 1,

Length[basis]}];

rootlines =

Table[Line[{{0, 0, 0}, {roots[[i, 1]], 0, 0}}], {i, 1,

Length[roots]}];

g1 = Graphics3D[{Cyan, rootlines}];

g2 = Graphics3D[{Thick, Cyan, basislines}];

,

basislines =

Table[Line[{{0, 0}, {basis[[i, 1]], 0}}], {i, 1,

Length[basis]}];

rootlines =

Table[Line[{{0, 0}, {roots[[i, 1]], 0}}], {i, 1,

Length[roots]}];

g1 = Graphics[{Cyan, rootlines}];

g2 = Graphics[{Thick, Cyan, basislines}];

];

,

2,

If[force,

basislines =

Table[Line[{{0, 0, 0}, {basis[[i, 1]], basis[[i, 2]], 0}}], {i,

1, Length[basis]}];

rootlines =

Table[Line[{{0, 0, 0}, {roots[[i, 1]], roots[[i, 2]], 0}}], {i,

1, Length[roots]}];

g1 = Graphics3D[{Cyan, rootlines}];

g2 = Graphics3D[{Thick, Cyan, basislines}];

,

basislines =

Table[Line[{{0, 0}, {basis[[i, 1]], basis[[i, 2]]}}], {i, 1,

Length[basis]}];

rootlines =

Table[Line[{{0, 0}, {roots[[i, 1]], roots[[i, 2]]}}], {i, 1,

Length[roots]}];

g1 = Graphics[{Cyan, rootlines}];

g2 = Graphics[{Thick, Cyan, basislines}];

];

,

3,

basislines =

Table[Line[{{0, 0, 0}, {basis[[i, 1]], basis[[i, 2]],

basis[[i, 3]]}}], {i, 1, Length[basis]}];

rootlines =

Table[Line[{{0, 0, 0}, {roots[[i, 1]], roots[[i, 2]],

roots[[i, 3]]}}], {i, 1, Length[roots]}];

g1 = Graphics3D[{Cyan, rootlines}];

g2 = Graphics3D[{Thick, Red, basislines}];

];

Show[g1, g2, Background -> Black]

];

DrawRootSystem[r_?RootInputQ, force_: False] := Module[

{rin, basis, roots, dim, rootlines, basislines, g1, g2},

rin = RootInput[r];

basis = RootBase[r];

dim = Length[basis[[1]]];
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If[dim > 3,

Message[DrawRootSystem::dim, dim];

];

roots = RootSystem[r];

Switch[dim,

1,

If[force,

basislines =

Table[Line[{{0, 0, 0}, {basis[[i, 1]], 0, 0}}], {i, 1,

Length[basis]}];

rootlines =

Table[Line[{{0, 0, 0}, {roots[[i, 1]], 0, 0}}], {i, 1,

Length[roots]}];

g1 = Graphics3D[{Cyan, rootlines}];

g2 = Graphics3D[{Thick, Cyan, basislines}];

,

basislines =

Table[Line[{{0, 0}, {basis[[i, 1]], 0}}], {i, 1,

Length[basis]}];

rootlines =

Table[Line[{{0, 0}, {roots[[i, 1]], 0}}], {i, 1,

Length[roots]}];

g1 = Graphics[{Cyan, rootlines}];

g2 = Graphics[{Thick, Cyan, basislines}];

];

,

2,

If[force,

basislines =

Table[Line[{{0, 0, 0}, {basis[[i, 1]], basis[[i, 2]], 0}}], {i,

1, Length[basis]}];

rootlines =

Table[Line[{{0, 0, 0}, {roots[[i, 1]], roots[[i, 2]], 0}}], {i,

1, Length[roots]}];

g1 = Graphics3D[{Cyan, rootlines}];

g2 = Graphics3D[{Thick, Cyan, basislines}];

,

basislines =

Table[Line[{{0, 0}, {basis[[i, 1]], basis[[i, 2]]}}], {i, 1,

Length[basis]}];

rootlines =

Table[Line[{{0, 0}, {roots[[i, 1]], roots[[i, 2]]}}], {i, 1,

Length[roots]}];

g1 = Graphics[{Cyan, rootlines}];

g2 = Graphics[{Thick, Cyan, basislines}];

];

,

3,

basislines =

Table[Line[{{0, 0, 0}, {basis[[i, 1]], basis[[i, 2]],

basis[[i, 3]]}}], {i, 1, Length[basis]}];

rootlines =

Table[Line[{{0, 0, 0}, {roots[[i, 1]], roots[[i, 2]],

roots[[i, 3]]}}], {i, 1, Length[roots]}];

g1 = Graphics3D[{Cyan, rootlines}];

g2 = Graphics3D[{Thick, Red, basislines}];

];

Show[g1, g2, Background -> Black]

];
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DrawRootSystem[a___] := InvalidArg["DrawRootSystem", a];
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12.3.2 DynkinDiagram

DynkinDiagram::usage=

”DynkinDiagram[r] gives the Dynkin Diagram of root system r.”;

DynkinDiagram[d_?RootBasisQ, labels_: {}] :=

DynkinDiagram[BasisToRootSystem[d], labels];

DynkinDiagram[r_?RootInputQ, labels_: {}] := Module[

{rin, i, gr, toff, tht, biggest, mywidth, g},

rin = RootInput[r];

gr = {};

toff = 0;

tht = 0;

biggest = 0;

For[i = 1, i <= Length[rin], i++,

mywidth = DynkinWidth[rin[[i]]];

If[mywidth > biggest,

biggest = mywidth;

];

];

For[i = 1, i <= Length[rin], i++,

mywidth = DynkinWidth[rin[[i]]];

If[i > 1,

tht = tht - DynkinHeight[rin[[i]]];

];

gr = Join[gr,

LittleDynk[rin[[i]], (biggest - mywidth)/2, tht, toff,

labels]];

toff = toff + rin[[i, 2]];

];

g = Graphics[gr];

Return[g];

];

DynkinDiagram[a___] := InvalidArg["DynkinDiagram", a];
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12.3.3 gInvolutionDiagram

gInvolutionDiagram::usage=

”gInvolutionDiagram[r,theta,cvals] extends the Helminck diagram with the values c and k

necessary to recover the structure constants of an involution on the Lie algebra. Each basis

root is labelled with c,k. The minimal polynomial of the corresponding structure constant

is 1x2 + kx+ c. r is the root system, theta the root system automorphism, and cvals is the

list of structure constants.

(S-LOSS) gInvolutionDiagram[r,disks,arches,cvals] extends the Helminck diagram

with the values c and k necessary to recover the structure constants of an involution on

the Lie algebra. Each basis root is labelled with c,k. The minimal polynomial of the

corresponding structure constant is 1x2 + kx + c. r is the root system, disks labels the

fixed roots, arches represents the diagram automorphism, and cvals is the list of structure

constants.”;

gInvolutionDiagram[d_?RootBasisQ, theta_?MatrixQ, cvals_?ListQ] :=

Module[

{cv},

cv = cvMinimalPolynomialList[d, cvals];

HelminckDiagram[d, theta, cv]

];

gInvolutionDiagram[d_?RootInputQ, theta_?MatrixQ, cvals_?ListQ] :=

Module[

{cv},

cv = cvMinimalPolynomialList[d, cvals];

HelminckDiagram[d, theta, cv]

];

gInvolutionDiagram[a___] := InvalidArg["gInvolutionDiagram", a];

12.4 Root System and Lie Algebra Package (Internal)

12.4.1 BasisCoefficientsMatrix

BasisCoefficientsMatrix::usage=

”BasisCoefficientsMatrix[b,x] gives the coordinates of x with respect to basis b. x must be

a matrix.”;

BasisCoefficientsMatrix[b_?ListQ, x_?MatrixQ] := Module[
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{k, i, bstd, bm, c},

(* 1. Write x in standard basis *)

k = x // Flatten;

(* 2. Write all the basis vectors in standard basis *)

For[i = 1, i <= Length[b], i++,

bstd[i] = b[[i]] // Flatten;

];

(* 3. Form a matrix with bstd as rows *)

bm = Table[bstd[i], {i, 1, Length[b]}];

(* 4. Take the transpose *)

bm = Transpose[bm];

(* 5. Find the vector, which multiplied by bm, gives k *)

c = LinearSolve[bm, k];

If[c[[0]] === LinearSolve,

Message[BasisCoefficients::nmember, c // MatrixForm];

];

c

];

BasisCoefficientsMatrix[a___] :=

InvalidArg["BasisCoefficientsMatrix", a];
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12.4.2 BasisCoefficientsVector

BasisCoefficientsVector::usage=

”BasisCoefficientsVector[b,x] gives the coordinates of x with respect to basis b. x must be

a vector.”;

BasisCoefficientsVector[b_?ListQ, x_?VectorQ] := Module[

{k},

k = LinearSolve[Transpose[b], x];

k

];

BasisCoefficientsVector[a___] :=

InvalidArg["BasisCoefficientsVector", a];
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12.4.3 BasisToRootSystem

BasisToRootSystem::usage=

”BasisToRootSystem[d] identifies the type of root system formed by a basis d.”;

BasisToRootSystem[d_?RootBasisQ] := Module[

{cMatr, bMatr, i, sbasis, start, str},

(*

Print["BasisToRootSystem."];

*)

str = "";

(* Due to the possibility of type BC,

this is slightly more complicated than what it may seem to be.

First create the Cartan Matrix for the basis.

Force the creation regardless of the possible presence of BC. *)

cMatr = CartanMatrixFromBasis[d, True];

(* Form the blocks *)

bMatr = BlockList[cMatr];

start = 1;

For[i = 1, i <= Length[bMatr], i++, (* FOR each block *)

(*

Extract the ‘‘sub basis’’ consisting of elements of the basis \

corresponding to the current block *)

sbasis = Take[d, {start, start + Length[bMatr[[i]]] - 1}];

(* Check if this corresponds to BC *)

If[! SameQ[MatrixRank[sbasis], Length[sbasis]],

(* YES *)

str = str <> "BC";

str = str <> ToString[MatrixRank[sbasis]];

,

(* NO *)

str = str <> CartanToRootSystem[bMatr[[i]]];

];

If[! SameQ[i, Length[bMatr]],

str = str <> "+";

];

start = start + Length[bMatr[[i]]]; (*

shift the index over to the next sub system *)

];

Return[str];

];

BasisToRootSystem[a___] := InvalidArg["BasisToRootSystem", a];
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12.4.4 BlockAssemble

BlockAssemble::usage=

”BlockAssemble[mlist] assembles square matrices listed in mlist into one large matrix with

each list element along the diagonal.

BlockAssemble[a,b,...] assembles square matrices a, b,... into one large matrix

with each element along the diagonal.”;

BlockAssemble::nsquare = "Matrix in position ‘1‘ is not square.";

BlockAssemble[{argmlist__?MatrixQ}] := Module[

{mat, dim, i, row, newrow, len, mlist},

mlist = List[argmlist];

mat = {};

(* Get the total dimension *)

dim = 0;

For[i = 1, i <= Length[mlist], i++,

dim = dim + Length[mlist[[i]]];

(* Check that each element is square *)

If[! SameQ[Length[mlist[[i]]], Length[mlist[[i, 1]]]],

Message[BlockAssemble::nsquare, i];

Return[Fail];

];

];

len = 0;

For[i = 1, i <= Length[mlist], i++, (* FOR each block *)

For[row = 1, row <= Length[mlist[[i]]], row++, (*

FOR each row in block i *)

newrow = VectorPad[mlist[[i, row]], len, dim];

mat = Join[mat, {newrow}];

];

len += Length[mlist[[i]]];

];

Return[mat];

];

BlockAssemble[mlist__?MatrixQ] := BlockAssemble[{mlist}];

BlockAssemble[a___] := InvalidArg["BlockAssemble", a];
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12.4.5 BlockList

BlockList::usage=

”BlockList[matr] creates a list of each of the block matrices found in matrix matr.”;

BlockList[matr_?MatrixQ] := Module[

{i, splitlist, matrixlist, startpos},

splitlist = {};

matrixlist = {};

(* 1. Create a list of the lower right most entry of each block *)

For[i = 1, i <= Length[matr] - 1, i++,

If[ZeroesBelow[matr, i] && ZeroesRight[matr, i] &&

ZeroesAbove[matr, i + 1] && ZeroesLeft[matr, i + 1],

splitlist = Join[splitlist, {i}];

];

];

splitlist = Join[splitlist, {i}];

(* 2. List all the blocks *)

startpos = 1;

For[i = 1, i <= Length[splitlist], i++,

matrixlist =

Join[matrixlist, {Take[

matr, {startpos, splitlist[[i]]}, {startpos,

splitlist[[i]]}]}];

startpos = splitlist[[i]] + 1;

];

Return[matrixlist];

];

BlockList[a___] := InvalidArg["BlockList", a];
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12.4.6 ByBasisSort

ByBasisSort::usage=

”ByBasisSort[basis,list,p] sorts a list of elements in the span of a given basis according to

their coordinate vectors.”;

ByBasisSort[basis_?ListQ, list_?ListQ] := Module[

{kTable, i},

(* Grab the coordinate vectors *)

kTable =

Table[BasisCoefficients[basis, list[[i]]], {i, 1, Length[list]}];

(* Sort the coordinate vectors *)

kTable = Sort[kTable, BasisOrder];

(* Return the original basis vectors *)

Return[Table[kTable[[i]].basis, {i, 1, Length[list]}]];

];

ByBasisSort[a___] := InvalidArg["ByBasisSort", a];

BasisOrder[a_, b_] := Module[

{i},

For[i = 1, i <= Length[a], i++,

If[a[[i]] < b[[i]],

Return[False];

];

If[a[[i]] > b[[i]],

Return[True];

];

];

Return[False];

];

SyLexiOrder[a_, b_] := Module[

{i},

For[i = 1, i <= Length[a], i++,

If[a[[i]] < b[[i]],

Return[True];

];

If[a[[i]] > b[[i]],

Return[False];

];

];

Return[False];

];
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12.4.7 CartanMatrixFromBasis

CartanMatrixFromBasis::usage=

”CartanMatrixFromBasis[d,force] gives the Cartan Matrix formed by a basis of roots d.

The optional argument force, if True, will force a matrix to be generated even if the given

set of vectors does not form a basis.”;

CartanMatrixFromBasis::rank =

"argument is not a basis. Number of the elements is ‘1‘. Rank is \

‘2‘.";

CartanMatrixFromBasis[d_?MatrixQ, force_: False] := Module[{i, j},

If[! force && ! SameQ[MatrixRank[d], Length[d]],

Message[CartanMatrixFromBasis::rank, Length[d], MatrixRank[d]];

Return[{}];];

Return[

Table[Table[

2*InnerProduct[d[[i]], d[[j]]]/InnerProduct[d[[j]], d[[j]]], {j,

1, Length[d]}], {i, 1, Length[d]}]];

(*Table[Table[innerProduct[d[[i]],coRoot[d[[j]]]],{j,1,Length[

d]}],{i,1,Length[d]}]*)

];

CartanMatrixFromBasis[a___] := InvalidArg["CartanMatrixFromBasis", a];
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12.4.8 CartanNorm

CartanNorm::usage=

”CartanNorm[m,d,a,b] computes ¡a,b¿ where a is a root, b is a simple root, and m is the

Cartan Matrix for a root system with basis d.”;

CartanNorm::root = "‘1‘ is not a simple root";

CartanNorm[d_?RootBasisQ, a_?VectorQ, b_?VectorQ] := Module[

{k, i, pos, cMatr},

k = BasisCoefficients[d, a];

cMatr = CartanMatrixFromBasis[d];

If[! MemberQ[d, b],

Message[CartanNorm::root, b];

Return["X"];

];

pos = Position[d, b][[1, 1]];

Sum[k[[i]]*cMatr[[i, pos]], {i, 1, Length[k]}]

];

CartanNorm[a___] := InvalidArg["CartanNorm", a];
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12.4.9 CartanToRootSystemSimple

CartanToRootSystemSimple::usage=

”CartanToRootSystemSimple[m] identifies the root system represented by Cartan Matrix

m if it is known to be an irreducible root system.”;

CartanToRootSystemSimple::fail =

"Could not identify matrix as a root system.";

(* bugfix: was confusing B and F

credit: C. Buell *)

CartanToRootSystemSimple[matr_?MatrixQ] := Module[

{sgl, dbl, tpl, n, i, pos, sg2, db2, tp2, rowSum, colSum, a, b},

n = Length[matr];

(* Count the number of single, double,

and triple bonds represented *)

sgl = Table[Count[matr[[i]], -1], {i, 1, Length[matr]}];

dbl = Table[Count[matr[[i]], -2], {i, 1, Length[matr]}];

tpl = Table[Count[matr[[i]], -3], {i, 1, Length[matr]}];

sg2 = Table[Count[matr[[All, i]], -1], {i, 1, Length[matr]}];

db2 = Table[Count[matr[[All, i]], -2], {i, 1, Length[matr]}];

tp2 = Table[Count[matr[[All, i]], -3], {i, 1, Length[matr]}];

(* Rule out G2... any row have a triple bond? *)

If[Norm[tpl] > 0, Return[RootToString[{{"G", n}}]];];

(* B, C, and F case: any row have a double bond? *)

If[Norm[dbl] > 0,

pos = Position[matr, -2];

{{a, b}} = Position[matr, -2];

rowSum = Sum[matr[[a, i]], {i, n}];

colSum = Sum[matr[[i, b]], {i, n}];

If[SameQ[pos, {{2, 1}}] && n == 2,

Return[RootToString[{{"B", n}}]];];

If[SameQ[{rowSum, colSum}, {-1, 0}],

Return[RootToString[{{"B", n}}]];];

If[SameQ[pos, {{1, 2}}] && n == 2,

Return[RootToString[{{"C", n}}]];];

If[SameQ[{rowSum, colSum}, {0, -1}],

Return[RootToString[{{"C", n}}]];];

If[SameQ[{rowSum, colSum}, {-1, -1}],

Return[RootToString[{{"F", 4}}]];];

Message[CartanToRootSystemSimple::fail];

Return[Fail];

];

(* D, E case: Any node have three single bonds? *)

If[MemberQ[sgl, 3],
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If[6 <= n <= 8,

If[Det[matr] == 3 || Det[matr] == 2 || Det[matr] == 1,

Return[RootToString[{{"E", n}}]];];

Return[RootToString[{{"D", n}}]];

];

Return[RootToString[{{"D", n}}]];

];

(* A is only remaining case *)

Return[RootToString[{{"A", n}}]];

];

(*

CartanToRootSystemSimple[matr_?MatrixQ]:=Module[

{sgl,dbl,tpl,n,i,pos},

n=Length[matr];

(* Count the number of single, double, and triple bonds represented *)

\

sgl=Table[Count[matr[[i]],-1],{i,1,Length[matr]}];

dbl=Table[Count[matr[[i]],-2],{i,1,Length[matr]}];

tpl=Table[Count[matr[[i]],-3],{i,1,Length[matr]}];

(* Rule out G2... any row have a triple bond? *)

\

If[Norm[tpl]>0,Return[RootToString[{{"G",n}}]];];

(* B, C, and F case: any row have a double bond? *)

If[Norm[dbl]>0,

pos=Position[matr,-2];

If[SameQ[pos,{{2,1}}],Return[RootToString[{{"B",n}}]];];

If[SameQ[pos,{{n-1,n}}],Return[RootToString[{{"B",n}}]];];

If[SameQ[pos,{{1,2}}],Return[RootToString[{{"C",n}}]];];

If[SameQ[pos,{{n,n-1}}],Return[RootToString[{{"C",n}}]];];

If[SameQ[pos,{{2,3}}],Return[RootToString[{{"F",4}}]];];

Message[CartanToRootSystemSimple::fail];

Return[RootToString[{{"X",n}}]];

];

(* D, E case: Any node have three single bonds? *)

If[MemberQ[sgl,3],

pos=Position[sgl,3][[1,1]];

If[pos==4,

If[n>=7,Return[RootToString[{{"E",n}}]];];

If[n==6,

If[Det[matr]==3,Return[RootToString[{{"E",n}}]];];

Return[RootToString[{{"D",n}}]];

];

];

Return[RootToString[{{"D",n}}]];
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];

(* A is only remaining case *)

Return[RootToString[{{"A",n}}]];

];

*)

CartanToRootSystemSimple[a___] :=

InvalidArg["CartanToRootSystemSimple", a];
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12.4.10 Diagonalize

Diagonalize::usage=

”Diagonalize[m] returns a matrix p and diagonal matrix d such that d = p(-1) m p.”;

Diagonalize[m_?MatrixQ] := Module[

{evs, p, pinv},

evs = Eigenvectors[m];

p = Transpose[evs];

pinv = Inverse[p];

{p, pinv.m.p}

];

Diagonalize[a___] := InvalidArg["Diagonalize", a];



285

12.4.11 DynkinData

DynkinData::usage=

”DynkinData[r,disks] returns relevant data for a Dynkin diagram with root system r. The

output is a list of elements of the form neighbor 1, edge type , neighbor 2, edge type

, ... describing the neighbors a simple root shares, and the connecting bond type. The

optional argument disks will throw out any data which points to a root not in the set of

disks, and return for any roots which are not in the set of disks. i.e. Return data for only

a sub-diagram defined by the roots of disks.”;

DynkinData[d_?RootBasisQ, disks_: {}] :=

DynkinData[BasisToRootSystem[d], disks];

DynkinData[r_?RootInputQ, disks_: {}] := Module[

{rs, rootsystem, i, j, out, type, dim, of, dellist, w},

rs = RootInput[r];

out = {};

of = 0;

For[i = 1, i <= Length[rs], i++,

rootsystem = rs[[i]];

type = rootsystem[[1]];

dim = rootsystem[[2]];

Switch[type,

"A",

out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 1, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out = Join[out, {{{dim - 1 + of, 10}}}];,

"B",

out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 2, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out =

Join[out, {{{dim - 2 + of, 10}, {dim + of, 22}}, {{dim - 1 + of,

22}}}];,

"C",

out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 2, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out =

Join[out, {{{dim - 2 + of, 10}, {dim + of, 21}}, {{dim - 1 + of,

21}}}];,

"D",
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out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 3, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out =

Join[out, {{{dim - 3 + of, 10}, {dim - 1 + of, 10}, {dim + of,

10}}, {{dim - 2 + of, 10}}, {{dim - 2 + of, 10}}}];,

"E",

Switch[dim,

6,

out =

Join[out, {{{3 + of, 10}}, {{4 + of, 10}}, {{1 + of,

10}, {4 + of, 10}}, {{2 + of, 10}, {3 + of, 10}, {5 + of,

10}}, {{4 + of, 10}, {6 + of, 10}}, {{5 + of, 10}}}];,

7,

out =

Join[out, {{{3 + of, 10}}, {{4 + of, 10}}, {{1 + of,

10}, {4 + of, 10}}, {{2 + of, 10}, {3 + of, 10}, {5 + of,

10}}, {{4 + of, 10}, {6 + of, 10}}, {{5 + of,

10}, {7 + of, 10}}, {{6 + of, 10}}}];,

8,

out =

Join[out, {{{3 + of, 10}}, {{4 + of, 10}}, {{1 + of,

10}, {4 + of, 10}}, {{2 + of, 10}, {3 + of, 10}, {5 + of,

10}}, {{4 + of, 10}, {6 + of, 10}}, {{5 + of,

10}, {7 + of, 10}}, {{6 + of, 10}, {8 + of,

10}}, {{7 + of, 10}}}];

];,

"F",

out =

Join[out, {{{2 + of, 10}}, {{1 + of, 10}, {3 + of,

22}}, {{2 + of, 22}, {4 + of, 10}}, {{3 + of, 10}}}];,

"G",

out = Join[out, {{{2 + of, 31}}, {{1 + of, 31}}}];

];

of = of + dim;

];

(* Disks? *)

If[Length[disks] > 0,

For[i = 1, i <= Length[out], i++,

If[MemberQ[disks, i],

dellist = {};

For[j = 1, j <= Length[out[[i]]], j++,

If[! MemberQ[disks, out[[i, j, 1]]],

dellist = Join[dellist, {{j}}];

];

];

,

dellist = Table[{j}, {j, 1, Length[out[[i]]]}];

];

w = Delete[out[[i]], dellist];

out[[i]] = w;

];

];

out

];
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DynkinData[a___] := InvalidArg["DynkinData", a];
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12.4.12 DynkinDataNaturalOrdering

DynkinDataNaturalOrdering::usage=

”DynkinDataNaturalOrdering[r,disks] returns relevant data for a Dynkin diagram with root

system r. The output is a list of elements of the form neighbor 1, edge type , neighbor

2, edge type , ... describing the neighbors a simple root shares, and the connecting bond

type. The optional argument disks will throw out any data which points to a root not in

the set of disks, and return for any roots which are not in the set of disks. i.e. Return data

for only a sub-diagram defined by the roots of disks. This variant of dynkinData re-orders

the labeling of the simple roots of type E. Roots 2 and 3 are swapped, then 3 and 4.”;

DynkinDataNaturalOrdering[d_?RootBasisQ, disks_: {}] :=

DynkinDataNaturalOrdering[BasisToRootSystem[d], disks];

DynkinDataNaturalOrdering[r_?RootInputQ, disks_: {}] := Module[

{rs, rootsystem, i, j, out, type, dim, of, dellist, w},

rs = RootInput[r];

out = {};

of = 0;

For[i = 1, i <= Length[rs], i++,

rootsystem = rs[[i]];

type = rootsystem[[1]];

dim = rootsystem[[2]];

Switch[type,

"A",

out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 1, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out = Join[out, {{{dim - 1 + of, 10}}}];,

"B",

out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 2, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out =

Join[out, {{{dim - 2 + of, 10}, {dim + of, 22}}, {{dim - 1 + of,

22}}}];,

"C",

out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 2, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out =

Join[out, {{{dim - 2 + of, 10}, {dim + of, 21}}, {{dim - 1 + of,
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21}}}];,

"D",

out = Join[out, {{{2 + of, 10}}}];

For[j = 2, j <= dim - 3, j++,

out = Join[out, {{{j - 1 + of, 10}, {j + 1 + of, 10}}}];

];

out =

Join[out, {{{dim - 3 + of, 10}, {dim - 1 + of, 10}, {dim + of,

10}}, {{dim - 2 + of, 10}}, {{dim - 2 + of, 10}}}];,

"E",

Switch[dim,

6,

out =

Join[out, {{{2 + of, 10}}, {{1 + of, 10}, {3 + of,

10}}, {{2 + of, 10}, {4 + of, 10}, {5 + of,

10}}, {{3 + of, 10}}, {{3 + of, 10}, {6 + of,

10}}, {{5 + of, 10}}}];,

7,

out =

Join[out, {{{2 + of, 10}}, {{1 + of, 10}, {3 + of,

10}}, {{2 + of, 10}, {4 + of, 10}, {5 + of,

10}}, {{3 + of, 10}}, {{3 + of, 10}, {6 + of,

10}}, {{5 + of, 10}, {7 + of, 10}}, {{6 + of, 10}}}];,

8,

out =

Join[out, {{{2 + of, 10}}, {{1 + of, 10}, {3 + of,

10}}, {{2 + of, 10}, {4 + of, 10}, {5 + of,

10}}, {{3 + of, 10}}, {{3 + of, 10}, {6 + of,

10}}, {{5 + of, 10}, {7 + of, 10}}, {{6 + of,

10}, {8 + of, 10}}, {{7 + of, 10}}}];

];,

"F",

out =

Join[out, {{{2 + of, 10}}, {{1 + of, 10}, {3 + of,

22}}, {{2 + of, 22}, {4 + of, 10}}, {{3 + of, 10}}}];,

"G",

out = Join[out, {{{2 + of, 31}}, {{1 + of, 31}}}];

];

of = of + dim;

];

(* Disks? *)

If[Length[disks] > 0,

For[i = 1, i <= Length[out], i++,

If[MemberQ[disks, i],

dellist = {};

For[j = 1, j <= Length[out[[i]]], j++,

If[! MemberQ[disks, out[[i, j, 1]]],

dellist = Join[dellist, {{j}}];

];

];

,

dellist = Table[{j}, {j, 1, Length[out[[i]]]}];

];

w = Delete[out[[i]], dellist];

out[[i]] = w;

];

];
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out

];

DynkinDataNaturalOrdering[a___] :=

InvalidArg["DynkinDataNaturalOrdering", a];
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12.4.13 DynkinEdgeCodes

DynkinEdgeCodes::usage=

” th th th DynkinEdgeCodes[type,dim] returns a list of codes where the i entry denotes the

type of edge between the i and (i+1) simple roots. The edge codes are: 10 = single line,

21 = double left line, 22 = double right line, 31 = triple left line. type denotes the root

system type, and dim denotes the dimension.”;

