
ABSTRACT

LIN, MATTHEW MIN-HSIUNG. Inverse Problems of Matrix Data Reconstruction. (Under
the direction of Moody Chu.)

Mathematical modeling is an indispensable task in almost every discipline of sciences. If a
model for a specific phenomenon can be correctly established, then it empowers the practitioners
to analyze, predict, and delegate an onward decision which may have important applications and
consequences. However, since most of the information gathering devices or methods, including
our best intellectual endeavor for understanding, have only finite bandwidth, we cannot avoid
the fact that the models employed often are not exact. A constant update or modification
of an existing model based on the newest information therefore is in demand. Such a task is
generally referred to as an inverse problem. While in a forward problem the concern usually is
to express the behavior of a certain physical system in terms of its system parameters, in the
inverse problem the concern is to express the parameters in term of the behavior. This thesis
addresses a small portion of the mass domain of inverse problems. The specific focus has been
on matrix data reconstruction subject to some intrinsic or prescribed constraints.

The purpose of this investigation is to develop theoretic understanding and numerical al-
gorithms for model reconstruction so that the inexactness and uncertainty are reduced while
certain specific conditions are satisfied. Explained and illustrated in this thesis are some most
frequently used methodologies of matrix data reconstruction so that for a given dataset, these
techniques can be employed to construct or update various (known) structural properties, or to
classify or purify certain (unknown) embedded characteristics. Areas of applications include,
for example, the applied mechanics where systems of bodies move in response to the values of
their known endogenous parameters and the medical or social sciences where the causes (vari-
ables) of the observed incidences neither are known a priori nor can be precisely quantified.
All of these could be considered as an inverse problem of matrix data reconstruction. This
research revolves around two specific topics – quadratic inverse eigenvalue problems and low
rank approximations – and some other related problems, both in theory and in computation.

An immediate and the most straightforward application of the quadratic inverse eigenvalue
problem would be the construction of a vibration system from its observed or desirable dy-
namical behavior. Its mathematical model is associated to the quadratic matrix polynomial
Q(λ) = Mλ2 + Cλ + K whose eigenvalues and eigenvectors govern the vibrational behavoir.
Tremendous complexities and difficulties in recovering coefficient matrices M , C, K arise when
the predetermined inner-connectivity among its elements and the mandatory nonnegativity of
its parameters must be taken into account. Considerable efforts have been taken to derive theory
and numerical methods for solving inverse eigenvalue problems, but techniques developed thus

far can handle the inverse problems only on a case by case basis. The first contribution in this
investigation is an efficient, reliable semi-definite programming technique for inverse eigenvalues
problems subject to specified spectral and structural constraints. Of particular concern is the
issue of inexactness of the prescribed or measured eigeninformation, which is almost inevitable
in practice, since inaccurate data will affect the solvability of this inverse eigenvalue problem.
To address this issue, a second contribution in this investigation is a methodical approach by
using the notion of truncated QR decomposition to first determine whether a nearby inverse
problem is solvable and, if it is so, the method computes the approximate coefficient matri-
ces while providing an estimate of the residual error. Both methods enjoy the advantages of
preserving inter-connectivity structures and other important properties embedded in the orig-
inal problems. More importantly, both approaches allow more flexibilities and robustness in
handling highly structured problems than other special-purpose algorithms.

Low rank approximations have become increasingly important and ubiquitous in this era of
information. Generally, there is no unified approach because the technique often is data type
dependent. This research studies and proposes new factorization techniques for three different
type of data. The first algorithm aims to perform a nonnegative matrix factorization of a
nonnegative data matrix by recasting the problem geometrically as the approximation of a given
polytope on the probability simplex by a simpler polytope with fewer facets. This view leads to
a convenient way of decomposing the data by computing the proximity map which, in contrast
to most existing algorithm where only an approximate map is used, finds the unique and global
minimum per iteration. The second algorithm investigates the factorization of integer matrices
which is more realistic and important in informatics. Searching through the literature, it
appears that there does not exist a suitable algorithm which can handle this type of problem well
owing to its discrete nature. Two effective approaches for computing integer matrix factorization
are proposed in this investigation — one is based on hamming distance and the other on
Euclidean distance. A lower rank approximation of a matrix A ∈ Zm×n ≈ UV with factors
U ∈ Zm×k2 , V ∈ Zk×n, where columns of U are mutually exclusive and integer k < min{m,n}
is given. The third algorithm concerns expressing a nonnegative matrix as the shortest sum of
nonnegative rank one matrices, the so called nonnegative rank factorization. Till now, only a
few abstract results which are somewhat too conceptual for numerical implementation have been
developed in the literature. Employing the Wedderburn rank reduction formula, a numerical
procedure detecting whether a nonnegative rank factorization exists is presented. In the event
that such a factorization does not exist, it is able to compute the maximum nonnegative rank
splitting.

This thesis includes a detailed analysis of inverse eigenvalue problems and low rank factoriza-
tions. Some of the theories are classical, but new insights are obtained and their implementation
for numerical computation are developed. On the other hand, this investigation leads to quite

a few innovative algorithms which are effective and robust in tackling the otherwise very dif-
ficult inverse problems. The research is ongoing and several interesting research problems are
identified in this thesis.

c© Copyright 2010 by Matthew Min-Hsiung Lin

All Rights Reserved

Inverse Problems of Matrix Data Reconstruction

by
Matthew Min-Hsiung Lin

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2010

APPROVED BY:

Pierre Gremaud Alina Chertock

Dmitry Zenkov Moody Chu
Chair of Advisory Committee

DEDICATION

To my dear family

for their support and love

ii

BIOGRAPHY

Min-Hsiung Lin received his Bachelor of Science degree in mathematics from the National
Taiwan Normal University in 2003 and his Master of Science degree in applied mathematics
from the National Tsing Hua University in 2005. Then, his life has turned to a new chapter.
He went to the United States to pursue his Ph.D. degree in applied mathematics at the North
Carolina State University. During the next four years, he received his second Master’s degree in
computer science in 2009, was baptised on March 29, 2009, and completed his PhD dissertation
in 2010.

iii

ACKNOWLEDGEMENTS

Thank you God for all your many blessings.

Thank my advisor Dr. Moody Chu and his wife Mrs. Joyce Chu

• They like parents. Fill my heart with endless care and support.

• They like angels. Open my eyes. Let me have the chance to see the God.

• They like mentors. Lead me through the difficulty with profound knowledge and wisdom.

• They are interceders. Bless my road with sincere daily prayers.

Thank the members of my committee: Dr. Pierre Gremaud, Dr. Alina Chertock, Dr. Min
Kang, and Dr. Dmitry Zenkov, for their informative and wonderful instruction in their courses,
for their valuable comments, insights, and suggestions on my work .

Thank Dr. Dennis R. Bahler for his perpetual kind and gentle nature allowing me to finish my
master degree in Computer Science.

Thank Dr. Wen-Wei Lin, Dr. Tsung-Min Hwang, Dr. Tsan-Yao Chen, Dr. Shu-Ming Chang,
Dr. Bo Dong, Dr. Shih-Feng Shieh, Dr. Yuen-Cheng Kuo, and Dr. Chung-Yueh Chiang for
their invaluable advice and suggestions on my work.

Thank my friends who offered me great support and precious friendships. I would like to share
my happiness with them.

Thank my parents, two brothers, and Siao-Yong, who have never failed to give me their full
support, whenever I need them. Without their understanding and encouragement, I would not
be able to understand what I insist on, nor could I have made my way so far.

iv

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

List of Notations . x

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Quadratic Inverse Eigenvalue Problems . 3
1.3 Low Rank Factorization . 5
1.4 Research Outline . 9

I Quadratic Inverse Eigenvalue Problems 11

Chapter 2 Inverse Problems with Basic Real Symmetric Models 12
2.1 Overview . 12
2.2 Fundamental theorem on spectral decomposition 14

2.2.1 Role of the parametric H matrix . 14
2.2.2 Structure of the parametric H matrix . 16

2.3 Eigenvector completion . 18
2.3.1 Issues related to numerical computation 23

2.4 Model updating with no spill-over . 27
2.5 Role of eigenvalues . 29
2.6 Conclusion . 33

Chapter 3 Inverse Problems with Partial Eigenpair Information 34
3.1 Overview . 34
3.2 Handling exact eigenpairs . 35

3.2.1 Inherent structure . 39
3.2.2 Linear equality system . 40
3.2.3 Linear inequality system . 42

3.3 Handling inexact eigenpairs . 44
3.4 Numerical experiments . 47
3.5 Conclusion . 51

Chapter 4 Inverse Problems with Structured Models 52
4.1 Overview . 52
4.2 Semidefinite programming . 53
4.3 Models with symmetric and positive semi-definite structures 57
4.4 Models with gyroscopic structures . 60
4.5 Models with sparsity patterns . 61

v

4.6 Models with prescribed entries . 63
4.7 Model updating problems . 64
4.8 Conclusion . 69

II Low Rank Factorizations 71

Chapter 5 Nonnegative Matrix Factorization via Polytope Approximation . . 72
5.1 Overview . 72
5.2 Pull-back to the probability simplex . 74
5.3 Polytope fitting problem . 77

5.3.1 Proximity map on the probability simplex 79
5.3.2 Alternating direction iteration . 84

5.4 Application to the nonnegative matrix factorization 88
5.4.1 Proximity map on the the simplicial cone 90
5.4.2 Alternating direction search . 93

5.5 Numerical experiments . 97
5.6 Conclusion . 102

Chapter 6 Integer Matrix Factorization via Rank-one Approximation 104
6.1 Overview . 104
6.2 Basic rank-one approximation . 105

6.2.1 Approximation with Hamming metric . 106
6.2.2 Approximation with Euclidean metric . 110

6.3 Algorithms of integer matrix factorization . 111
6.3.1 Communal rule . 112
6.3.2 Recursive decomposition . 113
6.3.3 Optimal low rank approximation . 114

6.4 Numerical experiments . 118
6.4.1 Association analysis . 118
6.4.2 Cluster analysis . 120
6.4.3 Pattern discovery . 123
6.4.4 Random performance test . 125

6.5 Conclusions . 127

Chapter 7 Nonnegative Rank Factorization via Rank Reduction 129
7.1 Overview . 129
7.2 Wedderburn rank reduction formula . 132
7.3 Nonnegative rank factorization . 133
7.4 Completely positive matrices . 138
7.5 Maximal nonnegative rank splitting . 139
7.6 Geometric meaning of nonnegative rank . 141
7.7 Numerical experiments . 144
7.8 Conclusion . 146

vi

Chapter 8 On the Nonnegative Rank of Euclidean Distance Matrices 147
8.1 Overview . 147
8.2 Rank condition and standard form . 147
8.3 Nonnegative rank factorization for linear Euclidean distance matrices 150
8.4 A conjecture for higher dimensional Euclidean distance matrices 156

Chapter 9 Future Work . 158

References . 161

Appendix . 173
Appendix A QR Factorization with Column Pivoting 174

vii

LIST OF TABLES

Table 4.1 An SDP code calling routines from YALMIP to solve QIEPs for positive
semi-definite (M,C,K). 58

Table 4.2 Existence of positive definite M , C and K to the symmetric QIEP with
random eigenstructure. 60

Table 4.3 Existence of positive definite M , C , K , and skew-symmetric G to the
QIEP with random eigenstructure. 61

Table 6.1 An transaction example with 5 transactions and 6 items 119
Table 6.2 A binary representation of the transaction example 119
Table 6.3 Two representative transactions T ′1 and T ′2 119
Table 6.4 Precision and Recall of edible or poisonous mushrooms 123
Table 6.5 Precision and Recall of benign or recall patients 125
Table 6.6 Global convergence rate and average time per factorzation (in seconds)

on randomly generated data sets. 127

Table 8.1 Standard nonnegative factorizations of Q4. 153

viii

LIST OF FIGURES

Figure 2.1 Curves where the principle minors of XJ2H−1X> vanish. 32

Figure 3.1 A four-degrees-of-freedom mass-spring system. 36
Figure 3.2 An RLC electronic network. 37

Figure 4.1 The 48 × 48 sparse matrices M0 and K0. 67
Figure 4.2 Performance of model updating for Harwell-Boeing test data BCSST*01

(n = 48). 68
Figure 4.3 Performance of model updating for Harwell-Boeing test data BCSST*02

(n = 66). 69

Figure 5.1 Convex hull of ϑ(A) ∈ R3×n with n = 11. 76
Figure 5.2 Convex hull of ϑ(Y) and U in D3. 78
Figure 5.3 NNMF in R2 when p = 1. 90
Figure 5.4 Simplicial cone of U and convex hull of ϑ(Y) ∈ R3×n with p = 2 and

n = 11. 91
Figure 5.5 Triangle (polytope) enclosing a prescribed set of points on D3. 98
Figure 5.6 Objective values f(U, V) per iteration by the Chu-Lin algorithm versus

the Lee-Seung algorithm. 99
Figure 5.7 Objective values f(U, V) in 20 iterations per specified rank by the Chu-

Lin and the Lee-Seung algorithms. 100
Figure 5.8 Complexity of the Chu-Lin algorithm measured in CPU time per sweep

of the alternating optimization. 101
Figure 5.9 80 sample images from the swimmer database. 102
Figure 5.10 17 “parts” decomposed from the swimmer database by Algorithm 5 in

10 iterations. 102

Figure 6.1 Performance of algorithms on the mushroom data set 122
Figure 6.2 Performance of algorithms on Wisconsin breast cancer data set 124
Figure 6.3 Basic elements recovered from the swimmer data set by the IMF. 126
Figure 6.4 Bases elements recovered from block matrix data set by the IMF. 127

Figure 7.1 A geometric representation of the matrix ϑ(C). 142

Figure 8.1 Euclidean matrix of three points in R2. 148
Figure 8.2 A geometric representation of the matrix ϑ(Q4) when r = 1. 152
Figure 8.3 A geometric representation of the matrix ϑ(Q4) when r > 1. 157

ix

LIST OF NOTATIONS

Notation Description

Calligraphic capitals, e.g., X or J matrices associated to Jordan canonical forms

German capitals, e.g., X or J complex-valued matrices of general sizes

Roman capitals, e.g., M or H real-valued matrices of general sizes

Script capitals, e.g., B or H some specially defined 2n× 2n matrices

R set of real numbers

R+ set of nonnegative real numbers

Z set of integer numbers

Rn space of real column vectors of dimension n

Rn+ space of nonnegative real column vectors of dimension n

Zn space of integer column vectors of dimension n

Cm×n space of complex matrices of dimension m× n
Rm×n space of real matrices of dimension m× n
R
m×n
+ space of nonnegative real matrices of dimension m× n
Zm×n space of integer matrices of dimension m× n
SRn×n space of symmetric real matrices of dimension m× n
A � 0 positive semidefinite matrix A

A � 0 positive definite matrix A

A> the transpose of a matrix A

A∗ the conjugate transpose of a matrix A

A−1 the inverse of a matrix A

x∗ the conjugate transpose of a vector x

x> the transpose of a vector x

0m×n zero matrix of dimension m× n
0n zero vector in Rn

0 zero matrix/vector of size depending on the context

In identity matrix of dimension n× n

x

Chapter 1

Introduction

1.1 Overview

Experimental sciences are built upon the conviction that, despite imperfection due to noises,
device limitation, and other adulterate factors, empirical data should still be laden with certain
degrees of reliability or embedded with some essential characteristics of the original problems. In
order to improve the reliability or extract the essence, it is critical to update the underlying mod-
els or refine the datasets for the purpose of reducing or even eliminating errors. Conventional
error correction involves the reconstruction of models by imposing new updated information to
postulate the existence of exact data or by screening existent data with the hope of inferring
some innate particulars included in the true but cloaked data. These procedures of constituting
or refining original models play an important role in many areas of sciences and engineering,
including applied mechanics, circuit analysis, electrical oscillation, vibro-acoustics, information
retrieval, bioinformatics, digital image processing, and so on. In the area of vibro-acustics, for
example, we can get rid of the noise and access a suitable vibration control for air handling
system by fine-tuning through some real-time feedback results from sensors. In the area of
image processing, the presence of atmosphere turbulence alone has frustrated astronomers ever
since telescopes were invented. Without the correction to the turbulence, it is known that no
design or optical quantity of a telescope can improve the degraded image. A remedy comes only
recently when a mechanical means, generally referred to as the adaptive optics, has been devel-
oped to perform turbulence compensation with promising effect. Along these lines, this research
is devoted to matrix data reconstruction with primary focus on quadratic inverse eigenvalue
problems (QIEPs) and low rank factorization (LRF) where data in the underlying models are
represented by matrices of numerical attributes.

In contrast to the well developed theory and computation for the classical eigenvalue prob-
lem, the inverse eigenvalue problem (IEP) concerns the reconstruction of a structured matrix

1

from prescribed spectral data. It is clear that an IEP is trivial if the desirable matrix is not re-
stricted to a certain structure. As IEPs often arise from some physical systems, we indeed need
to ensure that the output of reconstruction not only follows the underlying natural frequencies
or normal models but also satisfies certain feasibility constraints. For example, the matrix rep-
resentation to the Sturn-Liouville operator is necessarily of the Jacobi structure. In the inverse
reconstruction, we want to guarantee that the recovered data still preserve the same structure.
The IEP for Jacobi matrices is now considered classical. Major results on this subject can
be found in [19, 68, 71]. See also [37, Section 4.2] for a comprehensive review of its variants.
Quadratic inverse eigenvalues related to practical applications inherit more complicated geo-
metric structures and are notoriously more difficult. To make the matter worse, in many cases
it is not enough to just consider geometric structures. Often we need to take other properties of
parameters or eigeninformation, such as nonnegativity, into consideration simultaneously. Our
main contribution in this investigation is to establish a general framework for solving QIEPs
with general intrinsic structures. To set forth our consideration, four fundamental issues should
be addressed in any type of QIEPs [37].

• Solvability. Not all vibration behavior is achievable. The most fundamental question for
a QIEP is to determine conditions under which a solution exists. It is also sometimes
desirable to determine whether a solution is unique.

• Computability. Suppose that a given set of eigeninformation is feasible. It is natural to
seek a numerical algorithm for computing a solution. It is further desirable to improve
the algorithm to make its computation more effective and efficient.

• Sensitivity. By sensitivity analysis we refer to the study of how reconstructed results will
be affected, qualitatively or quantitatively, by perturbations in the input data. Such an
analysis helps to qualify the numerical computation and provides the capacity of further
refining a model by seeking the errors hidden in the model.

• Feasibility. The feasibility is closely linked to the exactness or completeness of a given
data, or the suitability of the output result while testing it on the physical system.

The problem of LRF arises in a large variety of disciplines in modern science and engineer-
ing. Its main goal is to to compress the overly excess data in terms of fewer and more concise
representatives and to assess the loss or the retrieval of important information. Most conven-
tional approaches for solving LRF can be categorically cast as the so-called vector space model
[170]. Roughly speaking, each model in the dataset is reshaped into a vector and the collection
of those vectors becomes a single data matrix. Depending on the data types, the assessment
of loss (or retrivial) is based on different measures in computing the similarity among different

2

models. For example, for continuous data, we might compute the heterogeneities via the Eu-
clidean metric whereas for discrete data, we might employ the Hamming metric to count the
cardinality of distinct elements, instead of real difference, as a means of representing dissimilar-
ity. This way of representing data as vectors and searching for its best low rank approximation
is stimulated with the aim of reaching the following goals [29].

• Compression. In real-world data, it often involves a large number of attributes related
to diverse characteristics. A natural question is whether a set of representative patterns
involving relatively smaller amount of parameters is sufficient to characterize the original
model.

• Concision. We hope that the original data could be clarified by enhancing its character-
istics via much more representative patterns derived from the data.

• Celerity. It is always desirable to obtain the best low rank approximation fast and effec-
tively.

Our objectives in this investigation are to provide an informative and wide-scope overview of
these interesting problems, to introduce some of their many applications, to explore mathemat-
ical properties, and to formulate numerical schemes so that: (i) a decision about the solvability
of a QIEP can always be made either by theory or by computation; and (ii) an LRA could be
achieved through the notion of “factorizing” data into a product of representative objects while
maintaining its specific data type.

1.2 Quadratic Inverse Eigenvalue Problems

When attempting to characterize vibration phenomenon arising in solid mechanics, circuit anal-
ysis, electrical oscillation, acoustics, or finite element models of some PDEs, we often will come
to a second-order dynamical system

M ÿ + Cẏ +Ky = f(t), (1.1)

where y(t) stands for an appropriate state variable and M , C, K are time-invariant, real n×n
matrices representing embedded physical parameters. It is well known that if y(t) = ueλt

represents a fundamental solution of (1.1), then the scalar λ and the vector u must satisfy the
algebraic equation

(λ2M + λC +K)u = 0. (1.2)

In the forward setting, known as the quadratic eigenvalue problem (QEP) [70, 157], the
eigenvalues and eigenvectors of the quadratic matrix polynomial (1.2) are used to describe the

3

dynamical behavior of the underlying physical system with coefficient matrices M , C and K

already determined from the specified physical parameters. In the inverse setting, which we
refer to as the quadratic inverse eigenvalue problem (QIEP), the task is to validate, deter-
mine, or estimate the parameters of the system according to its observed or expected behavior.
That is, the aim of a QIEP is to determine physical parameters from its complete or partial
eigeninformation.

In general, a QIEP can be defined as follows [33]

(QIEP). Construct a nontrivial quadratic matrix polynomial Q(λ) = λ2M +λC +K

so that its matrix coefficients (M,C,K) are of a specified structure and Q(λ) has a
specified set {(λi,ui)}ki=1 as its eigenpairs.

There are two main mandates embedded in the above definition: structural preservation and
eigeninformation compliance. Indeed, as we will see in the subsequent discussion, it is these
specified constraints embedded in the structure that make QIEPs difficult and challenging. A
partial list illustrating different approaches to the QIEPs in the literature is briefed as follows.
Ram and Elhay [144] determine a damped oscillatory system with symmetric tridiagonal co-
efficient matrices from two sets of prescribed eigenvalues. Starek and Inman [153] propose a
numerical algorithm for determining a nonproportional damped system with respect to sym-
metric coefficient matrices. Lancaster and Prells [117] investigate a solution with symmetric
and positive definite M (denoted henceforth by M � 0), symmetric and positive semi-definite
C (denoted by C � 0), and K � 0 from complete spectral information about eigenvalues
and eigenvectors. Later, Lancaster [114] advances the notion of solving symmetric coefficient
matrices M , C, and K, given all eigenvalues and partial eigenvectors corresponding to only
real eigenvalues. Chu, Kuo and Lin [38] characterize a sufficient condition for the solvability
of QIEPs with partially prescribed eigenpairs while M � 0 and K � 0. Kuo, Lin and Xu
[113] later put forward the parameterization of symmetric coefficient matrices (M � 0, C, K)
with k ≤ n by using QR decomposition. This result soon is further generalized in [24]. More
general representation of symmetric (M � 0, C, K) in terms of eigenvalues and eigenvectors
is discussed in [40, 70] . See also [49, 51, 135] for the related work on applying the notions of
feedback control to reassign the eigenstructure, but the loss of symmetry. Despite the numerous
endeavors, research results advanced thus far for QIEP are incomplete, fragmental, and indeed
quite inadequate. Most disappointing is that no structures other than symmetry or positive
definiteness on some coefficients can be addressed by these techniques.

Developing effective techniques for solving structured inverse eigenvalue problems has been
in quite desperate need but the advance thus far is limited to special cases. The most common
discussed structure is symmetry in each of the coefficient matrices (M,C,K). When the con-
dition of positive definiteness is imposed upon the coefficient matrices, current theory requires

4

the complete information on eigenvalues and eigenvectors [117]. This is far from being sufficient
to embrace the subtle properties such as inner-connectivity among elements of the underlying
physical system or the requisite nonnegativity of the physical parameters for the sake of feasi-
bility. For other types of structures, such as the gyroscopic systems where matrix coefficients
are composed of positive definite and skew-symmetric matrices or local model updating prob-
lems where some entries in the coefficient matrices are prescribed and fixed, there is simply no
theory or techniques available at all. At present, effective numeral algorithms for QIEP are few
and those already developed are geared toward some specific and non-refined problems which
cannot be generalized to other types of quadratic systems with different structure.

The notion of QIEP is of fundamental importance, because its ultimate goal of construct-
ing or updating a vibration system from some observed or desirable dynamical behaviors while
respecting some inherent feasibility constraints suits well many engineering applications in a va-
riety of industries, including aerospace, automobile, manufacturing, and national defense. Thus
far, however, QIEPs have largely remained challenging both theoretically and computationally
due to the great variations of structural constraints that must be addressed. Of notable interest
and significance in our investigation is to provide a general theoretical framework for the basic
real and symmetric models and several numerical procedures for solving QIEPs with almost all
kinds of specified structures.

1.3 Low Rank Factorization

Computing matrix factorization is an important task in numerical linear algebra. Theories and
numerical applications for matrix factorization have received great attention in modern sciences
and techniques. The general purposes of matrix factorization could be enlightened through an
interesting appraisal by Hubert, Meulman, and Heiser [97],

“Matrix factorization in the context of numerical linear algebra (NLA) generally
serves the purpose of rephrasing through a series of easier subproblems a task that
may be relatively difficult to solve in its original form.”

Taking the problem of solving a linear system Ax = b for A ∈ Rn×n, x and b ∈ Rn, for
example, we all know that it is impracticable to formulate A−1 by any means. Instead, we
formulate the LU factorization, which transforms the originally complex problem into a two
easier subproblems of triangular systems. The purpose of this process is merely to decompose
the square matrix A into a lower triangular matrix L and an upper triangular matrix U . This
matrix factorization is only as a computationally convenient tool which has no real importance
in and of itself.

5

In an entirely different context, we can intepret the matrix A ∈ Rm×n as a data matrix
such that each row corresponds to an object (subject) over n attributes (variables). Under
this model, there are a total of m objects individually corresponding to n attributes. Such
a collection in the matrix form is for the purpose of classifying the given data by comparing
the similarity between the objects with respect to a certain metric. The notion of matrix
factorization is not so much directed at solving a linear equation or finding eigenvalues, but
more so at revealing critical information within observations and their features. In the context
of applied statistics/psychometrics (AS/P), it is said that “matrix factorizations are again
directed toward the issue of simplicity, but now the actual components making up a factorization
are of prime concern and not solely as a mechanism for solving another problem [97].” We
prefer to be able to “interpret the matrix factorization geometrically and actually present the
results spatially through coordinates obtained from the components of the factorization”. If
such a factorization can be achieved, we might better understand the structure or retrieve the
information hidden in the original data matrix. That is,

“The major purpose of a matrix factorization in this context is to obtain some form
of lower-rank (and therefore simplified) approximation to A for understanding the
structure of the data matrix, particularly the relationship within the objects and
within the attributes, and how the objects relate to the attributes [97].”

The notion of LRF plays an important role in machine learning, statistics, signal processing,
and other informatic related fields. It aims to retrieve a sensible low-dimensional approximation
from the original data matrix. We can regard LRF as a special kind of matrix factorization.
Similar to eigenvalue problems, the LRF problem could also be considered from both a direct or
an inverse points of view. The direct problem of an LRF is to formulate the original data matrix
by computing the product of two low rank matrices. Clearly, we do not have trouble in doing
such a calculation. On the other hand, the inverse problem of LRF is to minimize the difference
between the original target matrix and the product of its low rank factorizations. Depending
on the types of constraints imposed on the factors, there are at least three different ways to
formulate a matrix factorization, all of which are studied in this research. Unless otherwise
mentioned, the subsequent discussion of the LRF is about solving the inverse problem.

The traditional approach to the LRF is to first express the matrix A as the product of two
or more factors and then perform suitable truncations. In the ultimate sense, the factorization
of the matrix A is equal to the sum of rank-one matrices. The goal of breaking down the
matrix into rank-one matrices could be achieved via the well known Wedderburn rank-one
reduction formula. This formula is capable of unifying fundamental factorization processes
under one framework. Indeed, Chu, Funderlic and Golub in the review paper [35] have shown
that almost all matrix decompositions known in NLA could be obtained via this mechanism.

6

The mathematical approach of rank one reduction might not be deservedly recognized in the
NLA community, but its concept as well as applications have been prevalent for decades in the
AS/P community. See, for example, discussions in [45, 80, 81, 82, 85, 93] and also the timeline
about the appearance of rank reduction results in [97]. In this approach, the data types involved
in the calculation usually are real or complex numbers.

Another important variant of the LRF is the nonnegative matrix factorization (NMF) where
the data to be analyzed are nonnegative. There are numerous applications of the NMF, in-
cluding text mining [54, 169], image articulation [119, 140], bioinformatics [30], micro-array
analysis [57], cheminformatics [138, 139], air quality research [138], spectral data analysis [16],
and cancer pattern discovery [23, 64, 107]. The idea behind the NMF is to represent original
model by a sequence of more compact representations whereas entries are nonnegative values
for the purpose of satisfying physical realities. The mathematical formulation for an NMF can
be defined as follows [139]:

(NMF) Given a nonnegative matrix A ∈ Rm×n and a positive integer p <

min{m,n}, find nonnegative matrices U ∈ Rm×p and V ∈ Rp×n so as to minimize
the functional

f(U, V) :=
1
2
‖A− UV ‖2F . (1.3)

Note that the equality A = UV may never be true, but the two matrices U, V are still termed
as low rank “factors” of A in the literature. Classical tools cannot guarantee to maintain the
nonnegativity. Considerable research efforts have been devoted to develop special techniques
for NMF. See, for example, the multiplicative update algorithm by Lee and Seung [119, 120],
the gradient methods [34, 96], and alternating least square methods [17, 22, 108, 118, 138].
Additional discussions can be found in [39, 56, 91, 95, 105, 152], and the many references
contained therein. In this research, we offer yet another geometric approach by taking advantage
of the powerful Hanh-Banach theory.

The two types of factorizations and their approaches stated above are distinct in nature.
The feature of the data they intend to handle, however, are all from a continuum domain. There
is yet another important class of information, namely, discrete data, that we have to consider in
this investigation. To motivate the significance, envisage the scenario of switch manufacturing
in the telecommunications industry [132]. Suppose that each switch cabinet consists of n slots
which can be fitted with only one type of specified board options. Assume that there are ti
different board types for each slot. In all, there are

∏n
i=1 ti different models. It is desirable to

build a few basic models at the beginning so that corresponding to different custom orders, we
might meet a specific configuration more efficiently. The question is how many and what basic
models should be built. One plausible approach is to “learn” from past experiences, that is, we
try to obtain the basic model information from the matrix of past sales. Labeling each board

7

type in a slot by an integer (or any token) while the same integer for different slots (columns)
may refer to different attributes, the data representing past m customer orders form an integer
matrix of size m× n. We must emphasize that in this setting, entries in the data matrix are of
discrete values and that these values may or may not reflect any ordinal scale. A factorization
of such a data matrix therefore must be subject to certain specifically defined arithmetic rules,
which constitutes the main thrust of our work on this subject.

Without causing ambiguity, let Z denote either the conventional set (or subset) of integers
when ordinal scale matters, or the set of all possible tokens which are not totally preordered,
for the system under consideration. For the simplicity of discussion, we shall assume that the
entries of the given matrix A are from the same set Z. In practice, different rows of A may
be composed of elements from different subsets of Z. Even the same element in Z may have
different meaning in different columns. If a comparison between two observations (rows) is
needed, entries at different locations in the rows might need to be measured differently. Before
we can perform the factorization, a properly defined metric for the row vectors, such as the
metric for the product space (of individual entries), therefore must be in place, which then
induces a metric d to measure the “nearness” between two matrices. With this in mind, we
define our integer matrix factorization (IMF) as follows.

(IMF) Given an integer matrix A ∈ Zm×n, an induced metric d, and a positive inte-
ger1 k < min{m,n}, find a binary matrix U of size m× k with mutually orthogonal
columns and V ∈ Zk×n so that the functional

f(U, V) := d(A,UV), (1.4)

is minimized.

Each entry aij in A denotes, in a broad sense, the score obtained by entity i on variable j;
the value of ui`, being dichotomous, indicates whether entity i is influenced by “factor” `; and
v`j marks the attribute of variable j to the factor `. Take the sale record of a certain electronic
device as the matrix A, for example. Then rows of A denote the specifications by m customers
with respect to the n different slots in the device; rows of V represent the basis models to be
built; and the mutual exclusion of columns of U implies that each customer order corresponds
to exactly one possible basic model. The factors in this case represent some abstract concepts
by which the customer orders are divided into k clusters. Clearly, this is a typical classification
problem written in factorization form. We also see that the number k plays an important role
in the low rank approximation. In practice, we prefer to have as few factors as possible while
keeping the objective value f(U, V) low.

1The determination of such a rank k is itself an important question which thus far has no satisfactory answer
yet.

8

1.4 Research Outline

Inverse problems of matrix data reconstruction continue to be a fertile and flourishing field
for modern sciences and technology because it involves a rich vein of undiscovered knowledge
that cannot be manifested in direct problems. For instance, when solving inverse problems, we
often encounter a series of conditions that may not present in the direct problem: the given
information is incomplete; the original model satisfies certain constraints; the solution does
not exist; the solution is not unique; the solution does not depends continuously on the given
data, especially, the problem might not be well posed [68]. These questions are challenging but
interesting, and may have impact on many important applications.

This research aims at providing a comprehensive view of two important topics, QIEPs and
LRFs. We present our research results in eight chapters. We outline our organization as follows.
Part I deals with QIEPs. In Chapter 2 we set forth a mathematical framework for determining
real, symmetric coefficient matrices (M,C,K) in a basic QIEP from merely a prescribed or
observed subset of natural modes. This approach is in contrast to the classical approach to
IEPs where the model is to be constructed from natural frequencies corresponding to various
boundary conditions. In particular, merely given the cardinalities of real or complex eigenvalues
but not the actual eigenvalues, the set of eigenvectors can be completed by solving an under-
determined nonlinear system of equations. This completion shows that the construction of
symmetric coefficient matrices (M,C,K) is possible even if the underlying system possesses ar-
bitrary eigenvalues. Generic conditions under which the real symmetric quadratic inverse mode
problem is solvable are discussed. Applications to important tasks such as updating models
without spill-over or constructing models with positive semi-definite coefficient matrices are
investigated. In Chapter 3 we propose a numerical approach via truncated QR decomposition
to solve the inverse problems for arbitrary generally linked systems with inexact eigeninforma-
tion. This QR approach provides us with the capacity of determining the solvability of inverse
problems and, if the inexact data are still feasible, computes the coefficient matrices with an
estimate of residual error. In other words, we offer an approach that is general and robust for
any kind of physical configuration. In Chapter 4, we introduce a powerful semi-definite pro-
gramming (SDP) approach, to handle QIEPs under almost all kinds of structured constraints.
Because of the great variations of structured constraints inherent in diverse engineering appli-
cations, the QIEPs thus far have remained challenging both theoretically and computationally.
Of notable interest and significance in this chapter are the uniformity and the simplicity in
the SDP formulation that solves effectively many otherwise very difficult QIEPs. Part II deals
with LRFs. In Chapter 5, we compute the factorization of nonnegative matrix factorization by
formulating the problem as a low dimensional polytope approximation. We approximate such a
polytope on the probability simplex by another simpler polytope with fewer facets. Theoretical

9

assertion by the Hahn-Banach theorem guarantees that the difference between two polytopes
can be reduced by computing the supporting hyperplane for a given point and a disjoint poly-
tope. Since our transformation allows us to work on a compact set with known boundary, it is
easier to trace the approximation procedure. In contrast to most existing algorithm where only
an approximate map is used, our approach finds the unique and global minimum per sweep.
Numerical results show that our method is more effective than the popular Lee-Seung algorithm
in reaching the optimal approximation. In Chapter 6, we study the factorization of discrete
datasets, namely integer or binary data types. It has been shown that factorization of discrete
datasets generally leads to NP-hard problems. Compared with traditional techniques such as
k-means methods [127], k-modes algorithm [98], and vector-quantization [75], our methods,
which could be viewed as a generalized algorithm discussed in [110, 111], has no constraint on
the cluster number and the cluster size. More importantly, based on a sequence of the “best”
rank-one approximation, we can guarantee that each approximation is global minimization at
each sweep. Even under the additional condition that the cluster number or cluster size is fixed,
our algorithm enjoys a surprising but pleasant feature that is similar to the truncated singu-
lar value decomposition. That is, we are able to obtain the best possible truncated low rank
factorization for discrete data. Numerical testing experiments with popular collections such as
swimmer, Wisconsin breast cancer, and mushroom date sets seem to support our algorithms and
theories very well. In Chapter 7 we discuss the factorization of a given nonnegative matrix A

into a sequence of rank one matrices each of which successively downdates the rank of A by one.
Again, computing the exact nonnegative rank and the corresponding factorization are known
to be NP-hard. Available NMF techniques, which mostly utilize the notion of approximation,
can hardly guarantee the required equality in a complete factorization. Alternately, our work
employs the Wedderburn rank reduction formula to recursively extract, whenever possible, a
rank-one nonnegative portion from the previous matrix while keeping the residual nonnegative
and lowering its rank by one. The idea can equally be applied to completely positive matrices
with a slight modification for symmetry. Numerical testing seems to suggest that this numerical
approach, though heuristic in nature, performs reasonably well in factoring a given nonnegative
matrix via rank-one downdate. Finally, in Chapter 8 we investigate the rank properties of the
Euclidean distance matrix with n distinct points in Rr and show that, while algebraic rank is
generically r + 2, its nonnegative rank is generically n for 1-dimensional Euclidean distance
matrices.

10

Part I

Quadratic Inverse Eigenvalue

Problems

11

Chapter 2

Inverse Problems with Basic Real

Symmetric Models

2.1 Overview

We begin our investigation with a synopsis of the spectral decomposition in real, symmetric
coefficient matrices (M,C,K). Spectral decomposition of a real, symmetric matrix polynomials
has been well developed in literature [41, 114]. However, for our application, we find that it is
critical to decipher the underlying structures of spectral decomposition in more details. Under-
standing the underlying structure enables us to address the solvability of real and symmetric
QIEPs from merely partial information about eigenvectors. This is the so called inverse mode
problem (IMP) which is yet another special type of QIEPs. The notion of IMP perhaps can
be exemplified by this famous paper entitled, “Can one hear the shape of a drum?” [104]. The
question was, “if one has perfect pitch (to hear the natural frequencies), could one find the
shape of a drum?”. The IMP asks a counter analogy, “Can one see the sound of a string?”,
which means, “If one has perfect vision (to see the natural modes), could one tell the tone of
the string?”.

The IMP is first considered by Gladwell [66] for finite difference models of a vibrating
rod. It is shown that for only two sets of eigenvalues and corresponding eigenvectors, the
system could be uniquely constructed apart from a scale factor. Other related works on IMPs
include Ram and Gladwell’s construction of tri-diagonal mass and stiffness matrices from a single
eigenvalue and two eigenvectors [146], Gladwell’s general discussion about the formulations of
simple chain-like structures which naturally involves tridiagonal structure [67], and Ram and
Elishakoof’s explication that the cross-sectional area of an axially vibrating non-uniform rod can
be generated uniquely, up to a scale factor, from one eigenvector [145]. We offer a mathematical
framework for the general IMPs subject to the mild constraint of coefficients being merely real

12

and symmetric.
One key advance in our approach is to rediscover the important role played by a specific

block diagonal matrix H which is embedded in the spectral decomposition and whose structure
depends only on the cardinalities of real and complex eigenvalues. It is a known fact that
columns in the adjoint of the eigenvector matrix are H -orthogonal1 to themselves (see (2.5)).
It is thus typically assumed that, after properly transformation, this H matrix is normalized to
a canonical form known as the sip matrix [41, 70]. Such an assumption of H being a constant
matrix, however, is not applicable for QIEPs because we usually do not have a complete list of
eigenvectors. Partial eigeninformation is not adequate for us to perform the normalization of H .
To remedy this deficiency, the part of H matrix corresponding to the prescribed eigenvectors
must be treated as unknown to be solved simultaneously with the IMP itself. This way of
“relaxing” some designated entries of the matrix H as free variables offers a framework that
unifies different approaches in the literatures and resolves some difficult issues encountered in
[41] and [114]. In this chapter, we discuss two new applications of our general framework.

First, we propose a mechanism for updating an existent quadratic model with no spill-
over. Updating a given quadratic model with newly measured eigeninformation has been an
important task in engineering applications [27, 41, 52, 115]. The idea is to replace the portion
of eigenvalues or eigenvectors which might be unwanted, uncontronlled, or inaccurate. In pole
assignment problem, for example, the goal is to adjust the eigenvalues (poles) only [133]. An
added challenge, which thus far has no satisfactory solution, is to avoid spill-over after updating.
That is, it is desirable to keep the portion of eigenstructure in the original system, which is
either unmeasured or already acceptable, invariant during the updating process.

Second, we separate the roles of eigenvalues and eigenvectors in a QIEP and show that the
role of eigenvalues must take into account only when the completed set of eigenvectors is not
sufficient for addressing additional structural constraint such as positive definiteness. We have
numerical evidence showing that the eigenvectors for the QIEP with symmetric and positive
definite coefficient matrices cannot be arbitrary.

This chapter is organized as follows. We begin in Section 2.2 with the classical theory of
parameterization of real and symmetric coefficient matrices. The most general setting over
the complex field is developed in the seminar book by Gohberg, Lancaster, and Rodman [69],
which later is modified for the real field by Chu and Xu [41]. We then investigate the structure
of a critical matrix H which provides a basis for achieving the completion of eigenvectors in
Sections 2.2.2 and 2.3. Unlike the conventional approach in the literature where H is assumed
to be a fixed, constant matrix for the sake of simplicity, the matrix H is characterized by
the block diagonal structure through the information of the cardinalities of real and complex
eigenvalues. Then, this matrix H with its undetermined nature is used as a parameter in

1A column vector x is H -orthogonal to a column vector y if and only if x∗H y = 0.

13

describing a solution for the IMPs. In Section 2.4, we apply this parameterization to model
updating problems with no spill-over. In Section 2.5, the problem of positive definite or positive
semi-definite property of the coefficient matrices will be put into consideration.

2.2 Fundamental theorem on spectral decomposition

In this section we briefly review the spectral representation of a real symmetric coefficient
matrices (M,C,K), Of particular importance is a special matrix H which plays a role like
tuning the representation. For this discussion, the complete spectral information of the matrix
polynomial Q(λ) must be known.

2.2.1 Role of the parametric H matrix

To begin with, we need to introduce the notion of a standard pair [69, 70] which elegantly
encapsulate spectral information in the most general form as we shall see below.

Definition 2.2.1 A pair of matrices (X, J) ∈ Cn×2n × C2n×2n is called a standard pair for the
quadratic matrix polynomial Q(λ) if and only if the pair (X, J) satisfies the equation

MXJ2 + CXJ +KX = 0 (2.1)

and the square matrix

[
X

XJ

]
∈ C2n×2n is nonsingular.

