
ABSTRACT

LAKHANI, CHIRAG MANMOHAN. Geometric Invariant Theory Compactification
of Quintic Threefolds. (Under the direction of Amassa Fauntleroy).

Quintic threefolds are some of the simplest examples of Calabi-Yau varieties. An

interesting relationship, discovered by string theorists, is that every Calabi-Yau vari-

ety Y has a mirror Calabi-Yau variety Y . In fact mirror symmetry is a relationship

which relates complex structure moduli space of Y to the complexified Kähler moduli

of its mirror Y . The purpose of this dissertation is to describe the complex structure

moduli space from the point of view of geometric invariant theory (GIT).

The GIT compactification of quintic threefolds consists of adding certain singular

quintic threefolds to the space of smooth quintic threefolds. An explicit description

of the allowed singularities for this moduli space will be described. The descrip-

tion of allowed singularities is arrived at by a combinatorial procedure described by

Mukai [15]. His method can be used to find the maximal semistable families of the

moduli space. These maximal semistable families give a description of the possible

singularities which can occur in the moduli space. The boundary structure of the

compactification is also described in this dissertation.



Geometric Invariant Theory Compactification of Quintic Threefolds

by
Chirag M. Lakhani

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fullfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2010

APPROVED BY:

Dr. Larry Norris Dr. Seth Sullivant

Dr. Amassa Fauntleroy Dr. Thomas Lada
Chair of Advisory Committee



ii

DEDICATION

To my parents, whose support and love helped get me to this point.



iii

BIOGRAPHY

Chirag Lakhani was born and grew up in North Carolina. He has remained in

that state ever since then. He attended North Carolina State University as an un-

dergraduate and couldn’t get enough so he remained there as a graduate student as

well. He hopes to eventually escape the gravitational pull of North Carolina. In his

free time he enjoys the outdoors and running.



iv

ACKNOWLEDGMENTS

I would like to begin by thanking my advisor Dr. Amassa Fauntleroy. I am

very grateful for his willingness to take me on as a student as an undergraduate

and continuing to be my advisor in graduate school. I am very grateful for his

willingness to explain algebraic geometry concepts to me over and over and over

again. I am also grateful for the wisdom he has imparted about how to do research

in mathematics. I will certainly try to heed your advice about not getting stuck

in abstract algebraic geometry wonderland but rather find concrete problems which

illuminate the abstraction.

To the other members of my committee Dr. Lada, Dr. Norris, and Dr. Sullivant

I would like to thank them for their help. To Dr. Lada, I would like to thank him

for my first exposure to homological algebra. Little did I know, at the time, that

the time spent learning category would actually be useful. I would also like to thank

him for the support to attend a conference in Italy. Hopefully, a future paper on L∞-

deformation theory will show the conference was not in complete vain. To Dr. Norris,

I would like thank him for all of the patience and time he has given me as I learned

geometry. For willing to spend many semesters helping me learn symplectic geometry

as well. To Dr. Sullivant, for his advice and willingness to help even in the short

amount of time I have known him. I would also like to thank him for organizing such

a great tropical geometry seminar. It was one of the most informative seminar series

I have ever participated in during graduate school. I am sure many future graduate

students will similarly benefit from his enthusiasm and energy.

To the other members of the mathematics department I would also like to extend

my gratitude. To Dr. Stitzinger, I would like to thank him for the giving me the

chance to be a graduate student at N.C. State. I would also like to thank him for

helping me navigate the bureaucratic waters at N.C. State. To Dr. Fulp, I would

also like to thank him for his time and patience in the many courses I have had with

him at NCSU. His knowledge and enthusiasm for physics and geometry have made

a very large impact in my interests. I also treasure the many conversations about



v

mathematics I have had with him at Bruegger’s Bagels, the Carmichael gym track

and in the mailroom. I am also very grateful to all of the other faculty members in the

math department at NCSU. I will certainly treasure how helpful so many professors

have been in the course of my time at NCSU.

To the administrative staff at NCSU I am very thankful for all of your help. I

am especially thankful to Denise Seabrooks for making my life as a graduate student

much easier. I cannot thank her enough for all of help in the job application process

as well as fixing bureaucratic messes I would make with the graduate school. To all of

the other graduate students I would like to thank you for being so generous and kind

during my years at NCSU. The graduate student in the math department are some

of the kindest and helpful people I have meet. I treasure the memories and wonderful

discussions (mathematical and non-mathematical) that I have had.

Last but not least I would like to thank my family and friends. To my family, I

would like to thank them for all of their support throughout my years of graduate

school. I would also like to thank them for the many times that family events provided

a great distraction from mathematics. To my friends, I would also like to thank them

for their help and great conversations. To Aaron, Daniela, Vishal, Brandon, Jason,

Jackson, Joe and Ali thanks for the many wonderful memories.



vi

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Geometry of Quintic Threefolds . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Geometry of Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Singularities of Hypersurfaces . . . . . . . . . . . . . . . . . . 5

2.2 Parameter Space of Quintic Threefolds . . . . . . . . . . . . . . . . . 10
2.3 Calabi-Yau Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3 Geometric Invariant Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Reductive Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Notions of Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Stability and Semistability for Projective Varieties . . . . . . . . . . . 17
3.4 Hilbert-Mumford Criterion . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Minimal Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Quotient Construction for Quintic Threefolds . . . . . . . . . . . . . 24

Chapter 4 Semistable Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Hilbert-Mumford Criterion for Hypersurfaces . . . . . . . . . . . . . . 25
4.2 Combinatorics of Maximal Semistable Families . . . . . . . . . . . . . 29
4.3 Unstable Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Bad Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Geometric Interpretation of Maximal Semistable Families . . . . . . . 49
4.6 Stable Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5 Minimal Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Degenerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Luna’s Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 First Level of Minimal Orbits . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Minimal Orbit A . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Minimal Orbit B . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.5 Minimal Orbit C . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.7 Minimal Orbit D . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Second Level of Minimal Orbits . . . . . . . . . . . . . . . . . . . . . 74
5.4.1 MO2-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.3 MO2-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.5 MO2-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



vii

5.4.7 MO2-IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.9 MO2-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.11 MO2-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.13 MO2-VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.15 MO2-VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.17 MO2-IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.19 MO2-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix A Code for Poset Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix B Sample Linear Programming Calculation . . . . . . . . . . . . . . . 96



viii

LIST OF TABLES

Table 4.1 Strictly Semistable Families SS1 - SS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 4.2 Strictly Semistable Families SS5 - SS7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 4.3 Strictly Semistable Families SS1 - SS7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 4.4 Destabilizing Flags of SS1-SS7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 5.1 Corresponding Degenerations of SS1 - SS7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 5.2 First Level of Minimal Orbits MO-A - MO-D . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 5.3 Second Level of Minimal Orbits SS2I - SS2X. . . . . . . . . . . . . . . . . . . . . . . . . . 60



ix

LIST OF FIGURES

Figure 4.1 Poset structure of quintic monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.2 Poset structure of family SS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.3 Poset structure of family SS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 4.4 Poset structure of family SS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.5 Poset structure of family SS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.6 Poset structure of family SS5 I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.7 Poset structure of family SS5 II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.8 Poset structure of family SS5 III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.9 Poset structure of family SS6 I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.10 Poset structure of family SS6 II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.11 Poset structure of family SS6 III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.12 Poset structure of family SS7 I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.13 Poset structure of family SS7 II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.14 Poset structure of family SS7 III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.1 Poset structure of degree 3 monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.2 Boundary Stratification of the Moduli Space . . . . . . . . . . . . . . . . . . . . . . . . 89



1

Chapter 1

Introduction

Quintic threefolds are a class of projective varieties which occupy a special place in

algebraic geometry. They are some of the simplest examples of Calabi-Yau varieties.

Calabi-Yau varieties have received a great deal of attention in the last 30 years because

they give the right geometric conditions for some superstring compactifications [4]. A

surprising geometric relationship found for Calabi-Yau varieties, due to string theory,

is a phenomenon called mirror symmetry. Mirror symmetry, in its original form,

states that a Calabi-Yau variety Y has a mirror variety Y where the complex structure

moduli space of Y is the same as the complexified Kähler moduli space of Y . This

was explicitly calculated in [5] for the case of quintic threefolds. The purpose of this

dissertation is to give an explicit description of the space of complex structure moduli

space for Calabi-Yau quintic threefolds using geometric invariant theory (GIT).

Complex structures are inherently an analytic structure on quintic threefolds.

When a quintic threefold is viewed as a manifold, there is an underlying real smooth

manifold structure. The difference between a real smooth manifold and a complex

manifold is that a complex manifold has holomorphic mappings rather than just

smooth mappings. An underlying even dimensional real smooth manifold may have

many different complex structures that can be imposed on it. The set of different

complex structures for a real smooth manifold is the complex structure moduli space.

A quintic threefold hypersurface X is the zero set of a degree 5 homogeneous
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polynomial F ∈ C[x0, x1, x2, x3, x4]. In this case, all of the complex structures of

X correspond to deforming the coefficients of the polynomial F [9]. The advantage

of this correspondence is that complex structures of quintic threefolds correspond to

degree 5 polynomials F ∈ C[x0, x1, x2, x3, x4]. Two polynomials F and F represent

the same complex structure if there is a coordinate transformation which transforms

one polynomial into the other. This coordinate transformation on quintic threefolds

is given by a SL(5,C) action on the set of degree 5 polynomials. The classification of

complex structures reduces to classifying polynomials F up to a SL(5,C) coordinate

transformation. GIT is a natural tool that can be used to study this problem.

GIT is a tool in algebraic geometry used to construct quotient varieties. If a group

G acts on an algebraic variety X then, using GIT, one can find the quotient variety

X//G. The quotient X//G is meant to be a variety whose points correspond to unique

G-orbits of X . Unfortunately, this does not always occur. In GIT there can be points

in X//G which represent multiple G-orbits. This means that multiple G-orbits may

map to the same point in X//G. Despite this mapping it is still possible to find

a unique G-orbit which represents a point in X//G. This unique orbit is called the

minimal orbit and its purpose is to give a representative orbit in X which corresponds

to a point in X//G.

In the preface of [16] the original developer, David Mumford, states that one of

his main intentions in developing GIT was so that it can be used to create moduli

spaces. Moduli space is a general term that means a space which classifies a class of

geometric objects up to some equivalence relation. In the setting of GIT, the variety

X would represent the parameter space of all objects which are to be classified.

The group G represents the equivalence relations between objects in this parameter

space, so the quotient X//G parameterizes objects up to equivalence relation. This

approach to constructing moduli spaces has some advantages and disadvantages but

it is still a useful method for constructing moduli spaces. This approach has been

used to classify certain low degree hypersurfaces in certain Pn [1, 12, 19, 25]. The

classification, in all of these cases, is given in terms of the singularities which may

arise on the hypersurfaces. The set of smooth hypersurfaces represent nice orbits



3

in the GIT problem. The quotient variety of the set of smooth hypersurfaces is an

open variety. By allowing certain singular hypersurfaces this moduli space can be

compactified. One of the goals of this dissertation is to describe which singularities

need to be allowed in order to compactify the moduli space of quintic threefolds. The

parameter spaces of hypersurfaces have very nice properties which can be used to

describe their moduli spaces. A combinatorial method for finding the set of maximal

semistable families is explained in Mukai’s book [15] and applied to the case of cubic

fourfolds by Laza [12]. This set of maximal semistable families are used to classify

the allowable singular hypersurfaces in the moduli space. The combinatorial methods

of Mukai and Laza have been used in this dissertation to find the moduli space of

quintic threefolds.

The dissertation is organized as follow. Chapter 2 is an introduction to the ge-

ometry of hypersurfaces. A description of the types of singularities which arise in

this dissertation will be given. Chapter 3 is an introduction to GIT. The properties

of quotient varieties, the various definitions of stability are given, and a detailed ex-

planation of minimal orbits is given. Chapter 4 gives a description of the semistable

locus. The combinatorial approach of Mukai and Laza is explained and applied to

quintic threefolds. A description of singularities which arise in the semistable locus

will be given. Lastly, a partial description of the stable locus is also given. Chapter 5

describes the minimal orbits for the GIT problem. This chapter essentially describes

the structure of the boundary components of the GIT compactification and what the

most degenerate points are in the GIT compactification.
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Chapter 2

Geometry of Quintic Threefolds

Quintic threefolds are a class of projective varieties which occupy a special place in

algebraic geometry. They are some of the simplest examples of Calabi-Yau varieties.

Calabi-Yau varieties have received a great deal of attention in the last 30 years because

they give the right geometric conditions for some superstring compactifications [4]. A

surprising geometric relationship found for Calabi-Yau varieties, due to string theory,

is a phenomenon called mirror symmetry. Mirror symmetry, in it’s original form,

states that a Calabi-Yau variety Y has a mirror variety Y where the complex structure

moduli of Y is the same as the complexified Kähler moduli of Y . This was explicitly

calculated in [5] for the case of quintic threefolds. The purpose of this dissertation is

to give an explicit description of the complex structure moduli for Calabi-Yau quintic

threefolds using GIT.

2.1 Geometry of Hypersurfaces

All varieties will be over the complex numbers C.

A quintic threefold is a hypersurfaces in P4 which is defined as the zero locus of a

degree 5 homogeneous polynomial F ∈ C[x0, x1, x2, x3, x4]. Hypersurfaces in Pn are

easy to describe since they are only the zero locus of a single homogeneous polynomial.

Definition 2.1.1 (Degree d hypersurface in Pn). A algebraic variety X is a degree
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d hypersurface in Pn if it is the zero locus of a homogeneous degree d polynomial

F ∈ C[x0, x1, . . . , xn]. The ideal of X is generated by F .

The space Pn is defined as Pn := (Cn+1 \ [0, 0, . . . , 0])/ ∼ where the equivalence

relation is given by x ∼ y if x = [a0, a1, . . . , an] and y = [λa0, λa1, . . . , λan] for λ ∈ C∗.

Since F ∈ C[x0, x1, . . . , xn] is homogeneous it respects the equivalence relation of Pn,

so it can be thought of as a hypersurface in Cn+1 or it descends to a hypersurface in Pn.

Since hypersurfaces are described by homogeneous polynomials then the geometric

characteristics of a hypersurface will be stated in terms of conditions on F .

Remark 2.1.2. We will interchangeably use the fact that a hypersurface X is also

given as the zero set of a homogeneous polynomial F . If a homogeneous polynomial

F is described as a threefold then it means that the threefold is the zero locus of F .

2.1.3 Singularities of Hypersurfaces

The study of the different types of singularities which arise in quintic threefolds

will be a very important aspect of studying the GIT compactification. One goal will

be to classify the types of singularities which will be allowed in the GIT compact-

ification. The idea of the GIT compactification is that given the space of smooth

quintic threefolds, singular hypersurfaces need to be included in order to compactify

the space of quintic threefolds. In the case of cubic threefolds [1] only hypersurfaces

with at worst An or D4 isolated singularities need to be included in the GIT com-

pactification. In the case quintic threefolds there will be hypersurfaces which have

isolated and non-isolated singularities which must be included in order to compactify

the space. This section will give an overview of the singularity terminology which will

be used throughout the dissertation.

Given a homogeneous polynomial F , the set of singular points of F can be defined

as the set of points which cause all partial derivatives to vanish. This set of points is

defined by the Jacobian ideal of F .