DynkinEdgeCodes[r_?RootInputQ] := DynkinEdgeCodes[RootBase[r]];

DynkinEdgeCodes[d_?RootBasisQ] := Module[

{i, ret, thislen, nextlen},

ret = {};

For[i = 1, i <= Length[d] - 1, i++,

thislen = Norm[d[[i]]];

nextlen = Norm[d[[i + 1]]];

Switch[thislen^2/nextlen^2,

1, (* single bond *)

ret = Join[ret, {11}];

,

2, (* double bond *)

If[thislen < nextlen, (* the left element is the shorter root *)

ret = Join[ret, {21}];

,

ret = Join[ret, {22}]; (*

the right element is the shorter root *)

];

,

1/2, (* double bond *)

If[thislen < nextlen, (* the left element is the shorter root *)

ret = Join[ret, {21}];

,

ret = Join[ret, {22}]; (*

the right element is the shorter root *)

];

,

3, (* triple bond *)

If[thislen < nextlen, (* the left element is the shorter root *)

ret = Join[ret, {31}];

,

ret = Join[ret, {32}]; (*

the right element is the shorter root *)

];

,

1/3, (* triple bond *)

If[thislen < nextlen, (* the left element is the shorter root *)

ret = Join[ret, {31}];
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,

ret = Join[ret, {32}]; (*

the right element is the shorter root *)

];

];

];

Return[ret];

];

DynkinEdgeCodes[type_?StringQ, dim_?IntegerQ] := Module[

{i, t},

Switch[type,

"A",

t = Table[10, {i, 1, dim - 1}];,

"B",

t = Table[10, {i, 1, dim - 2}];

t = Join[t, {22}];,

"C",

t = Table[10, {i, 1, dim - 2}];

t = Join[t, {21}];,

"D",

t = Table[10, {i, 1, dim - 1}];,

"E",

t = Table[10, {i, 1, dim - 1}];,

"F",

t = {10, 22, 10};,

"G",

t = {31};,

_,

Message[lie::type, type];

];

t

];

DynkinEdgeCodes[a___] := InvalidArg["DynkinEdgeCodes", a];
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12.4.14 DynkinEdgeCons

DynkinEdgeCons::usage=

”DynkinEdgeCons[type,dim] returns a list of pairs of simple roots which are joined together.

type denotes the root system type, and dim denotes the dimension.”;

DynkinEdgeCons[type_?StringQ, dim_?IntegerQ] := Module[{i, t},

Switch[type,

"A",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"B",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"C",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"D",

t = Table[{i, i + 1}, {i, 1, dim - 3}];

t = Join[t, {{dim - 2, dim - 1}, {dim - 2, dim}}];,

"E",

Switch[dim,

6,

t = {{1, 3}, {3, 4}, {4, 2}, {4, 5}, {5, 6}};

,

7,

t = {{1, 3}, {3, 4}, {4, 2}, {4, 5}, {5, 6}, {6, 7}};

,

8,

t = {{1, 3}, {3, 4}, {4, 2}, {4, 5}, {5, 6}, {6, 7}, {7, 8}};

];

,

"F",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"G",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

_,

Message[lie::type, type];

];

Return[t];

];

DynkinEdgeCons[a___] := InvalidArg["DynkinEdgeCons", a];
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12.4.15 DynkinEdgeConsNestedForm

DynkinEdgeConsNestedForm::usage=

”DynkinEdgeCons[type,dim] returns a list of pairs of simple roots which are joined together.

type denotes the root system type, and dim denotes the dimension. If a root shares multiple

neighbors, then the entries are merged. e.g. 1,2,3 indicates root 1 is connected to both roots

2 and 3.”;

DynkinEdgeConsNestedForm[type_?StringQ, dim_?IntegerQ] :=

Module[{i, t},

Switch[type,

"A",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"B",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"C",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"D",

t = Table[{i, i + 1}, {i, 1, dim - 3}];

t = Join[t, {{dim - 2, {dim - 1, dim}}}];,

"E",

Switch[dim,

6,

t = {{1, 3}, {3, 4}, {4, {2, 5}}, {5, 6}};

,

7,

t = {{1, 3}, {3, 4}, {4, {2, 5}}, {5, 6}, {6, 7}};

,

8,

t = {{1, 3}, {3, 4}, {4, {2, 5}}, {5, 6}, {6, 7}, {7, 8}};

];

,

"F",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

"G",

t = Table[{i, i + 1}, {i, 1, dim - 1}];,

_,

Message[lie::type, type];

];

Return[t];

];

DynkinEdgeConsNestedForm[a___] :=

InvalidArg["DynkinEdgeConsNestedForm", a];
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12.4.16 DynkinHeight

DynkinHeight::usage=

”DynkinHeight[r] gives the height of a Dynkin diagram of type r, where the height is the

number of simple roots along the tallest vertical line.”;

DynkinHeight[r_?RootBasisQ] := DynkinHeight[BasisToRootSystem[r]];

DynkinHeight[r_?RootInputQ] := Module[

{w, rin},

rin = IrreducibleRootInput[r];

Switch[rin[[1]],

"A", w = 1;,

"B", w = 1;,

"C", w = 1;,

"D", w = 2;,

"E", w = 2;,

"F", w = 1;,

"G", w = 1;

];

Return[w];

];

DynkinHeight[a___] := InvalidArg["DynkinHeight", a];
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12.4.17 DynkinPoints

DynkinPoints::usage=

”DynkinPoints[r] provides a list of relative x,y positions of the dots of a Dynkin diagram

for a root system r.

DynkinPoints[type,dim,xOff,yOff] provides a list of relative x,y positions of the

dots of a Dynkin diagram for a root system of type (type,dim). The points are offset along

the x and y axes by xOff and yOff respectively.”;

DynkinPoints[type_?StringQ, dim_?IntegerQ, xOffset_?NumberQ,

yOffset_?NumberQ] := Module[

{i, points},

Switch[type,

"A",

points = Table[{i + xOffset, 0 + yOffset}, {i, 0, dim - 1}];,

"B",

points = Table[{i + xOffset, 0 + yOffset}, {i, 0, dim - 1}];,

"C",

points = Table[{i + xOffset, 0 + yOffset}, {i, 0, dim - 1}];,

"D",

points = Table[{i + xOffset, 0 + yOffset}, {i, 0, dim - 3}];

points =

Join[points, {{dim - 2 + xOffset,

0.5 + yOffset}, {dim - 2 + xOffset, -0.5 + yOffset}}];,

"E",

Switch[dim,

6,

points = {{0 + xOffset, 0 + yOffset}, {2 + xOffset,

1 + yOffset}, {1 + xOffset, 0 + yOffset}, {2 + xOffset,

0 + yOffset}, {3 + xOffset, 0 + yOffset}, {4 + xOffset,

0 + yOffset}};,

7,

points = {{0 + xOffset, 0 + yOffset}, {2 + xOffset,

1 + yOffset}, {1 + xOffset, 0 + yOffset}, {2 + xOffset,

0 + yOffset}, {3 + xOffset, 0 + yOffset}, {4 + xOffset,

0 + yOffset}, {5 + xOffset, 0 + yOffset}};,

8,

points = {{0 + xOffset, 0 + yOffset}, {2 + xOffset,

1 + yOffset}, {1 + xOffset, 0 + yOffset}, {2 + xOffset,

0 + yOffset}, {3 + xOffset, 0 + yOffset}, {4 + xOffset,

0 + yOffset}, {5 + xOffset, 0 + yOffset}, {6 + xOffset,

0 + yOffset}};

];

,

"F",

points = {{0 + xOffset, 0 + yOffset}, {1 + xOffset,

0 + yOffset}, {2 + xOffset, 0 + yOffset}, {3 + xOffset,

0 + yOffset}};,

"G",

points = {{0 + xOffset, 0 + yOffset}, {1 + xOffset,

0 + yOffset}};

,

_,

Message[lie::type, type];

];
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Return[points];

];

DynkinPoints[d_?RootBasisQ] := DynkinPoints[BasisToRootSystem[d]];

DynkinPoints[r_?RootInputQ] := Module[

{i, points, toff, tht, biggest, mywidth, rin},

rin = RootInput[r];

points = {};

toff = 0;

tht = 0;

biggest = 0;

For[i = 1, i <= Length[rin], i++,

mywidth = DynkinWidth[rin[[i]]];

If[mywidth > biggest,

biggest = mywidth;

];

];

For[i = 1, i <= Length[rin], i++,

mywidth = DynkinWidth[rin[[i]]];

If[i > 1,

tht = tht - DynkinHeight[rin[[i]]];

];

points =

Join[points,

DynkinPoints[rin[[i, 1]], rin[[i, 2]], (biggest - mywidth)/2,

tht]];

toff = toff + rin[[i, 2]];

];

Return[points];

];

DynkinPoints[a___] := InvalidArg["DynkinPoints", a];
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12.4.18 DynkinOrientation

DynkinOrientation::usage=

”DynkinOrientation[r,basis] returns True if the Dynkin diagram corresponding to the root

system with the supplied basis is oriented in the direction standard to Pisces (See Humphreys,

Introduction to Lie Algebra and Representation Theory).

DynkinOrientation[r] returns 1 if r is oriented ’correctly’ (as per Humphreys), -1 if

oriented backward, or 0 if basis elements are not ordered. If r is the name of a root system

(not a basis), then 1 is always returned.”;

DynkinOrientation[r_?RootInputQ] := 1;

DynkinOrientation[d_?RootBasisQ] := Module[

{rname, rin, type, dim},

(* Get the name *)

rname = BasisToRootSystem[d];

rin = IrreducibleRootInput[rname];

type = rin[[1]];

dim = rin[[2]];

Switch[type,

"A",

Return[1];

,

"B",

(* Give n is at least 3,

If roots 1 and 2 have the same length then oriented correctly.

Else incorrectly *)

If[dim >= 3,

If[SameQ[Norm[d[[1]]], Norm[d[[2]]]],

Return[1];

,

Return[-1];

];

,

(* If n is 2,

then oriented correctly if length of first root is greater *)

If[Norm[d[[1]]] > Norm[d[[2]]],

Return[1];

,

Return[-1];

];

];

,

"C",

(* If roots 1 and 2 have the same length then oriented correctly.

Else incorrectly *)

If[SameQ[Norm[d[[1]]], Norm[d[[2]]]],

Return[1];

,

Return[-1];

];

,

"F",



299

(* Length of roots on left should be greater *)

If[Norm[d[[2]]] > Norm[d[[3]]],

Return[1];

,

Return[-1];

];

,

"G",

(* Length of root on right should be greater *)

If[Norm[d[[1]]] < Norm[d[[2]]],

Return[1];

,

Return[-1];

];

];

Return[0];

];

DynkinOrientation[r_, basis_?ListQ] := Module[

{},

Return[SameQ[CartanMatrix[basis], CartanMatrix[r]]];

];

DynkinOrientation[a___] := InvalidArg["DynkinOrientation", a];
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12.4.19 DynkinToCartan

DynkinToCartan::usage=

”DynkinToCartan[D] recovers the Cartan matrix from the Dynkin diagram information D

returned by dynkinData and dynkinDataNaturalOrdering.”;

DynkinToCartan[d_?ListQ] := Module[

{i, j, m, dim, rowdata, rootdata},

dim = Length[d];

m = ConstantArray[0, {dim, dim}];

(* For every row *)

For[i = 1, i <= dim, i++,

rowdata = d[[i]];

If[Length[rowdata] > 0,

m[[i, i]] = 2;

];

(* For every root connected to root i *)

For[j = 1, j <= Length[rowdata], j++,

rootdata = rowdata[[j]];

(* What is the type of connection? *)

Switch[rootdata[[2]],

10, (* Single Edge *)

m[[i, rootdata[[1]]]] = -1;,

21,

If[rootdata[[1]] > i,

m[[i, rootdata[[1]]]] = -1;

,

m[[i, rootdata[[1]]]] = -2;

];,

22,

If[rootdata[[1]] > i,

m[[i, rootdata[[1]]]] = -2;

,

m[[i, rootdata[[1]]]] = -1;

];,

31,

If[rootdata[[1]] > i,

m[[i, rootdata[[1]]]] = -1;

,

m[[i, rootdata[[1]]]] = -3;

];

];

];

];

Return[m];

];

DynkinToCartan[a___] := InvalidArg["DynkinToCartan", a];
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12.4.20 DynkinWidth

DynkinWidth::usage=

”DynkinWidth[r] gives the width of a Dynkin diagram of type r, where the width is the

number of simple roots along the longest horizontal line.”;

DynkinWidth[r_?RootBasisQ] := DynkinWidth[BasisToRootSystem[r]];

DynkinWidth[r_?RootInputQ] := Module[

{w, rin},

rin = IrreducibleRootInput[r];

Switch[rin[[1]],

"A", w = rin[[2]];,

"B", w = rin[[2]];,

"C", w = rin[[2]];,

"D", w = rin[[2]] - 1;,

"E", w = rin[[2]] - 1;,

"F", w = rin[[2]];,

"G", w = rin[[2]];

];

Return[w];

];

DynkinWidth[a___] := InvalidArg["DynkinWidth", a];
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12.4.21 FindPivots

FindPivots::usage=

”FindPivots[m] indexes the columns containing pivots in RREF[m].”;

FindPivots[m_?MatrixQ] := Module[

{mt, pvlist, i, erows},

(* Look for columns that have pivots *)

pvlist = {};

(*mt=RowReduce[m];*)

(* Take the transpose so mt[[

i]] corresponds to column i and not row i of m *)

mt = Transpose[m];

(* Make a table of unit rows *)

erows = Table[

UnitVector[Length[mt[[1]]], i], {i, 1, Length[mt[[1]]]}];

For[i = 1, i <= Length[mt], i++,

If[MemberQ[erows, mt[[i]]],

pvlist = Join[pvlist, {i}];

];

];

Return[pvlist];

];

FindPivots[a___] := InvalidArg["FindPivots", a];
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12.4.22 GroebnerBackSolver

GroebnerBackSolver::usage=

”GroebnerBackSolver[eqns,vars] finds all solutions to the multivariate polynomial system

given by eqns with set of variables vars.”;

GroebnerBackSolver[eqns_?ListQ, vars_?ListQ] :=

GroebnerBackSolver[eqns, vars, Length[vars], {}, {}];

GroebnerBackSolver[eqns_?ListQ, vars_?ListQ, m_?IntegerQ, rules_,

solnset_] := Module[{gb, subeqns, soln, i, nrules, nsolnset},

If[m == 0,

Return[Union[solnset, {rules}]];

];

gb = GroebnerBasis[eqns, vars, Drop[vars, -(Length[vars] + 1 - m)]];

If[gb == {},

Return[GroebnerBackSolver[eqns, vars, m - 1, rules, solnset]];

];

subeqns =

Simplify[Table[gb[[i]] == 0, {i, 1, Length[gb]}] /. rules];

soln = Solve[subeqns, vars[[m]]] // Flatten;

(*Print["At m=",m,", ",Length[soln]," solutions found."];*)

nsolnset = solnset;

For[i = 1, i <= Length[soln], i++,

(*Print["Level ",m,", Solution ",i];*)

nrules = Join[rules, {soln[[i]]}];

nsolnset = GroebnerBackSolver[eqns, vars, m - 1, nrules, nsolnset];

];

Return[nsolnset];

];

GroebnerBackSolver[a___] := InvalidArg["GroebnerBackSolver", a];

(*

groebnerBackSolver2[solnset_,gb_,vars_,x_]:=groebnerBackSolver[\

solnset,gb,vars,x,1,{}];

*)

(*

groebnerBackSolver2[solnset_,gb_,vars_,x_,cureqn_,rules_]:=Module[{\

eqn,soln,j,nrules,nsolnset},

nsolnset={};

eqn=(gb[[cureqn]]==0)/.rules;

soln=Flatten[Solve[eqn,vars[[-cureqn]]]];

For[j=1,j<=Length[soln],j++,

nrules=Join[rules,{soln[[j]]}];

If[cureqn<Length[vars],



304

nsolnset=Union[nsolnset,groebnerBackSolver[nsolnset,gb,vars,x,cureqn+\

1,nrules]];

,

nsolnset=Union[nsolnset,{nrules}];

];

];

nsolnset

];

*)
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12.4.23 GroebnerOneSolution

GroebnerOneSolution::usage=

”GroebnerOneSolution[eqns,vars] finds one solution to the multivariate polynomial system

given by eqns with set of variables vars.”;

GroebnerOneSolution[eqns_?ListQ, vars_?ListQ] :=

GroebnerOneSolution[eqns, vars, Length[vars], {}, {}];

(* Return just 1 solution *)

GroebnerOneSolution[eqns_?ListQ, vars_?ListQ, m_?IntegerQ, rules_,

solnset_] := Module[{gb, subeqns, soln, i, nrules, nsolnset},

If[m == 0,

Return[rules];

];

gb = GroebnerBasis[eqns, vars, Drop[vars, -(Length[vars] + 1 - m)]];

If[gb == {},

Return[GroebnerOneSolution[eqns, vars, m - 1, rules, solnset]];

];

subeqns =

Simplify[Table[gb[[i]] == 0, {i, 1, Length[gb]}] /. rules];

soln = Solve[subeqns, vars[[m]]] // Flatten;

If[Length[soln] < 1, Return[{}];];

(*Print["At m=",m,", ",Length[soln]," solutions found."];*)

nsolnset = solnset;

nrules = Join[rules, {soln[[1]]}];

nsolnset = GroebnerOneSolution[eqns, vars, m - 1, nrules, nsolnset];

Return[nsolnset];

];

GroebnerOneSolution[a___] := InvalidArg["GroebnerOneSolution", a];
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12.4.24 IrreducibleRootInput

IrreducibleRootInput::usage=

”IrreducibleRootInput[r] converts an irreducible root system r into a variant of list form

TYPE,DIM. An error message and is returned if r is not irreducible.”;

IrreducibleRootInput::arg = "‘1‘ is not an irreducible root system.";

IrreducibleRootInput[r_] := Module[

{rin},

rin = RootInput[r];

If[Length[rin] > 1,

Message[IrreducibleRootInput::arg, r];

Return[Fail];

];

Return[Flatten[rin]];

];

IrreducibleRootInput[a___] := InvalidArg["IrreducibleRootInput", a];
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12.4.25 LieMultTable

LieMultTable::usage=

”LieMultTable[L] gives the Lie Multiplication Table for a set of vectors L forming the basis

for a Lie algebra. The (i,j) entry of the table is the basis coordinate of the vector v = [Li,Lj].

LieMultTable[{argL_?MatrixQ}] := Module[

{L, i, j, v, mt, time, cntr},

L = List[argL];

time = TimeUsed[];

cntr = time;

mt = ConstantArray[0, {Length[L], Length[L]}];

For[i = 1, i <= Length[L], i++,

For[j = 1, j <= Length[L], j++,

v = LieBracket[L[[i]], L[[j]]];

mt[[i, j]] = Position[L, v];

(*

If[TimeUsed[]-cntr>10,

Print["(rootSpaceDecomp) CPU Time:[",TimeUsed[]-time,

"] Table entries:[",i*(Length[L]-1)+j," out of ",(Length[

L])^2,"]"];

cntr=TimeUsed[];

];

*)

];

];

(*

Print["(lieMultTable) Used ",TimeUsed[]-time,

"s CPU Time to compute the multiplication table."];

*)

mt

];

LieMultTable[a___] := InvalidArg["LieMultTable", a];
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12.4.26 LittleDynk

LittleDynk::usage=

”LittleDynk[r,xOff,yOff,nOff,labels] draws the Dynkin diagram for an irreducible root sys-

tem r. xOff and yOff are, respectively, the x and y coordinate offsets of the diagram. nOff

provides the offset for automatic root numbering (starting value). The optional argument

labels allows custom labels for the simple roots.”;

LittleDynk[d_?RootBasisQ, xOffset_?NumberQ, yOffset_?NumberQ,

nOffSet_?IntegerQ, labels_: {}] :=

LittleDynk[BasisToRootSystem[d], xOffset, yOffset, nOffSet, labels];

LittleDynk[r_?RootInputQ, xOffset_?NumberQ, yOffset_?NumberQ,

nOffSet_?IntegerQ, labels_: {}] := Module[

{rin, type, dim, vertexTypes, dotRadius, edgeThickness,

points, edgeCodes, edgeCons, grPoints, grEdges, grLabels, grArgs,

i, x1, y1, x2, y2},

rin = IrreducibleRootInput[r];

type = rin[[1]];

dim = rin[[2]];

(* Defaults *)

vertexTypes = Table[Circle, {i, 1, dim}];

dotRadius = .065;

edgeThickness = .004;

(* Apply options *)(*

vertexTypes=vertexTypes//.options;

dotRadius=dotRadius//.options;

edgeThickness=edgeThickness//.options;

*)

points = DynkinPoints[type, dim, xOffset, yOffset];

grPoints =

Table[vertexTypes[[i]][points[[i]], dotRadius], {i, 1,

Length[points]}];

edgeCodes = DynkinEdgeCodes[type, dim];

edgeCons = DynkinEdgeCons[type, dim];

If[SameQ[labels, {}],

grLabels =

Table[Text[

i + nOffSet, {points[[i, 1]] + .1, points[[i, 2]] - .2}], {i,

1, Length[points]}];

,

grLabels =

Table[Text[

labels[[i + nOffSet]], {points[[i, 1]] + .1,

points[[i, 2]] - .2}], {i, 1, Length[points]}];

];

grEdges = {};

For[i = 1, i <= Length[edgeCons], i++,

x1 = points[[edgeCons[[i, 1]], 1]];

y1 = points[[edgeCons[[i, 1]], 2]];

x2 = points[[edgeCons[[i, 2]], 1]];
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y2 = points[[edgeCons[[i, 2]], 2]];

Switch[edgeCodes[[i]],

10,

Which[

y1 == y2,

(* Horizontal Line *)

grEdges = Join[grEdges, {Line[{{x1 + .1, y1}, {x2 - .1, y2}}]}];

,

x1 == x2,

(* Vertical Line *)

grEdges = Join[grEdges, {Line[{{x1, y1 + .1}, {x2, y2 - .1}}]}];

,

y1 < y2,

(* Diagonal Up *)

grEdges =

Join[grEdges, {Line[{{x1 + .1, y1 + .05}, {x2 - .1,

y2 - .05}}]}];

,

y1 > y2,

(* Diagonal Down *)

grEdges =

Join[grEdges, {Line[{{x1 + .1, y1 - .05}, {x2 - .1,

y2 + .05}}]}];

];

,

21,

grEdges =

Join[grEdges, {Line[{{x1 + .1, y2 - .025}, {x2 - .1,

y2 - .025}}]}];

grEdges =

Join[grEdges, {Line[{{x1 + .1, y2 + .025}, {x2 - .1,

y2 + .025}}]}];

grEdges =

Join[grEdges, {Polygon[{{(x1 + x2)/2 + .15,

y1 - .13}, {(x1 + x2)/2 + .15,

y1 + .13}, {(x1 + x2)/2 - .15, y1}}]}];

,

22,

grEdges =

Join[grEdges, {Line[{{x1 + .1, y2 - .025}, {x2 - .1,

y2 - .025}}]}];

grEdges =

Join[grEdges, {Line[{{x1 + .1, y2 + .025}, {x2 - .1,

y2 + .025}}]}];

grEdges =

Join[grEdges, {Polygon[{{(x1 + x2)/2 - .15,

y1 - .13}, {(x1 + x2)/2 - .15,

y1 + .13}, {(x1 + x2)/2 + .15, y1}}]}];

,

31,

grEdges = Join[grEdges, {Line[{{x1 + .1, y2}, {x2 - .1, y2}}]}];

grEdges =

Join[grEdges, {Line[{{x1 + .1, y2 - .025}, {x2 - .1,

y2 - .025}}]}];

grEdges =

Join[grEdges, {Line[{{x1 + .1, y2 + .025}, {x2 - .1,

y2 + .025}}]}];
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grEdges =

Join[grEdges, {Polygon[{{(x1 + x2)/2 + .15,

y1 - .13}, {(x1 + x2)/2 + .15,

y1 + .13}, {(x1 + x2)/2 - .15, y1}}]}];

];

];

grArgs =

Join[{Thickness[edgeThickness]}, grPoints, grEdges, grLabels];

grArgs

];

LittleDynk[a___] := InvalidArg["LittleDynk", a];
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12.4.27 MatrixMinimalPolynomial

MatrixMinimalPolynomial::usage=

”MatrixMinimalPolynomial[a,x] gives the minimal polynomial for a square matrix a with

variable x.

Rowland,Todd and Weisstein,Eric W.”Matrix Minimal Polynomial.”

From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/MatrixMinimalPolynomial.html”;

(* source:

Rowland,Todd and Weisstein,Eric W."Matrix Minimal Polynomial." From \

MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/MatrixMinimalPolynomial.html

*)

MatrixMinimalPolynomial[a_List?MatrixQ, x_] :=

Module[{i, n = 1, qu = {},

mnm = {Flatten[IdentityMatrix[Length[a]]]}},

While[Length[qu] == 0, AppendTo[mnm, Flatten[MatrixPower[a, n]]];

qu = NullSpace[Transpose[mnm]];

n++];

First[qu].Table[x^i, {i, 0, n - 1}]]

MatrixMinimalPolynomial[a___] :=

InvalidArg["MatrixMinimalPolynomial", a];



312

12.4.28 MatrixNorm

MatrixNorm::usage=

”MatrixNorm[x] normalizes a matrix x.”;

MatrixNorm[x_?MatrixQ] := Module[{},

(*

If[Norm[x]==0,

Print["mNorm: Zero Norm Encountered. x=",MatrixForm[x]];

];

*)

x/Norm[x]

];

MatrixNorm[a___] := InvalidArg["MatrixNorm", a];
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12.4.29 RootInput

RootInput::usage=

”RootInput[r] converts r into the list form representation for a root system if r is in string

form. If r is in list form, then r itself is returned.”;

RootInput::arg = "Unknown argument.";

RootInput[r_?StringQ] := StringToRoot[r];

RootInput[r_?ListQ] := Module[

{},

If[SameQ[Depth[r], 2],

Return[{r}];

,

Return[r];

];

Message[RootInput::arg];

Return[Fail];

];

RootInput[a___] := InvalidArg["RootInput", a];
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12.4.30 RootInputQ

RootInputQ::usage=

”RootInputQ[r] returns True if r is the name of a root system in list or string form.”;

RootInputQ[

r_] := (!

SameQ[r, {}] && (RootStringFormQ[r] || RootListFormQ[r]));

RootInputQ[a___] := False;
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12.4.31 RootListFormQ

RootListFormQ::usage=

”RootListFormQ[r] returns True if r is the name of a root system in list form.”;

RootListFormQ[r_?ListQ] :=

StringQ[r[[1]]] || (Depth[r] > 2 && StringQ[r[[1, 1]]])

RootListFormQ[a___] := False;
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12.4.32 RootStringFormQ

RootStringFormQ::usage=

”RootStringFormQ[r] returns True if r is the name of a root system in string form.”;

RootStringFormQ[r_] := StringQ[r];

RootStringFormQ[a___] := False;
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12.4.33 RootSystemFromBasis

RootSystemFromBasis::usage=

”RootSystemFromBasis[d] gives the roots in the root system formed by basis roots d.”;

RootSystemFromBasis[d_?RootBasisQ] := Module[

{k, p, n, h, i, j, r, t, q, s, size, time, cntr, m},

(* 1. Init *)

p = d;

n = 1;

m = CartanMatrixFromBasis[d];

size = 1;

time = TimeUsed[];

cntr = time;

(* 2. Construct *)

While[Length[p] > size,

size = Length[p];

For[i = 1, i <= Length[p], i++,

For[j = 1, j <= Length[d], j++,

t = p[[i]];

(* 2.1.

