
ABSTRACT

FRANK, DENNIS ONYEKA. Acute Inflammatory Response to Endotoxin Challenge: Model
Development, Parameter Estimation, and Treatment Control. (Under the direction of Hien T.
Tran.)

Bacterial lipopolysaccharides (LPS; endotoxins) are the major outer surface membrane compo-

nents present in almost all Gram-negative bacteria and act as extremely strong stimulators of

innate or natural immunity in diverse eukaryotic species ranging from insects to humans. They

also induce acute inflammatory response comparable to bacterial infection. Like most biological

processes, modeling the inflammatory response involves using highly nonlinear dynamic systems

of differential equations with a relatively large number of parameters. Several researchers have

within the last seven years developed mathematical models of acute inflammatory response to

infection; some of these models are low-order and are biologically irrelevant due to oversim-

plification of the real process. The high-order models on the contrary, are highly complex,

computationally expensive and constitute challenges in calibrating the model to experimental

data.

In the first phase of our work, we propose and validate a number of competing models of acute

inflammatory response to compare with a recently developed model in the literature. Our

desire to come up with models that can accurately predict the observed dynamics of the pro-

and anti-inflammatory cytokines led us to conduct sensitivity analysis, subset selection and

parameter estimation in order to obtain accurate parameter values from existing data. Next,

we employ a model selection technique to aid with selecting the “best” model among all the

potential candidates. In addition, we prove the existence and uniqueness of a solution to our

“top choice” model as well as study the model’s steady state and stability behavior.

At the next phase, we study the model under an open-loop optimal control based treatment

strategy, this is the first step to achieving our goal of proposing treatment therapies to regulate

inflammation. Since open-loop control problems do not have the ability to incorporate unex-

pected disturbances in the system as time progresses, we implement a feedback scheme known

as Nonlinear Model Predictive Control (NMPC). In general, a better approach to implement

NMPC is to combine it with Kalman filter. Hence, we demonstrate how this is done with an

example where noise was added to our in silico simulated results to create an experimental

data with noise. Unscented Kalman Filter (UKF) was then used to filter the noisy data and

estimate the unobserved states at every recalculation step in the NMPC scheme.
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Chapter 1

Introduction

The body responds to bacterial infection or tissue trauma by the activation of acute inflam-

matory response. This response, which is non-specific, is considered to be the body’s first

line of defense against danger [66]. Inflammation is vital for the removal/reduction of irri-

tants to the organism and subsequent restoration of homeostasis. In an attempt to reestablish

homeostasis, the inflammatory response is pivotal in clearing invading organisms and offending

agents, enhancing wound healing, and promoting tissue repair [140]. This response is made

up of a combination of local and systemic mobilization of immune, endocrine, and neurological

mediators.

In an ideal situation, the inflammatory response becomes activated, clears the pathogen if

there is any infection, begins a repair process and abates. However, inflammation itself can

damage otherwise healthy cells which can then further stimulate inflammation. This process

can become uncontrollable and lead to tissue damage, organ dysfunction, and ultimately death

[24]. To curb the excessive inflammatory response, the body has some regulatory devices such

as pro- and anti-inflammatory cytokines that assist with the initiation of tissue repair. The pro-

inflammatory cytokines (e.g, interleukin-6 (IL−6)) and tumor necrosis factor-alpha (TNF−α))

up-regulate inflammation and control infections, whereas anti-inflammatory mediators (e.g,

interleukin-10 (IL−10)) down-regulate the inflammatory actions, ideally after infection control

has been achieved [101].

Systemic inflammation followed by bacterial infection that is based on its clinical manifestations

is known as sepsis [22]. Sepsis is a common and frequently fatal condition, with 750,000 cases

annually in the United States alone in 1995 [9]. Given the complexity of inflammation, several

studies have been conducted to understand the molecular and physiological pathways of the

acute inflammatory response, but this has not resulted in many effective therapies against
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sepsis. It is believed that the complex nature of the inflammatory response renders the effect

of targeting isolated components of inflammation difficult to predict [76].

Bacterial lipopolysaccharides (LPS), also known as lipoglycans, are highly conserved, highly

immunogenic, constituent molecules found in the outer membrane of Gram-negative bacteria,

and act as endotoxins. When bacteria are lysed by immune effector cells and molecules, surges

of endotoxin may be released into the host, intensifying the inflammatory response and causing

further activation of immune effector cells [6]. The administration of antibiotics sometimes

results in pulses of endotoxins release from Gram-negative bacteria as the antibiotics attempt

to kill the invading bacteria, validating the clinical significance of this subject matter [45]. The

fact that direct endotoxin administration in animals and humans is likely to trigger an acute

inflammatory response that reproduces many of the features of an actual bacterial infection,

such as fever, makes this a compelling reason to develop a valid mathematical model for inves-

tigating the inflammatory response [33, 98, 105]. Besides, elevated levels of endotoxin can be

lethal.

To this end, the control of inflammatory response to endotoxin challenge has become impera-

tive. Thus, we seek to construct a mathematical model that can provide important insights into

the global dynamics of the inflammatory process from which therapies may be developed. The

advent of the new millennium has brought considerable attention on the development of math-

ematical models of acute inflammatory response to infection. This includes the development

of both low-order and high-order models of inflammatory response have been developed. For

example, in [76] a system of 3 dimensional (3D) ordinary differential equations (ODEs) that

consists of a response instigator (pathogen) and early and late pro-inflammatory mediators

was proposed. This model was later modified and then extended to incorporate tissue damage

as well as anti-inflammatory mediators in [120] to form a 4D model consisting of inflamma-

tory stimulus (pathogen), pro-inflammatory mediators, tissue damage, and anti-inflammatory

mediators. To examine repeated endotoxin administration in the context of acute inflamma-

tory response, the pathogen equation in [120] was replaced with an endotoxin equation [38].

Although these models provided significant insight into key drivers of inflammatory response

outcome, they were not calibrated to any experimental data. On the other end of the spectrum

are high-complexity models of the acute inflammatory response cascade [29, 80, 112, 140] . For

instance, in [80] the model consisted of 17 ODEs, while [112] had 15 ODEs and [140] contained

31 ODEs. It should be noted that all of these high-order models were calibrated to experimental

data.

An 8-state ODE model (intermediate-scale) of the acute inflammatory response system to en-

dotoxin challenge that was calibrated to experimental data (we shall call this model “8D”)
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was recently developed [126]. This model had a total of 46 parameters. Endotoxin chal-

lenges at 3mg/kg, 6mg/kg and 12mg/kg were administered to rats and experimental data

for pro-inflammatory cytokines such as interleukin-6 (IL− 6) and tumor necrosis factor-alpha

(TNF − α) as well as anti-inflammatory cytokine such as interleukin-10 (IL − 10) were ob-

tained. Data on endotoxin challenges at 3mg/kg and 12mg/kg were used to calibrate the model,

and model validation was performed at endotoxin level of 6mg/kg. In view of the above, this

research is motivated in part by:

• The need to come up with a moderate size model that is not as highly complex as that

developed in [126], and can be calibrated to the same experimental data on inflammatory

cytokines.

• The importance of designing an optimal treatment strategy that can control the effects

of acute inflammatory response to endotoxins.

In accordance with our motivation, our contributions at the end of this study to the field of

acute inflammatory response are as follows:

1) Development and validation of a reduced mathematical model that can accurately predict

acute inflammatory response to endotoxin challenge.

2) Prove the existence and uniqueness of a solution to the reduced mathematical model.

3) Apply a Nonlinear Model Predictive Control (NMPC) scheme in conjunction with the Un-

scented Kalman Filter (UKF) to derive optimal therapeutic interventions for the control of

acute inflammation triggered by endotoxins.

To the best of our knowledge, the only work that has been done regarding the control of

inflammatory response using NMPC was in [39] (as at the time of writing this thesis, this paper

though has been submitted for publication, is yet to be published). Besides, the work ([39])

used a low-order simulated model that was not calibrated to any experimental data.

This work is organized in two main parts. Part I which comprises Chapters 2 and 3 deals with

the derivation of mathematical models of acute inflammatory response to endotoxin challenge.

In Part II, we focus our attention on the derivation of optimal treatment controls to modulate

acute inflammation; this part contains Chapters 4 through 6. For the remaining of this chapter,

we will briefly describe the contents of the chapters in this thesis.

In Chapter 2 we discuss the materials and methods used in deriving the different models to

be used in comparisons with the original model (8D) developed in [126]. This chapter begins

with an overview of the 8D model, which is followed by the derivation of a reduced model.
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We then present the reduced model equations describing the acute inflammatory response sys-

tem to endotoxin challenge. We also presented a brief introductory background on Sensitivity

analysis, Subset selection and Parameter estimation since they are the mathematical tools used

to construct and calibrate our models with existing data. We conclude this chapter with a

description of a model selection criterion called Akaike Information Criterion (AIC) [3].

We began Chapter 3 by displaying the relative sensitivity rankings at 3mg/kg and 12mg/kg

endotoxin challenge levels for both 8D and the reduced model, respectively. With the aid of

subset selection, the most linearly independent sensitive parameters are identified for all the

models we proposed; this information is useful in the calibration of these models to the observed

data on cytokines. Next, we present the model comparison and validation plots as well as AIC

results. Following the construction of the reduced model in the previous chapter, we show

a rigorous mathematical analysis of the existence and uniqueness proof for a solution of the

reduced model as well as conduct steady state and stability analysis.

Optimal control methodolody is introduced in Chapter 4 to study our model under open-

loop optimal control based treatment strategies. Two control inputs representing treatment

therapies are added to the model and an open source solver known as GPOPS is used to solve

the optimal control problem numerically. Lastly, we summarize the in silico simulation results of

the optimal control solutions for each of the three endotoxin challenge levels (3mg/kg, 6mg/kg

and 12mg/kg).

In Chapter 5, we turn our attention to Model Predictive Control (MPC) and then present an

introductory overview of MPC. Nonlinear Model Predictive Control (NMPC) which belongs to

a family of MPC schemes that uses nonlinear models and/or considers a non-quadratic cost-

functional is also reviewed. Some theoretical issues relating to stability and robustness are

discussed as well. Chapter 6 contain the in silico simulation results from using NMPC in our

optimal control problem. We also discuss a scenario on how a filter based on the Kalman Filter

can be employed in conjunction with NMPC in the presence of noisy data. Finally, Chapter 7

summarize the significant contributions of this work and offer possible future directions of

research.
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Part I

Derivation of Mathematical Models
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Chapter 2

Model Derivation

This chapter deals with the materials and methods for the derivation of a mathematical model

of acute inflammatory response to endotoxin challenge. To this end, we discuss the formation

of “modified 8D”1 models from carrying out sensitivity and parameter identification analyses

on the original 8D model. In addition, we elucidate our decision to construct a reduced model.

We will wrap the chapter up by introducing a quantitative model selection technique use for

model comparison. For completeness, we will begin with a summary of the 8D model developed

in [126]. The interested reader should consult this reference for a comprehensive description of

the 8D model development.

2.1 8D Model Overview

Experimental data on cytokines at 3mg/kg and 12mg/kg endotoxin challenge levels were

used to calibrate the 8D model. The original experiments were conducted on three cohorts of

Sprague-Dawley rats weighing approximately 200g and were performed according to an IACUC-

approved protocol at the University of Pittsburgh, Department of Surgery, to study the acute

inflammatory response to endotoxin insults at various concentration levels. The rats received

endotoxin (Escherichia Coli) at levels of either 3mg/kg, 6mg/kg, or 12mg/kg, intraperitoneally.

Blood samples were collected at time points 0, 1, 2, 4, 8, 12 and 24 hours after endotoxin

administration. Concentrations of pro- and anti-inflammatory cytokines such as interleukin-6

(IL6), interleukin-10 (IL10) and tumor necrosis factor-α (TNF ) were measured in triplicate

using commercially available ELISA kits (R & D Systems, Minneapolis, MN).

1“modified 8D” models are simplifications of the original 8D because only a smaller number of parameters
will be estimated.
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Table 2.1: Parameters of the 8D model

No. Parameter Value Unit No. Parameter Value Unit

1† dP 3 hr−1 24 xIL6IL10 1.1818 pg
mL

2 kN 5.5786e7 hr−1 25 kIL6IL6 122.92 −
3 xN 14.177 N − unit 26 xIL6IL6 1.987e5 pg

mL

4 dN 0.1599 hr−1 27‡ xIL6CA 4.2352 pg
mL

5 kNP 41.267 N−unit·kg
mg 28 kTNF 3.9e-8 pg

mL·N−unit1.5

6 kND 0.013259 N−unit
D−unit 29 dTNF 2.035 hr−1

7 xNTNF 1693.9509 pg
mL 30 xTNFIL10 2.2198e7 pg

mL

8 xNIL6 58080.742 pg
mL 31‡ xTNFCA 0.19342 pg

mL

9‡ xNCA 0.07212 pg
mL 32 kTNFTNF 1.0e-10 −

10 xNIL10 147.68 pg
mL 33 xTNFTNF 9.2969e6 pg

mL

11 kNTNF 12.94907 − 34 xTNFIL6 55610 pg
mL

12 kNIL6 2.71246 − 35 kIL10TNF 2.9951e-5 −
13 kD 2.5247 D−unit

hr 36 xIL10TNF 1.1964e6 pg
mL

14 dD 0.37871 hr−1 37 kIL10IL6 4.1829 −
15 xD 1.8996e7 N − unit 38 xIL10IL6 26851 pg

mL

16‡ kCA 0.154625e-8 pg
mL·hr·N−unit 39 kIL10 1.3374e5 pg

mL·hr
17‡ dCA 0.31777e-1 hr−1 40 dIL10 98.932 hr−1

18‡ † sCA 0.004 pg
mL·hr 41 xIL10 8.0506e7 N − unit

19 kIL6TNF 4.4651 − 42† sIL10 1187.2 pg
mL·hr

20 xIL6TNF 1211.3 pg
mL 43 xIL10d 791.27 pg

mL

21 kIL6 9.0425e7 pg
mL·hr 44 kIL102 1.3964e7 YIL10−Unit

hr

22 dIL6 0.43605 hr−1 45 dIL102 0.0224 hr−1

23 xIL6 1.7856e8 N − unit 46 xIL102 37.454 D − unit
‡ Parameter not part of reduced model

† Parameter not estimated in both reduced and 8D models

The 8D model comprised of eight ordinary differential equations with the following states: En-

dotoxin concentration (P (t)); total number of activated phagocytic cells (N(t)), which includes

all activated immune response cells, such as neutrophils, monocytes, etc.; a non-accessible tissue

damage marker (D(t)); concentrations of pro-inflammatory cytokines interleukin-6 (IL6(t)) and

tumor necrosis factor-α (TNF (t)); concentration of the anti-inflammatory cytokine interleukin-

10 (IL10(t)); a tissue damage driven non-accessible IL-10 promoter (YIL10(t)); and a non-

accessible state representing slow acting anti-inflammatory mediators (CA(t)). 8D had a total
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of 46 parameters of which 43 were estimated. These parameters and their nominal values are

displayed in Table 2.1. The actual representation of the 8D ODE system described in [126] is

given in Appendix A.

P

ND

YIL10 IL− 10

CA

TNF− α

IL− 6

Up-regulate (→)

Down-regulate (99K)

Figure 2.1: Schematic diagram of the inflammatory response system challenged by endotoxin

[36, 126]

Figure 2.1 shows the 8D schematic diagram capturing all major interactions among the state

variables. The administration of endotoxin P (t) into the system activates N(t). Once activated,

N(t) up-regulates production/release of all inflammatory mediators (TNF (t), IL6(t), IL10(t)
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and CA(t)) [53]. The pro-inflammatory cytokines exert positive feedback on the system; hence,

further activate N(t) and up-regulate other cytokines [14, 53]. The anti-inflammatory mediators

exert negative feedback on the system; hence, IL10(t) and CA(t) inhibit the activation of N(t)

and down-regulate other cytokines [107, 110]. The model also incorporates tissue damage due

to activated phagocytic cells, represented by a damage marker, D(t). Tissue damage further up-

regulates activation of N(t) [93] and also contributes to up-regulation of IL10(t) [55, 72].

2.2 Derivation of Model

In this section, the various mathematical tools used in creating “modified 8D” and the reduced

models are discussed. First, we justify our rational for building adequate reduced models

capable of predicting the observed dynamics of pro- and anti-inflammatory cytokines.

2.2.1 Derivation of Reduced Model

In order to derive a reduced model, we used information in [38, 39, 120, 126] to categorize the

state variables in the 8D model into five groups:

• Endotoxin concentration: P (t)

• Inflammation : Total number of activated phagocytic cells (N(t))

• Collection of pro-inflammatory cytokines: IL6(t) and TNF (t)

• Collection of anti-inflammatory mediators: IL10(t) and CA(t)

• Tissue damage: D(t) and YIL10(t).

As evidenced in Figure 2.1, the concentration of CA(t), which is a combination of slow acting

anti-inflammatory mediators, appears to have the least interactions of all the other inflamma-

tory mediators. Furthermore, CA(t) was the only inflammatory mediator not measured in the

experiment done on rats [126]. Perhaps it cannot be measured since it is a combination of

slow acting anti-inflammatory mediators. Lastly, a subtle fact to consider will be the order of

magnitude for CA(t), which is -1; the inflammatory mediator with the next smallest order of

magnitude is IL10(t) with a value of 2 (these information can be obtained from the plots in

[126]). Hence, we can deduce that CA(t) is relatively less significant in the overall contribution

to acute inflammatory response triggered by endotoxin. To this end, CA(t) will be eliminated

from the 8D model to form a reduced model called 7D. This decision will also result in a

reduction of the number of parameters from 46 to 40.
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As part of our model building cycle, we intend to calibrate our models to the experimental

data on inflammatory cytokine. Since we do not have access to the original experimental

observations, Engauge digitizer version 4.1 [46] was used to digitize the data in [126]. Plots

of the digitized data were compared visually with the reported data. Engauge digitizer is an

open source digitizing software that converts an image file of a graph or map into numerics [46].

Finally, we will adopt the same approach used in the 8D model building cycle by calibrating

the 7D and “modified 8D” models at endotoxin levels 3mg/kg and 12mg/kg, respectively.

Endotoxin challenge level 6mg/kg will then be used for model prediction.

2.2.2 7D ODE Model

The reduced 7D mathematical model of acute inflammatory response to endotoxin challenge is

described in this section, the model consist of 7 ordinary differential equations and 40 parame-

ters.

dP (t)

dt
= −dp · P (t) (2.1)

dN(t)

dt
= kN ·

Γ(t)

xN + Γ(t)
− dN ·N(t) (2.2)

dD(t)

dt
= kD ·

N(t)6

x6
D +N(t)6

− dD ·D(t) (2.3)

dIL6(t)

dt
= kIL6 ·

N(t)4

x4
IL6 +N(t)4

·Ω(t)− dIL6 · IL6(t) (2.4)

dTNF (t)

dt
= kTNF ·N(t)1.5Φ(t)− dTNF · TNF (t) (2.5)

dIL10(t)

dt
= kIL10 ·

N(t)3

x3
IL10 +N(t)3

·Ψ(t)−Θ(t) + YIL10(t) + sIL10 (2.6)

dYIL10(t)

dt
= kIL102 ·

D(t)4

x4
IL102 +D(t)4

− dIL102 · YIL10(t), (2.7)

with the initial condition

P (0) = 3, 6, or 12; N(0) = 0; D(0) = 0; IL6(0) = 0

TNF (0) = 0; IL10(0) =
sIL10 · xIL10d

dIL10 · xIL10d − sIL10
; YIL10(0) = 0. (2.8)
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In addition, from Equation (2.2)

Γ(t) = [kNP · P (t) + kND ·D(t)] · fDNNIL10(t) · γ(t)

γ(t) = (1 + kNTNF · fUPNTNF (t)) · (1 + kNIL6 · fUPNIL6(t))

fDNNIL10(t) =
xNIL10

xNIL10 + IL10(t)
(2.9)

fUPNTNF (t) =
TNF (t)

xNTNF + TNF (t)

fUPNIL6(t) =
IL6(t)

xNIL6 + IL6(t)
,

from Equation (2.4)

Ω(t) = (1 + kIL6TNF · fUPIL6TNF (t) + kIL6IL6 · fUPIL6IL6(t)) · fDNIL6IL10(t)

fDNIL6IL10(t) =
xIL6IL10

xIL6IL10 + IL10(t)

fUPIL6TNF (t) =
TNF (t)

xIL6TNF + TNF (t)
(2.10)

fUPIL6IL6(t) =
IL6(t)

xIL6IL6 + IL6(t)
,

from Equation (2.5)

Φ(t) = [1 + kTNFTNF · fUPTNFTNF (t)] · fDNTNFIL10(t) · fDNTNFIL6(t)

fDNTNFIL10(t) =
xTNFIL10

xTNFIL10 + IL10(t)

fDNTNFIL6(t) =
xTNFIL6

xTNFIL6 + IL6(t)
(2.11)

fUPTNFTNF (t) =
TNF (t)

xTNFTNF + TNF (t)
,

and from Equation (2.6)
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Ψ(t) = 1 + kIL10IL6 · fUPIL10IL6(t) + kIL10TNF · fUPIL10TNF

Θ(t) = dIL10 · fDNIL10d(t) · IL10(t)

fDNIL10d(t) =
xIL10d

xIL10d + IL10(t)
(2.12)

fUPIL10IL6(t) =
IL6(t)4

x4
IL10IL6 + IL6(t)4

fUPIL10TNF =
TNF (t)

xIL10TNF + TNF (t)
.

We will mimic the description of the original 8D model [126] in describing the 7D model. The

dynamics of P (t) are described in Equation (2.1); P (t) decays exponentially with a decay rate

of dP . We used the same value for the decay rate as in [126], which is fixed at 3hr−1. This

value is also in accordance with published results [38, 79, 142].

Equations (2.2) and (2.9) denote the total number of activated phagocytic cells N(t). Resting

phagocytic cells are activated by the presence of endotoxin, kN is the rate of activation of N(t)

and dN is the elimination rate. N(t) is activated by P (t) and D(t) via Γ(t) as described in Equa-

tion (2.9). Functions with nomenclature fUPij(t) and fDNij(t) represent up-regulating (UP)

and down-regulating (DN) effects of inflammatory cytokine j on cytokine i. These functions are

bounded between 0 and 1 and are dimensionless. The up-regulating functions, fUPNTNF (t)

and fUPNIL6(t), in Equation (2.9) are Michaelis-Menten type equations; as the concentrations

increase, the values of these functions approach 1 asymptotically. Gain parameters kNTNF

and kNIL6 scale the up-regulating functions to get the real effect of N(t). The inhibitory ef-

fects of IL10(t) are represented by the down-regulating function fDNNIL10; as the level of

IL10(t) raises, fDNNIL10 approaches 0 asymptotically. xN , xNTNF , xNIL6 and xNIL10 are

the half-saturation parameters that determine the concentration levels of the states so that

the corresponding fUPNTNF (t), fUPNIL6(t), and fDNNIL10 functions will attain half of its

saturation point.

Equation (2.3) corresponds to the tissue damage instigated by the inflammatory response to

endotoxin challenge. kD is the rate of production of D(t), dD is the corresponding rate of

elimination, and xD is the half-saturation parameter. Increased levels of D(t) further activates

N(t) and thus produced IL10(t). A 6th order Hill function was used to accurately capture the

data [126].

The concentration of IL6(t) is described in Equations (2.4) and (2.10). IL6(t) is up-regulated by

the activation of N(t), the presence of elevated levels of TNF (t), and IL6(t) itself. This behav-
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ior is captured by the up-regulating functions, fUPIL6TNF (t) and fUPIL6IL6(t), respectively,

in Equation (2.10); the down-regulating function, fDNIL6IL10(t), is the inhibitory effect and

dIL6 is the clearance rate of IL6(t). A 4th order Hill function was used to accurately capture the

data [126], and xIL6, xIL6TNF , xIL6IL6 and xIL6IL10 are the half-saturation parameters.

The pro-inflammatory cytokine TNF (t) is described in Equations (2.5) and (2.11), respectively.

TNF (t) is produced by the activation of N(t); kTNF is the rate production of TNF (t) and

dTNF is the clearance rate. An exponent of 1.5 was assigned to N(t) to accurately represent

the rapid production and elimination of TNF (t); the justification for this choice is discussed in

[126]. The fUPTNFTNF (t) function in Equation (2.11) is the up-regulating effect of TNF (t)

on its own production; whereas fDNTNFIL10(t) and fDNTNFIL6(t) are the inhibitory effects.

xTNFTNF , xTNFIL10 and xTNFIL6 are the half-saturation parameters.

The concentration of the anti-inflammatory cytokine IL10(t) is represented in Equations (2.6)

and (2.12), respectively. IL10(t) is up-regulated by the fUPIL10IL6(t) and fUPIL10TNF , re-

spectively. This is described in Equation (2.12); the production of IL10(t) in the basal state is

given by sIL10, which can be obtained from the experimental data. It was shown in [125] that

the rate of elimination of IL10(t) is inversely proportional to the circulating concentration of

IL10(t), this is depicted by the down-regulating function fDNIL10d(t) in Equation (2.12) along-

side the parameter dIL10. xIL10, xIL102, xIL10IL6, xIL10TNF and xIL10d are the half-saturation

parameters.