Definition 2.1.4. Given a homogeneous polynomial F ∈ C[x0, x1, . . . , xn] the singu-

lar locus of F is the zero set of the Jacobian ideal 〈F, ∂F
∂x0

, ∂F
∂x1

, . . . , ∂F
∂xn

〉.
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If a hypersurface F of degree d is singular at an isolated point then by a coordinate

transformation the singular point can be moved to [1 : 0 : · · · : 0] ∈ Pn. The

homogeneous polynomial can be expanded in terms powers of x0 as follows:

F (x0, x1, . . . , xn) = xd−1
0 f1(x1, . . . , xn) + . . .+ fd(x1, . . . , xn), (2.1)

where fi(x1, . . . , xn) is a homogeneous polynomial of degree i in x1, . . . , xn. In order

for [1 : 0 : . . . : 0] to be a point in F , the monomial xd
0 can not be included. The

polynomial F is singular at [1 : 0 : . . . : 0] if the the highest power of x0 is xd−2
0 .

This is the case because the partial derivatives will not vanish at [1 : 0 : . . . : 0] if the

power xd−1
0 is present in the polynomial and hence will not be in the Jacobian ideal.

The classification of the singularities, such as the point [1 : 0 : . . . : 0], involve

understanding the tangent cone of the singularity. In geometry, the tangent space

is the set of all tangent vectors at a point. In general the dimension of the tangent

space at a point is the same as the dimension of the space. At a singularity this

correspondence breaks down because there are tangent vectors which are not uniquely

defined at a singular point. The tangent cone can be thought of as a generalization

of the tangent space which provides some information about the singularity.

Definition 2.1.5 (Tangent cone at F ). Let [1 : 0 : . . . : 0] be a point of a degree

d polynomial F . The tangent cone of [1 : 0 : . . . : 0] at F is the zero locus of the

lowest degree polynomial (fi) in the following decomposition. The polynomial F has

the decomposition

F := xd−i
0 fi(x1, . . . , xn) + xd−i−1

0 fi+1(x1, . . . , xn) + . . .+ fd(x1, . . . , xn). (2.2)

The degree of the tangent cone is i.

If [1 : 0 : . . . : 0] is non-singular then the tangent cone is the tangent space f1 of F .

If [1 : 0 : . . . : 0] is singular then the tangent cone fi will have i ≥ 2. One geometric

interpretation of the tangent cone at [1 : 0 : . . . : 0] is that it represents the set of lines

through [1 : 0 : . . . : 0] whose intersection multiplicity with [1 : 0 : . . . : 0] is greater
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than or equal to i [2]. Intersection multiplicity is used to count the degeneracy of

intersections of two varieties in complimentary dimensions.

Definition 2.1.6 (Intersection Multiplicity c.f. [2] p.103). For two projective varieties

X , Y ∈ Pn where dim X + dim Y = n, let I(X) and I(Y ) be the homogeneous ideals

defining X and Y . For a point of intersection p ∈ X ∩ Y the intersection multiplicity

of p is

mp(X, Y ) := dimC

(

OPn,p/(I(X) + I(Y ))
)

, (2.3)

where dimC means dimension as a complex vector space and OPn,p is the structure

sheaf localized at the point p.

This definition is used to generalize the familiar notion that a curve of degree d

and curve of degree e intersect in de points.

Theorem 2.1.7 (Bezout’s theorem [2] ch.4). For two curves C1, C2 ∈ P2 of degree d

and degree e respectively, if they intersection in finite points then following relation

holds,

∑

p∈C1∩C2

mp(C1, C2) = de. (2.4)

Theorem 2.1.8 (Generalized Bezout’s Theorem [2] ch.4). For two Cohen-Macaulay

projective varieties X, Y ∈ Pn where dim X + dim Y=n and having degree d and

degree e respectively, the following relation holds,

∑

p∈X∩X

mp(X, Y ) = de. (2.5)

Bezout’s theorem says that when counting intersection points, if intersection mul-

tiplicities are included, the classical notion of two curve intersecting in de points

still holds. In this context, intersection multiplicities gives a method of understand-

ing intersections which are more degenerate than just transversal intersections. The
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points of intersection of a line with a degree d hypersurface will sum up to d when

intersection multiplicity is taken into account.

The geometric interpretation of the tangent cone gives a method for classifying

singularities. The first coarse classification of singularities that arise in quintic three-

folds is to classify singularties by describing their tangent cones. The higher the

degree of the tangent cone the more complicated the singularity. Unfortunately clas-

sifying tangent cones is not enough to completely describe the singularities that arise

in quintic threefolds. The decomposition (2.2) can also give some finer data about

intersection multiplicities. As stated earlier, the zero locus of fi give the set of points

whose lines with [1 : 0 : . . . : 0] which intersect F . The iintersection multiplicity

of this line with F is least i. The decomposition (2.2) gives a filtration for higher

multiplicity intersections with [1 : 0 : . . . : 0]. The set of lines which have intersection

multiplicity at least i+ 1 is given by the zero locus of both fi and fi+1.

Proposition 2.1.9 ( [2] p.110). Given a degree d polynomial F with [1 : 0 : . . . : 0]

as its singular point, degree i tangent cone, and decomposition of the form (2.2), the

set of lines whose intersection multiplicity with [1 : 0 : . . . : 0] is at least r is given by

the zero locus of fi = fi+1 = . . . = fi+r where i ≤ r ≤ d− i− 1.

This proposition will be important when classifying singularities of quintic three-

folds in chapter 4. The classification of singularities will include characterizing the

tangent cone to the singularity as well it’s higher order intersection multiplicities.

When restricting to the case of polynomials in P4, a polynomial is of the form

F ∈ C[x0, x1, x2, x3, x4]. The degree of the tangent cone and decomposition (2.2)

for a polynomial F also give information about the maximum multiplicity of the the

ideal 〈x1, x2, x3, x4〉 which contains F .

Definition 2.1.10. Given the a homogeneous polynomial F with singular point

[1 : 0 : 0 : 0 : 0], the singular point is a

1. double point if the degree of the tangent cone is 2 i.e. F ∈ 〈x1, x2, x3, x4〉
2,

2. triple point if the degree of the tangent cone is 3 i.e. F ∈ 〈x1, x2, x3, x4〉
3,
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3. and a quadruple point if the degree of the tangent cone is 4 i.e.

F ∈ 〈x1, x2, x3, x4〉
4.

The definitions double point, triple point, and quadruple point can be extended to

non-isolated singularities. If F has a non-isolated singularity such as a line or plane

then, by a change of coordinates, it can be mapped to lines and planes in standard

coordinates. We will focus only on lines and planes since they are the singularities

which arise in the GIT quotient of quintic threefolds. A line can be represented by

coordinates [a : b : 0 : 0 : 0] ∈ P4 the ideal for this line is 〈x2, x3, x3〉. A plane can

be representated by the coordinates [a : b : c : 0 : 0] ∈ P4 the ideal for this plane is

〈x3, x4〉. Singular lines and planes, similar to the case of points, can be defined using

their ideals.

Definition 2.1.11. Given the a homogeneous polynomial F with singular line

[a : b : 0 : 0 : 0], the singular line is a

1. double line if F ∈ 〈x2, x3, x4〉
2,

2. triple line if F ∈ 〈x2, x3, x4〉
3,

3. and quadruple line if F ∈ 〈x2, x3, x4〉
4.

Definition 2.1.12. Given the a homogeneous polynomial F with singular plane

[a : b : c : 0 : 0], the singular plane is a

1. double plane if F ∈ 〈x3, x4〉
2,

2. triple plane if F ∈ 〈x3, x4〉
3,

3. and a quadruple plane if F ∈ 〈x3, x4〉
4.

Remark 2.1.13. In algebraic geometry if a hypersurface is contained in an ideal

F ∈ 〈xa1 , xa2 , . . . , xar〉
d then it is known that the zero locus of 〈xa1 , xa2 , . . . , xar〉

d

denoted V (〈xa1 , xa2 , . . . , xar〉
d) is contained in the zero locus of F denoted V (F ) i.e.

V (〈xa1 , xa2 , . . . , xar〉
d) ⊆ V (F ). We will use these notions interchangeably. The state-

ment ”X contains the ideal 〈xa1 , xa2 , . . . , xar〉
d” means X contains the zero locus of

the ideal.
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These singularities will give a complete classification of singularities which arise

in the GIT compactification of quintic threefolds.

2.2 Parameter Space of Quintic Threefolds

In P4 there are
(

9

5

)

= 126 degree 5 variables. An arbitrary quintic threefold F can

be written in the following form

F (x0, x1, x2, x3, x4) :=
∑

i+j+k+l+m=5

aijklmx
i
0x

j
1x

k
2x

l
3x

m
4 . (2.6)

The 126 coefficients aijklm can be thought as coordinates of a 126 dimensional

vector space which represent the polynomial F . As a representation this vector space

is denoted Sym5(C5). Since the hypersurfaces are in projective space then F and λF

represent the same polynomial therefore Sym5(C5) needs to be projectivized.

Definition 2.2.1. The parameter space of quintic threefolds is P(Sym5(C5))

The vector space Sym5(C5) is an SL(5,C)-reprsentation, which comes from the

natural action of SL(5,C) on P4. The GIT compactification, as discussed in the next

chapter, corresponds to quotienting P(Sym5(C5)) by SL(5,C).

2.3 Calabi-Yau Condition

As stated earlier, quintic threefolds are some of the simplest example of Calabi-

Yau varieties. If a Calabi-Yau variety is a manifold then there are many equivalent

definitions of a Calabi-Yau manifold.

Definition 2.3.1. A smooth and compact Kähler manifold X is Calabi-Yau if it has

the following equivalent properties:

1. the canonical line bundle ωX (volume form) is trivial i.e. ωX
∼= OX ,

2. the first Chern class c1(X) vanishes,



11

3. the holonomy group of X is SU(n),

4. there exists a Kähler metric on X with vanishing Ricci curvature.

The various equivalences between these statements have been proven such as in

Yau [24]. One of the more difficult equivalences to be proved was (2) ⇒ (4). This was

the conjecture proposed by Calabi and proven by Yau [24]. For the case of quintic

threefolds the adjunction formula can be used to show that ωX is trivial.

Proposition 2.3.2 (Adjunction formula [18] p.40). Let X ⊆ Y be a non-singular

hypersurface. Then ωX = (ωY ⊗OY (X))|X , where OY (X) is the line bundle associated

to the hypersurface X.

If X is a degree d hypersurface and Y = P
4 then ωY

∼= OP4(−5) and OY (X) ∼=

OP4(d). By the adjunction formula

ωX = (OP4(−5)⊗OP4(d))|X = (OP4(d− 5))|X. (2.7)

For the quintic threefold ωX = (OP4(0))|X = OX , so X satisfies the condition to

be a Calabi-Yau manifold. The above result is for smooth quintic hypersurface but

the GIT compactification will also include singular quintic Calabi-Yau varieties.
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Chapter 3

Geometric Invariant Theory

In this section we will describe the theory of geometric invariant theory. Broadly

speaking, given a group G acting on a variety X , geometric invariant theory gives a

method of constructing a quotient variety X//G. The variety X//G, as the quotient

of the parameter space of quintic threefolds, is supposed to parameterize G-orbits of

points on X . In the general setting, there are bad orbits which must not be included

in the construction of X//G and there may be several orbits which map to same

point in X//G. In order to give a precise description of these caveats the notion of

semistable, stable and unstable points will be introduced. In this chapter various

definitions of quotients, various definitions of stability, and how quotients are formed

will all be discussed.

3.1 Reductive Groups

Geometric invariant theory is best understood in the case of a reductive linear

algebraic group G acting on a variety X . Reductive group actions on varieties have

finite generation properties which allow one to construct quotient varieties. For gen-

eral group actions these finite generation properties do not always hold. There has

been some recent progress, made by Doran and Kirwan, on GIT for arbitrary groups

but there are still some open questions [8, 10].
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Definition 3.1.1. A linear algebraic group G over C is a closed subgroup of GL(n,C).

Definition 3.1.2. A reductive linear algebraic group is a linear algebraic group whose

radical (connected component of the maximal normal solvable subgroup which con-

tains the identity) is diaganolizable.

One of the advantages of using reductive linear algebraic groups is that their repre-

sentations are completely reducible. This property was very important in Mumford’s

development of GIT.

Definition 3.1.3 (c.f. [11] p.98 ). If G is a linear algebraic group with a rational

representation (ρ, V ) then the representation is completely reducible if for every G-

invariant subspace W ⊆ V there exists a G-invariant subspace U where V = W ⊕U .

Proposition 3.1.4 (c.f. [11] p.98). Every rational representation of a reductive linear

algebraic group is completely reducible.

Reductive linear algebraic groups also have the nice property that if such a group

G acts on a ring A, which is finitely generated over C, then the ring of invariants,

AG, is finitely generated. This is important in GIT because the ring of invariants AG

will be the ring used to construct the quotient space.

Theorem 3.1.5 (Nagata’s Theorem). [ [6] p.41] If G is a reductive linear algebraic

group which acts on a ring A then the ring of invariants AG, from this action, is

finitely generated.

Nagata’s Theorem gives a natural way to map an affine variety X = Spec(A) with

a linear reductive group action G into a G-invariant space. Since AG ⊆ A on the level

of rings, this inclusion reverses to give

Φ : X → Spec(AG). (3.1)

Since AG is finitely generated by Nagata’s theorem, the quotient Spec(AG) is an

affine variety.
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This induced map Φ is a dominant morphism (the image Φ(X) is dense in Spec(AG).

Nagata’s theorem is also important when looking at quotients of projective vari-

eties. In the case of a projective variety X = Proj(A) the inclusion AG ⊆ A generates

a map Φ : X = Proj(A) → Proj(AG). This map is only a rational map. In order to

get a morphism for this map, we need to restrict to a subset of points on X called the

semistable points (Xss) which will map into Proj(AG). This will be explained further

in the next sections.

3.2 Notions of Quotients

For the remainder of this dissertation we will assume all groups are

reductive linear algebraic groups unless otherwise specified.

In GIT there are various types of quotients. Following Lakshmibai [11] we will give

describe three standard types of quotients: the categorical quotient, good quotient,

and geometric quotient. We will also describe the relationships between these different

notions of quotients . In the previous section it was shown that some notion of a

quotient space can be constructed by taking Spec or Proj of the ring of invariants.

In the next sections we will describe precisely how Spec and Proj are related to

categorical, good, and geometric quotients.

Definition 3.2.1 (Categorical quotient [11] p.102). Given a group action of G on a

variety X , a categorical quotient is a variety Y and a G-invariant morphism

Φ : X → Y (3.2)

with the following universal property: for any other G-invariant morphism Φ̃ :

X → Ỹ there is a unique morphism τ : Y → Ỹ such that



15

X
Φ̃ //

Φ

��?
??

??
??

? Ỹ

Y

τ
??��������

commutes. Denote the categorical quotient Y := X//G. It is unique up to iso-

morphism.

The universal property shows that all G-invariant morphisms must factor through

Φ therefore a categorical quotient X//G for a G-action on X is unique. A more

restrictive class of categorical quotients are good quotients. In this dissertation we

will more concerned with good quotients.

Definition 3.2.2 (Good quotient [11] p.103)). Given a group G acting on a variety

X , a good quotient of the G-action of X is a variety Y and a G-invariant morphism

Φ : X → Y with the following properties:

1. Φ is surjective;

2. For any open subset U ⊆ Y , Φ−1(U) ⊆ X is open and affine if and only if

U ⊆ Y is open and affine;

3. for any open subset U ⊆ Y the homomorphism of rings;

Φ∗ : OY (U) → OX(Φ
−1(U)) (3.3)

is an isomorphism onto O(Φ−1(U))G;

4. if W ⊆ X is G-stable and closed then Φ(W ) is closed;

5. if W1 and W2 are two disjoint G-stable closed subsets of X , then

Φ(W1) ∩ Φ(W2) = ∅.

