ABSTRACT

MESSER, TIFFANY LAROSE. Groundwater Nitrate Reductions within Upstream and Downstream Sections of a Riparian Buffer. (Under the direction of Dr. Michael R. Burchell, II).

Riparian buffer systems have gained much interest over the past 25 years for their ability to reduce groundwater nitrate (NO₃-N) through the process of denitrification, a process which transforms NO₃-N into harmless nitrogen gas. Buffer ability to reduce NO₃-N has been found to be variable and does not always work as effectively as desired to meet water quality goals. Therefore research is still needed to identify the causes for variability within these systems to maximize their benefit in conservation programs, such as the North Carolina Conservation Reserve Enhancement Program (NC CREP).

Over the past five years a detailed evaluation of the hydrology and attenuation of groundwater NO₃⁻-N was conducted on two sections of buffer enrolled in NC CREP along the same stream. These sections had two distinct widths, but were also in two distinct topographic locations. The research objectives for this site included: 1.) conduct a detailed hydrologic evaluation of the site, 2.) determine changes in NO₃⁻-N concentrations through the buffer, 3.) evaluate contributions of denitrification and dilution to observed NO₃⁻-N reductions, and 4.) based on research findings, make recommendations for ideal buffer locations for future enrollments in NC CREP, to maximize water quality impacts of the program.

The average buffer widths were 60 m (Section 1) at the upstream location and 43 m (Section 2) at the downstream location. Twenty-one well nests were installed in three

transects within each buffer section to monitor shallow (1.5-2.3 m) and deep (2.7 -3.6 m) groundwater nitrate levels.

NO₃⁻-N decreased at the 1.5 m depth through the buffers from Zone 3 (grassed filter strip) to Zone 1(stream edge) with average NO₃⁻-N concentrations of 4.5 to 1.7 mg/L and 12.9 to 1.4 mg/L in Section 1 and Section 2 respectively. Likewise, NO₃⁻-N decreased through the buffers from Zone 3 to Zone 1 at the 3 m depth with average NO₃⁻-N concentrations of 2.9 to 2.5 mg/L and 12.8 to 6.0 mg/L for Section 1 and Section 2 respectively. Section 2 significantly reduced NO₃⁻-N at both the 1.5 m and 3 m depths, while Section 1 only had significant NO₃⁻-N reductions at the 1.5 m depth (α=0.05). The groundwater NO₃⁻-N concentrations entering each section's Zone 3 were significantly different and had an enormous impact on overall nitrate mass in each buffer section. These differences were attributed to contributing groundwater areas from the adjacent field.

Hydrology and water quality results supported denitrification was the predominant NO₃⁻-N reduction mechanism in both sections. The relative wetness of Zones 2 and 1, low redox readings and high DOC concentrations during the summer months indicated the sections were suitable for denitrification to proceed. Dilution was most likely minimal as groundwater NO₃⁻-N concentrations and NO₃⁻-N /Cl- ratios and a deeper aquifer water quality assessment indicated the waters were separated. Both sections effectively reduced NO₃⁻-N concentrations through the buffer. Section 2 appeared to reduce groundwater NO₃⁻-N concentrations effectively to meet water quality goals even though it had a smaller width than Section 1. Section 1 most likely had the potential to reduce groundwater NO₃⁻-N

concentrations as high as entering Section 2, but was constrained by entering NO₃-N concentrations. Although logistically challenging and initially expensive, buffers specifically designed to meet water quality goals, by taking into account critical site attributes, will improve overall water quality leaving agricultural sites, while protecting sensitive streams and estuaries cost effectively.

Groundwater Nitrate Reductions within Upstream and Downstream Sections of a Riparian Buffer

by Tiffany LaRose Messer

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science

Biological and Agricultural Engineering

Raleigh, North Carolina

2010

APPROVED BY:

Dr. Michael R. Burchell Committee Chair		Dr. Deanna L. Osmond Minor Representative
	Dr. Garry L. Grabow	

DEDICATION

I would like to dedicate this to the people who have loved and continue to love me unconditionally and support me through this long and sometimes difficult journey.

To the love of my life Patrick S. Messer

Thank you for always being my inspiration in all aspects of life.

To Mom and Dad

Thank you for teaching me to love and always supporting me to continue my education.

To Tabitha, Bethany, Drew, and Shaina

Thank you for always being there for me and one another.

To my grandparents

Thank you loving our family more than anyone could ever imagine.

BIOGRAPHY

Tiffany Messer was born on September 27, 1986 in Lexington, KY to Drew and Lorra Graham. She is the oldest of three younger siblings Tabitha, Bethany, and Drew. Growing up on a farm outside of Winchester, KY where they raised beef cattle, tobacco, and corn, she soon became aware of the importance of agricultural and water quality. During her high school years she became very active in Calvary Christian Church and learned of her desire to improve water quality conditions in financially limited locations. She graduated from George Rogers Clark High School in 2004.

After graduation she enrolled at the University of Kentucky in Lexington, KY. She received her B.S. in Biosystems and Agricultural Engineering with a specialty in bioenvironmental in 2008. Throughout her undergraduate degree she became involved with several recruitment and leadership roles by serving as an Ambassador for the College of Engineering, and on the College of Agriculture Student Council, the Biosystems and Agricultural Engineering Student Branch, and the ¼ Scale Tractor Team. Three remarkable advisors encouraged and assisted her along the way through her undergraduate program: Dr. Jane Riggs, Dr. Steven Workman, and Dr. Scott Shearer. The opportunities that these three individuals opened for her to participate in, including recruitment, research, and teaching assignments, confirmed her ultimate desire of pursuing a Ph.D. in Biological and Agricultural Engineering and becoming a university professor.

Following her undergraduate graduation she married her high school sweetheart and the love of her life, Patrick Messer. Afterwards they moved immediately to Durham, NC where she

began her M.S. research under the direction of Dr. Michael Burchell in the Biological and Agricultural Engineering Department at North Carolina State University. Her research focus was nitrate reduction in riparian buffers. Despite the long and sometimes heart wrenching process of improving her writing and research techniques, Tiffany ultimately decided to apply to the Ph.D. program at N.

C. State University to take the next step toward her ultimate goal of becoming a professor. Therefore, following the completion of her Master's degree Tiffany plans to continue focusing on water quality treatment systems throughout her Ph.D. and lifelong career.

ACKNOWLEDGEMENTS

The completion of this project and degree could never have been completed without the help and support of many incredible individuals. I would first like to thank NC CREP for funding and supporting this project and making this research possible. I would also like to thank my wonderful committee Dr. Michael Burchell, Dr. Garry Grabow, and Dr. Deanna Osmond for their constant guidance. A special thanks needs to be given to my adviser Dr. Michael Burchell for his continuous patience and consistency in using every opportunity to guide and teach me and other students over the past two years. His constant diligence and persistence to teach new writing techniques and how to improve overall writing skills will be a critical and cherished element throughout my career. I would also like to thank Dr. Steve Workman for recommending me to NC State. Dr. Wayne Skaggs and Dr. Francois Brigand, for which I am deeply grateful for their assistance and teaching, were instrumental in assessing and estimating groundwater hydrology and pollutant movement in this project.

An enormous thanks to the dedicated individuals that helped me in the lab and field: Jacob Wiseman, Amey Tilak, Jamie Blackwell, Mike Shaffer, Spencer Davis, Cory George, Laura Lord, Bill Price, and Randall Etheridge. I will never forget sampling in the scorching hot sun, freezing snow, and down pouring rain or our thumbs feeling like they may never be the same again after completing DOC filtered samples in the lab.

A special thanks is due to Rachel Huie, Heroshi Tajirir, and Ryan Libert for their analysis of an innumerable amount of groundwater samples throughout this study. Thank you to Dr. Jason Osborne and Dr. Garry Grabow for their statistical consultation and assistance on this

extremely difficult to model project. Thank you also to NC DWQ for installing the deep aquifer wells, which made evaluating water quality signatures in the deeper aquifer possible in this project

Last, but no least, thank you to all of my family and friends that have supported, loved, and encouraged me through this program. To my office mates Evan Corbin, Bobby Jarzemsky, Erica Tillinghast, and Erica Petre for dealing with me on my good and bad data analysis and writing days. To Jackie McNett for keeping me sane with our coffee breaks. To my family for loving and supporting me throughout my whole life and teaching me to value of education. And especially to Patrick Messer for always loving, always encouraging, always challenging, and always reminding me of my ultimate goals.

TABLE OF CONTENTS

LIST OF TABLES	xiii
LIST OF FIGURES	xix
CHAPTER 1: INTRODUCTION	
Historical Review	1
Riparian Buffers	3
Pollutant Removal Processes	6
Nitrate Removal Effectiveness of Riparian Buffers	9
North Carolina Conservation Reserve Enhancement I	Program16
Research Objectives	18
REFERENCES	19
CHAPTER 2: EFFECTIVENESS OF NITRATE RE	DUCTION IN A 43 METER WIDE
RIPARIAN BUFFER: A HYDOLOGIC AND BIOGI	EOCHEMICAL EVALUATION 24
ABSTRACT	24
INTRODUCTION	26
MATERIALS AND METHODS	30
Site Description	30
Site Instrumentation	36
Data Collection	40

Data Analysis	43
Statistics	50
RESULTS AND DISCUSSION	52
Groundwater Hydrology Data	52
Groundwater Gradients	56
Saturated Hydraulic Conductivity, Groundwater Velocity, and Residence Time	66
Overall Groundwater Quality NO ₃ -N Results	68
Transect and Seasonal NO ₃ -N Trends	72
NO ₃ ⁻ -N Summary	75
Redox Potential	75
Dissolved Organic Carbon (DOC)	83
Denitrification Assessment Using NO ₃ -N to Cl ⁻ Ratios	85
Potential Mixing Between Surficial and Deeper Aquifers	92
NO ₃ ⁻ -N Removal Evaluation through Riparian System	97
CONCLUSIONS	100
REFERENCES	103
CHAPTER 3: EFFECTIVENESS OF NITRATE REDUCTION IN A 60 METE	ER RIPARIAN
BUFFER: A HYDOLOGIC AND BIOGEOCHEMICAL EVALUATION	109
ABSTRACT	109
INTRODUCTION	111
MATERIALS AND METHODS	115
Site Description	115

Site Instrumentation	119
Monitoring and Data Collection	121
Data Analysis	123
Statistical Analysis	127
RESULTS AND DISCUSSION	128
Groundwater Hydrology	128
Saturated Hydraulic Conductivity, Groundwater Velocity, and Residence Time	143
Overall Groundwater Quality NO ₃ -N Results	145
Transect and Seasonal Groundwater NO ₃ -N Trends	148
Groundwater NO ₃ -N Summary	151
Redox Potential	152
Dissolved Organic Carbon	158
Denitrification Assessment Using NO ₃ ⁻ -N to Cl ⁻ Ratios	161
Potential Mixing Between Surficial and Deeper Aquifers	168
NO ₃ ⁻ -N Removal Evaluation through Riparian System	174
CONCLUSIONS	176
REFERENCES	179
CHAPTER 4: GROUNDWATER NITRATE REDUCTIONS WITHIN UPST	REAM AND
DOWNSTREAM SECTIONS OF A RIPARIAN BUFFER	184
INTRODUCTION	186
MATERIALS AND METHODS	190
Site Description	190
Instrumentation Installation	101

Monitoring and Data Collection	193
Data Analysis	194
Statistical Analysis	198
RESULTS AND DISCUSSION	198
Overall Summary of Results	198
Overall Groundwater Quality NO ₃ -N Results	200
Groundwater Hydrology	202
Redox Potential and Dissolved Organic Carbon	217
Denitrification / Dilution Assessment	223
NO ₃ -N Removal Evaluation through Riparian System	225
CONCLUSIONS	228
APPENDICES	234
Vegetation Overview	
APPENDIX B: Soil Analysis	237
Section 1 Soil Chemical Analysis	237
Section 2 Soil Chemical Analysis	237
DEA Procedures (Provided by Amey Tilak, NCSU 2009)	239
NC CREP Boring Log Evaluations (NC DENR Div. of Water Quality)	245
Survey Completed by Soil Surveyor (Erik Severson)	250

PPENDIX C: Statistical Evaluation Results	
Code for Statistical Evaluations	253
NO ₃ N Evaluation Example Code (adapted from Grabow, 2010)	253
Redox Evaluation Example Code	254
NO ₃ -N Statistical Analysis Results using PROC MIXED	256
Cl ⁻ Statistical Analysis Results using PROC MIXED.	257
NO ₃ -N/Cl ⁻ Statistical Analysis Results using PROC MIXED.	258
DOC Statistical Analysis Results using PROC MIXED	259
Na ⁺ Statistical Analysis Results using PROC MIXED	260
Ca ²⁺ Statistical Analysis Results using PROC MIXED	261
T-tests for Difference in NO ₃ -N Concentrations at the Field Edge	262
Evaluation of Treatment 1 and 2 Depth and Deep Aquifer Interactions using PROC MIXED	263
Redox Interactions using PROC MIXED	266
Code for statistical evaluations using means to take into account day to day variations	(Not used
in this study)	267
NO ₃ ⁻ N Evaluation Example Code	267
Redox Evaluation Example Code	269
Confined and Surficial Aquifer Evaluation Example Code	270
NO ₃ -N Statistical Analysis Results using PROC MIXED	271
Cl ⁻ Statistical Analysis Results using PROC MIXED.	272
NO ₃ -N/Cl ⁻ Statistical Analysis Results using PROC MIXED	273
DOC Statistical Analysis Results using PROC MIXED	274
Na ⁺ Statistical Analysis Results using PROC MIXED	275
Ca ²⁺ Statistical Analysis Results using PROC MIXED	276

T-tests for Difference in NO ₃ -N Concentrations at the Field Edge	277
NO ₃ -N, Ca ²⁺ , and Na ⁺ differences depending on aquifer	278
Redox Interactions using PROC MIXED	281
APPENDIX D: Hydraulic Gradient and Flow Direction Modeling and Calculations	282
Flow Velocity and Residence Time Calculations	283
Groundwater Flow Vectors Modeled in Surfer 9 (Golden Software, 2010)	293
APPENDIX E: Nitrogen Application and Removal Calculations	305
Potential Nitrate-Nitrogen Mass Removal	309
APPENDIX F: Installation Procedures and Laboratory Procedures	316
BAE Environmental Analysis Laboratory at NCSU Analytical Procedures	316
Water Quality Monitoring Well Installation Procedure	316
APPENDIX G: Other Water Quality Constituents	319
Section 1 NH ₄ -N and O-PO ₄	319
Section 2 NH ₄ -N and O-PO ₄	322
NO ₃ -N concentrations to DOC and DOC over Time	325
APPENDIX H: Water Table Elevation and Rainfall Evaluations	329
Section 1 Evaluations	329
Section 2 Evaluations	344
APPENDIX I: Surface Water Analysis	347

LIST OF TABLES

CHAPTER 2

Table 2. 1: Soil classifications within buffer treatment (USDA-NRCS Soil Survey Staff, 2006)
Table 2. 2: Transect layout from Zone 3 to Zone 1. Distances are relative to the stream 38
Table 2. 3: Average yearly water table depth in Section 2 Note data was unavailable from
November 2007 to April 2008 due to equipment malfunction. 54
Table 2. 4: Maximum consecutive days water table was within 30 cm of the soil surface during
growing season (March 20 th thru November 6 th). Highlighted cells are years that wetland
hydrology was present at monitored zone locations. Data was missing in July through August of
2005 and March through April 2008.
Table 2. 5: Average yearly absolute elevation differences between zones. Note data was
unavailable from November 2007 to April 2008 due to equipment malfunction
Table 2. 6: Particle Size Analysis for Buffer Treatment
Table 2. 7: Groundwater mixing conclusions based on NO3N and Cl- concentrations, and
NO3N/Cl- ratios for 1.5 m deep wells downstream transect. 89
Table 2. 8: Groundwater mixing conclusions based on NO ₃ ⁻ -N and Cl ⁻ concentrations, and NO ₃ ⁻ -
N/Cl ⁻ ratios for 1.5 m deep wells center transect.
Table 2. 9: Groundwater mixing conclusions based on NO ₃ ⁻ -N and Cl ⁻ concentrations, and NO ₃ ⁻ -
N/Cl ⁻ ratios for 1.5 m deep wells upstream transect.

Table 2. 10: Groundwater mixing conclusions based on NO ₃ ⁻ -N and Cl ⁻ concentrations, and NO ₃ ⁻
-N/Cl ⁻ ratios for 3 m deep wells downstream transect. 90
Table 2. 11: Groundwater mixing conclusions based on NO ₃ -N and Cl ⁻ concentrations, and NO ₃ -
-N/Cl ⁻ ratios for 3 m deep wells center transect.
Table 2. 12: Groundwater mixing conclusions based on NO ₃ -N and Cl ⁻ concentrations, and NO ₃ -
-N/Cl ⁻ ratios for 3 m deep wells in upstream transect
Table 2. 13: NO ₃ -N removal per year for varying depths and zones of the studied riparian buffer
treatment system. 98
CHAPTER 3
Table 3. 1: Soil classifications within buffer treatment (USDA-NRCS Soil Survey Staff, 2006).
Table 3. 2: Transect layout from Zone 3 to Zone 1. Distances are relative to the stream 120
Table 3. 3: Average yearly water table depths. Note data was unavailable from November 2007
to April 2008 due to equipment malfunction.
Table 3. 4: Maximum consecutive days water table was within 30 cm of the soil surface during
growing season (March 20th thru November 6th). Highlighted cells are years that wetland
hydrology was present at monitored zones. Data was missing in July through August of 2005
and March through April 2008.
Table 3. 5: Average yearly elevation differences between zones. Note data was unavailable from
November 2007 to April 2008 due to equipment malfunction
Table 3. 6: Particle Size Analysis for Buffer Treatment

Table 3. 7: Groundwater mixing conclusions based on NO ₃ -N and Cl ⁻ concentrations, and NO ₃ -
N/Cl ⁻ ratios for shallow groundwater in the downstream transect. 164
Table 3. 8: Groundwater mixing conclusions based on NO ₃ ⁻ -N and Cl ⁻ concentrations, and NO ₃ ⁻ -
N /Cl ⁻ ratios for shallow groundwater in the center transect. 165
Table 3. 9: Groundwater mixing conclusions based on NO ₃ -N and Cl ⁻ concentrations, and NO ₃ -
N/Cl ⁻ ratios for shallow groundwater in upstream transect
Table 3. 10: Groundwater mixing conclusions based on NO ₃ -N and Cl ⁻ concentrations, and NO ₃ -
-N/Cl ⁻ ratios for deep groundwater in the upstream transect. 165
Table 3. 11: Groundwater mixing conclusions based on NO ₃ -N and Cl ⁻ concentrations, and NO ₃ -
-N/Cl ⁻ ratios for deep groundwater in the middle transect. 166
Table 3. 12: Groundwater mixing conclusions based on NO ₃ -N and Cl ⁻ concentrations, and NO ₃ -
-N/Cl ⁻ ratios for deep groundwater in the upstream transect. 166
Table 3. 13: NO ₃ -N removal per year for varying depths and zones of the studied riparian buffer
treatment system. 174
CHAPTER 4
Table 4. 1: Transect layout from Zone 3 to Zone 1 in Section 1. Distances are relative to the
stream. 192
Table 4. 2: Transect layout from Zone 3 to Zone 1 in Section 2. Distances are relative to the
stream. 193
Table 4.3: Overall comparisons of Section 1 and Section 2.

Table 4. 4: a.) Average annual water table depths in Section 1. b.) Average annual water table
depths in Section 2. Note data was unavailable from November 2007 to April 2008 due to
equipment malfunction. 204
Table 4. 5: Maximum consecutive days water table was within 30 cm of the soil surface during
growing season (March 20th thru November 6th). Highlighted cells are years that wetland
hydrology was present at monitored zones. Data was missing in July through August of 2005
and March through April 2008. 206
Table 4. 6: Average yearly groundwater elevation differences between zones in Section 1. Note
data was unavailable from November 2007 to April 2008 due to equipment malfunction 212
Table 4. 7: Average yearly groundwater elevation differences between zones in Section 2. Note
data was unavailable from November 2007 to April 2008 due to equipment malfunction 213
Table 4. 8: Travel times between each monitoring location in the buffer zones for Sections 1 and
2 based on groundwater angle
Table 4. 9: Potential NO ₃ -N removal per year for varying depths and zones of the studied
riparian buffer section system. 226
APPENDIX A
Table A. 1: Plant species for Sections 1 and 2 at the research buffer site
APPENDIX B
Table B. 1: Section 1 soil chemical analysis completed in the BAE Environmental Analysis
Laboratory for the three soil layers closest to the soil surface

Table B. 2: Section 2 soil chemical analysis completed in the BAE Environmental Analysis
Laboratory for the three soil layers closest to the soil surface. 238
APPENDIX D
Table D. 1: Calculated hydraulic gradient and flow direction angle for each month water table
elevation was monitored in monitoring wells.
Table D. 2: Section 1 1.5 m depth flow velocity and residence time calculations water table
elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35
was therefore used. 283
Table D. 3: Section 1 1.5 m depth flow velocity and residence time calculations using Devlin
(2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was
therefore used. 284
Table D. 4: Section1 3m depth flow velocity and residence time calculations using water table
elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35
was therefore used. 285
Table D. 5: Section1 3m depth flow velocity and residence time calculations using Devlin
(2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was
therefore used. 286
Table D. 6: Section2 1.5m depth flow velocity and residence time calculations using water table
elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35
was therefore used

Table D. 7: Section2 1.5m depth flow velocity and residence time calculations using Devlin
(2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was
therefore used. 288
Table D. 8: Section 2 3m depth flow velocity and residence time calculations using water table
elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35
was therefore used. 289
Table D. 9: Section 2 3m depth flow velocity and residence time calculations using Devlin
(2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was
therefore used
Table D. 6: Example sheet of Devlin (2003) for determining groundwater flow angles and
gradient
Table D. 7: Additional example sheet of Devlin (2003) for determining groundwater flow angles
and gradient 292
APPENDIX E
Table E. 1: Nitrogen Application each year on the research study site's field 1
Table E. 2: Nitrogen Application each year on the research study site's field 2
Table E. 3: Nitrogen Application each year on the research study site's field 3
Table E. 4:Potential NO ₃ ⁻ -N removal based on DEA analysis
APPENDIX F

Table F. 1: Analytical Procedures followed by the BAE Environmental Analysis Laboratory .316

LIST OF FIGURES

CHAPTER 1

Figure 1.1: Schematic of the riparian buffer zones (adapted from NRCS, 1997)
CHAPTER 2
Figure 2. 1: Research site location.
Figure 2. 2: USDA Three Zone Buffer Design – the basis of the design for the research buffer
(adapted from NRCS, 1997)
Figure 2. 3: Land cover for research site (Not to Scale).
Figure 2. 4: Soil Map of Research Site from USDA-NRCS Soil Survey Staff (2006)
Figure 2. 5: Soil profiles at buffer site and similar soil series (as defined by USDA-NRCS, 2006
and Severson, 2004)
Figure 2. 6: Research site monitoring setup for the study site. 38
Figure 2. 7: Redox potential monitoring nest. 39
Figure 2. 8: Water table data logger (Infinity USA, Inc., Port Orange, FL) and two surficial
aquifer monitoring wells. 41
Figure 2. 9: Water table visual for reference for Equation 2.10. 49
Figure 2. 10: Proximity of the water table to the soil surface within Zones 1-3 in the research
buffer. Data unavailable from November 20007 to April 2008 due to equipment malfunction. 53
Figure 2. 11: Number of days water table depths were less than 0 cm, 30 cm, 60cm, 1m, 1.5m,
and 2m relative to the soil surface. Note data was unavailable from November 20007 to April
2008 due to equipment malfunction. 55

Figure 2. 12: Downstream transect cross section of riparian buffer and surficial monitoring wells.
57
Figure 2. 13: Water table elevations for each zone of the buffer during the study period
(December 2004-May 2010). 58
Figure 2. 14: Water table elevations for each zone of the buffer during 2006 (wet year) 59
Figure 2. 15: Water table elevations for each zone of the buffer during 2009 (dry year) 59
Figure 2. 16: Groundwater flow vectors for April 2009 (wettest period) at the research site. The
blue line represents the stream
Figure 2. 17: Groundwater flow vectors for November 2009 (driest period) at the research site.
The blue line represents the stream
Figure 2. 18: Groundwater flow vectors for July 2009 at the research site. The blue line
represents the stream.
Figure 2. 19: Groundwater flow vectors for January 2009 at the research site. The blue line
represents the stream.
Figure 2. 20: Groundwater flow direction through the buffer relative to the stream for months
monitored in 2008.
Figure 2. 21: Groundwater flow direction through the buffer relative to the stream for months
monitored in 2009.
Figure 2. 22: Groundwater flow direction through the buffer relative to the stream for months
monitored in 2010.

Figure 2. 23: Groundwater angles estimated using Devlin (2003) on contours modeled in Surfer
7 mapping software during 2009 (Golden Software, Golden, CO)
Figure 2. 24: Groundwater contour map of July 2009 (dry period)
Figure 2. 25: Groundwater contour map of January 2009 (wet period)
Figure 2. 26: The 5%, 25%, median, 75%, and 95% percentiles groundwater NO ₃ -N
concentrations over the study for 1.5 m deep surficial wells at differing locations in the riparian
buffer (n=165 water quality samples). 70
Figure 2. 27: The 5%, 25%, median, 75%, and 95% percentiles groundwater NO ₃ -N
concentrations over the study for 3 m deep surficial wells at differing locations in the riparian
buffer (n=201 water quality samples. 70
Figure 2. 28: Overall mean groundwater NO ₃ -N concentrations at the 1.5 m and 3 m depths
$(n_{1.5m}=550 \text{ and } n_{3m}=625 \text{ water quality samples})$. Note – error bars represent standard error 70
Figure 2. 29: Highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at
differing distances relative to the stream (June 2005 to April 2010)
Figure 2. 30: Transect and seasonal NO ₃ -N evaluation at the 1.5 m depth (n=55 water quality
samples)
Figure 2. 31: Transect and seasonal NO ₃ -N evaluation at the 3 m depth (n=65 water quality
samples)
Figure 2. 32: Overall redox reading averages from June 2006 to May 2010. Brackets represent
standard error (n=180 samples from each depth and location)

Figure 2. 33: Seasonal evaluation of redox readings in the buffer from Zone 3 to Zone 1 (n=45)
during each season)
Figure 2. 34: Soil redox compared to NO ₃ -N in center transect at the 1.5 m depth well (June
2005 to April 2010)
Figure 2. 35: Soil redox compared to NO ₃ -N in center transect at the 3 m depth well (June 2005
to April 2010)
Figure 2. 36: Zone 1 (stream edge) average monthly redox readings with respect to water table
elevation at same location (June 2005 to April 2010). Note each redox point is the average of 5
readings
Figure 2. 37: Zone 2 (mid buffer) average monthly redox readings with respect to water table
elevation at same location (June 2005 to April 2010). Note each redox point is the average of 5
readings. 81
Figure 2. 38: Zone 3 (field edge) average monthly redox readings with respect to water table
elevation at same location (June 2005 to April 2010). Note each redox point is the average of 5
readings81
Figure 2. 39: Highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at
differing distances relative to the stream (June 2005 to April 2010)
Figure 2. 40: Average DOC concentrations for research site (n=187)
Figure 2. 41: Seasonal evaluation of DOC (n=187) from March 2008-May 2010. Shallow well
results for Zone 3 and Zone 2 for fall were unattainable due to low water table elevations at the
research site at the time of sampling.

Figure 2. 42. The 5%, 25%, median, 75%, and 95% percentiles of NO ₃ -N/Cl ⁻ ratio over	the
study for 1.5 m deep surficial wells at differing locations in the riparian buffer (n=55 was	ater
quality samples). Samples were taken from January 2005 – May 2010.	. 87
Figure 2. 43. The 5%, 25%, median, 75%, and 95% percentiles of NO ₃ ⁻ -N/Cl ⁻ ratio over	the
study for 3 m deep surficial wells at differing locations in the riparian buffer (n=67 water qua	ılity
samples). Samples were taken from January 2005 – May 2010.	. 87
Figure 2. 44: Means of deeper aquifer compared to means of 1.5 m and 3 m depth water qua	ılity
constituents at the stream and field edge of the riparian buffer treatment system (n values for	the
1.5 m, 3 m, 8 m, and 11 m depths were 89, 120, 60, and 20 respectively for NO ₃ ⁻ -N and chlor	ide;
n values for the 1.5 m, 3 m, 8 m, and 11 m depths were 68, 95, 60, and 20 respectively	for
calcium and sodium). Make note that the calcium quantity in the deep aquifer was cut off	for
viewing purposes.	. 93
Figure 2. 45:NO ₃ -N concentrations at sampled depths. Quantity of samples collected at	1.5
m, 3 m, 8 m, and 11 m were 89, 120, 60, and 20 respectively.	. 94
Figure 2. 46: Chloride concentrations at sampled depths. Quantity of samples collected at	1.5
m, 3 m, 8 m, and 11 m were 89, 120, 60, and 20 respectively.	. 94
Figure 2. 47: Calcium concentrations at sampled depths. Quantity of samples collected at 1.5	; m,
3 m, 8 m, and 11 m were 68, 95, 60, and 20 respectively	. 95
Figure 2. 48: Sodium concentrations at sampled depths. Quantity of samples collected at 1.5 n	n, 3
m 8 m and 11 m were 62 89 60 and 20 respectively	95

Figure 2. 49: NO ₃ -N concentrations compared to calcium concentrations. Quantity of samples
collected at 1.5 m, 3 m, 8 m, and 11 m were 62, 89, 60, and 20 respectively
Figure 2. 50: NO ₃ -N concentrations compared to sodium concentrations. Quantity of samples
collected at 1.5 m, 3 m, 8 m, and 11 m were 62, 89, 60, and 20 respectively
CHAPTER 3
Figure 3. 1: USDA Three Zone Buffer Design – the basis of the design of the buffer studied
(adapted from NRCS, 1997)
Figure 3. 2: Land cover for research site (Not to Scale).
Figure 3. 3: Soil Map of Research Site from USDA-NRCS Soil Survey Staff (2006)
Figure 3. 4: Soil profiles at buffer site and similar soil series (as defined by USDA-NRCS, 2006
and Severson, 2004)
Figure 3. 5: Research site monitoring setup for the study site
Figure 3. 6: Water table visual for reference for Equation 3.3.
Figure 3. 7: Proximity of the water table to the soil surface within Zones 1-3. Data unavailable
from January 2005 to April 2008 due to equipment malfunction
Figure 3. 8: Number of days water table depths were less than 0 cm, 30 cm, 60cm, 1m, 1.5m, and
2m relative to the soil surface. Note data was unavailable from November 20007 to April 2008
due to equipment malfunction. 131
Figure 3. 9: Cross section of center transect of the riparian buffer and surficial monitoring wells.
133

Figure 3. 10: Water table elevations for each zone of the buffer during the study period
(December 2004-May 2010). 134
Figure 3. 11: Water table elevations for each zone of the buffer during 2006 (wet year) 135
Figure 3. 12: Water table elevations for each zone of the buffer during 2009 (dry year) 135
Figure 3. 13: Groundwater flow vectors for April 2009 (wettest period) at the research site. The
blue line represents the stream. 137
Figure 3. 14: Groundwater flow vectors for November 2009 (driest period) at the research site.
The blue line represents the stream
Figure 3. 15: Groundwater flow vectors for July 2009 at the research site. The blue line
represents the stream. 138
Figure 3. 16: Groundwater flow vectors for January 2009 at the research site. The blue line
represents the stream. 138
Figure 3. 17: Groundwater flow direction through the buffer relative to the stream for months
monitored in 2008.
Figure 3. 18: Groundwater flow direction through the buffer relative to the stream for months
monitored in 2009.
Figure 3. 19: Groundwater flow direction through the buffer relative to the stream for months
monitored in 2010.
Figure 3. 20: Groundwater angles estimated using Devlin (2003) on contours modeled in Surfer
7 mapping software during 2009 (Golden Software, 1999)
Figure 3. 21: Groundwater contour map of July 2009 (dry period)

Figure 3. 22: Groundwater contour map of January 2009 (wet period)
Figure 3. 23: The 5%, 25%, median, 75%, and 95% percentiles of groundwater NO ₃ -N
concentrations over the study for 1.5 m deep surficial wells at differing locations in the riparian
buffer (n=144 water quality samples). 146
Figure 3. 24: The 5%, 25%, median, 75%, and 95% percentiles of groundwater NO ₃ -N
concentrations over the study for 3 m deep surficial wells at differing locations in the riparian
buffer (n=202 water quality samples).
Figure 3. 25: Overall mean groundwater NO ₃ -N concentrations at the 1.5 m and 3 m depths
$(n_{1.5m}=694 \text{ and } n_{3m}=836 \text{ water quality samples})$. Note – error bars represent standard error 147
Figure 3. 26: Overall mean groundwater NO ₃ -N concentrations per year at the 1.5 m and 3 m
depths ($n_{1.5m}$ =793 and n_{3m} = 886 water quality samples).
Figure 3. 27: Transect and seasonal groundwater NO ₃ -N evaluation at the 1.5 m depth (n=55
water quality samples).
Figure 3. 28: Transect and seasonal groundwater NO ₃ -N evaluation at the 3 m depth (n=65 water
quality samples).
Figure 3. 29: Overall redox reading averages from June 2006 to May 2010 (n=60 total samples
from each location). 153
Figure 3. 30: Seasonal evaluation of redox readings in the buffer from Zone 3 to Zone 1 (n=45)
during each season)
Figure 3. 31 Highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at
differing distances relative to the stream (June 2005 to April 2010)