The dynamics of YIL10(t) are described by Equation (2.7). kIL102 is the rate of production of

YIL10(t) and dIL102 is the rate of elimination. A 4th order Hill function, which is driven by

D(t), is used to model YIL10(t),

2.2.3 Sensitivity Analysis

Sensitivity analysis is an important concept in model building since it is used to determine how

sensitive a given measured output is as the parameters of the model are perturbed. Parameters

that are found to be sensitive to a given measured output are considered to have strong influence

in affecting the trajectory of the output when varied slightly and those that are insensitive have

little or no effect on the output regardless of the magnitude of perturbation made on them.

Sensitivity analysis is particularly useful in mathematical modeling because models can contain

large number of parameters and estimating the values of these parameters accurately is usually

difficult. Parameter sensitivity helps in narrowing the focal point on those that are identified

as sensitive; this is achieved by examining the influence each parameter has on the variability

of a particular measured output.
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To formally introduce this concept, we consider a nonlinear system of the form:

dy(t)

dt
= f(t,y; q), y ∈ Rn, q ∈ Rm (2.13)

z(t) = h(t,y,q), z ∈ Rr, (2.14)

with the initial condition

y(0) = y0, (2.15)

where y, z and q denote state, output and parameter vectors, respectively. We are interested in

how z changes with respect to q (sensitivity), i.e., ∂z(t)
∂q . To determine the sensitivity of the out-

puts z with respect to the parameters q, we take the partial derivative of Equation (2.14)

∂z

∂q
=
∂h

∂y

∂y

∂q
+
∂h

∂q
. (2.16)

In order to obtain ∂y
∂q we need to derive a system of differential equations for the sensitivities by

differentiating both sides of (2.13) with respect to q and switching the order of differentiation

to yield the sensitivity equations

d

dt

∂y

∂q
=
∂f

∂y

∂y

∂q
+
∂f

∂q
. (2.17)

We assume that the initial conditions of the sensitivities are zero (that is, ∂y(0)
∂q = 0) since

the initial conditions of the model would not be considered to be dependent on the model

parameters. By coupling equations (2.13) and (2.17), we have an n + nm dimensional system

of differential equations for both the model and the sensitivities. Coupling ensures that the

solution for y(t) is sufficiently accurate to solve the sensitivity system to the desired accuracy.

On the other hand, if the equations are not coupled, some interpolating scheme will be required

when the differential equations are solved numerically using adaptive mesh methodologies.

The partial derivatives ∂zi(t)
∂qj

, for i = 1 . . . r, j = 1 . . .m, are known as first-order sensitivities [30,

64]. The second-order sensitivities, ∂2zi(t)
∂qj∂qk

, for i = 1 . . . r, j, k = 1 . . .m can also be calculated

and they ascertain the sensitivity of the the first-order sensitivity ∂zi(t)
∂qj

with respect to changes

in qk. Besides, they contain information about the quadratic dependence of the measured states

on changes in the parameters [64]. In [30] the second-order sensitivity values were applied in the

presentation of a new parameter subset selection procedure because it plays an important role

in the uncertainty analysis of the selection procedure. Finally, the sensitivity analysis technique

we are using in this work is widely embraced in the literature [1, 37, 44, 108].
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In this work, we only consider the first-order sensitivity of the experimental data (IL6(t),

TNF (t) and IL10(t)). In addition, our output equations (Equation (2.14)) are linear functions

of the state

z(t) = Cy(t), (2.18)

where C is given by

C =

 0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

 . (2.19)

From the experiment carried out in [126], three parameters were specified in the 8D model; the

clearance rate of endotoxin concentration P (t) captured by dp was obtained from the literature

[79, 142], while sCA and sIL10 were extracted from the experimental data. This implies that

in the construction of “modified 8D” z ∈ R3
+ and q ∈ R43

+ ; where Rr+ is the space of r-

tuple nonnegative real numbers, z ∈ R3
+ denote the 3 outputs (measured cytokines) and q ∈

R43
+ indicate the 43 parameters we wish to investigate their sensitivity levels for each output.

Similarly, in building the reduced 7D model, z ∈ R3
+ and q ∈ R38

+ because we excluded dp and

sIL10 in the 7D model sensitivity analysis; sCA is not in the reduced model since it is linked

with CA(t) which was removed to form 7D.

The matrix S(t) = ∂zi(t)
∂qj

for i = 1 . . . 3, j = 1 . . .m is known as the sensitivity matrix (or

the Jacobian matrix or the Fréchet derivative [64]) at time t, where m = 43 for 8D and

m = 38 for 7D depending on the model we wish to analyze. S(t) can be normalized by

RS(t) = ∂zi(t)
∂qj

qj
zi(t)

, which is known in the literature as relative sensitivity matrix at time t

(here t = 1, 2, 4, 8, 12 and 24. These represent the time points blood samples were taken

in the experiment). Let R̄S be the relative sensitivity matrix across all time period; this

matrix can be constructed by stacking the time dependent relative sensitivity matrices RS(t)

for t = 1, 2, 4, 8, 12 and 24 as follows

R̄S =



RS(t = 1)

RS(t = 2)

RS(t = 4)

RS(t = 8)

RS(t = 12)

RS(t = 24)


18×m

. (2.20)
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Note that R̄S will be constructed for endotoxin dose levels 3mg/kg and 12mg/kg, respectively.

Sensitivity computations were carried out using a relative and generalized sensitivity analysis

solver called “tssolve” [11]. This “tssolve” solver uses Automatic Differentiation (AD) [49] to

compute the partial derivatives in Equations (2.16) and (2.17), respectively. The computa-

tions were performed using MATLAB version “R2009a” ( c©2009 The Mathworks Inc., Natick,

MA).

Finite difference methods can also be utilized in the approximation of the partial derivatives

contained in the sensitivity equations (Equations (2.16) and (2.17)). For example, [1, 36, 64, 108]

used finite differences in their respective computations, while [37, 50] made use of AD and [44]

employed both methods. Whenever numerical approximation methods such as finite difference

is utilized, it is always important to consider the relationship between the difference increment

used in the computation of the derivative and the accuracy of the solution obtained from the

integrator. However, AD does not have such considerations since it is a “machine precision

exact” method that breaks down a function into small component operations before taking

derivatives by applying chain rule.

The relative sensitivity matrix computed in Equation (2.20) yields sensitivity information as a

function of time. In any case, our priority in this work is to distinguish those model dynamic

parameters that significantly influence the outputs of our process over time. To achieve this

goal, we compute the relative sensitivity ranking using a modified L2 norm,

∥∥∥∥∂zi∂qj

∥∥∥∥
2

·
(

qj
max zi

)
=

[
1

tf − t0

∫ tf

t0

(
∂zi
∂qj

)2

dt

] 1
2

·
(

qj
max zi

)
. (2.21)

In general, the relative sensitivity ranking contain information regarding the number of param-

eters that are most sensitive to each output since it ranks the model parameters according to

their respective sensitive levels. Finally, it is noted that there are other norms adapted in the

literature to compute the sensitivity value. For example,

in [1], an L2 norm of the form was used√√√√ 1

N j

Nj∑
i=1

∣∣∣∣ ∂z∂qk (tij ; qj)qk

∣∣∣∣2,
whereas another L2 norm of the form was used in [37]

‖f(t)‖22 =

∫
f2(t)dt,
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and [44] employed an unspecified norm of the form

‖Sjk(t, q0)‖ =

∥∥∥∥dyj(ti, q0)

dqk

qk
yj(ti, q0)

∥∥∥∥ .
2.2.4 Subset Selection

We will begin this section by introducing the concept of identifiability with two simple illustra-

tions.

Problem 2.2.1 This problem is taken from [32], which was first discussed in [16].

Consider the first-order model:

dx(t)

dt
= −p1x(t) + p2u(t), x(0) = 0 (2.22)

y(t) = p3x(t). (2.23)

In this problem, x(t) represents the concentration of a drug introduced into a biological system,

u(t) is a test-input injection of the drug of known wave form and in mass units, and y(t) is

a temporal measurement of the drug concentration in the system, say by bioassay. There are

three parameters in the model: p1, the fractional rate constant for the drug; p2 is the inverse of

its distribution volume and p3, the unknown proportionality constant for the bioassay measure

of drug concentration. For any known u, the explicit solution of Equations (2.22) and (2.23) is

given by

y(t) = p2p3

∫ t

0
e−p1(t−τ)u(τ)dτ. (2.24)

If the drug is introduced rapidly as a brief pulse of unit magnitude, i.e., an approximation

impulse u(t) = δ(t), one obtains the more familiar solution

y(t) = p2p3e
−p1t. (2.25)

Semi-logarithmic plot of the data represented as y(t) for this model yields the coefficient A ≡
p2p3 and exponent λ ≡ p1. Thus only p1 and the product p2p3 can be determined and not p2

or p3. When this happens, the model is said to be unidentifiable. If p2 or p3 were known, or

related in a known way, all parameters could be uniquely determined from y(t). In this case,

we say the model (or model parameters) is (are) uniquely identifiable.

Problem 2.2.2 In [42], the notion of sensitivity identifiability was discussed, although it

was originally introduced in [119].
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Consider an m by P output sensitivity function matrix with respect to the parameters,

S(t,p) ≡ [∂y(t,p)
∂pj

], evaluated at a nominal p0. To define this inherently local concept, let 4p

denote a local perturbation about a nominal p0, i.e., 4p ≡ p − p0, which gives rise to a local

perturbation 4y in the output, i.e., 4y ≡ y(t,p)− y(t,p0). Then

4y ∼= S4p. (2.26)

A structure is sensitivity identifiability if (2.26) can be solved uniquely (in the local sense)

for 4p. This is the case if and only if the column rank of the matrix S is equal to P , the number

of unknown parameters, or

det(STS) 6= 0. (2.27)

One of the drawbacks of sensitivity analysis is that it identifies “sensitive” parameters that are

both unidentifiable (linearly dependent) as well as identifiable (linearly independent). In such

situation, subset selection can be employed to separate the most linearly independent sensitive

parameter from the rest. These become the identifiable parameters and the less identifiable

set will be fixed to some nominal values during the optimization process. Subset selection

methodologies for partitioning the parameter space into well-conditioned and ill-conditioned

subsets were described in [50]. Similarly, the following subset selection methods were discussed

in [108];

i. QR Factorization with column pivoting

ii. SVD followed by QR with column pivoting

iii. Gu-Eisenstat’s strong rank revealing QR

iv. SVD followed by Gu-Eisenstat’s SRRQR.

Methods (i) and (ii) were earlier described by [58, 59], respectively. The last two methods were

proposed in [62] and are considered to be very efficient and more theoretically sound but are

quite complicated to implement [108]. The QR Factorization with column pivoting algorithm

is widely recognized to be computationally efficient and has been implemented in many appli-

cations, including the rank-deficient least squares problems. However, it has been shown that

this algorithm fails for some examples [62]. Analyses on the performance of these four subset

selection methods were also carried out in [108]; the results obtained revealed that the SVD

followed by QR with column pivoting performed just as well as the more theoretically sound

methods (Gu-Eisenstat’s strong rank revealing QR and Gu-Eisenstat’s strong rank revealing

QR). For this reason, we will use the SVD followed by QR with column pivoting algorithm
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on the relative sensitivity matrix R̄S in (2.20) to obtain the most identifiable parameters at

endotoxin levels 3mg/kg and 12mg/kg, respectively. In addition, we favored this algorithm

because it is relatively easy to implement.

The SVD followed by QR with column pivoting algorithm is outlined below.

• Compute the SVD of R̄S = UΣV T and determine the numerical rank r̂ of R̄S.

Hence, we employed the technique described in [50] to determine r̂ as follows

r̂ = max

{
i

∣∣∣∣ |σi||σ1|
> ε ‖R̄S‖m

}
,

where σi represent the sorted singular values of R̄S such that σ1 = max{σi}, m is the

number of parameters, which corresponds with the number of columns in R̄S and the

tolerance ε is a problem dependent constant. Usually ε is the machine precision tolerance;

for this work ε=3.55e-15. The MATLAB code for computing the numerical rank is as

follows:

Code: [row col]=size(RS);

sigma=svd(RS);

ratio=abs(sigma)/abs(sigma(1));

NumRank=find(ratio > eps(norm(RS))*norm(RS)*col,1,‘last’);

• Let V = [Vr̂ VN−r̂] where Vr̂ is the first r̂ columns of V .

• Perform a QR factorization with pivoting on V T
r̂ to obtain V T

r̂ P = QR.

QR with column pivoting will align the linearly independent columns of R̄S to the left

and the permutation matrix P contains the information on how the columns of R̄S were

repositioned.

• Choose as the subset of components of x the first r̂ components of P Tx, where x =

[1, 2, 3, . . . , 43]T for 8D and x = [1, 2, 3, . . . , 38]T for 7D.

An extension of the SVD followed by QR with column pivoting algorithm that applies its eigen-

value decomposition on the Hessian matrix was proposed in [138]. This algorithm is claimed to

be more appropriate for nonlinear least squares estimation; the interested reader is referred to

[64] for an application of this method.

We conclude this section with some additional remarks. An alternative approach to compute

the numerical rank r̂ was described in [58]. Define a tolerance δ > 0 for the computed singular
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values σ̂i. R̄S has a numerical rank r̂ if the σ̂i satisfy

σ̂1 ≥ . . . ≥ σ̂r̂ > δ ≥ σ̂r̂+1 ≥ . . . ≥ σ̂n.

Usually, the tolerance δ is chosen to be consistent with the machine precision, for example,

δ = u‖R̄S‖∞. If the relative error in the data is larger than u, then δ should be bigger, for

instance, if the entries in R̄S are correct to two digits then δ = 10−2‖R̄S‖∞. [44] applied this

approach with the 2-norm rather than the∞-norm. Lastly, subset selection can also be applied

on the generalized sensitivity matrix S̄, which can be constructed by stacking the time dependent

matrices S(t = i) for each i time point, or the Fisher Information Matrix (FIM), S̄TQ−1S̄ where

Q is the measurement covariance matrix. The choice of matrix to use is dependent on how

well-conditioned /ill-conditioned the problem is; we used the relative sensitivity matrix R̄S

because of the large variation in the order of magnitude of the experimental data.

2.2.5 Parameter Estimation

The goal of parameter estimation (also known as inverse problem or model calibration) is to

obtain parameter values of a model that give the best fit to a set of experimental data. To carry

out parameter estimation the free parameters must be assigned nominal values that serve as an

“initial guess” before commencing the optimization process [85]. The most convenient approach

to estimate unknown parameters is from available data; this is usually achieved by calibrating

the model to reproduce the experimental results in the best possible way. This calibration is

carried out by minimizing a given cost function that measures the goodness of fit [124]. The

cost functions, which are represented by bayesian estimator, maximum likelihood estimator,

and (weighted) least squares estimator, have been shown to perform relatively well in practice.

The bayesian estimation, which happens to be the most complicated, requires the parameter

probability distribution and the conditional probability distribution of the measurements for

the specified parameters to be parameterized. The least squares estimation, considered to be

the least complicated, can be carried out effectively with the availability of observed data, or

in silico simulated data [87, 124].

The following potential pitfalls and difficulties when conducting parameter estimation for dy-

namic systems were outlined in [130]:

• Lack of convergence to local solutions. This arises when only bad starting values for the

parameters are used.

• The model functions are poorly scaled.
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• The cost function appears very flat in the neighborhood of the solution.

• Some of the terms in the system’s dynamics are non-differentiable.

In addition, Schittkowski [130] classified the existing methods for parameter estimation for

dynamic systems into two main groups (the excerpt is from [124]):

1) Initial value methods (also known as single shooting): The parameter estimation problem is

solved as a nonlinear optimization (NLO) problem which requires the solution of an inner

initial values problem (IVP) for each function evaluation. The outer NLO is usually solved

using Levenberg-Marquardt or Gauss-Newton methods. These methods are very efficient

and converge globally to the correct solution when a good initial guess for the parameters

is specified, otherwise, they converge to local solutions. As these NLOs are frequently

multimodal, a lack of fit could be due to convergence to one of such local solutions, even if

the model can represent the data perfectly well.

2) Multiple shooting ([21, 136]): Here the dynamic state variables are discretized in some way,

leading to larger NLOs (i.e., more degrees of freedom) but avoiding the need of solving an

inner IVP. Also, it has been shown that this method does not introduce as much multi-

modality as single shooting methods. However, since the resulting large NLO is usually

solved using Gauss-Newton methods, which are of local nature, it can still converge to a

local solution, especially when only a poor initial guess is available.

In this work, a nonlinear least-squares method with a normalized residual was formulated to

use as the cost function describing the error between the computed model output and the

experimental data. Similar method was applied in [36]. To this end, we defined
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JIL63(q) =
1

maxj(y
IL63
j(j=1,...,7))

7∑
i=1

[yIL63
i − y(ti,q)IL63 ]2, IL6(t) at 3mg/kg, (2.28)

JTNF3(q) =
1

maxj(y
TNF3

j(j=1,...,7))

7∑
i=1

[yTNF3
i − y(ti,q)TNF3 ]2, TNF (t) at 3mg/kg, (2.29)

JIL103(q) =
1

maxj(y
IL103
j(j=1,...,7))

7∑
i=1

[yIL103
i − y(ti,q)IL103 ]2, IL10(t) at 3mg/kg, (2.30)

JIL612(q) =
1

maxj(y
IL612
j(j=1,...,7))

7∑
i=1

[yIL612
i − y(ti,q)IL612 ]2, IL6(t) at 12mg/kg, (2.31)

JTNF12(q) =
1

maxj(y
TNF12

j(j=1,...,7))

7∑
i=1

[yTNF12
i − y(ti,q)TNF12 ]2, TNF (t) at 12mg/kg, (2.32)

JIL1012(q) =
1

maxj(y
IL1012
j(j=1,...,7))

7∑
i=1

[yIL1012
i − y(ti,q)IL1012 ]2, IL10(t) at 12mg/kg, (2.33)

where yki is the experimental data at time t = i for state variable k, y(ti,q)k is the model

prediction at time ti for q model parameters and state variable k and maxj(y
k
j ) is the maximum

value of the experimental data over all time points for state variable k.

Combine (2.28) to (2.33) to form the desired cost function that we aim to minimize:

K(q) = JIL63(q) + JTNF3(q) + JIL103(q) + JIL612(q) + JTNF12(q) + JIL1012(q), (2.34)

where q is a vector of model parameters. As proposed in [12], the cost (in Equation (2.34)) will

be minimized using an optimization function in MATLAB known as fminsearch to search for

the parameter estimated values that yield the best fit of the model to the experimental data.

Note that fminsearch is a multidimensional unconstrained minimizer that uses the Nelder-

Mead algorithm. Nelder-Mead is a derivative-free algorithm that is widely used for nonlinear

optimization problems. Nelder-Mead evaluates the cost function at the vertices of a simplex of

parameters, orders the function values, replaces the worst value with a better one based on a set

of rules, and repeats until a user-prescribed error tolerance or number of functions evaluations

allowed has been reached.
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2.3 Akaike Information Criterion (AIC)

AIC [3] is a model selection tool commonly used to compare different models quantitatively. It

was developed by a Japanese statistician called Hirotsugu Akaike in 1971 to measure a model’s

goodness of fit. AIC measures the amount of information lost when a given model is used to

describe the behavior of a real system. When two or more models having different number of

parameters are compared, the model with the lowest AIC value is preferred. The formula for

calculating AIC is given by

AIC = k ln

(
J

k

)
+ 2p, (2.35)

J =
1

maxj(yj)

n∑
i=1

[yi − y(ti,q)]2, (2.36)

where k is the total number of data points, p is the total number of model parameters, J is a

nonlinear least-squares method with a normalized residual, y(ti,q) is the model prediction at

time ti for q parameters, yi is the experimental data, and maxj(yj) is the maximum value of

the experimental data over all time points.

It is a known fact that the goodness of fit improves with the addition of more free parameters

to be estimated irrespective of the number of free parameters in the data generating process.

One outstanding characteristic of AIC is that it not only rewards goodness of fit but it con-

tains a penalty term (“2p” in Equation (2.35)) that helps to restrain overfitting. The role of

AIC is to discover the model that best explains the data set with the fewest number of free

parameters.
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Chapter 3

Model Analysis

3.1 8D Relative Sensitivity Ranking

We examine the relative sensitivity ranking results of the parameters for IL6, TNF and IL10

at 3mg/kg and 12mg/kg endotoxin challenge levels, respectively. These results are obtained

from the 8D model with the primary goal of identifying the most sensitive parameters that will

be used to construct “modified 8D” models.

3.1.1 8D Relative Sensitivity Ranking at 3 mg/kg endotoxin challenge level

Figure 3.1 shows the relative sensitivity ranking plots of the parameters for each inflammatory

cytokine.

These plots give a general idea of the number of parameters that are sensitive to each inflam-

matory cytokine at 3mg/kg endotoxin challenge level. Also, a close examination of the relative

sensitivity levels of the parameters indicate a strong correlation with their respective outputs.

For example, the parameters are more sensitive to IL10 than the other inflammatory cytokines.

A cutoff point can usually be determined to separate the most sensitive parameters from the

less sensitive ones for each output. A “back of the envelope” technique for assigning a cutoff

is often where the largest break in magnitude occurs. However, this is a crude method to

use in making an important decision regarding parameter sensitivity; rather a more analytical

approach is to find the smallest parameter rank such that an α% perturbation in the original

value results in a significant change in the output trajectory. The smallest rank position that

satisfies this criterion becomes the cutoff point, where α can be 10, 20, or 30. The main disad-
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vantage with this approach is that it is very cumbersome to implement. We implemented the

second technique in this work with a 20% perturbation for the case of the reduced 7D relative

sensitivity ranking plots in Figures 3.9 and 3.10.

Figure 3.1: 8D relative sensitivity ranking plots at 3mg/kg endotoxin level for

IL6, TNF and IL10

Table 3.1 contains essentially the same information with Figure 3.1. However, this table identi-

fies each parameter, the corresponding rank, and the computed modified L2 norm value using

Equation (2.21). It is easy to observe from the table that the ranks of some parameters vary

widely across the different inflammatory cytokines, for instance, kD is ranked 15th for IL6,

29th for TNF and 1st for IL10. Other parameters with similar characterization are dD, xD

and dIL6. Meanwhile, there was no variability in the ranks of the least sensitive parameters:

xTNFIL10, kIL10TNF , xIL10TNF , kTNFTNF and xTNFTNF with respective ranks 39th , 40th ,

41st , 42nd and 43rd across the outputs. Perhaps a more interesting observation is that these

parameters are all associated with TNF and IL10.
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Table 3.1: 8D relative sensitivity ranking at 3mg/kg. Number in parenthesis is the computed

L2 norm; the prior number is the rank: 1 implies most sensitive and 43 is least sensitive.

Parameter IL6 Rank TNF Rank IL10 Rank

kN 4 (0.7985) 5 (0.2360) 4 (2.7549)

xN 10 (0.3435) 7 (0.0915) 7 (1.2260)

dN 16 (0.2455) 14 (0.0326) 6 (1.8123)

kNP 11 ( 0.3381) 8 (0.0913) 8 (1.1816)

kND 37 (0.0058) 36 (0.0005) 29 (0.0451)

xNTNF 23 (0.1401) 12 (0.0376) 15 (0.4974)

xNIL6 35 (0.0169) 27 (0.0038) 27 (0.0710)

xNCA 19 (0.2303) 9 (0.0606) 11 (0.8280)

xNIL10 28 (0.0992) 15 (0.0247) 19 (0.3663)

kNTNF 18 (0.2335) 10 (0.0603) 10 (0.8361)

kNIL6 34 (0.0180) 26 (0.0039) 26 (0.0765)

kD 15 (0.2458) 29 (0.0026) 1 (3.3498)

dD 25 (0.1025) 34 (0.0009) 5 (2.3215)

xD 27 (0.1006) 32 (0.0010) 3 (2.8923)

kCA 22 (0.1473) 4 (0.2533) 20 (0.2519)

dCA 33 (0.0206) 13 (0.0331) 33 (0.0377)

kIL6TNF 20 (0.2275) 21 (0.0109) 28 (0.0485)

xIL6TNF 26 (0.1014) 25 (0.0046) 35 (0.0222)

kIL6 6 (0.6435) 17 (0.0231) 24 (0.1105)

dIL6 8 (0.3980) 24 (0.0061) 32 (0.0396)

xIL6 1 (2.5711) 6 (0.0921) 17 (0.4415)

xIL6IL10 7 (0.6368 ) 18 (0.0228) 25 (0.1091)

kIL6IL6 12 (0.3226) 22 (0.0080) 30 (0.0436)

xIL6IL6 13 (0.3099) 23 (0.0078) 31 (0.0420)

xIL6CA 31 (0.0309) 33 (0.0009) 38 (0.0048)

kTNF 17 (0.2411) 2 (0.3173) 14 (0.5170)

dTNF 21 (0.1510) 3 (0.2875) 21 (0.2449)

xTNFIL10 39 (8.15e-7) 39 (1.67e-6) 39 (1.41e-06)

xTNFCA 9 (0.3473) 1 (0.7039) 13 (0.5400)

kTNFTNF 42 (2.806e-15) 42 (6.02e-15) 42 (4.921e-15)

xTNFTNF 43 (2.8055e-15) 43 (6.01e-15) 43 (4.920e-15)

xTNFIL6 36 (0.0079) 19 (0.0193) 36 (0.0097)

kIL10TNF 40 (2.63e-8) 40 (7.02e-10) 40 (1.7695e-08)

xIL10TNF 41 (2.62e-8) 41 (7.01e-10) 41 (1.7666e-08)

kIL10IL6 32 (0.0218) 37 (0.0003) 37 (0.0095)

xIL10IL6 29 (0.0853) 31 (0.0013) 34 (0.0370)

kIL10 5 (0.6800) 20 (0.0184) 18 (0.3819)

dIL10 3 (0.8422) 16 ( 0.0237) 16 (0.4803)

xIL10 2 (1.9094) 11 (0.0518) 9 (1.0688)

xIL10d 24 (0.1102) 28 (0.0027) 23 (0.1163)

kIL102 30 (0.0629) 35 (0.0006) 12 (0.8263)

dIL102 38 (0.0012) 38 (6.88e-6) 22 (0.1775)

xIL102 14 (0.2514) 30 (0.0023) 2 (3.3047)
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3.1.2 8D Relative Sensitivity Ranking at 12 mg/kg endotoxin challenge level

The relative sensitivity results at 12mg/kg endotoxin challenge level summarized in this sec-

tion are similar to those in Section 3.1.1. Analogous to Figure 3.1, in Figure 3.2 we see that

the magnitude of the relative sensitivity level is largest in IL10, followed by IL6 and TNF,

repectively. The plot of IL10 displays a more evenly distributed parameter spread than the

pro-inflammatory cytokines where there exists large break in magnitude between the most sen-

sitive parameter(s) and other significantly sensitive parameters. With such disparity between

the sensitive parameters it is unwise to use where the largest break in magnitude occurred

as cutoff. Figures 3.1 and 3.2 revealed an interesting feature about the sensitivity levels of

the inflammatory cytokines since the parameter with the largest sensitivity level for IL6 is

higher in at 3mg/kg (Figure 3.1). This is the complete reverse for TNF and IL10 where their

respective highest sensitivity levels occurred at 12mg/kg (Figure 3.2). This indicates that in-

crease endotoxin challenge levels do not lead to higher sensitivity levels across the inflammatory

cytokines.