Get the basis coefficients and check height of the root *)

k = BasisCoefficients[d, t];

h = Sum[k[[s]], {s, 1, Length[k]}];

If[h == n,

(* 2.2. Determine the integer r *)

r = 0;

While[MemberQ[p, t - r*d[[j]]], r++];

r = r - 1;

(* 2.3. Define q *)

q = r - Sum[k[[s]]*m[[s, j]], {s, 1, Length[d]}];

(* 2.4. Ammend p? *)

If[q > 0,

p = Union[p, {t + d[[j]]}];

];

(*

If[TimeUsed[]-cntr>10,

Print["(rootSystem) CPU Time:[",TimeUsed[]-time,"] Roots:[",

2*Length[p],"]"];

cntr=TimeUsed[];

];

*)

];

];

];

n = n + 1;
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];

(* If[TimeUsed[]-time>10,

Print["(rootSystem) CPU Time:[",TimeUsed[]-time,"] Roots:[",2*

Length[p],"] (done)"];

]; *)

(*

Print["(rootSystem) Used ",TimeUsed[]-time,

"s CPU Time to find ",2*Length[p]," roots."];

*)

Join[p, -p]

];

RootSystemFromBasis[a___] := InvalidArg["RootSystemFromBasis", a];
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12.4.34 RowSwap

RowSwap::usage=

”RowSwap[m,a,b] swaps rows and b in matrix m.”;

RowSwap::invarg = "Invalid argument type. Input was ‘1‘, ‘2‘, ‘3‘.";

RowSwap[m_?MatrixQ, a_?IntegerQ, b_?IntegerQ] := Module[

{matr, rowa, rowb},

matr = m;

rowa = m[[a]];

rowb = m[[b]];

matr = Delete[matr, {{a}, {b}}];

matr = Insert[matr, rowb, a];

matr = Insert[matr, rowa, b];

matr

];

RowSwap[a___] := InvalidArg["RowSwap", a];
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12.4.35 SimpleRootBase

SimpleRootBase::usage=

”SimpleRootBase[r] gives a basis for an irreducible root system r.”;

SimpleRootBase[r_?RootInputQ] := Module[

{s, type, dim, base, rin, i},

rin = Flatten[RootInput[r]];

type = rin[[1]];

dim = rin[[2]];

(*If[dim<1,Message[simplebase::type,r];{}];*)

base = {};

Switch[type,

"A",

If[dim == 1, base = {{1}};,

For[i = 1, i <= dim, i++,

base =

Join[base, {UnitVector[dim + 1, i] -

UnitVector[dim + 1, i + 1]}];

];

];,

"B",

For[i = 1, i <= dim - 1, i++,

base =

Join[base, {UnitVector[dim, i] - UnitVector[dim, i + 1]}];

];

base = Join[base, {UnitVector[dim, dim]}];,

"C",

For[i = 1, i <= dim - 1, i++,

base =

Join[base, {UnitVector[dim, i] - UnitVector[dim, i + 1]}];

];

base = Join[base, {2 UnitVector[dim, dim]}];,

"D",

For[i = 1, i <= dim - 1, i++,

base =

Join[base, {UnitVector[dim, i] - UnitVector[dim, i + 1]}];

];

base =

Join[base, {UnitVector[dim, dim - 1] + UnitVector[dim, dim]}];,

"E",

Switch[dim,

6,

base = {{(1/

2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), (1/

2)}, {1, 1, 0, 0, 0, 0, 0, 0}, {-1, 1, 0, 0, 0, 0, 0,

0}, {0, -1, 1, 0, 0, 0, 0, 0}, {0, 0, -1, 1, 0, 0, 0,

0}, {0, 0, 0, -1, 1, 0, 0, 0}};,

7,

base = {{(1/

2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), (1/

2)}, {1, 1, 0, 0, 0, 0, 0, 0}, {-1, 1, 0, 0, 0, 0, 0,

0}, {0, -1, 1, 0, 0, 0, 0, 0}, {0, 0, -1, 1, 0, 0, 0,

0}, {0, 0, 0, -1, 1, 0, 0, 0}, {0, 0, 0, 0, -1, 1, 0, 0}};,

8,

base = {{(1/

2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), (1/
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2)}, {1, 1, 0, 0, 0, 0, 0, 0}, {-1, 1, 0, 0, 0, 0, 0,

0}, {0, -1, 1, 0, 0, 0, 0, 0}, {0, 0, -1, 1, 0, 0, 0,

0}, {0, 0, 0, -1, 1, 0, 0, 0}, {0, 0, 0, 0, -1, 1, 0,

0}, {0, 0, 0, 0, 0, -1, 1, 0}};,

_, Message[lie::type, type]; base = {};

];,

"F",

base = {{0, 1, -1, 0}, {0, 0, 1, -1}, {0, 0, 0,

1}, {(1/2), -(1/2), -(1/2), -(1/2)}};,

"G",

base = {{1, -1, 0}, {-2, 1, 1}};,

_, Message[lie::type, type]; {}];

base

];

SimpleRootBase[a___] := InvalidArg["SimpleRootBase", a];
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12.4.36 StringToRoot

StringToRoot::usage=

”StringToRoot[str] converts a string str of the form An+Bn+Cn... to the list form repre-

sentation for a root system, where A, B, C are the root system type (A-G), and n is an

integer.”;

StringToRoot::rootsystem = "‘1‘ is not a valid root system.";

StringToRoot::parse =

"‘1‘ cannot be parsed. Valid syntax is <TYPE><DIM>+<TYPE><DIM>+...";

StringToRoot[str_?StringQ] := Module[

{chars, i, r, cur, type, n, c},

r = {};

cur = {}; (* current irreducible component *)

type = "X"; (*

default type in case nothing was given *)

n = 0; (*

default dimension *)

chars = Characters[str];

For[i = 1, i <= Length[chars], i++,

c = chars[[i]];

Which[

SameQ[c, "A"] || SameQ[c, "a"], type = "A";,

SameQ[c, "B"] || SameQ[c, "b"], type = "B";,

SameQ[c, "C"] || SameQ[c, "c"],

If[SameQ[type, "B"], (* If last character was B *)

type = "BC";,

type = "C";

];

,

SameQ[c, "D"] || SameQ[c, "d"], type = "D";,

SameQ[c, "E"] || SameQ[c, "e"], type = "E";,

SameQ[c, "F"] || SameQ[c, "f"], type = "F";,

SameQ[c, "G"] || SameQ[c, "g"], type = "G";,

SameQ[c, "+"],

(* Do some error checking *)

If[SameQ[type, "X"], Message[StringToRoot::rootsystem, str];

Return[Fail];];

cur = {type, n};

r = Join[r, {cur}];

type = "X";

n = 0;

,

(* If the input string was not one of the types,

then it must be syntatically correct input *)

! SyntaxQ[c],

Message[StringToRoot::arg, str]; Return[Fail];

,

IntegerQ[ToExpression[c]],

If[n == 0,

n = ToExpression[c];

,
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n *= 10;

n += ToExpression[c];

];

,

_, Message[StringToRoot::arg, str]; Return[Fail];

];

];

(* Close the current irreducible component *)

cur = {type, n};

r = Join[r, {cur}];

(* Do some error checking *)

If[SameQ[type, "X"], Message[StringToRoot::rootsystem, str];

Return[Fail];];

Return[r];

];

StringToRoot[a___] := InvalidArg["StringToRoot", a];
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12.4.37 TakeElements

TakeElements::usage=

”TakeElements[l,in] forms a sub-list of list l which contains the entries indexed in integer

list in.”;

TakeElements[l_?ListQ, {argin___?IntegerQ}] := Module[

{i, in, out},

in = List[argin];

out = {};

For[i = 1, i <= Length[l], i++,

If[MemberQ[in, i],

out = Join[out, {l[[i]]}];

];

];

Return[out];

];

TakeElements[a___] := InvalidArg["TakeElements", a];
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12.4.38 TakeRows

TakeRows::usage=

”TakeRows[m,r] creates from a given matrix m a second matrix consisting of rows listed in

a list r.”;

TakeRows::invarg = "Invalid argument type. Input was ‘1‘, ‘2‘.";

TakeRows[matr_?MatrixQ, {argrows___?IntegerQ}] := Module[

{i, mat, rows},

rows = List[argrows];

mat = {};

For[i = 1, i <= Length[rows], i++,

mat = Join[mat, Take[matr, {rows[[i]], rows[[i]]}]];

];

mat

];

TakeRows[a___] := InvalidArg["TakeRows", a];
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12.4.39 VectorPad

VectorPad::usage=

”VectorPad[v,p,t] takes a vector v and pads it on the left with p number of zeroes and

enough zeroes on the right so that its total length is t.”;

VectorPad[vector_?VectorQ, prelen_?IntegerQ, totallen_?IntegerQ] :=

Module[{v},

v = vector;

v = Join[ConstantArray[0, prelen], v];

v = Join[v, ConstantArray[0, totallen - prelen - Length[vector]]];

v

];

VectorPad[a___] := InvalidArg["VectorPad", a];
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12.4.40 ZeroesAbove

ZeroesAbove::usage=

”ZeroesAbove[matr,i] returns True if each entry above the (i,i) entry in matrix matr is

zero.”;

ZeroesAbove[matr_?MatrixQ, i_?IntegerQ] := Module[

{k},

For[k = i - 1, k >= 1, k--,

If[! SameQ[matr[[k, i]], 0], Return[False];];

];

Return[True];

];

ZeroesAbove[a___] := InvalidArg["ZeroesAbove", a];
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12.4.41 ZeroesBelow

ZeroesBelow::usage=

”ZeroesBelow[matr,i] returns True if each entry below the (i,i) entry in matrix matr is zero.”;

ZeroesBelow[matr_?MatrixQ, i_?IntegerQ] := Module[

{k},

For[k = i + 1, k <= Length[matr], k++,

If[! SameQ[matr[[k, i]], 0], Return[False];];

];

Return[True];

];

ZeroesBelow[a___] := InvalidArg["ZeroesBelow", a];
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12.4.42 ZeroesLeft

ZeroesLeft::usage=

”ZeroesLeft[matr,i] returns True if each entry to the left of the (i,i) entry in matrix matr is

zero.”;

ZeroesLeft[matr_?MatrixQ, i_?IntegerQ] := Module[

{k},

For[k = i - 1, k >= 1, k--,

If[! SameQ[matr[[i, k]], 0], Return[False];];

];

Return[True];

];

ZeroesLeft[a___] := InvalidArg["ZeroesLeft", a];
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12.4.43 ZeroesRight

ZeroesRight::usage=

”ZeroesRight[matr,i] returns True if each entry to the right of the (i,i) entry in matrix matr

is zero.”;

ZeroesRight[matr_?MatrixQ, i_?IntegerQ] := Module[

{k},

For[k = i + 1, k <= Length[matr], k++,

If[! SameQ[matr[[i, k]], 0], Return[False];];

];

Return[True];

];

ZeroesRight[a___] := InvalidArg["ZeroesRight", a];

12.5 Chevalley Structure Package (Primary)

12.5.1 ExtraSpecialPairs

ExtraSpecialPairs::usage=

”ExtraSpecialPairs[r] lists all pairs of roots which form extra special pairs.

ExtraSpecialPairs[r,rlist] lists all pairs of roots in the list rlist which form extra

special pairs.”;

ExtraSpecialPairs[r_?RootInputQ] :=

ExtraSpecialPairs[RootBase[r], PositiveRootSystem[r]];

ExtraSpecialPairs[d_?RootBasisQ] :=

ExtraSpecialPairs[d, PositiveRootSystem[d]];

ExtraSpecialPairs[r_?RootInputQ, {argroots__?VectorQ}] :=

ExtraSpecialPairs[RootBase[r], List[argroots]];

ExtraSpecialPairs[d_?RootBasisQ, {argroots__?VectorQ}] := Module[

{pairs, roots, i, specs},

pairs = {};

roots = List[argroots];

specs = SpecialPairs[d, roots];

For[i = 1, i <= Length[specs], i++,

If[ExtraSpecialPairQ[d, roots, specs, specs[[i, 1]],

specs[[i, 2]]],

pairs = Join[pairs, {specs[[i]]}];

];

];

Return[pairs];

];
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ExtraSpecialPairs[a___] := InvalidArg["ExtraSpecialPairs", a];
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12.5.2 ExtraSpecialPairQ

ExtraSpecialPairQ::usage=

”ExtraSpecialPairQ[r,a,b] returns True if positive roots a and b (under root system r) form

an extra special pair.

ExtraSpecialPairQ[r,rlist,a,b] returns True if positive roots a and b (under root

system r and members of the set rlist) form an extra special pair. For repeated uses of this

procedure with the same root system, it is suggested to pre-compute a list of positive roots

and use this variation. WARNING: rlist is intended to be either the set of all positive roots,

or the entire root system. False will be returned if the sum a + b is not a member of rlist.

If rlist is not at least the set of all positive roots, False can be returned in the incorrect

circumstances.

ExtraSpecialPairQ[r,rlist,specs,a,b] returns True if positive roots a and b (under

root system r and members of the set rlist with list of special pairs ’specs’) form an extra

special pair. For repeated uses of this procedure with the same root system, it is suggested

to pre-compute a list of positive roots and special pairs, and use this variation. The same

warning concerning rlist as in the previous variation applies. There is no such warning for

the list ’specs’. If specs does not contain all special pairs in a root system, then only the

extra special pairs within the given list will be marked.”;

ExtraSpecialPairQ[r_?RootInputQ, a_?VectorQ, b_?VectorQ] := Module[

{basis, posroots, specs},

basis = RootBase[r];

posroots = PositiveRootSystem[basis];

specs = SpecialPairs[basis, posroots];

Return[ExtraSpecialPairQ[basis, posroots, specs, a, b]];

];

ExtraSpecialPairQ[d_?RootBasisQ, a_?VectorQ, b_?VectorQ] := Module[

{basis, posroots, specs},

posroots = PositiveRootSystem[d];

specs = SpecialPairs[d, posroots];

Return[ExtraSpecialPairQ[d, posroots, specs, a, b]];

];

ExtraSpecialPairQ[r_?RootInputQ, {argroots__?VectorQ}, a_?VectorQ,

b_?VectorQ] := Module[

{basis, posroots, specs},

basis = RootBase[r];

posroots = List[argroots];

specs = SpecialPairs[basis, posroots];
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Return[ExtraSpecialPairQ[basis, posroots, specs, a, b]];

];

ExtraSpecialPairQ[d_?RootBasisQ, {argroots__?VectorQ}, a_?VectorQ,

b_?VectorQ] := Module[

{basis, posroots, specs},

posroots = List[argroots];

specs = SpecialPairs[d, posroots];

Return[ExtraSpecialPairQ[d, posroots, specs, a, b]];

];

ExtraSpecialPairQ[r_?RootInputQ, {argroots__?VectorQ}, specs_?ListQ,

a_?VectorQ, b_?VectorQ] :=

ExtraSpecialPairQ[RootBase[r], List[argroots], specs, a, b];

ExtraSpecialPairQ[d_?RootBasisQ, {argroots__?VectorQ}, specs_?ListQ,

a_?VectorQ, b_?VectorQ] := Module[

{roots, ht, i},

roots = List[argroots];

If[! MemberQ[specs, {a, b}],

Return[False];

];

For[i = 1, i <= Length[specs], i++,

If[! SameQ[a + b, specs[[i, 1]] + specs[[i, 2]]],

Continue[];

];

If[SameQ[{a, b}, specs[[i]]],

Continue[];

];

If[! RootLessQ[d, a, specs[[i, 1]]],

Return[False];

];

];

Return[True];

];

ExtraSpecialPairQ[a___] := InvalidArg["ExtraSpecialPairQ", a];
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12.5.3 SpecialPairs

SpecialPairs::usage=

”SpecialPairs[r] lists all pairs of roots which form special pairs.

SpecialPairs[r,rlist] lists all pairs of roots in the list rlist which form special pairs.”;

SpecialPairs[r_?RootInputQ] :=

SpecialPairs[RootBase[r], PositiveRootSystem[r]];

SpecialPairs[d_?RootBasisQ] := SpecialPairs[d, PositiveRootSystem[d]];

SpecialPairs[r_?RootInputQ, {argroots__?VectorQ}] :=

SpecialPairs[RootBase[r], List[argroots]];

SpecialPairs[d_?RootBasisQ, {argroots__?VectorQ}] := Module[

{pairs, roots, i, j},

pairs = {};

roots = List[argroots];

For[i = 1, i <= Length[roots], i++,

For[j = 1, j <= Length[roots], j++,

If[SpecialPairQ[d, roots, roots[[i]], roots[[j]]],

pairs = Join[pairs, {{roots[[i]], roots[[j]]}}];

];

];

];

Return[pairs];

];

SpecialPairs[a___] := InvalidArg["SpecialPairs", a];
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12.5.4 SpecialPairQ

SpecialPairQ::usage=

”SpecialPairQ[r,a,b] returns True if positive roots a and b (under root system r) form a

special pair.

SpecialPairQ[r,rlist,a,b] returns True if positive roots a and b (under root system

r and members of the set rlist) form a special pair. For repeated uses of this procedure with

the same root system, it is suggested to pre-compute a list of positive roots and use this

variation. WARNING: rlist is intended to be either the set of all positive roots, or the entire

root system. False will be returned if the sum a + b is not a member of rlist. If rlist is not

at least the set of all positive roots, False can be returned in the incorrect circumstances.”;

SpecialPairQ[r_?RootInputQ, a_?VectorQ, b_?VectorQ] :=

SpecialPairQ[RootBase[r], a, b];

SpecialPairQ[d_?RootBasisQ, a_?VectorQ, b_?VectorQ] := Module[

{posroots},

posroots = PositiveRootSystem[d];

If[! MemberQ[posroots, a],

Return[False];

];

If[! MemberQ[posroots, b],

Return[False];

];

If[! MemberQ[posroots, a + b],

Return[False];

];

Return[RootLessQ[d, a, b]];

];

SpecialPairQ[r_?RootInputQ, {argroots__?VectorQ}, a_?VectorQ,

b_?VectorQ] := SpecialPairQ[RootBase[r], List[argroots], a, b];

SpecialPairQ[d_?RootBasisQ, {argroots__?VectorQ}, a_?VectorQ,

b_?VectorQ] := Module[

{roots, ht},

roots = List[argroots];

(* Caution:

the user may have included negative roots in the passed list. *)

ht = RootHeight[d, a];

If[ht < 0,

Return[False];

];

ht = RootHeight[d, b];

If[ht < 0,
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Return[False];

];

If[! MemberQ[roots, a + b],

Return[False];

];

Return[RootLessQ[d, a, b]];

];

SpecialPairQ[a___] := InvalidArg["SpecialPairQ", a];

12.6 Weyl Package (Primary)

12.6.1 LongestElement

LongestElement::usage=

”LongestElement[r] computes the longest element of the Weyl group of root system r.

LongestElement[r,disks] computes the longest element of the Weyl group of a sub-

system of root r which is formed by the basis roots indexed in disks.”;

LongestElement::irred = "‘1‘ is not irreducible.";

LongestElement[r_?RootInputQ] :=

FundamentalChamber[-1*InteriorPoint[r], RootBase[r]];

LongestElement[r_?RootBasisQ] :=

FundamentalChamber[-1*InteriorPoint[r], r];

LongestElement[r_?RootInputQ, {argdisks___?IntegerQ}] :=

LongestElement[RootBase[r], List[argdisks]];

LongestElement[r_?RootBasisQ, {argdisks___?IntegerQ}] := Module[

{le, sr, disks},

disks = List[argdisks];

le = LongestElement[r];

sr = Table[i -> disks[[i]], {i, 1, Length[r]}];

Return[le /. sr];

];

LongestElement[a___] := InvalidArg["LongestElement", a];
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12.6.2 ReflectWeyl

ReflectWeyl::usage=

”ReflectWeyl[d,a,b] calculates S S ... S (b) for root b and Weyl group element a=a , a , ...,

a , where all roots live in the set d.

ReflectWeyl[{argd__?VectorQ}, {arga___?IntegerQ}, b_?VectorQ] :=

Module[

{a, d, i, root, dIndex},

d = List[argd];

a = List[arga];

root = b;

For[i = Length[a], i >= 1, i--,

dIndex = a[[i]];

root = Reflect[d[[dIndex]], root];

];

Return[root]

];

ReflectWeyl[a___] := InvalidArg["ReflectWeyl", a];
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12.6.3 WeylCompare

WeylCompare::usage=

”WeylCompare[d,w1,w2] returns True if w1 = w2. w1, w2 are elements of Weyl(d).”;

WeylCompare[{argd_?VectorQ}, {argw1___?IntegerQ}, {argw2___?

IntegerQ}] := Module[

{w1, w2, d, i, r1, r2},

w1 = List[argw1];

w2 = List[argw2];

d = List[argd];

For[i = 1, i <= Length[d], i++,

r1 = ReflectWeyl[d, w1, d[[i]]];

r2 = ReflectWeyl[d, w2, d[[i]]];

If[r1 != r2,

Break[];

];

];

i > Length[d]

];

WeylCompare[a___] := InvalidArg["WeylCompare", a];
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12.6.4 WeylLength

WeylLength::usage=

”WeylLength[d,w] computes the length of Weyl group element w. w is in the Weyl group

for a root system with basis d.”;

WeylLength[d_?ListQ, {argw___?IntegerQ}] := Module[

{w, wr},

w = List[argw];

wr = WeylReduce[d, w];

Length[wr]

];

WeylLength[a___] := InvalidArg["WeylLength", a];
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12.6.5 WeylReduce

WeylReduce::usage=

”WeylReduce[d,w] uses the Deletion Property to write a Weyl group element w reduced. w

is in the Weyl group for a root system with basis d.”;

WeylReduce[d_?ListQ, {argw___?IntegerQ}] := Module[

{w, i, j, wp, test},

w = List[argw];

test = 0;

(* Look for pairs i,j which can be deleted *)

For[i = 1, i <= Length[w], i++,

For[j = 1, j <= Length[w], j++,

wp = Delete[w, {{i}, {j}}];

If[WeylCompare[d, w, wp],

test = 1;

Break[];

];

];

If[test == 1,

Break[];

];

];

(* i,j found. Recurse. Else return w *)

If[i <= Length[w],

WeylReduce[d, wp]

,

w

]

];

WeylReduce[a___] := InvalidArg["WeylReduce", a];

12.7 Weyl Package (Internal)
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12.7.1 InteriorPoint

InteriorPoint::usage=

”InteriorPoint[r] computes an interior point in the fundamental chamber with respect to

root system r.”;

InteriorPoint[r_?RootInputQ] := Module[

{basis, v, x, i, eqns, soln},

(* REF: Maple / Stembridge *)

basis = RootBase[r];

v = Sum[x[i]*basis[[i]], {i, 1, Length[basis]}];

v = Collect[v, Table[x[i], {i, 1, Length[basis]}]];

eqns =

Table[InnerProduct[basis[[i]], v] == 1, {i, 1, Length[basis]}];

soln = Flatten[Solve[eqns, Table[x[i], {i, 1, Length[basis]}]]];

Sum[basis[[i]]*x[i], {i, 1, Length[basis]}] /. soln

];

InteriorPoint[r_?RootBasisQ] := Module[

{basis, v, x, i, eqns, soln},

(* REF: Maple / Stembridge *)

basis = r;

v = Sum[x[i]*basis[[i]], {i, 1, Length[basis]}];

v = Collect[v, Table[x[i], {i, 1, Length[basis]}]];

eqns =

Table[InnerProduct[basis[[i]], v] == 1, {i, 1, Length[basis]}];

soln = Flatten[Solve[eqns, Table[x[i], {i, 1, Length[basis]}]]];

Sum[basis[[i]]*x[i], {i, 1, Length[basis]}] /. soln

];

InteriorPoint[a___] := InvalidArg["InteriorPoint", a];
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12.7.2 FundamentalChamber

FundamentalChamber::usage=

”FundamentalChamber[v,r] maps a vector v to the fundamental chamber with respect to a

root system r.”;

FundamentalChamber[pt_?VectorQ, r_?RootInputQ] :=

FundamentalChamber[pt, RootBase[r]];

FundamentalChamber[pt_?VectorQ, basis_?RootBasisQ] := Module[

{v, w, i},

(* REF: Maple / Stembridge *)

v = pt;

w = {};

While[True,

For[i = 1, i <= Length[basis], i++,

If[InnerProduct[basis[[i]], v] < 0,

w = Join[w, {i}];

v = Reflect[basis[[i]], v];

Break[];

];

];

If[i > Length[basis], Break[];];

];

Return[w];

];

FundamentalChamber[a___] := InvalidArg["FundamentalChamber", a];

12.8 Group Action Package (Primary)

12.8.1 ArchesListInvolution

ArchesListInvolution::usage=

”ArchesListInvolution[r,disks,theta] recovers the diagram automorphism from an involution

theta defined over a root system r with fixed roots: disks.”;

ArchesListInvolution::order =

"supplied root system automorphism over ‘1‘ is not an involution: \

‘2‘ order ‘3‘.";

(* Backward compatibility *)

ArchesListInvolution[r_?RootInputQ, {argdisks___?IntegerQ},

theta_?MatrixQ] := ArchesListInvolution[RootBase[r], theta];

(* Backward compatibility *)

ArchesListInvolution[d_?RootBasisQ, {argdisks___?IntegerQ},
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theta_?MatrixQ] := ArchesListInvolution[d, theta];

ArchesListInvolution[r_?RootInputQ, theta_?MatrixQ] :=

ArchesListInvolution[RootBase[r], theta];

ArchesListInvolution[d_?RootBasisQ, theta_?MatrixQ] := Module[

{thetastar, w0, tm, arlist, i, plist, p},

arlist = {};

plist = {}; (*

A list of roots processed so that we don’t include duplicates e.g.

both {1,2} and {2,1} *)

(* Get the matrix for the diagram automorphisms *)

w0 = wInvolutionAction[d, theta];

thetastar = -theta.w0;

(* Write the list of translations. *)

tm = Transpose[thetastar]; (* Now tm[[

i]] is the column i of thetastar *)

For[i = 1, i <= Length[d], i++,

If[! SameQ[tm[[i, i]], 1] && ! MemberQ[plist, i],

p = Position[tm[[i]], 1][[1, 1]];

plist = Join[plist, {p}];

plist = Join[plist, {i}];

arlist = Join[arlist, {{i, p}}];

];

];

Return[arlist];

];

(*

ArchesListInvolution[d_?RootBasisQ,{argdisks___?IntegerQ},theta_?\

MatrixQ]:=Module[

{i,j,autom,blockaut,btheta,blocklist,offset,disks,ntheta,esystems,\

esystemsflat,arlist},

disks=List[argdisks];

If[!IsRootAutOrder[theta,2],

Message[ArchesListInvolution::order,BasisToRootSystem[d],theta,\

MatrixForm[LinearOperatorOrder[theta]]];

Return[{}];

];

(* Identify any roots mapped to a different irreducible system. \

Ammend to arches, then reverse the maps to create ntheta. to perform \

the reversal of the arch, multiply theta by the permutation matrix \

(i,j) where {i,j} is the detected arch. *)

\

esystems=RootBasisConnectedSet[d];

esystemsflat=Flatten[esystems,1]; (* all roots in one list *)

\

arlist={};

For[i=1,i<=Length[esystems],i++,

For[j=1,j<=Length[esystems[[i]]],j++,
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];

];

ntheta=theta;

Print[esystems];

(* Now pick apart arches within a single system *)

\

blocklist=BlockList[ntheta];

Print["bl=",blocklist];

autom={};

offset=0;

Print["ali1."];

(* For all irred components *)

For[i=1,i<=Length[esystems],i++,

(* Due to a result in [Hel88], the diagram automorphism is either the \

identity, or of order 2. *)

(* blocklist[[i]] is theta restricted to \

irred. root system i. *)

(* Create the map with identity diagram automorphism. *)

\

btheta=RootInvolution[esystems[[i]],disks,{}];

Print[blocklist[[2]]];

Print["ali2.",BasisToRootSystem[d]];

(* If it matches blocklist[[i]], then we’ve found the right diagram \

automorphism. Otherwise, return the autom. of order 2. *)

\

If[!SameQ[btheta,blocklist[[i]]],

Print["es=",esystems[[i]]];

autom=Join[autom,DiagramInvolution[BasisToRootSystem[esystems[[i]]]]+\

offset];

];

offset+=Length[esystems[[i]]];

];

Print[autom];

Return[Join[arlist,autom]];

];

*)

ArchesListInvolution[{argdisks___?IntegerQ}, theta_?MatrixQ] :=

Module[

{disks, arches, i, j, ind},

arches = {};

disks = List[argdisks];

If[! IsRootAutOrder[theta, 2],

Message[ArchesListInvolution::order, "root system", theta,

MatrixForm[LinearOperatorOrder[theta]]];

Return[{}];

];

(* For every entry in disks i, if the entry (i,

i) in theta matrix is not 1,

find the proper row to j to swap with row i so that (i,

i) entry is 1. *)
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For[i = 1, i <= Length[disks], i++,

ind = disks[[i]];

If[SameQ[theta[[ind, ind]], 1],

Continue[];

];

(*

Print["x"];

*)

(* Only look forward so that we don’t write the same pair twice. *)

For[j = i + 1, j <= Length[disks], j++,

If[! SameQ[theta[[disks[[j]], ind]], 1],

Continue[];

];

arches = Join[arches, {{ind, disks[[j]]}}];

];

];

Return[arches];

];

ArchesListInvolution[a___] := InvalidArg["ArchesListInvolution", a];

(* PRE 0.0.95.... cvals not updated, uses old memory structure

liftThetaEqns[basis_,theta_,systemMatrix_,cvals_,x_]:=Module[

{n,polynomials,vars,i},

n=Length[theta];

polynomials=Table[(utilLTsidea[n,i,systemMatrix,x])*(utilLTsideb[n,i,\

theta,systemMatrix,x])*cvals[UnitVector[n,i].basis]*cvals[UnitVector[\

n,i].Transpose[theta].basis]-1,{i,1,n}];

vars=Table[x[i],{i,1,n}];

Return[{polynomials,vars}];

];

*)
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12.8.2 DiskList

DiskList::usage=

”DiskList[r,theta] is a variant of fixedBasis which lists the indices of the roots fixed by an

involution theta over a root system r.”;

DiskList[r_?RootInputQ, theta_?MatrixQ] :=

DiskList[RootBase[r], theta];

DiskList[r_?RootBasisQ, theta_?MatrixQ] := Module[

{flist, basis, i},

basis = r;

flist = {};

For[i = 1, i <= Length[theta], i++,

If[SameQ[basis[[i]], ApplyRootInvolution[r, theta, basis[[i]]]],

flist = Join[flist, {i}];

];

];

Return[flist];

];

DiskList[a___] := InvalidArg["DiskList", a];
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12.8.3 EigenspaceProject

EigenspaceProject::usage=

”EigenspaceProject[r,theta,root,E] projects root into some root in the E-eigenspace of the

root automorphism theta over root system r.