Given a quadratic matrix polynomial Q(λ) with nonsingular leading coefficient matrix M ,
define two matrices B and C in R2n×2n such that

B :=

[
C M

M 0

]
, C :=

[
0 I

−M−1K −M−1C

]
. (2.2)

It is not difficult to check that the matrix C , an equivalence of the companion matrix for a
scalar polynomial has the same eigenstructure as that of Q(λ). Corresponding to any given
standard pair (X, J) for Q(λ), define a special matrix H

H (X, J) :=

[
X

XJ

]∗
B

[
X

XJ

]
. (2.3)

This matrix H (X, J) ∈ C2n×2n plays an important role in expressing the spectral decom-
position of matrix coefficients (M,C,K) in the following way [41, 69].

14

Theorem 2.2.1 Let (X, J) be a standard pair for the quadratic matrix polynomial Q(λ) and
H = H (X, J). Then

M = (XJH −1X∗)−1,

C = −MXJ2H −1X∗M,

K = −MXJ3H −1X∗M + CM−1C.

(2.4)

The converse is more important to us, namely, the existence of a matrix H ∈ C2n×2n can
qualify a given a pair of matrices (X, J) as a standard pair for some real symmetric quadratic
matrix polynomial in the following way [41].

Theorem 2.2.2 Consider a pair of matrices (X, J) ∈ Cn×2n × C2n×2n. If there exists a non-
singular matrix H ∈ C2n×2n such that XJH −1X∗ is nonsingular and H satisfies the three
equalities

XH −1X∗ = 0,
H J = (H J)∗,
H = H ∗,

(2.5)

then (X, J) is a standard pair for the real symmetric quadratic matrix polynomial Q(λ) whose
matrix coefficients (M,C,K) are defined according to (2.4). Furthermore, the nonsingular
matrix H is related to (X, J) via (2.3) and also the relationship

C

[
X

XJ

]
=

[
X

XJ

]
J. (2.6)

holds with B and C defined by (2.2) in terms of the newly constructed (M,C,K).

The relationship (2.6) strongly suggest that the construction of (M,C,K) based on (2.4)
can be achieved by using complete eigeninformation (X, J) which, in an QIEP setting, is not
immediately available. Nonetheless, the relationship (2.5) gives rise to the structure of H and
is particularly useful for studying the inverse problem later.

Let the Jordan canonical decomposition of C be denoted by

C = QJQ−1, (2.7)

where J ∈ C2n×2n represents a block diagonal matrix consisting of Jordan blocks corresponding
to eigenvalues of C and columns of Q ∈ C2n×2n are comprised of the corresponding generalized
eigenvectors. Partition the matrix Q across rows into two blocks of size n× 2n,

Q :=

[
X
Z

]
.

15

Rewriting (2.7) as

 0 I

−M−1K −M−1C

[
X
Z

]
=

[
X
Z

]
J , (2.8)

we find the two relationships

Z = XJ , (2.9)

MXJ 2 + CXJ +KX = 0. (2.10)

This implies that the Jordan pair (X ,J) is indeed a standard pair for the quadratic matrix
polynomial Q(λ). It follows that the corresponding matrix

H := H (X ,J) = Q∗BQ (2.11)

must satisfy the relationships XJH−1X ∗ = M−1, XH−1X ∗ = 0, H = H∗, and HJ = (HJ)∗,
from which the structure of H can be characterized.

2.2.2 Structure of the parametric H matrix

For simplicity, we shall assume henceforth that all eigenvalues of Q(λ) are simple. Suppose that
the Jordan matrix J along with the corresponding matrix X of eigenvectors are expressed as

{
J = diag{λ1, λ1, λ2, λ2, . . . , λt, λt, λ2t+1, . . . , λ2n},
X = [x1,x1,x2,x2, . . . ,xt,xt,x2t+1, . . . ,x2n],

(2.12)

where t is the number of distinct complex-conjugate pairs of eigenvalues. The congruence
relationship

[
In −1

2CM
−1

0 In

]
B

[
In −1

2CM
−1

0 In

]T
=

[
0 M

M 0

]
(2.13)

asserts that the matrix B must have equal numbers of positive and negative eigenvalues. As a
consequence, the matrix H (X, J) in general and H in particular should also have equal number
of positive and negative eigenvalues. From the facts that H = H∗, HJ = J ∗H and rearrange
the ordering of real eigenvalues in J if necessary, we know that H must be a block diagonal of

16

the form [63, Chapter VIII, Theorem 1]

H = diag

{[
0 h1

h1 0

]
, . . . ,

[
0 ht

ht 0

]
, h2t+1, . . . h2t+r,−h2t+r+1, . . . ,−h2n

}
(2.14)

where r := n − t; for j = 1, . . . , t, hj is a complex number; and for j = 2t + 1, . . . , 2n, hj is a
positive real number. By definition, the values of hi’s depend on the pair (X ,J). Those real
eigenvalues in J whose corresponding diagonal entries in H are positive (or negative) are said
to have a positive (or negative) sign characteristic2.

Now we can convert the standard pair (X ,J) into a real-valued standard pair (X, J) by
defining

J := RJR∗ = diag{λ[2]
1 , . . . , λ

[2]
t , λ2t+1, . . . , λ2n} ∈ R2n×2n,

X := XR∗ = [
√

2x1R,
√

2x1I , . . . ,
√

2xtR,
√

2xtI ,x2t+1, . . . ,x2n] ∈ Rn×2n,
(2.15)

with the unitary transformation

R := diag

1√
2

[
1 1
i −i

]
, . . . ,

1√
2

[
1 1
i −i

]

︸ ︷︷ ︸
t copies

, I2r

, (2.16)

where i =
√
−1 and for j = 1, . . . , t,

λ
[2]
j :=

[
αj βj

−βj αj

]
∈ R2×2, if λj = αj + iβj ,

xj := xjR + ixjI .

The corresponding real matrix H = H (X,J) should have a similar block structure as in H,

H = RHR∗

= diag

{[
a1 b1

b1 −a1

]
, . . . ,

[
at bt

bt −at

]
, h2t+1, . . . h2t+r,−h2t+r+1, . . . ,−h2n

}
(2.17)

with aj , bj ∈ R.
In the conventional setting for the forward problem, with appropriate scaling and rotations

2More details about the concept of sign characteristics can be found in the book [70] and their usages for
QIEPs in the two recent articles [114, 117]. We only need the fact that real eigenvalues of J are divided into
two mutually exclusive groups in our discussion.

17

of the eigenvectors, we can derive the following canonical form for the matrix H even for the
case that eigenvalues are semi-simple [41, Corollary 3.5] .

Theorem 2.2.3 Suppose that all eigenvalues of a given real symmetric quadratic pencil Q(λ)
are semi-simple but not necessarily distinct. Then there exists a real standard pair (X, J) such
that

[
X

XJ

]> [
C M

M 0

][
X

XJ

]
= Γ := diag

{[
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]}
,

[
X

XJ

]> [−K 0
0 M

][
X

XJ

]
= ΓJ.

(2.18)

The matrix Γ is precisely the so called sip (standard involutory permutation) matrix repeat-
edly referred to by Lancaster [114, 117]. In the setting for IMPs, nevertheless, only a partial
list of eigenvectors is accessible in the beginning. We do not have enough information to know
how these given eigenvectors should be scaled or rotated. All we can do is to use the given
partial eigenvectors to construct an appropriate matrix H, which might not be the same as this
particular sip form as in (2.18). In other words, the corresponding blocks in H to the prescribed
eigenvectors should be considered as part of the unknowns to be determined. This standpoint
is a fundamentally different approach from, and is perhaps more correct than, that considered
in [114, 117] where the sip form is implicitly but automatically assumed and thus significantly
delimits the solvability because some rank conditions may not be satisfied.

2.3 Eigenvector completion

In Theorem 2.2.1, we have seen that the coefficient matrices (M,C,K) could be constructed,
provided a standard pair (X, J) is given. However, we do not know (X, J) in its entirety in the
IMPs. The missing eigeninformation could be expiated by using Theorem 2.2.2, so long as a
nonsingular matrix H satisfying (2.5) could be found. Thus, our strategy is to first determine
the structure of H = H (X, J) from the guessed or assigned structure, but not values, of J .
This would automatically satisfy the last two conditions in (2.5). Finally, we use the first
necessary condition

XH−1XT = 0. (2.19)

to build H and to complete X simultaneously. The values of J , which actually can be assigned
almost arbitrarily, are needed only to ensure the invertibility of the matrix XJH−1X>, which
is generically true.

18

To illustrate this idea, suppose that we have prescribed a subset of k eigenpairs, which
are closed under complex conjugation and have assumed a desirable number t of complex
conjugate pairs of eigenvalues or, equivalently, the desirable number r = n−t of real eigenvalues
with positive (or negative) sign characteristic in the constructed quadratic polynomial3. For
convenience, we partition the columns of X as

X = [C0, C1︸ ︷︷ ︸
2t columns

, P0, P1︸ ︷︷ ︸
r columns

, N0, N1︸ ︷︷ ︸
r columns

] (2.20)

where [C0, P0, N0] is a submatrix of size n× k whose columns represent the k prescribed eigen-
vectors. Suppose further that among the prescribed eigeninformation there are 2kC complex
eigenvalues closed under conjugation, kP real eigenpairs with positive characteristics, and an-
other kN real eigenpairs with negative characteristics4. The known C0, P0, and N0, therefore,
are of sizes n × 2kC , n × kP , and n × kN , respectively, with k = 2kC + kP + kN . Columns of
[C1, P1, N1] denote the unknown eigenvectors that are to be completed.

Clearly, H−1 has exactly the same block structure as H. We might be as well working on
H−1 directly. Partition the inverse of the matrix H in (2.17) into blocks of sizes conformal to
those in (2.20) and denote,

H−1 = diag
{
HC

0 , H
C
1 , H

P
0 , H

P
1 ,−HN

0 ,−HN
1

}
, (2.21)

where each block has its own structure, e.g., HC
0 is a kC × kC block diagonal matrix consisting

of 2×2 submatrices, HP
0 and HN

0 respectively are kP ×kP and kN ×kN diagonal matrices with
positive diagonal entries, and so on. We rewrite (2.19) as

C0H
C
0 C
>
0 + P0H

P
0 P
>
0 −N0H

N
0 N

>
0 = N1H

N
1 N

>
1 − P1H

P
1 P
>
1 − C1H

C
1 C
>
1 . (2.22)

Since HP
1 and HN

1 are diagonal matrices with positive entries and P1 and N1 are indeter-
minate, we can redefine the products P1(HP

1)1/2 and N1(HN
1)1/2 as the new variables P1 and

N1, respectively. Likewise, by the identity

[
a b

b −a

]
= U

[
1 0
0 −1

]
U>,

3This pair of nonnegative integers (t, r) is what we refer to as the structure of J .
4In practice, it appears that the choice of kP and kN is immaterial for IMPs so long as kP + kN = k − 2kC .

See the discussion in Section 2.3.1.

19

with

U :=

[
a+
√
a2 + b2 −b
b a+

√
a2 + b2

]

1√
b2+(a+

√
a2+b2)2

0

0 1√
b2+(a+

√
a2+b2)2

︸ ︷︷ ︸
orthogonal

4
√
a2 + b2︸ ︷︷ ︸

scaling

,

we can properly rotate and scale the columns of C1 in (2.22) and redefine the variable C1 such
that the system (2.22) is reduced to

Ω := C0H
C
0 C
>
0 + P0H

P
0 P
>
0 −N0H

N
0 N

>
0 + C1ΥC>1 + P1P

>
1 −N1N

>
1 = 0, (2.23)

where the constant matrix is denoted to be

Υ := diag

[
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]

︸ ︷︷ ︸
t− kC copies

.

It is important to point out that this reduction process cannot take place at the left hand
side of (2.22) because [C0, P0, N0] are prescribed matrices which cannot assimilate the unknown
scalings or rotations. The eigenvector completion problem amounts to finding a real matrix
[C1, P1, N1] of size n × (2n − k), 2kC real numbers for the block diagonal matrix HC

0 , and
kP + kN positive numbers for the diagonal matrices HP

0 and HN
0 so that the equation (2.23) is

satisfied. Totally there are n(2n− k) + k unknowns in n(n+1)
2 equations. If

k <
n(3n− 1)
2(n− 1)

, (2.24)

then the system (2.23) is under-determined. Generically, the algebraic solutions to (2.23) form
a nontrivial smooth manifold [79], but for our IMPs we also need positive HP

0 and HN
0 from this

solution manifold. The following count on the cardinality of prescribed eigenpairs to guarantee
solvability can easily be verified from (2.24).

Theorem 2.3.1 The maximal allowable number of prescribed eigenvectors so that the system
(2.23) is generically solvable is given by

kmax =

3`+ 1, if n = 2`,

3`+ 2, if n = 2`+ 1.
(2.25)

Interestingly enough, Theorem 2.3.1 offers exactly the same solvability condition (2.25)

20

which is proved in [32, Theorem 3.5] by using an entirely different approach. That is, suppose
we are given k eigenpairs {(σj ,yj)}kj=1 which are closed under complex conjugation. Convert
this eigenpair information into real-valued matrices (Σ, Y) in the same way as we did in (2.15).
Then if k ≤ kmax the coefficient matrices (M,C,K) for the QIEP with eigenpair (Σ, Y) are
solutions to the linear system

[M,C,K]

ΣY 2

ΣY
Σ

 = 0. (2.26)

In this setting, we see that the eigenvalue information Σ does come into play, no concern
about finding positive HP

0 and HN
0 is needed, and all possible solutions (M,C,K) to the QIEP

forms a linear subspace. The trade-off, however, is that no iinformation about the remaining
eigenstructure in the reconstructed matrix polynomial is revealed at all. In contrast, our current
approach tackles the QIEP without the eigenvalue information. Given only eigenvalues structure
in J , we seek to solve the nonlinear system (2.23) for the remaining eigenvectors [C1, P1, N1]
and positive HP

0 and HN
0 . Once the partial eigenvectors Y is fully extended to a complete set X

of eigenvectors, the remaining eigenvalues can be almost arbitrarily assigned and the coefficient
matrices (M,C,K) are obtainable from the formula (2.4). Compared to the linear subspace
formed by all feasible coefficient matrices (M,C,K), all possible remaining eigenvectors in the
polynomial system (2.23) form a nonlinear algebraic variety. In short, it is quite intriguing
that two different approaches using different sets of information end up with the same bound
on allowable number of prescribed eigenvectors.

An example might be more informative to demonstrate our point.

Example 2.3.1 Consider the simple case when n = 2 and k = 2kC = 2. Suppose

C0 =

[
0 − 1√

2
1√
2

0

]

is given. There are only two ways to complete the eigenstructure.
Assuming first that the remaining two eigenvectors are real, that is, r = 1, then we need to

determine HC
0 =

[
a1 b1

b1 −a1

]
, P1 = [p1, p2]> and N1 = [n1, n2]> from the equation

C0H
C
0 C
>
0 + P1P

>
1 −N1N

>
1 =

[
−1

2a1 + p2
1 − n2

1 −1
2b1 + p1p2 − n1n2

−1
2b1 + p1p2 − n1n2

1
2a1 + p2

2 − n2
2

]
=

[
0 0
0 0

]
.

21

This amounts to the under-determined system of three equations in six variables

p2
1 − n2

1 = 1
2a1,

p2
2 − n2

2 = −1
2a1,

p1p2 − n1n2 = 1
2b1.

With n1, n2 and b1 6= 0 as free variables, the solution can be expressed as

P1 =

√
(n1+n2)2+b1±

√
(n1−n2)2−b1

2

√
(n1+n2)2+b1∓

√
(n1−n2)2−b1

2

 or

−
√

(n1+n2)2+b1±
√

(n1−n2)2−b1
2

−
√

(n1+n2)2+b1∓
√

(n1−n2)2−b1
2

 .

Similarly, assuming the remaining two eigenvectors are complex, that is, r = 0, then we

need to determine HC
0 =

[
a1 b1

b1 −a1

]
and C1 =

[
c11 c12

c21 c22

]
from the equation

C0H
C
0 C
>
0 + C1

[
1 0
0 −1

]
C>1 =

[
−1

2a1 + c2
11 − c2

12 −1
2b1 + c11c21 − c12c22

−1
2b1 + c11c21 − c12n2

1
2a1 + c2

21 − c2
22

]
=

[
0 0
0 0

]
,

or, equivalently,

c2
11 − c2

12 = 1
2a1,

c2
21 − c2

22 = −1
2a1,

c11c21 − c12c22 = 1
2b1.

With c12, c22, and b1 6= 0 arbitrary, the solution can be expressed as

C1 =

√
(c12+c22)2+b1±

√
(c12−c22)2−b1

2 c12

√
(c12+c22)2+b1∓

√
(c12−c22)2−b1

2 c22

 or

−
√

(c12+c22)2+b1±
√

(c12−c22)2−b1
2 c12

−
√

(c12+c22)2+b1∓
√

(c12−c22)2−b1
2 c22

 .

In this example, these two scenarios are essentially the same, but the general case can be con-
siderably more complicated.

We conclude this section with two important comments about the advantages of our ap-
proach for QIEPs. The first is that we are able to bypass the peculiar rank condition for the
QIEP speculated in [114] because we reckon HP

0 and HN
0 as additional variables which are more

general than the sip matrix. The second is that we are able to answer an open question raised
in the same paper by bringing in HC

0 as an additional variable. In both cases, our approach by
utilizing the general H matrix offers more flexibility in dealing with the QIEPs than any of the
previous approaches using just the sip matrix. We summarize the new results below.

22

Theorem 2.3.2 Suppose that all eigenvalues are simple. Let n = t+ r.

1. Suppose that all real eigenpairs are given, that is, only P0 ∈ Rn×r and N0 ∈ Rn×r are
specified. Then, a necessary condition for the IMP to be solvable is that the system

P0H
P
0 P
>
0 −N0H

N
0 N

>
0 + C1ΥC>1 = 0. (2.27)

has a nontrivial solution for nonnegative diagonal matrices HP
0 , HN

0 ∈ Rr×r and C1 ∈
Rn×2t. The maximal allowable number r of columns for each P0 and N0 is bounded by

r <
n(3n− 1)
4(n− 1)

. (2.28)

2. Suppose that all complex eigenpairs are given, that is, only C0 ∈ Rn×2t is specified. Then,
a necessary condition for the IMP to be solvable is that the system

C0H
C
0 C
>
0 = N1N

>
1 − P1P

>
1 . (2.29)

has a nontrivial solution for a block diagonal matrix HC
0 ∈ R2t×2t with 2 × 2 symmet-

ric blocks and P1, N1 ∈ Rn×r. The maximal allowable number t of complex conjugate
eigenvectors in C0 is bounded by

t <
n(3n− 1)
4(n− 1)

. (2.30)

2.3.1 Issues related to numerical computation

We stress again that in our IMP approach for the QIEP the unspecified eigenvalues can be arbi-
trary, but the eigenvectors need to be extended to its full list. To carry out a specific eigenvector
completion for an IMP of size n, we will assume that there are t pairs of complex conjugate
eigenvalues and r (= n− t) pairs of real eigenvalues with equal numbers of sign characteristics
in the constructed quadratic matrix polynomial. Out of the k prescribed eigenvectors, there
already exist kP + kN prescribed real eigenvectors. Among them, we generally do not know a
priori the associated sign characteristics of their corresponding eigenvalues. The assignment of
sign characteristics to the corresponding real eigenvalues therefore are at random. By contrast,
the identification of the 2kC (= k − kP − kN) complex conjugate eigenvectors is easy. Also, it
is necessary that kC ≤ t. To study whether the IMP is solvable for arbitrary splitting n = t+ r

and distribution k = 2kC + kP + kN ≤ kmax is another fascinating research topic which will
not be addressed in the current research. (See Chapter 9.) In the subsequent discussion, we
assume that (t, r) and (kC , kP , kN) are given.

23

Our theory asserts a manifold of solutions for (2.23) so long as k ≤ kmax. However, we
must take into account that the diagonal matrices HP

0 and HN
0 should be positive. One pos-

sible approach to enforce the positivity is to consider the constrained nonlinear least squares
optimization problem

{
Minimize f(HC

0 , H
P
0 , H

N
0 , C1, P1, N1),

Subject to HP
0 ≥ 1 and HN

0 ≥ 1,
(2.31)

with the objective function defined by

f(HC
0 , H

P
0 , H

N
0 , C1, P1, N1) :=

1
2
〈Ω,Ω〉, (2.32)

where Ω is defined in (2.23), 〈·, ·〉 denotes the Frobenius inner product, and to avoid the trivial
solution, we have scaled “upward” the positivity of HP

0 and HN
0 . Ideally, we would like to see

a zero objective value at an optimal solution and our extensive numerical experiments suggest
that this is not difficult to accomplish. We quickly point out another important topic for future
study, that is, to develop a theory showing the existence of a positive solution on the manifold.

There are readily available software packages for solving (2.31). For preliminary testing, we
find that the MATLAB routine fmincon which implements a subspace trust-region approach
based on the interior-reflective Newton method and the preconditioned conjugate gradients
method seems capable of finding a solution to (2.23) with high precision. We also have experi-
mented with other optimization packages such as SNOPT [65] with similar success.

Of particular advantage in our formulation is that the derivatives of f are readily available in
closed form, which would help to enhance the efficiency in the optimization process. Specifically,
by identifying the objective functional as a map f : R2kC ×RkP ×RkN ×Rn(2t−2kC)×Rn(r−kP)×
Rn(r−kN) → R, we can calculate the first-order partial derivatives of f with respect to each
group of variables as follows.

Lemma 2.3.1 Let ∂f
∂Φ denote the partial gradient of f in (2.32) with respect to Φ where the

symbol Φ stands for any of the six variables (HC
0 , H

P
0 , H

N
0 , C1, P1, N1). Then

∂f

∂HC
0

= [γ1,1 − γ2,2, 2γ21, . . . , γ2kC−1,2kC−1 − γ2kC ,2kC
, 2γ2kC ,2kC−1]>, (2.33)

with γi,j denoting the (i, j) entry of the matrix C>0 ΩC0,

∂f
∂HP

0
= diag(P>0 ΩP0),

∂f
∂HN

0
= −diag(N>0 ΩN0),

(2.34)

24

with diag(A) denoting the column vector of the diagonal of the matrix A, and

∂f
∂C1

= vec(2ΩC1Υ),
∂f
∂P1

= vec(2ΩP1),
∂f
∂N1

= −vec(2ΩN1),

(2.35)

with vec(B) denoting the vectorization of the matrix B by stacking the columns of B into a
single column vector.

Proof. It is most convenient to work in matrix form by employing rules from matrix calculus.
For each variable Φ, let ZΦ denote an arbitrary element in the space where the partial derivative
operator ∂

∂Φ is acting on, that is, the matrix ZΦ and the variable Φ have exactly the same
structure. The type of ZΦ and the particular action ∂Ω

∂Φ .ZΦ can be summarized as follows.

Φ HC
0 HP

0 HN
0 C1 P1 N1

ZΦ block
diagonal
w. 2 × 2
blocks

diagonal diagonal full full full

∂Ω
∂Φ

.ZΦ C0ZHC
0

C>0 P0ZHP
0

P>0 -N0ZHN
0

N>0 ZC1ΥC>1 + C1ΥZ>C1 ZP1P>1 + P1Z
>
P1 −(ZN1N>1 + N1Z

>
N1)

Fix all other variables and consider the Fréchet derivative of f with respect to HC
0 alone.

Because of the way we identify HC
0 as an element in R2kC , the target point ZHC

0
on which the

partial derivative acts should be a matrix in R2kC×2kC that has exactly the same structure as
HC

0 . Such an action is given by

∂f

∂HC
0

.ZHC
0

= 〈C0ZHC
0
C>0 ,Ω〉 = 〈ZHC

0
, C>0 ΩC0〉 = 〈ZHC

0
, ρ(C>0 ΩC0)〉,

where ρ stands for the projection of R2kC×2kC onto the subspace of kC × kC block diagonal
matrices of 2 × 2 blocks. By the Riesz representation theorem, we know therefore that the
partial gradient ∂f

∂HC
0

with respect to the Frobenius inner product (over the subspace where

25

ZHC
0

resides) is ρ(C>0 ΩC0). The crisscrossed pattern in (2.33) is simply due to a compaction of
the Frobenius inner product to the standard Euclidian inner product.

The other partial gradients can be calculated in a similar way. The two operators diag and
vec are needed only for a similar purpose of properly identifying the ambient space where the
variable resides. 2

To describe the Hessian of f in the conventional (n(2n− k) + k)× (n(2n− k) + k) matrix
form is a little bit more challenging. Nonetheless, the action of the Hessian ∇2f in the operator
form can easily be characterized.

Lemma 2.3.2 Let ∂2f
∂Ψ∂Φ denote the partial derivative of ∂f

∂Φ with respect to Ψ where the symbols
Φ,Ψ stand for any of the six variables (HC

0 , H
P
0 , H

N
0 , C1, P1, N1). Then the sectional Hessian

∂2f
∂Ψ∂Φ .ZΨ assumes the following actions,

∂2f
∂Ψ∂HC

0
.ZΨ = ρ

(
C>0

(
∂Ω
∂Ψ .ZΨ

)
C0

)
,

∂2f
∂Ψ∂HP

0
.ZΨ = diag

(
P>0

(
∂Ω
∂Ψ .ZΨ

)
P0

)
,

∂2f
∂Ψ∂HN

0
.ZΨ = −diag

(
N>0

(
∂Ω
∂Ψ .ZΨ

)
N0

)
,

∂2f
∂Ψ∂C1

.ZΨ =

{
2
(
∂Ω
∂Ψ .ZΨ

)
C1Υ, if Ψ 6= C1,

2
((

∂Ω
∂Ψ .ZΨ

)
C1 + ΩZC1

)
Υ, if Ψ = C1,

∂2f
∂Ψ∂P1

.ZΨ =

{
2
(
∂Ω
∂Ψ .ZΨ

)
P1, if Ψ 6= P1,

2
((

∂Ω
∂Ψ .ZΨ

)
P1 + ΩZP1

)
, if Ψ = P1,

∂2f
∂Ψ∂P1

.ZΨ =

{
−2
(
∂Ω
∂Ψ .ZΨ

)
N1, if Ψ 6= N1,

−2
((

∂Ω
∂Ψ .ZΨ

)
N1 + ΩZN1

)
, if Ψ = N1,

(2.36)

where the action ∂Ω
∂Ψ .ZΨ is given in the proof for Lemma 2.3.1.

As an action from the Fréchet derivative, each of these operations in (2.36) is linear in
ZΨ. The Hessian ∇2f is composed of these operations section by section on a long vector of
length 2(n − k) + k. It is not difficult to convert the operations in (2.36) into matrix-vector
multiplication algorithmically, so long as we can identify which section in the vector ZΨ is
referred to. The analytic Hessian given above is not always critically needed in computation, but
has its own merits in improving the efficiency. Given the closed form of gradient in Lemma 2.3.1,
most optimization software can estimate the Hessian numerically by, say, the finite-difference
method, which is what we choose to do in our current numerical experiments.

26

2.4 Model updating with no spill-over

By a model updating problem, we mean to update a portion of a given quadratic model by
some newly measured eigeninformation. One challenge which is of practical importance in
engineering applications is to update this model while keeping vibration parameters not related
to the newly measured parameters invariant. The model updating problem can be described as
follows;

(MUP) Given a real symmetric quadratic model with coefficient matrices (M̃, C̃, K̃)
and a few of its associated eigenpairs {(λj ,xj)}kj=1 with k < n, assume that new
eigenpairs {(σj ,yj)}kj=1 have been measured. Update matrices (M̃, C̃, K̃) to a new
real symmetric quadratic model (M,C,K) such that

(i) The newly measured {(σj ,yj)}kj=1 form k eigenpairs of the new model
(M,C,K).

(ii) The remaining 2n − k eigenpairs of (M,C,K) are kept the same as those of
the original (M̃, C̃, K̃).

The second condition above is known as the no spill-over phenomenon. Model updating
with no spill-over has been studied extensively. See, for example, [32, 40, 41, 62, 116]. No spill-
over is required in the updating process either because the unrelated parameters are already
acceptable in the previous model or engineers do not have any information about these. Hence it
is expected that changes be made only to those newly measured parameters when updating the
model. Indeed, it is highly desirable to construct the update (M,C,K) without the knowledge
of the remaining 2n− k eigeninformation. Our IMP approach can help to resolve the MUP.

The following formulation of a solution for MUP bears considerable resemblance to the
solution for the eigenvalue embedding problems (EEP) except that the EEP intends to keep
all eigenvalues invariant and pays no attention to whatever way the eigenvectors might be
altered [41]. The EEPs are typically regarded as more manageable “locum tenentes” in the
literature for the much harder MUPs, and now we have almost identical recipes for the solutions.
The breakthrough hinges upon a recent discovery by Chu, Lin, and Xu [40, Theorem 4.1] about
a necessary condition that the updated eigenvectors {y}kj=1 must satisfy.

Assume as before that all eigenvalues of the original model (M̃, C̃, K̃) are simple. Let
the k eigenpairs {(λj ,xj)}kj=1 to be modified and the remaining 2n − k invariant eigenpairs
{(λi,xi)}2ni=k+1 of the original model be denoted in real-valued form by

Λ1 := diag
{[

α1 β1

−β1 α1

]
, . . . ,

[
α`1 β`1
−β`1 α`1

]
, λ2`1+1, . . . , λk

}
,

X1 := [x1R,x1I , . . . ,x`1R,x`1I ,x2`1+1, . . . ,xk]

(2.37)

27

and

Λ2 := diag
{[

αk+1 βk+1

−βk+1 αk+1

]
, . . . ,

[
αk+`2 βk+`2

−βk+`2 αk+`2

]
, λk+2`2+1, . . . , λ2n

}
,

X2 := [x(k+1)R,x(k+1)I , . . . ,x(k+`2)R,x(k+`2)I ,xk+2`2+1, . . . ,x2n],

(2.38)

respectively. Since X1 is to be updated, we may regard X2 as the matrix [C0, P0, N0] in reference
to (2.20). Recall that the corresponding H̃ = H ([X1, X2], diag{Λ1,Λ2}) is block diagonal (See
(2.17)). Partitioning H̃ into two block diagonal submatrices according to the definition

H̃1 :=

[
X1

X1Λ1

]> [
C̃ M̃

M̃ 0

][
X1

X1Λ1

]
,

H̃2 :=

[
X2

X2Λ2

]> [
C̃ M̃

M̃ 0

][
X2

X2Λ2

]
,

we should have the relationship

X1H̃
−1
1 X>1 +X2H̃

−1
2 X>2 = 0. (2.39)

By Theorem 2.2.1, we know that

M̃−1 = X1Λ1H̃
−1
1 X>1 +X2Λ2H̃

−1
2 X>2 ,

C̃ = −M̃
(
X1Λ2

1H̃
−1
1 X>1 +X2Λ2

2H̃
−1
2 X>2

)
M̃,

K̃ = −M̃
(
X1Λ3

1H̃
−1
1 X>1 +X2Λ3

2H̃
−1
2 X>2

)
M̃ + C̃M̃−1C̃.

Assume that the structure of the newly measured eigeninformation {(σj ,yj)}kj=1 is confor-
mal to that of {(λj ,xj)}kj=1. Let (Σ, Y1) denote the corresponding real-valued representation
of {(σj ,yj)}kj=1. On one hand, for a solvable MUP it is now known that we must have

Y1 = X1T (2.40)

for some nonsingular matrix T ∈ Rk×k [40, Theorem 4.1]. On the other hand, to avoid spill-over
in the model updating, our theory demands a nonsingular matrix Ĥ = diag{Ĥ1, Ĥ2}, with Ĥ1

and Ĥ2 having the same block structures respectively as those of H̃1 and H̃2, such that

Y1Ĥ
−1
1 Y >1 +X2Ĥ

−1
2 X>2 = 0, (2.41)

even before the eigenvalues are updated. Upon substituting (2.40) into (2.41) and comparing

28

with (2.39), we find an obvious solution Ĥ for (2.19) by choosing

{
Ĥ1 := T>H̃1T

Ĥ2 := H̃2.
(2.42)

By Theorem 2.2.2, we only need to make sure that T is such that

{
T>H̃1TΣ is symmetric,

X1TΣT−1H̃−1
1 X>1 +X2Λ2H̃

−1
2 X>2 in nonsingular,

(2.43)

then the MUP is solvable. In this case, the recipe in Theorem 2.2.1 gives rise to one particular
solution to the MUP by

M−1 = X1TΣT−1H̃−1
1 X>1 +X2Λ2H̃

−1
2 X>2 ,

C = −M
(
X1TΣ2T−1H̃−1

1 X>1 +X2Λ2
2H̃
−1
2 X>2

)
M,

K = −M
(
X1TΣ3T−1H̃−1

1 X>1 +X2Λ3
2H̃
−1
2 X>2

)
M + CM−1C.

Combining (2.40) with (2.44), we see that the update takes place in the following way:

M−1 = M̃−1 +X1(TΣT−1−Λ1)H̃−1
1 X>1 ,

C = M
[
M̃−1C̃M̃−1−X1(TΣ2T−1 − Λ2

1)H̃−1
1 X>1

]
M,

K = M
[
M̃−1(K̃ − C̃M̃−1C̃)M̃−1−X1(TΣ3T−1 − Λ3

1)H̃−1
1 X>1

]
M+CM−1C

(2.44)

It is critically essential to note in formula (2.44) that the update from (M̃, C̃, K̃) to (M,C,K)
does not involve any information about (Λ2, X2) at all. This satisfies precisely the fundamental
spirit in model updating.

2.5 Role of eigenvalues

Thus far, we have shown that eigenvalues play a very small role in the real symmetric IMPs.
Only the structure of eigenvalues in J is needed for the eigenvector completion process. The
reconstructed (M,C,K) literally can have arbitrary eigenvalues. In other words, one cannot
“see” the sound of a string !5 What happens is that the structural constraint of (M,C,K) being
merely real and symmetric is too loose. Only when additional constraints are imposed upon
(M,C,K), the information of eigenvalues might become essential.

In this section we concentrate on one particular constraint usually entailed in structured
QIEPs. We demonstrate the role of eigenvalues by considering the case when M and K are

5Likewise, twenty-six years after [104], it was answered that one cannot hear the shape of a drum [73].

29

required to be positive definite and C positive semi-definite. An IMP with this kind of structure
becomes a much harder problem.

Assume that zero is not an eigenvalue of the desirable quadratic matrix polynomial. Define
the moments Γj , j = −1, 0, 1, 2, by

Γj := XJ jH−1X>. (2.45)

By the fact that HJ = (HJ)>, all moments Γj are symmetric. We have already seen in
Theorem 2.2.1 that

Γ0 = 0,
Γ1 = M−1,

Γ2 = −M−1CM−1.

(2.46)

Post-multiplying both sides of (2.10) by J−1H−1X and using (2.46), we obtain the relationship

Γ−1 = −K−1, (2.47)

which is another representation of K much less involved when comparing with the formula in
(2.4).

The following theorem characterizes the positive semi-definiteness for (M,C,K) in terms of
moments which, in turn, relate to the eigenvalue matrix J [114, 165].

Theorem 2.5.1 Given (X, J), let (M,C,K) be the symmetric coefficient matrices constructed
from (2.4). Then

1. If M � 0, K � 0, and C � 0, then all eigenvalues of J have non-positive real part, Γ1,
Γ−1 are nonsingular, and Γ2 � 0.

2. If all eigenvalues of J have negative real part, Γ1, Γ−1 are nonsingular, and Γ2 � 0, then
M � 0, K � 0, and C � 0.

Proof. The first part is straightforward. Suppose that (M,C,K) has the described definiteness.
Then by (2.46) and (2.47) it is obvious that Γ1, Γ−1 are nonsingular and Γ2 � 0. Suppose (λ,u)
is an eigenpair for Q(λ) = Mλ2 + Cλ+K. Trivially, (λ,u) also satisfies

λ2u∗Mu + λu∗Cu + u∗Ku = 0,

from which we see that

λ =
−u∗Cu±

√
(u∗Cu)2 − 4(u∗Mu)(u∗Ku)

2(u∗Mu)
,

implying that the real part of λ cannot be positive.

30

The second part has already been established earlier in [114] by using a much heavy ma-
chinery. Since this part is most relevant to our inverse problem, we briefly outline a direct proof
with ideas from [165] to make this presentation more self-contained. Define

V := 1
2

[
K 0
0 M

]
, W :=

[
0 0
0 −C

]
. (2.48)

By assumption, V is nonsingular and W � 0. It is easy to see that the triplet (V ,C ,W)
satisfies the Lyapunov equation

C>V + V C = W . (2.49)

Recall that J represents precisely the spectrum of C which, by assumption, has no pure imagi-
nary eigenvalues. It follows that that V has exactly 2n positive eigenvalues [26], implying that
K and M must be positive definite. 2

Solving the IMP with real, symmetric, and positive semi-definite (M,C,K) therefore means
that the eigenvalues of J , including those already prescribed and those to be completed, must
be such that the matrix XJ2H−1X> is negative semi-definite. The completion of both the
eigenvectors and the eigenvalues simultaneously for structured IMPs is rather challenging task.
To our knowledge, this area is still open for further research. We have developed some innovative
techniques employing the notion from semi-definite programming and truncated QR [55, 123],
which will be discussed in Chapter 3 of this thesis. The following example demonstrates the
necessity of completing both eigenpair (X, J) simultaneously in order to solve this IMP with
positive semi-definite coefficient matrices (M,C,K).

Example 2.5.1 Consider the scenarios described in Example 2.3.1 where the complex eigen-
vectors are prescribed through the matrix C0. Assume the prescribed eigenvalues are given by

JC0 =

[
−2 6
−6 −2

]
. Consider the first case r = 1 where HC

0 and the two real eigenvectors P1

and N1 are to be constructed. Taking advantage of the free parameters already established in
Example 2.3.1 we assume n1 = 2, n2 = −1 and b1 = 4 so that the completed eigenvectors are
given by

X =
1
2

[
0 −

√
2 2
√

5 4
√

2 0 0 −2

]
.

Let the eigenvalues corresponding to P1 and N1 be noted as λ3 and λ4, respectively. Certainly,
λ3 and λ4 must be real and negative. Additionally, in order that XJ2H−1X> be negative semi-

31

definite, its principal minors must alternate signs, leading to the inequalities

80 + 5λ2
3 − 4λ2

4 ≤ 0,

−8000 + 80λ2
4 − 400λ2

3 − 5λ2
3λ

2
4 ≥ 0.

The curves where these minors vanish are sketched in Figure 2.1. It can be checked that all points
(λ3, λ4) below the solid curve satisfy the inequalities and, therefore, can be used to complete the
spectrum J .

Figure 2.1: Curves where the principle minors of XJ2H−1X> vanish.

On the other hand, if we change to n2 = −3 while keeping other parameters the same, the
corresponding matrix

X =
1
2

[
0 −

√
2
√

5 +
√

21 4
√

2 0
√

5−
√

21 −6

]
.

remains to be a solution to (2.23), but the determinant of XJ2H−1X> is given by

−58400− 4000
√

105− (1648 + 224
√

105)λ2
3 − (688− 64

√
105)λ2

4 −
1
2

(5
√

105 + 73)λ2
3λ

2
4,

which obviously is always negative, implying that the spectrum J can never be completed with
this choice of P1 and N1 to make XJ2H−1X> negative semi-definite.

32

2.6 Conclusion

Our emphasis in this chapter is the important role played by this special block diagonal matrix
H whose structure is pre-determined by the desirable numbers (t, r) of complex and real eigen-
values, but not by the actual eigenvalues. Exploiting this matrix as some free parameters, we can
identify the coefficient matrices of real and symmetric IMPs by solving an under-determined
homogeneous equation (2.23). Our approach has the advantages that any possible splitting
n = t + r and distribution k = 2kc + kp + kn ≤ kmax, where kmax is given in (2.25), kc ≤ t,
kp, kn ≤ r, of complex and real eigenpairs with sign characteristic are allowable. We have shown
that eigenvectors alone are sufficient to determine a solution whereas eigenvalues literally can
be arbitrary. As an important consequence of our framework, the difficult task of modeling
updating problem with no spill-over can easily be accomplished now.

Nevertheless, if (M,C,K) are required to possess some additional structures such as stated
positive definiteness, then properties of eigenvalues must be taken into account. In this cases,
the completed eigenpair (X, J) must be handled simultaneously.

33

Chapter 3

Inverse Problems with Partial

Eigenpair Information

3.1 Overview

Vibration analysis often involves quadratic matrix polynomials. Following such a setting, there
is always the predestinated inner-connectivity among its components and the compulsory non-
negativity of its parameters. As such, coefficients of the quadratic matrix polynomial often are
required to hold some intrinsic properties for any given vibration system. It is desirable that
the reconstructing system preserves not only the specified eigeninofrmation but also certain
intrinsic structure. Solving a structured QIEP is important and challenging both theoretically
and practically. Because of the difficulty, especially because of the versatility of the structural
constraints which vary from system to system, very few general results are available for the
structured QIEPs in the literature. The earliest attempt seems to be made in [33] for a linearly
linked system, which respects both the connectivity and the nonnegativity.

The crux of our work in this chapter is an approach that could be applied to structured
QIEPs arising from general arbitrarily linked systems. To help achieving this goal, a mechanism
is provided to systematically and automatically convert any given layout of linkage into a proper
equality system. Since the measured eigeninformation is not always precise, the allowance for
some leeway in the accuracy is expected. Based on a user-supplied tolerance, our algorithm can
evaluate the consistency of a certain inequality system. If it is solvable within the tolerance, an
approximate solution to the structured QIEP is computed. A posterior estimate of the residual
error is returned output for deciding the suitability to accept or reject the constructed model.
In this way, our approach greatly enhances the capacity of solving more complicated problems
than those in [33]. Specifically, we develop a problem-independent rule for the structured QIEP
and provide a error control strategy. We believe our contribution is innovative and should be

34

of great significance for structured QIEPs.
The organization of this chapter is as follows. In Section 3.2 we describe a general pro-

cedure for transforming any given layout of inner-connectivity into a linear equality system.
This formulation follows various physical laws that govern the interaction among components.
At present, a fundamental module for the mass-spring systems subject to Hooke’s law for vi-
bration is provided. We stress that our setting can handle models with arbitrary connectivity
configuration, which effectively generalizes the work discussed in [33]. In order to get a non-
trivial solution, it is necessary to have this equality system with rank deficiency. Hence, in
Section 3.2.3 we derive a set of principles arising from properties of the rank deficiency and
nonnegative constraints, inherent in the corresponding QIEP. By these principles, a structured
QIEP is capable of being changed into a maximin problem and can be handled by many avail-
able optimization software packages, such as the “fminimax” in MATLAB. In Section 3.3, we
show the tactics of handling a prescribed set of inexact eigeninformation. The presence of
inexact data, which almost always happens in practice, has the consequence of dissolving the
expected rank deficiency and causing inconsistency. To remedy this, in Section 3.3 we relax
the equality system by generating an approximate but consistent subsystem. Also, a posterior
estimate on the resulting residual error is offered to evaluate the quality of the reconstructed
model. All these strategies and numerical exploration of some interesting perturbation results
are discussed through the numerical tactic in Section 3.4.