Figure 3.2: 8D relative sensitivity ranking plots at 12mg/kg endotoxin level for

IL6, TNF and IL10
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Table 3.2: 8D relative sensitivity ranking at 12mg/kg. Number in parenthesis is the computed

L2 norm; the prior number is the rank: 1 implies most sensitive and 43 is least sensitive.

Parameter IL6 Rank TNF Rank IL10 Rank

kN 14 (0.1775) 5 (0.1905) 6 (1.7024)

xN 25 (0.0390) 11 (0.0278) 11 (0.5023)

dN 18 (0.1107) 17 (0.0192) 5 (2.1712)

kNP 26 (0.0384) 12 (0.0277) 12 (0.4887)

kND 38 (0.0008) 37 (8.59e-5) 36 (0.0144)

xNTNF 32 (0.0144) 23 (0.0107) 24 (0.1807)

xNIL6 35 (0.0050) 29 (0.0034) 32 (0.0711)

xNCA 29 (0.0274) 18 (0.0191) 16 (0.3582)

xNIL10 30 (0.0230) 19 (0.0164) 18 (0.3154)

kNTNF 28 (0.0314) 16 (0.0226) 14 (0.4117)

kNIL6 34 (0.0056) 27 (0.0037) 31 (0.0801)

kD 10 (0.2305) 32 (0.0007) 1 (5.0274)

dD 15 (0.1213) 34 (2.38e-4) 3 (3.8323)

xD 27 (0.0327) 36 (1.23e-4) 4 (2.3309)

kCA 20 (0.0621) 2 (0.3177) 22 (0.2129)

dCA 33 (0.0066) 10 (0.0311) 35 (0.0227)

kIL6TNF 16 (0.1170) 20 (0.0158) 30 (0.0963)

xIL6TNF 24 (0.0438) 26 (0.0058) 33 (0.0357)

kIL6 5 (0.3613) 8 (0.0328) 19 (0.2632)

dIL6 7 (0.3264) 25 (0.0059) 29 (0.1243)

xIL6 1 (1.4388) 6 (0.1305) 8 (1.0477)

xIL6IL10 6 (0.3599) 9 (0.0326) 20 (0.2621)

kIL6IL6 11 (0.2149) 21 (0.0112) 25 (0.1405)

xIL6IL6 12 (0.2021) 22 (0.0109) 26 (0.1326)

xIL6CA 31 (0.0206) 30 (0.0013) 37 (0.0136)

kTNF 22 (0.0563) 3 (0.2959) 23 (0.2011)

dTNF 23 (0.0463) 4 (0.2939) 27 (0.1311)

xTNFIL10 39 (6.48e-7) 38 (5.07e-6) 39 (2.11e-6)

xTNFCA 17 (0.1139) 1 (0.8116) 17 (0.3393)

kTNFTNF 42 (1.0331e-15) 42 (7.812e-15) 42 (3.831e-15)

xTNFTNF 43 (1.0329e-15) 43 (7.810e-15) 43 (3.830e-15)

xTNFIL6 36 (0.0036) 13 (0.0265) 38 (0.0095)

kIL10TNF 40 (2.49e-8) 40 (1.234e-9) 40 (2.96e-8)

xIL10TNF 41 (2.48e-8) 41 (1.231e-9) 41 (2.95e-8)

kIL10IL6 19 (0.0822) 31 (0.0009) 34 (0.0333)

xIL10IL6 8 (0.2960) 28 (0.0034) 28 (0.1252)

kIL10 4 (0.5135) 15 (0.0228) 15 (0.4057)

dIL10 3 (0.5718) 14 (0.0248) 10 (0.9374)

xIL10 2 (1.2895) 7 (0.0585) 9 (0.9882)

xIL10d 13 (0.1971) 24 (0.0065) 13 (0.4415)

kIL102 21 (0.0578) 35 (1.59e-2) 7 (1.2539)

dIL102 37 (0.0016) 39 (2.21e-6) 21 (0.2299)

xIL102 9 (0.2313) 33 (0.0006) 2 (5.0134)

Table 3.2 captures basically the same information as in Table 3.1. The relative sensitivity
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ranking information displayed in both tables will be used together with subset selection to

determine a subset of parameters that are most identifiable from the experimental data.

3.2 8D Parameter Identifiability Analysis

The SVD followed by QR with column pivoting subset selection method discussed in Sec-

tion 2.2.4 was used to determine the parameters that are most identifiable at both 3mg/kg

and 12mg/kg endotoxin challenge levels across the different inflammatory cytokines. The fol-

lowing parameters were selected as most identifiable:

• At endotoxin challenge level 3mg/kg, the numerical rank r̂ = 18. This means that subset

selection identifies 18 most identifiable parameters. They are:

kN , dN , kNTNF , kD, dD, xD, kCA, dCA, kIL6TNF , xIL6TNF ,

dIL6, xIL6, kIL6IL6, dTNF , xTNFCA, xIL10IL6, xIL10, dIL102.

• At challenge level 12mg/kg, with a numerical rank r̂ = 18. The most identifiable param-

eters are:

kN , dN , kNP , kD, dD, xD, kCA, dCA, dIL6, xIL6, kIL6IL6

dTNF , xTNFCA, xTNFIL6, xIL10IL6, xIL10, xIL10d, dIL102.

Further investigation on the most identifiable parameters from both endotoxin challenge levels

showed that 15 parameters were commonly identified by both levels and each challenge level

identified 3 parameters that were unique to that level. Those parameters that were uniquely

identified by each challenge level are given below:

• Parameter identified by only 3mg/kg endotoxin challenge level:

kNTNF , kIL6TNF , xIL6TNF

• Parameter identified by only 12mg/kg endotoxin challenge level:

kNP , xTNFIL6, xIL10d

These results were useful in constructing the two “modified 8D” models outlined below:
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8D-15: This model will be known as 8D-15 because it is described by the 15 parameters that

were identified by both endotoxin challenge levels.

8D-21: This model will be described by the 21 parameters identified by either challenge levels

and it shall be referred to as 8D-21.

3.3 8D Parameter Estimation and Model Validation

In this section, we present parameter estimation results on both 8D-15 and 8D-21 models.

This is accomplished via the method presented in Section 2.2.5. Both models are calibrated

to the existing experimental data on inflammatory cytokines in order to determine the best

parameter estimates for the free parameters in the “modified 8D” models. In addition, we

present the curve fitting plots comparing the original 8D model in [126] and each “modified

8D” model.

3.3.1 8D-15 Parameter Estimation and Model Validation

Table 3.3 shows the nominal and optimized (estimated) values of the 15 parameters that defined

8D-15. The nominal values are the assigned values from [126] used in the 8D model. In addi-

tion to this table, we also present curve fitting plots showing the predictions of IL6, TNF and IL10 for

8D-15 (red dashed line (- -)) and 8D (blue solid line (—)). The experimental data black circle

(mean±SD) represent each inflammatory cytokine at endotoxin challenge levels 3mg/kg and 12mg/kg,

respectively. Based on the amount of information contained in these plots, we can evaluate the

performance of the models by analyzing how well they predict the observed data.

The IL6(t) plots in Figure 3.3 illustrate a very good fit for 8D-15. At those time instance when

8D-15 missed the target, it was well within the error bar. The plot at 12mg/kg endotoxin

challenge level (right) shows a better fit for 8D-15. Comparing the plots of 8D-15 and 8D at

both endotoxin levels reveals 8D-15 as having a slight edge.
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Table 3.3: 8D-15 Model Parameter Estimation

Parameter Nominal Value Estimated Value

kN 5.5786e7 4.169362e7

dN 0.1599 0.47063257

kD 2.5247 3.57420325

dD 0.37871 0.28300584

xD 1.8996e7 1.563785e7

kCA 0.154625e-8 1.47234e-9

dCA 0.31777e-1 0.25099371

dIL6 0.43605 0.31829930

xIL6 1.7856e8 1.889077e8

kIL6IL6 122.92 175.583580

dTNF 2.035 1.75628386

xTNFCA 0.19342 0.07727691

xIL10IL6 26851 1.812930e4

xIL10 8.0506e7 5.940355e7

dIL102 0.0224 0.00923201

Figure 3.3: IL6(t) curve fitting plots comparing 8D-15 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot denote 12mg/kg.

It is obvious from the plots of TNF (t) in Figure 3.4 that 8D-15 had a better prediction at
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12mg/kg endotoxin levels (right plot) than at 3mg/kg endotoxin level (left plot). Unlike the

plot at 12mg/kg, 8D-15 was completely off target while attempting to capture the 4th data

point at 3mg/kg. However, as evidenced from Figure 3.4, 8D-15 and 8D accurately captured

the concentration of TNF at both endotoxin levels.

Figure 3.4: TNF (t) curve fitting plots comparing 8D-15 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot denote 12mg/kg.

It is apparent from Figure 3.5 that the predictions made by 8D-15 for each inflammatory

cytokine at 12mg/kg endotoxin level were more consistent than at 3mg/kg endotoxin level.

Albeit 8D-15 performed poorly capturing the concentration of IL10 at both endotoxin chal-

lenge levels, it is clear that the prediction at 12mg/kg is preferable to 3mg/kg. Despite the

mediocre predictions of IL10 at both endotoxin levels, 8D-15 was within one standard devi-

ation of the mean for the majority of the data points.

A complete analysis of the plots of 8D-15 and 8D across all the inflammatory cytokines indi-

cate that one cannot draw any precise conclusion about the model with a superior performance,

though it is understandably clear that 8D had better predictions of IL10(t).

32



Figure 3.5: IL10(t) curve fitting plots comparing 8D-15 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot denote 12mg/kg.

3.3.2 8D-21 Parameter Estimation and Model Validation

The optimized (estimated) values of the 21 parameters that defined 8D-21 are displayed in

Table 3.4. The table shows that some of the free parameters optimized values were significantly

different from their nominal values including kNP , kIL6TNF , xIL6TNF , kIL6IL6 and xIL10d. In

addition, curve fitting plots of IL6(t), TNF (t) and IL10(t) for 8D-21 (red dashed line (- -))

and 8D (blue solid line (—)) are presented. The experimental data are represented by black

circle (mean±SD) for the respective inflammatory cytokines.

From the plots of IL6(t) in Figure 3.6, the predictions of 8D-21 are consistent with the

experimental data at both 3mg/kg (left plot) and 12mg/kg (right plot) endotoxin challenge

levels. 8D-21 was within one standard deviation of the mean measurement at those points it

missed the target. The quality of fit for 8D-21 was quite impressive in capturing the data.

Recall that both “modified 8D” and the 8D models performed equally well is describing the

dynamics of IL6(t).
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Table 3.4: 8D-21 Model Parameter Estimation

Parameter Nominal Value Estimated Value

kN 5.5786e7 4.465195e7

dN 0.1599 0.54915952

kNP
‡ 41.267 184.871881

kNTNF
† 12.94907 22.7269753

kD 2.5247 4.63254241

dD 0.37871 0.15237897

xD 1.8996e7 2.620924e7

kCA 0.154625e-8 9.26423e-9

dCA 0.31777e-1 0.12553346

kIL6TNF
† 4.4651 103.803383

xIL6TNF
† 1211.3 1.504963e5

dIL6 0.43605 0.31720533

xIL6 1.7856e8 2.417754e8

kIL6IL6 122.92 2693.10339

dTNF 2.035 3.13284175

xTNFCA 0.19342 0.64397278

xTNFIL6
‡ 55610 2.200224e6

xIL10IL6 26851 1.509456e4

xIL10 8.0506e7 6.900804e7

xIL10d
‡ 791.27 5957.89231

dIL102 0.0224 0.01665673
† Most identifiable only at dose level 3mg/kg

‡ Most identifiable only at dose level 12mg/kg

Figure 3.7 also depicted an excellent curve fitting plots for 8D-21 and 8D at 3mg/kg (left plot)

and 12mg/kg (right plot) endotoxin challenge levels, respectively. Both models (8D-21 and

8D) followed identical trajectories in predicting the experimental data on TNF (t) at 3mg/kg

endotoxin level.

Unlike in Figures 3.6 and 3.7 that demonstrated near perfect curve fitting plots for 8D-21, in

Figure 3.8 the model showed inconsistencies in capturing the trajectories of the data points at

both endotoxin challenge levels for IL10(t). Nonetheless, 8D-21 was within the error bar for

majority of the data points.
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Figure 3.6: IL6(t) curve fitting plots comparing 8D-21 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot denote 12mg/kg.

Figure 3.7: TNF (t) curve fitting plots comparing 8D-21 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot denote 12mg/kg.

The quality of curve fitting plots for 8D-15, 8D-21 and 8D while predicting the behavior of the

experimental data on pro-inflammatory cytokines (IL6 and TNF ) were very good. A thorough

scrutiny of all the models disclosed that 8D-21 had a slight edge in consistently reproducing

the data behavior of the inflammatory cytokines than the others. On the flipside, these models

were unable to capture the dynamics of the experimental data on anti-inflammatory cytokine

(IL10); 8D had the best prediction. For this reason, we cannot make any determination about

which model best represented the behavior of the different inflammatory cytokines based on

curve fitting plots alone. Next, we will discuss the results of the reduced 7D models; this should
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increase the pool of models to compare.

Figure 3.8: IL10(t) curve fitting plots comparing 8D-21 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot denote 12mg/kg.

3.4 7D Relative Sensitivity Ranking

In this section, we will redo the analysis that was carried out with the “modified 8D” models

for the reduced 7D model.

3.4.1 7D Relative Sensitivity Ranking at 3 mg/kg endotoxin challenge level

The relative sensitivity ranking plots for IL6, TNF and IL10 are shown in Figure 3.9.
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Figure 3.9: 7D relative sensitivity ranking plots at 3mg/kg endotoxin level for

IL6, TNF, IL10. The vertical dashed line in each plot indicate the cutoff point for the

respective inflammatory response using the method discussed in Section 3.1.1.

The plots displayed in this section (Figure 3.9) appear to be consistent with those in Sections

3.1.1 and 3.1.2 in that parameter sensitivity levels are output dependent. The plots in Figure 3.9

show that the parameters are most sensitive to the anti-inflammatory cytokine IL10. A notable

feature from Figure 3.9 is the near even formation in the spread of the parameters in the plots

of TNF and IL10. Usually such pattern makes it quite difficult to determine an unambiguous

cutoff point that clearly separates the most sensitive parameters from the rest by using the

location where the “largest break in magnitude” occurred.
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Table 3.5: 7D relative sensitivity ranking at 3mg/kg. Number in parenthesis is the computed

L2 norm; the prior number is the rank: 1 implies most sensitive and 38 is least sensitive.

Parameter IL6 Rank TNF Rank IL10 Rank

kN 12 (0.1849) 3 (0.3927) 6 (1.7710)

xN 20 (0.0585) 6 (0.1363) 11 (0.7907)

dN 16 (0.1428) 4 (0.3210) 5 (2.4101)

kNP 24 (0.0427) 8 (0.1112) 15 (0.4563)

kND 28 (0.0194) 20 (0.0416) 17 (0.3473)

xNTNF 29 (0.0181) 19 (0.0421) 19 (0.2430)

xNIL6 31 (0.0107) 28 (0.0225) 26 (0.1550)

xNIL10 25 (0.0369) 10 (0.0858) 14 (0.5275)

kNTNF 21 (0.0490) 7 (0.1142) 12 (0.6720)

kNIL6 30 (0.0129) 25 (0.0265) 24 (0.1866)

kD 6 (0.3574) 12 (0.0732) 1 (5.4455)

dD 11 (0.2059) 17 (0.0472) 3 (4.4099)

xD 22 (0.0485) 30 (0.0120) 4 (2.6571)

kIL6TNF 17 (0.1128) 27 (0.0235) 30 (0.0822)

xIL6TNF 26 (0.0308) 32 (0.0062) 33 (0.0220)

kIL6 9 (0.3022) 14 (0.0629) 21 (0.2183)

dIL6 8 (0.3170) 18 (0.0422) 28 (0.1111)

xIL6 1 (1.2038) 5 (0.2504) 10 (0.8692)

xIL6IL10 10 (0.3010) 15 ( 0.0627) 22 (0.2175)

kIL6IL6 14 (0.1622) 21 (0.0337) 27 (0.1164)

xIL6IL6 15 (0.1520) 22 (0.0317) 29 (0.1091)

kTNF 23 (0.0463) 1 (0.4518) 18 (0.2434)

dTNF 27 (0.0283) 2 (0.4304) 25 (0.1796)

xTNFIL10 34 (5.44e-07) 34 (1.09e-05) 34 (3.57e-06)

kTNFTNF 37 (1.2231e-15) 37 (1.92e-14) 37 (6.889e-15)

xTNFTNF 38 (1.2226e-15) 38 (1.91e-14) 38 (6.886e-15)

xTNFIL6 32 (0.0042) 11 (0.0748) 32 (0.0270)

kIL10TNF 35 (3.80e-08) 35 (2.66e-09) 35 (3.42e-08)

xIL10TNF 36 (3.79e-08) 36 (2.65e-09) 36 (3.40e-08)

kIL10IL6 18 (0.0947) 31 (0.0090) 31 (0.0530)

xIL10IL6 7 (0.3232) 23 (0.0307) 23 (0.1885)

kIL10 4 (0.4289) 24 (0.0280) 16 (0.3885)

dIL10 3 (0.4996) 16 (0.0539) 9 (0.9496)

xIL10 2 (1.0883) 13 (0.0714) 8 (0.9940)

xIL10d 13 (0.1792) 29 (0.0207) 13 (0.6386)

kIL102 19 (0.0942) 26 (0.0259) 7 (1.2766)

dIL102 33 (0.0031) 33 (0.0014) 20 (0.2386)

xIL102 5 (0.3765) 9 (0.1035) 2 (5.1043)

Table 3.5 contains information about the parameters, their corresponding ranks, and their

relative sensitivities computed values using the modified L2 norm in Equation (2.21). From

the table, xIL6 ranked 1st in IL6, and kTNF ranked 1st in TNF ; this seems logical since these

constants are affiliated with IL6 and TNF, respectively. The situation is different with IL10
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where kD ranked 1st but kD is associated with tissue damage (D); however, the second elevation

in the concentration of IL10 is attributed to tissue damage [126] . Lastly, those parameters

that appear most sensitive for each inflammatory cytokine are inherently intertwined with that

cytokine.

3.4.2 7D Relative Sensitivity Ranking at 12 mg/kg endotoxin challenge level

Figure 3.10: 7D relative sensitivity ranking plots at 12mg/kg endotoxin level for

IL6, TNF, IL10. The vertical dashed line in each plot indicate the cutoff point for the

respective inflammatory response using the method discussed in Section 3.1.1.
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Table 3.6: 7D relative sensitivity ranking at 12mg/kg. Number in parenthesis is the computed

L2 norm; the prior number is the rank: 1 implies most sensitive and 38 is least sensitive.

Parameter IL6 Rank TNF Rank IL10 Rank

kN 15 (0.1358) 3 (0.3710) 8 (1.7543)

xN 20 (0.0432) 6 (0.0909) 12 (0.6169)

dN 13 (0.1610) 4 (0.3116) 4 (3.0707)

kNP 24 (0.0338) 9 (0.0774) 18 (0.3534)

kND 28 (0.0128) 24 (0.0244) 21 (0.2798)

xNTNF 31 (0.0098) 27 (0.0216) 26 (0.1557)

xNIL6 30 (0.0100) 29 (0.0193) 29 (0.1424)

xNIL10 23 (0.0364) 13 (0.0744) 14 (0.5115)

kNTNF 21 (0.0390) 7 (0.0808) 13 (0.5489)

kNIL6 29 (0.0120) 26 (0.0228) 24 (0.1714)

kD 5 (0.5070) 14 (0.0641) 1 (8.4687)

dD 9 (0.3053) 16 (0.0434) 3 (6.9928)

xD 22 (0.0388) 32 (0.0068) 5 (2.9191)

kIL6TNF 19 (0.0980) 21 (0.0309) 25 (0.1676)

xIL6TNF 26 (0.0243) 30 (0.0077) 32 (0.0416)

kIL6 11 (0.2644) 11 (0.0765) 16 (0.4009)

dIL6 8 (0.3226) 17 (0.0417) 28 (0.1438)

xIL6 2 (1.0490) 5 (0.3033) 9 (1.5868)

xIL6IL10 12 (0.2637) 12 (0.0763) 17 (0.3997)

kIL6IL6 14 (0.1432) 19 (0.0369) 22 (0.1851)

xIL6IL6 16 (0.1345) 20 (0.0349) 23 (0.1761)

kTNF 25 (0.0266) 1 (0.4328) 27 (0.1514)

dTNF 27(0.0186) 2 (0.4219) 30 (0.1255)

xTNFIL10 34 (6.72e-07) 34 (2.48e-05) 34 (5.10e-06)

kTNFTNF 37 (9.242e-16) 37 (2.605e-14) 37 (6.221e-15)

xTNFTNF 38 (9.238e-16) 38 (2.603e-14) 38 (6.219e-15)

xTNFIL6 33 (0.0031) 10 (0.0769) 33 (0.0203)

kIL10TNF 35 (5.44e-08) 35 (3.76e-09) 35 (5.19e-08)

xIL10TNF 36 (5.41e-08) 36 (3.74e-09) 36 (5.17e-08)

kIL10IL6 18 (0.1026) 31 (0.0072) 31 (0.0782)

xIL10IL6 7 (0.3612) 23 (0.0245) 19 (0.2892)

kIL10 6 (0.4693) 22 (0.0264) 15 (0.4332)

dIL10 3 (0.5504) 18 (0.0417) 7 (1.7765)

xIL10 1 (1.0658) 15 (0.0603) 11 (0.9881)

xIL10d 10 (0.2958) 25 (0.0233) 10 (1.3924)

kIL102 17 (0.1299) 28 (0.0196) 6 (2.0486)

dIL102 32 (0.0045) 33 (0.0011) 20 (0.2891)

xIL102 4 (0.5195) 8 (0.0784) 2 (8.1899)

Figure 3.10 displays the relative sensitivity plots for IL6, TNF and IL10 at 12mg/kg en-

dotoxin challenge level. Contrary to the 7D relative sensitivity ranking plots at 3mg/kg in

Figure 3.9, the plots here do not demonstrate any even parameter spread formation among

the inflammatory cytokines. Rather there exists a number of parameters clustered together
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with relatively small and large gaps separating each cluster. With such formation it easy to

determine a cutoff point that separates sensitive parameters from less sensitive ones using the

“largest break in magnitude” method.

Table 3.6 contains no parameters with wide variability in rank across the inflammatory cy-

tokines. Rather it is common to find a parameter with ranks within three positions apart for

two of the three cytokines including xNTNF , xNIL10, dN , kTNF and xIL102. Another informa-

tion revealing in this table that is dramatically different from the previous tables is the fact that

xIL10 ranked 1st in IL6 but this parameter is not in any way linked with IL6. However, Table

3.6 has a common information consistent with the other tables regarding the set of parameters

that are least sensitive, namely, kIL10TNF , xIL10TNF , kTNFTNF and xTNFTNF .