By abuse of notation the good quotient will also be denoted Y := X//G.
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From the definitions it is not obvious that good quotients satisfy the universal

mapping property (3.2.1) in the categorical quotient definition. Since good quotients

behave well locally it can be shown that they satisfy the universal mapping property.

Proposition 3.2.3 (c.f. [11] p.104). A good quotient is a categorical quotient.

Remark 3.2.4. In the case of a G-action on an affine variety X = Spec(A) the quotient

X//G = Spec(AG) from (3.1) is a good quotient.

Definition 3.2.5 (Orbit Space). Given a group G acting on a variety X , a variety

Y and G-invariant morphism Φ : X → Y is an orbit space if each y ∈ Y corresponds

to a unique G-orbit in X i.e. Φ−1(x) is a G-orbit.

Definition 3.2.6 (Geometric quotient [11] p.105). A good quotient (Y,Φ) which also

an orbit space is called a geometric quotient. We will denote the geometric quotient

as X/G

A geometric quotient is an ideal type of quotient in GIT. Along with the properties

of a good quotient, a geometric quotient parameterizes precisely the G-orbits of X .

This is not the case for a good quotient, where it is possible for two different orbits

to map to the same point in the good quotient.

Definition 3.2.7. For a G-action on X if x ∈ X then Gx := {gx|g ∈ G} is the

G-orbit of x. The space Gx is the closure of Gx in X .

Proposition 3.2.8 (c.f. [11] p. 104). For a G-action on a variety X if (X//G,Φ) is

a good quotient then Φ(x1) = Φ(x2) if and only if Gx1 ∩Gx2 6= ∅.

This proposition shows that if the closure of two orbits intersect then they are map

to the same point in the good quotient. It shows that there can be multiple orbits

which can be mapped to the same point in the good quotient. This phenomenon only

occurs if a G-orbit is not closed. If the G-orbit is closed then the above proposition

is vacuous. Even if multiple orbits map to the same point in the good quotient, there

is still a closed orbit which represents this point as the next lemma shows.
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Lemma 3.2.9 (Closed orbit lemma [3, 11]). For a G-action on a variety X each

G-orbit Gx is a smooth variety which is open in its closure. The boundary of the

G-orbit, Gx \ Gx, is a union of strictly smaller dimensional G-orbits. The orbits of

minimal dimension are closed.

Definition 3.2.10. For a G-action on X , a minimal orbit is a closed G-orbit of

smallest dimension in Gx.

If a G-orbit is closed then it is a minimal orbit because there are no other orbits in

it’s closure. In this dissertation we will be concerned with finding minimal orbits in

the closure of non-closed orbits. The minimal orbit will be considered a degeneration

of the larger non-closed orbit.

Definition 3.2.11. Given a G-action on X and a x ∈ X , a degeneration of Gx is a

minimal orbit in Gx

3.3 Stability and Semistability for Projective Va-

rieties

In the case of affine varieties it is easy to describe quotient spaces. The map (3.1)

is a morphism of varieties from X to a quotient. If X = Proj(A) is a projective

variety then the corresponding quotient

Φ : X := Proj(A) 99K X//G := Proj(AG) (3.4)

is not, in general, a morphism of varieties. It is a rational map. In order to make

(3.4) into a morphism of varieties one must restrict to an open subset of X called

the semistable points (Xss). There are multiple equivalent definitions for semistable

and stable points. We will give the more geometric definitions because they are the

most relevant in this dissertation. The definition of stability and semistability for a

G-action on a projective variety X involves a choice of a representation.
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Definition 3.3.1 (Linearization of G-action). Given a G-action on a projective va-

riety X , a linearization of the G-action is a representation

ρ : G → GL(V ) (3.5)

where X ⊆ P(V ) is closed in P(V ) and the G-action on X is induced by the

representation given by (3.5).

The extra data that a linearization provides is an embedding of X into some

projective space P(V ) and the extension of the G-action of X onto this ambient

projective space. In the case of quintic threefolds the linear action is canonically

defined. As shown in chapter 2, the space of quintic threefolds is P(Sym5(C5)). The

linearization of SL(5,C)-action on P(Sym5(C5) is naturally defined in this situation.

Definition 3.3.2. The linearization of the SL(5,C) action on P(Sym5(C5)) is given

by the 5th symmetric power (Sym5) representation of the standard SL(5,C) repre-

sentation on C5.

Given a linearization, a point x ∈ X ⊆ P(V ) can be viewed as an element in

V up to projective equivalence. This correspondence gives a precise definition for

semistability.

Definition 3.3.3 (Semistable). Given a G-action on X with a linearization V , a

point x ∈ X is semistable if there is a representative x̂ ∈ V of x where 0 /∈ Gx̂ in V .

The set of semistable points in X will be denoted Xss.

Definition 3.3.4 (Unstable). Given a G-action on X with a linearization V , a point

x ∈ X is unstable if it is not semistable. The set of unstable points in X will be

denoted Xus.

From the previous discussions about good quotients it was explained that closures

of orbits were identified in the quotient. If a point is unstable then it can be identified

with the 0 orbit in the quotient. Since we are working in projective space there is

no 0 point in the projective variety. Therefore unstable points do not make sense
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for good quotients of projective varieties. They will be precisely the points which

are thrown away in order to make (3.4) into a morphism of varieties. To define a

geometric quotient the set of semistable points must be further restricted to stable

points.

Definition 3.3.5 (Stable). Given a G-action on X with a linearization V , a point

x ∈ X is stable if there is a representative x̂ ∈ V of x such that:

1. 0 /∈ Gx̂;

2. the orbit Gx̂ is closed;

3. the isotropy group, Gx, of x̂ is finite.

The set of stable points in X will be denoted Xs. Note: Xs ⊆ Xss due to condition

1.

Definition 3.3.6 (Strictly semistable). Given a G-action on X with a linearization

V , a point x ∈ X is strictly semistable if it is semistable but not stable.

These definitions give precisely the conditions needed to determine the geometric

quotient and good quotient for a G-action on X .

Theorem 3.3.7 (c.f. [11, 17] ). Let there be a G-action on X = Proj(A) with a

linearziation X ⊆ P(V ). The set of semistable points Xss have a good quotient

Φ : Xss → X//G := Xss//G = Proj(AG). (3.6)

The good quotient X//G is a projective variety and Φ is surjective.

Theorem 3.3.8 (c.f. [11, 17] ). Let there be a G-action on X = Proj(A) with a

linearziation X ⊆ P(V ). The set of stable points Xs have a geometric quotient

Φ : Xs → Xs/G. (3.7)

The geometric quotient Xs/G is open (quasiprojective) in X//G.
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Remark 3.3.9. It is also important to note that these definitions of stable, semistable,

and unstable depend on the choice of linearization. A different choice of linearization

may change the set of semistable points. A very interesting connection to varying

the choice of linearization and birational transformations of quotients is given in the

papers of Thaddeus [22] and Dolgachev-Hu [7]

In the case of projective varieties the geometric quotient Xs/G is the orbit space

which represents all of the ”nice orbits” in the GIT quotient. The good quotient

X//G gives a compactification of Xs/G. The boundary X//G \Xs/G correspond to

the most degenerate orbits in the GIT quotient.

3.4 Hilbert-Mumford Criterion

Using only the definitions it is, in general, very difficult to determine precisely

which points are semistable and stable. One of Mumford’s innovative ideas in GIT

was to provide a numerical method for determining which points are semistable and

stable. The criterion uses the set of one parameter subgroups (1-PS) of G.

Definition 3.4.1 (One-parameter subgroup (1-PS)). Given a group G a 1-PS λ is a

homomorphism

λ : C∗ → G. (3.8)

A 1-PS can be thought of as a function λ(t) where t ∈ C∗.

Given a linearizedG-action onX and a point x ∈ X with representative x̂ ∈ V , the

Hilbert-Mumford criterion gives a method for determining whether x is semistable

or stable using the set of 1-PS of G. Given a 1-PS λ the vector space V can be

decomposed into weight spaces

V =
⊕

i∈Z

Wi (3.9)

where λ(t)wi = tiwi for t ∈ C∗ and wi ∈ Wi.

The resulting (3.9) decomposes the point x̂ into
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x̂ =
∑

i

wi. (3.10)

The decomposition of the point x̂ using a 1-PS λ is needed to define Mumford’s

numerical function.

Definition 3.4.2 (Mumford’s numerical function). Given a G-action on X with a

linearization V , a point x ∈ X , and a 1-PS λ, Mumford’s numerical function is

µ(x, λ) = −min {i, wi 6= 0} . (3.11)

The vectors wi come from the decomposition (3.10) associated to the 1-PS λ.

A 1-PS λ has a diagonalized action on the vector space V . This decomposes the

point x̂ into a sum of weight vectors. The Hilbert-Mumford numerical function’s

value on x̂ is the negative of the lowest weight of that point with respect to the

diaganolization. The Hilbert-Mumford criterion states that x ∈ X is semistable or

stable precisely when x satisfies certain properties of the numerical function.

Theorem 3.4.3 (Hilbert-Mumford criterion [11,16,17]). Given a G-action on X with

a linearization V , a point x ∈ X is

1. semistable if and only if µ(x, λ) ≥ 0 for all 1-PS λ in G;

2. stable if and only if µ(x, λ) > 0 for all 1-PS λ in G.

The numerical function must be nonnegative or positive for all 1-PS λ. One way of

thinking of a semistable or stable point is that it has some positive and some negative

weights since the criterion must be satisfied by all λ and its inverse λ−1. One difficulty

of Mumford’s criterion is that the numerical function must be checked for all 1-PS λ

of G. There is one property of the numerical function that allows one to restrict the

number of 1-PS λ that need to be checked.

Lemma 3.4.4 ( [11]). For a point x ∈ X and a 1-PS λ

µ(x, λ) = µ(gx, gλg−1) (3.12)

for all g ∈ G.



22

This property is useful if one is concerned with classification of G-orbits rather

than just one particular point. One interpretation is that all 1-PS λ can be conjugated

to gλg−1 while still saying in the same G-orbit. Despite the ability to restrict the class

of 1-PS λ it is still quite cumbersome to calculate the stability or semistability for a

point x ∈ X . By taking the negation of the Hilbert-Mumford criterion, the criteria

for determining whether a point is unstable or strictly semistable points results from

the existence of a 1-PS λ which causes the Hilbert-Mumford criterion to fail.

Proposition 3.4.5. Given a G-action on a variety X with linearization V , a point

x ∈ X is

1. unstable if and only if there exists a 1-PS λ such that µ(x, λ) < 0;

2. strictly semistable if and only it is not unstable and there exists a 1-PS λ such

that µ(x, λ) = 0.

In the case of quintic threefolds the existence of such a 1-PS λ can be determined

using linear programming which will be explained in the next chapter.

3.5 Minimal Orbits

Proposition (3.4.5) shows that a strictly semistable point x ∈ X has a 1-PS λ

where µ(x, λ) = 0. This means that given the weight decomposition (3.10) the point

x̂ will have all nonnegative weights.

Definition 3.5.1 (Destabilizing 1-PS). Given a G-action on X with linearization V ,

a strictly semistable point x ∈ X has a destabilizing 1-PS λ if µ(x, λ) = 0.

Since the weight decomposition of x, induced by a destabilizing 1-PS λ, has all

nonnegative weights then one can take the closure of the λ orbit of x.

Definition 3.5.2 (Degeneration of Strictly Semistable Point). Given a strictly

semistable point x with destabilizing 1-PS λ the degeneration of x is

λx := lim
t→0

λ(t)x (3.13)
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From previous sections it was discussed that closure of orbits map to the same

point in a good quotient. If it is known that a point x ∈ X is strictly semistable

and λ is its destabilizing 1-PS then the point x and λx will map to the same point

in the geometric quotient. For the GIT compactification, the minimal orbits give

unique representative of points in the boundary X//G \ Xs/G. Minimal orbits can

be systematically found using degenerations. In the weight space decomposition of

a strictly semistable point x the degeneration λx causes all weight vectors which

have non-zero weights to vanish. When determining minimal orbits this significantly

reduces the complexity of the problem since only the weight vectors which have weight

0 need to be analyzed.

Proposition 3.5.3. Given a strictly semistable point x ∈ X with destabilizing 1-PS

λ, the degeneration λx is invariant under λ.

Proof. Let x be a strictly semistable point with destabilizing 1-PS λ. Using the

decomposition (3.10) the action of λ on x̂ is of the form

λ(t)x̂ =
∑

i∈Z

tiwi. (3.14)

Since µ(x, λ) = 0 then all i ≥ 0. Then in λx̂ the ti go to zero unless i = 0. The

only weight vectors of λx̂ which are still left correspond to vectors with weight 0.

Therefore, they are invariant under λ.

In many cases the point λx̂ may represent a closed G-orbit and hence a minimal

orbit. It is possible that even λx̂ does not represent a closed G-orbit so the problem

would be to find a 1-PS λ which destabilizes λx̂. In Chapter 5 this will be done

systematically to find the set of all minimal orbits in the case of quintic threefolds. An

important theorem which will be used to find these minimal orbits will be Vinberg’s

theorem which will also be discussed in Chapter 5.
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3.6 Quotient Construction for Quintic Threefolds

As stated in Chapter 2, the parameter space for quintic threefolds is the space

P(Sym5(C5)). The natural action of SL(5,C) on the coordinates of P4 induces a

representation on the linearzation V = Sym5(C5). The GIT compactification of in-

terest in this dissertation is the quotient P(Sym5(C5))//SL(5,C). To give an explicit

description of the quotient P(Sym5(C5))//SL(5,C) the problem of determining which

points are semistable and stable will analyzed. The minimal orbits of this compacti-

fication will also be studied in Chapter 5.
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Chapter 4

Semistable Locus

This section will describe the semistable locus of the GIT compactification. In

particular, using the Hilbert-Mumford numerical criterion, we will explicitly descibe

the strictly semistable points of the GIT compactification. The advantage of using the

Hilbert-Mumford criterion is that a strictly semistable or unstable point is detected

by showing the existence a 1-PS which causes the criterion to fail. By restricting to a

certain family of 1-PS one can use the Hilbert-Mumford criterion to find the maximal

strictly semistable families of hypersurfaces. One can then study the singularities of

these families using the principle of bad flags. These results can, in turn, be used to

give a partial description of hypersurfaces in the stable locus.

4.1 Hilbert-Mumford Criterion for Hypersurfaces

Given the linearization V = Sym5(C5), a point v ∈ V represents a quintic hyper-

surface. A modification of the Hilbert-Mumford criterion explicitely determines the

set of semistable points.

Proposition 4.1.1. Given a G-action on a variety X with linearization V , a point

v ∈ V is

1. unstable if and only if there exists a 1-PS λ such that µ(v, λ) < 0,
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2. and strictly semistable if and only it is not unstable and there exists a 1-PS λ

such that µ(v, λ) = 0.

This modification of the Hilbert-Mumford criterion shows that determining whether

v is semistable or unstable amounts to finding a 1-PS which satisfies the right condi-

tions on the numerical function.

Definition 4.1.2. A destabilizing 1-PS λ : C∗ → SL(5,C) of a strictly semistable

(unstable) point v, is a 1-PS such that µ(v, λ) = 0 (µ(v, λ) < 0).

The G-equivariant property of the numerical function µ, namely,

µ(gv, gλg−1) = µ(v, λ), (4.1)

can be used to restrict the class of 1-PS.