Figure 3. 32: Zone 1 (stream edge) 5 averaged monthly redox readings with respect to water
table elevation at same location (June 2005 to April 2010)
Figure 3. 33: Lower Zone 2 (mid buffer) 5 averaged monthly redox readings with respect to
water table elevation at same location (June 2005 to April 2010)
Figure 3. 34: Upper Zone 2 (mid buffer) 5 averaged monthly redox readings with respect to
water table elevation at same location (June 2005 to April 2010)
Figure 3. 35: Zone 3 (field edge) 5 averaged monthly redox readings with respect to water table
elevation at same location (June 2005 to April 2010)
Figure 3. 36: Average DOC concentrations for research site (n=176). Note error bars represent
standard error and outliers from suspected well contamination by dead animal or plant material
were removed. 159
Figure 3. 37: Seasonal evaluation of DOC (n=176) from March 2008-May 2010. 1.5 m depth
results for Zone 3 and Zone 2 for fall were unattainable due to low water table elevations at the
research site at the time of sampling. 160
Figure 3. 38: The 25%, The 5%, 25%, median, 75%, and 95% percentiles of NO ₃ ⁻ -N/Cl ⁻ ratio
over the study for 1.5 m deep surficial wells at differing locations in the riparian buffer (n=55
water quality samples). Samples were taken from January 2005 – May 2010 162
Figure 3. 39: The 25%, The 5%, 25%, median, 75%, and 95% percentiles of NO ₃ -N/Cl ⁻ ratio
over the study for 3 m deep surficial wells at differing locations in the riparian buffer (n=67
water quality samples). Samples were taken from January 2005 – May 2010

Figure 3. 40: Means deeper aquifer compared to means of shallow, and deep water quality
constituents at the stream and field edge of the riparian buffer treatment system (1.5 m, 3 m, 8 m,
and 11 m were 78, 120, 60, and 20 respectively for NO ₃ -N and Chloride; 1.5 m, 3 m, 8 m, and
11 m were 53, 87, 60, and 20 respectively for calcium and sodium). Make note that the calcium
quantity in the deep aquifer was cut off for viewing purposes. 169
Figure 3. 41:NO ₃ -N concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3
m, 8 m, and 11 m were 78, 120, 60, and 20 respectively
Figure 3. 42: Chloride concentrations at sampled depths. Quantity of samples collected at 1.5 m,
3 m, 8 m, and 11 m were 78, 120, 60, and 20 respectively
Figure 3. 43: Calcium concentrations at sampled depths. Quantity of samples collected at 1.5 m,
3 m, 8 m, and 11 m were 53, 87, 60, and 20 respectively
Figure 3. 44: Sodium concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3
m, 8 m, and 11 m were 53, 87, 60, and 20 respectively
Figure 3. 45: NO ₃ -N concentrations compared to calcium concentrations. Quantity of samples
collected at 1.5 m, 3 m, and the deeper aquifer were 53, 87, and 80 respectively
Figure 3. 46: NO ₃ -N concentrations compared to sodium concentrations. Quantity of samples
collected at 1.5 m, 3 m, and the deeper aquifer were 53, 87, and 80 respectively
CHAPTER 4
Figure 4. 1: Land cover for research site (Not to Scale).
Figure 4. 2: Research site monitoring setup at the study site
Figure 4. 3: Water table visual for reference for Equation 4.3

Figure 4. 4: Section 1 overall mean groundwater NO ₃ -N concentrations at the 1.5 m and 3 m
depths ($n_{1.5m}$ =694 and n_{3m} = 836 water quality samples). Note – error bars represent standard
error
Figure 4. 5: Section 2 overall mean groundwater NO ₃ -N concentrations at the 1.5 m and 3 m
depths ($n_{1.5m}$ =550 and n_{3m} = 625 water quality samples). Note – error bars represent standard
error
Figure 4.6: Proximity of the water table to the soil surface within Zones 1-3 in Section 1. Data
unavailable from January 2005 to April 2008 due to equipment malfunction
Figure 4. 7: Proximity of the water table to the soil surface within Zones 1-3 in Section 2. Data
unavailable from November 20007 to April 2008 due to equipment malfunction
Figure 4. 8: Vegetation in Section 1 Zones 1 and 2 (higher pine tree survival)
Figure 4. 9: Vegetation in Section 2 Zones 1 and 2 (lower pine tree survival and more herbaceous
wetland plants present)
Figure 4. 10: GIS hydric soil map for Halifax County (NRCS, 2010 and NSCU Library Geodata
server, 2010)
Figure 4. 11: Center transect cross section of Section 1 and surficial monitoring wells 209
Figure 4. 12: Downstream transect cross section of Section 2 and surficial monitoring wells 209
Figure 4. 13: Water table elevations for each zone of Section 1 during the study period
(December 2004-May 2010). 211
Figure 4. 14: Water table elevations for each zone of Section 2 during the study period
(December 2004-May 2010) 211

Figure 4. 15: Overall site map.	214
Figure 4. 16: Groundwater contour map of July 2009 (dry period)	215
Figure 4. 17: Groundwater contour map of January 2009 (wet period).	215
Figure 4. 18: Section 1 highest, lowest, and average soil redox readings at the 1.5 and 3	3 m soil
depths at differing distances relative to the stream from June 2005 to April 2010 (n=	=60 total
samples from each location).	218
Figure 4. 19: Section 2 highest, lowest, and average soil redox readings at the 1.5 and 3	3 m soil
depths at differing distances relative to the stream from June 2005 to April 2010 (n=	€60 total
samples from each location).	219
Figure 4. 20: Section 1 average DOC concentrations for research site (n=176). Note er	ror bars
represent standard error and outliers from suspected well contamination by dead animal	or plant
material were removed.	220
Figure 4. 21: Section 1 seasonal evaluation of DOC (n=176) from March 2008-May 2010). 1.5 m
depth results for Zone 3 and Zone 2 for fall were unattainable due to low water table ele	evations
at the research site at the time of sampling. Note outliers removed.	221
Figure 4. 22: Section 2 average DOC concentrations for research site (n=187). Note: er	ror bars
represent standard error	221
Figure 4. 23: Section 2 seasonal evaluation of DOC (n=187) from March 2008-May 2010). 1.5 m
and 3 m results for Zone 3 and Zone 2 for fall were unattainable due to low wat	ter table
elevations at the research site at the time of sampling.	222
A DDENIDIN C	

Figure C. 1: Treatment 1 NO ₃ -N statistical analysis results	256
Figure C. 2: Treatment 2 NO ₃ -N statistical analysis results	256
Figure C. 3: Treatment 1 Cl ⁻ statistical analysis results	257
Figure C. 4: Treatment 2 Cl ⁻ statistical analysis results	257
Figure C. 5: Treatment 1 NO ₃ ⁻ -N/Cl ⁻ Statistical Analysis Results	258
Figure C. 6: Treatment 2 NO ₃ ⁻ -N/Cl ⁻ Statistical Analysis Results	258
Figure C. 7: Treatment 1 DOC Statistical Analysis Results	259
Figure C. 8: Treatment 2 DOC Statistical Analysis Results	259
Figure C. 9: Treatment 1 Na ⁺ Statistical Analysis Results	260
Figure C. 10: Treatment 2 Na ⁺ Statistical Analysis Results	260
Figure C. 11: Treatment 1 Ca ²⁺ Statistical Analysis Results	261
Figure C. 12: Treatment 2 Ca ²⁺ Statistical Analysis Results	261
Figure C. 13: NO ₃ -N differences between Treatments 1 and 2	262
Figure C. 14: Nitrate differences depending on well depth for Treatment 1	262
Figure C. 15: Nitrate differences depending on well depth for Treatment 2	263
Figure C. 16: T-test of the NO ₃ ⁻ -N concentrations between Treatment 1 surficial and of	confined
aquifers	263
Figure C. 17: T-test of the NO ₃ -N concentrations between Treatment 2 surficial and of	confined
aquifers	264
Figure C. 18: T-test of the Ca ²⁺ concentrations between Treatment 1 surficial and of	confined
aquifers	264

Figure C. 19: T-test of the Ca ²⁺ concentrations between Treatment 2 surficial and co	onfined
aquifers	265
Figure C. 20: T-test of the Na ⁺ concentrations between Treatment 1 surficial and co	onfined
aquifers	265
Figure C. 21: T-test of the Na ⁺ concentrations between Treatment 2 surficial and co	onfined
aquifers	266
Figure C. 22: Treatment 1 redox statistical analysis results	266
Figure C. 23: Treatment 2 redox statistical analysis results	267
Figure C. 24: Section 1 NO ₃ ⁻ -N statistical analysis results	271
Figure C. 25: Section 2 NO ₃ ⁻ -N statistical analysis results	271
Figure C. 26: Section 1 Cl ⁻ statistical analysis results	272
Figure C. 27: Section 2 Cl ⁻ statistical analysis results	272
Figure C. 28: Section 1 NO ₃ ⁻ -N/Cl ⁻ Statistical Analysis Results	273
Figure C. 29: Section 2 NO ₃ ⁻ -N/Cl ⁻ Statistical Analysis Results	273
Figure C. 30: Section 1 DOC Statistical Analysis Results	274
Figure C. 31: Section 2 DOC Statistical Analysis Results	274
Figure C. 32: Section 1 Na ⁺ Statistical Analysis Results	275
Figure C. 33: Section 2 Na ⁺ Statistical Analysis Results	275
Figure C. 34: Section 1 Ca ²⁺ Statistical Analysis Results	276
Figure C. 35: Section 2 Ca ²⁺ Statistical Analysis Results	276

Figure C. 36: T test of NO ₃ -N Concentration differences at the field edge of Section	1 and
Section 2	277
Figure C. 37: T-test of the NO ₃ -N concentrations between Section 1 surficial and co	nfined
aquifers	278
Figure C. 38: T-test of the NO ₃ -N concentrations between Section 2 surficial and co	nfined
aquifers	278
Figure C. 39: T-test of the Ca ²⁺ concentrations between Section 1 surficial and confined ac	
	279
Figure C. 40: T-test of the Ca ²⁺ concentrations between Section 2 surficial and confined ac	
	279
Figure C. 41: T-test of the Na ⁺ concentrations between Section 1 surficial and confined ac	-
	280
Figure C. 42: T-test of the Na ⁺ concentrations between Section 2 surficial and confined ac	
	280
Figure C. 43: Proc mixed of redox interactions in Section 1	281
Figure C. 44: Proc mixed of redox interactions in Section 2	281
APPENDIX D	
Figure D. 1: Groundwater flow vectors during June 2008	293
Figure D. 2: Groundwater flow vectors during August 2008	294
Figure D. 3: Groundwater flow vectors during September 2008.	294
Figure D. 4: Groundwater flow vectors during October 2008	295

Figure D. 5: Groundwater flow vectors during November 2008	295
Figure D. 6: Groundwater flow vectors during December 2008	296
Figure D. 7: Groundwater flow vectors during January 2009	296
Figure D. 8: Groundwater flow vectors during February 2009	297
Figure D. 9: Groundwater flow vectors during March 2009	297
Figure D. 10: Groundwater flow vectors during April 2009	298
Figure D. 11: Groundwater flow vectors during May 2009	298
Figure D. 12: Groundwater flow vectors during June 2009	299
Figure D. 13: Groundwater flow vectors during July 2009	299
Figure D. 14: Groundwater flow vectors during August 2009	300
Figure D. 15: Groundwater flow vectors during September 2009	300
Figure D. 16: Groundwater flow vectors during October 2009	301
Figure D. 17: Groundwater flow vectors during November 2009.	301
Figure D. 18: Groundwater flow vectors during December 2009	302
Figure D. 19: Groundwater flow vectors during January 2010	302
Figure D. 20: Groundwater flow vectors during February 2010	303
Figure D. 21: Groundwater flow vectors during March 2010	303
Figure D. 22: Groundwater flow vectors during April 2010	304
Figure D. 23: Groundwater flow vectors during May 2010	304
APPENDIX E	
Figure E. 1: Layout of applications to adjacent field	305

Figure E. 2: DEA after one hour of incubation.	311
Figure E. 3: DEA after four hours of incubation.	312
Figure E. 4: DEA for Transect A after one hour of incubation.	313
Figure E. 5: DEA for Transect A after four hours of incubation.	313
Figure E. 6: DEA for Transect C after one hour of incubation.	314
Figure E. 7: DEA for Transect C after four hours of incubation	314
APPENDIX F	
Figure F. 1: Well Installation	318
APPENDIX G	
Figure G. 1: NH ₄ -N to NO ₃ ⁻ -N at water quality monitoring depths 1.5 m and 3m ($n_{shallow} = 50$	and
$n_{\text{deep}}=64$)	320
Figure G. 2: O-PO ₄ NO ₃ -N at water quality monitoring depths 1.5 m and 3m ($n_{shallow} = 50$	and
$n_{\text{deep}}=64$)	320
Figure G. 3: Section 1 average NH ₄ -N at the 1.5 m and 3 m monitoring depths ($n_{shallow} = 50$	and
$n_{\text{deep}}=64$)	321
Figure G. 4: Section 1 average O-PO ₄ at the 1.5 m and 3 m monitoring depths ($n_{shallow} = 50$	and
$n_{\text{deep}} = 64$)	321
Figure G. 5: NH ₄ -N to NO ₃ -N concentrations at the 1.5 m and 3 m monitoring depths ($n_{1.5 \text{ m}}$ =	= 50
and n _{3m} =64)	323
Figure G. 6: O-PO ₄ to NO ₃ -N concentrations at the 1.5 m and 3 m monitoring depths ($n_{1.5 \text{ m}}$ =	= 50
and n _{3m} =64)	323

Figure G. 7: Section 2 average NH ₄ -N at the 1.5 m and 3 m monitoring depths ($n_{1.5 \text{ m}}$ = 5	0 and
$n_{3m}=64$)	324
Figure G. 8: Section 2 average O-PO ₄ at the 1.5 m and 3 m monitoring depths ($n_{1.5 \text{ m}}$ = 5	0 and
$n_{3m}=64$)	324
Figure G. 9: Section 1 NO ₃ -N concentrations to DOC at 1.5 m below the soil surface	325
Figure G. 10: Section 1 DOC at 1.5 m below the soil surface	325
Figure G. 11: Section 1 NO ₃ ⁻ -N concentrations to DOC at 3 m below soil surface	326
Figure G. 12: Section 1 DOC at 3 m below the soil surface.	326
Figure G. 13: Section 2 NO ₃ ⁻ -N concentrations to DOC at 1.5 m below the soil surface	327
Figure G. 14: Section 2 DOC at 1.5 m below the soil surface.	327
Figure G. 15: Section 2 NO ₃ ⁻ -N concentrations to DOC at 3 m below soil surface	328
Figure G. 16: Section 2 NO ₃ ⁻ -N concentrations to DOC at 3 m depth below soil surface	328
APPENDIX H	
Figure H. 1: Rainfall and water table elevations during 2006	329
Figure H. 2: Rainfall and water table elevations during 2007	330
Figure H. 3: Rainfall and water table elevations during 2008	330
Figure H. 4: Rainfall and water table elevations during 2009	331
Figure H. 5: Rainfall and water table elevations during 2010	331
Figure H. 6: Rainfall and water table elevations during 2006	344
Figure H. 7: Rainfall and water table elevations during 2007	344
Figure H. 8: Rainfall and water table elevations during 2008	345

Figure H. 9: Rainfall and water table elevations during 2009	. 345
Figure H. 10: Rainfall and water table elevations during 2010	. 346

CHAPTER 1: INTRODUCTION

Historical Review

The amendment to Section 319 of the Clean Water Act in 1987 focused on nonpoint sources (NPS) of pollution to water quality. NPS pollution has impaired a substantial amount of streams and estuaries in the United States including North Carolina over the past century. All states must now report the progress of restoring impaired water bodies within a set time period using Best Management Practices (BMPs) as required under the Clean Water Act (CWA, 1987).

Concerns of the North Carolina – Department of Environment and Natural Resources (DENR) have elevated over the past 30 years regarding the water quality conditions of the Neuse and Tar-Pamlico River Basins. During the mid-1970's eutrophication became a predominant concern as evidence of these conditions were found in stream surveys of the Neuse River. Eutrophication is a condition caused by excessive nutrient availability resulting in algal blooms that reduce oxygen levels in streams that can result in fish kills. A two year special investigation was completed during the late 1980's and early 1990's for the Neuse River to examine the causes of the algal blooms, leading to reevaluation of regulations (NCDWQ, 2002). Nonpoint source pollution was found to make up a large portion of the nitrogen loading to the Neuse River in North Carolina and majority of this is from agricultural practices (NRDC, 1998).

The Tar-Pamlico Basin in North Carolina was designated nutrient sensitive after a survey discovered that a substantial number of fish kills, diseases in aquatic biota, low oxygen levels,

and harmful algal blooms were occurring in the mid-1980's (NCDWQ, 2007). Therefore, North Carolina – DENR implemented the Tar-Pamlico Nutrient Strategy in 1990 (NCDWQ, 2008). The strategy was comprised of three phases. Phase I (1990-1994) focused on known point source pollution, such as industrial plants, and developed more cost effective ways to reduce nutrient loading (NCDWQ, 2008). Phase II (1994-2004) targeted both point and nonpoint pollution sources. The point source pollution goals for Phase II included keeping phosphorus loading levels measured during 1991 constant depending on estuarine conditions and establishing a 30% reduction in nitrogen loading levels (NCDWQ, 2008). During Phase II, increasing concerns of the impacts of NPS pollution on water quality led to additional regulations being added to the initial phase comprised of voluntary actions. Mandatory rules addressing agriculture, urban stormwater, fertilizer management, and riparian buffer protection were adopted in 2004 (NCDWQ, 2008). Phase III (2004-2014) extends the goals set in Phase II for an additional ten years including the 30% nitrogen reduction.

The reduction of nitrogen has been a critical focus for maintaining acceptable water quality throughout North Carolina for many years and continues today. Nitrate-nitrogen (NO₃⁻-N) is a form of nitrogen that adds a considerable amount to the total nitrogen loading in water sources, such as streams. Agricultural NPS pollution is also the leading contributor of NO₃⁻-N to rivers in North Carolina (US EPA, 1984; US EPA 2010). North Carolina has therefore implemented the nonpoint rules that are specific to all defined focus areas of NPS pollution stated in Phase II. The nonpoint rules are used to ensure the restoration and protection of waters

throughout the state of North Carolina that are currently, or have the potential to be, impaired due to NPS pollution.

Riparian Buffers

Riparian buffers are one of several focus areas defined in North Carolina that can reduce NPS pollution. The USDA Forest Service defines riparian buffers as (2010):

"An area of trees and other vegetation located in areas adjoining and upgradient from surface water bodies and designed to intercept surface runoff, wastewater, subsurface flow and deeper groundwater flows from upland sources for the purpose of removing or buffering the effects of associated nutrients, sediment, organic matter, pesticides or other pollutants prior to entry into surface waters and groundwater recharge areas."

Additionally, riparian buffers are defined as follows by leading experts (Lowrance et. al, 1985; Osmond *et. al*, 2002):

A complex assemblage of plants, organisms, and their environment adjacent to water. Riparian buffers may include wetlands, stream banks, and floodplains since they do not have definitive boundaries. Characterized by laterally flowing water that rises and falls at least once within a growing season and being linear shape, riparian buffers also have a high degree of connectiveness with other ecosystems.

Over the past 25 years extensive research has been conducted examining riparian buffer systems. Acting as natural sinks, riparian buffers also help in the storage of nutrients and therefore, reduce nutrients from reaching surrounding agro-ecosystems (Peterjohn *et al.*, 1984).

Researchers have reported riparian buffers reduce NO₃-N concentrations found in surface water and groundwater and improve overall water quality in the adjacent water resources (Evans *et. al*, 2007; Gilliam, 1994; Dukes *et al.*, 2002; Hill, 1996; Schultz *et al.*, 1995).

The United States – Department of Agriculture (USDA) promotes a three zone buffer with distinct vegetation zones to minimize stream contamination (Welsh, 1991). The three vegetation zones work collectively to reduce nutrient runoff (Figure 1.1). Zone 1 includes the area from the edge of the active channel to a minimum 4.6 m (15 ft) perpendicular to the incoming water flow. Vegetation is predominantly hardwoods and should remain undisturbed. Zone 2, with a minimum width of 13.7 m (45 ft), has vegetation that is comprised of that similar to Zone 1, but allows some disturbances. Examples of these disturbances include timber management including harvesting, grading and revegetation, road intrusions into the buffer, and periodic mowing with mitigation (NCDWQ, 2008). Zone 3 has a width of approximately 6.1 m (20 ft). Vegetation in Zone 3 is a grassed filter strip. The area can be used for grazing, but must have some type of grass present at all times (Lowrance *et. al*, 1995).

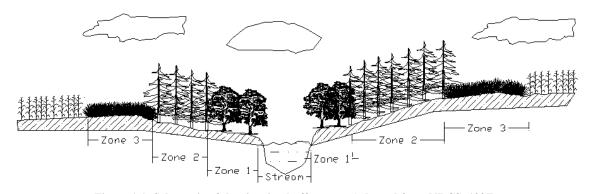


Figure 1.1: Schematic of the riparian buffer zones (adapted from NRCS, 1997)

The three zone design utilizes biogeochemical, physical, and biological mechanisms to reduce pollutants from entering waterways. High water tables and carbon sources from vegetation litter primarily in Zone 1 and 2 provide suitable conditions for biogeochemical processes to occur to reduce subsurface pollutants, such as NO₃-N. Physically, riparian zones provide bank stabilization, shading and a reduction in sedimentation. Zone 1 is designed to enhance bank stability and decrease erosion through the root system of the trees around the stream bank (Lowrance *et al.*, 1997). The trees further provide shade over the stream to reduce water temperatures for suitable habitats for stream biota (Tabacchi *et. al,* 1998). Litter cover in all three zones reduces the velocity of runoff. The riparian zones also provide aquatic and wildlife habitat by providing food, (in the form of carbon), cover, and water (Osmond *et al,* 2002).

The state of North Carolina has recognized the potential of riparian buffers to reduce NPS pollution; thus they have implemented nonpoint rules specifically for riparian zones.

Three riparian buffer rules have been mandated by NC-DENR (NCDWQ, 2008):

1.) Protection Rule: Riparian areas on each side of all intermittent and perennial streams, lakes, ponds and estuarine waters must be no less than 15.2 m (50 ft) and must be protected and maintained. The 9.1 m (30 ft) closest to the stream, Zone 1, is to be undisturbed. Zone 2, the following 6.1 m (20 ft), is to be vegetated and may have some

land activities. (i.e. grading and revegetation, road intrusions into the buffer, and periodic mowing)

- 2.) Mitigation Rule: The rule identifies the process applicants follow to receive approval for activities that are allowed with mitigation and outlines the mitigation measures.
- 3.) Delegation Rule: The rule arranges the requirements and the process for the implementation of buffer rules in local government jurisdictions.

The rules were implemented to increase pollutant reduction opportunities. The protection rule ensures the buffer area will remain undisturbed for biogeochemical and physical processes to proceed, while the mitigation and delegation rules deal with the logistics between the landowner and government. The three rules work collectively to potentially increase pollutant removal efficiency.

Pollutant Removal Processes

One of the primary goals of using riparian buffers in rural areas is to reduce nutrient losses from fertilizers and other NPS pollutants applied upland of the water source. Surface water and groundwater treatment can occur within riparian buffers. The grass filter strip present in Zone 3 of the riparian buffer slows down and disperses the preferential runoff flow with perpendicular resistance to the grass. Sediment and sediment-bound nutrients, such as phosphorus, become trapped in this zone, which reduces discharge of these pollutants to nearby water bodies (Mankin *et al.*, 2007). Nitrate-N (NO₃⁻-N), a subsurface pollutant, can be removed

by a number of mechanisms. These include denitrification, plant immobilization, and microbial immobilization (Hill, 1996). Of these, denitrification is the only process that can completely remove NO₃-N from the system. That is why much research has focused on this process.

Enhanced denitrification could be the solution for removing the majority of NO₃⁻-N prior to entering waterways (Dukes *et al.*, 2002; Hefting *et al.*, 2005, Spruill, 2004). Denitrification is an anaerobic, microbially mediated process where NO₃⁻-N is converted into (harmless) nitrogen gas (N₂) and then released into the atmosphere. If NO₃⁻-N is found in the soil pore water, denitrification can occur provided the following conditions are present (Postma *et al.*, 1991; Puckett, 2004; Knowles, 1982; Korom, 1992; Sylvia *et. al.*, 1998):

- 1.) Denitrifying bacteria
- 2.) Anaerobic conditions
- 3.) A carbon source that can act as an electron donor
- 4.) Suitable temperature (35-60° C)
- 5.) Suitable pH conditions (near neutrality)

The following equation displays the chemical process of denitrification (Brady *et al.*, 2008).

$$2NO_{3}^{-} \xrightarrow{-2O} 2NO_{2}^{-} \xrightarrow{Nitr} 2NO \uparrow \xrightarrow{NitricOxideGas} \xrightarrow{Nor} N_{2}O \uparrow \xrightarrow{-O} N_{2}O \uparrow \xrightarrow{NitrousOxideGas} \xrightarrow{Nos} N_{2}O \uparrow \xrightarrow{NitrousOxideGas} \xrightarrow{NitrousOxideGas} \xrightarrow{Nos} N_{2}O \uparrow \xrightarrow{NitrousOxideGas} \xrightarrow{NitrousOxideGas} \xrightarrow{Nos} N_{2}O \uparrow \xrightarrow{NitrousOxideGas} \xrightarrow{Nos} N_{2}O \uparrow \xrightarrow{NitrousOxideGas} \xrightarrow{Nit$$

The process converts nitrate into dinitrogen, nitric oxide, or nitrous oxide gas by coupling with energy production using oxidative phosphorylation. Denitrifying bacteria use nitrogen in

the form of nitrous oxide instead of oxygen as an electron acceptor. An electron donor in the form of organic carbon is used to reduce nitrogen into oxidized forms. The majority of the bacteria involved in this chemical transfer reaction is heterotrophs and require organic carbon as the electron donor. Predominate types of denitrifying bacteria include *Pseudomonas*, *Alcaligenes*, *Flavobacterium*, and *Bacillus*, with *Pseudomonas* being the most commonly found (Knowles, 1982). Four enzymes correspond with each step of the process: dissimilatory nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide reductase (Nor), and nitric oxide reductase (Nor) (Knowles, 1982; Sylvia *et. al*, 1998).

All of the denitrification enzymes are inhibited by oxygen, which requires submerged conditions in the microsite locations (Sylvia *et. al*, 1998). Therefore, anoxic conditions are crucial for denitrification to occur. Sylvia *et al*. (1998) reported that Nar and Nir become active once oxygen concentrations reach below 10% of the atmospheric concentrations (approximately 0.29 mmol₀₂/L_{H2O} at 20° C). Consequently, variability in water table fluctuation throughout the year considerably affects the rate of denitrification.

Redox potentials have been used to predict biological transformations as well to define if suitable conditions are present for denitrification, such as carbon. Nitrate reduction has been found to begin to occur at Eh values less than 300 mV (Patrick, 1960; Bailey and Beauchamp, 1973). The presence of organic carbon is critical for electron donation and for microbial biomass production. Carbon source availability can vary depending on vegetation and climatic season due to differences in litter on the forest floor (Hefting *et. al*, 2005). Denitrification rates are

highly dependent on temperature and pH conditions in the soil for bacteria to survive and enhance NO₃⁻-N reduction. Knowles (1982) cited studies that found denitrification to occur at reduced rates between 10 to 35° C and increase to temperatures of 60 to 75° C then diminish substantially after this point. The pH is critical for denitrification rates as well. Sylvia *et. al* (1998) reported that the denitrifying bacteria functions best near neutrality and low pH inhibits enzyme activity slowing denitrification rates.

Nitrate Removal Effectiveness of Riparian Buffers

Riparian buffers can be ideal for denitrification, but research shows it can be highly variable. Maintaining the ideal conditions in riparian zones for denitrification to occur is critical to increase the efficiency of NO₃⁻-N reduction through these systems. Riparian buffers have been found to reduce NO₃⁻-N concentrations as much as 90%, while in other cases have been found to have no effect on NO₃⁻-N concentrations entering adjacent stream channels (Lowrance *et al.*, 1984; Lowrance, 1992; Dukes *et al.*, 2002; Hunt *et al.*, 2004; Peterjohn *et al.*, 1984; Angier *et al.*, 2008; Spruill, 2004). Therefore, identifying design components which enhance NO₃⁻-N removal in these systems is critical for buffers to meet water quality goals.

Hydrology plays a major factor in determining denitrification rates that occur within riparian zones. These hydrologic factors include: groundwater flow direction through the riparian zone, seasonal water table depth in riparian zones, and physical and chemical properties of the soil strata in which groundwater flows (Clément *et. al*, 2002; Hill *et. al*, 2000; Puckett, 2004). Researchers have attempted to identify the combinations of soil type, seasonality,

topography, soil permeability, hydraulic conductivity, and carbon availability that lead to ideal conditions for denitrification to occur in buffer systems.

Groundwater flow along with water table depth is highly dependent on soil types and seasonality. In a study by Spruill (2004), four buffer sites had a range of NO₃-N reduction from 95% to 0%. The lack of NO₃-N reduction was postulated due to lack of groundwater flow though the buffer area before entering the stream. Groundwater bypass of the active denitrification zones in buffers can occur when, for example, groundwater flow paths do not intercept the buffer due to topographic gradients or restrictive soils, along with high evapotranspiration during the summer along with seasonally deep water table levels that do not allow groundwater to reach active denitrification zones. Dukes et al (2002) documented that two of six studied riparian buffers had water table gradients such that water moved from the streams into the buffers. Therefore no NO₃-N reduction was provided for the adjacent field by the two buffers. Puckett (2004) completed at study on 13 buffers focusing on groundwater NO₃-N fate with respect to the groundwater flow paths. Findings suggested deep groundwater did not reach reduction zones in the buffers due to tile drains, ditches, or flow paths beneath the denitrifying zones. Higher rates of denitrification have been found to occur during warmer months, and higher NO₃-N concentrations in the stream were found in cooler months during a buffer study using water quality samples (Böhlke et al., 2007; Lowrance et al., 1995). Both studies results were attributed to water table fluctuations throughout the year preventing water to enter into the reduced marine sediments that would have increased residence time through the buffer.

Residence time is an important factor for NO₃⁻-N to reach denitrifying microsites and undergo denitrification. The velocity at which water travels is highly related to the topography and soil permeability in the riparian zone. Vidon *et al.* (2004) examined eight riparian sites to define the effect of topography on NO₃⁻-N reduction and water table fluctuations using a model. Topographic qualities in the riparian zones were identified as critical components for decreasing runoff and groundwater velocity within the buffer. Decreased velocities from flatter topographies allow more time for the water to seep through the riparian buffer and possibly denitrify in the soil. Schiff *et. al* (2002) found that deeper water tables were caused by larger hydraulic gradients, increased hydraulic conductivity, and decreased residence times in the riparian zone, resulting in less NO₃⁻-N reduction.

Increased buffer width has also been evaluated to observe its effectiveness in increasing residence time and reducing NO₃⁻-N. Dukes' *et al.* (2002) study of four riparian buffers with differing widths concluded that the wider plot (15 m) had a 15% greater decrease of NO₃⁻-N compared to the thinner plot (8 m). These differences were most likely due to increased residence times through the buffer. Mayer *et.* al (2007) completed a meta-analysis of 89 buffers to estimate buffer NO₃⁻-N reduction with widths ranging from 0 to 50 m. The analysis took into account vegetation type and hydrologic flow conditions. NO₃⁻-N reduction increased as width increased from 0-25 m, but no additional significant benefit was gained when buffer width was increased to 25-50 m. These findings were attributed to denitrification microsites having higher availability from higher water tables and carbon availability in widths ranging from 0 to 25 m.

Angier's *et al.* (2008) study of a riparian buffer examined widths varying from 60 to 250 m. Groundwater samples indicated that the highest NO₃⁻-N concentrations were found in areas with buffer widths greater than 100 m. The study concluded that NO₃⁻-N reduction is not only dependent on the component of buffer width, but the flow direction and depth at which groundwater flows through buffer zones was equally, if not more, critical for NO₃⁻-N reduction.

Reduction of NO₃-N can be dependent on the depth that groundwater flows through the riparian zones during low-flow regimes. In one of many studies, 89% of NO₃-N reduction, primarily in the subsurface of the soil, was due to a combination of denitrification and plant uptake (Peterjohn et al., 1984). Further studies were recommended to consider the hydrologic and biogeochemical factors that contributed to each of these mechanisms. Studies completed by Lowrance et al. (1995, 1992) using denitrification enzyme activity (DEA) and groundwater monitoring wells have shown that denitrification had highest potential rates in soil depths of 0-6 cm, but can occur in saturation zones within 60 cm of the soil surface that are near the stream. The higher *potential* denitrification rates in the upper soil zones could be due to higher organic carbon availability due to tree litter. A study completed in North Carolina completed a DEA analysis within a riparian zone and reported the potential rate of denitrification decreased with soil depth (Hunt et al., 2004). Results were attributed to carbon availability in increased soil depths as well. Hill et. al (2004) evaluated denitrification potentials (DNP) with soil core samples at depths ranging from 0-400 cm in five riparian buffers. The study found denitrification activity in layers down to 210 cm. Furthermore, Hill et. al (2004) reported that NO₃⁻-N concentrations were lower because of increased denitrification rates in coarse sediment layers that was receiving carbon leaching downward from overlying organic rich horizons. Irregular flow patterns and fluctuating water tables decrease anoxic conditions suitable for denitrification at soil depths close to the surface and have also been reported to decrease NO₃⁻-N reduction effectiveness during dry regimes (Kellogg *et. al*, 2005).

Soil stratification and conductivity studies have also shown to have an important effect on reduction of NO₃⁻-N. Davis *et al.* (2007) completed a study on NO₃⁻-N reduction through the A and C soil horizons in shallow groundwater of a riparian buffer with a lateral flow path. Results from well samples were believed to show that the NO₃⁻-N concentration in the A horizon experienced dilution from precipitation combined with biological consumption (mostly from plant uptake and denitrification), while the C horizon only showed biological consumption. Again groundwater NO₃⁻-N removal correlates to the amount of organic material found on the surface of the buffer. Hefting (2005) reported that biomass production differed significantly in a study of several forested sites between vegetation types. The forested vegetation site had higher organic carbon availability from plant litter on the forest floor and a higher efficiency for NO₃⁻-N reduction. Vidon *et al.*, 2004 reported similar results in a study of two riparian zones. Spruill (2004) found higher NO₃⁻-N removal efficiencies in soil strata with lower hydraulic conductivities possibly due to longer residence times in the riparian zone.