3.5 7D Parameter Identifiability Analysis

The reduced model parameter identifiability analysis is conducted in a similar manner as in

Section 3.2. The SVD followed by QR with column pivoting subset selection method presented in

Section 2.2.4 produced the following results at endotoxin challenge levels 3mg/kg and 12mg/kg,

respectively:

• At challenge level 3mg/kg, the numerical rank r̂ = 18. This implies that subset selection

identifies the following as the 18 most linearly independent parameters:

kN , dN , kNP , xNIL10, kNTNF , kD, dD, xD, xIL6TNF , dIL6,

xIL6, kIL6IL6, dTNF , xTNFIL6, xIL10IL6, xIL10, xIL10d, dIL102.

• At level 12mg/kg, r̂ = 18. The 18 most identifiable parameters are:

kN , dN , kNP , kND, dD, xD, xIL6TNF , dIL6, xIL6, kIL6IL6,

dTNF , xTNFIL6, xIL10IL6, dIL10, xIL10, xIL10d, dIL102, xIL102.

15 parameters were commonly identified by both endotoxin challenge levels, 3 parameters were

uniquely identified by each level.

• These are the parameters uniquely identified at 3mg/kg endotoxin challenge level:

xNIL10, kNTNF kD
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• Parameters that are uniquely identified at 12mg/kg endotoxin challenge level include:

kND, dIL10 xIL102

From the above parameter identifiability analysis, we constructed two 7D models. These models

are known as

7D-15: This model is defined by the 15 parameters identified by both dose levels, we will referred

to is as 7D-15.

7D-21: This model is defined by the 21 parameters identified by either dose level, it shall be

known as 7D-21.

3.6 7D Parameter Estimation and Model Validation

Parameter estimation is carried out using similar technique as in Section 3.3. The reduced mod-

els will be calibrated to the existing experimental data on inflammatory cytokine to determine

best parameter estimates that can produce the most consistent representations of the data. We

also present curve fitting plots comparing the original 8D model in [126] with 7D-15 and

7D-21.

3.6.1 7D-15 Parameter Estimation and Model Validation

The parameter estimation results on the 15 free parameters in 7D-15 are displayed in Table

3.7. The table contains the nominal and optimized (estimated) values of the free parameters,

the nominal values corresponds with those used in the 8D model [126]. Together with the table

we also present curve fitting plots comparing 7D-15 (red dashed line (- -)), and 8D (blue solid

line (—)). The experimental data in black circle (mean±SD) denote the observed inflammatory

cytokines.
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Table 3.7: 7D-15 Model Parameter Estimation

Parameter Nominal Value Estimated Value

kN 5.5786e7 4.6297682e7

dN 0.1599 1.004344813

kNP 41.267 54.14849008

dD 0.37871 0.099359171

xD 1.8996e7 1.1646809e7

xIL6TNF 1211.3 1.5125569e8

dIL6 0.43605 0.308883173

xIL6 1.7856e8 2.3833727e8

kIL6IL6 122.92 1.1191631e4

dTNF 2.035 1.651880958

xTNFIL6 55610 1.9446269e4

xIL10IL6 26851 1.6942234e4

xIL10 8.0506e7 5.6323712e7

xIL10d 791.27 488.5519610

dIL102 0.0224 0.016876136

Figure 3.11: IL6(t) curve fitting plots comparing 7D-15 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot at 12mg/kg.

The plots of IL6(t) for 7D-15 in Figure 3.11 appeared almost identical to those of 8D-
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15 and 8D-21 in Figures 3.3 and 3.6, respectively. The plots from Figure 3.11 showed that

7D-15 successfully captured the dynamics of the experimental data on pro-inflammatory cy-

tokine IL6 at 3mg/kg (left plot) and 12mg/kg (right plot) endotoxin challenge levels, repec-

tively. A visual comparison of 7D-15 and 8D for IL6(t) indicate superior predictions in favor

of 7D-15.

Figure 3.12: TNF (t) curve fitting plots comparing 7D-15 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot at 12mg/kg.

Figure 3.12 shows the plots of pro-inflammatory cytokine TNF for 7D-15 and 8D at 3mg/kg

and 12mg/kg endotoxin challenge levels. The curve fitting of both models illustrate an overall

better quality predictions for 8D, this is attributed to 7D-15 poor quality of fit at 12mg/kg en-

dotoxin level. Thus far 8D-21 appears to have the best predictions of TNF at both endotoxin

challenge levels.

The concentrations of interleukin-10 (IL10) are displayed in Figure 3.13. The predictions of

7D-15 captured the dynamics of IL10 much better than both 8D-15 and 8D-21. Although

it is obvious that 7D-15 quality of fit for IL10 is worse when compared with those of IL6 and

TNF .
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Figure 3.13: IL10(t) curve fitting plots comparing 7D-15 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot at 12mg/kg.

3.6.2 7D-21 Parameter Estimation and Model Validation

Parameter estimation on the 21 parameters that defined 7D-21 are shown in Table 3.8. The op-

timized (estimated) values of the free parameters in this model are displayed in the table.

Figure 3.14 shows 7D-21 model prediction of IL6. All the competing models accurately

predicted the data on the concentrations of IL6. Also, these models captured IL6 better than

8D.

The plot of TNF at 12mg/kg endotoxin challenge level (right plot) in Figure 3.15 shows a

less refined fit for 7D-21 than at 3mg/kg endotoxin level (left plot). The quality of fit for the

reduced models, 7D-15 and 7D-21 at 12mg/kg endotoxin level were not as good as 8D-15

and 8D-21.
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Table 3.8: 7D-21 Model Parameter Estimation

Parameter Nominal Value Estimated Value

kN 5.5786e7 4.4091207e7

dN 0.1599 0.972982028

kNP 41.267 146.6611987

kND
‡ 0.013259 0.036994368

xNIL10
† 147.68 197.6274307

kNTNF
† 12.94907 11.43917219

kD
† 2.5247 0.905100790

dD 0.37871 0.172933699

xD 1.8996e7 2.0523098e7

xIL6TNF 1211.3 6.5236077e4

dIL6 0.43605 0.311674004

xIL6 1.7856e8 1.6006218e8

kIL6IL6 122.92 1.6011498e3

dTNF 2.035 2.005164169

xTNFIL6 55610 2.3509087e4

xIL10IL6 26851 2.1336983e4

dIL10
‡ 98.932 23.52073290

xIL10 8.0506e7 1.0203669e8

xIL10d 791.27 481.3224356

dIL102 0.0224 0.010827097

xIL102
‡ 37.454 12.30982416
† Most identifiable only at dose level 3mg/kg

‡ Most identifiable only at dose level 12mg/kg

From Figure 3.16, it is evident that the competing models were unable to accurately predict

the dynamics of IL10, where 7D-15 and 7D-21 were not as off target as 8D-15 and 8D-21.

However, it is noted that 8D and 7D-15 are the only models with trajectories that closely

captured the experimental data on interleukin-10 at both endotoxin levels.
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Figure 3.14: IL6(t) curve fitting plots comparing 7D-21 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot at 12mg/kg.

Figure 3.15: TNF (t) curve fitting plots comparing 7D-21 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot at 12mg/kg.
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Figure 3.16: IL10(t) curve fitting plots comparing 7D-21 (- -) and 8D (—) against experimental

data in black circle (mean±SD) at 3mg/kg and 12mg/kg endotoxin challenge levels; the plot

on the left represents 3mg/kg and the right plot at 12mg/kg.

3.7 Model Prediction

Model prediction was carried out using the existing experimental data at 6mg/kg endotoxin

challenge level. Recall that all the models were calibrated to experimental data at 3mg/kg and

12mg/kg endotoxin challenge levels. In this section, the proposed models (8D-15, 8D-21, 7D-

15, and 7D-21) alongside 8D will be validated by examining the quality of their predictions

of the experimental data at 6mg/kg endotoxin challenge level for each of the inflammatory

cytokines.
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Figure 3.17: IL6(t) model validation plots at 6mg/kg endotoxin challenge level comparing the

quality of predictability for the following models:

Top Left : 7D-15 (- -); 8D (—) , and experimental data in black circle (mean±SD),

Top Right : 7D-21 (- -); 8D (—), and experimental data in black circle (mean±SD),

Bottom Left : 8D-15 (- -); 8D (—), and experimental data in black circle (mean±SD),

Bottom Right : 8D-21 (- -); 8D (—), and experimental data in black circle (mean±SD).

As depicted in Figure 3.17, all the models predictions of interleukin-6 (IL6) at 6mg/kg endo-

toxin challenge level are consistent and they captured the true representation of the experimen-

tal data.
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Figure 3.18: TNF (t) model validation plots at 6mg/kg endotoxin challenge level comparing

the quality of predictability for the following models:

Top Left : 7D-15 (- -); 8D (—) , and experimental data in black circle (mean±SD),

Top Right : 7D-21 (- -); 8D (—), and experimental data in black circle (mean±SD),

Bottom Left : 8D-15 (- -); 8D (—), and experimental data in black circle (mean±SD),

Bottom Right : 8D-21 (- -); 8D (—), and experimental data in black circle (mean±SD).

The models’ predictability of TNF at 6mg/kg endotoxin challenge level in Figure 3.18 shows

a high level of consistency even though they were off target at the 2nd data point. The reason

for this could be due to the fact that endotoxin challenge levels 3mg/kg and 12mg/kg used to

calibrate the models did not exhibit such behavior at time point 2.

Figure 3.19 revealed another poor quality predictions of IL10 at 6mg/kg endotoxin challenge

level for all the models. However, 8D and 7D-15 appeared to have the best predictions of IL10.
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Figure 3.19: IL10(t) model validation plots at 6mg/kg endotoxin challenge level comparing

the quality of predictability for the following models:

Top Left : 7D-15 (- -); 8D (—) , and experimental data in black circle (mean±SD),

Top Right : 7D-21 (- -); 8D (—), and experimental data in black circle (mean±SD),

Bottom Left : 8D-15 (- -); 8D (—), and experimental data in black circle (mean±SD),

Bottom Right : 8D-21 (- -); 8D (—), and experimental data in black circle (mean±SD).

Results from the models curve fitting plots and the validation plots demonstrate that all the

models performed comparatively well with the only exception at predicting the concentration of

the anti-inflammatory cytokine, interleukin-10 (IL10). No model can be distinguished from the

others as having superior representations of the experimental data on inflammatory cytokines.

However, 8D, 8D-21 and 7D-15 showed a slight advantage over the others. Next, the Akaike

information criterion (AIC) discussed in Section 2.3 will be employed to compare the models

quantitatively. Finally, a decision will be made on the “best” model based on their AIC results

and the quality of their plots.
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3.8 AIC Result

Table 3.9 contains the calculated AIC values for all five models (8D, 8D-15, 8D-21, 7D-

15 and 7D-21). Recall that AIC selects the model that best explains the data set with the

fewest number of free parameters.

Table 3.9: Calculated AIC values

Variable Model 3mg/kg dose 12mg/kg dose

IL6 8D 116.0984 123.4298
8D-15 109.0618 108.4062
8D-21 105.7331 103.3354
7D-15 94.2663 88.6931
7D-21 94.5823 91.3639

TNF 8D 105.3654 116.9512
8D-15 100.4195 97.8565
8D-21 91.3872 88.2548
7D-15 86.6118 87.8016
7D-21 81.8431 90.0322

IL10 8D 80.9505 99.9839
8D-15 97.5898 106.7768
8D-21 97.5208 107.9757
7D-15 89.6408 99.3188
7D-21 96.0837 93.9691

Number in bold indicate lowest value in each combination of state and challenge level.

Results from the table indicate that 7D-15 had lowest AIC value in 3 combinations of in-

flammatory cytokines and endotoxin dose levels (IL6(t) at levels 3mg/kg and 12mg/kg, and

TNF (t) at level 12mg/kg), followed by 7D-21 with lowest AIC value in 2 combinations

(TNF (t) at level 3mg/kg and IL10(t) at level 12mg/kg), 8D came in third place with lowest

AIC value in 1 combination (IL10(t) at level 3mg/kg).

AIC head-to-head comparison between 7D-15 and the other models are given below:

• 7D-15 and 8D is 5 to 1 in favor of 7D-15.

• 7D-15 and 8D-15 is 6-0 in favor of 7D-15.

• 7D-15 and 8D-21 is 6-0 in favor of 7D-15.

• 7D-15 and 7D-21 is 4 to 2 in favor of 7D-15.
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Based on the AIC values, the quality of their respective least squares fit, and the accuracy of

their model prediction at 6mg/kg, 7D-15 emerged to be the most consistent model that can

successfully predict the acute inflammatory response that is triggered by endotoxin. To this

end, 7D-15 is the model of choice that will be used for the remainder of this work, for brevity

this model shall be referred to as 7D.

3.9 Mathematical Analysis of 7D

In this section, we give a rigorous mathematical proof of the existence and uniqueness for a

solution to the 7D model. In addition, we will carry out a steady state and stability analy-

sis.

3.9.1 Existence and Uniqueness

Consider the initial value problem

ẏ = f(t, y(t)), (3.1)

with initial condition

y(t0) = y0, (3.2)

where y(t) = [P (t), N(t), D(t), IL6(t), TNF (t), IL10(t), YIL10(t)]. Equations (3.1) and (3.2)

denote the compact form of the reduce 7D model described in Section 2.2.2. The theory of

existence and uniqueness of a solution to Equations (3.1) and (3.2) usually appeals to Lipschitz

continuity in y of the function f in Equation (3.1). In particular,

Theorem 3.9.1 (Theorem 3.10 from [96]).

Suppose that for x0 ∈ Rn, there is a constant b such that f : Bb(x0)1 → Rn is Lipschitz with

constant K. Then, the initial value problem (3.1) and (3.2) has a unique solution, x(t) for

t ∈ J = [t0 − a, t0 + a], provided

a =
b

M
where M = max

x∈Bb(x0)
|f(x)|.

1Bb(x0) ≡ {x ∈ Rn | |x− x0| < b}
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We proceed with the determination of a global Lipschitz bound by separating the model into

source, linear and nonlinear terms, respectively [1, 23, 37]. Hence,

ẏ = f(t, y) = S + L(t)y + g(t, y), (3.3)

where S is the source term, L(t) is the linear term, and g(t, x) the nonlinear term. Some

nonlinear terms in g(t, y) do not satisfy Lipschitz condition in y(t) since they can become

unbounded. This problem can be resolved by replacing these terms with standard saturated

nonlinear piecewise differentiable terms.

From Equation (2.2),

g2(t, y) = kN ·
Γ(t)

xN + Γ(t)
≤ kN ,

and
∂g2(t, y)

∂P (t)
≤ kN ,

∂g2(t, y)

∂D(t)
≤ kN ,

∂g2(t, y)

∂IL6(t)
≤ kN ,

∂g2(t, y)

∂TNF (t)
≤ kN .

Hence, ∂g2(t,y)
∂y ≤ kN .

From Equation (2.3),

g3(t, y) = kD ·
N(t)6

x6
D +N(t)6

≤ kD

and
∂g3(t, y)

∂N(t)
≤ 6 · kD.

Hence, ∂g3(t,y)
∂y ≤ 6 · kD.

From Equation (2.4),

g4(t, y) = kIL6 ·
N(t)4

x4
IL6 +N(t)4

·Ω(t) ≤ kIL6 · (1 + kIL6TNF + kIL6IL6),

and

∂g4(t, y)

∂N(t)
≤ 4·kIL6·(1+kIL6TNF+kIL6IL6),

∂g4(t, y)

∂IL6(t)
≤ kIL6·kIL6IL6,

∂g4(t, y)

∂TNF (t)
≤ kIL6·kIL6TNF

Hence, ∂g4(t,y)
∂y ≤ 4 · kIL6 · (1 + kIL6TNF + kIL6IL6).

From Equation (2.5)

g5(t, y) = kTNF ·N(t)1.5Φ(t)
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Notice that N(t)1.5 has the potential to become unbounded. Therefore, we will replace it with

the saturated term ˇN(t)
1.5
, where

ˇN(t) =


0 N(t) < 0

N(t) 0 ≤ N(t) ≤ ¯N(t)
¯N(t) ¯N(t) < N(t).

Observe that gs5(t, y) ≤ kTNF (1 + kTNFTNF ) · ¯N(t)
1.5
, (gs5 is the saturated nonlinear term in

Equation (2.5)),

and

∂gs5(t, y)

∂N(t)
≤ 1.5 · kTNF ·

√
¯N(t)(1 + kTNFTNF ),

∂gs5(t, y)

∂TNF (t)
≤ kTNF · kTNFTNF · ¯N(t)

1.5
.

Hence, ∂g5(t,y)
∂y ≤ max{1.5 · kTNF ·

√
¯N(t)(1 + kTNFTNF ), kTNF · kTNFTNF · ¯N(t)

1.5}.
Note that the new rate function defined by gs5(t, y) is globally bounded and piecewise dif-

ferentiable. Also, the rates in the form of a rational function are bounded with bounded

derivatives.

From Equation (2.6)

g6(t, y) = kIL10 ·
N(t)3

x3
IL10 +N(t)3

·Ψ(t)− β(t) ≤ kIL10(1 + kIL10IL6 + kIL10TNF ),

and

∂g6(t, y)

∂N(t)
≤ 3 · kIL10(1 + kIL10IL6 + kIL10TNF ),

∂g6(t, y)

∂IL6(t)
≤ 4 · kIL10 · kIL10IL6,

∂g6(t, y)

∂TNF (t)
≤ kIL10 · kIL10TNF ,

∂g6(t, y)

∂IL10(t)
≤ | − dIL10|.

Hence, ∂g6(t,y)
∂y ≤ max{3 · kIL10(1 + kIL10IL6 + kIL10TNF ), 4 · kIL10 · kIL10IL6, | − dIL10|}.

From Equation (2.7),

g7(t, y) = kIL102 ·
D(t)4

x4
IL102 +D(t)4

≤ kIL102,

and
∂g7(t, y)

∂D(t)
≤ kIL102.

Hence, ∂g7(t,y)
∂y ≤ kIL102.
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The only notable difference between the nonlinear term g(t, y) and the saturated nonlinear

term gs(t, y) is in Equation (2.5), where g5(t, y) is replaced by gs5(t, y). Whenever the model

states drop below the saturated limits, the saturated model equals the original model since

gs(t, y) = g(t, y), otherwise the rate in Equation (2.5) saturates. Notice that the saturated

model only affects g(t, y).

These bounds show that the derivative of the saturated nonlinear term is bounded above,

i.e.,

‖Dygs(t, y)‖∞ <∞.

We are now in a position to prove global existence and uniqueness of a solution to the saturated

model; f s(t, y) = S+L(t)y+gs(t, y). The Lipschitz continuity of the saturated model is:

|fs(t, x)− fs(t, y)| = |L(t)(x− y) + gs(t, x)− gs(t, y)| (3.4)

As shown in [23], the multidimensional Mean Value Theorem implies that for x, y ∈ R7

gs(t, x)− gs(t, y) =

∫ 1

0
Dxgs(t, y + z(x− y))(x− y)dz.

Hence,

|f s(t, x)− f s(t, y)| = |L(t)(x− y) +

∫ 1

0
Dxgs(t, y + z(x− y))(x− y)dz| (3.5)

≤ |L(t)||x− y|+ ‖Dxgs(t, x)‖∞|x− y| (3.6)

= KL|x− y|, (3.7)

when t ∈ J. Consequently, fs is a contraction and has a unique fixed point that is a solution to

Equation (3.1) provided that

a ≤ b

M
and a <

1

KL
.

Hence, from Theorem 3.9.1, we have shown that the solution to the saturated model exists and

is unique over the interval J.

3.9.2 Steady State and Stability Analysis

We begin this section with the following definitions:

Definition 3.9.1 Equilibrium [26].

y = a is an equilibrium or steady state solution of Equation (3.1) precisely when f(a) = 0.
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Definition 3.9.2 Stability [96].

A linear system is spectrally stable if none of its eigenvalues has a positive real part.

A general analytical analysis of the steady states and local stability of the 7D model in Sec-

tion 2.2.2 would be nontrivial due to the complexity of the mathematical model. However,

we can use the numerical values of the parameters and specifying initial values of the state

variables to compute the steady states and also carry out a standard linearization to obtain

the eigenvalues of the linearized model. This was done using the Matlab function fsolve. From

Definition 3.9.2, we know that a system is stable if the eigenvalues of the jacobian matrix have

negative real parts at the steady state.

To compute the steady state (equilibrium) of the reduced 7D system in Section 2.2.2, we specify

the following initial conditions. These conditions represent the three different concentrations

of endotoxin insults that the rats received:

y0 = [3, 0, 0, 0, 0, 12.302, 0],

y0 = [6, 0, 0, 0, 0, 12.302, 0],

y0 = [12, 0, 0, 0, 0, 12.302, 0].

Using “fsolve” in Matlab to solve f(t, y, q) = 0 at the respective initial conditions, the solutions

obtained all converge to the same basal state:

ye ≈ [0, 0, 0, 0, 0, 12.302, 0]

This implies that in the long run the body will settle at a position with basically no endotoxin

concentration, zero number of activated phagocytic cells, no tissue damaged, the concentrations

of pro-inflammatory cytokins will have vanished, and a small amount of interleukin-10 (anti-

inflammatory cytokine).
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To proceed with the steady state stability analysis, we obtained the jacobian matrix evaluated

at ye:

JM ≈



−3 0 0 0 0 0 0

1.6323e8 −1.0043 3.9970e4 0 0 0 0

0 0 −0.099359 0 0 0 0

0 0 0 −0.3089 0 0 0

0 0 0 0 −1.6519 0 0

0 0 0 0 0 −94.132 1

0 0 0 0 0 0 −0.01688


, (3.8)

with eigenvalues of JM:

EIGJM ≈



−0.30888

−1.6519

−94.132

−0.016876

−1.0043

−0.099359

−3


. (3.9)

Hence, we have demonstrated that the 7D system exhibits a stable steady state.
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Part II

Derivation of Optimal Treatment

Control
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Chapter 4

Optimal Control Methodolody

4.1 Introduction

Optimal control deals with finding a control law that will cause a system to satisfy some physical

or design constraints and at the same time minimize (or maximize) a chosen cost function. The

history of optimal control theory as justified by [134] dates back to 1696 in the Netherlands,

when Johann Bernoulli challenged his contemporaries with the brachistochrone problem. Given

two points A and B in a vertical plane, find the orbit AMB of the movable point M which,

starting from A and under the influence of its own weight, arrives at B in the shortest possible

time. Indeed, this problem was a true minimum-time problem, and the first to deal with a

dynamical behavior and explicitly ask for the optimal selection of the path. However, the

era of modern optimal control theory began in the 1950s with the formulation of two main

optimization approaches:

1) Pontryagin Maximum Principle: The maximum principle is a generalization of the Euler-

Lagrange equations that stems from calculus of variations. In this approach, the optimal

control is located in a manner that makes sure the neighboring controls cannot lead to smaller

costs, thus ensuring that the derivative of the cost function about the optimal control will

be zero.

2) Dynamic Programming : This technique is considered to have originated from the Hamilton-

Jacobi approach. Here the optimal control remains optimal at intermediate points in time.

In the ensuing two sections, we give a detailed description of these approaches. The materials

in these sections are due to [111].
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4.1.1 Calculus of Variation: Euler-Lagrange equations

Consider a nonlinear time invariant dynamical system given by

min
u(·)

J = ψ(x(tf )) +

∫ tf

0
(q(x) + uTu)dt (4.1)

subject to

ẋ = f(x) + g(x)u (4.2)

x(0) = x0, (4.3)

with state x ∈ Rn, control input u ∈ Rm, initial time t0, final time tf , f : Rn → Rn, g :

Rn → Rn×m continuously differentiable in all arguments and the cost at the terminal time

ψ(x(tf )).

The calculus of variations solution can be viewed as applying the necessary conditions for con-

strained optimization, the only change is that the optimization is infinite dimensional. There-

fore, Lagrange multipliers is used to combine the constraints (Equation (4.2)) to the cost func-

tion (Equation (4.1)). To this end, we define the modified cost function using the Lagrange

multipliers λ(t) ∈ Rn as

J̄ = ψ(x(tf )) +

∫ tf

0
[q(x(t)) + u(t)Tu(t) + λT (t)(f(x(t)) + g(x(t))u(t)− ẋ)]dt (4.4)

Defining the Hamiltonian H using what is referred to as a Legendre transformation,

H(x(t), u(t), λ(t)) = q(x(t)) + u(t)Tu(t) + λT (t)(f(x(t)) + g(x(t))u(t), (4.5)

and integrating the last term on the right side of Equation (4.4) by parts to obtain

J̄ = ψ(x(tf )) + λT (tf )x(tf ) + λT (0)x(0) +

∫ tf

0
[H(x(t), u(t), λ(t)) + λ̇T (t)x(t)]dt. (4.6)

From the theory of Lagrange multipliers, the problem of determining the control function

u(t), that minimizes the original cost function Equation (4.1) subject to the constraints Equa-

tion (4.2) has been transformed to the problem of finding an unconstraint stationary points of

Equation (4.6).
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Next, consider the equation for variations of Equation (4.6) with respect to x(t) and u(t)

δJ̄ =

[(
∂ψ

∂x
− λT

)
δx

]
t=tf

+ [λT δx]t=0 +

∫ tf

0

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂u
δu

]
dt. (4.7)

For a stationary point, it is required that this be equal to zero for all allowable variations. First,

consider the variation δx, to make the coefficients of δx in Equation (4.7) vanish, λ(t) have to

be chosen according to

λ̇T = −∂H
∂x

, 0 ≤ t ≤ tf , (4.8)

with boundary condition

λT (tf ) =
∂ψ

∂x

∣∣∣∣
t=tf

. (4.9)

Equation (4.7) becomes

λT (0)δx(0) +

∫ tf

0

[
∂H

∂u
δu

]
dt. (4.10)

Since the initial condition is given and fixed, then δx(0) = 0. Also, since for a stationary point

the variation must be zero for arbitrary δu(t), the following must be satisfied

∂H

∂u
= 0 0 ≤ t ≤ tf . (4.11)

Equations (4.8), (4.9) and (4.11), plus the original dynamics and initial condition represent

necessary conditions for optimality known as the Euler-Lagrange equations. These equations

are used to design the control u(t) that minimizes the cost function, and can be summarized

as follows:

ẋ = f(x) + g(x)u (4.12)

λ̇ = −
(
∂H

∂x

)T
(4.13)

∂H

∂u
= 0, (4.14)
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with boundary conditions

x(0) given (4.15)

λ(tf ) =

(
∂ψ

∂x

)T ∣∣∣∣∣
t=tf

. (4.16)

The optimizing control action u∗(t) is determined by

u∗(t) = arg min
u
H(x∗(t), u, λ∗(t)), (4.17)

where x∗(t) and λ∗(t) denote the solution corresponding to the optimal trajectory.

