
ABSTRACT

FAIR, MARTENE L. Active Incipient Fault Detection With Multiple Simultaneous
Faults. (Under the direction of Dr. Stephen Campbell).

Recently an active approach for the detection of incipient faults has been intro-

duced. This approach is based on a multi-model formulation of normal and faulty

systems, where the fault is modeled as a change in a system parameter. It involved

finding an auxiliary signal designed to enhance the detection of variations in this pa-

rameter. However, that work examined systems where there was only one incipient

fault occurring at a time.

We detect small parameter variations in linear uncertain systems due to incipient

faults using an active approach to fault detection. Unlike previous studies where it

is usually assumed that there is only one fault, we allow for multiple faults to occur

simultaneously which is a natural assumption in the incipient case. This dissertation

is an extension of the multi-model approach used for the construction of auxiliary

signals for incipient failure detection.

We examine the discrete time case with a modified noise bound, which is a problem

that can be attacked directly. We also study the continuous time case which has a

similar model, but requires that we solve a linear quadratic regulator problem. Both

models involve only additive uncertainty. However, in our setup of the incipient fault

problem we find that some types of model uncertainty are allowable. In essence, some

parameters are treated as faults and some of them are treated as model uncertainties.



Active Incipient Fault Detection With Multiple Simultaneous Faults

by
Martene L. Fair

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fullfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2010

APPROVED BY:

Dr. Ernest Stitzinger Dr. Robert White

Dr. Stephen Campbell Dr. Negash Medhin
Chair of Advisory Committee



ii

DEDICATION

For my beloved parents, Martha and Adell Fair.



iii

BIOGRAPHY

Martene Fair is a native of Milwaukee, Wisconsin. She attended Milwaukee High

School of the Arts (MHSA) and majored in instrumental jazz piano. In May 2001

she graduated from MHSA with honors.

She continued her education at Tennessee State University (TSU) in Nashville,

Tennessee. As an undergraduate she was involved in several extracurricular activities.

She played college tennis throughout her tenure at TSU and also was an active mem-

ber in several other organizations. In addition, she served as a mentor for the Packard

Science Summer Institute in 2003 and during the summer of 2004 she interned at the

National Science Foundation. She earned a Bachelor of Science Degree in Mathemat-

ics with certification to teach at the secondary level from Tennessee State University

in May of 2005.

She began her graduate studies in mathematics at North Carolina State University

(NCSU) in the fall of 2005 as a National Physical Science Consortium Fellow and this

afforded her two internship experiences at the National Security Agency. In May of

2008 she received a Master of Science Degree in Mathematics from North Carolina

State University. Upon completion of the mathematics doctoral degree, she will begin

a tenure-track faculty position at the university level.



iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank God for blessing me with so many great

opportunities throughout my life. He is my source and without Him all of my previous

accomplishments as well as achieving this goal would not have been possible.

I express my gratitude to my advisor and mentor, Dr. Stephen Campbell. Without

his expertise, guidance, and encouragement I would not have been able to complete

this research project.

I am also thankful to my research committee: Dr. Negash Medhin, Dr. Ernest

Stitzinger, Dr. Robert White, and Dr. Donald Bitzer. I appreciate the support

and guidance each one of you provided throughout this process. It has been an

awesome learning experience inside and outside of the classroom and I have grown

both academically and professionally during my tenure at NCSU.

I appreciate the advice, support, and encouragement I have received from mentors

and professors along the way. A special thank you to Dr. Jeanetta Jackson and Dr.

Jessie DeAro.

I would also like to thank all of my family and friends for their support, encour-

agement, and prayers over the years. You have truly made a positive difference in my

life.

Finally, thank you mom and dad for your love, support, and belief in me. The

positivity and encouragement you both have shown throughout my life are priceless.

Thanks for being amazing parents and for giving so much to me.



v

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Previous Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Standard Method vs. Incipient Method . . . . . . . . . . . . . 16
1.4.2 Proper test signal, v . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 L2 norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.4 β Bounds and Maximum . . . . . . . . . . . . . . . . . . . . . 22
1.4.5 Additive Uncertainty Case . . . . . . . . . . . . . . . . . . . . 30

2 Discrete Time Case With One Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 General Model for Active Fault Detection . . . . . . . . . . . . . . . 31
2.2 Incipient Problem with One Fault . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Method I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Method II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Getting into the form (2.3) and (2.4) . . . . . . . . . . . . . . 40

3 Discrete Time Case With Multiple Faults . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 Incipient Problem with Two Faults . . . . . . . . . . . . . . . . . . . 43
3.2 More Than Two Simultaneous Incipient Faults . . . . . . . . . . . . . 51

3.2.1 Solving (3.21) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Using the Test Signal . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Conclusions for the Discrete Time Case . . . . . . . . . . . . . 60

4 Continuous Time Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Continuous Time Two Model Version . . . . . . . . . . . . . . . . . . 62

4.1.1 Proper v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Multi-parameter Incipient Fault Setup . . . . . . . . . . . . . . . . . 65

4.2.1 Multi-Parameter Case . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Continuous Time Inner Min LQR Problem . . . . . . . . . . . . . . . 69

4.3.1 General Control Problem . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Our Particular Problem . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Optimal Controller . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Solving the Inner Minimization Problem . . . . . . . . . . . . . . . . 82
4.4.1 Approach I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



vi

4.4.2 Approach II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Outer Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.1 Computation of the Test Signal . . . . . . . . . . . . . . . . . 93
4.5.2 Piecewise Constant Controls . . . . . . . . . . . . . . . . . . . 94
4.5.3 Optimizing Over the Parameters . . . . . . . . . . . . . . . . 95

4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Using the Test Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.8 Conclusions for the Continuous Time Case . . . . . . . . . . . . . . . 111

5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1 Examination of Model Uncertainty . . . . . . . . . . . . . . . . . . . 113
5.2 Fault Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 Parameter Identification . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 More Efficient Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Concluding Remarks and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Matlab Commands Used . . . . . . . . . . . . . . . . . . . . . . . . . 136
Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



vii

LIST OF TABLES

Table 4.1 Example 7 Optimal Test Signal v Norm and Coefficients. . . . . . . . . . . . . . 100

Table 4.2 Example 8 Optimal Test Signal v Norm and Coefficients. . . . . . . . . . . . . . 105



viii

LIST OF FIGURES

Figure 2.1 Test Signal v∗ with K = 7 for Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.2 v∗ and v∗inc when δθ = 0.1 for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.3 v∗ and v∗inc when δθ = 0.5 for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.4 v∗ and v∗inc when δθ = 1 for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.5 v∗ and v∗inc when δθ = 10 for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.1 Example 3 α1 + α2 = 1 (red) and α2
1 + α2

2 = 1 (blue) in the first
orthant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.2 Example 4 graph of the inner min in (3.7) as a function of x . . . . . . . . 49

Figure 3.3 Example 4 v∗inc and the standard test signals for δκ = 0.1 and ε =
0, 0.3, 0.5, 0.7, 0.9, 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.4 Example 4 v∗inc and the standard test signals for δκ = 1 and ε =
0, 0.3, 0.5, 0.7, 0.9, 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.5 Example 5 inner min as a function of γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.6 Incipient test signal (red) and two model signals for several values of
α (black) for Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.7 Incipient test signal (red) and two model signals for several α (blue)
for Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.1 Plot of z=innermin2(d) for n = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 4.2 Optimal test signal for n = 1 for Example 7 . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 4.3 Optimal test signal for n = 2 for Example 7 . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.4 Optimal test signal for n = 3 for Example 7 . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.5 Optimal test signal for n = 5 for Example 7 . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 4.6 Optimal test signal for n = 1, 2, 3, 5 for Example 7 . . . . . . . . . . . . . . . . . . 103



ix

Figure 4.7 Optimal test signal for n = 1 for Example 8 . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.8 Optimal test signal for n = 2 for Example 8 . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.9 Optimal test signal for n = 3 for Example 8 . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 4.10 Optimal test signal for n = 5 for Example 8 . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 4.11 Optimal test signal for n = 1, 2, 3, 5 for Example 8 . . . . . . . . . . . . . . . . . . 108



1

Chapter 1

Introduction

1.1 Motivation

We live in a society where people are directly and indirectly influenced by sophis-

ticated and highly-automated systems and the smooth operation of these systems is

tied to their efficiency and productivity. Therefore, it is important to be knowledge-

able of any practical system and its operation.

A fault is an undesirable state of a system, which disrupts the system while it

performs its required and expected functions. Therefore, in any practical system it

is important to be able to detect faults. The main goal of fault detection is early

recognition of problem-prone behavior in an observed system in order to prevent

the system from shutting down or causing a problematic incident. Fault detection

increases system safety, reliability, and availability.

Fault detection has been the subject of many studies because it plays a pivotal

role in various system operations. It is an integral part of the operation of many

different systems such as electrical components, mechanical devices, and chemical

reaction processes ranging from household utilities to industrial processes. Failure

detection has been used to improve the navigation of systems such as planes, boats,

and other moving objects as well as in the development of biomedical systems.
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The goal of fault detection is the early detection of potential problems that may

occur in a system that may cause a breakdown of its functions or other undesired or

unexpected results. One issue that we must address when performing fault detection

methods is the fact that imperfections and uncertainty in the model as well as noise

in the model must be taken into account when analyzing the system for errors and

problems.

Due to its importance there has been considerable prior work done on fault de-

tection [23, 36, 43]. In our work we look at the case where multiple faults occur

simultaneously. In this study, we first examine the outputs of two difference equation

models of a particular system. One model represents the normal behavior of the

system and the other model represents its faulty behavior. We want to determine if

anything has gone wrong as the system goes through its processes.

We also study the continuous time case and we examine the outputs of two differ-

ent ordinary differential equation (ode) models of a particular system. Again, we look

at two models: one model represents the normal behavior of a system and the other

model represents its faulty behavior. We want to determine if a fault has occurred as

the system goes through its processes.

There are two main approaches to fault detection. In a passive approach the

detector measures system states and looks for a deviation from a known fault-free

condition. Using this method the state of the system can be tested by creating

an observer or performing statistical analysis on the output of the system. Passive

detection is particularly useful for systems that are restrictive to auxiliary signals due

to safety, material, or sensitivity issues. One disadvantage to the passive approach

is the fact that certain faults can be masked as the system goes through its normal

operations. For example, if a particular part of a system is experiencing wear but

that part is not in use, this fault may be undetected using the passive method. Some

of the work done on the passive approach can be found in [23].

The active approach requires that we do something to the outputs in order to

detect faults. Using this method we apply a test signal v to the system to detect the

fault, but we also do as little as possible to affect the system’s normal operation. We
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are not doing continual monitoring, but we perform a specific test designed to reveal

the presence of incipient faults that minimally disturbs the system. The system

disturbance is represented by a cost function that will allow us to determine the

optimal input v required that will satisfy our conditions.

1.2 Background

The type of fault we study is called an incipient (slowly developing) fault. When

an incipient fault begins to develop within a given system, like a mechanical system

or an electrical component, the system can still function in a reasonable manner. We

can think of this type of fault as a changing parameter.

Incipient faults have been studied in [14, 31, 32]. In [14] incipient fault detection

is applied to nonlinear systems in order to improve automated maintenance for early

detection of worn equipment in engineering systems. The work in [31] uses a multi-

model approach to detect single incipient faults by implementing a fault detector on-

line in models which contain both additive and multiplicative uncertainty. Similarly,

in [32] on-line implementation of the fault detector in the case where the failure is

modeled as a small unknown change in a system parameter of the normal system.

This particular study analyzes the additive uncertainty case.

We consider two models. Given a normal and faulty model of a particular system,

we want to find a minimal detection signal v. For the discrete time case, the following

is the normal model for the incipient problem with parameter θ:

xk+1 = A(θ)xk +B(θ)vk +Mµk (1.1a)

yk = C(θ)xk +Nµk. (1.1b)

When the parameter is θ, then we call the model normal and the model is called faulty

if the parameter is given by θ + δθ. In the single fault case, θ is a scalar parameter.

In the multi-fault case θ is a vector. We take δθ to be some unknown drift. We
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assume that the test period is short enough so that the value of θ and δθ can be

considered constant for each test period. This means θ is varying slowly. In addition,

there are several requirements on the test signal during the test period including the

system should continue to operate in a reasonable manner, the test period should be

short, and the effect of the detection signal on the system should be minimal. That is,

given bounds on the uncertainty, a test signal v is computed that provides guaranteed

detection within the bounds set, and it is also minimal. Minimality can be in terms

of the size of the test signal, the impact the test signal has on system performance,

or a combination of the two measures.

There are multiple ways to solve this problem. One possibility would be to try

to find a shape for v that works for many δθ′s and scale the size of v corresponding

to the desired detection threshold. This is the approach we follow. We consider two

cases: the discrete time and continuous time. Both cases include additive uncertainty

and multiple parameters.

Incipient fault detection consists of early detection of small variations in system

behavior. In our approach, the test signal is used to reveal the presence of the incipient

fault. In fact, the auxiliary signal is designed to enhance the detection of variations

in the parameter, which is usually done by using an identification scheme to estimate

the parameter on-line. As long as our uncertainty bounds and model assumptions

hold, the test signal guarantees the correct decision. Any conservatism in the setup

of the problem occurs in using a slightly larger than minimal test signal. In addition,

we do not assume any particular source of the additive uncertainty. The additive

uncertainty can be a combination of model error, colored noise, and measurement

error.

When considering incipient faults, the usual assumption is that there is only one

fault happening at a given time, but this is not always appropriate. We will examine

an active approach for incipient fault detection when there is more than one con-

current fault. The consideration of multiple faults is a major contribution of this

thesis.

The discrete time case will be considered first and this approach will then be



Chapter 1. Introduction 5

extended to the continuous time case. We will specify a threshold, which is some

combination of the uncertainties, and guarantee detection if this threshold is exceeded.

This will indicate that we have a proper test signal.

The problem solved is a min max problem. In principle, the min max problem can

be solved by software, like Matlab or SOCS [11]. Algorithms to solve the incipient

fault problem for higher state dimensions and longer time horizons are extensions of

this work.

1.3 Basic Theory

Models of dynamical systems that include a set of linear differential and algebraic

equations (DAEs)

Ez′ + Fz = f(t) (1.2)

where E is a singular square matrix are called linear descriptor systems. Many systems

in various applications can be described by linear descriptor systems. Electrical circuit

design and network modeling problems are examples of systems that can be modeled

in this way [22].

A descriptor system is one possible result of a system design problem, which is

the development of a system which accomplishes certain objectives while fulfilling

specified constraints. To begin a system design problem the engineer is given ob-

jectives that describe the desired performance characteristics of a particular system

along with a set of constraints by which the system is bound.

The control problem is a particular type of system design problem, in which the

goal is to generate certain outputs from the system to keep the state of the system

within certain bounds. For example, an engineer may be asked to design an airplane

that uses minimal fuel. The essential elements of such an optimal control problem

are

• a mathematical model of the system,
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• a desired output,

• a set of admissible controls,

• a performance measure also called a cost functional.

For the remainder of this thesis, we restrict our study to linear time-invariant sys-

tems. For the linear time-invariant case there are special forms for the state-space

description. These forms are obtained by means of similarity transformations and

are designed to reveal those features of a system that are related to the properties of

controllability and observability [2].

Consider a continuous time model with a system based on the linear time invariant

ode

x′ = Ax+Bv (1.3a)

y = Cx, (1.3b)

where x, y, and v are the state, output, and control vectors, respectively and our

time interval is t ∈ [t0, tf ]. Systems usually allow for noise or additive uncertainty by

adding a term to both equations in (1.3)

x′ = Ax+Bv +Mµ (1.4a)

y = Cx+Nµ, (1.4b)

where µ is the unknown uncertainty input and matrices M and N are the weight

matrices for the state and output noise, respectively. The concepts of controllability,

observability, and stability are important factors in studying systems like (1.3).

Control theory is the mathematical study of how to manipulate the parameters

affecting the behavior of a system to produce a desired or optimal outcome. It is an

interdisciplinary branch of engineering and mathematics that deals with the behavior

of dynamical systems. The desired output of a system is called the control objective.
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When one or more output variables of a system need to follow a certain objective over

time, a controller manipulates the inputs of the system to obtain the desired effect

on the output of the system.

There are two main types of control: closed-loop and open loop. A closed loop

control computes the input based on the output. Then the state is adjusted to reach

a desired condition, which keeps the state of the system within certain bounds. An

open loop control also known as a non-feedback control computes the input of the

system without using the current state. In this case, the system does not observe

the output of the processes it is controlling. Consequently, a true open loop system

cannot correct any errors or compensate for disturbances in the system. Our test

signals are open loop. The effect of feedback on test signal design is discussed in

[7, 8].

We now define the concepts of reachability and controllability. A state x1 is called

reachable at time t1 if there exists an input that transfers the state of the system

x(t) from zero at some prior time t0 to x1 at time t1. A linear system is said to

be controllable at t0 if it is possible to find some input function v(t), defined over

t ∈ [t0, tf ], which will transfer the initial state x(t0) to the origin at some finite time

t1 ∈ [t0, tf ], t1 > t0. If this is true for all initial times t0 and all initial states x(t0),

the system is completely controllable. Our test signal v is a control (input) that will

allow us the ability to manipulate the state and hence the outputs.

For some numbers n and k where k ≤ n the Cayley-Hamilton Theorem shows

that R(Ck) = R(Cn), where Cn = C is the controllability matrix of the system and

Cn = [B,AB, . . . , An−1B] ∈ Rn×mn, where A and B are taken from a system model

such as (3.25) and R(C) is the range space of the controllability matrix. For discrete

linear time invariant systems, it is not necessary to take more than k steps in the

control sequence because if the transfer cannot be accomplished in k steps, it cannot

be accomplished at all, but it is possible to accomplish x1 in fewer than k steps. See

Example 1.1 on pg. 218 of [2]. In general, the solution of the control problem, vk,

is not unique, i.e., there are many inputs which can accomplish the transfer from

x(0) = x0 to x(k) = x1 each corresponding to a particular state trajectory. In control
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problems, particular inputs are frequently selected that, in addition to transferring

the state, satisfy additional criteria such as, minimization of a cost function.

A linear system is said to be observable at t0 if x(t0) can be determined from

the output function y for t ∈ [t0, tf ] and t0 ≤ tf . If this is true for all t0 and x(t0),

the system is completely observable. In order to check the observability of a system

we examine the observability matrix, O = [C,CA, . . . , CAn−1]T , which is constructed

using the A matrix and C matrix from (1.3). If O has full column rank, i.e., rank

O = n, then the system is state observable or (A,C) is observable. If (A,C) in (1.3) is

not observable, but the unobservable eigenvalues are stable, then (A,C) is detectable.

In other words, a system is detectable if and only if all of its unobservable eigenvalues

(modes) are stable. Therefore, even though not all system modes are observable, the

ones that are not observable but detectable do not require stabilization.

When designing the mathematical model of a system we must account for the

stability of the models. Therefore, before introducing a test signal into the model we

often want to make sure that at least within some set of parameters the system is

stable. In order to examine a system’s stability we must consider its equilibria.

Dynamical systems, occurring in nature or manufactured, usually function in some

specified mode. The most common modes are operating points that often turn out

to be equilibria.

Most of the time we are interested in the asymptotic stability of an equilibrium

(operating point). That is, when the state of a given system is displaced (disturbed)

from its desired operating value which we call the equilibrium, the expectation is that

the state will return to the equilibrium. For example, a vehicle under cruise control,

traveling at the desired constant speed of 50 mph (which determines the operating

point or equilibrium condition), encounters perturbations due to hill climbing (hill

descending), which will result in decreasing (or increasing) speeds. In a well designed

cruise control system, it is expected that the automobile will return to its desired

operating speed of 50 mph [2].

Another qualitative characterization of dynamical systems is referred to as input-

output stability. This is the expectation that bounded system inputs will result in
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bounded system outputs and small changes in inputs will result in small changes in

outputs. This property is important in tracking systems, where the output of the

system is expected to follow a desired reference or target trajectory. Many times it is

possible to establish a connection between the input-output stability properties and

the Lyapunov stability properties of an equilibrium. This link is well understood in

linear systems.

There are many qualitative characterizations that are important to systems the-

ory. These characterizations deal with the various types of stability properties of an

equilibrium and are referred to as Lyapunov stability [2].

We start by introducing some important definitions related to local properties of

an equilibrium. For the following system

x′ = f(t, x), (1.5)

assume that (1.5) has an isolated equilibrium at the origin. That means f(t, 0) = 0

for all t ≥ 0.

Consider the linear autonomous homogeneous system with t representing time

x′ = Ax, t ≥ 0, (1.6)

and the linear homogeneous system

x′ = A(t)x, t ≥ t0 ≥ 0, (1.7)

where A(t) is assumed to be continuous. Note that if A(t) is nonsingular for all

t ≥ 0, then x = 0 is always an equilibrium of (1.6) and (1.7) and x = 0 is the only
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equilibrium of (1.7). Also, the solution of (1.7) for x(t0) = x0 is of the form

φ(t, t0, x0) = Φ(t, t0)x0, t ≥ t0,

where Φ denotes the state transition matrix of any A(t) and the solution of (1.6) for

x(t0) = x0 is given by

φ(t, t0, x0) = Φ(t, t0)x0.

If A is constant then φ(t, t0, x0) can be written as

φ(t, t0, x0) = Φ(t, t0)x0 (1.8)

= Φ(t− t0, 0)x0

≡ Φ(t− t0)x0

= eA(t−t0)x0.

Definition 1. For linear systems

x′ = A(t)x, (1.9)

a state transition matrix is a matrix whose product with the state vector x at an

initial time t0 gives x at a later time t > t0. The state transition matrix can be used

to find the general solution of linear dynamical systems. The state transition matrix

is denoted by Φ(t, t0). Thus x(t) = Φ(t, t0)x(t0).

Definition 2. For any t0 ≥ 0 that φ(t, t0, xe) = xe for all t ≥ t0, i.e. the equilibrium

xe is a unique solution of (1.5) with initial data given by φ(t, t0, xe) = xe.
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Definition 3. A point xe ∈ <n is called an equilibrium point if x′e = f(t, xe) = 0 for

all t ≥ t̃. The equilibrium x = 0 of (1.5) is said to be stable if for every ε > 0 and

any t0 ∈ <+ there exists a δ(ε, t0) > 0 such that for all t ≥ t0

‖φ(t, t0, x0)‖ < ε (1.10)

whenever

‖x0‖ < δ(ε, t0). (1.11)

The equilibrium is stable if any other state that starts close enough to the equilibrium

stays close to the equilibrium over time.

Definition 4. The equilibrium x = 0 of (1.5) is said to be asymptotically stable if it

is stable and for every t0 ≥ 0 there exists an ζ(t0) > 0 such that limt→∞ ‖φ(t, t0)‖ = 0

whenever ‖x0‖ < ζ.

The set of all x0 ∈ <n such that φ(t, t0, x0) → 0 as t → ∞ for some t0 ≥ 0 is

called the domain of attraction of the equilibrium x = 0 of (1.5) at t0. Also, when the

equilibrium of (1.5) is asymptotically stable, then x = 0 is said to be attractive at t0.

That is, an equilibrium is asymptotically stable if any other state is close enough to

the equilibrium, then the solution actually converges over time to the equilibrium.

Definition 5. The equilibrium x = 0 of (1.5) is unstable if it is not stable and there

exists a t0 ≥ 0, an ε > 0, and a sequence xm → 0 of initial points and a sequence tm
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such that ‖φ(t0 + tm, t0, xm)‖ ≥ ε for all m, tm ≥ 0. Note that it can happen that a

system like (1.5) with unstable equilibrium x = 0 may have only bounded solutions.

The equilibrium x = 0 is unstable if some state trajectories move away from the

equilibrium as t goes to infinity.

The following theorem is related to Lyapunov stability of linear systems.

Theorem 1.1 1. The equilibrium x = 0 of (1.7) is stable if and only if the solutions

of (1.7) are bounded, i.e., if and only if

sup
t
‖Φ(t, t0)‖ ≡ k(t0) <∞,

where ‖Φ(t, t0)‖ denotes the matrix norm induced by the vector norm used in Rn and

k(t0) denotes a constant that may depend on the choice of t0. See page 453 of [2] for

a proof of this theorem.

Stability helps us deal with systems that may not be controllable or observable. We

can determine the stability of a linear time invariant system by finding the eigenvalues

of matrix A of the system model. If all of the eigenvalues of A have negative real part,

the equilibrium x = 0 is asymptotically stable. The equilibrium x = 0 is stable if and

only if all of the eigenvalues have nonpositive real parts and every eigenvalue with

zero real part has an associated Jordan block of order one. If any of the eigenvalues of

A have either positive real part or has zero real part that is associated with a Jordan

block of order greater than one, then the equilibrium x = 0 is unstable.

A system is stabilizable if all the unstable eigenvalues are controllable. A system

is detectable if all unstable eigenvalues are observable. The system can be handled

effectively provided all uncontrollable and unobservable modes are stable.
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The concept of feedback connects control theory and fault detection. In a feedback

control system, the control v(t) is modified based on information about the system.

Detectors (or sensors) measure either the system state or output and then pass that

information to the controller, which adjusts the control based on the input from the

sensors. One goal of feedback compensator design is to improve the performance of

the system by eigenvalue placement [2]. As stated earlier, the stability of a system

depends on the eigenvalues of matrix A. Therefore, by assigning desirable values to

eigenvalues, system stability can be improved. For the state feedback case, the control

can be written as

v(t) = Fu(t)−Kx(t), (1.12)

where F is the feed-forward matrix and K is called the feedback gain matrix. Sub-

stituting (1.12) into (1.3), we obtain

x′ = (A−BK)x+BFu (1.13a)

y = Cx. (1.13b)

Now, the eigenvalues of the A − BK matrix determine the stability of the system.

Given the proper construction of the feedback gain matrix K, the eigenvalues are

assigned to desired values. For the output feedback case, the relation for the control

is

v(t) = Fu(t)−Ky(t), (1.14)

where F and K are defined as above. If we substitute this relation into (1.3), we

obtain

x′ = (A−BKC)x+BFu. (1.15)

Here the eigenvalues of our system, which determine the system’s stability, come from

matrix A − BKC. However, since matrix C is found in (1.15), the output feedback

cannot place all of the eigenvalues of the system, that is we can not totally control
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the pole placement in this case. This limitation occurs when the rank of KC is less

than the rank of K.

Using feedback, the basic tool for many fault detection methods can be developed

using an observer. For most systems the only information about the system state is

through the output vector, which often does not provide all information about the

state of a system. In this case, output feedback is the only direct option, but recall

that with this method not all the eigenvalues of the system can be placed where

desired. To improve the stability of the system in these cases, the most widely used

approach is to reconstruct information about the remaining elements of the state

vector by creating an observer of the system. Consider the observer

x̂′ = Ax̂+Bv + L(y − Cx̂) (1.16)

ŷ = Cx̂, (1.17)

where x̂ is the observer estimate for the state vector. y is the output from the actual

system (1.13) and Cx̂ is the observer output. If we take the difference of the observed

system and the original system and assuming e = x̂ − x is the observer error, we

obtain

e′ = (A− LC)e. (1.18)

L is arbitrary and (A,C) is observable so we can guarantee that the observer error

goes to zero by selecting L so that A−LC is stable. Using this setup, state feedback

is possible using an observer estimate for the state vector. Therefore, all the system

eigenvalues can be placed where desired and the system is completely controllable.

Since the complete state vector is reconstructed by the observer, faults which cause

the system states to behave unpredictably or undesirably may be detectable by such

an observer if the observer estimate is compared to those elements of the system state

vector which are accessible. This fault detection can be accomplished without the

use of an observer to affect the feedback compensator of the system.

The continuous time case of the incipient fault problem requires that we solve
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a linear quadratic regulator (LQR) problem in order to find the optimal detection

signal. The theory of optimal control is concerned with operating a dynamic system

at minimum cost. The case where the system dynamics are described by a set of

linear differential equations and the cost is described by a quadratic functional is

called the LQ problem [26]. One of the main results in the theory is that the solution

is provided by the LQR in the form of a feedback controller.

