
ABSTRACT

REHMAN, RIZWANA. Numerical Computation of the Characteristic Polynomial of

In this dissertation we present algorithms, and sensitivity and stability analyses

for the numerical computation of characteristic polynomials of complex matrices. In

Quantum Physics, for instance, characteristic polynomials are required to calculate

thermodynamic properties of systems of fermions.

The general consensus seems to be that numerical methods for computing char-

acteristic polynomials are numerically inaccurate and unstable. However, in order to

judge the numerical accuracy of a method, one needs to investigate the sensitivity of

the coefficients of the characteristic polynomial to perturbations in the matrix. We

derive forward error bounds for the coefficients of the characteristic polynomial of an

n × n complex matrix. These bounds consist of elementary symmetric functions of

singular values. Furthermore, we investigate the numerical stability of two methods

for the computation of characteristic polynomials. The first method determines the

coefficients of the characteristic polynomial of a matrix from its eigenvalues. The sec-

ond method requires a preliminary reduction of a complex matrix A to its Hessenberg

form H. The characteristic polynomial of H is obtained from successive computations

of characteristic polynomials of leading principal submatrices of H. Our numerical

experiments suggest that the second method is more accurate than the determination

of the characteristic polynomial from eigenvalues.
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Chapter 1

Introduction

The characteristic polynomial of an n× n complex matrix A is defined as

p(λ) ≡ det(λI − A) ≡ λn + c1λ
n−1 + · · ·+ cn−1λ+ cn,

where, in particular cn = (−1)n det(A) and c1 = −trace(A). The roots of the charac-

teristic polynomial p(λ) of A are eigenvalues of A.

In this dissertation we investigate the numerical computation of the characteristic

polynomial of a complex matrix. The coefficients of p(λ) of a complex matrix are

of central importance in a Quantum Physics application. Characteristic polynomials

also have applications in Physics [27], Chemistry [35] and Engineering [36].

This dissertation is organized as follows: In chapter 2 we describe the physical

application of the characteristic polynomial. The coefficients of p(λ) are needed to

determine thermodynamic properties of fermionic systems. To assess the numerical

accuracy of our computed coefficients, we derive absolute perturbation bounds for the

coefficients of p(λ) in chapter 3. The bounds are expressed in terms of elementary

symmetric functions of singular values. The results in chapter 3 were published in

July 2008 in the SIAM Journal of Matrix Analysis and Applications [34]. In chapter

4 we analyze the numerical stability of some well known methods for the computation
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of p(λ).

Chapter 5 focuses on the computation of the characteristic polynomial of A from

its eigenvalues. To obtain forward error bounds of coefficients of p(λ) from this

method we initially consider elementary symmetric functions sk(λ) of complex num-

bers λ1, . . . , λn. If λ1, . . . , λn are the eigenvalues of A, then elementary symmetric

functions of the eigenvalues of A equal the coefficients of p(λ) of A, up to a sign.

That is, ck = (−1)ksk(λ). Therefore, the perturbation bounds of elementary sym-

metric functions lead to condition numbers of coefficients, given the coefficients are

computed from the eigenvalues of A. Furthermore, we investigate the numerical sta-

bility of the Summation Algorithm that determines elementary symmetric functions

of λ1, . . . , λn, and we show that the Summation Algorithm is numerically forward sta-

ble. We also perform tests on various matrices by implementing MATLAB’s “poly”

function. The “poly” function first computes the eigenvalues of the given matrix and

then determines p(λ) from computed eigenvalues by using the Summation Algorithm.

The results of our experiments suggest that the perturbation bounds of coefficients

are accurate, when the cofficients are computed from the eigenvalues of A.

In chapter 6 we examine the numerical stability of a relatively unknown method

due to La Budde [19], that computes the characteristic polynomial of A from its Hes-

senberg form. For our application in Quantum Physics which requires some initial

coefficients of p(λ) of A, we modify La Budde’s method to produce the required coeffi-

cients. Our experiments suggest that La Budde’s method yields more accurate results

than the computation of p(λ) from eigenvalues of A as implemented by MATLAB’s

“poly” function. In chapter 7 we discuss our future research.
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Chapter 2

The Characteristic Polynomial in

Quantum Physics

Our research concerns the computation of characteristic polynomials of complex

matrices for an application in Quantum Physics. The characteristic polynomial of an

n× n matrix A is defined as

p(λ) ≡ det (λI − A) = λn + c1λ
n−1 + · · ·+ cn.

The physical application consists of calculating thermodynamic properties of systems

of interacting fermions, which is required, for instance, to understand the structure

and evolution of neutron stars [39]. Thermodynamic properties of fermionic systems

such as average energy, total energy, entropy and heat capacity can be derived from

partition function Z. We give a brief description of fermions and partition functions.

Noninteracting Fermions

Fermions, named after the Italian physicist Enrico Fermi, are the basic building

blocks of matter. They include electrons, protons and neutrons.
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Fermions are elementary particles with odd half-integer spin. They are indis-

tinguishable and have an antisymmetric wave function. Fermions are “antisocial”:

According to Pauli’s exclusion principle, formulated in 1925 by the Austrian physi-

cist Wolfgang Pauli, no two fermions in an atom can exist in the same quantum state,

e.g. have the same position, energy state, spin, etc.

A quantum state is formally represented by a vector in an abstract linear space,

and each physical observable such as energy is associated with a self-adjoint linear

operator. The possible values from a physical measurement are the real eigenvalues of

this operator. Of special interest to us is the single particle Hamiltonian operator H,

whose eigenvalues E1, E2, . . ., Ek represent the possible energies of a single fermion.

We can regard H as an n× n matrix.

Since two identical fermions cannot occupy the same quantum state, the full set

of possible energies for two identical noninteracting fermions are all possible sums of

two eigenvalues, Ej1 + Ej2 , for 1 ≤ j1 < j2 ≤ n. Similarly the full set of possible

energies for k identical noninteracting fermions are all possible sums of k eigenvalues,

Ej1 + Ej2 + · · ·+ Ejk , 1 ≤ j1 < j2 · · · < jk ≤ n.

Partition Function

An object of considerable interest in studying systems of fermions is the partition

function Z. As we described earlier, it is used to calculate the average energy of the

system, its heat capacity, and many other thermal quantities. The partition function

Z is given by

Z ≡ trace [exp (−βH)] .

Here β = 1
KT

, where K is Boltzmann’s constant and T is the temperature in de-

grees Kelvin. Alternatively we can express Z in terms of the eigenvalues Ei of the
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Hamiltonian H,

Z =
∑
i

e−βEi .

As previously stated, for a system of k noninteracting fermions the energies are given

by the single particle energy sums Ej1 + Ej2 + · · · + Ejk . They lead to the partition

function Zk corresponding to a system of k noninteracting fermions,

Zk =
∑

1≤j1<j2···<jk≤n

exp [−β (Ej1 + Ej2 + · · ·+ Ejk)] .

Let us define the n×n matrix A ≡ exp(−βH) whose eigenvalues are λj ≡ e−βEj . We

can represent Zk as sums of products of eigenvalues (elementary symmetric functions)

Zk =
∑

1≤j1<j2···<jk≤n

λj1λj2 · · ·λjk , 1 ≤ k ≤ n.

In particular, for the systems with the smallest and largest number of fermions, we

have

Z1 = λ1 + λ2 + · · ·+ λn = trace(A), Zn = λ1 · · ·λn = det(A),

and for a system of two fermions,

Z2 = λ1λ2 + λ1λ3 + · · ·+ λ1λn + λ2λ3 + λ2λ4 + · · ·+ λ2λn + · · ·+ λn−1λn.

The elementary symmetric functions Zk equal the coefficients of the characteristic

polynomial p(λ) = det(λI − A), up to a sign. That is, ck = (−1)kZk. Therefore,

calculating partition functions for a system of noninteracting fermions is esentially

the same as computing the coefficients of the characteristic polynomial of the n × n
matrix A. The index k associated with the coefficient ck corresponds to the number

of fermions.
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Interacting Fermions

We have mentioned how the coefficients of the characteristic polynomial come up

in Quantum Statistics. Unfortunately, the system of noninteracting fermions we just

described is rather trivial. The problems of real interest are interacting quantum

systems.

In many situations [39] we can use an integral identity called a Hubbard-Stratono-

vich transformation [33, 46] to write the interacting partition function as an integral

over noninteracting partition functions,
∫
DsZN(s). Here, the variable s is actually a

function of space and time. If we discretize space and time as a lattice of points, then

Ds is the product of ds(x, y, z, t) for each point (x, y, z, t). This is sometimes called

a functional integral measure and the integral is a functional integral. We can again

define an n× n matrix A(s) with eigenvalues λi(s) and partition function

Zk(s) =
∑

1≤j1<j2···<jk≤n

λj1(s)λj2(s) · · ·λjk(s).

Numerical Considerations

The matrices A(s) are produced by a code over which we have no control. They

are dense and currently of order n ≤ 2000, but in the future n may become larger.

The matrices have no discernible structure, and the eigenvalues can be complex with

a wide range of magnitudes. Characteristic polynomials have to be computed for

various matrices A(s). However, matrices at different points s appear to have no

obvious common properties that could be exploited. No accuracy is specified for the

computation, but an estimate should be available for the absolute accuracy of the

coefficients.
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Chapter 3

Perturbation Bounds for the

Characteristic Polynomial

3.1 Introduction

Many methods for computing the characteristic polynomial p(λ) of a complex

matrix A were developed in the first half of the twentieth century as a precursor

to an eigenvalue computation. However, we found very few bounds for the numeri-

cal sensitivity of the coefficients of the characteristic polynomial. To devise reliable

numerical methods and to judge their accuracy we need to know the numerical con-

ditioning of the coefficients. That is, if the matrix A is perturbed by E, then how

do the coefficients of the characteristic polynomial of A + E compare to those of

p(λ)? Conditioning reflects sensitivity in exact arithmetic, with no reference to any

algorithm. To this end, we derive perturbation bounds for absolute normwise pertur-

bations. The basis for all bounds is an expansion of the determinant of a perturbed

diagonal matrix.
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Overview

Section 3.2 deals with determinants. We first derive expansions for determinants

(section 3.2.1), and from them absolute perturbation bounds in terms of elementary

symmetric functions of singular values (section 3.2.2), as well as relative bounds for

determinants (section 3.2.3), and local sensitivity results (section 3.2.4). Section 3.3

deals with coefficients ck of the characteristic polynomial. We derive absolute pertur-

bation bounds for general matrices (section 3.3.1) and normal matrices (section 3.3.2),

as well as normwise bounds (section 3.3.3).

Notation

The matrix A is a n× n complex matrix with singular values σ1 ≥ · · · ≥ σn ≥ 0,

and eigenvalues λi, labelled so that |λ1| ≥ · · · ≥ |λn|. The two-norm is ‖A‖2 = σ1,

and A∗ is the conjugate transpose of A. The matrix I = diag
(

1 . . . 1
)

is the

identity matrix, with columns ei, i ≥ 1. We denote by Ai the principal submatrix of

order n − 1 that is obtained by removing row and column i of A, and by Ai1...ik the

principal submatrix of order n− k, obtained by removing rows and columns i1 . . . ik.

3.2 Determinants

We derive expansions and perturbation bounds for determinants. We start with

expansions for determinants of perturbed matrices (section 3.2.1), and from them de-

rive absolute perturbation bounds in terms of elementary symmetric functions of sin-

gular values (section 3.2.2), as well as relative bounds for determinants (section 3.2.3),

and local sensitivity results (section 3.2.4).
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3.2.1 Expansions

We derive expansions for determinants of perturbed matrices in several steps, by

considering perturbations that have only a single nonzero diagonal element (Lemma 3.1),

perturbations of diagonal matrices (Theorem 3.3), and at last perturbations of general

matrices (Corollary 3.4).

Lemma 3.1. Let A be a n × n complex matrix, α a scalar, and Ai the principal

submatrix of order n− 1 obtained by deleting row and column i of A.

If B = A+ αeie
∗
i , then det(B) = det(A) + α det(Ai), 1 ≤ i ≤ n.

Proof. This follows from a cofactor expansion [38, Theorem 2.3.1] along row i or

column i of B.

The above expansion can be used to expand the determinant of a perturbed diag-

onal matrix. Before deriving this expansion, we motivate its expression on matrices

of order 2 and 3.

Example 3.2. If

D =

(
δ1

δ2

)
, F =

(
f11 f12

f21 f22

)
,

then det(D + F ) = det(D) + det(F ) + S1, where S1 ≡ δ1f22 + δ2f11.

If

D =


δ1

δ2

δ3

 , F =


f11 f12 f13

f21 f22 f23

f31 f32 f33

 ,

then det(D + F ) = det(D) + det(F ) + S1 + S2, where

S1 ≡ δ1 det

(
f22 f23

f32 f33

)
+ δ2 det

(
f11 f13

f31 f33

)
+ δ3 det

(
f11 f12

f21 f22

)
,

and S2 ≡ δ1δ2f33 + δ1δ3f22 + δ2δ3f11.
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These examples illustrate that the expansion of det(D + F ) can be written as

a sum, where each term consists of a product of k diagonal elements of D and the

determinant of the “complementary” submatrix of order n− k of F .

To derive expansions for diagonal matrices of any order, we denote by Fi1...ik the

principal submatrix of order n− k obtained by deleting rows and columns i1 . . . ik of

the n× n matrix F .

Theorem 3.3 (expansion for diagonal matrices). Let D and F be n × n complex

matrices. If D = diag
(
δ1 . . . δn

)
, then

det(D + F ) = det(D) + det(F ) + S1 + · · ·+ Sn−1,

where

Sk ≡
∑

1≤i1<···<ik≤n

δi1 · · · δik det(Fi1...ik), 1 ≤ k ≤ n− 1.

In particular, if δ1 = · · · = δj = 0 for some 1 ≤ j ≤ n− 1, then

det(D + F ) = det(F ) + S1 + · · ·+ Sn−j,

where

Sk =
∑

j+1≤i1<···<ik≤n

δi1 · · · δik det(Fi1...ik), 1 ≤ k ≤ n− j.

Proof. The proof is by induction over the matrix order n, and Example 3.2

represents the induction basis. Assuming the statement is true for matrices of order

n− 1, we show that it is also true for matrices of order n. Let

D(j) ≡ diag
(

0 . . . 0 δj+1 . . . δn

)
be a diagonal matrix of order n with j leading zeros.
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Applying Lemma 3.1 to A ≡ D(1) + F and B ≡ A+ δ1e1e
∗
1 gives

det(D + F ) = δ1 det(D1 + F1) + det(D(1) + F ).

We repeat this process on the second summand det(D(1) +F ) to remove the diagonal

elements δj one by one; j ≥ 2. To this end, we apply Lemma 3.1 to A ≡ D(j) + F

and B ≡ A + δjeje
∗
j , and denote by (D(j))j the matrix of order n − 1 obtained by

removing row and column j from D(j). This gives

det(D(1) + F ) =
n−1∑
j=2

δj det
(
(D(j))j + Fj

)
+ δn det(Fn) + det(F ).

Putting the above expression into the expansion for det(D + F ) yields

det(D + F ) = det(F ) + δ1 det(D1 + F1) +
n−1∑
j=2

δj det
(
(D(j))j + Fj

)
+ δn det(Fn).

Since D1 +F1 and (D(j))j +Fj are matrices of order n−1, we can apply the induction

hypothesis. To take advantage of the fact that the j − 1 top diagonal elements of

(D(j))j are zero, we define the following sums for matrices of order n− 1,

S
(j)
k ≡

∑
j+1≤i1<···<ik≤n

δi1 · · · δik det(Fji1...ik), 1 ≤ j ≤ n− 1, 1 ≤ k ≤ n− j,

where Fji1...ik is the matrix of order n−k−1 obtained by removing rows and columns

j, i1, . . . , ik of F . The induction hypothesis yields

det(D1 + F1) = det(D1) + det(F1) + S
(1)
1 + · · ·+ S

(1)
n−2,

det
(
(D(j))j + Fj

)
= det(Fj) + S

(j)
1 + · · ·+ S

(j)
n−j, 2 ≤ j ≤ n− 2,

det
(
(D(n−1))n−1 + Fn−1

)
= det(Fn−1) + S

(n−1)
1 .
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Now substitute the above expansions into the expression for det(D + F ) and use the

fact that δ1 det(D1) = det(D),
∑n

i=1 δi det(Fi) = S1, and

n−j∑
i=1

δiS
(i)
j = Sj+1, 1 ≤ j ≤ n− 2.

When the leading j diagonal elements of D are zero, then at most n− j of the Sk

are nonzero, and within each Sk one needs to account only for the nonzero summands.

We now extend Theorem 3.3 to general matrices, by transforming them to diagonal

form via the SVD. Let A = UΣV ∗ be a SVD of A, where Σ = diag
(
σ1 . . . σn

)
with σ1 ≥ · · · ≥ σn ≥ 0, and U and V are unitary.

Corollary 3.4 (expansion for general matrices). Let A and E be n × n complex

matrices, and F ≡ U∗EV . Then

det(A+ E) = det(A) + det(E) + S1 + · · ·+ Sn−1,

where

Sk ≡ det(UV ∗)
∑

1≤i1<···<ik≤n

σi1 · · ·σik det(Fi1...ik), 1 ≤ k ≤ n− 1.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

det(A+ E) = det(E) + S1 + · · ·+ Sr,

where

Sk = det(UV ∗)
∑

1≤i1<···<ik≤r

σi1 · · ·σik det(Fi1...ik), 1 ≤ k ≤ r.
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Proof. The SVD of A implies A+ E = U(Σ + F )V ∗, and Theorem 3.3 implies

det(Σ + F ) = det(Σ) + det(F ) + Ŝ1 + · · ·+ Ŝn−1,

where

Ŝk ≡
∑

1≤i1<···<ik≤n

σi1 · · ·σik det(Fi1,...,ik), 1 ≤ k ≤ n− 1.

With Sk ≡ det(UV ∗)Ŝk we obtain det(A+ E) = det(A) + det(E) + S1 + · · ·+ Sn−1.

Now suppose rank(A) = r ≤ n − 1. Then n − r singular values are zero, so that

all products of r + 1 or more singular values are zero. In particular, det(A) = 0. If

rank(A) = r < n − 1, then Sr+1 = · · · = Sn−1 = 0. Moreover, the terms S1, . . . , Sr

contain only the nonzero singular values σ1, . . . , σr.

Corollary 3.4 shows that the number of summands in the expansion decreases with

the rank of the matrix.

3.2.2 Absolute Perturbation Bounds

We derive absolute perturbation bounds for determinants in terms of elementary

symmetric functions of singular values. These bounds give rise to absolute first-order

condition numbers. We also derive simpler, but weaker normwise bounds.

To bound the perturbations we need the following inequalities.

Lemma 3.5 (Hadamard’s inequality). If B is a n× n complex matrix, then

| det(B)| ≤
n∏
i=1

‖Bei‖2 ≤ ‖B‖n2 .

Proof. The first inequality is Hadamard’s inequality [28, Corollary 7.8.2].

The bounds also contain elementary symmetric functions, which are defined as

follows [28, Definition 1.2.9].
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Definition 3.1 (elementary symmetric functions of singular values). Let A be a n×n
matrix with singular values σ1 ≥ . . . ≥ σn. The expressions

s0 ≡ 1, sk ≡
∑

1≤i1<···<ik≤n

σi1 · · ·σik , 1 ≤ k ≤ n,

are the kth elementary symmetric functions of the singular values of A.

Now we are ready to derive the first perturbation bound for determinants of

general matrices.

Corollary 3.6 (general matrices). Let A and E be n× n complex matrices. Then

| det(A)− det(A+ E)| ≤
n∑
i=1

sn−i‖E‖i2.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

| det(A+ E)| ≤ ‖E‖n−r2

r∑
i=0

sr−i‖E‖i2,

where the sj are elementary symmetric functions in the r largest singular values of

A, 1 ≤ j ≤ r.

The bounds hold with equality for E = εUV ∗ with ε > 0, where A = UΣV ∗ is a

SVD of A.

Proof. Corollary 3.4 implies | det(A)− det(A+ E)| ≤ | det(E)|+ |S1|+ · · ·+ |Sn−1|.
To bound |Sk| use the fact that | det(UV ∗)| = 1 and σi ≥ 0 to obtain

|Sk| ≤ max
1≤i1<···<ik≤n

| det(Fi1...ik)|
∑

1≤i1<···<ik≤n

σi1 · · ·σik

= max
1≤i1<···<ik≤n

| det(Fi1...ik)|sk.
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Lemma 3.5 implies | det(E)| ≤ ‖E‖n2 , and | det(Fi1...ik)| ≤ ‖F‖n−k2 = ‖E‖n−k2 . Hence

|Sk| ≤ sk‖E‖n−k2 , 1 ≤ k ≤ n− 1.

Now suppose rank(A) = r. Then Corollary 3.4 implies

| det(A+ E)| ≤ | det(E)|+ |S1|+ · · ·+ |Sr| ≤ ‖E‖n−r2

r∑
i=0

sr−i‖E‖i2,

where the terms sr−i contain only nonzero singular values.

If E = εUV ∗, then F = εI and det(Fi1...ik) = εn−k = ‖E‖n−k2 , so that Sk = |Sk| =
‖E‖n−k2 sk.

Corollary 3.6 bounds the absolute error in det(A + E) by elementary symmetric

functions of singular values and powers of ‖E‖2. Although the bounds for nonsingular

and rank-r matrices look different, because the sums start at different indices, they

are consistent. If rank(A) ≤ n− k for some k ≥ 1, then | det(A+ E)| is bounded by

a multiple of ‖E‖k2. Hence if ‖E‖2 < 1 then determinants of rank-deficient matrices

tend to be better conditioned in the absolute sense.