The Lagrange multiplier λ(t) is a dynamical variable that satisfies its own dynamical equation

(4.13), known as costate or adjoint equation that progresses backward in time (by defining the

backward time variable τ = tf − t it follows that dτ = −dt), with the final condition λ(tf ) given

in Equation (4.16).

Properties of the Euler-Lagrange solution

• Open-Loop: The optimal trajectory is explicitly solved as a function of time, not as a

feedback law.

• Local : The solution is only valid for the particular initial condition x(0). The problem is

resolved whenever a new initial condition is given.

• Necessary : Since the Euler-Lagrange equations specify the conditions for the existence of

a stationary point, they represent necessary conditions for an optimal trajectory.

4.1.2 Dynamic Programming: Hamilton-Jacobi-Bellman equations

Consider the nonlinear optimal control problem

min
u(·)

J =

∫ ∞
0

(q(x) + uTu)dt (4.18)

subject to

ẋ = f(x) + g(x)u (4.19)

x(0) = x0, (4.20)

for q : Rn → R positive semi-definite and C1 and the description of the other terms are

consistent with those in the previous section. The desired solution is a state feedback control
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law. Suppose the system [f(x), q(x)] is zero-state detectable, i.e., for all x ∈ Rn, q(φ(t, x)) =

0⇒ φ(t, x)→ 0 as t→∞ where φ(t, x) is the state transition function of the system ẋ = f(x)

with initial condition x(0) = x.

To derive the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) solution to

the nonlinear optimal control problem, we adopt the dynamic programming technique described

in [17]. First, we will present the principle of optimality definition, then apply this concept to

the optimal control problem so as to derive the HJB PDE.

Definition 4.1.1 Principle of Optimality1.

If u∗(τ) is optimal over the interval [t, tf ], starting at state x(t), then u∗(τ) is necessarily optimal

over the subinterval [t+4t, tf ] for any 4t such that tf − t ≥ 4t > 0.

The assumption underlying the principle of optimality is that the system can be characterized

by its state x(t) at time t, this summarizes the effect of all inputs u(τ) prior to time t. Therefore,

the concept of dynamic programming is applying the principle of optimality to formulate an

optimization problem as a recurrence relation. In the case of an optimal control problem, if

one considers a value function which associates to every point in state space the optimal cost

starting from that point, then we can write a recurrence relation in terms of the optimal value

function which is valid for the entire state space. If this relation can be solved, then the value

function obtained is associated with an entire family of optimal control problems, each with a

different initial point.

Let us illustrate this idea by solving the nonlinear optimal control problem in Equations

(4.18)-(4.20). Let V ∗(x0) be the minimum of the cost function over all admissible trajecto-

ries (x(t), u(t)) where x begins at point x0:

V ∗(x0) = min
u(·)

∫ ∞
0

(q(x(t)) + uT (t)u(t))dt (4.21)

subject to

ẋ = f(x(t)) + g(x(t))u(t) (4.22)

x(0) = x0. (4.23)

If no such trajectory exists, then V ∗(·) = +∞. The value function or Bellman’s function of

the optimal control problem is given as V ∗ : Rn → R+ ∪ {∞}. An optimal trajectory is a pair

(x(t), u(t)) with a starting point x0 and achieves optimal cost V ∗(x0).

1The principle of optimality is utilized by assuming that the control is piecewise smooth and left continuous.
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To apply the principle of optimality, consider V ∗(x) given by Equation (4.21), and let u(t) be

defined as the control signal over the interval [t,∞). By the additive properties of integrals and

the principle of optimality

V ∗(x(t)) = min
u(t)

{∫ t+4t

t
[q(x(τ)) + uT (τ)u(τ)]dτ + V ∗(x(t+4t))

}
. (4.24)

This implies that the optimal cost at x(t) is given by the minimum of the cost it takes to move

to x(t+4t) plus the cost incurred thus far. By using the principle of optimality the problem

of finding an optimal control over the interval [t,∞) has been reduced to finding an optimal

control over the reduced interval [t, t+4t].

Next, when 4t is small, the integral in (4.24) can be approximated by [q(x(t)) +uT (t)u(t)]4 t.
Applying a multivariable Taylor-series expansion of V ∗(x(t+4t)) about x(t), with x(t+4t)−
x(t) approximated by [f(x(t)) + g(x(t))u(t)]4 t, yields

V ∗(x) = min
u

{
[q(x) + uTu]4 t+ V ∗(x) +

(
∂V ∗

∂x

)
[f(x) + g(x)u]4 t+ o(4t)

}
, (4.25)

where ∂V ∗

∂x denotes the gradient of V ∗ with respect to the vector x, and o(4t) denotes higher-

order terms in 4t. If we take limit as 4t → 0 and cancelling V ∗(x) on both sides, we ob-

tain

min
u(t)

{
[q(x(t)) + uT (t)u(t)] +

(
∂V ∗

∂x

)
[f(x(t)) + g(x(t))u(t)]

}
= 0. (4.26)

The boundary condition for this equation is given by V ∗(0) = 0 where V ∗(x) must be positive

for all x. Equation (4.26) is one form the HJB equations. In many cases, this is not the final

form of the equation. Two more steps can often be performed to reach a more convenient

representation of this equation.

1) First, the indicated minimization is performed, leading to a control law of the form

u∗ = −1

2
gT (x)

∂V ∗T

∂x
. (4.27)

2) The second step is to substitute Equation (4.27) back into Equation (4.26), and solve the
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resulting nonlinear PDE

∂V ∗

∂x
f(x)− ∂V ∗

∂x
g(x)gT (x)

∂V ∗T

∂x
+ q(x) = 0 (4.28)

for V ∗(x).

Equation (4.28) is what we often refer to as the HJB equation. The actual calculation of the

optimal control action proceeds in an opposite fashion to the steps given above. First the HJB

equation (Equation (4.28)) is solved for V ∗, then this is substituted into Equation (4.27) where

we obtain the optimal control action that achieves this minimal cost.

Properties of the Hamilton-Jacobi-Bellman solution

• Closed-Loop: The solution is a state feedback control law as given in Equation (4.27).

• Global : The solution provides the optimal control trajectory from every initial condition.

Hence, it solves the optimal control problem for every initial condition, all at once.

• Sufficient : The solution of the HJB equation provides a sufficient condition for the solution

to the corresponding optimal control problem.

Remark: In general, the HJB equation (4.28) is computationally intractable. This is the reason

behind the existence of the discipline of nonlinear optimal control. The field of nonlinear

optimal control can be thought of as the development of computationally tractable sub-optimal

solutions to the optimal control problem.

4.2 7D Optimal Control Formulation

We draw our attention back to the formulation of an optimal treatment control to modulate

inflammatory response to endotoxins. The control of inflammatory response is vital in the

overall scheme of treating a critically ill animal or human. Optimal control techniques enable

us to develop appropriate therapeutic regiment that can steer the model to a healthy state in

reasonable time.

In this work, we seek to find a treatment strategy that minimizes the cost function given

by
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J =

∫ tf

t0

[QNN(t)2 +QDD(t)2 +QY YIL10(t)2 +RIL6IL6Dose(t)2 +RIL10IL10Dose(t)2]dt,

(4.29)

subject to

dP (t)

dt
= −dp · P (t) (4.30)

dN(t)

dt
= kN ·

Γ(t)

xN + Γ(t)
− dN ·N(t) (4.31)

dD(t)

dt
= kD ·

N(t)6

x6
D +N(t)6

− dD ·D(t) (4.32)

dIL6(t)

dt
= kIL6 ·

N(t)4

x4
IL6 +N(t)4

·Ω(t)− dIL6 · IL6(t) + IL6Dose(t) (4.33)

dTNF (t)

dt
= kTNF ·N(t)1.5Φ(t)− dTNF · TNF (t) (4.34)

dIL10(t)

dt
= kIL10 ·

N(t)3

x3
IL10 +N(t)3

·Ψ(t)−Θ(t) + YIL10(t) + sIL10 + IL10Dose(t) (4.35)

dYIL10(t)

dt
= kIL102 ·

D(t)4

x4
IL102 +D(t)4

− dIL102 · YIL10(t), (4.36)

with initial conditions

P (0) = 3, 6, or 12; N(0) = 0; D(0) = 0; IL6(0) = 0. (4.37)

TNF (0) = 0; IL10(0) =
sIL10 · xIL10d

dIL10 · xIL10d − sIL10
; YIL10(0) = 0.

Here, Γ(t), Ω(t), Φ(t), Ψ(t) and Θ(t) are defined in Section 2.2.2. IL6Dose(t) and IL10Dose(t)

are the treatment therapies (control variables) added to the 7D model. The addition of the

treatment therapies in Equations (4.33) and (4.35) allow proper regulation of the pro- and

anti- inflammatory responses. The source term IL6Dose(t) represents the treatment therapy

for interleukin-6 (IL6) whereas the treatment therapy for interleukin-10 (IL10) is the source

term IL10Dose(t). No treatment control was added to TNF ; this is to avoid increasing the

complexity of the control problem because an initial investigation on the addition of a control

term did not alter the solution (the control remained at the zero level for the entire duration of

the horizon). For this reason, we anticipate that modulating the effects of IL6 and IL10 will

lead to tractable concentration levels of TNF .

The cost function (4.29) demonstrate our desire to minimize the activated phagocytic cells
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(N), tissue damage marker (D), tissue damage driven IL-10 promoter (YIL10), IL6 treatment

dose IL6Dose(t), and IL10 treatment dose IL10Dose(t). The parameters QN , QD and QY in

Equation (4.29) are the weight constants for the activated phagocytic cells (N), tissue damage

marker (D) and tissue damage driven IL-10 promoter (YIL10), respectively. The weight con-

stants associated with the control variables are RIL6 and RIL10. Note that IL6Dose(t) and

IL10Dose(t) are bounded so that dosing cannot be negative as well as limiting the maximum

dose required; this is important because the treatment therapy can only be infused into the

system but cannot be extracted and we need to avoid overdosing. Hence, we find an optimal

control pair (IL6Dose(t)∗, IL10Dose(t)∗) such that

J(IL6Dose∗, IL10Dose∗) = min{J(IL6Dose, IL10Dose)|(IL6Dose, IL10Dose) ∈ F}

subject to Equations (4.30)-(4.36), and

F = {(IL6Dose(t), IL10Dose(t))|0 ≤ IL6Dose(t) ≤ b1, 0 ≤ IL10Dose(t) ≤ b2}.

To this end, we rewrite Equation (4.29) as

J(u) =

∫ tf

t0

L(y, u, t)dt (4.38)

and formulate the Hamiltonian (H) as

H(y, u, λ, t) = L(y, u, t) + λT f(y, u, t), (4.39)

where y = [P (t), N(t), D(t), IL6(t), TNF (t), IL10(t), YIL10(t)]T denote the respective states,

the control inputs are u = [IL6Dose(t), IL10Dose(t)]T , and λ is a costate variable which arises

from using the Lagrange multiplier method since our problem is a constrained optimization. It

can then be shown ([84, 100]) that the solution u∗ to Equation (4.39) satisfies

ẏ =
∂H

∂λ
= f (4.40)

−λ̇ =
∂H

∂y
=
∂fT

∂x
λ+

∂L

∂y
, (4.41)

and
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min H with respect to u ≤ F as

H(y∗, u∗, λ∗, t) ≤ H(y∗, u, λ∗, t), (4.42)

where Equations (4.40) and (4.41) are the state and costate system, and (4.42) is the famous

Pontryagin’s Minimum Principle; notice that ∗ denotes optimality. In summary, we aim to

find u∗ that is within the admissible (constraint) control region specified by F that satisfied

Equations (4.40), (4.41) and (4.42).

4.2.1 7D Optimal Control Problem: Existence of a Solution

We will mirror the procedure used in [37] to show the existence of a solution to our optimal

control problem. First, we present the following results on existence theorem due to [51].

Consider a control problem of the form

J(x0, u) = φ(e) (4.43)

subject to

ẋ = f(t, x(t), u(t)), t0 5 t 5 t1, (4.44)

where x(t) ∈ En is the system state and u(t) ∈ U the control applied at time t End conditions

are imposed imposed of the type e ∈ S, where e = (t0, t1, x(t0), x(t1)) and S is a given subset

of E2n+2. The cost J(x0, u) is of Mayer type, and for each (t, x) ∈ En+1 let

F (t, x) = {f(t, x, u) : u ∈ U}.

Assumptions 4.2.1 ((2.4) in Chapter 3, [51])

f is continuous; moreover, there exist positive constants C1, C2 such that

a) |f(t, x, u)| 5 C1(1 + |x|+ |u|),

b) |f(t, x′, u)− f(t, x, u)| 5 C2|x′ − x|(1 + |u|) for all t ∈ E1, x′, x ∈ En, and u ∈ U.

In stating an existence theorem, let F denote the class of all (x0, u) such that u is a Lebesgue-

integrable function on an interval [t0, t1] with values in U .

Theorem 4.2.1 (Theorem 2.1 in Chapter 3, [51])

Suppose that Assumptions 4.2.1 hold, and moreover that:
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a) F is not empty,

b) U is compact,

c) S is compact and φ is continuous on S,

d) F (t, x) is convex for each (t, x) ∈ En+1.

Then there exist (x∗, u∗) minimizing J(x0, u) on F .

Corollary 4.2.1 (Corollary 2.2 in Chapter 3, [51])

Let µ = inf J(x0, u) and µ1 > µ. In Theorem 4.2.1 assumption (c) can be replayed by:

c’) φ is continuous on S; there exists a compact S′ ⊂ S such that e ∈ S and J(x0, u) 5 µ1

imply e ∈ S′.

Theorem 4.2.1 can be extended in two ways. First, instead of the Mayer for in Equation (4.43),

we suppose that

J(x0, u) =

∫ t1

t0

L(t, x(t), u(t))dt+ φ(e), (4.45)

where the cost J(x0, u) is said to be of Bolza type. Second, the control U is allowed not to be

compact. Define

F̃ (t, x) = {z̃ : z = f(t, x, u), zn+1 = L(t, x, u), u ∈ U},

where z = (z1, . . . , zn) ∈ En and z̃ ∈ En+1.

Theorem 4.2.2 (Theorem 4.1 in Chapter 3, [51])

Suppose that Assumptions 4.2.1 hold, that L is continuous, and moreover that:

a) F is not empty,

b) U is closed,

c) S is compact and φ is continuous on S,

d) F̃ (t, x) is convex for each (t, x) ∈ En+1,

e) L(t, x, u) = g(u), where g is continuous and |u|−1g(u)→ +∞ as |u| → ∞, u ∈ U.

Then there exist (x∗, u∗) minimizing J(x0, u) on F .

Some of the assumptions in the theorem can be replaced by others, more easily verified. For

example, if U is compact then e) follows.
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Corollary 4.2.2 (Corollary 4.1 in Chapter 3, [51])

In Theorem 4.2.2 any of the assumptions c), d), e) can be replaced by the corresponding c’),

d’), e’) where:

c’) Same as Corollary 4.2.1.

d’) U is convex, f(t, x, u) = α(t, x) + β(t, x)u, L(t, x, ·) is convex on U

e’) L(t, x, u) = c1|u|β − c2, c1 > 0, β > 1.

To show the existence of an optimal solution u∗ to our control problem at least for the saturated

system (of Equations (4.30)-(4.36)), we will show that our optimal control problem satisfy the

following conditions:

1) f is is continuous and Lipschitz continuous with respect to y.

2) The set of admissible controls, F is closed and convex.

3) L is continuous and convex on F ∀ t ∈ R and y ∈ Rn.

4) |f(y, u, t)| ≤ c(1 + |y|).

5) L ≥ c1||u||β − c2, ci > 0, i = 1, 2, β > 1.

These conditions stem from merging Theorem 4.2.2 and Corollary 4.2.2 (see also [37]).

To show 1) : In Section 3.9.1 we proved that the saturated 7D system is Lipschitz continuous.

Since the treatment therapies in (4.33) and (4.35) are source terms, the result in Section 3.9.1

remains valid.

To show 2) : The admissible control defined by the set F = {(IL6Dose(t), IL10Dose(t))|0 ≤
IL6Dose(t) ≤ b1, 0 ≤ IL10Dose(t) ≤ b2} is closed and convex by definition.

To show 3): L(y, u, t) = QNN(t)2+QDD(t)2+QY YIL10(t)2+RIL6IL6Dose(t)2+RIL10IL10Dose(t)2

is quadratic in u, hence it is convex on F .

To show 4): The proof in Section 3.9.1 establishes that the nonlinear terms in the saturated 7D

system are bounded; therefore, there exists a c that satisfied condition (4).
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To show 5):

L(y, u, t) = QNN(t)2 +QDD(t)2 +QY YIL10(t)2 +RIL6IL6Dose(t)2 +RIL10IL10Dose(t)2

≥ min{RIL6, RIL10}||u||2 +QNN(t)2 +QDD(t)2 +QY YIL10(t)2

≥ min{RIL6, RIL10}||u||2 +QNN(t)2 +QDD(t)2 −QY YIL10(t)2

≥ min{RIL6, RIL10}||u||2 −QY YIL10(t)2

≥ min{RIL6, RIL10}||u||2 −QY max{YIL10(t)2}

Therefore, condition 5) holds for β = 2, c1 = min{RIL6, RIL10} and c2 = max{YIL10(t)2}.
This condition is relatively easy to show since all the terms in L(y, u, t) are quadratic and are

nonnegative. Hence, we have established the existence of an optimal solution for our saturated

system (Equations (4.30)-(4.36)).

4.3 Optimal Control Problem: Numerical Results

According to [128], there are essentially three numerical techniques for solving optimal control

problems:

1) Solve the two-point boundary value problem given by the necessary conditions, with solution

of the local Hamiltonian optimization problem at each time step.

2) Complete discretization of the problem, converting it into a finite dimensional nonlinear

program.

3) Finite parameterization of the control trajectory, again converting the problem into a nonlin-

ear program, but with the objective and constraint functions evaluated by integration of the

system equations and their gradients with respect to the control parameters by integration

of the adjoint equations or sensitivity equations.

Method 1) was utilized in [2] to derive HIV therapeutic strategies that uses two types of dy-

namic treatments representing reverse transcriptase inhibitors (RTIs) and protease inhibitors

(PIs). In [37], method 3) was adopted in the treatment of individuals infected with HIV. More

specifically, this work considers treatment schedules that can control the infection (HIV). Sev-

eral commercial and non-commercial softwares have been developed to solve optimal control

problems numerically. The Professional Optimal Control Software (PROPT), General Pseu-

dospectral Optimal Control Software (GPOPS), Sparse Optimal Control Software (SOCS),

and Recursive Integration Optimal Trajectory Solver 95 (RIOTS 95) are some optimal control
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solvers developed thus far. In some situations, researches prefer to develop customized codes

for solving their respective optimal control problems.

We will use GPOPS version 2.4 [57, 117] to solve our formulated optimal control problem.

GPOPS is an open source MATLAB software for solving highly complex multiple-phase opti-

mal control problems. It uses the Legendre-Gauss and Legendre-Gauss-Radau pseudospectral

methods. The pseudospectral method is a direct transcription that transcribes the continuous

optimal control problem into a discrete nonlinear programming problem (NLP). This can then

be solved by well-developed nonlinear programming algorithms [18] (this approach resembles

“method 2)” described above). GPOPS employes a third party nonlinear programming solver

to solve the discrete NLP. The third party solvers GPOPS adopts are SNOPT (Sparse Non-

linear OPTimizer) and IPOPT (Interior Point Optimizer). In this work we will use SNOPT

[133].

4.3.1 GPOPS

Gauss Pseudospectral Optimization Software (GPOPS) is a MATLAB program for solving

multiple-phase optimal control problems of the form.

Given a set of P phases, minimize the cost functional

J =
P∑
p=1

[
Φ(p)(x(p)(t0), t0,x

(p)(tf ), tf ; q(p)) +

∫ t
(p)
f

t
(p)
0

L(p)(x(p)(t),u(p)(t), t; q(p))dt

]

subject to

ẋ(p) = f (p)(x(p),u(p), t; q(p)), (p = 1, . . . , P ),

with inequality path constraints

C
(p)
min ≤ C(p)(x(p)(t),u(p)(t), t; q(p)) ≤ C(p)

max, (p = 1, . . . , P ),

boundary conditions

φmin ≤ φ(p)(x(p)(t0), t
(p)
0 ,x(p)(tf ), t

(p)
f ; q(p)) ≤ φmax, (p = 1, . . . , P ),
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and phase continuity (linkage) constraints

P
(s)
min ≤ P(s)(x(psl )(tf ), t

(psl )

f ; q(psl ),x(psu)(t0), t
(psu)
0 ; q(psu)) ≤ P(s)

max,

{
pl, pu ∈ [1, . . . , P ]

s = 1, . . . , L
.

Here, x(p)(t) ∈ Rnp , u(p)(t) ∈ Rmp , q(p) ∈ Rqp and t ∈ R denote the state, control, static

parameters and time in phase p ∈ [1, . . . , P ], respectively. L is the number of phases to be linked,

psl ∈ [1, . . . , P ], (s = 1, . . . , L) are the “left” phase numbers, and psu ∈ [1, . . . , P ], (s = 1, . . . , L)

the “right” phase numbers.

GPOPS employed the Gauss Pseudospectral Method (GPM). The GPM is an orthogonal col-

location method based on using global polynomial approximations to the dynamic equations

at a set of Legendre-Gauss (LG) collocation points. It has been shown that the optimality

conditions of the nonlinear programming problem (NLP) is equivalent to the discretized opti-

mality conditions of the continuous control problem which is not true for other pseudospectral

methods. The theory of the GPM can be found in [18, 65]; however, no knowledge of the GPM

is required for using GPOPS.

The organization of GPOPS is as follows. Note that the user must specify the optimal control

problem to be solved by writing MATLAB functions that define the following functions in each

phase of the problem:

1) the cost functional

2) the right-hand side of the differential equations and the path constraints (i.e., the differential-

algebraic equations)

3) the boundary conditions (i.e., event conditions)

4) the linkage constraints (i.e., how the phases are connected).

In addition, the user must also specify the lower and upper limits on every component of the

following quantities:

1) initial and terminal time of the phase

2) the state at the following points in time:

• at the beginning of the phase

• during the phase

• at the end of the phase
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3) the control

4) the static parameters

5) the path constraints

6) the boundary conditions

7) the phase duration (i.e., total length of phase in time)

8) the linkage constraints (i.e., phase-connect conditions).

We refer the reader to [57, 117] for a complete review of how to use GPOPS. It should be noted

that this routine belongs to the direct method category. For completeness, we present a brief

review of the GPM in Appendix C.

4.3.2 SNOPT

SNOPT is a general-purpose package for constrained optimization. It can be used to solve both

linear and nonlinear functions subject to bounds on the variables and sparse linear or nonlinear

constraints. It is suitable for large-scale linear and quadratic programming and for linearly

constrained optimization as well as for general nonlinear programs of the form:

min
x

f0(x)

subject to l ≤

 x

f(x)

ALx

 ≤ u,
where x is an n-vector of variables, l and u are lower and upper bounds, f0(x) is a smooth

scalar cost function, AL is a sparse matrix, and f(x) is a vector of smooth nonlinear constraint

functions {fi(x)}. There is an option that can replace “min” in the cost function to a “max”

if the problem is to be maximized.

SNOPT employs a particular sequential quadratic programming (SQP) algorithm that exploits

sparsity in the constraint Jacobian and maintains a limited-memory quasi-Newton approxi-

mation to the Hessian of the Lagrangian [56]. Search directions are obtained from quadratic

programming subproblems that minimize a quadratic model of the Lagrangian function subject

to linearized constraints. An augmented Lagrangian merit function is reduced along each search

direction to ensure convergence from any starting point. A tutorial on how to use SNOPT and
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additional information on the SQP algorithm can be found in [56, 133]. A brief overview of the

one of the simplest SQP methods (Local SQP method) is discussed in Appendix D.