3.2 Handling exact eigenpairs

It is not absolutely needed, but it will be instructive to keep vibration as basic models in the fol-
lowing discussion. Without loss of generality, assume that the prescribed eigenpairs {(λi,xi)}ki=1

are closed under complex-conjugation. Let (Λ, X) represent the matrix representation of the
prescribed eigenpairs, where

Λ := diag
{[

α1 β1

−β1 α1

]
, . . . ,

[
αkc βkc

−βkc αkc

]
, λ2kc+1, . . . , λk

}
∈ Rk×k, (3.1)

X := [x1R,x1I , . . . ,xkcR,xkcI ,x2kc+1, . . . ,xk] ∈ Rn×k, (3.2)

are as characterized in (2.15). Then the coefficient matrices (M,C,K) for the general QIEPs
should necessarily satisfy the algebraic system

MXΛ2 + CXΛ +KX = 0n×k. (3.3)

35

Clearly, the system (3.3) is linear in the unknowns (M,C,K). Typically these coefficient matri-
ces (M,C,K) are composed of, in accordance with the underlying physical law, some positive
physical parameters u. Entries in u characterize the physical nature, such as mass, elasticity,
or damping, among elements in the system. The inter-connectivity of elements defines the com-
bined effect of these parameters which, in turn, characterizes an elaborate configuration of the
coefficient matrices (M,C,K). It is important to note that the practical structure for (M,C,K)
is much more complicated than the general requirements such as merely symmetry and positive
semi-definiteness. The following two examples should demonstrate our ideas clearly.

Example 3.2.1 Consider a four-degrees-of-freedom vibration system whose masses, dampers,
and springs are joined together as that depicted in Figure 3.1. Assume that the restoring force

m1

m2

m3

m4

k1

k2 k3

k4

k5

c1

c2

c3

Figure 3.1: A four-degrees-of-freedom mass-spring system.

follows Hooke’s law and that the damping is negatively proportional to the velocity. Then,
the corresponding coefficient matrices (M,C,K) for the dynamical system (1.1) should be con-
structed as follows:

M =

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

, C =

c1 + c2 0 −c2 0
0 0 0 0
−c2 0 c2 + c3 −c3

0 0 −c3 c3

,

K =

k1 + k2 + k5 −k2 −k5 0
−k2 k2 + k3 −k3 0
−k5 −k3 k3 + k4 + k5 −k4

0 0 −k4 k4

,

(3.4)

36

where (M,C,K) are parameterized with system parameters m, c, and k respectively such that.

m = (m1,m2,m3,m4)> ,
c = (c1, c2, c3)> ,
k = (k1, k2, k3, k4, k5)> ,

(3.5)

It is true indeed that the structures stipulated above, together with the nonnegativity of the
parameters, give rise to symmetry and positive semi-definiteness for these coefficient matrices,
but the converse is not true. Merely assuming symmetry and positive semi-definiteness, as is
usually done in the literature, is not enough to ensure the desired structure of connectivity
and nonnegativity of physical parameters. Considerable work is needed when setting up and
solving the QIEPs for mass-spring systems while respecting the inherent structure such as that
specified in (3.4) and the nonnegativity of the parameters (m, c,k).

Example 3.2.2 Depicted in Figure 3.2 is a closed-loop resonant circuit with three inductors,
four resistors, and three capacitors. After applying Ohm’s law and Kirchhoff’s law to this

L3 L4

R3

C2

C4

R1

R2 R4

V2 V1

C3

I1I2

I3 I4

L2

Figure 3.2: An RLC electronic network.

connected circuit, the coefficient matrices should be structured as in (3.6). In contrast to the
coefficient matrices in (3.4), we find that the coefficient matrices in this resonant circuit are
neither positive-definite nor symmetric anymore.

37

M =

−L1 L1 0 0
L1 −L1 0 0
0 0 L2 0
0 0 0 L3

, C =

0 R2 −R2 0
R1 +R4 0 0 −R4

0 −R2 R2 +R3 0
−R4 0 0 R4

,

K =

0 1
C1

0 0
0 0 0 0
0 0 1

C2
− 1
C2

0 0 − 1
C2

1
C2

+ 1
C3

(3.6)

The point we want to make is that the construction of coefficient matrices (M,C,K) de-
pends highly on the connection of its corresponding system and the underlying physical law,
which vary from problem to problem. It appears necessary to modify the setup and even the
numerical techniques while addressing different connectivity configurations. This undertaking
also increases the difficulty in developing a general approach for QIEPs. This is precisely where
our contribution in this research seems to become critical because we are able to handle QIEPs
with inherently different structures by a unified scheme.

It would be informative if we continue using the mass-spring system to demonstrate the idea.
Define u := (m>, c>,k>)> to be the vector of d parameters where d = dim(m) + dim(c) +
dim(k). This vector u represents the basic variables in the QIEPs to be solved. In the context
of a mass-spring system, the variables denote mass m, damping c and stiffness k, respectively.
By linearity, we want to rewrite the linear algebraic system in (3.3) as a homogeneous system

Au = 0nk×1, (3.7)

where A is a matrix of size nk× d. Our ultimate goal is to obtain a positive solution u for this
linear equality system (3.7). The mathematical transformation to this equality system (3.7)
is not a big issue, but two computational challenges are worthy our attention. Firstly, could
the matrix A be generated from prescribed connectivity configuration automatically? Secondly,
can an algorithm be developed to have the capacity of dealing with inexact eigeninformation?

Theoretically, the homogeneous system (3.3) could be solved without any difficulty by using
the notion of Kronecker product. The solution to the system (3.3) is equivalent to the solution
of

(
{(XΛ2)>

⊗
I} {(XΛ)>

⊗
I} {X>⊗ I}

)
nk×3n2

vec(M)
vec(C)
vec(K)

3n2×1

= 0nk×1, (3.8)

38

but such a process ignores the sparsity pattern embedded due to the inherent connectivity. We
prefer to propose a mathematically equivalent mechanism that can build not only the matrix A
but also take advantage of the sparsity by tackling directly with the parameters. The potential
of applications is too diverse to be covered thoroughly in this presentation. Thus, we shall
illustrate the construction of this matrix A through this four-degrees-of-freedom mass-spring
system depicted in Figure 3.1. We do have developed a beta-version software package that can
automatically handle the above mentioned task from any input of connectivity configuration
and eigeninformation by users. We are continuing the expansion of its library to include various
settings according to the underlying physical laws. We believe the approach outlined in the
sequel can be generalized to different systems.

3.2.1 Inherent structure

Most vibration systems are modeled by following some kinds of general principles such as
Hooke’s law, Ohm’s law, Kirchhoff’s law and so on. On the other hand, many physical phe-
nomena could be interpreted through a mass-spring system. A comprehensive study on con-
structing vibrating mass-spring systems therefore is of fundamental importance. Assuming that
the restoring force follows Hooke’s law and that the damping is negatively proportional to the
velocity, the structure of the coefficient matrices (M,C,K) in mass-spring systems could be
well described through the following rules [103].

Theorem 3.2.1 Consider a mass-spring system with d degrees of freedom where its motion
is limited to one dimension. Let m, c, and k denote the vectors of masses, damping and
stiffness coefficients, respectively. Then the inherent structure of matrices (M,C,K) satisfies
the following rules:

1. The mass matrix M is a diagonal matrix with masses (m1, . . . ,md) along its diagonal.

2. The damping matrix C is symmetric and positive semi-definite. If there are ` dampers,
identified by i1, . . . , i`, between the p-th mass and the q-th mass, then the entries Cpq and
Cqp of the damping matrix are given by −∑`

s=1 cis, where cis is the damping coefficient
of damper is. Otherwise, Cpq = Cqp = 0. If the p-th mass is connected to the dampers
j1, . . . , j`, then Cpp =

∑`
s=1 cjs.

3. The stiffness matrix K is symmetric and positive semi-definite. If there are ` springs,
identified by i1, . . . , i`, between the p-th mass and the q-th mass, then the entries Kpq and
Kqp of the stiffness matrix are given by −∑`

s=1 kis, where kis is the stiffness coefficient
of spring is. Otherwise Kpq = Kqp = 0. If the p-th mass is connected to the springs
j1, . . . , j`, then Kpp =

∑`
s=1 kjs.

39

Clearly, the matrices (M,C,K) constructed earlier in Example 3.2.1 satisfy these rules in
Theorem 3.2.1. Most important of all, such rules could be fully implemented into computers and
we have done so in [55]. In other words, once the specified connectivity configuration is given,
the intrinsic structure of coefficient matrices (M,C,K) could be characterized automatically
via a library of different rules similar to that described in Theorem 3.2.1.

3.2.2 Linear equality system

Once the inherent structure of (M,C,K) is known, it remains to provide procedure transforming
the linear algebraic equation (3.3) in the form Au = 0. It is seemingly an easy mathematical
job by using the Kronecker product and collecting like terms together. Our point, again, is to
provide an efficient method which can simplify this tedious job, especially when the involved
structure is complicated. This method of constructing matrix A can be illustrated by using this
four-degrees-of-freedom mass-spring system in Example 3.2.1, given k prescribed eigenpairs,
through the following steps.

Note that the first rows of MXΛ2, CXΛ, and KX could be written, respectively, as

(
m1 0 0 0

)
XΛ2 =

(
m1 m2 m3 m4

)

︸ ︷︷ ︸
m>

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

︸ ︷︷ ︸
M1

XΛ2,

(
c1 + c2 0 −c2 0

)
XΛ =

(
c1 c2 c3

)

︸ ︷︷ ︸
c>

1 0 0 0
1 0 −1 0
0 0 0 0

︸ ︷︷ ︸
C1

XΛ,

(
k1 + k2 + k5 −k2 −k5 0

)
X =

(
k1 k2 k3 k4 k5

)

︸ ︷︷ ︸
k>

1 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0
1 0 −1 0

︸ ︷︷ ︸
K1

X.

(3.9)

40

Continuing this process, it follows that

(
m>c>k>

)
1×12

M1XΛ2 M2XΛ2 M3XΛ2 M4XΛ2

C1XΛ C2XΛ C3XΛ C4XΛ
K1XΛ K2XΛ K3XΛ K4X

︸ ︷︷ ︸
A>12×4k

= 01×4k. (3.10)

In the above, the operators Mi, Ci, and Ki are predetermined as a consequence from Figure 3.1.
In general, given any linear structured matrices M , C, and K of size n × n with k prescribed
eigenpairs, each row of the product of MXΛ2 +CXΛ +KX can be constructed from operator
matrices Mi, Ci, and Ki of sizes dim(m)× n, dim(c)× n, and dim(k)× n whose true contents
are determined from the underlying connectivity configuration and physical law. In this way,
instead of (3.3), we obtain a linear system (3.7) in terms of the parameters (m, c,k) where the
coefficient matrix A is given by

A =

(M1XΛ2)> (C1XΛ)> (K1X)>
...

(MnXΛ2)> (CnXΛ)> (KnX)>

nk×d

. (3.11)

Being characterized directly in terms of the physical parameters, the matrix A is of size mush
smaller than that derived in (3.8). That is, the condensed expression will have increased
capability of handling larger scale problems. We quickly point out that the above expression
is only for explanatory purpose. To generalize this idea to any prescribed configuration, all we
need to have is a few indices specifying the locations where the connectivity is taken place. More
programming details about this development is given in [55]. Our software package accepts two
different input modes. One picks out these indices from an input file such as text interface. The
other generates the the indices directly from the connectivity configuration and the underlying
physical law.

To demonstrate the input mode, below we summarize the rules by which the indices for
constructing the operator matrices Mi,Ci,Ki for a general mass-spring system can be gener-
ated directly from the connectivity configuration without making any reference to the inherent
structure in (M,C,K).

Theorem 3.2.2 Consider a mass-spring system with n degrees of freedom where the motion is
limited to one dimension. Assume that dim(m), dim(c), and dim(k) represent the number of
masses, dampers, and springs, respectively. Then for 1 ≤ p, q ≤ n, the operator matrices are
defined as follows:

1. Each Mp is of size dim(m)× n. Its entries are all zero except 1 at the (p, p) position.

41

2. Each Cp is of size dim(c)× n. Its entries are all zero with the following exceptions:

• If there are ` dampers, identified by i1, . . . , i`, linking the p-th mass to the q-th mass,
then the q-th column of the matrix Cp has -1 at its i1, . . . , i` entries. Similarly, the
p-th column of Cq has -1 at its i1, . . . , i` entries.

• If the p-th mass is connected to the dampers j1, . . . , j`, then the p-th column of Cp

has 1 at its j1, . . . , j` entries.

3. Each Kp is of size dim(k)× n. Its entries are all zero with the following exceptions:

• If there are ` springs, identified by i1, . . . , i`, linking the p-th mass to the q-th mass,
then the q-th column of Kp has -1 at its i1, . . . , i` entries. Similarly, the p-th column
of Kq has -1 at its i1, . . . , i` entries.

• If the p-th mass is connected to the springs j1, . . . , j`, then the p-th column of Kp has
1 at its j1, . . . , j` entries.

3.2.3 Linear inequality system

We have addressed the issue of structural constraints in a QIEP. Now we have to stress that the
solvability of a QIEP hinges upon the existence of positive solution u for the system Au = 0.
Before we propose our approach for solving this equality system, two important issues must be
considered first.

Firstly, when the output solution u appears to contain some infinitesimal entries, we have
to discern the true meaning of a numerical small number. Suppose, for example m1 = 10−10.
It might mean that the value m1 is recovered with a small physical quantity or the smallness
of m1 reflects the machine zero (up to the prescribed stopping criterion). For the former case,
we might just rescale the whole quantity of u, say, by changing into a different physical unit.
Otherwise, we must be cautious about this numerical answer since it implies that the system
is degenerate in the sense that one component should “disappear”. This would completely
changes the configuration of inter-connectivity.

Secondly, it is well recognized in numerical computation that we cannot fully trust the
positivity of an infinitesimal number due to the ramification of round-off errors, to the effect
that most of the optimization tools developed for inequality constrained problems cannot handle
strict inequalities well when a solution is nearby the ”boundary”. Likewise, we are going to
solve the equality system Au = 0 with a nonnegative constraint, u ≥ 0, not u > 0.

Suppose for the moment that the prescribed eigenpairs (Λ, X) are exact. For the system
(3.7) to have a nontrivial solution, the matrix A must be rank deficient. Let s := rank(A).
Then the compact QR factorization with column pivoting for the matrix A (See Appendix A)

42

is written as

A = QRP, (3.12)

where Q ∈ Rnk×s has orthogonal column and P ∈ Rd×d is a permutation matrix such that

R = (S, T) ∈ Rs×d (3.13)

is upper “trapezoidal” matrix with S ∈ Rs×s being upper triangular, nonsingular, and having
non-increasing absolute values along its diagonal. Define

Pu := (u>1 ,u
>
2)>, (3.14)

with u1 ∈ Rs. Then the following two expressions are clearly equivalent

Au = 0⇐⇒ u1 = −S−1Tu2. (3.15)

By (3.15), we have thus recast the structured QIEP into an inequality system.

Theorem 3.2.3 Consider a structured QIEP with prescribed eigenpairs (Λ, X) and connectiv-
ity configuration. Let S and T be the two matrices associated to the matrix A as above. Then
finding the nonnegative parameters u ∈ Rn for the structured QIEP is equivalent to solving the
inequality system

u2 ≥ 0, S−1Tu2 ≤ 0 (3.16)

for u2 ∈ Rn−s.

Once the solution is found, it can be scaled by any positive constant. It is thus sufficient
to assume that entries of u2 are limited to the interval [0, 1]. Of course a trivial solution
u2 = 0 is not desirable and should be discarded. This inequality system (3.16) is a classical
convex problem which has been widely discussed in the literature, including the well known
Farkas Lemma [20], the von Neumann theorem [162], and the Ky Fan theorem [60]. We further
reformulate the inequality system (3.16) by considering the maximin problem:

max
0≤u2≤1

min
(
−S−1Tu2

)
, (3.17)

where the min function is taken over all entries of the vector −S−1Tu2. Since the objective func-
tion min

(
−S−1Tu2

)
is concave over a convex feasible set, the solution to (3.17) is unique and

global. For a solvable QIEP, it is necessary that the inequality system (3.16) has a nonnegative

43

solution. Consequently, the solvability of inequality system (3.16) depends on a nonnegative
objective value in (3.17).

Note that the rank deficiency of the matrix A comes from the unrealistic assumption that
the prescribed eigenpairs are exact for some (unknown) quadratic matrix polynomials. Without
the rank deficiency, the nontrivial nonnegative solution for Au = 0 will not exist. In practice,
however, prescribed eigeninformation is most likely inexact. The matrix A constructed with
the inexact data is generically of full rank, so the procedure described above cannot go through.
The method of how to overcome this difficulty will be discussed in the next section.

3.3 Handling inexact eigenpairs

One of the practical reasons for considering QIEPs is to update or reconstruct quadratic models
based on newly measured eigeninformation. It is very likely for the very same reason that the
new eigeninformation used for the update or reconstruction is inexact in itself. The repercus-
sion is that the resulting matrix A in (3.7) will be of full rank or some obscured numerical rank.
Without any treatment, the solution of Au = 0 would be either zero or undesirable. As the
eigeninformation still contains useful substance inside, it is often the case that an approximate
solution satisfying physical constraints such as nonnegative is acceptable for engineering appli-
cations. Our goal in this section is to provide an approximate solution with a posterior error
estimation.

In order to derive an approximate solution for (3.7) , the most direct approach is to consider
the quadratic programming (QP) problem:

minimize ‖Au‖22 (3.18)

subject to u ≥ 1.

The constraint u ≥ 1 is meant to avoid the trivial solution u = 0. A substantial difference
among elements of u, however, might be an indication that the smallest element is numerically
zero and cause degeneracy. For an optimal solution u∗, the observation of a small residual
‖Au∗‖2 “might” suggest heuristically that the problem is approximately solved. Although
(3.18) provides an intuitive idea for solving (3.7), its calculation involves the full length d of u.
We have a better approach that involves only d− s variables and provides a posterior estimate
which could be used to discrete whether to accept or reject the constructed model.

We begin by introducing the full QR factorization with column pivoting of the matrix A

such that

A = QRP, (3.19)

44

where Q ∈ Rnk×nk has orthogonal column and R ∈ Rnk×d is an upper trapezoidal matrix
with diagonal elements arranged in terms of non-increasing absolute values by the permutation
matrix P . Define

u := Pu. (3.20)

Trivially we have the following equivalent relationship:

Au = 0⇐⇒ Ru = 0, (3.21)

Due to inexact eigeninformation, generally the matrix A is of full rank. This implies that u = 0
is the only solution for Au = 0, which is of little value in practice. Hence the introduction of
some low rank approximations to the matrix R is necessary in order to obtain some meaningful
nontrivial solutions.

Given a predetermined threshold ε, let Rε ∈ Rt×d be the submatrix of R made of t rows
of R whose diagonal elements are greater than ε. Then a nonnegative nontrivial solution to
Rεu = 0 is regraded as an approximate solution to Rx = 0. The choice of ε is often based on
the trial-and-error basis. To bring forth meaningful truncation, the value of ε should be large
enough, otherwise, Rεu = 0 still has only trivial solution. But, it should also be small enough
to avoid losing too much information about A. Assume t < d. Define Rε = (Sε, Tε), where
Sε ∈ Rt×t is invertible, and partition u = (u>1 ,u

>
2)> accordingly. From the equivalence

Rεu = 0⇐⇒ u1 = −S−1
ε Tεu2, (3.22)

our current intention is to solve the inequality system

u2 ≥ 0, −S−1
ε Tεu2 ≤ 0 (3.23)

for some u2 ∈ Rd−t. From this point on, the maximin ideas outlined in Section 3.2.3 could be
used to solve (3.23).

Note that if u∗ε is a nonnegative solution to the truncated linear system Rεu = 0, the vector
u∗ε := P>u∗ε is considered to be an approximate nonnegative solution to the original system
Au = 0. The following theorem gives a justification for the notion of this truncation.

Theorem 3.3.1 For a matrix A ∈ Rnk×d, let A = QRP denote its QR factorization with col-
umn pivoting, where Q ∈ Rnk×nk has orthogonal column and R ∈ Rnk×d is an upper trapezoidal
matrix with diagonal elements arranged in descending absolute value by the permutation matrix
P . Given a positive number ε, let Rε denote the truncated submatrix of R consisting of rows of
R whose diagonal elements are greater than ε. Suppose uε is a solution to the system Rεu = 0.

45

(For our application, we are interested in a nonnegative solution uε, but that is not needed in
this theorem.) Define uε := P>uε. Then

‖Auε‖2
‖uε‖2

= O(ε)

Proof. For any integer 1 ≤ j ≤ nk, let R[j] denote the lower right submatrix of R by deleting
its first j − 1 rows and columns. The permutation matrix P is chosen so that |rjj | is greater
than or equals to the 2-norm of any columns in R[j]. Consequently, it is true that

‖R[j]‖2 ≤
√
d− j + 1‖R[j]‖1 ≤

√
d− j + 1

√
nk − j + 1|rjj |.

Note that for a given ε, the only possible nonzero elements in R−Rε would be those in R[i+1]

where i is the smallest integer such that |ri+1,i+1| < ε. Since uε is a solution of Rεu = 0 and
‖uε‖2 = ‖uε‖2, we have

‖Auε‖2 = ‖Ruε‖2 = ‖Ruε −Rεuε +Rεuε‖2
≤ ‖R−Rε‖2 · ‖uε‖2 + ‖Rεuε‖2
<
√
d− i

√
nk − i‖uε‖2ε.

2

In most cases, we have no idea of how to pick up a suitable ε to truncate the matrix. The
larger the ε is, the less precision the solution will be. On the other hand, too small ε might
result in no feasible solution. The following strategy provides a dynamic way of automatically
truncating the matrix with a self-examining truncation strategy.

Assume that the matrix R has numerical rank p. For 1 ≤ i ≤ p, let R[i] denote the
submatrix of the first i rows of R. For each i, write R[i] = (Si, Ti) with Si ∈ Ri×i and partition
u = (u>1 ,u

>
2)> with u1 ∈ Ri. Starting with i = p and gradually decreasing to i = 1, we solve

the maximin problem

max
0≤u2≤1

min
(
−S−1

i Tiu2

)
(3.24)

over u2 ∈ Rn−i successively. Terminate the process at the first (largest) i when a nonnegative
objective value is found. This approach provides the most suitable truncation while keeping
the best integrity of R and seeking consistency.

We truncate the matrix R only when it absolutely cannot compromise with the consistency.
We also take advantage of the fact that the maximin problem returns a global solution. The
essence in both approaches described above is to approximate the original system Ax = 0 by a

46

lower rank matrix in exchange for nonnegative solutions. The latter approach differs from the
former approach in that it avoids truncating the matrix R too much. Assume that the dynamic
process stops at i. Then for any ε < rii the system (3.23) is inconsistent. On the other hand,
for ε = rii, we have Rε = R[i]. Clearly, for any ε > rii, the truncated system Rεu = 0 has a
nonnegative solution but a relatively larger residual.

Our algorithm checks to determine Rε so that Rεu = 0 has a nonnegative solution. In
order to achieve consistency, it is possible that the approximate matrix Rε (or R[i]) has a
fairly low rank. That is, the value of ε might be relatively large. However, once such a
nonnegative solution is found to exist, Theorem 3.3.1 implies that the ratio of the norm of the
residual vector to that of the nonnegative solution is independent of scaling. The scaling is
only for computational convenience and has no effect on this relative error. In other words, our
reconstructed parameters not only guarantee the maintenance of connectivity constraint but
also estimate ‖M∗XΛ2 + C∗XΛ +K∗X‖F = ‖Au∗‖2, which is of order O(ε) relative to ‖u∗‖2
for further discernment of whether accepting the reconstruction or not.

3.4 Numerical experiments

Based on the computational framework we have described above, we have developed a software
package, named Opt4QIEP, that is able to reckon nonnegative parameters for the structured
QIEPs [55]. A conceptual organization of the algorithm is outlined in Algorithm 1. We empha-
size that Algorithm 1 is capable of handling almost all arbitrary connectivity configuration and
that we are continuing the expansion of its library modules. For demonstration purpose, we
focus on the mass-spring system specified in Figure 3.1 and illustrate some interesting points
worthy of attention.

To begin with, we randomly generate positive physical parameters,

m = [0.42052, 0.95581, 0.94875, 0.65968]>,

c = [0.55187, 1.00000, 0.91316]>,

k = [0.71675, 0.90909, 0.73377, 0.38006, 0.32200]>,

where the largest parameter has been normalized to unity. Using these parameter values we
construct the quadratic polynomial λ2M+λC+K corresponding to the configuration specified in
(3.4). The resulting QEP has fours pairs of complex conjugate eigenvalues and eigenvectors. For
numerical testing, we assume that the following two eigenpairs (and their complex conjugates),

λ1 = −0.2560344023 + 1.5586653651i, λ2 = −0.0775078020 + 0.3777316241i,

47

Algorithm 1: QIEP Algorithm
Input:

• The desirable connectivity configuration.

• Partial eigeninformation in the form of eigenpairs closed under complex

conjugation.

Output:

• If the QP approach has a feasible solution, or the maximin approach

returns a nonnegative objective value, the structured QIEP is deemed

solvable within a specified tolerance on its residual.

• Otherwise, the structured QIEP has no solution.

begin1.1

Identify the inherent stsructure of the coefficient matrices (M,C,K);1.2

Prepare XΛ2 and XΛ;1.3

Transform the equation (3.3) into Ax = 0 with variable x denoting parameters to be1.4

reconstructed;
Apply either the QP or the maximin techniques to search for an approximate1.5

nonnegative solution;
end1.6

u1 =

−0.4849049878 + 1.2935348932i
−1.5045182718− 1.2912238078i

0.5225204188 + 1.0465626189i
1

,u2 =

0.4687637938 + 0.1026944256i
0.6690611955 + 0.1297948996i
0.8080014019 + 0.0892317746i

1

,

form the exact eigeninformation (Λ, X). Note that the last entry of each eigenvector has been
normalized to unity and exactly five digits have been purposefully assigned to the physical
parameters. Strictly speaking, the exact eigenpairs should be accurately represented at least
up to the machine precision instead of just the first ten digits. However, this less accurate
representation of prescribed eigeninformation is precisely our intention so as to experment with
the effectiveness of our algorithm upon various scenarios of inexact data.

Example 3.4.1 Suppose first that (λ1,u1) (and its complex conjugate) is the only prescribed
eigenpair. Note that this eigenpair is known a priori to have accuracy only up to the tenth
digit. With this slightly perturbed eigeninformation, our algorithm does find out a nonnegative

48

solution. After being rounded to five digits, its computed parameters are equal to

m∗ = [0.42052, 0.95581, 0.94875, 0.65968]>,

c∗ = [0.55187, 1.00000, 0.91316]>,

k∗ = [0.71675, 0.90909, 0.73377, 0.38006, 0.32200]>.

In other words, these computed parameters are consistent with the original physical ones up to
the fifth digit. The residual ‖M∗XΛ2 +C∗XΛ+K∗X‖F with the computed physical parameters
is around 10−11, justifying a successful calculation.

In most cases, inverse eigenvalue problems are ill-posed and typically do not possess a unique
solution. To our surprise, the computed parameters in Example 3.4.1 are in agreement with
the original physical parameters up to the fifth digit. It is worthy of further investigation to see
whether this coincidence is definitely attributed to the normalization of the largest parameter
to unity, the nonnegative constraints, and the inequality setting which satisfies the feature that
a minimizer, if exists, is necessarily a global minimizer.

Example 3.4.2 Our approach works indiscriminately with different cardinalities of prescribed
eigenpairs. Suppose now we are given two eigenpairs (λ1,u1) and (λ2,u2) and their conjugates
simultaneously. It is possible that the prescribed eigeninformation is overdone. Nonetheless, we
are not surprised to obtain the same computed parameters with residual ‖M∗XΛ2 + C∗XΛ +
K∗X‖F ≈ 10−11. Though this extra eigeninformation (λ2,u2) increases the complexity of
matrix A, it seems to have no impact on the final result.

Example 3.4.3 In this experiment, we further perturb the original exact eigenpairs to the
extent that the prescribed eigenpairs are given by

λ̃1 = −0.25603 + 1.55867i, λ̃2 = −0.07751 + 0.37773i,

ũ1 =

−0.48490 + 1.29353i
−1.50452− 1.29122i

0.52252 + 1.04656i
1

, ũ2 =

0.46876 + 0.10269i
0.66906 + 0.12979i
0.80800 + 0.08923i

1

.

That is, the order of accuracy of the prescribed eigenpairs is only at the fifth decimal. Typically,
we are not able to judge a priori the accuracy of a prescribed eigeninformation. Thus, it could
not guarantee that any quadratic matrix polynomial structured as in (3.4) could have (λ̃1, ũ1)
and (λ̃2, ũ2) as its eigenpairs. This is exactly the difficulty of solving the structured QIEP for
nonnegative solutions.

49

Upon applying our algorithm, however, we do find a nonnegative solution

m∗ = [0.42053, 0.95585, 0.94878, 0.65971]>,

c∗ = [0.55188, 1.00000, 0.91319]>,

k∗ = [0.71677, 0.90911, 0.73383, 0.38009, 0.32200]>,

by which the residual ‖M∗X̃Λ̃2 +C∗X̃Λ̃+K∗X̃‖F of the reconstructed quadratic pencil is of the
order 10−6. This residual also provides a numerical justification of our theory in Theorem 3.3.1.

Again, we generally have no clue in telling the feasibility of prescribed eigenpairs. Also,
we are not sure whether the prescribed eigenpairs, (λ̂1, û1) and (λ̂2, û2), satisfy a specifically
structured QIEP. What we do know for sure is that if a solution or a nearby solution ever exists,
our method will find it with high sensitivity, otherwise it will indicate either a large residual or
no solution with high specificity.

Example 3.4.4 When the prescribed eigenpairs are infeasible, we would like to know that our
method is able to indicate that this QIEP is not solvable. To demonstrate the situation, consider
the randomly generated eigenpairs,

λ̂1 = 0.6068 + 0.8913i, λ̂2 = 0.4860 + 0.7621i,

v̂2 =

0.0185 + 0.4057i
0.8214 + 0.9355i
0.4447 + 0.9169i

1

, v̂2 =

0.7919 + 0.8936i
0.9218 + 0.0579i
0.7382 + 0.3529i

1

.

Applying our method to the above randomly generated eigenpairs, we do obtain a nonnega-
tive “approximate” solution, but the corresponding residuals of the quadratic matrix polynomial
are 1.2885 and 0.7667, respectively, at each eigenpair. This would obviously indicate that the
reconstructed model is not acceptable.

This result seems to imply that for structured coefficient matrices (M,C,K), the corre-
sponding eigenvalues and eigenvectors cannot be arbitrary. The eigeninformation might pre-
serve certain structure and worthy of further investigation. Our algorithm could serve as a
numerical tool to boost the investigation in this area.

50

3.5 Conclusion

Just as the QEPs arise in many applications, so are the QIEPs fundamental to many fields of
disciplines. Because the specifics of the dynamical systems deviate from each other in different
environments, the corresponding coefficient matrices need to satisfy different kinds of structural
constraints. The diversity in structure, together with the imposition of nonnegativity on intrin-
sic parameters, makes solving QIEPs quite challenging. To our knowledge, there is no theory
thus far that can comprehensively resolve these difficulties.

The main contribution of this chapter is to provide a general purpose and robust numerical
technique, based on properly established inequality systems and suitable optimization solvers,
for solving structured QIEPs. The setting is to find out a global minimizer as the approximate
solution. Based on an estimation of residual, this method has high capacity in determining
numerically whether a QIEP is solvable or not. Also, it has no restriction on how many
eigenpairs should be given and the ability to solve almost all kinds of connectivity configurations.

51

Chapter 4

Inverse Problems with Structured

Models

4.1 Overview

In our software package Opt4QIEP, we have already implemented the notions of automated
structure generation to handle various connectivity configurations and error correction to deal
with inexact eigeninformation. In yet another advance, we now propose a powerful optimiza-
tion technique for solving QIEPs. Semi-definite programming (SDP) is a relatively new field
of optimization techniques arising from convex optimization. It is known for its capacity of
handing an extraordinarily wide range of problems. In this chapter, we are going to describe an
innovative application of SDP techniques to structured QIEPs. We repeat that by a structured
QIEP, it means the construction of real coefficient matrices M , C and K satisfying k prescribed
eigenpairs {(λj ,xj)}kj=1 and meeting certain distinctive conditions imposed upon their respec-
tive structures. We have already seen that the prescribed spectral conditions transform into
a linear algebraic system (3.3) for the coefficient matrices (M,C,K). The challenge now is to
select, if possible, matrices with specified structures out of the solution space. This purpose
of this chapter is to employ SDP techniques to accomplish this task [2, 3, 158]. The basic
idea is to optimize a suitable linear functional subject to linear equation constraints and some
additional condition such as positive semi-definiteness.

In recent years, SDP has emerged as an important tool in mathematical programming for
two reasons. The first reason is its versatility to model problems in broad discipline areas
ranging from mathematical studies in combinatorial optimization, Boolean and non-convex
quadratic programming, min-max eigenvalue problems, and matrix completion problems to
engineering applications in nonlinear and time-varying system analysis, controller synthesis,
computer-aided control system design, network queueing, optimal statistical model designs,

52

and structural optimization. Examples of converting these problems into the standard primal
problem or its dual can be found in [20, 158, 168]. The second reason is its close comparability
to the well known linear programming (LP). Most issues such as the dual theory, interior
point algorithms, convergence and polynomial time-complexity for LP can be extended to SDP
[1, 134]. This generalization provides efficient procedures for finding the optimal solution based
on iterating interior points that either follow the central path or decrease a potential function.
Profuse research results are available in the literature. For example, the book on SDP [168]
lists 877 references, while the online bibliography collected by Wolkowicz [167] keeps adding
new references to its database continually. We find the comprehensive treatise in the two books
[3, 20] and two review articles [1, 158] offer quick and useful grasp of this interesting and
intensely studied subject.

The rest of this chapter is organized as follows. In Section 4.2 we present a brief overview of
semidefinite programming. More advanced treatment can be found in Nesterov and Nemirovskii
[134], Todd [158], Boyd and Vandenberghe [20, 160]. Our main thrust in this investigation is
to experiment the applicability of the SDP techniques on various structural constraints. Thus,
we begin in Section 4.3 with the most basic symmetric and positive semi-definite models and
conjecture some new solvable conditions via the testing results. In Section 4.4 we explore inverse
eigenvalue problems with a mixture of linear types arising in general gyroscopic systems. We
believe that our work in this section alone is innovative as no other QIEP techniques developed
thus far can address a mixture of structural constraints simultaneously. In Section 4.5 we
discuss how to handle models with inherent sparsity patterns. Different from the numerical
approaches applied in Chapter 3, we discuss how to use the SDP approach to solve QIEPs
more robustly. We explain how to embed the sparse structures into the optimization problem.
This idea is generalized in Section 4.6 to solve models with prescribed entries. In Section 4.7
we present a numerical approach of handling model updating problems with minimal changes
while preserving specifically embedded structures, a task which has been proclaimed difficult
in the past.

4.2 Semidefinite programming

In this section we present a brief overview of semidefinite programming. More advanced treat-
ment can be found in Nesterov and Nemirovskii [134], Todd [158], Boyd and Vandenberghe
[20, 160]. Our discussion is based on the review article by Todd [158]. The SDP problem in the

53

primal standard form is formulated as

(P) MinimizeX C •X
Subject to Ai •X = bi, i = 1, . . . ,m

X � 0,

(4.1)

where all Ai ∈ SRn×n, C ∈ SRn×n, b ∈ Rm are given, X ∈ SRn×n is the variable, and C •X
denotes the Frobenius inner product between C and X defined by

C •X = trace(X>C) =
n∑

i=1

n∑

j=1

cijxij ,

with C = [cij] and X = [xij]. The corresponding dual standard form of the SDP problem is
expressed as

(D) Maximizey b>y

Subject to
∑m

i=1 yiAi + S = C,

S � 0,

(4.2)

with a “slack” matrix S ∈ SRn×n. This dual standard form is also equal to

Maximizey b>y

Subject to C −∑m
i=1 yiAi � 0,

(4.3)

which is most relevant to our QIEPs.
Note that if X is a feasible solution for (P) and {y, S} is a feasible solution for (D), then

C •X − b>y = X • S ≥ 0. (4.4)

This is the so called weak duality property of the SDP problem (see Todd [158] for more
discussion in this regard). The difference between the optimal solution of (P) and that of
(D) is called the duality gap whose “ideal” value would be zero. Nonetheless, we illustrate an
example from Vandenberghe and Boyd [160] where there is no duality gap, but the optimal
solution for the primal problem could not be reached.

Example 4.2.1 Consider the optimization problem in dual standard form:

Maximizey∈R2 y2

Subject to

[
1 0
0 0

]
y1 +

[
0 0
0 1

]
y2 �

[
0 1
1 0

]
.

(4.5)

The feasible set can be written as {y = [y1, y2]> ∈ R2 : y1 < 0, y2 < 0, y1y2 ≥ 1}. It is clear

54

that we cannot find a feasible point to achieve the optimal solution 0 = supy∈R2 y2. We only
can approach the optimal value 0 by feasible points of the form [1/α, α]> with arbitrarily small
positive α. The problem (4.5) is not solvable. On the other hand, its primal problem is the
form:

MinimizeX∈SR2×2

[
0 1
1 0

]
•X

Subject to

[
1 0
0 0

]
•X = 0,

[
0 0
0 1

]
•X = 1,

X � 0,

(4.6)

The only feasible solution for problem (4.6) is X =

[
0 0
0 1

]
with optimal value 0. This

concludes that the duality gap is zero, but one of the problems problem is not solvable.

More examples showing the nonzero duality gap can be found in [126, 158, 160]. Our
primary focus is on the case when the duality gap is zero. The proof of the following theorem
essentially follows from the Hahn-Banach separation theorem, which is fundamental in convex
and is referred to [158].

Theorem 4.2.1 Assume that there exist a feasible point X ∈ SRn×n for (P) and a strictly
feasible pair {y, S} ∈ Rm × SRn×n, namely S � 0 for (D). Then the set of the optimal
solutions of (P) is nonempty and compact, and the duality gap is zero. That is, the optimal
values of (P) and (D) are equal.

We describe a few examples below to demonstrate the flexibility and versatility of the SDP
formulation [158].

Example 4.2.2 Consider the primal LP problem,

Minimizex c>x

Subject to Ax = b,

x ≥ 0,

(4.7)

where b ∈ Rm, c ∈ Rn, A ∈ Rm×n are given, x ∈ Rn, and its dual

Maximizey b>y

Subject to c−A>y ≥ 0,
(4.8)

with y ∈ Rm. Defining C = Diag(c) and Ai = Diag(ai) with A> = [a1,a2, . . . ,am], we

55

immediately see that the dual LP problem is equivalent to

Maximizey b>y

Subject to Diag(c−A>y) = C −∑m
i=1 yiAi � 0,

(4.9)

Thus, a dual LP problem is also a dual standard SDP problem. Its primal standard SDP
formulation, however, consists of the variable X ∈ SRn×n which is not quite equivalent to the
standard LP problem. To clarify this disparity, we claim that this optimal variable X ∈ SRn×n
can be made into a diagonal matrix. Observe that, by definition, we can write

C •X = c1x11 + c2x22 + . . .+ cnxnn = c>x,

Ai •X = ai1x11 + ai2x22 + . . .+ ainxnn = bi, for each i,
(4.10)

with ai = [ai1, . . . , ain]>, X = [xij], and x = [x11, . . . , xnn]>. Let

X̄ = Diag(x). (4.11)

Then X̄ � 0 as X � 0. Following from (4.10), we know that

C • X̄ = C •X = c>x,

Ai • X̄ = Ai •X = bi, for each i,
(4.12)

Hence, if X is a feasible solution in (P), then X̄ is also a feasible solution in (P) with the same
optimal value. Also, X̄ � 0 is equal to x ≥ 0. This concludes that LP problem is a special form
of SDP.

The optimization of eigenvalue-induced functional is a classical problem with applications is
areas such as optimal control, graph theory, combinatorial optimization, and so on [89, 131, 136].
The SDP approach makes this challenging task a lot easier than conventional approach [158,
160].

Example 4.2.3 Consider the minimization of the maximum eigenvalue of a symmetric matrix
A(z) defined by

A(z) = A0 + z1A1 + . . .+ zpAp, (4.13)

with given and fixed Ai = A>i ∈ Rn×n. Note that ζ ≥ λmax(A(z)) iff λmin(ζIn − A(z)) ≥ 0.
Thus, we can formulate this problem as a SDP in the dual standard form

Maximizey −ζ
Subject to ζIn −A(z) � 0,

(4.14)

56

where the variable y = (ζ, z)> ∈ R(p+1)×1.

Unlike other numerical methods, the SDP approach offers a unified, efficient, and tractable
scheme for solving QIEPs. In this work, we apply some state-of-the-art SDP software pack-
ages [125, 154, 159] successfully to some otherwise very difficult structured QIEPs. We shall
demonstrate that structures such as positive definiteness, nonnegativity, mixture type, sparsity
patterns, prescribed entries for QIEPs and the associated model updating problems can all be
handled effectively by our SDP approach. With this highly efficacious method in hand which
provides global and conclusive results, we are at a vantage point to investigate new areas related
to QIEPs.

We do not claim that we have developed new algorithms. Rather, this chapter is to explain
the usage of SDP techniques to embrace different structures within QIEPs. In this sequel,
we concentrate on how to formulate QIEPs under different structures for SDP applications.
Once the formulation is set up, it is easy to call up available SDP packages to carry out
the computation. Our point is that the SDP approach can undertake the various challenges
associated with QIEPs with remarkable uniformity, simplicity and effectiveness. The approach
offers uniformity because it can handle almost all structures of practical interest under one
framework; simplicity because programming for various QIEPs often involves just a few lines
of MATLAB commands through the interface with of our core code; and effectiveness because
this approach generally provides make-or-break information on the solvability of a QIEP and
computes the optimal solution in a user-specified sense.

4.3 Models with symmetric and positive semi-definite struc-

tures

By Theorem 2.3.1, we already know that the QIEP with real and symmetric coefficient matrices
M , C and K is generically solvable if k < kmax. In real applications, however, one or all
coefficient matrices are further required to be positive semi-definite. Semi-definiteness translates
into complicated algebraic conditions. For this reason, only a few partial results are available
in the literature [24, 38, 112, 117], most of which are characterized by some sufficient conditions
imposed upon the prescribed eigeninformation.

Taking advantage of the SDP techniques, the difficult task of constructing any positive semi-
definite coefficient matrices could be accomplished from any prescribed partial eigeninformation
(Λ, X). By accomplishment, we mean that either the coefficient matrices are found or that a
decision of nonexistence can be made inclusively. The coding, such as the one demonstrated in
Table 4.1, often involves only a few lines of YALMIP commands. We remark that YALMIP is a
free MATLAB-based toolbox [125] which serves as a convenient interface for multiple external

57

optimization solvers. Its commands unify and facilitate the different formats in SDP software.
While used for solving QIEPs, it significantly simplifies the description of various structural
constraints and, within the specified numerical tolerance, offers a reliable and conclusive answer
via the well established SDP theory and algorithms.