The settings of a (regulating) controller governing either a machine or process (like

an airplane or chemical reactor) are found by using a mathematical algorithm that

minimizes a cost function with weighting factors supplied by the engineer. The cost

function is often defined as a sum of the deviations of key measurements from their

desired values. In effect this algorithm finds those controller settings that minimize the

undesired deviations, like deviations from the desired altitude or process temperature.

Often the magnitude of the control action itself is included in this sum as to keep the

energy expended by the control action itself limited.

Essentially, the LQR algorithm takes care of the tedious work done by the control

systems engineer in optimizing the controller. However, the engineer must specify the

weighting factors and compare the results with the specified design goals. Often this

means that controller synthesis will be an iterative process where the engineer judges

the produced optimal controllers through simulation and then adjusts the weighting

factors to get a controller more in line with the specified design goals.

1.4 Previous Theory

While our results build on previous work on test signals [11, 33, 31, 10, 27], we

do not make identical assumptions. To understand this difference we must briefly

summarize the previous work.
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1.4.1 Standard Method vs. Incipient Method

We look at two approaches to find a test signal that will detect incipient faults:

the standard two model method and the incipient two model method. The results

from the two approaches are compared. These approaches are also used in [33].

With the standard two model method we consider finding an auxiliary signal for

two fixed models and in order to determine the solution using the incipient two model

method we consider a parameterized family of models. We get two models that allow

us to find the incipient detection signal after problem reformulation and a limiting

process. These models are not identical to the ones found using the standard two

model method, but similar mathematical techniques can be used for analysis.

The computed incipient test signal, with scaling, can then be used over a range of

parameter values. Since the test signal is designed to work for a range of parameters,

the solution of the incipient two model problem can be quite different from the test

signal found by the standard two model method which only considers two parameter

values. Further, in the two parameter valued case, we get a signal that guarantees

detection. In the incipient case since there is some approximation and reformula-

tion involved, we specify a threshold and guarantee detection if some combination of

uncertainties exceeds that threshold.

1.4.2 Proper test signal, v

It is important to define what it means for our test signal v to be proper because

a proper test signal gives us the ability to distinguish between the normal and faulty

system models. Here we specify what it means in the discrete time case. Note that a

proper test signal for the continuous time problem has the same definition but slightly

different notation.
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Assume that we have two discrete linear time invariant models of the form

xik+1 = Aix
i
k +Bivk +Miµ

i
k, k = 0, . . . , K − 1 (1.19a)

yik = Cix
i
k +Niµ

i
k, k = 0, . . . , K. (1.19b)

For the above model, the i indicates model 0 or model 1, where model 0 is considered

the normal system and model 1 is considered the faulty system. Also, xik is the

state of the system i at a specific time k, vk is the test signal, and µik represents the

noise/additive uncertainty of the system. The only commonality between the two

models is the detection signal, vk. There are two unknowns, x0 and µi. Let Bi be

n ×m. Thus, each xik is n × 1 and vk is m × 1. Suppose each yik is r × 1. Actually,

the xik could have different sizes ni, that is, the state dimension could be different for

model 0 and model 1. But we will ignore that for now since this does not occur in

the incipient case.

We consider xi0 to be uncertain or noise. In the approach of [10], it is assumed

that the uncertainty in each model is bounded by

Si = (xi0)TQix
i
0 +

K∑
(µik)

Tµik < 1 (1.20)

where the bound of 1 is taken for convenience. Again, i = 0 represents the noise

bound for the normal model of a particular system and i = 1 corresponds to the noise

for a faulty model of the same system. In this thesis we will consider S0 + S1 < 1.

Note that the scaling of Mi easily accommodates other bounds.
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Using a static formulation of our problem we define the vectors

xi =


xi1
...

xiK

 , yi =


yi0
...

yiK

µi =


xi0

µi0
...

µiK

 , v =


v0

...

vK−1

 .

Notice that xi refers to a collection of time points. This is true for each of the variables

with similar notation.

Then (1.19) can be rewritten

Eixi = Biv +Miµ
i (1.21a)

yi = Cixi +Niµi (1.21b)

where

Ei =



I 0 . . . . . . 0

−Ai I 0 . . .
...

0 −Ai I
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −Ai I


K×K

,Mi =


Ai Mi 0

...
... 0

0 0 Mi 0
...

...
...

. . . . . . . . . . . . 0

0 . . . 0 0 Mi 0


K×K+2

Bi = Diag(Bi, . . . , Bi)K×K ,

Ci =



0 0 . . . 0

Ci 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 Ci


K+1×K

,
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Ni =


Ci Ni 0 . . . 0

0 0 Ni
. . .

...
...

. . . . . . . . . 0

0 . . . 0 0 Ni


K+1×K+2

.

The sizes shown on the block matrices, like K ×K are its block size. That is, for

example Ei is K blocks by K blocks. But Ei is invertible so we can solve (1.21a) for

xi and substitute into (1.21b) to get

yi = Ci
(
E−1
i (Biv +Miµ

i)
)

+Niµi (1.22a)

= CiE−1
i Biv + (CiE−1

i Mi +Ni)µi. (1.22b)

This shows us that in the discrete time case we may assume that we have two

models of the form

yi = Xiv +Hiµ
i, i = 0, 1, (1.23)

where Xi = CiE−1
i Bi, Hi = CiE−1

i Mi + Ni. The form (1.23) will be very convenient

in writing our calculations and getting easier to program algorithms. However, since

it does not exploit the structure of the matrices involved, it is not the most efficient.

Later on the Xi, Hi may come from different problems but this will be a good starting

point. The computations based on (1.23) may not be the most efficient for larger

problems.

Now, we want to talk about v being proper. A detection signal, v, is proper if it

separates the output sets of the two models (i.e., the normal and faulty output sets

are disjoint). So suppose that it is possible to get the same output from both models,

that is, y0 = y1. Using (1.23) this says

(X1 −X0)v = H0µ
0 −H1µ

1 = [H0,−H1]

(
µ0

µ1

)
= Hµ. (1.24)
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We assume that H is full row rank and we have a noise bound

(µ0)Tµ0 + (µ1)Tµ1 < 1. (1.25)

Now v is proper if ‖µ‖2 ≥ 1 for all µ for which (1.24) holds. So it suffices to look at

such µ and see if it is greater than or equal to one in norm.

For a fixed v the minimum norm µ satisfying (1.24) is given by

H†(X1 −X0)v, (1.26)

where H† is the minimum norm least squares inverse (also called the Moore-Penrose

generalized inverse) of H [27]. If Hm×n is full row rank, then the singular value

decomposition (SVD) of H is U [Σ 0]V T , and H† = V

(
Σ−1

0

)
UT , where U is an

m × m orthogonal matrix, V is an n × n orthogonal matrix, and since H has full

row rank (i.e., the rank is m), Σ = Diag(σ1, σ2, ..., σm) is an m×m diagonal matrix

such that these σi’s are the nonzero singular values of H. Recall that the σ2
i ’s are

the eigenvalues of H∗H and the singular vectors for H are the specialized sets of

eigenvectors for H∗H.

If H†(X1 − X0)v is less than one in norm, then v is not proper. Now think of

picking v. It needs to make (1.26) have norm at least one and also be as small as

possible. Take the SVD of H†(X1 − X0). Let σ be the largest singular value of

H†(X1−X0) and let γ be a normalized right singular vector (‖γ‖ = 1) that goes with

the singular value σ. Then if we take v∗ = σ−1γ we will have that H†(X1 − X0)v∗

has norm one and v∗ is proper. In fact, v∗ is the smallest test signal that works with

the given noise bound (1.25).

Proof. (v∗ is the smallest test signal with the given bounds): Suppose σ1 is the

largest singular value of H†(X1−X0) and let γ1 be a normalized right singular vector
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(‖γ1‖ = 1) that goes with the singular value σ1. Then if we take v∗ = σ−1
1 γ1, we will

have that H†(X1 −X0)v∗ has norm one and v∗ is proper.

Now, take the SVD of H†(X1 − X0) to be given by U [Σ 0]V T . We want to

look at ‖UΣ V Tv‖2 = 1. Since U is an orthogonal matrix, using the two-norm,

‖ΣV Tv‖2 = 1. Let w = V Tv. So we want w to be small and ‖Σw‖2 = 1. Notice that

since Σ = Diag(σi, . . .)n×n and w is an n × 1 column vector, this gives
∑
σ2
iw

2
i = 1,

where i = 1, 2, ..., n. Since σ1 is the largest singular value, take w1 = 1/σ1 and wi = 0

for i = 2, 3, ..., n. Then, ‖Σw‖2 = 1 so the wi’s we have chosen work. Notice that

since
∑
σ2
iw

2
i = 1 and

∑
σ2

1w
2
i ≥ 1, this implies σ2

1‖w‖2 ≥ 1. Hence, 1/σ2
1 ≤ ‖w‖2,

which implies that 1/σ1 ≤ ‖w‖ if σ1 ≥ 1. Therefore, w = [1/σ1, 0, ..., 0], but w = V Tv

and V T is orthogonal by properties of the SVD, so V w = v. This gives the smallest

proper test signal v, which we call v∗.

1.4.3 L2 norm

L2 norm of a vector c, ‖c‖, is defined for a complex vector c = [c1, c2, . . . , cn]T by

‖c‖ =
√
c̄T c or ‖c‖ =

√∑n
i=1 |ci|2, where |ci| denotes the complex modulus. L2 norm

is the vector norm commonly encountered in vector algebra and vector operations

such as the dot product. It is also referred to as the two-norm or the Euclidean norm

for vectors.

We use the two (or euclidean) norm for the total noise in our models. The work

done in [10] used the max (or infinity) norm on the noise in the models, therefore

we are solving a related, but different problem. Recall that for any finite vector

c, ‖c‖∞ ≤ ‖c‖2 ≤ ‖c‖1. See [27]. Using the two norm makes our inner minimum

problem easier to deal with.
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1.4.4 β Bounds and Maximum

Now we discuss how the parameter β which occurs in [32] is related to our de-

velopment of the noise measure we use later in this thesis. We assume that β is a

number such that 0 ≤ β ≤ 1 and we use it in the definition of the bound on the

proper test signal v.

Here we outline the work done in [32] to define parameter β and how we use it to

determine proper test signals. In the multi-model framework of the auxiliary signal

design problem as presented in [10], the system models for the normal and failed

systems of the continuous time case are taken to be the following two models over

the test period [0, T ]:

x′i = Aixi +Biv +Miνi (1.27a)

y = Cixi +Div +Niνi (1.27b)

for i = 0 and 1. v is the auxiliary signal input, y is the measured output, x′is are

the states, and ν ′is are noise inputs. Ai, Bi, Ci, Di,Mi, Ni are matrices of appropriate

dimensions. The N ′is are assumed to have full row rank. Model (1.27) for i = 0

represents the normal system and i = 1 represents the failed system.

The models considered in [10] are in fact more general and allow for model un-

certainty, but here we only consider the additive noise situation. The assumption on

the noise inputs and the uncertainty on initial conditions are

Siv(xi(0), νi) ≡ xi(0)TP−1
i,0 xi(0) +

∫ T

0

‖νi‖2 dt < 1, i = 0, 1. (1.28)

Pi,0 are positive-definite matrices specifying the amount of uncertainty in the initial

condition. Siv(xi(0), νi) measures the size of the disturbances with respect to which

the detection must be robust.

Recall that the L2[0, T ] vector function v is a proper auxiliary signal if its appli-



Chapter 1. Introduction 23

cation implies that we are always able to distinguish the two candidate models based

on the observation of y.

In the two model case, noise is measured using a max norm. Recall the assumption

is that there is a normal model and a faulty model, which we refer to as model

0 and model 1, respectively. Assuming equal outputs the signal v is not proper if

max{‖S0‖, ‖S1‖} < 1. We want to find a minimal proper test signal.

The problem formulation for finding v is

min
v
‖v‖| min

µi,xi(0)
(max{‖S0‖, ‖S1‖}) > 1,

where the µi, xi(0) represent the noise from each respective model. However, max{‖S0‖, ‖S1‖}
is difficult to solve since noise is measured as a maximum noise. Therefore, we replace

it with an expression that is simpler to work with. The parameter β is introduced to

simplify the problem formulation and to get an LQR problem with max0≤β≤1 on the

outside of our expression.

Using the fact that

max{‖x‖, ‖z‖} = max
0≤β≤1

β‖x‖+ (1− β)‖z‖

and assuming y0 = y1 we can rewrite the problem formulation in the following manner

min
v
‖v‖| min

µi,xi(0)
max

0≤β≤1
β‖S0‖+ (1− β)‖S1‖ ≥ 1. (1.29)

We can switch the order of the minimum and maximum and can now rewrite (1.29)

in the following form:

min
v
‖v‖| max

0≤β≤1
min
µi,xi(0)

β‖S0‖+ (1− β)‖S1‖ ≥ 1. (1.30)
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Now we have an LQR control problem for a given β. In fact, Equation (1.30) is an

LQR problem for each β. We assume β = 1
2
, which gives the expression 1

2
‖S0‖ +

1
2
‖S1‖ ≥ 1.

Definition 6. The auxiliary signal v is not proper if there exists x0, x1, ν0, ν1 and y

satisfying (1.27) and (1.28) both for i = 0 and i = 1. The auxiliary signal v is called

proper otherwise.

If V denotes the set of proper auxiliary signals v,

γ∗ = inf
v∈V
‖v‖2 = inf

v∈V

∫ T

0

|v|2 dt, (1.31)

is a lower bound on the energy of proper auxiliary signals. λ∗ = 1/γ∗ is called the

separability index. A greater separability index implies the existence of a lower energy

proper auxiliary signal. The separability index is zero when there is no proper auxiliary

signal.

It is important to explain how to compute the separability index. The character-

ization of the set Sv can be simplified by noting that the output y can be eliminated

from the constraints (1.27a)-(1.27b), i = 0, 1, by subtracting (1.27b) for i = 1 from

(1.27b) for i = 0, giving

0 = C0x0 − C1x1 +N0ν0 −N1ν1 + (D0 −D1)v. (1.32)
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To simplify the notations, let

x =

(
x0

x1

)
, ν =

(
ν0

ν1

)
,

and

A =

(
A0 0

0 A1

)
, B =

(
B0

B1

)
, C =

(
C0 −C1

)
,

D =
(
D0 −D1

)
,M =

(
M0 0

0 M1

)
, N =

(
N0 −N1

)
.

Then the constraints (1.27a), i = 0, 1, and (1.32) can be expressed as

x′i = Ax+Bv +Mν (1.33a)

0 = Cx+Dv +Nν. (1.33b)

The separability index λ∗ can then be computed as follows

λ∗ = max
0≤β≤1

λβ (1.34)

where

λβ = max
v 6=0

φβ
‖v‖2

(1.35)

subject to the constraints in (1.33) where

φβ = inf
ν,x
x(0)TP−1

β x(0) +

∫ T

0

νTJβν dt (1.36)
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and

Jβ =

(
βI 0

0 (1− β)I

)
, Pβ =

(
1
β
P0,0 0

0 1
1−βP1,0

)
.

Theorem 1.1 2. λβ is the infimum over all λ′s for which the Riccati equation

P ′ = (A− Sλ,βR−1
λ,βC)P + P (A− Sλ,βR−1

λ,βC)T − PCTR−1
λ,βCP +Q,β − Sλ,βR−1

λ,βS
T
λ,β

(1.37)

with P (0) = Pβ has a non-negative definite solution P on [0, T ] where the following

equation holds:

Qλ,β Sλ,β

STλ,β Rλ,β

 =

M B

N D


Jβ 0

0 −λI


−1M B

N D


T

. (1.38)

Once we have computed β∗, an optimal value of β in (1.34), and the separability

index λ∗, we can proceed with the construction of minimal energy proper auxiliary

signal v.

Lemma 1. The two-point boundary value system:

d

dt

x
ζ

 =

Ω11 Ω12

Ω21 Ω22


x
ζ

 (1.39)
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with the following boundary conditions

x(0) = Pβ∗ζ(0) (1.40)

ζ(τ) = 0 (1.41)

where

Ω11 = −ΩT
22

= A− Sλ∗,β∗R−1
λ∗,β∗C (1.42)

Ω12 = Qλ∗,β∗R
−1
λ∗,β∗S

T
λ∗,β∗ (1.43)

Ω21 = CTR−1
λ∗,β∗C (1.44)

is well-posed for τ < T but it is not well-posed, i.e., it has non-trivial solutions (x, ζ)

for τ = T .

Theorem 1.1 3. Let (x, ζ) be a non-trivial solution of the two-point boundary value

system (1.39). Then an optimal auxiliary signal is

v∗ = α((−B + Sλ∗,β∗R
−1
λ∗,β∗D)T ζ +DTR−1

λ∗,β∗Cx) (1.45)

where α is a normalization constant such that ‖v∗‖ = 1/
√
λ∗. Details on implemen-

tation issues and numerical algorithms in Scilab for computing the optimal auxiliary
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signal can be found in [10].

In order to solve the optimal control problem it is essential to use our definition

of a proper detection signal v. Note that for the detection signal v to be not proper,

(1.27) must hold as well as (1.28). We can rewrite (1.28) as

max{x0(0)TP−1
0,0 x0(0) +

∫ T

0

‖ν0‖2dt, x1(0)TP−1
1,0 x1(0) +

∫ T

0

‖ν1‖2dt} < 1. (1.46)

This expression can also be written as

max
0≤β≤1

{β(x0(0)TP−1
0,0 x0(0)+

∫ T

0

‖ν0‖2)dt+(1−β)(x1(0)TP−1
1,0 x1(0)+

∫ T

0

‖ν1‖2)dt} < 1.

(1.47)

In other words, max(S0, S1) = max0≤β≤1 βS0 + (1− β)S1. In the previous work done

on incipient faults, like [22], the maximum noise of the two models is considered, i.e.

max(S0, S1) < 1. Thus, we obtain a useful characterization of not proper detection

signals based on the noise bound Si.

Lemma 2. The detection signal v is not proper if and only if

inf max
0≤β≤1

{β(x0(0)TP−1
0,0 x0(0)+

∫ T

0

‖ν0‖2)dt+(1−β)(x1(0)TP−1
1,0 x1(0)+

∫ T

0

‖ν1‖2)dt} < 1

(1.48)

where the infimum is taken over (xi, νi, y) ∈ L2 subject to (1.27), i = 0, 1.

The above characterization is useful because the algorithm we develop will com-

pute the minimum energy proper detection signal by finding the detection signal of

smallest norm that does not satisfy (1.48) [22].

In this thesis we work with the sum of the noise from both the normal and faulty

models, S0 + S1 < 1. We find the smallest noise that works. Therefore, we use the

least noise that makes the output sets from the normal and faulty models disjoint.
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This noise allows the two output sets to be as close as possible without having a

common output y.

If the bound is max(S0, S1) < 1, then it is possible to run separate filters on both

models which was the approach used in [11, 31]. However, in our algorithms we deal

with one less level of optimization so our use of the test signal is slightly different.

We suppose that we have a set of incipient faults parameterized by Ω and given by a

vector δθ. We assume that the noise bound for each model separately is

Si = xi(0)Txi(0) +

∫ ω

0

νTi νi + µTi µi dt < δ2.

Then we compute the test signal v∗ for a bound of 1 and let v̂ = δ
√

2v∗. Using this

test signal we have that if we get the same output from both the normal and any of

the faulty models, then one of the models must have noise Si larger than δ2. We then

run the standard filter on just the normal model. More details on this method can

be found in chapter four.

In general, the β parameter requires an iteration to solve for it. However, in [31]

it is seen that when the single parameter incipient problem is reformulated so that

the machinery of [10] can be used, we find that β = 1
2
. For the additive uncertainty

case studied here, the use of a fixed β ∈ [0, 1] does not affect the existence of a proper

test signal. Consequently, the use of a fixed β may result in obtaining a suboptimal

proper test signal as discussed in [11].

From [11] we get some terminology that pertains to the β which is chosen. Proper

and minimal proper refer to the approach that uses a β search or an iteration to select

β. The terms subproper and minimal subproper refer to the method that uses β = 1
2
.

Since a subproper bound admits a larger set of uncertainties, if v is a subproper signal

it is also proper.

The algorithms may take different forms, but there is a maximization over the

parameter β where 0 ≤ β ≤ 1. There is also an alternative problem, which resembles

a robust control problem, where there is no β. We consider the case where β = 1
2
.
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1.4.5 Additive Uncertainty Case

This thesis focuses primarily on additive uncertainty. Consequently, the case

with only additive uncertainty differs from the model uncertainty case in several

important ways. First, if v is proper (or subproper), then taking cv for c > 1 is still

proper (or subproper). In the case with model uncertainty it is possible for the Ai

to grow in size as c increases [11]. Since we consider models which include additive

uncertainty, we can establish an upper bound. However, due to our setup of the

multi-parameter incipient fault problem, a type of model uncertainty also arises in

our model formulation. See Sections 3.2.3 and 4.8 for a detailed discussion about how

model uncertainty is taken into account in our problem.

We have linear models of the form (4.1), (4.2) and we have the additive uncertainty

case. Let us assume v∗ and v∗ be the minimal proper and minimal subproper test

signals, respectively. Then, our cost function J satisfies J(v∗) ≤ J(v∗) ≤ 2J(v∗). The

proof can be found in [11].
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Chapter 2

Discrete Time Case With One

Fault

As introduced in the previous chapter, our goal is to find an optimal input signal

that detects incipient faults in linear uncertain systems using a multi-model approach.

We construct two models. One model represents the true system, which we call the

normal model and one which represents the faulty version of the same system, which

we call the faulty model. The normal model depends on a parameter vector θ and the

faulty model depends on parameter θ plus drift parameter vector δθ, where θ is fixed

and the drift parameter δθ may vary within a specified threshold. In this chapter,

our focus will be on finding an optimal detection signal for the discrete time problem

with only one incipient fault so that θ is a scalar.

2.1 General Model for Active Fault Detection

This chapter highlights the methods used in previous research to detect a single

incipient fault in discrete linear time invariant models. In particular, we look at some

examples of finding a minimal test signal v that satisfies given conditions and detects

the incipient fault as early as possible. This lays the groundwork for my research
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problem, which extends this concept to the case where there are multiple incipient

faults occurring simultaneously. These results are taken from [10, 30, 31, 32].

We present the first active multi-parameter incipient fault detection algorithm.

Our goal is to use an active approach to detect incipient faults in linear systems

where there is more than one drifting parameter. We determine an auxiliary signal

v that is used to detect small parameter variations in linear time invariant uncertain

systems.

Multi-model fault detection means that we have two or more possible models for

a given system. We consider a normal and a faulty model which corresponds to

a particular system. Then we determine a proper test signal that will allow us to

distinguish between the two models over a finite time interval. For the discrete time

case we consider the test period [0, K]. While there are other possible test periods,

we will restrict our discussion to a finite interval.

We assume that we have two linear time invariant models of the form (1.19) with

the variables defined the same as in chapter one. We begin by looking at a discrete

linear time invariant model, where Ai,Bi,Ci,Mi, and Ni do not depend on k. However,

with appropriate modifications a similar method can be applied to study the linear

time varying model.

Note that in general the test signal v behaves in the following manner. If something

is done early in the time interval it can have an effect on the input v (i.e., the control

in our problem) that lasts for a while, but something done towards the end of the

time interval has little chance to have an effect on the control. As a result, the test

signal v usually is at or close to zero at the end of the time interval. If there is a

weight on the initial value, then the largest part of the test signal v tends to be early.

If there is no weight on the initial value, then v tends to be small at the start. If

the initial condition is unknown, then the control waits for the effect of the initial

condition to get out of the way and then acts.

The following problem is an example of calculating the optimal test signal using

the two model method.
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Example 1. We illustrate a specific example in the form (1.19) where we find the

optimal detection signal v∗ given Ai, Bi, Ci,Mi, Ni for i = 0, 1 and K. We use the

machinery developed by Campbell and Nikoukhah to solve this problem. Let

A0 =

1 −1

1 1

 , A1 =

1 −1

0 1

 , B0 = B1 =

1 2

1 3

 ,

C0 = C1 =

(
0 1

)
,M0 = M1 =

1 1 0

0 1 0

 , N0 = N1 =

(
0 0 1

)
,

and K = 7. The code for this example can be found in the appendix.

The solution is in Figure 2.1. Since vk is two dimensional, v∗k is two dimensional

for each k with components v0, v1 at each time step. The resulting plot is a graph

showing two discrete time functions. The line segment connecting values are given to

improve readability.
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Figure 2.1: Test Signal v∗ with K = 7 for Example 1

2.2 Incipient Problem with One Fault

Before developing our multi-fault results we discuss the one fault case, which was

previously studied [14, 15, 31, 32]. The work done in [31, 32] give a solution to

the problem of auxiliary signal design using an on-line implementation of the fault

detector. These studies and other similar work provide insights into studying incipient

faults and helped motivate my thesis topic which extends this work to examine the

case where more than one fault occurs concurrently in linear models.

For the incipient problem we start with the normal model which depends only on

parameter θ

xk+1 = A(θ)xk +B(θ)vk +Mµk, k = 0, . . . , K − 1 (2.1a)

yk = C(θ)xk +Nµk, k = 0, . . . , K, (2.1b)

and the faulty model which also includes parameter drift δθ

x̂k+1 = A(θ + δθ)x̂k +B(θ + δθ)vk +Mµ̂k, k = 0, . . . , K − 1 (2.2a)

ŷk = C(θ + δθ)x̂k +Nµ̂k, k = 0, . . . , K. (2.2b)
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There are multiple ways to approach this problem and we study the first one.

Method I: Write (2.2) in the form (1.23) and develop the algorithms at this level.

This produces the optimal test signal for a specific δθ.

Method II: Take (2.1) and (2.2) and proceed to get a system. Much of it has been

done in previous work which focuses on studying incipient faults. Here we use

linearization with respect to θ and get a test signal that scales with the desired

threshold on δθ. Then we write this system as some generalization of (1.23)

and solve it.

2.2.1 Method I

Method I has already been done. We focus on Method II.

2.2.2 Method II

Suppose that we have our two models already in the form

y0 = X(θ)v +H(θ)µ0 (2.3)

y1 = X(θ + δθ)v +H(θ + δθ)µ1. (2.4)

Setting y1 = y0 we get

0 = X(θ + δθ)v +H(θ + δθ)µ1 −X(θ)v −H(θ)µ0

or

0 = X ′(θ)δθv +H(θ)µ1 −H(θ)µ0 +O(δθ).

Setting

w = δθv,
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and dropping the other O(δθ) terms we get

Xθ(θ)w = [H(θ),−H(θ)]µ, (2.5)

when Xθ = X ′(θ). We can now proceed as before in Section 1.4.2. We take w∗ to be

1
σ
γ where σ is the largest singular value of [H(θ),−H(θ)]†Xθ(θ) and γ is a normalized

right singular vector that goes with σ.

If (2.3), (2.4) come from (2.1) and (2.2) and we use the notation of (1.21), then

X(θ) = C(θ)E−1(θ)B(θ), H(θ) = C(θ)E−1(θ)M(θ) +N . (2.6)

Using the fact that the derivative of Z−1 is −Z−1Z ′Z−1, we have that we can get

X ′(θ) in terms of the simpler matrices.

In fact,

X ′ = C ′E−1B − CE−1E ′E−1B + CE−1B′

where all terms are evaluated at θ.

Example 2. The following example illustrates Method II in finding the optimal in-

cipient test signal. Suppose

X(θ) =


1 + θ θ2

2 + 3θ 2θ2

θ2 + θ 1

 , H =


1 0 0

0 1 0

0 0 1

 , θ0 = 0.

Given X(θ), X ′(θ), H(θ), θ0, δθ, we compute w∗ as in (2.5). For δθ = 0.1, 0.5, 1.0,

and 10.0 we compute the incipient detection signal v∗inc and the two model test signal
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v∗. w∗ is calculated in order to find v∗inc = 1
δθ
w∗. We compute v∗ by looking at the

models with θ and θ + δθ and finding the test signal, which we refer to as the two

model method (Method I). The two model (standard) test signal v∗ and the incipient

test signal v∗inc are compared by plotting them on the same graph.