If the standard torus T ⊆ SL(5,C) is fixed then a 1-PS λ : C∗ → T acts on

xi
0x

j
1x

k
2x

l
3x

m
4 by the following action:

λ(t)xi
0x

j
1x

k
2x

l
3x

m
4 = tai+bj+ck+dl+emxi

0x
j
1x

k
2x

l
3x

m
4 . (4.2)

Every such λ can be represented by a vector 〈a, b, c, d, e〉, which are the weights

of the C∗-action on each degree 1 monomial. One simplyfying assumption that can

be made is that every 1-PS λ can be conjugated to a standard 1-PS.

Proposition 4.1.3. Given a 1-PS λ : C∗ → SL(5,C) it can be conjugated (gλg−1)

to a 1-PS λ : C∗ → T represented by the vector 〈a, b, c, d, e〉 where a ≥ b ≥ c ≥ d ≥ e

and a + b+ c+ d+ e = 0. This class of 1-PS will be called a normalized 1-PS.

Since we are interested in finding strictly semistable hypersurfaces, up to a SL(5,C)

coordinate transformation, the G-equivariance of the Hilbert-Mumford numerical

function allows us to restrict to a normalized 1-PS given by the proposition 4.1.3.

By restricting to normalized 1-PS there is an ordering that can be put on the mono-

mials which determine a poset structure on the set of quintic monomials. We will

represent a monomial xi
0x

j
1x

k
2x

l
3x

l
4 by the vector [i, j, k, l,m].
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Definition 4.1.4. For a monomial [i, j, k, l,m] if there is a normalized 1-PS λ =

〈a, b, c, d, e〉 which acts on the monomial via the diagonal action shown above then,

by the definition of the numerical function,

µ([i, j, k, l,m], 〈a, b, c, d, e〉) = ia + jb+ kc+ ld+me (4.3)

i.e. the dot product of the vectors.

Definition 4.1.5. The set of monomials [i, j, k, l,m] has a partial order given by

[i0, i1, i2, i3, i4] ≥ [j0, j1, j2, j3, j4] if

µ([i0, i1, i2, i3, i4], λ) ≥ µ([j0, j1, j2, j3, j4], λ) (4.4)

for all normalized 1-PS λ of Prop. 4.1.3.

The following lemma gives a numerical method for determining the poset structure

on monomials.

Lemma 4.1.6 (c.f. [15] p.225). For two monomials [i0, i1, i2, i3, i4] and [j0, j1, j2, j3, j4]

[i0, i1, i2, i3, i4] ≥ [j0, j1, j2, j3, j4] ⇐⇒



































i0 ≥ j0

i0 + i1 ≥ j0 + j1

i0 + i1 + i2 ≥ j0 + j1 + j2

i0 + i1 + i2 + i3 ≥ j0 + j1 + j2 + j3

This criterion is useful because one can directly check whether two monomials

are related in the poset. Using Maple, the above criterion can be used to find all

partial order relationships between monomials [14]. Stembridge’s poset package for

Maple [21] is used to find the minimal covering relationships for these monomials and

therefore create the poset for quintic monomials. The script for this entire procedure

is given in Appendix A.
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Figure 4.1: Poset structure of quintic monomials
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4.2 Combinatorics of Maximal Semistable Fami-

lies

In this section we will show how the poset structure can be used to determine the

set of maximal semistable families. The restriction to normalized 1-PS from Prop

4.1.3 allows us to use linear programming to find these maximal semistable families.

We can precisely define these maximal stable families using terminology from posets.

Definition 4.2.1 (c.f. [20] section 3.1). Given a poset P with a partial ordering ≥,

a subset I ⊆ P is called an ideal if ∀x, y ∈ P where x ∈ I and x ≥ y, then y ∈ I.

Definition 4.2.2. For a monomial [i, j, k, l,m] define the set

I([i, j, k, l,m]) := {[a, b, c, d, e] | [i, j, k, l,m] ≥ [a, b, c, d, e]} . (4.5)

From the definition I([i, j, k, l,m]) is an ideal of the poset.

The set I([i, j, k, l,m]) represent all vectors below [i, j, k, l,m] in the poset. The

set of polynomials associated to I([i, j, k, l,m]) is denoted P (I([i, j, k, l,m])).

Definition 4.2.3. The set P (I([i, j, k, l,m])) represents all polynomials of the form

∑

a+b+c+d+e=5

rabcdex
a
0x

b
1x

c
2x

d
3x

e
4 (4.6)

where [a, b, c, d, e] ∈ I([i, j, k, l,m]).

Lemma 4.2.4. For a polynomial F ∈ P (I([i, j, k, l,m])) and normalized 1-PS λ

µ(F, λ) = µ([i, j, k, l,m], λ). (4.7)

Proof. Since λ acts diagonally on the set of monomials in P (I([i, j, k, l,m]) then,

by the definition of µ, µ(F, λ) is the highest weight of all the monomials in this

set. By definition of the poset structure the highest weight occurs at the monomial

[i, j, k, l,m], therefore (4.7) holds.
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Definition 4.2.5. Given a normalized 1-PS λ let

M(λ) := {[i, j, k, l,m] | µ([i, j, k, l,m], λ) ≤ 0} . (4.8)

A maximal semistable family is precisely a set M(λ) where there exists no

λ where M(λ) ⊆ M(λ).

Due to the poset structure, there is a set of maximal monomials which define each

set M(λ). This property is useful because the maximal monomials can be used to

describe the general form of the equation for some family M(λ).

Lemma 4.2.6. For a fixed 1-PS λ, the family M(λ) has a set of monomials

[i10, i
1
1, i

1
2, i

1
3, i

1
4], [i

2
0, i

2
1, i

2
2, i

2
3, i

2
4], . . . [i

r
0, i

r
1, i

r
2, i

r
3, i

r
4] where

M(λ) = I([i10, i
1
1, i

1
2, i

1
3, i

1
4]) ∪ I([i20, i

2
1, i

2
2, i

2
3, i

2
4]) . . . ∪ I([ir0, i

r
1, i

r
2, i

r
3, i

r
4]). (4.9)

The maximal monomials are the set of monomials [i, j, k, l,m] ∈ M(λ) where

there are no other monomials [a, b, c, d, e] such that I([i, j, k, l,m]) ⊆ I([a, b, c, d, e]) ⊆

M(λ).

Proof. Given a monomial [i, j, k, l,m] ∈ M(λ), by the definition of the ordering rela-

tion, every element [a, b, c, d, e] ∈ I([i, j, k, l,m]) has

µ([i, j, k, l,m], λ) ≥ µ([a, b, c, d, e], λ). Therefore I([i, j, k, l,m]) ⊆ M(λ). Since there

are a finite number of monomials [i, j, k, l,m] in M(λ) there are a finite set of

I([i, j, k, l,m]) ⊆ M(λ). So M(λ) is of the form (4.9).

Since the value of µ is the largest at the top of the poset we can use this fact to

determine the maximal semistable families. Starting with the topmost monomial of

the poset ([5, 0, 0, 0, 0]) and working down the poset one can use linear programming

to determine whether there is a λ where a specific monomial [i, j, k, l,m] satisfies

µ([i, j, k, l,m], λ) ≤ 0. The implementation of the linear programming program is

given in Appendix B.
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Using this procedure it is determined that the monomials [3, 0, 0, 2, 0], [4, 0, 0, 0, 1],

[2, 0, 3, 0, 0], and [1, 4, 0, 0, 0] are the maximal monomials which have µ ≤ 0.

Table 4.1: Strictly Semistable Families SS1 - SS4

Family Destabilizing 1-PS Subgroup Maximal Monomial

SS1 〈2, 2, 2,−3,−3〉 [3, 0, 0, 2, 0]

SS2 〈1, 1, 1, 1,−4〉 [4, 0, 0, 0, 1]

SS3 〈3, 3,−2,−2,−2〉 [2, 0, 3, 0, 0]

SS4 〈4,−1,−1,−1,−1〉 [1, 4, 0, 0, 0]
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Figure 4.2: Poset structure of family SS1
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Figure 4.3: Poset structure of family SS2
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Figure 4.4: Poset structure of family SS3
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Figure 4.5: Poset structure of family SS4

There are other maximal families which can be found by finding monomials in

the above families which have a common destabilizing 1-PS λ. Starting with the

monomials at the top of families SS1− SS4 and working down it can be found that

the only other maximal semistable families are the following:
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Table 4.2: Strictly Semistable Families SS5 - SS7

Family Destabilizing 1-PS Subgroup Maximal Monomial

SS5 〈1, 0, 0, 0,−1〉 [0, 5, 0, 0, 0], [1, 3, 0, 0, 1], [2, 1, 0, 0, 2]

SS6 〈4, 4,−1,−1,−6〉 [1, 0, 4, 0, 0], [3, 0, 0, 0, 2], [2, 0, 2, 0, 1]

SS7 〈6, 1, 1,−4,−4〉 [0, 4, 0, 1, 0][1, 2, 0, 2, 0][2, 0, 0, 3, 0].
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Figure 4.6: Poset structure of family SS5 I
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Figure 4.7: Poset structure of family SS5 II
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Figure 4.8: Poset structure of family SS5 III
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Figure 4.9: Poset structure of family SS6 I



41

Figure 4.10: Poset structure of family SS6 II
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Figure 4.11: Poset structure of family SS6 III
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Figure 4.12: Poset structure of family SS7 I
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Figure 4.13: Poset structure of family SS7 II
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Figure 4.14: Poset structure of family SS7 III

From the combinatorial procedure above, all of the maximal semistable families

are determined. The maximal semistable families classify all hypersurfaces, up to

coordinate transformation, which are strictly semistable and unstable. The maximal
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monomials in each family can be used to give the general polynomial form for each

family.

Remark 4.2.7. The polynomials will be written in the following forms
qa(xp . . . xr) polynomial of degree a in the variables xp . . . xr

qa,b(xp . . . xr ‖ xt . . . xs) linear combination of monomials of degree a
in xp . . . xr and degree b in xt . . . xs

Proposition 4.2.8. Y is strictly semistable or unstable if it is equivalent, via coor-

dinate transformation, to a hypersurfaces in one of the following families:

Table 4.3: Strictly Semistable Families SS1 - SS7

Family Destabilizing 1-PS Subgroup Maximal Monomial
SS1 〈2, 2, 2,−3,−3〉 [3, 0, 0, 2, 0]

q3,2(x0, x1, x2 ‖ x3, x4) + q2.3(x0, x1, x2 ‖ x3, x4) + q1,4(x0, x1, x2 ‖ x3, x4) + q5(x3, x4)

SS2 〈1, 1, 1, 1,−4〉 [4, 0, 0, 0, 1]
x4q4(x0, x1, x2, x3, x4)

SS3 〈3, 3,−2,−2,−2〉 [2, 0, 3, 0, 0]
q2,3(x0, x1 ‖ x2, x3, x4) + q1,4(x0, x1 ‖ x2, x3, x4) + q5(x2, x3, x4)

SS4 〈4,−1,−1,−1,−1〉 [1, 4, 0, 0, 0]
x0q4(x1, x2, x3, x4) + q5(x1, x2, x3, x4)

SS5 〈1, 0, 0, 0,−1〉 [0, 5, 0, 0, 0], [1, 3, 0, 0, 1], [2, 1, 0, 0, 2]
x2
0(x

2
4q1(x1, x2, x3, x4)) + x0x4q3(x1, x2, x3, x4) + q5(x1, x2, x3, x4)

SS6 〈4, 4,−1,−1,−6〉 [1, 0, 4, 0, 0], [3, 0, 0, 0, 2], [2, 0, 2, 0, 1]
x2
4q3(x0, x1) + x4q2,2(x0, x1 ‖ x2, x3, x4) + q1,4(x0, x1 ‖ x2, x3, x4) + q5(x2, x3, x4)

SS7 〈6, 1, 1,−4,−4〉 [0, 4, 0, 1, 0][1, 2, 0, 2, 0][2, 0, 0, 3, 0]
x2
0q3(x3, x4) + x0(q2,2(x1, x2 ‖ x3, x4) + q1,3(x1, x2 ‖ x3, x4) + q4(x3, x4)) + q4,1(x1, x2 ‖

x3, x4) + q3,2(x1, x2 ‖ x3, x4) + q2,3(x1, x2 ‖ x3, x4) + q1,4(x1, x2 ‖ x3, x4) + q5(x3, x4) .

4.3 Unstable Families

The previous section gives a complete characterization of all strictly semistable and

unstable quintic threefolds. In the GIT quotient the unstable threefolds are removed

to produce the GIT compactification. In order to understand the GIT compactfication

one must distinguish between unstable and strictly semistable threefolds. A direct

approach would be to determine all maximal unstable families i.e. all maximal families

where µ < 0 as opposed to µ ≤ 0. This approach produces a large number of unstable
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families which makes it very tedious and not very illustrative. Another approach

would be to find and characterize the minimal orbits as is done in Chapter 5. The idea

of the minimal orbit approach is that each maximal semistable family will degenerate,

via the destabilizing 1-PS λ, to a smaller family of hypersurfaces. It is then much

easier to distinguish between unstable and strictly semistable hypersurfaces in the

smaller family. See Chapter 5 for a complete characterization of strictly semistable

and unstable orbits.

4.4 Bad Flags

Having found the maximal semistable families, one can give a geometric descrip-

tion by characterizing the types of singularities found on a generic member of one of

these families. The existence of a destabilizing 1-PS λ gives rise to a ”bad flag” of

the vector spaces H0(P4,OP4(1)) ∼= C5. A general principal given by Mumford ( [16]

p.48) is that these ”bad flags” pick out the singularities which cause the family to

become semistable or unstable.

Using the approach given by Laza ( [12] p.7) it can be shown that a 1-PS λ : C∗ →

T gives a weight decomposition of H0(P4,OP4(1)) = ⊕5
i=0Wi based on the eigenvalues

of λ acting on H0(P4,OP4(1)).

Definition 4.4.1. For a 1-PS λ = 〈a, b, c, d, e〉 let mi be a subset of {a, b, c, d, e}

which have the same weights and let ni be the weight.

Wmi
:=

⊕

i where Wi has eigenvalue ni

Wi (4.10)

The standard flag is given by

∅ ⊆ F1 = (x1 = x2 = x3 = x4 = 0) ⊆ F2 = (x2 = x3 = x4 = 0) ⊆

F3 = (x3 = x4 = 0) ⊆ F4 = (x4 = 0) ⊆ P
4

(4.11)
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Definition 4.4.2. Given a 1-PS λ = 〈a, b, c, d, e〉 let m1, m2 . . ., ms represent the

collection of common weights of λ. Let mi be ordered by increasing value of weights

(i.e. m1 has lowest weight). The associated flag for λ is

Fλ : ∅ ⊆ Fms
:=

s
⊕

i=1

Wmi
⊂ Fms−1

:=

s−1
⊕

i=1

Wmi
⊂ . . . ⊆ Fm1

:= Wm1
⊆ P

4. (4.12)

This is a subflag of the standard flag (4.12).

For the maximal destabilizing families SS1-SS7 the associated ”bad flags” are

Table 4.4: Destabilizing Flags of SS1-SS7

Family Destabilizing 1-PS Subgroup Flag Fλ

SS1 〈2, 2, 2,−3,−3〉 ∅ ⊆ (x3 = x4 = 0) ⊆ P4

SS2 〈1, 1, 1, 1,−4〉 ∅ ⊆ (x4 = 0) ⊆ P4

SS3 〈3, 3,−2,−2,−2〉 ∅ ⊆ (x2 = x3 = x4 = 0) ⊆ P
4

SS4 〈4,−1,−1,−1,−1〉 ∅ ⊆ (x1 = x2 = x3 = x4 = 0) ⊆ P4

SS5 〈1, 0, 0, 0,−1〉 ∅ ⊆ (x1 = x2 = x3 = x4 = 0) ⊆ (x4 = 0) ⊆ P4

SS6 〈4, 4,−1,−1,−6〉 ∅ ⊆ (x2 = x3 = x4 = 0) ⊆ (x4 = 0) ⊆ P4

SS7 〈6, 1, 1,−4,−4〉 ∅ ⊆ (x1 = x2 = x3 = x4 = 0) ⊆ (x3 = x4 = 0) ⊆ P4.