(S-LOSS) EigenspaceProject[r,disks,arches,root,E] projects root into some root in

the E-eigenspace of the root automorphism described by fixed roots disks and diagram

automorphism arches over root system r.”;

EigenspaceProject::evalue =

"‘1‘ is not an Eigenvalue of the automorphism provided.";

EigenspaceProject[r_?RootInputQ, theta_?MatrixQ, root_?VectorQ,

espace_] := EigenspaceProject[RootBase[r], theta, root, espace];

EigenspaceProject[d_?RootBasisQ, theta_?MatrixQ, root_?VectorQ,

espace_] := Module[

{nroot, pr, n, e, i},

If[! MemberQ[Eigenvalues[theta], espace],

Message[EigenspaceProject::evalue, espace];

Return[Fail];

];

nroot = ApplyRootMap[d, theta, root];

n = LinearOperatorOrder[theta];

e = espace;

pr = (1/n)*

Sum[Power[e, n - i]*

ApplyRootMap[d, MatrixPower[theta, i], root], {i, 0, n - 1}];

pr = FullSimplify[pr];

(*

pr=(1/2)*(root+espace*nroot);

*)

Return[pr];

];

EigenspaceProject[a___] := InvalidArg["EigenspaceProject", a];
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12.8.4 EmbeddedRootGroups

EmbeddedRootGroups::usage=

”EmbeddedRootGroups[r,theta] gives a list of the roots fixed by an automorphism theta

over root system r. The list groups together roots by membership in an embedded root

system.

EmbeddedRootGroups[r,disks] gives a list of the roots fixed by an involution theta

defined with fixed roots disks and diagram involution arches over root system r. The list

groups together roots by membership in an embedded root system.”;

EmbeddedRootGroups[r_?RootInputQ, theta_?MatrixQ] :=

EmbeddedRootGroups[RootBase[r], theta];

EmbeddedRootGroups[d_?RootBasisQ, theta_?MatrixQ] := Module[

{dlist, sbasis},

dlist = DiskList[d, theta];

sbasis = TakeElements[d, dlist];

Return[RootBasisConnectedSet[sbasis]];

];

EmbeddedRootGroups[r_?RootInputQ, {argdisks___?IntegerQ}] :=

EmbeddedRootGroups[RootBase[r], List[argdisks]];

EmbeddedRootGroups[d_?RootBasisQ, {argdisks___?IntegerQ}] := Module[

{disks, sbasis},

disks = List[argdisks];

sbasis = TakeElements[d, disks];

Return[RootBasisConnectedSet[sbasis]];

];

EmbeddedRootGroups[a___] := InvalidArg["EmbeddedRootGroups", a];
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12.8.5 EmbeddedRootIndices

EmbeddedRootIndices::usage=

” EmbeddedRootIndices[r,theta] gives an index of the roots fixed by an involution theta

over root system r. The list groups together roots by membership in an embedded root

system.

EmbeddedRootIndices[r,disks] gives an index of the roots fixed by an involution

theta defined with fixed roots disks and diagram involution arches over root system r. The

list groups together roots by membership in an embedded root system.”;

EmbeddedRootIndices[r_?RootInputQ, theta_?MatrixQ] :=

EmbeddedRootIndices[RootBase[r], theta];

EmbeddedRootIndices[d_?RootBasisQ, theta_?MatrixQ] := Module[

{esystems, i, j, subind, ind},

ind = {};

esystems = EmbeddedRootGroups[d, theta];

For[i = 1, i <= Length[esystems], i++,

subind = {};

For[j = 1, j <= Length[esystems[[i]]], j++,

subind = Join[subind, Flatten[Position[d, esystems[[i, j]]]]];

];

ind = Join[ind, {subind}];

];

Return[ind];

];

EmbeddedRootIndices[r_?RootInputQ, {argdisks___?IntegerQ}] :=

EmbeddedRootIndices[RootBase[r], List[argdisks]];

EmbeddedRootIndices[d_?RootBasisQ, {argdisks___?IntegerQ}] := Module[

{disks, esystems, i, j, subind, ind},

ind = {};

disks = List[argdisks];

esystems = EmbeddedRootGroups[d, disks];

For[i = 1, i <= Length[esystems], i++,

subind = {};

For[j = 1, j <= Length[esystems[[i]]], j++,

subind = Join[subind, Flatten[Position[d, esystems[[i, j]]]]];

];

ind = Join[ind, {subind}];

];

Return[ind];

];

EmbeddedRootIndices[a___] := InvalidArg["EmbeddedRootIndices", a];
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12.8.6 EmbeddedRootSystems

EmbeddedRootSystems::usage=

”EmbeddedRootSystems[r,theta] gives the embedded root systems formed by the root in-

volution theta over a root system r.

EmbeddedRootSystems[r,disks] gives the embedded root systems formed by the

fixed roots disks of a root involution over a root system r.”;

EmbeddedRootSystems[r_?RootInputQ, {argdisks___?IntegerQ}] :=

EmbeddedRootSystems[RootBase[r], List[argdisks]];

EmbeddedRootSystems[r_?RootBasisQ, {argdisks___?IntegerQ}] := Module[

{disks, esystems, out, i},

out = "";

disks = List[argdisks];

esystems = EmbeddedRootGroups[r, disks];

For[i = 1, i <= Length[esystems], i++,

out = out <> BasisToRootSystem[esystems[[i]]];

(*Print[esystems[[i]]];*)

];

Return[out];

];

EmbeddedRootSystems[r_?RootInputQ, theta_?MatrixQ] :=

EmbeddedRootSystems[RootBase[r], theta];

EmbeddedRootSystems[r_?RootBasisQ, theta_?MatrixQ] := Module[

{disks, esystems, out, i},

out = "";

disks = DiskList[r, theta];

esystems = EmbeddedRootGroups[r, disks];

For[i = 1, i <= Length[esystems], i++,

out = out <> BasisToRootSystem[esystems[[i]]];

(*Print[esystems[[i]]];*)

];

Return[out];

];

EmbeddedRootSystems[a___] := InvalidArg["EmbeddedRootSystems", a];



351

12.8.7 FixedBasis

FixedBasis::usage=

”FixedBasis[r,theta] computes the set of all basis roots fixed by an involution theta defined

over root system r.

(S-LOSS) FixedBasis[r,disks,arches] computes the set of all basis roots fixed by

an involution defined over root system r with fixed roots disks and diagram automorphism

arches.”;

FixedBasis[r_?RootInputQ, theta_?MatrixQ] :=

Intersection[RootBase[r], FixedRoots[r, theta]];

FixedBasis[r_?RootBasisQ, theta_?MatrixQ] :=

Intersection[r, FixedRoots[r, theta]];

FixedBasis[a___] := InvalidArg["FixedBasis", a];

(*

stronglyOrthoRoots[r_,disks_,arches_]:=Module[

{fr,sor,i,j,osize},

fr=fixedRoots[r,disks,arches];

sor=fr;

osize=0;

While[Length[sor]!=osize,

osize=Length[sor];

For[i=1,i<=Length[sor],i++,

For[j=1,j<=Length[sor],j++,

If[i==j,Continue[];];

If[MemberQ[sor,sor[[i]]+sor[[j]]]||MemberQ[sor,sor[[i]]-sor[[j]]],

sor=Delete[sor,Position[sor,sor[[i]]][[1,1]]];

Break[];];

];

];

];

Return[sor];

];

*)

(*

stronglyOrthoRoots[r_,theta_]:=Module[

{fr,sor,i,j,osize},

fr=fixedRoots[r,theta];

sor=fr;

osize=0;

While[Length[sor]!=osize,

osize=Length[sor];

For[i=1,i<=Length[sor],i++,

For[j=1,j<=Length[sor],j++,

If[i==j,Continue[];];
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If[MemberQ[sor,sor[[i]]+sor[[j]]]||MemberQ[sor,sor[[i]]-sor[[j]]],

sor=Delete[sor,Position[sor,sor[[i]]][[1,1]]];

Break[];];

];

];

];

Return[sor];

];

*)

(*

stronglyOrthoRoots2[r_,disks_,arches_]:=Module[

{fr,sor,i,j},

fr=fixedRoots[r,disks,arches];

sor=Intersection[fr,base[r]];

(*For[i=1,i<=Length[fr],i++,*)

For[i=Length[fr],i>=1,i--,

For[j=1,j<=Length[sor],j++,

If[i==j,Continue[];];

If[MemberQ[sor,fr[[i]]+sor[[j]]]||MemberQ[sor,fr[[i]]-sor[[j]]],Break[\

];];

];

If[j>Length[sor],

sor=Union[sor,{fr[[i]]}];

];

];

Return[sor];

];

*)
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12.8.8 FixedRootQ

FixedRootQ::usage=

”FixedRootQ[r,theta,root] returns True if root is fixed by the involution theta defined over

the root system r.

(S-LOSS) FixedRootQ[r,disks,arches,root] returns True if root is fixed by the in-

volution defined over the root system r with fixed roots disks and diagram automorphism

arches.”;

FixedRootQ[r_?RootInputQ, theta_?MatrixQ, root_?VectorQ] := Module[

{k, basis, rk},

basis = RootBase[r];

k = BasisCoefficients[basis, root];

rk = k.Transpose[theta].basis;

Return[SameQ[root, rk]];

];

FixedRootQ[basis_?RootBasisQ, theta_?MatrixQ, root_?VectorQ] :=

Module[

{k, rk},

k = BasisCoefficients[basis, root];

rk = k.Transpose[theta].basis;

Return[SameQ[root, rk]];

];

FixedRootQ[a___] := InvalidArg["FixedRootQ", a];
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12.8.9 FixedRoots

FixedRoots::usage=

”FixedRoots[r,theta] returns the set of all roots fixed by the involution theta defined over

the root system r.

(S-LOSS) FixedRoots[r,disks,arches] returns the set of all roots fixed by the in-

volution defined over the root system r with fixed roots disks and diagram automorphism

arches.”;

FixedRoots[r_?RootInputQ, theta_?MatrixQ] := Module[

{i, roots, froots},

roots = RootSystemFromBasis[RootBase[r]];

froots = {};

For[i = 1, i <= Length[roots], i++,

If[FixedRootQ[r, theta, roots[[i]]],

froots = Join[froots, {roots[[i]]}];

];

];

Return[froots];

];

FixedRoots[basis_?RootBasisQ, theta_?MatrixQ] := Module[

{i, roots, froots},

roots = RootSystemFromBasis[basis];

froots = {};

For[i = 1, i <= Length[roots], i++,

If[FixedRootQ[basis, theta, roots[[i]]],

froots = Join[froots, {roots[[i]]}];

];

];

froots = ByBasisSort[basis, froots];

Return[froots];

];

FixedRoots[a___] := InvalidArg["FixedRoots", a];
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12.8.10 IsRootAutOrder

IsRootAutOrder::usage=

”IsRootAutOrder[theta,n] determines if an automorphism theta is of order n, or an order

that divides n.”;

IsRootAutOrder[theta_?MatrixQ, n_?IntegerQ] := Module[

{order},

order = LinearOperatorOrder[theta];

Return[SameQ[Mod[n, order], 0]];

];

IsRootAutOrder[a___] := InvalidArg["IsRootAutOrder", a];
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12.8.11 wInvolution

wInvolution::usage=

”wInvolution[r,theta] computes the longest element of the root system formed by the roots

fixed by theta, a root system automorphism.

wInvolution[r,disks] computes the longest element of the root system formed by

the embedded roots (disks).”;

wInvolution[r_?RootBasisQ, {argdisks___?IntegerQ}] :=

wInvolution[BasisToRootSystem[r], List[argdisks]];

wInvolution[r_?RootBasisQ, theta_?MatrixQ] :=

wInvolution[BasisToRootSystem[r], DiskList[r, theta]];

wInvolution[r_?RootInputQ, theta_?MatrixQ] :=

wInvolution[r, DiskList[r, theta]];

wInvolution[r_?RootInputQ, {argdisks___?IntegerQ}] := Module[

{rin, i, w, offset, disks},

disks = List[argdisks];

rin = RootInput[r];

offset = 0;

w = {};

For[i = 1, i <= Length[rin], i++,

w = Join[w, wInvolutionSimple[rin[[i]], disks, offset]];

offset = offset + rin[[i, 2]];

];

Return[w];

];

wInvolutionSimple[r_, disks_, offSet_: 0] := Module[

{rin, basis, dim, esystems, w0, i, emsys, ds, w},

rin = Flatten[RootInput[r]]; (* r is simple *)

basis = RootBase[rin];

dim = Length[basis];

(* 1. Determine the embedded root systems *)

esystems = EmbeddedRootSystems[rin, disks - offSet];

(* For every root system *)

w0 = {};

For[i = 1, i <= Length[esystems], i++,

(* Ugh. Have to do some ‘‘E-

hacking’’ because of the numbering of the roots of E

The 1,2,3,... disks labels here assumes r is irred.

Otherwise we’d need to account for offset. *)

emsys = Flatten[RootInput[esystems[[i, 1]]]]; (*

embedded system *)
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If[SameQ[rin[[1]], "E"] && ! SameQ[emsys[[1]], "E"] &&

MemberQ[esystems[[i, 2]], 2] && MemberQ[esystems[[i, 2]], 3],

(* The problem is if we have a root system of Type E then roots \

2 and 3 are not joined.

This results in "weird" Cartan Matrices for types A, D. *)

ds = esystems[[i, 2]];

(* If we have 1 and 3 included AND the embedded root system is \

not E, then 6 is not included.

So if 5 is included, we have type D5.

If 5 is not included, we have type A4 *)

If[MemberQ[esystems[[i, 2]], 1],

(* 5 included? *)

If[MemberQ[esystems[[i, 2]], 5],

ds = {1, 3, 4, 2, 5};

, (* else *)

ds = {1, 3, 4, 2};

];

, (* else 1 not included *)

(*

Without 1 then we have type D for sure.

Simple thing to do is just run through all cases for disk sets *)

Switch[Max[esystems[[i, 2]]],

8, ds = {8, 7, 6, 5, 4, 2, 3};,

7, ds = {7, 6, 5, 4, 2, 3};,

6, ds = {6, 5, 4, 2, 3};,

5, ds = {3, 4, 2, 5};,

4, ds = {3, 4, 2};

];

];

w = LongestElement[esystems[[i, 1]], ds];

,

w = LongestElement[esystems[[i, 1]], esystems[[i, 2]]];

];

w0 = Join[w0, w];

];

Return[w0 + offSet];

];

(*

wInvolution[r_?RootBasisQ,theta_?MatrixQ]:=Module[

{disks,basis,sbasis,esystems,i,le},

disks=DiskList[r,theta];

basis=r;

esystems=EmbeddedRootIndices[r,disks];

le={};

For[i=1,i<=Length[esystems],i++,

sbasis=TakeElements[basis,esystems[[i]]];

le=Join[le,LongestElement[sbasis,esystems[[i]]]];

];

Return[le];

];

*)
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(*

wInvolution[r_?RootInputQ,theta_?MatrixQ]:=Module[

{disks,basis,sbasis,rin,esystems,le,i},

rin=RootInput[r];

disks=DiskList[r,theta];

basis=RootBase[rin];

esystems=EmbeddedRootIndices[r,disks];

le={};

For[i=1,i<=Length[esystems],i++,

sbasis=TakeElements[basis,esystems[[i]]];

le=Join[le,LongestElement[sbasis,esystems[[i]]]];

];

Return[le];

];

*)

(*

wInvolution[r_?RootBasisQ,{argdisks___?IntegerQ}]:=Module[

{disks,basis,sbasis,esystems,i,le},

disks=List[argdisks];

basis=r;

esystems=EmbeddedRootIndices[r,disks];

le={};

For[i=1,i<=Length[esystems],i++,

sbasis=TakeElements[basis,esystems[[i]]];

le=Join[le,LongestElement[sbasis,esystems[[i]]]];

];

Return[le];

];

*)

(*

wInvolution[r_?RootInputQ,{argdisks___?IntegerQ}]:=Module[

{disks,basis,sbasis,rin,esystems,le,i},

rin=RootInput[r];

disks=List[argdisks];

basis=RootBase[rin];

esystems=EmbeddedRootIndices[r,disks];

le={};

For[i=1,i<=Length[esystems],i++,

sbasis=TakeElements[basis,esystems[[i]]];

le=Join[le,LongestElement[sbasis,esystems[[i]]]];

];

Return[le];

];

*)

wInvolution[a___] := InvalidArg["wInvolution", a];
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12.8.12 wInvolutionAction

wInvolutionAction::usage=

”wInvolutionAction[r,theta] computes the matrix representing the action of the longest

element of the Weyl group formed by the root system consisting of the roots fixed by theta,

the root system automorphism over root system r.

wInvolutionAction[r,disks] computes the matrix representing the action of the

longest element of the Weyl group formed by the embedded root systems (disks), where

r is the root system.”;

wInvolutionAction[r_?RootInputQ, theta_?MatrixQ] := Module[

{w0, basis, row, w0theta, i},

basis = RootBase[r];

w0 = wInvolution[r, theta];

For[i = 1, i <= Length[basis], i++,

row[i] =

BasisCoefficients[basis, ReflectWeyl[basis, w0, basis[[i]]]];

];

w0theta = Table[row[i], {i, 1, Length[basis]}];

w0theta = Transpose[w0theta];

Return[w0theta];

];

wInvolutionAction[r_?RootBasisQ, theta_?MatrixQ] := Module[

{w0, basis, row, w0theta, i},

basis = r;

w0 = wInvolution[r, theta];

For[i = 1, i <= Length[basis], i++,

row[i] =

BasisCoefficients[basis, ReflectWeyl[basis, w0, basis[[i]]]];

];

w0theta = Table[row[i], {i, 1, Length[basis]}];

w0theta = Transpose[w0theta];

Return[w0theta];

];

wInvolutionAction[r_?RootInputQ, {argdisks___?IntegerQ}] := Module[

{disks, w0, basis, row, w0theta, i},

disks = List[argdisks];

basis = RootBase[r];

w0 = wInvolution[r, disks];

For[i = 1, i <= Length[basis], i++,

row[i] =

BasisCoefficients[basis, ReflectWeyl[basis, w0, basis[[i]]]];
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];

w0theta = Table[row[i], {i, 1, Length[basis]}];

w0theta = Transpose[w0theta];

Return[w0theta];

];

wInvolutionAction[r_?RootBasisQ, {argdisks___?IntegerQ}] := Module[

{disks, w0, basis, row, w0theta, i},

disks = List[argdisks];

basis = r;

w0 = wInvolution[r, disks];

For[i = 1, i <= Length[basis], i++,

row[i] =

BasisCoefficients[basis, ReflectWeyl[basis, w0, basis[[i]]]];

];

w0theta = Table[row[i], {i, 1, Length[basis]}];

w0theta = Transpose[w0theta];

Return[w0theta];

];

wInvolutionAction[a___] := InvalidArg["wInvolutionAction", a];

12.9 Group Action Package (Diagram)

12.9.1 DynkinPointsTeX

DynkinPointsTeX::usage=

”DynkinPointsTeX[type,dim,xOff,yOff] provides a LaTeX-formatted list of relative x,y po-

sitions of the dots of a Dynkin diagram for a root system of type (type,dim). The points

are offset along the x and y axes by xOff and yOff respectively.”;

DynkinPointsTeX[type_?StringQ, dim_?IntegerQ, xOffset_?IntegerQ,

yOffset_?IntegerQ] := Module[

{i, points, xSize, ySize},

xSize = 25; (* Space between points on X axis *)

ySize = 24; (*

Space between points on y axis *)

Switch[type,

"A",

points =

Table[{xSize*i + xOffset, 0 + yOffset}, {i, 0, dim - 1}];,

"B",

points =

Table[{xSize*i + xOffset, 0 + yOffset}, {i, 0, dim - 1}];,
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"C",

points =

Table[{xSize*i + xOffset, 0 + yOffset}, {i, 0, dim - 1}];,

"D",

points =

Table[{xSize*i + xOffset, 0 + yOffset}, {i, 0, dim - 3}];

points =

Join[points, {{xSize*(dim - 2) + xOffset, (ySize/2) +

yOffset}, {xSize*(dim - 2) + xOffset, -(ySize/2) +

yOffset}}];,

"E",

Switch[dim,

6,

points = {{0 + xOffset, 0 + yOffset}, {2*xSize + xOffset,

ySize + yOffset}, {xSize + xOffset,

0 + yOffset}, {2*xSize + xOffset,

0 + yOffset}, {3*xSize + xOffset,

0 + yOffset}, {4*xSize + xOffset, 0 + yOffset}};,

7,

points = {{0 + xOffset, 0 + yOffset}, {2*xSize + xOffset,

ySize + yOffset}, {xSize + xOffset,

0 + yOffset}, {2*xSize + xOffset,

0 + yOffset}, {3*xSize + xOffset,

0 + yOffset}, {4*xSize + xOffset,

0 + yOffset}, {5*xSize + xOffset, 0 + yOffset}};,

8,

points = {{0 + xOffset, 0 + yOffset}, {2*xSize + xOffset,

ySize + yOffset}, {xSize + xOffset,

0 + yOffset}, {2*xSize + xOffset,

0 + yOffset}, {3*xSize + xOffset,

0 + yOffset}, {4*xSize + xOffset,

0 + yOffset}, {5*xSize + xOffset,

0 + yOffset}, {6*xSize + xOffset, 0 + yOffset}};

];

,

"F",

points = {{0 + xOffset, 0 + yOffset}, {xSize + xOffset,

0 + yOffset}, {2*xSize + xOffset,

0 + yOffset}, {3*xSize + xOffset, 0 + yOffset}};,

"G",

points = {{0 + xOffset, 0 + yOffset}, {xSize + xOffset,

0 + yOffset}};

,

_,

Message[lie::type, type];

];

points

];

DynkinPointsTeX[a___] := InvalidArg["DynkinPointsTeX", a];
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12.9.2 HelminckDiagram

HelminckDiagram::usage=

”HelminckDiagram[r,theta,labels] gives the Helminck Diagram of an involution theta on the

roots acting on root system r. The optional argument labels allows custom labels for the

simple roots.

HelminckDiagram[r,disks,arches,labels] gives the Helminck Diagram of an involu-

tion on the roots acting on root system r. The involution is described by the fixed simple

roots (disks) and the roots swapped by the diagram automorphism (arches). The optional

argument labels allows custom labels for the simple roots.”;

HelminckDiagram[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ,

labels_: {}] := Module[

{g1, g2},

g1 = DynkinDiagram[r, labels];

g2 = Graphics[ThetaComponents[r, List[argdisks], arches]];

Quiet[Show[g1, g2]]

];

HelminckDiagram[r_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

labels_: {}] := Module[

{g1, g2},

g1 = DynkinDiagram[r, labels];

g2 = Graphics[ThetaComponents[r, List[argdisks], arches]];

Quiet[Show[g1, g2]]

];

HelminckDiagram[r_?RootInputQ, theta_?MatrixQ, labels_: {}] :=

Module[

{g1, g2, disks, arches},

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

g1 = DynkinDiagram[r, labels];

g2 = Graphics[ThetaComponents[r, disks, arches]];

Quiet[Show[g1, g2]]

];

HelminckDiagram[r_?RootBasisQ, theta_?MatrixQ, labels_: {}] :=

Module[

{g1, g2, disks, arches},

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

g1 = DynkinDiagram[r, labels];

g2 = Graphics[ThetaComponents[r, disks, arches]];

Quiet[Show[g1, g2]]
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];

HelminckDiagram[a___] := InvalidArg["HelminckDiagram", a];
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12.9.3 HelminckDiagramTeX

HelminckDiagramTeX::usage=

”HelminckDiagramTeX[r,theta,labels] gives LaTeX code to draw the Helminck Diagram of

an involution theta on the roots acting on root system r. The optional argument labels

allows custom labels for the simple roots.