Table 4.1: An SDP code calling routines from YALMIP to solve QIEPs for positive semi-definite
(M,C,K).

% Define symmetric variables
sM = sdpvar(n,n);
sC = sdpvar(n,n);
sK = sdpvar(n,n);

% Specify equality and positive semi-definite constraints
F = set(sM*X*Lambda^2 + sC*X*Lambda + sK*X == zeros(n,k));
F = F + set(sM >= 0) + set(sC >= 0) + set(sK >= 0);

% Select SDPT3 as the solver
ops = sdpsettings(’solver’,’sdpt3’);

% Invoke SDP solver
solvesdp(F,[],ops);

% Retrieve numerical solution
M = double(sM)
C = double(sC)
K = double(sK)

% Check relative residual
norm(M*X*Lambda^2 + C*X*Lambda + K*X,’fro’)/norm([M,C,K],’fro’)

In Table 4.1, the command sdpvar(n,n) defines a symmetric n × n matrix as a variable.
Also, the algebraic condition (3.3) and the positive semi-definitenesss constraints F are entered
into the code through the command set. This macro command set can be generalized to handle
other types of structural constraints, which will be demonstrated in subsequent discussion. In
this code, the package SDPT3 by Tütüncü, Toh, and Todd [159] is designated as the SDP solver
for constructing a numerical solution, if exists, for the QIEP with symmetric and positive semi-
definite coefficient matrices. This program in Table 4.1 is a working code, although there

58

are many other options for fine tuning the computation, including modifying the stopping
criterion or selecting a different SDP solver. It is important to point out that, except specifying
those constrained conditions, no objective function is needed (denoted by [] in the command
solvesdp) to get a solution for these coefficient matrices. That is, for the moment the purpose is
only to find any feasible solution for this QIEP. No other extra string of conditions is attached.

It is worth noting that the set of feasible solutions, containing at least the trivial solution,
is a convex cone. This implies that once a numerical solution (M,C,K) is found (retrievable
through the YALMIP command double), any positive scalar multiplication is also a solution.
Hence, a relative residual through an appropriate normalization serves as a good indicator to
recognize whether the QIEP has been solved satisfactorily. Unlike the eigenvector completion
procedure we have described in Chapter 3, the unspecified eigenvectors of the reconstructed
system are determined inherently and cannot be influenced from outside.

Even at its simplicity, the code in Table 4.1 provides us a fundamental tool to investigate
numerically many interesting questions within QIEPs. One such instance that we can explore
is to study whether symmetric QIEPs with positive semi-definite coefficient matrices can have
k arbitrarily prescribed eigenpairs, provided all prescribed eigenvalues necessarily have negative
real part. To carry out the experiment, we randomly generate eigenpairs (X and Λ) such that
all prescribed eigenvalues have negative real part, and input the information to the code in
Table 4.1. It is of great interest to find that after large number of random tests, we seem to
have reached a rather surprising discovery. If k ≤ kmax − 4, regardless of how k is distributed
among the numbers kc of complex-conjugate eigenpairs, kp of real eigenpairs with positive sign
characteristic and kn of real eigenpairs with negative sign characteristic [70, 117], the feasible
set defined by F seems to always contain nontrivial solutions for random (X,Λ). It would be
fantastic if such an observation could be confirmed by theoretical proof.

Table 4.2 lists some testing results with the case n = 10, implying kmax = 16, and randomly
generated k prescribed eigenpairs corresponding to the preselected (kc, kp, kn). The symbols
3 and 7 indicate whether a nontrivial solution to the QIEP with positive semi-definite coefficient
matrices can be found or not, whereas h indicates that both cases are possible. The value t in the
last row is the number of complex conjugate eigenvalues of the reconstructed quadratic model.
It must be stressed that these are generic results in the sense that each conclusion is subject
to large number of repeated experiments and no exception has been observed. Accordingly,
a positive semi-definite solution can always been derived if k ≤ 12, while k = 13 serves as a
borderline in which both possibilities can occur.

59

Table 4.2: Existence of positive definite M , C and K to the symmetric QIEP with random
eigenstructure.

kc 6 5 5 5 5 5 5 4 4 3 3 4 4 3 2

kp 0 2 2 1 0 0 1 4 3 4 3 2 2 3 4

kn 0 1 0 2 3 2 1 1 2 3 3 3 2 4 4

k 12 13 12 13 13 12 12 13 13 13 12 13 12 13 12

+ 3 h 3 h h 3 3 3 3 3 3 3 3 h 3

t 8 7 6 5 4 3

4.4 Models with gyroscopic structures

Consider a dynamical system described by the following quadratic model:

Q(λ) := Q(λ;M,C ,G ,K ,N) = λ2M + λ (C + G)︸ ︷︷ ︸
C

+ (K + N)︸ ︷︷ ︸
K

, (4.15)

where M , C , and K , as the usual mass, damping and stiffness matrices, are symmetric and
positive semi-definite, but G and N , representing the gyroscopic and circulatory matrices, are
skew-symmetric [172]. The combination such as C = C + G or its like is referred to as a
mixture of linear types. Note that C is neither symmetric, nor general, but is still of some
special structure. This is the so called gyroscopic system which often appears in vibrations of
rotating machines or in moving coordinate frames.

Numerical investigation for forward gyroscopic eigensystems have been conducted in [21, 59,
143], but the attention mostly is on the damping free case, i.e., C = G is skew-symdsmetric. To
our knowledge, there is no discussion of the gyroscopic inverse eigenvalue problem except for the
work in [4] where a hybrid optimization scheme for identifying inherent parameters of flexible
rotor-bearing systems is proposed. Typical decomposition techniques might have trouble in
differentiating the positive semi-definite matrix C from the skew-symmetric matrix G within
the coefficient matrix C. In our SDP approach, however, such difficulties could be tackled by
simply adding the YALMIP commands

% Define skew-symmetric variables

sG = sdpvar{n,n,’skew’,’real’);

sN = sdpvar(n,n,’skew’,’real’);

60

for skew-symmetric matrices and modifying the equality constraint to

F = set(sM*X*Lambda^2 + (sC+sG)*X*Lambda + (sK+sN)*X == zeros(n,k));

in Table 4.1. The QIEP in the form (4.15) can now be handled without much trouble.
Since each of the skew-symmetric matrices G and N adds n(n−1)

2 extra variables to the
linear system (3.3), it can be proved that for any k the solution to a general (4.15) always
exists with respect to any number of prescribed eigenpairs. Curiously, we wonder that if the
constraint of positive semi-definiteness for M , C and K is imposed, how would the inclusion
of G or N improve the solvability for a QIEP in the gyroscopic form (4.15) from a relative
larger number k arbitrarily prescribed eigenpairs? For simplicity, assume N is a zero matrix
and kr = k − 2kc stands for the total number of real eigenpairs (since real eigenvalues of a
gyroscopic system have no sign characteristic, another significant difference between symmetric
and non-symmetric pencils), the numerical evidence summarized in Table 4.3 seems to support
affirmatively this added effect of the skew-symmetric matrix G — the maximal allowable k

of arbitrarily prescribed eigenpairs increases by bn−1
2 c. Once again, we stress that such an

experiment would have been very difficult by other numerical techniques.

Table 4.3: Existence of positive definite M , C , K , and skew-symmetric G to the QIEP with
random eigenstructure.

kc 8 7 7 7 6 6 7 7 6 6 6 6 5 5 5 5 3 4 3 0 3

kr 0 1 0 2 3 2 4 3 5 6 5 4 7 6 5 4 6 6 6 6 8

k 16 15 15 16 15 14 18 17 17 18 17 16 17 16 15 14 12 14 12 6 14

+ 3 3 3 3 3 3 7 3 3 7 3 3 3 3 3 3 3 3 3 3 3

t 9 8 7 6 5 4

4.5 Models with sparsity patterns

Finite element models, just like a mass-spring system or an RLC circuit, often have specific
sparsity patterns in M , C and K. That is, corresponding to inner connectivity, the physical
parameters, such as mass, stiffness, voltage, resistance and so on, are embedded in the coefficient
matrices (M,C,K) in a fixed but often mixed way. For the sake of physical feasibility, the

61

recovered parameters must also be nonnegative. In this section, we demonstrate how the SDP
approach can meet the connectivity and the nonnegative constraints easily.

We need to point out that our software package Opt4QIEP developed in Chapter 3 includes
two features. First, it is a tool which exploits the underlying matrix structure based on specified
connectivity. Second, it employs the truncated QR decomposition to create, if possible, a
consistent linear inequality system. These features can be combined with the SDP technique
to offer a more powerful optimization approach toward the QIEPs.

For demonstration, consider the same mass-spring system in Example 3.2.1. Note that
in the system the maintenance of the connectivity and nonnegativity is more important than
symmetry and positive semi-definiteness because the preservation of the former automatically
implies the latter. Such an endeavor can easily be achieved simply by formulating the QIEP as
an SDP problem. Employing Opt4QIEP to create the sparse pattern in the coefficient matrices
M , C, and K, we impose the equality and the nonnegative constraints by YALMIP commands
as follows.

% Define physical parameters

sm = sdpvar(4,1);

sc = sdpvar(3,1);

sk = sdpvar(5,1);

% Define coefficient matrices based on connectivity constraints

sM = diag(sm);

sC = [sc(1)+sc(2) 0 -sc(2) 0;

0 0 0 0;

-sc(2) 0 sc(2)+sc(3) -sc(3);

0 0 -sc(3) sc(3)];

sK = [sk(1)+sk(2)+sk(5) -sk(2) -sk(5) 0;

-sk(2) sk(2)+sk(3) -sk(3) 0;

-sk(5) -sk(3) sk(3)+sk(4)+sk(5) -sk(4);

0 0 -sk(4) sk(4)];

% Define equality and nonnegativity constraints

F = set(sM*X*Lambda^2 + sC*X*Lambda + sK*X == zeros(n,k));

F = F + set(sm > 0) + set(sc > 0) + set(sk > 0);

62

Note that the intermediate matrix variables sM, sC, and sK are used only for convenience
to define the equality constraint (3.3). The true variables, sm, sc, and sk, in the calculation
are restricted to nonnegative values elementwise through the set command. With care, more
programming details would enable us to bypass generating the intermediate matrices explicitly
and, thus, we may deal with large scale dynamical systems. Since solutions, if exist, of a QIEP
form convex cone, an artificial objective function such as

solvesdp(F,(sm(1,1)-1)^2,ops);

is recommended to prevent arbitrary scaling by normalizing the first mass m1 to unity. Note
that even with the added normalization this is still a convex programming problem. The
return from the SDP computation therefore tells either a completely successful reconstruction
of positive physical parameters or a utterly disastrous failure giving rise to either the trivial
solution or a degenerated system. In our opinion, this is perhaps the most attractive feature in
the SDP approach.

Since the mass-spring system in Figure 3.1 has 12 parameters, it would be interesting to ask
two further questions. Can the parameters be chosen so that the new system has k arbitrarily
prescribed eigenpairs? Even more restrictively but curiously, given an original system with
parameters (m0, c0,k0), can the mass parameters m (or others) alone be altered so that the
new system (m, c0,k0) has one specific but arbitrarily prescribed eigenpair? The answers to
these two problems can easily be investigated numerically by slight modifications of the above
SDP code. It turns out that both answers are negative. This is reasonable because an arbitrary
assignment is almost doomed due to the fact that the eigenstructure of a structured model
should also be structured, even if we do not know of what structure it should be.

4.6 Models with prescribed entries

Till now our concern is focused on the construction of the coefficient matrices (M,C,K) as a
whole. Even in the preceding section where structure of (M,C,K) is restricted to a certain
sparsity pattern , we are still talking about building the entire matrices. In practice, quite
often the reconstruction of the model is limited to a local portion of the system, instead of
rebuilding the entire system. In other words, in a QIEP it is sometimes needed to modify
only a subset of the parameter or a specific part of the coefficient matrices. The former case
has already been illustrated by a simple example in the preceding section where only mass
parameters alone are subject to adjustment with the (unrealized) hope of updating one or more
specific eigenpairs. The latter case could be exemplified by the vibration of bridges, highways,
building or automobiles where the spatial representation for substructures such as abutments,

63

the foundations, or chassis is fixed. In a sense, QIEPs with prescribed entries can be considered
as matrix completion problems.

Matrix completion subject to both structural and spectral constraints with prescribed entries
is a difficult problem. Constructive proofs for some classical results such as the Schur-Horn
theorem [92] and the Hershkowitz theorem [86, 87, 99] are elegant mathematically in their
own right, but beyond these, very few theories or numerical algorithms are available. Now,
we can use the SDP techniques to analyze and solve QIEPs with prescribed entries without
any impediment. In the preceding section we have described a means to impose the sparse
pattern by those fixed zeros while defining the sdpvar variables (See also the next section).
In exactly the same way, we can assign the relevant entries with the prescribed values. After
assigning prescribed values to designated positions in the matrix coefficients and calling up
some appropriate SDP solvers, we will be given a make-or-break decision on the solvability of
the QIEP with prescribed entries. We will further illustrate the application in the next section.

4.7 Model updating problems

We have already explored the idea of model updating with no spill-over in Section 2.4. In this
section, we study another aspect of model updating with minimum changes. Given original
matrices (M0, C0,K0) with specified structures in Rn×n satisfying

Q0(λ) := M0λ
2 + C0λ+K0, (4.16)

with coefficients matrices (M0, C0,K0) in some specified structures, the concern in the current
model updating is to minimize the difference

‖(M0, C0,K0)− (M,C,K)‖F (4.17)

(or a weighted variant) subject to the conditions that the updated coefficient matrices (M,C,K)
meet the algebraic constraint (1.2) under k prescribed eigenpairs and maintain the same pre-
scribed structure. Updating under such a context has been widely applied as an important
tool for the design, construction and maintenance of mechanical systems [9, 12]. A good dis-
cussion about general principles of model updating can be found in the book by Friswell and
Mottershead [62]. The basic idea is to refine, correct, or update the current dynamic model
(4.16) with minimal changes when natural frequencies and mode shapes do not match well with
experimentally measured or desirable frequencies and mode shapes. We could have included
the requirement of no spill-over while searching for the minimal changes, but that is going to
be a more restrictive process.

For practical consideration, any of the previously discussed structures are possible for

64

(M,C,K). However, we find that the most commonly discussed cases in the literature are
when M = M0 � 0 and C and K are symmetric [6, 61, 112, 115] or when C = C0 = 0
[9, 27, 50, 164, 171]. The absence of discussions for other structures in the literature is not
due to their lack of importance. Rather, it is owing to the difficulties associated with the more
complicated constraints. Currently, the most predominant updating techniques seem to be
the Lagrange multiplier approach adopted in [62], the direct approach via dimension reduction
proposed in [112], and the Newton-type iteration used in [6]. They, however, can only handle
quadratic model updating on a structure by structure basis. Indeed, it was proclaimed in [62]
that “Updating is a process fraught with numerical difficulties.”

Amazingly, the SDP techniques with the aid of the YALMIP interface easily give us the
ability to hand almost all kinds of structural constraints within the same framework. Suppose
there is a sparsity pattern, say, in K0. To maintain the same sparsity in the updated matrix
K, we could issue commands such as

sK = sdpvar(n,n).*abs(sign(K_0));

where the element to element multiplication .* is to pick up any nonzero locations of K0.
Suppose the nearness of the updated model to the original model is measured by the objective
function

J = µ‖M−
1
2

0 (M0 −M)M
− 1

2
0 ‖2F + ν‖M−

1
2

0 (C0 − C)M
− 1

2
0 ‖2F + ‖M−

1
2

0 (K0 −K)M
− 1

2
0 ‖2F , (4.18)

where µ and ν are some preselected weight factors [112]. Note that J is a convex but nonlinear
function in (M,C,K). Then we can easily transform (4.18) into a second-order Lorentz cone
programming problem via the YALMIP commands

% Define variables, structured if necessary

sdpvar uM uC uK

sM = ...

:

W = inv(M_0^(1/2));

% Define equality and structural constraints

F = ...

65

% Include rotated Lorentz cones

F = F + set(rcone(reshape(W*(M_0-sM)*W,n^2,1),uM,1/2));

F = F + set(rcone(reshape(W*(C_0-sC)*W,n^2,1),uC,1/2));

F = F + set(rcone(reshape(W*(K_0-sK)*W,n^2,1),uK,1/2));

% Define objective function and call for second order cone programming solvers

sdpsolve(F,mu*uM + nu*uC + uK,ops);

where the command rcone(z,x,y) with a column vector z and scalars x, y > 0 defines a rotated
second order cone constraint ‖z‖22 < 2xy. Again, we stress that the structural constraints to
be imposed upon the updated model (M,C,K) at the line F = ... can be quite general,
including all or some of (M,C,K) being positive semi-definite, of sparsity patterns, mixture of
linear types, or with fixed entries, as we have discussed earlier. Finally, taking advantage of
convex programming, the return from the SDP computation gives us a make-or-break decision
about whether the update is achievable and, if it is so, a global optimal solution is obtained.

Consider the updating of the linear model

(λM0 −K0)x = 0, (4.19)

with some realistic data.

Example 4.7.1 We first choose M0 and K0 to be the matrices BCSSTM01 and BCSSTK01,
respectively, from the Harwell-Boeing Collection [18], BCSSTRUC1. These are 48×48 matrices
whose sparsity patterns are plotted in Figure 4.1. Specifically, M0, with ‖M0‖F ≈ 7.7 × 102,
is a nonnegative diagonal matrix with 24 zeros along its diagonal. K0, with ‖K0‖F ≈ 7.5 ×
109, is symmetric and positive definite. These original data impose two numerical difficulties.
First, there are 24 positive eigenvalues with the remaining 24 at positive infinity. Second,
the two coefficient matrices are not of comparable scales. Both aspects suggest that eigenvalue
computation would be particularly challenging. Indeed, the residuals ‖(λM0 − K0)x‖2 of the
24 real-valued eigenvalues and eigenvectors computed by MATLAB ranges from 5.5 × 10−9 to
1.6 × 10−6, indicating a huge loss of significant digits. Because of this disparity, we have to
use our discretion carefully in deciding whether the SDP scheme has returned a satisfactory
updating in its computation. We carry out our experiment as follows.

Despite the fact that the magnitude of K0 is several order higher that of M0, the SDP
calculation can endeavor to overcome the dissimilarity even if we use the non-weighted objective

66

0 10 20 30 40

0

10

20

30

40

nz = 24

M0

0 10 20 30 40

0

10

20

30

40

nz = 400

K0

Figure 4.1: The 48 × 48 sparse matrices M0 and K0.

function
J(M,K) = ‖M0 −M‖2F + ‖K0 −K‖2F (4.20)

to measure the nearness of updating. Fix one eigenpair (λ,x) of the linear pencil (4.19) with
‖(λM0 −K0)x‖2 ≈ 5.5× 10−9. Suppose we want to find out the nearest coefficient matrices M
and K satisfying an updated eigenpair (µ,x). Specifically, keep the eigenvector invariant and
let the new eigenvalue be a random number generated by

µ = λ(1 + σ|randn(1)|)

with σ = 10−p, p = 1, · · · , 10. Here, randn(1) represents a pseudo-random number generated
from a normal distribution with mean zero and standard deviation one. For different p values,
our idea is to let σ represent the “variance” of the “one-sided” perturbation. Then, we want
to check the feasibility of a linear model (M,K) containing the eigenpair (µ,x) subject to the
same sparse patterns and positive semi-definite properties embedded in (M0,K0).

The feasibility of the computed results is measured by the residual value ‖(µM − K)x‖2.
Ideally, the residual should be zero. In practice, the floating-point arithmetic can return at
most the machine precision if we carefully fine-tune the sdpsettings in YALMIP. In fact, the
singularity and the imbalance in scaling of the original pencil (M0,K0) make it fairly difficult to

67

1 2 3 4 5 6 7 8 9 10
−12

−10

−8

−6

−4

−2

0

2

4

lo
g 1

0
(J

(M
,K

))
p

Objective values over 20 samples of µ

1 2 3 4 5 6 7 8 9 10
−9.6

−9.5

−9.4

−9.3

−9.2

−9.1

−9

−8.9

−8.8

−8.7

lo
g 1

0
(‖

(µ
M

−
K

)x
‖ 2

)

p

Residules over 20 samples of µ

Figure 4.2: Performance of model updating for Harwell-Boeing test data BCSST*01 (n = 48).

verify feasibility even with exact data. The graph on the left side in Figure 4.2 depictes boxplots
of residuals over 20 samples of µ for each p. Assume that the feasibility conditions are satisfied
if the residuals are reasonably small. Within this “feasible set”, we search for a unique pair
(M,K) that is nearest to (M0,K0) by the objective function J(M,K). The graph on the right
side represents boxplots of the corresponding objective values J(M,K). The objective values
deteriorate rapidly as the perturbation of eigenvalues for the structured pencil increases in the
sense of its variance. However, the relative discrepancy

(
‖M0−M‖F
‖M0‖F , ‖K0−K‖F

‖K0‖F

)
returned by the

SDP approach is surprisingly reasonable with respect to the large magnitude of entries in K0.

Note that the peculiar characteristics of the BCSST*01 data makes the performance of the
SDP procedure dubious. For example, if the SDP solver SeDuMi is applied in YALMIP, it returns
the warning message “no sensible solution found”. To check out whether this confusing message
persists, we consider next the BCSST*02 pair which results from applying static condensation
to the oil rig model.

Example 4.7.2 The two matrices (M0,K0) in BCSST*02 are of size 66 × 66, where M0 is
a diagonal matrix but K0 is a dense matrix. Both matrices are symmetric and positive semi-
definite matrices and M0 is nonsingular.

There is still a considerable variation of magnitudes in the entries with ‖M0‖F ≈ 8.2×10−1

68

1 2 3 4 5 6 7 8 9 10

−12

−11.8

−11.6

−11.4

−11.2

−11

−10.8

lo
g 1

0
(‖

(µ
M

−
K

)x
‖ 2

)

p

Residules over 20 samples of µ

1 2 3 4 5 6 7 8 9 10

−16

−14

−12

−10

−8

−6

−4

−2

lo
g 1

0
(J

(M
,K

))

p

Objective values over 20 samples of µ

Figure 4.3: Performance of model updating for Harwell-Boeing test data BCSST*02 (n = 66).

and ‖K0‖F ≈ 5.3 × 104. But, the eigenvalue computation by MATLAB is much more stable
with ‖(λM0 −K0)x‖2 approximately of the order 10−11. Given one computed eigenpair (λ,x)
with ‖(λM0−K0)x‖2 ≈ 2.2×10−11, we carry out a similar experiment using the SDP procedure
and report the test results in Figure 4.3. In contrast to the BCSST*01 pair, the model updating
for BCSST*02 seems more satisfactory.

4.8 Conclusion

The SDP techniques have emerged as a very useful paradigm for solving many convex optimiza-
tion problems. We have observed how the very challenging solvability issues and complicated
computational tasks for various structured QIEPs can be handled using standard software for
SDP. Some of cases discussed in this chapter have not even been considered in the literature.
What is really remarkable is that using the powerful SDP approach, we are able to solve appar-
ently very difficult QIEPs simply, effectively and efficiently. This SDP approach offers a unified
and effectual avenue of attack on the QIEPs in general and the MUPs in particular, which we
think deserves attention from practitioners in this field.

The entire procedure can be carried over with little effort to other types of structure such
as Toeplitz, Hankel, or even palindrome, and so on. In fact, the idea can even be generalized

69

to inverse eigenvalue problems for matrix polynomials of arbitrary degrees which, so far as we
know, have not been studied at all in the literature but our SDP approach makes a numerical
exploration or justification possible.

One possible drawback of the SDP approach is that the interior point methods which are the
main engine behind most SDP algorithms cannot handle large scale problems effectively. Todd
[158] suggested that “The interior-point methods we have discussed can solve most problems
with up to about a thousand linear constraints and matrices of order up to a thousand or so.”
However, QIEPs under the SDP paradigm are in the dual form. Thus, instead of tracking both
dual and primal problems, it is possible to develop a specic technique working on this dual part
directly. This might boost the SDP techniques and it is a subject currently under investigation.

70

Part II

Low Rank Factorizations

71

Chapter 5

Nonnegative Matrix Factorization

via Polytope Approximation

5.1 Overview

The problem of nonnegative matrix factorization (NMF), defined in (1.3), arises in a large
variety of disciplines in sciences and engineering. Its wide range of important applications such
as text mining, cheminformatics, factor retrieval, image articulation, dimension reduction and
so on has attracted considerable research efforts. Many different kinds of NMF techniques
have been proposed in the literature, notably the popular Lee and Seung iterative update
algorithm [119, 120]. Successful applications to various models with nonnegative data values
are abounding. We can hardly be exhaustive by suggesting [56, 91, 95, 105, 108, 121, 124, 137,
139, 142] and the references contained therein as a partial list of interesting work. The review
article [152] contains many other more recent applications and references.

The basic idea behind the NMF is the typical linear model,

A = UV, (5.1)

where A = [aij] ∈ Rm×n denotes the matrix of “observed” data with aij representing, in a
broad sense, the score obtained by entity j on variable i, U = [uik] ∈ Rm×p is a matrix with
uik representing the loading of variable i from factor k or, equivalently, the influence of factor
k on variable i, and V = [vkj] ∈ Rp×n with vkj denoting the score of factor k by entity j or
the response of entity j to factor k. The particular emphasis in NMF is that all entries of
the matrices are required to be nonnegative. To provide a little bit motives on the study of
the NMF, we briefly outline two applications below. A good survey of other interesting NMF
applications can be found in [152, Section 6.2].

72

The receptor model is an observational technique commonly employed by the air pollution
research community which makes use of the ambient data and source profile data to apportion
sources or source categories [90, 91, 106, 151]. The fundamental principle in this model is the
conservation of masses. Assume that there are p sources which contribute m chemical species to
n samples. The mass balance equation within this system can be expressed via the relationship,

aij =
p∑

k=1

uikvkj , (5.2)

where aij is the elemental concentration of the ith chemical measured in the jth sample, uik is
the gravimetric concentration of the ith chemical in the kth source, and vkj is the airborne mass
concentration that the kth source has contributed to the jth sample. In a typical scenario, only
values of aij are observable whereas neither the sources are known nor the compositions of the
local particulate emissions are measured. Thus, a critical question is to estimate the number p,
the compositions uik, and the contributions vkj of the sources. For physical feasibility, the source
compositions uik and the source contributions vkj must all be nonnegative. The identification
and apportionment, therefore, becomes a nonnegative matrix factorization problem of A.

In another application, the NMF has been suggested as a way to identify and classify intrinsic
“parts” that make up the object being imaged by multiple observations. More specifically, each
column aj of a nonnegative matrix A now represents m pixel values of one image. The columns
uk of U are basis elements in Rm. The columns of V , belonging to Rp, can be thought of
as coefficient sequences representing the n images in the basis elements. In other words, the
relationship,

aj =
p∑

k=1

ukvkj , (5.3)

can be thought of as that there are standard parts uk in a variety of positions and that each
image aj is made by superposing these parts together in some ways. Those parts, being images
themselves, are necessarily nonnegative. The superposition coefficients, each part being present
or absent, are also necessarily nonnegative. In either case above and in many other contexts of
applications, we see that the p factors, interpreted as either the sources or the basis elements,
play a vital role. In practice, there is a need to determine as fewer factors as possible and, hence,
a low rank nonnegative matrix approximation of the data matrix A arises. The mathematical
formulation of an NMF has been defined earlier in (1.3).

It has been argued that the NMF can be interpreted geometrically as the problem of finding
a simplicial cone which contains a cloud of data points located in the first orthant [56]. Further
extending that thought, we recast in this investigation the NMF as the problem of approxi-
mating a polytope on the probability simplex by another polytope which has fewer facets. Our

73

basic idea follows from computational geometry where a complex shape is to be “silhouetted”
by a simpler one. In our particular setting, the complex shape refers to the boundary of a con-
vex polytope of n points in Rm whereas the simpler one refers to that of p points in the same
space. A unique characteristic in our approach is that the approximation is to take place on the
probability simplex. We shall exploit the fact that the probability simplex, being a compact set
with well distinguishable boundary, makes the optimization procedure easier to manage. For
convenience, we denote henceforth a nonnegative matrix U by the notation U ≥ 0.

This chapter actually deals with two related but independent problems. The first problem
considers the polytope approximation only on the probability simplex. The underlying geometry
is easy to understand, but the problem is of interest in itself. More importantly, with slight
modifications the idea lends it geometric characteristics naturally to the more difficult NMF
problem. For both problems a common feature in our approach is alternating optimization.
That is, by rewriting the equivalent formulations (at the global minimization point):

min
U,V≥0

‖A− UV ‖2F = min
U≥0

(
min
V≥0
‖A− UV ‖2F

)
(5.4)

= min
V≥0

(
min
U≥0
‖A− UV ‖2F

)
, (5.5)

we solve minV≥0 ‖A−U0V ‖2F from an initial matrix U0 to find the solution matrix V0, and then
solve minU≥0 ‖A − UV0‖2F to find the next iterate U1. In general, V` is obtained from U` and
U`+1 is obtained from V`. Our main contribution is to explain how the unique global minimizers
to the two subproblems (5.4) and (5.5) can be computed alternatively.

We organize our presentation as follows. Beginning in section 5.2, we briefly describe how the
original NMF can be formulated as a low dimensional polytope approximation through scaling.
When limited to the probability simplex, we introduce in section 5.3 two basic mechanisms for
polytope approximation — a recursive algorithm which projects a given point onto a prescribed
polytope and a descent method which slides points along the boundary of the probability
simplex to improve the objective value. We emphasize that the recursive algorithm determines
the unique and global proximity map in finitely many steps and thus enables our NMF method,
to be discussed in section 5.4, to obtain much better, generally of several order, improvement
over the well know Lee-Seung updating algorithm [120] per iterative step.

5.2 Pull-back to the probability simplex

In this section, we develop a simple technique, based on the concept of “normalization”, for
obtaining an geometric representation of A such that its NMF can be described as a low
dimensional polytope approximation.

74

Given a nonnegative matrix A = [a1, . . . ,an] ∈ Rm×n+ with nonzero columns ak ∈ Rm, the
associated pull-back map ϑ(A) is defined by

ϑ(A) := Aσ(A)−1. (5.6)

where σ(A) is the scaling factor given by

σ(A) := diag {‖a1‖1, . . . , ‖an‖1} (5.7)

with ‖ · ‖1 representing the 1-norm of a vector. Note that each column of ϑ(A) can be regarded
as a point on the (m− 1)-dimensional probability simplex Dm defined by

Dm :=
{

a ∈ Rm+ |1>ma = 1
}
, (5.8)

where 1m = [1, . . . , 1]> stands for the vector of all 1’s in Rm. Clearly, all columns of ϑ(A) must
be contained in its convex hull C(A) on Dm. Actually, the vertices of C(A) are composed of a
subset of columns of ϑ(A). We denote this fact by a submatrix Ã = [ai1 , . . . ,aip] ∈ Rm×p of A
such that

C(A) := conv(ϑ(A)) = conv(ϑ(Ã)).

Then every column of ϑ(A) could be expressed in a convex combination of columns of ϑ(Ã).
This fact can be denoted by the equation

ϑ(A) = ϑ(Ã)Q, (5.9)

where Q ∈ Rp×n itself represents p points in the simplex Dp. Together, we have obtained

A = ϑ(A)σ(A) = ϑ(Ã)(Qσ(A)) (5.10)

which is an exact nonnegative matrix factorization of A.
It is worth noting that the integer p in this setting represents the number of vertices of the

convex hull conv(ϑ(A)). All we know is that p ≤ n, but generally p ≥ m. See Figure 5.1.
In practice, we prefer to see that ϑ(A) is contained in convex hull with fewer than min{m,n}
vertices, but clearly this is not always possible and thus the factorization has to be replaced by
the notion of approximation.

Suppose that a given nonnegative matrix A ∈ Rm×n+ can indeed be factorized as the product
of two nonnegative matrices, A = UV , with U ∈ Rm×p+ and V+ ∈ Rp×m. Then

A = ϑ(A)σ(A) = UV = ϑ(U)ϑ(σ(U)V)σ(σ(U)V). (5.11)

75

Convex hull of ϑ(A)

Probability simplex

1

1

1

Figure 5.1: Convex hull of ϑ(A) ∈ R3×n with n = 11.

where the product ϑ(U)ϑ(σ(U)V) itself is on the simplex Dm. It follows that

ϑ(A) = ϑ(U)ϑ(σ(U)V), (5.12)

σ(A) = σ(σ(U)V). (5.13)

Since UV = (UD)(D−1V) for any invertible matrix D ∈ Rp×p, we may assume without loss
of generality that U = ϑ(U) with σ(U) = In. In the context that ϑ(A) = ϑ(U)ϑ(V) and
σ(A) = σ(V), we may say that ϑ is a homomorphism and that σ is length preserving.

So far we are interested in the matrix A being factorized exactly into two nonnegative
matrices U and V . In order to ensure such a factorization, it require that the integer p be large
enough such that all columns of ϑ(A) are included in a convex hull generated by p vertices in
Dm. A requirement of large p is not of practical value in applications. But, the above analysis
seems to shed some light on the geometric meaning of NMF.

If p is not large enough, the equality most likely cannot hold. The next reasonable expection
is to discover two matrices U ∈ Rm×p+ and V ∈ Rp×n+ minimizing the distance between A and
UV . In other words, we want to optimize the objective functional

f(U, V) =
1
2
‖A− UV ‖2F =

1
2
‖

ϑ(A)− U V σ(A)−1

︸ ︷︷ ︸
W

σ(A)‖2F , (5.14)

76

with the assumption that the matrix U is already normalized to Dm. For convenience, denote

W = V σ(A)−1. (5.15)

Each column of the product can be interpreted as points in the simplicial cone of U . Thus the
NMF is equal to find points {u1, . . . ,up} on the simplex Dm so that the distance from ϑ(A) to
the simplicial cone spanned by {u1, . . . ,up}, measured by a weighted norm, is minimized. The
main trust of the remaining discussion is to explain the minimization process. Based on the the
well known Hahn-Banach theorem, the optimization can be accomplished by simply utilizing
the notion of supporting hyperplanes of the convex set.

Note that the scaling factor σ(A) depends on each given A. The distance between A and
UV measured in the Frobenius norm therefore can be viewed as the distance between ϑ(A) and
UW measured with the induced norm from the weighted inner product.

5.3 Polytope fitting problem

Before treating the general NMF problem, we consider in this section a special set estimation
problem which is worthy of discussion in its own right — Use a simpler polytope on the simplex
Dm to best approximate a more complicated polytope conv(ϑ(A)) such that the total distance
from vertices of ϑ(A) to the polylope conv(U) is minimal. This consideration is mathematically
equivalent to

1
2
‖ϑ(A)− UW‖2F , (5.16)

subject to the constraints that columns of U are in Dm and columns of W are in Dp.
This characteristic of this problem is similar in spirit to the well known sphere packing

problem [46] as well as the classical problem of approximating convex bodies by polytopes
[28, 42, 77, 78]. The underlying principle is also analogous with that of the k-plane method
[128] or the support vector machines method [11]. Above and beyond, the geometric object used
in our optimization, which is either a subspace or a polytope, is with high co-dimension and
therefore harder to peculiarize. For applications, the set estimation is also essential to pattern
analysis [83], robotic vision and tomography, although most of the applications investigated
in pattern recognition are restricted to only 3-D objects while we are interested in higher
dimensional entities.

This optimization problem described in (5.16) possess a profound geometric meaning in
itself. Since conv(U) has fewer vertices than conv(ϑ(A)), the minimization of (5.16) conveys
a sense of retrieving and regulating the “shape” of ϑ(A) via fewer facets. Note that columns
of W represents coefficients in this convex combination. It is necessary that the diameter of

77

conv(U) should be at least as large as that of conv(ϑ(A)). That is, if the data ϑ(A) starts with
an elongated distribution over Dm, the convex hull at the optimal solution should preserve a
similar shape. Unless the vertices of conv(ϑ(A)) are sitting on the boundary of Dm, conv(U)
can always be ”extended” outward a little bit toward the boundary of Dm without affecting
the product of UW . The means that the solution U clearly need not to be unique.

We demonstrate the idea of annexation for the solution U in Figure 5.2 for the case m = 3
and p = 2. Note that by expanding the segment representing conv(U) to the two sides of the

conv(U)

conv(ϑ(A))

D3

Figure 5.2: Convex hull of ϑ(Y) and U in D3.

triangle, it consistently gives rise to the same nearest points to ϑ(Y). For this reason, the
columns of U can be assumed to reside on the boundary of the simplex Dm. We can easily
characterize a point on the boundary of Dm by the location of zero(s) in its coordinates. For
example, each facet has one zero. The ith column in the following matrix, divided by the scalar
m− 1,

1
m− 1

0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 1
...

. . .

1 1
1 1 1 0

represents the “midpoint” of the ith facet of the simplex Dm. When there is more than one
zero in the entries, we consider this point to be on a “ridge” and so on.

Combining the above thoughts together, the polytope fitting problem can be formulated as

78

a constrained optimization problem,

minimize g(U,W) =
1
2
‖ϑ(A)− UW‖2F ,

subject to columns of U ∈ ∂Dm, W � 0, 1>pW = 1>n , (5.17)

where ∂Dm stands for the boundary of Dm. During the computation, it matters to track which
boundary is being involved in U .

In the next two subsections, alternating direction iteration (ADI) will be used for solving
(5.17). With slight modification, the idea will later be extended to the NMF problem.

5.3.1 Proximity map on the probability simplex

Let U ∈ Rm×p be a fixed matrix with its columns in ∂Dm. Temporarily ignoring the constraint
W � 0, define the Lagrangian

L(U,W ; µ) :=
1
2
‖ϑ(A)− UW‖2F + (1>pW − 1>n)µ. (5.18)

associated with the problem (5.17) with a vector µ ∈ Rn×1. A necessary condition for the
optimal solution W is that partial gradient of (5.18) with respect to W must be zero, that is,

∂L(U,W ; µ)
∂W

= −U>(ϑ(Y)− UW) + 1pµ> = 0, (5.19)

Thus we have
W := (U>U)−1(U>ϑ(Y)− 1pµ>), (5.20)

and

µ> =
1>p (U>U)−1U>ϑ(Y)− 1>n

1>p (U>U)−11p
. (5.21)

The trouble is that the formula (5.20) cannot guarantee W � 0. As an alternative approach, we
suggest employing the notion of proximity map based on the classical Hahn-Banach theorem
to compute W .

The Hahn-Banach theorem is one of the most important results in functional analysis.
It asserts that two disjoint convex sets in a topological vector space can be separated by a
continuous linear map [20]. The following equivalent statement serves as the basis of our
theory.

Theorem 5.3.1 Let C be a closed convex set in Rm. Then for each given point x ∈ Rm, there
is a unique point ρ(x) ∈ C that is nearest to x.

The nearest point ρ(x) is called the proximity map of x with respect to C. In a Euclidean

79

Algorithm 2: Sekitani and Yamamato Algorithm [x̂] = N (U)
Input: Matrix U ∈ Rm×p (A set of p points in Rm)
Output: x̂ = ρ(0) with respect to conv(U)
(For a given point set S, the symbol N (S) denotes the point on conv(S)
which has the minimum Euclidean norm.)
begin2.1

k ← 0; x0 ← an arbitrary point from conv(U);2.2

(find supporting hyperplane)

αk ← min
{
x>k−1p|p ∈ U

}
;2.3

if ‖xk−1‖2 ≤ αk then2.4

x̂← xk−1; stop;2.5

end2.6

(recursion)

Pk ←
{
p|p ∈ U and x>k−1p = αk

}
;2.7

yk ← N (Pk);2.8

(check separation)

βk ← min
{
y>k p|p ∈ U − Pk

}
;2.9

if ‖yk‖2 ≤ βk then2.10

x̂← yk; stop;2.11

end2.12

(rotation and updating)

λk ← max
{
λ| ((1− λ)xk−1 + λyk)

> yk ≤ ((1− λ)xk−1 + λyk)
> p,p ∈ U − Pk

}
;2.13

xk ← (1− λk)xk−1 + λkyk;2.14

k ← k + 1;2.15

Go to line 2.3;2.16

end2.17

space, it is clear that the necessary and sufficient condition for qaulifying ρ(x) is that the
inequality

(x− ρ(x))>(z− ρ(x)) ≤ 0 (5.22)

holds for all z ∈ C. In particular, ‖ρ(0)‖2 ≤ ρ(0)>z for all z ∈ C.
Corresponding to each column of ϑ(A), our goal is to find out its unique nearest point (prox-

imity map) in conv(U). Since this nearest point resides in conv(U), it is a convex combination
of columns of U . It follows that W � 0 automatically. Toward this goal, the remaining task
is to develop an algorithm that is able to compute proximity map for each column of ϑ(A)
with respect to U . The recursive algorithm proposed by Sekitani and Yamamato [148] seems
to be a reasonable means for computing the proximity map when p is small. To carry out the

80

computation, recall that a hyperplane is a set of the form

H(n, c) := {x|n>x = c}, (5.23)

where the vector n 6= 0 and the scalar c are some given quantities. Each hyperplane divides
Rm into two half-space, one of which defined by

H+(n, c) := {x|n>x ≥ c}

is of interest to us. Let C be a given convex set and the origin 0 /∈ C. Then, the hyperplance
H(ρ(0), ‖ρ(0)‖2) is called a supporting hyperplane to C at the point ρ(0), provided

C ⊂ H+(ρ(0), ‖ρ(0)‖2).

The main idea in the Sekitani and Yamamato algorithm, outlined in Algorithm 2, is built upon
repeatedly searching for the best supporting hyperplane by discarding unneeded facets of the
underlying polytope. The supporting hyperplanes are constructed though Steps 2.3 to 2.5 in
Algorithm 2; unneeded facets are disposed of at Step 2.7; Steps 2.13 to 2.14 aim at improving
the supporting hyperplanes. The entire process is repeated recursively until the nearest point
is found.

It is worthwhile to remark three important features of the routine Sekitani and Yamamato
algorithm. First, it does not need to solve systems of linear equations since it is not based
on simplicial decomposition as in the classical method [166]. Second, it can begin with an
arbitrary point in conv(U). That is, it does not require any initial separating hyperplane.
Third, it terminates in finite steps. More details about its mathematical theory are referred to
[148].

With the aid of programming languages, such as MATLAB, that allow a subprogram to
invoke itself recursively, we implement Algorithm 2 in the following code for our applications.

function [y,c] = sekitani(U,active);

%

% The code SEKITANI computes the nearest point on the polytope generated by

% the columns of U to the origin.

%

% Reference:

%

% Sekitani and Yamamoto Algorithm, Math. Programming, 61(1993), 233-249.

81

%

% Input:

%

% U = vertices of the given polytope

% active = set of active column indices (of U) for recursive purpose.