Several soil studies have been completed using redox potential evaluations to predict occurrences of denitrification biological transformations. Redox potential is a voltage that can

be measured in soil to identify the tendency for a component to accept or donate electrons and predict reduced species in the soil solution (Sylvia *et al.*, 1998; Richardson and Vepraskas, 2001). The potential difference is created as electrons are transferred, becoming more positive (soil oxidized) as a substance loses electrons and more negative (soil waterlogged) as a substance gains electrons (Sylvia *et al.*, 1998). Oxidized soils tend to take electrons from the Pt wire, while reduced soils transfer electrons to the electrode (Richardson and Vepraskas, 2001). Therefore, lower redox potential readings usually exhibit anoxic soils with available carbon sources (Sylvia *et al.*, 1998). The redox potential is measured using a Pt-tipped electrode and a reference electrode creating a standard set of conditions (Richardson and Vepraskas. 2001). The Pt wire is used since it is chemically inert, only conducts electrons, does not generally react with itself, and does not oxidize readily as metals such as Fe, Cu, and Al often do (Richardson and Vepraskas, 2001). In field measurements are completed using a portable Ph/millivolt (mV) and saturated calomel or silver/silver-chloride reference electrode, where the redox potential is measured in millivolts (mV).

Multiple studies have been completed investigating the reliability of redox readings along with occurrences of denitrification. Wafer *et al.* (2004) tested the reliability of redox probes in field work with 240 redox probes. Results showed that 236 probes were found to be long-lasting and dependable over a course of 19 months. Cey *et al.* (1999) used redox potentials to provide evidence that denitrification was occurring through a riparian zone in southern Ontario. Results showed a sharp decline in NO₃-N concentrations as redox readings went below 200 mV.

Patrick (1960) showed evidence that NO₃-N begins to undergo denitrification at redox potentials as high as 250 mV, with increasing NO₃-N concentration reductions correlated with decreasing redox potential.

Difficulties in establishing if denitrification is responsible for observed NO₃-N reduction in concentrations are often attributed to the possibility of deeper groundwater mixing within the riparian zones. Discharge and upwelling areas within buffers have been found to have converging flowpaths that could dilute the amount of NO₃-N in groundwater, because the deeper groundwater typically contains low NO₃-N concentrations (Mengis et al., 1998). Researchers have developed several methods to determine if removal of NO₃-N observed is indeed denitrification or dilution. Lowrance (1992) along with other researchers used chloride, from well samples in the riparian zones, to provide evidence that denitrification and not dilution was responsible for observed NO₃-N losses. The conservative ion chloride (i.e. having minimal plant uptake and not undergoing microbial transformations in soil) was used to compare changes in the ion relative to NO₃-N through the buffer. Results showed that chloride decreased along with NO₃-N through the buffer towards the stream, indicating dilution occurring. Mengis et al. (1998) used ¹⁵N, which is stable and nonradioactive, to evaluate the dynamics of denitrification through riparian buffers. Widory et al. (2003) found that ¹⁵N enrichment increased as NO₃-N decreased. In the event that denitrification occurs the theory is microbes preferentially used N¹⁴, leaving the molecularly heavier N¹⁵ behind. Both studies showed higher concentrations of ¹⁵N in comparison with NO₃⁻-N leading to conclusions that microbial denitrification was occurring within the riparian zones.

Studies have shown how denitrification can occur in these systems and the mechanisms that can affect their pollutant reduction efficiencies. Still, designing and establishing the ideal buffer has been debatable as to how to meet all the needed conditions to maximum denitrification efficiency as described above. More research is needed to determine critical design mechanisms that can maximize NO₃-N reduction for these systems. Additional studies will add to the progress that has been made and enhance the overall impact of riparian zones.

North Carolina Conservation Reserve Enhancement Program

Research has accomplished enough to justify recommending and funding buffers in conservation programs. However, to maximize their benefit there are still many questions unanswered. Studies are needed to define the most important combinations of these factors to maximize NO₃-N removal in these systems. For example riparian buffers are one of the primary BMPs endorsed by the North Carolina Conservation Reserve Enhancement Program (NC CREP) to improve water quality, but enrollments are not always ideal sites.

NC CREP is a voluntary program that promotes producers to restore riparian and wetland areas. The program includes support from the N.C. Division of Soil and Water Conservation, U.S. Department of Agriculture's Farm Service Agency and Natural Resources Conservation Service, N.C. Clean Water Management Trust Fund, and the N.C. Division of Forest Resources (NC CREP, 2008). Targeting nine river basins in North Carolina, the program provides financial

and technical assistance to producers (USDA, 2010). The program's goals are to improve water quality by reducing sediment and nutrient loading in the basins using Best Management Practices (BMPs). As of 2007 NC CREP had 31,794 acres enrolled in the program that protects approximately 873 stream miles. NC CREP hopes to enroll 100,000 acres of environmentally sensitive land through the program.

Producers that choose to take part in the program sign at least a 10 to 15 year contract to convert sensitive cropland and pastureland to conservation practices encouraged by the program (USDA, 2010). A percentage of the soil rental rates and installation costs will be paid to the producers depending on what practice they plan to implement and the length of their contract. The 2007 NC CREP Annual Report proposed paying \$1000 per acre for permanent easements and \$250 per acre for 30-year easements. Eligible BMPs include tree planting of shortleaf pines, hardwood tree planting, filter strips, riparian buffers, wetland restoration, and bottomland timber establishment on wetlands (USDA, 2010). Riparian buffers must have a minimum impact zone of either 50 or 100 feet with limited tree removal. Payments vary depending on county, length of contract, CRP soil rental rates, and tax value of the cropland

The purpose of this study was to evaluate topography, hydrology, biogeochemistry, and geometric factors of what appeared to be an ideally sited riparian buffer enrolled in the NC CREP. Evaluating these factors will help the NC CREP to effectively implement more efficient riparian buffer systems in North Carolina.

Research Objectives

The evaluated research site in this study has been a part of NC CREP since 2004. The location of the site is in Halifax County, North Carolina and part of the Tar-Pamlico River watershed. The site location was chosen by finding an area that appeared to be an ideally functional riparian buffer situated correctly in the landscape. The riparian buffer was receiving a source of nutrients, nitrogen, from an adjacent row crop field. The adjacent field at the research site also enabled data analysis to not be complicated by hydrologic variables such as short circuits by old tile drains or deeply incised qualifying streams/canals. The proposed research will address hydrologic and biogeochemical factors that affects of NO₃-N removal in buffers, particularly through denitrification.

Objectives of the research project are:

- 1.) Complete a water quality and hydrologic assessment on riparian buffer effectiveness in reducing groundwater NO₃⁻-N through denitrification
- 2.) Determine the effect dilution from deeper groundwater has on reduction of NO₃-N through the buffer
- 3.) Determine if differences in buffer width affect NO₃-N reductions through the buffer
- 4.) Based on research findings, make recommendations for ideal buffer locations for future enrollments in NC CREP, to maximize water quality impacts of the program

REFERENCES

100th United States Congress. 1987. Clean Water Act. Washington D.C.: United States Congress.

Angier, J.T. and G.W. McCarty. 2008. Variations in Base-Flow Nitrate Flux in a First-Order Stream and Riparian Zone. *J. Am. Water Resourc. Assoc.* 44(2): 367-380.

Bailey, L.D. and E.G. Beauchamp. 1973. Effects of Temperature on NO₃ and NO₂ Reduction, Nitrogenous Gas Productions, and Redox Potential in a Saturate Soil. *Can. J. Soil Sci.* 53(2): 213-218.

Brady, N.C. and R.R. Well. 2008. The Nature and Properties of Soils. Columbus: Pearson Prentice Hall.

Böhlke, J.K, M.E. O'Connell, and K.L. 2007. Prestegaard. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions. *J. Environ. Qual.* 36(3): 664-680.

Cey, E.E., D.L. Rudolph, R. Aravena, and G. Parkan. 1999. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. *J. Contam. Hydrol.* 37(1-2): 45-67.

Clément, J.C., G. Pinay, and P. Marmonier. 2002. Seasonal Dynamics of Denitrification along Topohydrosequences in Three Different Riparian Areas. *J. Environ. Qual.* 31:1025-1037.

Davis, J.H., S.M. Griffith, W.R. Horwath, J.J. Steiner, and D.D. Myrold. 2007. Mitigation of Shallow Groundwater Nitrate in a Poorly Drained Riparian Area and Adjacent Cropland. *J. Environ. Qual.* 36(3): 638-637.

Dukes, M.D. R.O. Evans, J.W. Gilliam, S.H. Kunickis. 2002. Effect of riparian buffer width and vegetation type on shallow ground water quality in the Middle Coastal Plain of North Carolina. *Trans. ASAE*. 45(2):327-336.

Evans, R.O., K.L. Bass, M.R. Burchell, R.D. Hinson, R. Johnson, and M. Doxey. 2007. Management alternatives to enhance water quality and ecological function of channelized streams and drainage canals. *J. Soil and Water Conserv.* 62(4):308-320.

Gilliam, J.W. 1994. Riparian Wetlands and Water Qulaity. J. Environ. Qual. 23: 896-900.

Hefting, M. M., J. Clément, P. Bienkowski, D. Dowrick, C. Guenat, A. Butturini, S. Topa, G.Pinay and J. T. A. Verhoeven. 2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. *Ecol. Eng.* 24(5): 465-482.

Hill, A.R., K.J. Devito, S. Campagnolo, and K. Sanmugadas. 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. *Biogeochem.* 51:193-223.

Hill, A.R., P.G.F. Vidon, and J. Langat. 2004. Denitrification potential in relation to lithology in five headwater riparian zones. *J. Environ. Qual.* 33(3): 911-919.

Hill, A.R. 1996. Nitrate Removal in Stream Riparian Zones. *J. Environ. Qual.* 25(4): 743-755.

Hunt, P.J., T.A. Matheny, and K.C. Stone. 2004. Denitrification in a Coastal Plain Zone Contiguous to Heavy Swine Loaded Wastewater Spray Field. *J. Environ. Qual.* 22: 2367-2374.

Kellogg, D.Q, A.J. Gold, P.M. Groffman, K. Addy, M.H. Stolt, and G. Blazejewski. 2005. In Situ Ground Water Denitrification in Stratified, Permeable Soils Underlying Riparian Wetlands. *J. Environ. Qual.* 34:524-533.

Knowles, R. 1982. Denitrification. *MicroBio. Rev.* 46(1): 43-70.

Korom, S.F. 1992. Natural Denitrification in Saturated Zone: A Review. *Water Resour. Assoc.* 28(6): 1657-1668.

Lowrance, R., R. Todd, J. Fail, O. Hendrickson, R. Leonard, L. Asmussen. 1984. Riparian Forests as Nutrient Filters in Agricultural Watersheds. *Bioscience*. 34(6): 374-377.

Lowrance, R.R., R. Leonard, J. Sheridan. 1985. Managing riparian ecosystems to control nonpoint pollution. *J. Soil and Water Conserv.* 40(1): 87-91.

Lowrance, R.R. 1992. Groundwater Nitrate and Denitrification in a Coastal Plain Riparian Forest. *J. Environ. Qual.* 21: 401-405.

Lowrance, R.R., G. Vellidis, and R.K. Hubbard. 1995. Wetlands and Aqutic Processes Denitrification in a Restored Riparian Forest Wetland. *J. Environ. Qual.* 24: 808-815.

Lowrance, R.R., G. Vellidis, R.D. Wauchope, P. Gay, and D.D. Bosh. 1997. Herbicide Transport in a managed riparian buffer system. *Trans. ASAE*. 40(4): 1047-1057.

Mankin, K.R., D.M. Ngandu, C.J. Barden, S.L. Hutchinson, W.A. Geyer. 2007. Grass-shrub riparian buffer removal of sediment, phosphorus, and nitrogen from simulated runoff. *J. Am. Water Resour. Assoc.* 43(5): 1108-1116.

Mayer, P.M., S.K. Reynolds, Jr., M.D. McCutchen, T.J. Canfield. 2007. Meta-Analysis of Nitrogen Removal in Riparian Buffers. *J. Environ. Qual.* 36(4): 1172-1180.

Mengis, M., S.L. Schiff, M. Harris, M.C. English, R. Aravena, R.J. Elgood, A. MacLean. 1998. Multiple geochemical andisotopic approaches for assessing groundwater nitrate elimination in a riparian zone. *Ground Water*. 37:448-457.

NC CREP Annual Report. 2007. Conservation Research Program. Washington, NC: North Carolina Conservation Reserve Enhancement Program. Available at: http://www.enr.state.nc.us/dswc/pages/crep_newsletters.html. Accessed 31 October 2008.

NC CREP and USDA. 2008. USDA and North Carolina Expand CREP Program. Washington, D.C.: USDA. Available at: http://www.enr.state.nc.us/DSWC/pages/crepfactsheet.pdf. Accessed 31 October 2008.

NCDWQ. 2008. Nonpoint Source Management Program: Tar-Pamlico Nutrient Strategy. Raleigh, NC: North Carolina Division of Water Quality. Available at: http://h2o.enr.state.nc.us/nps/tarpam.htm. Accessed 31 October 2008.

NCDWQ. 2007. Nonpoint Source Management Program. Raleigh, NC: North Carolina Division of Water Quality. Available at: http://h2o.enr.state.nc.us/nps. Accessed 31 October 2008.

NCDWQ. 2002. Neuse Nutrient Strategy: Background. Raleigh, NCL North Carolina Division of Water Quality. Available at: http://h2o.enr.state.nc.us/nps/neuse_back.htm. Accessed 31 October 2008.

NRCS. 1997. Riparian Forest Buffer Conservation Practice Job Sheet. Washington, D.C.: United States Department of Agriculture-Natural Resources Conservation Service.

NRDC. 1998. America's Animal Factories: How States Fail to Prevent Pollution From Livestock Waste. Available at: http://www.nrdc.org/water/pollution/factor/aafinx.asp. Accessed 13 April 2009.

Osmond, D.L., J.W. Gilliam, and R.O. Evans. 2002. Riparian Buffers and Controlled Drainage to Reduce Agricultural Nonpoint Source Pollution, North Carolina Agricultural Research Service Technical Bulletin 318, North Carolina State University, Raleigh, NC.

Patrick, Wm.H, Jr. 1960. Nitrate Reduction in a Submerged Soil as Affected by Redox Potential. *Trans. Seventh Inter. Cong. Soil Sci. II.* 494-500.

Peterjohn, W.T., and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. *Ecology*. 65(5): 1466-1475.

Postma, D., Boesen, C., Kristiansen, H. and Larsen, F. 1991. Nitrate reduction in an unconfined aquifer: water chemistry, reduction processes, and geochemical modeling. *Water Resour. Res.* 27: 2027–2045.

Puckett, L.J. 2004. Hydrogeologic controls on the transport and fate of nitrate in groundwater beneath riparian buffer zones: results from thirteen studies across the United States. *Water Sci. and Technol.* 49(3): 47-53.

Richardson, J.L and M.J. Vepraskas. 2001. Wetland Soils: Genesis, Hydrology, Landscapes, and Classifications. Boca Raton, FL: CRC Press LLC.

Schiff, S.L., K.J. Devito, R.J. Elgood, P.M. McCrindle, J. Spoelstra, and P. Dillon. 2002. Two adjacent forested catchments: Dramatically different NO₃ export. *Water Resource. Res.* 38(12): 1-13.

Schultz, R.C., J.P. Colletti, T.M. Isenhart, W.W. Simpkins, C.W. Mize, M.L. Thompson. 1995. Design and Placement of a Multispecies Riparian Buffer Strip System. *Agroforest. Syst.* 29(3): 201-226.

Spruill, T.B. 2004. Effectiveness of riparian buffers in controlling ground-water discharge of nitrate to streams in selected hydrogeologic settings of the North Carolina Coastal Plain. *Water Sci. Technol.* 49(3): 63-70.

Sylvia, D.M., J.J. Fuhrmann, P.G. Hortel, and D.A. Zuberer. 1998. Principles and Applications of Soil Microbiology. Prentice-Hall, Inc. Upper Saddle River. NJ. 550 p.

Tabacchi, E., D. L. Correll, R. Hauer, G. Pinay, A. Planty-Tabacchi and R. C. Wissmar. 1998. Development, maintenance and role of riparian vegetation in the river landscape. *Freshwater Biol.* 40(3): 497-516.

USDA. Riparian Forest Buffers. Radnor, PA: Forest Service. Available at: http://www.na.fs.fed.us/spfo/pubs/n resource/riparianforests/. Assessed 15 March 2010.

U.S. EPA. 1984. Report to Congress: Nonpoint Source Pollution in the U.S. Office of Water Program Operations. Washington, D.C.: Water Planning Division.

U.S. EPA. Nonpoint Source Pollution: The Nation's Largest Water Quality Problem. Available at: http://www.epa.gov/nps/facts/point1.htm. Assessed 12 January 2010.

Vidon, P. G. F. and A. R. Hill. 2004. Landscape controls on the hydrology of stream riparian zones. *J. Hydrol.* 292(1-4): 210.

Wafer, C.C., J.B. Richards, D.L. Osmond. 2004. Construction of Platinum-Tipped Redox Probes for Determining Soil Redox Potential. *J. Environ. Qual.* 33:2375-2379.

Welsh, D. 1991. Riparian Forest Buffers. *USDA Forest Service. Forest Resources Management*.

Widory, D., W. Kloppmann, L. Chery, J. Bonnin, H. Rochdi, and J.L. Guinament. 2003. Nitrate in groundwater an isotopic multi-tracer approach. *J. Contam. Hydrol*.72:165-188.

CHAPTER 2: EFFECTIVENESS OF NITRATE REDUCTION IN A 43 METER WIDE RIPARIAN BUFFER: A HYDOLOGIC AND BIOGEOCHEMICAL EVALUATION

ABSTRACT

Defining ideal landscape and soil conditions for placement of buffers enrolled in conservation programs could maximize stream miles protected, and improve downstream water quality in sensitive streams and estuaries. During the past five years nitrate reduction efficiency of a riparian buffer enrolled in the North Carolina Reserve Enhancement Program (NC CREP) has been evaluated. The average buffer width was 43 m, with a range of 40-45 m. Surficial groundwater monitoring well nests were installed in three transects within the buffer. Each well nest contained a shallow (1.5-2.3 m) and deep (2.7-3.6 m) well. Additional wells were installed in the deeper aquifer to examine interaction with surficial groundwater. Upslope agricultural practices have included soybeans, peanuts, cotton and corn production.

Nitrate concentrations decreased through the buffer from Zone 3 (grassed filter strip) to Zone 1(stream edge) with average concentrations changing from 12.8 to 6.0 mg/L and 12.9 to 1.4 mg/L for deep and shallow wells respectively. Water table measurements, nitrate to chloride ratios, deep aquifer water quality analyses, topography, redox measurements, and dissolved organic carbon (DOC) were used to determine whether the primary mechanism for these

decreases was denitrification or groundwater dilution. The mass removal per year was also calculated to determine the overall impact of the riparian buffer. Results show that both dilution and denitrification contributed to nitrate reductions in the system, but denitrification was the main reducing mechanism. An advanced understanding of the hydrologic and biogeochemical factors in riparian buffers will lead to design recommendations that could possibly enhance pollutant reduction in these treatment systems.

INTRODUCTION

North Carolina, along with other states, has been dealing with major water quality issues over the past 30 years. Eutrophication and associated fish kills have led to increased concerns of the effects of nutrient loads to the Tar Pamlico and Neuse watersheds of North Carolina (NCDWQ, 2002). Excessive loads of nitrate-nitrogen (NO₃-N) have been linked to those eutrophic conditions, and a large contributor of these pollutants has been organic and inorganic fertilizers from agricultural production (NRDC, 1998; US EPA, 1984).

Riparian buffers are one type of best management practice (BMP) that has been identified to reduce NO₃⁻-N from various pollutant sources, including agricultural practices. Researchers have defined riparian buffers as a complex assemblage of soil, plants, and organisms immediately adjacent to a water course that may include wetlands, stream banks, and floodplains (Lowrance et. al, 1985; Osmond et. al, 2002). The USDA Forest Service (2008) defines riparian buffers as areas of trees and other vegetation that are located in areas adjoining and upgradient from surface water, that intercept surface runoff, wastewater, subsurface flow and deeper groundwater that flows from upland sources. When properly designed and implemented, they can reduce the effects of nutrients, sediment, organic matter, pesticides, and other pollutants prior to their entry into surface water and groundwater recharge areas.

Riparian buffers have been found to reduce NO₃-N concentrations in groundwater up to 90% (Peterjohn and Correll, 1984; Lowrance *et al.*, 1984; Lowrance *et al.*, 1985; Lowrance,

1992). The common theme in these studies is the importance of proper buffer placement given site hydrology and biogeochemistry to maximize pollutant removal mechanisms.

Nitrate-N (NO₃⁻-N) can be removed by a number of mechanisms. Two predominant removal processes are biological uptake (i.e. plants and microbial communities) and denitrification (Hubbard and Lowrance, 1997; Peterjohn and Correll, 1984; Mayer *et al.*, 2007). While biological uptake allows NO₃⁻-N to remain in the buffer system in pools that may be released, denitrification allows for a complete removal of NO₃⁻-N from the system through the microbially mediated transformation of NO₃⁻-N to N gases (Woodward *et al.*, 2009).

Microbial denitrification within soil requires a source of nitrate, anoxic conditions (indicated by low redox values), a carbon source that can act as an electron donor, suitable temperature, and suitable pH conditions (Postma *et al.*, 1991; Puckett, 2004; Korom, 1992). Groundwater rich in NO₃⁻-N must be delivered to soil layers that have these conditions for denitrification to occur. Therefore, a proper hydrologic and biogeochemical regime within buffers is imperative to maximize denitrification potential in riparian buffers.

Over the past 25 years extensive research has been conducted examining riparian buffer effectiveness on groundwater NO₃⁻-N reduction (Spruill, 2004; Evans *et. al*, 2007; Gilliam, 1994). Buffer removal of NO₃⁻-N is variable and riparian buffers do not always work as effectively as desired (Ocampo *et. al*, 2006). Hydrologic and biogeochemical factors that affect the occurrence and rate of denitrification include: frequency and duration of water table depths in riparian zones, groundwater flow direction through the riparian zone, and biogeochemical

properties of the soil strata in which groundwater flows (i.e. carbon source, nitrate, microbes) (Clément et. al, 2002; Hill et. al, 2000; Puckett, 2004).

Nitrate-N concentration reductions are often attributable to groundwater mixing with and diluting surficial groundwater within the riparian zones (Davis *et al.*, 2007; Altman and Parizek, 1995). Groundwater mixing between surficial and deeper aquifers is dependent on soil profile layering within the buffer, and can ultimately affect NO₃⁻-N concentrations in the buffer system. For instance, shallow groundwater with high NO₃⁻-N concentrations may be diluted by less concentrated deeper groundwater if the confining layer ends within the riparian buffer.

Buffers can only be effective in reducing NO₃-N laden groundwater if soil is ideal for denitrification. To maximize the use of buffers in conservation programs, research is still needed to identify ideal riparian buffer locations with suitable hydrologic and biogeochemical conditions to maximize denitrification occurrences in these systems.

The North Carolina Conservation Reserve Enhancement Program (NC CREP) is a voluntary program that encourages landowners to restore riparian and wetland areas to improve water quality (NC CREP, 2008). Landowners receive rental payments based on the soil rental rate calculated by the Farm Service Agency. Along with rental payments, NC CREP provides up to 50 percent of the expenses to establish the conservation practice (NC CREP, 2008). Since NC CREP provides these payment rates for enrolled areas, the Division of Soil and Water staff who oversee the NC CREP program are interested in defining ideal buffer sites whose contribution to water quality improvement justifies the cost of land acquisition.

A detailed evaluation of the hydrology and attenuation of nitrate in a riparian buffer, that appeared to be in an ideal location, was conducted for NCDENR. The research project objectives were to: conduct a detailed hydrologic evaluation of the site, determine changes in NO₃-N concentrations through the buffer, and evaluate contributions of denitrification and dilution to observed NO₃-N reductions. Several methods were used to measure hydrologic and biogeochemical factors thought to impact riparian buffer efficiency in removing NO₃-N through denitrification such as the frequency and duration of the water table elevation near the soil surface, seasonal flow direction, groundwater chemical properties (NO₃-N, Cl⁻, Ca²⁺, and Na⁺), and soil redox. The project's original intent was a comparative analysis of two adjacent buffer sections with differing widths. However, the NO₃-N pollutant source to both buffer sections was significantly different (α =0.05), presumably due to their location in the landscape. Therefore, the performances of the buffers were evaluated individually. Results presented in this paper outline research efforts on the narrower and downstream buffer section. Conclusions from this project will aid in defining ideal hydrologic and biogeochemical regimes for denitrification in riparian buffers to maximize water quality impacts of NC CREP and other conservation programs.

MATERIALS AND METHODS

Site Description

Buffer Description

The study site was located on a row crop farm, north of Enfield, NC, in Halifax County. The farm was situated in the upper coastal plain region of North Carolina and was part of the Tar Pamlico River basin (Figure 2. 1). A NC CREP riparian buffer was installed in 1999 (prior to the initiation of this study), downslope of the agricultural fields and next to an unnamed first-order tributary (Hydrologic Unit 03020102). The buffer was designed to follow NRCS guidelines, which recommended a three-zone design (Figure 2. 2). The tributary flows into nearby Beech Swamp, which drains into the Fishing Creek watershed. The downstream reaches of the tributary became incised and narrowed throughout the study, while the upstream reach had a more natural stream pattern that remained stable. The stream was approximately 1 m (3 ft) wide upstream and approximately 0.5 m (1.5 ft) wide downstream. The 30-year average precipitation in the area was 1153 mm/year (45 in/year) (NC State Climate Office (SCO), 2010).

The site was chosen because it represented a buffer enrolled in the NC CREP program that appeared to be ideally situated in the landscape to provide maximum water quality benefits. Some of its ideal characteristics included an upslope pollutant source and no identified drainage ditches, short-circuiting, or deeply incised stream. Nutrients and sediment from the field adjacent to the buffer were identified as the major pollutant source that would be treated by the

buffer. The primary pollutant source at the site was inorganic fertilizer applied to the adjacent field that produced corn, soybeans, peanuts, and cotton (see fertilization rates in Appendix E).

Figure 2. 1: Research site location.

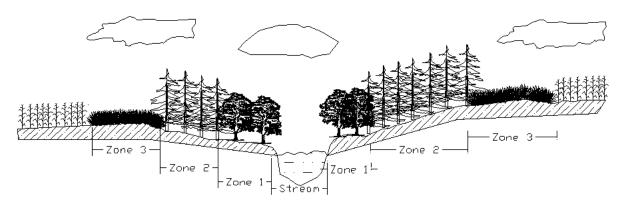


Figure 2. 2: USDA Three Zone Buffer Design - the basis of the design for the research buffer (adapted from NRCS, 1997).

The total length of the analyzed buffer section was approximately 46 m (150 ft) and ranged between 40-45 m in width. (131-148 ft) (Figure 2. 3). The buffer was planted in 1999 with three rows of *Quercus phellos* (willow oak) and *Quercus spp.* (oak) in Zone 1 (near the stream) and *Pinus taeda* (Loblolly pine) throughout Zone 2 (the mid buffer). Predominant vegetation in Zone 3 (a grassed filter strip) consisted of mainly *Trifolium spp.* (clover). A complete vegetation assessment can be found in Appendix A.

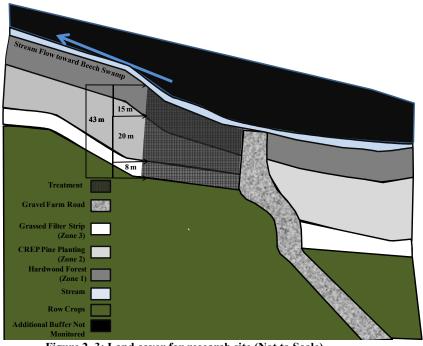


Figure 2. 3: Land cover for research site (Not to Scale).

Site Soils

The NRCS Soil Staff Survey (2006) identifies three dominant soil types at the research site: Marlboro fine sandy loam, Bonneau loamy fine sand, and Gritney fine sandy loam as seen in Figure 2. 4, Table 2.1, and Figure 2. 5. A soil scientist completed an evaluation of the soil profile during instrument installation in December 2004. Upstream of the buffer the stream edge soil was sandy loam that transitioned to sandy clay loam similar to a Lynchburg soil series (Figure 2. 5). The soil assessment also indicated that the buffer's field edge soil had layers of loamy sand transitioning to a shallow clay layer, similar to Gritney, at approximately 0.8 m (33) in) below the soil surface (Figure 2. 5). At 4.6 m (15 ft) below the soil surface a marine clay restrictive layer was identified that was believed to be sufficient for separating the surficial and

deeper aquifer groundwater. A more complete analysis of the field observations can be found in Appendix B.

Map Unit Symbol	Map Unit Name
ВоВ	Bonneau loamy fine sand, 0 to 4 percent slopes
GtB	Gritney fine sandy loam, 2 to 6 percent slopes
LyA	Lynchburg fine sandy loam, 0 to 2 percent slopes
MrA	Marlboro fine sandy loam, 0 to 2 percent slopes
	Research Buffer
	Stream at Research Site

Figure 2. 4: Soil Map of Research Site from USDA-NRCS Soil Survey Staff (2006).

Table 2. 1: Soil classifications within buffer treatment (USDA-NRCS Soil Survey Staff, 2006).

Soil Type	Buffer Zones	Drainage Class	Permeability	Restrictive Layer	Seasonal Water Table
Marlboro fine sandy loam	1 and 2	well drained	moderate	> 2 m	1.2 m to 1.8 m
Bonneau fine loam sand	1, 2, and 3	well drained	moderate	> 2 m	1.0 to 1.5 m
Gritney fine sandy loam	1, 2, and 3	moderatel y well drained	slow	0.2 m	0.45 to 0.9 m

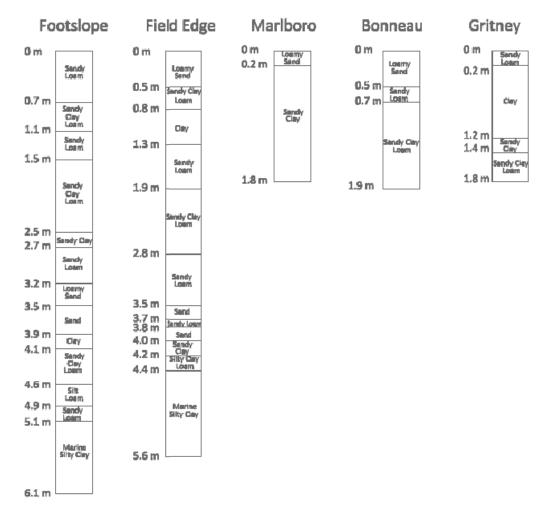


Figure 2. 5: Soil profiles at buffer site and similar soil series (as defined by USDA-NRCS, 2006 and Severson, 2004).

Site Survey

Three site surveys were completed over the study. A topographic and stream survey was done during June of 2004 using a Topcon Electronic Total Station. The second survey evaluated the topography of the field adjacent to the research buffer, monitoring instrumentation, and a stream survey using a Topcon Electronic Total Station. The third survey completed in March

2010 used a Laser Level to determine elevations of instrumentation based on benchmarks established during the initial surveys. Due to the isolated location of the site, an assumed datum elevation of 30.5 m (100 ft) was used to determine relative ground elevation points. AutoCAD Civil 3D Land Desktop Companion 2008 was used for topographic map development for the site.

Site Instrumentation

Groundwater Well Installation

Prior to well installation at the site, the Three Point Method was used to verify groundwater flow through the buffer using temporary piezometer installations (Todd and Mays, 2005). Following this procedure, surficial groundwater monitoring well nests, to be used for both groundwater elevation and water quality measurements, were installed in three transects 15 m (50 ft) apart within the buffer in December 2004 (Figure 2. 6). Each well nest contained a shallow and deep well with maximum depths ranging between 1.5 to 2.3 m (5 to 7 ft) and 2.7 to 3.6 m (9 to 12 ft) from the ground surface respectively. Locations of well nests can be found in Table 2. 2 (distances are relative to the stream edge). Wells were constructed with 5 cm (2 in) diameter PVC. The bottom 0.6 m (2ft) of each well was screened by drilling 1 cm (0.4 in) diameter holes at 15 cm (6 in) spacings. The end of the PVC was capped and covered with a fabric sock to reduce soil intrusion into the well. Wells were installed with a drill rig and an

auger. After the hole was drilled, the well was placed in the hole and then the annular space was immediately backfilled with sand to the top of the well screen, and then sealed with bentonite.

Three water table elevation data loggers (Infinities USA, Inc., Port Orange, FL) with a built in pressure sensor were installed in December of 2004. Water table elevation data loggers were positioned next to well nests in the center transect and were constructed of fully screened 5 cm (2 in) PVC lined with a protective fabric sock. The wells were installed to 3 m (10 ft) depths, backfilled with sand, and the top 30 cm (1 ft) was sealed with bentonite.

In June 2008 four deeper aquifer wells were installed at the site using a geoprobe direct push auger to further monitor deep groundwater to assess any mixing with the surficial groundwater. PVC wells 1.9 cm (1 in nominal) in diameter were placed approximately 1 m below a blue-grey marine sediment layer. Deeper aquifer wells were installed at four locations throughout the site (Figure 2. 6). A 1.5 m (5 ft) pre-packed screen section consisting of a normal slotted PVC screen surrounded by sand and a stainless steel screen were placed at the desired depth of each well. A bentonite pre-packed pipe section with a length of 1.2 m (4 ft) was attached above the screen and the remaining annular space was backfilled with granular bentonite to the surface. A 1 m (3.5 ft) long metal casing was then installed around the well riser for protection. Maximum well depths ranged from 7.6-10.6 m (25-35 ft).