For larger δθ the value of v∗ decreases and v∗inc just scales with different values

of δθ. We find that it is possible that v∗ will change shape as δθ gets larger. Further,

as we decrease the value of δθ (the small error term) for the one parameter case, the

two lines that represent the standard test signal v∗ and the incipient test signal v∗inc

are closer to being the same which was expected.

If there are no O(δθ), we have a model linear in δθ and v∗ = v∗inc. We take

v∗inc = 1
δθ
w∗ (where the shape of w∗ is independent of δθ). If the problem is linear in

θ, then v∗ and v∗inc should be close in value. However, if the problem is nonlinear,

then v∗ and v∗inc will not be close in value. Further, if X(θ) is affine in θ, meaning

X(θ) = X0 + δθX1 for constant matrices X0, X1, then we expect v∗ and v∗inc to be

the same for all δθ. If X(θ) is nonlinear in θ, we expect v∗ and v∗inc to be close for

small δθ, but they may be different for large δθ. See below for plots.
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Figure 2.2: v∗ and v∗inc when δθ = 0.1 for Example 2

Figure 2.3: v∗ and v∗inc when δθ = 0.5 for Example 2
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Figure 2.4: v∗ and v∗inc when δθ = 1 for Example 2

Figure 2.5: v∗ and v∗inc when δθ = 10 for Example 2
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2.2.3 Getting into the form (2.3) and (2.4)

Setting yk = ŷk and combining (2.1) and (2.2) we get the constraints which state

what must happen to generate the same output.

xk+1 = A(θ)xk +B(θ)vk +Mµk, k = 0, . . . , K − 1 (2.7a)

x̂k+1 = A(θ + δθ)x̂k +B(θ + δθ)vk +Mµ̂k, k = 0, . . . , K − 1 (2.7b)

0 = −C(θ)xk −Nµk + (C(θ + δθ)x̂k +Nµ̂k), k = 0, . . . , K. (2.7c)

For convenience we let Q = Q(θ) and Qθ = Qθ(θ) for a matrix function Q. We let

x̄k = x̂k − xk, z̄ = δθx̂k, v̄k = δθvk

and (2.7) becomes

x̄k+1 = Ax̄k + Aθz̄k +Bθv̂k +Mµ̂k −Mµk, k = 0, . . . , K − 1 (2.8a)

z̄k+1 = Az̄k +Bv̂k, k = 0, . . . , K − 1 (2.8b)

0 = Cx̄k + Cθz̄k −Nµk +Nµ̂k, k = 0, . . . , K. (2.8c)

We now rewrite (2.8) in the same way that we rewrote (1.19) into (1.24). Let

x =



x̄1

z̄1

...

x̄K

z̄K


, µ =



x̄0

z̄0

µ0

µ̂0

...

µK

µ̂K


, v̂ =


v̂0

...

v̂2K−1

 , y =



y0

ŷ0

...

yK

ŷK


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Then, we get

E =



I 0 0 . . . . . . . . . 0 0

0 I 0
. . . . . . . . . 0 0

−A −Aθ I 0
. . . . . .

...
...

0 −A 0 I
. . . . . .

...
...

...
. . . . . . . . . . . . . . . 0 0

...
. . . . . . . . . . . . . . . 0 0

...
...

. . . . . . −A −Aθ I 0

0 . . .
...

... 0 −A 0 I


2K×2K

,

Mi =


Ai Mi 0

...
... 0

0 Ai Mi 0
...

...
...

. . . . . . . . . . . . 0

0 . . . 0 0 Mi 0


2K×2K+4

,

Bi = Diag(Bi, . . . , Bi)2K×2K ,

Ci =



0 0 . . . 0

Ci 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 Ci


2K+2×2K

,

Ni =


Ci Ni 0 . . . 0

0 Ci Ni
. . .

...
...

. . . . . . . . . 0

0 . . . 0 0 Ni


2K+2×2K+4

.
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Ei is invertible so we can solve and write the output as

yi = Ci
(
E−1
i (Biv̂ +Miµ

i)
)

+Niµi (2.9a)

= CiE−1
i Biv̂ + (CiE−1

i Mi +Ni)µi. (2.9b)

This shows us that in the discrete time case we may assume that we have two

models of the form

yi = Xiv̂ +Hiµ
i, i = 0, 1. (2.10)

where Xi = CiE−1
i Bi, Hi = CiE−1

i Mi + Ni. The solution to (2.10) gives an optimal

test signal v̂.
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Chapter 3

Discrete Time Case With Multiple

Faults

In studying the multiple incipient fault problem, we examine two cases: discrete

time and continuous time. This chapter focuses on the discrete time case. It provides

an introduction to the novelty of this thesis. Here we develop an algorithm to find a

solution to the multi-parameter incipient fault problem, specifically for the two fault

case and the three fault case. These results are presented in two papers written based

on the first results of this dissertation [16, 17].

3.1 Incipient Problem with Two Faults

Fault identification is important when a fault evolves slowly since the associated

loss of performance in a system can go unnoticed for some time. We begin by high-

lighting work that was recently published which gives an example of how to detect two

incipient faults in a practical system. In [45] an observer based method of estimating

the magnitudes of slowly developing faults in heating, ventilating, and air condition-

ing (HVAC) equipment was studied. This paper provides a method for estimating

the sizes of two types of incipient faults in a cooling coil subsystem. The two types of
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incipient faults considered are drift in the electronics controlling the position of the

valve actuator and air-side fouling of the coil. This work shows how to successfully

identify two types of incipient faults in a cooling coil system of an air-handling unit.

Note that nondetection for this particular case study could result in a reduction in

the cooling capacity of the coil and an increase in the energy consumption of the fan.

We now begin our development by introducing the multi-parameter fault problem

and presenting an active multi-fault incipient fault detection algorithm for more than

two faults. We begin by studying the case where two faults occur concurrently in

a system. Then, we focus on the problem where there are three faults occurring

at the same time in a given system. This chapter includes examples for each case.

The model and algorithms described in this chapter will allow for more than three

incipient faults to occur simultaneously.

We start with the simplest case which is the static one and we assume a model of

the form

y = X(θ, φ)v +H(θ, φ)µ0. (3.1)

We let ψ = (θ, φ) and δψ =

(
δθ

δφ

)
. The faulty model is

y = X(ψ + δψ)v +H(ψ + δψ)µ1. (3.2)

Taking the differences of (3.1) and (3.2) and dropping the error terms except for those

with v we get the following linearized system

Xθ(ψ)δθv +Xφ(ψ)δφv = H(ψ)µ1 −H(ψ)µ0. (3.3)

We could let w1 = δθv and w2 = δφv and get a problem with two controls in it.

But this is deceptive since w1 and w2 are multiples of each other.

We may look at this point further later but let us consider alternatives right now
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that can get us closer to the one parameter case. One is that we suppose that

δθ = α1δκ, δφ = α2δκ. (3.4)

Next, we assume that α = (α1, α2) lies in some set Ω and δκ is a fixed value. Then

equation (3.3) becomes (
H†(Xθα1 +Xφα2)

)
w = µ (3.5)

where w = δκv.

We want to find a w that will allow us to detect incipient faults for any α ∈
Ω. One way to proceed is to fix w with ‖w‖=1. Then we minimize the norm of

H†(Xθα1 + Xφα2)w over α. We then maximize over the w to do the best possible.

We may then need to adjust the size of the test signal. This leads us to the following

expression. Let α∗, w∗ be solutions of

ζ = max
‖w‖=1

min
α∈Ω
‖H†(Xθα1 +Xφα2)w‖. (3.6)

Then the test signal would be 1
ζ
w∗. The optimization problem (3.6) can be challeng-

ing. Note that (3.6) is equivalent to

ζ2 = max
‖w‖=1

min
α∈Ω
‖H†(Xθα1 +Xφα2)w‖2. (3.7)

There are a variety of different choices to make for Ω.

One option is to suppose that δθ + δφ = δκ. This says that we are taking a

certain level of perturbation but not worrying about what variable causes it. But

then α1 +α2 = 1. In other words, given an interval Π we have Ω = (β, 1−β) : β ∈ Π.

There should be some bounds on how big Π is. One possibility is Π = [0, 1]. This is

sort of the convex hull of the two one parameter cases. That is, the case with just φ

changing and the case with just θ changing. We begin by looking at this particular
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case. Two examples of the incipient fault problem with two faults follow.

Example 3. As an illustration of how different the solution can be in the two param-

eter versus the one parameter incipient case, we first consider a simple illustrative

academic example where the calculations are straightforward. Suppose

y =

2 + θ −1 + 3φ

2 1

 v +H0µ0. (3.8)

We take our model of the form found in (1.23), where H0 = I and I is a 2×2 identity

matrix. We assume that α1 = ε, α2 = 1− ε and 0 ≤ ε ≤ 1. Without loss of generality,

we can take the nominal values of θ, φ to be zero. Then (3.5) is

 1
2
I

−1
2
I


ε 3(1− ε)

0 0


w1

w2

 = µ. (3.9)

For this example we can easily solve the optimization problem (3.6).

Before prceeding we note that if φ is identically zero, then this is the same as

taking ε = 0 and we have the optimal test signal would be

w̃ =

1

0

 . (3.10)
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According to (3.6) we must solve

ζ = max
‖w‖=1

min
0≤ε≤1

1

2
‖εw1 + 3(1− ε)w2‖. (3.11)

We have w2
1 + w2

2 = 1. The inner min is over ε. We are then going to max over the

w. Note that if ‖w‖ = 1, then for a particular value of w1, w2, there are four feasible

w with the same norm by using ±w1 and ±w2. We get a larger value of the min if the

signs of the w1, w2 are the same. Then the inner min will be the smaller of w1, 3w2.

But when we take the max over ‖w‖ = 1 this occurs when w1 = 3w2 and we get that

w1 = 3√
10
, w2 = 1√

10
. Now, it must be rescaled so that the right hand side of (3.9) has

norm one. Thus

1

ζ

√
20

9

 3√
10

1√
10

 =
√

2

1

1
3

 . (3.12)

We note that if we had a different set Ω, say one defined by α2
1 +α2

2 = 1 with (α1, α2)

in the first quadrant, then the calculation shows that we get the same shape. That is,

the normalized vector w∗, since again the argument is a balancing one. However, we

have to use a slightly larger multiple for a given parameter variation threshold. That

is because α2
1 + α2

2 = 1 allows for slightly larger uncertainty for (α1, α2) away from

the origin, α1 = 0 and α2 = 0 axis as shown in Figure 3.1.

In Example 3 the dependence on the parameters θ, φ is linear. This means that

there are no errors in the reformulation. The next academic example has the param-
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Figure 3.1: Example 3 α1 + α2 = 1 (red) and α2
1 + α2

2 = 1 (blue) in the first orthant.

eters entering nonlinearly.

Example 4. Let

y =


1 + θ θ2

2 + 3φ− 2θ 2φ2

θφ+ 1 1

 v +H0µ0, (3.13)

where H0 is a 3×3 identity matrix. We assume that α1 = ε, α2 = 1−ε and 0 ≤ ε ≤ 1.

We take the nominal values of θ, φ to be zero. For a given ε, δκ, let v∗(ε, δκ) be the

optimal test signal found with the two model method and v∗inc be the optimal incipient

test signal such that v∗inc = 1
δκ
w∗.

For more complex problems we can move directly to a general optimization code,

but for this example it is interesting to examine things more carefully. If we pa-

rameterize w by w = [cosx, sinx]T , then the graph of the value of the inner min in
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Equation (3.7) is given in Figure 3.2. We see that the maximum of this minimum

occurs at x=0 (and also π, 2π, etc.; it is periodic). Therefore, w = [1, 0]T .

Figure 3.2: Example 4 graph of the inner min in (3.7) as a function of x

Since the incipient test signal must cover a range of problems, we expect it to be

larger than just one test signal for a special case. We also expect that the incipient

test signal will more closely approximate the usual test signal for smaller δκ. Figure

3.3 and Figure 3.4 illustrate this for δκ = 0.1 and δκ = 1. In each figure the test

signals are drawn as two dimensional vectors. The red one is v∗inc. The black ones

are the standard two model signals for that δκ and ε = 0, 0.3, 0.5, 0.7, 0.9, 1.0. We see

that v∗inc is closer to the two model test signals when δκ = 0.1 in Figure 3.3 than

when δκ = 1.0 in Figure 3.4.
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Figure 3.3: Example 4 v∗inc and the standard test signals for δκ = 0.1 and ε =

0, 0.3, 0.5, 0.7, 0.9, 1.0

Figure 3.4: Example 4 v∗inc and the standard test signals for δκ = 1 and ε =

0, 0.3, 0.5, 0.7, 0.9, 1.0
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3.2 More Than Two Simultaneous Incipient Faults

This section focuses on the case where there are r concurrent incipient faults in a

system. For the incipient problem, we start with the normal model

xk+1 = A(θ)xk +B(θ)vk +Mµk, k ∈ [0 : K − 1] (3.14a)

yk = C(θ)xk +Nµk, k ∈ [0 : K] (3.14b)

where θ = (θ1, . . . , θr)
T is a vector of r parameters. Thus we allow r simultaneous

faults. Let δθ = (δθ1, . . . , δθr)
T be the vector of parameter variations. Model (3.14)

with parameter drift is

x̂k+1 = A(θ + δθ)x̂k +B(θ + δθ)vk +Mµ̂k, k ∈ [0 : K − 1] (3.15a)

ŷk = C(θ + δθ)x̂k +Nµ̂k, k ∈ [0 : K]. (3.15b)

Again using the notation of 3.1 we can rewrite (3.14) and (3.15) in the static formu-

lation as

y0 = X(θ)v +H(θ)µ0 (3.16)

y1 = X(θ + δθ)v +H(θ + δθ)µ1. (3.17)

Our goal is to determine the shape of a good test signal independent of the value of

δθ and then be able to scale the test signal depending on the threshold with which

we wish to guarantee detection of the fault.

Setting y1 = y0 we get

0 = X(θ + δθ)v +H(θ + δθ)µ1 −X(θ)v −H(θ)µ0
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or

0 =
r∑
j=1

Xθj
(θ)δθjv +H(θ)µ1 −H(θ)µ0 +O(δθ)

where Xθj = dX/dθj. Dropping the O terms except for those with v, we get after a

little calculation that

r∑
j=1

Xθj
(θ)δθjv = H(θ)µ1 −H(θ)µ0. (3.18)

We could let wj = δθjv and we could get a problem with r vector valued controls

in it. However, if we did this then all of the wi are multiples of each other. Again,

we address this by using a formulation that allows us to use the results from the one

parameter incipient case as a subproblem. Since we know that the wj are multiples

of the same test signal, we suppose that

δθj = αjδκ, j = 1, . . . , r. (3.19)

We assume that α = (α1, . . . , αr)
T lies in some closed, bounded subset Ω of <r

for a fixed δκ. For detection to be possible, we need that 0 /∈ Ω. Then the equation

(3.18) for the smallest µ that results in equal outputs for a given α becomes

H̄†(
r∑
j=1

αjXθj
(θ))w = µ (3.20)

where w = δκv and H̄ = [H(θ),−H(θ)].

We want to find a test signal w that can be used to detect incipient faults for all

α ∈ Ω. As we did with the two parameter case, one way to proceed is fix w with

‖w‖ = 1 and then minimize the norm of H̄†(
∑r

j=1 αjXθj
(θ))w over α ∈ Ω. That is,

we minimize over α. Then we maximize over the w. We may then need to adjust the
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size of w. This leads to the following expression. Let α∗, w∗ be solutions of

ζ = max
‖w‖=1

min
α∈Ω
‖H̄†

r∑
j=1

(αjXθj
(θ)w)‖. (3.21)

Then, the test signal shape would be 1
ζ
w∗.

There are a variety of different choices to make for Ω depending on the particular

application. One option is to suppose that
∑r

j=1 δθj = δκ. This says that we are

taking a certain level of perturbation, but not worrying about what variable causes

it. But then
r∑
j=1

αj = 1. (3.22)

Another possibility is when

αj ≤ αj ≤ αj (3.23)

and at least one interval [αj, αj] does not contain zero. This formulation is attractive

for several reasons. For one, it leads to box constraints which many optimizer packages

are built to consider. Secondly, it has a natural interpretation in terms of each

parameter value falling into a certain interval.

3.2.1 Solving (3.21)

At first glance the optimization problem (3.21) may appear difficult to solve. In

fact, it can be quickly solved for small to medium sized problems as we will now

explain. We consider the inner minimization problem first. Suppose that we have a

given w such that ‖w‖ = 1. Let bj = H̄†Xθj
(θ)w. Then the square of the norm inside

(3.21) is

‖
r∑
j=1

αjbj‖2 =
r∑
j=1

r∑
i=1

ci,jαiαj (3.24)
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where ci,i = bTi bj. This is a positive semi-definite quadratic form over Ω. There are a

number of fast routines for minimizing quadratic functions. If the region Ω is given

by (3.22) or by (3.23) with r = 2, then we get the minimization of a quadratic form

over box constraints.

The inner minimization is thus of a smooth function. For the outer optimization

in (3.21) the cost may not be smooth but there is the constraint ‖w‖ = 1. One

could just use this constraint but many optimization packages prefer simpler box

type constraints. Suppose the w is K-dimensional. Using the usual parameterization

of the K-sphere we can replace ‖w‖ = 1 by box constraints. The parameterization is

w1 = cos(γ1) (3.25a)

w2 = sin(γ1) cos(γ2) (3.25b)

w3 = sin(γ1) sin(γ2) cos(γ3) (3.25c)
...
... (3.25d)

wK−1 = sin(γ1) . . . sin(γK−2) cos(γK−1) (3.25e)

wK = sin(γ1) . . . sin(γK−1), (3.25f)

where 0 ≤ γi ≤ π for i ∈ [1, K − 2] and 0 ≤ γK−1 ≤ 2π. Note that there is symmetry

to the optimization problem so that if w is optimal, then so is −w. Thus, we can

reduce the size of the optimization domain by taking

0 ≤ γi ≤ π, i ∈ [1, K − 1]

as parameterizing w. The inner minimization is r dimensional, which is the total

number of incipient faults found in our system. Note that typically r is not a large

integer. The outer maximization is K dimensional.
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3.2.2 Using the Test Signal

Suppose that we have our test signal v and an observed output ỹ. To use the test

signal we compute the norm squared of the smallest noise that makes ỹ consistent

with model zero (i.e., the normal model). That is,

ρ = ‖H†0(θ)(ỹ −X0(θ)v)‖2. (3.26)

If ρ < 1 (which we consider small), then we do not detect the fault at the indicated

level. If ρ > 1, then we conclude there is an incipient fault. We can do this since we

assume the noise in both models is bounded by 1. That is,

Si = (xi0)TQix
i
0 +

K∑
(µik)

Tµik < 1 (3.27)

and proper v is designed to produce disjoint output sets.

If the model equations are affine in δθ, then there is guaranteed fault detection.

The only conservatism is in perhaps using a slightly larger test signal than is minimally

necessary due to our use of the two norm for the combined norm.

Two problems in which we solve for the incipient test signal when there are three

concurrent incipient faults follow. If the δθ enter in a nonlinear manner, then the

approximation error could possibly increase with the size of the parameter change.

This is similar to the incipient one fault case. Note that we are seeking to detect

incipient faults early or when they are still small. We start with an academic example.

Example 5. Let

y =

2 + θ1 −1 + 3θ2

2 1 + θ3

 v +Hµ.

We take the nominal value θ equal to a zero vector and H = I, where I is a 2 × 2
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identity matrix. Using the notation of (3.23) we assume Ω is of the form

0.5 ≤ α1 ≤ 1.0, (3.28a)

0.1 ≤ α2 ≤ 0.5, (3.28b)

0 ≤ α3 ≤ 0.1. (3.28c)

We know that if w is optimal, then so is −w. Therefore, it suffices to parameterize

half of the w sphere. Using the sphere parameterization (3.25), we have that

q(w, α) =

 1√
2
I

− 1√
2
I


α1 3α2

0 α3


cos(γ)

sin(γ)


where 0 ≤ γ ≤ π and we solve

− min
0≤γ≤π

−min
α∈Ω
‖q(w, α)‖2.

Figure 3.5 is a graph of the inner minimum as a function of γ. The outer opti-

mization gives the maximum of γ as 0.17 at x = 0.5407. Note that the plot for the

three parameter case (Figure 3.5) is highly asymmetrical unlike the inner min for the

two parameter case (Figure 3.2).

Figure 3.6 compares the incipient test signal (in red) and the standard two model

test signals (in black) for several values of α ∈ Ω.
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Figure 3.5: Example 5 inner min as a function of γ

Figure 3.6: Incipient test signal (red) and two model signals for several values of α
(black) for Example 5
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Example 6. Suppose

xk+1 =

 1 h

−hsm −hmd

xk +

 0

hm

 v +

1 1 0

0 1 0

µk, k = 0, . . . , K − 1

yk =

(
0 1

)
xk +

(
0 0 1

)
µk, k = 0, . . . , K.

To illustrate the use of this approach we consider the discrete system above. Note

that M0 = M1 and N0 = N1. This problem is actually the Euler approximation of a

mechanical system with damping coefficient d, spring constant s, mass 1
m

, and h as

the step size. The output yk is the position of the mass. Note that the parameters

enter nonlinearly.

We assume that the normal values are θ1 = m = 2, θ2 = s = 12, θ3 = d = 0.2. This

is a lightly damped mechanical system with eigenvalues 0.4600± 0.8176i and modulus

0.9381. We assume that we want a test signal that is guaranteed to determine a fault

has occurred where the fault condition is θ1 + δθ1 ∈ [0.9, 1.1], θ2 + δθ2 ∈ [8, 10], and

θ3 +δθ3 ∈ [0.4, 0.6]. Therefore, δθ1 ∈ [−1.1,−0.9], δθ2 ∈ [−4,−2], and δθ3 ∈ [0.2, 0.4].

Using the nominal values and the incipient fault condition, we can conclude that there

has been a change or there is uncertainty in the mass, the spring has weakened, and

the friction has increased due to say a break down in lubricant. We can take δκ = 1

and then αi = δθi. For this example, we take h = 0.2 and K = 5. Our set Ω is now a
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rectangular box that does not include the origin. With these parameter values we get

v∗inc =



18.2136

−8.6901

−2.8236

0.0485

0


. (3.30)

Figure 3.7: Incipient test signal (red) and two model signals for several α (blue) for
Example 6

Figure 3.7 shows the incipient test signal in red and the two model test signals for

the values of α at the corners of Ω. Since the noise is symmetric about the origin we

have that −v is proper if v is proper. To better compare the incipient and two model

test signals we have plotted the negative of the incipient test signal in Figure 3.7. It

should be noted that the parameterization (3.25) can create artificial local minimum
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when using the numerical optimization code. For example, the parameterization has

0 ≤ γ1 ≤ π. However, if the actual optimum appears at say −1
6
π and 5

6
π, and we use

0 ≤ γ1 ≤ π, then depending on the initial guess chosen, the optimizer might go to

γ1 = 0. In fact, this happens with this particular example. This was easily overcome

by giving wider bounds on the γ1 when the optimizer is called.

3.2.3 Conclusions for the Discrete Time Case

When considering incipient faults the usual assumption that there is only one

fault happening at a given time is no longer always appropriate [31]. In this chapter,

we have begun the examination of an active approach for incipient fault detection

when there are more than two faults in the discrete time case. As with some of the

earlier results [15, 31, 32, 33] we specify a threshold and guarantee detection if some

combination of the uncertainties exceeds that threshold.

For the discrete time case, v∗inc covers a range of problems so we expect it to be

larger than just one test signal for a special case. For smaller δκ, v∗inc is closer to the

solution of the two model test signals.

The problem to be solved is a min max problem. In principle this can be solved

by software. However, more efficient algorithms are needed for higher state dimen-

sions and longer time horizons. Developing these more efficient algorithms is under

investigation.

In previous work done by Nikoukhah and Campbell, finding a test signal in the

presence of model uncertainty was carried out with a reformulation that led to a new

optimization problem which added the uncertainty to the noise [31]. The approach

of this section has provided an alternative approach to including some types of model

uncertainty when the faults are incipient. In the use of the ideas of this section

some parameters are treated as faults and some of them as model uncertainties. The

difference is that if the jth parameter is uncertain, then we have 0 ∈ [αj, αj] and if
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the jth parameter is incipient, then 0 /∈ [αj, αj]. This approach to test signal design

in the presence of model uncertainty is a topic for further study.
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Chapter 4

Continuous Time Case

This chapter focuses on the continuous time case. The model is similar to the

discrete time case, but the approach for solving it is different. We begin by con-

structing the model problem and using the information from the discrete time case

that is relevant. Then we proceed by adding new details necessary to find a solution

for the incipient detection signal for continuous time models. The results from this

section are highlighted in [18].

4.1 Continuous Time Two Model Version

For the continuous time case, we want to recapture the essence of what was done

in the discrete time case. We begin in a similar way, but now the model includes

two ordinary differential equations. We examine this model by setting up a linear

quadratic regulator (LQR) problem.

Here, like in the discrete time case, we start with a multi-model approach on a

finite time interval [0, ω]. We assume we have two ode models of the following form:
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x′i = Aixi +Biv +Miµi (4.1a)

yi = Cixi +Niµi, (4.1b)

which is the continuous analog of (1.19). For the above model, the i indicates model 0

or model 1, where model 0 is considered the normal system and model 1 is considered

the faulty system. Again xi is the state, v is the test signal, and µi represents the

additive uncertainty in the model. The commonality between the two models is the

detection signal, v.

The initial state xi(0) and noise µi are unknowns in each model. Let Bi be n×m.

Thus, each xi is n×1 and v is m×1. Suppose each yi is r×1. Note that the xi could

have different sizes ni. That is, the state dimension could be different for model 0

and model 1, but we will ignore that for now since this does not occur in the incipient

case.

We consider xi0 to be additive uncertainty. In the approach of [10], it is assumed

that the uncertainty in each model is bounded by

Si(xi(0), µi) = xi(0)Txi(0) +

∫ ω

0

µTi (t)µi(t) dt < 1, i = 0, 1 (4.2)

where (4.2) is actually an inner product norm on (xi(0), µi) and the bound of 1 is

taken for convenience. Scaling of Mi easily accommodates other bounds. Note that

bound (4.2) is the continuous analog of (1.20).

4.1.1 Proper v

Once the noise is bounded we can consider the outputs of the models. For now

suppose Ai(v) is the output set of model i for i = 0 and 1. The detection signal v is

called a proper test signal if A0(v) ∩ A1(v) = ∅. This means that there is no output
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y that can come from both the normal model and the faulty model. Our goal is to

get a proper signal so that we can distinguish between the two models of the system

like we did in the discrete time case.

Suppose L(f) is the solution of the following ode with the given initial condition

z′ = Aiz + f, z(0) = 0 (4.3)

and define it as

L(f) =

∫ t

0

e(t−τ)Aif(τ) dτ. (4.4)

Then, the solutions to the set of equations in (4.1) are

xi = Li(Biv) + Li(Miµi) + eAitxi(0) (4.5a)

yi = (CiLiBi)v + (CiLiMi +Ni)µi + Cie
Aitxi(0) (4.5b)

where (CiLiBi)v = L̂i(v) is a fixed function that is linearly dependent on the test

signal v. In fact, L̂i is a linear transformation of v and Cie
Aitxi(0) + (CiLiMi +Ni)µi

is a linear transformation from (xi(0), µi) that maps into y-space. Notice that the set

of (xi(0), µi) satisfying our noise bound (4.2) is convex and bounded by 1 in the Si

norm. Therefore, when a continuous linear transformation is applied to this bounded

and convex set, the new set is also bounded and convex.

Recall how we distinguished between the normal and faulty models in the discrete

time case. We found a proper detection signal, which separated the output sets of

the two models, i.e. the normal and faulty output sets were disjoint. In order to show

this, here again we assume that we can get the same output from both models, that

is, y0 = y1. However, if this were true, then the noise bound would be violated since

proper v ensures that the output sets are distinguishable.