Remark 3.7 (Hermitian positive-definite matrices). In the special case when A is

Hermitian positive-definite, singular values are equal to eigenvalues, so that we can

write the elementary symmetric functions in terms of the eigenvalues λ1 ≥ · · · ≥ λn ≥
0. Hence in Corollary 3.6

sk =
∑

1≤i1<···<ik≤n

λi1 · · ·λik , 1 ≤ k ≤ n− 1.

Note that A+E does not have to be Hermitian positive-definite, because no restric-

tions are placed on E.

Remark 3.8 (first-order absolute condition numbers). Let A be a n × n complex

matrix with rank(A) ≥ n − 1 and ‖E‖2 < 1. Corollary 3.6 implies the first-order
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bound

|det(A)− det(A+ E)| ≤ sn−1‖E‖2 +O
(
‖E‖22

)
,

where sn−1 ≤ nσ1 . . . σn−1. Hence we can view sn−1 or nσ1 . . . σn−1 as first-order

condition numbers for absolute perturbations in A.

Example 3.9. The perturbation of a diagonally scaled Jordan block below illustrates

that the first-order bound in Remark 3.8 can hold with equality. Let

A =



0 α1 0 . . . 0
... 0 α2

. . .
...

...
. . . . . . 0

0 0 αn−1

0 0 . . . . . . 0


, E = εene

∗
1,

where |ε| ≤ 1 and αi > 0, 1 ≤ i ≤ n− 1. Then | det(A+E)− det(A)| = α1 . . . αn−1ε.

Since the singular values of A are 0 and αi > 0, 1 ≤ i ≤ n− 1, we obtain

| det(A+ E)− det(A)| = sn−1‖E‖2.

Replacing the singular values in Corollary 3.6 by powers of ‖A‖2 gives the simpler,

but weaker bounds below.

Corollary 3.10 (normwise bounds). Let A and E be n×n complex matrices. Then

| det(A+ E)− det(A)| ≤
n∑
i=1

(
n

i

)
‖A‖n−i2 ‖E‖i2

= (‖A‖2 + ‖E‖2)n − ‖A‖n2 .

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

| det(A+ E)| ≤ ‖E‖n−r2

r∑
i=0

(
r

i

)
‖A‖r−i2 ‖E‖i2

= ‖E‖n−r2 (‖A‖2 + ‖E‖2)r.
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Proof. This follows from Corollary 3.6 and sn−i ≤
(
n
n−i

)
‖A‖n−i2 =

(
n
i

)
‖A‖n−i2 , 1 ≤ i ≤

n− 1.

A bound similar to the one in Corollary 3.10 was already derived in [5, section 20],

[6, Problem I.6.11], [14, Theorem 4.7] for any p-norm, by taking Fréchet derivatives

of wedge products. Below we give a basic proof from first principles for the two-norm.

Theorem 3.11 (section 20 in [5], problem I.6.11 in [6], Theorem 4.7 in [14]). Let A

and E be n× n complex matrices. Then

| det(A+ E)− det(A)| ≤ n‖E‖2 max{‖A‖2, ‖A+ E‖2}n−1.

Proof. We first show the statement for a diagonal matrix. That is, ifD = diag
(
δ1 . . . δn

)
is diagonal, then

det(D + F ) = det(D) + z, where |z| ≤ n‖F‖2 max{‖D‖2, ‖D + F‖2}n−1.

The proof is by induction. For n = 2

D =

(
δ1

δ2

)
, F =

(
f11 f12

f21 f22

)
,

and

z ≡ det(D + F )− det(D) = δ1f22 + det

(
f11 f12

f21 δ2 + f22

)
.

Lemma 3.5 implies

|z| ≤ ‖F‖2‖D‖2 +

∥∥∥∥∥
(
f11

f21

)∥∥∥∥∥
2

∥∥∥∥∥
(

f12

δ2 + f22

)∥∥∥∥∥
2

≤ ‖F‖2‖D‖2 + ‖F‖2‖D + F‖2

≤ 2‖F‖2 max{‖D‖2, ‖D + F‖2}.

This completes the induction basis. Assuming the statement is true for matrices of
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order n − 1, we show that it is also true for matrices of order n. As in the proof

of Theorem 3.3, let D(1) ≡ diag
(

0 δ2 . . . δn

)
be the matrix obtained from D by

replacing δ1 with 0, and apply Lemma 3.1 to conclude

det(D + F ) = δ1 det(D1 + F1) + det(D(1) + F ).

Since D1 + F1 is a matrix of order n− 1, the induction hypothesis applies and gives

det(D1 + F1) = det(D1) + z1, where

|z1| ≤ (n− 1)‖F1‖2 max{‖D1‖2, ‖D1 + F1‖2}n−2

≤ (n− 1)‖F‖2 max{‖D‖2, ‖D + F‖2}n−2.

Substitute the above expression into the expansion for det(D + F ) to obtain

z ≡ det(D + F )− det(D) = δ1z1 + det(D(1) + F ),

where |δ1z1| ≤ (n − 1)‖F‖2 max{‖D‖2, ‖D + F‖2}n−1. Applying Lemma 3.5 to

det(D(1) + F ) yields

det(D(1) + F ) ≤ ‖Fe1‖2
n∏
i=2

‖(D + F )ei‖2 ≤ ‖F‖2‖D + F‖n−1
2 .

Therefore we have proved the theorem for diagonal matrices D.

To prove the theorem for general matrices A, let A = UΣV ∗ be a SVD of A.

Then det(A + E) = det(UV ∗) det(Σ + F ), where F ≡ U∗EV . Since Σ is diagonal,

det(Σ + F ) = det(Σ) + z, where

|z| ≤ n‖F‖2 max{‖Σ‖2, ‖Σ + F‖2}n−1 = n‖E‖2 max{‖A‖2, ‖A+ E‖2}n−1.
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Hence det(A + E) − det(A) = det(UV ∗)z, and the result follows from | det(UV ∗)|
= 1.

3.2.3 Relative Perturbation Bounds

We derive expansions for relative perturbations of determinants, as well as relative

perturbation bounds that improve existing bounds.

Theorem 3.12 (expansion). Let A and E be n × n complex matrices. If A is

nonsingular, then

det(A+ E)− det(A)

det(A)
= det(A−1E) + S1 + · · ·+ Sn−1,

where

Sk ≡
∑

1≤i1<···<ik≤n

det((A−1E)i1...ik), 1 ≤ k ≤ n− 1.

Proof. Write det(A+ E) = det(A) det(I + A−1E) and apply Theorem 3.3 to

det(I + A−1E).

Corollary 3.13 (relative perturbation bound). Let A and E be n × n complex

matrices. If A is nonsingular, then

| det(A+ E)− det(A)|
| det(A)|

≤
(
κ
‖E‖2
‖A‖2

+ 1

)n
− 1,

where κ ≡ ‖A‖2‖A−1‖2.

Proof. Apply Corollary 3.6 to

| det(A+ E)− det(A)|
| det(A)|

= | det(I + A−1E)− det(I)|,

and bound ‖A−1E‖2 ≤ κ‖E‖2/‖A‖2.
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Remark 3.14. Corollary 3.13 is more general and tighter than the following bound

from [20, (1.6)], [26, Problem 14.15]:

| det(A+ E)− det(A)|
| det(A)|

≤ nκ‖E‖2/‖A‖2
1− nκ‖E‖2/‖A‖2

,

which holds only for nκ‖E‖2/‖A‖2 < 1. This is true because of the following. With

q ≡ ‖A−1‖2‖E‖2 = κ‖E‖2/‖A‖2 we can write the first term in the bound of Corol-

lary 3.13 as

(q + 1)n =
n∑
i=0

(
n

i

)
qi ≤

n∑
i=0

niqi ≤
∞∑
i=0

(nq)i.

If nq < 1, then
∑∞

i=0(nq)
i = 1

1−nq , so that

(q + 1)n − 1 ≤ 1

1− nq
− 1 =

nq

1− nq
.

This implies for the bound in Corollary 3.13(
κ
‖E‖2
‖A‖2

+ 1

)n
− 1 ≤ nκ||E‖2/‖A‖2

1− nκ‖E‖2/‖A‖2
,

where the last expression is the bound in [20, inequality (1.6)], [26, Problem 14.15].

3.2.4 Local Sensitivity

We derive a local condition number for determinants from directional derivatives.

The directional derivative for det(A) in the direction E is dk

dxk det(A+ xE).

Although we derive the expressions below from the expansion in Theorem 3.3, we

could have also used the expression for derivatives of A(x) in [29, equation (6.5.9)].

Theorem 3.15. Let A and E be n× n complex matrices, F ≡ U∗EV , and x a real

scalar. Then

det(A+ xE) =
n∑
i=1

Sn−ix
i + det(A),
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where

S0 ≡ det(E), Sk ≡ det(UV ∗)
∑

1≤i1<···<ik≤n

σi1 · · ·σik det(Fi1...ik), 1 ≤ k ≤ n− 1,

and
dk

dxk
det(A+ xE)|x=0 = k!Sn−k, 1 ≤ k ≤ n.

Proof. If D = diag
(
δ1 . . . δn

)
is a diagonal matrix, then Theorem 3.3 implies

det(D+xF ) = det(xF )+S̃1+· · ·+S̃n−1+det(D), where det(xF ) = xn det(F ) = xnS0

and

S̃k =
∑

1≤i1<···<ik≤n

δi1 · · · δik det(xFi1...ik) = xn−kSk.

To derive the expansion for a general matrix, use the SVD as in Corollary 3.4.

The first derivative gives the local condition number of the determinant with

regard to small perturbations.

Corollary 3.16 (local condition number). Let A and E be n× n complex matrices,

and x a real scalar. Then∣∣∣∣ ddx det(A+ xE)|x=0

∣∣∣∣ ≤ sn−1‖E‖2, where sn−1 ≤ nσ1 . . . σn−1.

Proof. Theorem 3.15 implies for the first derivative

d

dx
det(A+ xE)|x=0 = det(UV ∗)

∑
1≤i1<···<in−1≤n

σi1 · · ·σin−1 det(Fi1...in−1),

where Fi1...in−1 is a diagonal element of F . Lemma 3.5 implies | det(Fi1...in−1)| ≤
‖F‖2 = ‖E‖2.

Corollary 3.16 shows that the sensitivity of det(A) to small perturbations in any

direction E is determined by sn−1 or nσ1 . . . σn−1. A comparison with Remark 3.8
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shows that the local condition number for det(A) is identical to the first-order condi-

tion number.

3.3 Characteristic Polynomial

Based on the determinant results in section 3.2, we derive absolute perturba-

tion bounds for the coefficients of the characteristic polynomial for general matrices

(section 3.3.1) and normal matrices (section 3.3.2), as well as simpler, but weaker

normwise bounds (section 3.3.3).

Applying Theorem 3.3 to the characteristic polynomial

det(λI − A) = λn + c1λ
n−1 + · · ·+ cn−1λ+ cn

of the n× n matrix A gives the well-known expressions [28, Theorem 1.2.12]

cn−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik), 0 ≤ k ≤ n− 1,

where Ai1...ik is the principal submatrix of order n− k obtained by deleting rows and

columns i1 . . . ik of A. The characteristic polynomial of the perturbed matrix A+ E

is

det(λI − (A+ E)) = λn + c̃1λ
n−1 + · · ·+ c̃n−1λ+ c̃n,

where c̃n = (−1)n det(A+ E) and

c̃n−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik + Ei1...ik), 1 ≤ k ≤ n− 1.

The example on next page illustrates that products of singular values play an

important role in the conditioning of the coefficients ck.
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Example 3.17 (companion matrices). The n× n matrix

A =



α1 α2 . . . . . . αn

η 0 . . . . . . 0

0 η
. . .

...
...

. . . . . . . . .
...

0 . . . 0 η 0


, η > 0,

is a multiple of a companion matrix, and let E = e1

(
ε . . . ε

)
with ε > 0. The

respective coefficients of the characteristic polynomials of A and A+E are [26, section

28.6]

ci = αiη
i−1, c̃i = (αi + ε)ηi−1, 1 ≤ i ≤ n.

Then |c̃i − ci| = εηi−1, 1 ≤ i ≤ n. The singular values of A are [26, section 28.6]

σ2
1 =

1

2

(
α +

√
α2 − 4|αn|2

)
, σ2

n =
1

2

(
α−

√
α2 − 4|αn|2

)
,

where α ≡ 1+|α1|2+· · ·+|αn|2, and σi = η, 2 ≤ i ≤ n−1. Therefore the conditioning

of the coefficients ck is determined by products of singular values.

The products of singular values in our perturbation bounds are expressed in terms

of elementary symmetric functions of only the largest singular values of A.

Definition 3.2 (elementary symmetric functions in the largest singular values). Let

A be a n× n matrix with singular values σ1 ≥ . . . ≥ σn. Denote by

s
(k)
0 ≡ 1, s

(k)
j ≡

∑
1≤i1<...<ij≤k

σi1 . . . σij , 1 ≤ j ≤ k, 1 ≤ k ≤ n,

where s
(n)
j = sj. The expression s

(k)
j is the jth elementary symmetric function in the

k largest singular values of A.
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3.3.1 General Matrices

We use the determinant expansion in Corollary 3.4 to derive perturbation bounds

for coefficients ck of general matrices.

Theorem 3.18 (general matrices). Let A and E be n× n complex matrices. Then

|c̃k − ck| ≤
(
n

k

) k∑
i=1

s
(k)
k−i‖E‖

i
2, 1 ≤ k ≤ n.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

|c̃k − ck| ≤
(
n

k

)
‖E‖k−r2

r∑
i=0

s
(k)
r−i‖E‖i2, r + 1 ≤ k ≤ n.

Proof. In the perturbed coefficient

c̃n−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik + Ei1...ik),

the matrices Ai1...ik +Ei1...ik are of order n−k. Fix the indices i1, . . . , ik; set B ≡ Ai1...ik

and F ≡ Ei1...ik ; and let µ1 ≥ . . . ≥ µn−k be the singular values of B. Corollary 3.4

implies det(B + F ) = det(B) + det(F ) + S1 + · · ·+ Sn−k−1, where

Sj =
∑

1≤i1<...<ij≤n−k

µi1 . . . µij det(Fi1...ij ), 1 ≤ j ≤ n− k − 1.

Since B is a submatrix of A, the singular values interlace [28, Theorem 7.3.9], so that

σj ≥ µj, 1 ≤ j ≤ n − k. With Lemma 3.5 we obtain |Sj| ≤ s
(n−k)
j ‖E‖n−k−j2 . Hence

|S1|+ · · ·+ |Sn−k−1| ≤
∑n−k

i=1 s
(n−k)
n−k−i‖E‖i2. Summing up the terms associated with all(

n
k

)
submatrices Ai1...ik + Ei1...ik gives the desired bound for |c̃n−k − cn−k|.
Now suppose rank(A) = r ≤ n − 1. Since r singular values are nonzero, the
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elementary symmetric functions s
(k)
j in the k largest singular values remain unchanged

for k ≤ r.

Since n− r singular values are equal to zero, all products of r+ 1 or more singular

values are zero. Hence for k ≥ r + 1 we have s
(k)
j = 0 whenever j ≥ r + 1, so that

k∑
i=1

s
(k)
k−i‖E‖

i
2 = ‖E‖k−r2

r∑
i=0

s
(k)
r−i‖E‖i2.

Moreover, for j ≤ r the s
(k)
j are functions of the r largest singular values only, so that

s
(k)
j = s

(r)
j . Therefore

∑k
i=0 s

(k)
k−i‖E‖i2 = ‖E‖k−r2

∑r
i=0 s

(r)
r−i‖E‖i2, giving the desired

bound for |c̃k − ck| when k ≥ r + 1.

For the two extreme coefficients, Theorem 3.18 produces the expected bounds: In

the case of cn = (−1)n det(A), the bound coincides with the determinant bound in

Corollary 3.6, while for c1 = −trace(A) we obtain |c̃1 − c1| ≤ n‖E‖2. Theorem 3.18

shows that the conditioning of ck with regard to absolute perturbations is determined

by the binomial term
(
n
k

)
and the elementary symmetric functions in the k largest

singular values. The binomial coefficient is largest for ck with k ≈ n/2, because(
n

n−k

)
=
(
n
k

)
, and

(
n
k

)
is monotonically increasing for k < n/2. In particular, if n is

even, then for k = n/2 we have k
(
n
k

)
≥ k

(
n
k

)k
= n2n/2−1.

If rank(A) = r ≤ n − 2, then the bounds for the coefficients cr+1, . . . , cn contain

higher powers of ‖E‖2. Hence if ‖E‖2 < 1, then the coefficients cr+1, . . . , cn of rank-

deficient matrices tend to be better conditioned in the absolute sense.

Remark 3.19 (first-order absolute condition numbers for general matrices). Theo-

rem 3.18 implies for ‖E‖2 < 1 the first-order bound

|c̃k − ck| ≤
(
n

k

)
s
(k)
k−1‖E‖2 +O(‖E‖22), 1 ≤ k ≤ n,



Chapter 3. Perturbation Bounds for the Characteristic Polynomial 26

where s
(k)
k−1 ≤ kσ1 . . . σk−1. Hence we can view

(
n
k

)
s
(k)
k−1 or

(
n
k

)
kσ1 . . . σk−1 as first-order

condition numbers for absolute perturbations in the coefficient ck.

3.3.2 Normal Matrices

We show that for normal matrices, the conditioning of the coefficients improves

because the binomial term is smaller, and the elementary symmetric functions depend

on all singular values, not just the largest ones. Note that all statements for normal

matrices apply in particular to Hermitian matrices.

Theorem 3.20 (normal matrices). If the n× n matrix A is normal, then

|c̃k − ck| ≤
k∑
i=1

(
n− k + i

i

)
sk−i‖E‖i2, 1 ≤ k ≤ n.

The bound holds with equality if E = εI with ε > 0.

Proof. Since A is normal, it has an eigenvalue decomposition A = V ΛV ∗, where

Λ = diag
(
λ1 · · · λn

)
is complex diagonal, |λ1| ≥ . . . ≥ |λn|, and V is unitary.

Set D ≡ λI − Λ and F ≡ −V ∗EV , so that det(λI − (A + E)) = det(D + F ).

Theorem 3.3 implies det(D + F ) = det(D) + det(F ) + S1 + · · ·+ Sn−1. Substituting

det(D) = λn +
∑n

k=1 ckλ
n−k and det(D + F ) = λn +

∑n
k=1 c̃kλ

n−k in the above

expansion gives

n∑
k=1

(c̃k − ck)λn−k = det(F ) + S1 + · · ·+ Sn−1.

Thus c̃k−ck is equal to the coefficient of λn−k on the right-hand side, i.e., in det(F )+

S1 + · · ·+ Sn−1. Since

Sn−j ≡
∑

1≤i1<···<in−j≤n

(λ− λi1) · · · (λ− λin−j
) det(Fi1...in−j

), 1 ≤ j ≤ n− 1,
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has as highest power λn−j, the term λn−k can occur only in Sn−k, . . . , Sn−1. This

means c̃k − ck is the sum of the coefficients of λn−k in Sn−1, . . . , Sn−k. To bound the

coefficient of λn−k in Sn−j in particular, we first bound all coefficients in Sn−j.

Observe that Sn−j is a sum of
(
n
n−j

)
products (λ − λi1) · · · (λ − λin−j

). For fixed

i1, . . . , in−j we can write the product as

(λ− λi1) · · · (λ− λin−j
) = λn−j + γ1λ

n−j−1 + · · ·+ γn−j−1λ+ γn−j.

The coefficient γl is a sum of
(
n−j
l

)
products λj1 . . . λjl . Hence Sn−j contains

(
n
n−j

)(
n−j
l

)
such products. Therefore we can bound |Sn−j| by a sum of

(
n
n−j

)(
n−j
l

)
products

|λj1| . . . |λjl |. Since A is normal |λi| = σi, so that these products are also summands

of the elementary symmetric function sl. The sum sl contains
(
n
l

)
such summands.

Therefore the number of occurrences of sl in the bound for |Sn−j| is
(
n
n−j

)(
n−j
l

)
/
(
n
l

)
=(

n−l
j

)
.

Now we are ready to return to the coefficient of λn−k in particular; it is γk−j. Ap-

plying the above counting argument with l = k−j shows that the coefficient of λn−k in

Sn−j is bounded by
(
n−k+j

j

)
sk−j| det(Fi1...in−j

)|. Lemma 3.5 implies | det(Fi1...in−j
)| ≤

‖F‖j2 = ‖E‖j2. Summing up the contributions from all Sn−j, 1 ≤ j ≤ k, gives the

desired result.

If E = εI, then F = εI and det(Fi1...ik) = εn−k = ‖E‖n−k2 .

Remark 3.21 (first-order absolute condition numbers for normal matrices). If A is

normal and ‖E‖2 < 1, then Theorem 3.20 implies the first-order bound

|c̃k − ck| ≤ (n− k + 1)sk−1‖E‖2 +O(‖E‖22), 1 ≤ k ≤ n,

where sk−1 ≤ k|λ1 . . . λk−1|. Hence we can view (n−k+1)sk−1 or (n−k+1)k|λ1 . . . λk−1|
as first-order condition numbers for absolute perturbations in the coefficient ck.
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For Hermitian positive-define matrices, the bound in Theorem 3.20 can be ex-

pressed in terms of the coefficients ck.

Corollary 3.22 (Hermitian positive-definite matrices). If the n × n matrix A is

Hermitian positive-definite, then

|c̃k − ck| ≤
k∑
i=1

(
n− k + i

i

)
|ck−i|‖E‖i2, 1 ≤ k ≤ n.