4.4 Numerical Results

In order to use GPOPS, we need to provide bounds on the states and the controls. For our

problem, we define the constraints as

0 ≤ P (t) ≤ P (t)max (4.46)

0 ≤ N(t) ≤ N(t)max (4.47)

0 ≤ D(t) ≤ D(t)max (4.48)

0 ≤ IL6(t) ≤ IL6(t)max (4.49)

0 ≤ TNF (t) ≤ TNF (t)max (4.50)

0 ≤ IL10(t) ≤ IL10(t)max (4.51)

0 ≤ YIL10(t) ≤ YIL10(t)max. (4.52)

The bounds on the control are chosen to conform with what was done in the literature [39].

The maximum dose amount of pro-inflammatory therapy IL6Dose(t) permitted is calculated

as the difference between the current level of IL6(t) and the maximum permitted level of

IL6(t), given by IL6(t)max. Likewise, the maximum dose amount of anti-inflammatory therapy

IL10Dose(t) permitted is calculated as the difference between the current level of IL10(t) and

the maximum permitted level of IL10(t), given by IL10(t)max. As endotoxin challenge levels

3mg/kg, 6mg/kg, and 12mg/kg were administered to rats during the experimentation, each

level represents an initial condition for endotoxin concentration P (t) (i.e., P (0) = 3, or 6, or 12,

see (4.37)). Therefore, there are three optimal control problems to be solved and each problem

has separate bounds. Since the magnitudes of the states in the cost function (4.29) are on

different scales, we balance them by specifying their weight constants as

QN = 1.0× 10−12, QD = 25 and QYIL10
= 3.2× 10−6.

For the same reason, the treatment therapy weight constants are

RIL6 = 1.8× 10−3 and RIL10 = 2.5× 10−2.
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4.4.1 Numerical Results for endotoxin challenge level 3 mg/kg

The initial condition is given as

P (0) = 3mg/kg, N(0) = 0 cell count, D(0) = 0, IL6(0) = 0 pg/ml,

TNF (0) = 0 pg/ml, IL10(0) = 12.302 pg/ml, YIL10(0) = 0.

It is noted that non-accessible tissue damage marker D(t) and tissue damage driven non-

accessible IL-10 promoter YIL10(t) are dimensionless [126]. The upper bound values for the

state constraints in (4.46)-(4.52) are as follows

P (t)max = 3, N(t)max = 3.0× 107, D(t)max = 6, IL6(t)max = 1.5× 104,

TNF (t)max = 3000, IL10(t)max = 300, YIL10(t)max = 1.4× 104.

Figure 4.1: Optimal treatment control (IL6Dose and IL10Dose) at 3mg/kg endotoxin level
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Figure 4.2: Model solution under optimal treatment control (- -); model solution with no

treatment control (—) at 3mg/kg endotoxin level.

The optimal treatment control functions are depicted in Figure 4.1. The pro-inflammatory

treatment dose IL6Dose(t) shows a rapid up-down movements for most of the durations in

the horizon. These movements indicate the changes in the dose levels of IL6Dose(t) that is

required. IL10Dose(t) depicts a steady rise in the dose level until the final hour.

The model response under the current treatment regiment together with the response with no
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treatment are described in Figure 4.2. Perhaps an interesting observation is how the response

for all the states were affected by the treatment therapy. Some states showed significant reduc-

tions in their response when compared with their corresponding levels without any treatments.

Endotoxin concentration (P ) levels basically remained unchanged indicating that the therapy

had no effect. This is logical since it already decays exponentially. Though tissue damage (D)

reduced by about 1.5 from its non treatment levels, it’s peaked occurred at a much later time

unlike the solution with no treatment. The behavior of IL10(t) can be attributed mainly to

YIL10(t) irrespective of treatment. Observe that both IL10(t) and YIL10(t) have similar trajec-

tories from the 4th hour which is not surprising since we know from [126] that the second surge

in IL10(t) is due to tissue damage. From the results obtained we see that the optimal control

methodology successfully lower the effects of the states. Finally, Figure E.2 contains the plots

of the states under optimal treatment strategy. These plots illustrate a more lucid descriptions

of the model response to the treatment dose.

4.4.2 Numerical Results for endotoxin challenge level 6 mg/kg

The only difference between the initial condition specified in Section 4.4.1 and in this section

is the endotoxin concentration given by

P (0) = 6mg/kg.

The upper bound values for the state constraints in (4.46)-(4.52) are

P (t)max = 6, N(t)max = 3.0× 107, D(t)max = 6, IL6(t)max = 2.0× 104,

TNF (t)max = 4000, IL10(t)max = 450, YIL10(t)max = 2.5× 104.

Figure 4.3 illustrates the optimal treatment therapy at 6mg/kg endotoxin challenge level.

IL6Dose exhibited a sharp spike in the early hours before dropping to about 250 until the

5th hour. Although the dose level displayed a little surge afterwards, it tapered off gradually

for the rest of the horizon to zero. This implies that the regiment for IL6 is to administer a

high dose of IL6Dose around the early hours, subsequent doses would be significantly reduced

and no additional dose should be given from the 19th hour. At the onset, IL10Dose sprout to

about 180 before holding steady around that level for the rest of the horizon. Therefore, the

dose level for IL10 is about the same for the entire horizon.
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Figure 4.3: Optimal treatment control (IL6Dose and IL10Dose) at 6mg/kg endotoxin level.

The model behavior under optimal control treatment strategy and without any treatment are

depicted in Figure 4.4. The states response to treatment was not as effective as at the 3mg/kg

concentration level as shown in Figure 4.2. The therapeutic response of total number of ac-

tivated phagocytic cells N was unfavorable, unlike the other states that responded positively.

The main reason why the level of N remained elevated is due to P . It is easy to observe that the

activation of N is linked with the initial concentration of P and as the endotoxin levels stayed

elevated so was N . Tissue damage D showed the most significant reduction under the treatment

control. Finally, Figure E.3 depicted the model plots under optimal treatment strategy.
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Figure 4.4: Model solution under optimal treatment control (- -); model solution with no

treatment control (—) at 6mg/kg endotoxin level.
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4.4.3 Numerical Results for endotoxin challenge level 12 mg/kg

The initial condition for the concentration of endotoxin challenge is given as

P (0) = 12mg/kg.

The initial condition for the other states remain unchanged from the previous sections. The

upper bound values for the state constraints in (4.46)-(4.52) are

P (t)max = 12, N(t)max = 3.5× 107, D(t)max = 6.5, IL6(t)max = 2.0× 104,

TNF (t)max = 3000, IL10(t)max = 900, YIL10(t)max = 3.0× 104.

Figure 4.5: Optimal treatment control (IL6Dose and IL10Dose) at 12mg/kg endotoxin level

for 45 LG collocation points

As depicted in Figure 4.5, the presence of IL6Dose treatment control was milder at this endo-

toxin concentration level. IL10Dose remained high but displayed a marginal decline as time

progressed. The model trajectory under treatment control in Figure 4.6 showed significant re-

duction; so, there is potential to design optimal therapeutic strategies to regulate inflammation.

Finally, Figure E.4 depicts plots of the model state variables under treatment control.
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Figure 4.6: Model solution under optimal control methodology at 12mg/kg endotoxin level for

45 LG collocation points
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Chapter 5

Model Predictive Control

5.1 Introduction

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC) or Moving

Horizon Control (MHC) refers to a family of feedback schemes that do not designate a particular

control strategy, instead a range of control methods which make explicit use of a model of the

process to obtain the control signal by minimizing an objective function [25]. MPC is a form

of control in which the current control action is obtained by solving on-line, at each sampling

instant, a finite horizon open-loop optimal control problem, using the current state of the system

as the initial state. The optimization yields an optimal control sequence and the first control

in this sequence is applied to the plant [94].

The basic differences among the various MPC algorithms are the process model, the cost func-

tion to be optimized, and their respective noises. Regardless of these differences, the MPC

algorithms have been very successful and have gained wide acceptance in industrial applica-

tions. In addition, extensive scholarly research has been conducted in academia. The reason for

such popularity is the ability of MPC designs to yield high performance control systems capable

of operating without expert intervention for an extended periods of time [54]. In particular, we

outline some advantages of MPC over other competing methods [25]:

• MPC is very attractive to scientist with limited knowledge of control as the concepts are

very intuitive and at the same time the tuning is relatively easy.

• It can be used to control a wide range of processes, from those with relatively simple

dynamics to more complex ones.
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• The multivariate case can easily be dealt with.

• It intrinsically has compensation for dead times.

• It introduces feed forward control in a natural way to compensate for measurable distur-

bances.

• The resulting controller is an easy-to-implement control law.

• Its extension to the treatment of constraints is conceptually simple, and these can be

systematically included during the design process.

• It is very useful when future references are known.

• It is a totally an open methodology based on certain basic principles which allows for

future extensions.

There are a wide variety of applications of MPC scheme. Some of these areas include refinery,

petrochemical, chemicals, aerospace, automotive, food processing, pulp and paper, metallurgy

etc. More recently, MPC has a growing presence in biological processes. An excellent source

for the multitude of industrial applications can be found in [114].

5.2 Historical Background

The first set of publications highlighting the emergence of MPC in the processing industry can

be traced back to the late 1970s. Mainly, in [122, 123] where Model Predictive Heuristic Control

(MPHC) was presented (MPHC is also known as Model Algorithmic Control (MAC)) and in

1979 engineers from Shell Oil [35, 109] discussed “Dynamic Matrix Control” with applications

to a fluid catalytic cracker. A dynamic process model is explicitly used in both algorithms

(impulse response in [122, 123] and step response in [35, 109]) to predict the effect of the future

control actions of the manipulated variables on the output, hence the name “Model Predictive

Control”. The future moves of the variables are determined by minimizing the predicted error

subject to operational constraints. The optimization is repeated at each sampling time based

on up-to-date information or measurements from the plant. These formulations were primarily

heuristic and algorithmic such that the numerical computations will be done using digital

computers that were beginning to become popular at the time.

The Receding Horizon or Moving Horizon principle which is at the core of every MPC algorithm

was proposed in 1963 [113], within the framework of “Open-Loop Optimal Feedback”. The link

between the closely related minimum time optimal control problem and linear programming
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were first established in [144]. The popularity of MPC increased drastically from the 1980s,

particularly in chemical process industries due to the simplicity of the algorithm and its use of

the impulse or step response model. Later, MPC was formulated in the state space context [99];

this gave way for the use of well known theorems of the state space theory as well as facilitate

their generalization to more complex processes such as multivariable processes, nonlinear pro-

cesses, and systems with stochastic disturbances and noise in the measured variables. To this

end, several predictive controller algorithms have been developed. Some of the algorithms de-

veloped are: Dynamic Matrix Control (DMC), Model Algorithmic Control (MAC), Predictive

Functional Control (PFC), Generalized Predictive Control (GPC), Ydstie’s Extended Horizon

Adaptive Control (EHAC), and Extended Prediction Self Adaptive Control (EPSAC).

MPC has also been well studied in academia, some of the applications include under controlled

conditions to a simple mixing tank and a heat exchanger [10], and coupled distillation column

for the separation of a ternary mixture [82, 83]. An MPC comparison with conventional control

schemes on a heat exchanger and an industrial autoclave was studied in [106]. Some of these

applications are multivariable and involved constraints which are precisely the kinds of problems

that motivated the development of MPC control algorithms [54].

5.3 MPC Methodology

In general, the methodology of every controller that is a part of the MPC family is formulated as

solving on-line a finite horizon open-loop optimal control problem subject to system dynamics

and constraints involving states and controls. The MPC strategy is represented in Figure 5.1

and the particular scheme we discuss is identical to those in [7, 47, 48].

From the measurement or information obtained at time t, the controller predicts the future

dynamic behavior of the system over a prediction horizon Tp and determines (over a control

horizon Tc ≤ Tp) the input such that a predetermined open-loop performance objective func-

tional is optimized. If there were no disturbances and no model-plant mismatch, and if the

optimization problem could be solved over an infinite horizon, then the input signal found at

t = 0 could be applied open-loop to the system for all t ≥ 0. However, due to disturbances

and model-plant mismatch the actual system behavior is different from the predicted one. To

incorporate feedback, the optimal open-loop input is implemented only until the next sampling

instant. The sampling time between the recalculation/measurement (new optimization) can

vary in principle. Typically, it is fixed, i.e., the optimal control problem is re-evaluated after

the sampling time δ. Using the new system state at time t+δ, the whole procedure—prediction

and optimization—is repeated; moving the control and prediction horizon forward.
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Figure 5.1: Model Predictive Control (MPC) strategy

A standard MPC algorithm operates in the following manner:

1) Obtain estimates of the states of the system.

2) Calculate an optimal input minimizing the desired cost function over the prediction horizon

using the system model for prediction.

3) Implement the first part of the optimal input until the next sampling instant.

4) Continue with 2).

This strategy is implemented through a basic schematic diagram shown in Figure 5.2. The

model is use to make future prediction of the process, based on past and current values as

well as the proposed optimal future control actions. The optimizer is used to calculate these

actions, taking into account the cost function as well as the constraints. The process model

plays a decisive role in the controller in that the assigned model needs to be able to represent

the process dynamics such that the future output can be precisely predicted.
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Figure 5.2: Schematic structure of Model Predictive Control (MPC)

5.4 Nonlinear Model Predictive Control (NMPC)

In general, industrial processes are nonlinear and it is necessary to distinguishes between linear

and nonlinear model predictive control (NMPC). Linear MPC belongs to a family of MPC

schemes that use linear models to predict the system dynamics and considers linear constraints

on the states and inputs. NMPC refers to MPC schemes that are based on nonlinear models

and/or consider a non-quadratic cost-functional and general nonlinear constraints [7].

Most MPC applications are based on the use of linear models since it originated in the late 70s

and there are two main reasons why linear models are favored [25].

• The identification of a linear model based on process data is relatively easy.

• Linear models provide good results when the plant is operating in the neighborhood of

the operating points.

In 1997, there were over 2,200 applications of MPC scheme that were implemented using linear

models and most of these were in refinery and petrochemical [114]. And by 2003, more than

4,500 applications using linear models ranging from chemicals to aerospace industries were re-

ported [116]. Although linear MPC approaches have been used in many applications, especially

in process industries, most systems are inherently nonlinear by nature. With the quest for
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higher product quality specifications, increasing productivity demands, tighter environmental

regulations and demanding economical considerations in many industries, it has become im-

perative to operate systems closer to the boundary of the admissible operating region. Linear

models are obviously not sufficient in describing the process dynamics under such increased

specification levels; hence, the need to embrace nonlinear models can no longer be circum-

vented. Therefore, the inadequacies of linear models essentially motivates the use of nonlinear

model predictive control.
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Figure 5.3: Distribution of MPC applications versus the degree of process nonlinearity [115].

More recently, there has been a surge in the applications of NMPC techniques in areas where

MPC has not been traditionally applied [115]. Figure 5.3 shows a rough distribution of the

number of MPC applications versus the degree of process nonlinearity. MPC scheme has not

yet penetrated deeply into areas where process nonlinearities are strong and market demands

require frequent changes in operating conditions. These are the areas that display the greatest

opportunities for NMPC applications. In the biomedical processes there have been reports

of great success in the application of NMPC. For example, [43, 52, 104] applied NMPC in

the regulation of glucose supply in diabetic patients and an exploration of optimal dosing of

anticancer agents. This scheme has also been used in HIV control [145]. In [37], NMPC was
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applied on a model of HIV dynamics that incorporates drug resistance in a treatment schedule

to control this infection. Lastly, [39] employed this scheme to find optimal therapeutic strategies

to modulate inflammation. With the widespread success of NMPC in biomedical sciences, we

will adopt an NMPC scheme in this work to obtain optimal treatment control for our reduced

model of acute inflammatory response.

5.4.1 Theoretical Issues in NMPC

Despite the growing interest in the application of NMPC schemes, there are many theoretical

difficulties that arise from the use of this scheme, at least conceptually. These are basically

connected with the theoretical issues faced when working with nonlinear models. The key

issues regarding the use of NMPC are [25]:

• The availability of nonlinear models from experimental data is an open issue, there is a

lack of identification techniques for nonlinear processes.

• The optimization problem is nonconvex. Problems of this nature are much more difficult

to solve than the QP problem.

• The difficulty of the optimization problem translates into an increase in computational

time. This can limit the use of this technique.

• The study of crucial concepts such as stability and robustness is more complex in the case

of nonlinear systems.

Some of these problems are partially solved. However, the most important theoretical issues

facing NMPC are stability and robustness. For this reason, we will briefly outline how stability

and robustness are currently handled in NMPC. We conclude this section with a description of

a typical nonlinear mathematical system that can be used for most NMPC scheme. Consider

the following continuous time nonlinear set of ordinary differential equations:

ẋ(t) = f(x(t),u(t)) (5.1)

x(0) = x0 (5.2)

subject to

u(t) ∈ U , x(t) ∈ X , ∀ t ≥ 0 (5.3)
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where U ⊆ Rm and X ⊆ Rn denote the set of feasible inputs and the set of feasible states,

respectively. The expression in (5.3) represents the inputs and states constraints. In practice,

the finite horizon open-loop optimal control problem described in Equations (5.1)-(5.3) can be

formulated as follows [48]:

min
ū(·)

J(x(t), ū(·);Tc, Tp) =

∫ t+Tp

t
F (x̄(τ), ū(τ))dτ (5.4)

subject to

˙̄x(τ) = f(x̄(τ), ū(τ)) (5.5)

x̄(t) = x(t) (5.6)

ū(τ) ∈ U , ∀ τ ∈ [t, t+ Tc] (5.7)

ū(τ) = ū(τ + Tc), ∀ τ ∈ [t+ Tc, t+ Tp] (5.8)

x̄(τ) ∈ X , ∀ τ ∈ [t, t+ Tp] (5.9)

where Tp and Tc are the prediction and the control horizon with Tc ≤ Tp (a number of NMPC

algorithms set Tc = Tp). ū(·) is the internal controller and x̄(·) is the solution of Equations

(5.5) and (5.6) driven by ū(·) such that [t, t+ Tp]→ U with x(t) as the initial condition. It is

necessary to make the distinction between the real system and the variables in the controller

since the predicted values, even in the nominal undisturbed case will generally not be the same

with the actual closed-loop values as the optimal input is recalculated (over a moving finite

horizon Tc) at every sampling instance.

5.4.2 Stability

Stability is by far one of the most important issues surrounding finite horizon NMPC schemes.

It is critical to know whether a finite horizon NMPC strategy does lead to stability of the

closed-loop. The main issue facing a finite prediction and control horizon comes from knowing

that the predicted open-loop and the resulting closed-loop behavior are, in general, different

[48]. A perfect situation is for one to have an NMPC technique that successfully attain closed-

loop stability independent of the performance of the parameters in the objective functional and

has the ability to approximates the infinite horizon NMPC scheme as good as possible. Any

NMPC scheme that successfully attain closed-loop stability independent of the performance

of the parameters in the objective functional is usually referred to an NMPC approach with

guaranteed stability. Different possibilities to achieve closed-loop stability for NMPC using finite

horizon length have been proposed in the literature [4, 28, 40, 89].
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Ideally the best way to achieve stability is the use of an infinite horizon cost, i.e., if the prediction

horizon goes on without terminating [19, 73]. Based on Bellman’s Principle of Optimality [15],

it is clear that feasibility at one sampling instance implies feasibility and optimality at the next

sampling instance in the nominal case. This basically means that the input and state trajectories

computed as the solution of the NMPC optimization at a specific instance in time are equal

to the closed-loop trajectories of the nonlinear system. This implies that the remaining parts

of the trajectories after one sampling instance are the optimal solution at the next sampling

instance, which also implies closed-loop stability [48]. As noted in several MPC literature,

infinite horizon schemes are usually not applied in practice because the open-loop optimal

control problem cannot be solved sufficiently fast.

Since we know that there are possibilities to achieve closed-loop stability for NMPC using a

finite horizon, we will explore the approaches used to achieve closed-loop stability. A number

of these approaches modify the setup of the NMPC scheme so that stability of the closed-

loop can be guaranteed independently of the plant and performance specifications [48]. One

way to make this work is by adding suitable equality or inequality constraints and/or suitable

additional penalty terms to the cost functional. The sole purpose of adding these constraints

known as stability constraints is to accomplish stability of the closed-loop [94, 95].

The zero terminal equality constraint is one of the simplest stability constraints to add at the

end of the prediction horizon in order to enforce the stability of a finite prediction horizon. The

zero terminal equality constraint is of the form

x̄(t+ Tp; x(t), t, ū) = 0 (5.10)

The addition of Equation (5.10) to Equations (5.5)-(5.9) leads to stability of the closed-loop

if the optimal control problem possesses a solution at t = 0. This is indeed true because the

feasibility at one time instance leads to feasibility at the next time instance and a decrease in

the value function. The main drawback with a zero terminal equality constraint is that the

system must return to the origin in finite time; for this reason it is not compatible with some

optimal control problems. The tracking system problem is one such example where this kind of

stability constraints cannot be exercised since the final state is often nonzero. Moreover, the

fact that the system must be brought to the origin in finite time can lead to feasibility problems

for short prediction/control horizon lengths. Besides, on the numerical computational front,

an exact satisfaction of a zero terminal equality constraint does require an infinite number of

iterations in the nonlinear programming problem [28]. On the positive side, the zero terminal

equality constraint is straightforward to apply and conceptually simple.

Other stability constraints have been proposed due to the limitations of the zero terminal
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equality constraints. The terminal region constraint and the terminal penalty term E(x̄(t+Tp)

are two such constraints proposed. Both of these can be included in the NMPC algorithm

or either one can be added. The terminal region constraint which is added at the end of the

prediction horizon has the form

x̄(t+ Tp) ∈ Ω ⊆ X , (5.11)

and the terminal penalty term is added to the objective functional

J(x(t), ū(·);Tp) =

∫ t+Tp

t
F (x̄(τ), ū(τ))dτ + E(x̄(t+ Tp). (5.12)

The terminal penalty term in Equation (5.12) is not a performance specification that can be

chosen freely, rather E and the terminal region Ω in (5.11) are determined off-line such that

stability is “enforced” [48]. The interested reader is refer to [28, 40, 41, 94] for a comprehensive

overview of this subject as well as the different NMPC algorithms.

Finally, it is important to point out that a repeated minimization over a finite horizon objective

in a receding horizon manner does not necessary lead to an optimal solution for the infinite

horizon problem even if the same objective function is used. Rather, the two solutions will in

general differ significantly if a short horizon is chosen. To this end, we see that short horizons

are desirable from a computational point of view, but long horizons are required for closed-loop

stability and in order to achieve the desired performance [48].

5.4.3 Robustness

In general, NMPC schemes do not require that the actual system is identical to the model used

for prediction. In scenarios where the actual system is identical to the model used, we say

that there is no model/plant mismatch; control systems that belong to this group are known

as nominal systems. This is obviously an unrealistic assumption for practical applications

and the progress of an NMPC algorithm that focuses on robustness issues. The presence of

uncertainty in the characterization of a system raises the question of robustness, i.e., what

is the possibility of maintaining certain properties such as stability and performance in the

presence of uncertainty? Most studies on robustness consider unconstrained systems. If a

Lyapunov function for the nominal closed-loop system maintains its descent property and if the

disturbance (uncertainty) is sufficiently small, then stability is maintained in the presence of

uncertainty [94]. However, when constraints on states and controls are present, it is necessary

to ensure, that disturbances do not cause transgression of the constraints and this clearly adds
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an extra level of complexity. Suppose we assume that a nonlinear system with uncertainty is

given as

ẋ(t) = f(x(t),u(t), r(t)), (5.13)

where the uncertainty r(·) satisfies r(τ) ∈ R(x, u) and R is assumed to be compact. The main

impediment with robustness is the resulting difference between the predicted open-loop and

actual closed-loop trajectory, this is also true in the case of nominal stability.

There are several approaches to the study of robustness that were discussed in [48, 90, 94].

On the other hand, it is worthwhile to mention that the robustness properties of the NMPC

schemes designed for nominal stability is extensively studied in [75, 91]. There are at least three

main robust NMPC formulations:

• Robust NMPC solving an open-loop min-max problem:

The standard NMPC setup in this formulation is maintained but the cost function we

seek to optimize is changed to the worse case disturbance “sequence” that can occur, i.e.,

J(x(t), ū(·);Tp) = max
d̄(·)

∫ t+Tp

t
F (x̄(τ), ū(τ))dτ + E(x̄(t+ Tp) (5.14)

subject to (5.15)

˙̄x(t) = f(x̄(t), ū(t), d̄(t)) (5.16)

x̄(t) = x(t). (5.17)

The open-loop min-max optimal control problem is solved on-line. The main difficulty is

that by adding stability constraints like in the nominal case could result in a situation

where no feasible solution may be achieved. This arise from the fact that one input signal

must “reject” all possible disturbances and guarantee the satisfaction of the stability

constraints.

• H∞ −NMPC :

The H∞-NMPC ensures robustness by its the choice of a cost function, the key obstacle

is that determining the controller requires solution of a nonlinear Hamilton-Jacobi-Isaacs

(HJI) equation. To avoid this complexity, the NMPC cost function can be modified simi-

lar to the H∞ problem and optimizing over a sequence of control laws robustly stabilizing

finite horizon H∞-NMPC formulations. The central impediment is the prohibitive com-

putational time necessary.
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• Robust NMPC optimizing a feedback controller used during the sampling

times:

The open-loop formulation of the robust stabilization problem can be seen as very con-

servative, since only open-loop control is used during the sampling times. By this we

imply that the disturbances are not directly rejected in between the sampling instances.