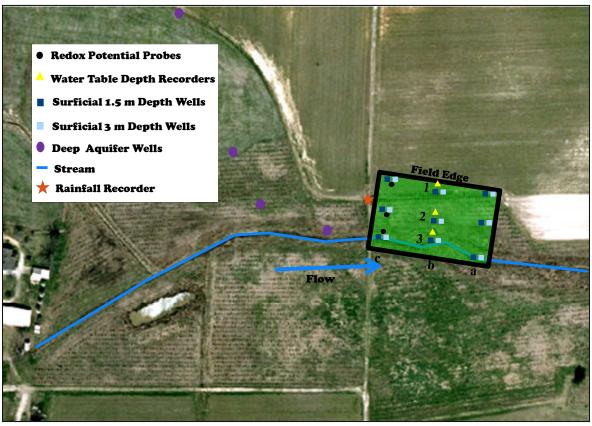


Figure 2. 6: Research site monitoring setup for the study site.

Table 2. 2: Transect layout from Zone 3 to Zone 1. Distances are relative to the stream.

Zone 2 (Mid Buffer)	Zone 1 (Stream Edge)
25-30 m	1.5 m
(82-98 ft)	(5 ft)
	(Mid Buffer) 25-30 m

Rainfall

A tipping bucket and a HOBO (Onset, Bourne, MA) rainfall data logger were installed in December 2004 to continuously monitor precipitation. A manual rain gage was installed next to the data logger to verify accuracy. Due to complications with both the rainfall data logger and

manual rain gage, the NC SCO (2010) data was used for precipitation data in this project for all five monitored years. The monitoring location was 9 miles south of the research site.

Redox Potential Probes

Redox potential probes were installed next to each of the surficial groundwater monitoring wells in the upstream transect, due to excessive wetness of the center transect (Figure 2. 7). The probes were used to measure redox potential readings (Eh) in the buffers. Five platinum-tipped redox probes, constructed as described by Wafer *et. al* (2004) and Faulkner *et al.* (1989), were inserted in 5 cm (2 in) PVC pipe and sealed with a cap. Holes were drilled into the cap allowing each probe to have a port to enter into the soil media. The probes were placed at the same depths as the surficial shallow (1.5-2.3 m) and deep (2.7-3.6 m) water quality well depths. Therefore, there were 5 probes per depth for each location for a total of 30 probes.

Figure 2. 7: Redox potential monitoring nest.

Data Collection

Soil Sampling

In order to estimate seepage flow velocity through the buffer, soil samples were collected at the bottom of each surficial well during installation. A particle size analysis test was then completed by the North Carolina State Soil Science Laboratory and results were used to determine the hydraulic conductivity through each zone of the buffer using SPAW 6.0 (NRCS, Pullman, WA). Results provided soil classifications used to estimate porosity in each zone of the buffer. Porosity estimates along with hydraulic conductivity results were then used for determining groundwater flow velocity from the field to the stream.

Water Table Monitoring

The water table elevation data loggers (Infinities USA, Inc., Port Orange, FL) were used to monitor water table elevation hourly from November 2005 to May 2010. Water table depth datasets were downloaded monthly using a HP 48 G+ handheld calculator (Palo Alto, CA) and monthly manual water table elevation readings were measured in the water table elevation data loggers to account for drifting using a Solinst ® water level meter (Solinst ®, Georgetown, ON). Additionally, monthly water table elevations across the buffer were measured in the surficial groundwater monitoring wells from August 2008 to May 2010 using water level meters.

Water Quality Monitoring

Groundwater samples were collected from the surficial aquifer wells monthly beginning in January 2005 (Figure 2. 8). Each surficial well was purged until dry or until three times the volume of water in the well was removed using a low flow submersible pump. Samples were collected using bailers that were designated to each of the surficial wells to avoid cross contamination.

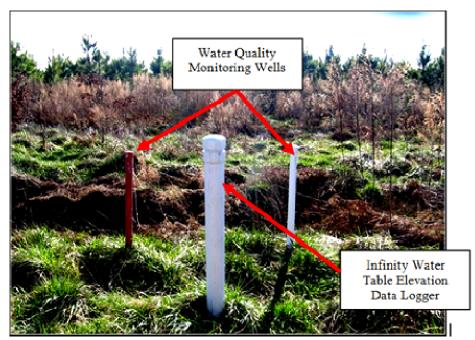


Figure 2. 8: Water table data logger (Infinity USA, Inc., Port Orange, FL) and two surficial aquifer monitoring wells.

Groundwater samples were collected from the deeper aquifer beginning in August 2008. The deeper aquifer wells required the use of an inertial pump (Waterra Groundwater Monitoring Equipment and Supplies, Mississauaga, ON) with a SS-13 valve at end of the tubing for purging and sample collection due to the depth of the wells. The wells were purged until dry or evacuated three times the volume of water in the well before samples were taken.

All water quality samples from the surficial and deeper aquifer wells were analyzed for nitrate (NO₃-N), chloride (Cl'), dissolved organic carbon (DOC), ortho-phosphate (O-PO₄), and ammonium (NH₄-N). Sodium (Na⁺) and calcium (Ca²⁺) analyses began in July 2008. Sample bottles were pre-acidified with H₂SO₄ and iced to a temperature of 4 °C (39 °F) prior to transport to the BAE Environmental Analysis Lab. Sample bottles designated for DOC, Na⁺, and Ca²⁺ evaluations were not pre-acidified. Analyses were conducted by the NCSU-Biological and Agricultural Engineering Environmental Analysis Laboratory. All nutrients measured in the study contributed to understanding nitrogen dynamics within the buffers. Cl⁻ was used to investigate the possibility of groundwater mixing throughout the buffer. Additionally, Na²⁺ and Ca²⁺ were measured for comparisons of the surficial aquifer groundwater and deeper aquifer groundwater. DOC was examined to validate a carbon source, necessary for denitrification to occur, was present. Methods used in the NCSU-Biological and Agricultural Analysis Lab can be found in Appendix F.

Redox

Redox measurements were taken monthly starting in May of 2006 using a KCl-saturated Ag/AgCl reference electrode (Jensen Instruments, Tacoma, WA) and an Accumet AP63 portable pH/mV meter (Fisher Scientific ®, Pittsburgh, Pa). The five readings at each depth were averaged to represent the redox condition at each location within the buffer and depth in the soil. Measurements were adjusted using a correction factor of 204 mV that was determined using the

assumed soil temperature of 15 °C (59 degrees F) and a measured pH of 5.2 (Richardson and Vepraskas, 2001).

Data Analysis

Water Table Analysis

Water table elevations were determined using the site topographic survey, continuously monitored water table elevation data, and monthly manual water table depth measurements. The average water table elevation and the average water table difference between buffer zones was determined using the following equation.

$$AD = \frac{1}{n} \sum_{i=1}^{n} (WTE_{upslope_i} - WTE_{downslope_i})$$
(2. 1)

Where,

AD = Average Difference (m)

WTE_{upslopei}= Water table elevation at upslope location

 $WTE_{downslopei} = Water table elevation at downslope location$

n = Number of daily water table readings collected during study period

Whether the buffer zone met USACE minimum jurisdictional wetland hydrology criteria was determined using continuous water table data. The percentage of consecutive days during the growing season (March 20th thru November 6th) that the water table was within 30 cm of the soil surface consecutively was completed for the three water table monitoring locations.

Groundwater Flow Direction Modeling

During the study, best-fit hydraulic gradients were determined using water table depths of the full scale monitoring system. A groundwater flow Microsoft Excel 2007 spreadsheet was utilized to examine all monitoring wells and model the flow direction change monthly at the research site (Devlin, 2003). Equations 2.2-2.5 were used to define groundwater flow direction.

Equation 2.2 defines the water table (Thangarajan, 2007):

$$Ax + By + Cz = D$$
(2. 2)

Where, A, B, and C are referenced elevations and coordinate locations of the monitoring wells located on the research site and D is the distance from the origin to the point on the plane which is closest to the origin. The water table coordinates are represented by x and y and the water table elevation is represented by z. The hydraulic gradient was determined using Equation 2.3.

$$gradient = \sqrt{\frac{A^2 + B^2}{C^2}}$$
(2.3)

Equation 2.4 was used to calculate the direction of the groundwater flow, where α is measured from the x-axis.

$$\alpha = \arctan \frac{B}{A}$$
 (2.4)

The hydraulic gradient between two well locations quantified the head loss. Expressed below is the equation for hydraulic gradient.

$$i = \frac{\Delta h}{L} \tag{2.5}$$

Where,

i = Hydraulic gradient (m/m)

 Δh = Change in hydraulic heads (m)

L = Flow path length (m)

The flow rate of the groundwater was estimated using Darcy's Equation (Equation 2.6).

$$q = -\bar{v}i$$

(2.6)

Where,

q= Flow rate (cm/s)

 \bar{v} = Average seepage velocity (cm/s)

i = Hydraulic gradient (m/m)

Determination of the flow velocity required a particle size analysis completed by the North Carolina State Soil Science Laboratory along with porosity values presented in Fangmeier *et al.* (2006). Darcy's equation assumes flow velocity is through the entire cross section of the material and does not take into account that only a fraction of the cross section is able to allow water movement (Todd and Mays, 2005). Therefore, the estimated velocity of a contaminant flowing in groundwater, if no reactions occur with the aquifer soils or other chemicals, can be

determined by using the average seepage velocity. The following equation uses the effective porosity, which is the porosity that is interconnected and available for flow to move through in the soil (Fitts, 2002).

$$\bar{v} = -\frac{\kappa_s i}{n_e} \tag{2.7}$$

Where,

 \bar{v} = Average seepage velocity (cm/hr)

i = Hydraulic gradient (m/m)

 n_e = Effective porosity

 K_s = Hydraulic conductivity (cm/hr)

To determine K_s the Auger Hole Method was conducted in the buffer during the summer of 2009 and winter of 2010 (van Beers, 1958). Measurements were taken at approximately 70 and 100 cm below the soil surface at the stream and mid-buffer locations and 80 and 130 cm below the soil surface at the field edge location to estimate the hydraulic conductivities throughout the treatment. More measurements were attempted, but failed due to low water table conditions. Deeper depths were unattainable due to the length of the auger. Therefore, another K_s was obtained using a particle size assessment from soil collected at the monitoring depths during well installation and SPAW 6.0 (NRCS, Pullman, WA) for greater accuracy. Results supported the K_s from the particle size analysis would be the most suitable for this study since they were at the soil depths being monitored.

Groundwater residence time was then evaluated using the following equation to determine how long a parcel of NO₃-N laden groundwater remained within the buffer:

$$t = v/L \tag{2.8}$$

Where,

t = Residence time (yr)

v = Pore velocity (m/yr)

L = Length of flow through the buffer to the stream (m)

Topographic and water table gradients were modeled using the spreadsheet developed by Devlin (2003) along with Surfer 7 mapping software (Golden Software, Golden, CO). Monthly water table elevations were imported into the modeling software and vectors of the water table gradients were modeled to produce maps that included flow vectors. The angles of groundwater flow relative to the stream were also calculated.

Nitrate-Nitrogen Removal Efficiency

Groundwater NO_3 -N removal efficiency was calculated for each zone and transect as well as the overall area of the buffer at the research site. The following equation was used to define the percent removal of groundwater NO_3 -N through the buffer system:

$$\% Removal = \frac{C_I - C_E}{C_I} * 100\%$$
(2.9)

Where,

% Removal = percentage of groundwater NO₃-N removed by the buffer (%)

 $C_I = Concentration (mg/L)$ of the groundwater entering the buffer

 C_E = Concentration (mg/L) of the groundwater discharging to the stream

Nitrate/Chloride Ratios

In an attempt to define whether denitrification or dilution was the cause for groundwater NO₃⁻-N concentration reductions observed in the buffer, NO₃⁻-N to Cl⁻ ratios were calculated. Lowrance (1992) along with other researchers have used this conservative ion (i.e. having minimal plant uptake and not undergoing microbial transformations in soil) in riparian zones groundwater to determine if denitrification and not dilution was responsible for observed NO₃⁻-N losses. Chloride was used to compare changes in the ion relative to NO₃⁻-N through the buffer. Essentially dilution was indicated if ratios remained constant through the buffer towards the stream, while removal by denitrification or other biological activity was supported if ratios decreased through the buffer.

Measured Nitrate-Nitrogen Mass Removal

Several studies have quantified the load of groundwater NO₃-N entering and exiting riparian buffers in groundwater using Darcy's Law and the Dupuit-Forchheimer equation (McMahon and Böhlke, 1996; Burns, 1998; Böhlke *et al.*,2004; Kennedy *et al.*, 2009). The equation assumes a homogenous, isotropic medium. To gain insight as to how groundwater

NO₃⁻-N was changing and/or transforming throughout the buffer, the load was computed to demonstrate the change in the mass of groundwater NO₃⁻-N from the field edge to the stream edge. The load was calculated using field data to define the hydraulic conductivity and hourly monitored water table elevation data along with water quality samples from each well. Figure 2. 9 and the Equation 2.10 were used to calculate groundwater NO₃⁻-N load between the field edge and stream edge wells in the buffer through each soil layer within the soil at depths of 1.5 m (5 ft) and 3 m (10 ft) (Birgand *et al.*, 2007; Kennedy *et al.*, 2009, Freeze and Cherry, 1979).

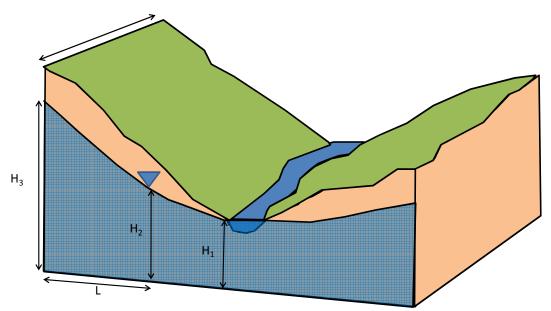


Figure 2. 9: Water table visual for reference for Equation 2.10.

$$Load_{\text{NO3-N}} = \frac{2.4X10^{-2} * (H_{Zone3}^2 - H_{Zone2}^2) * K * T * W * C}{2 * L}$$

(2.10)

Where,

Load $_{NO3-N}$ = Groundwater NO_3 -N flux for each month (kg N)

H = Level of groundwater elevation above datum at position i (m)

K = Hydraulic conductivity at well location (m/hr)

T = Days within each month conversion (days)

C = Influent concentration (mg/L)

W = Length of the buffer (m)

L = Distance between each groundwater well (m)

Statistics

A statistical analysis was completed to define significant differences in groundwater NO₃-N concentrations throughout the buffer treatment system using SAS PROC MIXED ® (SAS Institute, Cary, NC). A log transformation was required to normalize the groundwater NO₃-N concentrations. Random variables included transect and transect depending on well position and the fixed effect was well depth. The model equation can be found below:

$$NO_3$$
- $N = WP + D + WP*D$

(2.11)

Where,

 NO_3 -N = Groundwater NO_3 -N concentrations (mg/L)

WP = Well position through the treatment (1, 2, 3)

Depth = Monitoring well depth (1.5 m or 3 m)

Redox readings, Cl⁻, NO₃⁻-N/Cl⁻ ratios, Na⁺, and Ca²⁺ concentrations were considered individual response variables and evaluated with the same procedure as NO₃⁻-N concentrations. Evaluations between deeper aquifer water quality signatures were completed using a mean separation test with NO₃⁻-N, Cl⁻, NO₃⁻-N /Cl⁻, Na⁺, and Ca²⁺ concentrations being the individual response variables and the class variables begin depth and location (SAS PROC MIXED ®, Cary, NC). Complete results from all statistical analyses can be found in Appendix C.

RESULTS AND DISCUSSION

Groundwater Hydrology Data

Riparian Buffer Relative Wetness

The water table was within 3 m of the soil surface at all locations even during the driest periods of the year and had several wet and dry cycles throughout the study (Figure 2. 10). These conditions enhance groundwater NO₃⁻-N reduction according to a hydrologic and NO₃⁻-N assessment completed at seven sites by Pinay *et al.* (2007). Findings indicated that an increase in wet and dry cycles near the soil surface allowed nitrification to occur followed by increased denitrification occurrences during wet periods.

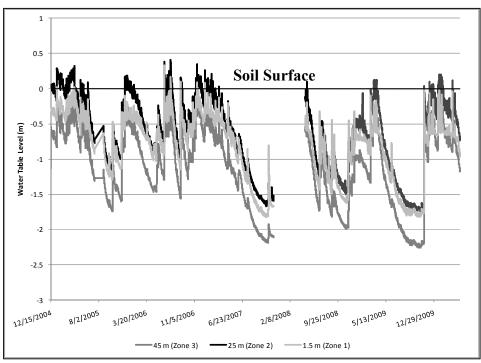


Figure 2. 10: Proximity of the water table to the soil surface within Zones 1-3 in the research buffer. Data unavailable from November 20007 to April 2008 due to equipment malfunction.

Average water table depths relative to the soil surface were 1.16 m, 1.03 m, and 0.88 m with maximum depths below the soil surface of 2.24 m, 2.10 m, and 1.83 m for Zone 3, Zone 2, and Zone 1, respectively (Table 2.3). Zone 3 was found to be the driest zone, as expected. The water table appeared to become deeper beginning in 2007. During 2007-2008, North Carolina had a drought that led to these increases in the water table depths (NCSCO, 2010). Although the water table depths did increase, the water table was within 1.5 m (5 ft) of the soil surface on average each year in all zones within the buffer treatment. These results indicate that the buffer was still relatively wet throughout the year.

Table 2. 3: Average yearly water table depth in Section 2 Note data was unavailable from November 2007 to April 2008 due to equipment malfunction.

due to equipment manufection.						
Year	Zone 3 (m)	Zone 2 (m)	Zone 1 (m)			
2005	1.16	0.69	0.57			
2006	0.86	0.73	0.58			
2007	1.37	1.24	1.04			
2008	1.39	1.29	1.10			
2009	1.40	1.32	1.16			
Average (m)	1.16	1.03	0.88			

Both pine and oak roots can grow deeper than 85 cm below the soil surface. Depths where these roots are present have been reported as denitrifying hot spots due to decomposing roots and leaching leaf litter if the water table was within these depths (Rotkin-Ellman *et al.*, 2004). Therefore, inundated conditions at various soil depths were examined to identify if the treatment buffer had critical hydrologic conditions for denitrification to take place. Figure 2.11 shows the results of an analysis of the frequency the water table resided at several soil depths in the various buffer zones. These results indicated that all zones had water tables within 60 cm of the soil surface a large portion of the year throughout the study, particularly prior to the 2007-2008 drought.

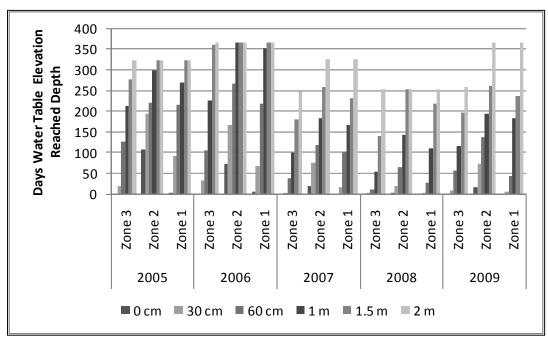


Figure 2. 11: Number of days water table depths were less than 0 cm, 30 cm, 60cm, 1m, 1.5m, and 2m relative to the soil surface. Note data was unavailable from November 20007 to April 2008 due to equipment malfunction.

Riparian areas that are frequently wet can be classified as riparian wetlands. Wetlands have been shown to be effective sinks of groundwater NO₃⁻-N (Peterjohn *et al.*, 1984; Humenik et. al, 1999; Koskiaho et. al, 2003). As such, wetland status of this riparian buffer was used to assess the buffers potential to remove groundwater NO₃⁻-N. The wetland hydrology assessment was completed in each zone (Zone 3-grassed filter strip, Zone 2-mid buffer, and Zone-1 stream edge) of the buffer to describe the relative wetness (Figure 2.11). Zone 1 approached minimum jurisdiction criteria, but remained drier after the 2007-2008 drought. Lower water table elevations and stream levels most likely impacted these results. The only location that met minimum jurisdictional wetland hydrology (USACE, 1987) defined as the water table being within 30 cm of the soil surface consecutively more than 5% (11 days) of the growing season

(March 20th thru November 6th) was Zone 2. In fact, the water table was within 30 cm consecutively for 6% to 20% of the growing period four out of five years of the study period (Table 2. 4). This was not surprising, as Zone 2 displayed characteristics of a riparian floodplain marsh wetland, as the soil surface was often wet, planted pine tree survival was low, and herbaceous wetland vegetation was present.

Table 2. 4: Maximum consecutive days water table was within 30 cm of the soil surface during growing season (March 20th thru November 6th). Highlighted cells are years that wetland hydrology was present at monitored zone locations.

Data was missing in July through August of 2005 and March through April 2008.

	Zone 3	Zone 2	Zone 1
Depth (cm)	30	30	30
2005 (days)	3	34	22
2006 (days)	5	45	17
2007 (days)	0	2	1
2008 (days)	1	16	1
2009 (days)	0	13	1

Groundwater Gradients

Topography of the buffer did influence the proximity of the water table to the soil surface in this buffer. The buffer had a slope of 4% from Zone 3 to Zone 2 and 0.3% from Zone 2 to Zone 1. The adjacent stream had a slope of 0.7% over the entire research site. Figure 2. 12 shows that the ground elevation decreased substantially between Zones 3 and 2, putting the ground elevation closer to the stream stage between Zones 2 and 1. Therefore, the water table was in close proximity of the soil surface between Zones 2 and 1 since it was closer to the

elevation of the stream channel invert. Additionally the increased relative wetness of Zone 2 compared to Zone 1 was due to the lower topographic elevation of the zone due to a depression between Zones 1 and 2 resulting in water table elevations closer to the soil surface.

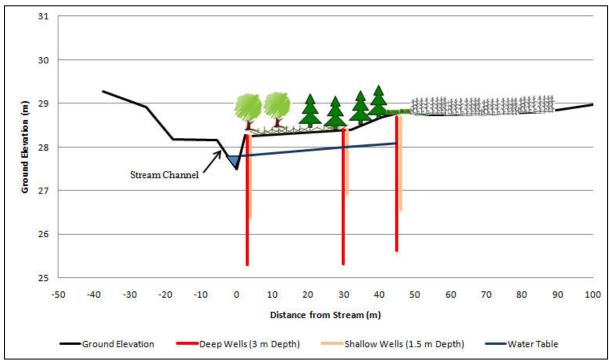


Figure 2. 12: Downstream transect cross section of riparian buffer and surficial monitoring wells.

Water table elevations and gradients were evaluated to investigate the general movement from Zone 3 to Zone 1 throughout the entire buffer study (Figure 2. 13). Since the water table elevations varied year to year as discussed in the prior section, water table elevations were modeled for a wet year (2006) and dry year (2009) to form a better understanding of how the water table elevations changed and how groundwater moved across the site during climatically different years (Figure 2. 14 and Figure 2. 15). As seen in Figure 2. 14 and Figure 2. 15, the wet

and dry years dramatically affected the water table elevations particularly during the summer and fall seasons. During 2006, a considerably wet year at the site, the water tables were highest during the growing season, while during 2009 water tables began to decrease in the spring and continued into the summer and fall seasons. The water table elevation was approximately 29.1 m in all zones in July 2006, while in July 2009 the water tables were approximately 1 m lower (28.3 m). Flow gradients during wetter periods of the year in both 2006 and 2009 indicated water flowing through the buffer from Zone 3 to Zone 1. However, during extremely dry periods in 2009 a small gradient developed where groundwater actually flowed from Zone 1 to Zone 3. The implications of these differences in elevations required a more intensive study as to how these elevation changes affected the groundwater movement in this buffer treatment.

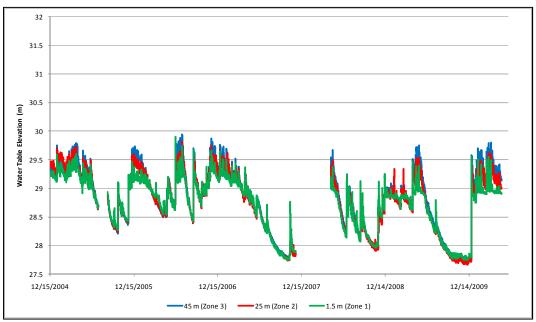


Figure 2. 13: Water table elevations for each zone of the buffer during the study period (December 2004-May 2010).

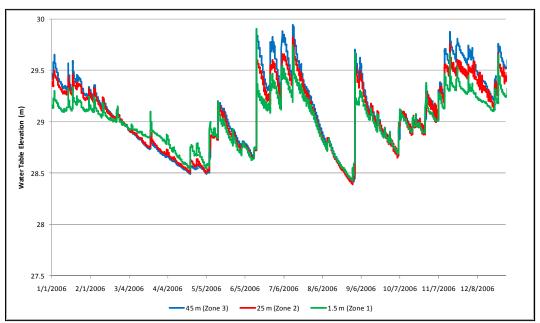


Figure 2. 14: Water table elevations for each zone of the buffer during 2006 (wet year).

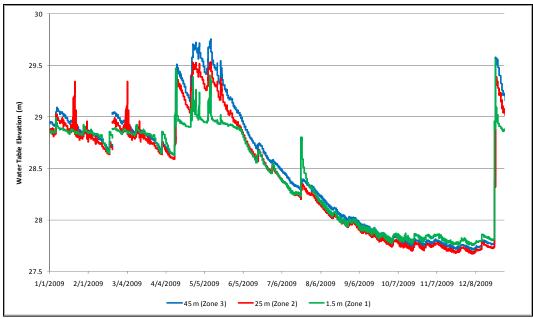


Figure 2. 15: Water table elevations for each zone of the buffer during 2009 (dry year).

The average differences between water table elevations between each zone, were approximately 0.04 m from Zone 3 to Zone 2 and 0.04 m from Zone 2 to Zone 1 throughout the study period, with an overall average difference of 0.08 m through the buffer (Table 2.5). These results supported that groundwater was flowing slowly through the buffer due to the small gradient.

Table 2. 5: Average yearly absolute elevation differences between zones. Note data was unavailable from November 2007 to April 2008 due to equipment malfunction.

	Average Absolute	Average Absolute	Average Absolute
Year	Difference (m)	Difference (m)	Difference (m)
	(Zone 3 – Zone 2)	(Zone 2 – Zone 1)	(Zone 3 – Zone 1)
2005	0.01	0.09	0.1
2006	0.04	0.05	0.09
2007	0.03	0.00	0.04
2008	0.06	0.01	0.07
2009	0.08	0.04	0.12
Average (m)	0.04	0.04	0.08

Water table gradients from monitored water table elevation readings in surficial groundwater monitoring wells were modeled using mapping software to provide a more detailed study of groundwater movement within the buffer. The models showed that groundwater flow paths did go through the buffer from the adjacent field and that the angle of flow was not always consistent depending on seasonal water table elevations (Figure 2. 16 - Figure 2. 19). The groundwater flowed relatively perpendicular to the buffer during the wettest periods of the study, while during the driest periods the groundwater flowed parallel to the buffer. Groundwater flow

patterns at the research site are displayed for the wettest and driest months, representative of high and low water table elevation periods, in Figure 2. 16 and Figure 2. 17. An evaluation and modeling assessment of each month from August 2008 to May 2010 can be found in Appendix D.

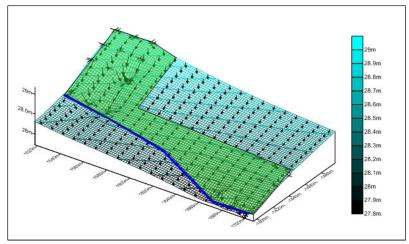


Figure 2. 16: Groundwater flow vectors for April 2009 (wettest period) at the research site. The blue line represents the stream.

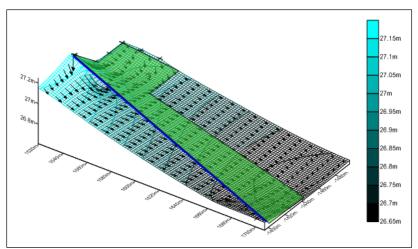


Figure 2. 17: Groundwater flow vectors for November 2009 (driest period) at the research site. The blue line represents the stream.

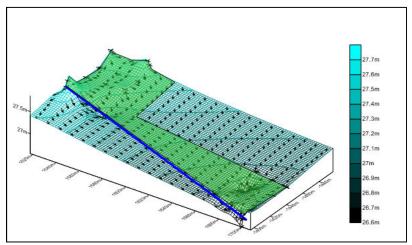


Figure 2. 18: Groundwater flow vectors for July 2009 at the research site. The blue line represents the stream.

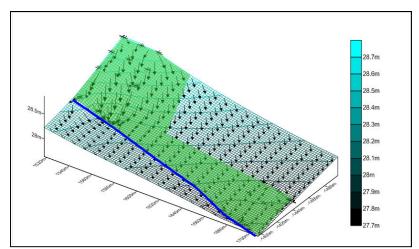


Figure 2. 19: Groundwater flow vectors for January 2009 at the research site. The blue line represents the stream.

The hydraulic gradient was modeled using monthly piezometer readings and a Microsoft Excel 2007 spreadsheet designed by Devlin (2003) beginning in June 2008. Gradients represented water table elevation over distance through the buffer treatment. The gradients through the treatment varied between 0.003-0.010 m/m depending on monthly water table elevations observed in all surficial monitoring wells. Groundwater flow angles estimated using

Devlin (2003) exhibited groundwater direction relative to the stream (parallel to the field) throughout seasonal periods, which were similar to the angles found using the mapping software as seen in Figure 2. 20 - Figure 2. 23.

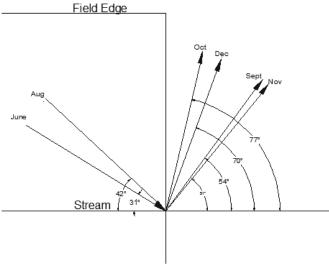


Figure 2. 20: Groundwater flow direction through the buffer relative to the stream for months monitored in 2008.

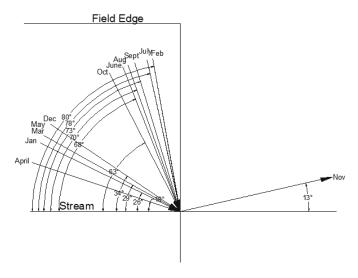


Figure 2. 21: Groundwater flow direction through the buffer relative to the stream for months monitored in 2009.

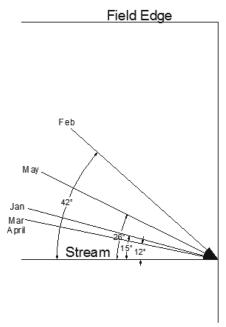


Figure 2. 22: Groundwater flow direction through the buffer relative to the stream for months monitored in 2010.

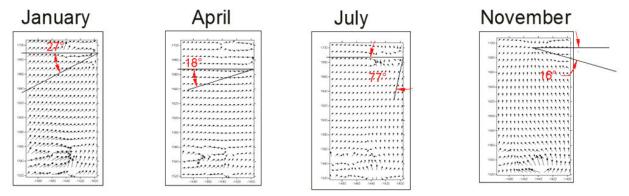


Figure 2. 23: Groundwater angles estimated using Devlin (2003) on contours modeled in Surfer 7 mapping software during 2009 (Golden Software, Golden, CO).

Beech Swamp was located downstream of the buffer zones, parallel to the adjacent field. The data suggests that the groundwater flowed to variable outlet locations depending on water table elevation. Over periods when the water table elevation was closer than 1.5 m below the

soil surface, the groundwater flowed at an angle through the buffer toward a stream discharge area downstream of the buffer. Water table elevations below 1.5 m resulted in groundwater flowing at an angle through the buffer toward Beech Swamp, the lowest topographic elevation in the area. Furthermore, due to the lower topographic location of the buffer location, the contributing groundwater area from the adjacent agricultural field was large (Figure 2. 24 and Figure 2. 25), possibly allowing more concentrated groundwater to easily flow into the system depending on water table elevation gradients.

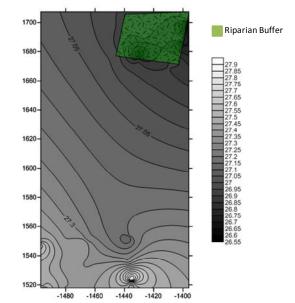


Figure 2. 24: Groundwater contour map of July 2009 (dry period).

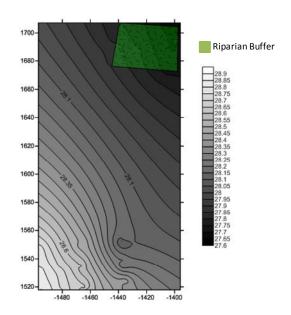


Figure 2. 25: Groundwater contour map of January 2009 (wet period).

Although the groundwater flow direction fluctuated throughout the year, groundwater that was contaminated with NO₃-N was continuously within the buffer treatment system, moving slowly in multiple directions throughout the year. Therefore, the determination of how long groundwater resided within the buffer was investigated to determine what residence times within the buffer should be expected at this site.

Saturated Hydraulic Conductivity, Groundwater Velocity, and Residence Time

Soil texture has a major influence on how groundwater passes through riparian buffers. Therefore, a particle size analysis was completed at the depth of the surficial monitoring well screens during equipment installation to identify soil texture at groundwater monitoring depths (1.5 m and 3 m) (Table 2. 6). No major soil texture variations were observed between locations,

although at the 1.5 m depth in Zone 1 the center transect had a higher percentage of silt and a smaller percentage of sand than found in the soil in the upstream transect at the same depth. Variability in the soil between sandy loam and loamy sand was also identified in the soil survey completed at the beginning of the study to determine well depth placement (Figure 2. 5 and Severson, 2004). Therefore, the effective porosity of sand, 0.35, was used as a conservative assumption in calculating travel time (Fangmeier *et al.*, 2006).