Recall our assumption is that the noise in each model is bounded and we assume

that (4.2) holds. Hence, if (x0(0), x1(0), µ0, µ1) satisfies the models and v is a proper
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detection signal, but an output y is still in both output sets, then it must be that

max(S0(x0(0), µ0), S1(x1(0), µ1)) ≥ 1. (4.6)

This must be true for all possible (x0, µ0, x1, µ1) which satisfy the models but do not

have distinct outputs. Thus, it is enough to ensure it is true for the minimum of

them. In this problem min max = max min so we get the same result even when we

switch the order. Therefore, we can take

min
xi,µi

max(S0(x0(0), µ0), S1(x1(0), µ1)) ≥ 1. (4.7)

This is the classical setup.

As stated in chapter one we use S0 +S1 < 1 as our noise bound. This noise bound

has the advantage that the perturbations are measured by a single inner product

norm. This type of constraint makes the problem look more like a robust control

problem [11]. This allows the use of robust control theory which is a method for

measuring the performance changes of a control system with changing system param-

eters. In developing the continuous time case the previous work used β and a switch

in the order of the maximum and minimum to get a problem that resembles an LQR

problem.

4.2 Multi-parameter Incipient Fault Setup

There are several ways to generalize our previous results from the incipient fault

problem in the discrete time case. There will be a number of changes as we begin to

study the continuous time case. However, we want to recapture the essence of what

we have already done:

• For a given detection signal v and parameters, we want to find the worst fault.
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This is a minimum problem to find the smallest noise that works. Using an

LQR with a fixed end z(0), we then minimize over the endpoint z(0) [Inner

Problem];

• With v fixed, we find the minimum over the parameters;

• Then we maximize over v.

This approach can be done two ways. It can be done with a scalable incipient

fault level like the δκ we had before, which is based on linearizations. It can also be

done for a certain set of δθ. In the discrete time case we did the former. Here we do

the latter so there are no linearizations involved in our work for the continuous time

case.

The normal model used to represent the behavior of a system subject to incipient

faults can be expressed as follows:

x′ = A(θ)x+B(θ)v +Mµ (4.8a)

y = C(θ)x+Nν. (4.8b)

Notice the change in the notation. Before we had a big noise vector µ that appeared

in both equations (i.e., the ode and output of the ode). Now, we have a different

noise in each equation. This actually allows for more noise, but more importantly,

we now have N as an invertible matrix which will be useful later. This is the more

general case since it allows all output channels to have noise.

For the continuous time problem we are on the time interval [0, ω]. θ = (θ1, . . . , θr)
T

is a vector containing r parameters used for either the incipient parameters or model

uncertainty or both. Thus, we allow r simultaneous faults. Let δθ = (δθ1, . . . , δθr)
T

be the vector of r parameter variations. We refer to δθ as a slow drift in the parameter
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over time. The model with parameter drift δθ, which we call the faulty model is

x̂′ = A(θ + δθ)x̂+B(θ + δθ)v +Mµ̂ (4.9a)

ŷ = C(θ + δθ)x̂+Nν̂. (4.9b)

One goal is to determine the shape of a good test signal independent of the value of

δθ and then be able to scale the test signal depending on the threshold with which

we wish to guarantee detection of the fault.

For proper v we assume that the noise measure is

S = x(0)Tx(0) + x̂(0)T x̂(0) +

∫ ω

0

νTν + µTµ+ ν̂T ν̂ + µ̂T µ̂ dt < 1. (4.10)

So we write this as

S(x(0), x̂(0), ν, ν̂, µ, µ̂) < 1. (4.11)

For a given v we derive the smallest noise that results in equal outputs for all δθ.

That is, we determine our cost function J = minS assuming the output from the

normal and faulty system models are equal. We start by minimizing over the free

endpoints x(0), x̂(0). With this formulation we will be able to use the results from the

one parameter incipient case as a subproblem for the multi-parameter case. Note that

we do not need to calculate µ and ν explicitly. The noises are a mix of uncertainty,

disturbances, and noise. Equation (4.10) merely states that we assume some bound

on this noise. Given this bound we construct a test signal that will work as long as

our assumption on the noise level is correct.

Note that (4.11) is not identical to the noise bound used in earlier work such as

[10]. There is a maximum over separate norm bounds for each model which is used

to compare the overall noise bound. Then, this max is replaced by an equivalent max

using the parameter β. Recall that in the incipient approach of [31] the parameter

β = 1
2
. With β = 1

2
, the noise bound of [31] is twice that of (4.11). Thus, (4.11) is
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related to the earlier work and simplifies our algorithms since we deal with one less

level of optimization. However, it will require some other modifications such as in

how we use the test signal to perform a test. This will be discussed further later.

Recall that a test signal v is proper if we use v and we get the same output

from both (4.8) and (4.9) then we must have a violation of our noise bound (4.11).

Meaning, with proper v it is impossible to get the same output from both models.

We want the smallest such v. A variety of norms can be used depending on the

application [10]. Here we use the L2 norm of the detection signal v. It is important

to note that if we start with a v and then compute the smallest noise that produces

the same output from both models, say the amount of noise is σ, then due to the

linearity of the systems we study v√
σ

would be proper.

The closer the faulty model is to the nonfaulty model, the larger the test signal

must be. However, practical considerations will limit how large a test signal can be,

but this is similar to many other results in control theory. Controllability means we

can steer from point a to point b, but if the time interval is too short then the control

may not be practical.

4.2.1 Multi-Parameter Case

We assume the possible perturbations δθ lie in a set Ω̃ that does not include the

origin. In particular, recall that in chapter three the wj = δθjv are multiples of the

same test signal so we suppose that

δθj = αjδκ, j = 1, . . . , r. (4.12)

We assume that α = (α1, . . . , αr)
T lies in some closed and bounded subset Ω of Rr

for a fixed δκ. For detection to be guaranteed, we need that 0 /∈ Ω. Since Ω is closed

and bounded and in a finite dimensional space, if 0 ∈ Ω, then 0 must be a positive

distance from Ω. Computational algorithms usually also require that Ω is the closure
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of its interior.

Now we need to derive S(v, δθ), which is the smallest noise that results in equal

outputs for a given v. This means we need to solve the following problem:

minS(x(0), x̂(0), ν, ν̂, µ, µ̂) (4.13)

subject to

x′ = A(θ)x+B(θ)v +Mµ (4.14a)

x̂′ = A(θ + δθ)x̂+B(θ + δθ)v +Mµ̂ (4.14b)

0 = C(θ)x+Nν − C(θ + δθ)x̂−Nν̂ (4.14c)

with v known and fixed. Also, the δθ′is are bounded. We get (4.14c) by taking the

output from the normal and faulty models and equating them. Also, note that since

N is invertible, we can use (4.14c) to eliminate ν or ν̂ from both (4.13) and (4.14).

Then, (4.13) and (4.14) become a type of LQR problem. Once the smallest noise

S(v, δθ) is determined we need to minimize over δθ and maximize over v. Finally, we

get a value S∗, which is used in our calculation of the optimal proper test signal v∗.

4.3 Continuous Time Inner Min LQR Problem

In this section we discuss how to solve the inner minimization problem. The

algorithm for finding the test signal and the model used to solve the optimization

problem are highlighted. We build on the results found here in Section 4.4.

The following is the setup for the inner minimization problem. We shall give both

the formulation of a general control problem and our particular control problem. We

start with the general control problem.
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4.3.1 General Control Problem

Before we get to the specific control problem we will solve, we first review a

formal derivation of the necessary conditions for a general optimal control problem.

The problem formulation and solution highlighted in this section come from [26]. The

general form of the model is

x′ = f(x, u, t), t ≥ t0 (4.15)

with t0 fixed, which means the system model depends on the state x(t) ∈ <n, control

input u(t) ∈ <m, and time t. With this system let us associate the performance index

J(u) = φ(x(T ), T ) +

∫ T

t0

L(x, u, t)dt, (4.16)

where [t0, T ] is the time interval of interest. The final weighting function φ(x(T ), T )

depends on the final state and final time and we want to make this function small.

The weighting function L(x, u, t) depends on the state and input at intermediate times

in [t0, T ]. The performance index, which we will also refer to as the cost function, is

chosen to make the plant (system) result in a minimum payoff.

The optimal control problem is to find the input u∗(t) on the time interval [t0, T ]

that drives the plant (4.15) along a trajectory x∗(t) such that the cost function (4.16)

is minimized and

ψ(x(t0), t0) = 0 (4.17)

for a given function ψ ∈ <p.
To solve the continuous optimal control problem, we use Lagrange multipliers to

adjoin the constraints (4.15) and (4.17) to the performance index (4.16). Since (4.15)

holds at each [t0, T ] we require an associated multiplier λ(t) ∈ <n, which is a function
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of time. Since (4.17) holds only at one time, we require only a constant associated

multiplier v ∈ <p. The augmented performance index becomes

J ′ = φ(x(T ), T ) + vTψ(x(T ), T ) +

∫ T

t0

[L(x, u, t) + λT (t)(f(x, u, t)− x′)]dt. (4.18)

Let us now define the Hamiltonian function as

H(x, u, t) = L(x, u, t) + λTf(x, u, t), (4.19)

then we can rewrite (4.18) as

J ′ = φ(x(T ), T ) + vTψ(x(T ), T ) +

∫ T

t0

[H(x, u, t)− λTx′)]dt. (4.20)

Using Leibniz’s rule, the increment in J ′ as a function of increments in x, λ, v, u, and

t is

dJ ′ = (φTx (T ))dx(T ) + (φt(T )d(T ) + (vTψx(T ))dx(T ) + ψTt vdT + ψT (T )dv (4.21)

+(H(T )− λT (T )x′(T ))d(T )− (H(t0)− λTx′(t0))d(t0)

+

∫ T

t0

[HT
x δx+HT

u δu− λT δx′ + (HT
λ − x′T )δλ]dt.

To eliminate the variation in x′, integrate by parts to see that

−
∫ T

t0

λT δx′dt = −λT (T )δx(T ) + λT (t0)δx(t0) +

∫ T

t0

λ′T δx dt. (4.22)

By substituting (4.22) into (4.21) we get terms at t = T dependent on both dx(t) and



Chapter 4. Continuous Time Case 72

δx(T ). We can express δx(T ) in terms of dx(t) and dT using

dx(T ) = δx(T ) + x′(T )dT.

The result after substitution is

dJ ′ = (φTx (T ))dx(T ) + (ψTx v)dx(T )− λTdx(T ) + (φt(T ))d(T ) (4.23)

+(ψTt (T )v)dT +H(T ) + ψTt dv − (H(t0)d(t0) + λTdx(t0)

+

∫ T

t0

[HT
x δx+ λ′T δx(t0 +HT

u δu+ (HT
λ − x′T )δλ]dt.

According to the Lagrange Theory, the constrained minimum of J is attained at

the unconstrained minimum of J ′. This is achieved when dJ = 0 for all independent

increments in its arguments. Setting the coefficients of the independent increments

dv, δx, δu, and δλ to zero yields necessary conditions for a minimum. In most texts

for the applications highlighted, t0 and x(t0) are both fixed and known so that dt0

and dx(t0) are both zero. The two terms evaluated at t = t0 in the above equation

for dJ ′ are therefore automatically equal to zero.

In order to determine the optimal controller we need to determine the Hamiltonian,

state equation, costate equation, stationarity condition, and boundary condition. The

Hamiltonian is defined in (4.19). In general the state equation is

x′ =
∂H

∂λ
= f, t ≥ t0. (4.24)

The costate equation develops backward in time, which in the continuous time

case amounts to making the rate of change (i.e., λ′) negative. The costate is also

referred to as the adjoint to the state equation. The general form of the costate
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equation is

−λ′ = ∂H

∂z
=
∂fT

∂z
λ+

∂L

∂z
, t ≤ T. (4.25)

The stationarity condition is written as

0 =
∂H

∂w
=
∂L

∂w
+
∂fT

∂w
λ. (4.26)

The boundary condition given x(t0) is given by the following equation

(φTx (T ) + vTψx(T )− λT (T ))dx(T ) + (φt(T ) + ψTt (T )v +H(T ))dT = 0. (4.27)

4.3.2 Our Particular Problem

System Model

We have the time interval [0, ω] and the following equations:

x′ = A(θ)x+B(θ)v +Mµ (4.28a)

x̂′ = A(θ + δθ)x̂+B(θ + δθ)v +Mµ̂ (4.28b)

0 = C(θ)x+Nν − C(θ + δθ)x̂−Nν̂. (4.28c)

The state is represented by x and x̂, v is the test signal, and µ, µ̂, ν, and ν̂ represent the

additive uncertainty in the models. The only commonality between the two models

is the detection signal, v, which is known and fixed. x0, x̂0 are unknown. However,

we will first assume x0 and x̂0 are fixed and take the min over them. µ, µ̂, ν, and ν̂

are all controls (noises in this setup) and are unknown. To simplify notation we let

X0 = X(θ) and X1 = X(θ + δθ) for X = A,B,C, where subscript 0 corresponds to
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the normal model and subscript 1 corresponds to the faulty model. Therefore, we can

rewrite (4.28) in the following manner:

x′ = A0x+B0v +Mµ (4.29a)

x̂′ = A1x̂+B1v +Mµ̂ (4.29b)

0 = C0x+Nν − C1x̂−Nν̂. (4.29c)

Note in our problem we actually have multiple controls µ, µ̂, ν and ν̂. However, we

will later eliminate ν and ν̂ in the cost function so we will be left with only two vector

controls µ and µ̂.

Cost Function

Our performance index for the optimal control problem is represented using the

following equation:

J(u) = φ(x(t0), t0) +

∫ T

t0

L(x, u, t)dt. (4.30)

In most texts φ(x(T ), T ) is used, but in our application we have φ(x(t0), t0). Before

any simplification our cost function is

J = min{x(0)Tx(0) + x̂(0)T x̂(0) +

∫ ω

0

νTν + ν̂T ν̂ + µTµ+ µ̂T µ̂dt}. (4.31)

In order to reduce the number of unknowns in the problem, we start with (4.29c)

and solve for ν̂ in order to eliminate ν̂ from J by replacing it with its substitution,

which is in terms of x, x̂, and ν. Start by adding Nν̂ to both sides of (4.29c) to get

Nν̂ = C0x+Nν − C1x̂. (4.32)
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Now we multiply each term by N−1 and use substitutions C̃i = N−1Ci and C̃i
T

=

CT
i N

−T , i = 0, 1. Then (4.32) reduces to

ν̂ = ν + C̃0x− C̃1x̂ (4.33)

since N−1N is just the identity matrix and (N−1)T = N−T . However, we can rewrite

(4.33) as

ν̂ = ν + C̃z, (4.34)

with

C̃T =

(
Ĉ0

T

−Ĉ1
T

)
, z =

(
x

x̂

)
.

Then (4.34) is substituted into (4.31) to get (4.35). Once we simplify and replace ν̂

with its substitution our cost function can be written this way:

J = min z(0)T z(0) +

∫ ω

0

(wTw + νTν + (ν + C̃z)T (ν + C̃z))dt, (4.35)

where

w =

(
µ

µ̂

)
.

Equation (4.29c) has now been eliminated. The constraints are just (4.28a), (4.28b).

Note that ν does not appear in the constraints. Thus we can minimize the ν term in

J directly. Differentiating (4.35) with respect to ν we get

ν = −1

2
C̃z. (4.36)
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Now, the cost function becomes the minimum of

J = z(0)T z(0) +

∫ ω

0

(wTw + νTν + (ν + C̃z)T (ν + C̃z))dt

= z(0)T z(0) +

∫ ω

0

(wTw +
1

4
zT C̃T C̃z +

1

4
zT C̃T C̃z)dt

= z(0)T z(0) +

∫ ω

0

(wTw +
1

2
zT C̃T C̃z)dt.

Now, we have our cost function in terms of only two unknowns µ and µ̂ and we

represent them using vector w. The combined system can be written in this way:

J = min z(0)T z(0) +

∫ ω

0

(wTw +
1

2
zTQz)dt, (4.38)

where

Q = C̃T C̃ =

(
Ĉ0

T
Ĉ0 −Ĉ0

T
Ĉ1

−Ĉ1

T
Ĉ0 Ĉ1

T
Ĉ1

)

and Q is a positive semi-definite symmetric matrix.

Our problem no longer has a state constraint.

4.3.3 Optimal Controller

Hamiltonian

The general form of the Hamiltonian for the combined system is

H(z, w, t) = L(z, w, t) + λTf(z, w, t). (4.39)

Before eliminating the control variable ν and simplifying the Hamiltonian expres-

sion we want to solve for ν using the stationarity condition, Hν = 0. Before any
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simplification,

H = µTµ+ µ̂T µ̂+ 2νTν + xT Ĉ0
T
Ĉ0x− x̂T Ĉ1

T
Ĉ0x+ νT Ĉ0x− xT Ĉ0

T
Ĉ1x̂+ x̂T Ĉ1

T
Ĉ1x̂

−νT Ĉ1x̂+ xT Ĉ0

T
ν − x̂T Ĉ1

T
ν + λT0 (A0x+B0v +Mµ) + λT1 (A1x̂+B1v +Mµ̂).

Then using our stationarity condition

0 = Hν = 4νT + 2xT Ĉ0
T
− 2x̂T Ĉ1

T
, (4.40)

which implies that

0 = 4νT + 2zT C̃T . (4.41)

When we solve for ν we get

ν = −1

2
C̃z. (4.42)

For the combined system we assume

A =

(
A0 0

0 A1

)
, z =

(
x

x̂

)
, M̂ =

(
M 0

0 M

)
, w =

(
µ

µ̂

)
, B =

(
B0

B1

)
.

Once we combine the normal and faulty systems into one big system and simplify, we

get this Hamiltonian equation:

H = wTw +
1

2
zTQz + λT (Az + M̂w +Bv). (4.43)
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For linear time invariant systems and cost functions, the Hamiltonian is constant.

Therefore, H ′ = 0. The general form for the time derivative of the Hamiltonian is

H ′ = Ht +HT
z z
′ +HT

ww
′ + λ′Tf = Ht +HT

ww
′ + (Hz + λ′)Tf. (4.44)

Note that if w(t) is an optimal control, then H ′ = Ht. Since Ht = 0 our expression

becomes:

H ′ = HT
ww
′ +HT

z f + λ′Tf, (4.45)

which gives

H ′ = 2wTw′ + λTM̂w′ + zTQ(Az + M̂w +Bv) + λ′T (Az + M̂w +Bv).(4.46)

State Equation

Our combined system model can be written in the following manner:

z′ = Az + M̂w +Bv. (4.47)

Costate Equation

λ′ = −QT z − ATλ. (4.48)
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Stationarity Conditions

For our problem, v is fixed and in our reduced problem our control variable is

vector w. Thus, we write the stationarity condition in the following way:

0 = Hw = 2wT + λTM̂. (4.49)

This implies that

w = −1

2
M̂Tλ. (4.50)

Boundary Condition

Given (4.15)-(4.30) we can derive our boundary conditions for this problem. We

start with the augmented performance index:

J ′ = φ(z(t0), t0) + φ(z(T ), T ) +

∫ T

t0

[L(z, u, t) + λT (t)(f(z, u, t)− z′)]dt. (4.51)

Then if we define the Hamiltonian as in (4.39) and J ′ becomes

J ′ = φ(z(t0, t0) + φ(z(T ), T ) +

∫ T

t0

[H(z, u, t)− λT z′)]dt. (4.52)
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Using Leibniz’s rule, the increment in J ′ as a function of increments in z, λ, v, u, and

t is

dJ ′ = (φTz (t0))dz(t0) + (φt(t0)d(t0) + (φz(T ))dz(T ) + (φt(T ))d(T ) (4.53)

+(H(T )− λT (T )z′(T ))d(T )− (H(t0)− λT z′(t0))d(t0)

+

∫ T

t0

[HT
z δz +HT

u δu− λT δz′ + (HT
λ − z′T )δλ]dt.

To eliminate z′, integrate by parts to see that

−
∫ T

t0

λT δz′dt = −λT (T )δz(T ) + λT (t0)δz(t0) +

∫ T

t0

λ′T δzdt. (4.54)

Then,

dJ ′ = (φTz (t0) + λT (t0))dz(t0) + (φt(t0)−H(t0))dt0 + (φTz (T )− λT (T ))dz(T ) (4.55)

+(φt(T ) +H(T ))dT +

∫ T

t0

[(HT
z + λ′T )δz +HT

u δu+ (HT
λ − z′T )δλ]dt.

Based on this derivation we get the initial and terminal boundary conditions for

the LQR problem. By Lagrange theory, the constrained minimum of J is attained at

the unconstrained minimum of J ′. This is achieved when dJ ′ = 0 for all independent

increments in its arguments. Setting dv = 0, δz = 0, δu = 0, and δλ = 0 yields the

necessary conditions for the minimum as shown above. Since t0 and T are fixed,

d(t0) = 0 and d(T ) = 0. Therefore, the terms with those values in it drop out.

However, dz(t0) and dz(T ) are free. There is no ψ in this problem so those values are

zero. Further, φ(T ) = 0, but φ(t0) is not zero. So once we get rid of the terms that

drop out, we can rewrite dJ ′ as

dJ ′ = (φTz (t0) + λT (t0))dz(t0)− λT (T )dz(T ). (4.56)
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Recall our time interval is [0, ω]. We are also given z(0). We find the initial

condition by evaluating

(φTz (0) + λT (0))dz(0) = 0 (4.57)

and dz(0) = 0 since z(0) is fixed. Therefore, φTz (0) + λT (0) is free.

However, if z(0) is not given, then

(φTz (0) + λT (0)) = 0. (4.58)

By doing some algebra and taking the transpose of every term

λ(0) = −φz(0), (4.59)

but based on (4.50), we know φz(0) = 2z(0). Therefore,

λ(0) = −2z(0). (4.60)

The term that is left gives us the terminal condition. To find the boundary condition

at the final time, ω, we use

−λT (ω)dz(ω) = 0. (4.61)

dz(ω) is free and if we transpose the remaining term we are left with

λ(ω) = 0. (4.62)
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Our boundary conditions when z(0) is not fixed are:

λ(0) = −2z(0) (4.63)

λ(ω) = 0, (4.64)

where λ(ω) has the same dimension as z.

4.4 Solving the Inner Minimization Problem

Based on the solution to the optimal controller found in Section 4.3 we get the set

of vectors and matrices found below, which will be used to solve the inner optimization

problem. Note that we want to find the worst fault of the LQR problem for one big

system, which includes the set of equations for the normal and faulty models. We

need to minimize the cost function J in Equation (4.65).

Let

z =

(
x

x̂

)
, w =

(
µ

µ̂

)
, Q =

(
Ĉ0

T
Ĉ0 −Ĉ0

T
Ĉ1

−Ĉ1

T
Ĉ0 Ĉ1

T
Ĉ1

)
,

A =

(
A0 0

0 A1

)
, M̂ =

(
M 0

0 M

)
, B =

(
B0

B1

)
.

There are two approaches for solving the inner minimum problem. In Sections 4.4.1

and 4.4.2 we outline each approach.

4.4.1 Approach I

Using this approach we temporarily fix z(0) and that gives us that dz(0) = 0. We

use LQR theory to solve the minimization problem. Then, we perform another layer

of minimization with respect to z(0).
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Inner Optimization Problem - Original Problem in the Lewis Form

Based on the work presented in Section 4.3, we begin with the following cost

function and state equation which were found by determining the solution to our

optimal control problem:

J = min z(0)T z(0) +

∫ ω

0

(wTw +
1

2
zTQz)dt (4.65)

z′ = Az +Bv + M̂w (4.66)

The cost functional in equation (4.65) is the minimum over z(0), w such that (4.66)

holds.

Solution

In order to determine the solution for the optimal control w, we want Equation

(4.65) in the form of the continuous linear quadratic tracker problem. The control

input is an affine state feedback, i.e., it consists of a linear state feedback plus an

additional term. Let r(t) be the reference track. The additional term depends on the

output u(t) of the costate of the closed-loop plant when driven by r(t). Note that

without the fixed function Bv in our system, our problem is like the regular LQR

problem, except M̂ is the coefficient matrix for our control instead of B. Assume

r′ = Ar +Bv, r(0) = 0. (4.67)

Let

z̄ = z − r. (4.68)
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Then,

z̄′ = z′ − r′ (4.69)

= Az +Bv + M̂w − Ar −Bv

= Az − Ar + M̂w

= Az̄ + M̂w.

Now (4.65) can be rewritten as

J = min(z̄(0) + r(0))T (z̄(0) + r(0)) +

∫ ω

0

1

2
(z̄ + r)TQ(z̄ + r) + wTwdt.(4.70)

This optimization is done in two stages: inner minimization with fixed z̄(0) and outer

optimization over z̄(0). Note that z(0) is now fixed and z(ω) is free. We want z(ω)

close to zero at the final time since r(ω) = 0.

Following Table 4.1-1 in [26], P ≥ 0, Q ≥ 0, R > 0 are all symmetric matrices.

Also, K is the Kalman gain matrix, (4.71b) is the Ricatti equation, and w is our

control. The optimal affine control in terms of time t is given by:

K(t) = R−1M̂TΠ(t) (4.71a)

Π′ = −ATΠ− ΠA+ ΠM̂R−1M̂TΠ− CTQC, Π(0) = CTPC (4.71b)

u′ = (−A+ M̂K)Tu− CTQr, u(0) = CTPr(0) (4.71c)

w = −Kz̄ +R−1M̂Tu. (4.71d)

Note that here control is actually the smallest noise given the same output.
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Change of Variables

In the continuous time case, the Ricatti equation must be integrated backward.

Most integration routines run forward in time so we convert the Ricatti equation into

an equation that is integrated forward. To put this into a more standard form we

perform a change of variables and let τ = ω − t. Then since ω is a fixed value,

dτ = −dt.

Now we assume

r′ = −Ar −Bv, r(ω) = 0, (4.72)

where we know what we want our reference to be at the final time ω.

Let

z̄ = z − r. (4.73)

Then,

z̄′ = z′ − r′ (4.74)

= −Az −Bv − M̂w + Ar +Bv

= −Az + Ar − M̂w

= −Az̄ − M̂w.

The cost function in terms of the final time

J = min(z̄(ω) + r(ω))T (z̄(ω) + r(ω)) +

∫ ω

0

1

2
(z̄ + r)TQ(z̄ + r) + wTwdτ.(4.75)
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Since r(ω) = 0 we will replace (4.75) by

J = min z̄(ω)T z̄(ω) +

∫ ω

0

1

2
(z̄ + r)TQ(z̄ + r) + wTwdτ. (4.76)

For the remainder of this section z will be in the new variable τ as will all differ-

ential equations and derivatives. Note that z(0) and z(ω) are both free. We shall fix

z(0) and then reformulate to get a standard problem. Then given the solution of the

standard problem we will minimize over z(0).

Solution to Optimal Control

Again using Table 4.1-1 in [26] and simplifying based on our system we follow

the form in [26] P = 2I, R = 2I, and C = I, where I is an identity matrix of

appropriate dimensions. The optimal affine control can be found using the following

set of equations:

K(τ) = −1

2
M̂TΠ(τ) (4.77a)

Π′ = ATΠ + ΠA+
1

2
ΠM̂M̂TΠ−Q, Π(ω) = 2I (4.77b)

u′ = (A− M̂K)Tu−Qr, u(ω) = 0 (4.77c)

w = −Kz̄ − 1

2
M̂Tu. (4.77d)

Here we take the normal Ricatti equation and integrate it forward in time from t = 0

without the minus sign on the left-hand side, then reverse the resulting solution to

shift it to t = ω. Further details about using this setup can be found on pages 174-175

of [26]. This is equivalent to keeping the Ricatti equation as −Π′ and then taking the

integral from ω to 0, where now 0 is our upper bound.
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The closed loop plant becomes:

z̄′ = (A− M̂K)z̄ + M̂M̂Tu. (4.78)

The optimal cost on [τ, ω] for any τ using this control is

J(τ) =
1

2
z̄(τ)TΠ(τ)z̄(τ)− z̄(τ)Tu(τ) + f(τ), (4.79)

where the new auxiliary function f(τ) satisfies

f ′ =
1

4
uM̂M̂Tu− 1

2
rTQr, τ ≤ ω (4.80)

with

f(ω) = r(ω)T r(ω) = 0

since our reference track at the final time is r(ω) = 0. The optimal control w is

determined by solving (4.77b) for Π. Since z̄ is not required to find Π, this calculation

can be done off-line. The Kalman gain matrix K can also be computed and stored.