Proof. The coefficients ck are also elementary symmetric functions in the eigenvalues

[28, section 1.2], and the eigenvalue of a Hermitian positive-definite is equal to the

singular values. Thus ck = (−1)ksk, and the result follows from Theorem 3.20.

To first order, the conditioning of coefficient ck is determined by the magnitude of

the preceding coefficient, |ck−1|. As in Corollary 3.7, the matrixA+E in Corollary 3.22

does not have to be Hermitian positive-definite, because E can be arbitrary. Below we

illustrate that one cannot use the expression in Corollary 3.22 for indefinite matrices;

that is, positive-definiteness of A is crucial for the expression in Corollary 3.22.

Example 3.23. Corollary 3.22 is not valid for indefinite Hermitian matrices and in

particular matrices with zero trace.

To see this, let

A =

(
α

−α

)
, Ã =

(
α− ε

−α + ε

)
,

where α > 0 and ε > 0. The characteristic polynomials are

det(λI − A) = λ2 − α2, (λI − (A+ E)) = λ2 − (α− ε)2,

so that c̃2 − c2 = 2αε − ε2. However, |c̃2 − c2| cannot be bounded in terms of c1, as

required by Corollary 3.22, because c1 = 0.
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3.3.3 Normwise Bounds

Replacing the singular value products by powers of ‖A‖2 gives the following sim-

pler, but weaker bounds.

Corollary 3.24 (normwise bounds). Let A and E be n×n complex matrices. Then

|c̃k − ck| ≤ k

(
n

k

) k∑
i=1

(
k

i

)
‖A‖k−i2 ‖E‖i2,

=

(
n

k

)(
(‖A‖2 + ‖E‖2)k − ‖A‖k

)
, 1 ≤ k ≤ n.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

|c̃k − ck| ≤ k

(
n

k

)
‖E‖k−r2

r∑
i=1

(
k

i

)
‖A‖r−i2 ‖E‖i2,

=

(
n

k

)
‖E‖k−r2 ((‖A‖2 + ‖E‖2)r − ‖A‖r) , r + 1 ≤ k ≤ n.

Proof. This follows from Theorem 3.18 and

s
(k)
k−i ≤

(
k

k − i

)
‖A‖k−i2 =

(
k

i

)
‖A‖k−i2 , 1 ≤ i ≤ k − 1.

A similar bound was was already derived in [5, section 20] and [6, Problem I.6.11]

for any p-norm, by taking Fréchet derivatives of wedge products. Below we give a

basic proof from first principles for the two-norm.

Theorem 3.25 (section 20 in [5], problem I.6.11 in [6]). Let A and E be n × n

complex matrices. Then

|c̃k − ck| ≤ k

(
n

k

)
‖E‖2 max{‖A‖2, ‖A+ E‖2}k−1, 1 ≤ k ≤ n.
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Proof. As in the proof of Theorem 3.18, we use

c̃n−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik + Ei1...ik).

This gives for the absolute error

|c̃n−k − cn−k| ≤
∑

1≤i1<...<ik≤n

| det(Ai1...ik + Ei1...ik)− det(Ai1...ik)|.

Theorem 3.11 implies that | det(Ai1...ik + Ei1...ik)− det(Ai1...ik)| is bounded by

(n− k)‖Ei1...ik‖2 max{‖Ai1...ik‖2, ‖(A+ E)i1...ik‖2}n−k−1.

Bounding the principal submatrices by the norms of the respective matrices and

recognizing that the sum contains
(

n
n−k

)
summands yields the desired bound.
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Chapter 4

Stability of Existing Numerical

Methods

In the first half of the twentieth century the characteristic polynomial p(λ) was

often computed as a precursor to computing eigenvalues. In the second half of

the twentieth century; however, Wilkinson and others demonstrated that comput-

ing eigenvalues as roots of characteristic polynomials is numerically unstable [49]. As

a consequence, characteristic polynomials and methods for computing them fell out

of favor with the numerical algebra community. They can be found in old books by

Faddeeva [12], Gantmacher [16], and Householder [31]. Wilkinson was the first to an-

alyze the numerical stability of many methods in detail [48, §3.14, §6.20, §6.52, §7.6,

§7.18, §7.19]. Yet, he did not take into account the conditioning of the coefficients

of characteristic polynomials. We give a brief description of popular methods along

with their shortcomings.
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4.1 Leverrier’s Method

The first practical method for computing the characteristic polynomial of an n×n
complex matrix A was developed by Leverrier in 1840. It is based on Newton’s

identities [41, page 504]

c1 = −trace(A), ck = −1

k
trace(Ak + c1A

k−1 + . . .+ ck−1A), 2 ≤ k ≤ n.

This can be expressed recursively as

ck = −1

k
trace(ABk−1), where B1 = A+ c1I, Bk = ABk−1 + ckI.

Leverrier’s method has been discovered and modified many times [30, 31]. Due to its

generality Leverrier’s method still continues to attract attention for many applications

[4, 7]. However, it is not considered practical for the computation of the characteristic

polynomial of a matrix A [12, §3.28], [41, page 504], [48, §7.19]. The first prohibitive

feature is the potential numerical instability of the method and the second is huge

operation count proportional to n4. Regarding Leverrier’s method, Wilkinson said

[48, §7.19],

“We find that it is common for severe cancellation to take place when the
ci are computed, as can be verified by estimating the orders of magnitudes
of the various contributions to ci.”

Wilkinson described two factors responsible for the inaccurate result for ck. One

is errors in traces of powers of the matrix A and the other is errors in previously

computed coefficients c1, . . . , ck−1. To judge the numerical accuracy of Leverrier’s

method, in light of our perturbation results, we computed characteristic polynomials

of many test matrices with well conditioned coefficients. Our results were unsatisfac-

tory in most cases and they appear to testify to the accuracy of Wilkinson’s analysis.

We found that even for well conditioned coefficients of the characteristic polynomial
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of A, the method seems to give inaccurate results. We observed that, in particular,

if the coefficients ck are very small or very large in comparison to the traces of pow-

ers of A, then we should not expect satisfactory results from Leverrier’s method. We

present two examples below to make our point. The tests are performed on MATLAB

7.6(R2008a) with machine precision u ≈ 1.1× 10−16.

Example 4.1. Consider the matrix A of order n with elements aij = 1, 1 ≤ i, j ≤ n.

The characteristic polynomial of A is

p(λ) = λn − nλn−1.

The coefficients c2, . . . , cn are zero. A has one non zero singular value σ1 = n and σ2 =

. . . = σn = 0. Our perturbation results in Theorem 3.18 show that the characteristic

polynomial of A is well conditioned since all but one elementary symmetric function of

singular values are zero. We computed the coefficients of the characteristic polynomial

of A for n = 40 from Leverrier’s method and found that the computed c22 through

c40 are in the range of 1018 to 1047. The computed coefficients are much larger than

our perturbation bounds. This test illustrates that Leverrier’s method is numerically

unstable.

In the second test we present the example of Wilkinson [48, §7.19].

Example 4.2 (§7.9 in [48]). Consider a diagonal matrix A where aii = 21−i, 1 ≤ i ≤
20. The results in Corollary 3.22 indicate that the coefficients of the characteristic

polynomial of A are well conditioned in the absolute and relative sense. However,

Leverrier’s method fails to produce even a single correct digit of c12 through c20. In

fact some of the last coefficients are computed with wrong signs. This example again

illustrates our observation about the instability of Leverrier’s method.

To improve the accuracy of Leverrier’s method one could think of implementing

the method with higher machine precision, but the above example shows that in some
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situations very high precision would be needed to get accurate results from Leverrier’s

algorithm. This makes the method almost impractical due to huge operation count.

4.2 Krylov’s Method

In 1931 Krylov presented a method that implicitly tries to reduceA to a companion

matrix C whose first row contains the coefficients of p(λ). The matrix C is given

below. 

−c1 −c2 −c3 · · · −cn−1 −cn
1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0


.

Explicitly, the method constructs a matrix K from what we now call Krylov vectors:

v, Av,A2v, . . . , where v 6= 0 is an arbitrary vector. Let m ≥ 1 be the smallest in-

dex for which the vectors v, Av, . . . , Am−1v are linearly independent, but the inclusion

of one more vector Amv makes the vectors linearly dependent. Then the linear system

Kx+ Amv = 0, where K = (v Av . . . Am−1v)

has a unique solution x. Krylov’s method solves the linear system Kx = −Amv
for x. m is known as the grade of the initial vector v. In the fortunate case when

m = n, v has a grade of n, the solution x contains the coefficients of p(λ), and

xi = cn−i+1, 1 ≤ i ≤ n. In this case, if C is the companion matrix of p(λ), then direct

multiplication shows that

K−1AK = C.

If m < n, then x contains only a divisor of the minimum polynomial of A, which

in turn is a divisor of p(λ).
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We can still continue the process by applying Krylov’s method to matrices of

smaller dimensions [41, Example 7.11.3]. In the end, the characteristic polynomial is

recovered as a product of its divisors. Even though Kylov’s method is very general, it

has many shortcomings. We do not know in advance the grade of the initial vector v;

therefore, we may end up with a divisor of the characteristic polynomial of A. Also K

is usually a dense matrix even when A is sparse. Due to these reasons, a tremendous

amount of work may be involved in the computation of the characteristic polynomial

[41, page 650]. If A is derogatory, i.e. the eigenvalues of A have geometric multiplicity

2 or larger, then every starting vector v is of grade less than n, and Krylov’s method

does not produce the characteristic polynomial of A.

If the matrix A is non derogatory, then it is similar to its companion matrix.

Therefore, almost every starting vector should give the characteristic polynomial.

Still it is possible to start with a vector v of grade m < n, and Krylov’s method fails

to produce p(λ) even for a non derogatory matrix A [23, Example 4.2].

To analyze Krylov’s method, Wilkinson considered diagonal matrices with ele-

ments λi, 1 ≤ i ≤ n, where |λ1| > |λ2| · · · > |λn| [48, §6.20 to §6.25, §7.6]. He

describes that in most situations, Krylov matrix K is very ill conditioned. As m

grows, the later Krylov vectors tend to be almost linearly dependent. The condition-

ing of K depends upon the initial vector v also. If any component vi, 1 ≤ i ≤ n, of v is

small, K may be ill conditioned. If we make a favorable choice of selecting the initial

vector v with components vi = 1, 1 ≤ i ≤ n, then the matrix K is a Vandermonde

matrix. The ith row of K is given by eTi K = [1 λi λ2
i . . . λn−1

i ]. Wilkinson

discusses the conditioning of K with respect to many eigenvalue distributions. He

concludes that for very harmless looking distributions of eigenvalues, K might be very

ill conditioned and Krylov’s method may fail drastically. In particular, if there is a

considerable variation in the sizes of eigenvalues, then any quest for an initial vector

v which provides a well conditioned K is doomed to failure. Wilkinson also concludes

that Krylov’s method only gives good results if the eigenvalues are “well distributed”
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in the complex plane. His final assessment of Krylov’s method is that it has severe

limitations as a general purpose method.

4.3 Danilewski’s Method

Danilewski’s method [23, §3.1] reduces an n× n matrix A to its companion form

by n− 1 similarity transformations. The similarity transformations resemble those in

a Gauss Jordan decomposition. Each transformation produces zeros in a particular

row with one particular entry (pivot) being 1. At the end of process, we obtain

the companion matrix C as described in Section 4.2. If A is derogatory, then it

cannot be similar to any companion matrix because a companion matrix is always

non derogatory. However, in this case A decomposes in such a way that we can

remove a factor of the characteristic polynomial and apply Danilewski’s method to a

matrix of smaller dimension [23, §3.2]. At the end of the process, the characteristic

polynomial p(λ) of A is recovered as a product of its factors. Danilewski’s method is

attractive because of its generality and efficiency.

Householder proved that Danilewski’s method, as well as many other methods,

such as Weber-Voetter’s, Bryan’s and Samuelson’s are particular implementations of

Krylov’s method [31, §6]. The problem with Krylov’s method, as well as Danilewski’s

method is that they try to compute, either implicitly or explicitly, a similarity trans-

formation to a companion matrix. However, such a transformation only exists if A

is non derogatory. Hammarling showed that even for a non derogatory matrix A, in

finite precision arithmetic Danilewski’s method can produce very inaccurate results

[23, Exercise 3.1]. We face numerical instability in Danilewski’s method when the

pivot element is small. The emergence of a small pivot element should indicate that

the matrix A is close to being derogatory. Nevertheless, in practice a small pivot may

emerge due to rounding errors also. Like Gauss Jordan we can interchange columns to

bring a larger element in magnitude to the pivot position. But our choice of pivoting
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is limited because we want to preserve the structure of the matrix C. It is therefore

not clear that remedies like those proposed for Danilewski’s method in [24], [32, pg

36] and [47] would be fruitful to make the method numerically reliable.

4.4 Hyman’s Method

Hyman’s method requires a preliminary reduction of A to its Hessenberg form H.

His method evaluates p(λ) = det(λI −H) at a specific value of λ [48, §7.11]. Misra,

Quintana and Van Dooren [42] proposed Hyman’s method for the computation of

the characteristic polynomial of a real Hessenberg matrix H. Their basic idea can be

described as follows. Let B be an n× n real matrix, and partition

B =

(n− 1 1

1 bT1 b12

n− 1 B2 b2

)
.

If B2 is nonsingular then det(B) = (−1)n−1 det(B2)(b12 − bT1B−1
2 b2). Specifically, if

B = λI−H, whereH is an unreduced upper Hessenberg matrix then B2 is nonsingular

and upper triangular, so that det(B2) = (−1)n−1h21 . . . hn,n−1 is just the product of

the subdiagonal elements. Thus

p(λ) = h21 . . . hn,n−1(b12 − bT1B−1
2 b2).

The quantity B−1
2 b2 can be computed as the solution of a triangular system. How-

ever, b1, B2, and b2 are functions of λ. Recovering the coefficients of λi requires the

solutions of n upper triangular systems. A structured backward error bound for the

characteristic polynomial of H under certain conditions has been derived in [42], and

iterative refinement is suggested for improving backward accuracy. However, it is

not clear that this will help in general. The numerical stability of Hyman’s method
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depends on the condition number with respect to inversion of the triangular matrix

B2. Since the diagonal elements of B2 are h21, . . . , hn,n−1, B2 can be ill conditioned

with respect to inversion if H has small subdiagonal elements.
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Chapter 5

The Computation of Characteristic

Polynomials from Eigenvalues

5.1 Introduction

In chapter 4 we discussed methods for computing coefficients ck of the charac-

teristic polynomial p(λ) of an n × n complex matrix A. We concluded that these

methods are numerically unstable or limited in their application. In this chapter we

consider the computation of the characteristic polynomial p(λ) of matrix A from its

eigenvalues λ1, . . . , λn. The coefficients ck of the characteristic polynomial p(λ) are

related to elementary symmetric functions sk(λ) of the eigenvalues.

Lemma 5.1 (page 494 in [41]). Define elementary symmetric functions of complex

numbers numbers λ1, . . . , λn as follows.

s0(λ) = 1, sk(λ) =
∑

1≤i1<...<ik≤n

λi1 · · ·λik , 1 ≤ k ≤ n.



Chapter 5. The Computation of Characteristic Polynomials from Eigenvalues 40

If λ1, . . . , λn are the eigenvalues of A then

ck = (−1)ksk(λ), 1 ≤ k ≤ n.

Moreover sk(λ) is the sum of all k × k principal minors of A.

Computation of the characteristic polynomial of matrix A from its eigenvalues

has many advantages over the algorithms described in chapter 4. This method is

very simple and we can easily implement and analyze it. Many numerically stable

algorithms such as the QR algorithm for computing eigenvalues have been developed

[21, §7.3, §7.5]. In the past twenty years many new algorithms for certain classes

of matrices have emerged which compute the eigenvalues with high relative accuracy

[9, 3, 10, 44]. High relative accuracy of eigenvalues in turn can lead to a more accurate

computation of the characteristic polynomials.

Overview

Section 5.2 deals with elementary symmetric functions. The perturbation bounds

of elementary symmetric functions lead to forward error bounds for the coefficients ck

in Section 5.3. In Section 5.4 we present numerical tests to check the accuracy of per-

turbation bounds and the method of computing the coefficients of the characteristic

polynomials of matrices from their eigenvalues.

5.2 Elementary Symmetric Functions

We first derive absolute and relative perturbation bounds for elementary symmet-

ric functions sk(λ), 1 ≤ k ≤ n, in terms of perturbations in λi. These bounds relate

the changes in λi, 1 ≤ i ≤ n, to changes in sk(λ).
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5.2.1 Absolute Perturbation Bounds

We consider absolute perturbations λ̃1, . . . , λ̃n with λ̃i = λi + εi, 1 ≤ i ≤ n. The

corresponding elementary symmetric functions are

s0(λ̃) = 1, sk(λ̃) =
∑

1≤i1<...<ik≤n

λ̃i1 · · · λ̃ik

=
∑

1≤i1<...<ik≤n

(λi1 + εi1) · · · (λik + εik), 1 ≤ k ≤ n.

To bound the absolute error |sk(λ̃) − sk(λ)| we construct diagonal matrices A and

A+E consisting of λi and λi+εi. We apply bounds derived in chapter 3 for matrices to

get perturbation bounds for sk(λ) in terms of perturbations in the matrix elements.

We use Theorem 3.20 to derive the result below, where the absolute value applies

component wise, i.e. |λ| ≡
(
|λ1|, . . . , |λn|

)
. Theorem 3.20 states:

Let A and A+E be n× n complex matrices with respective characteristic polyno-

mials

det(zI − A) = zn + c1z
n−1 + · · ·+ cn−1z + cn

det(zI − (A+ E)) = zn + c̃1z
n−1 + · · ·+ c̃n−1z + c̃n.

If A is normal (or Hermitian), then

|c̃k − ck| ≤
k∑
i=1

(
n− k + i

i

)
sk−i (|λ|)‖E‖i2, 1 ≤ k ≤ n.

Theorem 3.20 helps us to bound the absolute error |sk(λ̃)−sk(λ)| in terms of elemen-

tary symmetric functions of the absolute values |λ̃1|, . . . |λ̃n| as follows.
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Theorem 5.2. If λ̃i = λi + εi, 1 ≤ i ≤ n, then

|sk(λ̃)− sk(λ)| ≤
k∑
i=1

(
n− k + i

i

)
sk−i(|λ|) εiabs, 1 ≤ k ≤ n,

where εabs ≡ max1≤i≤n |εi|.

Proof. Apply Theorem 3.20 to diagonal matrices A = diag(λ1, . . . , λn) and E =

diag(ε1, . . . , εn). Lemma 5.1 implies |sk(λ̃) − sk(λ)| = |c̃k − ck|. Since E is diagonal

we have ‖E‖2 = εabs.

Theorem 5.2 bounds the absolute error in sk(λ̃) in terms of the “preceding” ele-

mentary functions s1, . . . , sk−1 of the absolute values of λi, 1 ≤ i ≤ n. In particular,

Theorem 5.2 implies that s1(λ) = λ1 + · · · + λn is well-conditioned in the absolute

sense because

|s1(λ̃)− s1(λ)| ≤ nεabs.

Furthermore, if εabs < 1, then sn(λ) = λ1 · · ·λn satisfies the first order bound

|sn(λ̃)− sn(λ)| ≤ sn−1(|λ|) εabs +O(ε2abs).

A similar result for sn is derived in [15, Lemma 3] by means of an inequality due to

Mitrinović [43, pg 315]. The first order bounds for the other elementary symmetric

functions are

|sk(λ̃)− sk(λ)| ≤ (n− k + 1) sk−1(|λ|) εabs +O(ε2abs), 2 ≤ k ≤ n− 1.

If λi ≥ 0, then we can bound the absolute error in sk(λ̃) in terms of the preceding

functions sj(λ), 1 ≤ j ≤ k − 1.
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Corollary 5.3. If λ̃i = λi + εi, 1 ≤ i ≤ n, and λi ≥ 0, then

|sk(λ̃)− sk(λ)| ≤
k∑
i=1

(
n− k + i

i

)
sk−i(λ) εiabs, 1 ≤ k ≤ n.

To compute error bounds of characteristic polynomials of matrices with zero eigen-

values later in this chapter, we derive the perturbation bounds for elementary sym-

metric functions when some λi are zero.

Corollary 5.4. Suppose λ1 = . . . = λn−r = 0 for some 1 ≤ r ≤ n− 1, then,

|s̃k − sk| ≤ εk−rabs

r∑
i=0

(
n− r + i

k − r + i

)
sr−i(|λ|)εiabs, r + 1 ≤ k ≤ n.

Proof. If r values of λi are non zero, then all products of r + 1 or more λi are

zero. This implies that sr+1(|λ|), . . . , sn(|λ|) are zero because each kth elementary

symmetric function of |λi| is a sum of products of k input values, and when k > r,

then these products become zero. The surviving terms in the bound of Theorem 5.2

contain only s1, . . . , sr.

|s̃k − sk| ≤
(
n− r
k − r

)
sr(|λ|)εk−rabs +

(
n− r + 1

k − r + 1

)
sr−1(|λ|)εk−r+1

abs +(
n− r + 2

k − r + 2

)
sr−2(|λ|)εk−r+2

abs + . . .+

(
n

k

)
εkabs

= εk−rabs

r∑
i=0

(
n− r + i

k − r + i

)
sr−i(|λ|) εiabs, r + 1 ≤ k ≤ n.

Corollary 5.4 shows that when some input values λi are zero, then the elementary

symmetric functions become better conditioned. The conditioning improves with

more zero input values λi. We also mention that for k ≤ r, the sk(|λ|) are functions of

only non zero r input values λi, 1 ≤ i ≤ r, and, hence, contain fewer terms. Therefore,
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the absolute bounds for the elementary symmetric functions sk(λ), 1 ≤ k ≤ r, also

improve and become tighter.