4.5 Geometric Interpretation of Maximal Semistable

Families

In order to determine the singularities of the families SS1-SS7 we can intersect

the general form of the equation with the flag arising from its destabilizing 1-PS. This

will give some description of the types of singularities which occur in each family. A

precise description of each such family is given in the propositions below.

Proposition 4.5.1. A hypersurface Y is of type SS1 if and only if Y contains a

double plane.
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Proof. Let Y be of type S1 then it is equivalent, via a coordinate transformation, to

the hypersurface

q3,2(x0, x1, x2 ‖ x3, x4) + q2.3(x0, x1, x2 ‖ x3, x4)

+q1,4(x0, x1, x2 ‖ x3, x4) + q5(x3, x4).
(4.13)

This hypersurface contains the ideal 〈x3, x4〉
2 which is a double plane in P4.

Let Y be a hypersurface which contains a double plane. By a coordinate trans-

formation we can assume the double plane is 〈x3, x4〉
2. The most general equation

which contains the ideal 〈x3, x4〉
2 is (4.13).

Proposition 4.5.2. A hypersurface Y is of type SS2 if and only if Y is a reducible

variety, where a hyperplane is one of the components. In particular, the singularity

is the intersection of the hyperplane with the other component which is generically a

degree 4 surface.

Proof. Let Y be of type S2 then it is equivalent, via a coordinate transformation, to

the hypersurface

x4q4(x0, x1, x2, x3, x4) (4.14)

This hypersurface has the hyperplane 〈x4〉 as a component.

Let Y be a reducible hypersurface where a hyperplane is a component. The

polynomial f ∈ C[x0, x1, x2, x3, x4] defining Y can be factored into f = gh, where h is

a degree 1 polynomial. By a coordinate transformation we can map the hyperplane

defining h to x4. Without loss of generality f = x4h. Since since f is of degree 5 then

by neccesity h is of degree 4 therefore f is of the form (4.14).

Proposition 4.5.3. A hypersurface Y is of type SS3 if and only if Y contains a triple

line.
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Proof. Let Y be of type SS3 then it is equivalent, via a coordinate transformation,

to the hypersurface

q2,3(x0, x1 ‖ x2, x3, x4) + q1,4(x0, x1 ‖ x2, x3, x4) + q5(x2, x3, x4) (4.15)

This hypersurface contains the ideal 〈x2, x3, x4〉
3 which is a triple line in P4.

Let Y be a hypersurface which contains a triple line. By a coordinate transforma-

tion, we can assume the triple line is 〈x2, x3, x4〉
3. The most general equation which

contains the ideal 〈x2, x3, x4〉
3 is (4.15).

Proposition 4.5.4. A hypersurface Y is of type SS4 if and only if Y contains a

quadruple point.

Proof. Let Y be of type SS4 then it is equivalent, via a coordinate transformation,

to the hypersurface

x0q4(x1, x2, x3, x4) + q5(x1, x2, x3, x4) (4.16)

This hypersurface contains the ideal 〈x1, x2, x3, x4〉
4 which is a quadruple point in P

4.

Let Y be a hypersurface which contains a quadruple point. By a coordinate

transformation we can assume the quadruple point is 〈x1, x2, x3, x4〉
4. The most

general equation which contains the ideal 〈x1, x2, x3, x4〉
4 is (4.16).

Proposition 4.5.5. A hypersurface Y is of type SS5 if and only if Y has a triple

point p with the following properties:

i) the tangent cone of p is the union of a double plane and another hyperplane;

ii) the line connecting a point in the double plane with the triple point has inter-

section multiplicty 5 with the hypersurface.
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Proof. Let Y be of type SS5 then it is equivalent, via a coordinate transformation,

to the hypersurface

x2
0

(

x2
4q1(x1, x2, x3, x4)

)

+ x0x4q3(x1, x2, x3, x4) + q5(x1, x2, x3, x4) (4.17)

This hypersurface contains the triple point 〈x1, x2, x3, x4〉
3. The tangent cone is the

hypersurface defined by

x2
4q1(x1, x2, x3, x4) (4.18)

which is the union of a double hyperplane 〈x4〉
2 and another general hyperplane

q1(x1, x2, x3, x4). The points whose lines passing through the triple point which have

intersection multiplictity 5 with the hypersurface, is the locus of 〈x2
4q1(x1, x2, x3, x4)〉

and 〈x4q3(x1, x2, x3, x4)〉. Since x4 is a component of both terms then a line emanating

from the hyperplane 〈x4〉 to the triple point will have multiplicity 5.

Let Y be a hypersurface which contains a triple point. By a coordinate transfor-

mation we can assume the triple point is 〈x1, x2, x3, x4〉
3. The most general equation

which contains the ideal 〈x1, x2, x3, x4〉
3 is

x2
0

(

q3(x1, x2, x3, x4)

)

+ x0

(

q4(x1, x2, x3, x4)

)

+ q5(x1, x2, x3, x4). (4.19)

If the tangent cone is the union of a double plane and another hyperplane then

q3(x1, x2, x3, x4) = f 2g (4.20)

where f and g are linear forms. By a coordinate transformation which keeps the

triple point fixed we can map the hyperplane f to x4. So without loss of generality

q3(x1, x2, x3, x4) = x2
4g. (4.21)
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If a general line from the hyperplane 〈x4〉 to the triple point has multiplicity 5

then

x4 = q4 = 0. (4.22)

This occurs only if q4 has x4 as a component so

q4 = x4q3 (4.23)

which is precisely of the form (4.17).

Proposition 4.5.6. A hypersurface Y is of type SS6 if and only if Y has a double

line L where every point p ∈ L has the following properties:

i) the tangent cone of each point p ∈ L is a double plane Pp;

ii) each point p ∈ L has the same double plane tangent cone i.e. Pp = P for some

double plane P ;

iii) the line connecting the point on the tangent cone Pp and a point p ∈ L has

intersection multiplicty 4 with the hypersurface.

Proof. Let Y be of type SS6 then it is equivalent, via a coordinate transformation,

to the hypersurface

(

q3(x0, x1)x
2
4

)

+

(

x4q2,2(x0, x1 ‖ x2, x3, x4)

)

+q1,4(x0, x1 ‖ x2, x3, x4) + q5(x2, x3, x4)

(4.24)

This hypersurface contains the double line 〈x2, x3, x4〉
2. For any point [λ : ν : 0 : 0 : 0]

of the double line the tangent cone is the same double plane given by 〈x4〉
2. The

points which have intersection multiplictity 4 with the double line are the locus of



53

〈x4〉
2 and 〈x4q2,2(λ, ν ‖ x2, x3, x4)〉. Since x4 is a component of both terms then the

line emanating from the hyperplane 〈x4〉 to any point of the double line will have

multiplicity 4.

Let Y be a hypersurface which contains a double line. By a coordinate trans-

formation we can assume the double line is 〈x2, x3, x4〉
2. The most general equation

which contains the ideal 〈x2, x3, x4〉
2 is

q3,2(x0, x1 ‖ x2, x3, x4) + q2,3(x0, x1 ‖ x2, x3, x4) + q1,4(x0, x1 ‖ x2, x3, x4) + q5(x2, x3, x4)

(4.25)

If the tangent cone at every point on the double line is the same double plane

then

q3,2(x0, x1 ‖ x2, x3, x4) = q3(x0, x1)f(x2, x3, x4)
2 (4.26)

where f is a linear form. By a coordinate transformation, which keeps the double

line fixed, the hyperplane f is mapped to x2
4. So without loss of generality,

q3,2(x0, x1 ‖ x2, x3, x4) = q3(x0, x1)x
2
4. (4.27)

If the line going from the hyperplane 〈x4〉 to any point of the double line has

multiplicity 4 then

x4 = q2,3(λ, ν ‖ x2, x3, x4) = 0. (4.28)

This occurs only if q2,3(x0, x1 ‖ x2, x3, x4) has x4 as a component so

q2,3 = x4q2,2(x0, x1 ‖ x2, x3, x4) (4.29)

which is precisely of the form (4.24).
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Proposition 4.5.7. A hypersurface Y is of type SS7 if and only if Y contains a

triple point p and a plane P , where p ∈ P has the following properties:

i) the tangent cone of p contains a triple plane of P ;

ii) the singular locus of Y , when restricted to P , is the intersection of two quartic

curves q1 and q2;

iii) the point p is a quadruple point of q1 and q2.

Proof. Let Y be of type SS7 then it is equivalent, via a coordinate transformation,

to the hypersurface

x2
0q3(x3, x4) + x0

(

q2,2(x1, x2 ‖ x3, x4) + q1,3(x1, x2 ‖ x3, x4) + q4(x3, x4)

)

+

(

q4,1(x1, x2 ‖ x3, x4) + q3,2(x1, x2 ‖ x3, x4) + q2,3(x1, x2 ‖ x3, x4)

+q1,4(x1, x2 ‖ x3, x4) + q5(x3, x4)

)

(4.30)

This hypersurface contains the triple point p given by the ideal 〈x1, x2, x3, x4〉
3 and a

plane P given by 〈x3, x4〉. The tangent cone is the hypersurface defined by q3(x3, x4)

which which contains the triple plane 〈x3, x4〉
3 of P . When the differential of Y is

restricted to the plane 〈x3, x4〉 the only non-trivial contribution comes from the term

q4,1(x1, x2 ‖ x3, x4) = q4(x1, x2)x3 + q̃4(x1, x2)x4. (4.31)

The differential, when restricted to the plane, is zero when

q4(x1, x2) = q̃4(x1, x2) = 0. (4.32)

Therefore, the plane contains two quartic curves q4(x1, x2) and q̃4(x1, x2) which

contain p as the quadruple point.

Let Y be a hypersurface which contains a triple point p and a plane P , where p ∈

P . By a coordinate transformation we can assume the triple point is 〈x1, x2, x3, x4〉
3
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and the plane is 〈x3, x4〉. The most general equation which contains the ideal

〈x1, x2, x3, x4〉
3 and 〈x3, x4〉 is

x2
0

(

q2,1(x1, x2 ‖ x3, x4) + q1,2(x1, x2 ‖ x3, x4) + q3(x3, x4)

)

+x0

(

q3,1(x1, x2 ‖ x3, x4) + q2,2(x1, x2 ‖ x3, x4) + q1,3(x1, x2 ‖ x3, x4) + q4(x3, x4)

)

+

(

q4,1(x1, x2 ‖ x3, x4) + q3,2(x1, x2 ‖ x3, x4) + q2,3(x1, x2 ‖ x3, x4)

+q1,4(x1, x2 ‖ x3, x4) + q5(x3, x4)

)

(4.33)

If the tangent cone contains the triple plane of P then it contains the ideal 〈x3, x4〉
3.

Then the coeffecients of the x2
0 term of (4.33) contains only the q3(x3, x4) term. The

differential of (4.33), when restricted to the plane 〈x3, x4〉, contains the equations of

the form x0q3(x1, x2)+ q4(x1, x2) and x0q̃3(x1, x2)+ q̃4(x1, x2). If the singular locus of

Y in the plane is the intersection of two quartic curves then

x0q3(x1, x2) + q4(x1, x2) = x0q̃3(x1, x2) + q̃4(x1, x2) = 0. (4.34)

So x0q3(x1, x2) + q4(x1, x2) and x0q̃3(x1, x2) + q̃4(x1, x2) are the quartic curves. If

p is a quadruple point of both quartic curves then q3 and q̃3 are 0, so Y is of the form

(4.30).

4.6 Stable Locus

In this section we will describe the stable locus of the GIT compactification.

The stable locus represents all of the closed orbits in the moduli space. In general

it is not known what types of singularities would be allowed in the stable locus.

The strategy for describing the stable locus, in this dissertation, is to classify the
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singularities which arise on the boundary of the moduli space. This gives some

description of the singularities which arise in the stable locus. Ideally, the stable locus

would only be smooth hypersurfaces and the boundary would include hypersurfaces

with singularities. As shown in [1, 12] even in the case of cubic threefolds and cubic

fourfolds this is not the case. As the degree and dimension of hypersurfaces increases

more singularities will be included in the stable locus. In [16] there is a general

proposition which states that a smooth hypersurface will always be stable.

Proposition 4.6.1 ( [16] Prop. 4.2). A smooth hypersurface F in Pn with degree ≥ 2

is a stable hypersurface.

A complete classification of all possible singularities in the stable locus has not

been found. Using the results of the previous section a partial list of singularities can

be determined.

Proposition 4.6.2. If X is a quintic threefold with at worst a double point then it

is stable.

Proof. Suppose X is not stable, then it is strictly semistable or unstable. So it belongs

to one of the families SS1 - SS7, but X does not satisfy the singularity criteria for

any of these families. Hence, it is stable.

Proposition 4.6.3. If X is a quintic threefold with at worst a triple point whose

tangent cone is an irreducible cubic surface and X does not contain a plane then it

is stable.

Proof. Suppose X is not stable, then it is strictly semistable or unstable. So it belongs

to one of the families SS1 - SS7. The only families which have at worst a triple point

are families SS5 and SS7. Since the tangent cone of X is irreducible then it is not in

SS5. Since X does not contain a plane it is not in SS7, therefore it belong to neither

family. Hence, it is stable.

Proposition 4.6.4. If X is a quintic threefold with at worst a double line whose

tangent cone at each point on the line is irreducible then it is stable.
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Proof. Suppose X is not stable, then it is strictly semistable or unstable. So it belongs

to one of the families SS1 - SS7. SS6 is the only family which has at worst a double

line as a singularity. Since the tangent cone of X at each point is irreducible then it

is not in SS6. Hence, it is stable.

These four classes of hypersurfaces give the most generic classes of hypersurfaces

which are stable. There are also other classes which degenerate tangent cones which

may still not fit into one of the classes SS1-SS7 but a complete classification is still

unknown.
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Chapter 5

Minimal Orbits

The classification of closed orbits in the GIT compactification is important for

understanding the structure of the moduli space. Since, in the strictly semistable

locus, multiple orbits map to the same point in the quotient space it is important

to have a method for determining a unique representatives in the quotient space.

The closed orbit lemma (3.2.9) shows that minimal orbits give such representatives.

Classification of minimal orbits becomes a tractable problem due to Luna’s criterion

and knowledge of a destabilizing 1-PS for each maximal semistable family.

5.1 Degenerations

As stated in Chapter 3, strictly semistable points do not neccesarily have closed

G orbits. For a point x ∈ Xss \ Xs, the closure Gx and the orbit Gx maps to the

same point in the GIT quotient. The purpose of minimal orbits is to find a unique

representative for the orbit Gx. The presence of a destabilizing 1-PS λ is used as

a first approximation in determining the minimal orbit inside Gx. Given a 1-PS

λ : C∗ → SL(5,C), the closure of λx is defined as follows:

λx := lim
t→0

λ(t)x (5.1)

where t ∈ C∗. The closure λx ⊆ Gx is invariant under the action λ. The advantage
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of this process is that it reduces the large family of strictly semistable families to

smaller set of invariant families. There are two levels of degenerations which occur

in quintic threefolds. The first set of minimal orbits are MO-(A − D). This set of

minimal orbits degenerate further to MO2-(I −X).