%

% Output:

%

% y = the point on conv(U) with minimal norm

% c = convex coordinates of y with respect to U, that is, y = Uc

%

[m,p0] = size(U); p = length(active);

eps = 1.e-13; % relaxed machine zero

looping = ’y’;

temp0 = norm(U(:,active(1))); S = 1; for j = 2:p

temp1 = norm(U(:,active(j)));

if temp1 < temp0, temp0 = temp1; S = j; end

end

x = U(:,active(S)); % starting point

xc = zeros(p0,1);

xc(active(S)) = 1; % initial coordinates of x

while looping == ’y’;

temp0 = x’*U(:,active);

alpha = min(temp0);

K0 = find(temp0<=alpha+eps); % find supporting hyperplanes

if norm(x)^2 <= alpha+eps

y = x;

c = xc;

looping = ’n’;

return

else

Pk = active(K0);

if length(K0) == 1,

y = U(:,Pk);

82

c = zeros(p0,1);

c(Pk) = 1;

else

[y,c] = sekitani(U,Pk); % recursion

end

end

I_K0 = setdiff(1:p,K0);

temp1 = y’*U(:,active(I_K0));

beta = min(temp1);

if norm(y)^2 <= beta+eps

looping = ’n’;

return

else

temp3 = U(:,active(I_K0))-y*ones(1,length(I_K0));

temp5 = find(((y-x)’*temp3)<0);

temp4 = (x’*temp3(:,temp5))./((y-x)’*temp3(:,temp5));

lambda = -max(temp4); % maximal rotation parameter

delta = lambda*(y-x);

if norm(delta) <= max([m,p])*eps

looping = ’n’;

return

else

x = x + lambda*(y-x);

xc = xc + lambda*(c-xc); % updated coordinates of x

looping = ’y’;

end

end

end

The procedure described in [148] computes only the nearest point x̂ on the polytope conv(U).
In our applications, we need to know the convex combination coefficients of x̂ corresponding to
U . It turns out that the coefficient c such that x̂ = Uc with

∑p
i=1 ci = 1 and ci ≥ 0 could be

collected with only a few vector operations in our code.
The Sekitani and Yamamato algorithm is meant to find the proximity map ρ(0) on conv(U)

that is nearest to the origin. To generalize the proximity map ρ(x) with respect to a general
point x, we only need to translate the origin to x. Algorithm 3 illustrates the procedure of how

83

Algorithm 3: Polytope fitting problem on the probability simplex [W] = SIMPLEX(U)
Input: Z = ϑ(A) ∈ Rm×n and U ∈ ∂Dm
Output: W = the convex combination coefficients for the proximity map of Z onto conv(U)
begin3.1

for i← 1 to n do3.2

U0← U − Z(:, i)1>p ;3.3

active← [12 · · · p];3.4

[s, c]← sekitani(U0, active);3.5

W (:, i)← c;3.6

end3.7

end3.8

to find the optimal solution of Problem (5.17) for each given U . We quickly point out that the
computation for each Z(i, :) between Steps 3.2 and 3.7 in Algorithm 3 is independent of each
other. This segment is embarrassingly parallelizable and, thus, can be effectively executed on
a parallel machine, if so desired.

5.3.2 Alternating direction iteration

Once the optimal W is found for a given U , the next step is to redefine the convex conv(U) to
better fit cov(ϑ(Y)). We need to update columns of U along the boundary ∂Dm. We choose
to carry out this task by the projected gradient method with line search. It is easy to see that
the gradient of g with respect to U at a feasible point (U,W) is given by the m× p matrix

∇Ug(U,W) :=
∂g

∂U
= −(ϑ(Y)− UW)W>. (5.24)

For i = 1, . . . p, the ith column of ∇Ug(U,W) represents precisely the gradient ∇uig(U,W)
of g with respect to the column ui. The trouble is that this gradient often points away from
the simplex. To remedy this, we have to project the gradient back to ∂Dm. As a result, the
movement of ui in the negative direction of its projected gradient not only reduces the objective
value of g but also stays in ∂Dm. Note that the projection of the gradient has to be computed
with respect to different column vectors of U step by step. Since the probability simplex Dm
consists of m facets, we can identify the facet by the location of its coordinate. In application,
it is necessary to know which facet the current gradient ∇uig(U,W) is related to. Usually, we
improve ui within the same facet where ui resides. While ui happens to be at the intersection of
two facets, a decision should be made to move the current ui to a suitable facet for improve the
minimization. The tactics for controlling the facet crossing will be investigated in the sequel.

Suppose that ui resides on the jth facet of Dm. The jth facet of Dm can be regarded as

84

the intersection of two hyperplanes y1 + . . .+ ym = 1 and yj = 0 in Rm. If we define the m× 2
matrix

Aj := [1m, ej] , (5.25)

where ej is the jth standard unit vector in Rm, then the projection of ∇uig(U,W) onto the jth
facet is given by

∇jui
g(U,W) := (Im −Aj(A>j Aj)−1A>j)∇uig(U,W). (5.26)

Interestingly, without a difficult calculation, the projection matrix Aj(A>j Aj)
−1A>j is attainable

through the formula

Aj(A>j Aj)
−1A>j =

1
m− 1

1 . . . 1 0 1 . . . 1
...

. . .
...

1 1 0 1
0 0 m− 1 0 . . . 0
1 1 0 1 1
...

...
1 . . . 1 0 1 . . . 1

, (5.27)

where the value m − 1 occurs at the (j, j) position of the matrix. This formula provides an
efficient and direct way for computing the projected gradient.

After getting the projection ∇juig(U,W), i = 1, . . . , p, line search techniques are used to
adjust ui for reducing the object value. While applying the line search, any entry of the newly
computed matrix must remain positive. Therefore, we must be careful to fine-tune the step
size to avoid overshooting beyond the current facet. The optimal step size becomes the longest
step which can reduce the object value most while keeping all entries of the updated matrix
nonnegative. Whenever an entry is crossing zero, it indicates that the search path is now
reaching a “ridge” and a change of the facet is to be discerned. The procedure about updating
U is summarized in Algorithm 4 below.

At Step 4.6 in Algorithm 4, finding the optimal α to minimize the objective value becomes
an important issue in keeping the updated matrix U nonnegative. We prefer a value of α that
decreases h rapidly, but we also need to reduce the size of α when its α value gives rise to
negative entries in matrix U . When there are more than one zero in the current column of U , it
means that the searching path is now reaching a “ridge” and the new appearing zero suggests
the direction of changing the “facet”.

85

Algorithm 4: IMPROVING U [U] = improve(U)

Input: ϑ(A) ∈ Rm×n+ , U ∈ ∂Dm, and W ∈ Rp×n+

Output: Updated matrix U ∈ ∂Dm
begin4.1

Use formula (5.24) to calculate the gradient of g with respect to U ;4.2

for i← 1 to p do4.3

Use formula (5.26) to compute the projection of ∇uig(U,W) onto the jth facet;4.4

end4.5

Choose α to minimize h(α) = g(U + α∇ug(U,W),W);4.6

Update U while keeping each entry of U nonnegative;4.7

end4.8

Given Z = ϑ(A) ∈ Rm×n, U ∈ ∂Dm and W ∈ Rp×n, the following MATLAB code details
the procedure of adjusting U along ∂Dm while minimizing the objective g(U,W).

function [U,facet] = update(Z,U,W,facet);

%

% Input:

%

% Z = points to be aprroximated

% U = vertices of the current polytope

% W = convex combination coefficients

% facet = indices of facets where U is residing

%

% Output:

%

% U = vertices of new polytope

% facet = indices of new facets where U is residing

%

[m,p] = size(U);

eps = 1.e-10; % termination tolerance

residue = Z-U*W;

gradient_U = residue*W’; % negative gradient

if norm(residue,’fro’) < eps, return, end

86

tempA = eye(m)-ones(m)/(m-1);

for i = 1:p

Proj_matrix = tempA;

Proj_matrix(facet(i),:) = 0;

Proj_matrix(:,facet(i)) = 0;

temp0 = Proj_matrix*gradient_U(:,i);

if norm(temp0) > eps*10

temp0 = temp0/norm(temp0);

else

temp0 = temp0*0;

end

proj_grad_U(:,i) = temp0; % normalized projected gradient

end

temp1 = trace(proj_grad_U*gradient_U’);

temp2 = norm(proj_grad_U*W,’fro’)^2;

alpha = temp1/temp2; % step size for steepest descent

Unew = U + alpha * proj_grad_U;

Unew = Unew.*(abs(Unew)>eps*10);

[row,column] = find(Unew<0); % detecting zero crossing

if isempty(column) == 0,

alpha_modify = alpha;

for i = 1:length(column)

temp = -U(row(i),column(i))/proj_grad_U(row(i),column(i));

if abs(temp) < eps

alpha_modify = 0;

vertex = [row(i),column(i)];

elseif temp < alpha_modify

alpha_modify = temp;

vertex = [row(i),column(i)];

end

end

U = U + alpha_modify*proj_grad_U;

facet(vertex(2)) = vertex(1); % facet change

87

else

U = Unew;

end

U = U.*(abs(U)>eps);

Now we can solve the polytope approximation problem (5.17) by using Algorithms 3 and
4 alternatively between U and W . Since this is a descent method in both direction, we will
repeat the iteration until it converges. It is easy to see that limit point depends on the starting
value U (0). Some numerical examples will be illustrated in Section 5.5.

5.4 Application to the nonnegative matrix factorization

In this section, we discuss the application of polytopy approximation to the NMF defined in
(5.14). Compared with the above polytope approximation, this NMF has two different features.
First, the matrix A does not sit on the probability simplex Dm anymore. That is, the inner
product used in the polytope approximation will be affected by the weight σ(A). Second, each
column sum of the matrix W is no longer required to be one. Even so, we can easily generalize
the idea investigated in the proceeding section can easily be generalized.

We first explain why the conventional method for finding the minimizers U and W might
break down. Regardless of its deficiency, this traditional approach provides an insight into the
geometric meaning which we shall discuss later. A constrained optimization problem for the
NMF (5.14) is defined as:

minimize f(U, V) =
1
2
‖ϑ(A)− UV ‖2F =

1
2
‖

ϑ(A)− U V σ(A)−1

︸ ︷︷ ︸
W

σ(A)‖2F ,

subject to 1>mU = 1>p , W � 0, (5.28)

Again, temporarily ignoring the condition W � 0, the Lagrangian is

L(U,W ; µ) :=
1
2
〈(ϑ(A)− UW)σ(A), (ϑ(A)− UW)σ(A)〉+ (1>mU − 1>p)µ. (5.29)

It follows that with respect to the Frobenius inner product over the product space Rm×p×Rp×n

88

the partial gradients of L are given by

∂L(U,W ; µ)
∂U

= −(ϑ(A)− UW)σ(A)2W> + 1mµ>, (5.30)

∂L(U,W ; µ)
∂W

= −U>(ϑ(A)− UW)σ(A)2, (5.31)

respectively. The first order optimality conditions requires that U and W must satisfy the
equations

U =
(
ϑ(A)σ(A)2W> − 1mµ>

)(
Wσ(A)2W>

)−1
, (5.32)

W =
(
U>U

)−1
U>ϑ(A), (5.33)

and that the Lagrange multiplier µ is given by

µ> =
1
m

(
1>n σ(A)2W> − 1>pWσ(A)2W>

)
. (5.34)

Note that the equation (5.33) is precisely the normal equation for the least squares problem

UW = ϑ(A), (5.35)

though we prefer to see further that W � 0.
It would be instructive to consider the geometry associated with the simplest case when

m = 2 and p = 1. For convenience, denote

σ(A) = diag{σ1, . . . , σn}.

Then the NMF problem in (5.28) is equivalent to finding u ∈ D2 and nonnegative scalars
w1, . . . , wn such that

f(u, w1, . . . , wn) :=
1
2

n∑

i=1

σ2
i ‖ϑ(ai)− uwi‖22, (5.36)

is minimized. The relationships (5.32) and (5.33) become

u =
n∑

i=1

(
σ2
iwi∑n

i=1 σ
2
iw

2
i

ϑ(ai)−
σ2
iwi − σ2

iw
2
i

2
∑n

i=1 σ
2
iw

2
i

12

)
, (5.37)

wi =
u>ϑ(ai)

u>u
, i = 1, . . . , n. (5.38)

Note that wi defined in (5.38) is precisely the projection of ϑ(yi) onto u. The relevant geometry
is sketched in Figure 5.3. In this case, the value of wi is guaranteed to be positive and is known

89

ϑ(a1)

ϑ(a2)

ϑ(an)

u

Find this direction

Figure 5.3: NNMF in R2 when p = 1.

as soon as u is given. It remains to turn the “knob” of a nonnegative vector u properly so as
to satisfy (5.37) and u ∈ D2. Nevertheless, this simple geometry cannot be generalized because
the condition W � 0 cannot be guaranteed by the projection (5.33) in higher dimensional space.
In the following, we discuss how to solve NMF by the techniques developed for the polytope
approximation in the preceding section.

5.4.1 Proximity map on the the simplicial cone

Substituting the variable W = V σ(A)−1 in problem (5.28), we rewrite the objective functional
as

h(U,W) =
1
2
‖(ϑ(A)− UW)σ(A)‖2F =

1
2

n∑

i=1

σ2
i ‖ϑ(ai)− Uwi‖22, (5.39)

which is equivalent to f(U, V) in (5.14). It is clear that in order to minimize h(U,W), each
term in (5.39) must be minimized. Given a fixed U and ϑ(A), we want to find W so as to
minimize h(U,W). In other words, we need to best approximate each column of ϑ(A) within
the simplicial cone of U .

To begin with, because ‖ϑ(A)‖1 = 1, columns of ϑ(A) reside in the compact set Dm, the
nearest points of ϑ(A) on the simplicial cone of U must be in a bounded set. We need not
search far over the simplicial cone. All we need to do is to extend the columns of U a little bit
such that the proximity maps of ϑ(A) are included in a bounded convex set generated by the
origin and columns of U . It is on this polytope where we can apply Algorithm 3 to find out all

90

nearest points. Mathematical details are described below.

Convex hull of ϑ(A)

Simplicial cone of U
u1

u2

1

1

1

Figure 5.4: Simplicial cone of U and convex hull of ϑ(Y) ∈ R3×n with p = 2 and n = 11.

Given a large enough and fixed positive constant α, define

Ũ = [0, αu1, . . . , αup] (5.40)

to be the truncated simplicial cone. Columns of Ũ ∈ Rm×(p+1) represent p + 1 vertices of the
polytope toward which ϑ(yi), i = 1, . . . , n, is to find its nearest point on the simplicial cone
of U . See Figure 5.4 for a geometric illustration. Now, apply Algorithm 3 to find the convex
combination coefficients W̃ ∈ R(p+1)×n for the proximity map of ϑ(Y) onto conv(Ũ). To retrieve
W , decompose W̃ into two blocks,

W̃ =

[
w>0
W0

]
, (5.41)

where w>0 denotes the first row of W̃ and W0 ∈ Rp×n. It is easy to see that the nearest points
of the matrix ϑ(Y) on the simplicial cone of U is given by the product of matrices,

ŨW̃ = UW, (5.42)

with W = αW0. By construction, it is definitely true that W � 0, but W is no longer on Dp.
With a suitable α value, we have found this optimal W .

91

Indeed, since
min
wi�0

‖ϑ(yi)− Uwi‖2 = min
wi�0

‖ϑ(yi)− (αU)
wi

α
‖2, (5.43)

we should be able to scale down the length of the vector so that ‖wi
α ‖1 ≤ 1 for all i = 1, . . . , n

with a large enough positive scalar α. That is, ‖W0‖1 ≤ 1 if the value α is large enough. It is
important to note that if ‖W0‖1 ≤ 1, then the proximity map of ϑ(Y) must reside within Ũ .
Consequently, it makes the application of Algorithm 3 sensible and optimal.

The following theorem suggests that a reasonable truncated simplicial cone should be such
that α ≥ 2

√
m.

Theorem 5.4.1 For matrices ϑ(Y) ∈ Rm×n+ , U = ϑ(U) ∈ Rm×p+ , and i = 1, . . . , p, if ŵi is the
minimizer of

min
wi�0

‖ϑ(yi)− Uwi‖2 (5.44)

then ‖ŵi‖1 ≤ 2
√
m.

Proof. Since minwi�0 ‖ϑ(yi)− Uwi‖2 ≤ ‖ϑ(yi)‖2, observe that at the minimizer ŵi of (5.44)
we have

‖ϑ(yi)− Uŵi‖2 ≤ ‖ϑ(yi)‖2 ≤ ‖ϑ(yi)‖1 = 1, (5.45)

and

‖ϑ(yi)− Uŵi‖2 ≥ ‖Uŵi‖2 − ‖ϑ(yi)‖2 ≥ ‖Uŵi‖2 − ‖ϑ(yi)‖1 = ‖Uŵi‖2 − 1. (5.46)

It follows that

‖Uŵi‖2 ≤ 2. (5.47)

Note that

1√
m
‖Uŵi‖1 ≤ ‖Uŵi‖2. (5.48)

Since ϑ(U) = U , then

‖Uŵi‖1 = ‖u1ŵi1‖1 + · · ·+ ‖upŵip‖1
= |ŵi1|+ · · ·+ |ŵip|
= 1√

m
‖ŵi‖1

(5.49)

where U = [u1, . . . ,up] and ŵi = [ŵi1, . . . , ŵip]. Then, it follows from formulae (5.47), (5.48),
and (5.49) that ‖ŵi‖1 ≤ 2

√
m. 2

92

Going back to the original NMF, given A and U , our Algorithm 3 computes a p × n non-
negative matrix,

V = Wσ(A), (5.50)

which is a global minimizer for the objective functional f(U, V). This is in contrast with
the nature of most available NMF algorithms where only a local minimizer is attained. It is
especially so in the well known Lee and Seung’s multiplicative update rule [120],

V + = V. ∗ (U>A)./(U>UV). (5.51)

We also emphasize that the cost of Algorithm 3 is comparable with that of the multiplicative
update since the former involves only a few inner products in the process of seeking the sup-
porting hyperplanes. We do point out that extensive indexing in our algorithm might become
a major shortcoming if the code is to executed on a machine with slow I/O capacity.

5.4.2 Alternating direction search

Now we discuss two ways to update U for the NMF from a given W � 0.
The first approach is by means of the steepest descent method. Since the minimum of a

function over a larger domain generally is lower than that over a smaller domain, it is reasonable
to expand the “angle” of the simplicial cone as wide as possible, to the extent that it is beneficial
to make the simplicial cone of U touch the boundary of Dm. That is, we could assume that
columns of U sit on the boundary ∂Dm to begin with. See the idea demonstrated in Figure 5.2
and Figure 5.4. With this in mind, we compute the gradient of h(U,W) with respect to U and
obtain

∇Uh(U,W) :=
∂h

∂U
= −(ϑ(A)− UW)σ(A)2W>. (5.52)

After this calculation, we can apply the same approach described earlier in Section 5.3.2 to
calculate the projected gradient of ∇Uh(U,W) onto proper facets and adjust U along the
boundary ∂Dm by means of the steepest descent method.

The second approach is to simply interchange the roles of U and W and repeat the procedure
described in the preceding section. More precisely, we rewrite

f(U, V) =
1
2

∥∥∥∥∥∥

ϑ(A>)− ϑ(V >)(σ(V >)U>σ(A>)−1

︸ ︷︷ ︸
Φ

)

σ(A>)

∥∥∥∥∥∥

2

F

. (5.53)

Under this transformation, we want to calculate the proximity map of ϑ(A>) within the sim-
plicial cone of ϑ(V >). After applying the procedures proposed in Section 5.4.1 to calculate the

93

Algorithm 5: NMF [U, V] = nmf(U)

Input: A ∈ Rm×n+ , p ∈ Z, p < min (m,n), and T ∈ Z
Output: U ∈ Rm×p+ and V ∈ Rp×n+

begin5.1

Randomly generate a m× p matrix U ;5.2

for i← 1 to T do5.3

(Given the matrix U, find the matrix V to minimize f(U, V))
Suitably rescale columns of U ;5.4

Calculate the proximity map of ϑ(A) onto conv([0, U]);5.5

Formulate the matrix V from the proximity map of ϑ(A) onto conv([0, U]) ;5.6

(Given the matrix V , find the matrix U to minimize f(U, V))
Suitably rescale columns of V >;5.7

Calculate the proximity map of ϑ(A>) onto conv([0, V >]);5.8

Formulate the matrix U from the proximity map of ϑ(A>) onto conv([0, V >]) ;5.9

end5.10

end5.11

unique and optimal simplicial combination coefficients Φ ∈ Rp×m, the optimal U is given by

U =
(
σ(V >)−1Φσ(Y >)

)>
. (5.54)

Again this process is similar to Lee and Seung’s multiplicative update,

U+ := U. ∗ (Y V >)./(UV V >), (5.55)

except that our U obtained through (5.54) is a global minimizer for f(U, V) from a fixed V

which is calculated in (5.50). The numerical approach for solving NMF could be illustrated via
Algorithm 5.

Finally, programming details for our NMF algorithm are listed in its following MATLAB
code. We note that the determination of a suitable low rank p is itself an important question
which, thus far, has not been addressed. In the current code, the value of p with p < min{m,n}
is assumed to be given. Note also that, although our scheme guarantees that each sweep of the
ADI gives rise to a descent objective value, we have not furnished a comprehensive convergence
analysis of the scheme. Our viewpoint is that because an absolute optimizer is often preferred
but not absolutely needed in NMF applications, an improved approximate solution is generally
acceptable. Instead of a rigorous stopping criterion, we specify a maximal allowable number T
of iterations for the ADI in the code.

In conclusion, suppose A ∈ Rm×n+ . Let p be an integer with p < min{m,n} and T be max-

94

imal allowable number of iterations. We want to apply the Sekitani and Yamamato technique
alternatively to compute the proximity maps of ϑ(A) onto the simplicial cones of U ∈ Rm×p or
the proximity maps of ϑ(A>) onto the simplicial cones of V ∈ Rp×n. The resulting nonnegative
matrices U and V therefore progress toward minimizing f(U, V). The MATLAB code are listed
below for the convenience of explanation.

%

% Input:

%

% Z = points to be aprroximated

% T = maximal allowable number of iterations

%

% Output:

%

% U = vertices of new polytope

% V = convex combination coefficients

%

SigmaA = sum(A); Z = A*diag(1./SigmaA); % pull back of A

SigmaAt = sum(A’); Zt =A’*diag(1./SigmaAt); % pull back of A’

alpha = 2*sqrt(m); % scaling factor

U = rand(m,p); % initialization of U

for iter = 1:T % loop of ADI T times

sigmaU = sum(U);

sigmaU(find(sigmaU~=0))=1./sigmaU(find(sigmaU~=0));

U = U*diag(sigmaU); % pull-back of U

Utilde = [zeros(m,1),alpha*U]; % simplicial cone of U

S = []; C = [];

for i = 1:n

A = Z(:,i);

U0 = Utilde - A*ones(1,p+1);

active = 1:p+1;

[s,c] = sekitani(U0,active);

95

S = [S,s+A];

C = [C,c];

end

W = alpha*C(2:p+1,:);

V = W*diag(SigmaA); % optimal V, given U

V = V.*(V>eps*10);

if iter == T

return % end of iteration

end

sigmaVt = sum(V’);

sigmaVt(find(sigmaVt~=0))=1./sigmaVt(find(sigmaVt~=0));

Vt = V’*diag(sigmaVt);

Vtilde = [zeros(n,1),alpha*Vt]; % simplicial cone of V

S = []; C = [];

for i = 1:m

A = Zt(:,i);

V0 = Vtilde - A*ones(1,p+1);

active = 1:p+1;

[s,c] = sekitani(V0,active);

S = [S,s+A];

C = [C,c];

end

U = (alpha*C(2:p+1,:)*diag(SigmaAt))’; % optimal U (w/t scaling), given V

U = U.*(U>eps*10);

end

Both matrices W in (5.42) (and hence V) and Φ in (5.53) (and hence U) are readily available
from the routine sekitani which we stress again solves repeatedly nonnegative least squares
problems without any matrix inversion. More importantly, in each alternating direction, our

96

method guarantees to compute the unique global minimizer, which is remarkable advance com-
pared to most with the conventional procedures.

We do have to point out two possible drawbacks of our algorithm. Firstly, it is hard to predict
beforehand the depth of recursion needed for the calculation in the Sekitani and Yamamato
algorithm. When p is large, the recursion might take more steps to complete the process in
each direction and thus drives up the overhead. Fortunately, in most NMF applications, p
is required to be quite small. In this case, only a few vertices of the polytopes, namely, the
truncated simplicial cones of either U or V >, need to be checked for support hyperplanes. The
recursion then can be accomplished reasonably fast. Secondly, while computing the proximity
map by sekitani, our procedure thus far deals with one column of A a time. This is inefficient
when m or n is large, which unfortunately is the case for NMF applications. On the other
hand, since each column can be computed independently of each other, the computation is
embarrassingly parallelizable. It should require no extra programming effort to load the work
on a parallel computer. To put it differently, we should be able to compute the proximity maps
of multiple columns simultaneously. We should be able to generalize the Sekitani and Yamamoto
algorithm so as to handle multiple columns at the same time or formulate the computations
it in terms of BLAS3 operations. For example, akin to the scalar equation (5.23), we could
conveniently summarize n hyperplanes in Rm by a single matrix equation

N>x = c, (5.56)

where each column of N ∈ Rm×n represents a normal vector. Many of the inequalities in
Algorithm 2 should have their counterparts. We are currently exploring this possibility and
will report our investigation more formally somewhere else.

5.5 Numerical experiments

In this section, we demonstrate the working of our algorithms by providing several numerical
experiments.

Example 5.5.1 This first example is to demonstrate the the polytope approximation on the
probability simplex graphically. Even though the theory works for general m, for the purpose of
illustration, we focus our attention on R3, that is, m = 3, so that we can see the actions. We
randomly generate n = 18 points on the simplex. In general, for low rank polytope approxima-
tion, we would desire p < min{m,n}. But m is so low that we choose p = 3. The polytope
approximation becomes a problem of seeking a “triangle” to enclose the 18 given points [78].
Needless to say, the probability simplex D3 itself satifies the condition. Our task is to discover
other triangles that encircle these points.

97

Applying Algorithm 3 followed by Algorithm 4 iteratively 100 times, we see in the left drawing
of Figure 5.5 that a “minimal” triangle with vertices on ∂D3 is found. The triangle is minimal
in the sense that three points reside on the three different sides of the triangle individually. Thus,
there is no more room for reducing the triangle further without leaving some points outside. The
dynamics of adjustment by our algorithm on the triangles with vertices on ∂D3 is illustrated in
the right drawing of Figure 5.5.

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

y
x

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

y
x

Figure 5.5: Triangle (polytope) enclosing a prescribed set of points on D3.

Just like most iterative methods, the limiting behavior of our method depends on the initial
values. It is possible that the iteration ends up with a triangle which does not include all given
points to its interior. In this case, the method has reached a local solution.

Example 5.5.2 We need to stress that Algorithm 5 is a method which finds global minimizer in
each iteration. To demonstrate this point, we design our experiment as follows. Let Y ∈ Rm×p
and Z ∈ Rp×n with p < min{m,n} be two randomly generated nonnegative matrices. Define
A = Y Z which will be our target data matrix. We want to compare the objective values f(U, V)
per iteration with the popular Lee-Seung multiplicative update algorithm by starting from the
same initial value (U0, V0).

Given a test case with m = 100, n = 50, and p = 5 in 100 iterations, Figure 5.6 demonstrates
that our algorithm consistently produces much closer approximation to A per iteration than the
Lee-Seung algorithm. We report two random cases. In the case on the left side of Figure 5.6, the

98

0 20 40 60 80 100 120
10−1

100

101

102

103
History of Objective Values

Number of Iteration

f(
U

,V
)

Chu−Lin
Lee−Seung

0 20 40 60 80 100 120
10−4

10−2

100

102

104
History of Objective Values

Number of Iteration

f(
U

,V
)

Chu−Lin
Lee−Seung

Figure 5.6: Objective values f(U, V) per iteration by the Chu-Lin algorithm versus the Lee-
Seung algorithm.

objective value is reduced to 0.1909 by our method in comparison with 13.1844 obtained by the
Lee-Seung method, although these values continue to be improved with more iterations. In the
case on the right side of Figure 5.6, the objective value attained by our method is 3.3035× 10−4

in comparison with 1.1989 achieved by Lee-Seung. In addition to these two experiments, we
consistently discover that our method always produces an impressive improvement by multiple
orders.

Example 5.5.3 To further demonstrate the effectiveness of our method compared with the
Lee-Seung algorithm, we randomly generate a 50× 30 matrix Y of rank 20. We systematically
compute its nonnegative matrix approximation of rank p, p = 1, . . . , 15, but allowing only 20
iterations. Each point in Figure 5.7 represents the objective value f(U, V) after 20 iterations
of the corresponding method. It shows that our method decreases the objective values f(U, V)
more rapidly than the Lee-Seung algorithm. Also, our method decreases the objective value as
p increases while the Lee-Seung method does not seem to be sensitive to p during the first 20
iterations.

Other than showing the results after 20 iterations, the continuous curve in the middle of
Figure 5.7 represents the objective values computed by the Lee-Seung algorithm after 100 itera-
tions. We choose not to draw the objective values obtained by our method after 100 iterations
because they are essentially the same as those after 20 iterations except the mild differences at
the second decimal digit. This experiment evidences that not only our method yields a better

99

factorization than the Lee-Seung method, but also our algorithm converges more rapidly to an
optimal solution in its early iterations.

0 5 10 15
0

20

40

60

80

100

120

140

Rank of Factorization

f(U
,V

)

Objective Values in 20 Iterations per Rank

Chu−Lin
Lee−Seung
Lee−Seung (100)

Figure 5.7: Objective values f(U, V) in 20 iterations per specified rank by the Chu-Lin and
the Lee-Seung algorithms.

It is premature to conclude the complexity of our algorithm at this stage because we have not
yet fully exploited the implementation. Algorithm 5 is only a rough working code. Figure 5.8
depicts the CPU time per sweep in ADI of our algorithm. It seems to suggest consistently that
the complexity of our algorithm is exponential in p for the same 50× 30 matrix Y of rank 20.
Recall that the essential cost in Algorithm 5 is the repeated calling of the routine sekitani. The
exponential growth of complexity in p seems to result from the recursive nature of the Sekitani
and Yamamoto algorithm. Even though our algorithm could be sped up by parallelization and
vectorization, we could expect only either the downward shift or the decreasing slope of the curve,
but the exponential dependence on p should be the same.

Example 5.5.4 The “Swimmer” data set proposed in [56] is meant to be the exemplary and
ultimate test bed for any NMF algorithms. It consists of a set of black-and-white stick figures
satisfying the so called separable factorial articulation criteria. In particular, each figure, placed
in a frame of 32 × 32 pixels, is made of a “torso” of 12 pixels in the center and four “limbs”
of six pixels. With limbs pointing towards one of four artificial directions, there are a total of
256 figures in the collection. A subset of these images from the Swimmer data set are depicted

100

0 5 10 15
10−2

10−1

100

101

102

103

Rank of Factorization

C
P

U
 T

im
e
 (

in
 S

e
c
o
n
d
s
)

Complexity of the Chu−Lin Algorithm per Sweep

Figure 5.8: Complexity of the Chu-Lin algorithm measured in CPU time per sweep of the
alternating optimization.

in Figure 5.9 [140] .
To start with out test, we first vectorize each image into a column such that our target

matrix A is of size 1024 × 256. The original data matrix contains only two integer values, 0
and 255, which we convert without loss of generality to binaries. It should be stressed that the
numerical rank of A is only 13, but we shall decompose it with p = 17 with the hope of retrieving
the 17 standard parts. It has been speculated ever since the NMF concept has been conceived
that the NMF should be able to extract the standard parts embedded in an articulation model, so
it remains to see whether we can recover the 17 basic parts that make up these swimmers. The
effect of the overestimating the rank of A in the NMF is something that deserves further study.
This actually becomes the issue of nonnegative rank which will be discussed in Chapter 8.

Figure 5.10 depicts the 17 intrinsic “parts” obtained by our algorithm with only 10 iterations.
Observe that not all limbs are separated from the torso, but all positions are clearly identified.
The gray region indicates a drawback by using NMF in general for this type of data because
the calculation brings in fractional values whereas the model should involve only binaries. Note
that frame 16 contains entirely zero information, perhaps having something to do with the
overestimation of the rank in the NMF.

101

Figure 5.9: 80 sample images from the swimmer database.

Figure 5.10: 17 “parts” decomposed from the swimmer database by Algorithm 5 in 10 itera-
tions.

5.6 Conclusion

Low rank factorization is another type of inverse problem where the information in the observed
data is to be reconstructed, approximated, or retrieved via simpler representations. It is often
the case that the low rank representations are structured, such as nonnegativity, which thus

102

imposes difficulties. This chapter studies the NMFs from the viewpoint of geometric approxi-
mation.

For a given polytope in the first orthant, we propose the idea of pulling the polytope back
to the probability simplex. This action has the advantages of not only transforming polytopes
into a more manageable compact set but also facilitating the calculation of the proximity
map which identifies the unique nearest point on the polytope to an arbitrarily given point in
finitely many steps. Two kinds of low dimensional polytope approximations are investigated in
the discussion. The first focuses entirely on the probability simplex whereas the second on the
truncated simplicial cones.

Our main thrust in this investigation is to apply the low dimensional polytope approximation
to the nonnegative matrix factorization problem. We calculate the best approximation by using
the proximity maps to compute the unique global minimization on the desired polytope in each
alternating direction. Our derivation is driven by geometry whereas the theory is supported by
the Hahn-Banach separation theorem. Since the NMF is a nonlinear optimization to begin with,
there is no guarantee that our algorithm solves the original problem to its absolute optimality.
Numerical results, nonetheless, seem to suggest that our method produces much smaller residual
errors in the factorization than the popular Lee-Seung multiplicative updating scheme.

The main engine for computing the proximity map in our method is currently conducted on
a column by column basis. As such, the calculation is less competitive in speed with the Lee-
Seung algorithm which can be executed under matrix-to-matrix operations. We are currently
working on the prospects to compute the proximity map for multiple columns simultaneously.
It is is realizable, it would be an added power to our method. This would be a major topic
worthy for the next phase of study.

103

Chapter 6

Integer Matrix Factorization via

Rank-one Approximation

6.1 Overview

In Section 3.1 we have already explained the fundamental importance of matrix factorization in
modern sciences and technology. For that purpose, we investigate in this chapter the notion of
factorization with entries restricted to integers or binaries, where the “integer” could be either
the regular ordinal integers or just some nominal labels. When the entries are chosen from the
set Z2 := {0, 1}, i.e., binaries, a non-orthogonal binary decomposition by recursive partitioning
has recently been proposed in [111]. The associated code Proximus, written in the C language
with considerable thoughts given to efficient data structure, storage, and movement within the
system, has been distributed widely in the field. In this research, we generalize principles to
general integer matrices.

Being discrete in nature, such a factorization or approximation cannot be accomplished by
conventional techniques. Built upon a basic scheme of rank-one approximation, an approach
that recursively splits (approximates) the underlying matrix into a sum of rank-one matrices
with discrete entries is proposed. The mechanism presented in this chapter can handle multiple
types of data. For demonstration purposes, the subsequent discussion concentrates mainly on
binary-integer factorizations. But the notion is readily generalizable with slight modifications
to, for example, integer-integer factorizations.

As is always the case in approximation, we need a metric d to measure nearness or similarity.
Because we could be dealing with a basket of different data types in a single application, the
metric itself might be a combination of disparate measures, one for each category in the data
array. For ordinal data, we also need to decide whether the spacing between the categorial values
signifies all levels of the variables or not. If the values are not equally spaced, using integers to

104

represent these values has the advantage of numerically scaling in the spacing disparities. The
commonly used Hamming distance or Euclidean distance can be refined to reflect the different
situations. We limit our discussion in this study to these two metrics, although our concept
can easily be generalized to other means of measurement.

We shall demonstrate several interesting applications of the IMF in this presentation. But
more importantly, it is the details on the computational aspects of IMF that deserve our at-
tention. To make our approach effectual, we need to analyze several essential components
separately first before putting them to work in conjunction. We thus organize this chapter
as follows: We begin in Section 6.2 with a basic scheme that does ADI search for rank-one
approximation. We show that in each alternating direction an optimal solution is attainable
in closed form. This scheme serves as a building block by which we construct in Section 6.3 a
divide-and-conquer strategy that ultimately factorize the given matrix A. The method grad-
ually breaks down the data matrix to submatrices in a recursive way. Although it seems that
we are dealing with numerals, our method actually can handle categorical variables. The split-
ting mechanism is initially based a one-way comparison with a selected, but not necessarily
justified, representative. A suitable criterion for assessing the validity of the proposed splitting,
therefore, must also be addressed. A prototype code is sketched in Algorithm 8 to demonstrate
how these components should be assembled together. In practical application, the code might
need to be modified to reflect the different nature of the underlying data and the metric, but
the general concept is the same. Of particular interest and significance in our investigation is
the discovery of the ordering for rank one approximations which, in a sense, is the analogy for
discrete data to the ordering of singular values for continuous data. With such a perspicacity
in hand, a truncated low rank factorization (for discrete data) analogous to the truncated sin-
gular value decomposition is also obtained. We have experimented our method with quite a
few real-world data sets from cluster analysis and pattern discovery. We select to report only
a few in Section 6.4. Our numerical experiences seem to suggest that our approach is easy to
program, converges
considerably fast even with a large data matrix, and can handle multiple types of data.

6.2 Basic rank-one approximation

The optimal procedure in our IMF algorithm is made of a sequence of rank-one approximations
that minimize the difference of a rank-one matrix from a given matrix. In this section, we
discuss how such an approximation is achieved. Given a suitable metric d corresponding the
data type, the general idea for computing the rank-one approximation is to employ the notion
of ADI as in Algorithm 6.

Note that we consider only the case where u is binary. It is obviously that such iterations

105

Algorithm 6: Rank-one approximation with general metric d
Input: Matrix A ∈ Zm×n and initial vector v ∈ Z1×n

Output: Vectors u ∈ Zm×1
2 and v ∈ Z1×n that minimize d(A,uv)

begin6.1

repeat6.2

For the fixed v, find u ∈ Zm×1
2 to minimize d(A,uv);6.3

For the fixed u, find v ∈ Z1×n to minimize d(A,uv);6.4

until convergence ;6.5

end6.6

can start with an initial vector u ∈ Zm×1
2 , instead of v ∈ Z1×n. Since Algorithm 6 is a descent

method by finding out an optimal solution at each step and there are only finitely many choices
for u, the procedure is supposed to terminate within finite iterations. The real issue at stake
is to derive a scheme to pick up the minimizer at each step. We analyze below the best choice
with respect to the two commonly used metrics.

6.2.1 Approximation with Hamming metric

The Hamming metric (Hamming distance) between two arrays of the same length is defined
as the minimum number of substitutions required to transform one array into the other. We
certainly can use the very same metric to count the difference between two matrices. For
convenience, we introduce three operators, match(x,y), zeros(x) and mode(x), to count the
number of matching elements between vectors x and y, the number of zero entries in the vector
x, and the most frequent entry of the vector x, respectively. Also, we adopt the notation A(i, :)
for the ith row of a matrix A. Given a vector v (or u), the following two results show that the
optimal solution u (or v) for minimizing d(A,uv) can be found in closed form with respect to
the Hamming metric.

Theorem 6.2.1 Given A ∈ Zm×n and v ∈ Z1×n, then among all possible u ∈ Z
m×1
2 , the

measure d(A,uv) is minimized at u∗ whose ith entry u∗i , i = 1, . . . ,m, is defined by

u∗i :=

{
1, if match(A(i, :),v) ≥ zeros(A(i, :)),
0, otherwise.

(6.1)

Proof. For any u ∈ Zm×1
2 , observe that

d(A,uv) =
m∑

i=1

d(A(i, :), uiv). (6.2)

106

Thus minimizing d(A,uv) is equivalent to minimizing each individual term d(A(i, :), uiv) for i =
1, 2, · · · ,m. From the relationships that match(A(i, :),v) = n−d(A(i, :),v) whereas zeros(A(i, :
)) = n− d(A(i, :), 0), it is clear that the choice in (6.1) is optimal. 2

Theorem 6.2.2 Given A ∈ Zm×n and u ∈ Zm×1
2 with u 6= 0, then among all v ∈ Z1×n, the

measure d(A,uv) is minimized at v∗ whose jth entry v∗j , j = 1, . . . , n, is defined by

v∗j := mode(A2(:, j)), (6.3)

where A2 is the submatrix composed of all A(i, :) whose corresponding ui is 1.

Proof. For a given vector u, we may assume without loss of generality that

u =

[
u1

u2

]

with u1 = [0, · · · , 0]>1×s and u2 = [1, · · · , 1]>1×(m−s). Accordingly, partition A into two parts

A =

[
A1

A2

]

with A1 ∈ Zs×n and A2 ∈ Z(m−s)×n. For any vector v ∈ Z1×n, observe that

d(A,uv) = d(A1,u1v) + d(A2,u2v)

= d(A1, 0v) +
n∑

j=1

m−s∑

i=1

d(A2(i, j), vj),

Minimizing d(A,uv) is equivalent to minimizing
∑m−s

i=1 d(A2(i, j), vj) for each j = 1, . . . , n.
The optimal choice for vj is certainly the most frequently occuring entry in the jth column of
A2. 2

Note that in both theorems above, the optimal solutions may not be unique if there is a
tie. For instance, assigning u∗i = 0 instead of 1 when match(A(i, :),v) = zeros(A(i, :)) will not
affect the optimal objective value d(A,u∗v) in Theorem 6.2.1. Likewise, multiple choices for
v∗j happen in Theorem 6.2.2 when there are more than one most frequent entries in the jth
column of A2.

Equipped with the closed-form solutions characterized in Theorems 6.2.1 and 6.2.2, the rank-
one approximation with the Hamming metric is now taking shape in the form of Algorithm 7.
We name this algorithm Vote because the choice of u (and v if A is a binary matrix) is a
matter of majority rule between the dichotomy of zeros and matches. A function similar to the

107

Algorithm 7: Rank-one factorization with Hamming metric: [u,v] = Vote(A)
Input: Matrix A ∈ Zm×n
Output: Vectors u ∈ Zm×1

2 and v ∈ Z1×n such that d(A,uv) is minimized

begin7.1

initialization;7.2

v ← randomly selected from one row of matrix A;7.3

z← numbers of zeros in A per row;7.4

repeat7.5

vold← v;7.6

m← numbers of matches between v and each row of A;7.7

if mi ≥ zi then7.8

ui ← 1;7.9

else7.10

ui ← 0;7.11

end7.12

if u = 0 then7.13

v← 1;7.14

else7.15

ind← find(u);7.16

vi ← mode(A(ind, i));7.17

end7.18

until vold = v ;7.19

end7.20

command “find” in Matlab, where ind = find(x) locates all nonzero elements of array x and
returns the linear indices of those elements in the vector ind, proves handy in the coding.