To overcome this problem it has been proposed not to optimize over the input signal.

Instead of optimizing the open-loop input signal directly, a feedback controller is opti-

mized, i.e., the decision variable ū is not considered as optimization variable instead a

“sequence” of control laws ui = ki(x) applied during the sampling times is optimized.

Now the optimization problem has as optimization variables the parameterizations of the

feedback controllers {k1, · · · ,kN}. While this formulation is very attractive since the

conservatism is reduced, the solution is often prohibitively complex.

5.4.4 Output Feedback

One of the greatest hindrance in the application of NMPC is that at every sampling instant ti the

system state is required for prediction. Oftentimes, not all system states are directly accessible,

by this we mean that only the output variables y are directly available for feedback.

y(t) = g(x(t), u(t)), (5.18)

where y(t) ∈ Rp are the measured outputs and g : Rn × Rm → Rp maps the state and input

into the output. This limitation is usually taken care of by using a state observer for the recon-

struction of the states. Rather than using the optimal feedback, the following is applied:

u(t; x̂(tj)) = ū∗(t; x̂(tj)), t ∈ [ti, tj+1), (5.19)

i.e., replace the initial x in the optimal control problem by its estimate x̂. The estimation error is

an uncertainty, therefore robustness issues are not fully resolved and are involved though some

perturbation results may be employed for the unconstrained case. Any state estimator may

be employed, usually Kalman Filter (KF) can be used when the system is linear or Extended

Kalman Filter (EKF)/Unscented Kalman Filter (UKF) when the system is nonlinear. However,

due of lack of a general nonlinear separation principle, stability is not guaranteed, even if the

state observer and the NMPC controller are both stable [7].

Meanwhile, the stability problem has been studied extensively by a number of researchers.

However, the work by [92] established stability of the composite system (observer and model

predictive control) when a weak detector is employed. Another result in [97] established stability
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of the composite system when a moving horizon observer is employed; no uncertainty exists in

the model so the state can be perfectly estimated using a record of input/output data over the

interval [t−T0, t] where t is the current time. Furthermore, [47] presented a broad class of state

feedback nonlinear model predictive controllers’ conditions on the observer that guarantee that

the closed-loop is semi-global stable.
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Chapter 6

NMPC Numerical Results: Reduced

7D Model

One of the objectives of this thesis is to propose treatment control for inflammatory response

to combat uncontrolled systemic inflammation. Most of the theoretical research on acute in-

flammation have focus on describing the fundamental mechanisms regarding inflammation and

how inflammatory mediators interact with themselves at time progresses [29, 76, 140]. A key

result emanating from this research affirms that successful therapeutic interventions require

proper timing relative to the evolution of the inflammatory response [38, 120]. In Section 4.4

we discussed the results obtained by studying the 7D model under an open-loop optimal control

treatment strategies. Optimal treatment levels IL6Dose(t) and IL10Dose(t) were computed

for the specified initial conditions at 3mg/kg, 6mg/kg and 12mg/kg endotoxin challenge lev-

els. Although the open-loop controller revealed significant reduction in the states response to

treatment, this technique may be deficient for the follow reasons:

• Some unmodelled effect can disturb the system, thus rendering the treatment schedule

ineffective.

• In the event that a dose is missed, the open-loop control is no longer optimal.

• The open-loop optimal control does not make use of the periodic measurements taken at

subsequence sampling times.

NMPC is a suitable feedback technique to handle these deficiencies since the control only

depends on the current state of the system. In this chapter, we summarize the in silico sim-

ulation results from applying NMPC on the 7D model using three different cases of recalcu-
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lation/measurement steps at 3mg/kg, 6mg/kg and 12mg/kg endotoxin challenge levels. The

cases represent the different structures we want the treatment schedule to vary and this will

provide insights on how effective the states respond to different therapeutic schedule. The

following are the cases we wish to examine:

1) Adapt recalculation/measurement steps that correspond to the actual time periods blood

samples were taken from the rats. Since the elapse time between the last two observations

was 12 hours, we will maintain the same 12 hours recalculation step after the 24th hour. In

this case, the recalculation step is considered unequal.

2) This case assumes hourly recalculation/measurement interval. Hence, it is a fixed recalcu-

lation step of every one hour.

3) The last case assumes every four hours recalculation/measurement step beginning from the

4th hour. Prior to the 4th hour the recalculation step will be the same as the first case,

i.e., t = 0, 1, 2, 4, 8, . . . .

Another reason for studying the NMPC technique across these cases of recalculation/measurement

step is to establish a trade-off between the optimized dose regiment with respect to modulating

inflammation and the complexity of the different recalculation steps we understudied. The

“hourly recalculation/measurement step” is expected to be the most expensive case since it

requires hourly treatment dose to be administered on the system. The “four hours recalcu-

lation/measurement step” is assumed the next expensive case since the system will receive

treatment dose at times 0, 1, 2, 4 then every four hours. The least expensive case is the “un-

equal recalculation/measurement step”. Note that as the states in the model and control are

continuous function, the control and state values used at each recalculation step are a linear

interpolation.

The in silico simulation horizon for the NMPC scheme will be 72 hours (3 days). We will

examine the effect of the optimal therapeutic strategy over this horizon at all three cases

of recalculation/measurement steps for each endotoxin challenge level. The model optimal

feedback estimates will be used at each recalculation/measurement step since experimental data

corresponding to the treatment time points are unavailable. However, we will concluded this

chapter with an example illustrating how to incorporate clinical data with treatment information

at every time point. Typically, in such situations a better way to implement NMPC is to combine

it with Kalman filter to serve as a state estimator.
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6.1 Acute Inflammation: NMPC Simulations

The acute inflammatory response model used in the NMPC scheme was described in Sec-

tion 4.2; the same model was used for the open-loop optimal control problem in Chapter 4.

At each recalculation step IL6Dose(t) and IL10Dose(t) treatment control doses are adjusted

accordingly to modulate inflammatory responses and the maximum dose allowed is chosen to

be consistent with what was described in Section 4.4 as well as in the literature [39], but with

a minor modification. The maximum dose amount for each inflammatory therapy at a given

recalculation step is calculated as the difference between the current concentration level of the

inflammatory cytokine and the maximum allowable level of that cytokine. This calculation

applied to both IL6Dose(t) and IL10Dose(t). The bounds on the states are consistent with

the open-loop optimal control simulations. Stability constraints were not added in our NMPC

algorithm because the 72 hours horizon was long enough to display steady state behaviors on

the states at either the choice of recalculation step or the endotoxin challenge level.

6.1.1 NMPC Simulations at 3 mg/kg endotoxin challenge level

The NMPC simulated results at 3mg/kg endotoxin challenge level showing the control and

state response for each of the three cases of recalculation steps are summarized below.

Figure 6.1 shows an exponential decay for the concentration of endotoxin levels across all the

different cases of recalculation steps. This behavior is logical with the ODE describing the

dynamics of P (t) (Figures 6.8 and 6.9 in Section 6.1.2 illustrate identical behavior).

Figure 6.2 captures the treatment response of the total number of activated phagocytic cells

N(t) from the NMPC scheme. The rate of elimination of N(t) is about the same for the different

cases of recalculation step. However, notice that N(t) was driven to equilibrium (zero) for only

the “Unequal recalculation step”. One would have expected the more expensive recalculation

cases to achieve equilibrium faster. A comparison of the response of N(t) in the open-loop

optimal control simulation in Figure 4.2 and these plots show a significant reduction in the

total number of activated phagocytic cells for the NMPC scheme than the open-loop optimal

control.

The plots of tissue damage in Figure 6.3 revealed the most vivid changes in response to treat-

ment at the three cases. As expected, the “One hour interval recalculation step” displayed the

most significant reduction; indeed, it was the only case to achieve stable equilibrium before the

end of the horizon. The “Four hours recalculation step” also showed substantial reduction in

the response of D(t). The magnitude of reduction achieved with the feedback NMPC scheme
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is considerable when compared with the open-loop control solution (see Figure 4.2). Inflam-

matory response induce tissue damage and elevated levels of damage up-regeluates N(t) as

well as induce YIL10(t). The interactions of N(t), D(t) and YIL10(t) are visibly observed when

analyzing the plots of the “Unequal recalculation step” in Figures 6.2, 6.3 and 6.7, respectively.

Around the 25th hour, N(t) displayed a sudden surge (see “Top Left” plot in Figure 6.3), this

triggered a corresponding surge in YIL10(t) (see “Top Left” plot in Figure 6.7) as well as slightly

up-regulated N(t) (see “Top Left” plot in Figure 6.2).

Figure 6.1: NMPC simulation of P (t) at 3mg/kg endotoxin challenge level showing the three

difference cases of recalculation step over a 72 hours (3 days) horizon:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.
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Figure 6.2: NMPC simulation of N(t) at 3mg/kg endotoxin challenge level showing the three

difference cases of recalculation step over a 72 hours (3 days) horizon:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.

The plots in Figure 6.4 are a combination of the pro-inflammatory cytokine interleukin-6

(IL6(t)) and the pro-inflammatory therapy (IL6Dose(t)). The side-by-side plots display the

response of interleukin-6 (on the left) to treatment and their corresponding pro-inflammatory

therapeutic doses (right plots). The trajectories of IL6Dose(t) correlate with the changes dis-

played in the dynamics of the IL6(t); the treatment controller IL6Dose(t) exhibited features

that resembles the well known bang-bang controller, this characteristic can be linked to the

nature of the numerical method which may not be the case in general. The frequent switches

in the control behavior are in tune with the up-regulation and down-regulation of interleukin-6.

From the top plots (the plot representing the “Unequal recalculation instance”) one can see that

the bang-bang phenomenon occurred more frequently during the early hours of the predictive

horizon and by the 30th hour the controller had switched to the “off” position which lasted
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for the rest of the horizon; this conforms with the period when the effects of interleukin-6 had

become almost nonexistence. The same pattern was captured in the “middle” and “bottom”

plots; the only notable difference in these plots is that the bang-bang phenomenon continued

until the end of the predictive horizon. These switches indicate the amount of pro-inflammatory

therapeutic doses to administer. The “off” switch implies that no treatment dose is required

and as the treatment schedule tries to regulate the pro-inflammatory response, it also attempts

to use the minimum amount of dose needed. Lastly, “Unequal recalculation step” was the only

case that successfully drove interleukin-6 to stable equilibrium.

Figure 6.3: NMPC simulation of D(t) at 3mg/kg endotoxin challenge level showing the three

difference cases of recalculation step over a 72 hours (3 days) horizon:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.
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Figure 6.4: NMPC simulation of IL6(t), and IL6Dose(t) at 3mg/kg endotoxin challenge level

showing the three difference cases of recalculation step over a 72 hours (3 days) horizon, the

plots on the left are the states, whereas those on the right are the treatment control:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.
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Figure 6.5: NMPC simulation of TNF (t) at 3mg/kg endotoxin challenge level showing the

three difference cases of recalculation step over a 72 hours (3 days) horizon:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.

All three cases of recalculation step have identical in silico simulation results as depicted in

Figure 6.5. The effects of the pro-inflammatory cytokine TNF (t) was basically nonexistence

after the 10th hour when it achieved equilibrium. Perhaps it is interesting to note that this

inflammatory response was neither one of the states in the cost function that we seek to minimize

(Equation (4.29)) nor assigned a control variable but it quickly attained equilibrium. Lastly, the

treatment response behavior of TNF (t) is very similar to N(t), this implies that both effects

responded to treatment in an identical manner. This could be attributed to the fact that N(t)

was the most dominate state in the ODE describing TNF (t).
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Figure 6.6: NMPC simulation of IL10(t), and IL10Dose(t) at 3mg/kg endotoxin challenge

level showing the three difference cases of recalculation step over a 72 hours (3 days) horizon,

the plots on the left are the states, whereas those on the right are the treatment control:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.

IL10Dose(t) displayed more bang-bang phenomenon in the controller as shown in Figure 6.6,

especially in the “One hour interval recalculation step” case (middle plot). IL10Dose(t) con-
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sistently captured the frequent small up-down swing between 12mg/kg and 14mg/kg in the

treatment response of interleukin-10 (IL10(t)) for both “One hour interval recalculation step”

and “Four hours recalculation step”. Lastly, IL10(t) achieve equilibrium relatively early in the

horizon, this is depicted in the middle and bottom plots.

Figure 6.7: NMPC simulation of YIL10(t) at 3mg/kg endotoxin challenge level showing the

three difference cases of recalculation step over a 72 hours (3 days) horizon:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.

In Figure 6.7, the response of YIL10(t) demonstrated another vivid changes to treatment for the

three different cases. Similar behavior also occurred for D(t) in Figure 6.3. This shows that the

tissue damage related states are more sensitive to the choice of recalculation step used. The

plots show an enormous reduction in the effect of YIL10(t) between the “unequal recalculation

step” and other cases.
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6.1.2 NMPC in silico simulations at 6 mg/kg and 12 mg/kg endotoxin chal-

lenge levels

This section focuses on the NMPC in silico simulation results at 6mg/kg and 12mg/kg en-

dotoxin challenge levels, respectively. The plots for those states with no control variable are

placed side-by-side for their respective endotoxin challenge levels and those on the left represent

the 6mg/kg whereas those on the right denote 12mg/kg. The plots of pro-inflammatory cy-

tokine interleukin-6 (IL6(t)) and those of anti-inflammatory cytokine interleukin-10 (IL10(t))

are side-by-side with IL6Dose(t) and IL10Dose(t), respectively.

It is noted that the exponential decay of the concentration of endotoxin levels remained consis-

tent as expected, regardless of the choice of recalculation step. Figures 6.8 and 6.9 depict the

cascade of endotoxin levels at 6mg/kg and 12mg/kg, respectively. The smooth rapid decrease

in the response of N(t) for “One hour recalculation step” in Figure 6.10 (6mg/kg endotoxin

level) was not captured by the other cases, rather they exhibited similar up-down swing as the

level of N(t) decreases. This implies that N(t) is sensitive at 6mg/kg with respect to the choice

of recalculation step. On the other hand, the 12mg/kg endotoxin level plots in Figure 6.11

illustrated an identical smooth rapid cascade across all the cases of recalculation step. Note

that the treatment response of the concentration of TNF (t) exhibited identical phenomenon

similar to those in N(t) (Figures 6.16, and 6.17), this similarity is not surprising since the same

behavior was observed at 3mg/kg endotoxin concentration level.

The tissue damage related states (D(t) and YIL10(t) in Figures 6.12, 6.13, 6.20, and 6.21)

displayed the most vivid treatment response changes and they are highly sensitive to the choice

of recalculation step employed. The inflammatory response doses (IL6Dose(t) and IL10Dose(t)

in Figures 6.14, 6.15, 6.18 and 6.19) showed great efficiency in regulating the concentration of

interleukin-6 and interleukin-10. IL10(t) achieved equilibrium in all the endotoxin challenge

levels. Lastly, the NMPC scheme produced effective optimal treatment regiment to modulate

inflammation better than the open-loop control in silico simulation.
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Figure 6.8: NMPC of P (t) at 6mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.

Figure 6.9: NMPC of P (t) at 12mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.
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Figure 6.10: NMPC of N(t) at 6mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.

Figure 6.11: NMPC of N(t) at 12mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.
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Figure 6.12: NMPC of D(t) at 6mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.

Figure 6.13: NMPC of D(t) at 12mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.
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Figure 6.14: NMPC simulation of IL6(t), and IL6Dose(t) at 6mg/kg endotoxin challenge level

showing the three difference cases of recalculation step over a 72 hours (3 days) horizon, the

plots on the left are the states, whereas those on the right are the treatment control:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.
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Figure 6.15: NMPC simulation of IL6(t), and IL6Dose(t) at 12mg/kg endotoxin challenge

level showing the three difference cases of recalculation step over a 72 hours (3 days) horizon,

the plots on the left are the states, whereas those on the right are the treatment control:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.
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Figure 6.16: NMPC of TNF (t) at 6mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.

Figure 6.17: NMPC of TNF (t) at 12mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.
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Figure 6.18: NMPC simulation of IL10(t), and IL10Dose(t) at 6mg/kg endotoxin challenge

level showing the three difference cases of recalculation step over a 72 hours (3 days) horizon,

the plots on the left are the states, whereas those on the right are the treatment control:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.
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Figure 6.19: NMPC simulation of IL10(t), and IL10Dose(t) at 12mg/kg endotoxin challenge

level showing the three difference cases of recalculation step over a 72 hours (3 days) horizon,

the plots on the left are the states, whereas those on the right are the treatment control:

Top Left : Unequal recalculation step.

Top Right : One hour interval recalculation step.

Bottom: Four hours recalculation step.

115



Figure 6.20: NMPC of YIL10(t) at 6mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.

Figure 6.21: NMPC of YIL10(t) at 12mg/kg.

Top: Unequal recalculation,

Middle: One hour recalculation,

Bottom: Four hours recalculation.
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6.2 NMPC and UKF

We conclude this chapter by demonstrating how Unscented Kalman Filter (UKF) can be in-

corporated in the NMPC scheme to filter the observed noisy states as well as estimate the

unobserved states at each recalculation/measurement step. In practice, at the current recal-

culation/measurement step, measurements on the observed states will be taken based on the

previously controlled step and Kalman filter or any other filter will be used to estimate the

unobserved states in addition to filtering the noisy observed states.

6.2.1 Unscented Kalman Filter (UKF)

The UKF belongs to a family of filters known as Sigma-Point Kalman Filter. This class of

filters uses statistical linearization to linearize a nonlinear function of a random variable via a

linear regression between n points taken from a prior distribution of the random variable. The

Extended Kalman Filter (EKF) is one of the widely used technique for performing recursive

nonlinear estimation. Meanwhile, EKF only provides an approximation to optimal nonlinear

estimation. The UKF, which was first proposed by [68, 69, 70], is an alternative filter with

performance superior to that of the EKF.

The major difference between EKF and UKF comes from the way which the Gaussian random

variables (GRV) are represented for propagating through system dynamics [141]. In the case

of EKF, the state distribution is approximated by a GRV, which, in turn, is propagated an-

alytically using a first-order linearlization of the nonlinear system. The problem with doing

this is that it does lead to the introduction of large errors in the true posterior mean as well

as the covariance of the transformed GRV may result in suboptimal performance and some-

times divergence of the filter. The UKF handle this problem by using a deterministic sampling

technique. The state distribution is again approximated by a GRV but in this case by using a

minimal set of carefully chosen points. These points completely represent the true mean and

covariance of the GRV and when propagated via the true mean nonlinear system, captures the

posterior mean and covariance accurately to second order for any nonlinearity unlike the EKF

which only achieves first-order accuracy [141]. The computation of UKF does not require any

explicit knowledge of the Jacobian or Hessian, and the complexity of EKF and UKF are the

same order.

In this work, we implemented the UKF by using the effective square-root form. The standard

Kalman implementation calculates the state (or parameter) covariance Pk recursively whereas

the UKF requires taking the matrix square-root SkS
T
k = Pk, at each time step using Cholesky
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factorization. In the square-root UKF (SR-UKF), Sk is propagated directly, therefore, avoiding

the need to refactorize at each time step. This improves the numerical properties and yet

maintained the same complexity as UKF. A complete review of the UKF and its extensions

can be found in [141]. The SR-UKF algorithm for state estimation implemented in this work

is presented in Appendix F and in [141]. Lastly, the MATLAB solver that implements this

algorithm was developed by my colleague Brett Matzuka.

6.2.2 NMPC and UKF at 3 mg/kg endotoxin challenge level

We will add a 10% Gaussian noise to our in silico simulated results of the observed states;

IL6, TNF and IL10 at 3mg/kg endotoxin challenge level and use them as clinical data. UKF

will then be used to estimate the unobserved states; P (t), N(t), D(t) and YIL10(t) in addition

to filtering the noisy observed states. The “four hours recalculation step” will be used as the

recalculation/measurement step. By not assuming that all the states are observable, we succeed

in creating a scenario that closely resembles the actual experiment done on rats in [126]. The key

difference is that pseudo experimental data will be obtained at each recalculation/measurement

step based on the last controlled step. Although we employed UKF as our state estimator, other

choices of observer/estimator that can achieve good state estimation can also be used, and these

have been widely studied in [5, 47, 92, 97].

The framework of our 7D ODE is given by

ẏ(t) = F(y(t),u(t),v(t)) (6.1)

z(t) =

 IL6(t)

TNF (t)

IL10(t)

+ w(t), (6.2)

where y represent the unobserved states of our reduced model, u denote the control variables,

v the process noise, z denote the measured observations and w the observation noise which

is gaussian with mean 0 and covariance W. The process state Equation (6.1) is our usual 7D

model with the addition of a process noise term. The measure observations Equation (6.2)

represent our observed inflammatory cytokines with an observation noise term. The process

noise that we assumed is based on the accuracy of the integrator and this will be a small value,

V = 1.0× 10−6I7. Also, the observed noise covariance is W = 0.01I3, where I7 and I3 are “7

by 7” and “3 by 3” identity matrices, respectively.

The plots in Figure 6.22 depict the responses of P (t), N(t) and D(t) to treatment control

when UKF was utilized in estimating the states. The red dashed line (- -) denote the NMPC
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in silico simulation trajectories, whereas the UKF estimated points are represented in black

circles. Notice that P (t) and N(t) were driven to their respective equilibrium positions before

the 10th hour. However, D(t) remained slightly elevated.

Figure 6.22: NMPC simulation combined with UKF for P (t), N(t), and D(t) at 3mg/kg

endotoxin challenge level using the “four hours recalculation step starting after the 4th hour”

over a 72 hours (3 days) horizon:

Top Left : Concentration of endotoxin level, P (t).

Top Right : Total number of activated pahgocytic cells, N(t).

Bottom: Tissue damage marker, D(t).

The response of IL6(t) to treatment as shown in Figure 6.23 appears to be the most significant

when compared with the plots in Sections 6.1.1 and 6.1.2, where UKF was not used to filter

the state. IL6Dose(t) displayed the same consistent bang-bang phenomenon as in the previous

sections.
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Figure 6.23: NMPC simulation combined with UKF for IL6(t), IL6Dose(t), and TNF (t) at

3mg/kg endotoxin challenge level using the “four hours recalculation step starting after the

4th hour” over a 72 hours (3 days) horizon:

Top Left : Concentration of pro-inflammatory cytokine, interleukin-6, IL6(t).

Top Right : Treatment therapy dose for interleukin-6, IL6Dose(t).

Bottom: Concentration of pro-inflammatory cytokine, tumor necrosis factor-α, TNF (t).
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Figure 6.24: NMPC simulation combined with UKF for IL10(t), IL10Dose(t), and YIL10(t)

at 3mg/kg endotoxin challenge level using the “four hours recalculation step starting after the

4th hour” over a 72 hours (3 days) horizon:

Top Left : Concentration of anti-inflammatory cytokine, interleukin-10, IL10(t).

Top Right : Treatment therapy dose for interleukin-10, IL10Dose(t).

Bottom: Tissue damage driven IL-10 promoter TNF (t).

Figure 6.24 depicts an interesting characteristics of YIL10(t). Although this state showed a

substantial reduction from the pre-treatment levels, it appears to be increasing slowly. On the

other had. IL10(t) achieved equilibrium before the 10th hour.
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Chapter 7

Conclusions

7.1 Summary

The first phase of this work involved the development and validation of a mathematical model

that can accurately predict acute inflammatory response to endotoxin challenge. In this phase,

we compared the original 8D model developed in [126] with four different models we proposed.

Two of those models were “modified 8D” models (8D-15 and 8D-21) and the other two were

reduced 7D models (7D-15 and 7D-21). 7D was created by the elimination of a non-accessible

state representing slow acting anti-inflammatory mediators (CA(t)). CA(t) was removed based

on the evidence presented in Section 2.2.1 while attempting to preserve the underlying biology

reflecting known inflammatory physiology. This is necessary because when modeling biological

processed with limited number of observations, over-fiting, over-parameterization and even the

introduction of unjustified nonlinearities are extremely discouraged.

In order to construct models that accurately reproduced the experimental data on inflamma-

tory cytokines; sensitivity analysis, subset selection and parameter estimation were all em-

ployed. Sensitivity analysis was used to identify those parameters that are sensitive to a slight

perturbation for each of the cytokines. At the same time, since sensitivity analysis often iden-

tify parameters that are correlated, subset selection was employed for parameter identifiability

analysis. The use of subset selection is critical in our research because our focus is identify-

ing only the linearly independent sensitive parameters. The SVD followed by QR with column

pivoting method described in [59] was used to achieve this goal. With the information garner

thus far, we proposed four potential models to compare with the 8D model in [126]. Next,

the normalized nonlinear least squares parameter estimation method was used to calibrate our

models with available experimental data and the models parametrization were achieved using
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the Nelder-Mead simplex method.