Table 2. 6: Particle Size Analysis for Buffer Treatment

NDCS Particle Size Model

Soil ID	Sand	Silt	Clay	USDA	% 2-	% >	NRCS Particle Size Model "SPAW Hydrology" hydraulic conductivities
	%	%	%	Class.	5mm	5mm	(cm/hr)
1.5 m Depth Center Transect Zone 3	77.3	6.1	16.6	sandy loam	0.0	0.0	3.42
1.5 m Depth Center Transect Zone 2	78.5	7.2	14.3	sandy loam	2.1	0.0	4.21
1.5 m Depth Center Transect Zone 1	65.5	21.3	13.2	sandy loam	15.9	4.6	3.89
1.5 m Depth Upstream Transect Zone 1	78.7	7.5	13.8	sandy loam	17.3	15.9	4.21
3 m Depth Center Transect Zone 3	82.3	8.7	9.0	loamy sand	9.0	1.0	7.02
3 m Depth Center Transect Zone 2	85.4	6.6	8.0	loamy sand	15.1	3.8	7.89
3 m Depth Center Transect Zone 1	79.2	8.8	12.0	sandy loam	9.9	3.7	5.14

The saturated conductivity (K_s) was calculated using the particle size analysis for each zone and the SPAW 6.0 (NRCS, Pullman, CO) modeling program. K_s ranged from 3.4 cm/hr to 4.2 cm/hr at the 1.5 m depth and 5.1 cm/hr to 7.9 cm/hr at the 3 m depth. Groundwater velocities averaged 1.3 cm/day and 2.8 cm/hr at the 1.5 m and 3 m depths. The travel times ranged from 1 to 22 years at the 1.5 m depth with a median of 7 years, while the travel times ranged from 0.45 to 13 years with a median of 4 years at the 3 m depth based on groundwater angle. The 3 m depth was found to have faster moving groundwater due to sandier soil compared to the 1.5 m depth.

Long residence times that allow denitrification to occur are recommended to be greater than 50 years, but denitrification has been found to occur with residence times as small as 1 month (Puckett, 2004; Tesoriero *et al.*, 2005; Dettmann, 2001). The treatment buffer had residence times well within established times for denitrification to occur along with continuous inundated conditions at depths lower than 3 m as discussed in the previous section. Therefore, these conditions would have allowed the riparian zones to provide conditions hydrologically suitable for denitrification to proceed at high rates.

Overall Groundwater Quality NO₃-N Results

The hydrology of this buffer appeared very conducive for high groundwater NO₃-N removal rates, since Zone 2 appeared to have jurisdictional wetland hydrology and groundwater flowed through the buffer most of the year. NO₃-N concentrations from groundwater sampling

in the buffers shallow (1.5 m depth) and deep (3 m depth) surficial wells are shown in Figure 2. 26, Figure 2. 27, and Figure 2. 28. Groundwater mean nitrate levels at the 1.5 m depth from Zone 3 to Zone 1 were 12.9 ± 1.3 mg/L to 1.4 ± 1.3 mg/l respectively, or 89% reduction in the shallow groundwater NO₃⁻-N concentration through the buffer. Mean nitrate levels from Zone 3 to Zone 1 at the 3 m depth were 12.8 ± 1.3 mg/L to 6.0 ± 1.3 mg/l respectively, or 54% reduction in the deeper groundwater NO₃⁻-N concentration through the buffer. Statistical analysis with SAS PROC MIXED ® (Cary, NC) indicated concentrations at both the 1.5 m and 3m depth groundwater in Zone 1 were significantly lower than in Zone 3 (α =0.05). Groundwater NO₃⁻-N concentrations results can be seen in Figure 2. 28, which also displays that although average NO₃⁻-N concentrations are similar at the 1.5 m and 3 m depths in Zone 3, NO₃⁻-N concentrations are much smaller at the 1.5 m depth than the 3 m in Zone 1. A statistical analysis of the water quality using SAS PROC MIXED ® (Cary, NC) also indicated groundwater NO₃⁻-N concentrations in Zone 1 were significantly lower at the 1.5 m depth compared to the 3 m depth in the surficial wells (α =0.05).

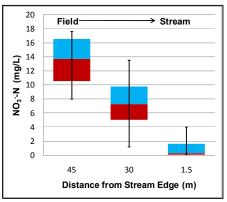


Figure 2. 26: The 5%, 25%, median, 75%, and 95% percentiles groundwater NO₃-N concentrations over the study for 1.5 m deep surficial wells at differing locations in the riparian buffer (n=165 water quality samples).

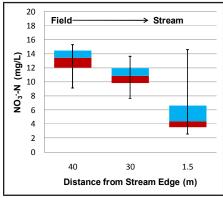


Figure 2. 27: The 5%, 25%, median, 75%, and 95% percentiles groundwater NO₃-N concentrations over the study for 3 m deep surficial wells at differing locations in the riparian buffer (n=201 water quality samples.

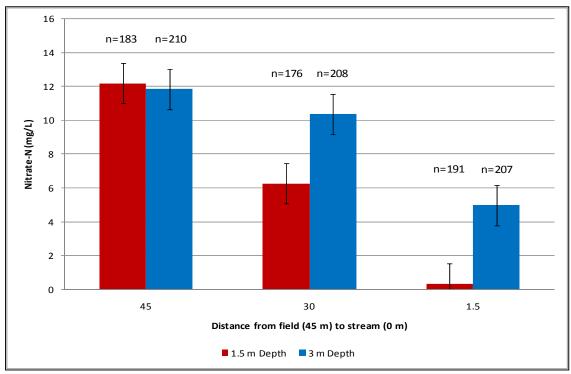


Figure 2. 28: Overall mean groundwater NO_3 -N concentrations at the 1.5 m and 3 m depths ($n_{1.5m}$ =550 and n_{3m} = 625 water quality samples). Note – error bars represent standard error.

Beginning in 2007 yearly groundwater NO₃⁻-N concentrations at the field edge began to increase and continued to increase throughout the study. This period also began during the 2007-2008 drought during which water tables fell below many shallow groundwater monitoring wells. Although the water table fell during 2007 and never completely recovered before the completion of the study, as the groundwater NO₃⁻-N concentrations increased the groundwater NO₃⁻-N reduction efficiency also increased. During these periods of deep water table depths, nitrification and mineralization most likely occurred in the soil increasing groundwater NO₃⁻-N concentrations and allowing more NO₃⁻-N to enter the nitrogen cycle. Additionally higher rates may have been due to lower plant uptake or fertilizer N resulting in more N leaching into the groundwater. Although, these deeper water table depths probably increased groundwater NO₃⁻-N concentrations entering the buffer system over the study, groundwater NO₃⁻-N concentrations from Zone 3 to Zone 1 decreased to similar and sometimes lower concentrations than observed in previous years (Figure 2. 29). Therefore, the buffer appeared to be reducing entering groundwater NO₃⁻-N concentrations efficiently.

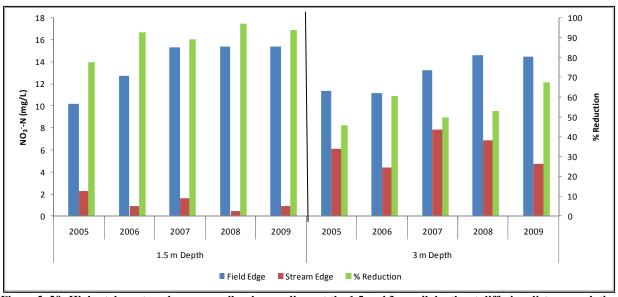


Figure 2. 29: Highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at differing distances relative to the stream (June 2005 to April 2010).

Transect and Seasonal NO₃-N Trends

A visual evaluation of each transect was used to form a better understanding of the groundwater NO₃⁻-N dynamics through the buffer. Limitations of the degrees of freedom in the statistical analysis prevented an overall statistical analysis of each transect. All transects had similar groundwater NO₃⁻-N concentrations entering the buffer at the field edge and had a decrease in groundwater NO₃⁻-N concentrations from the field edge to the stream at both the 1.5 m and 3 m well depths (Figure 2. 30 and Figure 2. 31). Transect A (downstream transect) and Transect B (center transect) had smaller groundwater NO₃⁻-N concentrations at the stream edge than Transect C (upstream transect) at the 1.5 m depth, while Transect B (center transect) and Transect C (upstream transect) had smaller groundwater NO₃⁻-N concentrations at the stream edge than Transect A (downstream transect) at the 3 m depth.

The soils heterogeneity seemed to cause these differences observed between transects and well positions. The stream edge 1.5 m depth wells in Transects A and B were found to be located in less sandier soils than Transect C. Therefore, a large portion of the NO₃⁻-N laden groundwater could have flowed through the Transect C area and possibly allowed back flow from the stream into the buffer due to the sandier soils. Although Transect A at the 3 m depth had similar soil types to Transects B and C, differences in the tighter overlying soils might have also caused NO₃⁻-N concentration differences as well.

Both the 1.5 m and 3 m depth groundwater had NO₃⁻-N concentration increases during September to February each year (see Appendix B for application schedules obtained from the landowner). During September to February, vegetation was limited, water table elevations were low, and groundwater occasionally flowed toward Beech Swamp instead of the adjacent stream. All of these possibilities might have affected the concentrations of NO₃⁻-N passing within system.

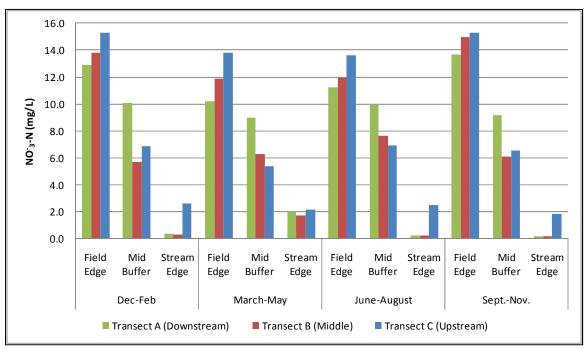


Figure 2. 30: Transect and seasonal NO₃-N evaluation at the 1.5 m depth (n=55 water quality samples)

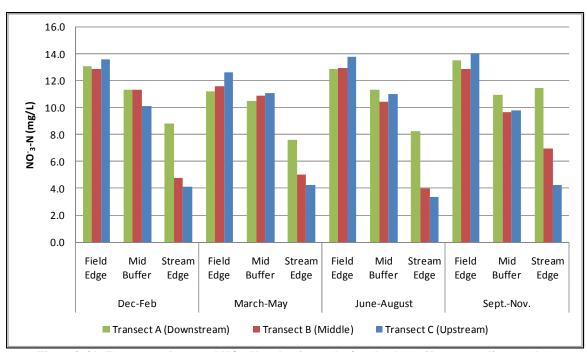


Figure 2. 31: Transect and seasonal NO₃-N evaluation at the 3 m depth (n=65 water quality samples)

NO₃-N Summary

NO₃⁻-N concentrations entering the buffer were high compared to the other nearby buffer locations. This was most likely because the buffer was located at a lower topographic location than both the upland source and the upstream buffer locations and had a larger contributing groundwater area from the adjacent field (Figure 2. 24). At this location the riparian buffer hydrology observations supported that this was a major discharge point for the groundwater originating from the adjacent agricultural field. This resulted in higher concentrations of NO₃⁻-N in the groundwater from a large contributing groundwater area. Therefore, positioning riparian buffers in lower topographic locations not only provides increased opportunities for groundwater to flow into riparian zones from adjacent fields, but more opportunities for higher concentrated groundwater to be treated throughout the year. Based on decreases in concentrations, the NO₃⁻-N treatment efficiency of this buffer appeared to be high, and it was hypothesized that because of the relative wetness of Zone 2, the potential for these reductions to be attributed to denitrification was also high.

Redox Potential

Redox was used to determine denitrification potential in this buffer. Denitrification occurs in soils with low oxidation/reduction (redox) potentials. Reducing conditions have been reported to occur at threshold values ranging between 250-400 mV, with values less than 200 mV being more conducive for denitrification (Patrick, 1960; Bailey and Beauchamp, 1973,

Fielder *et. al*, 2007). Figure 2. 32 displays the overall mean redox potentials recorded for the shallow and deep depths within the upstream transect of the buffer. Mean redox values were almost all below 200 mV indicating overall soil conditions appeared to be favorable for denitrification. The buffer showed a general decrease in redox values from Zone 3 to Zone 1, with the exception of the Zone 2 at the 3 m depth, which at this point remains unexplained. A statistical analysis of the water quality using SAS PROC MIXED ® (Cary, NC) indicated that the 1.5 m and 3 m redox readings were significantly different in Zone 2 and redox readings significantly decreased from Zone 3 to Zone 1 through the buffer at both the 1.5 m and 3 m depths (α =0.05).

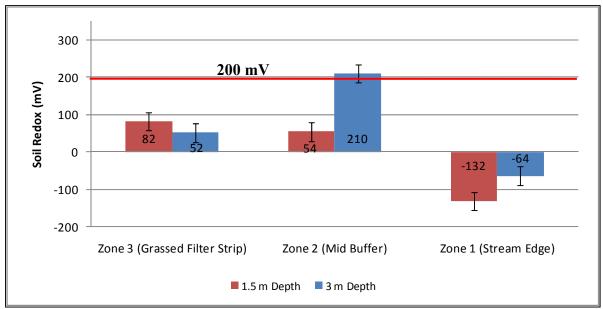


Figure 2. 32: Overall redox reading averages from June 2006 to May 2010. Brackets represent standard error (n=180 samples from each depth and location).

A seasonal analysis was completed to evaluate the combined effects of water table elevation fluctuation and temperatures on redox readings. Redox probes, which were placed equivalent to the depth of the surficial monitoring wells, were below the water table surface during the majority of the year. Overall redox readings decreased from the Zone 3 to Zone 1 throughout the year and were below the threshold indicating possible anoxic conditions in the soil. Despite the fact that Zone 2 was the wettest area (Figure 2. 10), the redox readings were higher and cannot be explained at this time. Regardless of these slight differences in redox readings in the mid-buffer location, the potential for denitrification appeared high throughout the year across the buffer (Figure 2. 33).

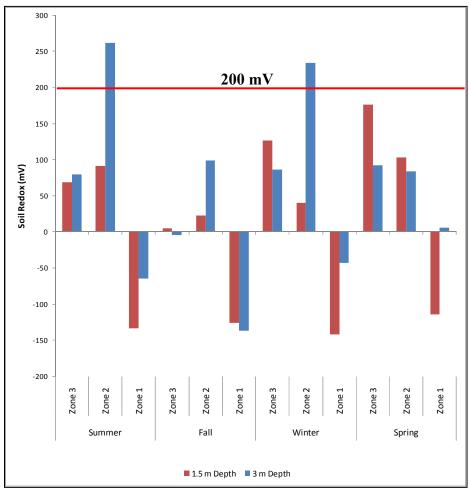


Figure 2. 33: Seasonal evaluation of redox readings in the buffer from Zone 3 to Zone 1 (n=45 during each season).

When NO₃⁻-N concentrations and redox potential readings within each zone were plotted, there was no observed relationship due to the high water table elevations and relatively stable soil redox measurements recorded at the site (Figure 2. 34 and Figure 2. 35).

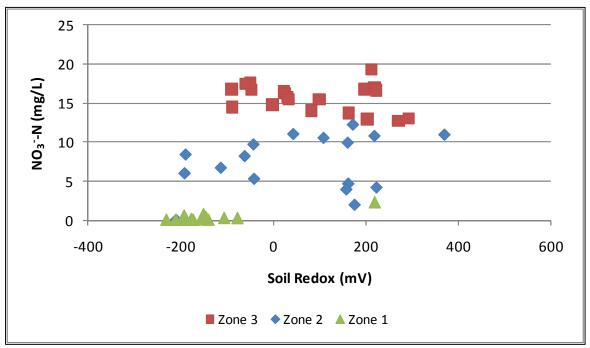


Figure 2. 34: Soil redox compared to NO₃-N in center transect at the 1.5 m depth well (June 2005 to April 2010).

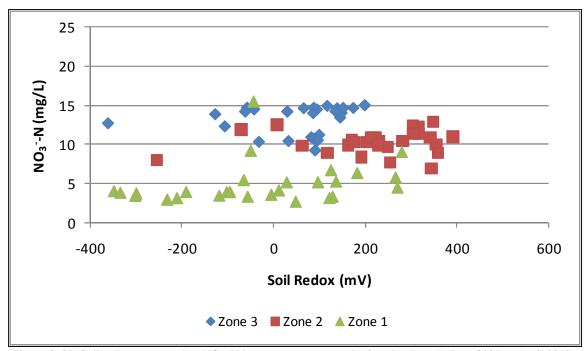


Figure 2. 35: Soil redox compared to NO₃-N in center transect at the 3 m depth well (June 2005 to April 2010).

Redox readings had an increasing trend over the course of the study (Figure 2.36-2.38). The trend was most likely due to an extreme drought in 2007-2008, during which the water tables fell dramatically lower than in previously studied years. During the years following the drought, the groundwater hydrology never completely recovered from the drought prior to the end of this study. The highest redox readings, approximately 430 mV (Figure 2. 39), were seen at the stream edge shallow location during the fall of 2008 and 2009 during which the water table elevation fell below the shallow redox probes depths in Zone 2 (mid buffer) and Zone 3 (field edge) (Figure 2.36-2.38). Although, this occurred during the dryer seasons of the year the redox readings were overall low throughout the study, as seen by the averages in Figure 2. 39. Even though the soil redox readings increased over time, the overall yearly average groundwater NO₃-N reduction efficiency increased and average redox potential readings remained below the 200 mV threshold with the exception of the Zone 2 at the 3 m depth (Figure 2. 28 and Figure 2.29).

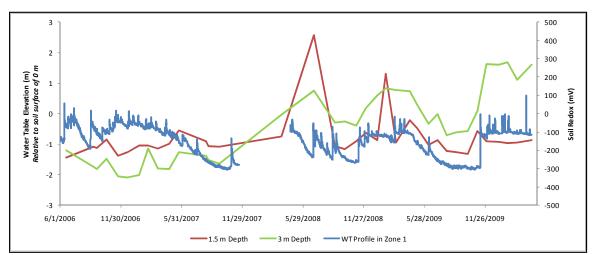


Figure 2. 36: Zone 1 (stream edge) average monthly redox readings with respect to water table elevation at same location (June 2005 to April 2010). Note each redox point is the average of 5 readings.

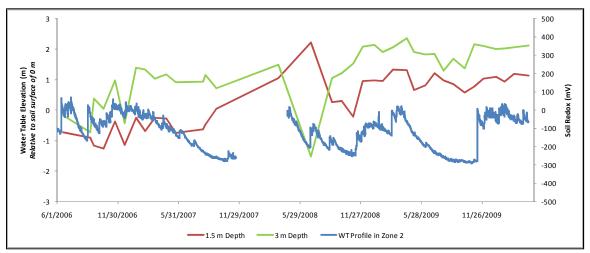


Figure 2. 37: Zone 2 (mid buffer) average monthly redox readings with respect to water table elevation at same location (June 2005 to April 2010). Note each redox point is the average of 5 readings.

Figure 2. 38: Zone 3 (field edge) average monthly redox readings with respect to water table elevation at same location (June 2005 to April 2010). Note each redox point is the average of 5 readings.

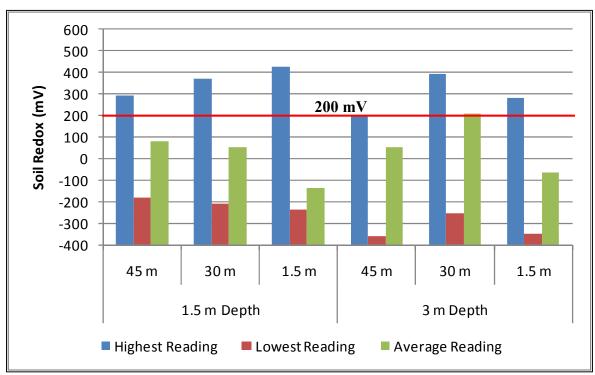


Figure 2. 39: Highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at differing distances relative to the stream (June 2005 to April 2010).

Water table elevations were close to the soil surface during the warmest periods and redox measurements during these periods were low. Therefore, it appeared to be ideal conditions for denitrification to occur since microbial activity increases as temperature increases (Knowles, 1982). Carbon source availability can be limiting to the denitrification process depending on vegetation and climatic season due to differences in available litter (Hefting *et. al*, 2005). Since this site had high water table elevations as well as low redox readings throughout the year, available carbon was the final biogeochemical constituent evaluated to support denitrification within this buffer.

Dissolved Organic Carbon (DOC)

A DOC assessment was used to evaluate whether carbon was available in the groundwater to support denitrification. Organic carbon is critical because it serves as an electron donor for microbes during denitrification. Spruill *et. al* (1997) reported in a study completed in eastern North Carolina that water in shallow aquifers with more than 2-3 mg/L of DOC had NO₃⁻-N concentrations of less than 2 mg/L, while aquifers with lower DOC had much higher NO₃⁻-N concentrations. More recent laboratory studies indicate that DOC concentrations in the 4-8 mg/L range significantly improve denitrification rates (Knies, 2009).

The mean DOC concentrations in the groundwater beneath the buffer at the research site ranged from 2.8-14.5 mg/L. A statistical analysis of the water quality using SAS PROC MIXED \cite{R} (Cary, NC) indicated that the DOC concentrations in Zone 1 were significantly different between the 1.5 m and 3 m well depths (α =0.05). Throughout most periods, DOC was higher at the 1.5 m depth than at the 3 m depth. The reduced DOC at the deeper depths may be responsible for the increased groundwater NO₃-N concentrations observed at the 3 m depth in Zone 1 (Figure 2. 28 and Figure 2. 29).

The DOC concentrations varied seasonally through the buffer from Zone 3 to Zone 1 (Figure 2. 40 and Figure 2. 41). DOC concentrations were highest in the winter and summer months, while water quality results indicated groundwater NO₃-N concentrations to be lowest during the summer at the stream edge (Figure 2. 30 and Figure 2. 31). These values were much higher than the mean DOC samples. High DOC levels along with low redox readings support

that denitrification was not limited during the summer months and was most likely the reason for increased NO₃⁻-N reductions within the buffer. DOC samples at the 1.5 m depth were not available during the fall of 2008 or 2009 due to low water table elevations. During these dryer periods higher redox readings were also observed indicating conditions for denitrification were nearer to the threshold values. No additional relationships were observed between groundwater NO₃⁻-N concentrations and DOC concentrations most likely due to the DOC concentrations being above 2-3 mg/L throughout the year.

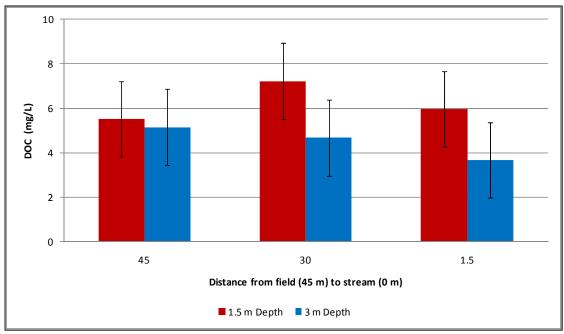


Figure 2. 40: Average DOC concentrations for research site (n=187)

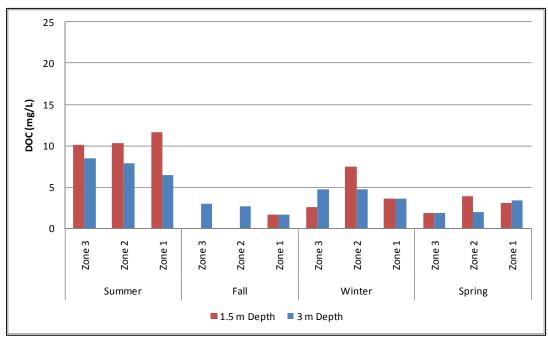


Figure 2. 41: Seasonal evaluation of DOC (n=187) from March 2008-May 2010. Shallow well results for Zone 3 and Zone 2 for fall were unattainable due to low water table elevations at the research site at the time of sampling.

Carbon availability along with low redox readings, high water table elevations, and warm temperatures are the ideal components for denitrification to proceed at high rates. These results support that the buffer had all of the required constituents for denitrification. Although, to confirm that denitrification was the predominant reducing agent the possibility of dilution was investigated.

Denitrification Assessment Using NO₃-N to Cl Ratios

The evaluation of NO₃⁻-N, Cl⁻, and NO₃⁻-N/Cl⁻ ratios in groundwater was used to provide insight as to the process that was responsible for NO₃⁻-N differences observed in the riparian buffer treatment (Figure 2. 42 and Figure 2. 43). NO₃⁻-N/Cl⁻ ratios that decrease through the

buffer is evidence that NO₃⁻-N reduction is through biological means, rather than dilution of groundwater with lower concentrations. Mean groundwater NO₃⁻-N/Cl⁻ ratios from Zone 3 to Zone 1 decreased 84% in the 1.5 m deep groundwater, while mean groundwater NO₃⁻-N levels from Zone 3 to Zone 1 decreased by 89%. Mean groundwater NO₃⁻-N/Cl⁻ ratios from Zone 3 to the Zone 1 dropped 34% in the 3 m groundwater, while mean groundwater NO₃⁻-N levels decreased by 54% from Zone 3 to Zone 1. Therefore, mean groundwater NO₃⁻-N/Cl⁻ ratio percentages were similar at the 1.5 m depth and slightly lower at the 3 m depth compared to the mean groundwater NO₃⁻-N concentration reductions found in both the 1.5 m and 3 m surficial wells (Figure 2. 26 and Figure 2. 27). These results alone provide strong evidence that the majority of NO₃⁻-N concentration reductions could be attributed to biological activity such as denitrification since the decrease in the groundwater NO₃⁻-N/Cl⁻ ratios were similar to the decrease in groundwater NO₃⁻-N concentrations observed.

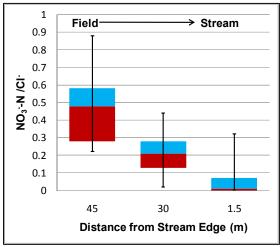


Figure 2. 42. The 5%, 25%, median, 75%, and 95% percentiles of NO₃-N/Cl⁻ ratio over the study for 1.5 m deep surficial wells at differing locations in the riparian buffer (n=55 water quality samples). Samples were taken from January 2005 – May 2010.

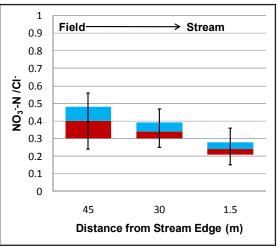


Figure 2. 43. The 5%, 25%, median, 75%, and 95% percentiles of NO₃⁻-N/Cl ratio over the study for 3 m deep surficial wells at differing locations in the riparian buffer (n=67 water quality samples). Samples were taken from January 2005 – May 2010.

Realizing that NO₃⁻-N/Cl⁻ ratios could be influenced by changes in the observed Cl⁻ concentrations, a more extensive evaluation was completed. Three criteria utilized by Dukes *et. al* (2002) were used in the study to determine the occurrence of groundwater dilution or NO₃⁻-N reduction. They included: (1) a decrease in both NO₃⁻-N and NO₃⁻-N/Cl⁻ ratios with an absence of significant changes in Cl⁻ concentrations indicated that NO₃⁻-N was being removed through some other means than groundwater dilution, most likely denitrification below the root zones, (2) a decrease in NO₃⁻-N and Cl⁻ concentrations with relatively constant NO₃⁻-N /Cl⁻ ratios indicated groundwater dilution from a source below the surficial groundwater, and (3) a decrease in NO₃⁻-N concentrations with an increase in Cl⁻ concentrations resulting in lower NO₃⁻-N/Cl⁻ ratios was inconclusive for predicting the cause for reduction in NO₃⁻-N concentrations within the buffer. A fourth criteria was developed to be used in this study. This criteria was defined as

a decrease in NO₃⁻-N concentrations, Cl⁻ concentrations, and NO₃⁻-N/Cl⁻ ratios was considered inconclusive for predicting the cause for reduction in NO₃⁻-N concentrations within the buffer.

In all four cases, potential dilution was assumed to originate from a deeper groundwater with lower concentrations of NO₃⁻-N and Cl⁻. Criteria 3 indicated the possibility of groundwater mixing between waters with low NO₃⁻-N and high Cl⁻ concentrations diluting the groundwater NO₃⁻-N concentrations, but denitrification could not be ruled out since deeper groundwater was found to have much lower Cl⁻ concentrations than surficial wells. Likewise, Criteria 4 would lead one to suspect groundwater dilution with decreasing NO₃⁻-N and Cl⁻ concentrations, but due to Cl⁻ concentrations barely decreasing over the threshold NO₃⁻-N/Cl⁻ratios still decreased not allowing denitrification to be ruled out. For this study the threshold for a decrease or increase was defined if a difference existed of more than 10 mg/L in Cl⁻ concentrations and 0.03 in NO₃⁻-N /Cl⁻ ratios between Zones 3 and 2 and Zones 2 and 1 (Johnson *et. al.*, 2007). If differences were smaller than the specified values then concentrations were considered constant between zones during this evaluation.

Evaluation criteria supported means other than dilution (likely denitrification) as the primary mechanism for NO₃⁻-N reduction in groundwater moving from Zone 3 to Zone 2 in all 3 m depth and 1.5 m depth areas. The criteria also supported that means other than dilution was responsible for observed NO₃⁻-N reduction in one of the six surficial groundwater monitoring areas within Zones 2 and 1 at the 1.5 and 3 m depth (Table 2. 7- Table 2. 12). Dilution of groundwater moving from Zone 2 to Zone 1 could not be ruled out between observation wells

located at 2 of the 3 deep well (3 m depth) areas and 2 of 3 shallow well locations based on Criteria 4. A shallow well location between Zone 2 and Zone 1 was the only location indicating possible groundwater dilution within the buffer treatment (Criteria 2).

Table 2. 7: Groundwater mixing conclusions based on NO3--N and Cl- concentrations, and NO3--N/Cl- ratios for 1.5 m deep wells downstream transect.

*** Constant Cl- concentration between Zone 2 - Zone 1 occurs during March-May.
*** A increase in Cl- concentration between Zone 3 - Zone 2 occurs during Dec.-Feb.

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Zone	\downarrow	-	\downarrow	Nitrate decrease by other means than
2				dilution
Zone 2 – Zone	\downarrow	\downarrow	\downarrow	Inconclusive – possibly groundwater
1				mixing with low Cl ⁻ and NO ₃ ⁻ -N;
				denitrification cannot be eliminated from
				these results due to decrease in NO ₃ -
				N/Cl ⁻ ratios

Table 2. 8: Groundwater mixing conclusions based on NO₃-N and Cl concentrations, and NO₃-N/Cl ratios for 1.5 m deep wells center transect.

*** An increase in Cl concentration between Zone 3 - Zone 2 occurs during Dec. - Feb. and June - Aug.

*** Constant Cl concentration between Zone 2 - Zone 1 occurs during March-May and Sept.-Nov.

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other means than dilution
Zone 2 – Zone 1	↓	\	↓	Inconclusive – possibly groundwater mixing with low Cl ⁻ and NO ₃ ⁻ -N; denitrification cannot be eliminated from these results due to decrease in NO ₃ ⁻ -N/Cl ⁻ ratios.

Table 2. 9: Groundwater mixing conclusions based on NO₃-N and Cl⁻ concentrations, and NO₃-N/Cl⁻ ratios for 1.5 m deep wells upstream transect.

*** An decrease in NO₃-N/Cl⁻ concentration between Zone 3 – Zone 2 occurs during Sept.-Nov.

*** An increase in Cl⁻ concentrations between Zone 3-Zone 2 occurs during Dec.-Feb.

An increase in Cr concentrations between Zone 2-Zone 2 occurs during Decreb.					
Location	NO_3 -N	Cl	NO ₃ -N/Cl	Conclusions	
Zone 3 – Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other means than dilution	
Zone 2 – Zone 1	\downarrow	\downarrow	-	Groundwater mixing from groundwater with low Cl ⁻ and NO ₃ ⁻ -N concentration	

Table 2. 10: Groundwater mixing conclusions based on NO₃-N and Cl concentrations, and NO₃-N/Cl ratios for 3 m deep wells downstream transect.

***An increase in NO₃-N concentration is constant between Zone 2 – Zone 1 occurs during Sept. – Nov. ***An increase in Cl- concentration is constant between Zone 2 – Zone 1 occurs during Sept. – Nov.

All increase in Ci- concentration is constant between Zone 2 – Zone 1 occurs during Sept. – Nov.					
Location	NO_3 -N	Сľ	NO ₃ -N/Cl	Conclusions	
Zone 3 – Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other means than dilution	
Zone 2 – Zone 1	\downarrow	-	\downarrow	Nitrate decrease by other means than dilution	

Table 2. 11: Groundwater mixing conclusions based on NO₃-N and Cl concentrations, and NO₃-N/Cl ratios for 3 m deep wells center transect.

***NO₃-N/Cl concentration is constant between Zone 2 – Zone 1 during Sept. – Nov.

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other means than dilution
Zone 2 – Zone 1	\	\	↓	Inconclusive – possibly groundwater mixing with low Cl ⁻ and NO ₃ ⁻ -N; denitrification cannot be eliminated from these results due to decrease in NO ₃ ⁻ -N/Cl ⁻ ratios.

Table 2. 12: Groundwater mixing conclusions based on NO₃-N and Cl⁻ concentrations, and NO₃-N/Cl⁻ ratios for 3 m deep wells in upstream transect.

*** An increase in NO₃-N/Cl concentration between Zone 3- Zone 2 occurs during June-Aug.
***NO₃-N/Cl concentration is constant between Zone 2 - Zone 1 during Sept. - Nov.

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other means than dilution
Zone 2 – Zone 1	\	\	↓	Inconclusive – possibly groundwater mixing with low Cl ⁻ and NO ₃ ⁻ -N; denitrification cannot be eliminated from these results due to decrease in NO ₃ ⁻ -N/Cl ⁻ ratios.

It is not apparent why these zones within close proximity to one another would show this variability. The differences that lead to inconclusive results may be explained by soil heterogeneity within the buffer or seasonally variable groundwater flow through the buffer. The

only location indicating possible groundwater dilution was also the location with higher NO₃⁻-N concentrations and sandier soils than in other transects. One possible scenario groundwater quality results suggested groundwater dilution could have been due to the sandier soils at this location allowing back flow from the stream to mix with the shallow groundwater. The groundwater and stream water at this location were observed to have similar Cl⁻ concentrations as well. Seasonal differences were noted in Table 2. 7 - Table 2. 12 and most likely were caused from groundwater direction changes due to fluctuating water table elevations and fertilizer applications.