Note that K(t) is completely specified once the system, cost function, and terminal

time are specified. During the control run the optimal control w∗ is found using

(4.77d) applied to the plant which gives (4.78). However, since our control is the

additive uncertainty or noise in our model we only need to minimize the cost function.

We just make sure that the noise is within the bounds set.

The optimal cost to go and the value of the inner min will be

J(0) =
1

2
z̄(0)TΠ(0)z̄(0)− z̄(0)Tu(0) + f(0). (4.81)
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Now we minimize over z̄(0). Taking the derivative of J(0) with respect to z̄(0) we get

Jz̄(0) = Π(0)z̄(0)− u(0) (4.82)

and setting Jz̄(0) = 0 gives

z̄(0) = Π−1(0)u(0). (4.83)

We can simplify by substituting (4.83) into (4.81). The cost becomes

J(0) = −1

2
u(0)TΠ(0)−1u(0) + f(0). (4.84)

It is important to note that all we need from this inner minimization is the inner

cost. As shown in this section that can be accomplished by a set of numerical inte-

grations. Depending on the length of the time interval and number of grid points we

have the option of either integrating a second time or saving the previous integration

if we need a function a second time.

Algorithm for the Inner Minimization Using Approach I

The previous formulations and calculations were done to determine a solution

for the optimal test signal v that works. To actually carry out the evaluation the

following must be done. Note that we start out knowing r(ω), f(ω),Π(ω), u(ω).

1. Integrate (4.77b), (4.77c), (4.72) in backward time to get Π(0), u(0), r(0).

2. The feedback K (or Π) is saved from this iteration.

3. Equation (4.83) now gives us z̄(0). In order to evaluate (4.84) we need f(0).
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4. Given z̄(0) and r(0) we can integrate (4.69), (4.77b), and (4.77c) in forward

time to get z̄(ω).

5. We can now integrate (4.80) in backward time to get f(0).

Note that since we are interested in the value of the minimum, the results from

the integrations do not need to be saved unless it is advantageous in some way. Also,

the length of the integration interval is the test period which usually will not be very

long. The accuracy required of the numerical integration is related to the size of the

incipient faults and the conditioning of the differential equations of the system tested.

Accordingly, we use a fourth order integrator to solve this problem numerically. If the

systems are not stiff, an explicit method will work faster. For integrations involving

v, we have that v is piecewise constant. To maintain accuracy our first choice is a

fourth order Runge-Kutta method, where the computational grid is chosen so that

the points ti where v changes are a part of the grid. Since the Runge-Kutta methods

are one step methods, they will not lose any accuracy due to the loss of smoothness

in v.

The integrations will be done many times since they are in the inner minimization.

For many problems they can be sped up by either using a fixed grid, or computing

the grid on the first integration, and then for subsequent iterations reusing the grid

found for the first δθ value.

The computational effort can also be sped up by using an educated guess for the

first value of v. For example, one could pick a value of δθ in the interior of Ω, use

the standard two model algorithm to find a good proper test signal, and then use

this signal to begin the optimization. When computing this initial guess it is helpful

to take ‖δθ‖ as small as possible since this will produce a larger and more realistic

initial guess for v.

Depending on the incipient faults of interest there may be additional ways to speed

up the algorithm. For example, sensor faults would often be modeled by matrix C

depending on θ.
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4.4.2 Approach II

Ricatti solutions are popular since they restrict the size of the problem that is

being dealt with at each time step and because they provide the optimal solution in

a feedback form. However, in our setting when conducting the inner min we are only

interested in the value of the optimal cost. In the inner min, the control is the worse

case noise and we do not need to compute it. Also, the testing period may be short.

Thus, in some cases it may be better to directly solve for the minimum value from

the necessary conditions.

1. Transformed Problem: The boundary value problem (bvp) and necessary con-

ditions follow. Based on the work done using Approach I for solving the inner

min, we have

z̄′ = −Az̄ − M̂w (4.85a)

r′ = −Ar −Bv, r(ω) = 0. (4.85b)

We also have our Hamiltonian

H =
1

2
(z̄ + r)TQ(z̄ + r) + wTw − λT (−Az̄ − M̂w). (4.86)

Thus,

λ′ = ATλ−Qz̄ −Qr, (4.87a)

w =
1

2
M̂Tλ. (4.87b)

So we can rewrite the state equation as

z̄′ = −Az̄ − 1

2
M̂M̂Tλ (4.88)
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and the cost function can be written as

J = z̄(ω)T z̄(ω) +

∫ ω

0

1

2
(z̄ + r)TQ(z̄ + r) +

1

4
M̂M̂Tλdτ (4.89)

The following is the algorithm for the inner minimization using Approach II.

We solve the boundary value problem

z̄′ = −Az̄ − 1

2
M̂M̂Tλ, (4.90a)

λ′ = ATλ−Qz̄ −Qr, λ(ω) = 2z̄(ω) (4.90b)

r′ = −Ar −Bv, r(ω) = 0 (4.90c)

q′ =
1

2
(z̄ + r)TQ(z̄ + r) +

1

4
λTM̂M̂Tλ, q(0) = 0 (4.90d)

with a boundary value solver. Given the solution of (4.90), the value of the

inner minimum for fixed z(0) is

q(ω) + z̄(ω)T z̄(ω). (4.91)

Suppose that the dimension of z̄ is n. Then, just one integration of (4.77b)

requires integrating a system with 1
2
(n2 + n) unknowns. On the other hand,

(4.90) involves 3n + 1 dimensional differential equation. Thus, using (4.90)

could be competitive under some conditions.

2. Untransformed Problem: If it is decided to use a boundary value problem solver

then we do not need several of the earlier transformations used to get a tracking

problem in standard form. Instead we can start with the optimal control prob-

lem (4.35) subject to (4.66). Since ν appears in the cost function, but not in

the constraint we can first minimize over ν and get again that ν = 1
2
C̃z. Thus
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we have to minimize

J = z(0)T z(0) +

∫ ω

0

wTw +
1

2
zT C̃T C̃zdτ (4.92)

subject to

z′ = Az +Bv + M̂w. (4.93)

The Hamiltonian is given by

H = wTw +
1

2
zT C̃T C̃ + λT (Az +Bv + M̂w) (4.94)

so that the necessary conditions include

z′ = −Az +Bv + M̂w (4.95a)

λ′ = −ATλ− C̃T C̃z (4.95b)

0 = 2w + M̂Tλ. (4.95c)

Using (4.95c) to eliminate w we get that the boundary value solver call will

solve

z′ = Az +Bv − 1

2
M̂M̂Tλ (4.96a)

λ′ = −ATλ− C̃T C̃z (4.96b)

u′ =
1

4
λTM̂M̂Tλ+

1

2
zT C̃T C̃z (4.96c)

λ(0) = −1

2
z(0) (4.96d)

λ(ω) = 0 (4.96e)

u(0) = 0. (4.96f)
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The value of the inner minimum is then

u(ω) + z(0)T z(0). (4.97)

4.5 Outer Optimization

The outer optimization is done over the test signal. We begin with a test signal v

that is infinite dimensional so we need to reduce the problem to a finite dimensional

problem. Here we discuss how to compute v and a method used to develop a finite

problem.

4.5.1 Computation of the Test Signal

We now carefully examine how to evaluate the smallest noise S(v, δθ). The outline

of our general algorithm follows:

• For fixed δθ, v with ‖v‖ = 1 we compute the minimum of S where S is given

by (4.11). That is, we compute the smallest amount of noise consistent with

getting the same output from both models for a given value of δθ. This is the

first min. Note that we only need the value and not the noise that produces

that value. We call this minimal value S(v, δθ).

• Then, we minimize S(v, δθ) over δθ ∈ Ω. For a given v we derive the smallest

noise S that results in equal outputs for all δθ. The value that results from this

calculation is called S(v) or the second minimum.

• The larger the value for S(v), the better the resulting test signal. Accordingly,

we perform the outer maximum over ‖v‖ = 1 of S(δθ) to get a value S∗ and a

test signal v̄ satisfying the condition ‖v̄‖ = 1.
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• If S∗ > 1, then v̄ is proper but can be taken smaller. If S∗ < 1, then v̄ is

not proper and must be increased. Finally, we determine an optimal proper

incipient test signal v∗ = v̄√
S∗

.

Ω is parameterized by a finite dimensional vector δθ. Thus, in principle this minimum

can be carried out by standard routines in Matlab such as fmincon as long as there

is a subroutine to evaluate the smallest noise S(v, δθ).

The outer optimization is done over v. In general, v is infinite dimensional. How-

ever, the problem can be reduced to a finite dimensional problem using finite di-

mensional approximations, which often produce test signals that are both easier to

implement [12] and sufficiently optimal. Two of the more popular finite dimensional

approximations are piecewise constant (or piecewise spline) test signals or truncated

Fourier series. However, piecewise constant (or piecewise linear) signals are often

used in practice since they are easier to implement. If we take v to be from a finite

dimensional signal space, then this outer maximum is also over a finite dimensional

compact set. There are a many ways to get a finite dimensional family of v, which is

best depends on the problem. This idea is discussed further in Section 4.5.2.

4.5.2 Piecewise Constant Controls

Often it is most practical to apply piecewise constant or piecewise linear inputs.

We consider piecewise constant test signals. Assume v is piecewise constant, then

there are

• A finite number of times 0 = t0 < t1 < . . . < tk = ω,

• A finite number of values vi such that v(t) = vi for t ∈ [ti, ti+1).

In the first variation, the times t0, . . . , tk are fixed and the values v0, . . . , vk−1 are

the parameterization of the test signal we optimize over. If the vi are m-dimensional,

then there are mk parameters. Often we can take k small, like k = 3 or k = 4. In

the second variation k is fixed, but the times t1, . . . , tk−1 are not fixed. The values



Chapter 4. Continuous Time Case 95

v0, . . . , vk−1 and the t1, . . . , tk−1 are the parameterization of the test signal we optimize

over. If the vi are m-dimensional then there are mk + k − 1 parameters. Here we

expect to be able to take k a little smaller than in variation one.

In [12] an algorithm is presented to compute optimal piecewise constant test sig-

nals. This paper focused on the case where the test signal changes a small number of

times. Examples were shown to illustrate computational differences between different

types of piecewise constant signals.

In [12] Choe et. al. develop a minimal piecewise constant test signal of the

original continuous time fault detection problem. With continual monitoring using

a test signal v, a fault that causes an abrupt change in the system is detected. The

times where the v changes value is called the v-grid. There are two steps in this

process:

• Develop an algorithm for computing minimal piecewise constant detection sig-

nals for a fixed v-grid;

• Optimize over the v-grid of the signal.

Note that the v-grid optimization is a nonlinear inequality constrained optimization

problem.

[12] highlights the case where the detection signal has a small number of constant

pieces, like one or two. As long as the uncertainty bounds and model assumptions

hold, the computed test signal is designed to guarantee the correct decision. There is

no particular form to the uncertainty.

4.5.3 Optimizing Over the Parameters

Provided the set Ω has a reasonable form, the next level of minimization is straight-

forward. However, we must be careful when we do the outer optimization since it is

over ‖v‖ = 1. The approach taken depends on what optimizers we have available.

We show the case where ti+1 − ti = τ a constant and we have times t0, . . . , tK . We

assume γ =
√
τ
−1

.
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One parameterization is

‖v0‖ ≤ γ (4.98a)

‖v1‖ ≤ γ
√

1− ‖v0‖2 (4.98b)

‖v2‖ ≤ γ
√

1− ‖v0‖2 − ‖v1‖2 (4.98c)
... (4.98d)

Now for each individual vi we can use n-dimensional spherical coordinates. This

results in K identical sets of box constraints and the radial coordinate bounds:

ρ0 ≤ γ (4.99a)

ρ1 ≤ γ
√

1− ρ2
0 (4.99b)

ρ2 ≤ γ
√

1− ρ2
0 − ρ2

1 (4.99c)

... (4.99d)

ρk ≤ γ

√√√√a−
K−1∑
i=0

‖ρi‖2. (4.99e)

It is important to note that for a given v that v√
S(v)

is a proper test signal. Thus

during the optimization over d we can stop at any time and have a test signal that is

proper for all incipient faults with δθ ∈ Ω. Attaining a minimum proper test signal

will usually not be necessary. A sufficiently small detection signal will work.

If S(v) > 0, then some multiple of v will be proper. This means that during the

outer optimization at each iteration we can easily get a proper test signal which is

not optimal. Accordingly, early termination of the algorithm results in a test signal

that is suboptimal, but could still be quite good. In practice this feature should be

utilized in the code to compute the test signal.
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4.6 Examples

Example 7. To illustrate how we can implement the procedure outlined in Section

4.5.1 we consider the following academic example on the interval [0, L]. We suppose

L = 4 for the following system

x′ =

−θ1 θ2

1 −θ1

x+

0

1

 v +

µ1

µ2

 (4.100a)

y =

(
1 0

)
x+ ν1. (4.100b)

A change in θ1 may be thought of as a change in the internal damping of friction of

the system while a change in θ2 alters a frequency of the damped free response. We

suppose that our test signal generator produces sinusoids of predetermined frequency

and we seek a test signal of the following form

v = c1g sin(
πt

L
) + c2g sin(

2πt

L
) + . . .+ cng sin(

nπt

L
), (4.101)

where g =
√

2
L

and n is any positive integer. The v are thus chosen in a finite

dimensional subspace.

We compute optimal test signals for n = 1, 2, 3, 5. We can think of v as using

the first n terms of a Fourier sine series to generate a finite dimensional space of

test signals. Then v(t) has L2 norm of one precisely when c2
1 + c2

2 + . . . + c2
n = 1.
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We parameterize c using the same box constraints we had over w in the discrete time

case. ‖c‖ = 1 and the parameterization is

c1 = cos(d1) (4.102)

c2 = sin(d1) cos(d2) (4.103)

c3 = sin(d1) sin(d2) cos(d3) (4.104)

...
... (4.105)

cn−1 = sin(d1) . . . sin(dn−2) cos(dn−1) (4.106)

cn = sin(d1) . . . sin(dn−1) (4.107)

where 0 ≤ d1 ≤ π and 0 ≤ di ≤ 2π for i ∈ [2, n − 1]. We refer to the c′is as the

coefficients of v. Note that the test signal is a function of c and t, i.e., v(c, t). The

n = 1 case of Equation (4.101) is also of interest. In that case there is no optimization

over d, just a rescaling is needed to make v proper.

The normal parameter values are θ1 = 0.1, θ2 = 1.0, which gives eigenvalues of

−θ1 ±
√
θ2. The fault condition is given by δθ1 ∈ [1, 2] and δθ2 ∈ [2, 4].

To solve this problem we use the second algorithm outlined in Section 4.4.2. The

boundary value problem (4.96) is solved using the Matlab function called bvp4c and it

gives a solution to the innermost minimum. Then we optimize over the perturbations

and over the test signals using a Matlab command called fmincon. This gives the
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optimal test signal v∗. This problem is well behaved, but if the dynamics are stiff then

extra care is needed when integrating the boundary value problem.

In fact, initially we started with a different matrix A, but a problem occurred when

the optimizer was applied to the system because the solution was getting too large too

fast. This error was due to the eigenvalues of matrix A, which resulted in an ill-

conditioned boundary value problem and the solver would not produce any solutions.

In order to resolve this problem we changed A so that it would have smaller eigenvalues

and this resulted in a better condition number. The system we use is well-conditioned

so it is less sensitive to perturbations of A or b. The growth of the solution was

reduced as well.

The function that gives the value of the inner min for a given d was called in-

nermin2. The optimal value of d is found by a maximization. This was done by

minimizing -innermin2. To get an idea of the optimization landscape for this exam-

ple, we plot z=-innermin2(d) for two dimensional d (or n = 3) in Figure 4.1.
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Figure 4.1: Plot of z=innermin2(d) for n = 3

We also plot v∗ for n = 1, 2, 3, 5. Recall that −v∗ is proper if v∗ is proper so for

comparison purposes we actually plot the −v∗ for n = 3, 5 separately and then graph

all of the test signals together. Table 4.1 gives the norm and coefficients of the optimal

test signal found for each n.

Table 4.1: Example 7 Optimal Test Signal v Norm and Coefficients

n norm Coefficients
1 5.4365 1 0 0 0 0
2 3.7456 0.6091 0.7931 0 0 0
3 3.6858 -0.5419 -0.8024 -0.2499 0 0
5 3.6247 -0.5172 -0.7795 -0.2795 -0.1631 -0.1418

Each n produces a suboptimal incipient test signal v∗. As we increase the number

of parameters in v (the test signal form), the size of the test signal decreases. In this

example, most of the improvement is present already by n = 2. This is consistent with

some of the previous work on different problems where it was seen that on long time
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intervals some type of sinusoid approaches optimal. Figure 4.6 is the result when all

the test signals are plotted on the same graph.

Figure 4.2: Optimal test signal for n = 1 for Example 7
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Figure 4.3: Optimal test signal for n = 2 for Example 7

Figure 4.4: Optimal test signal for n = 3 for Example 7
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Figure 4.5: Optimal test signal for n = 5 for Example 7

Figure 4.6: Optimal test signal for n = 1, 2, 3, 5 for Example 7
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Example 8. In the previous example both eigenvalues were real. Now we illustrate

how different the problems can be when we consider a slightly different system matrix.

Again using the procedure outlined in Section 4.5.1 (the same method implemented in

Example 7), we examine the following system on the interval [0, 4]

x′ =

−θ1 −θ2

1 −θ1

x+

0

1

 v +

µ1

µ2

 (4.108a)

y =

(
1 0

)
x+ ν1. (4.108b)

A change in θ1 may be thought of as a change in the internal damping of friction of

the system while a change in θ2 alters a frequency of the damped free response. We

use the same finite dimensional family of test signals as in Example 7. The n = 1

case of equation (4.101) is also examined.

The normal parameter values are θ1 = 0.3 and θ2 = 4.0 so that the free response

of the system is a lightly damped oscillation. The fault condition is given by δθ1 ∈

[−0.1, 0.1] and δθ2 ∈ [1, 2]. Since the eigenvalues of this system are −θ1 ±
√
θ2 we

have that the problem is a lightly damped oscillation. We consider the perturbations

as an uncertainty in the damping and an incipient fault in frequency.

Table 4.2 gives the norm and coefficients of the optimal test signals found for each

n. Recall that −v∗ is proper if v∗ is proper so for comparison purposes we actually

plot the −v∗ for n = 3, 5. We plot v∗ for n = 1, 2, 3, 5. Figure 4.11 gives the graph
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Table 4.2: Example 8 Optimal Test Signal v Norm and Coefficients

n norm Coefficients
1 24.4291 1 0 0 0 0
2 8.5087 0.2061 0.9785 0 0 0
3 6.2633 0.5403 -0.3632 -0.7591 0 0
5 5.1781 0.0316 -0.3494 -0.8690 -0.3378 0.0881

of all of the test signals plotted together. It can be seen that the test signal for n = 1

is larger than that for any n > 1. In fact just like in Example 7 as n increases the

norm of v decreases and the inner minimum increases.

This problem’s solution is different from the solution of Example 7 in several ways.

Here the extra terms in the approximation beyond n = 2 continued to be useful. It is

interesting to look at the optimal test signal. In this problem, the imaginary part of

the eigenvalues for the nonfaulty system were ±2i and for the faulty system were ±γi

with
√

2 ≤ γ ≤
√

3. Looking at the n = 5 case the dominant term in v of the form

sin(ψt) has ψ = 2.3562. Thus the optimizer chose a signal whose dominant frequency

was both close to the frequency of the nonfaulty system yet some distance from the

faulty frequencies.
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Figure 4.7: Optimal test signal for n = 1 for Example 8

Figure 4.8: Optimal test signal for n = 2 for Example 8
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Figure 4.9: Optimal test signal for n = 3 for Example 8

Figure 4.10: Optimal test signal for n = 5 for Example 8
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Figure 4.11: Optimal test signal for n = 1, 2, 3, 5 for Example 8
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4.7 Using the Test Signal

In the standard two model test using an active test signal there is a direct pro-

cedure for using the test signal. Each model has a noise bound and as the output y

is received, a filter is run which is computing the minimal noise needed to have y as

an output of that particular model. Once one of the filters exceeds the bound, it is

possible to decide if a fault is present or not. A similar idea can be used for this case,

but we need to modify the method slightly because of the δθ parameter. Running

a δθ optimization would be computationally expensive to have in the filter. Also,

we use the two-norm on the total noise in the two models instead of the max norm

as in [10]. These differences can be handled by noting that for linear problems with

additive uncertainty that the test signals and noise bounds scale together. Note that

for any pair of real numbers a, b we have

max(‖a‖, ‖b‖) ≤
√

(a2 + b2) ≤
√

2 max(‖a‖, ‖b‖).

The actual application of the test signals would proceed as follows. Suppose that

we have a set of incipient faults parameterized by Ω and given by (4.12). Assume

that the noise bound for each model separately is

Si = xi(0)Txi(0) +

∫ ω

0

νTi νi + µTi µi dt < δ2. (4.109)

We compute the test signal v∗ for a bound of 1. Let v̂ = δ
√

2v∗. Using this test signal

we have that if we get the same output from both the normal and any of the faulty

models, then one of the models must have noise Si larger than δ2. We then run the

standard filter on just the normal model. From Theorem 3.3.4 of [10] we have the

following proposition.

Proposition 1: Given the systems (4.8), (4.9), and the noise bound (4.109). Let

v∗ be the test signal for the multi-model incipient problem found by the algorithm of
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this thesis with the bound S < 1. Let

v̂ = δ
√

2v∗, Q = MMT , and R = NNT .

Let

γ(s) =
∫ s

0
ζTR−1ζdt

where

P ′ = AP + PAT − PCTR−1CP +Q, P (0) = I (4.110a)

z′ = Az − PCTR−1ζ −Bv̂ (4.110b)

ζ = Cz − y. (4.110c)

If at any time τ during the test period we have γ(τ) > δ2, then a fault has occurred.

If γ(ω) ≤ δ2, then no fault has occurred.

P can be found either online or offline depending on the problem. If P is to be

found online, then let

G1 = CTR−1C,G2 = R−1, G3 = CTR−1

and integrate the system

P ′ = AP + PAT − PG1P +Q, P (0) = I (4.111a)

z′ = (A− PG2)z − PG3y −Bv̂ (4.111b)

γ′ = (Cz − y)TR−1(Cz − y), γ(0) = 0. (4.111c)

Note that (4.111) can be integrated as y arrives from the sensors so that ζ(t) is

available in close to real time and the test can be stopped when the fault is detected.
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4.8 Conclusions for the Continuous Time Case

The previous work on active failure detection has considered both additive and

model uncertainty. While we have focused on additive uncertainty, we in fact are

also including a type of model uncertainty. The model uncertainty considered here is

quite different than that considered in [10] and the related papers. In [10] the model

uncertainty is handled by writing a larger system using a formulation similar to that

of [37]. While proven useful that type of model uncertainty has the effect in our

setting of increasing the amount of uncertainty with increasing size of the test signal.

In fact, very large test signals may not even be proper.

In this setting, we can think of part of Ω as the range of the incipient fault and

part of it as a type of model uncertainty. Note that we only require that 0 /∈ Ω, but

for any particular variable θi we can allow δθi to vary over a set including 0. Thus

we can use some of the δθi to express the incipient fault and the other δθj to express

model uncertainty in either the faulty or nonfaulty model. Depending on how v and

θ enter the equations it is no longer the case that there have to be limits on the size

of the proper test signal. This can greatly increase the robustness of the numerical

approaches used. Note that on Example 8 we allowed δθ1 to take on the value of zero.

While we do not discuss this in depth here, our results can also be useful in

parameter identification. A test signal which is useful for testing an incipient fault

in variable θi is also one for which the value of θ is sensitive to. This idea will be

examined more carefully in chapter five.

This chapter presents the first algorithm for the computation of minimal proper

test signals to detect multiple simultaneous incipient faults in continuous time linear

systems. We have addressed the δθi as being parameter variations which are the

incipient fault, but in fact part of them could be model uncertainty and a particular

value of some of the drift parameters δθi could be zero. The only assumption that is

required is that the vector perturbation δθ is bounded away from the origin. However,

the computational algorithms and software may also need that Ω is convex in order

to perform efficiently.



Chapter 4. Continuous Time Case 112

This work differs from the previous incipient work in several key ways. We allow

for multiple faults to occur concurrently and we do not use linearizations, so there

is not an assumption of small test signals. In addition, the model uncertainty is

formulated in a very different way. For larger fault sets Ω, our signal is still guaranteed

to be proper. In the previous work, the uncertainty appeared in the form of another

type of noise and placed stronger restrictions on the test signal than we have with

our approach here. Also, in previous studies larger test signals always expanded

the amount of noise until at some point detection might be impossible. Finally, our

approach to uncertainty is somewhat less conservative than the usual approximations

which increase the allowed level of noise in order to incorporate the uncertainty.
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Chapter 5

Future Work

We discuss some of the remaining open problems and highlight some practical

applications related to the fault detection approach considered in this dissertation.

5.1 Examination of Model Uncertainty

A perfectly accurate mathematical model of a physical system can not be con-

structed. Usually, the parameters of the system vary with time and the characteristics

of the noises are unknown so they cannot be modeled accurately. Therefore, there is

always at least a slight difference between the actual process and its mathematical

model even when there are no faults present. A good model should be simple enough

to design, yet complex enough to give the engineer confidence that designs based on

the model will work on the true plant [46].

The discrepancies that arise in design may cause difficulties in fault detection and

isolation (FDI) applications. In particular, they may act as sources of false alarms

or missed alarms. The modeling of uncertainties and noise is thus the most critical

part in model-based FDI concepts and the solution to this problem is the key for its

practical use. One way to address the problem of model uncertainty in a system is

to create an FDI scheme that increases insensitivity to modeling uncertainty in order

to provide increased fault sensitivity [43].
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An important task of the model-based FDI scheme is to be able to identify in-

cipient faults in a system. Unlike abrupt faults, incipient faults may have a small

effect on residuals and they can be hidden by disturbances. The presence of incipient

faults may not necessarily degrade the performance of the system, however, they may

indicate that the component should be replaced before there is a chance of a more

serious malfunction in the plant. As a result, the successful detection and diagnosis

of incipient faults can be challenging in the design and evaluation of FDI algorithms

[43].

Error and uncertainty are often used interchangeably to describe what we some-

times refer to as noise in an observed system. However, they are defined slightly

differently. Error is defined as a recognizable deficiency in any phase or activity of

modeling and simulation that is not due to lack of knowledge [1]. Uncertainty is

defined as a potential deficiency in any phase or activity of the modeling process that

is due to a lack of knowledge [1].

The definition for error implies that the deficiency is identifiable upon examina-

tion. Errors can also be classified as acknowledged or unacknowledged. Acknowledged

errors (like round-off error and discretization error) have methods for identifying them

and possibly removing them. Otherwise, they can remain in the code with their error

estimated and listed. Unacknowledged errors (examples include computer program-

ming errors or usage errors) have no set procedure for finding them and may continue

within the code or simulation.

The key word in the definition of uncertainty is potential, which indicates that

deficiencies may or may not exist. Lack of knowledge referenced in the definition

has primarily to do with lack of knowledge about the physical processes that go

into building the model. Sensitivity and uncertainty analyses can be used to better

determine uncertainty.

There are two main types of uncertainty. This thesis deals with additive uncer-

tainty and some types of model uncertainty. There is also the possibility of exploring

model uncertainty further with this same type of problem.

Examining model uncertainty allows for the estimation of variability of the model
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parameters that result from random disturbances in the output. Understanding model

variability helps with understanding how different the model parameters would be if

the estimation was repeated using a different data set (with the same input sequence

as the original data set) and the same model structure. Some references include

[43, 46].