5.2.2 Relative Perturbation Bounds

We consider relative perturbations λ̂i = λi(1 + εi), 1 ≤ i ≤ n. We express λi and

λ̂i as elements of diagonal matrices A and A+E, respectively, and apply our results

from chapter 3 to get bounds for elementary symmetric functions.

We first derive a bound for sn(λ) = λ1 · · ·λn from Theorem 3.12 and then use

this bound in turn to derive bounds for the other elementary symmetric functions.

Theorem 3.12 states:

Let A and E be n× n complex matrices. If A is nonsingular then,

det(A+ E)− det(A)

det(A)
= det(A−1E) + S1 + · · ·+ Sn−1,

where

Sk ≡
∑

1≤i1<···<ik≤n

det((A−1E)i1...ik), 1 ≤ k ≤ n− 1.

Here ((A−1E)i1...ik) is the principal submatrix of order n − k obtained by removing

rows and columns i1, . . . , ik from A−1E.

We express the relative error in sn(λ̂) in terms of elementary symmetric functions

of ε =
(
ε1, . . . , εn

)
below.

Theorem 5.5. If λ̂i = λi(1 + εi), 1 ≤ i ≤ n, then

sn(λ̂)− sn(λ) = sn(λ)
n∑
i=1

si(ε).

Proof. If λi = 0 for some i then sn(λ) = λ1 . . . λn = 0. Moreover λ̂i = λi(1 + εi) = 0

so that sn(λ̂) = 0 and the desired result holds.
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Now assume that λi 6= 0, 1 ≤ i ≤ n. Define A = diag(λ1, . . . , λn) so that det(A) =

sn(λ). Also define E = diag(λ1ε1, . . . , λnεn) so that A−1E = D = diag(ε1, . . . , εn) and

det(D) = sn(ε). Applying Theorem 3.12 to A and A+ E gives

sn(λ̂)− sn(λ) = sn(λ) (sn(ε) + S1 + · · ·+ Sn−1) ,

where

Sk ≡
∑

1≤i1<···<ik≤n

det(Di1...ik), 1 ≤ k ≤ n− 1.

Lemma 5.1 implies Sk = sn−k(ε), 1 ≤ k ≤ n− 1. Hence
∑n−1

k=1 Sk =
∑n−1

k=1 sk(ε).

The expression in Theorem 5.5 implies the following relative error bound for sn(λ̂).

Corollary 5.6. If λ̂i = λi(1 + λi), 1 ≤ i ≤ n, then

|sn(λ̂)− sn(λ)| ≤ |sn(λ)|
n∑
i=1

(
n

i

)
εirel = |sn(λ)| [(1 + εrel)

n − 1] .

where εrel = max1≤i≤n |εi|.

Proof. In the right-hand side expression of Theorem 5.5 each si(ε) is a sum of
(
n
i

)
terms, where each term is a product of i factors εj, 1 ≤ i, j ≤ n. Therefore, |si(ε)| ≤(
n
i

)
εirel.

For εrel < 1, Corollary 5.6 implies the first-order relative bound

|sn(λ̂)− sn(λ)| ≤ |sn(λ)| nεrel +O(ε2rel).

This means if n is sufficiently small, then sn(λ) is well conditioned with respect to

relative perturbations in λ.
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In order to explain the expansion for any elementary symmetric function, we

present an example.

Example 5.7. For n = 4 we determine s3(λ̂)− s3(λ).

With A = diag(λ1, . . . , λ4), Lemma 5.1 implies that s3(λ) is a sum of 3×3 principal

minors of A. That is,

s3(λ) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4.

Applying the expansion in Theorem 5.5 to each of these four products gives

s3(λ̂)− s3(λ) = λ1λ2λ3 [(ε1 + ε2 + ε3) + (ε1ε2 + ε1ε3 + ε2ε3) + ε1ε2ε3] +

λ1λ2λ4 [(ε1 + ε2 + ε4) + (ε1ε2 + ε1ε4 + ε2ε4) + ε1ε2ε4] +

λ1λ3λ4 [(ε1 + ε3 + ε4) + (ε1ε3 + ε1ε4 + ε3ε4) + ε1ε3ε4] +

λ2λ3λ4 [(ε2 + ε3 + ε4) + (ε2ε3 + ε2ε4 + ε3ε4) + ε2ε3ε4] .

The ε terms on the right-hand side are elementary symmetric functions of three

elements of ε. For instance, the right-hand side of

λ̂1λ̂2λ̂4 − λ1λ2λ4 = λ1λ2λ4 [(ε1 + ε2 + ε4) + (ε1ε2 + ε1ε4 + ε2ε4) + ε1ε2ε4]

contains elementary symmetric functions of ε1, ε2, ε4. Denote them by s
(124)
j (ε). That

is,

s
(124)
1 (ε) = ε1 + ε2 + ε4, s

(124)
2 (ε) = ε1ε2 + ε1ε4 + +ε2ε4, s

(124)
3 (ε) = ε1ε2ε4.

Then, we can write

λ̂1λ̂2λ̂4 − λ1λ2λ4 = λ1λ2λ4

[
s
(124)
1 (ε) + s

(124)
2 (ε) + s

(124)
3 (ε)

]
.
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If we do this for all four products s3(λ̂)− s3(λ), we obtain

s3(λ̂)− s3(λ) = λ1λ2λ3

[
s
(123)
1 (ε) + s

(123)
2 (ε) + s

(123)
3 (ε)

]
+

λ1λ2λ4

[
s
(124)
1 (ε) + s

(124)
2 (ε) + s

(124)
3 (ε)

]
+

λ1λ3λ4

[
s
(134)
1 (ε) + s

(134)
2 (ε) + s

(134)
3 (ε)

]
+

λ2λ3λ4

[
s
(234)
1 (ε) + s

(234)
2 (ε) + s

(234)
3 (ε)

]
.

In order to extend this example to any n, we introduce notation for elementary

symmetric functions of subsets of elements. For n complex numbers λ1, . . . , λn, and

1 ≤ i1 < . . . < ik ≤ n, we denote the jth elementary function of λi1 , . . . , λik by

s
(i1...ik)
j (λ), 1 ≤ j ≤ k. In particular, s

(1...n)
j (λ) = sj(λ), 1 ≤ j ≤ n. Now we are ready

to extend the expansion in Theorem 5.5 to other elementary symmetric functions.

Theorem 5.8. If λ̂i = λi(1 + εi), 1 ≤ i ≤ n, then

sk(λ̂)− sk(λ) =
∑

1≤i1<...<ik≤n

λi1 . . . λik

k∑
j=1

s
(i1...ik)
j (ε), 1 ≤ k ≤ n.

Proof. According to Lemma 5.1, each sk(λ̂) is a sum of
(
n
k

)
principal minors of order

k. If A = diag(λ1, . . . , λn), then such a principal minor is of the form λ̂i1 · · · λ̂ik .

Applying Theorem 5.5 to λ̂i1 · · · λ̂ik yields

λ̂i1 · · · λ̂ik − λi1 · · ·λik = λi1 · · ·λik
k∑
j=1

s
(i1...ik)
j (ε).

Summing up these expansions for all principal minors gives the desired result.

The connection to Theorem 5.5 may be even clearer if we use the fact that
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λi1 . . . λik = s
(i1...ik)
k (λ) and we express Theorem 5.8 as

sk(λ̂)− sk(λ) =
∑

1≤i1<...<ik≤n

s
(i1...ik)
k (λ)

k∑
j=1

s
(i1...ik)
j (ε), 1 ≤ k ≤ n.

Theorem 5.8 implies the following perturbation bound.

Corollary 5.9. If λ̂i = λi(1 + εi), 1 ≤ k ≤ n, then

|sk(λ̂)− sk(λ)| ≤ sk(|λ|)
k∑
j=1

(
k

j

)
εjrel = sk(|λ|)

(
(1 + εrel)

k − 1
)
,

εrel = max1≤i≤n |εi|.

Proof. Applying the triangle inequality to the expression in Theorem 5.8 gives

|sk(λ̂)− sk(λ)| ≤
∑

1≤i1<...<ik≤n

|λi1| . . . |λik |
k∑
j=1

|s(i1...ik)
j (ε)|, 1 ≤ k ≤ n.

The elementary symmetric functions can be bounded by |s(i1...ik)
j (ε)| ≤

(
k
j

)
εjrel. Sum-

ming up all the bounds yields

∑
1≤i1<...<ik≤n

|λi1| . . . |λik |
k∑
j=1

|s(i1...ik)
j (ε)| ≤

∑
1≤i1<...<ik≤n

|λi1| . . . |λik |
k∑
j=1

(
k

j

)
εjrel

= sk(|λ|)
k∑
j=1

(
k

j

)
εjrel.

Remark 5.10 (Relative Error Bound). Corollary 5.9 implies the following relative

error bound for sk(λ) 6= 0:

|sk(λ̂)− sk(λ)|
|sk(λ)|

≤ sk(|λ|)
|sk(λ)|

(
(1 + εrel)

k − 1
)
.
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The bound suggests that sk(λ) is sensitive to relative perturbations in λ if sk(|λ|)�
|sk(λ)|. If εrel < 1, then we obtain to first order

|sk(λ̂)− sk(λ)|
|sk(λ)|

≤ k
sk(|λ|)
|sk(λ)|

εrel +O(ε2rel).

Thus, ksk(|λ|)/|sk(λ)| can be interpreted as a first-order relative condition number

for sk(λ).

When all λi are positive, sk(λ) is insensitive to relative perturbations in λ provided

k is sufficiently small.

Corollary 5.11. If λ̂i = λi(1 + εi), and λi > 0, 1 ≤ i ≤ n, then

|sk(λ̂)− sk(λ)|
sk(λ)

≤ (1 + εrel)
k − 1, 1 ≤ k ≤ n,

= kεrel +O(ε2rel).

Corollary 5.11 implies that elementary symmetric functions are well-conditioned

with respect to relative perturbations, if the input values are positive.

We can derive another weaker bound from Corollary 5.9.

Corollary 5.12. If λ̂i = λi(1 + εi), 1 ≤ i ≤ n, and nεrel < 1, then

|sk(λ̂)− sk(λ)|
|sk(λ)|

≤ sk(|λ|)
|sk(λ)|

kεrel
1− kεrel

, 1 ≤ k ≤ n.

Proof. Write

(1 + εrel)
k =

k∑
j=0

(
k

j

)
εjrel ≤

k∑
j=0

kjεjrel ≤
∞∑
j=0

(kεrel)
j.
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From kεrel ≤ nεrel < 1 follows
∑∞

j=0(kεrel)
j = 1

1−kεrel
, so that

(1 + εrel)
k − 1 ≤ 1

1− kεrel
− 1 =

kεrel
1− kεrel

.

If λi > 0, then Corollary 5.12 reproduces [8, Proposition 7.1].

|sk(λ̂)− sk(λ)|
sk(λ)

≤ kεrel
1− kεrel

, 1 ≤ k ≤ n.

Computing Elementary Symmetric Functions

We derived perturbation bounds for elementary symmetric functions sk(λ) of com-

plex numbers λ1, . . . , λn. We now consider the computation of elementary symmetric

functions sk(λ). There are
(
n
k

)
summands in each sk(λ) for a given set of complex

numbers λ1, . . . , λn; therefore, straightforward computation of sk(λ) is very expen-

sive. We need an efficient and numerically stable algorithm for the computation of

elementary symmetric functions. A paper by Baker and Harwell presents a collection

of algorithms [2]. These algorithms include the Difference Algorithm, the Summation

Algorithm and the Grouping Property Algorithm. Baker and Harwell mention that

these algorithms have not been studied for numerical stability. We show that the

Summation Algorithm is forward stable. If λi > 0, then there are no subtractions

in the computation of the elementary symmetric functions. Subtractions of almost

equal numbers may cause inaccurate results when computations are carried out in

floating point arithmetic. Therefore, for λi > 0 the computed elementary symmetric

functions from the Summation Algorithm are accurate. We describe the algorithm in

detail below.
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5.2.3 The Summation Algorithm

In this section we adopt the following notation. We denote the kth elementary

symmetric function of i numbers λ1, . . . , λi by s
(i)
k . In particular s

(n)
k = sk(λ). This

notation will help in understanding the Summation Algorithm better. We can com-

pute the elementary symmetric functions recursively [11], see also [13, pp 250, eqn.

14.3.11]. We present the Summation Algorithm below and describe the recursion by

an example.

Algorithm 1 Summation Algorithm

Input: λ1, · · · , λn
Output: Elementary symmetric functions sk(λ)

Set s
(l)
0 = 1, 1 ≤ l ≤ n− 1

Set s
(l)
k = 0 for k > l

Set s
(1)
1 = λ1

for i = 2 : n do
for k = 1 : i do

s
(i)
k = s

(i−1)
k + λi s

(i−1)
k−1

end for
end for
{At the end of recursion: s

(n)
k = sk(λ)}

Example 5.13. Consider the computation of elementary symmetric functions for four

complex numbers λ1, . . . , λ4 by the Summation Algorithm. The recursion begins by

establishing an elementary symmetric function of order 1. For i=1, we have s
(1)
1 = λ1.

For i = 2, we obtain

s
(2)
1 = s

(1)
1 + λ2 s

(1)
0 = λ1 + λ2,

s
(2)
2 = s

(1)
2 + λ2 s

(1)
1 = λ2λ1.
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Similarly, for i = 3, we have

s
(3)
1 = s

(2)
1 + λ3s

(2)
0 = λ1 + λ2 + λ3,

s
(3)
2 = s

(2)
2 + λ3s

(2)
1 = λ2λ1 + λ3(λ1 + λ2),

s
(3)
3 = s

(2)
3 + λ3s

(2)
2 = λ3λ2λ1.

In the final step of the recursion i = 4, so that s
(4)
k = sk(λ), 1 ≤ k ≤ 4. We get all

elementary symmetric functions as follows:

s1(λ) = s
(4)
1 = s

(3)
1 + λ4s

(3)
0 = λ1 + λ2 + λ3 + λ4,

s2(λ) = s
(4)
2 = s

(3)
2 + λ4s

(3)
1 = λ2λ1 + λ3(λ1 + λ2) + λ4(λ1 + λ2 + λ3),

s3(λ) = s
(4)
3 = s

(3)
3 + λ4s

(3)
2 = λ3λ2λ1 + λ4 [λ2λ1 + λ3(λ1 + λ2)] ,

s4(λ) = s
(4)
4 = s

(3)
4 + λ4s

(3)
3 = λ4λ3λ2λ1.

Note that sn(λ) is computed as a product λ1 . . . λn. The Summation Algorithm

requires n(n−1)
2

multiplications and n(n−1)
2

+ (n+ 1) additions [2].

We present a forward rounding error analysis of the Summation Algorithm below.

5.2.4 Forward Stability of the Summation Algorithm for Real

Numbers

Suppose λ1, . . . , λn are real numbers. To carry out rounding error analysis of the

Summation Algorithm we use the following models of basic floating point operations

[25, §2.2].

In the standard floating point model for real floating point numbers x and y,

assuming no underflow or overflow, we have

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−,×, /, (5.1)
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where u is the unit roundoff. The modified standard floating point model is given as

follows:

fl(x op y) =
x op y

1 + ε
, |ε| ≤ u. (5.2)

The following relations are required for our error analysis.

Lemma 5.14 (§3.1, §3.4 in [25]). 1. If |δi| ≤ u and ρi = ±1 for 1 ≤ i ≤ n and

nu < 1, then
n∏
i=1

(1 + δi)
ρi = 1 + θn,

where

|θn| ≤
nu

1− nu
=: γn.

2. For positive integers j and l,

(1 + θj)(1 + θl) = (1 + θj+l).

Whenever we write γn, there is an implicit assumption that nu < 1.

5.2.4.1 Worst Case Error Bounds

The Lemma below leads to forward error bounds for sk(λ), 1 ≤ k ≤ n− 1.

Lemma 5.15. Denote the computed elementary symmetric functions from the Sum-

mation Algorithm by ŝk(λ), 1 ≤ k ≤ n− 1. If ŝk(λ) are computed as

ŝ
(i)
k = fl

[
ŝ
(i−1)
k + fl

[
λiŝ

(i−1)
k−1

]]
, 2 ≤ i ≤ n.

Then, for 1 ≤ k ≤ n− 1,

ŝk(λ) = ŝ
(n)
k = fl

[
ŝ
(n−1)
k + fl

[
λnŝ

(n−1)
k−1

]]
=

∑
1≤i1<...<ik≤n

λi1 · · ·λik(1 + θ
(i1...ik)
t ),
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where t is a value that satisfies 1 ≤ t ≤ 2n.

Proof. The poof of Lemma 5.15 is by induction on the number of data λ1, . . . , λi. For

i = 1, no floating point operation occurs. For i = 2, using the standard floating point

model (5.1),

ŝ
(2)
1 = (λ1 + λ2)(1 + δ1) = (λ1 + λ2)(1 + θ1),

where we used relation 1 of Lemma 5.14 to replace (1 + δ1) with (1 + θ1). Similarly,

ŝ
(2)
2 = λ1λ2(1 + δ2) = λ1λ2(1 + θ

(12)
1 ).

Hence, the statement of Lemma 5.15 is true for i = 2. We suppose that the statement

of Lemma 5.15 is true for n− 1 input values λi and prove that the statement is also

true for n input values. Using the Summation Algorithm under the standard floating

point model 5.1, the computed ŝ
(n)
k is

ŝ
(n)
k = ŝ

(n−1)
k (1 + δ3) + λnŝ

(n−1)
k−1 (1 + δ3)(1 + δ4) = ŝ

(n−1)
k (1 + θ1) + λnŝ

(n−1)
k−1 (1 + θ2).

From the induction hypothesis on ŝ
(n−1)
k ,

ŝ
(n−1)
k =

∑
1≤i1<...<ik≤n−1

λi1 · · ·λik(1 + θ
(i1...ik)
l ), 1 ≤ l ≤ 2n− 2.

Similarly, from the induction hypothesis on ŝ
(n−1)
k−1 ,

ŝ
(n−1)
k−1 =

∑
1≤i1<...<ik−1≤n−1

λi1 · · ·λik−1
(1 + θ(i1...ik−1)

m ), 1 ≤ m ≤ 2n− 2.
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Now we write

ŝ
(n)
k =

∑
1≤i1<...<ik≤n−1

λi1 · · ·λik(1 + θ
(i1...ik)
l )(1 + θ1) +

λn
∑

1≤i1<...<ik−1≤n−1

λi1 . . . λik−1
(1 + θ(i1...ik−1)

m )(1 + θ2).

We use relation 2 of Lemma 5.14 on both summands of the above equation and obtain

ŝ
(n)
k =

∑
1≤i1<...<ik≤n

λi1 · · ·λik(1 + θ
(i1...ik)
t ), 1 ≤ t ≤ 2n.

Lemma 5.15 leads to the following forward error in ŝk(λ).

Theorem 5.16. Denote the computed elementary symmetric functions from the

Summation Algorithm by ŝk(λ), 1 ≤ k ≤ n− 1. If ŝk(λ) are computed as

ŝk(λ) = fl
[
ŝ
(n−1)
k + fl

[
λnŝ

(n−1)
k−1

]]
,

and 2nu < 1, then

|ŝk(λ)− sk(λ)| ≤ γ2nsk(|λ|) ≤
2nu

1− 2nu
sk(|λ|),

and

|ŝn(λ)− sn(λ)| ≤ γn−1|sn(λ)| ≤ (n− 1)u

1− (n− 1)u
|sn(λ)|.

Proof. For 1 ≤ k ≤ n− 1, Lemma 5.15 implies

ŝk(λ) =
∑

1≤i1<...<ik≤n

λi1 · · ·λik(1 + θ
(i1...ik)
t ), 1 ≤ t ≤ 2n. (5.3)
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Expanding the right hand side of equation (5.3) gives

ŝk(λ) = sk(λ) +
∑

1≤i1<...<ik≤n

θ
(i1...ik)
t λi1 · · ·λik , where 1 ≤ t ≤ 2n.

We apply the triangle inequality on every term of the difference |ŝk(λ) − sk(λ)| to

obtain

|ŝk(λ)− sk(λ)| ≤
∑

1≤i1<...<ik≤n

|θ(i1...ik)
t ||λi1 · · ·λik |, 1 ≤ t ≤ 2n.

We use relation 1 of Lemma 5.14 to replace every |θ(i1...ik)
t | by γ2n to get the desired

result. The conclusion for ŝn(λ) follows from the fact that the Summation Algorithm

computes sn(λ) as a product λ1 · · ·λn.

Remark 5.17. A comparison of Theorem 5.16 with Corollary 5.12 shows that the

Summation Algorithm is forward stable. The error bounds of the computed elemen-

tary symmetric functions ŝk(λ) from the Summation Algorithm are small multiples

of the condition numbers of sk(λ), 1 ≤ k ≤ n.

Theorem 5.16 also shows that the Summation Algorithm computes sn(λ) and ele-

mentary symmetric functions of positive values λ1, . . . , λn with high relative accuracy.

Corollary 5.18. If the Summation Algorithm is used to compute the elementary

symmetric functions of λi > 0, 1 ≤ i ≤ n, then

|ŝk(λ)− sk(λ)|
sk(λ)

≤ γ2n ≤
2nu

1− 2nu
, 1 ≤ k ≤ n.