Table 5.1: Corresponding Degenerations of SS1 - SS7

Family Destabilizing 1-PS Subgroup Degeneration

SS1 〈2, 2, 2,−3,−3〉 MO-A

SS2 〈1, 1, 1, 1,−4〉 MO-D

SS3 〈3, 3,−2,−2,−2〉 MO-A

SS4 〈4,−1,−1,−1,−1〉 MO-D

SS5 〈1, 0, 0, 0,−1〉 MO-B

SS6 〈4, 4,−1,−1,−6〉 MO-C

SS7 〈6, 1, 1,−4,−4〉 MO-C

Table 5.2: First Level of Minimal Orbits MO-A - MO-D

Family Invariant 1-PS Subgroup (H) Centralizer of H (ZG(H))

MO-A 〈3, 3,−2,−2,−2〉 SL(2,C)× SL(3,C)

q2,3(x0, x1 ‖ x2, x3, x4)

MO-B 〈1, 0, 0, 0,−1〉 C
∗ × SL(3,C)× C

∗

q5(x1, x2, x3) + x0x4q3(x1, x2, x3) + x2
0x

2
4q1(x1, x2, x3)

MO-C 〈4, 4,−1,−1,−6〉 SL(2,C)× SL(2,C)× C∗

q1,4(x0, x1 ‖ x2, x3) + x4q2,2(x0, x1 ‖ x2, x3) + x2
4q3(x0, x1)

MO-D 〈4,−1,−1,−1,−1〉 C∗ × SL(4,C)

x0q4(x1, x2, x3, x4)
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Table 5.3: Second Level of Minimal Orbits SS2I - SS2X

Family Invariant 1-PS Subgroup (H) Centralizer of H (ZG(H))

MO2-I 〈6, 0, 2,−3,−5〉 C∗5

x2
0(x2x

2
4) + x0x1(x2x3x4) + x2

1(x2x
2
3)

MO2-II 〈4, 2,−1,−2,−3〉 C
∗5

x2
0(x3x

2
4) + x0x1(x

3
3 + x2x3x4) + x2

1(x
2
2x3)

MO2-III 〈4, 2, 0,−2,−4〉 C∗5

x2
0(x2x

2
4 + x2

3x4) + x0x1(x
3
3 + x2x3x4) + x2

1(x2x
2
3 + x2

2x4)

MO2-IV 〈4, 2,−1,−1,−5〉 C∗2 × SL(2,C)× C∗

x0x4(x1q2(x2, x3))

MO2-V 〈5, 3,−1,−2,−7〉 C∗5

x0x4(x1x2x3)

MO2-VI 〈2, 1, 0,−1,−2〉 C∗5

(x1x
3
2x3 + x2

1x2x
2
3) + x0x4(x1x2x3)

MO2-VII 〈5, 3, 0,−2,−6〉 C
∗5

x4x
2
0x

2
3 + x4x0x1x2x3 + x4x

2
1x

2
2

MO2-VIII 〈4, 2,−2,−2,−2〉 C∗2 × SL(3,C)

x0x1q3(x2, x3, x4)

MO2-IX 〈4, 0, 0,−2,−2〉 C∗ × SL(2,C)× SL(2,C)

x0q2,2(x1, x2 ‖ x3, x4)

MO2-X 〈4, 0,−1,−1,−2〉 C∗2 × SL(2,C)× C∗

x0(q4(x2, x3) + x1q2(x2, x3)x4 + x2
1x

2
4)

Remark 5.1.1. The normalized 1-PS λ is represented by a vector of the form

〈a0, a1, a2, a3, a4〉. The action of this λ(t) on the variables xi is given by λ(t)xi = taixi.

So the action on a monomial is of the form

λ(t)xb0
0 x

b1
1 x

b2
2 x

b3
3 x

b4
4 = ta0b0+a1b1+a2b2+a3b3+a4b4xb0

0 x
b1
1 x

b2
2 x

b3
3 x

b4
4 . Which can be thought of

the dot product of 〈a0, a1, a2, a3, a4〉 and 〈b0, b1, b2, b3, b4〉.

Proposition 5.1.2. If Y is of type SS1 then it degenerates, via the 1-PS λ =
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〈2, 2, 2,−3,−3〉, to a hypersurface of type MO-A.

Proof. Let the 1-PS λ = 〈2, 2, 2,−3,−3〉 act on the monomials in the family x =

q3,2(x0, x1, x2 ‖ x3, x4) + q2.3(x0, x1, x2 ‖ x3, x4) + q1,4(x0, x1, x2 ‖ x3, x4) + q5(x3, x4).

The closure λx represents the monomials which are invariant under the action of λ.

These are precisely the monomials equivalent, up to a coordinate transformation, to

MO-A.

Proposition 5.1.3. If Y is of type SS2 then it degenerates, via the 1-PS λ =

〈1, 1, 1, 1,−4〉, to a hypersurface of type MO-D.

Proof. Let the 1-PS λ = 〈1, 1, 1, 1,−4〉 act on the monomials in the family x =

x4q4(x0, x1, x2, x3, x4). The closure λx represents the monomials which are invari-

ant under the action of λ. These are precisely the monomials equivalent, up to a

coordinate transformation, to MO-D.

Proposition 5.1.4. If Y is of type SS3 then it degenerates, via the 1-PS λ =

〈3, 3,−2,−2,−2〉, to a hypersurface of type MO-A.

Proof. Let the 1-PS λ = 〈3, 3,−2,−2,−2〉 act on the monomials in the family

x = q2,3(x0, x1 ‖ x2, x3, x4) + q1,4(x0, x1 ‖ x2, x3, x4) + q5(x2, x3, x4). The closure

λx represents the monomials which are invariant under the action of λ. These are

precisely the monomials equivalent, up to a coordinate transformation, to MO-A.

Proposition 5.1.5. If Y is of type SS4 then it degenerates, via the 1-PS λ =

〈4,−1,−1,−1,−1〉, to a hypersurface of type MO-D.

Proof. Let the 1-PS λ = 〈4,−1,−1,−1,−1〉 act on the monomials in the family x =

x0q4(x1, x2, x3, x4)+q5(x1, x2, x3, x4). The closure λx represents the monomials which

are invariant under the action of λ. These are precisely the monomials equivalent, up

to a coordinate transformation, to MO-D.

Proposition 5.1.6. If Y is of type SS5 then it degenerates, via the 1-PS λ =

〈1, 0, 0, 0,−1〉, to a hypersurface of type MO-B.
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Proof. Let the 1-PS λ = 〈1, 0, 0, 0,−1〉 act on the monomials in the family x =

x2
0(x

2
4q1(x1, x2, x3, x4)) + x0x4q3(x1, x2, x3, x4) + q5(x1, x2, x3, x4). The closure λx rep-

resents the monomials which are invariant under the action of λ. These are precisely

the monomials equivalent, up to a coordinate transformation, to MO-B.

Proposition 5.1.7. If Y is of type SS6 then it degenerates, via the 1-PS λ =

〈4, 4,−1,−1,−6〉, to a hypersurface of type MO-C.

Proof. Let the 1-PS λ = 〈4, 4,−1,−1,−6〉 act on the monomials in the family x =

x2
4q3(x0, x1) + x4q2,2(x0, x1 ‖ x2, x3, x4) + q1,4(x0, x1 ‖ x2, x3, x4) + q5(x2, x3, x4). The

closure λx represents the monomials which are invariant under the action of λ. These

are precisely the monomials equivalent, up to a coordinate transformation, to MO-C.

Proposition 5.1.8. If Y is of type SS7 then it degenerates, via the 1-PS λ =

〈6, 1, 1,−4,−4〉, to a hypersurface of type MO-C.

Proof. Let the 1-PS λ = 〈6, 1, 1,−4,−4〉 act on the monomials in the family x =

x2
0q3(x3, x4) + x0(q2,2(x1, x2 ‖ x3, x4) + q1,3(x1, x2 ‖ x3, x4) + q4(x3, x4)) + (q4,1(x1, x2 ‖

x3, x4) + q3,2(x1, x2 ‖ x3, x4) + q2,3(x1, x2 ‖ x3, x4) + q1,4(x1, x2 ‖ x3, x4) + q5(x3, x4)).

The closure λx represents the monomials which are invariant under the action of λ.

These are precisely the monomials equivalent, up to a coordinate transformation, to

MO-C.

5.2 Luna’s Criterion

The ability to degenerate the large families SS(1-7) into much smaller invariant

families MO-(A-D) makes the problem of finding minimal closed orbits much more

tractable. Generically, a hypersurface in the families MO-(A-D) will be closed and

thus minimal. To explicitly determine which elements in MO-(A-D) are closed and

which elements further degenerate one can use Luna’s criterion.

Luna’s criterion is used when there is an affine G-variety X and a point x ∈ X

which has a non-finite stabilizer H ⊆ G. If XH is the set of points in X which are



63

H-invariant and NG(H) is the normalizer of H in G then there is a natural action of

NG(H) on XH . Luna’s criterion reduces the problem of determining whether Gx is

closed in X to whether NG(H) is closed in XH .

Proposition 5.2.1 (Luna’s Criterion). [13, 23]

Let X be an affine variety with a G-action and x ∈ X a point stabilized by a

subgroup H ⊆ G. Then the orbit Gx is closed in X if and only if the orbit NG(H)x

is closed in XH .

Remark 5.2.2 ( [23]). In the case where H is reductive and connected NG(H) =

H · ZG(H), where ZG(H) is the centralizer of H in G. Since NG(H) acts on XH we

can quotient out by H . Thus, we can study the action of ZG(H), instead of NG(H),

on XH .

The case of quintic threefolds consists of an SL(5,C) action on the projective

variety P(V ), where V = Sym5(C5). V is the linearization of the SL(5,C) on P(V ).

The closed orbits of points in the linearization V correspond to closed orbits of points

in P(V ). The correspondence between a projective variety and it’s linearization allows

us to apply Luna’s criterion to V . Given a point from one of the families MO-(A-D)

the stabilizer subgroup is the invariant 1 − PS i.e. H = λ. The following lemma

reduces the problem of finding minimal orbits to finding stable points in the ZG(H)-

action on V H .

Lemma 5.2.3. Let v ∈ V be a point with stabilizer H i.e. in V H . If v ∈ V is stable

with respect to the ZG(H)-action on the H-invariant space V H then the orbit Gv is

closed.

Proof. Let v ∈ V H be stable with respect to the ZG(H)-action on V H . By the

definition of stable point, the orbit ZG(H)v is closed. By Luna’s criterion Gv is

closed.

Stable points can be found by using the Hilbert-Mumford criterion for the ZG(H)-

action on V H . If a point v ∈ V H is a point from MO-(A-D) and is strictly semistable
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with respect to the ZG(H)-action, then there is a corresponding destablizing 1-PS

λ. This destabilizing 1-PS further degenerates v with a different stabilizer H ′ and it

must be repeated to determine closed orbits for those points.

5.3 First Level of Minimal Orbits

In this section we will apply the Hilbert-Mumford criterion to ZG(H)-actions on

V H . We explicitly determine the semistable and unstable points for each minimal

orbit to show which points are closed, which are semistable and degenerate further,

and which are unstable. We will explictly describe this procedure for the case of

MO-A. Similar modifications can be made for all other cases.

5.3.1 Minimal Orbit A

In the case of MO-A the centralizer ZG(H) = C2 × SL(3,C) ⊆ SL(5,C) acts on

polynomials in MO-A which are of the form q2,3(x0, x1 ‖ x2, x3, x4). The minimal

orbit can be written as

x2
0s3(x2, x3, x4) + x0x1t3(x2, x3, x4) + x2

1u3(x2, x3, x4), (5.2)

where s3(x2, x3, x4), t3(x2, x3, x4), u3(x2, x3, x4) are degree 3 polynomials in the vari-

ables x2, x3, and x4. The polynomials which represent closed orbits in this family are

stable with respect to the C2×SL(3,C) action on (5.2). The polynomials which fur-

ther degenerate are semistable with respect to the C2×SL(3,C) action. The unstable

points are unstable with respect to the C2 × SL(3,C) action. The set of semistable

and unstable points can be found by modifying the techniques in Chapter 4 which

involved classifying G-orbits by using (3.12) to find which polynomials which satisfy

the Hilbert-Mumford criterion for the set of normalized 1-PS λ. A normalized 1-PS

in C2 × SL(3,C) is of the following form:
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t 0 0 · · · 0

0 t−1 0 · · · 0

0 0 ta 0 0
...

... 0 tb 0

0 0 0 0 tc





















(5.3)

where a+ b+ c = 0 and a ≥ b ≥ c. The normalization restriction of the SL(3,C)

block gives an ordering of the degree 3 monomials in the variables x2, x3, x4. The

weights of x2
0, x0x1, and x2

2 are 2,0, and −2 respectively. The set of maximal strictly

semistable polynomials F are those where µ(F, λ) ≤ 0 and the maximal unstable

families have µ(F, λ) < 0. A general polynomial in (5.2) will be semistable if s3, t3,

and u3 have at most weights −2, 0, and 2, with respect to the action (5.3). These

weights are neccesary in order balance the weights arising from x2
0, x0x1, x

2
1 so that µ

is less than zero. Similary, the weights for a polynomial in (5.2) the weights for s3, t3,

and u3 are at most −3, −1, and 1 for the polynomial to be unstable. The calculation

below gives the set of semistable and unstable families. A similar method can be used

for all other minimal orbits in order to explicitly calculate the set of semistable and

unstable families.
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Figure 5.1: Poset structure of degree 3 monomials
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Semistable Families

Family 1 〈3, 3,−2,−2,−2〉

Invariant Family q2,3(x0, x1 ‖ x2, x3, x4)

(SS1-A) x2
0

(

q3(x3, x4) + q1(x2, x3)x
2
4 + x3

4

)

+ x0x1

(

q3(x3, x4) + x2x3x4 + q1(x2, x3)x
2
4 +

x3x
2
4 + x2

3x4 + x3
4

)

+ x2
1

(

x2q2(x3, x4) + q3(x3, x4)

)

(a) 1-PS : 〈1,−1, 4,−1,−3〉

(b) Degeneration (MO2− I) : x2
0

(

x2x
2
4

)

+ x0x1

(

x2x3x4

)

+ x2
1

(

x2x
2
3

)

(SS2-A) x2
0

(

q3(x3, x4)

)

+x0x1

(

x2q2(x3, x4)+q3(x3, x4)

)

+x2
1

(

x2q2(x3, x4)+q3(x3, x4)

)

(a) 1-PS: 〈1,−1, 2,−1,−1〉

(b) Degeneration (MO2− IV ) : x0x1

(

x2q2(x3, x4)

)

(SS3-A) x2
0

(

q1(x2, x3)x
2
4+x3

4

)

+x0x1

(

q2(x2, x3)x4+q1(x2, x3)x
2
4+x3

4

)

+x2
1

(

q2(x2, x3)x4+

q1(x2, x3)x
2
4 + x3

4

)

(a) 1-PS: 〈1,−1, 1, 1,−2〉

(b) Degeneration (MO2− IV ) : x0x1

(

q2(x2, x3)x4

)

(SS4-A) x2
0

(

x3x
2
4 + x3

4

)

+ x0x1

(

q3(x3, x4) + x2x3x4 + q1(x2, x3)x
2
4 + x3x

2
4 + x2

3x4 + x3
4

)

+ x2
1

(

x2
2q1(x3, x4) + x2q2(x3, x4) + q3(x3, x4)

)

(a) 1-PS: 〈1,−1, 1, 0,−1〉
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(b) Degeneration (MO2− II) : x2
0

(

x3x
2
4

)