HelminckDiagramTeX[r,disks,arches,labels] gives LaTeX code to draw the Helminck

Diagram of an involution on the roots acting on root system r. The involution is described

by the fixed simple roots (disks) and the roots swapped by the diagram automorphism

(arches). The optional argument labels allows custom labels for the simple roots.”;

HelminckDiagramTeX[r_?RootBasisQ, theta_?MatrixQ, custom_: {}] :=

Module[

{disks, arches},

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

Return[HelminckDiagramTeX[r, disks, arches, theta]];

];

HelminckDiagramTeX[r_?RootInputQ, theta_?MatrixQ, custom_: {}] :=

Module[

{disks, arches},

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

Return[HelminckDiagramTeX[r, disks, arches, theta]];

];

HelminckDiagramTeX[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, custom_: {}] :=

HelminckDiagramSTeX[BasisToRootSystem[r], List[argdisks], arches,

custom];

HelminckDiagramTeX[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, custom_: {}] := Module[

{out, totalHeight, tWidth, tHeight, i, j, xSize, ySize, ptSize,

nOff, pointMap, points, x1, x2, y1, y2, rin, disks},

disks = List[argdisks];

ptSize = 6; (* Size of a point *)

xSize = 25; (*

Space between points on X axis *)

ySize = 24; (*

Space between points on y axis *)

tHeight = 0;

totalHeight = 0;

out = "";

points = {};
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rin = RootInput[r];

(* pointMap will determine which points correspond to which \

diagram *)

pointMap = {};

For[i = 1, i <= Length[rin], i++,

pointMap = Join[pointMap, Table[i, {j, 1, rin[[i, 2]]}]];

];

If[Length[rin] <= 1,

out = HelminckDiagramSTeX[rin, disks, 0, 0, 0, custom];

tWidth = xSize*DynkinWidth[rin];

tHeight = ySize*DynkinHeight[rin];

totalHeight = tHeight;

points = DynkinPointsTeX[rin[[1, 1]], rin[[1, 2]], 0, 0];

,

tWidth = 0;

tHeight = 0;

nOff = 0;

For[i = 1, i <= Length[rin], i++,

tWidth = Max[tWidth, xSize*DynkinWidth[rin[[i]]]];

totalHeight =

totalHeight + Round[(ySize*3/2)]*DynkinHeight[rin[[i]]];

];

tHeight = totalHeight;

For[i = 1, i <= Length[rin], i++,

tHeight = tHeight - Round[(ySize*3/2)]*DynkinHeight[rin[[i]]];

out =

out <> HelminckDiagramSTeX[rin[[i]], disks,

Round[(tWidth - 25*DynkinWidth[rin[[i]]])/2], tHeight, nOff,

custom];

points =

Join[points,

DynkinPointsTeX[rin[[i, 1]], rin[[i, 2]],

Round[(tWidth - 25*DynkinWidth[rin[[i]]])/2], tHeight]];

nOff = nOff + rin[[i, 2]];

];

];

For[i = 1, i <= Length[arches], i++,

x1 = points[[arches[[i, 1]], 1]];

y1 = points[[arches[[i, 1]], 2]];

x2 = points[[arches[[i, 2]], 1]];

y2 = points[[arches[[i, 2]], 2]];

Which[

pointMap[[arches[[i, 1]]]] != pointMap[[arches[[i, 2]]]],

(* If both points correspond to a different diagram,

draw a simple connecting line *)

out = out <> "\\put(" <> ToString[x1] <> "," <>

ToString[y1 + (ptSize/2)] <> "){\\line(0,-1){" <>

ToString[Abs[y2 - y1] - ptSize] <> "}}\n";

,

y1 == y2,

(* If both points have same x, draw a horizontal arch *)

out = out <> "\\put(" <> ToString[Round[(x1 + x2)/2]] <> "," <>
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ToString[y1 - 5] <> "){\\oval(" <>

ToString[Round[Abs[x2 - x1]]] <> "," <> ToString[ySize] <>

")[b]}\n";

out =

out <> "\\put(" <> ToString[x1] <> "," <> ToString[y1 - 8] <>

"){\\vector(0,1){3}}\n";

out =

out <> "\\put(" <> ToString[x2] <> "," <> ToString[y1 - 8] <>

"){\\vector(0,1){3}}\n";

,

x1 == x2,

(* If both points have same y, draw a vertical arch *)

(*

out=out<>"\\put("<>ToString[x1+6]<>","<>ToString[Round[(y1+

y2)/2]]<>"){\\oval("<>ToString[xSize]<>","<>ToString[Round[Abs[

y2-y1]]]<>")[r]}\n";

*)

out = out <> "\\put(" <> ToString[x1 + 5] <> "," <>

ToString[Round[(y1 + y2)/2]] <>

"){\\bezier{150}(0,17)(11,0)(0,-17)}\n";

out =

out <> "\\put(" <> ToString[x1 + 5.5] <> "," <>

ToString[Round[(y1 + y2)/2] - 15.9] <>

"){\\vector(-2,-3){1}}\n";

out =

out <> "\\put(" <> ToString[x1 + 5.5] <> "," <>

ToString[Round[(y1 + y2)/2] + 15.9] <>

"){\\vector(-2,3){1}}\n";

];

];

(*out="\\begin{picture}("<>ToString[tWidth+20]<>","<>ToString[

totalHeight-ySize]<>")(-10,-10)\n"<>out;*)

out = "\\begin{picture}(" <> ToString[tWidth + 20] <> "," <>

ToString[totalHeight] <> ")(-10,-10)\n" <> out;

out = out <> "\\end{picture}\n";

out

];

HelminckDiagramTeX[a___] := InvalidArg["HelminckDiagramTeX", a];

12.10 Group Action Package (Internal)

12.10.1 HelminckDiagramSTeX

HelminckDiagramSTeX::usage=

”HelminckDiagramSTeX[r,disks,xOff,yOff,nOff,labels] gives LaTeX code for the Helminck

diagram for an irreducible root system r with fixed roots listed in disks. xOff and yOff

are, respectively, the x and y coordinate offsets of the diagram. nOff provides the offset for
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automatic root numbering (starting value). The optional argument labels allows custom

labels for the simple roots.”;

HelminckDiagramSTeX[r_?RootBasisQ, {argdisks___?IntegerQ},

xOff_?IntegerQ, yOff_?IntegerQ, nOff_?IntegerQ, custom_: {}] :=

HelminckDiagramSTeX[BasisToRootSystem[r], List[argdisks], xOff,

yOff, nOff, custom];

HelminckDiagramSTeX[r_?RootInputQ, {argdisks___?IntegerQ},

xOff_?IntegerQ, yOff_?IntegerQ, nOff_?IntegerQ, custom_: {}] :=

Module[

{type, dim, points, out, labels, edgeCodes, edgeCons, x1, x2, y1,

y2, i, ptSize, xSize, ySize, ceList, rin, disks},

disks = List[argdisks];

rin = IrreducibleRootInput[r];

ptSize = 6; (* Size of a point *)

xSize = 25; (*

Space between points on X axis *)

ySize = 24; (*

Space between points on y axis *)

out = "";

type = rin[[1]];

dim = rin[[2]];

(* All Points, labels, edges *)

points = DynkinPointsTeX[type, dim, xOff, yOff];

labels =

Table["\\alpha_{" <> ToString[i] <> "}", {i, 1 + nOff,

dim + nOff}];

edgeCodes = DynkinEdgeCodes[type, dim];

edgeCons = DynkinEdgeCons[type, dim];

ceList = {};

(* Customizations *)

If[! SameQ[custom, {}],

If[! SameQ[custom[[1]], {}],

labels = Take[custom[[1]], {1 + nOff, dim + nOff}];];

If[Length[custom] >= 2 && ! SameQ[custom[[2]], {}],

ceList = custom[[2]];];

];

(* Construct points *)

For[i = 1, i <= dim, i++,

If[MemberQ[disks, i + nOff],

(* I’m a Bold, Filled in Circle *)

out = out <> "\\put(" <> ToString[points[[i, 1]]] <> "," <>

ToString[points[[i, 2]]] <> "){\\circle*{" <>

ToString[ptSize] <> "}}\n";

,

(* I’m hollow inside. I have roots, but they’re not fixed. *)

out =

out <> "\\put(" <> ToString[points[[i, 1]]] <> "," <>

ToString[points[[i, 2]]] <> "){\\circle{" <>
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ToString[ptSize] <> "}}\n";

];

];

(* Construct labels *)

For[i = 1, i <= dim, i++,

If[StringLength[ToString[labels[[i]]]] < 1, Continue[];];

out =

out <> "\\put(" <> ToString[points[[i, 1]]] <> "," <>

ToString[points[[i, 2]] + ptSize] <>

"){\\makebox(0,0)[b]{\\scriptsize $" <> ToString[labels[[i]]] <>

"$}}\n";

];

(* Construct edges *)

For[i = 1, i <= Length[edgeCons], i++,

x1 = points[[edgeCons[[i, 1]], 1]];

y1 = points[[edgeCons[[i, 1]], 2]];

x2 = points[[edgeCons[[i, 2]], 1]];

y2 = points[[edgeCons[[i, 2]], 2]];

Switch[edgeCodes[[i]],

10,

Which[

y1 == y2,

(* Horizontal Line line(1,0) - 1 unit in x,

0 in y diredtions {line size} *)

If[MemberQ[ceList, i + nOff],

out = out <> "\\put(" <> ToString[Round[(x1 + x2)/2]] <>

"," <> ToString[y1] <>

"){\\makebox(0,0)[b]{$\\ldots $}}\n";

,

out = out <> "\\put(" <> ToString[x1 + (ptSize/2)] <> "," <>

ToString[y1] <> "){\\line(1,0){" <>

ToString[xSize - ptSize] <> "}}\n";

];

,

x1 == x2,

(* Vertical Line *)

out = out <> "\\put(" <> ToString[x1] <> "," <>

ToString[y1 + (ptSize/2)] <> "){\\line(0,1){" <>

ToString[ySize - ptSize] <> "}}\n";

,

y1 < y2,

(* Diagonal Up *)

out = out <> "\\put(" <> ToString[x1 + (ptSize/2)] <> "," <>

ToString[y1] <> "){\\line(2,1){" <>

ToString[xSize - ptSize] <> "}}\n";

,

y1 > y2,

(* Diagonal Down *)

out = out <> "\\put(" <> ToString[x1 + (ptSize/2)] <> "," <>

ToString[y1] <> "){\\line(2,-1){" <>

ToString[xSize - ptSize] <> "}}\n";
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];

,

21,

out =

out <> "\\put(" <> ToString[x1 + (ptSize*3/2)] <> "," <>

ToString[y1 - 1] <> "){\\line(1,0){" <>

ToString[xSize - 2 ptSize] <> "}}\n";

out =

out <> "\\put(" <> ToString[x1 + (ptSize*3/2)] <> "," <>

ToString[y1 + 1] <> "){\\line(1,0){" <>

ToString[xSize - 2 ptSize] <> "}}\n";

out =

out <> "\\put(" <> ToString[x1 + (ptSize)] <> "," <>

ToString[y1] <> "){\\vector(-1,0){" <> ToString[1] <> "}}\n";

,

22,

out =

out <> "\\put(" <> ToString[x1 + (ptSize/2)] <> "," <>

ToString[y1 - 1] <> "){\\line(1,0){" <>

ToString[xSize - 2 ptSize] <> "}}\n";

out =

out <> "\\put(" <> ToString[x1 + (ptSize/2)] <> "," <>

ToString[y1 + 1] <> "){\\line(1,0){" <>

ToString[xSize - 2 ptSize] <> "}}\n";

out =

out <> "\\put(" <> ToString[x2 - (ptSize)] <> "," <>

ToString[y1] <> "){\\vector(1,0){" <> ToString[1] <> "}}\n";

,

31,

out =

out <> "\\put(" <> ToString[x1 + (ptSize*3/2)] <> "," <>

ToString[y1 - 1] <> "){\\line(1,0){" <>

ToString[xSize - 2 ptSize] <> "}}\n";

out =

out <> "\\put(" <> ToString[x1 + (ptSize*3/2)] <> "," <>

ToString[y1 + 1] <> "){\\line(1,0){" <>

ToString[xSize - 2 ptSize] <> "}}\n";

out =

out <> "\\put(" <> ToString[x1 + (ptSize*3/2)] <> "," <>

ToString[y1] <> "){\\line(1,0){" <>

ToString[xSize - 2 ptSize] <> "}}\n";

out =

out <> "\\put(" <> ToString[x1 + (ptSize)] <> "," <>

ToString[y1] <> "){\\vector(-1,0){" <> ToString[1] <> "}}\n";

];

];

out

];

HelminckDiagramSTeX[a___] := InvalidArg["HelminckDiagramSTeX", a];
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12.10.2 ThetaComponents

ThetaComponents::usage=

”ThetaComponents[r,theta] returns the components for a Helminck diagram to be merged

with the Dynkin diagram. r denotes the root system, and theta the involution over r.

ThetaComponents[r,disks,arches] returns the components for a Helminck diagram

to be merged with the Dynkin diagram. r denotes the root system, disks denotes the fixed

roots, and arches denotes the diagram automorphism.”;

ThetaComponents[r_?RootInputQ, theta_?MatrixQ] := Module[

{disks, arches},

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

Return[ThetaComponents[r, disks, arches]];

];

ThetaComponents[r_?RootBasisQ, theta_?MatrixQ] := Module[

{disks, arches},

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

Return[ThetaComponents[r, disks, arches]];

];

ThetaComponents[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

ThetaComponents[BasisToRootSystem[r], List[argdisks], arches];

ThetaComponents[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] := Module[

{rin, pointMap, points, dotRadius, i, j, x1, x2, y1, y2, disks,

cth, xc, radius, yc,

grDisks, grArches, grArgs},

dotRadius = .065;

disks = List[argdisks];

rin = RootInput[r];

(* pointMap will determine which points correspond to which \

diagram *)

pointMap = {};

For[i = 1, i <= Length[rin], i++,

pointMap = Join[pointMap, Table[i, {j, 1, rin[[i, 2]]}]];

];

points = DynkinPoints[rin];

(* Draw the solid black dots *)

grDisks =

Table[Disk[points[[disks[[i]]]], dotRadius], {i, 1,

Length[disks]}];
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(* Arches *)

grArches = {};

For[i = 1, i <= Length[arches], i++,

x1 = points[[arches[[i, 1]], 1]];

y1 = points[[arches[[i, 1]], 2]];

x2 = points[[arches[[i, 2]], 1]];

y2 = points[[arches[[i, 2]], 2]];

Which[

pointMap[[arches[[i, 1]]]] != pointMap[[arches[[i, 2]]]],

(* If both points correspond to a different diagram,

draw a simple connecting line *)

grArches = Join[grArches, {Line[{{x1, y1}, {x2, y2}}]}];

,

y1 == y2,

(* If both points have same x, draw a horizontal arch *)

cth = Pi/4;

xc = (x2 + x1)/2;

radius = (x2 - x1)*Cos[cth];

yc = y1 + radius*Sin[cth];

grArches =

Join[grArches, {Circle[{xc, yc},

radius, {3 Pi/2 - cth, 3 Pi/2 + cth}]}];

,

x1 == x2,

(* If both points have same y, draw a vertical arch *)

cth = Pi/4;

yc = (y2 + y1)/2;

radius = Abs[(y2 - y1)]*Sin[cth];

xc = x1 - radius*Cos[cth];

grArches =

Join[grArches, {Circle[{xc, yc}, radius, {-cth, cth}]}];

,

True,

(* Diagonal connection? *)

grArches = Join[grArches, {Line[{{x1, y1}, {x2, y2}}]}];

];

];

grArgs = Join[grDisks, grArches];

grArgs

];

ThetaComponents[a___] := InvalidArg["ThetaComponents", a];
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12.11 Local Symmetric Spaces Package (Primary)

12.11.1 AlignPolarities

AlignPolarities::usage=

”AlignPolarities[d1,theta1,cvals1,d2,theta2,cvals2,w] aligns the polarities of two involutions

over the Lie algebra cvals1 and cvals2. Each is defined with respect to root system in-

volutions theta1 and theta2 over root systems d1 and d2. If the optional argument w is

omitted, or is set to 1, the involution cvals1 is returned, modified so that its polarity aligns

with cvals2. If w is 2, then cvals2 is returned, modified to align with cvals1. Each instance

of theta (1 or 2) can be replaced with two arguments: disks, an integer index of the fixed

roots, and arches, the diagram automorphism.”;

AlignPolarities[d1_?RootBasisQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ,

d2_?RootBasisQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[d1, RootInvolution[d1, List[argdisks1], arches1],

cvals1, d2, RootInvolution[d2, List[argdisks2], arches2], cvals2,

w];

AlignPolarities[d1_?RootInputQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ,

d2_?RootBasisQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1],

RootInvolution[RootBase[d1], List[argdisks1], arches1], cvals1, d2,

RootInvolution[d2, List[argdisks2], arches2], cvals2, w];

AlignPolarities[d1_?RootBasisQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ,

d2_?RootInputQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[d1, RootInvolution[d1, List[argdisks1], arches1],

cvals1, RootBase[d2],

RootInvolution[RootBase[d2], List[argdisks2], arches2], cvals2, w];

AlignPolarities[d1_?RootInputQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ,

d2_?RootInputQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1],

RootInvolution[RootBase[d1], List[argdisks1], arches1], cvals1,

RootBase[d2],

RootInvolution[RootBase[d2], List[argdisks2], arches2], cvals2, w];

AlignPolarities[d1_?RootBasisQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ, d2_?RootBasisQ, theta2_?MatrixQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[d1, RootInvolution[d1, List[argdisks1], arches1],

cvals1, d2, theta2, cvals2, w];
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AlignPolarities[d1_?RootInputQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ, d2_?RootBasisQ, theta2_?MatrixQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1],

RootInvolution[RootBase[d1], List[argdisks1], arches1], cvals1, d2,

theta2, cvals2, w];

AlignPolarities[d1_?RootBasisQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ, d2_?RootInputQ, theta2_?MatrixQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[d1, RootInvolution[d1, List[argdisks1], arches1],

cvals1, RootBase[d2], theta2, cvals2, w];

AlignPolarities[d1_?RootInputQ, {argdisks1___?IntegerQ},

arches1_?ListQ, cvals1_?ListQ, d2_?RootInputQ, theta2_?MatrixQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1],

RootInvolution[RootBase[d1], List[argdisks1], arches1], cvals1,

RootBase[d2], theta2, cvals2, w];

AlignPolarities[d1_?RootBasisQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootBasisQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[d1, theta1, cvals1, d2,

RootInvolution[d2, List[argdisks2], arches2], cvals2, w];

AlignPolarities[d1_?RootInputQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootBasisQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1], theta1, cvals1, d2,

RootInvolution[d2, List[argdisks2], arches2], cvals2, w];

AlignPolarities[d1_?RootBasisQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootInputQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[d1, theta1, cvals1, RootBase[d2],

RootInvolution[RootBase[d2], List[argdisks2], arches2], cvals2, w];

AlignPolarities[d1_?RootInputQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootInputQ, {argdisks2___?IntegerQ}, arches2_?ListQ,

cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1], theta1, cvals1, RootBase[d2],

RootInvolution[RootBase[d2], List[argdisks2], arches2], cvals2, w];

AlignPolarities[d1_?RootInputQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootBasisQ, theta2_?MatrixQ, cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1], theta1, cvals1, d2, theta2, cvals2,

w];

AlignPolarities[d1_?RootBasisQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootInputQ, theta2_?MatrixQ, cvals2_?ListQ, w_: 1] :=

AlignPolarities[d1, theta1, cvals1, RootBase[d2], theta2, cvals2,

w];

AlignPolarities[d1_?RootInputQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootInputQ, theta2_?MatrixQ, cvals2_?ListQ, w_: 1] :=

AlignPolarities[RootBase[d1], theta1, cvals1, RootBase[d2], theta2,

cvals2, w];
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AlignPolarities[d1_?RootBasisQ, theta1_?MatrixQ, cvals1_?ListQ,

d2_?RootBasisQ, theta2_?MatrixQ, cvals2_?ListQ, w_: 1] := Module[

{p1, p2},

p1 = InvolutionPolarity[d1, theta1, cvals1];

p2 = InvolutionPolarity[d2, theta2, cvals2];

(* If either end is zero then the two involutions do not meet (by \

construction of rank one decomposition) *)

If[SameQ[p1[[2]], 0] || SameQ[p2[[1]], 0],

If[SameQ[w, 1],

Return[cvals1];

,

Return[cvals2];

];

];

(* If the joining ends have the same polarity, no worries *)

If[SameQ[p1[[2]], p2[[1]]],

If[SameQ[w, 1],

Return[cvals1];

,

Return[cvals2];

];

];

(* Change the polarity of cvals2 so it aligns with cvals1 *)

If[SameQ[w, 1],

Return[SwitchPolarity[d1, theta1, cvals1]];

,

Return[SwitchPolarity[d2, theta2, cvals2]];

];

];

AlignPolarities[a___] := InvalidArg["AlignPolarities", a];
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12.11.2 ApplyRootInvolution

ApplyRootInvolution::usage=

”ApplyRootInvolution[r,disks,arches,root] applies root (denoting a single root or set of

roots) to an involution defined over a root system r, with fixed roots disks and diagram

automorphism arches.

ApplyRootInvolution[r,theta,root] applies root (denoting a single root or set of

roots) to an involution theta defined over a root system r.”;

ApplyRootInvolution[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?ListQ] :=

ApplyRootInvolutionBasis[r, List[argdisks], arches, root];

ApplyRootInvolution[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?ListQ] := Module[

{theta, i, disks},

disks = List[argdisks];

theta = RootInvolution[r, disks, arches];

If[SameQ[Depth[root], 2],

Return[ApplyRootInvolution[r, theta, root]];

,

Return[

DeleteDuplicates[

Table[ApplyRootInvolution[r, theta, root[[i]]], {i, 1,

Length[root]}]]];

];

];

ApplyRootInvolution[r_?RootBasisQ, theta_?MatrixQ, root_?ListQ] :=

ApplyRootInvolutionBasis[r, theta, root];

ApplyRootInvolution[r_?RootInputQ, theta_?MatrixQ, root_?ListQ] :=

Module[

{basis, kroot, i},

If[SameQ[Depth[root], 2],

basis = RootBase[r];

kroot = BasisCoefficients[basis, root];

Return[kroot.Transpose[theta].basis];

,

Return[

DeleteDuplicates[

Table[ApplyRootInvolution[r, theta, root[[i]]], {i, 1,

Length[root]}]]];

];

];

ApplyRootInvolution[a___] := InvalidArg["ApplyRootInvolution", a];
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12.11.3 ApplyRootInvolutionBasis

ApplyRootInvolutionBasis::usage=

”ApplyRootInvolutionBasis[r,disks,arches,root] applies root (denoting a single root or set

of roots) to an involution defined over a root system with basis d, with fixed roots disks

and diagram automorphism arches.

ApplyRootInvolutionBasis[d,theta,root] applies root (denoting a single root or set

of roots) to an involution theta defined over a root system with basis d.”;

ApplyRootInvolutionBasis[d_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?ListQ] := Module[

{kroot, i, disks, theta},

disks = List[argdisks];

theta = RootInvolution[d, disks, arches];

If[SameQ[Depth[root], 2],

kroot = BasisCoefficients[d, root];

Return[kroot.Transpose[theta].d];

,

Return[

DeleteDuplicates[

Table[ApplyRootInvolutionBasis[d, theta, root[[i]]], {i, 1,

Length[root]}]]];

];

];

ApplyRootInvolutionBasis[d_?RootBasisQ, theta_?MatrixQ, root_?ListQ] :=

Module[

{kroot, i},

If[SameQ[Depth[root], 2],

kroot = BasisCoefficients[d, root];

Return[kroot.Transpose[theta].d];

,

Return[

DeleteDuplicates[

Table[ApplyRootInvolutionBasis[d, theta, root[[i]]], {i, 1,

Length[root]}]]];

];

];

ApplyRootInvolutionBasis[a___] :=

InvalidArg["ApplyRootInvolutionBasis", a];



377

12.11.4 ComplementRoot

ComplementRoot::usage=

”ComplementRoot[root] complements the given root.”;

ComplementRoot[root_?VectorQ] := Module[{},

Print["The root ", root, " is looking mighty fine today."];

Return[root];

];

ComplementRoot[a___] := InvalidArg["ComplementRoot", a];
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12.11.5 CorrectionVector

CorrectionVector::usage=

”CorrectionVector[r,theta,cvals,x] computes all involution correction vectors for an involu-

tion theta over the root system r with structure constants cvals. x supplies the name of the

variable set for the toral vector coordinates.”;

CorrectionVector[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ,

cvals_?ListQ, x_] :=

CorrectionVector[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], cvals, x];

CorrectionVector[d_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

cvals_?ListQ, x_] :=

CorrectionVector[d, RootInvolution[d, List[argdisks], arches],

cvals, x];

CorrectionVector[r_?RootInputQ, theta_?MatrixQ, cvals_?ListQ, x_] :=

CorrectionVector[RootBase[r], theta, cvals, x];

CorrectionVector[d_?RootBasisQ, theta_?MatrixQ, cvals_?ListQ, x_] :=

Module[

{cntr, polynomials, vars, eqns, i, solnset, n},

solnset = {};

cntr = TimeUsed[];

n = Length[theta];

vars = Table[x[i], {i, 1, n}];

polynomials = Table[(RootFunctional[d, d[[i]], vars])*

(RootFunctional[d,

BasisCoefficients[d, d[[i]]].Transpose[theta].d, vars])*

StructureConstantsLookup[cvals, d[[i]]]*

StructureConstantsLookup[cvals,

BasisCoefficients[d, d[[i]]].Transpose[theta].d] - 1, {i, 1,

n}];

eqns = Table[polynomials[[i]] == 0, {i, 1, Length[polynomials]}];

solnset = GroebnerBackSolver[eqns, vars];

Return[solnset];

];

CorrectionVector[a___] := InvalidArg["CorrectionVector", a];
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12.11.6 DiagramInvolution

DiagramInvolution::usage=

”DiagramInvolution[r] gives a list of root pairs “arches” in root system r which are swapped

by the diagram automorphism of order 2.”;

DiagramInvolution[r_?RootInputQ] := Module[

{rin, i, n, tdim, out, pout},

rin = RootInput[r];

n = Length[rin];

out = {};

tdim = 0;

For[i = 1, i <= n, i++,

pout = DiagramInvolutionSimple[rin[[i]], tdim];

If[! SameQ[pout, {}],

out = Join[out, pout];

];

tdim += rin[[i, 2]];

];

Return[out];

];

DiagramInvolution[a___] := InvalidArg["DiagramInvolution", a];



380

12.11.7 InvBasisTable

InvBasisTable::usage=

”InvBasisTable[basis,theta,rrdl] gives a table of the structure constants necessary to deter-

mine if the Lie algebra homomorphism rrdl lifted from root system involution theta over

the given root basis is an involution.”;

InvBasisTable[basis_?RootBasisQ, theta_?MatrixQ, rrdl_?ListQ] :=

TableForm[

FullSimplify[

Table[{{basis[[i]]}, {ApplyRootInvolutionBasis[basis, theta,

basis[[i]]]},

StructureConstantsLookup[rrdl, basis[[i]]]*

StructureConstantsLookup[rrdl,

ApplyRootInvolutionBasis[basis, theta, basis[[i]]]]}, {i, 1,

Length[basis]}]],

TableHeadings -> {None, {"[Alpha]", "[Theta]([Alpha])",

"!(*SubscriptBox["c",

RowBox[{"[Alpha]", ",", "[Theta]"}]]) !(*SubscriptBox["c

",

RowBox[{

RowBox[{"[Theta]",

RowBox[{"(", "[Alpha]", ")"}]}], ",", "[Theta]"}]])"}}]

InvBasisTable[a___] := InvalidArg["InvBasisTable", a];
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12.11.8 InvBasisTableAlphaForm

InvBasisTableAlphaForm::usage=

”InvBasisTable[basis,theta,rrdl] gives a table of the structure constants necessary to deter-

mine if the Lie algebra homomorphism rrdl lifted from root system involution theta over

the given root basis is an involution. Roots are printed in alpha form.”;

InvBasisTableAlphaForm[basis_?RootBasisQ, theta_?MatrixQ,

rrdl_?ListQ] :=

TableForm[

FullSimplify[

Table[{{RootAlphaForm[basis, basis[[i]]]}, {RootAlphaForm[basis,

ApplyRootInvolutionBasis[basis, theta, basis[[i]]]]},

StructureConstantsLookup[rrdl, basis[[i]]]*

StructureConstantsLookup[rrdl,

ApplyRootInvolutionBasis[basis, theta, basis[[i]]]]}, {i, 1,

Length[basis]}]],

TableHeadings -> {None, {"[Alpha]", "[Theta]([Alpha])",

"!(*SubscriptBox["c",

RowBox[{"[Alpha]", ",", "[Theta]"}]]) !(*SubscriptBox["c

",

RowBox[{

RowBox[{"[Theta]",

RowBox[{"(", "[Alpha]", ")"}]}], ",", "[Theta]"}]])"}}]

InvBasisTableAlphaForm[a___] :=

InvalidArg["InvBasisTableAlphaForm", a];
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12.11.9 InvBTRaw

InvBTRaw::usage=

”InvBTRaw::usage”;

InvBTRaw[basis_?RootBasisQ, theta_?MatrixQ, rrdl_?ListQ] :=

Length[Position[

FullSimplify[

Table[{StructureConstantsLookup[rrdl, basis[[i]]]*

StructureConstantsLookup[rrdl,

ApplyRootInvolutionBasis[basis, theta, basis[[i]]]]}, {i, 1,

Length[basis]}]], {-1}]];

InvBTRaw[a___] := InvalidArg["InvBTRaw", a];
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12.11.10 InvolutionPolarity

InvolutionPolarity::usage=

”InvolutionPolarity[r,theta,cconsts] returns the polarity of an involution over the Lie algebra

with structure constants cconsts. The involution is defined with respect to an involution

theta over the root system r.

InvolutionPolarity[r,disks,arches,cconsts] returns the polarity of an involution over

the Lie algebra with structure constants cconsts. The involution is defined with respect to

an involution theta (given as fixed roots disks and diagram automorphism arches) over the

root system r.”;

InvolutionPolarity[r_?RootInputQ, theta_?MatrixQ, cv_?ListQ] :=

InvolutionPolarity[RootBase[r], theta, cv];

InvolutionPolarity[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, cv_?ListQ] :=

InvolutionPolarity[r, RootInvolution[r, List[argdisks], arches],

cv];

InvolutionPolarity[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, cv_?ListQ] :=

InvolutionPolarity[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], cv];

InvolutionPolarity[d_?RootBasisQ, theta_?MatrixQ, cv_?ListQ] := {

If[! FixedRootQ[d, theta, d[[1]]], 0,

StructureConstantsLookup[cv, d[[1]]]],

If[! FixedRootQ[d, theta, d[[Length[d]]]], 0,

StructureConstantsLookup[cv, d[[Length[d]]]]]

};

InvolutionPolarity[a___] := InvalidArg["InvolutionPolarity", a];
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12.11.11 LocalBasis

LocalBasis::usage=

”LocalBasis[r,theta] computes the set of basis roots which project down to some root on the

local symmetric space. r denotes the root system on which an involution theta is defined.

(S-LOSS) LocalBasis[r,disks,arches] computes the set of basis roots which project

down to some root on the local symmetric space. r denotes the root system on which an

involution with fixed roots disks and diagram automorphism arches is defined.”;

(* Find the white dots on the Helminck Diagram *)

LocalBasis[r_?RootInputQ, theta_?MatrixQ] :=

Complement[RootBase[r], FixedBasis[r, theta]];

LocalBasis[r_?RootBasisQ, theta_?MatrixQ] :=

Complement[RootBase[r], FixedBasis[r, theta]];

(* Find the white dots on the Helminck Diagram *)

LocalBasis[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

Complement[RootBase[r], FixedBasis[r, List[argdisks], arches]];

LocalBasis[r_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

Complement[RootBase[r], FixedBasis[r, List[argdisks], arches]];

LocalBasis[a___] := InvalidArg["LocalBasis", a];
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12.11.12 LocalProject

LocalProject::usage=

”LocalProject[r,disks,arches,root] projects root into some root in the local symmetric space

whose root system is determined over an involution over root system r with fixed roots disks

and diagram automorphism arches.