5.2.4.2 Running Error Analysis

The error bounds of the Summation Algorithm in Theorem 5.16 are worst case

bounds that do not depend on actual rounding errors committed during the compu-

tations. These bounds do not take into account the intermediate quantities in which

cancellation can occur. We derive sharper running error bounds for the Summation
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Algorithm. The underlying idea is to compute the error bounds from the computed

values of elementary symmetric functions at every step of the recursion. In this way,

we can take advantage of cancellation that might occur in intermediate quantities.

There are, of course, rounding errors in the computation of the running error bounds,

but their effect is negligible [25, §3.3].

In our running error analysis, we use both standard and modified standard floating

point models. We compute ŝ
(i)
k as

ŝ
(i)
k = fl

[
ŝ
(i−1)
k + fl

[
λiŝ

(i−1)
k−1

]]
.

In the beginning of the recursion, when i = 1, we have ŝ
(1)
1 = s

(1)
1 = λ1. For 2 ≤ i ≤ n,

we write

ŝ
(i)
k = s

(i)
k + e

(i)
k .

Here s
(i)
k is the exact kth elementary symmetric function of i input values λi, and e

(i)
k

is the error in ŝ
(i)
k . We first give the running error bounds for ŝ1(λ).

Theorem 5.19. The following recursion produces the running error bound for ŝ1(λ),

|e(i)1 | ≤ |e
(i−1)
1 |+ u|ŝ(i)

1 |, 2 ≤ i ≤ n.

Proof. Using the modified floating point model (5.2), we write

ŝ
(i)
1 =

ŝ
(i−1)
1 + λi
1 + ε(i)

, |ε(i)| ≤ u, 2 ≤ i ≤ n.

This implies

(1 + ε(i))ŝ
(i)
1 = ŝ

(i−1)
1 + λi.

Distributing

ŝ
(i)
1 + ε(i)ŝ

(i)
1 = ŝ

(i−1)
1 + λi.



Chapter 5. The Computation of Characteristic Polynomials from Eigenvalues 58

We write ŝ
(i)
1 and ŝ

(i−1)
1 in terms of their errors, and simplify to get

e
(i)
1 = e

(i−1)
1 − ε(i)ŝ(i)

1 .

We use the triangle inequality to obtain

|e(i)1 ≤ |e
(i−1)
1 |+ u|ŝi)1 |.

We now give running error bounds for ŝk(λ), 2 ≤ k ≤ n− 1.

Theorem 5.20. The error in ŝ
(k)
k , 2 ≤ k ≤ n−1, can be calculated from the following

recursion:

|e(k)k | ≤ |λke
(k−1)
k−1 |+ u|ŝ(k)

k |,

and for k < i ≤ n, the error in ŝ
(i)
k is given by the following recursion:

|e(i)k | ≤ |e
(i−1)
k |+ |λie(i−1)

k−1 |+ u
(
|λiŝ(i−1)

k−1 |+ |ŝ
(i)
k |
)
.

Proof. Note that for k > i, s
(i)
k = 0. Therefore, we start accumulating errors in ŝ

(i)
k

at step i = k. At step i = k, we compute

ŝ
(k)
k = fl

[
λkŝ

(k−1)
k−1

]
.

We then use the modified floating point model (5.2) to write

(1 + ε)ŝ
(k)
k = λkŝ

(k−1)
k−1 , where |ε| ≤ u.

We write ŝ
(k)
k and ŝ

(k−1)
k−1 in terms of their errors and simplify to obtain

e
(k)
k = λke

(k−1)
k−1 − εŝ

(k)
k .
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Applying the triangle inequality gives the running error bound for ŝ
(k)
k .

For k < i ≤ n, we use both standard and modified floating point models to get

(1 + ε(i))ŝ
(i)
k = ŝ

(i−1)
k + λiŝ

(i−1)
k−1 (1 + δ(i)),

where |ε(i)|, |δ(i)| ≤ u. Writing ŝ
(i)
k and ŝ

(i−1)
k−1 in terms of their errors and simplifying

produces the following error in ŝ
(i)
k :

e
(i)
k = e

(i−1)
k + λie

(i−1)
k−1 + δ(i)λiŝ

(i−1)
k−1 − ε

(i)ŝ
(i)
k .

We use the triangle inequality to get the forward error bound.

5.2.5 Forward Stability of the Summation Algorithm for Com-

plex Numbers

For simplicity, we presented the error analysis for elementary symmetric functions

of real values first. The error analysis of the Summation Algorithm is still valid for

complex input values. However, the constants in the forward error bounds for com-

plex values increase modestly in comparison to real values. The standard model for

addition and multiplication of complex numbers x and y in the absence of underflow

or overflow implies [25, §3.6],

fl(x± y) = (x± y)(1 + δ), |δ| ≤ u, (5.4)

and

fl(xy) = xy(1 + δ), |δ| ≤ γ3. (5.5)

Similarly, under the modified model,

fl(x± y) =
(x+ y)

1 + ε
, |ε| ≤ u, (5.6)
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and

fl(xy) =
xy

1 + η
, |η| ≤ γ3. (5.7)

We also use the following relation in our error analysis [25, Lemma 3.3].

γk + γj + γkγj ≤ γk+j. (5.8)

Worst Case Bounds

We derive worst case error bounds for the Summation Algorithm applied to com-

plex numbers. For our error analysis, we use the following Lemma.

Lemma 5.21. The following bound holds for a product λ1 . . . λj of floating point

complex numbers.

fl(λ1 . . . λj) = λ1 . . . λj(1 + α), where |α| ≤ γ3(j−1).

Proof. The proof is by induction on j. For j = 1, the statement is trivial.

For j = 2, the statement follows from (5.5). We assume that the statement is true

for j = n− 1 and prove it for j = n.

fl

[
λ1 . . . λn

]
= fl

[
λ1 . . . λn−1

]
λn(1 + δ), where |δ| ≤ γ3.

Applying the induction hypothesis to fl

[
λ1 . . . λn−1

]
, we have

fl[λ1 . . . λn] = (λ1 . . . λn−1)λn(1 + α1)(1 + δ), where |α1| ≤ γ3(n−2).

Let us define

1 + α = (1 + α1)(1 + δ) = 1 + α1 + δ + α1δ.
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This implies

|α| ≤ |α1|+ |δ|+ |α1δ| ≤ γ3(n−2) + γ3 + γ3γ3(n−2).

From (5.8), we have |α| ≤ γ3(n−1).

Forward error bounds for elementary symmetric functions ŝk(λ), 1 ≤ k ≤ n,

computed from the Summation Algorithm are derived below.

Theorem 5.22. If the elementary symmetric functions sk(λ) of complex numbers

λ1, . . . , λn are computed from the Summation Algorithm as follows,

ŝ
(n)
k = fl

[
ŝ
(n−1)
k + fl

[
λnŝ

(n−1)
k−1

]]
,

then the forward error in ŝk(λ), 1 ≤ k ≤ n− 1, is bounded by

|ŝk(λ)− sk(λ)| ≤ γ2(n+k−1)sk(|λ|), 1 ≤ k ≤ n− 1.

For sn(λ) we have

|ŝn(λ)− sn(λ)| ≤ γ3(n−1)|sn(λ)|.

Proof. Rounding errors in the computation of sk(λ) arise from multiplication and

addition of complex numbers. Each term in ŝk(λ) is a product of k complex numbers.

Therefore,

ŝk(λ) =
∑

1≤i1<...<ik≤n

λi1 · · ·λik(1 + θ
(i1...ik)
l )(1 + α

(i1...ik)
1 ),

where from the standard model (5.4) for addition of complex numbers, |θ(i1...ik)
l | ≤

γ2n−k+1, and from multiplication of k complex numbers using Lemma 5.21, |α(i1...ik)
1 | ≤

γ3(k−1). Let us write

(1 + θ
(i1...ik)
l )(1 + α

(i1...ik)
1 ) = (1 + α(i1...ik)),
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where

α(i1...ik) = θ
(i1...ik)
l + α

(i1...ik)
1 + θ

(i1...ik)
l α

(i1...ik)
1 .

Inequality (5.8) implies

|α(i1...ik)| ≤ |θ(i1...ik)
l |+ |α(i1...ik)

1 |+ |θ(i1...ik)
l α

(i1...ik)
l | ≤ γ2(n+k−1).

Then,

ŝk(λ) = sk(λ) +
∑

1≤i1<...<ik≤n

α(i1,...,ik)λi1 · · ·λik .

Applying the triangle inequality to the difference |ŝk(λ)− sk(λ)| provides the forward

error bound for ŝk(λ), 1 ≤ k ≤ n − 1. The bound for sn(λ) follows from Lemma

5.21.

Running Error Bounds

Running error bounds for the Summation Algorithm can also be derived by using

standard and modified models for complex numbers.

Theorem 5.23. If the Summation Algorithm is used to compute elementary sym-

metric functions of complex numbers λ1, . . . , λn, then the error in ŝ1(λ) is given by

the following recursion:

|e(i)1 | ≤ |e
(i−1)
1 |+ u|ŝ(i)

1 |, 2 ≤ i ≤ n.

Proof. The proof is similar to Theorem 5.19 and follows from applying the modified

model for complex numbers.

Running error bounds for sk(λ), 2 ≤ k ≤ n, are given as follows.

Theorem 5.24. If the Summation Algorithm is used to compute elementary sym-

metric functions of complex numbers λ1, . . . , λn, then the error in ŝ
(k)
k , 2 ≤ k ≤ n, is
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given by

|e(k)k | ≤ |λke
(k−1)
k−1 |+ γ3|ŝ(k)

k |.

For k < i ≤ n, the error in ŝ
(i)
k is bounded by

|e(i)k | ≤ |e
(i−1)
k |+ |λie(i−1)

k−1 |+ γ3|λiŝ(i−1)
k−1 |+ u|ŝ(k)

k |.

Proof. The proof is similar to that of Theorem 5.20 and follows by applying standard

and modified models for complex numbers.

5.3 Bounds for Characteristic Polynomials from

Eigenvalue Perturbations

The method of computing coefficients of the characteristic polynomial of a matrix

A from its eigenvalues consists of two steps. The eigenvalues of A are computed in

the first step. In the second step, the coefficients of the characteristic polynomial of

A are determined from the computed eigenvalues. We derive perturbation bounds

for coefficients ck, 1 ≤ k ≤ n, of the characteristic polynomial p(λ) of A in terms of

perturbations in eigenvalues. These bounds apply when the characteristic polynomial

of A is determined from its computed eigenvalues. These bounds are derived from

perturbation bounds of elementary symmetric functions presented in the previous

section.

5.3.1 Absolute Perturbation Bounds

We first state absolute forward error bounds for coefficients ck, 1 ≤ k ≤ n, in

terms of absolute errors in eigenvalues of A. In this section we denote the eigenvalues

of A+ E by λ̃i and the eigenvalues of A by λi.
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Corollary 5.25. If |λ̃i − λi| = εi and maxi |εi| = εabs < 1, then

|c̃k − ck| ≤ (n− k + 1)sk−1(|λ|)εabs +O(ε2abs), 1 ≤ k ≤ n.

Proof. The proof follows from Theorem 5.2 and

|c̃k − ck| = |s̃k(λ)− sk(λ)|,

which is a result of Lemma 5.1.

The above error bound suggests that if the maximum absolute error εabs in the

eigenvalues of A is less than 1, and n is not too large, then sk−1(|λ|) is the first order

condition number for ck with respect to absolute perturbations in eigenvalues of A.

If λi > 0, then the error in the kth coefficient ck can be expressed in terms of the

preceding coefficient ck−1.

Corollary 5.26. If λi > 0 and εabs < 1, then

|c̃k − ck| ≤ (n− k + 1)|ck−1|εabs +O(ε2abs), 1 ≤ k ≤ n.

Proof. The proof follows from Corollary 5.25 and Lemma 5.1.

We apply the results of Corollary 5.25 and Corollary 5.26 to general matrices. We

substitute the value of εabs to derive absolute forward error bounds for coefficients

of characteristic polynomials when the coefficients are determined from computed

eigenvalues.

General Matrices

For a general matrix A we have the following bound for εabs.

Theorem 5.27 (Corollary 2.2 in [45]). Let A and A+E be n×n complex matrices.

Let Q−1AQ = diag(J1, . . . , Jl) be the Jordan form of A and m the order of the largest
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Jordan block. Define ρ = max
{
‖
√
nQ−1EQ‖2, ‖

√
nQ−1EQ‖1/m2

}
. There exists a

permutation τ of {1, 2, . . . , n} such that

εabs = max
1≤i≤n

|λ̃τ(i) − λi| ≤
√
n(1 +

√
n− l)ρ.

The above bound suggests that for a small n the magnitude of largest absolute

error εabs depends upon the quantity ρ = max
{
‖
√
nQ−1EQ‖2, ‖

√
nQ−1EQ‖1/m2

}
. In

general, there do not exist conditions under which εabs < 1. However, if we assume

that ρ < 1√
n(1+

√
n−l) , then we get the following bound for the coefficients of the

characteristic polynomial of A.

Theorem 5.28. Under the assumptions of Theorem 5.27 with ρ < 1√
n(1+

√
n−l) ,

|c̃k − ck| ≤
√
n(n− k + 1)(1 +

√
n− l)sk−1(|λ|)ρ+O(ρ)2, 1 ≤ k ≤ n.

Proof. This follows from Corollary 5.25 and Theorem 5.27.

In the following corollaries we assume that ρ < 1√
n(1+

√
n−l) .

Corollary 5.29. If all eigenvalues of A are positive, then

|c̃k − ck| ≤
√
n(1 +

√
n− l)(n− k + 1)|ck−1|ρ+O(ρ2), 1 ≤ k ≤ n.

Proof. This follows from Corollary 5.26 and Theorem 5.27.

So, the error in the kth coefficient ck of A with all positive eigenvalues depends

upon the magnitude of the preceding coefficient ck−1.

The following Corollary shows that coefficients of the characteristic polynomial of

a matrix with some zero eigenvalues are better conditioned.
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Corollary 5.30. If λ1 = . . . = λn−r = 0 for some 1 ≤ r ≤ n− 1, then

|c̃k − ck| ≤
(√

n(1 +
√
n− l)

)k−r(
n− r
k − r

)
sr(|λ|)ρk−r +O(ρk−r+1), r + 1 ≤ k ≤ n.

Proof. The proof follows from Corollary 5.4 and Lemma 5.1.

Diagonalizable Matrices. For a diagonalizable matrix A in the bound of Theorem

5.27, m = 1 and n = l. We get the following bound for εabs.

Theorem 5.31 (Theorem 2.4 in [45]). Let A be a diagnolizable matrix and A + E

be a complex matrix. Define ρ =
√
n‖Q−1EQ‖2. There exists a permutation τ of

{1, 2, . . . , n} such that

εabs = max
1≤i≤n

|λ̃τ(i) − λi| ≤
√
nρ.

Theorem 5.31 implies the following bound for coefficients of the characteristic

polynomial of a diagonalizable matrix A.

Theorem 5.32. Let A be a diagonalizable matrix with ρ < 1√
n
. If coefficients of the

characteristic polynomial of A are computed from eigenvalues of A, then

|c̃k − ck| ≤
√
n(n− k + 1)(n− k + 1)sk−1(|λ|)ρ+O(ρ2), 1 ≤ k ≤ n.

Proof. The proof follows from Corollary 5.25 and Theorem 5.31.

When matrix A has all positive eigenvalues, then we can express the error in the

kth coefficient in terms of the preceding coefficient.

Corollary 5.33. Let A be a diagonalizable matrix A with λi > 0. If ρ < 1√
n
, then

|c̃k − ck| ≤
√
n(n− k + 1)|ck−1|ρ+O(ρ2), 1 ≤ k ≤ n.

Proof. This follows from Corollary 5.26 and Theorem 5.31.
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Normal Matrices

For a normal matrix A, we get the following bound for εabs.

Theorem 5.34 (Corollary 2.4 in [40]). Let A be a normal matrix and Ã = A+ E a

general complex matrix. Let U be a unitary matrix such that

U∗(A+ E)U =


A1

. . .

Al

 , 1 ≤ l ≤ n.

Aj are upper triangular matrices. There exists a permutation τ of {1, 2, . . . , n} such

that

εabs = max
1≤i≤n

|λ̃τ(i) − λi| ≤
√
n(n− l + 1)‖E‖2.

The above bound suggests that if the dimension of matrix A is not too large and

A+ E is close to a normal matrix (i.e. if l ≈ n and if matrices Aj are close to being

normal), then eigenvalues of A are well conditioned in absolute sense. In particular,

if l = n, then A + E is a normal matrix. In the worst case, we know nothing about

A + E and l = 1. Theorem 5.34 yields the following bound for the kth coefficient ck

of a normal matrix A.

Theorem 5.35. If A+ E is non normal and
√
n(n− l + 1)‖E‖2 < 1, then

|c̃k − ck| ≤
√
n(n− l + 1)(n− k + 1)sk−1(|λ|)‖E‖2 +O(‖E‖22).

If A+ E is normal, then

|c̃k − ck| ≤
√
n(n− k + 1)sk−1(|λ|)‖E‖2 +O(‖E‖22).

Proof. The proof follows from Corollary 5.25 and Theorem 5.34.
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For a Hermitian matrix A, Weyl’s Theorem gives the following improved bound

for εabs.

Theorem 5.36 (page 551 in [41]). If A, E, and A+E are Hermitian matrices, then

max
i
|λ̃i − λi| = εabs ≤ ‖E‖2.

The above result provides the following bound for coefficients of the characteristic

polynomial of a Hermitian matrix A.

Theorem 5.37. If A, E and A+ E are Hermitian matrices, then

|c̃k − ck| ≤ (n− k + 1)sk−1(|λ|)‖E‖2 +O(‖E‖22).

Proof. The proof follows from Corollary 5.25 and Theorem 5.36.

5.3.2 Relative Perturbation Bounds

We derive perturbation bounds for the coefficients of the characteristic polynomial

of A in terms of relative errors in eigenvalues. These bounds apply when the char-

acteristic polynomial is determined from computed eigenvalues of A, and are derived

from our results of section 5.2.2 for elementary symmetric functions. We denote the

eigenvalues of A and A + E by λi and λ̂i, respectively, where λ̂i = λi(1 + εi). The

kth coefficient of the characteristic polynomial of A+E is denoted by ĉk. We define

εrel = max1≤i≤n |εi|.

Corollary 5.38. If maxi |λ̂i − λi| = εrel < 1, then for non zero ck, 1 ≤ k ≤ n,

|ĉk − ck|
|ck|

≤ k
sk(|λ|)
|ck|

εrel +O(ε2rel), 1 ≤ k ≤ n.

Proof. The proof follows from Corollary 5.9 and Lemma 5.1.
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The above bound suggests that if εrel < 1, then the first oder relative condition

number for non zero kth coefficient ck with respect to relative perturbations is k sk(|λ|)
|ck|

.

Corollary 5.39. If λi > 0, 1 ≤ i ≤ n, and if εrel < 1, then

|ĉk − ck|
|ck|

≤ kεrel +O(ε2rel), 1 ≤ k ≤ n.

Proof. The proof follows from Corollary 5.11 and Lemma 5.1.

We derive perturbation bounds for coefficients of characteristic polynomials of

certain classes of matrices by substituting value of εrel in Corollary 5.38 and Corollary

5.39.

Non Singular Normal Matrices

We can obtain relative bounds for coefficients of the characteristic polynomial of

a non singular matrix based on the following theorem by Wen Li and Weiwei Sun.

Theorem 5.40 (Corollary 3.3 in [40]). Let A be a non singular normal matrix. Let

U be a unitary matrix such that

U∗(A+ E)U =


A1

. . .

Al

 , 1 ≤ l ≤ n,

where Aj are upper triangular matrices. Then, there exists a permutation τ of

{1, 2, . . . , n} such that

εrel = max
1≤i≤n

|λ̂τ i − λi|
|λi|

≤
√
n(n− l + 1)‖A−1‖2 ‖E‖2.

The above bound suggests that if A + E is close to a normal matrix ( i.e. if

l ≈ n and if Aj are close to being normal, and if ‖A−1‖2 ‖E‖2 < 1), then there is a
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permutation τ of {1, 2, . . . , n} under which the eigenvalues of normal matrix A are

well conditioned in a relative sense.

In particular, when l = n, A+ E is normal. In the worst case l = 1, so that

max
1≤i≤n

|λ̂τ i − λi|
|λi|

≤ n‖A−1‖2 ‖E‖2.

We substitute the value of εrel from the above theorem in the Corollary 5.38, and

obtain the forward error bound for the kth coefficient of the characteristic polynomial

of normal matrix A.

Theorem 5.41. If
√
n(n− l + 1)‖A−1‖2‖E‖2 < 1, then under the assumptions of

Theorem 5.40

|ĉk − ck|
|ck|

≤ k
√
n(n− l + 1)

sk(|λ|)
|ck|

‖A−1‖2 ‖E‖2 +O(‖A−1‖2‖E‖2)
2
, 1 ≤ k ≤ n.

Proof. This follows from Corollary 5.38 and Theorem 5.40.

For a unitary matrix A, the conditioning of the characteristic polynomial improves.

Corollary 5.42. Under the assumptions of Theorem 5.40 for unitary matrices A and

A+ E, if
√
n‖E‖2 < 1, then

|ĉk − ck|
|ck|

≤
√
nk
sk(|λ|)
|ck|

‖E‖2 +O(‖E‖2)2, 1 ≤ k ≤ n.

Proof. In the bound of Theorem 5.41, substitute l = n and ‖A−1‖2 = 1.

Real Symmetric Matrices

We present forward error bounds for coefficients of the characteristic polynomial

of a real symmetric matrix A. These bounds are different from the previous bounds.

We assume that the eigenvalues of A are computed from the Symmetric Rank Re-

vealing Decomposition RRD of A. The Symmetric RRD of A with rank(A) = r
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is a factorization A = XDXT where X is a matrix of order n × r, D is a diagonal

r × r non singular matrix and X has full column rank and is well conditioned [10].