+ x0x1

(

x3
3 + x2x3x4

)

+ x2
1

(

x2
2x3

)

(SS5-A) x2
0

(

q1(x2, x3)x
2
4+x2

3x4+x3
4

)

+x0x1

(

q3(x3, x4)+x2x3x4+ q1(x2, x3)x
2
4+x3x

2
4+

x2
3x4 + x3

4

)

+ x2
1

(

x2q2(x3, x4) + q3(x3, x4) + q2(x2, x3)x4 + x3
4

)

(a) 1-PS: 〈1,−1, 2, 0,−2〉

(b) Degeneration (M02− IV ) : x2
0

(

x2x
2
4 + x2

3x4

)

+

x0x1

(

x3
3 + x2x3x4

)

+ x2
1

(

x2x
2
3 + x2

2x4

)

Unstable Families

(US1-A) x2
0(q3(x3, x4) + x2x

2
4) + x0x1(q3(x3, x4) + x2x

2
4) + x2

1(q3(x3, x4) + x2x3x4 + x2x
2
4)

(US2-A) x2
0(q3(x3, x4)) + x0x1(q3(x3, x4)) + x2

1(q3(x3, x4) + x2q2(x3, x4))

(US3-A) x2
0(x2x

2
4 + x2

3x4 + x3x
2
4 + x3

4) + x0x1(x2x
2
4 + x2

3x4 + x3x
2
4 + x3

4) + x2
1(q3(x3, x4) +

x2x3x4 + x2x
2
4)

(US4-A) x2
0(x2x

2
4+x3x

2
4+x3

4)+x0x1(x2x
2
4+x2

3x4+x3x
2
4+x3

4)+x2
1(q2(x2, x3)x4+q1(x2, x3)x

2
4+

x3
4)

(US5-A) x2
0(x

3
4) + x0x1(q1(x2, x3)x

2
4 + x2

3x4 + x3
4) + x2

1(q3(x3, x4) + x2
2x4 + x2x3x4 + x2x

2
4)

(US6-A) x2
0(x3x

2
4 + x3

4) + x0x1(q1(x2, x3)x
2
4 + x2

3x4 + x3
4) + x2

1(q3(x3, x4) + x2x3x4 + x2x
2
4)

(US7-A) x2
0(x3x

2
4+x3

4)+x0x1(q1(x2, x3)x
2
4+x2

3x4+x3
4)+x2

1(q2(x2, x3)x4+q1(x2, x3)x
2
4+x3

4)

(US8-A) x2
0(x

2
3x4+x3x

2
4+x3

4)+x0x1(q1(x2, x3)x
2
4+x2

3x4+x3
4)+x2

1(x2q2(x3, x4)+q3(x3, x4))

(US9-A) x2
0(x3x

2
4 + x3

4) + x0x1(q1(x2, x3)x
2
4 + x2

3x4 + x3
4) + x2

1(x2q2(x3, x4) + q3(x3, x4))

(US10-A) x2
0(x

3
4) + x0x1(q1(x2, x3)x

2
4 + x2

3x4 + x3
4) + x2

1(x2q2(x3, x4) + q3(x3, x4))

(US11-A) x2
0(x3x

2
4 + x3

4) + x0x1(q1(x2, x3)x
2
4 + x2

3x4 + x3
4) + x2

1(x2x3x4 + x2x
2
4 + q3(x3, x4))
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(US12-A) x2
0(x3x

2
4 + x3

4) + x0x1(q1(x2, x3)x
2
4 + x2

3x4 + x3
4) + x2

1(q2(x2, x3)x4 +

q1(x2, x3)x
2
4 + x3

4)

(US13-A) x2
0(x

3
4) + x0x1(q1(x2, x3)x

2
4 + x2

3x4 + x3
4) + x2

1(q2(x2, x3)x4 +

q1(x2, x3)x
2
4 + x3

4 + x3
3)

(US14-A) x2
0(x

3
4 + x2

3x4) + x0x1(x
3
4 + x2

3x4) + x2
1(x2q2(x3, x4) + q3(x3, x4))

(US15-A) x2
0(x

3
4) + x0x1(x

3
4 + x2

3x4) + x2
1(x2q2(x3, x4) + q3(x3, x4) + x3

2x4)

(US16-A) x2
0(x

2
3x4 + x3

4) + x0x1(x
3
4 + x2

3x4) + x2
1(q3(x3, x4) + x2x3x4 + x2x

2
4)

(US17-A) x2
0(x

2
3x4 + x3

4) + x0x1(x
3
4 + x2

3x4) + x2
1(q2(x2, x3)x4 + q1(x2, x3)x4 + x3

4)

(US18-A) x2
0(x

3
4) + x0x1(x

3
4 + x2

3x4) + x2
1(q3(x3, x4) + x2x3x4 + x2x

2
4 + x3

3)

Proposition 5.3.2. Let Y be, up to a coordinate transformation of the form

q2,3(x0, x1 ‖ x2, x3, x4).

1. If Y belongs to one of the families US1-A - US18-A then Y is unstable and does

not represent a closed orbit.

2. If Y is of type SS1-A then the orbit is not closed and it degenerates to MO2-I.

3. If Y is of type SS2-A then the orbit is not closed and it degenerates to MO2-IV.

4. If Y is of type SS3-A then the orbit is not closed and it degenerates to MO2-IV.

5. If Y is of type SS4-A then the orbit is not closed and it degenerates to MO2-I.

6. If Y is of type SS5-A then the orbit is not closed and it degenerates to M02-IV.

Otherwise, Y is a closed orbit.
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5.3.3 Minimal Orbit B

Semi-Stable Families

Family 2 〈1, 0, 0, 0,−1〉

Invariant Family: q5(x1, x2, x3) + x0q3(x1, x2, x3)x4 + x2
0q1(x1, x2, x3)x

2
4

(SS1-B)

(

x1q4(x2, x3) + q5(x2, x3)

)

+ x0x4

(

x1q2(x2, x3) + q3(x2, x3)

)

+

x2
0x

2
4

(

q1(x2, x3)

)

(a) 1-PS: 〈1, 2,−1,−1,−1〉

(b) Degeneration (MO2− IV ) : x0x4

(

x1q2(x2, x3)

)

(SS2-B)

(

x1q4(x2, x3) + q5(x2, x3) + q2(x1, x2)x
2
3

)

+

x0x4

(

q3(x2, x3) + x1x2x3 + q1(x1, x2)x
2
3

)

+ x2
0x

2
4

(

q1(x2, x3)

)

(a) 1-PS: 〈1, 3,−1,−2,−1〉

(b) Degeneration (MO2− V ) : x0x4

(

x1x2x3

)

(SS3-B)

(

q3(x1, x2)x
2
3 + q2(x1, x2)x

3
3 + q1(x1, x2)x

4
3 + x5

3

)

+ x0x4

(

q2(x1, x2)x3 + q1(x1, x2)x
2
3 + x3

3

)

+ x2
0x

2
4

(

x3

)

(a) 1-PS: 〈1, 1, 1,−2,−1〉

(b) Degeneration (MO2− IV ) : x0x4

(

q2(x1, x2)x3)

)

(SS4-B)

(

q5(x2, x3) + x1x
3
2x3 + x1x

2
2x

2
3 + x1x2x

3
3 + x1x

4
3 + x2

1x2x
2
3 + q2(x1, x2)x

3
3

)

+

x0x4

(

q3(x2, x3) + x1x2x3 + q1(x1, x2)x
2
3

)

+ x2
0x

2
4

(

q1(xx, x3)

)



71

(a) 1-PS: 〈1, 1, 0,−1,−1〉

(b) Degeneration (MO2− V I) :

(

x1x
3
2x3 + x2

1x2x
2
3

)

+ x0x4

(

x1x2x3

)

Unstable Families

(US1-B) (x1q4(x2, x3) + x2
1x3) + x0x4(q3(x2, x3) + x1x

2
3) + x2

0x
2
4(x2 + x3)

(US2-B) (q5(x2, x3)+x1x
3
2x3+x1x

2
2x

2
3+x2

1x
3
3+x1x2x

3
3+x1x

4
3)+x0x4(q1(x1, x2)x

2
3+x2

2x3+

x3
3) + x2

0x
2
4(x3)

(US3-B) (x2
1x2x

2
3 + x1x

2
2x

2
3 + x4

2x3 + x3
2x

2
3 + x2

2x
3
3 + q2(x1, x2)x

3
3 + q1(x1, x2)x

4
3 + x5

3) +

x0x4(q1(x1, x2)x
2
3 + x2

2x3 + x3
3) + x2

0x
2
4(x3)

(US4-B) (q3(x1, x2)x
2
3+q2(x1, x2)x

3
3+q1(x1, x2)x

4
3+x5

4)+x0x4(q1(x1, x2)x
2
3+x2

2x3+x3
3)+

x2
0x

2
4(x3)

Proposition 5.3.4. Let Y be, up to a coordinate transformation of the form

q5(x1, x2, x3) + x0q3(x1, x2, x3)x4 + x2
0q1(x1, x2, x3)x

2
4.

1. If Y belongs to one of the families US1-B - US4-B then Y is unstable and does

not represent a closed orbit.

2. If Y is of type SS1-B then the orbit is not closed and it degenerates to MO2-IV.

3. If Y is of type SS2-B then the orbit is not closed and it degenerates to MO2-V.

4. If Y is of type SS3-B then the orbit is not closed and it degenerates to MO2-IV.

5. If Y is of type SS4-B then the orbit is not closed and it degenerates to MO2-VI.

Otherwise, Y is a closed orbit.
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5.3.5 Minimal Orbit C

Semi-Stable Family

Family 3 〈4, 4,−1,−1,−6〉

Invariant Family: q1,4(x0, x1 ‖ x2, x3) + q3(x0, x1)x
2
4 + q2,2(x0, x1 ‖ x2, x3)x4

(SS1-C)

(

x0(x2x
3
3 + x4

3) + x1(x
2
2x

2
3 + x2x

3
3 + x4

3)

)

+ x2
4

(

x0x
2
1 + x3

1

)

+

x4

(

x2
0(x

2
3) + x0x1(x2x3 + x2

3) + x2
1(x

2
2 + x2x3 + x2

3)

)

(a) 1-PS: 〈1,−1, 1,−1, 0〉

(b) Degeneration (MO2− V II) : x4x
2
0x

2
3 + x4x0x1x2x3 + x4x

2
1x

2
2

Unstable Family

(US1-C) x0(x2x
3
3+x4

3)+x1(x
2
2x

2
3+x2x

3
3+x3

3)+x2
4(x0x

2
1+x3

1)+x4x0x1(x
2
3)+x4x

2
1(x2x3+x2

3)

Proposition 5.3.6. Let Y be, up to a coordinate transformation of the form

q1,4(x0, x1 ‖ x2, x3) + q3(x0, x1)x
2
4 + q2,2(x0, x1 ‖ x2, x3)x4.

1. If Y belongs to the family US1-C then Y is unstable and does not represent a

closed orbit.

2. If Y is of type SS1-C then the orbit is not closed and it degenerates to MO2-VII.

Otherwise, Y is a closed orbit.
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5.3.7 Minimal Orbit D

Semistable Family

Family 4 〈4,−1,−1,−1,−1〉 Invariant Family: x0q4(x1, x2, x3, x4)

(SS1-D) x0

(

x1q3(x2, x3, x4) + q4(x2, x3, x4)

)

(a) 1-PS: 〈0, 3,−1,−1,−1〉

(b) Degeneration (MO2− V III) : x0x1q3(x2, x3, x4)

(SS2-D) x0

(

q3(x1, x2, x3)x4 + q2(x1, x2, x3)x
2
4 + q1(x1, x2, x3)x

3
4 + x4

4

)

(a) 1-PS: 〈0, 1, 1, 1,−3〉

(b) Degeneration (MO2− V II) : x0x4q3(x1, x2, x3)

(SS3-D) x0

(

q2,2(x1, x2 ‖ x3, x4) + q1,3(x1, x2 ‖ x3, x4) + q4(x3, x4)

)

(a) 1-PS: 〈0, 1, 1,−1,−1〉

(b) Degeneration (MO2− IX) : x0q2,2(x1, x2 ‖ x3, x4)

(SS4-D) x0

(

q4(x2, x3, x4) + x1q2(x2, x3)x4 + q2(x1, x2, x3)x
2
4 + q1(x1, x2, x3)x

3
4

)

(a) 1-PS: 〈0, 1, 0, 0,−1〉

(b) Degeneration (MO2−X) : x0

(

q4(x2, x3) + x1q2(x2, x3)x4 + x2
1x

2
4

)

Unstable Family

(US1-D) q4(x2, x3, x4) + q1,3(x1, x2 ‖ x3, x4) + q4(x3, x4) + x1x2x
2
4

(US2-D) x2
2x3x4 + q1,3(x1, x2 ‖ x3, x4) + q4(x3, x4) + q2(x1, x2, x3)x

2
4 + q1(x1, x2, x3)x

3
4
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(US3-D) x2q3(x3, x4) + q4(x3, x4) + q3(x2, x3)x4 + q2(x2, x3)x
2
4 + q1(x2, x3)x

3
4 +

q1(x1, x2)x
2
3x4 + q2(x1, x2, x3)x

2
4 + q1(x1, x2, x3)x

3
4

Proposition 5.3.8. Let Y be, up to a coordinate transformation of the form

x0q4(x1, x2, x3, x4).

1. If Y belongs to one of the families US1-D - US3-D then Y is unstable and does

not represent a closed orbit.

2. If Y is of type SS1-D then the orbit is not closed and it degenerates to MO2-VII.

3. If Y is of type SS2-D then the orbit is not closed and it degenerates to MO2-VIII.

4. If Y is of type SS3-D then the orbit is not closed and it degenerates to MO2-IX.

5. If Y is of type SS4-D then the orbit is not closed and it degenerates to MO2-X.

Otherwise, Y is a closed orbit.

5.4 Second Level of Minimal Orbits

5.4.1 MO2-I

Semistable Family

SS1-I x2
0

(

x2x
2
4

)

+ x0x1

(

x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 1,−1, 0,−1〉

SS2-I x0x1

(

x2x3x4

)

+ x2
1

(

x2x
2
3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1,−1, 0, 0, 0〉
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Unstable Family

US1-I x2
0x2x

2
4

US2-I x2
1x2x

2
3

Proposition 5.4.2. Let Y be, up to a coordinate transformation, of the form

x2
0(x2x

2
4) + x0x1(x2x3x4) + x2

1(x2x
2
3).

1. If Y belongs to one of the families US1-I - US2-I then Y is unstable and does

not represent a closed orbit.

2. If Y is of type SS1-I then the orbit is not closed and it degenerates to MO2-V.

3. If Y is of type SS2-I then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

5.4.3 MO2-II

Semistable Family

SS1-II x2
0

(

x3x
2
4

)

+ x0x1

(

x3
3 + x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 1, 0,−1,−1〉

SS2-II x0x1

(

x3
3 + x2x3x4

)

+ x2
1

(

x2
2x3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 0, 0,−1, 0〉

SS3-II x0x1

(

x2x3x4

)

+ x2
1

(

x2
2x3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4
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(b) 1-PS 〈1,−1, 0, 0, 0〉

SS4-II x2
0

(

x3x
2
4

)

+ x0x1

(

x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) Destabilizing 1-PS 〈1, 1, 0,−1,−1〉

SS5-II x0x1

(

x3
3 + x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) Destabilizing 1-PS 〈1,−2, 0, 0, 1〉

SS6-II x0x1

(

x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS No 1-PS

Unstable Family

US1-II x2
0x3x

2
4 + x0x1x

2
3

US2-II x0x1x
2
3 + x2

1x
2
2x3

US3-II x0x1x
2
3

US4-II x2
0x3x

2
4

US5-II x2
1x

2
2x3

Proposition 5.4.4. Let Y be, up to a coordinate transformation, of the form

x2
0(x3x

2
4) + x0x1(x

3
3 + x2x3x4) + x2

1(x
2
2x3) .