LocalProject[r,theta,root] projects root into some root in the local symmetric space

whose root system is determined by an involution theta over root system r.”;

LocalProject[r_?RootInputQ, theta_?MatrixQ, root_?VectorQ] :=

EigenspaceProject[r, theta, root, -1];

LocalProject[r_?RootBasisQ, theta_?MatrixQ, root_?VectorQ] :=

EigenspaceProject[r, theta, root, -1];

LocalProject[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ,

root_?VectorQ] :=

EigenspaceProject[r, List[argdisks], arches, root, -1];

LocalProject[r_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

root_?VectorQ] :=

EigenspaceProject[r, List[argdisks], arches, root, -1];

LocalProject[a___] := InvalidArg["LocalProject", a];
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12.11.13 OneCorrectionVector

OneCorrectionVector::usage=

”OneCorrectionVector[r,theta,cvals,x,sn] computes one involution correction vector for an

involution theta over the root system r with structure constants cvals. x supplies the name

of the variable set for the toral vector coordinates. The optional argument sn allows the

user to specify solution, number sn, in the case multiple solutions are present.”;

OneCorrectionVector[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, cvals_?ListQ, x_, sn_: 1] :=

OneCorrectionVector[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], cvals, x, sn];

OneCorrectionVector[d_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, cvals_?ListQ, x_, sn_: 1] :=

OneCorrectionVector[d, RootInvolution[d, List[argdisks], arches],

cvals, x, sn];

OneCorrectionVector[r_?RootInputQ, theta_?MatrixQ, cvals_?ListQ, x_,

sn_: 1] := OneCorrectionVector[RootBase[r], theta, cvals, x, sn];

OneCorrectionVector[d_?RootBasisQ, theta_?MatrixQ, cvals_?ListQ, x_,

sn_: 1] := Module[

{cntr, polynomials, vars, i, solnset, eqns, n, roots, troots},

cntr = TimeUsed[];

n = Length[d];

vars = Table[x[i], {i, 1, n}];

roots = Table[BasisCoefficients[d, d[[i]]].d, {i, 1, n}];

(* In case theta corresponds to a larger basis containing the one \

passed *)

troots =

Table[ApplyRootInvolutionBasis[d, theta, roots[[i]]], {i, 1, n}];

polynomials = Table[

(RootFunctional[d, roots[[i]], vars])*

(RootFunctional[d, troots[[i]], vars])*

StructureConstantsLookup[cvals, roots[[i]]]*

StructureConstantsLookup[cvals, troots[[i]]] - 1, {i, 1, n}];

eqns = Table[polynomials[[i]] == 0, {i, 1, Length[polynomials]}];

(*solnset=groebnerOneSolution[eqns,vars];*)

solnset = Solve[eqns, vars][[sn]];

Return[solnset];

];

OneCorrectionVector[a___] := InvalidArg["OneCorrectionVector", a];

(* wait... thetadelta is not an involution...

\

oneCorrectionVector[basis_,theta_,systemMatrix_,cvals_,x_]:=Module[

{cntr,polynomials,vars,tvars1,tvars2,,i,j,solnset,eqns,n,roots,troots}\
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,

cntr=TimeUsed[];

n=Length[basis];

vars=Table[x[i],{i,1,n}];

roots=Table[basisCoeffs[basis,basis[[i]]].basis,{i,1,n}];

troots=Table[applyInvolutionBasis[basis,theta,roots[[i]]],{i,1,n}];(* \

In case theta corresponds to a larger basis containing the one passed \

*)

tvars1={};

tvars2={};

For[i=1,i<=n,i++,

If[isFixedRootBasis[basis,theta,troots[[i]]],

tvars1=Join[{x[i]},tvars1];

tvars2=Join[{0},tvars2];

,

tvars1=Join[{0},tvars1];

tvars2=Join[{x[i]},tvars2];

];

];

polynomials=Table[

(rootFunctional[basis,roots[[i]],vars])*

(rootFunctional[basis,troots[[i]],tvars1] - \

rootFunctional[basis,troots[[i]],tvars2])*

structureConstantsLookup[cvals,roots[[i]]]*

structureConstantsLookup[cvals,troots[[i]]]-1,{i,1,n}];

eqns=Table[polynomials[[i]]==0,{i,1,Length[polynomials]}];

(*solnset=groebnerOneSolution[eqns,vars];*)

\

solnset=Solve[eqns,vars][[1]];

Print["(liftThetaOneSolution) Used ",TimeUsed[]-cntr,"s CPU Time to \

look for one solution."];

solnset

];

*)
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12.11.14 OrthoComplement

OrthoComplement::usage=

”OrthoCompement[roots,com] finds all roots in the set roots which are orthogonal to the

root or set of roots given in com.”;

(* Find roots orthogonal to complement *)

OrthoComplement[roots_?ListQ, complement_?ListQ] := Module[

{i, j, oset, compl},

oset = {};

(* given one root or a set of roots? *)

If[SameQ[Depth[complement], 2],

compl = {complement};

,

compl = complement;

];

For[i = 1, i <= Length[roots], i++,

For[j = 1, j <= Length[compl], j++,

If[InnerProduct[roots[[i]], compl[[j]]] != 0,

Break[];

];

];

If[j > Length[compl],

oset = Union[oset, {roots[[i]]}];

];

];

Return[oset];

];

OrthoComplement[a___] := InvalidArg["OrthoComplement", a];

(* Find roots *)

(*

\

XXorthoRestrictedRoots[r_,disks_,arches_,rootset_]:=Module[

{roots,oset,i,j},

oset={};

roots=restrictedRootSystem[r,disks,arches];

For[i=1,i<=Length[roots],i++,

For[j=1,j<=Length[rootset],j++,

];

];

];

*)
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12.11.15 RankOneComponentBasis

RankOneComponentBasis::usage=

”RankOneComponentBasis[r,theta,root] if a variant of RankOneLocalBasis. This procedure

computes the basis of the restricted rank one root system with respect to root, defined by an

involution theta over the root system r. Roots which are fixed by theta are removed unless

they are part of the same irreducible component of the rank one restricted root system with

respect to root. In effect, this procedure generates the class of the rank one restricted root

system found in Table I of ”Algebraic Groups with a Commuting Pair of Involutions and

Semisimple Symmetric Spaces” by A.G. Helminck.

RankOneComponentBasis[r,disks,arches,root] if a variant of RankOneLocalBasis.

This procedure computes the basis of the restricted rank one root system with respect to

root, defined by an involution theta (described by fixed roots disks and diagram automor-

phism arches) over the root system r. Roots which are fixed by theta are removed unless

they are part of the same irreducible component of the rank one restricted root system with

respect to root. In effect, this procedure generates the class of the rank one restricted root

system found in Table I of ”Algebraic Groups with a Commuting Pair of Involutions and

Semisimple Symmetric Spaces” by A.G. Helminck.”;

RankOneComponentBasis[r_?RootInputQ, theta_?MatrixQ, root_?VectorQ] :=

RankOneComponentBasis[RootBase[r], theta, root];

RankOneComponentBasis[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

RankOneComponentBasis[RootBase[r],

RootInvolution[List[argdisks], arches], root];

RankOneComponentBasis[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

RankOneComponentBasis[r, RootInvolution[List[argdisks], arches],

root];

RankOneComponentBasis[r_?RootBasisQ, theta_?MatrixQ, root_?VectorQ] :=

Module[

{i, j, rob, rwp, rset, nset, cursize, newsize, fixed},

rob = RestrictedRankOneBasis[r, theta, root];

rwp = RankOneLocalBasis[r, theta, root];

fixed = FixedBasis[r, theta];

rset = rwp;

cursize = Length[rset];

newsize = 0;

(* Add back the fixed roots which are connected *)

While[! SameQ[cursize, newsize],

cursize = Length[rset];
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nset = {};

For[i = 1, i <= Length[fixed], i++, (* FOR every fixed root *)

For[j = 1, j <= Length[rset], j++, (* FOR every rset root *)

If[RootBasisConnectedQ[rob, fixed[[i]], rset[[j]]],

nset = Union[nset, {fixed[[i]]}];

];

];

];

rset = Union[rset, nset];

newsize = Length[rset];

];

(* Sort each element of rset *)

rset = ByBasisSort[r, rset];

Return[rset];

];

RankOneComponentBasis[a___] := InvalidArg["RankOneComponentBasis", a];
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12.11.16 RankOneLocalBasis

RankOneLocalBasis::usage=

”RankOneLocalBasis[r,theta,root] if a variant of RankOneBasis. This procedure computes

the basis of the restricted rank one root system with respect to root, defined by an involution

theta over the root system r. Roots which are fixed by theta are removed, leaving present

only the roots which project down to some root in the local symmetric space.

RankOneLocalBasis[r,disks,arches,root] if a variant of RankOneBasis. This proce-

dure computes the basis of the restricted rank one root system with respect to root, defined

by an involution theta (described by fixed roots disks and diagram automorphism arches)

over the root system r. Roots which are fixed by theta are removed, leaving present only

the roots which project down to some root in the local symmetric space.”;

RankOneLocalBasis[r_?RootInputQ, theta_?MatrixQ, root_?VectorQ] :=

RankOneLocalBasis[RootBase[r], theta, root];

RankOneLocalBasis[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

RankOneLocalBasis[RootBase[r],

RootInvolution[r, List[argdisks], arches], root];

RankOneLocalBasis[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

RankOneLocalBasis[r, RootInvolution[r, List[argdisks], arches],

root];

RankOneLocalBasis[r_?RootBasisQ, theta_?MatrixQ, root_?VectorQ] :=

Module[

{i, rr, ret, rob},

rob = RestrictedRankOneBasis[r, theta, root];

ret = {};

For[i = 1, i <= Length[rob], i++,

rr = LocalProject[r, theta, rob[[i]]];

If[Norm[rr] > 0,

ret = Join[{rob[[i]]}, ret];

];

];

Return[ret];

];

RankOneLocalBasis[a___] := InvalidArg["RankOneLocalBasis", a];
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12.11.17 RankOneRootLift

RankOneRootLift::usage=

”RankOneRootLift[r,theta,cconsts,nvals] lifts a restricted rank one involution theta, with

respect to root system r, to an involution on its corresponding Lie algebra. cconsts supplies

the structure constants. nvals supplies the Chevalley constants.

RankOneRootLift[r,disks,arches,cconsts,nvals] lifts a restricted rank one involution

theta (described via fixed roots disks and diagram automorphism arches), with respect to

root system r, to an involution on its corresponding Lie algebra. cconsts supplies the

structure constants. nvals supplies the Chevalley constants.”;

RankOneRootLift::rank =

"supplied involution is not restricted rank one.";

RankOneRootLift[r_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

cconsts_?ListQ, nvals_?ListQ] :=

RankOneRootLift[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], cconsts,

nvals];

RankOneRootLift[basis_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, cconsts_?ListQ, nvals_?ListQ] :=

RankOneRootLift[basis,

RootInvolution[basis, List[argdisks], arches], cconsts, nvals];

RankOneRootLift[r_?RootInputQ, theta_?MatrixQ, cconsts_?ListQ,

nvals_?ListQ] :=

RankOneRootLift[RootBase[r], theta, cconsts, nvals];

RankOneRootLift[basis_?RootBasisQ, theta_?MatrixQ, cconsts_?ListQ,

nvals_?ListQ] := Module[

{roots, entryn, tableentry, rettbl,

minbasis, mintheta, mincconsts, mininvals,

i, n, mininvol, minroots},

(* Initialize *)

(*r=BasisToRootSystem[basis];*)

roots = RootSystemFromBasis[basis];

n = Length[basis];

(*Print["rorl1."];*)

(* Rank zero? This is all fixed roots *)

If[SameQ[RestrictedRootRank[basis, theta], 0],

rettbl = {};

For[i = 1, i <= Length[basis], i++,

rettbl = Join[{{basis[[i]], 1}}, rettbl];

rettbl = Join[{{-basis[[i]], 1}}, rettbl];

];

rettbl = gMergeInvolutions[basis, theta, rettbl, nvals];

Return[rettbl];
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];

(* Rank one?

This isn’t typically a user-called function.

If this message is returned, there’s probably some bigger bug. *)

If[! SameQ[RestrictedRootRank[basis, theta], 1],

Message[RankOneRootLift::rank];

Return[{}];

];

(* Identify the RRO entry number *)

entryn = RROITableEntry[basis, theta];

tableentry = RROITable[entryn];

(*Print["rorl2."];*)

(* It is 1-consistent *)

If[tableentry[[4]],

(* Theta-Delta is an involution. Return list of {ROOT, coeff=

STRUCTURECONST} *)

rettbl =

Table[{roots[[i]],

StructureConstantsLookup[cconsts, roots[[i]]]}, {i, 1,

Length[roots]}];

Return[rettbl];

];

(* Not 1-

consistent AND is a classical type of length exceeding minimum *)

If[(SameQ[entryn, 7] || SameQ[entryn, 8] || SameQ[entryn, 11]) &&

Length[basis] > tableentry[[5]],

(* Rank one entry has infinite possible number of sizes *)

(*

Lift the min size involution *)

(* simpleLift[minbasis,

mintheta,minsystemMatrix,cconsts]; *)

(* STRATEGY:

1. First lift the minimum size involution.

Do this with a new basis.

2. The map the structure constants for our "bigger" involution to \

the lifted smaller one...

e.g. for type B,

the first two and last two basis roots map to the first and last \

two consts of our mini lifted invol.

3. Fill in the other basis roots with 1. (They’re fixed, so 1-

consistent)

4. gMergeInvolutions to fill in the other roots

*)

Switch[entryn,

7, (* B *)

(*

trim all but the first and last two roots *)

(*minr="B4";*)

minbasis = {};

For[i = 1, i <= Length[basis], i++,
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If[

SameQ[i, 1] || SameQ[i, 2] || SameQ[i, n - 1] || SameQ[i, n],

minbasis = Join[minbasis, {basis[[i]]}];

];

];

,

8, (* C *)

(*

trim all but the first root and last two roots *)

(*minr=

"C3";*)

minbasis = {};

For[i = 1, i <= Length[basis], i++,

If[SameQ[i, 1] || SameQ[i, n - 1] || SameQ[i, n],

minbasis = Join[minbasis, {basis[[i]]}];

];

];

,

11, (* D *)

(*

trim all but the first two and last four roots *)

(*minr=

"D6";*)

minbasis = {};

For[i = 1, i <= Length[basis], i++,

If[

SameQ[i, 1] || SameQ[i, 2] || SameQ[i, n - 3] ||

SameQ[i, n - 2] || SameQ[i, n - 1] || SameQ[i, n],

minbasis = Join[minbasis, {basis[[i]]}];

];

];

]; (* END switch *)

(* trick:

can use restRootAut for any matrix we wish to reduce accordingly *)

\

(*minibasis=RootBase[minr];*)

mintheta = RestrictedRootAut[basis, theta, minbasis];

minroots = RootSystemFromBasis[minbasis];

mininvals = KleinChevalley[minbasis];

mincconsts = SteinbergThetaDelta[minbasis, mininvals, mintheta];

(* Lift the mini involution *)

mininvol =

SimpleRootLift[minbasis, mintheta, mincconsts, nvals, True];

(* Map the structure constants *)

(*

rettbl is our "main" involution. *)

rettbl = {};

(* minbasis and minibasis should be "aligned" *)

(* WARNING:

relies on the proper ordering of the bases. If fails,

can try a case-by-case similar to previous switch statement. *)

For[i = 1, i <= Length[minbasis], i++,

rettbl =

Join[{{minbasis[[i]],

StructureConstantsLookup[mininvol, minbasis[[i]]]}},
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rettbl];

rettbl =

Join[{{-minbasis[[i]],

StructureConstantsLookup[mininvol, -minbasis[[i]]]}},

rettbl];

];

(* Fill in the holes *)

For[i = 1, i <= Length[basis], i++,

If[! MemberQ[minbasis, basis[[i]]],

rettbl = Join[{{basis[[i]], 1}}, rettbl];

rettbl = Join[{{-basis[[i]], 1}}, rettbl];

];

];

(* Now we have to construct the bigger involution *)

rettbl = gMergeInvolutions[basis, theta, rettbl, nvals];

Return[rettbl];

];

(* The remaining types are finite cases *)

Return[SimpleRootLift[basis, theta, cconsts, nvals]];

];

RankOneRootLift[a___] := InvalidArg["RankOneRootLift", a];
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12.11.18 ReduceRestrictedRank

ReduceRestrictedRank::usage=

”ReduceRestrictedRank[r,disks,arches,root] reduces the restricted rank of an involution de-

fined over root system r with fixed roots disks and diagram automorphism arches by elimi-

nating root.

ReduceRestrictedRank[r,theta,root] reduces the restricted rank of an involution

theta defined over root system r by eliminating root.”;

ReduceRestrictedRank[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

ReduceRestrictedRank[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], root];

ReduceRestrictedRank[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

ReduceRestrictedRank[r, RootInvolution[r, List[argdisks], arches],

root];

ReduceRestrictedRank[r_?RootInputQ, theta_?MatrixQ, root_?VectorQ] :=

ReduceRestrictedRank[RootBase[r], theta, root];

ReduceRestrictedRank[r_?RootBasisQ, theta_?MatrixQ, root_?VectorQ] :=

Module[

{rbasis, wbasis, fbasis, wset, oset, i, j, wroot},

oset = {};

(* The black dots *)

fbasis = FixedBasis[r, theta];

(* rank one basis (basis roots that project to integral multiples \

of ROOT) *)

rbasis = RestrictedRankOneBasis[r, theta, root];

(* all the white dots (roots that will project to non-zero roots) *)

wbasis = LocalBasis[r, theta];

(* These are the white dots which project to integral multiples of \

ROOT *)

wset = Intersection[rbasis, wbasis];

(* Identify basis roots orthogonal to projection of wset onto -1 \

eigenspace. We already know the black dots are *)

For[i = 1, i <= Length[r], i++,

wroot = r[[i]];

For[j = 1, j <= Length[wset], j++,

If[InnerProduct[wroot, LocalProject[r, theta, wset[[j]]]] != 0,

Break[];];

];

If[j > Length[wset],

oset = Union[oset, {wroot}];

];
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];

(*

Print["fbasis ",fbasis];

Print["rbasis ",rbasis];

Print["wbasis ",wbasis];

Print["wset ",wset];

*)

Return[Union[oset, fbasis]];

];

ReduceRestrictedRank[a___] := InvalidArg["ReduceRestrictedRank", a];
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12.11.19 RestrictedRankOneBasis

RestrictedRankOneBasis::usage=

”RestrictedRankOneBasis[r,disks,arches,root] computes the basis of the restricted rank one

root system with respect to root, defined by an involution over root system r with fixed

roots disks and diagram automorphism arches.

RestrictedRankOneBasis[r,theta,root] computes the basis of the restricted rank

one root system with respect to root, defined by an involution theta over root system r.”;

RestrictedRankOneBasis[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

RestrictedRankOneBasis[RootBase[r], List[argdisks], arches, root];

RestrictedRankOneBasis[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] := Module[

{basis, rset, disks, ret},

basis = r;

disks = List[argdisks];

rset = RestrictedRankOneSystem[r, disks, arches, root];

ret = Intersection[basis, rset];

ret = ByBasisSort[r, ret];

Return[ret];

];

RestrictedRankOneBasis[r_?RootInputQ, theta_?MatrixQ, root_?VectorQ] :=

RestrictedRankOneBasis[RootBase[r], theta, root];

RestrictedRankOneBasis[r_?RootBasisQ, theta_?MatrixQ, root_?VectorQ] :=

Module[

{basis, rset, ret},

basis = r;

rset = RestrictedRankOneSystem[r, theta, root];

ret = Intersection[basis, rset];

ret = ByBasisSort[r, ret];

Return[ret];

];

RestrictedRankOneBasis[a___] :=

InvalidArg["RestrictedRankOneBasis", a];
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12.11.20 RestrictedRankOneDecomp

RestrictedRankOneDecomp::usage=

”RestrictedRankOneDecomp[r,theta] computes the restricted rank one decomposition of an

involution theta over a root system r.”;

RestrictedRankOneDecomp[r_?RootInputQ, theta_?MatrixQ] :=

RestrictedRankOneDecomp[RootBase[r], theta];

RestrictedRankOneDecomp[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

RestrictedRankOneDecomp[r,

RootInvolution[r, List[argdisks], arches]];

RestrictedRankOneDecomp[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

RestrictedRankOneDecomp[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches]];

RestrictedRankOneDecomp[d_?RootBasisQ, theta_?MatrixQ] := Module[

{i, j, k, rsets, cset, foundlist},

(* Loop through all the basis roots that are not fixed *)

(*

Skip any roots which are members of an already constructed \

rankOneHelBasis set *)

rsets = {};

foundlist = {};

For[i = 1, i <= Length[d], i++,

If[FixedRootQ[d, theta, d[[i]]],

Continue[];

];

cset = RankOneComponentBasis[d, theta, d[[i]]];

(*rsets=Union[rsets,{cset}];*)

rsets = Join[rsets, {cset}];

(* Keep track of all the roots we found *)

For[j = 1, j <= Length[cset], j++,

foundlist = Union[{cset[[j]]}, foundlist];

];

];

(*Print["rsets=",rsets];*)

(* There is a chance that some irreducible component consists \

entirely of fixed roots. *)

While[Length[foundlist] < Length[d],

(* Find a fixed root that isn’t in the foundlist and link it with \

all the other fixed roots it is connected to *)

For[i = 1, i <= Length[d], i++,

If[MemberQ[foundlist, d[[i]]], Continue[];];

cset = {d[[i]]};

For[j = 1, j <= Length[cset], j++,
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For[k = 1, k <= Length[d], k++,

If[RootBasisConnectedQ[d, cset[[j]], d[[k]]],

cset = Union[cset, {d[[k]]}];

foundlist = Union[{d[[k]]}, foundlist];

];

]; (* END FOR k *)

]; (* END FOR j *)

(* Sort each element of cset *)

cset = ByBasisSort[d, cset];

(* Put cset in the proper position *)

For[j = 1, j <= Length[rsets], j++,

If[BasisOrder[cset[[1]], rsets[[j, 1]]],

rsets = Insert[rsets, cset, j];

Break[];

];

];

]; (* END FOR i *)

]; (* END WHILE *)

Return[rsets];

];

RestrictedRankOneDecomp[a___] :=

InvalidArg["RestrictedRankOneDecomp", a];
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12.11.21 RestrictedRankOneSystem

RestrictedRankOneSystem::usage=

”RestrictedRankOneSystem[r,disks,arches,root] computes the restricted rank one root sys-

tem with respect to root, defined by an involution over root system r with fixed roots disks

and diagram automorphism arches.

RestrictedRankOneSystem[r,theta,root] computes the restricted rank one root sys-

tem with respect to root, defined by an involution theta over root system r.”;

RestrictedRankOneSystem[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

RestrictedRankOneSystem[r, List[argdisks], arches, root];

RestrictedRankOneSystem[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] := Module[

{restroot, theta, roots, i, rset, v, k, soln, x, disks},

disks = List[argdisks];

rset = {};

roots = RootSystemFromBasis[r];

theta = RootInvolution[r, disks, arches];

(* Compute the restricted root *)

restroot = LocalProject[r, theta, root];

(* Want to find all roots B so that RESTRICT (B) is a integral \

multiple of RESTROOT *)

For[i = 1, i <= Length[roots], i++,

v = LocalProject[r, theta, roots[[i]]];

soln = Flatten[Solve[v == k*restroot, k]];

x = k /. soln;

If[IntegerQ[x],

rset = Join[{roots[[i]]}, rset];

];

];

Return[rset];

];

RestrictedRankOneSystem[r_?RootInputQ, theta_?MatrixQ,

root_?VectorQ] :=

RestrictedRankOneSystem[RootBase[r], theta, root];

RestrictedRankOneSystem[r_?RootBasisQ, theta_?MatrixQ,

root_?VectorQ] := Module[

{restroot, roots, i, rset, v, k, soln, x},

rset = {};

r;

roots = RootSystemFromBasis[r];

(* Compute the restricted root *)

restroot = LocalProject[r, theta, root];
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(*Print[restroot];*)

(* Want to find all roots B so that RESTRICT (B) is a integral \

multiple of RESTROOT *)

For[i = 1, i <= Length[roots], i++,

v = LocalProject[r, theta, roots[[i]]];

soln = Flatten[Solve[v == k*restroot, k]];

x = k /. soln;

If[IntegerQ[x],

rset = Join[{roots[[i]]}, rset];

];

];

Return[rset];

];

RestrictedRankOneSystem[a___] :=

InvalidArg["RestrictedRankOneSystem", a];
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12.11.22 RestrictedRootBasis

RestrictedRootBasis::usage=

”RestrictedRootBasis[r,disks,arches] gives a basis for the restricted root system determined

by an involution over root system r with fixed roots disks and diagram automorphism arches.

RestrictedRootBasis[r,theta] gives a basis for the restricted root system determined

by an involution theta over root system r.”;

RestrictedRootBasis[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

RestrictedRootBasis[RootBase[r], List[argdisks], arches];

RestrictedRootBasis[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] := Module[

{theta, basis, wd, i, n, disks},

disks = List[argdisks];

theta = RootInvolution[r, disks, arches];

n = Length[theta];

(* White dots... calculate (1/2) (a - THETA a) for roots a *)

wd = {};

For[i = 1, i <= n, i++,

If[MemberQ[disks, i], Continue[];];

wd = Union[

wd, {(1/2)*UnitVector[n, i].r - (1/2)*

UnitVector[n, i].Transpose[theta].r}];

];

Return[wd];

];

RestrictedRootBasis[r_?RootInputQ, theta_?MatrixQ] :=

RestrictedRootBasis[RootBase[r], theta];

RestrictedRootBasis[r_?RootBasisQ, theta_?MatrixQ] := Module[

{wd, i, n},

n = Length[theta];

(* White dots... calculate (1/2) (a - THETA a) for roots a *)

wd = {};

For[i = 1, i <= n, i++,

(* if it is a fixed root, continue *)

If[SameQ[ApplyRootInvolution[r, theta, r[[i]]], r[[i]]],

Continue[];];

wd = Union[

wd, {(1/2)*UnitVector[n, i].r - (1/2)*

UnitVector[n, i].Transpose[theta].r}];

];
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Return[wd];

];

RestrictedRootBasis[a___] := InvalidArg["RestrictedRootBasis", a];
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12.11.23 RestrictedRootRank

RestrictedRootRank::usage=

”RestrictedRootRank[r,disks,arches] gives the rank of the restricted root system determined

over an involution over root system r with fixed roots disks and diagram automorphism

arches.

RestrictedRootRank[r,theta] gives the rank of the restricted root system deter-

mined by an involution theta over root system r.”;

RestrictedRootRank[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

Length[RestrictedRootBasis[r, List[argdisks], arches]];

RestrictedRootRank[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

Length[RestrictedRootBasis[r, List[argdisks], arches]];

RestrictedRootRank[r_?RootInputQ, theta_?MatrixQ] :=

Length[RestrictedRootBasis[r, theta]];

RestrictedRootRank[r_?RootBasisQ, theta_?MatrixQ] :=

Length[RestrictedRootBasis[r, theta]];

RestrictedRootRank[a___] := InvalidArg["RestrictedRootRank", a];
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12.11.24 RestrictedRootSystem

RestrictedRootSystem::usage=

”RestrictedRootSystem[r,disks,arches] computes the set of all roots composing the restricted

root system determined over an involution over root system r with fixed roots disks and

diagram automorphism arches.

RestrictedRootSystem[r,theta] computes the set of all roots composing the re-

stricted root system determined by an involution theta over root system r.”;

RestrictedRootSystem[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] := Module[

{rs, basis, disks},

disks = List[argdisks];

basis = RestrictedRootBasis[r, disks, arches];

rs = RootSystemFromBasis[basis];

Return[rs];

];

RestrictedRootSystem[r_?RootInputQ, theta_?MatrixQ] := Module[

{rs, basis},

basis = RestrictedRootBasis[r, theta];

rs = RootSystemFromBasis[basis];

Return[rs];

];

RestrictedRootSystem[basis_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

RestrictedRootSystem[basis, RootInvolution[List[argdisks], arches]];

RestrictedRootSystem[basis_?RootBasisQ, theta_?MatrixQ] := Module[

{rs, rbasis},

rbasis = RestrictedRootBasis[basis, theta];

rs = RootSystemFromBasis[rbasis];

Return[rs];

];

RestrictedRootSystem[a___] := InvalidArg["RestrictedRootSystem", a];
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12.11.25 RestrictedRootSystemType

RestrictedRootSystemType::usage=

”RestrictedRootSystemType[r,disks,arches] identifies the type of the restricted root system

determined by an involution over root system r with fixed roots disks and diagram auto-

morphism arches.