The following perturbation bounds show that small relative perturbations in the ele-

ments of D and small normwise relative perturbations in X cause only small relative

perturbations in the eigenvalues of A.

Theorem 5.43 (Theorem 2.1 in [10]). Let A=XDXT and Â = X̂D̂X̂T be RRDs of

the real symmetric n× n matrices A and Â with

‖X̂ −X‖2
‖X‖2

≤ β,
|D̂ii −Dii|
|Dii|

≤ β for all i,

where 0 ≤ β < 1. Define κ2(X) = ‖X‖2‖X−1‖2. If η = β(2 + β)κ2(X) < 1, then

|λ̂i − λi| ≤ (2η + η2)|λi|, 1 ≤ i ≤ n.

This bound implies that for well conditioned X, the eigenvalues of A are well

conditioned with regard to relative perturbations in the Symmetric RRD of A.

We obtain the following result if the kth coefficient ck of the characteristic poly-

nomial of A is determined from eigenvalues that have been computed from an RRD

of A.

Theorem 5.44. Under the assumptions of Theorem 5.43, if η < 1, then

|ĉk − ck|
|ck|

≤ 2k
sk(|λ|)
|ck|

η +O(η2), 1 ≤ k ≤ n.

When the matrix A is symmetric positive definite, we have the following interesting

bound.

Corollary 5.45. Under the assumptions of Theorem 5.43 with symmetric positive

definite matrix A
|ĉk − ck|
|ck|

≤ 2k η +O(η2), 1 ≤ k ≤ n.
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Proof. This follows from Corollary 5.39 and Theorem 5.43.

The above bound implies that the coefficients of the characteristic polynomial

of a symmetric positive definite matrix A are well conditioned, if we determine the

coefficients from eigenvalues of A and the eigenvalues have been computed from the

Symmetric RRD.

Accurate eigenvalues from the Symmetric RRDs of many classes of symmetric

matrices can be obtained. Some include scaled diagonally dominant matrices [3],

diagonally scaled well conditioned positive definite matrices [9], Cauchy matrices,

diagonally scaled Cauchy matrices, Vandermonde matrices, totally non negative ma-

trices [10], total signed compound matrices and diagonally scaled totally unimodular

matrices [44].

Non singular TN matrices

Matrices with all non negative minors are called totally nonnegative TN . All the

eigenvalues of a non singular TN matrix are positive [37]. Like real symmetric matri-

ces, we compute eigenvalues of a non singular TN matrix from its factorization. The

following theorem by Gasca and Peña establishes necessary and sufficient conditions

for a TN matrix.

Theorem 5.46 (Theorem 4.2 in [17]). A real n × n nonsingular matrix A is TN if

and only if it can be uniquely factored as

A = L(1) · · ·L(n−1) D U (n−1) · · ·U (1),

where D is a diagonal matrix with positive diagonal elements. L(j) and U (j) are lower

and upper unit bidiagonal matrices with non negative off–diagonal elements.

The following perturbation bounds show that small relative perturbations in the
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elements of L(j), U (j) and D cause only small relative perturbations in the eigenvalues

of A.

Theorem 5.47 (Corollary 7.3 in [37]). Let A and Â be TN matrices. If

Â = L̂(1) . . . L̂(n−1) D̂ Û (n−1) · · · Û (1),

where for 1 ≤ j ≤ n− 1, and δ ≤ 1
2n2 ,

|L̂(j)
i+1,i − L

(j)
i+1,i| ≤ δ|L(j)

i+1,i|,

|Û (j)
i−1,i − U

(j)
i−1,i| ≤ δ|U (j)

i−1,i|,

|D̂ii −Dii| ≤ δ|Dii|.

then

|λ̂i − λi| ≤
2n2δ

1− 2n2δ
λi, 1 ≤ i ≤ n.

The above result implies that the first order condition number of each eigenvalue of

A with respect to component wise relative perturbations in factors of A is 2n2. We get

the following relative perturbation bound for the kth coefficient of the characteristic

polynomial of a TN matrix A, if it has been determined from the eigenvalues of A,

and the eigenvalues have been computed from the factors L(j), U (j) and D.

Theorem 5.48. For a nonsingular TN matrix, under the assumptions of Theorem

5.47,
|ĉk − ck|
|ck|

≤ 2kn2δ +O(δ2), 1 ≤ k ≤ n.

Proof. The proof follows from Corollary 5.39 and Theorem 5.47.

For moderate n, the above result shows that the coefficients of the characteristic

polynomial of a TN matrix A are well conditioned with respect to relative pertur-

bations in the eigenvalues of A provided the eigenvalues are determined from factors
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of A. A numerically stable algorithm for computing eigenvalues of a TN matrix has

been presented in [37].

5.3.3 The Summation Algorithm Applied to Computed Eigen-

values

We present the forward error bounds for the coefficients of p(λ) of A from using the

Summation Algorithm on computed eigenvalues. These bounds provide the overall

error from both steps of computing the characteristic polynomial from eigenvalues.

Corollary 5.49. Suppose that the exact and computed eigenvalues of a matrix A

are real numbers λi and λ̃i ,respectively, where λ̃i = λi + εi, 1 ≤ i ≤ n. Suppose that

max |εi| = εabs < 1. Denote the computed coefficients of the characteristic polynomial

of A from the Summation Algorithm by ĉk, 1 ≤ k ≤ n. The forward error in ĉk is

given by

|ĉk − ck| ≤ (n− k + 1)sk−1(|λ|)εabs +

γ2n

(
sk(|λ|) + (n− k + 1)sk−1(|λ|)εabs

)
+O(ε2abs)

Proof. From the triangle inequality we can write

|ĉk − ck| ≤ |ĉk − c̃k|+ |c̃k − ck|, 1 ≤ k ≤ n. (5.9)

Here c̃k are the exact coefficients of the characteristic polynomial of a matrix with

eigenvalues λ̃i. Corollary 5.25 implies

|c̃k − ck| ≤ (n− k + 1)sk−1(|λ|)εabs +O(ε2abs) (5.10)
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Lemma 5.1 and Theorem 5.16 imply

|ĉk − c̃k| ≤ γ2nsk(|λ̃|), 1 ≤ k ≤ n. (5.11)

The bound for sk(|λ̃|) follows from Theorem 5.2.

sk(|λ̃|) ≤ sk(|λ|) + (n− k + 1)sk−1(|λ|)εabs +O(ε2abs), 1 ≤ k ≤ n. (5.12)

Substituting the bounds of |c̃k − ck|, |ĉk − c̃k| and |sk(|λ̃|) from (5.10), (5.11) and

(5.12) in the error bound of (5.9) yields the result.

The above bound shows that two factors sk−1(|λ|) and sk(|λ|) may be responsible

for inaccurate results of ĉk when eigenvalues are known with absolute accuracy. When

the eigenvalues have been computed with some estimate of relative accuracy and

we use the Summation Algorithm to determine coefficients of p(λ) from computed

eigenvalues, we get the following error bounds.

Corollary 5.50. Suppose that the exact and computed eigenvalues of a matrix A are

real numbers λi and λ̂i respectively, where λ̂i = λi(1 + εi), 1 ≤ i ≤ n. Suppose that

max |εi| = εrel < 1. Denote the computed coefficients from the Summation Algorithm

by c̄k, 1 ≤ k ≤ n. The forward error in c̄k is given by

|c̄k − ck| ≤ sk(|λ|)
(
2kεrel + γ2n

)
+O(ε2rel), 1 ≤ k ≤ n.

Proof. The proof is similar to that of Corollary 5.49. From the triangle inequality we

write

|c̄k − ck| ≤ |c̄k − ĉk|+ |ĉk − ck|, 1 ≤ k ≤ n. (5.13)

Here ĉk are the exact coefficients of a matrix with eigenvalues λ̂i, 1 ≤ i ≤ n. Corollary

5.38 implies

|ĉk − ck| ≤ ksk(|λ|)εrel +O(ε2rel), 1 ≤ k ≤ n. (5.14)
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Theorem 5.16 and Lemma 5.1 imply

|c̄k − ĉk| ≤ γ2nsk(|λ̂|) (5.15)

From Corollary 5.9 we write the bound for sk(|λ̂|)

sk(|λ̂|) ≤ sk(|λ|) + ksk(|λ|)εrel +O(ε2rel) (5.16)

We substitute the bounds of sk(|λ̂|), |c̄k − ĉk| and |ĉk − ck| from (5.16), (5.15) and

(5.14) in (5.13). We also use the fact that γ2n < 1 to simplify and obtain the desired

bound.

The bound of Corollary 5.50 shows that when the eigenvalues of a matrix A are

known with some estimate of relative accuracy εrel < 1 and the Summation Algorithm

is applied to determine the coefficients of the characteristic polynomial then sk(|λ|),
1 ≤ k ≤ n, is the first order condition number of error in computed coefficients.

We consider the case when some or all computed eigenvalues of A are complex,

where eigenvalues of A may be real or complex numbers. Because more rounding

errors are committed in determining the coefficients from computed complex eigen-

values, therefore, the constant γ2n in the error bounds of Corollary 5.49 increases

modestly to γ2(n+k−1).

Corollary 5.51. Suppose that the computed eigenvalues of A are complex numbers

λ̃i, where λ̃i = λi + εi, 1 ≤ i ≤ n. Suppose that max |εi| = εabs < 1. Denote the

computed coefficients from the Summation Algorithm by ĉk, 1 ≤ k ≤ n. Then the

forward error in ck is given by

|ĉk − ck| ≤ (n− k + 1)sk−1(|λ|)εabs +

γ2(n+k−1) [sk(|λ|) + (n− k + 1)sk−1(|λ|)εabs] +O(ε2abs)



Chapter 5. The Computation of Characteristic Polynomials from Eigenvalues 77

Proof. The proof is similar to that of Corollary 5.49 and follows by applying Theorem

5.22.

5.4 Numerical Tests

We verify the accuracy of our derived bounds for computing the coefficients of the

characteristic polynomial of a matrix from its eigenvalues on various test matrices.

In our experiments we use MATLAB’s “poly” function. This MATLAB’s function

yields the coefficients of the characteristic polynomial of a given matrix. The “poly”

function first computes eigenvalues of the given matrix by using “eig” function, then

determines the coefficients from the Summation Algorithm [1]. The machine precision

u of MATLAB is approximately 1.1×10−16. We compute the exact eigenvalues of test

matrices by MATLAB’s symbolic toolbox and compare them with eigenvalues com-

puted from MATLAB’s “eig” function. This allows us to approximate the absolute

error (εabs) and the relative error (εrel) in eigenvalues of test matrices. The computed

coefficients of characteristic polynomials of test matrices from “poly” function are

denoted by ĉk.

Test 1: Forsythe Matrix

Conside the following Forsythe matrix [22, Example 5.22].

F =


0 1

0 1
. . . 1

η 0 . . . 0

 .
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Figure 5.1: Results for p(λ) of Forsythe matrix of order 200

The characteristic polynomial of F is p(λ) = λn− η, and the eigenvalues are given by

λk = n
√
|η| exp2kπi

n
, 1 ≤ k ≤ n.

All the coefficients of the characteristic polynomial of F are zero beside cn, and the

eigenvalues of F are complex numbers. We compute p(λ) of the Forsythe matrix of

order 200 with η = 10−10. We find that some of the computed coefficients are gigantic

in magnitude. Figure 5.1 shows the Log of the computed coefficients. The first order

condition number of the coefficient ck is (n−k+ 1)sk−1(|λ|), as Corollary 5.25 shows.

The first order condition numbers of coefficients c60 through c120 are in the range 1038

to 1053. The perturbation bounds suggest that these coefficients might have large

absolute errors. The magnitudes of the computed coefficients ĉk confirm our analysis.

Test 2: Hansen’s Matrix

Characteristic polynomials of symmetric positive definite matrices are well con-

ditioned, if eigenvalues are computed with high relative accuracy, as Corollary 5.39



Chapter 5. The Computation of Characteristic Polynomials from Eigenvalues 79

shows. The first order relative condition number of the coefficient ck is kεrel. We con-

sider the following symmetric positive definite matrix A of order n used by Hansen

to check the accuracy of Danilewiski’s method [24, Section: Experimental Results]).

A =


1 −1

−1 2
. . .

. . . . . . −1

−1 2


The coefficients of the characteristic polynomial of A are given by the following

formula.

cn−m+1 = (−1)n−m+1

(
n+m− 1

n−m+ 1

)
1 ≤ m ≤ n.

In particular, the trace of A is 2n − 1 and the determinant of A is 1. We compute

p(λ) of the matrix A of order 100. We determine εrel ≈ 1.70× 10−13 and

max
k

|ĉk − ck|
|ck|

≈ 10−13, 1 ≤ k ≤ n.

Every coefficient of p(λ) of A is computed to at least 13 digits of accuracy. The error

bounds correctly predict the results.

Test 3: A matrix generated from the inverse of Hansen’s Ma-

trix

The inverse of Hansen’s matrix A presented in Test 3 can be given explicitly [24,

Section: Experimental Results]. Let us denote the inverse of A by B. Then,

bij = min(n− i+ 1, n− j + 1), 1 ≤ i, j ≤ n.
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If we denote the kth coefficient of the characteristic polynomial of A by ck(A) and

the kth coefficient of its inverse B by ck(B), then ck(A) = cn−k(B), 1 ≤ k ≤ n−1. In

particular, det(B) = 1. Hence, for the coefficients of the characteristic polynomial of

B, we obtain the same numbers as for the coefficients of A but in the reverse order.

The matrix B is symmetric positive definite. We observe that MATLAB generally

computes eigenvalues of symmetric positive definite matrices with high relative ac-

curacy. In order to make a more interesting example, we consider matrix R of order

100, where R = PBP−1, and, P is a random matrix. R and B have the same char-

acteristic polynomials. The first order relative condition number of the coefficient ck

of p(λ) of R is kεrel. We find that εrel ≈ 10−9 and

max
k

|ĉk − ck|
|ck|

≈ 10−9, 1 ≤ k ≤ n.

The perturbation bounds correctly predict the accuracy of the coefficients of p(λ) of

R.

Test 4: Tridiagonal Matrix

In this test we compute the coefficients of the characteristic polynomial of a tridi-

agonal matrix T of order 100 with the following entries:

T =


0 −1

1 0
. . .

. . . . . . −1

1 0

 .

We compute the exact coefficients of the characteristic polynomial of T by MATLAB’s

symbolic toolbox and find that every odd coefficient ck of the characteristic polynomial

of matrix A is zero. In particular c1 = 0 and cn = 1. The non zero coefficients of p(λ)
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of T are computed accurately to at least 13 digits by MATLAB’s “poly” function.

However, most of the zero coefficients are inaccurate. In particular, the computed

values of c37 to c77 are in the range of 100 to 103. The first oder absolute condition

number of the coefficient ck with respect to absolute perturbations in eigenvalues is

(n− k + 1)sk−1(|λ|). The first order condition numbers for c37 through c77 are in the

range of 1026 to 1030. Even though, the perturbation bounds are pessimistic, they

still qualitatively provide accurate information about the coefficients.

Test 5: Frank Matrix

We consider the Frank matrix of order 20 from MATLAB’s gallery of test matrices.

The Frank matrix is an upper Hessenberg matrix with determinant 1. The coefficients

of p(λ) of the Frank matrix appear in pairs in the sense that ck = cn−k, 1 ≤ k ≤ n−1.

The eigenvalues of the Frank matrix are positive and occur in reciprocal pairs. We

determine the exact coefficients by MATLAB’s symbolic toolbox and compare them

with the computed coefficients by using the “poly” function. We observe that the last

four computed coefficients have very large absolute errors. In particular, the exact

values of c19 and c20 are −210 and 1, respectively, and the computed coefficients are of

order 106. Lemma 5.1 and Theorem 5.2 suggest the following error in the computed

coefficient ĉk.

|ĉk − ck| ≤
k∑
i=1

(
n− k + i

i

)
|ck−i|εiabs, 1 ≤ k ≤ n.

The error in ĉk may be large if the magnitudes of the preceding coefficients are large.

We compute εabs ≈ 0.34. The approximated first order condition numbers for c19 and

c20 are 104 and 100, respectively. The first order condition numbers are much smaller

than the actual errors in the coefficients. This example shows that a small first order

condition number does not guarantee a small error in ĉk. These huge errors in ĉ19 and

ĉ20 are due to the fact that some of the preceding coefficients are large in magnitude.
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For example, the magnitudes of coefficients from c14 to c18 are in the range of 104 to

109. The perturbation bounds correctly predict the errors in ĉ19 and ĉ20.
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Chapter 6

La Budde’s Method

6.1 Introduction

We present a little known method for computing the characteristic polynomial of

a complex matrix A. The method was first introduced in 1956 by Wallace Givens

at the third High Speed Computer Conference at Louisiana State University [19].

According to Givens, the method was brought to his attention by his coder Donald

La Budde. Finding no earlier reference to this method, we credit its development

to La Budde and, thus, name it “ La Budde’s method”. The method begins with a

preliminary reduction of A to an upper Hessenberg form H by orthogonal similarity

transformations. The coefficients of the characteristic polynomial of H are determined

by successively computing characteristic polynomials of leading principal submatrices

of H. Because H and A are similar, they have the same characteristic polynomials.

If A is symmetric, then H is a symmetric tridiagonal matrix, and La Budde’s method

simplifies to what we call the Sturm sequence method used by Givens to compute

eigenvalues of a symmetric tridiagonal matrix T [18]. Regarding La Budde’s method

Givens said:

“Since no division occurs in this second stage of the computation and the
detailed examination of the first stage for the symmetric case was success-
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ful in guaranteeing its accuracy there, one may hope that the proposed
method of getting the characteristic equation will often yield accurate re-
sults. It is, however, probable that cancellations of large numbers will
sometimes occur in the floating point additions and will thus lead to ex-
cessive errors.”

Wilkinson also preferred La Budde’s method over the method of reducing a Hes-

senberg matrix to Frobenius form for obtaining the characteristic polynomial. He

stated: [48, §6.57]

“ We have described the determination of the Frobenius form in terms
of similarity transformations for the sake of consistency and in order to
demonstrate it’s relation to Danilewski’s method. However, it is more
straightforward to think in terms of a direct derivation of the character-
istic polynomials of H. This polynomial may be obtained by recurrence
relations in which we determine successively the characteristic polynomi-
als of each of the leading principal submatrices. No special difficulties
arise if some of the subdiagonal entries of H are small or even zero.”

La Budde’s method has attractive features for computing the characteristic poly-

nomial of A. In the first stage, we reduce A to H by Householder’s orthogonal sim-

ilarity transformations which are unconditionally numerically stable [48, §6.6]. We

derived perturbation bounds for coefficients of the characteristic polynomial of A in

chapter 3. These bounds are in terms of elementary symmetric functions of singular

values σi, 1 ≤ i ≤ n, of A. Singular values of A are invariant under orthogonal

similarity transformations, and, therefore, A and H have the same singular values.

Hence, in reducing A to H, the condition numbers of coefficients of the characteristic

polynomial of A remain unchanged. In the second stage of La Budde’s method, we

compute the characteristic polynomial of H by successive computations of character-

istic polynomials of leading principal submatrices of H. We will show how to derive

running error bounds for coefficients computed in the second stage. The errors from

both stages of La Budde’s method can be combined to obtain the forward errors in

coefficients of the characteristic polynomial of A. We will also show that if a single



Chapter 6. La Budde’s Method 85

coefficient ck, 1 ≤ k ≤ n, of the characteristic polynomial of A is required, then La

Budde’s method can be modified to produce the desired coefficient. There are 5
3
n3

floating point operations in reducing A to H by Householder’s method [21, page 223]

and 1
6
n3 floating point operations in the second stage of La Budde’s method [48, page

411]. This implies that the computation of the characteristic polynomial is efficient.

Overview

We present the Sturm sequence method for the computation of the characteristic

polynomial p(λ) of a real symmetric tridiagonal matrix T in Section 6.2. Furthermore,

we derive running error bounds for coefficients of p(λ). In Section 6.3, we describe La

Budde’s method for computing the characteristic polynomial of a Hessenberg matrix

H and include its running error analysis. In Section 6.4, we present combined error

bounds of La Budde’s method for a real matrix A, i.e. the error in reducing A toH and

the error in determining the characteristic polynomial of the computed Hessenberg

matrix. Numerical tests are given is Section 6.5. In Section 6.6 we compare La

Budde’s method with MATLAB’s “poly” function for the computation of p(λ) of a

given matrix from its eigenvalues.

6.2 The Sturm Sequence Method

Let a real n× n symmetric tridiagonal matrix T be defined as

T =



a1 b2

b2 a2 b3
. . . . . . . . .

. . . . . . bn

bn an


.
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Let us denote the characteristic polynomial of a principal submatrix Ti of order i by

pi(λ), 1 ≤ i ≤ n, where pi(λ) = det(λI−Ti). The recursion for computing coefficients

of p(λ) of T is given as follows [21, §8.5]:

Algorithm 2 Sturm sequence method for p(λ) of a tridiagonal matrix T

Input: n× n real symmetric tridiagonal matrix T
Output: The characteristic polynomial p(λ) of T

Set p0(λ) = 1
Set p1(λ) = λ− a1

for i = 2 : n do
pi(λ) = (λ− ai)pi−1(λ)− b2i pi−2(λ)

end for

The correctness of the Sturm sequence method follows from a simple determinantal

expansion [21, §8.5]. In the process of computing the characteristic polynomial p(λ)

of T, the Sturm sequence method computes characteristic polynomials of all leading

principal submatrices of T . Let us denote the coefficients of pi(λ) by c
(i)
k , 1 ≤ k ≤ i.