Utilization of these criteria would be optimal if groundwater Cl⁻ concentrations remained stable through the buffer. Cl⁻ concentrations measured within the buffer were significantly different within the buffer at the 1.5 m depth, and ranged from 1.8 to 166.4 mg/L, with averages between 9.0 and 13.0 mg/L dependent on well location and depth (α=0.05). The higher concentrations in Cl⁻ often occurred during the fall and spring months, which may be a result of upland fertilizer applications. Using the groundwater NO₃⁻-N/Cl⁻ ratio method to determine the primary mechanism for groundwater NO₃⁻-N removal was made more complicated due to these variations in Cl⁻ concentrations.

In summary, groundwater NO₃-N along with NO₃-N/Cl⁻ ratios had similar decreases supporting denitrification was the primary reduction mechanism for groundwater NO₃-N reductions. Using Criteria 1-4 described above, groundwater NO₃-N/Cl⁻ ratios supported that 7 of 12 groundwater monitoring areas had reductions in groundwater NO₃-N within the buffer

most likely due to denitrification. Overall, these evaluations support denitrification as the primary reduction mechanism in this buffer. Although these results help in supporting denitrification was the predominant reducing mechanism for groundwater NO₃⁻-N reduction, complications due the large range in Cl⁻ concentrations required further investigations to help determine whether denitrification or dilution was occurring. Therefore, chemical signatures of the surficial and deeper aquifers were examined to identify mixing potential.

Potential Mixing Between Surficial and Deeper Aquifers

Previously, soil borings had indicated a restrictive layer at about 4.6 m (15 ft) below the ground surface that likely separated the surficial and the deeper aquifers. However, the number of deep borings was limited, and was not extensive enough to determine if this layer existed across the entire buffer. Groundwater quality data was compared between surficial and deeper aquifers to identify mixing potential between the two layers to continue the investigation on why groundwater NO₃-N loss was observed across the buffer. Na⁺, Ca²⁺, NO₃-N, and Cl⁻ were the constituents evaluated.

A statistical analysis of the water quality using SAS PROC MIXED ® (Cary, NC) indicated significant chemical differences in NO_3^- -N, Ca^{2+} , and Cl^- concentrations between the surficial and deeper aquifers as shown in Figure 2. 44 - Figure 2. 48 (α =0.05). Groundwater in the deeper aquifer (8 and 11 m deep) was much lower in Cl^- and higher in Na^+ than in the surficial aquifer (1.5 and 3 m deep). Figure 2. 44 shows once again how the groundwater NO_3^- -

N concentrations at the 3 m depth were higher than groundwater NO₃-N concentrations at the 1.5 m depth, so dilution through upwelling appeared an unlikely major contributor to decreased concentrations at least at the 1.5 m depth (Figure 2. 45).

The difference in groundwater signatures provided strong evidence that mixing was unlikely between waters in the deeper and surficial aquifer. However, the waters in the 1.5 m and 3 m depth did appear to have the same chemistry, since Cl⁻, Na⁺, and Ca²⁺ concentrations all appeared similar. Groundwater NO₃⁻-N concentrations were the exception – they appeared similar at the field edge Zone 3 only. The concentrations decreased as the groundwater moved through the buffer into Zone 1, while concentrations of the other ions remained within a stable range.

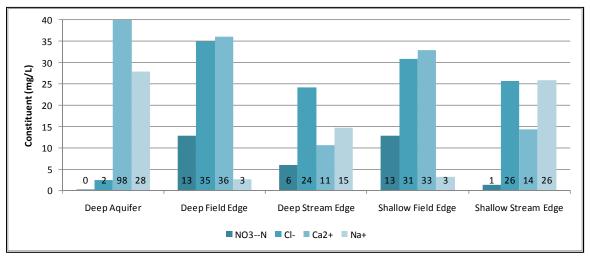


Figure 2. 44: Means of deeper aquifer compared to means of 1.5 m and 3 m depth water quality constituents at the stream and field edge of the riparian buffer treatment system (n values for the 1.5 m, 3 m, 8 m, and 11 m depths were 89, 120, 60, and 20 respectively for NO₃-N and chloride; n values for the 1.5 m, 3 m, 8 m, and 11 m depths were 68, 95, 60, and 20 respectively for calcium and sodium). Make note that the calcium quantity in the deep aquifer was cut off for viewing purposes.

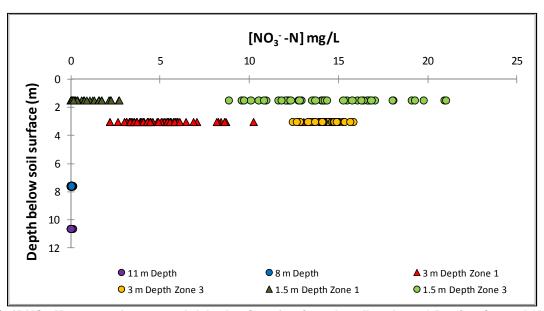


Figure 2. 45:NO₃-N concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 89, 120, 60, and 20 respectively.

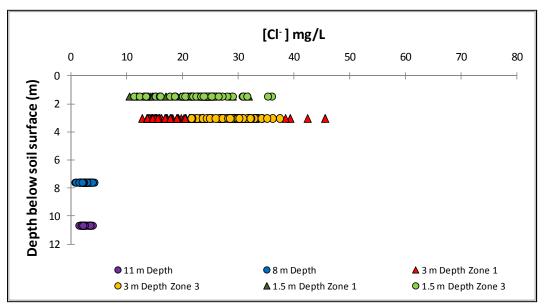


Figure 2. 46: Chloride concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 89, 120, 60, and 20 respectively.

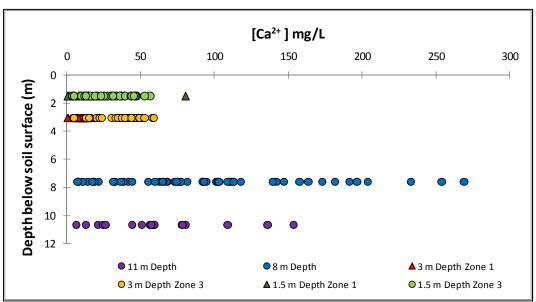


Figure 2. 47: Calcium concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 68, 95, 60, and 20 respectively.

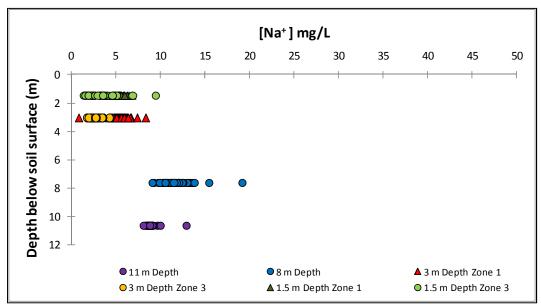


Figure 2. 48: Sodium concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 62, 89, 60, and 20 respectively.

Additional evidence of these waters being separated can be seen in the paired bivariate plots (Figure 2. 49 and Figure 2. 50). The comparison of NO₃⁻-N to Ca²⁺ and Na⁺ concentrations display that as NO₃⁻-N concentrations are decreased through the buffer, the Ca²⁺ and Na⁺ remained reasonably constant at both the field edge and stream edge in the surficial aquifer. Calcium concentrations were significantly different between the deeper and surficial aquifers, while the Na⁺ concentrations were similar at both the deeper and surficial aquifers and were inconclusive. If dilution due to mixing of groundwater was the predominant reducing mechanism within the riparian buffer system, the Ca²⁺ would have likely increased as approaching the stream. Since the Ca²⁺ remained constant at both the 1.5 m and 3 m depths, dilution appears minimal from these results.

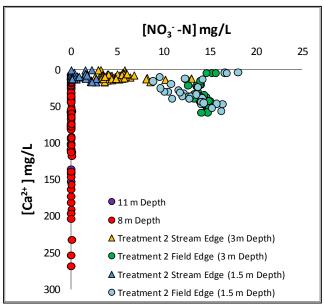


Figure 2. 49: NO₃-N concentrations compared to calcium concentrations. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 62, 89, 60, and 20 respectively.

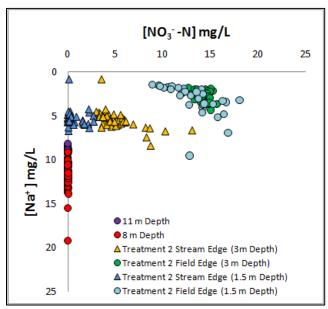


Figure 2. 50: NO₃-N concentrations compared to sodium concentrations. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 62, 89, 60, and 20 respectively.

All water quality observations between the surficial and deeper aquifers supported that the water qualities were ultimately separated. Therefore, groundwater signature observations supported our hypothesis that biological activity, presumably denitrification, was the primary mechanism for groundwater NO₃⁻-N reduction in this buffer, especially at shallower depths. The hydrology assessment, soil redox, and groundwater DOC measurements discussed in the previous sections also supported this hypothesis ultimately supporting that denitrification as the primary groundwater NO₃⁻-N reducing mechanism in this buffer treatment system.

NO₃-N Removal Evaluation through Riparian System

The overall measured NO₃-N mass removal at the 1.5 m and 3 m water quality monitoring depths was calculated using Darcy's Law and the Dupuit-Forchhiemer equation to

determine the mass of groundwater NO₃⁻-N discharged each year to the stream on a per area basis. Nitrogen was applied to the upland fields at agronomic rates as shown in Table 1 in Appendix E. The total removed groundwater NO₃⁻-N mass estimations through Zones 3 through 1 were calculated and can be found in Table 2.13.

Table 2. 13: NO₃-N removal per year for varying depths and zones of the studied riparian buffer treatment system.

Depth (cm)	90 cm Soil Layer	240 cm Soil Layer	Total
Total NO ₃ -N Removed in Buffer Treatment System (kg N yr ⁻¹)	75	150	225
Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kg N yr ⁻¹ m ²)	0.02	0.04	0.06

Groundwater monitoring water quality samples and Darcy's Law were used to determine the approximate amount of groundwater NO₃⁻-N that was removed in the buffer per year at the soil layers at the 90 cm and 240 cm depths (Table 2.13). Groundwater NO₃⁻-N entering Zone 3 of the buffer was 80 kg N yr⁻¹ and 176 kg N yr⁻¹ for the 90 to 150 cm and 240 to 300 cm depths, respectively. NO₃⁻-N leaving the buffer and discharging into the stream was 5 kg N yr⁻¹ and 25 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. Therefore, the buffer treatment was reducing groundwater NO₃⁻-N by 0.02 kg N yr⁻¹ m⁻² (94%) and 0.04 kg N yr⁻¹ m⁻² (86%) for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. These results were similar compared to results that Nelson *et al.* (1995) reported with removal rates of approximately 120 kg N ha⁻¹ yr⁻¹ (0.012 kg N yr⁻¹ m⁻²). Although, the higher removal rates at the

3 m seemed suspicious, the layer had much higher hydraulic conductivities, which allowed more NO₃-N to flow through the zones. All of these results indicate the buffer was effectively reducing incoming groundwater NO₃-N and removing a substantial amount of NO₃-N prior to groundwater entry into the stream.

CONCLUSIONS

Based on evaluations of the hydrology and groundwater quality of this buffer, it appears to be in an ideal landscape position to maximize groundwater NO₃⁻-N removal through denitrification. At the 1.5 m depth, mean groundwater NO₃⁻-N levels decreased by 89% from Zone 3 to Zone 1 while at the 3 m depth, this decrease was 54%. Hydrologic evaluations supported that NO₃⁻-N laden groundwater from the adjacent field was flowing into the riparian buffer the majority of the year due to the topographic location of the buffer. Water table elevations were high (within 3 m of the soil surface) throughout the year, with Zone 2 exhibiting jurisdictional wetland hydrology.

Redox readings were below 200 mV during most of the year indicating reduced conditions critical for denitrification. DOC concentrations during the summer were adequate for denitrification to occur within the monitored surficial soil depths. However, lower DOC concentrations at the 3 m depth may have led to higher groundwater NO₃-N concentrations at this depth in Zone 1 throughout the year. Results from water quality data support denitrification the primary NO₃-N reduction mechanism. Groundwater NO₃-N and NO₃-N/Cl ratios had similar decreases from Zone 3 to Zone 1 and NO₃-N/Cl ratios indicated that 7 of 12 groundwater monitoring areas had reductions in groundwater NO₃-N within the buffer most likely due to denitrification. Dilution was found to be minimal in the surficial and deeper aquifer water quality assessment, with the two waters being found to have significantly different water quality signatures.

Nitrate-N leaving the buffer and discharging into the stream was 5 kg N yr⁻¹ and 25 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively indicating the buffer was reducing NO₃⁻-N by a magnitude of 94% and 86% at the 90 to 150 cm and 240 to 300 cm depths, respectively.

Variable NO₃⁻-N laden groundwater delivery through the buffer could have reduced denitrification efficiency in the system if the riparian buffer did not have high water tables and groundwater flow toward the stream majority of year. High water tables and groundwater flowing toward the stream most of the year likely enhanced denitrification allowing groundwater NO₃⁻-N to reach denitrifying microsites. During dryer periods of the year the change in groundwater flow along with lower water tables elevations reduced these opportunities for NO₃⁻-N laden groundwater to reach these critical microsites. However, groundwater was still flowing through the buffer and likely receiving some treatment. Overall, the water table was relatively close to the soil surface and flowed through the buffer majority of the year making the buffer treatment mostly ideal for enhancing groundwater NO₃⁻-N reduction through denitrification in this system.

High water table elevations along with groundwater NO₃⁻-N concentration reductions, low redox readings, and suitable DOC concentrations during warmer seasons all lead to ideal soil environments for denitrification to occur. To maximize the groundwater NO₃⁻-N removal impact of buffers, conservation programs should enroll lands in landscape positions similar to what is found at this research site since these areas provide more of the required components for high

rates of denitrification (water table depths close to the soil surface, groundwater flow through the buffer majority of the year, high concentrations of groundwater NO₃-N entering Zone 3 due to large contributing groundwater area, low redox measurements during warm periods, and high DOC concentrations).

REFERENCES

Altman, S.J. and R.R. Parizek. 1995. Dilution of Nonpoint-Source Nitrate in Groundwater. *J. Environ. Qual.* 24:707-718.

Bailey, L.D. and E.G. Beauchamp. 1973. Effects of Temperature on NO₃⁻ and NO₂⁻ Reduction, Nitrogenous Gas Productions, and Redox Potential in a Saturate Soil. *Can. J. Soil Sci.* 53(2): 213-218.

Birgand, F., R. W. Skaggs, G. M. Chescheir, and J. W. Gilliam. 2007. Nitrogen removal in streams of agricultural catchments – a literature review. *Crit. Rev. Environ. Sci. Tech.* 37(5): 381-487.

Böhlke, J.K., J.W. Harvey, and M.A. Voytek. 2004. Reach-Scale Isotope Tracer Experiment to Quantify Denitrification and Related Processes in a Nitrate-Rich Stream, Midcontinent United States. *Amer. Soc. Limn. Oceano.* 49(3): 821-838.

Burns, D.A. 1998. Retention of NO₃ in an upland stream environment: A mass balance approach. *Biogeochem.* 40: 73-96.

Clément, J.C., G. Pinay, and P. Marmonier. 2002. Seasonal Dynamics of Denitrification along Topohydrosequences in Three Different Riparian Areas. *J. Environ. Qual.* 31:1025-1037.

Davis, J.H., S.M. Griffith, W.R. Horwath, J.J. Steiner, and D.D. Myrold. 2007. Mitigation of Shallow Groundwater Nitrate in a Poorly Drained Riparian Area and Adjacent Cropland. *J. Environ. Qual.* 36(3): 638-637.

Dettmann, E.H. 2001. Effect of Water Residence Time on Annual Export and Denitrification of Nitrogen in Estuaries: A Model Analysis. *Estuaries* 24(4): 481-490.

Devlin, J.F. 2003. A Spreadsheet Method of Estimating Best-Fit Hydraulic Gradients Using Head Data from Multiple Wells. *Groundwater*. 41(3): 316-320.

Dukes, M.D. R.O. Evans, J.W. Gilliam, S.H. Kunickis. 2002. Effect of riparian buffer width and vegetation type on shallow groundwater quality in the Middle Coastal Plain of North Carolina. *Trans. of the ASAE*. 45(2):327-336.

Evans, R.O., K.L. Bass, M.R. Burchell, R.D. Hinson, R. Johnson, and M. Doxey. 2007. Management alternatives to enhance water quality and ecological function of channelized streams and drainage canals. *J. Soil and Water Conserv.* 62(4):308-320.

Fangmeier, D.D., W.J. Elliot, S.R. Workman, R.L. Huffman, and G.O. Schwab. 2006. Soil Water Conservation Engineering 5th ed. Clifton Park, NY: Thomson.

Faulkner, SP.P., W.H. Patrick, Jr., and R.P. Gambrel. 1989. Field techniques for measuring wetland soil parameters. *Soil Sci. Soc. Am. J.* 53: 883-890.

Fiedler, S., M.J. Vepraskas, J.L., and Richardson. 2007. Soil Redox Potential: Importance, Field Measurements, and Observations. *Advanc. Agron.* 94:1-54.

Fitts, C.R. 2002. Groundwater Science. London, UK: Elsevier Science, Ltd.

Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Upper Saddle River, NJ: Prentice Hall, Inc. Gilliam, J.W. 1994. Riparian Wetlands and Water Qulaity. *J. Environ. Qual.* 23: 896-900.

Gilliam, J.W. 1994. Riparian Wetlands and Water Qulaity. J. Environ. Qual. 23: 896-900.

Golden Software, 1999. Surfer 7. Golden Software, Inc, Golden, Colorado 80401-1866, USA.

Hefting, M. M., J. Clement, P. Bienkowski, D. Dowrick, C. Guenat, A. Butturini, S. Topa, G.Pinay and J. T. A. Verhoeven. 2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. *Ecol. Eng.* 24(5): 465-482.

Hill, A.R., K.J. Devito, S. Campagnolo, and K. Sanmugadas. 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. *Biogeochem.* 51: 193-223.

Hubbard, R.K. and R. Lowrance. 1997. Assessment of Forest Management Effects on Nitrate Removal by Riparian Buffer Systems. *Trans. of ASAE*. 40(2): 383-391.

Humenik, F.J., A.A. Szogi, P.G. Hunt, S. Broome, and M. Rice. 1999. Wastewater Utilization: A Place for Managed Wetlands – Review-. A.A. J. of Ani. Sci. 12(4): 629-632.

Hunt, P.G., T.A. Matheny, and K.C. Stone. 2004. Denitrification in a Coastal Plan Riparian Zone Contiguous to a Heavily Loaded Swine Wastewater Spray Field. J. Environ. Qual. 33:2367-2374.

Johnson, S.R., M.R. Burchell, R.O. Evans, D. Osmond, and W. Gilliam. 2007. Implications of Establishing a Pine Conservation Buffer Upslope of an Established Buffer on Nitrate Reduction. *ASAE Annual Meeting*. 072226.

Kennedy, C.D., D.P. Genereux, D.R. Corbett, and H. Mitasova. 2009. Relationships among groundwater age, denitrification, and the coupled groundwater and nitrogen fluxes through a streambed. *Water Resour. Res.* 45:1-15.

Knies, S.V. 2009. Riparian Buffer Effectiveness at Removal of NO₃-N from Groundwater in the Middle Coastal Plain of North Carolina. M.S. Thesis. North Carolina State University: Raleigh, NC.

Knowles, R. 1982. Denitrification. *MicroBio. Rev.*: 46(1): 43-70.

Korom, S.F. 1992. Natural Denitrification in Saturated Zone: A Review. *Water Resour. Assoc.* 28(6): 1657-1668.

Koskiaho, J., P. Ekholm, M. Raty, J. Riihimaki, and M. Puustinen. 2003. Retaining agricultural nutrients in constructed wetlands – experiences under boreal conditions. *Eco. Eng.* 20(1): 80-103.

Lowrance, R., G. Vellidis, and R.K. Hubbard. 1995. Wetlands and Aquatic Processes. J. Environ. Qual. 24: 808-815.

Lowrance, R.R. 1992. Groundwater Nitrate and Denitrification in a Coastal Plain Riparian Forest. *J. Environ. Qual.* 21: 401-405.

Lowrance, R.R., R. Leonard, J. Sheridan. 1985. Managing riparian ecosystems to control nonpoint pollution. *J. Soil and Water Conserv.*: 40(1): 87-91.

Lowrance, R., R. Todd, J. Fail, O. Hendrickson, R. Leonard, L. Asmussen. 1984. Riparian Forests as Nutrient Filters in Agricultural Watersheds. *Bioscience*. 34(6): 374-377.

Maítre, V., A.C. Cosandey, A. Parriaux. And C. Guenat. 2005. A Methodology to Estimate the Denitrifying Capacity of a Riparian Wetland. *J. Environ. Qual.* 34:707-716.

Mayer, P.M., S.K. Reynolds, Jr., M.D. McCutchen, T.J. Canfield. 2007. Meta-Analysis of Nitrogen Removal in Riparian Buffers. *J. Environ.Qual.* 36(4): 1172-1180.

McMahon, P.B. and JK. Böhlke. 1996. Denitrification and mixing in a stream – aquifer system: effects on nitrate loading to surface water. *J. Hydro*. 186: 105-128.

NC CREP and USDA. 2008. USDA and North Carolina Expand CREP Program. Washington, D.C.: USDA. Available at: http://www.enr.state.nc.us/DSWC/pages/crepfactsheet.pdf. Accessed 31 October 2008.

NC DWQ. 2002. Neuse Nutrient Strategy: Background. Raleigh, NC: North Carolina Division of Water Quality. Available at: http://h2o.enr.state.nc.us/nps/neuse_back.htm. Accessed 31 October 2008.

NC State Climate Office. 2010. NC Climate Retrieval and Observations Network Of the Southeast Database. Raleigh, NC: NC SCO. Available at: http://www.nc-climate.ncsu.edu/cronos/normals.php?station=312827. Accessed 19 July 2010.

Nelson, W.M. A.J. Gold, and P.M. Groffman. 1995. Spatial and Temporal Variation in Groundwater Nitrate Removal in a Riparian Forest. *J. Environ. Qual.* 24:691-699.

NRCS. 1997. Riparian Forest Buffer Conservation Practice Job Sheet. Washington, D.C.: United States Department of Agriculture-Natural Resources Conservation Service.

NRDC. 1998. America's Animal Factories: How States Fail to Prevent Pollution From Livestock Waste. Available at: http://www.nrdc.org/water/pollution/factor/aafinx.asp. Accessed 13 April 2009.

Ocampo, C. J., C. E. Oldham, and M. Sivapalan (2006), Nitrate attenuation in agricultural catchments: Shifting balances between transport and reaction, *Water Resources Research*, 42.

Osmond, D.L., J.W. Gilliam, and R.O. Evans. 2002. Riparian Buffers and Controlled Drainage to Reduce Agricultural Nonpoint Source Pollution, North Carolina Agricultural Research Service Technical Bulletin 318, North Carolina State University, Raleigh, NC.

Patrick, W.H, Jr. 1960. Nitrate Reduction in a Submerged Soil as Affected by Redox Potential. *Trans. Seventh Inter. Cong. Soil Sci. II.* 494-500.

Peterjohn, W.T., and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. *Ecology*. 65(5): 1466-1475.

Pinay, G., B. Gumiero, E. Tabacchi, O. Gimenez, A.M. Tabbachi-Planty, M.M. Hefting, T.P. Burt, V.A. Black, C. Nilsson, V. Iordache, F. Bureau, L. Vought, and H. Décamps. 2007. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. *Freshwater Bio.* 52:252-266.

Postma, D., Boesen, C., Kristiansen, H. and Larsen, F. 1991. Nitrate reduction in an unconfined aquifer: water chemistry, reduction processes, and geochemical modeling. *Water Resour. Res.* 27: 2027–2045.

Puckett, L.J. 2004. Hydrogeologic controls on the transport and fate of nitrate in groundwater beneath riparian buffer zones: results from thirteen studies across the United States. *Water Sci. and Technol.* 49(3): 47-53.

Richardson, J.L. and M.J. Vepraskas. 2001. Wetland Soils. Boca Raton, FL.: CRC Press LLC.

Rotkin-Ellman, M., K. Addy, A.J. Gold, and P.M. Groffman. 2004. Tree species, root decomposition and subsurface denitrification potential in riparian wetlands. *Plant and Soil*. 263: 333-344.

USDA-NRCS Soil Survey Staff. 2006. Keys to Soil Taxonomy, 10th ed. USDA-Natural Resources Conservation Service, Washington, DC.

Spruill, T.B., J.L Eimers, A.E. Morey. 1997. Nitrate-Nitrogen Concentrations in Shallow Ground Water of the Coastal Plain of the Albemarle-Pamlico Drainage Study Unit, North Carolina and Virginia. USGS - FS-241-96, Raleigh, NC.

Spruill, T.B. 2004. Effectiveness of riparian buffers in controlling ground-water discharge of nitrate to streams in selected hydrogeologic settings of the North Carolina Coastal Plain. *Water Sci. Technol.* 49(3): 63-70.

Tesoriero, A.J., T.B. Spruill, H.E. Mew Jr., K.M. Farrell, and S.L. Harden. 2005. Nitrogen transport and transformations in a coastal plain watershed: Influence of geomorphology on flow paths and residence times. *Water Resources Research*, 41.

Thangarajan, M. 2007. Groundwater flow and mass transport modeling: theory and applications. New Delhi: Capital Pub. Co.

Todd, D.K. and L.W. Mays. 2005. Groundwater Hydrology. Danvers, MA: John Wiley and Sons, Inc.

U.S. ACE. 1987. Corps of Engineers Wetlands Delineation Manual. WRP Reference No. Y-87-1. Vicksburg, MS: Waterways Experiment Station Environmental Laboratory.

U.S. EPA. 1984. Report to Congress: Nonpoint Source Pollution in the U.S. Office of Water Program Operations. Washington, D.C.: Water Planning Division.

van Beers, W.F.J. 1958. The Auger Hole Method A field measurement of the hydraulic conductivity of soil below the water table. Wageningen, The Netherlands: ILRI.

Wafer, C.C., J.B. Richards, and D.L. Osmond. 2004. Construction of Platinum-Tipped Redox Probes for Determining Soil Redox Potential. *J. Environ. Qual.* 33:2375-2379.

Woodward, K.B., C.S. Fellows, C.L. Conway, and H.M. Hunter. 2009. Nitrate removal, denitrification, and nitrous oxide production in the riparian zone of an ephemeral stream. *Soil Bio. Biochem.* 41: 671-680.

CHAPTER 3: EFFECTIVENESS OF NITRATE REDUCTION IN A 60 METER RIPARIAN BUFFER: A HYDOLOGIC AND BIOGEOCHEMICAL EVALUATION

ABSTRACT

Maximizing stream miles protected by riparian buffers in conservation programs requires defining ideal landscape and soil conditions for placement of buffers to overall improve downstream water quality in sensitive streams and estuaries. A five year study on the nitrate reduction efficiency of a riparian buffer enrolled in the North Carolina Reserve Enhancement Program (NC CREP) has been evaluated. The studied buffer width was 60 m. Surficial groundwater monitoring well nests were installed in three transects within the buffer, with each well nest containing a shallow (1.5-2.3 m) and deep (2.7-3.6 m) well. Additional wells were installed to measure the quality of water in the deeper aquifer to examine interaction with the surficial groundwater. Upslope agricultural practices have included soybeans, peanuts, cotton and corn production.

Nitrate concentrations decreased through the buffer from Zone 3 (grassed filter strip) to Zone 1(stream edge) with average concentrations changing from 4.5 to 1.7 mg/l and 2.9 to 2.5

mg/l for shallow and deep wells respectively. Denitrification or groundwater dilution were determined as the primary mechanism for these decreases using water table measurements, nitrate to chloride ratios, deep aquifer water quality analyses, topography, redox measurements, and dissolved organic carbon (DOC). The mass removal per year was also calculated to determine the overall impact of the riparian buffer. Results indicated that denitrification was the primary mechanism contributing to nitrate reductions in the system. However, the topographic location of the buffer made the system nitrate limited, reducing opportunities for denitrification to treat larger quantities of nitrate laden groundwater. Therefore, a clear understanding of the hydrologic and biogeochemical factors in riparian buffers will lead to design recommendations that will possibly enhance pollutant reduction in these treatment systems.

INTRODUCTION

Over the past 30 years North Carolina, along with other states, has been dealing with major water quality issues due to nonpoint source pollution (NPS). The presence of eutrophic conditions in surface water and associated fish kills have increased concerns of the effects of nutrient loads to the Tar Pamlico and Neuse watersheds of North Carolina (NCDWQ, 2002). Excessive loads of nitrate-nitrogen (NO₃-N) have been linked as a major contributor to these eutrophic conditions. Organic and inorganic fertilizer from agricultural production has been identified as a large contributor of NO₃-N into water systems (NRDC, 1998; US EPA, 1984).

Riparian buffers are one type of best management practice (BMP) recognized by the State of North Carolina to reduce NO₃⁻-N from various pollutant sources, including agricultural practices. Riparian buffers have been defined as a complex assemblage of soil, plants, and organisms immediately adjacent to a water course that may include wetlands, stream banks, and floodplains (Lowrance et. al, 1985; Osmond et. al, 2002). These systems can reduce the effects of nutrients, sediment, organic matter, pesticides, and other pollutants prior to entry into surface water and groundwater recharge areas if designed and implemented accurately.

Riparian buffers have been reported to reduce groundwater NO₃⁻-N up to 90% (Peterjohn and Correll, 1984; Lowrance *et al.*, 1984; Lowrance *et al.*, 1985; Lowrance, 1992; Dukes *et al.*, 2002; Hunt *et al.*, 2004). Understanding the hydrology and biogeochemistry of these buffer sites to maximize removal mechanisms and pollutant reduction through ideal buffer placement is the common theme throughout all of these studies.

Nitrate-N can be removed by primarily two mechanisms within riparian buffer systems: biological uptake (i.e. plants and microbial communities) and denitrification (Hubbard and Lowrance, 1997; Peterjohn and Correll, 1984; Mayer *et al.*, 2007). Although both of these mechanisms reduce NO₃⁻-N in groundwater, biological uptake allows NO₃⁻-N to remain in the buffer system in pools that may be released, while denitrification allows for a complete removal of NO₃⁻-N from the system through the microbially mediated transformation of NO₃⁻-N to N gas (Woodward *et al.*, 2009).

Extensive research has been conducted over the past 25 years to examine the effectiveness of riparian buffer systems on groundwater NO₃⁻-N reduction (Spruill, 2004; Evans *et. al*, 2007; Gilliam, 1994). Buffer removal of NO₃⁻-N is variable and riparian buffers do not always work as effectively as desired due to hydrologic and biogeochemical conditions within the treatment (Ocampo *et. al*, 2006; Puckett and Hughes, 2005). Defining if denitrification is responsible for observed NO₃⁻-N concentration reductions is often made more complicated due to the possibility of deeper groundwater mixing with and diluting surficial groundwater within the riparian zones (Davis *et al.*, 2007; Gu *et al.*, 2008; Altman and Parizek, 1995).

Although the fundamentals of how buffers work is understood well enough for conservation programs to encourage their use, to maximize their benefit in these programs, research is still needed to identify ideal riparian buffer locations with suitable hydrologic and biogeochemical conditions. Identifying these conditions will maximize denitrification occurrences within these systems.

The North Carolina Conservation Reserve Enhancement Program (NC CREP), a voluntary program that encourages buffers to improve water quality by reducing sediment and nutrient loadings into adjacent water basins (NC CREP, 2008). Landowners receive rental payments based on the soil rental rate calculated by the Farm Service Agency. Along with rental payments, NC CREP provides up to 50 percent of the expenses to establish the conservation practice (NC CREP, 2008). Although riparian buffers have been found to reduce both sediment and nutrient loads, unfortunately not all NC CREP enrollments are placed in ideal locations for treatment to thrive. Therefore, the Division of Soil and Water staff who oversee the NC CREP program are interested in defining ideal buffer sites whose contribution to water quality improvement justifies the cost of land acquisition

A comprehensive evaluation of both the hydrology and attenuation of nitrate in a riparian buffer was completed for NC DENR. The research project's primary objectives were to: conduct a detailed hydrologic evaluation of the site, examine the effects of changes in NO₃⁻-N concentrations within the buffer, and evaluate contributions of denitrification and dilution to observed NO₃⁻-N reductions. Methods used to measure hydrologic and biogeochemical factors thought to impact riparian buffer efficiency in removing NO₃⁻-N through denitrification included: the frequency and duration of the water table elevation near the soil surface, seasonal flow direction, soil redox, and groundwater chemical properties (NO₃⁻-N, Cl⁻, Ca²⁺, and Na⁺). The project's original intent was a comparative analysis of two adjacent buffer treatments with differing widths. However, due to the placement of the buffer treatments, the receiving sources

from the adjacent field were significantly different (α =0.05). Therefore, the performances of the buffers were evaluated individually. Results presented in this chapter outline results of the wider and most upstream buffer system. Results from this project will aid in defining both ideal hydrologic and biogeochemical regimes for denitrification in riparian buffers. Findings will lead to recommendations for maximizing water quality impacts of NC CREP and other conservation programs.

MATERIALS AND METHODS

The following sections highlight the methods utilized to collect data and how data was analyzed with a different buffer section at the same site discussed in Chapter 2. Please refer to the MATERIALS and METHODS sections in Chapter 2 for more detailed information on equipment installation, sampling procedures, and data analyses.

Site Description

Buffer Description

The study site was located on the same farm in Halifax County as discussed in Chapter 2. The buffer was a part of a NC CREP enrollment, but was positioned in an upstream, higher elevated location and had a wider width than the buffer section in Chapter 2 (Figure 3. 1 and Figure 3. 2). The total length of the analyzed buffer was approximately 46 m (150 ft). The buffer had an average width of 60 m (197 ft), with a range of 59 to 61 m (193 to 200 ft). The buffer was planted in 1999 with three rows of *Quercus phellos* (willow oak) and *Quercus spp*. (oak) in Zone 1 (near the stream) and *Pinus taeda* (Loblolly pine) throughout Zone 2 (the mid buffer). Predominant vegetation in Zone 3 (a grassed filter strip) consisted of mainly *Trifolium spp*. (clover).