RestrictedRootSystemType[r,theta] identifies the type of the restricted root system

determined by an involution theta over root system r.”;

RestrictedRootSystemType[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

CartanToRootSystem[

CartanMatrixFromBasis[

RestrictedRootBasis[r, List[argdisks], arches]]];

RestrictedRootSystemType[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

CartanToRootSystem[

CartanMatrixFromBasis[

RestrictedRootBasis[r, List[argdisks], arches]]];

RestrictedRootSystemType[r_?RootInputQ, theta_?MatrixQ] :=

CartanToRootSystem[

CartanMatrixFromBasis[RestrictedRootBasis[r, theta]]];

RestrictedRootSystemType[r_?RootBasisQ, theta_?MatrixQ] :=

CartanToRootSystem[

CartanMatrixFromBasis[RestrictedRootBasis[r, theta]]];

RestrictedRootSystemType[a___] :=

InvalidArg["RestrictedRootSystemType", a];
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12.11.26 RootCriticalValues

RootCriticalValues::usage=

”RootCriticalValues[d,theta,cconsts] returns a table of theta(d ) where theta is an automor-

phism of the root system r, and cconsts is the table of all structure constants returned by

structureConstants.d ) where theta is an automorphism of the root system r described by

fixed roots disks and diagram automorphism arches, and cconsts is the table of all structure

constants returned by structureConstants.

RootCriticalValues[d,disks,arches,cconsts] returns a table of theta(”;

RootCriticalValues[r_?RootInputQ, theta_?MatrixQ, cvals_?ListQ] :=

RootCriticalValues[RootBase[r], theta, cvals];

RootCriticalValues[basis_?RootBasisQ, theta_?MatrixQ, cvals_?ListQ] :=

Module[

{},

Return[

Table[StructureConstantsLookup[cvals,

ApplyRootInvolution[basis, theta, basis[[i]]]], {i, 1,

Length[basis]}]];

];

RootCriticalValues[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, cvals_?ListQ] :=

RootCriticalValues[RootBase[r],

RootInvolution[r, List[argdisks], arches], cvals];

RootCriticalValues[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, cvals_?ListQ] :=

RootCriticalValues[r, RootInvolution[r, List[argdisks], arches],

cvals];

RootCriticalValues[a___] := InvalidArg["RootCriticalValues", a];

(*

rootCVals[basis_,theta_,cvals_]:=Table[cvals[UnitVector[Length[\

basis],i].Transpose[theta].basis],{i,1,Length[basis]}];

*)
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12.11.27 RootInvolution

RootInvolution::usage=

”RootInvolution[r,disks,arches] or RootInvolution[r,disks,arches] gives the matrix of an in-

volution acting on root system r, where disks are those points represented by solid black

disk, and arches is a list of elements a,b denoting the diagram automorphism maps a to b.”;

RootInvolution::fixedroots =

"Warning. Did not produce an involution with fixed indices ‘1‘. \

Check definition of diagram involution.";

RootInvolution[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

RootInvolution[RootBase[r], List[argdisks], arches];

RootInvolution[d_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

Module[

{disks, w0, thetastar, i, ri},

disks = List[argdisks];

(* 1. Compute the action of w0 *)

w0 = wInvolutionAction[d, disks];

(* 2. Compute the matrix for thetastar *)

thetastar = IdentityMatrix[Length[d]];

For[i = 1, i <= Length[arches], i++,

thetastar = RowSwap[thetastar, arches[[i, 1]], arches[[i, 2]]];

];

thetastar = Transpose[thetastar];

ri = -thetastar.w0;

(*

If[!SameQ[disks,DiskList[d,ri]],

Print[DiskList[d,ri]];

Message[RootInvolution::fixedroots,disks];

];

*)

Return[ri];

];

RootInvolution[a___] := InvalidArg["RootInvolution", a];

(*

rootInvolutionSimple::usage=\\"rootInvolutionSimple[r,disks,arches,\

offSet] or rootInvolutionSimple[{r,disks,arches}] gives the matrix of \

an involution acting on an irreducible root system r, where disks are \

those points represented by solid black disk, and arches is a list of \

elements {a,b} denoting the diagram automorphism maps a to b. The \

optional argument offSet shifts the indices by the specified number \

of units.";

*)

(*

rootInvolution[td_]:=rootInvolution[td[[1]],td[[2]],td[[3]]];

*)
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(*

rootInvolutionSimple[td_,offSet_]:=rootInvolutionSimple[td[[1]],td[\

[2]],td[[3]],offSet];

*)

(*

rootInvolution[r_,disks_,arches_]:=Module[

{diskset,archset,marches,multiarches,block,i,j,k,rin,set,offset,tMatr,\

thetastar,totaldim},

offset=0;

marches=arches;

rin=rootInput[r];

(* 1. First split disks and arches into little groups according to \

their individual irreducible root systems. This shouldn’t be \

difficult, because we know the dimensions of each component.

Any pairs in arches which cross multiple irred components will go in \

their own list to be evaluated later *)

For[i=1,i<=Length[rin],i++,

(* Create a set of all disks in this irred component *)

\

set=Table[j,{j,offset+1,offset+rin[[i,2]]}];

(* Intersect this set with the real set of disks to get just the ones \

in this component *)

diskset[i]=Intersection[set,disks];

(* Create a set of all possible ordered pairs in this component *)

\

set=Table[Table[{j,k},{k,offset+1,offset+rin[[i,2]]}],{j,offset+1,\

offset+rin[[i,2]]}];

set=Flatten[set,1];

(* Intersect with ‘‘real’’ set to get this component *)

\

archset[i]=Intersection[set,marches];

(* Modify offset *)

offset+=rin[[i,2]];

(* Delete archset from marches so marches contains only multiple \

component spanning elements *)

\

marches=Complement[marches,archset[i]];

];

(* At the end of this loop, offset becomes the value of the total \

dimension (sum of dim’s of irred components) *)

totaldim=offset;

offset=0;

(* 2. We now have sets for each irred component. Pass them to \

rootInvolutionSimple. *)

For[i=1,i<=Length[rin],i++,

block[i]=rootInvolutionSimple[rin[[i]],diskset[i],archset[i],offset];

offset+=rin[[i,2]];

];

(* 3. Build a big block matrix *)
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\

tMatr=blockAssemble[Table[block[i],{i,1,Length[rin]}]];

(* 4. Swap rows according to arches:multiple irred components *)

(* \

Build matrix for thetastar *)

thetastar=IdentityMatrix[totaldim];

For[i=1,i<=Length[marches],i++,

thetastar=rowSwap[thetastar,marches[[i,1]],marches[[i,2]]];

];

thetastar=Transpose[thetastar];

Return[thetastar.tMatr];

];

*)

(* Assumes r is irreducible. *)

(*

\

rootInvolutionSimple[r_,disks_,arches_,offSet_:0]:=Module[

{rin,basis,dim,w,w0,w0theta,theta,thetastar,

esystems,i,row,ds,emsys},

rin=Flatten[rootInput[r]]; (* r is simple *)

basis=base[rin];

dim=Length[basis];

(* 1. Determine the embedded root systems *)

\

esystems=embeddedRootSystems[rin,disks-offSet,arches];

(* For every root system *)

w0={};

For[i=1,i<=Length[esystems],i++,

(* Ugh. Have to do some ‘‘E-hacking’’ because of the numbering of the \

roots of E

The 1,2,3,... disks labels here assumes r is irred. Otherwise we’d \

need to account for offset. *)

\

emsys=Flatten[rootInput[esystems[[i,1]]]]; (* embedded system *)

If[SameQ[rin[[1]],"E"]&&!SameQ[emsys[[1]],"E"]&&MemberQ[esystems[[i,2]\

],2]&&MemberQ[esystems[[i,2]],3],

(* The problem is if we have a root system of Type E then roots 2 and \

3 are not joined. This results in "weird" Cartan Matrices for types \

A, D. *)

ds=esystems[[i,2]];

(* If we have 1 and 3 included AND the embedded root system is not E, \

then 6 is not included.

So if 5 is included, we have type D5.

If 5 is not included, we have type A4 *)

If[MemberQ[esystems[[i,2]],1],

(* 5 included? *)

If[MemberQ[esystems[[i,2]],5],

ds={1,3,4,2,5};

, (* else *)
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ds={1,3,4,2};

];

, (* else 1 not included *)

(* Without 1 then we have type D for \

sure. Simple thing to do is just run through all cases for disk sets *)

\

Switch[Max[esystems[[i,2]]],

8,ds={8,7,6,5,4,2,3};,

7,ds={7,6,5,4,2,3};,

6,ds={6,5,4,2,3};,

5,ds={3,4,2,5};,

4,ds={3,4,2};

];

];

w=longestElement[esystems[[i,1]],ds];

,

w=longestElement[esystems[[i,1]],esystems[[i,2]]];

];

w0=Join[w0,w];

];

(* Build matrix for w0 *)

For[i=1,i<=Length[basis],i++,

row[i]=basisCoeffs[basis,reflectWeyl[basis,w0,basis[[i]]]];

];

w0theta=Table[row[i],{i,1,Length[basis]}];

w0theta=Transpose[w0theta];

(* Build matrix for thetastar *)

thetastar=IdentityMatrix[dim];

For[i=1,i<=Length[arches],i++,

thetastar=rowSwap[thetastar,arches[[i,1]]-offSet,arches[[i,2]]-offSet];

];

thetastar=Transpose[thetastar];

(* FORMULA is THETA = -ID Subscript[W, 0](THETA) \

THETA-STAR XXX see below *)

\

(*theta=-IdentityMatrix[dim].w0theta.thetastar;*)

(* FORMULA is THETA = -ID THETA-STAR Subscript[W, 0](THETA) p34 \

HEL88 *)

theta=-IdentityMatrix[dim].thetastar.w0theta;

Return[theta];

];

*)
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12.11.28 RRDLift

RRDLift::usage=

”RRDLift[r,theta,cconsts,nvals] lifts an involution theta, with respect to root system r, to

an involution on its corresponding Lie algebra. cconsts supplies the structure constants.

Output is in list format. nvals supplies the Chevalley constants.

RRDLift[r,disks,arches,cconsts,nvals] lifts an involution theta (described via fixed

roots disks and diagram automorphism arches), with respect to root system r, to an invo-

lution on its corresponding Lie algebra. cconsts supplies the structure constants. Output

is in list format. nvals supplies the Chevalley constants.”;

RRDLift[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ,

cvals_?ListQ, nvals_?ListQ] :=

RRDLift[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], cvals, nvals];

RRDLift[d_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

cvals_?ListQ, nvals_?ListQ] :=

RRDLift[d, RootInvolution[d, List[argdisks], arches], cvals, nvals];

RRDLift[r_?RootInputQ, theta_?MatrixQ, cvals_?ListQ, nvals_?ListQ] :=

RRDLift[RootBase[r], theta, cvals, nvals];

RRDLift[d_?RootBasisQ, theta_?MatrixQ, cvals_?ListQ, nvals_?ListQ] :=

Module[

{rrd, rn, rbasis, rtheta, rcm, ret, sret, roots, i, j, delList,

rname},

(* Compute the restricted rank one decomposition *)

roots = RootSystemFromBasis[d];

(*Print["begin RROD."];*)

rrd = RestrictedRankOneDecomp[d, theta];

(*Print["end RROD."];*)

ret = {};

(* Lift all the rank one components *)

For[rn = 1, rn <= Length[rrd], rn++,

(* Compute the RRO data *)

rbasis[rn] = rrd[[rn]];

(*rname[rn]=BasisToRootSystem[rbasis[rn]];*)

rtheta[rn] = RestrictedRootAut[d, theta, rbasis[rn]];

(* Lift *)

sret[rn] = RankOneRootLift[rbasis[rn], rtheta[rn], cvals, nvals];

(* Align the polarity of the previous component to match this \

one. If we switch this one, have to check all previous! *)

(*
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WARNING! This code relies on rrd being nicely sorted!

TO DO: Remed that! *)

If[rn > 1,

For[i = rn, i > 1, i--,

sret[i - 1] =

AlignPolarities[rbasis[i - 1], rtheta[i - 1], sret[i - 1],

rbasis[i], rtheta[i], sret[i]];

];

];

];

(* Merge *)

For[rn = 1, rn <= Length[rrd], rn++,

ret = Union[ret, sret[rn]];

];

(* Now we need to add all the roots which are not exclusively \

residing in one RRO component. *)

(* This is fairly tricky.

This root is the sum of two roots, each which:

1. Reside in a restricted root system

2. Were previously computed earlier in this loop.

The strategy:

modify De Graaf’s algorithm to go through each level.

The lowest level (L2)

are sums of basis roots,

whose structure constants we know are already computed. Proceed

building up from there. *)

ret = gMergeInvolutions[d, theta, ret, nvals];

Return[ret];

];

RRDLift[a___] := InvalidArg["RRDLift", a];
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12.11.29 RROITable

RROITable::usage=

”RROITable[n] generates the table of Helminck diagrams for involutions (over the root

systems) of restricted rank one and of minimal size. The optional argument n returns the

n entry (1 - 18), while the absence of an argument generates the entire table. For more

details, please see the manual.”;

RROITable[n_: {0}] := Module[

{entry, i},

If[! IntegerQ[n] || n > 18 || n < 0,

Message[RROITable::arg, n];

Return[{}];

];

(* Just list all the entries. This is a fixed table. *)

(*

Name, Disks, Arches, 1 Consistency *)

entry[1] = {"A1+A1", {}, {{1, 2}}, True, 2};

entry[2] = {"A1", {}, {}, True, 1};

entry[3] = {"A2", {2}, {}, False, 2};

entry[4] = {"A3", {1, 3}, {}, True, 3};

entry[5] = {"A4", {2, 3}, {{1, 4}, {2, 3}}, True, 4};

entry[6] = {"B3", {2, 3}, {}, True, 3};

entry[7] = {"B4", {1, 3, 4}, {}, False, 4};

entry[8] = {"C4", {2, 3, 4}, {}, False, 4};

entry[9] = {"C4", {1, 3, 4}, {}, True, 4};

entry[10] = {"D5", {2, 3, 4, 5}, {}, True, 5};

entry[11] = {"D6", {1, 3, 4, 5, 6}, {}, False, 6};

entry[12] = {"E6", {1, 3, 4, 5, 6}, {{1, 6}, {3, 5}}, False, 6};

entry[13] = {"E7", {2, 3, 4, 5, 6, 7}, {}, False, 7};

entry[14] = {"E8", {1, 2, 3, 4, 5, 6, 7}, {}, False, 8};

entry[15] = {"F4", {2, 3, 4}, {}, False, 4};

entry[16] = {"F4", {1, 2, 3}, {}, True, 4};

entry[17] = {"G2", {1}, {}, False, 2};

entry[18] = {"G2", {2}, {}, False, 2};

If[SameQ[n, 0],

Return[Table[entry[i], {i, 1, 18}]];

,

Return[entry[n]];

];

];

RROITable[a___] := InvalidArg["RROITable", a];
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12.11.30 RROITableEntry

RROITableEntry::usage=

”RROITableEntry[r,theta] identifies the Restricted Rank One Involutions table entry cor-

responding to an involution theta over root system r.

RROITableEntry[r,disks,arches] identifies the Restricted Rank One Involutions ta-

ble entry corresponding to an involution theta (given by fixed roots disks and diagram

automorphism arches) over root system r.”;

RROITableEntry::arg =

"supplied involution is not restricted rank one.";

RROITable::arg =

"‘1‘ is not an integer in the range of 1 through 18.";

RROITableEntry[r_?RootInputQ, theta_?MatrixQ] := Module[

{disks, arches, d},

d = RootBase[r];

disks = DiskList[d, theta];

arches = ArchesListInvolution[d, disks, theta];

Return[RROITableEntry[d, disks, arches]];

];

RROITableEntry[d_?RootBasisQ, theta_?MatrixQ] := Module[

{disks, arches},

disks = DiskList[d, theta];

arches = ArchesListInvolution[d, disks, theta];

(*Print["rroite."];*)

Return[RROITableEntry[d, disks, arches]];

];

RROITableEntry[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

RROITableEntry[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches]];

(* Need the basis because the root system may be ‘‘oriented’’ the \

other way... e.g. o <= o--o--o *)

RROITableEntry[basis_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] := Module[

{r, i, rin, isleft, n, rin2, alpha, ret, disks},

(* Q: Why do we identify a root system if the RootInput variants \

of the command convert to a basis?

A related problem is that ‘‘basis’’ may be different than the \

standard one provided by MLAP. If so,

the matrix for theta may be with respect to this basis.

We do not want to compute a new basis based off of the root system \

name, because it may not correlate to the matrix for theta. *)

disks = List[argdisks];

r = BasisToRootSystem[basis];
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rin = RootInput[r];

(*isleft=dynkinOrientation[r,basis];*)

isleft = False;

n = Length[basis];

If[! SameQ[RestrictedRootRank[basis, disks, arches], 1],

Message[RROITableEntry::arg];

Return[{}];

];

(* Handle type 1 *)

If[Length[rin] > 1,

Return[1];

];

rin = Flatten[rin];

Switch[rin[[1]],

"A",

If[! SameQ[arches, {}],

Return[5];

];

Switch[n,

1, ret = 2;

2, ret = 3;

3, ret = 4;

];

Return[ret];

,

"B",

If[! isleft,

If[! FixedRootQ[basis, disks, arches, basis[[1]]],

Return[6];

,

Return[7];

];

,

If[! FixedRootQ[basis, disks, arches, basis[[n]]],

Return[6];

,

Return[7];

];

];

,

"C",

If[! isleft,

If[! FixedRootQ[basis, disks, arches, basis[[1]]],

Return[8];

,

Return[9];

];

,

If[! FixedRootQ[basis, disks, arches, basis[[n]]],

Return[8];

,

Return[9];

];

];
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,

"D",

If[! isleft,

If[! FixedRootQ[basis, disks, arches, basis[[1]]],

Return[10];

,

Return[11];

];

,

If[! FixedRootQ[basis, disks, arches, basis[[n]]],

Return[10];

,

Return[11];

];

];

,

"E",

Switch[n,

6, Return[12];,

7, Return[13];,

8, Return[14];

];

,

"F",

rin2 =

RootInput[BasisToRootSystem[FixedBasis[basis, disks, arches]]];

rin2 = Flatten[rin2];

Switch[rin2[[1]],

"C", Return[15];

,

"B", Return[16];

];

,

"G",

(* Let alpha be the shorter of the two roots *)

If[Norm[basis[[1]]] > Norm[basis[[2]]],

alpha = basis[[2]];

,

alpha = basis[[1]];

];

If[FixedRootQ[basis, disks, arches, alpha],

Return[17];

,

Return[18];

];

];

];

RROITableEntry[a___] := InvalidArg["RROITableEntry", a];
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12.11.31 SimpleRootLift

SimpleRootLift::usage=

”SimpleRootLift[d,theta,cconsts,nvals,donly] lifts an involution theta with respect to root

system r to an involution on its corresponding Lie algebra. cconsts supplies the structure

constants. nvals supplies the Chevalley constants. The technique used is the simpler Groeb-

ner basis technique, which is slow. For a quicker calculation, use RRDLift. simpleLift does

not check for 1-consistency. Output is in list format. If the optional argument donly is

True, only the basis structure constants are returned.

SimpleRootLift[d,disks,arches,cconsts,nvals,donly] lifts an involution theta (defined

via fixed roots disks and diagram automorphism arches) with respect to root system r to

an involution on its corresponding Lie algebra. cconsts supplies the structure constants.

nvals supplies the Chevalley constants. The technique used is the simpler Groebner basis

technique, which is slow. For a quicker calculation, use RRDLift. simpleLift does not check

for 1-consistency. Output is in list format. If the optional argument donly is True, only the

basis structure constants are returned.”;

SimpleRootLift[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ,

cvals_?ListQ, nvals_?ListQ, donly_: False] :=

SimpleRootLift[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], cvals, nvals,

donly];

SimpleRootLift[d_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

cvals_?ListQ, nvals_?ListQ, donly_: False] :=

SimpleRootLift[d, RootInvolution[d, List[argdisks], arches], cvals,

nvals, donly];

SimpleRootLift[r_?RootInputQ, theta_?MatrixQ, cvals_?ListQ,

nvals_?ListQ, donly_: False] :=

SimpleRootLift[RootBase[r], theta, cvals, nvals, donly];

SimpleRootLift[d_?RootBasisQ, theta_?MatrixQ, cvals_?ListQ,

nvals_?ListQ, donly_: False] := Module[

{cv, k, i, coeff, ret, root, kv, kf, rk, roots, trr, nega},

trr = True;

nega = False;

While[trr,

ret = {};

(* Obtain the correction vector *)

cv = OneCorrectionVector[d, theta, cvals, k];

kv = Table[k[i], {i, 1, Length[d]}] /. cv;

(*kv=Transpose[{kv}];*)

(*kv=kv.Transpose[

theta];*)

(*kv=-kv;*)
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If[nega, kv = -kv; trr = False;];

(*Print["kv=",kv];*)

(* Build the list of roots and coefficients *)

For[i = 1, i <= Length[d], i++,

root = d[[i]];

coeff = StructureConstantsLookup[cvals, root];

kf =

RootFunctional[d, ApplyRootInvolutionBasis[d, theta, root],

kv];

coeff = coeff*kf;

(*

If[isFixedRootBasis[d,theta,root],

coeff*=-1;

];

*)

ret = Union[ret, {{root, coeff}}];

ret = Union[ret, {{-root, 1/coeff}}];

(* If root is fixed then it is in the +1 Eigenspace of theta... \

Hence, [Xa,X (-a)] = +1 Ha

Else, it is in -1... [Xa,X (-a)] = - Ha *)

(*

If[

isFixedRootBasis[d,theta,root],

ret=Union[ret,{{-root,1/coeff}}];

,

ret=Union[ret,{{-root,1/coeff}}];

];

*)

(*ret=Union[ret,{{-root,1/coeff}}];*)

];

(* Build the list of roots and coefficients *)

(*

For[i=1,

i<=Length[d],i++,

root=-d[[i]];

coeff=structureConstantsLookup[cvals,root];

kf=rootFunctional[d,applyInvolutionBasis[d,theta,root],kv];

coeff=coeff*kf;

ret=Union[ret,{{root,coeff}}];

];

*)

If[! donly,

ret = gMergeInvolutions[d, theta, ret, nvals];

];

If[InvBTRaw[d, theta, ret] != 0, nega = True;, Break[];];

];

Return[FullSimplify[ret]];

];

SimpleRootLift[a___] := InvalidArg["SimpleRootLift", a];

(*

simpleLift2[d_,theta_,systemMatrix_,cvals_,nvals_,donly_:False]:=\

Module[
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{cv,k,i,coeff,ret,root,kv,kf,rk,roots},

ret={};

(* Obtain the correction vector *)

\

cv=oneCorrectionVector[d,theta,systemMatrix,cvals,k];

kv=Table[k[i],{i,1,Length[d]}]/.cv;

(*kv=Transpose[{kv}];*)

(*kv=kv.Transpose[theta];*)

(*kv=-kv;*)

(*Print["kv=",kv];*)

(* Build the list of roots and coefficients *)

\

For[i=1,i<=Length[d],i++,

root=d[[i]];

coeff=structureConstantsLookup[cvals,root];

kf=rootFunctional[d,applyInvolutionBasis[d,theta,root],kv];

coeff=coeff*kf;

(*

If[isFixedRootBasis[d,theta,root],

coeff*=-1;

];

*)

ret=Union[ret,{{root,coeff}}];

ret=Union[ret,{{-root,1/coeff}}];

(* If root is fixed then it is in the +1 Eigenspace of theta... \

Hence, [Xa,X (-a)] = +1 Ha

Else, it is in -1... [Xa,X (-a)] = - Ha *)

(*

\

If[isFixedRootBasis[d,theta,root],

ret=Union[ret,{{-root,1/coeff}}];

,

ret=Union[ret,{{-root,1/coeff}}];

];

*)

(*ret=Union[ret,{{-root,1/coeff}}];*)

];

(* Build the list of roots and coefficients *)

(*

\

For[i=1,i<=Length[d],i++,

root=-d[[i]];

coeff=structureConstantsLookup[cvals,root];

kf=rootFunctional[d,applyInvolutionBasis[d,theta,root],kv];

coeff=coeff*kf;

ret=Union[ret,{{root,coeff}}];

];

*)

If[!donly,

ret=gMergeInvolutions[d,theta,ret,nvals];

];

Return[FullSimplify[ret]];

];

*)
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(*

simpleLift3[d_,theta_,systemMatrix_,cvals_,nvals_,donly_:False]:=\

Module[

{cv,k,i,coeff,ret,root,kv,kf,rk,roots},

ret={};

(* Obtain the correction vector *)

\

cv=oneCorrectionVector[d,theta,systemMatrix,cvals,k];

kv=Table[k[i],{i,1,Length[d]}]/.cv;

(*kv=Transpose[{kv}];*)

(* Build the list of roots and coefficients *)

\

roots=rootSystemFromBasis[d];

For[i=1,i<=Length[roots],i++,

root=roots[[i]];

coeff=structureConstantsLookup[cvals,root];

kf=rootFunctional[d,applyInvolutionBasis[d,theta,root],kv];

coeff=coeff*kf;

ret=Union[ret,{{root,coeff}}];

(*ret=Union[ret,{{-root,1/coeff}}];*)

];

If[!donly,

ret=gMergeInvolutions[d,theta,ret,nvals];

];

Return[FullSimplify[ret]];

];

*)

(*

simpleLiftSpecifySN[d_,theta_,systemMatrix_,cvals_,nvals_,sn_]:=\

Module[

{cv,k,i,coeff,ret,root,kv,kf,rk,roots,trr,nega},

trr=True;

nega=False;

While[trr,

ret={};

(* Obtain the correction vector *)

\

cv=oneCorrectionVector[d,theta,systemMatrix,cvals,k,sn];

kv=Table[k[i],{i,1,Length[d]}]/.cv;

(*kv=Transpose[{kv}];*)

(*kv=kv.Transpose[theta];*)

(*kv=-kv;*)

If[nega,kv=-kv;trr=False;];

(*Print["kv=",kv];*)

(* Build the list of roots and coefficients *)

\

For[i=1,i<=Length[d],i++,

root=d[[i]];

coeff=structureConstantsLookup[cvals,root];

kf=rootFunctional[d,applyInvolutionBasis[d,theta,root],kv];

coeff=coeff*kf;



423

(*

If[isFixedRootBasis[d,theta,root],

coeff*=-1;

];

*)

ret=Union[ret,{{root,coeff}}];

ret=Union[ret,{{-root,1/coeff}}];

(* If root is fixed then it is in the +1 Eigenspace of theta... \

Hence, [Xa,X (-a)] = +1 Ha

Else, it is in -1... [Xa,X (-a)] = - Ha *)

(*

\

If[isFixedRootBasis[d,theta,root],

ret=Union[ret,{{-root,1/coeff}}];

,

ret=Union[ret,{{-root,1/coeff}}];

];

*)

(*ret=Union[ret,{{-root,1/coeff}}];*)

];

(* Build the list of roots and coefficients *)

(*

\

For[i=1,i<=Length[d],i++,

root=-d[[i]];

coeff=structureConstantsLookup[cvals,root];

kf=rootFunctional[d,applyInvolutionBasis[d,theta,root],kv];

coeff=coeff*kf;

ret=Union[ret,{{root,coeff}}];

];

*)

ret=gMergeInvolutions[d,theta,ret,nvals];

If[invBTRaw[d,theta,ret]!=0,nega=True;,Break[];];

];

Return[FullSimplify[ret]];

];

*)
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12.11.32 SteinbergThetaDelta

SteinbergThetaDelta::usage=

”SteinbergThetaDelta[r,nconsts,theta] returns a list of structure constants for the automor-

phism over the Lie algebra TD with root system r and root involution theta. TD is the

unique automorphism such that each basis root structure constant is 1. nconsts supplies

the Chevalley constants. The table returned is a list of elements of the form ROOT, CON-

STANT. If nconsts is omitted, the procedure KleinChevalley will be called. However, for

repeated usage it is recommended to compute once and store the Chevalley constants in

memory.”;

SteinbergThetaDelta[d_?RootBasisQ, nconsts_?ListQ, theta_?MatrixQ] :=

StructureConstantsFromBasis[d, ConstantArray[1, Length[d]], nconsts,

theta];

SteinbergThetaDelta[r_?RootInputQ, nconsts_?ListQ, theta_?MatrixQ] :=

Module[

{d},

d = RootBase[r];

Return[

StructureConstantsFromBasis[d, ConstantArray[1, Length[d]],

nconsts, theta]];

];

SteinbergThetaDelta[d_?RootBasisQ, theta_?MatrixQ] := Module[

{nconsts},

nconsts = KleinChevalley[d];

Return[

StructureConstantsFromBasis[d, ConstantArray[1, Length[d]],

nconsts, theta]];

];

SteinbergThetaDelta[r_?RootInputQ, theta_?MatrixQ] := Module[

{d, nconsts},

d = RootBase[r];

nconsts = KleinChevalley[d];

Return[

StructureConstantsFromBasis[d, ConstantArray[1, Length[d]],

nconsts, theta]];

];

SteinbergThetaDelta[a___] := InvalidArg["SteinbergThetaDelta", a];
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12.11.33 SwitchPolarity

SwitchPolarity::usage=

”SwitchPolarity[r,theta,cconsts] reverses the polarity of an involution over the Lie algebra

defined by cconsts. theta is the involution on the root system r.