Then,

p(λ) = pn(λ), and ck = c
(n)
k , 1 ≤ k ≤ n.

Writing pi(λ), pi−1(λ) and pi−2(λ) in terms of their coefficients and equating like

powers of λ on both sides of the recursion of the Sturm sequence method, we observe

that the computation of c
(i)
k requires c

(i−1)
k , c

(i−1)
k−1 and c

(i−2)
k−2 , 2 ≤ i ≤ n. This allows

us to write the modified Sturm sequence method which computes a coefficient ck of

the characteristic polynomial of T . In addition c1, . . . , ck−1 are also computed.

The inner loop of the modified Sturm sequence method computes c
(i−1)
k , c

(i−1)
k−1

and c
(i−2)
k−2 , which are required in the computation of c

(i)
k . The outer loop computes

c
(i)
1 , . . . , c

(i)
k for 2 ≤ i ≤ n. At the end of the recursion, we obtain c1, . . . , ck.
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Algorithm 3 Modified Sturm sequence method for a single coefficient ck
Input: A real n× n symmetric tridiagonal matrix T , index k
Output: A coefficient ck of p(λ) of T

Set c
(l)
0 = 1 for 0 ≤ l ≤ n− 1

Set c
(l)
s = 0 for s > l or s < 0

Set c
(1)
1 = −a1

for i = 2 : n do
for j = 1 : k do

c
(i)
j = c

(i−1)
j − aic(i−1)

j−1 − b2i c
(i−2)
j−2

end for
end for
{At step n: c

(n)
k = ck}

6.2.1 Running Error Bounds

To derive running error bounds of the Sturm sequence method we use the standard

and modified floating point models described in chapter 5 (section 5.2.4). We denote

the computed coefficients of the characteristic polynomial pi(λ) of order i by ĉ
(i)
k . We

compute ĉ
(i)
k as

ĉ
(i)
k = fl

[
fl

[
ĉ
(i−1)
k − fl

[
aiĉ

(i−1)
k−1

]]
− fl

[
b2i ĉ

(i−2)
k−2

]]
.

Also,

ĉ
(i)
k = c

(i)
k + e

(i)
k , 2 ≤ i ≤ n, 1 ≤ k ≤ n.

Here c
(i)
k is the exact coefficient and e

(i)
k is the error in ĉ

(i)
k . In the beginning of the

recursion ĉ
(1)
1 = c

(1)
1 = −a1 and e

(1)
1 = 0. We state the running error bound for ĉ1 and

then present the error bound for ĉ2.

Theorem 6.1. The error in ĉ1 is bounded as follows:

|e(i)1 | ≤ |e
(i−1)
1 |+ u|ĉ(i)1 |, 2 ≤ i ≤ n.
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Proof. The Sturm sequence method computes c1 as a recursive sum of diagonal entries

of T . At step i, we write

ĉ
(i)
1 = fl

[
ĉ
(i−1)
1 − ai

]
.

Using the modified standard model (5.2), we get

(1 + ε(i))ĉ
(i)
1 = ĉ

(i−1)
1 − ai, where |ε(i)| ≤ u.

Writing the computed coefficients ĉ
(i)
1 and ĉ

(i−1)
1 in terms of their errors and simplifying

the expression, we get

e
(i)
1 = e

(i−1)
1 − ε(i)ĉ(i)1 .

This implies

|e(i)1 | ≤ |e
(i−1)
1 |+ u|ĉ(i)1 |, 2 ≤ i ≤ n.

Theorem 6.2. The error in ĉ
(2)
2 is given by the following inequality.

|e(2)
2 | ≤ u

(
|a2a1|+ |b22|+ |ĉ

(2)
2 |
)
.

For 2 < i ≤ n,

|e(i)2 | ≤ |e
(i−1)
2 |+ |aie(i−1)

1 |+ u
(
|ĉ(i−1)

2 |+ |b2i |+ |ĉ
(i)
2 |
)

+ γ2|aiĉ(i−1)
1 |.

Proof. ĉ
(2)
2 is computed as

ĉ
(2)
2 = fl

[
fl

[
a1a2

]
− fl

[
b22

]]
.
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Using the standard floating point model (5.1), we get

ĉ
(2)
2 = fl

[
a2a1(1 + δ)− b22(1 + η)

]
, |δ|, |η| ≤ u.

Now, we use the standard modified model (5.2) to obtain

(1 + ε)ĉ
(2)
2 = a2a1(1 + δ)− b22(1 + η), |ε| ≤ u.

Expressing ĉ
(2)
2 in terms of its error and simplifying produces the result for the error

in ĉ
(2)
2 .

When 2 < i ≤ n,

ĉ
(i)
2 = fl

[
fl

[
ĉ
(i−1)
2 − fl

[
aiĉ

(i−1)
1

]]
− fl

[
b2i

]]
= fl

[
ĉ
(i−1)
2 (1 + δ(i))− aiĉ(i−1)

1 (1 + θ
(i)
2 )− b2i (1 + η(i))

]
,

where |δ(i)|, |η(i)| ≤ u and |θ(i)
2 | ≤ γ2. We use the modified model (5.2) to write

(1 + ε(i))ĉ
(i)
2 = ĉ

(i−1)
2 (1 + δ(i))− aiĉ(i−1)

1 (1 + θ
(i)
2 )− b2i (1 + η(i)),

where |ε(i)| ≤ u. We express ĉ
(i−1)
2 and ĉ

(i−1)
1 in terms of their errors and simplify to

get

e
(i)
2 = e

(i−1)
2 + δ(i)ĉ

(i−1)
2 − aie(i−1)

1 − θ(i)
2 aiĉ

(i−1)
1 − b2i η(i) − ε(i)ĉ(i)2 .

Applying the triangle inequality gives the forward error in ĉ
(i)
2 .

For 3 ≤ k ≤ n, the running forward error bounds are given below.

Theorem 6.3. For 3 ≤ k ≤ n− 1, the error in ĉ
(k)
k is bounded by the following:

|e(k)k | ≤ |ake
(k−1)
k−1 |+ |b

2
ke

(k−2)
k−2 |+ γ2|b2kĉ

(k−2)
k−2 |+ u

(
|akĉ(k−1)

k−1 |+ |ĉ
(k)
k |
)
.
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For k < i ≤ n, we have

|e(i)k | ≤ |e(i−1)
k |+ |aie(i−1)

k−1 |+ |b
2
i e

(i−2)
k−2 |+

u
(
|ĉ(i−1)
k |+ |ĉ(i)k |

)
+ γ2

(
|aiĉ(i−1)

k−1 |+ |b
2
i ĉ

(i−2)
k−2 |

)
.

Proof. Note that for k > i, c
(i)
k = 0. Therefore, we start accumulating errors at step

k. Also, c
(k−1)
k = 0. We compute ĉ

(k)
k as

ĉ
(k)
k = −fl

[
fl

[
akĉ

(k−1)
k−1

]
+ fl

[
b2kĉ

(k−2)
k−2

]]
.

Applying the standard floating model (5.1), we get

ĉ
(k)
k = −fl

[
akĉ

(k−1)
k−1 (1 + δ) + b2kĉ

(k−2)
k−2 (1 + θ2)

]
,

where |δ| ≤ u and |θ2| ≤ γ2. From the modified model (5.2), we obtain

(1 + ε)ĉ
(k)
k = −akĉ(k−1)

k−1 (1 + δ)− b2kĉ
(k−2)
k−2 (1 + θ2), |ε| ≤ u.

Now, the proof is similar to that of previous proofs. We write ĉ
(k)
k , ĉ

(k−1)
k−1 and ĉ

(k−2)
k−2

in terms of their errors and simplify to get

e
(k)
k = −ake(k−1)

k−1 − b
2
ke

(k−2)
k−2 − θ2b

2
kĉ

(k−2)
k−2 − δakĉ

(k−1)
k−1 − εĉ

(k)
k .

The forward error bounds follow from the triangle inequality. When k < i ≤ n, we

write

ĉ
(i)
k = fl

[
ĉ
(i−1)
k − fl

[
aiĉ

(i−1)
k−1 + b2i ĉ

(i−2)
k−2

]]
.

This implies

ĉ
(i)
k = fl

[
ĉ
(i−1)
k (1 + δ(i))− aiĉ(i−1)

k−1 (1 + θ
(i)
2 )− b2i ĉ

(i−2)
k−2 (1 + θ̂

(i)
2 )

]
,
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where |δ(i)| ≤ u and |θ(i)
2 |,|θ̂

(i)
2 | ≤ γ2. We apply the modified standard model (5.2)

and obtain

(1 + ε(i))ĉ
(i)
k = ĉ

(i−1)
k (1 + δ(i))− aiĉ(i−1)

k−1 (1 + θ
(i)
2 )− b2i ĉ

(i−2)
k−2 (1 + θ̂

(i)
2 ), |ε(i)| ≤ u.

Writing the computed coefficients in terms of their errors produces the following

result.

e
(i)
k = e

(i−1)
k + δ(i)ĉ

(i−1)
k − θ(i)

2 aiĉ
(i−1)
k−1 − aie

(i−1)
k−1 −

b2i e
(i−2)
k−2 − θ̂

(i)
2 b2i ĉ

(i−2)
k−2 − ε

(i)ĉ
(i)
k .

We apply the triangle inequality to bound the forward error in ĉ
(i)
k , 3 ≤ k ≤ n.

Remark 6.4. A straight forward analysis shows that if T is a diagonal matrix, then

the recursion of the Sturm sequence simplifies to the Summation Algorithm. We

presented the Summation Algorithm along with its error analysis in chapter 5.

6.3 La Budde’s Method

In La Budde’s method, the coefficients of the characteristic polynomial of an upper

Hessenberg matrix H are computed by successively determining the characteristic

polynomials of each of the leading principal submatrices Hi, 1 ≤ i ≤ n, of H[19]. Let

us denote characteristic polynomials of leading principal submatrices Hi of order i by

pi(λ), where pi(λ) = det(λI −Hi), 1 ≤ i ≤ n. The characteristic polynomial of H is

computed from Algorithm 4.

Algorithm 4 with slight modifications can be used to compute the characteristic

polynomial of a lower Hessenberg matrix H as well. The recurrence relations of

La Budde’s method for computing the characteristic polynomial of H can also be

unraveled like those for a tridiagonal matrix T . By writing pi(λ), . . . , p1(λ) in terms
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Algorithm 4 La Budde’s method for p(λ) of an upper Hessenberg matrix H

Input: An n× n upper Hessenberg matrix H
Output: The characteristic polynomial p(λ) of H

Set p0(λ) = 1
Set p1(λ) = λ− h11

for i = 2 : n do
pi(λ) = (λ− hii)pi−1(λ)−

∑i−1
m=1 hi−m,i hi,i−1 · · ·hi−m+1,i−m pi−m−1(λ)

end for

of their coefficients c
(i)
j , 1 ≤ j ≤ i, 2 ≤ i ≤ n, and equating like powers of λ on

both sides of the recursion of La Budde’s method, we find out how each coefficient

is computed. In order to compute a coefficient c
(i)
k , La Budde’s method requires

the computation of c
(i−1)
k , c

(i−1)
k−1 , . . . , c

(i−k+1)
1 , 2 ≤ i ≤ n. This provides us with the

following algorithm that can be used to compute a coefficient ck. In addition, we also

get c1, . . . , ck−1.

Algorithm 5 La Budde’s method for a single coefficient ck of p(λ) of H

Input: An n× n upper Hessenberg matrix H, index k
Output: A coefficient ck of p(λ) of H

Set c
(l)
0 = 1 for 0 ≤ l ≤ n− 1

Set c
(l)
s = 0 for s > l or s < 0

Set c
(1)
1 = −h11

for i = 2 : n do
for j = 1 : k do

c
(i)
j = c

(i−1)
j − hiic(i−1)

j−1 −
∑j−1

m=1 hi−m,i hi,i−1 · · ·hi−m+1,i−m c
(i−m−1)
j−m−1

end for
end for
{At step n: c

(n)
k = ck}

For computation of c
(i)
k , the inner loop of Algorithm 5 determines c

(i−1)
k , c

(i−1)
k ,

c
(i−1)
k−1 ,. . . , c

(i−k+1)
1 and the outer loop computes c

(i)
1 , . . . , c

(i)
k . Therefore, at step i = n,

we obtain c1, . . . , ck.
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6.3.1 Running Error Bounds for Real Matrices

We present running error bounds for the coefficients of p(λ) of a real Hessenberg

matrix H. To make the error analysis easier, we explain how c1, . . . , c4 are computed.

The coefficient c1 is computed as a recursive sum of diagonal entries of H.

c
(i)
1 = c

(i−1)
1 − hii, 2 ≤ i ≤ n.

The recursion for c2 simplifies to

c
(i)
2 = c

(i−1)
2 − hiic(i−1)

1 − hi−1,ihi,i−1, 2 ≤ i ≤ n.

Similarly, c3 is computed as

c
(i)
3 = c

(i−1)
3 − hiic(i−1)

2 − hi−1,ihi,i−1c
(i−2)
1 − hi−2,ihi,i−1hi−1,i−2, 3 ≤ i ≤ n.

Finally, the recursion formula for c4 is given as follows:

c
(i)
4 = c

(i−1)
4 − hiic(i−1)

3 − hi−1,ihi,i−1c
(i−2)
2 − hi−2,ihi,i−1hi−1,i−2c

(i−3)
1

−hi−3,ihi,i−1hi−1,i−2hi−2,i−3, 4 ≤ i ≤ n.

The running error bounds for ĉ1 and ĉ2 are analogous to those of Theorems 6.1 and

6.2. We state them below.

Theorem 6.5. The following recursion produces the error bound for ĉ1 of p(λ) of an

n× n upper Hessenberg matrix H.

|e(i)1 | ≤ |e
(i−1)
1 |+ u|ĉ(i)1 |, 2 ≤ i ≤ n.

Proof. The proof is similar to that of Theorem 6.1.

Here is the error bound for ĉ2.
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Theorem 6.6. For i = 2, the error in ĉ
(2)
2 is computed as follows:

|e(2)
2 | ≤ u

(
|h11h22|+ |h12h21|+ |ĉ(2)

2 |
)
,

and for 2 < i ≤ n,

|e(i)2 | ≤ |e
(i−1)
2 |+ |hiie(i−1)

1 |+ u
(
|ĉ(i−1)

2 |+ |hi−1,ihi,i−1|+ |ĉ(i)2 |
)

+ γ2|hiiĉ(i−1)
1 |.

Proof. The proof is similar to that of Theorem 6.2.

Now, we give the proof for the error bound in any ĉk, 3 ≤ k ≤ n.

Theorem 6.7. The error in ĉ
(k)
k , 3 ≤ k ≤ n is bounded by the following:

|e(k)k | ≤ |hkke(k−1)
k−1 |+

k−2∑
m=1

|hk−m,khk,k−1hk−m+1,k−me
(k−m−1)
k−m−1 |+

u
(
|ĉ(k)k |+ |hkkĉ

(k−1)
k−1 |

)
+ γk

(
|hk−1,khk,k−1ĉ

(k−2)
k−2 |+ |h1khk,k−1 · · ·h21|

)
+

γk+1

( k−2∑
m=2

|hk−m,khk,k−1 · · ·hk−m+1,k−mĉ
(k−m−1)
k−m−1 |

)
.

The error bound in ĉ
(i)
k , 3 < i ≤ n, is given by

|e(i)k | ≤ |e(i−1)
k |+ |hiie(i−1)

k−1 |+
k−2∑
m=1

|hi−m,ihi,i−1 · · ·hi−m+1,i−me
(i−m−1)
k−m−1 |+

γk
(
|hi−1,ihi,i−1ĉ

(i−2)
k−2 |+ |hi−k+1,ihi,i−1 · · ·hi−k+2,i−k+1|

)
+ u
(
|ĉ(i)k |+ |ĉ

(i−1)
k |

)
+γ2|hiiĉ(i−1)

k−1 |+ γk+1

( k−2∑
m=2

|hi−m,ihi,i−1 · · ·hi−m+1,i−mĉ
(i−m−1)
k−m−1 |

)
.

Proof. We compute ĉ
(k)
k as

ĉ
(k)
k = −fl

[
fl

[
hkkĉ

(k−1)
k−1

]
+ fl

[ k−1∑
m=1

hk−m,khk,k−1 · · ·hk−m+1,k−mĉ
(k−m−1)
k−m−1

]]
.
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There are k− 1 terms in the sum and the initial k− 2 terms consist of the product of

m + 2 floating point numbers. The last term in the sum is a product of k numbers.

Using the standard floating point model (5.1),

fl

[
hk−m,khk,k−1 · · ·hk−m+1,k−mĉ

(k−m−1)
k−m−1

]
= hk−m,khk,k−1 · · ·hk−m+1,k−mĉ

(k−m−1)
k−m−1

(1 + θm+1),

where |θm+1| ≤ γm+1. The last term is a product of k floating point numbers; there-

fore,

fl

[
h1khk,k−1 · · ·h21

]
= h1khk,k−1 · · ·h21(1 + θk−1),

where |θk−1| ≤ γk−1. Adding terms from left to right in the sum and using the

standard floating point model (5.1), we obtain

fl

[ k−1∑
m=1

hk−m,khk,k−1 · · ·hk−m+1,k−mĉ
(k−m−1)
k−m−1

]
= hk−1,khk,k−1ĉ

(k−2)
k−2 (1 + θk) +

h1khk,k−1 · · ·h21(1 + θ̂k) +
k−2∑
m=2

hk−m,khk,k−1 · · ·hk−m+1,k−m

ĉ
(k−m−1)
k−m−1 (1 + θ

(m)
k+1),

where |θ(m)
k+1| ≤ γk+1 and |θk|,|θ̂k| ≤ γk. Also,

fl

[
hkkĉ

(k−1)
k−1

]
= hkkĉ

(k−1)
k−1 (1 + δ),

where |δ| ≤ u. Using the modified standard model (5.2) to add fl

[
hkkĉ

(k−1)
k−1

]
and
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fl

[∑k−1
m=1 hk−m,khk,k−1 · · ·hk−m+1,k−mĉ

(k−m−1)
k−m−1

]
, we get

(1 + ε)ĉ
(k)
k = −

(
hkkĉ

(k−1)
k−1 (1 + δ) + hk−1,khk,k−1ĉ

(k−2)
k−2 (1 + θk) +

h1khk,k−1 · · ·h21(1 + θ̂k) +
k−2∑
m=2

hk−m,khk,k−1 · · ·hk−m+1,k−mĉ
(k−m−1)
k−m−1 (1 + θ

(m)
k+1)

)
,

where |ε| ≤ u. Writing the computed coefficients in terms of their errors and simpli-

fying produces

e
(k)
k = −

(
hkke

(k−1)
k−1 +

k−2∑
m=1

hk−m,khk,k−1 · · ·hk−m+1,k−me
(k−m−1)
k−m−1 +

hkkĉ
(k−1)
k−1 δ + hk−1,khk,k−1ĉ

(k−2)
k−2 θk + h1khk,k−1 · · ·h21θ̂k + εĉ

(k)
k +

k−2∑
m=2

hk−m,khk,k−1 · · ·hk−m+1,k−mĉ
(k−m−1)
k−m−1 θ

(m)
k+1

)
.

Applying the triangle inequality yields the forward error bound for ĉ
(k)
k .

When k < i ≤ n, then we have another term ĉ
(i−1)
k in the computation of ĉ

(i)
k . We

compute ĉ
(i)
k as follows:

ĉ
(i)
k = fl

[
fl

[
ĉ
(i−1)
k − fl

[
hiiĉ

(i−1)
k−1

]]
− fl

[ k−1∑
m=1

hi−m,ihi,i−1 · · ·hi−m+1,i−mĉ
(i−m−1)
k−m−1

]]
.

Due to inclusion of this term, in standard floating point arithmetic,

fl

[
ĉ
(i−1)
k − fl

[
hiiĉ

(i−1)
k−1

]]
= ĉ

(i−1)
k (1 + δ(i))− hiiĉ(i−1)

k−1 (1 + θ
(i)
2 ),

where |δ(i)| ≤ u and |θ(i)
2 | ≤ γ2. The rest of the proof is similar to the case i = k.

Remark 6.8 (Potential instability of La Budde’s method). The running error bounds
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reflect the potential instability of La Budde’s method. The coefficient c
(i)
k of character-

istic polynomial of Hi at step i, 2 ≤ i ≤ n is computed from the preceding coefficients

c
(i−1)
k , c

(i−1)
k−1 , . . . , c

(i−k+1)
1 . La Budde’s method can produce inaccurate results for c

(i)
k ,

if the magnitudes of preceding coefficients are very large in comparison to c
(i)
k so that

catastrophic cancellation may occur in the computation of c
(i)
k . This means that the

error in the computed coefficient ĉk of p(λ) of H might be large when the preceding

coefficients of characteristic polynomials of leading principal submatrices of H are

larger than ck.

6.3.2 Running Error Bounds for Complex Matrices

We derive running error bounds of La Budde’s method for coefficients ck of p(λ)

of a complex matrix by applying standard and modified models for complex numbers.

The proofs of running error bounds for coefficients of p(λ) of a complex matrix are

similar to those of a real matrix. The multiplication of j real numbers results in the

error multiplier γj−1, and the product of j complex numbers gives γ3(j−1); therefore,

the error multipliers in the running error bounds of the coefficients of p(λ) of a complex

matrix increase more than those of a real matrix. The error bound for ĉ1 of p(λ) of A

is similar to the error bound for a real matrix and follows from applying the modified

model (5.6) for addition of complex numbers. Below, we present the error bound for

ĉ2.