It is interesting to note that, if A is a binary matrix, then the definition (6.3) v∗ is exactly
the same as (6.1).

Lemma 6.2.1 Given A ∈ Z
m×n
2 and u ∈ Z

m×1
2 , then among all v ∈ Z

1×n
2 , the measure

d(A,uv) is minimized at v∗ whose jth entry v∗j is given by

v∗j =

{
1, if match(A(:, j),u) ≥ zeros(A(:, j)),
0, otherwise.

(6.4)

Proof. We present an alternative argument by bringing forth the relationships that

match(A(:, j),u) = match(A1(:, j), 0) + match(A2(:, j),1),
zeros(A(:, j)) = zeros(A1(:, j)) + zeros(A2(:, j)),

108

where obviously match(A1(:, j), 0) = zeros(A1(:, j)). Thus the choice of mode(A2(:, j)) in The-
orem 6.2.2 is again a majority rule between match(A2(:, j),1) and zeros(A2(:, j)). 2

We claim that our method Vote generalizes the existent code Proximus [111]. In particular,
when applied to binary data, our selection mechanism is theoretically equivalent to the code
Proximus. To see the equivalence, recall that the basic rank-one approximation in Proximus

is based on the idea of minimizing the Euclidean distance ‖A− uv‖2F . Upon rewriting

‖A− uv‖2F = ‖A‖2F − 2u>Av> + ‖u‖22‖v‖22,

we see that the functional

f(u,v) = 2u>Av> − ‖u‖22‖v‖22 (6.5)

needs to be maximized. The rule adopted by Proximus is that, given a binary vector v, the
optimal entries u must be defined by

ui :=

{
1, if 2(Av>)i − ‖v‖22 ≥ 0,
0, otherwise .

(6.6)

Similarly, given a binary vector u, the optimal entries v is given by

vi :=

{
1, if 2(u>A)i − ‖u‖22 ≥ 0,
0, otherwise .

(6.7)

Observe that

match(A(i, :),v)− zeros(A(i, :))
= {n− (v −A(i, :))(v −A(i, :))>} − {n−A(i, :)A(i, :)>}
= −vv> + 2A(i, :)v>

= 2(Av>)i − ‖v‖22,

(6.8)

and

match(A(:, i),u)− zeros(A(:, i))
= {m− (u−A(:, i))>(u−A(:, i))} − {m−A(:, i)>A(:, i)}
= −u>u + 2u>A(i, :)
= 2(u>A)i − ‖u‖22.

(6.9)

Formulas (6.8) and (6.9) justify that Vote and Proximus are employing exactly the same pro-
cedure at each step in rank-one approximation when dealing with binary data. Note, however,

109

that our method is computationally cheaper than Proximus because Vote avoids matrix-
vector multiplications needed in (6.6) and (6.7). Furthermore, our approach Vote can handle
more general polychotomous data.

6.2.2 Approximation with Euclidean metric

In many applications, it is essential to differentiate the true discrepancies among variable values.
That is, the values that a variable takes signifies levels of priority, weight, or worth. If the data
are somehow represented in the Euclidean space, then the real distance between two points is
meaningful and makes a difference in the interpretation. Under such a setting, we discuss in
this section the rank-one approximation when the Euclidean metric is used as the measurement
for nearness.

Given v, even if it is not binary, the definition (6.6) for u remains to be the optimizer. For
completion, we restate the following theorem, but provide a slightly different proof.

Theorem 6.2.3 Given A ∈ Zm×n and v ∈ Z1×n, then among all u ∈ Zm×1
2 , the minimal value

of ‖A− uv‖2F is attained at u∗ whose ith entry is defined by

ui =

{
1, if 2(Av>)i − ‖v‖22 ≥ 0,
0, otherwise.

(6.10)

Proof. Since

‖A− uv‖2F =
m∑

i=1

‖A(i, :)− uiv‖22,

it is clear that in order to minimize each individual term in the summation we should choose

ui :=

{
1, if ‖A(i, :)‖22 ≥ ‖A(i, :)− v‖22,
0, otherwise ,

which is equivalent to (6.10). 2

Let round(x) denote the operator that rounds every entry of x to its nearest integer. Given
u, the next result nicely generalizes the selection criterion in Proximus for general integer
vector v under the Euclidean metric.

Theorem 6.2.4 Given A ∈ Zm×n and u ∈ Zm×1
2 with u 6= 0, then among all v ∈ Z1×n, the

minimal value of ‖A− uv‖2F is attained at v∗ defined by

v∗ := round

(
u>A
‖u‖2

)
. (6.11)

110

Proof. We rewrite (6.5) as

2u>Av> − ‖u‖22‖v‖22 =
∑

i

[
−‖u‖22

(
vi −

(u>A)i
‖u‖2

)2

+
(

(u>A)i
‖u‖2

)2
]
. (6.12)

It is now clear that the only option for v to minimize ‖A − uv‖2F while keeping v an integer
vector is the definition (6.11). 2

Since it takes only a slight modification in the code Vote to reflect the Euclidean metric,
we shall skip the particulars of the coding here. Be cautious though that if the data range is
restricted to only a subset of integers rather than Z, the operator round might return a value
outside Z. In this case, we can use (6.12) to define a proper value vi ∈ Z that is nearest to
(u>A)i

‖u‖2 .
We conclude this section with two remarks. Firstly, in the event that u = 0, we can simply

assign v arbitrarily, say, v = 1, without affecting the iteration. Secondly and most importantly,
the reason we insist on restricting u to Zm×1

2 is only for the purpose of establishing mutually
exclusive clusters, as we shall see in the next section. As a consequence, the resulting matrix U
automatically has mutually orthgonal columns. Our current emphasis is on the binary-integer
matrix factorization, but ideas in the proof of Theorem 6.2.4 certainly can be generalized to
u if u is to be an integer vector. In this event, the optimal integer vector u for minimizing
‖A− uv‖2F with a fixed v is given by

u∗ := round

(
Av>

‖v‖2

)
. (6.13)

Continuing this way, we construct a sequence of integer rank-one approximations to A and
obtain a factorization with integer entries.

6.3 Algorithms of integer matrix factorization

We now describe the procedure for constructing the binary-integer factorization of a given
integer matrix A. The main idea is to assemble A via a sequence of rank-one approximations,
but the superposition is not done in the traditional sense of additive manner as we shall explain
in this section. Three essential issues must be resolved before we can move this idea forward.
These are — how to assess the quality of an approximation, how to recursively deflating the
matrix, and how to determine the optimal rank. We address each issue separately in the sequel.

For the convenience of reference, after a rank-one approximation uv for A is established,
we say collectively that those rows A(i, :) of A corresponding to ui = 1 are active and call the
corresponding v the pattern vector or representative of these active rows.

111

6.3.1 Communal rule

Algorithm 6 guarantees the undertaking of the “global” minimizer at each iteration for each
fixed vector u or v. The outcome from the one-sided minimization does not necessarily give
rise to the global minimizer for the two-sided objective function. The quality of a rank-one
approximation A ≈ uv depends highly on the initial value. This dependence limits the ADI to
find only local interpretable patterns. It is therefore reasonable to set up a checking criterion
to decide whether active rows are adequately represented by the pattern vector v.

So far the assignment of ui for each i = 1, . . . ,m is solely on a comparison of A(i, :) individ-
ually with v. Since the differences between the pattern vector and corresponding active rows
of A might vary immensely, merely qualifying A(i, :) into the active group by self-justification
has the danger of dissimilarity among active rows. To remedy this situation, we must provide
some criteria to ensure the homogeneity within the collective of all active rows. Since v is not
necessarily the mean of all active rows, every single active row, though preliminarily counted as
active, could be far away from v. The conventional approach by fixing a neighborhood around
v is not effective to exclude outliers. Instead, we propose to check the communality of the
active rows more dynamically by using a simple statistical rule.

Firstly, let the vector r denote the collection of “distances” between active rows of A and
v, that is,

rj = d(A(ij , :),v), (6.14)

whenever uij = 1. Secondly, we calculate the mean µ and standard deviation σ of r. For a
fixed β > 0, we adopt a communal rule that whenever

|rj − µ| > βσ, (6.15)

the membership of A(ij , :) is rejected from the cluster by resetting uij = 0. It is possible that all
active rows will be rejected based on (6.15), leading to the so called cluster death and causing
the algorithm to break down. To avoid such a situation, we keep ui` = 1 whenever r` = min r.

The parameter β in (6.15) serves as a threshold which can affect the ultimate partitions of
data matrix. The larger the threshold β is, the more inclusive the cluster become, and the less
the number of partitions of A will be. For data with large noises, for instance, increasing β lead
to fewer representatives for the rows of A which, in turn, might rid of some of the unwanted
substances in the data. On the other hand, if pairwise matching is more important than pairwise
distance, we might decrease the β value to increase the uniformity. In our algorithm, the user
can adjust the parameter value β according to the need.

112

Algorithm 8: Integer matrix factorization by Vote: [U, V] = IMFvote(A, active, β)
Input:

A = matrix in Zm×n to be decomposed
active = array of indices identifying submatrices of A being analyzed
β = threshold for communal rule

Output: Matrices U ∈ Zm×p2 and V ∈ Zp×n for some integer p such that A ≈ UV
begin8.1

A← A(active, :);8.2

u,v ← VOTE(A);8.3

% Check the communality;8.4

uactive← find(u);8.5

foreach row A(i, :) of A(uactive, :) do8.6

if A(i, :) does not meet communal rule then8.7

uuactivei ← 0;8.8

end8.9

end8.10

% Keep decomposing matrix;8.11

ZeroCheck ← find(u = 0);8.12

if ZeroCheck is not empty then8.13

active1← active(find(u = 1));8.14

if actove1 is not empty then8.15

IMFvote(A, active1, β);8.16

end8.17

active0← active(ZeroCheck);8.18

IMFvote(A, active0, β);8.19

else8.20

Augment u and v in U and V as a column and a row, respectively;8.21

end8.22

end8.23

6.3.2 Recursive decomposition

The most important objective of the rank-one approximation is to separate rows of A into two
mutually exclusive clusters according to innate attributes of each row while, in the meantime,
trying to find a representative for the active rows. The motive of a filtering procedure by the

113

communal rule is to further refine the active rows to form a tighter cluster. These objectives
are repeatedly checked through the following divide-and-conquer procedure:

Step 1. Given a matrix A, assess a possible cluster u of active rows and its representative v.

Step 2. Based on available u, deflate the matrix A into two submatrices composed of all active
and inactive rows, respectively.

Step 3. Recursively apply Step 1 to each submatrix in Step 2 until no more splitting is possible
or a predesignated number of iteration is reached.

Step 4. Whenever an action in Step 3 is terminated, record the corresponding u and v as an extra
column and row in the matrix U and V , respectively.

Algorithm 8 sketches how a simple integer factorization A ≈ UV can be executed through
Vote without controlling the size p in the final output matrices U ∈ Zm×p2 and V ∈ Zp×n 1.
Strictly speaking, this is not the IMF we have defined in (1.4) because the ultimate p obtained
by Algorithm 8 could be exceedingly large. But, it does represent an exhaustive search for
factors. It is possible that in the extreme case that each cluster contains only one member, that
is, we have U = I and V = A, which of course is of little interest.

A few remarks about Algorithm 8 are worth noting. Observe that the splitting of A ac-
cording to u automatically guarantees that the resulting matrix U has mutually orthogonal
columns, which also means that each row of A is assigned to one and only one group. Observe
also that the code IMFvote invokes itself recursively. Such a feature, allowable in most modern
programming languages, makes the code particularly efficient. Finally, be aware of the selection
mechanism embedded in the code that determines the final membership u and representative
v through multiple levels of screening.

6.3.3 Optimal low rank approximation

In the application of low rank approximations, one of the most challenging issues even to this
date is the predetermination of the low rank k. Algorithm 8 calculates an approximation
A ≈ UV without any restriction on the sizes of U ∈ Zm×p2 and V ∈ Zp×n. Suppose that such
a factorization is now at hand. It is natural to ask whether there is a way to pick up two
submatrices Uk ∈ Z

m×k
2 and Vk ∈ Zk×n from U and V such that A ≈ UkVk and k < p. In

this section, we make an interesting observation on how to choose the best pair of submatrices
(Uk, Vk) so that d(A,UkVk) is minimal among all possible submatrices of compatible sizes.

1A properly selected low rank p is critically important in practice, but no theory about how this could be
done is available. In most case, the choice of p is done on an ad hoc basis. See Section 6.3.3 for our new theory
in this regard.

114

Although this is a postscript to the main computation already done by Algorithm 8, it sheds a
remarkable insight into the optimal low rank approximation.

Denote the columns and rows of U and V by

U = [u1,u2, · · · ,up] , V =

v1

v2

...
vp

,

respectively. Note that these rank-one approximations uivi are found, say, by Algorithm 8,
successively without any specific ordering. For ` = 1, . . . , p, define S` to be the collection

S` :=
{

(i1, . . . , i`) ∈ Z`
∣∣d
(
A,Ui1,...,ipVi1,...,ip

)
= min

(j1,...,j`)
d
(
A,Uj1,...,jpVj1,...,jp

)}
, (6.16)

where

Ui1,...,ip =
[
ui1 ,ui2 , · · · ,uip

]
, Vi1,...,ip =

vi1
vi2
...

vip

,

for some indices (i1, . . . , ip) and d is either the Hamming or the Euclidean metric and the `-tuple
(j1, . . . , j`) is made of distinct indices from {1, . . . , p}. The folliwng nesting effect among S`’s
is rather surprising and of potential significance.

Theorem 6.3.1 Suppose that the matrix A ∈ Zm×n has been factorized into A ≈ UV with
U ∈ Zm×p2 and V ∈ Zp×n by Algorithm 8. Then every element in Ss must appear as a segment
in some element of St, if s < t.

Proof. It suffices to prove the assertion for the case s = 1 and t = 2. The following
argument can be generalized to other cases. Suppose that there exists an integer i1 ∈ S1 but
{i1, i2} 6∈ S2, for any i2 ∈ {1, 2, · · · , p}. Given any {j1, j2} ∈ S2, we have

d

(
A, [uj1 ,uj2]

[
vj1
vj2

])
< d

(
A, [ui1 ,uj2]

[
vi1
vj2

])
. (6.17)

We want to prove that a contradiction arises.
Note that the numeral “1” appears at mutually disjoint positions within the vectors ui1 , uj1

and uj2 . Simultaneously permuting rows if necessary, we may assume without loss of generality

115

that rows of A have been divided into four blocks

A1

A2

A3

A4

(6.18)

where rows of A1, A2 and A3 correspond to 1’s in ui1 , uj1 and uj2 , respectively, and A4

corresponds to the common zeros of all ui1 , uj1 and uj2 . Then it becomes clear that

d(A,ui1vi1 + uj2vj2) = d(A1,vi1) + d(A2, 0) + d(A3,vj2) + d(A4, 0),

d(A,uj1vj1 + uj2vj2) = d(A1, 0) + d(A2,vj1) + d(A3,vj2) + d(A4, 0),

d(A,ui1vi1) = d(A1,vi1) + d(A2, 0) + d(A3, 0) + d(A4, 0),

d(A,uj1vj1) = d(A1, 0) + d(A2,vj1) + d(A3, 0) + d(A4, 0).

Upon substitution, it follows from (6.17) that

d(A,uj1vj1) < d(A,ui1vi1),

which contradicts with respect to the assumption that i1 ∈ S1. 2

The preceding observation has an important consequence in that it enables us to assess and
gauge the quality of low rank approximations of A. The application is characterized in the
following theorem.

Theorem 6.3.2 Suppose that the matrix A ∈ Zm×n has been factorized into A ≈ UV with
U ∈ Z

m×p
2 and V ∈ Zp×n by Algorithm 8. Sort through the rank-one approximations and

rearrange the rows if necessary, assume that

d(A,u1v1) ≤ d(A,u2v2) ≤ · · · ≤ d(A,upvp). (6.19)

Then, for k = 1, 2, · · · , p, the product UkVk where Uk and Vk are submatrices of U and V given
by

Uk := [u1,u2, · · · ,uk] , Vk =

v1

v2

...
vk

, (6.20)

116

is the best possible approximation to A in the sense that the k-tuple (1, 2, · · · , k) is in Sk.

Proof. We prove the assertion by induction on k.
Obviously, the case k = 1 is already done due to the rearrangement specified in (6.19).

Assume therefore that (1, 2, · · · , k − 1) ∈ Sk−1. We want to show that (1, 2, · · · , k) ∈ Sk. The
following argument is essentially parallel to that in Theorem 6.3.1, except that we work on
blocks.

By Theorem 6.3.1, there exists an integer q ∈ {k, k + 1, · · · , p} such that the k-tuple
(1, 2, · · · , k − 1, q) is an element in Sk. If q = k, then we are done. Assume, by contradic-
tion, that q 6= k. Consider the pair of submatrices

Ũk := [Uk−1,uq] , Ṽk :=

[
Vk−1

vq

]
.

Still, columns of Ũk are mutually exclusive. Because (1, 2, · · · , k − 1, k) 6∈ Sk, we know

d(A, ŨkṼk) < d(A,UkVk),

which is equivalent to

d(A,Uk−1Vk−1 + uqvq) < d(A,Uk−1Vk−1 + ukvk). (6.21)

Again, without loss of generality, we may partition A into blocks such as that in (6.18) where
rows of A1, A2 and A3 correspond to 1’s in Uk−1, uq and uk, respectively, and A4 corresponds
to the common zeros of all Uk−1, uq and uk. Then, clearly we have the following expressions:

d(A,Uk−1Vk−1 + uqvq) = d(A1, Vk−1) + d(A2,vq) + d(A3, 0) + d(A4, 0),

d(A,Uk−1Vk−1 + ukvk) = d(A1, Vk−1) + d(A2, 0) + d(A3,vk) + d(A4, 0),

d(A,uqvq) = d(A1, 0) + d(A2,vq) + d(A3, 0) + d(A4, 0),

d(A,ukvk) = d(A1, 0) + d(A2, 0) + d(A3,vk) + d(A4, 0).

It follows from (6.21) that
d(A,uqvq) < d(A,ukvk),

which contradicts the assumption that

d(A,uqvq) ≥ d(A,ukvk),

for q ∈ {k + 1, · · · , p}. 2

Even though we still do not know how to find the overall optimal rank, the above discussion

117

Algorithm 9: Low Rank Optimization: [U, V] = LowRankApprox(A, k)

Input: Matrix A ∈ Zm×n2 and integer k
Output: Low rank factors U ∈ Zm×k2 and V ∈ Zk×n
begin9.1

U, V ← IMFvote(A, active, β);9.2

forall i from 1 to p do9.3

r← [r; match(A,U(:, i)V (i, :))];9.4

end9.5

index rankings← sort(r);9.6

U ← U(:, index rankings(1 : k));9.7

V ← V (index rankings(1 : k), :);9.8

end9.9

suggests that something meaningful can be done after we have “completely” factorize A as
A ≈ UV . That is, by ranking the rank-one approximations as in (6.19), we can build some
lower rank approximations in a controlled way. This byproduct is interesting enough that we
summarize it in Algorithm 9.

6.4 Numerical experiments

In this section, we demonstrate some interesting applications of our IMF techniques. Our
test data are collected from requisitions in association analysis, cluster analysis, latent pattern
discover, and random simulation. Some of the data are too large to be listed in this presentation.
In that case, we give references of the sources where the data can be downloaded.

6.4.1 Association analysis

Many supermarkets, as well as companies that provide online content based on popular Web
searches, keep detailed records of their daily transactions not so much for the sake of financial
bookkeeping but more so for the hidden information about consumers’ shopping behavior. In the
interest of generating more profits, the merchants try to predict customers’ behavior by mining
some association rules and adjust their inventories accordingly. Demonstrated in Table 6.1
is a much simplified example of the so called market basket transactions which typically is a
huge database with many customers and available items. Like the discovery investigated in
[110, 111], we can convert the transactions into a binary matrix by associating each row with
one transaction and each column with one item. See Table 6.2. The value of an entry in the
matrix is 1 if the item is included in the transaction and 0 otherwise. Upon applying the IMF to

118

Table 6.1: An transaction example with 5 transactions and 6 items

T1 {Milk, Diapers, Eggs}
T2 {Milk, Diapers, Eggs, Beer}
T3 {Diapers, Eggs, Beer}
T4 {Bread, Chips, Beer}
T5 {Bread, Milk, Chips}

Table 6.2: A binary representation of the transaction example

Bread Milk Diapers Eggs Chips Beer
T1 0 1 1 1 0 0
T2 0 1 1 1 0 1
T3 0 0 1 1 0 1
T4 1 0 0 0 1 1
T5 1 1 0 0 1 0

the binary data in Table 6.2, we can approximate the original binary data by two representatives
[0, 1, 1, 1, 0, 1] and [1, 0, 0, 0, 1, 1] as follows

A =

0 1 1 1 0 0
0 1 1 1 0 1
0 0 1 1 0 1
1 0 0 0 1 1
1 1 0 0 1 0

≈

1 0
1 0
1 0
0 1
0 1

[
0 1 1 1 0 1
1 0 0 0 1 1

]
. (6.22)

The factorization (6.22) is a rank-two approximation, suggesting that the original five transac-
tions probably can be simplified by two representative transactions T ′1 and T ′2 defined in Table
6.3 and that three out of five customers are likely to go with the first kind of buying pattern.

Table 6.3: Two representative transactions T ′1 and T ′2

T ′1 {Milk, Diapers, Eggs, Beer}
T ′2 {Bread, Chips, Beer}

119

In mining for association rules, it is known that the number of rules grows exponentially
with the number of transactions [88]. Typically, the number of transactions are of very large
scale. This example typifies the significance of IMF application because now we can concentrate
analyzing the associate rules among the smaller approximate transaction set which may manifest
the information more easily. The IMF application clearly alleviate the load of performing
association analysis on large scale data. More importantly, the discovered patterns in the
original data might include some spurious results related to certain casual events. The IMF
serves a filter to screen out those casual or redundant events. Only a few representative patters
are sufficient to predict the market demand. Through this factorization, not only are we able
to characterize the main features in the original patterns, but we are also able to purify some
dubious correlations among them.

6.4.2 Cluster analysis

The general purpose of cluster analysis is to partition a set of observations into subsets, called
clusters, so that observations in the same cluster share some common features. The most
difficult part in cluster analysis is the interpretation of the resulting clusters. It is important
but not our primary purpose in this investigation to compare the performance of our method
with the many cluster analysis algorithm already developed in the literature. Rather, we merely
want to demonstrate that IMFvote naturally produces clusters and their corresponding integer
representatives. If needed, we can also employ LowRankApprox to pick up the most relevant
low rank representation of original data set, which we think is an additional attraction of our
method.

We report experiments on two real data sets, mushroom and Wisconsin breast cancer (orig-
inal), from the Machine Learning Repository maintained by the Computer Science Department
at the University of California at Irvine [5]. To gauge the effectiveness of our algorithm, we
employ four parameters, RowErrorRate, CompressionRatio, Precision, and Recall whose meanings
are outline below [31].

RowErrorRate, defined by

RowErrorRate :=
d(A,UV)

m
, (6.23)

refers to the average difference per row between the retrieved data UV and the original data
A. This value reflects how effective row vectors in V are representing the original matrix A.

120

CompressionRatio [47], defined by

CompressionRatio :=] of entries in matrices U and V

] of entries in matrices A

= (m+n)k
mn

(6.24)

measures how efficiently the original data A has been compressed by the low rank representation
UV . It is hoped that through the compression, less relevant data or redundant information is
removed.

Precision and Recall, defined by

Precision :=
relevant data ∩ retrieved data

retrieved data
, (6.25)

Recall :=
relevant data ∩ retrieved data

relevant data
, (6.26)

computes the percentages of the retrieved data that are relevant and relevant data that are
retrieved, respectively. In the context of information retrieval, “relevant data” usually refer to
documents that are apposite to a specified inquiry. Since our task at present is simply to divide
observations into disjoint clusters based on innate attributes, we do not know the exact meaning
of each cluster. In other words, we do have at hand a representative for each cluster, but we do
not have an interpretation of the representative. Still, considering points in a cluster as retrieved
data relative to their own representative, it might be interesting to compare the corresponding
Precision and Recall with some known training data. In this way, a high correlation between
a particular cluster and the training data might suggest an interpretation for the cluster. We
have not pursued this direction in this investigation

Mushroom Data Set. This Agaricus and Lepiota Family data set consists of biological
for 8124 hypothetical species of gilled mushroom. Each species is characterized by 23 attributes
such as its cap shape, cap surface, odor, and so on. Each attribute has different nominal values.
For example, the cap shape may be belled, conical, convex, flat, knobbed, or sunken, while the
cap surface may be fibrous, grooved, scaly, or smooth. To fit into our scheme, we convert the
attribute information into a list of integer values. These integers should not be regarded as
numerals, but only labels. Since attributes are independent of each other, the same integer for
different attributes has different meanings. Our input data A is an 8124 × 23 integer matrix.
Of particularly noticeable is its first column which is dichotomous and indicates whether the
mushroom is edible or poisonous. The Hamming metric is more suitable than the Euclidean
metric for this problem.

In our first experiment, we simply want to investigate how different β values affect the
quantities of approximation. As is expected, a smaller β value would lead to a larger number
p of rows in the matrix V after a complete factorization. For mushroom data set, we find

121

that corresponding to β = 1, 2, 3 the numbers of rows in V are p = 1418, 15, 1, respectively.
For each β, construct Vk according to Theorem 6.3.2 after sorting the corresponding V . We
plot in Figure 6.1 the value RowErrorRate versus k. Note the rapidly decreasing behavior,
especially in the cases β = 1, 2, suggesting that the sorting in LowRankApprox is capable of
identifying the first few most important clusters and their representatives. A comparison with
the CompressionRatio≈ 0.0436k in this case is also worth noting. To achieve RowErrorRate=
9.6128, we just need one pattern vector with β = 3, but we will need many more representatives
with β = 1 or 2. On the other hand, with β = 3 we cannot possibly improve the RowErrorRate,
but with more restrictive β values there is a chance to improve the RowErrorRate.

0 500 1000 1418
0.00

7.50

12.50

17.50

22.00

2.39

k

R
ow

E
rr

or
R

at
e

β = 1

0 5 10 15

9.50

10.00

10.50

11.00

8.98

k

R
ow

E
rr

or
R

at
e

β = 2

0 1 2

9.61

k

R
w

oE
rr

or
R

at
e

β = 3

Figure 6.1: Performance of algorithms on the mushroom data set

In our second experiment, we apply LowRankApprox to the 8124 × 22 submatrix after
removing the first column from A. Rather surprisingly, by deleting merely one column of A,
the resulting IMF behaves very differently. With β = 2, for example, the complete factorization
returns only three clusters with RowErrorRate= 9.4623. In an attempt to provide some meaning
to these clusters, we construct the so called confusion matrix in Table 6.4 with respect to
the attribute of whether the mushroom is edible or poisonous. As is seen, the first cluster
represented by v1 contains large amounts of mushrooms in both kinds, resulting in relative
high Recall rates. But the Precision values by v1 are about the same as the distribution rates
in the original data, indicating that the cluster by v1 does not differentiate edible mushrooms
from poisonous ones. The exact meaning of these clusters is yet to be understood.

Wisconsin Breast Cancer Data Set. In a similar way, we experiment our method

122

Table 6.4: Precision and Recall of edible or poisonous mushrooms

Retrieved data set

v1 v2 v3

Edible 4128 80 0

Poisonous 3789 119 8

Cardinality of vi 7917 199 8

Precision of edible mushrooms 0.5214 0.4020 0

Recall of edible mushrooms 0.9810 0.0190 0

Precision of poisonous mushrooms 0.4786 0.5980 1

Recall of poisonous mushrooms 0.9676 0.0304 0.0020

the Breast Cancer Wisconsin Data. This data set A contains 699 samples, with 458 (65.5%)
benign and 241 (34.5%) malignant cases. Each sample is characterized by 11 attributes. The
first attribute is dichotomous with labels 2 or 4, indicating benign and malignant tumors. The
remaining ten attributes are of integer values ranging from 1 to 10, but some entries in this part
of A have missing values for which we assign the value 0 in our computation. It is commonly
known that aspects such as the thickness of clumps or the uniformity of cell shape affect the
prognosis. Thus the ordinal of values in attributes matters. It is more appropriate to use the
Euclidean metric.

Again, we try out three different communal rules by varying β. With CompressionRatio≈
0.1125k, meaning a reduction of 11% memory space per one less cluster, we plot RowErrorRate

versus k in Figure 6.2. It is seen for this breast cancer data that increasing k would improve
RowErrorRate only modestly. Since the RowErrorRate is already low to begin with, a low rank
IMF should serve well in approximating the original A.

We then apply LowRankApprox with β = 3 to the 699× 10 submatrix by removing the
first column of A. A complete factorization returns 11 pattern vectors with most samples being
included in the first two clusters. We construct the confusion matrix with respect to the first
attribute of A in Table 6.5. Judging from the Recall and Precision values, we have high level of
confidence that the two patterns v1 and v2 should be good indicators of whether the tumor is
malignant or benigh, respectively. Such a classification of the original 699 samples into 2 major
indicators will be extremely useful in medical science.

6.4.3 Pattern discovery

Most modern image processing techniques treats monochromatic images as a two-dimensional
array composed of pixels. A digital image is an instruction of how to color each pixel. In a
gray scale image, for example, the instruction for every element is an integer between 0 and

123

0 111 222
0.11

0.20

0.30

0.40

0.50

k

R
ow

E
rr

or
R

at
e

β = 1

0 6 12
0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

k

R
ow

E
rr

or
R

at
e

β = 2

0 6 12
0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

k

R
ow

E
rr

or
R

at
e

β = 3

Figure 6.2: Performance of algorithms on Wisconsin breast cancer data set

255 (or a nonnegative decimal number between [0, 1] which requires more storage and often is
converted to integers) indicating the intensity of brightness at the corresponding pixel. In this
section, let A ∈ Zm×n denote a collection of n images each of which is represented by a column
of m pixels. Consider the scenario that images in this library are composite objects of many
basic parts which are latent at present. The factorization A = UV then might be suggested as
a way to identify and classify those “intrinsic” parts that make up the object being imaged by
multiple observations. More specifically, columns of U are the basis elements while each row of
V can be thought of as an identification sequence representing the corresponding image in A

in terms of the basis elements. This idea has been extensively exploited by NMF techniques.
See the many references mentioned earlier. The point to make, nonetheless, is that the NMF
techniques cannot guarantee the resulting images to have integer-valued pixels whereas our IMF
can.

Needless to say, the same idea can be applied to an extended field of applications, such as
the quantitative structure-activity relationship (QSAR) discovery in chemoinformatics. Due to
space limitation, we shall illustrate the pattern discovery ability of IMF by using two special
data sets.

Swimmer Data Set. The “Swimmer” data set as described in Example 5.5.4 contains
17 basic parts that make up these swimmers. Taking everything into account, we should also
expect one additional part for the background. Such an expectation of U ∈ Z1024×18

2 appears
to be problematic because the original matrix A has numerical rank of only 13. In this context,
the notion of “low” rank approximation to A really is not appropriate.

After using the Hamming metric and β = 0.5 in our code IMFVote to carry out a complete

124

Table 6.5: Precision and Recall of benign or recall patients

Retrieved data set

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Benign 33 411 1 5 3 0 1 1 1 1 1

Malignant 225 13 0 0 1 1 1 0 0 0 0

Cardinality of vi 258 424 1 5 4 1 2 1 1 1 1

Precision of benign cancer 0.1279 0.9693 1 1 0.75 0 0.5 1 1 1 1

Recall of benign cancer 0.0721 0.8974 0.0022 0.0109 0.0066 0 0.0022 0.0022 0.0022 0.0022 0.0022

Precision of malignant cancer 0.8721 0.0307 0 0 0.25 1 0.5 0 0 0 0

Recall of malignant cancer 0.9336 0.0539 0 0 0.0041 0.0041 0.0041 0 0 0 0

factorization, we reshape the 18 columns of the resulting binary U into 32 × 32 matrices. We
recover all 16 limbs, one torso, plus the background as depicted in Figure 6.3. Note that these
17 recovered “body” parts are completely disjointed from each other and suffer from no blurring
at all — a result that cannot be accomplished by NMF techniques. In fact, the factors U and
V returned from our IMF satisfy A = UV exactly.

Block Matrix Data Set. To demonstrate that our method can recognize patterns more
complicated than one-dimensional sticks, consider a 5× 5 block matrix with each block of size
5 × 5. Randomly select 2 out of the 25 blocks and assign the value 1 to their entries while
keeping all other entries 0. Border this 25 × 25 matrix with 4 pixels on each side and call the
resulting 33× 33 matrix an image. Totally there are 300 images. Collect these images into the
1089× 300 binary matrix A with each column representing a vectorized 33× 33 image. Apply
IMFvote with Euclidean metric and β = 1 to A. The resulting complete factorization returns
27 clusters shown in Figure 6.4. It is interesting to note that the 25 basic patterns containing
exactly one 5×5 block are completely discovered. Additionally, one pattern representing almost
the entire border except the point on the upper left corner is found.

6.4.4 Random performance test

To further test the capability of the IMF in recovering random clusters or patterns, for a given
triplet (m,n, k) of integers we randomly generate W ∈ Zm×k2 and H ∈ Zk×n14 , where columns of
W are kept mutually exclusive and Z14 = {0, 1, . . . , 13}. Define A = WH and apply IMFvote

with Euclidean metric and β = 1 to A.
Let (U, V) denote the pair of factors returned by our calculation. We wonder how likely

(U, V) would be the same as the original (W,H) after some permutations. When this happens,

125

Figure 6.3: Basic elements recovered from the swimmer data set by the IMF.

we say that our method has reached its optimal performance. Recall that the basic rank one
approximation in our scheme is only a local minimizer. We expect that pushing our algorithm,
foredoomed just like most optimization techniques for nonlinear problems, to reach its optimal
performance would be an extremely challenging task.

For each given (m,n, k), we repeat the above-described experiment 1000 times and tally the
rate of success, denoted by OptRate, in reaching the optimal performance. We also measure
the CPU time needed for each experiment on a PC running Windows XP and Matlab R2009a
with Intel(R)Core(TM)2 Duo CPU T8300@2.4GHz and 3.5GB of RAM. The average CPU
time, denoted by AvgTime, then serves as an across-the-board reference for the computational
overhead. Test results for a few selected triplets are summarized in Table 6.6. It seems possible
to draw a few general rules from this table. For problems of the same size (m,n), larger k
means more complexity and deeper recursion which, in turn, reduce OptRate and cost more
AvgTime. For problems of the same (m, k), increasing n costs only AvgTime, but has modest
effect on OptRate. For problem of the same (n, k), increasing m also costs only AvgTime and
effects little on OptRate. The overall speed of our method seems reasonable, even though our
code is yet to be further polished for efficiency by taking into account data structure, storage,
and movement within the system.
Following from these results, we establish IMFvote as efficient tool for mining the inheritance
patterns of given large datasets.

126

Figure 6.4: Bases elements recovered from block matrix data set by the IMF.

Table 6.6: Global convergence rate and average time per factorzation (in seconds) on randomly
generated data sets.

m 500 500 500 500 500 500 500 500 500 1000 1000 1000 1000 1000 1000

n 30 40 50 30 40 50 60 80 100 30 40 50 60 80 100

k 5 6 7 10 12 14 5 6 7 10 12 14 5 6 7

OptRate .5530 0.3200 .1820 0.0480 .0110 .0010 .5280 .3130 .1450 .0470 .0100 .0020 .5440 .3520 .1740

AvgTime .0133 .0158 .0178 .0167 .0196 .0224 .0177 .0213 .0252 .0468 .0524 .0575 .0529 .0627 .0724

6.5 Conclusions

Matrix factorization has many important applications. In this chapter, we investigate the notion
of factorization with entries restricted to integers or binaries. Being discrete in nature, such
a factorization or approximation cannot be accomplished by conventional techniques. Built
upon a basic scheme of rank one approximation, we propose an approach that recursively splits
(or more correctly, approximates) the underlying matrix into a sum of rank one matrices with
discrete entries. We carry out a systematic discussion to address the various computational
issues involved in this kind of factorization. The ideas are implemented into an algorithm using
either the Hamming or the Frobenius metric, but using other types of metrics is possible.

127

If the underlying data are binary, our idea is in line with the existing code Proximus. But
our formulation is readily generalizable to other types of data. For application purposes we
have mainly concentrated on binary-integer factorizations, where the “integer” could be either
the regular ordinal integers or just some nominal labels. With little effort, we can modify the
mechanism to perform integer-integer factorizations.

Of particular interest is the result in Theorem 6.3.2 where we show how an optimal lower
rank can be selected after a simple sorting. We think, in a remote sense, the ordering in
(6.19) for discrete data is analogous to the ordering of singular values for continuous data.
Similarly, the truncated product UkVk defined in (6.20) is analogous to the truncated singular
value decomposition.

Five different testing data are used to demonstrate the working of our IMF algorithm. We
hope that our discussion in this investigation offers a unified and effectual avenue of attack on
more general factorization problem. There is plenty of room for future research, including a
refinement of our algorithm for more efficient data management and a generalization to more
complex data types.

128

Chapter 7

Nonnegative Rank Factorization via

Rank Reduction

7.1 Overview

The notion of “rank” for a matrix really should be dependent upon its ambient space, that is,
the fields, rings, or semirings where its entries come from. A fundamental issue in dealing with
the important class of nonnegative matrices is the difference between its algebraic rank over
the real numbers and nonnegative rank over nonnegative number, which is main concern in this
chapter.

Given any nonnegative matrix A ∈ Rm×n, it is always possible to express A as the product
A = UV for some nonnegative matrices U ∈ Rm×k and V ∈ Rk×n with k ≤ min{m,n}. One
trivial choice is U = A and V = In. The smallest k that makes such a factorization possible
is called the nonnegative rank of A. For convenience, the nonnegative rank of A is denoted by
rank+(A). Note that the factorization A = UV can always be expressed as the sum of a series
of rank-one matrices

A =
k∑

i=1

uiv>i (7.1)

where ui and v>i ,i = 1, · · · , k, are column and row vectors of matrices U and V , respectively.
Some theoretical discussion about estimating the nonnegative rank of A can be found in [44, 76].
In particular, we know

rank(A) ≤ rank+(A) ≤ min{m,n}. (7.2)

The challenge has been to determine the exact nonnegative rank for a nonnegative matrix. It

129

is know that such an ascertainment is NP-hard [161].
Different from and more challenging than the conventional nonnegative matrix factorization,

NMF, that we have studied in Chapter 5, the task we are facing is a complete factorization
of matrix A with its product equal to A. In this chapter, our focus is on a special subclass of
nonnegative matrices,

R(m,n) :=
{
A ∈ Rm×n+ | rank(A) = rank+(A)

}
. (7.3)

Note that we have assumed that the nonnegative rank is known for A ∈ R(m,n). Our goal
is to determine two nonnegative matrices U and V of sizes m× rank(A) and rank(A) × n,
respectively, such that

A = UV.

We call this factorization a nonnegative rank factorization (NRF) of A. By representing the
matrix A as the sum of a series of nonnegative rank-one matrices, we notice a special feature in
that the residual after subtracting each rank-one matrix from A remains nonnegative but has
rank one less than that of the original A.

Every nonnegative matrix has a nonnegative factorization. But, not every nonnegative
matrix could be factorized in the form of NRF [44]. A few sufficient conditions for constructing
nonnegative matrices without NRF have been given in [102, 147]. The simplest and well studied
example is the 4× 4 matrix

C =

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

, (7.4)

which has rank(C) = 3 and rank+(C) = 4.
Needless to say, given any A ∈ Rm×n+ , the first question should be to determine whether

A ∈ R(m,n), which we have already pointed out is an NP-hard problem. One of our con-
tributions in this work is to show that if it is known that rank+(A) = k, with probability
one we should have rank(A) = k. The converse is not true. Deciding the conditional prob-
ability of rank+(A) = k, given rank(A) = k is still an open question. On the other hand, a
necessary and sufficient condition for discerning whether a nonnegative matrix has an NRF is
given in [156], but the algebraic operations of checking this qualification for a given matrix are
numerically formidable. Other known results for checking the existence of an NRF are more
restricted to certain subclasses of matrices such as the weakly monotone nonnegative matrices

130

[101], λ-monotone [100], or matrices with nonnegative 1-inverse [25].
The main crux in our investigation is to develop a numerical procedure for computing the

NRF, if it exists. Certainly the precision of the resulting NRF is subject to the floating-
point arithmetic errors. A perturbation analysis for the NRF is itself an interesting subject
deserving further investigation, but no advance has been made thus far in the literature. Our
current destination is simply to provide a heuristic algorithm that can serve as an experimental
tool for studying the NRF. Our establishment is still preliminary, but we think our numerical
approach is innovative. To facilitate the subsequent discussion, we introduce two basic terms
below. First, any nonnegative matrix whose subtraction from a given nonnegative matrix A

remains nonnegative is called a nonnegative component (NC) of A. Second, any rank-one NC
of a nonnegative matrix A whose subtraction from A reduce the rank of A by one is called
a nonnegative element (NE) of A. The fundamental difference between an NC and an NE is
significant and could be illustrated through the following example.

Example 7.1.1 The matrix C defined in (7.4) has many NCs, but has no NE at all. Recall
that rank(C) = 3 and rank+(C) = 4. If there were an NE for A1 = C , then the residual
matrix A2 after its removal from A1 would be nonnegative and of rank 2. It follows from [44,
Theorem 4.1] that the matrix A2 would automatically have nonnegative rank 2, implying the
matrix C would have nonnegative rank 3. This is a contradiction.

In [122], Levin describes a numerical algorithm for computing the ”maximum” rank-one NC
of any given nonnegative matrix. However, the subtraction of the NC characterized in Levin’s
algorithm cannot guarantee to lower the rank of the resulting matrix. In other words, the NC
found by Levin is not an NE. Continuing this process might give rise to an infinite loop of
finding nonnegative rank one matrices, which totally deviates the minimal constraint on NRF.
We do not think Levin’s algorithm is capable of computing the NRF for a given matrix in
R(m,n).

Unlike Levin’s method, we propose an NRF algorithm based on the greedy rank-one reduc-
tion. Our idea is to gradually factorize A over a sequence of NEs each of which are not only
NCs, but will also reduce the rank by one. Our method is motived by the Wedderburn rank
reduction formula [35, 163]. This formula provides the unique recipe on reducing the rank by
one in each iteration. We modify the notion in our greedy method by finding one NE a time
in each iteration. If A ∈ R(m,n), then using our method should be able to find the NRF in at
most rank(A) many iterations in exact arithmetic. On the other hand, a termination of our al-
gorithm with nonzero residual suggests, but only heuristically, that the underlying nonnegative
matrix is not in the class of R(m,n).