The parameter θ could be taken as model uncertainty. Based on [43], we consider

the situation where the system matrices are functions of the parameter vector θ ∈
<n×1:

xk+1 = A(θ)xk +B(θ)vk +Mµk, k = 0, . . . , K − 1 (5.1)

If the parameter vector varies around the nominal condition θ = θ0, then (5.1) can

be rewritten as:

xk+1 = A(θ)xk +B(θ)vk +Mµk +

g∑
i=1

(
∂A

∂θi
δθix+

∂B

∂θi
δθiv), k = 0, . . . , K − 1 (5.2)

In this case, the distribution matrix and unknown input vector can be represented

by:

E =
(
∂A
∂θ1
| ∂B

∂θ1
| . . . | ∂A

∂θg
| ∂B

∂θg

)
, d(t) =

(
δθ1x

T | δθ1v
T | . . . | δθgx

T | δθgv
T
)T

.

5.2 Fault Identification

A fault is defined as an unacceptable deviation of the system behavior. It is a

malfunction that can disturb the normal operation of a system, causing an unaccept-

able deterioration of the performance of the system. Therefore, it is important to

diagnose faults as early as possible [45].

Fault diagnosis consists of determining the fault type with as many details as

possible such as the fault size, location, and time of detection. Fault diagnosis usually
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includes the following tasks:

• Fault detection - the existence of a fault, which leads to undesirable behavior

in a system, determined;

• Fault isolation - the location of the fault (which component has become faulty)

is determined;

• Fault identification - the magnitude, type, and cause of the fault are estimated.

In this thesis we focus on detecting faults only, but there is also the problem of fault

identification which is considered the most important of all of the fault diagnosis

tasks [43]. The detection and isolation of a fault are more easily achieved during the

diagnosis process so there have been many studies on these topics. However, the fault

identification problem itself has not gained as much research attention [43].

5.3 Parameter Identification

There is another problem called parameter identification. Parameter identification

is an important part of any successful design for controlling systems with unknown

parameters [35]. For continuous linear time invariant systems, the Kalman filter-

based identifier is a popular design method for online parameter identification. The

Kalman filter-based identification scheme can be applied directly to the system when

the state variable and its derivative are both available for identification purposes.

However, if the only information we have available to us is noise corrupted output

measurements, the identification scheme must utilize the Kreisselmeier observer in the

single-input-single-output (SISO) case or a general prefiltering-based design for the

multi-input-multi-output (MIMO) case. After this process, the problem is converted

to one that can be solved using the Kalman filter-based method [35].

One can think of our design as determining a test signal v for which the output

is more sensitive to parameter change. This suggests our results might be useful also

for designing test signals for parameter identification.
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5.4 More Efficient Algorithm

When writing code to solve a problem it is important to consider the efficiency of

the algorithm used. One major factor to consider when analyzing the efficiency of an

algorithm is the time it takes to get a solution. It takes about half an hour to run the

code to solve a two parameter problem for n > 2 for Examples 7 and 8 in Chapter

4. Accordingly, developing code that solves the continuous time case faster is a topic

for future study.

5.5 Applications

Incipient fault detection consists of early detection of small variations in system

behavior. Therefore this technique can be very useful in maintaining the integrity and

efficiency of practical systems. In addition, there is usually a cost savings when poten-

tial machine failures are detected before they occur. For example, in manufacturing,

machine tools are used extensively to create objects to fit specific needs. Recent

studies indicate that as many as ninety percent of the failures of machine tools occur

because of the malfunction of internal components such as the main motor. There-

fore, it is important that these motor malfunctions are detected and corrected before

the quality of the system is degraded and the overall system is jeopardized [13]. Some

of the applications include detecting incipient faults in small DC motors found in

personal computers, big motors used in power plants, and valve actuators found in

HVAC systems.

Future research would include the investigation of specific applications and effi-

cient algorithms tailored to these applications.
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Chapter 6

Concluding Remarks and

Contributions

6.1 Concluding Remarks

We assume that the detection signal v is available to us over a given time interval

and we use it to reveal the presence of incipient faults. There are multiple questions

that must be addressed in finding solutions to this optimal control problem: under

what conditions does an input v exist such that small parameter variations (incipient

faults) of a given size can be detected, what is the smallest energy v resulting in

detection, and how can the detection procedure be implemented on-line. It should

be noted that detection is considered possible if the set of outputs y corresponding

to the nominal system and the set of outputs corresponding to the faulty system do

not intersect.

We use an active approach to detect incipient faults in linear systems where there

is more than one drifting parameter. A threshold is specified and we seek detection

if some combination of uncertainties is exceeded. The shape of a good test signal

independent of δθ is determined. Then, we scale the detection signal depending on

the specified threshold. The incipient test signal solution can be compared to the

solutions found using the two model approach.
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In the two model approach, we find a test signal for two fixed models that guaran-

tees detection for a special case. The incipient test signal is found using two models

that are the result of problem reformulation and a limiting process. Therefore, incip-

ient test signals can be very different from the two model test signals. With scaling,

the incipient detection signal is designed to work for a parameterized family of models.

If there is only one δθ, then we get two models just like the model problem.

However, the value for δθ may vary and we consider a few different values. As a

result, we do not want to compute a separate v for every value of δθ. Therefore, we

construct a model where θ is the parameter and another model where θ + δθ is the

parameter (δθ 6= 0). We compute a signal that can work for a range of values of δθ.

In the process, we do some approximations and a change of variables. This gives

equations that look like two models with no δθ in the expression. There is a new

optimal test signal, v∗inc = 1
δκ

1
ζ
w∗, where we take w∗ = 1

σ
γ for the discrete time

case. We solve for ṽ given δκ using ṽ
δκ

. ṽ is actually a suboptimal test signal due

to approximation. In certain places, we drop higher order terms. Since this is an

approximation, this works if δθ is small enough. If the model is linear, then we

will not get the higher order terms so the approximation will be the actual result.

However, with the nonlinear case, we must be more careful because we will lose some

higher order terms when calculating the approximation. As a result, for the linear

case, we can use a larger interval for δθ values, but in the nonlinear case the model

works for smaller intervals of δθ. The continuous case works in a similar manner.

We found that for the discrete time case

• v∗inc covers a range of problems, so we expect it to be larger than just one test

signal for a special case

• For smaller δκ, v∗inc is closer to the solution of the two model test signals

• The problem solved is a min-max problem

Discrete systems can arise in different ways. They can be discrete or they can be

approximations of continuous time systems. Example 6, which is set up as a discrete
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problem, is an approximation of a continuous time system. In fact, it is what happens

when you apply Euler’s numerical method to the equation x′′ + dx′ + sx = v.

In general, we sometimes approximate a continuous time system by a discrete

system. However, if there are lots of time steps it is sometimes better to look at

a discrete time system as continuous. However, this is only possible sometimes. In

addition, depending on the algorithm implemented to solve for the incipient test signal

it may be better to choose either a discrete time or continuous time model.

6.2 Contributions

6.2.1 Papers

• Active Incipient Fault Detection With Two Simultaneous Faults

– Safe Process 2009 7th IFAC Symposium on Fault Detection, Supervision

and Safety of Technical Processes, Barcelona, Spain, presenter Alireza Esna

Ashari

This paper addresses the problem of detecting small parameter variations in

linear uncertain systems due to incipient faults by injecting an input signal to

enhance detection of the faults. Previous work assumed that there was only one

fault occurring at a time. We allow for two concurrent faults, which is a natural

assumption in the incipient case. A useful method for the construction of an

optimal input signal for achieving guaranteed detection with specified precision

is presented in the discrete model case. This method is an extension of the

multi-model approach used for the construction of auxiliary signals for failure

detection, however, new technical issues included. The paper was presented.

• Active Incipient Fault Detection With More Than Two Simultaneous Faults



Chapter 6. Concluding Remarks and Contributions 121

– 2009 IEEE International Conference on Systems, Man, and Cybernetics,

San Antonio, Texas

This paper extends the idea highlighted in Active Incipient Fault Detection With

Two Simultaneous Faults by focusing on the case where we look at linear uncer-

tain systems with three incipient faults occurring simultaneously. A computa-

tional method for the construction of an input signal for achieving guaranteed

detection with specified precision is presented for discrete time systems. This

method is an extension of the multi-model approach used for the construction

of auxiliary signals for failure detection, however, new technical issues included.

A case study is examined.

• Active Incipient Fault Detection In Continuous Time Systems With Multiple

Simultaneous Faults

– Provisionally Accepted to Numerical Algebra, Control, and Optimization

Journal in 2010

The problem of detecting small parameter variations in linear uncertain systems

due to incipient faults, with the possibility of injecting an input signal to en-

hance detection is considered. This paper extends the work of Active Incipient

Fault Detection With More Than Two Simultaneous Faults to continuous time

systems. For the continuous time incipient fault problem the information from

the discrete time case that is relevant is utilized. However, a different method

is implemented to calculate the optimal incipient test signal for the continuous

time case. An LQR problem is solved in order to find a solution for the test

signal. A case study is examined.

6.2.2 Presentations

• Active Incipient Fault Detection With More Than Two Simultaneous Faults,

IEEE International Conference on Systems, Man, and Cybernetics, San Anto-
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nio, TX, October 2009.

• Active Incipient Fault Detection With Multiple Concurrent Faults, SIAM-SEAS

Conference, Raleigh, NC, March 2010.

• Active Incipient Fault Detection With Multiple Simultaneous Faults (Continu-

ous Time Case), SIAM National Meeting, Pittsburgh, PA, July 2010.
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Definitions

Actuator is a mechanical device for moving or controlling a mechanism or system;

a mechanical device that puts something into automatic action. It takes energy,

usually transported by air, electric current, or liquid and converts that into some

kind of motion.

Condition number The condition number of a matrixA is the quantity ‖A‖‖A−1‖.
It is the measure of sensitivity of the solution Ax = b to the perturbations of A or

b. If the condition number is one, A is said to be perfectly conditioned. A problem

with a low condition number (relative to one) is said to be well-conditioned. If the

condition number of A is large, A is said to be ill-conditioned.

Degenerate is a limiting case of some type of entity that is equivalent to some

simpler type, often obtained by setting some coefficient or parameter to zero. For

instance, when using an optimizer if the bounds have been set such that the optimal

point is outside of the boundary and the initial guess is close to a certain value, then

we may get a degenerate point.

Deterministic system is a system in which the output can be predicted with

100 percent certainty.

Disturbance is an unknown and uncontrolled input acting on a system.

Fault is an unpermitted deviation of at least one characteristic property or pa-

rameter of the system from the acceptable, usual, or standard condition.

Failure is a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.

Failure detection is the early recognition of problem-prone behavior in an ob-

served system in order to prevent the system from shutting down or causing a prob-

lematic incident. Failure detection increases system safety, reliability, and availability.

Fault diagnosis consists of determining the type, size, and location of the most

possible fault, as well as the time of detection. Fault diagnosis procedures use the

analytic and heuristics/human knowledge (that is, a set of rules intended to increase

the probability of solving some problem) symptoms.
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Fault identification is the determination of the size and time-invariant behavior

of a fault.

Fault tolerance means faults are compensated in such a way that they do not

lead to system failures. Unavoidable faults should be tolerated by additional design

efforts, like additive uncertainty in our models.

Feedback control is a type of system control we get when a part of the output

signal is operated upon and fed back to the input in order to obtain a desired effect.

It is the measurement of differences between planned outputs and actual outputs

achieved, and the modification of subsequent action and/or plans to achieve future

required results.

Fourier Series decomposes any periodic function or periodic signal into the sum

of a (possibly infinite) set of simple oscillating functions, namely sines and cosines

(or complex exponentials). The Fourier series has many applications in electrical

engineering, optics, signal processing, etc.

Hybrid systems are systems modeled by discrete dynamics combined with con-

tinuous dynamics. Also, although most systems are usually described by either a

continuous-time model or a discrete-time model, when designing a stabilizing feed-

back, it may be necessary (or more efficient) to consider a hybrid feedback law. In

this context, the system in closed loop becomes hybrid.

Ill-conditioned An ill-conditioned matrix is one where the solution to Ax = b is

overly sensitive to perturbations in A or b.

Least Squares Solution According to Wolfram Online, if we want to find so-

lutions to the matrix equation Ax = B, where A is an mxn matrix and m > n,

there may be no solution. In these cases, it is possible to find a best fit solution that

minimizes ‖Ax − B‖2 (two-norm). This generates a least squares solution. This is

often used because the function 1
2
‖Ax− B‖2

2 is differentiable in x and the two-norm

is preserved under orthogonal transformations.

If the rank of A is n (full column rank),it can be shown that there is a unique

solution to the least squares problem and it solves the linear system. If A is an m×n
matrix with m > n (i.e., there are more equations than unknowns), then the general
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way to find a least squares solution to this overdetermined system is to use SVD

to form a matrix known as the pseudo-inverse of the matrix A. We want to solve

Ax = B, so we find p = A† (pseudo-inverse). Then, x = pB. This technique works

even if the input matrix A is rank deficient.

Max norm also called the infinity norm is defined by ‖x‖∞ = maxi |xi|.
Nondeterministic system is a system in which the output cannot be predicted

because there are multiple possible outcomes for each input.

Optimization In mathematics, optimization or mathematical programming, refers

to choosing the best element from some set of available options. In the simplest case,

this means solving problems in which one seeks to minimize or maximize a real func-

tion by systematically choosing the values of real or integer variables from within an

allowed set. This scalar real valued objective (cost) function is actually a small subset

of this field which consists of a large area of applied mathematics. In general, it means

finding ’the best values’ of some objective function given a defined domain, including

a variety of different types of objective functions and different types of domains.

Orthonormal set B = u1, u2, . . . , un is called an orthonormal set whenever each

‖ui‖ = 1 for each i, and ui⊥uj for all i 6= j. In other words, the inner product of ui, uj

is equal to one when i = j and zero when i 6= j. Every orthonormal set is linearly

independent. Every orthonormal set of n vectors from an n-dimensional space V is

an orthonormal basis for V . See pages 298-300 of [27] for more about orthonormal

bases and Fourier Expansions.

Parameter is a factor that determines a range of variations; it creates a boundary

in a problem. It can also be defined as a constant or variable term in a function

that determines the specific form of the function, but not its general nature, as b in

f(x) = bx, where b determines only the slope of the line described by f(x).

Pseudo inverse is a matrix inverse that may be defined for a complex matrix,

even if it is not square. It is possible to construct many different pseudo inverses for

the same matrix; the pseudo inverse is not unique. The most commonly used pseudo

inverse, which will be used in this work, is the Moore-Penrose pseudo inverse.

Rank Let Am×n be a matrix. Then, rank(A∗)=rank(A). Also, rank(A) is the
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maximum number of linearly independent rows.

Sensor is a device that measures a physical quantity and converts it into a signal

which can be read by an observer or by an instrument. In other words, a sensor is a

device which receives and responds to a signal. A sensor’s sensitivity indicates how

much the sensor’s output changes when the measured quantity changes. Applications

include cars, machines, manufacturing, and robotics.

Singular Value Decomposition (SVD) For each Am×n matrix of rank r, there

are orthogonal matrices Um×m and Vn×n (UTU = I, V TV = I) and a diagonal matrix

Dr×r = Diag(σ1, σ2, ..., σr) such that

A = U

(
D 0

0 0

)
V T

with σ1 ≥ σ2 ≥ ... ≥ σr > 0. The σi’s are called the nonzero singular values of A.

When r < p, where p = min(m,n), A is said to have p − r additional zero singular

values. This factorization is called a SVD of A, the columns of U and V are called left-

hand and right-hand singular vectors for A, respectively. The σi’s are the eigenvalues

of A∗A and the singular vectors are specialized sets of eigenvectors for A∗A.

SVD Example-Wikipedia

Let H4×5 be a matrix such that there is a SVD H = UΣV T , where U4×4, V5×5 are

both orthogonal matrices and Σ4×5 with Dr×r, r=rank of H.

V contains an orthonormal set of input basis vectors for H and U contains an

orthonormal set of output basis vectors for H. Also, Σ contains the singular values

of H since σ2
i ’s are actually eigenvalues of HTH. Suppose U = (U1, U2), then U1 is

an orthonormal basis for R(H) (first r columns) and U2 is an orthonormal basis for

N(HT ) (last m − r columns). Let V = (V1, V2), where V1 is an orthonormal basis

for R(HT ) (first r columns) and V2 is an orthonormal basis for N(H) (last n − r

columns).
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Σ−1 is the transpose of Σ with every nonzero entry replaced by its reciprocal.

HTH is numerically unstable, especially for singular values close to zero.

H =


1 0 0 0 2

0 0 3 0 0

0 0 0 0 0

0 4 0 0 0



Then, an SVD of H represented by H = UΣV T is given by

H4×5 =


0 0 1 0

0 1 0 0

0 0 0 −1

1 0 0 0




4 0 0 0 0

0 3 0 0 0

0 0
√

5 0 0

0 0 0 0 0





0 1 0 0 0

0 0 1 0 0
√
.2 0 0 0

√
.8

0 0 0 1 0

−
√
.8 0 0 0

√
.2



Hence, we can determine H† = V Σ−1UT

H†5×4 =



0 0
√
.2 0 −

√
8

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0
√
.8 0

√
.2





1
4

0 0 0

0 1
3

0 0

0 0 1√
5

0

0 0 0 0

0 0 0 0




0 0 0 1

0 1 0 0

1 0 0 0

0 0 −1 0



which is the pseudo inverse of H.

SVD Command in Matlab [U, S, V ] = svd(X) produces a diagonal matrix

S, with the same dimension as X, containing nonnegative diagonal elements in de-

creasing order (these are the singular values of X), and unitary matrices U and V

so that X = USV ∗. The columns of V are the right-singular vectors of X for the
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corresponding singular values (found on the diagonal of S). Therefore, the rows of

V ∗ are right-singular vectors that correspond to the singular values of X.

Static case is the case when the processes have no dynamics and are simply

functions between vector spaces.

Unitary and Orthogonal Matrices These types of matrices have some nice

features, one of which is the fact that they are easy to invert. The columns of

Um×m = (u1, u2, ..., um) are an orthonormal set meaning [U ∗ U ]ij = u∗iuj (inner

product) and this equals 1 when i = j and it equals 0 when i 6= j. Also, U∗U = I

which implies that U−1 = U∗. Since U∗U = I iff UU∗ = I, the columns of U are

orthonormal iff the rows of U are orthonormal. As a result, the definition of these

matrices can be stated either in terms of orthonormal columns or orthonormal rows.

Recall: Every orthonormal set is linearly independent. Further, multiplication by an

orthogonal matrix does not change the length of the vector. Say U is an orthogonal

matrix, then ‖Ux‖2 = ‖x‖2 for any vector x ∈ <n.

Well-conditioned means numerically stable; having a small condition number.
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Matlab Commands Used

Matlab Integrator

Ordinary differential equations (odes) arise in many mathematical models and

describe phenomena that continuously change. Therefore a system of odes has many

solutions, but often there is a particular solution of interest. This solution is deter-

mined by specifying the values of all of the system’s components at a single point,

x = a. This is called an initial value problem (IVP).

However, in many applications a solution is determined in a more complex way.

A boundary value problem (BVP), like the one solved in this thesis, specifies values

or equations for solution components at more than one x. Unlike IVPs, a BVP may

not have a solution, or it may have a finite number of solutions, or it may have

infinitely many solutions. As a result, programs written to solve BVPs require users

to provide an initial guess for the solution desired. Sometimes parameters also need

to be determined.

bvp4c

bvp4c solves boundary value problems for ordinary differential equations. The

general syntax for this particular function is as follows: sol=bvp4c(odef, bcf, solinit),

solinit = bvpinit(x, yinit, params).

odef is a function handle that evaluates the ode f(x, y), which can have one of two

forms: dydx=odef(x, y), dydx=odef(x, y,params), where x is a scalar, y is a column

vector, and params represents a vector of unknowns. The output dydx is a column

vector.

bcf is a function handle that computes the residual in the boundary conditions.

For two-point boundary value conditions of the form bc(y(a), y(b)), bcf can have the

form: res=bcf(x, y), res=bcf(x, y,params). x, y, and params are defined as above.
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y(a) corresponds to initial conditions, y(b) corresponds to final conditions and res is

a column vector. There is also the possibility of having a multi-point boundary value

problem.

solinit is a structure containing the initial guess for a solution. The user must cre-

ate the function bvpinit.solinit which includes the following fields: x, y, and params.

x represents the ordered nodes of the initial mesh. The boundary conditions are im-

posed at the initial and final times. This y is the initial guess for the solution such

that solinit.y(:,i) is a guess for the solution at the node solinit.x(i). params is optional

and it provides an initial guess for unknown parameters. The structure can have any

name, but the fields must be named x, y, and parameters.

sol=bvp4c(odef,bcf,solinit) integrates a system of ordinary differential equations

of the form y′ = f(x, y) on the interval [a, b] subject to two-point boundary value

conditions bc(y(a), y(b)) = 0.

Matlab Optimizers

In general, these are the steps to take in order to use the optimizers in Matlab.

Create a separate M-file that only has the objective function in it. Use the handle

sign (@) in the optimization function call to let Matlab know this is the function to

optimize. Also, include the initial starting point and any other parameters for the

function. This is the method we implement using fmincon.

Generally, positive exitflag values are good. Usually the larger the exitflag value,

the more confident the optimizer is that it has found a good result.

fmincon

This optimizer tries to find the minimum of a constrained nonlinear multivariable

function starting at an initial estimate. This is usually referred to as constrained

nonlinear optimization or nonlinear programming.
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[x,fval,exitflag] = fmincon(fun,x0, A, b, Aeq, beq,lb,ub,nonlcon,options) minimizes

with the optimization options specified in the structure options. x minimizes the

objective function fun, fval returns the value of the objective function fun at the

solution x, and exitflag gives a numerical value that indicates the integrity of the

optimization. Optimset can be used to set the structure options. If there are no

nonlinear inequality or equality constraints, set nonlcon = []. Here x0 is the initial

estimate, A, b, Aeq, beq are used for any linear constraints in the problem, where

Ax ≤ b or Aeq x = beq if it exists. Also, lb represents the lower bound of x and

ub stands for the upper bound of x if it exists. If any of these constraints are not

present in the optimization problem, then instead of a value or function, you put []

to indicate it does not exist.

Optimization Options

Some options apply to all algorithms and others are relevant only to certain algo-

rithms. Optimset can be used to set or change the value of these fields in structure

options.

fmincon uses one of following three algorithms: active-set, interior-point, or trust-

region-reflective. You choose the algorithm at the command line with optimset. For

example: options=optimset(’Algorithm’,’active-set’).

The default trust-region-reflective (formerly called large-scale) requires: a gradient

to be supplied in the objective function, ’GradObj’ to be set to ’on’, and either bound

constraints or linear equality constraints, but not both. If these conditions are not

all satisfied, the ’active-set’ algorithm (formerly called medium-scale) is the default.

The ’active-set’ algorithm is not a large-scale algorithm.

Exitflag

If the value of the exitflag is greater than 0 this means that fmincon converged to

a solution. If the exitflag equals 0, this means that the maximum number of function
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evaluations was reached. If the exitflag is less than 0, then fmincon did not converge

to a solution.

There are eight possible exitflag messages in fmincon. 1-first order optimality

measure was less than options.TolFun and maximum constraint violation was less

than options.TolCon, 2- the change in x was less than options.TolX, 3-the change

in the objective function value was less than options.TolFun, 4-the magnitude of

the search direction was less than 2*options.TolX and constraint violation was less

than options.TolCon, 5-the magnitude of directional derivative in search direction

was less than 2*options.TolFun and maximum constraint violation was less than

options.TolCon, 0-the number of iterations exceeded options.MaxIter or number of

function evaluations exceeded options.FunEvals, -1-the output function terminated

the algorithm, or -2-no feasible point was found.

Limitations

fmincon is a gradient-based method designed to work on problems where the ob-

jective and constraint functions are both continuous and have continuous first deriva-

tives.

When the problem is infeasible, fmincon attempts to minimize the maximum

constraint value. The trust-region-reflective algorithm does not allow equal upper

and lower bounds. For example, if lb(2)=ub(2), fmincon gives this error: Equal upper

and lower bounds not permitted in this large-scale method. Use equality constraints

and the medium-scale method instead.

When using fmincon, the initial value/starting point we choose determines the

minimum value that will result. There may be more than one minimum value for a

given function, but only one will be the absolute min. We want to make sure we have

the absolute minimum.



Appendices 140

Tools in Matlab

Companion Matrix

In Matlab, a companion matrix of the monic polynomial p(t) = c0 + c1t + . . . +

cn−1t
n−1 + tn is a square matrix with ones on the subdiagonal and a negative times

each of the coefficients of the polynomial in the first row. The coefficients are listed

from left to right in decreasing order, i.e., cn−1, cn−2..., c0. A=compan(u) returns the

corresponding companion matrix whose first row is −u(2:n)
u(1)

, where u is of polynomial

coefficients. The eigenvalues of compan(u) are the roots of the polynomial.

Example of Compan Command

The polynomial

(x− 1)(x− 2)(x− 3) = x3 − 7x+ 6 (.1)

results in u = [1 0 − 7 6] and if A=compan(u), we get

A =


0 7 −6

1 0 0

0 1 0

 .

The eigenvalues are the polynomial roots. Therefore eig(compan(u))=3, 2, 1.

Kronecker Tensor Product

K=kron(X, Y ) returns the Kronecker Tensor Product of X and Y . The result is

a large array formed by taking all possible products between the elements of X and

those of Y . If X is m× n and Y is p× q, then kron(X, Y ) is mp× nq.
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Example of Kronecker Product Command in Matlab

If X is 2× 3,

kron(X, Y ) =

(
X(1, 1) ∗ Y X(1, 2) ∗ Y X(1, 3) ∗ Y
X(2, 1) ∗ Y X(2, 2) ∗ Y X(2, 3) ∗ Y

)

Since our problem set up involves block matrices (which include the identity and zero

matrix), the Kronecker product command will be very useful. The number of blocks

in the block matrices is determined based on K, which we will choose to be any

number between 3 and 20. As a result, when K is large, using the Kronecker product

to construct the block matrices will come in handy.

Optimization Toolbox

The optimization toolbox consists of functions that perform maximization/minimization

on linear/nonlinear constrained/non-constrained objective functions.

Usually these routines require that the objective functions be defined in M-files.

Alternatively, a string variable containing a Matlab expression, with x representing

the independent variables, can be used. Optional arguments can be used in the

routines to change the optimization parameters and place bounds on the variables.

Replicating Matrices

Given a matrix A, B=repmat(A,m, n) creates a large matrix B consisting of an

m× n tiling of copies of A. repmat(A, n) creates an n× n tiling.
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Example of Repmat Command

B=repmat(eye(2),3,4) gives

B =



1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1



For the above example, A=eye(2,2).

Reshape Command

B=reshape(A,m, n) returns the mxn matrix whose elements are taken column

wise from A. You will get an error if A does not have mxn elements in it.

Example of the Reshape Command in Matlab

Let

A =


1 4 7 10

2 5 8 11

3 6 9 12


Then, if B=reshape(A,2,6),

B =

(
1 3 5 7 9 11

2 4 6 8 10 12

)
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Size Command

Suppose A is an m×n matrix. v=size(A,1) gives you m. v=size(A,2) gives you n.

So, the 1 or 2(or 3...) specifies if you want the length or width of the matrix or array.

If a positive number other than 1 or 2 is entered, then Matlab outputs a default value

of 1.
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Matlab Code

%Chapter 2

%Section 2.1

%Example 1

%This routine computes the minimal proper test signal v*

%for Example 1.

%We determine v* by calculating the SVD of pinv(H)*X.

%Hs below is the pseudoinverse of H multiplied by X

%(which was determined in p1.m).

function v = p0(H0,H1,X)

H=[H0, -H1];

Hs=pinv(H)*X;

[U,S,V]=svd(Hs); %This determines a svd of Hs.

%This following gives the minimal proper test signal.

v=(1/S(1,1))*V(:,1);

end

%Example 1 Data File

%This M-file defines the input variables that are used

%to compute the minimal test signal v* for Example 1.