As it is our desire to identify the best model needed at the next phase of this work, all the

competing models’ curve fitting plots at 3mg/kg and 12mg/kg endotoxin challenge levels as

well as model validation prediction plots at 6mg/kg endotoxin challenge level were closely

examined. This stage of comparison proved inconclusive since a number of the models showed

superior fits for a cross section of the plots considered and no model had a clear edge with

respect to having a better curve fitting representation of the actual data. As a tiebreaker,

AIC [3], as described in Section 2.3 was employed to compare the models quantitatively. AIC

is a statistical model selection tool for quantifying the trade-off between model fit and model

complexity, as measured by the total number of parameters. With a aid of AIC, we chose 7D-15

as the best model that satisfied this trade-off. Hence, 7D-15 became our model of choice for

the next phase, for simplicity we shall refer to this model as 7D. We conclude this phase by

proving the existence and uniqueness of a solution to 7D as well as conduct steady state and

stability analysis

Since the control of inflammatory response is a key focal point in this work, this constitute

the second and final phase of our research which was primarily to derive optimal therapeutic

interventions for the control of acute inflammation triggered by endotoxins. Next, we stud-

ied the 7D model under an open-loop optimal control based treatment strategies. To iden-

tify specific therapy dosing characterization that can curb inflammatory responses, two source

terms were added to the 7D ODE model in Section 2.2.2 to serve as treatment control vari-

ables. Specifically, IL6Dose(t) was included in Equation (2.4) to form Equation (4.33), and

IL10Dose(t) was added to Equation (2.6) to form Equation (4.35). IL6Dose(t) serves as the

pro-inflammatory treatment dose needed to modulate interleukin-6 (IL6(t)) and IL10Dose(t)

is the anti-inflammatory treatment dose required to regulate interleukin-10 (IL10(t)). We also

proved the existence a solution to our optimal control problem which was followed by the

numerical results showing how efficient our methodology performed (Section 4.4).

The Nonlinear Model Predictive Control (NMPC) scheme was applied in this work to absorb

any unexpected disturbances that is likely to occur in the system as time progresses; since

the open-loop optimal control methodology lacks the ability to account for such disturbances.

Three difference cases of recalculation/measurement steps at each endotoxin challenge level were

used as time points to apply treatment doses on the 7D model while attempting to minimize

total number of activated phagocytic cells (N(t)), tissue damage (D(t)), tissue damage driven

non-accessible IL-10 promoter (YIL10(t)), and the inflammatory response doses IL6Dose(t)

and IL10Dose(t) (Equation (4.29)). Simulation results capturing the level of response by the

different states were summarized in Sections 6.1.1, and 6.1.2. A better way to implement NMPC
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is to combine it with Unscented Kalman Filter (UKF). We demonstrated in Section 6.2.2 how

this can be done by creating a pseudo clinical data after adding a 10% noise based on gaussian to

our in silico simulated results that included therapeutic treatment received at each recalculation

step.

7.2 Discussion

We successfully derived a reduced 7D model of acute inflammatory response to endotoxin

challenge from the 8D model developed in [126]. In addition to reducing the dimension of the

state space, the parameter space was also reduce from 46 to 40 parameters. We verified that the

solutions of the 7D model demonstrated comparative or better overall performance in predicting

the experimental data on inflammatory cytokines while maintaining relevant biological fidelity.

The most significant challenge our 7D model faced was not capturing the dynamics of the anti-

inflammatory cytokine as well as it consistently did with the pro-inflammatory cytokines.

The implementation of an NMPC scheme to derive optimal treatment therapies that can mod-

ulate inflammation was successfully conducted. The three therapeutic recalculation time points

used in the NMPC scheme all significantly reduced the effects of the inflammation and tissue

damage while controlling the states responses. Meanwhile, the “One hour recalculation step” is

not biologically feasible since that can lead to too much blood loss in the rats which in turn can

result in hypovolemic shock. The in silico simulation done at this recalculation instance only

illustrates a theoretical improvement over the other recalculation intervals. A rather conserva-

tive but a more practical recalculation step will be to use the same time intervals corresponding

to the periods actual data were obtained in the experiment done in [126].

In conclusion, although our findings in this work accomplished our goals, yet it raised many new

pertinent questions that require further investigation. Some of the possible future directions in

this work will be to come up with a better parameter estimation technique that can improve

the model’s predictability of interluekin-10, since the 7D mathematical model proposed is by

no means perfect. Another potential aspect of future research could be to further reduced our

model while maintaining the underlying biological relevance. In addition, it will be interesting

to investigate whether varying the collocation points used in GPOPS can affect the numerical

solution obtained. Finally, it is our desire to take our findings to the next level in some adaptive

treatment procedure. One way is to involve medical practitioners on how we can implement our

results through clinical study. This will enable us to incorporate in vivo experimental treatment

data with an NMPC approach that includes a good Moving Horizon Estimation (MHE) for state

estimation.
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Appendix A

8D Mathematical Model

The 8D ODEs describing the dynamics of the states are given below.

Endotoxin concentration (P (t)):

dP (t)

dt
= −dp · P (t). (A.1)

P (t) decays exponentially with a rate equal to dP . The decay rate was fixed at 3hr−1. The

initial conditions for Equation (A.1) are either 3mg/kg, 6mg/kg, or 12mg/kg depending

on the endotoxin dose level.

Total number of activated phagocytic cells (N(t)):

The equations representing activation of N(t) are of the form:

dN(t)

dt
= kN ·

R(t)

xN +R(t)
− dN ·N(t) (A.2)

R(t) = [kNP · P (t) + kND ·D(t)] · fDNNCA(t) · fDNNIL10(t) · γ(t)

γ(t) = (1 + kNTNF · fUPNTNF (t)) · (1 + kNIL6 · fUPNIL6(t))

fUPNTNF (t) =
TNF (t)

xNTNF + TNF (t)

fUPNIL6(t) =
IL6(t)

xNIL6 + IL6(t)

fDNNCA(t) =
xNCA

xNCA + CA(t)

fDNNIL10(t) =
xNIL10

xNIL10 + IL10(t)
.

Resting phagocytic cells are activated by the presence of endotoxin in the system. Equa-
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tion (A.2) represents the total number of activated phagocytic cells (N(t)). The initial

condition for Equation (A.2) is N(0) = 0.

Tissue damage marker (D(t)):

The tissue damage caused by the inflammatory response to endotoxin challenge is modeled

as follows:

dD(t)

dt
= kD ·

N(t)6

x6
D +N(t)6

− dD ·D(t). (A.3)

Parameters kD and dD represent the rate of generation and the rate of elimination of

the non-measurable tissue damage marker. The initial condition for Equation (A.3) is

D(0) = 0.

Anti-inflammatory moderator (CA(t)):

CA(t) represents a combination of various inflammation inhibitory mediators, including

the cytokine Transforming Growth Factor-β1 (TGF − β1) and cortisol. The equation

representing CA(t) is given as:

dCA(t)

dt
= kCA ·N(t)− dCA · CA(t) + sCA. (A.4)

Parameters kCA and dCA represent the rate of CA(t) production/secretion and clearance,

respectively. At basal conditions, the system is assumed to be slightly anti-inflammatory.

This was achieved by introducing a constant, sCA, into the ODE. Hence, at t = 0, C(0) =
sCA
dCA

Concentration of interleukin-6 (IL6(t)):

The dynamics of IL − 6, which is a pro-inflammatory mediator, can be mathematically

written as:
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dIL6(t)

dt
= kIL6 ·

N(t)4

x4
IL6 +N(t)4

· [1 + kIL6TNF · fUPIL6TNF (t)

+ kIL6IL6 · fUPIL6IL6(t)] · fDNIL6IL10(t) · fDNIL6CA(t)

− dIL6 · IL6(t) (A.5)

fUPIL6TNF (t) =
TNF (t)

xIL6TNF + TNF (t)

fUPIL6IL6(t) =
IL6(t)

xIL6IL6 + IL6(t)

fDNIL6IL10(t) =
xIL6IL10

xIL6IL10 + IL10(t)

fDNIL6CA(t) =
xIL6CA

xIL6CA + CA(t)
.

The initial condition for Equation (A.5) is IL6(0) = 0.

Concentration of tumor necrosis factor (TNF (t)):

The dynamics of TNF − α, which is a pro-inflammatory mediator can be represented as

follows:

dTNF (t)

dt
= kTNF ·N(t)1.5 · [1 + kTNFTNF · fUPTNFTNF (t)]

· fDNTNFCA(t) · fDNTNFIL10(t) · fDNTNFIL6(t)

− dTNF · TNF (t) (A.6)

fUPTNFTNF (t) =
TNF (t)

xTNFTNF + TNF (t)

fDNTNFCA(t) =
x6
TNFCA

x6
TNFCA + CA(t)6

fDNTNFIL10(t) =
xTNFIL10

xTNFIL10 + IL10(t)

fDNTNFIL6(t) =
xTNFIL6

xTNFIL6 + IL6(t)
.

The initial condition for Equation (A.6) is TNF (0) = 0.

Concentration of interleukin-10 (IL10(t)):

The dynamics of IL10(t), which is a strong anti-inflammatory cytokine, can be represented

mathematically by the following equations:
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dIL10(t)

dt
= kIL10 ·

N(t)3

x3
IL10 +N(t)3

· [1 + kIL10IL6 · fUPIL10IL6(t)

+ kIL10TNF · fUPIL10TNF ]− dIL10 · fDNIL10d(t) · IL10(t)

+ YIL10(t) + sIL10 (A.7)

fUPIL10IL6(t) =
IL6(t)4

x4
IL10IL6 + IL6(t)4

fUPIL10TNF =
TNF (t)

xIL10TNF + TNF (t)

fDNIL10d(t) =
xIL10d

xIL10d + IL10(t)
.

The production of IL10(t) in the basal state is represented by the constant sIL10 (as

observed in experimental data). The initial condition for Equation (A.7) is IL10(0) =
sIL10·xIL10d

dIL10·xIL10d−sIL10
.

Tissue damage driven non-accessible interleukin-10 promoter (YIL10(t)):

dYIL10(t)

dt
= kIL102 ·

D(t)4

x4
IL102 +D(t)4

− dIL102 · YIL10(t). (A.8)

The dynamics of YIL10(t) are represented by the ODE (A.8). The rate of production of

YIL10(t) is represented by the parameter kIL102 coupled with a 4th -order Hill equation

which is driven by D(t).

Detailed description of the the model parameters and the effects of the supporting functions in

Equations (A.2) , (A.5), (A.6), and (A.7) can be found in [126].
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Appendix B

7D Parameters and Plots

B.1 Reduced 7D Model Simulation Results

We display the plots of the reduced 7D model simulation for

P (t), N(t), D(t), IL6(t), TNF (t), IL10(t), andYIL10(t)

at 3mg/kg, 6mg/kg, and 12mg/kg endotoxin challenge levels respectively. The 7D model sim-

ulation plots at 3mg/kg endotoxin challenge level are displayed in Figure B.1. Figures B.2 and

B.3 show plots at 6mg/kg, and 12mg/kg endotoxin challenge levels, respectively.
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Figure B.1: 7D model simulation results at 3mg/kg endotoxin challenge level for all the states.
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Figure B.2: 7D model simulation results at 6mg/kg endotoxin challenge level for all the states.
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Figure B.3: 7D model simulation results at 12mg/kg endotoxin challenge level for all the states.
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B.2 Reduced 7D Complete Parameter Values

Table B.1: Reduced 7D Model Parameters

No. Parameter Value Unit No. Parameter Value Unit

1 dP 3 hr−1 21 kIL6IL6 1.1191631e4 −
2 kN 4.6297682e7 hr−1 22 xIL6IL6 1.987e5 pg

mL

3 xN 14.177 N − unit 23 kTNF 3.9e-8 pg
mL·N−unit1.5

4 dN 1.004344813 hr−1 24 dTNF 1.651880958 hr−1

5 kNP 54.14849008 N−unit·kg
mg 25 xTNFIL10 2.2198e7 pg

mL

6 kND 0.013259 N−unit
D−unit 26 kTNFTNF 1.0e-10 −

7 xNTNF 1693.9509 pg
mL 27 xTNFTNF 9.2969e6 pg

mL

8 xNIL6 58080.742 pg
mL 28 xTNFIL6 1.9446269e4 pg

mL

9 xNIL10 147.68 pg
mL 29 kIL10TNF 2.9951e-5 −

10 kNTNF 12.94907 − 30 xIL10TNF 1.1964e6 pg
mL

11 kNIL6 2.71246 − 31 kIL10IL6 4.1829 −
12 kD 2.5247 D−unit

hr 32 xIL10IL6 1.6942234e4 pg
mL

13 dD 0.099359171 hr−1 33 kIL10 1.3374e5 pg
mL·hr

14 xD 1.1646809e7 N − unit 34 dIL10 98.932 hr−1

15 kIL6TNF 4.4651 − 35 xIL10 5.6323712e7 N − unit
16 xIL6TNF 1.5125569e8 pg

mL 36 sIL10 1187.2 pg
mL·hr

17 kIL6 9.0425e7 pg
mL·hr 37 xIL10d 488.5519610 pg

mL

18 dIL6 0.308883173 hr−1 38 kIL102 1.3964e7 YIL10−Unit
hr

19 xIL6 2.3833727e8 N − unit 39 dIL102 0.016876136 hr−1

20 xIL6IL10 1.1818 pg
mL 40 xIL102 37.454 D − unit
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Appendix C

Gauss Pseudospectral Method

(GPM)

The GPM is a collocation method that was originally developed by Benson [18] in an effort

to correct the deficiencies of the Legendre Pseudospectral Method (LPM). In the interest of

clarity, we begin with the following definitions.

Definition C.0.1 A collocation method is a procedure of finding numerical solutions of differ-

ential and integral equations, the general approach is to choose a finite dimensional space of

solutions together with a number of collocation points in the domain. The goal is to pick the

solution that satisfies the equation of interest at the collocation points.

Definition C.0.2 The Legendre Pseudospectral Method (LPM) is a direct transcription method

that converts a continuous optimal control problem into a discrete NLP. LPM uses a set of

Lagrange-Gauss-Lobatto (LGL) points for collocation of the differential dynamic constraints of

the optimal control problem [18].

Suppose we aim to find the control that minimizes the Bolza cost functional

J = Φ(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

g(x(t),u(t), t)dt (C.1)

subject to

ẋ(t) = f(x(t),u(t), t), (C.2)
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with boundary conditions

φ(x(t0), t0,x(tf ), tf ) = 0, (C.3)

and inequality path constraints

C(x(t),u(t), t) ≤ 0, (C.4)

where t ∈ [t0, tf ], x(t) ∈ Rn and u(t) ∈ Rm. Equations (C.1)-(C.4) constitute what is known

as the continuous Bolza problem and the functions in the equations are defined as:

Φ : Rn × R× Rn × R→ R

g : Rn × Rm × R→ R

f : Rn × Rm × R→ Rn (C.5)

φ : Rn × R× Rn × R→ Rq

Φ : Rn × Rm × R→ Rc.

Gauss pseudospectral transcription converts the above continuous Bolza problem into a NLP,

GPM approximates the states by using a basis of global interpolating polynomials which are

established from a set of discrete points across the interval. Consider the transformation of t

to τ ∈ [−1, 1] such that

t =
tf − t0

2
τ +

tf + t0
2

.

Let K = {τ1, τ2, . . . , τK} be a set of K Legendre-Gauss (LG) points which correspond to the

roots of the Kth degree Legendre polynomial, PK(τ), where

PK(τ) =
1

2KK!

dK

dτK
[
(τ2 − 1)K

]
.

The corresponding LG weights can be computed using

wi =
2

(1− τ2
i )
[
ṖK(τi)

]2 , for i = 1, . . . , K,

where ṖK is the derivative of the Kth degree Legendre polynomial.

The discretization points used in the GPM are the LG points combined with τ0 = −1 and τK+1 =

1, hence creating a K + 2 points (K ∪ {τ0, τK+1}).
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The discretization of the problem can be given in terms of τ such that the state is approximated

using a basis of K + 1 Lagrange interpolating polynomials Li(τ), for i = 0, . . . , K.

x(τ) ≈ X(τ) =
K∑
i=0

Li(τ)X(τi), (C.6)

where

Li(τ) =
K∏

j=0, j 6=i

τ − τj
τi − τj

.

Similarly, the control is approximated at the K collocation points using a basis of K Lagrange

interpolating polynomials L̃i(τ), for i = 1, . . . , K.

u(τ) ≈ U(τ) =
K∑
i=1

L̃i(τ)U(τi) for τi ∈ K. (C.7)

The cost functional in equation (C.1) is approximated via a Gauss quadrature as

J = Φ(X0, t0, Xf , tf ) +
tf − t0

2

K∑
k=1

wkg(Xk, Uk, τk; t0, tf ). (C.8)

Taking the derivative of the state in equation (C.6) with respect to τ yields

ẋ(τk) ≈ Ẋ(τk) =
K∑
i=0

L̇i(τk)X(τi). (C.9)

The derivative of each Lagrange polynomial at the LG points can be written in the form of a

differentiation matrix D ∈ RK×K+1 as

Dki = L̇i(τk) =
K∑
l=0

∏K
j=0, j 6=i, l(τk − τj)∏K
j=0, j 6=i(τi − τj)

, k = 1, . . . , K; i = 0, . . . , K. (C.10)

The dynamic equation (C.2) is then transcribed into algebraic collocation constraint of the

problem as

K∑
i=0

DkiX(τi)−
tf − t0

2
f(X(τk), U(τk), τk; t0, tf ) = 0 k = 1, . . . , K. (C.11)

Next, define the quadrature constraint
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Xf −X0 −
tf − t0

2

K∑
i=1

wkf(X(τk), U(τk), τk; t0, tf ) = 0, (C.12)

where X0 = X(τ0) and Xf = X(τf ). Notice that equation (C.12) is an additional constraint

in the discretiization since an additional variable was introduced. Also, (C.12) is a function on

the right-hand side of the differential equation at each LG point, as such equation (C.10) can

be solved for f and substitute the result into equation (C.12) to get

Xf −X0 −
K∑
i=0

K∑
k=1

wkDkiX(τi) = 0. (C.13)

As equation (C.13) is linear, it is implemented rather than equation (C.12). A lot of the details

regarding the development of GPM have been omitted, the interested reason should see [18, 65]

for a complete description of GPM.
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Appendix D

Sequential Quadratic Programming

(SQP)

The SQP methods tries to solve a NLP rather than convert it to a sequence of unconstrained

minimization problems. The methods are particularly useful when solving problems with sig-

nificant nonlinearities in the constraints. They are iterative methods that solve a quadratic

programming (QP) problem at each iteration. We will give on overview of the framework for

solving equality-constrained problems using the Local SQP method described in [103]. This

reference is an excellent source for a complete review of SQP methods.

Consider the equality-constrained problem

min f(x) (D.1)

subject to g(x) = 0, (D.2)

where f : Rn → R and g : Rn → Rm are smooth functions. The SQP technique is to model

(D.1) and (D.2) as a QP subproblem at the current iterate xk and then solve to obtain x∗. The

next iterate becomes x∗ = xk+1. Applying Newton’s method to the Karush-Kuhn-Tucker (KKT)

optimality condition for (D.1) and (D.2) is the simplest derivation of SQP methods.

Define the Lagrangian function of (D.1) and (D.2) to be L(x, λ) = f(x) − λT g(x), where λ is

the Lagrangian multiplier. Let

A(x)T = [∇g1(x), ∇g2(x), . . . , ∇gm(x)],

such that A(x) is the constraint jacobian and gi(x) is the ith component of the vector in
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(D.2). The first order (KKT) conditions for a system of n + m equations in n + m unknowns

x and λ:

F (x, λ) =

[
∇f(x)−A(x)Tλ

g(x)

]
= 0. (D.3)

Any solution (x∗, λ∗) of (D.1) and (D.2) for which A(x∗) has full rank satisfies (D.3) [103], using

the Newton’s method technique to solve (D.3), find the jacobian of (D.3) w.r.t x and λ;

F ′(x, λ) =

[
∇2
xxL(x, λ) −A(x)T

A(x) 0

]
.

The step for iterate (xk, λk) is [
xk+1

λk+1

]
=

[
xk

λk

]
+

[
pk

pλ

]
, (D.4)

where pk and pλ solve the Newton-KKT system[
∇2
xxL(x, λ) −A(x)T

A(x) 0

][
pk

pλ

]
=

[
−∇fk +ATk λk

−gk

]
. (D.5)

This iteration is well defined when the KKT matrix in (D.5) is nonsingular. If the following

assumption from [103] holds at (x, λ) = (xk, λk) then the KKT matrix in (D.4) is nonsingu-

lar.

Assumptions D.0.1

(a) The constraint jacobian A(x) has full row rank;

(b) The matrix ∇2
xxL(x, λ) is positive definite on the tangent space of the constraints,

i.e., dT∇2
xxL(x, λ)d > 0 ∀ d 6= 0 such that A(x)d = 0.

Suppose equations (D.1) and (D.2) are reformulated using a quadratic program at iterate

(xk, λk) to be of the form:

min
p

fk +∇fTk p+
1

2
pT∇2

xxLkp (D.6)

subject to Akp+ gk = 0. (D.7)

If Assumptions D.0.1 hold for this problem, then it had a unique solution (pk, qk) such that
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equations (D.8) and (D.9) are satisfies.

∇2
xxLkpk +∇fk −ATk qk = 0 (D.8)

Akpk + gk = 0. (D.9)

pk and qk can be identified with the solution of equation (D.5), and by subtracting ATk λk from

both sides of the first equation in (D.5), we get[
∇2
xxLk −A(x)T

A(x) 0

][
pk

λk+1

]
=

[
−∇fk
−gk

]
. (D.10)

By nonsingularity of the coefficient matrix, λk+1 = qk, and pk solves equations (D.5) and

(D.6)-(D.7).

The next iterate (xk+1, λk+1) can be defined either as the solution of (D.6)-(D.7) or be generated

by the Newton’s method (D.4). Algorithm D.0.1 shows the steps for solving (D.1)-(D.2) in its

simplest form.

Algorithm D.0.1

Choose an initial pair (x0, λ0); set k ← 0;

repeat until a convergence test is satisfied.

Evaluate fk, ∇fk, ∇2
xxLk, gk, and Ak;

Solve equations (D.6)-(D.7) to obtain pk and qk;

Set xk+1 ← xk + pk and λk+1 ← qk;

end(repeat)
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Appendix E

7D Optimal Control Results

Figure E.1: Optimal treatment control functions at different endotoxin concentrations. Top

plots denote 3mg/kg, middle plots are 6mg/kg and bottom plots represent 12mg/kg.
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Figure E.2: Model solution under optimal treatment control at 3mg/kg endotoxin level.
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Figure E.3: Model solution under optimal treatment control at 6mg/kg endotoxin level.
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Figure E.4: Model solution under optimal treatment control at 12mg/kg endotoxin level.
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Appendix F

Square-Root Unscented Kalman

Filter

The algorithm for Square-Root Unscented Kalman Filter for state estimation is presented here.

More information about this algorithm and other UKF algorithms can be found in [141]. First,

we define the weights Wi

W
(m)
0 =

λ

L+ λ
, (F.1)

W
(c)
0 =

λ

L+ λ
+ 1− α2 + β, (F.2)

W
(m)
i = W

(c)
i =

1

2(L+ λ)
, i = 1, . . . , 2L, (F.3)

λ = α2(L+ κ)− L is a scaling parameter. The constant α determines the spread of the sigma

points around x̄, and it is usually set to a small positive value (e.g, 1 ≤ α ≤ 10−4). The constant

κ is a secondary scaling parameter, which is usually set to 3− L, and β is used to incorporate

prior knowledge of the distribution of x (for Gaussian distributions, β = 2 is optimal) and L is

the dimension of the state space.

Algorithm F.0.2

Initialize with

x̂0 = E[x0], S0 = chol{E[(x0 − x̂0)(x0 − x̂0)T ]}. (F.4)

For k ∈ {1, · · · ,∞}.
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The sigma-point calculation and time update are given by

Xk−1 = [x̂k−1 x̂k−1 + γSk x̂k−1 − γSk], (F.5)

X ∗k|k−1 = F(Xk−1,uk−1), (F.6)

x̂−k =

2L∑
i=0

W
(m)
i X ∗i,k|k−1, (F.7)

S−k = qr

{[√
W

(c)
1 (X ∗1:2L,k|k−1 − x̂−k )

√
Rv

]}
, (F.8)

S−k = cholupdate{S−k ,X
∗
0,k|k−1 − x̂−k ,W

(c)
0 }, (F.9)

(augment sigma points)1

Xk|k−1 = [X ∗k|k−1 X ∗0,k|k−1 + γ
√

Rv X ∗0,k|k−1 − γ
√

Rv] (F.10)

Yk|k−1 = H(Xk|k−1) (F.11)

ŷ−k =
2L∑
i=0

W
(m)
i Yi,k|k−1, (F.12)

and the measurement update equations are

Sȳk
= qr

{[√
W

(c)
1 (Y1:2L,k − ŷk)

√
Rn

k

]}
, (F.13)

Sȳk
= cholupdate{Sȳk

,Y0,k − ŷk,W
(c)
0 }, (F.14)

Pxkyk
=

2L∑
i=0

W
(c)
i (Xi,k|k−1 − x̂−k )(Yi,k|k−1 − ŷ−k )T , (F.15)

Kk =
(Pxkyk

/STȳk
)

Sȳk

, (F.16)

x̂k = x̂−k +Kk(yk − ŷ−k ),

U = KkSȳk
, (F.17)

Sk = cholupdate{S−k ,U,−1}. (F.18)

1Alternatively, redraw a new set of sigma points that incorporate the additive process noise,
i.e., Xk|k−1 = [x̂−k x̂−k + γS−k x̂k − γS−k ].
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