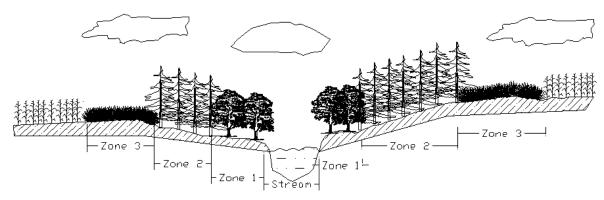


Figure 3. 1: USDA Three Zone Buffer Design – the basis of the design of the buffer studied (adapted from NRCS, 1997).

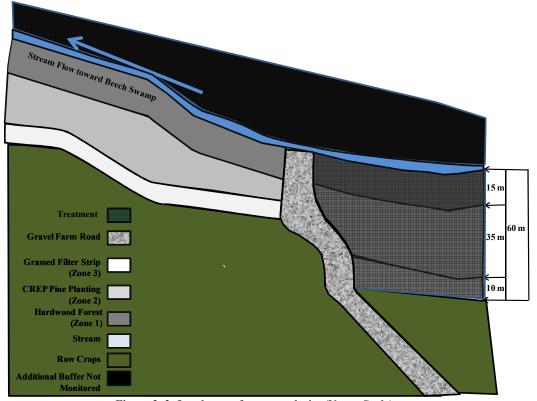


Figure 3. 2: Land cover for research site (Not to Scale).

Site Soils

The NRCS Soil Staff Survey (2006) identifies three dominant soil series at the research site: Marlboro fine sandy loam, Lynchburg fine sandy loam, and Gritney fine sandy loam as seen in Figure 3. 3, Figure 3.4, and Table 3. 1. A soil scientist completed an evaluation of the soil profile during instrument installation in December 2004. The soil assessment also indicated that the field edge soil downstream had layers of loamy sand transitioning to as shallow clay layer at approximately 0.8 m (33 in) below the soil surface similar to Gritney (Figure 3.4). At 4.6 m (15 ft) below the soil surface a marine clay restrictive layer was identified that was believed to be sufficient in separating surficial and deeper aquifer groundwater. A more complete analysis of the field observations can be found in Appendix B.

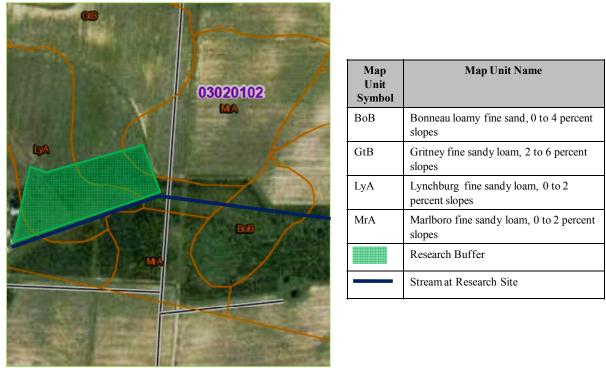


Figure 3. 3: Soil Map of Research Site from USDA-NRCS Soil Survey Staff (2006).

Table 3. 1: Soil classifications within buffer treatment (USDA-NRCS Soil Survey Staff, 2006).

	Buffer	Drainage		Restrictive	Seasonal
Soil Type	Zones	Class	Permeability	Layer	Water Table
Marlboro fine sandy loam	1 and 2	well drained	moderate	> 2 m	1.2 m to 1.8 m
Lynchburg fine sandy loam	1, 2, and 3	somewhat poorly drained	moderate	1.6 m	0.5 to 1.5 m
Gritney fine sandy loam	1, 2, and 3	moderately well drained	slow	0.2 m	0.45 to 0.9 m

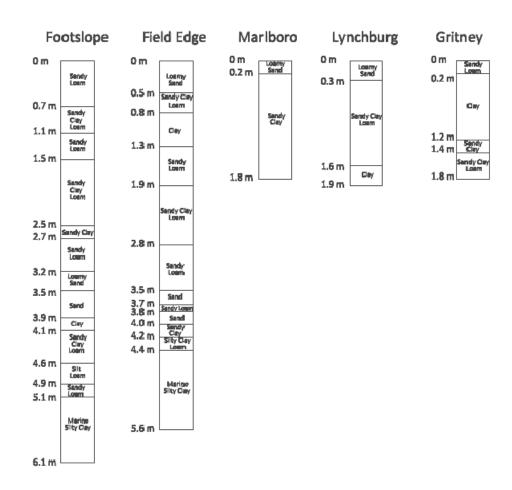


Figure 3. 4: Soil profiles at buffer site and similar soil series (as defined by USDA-NRCS, 2006 and Severson, 2004).

Site Survey

Three site surveys were completed over the study to identify equipment location and topography of the site as described in Chapter 2.

Site Instrumentation

Groundwater Well Installation

Surficial groundwater monitoring wells nests were installed in three transects 15 m (50 ft) apart within the buffer in December 2004 (Figure 3. 5). Each well nest contained a shallow and deep well with maximum depths of 1.5-2.3 m (5-7 ft) and 2.7-3.6 m (9-12 ft) respectively. Locations of well nests can be found in Table 3.2 (distances are relative to the stream). Additionally, four deeper aquifer wells were installed and monitored at the site. The objective of these well installations was to monitor the deeper aquifer groundwater to assess any mixing between the deep and surficial aquifer waters. Well depths ranged from 7.6-10.6 m (25-35 ft).

Three water table elevation data loggers (Infinities USA, Inc., Port Orange, FL) with a built in pressure sensor were installed next to well nests in the center transect in December of 2004 and took hourly water table levels from January 2005 to May 2010.

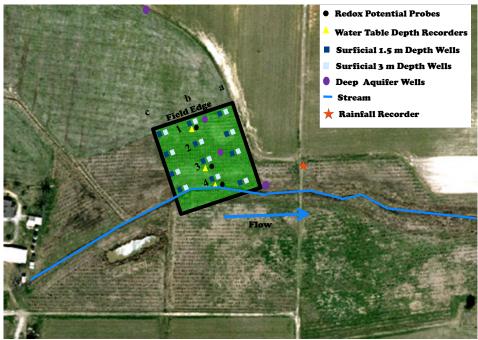


Figure 3. 5: Research site monitoring setup for the study site.

Table 3. 2: Transec Zone 3 (Grassed Filter Strip)	et layout from Zone 3 to Zon Zone 2 (Upper Mid Buffer)	e 1. Distances are relative to Zone 2 (Lower Mid Buffer)	zone 1 (Stream Edge)
55-60 m	45-50 m	25-30 m	1.5 m
(180-197 ft)	(148-164 ft)	(82- 98 ft)	(5 ft)

Rainfall

A tipping bucket, HOBO (Onset, Bourne, MA) data logger, and manual rain gage were installed at the site, but due to complications with both the data logger and manual rain gage, the NC SCO (2010) data was used for precipitation data in this project for all five years.

Redox Potential Probes

Redox potential probes were installed and monitored next to each of the surficial groundwater monitoring wells in the center transect to identify if the soil was suitable for

denitrification. The probes were placed at the same depths as the surficial shallow (1.5-2.3 m) and deep (2.7-3.6 m) water quality well depths. Therefore, there were 5 probes per depth for each location for a total of 40 probes.

Monitoring and Data Collection

Soil Sampling

In order to estimate seepage velocity through the buffer, soil samples were collected at the bottom of each well during installation. A particle size analysis test was then completed by the North Carolina State Soil Science Laboratory and results were used to determine the hydraulic conductivity through each zone of the buffer using SPAW 6.0 (NRCS, 2010). Results provided soil classifications used to estimate porosity in each zone of the buffer. Porosity estimates along with hydraulic conductivity results were then used for determining flow velocity from the field to the stream.

Water Table Monitoring

The water table elevation data loggers were used to monitor water table elevation hourly from November 2005 to May 2010. Water table depth datasets were downloaded monthly using a HP 48 G+ handheld calculator (Palo Alto, CA). Additionally, monthly manual water table elevation readings were completed in the water table elevation data loggers to account for drifting using Solinst ® water level meters (Georgetown, ON). Monthly water table elevation

readings were also completed in the surficial groundwater monitoring wells from August 2008 to May 2010 using water level meters.

Water Quality Monitoring

Groundwater samples were collected from the surficial aquifer monitoring wells monthly beginning in January 2005 to examine differences in water qualities throughout the buffer treatment. Groundwater samples were collected from the deeper aquifer beginning in August 2008. All water quality samples from the surficial and deeper aquifer wells were analyzed for nitrate (NO₃-N), chloride (Cl'), dissolved organic carbon (DOC), ortho-phosphate (O-PO₄), and ammonium (NH₄-N). Sodium (Na⁺) and calcium (Ca²⁺) analyses began in July 2008. Samples were transported and analyzed by the BAE Environmental Analysis Laboratory at North Carolina State University. All nutrients measured in the study contributed to understanding nitrogen dynamics within the buffers. Cl⁻ was used to investigate the possibility of groundwater mixing throughout the buffer. Additionally, Na²⁺ and Ca²⁺ were measured for comparisons of the surficial aquifer groundwater and deeper aquifer groundwater. DOC was examined to validate that suitable conditions, a carbon source, was present for denitrification to occur.

Redox

Redox measurements were taken monthly starting in May of 2006 using a KCL-saturated Ag/AgCl (Jensen Instruments, Tacoma, WA) reference electrode and a Fisher Scientific ® accumet AP63 Portable pH/mV meter (Pittsburgh, Pa). The five readings at each depth were

averaged to represent the redox condition at each location within the buffer and depth in the soil. Measurements were adjusted using a correction factor of 204 mV that was determined using the assumed soil temperature of 15 °C (59 degrees F) and a measured pH of 5.2 (Richardson and Vepraskas, 2001).

Data Analysis

Water Table Analysis

Water table elevations were determined using the site topographic survey, continuously monitored water table elevation data, and monthly manual water table depth measurements. The average water table elevation and the average water table difference between buffer zones was determined using the following equation:

$$AD = \frac{1}{n} \sum_{i=1}^{n} (WTE_{upslope_i} - WTE_{downslope_i})$$
(3.1)

Where,

AD = Average Difference (m)

WTE_{upslopei}= Water table elevation at upslope location

WTE_{downslopei} = Water table elevation at downslope location

n = Number of daily water table readings collected during study period

Whether the buffer zone met USACE minimum jurisdictional wetland hydrology criteria was determined using continuous water table data. The percentage of consecutive days during

the growing season (March 20th thru November 6th) that the water table was within 30 cm of the soil surface consecutively was completed for the three water table monitoring locations.

Groundwater Flow Direction Modeling

The hydraulic data analysis and groundwater flow direction modeling were completed using the spreadsheet developed by Devlin (2003) along with Surfer 7 mapping software (Golden Software, Golden, CO). An auger hole hydraulic conductivity test was successful at depths ranging from 78 cm, 135 cm, and 82 cm from Zone 1 to Zone 3 of the buffer respectively to estimate hydraulic conductivities. Although, due to the restrictiveness of the auger height, a particle size analysis completed for the soils at the depth of the surficial monitoring wells during installation and were used to determine the hydraulic conductivity using SPAW 6.0 for better accuracy. Using collected data and hydraulic conductivities, groundwater velocity and residence were calculated within the buffer system.

Nitrate-Nitrogen Removal Efficiency and Nitrate/Chloride Ratios

Groundwater NO₃-N removal efficiency was calculated between each zone and transect as well as the overall area of the buffer at the research site using the following equation:

$$\% Removal = \frac{C_I - C_E}{C_I} * 100\%$$
(3.2)

Where,

% Removal = Percentage of groundwater NO₃-N removed by the buffer (%)

 C_I = Concentration (mg/L) of the groundwater entering the buffer

 C_E = Concentration (mg/L) of the groundwater discharging to the stream

In an attempt to define whether denitrification or dilution was the cause for groundwater NO₃⁻-N concentration reductions observed in the buffer, NO₃⁻-N to Cl⁻ ratios were calibrated. Lowrance (1992) along with other researchers have used this conservative ion (i.e. having minimal plant uptake and not undergoing microbial transformations in soil) in riparian zones groundwater to determine if denitrification and not dilution was responsible for observed groundwater NO₃⁻-N losses. Chloride was used to compare changes in the ion relative to NO₃⁻-N through the buffer. Essentially dilution was indicated if ratios remained constant through the buffer towards the stream, while removal by denitrification or other biological activity was supported if ratios decreased through the buffer.

Measured Nitrate-Nitrogen Mass Removal

The groundwater NO₃-N loads were estimated to evaluate the change and/or transformations from the field edge to the stream within the buffer. The load was calculated using soil data to estimate the hydraulic conductivity, hourly monitored water table elevation data to estimate the gradient, and water quality samples from each well.

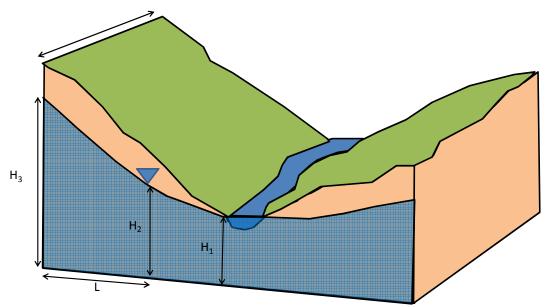


Figure 3. 6: Water table visual for reference for Equation 3.3.

$$Load_{\text{NO3-N}} = \frac{2.4X10^{-2} * (H_{Zone3}^2 - H_{Zone2}^2) * K * T * W * C}{2 * L}$$

Where,

Load $_{NO3-N}$ = Groundwater NO_3 -N flux for each month (kg N)

H = Level of groundwater elevation above datum at position i (m)

 K_s = Hydraulic conductivity at well location (m/hr)

T = Days within each month conversion (days)

C = Influent concentration (mg/L)

W = Length of the buffer (m)

L = Distance between each groundwater well (m)

(3.3)

Statistical Analysis

A statistical analysis was completed to define significant differences in groundwater NO₃⁻-N concentrations throughout the buffer treatment system using SAS PROC MIXED ® (SAS Institute, Cary, NC). A log transformation was required to normalize the groundwater NO₃⁻-N concentrations and a fixed effect of soil depth.

Redox readings, Cl⁻, NO₃⁻-N/Cl⁻ ratios, Na⁺, and Ca²⁺ concentrations were considered individual response variables and evaluated with the same procedure as NO₃⁻-N concentrations. Evaluations between the buffer sections and the deeper aquifer water quality signatures were completed using a mean separation tests with NO₃⁻-N, Cl⁻, NO₃⁻-N /Cl⁻, Na⁺, and Ca²⁺ concentrations being the individual response variables and the class variable being the depth and well location (SAS PROC MIXED ®, Cary, NC).

RESULTS AND DISCUSSION

Groundwater Hydrology

Riparian Buffer Relative Wetness

The water table was within 3 m of the soil surface at all locations even during the driest periods of the year and had several wet and dry cycles throughout the study (Figure 3. 7). These conditions enhance groundwater NO₃⁻-N reduction according to a hydrologic and NO₃⁻-N assessment completed at seven sites by Pinay *et al.* (2007). Findings indicated that an increase in wet and dry cycles near the soil surface allowed nitrification to occur followed by increased denitrification occurrences during wet periods.

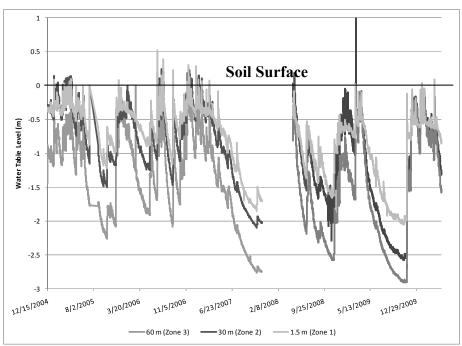


Figure 3. 7: Proximity of the water table to the soil surface within Zones 1-3. Data unavailable from January 2005 to April 2008 due to equipment malfunction.

Average water table depths relative to the soil surface were 1.44 m, 0.99 m, and 0.83 m with maximum depths below the soil surface of 2.8 m, 2.6 m, and 2.1 m for Zone 3, Zone 2, and Zone 1 monitoring locations, respectively (Table 3. 3). The water table appeared to become deeper beginning in 2007. During 2007-2008, North Carolina had a drought that caused these increases in the water table depths (NCSCO, 2010). Although the water table depths did increase from the soil surface the water tables were within 1.5 m (5 ft) of the soil surface on average each year in both Zone 1 and 2 of the buffer treatment. These results indicate that the buffer was still relatively wet in Zones 1 and 2 throughout the year.

Table 3. 3: Average yearly water table depths. Note data was unavailable from November 2007 to April 2008 due to equipment malfunction.

Year	Zone 3 (m)	Zone 2 (m)	Zone 1 (m)
2005	1.09	0.61	0.51
2006	1.06	0.61	0.51
2007	1.69	1.17	0.99
2008	1.75	1.19	1.03
2009	1.70	1.44	1.16
Average (m)	1.44	0.99	0.83

Both pine and oak roots can grow deeper than 85 cm below the soil surface and have been reported as denitrifying hot spots due to decomposing roots and leaching leaf litter (Rotkin-Ellman *et al.*, 2004). Therefore, inundated conditions at various soil depths were examined to identify if the treatment buffer had critical hydrologic conditions for denitrification to take place. Figure 3. 8 shows the results of an analysis of the frequency the water table resided at several soil depths in the various buffer zones. These results indicated that both Zones 1 and 2 had water tables within 60 cm of the soil surface a large portion of the year throughout the study, particularly prior to the 2007-2008 drought.

Riparian areas that are frequently wet can be classified as riparian wetlands. Wetlands have been shown to be effective sinks of groundwater NO₃-N (Peterjohn *et al.*, 1984; Humenik et. al, 1999; Koskiaho et. al, 2003). As such, determining whether this riparian buffer could be classified as a riparian wetland was used to assess the buffers potential to remove groundwater

NO₃-N. Since, the water table elevation was relatively high in Zones 1 and 2 throughout the year a wetland hydrology assessment was completed on each zone in the buffer to evaluate if the riparian buffer could be working as well as a wetland (Figure 3. 8). Zone 2 was the only location that indicated wetland hydrology (Table 3.4). The location barely met the wetland hydrology requirements during 2008 by being within 30 cm of the soil surface consecutively more than 5% (11 days) of the growing season (March 20th thru November 6th) (U.S. ACE, 1987). Furthermore, wetland hydrology was not present during the overall wetter years prior to the drought. A site must meet wetland hydrology criteria 50% of the years evaluated for the location to be stated as a having wetland hydrology, which was not present in this buffer. Therefore, the treatment buffer was not a riparian wetland.

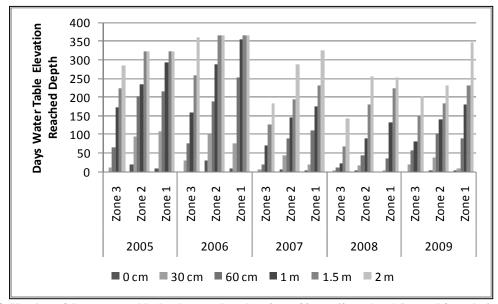


Figure 3. 8: Number of days water table depths were less than 0 cm, 30 cm, 60cm, 1m, 1.5m, and 2m relative to the soil surface. Note data was unavailable from November 20007 to April 2008 due to equipment malfunction.

Table 3. 4: Maximum consecutive days water table was within 30 cm of the soil surface during growing season (March 20th thru November 6th). Highlighted cells are years that wetland hydrology was present at monitored zones. Data was missing in July through August of 2005 and March through April 2008.

, ,	Zone 3	Zone 2	Zone 1
Depth (cm)	30	30	30
2005 (days)	0	10	10
2006 (days)	4	8	7
2007 (days)	0	0	1
2008 (days)	1	14	1
2009 (days)	2	3	0

Groundwater Gradients

Buffer slope and elevation influenced the differences in water table depth and wetland hydrology. Even though the buffer did not meet wetland hydrology criteria, as ground elevation decreased gradually through the buffer towards the stream, the water table became closer to the soil surface (Figure 3. 9). The buffer had a slope from Zone 3 to Zone 1 of 1.67% and the adjacent stream had a slope of 0.7% over the entire research site. Figure 3. 9 displays how the ground elevation gradually decreased from Zone 3 to Zone 1. These results led to further investigations as to how the topography effected the overall movement of groundwater throughout the riparian buffer treatment system.

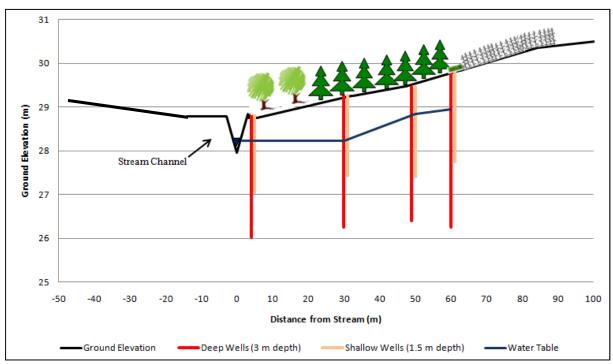


Figure 3. 9: Cross section of center transect of the riparian buffer and surficial monitoring wells.

Water table elevations were evaluated to investigate the general movement from Zone 3 to Zone 1 throughout the entire buffer study (Figure 3. 10). Since the water table elevations varied year to year as discussed in the prior section, water table elevations were modeled for a wet year (2006) and dry year (2009) to form a better understanding of how the water table elevations changed during climatically different years (Figure 3. 11 and Figure 3. 12). As seen in Figure 3. 11 and Figure 3. 12, the wet and dry years dramatically affected the water table elevations particularly during the summer and fall seasons. During 2006, a considerably wet year at the site, the water tables were highest during the growing season, while during 2009 water tables began to decrease in the spring and continued to decrease into the summer and fall

seasons. The water table elevation was approximately 30.5 m in all zones in July 2006, while in July 2009 the water tables were approximately 2 m lower in the soil at 28.5 m. The implications of these differences in elevations required a more intensive study at to how these elevation changes affected the groundwater movement in this buffer treatment across years.

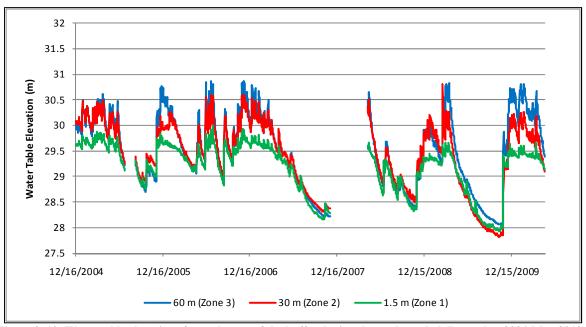


Figure 3. 10: Water table elevations for each zone of the buffer during the study period (December 2004-May 2010).

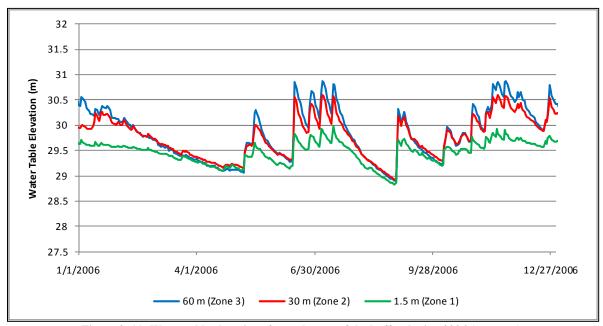


Figure 3. 11: Water table elevations for each zone of the buffer during 2006 (wet year).

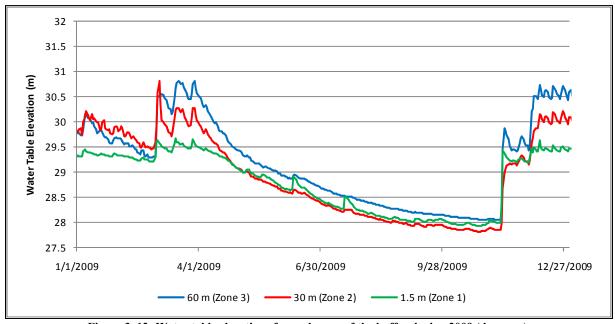


Figure 3. 12: Water table elevations for each zone of the buffer during 2009 (dry year).

The average difference in water table elevations was approximately 0.25 m from Zone 3 to Zone 2 and 0.07 m from Zone 2 to Zone 1 throughout the study period, with an overall average difference of 0.31 m through the buffer (Table 3.5). Negative differences in 2007 and 2008 were during the drought as discussed in the last section. During this period groundwater appeared to flow toward downstream buffer areas and Beech Swamp, which had lower water table elevations.

Table 3. 5: Average yearly elevation differences between zones. Note data was unavailable from November 2007 to April 2008 due to equipment malfunction.

		The state of the s	
	Average Difference (m)	Average Difference (m)	Average Difference (m)
Year	(Zone 3 – Zone 2)	(Zone 2 – Zone 1)	(Zone 3 – Zone 1)
2005	0.03	0.31	0.34
2006	0.06	0.30	0.37
2007	-0.01	0.23	0.22
2008	-0.06	0.24	0.19
2009	0.25	0.13	0.38
1			
Average (m)	0.07	0.25	0.31

Water table gradients from monitored water table elevation readings in surficial groundwater monitoring wells were modeled using Surfer 7 mapping software (Golden Software, 1999). The models showed that groundwater flow paths did go through the buffer from the adjacent field and that the angle of flow was not always consistent depending on seasonal water table elevations (Figure 3. 13 - Figure 3. 16).

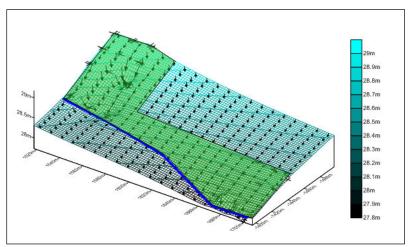


Figure 3. 13: Groundwater flow vectors for April 2009 (wettest period) at the research site. The blue line represents the stream.

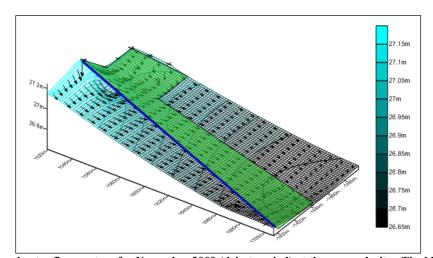


Figure 3. 14: Groundwater flow vectors for November 2009 (driest period) at the research site. The blue line represents the stream.

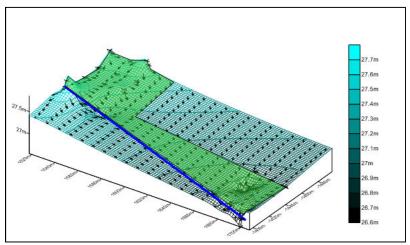


Figure 3. 15: Groundwater flow vectors for July 2009 at the research site. The blue line represents the stream.

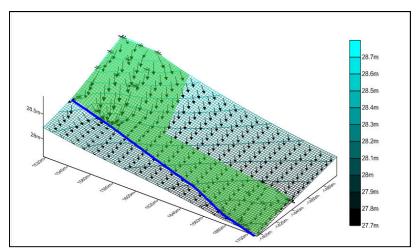


Figure 3. 16: Groundwater flow vectors for January 2009 at the research site. The blue line represents the stream.

The hydraulic gradient was modeled monthly starting in June 2008 using monthly piezometer readings, an excel spreadsheet designed by Devlin (2003), and Surfer modeling software. Gradients represented water table elevation over distance through the buffer treatment. The gradients through the treatment varied between 0.003-0.036 m/m depending on season. Groundwater flow angles estimated using Devlin (2003) exhibited groundwater direction relative

to the stream (parallel to the field) throughout seasonal periods (Figure 3. 17 thru Figure 3.19). The estimated groundwater angles using Devlin (2003) were similar to the angles found using the Surfer 7 mapping software (Golden Software, 1999) as shown in Figure 3. 20.

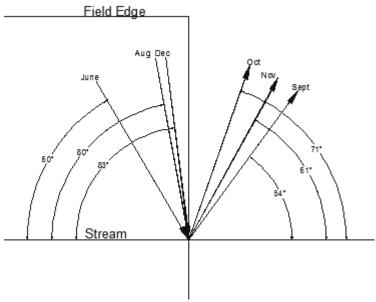


Figure 3. 17: Groundwater flow direction through the buffer relative to the stream for months monitored in 2008.

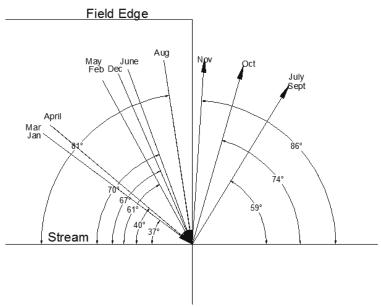


Figure 3. 18: Groundwater flow direction through the buffer relative to the stream for months monitored in 2009.

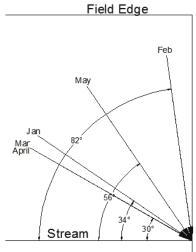


Figure 3. 19: Groundwater flow direction through the buffer relative to the stream for months monitored in 2010.

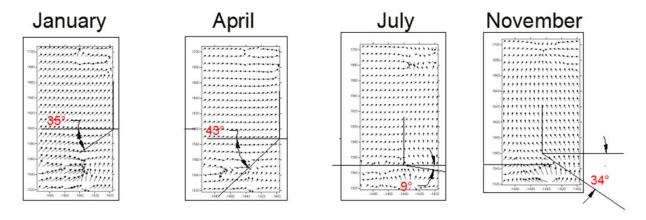


Figure 3. 20: Groundwater angles estimated using Devlin (2003) on contours modeled in Surfer 7 mapping software during 2009 (Golden Software, 1999).

Beech Swamp was located downstream of the buffer zones, parallel to the adjacent field. The data suggests that the groundwater flowed to variable outlet locations depending on water table elevation. Over periods when the water table elevation was closer than 1.5 m to the soil surface the groundwater flowed at an angle through the buffer toward a stream discharge area downstream of the buffer. Water table elevations below 1.5 m resulted in groundwater flowing almost parallel through the buffer toward Beech Swamp, the lowest topographic elevation in the area. Furthermore, the upslope location of this buffer limited the groundwater contributing area entering from the adjacent agricultural field (Figure 3. 21 and Figure 3. 22), possibly allowing less concentrated groundwater from the adjacent field to flow into the buffer.

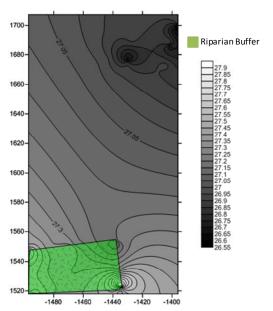


Figure 3. 21: Groundwater contour map of July 2009 (dry period).

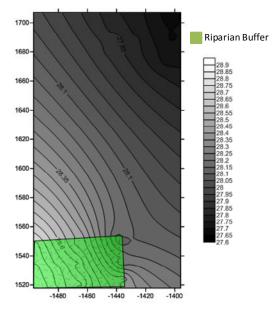


Figure 3. 22: Groundwater contour map of January 2009 (wet period).

Although the groundwater flow direction fluctuated throughout the year, groundwater that was contaminated with NO₃-N was continuously within the buffer treatment system, moving slowly in multiple directions throughout the year. Therefore, the determination of the groundwater residence time within the buffer was investigated.

Saturated Hydraulic Conductivity, Groundwater Velocity, and Residence Time

Soil texture has a major influence on how groundwater passes through riparian buffers. Therefore, a particle size analysis was completed at the well depth locations at the beginning of the study to identify any inconsistencies in soil texture at the 1.5 m and 3 m depths within the buffer (Table 3. 6). One major soil texture variation was found at the 1.5 m depth in Zone 1, where the center transect had sandy clay loam and the upstream transect had sandy loam. Variability in the soil between sandy loam and sandy clay loam was also identified in the soil survey completed at the beginning of the study to determine well depth placement (Figure 3.4 and Severson, 2004). The majority of the buffer was classified as sandy loam. Therefore, the effective porosity of the soil was conservatively assumed to be 0.35 and was used in calculating travel time (Fangmeier *et al.*, 2006).

Table 3. 6: Particle Size Analysis for Buffer Treatment **NRCS Particle Size** Model Soil ID Sand Silt Clay USDA % **%** "SPAW Hydrology" hvdraulic % **% %** conductivities (cm/hr) Class. 2-5mm > 5mm 1.5 m Depth Center Transect 74.6 Zone 3 7.2 18.2 sandy loam 0.00.0 2.7 1.5 m Depth Center Transect 74.6 0.0 1.97 5.1 20.3 sandy clay 1.1 Upper Zone 2 loam 1.5 m Depth Center Transect 76.6 5.2 18.2 2.1 0.0 2.76 sandy loam Lower Zone 2 1.5 m Depth Center Transect sandy clay Zone 1 73.4 5.4 21.2 15.9 4.6 1.94 loam 1.5 m Depth Upstream 76.6 7.8 15.6 sandy loam 17.3 15.9 3.42 Transect Zone 1 3 m Depth Center Transect Zone 3 74.6 9.5 15.9 sandy loam 9.0 1.0 3.31 3 m Depth Center Transect Upper Zone 2 84.4 9.1 loamy sand 4.9 5.3 7.21 6.6 3 m Depth Center sandy loam Transect Lower 76.1 6.8 17.1 15.1 3.8 3.06 Zone 2 3 m Depth Center Transect Zone 1 79.8 6.0 14.2 9.9 4.32 sandy loam 3.7

Saturated conductivity (K_s) was calculated using the particle size analysis for each zone and the NRCS SPAW 6.0 modeling program. K_s ranged from 1.94 cm/hr to 3.42 cm/hr at the 1.5 m depth and 3.06 cm/hr to 7.21 cm/hr at the 3 m depth. Groundwater velocity averaged 1.6

cm/day and 3.0 cm/day at the 1.5 m and 3 m depths respectively. The travel times ranged from 1.25 to 16 years at the 1.5 m depth with a median of 11 years, while the travel times ranged from 0.6 to 11 years with a median of 8 years at the 3 m depth based on groundwater angle.