1. If Y belongs to one of the families US1-II - US5-II then Y is unstable and does

not represent a closed orbit.



77

2. If Y is of type SS1-II then the orbit is not closed and it degenerates to MO2-V.

3. If Y is of type SS2-II then the orbit is not closed and it degenerates to MO2-V.

4. If Y is of type SS3-II then the orbit is not closed and it degenerates to MO2-V.

5. If Y is of type SS4-III then the orbit is not closed and it degenerates to MO2-V.

6. If Y is of type SS5-II then the orbit is not closed and it degenerates to MO2-V.

7. If Y is of type SS6-II then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

5.4.5 MO2-III

Semistable Family

SS1-III x2
0

(

x2x
2
4 + x2

3x4

)

+ x0x1

(

x3
3 + x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 3, 3,−4,−3〉

SS2-III x0x1

(

x3
3 + x2x3x4

)

+ x2
1

(

x2x
2
3 + x2

2x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1,−8, 1, 2, 4〉

SS3-III x2
0

(

x2x
2
4 + x2

3x4

)

+ x0x1

(

x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 2, 0, 0,−3〉

SS4-III x0x1

(

x2x3x4

)

+ x2
1

(

x2x
2
3 + x2

2x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4
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(b) 1-PS 〈1,−1, 0, 0, 0〉

SS5-III x2
0

(

x2
3x4

)

+ x0x1

(

x3
3 + x2x3x4

)

+ x2
1

(

x2x
2
3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 1, 2,−7, 3〉

SS6-III x2
0

(

x2
3x4

)

+ x0x1

(

x2x3x4

)

+ x2
1

(

x2x
2
3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 0, 0,−2, 1〉

SS7-III x2
0

(

x2x
2
4

)

+ x0x1

(

x2x3x4

)

+ x2
1

(

x2
2x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 0,−1, 1,−1〉

SS8-III x2
0

(

x2x
2
4

)

+ x0x1

(

x3
3 + x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 1, 1,−1,−2〉

SS9-III x2
0

(

x2
3x4

)

+ x0x1

(

x3
3 + x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 0, 0,−2, 1〉

SS10-III x0x1

(

x3
3 + x2x3x4

)

+ x2
1

(

x2
2x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1,−2, 0, 0, 1〉

SS11-III x0x1

(

x3
3 + x2x3x4

)

+ x2
1

(

x2x
2
3

)
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(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1,−2, 0, 0, 1〉

SS12-III x0x1

(

x2x3x4

)

+ x2
1

(

x2
2x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 0, 0, 0,−1〉

SS13-III x0x1

(

x2x3x4

)

+ x2
1

(

x2x
2
3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1,−1, 0, 0, 0〉

SS14-III x2
0

(

x2x
2
4

)

+ x0x1

(

x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 1,−1, 0,−1〉

SS15-III x2
0

(

x2
3x4

)

+ x0x1

(

x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 2, 0, 0,−3〉

SS16-III x0x1

(

x3
3 + x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1,−2, 0, 0, 1〉

SS17-III x0x1

(

x2x3x4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS No 1-PS
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Unstable Family

US1-III x2
0

(

x2x
2
4 + x2

3x4

)

+ x0x1

(

x3
3

)

US2-III x0x1

(

x3
3 +

)

+ x2
1

(

x2x
2
3 + x2

2x4

)

US3-III x2
0

(

x2
3x4

)

+ x0x1

(

x3
3

)

+ x2
1

(

x2x
2
3

)

US4-III x2
0

(

x2x
2
4

)

+ x0x1

(

x3
3

)

+ x2
1

(

x2
2x4

)

US5-III x2
0

(

x2x
2
4 + x2

3x4

)

US6-III x2
1

(

x2x
2
3 + x2

2x4

)

US7-III x2
0

(

x2
3x4

)

+ x2
1

(

x2x
2
3

)

US8-III x2
0

(

x2x
2
4

)

+ x2
1

(

x2
2x4

)

US9-III x2
0

(

x2x
2
4

)

+ x0x1

(

x3
3

)

US10-III x0x1

(

x3
3 +

)

+ x2
1

(

x2
2x4

)

US11-III x2
0

(

x2
3x4

)

+ x0x1

(

x3
3

)

US12-III x0x1

(

x3
3 +

)

+ x2
1

(

x2x
2
3

)

US13-III x2
0

(

x2x
2
4

)

US14-III x2
0

(

x2
3x4

)

US15-III x0x1

(

x3
3

)



81

US16-III x2
1

(

x2x
2
3

)

US17-III x2
1

(

x2
2x4

)

Proposition 5.4.6. Let Y be, up to a coordinate transformation, of the form

x2
0(x2x

2
4 + x2

3x4) + x0x1(x
3
3 + x2x3x4) + x2

1(x2x
2
3 + x2

2x4) .

1. If Y belongs to one of the families US1-III - US17-III then Y is unstable and

does not represent a closed orbit.

2. If Y is of type SS1-III then the orbit is not closed and it degenerates to MO2-V.

3. If Y is of type SS2-III then the orbit is not closed and it degenerates to MO2-V.

4. If Y is of type SS3-III then the orbit is not closed and it degenerates to MO2-V.

5. If Y is of type SS4-III then the orbit is not closed and it degenerates to MO2-V.

6. If Y is of type SS5-III then the orbit is not closed and it degenerates to MO2-V.

7. If Y is of type SS6-III then the orbit is not closed and it degenerates to MO2-V.

8. If Y is of type SS7-III then the orbit is not closed and it degenerates to MO2-V.

9. If Y is of type SS8-III then the orbit is not closed and it degenerates to MO2-V.

10. If Y is of type SS9-III then the orbit is not closed and it degenerates to MO2-V.

11. If Y is of type SS10-III then the orbit is not closed and it degenerates to MO2-V.

12. If Y is of type SS11-III then the orbit is not closed and it degenerates to MO2-V.

13. If Y is of type SS12-III then the orbit is not closed and it degenerates to MO2-V.

14. If Y is of type SS13-III then the orbit is not closed and it degenerates to MO2-V.

15. If Y is of type SS14-III then the orbit is not closed and it degenerates to MO2-V.
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16. If Y is of type SS15-III then the orbit is not closed and it degenerates to MO2-V.

17. If Y is of type SS16-III then the orbit is not closed and it degenerates to MO2-V.

18. If Y is of type SS17-III then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

5.4.7 MO2-IV

Semistable Family

SS1-IV x0x4

(

x1x2x3 + x1x
2
3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 0, 1, 0,−2〉

Unstable Family

US1-IV x0x4x1x
2
3

Proposition 5.4.8. Let Y be, up to a coordinate transformation, of the form

x0x4(x1q2(x2, x3)) .

1. If Y belongs to one of the families US1-IV then Y is unstable and does not

represent a closed orbit.

2. If Y is of type SS1-IV then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

5.4.9 MO2-V

Semistable Family

SS1-V x0x4x2x3x1
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(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS No 1-PS

Unstable Family

1. NONE

Proposition 5.4.10. Let Y be, up to a coordinate transformation, of the form

x0x4(x1x2x3) then it is a closed orbit.

5.4.11 MO2-V

Semistable Family

SS1-VI

(

x1x
3
2x3 + x2

1x2x
2
3

)

+ x0x4

(

x1x2x3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 0,−1, 0, 0〉

SS2-VI

(

x1x
3
2x3

)

+ x0x4

(

x1x2x3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) Destabilizing 1-PS 〈1, 0,−1, 0, 0〉

SS3-VI

(

x2
1x2x

2
3

)

+ x0x4

(

x1x2x3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) Destabilizing 1-PS 〈1, 0,−1, 0, 0〉

SS4-VI x0x4

(

x1x2x3

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) Destabilizing 1-PS No 1-PS
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Unstable Family

US1-VI

(

x1x
3
2x3 + x2

1x2x
2
3

)

US2-VI

(

x1x
3
2x3

)

US3-VI

(

x2
1x2x

2
3

)

Proposition 5.4.12. Let Y be, up to a coordinate transformation of the form

(x1x
3
2x3 + x2

1x2x
2
3) + x0x4(x1x2x3) .

1. If Y belongs to one of the families US1-VI - US3-VI then Y is unstable and does

not represent a closed orbit.

2. If Y is of type SS1-VI then the orbit is not closed and it degenerates to MO2-V.

3. If Y is of type SS2-VI then the orbit is not closed and it degenerates to MO2-V.

4. If Y is of type SS3-VI then the orbit is not closed and it degenerates to MO2-V.

5. If Y is of type SS4-VI then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

5.4.13 MO2-VII

Semistable Family

SS1-VII x4x
2
0x

2
3 + x4x0x1x2x3

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) 1-PS 〈1, 2, 0, 0, 0〉

SS2-VII x4x0x1x2x3 + x4x
2
1x

2
2

(a) Degeneration (MO2− V ) : x0x1x2x3x4



85

(b) 1-PS 〈1, 0, 0, 0,−1〉

SS3-VII x4x0x1x2x3

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) Destabilizing 1-PS No 1-PS

Unstable Family

US1-VII x4x
2
1x

2
2

US2-VII x4x
2
0x

2
3

Proposition 5.4.14. Let Y be, up to a coordinate transformation, of the form

x4x
2
0x

2
3 + x4x0x1x2x3 + x4x

2
1x

2
2 .

1. If Y belongs to one of the families US1-VII - US2-VII then Y is unstable and

does not represent a closed orbit.

2. If Y is of type SS1-VII then the orbit is not closed and it degenerates to MO2-V.

3. If Y is of type SS2-VII then the orbit is not closed and it degenerates to MO2-V.

4. If Y is of type SS3-VII then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

5.4.15 MO2-VIII

Semistable Family

SS1-VIII x0x1

(

x2q2(x3, x4) + q3(x3, x4)

)

(a) Degeneration (MO2− IV ) : x0x1

(

x2q2(x3, x4)

)

(b) 1-PS 〈1,−1, 2,−1,−1〉
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SS2-VIII x0x1

(

q2(x2, x3)x4 + q1(x2, x3)x
2
4 + x3

4

)

(a) Degeneration (MO2− IV ) : x0x1

(

q2(x2, x3)x4

)

(b) Destabilizing 1-PS 〈1,−1, 1, 1,−2〉

Unstable Family

US1-VIII x0x1

(

q3(x3, x4) + x2x
2
4

)

Proposition 5.4.16. Let Y be, up to a coordinate transformation of the form

x0x1q3(x2, x3, x4) .

1. If Y belongs to one of the families US1-VIII then Y is unstable and does not

represent a closed orbit.

2. If Y is of type SS1-VIII then the orbit is not closed and it degenerates to MO2-

IV.

3. If Y is of type SS2-VIII then the orbit is not closed and it degenerates to MO2-

IV.

Otherwise, Y is a closed orbit.

5.4.17 MO2-IX

Semistable Family

SS1-IX x0

(

x1x2 + x2
2 ‖ x3x4 + x2

4

)

(a) Degeneration (MO2− V ) : x0x1x2x3x4

(b) Destabilizing 1-PS 〈0, 1,−1, 1,−1〉
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Unstable Family

US1-IX x0

(

x2
2 ‖ x3x4 + x2

4

)

US2-IX x0

(

x1x2 + x2
2 ‖ x2

4

)

US3-IX x0

(

x2
2 ‖ x2

4

)

Proposition 5.4.18. Let Y be, up to a coordinate transformation of the form

x0q2,2(x1, x2 ‖ x3, x4).

1. If Y belongs to one of the families US1-IX - US3-IX then Y is unstable and does

not represent a closed orbit.

2. If Y is of type SS1-IX then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

5.4.19 MO2-X

Semistable Family

SS1-X x0

(

q4(x2, x3) + x1

(

x2x3 + x2
3

)

x4 + x2
1x

2
4

)

(a) Degeneration (MO2− V ) : x0x1

(

x2x3x4

)

(b) Destabilizing 1-PS 〈a, b, 1,−1, c〉

SS2-X x0

(

q4(x2, x3) + x1

(

x2x3 + x2
2

)

x4 + x2
1x

2
4

)

(a) Degeneration (MO2− V ) : x0x1

(

x2x3x4

)

(b) Destabilizing 1-PS 〈a, b, 1,−1, c〉
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Unstable Family

US1-X x0

(

x2
2x

2
3 + x2x

3
3 + x4

3 + x1x
2
3x4 + x2

1x
2
4

)

US2-X x0

(

x2x
3
3 + x4

3 + x1(x2x3 + x2
3)x4 + x2

1x
2
4

)

Proposition 5.4.20. Let Y be, up to a coordinate transformation of the form

x0(q4(x2, x3) + x1q2(x2, x3)x4 + x2
1x

2
4) .

1. If Y belongs to one of the families US1-X - US2-X then Y is unstable and does

not represent a closed orbit.

2. If Y is of type SS1-X then the orbit is not closed and it degenerates to MO2-V.

3. If Y is of type SS2-X then the orbit is not closed and it degenerates to MO2-V.

Otherwise, Y is a closed orbit.

The most degenerate point in the GIT compactification is the normal crossing

singularities hypersurface x0x1x2x3x4. The following flow chart gives a pictorial de-

scription of the various degenerations which have been explained in this chapter. It

also shows that the most degenerate point of this compactification is the normal

crossing hypersurface.
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MO-A

MO-B

MO-C

MO-D

MO2-IV

MO2-V

MO2-VI

MO2-VII

MO2-VIII

MO2-IX

MO2-X

MO2-III

MO2-II

MO2-I

MO2-V

Figure 5.2: Boundary Stratification of the Moduli Space
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Appendix A

Code for Poset Structure

> withposets();

> poset := proc (n) local P, z1, z2, z3, z4, z5, z6, x0, x1, x2,

x3, x4, x5, y1, y2, y3, y4, y5, y6;

> P := NULL;

> for z1 from 0 to n do

> for z2 from 0 to n do

> for z3 from 0 to n do

> for z4 from 0 to n do

> for z5 from 0 to n do

> for y1 from 0 to n do

> for y2 from 0 to n do

> for y3 from 0 to n do

> for y4 from 0 to n do

> for y5 from 0 to n do



> if z1+z2+z3+z4+z5 = n and y1+y2+y3+y4+y5 = n and z1 <= y1 and

z1+z2 <= y1+y2 and z1+z2+z3 <= y1+y2+y3 and z1+z2+z3+z4 <=

y1+y2+y3+y4 and x0^z1*x1^z2*x2^z3*x3^z4*x4^z5 <>

x0^y1*x1^y2*x2^y3*x3^y4*x4^y5 then

> P := P, [[z1, z2, z3, z4, z5], [y1, y2, y3, y4, y5]]

> else P := P

> end if

> end do

> end do

> end do

> end do

> end do

> end do

> end do

> end do

> end do

> end do;

> P := covers({P})

> end;
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Appendix B

Sample Linear Programming

Calculation

> with(Optimization);

> with(LinearAlgebra);

> with(VectorCalculus);

> with(ListTools);

> v1:=[a,b,c,d,e];

> v2:=[4,1,0,0,0];

> mon:=DotProduct(v1,v2);

> constraints:={mon<=0,a+b+c+d+e=0,a>=1,a>=b,b>=c,c>=d,d>=e};

> LPSolve(1,constraints,assume=integer);