This chapter is organized as follows. In Section 7.2, we briefly review the fundamental
Wedderburn rank reduction formula. For our desirable rank-one reduction, we must take into

131

account the nonnegativity constraints during the reduction process. In Section 7.3, we recast
the NRF as a constrained optimization problem and propose to solve the NRF by the available
optimization techniques. Our approach is readily generalized in Section 7.4 to the even harder
problem of decomposing the so called completely positive matrices where the two factors U
and V must satisfy U = V >. We think this approach is new in this regard. In the case
A /∈ R(m,n), we propose the notion of maximal nonnegative rank splitting of a nonnegative
matrix in section 7.5. In Section 7.6, we outline a geometric meaning of the NRF which relate it
to the classical Sylvester’s problem. In Section 7.7, some empirical testing results are reported
by our algorithm.

7.2 Wedderburn rank reduction formula

The Wedderburn rank reduction formula appears as a modest statement in Wedderburn’s 1934
book [163] and is listed as an exercise in Householder’s 1964 book [94]. In the review article [35],
however, Chu, Funderlic, and Golub point out that perhaps all matrix factorizations can be ex-
pressed through this seemingly intuitive expression. In [97, Figure 2.1], Hubert, Meulman, and
Heiser chronicle an interesting timeline for the appearance of generalized rank reduction results
in the numerical linear algebra as well as the applied statistics and psychometrics literature.
We review two basic facts below.

The first theorem characterizes a necessary and sufficient condition for rank subtraction by
a rank-one matrix. This result plays a vital role in our application.

Theorem 7.2.1 Let u ∈ Rm and v ∈ Rn. Then the matrix

B := A− σ−1uv> (7.5)

satisfies the rank subtractivity rank(B) = rank(A) − 1 if and only if there are vectors x ∈ Rn
and y ∈ Rm such that

u = Ax, v = A>y, σ = y>Ax. (7.6)

Cline and Funderlic [43] then generalize the rank-one reduction formula (7.5) almost ver-
bosely to simultaneous multiple rank reduction.

Theorem 7.2.2 Suppose U ∈ Rm×k, R ∈ Rk×k, and V ∈ Rn×k. Then

rank(A− UR−1V >) = rank(A)− rank(UR−1V >)

if and only if there exist X ∈ Rn×k and Y ∈ Rm×k such that

U = AX, V = A>Y, and R = Y >AX. (7.7)

132

The formula (7.5) provides a clue to the factorization of a matrix as the sum of a series
of rank-one matrices. The basic idea is that starting with A1 = A, define a sequence {Ak} of
matrices via the formula

Ak+1 := Ak − (y>k Akxk)
−1Akxky>k Ak. (7.8)

where xk ∈ Rn and yk ∈ Rm are properly chosen so that y>k Akxk 6= 0. Since rank(Ak) is
reduced by one at each iteration, the sequence {Ak} must be finite. The original matrix A is
thus broken down by the finite series of rank-one matrices. Different choices of xk and yk lead
to different matrix decompositions, such as LU , QR, or SVD, used in applications. Further
details of this discussion could be found in [35].

For our application, we want to break down a nonnegative matrix by taking away one NE
at a time. Hence both the rank-one matrix in the Wedderburn form (y>k Akxk)

−1Akxky>k Ak
and the resulting Ak+1 must remain nonnegative for some properly chosen vectors xk ∈ Rn and
yk ∈ Rm. If these nonnegativity constraints can be satisfied, the rank of Ak+1 is guaranteed to
be one less than that of Ak. We then repeat the process until either that the rank is reduced
to zero, implying that an NRF has been found, or that the process terminates prematurely,
implying that the original matrix might not have an NRF. (See Example 7.3.1.) If Ak is a
nonzero and nonnegative matrix, then nonnegative rank-one matrices in the Wedderburn form
are easy to find. A premature termination thus means that it is impossible to keep the residual
Ak+1 nonnegative by any nonnegative rank-one reduction. There are two probable causes for
this to happen. One is that the matrix A itself is not a matrix in R(m,n). This leads to
the notion of maximal nonnegative rank splitting of A. The other is that some bad initial
points for the optimization process overshoot the subtraction and inadvertently shut down the
branching activity for Ak. A possible remedy for the latter cause is to restart the problem. In
either cases, because we only have a heuristic algorithm in hand, we must carefully assess the
situation before come to a conclusion about whether A has an NRF or not.

7.3 Nonnegative rank factorization

We now explain how to recast the Wedderburn rank reduction formula for the NRF application.
Note that the rank-one matrix uv> is nonnegative if and only if all entries of u and v have
same signs. Since the the scalar y>k Akxk in the Wedderburn formula (7.8) is either positive or
negative, we may assume without loss of generality that Akxk ≥ 0, y>k Ak ≥ 0, and y>k Akxk > 0.
Furthermore, we can scale the vectors such that y>k Akxk = 1. These conditions are referred to
as our “nonnegativity constraints”. If these constraints are satisfied, then Akxky>k Ak serves as
a candidate of nonnegative rank-one matrix to be subtracted from Ak. The concern is whether

133

Algorithm 10: NRF [U, V, p, Iflag] = NRF(A, ε,Gmax,Lmax)
Input:

A = matrix in Rm×n+ to be factorized
ε = threshold for machine zero
Gmax,Lmax = maximal allowable numbers for retries

Output:

p = an integer, is the numerical rank+(A) if Iflag = 0

Iflag =

{
0, An NRF is found with ‖A− UV ‖F < ε

1, Failed to find an NRF
U ∈ Rm×p+ and V ∈ Rp×n+

begin10.1

Gstart← 0; B ← A;10.2

initialization

Gstart← Gstart+ 1; Lstart← 0; U ← []; V ← []; p← 0;10.3

if ‖B‖F ≥ ε then10.4

if Gstart ≤ Gmax then10.5

x,y← feasible random starting points;10.6

[x,y,ObjValue]← Solve (7.9) with respect to B by available optimization routines;10.7

if ObjValue ≥ 0 then10.8

p← p+ 1; U ← [U,Bx]; V ← [V ; y>B]; B ← B −Bxy>B;10.9

else10.10

if Lstart ≤ Lmax then10.11

Lstart← Lstart+ 1; Go to line 10.6;10.12

else10.13

Go to line 10.2;10.14

end10.15

end10.16

else10.17

Report that an NE is not found after retries; Iflag = 1; return;10.18

end10.19

else10.20

Iflag = 0;10.21

end10.22

end10.23

134

this nonnegative rank-one matrix can serve as an NE for Ak.
To search for a rank-one NE of Ak, we formulate a maximin problem as follows:

max
xk∈Rn,yk∈Rm

min
[
Ak −Akxky>k Ak

]
,

subject to Akxk ≥ 0,
y>k Ak ≥ 0,
y>k Akxk = 1,

(7.9)

where the minimum is taken over all entries of the matrix. By nonnegativity, Ak −Akxky>k Ak
is always less than or equal to Ak. The maximizer of min

[
Ak −Akxky>k A

]
always exists.

A nonnegative optimal value of (7.9) implies that Ak+1 ≥ 0. We have the rank-one matrix
Akxky>k Ak is intrinsically as a feasible NE for Ak and we can repeat the process to search for
the next NE of Ak+1. The prototype of our NRF calculation is sketched in Algorithm 10.

Since (7.9) is a nonlinear problem, most maximin algorithms are only able to find a local
solution. But a local solution is enough for our application, if a nonnegative optimal value is
obtained. In this event, a valid NE has been found. On the other hand, a negative optimal value
indicates only that an NE has not been found yet. In this case, we can remedy this situation
by trying another starting value with the hope that maybe another nonnegative optimal value
could be found. Such a strategy has been applied twice in Algorithm 10. Line 10.12 is to restart
the optimization solver with the current Ak and Line 10.14 is to restart the entire NRF process
with A0. At present, we do not have any smart tactics for initiating the starting points, so
we terminate the iteration after a fixed number of failures. Strictly speaking, our algorithm
is inconclusive when it fails. But when it does perform the NRF, as we have experienced for
matrices in R(m,n), our method seems to be the first of its kind to actually find the factorization.

Example 7.3.1 Consider the 4 × 5 matrix A = [C ; c], where c is a randomly chosen non-
negative vector from R4

+ such that this matrix A is of full row rank and rank+(A) = rank(A).
This particular matrix A does have an NRF as we only need to factorize A corresponding to
its rows. On the other hand, if we start with these specific initial values x̂ = [0, 0, 0, 0, 1]> and
ŷ = [α,−α,−α, α]>, where α = 1/(c1 − c2 − c3 + c4), it can be checked that (x̂, ŷ) is already
a local maximizer to (7.9) and the nonnegative rank-one matrix ∆ := Ax̂ŷ>A == [04, c] is an
NE. But, the remaining nonnegative matrix A−∆ = [C ; 0], which is of rank 3, does not have
an NRF anymore as we have proved in Example 7.1.1. In other words, starting from these
initial values (x̂, ŷ), the matrix ∆ would be the first NE extracted by our algorithm. But then
our iteration would be stranded at a ”dead end” because there is no more NE contained in C .
This situation is what we referred to earlier as “overshooting the subtraction and branching into
the wrong direction”. For circumstances like this, we suggest in Algorithm 10 by Line 10.14 to

135

restart the process entirely and it does fix the problem.

The above example indicates that a “bad” NE can causes a break-down for Algorithm 10,
even if the NRF does exists. With the built-in restart mechanism, we generally achieve an NRF
for generic matrices in R(m,n). Our extensive numerical experiments seem to validate that
Algorithm 10, despite the fact that the accuracy of the numerical results depends highly on the
stopping criteria set out in the underlying optimization solver, is generally robust.

For computation, Algorithm 10 is sufficient as a working procedure for the construction of
a nonnegative rank-one approximation. From a theoretical point of view, Theorem 7.2.2 brings
forth the idea of reducing multiple ranks of the matrix Ak simultaneously in one iteration.
Again, the role of the matrix R−1 in Theorem 7.2.2 is immaterial. A natural generalization of
the optimization problem (7.9) is in the form

max
Xk∈Rm×r,Yk∈Rn×r

min
[
Ak −AkXkY

>
k Ak

]
,

subject to AkXk ≥ 0,
Y >k Ak ≥ 0,
Y >k AkXk = Ir×r,

(7.10)

where Ir×r is the identity matrix of rank r.
The following theorem describes an interesting fact that if the rank of the matrix Ak can be

reduced by r in one iteration via (7.10), then the same result could be achieved via r rank-one
reduction steps through (7.9).

Theorem 7.3.1 If a nonnegative matrix has a nonnegative rank-r reduction, then it must have
r nonnegative rank-one reductions.

Proof. Suppose the nonnegative matrix A has a nonnegative rank-r reduction. By Theo-
rem 7.2.2, we know there are matrices X ∈ Rn×r and Y ∈ Rm×r satisfying

AX ≥ 0, Y >A ≥ 0, Y >AX = Ir×r

and making the matrix B := A − AXY >A nonnegative with rank(B) = rank(A) − r. Denote
the columns of X and Y as

X := [x1, . . . ,xr], Y := [y1, . . . ,yr].

136

then we have

Axi ≥ 0, y>i A ≥ 0, y>i Axj =

{
1, if i = j,

0, if i 6= j.

We now show that each pair (xi,yi), i = k, . . . , r, has the desirable effect of rank-one reduction
on Ak defined successively by (7.8), starting with A1 = A, and that Ar+1 = B.

The case k = 1 is trivial. It is obvious that for 1 ≤ i, j ≤ r, we have

A1xi = Axi ≥ 0, y>i A1 = y>i A ≥ 0, y>i A1xj = y>i Axj =

{
1, if i = j,

0, if i 6= j.

Assume the statement that

Akxi ≥ 0, y>i Ak ≥ 0, y>i Akxj =

{
1, if i = j,

0, if i 6= j,

is true for all k ≤ i, j ≤ r. Recall that Ak+1 = Ak − Akxky>k Ak. It follows that for all
k + 1 ≤ i, j ≤ r, we have

Ak+1xi = (Ak −Akxky>k Ak)xi = Akxi ≥ 0,

y>i Ak+1 = y>i (Ak −Akxky>k Ak) = y>i Ak ≥ 0,

y>i Ak+1xj = y>i (Ak −Akxky>k Ak)xj = y>i Akxj =

{
1, if i = j,

0, if i 6= j.

By the mathematical induction, we conclude that the very same matrix B can be achieved by
r rank-one reductions via the sequence of vectors {(xk,yk)}rk=1. 2

Theorem 7.3.1 delivers an important message that no matrix can have a nonnegative rank-r
reduction by a rank-r matrix without first having a nonnegative rank-one reduction by a rank-
one matrix. Additionally, nonnegative rank-one reduction is preferable from the standpoint of
computational complexity. For rank-one reduction, it involves n+m variables in the problem
(7.9) and need to solve the optimization problem repeatedly r times (if no restart). For rank-
r reduction, it involves r(n + m) variables in the problem (7.10), but it only need to solve
the problem once. As r grows larger, the complexity involved in solving the optimization
problem (7.10) even by the same optimization solver would grow far more rapidly than the
total complexity of r applications to the problem (7.9).

137

7.4 Completely positive matrices

A nonnegative semi-definite matrix A ∈ Rn×n+ is said to be completely positive (CP) if and only
if A can be factorized as

A = BB>, (7.11)

where B is nonnegative [15]. The matrix B is not necessarily square. The smallest number of
columns of B satisfying the factorization (7.11) is called the cp-rank of the matrix A, denoted
by rankcp(A). If A is CP, then clearly rank+(A) ≤ rankcp(A). There has been considerable
interest in the CP matrices and their properties. An upper bound estimate for the cp-rank, for
example, can be found in [8, 84],

rankcp(A) ≤ rank(A)(rank(A) + 1)
2

− 1,

provided rank(A) > 1. Some sufficient conditions under which rankcp(A) = rank(A) can be
found in [149]. Of particular intrigue is the case that if A is generated by a Soules matrix,
then rankcp(A) = rank(A) [150]. General properties and some applications of CP matrices are
discussed in the book [15].

The determination of whether a given nonnegative semi-definite matrix is CP is an open
question. Computing the CP factorization of a CP matrix is another very challenging task [14].
The symmetric form demanded in (7.11) seems to make the CP factorization more difficult than
the NRF problem It turns out that with slight modification our NRF algorithm can determine
heuristically whether rankcp(A) = rank(A) and, if it is affirmative, we can compute the factor
B numerically.

It is almost obvious how the Wedderburn formula should be modified to assure symmetric
rank-one reduction. In order to satisfy the symmetric condition, we choose the vector x to
be the same as y in the rank reduction formula [36]. Starting with A1 = A, the optimization
problem in (7.9) is reformulated as follows:

max
xk∈Rn

min
[
Ak −Akxkx>k Ak

]

subject to Akxk ≥ 0
x>k Akxk = 1

(7.12)

with Ak+1 := Ak − Akxkx>k Ak. If the optimal value at a local maximizer is nonnegative, then
a symmetric NE has been found for the matrix Ak. Otherwise, a treatment similar to the NRF
problem can be applied to the CP problem until no more symmetric NE could be found. Since

138

the rank is reduced by one in each step, the process could only be repeated at most rank(A)
iterations in exact arithmetic. In the event that rankcp(A) = rank(A), our algorithm offers a
numerical procedure to discover the nonnegative factor

B = (A1x1, . . . , Arank(A)xrank(A))

heuristically. Our approach perhaps represents only a modest advance toward the CP problem,
but so far as we know, there is no other way capable of computing the factorization of CP
matrix in the literature.

7.5 Maximal nonnegative rank splitting

Due to the rank reduction nature, our process cannot extract more than rank(A) rank-one NEs.
To our knowledge, currently there is simply no techniques to handle nonnegative rank factor-
ization for the cases rank+(A) > rank(A) (or cp-rank factorization for the case rankcp(A) >
rank(A)). Still, we can employ our algorithm to address one interesting issue on the so called
maximal nonnegative rank splitting (MNRS) defined below.

(MNRS): Given a nonnegative matrix A, find a splitting

A = B + C, (7.13)

where both B and C are nonnegative matrices satisfying

rank(B) = rank+(B),

rank(A) = rank(B) + rank(C),

and rank(B) is maximized.

If A ∈ R(m,n), then trivially B = A and C = 0. Considering A /∈ R(m,n), we know that A
has no NRF. However, it is plausible that A still has a few NEs. Repeatedly apply our method
until it has to be terminated (after many retries), say, at Ak. If we trust that Ak has no more
NE, then B := A−Ak and C := Ak form an MNRS for A.

We mention few examples to demonstrate the notion of MNRS.
Example 3. The matrix C defined in (7.4) has zero B component in its MNRS.

Example 4. Consider the 8×8 nonnegative matrixA := [W,H], whereW :=
[

C> 04

]>
∈

139

R4×8 and H ∈ R8×4 is made of the product H = H1H2 with

H1 :=

0.2917 0.3109 0.2026
0.4665 0.2558 0.9396
0.9439 0.1048 0.2107
0.0943 0.2903 0.9670
0.0119 0.4985 0.6356
0.3723 0.8205 0.4252
0.3542 0.3074 0.2262
0.0820 0.7715 0.9325

and H2 :=

0.7426 0.2143 0.0907 0.1922
0.5133 0.8007 0.8121 0.0639
0.5417 0.6280 0.0968 0.4969

 .

Since 3 = rank(H) ≤ rank+(H), it is clearly that rank(H) = rank+(H) = 3. Hence, rank(A) =
6. Does A have an NRF, or can we retrieve an MNRS of A?

Apply Algorithm 10 to the matrix A. The farthest we can go is a splitting A = B+C with

B =

0 0 0 0 0.17825 0.36892 0.29782 0.08302
0 0 0 0 0.56400 0.47683 0.34027 0.18382
0 0 0 0 0.38505 0.33387 0.19112 0.16500
0 0 0 0 0.14403 0.42702 0.33791 0.09387
0 0 0 0 0.60902 0.80086 0.46744 0.34997
0 0 0 0 0.92796 1.00378 0.74126 0.33527
0 0 0 0 0.54335 0.46409 0.30366 0.20012
0 0 0 0 0.96204 1.22092 0.72424 0.52842

and

C =

1 1 0 0 0.30770 0.06976 0.00073 0.09358
1 0 1 0 0.42271 0.41803 0.00073 0.38908
0 1 0 1 0.48382 0.08464 0 0.12781
0 0 1 1 0.59883 0.43291 0 0.42331
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,

where for the ease of running text we have displayed all numerals in 5 digits only. Since the
result is derived from the Wedderburn rank reduction process, it is guaranteed by theory that
rank(B) = rank+(B) = 3 and rank(C) = rank(A)− rank(B) = 3. However, the special matrix
C is still embedded at the upper left corner of C. This forces the fact that rank+(C) = 4 and
that C has no more NE. Hence, this splitting is an MNRS of A.

140

7.6 Geometric meaning of nonnegative rank

This section is to briefly investigate a geometric meaning of the nonnegative rank. This meaning
not only relates the notionof NRF to the classical Sylvester’s problem, but also brings forth an
interesting conclusion on the conditional probability of the NRF.

For a given matrix A ∈ Rm×n+ , denote its columns by A = [a1, . . . ,an]. Assume that the
matrix A can be factorized as A = UV , where U ∈ R

m×p
+ and V ∈ R

p×n
+ . Following the

discussion in Section 5.2, let
ϑ(A) := Aσ(A)−1, (7.14)

with
σ(A) := diag {‖a1‖1, . . . , ‖an‖1} , (7.15)

denote the projection of A onto the probability simplex Dm. Assume without loss of generality,
that σ(U) = In. Then, we have

ϑ(A) = ϑ(U)ϑ(V), (7.16)

σ(A) = σ(V). (7.17)

Consequently, we have the following result immediately.

Lemma 7.6.1 Given a nonnegative matrix A ∈ Rm×n, then rank+(A) = rank+(ϑ(A)).

Proof. Suppose that rank+(A) = p, without lose of generality, we might factorize A as the
sum of p rank-one matrices, uiv>i for vectors ui ∈ Rm, vi ∈ Rn and i = 1, · · · p such that

A =
p∑

i=1

uiv>i (7.18)

We know that A = ϑ(A)σ(A). Hence

Aσ−1(A) = (
∑p

i=1 uiv>i)σ−1(A)
=

∑p
i=1 ui(v>i σ

−1(A))
= ϑ(A)

(7.19)

Following from formula (7.19), we get that rank+(ϑ(A)) ≤ rank+(A). In a similar way, we
could prove the other direction of the inequality. 2

It thus suffices to consider the geometric meaning of rank+(ϑ(A)) on the simplex Dm. By
the relationship (7.16), we have the following interpretation of the nonnegative rank.

Lemma 7.6.2 The integer rank+(A) represents the minimal number of vertices on Dm so that
the resulting convex polytope encloses all columns of the pull-back ϑ(A).

141

In other words, a nonnegative matrix A has an NRF if and only if the matrix ϑ(A) could
be enclosed by the the minimal convex polytope with exactly rank(A) many vertices on Dm.
Using this notion, we are now able to explain why the matrix C in (7.4) does not have an NRF
by geometry.

Since each point a = [a1, a2, a3, a4]> ∈ D4 satisfies a1+a2+a3+a4 = 1, it suffices to represent
the 4-dimensional vector a by its first three entries [a1, a2, a3]>. Through this transformation,
the probability simplex D4 can easily be visualized through the unit tetrahedron S in the first
octant of R3. In particular, columns of ϑ(C) can be interpreted as points A1, A2, A3, A4 depicted
in Figure 8.2. Also, the four points A1, A2, A3, A4 are coplanar because rank(ϑ(C)) = 3. On

x

y

z

A1 = (1
2 , 1

2 , 0)

A4 = (0, 0, 1
2) A2 = (1

2 , 0, 1
2)

A3 = (0, 1
2 , 0)

S:Unit Tetrahedron

D:Convex hull determined by θ(Q4)

Figure 7.1: A geometric representation of the matrix ϑ(C).

the other hand, these four points of the convex hull D sits on four separate “ridges” of the
tetrahedron, which cannot be enclosed by any three-vertex convex set in the tetrahedron. The
minimum number of vertices for a convex set in the unit tetrahedron to enclose D is four,
hence rank+(C) = 4. The point to make is that the columns of C are sitting at very strategic
positions in the unit tetrahedron. An interesting question to ask is how often this can happen.
Or, to put it differently, we might want to ask the following two questions about geometric
probability:

(R2R+) : Given an arbitrary nonnegative 4 by 4 matrix of rank 3, what is the
probability that its nonnegative rank is 3?

142

(R+2R) : Given an arbitrary nonnegative 4 by 4 matrix of nonnegative rank 3, what
is the probability that its rank is 3?

To answer R2R+, it suffices to consider matrices in the set

E :=
{
A ∈ R4×4

+ | rank(A) = 3, A = ϑ(A)
}
.

For A ∈ E, the four corresponding points obtained from deleting the last row of A must be in a
plane that intersects the unit tetrahedron. Hence there are two mutually exclusive cases for this
R2R+. First, the cross-section of the plane in the unit tetrahedron is a triangle. Naturally this
triangle encloses the four points. In this case, the matrix has nonnegative rank 3. Then what is
the probability of a randomly selected plane in the unit tetrahedron to have a triangular cross-
section? Second, the cross-section is a quadrilateral. Then what is the conditional probability
that the four points representing A in the unit tetrahedron are enclosed in a triangle within the
quadrilateral?

Both questions are not easy to be answered. Especially, we must reconcile the first question
concerning the basic geometric probability with how the plane cuts through the unit tetrahedron
[109]. It is known that for this question alone, different definitions of randomness will lead to
different answers. For the second question, it is related to the well known Sylvester’s four-point
problem which asks for the probability, denoted by p(4,K), of four random, independent, and
uniform points from a compact set K such that none of them lies in the triangle formed by the
other three [7]. Hence, the conditional probability of the event that rank+(A) = 3, given A ∈ E

is in some compact quadrilateral K, is greater than or equal to 1− p(4,K). Nevertheless, it is
a well known story that p(4,K) itself has a number of different answers [141]. Thus far, no one
could proclaim an exact solution for this problem and Sylvester has to proclaim in [155] that,
“This problem does not admit of a determinate solution!” For this reason, we currently do not
have a definitive answer to the seemingly simple problem R2R+.

The flipped side question of R2R+ is also interesting. It turns out we have a surprising
answer even for the general cases. We think this result is important and new.

Theorem 7.6.1 Given k < min{m,n}, let R+(k) denote the manifold of nonnegative matrices
in R

m×n
+ with nonnegative rank k. Then the conditional probability of rank(A) = k, given

A ∈ R+(k), is one.

Proof. Since rank(A) = rank(ϑ(A)) and rank+(A) = rank+(ϑ(A)), we may, without loss
of generality, assume A = ϑ(A). Note that the subspace orthogonal to columns of A is of
dimension m− rank(A) and the column sum for A is always 1. Together, columns of A satisfy
m − rank(A) + 1 independent linear equations. Thus these vertices should reside on an affine
subspace of dimension rank(A)− 1.

143

If A ∈ R+(k), then rank+(A) = k. It is known that the probability of k distinct points in
Rm to be in an affine subspace of dimension strictly less than k−1 is zero. Hence the conditional
probability of rank(A) < k, given rank+(A) = k, is zero. That is, if rank+(A) = k, then with
probability one we have rank(A) = k. 2

7.7 Numerical experiments

In general, a nonnegative matrix may not have an NRF. In this case, we have already described
in Section 7.5 how to calculate the MNRS. In this section, we demonstrate the working of our
algorithm by computing the NRF of a few nontrivial matrices. For illustration purpose, we
employ the MATLAB routine fminimax as our optimization solver in all our computation and
choose ε = 10−10 as the threshold for machine zero in Algorithm 10.

To ensure a given m×n matrix to be in R(m,n), we rely on Theorem 7.6.1 to generate test
data.

Example 7.7.1 Randomly generate two nonnegative matrices W ∈ R5×3
+ and H ∈ R3×5

+

W =

0.9708 0.2140 0.4120
0.9901 0.6435 0.7446
0.7889 0.3200 0.2679
0.4387 0.9601 0.4399
0.4983 0.7266 0.9334

, H =

0.6833 0.2071 0.4514
0.2126 0.6072 0.0439
0.8392 0.6299 0.0272
0.6288 0.3705 0.3127
0.1338 0.5751 0.0129

>

,

and define A = WH. By construction, the matrix A clearly has an NRF. Then we use our
method to discover a new NRF for the matrix A = UV such that

U =

0.02556251462152 0.00563995049828 0.05020141897100
0.02170073447446 0.00833461311952 0.10441556394589
0.01809150541560 0.01018126666230 0.05049608516928

0 0.01848758106428 0.11124821245836
0.00844625518446 0 0.11504734974715

and

V =

22.65196335171072 0 6.26680882859984
2.42501879200814 7.93355352839419 4.93382971188032

21.86596055059507 15.79385557484764 6.22840681607381
18.88971723342108 4.21210726740658 6.21364289968766

0 7.37487007847031 4.31631898597720

>

,

144

where, for convenience, we have transcribed all digits of the computed result.

Example 7.7.2 To demonstrate the NRF of a CP matrix, we randomly generate a nonnegative
matrix W

W =

0.3840 0.0158 0.6315 0.3533
0.6831 0.0164 0.7176 0.1536
0.0928 0.1901 0.6927 0.6756
0.0353 0.5869 0.0841 0.6992
0.6124 0.0576 0.4544 0.7275
0.6085 0.3676 0.4418 0.4784

,

and define A = WW>. By construction, A is CP. Our algorithm shows that the matrix A has
a nonnegative decomposition A = BB> with

B =

0.58354630329629 0.35203758768455 0.44908808470853 0.07198556063105
0.58153426004785 0.21962336143449 0.78677873223851 0
0.67910036260539 0.70358647639519 0.14987548760103 0.04842113133372

0 0.91741547294584 0 0
0.45303579486590 0.65652500722113 0.57125648786549 0.38921284477200
0.28134324531544 0.66368746544619 0.63911349062806 0.03680601340055

.

Example 7.7.3 For a general matrix R with negative entries, it cannot be guaranteed that the
product RR> has an NRF. However, if R is a Soules matrix, by definition, the product RDR>

is nonnegative and rankcp(RDR>) = rank(RDR>) for every nonnegative diagonal matrix D

with nonincreasing diagonal elements [150]. The matrix

R =

0.1348 0.1231 0.1952 0.3586 0.8944
0.2697 0.2462 0.3904 0.7171 −0.4472
0.4045 0.3693 0.5855 −0.5976 0
0.5394 0.4924 −0.6831 0 0
0.6742 −0.7385 0 0 0

has negative entries, but is a Soules matrix [58]. With this R and with

D = diag([0.7, 0.5, 0.4, 0, 0]),

145

We can define a nonnegative matrix

A = RDR> =

0.035537749 0.071084934 0.106614875 0.027868556 0.018162837
0.071084934 0.142188747 0.213258065 0.055774870 0.036372868
0.106614875 0.213258065 0.319849520 0.083670750 0.054535705
0.027868556 0.055774870 0.083670750 0.511545776 0.072745736
0.018162837 0.036372868 0.054535705 0.072745736 0.590873073

.

By theory, A is a CP matrix. Also, because of the two zeros in D, we know that rank(A) = 3.
By using our method, we find rankcp(A) = 3 as is expected and obtain a decomposition

A = BB> with

B =

0.18851458564260 0 0
0.37707922576755 0.00005556024891 0.00003751809670
0.56555239286434 0.00006079293882 0.00008502728571
0.14783235952195 0.07671246735655 0.69556205102811
0.09634711785325 0.76262068283226 0

.

7.8 Conclusion

Different from the NMF where the factorization is done approximately, the NRF insists on the
holding of equality to the original matrix by the product of its factors. The NRF is a much
harder problem both in theory and in computation. Our contribution in this investigation is
to propose a numerical method that is able to detect whether a given nonnegative matrix does
have an NRF and find such a factorization, if it exists. Although at present our method is still
heuristic and can break down, empirical results seem to strongly suggest that our algorithm
can handle the situation reasonable well for generic nonnegative matrices. Even for a matrix
without NRF, we can also study its MNRS. Our method also can be applied to explore the CP
factorization for a CP matrix. All of these would have been extremely difficult, if not possible,
in the literature.

The most important feature in our algorithm is the employment of the Wedderburn rank
reduction formula. At each iteration, we uncover an NE that not only reduces the rank by one,
but also maintains a nonnegativity residual.

146

Chapter 8

On the Nonnegative Rank of

Euclidean Distance Matrices

8.1 Overview

This short chapter exemplifies the rich field of many unanswered questions relevant to our
study. We have pointed out earlier that generically a matrix A with rank+(A) = k should have
rank(A) = k. But what are the exceptions? In this chapter we study the analysis of the non-
negative rank of a very important class of nonnegative matrices, the so called Euclidian distance
matrices (EDM). The notion of distance geometry, initiated by Menger and Schoenbeng in the
1930s, has been an area of active research because of its many important applications, includ-
ing molecular conformation problems in chemistry [48], multidimensional scaling in behavioral
sciences [53, 129], and multivariate analysis in statistics [130]. The article [74] is an excellent
reference that expounds the framework of Euclidean distance geometry in general. More exten-
sive discussion on the background and applications of distance geometry can be found in [48].
Our contribution here is to show via a geometric argument that while the EDMs always have
low algebraic ranks, their nonnegaive rank usually is full. Specifically, we show that the EDM
of n distinct points in R has nonnegative rank n and conjecture that same is true for points in
higher dimensional spaces. In short, the EDMs have no NRF in general. This work represents
perhaps only a modest advance in the field, but it should be of interest to confirm the precise
rank and nonnegative rank of a distance matrix.

8.2 Rank condition and standard form

We first briefly review the rank condition of EDMs. For this particular of nonnegative matrices,
we also introduce the notion of standard form of matrix factorization Corresponding to any given

147

p2 = (13, 3)

p3 = (16, 15)

p1 = (5, 18)

√
153

√
130

√
289

Q(p1,p2,p3) =

0 289 130
289 0 153
130 153 0

Figure 8.1: Euclidean matrix of three points in R2.

n points p1, ...,pn in the space Rr, the EDM is an n × n symmetric and nonnegative matrix
Q(p1, . . . ,pn) = [qij] whose entry qij is defined by

qij = ‖pi − pj‖2, i, j = 1, . . . , n, (8.1)

where ‖ · ‖ denotes the Euclidean norm in Rr. That is, the EDM in Rn×n is an exhaustive
representation of the relative distance between any two points of {p1, . . . ,pn} in Rr. An example
for the case n = 3 and r = 2 is sketched in Figure 8.1. It is easy to see that this matrix is
symmetric with zero diagonal.

Among the many properties of EDMs, perhaps the following rank condition of Q(p1, . . . ,pn)
is most peculiar. There are many different ways in the literature to establish this result.
For the sake of connecting the matrix factorization, we adopt the following constructive and
straightforward proof whose simplicity is worth noting.

Theorem 8.2.1 Suppose p1, · · · ,pn ∈ Rr. Then for any n ≥ r + 2, the rank of Q(p1, . . . ,pn)
is no greater than r + 2 and is generically r + 2.

148

Proof. It is true that [10]

Q(p1, . . . ,pn) =

‖p1‖2 1 −2p>1
...

...
...

‖pi‖2 1 −2p>i
...

...
...

‖pn‖2 1 −2p>n

︸ ︷︷ ︸
U

1 . . . 1 . . . 1
‖p1‖2 . . . ‖pj‖2 . . . ‖pn‖2

p1 pj pn

︸ ︷︷ ︸
V

. (8.2)

where U ∈ Rn×(r+2) and V ∈ R(r+2)×n. Hence, the rank of matrices U and V are generically
equal to r + 2 unless the points p1, . . . ,pn satisfy some particular algebraic conditions such as
‖p`‖ = 1 for all ` = 1, . . . n. 2

It is important to note that the rank of an EDM is independent of the number n of points
given, but depends only on the dimension of the ambient space. In other words, the size of
an EDM can be arbitrarily large, but its rank remains very low and generically is a constant.
The rank deficient property of the EDM implies that many entries in the matrix are redun-
dant and could be replaced by the other entries. It is nature to ask the question of whether
rank+(Q(p1, . . . ,pn)) has similar property. The two factors U and V in the decomposition
certainly cannot be nonnegative simultaneously. The (minimum) nonnegative factorization of
Q(p1, . . . ,pn) is yet to be analyzed.

Suppose that a given nonnegative matrix A has two nonnegative factorizations, A = BC

and A = FG, We say that these two factorizations are equivalent if there exist a permutation
matrix P and a diagonal matrix D with positive diagonal elements such that BDP = F and
P>D−1C = G [10]. With this notion in mind, we can rewrite every nonnegative factorization
of an EDM into the following “standard form”.

Lemma 8.2.1 Given n distinct points p1, . . . ,pn in Rr with n ≥ r + 2 ≥ 3, then any nonneg-
ative factorization of Q(p1, . . . ,pn) is equivalent to the form

Q(p1, . . . ,pn) =

1 0 ∗ ∗ . . .

∗ 1 0 ∗ . . .

0 ∗ 1 ∗ . . .

∗ ∗ ∗ ∗
...

0 ∗ + ∗ . . .

+ 0 ∗ ∗
∗ + 0 ∗
∗ ∗ ∗ ∗
...

(8.3)

where ∗ stands for some undetermined nonnegative numbers and + stands for three undeter-
mined positive numbers.

Proof. Let Q(p1, . . . ,pn) = UV be a nonnegative factorization with Q(p1, . . . ,pn) = [qij],

149

U = [uij] and V = [vij]. Since p1 and p3 are distinct (i.e., q13 > 0), there must exist an index
1 ≤ k1 ≤ n such that u1k1vk13 > 0. Place u1k1 at the (1, 1) position and vk13 at the (1, 3)
position by permuting both the first and the k1-th columns of U and the first and the k1-th
rows of V simultaneously. This permutation will not affect the product. After scaling u1k1 to
unit, rename without causing ambiguity the permuted matrices as U and V , respectively. As
q11 = 0, the corresponding v11 in the new V must be zero.

Since p1 and p2 are distinct (i.e., q12 > 0), there must exist an index 2 ≤ k2 ≤ n such
that u2k2vk21 > 0. Similarly, place u2k2 at the (2, 2) position and vk21 at the (2, 1) position
by permuting the second and the k2-th columns of U and the second and the k2-th rows of V
simultaneously. It follows that the permutation will neither affect the product nor alter the first
column of U or the first row of V . Again, after scaling u2k2 to unit and renaming the permuted
matrices as U and V . Since q33 = q22 = 0, it must be u31 = v22 = 0.

Finally, since p2 and p3 are distinct (i.e., q23 > 0), there exists an index 3 ≤ k3 ≤ n such
that u3k3vk32 > 0. Permuting the third and the k3-th columns and rows and scaling u3k3 to
unit will give rise to the structure specified in the lemma. 2

It is important to note that the procedure described above cannot be continued to the fourth
or other rows or columns. With this in mind, we refer to (8.3) as the standard nonnegative
factorization of Q(p1, . . . ,pn).

8.3 Nonnegative rank factorization for linear Euclidean dis-

tance matrices

In a recent paper [10], it is shown that for a nonnegative matrix of rank 3 to have nonnegative
rank 10, we would need a matrix of order at least 252. The result is this section clearly indicates
that the actual order could be much lower. We use linear EDMs to make our points.

To begin this, given a permutation τ of the set {1, 2, . . . , n}, define the permutation matrix
Pτ := [δiτ(j)] where δst denotes the Kronecker delta function. It is easy to see that

P>τ Q(p1, . . . ,pn)Pτ = Q(pτ(1), . . .pτ(n)), (8.4)

since the matrices P>τ and Pτ permute the rows and the columns of the matrix Q(p1, . . . ,pn),
respective. It follows that any two EDMs constructed from the same set of n given points are
orthogonally equivalent to each other by permutation matrices. In particular, they have the
same nonnegative rank.

In one dimensional case (i.e., r = 1), we may assume, after permutations if necessary,
that the point are arranged in ascending order, p1 < . . . < pn. Define si := pi+1 − pi,
i = 1, . . . , n − 1. Entries in the linear EDM are arranged in a special ordering pattern— be

150

complexed when radiating away from the diagonal per column and row, i.e.

Q(p1, . . . ,pn) =

0 s2
1 (s1 + s2)2 (s1 + s2 + s3)2 . . .

s2
1 0 s2

2 (s2 + s3)2 . . .

(s1 + s2)2 s2
2 0 s2

3 . . .

(s1 + s2 + s3)2 (s2 + s3)2 s2
3 0

...

(8.5)

Such a specific ordering could provide us with an illuminating insight into the nonnegative rank
of the EDM. Unless mentioned otherwise, the subsequent discussion is for the case r = 1. Since
the reference to the points p1, . . . ,pn is not crucial, for convenience, we express Q(p1, . . . ,pn)
as Qn.

We start the analysis of the nonnegative rank condition with the case n = 4. This is the
case where we can actually ”see” the nonnegative rank. The insight thus obtained will be
generalized to draw general conclusions. Denote the columns of Q4 by Q4 = [q1, . . . ,q4]. By
Lemma 7.6.1, it suffices to consider the pull-back ϑ(Q4) on the probability simplex D4. Recall
that the probability simplex D4 can easily be represented via the unit tetrahedron S3 in the
first octant of R3. Columns of ϑ(Q4) are represented by points q̃1, q̃2, q̃3, q̃4 in S3. Assume the
generic condition that rank(Q4) = 3. Then the four points q̃1, q̃2, q̃3, q̃4 are coplanar.

A simple layout is sketched in Figure 8.2. It can be argued that this common plane is either
parallel to the y-axis or has the y-intercept gaiven by

s1s2

s1s2 − s3(s1 + s2 + s3)

which is either negative or positive with value greater than 1. In any of these cases, the
plane intersects the tetrahedron as a quadrilateral. The first three points reside on three
separate “ridges” of the quadrilateral and hence cannot be enclosed by any triangle within the
quadrilateral except the one with vertices at these three points. Clearly, if rank+(Q4) < 4,
then q̃4 must be inside this triangle and hence be a convex combination of q̃1, q̃2, q̃3, which
deduces that the vector q4 must be a nonnegative combination of q1,q2,q3. This, of course, is
impossible because q44 = 0. Thus rank+(Q4) = 4.

Similarly, for the case n > 4, identify any n-dimensional vector x ∈ Dn by its first n − 1
entries [x1, . . . , xn−1]>. Columns of ϑ(Qn) are represented by q̃1, . . . , q̃n as n points residing
within the unit polyhedron Sn−1 in the first orthotant of Rn−1. The geometry related to
nonnegative rank property of Q4 could be generalized as follows:

Theorem 8.3.1 Suppose that the linear EDM Qn is of rank 3. Then rank+(Qn) = n.

Proof. Because rank(Qn) = 3, its columns reside on a 3-dimensional subspace of Rn. The pull-

151

y

x

z

q̃i, i = 1, 2, 3, 4

q̃1

q̃2

q̃3

q̃4

Unit tetrahedron

Common plane determined by

S3 :

Figure 8.2: A geometric representation of the matrix ϑ(Q4) when r = 1.

back map ϑ can be considered as the intersection of this subspace and the hyperplane defined
by
∑n

i=1 xi = 1. Columns of ϑ(Qn) therefore are “coplanar” whereas by their common plane
we refer to a 2-dimensional affine subspace in Rn. Identifying any n-dimensional vector x ∈ Dn
by its first n− 1 entries [x1, . . . , xn−1]>, we thus are able to “see” columns ϑ(q1), . . . , ϑ(qn) as
n points residing within the unit polyhedron Sn−1 in the first orthotant of Rn−1. These points
remain to be coplanar. (Indeed, the 2-dimensional affine subspace can be identified by a fixed
point, say, ϑ(q1), and two coordinate axes, say, v1 := ϑ(q2)− ϑ(q1) and v2 := ϑ(q3)− ϑ(qn),
where all points in the 2-dimensional affine subspace can be represented as ϑ(q1)+α1v1 +α2v2

with scalars α1 and α2. The drawing in Figure 8.2, therefore, is still relatively instructive.)
Now we show that each point q̃i could not be a nonnegative combination of the others. For

1 ≤ i ≤ n − 1, it is clear that q̃i cannot possibly be a convex combination of any other q̃j
because of the unique zero at its ith entry. We claim further that q̃n cannot possibly be in the
convex hull spanned by q̃1, . . . , q̃n−1. Assume otherwise, then we would have

q̃n =
n−1∑

i=1

ciq̃i

for some ci ≥ 0 with
∑n−1

i=1 ci = 1. Note that ‖q̃n‖1 = 1. However, ‖∑n−1
i=1 ciq̃i‖1 < 1 because

152

Table 8.1: Standard nonnegative factorizations of Q4.