%The following code will work for any K value greater than one.

function [H0,H1,X,m] = p1(K)

K=7;

%This K is a numerical value that indicates the number of time steps.

%If we change K here, we must change it to the same value in pd.m.

%Below is a set of matrices used for Example 1.

%To check to make sure the code is reasonable we try a

%value for K>1.

A0=[1 -1;1 1]; %System input matrix for model 0

A1=[1 -1;0 1]; %System input matrix for model 1

B0=[1 2;1 3]; %Input matrix for model 0

B1=B0; %Input matrix for model 1

C0=[0 1]; %System output matrix for model 0

C1=C0; %System output matrix for model 1

M0=[1 1 0;0 1 0]; %Additive uncertainty matrix for input model 0
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M1=M0; %Additive uncertainty matrix for input model 1

N0=[0 0 1]; %Additive uncertainty matrix for output model 0

N1=N0; %Additive uncertainty matrix for output model 1

%Variable dimensions for the model.

[n,n]=size(A0); %This gives the dimensions of the matrix A0.

[n,n]=size(A1); %This gives the dimensions of the matrix A1.

[n,m]=size(B0); %This gives the dimensions of the matrix B0.

[n,m]=size(B1); %This gives the dimensions of the matrix B1.

[r,n]=size(C0); %This gives the dimensions of the matrix C0.

[r,n]=size(C1); %This gives the dimensions of the matrix C1.

[n,p]=size(M0); %This gives the dimensions of the matrix M0.

[n,p]=size(M1); %This gives the dimensions of the matrix M1.

[r,p]=size(N0); %This gives the dimensions of the matrix N0.

[r,p]=size(N1); %This gives the dimensions of the matrix N1.

u=eye(1,K+1);

%u gives the missing elements needed to complete

%the companion matrix.

A=-compan(u);

%A is the companion matrix that has -1 on the subdiagonal

%and zeros elsewhere.

%A is then multiplied by A_i using the kronecker command.

%This forms the 1st column of the M_0 matrix.

m0=[A0; repmat(zeros(n,n), K-1,1)];

%This forms the 1st column of the M_1 matrix.

m1=[A1; repmat(zeros(n,n), K-1,1)];

%This forms the last column of each M_i matrix.

m2=[repmat(zeros(n,p),K,1)];

%This forms the 1st column of the N_0 matrix.

n0=[C0; repmat(zeros(r,n),K,1)];

%This forms the 1st column of the N_1 matrix.

n1=[C1; repmat(zeros(r,n),K,1)];

%These are block matrices whose block size is determined by K.

%Therefore, the block size for the matrices

%will vary depending K.
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E0=eye(K*n,K*n)+kron(A,A0);

E1=eye(K*n,K*n)+kron(A,A1);

M_0=[m0, kron(eye(K,K),M0), m2];

M_1=[m1, kron(eye(K,K),M1), m2];

B_0=kron(eye(K,K),B0);

B_1=kron(eye(K,K),B1);

C_0=[repmat(zeros(r,n),1,K); kron(eye(K,K),C0)];

C_1=[repmat(zeros(r,n),1,K); kron(eye(K,K),C1)];

N_0=[n0, kron(eye((K+1),(K+1)),N0)];

N_1=[n1, kron(eye((K+1),(K+1)),N0)];

%The matrices below are used to form the two y^i models.

%That is, y^i = X_i*v + H_i*u^i.

H0=C_0*(inv(E0))*M_0+N_0;

%H0 is multiplied by the additive uncertainty term in y^0.

H1=C_1*(inv(E1))*M_1+N_1;

%H1 is multiplied by the additive uncertainty term in y^1.

%This matrix is multiplied by the test signal in y^0.

X0=C_0*(inv(E0))*B_0;

%This matrix is multiplied by the test signal in y^1.

X1=C_1*(inv(E1))*B_1;

X=X1-X0; %X is used in p0.m.

%Example 1 Program Driver

%This is a driver file which accepts k as the input.

%This routine creates a plot of v as a function of k.

clear

figure(1)

clf

K=7; %This value is defined in p1.m.

%We choose K as any number between [3,20].

%K is not a global variable, so it must be manually

%changed in p1.m and pd.m.

[H0,H1,X,m] = p1(K)

%This calls the program that defines the

%block matrices based on K. It determines X_i and H_i.
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v = p0(H0,H1,X)

%This calls the program that calculates

%the minimum test signal, v*. v* is a long vector Kn by 1.

vd = reshape(v,m,K)

%This changes v* into an n by K matrix.

%Each column represents the value of v* at each time step.

%For instance, the first column of the matrix corresponds to k=1.

%The second column corresponds to k=2, etc.

%This plots v* as a function of k.

vectM = [1 2 3 4 5];

colors = [’-r’ ’-b’ ’-g’ ’-k’ ’-m’];

for i=1:m

M = vectM(i);

k=0:K-1;

figure(1)

hold on

plot(k,vd(i,:),colors(2*i-1:2*i))

%This graphs the first component of v over K time steps.

%Since m=2, v=[v0;v1].

axis ’auto’

xlabel(’k’);

ylabel(’v’);

title(’Plot of v vs. k’)

legend(’v_0’,’v_1’);

hold off

end

%Section 2.2

%Example 2

%This routine solves the incipient problem with one

%fault for the optimal test signal w*, which is used

%to determine v*_inc = (1/dt)w*.

function w = t0(Ht,Xtp)

H=[Ht, -Ht]; %Ht represents H(\theta).

Hp=pinv(H)*Xtp;

%This is the pseudoinverse of H multiplied by Xtp.

%Xtp represents X’(\theta).
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[U,S,V]=svd(Hp); %This determines a svd of Hp.

%Due to approximation error this gives at least a

%suboptimal proper test signal.

w=V(:,1)/S(1,1);

end

%Example 2

%This routine solves for v2* in the incipient problem

%with one parameter.

%This is done for the faulty case using the two model method.

%H2 is the pseudoinverse of H multiplied by Xtd.

function v2 = t02(Ht,Xtd)

H=[Ht, -Ht]; %Ht represents H(\theta).

H2=pinv(H)*Xtd;

[U,S,V]=svd(H2); %This determines a svd of H2.

%This is v* for the faulty incipient

%one parameter problem.

v2=V(:,1)/S(1,1);

end

%Example 2 Data File

%This M-file defines the input variables that are

%used to compute the %minimum control w*,

%which is computed in t0.m.

function [Xt,Xtp,Ht,Xtd] = t1

t=0; %t represents \theta, which will be a fixed value.

dt=0.1; %This dt represents \delta\theta, a small error term.

%dt must be the same as the dt value in td.m.

%It will be either 0.1, 0.5, 1.0, or 10.0.

%Whatever value is chosen in td.m, must be the same value here.

Xt=[1+t t^2; 2+(3*t) 2*(t^2); t^2+t 1];

%Xt is X(\theta) which will be given.

Xtp=[1 2*t; 3 4*t; 2*t+1 0];

%Xtp is the derivative of X(\theta) with respect to \theta.

Ht=[1 0 0;0 1 0;0 0 1];
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%Ht is given and it represents H(\theta).

%This particular choice for H(\theta) is a constant matrix.

Xtd=[dt (2*t*dt)+(dt)^2; 3*(dt) (4*t*dt)+(2*(dt)^2);

2*t*dt+((dt)^2)+dt 0];

%Xtd is the difference between X(\theta+\delta\theta), X(\theta).

return

%Example 2 Driver

%This is a driver file that plots v* and v*_inc on the same graph.

%This routine creates a plot of v* and v*_inc as a function of time.

clear

figure(1)

clf

dt=0.1;

%dt represents \delta\theta, a small error term.

%We choose either 0.1, 0.5, 1.0, or 10.0 and

%it is the same value as the dt in t1.m.

%Given t and dt, this program calculates Xt, Xtp, Ht, Xtd.

[Xt,Xtp,Ht,Xtd] = t1;

w = t0(Ht,Xtp)

%This calls the program that calculates the

%minimum test signal w*. w* is used to determine v*_inc.

vi = (1/dt)*w %This computes v*_{inc}.

v2 = t02(Ht,Xtd)

%This calls the program that calculates the test signal v*.

%We use the code from the two model static case

%with appropriate modifications.

%This plot compares v* and v*_inc for specified values

%of dt and t=0.

figure(1)

hold on

plot(v2,’-r’)

plot(vi,’-b’)



Bibliography 150

axis ’auto’

xlabel(’k’);

ylabel(’Test signal’);

title(’Plot Comparing v* and v*_{inc}’)

legend(’v*’,’v*_{inc}’);

hold off

%Chapter 3

%Section 3.1

%Example 4

%Safe Process Paper (SPP) Second Example

%This function represents the matrix X(\psi).

function X2=xfn(t,p)

X2=[1+t t^2; 2+(3*p)-(2*t) 2*(p^2); (t*p)+1 1];

%This matrix is X, which is given in the example.

return

%Example 4

%SPP Example 2

%This function is the derivative of X(\psi)

%with respect to \theta.

function Xt2=xdtfn(t,p)

Xt2=[1 2*t; -2 0; p 0];

%This is the derivative of the given matrix X

%with respect to \theta.

return

%Example 4

%SPP Example 2

%This function is the derivative of X(\psi)

%with respect to \phi.

function Xp2=xdpfn(t,p)

Xp2=[0 0; 3 4*p; t 0];

%This is the derivative of the given matrix X

%with respect to \phi.

return
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%The function below solves for the standard

%test signal v in Ex.2 in SPP.

%The method is used for the one parameter

%incipient problem and the static case.

%The standard test signal depends on E and dk

%and we take 0 \leq E \leq 1.

function v = vstar(E,dk)

dt=E*dk;

dp=(1-E)*dk;

x1=xfn(0,0); %Normal model

x2=xfn(dt,dp); %Faulty model

H3=[eye(3,3),-eye(3,3)];

[U,S,V]=svd(pinv(H3)*(x1-x2));

sig = S(1,1); %Largest singular value of pinv(H3)*(x1-x2)

gam = V(:,1); %Right singular vector that corresponds to sig.

%Test signal for special case found using the two model method.

v = (1/sig)*gam;

return

%Example 4

%SPP Example 2

%This function evaluates the inner min of the

%optimization function over E.

%Given some x, we call this function in

%graphin.m and assign a value to x.

function fval = innermin(x)

E0 = 0.25; %This is an initial guess for the minimum E.

w=[cos(x);sin(x)]; %norm(w)=1 is a constraint

Hd=pinv([eye(3,3),-eye(3,3)]);

a=Hd*xdtfn(0,0); %Substitution for the optmization function.

b=Hd*xdpfn(0,0); %Substitution for the optmization function.

inmaxval=@(E)(norm(E*a*w + (1-E)*b*w))^2; %Optimization function

options=optimset(’LargeScale’,’off’);

[EE, fval, exitflag, output] =

fmincon(inmaxval,E0,[],[],[],[],0,1,[],options)
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return

%Example 4

%SPP Example 2

%The loop below creates a plot of innermin(x)

%for different values of x.

x=0:0.1:2*pi;

for i=1:length(x)

fval(i) = innermin(x(i));

end

plot(x,fval)

%Example 4

%SPP Example 2

%This is the driver file.

%This command clears the plot each time this M-file is run.

clear

figure(1)

clf

%This graphs the standard test signals and the

%incipient test signal.

%We plot the test signals for different values of dk.

fval = innermin(0);

dk=.1; % This is the small error term and it will vary.

%Incipient test signal: v_inc=(1/dk)*(1/\zeta)*w.

vinc = (1/dk)*(1/sqrt(abs(fval)))*[cos(0);sin(0)]

%v_i=vstar(E,dk) are test signals found using

%the two model method.

v1=vstar(1,dk);

v03=vstar(0.3,dk);

v05=vstar(0.5,dk);

v06=vstar(0.6,dk);

v07=vstar(0.7,dk);

v08=vstar(0.8,dk);
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v09=vstar(0.9,dk);

v0=vstar(0,dk);

%Figures 3.2, 3.3, and 3.4 in Chapter 3 are

%examples from the Safe Process Paper.

%We plot v and v_inc for dk=0.1,1 and

%E=0, 0.3, 0.5, 0.7, 0.9, 1.

x_val1 = [0 v1(1)]’;

y_val1 = [0 v1(2)]’;

axis([0 25 -5 25])

hold on

plot(x_val1,y_val1,’-k’)

hold on

x_val2 = [0 v03(1)]’;

y_val2 = [0 v03(2)]’;

plot(x_val2,y_val2,’-k’)

hold on

x_val3 = [0 v05(1)]’;

y_val3 = [0 v05(2)]’;

plot(x_val3,y_val3,’-k’)

hold on

x_val4 = [0 v06(1)]’;

y_val4 = [0 v06(2)]’;

plot(x_val4,y_val4,’-k’)

hold on

x_val5 = [0 v07(1)]’;

y_val5 = [0 v07(2)]’;

plot(x_val5,y_val5,’-k’)

hold on

x_val6 = [0 v08(1)]’;

y_val6 = [0 v08(2)]’;

plot(x_val6,y_val6,’-k’)

hold on

x_val7 = [0 v09(1)]’;

y_val7 = [0 v09(2)]’;

plot(x_val7,y_val7,’-k’)

hold on

x_val8 = [0 vinc(1)]’;

y_val8 = [0 vinc(2)]’;

plot(x_val8,y_val8,’-r’)
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hold on

%Section 3.2

%San Antonio Paper Example 2

%This routine computes the minimal proper

%standard test signal v*.

%v* is found by calculating the SVD of

%pinv(H)*X, which are calculated in inc1.m.

function v = inc0(H0,H1,X)

H=[H0, -H1];

[U,S,V]=svd(pinv(H)*X);

sig = S(1,1);

gam = V(:,1);

v = (1/sig)*gam;

return

%San Antonio Paper Example 2

%This M-file defines the input variables

%that will be used to compute the minimal test signal v*.

%The following code should work for any K value

%greater than one.

%This file corresponds with inc0.m,

%which finds the standard test signals.

function [H0,H1,X] = inc1(K,dm,dk,dt)

K=5;

%This K is a numerical value that indicates

%the number of time steps.

%K must be the same value in inc11.m, inc12.m, inc13.m, incd.m.

%Below is a set of matrices we will use for

%the test problem to check to see if the code is reasonable.

t1=2;

k=12;

d=0.2;

h=0.2;

%This step size h may vary and must be the same in

%inc11.m, inc12.m, inc13.m.
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%dm,dk,dt may vary so they are defined in the function

%which calls this input file.

%System input matrix for model 0

A0=[1 h;-h*k*t1 -h*t1*d];

%System input matrix for model 1

A1=[1 h;-h*(k+dk)*(t1+dm) -h*(t1+dm)*(d+dt)];

B0=[0; h*t1]; %Input matrix for model 0

B1=B0; %Input matrix for model 1

C0=[0 1]; %System output matrix for model 0

C1=C0; %System output matrix for model 1

%Additive uncertainty matrix for input model 0

M0=[1 1 0;0 1 0];

%Additive uncertainty matrix for input model 1

M1=M0;

%Additive uncertainty matrix for output model 0

N0=[0 0 1];

%Additive uncertainty matrix for output model 1

N1=N0;

%Variable dimensions for the model.

[n,n]=size(A0); %This gives the dimensions of the matrix A0.

[n,n]=size(A1); %This gives the dimensions of the matrix A1.

[n,m]=size(B0); %This gives the dimensions of the matrix B0.

[n,m]=size(B1); %This gives the dimensions of the matrix B1.

[r,n]=size(C0); %This gives the dimensions of the matrix C0.

[r,n]=size(C1); %This gives the dimensions of the matrix C1.

[n,p]=size(M0); %This gives the dimensions of the matrix M0.

[n,p]=size(M1); %This gives the dimensions of the matrix M1.

[r,p]=size(N0); %This gives the dimensions of the matrix N0.

[r,p]=size(N1); %This gives the dimensions of the matrix N1.

u=eye(1,K+1);

%u gives the missing elements needed to

%complete the companion matrix,

A=-compan(u);

%A is the companion matrix that has -1 on

%the subdiagonal and zeros elsewhere.

%A is then multiplied by A_i using the kronecker command.
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%This forms the 1st column of the M_0 matrix.

m0=[A0; repmat(zeros(n,n), K-1,1)];

%This forms the 1st column of the M_1 matrix.

m1=[A1; repmat(zeros(n,n), K-1,1)];

%This forms the last column of each M_i matrix.

m2=[repmat(zeros(n,p),K,1)];

%This forms the 1st column of the N_0 matrix.

n0=[C0; repmat(zeros(r,n),K,1)];

%This forms the 1st column of the N_1 matrix.

n1=[C1; repmat(zeros(r,n),K,1)];

%These are block matrices whose block size is

%determined by K. Therefore, the block size for

%the matrices will vary depending on K.

E0=eye(K*n,K*n)+kron(A,A0);

E1=eye(K*n,K*n)+kron(A,A1);

M_0=[m0, kron(eye(K,K),M0), m2];

M_1=[m1, kron(eye(K,K),M1), m2];

B_0=kron(eye(K,K),B0);

B_1=kron(eye(K,K),B1);

C_0=[repmat(zeros(r,n),1,K); kron(eye(K,K),C0)];

C_1=[repmat(zeros(r,n),1,K); kron(eye(K,K),C1)];

N_0=[n0, kron(eye((K+1),(K+1)),N0)];

N_1=[n1, kron(eye((K+1),(K+1)),N0)];

%The matrices below are used to form the two y^i

%models, i.e., y^i = X_i*v + H_i*u^i.

H0=C_0*(inv(E0))*M_0+N_0;

%H0 is multiplied by the additive uncertainty term in y^0.

H1=C_1*(inv(E1))*M_1+N_1;

%H1 is multiplied by the additive uncertainty term in y^1.

%This matrix is multiplied by the test signal in y^0.

X0=C_0*(inv(E0))*B_0;

%This matrix is multiplied by the test signal in y^1.

X1=C_1*(inv(E1))*B_1;

X=X0-X1; %X is one of the terms used in inc0.m.
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%San Antonio Paper Example 2

%This M-file defines the input variables that

%will be used to compute the minimal test signal v*.

%This is the input file for xt1.m and it treats

%\theta_1=m=t1 as a variable.

%This file corresponds with xt1.m.

function [C_0,C_1,E0,E1,B_0,B_1] = inc11(K,dm,dk,dt)

syms t1

%This input file leaves the variables symbolic.

%We find the partial derivative with respect to t1.

k=12;

d=0.2;

%dm,dk,dt may vary so they are defined in the function

%which calls this input file.

h=0.2; %This step size may vary.

%K is a numerical value that indicates the number

%of time steps.

K=5;

%If we change K here, we must also change it to

%the same value in incd.m.

%Below is a set of matrices we will use for the

%test problem to check to see if the code is reasonable.

%System input matrix for model 0

A0=[1 h;-h*k*t1 -h*t1*d];

%System input matrix for model 1

A1=[1 h;-h*(k+dk)*(t1+dm) -h*(t1+dm)*(d+dt)];

B0=[0; h*t1]; %Input matrix for model 0

B1=B0; %Input matrix for model 1

C0=[0 1]; %System output matrix for model 0

C1=C0; %System output matrix for model 1

M0=[1 1 0;0 1 0]; %Additive uncertainty matrix for input model 0

M1=M0; %Additive uncertainty matrix for input model 1

N0=[0 0 1]; %Additive uncertainty matrix for output model 0
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N1=N0; %Additive uncertainty matrix for output model 1

%Variable dimensions for the model.

[n,n]=size(A0); %This gives the dimensions of the matrix A0.

[n,n]=size(A1); %This gives the dimensions of the matrix A1.

[n,m]=size(B0); %This gives the dimensions of the matrix B0.

[n,m]=size(B1); %This gives the dimensions of the matrix B1.

[r,n]=size(C0); %This gives the dimensions of the matrix C0.

[r,n]=size(C1); %This gives the dimensions of the matrix C1.

[n,p]=size(M0); %This gives the dimensions of the matrix M0.

[n,p]=size(M1); %This gives the dimensions of the matrix M1.

[r,p]=size(N0); %This gives the dimensions of the matrix N0.

[r,p]=size(N1); %This gives the dimensions of the matrix N1.

u=eye(1,K+1);

%u gives the missing elements needed to complete

%the companion matrix.

A=-compan(u);

%A creates the companion matrix that has -1 on the

%subdiagonal and zeros elsewhere.

%A is then multiplied by A_i using the kronecker command.

%This forms the 1st column of the M_0 matrix.

m0=[A0; repmat(zeros(n,n), K-1,1)];

%This forms the 1st column of the M_1 matrix.

m1=[A1; repmat(zeros(n,n), K-1,1)];

%This forms the last column of each M_i matrix.

m2=[repmat(zeros(n,p),K,1)];

%This forms the 1st column of the N_0 matrix.

n0=[C0; repmat(zeros(r,n),K,1)];

%This forms the 1st column of the N_1 matrix.

n1=[C1; repmat(zeros(r,n),K,1)];

%These are block matrices whose block size is

%determined by K. Therefore, the block size for

%the matrices will vary depending on K.

E0=eye(K*n,K*n)+kron(A,A0);

E1=eye(K*n,K*n)+kron(A,A1);
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M_0=[m0, kron(eye(K,K),M0), m2];

M_1=[m1, kron(eye(K,K),M1), m2];

B_0=kron(eye(K,K),B0);

B_1=kron(eye(K,K),B1);

C_0=[repmat(zeros(r,n),1,K); kron(eye(K,K),C0)];

C_1=[repmat(zeros(r,n),1,K); kron(eye(K,K),C1)];

N_0=[n0, kron(eye((K+1),(K+1)),N0)];

N_1=[n1, kron(eye((K+1),(K+1)),N0)];

%The matrices below are used to form the two y^i models.

%That is, y^i = X_i*v + H_i*u^i.

H0=C_0*(inv(E0))*M_0+N_0;

%H0 is multiplied by the additive uncertainty term in y^0.

H1=C_1*(inv(E1))*M_1+N_1;

%H1 is multiplied by the additive uncertainty term in y^1.

%This matrix is multiplied by the test signal in y^0.

X0=C_0*(inv(E0))*B_0;

%This matrix is multiplied by the test signal in y^1.

X1=C_1*(inv(E1))*B_1;

X=X1-X0; %X is used in inc0.m.

%San Antonio Paper Example 2

%This M-file defines the input variables that will be used

%to compute the minimal test signal v*.

%This is the input file for xt2.m and it treats

%\theta_2=k as a variable. This file corresponds with xt2.m.

function [C_0,C_1,E0,E1,B_0,B_1] = inc12(K,dm,dk,dt)

syms k

%This input file leaves the variables symbolic.

t1=2;

d=0.2;

%dm,dk,dt may vary so they are defined in the function

%which calls this input file.

h=0.2; %This step size may vary.
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%This K is a numerical value that indicates the

%number of time steps.

K=5;

%If we change K here, we must change it to the

%same value in incd.m.

%Below is a set of matrices we will use for the

%test problem to check to see if the code is reasonable.

%System input matrix for model 0

A0=[1 h;-h*k*t1 -h*t1*d];

%System input matrix for model 1

A1=[1 h;-h*(k+dk)*(t1+dm) -h*(t1+dm)*(d+dt)];

B0=[0; h*t1]; %Input matrix for model 0

B1=B0; %Input matrix for model 1

C0=[0 1]; %System output matrix for model 0

C1=C0; %System output matrix for model 1

M0=[1 1 0;0 1 0]; %Additive uncertainty matrix for input model 0

M1=M0; %Additive uncertainty matrix for input model 1

N0=[0 0 1]; %Additive uncertainty matrix for output model 0

N1=N0; %Additive uncertainty matrix for output model 1

%Variable dimensions for the model.

[n,n]=size(A0); %This gives the dimensions of the matrix A0.

[n,n]=size(A1); %This gives the dimensions of the matrix A1.

[n,m]=size(B0); %This gives the dimensions of the matrix B0.

[n,m]=size(B1); %This gives the dimensions of the matrix B1.

[r,n]=size(C0); %This gives the dimensions of the matrix C0.

[r,n]=size(C1); %This gives the dimensions of the matrix C1.

[n,p]=size(M0); %This gives the dimensions of the matrix M0.

[n,p]=size(M1); %This gives the dimensions of the matrix M1.

[r,p]=size(N0); %This gives the dimensions of the matrix N0.

[r,p]=size(N1); %This gives the dimensions of the matrix N1.

u=eye(1,K+1);

%u gives the missing elements needed to

%complete the companion matrix.

A=-compan(u);

%A is the companion matrix that has -1 on the

%subdiagonal and zeros elsewhere.
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%A is then multiplied by A_i using the kronecker command.

%This forms the 1st column of the M_0 matrix.

m0=[A0; repmat(zeros(n,n), K-1,1)];

%This forms the 1st column of the M_1 matrix.

m1=[A1; repmat(zeros(n,n), K-1,1)];

%This forms the last column of each M_i matrix.

m2=[repmat(zeros(n,p),K,1)];

%This forms the 1st column of the N_0 matrix.

n0=[C0; repmat(zeros(r,n),K,1)];

%This forms the 1st column of the N_1 matrix.

n1=[C1; repmat(zeros(r,n),K,1)];

%These are block matrices whose block size is

%determined by K. Therefore, the block size for the

%matrices will vary depending on our choice of K.

E0=eye(K*n,K*n)+kron(A,A0);

E1=eye(K*n,K*n)+kron(A,A1);

M_0=[m0, kron(eye(K,K),M0), m2];

M_1=[m1, kron(eye(K,K),M1), m2];

B_0=kron(eye(K,K),B0);

B_1=kron(eye(K,K),B1);

C_0=[repmat(zeros(r,n),1,K); kron(eye(K,K),C0)];

C_1=[repmat(zeros(r,n),1,K); kron(eye(K,K),C1)];

N_0=[n0, kron(eye((K+1),(K+1)),N0)];

N_1=[n1, kron(eye((K+1),(K+1)),N0)];

%The matrices below are used to form the two y^i models.

%That is, y^i = X_i*v + H_i*u^i.

H0=C_0*(inv(E0))*M_0+N_0;

%H0 is multiplied by the additive uncertainty term in y^0.

H1=C_1*(inv(E1))*M_1+N_1;

%H1 is multiplied by the additive uncertainty term in y^1.

%This matrix is multiplied by the test signal in y^0.

X0=C_0*(inv(E0))*B_0;

%This matrix is multiplied by the test signal in y^1.

X1=C_1*(inv(E1))*B_1;

X=X1-X0; %X is used in inc0.m.
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%San Antonio Paper Example 2

%This M-file defines the input variables that will

%be used to compute the minimal test signal v*.

%This is the input file for xt3.m and it treats

%\theta_3=d as a variable.

%This file corresponds with xt3.m.

function [C_0,C_1,E0,E1,B_0,B_1] = inc13(K,dm,dk,dt)

syms d

%This input file leaves the variables symbolic.

t1=2;

k=12;

%dm,dk,dt may vary so they are defined in the function

%which calls this input file.

h=0.2; %This step size may vary.

K=5; %This K is a numerical value that indicates the

%number of time steps.

%If we change K here, we must change it to the

%same value in incd.m.

%Below is a set of matrices we will use for the

%test problem to check to see if the code is reasonable.

%System input matrix for model 0

A0=[1 h;-h*k*t1 -h*t1*d];

%System input matrix for model 1

A1=[1 h;-h*(k+dk)*(t1+dm) -h*(t1+dm)*(d+dt)];

B0=[0; h*t1]; %Input matrix for model 0

B1=B0; %Input matrix for model 1

C0=[0 1]; %System output matrix for model 0

C1=C0; %System output matrix for model 1

M0=[1 1 0;0 1 0]; %Additive uncertainty matrix for input model 0

M1=M0; %Additive uncertainty matrix for input model 1

N0=[0 0 1]; %Additive uncertainty matrix for output model 0

N1=N0; %Additive uncertainty matrix for output model 1
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%Variable dimensions for the model.

[n,n]=size(A0); %This gives the dimensions of the matrix A0.