Theorem 6.9. The error in ĉ
(2)
2 is bounded by the following:

|e(2)
2 | ≤ γ3

(
|h11h22|+ |h12h21|

)
+ u|ĉ(2)

2 |.

The error in ĉ
(i)
2 , 3 ≤ i ≤ n, is given by the following recursion:

|e(i)2 | ≤ |e(i−1)
2 |+ |hiie(i−1)

1 |+ γ4|hiiĉ(i−1)
1 |+

u
(
|ĉ(i−1)

2 |+ ĉ
(i)
2 |
)

+ γ3|hi−1,ihi,i−1|.
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Proof. ĉ
(2)
2 is computed as

ĉ
(2)
2 = fl

[
fl

[
h11h22

]
− fl

[
h12h21

]]
.

Applying the standard model (5.5) of multiplication of complex numbers,

fl

[
h11h22

]
= h11h22(1 + α1), where |α1| ≤ γ3.

Similarly,

fl

[
h12h21

]
= h12h21(1 + α̂1), where |α̂1| ≤ γ3.

We add fl

[
h11h22

]
and fl

[
h12h21

]
by using the modified model (5.6). We Write ĉ

(2)
2

in terms of its error, simplify, and apply the triangle inequality to get the bound.

For 3 ≤ i ≤ n, we compute ĉ
(i)
2 as

ĉ
(i)
2 = fl

[
fl

[
ĉ
(i−1)
2 − fl

[
hiiĉ

(i−1)
1

]]
− fl

[
hi−1,ihi,i−1

]]
.

After applying standard models (5.4) and (5.5) of addition and multiplication of

complex numbers, we get

ĉ
(i)
2 = fl

[
ĉ
(i−1)
2 (1 + θ

(i)
1 )− hiiĉ(i−1)

1 (1 + θ
(i)
1 )(1 + α

(i)
1 )− hi−1,ihi,i−1(1 + α̂

(i)
1 )

]
,

where |θ(i)
1 | ≤ γ1 and |α(i)

1 |, |α̂
(i)
1 | ≤ γ3. Let us write

hiiĉ
(i−1)
1 (1 + θ

(i)
1 )(1 + α

(i)
1 ) = hiiĉ

(i−1)
1 (1 + α(i)),

where

α(i) = α
(i)
1 + θ

(i)
1 + α

(i)
1 θ

(i)
1 ; and using (5.8) yields |α(i)| ≤ γ4.
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Then,

ĉ
(i)
2 = fl

[
ĉ
(i−1)
2 (1 + θ

(i)
1 )− hiiĉ(i−1)

1 (1 + α(i))− hi−1,ihi,i−1(1 + α̂
(i)
1 )

]
.

Now, we apply the modified model (5.6) to add ĉ
(i−1)
2 (1 + θ

(i)
1 )−hiiĉ(i−1)

1 (1 +α(i)) and

hi−1,ihi,i−1(1 + α̂
(i)
1 ). The rest of the proof is similar to that of Theorem 6.2.

We present the running error bounds for ĉk, 3 ≤ k ≤ n, below.

Theorem 6.10. The error bound for ĉ
(k)
k is given as

|e(k)k | ≤ |hkke(k−1)
k−1 |+

k−2∑
m=1

|hk−m,khk,k−1 · · ·hk−m+1,k−me
(k−m−1)
k−m−1 |+ u|ĉ(k)k |+

k−2∑
m=2

|hk−m,khk,k−1 · · ·hk−m+1,k−mĉ
(k−m−1)
k−m−1 |γ2m+k+3 +

γ3|hkkĉ(k−1)
k−1 |+ γ3k−2|h1khk,k−1 · · ·h21|+ γk+4|hk−1,1hh,k−1ĉ

(k−2)
k−2 |.

The error bound for ĉ
(i)
k , 3 < i ≤ n is given by

|e(i)k | ≤ |e(i−1)
k |+ |hiie(i−1)

k−1 |+
k−2∑
m=1

|hi−m,ihi,i−1 · · ·hi−m+1,i−me
(i−m−1)
k−m−1 |+

u
(
|ĉ(i−1)
k |+ |ĉ(i)k |

)
+

k−2∑
m=2

|hi−m,ihi,i−1 · · ·hi−m+1,i−mĉ
(i−m−1)
k−m−1 |γ2m+k+3 +

γ3k−2|hi−k+1,ihi,i−1 · · ·hi−k+2,i−k+1|+ γk+4|hi−1,1hi,i−1ĉ
(i−2)
k−2 |+

γ4|hiiĉ(i−1)
k−1 |.

Proof. The proof is very similar to that of Theorem 6.7 and follows from applying

standard and modified models of complex floating point numbers. In addition, we

use (5.8) as in Theorem 6.9.
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6.4 Combined Error Bounds

In this section we present the combined error bounds of La Budde’s method for

real matrices. We first reduce the matrix A by using the Householder’s transforma-

tions to its Hessenberg form H, and then determine coefficients of the characteristic

polynomial of the computed Hessenberg matrix. To estimate the errors in coefficients

of p(λ) of A from both stages, we first investigate how much error is produced in the

coefficients by reducing A to H. We use the following result.

Lemma 6.11 (page 351 in [48]). Let H̃ be the upper Hessenberg matrix computed in

floating point arithmetic by applying Householder similarity transformations to the

n× n real matrix A then H̃ = QT (A+G)Q, where QTQ = I and

‖G‖F ≤ ν n2u‖A‖F ,

where ν is a small constant of order uity, u is the unit roundoff and ‖.‖F denotes the

Frobenius norm.

The above Lemma implies the following result.

Lemma 6.12. Let H̃ = H+E be the upper Hessenberg matrix computed in floating

point arithmetic by applying Householder similarity transformations to the n×n real

matrix A then,

‖E‖2 ≤ νn2u‖A‖F ,

where ν is a small constant of order unity, u is the unit roundoff and ‖.‖F denotes

the Frobenius norm.

Proof. From Lemma 6.11,

H̃ = H +QTGQ.

This implies

‖E‖2 ≤ ‖QTGQ‖2 ≤ ‖Q‖2 ‖G‖2 ‖QT‖2.
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Because ‖Q‖2 = ‖QT‖2 = 1 and ‖G‖2 ≤ ‖G‖F , we get by applying Lemma 6.11,

‖E‖2 ≤ n2u‖A‖F .

We can use our perturbation results from chapter 3 to estimate how much error is

introduced in the coefficients of p(λ) of A when A is reduced to its Hessenberg form.

Lemma 6.13. Let H̃ = H+E be the upper Hessenberg matrix computed in floating

point arithmetic by applying Householder similarity transformations to the n × n

real matrix A. If c̃k are the coefficients of the characteristic polynomial of H̃ and

‖A‖F < 1
νn2u

, then

|c̃k − ck| ≤ νn2

(
n

k

)
s
(k)
k−1‖A‖Fu+O(u2), 1 ≤ k ≤ n,

where s
(k)
k−1 is the (k − 1)st elementary symmetric function in the k largest singular

values of A and ν is a small constant of order unity.

Proof. The characteristic polynomials and singular values of A and H are the same;

therefore, using Remark 3.19, we write

|c̃k − ck| ≤
(
n

k

)
s
(k)
k−1‖E‖2 +O(‖E‖22).

Substituting the bound on ‖E‖2 from Lemma 6.12 in the above equation we obtain

the result.

We bound the error in the coefficients when La Budde’s method is applied to the

computed Hessenberg form H̃.

Theorem 6.14. Let H̃ be the upper Hessenberg matrix computed in floating point

arithmetic by applying Householder similarity transformations to the n×n real matrix
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A, and suppose that Algorithm 5 is used to determine the coefficients of p(λ) of H̃.

Suppose that ĉk are the computed coefficients of H̃ from La Budde’s method and

‖A‖F < 1
νn2u

.

For 1 ≤ k ≤ n,

|ck − ĉk| ≤ νn2

(
n

k

)
s
(k)
k−1‖A‖Fu+ |e(n)

k |+O(u2),

where |e(n)
k | is the estimated running error bound of ĉk and s

(k)
k−1 is the (k − 1)st

elementary symmetric function in the k largest singular values of A. ν is a small

constant of order unity.

Proof. From the triangle inequality, we write

|ĉk − ck| ≤ |ĉk − c̃k|+ |c̃k − ck|, (6.1)

where c̃k, 1 ≤ k ≤ n are the exact coefficients of the characteristic polynomial of H̃.

From Lemma 6.13,

|c̃k − ck| ≤ n2

(
n

k

)
s
(k)
k−1‖A‖Fu+O(u2), 1 ≤ k ≤ n.

The error |ĉk − c̃k| is given by the running error bound |e(n)
k |. Substituting the error

bounds for |c̃k − ck| and |ĉk − c̃k| in (6.1) yields the result.

The above theorem shows that the error in ĉk can be large due to two reasons: the

first order condition number νn2
(
n
k

)
s
(k)
k−1‖A‖F and the error introduced by La Budde’s

method. As we discussed earlier, the error in La Budde’s method can be large when

|ck| is very small compared to preceding coefficients |c1|, . . . , |ck−1|.
If A is normal, then H is also normal, and the coefficients of the characteristic

polynomials of H are better conditioned. The combined error bound for the coeffi-

cients is given as follows.



Chapter 6. La Budde’s Method 103

Theorem 6.15. Under the assumptions of Theorem 6.14, if A is a normal matrix,

then

|ck − ĉk| ≤ νn2 (n− k + 1) sk−1‖A‖Fu+ ek +O(u2), 1 ≤ i ≤ n,

where sk−1 is the (k − 1)st elementary symmetric function of singular values of A.

Proof. The proof is similar to that of Theorem 6.14 and follows from Remark 3.21.

6.5 Numerical Tests

We implement La Budde’s method on the test matrices presented in section 5.4.

Our code is written in MATLAB 7.6(R2008a). As discussed in chapter 5 (section

5.4), we either know characteristic polynomials of these test matrices explicitly or we

use MATLAB’s symbolic toolbox to determine the exact coefficients of characteristic

polynomials.

Test 1: Forsythe Matrix

We compute the characteristic polynomial of the Forsythe matrix of order 200.

The characteristic polynomial of the Forsythe matrix is p(λ) = λ200− 10−10. We find

that all the coefficients computed by La Budde’s method are exact. Except for ĉ200,

the running error bounds for all coefficients are zero, and the relative running error

bound for ĉ200 is approximately 10−14.

We compute the characteristic polynomial of Hansen’s matrix A of order 100 with

the Sturm sequence method. We compare the relative errors in the coefficients, and

observe that the computed coefficients are correct to at least 15 digits. The results

of running error bounds vary over a wide range. We present the relative error results

of the running error bounds in the following table.

Test 2: Hansen’s Matrix
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Table 6.1: Running error bounds of p(λ) of Hansen’s Matrix

Range of Coefficients Running Error Bounds

(c1, c30) (10−15, 10−14)

(c31, c59) (10−13, 10−10)

(c60, c84) (10−9, 10−1)

(c85, c100) (10, 1022)

The running error bounds of the first thirty coefficients of p(λ) of A are correct.

As k grows, the running error bounds become more pessimistic. These bounds are

determined from the computed values of coefficients of characteristic polynomials of

principal submatrices of A. Because these intermediate quantities are large; therefore,

the running error bounds are inaccurate.

trix

We compute p(λ) of the matrix R presented in Test 3 of section 5.4 with La

Budde’s method. We compare the relative errors of the coefficients. The computed

coefficients are correct to at least 9 digits. The running error bounds provide accurate

information about the initial coefficients. The results for relative error bounds are

summarized in the table below.

Table 6.2: Running error bounds of p(λ) of the matrix R

Range of Coefficients Running Error Bounds

(c1, c30) (10−14, 10−9)

(c31, c96) (10−9, 10−1)

(c97, c100) (1.26, 2.05)

Test 3: A matrix generated from the inverse of Hansen’s Ma-
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We compute the coefficients of p(λ) of the tridiagonal matrix T presented in

chapter 5. All the zero coefficients are computed exactly by La Budde’s method.

We calculate the relative errors in the non-zero coefficients, and find that all non zero

coefficients are correct to at least 15 digits. Our running error bounds correctly predict

the zero coefficients. The relative running error bounds for non zero coefficients

indicate that the computed coefficients are correct to at least 14 digits.

For the Frank matrix of order n = 20, La Budde’s method produces the exact

characteristic polynomial. However, as n grows, this method yields poor results for

later coefficients. It is due to the fact that these coefficients are ill conditioned. The

first order condition number of ck is
(
n
k

)
s
(k)
k−1, where s

(k)
k−1 is the (k − 1)st elementary

symmetric function in the k largest singular values of the Frank matrix. We observe

that these quantities are enormous for a Frank matrix of large order. As an example,

the computed value of the determinant (the exact value of the determinant is 1) of

the Frank matrix of order 50 is approximately 1046, whereas its first order condition

number is approximately 1063.

6.6 Comparison of La Budde’s Method with the

Eigenvalue Method

We compare the results of the tests presented in sections 5.4 and 6.5. In section

5.4 we computed the characteristic polynomials with MATLAB’s “poly” command.

In section 6.5 we computed the same values with La Budde’s method. In these tests,

as well as others not presented here, we find that La Budde’s method is at least as

accurate as MATLAB’s poly command. In fact, in some cases, namely: Forsythe

Test 4: Tridiagonal Matrix

Test 5: Frank Matrix
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Matrix, Frank Matrix of order 20, and tridiagonal matrix, La Budde’s method is

significantly more accurate. We also observe that for the symmetric positive definite

matrices we considered, La Budde’s method produces 2 or 3 more significant digits

than MATLAB’s poly command. The error bounds for both methods are accurate

for most test matrices; however, as we have shown they can be pessimistic. These

tests, as well as the fact that La Budde’s method does not depend on the computation

of eigenvalues for determining the characteristic polynomial supports the conclusion

that La Budde’s method is more accurate than MATLAB’s poly command.
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Chapter 7

Conclusion and Future Research

7.1 Our Contributions

The aim of this work was to investigate the numerical computation of the charac-

teristic polynomial of a complex matrix A. In Quantum Physics, for instance, char-

acteristic polynomials are required to calculate thermodynamic properties of systems

of fermions. Characteristic polynomials attracted mathematicians in the middle of

the twentieth century for determining the eigenvalues of A. Later work on numerical

methods for computing characteristic polynomials seems to have stopped.

In our early research we found that little was known about the sensitivity of p(λ)

to perturbations in the matrix, i.e. if the matrix A is perturbed by E, then how do the

coefficients of the characteristic polynomial of A+E compare to those of p(λ)? As a

first step toward the solution of our problem, we derived perturbation bounds for the

coefficients of p(λ) which we present in chapter 3. These perturbation bounds consist

of elementary symmetric functions of singular values and suggest that coefficients of

characteristic polynomials of normal matrices are better conditioned with regard to

absolute perturbations than those of general matrices. We also improved relative and

absolute perturbation bounds for determinants.
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Once the conditioning of the coefficients is known, we can analyze numerical meth-

ods for computing characteristic polynomials. We presented the analysis of some

general known methods for the computation of characteristic polynomials in chapter

4. Furthermore, we investigated the computation of p(λ) of A from its eigenvalues in

chapter 5. This method consists of two steps: first we compute the eigenvalues of A

and then we determine the coefficients from the computed eigenvalues. We derived

bounds that show the sensitivity of the coefficients of p(λ) to changes in eigenval-

ues of a complex matrix A, when the eigenvalues of A are used to determine the

coefficients. To determine the coefficients of p(λ) from the computed eigenvalues of

A, we investigated the numerical stability of the Summation Algorithm. We showed

that the Summation Algorithm is forward stable. In addition, we used MATLAB’s

“poly” function to check the accuracy of the perturbation bounds for many test matri-

ces. The “poly” function determines the characteristic polynomial of a given matrix

from its eigenvalues. We found that the perturbation bounds accurately predict the

conditioning of coefficients of the characteristic polynomial.

In chapter 6 we examined the numerical stability of La Budde’s method for the

computation of p(λ). In this method, first we reduce the matrix A to its Hessen-

berg form H, and then the coefficients of p(λ) of H are determined by successively

computing the characteristic polynomials of leading principal submatrices of H. For

our application in quantum physics, we modified La Budde’s method to compute an

individual coefficient ck. We derived running error bounds for ck, 1 ≤ k ≤ n, which

provide an estimate of the forward errors. We tested the accuracy of La Budde’s

method for characteristic polynomials of test matrices presented in chapter 5.

7.2 Conclusion

Our numerical tests suggest that La Budde’s method gives more accurate results

than the MATLAB’s poly command, which computes the characteristic polynomial
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of a matrix from its eigenvalues. We also observe in our experiments that La Budde’s

method is practically stable, i.e. for well conditioned coefficients, this method pro-

duces accurate results. In addition, the fact that La Budde’s method does not depend

on the computation of eigenvalues for determining the characteristic polynomial sug-

gests that this method is superior to the computation of the characteristic polynomial

of a matrix from its eigenvalues.

7.3 Future Research

This research was motivated by an application of characteristic polynomials in

quantum physics. The matrices A(s) in this application are dense and have no obvious

structure. They are currently of order n ≤ 2000. The computation of p(λ) has to be

started from scratch for every A(s), due to the lack of exploitable relations among

the matrices. La Budde’s method has produced accurate results for test matrices

of smaller order (n ≤ 100). The coefficients of characteristic polynomials of the

matrices A(s) can become very large as the matrix dimension n grows, and double

precision may not be enough for their computation. To address this problem we

need a multiple precision package. We have spoken with David Bailey of Berkeley

National Laboratory who has developed software for higher precision computations.

He suggested to run the code that produces the matrices A(s) with his QD package

(double-double and quad-double precision)1. To further investigate the accuracy of

La Budde’s method we will compute the coefficients of the characteristic polynomials

of the matrices A(s) from their eigenvalues by using QD package and compare the

results. We will also investigate classes of structured perturbations to which the

coefficients are less sensitive.

1http://crd.lbl.gov/˜dhbailey/mpdist/
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Appendix A

Matlab File: sturm.m
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function [char]=sturm(A) 
% The following code computes the coefficients of t he 
characteristic polynomial of a real symmetric matri x by using 
modified Sturm Sequence Method (Algorithm 3 of chap ter 6).  
 
% Same code can be used for a non symmetric tri-dia gonal matrix. 
 
% INPUT:  A = a symmetric or a non symmetric tri-di agonal   matrix  
 
% OUTPUT: char = a row vector containing coefficien ts of p( λ) of A 
 
 
% Step 1: Use Householder's reduction to bring A to  its tri-

diagonal form by using hess function of MATLAB.   
  
T=hess(A); 
% Step 2: Compute coefficients of p( λ) of T. 
 

[n,n] = size(T); 
% if k=n, then all coefficients are obtained. If so me initial low 
order coefficients are required, change k 
 
k=n; 
% c matrix stores coefficients of characteristic po lynomials of 

principal submatrices of T 
  
c = zeros(n,k); 
 
c(1,1) = -T(1,1); 
 
alpha=diag(T); % alpha stores diagonal entries of T 
 
% subdiagonal entries of T are stored in gamma 
 
gamma=zeros(n,1); 
 
for  i = 2:n 
    gamma(i) = T(i,i-1); 
end  
%superdiagonal entries of T are stored in beta  
beta=zeros(n,1); 
for  i = 2:n 
    beta(i) = T(i-1,i); 
end  
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%Compute the coefficients of the characteristic polynomial  
 
for m=2:n 
    for j=1:k 
        if(m>=j) 
            if(j==1) 
                c(m,j) = c(m-1,j)-alpha(m); 
            elseif(j==2) 
                c(m,j) = c(m-1,j)-alpha(m)*c(m-1,j-1)-   

beta(m)*gamma(m); 
            else 
                c(m,j) = c(m-1,j)-alpha(m)*c(m-1,j-1)- 
                         beta(m)*gamma(m)*c(m-2,j-2); 
            end 
        end 
    end 
end 
 
char=c(end, :); 
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Appendix B

Matlab File: labudde.m



Matlab File: labudde.m 120

function [char]=labudde(A) 
 
%The following code computes the coefficients of th e 
characteristic polynomial of a complex matrix A by 
using Labudde's Method. It uses Algorithm 5 of chap ter 
6 
%INPUT: a complex matrix  
%OUTPUT: coefficients of characteristic polynomial  
%Step 1: Use Matlab's hess function to reduce A to 
hessenberg form.  
  
H=hess(A);  
[n,n] = size(H); 
 
%k=n produces all coefficients, if some initial low  
order coefficients are required, k can be changed.  
k=n; 
 
%c matrix  stores coefficients of characteristic 
polynomials of principal submatrices of H  
c = zeros(n,k); 
  
c(1,1) = -H(1,1); 
 
% gamma stores subdiagonsal entries of H 
 
gamma=zeros(n,1); 
for  s = 2:n 
    gamma(s) = H(s,s-1); 
end  
  
for  m=2:n 
    for  j=1:k 
        if (j<=m) 
            if (j==1) 
                c(m,j) = c(m-1,j)-H(m,m); 
            else  
                Prod = gamma(m)*ones(j-1,1); 
                Sum = 0; 
                if (j>2) 
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for s=1:j-2 
      Prod(s+1)= Prod(s)*gamma(m-s); 
      Sum = Sum+(H(m-s,m)*Prod(s)*c(m-s-1,j-s-1)); 
         end 
       Sum = Sum+(H(m-j+1,m)*Prod(j-1)); 
                 End 
 
                   if(j==2) 
                    Sum = H(m-j+1,m)*Prod(j-1); 
                  end 
             c(m,j) = c(m-1,j)-H(m,m)*c(m-1,j-1)-Sum; 
            end 
        end 
    end 
end 
 
char=c(end,:); 
  
 
 