U V

1 0 s12

s22
(s1 + s2 + s3)2

s22

(s1+s2)2 1 0 (s2 + s3)2

0 (s1+s2)2

s12 1 s3
2

s32

(s1+s2)2
(s1+s2+s3)2

s12
(s2+s3)2

s22 0

0 0 (s1 + s2)2 0

s1
2 0 0 0

0 s2
2 0 0

0 0 0 1

1 0 0 (s1+s2)s2(s1+s2+s3)
s2+s3

0 1 0 s2
2

0 s3(s1+s2)
(s2+s3)s1

1 0

s3(s2+s3)
(s1+s2)s1

0 (s2+s3)(s1+s2+s3)
(s1+s2)s2

0

0 s1
2 s3s1(s1+s2)

s2+s3
0

s1
2 0 0 s3(s2+s3)s1

s1+s2

(s1+s2)s2(s1+s2+s3)
s2+s3

s2
2 0 0

0 0 1 (s2+s3)(s1+s2+s3)
(s1+s2)s2

1 0 0 s1
2

s2(s2+s3)
(s1+s2)(s1+s2+s3) 1 0 0

0 s3(s1+s2)
(s2+s3)s1

1 0

0 0 (s2+s3)(s1+s2+s3)
(s1+s2)s2

s3(s2+s3)s1
s1+s2

0 0 s2(s1+s2)(s1+s2+s3)
s2+s3

(s1 + s2 + s3)2

s1
2 0 0 s3(s2+s3)s1

s1+s2

s2(s1+s2)(s1+s2+s3)
s2+s3

s2
2 0 0

0 1 s3(s1+s2)
(s2+s3)s1

0

153

‖q̃i‖1 < 1 after chopping away the last row of ϑ(Qn). This is a contradiction. The smallest
number of vertices for a convex hull to enclose q̃1, . . . , q̃n, therefore, has to be n, implying that
rank+(Qn) = n. 2

The expression Q4 = UV in the standard form (8.3) contains a polynomial system of 22
equations in 23 unknowns whereas one of the nonzero unknowns can be normalized to unit.
Other than the trivial factorization Q4 = I4Q4 where I4 is the identity matrix, it can be shown
that this nonlinear system contains only three nontrivial nonnegative factorizations which we
list in Table 8.1. Clearly, the first set of factorization in the table is equivalent to Q4I4. The
last two sets of factorizations correspond to the four vertices of the quadrilateral depicted in
figure 8.2. This observation also shows that Q4 is not prime [13, 147].

There is a subtle difference between the standard nonnegative factorization of Q4 and that
of Qn when n ≥ 5. Except for the trivial factorization, both factors U and V in Table 8.1 for
Q4 are of rank 3. This is not the case in general.

Lemma 8.3.1 Assume that rank(Qn) = 3 and n ≥ 5 and Qn = UV is a standard nonnegative
factorization for the matrix Qn. Then U and V cannot be of rank 3 simultaneously.

Proof. Observe first that since Qn is symmetric, rank(Qn) = 3 and n ≥ 5, we can partition
Qn as

Qn =

Q3 Q3Φ

Φ>Q3 Φ>Q3Φ

(8.6)

where Φ ∈ R3×(n−3) is uniquely determined. Indeed, if we write Φ = [φ4, . . .φn], then it can be
shown that

φj =

(
Pj−1

`=2 s`)(
Pj−1

`=3 s`)
s1(s1+s2)

−(
Pj−1

`=1 s`)(
Pj−1

`=3 s`)
s1s2

(
Pj−1

`=1 s`)(
Pj−1

`=2 s`)
s2(s1+s2)

, j = 4, . . . , n. (8.7)

Note that the second entry in φj is always negative.
Assume by contradiction that both U and V of Qn are of rank 3. As U and V appear in

the standard form (8.3), their 3× 3 leading principal submatrices U11 and V11 are nonsingular.

154

Thus similar to (8.6), we can partition the nonnegative factors into blocks

Qn =

U11 U11Θ

Λ>U11 Λ>U11Θ

V11 V11Γ

∆>V11 ∆>V11Γ

, (8.8)

where Θ,Λ,Γ and ∆ are real matrices of compatible sizes. Upon comparing (8.8) with (8.6),
we see that Λ = Φ = Γ. Taking a closer look at the product Λ>U11, we find that the signs of
its entries are given by

Λ>U11 =

+ − +
...

...
...

+ − +

1 0 ∗
∗ 1 0
0 ∗ 1

 =

∗ � +
...

...
...

∗ � +

,

where, again, ∗ indicates some undetermined nonnegative numbers, + some undetermined pos-
itive numbers, and � some nonnegative numbers which can further be determined. Similarly,
the signs for entries of V11Γ are given by

V11Γ =

0 ∗ +
+ 0 ∗
∗ + 0

+ . . . +
− . . . −
+ . . . +

 =

∗ . . . ∗
+ . . . +
� . . . �

 .

Since the diagonal entries of Qn are zero and entries of U and V are nonnegative, it follows that
uijvji = 0 for all indices i and j. Accordingly, the +’s in the middle row of V11Γ must cause
the �’s in the middle column of Λ>U11 to become zeros. This implies that the very same u32

would have to satisfy the equalities

−

(∑j−1
`=1 s`

)(∑j−1
`=3 s`

)

s1s2
+

(∑j−1
`=1 s`

)(∑j−1
`=2 s`

)

s2(s1 + s2)
u32 = 0,

for all j = 4, . . . n, which is genetically impossible if n ≥ 5. 2

The computation of the nonnegative factorization of Qn for n ≥ 5 is considerably harder.
The case n = 5, for example, involves a polynomial system of 39 nonlinear equations in 41
unknowns two of which can be normalized. From a geometric point of view, we might want to

155

generate two nontrivial matrix factorization of Q5 based on the factorization of Q4. Write

Q5 =

Q4 c5

c>5 0

, (8.9)

with c5 ∈ R4×1. Consider the submatrix [Q4, c5] only. In Theorem 8.3.1 we have shown
that vectors q̃1, . . . , q̃5 are coplanar and, hence, q̃5 is a point in the interior of the quadrilateral
drawn in Figure 8.2. In particular, if Q4 = UV is one of the two nontrivial standard nonnegative
factorizations of Q4, i.e., columns of ϑ(U) (or ϑ(V >)) are the four vertices of the quadrilateral,
then c5 is a nonnegative combination of columns of U (or V >). In this way, two of the nontrivial
standard nonnegative factorizations of Q5 are given by

Q5 =

U 0

0> 1

V w5

c>5 0

=

U c5

z>5 0

V 0

0> 1

, (8.10)

respectively, where w5 and z5 are some nonnegative vectors satisfying Uw5 = V >z5 = c5. This
procedure can be generalized to higher n, but there might be other nonnegative factorizations
which are not of this particular form specified in (8.10).

8.4 A conjecture for higher dimensional Euclidean distance ma-

trices

In higher dimensional vector spaces, points p1, . . . ,pn cannot be completely arranged in as-
cending order. Thus, for r > 1 and n ≥ r + 2, the EDM will not enjoy the intrinsic structure
indicated in (8.5). However, if we denote pj = [pij], the matrix Q(p1, . . . ,pn) could be expressed
as

Q(p1, . . . ,pn) =
r∑

i=1

Q(pi1, . . . , pin).

It has been shown earlier that generically rank+(Q(pi1, . . . , pin)) = n for each 1 ≤ i ≤ r. Note
that these r linear EDMs are essentially independent. If we want to get a reduction of rank via
the summation (of nonnegative entries) of these r linear EDMs, they must satisfy some delicate
algebraic constraints. We thus conjecture that rank+(Q(p1, . . . ,pn)) = n generically for all r.

It might be informative to reexamine the geometric representation of the matrix Q4 when
r > 1. In contrast to the setting in Figure 8.2, columns of Q4 are not coplanar while rank(Q4) =

156

x

y

z

q̃1, q̃2, q̃3

q̃1

q̃2

q̃3

q̃4

Unit tetrahedron

Common plane determined by

Tetrahedron determined by
θ(Q4)

Figure 8.3: A geometric representation of the matrix ϑ(Q4) when r > 1.

r + 2 ≥ 4.
The relationship of q̃1, q̃2, q̃3, and q̃4 could be depicted as that in Figure 8.3. The vertex q̃4

resides on the simplex D3. How the base plane determined by vertices q̃1, q̃2, and q̃3 intersects
the axes characterizes the zero structure of nonnegative factors. Different from the case r = 1,
there are several possibilities and there is simply no general rules here. The one shown in
Figure 8.3 implies that the corresponding Q4 is prime, which is another interesting contrast to
the case when r = 1.

157

Chapter 9

Future Work

In the course of our research into the inverse problem of matrix data reconstruction, we have
made several major breakthroughs and resolved several problems that have been regarded as
difficult in the literature. But we also have discovered many additional issues that deserve
further investigation. These interesting questions arise out of either theoretical rumination or
practical consideration. Some of them are serious enough that would impact various parts
of our current investigation, while others are more for mathematical inquisitiveness. In this
section, we list without further elaboration some of the most intriguing problems that we have
identified in our study.

1. Impact of eigenvalue structure

• In Chapter 2, we propose an IMP approach to the IEPs. In that setting, we point
out that only the structure of eigenvalues are needed for the IMPs whereas the
actual eigenvalues could be arbitrary. We have numerical evidence, but would like
to investigate whether and why an IMP is solvable for arbitrary splitting in the
number of real and complex eigenvalues n = t+ r and the distribution of prescribed
eigenvectors k = 2kC + kP + kN ≤ kmax.

• We point out in Section 2.5 that eigenvalues of an IMP with real, symmetric, and pos-
itive semi-definite (M,C,K) must satisfy the condition that the matrix XJ2H−1X>

is negative semi-definite. In this case, the completion process for the eigenvectors
and the eigenvalues cannot be done individually. Standard optimization could be
employed to solve the model built in (2.31). But we have an idea that the numerical
techniques introduced in Chapter 3 and 4 might also be applicable to carry out this
task. We think this connection or even some theoretical generalization in this regard
is worthy of future research.

2. Expansion of library modules for IEPs via the truncated QR method

158

• In Chapter 3, we have developed a software package Opt4QIEP that employs the
notion of the truncated QR method to solve QIEPs with sparsity pattern and in-
exact data. Our idea is to build a consistent linear inequality system while taking
the sparsity pattern embedded in the original system directly into account in the
construction process. We believe that this automated structure generation and error
correction approach should have significant impact in applications and should be
generalized to include as many critical dynamical systems as possible. Module by
module, we continue to expand the library according to various physical laws.

3. Improvement of IEPs via the SDP techniques for IEPs

• In Chapter 4, we have demonstrated how the SDP approach can be employed with
little effort to tackle various very difficult structured systems IEPs. However, most
current general-purpose SDP software suffers from memory limitation on handling
large scale problems. The culprit is the interior point method which usually is aimed
at solving the primal problem. Our QIEPs under the framework of the SDP is in
the dual form. It thus is possible to develop special-purpose numerical approach,
solely for the dual problem, for our QIEPs. With the power that SDP methods
have already manifested, this achievement would be a boost to our ability in solving
QIEPs.

4. Vectorization and parallelization Parallel computation in solving NMF

• Currently our numerical procedure for solving NMF is contingent upon the calcu-
lation of the proximity which is being carried out column by column. Despite its
yield of a better approximation, the employment of such a strategy make the com-
putation less efficient and competitive than the Lee-Seung algorithm which allows
BLAS3 implementation. We have already pointed out in Chapter 4 that the iterative
steps are embarrassingly parallelizable, which makes the transporting to a parallel
computing environment a very easy task. We are also investigating multi-tasking by
vectorization within the current framework, which will allow us to employ BLAS3
implementation as well.

5. Gneralization of the IMF

• The notion in our IMF formulation proposed in Chapter 6 is meant to handle discrete,
multivariate datatypes in matrix form. Numerical techniques developed in this dis-
sertation seem to be able to tackle different applications with the same stratagem.
Our next approach is to generalize this method by considering composite-integer
cases and multi-category applications.

159

6. Perturbation analysis for NRF
Our primary goal in Chapter 7 is simply to propose a numerical procedure that might
serve as a computational tool for the exploration of the very hard NRF problem. We
have not studied any backward stability analysis of our algorithm nor the perturbation
analysis for the general NRF. We repeat the two important questions already raised in
Chapter 7.

• Given a nonnegative matrix A which has an NRF, under what condition will the
perturbed nonnegative matrix A+ E still have an NRF?

• Given a nonnegative matrix A which has an NRF, let U and V be the nonnegative
factors found by some numerical computation, say, our Algorithm 10, so that UV is
a numerical NRF of A. Is UV the exact NRF of some perturbed nonnegative matrix
A+ E?

160

REFERENCES

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM J. Optim., 5(1):13–51, 1995.

[2] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-point methods
for semidefinite programming: convergence rates, stability and numerical results. SIAM
J. Optim., 8(3):746–768 (electronic), 1998.

[3] A. Antoniou and W.-S. Lu. Practical optimization, Algorithms and engineering applica-
tions. Springer, New York, 2007.

[4] E. Assis and V. Steffen, Jr. Inverse problem techniques for the identification of rotor-
bearing systems. Inverse Problems in Science and Engineering, 11(1):39–53, 2003.

[5] A. Asuncion and D. Newman. UCI machine learning repository, 2007.

[6] Z.-J. Bai, D. Chu, and D. Sun. A dual optimization approach to inverse quadratic eigen-
value problems with partial eigenstructure. SIAM J. Sci. Comput., 29(6):2531–2561 (elec-
tronic), 2007.

[7] I. Bárány. Sylvester’s question: the probability that n points are in convex position. Ann.
Probab., 27(4):2020–2034, 1999.

[8] F. Barioli and A. Berman. The maximal cp-rank of rank k completely positive matrices.
Linear Algebra Appl., 363:17–33, 2003. Special issue on nonnegative matrices, M -matrices
and their generalizations (Oberwolfach, 2000).

[9] M. Baruch. Optimization procedure to correct stiffness and flexibility matrices using
vibration data. AIAA J., 16:1208–1210, 1978.

[10] L. B. Beasley and T. J. Laffey. Real rank versus nonnegative rank. Linear Algebra and
its Applications, 431(12):2330 – 2335, 2009. Special Issue in honor of Shmuel Friedland.

[11] K. P. Bennett and C. Campbell. Support vector machines: Hype or hallelujah? SIGKDD
Explorations, 2:1–13, 2000.

[12] A. Berman and E. J. Nagy. Improvement of a large analytical model using test data.
AIAA J., 21:1168–1173, 1983.

[13] A. Berman and R. J. Plemmons. Matrix group monotonicity. Proc. Amer. Math. Soc.,
46:355–359, 1974.

[14] A. Berman and U. G. Rothblum. A note on the computation of the CP-rank. Linear
Algebra Appl., 419(1):1–7, 2006.

[15] A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific
Publishing Co. Inc., River Edge, NJ, 2003.

161

[16] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Algorithms
and applications for approximate nonnegative matrix factorization. Comput. Statist. Data
Anal., 52(1):155–173, 2007.

[17] D. P. Bertsekas. Nonlinear programming (2nd). Belmont, MA: Athena Scientific., 1999.

[18] R. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman. Matrix Market. National
Institute of Standards and Technology, 2007.

[19] D. L. Boley and G. H. Golub. A survey of matrix inverse eigenvalue problems. Inverse
Problems, 3(4):595–622, 1987.

[20] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cam-
bridge, 2004.

[21] M. Brinkmeier and U. Nackenhorst. An approach for large-scale gyroscopic eigenvalue
problems with application to high-frequency response of rolling tires. Computational
Mechanics, 41(4):503–515, 2008.

[22] R. Bro and S. de Jong. A fast non-negativity-constrained least squares algorithm. Journal
of Chemometrics, 11(5):393–401, 1997.

[23] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. Metagenes and molecular
pattern discovery using matrix factorization. Proceedings of the National Academy of
Sciences of the United States of America, 101(12):4164–4169, 2004.

[24] Y.-F. Cai, Y.-C. Kuo, W.-W. Lin, and S.-F. Xu. Solutions to a quadratic inverse eigenvalue
problem. Linear Algebra Appl., 2008.

[25] S. L. Campbell and G. D. Poole. Computing nonnegative rank factorizations. Linear
Algebra Appl., 35:175–182, 1981.

[26] D. H. Carlson and H. Schneider. Inertia theorems for matrices: the semi-definite case.
Bull, Amer. Math. Soc., 68:479–483, 1962.

[27] J. B. Carvalho, B. N. Datta, W.-W. Lin, and C.-S. Wang. Symmetry preserving eigenvalue
embedding in finite-element model updating of vibrating structures. J. Sound Vibration,
290(3-5):839–864, 2006.

[28] L. Chen. New analysis of the sphere covering problems and optimal polytope approxima-
tion of convex bodies. J. Approx. Theory, 133(1):134–145, 2005.

[29] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Review, 43(1):129–159, 2001.

[30] Z. Chen, A. Cichocki, and T. M. Rutkowski. Constrained non-negative matrix factoriza-
tion method for eeg analysis in early detection of alzheimer disease. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP2006, Toulouse, France,
2006.

162

[31] G. G. Chowdhury. Introduction to modern information retrieval. 2nd ed. facet publishing,
2004.

[32] M. T. Chu, B. Datta, W.-W. Lin, and S.-F. Xu. Spillover phenomenon in quadratic model
updating. AIAA J., 46(2):420–428, 2008.

[33] M. T. Chu, N. Del Buono, and B. Yu. Structured quadratic inverse eigenvalue problem.
I. Serially linked systems. SIAM J. Sci. Comput., 29(6):2668–2685 (electronic), 2007.

[34] M. T. Chu, F. Diele, R. J. Plemmons, and S. Ragni. Optimality, computation and
interpretation of nonnegative matrix factorizations. Available online at http: // www4.

ncsu. edu/ ~ mtchu/ Research/ Papers/ nnmf. ps , 2005.

[35] M. T. Chu, R. E. Funderlic, and G. H. Golub. A rank-one reduction formula and its
applications to matrix factorizations. SIAM Rev., 37(4):512–530, 1995.

[36] M. T. Chu, R. E. Funderlic, and G. H. Golub. Rank modifications of semidefinite matrices
associated with a secant update formula. SIAM J. Matrix Anal. Appl., 20(2):428–436
(electronic), 1999.

[37] M. T. Chu and G. H. Golub. Inverse eigenvalue problems: theory, algorithms, and ap-
plications. Numerical Mathematics and Scientific Computation. Oxford University Press,
New York, 2005.

[38] M. T. Chu, Y.-C. Kuo, and W.-W. Lin. On inverse quadratic eigenvalue problems with
partially prescribed eigenstructure. SIAM J. Matrix Anal. Appl., 25(4):995–1020 (elec-
tronic), 2004.

[39] M. T. Chu and M. M. Lin. Low-dimensional polytope approximation and its applications
to nonnegative matrix factorization. SIAM J. Sci. Comput., 30(3):1131–1155, 2008.

[40] M. T. Chu, W.-W. Lin, and S.-F. Xu. Updating quadratic models with no spillover effect
on unmeasured spectral data. Inverse Problems, 23(1):243–256, 2007.

[41] M. T. Chu and S.-F. Xu. Spectral decomposition of real symmetric quadratic λ-matrices
and its applications. Math. Comp., 78(265):293–313, 2009.

[42] K. L. Clarkson. Algorithms for polytope covering and approximation. In Algorithms and
data structures (Montreal, PQ, 1993), volume 709 of Lecture Notes in Comput. Sci., pages
246–252. Springer, Berlin, 1993.

[43] R. E. Cline and R. E. Funderlic. The rank of a difference of matrices and associated
generalized inverses. Linear Algebra Appl., 24:185–215, 1979.

[44] J. E. Cohen and U. G. Rothblum. Nonnegative ranks, decompositions, and factorizations
of nonnegative matrices. Linear Algebra Appl., 190:149–168, 1993.

[45] A. L. Comrey and H. B. Lee. A First Course in Factor Analysis. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1992.

163

[46] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices, and groups, 3rd ed. Springer,
1999.

[47] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience [John
Wiley & Sons], Hoboken, NJ, second edition, 2006.

[48] G. M. Crippen and T. F. Havel. Distance geometry and molecular conformation, volume 15
of Chemometrics Series. Research Studies Press Ltd., Chichester, 1988.

[49] B. N. Datta. Finite element model updating, eigenstructure assignment and eigenvalue
embedding techniques for vibrating systems. Mech. Sys. Signal Processing, Special Vol-
umn on “Vibration Control”, 16:83–96, 2002.

[50] B. N. Datta. Finite element model updating and partial eigenvalue assignment in struc-
tural dynamics: recent developments on computational methods. In Proceedings: 10th
International Conference “Mathematical Modelling and Analysis 2005” and 2nd Interna-
tional Conference “Computational Methods in Applied Mathematics”, pages 15–27. Tech-
nika, Vilnius, 2005.

[51] B. N. Datta, S. Elhay, Y. M. Ram, and D. R. Sarkissian. Partial eigenstructure assignment
for the quadratic pencil. J. Sound Vibration, 230(1):101–110, 2000.

[52] B. N. Datta and D. R. Sarkissian. Theory and computations of some inverse eigenvalue
problems for the quadratic pencil. In Structured matrices in mathematics, computer
science, and engineering, I (Boulder, CO, 1999), volume 280 of Contemp. Math., pages
221–240. Amer. Math. Soc., Providence, RI, 2001.

[53] J. de Leeuw and W. Heiser. Theory of multidimensional scaling. In Classification, pattern
recognition and reduction of dimensionality, volume 2 of Handbook of Statist., pages 285–
316. North-Holland, Amsterdam, 1982.

[54] C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization
and spectral clustering. In Proceedings of the Fifth SIAM International Conference on
Data Mining, Newport Beach, CA, 2005.

[55] B. Dong, M. M. Lin, and M. T. Chu. Parameter reconstruction of vibration systems
from partial eigeninformation. preprint, North Carolina State University, Raleigh, North
Carolina, 2009.

[56] D. Donoho and V. Stodden. When does nonnegative matrix factorization give a correct
decomposition into parts? In Proceedings of 17th Annual Conference Neural Information
Processing Systems, NIPS, Stanford University, Stanford, CA, 2003, 2003.

[57] M. Dugas, S. Merk, S. Breit, and P. Dirschedl. mdclust–exploratory microarray analysis
by multidimensional clustering. Bioinformatics, 20(6):931–936, 2004.

[58] L. Elsner, R. Nabben, and M. Neumann. Orthogonal bases that lead to symmetric non-
negative matrices. Linear Algebra Appl., 271:323–343, 1998.

164

[59] K. Elssel and H. Voss. Reducing huge gyroscopic eigenproblems by automated multi-
level substructuring. Archive of Applied Mechanics (Ingenieur Archiv), 76(3–4):171–179,
2 2006.

[60] K. Fan, I. Glicksberg, and A. J. Hoffman. Systems of inequalities involving convex func-
tions. Proc. Amer. Math. Soc., 8:617–622, 1957.

[61] M. I. Friswell, D. J. Inman, and D. F. Pilkey. The direct updating of damping and stiffness
matrices. AIAA I., 36:491–493, 1998.

[62] M. I. Friswell and J. E. Mottershead. Finite element model updating in structural dy-
namics, volume 38 of Solid Mechanics and its Applications. Kluwer Academic Publishers
Group, Dordrecht, 1995.

[63] F. R. Gantmacher. The theory of matrices. Vol. 1. AMS Chelsea Publishing, Providence,
RI, 1998. Translated from the Russian by K. A. Hirsch, Reprint of the 1959 translation.

[64] Y. Gao and G. Church. Improving molecular cancer class discovery through sparse non-
negative matrix factorization. Bioinformatics, 21(21):3970–3975, 2005.

[65] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: an SQP algorithm for large-
scale constrained optimization. SIAM Rev., 47(1):99–131 (electronic), 2005. See also
http://ccom.ucsd.edu/~peg/Software.html.

[66] G. M. L. Gladwell. The inverse mode problem for lumped-mass systems. Quart. J. Mech.
Appl. Math., 39(2):297–307, 1986.

[67] G. M. L. Gladwell. Inverse vibration problems for finite-element models. Inverse Problems,
13(2):311–322, 1997.

[68] G. M. L. Gladwell. Inverse problems in vibration, volume 119 of Solid Mechanics and its
Applications. Kluwer Academic Publishers, Dordrecht, second edition, 2004.

[69] I. Gohberg, P. Lancaster, and L. Rodman. Spectral analysis of selfadjoint matrix poly-
nomials. The Annals of Mathematics, 112(1):33–71, 1980.

[70] I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. Academic Press Inc.
[Harcourt Brace Jovanovich Publishers], New York, 1982. Computer Science and Applied
Mathematics.

[71] G. H. Golub. Some modified matrix eigenvalue problems. SIAM Review, 15(2):318–334,
1973.

[72] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins Univer-
sity Press, Baltimore, MD, USA, 1996.

[73] C. Gordon, D. L. Webb, and S. Wolpert. One cannot hear the shape of a drum. Bull.
Amer. Math. Soc. (N.S.), 27(1):134–138, 1992.

[74] J. C. Gower. Euclidean distance geometry. Math. Sci., 7(1):1–14, 1982.

165

[75] R. M. Gray. Vector quantization. ASSP Magazine, IEEE, 1:4–29, 1984.

[76] D. A. Gregory and N. J. Pullman. Semiring rank: Boolean rank and nonnegative rank
factorizations. J. Combin. Inform. System Sci., 8(3):223–233, 1983.

[77] P. M. Gruber. Volume approximation of convex bodies by inscribed polytopes. Math.
Ann., 281(2):229–245, 1988.

[78] P. M. Gruber. Volume approximation of convex bodies by circumscribed polytopes. In
Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pages 309–317. Amer. Math. Soc., Providence, RI, 1991.

[79] V. Guillemin and A. Pollack. Differential topology. Prentice-Hall Inc., Englewood Cliffs,
N.J., 1974.

[80] L. Guttman. General theory and methods for matric factoring. Psychometrika, 9(1):1–16,
1944.

[81] L. Guttman. Multiple group methods for common-factor analysis: Their basis, computa-
tion, and interpretation. Psychometrika, 17(2):209–222, 1952.

[82] L. Guttman. A necessary and sufficient formula for matrix factoring. Psychometrika,
22(1):79–81, 1957.

[83] P. Hall and B. A. Turlach. On the estimation of a convex set with corners. IEEE TRANS-
ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 21:225–234,
1999.

[84] J. Hannah and T. J. Laffey. Nonnegative factorization of completely positive matrices.
Linear Algebra Appl., 55:1–9, 1983.

[85] H. H. Harman. Modern Factor Analysis. University of Chicago Press, Chicago, 1976.

[86] D. Hershkowitz. Existence of matrices satisfying prescribed conditions. Masters thesis,
Technion, Haifa, 1978.

[87] D. Hershkowitz. Existence of matrices with prescribed eigenvalues and entries. Linear
and Multilinear Algebra, 14(4):315–342, 1983.

[88] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining — a
general survey and comparison. SIGKDD Explor. Newsl., 2(1):58–64, 2000.

[89] J.-B. Hiriart-Urruty and D. Ye. Sensitivity analysis of all eigenvalues of a symmetric
matrix. Numerische Mathematik, 70(1):45–72, 1995.

[90] P. K. Hopke. Receptor Modeling in Environmental Chemistry. Wiley-Interscience, New
York, 1985.

[91] P. K. Hopke. Receptor Modeling for Air Quality Management. Elsevier, Amsterdam,
1991.

166

[92] A. Horn. Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J.
Math., 76:620–630, 1954.

[93] P. Horst. Factor Analysis of Data Matrices. Holt, Rinehart and Winston, New York,
1965.

[94] A. S. Householder. The theory of matrices in numerical analysis. Dover Publications Inc.,
New York, 1975. Reprint of 1964 edition.

[95] P. O. Hoyer. Nonnegative sparse coding. In Proceedings of IEEE Workshop Neural
Networks for Signal Processing, Martigny, 2002.

[96] P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. The Journal
of Machine Learning Research, 5:1457–1469, 2004.

[97] L. Hubert, J. Meulman, and W. Heiser. Two purposes for matrix factorization: a historical
appraisal. SIAM Rev., 42(1):68–82 (electronic), 2000.

[98] Z. Hung. A fast clustering algorithm to cluster very large categorical data sets in data
mining. In Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and
Knowledge Discovery, Dept. of Computer Science, The University of British Columbia,
Canada, pp. 18., 1997.

[99] K. D. Ikramov and V. N. Chugunov. Inverse matrix eigenvalue problems. J. Math. Sci.
(New York), 98(1):51–136, 2000. Algebra, 9.

[100] S. K. Jain and J. Tynan. Nonnegative rank factorization of a nonnegative matrix A with
A†A ≥ 0. Linear Multilinear Algebra, 51(1):83–95, 2003.

[101] M. W. Jeter and W. C. Pye. A note on nonnegative rank factorizations. Linear Algebra
Appl., 38:171–173, 1981.

[102] M. W. Jeter and W. C. Pye. Some nonnegative matrices without nonnegative rank
factorizations. Indust. Math., 32(1):37–41, 1982.

[103] D. Johnson. Advanced structural mechanics: an introduction to continuum mechanics
and structural dynamics. Thomas Telford Ltd., London, 2000.

[104] M. Kac. Can one hear the shape of a drum? Amer. Math. Monthly, 73(4, part II):1–23,
1966.

[105] T. Kawamoto, K. Hotta, T. Mishima, J. Fujiki, M. Tanaka, and T. Kurita. Estimation of
single tones from chord sounds using non-negative matrix factorization. Neural Network
World, 3:429–436, 2000.

[106] E. Kim, P. K. Hopke, and E. S. Edgerton. Nonnegative matrix factorization based on
alternating nonnegativity constrained least squares and active set method. SIAM J.
Matrix Anal. Appl., 30(2):713–730, 2008.

167

[107] H. Kim and H. Park. Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics,
23(12):1495–1502, 2007.

[108] H. Kim and H. Park. Nonnegative matrix factorization based on alternating nonnegativity
constrained least squares and active set method. SIAM J. Matrix Anal. Appl., 30(2):713–
730, 2008.

[109] D. A. Klain and G.-C. Rota. Introduction to geometric probability. Lezioni Lincee. [Lincei
Lectures]. Cambridge University Press, Cambridge, 1997.

[110] M. Koyutürk and A. Grama. Proximus: a framework for analyzing very high dimensional
discrete-attributed datasets. In KDD ’03: Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 147–156, New York,
NY, USA, 2003. ACM.

[111] M. Koyutürk, A. Grama, and N. Ramakrishnan. Nonorthogonal decomposition of binary
matrices for bounded-error data compression and analysis. ACM Trans. Math. Software,
32(1):33–69, 2006.

[112] Y.-C. Kuo, W.-W. Lin, and S.-F. Xu. New methods for finite element model updating
problems. AIAA J., 44:1310–1316, 2006.

[113] Y.-C. Kuo, W.-W. Lin, and S.-F. Xu. Solutions of the partially described inverse quadratic
eigenvalue problem. SIAM J. Matrix Anal. Appl., 29(1):33–53 (electronic), 2006/07.

[114] P. Lancaster. Inverse spectral problems for semisimple damped vibrating systems. SIAM
J. Matrix Anal. Appl., 29(1):279–301 (electronic), 2006/07.

[115] P. Lancaster. Model-updating for self-adjoint quadratic eigenvalue problems. Linear
Algebra Appl., 428(11-12):2778–2790, 2008.

[116] P. Lancaster. Model-updating for self-adjoint quadratic eigenvalue problems. Linear
Algebra Appl., 428(11-12):2778–2790, 2008.

[117] P. Lancaster and U. Prells. Inverse problems for damped vibrating systems. J. Sound
Vibration, 283(3-5):891–914, 2005.

[118] C. L. Lawson and R. J. Hanson. Solving least squares problems, volume 15 of Classics in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 1995. Revised reprint of the 1974 original.

[119] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factor-
ization. Nature, 401:788–791, 1999.

[120] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances
in Neural Information Processing Systems, volume 13, pages 556–562, 2001.

[121] E. Lee, C. Chun, and P. Paatero. Application of positive matrix factorization in source
apportionment of particulate pollutants. Atmospheric Environment, 33:3201–3212, 1999.

168

[122] B. Levin. On calculating maximum rank one underapproximations for positive ar-
rays. Columbia University Biostatistics Technical Report Series. Working Paper 10.
http://biostats.bepress.com/columbiabiostat/papers/art10, 1985.

[123] M. M. Lin, B. Dong, and M. T. Chu. Semi-definite programming techniques for structured
quadratic inverse eigenvalue problems. preprint, North Carolina State University, Raleigh,
North Carolina, 2009.

[124] W. Liu and J. Yi. Existing and new algorithms for nonnegative matrix factorization.
Technical report, Department of Computer Sciences, University of Texas at Austin, 2003.

[125] J. Lofberg. YALMIP: a toolbox for modeling and optimization in MATLAB. In 2004 IEEE
International Symposium on Computer Aided Control Systems Design, pages 284–289,
Taipei, Taiwan, 2004. See also http://control.ee.ethz.ch/~joloef/wiki/pmwiki.
php.

[126] Z.-Q. Luo, J. F. S. Sturm, and S. Zhang. Conic convex programming and self-dual
embedding. Optimization Methods and Software, 14(3):169–218, 2000.

[127] J. Macqueen. Some methods for classification and analysis of multivariate observations.
In In Proceedings of the 5th Berkeley Symposium, vol. 1. 281297., 1967.

[128] O. Mangasarian and P. Bradley. k-plane clustering. Journal of Global Optimization,
16(1):23–32, 2000.

[129] R. Mathar. The best euclidian fit to a given distance matrix in prescribed dimensions.
Linear Algebra and its Applications, 67:1 – 6, 1985.

[130] J. Meulman. A distance approach to nonlinear multivariate analysis. DSWO Press,
Leiden, Netherlands, 1986.

[131] B. Mohar and P. Svatopluk. Eigenvalues in combinatorial optimization. In Combinatorial
and Graph Theoretic Problems in Linear Algebra, R. Brualdi, S. Friedland, and V. Klee,
eds. Springer-Verlag, New York, Berlin, 50:107–151, 1993.

[132] S. D. Morgan. Cluster analysis in electronic manufacturing. Ph.D. dissertation, North
Carolina State University, Raleigh, NC 27695., 2001.

[133] J. E. Mottershead and Y. M. Ram. Inverse eigenvalue problems in vibration absorp-
tion: Passive modification and active control. Mechanical Systems and Signal Processing,
20(1):5 – 44, 2006.

[134] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex program-
ming, volume 13 of SIAM Studies in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1994.

[135] N. K. Nichols and J. Kautsky. Robust eigenstructure assignment in quadratic matrix
polynomials: nonsingular case. SIAM J. Matrix Anal. Appl., 23(1):77–102 (electronic),
2001.

169

[136] M. L. Overton. Large-scale optimization of eigenvalues. SIAM Journal on Optimization,
2(1):88–120, 1992.

[137] P. Paatero. Least squares formulation of robust non-negative factor analysis. Chemomet-
rics and Intelligent Laboratory Systems, 37:23–35, 1997.

[138] P. Paatero. The multilinear engine–a table-driven, least squares program for solving mul-
tilinear problems, including the n-way parallel factor analysis model. J. of Computational
and Graphical Statistics, 8(4):854–888, 1999.

[139] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics, 5:111–126,
1994.

[140] A. Pascual-Montano, J. M. Carzzo, K. Lochi, D. Lehmann, and R. D. Pascual-Marqui.
Nonsmooth nonnegative matrix factorization (nsnmf). IEEE Transactions on, Pattern
Analysis and Machine Intelligence, 28:403–415, 2006.

[141] R. E. Pfiefer. The historical development of j. j. sylvester’s four point problem. Mathe-
matics Magazine, 62(5):309–317, 1989.

[142] J. Piper, P. Pauca, R. Plemmons, and M. Giffin. Object characterization from spectral
data using nonnegative factorization and information theory. In Proceedings of AMOS
Technical Conference, 2004.

[143] J. Qian and W.-W. Lin. A numerical method for quadratic eigenvalue problems of gyro-
scopic systems. J. Sound Vibration, 306(1-2):284–296, 2007.

[144] Y. M. Ram and S. Elhay. An inverse eigenvalue problem for the symmetric tridiagonal
quadratic pencil with application to damped oscillatory systems. SIAM J. Appl. Math.,
56(1):232–244, 1996.

[145] Y. M. Ram and I. Elishakoff. Reconstructing the cross-sectional area of an axially vibrat-
ing nonuniform rod from one of its mode shapes. Proc. R. Soc. Lond., A460:1583–1596,
2004.

[146] Y. M. Ram and G. M. L. Gladwell. Constructing a finite element model of a vibratory
rod from eigendata. Journal of Sound and Vibration, 169(2):229 – 237, 1994.

[147] D. J. Richman and H. Schneider. Primes in the semigroup of non-negative matrices.
Linear and Multilinear Algebra, 2:135–140, 1974.

[148] K. Sekitani and Y. Yamamoto. A recursive algorithm for finding the minimum norm
point in a polytope and a pair of closest points in two polytopes. Math. Programming,
61(2, Ser. A):233–249, 1993.

[149] N. Shaked-Monderer. Minimal cp-matrices. ELA, 8:140–157, 2001.

[150] N. Shaked-Monderer. A note on the cp-rank of matrices generated by a soules matrix.
ELA, 12:2–5, 2004.

170

[151] J. Shen and G. Isral. A receptor model using a specific non-negative transformation
technique for ambient aerosol. Atmospheric Environment (1967), 23(10):2289 – 2298,
1989.

[152] S. Sra and I. S. Dhillon. Nonnegative matrix approximation: Algorithms and applications.
Technical report, Deptartment of Computer Sciences, University of Texas at Austin, 2006.

[153] L. Starek and D. J. Inman. A symmetric inverse vibration problem for nonproportional
underdamped systems. Trans. ASME J. Appl. Mech., 64(3):601–605, 1997.

[154] J. Sturm. SeDuMi. Advanced Optimization Laboratory, McMaster University. Available
at http://sedume.mcmaster.ca.

[155] J. J. Sylvester. On a special class of questions on the theory of probabilities. Birmingham
British Assoc. Rept., pages 8–9, 1865.

[156] L. B. Thomas. Solution to problem 73-14: Rank factorization of nonnegative matrices by
a. berman and r. j. plemmons. SIAM Review, 16(3):393–394, 1974.

[157] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43(2):235–
286 (electronic), 2001.

[158] M. J. Todd. Semidefinite optimization. Acta Numer., 10:515–560, 2001.

[159] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear pro-
grams using SDPT3. Math. Program., 95(2, Ser. B):189–217, 2003. See also http:
//www.math.nus.edu.sg/~mattohkc/sdpt3.html.

[160] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,
1996.

[161] s. A. Vavasis. On the complexity of nonnegative matrix factorization, 2007.

[162] J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, Princeton, NJ, anniversary edition, 2007. With an introduction by
Harold W. Kuhn and an afterword by Ariel Rubinstein.

[163] J. H. M. Wedderburn. Lectures on matrices. Dover Publications Inc., New York, 1964.

[164] F.-S. Wei. Mass and stiffness interaction effects in analytical model modification. AIAA
J., 28:1686–1688, 1990.

[165] H. K. Wimmer. Inertia theorems for matrices, controllability, and linear vibrations. Linear
Algebra and Appl., 8:337–343, 1974.

[166] P. Wolfe. Finding the nearest point in a polytope. Math. Programming, 11(2):128–149,
1976.

[167] H. Wolkowicz. Bibliography on semidefinite programming. Department of Combi-
natorics and Optimization, University of Waterloo. http://liinwww.ira.uka.de/
bibliography/Math/psd.html.

171

[168] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of semidefinite program-
ming. International Series in Operations Research & Management Science, 27. Kluwer
Academic Publishers, Boston, MA, 2000. Theory, algorithms, and applications.

[169] W. Xu, X. Liu, and Y. Gong. Document-clustering based on non-negative matrix factor-
ization. In Proceedings of the 26th Annual International ACM SIGIR Conference, pages
267–273, 2003.

[170] J. Ye. Generalized low rank approximations of matrices. Mach. Learn., 61(1-3):167–191,
2005.

[171] Y. Yuan. A model updating method for undamped structural systems. J. Comput. Appl.
Math., 219(1):294–301, 2008.

[172] W.-X. Zhong. Duality system in applied mechanics and optimal control. Advances in
Mechanics and Mathematics. Kluwer Academic Publishers, Boston, 2004.

172

APPENDIX

173

Appendix A

QR Factorization with Column

Pivoting

In this appendix we briefly review some basic concepts of QR factorization. Numerical details
of computing QR factorization are referred to [72]. Consider a matrix A ∈ Rm×n, with m ≥ n,
factorized into

A = QR (A.1)

where Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n is an upper trapezoidal matrix with
zero rows from the n + 1-th row on. This factorization is called the QR factorization of the
matrix A.

If rank(A) = n, the first n columns of Q form an orthonormal basis for the vector space
range(A). Then, the construction of the QR factorization could be thought of as finding out the
orthonormal basis for range(A). On the other hand, if rank(A) = s < n, the QR factorization
does not guarantee to produce an orthonormal basis for range(A). For example, consider the
QR factorization of the matrix A such that

A = [q1 q2 q3]

1 1 1
0 0 1
0 0 1

 (A.2)

Then rank(A) = 2 but range(A) is not equal to span{q1,q2}, span{q1,q3}, or span{q2,q3}

174

Algorithm 11: QR factorization with column pivoting
Input: Matrix A ∈ Rm×n and rank(A) = s
Output: Orthogonal matrix Q ∈ Rm×m, upper trapezoidal matrix R ∈ Rm×n, and

permutation matrix P ∈ Rn×n

begin11.1

Initialize Q = I, R = A = R22, P = I11.2

for i← 1 to s do11.3

Let p be the smallest index of the column of R22 with the greatest 2-norm11.4

Swap the columns i and i+ p− 1 in R and in P11.5

Employ a suitable transformation Hi, for example Householder matrices or Givens11.6

rotations, that triangularizes the first i columns of R such that

R =

[
R11 R12

0 R22

]
i

n− i
i m− i

Q← QQ>i , R← Q>i R11.7

end11.8

end11.9

[72]. However, we still can obtain a factorization of the form

Q>AP =

[
R11 R12

0 0

]
s

m− s
s n− s

, (A.3)

where Q ∈ Rm×m is orthogonal and R11 ∈ Rs×s is a nonsingular upper triangular matrix
with diagonal elements arranged in terms of non-increasing absolute values by the permutation
matrix P . This factorization is called the QR factorization with column pivoting of the matrix
A. This factorization can be constructed by Algorithm 11.

With this in mind, we can generate a reduced version of the QR factorization (A.3) as
follows:

Remark A.0.1 Assume A ∈ Rm×n, with m ≥ n, and rank(A) = s < n. Then formula (A.3)
of the QR factorization with column pivoting of A could be rewritten as

A = Q1

[
R11 R22

]
(A.4)

where Q1 = Q(1 : m, 1 : s) has orthonormal vector columns. We call this reduced factorization
of A compact QR factorization of A.

175

It is easy to know that Algorithm 11 can also be used while rank(A) = n. In such case,

Q>AP =

[
R11

0

]
n

m− n
n

, (A.5)

where Q ∈ Rm×m is orthogonal and R11 ∈ Rs×s is a nonsingular upper triangular matrix
with diagonal elements arranged in terms of non-increasing absolute values by the permutation
matrix P .

176