[n,n]=size(A1); %This gives the dimensions of the matrix A1.

[n,m]=size(B0); %This gives the dimensions of the matrix B0.

[n,m]=size(B1); %This gives the dimensions of the matrix B1.

[r,n]=size(C0); %This gives the dimensions of the matrix C0.

[r,n]=size(C1); %This gives the dimensions of the matrix C1.

[n,p]=size(M0); %This gives the dimensions of the matrix M0.

[n,p]=size(M1); %This gives the dimensions of the matrix M1.

[r,p]=size(N0); %This gives the dimensions of the matrix N0.

[r,p]=size(N1); %This gives the dimensions of the matrix N1.

u=eye(1,K+1);

%u gives the missing elements needed to

%complete the companion matrix.

A=-compan(u);

%A is the companion matrix that has -1 on the

%subdiagonal and zeros elsewhere.

%A is then multiplied by A_i using the kronecker command.

%This forms the 1st column of the M_0 matrix.

m0=[A0; repmat(zeros(n,n), K-1,1)];

%This forms the 1st column of the M_1 matrix.

m1=[A1; repmat(zeros(n,n), K-1,1)];

%This forms the last column of each M_i matrix.

m2=[repmat(zeros(n,p),K,1)];

%This forms the 1st column of the N_0 matrix.

n0=[C0; repmat(zeros(r,n),K,1)];

%This forms the 1st column of the N_1 matrix.

n1=[C1; repmat(zeros(r,n),K,1)];

%These are block matrices whose block size is

%determined by K. Therefore, the block size for

%the matrices will vary depending on our choice of K.

E0=eye(K*n,K*n)+kron(A,A0);

E1=eye(K*n,K*n)+kron(A,A1);

M_0=[m0, kron(eye(K,K),M0), m2];
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M_1=[m1, kron(eye(K,K),M1), m2];

B_0=kron(eye(K,K),B0);

B_1=kron(eye(K,K),B1);

C_0=[repmat(zeros(r,n),1,K); kron(eye(K,K),C0)];

C_1=[repmat(zeros(r,n),1,K); kron(eye(K,K),C1)];

N_0=[n0, kron(eye((K+1),(K+1)),N0)];

N_1=[n1, kron(eye((K+1),(K+1)),N0)];

%The matrices below are used to form the two y^i models.

%That is, y^i = X_i*v + H_i*u^i.

H0=C_0*(inv(E0))*M_0+N_0;

%H0 is multiplied by the additive uncertainty term in y^0.

H1=C_1*(inv(E1))*M_1+N_1;

%H1 is multiplied by the additive uncertainty term in y^1.

%This matrix is multiplied by the test signal in y^0.

X0=C_0*(inv(E0))*B_0;

%This matrix is multiplied by the test signal in y^1.

X1=C_1*(inv(E1))*B_1;

X=X1-X0; %X is one of the terms used in inc0.m.

%San Antonio Paper Example 2

%This function is the derivative of X(\theta)

%with respect to \theta1=m.

%The formula from Section 3 of the

%Safe Process Paper is used.

%The partial has been calculated.

%Then a numerical value is assigned to m=t1.

function Xmd=xt1(t1,k,d)

syms t1 %Treats t1 as a variable.

%%[C_0,C_1,E0,E1,B_0,B_1] = inc11(K,dm,dk,dt);

[C_0,C_1,E0,E1,B_0,B_1] = inc11(5,-1.1,-4,0.2);

%Here we take K=5.

%Choose values for the drift parameters,

%which will vary depending on the fault condition.

%Be sure to use the same values for K and the drift parameters

%in all of the programs related to this problem,
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%except plotin2.m, out2.m, inc0.m.

%We find the partial derivative with respect to each variable

%so that we can determine our optimization function.

C_0pd=@(t1) diff(C_0,t1);

B_0pd=@(t1) diff(B_0,t1);

E0pd=@(t1) diff(E0,t1);

C_1pd=@(t1) diff(C_1,t1);

B_1pd=@(t1) diff(B_1,t1);

E1pd=@(t1) diff(E1,t1);

X_m0=(C_0pd(t1))*inv(E0)*(B_0)-(C_0)*inv(E0)*(E0pd(t1))*inv(E0)*

(B_0+(C_0)*inv(E0)*(B_0pd(t1));

X_m1=(C_1pd(t1))*inv(E1)*(B_1)-(C_1)*inv(E1)*(E1pd(t1))*inv(E1)*

(B_1)+(C_1)*inv(E1)*(B_1pd(t1));

Xm= X_m1-X_m0;

Xmd = subs(Xm, t1, 2);

return

%San Antonio Paper Example 2

%This function is the derivative the matrix X(\theta)

%with respect to \theta2=k.

%The formula from Section 3 of the

%Safe Process Paper is used.

%After the partial has been calculated.

%Then a numerical value is assigned to k.

function Xkd=xt2(t1,k,d)

syms k %Treats k as a variable.

%%[C_0,C_1,E0,E1,B_0,B_1] = inc12(K,dm,dk,dt);
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[C_0,C_1,E0,E1,B_0,B_1] = inc12(5,-1.1,-4,0.2);

%Here we take K=5.

%Choose values for the drift parameters,

%which may vary within their given ranges.

%We must make sure we use the same values for K and

%the drift parameters in all of the programs related to

%this problem, except for plotin2.m, out2.m, inc0.m.

C_0pd=@(k) diff(C_0,k);

B_0pd=@(k) diff(B_0,k);

E0pd=@(k) diff(E0,k);

C_1pd=@(k) diff(C_1,k);

B_1pd=@(k) diff(B_1,k);

E1pd=@(k) diff(E1,k);

X_k0=(C_0pd(k))*inv(E0)*(B_0)-(C_0)*inv(E0)*(E0pd(k))*inv(E0)*

(B_0)+(C_0)*inv(E0)*(B_0pd(k));

X_k1=(C_1pd(k))*inv(E1)*(B_1)-(C_1)*inv(E1)*(E1pd(k))*inv(E1)*

(B_1)+(C_1)*inv(E1)*(B_1pd(k));

Xk= X_k1-X_k0;

Xkd = subs(Xk, k, 12);

return

%San Antonio Paper Example 2

%This is the derivative of matrix X(\theta)

%with respect to \theta3=d.

%The formula from Section 3 of the

%Safe Process Paper is used.

%After the partial has been calculated.

%Then a numerical value is assigned to d.
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function Xdd=xt3(t1,k,d)

syms d %Treats d as a variable.

%%[C_0,C_1,E0,E1,B_0,B_1] = inc13(K,dm,dk,dt);

[C_0,C_1,E0,E1,B_0,B_1] = inc13(5,-1.1,-4,0.2);

%Here we take K=5.

%Choose values for the drift parameters,

%which may vary within their given ranges.

%Be sure to use the same values for K and the

%drift parameters in all of the programs related to

%this problem, except for plotin2.m, out2.m, inc0.m.

C_0pd=@(d) diff(C_0,d);

B_0pd=@(d) diff(B_0,d);

E0pd=@(d) diff(E0,d);

C_1pd=@(d) diff(C_1,d);

B_1pd=@(d) diff(B_1,d);

E1pd=@(d) diff(E1,d);

X_d0=(C_0pd(d))*inv(E0)*(B_0)-(C_0)*inv(E0)*(E0pd(d))*inv(E0)*

(B_0)+(C_0)*inv(E0)*(B_0pd(d));

X_d1=(C_1pd(d))*inv(E1)*(B_1)-(C_1)*inv(E1)*(E1pd(d))*inv(E1)*

(B_1)+(C_1)*inv(E1)*(B_1pd(d));

Xd=X_d1-X_d0;

Xdd = subs(Xd, d, 0.2);

return

%San Antonio Paper Example 2

%This function evaluates the inner min of the

%optimization function.
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%This is done over the \alpha_i’s given some x.

function z = innermin2(x)

K=5; %This is the final time step and will vary.

%This is an initial guess for the minimum \alpha1,

%\alpha2,\alpha3.

y0 = [-1.1; -4; 0.2];

%We want the norm(w)=1.

%Also, the row dimension of w must be the size of K,

%i.e. w is a Kx1 vector.

w=[sin(x(1))*sin(x(2))*cos(x(3));

sin(x(1))*sin(x(2))*sin(x(3))*cos(x(4));

sin(x(1))*sin(x(2))*sin(x(3))*sin(x(4));

cos(x(1));sin(x(1))*cos(x(2))];

%[H0,H1,X] = inc1(K,dm,dk,dt); %Calls input function file.

[H0,H1,X] = inc1(K,-1.1,-4,0.2);

%Input file with assigned values for the parameters

%and the drift parameters.

Hd=pinv([H0, -H1]);%The pseudoinverse of H is calculated here.

t1=2; %For the normal case, t1=m.

k=12; %Normal value for this mechanical system where k=s.

d=0.2; %Normal value for this mechanical system.

a=Hd*xt1(t1,k,d); %Substitution for the optmization function.

b=Hd*xt2(t1,k,d); %Substitution for the optmization function.

c=Hd*xt3(t1,k,d); %Substitution for the optmization function.

%Optimization function

inmaxval1=@(y)(100*(norm(y(1)*a*w + y(2)*b*w + y(3)*c*w))^2);

%options=optimset(’LargeScale’,’off’);

[yy, fval, exitflag, output] =

fmincon(inmaxval1,y0,[],[],[],[],[-1.1; -4; 0.2],

[-0.9; -2; 0.4]),[],options)

z=fval/100;
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return

%San Anotnio Paper Example 2

%Optimization function used to find the max x

function z = myinner(x)

z = -innermin2(x);

%San Antonio Paper Example 2

%This function evaluates the outer max of the

%optimization function over x.

function vinc = outer2(z)

%This is an initial guess for the minimum a1,a2,a3.

x0 = [pi/4;pi/2;pi/4;pi/2];

a=z; %Does nothing.

K=5;

h=0.2; %This step size may vary.

%Note that a wider interval is being used so that

%we do not get stuck at the edges as a solution.

myinner=@(x)(-innermin2(x));

options=optimset(’LargeScale’,’off’);

[xx, ffval, exitflag, output] =

fmincon(myinner,x0,[],[],[],[],[-1.1*pi;-1.2*pi;

-1.1*pi;1.1*pi],[1.1*pi;2.1*pi;1.1*pi;1.1*pi],[],options)

%This is the maximum value of the function.

ffval=-ffval

%We want to use the x that maximizes the

%optimization function.

x=xx;

%w is a vector and the row dimension of w will be

%the same as the value of K.

w=[sin(x(1))*sin(x(2))*cos(x(3));

sin(x(1))*sin(x(2))*sin(x(3))*cos(x(4));
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sin(x(1))*sin(x(2))*sin(x(3))*sin(x(4));

cos(x(1));sin(x(1))*cos(x(2))];

%To calculate the incipient test signal we use:

%v_inc=(1/dk)*(1/\zeta)*w.

%dk=1; Since dk=1, we take \alpha_i=\delta\theta_i.

vinc=(1/dk)(1/sqrt(ffval))*w;

return

% San Antonio Paper Example 2

% This graphs the standard test signals and the

%incipient test signal for different a1,a2,a3

%values for Ex.2 in San Antonio Paper.

%This command clears the plot each time this M-file is run.

clear

figure(1)

clf

h=0.2; %This is the step size.

K=5; %We plot this test signal as a function of time t.

%Final time: K=5.

%This calls the function file that calculates the

%standard test signal.

%v=inc0(\alpha1,\alpha2,\alpha3)=inc0(dt1,dt2,dt3)=inc0(dm,dk,dt).

%[H0,H1,X] = inc1(K,dm,dk,dt) %Calls input function file.

[H0,H1,X] = inc1(K,-1.1,-4,0.2);

v0 = inc0(H0,H1,X);

[H0,H1,X] = inc1(K,-1.1,-4,0.4);

v1=inc0(H0,H1,X);

[H0,H1,X] = inc1(K,-1.1,-2,0.2);

v2=inc0(H0,H1,X);

[H0,H1,X] = inc1(K,-1.1,-2,0.4);

v3=inc0(H0,H1,X);

[H0,H1,X] = inc1(K,-0.9,-4,0.2);

v4=inc0(H0,H1,X);

[H0,H1,X] = inc1(K,-0.9,-4,0.4);
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v5=inc0(H0,H1,X);

[H0,H1,X] = inc1(K,-0.9,-2,0.2);

v6=inc0(H0,H1,X);

[H0,H1,X] = inc1(K,-0.9,-2,0.4);

v7=inc0(H0,H1,X);

%We compare plots of v and v_inc for dk=1 and use

%different \alpha_i values.

%Incipient test signal: v_inc=(1/dk)*(1/\zeta)*w.

%Calculated in outer2.m.

v_inc = [18.2136; -8.6901; -2.8236; 0.0485; 0.0000]

kk=0:K-1;

plot(kk,v0)

hold on

plot(kk,v1)

hold on

plot(kk,v2)

hold on

plot(kk,v3)

hold on

plot(kk,v4)

hold on

plot(kk,v5)

hold on

plot(kk,v6)

hold on

plot(kk,v7)

hold on

plot(kk,v_inc,’-r’)

hold on

%Chapter 4

%Section 4.6

%Continuous Time Example 1

%Solves inner minimum of the system,

%which we call ’val1’, using bvp4c.

%This gives the solution to the boundary value problem.

%Untransformed Problem in paper entitled

%"Active incipient fault
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%detection in continuous time systems with multiple faults"

%This is the innermost min for n=1.

%function val1 = innermin1(dt)

%This is the innermost min for n>1.

function val1 = innermin1(d,dt)

%We take norm(c)=1 and use the following parameterization.

%c=[cos(d(1)); sin(d(1))]; %For n=2

%For v 3-dimensional.

% c=[cos(d(1))

% sin(d(1))*cos(d(2))

% sin(d(1))*sin(d(2))];

%We take norm(c)=1 and use the following parameterization.

%For v 5-dimensional.

c=[cos(d(1))

sin(d(1))*cos(d(2))

sin(d(1))*sin(d(2))*cos(d(3))

sin(d(1))*sin(d(2))*sin(d(3))*cos(d(4))

sin(d(1))*sin(d(2))*sin(d(3))*sin(d(4))];

L=4; %\omega=L

solinit = bvpinit(linspace(0,L,12),@bvp2init);

options = bvpset(’Stats’,’on’,’RelTol’,1e-7);

%The following line integrates the

%system of differential equations on the

%interval [0,\omega]

%subject to two point boundary conditions.

sol = bvp4c(@bvp2,@bvp2bc,solinit,options);

t=linspace(0,L,50);

y=deval(sol,t);

% figure(1)

% plot(t,y(1:4,:))

% xlabel(’Time’)

% ylabel(’State Variable z’)

% title(’Solutions for z(0)’)

% legend(’x1’,’x2’,’xhat1’,’xhat2’)
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% figure(2)

% plot(t,y(9,:))

% xlabel(’Time’)

% ylabel(’Value of \eta’)

% title(’Solutions for \eta’)

function yprime = bvp2(x,y)

%The components of y correspond to the original variables

%as y(1)=z, y(2)=\lambda, y(3)=\eta.

t1=0.1; %\theta_1

t2=1.0; %\theta_2

% dt(i)=\delta\theta_i %Perturbations

A=[-(t1) t2 0 0; 1 -(t1) 0 0; 0 0 -(t1+dt(1)) t2+dt(2);

0 0 1 -(t1+dt(1))]; %\tilde{A}

B=[0;1;0;1]; %\tilde{B}

C=[1 0 -1 0]; %\tilde{C}

M=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]; %\tilde{M}

z=y(1:4); %This accounts for the first four rows

%of the first column.

lam=y(5:8);

%eta=y(9,1);

%vval=v(x); %For n=1

vval=v(c,x); %For n>1

yprime = [A*z+B*vval-0.5*M*M’*lam

-A’*lam-C’*C*z

0.25*lam’*M*M’*lam+0.5*z’*C’*C*z];

end

function res = bvp2bc(ya,yb)

%The bvp is solved with RES=0.

%The time interval is [0 L] and the boundary conditions are:

%

% \lambda(0)=-0.5z(0), \lambda(L)=0, \eta(0)=0.

%

%ya corresponds to the initial time,

%yb corresponds to the final time.

res = [ya(5:8,1)+0.5*ya(1:4,1)

yb(5:8,1)
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ya(9,1)];

end

function yinit = bvp2init(x)

%This is the initial guess for the solutions:

%z, \lambda, r, and q:

yinit = [0.5 0 0.25 0.5 0.5 0 1 1 0]’;

end

%function vval = v(x) %For n=1

function vval = v(c,x) %For n>1

L=4; %\omega=L

g=sqrt(2/L);

%This is the form of the test signal v

%and also the optimization function.

%vval=g*sin(pi*x/L); %n=1

%vval=c(1)*g*sin(pi*x/L)+c(2)*g*sin(2*pi*x/L); %n=2

%vval=(c(1)*g*sin(pi*x/L)+c(2)*g*sin(2*pi*x/L)+

%c(3)*g*sin(3*pi*x/L)); %n=3

vval=g*(c(1)*sin(pi*x/L)+c(2)*sin(2*pi*x/L)+

%c(3)*sin(3*pi*x/L)+c(4)*sin(4*pi*x/L)+

%c(5)*sin(5*pi*x/L)); %n=5

end

%This function gives the value of the inner minimum.

%The equation below is \eta at the final time plus z(0)’*z(0).

val1 = ( y(9, 50) + (y(1:4,1))’*(y(1:4,1)))*1000;

%We multiply val1 by 1000 to speed up the code.

end

%Continuous Time Example 1

%This M-file optimizes over the perturbations dt.

%This gives the overall minimum.

%This gives the overall minimum for n=1.

%function [dt,val2] = innermin2

%This gives the overall minimum for n>1.

function val2 = innermin2(d)

dt0=[1 2.5]’;

%The line below optimizes the parameter



Bibliography 175

%vector of incipient perturbations.

%innermin=@(dt)(innermin1(dt)); %For n=1

innermin=@(dt)(innermin1(d,dt)); %For n>1

options=optimset(’LargeScale’,’off’);

[dt,val2,exitflag,output] = fmincon(innermin,dt0,[],[],[],[],

[1,2]’,[2,4]’,[],options);

end

%Continuous Time Case

%Example 1

%Example 2

%This function optimizes d from innermin1.m.

%This function allows us to find the optimal

%parameter c of v.

function [d,val3] = outm %Outer maximization over d.

%This is an initial guess for d.

%d0=pi/2; %n=2

%d0 = [2.5 2.5]’; %n=3

d0 = [2.5 2.5 2.5 2.5]’; %n=5

inner1=@(d)(-innermin2(d));%This is the objective function.

options=optimset(’LargeScale’,’off’,’Display’,’iter’);

%For v with 2 parameters.

%[d, val3, exitflag, output] = fmincon(inner1,d0,[],[],[],[],

%0,pi,[],options) %n=2

%For v with a vector of 3 parameters.

%[d, val3, exitflag, output] = fmincon(inner1,d0,[],[],[],[],

%[-1 -1]’,[5 5]’,[],options) %n=3

%For v with a vector of 5 parameters.

[d, val3, exitflag, output] = fmincon(inner1,d0,[],[],[],[],

%[-1 -1 -1 -1]’,[5 5 5 5]’,[],options) %n=5

end

%Continuous Time

%Example 1

%Example 2

%Produces Figures 4.2,4.3,4.4,4.5,4.6

%Produces Figures 4.7,4.8,4.9,4.10,4.11

%Plot for optimal proper test signal v*
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n=5; %We will also try n=5. This is the dimension of v.

L=4; %Final time.

g=sqrt(2/L);

x=linspace(0,4,50);

%[dt,val2]=innermin2 %For n=1

[d,val3] = outm %For n>1

%The following is the computed value for vector c

%based on our optimal d.

%c2=[cos(d(1)); sin(d(1))] %For n=2.

% norm(c3)=1 based on the parameterization used.

% c3=[cos(d(1))

% sin(d(1))*cos(d(2))

% sin(d(1))*sin(d(2))]

% norm(c5)=1 based on the parameterization used.

c5=[cos(d(1))

sin(d(1))*cos(d(2))

sin(d(1))*sin(d(2))*cos(d(3))

sin(d(1))*sin(d(2))*sin(d(3))*cos(d(4))

sin(d(1))*sin(d(2))*sin(d(3))*sin(d(4))]

%Below is the form of the test signal, \bar{v}.

%vval1=g*sin(pi*x/L); %n=1

%vval2=c2(1)*g*sin(pi*x/L)+c2(2)*g*sin(2*pi*x/L); %n=2

%vval3=c3(1)*g*sin(pi*x/L)+c3(2)*g*sin(2*pi*x/L)+

%c3(3)*g*sin(3*pi*x/L); %n=3

vval5=g*(c5(1)*sin(pi*x/L)+c5(2)*sin(2*pi*x/L)+

c5(3)*sin(3*pi*x/L)+c5(4)*sin(4*pi*x/L)+

c5(5)*sin(5*pi*x/L)); %n=5

val3=-val3;

%The optimal proper test signal is v*=\bar{v}/sqrt(F),

%where F is the value of the overall minimum.

%vval2, vval3, vval5 are test signal form.

% v1=sqrt(1000)*vval1/sqrt(val2);

% norm(v1/vval1)

% v2=sqrt(1000)*vval2/sqrt(val3);

% norm(v2/vval2) %The norm of v*.

% v3=sqrt(1000)*vval3/sqrt(val3); %Test signal with scaling.
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% norm(v3/vval3);

v5=sqrt(1000)*vval5/sqrt(val3); %Test signal with scaling.

norm(v5/vval5)

xlabel(’Time’)

ylabel(’Test Signal, v’)

title(’Plot of the optimal proper incipient test signal v*’)

hold all

% plot(x,v1,’k’)

% plot(x,v2,’g’)

% plot(x,-v3,’r’)

plot(x,-v5,’b’)

%Continuous Time

%Example 1

%Optimization landscape when d is two dimensional

%Surface plot of z=innermin2(d)

x=0:0.2:3.0; y=0:0.2:3.0; %Set up x and y as vectors

[X,Y]=meshgrid(x,y); %Form the grid for plotting

z=zeros(16,16); %Initializes z

for i=1:16,

for j=1:16,

d=[x(i),y(j)]’;

%Function to plot; creates the height

z(i,j)=innermin2(d);

end

end

title(’3-D Plot of innermin2(d)’)

hold all

colormap(jet); %Set colors

surf(X,Y,z); %Draw surface

axis([0 3.5 0 3.5 -1 -0.1]) %Set up axes

%Continuous Time Second Example

%Solves inner minimum of the system,

%which we call ’val1’, using bvp4c.

%This gives the solution to the boundary value problem.

%Untransformed Problem in paper entitled

%"Active incipient fault detection in
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%continuous time systems with multiple faults"

%This is the innermost min for n=1.

function val1 = innermin11(dt)

%This is the innermost min for n>1.

%function val1 = innermin11(d,dt)

%We take norm(c)=1 and use the following parameterization.

%c=[cos(d(1)); sin(d(1))]; %For n=2

%For v 3-dimensional.

% c=[cos(d(1))

% sin(d(1))*cos(d(2))

% sin(d(1))*sin(d(2))];

%We take norm(c)=1 and use the following parameterization.

%For v 5-dimensional.

% c=[cos(d(1))

% sin(d(1))*cos(d(2))

% sin(d(1))*sin(d(2))*cos(d(3))

% sin(d(1))*sin(d(2))*sin(d(3))*cos(d(4))

% sin(d(1))*sin(d(2))*sin(d(3))*sin(d(4))];

L=4; %\omega=L

solinit = bvpinit(linspace(0,L,12),@bvp2init);

options = bvpset(’Stats’,’on’,’RelTol’,1e-7);

%The following line integrates the system

%of differential equations on the interval [0,\omega]

%subject to two point boundary conditions.

sol = bvp4c(@bvp2,@bvp2bc,solinit,options);

t=linspace(0,L,50);

y=deval(sol,t);

% figure(1)

% plot(t,y(1:4,:))

% xlabel(’Time’)

% ylabel(’State Variable z’)

% title(’Solutions for z(0)’)

% legend(’x1’,’x2’,’xhat1’,’xhat2’)

% figure(2)
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% plot(t,y(9,:))

% xlabel(’Time’)

% ylabel(’Value of \eta’)

% title(’Solutions for \eta’)

function yprime = bvp2(x,y)

%The components of y correspond to the original variables

%as y(1)=z, y(2)=\lambda, y(3)=\eta.

t1=0.3; %\theta_1

t2=4.0; %\theta_2

%t3=1; %\theta_3

% dt(i)=\delta\theta_i %Perturbations

A=[-(t1) -t2 0 0; 1 -(t1) 0 0; 0 0 -(t1+dt(1)) -(t2+dt(2));

0 0 1 -(t1+dt(1))]; %\tilde{A} with 2 parameters

%A=[-(t1)*(t3) -t2 0 0; 1 -(t1) 0 0;

%0 0 -(t1+dt(1))*(t3+dt(3)) -(t2+dt(2));

%0 0 1 -(t1+dt(1))]; %\tilde{A} with 3 parameters

B=[0;1;0;1]; %\tilde{B}

C=[1 0 -1 0]; %\tilde{C}

M=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]; %\tilde{M}

%This accounts for the first four rows of the first column.

z=y(1:4);

lam=y(5:8);

%eta=y(9,1);

vval=v(x); %For n=1

%vval=v(c,x); %For n>1

yprime = [A*z+B*vval-0.5*M*M’*lam

-A’*lam-C’*C*z

0.25*lam’*M*M’*lam+0.5*z’*C’*C*z];

end

function res = bvp2bc(ya,yb)

%The bvp is solved with RES=0.

%The time interval is [0 L] and the boundary conditions are:

%

% \lambda(0)=-0.5z(0), \lambda(L)=0, \eta(0)=0.

%ya corresponds to the initial time,

%yb corresponds to the final time.
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res = [ya(5:8,1)+0.5*ya(1:4,1)

yb(5:8,1)

ya(9,1)];

end

function yinit = bvp2init(x)

%This is the initial guess for the solutions:

%z, \lambda, r, and q:

yinit = [0.5 0 0.25 0.5 0.5 0 1 1 0]’;

end

function vval = v(x) %For n=1

%function vval = v(c,x) %For n>1

L=4; %\omega=L

g=sqrt(2/L);

%This is the form of the test signal v

%and the optimization function.

vval=g*sin(pi*x/L); %n=1

%vval=c(1)*g*sin(pi*x/L)+c(2)*g*sin(2*pi*x/L); %n=2

%vval=(c(1)*g*sin(pi*x/L)+c(2)*g*sin(2*pi*x/L)+

c(3)*g*sin(3*pi*x/L)); %n=3

%vval=g*(c(1)*sin(pi*x/L)+c(2)*sin(2*pi*x/L)+

c(3)*sin(3*pi*x/L)+c(4)*sin(4*pi*x/L)+c(5)*sin(5*pi*x/L)); %n=5

end

%This function gives the value of the inner minimum.

%The equation below is \eta at the final time plus z(0)’*z(0).

val1 = ( y(9, 50) + (y(1:4,1))’*(y(1:4,1)))*1000;

%We multiply val1 by 1000 to speed up the code.

end

%Continuous Time Second Example

%This M-file optimizes over the perturbations dt.

%This gives the overall minimum.

%This gives the overall minimum for n=1.

function [dt, val2] = innermin22

%This gives the overall minimum for n>1.

%function val2 = innermin22(d)

dt0 = [0 1.5]’;

%dt0=[0 1.5 0]’;
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%The line below optimizes the parameter

%vector of incipient perturbations.

innermin=@(dt)(innermin11(dt)); %For n=1

%innermin=@(dt)(innermin11(d,dt)); %For n>1

options=optimset(’LargeScale’,’off’);

[dt,val2,exitflag,output] = fmincon(innermin,dt0,[],[],[],[],

[-0.1,1]’,[0.1,2]’,[],options); %For 2 parameters

%[dt,val2,exitflag,output] =fmincon(innermin,dt0,[],[],[],[],

[-0.1,1,-0.5]’,[0.1,2,0.5]’,[],options); %For 3 parameters

end