SwitchPolarity[r,disks,arches,cconsts] reverses the polarity of an involution over

the Lie algebra defined by cconsts. theta is the involution, described by fixed roots disks

and diagram automorphism arches, on the root system r.”;

SwitchPolarity[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ,

cconsts_?ListQ] :=

SwitchPolarity[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], cconsts];

SwitchPolarity[d_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

cconsts_?ListQ] :=

SwitchPolarity[d, RootInvolution[d, List[argdisks], arches],

cconsts];

SwitchPolarity[r_?RootInputQ, theta_?MatrixQ, cconsts_?ListQ] :=

SwitchPolarity[RootBase[r], theta, cconsts];

SwitchPolarity[d_?RootBasisQ, theta_?MatrixQ, cconsts_?ListQ] :=

Module[

{i, cvals, h, root, rsplit, a, b},

cvals = cconsts;

For[i = 1, i <= Length[cconsts], i++,

root = cvals[[i, 1]];

rsplit = RootSplit[d, root];

a = rsplit[[1]];

b = rsplit[[2]];

Which[

FixedRootQ[d, theta, root],

h = RootHeight[d, root];

If[OddQ[h],

cvals[[i, 2]] = -cvals[[i, 2]];

,

cvals[[i, 2]] = cvals[[i, 2]];

];

,

FixedRootQ[d, theta, a],

h = RootHeight[d, a];

If[OddQ[h],

cvals[[i, 2]] = -cvals[[i, 2]];

,

cvals[[i, 2]] = cvals[[i, 2]];

];

,

True,

cvals[[i, 2]] = cvals[[i, 2]];

];

];
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Return[cvals];

];

SwitchPolarity[a___] := InvalidArg["SwitchPolarity", a];
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12.11.34 ThetaStable

ThetaStable::usage=

”ThetaStable[h,d,theta] returns True if theta(x) is in the set h for all x in h, where d supplies

the basis theta is defined over.”;

ThetaStable[h_?ListQ, d_?RootBasisQ, theta_?MatrixQ] := Module[

{k, i, j, root, v, hbasis},

hbasis = Table[Diagonal[h[d[[i]]]], {i, 1, Length[d]}];

For[i = 1, i <= Length[d], i++,

root = UnitVector[Length[d], i].Transpose[theta].d;

k = BasisCoefficients[d, root];

v = Sum[k[[j]]*h[d[[j]]], {j, 1, Length[d]}];

k = BasisCoefficients[hbasis, Diagonal[v]];

(*

Print[k];

*)

];

];

ThetaStable[a___] := InvalidArg["ThetaStable", a];

12.12 Local Symmetric Spaces Package (Diagram)

12.12.1 RankOneDecompDiagram

RankOneDecompDiagram::usage=

”RankOneDecompDiagram[r,theta] draws the restricted rank one decomposition diagram

for an involution theta over the root system r.”;

RankOneDecompDiagram[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

RankOneDecompDiagram[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches]];

RankOneDecompDiagram[d_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

RankOneDecompDiagram[d, RootInvolution[d, List[argdisks], arches]];

RankOneDecompDiagram[r_?RootInputQ, theta_?MatrixQ] :=

RankOneDecompDiagram[RootBase[r], theta];

RankOneDecompDiagram[d_?RootBasisQ, theta_?MatrixQ] := Module[

{rrd, ti, rbasis, rtheta, rdisks, rarches, rname, rlbl, i},

rrd = RestrictedRankOneDecomp[d, theta];

For[ti = 1, ti <= Length[rrd], ti++,

rbasis[ti] = rrd[[ti]];
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(*rname[ti]=BasisToRootSystem[rbasis[ti]];*)

rtheta[ti] = RestrictedRootAut[d, theta, rbasis[ti]];

(*

rdisks[ti]=DiskList[rname[ti],rtheta[ti]];

rarches[ti]=ArchesListInvolution[rdisks[ti],rtheta[ti]];

*)

rlbl[ti] =

Table[Position[BasisCoefficients[d, rbasis[ti][[i]]], 1][[1,

1]], {i, 1, Length[rbasis[ti]]}];

If[DynkinOrientation[rbasis[ti]] == -1,

rlbl[ti] = Reverse[rlbl[ti]];

];

];

(*TableForm[Table[HelminckDiagram[rname[ti],rdisks[ti],rarches[ti],

rlbl[ti]],{ti,1,Length[rrd]}]];*)

TableForm[

Table[HelminckDiagram[rbasis[ti], rtheta[ti], rlbl[ti]], {ti, 1,

Length[rrd]}]]

];

RankOneDecompDiagram[a___] := InvalidArg["RankOneDecompDiagram", a];
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12.12.2 ReduceRestrictedRankDiagram

ReduceRestrictedRankDiagram::usage=

”ReduceRestrictedRankDiagram[r,disks,arches,root] gives a Helminck diagram which illus-

trates the reduction of the restricted rank of an involution defined over root system r with

fixed roots disks and diagram automorphism arches by eliminating root.”;

ReduceRestrictedRankDiagram[r_?RootInputQ, theta_?MatrixQ,

root_?VectorQ] :=

ReduceRestrictedRankDiagram[RootBase[r], theta, root];

ReduceRestrictedRankDiagram[r_?RootBasisQ, theta_?MatrixQ,

root_?VectorQ] := Module[

{disks, arches},

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

Return[ReduceRestrictedRankDiagram[r, disks, arches, root]];

];

ReduceRestrictedRankDiagram[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

ReduceRestrictedRankDiagram[RootBase[r], List[argdisks], arches,

root];

(* Visualize the reduced rank root system *)

ReduceRestrictedRankDiagram[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] := Module[

{disks, rbasis, i, labelset, lb, j},

j = 1;

labelset = {};

disks = List[argdisks];

rbasis = ReduceRestrictedRank[r, disks, arches, root];

For[i = 1, i <= Length[r], i++,

Which[

MemberQ[disks, i], lb = "0";

,

MemberQ[rbasis, r[[i]]], lb = "[Lambda]" <> ToString[j]; j++;

,

True, lb = "X";

];

labelset = Join[labelset, {lb}];

];

HelminckDiagram[r, disks, arches, labelset]

];

ReduceRestrictedRankDiagram[a___] :=

InvalidArg["ReduceRestrictedRankDiagram", a];
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12.12.3 RestrictedRankOneDiagram

RestrictedRankOneDiagram::usage=

”RestrictedRankOneDiagram[r,disks,arches,root] computes a Helmicnk diagram illustrating

the restricted rank one root system with respect to root, defined by an involution over root

system r with fixed roots disks and diagram automorphism arches.

RestrictedRankOneDiagram[r,theta,root] computes a Helmicnk diagram illustrat-

ing the restricted rank one root system with respect to root, defined by an involution theta

over root system r.”;

RestrictedRankOneDiagram[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] :=

RestrictedRankOneDiagram[RootBase[r], List[argdisks], arches, root];

RestrictedRankOneDiagram[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ] := Module[

{disks, rbasis, labelset, lb, i},

disks = List[argdisks];

labelset = {};

rbasis = RestrictedRankOneBasis[r, disks, arches, root];

For[i = 1, i <= Length[r], i++,

Which[

MemberQ[disks, i], lb = "[Alpha]" <> ToString[i];

,

MemberQ[rbasis, r[[i]]], lb = "[Lambda]";

,

True, lb = "X";

];

labelset = Join[labelset, {lb}];

];

HelminckDiagram[r, disks, arches, labelset]

];

RestrictedRankOneDiagram[r_?RootInputQ, theta_?MatrixQ,

root_?VectorQ] :=

RestrictedRankOneDiagram[RootBase[r], theta, root];

RestrictedRankOneDiagram[r_?RootBasisQ, theta_?MatrixQ,

root_?VectorQ] := Module[

{rbasis, labelset, lb, i, disks, arches},

labelset = {};

rbasis = RestrictedRankOneBasis[r, theta, root];

disks = DiskList[r, theta];

arches = ArchesListInvolution[r, disks, theta];

For[i = 1, i <= Length[r], i++,

Which[

MemberQ[disks, i], lb = "[Alpha]" <> ToString[i];

,

MemberQ[rbasis, r[[i]]], lb = "[Lambda]";

,
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True, lb = "X";

];

labelset = Join[labelset, {lb}];

];

HelminckDiagram[r, disks, arches, labelset]

];

RestrictedRankOneDiagram[a___] :=

InvalidArg["RestrictedRankOneDiagram", a];
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12.12.4 RestrictedRootDiagram

RestrictedRootDiagram::usage=

”RestrictedRootDiagram[r,disks,arches] draws a Helminck diagram and Dynkin diagram for

the restricted root system determined over an involution over root system r with fixed roots

disks and diagram automorphism arches.

RestrictedRootDiagram[r,theta] draws a Helminck diagram and Dynkin diagram

for the restricted root system determined by an involution theta over root system r.”;

(* Visualize the reduced rank root system *)

RestrictedRootDiagram[d_?RootBasisQ, theta_?MatrixQ] := Module[

{rbasis, i, labelset, lb, j, r2, h1, h2, disks, arches},

j = 1;

labelset = {};

rbasis = RestrictedRootBasis[d, theta];

disks = DiskList[d, theta];

arches = ArchesListInvolution[d, disks, theta];

For[i = 1, i <= Length[d], i++,

Which[

MemberQ[disks, i], lb = "0";

,

True, lb = "[Lambda]" <> ToString[j]; j++;

];

labelset = Join[labelset, {lb}];

];

r2 = RestrictedRootSystemType[d, theta];

h1 = HelminckDiagram[d, disks, arches, labelset];

h2 = DynkinDiagram[r2];

GraphicsGrid[{{h1}, {h2}}]

];

RestrictedRootDiagram[r_?RootInputQ, theta_?MatrixQ] :=

RestrictedRootDiagram[RootBase[r], theta];

(* Visualize the reduced rank root system *)

RestrictedRootDiagram[d_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ] := Module[

{rbasis, i, labelset, lb, j, r2, h1, h2, disks},

j = 1;

disks = List[argdisks];

labelset = {};

rbasis = RestrictedRootBasis[d, disks, arches];

For[i = 1, i <= Length[d], i++,

Which[

MemberQ[disks, i], lb = "0";

,

True, lb = "[Lambda]" <> ToString[j]; j++;
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];

labelset = Join[labelset, {lb}];

];

r2 = RestrictedRootSystemType[d, disks, arches];

h1 = HelminckDiagram[d, disks, arches, labelset];

h2 = DynkinDiagram[r2];

GraphicsGrid[{{h1}, {h2}}]

];

RestrictedRootDiagram[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ] :=

RestrictedRootDiagram[RootBase[r], List[argdisks], arches];

RestrictedRootDiagram[a___] := InvalidArg["RestrictedRootDiagram", a];

12.13 Local Symmetric Spaces Package (Internal)
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12.13.1 EigenspaceProject (Additional Definitions)

EigenspaceProject::usage=

”EigenspaceProject[r,theta,root,E] projects root into some root in the E-eigenspace of the

root automorphism theta over root system r.

(S-LOSS) EigenspaceProject[r,disks,arches,root,E] projects root into some root in

the E-eigenspace of the root automorphism described by fixed roots disks and diagram

automorphism arches over root system r.”;

EigenspaceProject[r_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ, espace_] :=

EigenspaceProject[RootBase[r],

RootInvolution[RootBase[r], List[argdisks], arches], root, espace];

EigenspaceProject[r_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, root_?VectorQ, espace_] :=

EigenspaceProject[r, RootInvolution[r, List[argdisks], arches],

root, espace];
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12.13.2 FixedRootQ (Additional Definitions)

FixedRootQ::usage=

”FixedRootQ[r,theta,root] returns True if root is fixed by the involution theta defined over

the root system r.

(S-LOSS) FixedRootQ[r,disks,arches,root] returns True if root is fixed by the in-

volution defined over the root system r with fixed roots disks and diagram automorphism

arches.”;

FixedRootQ[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ,

root_?VectorQ] := Module[

{k, basis, theta, rk, disks},

disks = List[argdisks];

basis = RootBase[r];

k = BasisCoefficients[basis, root];

theta = RootInvolution[r, disks, arches];

rk = k.Transpose[theta].basis;

Return[SameQ[root, rk]];

];

FixedRootQ[basis_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ,

root_?VectorQ] := Module[

{k, rk, theta, disks},

disks = List[argdisks];

theta = RootInvolution[basis, disks, arches];

k = BasisCoefficients[basis, root];

rk = k.Transpose[theta].basis;

Return[SameQ[root, rk]];

];
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12.13.3 FixedRoots (Additional Definitions)

FixedRoots::usage=

”FixedRoots[r,theta] returns the set of all roots fixed by the involution theta defined over

the root system r.

(S-LOSS) FixedRoots[r,disks,arches] returns the set of all roots fixed by the in-

volution defined over the root system r with fixed roots disks and diagram automorphism

arches.”;

FixedRoots[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

Module[

{i, roots, froots, theta, disks},

disks = List[argdisks];

theta = RootInvolution[r, disks, arches];

roots = RootSystemFromBasis[RootBase[r]];

froots = {};

For[i = 1, i <= Length[roots], i++,

If[FixedRootQ[r, theta, roots[[i]]],

froots = Join[froots, {roots[[i]]}];

];

];

Return[froots];

];

FixedRoots[basis_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

Module[

{i, roots, froots, theta, disks},

disks = List[argdisks];

theta = RootInvolution[basis, disks, arches];

roots = RootSystemFromBasis[basis];

froots = {};

For[i = 1, i <= Length[roots], i++,

If[FixedRootQ[basis, theta, roots[[i]]],

froots = Join[froots, {roots[[i]]}];

];

];

Return[froots];

];
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12.13.4 FixedBasis (Additional Definitions)

FixedBasis::usage=

”FixedBasis[r,theta] computes the set of all basis roots fixed by an involution theta defined

over root system r.

(S-LOSS) FixedBasis[r,disks,arches] computes the set of all basis roots fixed by

an involution defined over root system r with fixed roots disks and diagram automorphism

arches.”;

FixedBasis[r_?RootInputQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

Intersection[RootBase[r], FixedRoots[r, List[argdisks], arches]];

FixedBasis[r_?RootBasisQ, {argdisks___?IntegerQ}, arches_?ListQ] :=

Intersection[r, FixedRoots[r, List[argdisks], arches]];
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12.13.5 gInvolutionDiagram (Additional Definitions)

gInvolutionDiagram::usage=

”gInvolutionDiagram[r,theta,cvals] extends the Helminck diagram with the values c and k

necessary to recover the structure constants of an involution on the Lie algebra. Each basis

root is labelled with c,k. The minimal polynomial of the corresponding structure constant

is 1x2 + kx+ c. r is the root system, theta the root system automorphism, and cvals is the

list of structure constants.

(S-LOSS) gInvolutionDiagram[r,disks,arches,cvals] extends the Helminck diagram

with the values c and k necessary to recover the structure constants of an involution on

the Lie algebra. Each basis root is labelled with c,k. The minimal polynomial of the

corresponding structure constant is 1x2 + kx + c. r is the root system, disks labels the

fixed roots, arches represents the diagram automorphism, and cvals is the list of structure

constants.”;

gInvolutionDiagram[d_?RootInputQ, {argdisks___?IntegerQ},

arches_?ListQ, cvals_?ListQ] := Module[

{cv, disks},

disks = List[argdisks];

cv = cvMinimalPolynomialList[d, cvals];

HelminckDiagram[d, disks, arches, cv]

];

gInvolutionDiagram[d_?RootBasisQ, {argdisks___?IntegerQ},

arches_?ListQ, cvals_?ListQ] := Module[

{cv, disks},

disks = List[argdisks];

cv = cvMinimalPolynomialList[d, cvals];

HelminckDiagram[d, disks, arches, cv]

];
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12.13.6 gInvolutionListFormToMatrix (Additional Definitions)

gInvolutionListFormToMatrix::usage=

”gInvolutionListFormToMatrix[r,roots,theta,list] takes a list of the form ROOT,CCONST

denoting an involution on the Lie algebra, the list of all roots, and the root system (r)

involution theta and returns a matrix for the involution over the Lie algebra with respect

to the ordered basis of root vectors (arranged with respect to the roots). The argument

roots is optional. If omitted, the matrix will be set with respect to the ordering of the roots

resulting from the procedure RootSystem with r as calling argument.

(PI-LOSS) gInvolutionListFormToMatrix[r,roots,disks,arches,list] takes a list of

the form ROOT,CCONST denoting an involution on the Lie algebra, the list of all roots,

and the root system (r) involution theta (defined via fixed roots disks and diagram auto-

morphism arches) and returns a matrix for the involution over the Lie algebra with respect

to the ordered basis of root vectors (arranged with respect to the roots). The argument

roots is optional. If omitted, the matrix will be set with respect to the ordering of the roots

resulting from the procedure RootSystem with r as calling argument.”;

gInvolutionListFormToMatrix[r_?RootInputQ,

inroots_: {}, {argdisks___?IntegerQ}, arches_?ListQ,

rlist_?ListQ] :=

gInvolutionListFormToMatrix[RootBase[r], inroots,

RootInvolution[RootBase[r], List[argdisks], arches], rlist];

gInvolutionListFormToMatrix[d_?RootBasisQ,

inroots_: {}, {argdisks___?IntegerQ}, arches_?ListQ,

rlist_?ListQ] :=

gInvolutionListFormToMatrix[d, inroots,

RootInvolution[d, List[argdisks], arches], rlist];

gMergeInvolutions[cbasis_?ListQ, {argdisks___?IntegerQ},

arches_?ListQ, invol_?ListQ, nvals_?ListQ] :=

gMergeInvolutions[cbasis,

RootInvolution[cbasis, List[argdisks], arches], invol, nvals];
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12.13.7 DiagramInvolutionSimple

DiagramInvolutionSimple::usage=

”DiagramInvolution[r,offset] gives a list of root pairs “arches” in an irreducible root system

r which are swapped by the diagram automorphism of order 2. The optional argument

offset shifts the indices by the specified number of units.”;

DiagramInvolutionSimple::noInv =

"Warning. No diagram involution for a root system of type ‘1‘‘2‘. \

Returning identity map {}.";

DiagramInvolutionSimple[r_?RootInputQ, offset_: 0] := Module[

{rin, type, dim, i, out},

rin = Flatten[RootInput[r]]; (*

Flatten because input may either be user input (which could have 1 \

or 2 curly braces), or internal input (usually 1 brace) *)

type = rin[[1]];

dim = rin[[2]];

out = "";

Switch[type,

"A",

If[EvenQ[dim],

out = Table[{i, dim + 1 - i}, {i, 1, (dim/2)}];

,

out = Table[{i, dim + 1 - i}, {i, 1, (dim - 1)/2}];

];

,

"D",

out = {{dim - 1, dim}};

,

"E",

If[dim == 6,

out = {{1, 6}, {3, 5}};

,

(*Message[diagramInvolutionSimple::noInv,type,dim];*)

out = {};

];

,

_,

(*Message[diagramInvolutionSimple::noInv,type,dim];*)

out = {};

];

Return[out + offset];

]

DiagramInvolutionSimple[a___] :=

InvalidArg["DiagramInvolutionSimple", a];
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APPENDIX A: Dynkin Diagrams and Cartan Matrices

Figure A.1: Cartan Matrix for Type A



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2
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Figure A.2: Cartan Matrix for Type B



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −2

0 0 0 0 0 0 −1 2



Figure A.3: Cartan Matrix for Type C



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −2 2
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Figure A.4: Cartan Matrix for Type D



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 −1

0 0 0 0 0 −1 2 0

0 0 0 0 0 −1 0 2



Figure A.5: Cartan Matrix for Type E6

2 0 −1 0 0 0

0 2 0 −1 0 0

−1 0 2 −1 0 0

0 −1 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2



Figure A.6: Cartan Matrix for Type E7

2 0 −1 0 0 0

0 2 0 −1 0 0

−1 0 2 −1 0 0

0 −1 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2
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Figure A.7: Cartan Matrix for Type E8



2 0 −1 0 0 0 0 0

0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2



Figure A.8: Cartan Matrix for Type F4
2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2



Figure A.9: Cartan Matrix for Type G2 2 −1

−3 2
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Figure A.10: Dynkin Diagram for Ane e e e. . .

Figure A.11: Dynkin Diagram for Bne e e e e. . . -

Figure A.12: Dynkin Diagram for Cne e e e. . . �

Figure A.13: Dynkin Diagram for Dn

e e e ee. . . ��
HH

Figure A.14: Dynkin Diagram for E6

e
e
e e e e

Figure A.15: Dynkin Diagram for E7

e
e
e e e e e
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Figure A.16: Dynkin Diagram for E8

e
e
e e e e e e

Figure A.17: Dynkin Diagram for F4e e e e-

Figure A.18: Dynkin Diagram for G2e e�
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APPENDIX B: Helminck Diagrams For Involutorial Auto-

morphisms with a Maximal (-1)-Eigenspace

Table B.1: Helminck Diagrams For Involutorial Automor-

phisms with a Maximal (-1)-Eigenspace

Name θ θ∆ State

AI e e e e1 2 n− 1 n
. . . Involution

AII u e u e u1 2 3 n− 1 n
. . . Involution

AIIIa

e e e u�� u
u@@6

?

6

?

6

?

6

?

θ∗

e1 e2 ep u
Involution

AIIIb

e e e e�� e
e@@6

?

6

?

6

?

6

?

θ∗

e1 e2 e e
Involution

BI e e u u u1 k n
. . . . . . - Involution

CI e e e e1 n
. . . � Involution

CIIa u e u e u u u1 2 n
. . . . . . � Involution

CIIb u e u e u e1 2 n
. . . � Involution

Continued on next page
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Table B.1 – continued from previous page

Name θ θ∆ State

DI e e e ee1 2

n− 1

n
��HH

Involution

DIIIa u e u e eu1 2

n− 1

n
. . . ��HH

Involution

DIIIb u e1 2 u e u�� en−1

@@ en θ∗�
]

36 Solutions ∗1

EI e
e
e e e e1

2

3 5 6
Involution

EII e
e
e e e e1

2

3 5 6

� �6 6θ∗

Involution

EIII e
e
u u u e1

2

3 5 6

� �6 6θ∗

24 Solutions ∗2

EIV e
u
u u u e1

2

3 5 6
Involution

EV e
e
e e e e e1

2

3 5 6 7
Involution

EVI e
u
e e u e u1

2

3 5 6 7
Involution

Continued on next page
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Table B.1 – continued from previous page

Name θ θ∆ State

EVII e
u
u u u e e1

2

3 5 6 7
Involution

EVIII e
e
e e e e e e1

2

3 5 6 7 8
Involution

EIX e
u
u u u e e e1

2

3 5 6 7 8
Involution

FI e e e e1 2 3 4
- Involution

FII u u u e1 2 3 4
- Involution

G e e1 2
� Involution

∗1 In the DIIIb case, for n = 7 there were 36 possible correction vectors. The table

on the following page gives the number of correction vectors for several values of n, and one

“nice” vector.

∗2 In the EIII case there were 24 possible correction vectors. The coordinates of

one such vector relative to the basis of t are

x1 = 1
3(1− 3

√
5)

x2 = −
√

5

x3 = 1
6(1− 9

√
5)

x4 = −1− 2
√

5

x5 = 1
6(−7− 9

√
5)

x6 = 1
3(−1− 3

√
5)
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Table B.2: Correction Vectors in the DIIIb Case

n No. Solutions Coordinates of Correction Vector CPU sec

5 12 x(1)→ 1
2

(
−1−

√
5
)

1.2

x(2)→ −
√

5

x(3)→ 1
2

(
−1− 3

√
5
)

x(4)→ −
√

5

x(5)→ −
√

5

7 36 x(1)→ 1
2

(
−1−

√
5
)

135.42

x(2)→ −
√

5

x(3)→ 1
2

(
−1− 3

√
5
)

x(4)→ −2
√

5

x(5)→ 1
2

(
−1− 5

√
5
)

x(6)→ −3
√

5
2

x(7)→ −3
√

5
2
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APPENDIX C: Helminck Diagrams for Involutions of Re-

stricted Rank One

Table C.1: Helminck Diagrams for Involutions of Restricted

Rank One

Type Name Diagram 1-Consistent

1 A1 ×A1 e e-�
θ∗ +

2 A1 e +

3 A2 e u −

4 A3 u e u +

5 An e u . . . u e� �6 6θ∗
+

6 Bn≥2 e u u u u. . . - +

7 Bn≥2 u e u u u. . . - −

8 Cn≥3 e u u u u. . . � −

9 Cn≥3 u e u u u. . . � +

10 Dn≥4 e u u u uu. . . ��HH
+

Continued on next page
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Table C.1 – continued from previous page

Type Name Diagram 1-Consistent

11 Dn≥4 u e u u uu. . . ��HH
−

12 E6 u
e
u u u u� �6 6θ∗

−

13 E7 e
u
u u u u u −

14 E8 u
u
u u u u u e −

15 F4 e u u u- −

16 F4 u u u e- +

17 G2 u e� −

18 G2 e u� −

In the following tables one correction vector is provided for each of the Helminck

diagrams which are not 1-consistent. Given are the coordinates for H ∈ t with respect to

the basis for t: {Hα1 , Hα2 , . . . ,Hαn}.

H = x1Hα1 + . . .+ xnHαn
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Table C.2: Correction Vector for Type 3

x1

√
5

3

x2
1
6(3 +

√
5)

Table C.3: Correction Vector for Type 7, n = 4

x1
1
14

(
−7−

(
5
√

2 +
√

15
)√

13− 2
√

30
)

x2 −1
7

(
5
√

2 +
√

15
)√

13− 2
√

30

x3 −1
7

(
5
√

2 +
√

15
)√

13− 2
√

30

x4 −
√

1
2

(
13− 2

√
30
)

Table C.4: Correction Vector for Type 8, n = 3

x1 −1
4

√
5
7

(
9−
√

65
)

x2 −1
2

(
2
√

5 +
√

13
)√

1
7

(
9−
√

65
)

x3 −1
4

√
5
7

(
9−
√

65
)

Table C.5: Correction Vector for Type 11, n = 6

x1
1
2(1−

√
5)

x2 −
√

5

x3 −1−
√

5

x4 −1−
√

5

x5 −
√

5
2

x6 −
√

5
2
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Table C.6: Correction Vector for Type 12

x1
1
6

(
1− 3

√
5
)

x2 −
√

5

x3 −2
3 −
√

5

x4
1
2

(
−1− 3

√
5
)

x5
1
3

(
−4− 3

√
5
)

x6
1
6

(
−7− 3

√
5
)

Table C.7: Correction Vector for Type 13

x1 −
√

5

x2
1
2

(
1− 2

√
5
)

x3
1
2

(
−1− 3

√
5
)

x4 −2
√

5

x5
1
2

(
−2− 3

√
5
)

x6 −1−
√

5

x7 −
√

5
2

Table C.8: Correction Vector for Type 14

x1 −7− 5
√

5

x2 −3
2

(
7 + 5

√
5
)

x3 −5
(
3 + 2

√
5
)

x4 −22− 15
√

5

x5 −5
2

(
7 + 5

√
5
)

x6 2
(
−6− 5

√
5
)

x7
1
2

(
−11− 15

√
5
)

x8 −5
√

5
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Table C.9: Correction Vector for Type 15

x1
1
2(1 +

√
5)

x2 1

x3 −1

x4 1

Table C.10: Correction Vector for Type 17

x1
1
22(3i

√
143 + i

√
451)

x2 i
√

13
11

Table C.11: Correction Vector for Type 18

x1 1

x2
1
2(1 +

√
5)