Long residence times (> 50 years) enhance NO₃⁻-N removal by denitrification in buffers, but denitrification has been found to occur with residence times as small as 1 month (Puckett, 2004; Tesoriero *et al.*, 2005; Dettmann, 2001). The treatment buffer had residence times within established times for denitrification to proceed, and the soil was continuously inundated at depths above 3 m. These conditions should have allowed this riparian buffer to provide conditions hydrologically suitable for denitrification to proceed at high rates.

Overall Groundwater Quality NO₃-N Results

The hydrology of this buffer appeared conducive for high groundwater NO_3 -N removal rates, since the lower Zone 2 and Zone 1 appeared to have high water tables throughout the study. NO_3 -N concentrations from groundwater sampling in the buffers 1.5 m and 3 m depths are shown in Figure 3. 23 and Figure 3. 24. 1.5 m depth mean NO_3 -N levels from Zone 3 to Zone 1 were 4.5 to 1.7 mg/l respectively (63% reduction) in the shallow groundwater. Mean NO_3 -N levels from Zone 3 to Zone 1 at the 3 m depth were 2.9 to 2.5 mg/l respectively, (15% reduction) in the deeper groundwater. Only at the 1.5 m depth was groundwater NO_3 -N concentrations found to significantly decrease through the buffer ($\alpha = 0.05$).

Mean groundwater NO₃⁻-N results entering this buffer were much lower than NO₃⁻-N concentrations in prior middle coastal plain studies, and appeared to be tied the hydrology and groundwater contributing area (Figure 3. 25). Dukes *et. al* (2002) reported entering mean groundwater NO₃⁻-N concentrations ranging from 5.6 to 5.8 mg/L at depths ranging from 0.6 m to 3 m, while Jacobs and Gilliam (1985) reported field edge mean groundwater NO₃⁻-N concentrations at depths up to 4.25 m to be 8.0 mg/L.

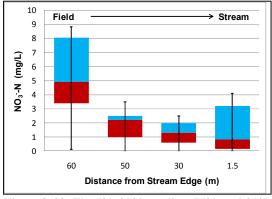


Figure 3. 23: The 5%, 25%, median, 75%, and 95% percentiles of groundwater NO_3 -N concentrations over the study for 1.5 m deep surficial wells at differing locations in the riparian buffer (n=144 water quality samples).

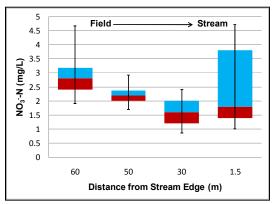


Figure 3. 24: The 5%, 25%, median, 75%, and 95% percentiles of groundwater NO₃-N concentrations over the study for 3 m deep surficial wells at differing locations in the riparian buffer (n=202 water quality samples).

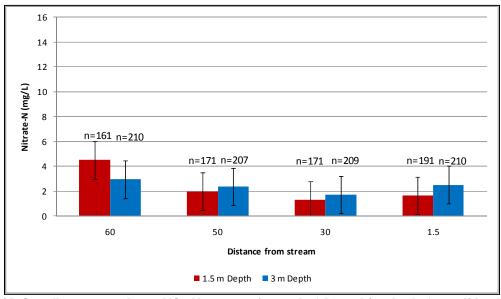


Figure 3. 25: Overall mean groundwater NO_3 -N concentrations at the 1.5 m and 3 m depths ($n_{1.5m}$ =694 and n_{3m} = 836 water quality samples). Note – error bars represent standard error.

A statistical analysis of the water quality using SAS PROC MIXED ® (Cary, NC) did not indicate concentrations in Zone 1 being significantly lower than in Zone 3 for the 3 m surficial wells (α =0.05), although means showed a general decrease from Zone 3 to lower Zone 2 (30 m from the stream). Inspection of Figure 3. 25 reveals that average groundwater NO₃⁻-N concentrations were similar in Zone 3 at both depths. The statistical analysis verified these observations, and further indicated groundwater NO₃⁻-N concentrations were significantly smaller at the 1.5 m depth than the 3 m depth surficial monitoring well locations in Zone 1 (α =0.05).

Yearly groundwater NO₃-N concentrations at the field edge increased throughout the study; the only exception being at the 1.5 m depth in 2009. As discussed in Chapter 2 in 2007 a drought occurred resulting in water table levels that were below many shallow groundwater

monitoring wells. Although in 2007 the water table level fell dramatically and never completely recovered before the completion of the study, as the groundwater NO₃-N concentrations increased the groundwater NO₃-N reduction efficiency also increased (Figure 3. 26). During these periods of deep water table levels, nitrification and mineralization most likely occurred in the soil increasing groundwater NO₃-N concentrations in the system. Additionally higher rates may have been due to lower plant uptake of fertilizer N resulting in more N leached into the groundwater.

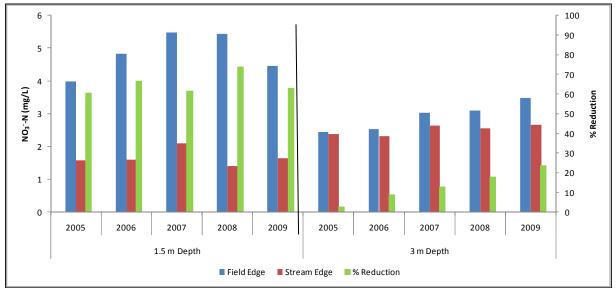


Figure 3. 26: Overall mean groundwater NO_3 -N concentrations per year at the 1.5 m and 3 m depths ($n_{1.5m}$ =793 and n_{3m} = 886 water quality samples).

Transect and Seasonal Groundwater NO₃-N Trends

A visual evaluation of each transect was used to form a better understanding of the groundwater NO₃⁻-N dynamics through the buffer due to limitations of the degrees of freedom in the statistical analysis. The center transect had higher groundwater NO₃⁻-N concentrations

entering the field edge at the 1.5 m depth, while at the 3 m depth there were no visual differences in groundwater NO₃⁻-N concentrations entering the buffer within each transect (Figure 3. 27 and Figure 3. 28). Therefore, the impact of fertilizer applications seemed to decrease with depth. The center transect most likely received the higher concentrations of NO₃⁻-N laden groundwater due to the location being in a slight topographic dip at the field edge. Therefore, groundwater and surface water would be routed toward the center transect resulting in increased groundwater NO₃⁻-N concentrations.

The soils heterogeneity seemed to cause these differences between other transects and well positions. At both the 1.5 m and 3 m depths the groundwater NO₃-N concentrations were higher at the stream edge in Transect C (upstream transect), which often had lower water table elevations relative to other monitoring locations, and was adjacent to a pool in the stream. A particle size analysis identified this monitoring area to contain sandier soils relative to the other monitoring wells at the stream possibly allowing more NO₃-N laden groundwater to flow easily through the area. Therefore, a large portion of the NO₃-N laden water could have flowed through the Transect C area and possibly allowed surface water to back flow into the buffer due to the sandier soils. The overall mean groundwater NO₃-N concentrations at the stream edge at the 1.5 m depth was 1.7 mg/L, while the mean groundwater NO₃-N concentrations were 0.3 mg/L, 0.9 mg/L, and 3.6 mg/L for Transects A, B, and C respectively. These differences in transect concentrations demonstrate the complexity of how small differences in soils can have large impacts on overall buffer treatment efficiency.

At both the 1.5 m and 3 m depth groundwater NO₃⁻-N concentrations increased during December to May each year. During March to May, fertilizer applications most likely caused the increases in groundwater NO₃⁻-N concentrations at the field edge (see Appendix B for application schedules obtained from the landowner). During December to February, vegetation growth was limited, water table elevations were low, and groundwater flowed toward Beech Swamp instead of the adjacent stream possibly allowing increases due to nitrification. All of these possibilities might have affected the concentrations of groundwater NO₃⁻-N passing within system.

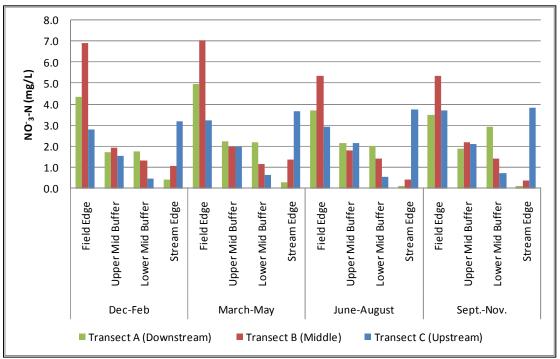


Figure 3. 27: Transect and seasonal groundwater NO₃-N evaluation at the 1.5 m depth (n=55 water quality samples).

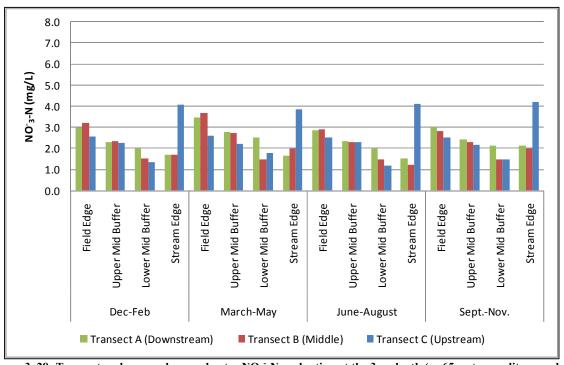


Figure 3. 28: Transect and seasonal groundwater NO₃-N evaluation at the 3 m depth (n=65 water quality samples).

Groundwater NO₃-N Summary

Based on observed decreases in concentrations, the groundwater NO₃-N treatment efficiency of this buffer appeared to be high even with low groundwater NO₃-N concentrations entering the buffer. However, the groundwater NO₃-N concentrations entering the buffer were low compared to the other nearby buffer locations. This was most likely due to the buffer being located at a higher topographic location in relation to the upland source resulting in a smaller groundwater contributing area. Therefore, the width of this buffer might have been oversized for groundwater NO₃-N concentrations entering the buffer. It was hypothesized that because of the relative wetness of lower Zone 2 and Zone 1, the potential for these reductions to be attributed to

denitrification was also high and the system may have been NO₃⁻-N limited, but other components that affect denitrification rates were investigated (redox potential and dissolved organic carbon availability).

Redox Potential

Soil redox was used to determine denitrification potential in this buffer. Denitrification occurs in soils with low oxidation/reduction (redox) potentials. Reducing conditions have been reported at threshold values ranging between 250-400 mV, with values less than 200 mV being more conducive for denitrification (Patrick, 1960; Bailey and Beauchamp, 1973, Fielder *et. al*, 2007). Figure 3. 29 displays the overall mean redox potentials recorded for the shallow and deep depths within the center transect of the buffer. Mean redox values were generally below 200 mV indicating that soil conditions appeared to be favorable for denitrification. The buffer showed a general decrease in redox values from Zone 3 to Zone 1, which would be expected, due to the observed increase in relative wetness near the stream. Redox readings significantly decreased through the buffer; the statistical test also indicated the 1.5 m and 3 m redox readings were significantly different in Zone 3 and Zone 2 (α =0.05). These results were expected since the water table elevations were periodically below the 1.5 m depth and would allow redox readings to increase when inundated conditions were no longer present.

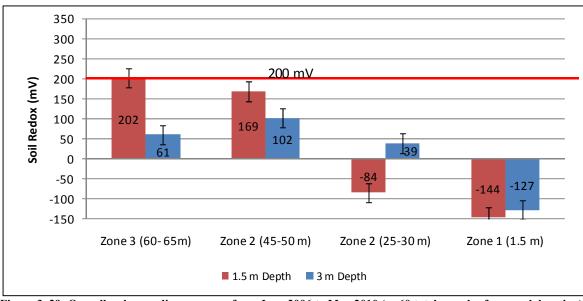


Figure 3. 29: Overall redox reading averages from June 2006 to May 2010 (n=60 total samples from each location).

Note – error bars represent standard error.

A seasonal analysis was completed to evaluate the combined effects of water table elevation fluctuation and temperatures on redox readings. Redox probes, which were placed equivalent to the depth of the surficial monitoring wells, were below the water table surface during the majority of the year. Overall redox readings decreased from the Zone 3 to Zone 1 throughout the year and were below the threshold indicating reduced conditions majority of the year, especially in lower Zone 2 (30 m from the stream) and Zone 1 (1.5 m from the stream). Based on redox alone the potential for denitrification appeared high regardless of season in Zones 2 and 1 (Figure 3, 30).

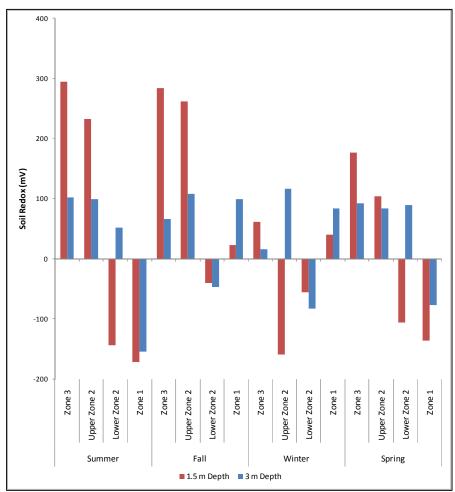


Figure 3. 30: Seasonal evaluation of redox readings in the buffer from Zone 3 to Zone 1 (n=45 during each season).

The highest redox readings, approximately 595 mV (Figure 3. 31), were seen during the summer and fall of 2008 and 2009 during which the water table elevations fell below the shallow redox probes depths in the upper Zone 2 (mid buffer) and Zone 3 (field edge) (Figure 3. 32 - Figure 3. 35). Redox readings had an increasing trend over the study period (Figure 3. 31 - Figure 3. 35). The trend was most likely due to the drop in water table levels during the extreme drought in 2007-2008, which never completely recovered by the end of this study. Although the

redox readings increased over the study period, the groundwater NO₃⁻-N concentration reduction efficiency actually increased (Figure 3. 27 and Figure 3. 28). The groundwater NO₃⁻-N concentrations most likely did not increase at the stream edge due to the necessary soil conditions for high denitrification rates still being maintained throughout majority of year. Even though the soil redox readings increased over time, the overall yearly average was well below the 200 mV threshold in Zones 2 and 1 (Figure 3. 31).

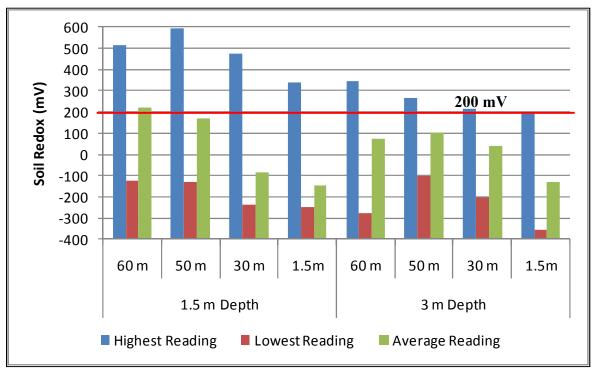


Figure 3. 31 Highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at differing distances relative to the stream (June 2005 to April 2010).

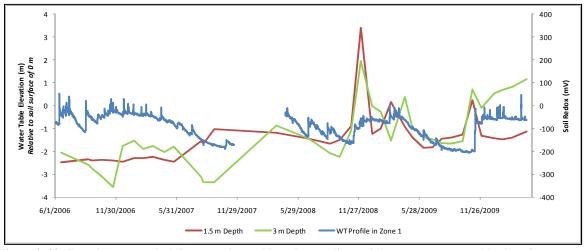


Figure 3. 32: Zone 1 (stream edge) 5 averaged monthly redox readings with respect to water table elevation at same location (June 2005 to April 2010).

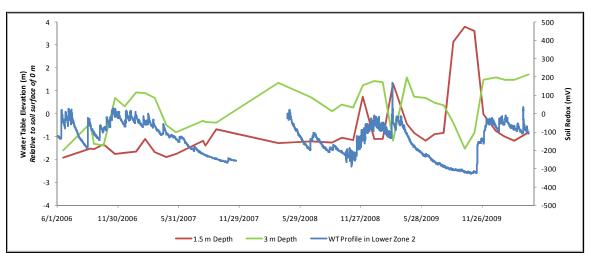


Figure 3. 33: Lower Zone 2 (mid buffer) 5 averaged monthly redox readings with respect to water table elevation at same location (June 2005 to April 2010).



Figure 3. 34: Upper Zone 2 (mid buffer) 5 averaged monthly redox readings with respect to water table elevation at same location (June 2005 to April 2010).

Figure 3. 35: Zone 3 (field edge) 5 averaged monthly redox readings with respect to water table elevation at same location (June 2005 to April 2010).

High water tables in lower Zone 2 and Zone 1 during the warmest periods appeared to be ideal for denitrification to occur since microbial activity increases as temperature increases and carbon becomes more available (Knowles, 1982). Carbon source availability can be limiting to the denitrification process depending on vegetation and climatic season due to differences in

available litter (Hefting *et. al*, 2005). Since this site had high water table elevations as well as low redox readings throughout the year, available carbon was the final biogeochemical constituent evaluated to support denitrification within this buffer was only NO₃⁻-N limited.

Dissolved Organic Carbon

A dissolved organic carbon (DOC) assessment was used to evaluate whether carbon was available in the groundwater to support denitrification. Organic carbon is critical because it serves as an electron donor for microbes during denitrification. Spruill *et. al* (1997) reported in a study completed in eastern North Carolina that water in shallow aquifers with more than 2-3 mg/L of DOC had groundwater NO₃⁻-N concentrations of less than 2 mg/L, while aquifers with lower DOC had much higher groundwater NO₃⁻-N concentrations. More recent laboratory studies indicate that DOC concentrations in the 4-8 mg/L range significantly improve denitrification rates (Knies, 2009).

The mean DOC concentrations in the groundwater beneath the buffer at the research site ranged from 2.9-21.2 mg/L. DOC concentrations were significantly different between the 1.5 m and 3 m depths in Zone 2 and 1 of the buffer (α =0.05). Throughout most periods, DOC was higher at the 1.5 m depth than at the 3 m depth. The reduced DOC at the deeper depths may be responsible for the increased groundwater NO₃-N concentrations at the 3 m depth in Zone 1 (Figure 3. 25 and Figure 3. 26).

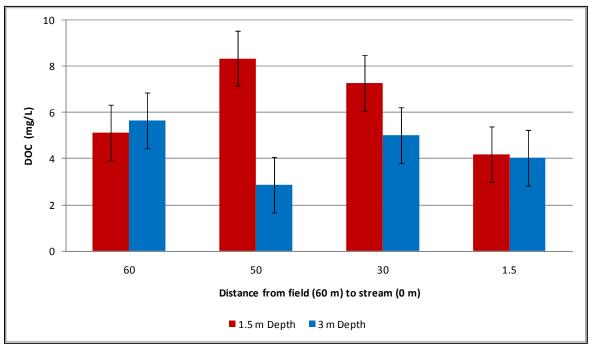


Figure 3. 36: Average DOC concentrations for research site (n=176). Note error bars represent standard error and outliers from suspected well contamination by dead animal or plant material were removed.

The DOC concentrations varied seasonally through the buffer from Zone 3 to Zone 1 (Figure 3. 36). DOC concentrations were highest in the winter and summer months (Figure 3. 36 and Figure 3. 37). Extremely high DOC concentrations along with H₂S gas were observed in water quality samples during the winter months of 2009 in Zone 3 and Zone 2. These high concentrations were believed to be from dead plant material or a dead animal creating a hot spot at the well locations. These samples were removed from the mean DOC calculation due to this suspected contamination (Figure 3. 36).

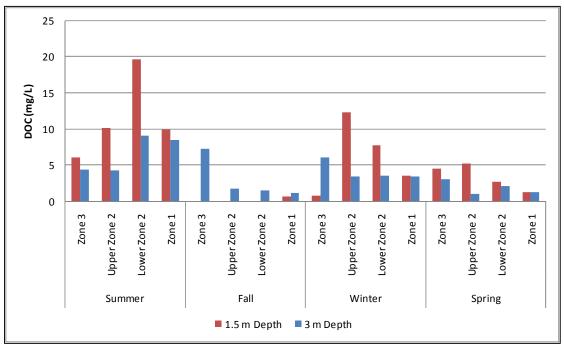


Figure 3. 37: Seasonal evaluation of DOC (n=176) from March 2008-May 2010. 1.5 m depth results for Zone 3 and Zone 2 for fall were unattainable due to low water table elevations at the research site at the time of sampling.

High DOC levels along with low redox readings support that denitrification was not limited during the summer months and was most likely the reason for increased groundwater NO₃⁻-N reductions within the buffer. DOC samples at the 1.5 m depth were not available during the fall of 2008 or 2009 due to low water table elevations. During these dryer periods higher redox readings were also observed indicating conditions for denitrification were nearer to the threshold values. A correlation between groundwater NO₃⁻-N concentrations and DOC concentrations was not observed most likely due to low groundwater NO₃⁻-N concentrations entering the buffer throughout the year and carbon levels being high during the warmer periods.

These results further support that groundwater NO₃⁻-N concentrations within the buffer were reduced through the process of denitrification. High water table elevations, low redox readings, and high DOC concentrations all support that the buffer had the required components for high rates of denitrification, but the system was NO₃⁻-N limited. Despite these biogeochemical elements appearing available, before it could be established that denitrification was the primary mechanism responsible for groundwater NO₃⁻-N reductions, groundwater dilution was investigated.

Denitrification Assessment Using NO₃-N to Cl Ratios

In an attempt to define whether denitrification or dilution was the cause for NO₃⁻-N concentration reductions observed in the buffer, chloride (Cl⁻) was also monitored in the groundwater. Lowrance (1992) along with other researchers have used this conservative ion (i.e. having minimal plant uptake and not undergoing microbial transformations in soil) from groundwater samples in riparian zones to provide evidence that denitrification and not dilution was responsible for observed groundwater NO₃⁻-N losses. The evaluation of NO₃⁻-N, Cl⁻, and NO₃⁻-N/Cl⁻ ratios was therefore used to provide insight as to the process that was responsible for groundwater NO₃⁻-N differences observed in the riparian buffer treatment (Figure 3. 38 and Figure 3. 39).

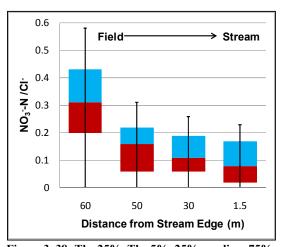


Figure 3. 38: The 25%, The 5%, 25%, median, 75%, and 95% percentiles of NO₃-N/Cl ratio over the study for 1.5 m deep surficial wells at differing locations in the riparian buffer (n=55 water quality samples). Samples were taken from January 2005 – May 2010.

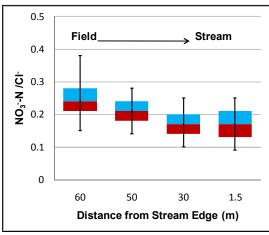


Figure 3. 39: The 25%, The 5%, 25%, median, 75%, and 95% percentiles of NO₃-N/Cl ratio over the study for 3 m deep surficial wells at differing locations in the riparian buffer (n=67 water quality samples). Samples were taken from January 2005 – May 2010.

Mean groundwater NO₃⁻-N/Cl⁻ ratios from Zone 3 (field grassed filter strip) to Zone 1 (beside stream) decreased 74% in the 1.5 m deep groundwater, while mean groundwater NO₃⁻-N levels decreased 63%. Mean groundwater NO₃⁻-N/Cl⁻ ratios from Zone 3 (grassed filter strip) to the Zone 1 (beside stream) dropped 36% in the 3 m deep groundwater, while mean groundwater NO₃⁻-N levels from Zone 3 to Zone 1 decreased 15%. These percentages were greater than the mean groundwater NO₃⁻-N concentration reductions found in both the 1.5 m and 3 m surficial well depths (Figure 3. 23 and Figure 3. 24). These results alone provide strong evidence that majority of groundwater NO₃⁻-N concentration reductions could be attributed to denitrification since the decrease in the groundwater NO₃⁻-N/Cl⁻ ratios were similar to the decrease in NO₃⁻-N concentrations observed.

Realizing that groundwater NO₃-N/Cl ratios could be influenced by changes in the observed groundwater Cl concentrations a more extensive evaluation was completed. Three criteria utilized by Dukes et. al (2002) were used in the study to determine the occurrence of groundwater dilution or NO₃-N reduction. They included: (1) a decrease in both NO₃-N and NO₃-N/Cl ratios with an absence of significant changes in Cl concentrations indicated that NO₃-N was being removed through some other means than groundwater dilution, most likely denitrification below the root zones, (2) a decrease in NO₃-N and Cl concentrations with relatively constant NO₃-N /Cl⁻ ratios indicated groundwater dilution from a source below the surficial groundwater, and (3) a decrease in NO₃-N concentrations with an increase in Cl concentrations resulting in lower NO₃-N/Cl⁻ ratios was inconclusive for predicting the cause for reduction in NO₃-N concentrations within the buffer. Two additional criteria were developed to be used in this study. These criteria were defined as: (4) a decrease in NO₃-N concentrations with constant Cl and NO₃-N/Cl ratios, and (5) an increase in NO₃-N concentrations and variability in NO₃-N/Cl ratios and Cl concentrations. Criteria 4 and 5 were all inconclusive for predicting the cause for reduction in NO₃-N concentrations within the buffer.

In all cases, potential dilution was assumed to originate from a deeper groundwater with lower concentrations of NO₃-N and Cl⁻. Criteria 3 indicated the possibility of groundwater mixing between waters with low NO₃-N and high Cl⁻ concentrations diluting the NO₃-N concentrations, but denitrification could not be ruled out since deeper groundwater was found to have much lower Cl⁻ concentrations than surficial wells. Likewise, Criteria 4 would lead one to

suspect the occurrence of groundwater dilution between water with decreasing NO₃⁻-N and Cl⁻ concentrations, but with decreasing NO₃⁻-N/Cl⁻ratios denitrification could not be ruled out. Criteria 5 was inconclusive since NO₃⁻-N concentrations were increasing. For this study the threshold for a decrease or increase was defined if a difference existed of more than 10 mg/L in Cl⁻ concentrations and 0.03 in NO₃⁻-N /Cl⁻ ratios between Zones 3 and 2 (grassed filter strip to mid buffer) and Zones 2 and 1 (mid buffer to stream) (Johnson *et. al*, 2007). If differences were smaller than the specified values then concentrations were considered constant between zones during this evaluation. Seasonal differences are noted in Table 3. 7 through Table 3. 12. These differences were most likely caused by groundwater flow direction fluctuations and fertilizer applications.

Table 3. 7: Groundwater mixing conclusions based on NO₃⁻-N and Cl⁻ concentrations, and NO₃⁻-N/Cl⁻ ratios for shallow groundwater in the downstream transect.

*** An increase in NO₃-N concentration between Upper Zone 2 and Lower Zone 2 occurred during Sept.-Feb.
*** An increase in NO₃-N /Cl concentration between Upper Zone 2 and Lower Zone 2 occurred during Sept.-Nov.

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Upper Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Upper Zone 2 – Lower Zone 2	\downarrow	-	-	Not interpretable.
Lower Zone 2 – Zone 1	1	-	\downarrow	Nitrate decrease by other mean than dilution

Table 3. 8: Groundwater mixing conclusions based on NO₃-N and Cl concentrations, and NO₃-N /Cl ratios for shallow groundwater in the center transect.

*** An increase in NO₃-N concentration between Lower Zone 2 and Zone 1 occurred during March-May.

*** An decrease in Cl concentration between Upper Zone 2 and Lower Zone 2 occurred during Dec.-Feb.

*** NO₃-N/Cl concentration was constant between Upper Zone 2 and Lower Zone 2 during Dec.- Feb. and June-Aug.

*** NO₃-N/Cl concentration was constant between Lower Zone 2 and Zone 1 during Dec.- Feb.

Location	NO ₃ -N	Cľ	NO ₃ -N/Cl	Conclusions
Zone 3 – Upper Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Upper Zone 2 – Lower Zone 2	\downarrow	-	↓	Nitrate decrease by other mean than dilution
Lower Zone 2 – Zone 1	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution

Table 3. 9: Groundwater mixing conclusions based on NO₃-N and Cl⁻ concentrations, and NO₃-N/Cl⁻ ratios for shallow groundwater in upstream transect.

*** Does not change seasonally

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Upper Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Upper Zone 2 – Lower Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Lower Zone 2 – Zone 1	↑	-	↑	Not interpretable.

Table 3. 10: Groundwater mixing conclusions based on NO₃⁻-N and Cl⁻ concentrations, and NO₃⁻-N/Cl⁻ ratios for deep groundwater in the upstream transect.

*** NO₃-N /Cl concentration was constant between Lower Zone 2 and Zone 1 during Sept.-Nov.

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Upper Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Upper Zone 2 – Lower Zone 2	\downarrow	-	-	Not interpretable.
Lower Zone 2 – Zone 1	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution

Table 3. 11: Groundwater mixing conclusions based on NO₃⁻-N and Cl⁻ concentrations, and NO₃⁻-N/Cl⁻ ratios for deep groundwater in the middle transect.

*** A decrease in NO₃-N concentration between Lower Zone 2 and Zone 1 occurs during June – Aug. *** NO₃-N /Cl concentration was constant between Lower Zone 2 and Zone 1 during March-May.

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Upper Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Upper Zone 2 – Lower Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Lower Zone 2 – Zone 1	↑	-	\downarrow	Not interpretable.

Table 3. 12: Groundwater mixing conclusions based on NO₃-N and Cl concentrations, and NO₃-N/Cl ratios for deep groundwater in the upstream transect.

*** NO₃-N /Cl concentration was constant between Lower Zone 2 and Zone 1 during March-May.
*** NO₃-N /Cl concentration was constant between Upper Zone 2 and Lower Zone 2 during March-May

Location	NO ₃ -N	Cl	NO ₃ -N/Cl	Conclusions
Zone 3 – Upper Zone 2	\downarrow	-	-	Not interpretable.
Upper Zone 2 – Lower Zone 2	\downarrow	-	\downarrow	Nitrate decrease by other mean than dilution
Lower Zone 2 – Zone 1	1	1	↑	Not interpretable.

Evaluation criteria supported means other than dilution (likely denitrification) as the primary mechanism for groundwater NO₃⁻-N reduction in groundwater moving from Zone 3 to upper Zone 2 in 2 of the 3 deep well (3 m depth) areas and 3 of the 3 shallow (1.5 m depth) well areas. The criteria also supported that means other than dilution was responsible for observed groundwater NO₃⁻-N reductions in 2 of 3 deep well (3 m depth) areas and 2 of 3 shallow well (1.5 m depth) areas in groundwater moving from upper Zone 2 to lower Zone 2. Lastly, the criteria indicated that groundwater traveling from lower Zone 2 to Zone 1 to have groundwater NO₃⁻-N reduction by means other than dilution in 1 of the 3 deep well (3 m depth) areas and 2 of

the 3 shallow (1.5 m depth) areas. All other well locations could not rule out denitrification based on Criteria 4 and 5.

It is not apparent why these zones within close proximity to one another would show this variability. The differences that lead to inconclusive results may be explained by soil heterogeneity within the buffer or seasonally variable groundwater flow through the buffer. Seasonal differences were noted in Table 3. 7 - Table 3.12 and most likely were caused from groundwater direction changes due to fluctuating water table elevations and fertilizer applications.

Utilization of these criteria would be optimal if groundwater Cl⁻ concentrations remained stable through the buffer. Cl⁻ concentrations measured within the buffer were variable, although not significant, and ranged from 8.05 to 74.86 mg/L, with averages between 9.5 and 16.4 mg/L dependent on well location. The higher concentrations in Cl⁻ often occurred during the winter and spring months, which may be a result from upland fertilizer applications. Using the NO₃⁻-N/Cl⁻ ratio method to determine the primary mechanism for groundwater NO₃⁻-N removal was made more complicated due to these variations in Cl⁻ concentrations.

In summary, groundwater NO₃⁻-N along with NO₃⁻-N/Cl⁻ ratios had similar decreases supporting denitrification was the primary groundwater NO₃⁻-N reduction mechanism. Using Criteria 1-5 described above, NO₃⁻-N/Cl⁻ ratios supported that 12 of 18 groundwater monitoring areas had reductions in groundwater NO₃⁻-N within the buffer most likely due to denitrification. Although these results support denitrification was the predominant reducing mechanism for

groundwater NO₃-N, complications due the large range in Cl⁻ concentrations required further investigations to confirm whether denitrification or dilution was occurring. Therefore, chemical signatures of the surficial and deeper aquifers were examined to identify mixing potential.

Potential Mixing Between Surficial and Deeper Aquifers

Previously, soil borings had indicated a restrictive layer at about 4.6 m (15 ft) below the ground surface that likely separated the surficial and the deeper aquifers. However, the number of deep borings was limited, and was not extensive enough to determine if this layer existed across the entire buffer. Groundwater quality data was compared between surficial and deeper aquifers to identify mixing potential between the two layers to continue the investigation on why groundwater NO₃-N loss was observed across the buffer. Na⁺, Ca²⁺, NO₃-N, and Cl⁻ were the constituents evaluated.

Significant chemical differences between NO_3^--N , Ca^{2+} , and Cl^- concentrations occurred in the surficial and deeper aquifers as shown in Figure 3. 40 - Figure 3. 44 (α =0.05). Water in the deeper aquifer (8 and 11 m deep) was much lower in Cl^- and higher in Ca^{2+} than in the surficial aquifer (1.5 and 3 m deep) indicating dilution was minimal. However, NO_3^--N concentrations in the deep surficial wells at 3 m were at higher concentrations than at 1.5 m, so dilution through upwelling appeared an unlikely major contributor to decreased concentrations (Figure 3. 40 and Figure 3. 41).

The difference in groundwater signatures provided strong evidence that mixing was unlikely between waters in the deeper and surficial aquifer. However, the waters in the 1.5 m and 3 m depth did appear to have the same chemistry, since Cl⁻, Na⁺, and Ca²⁺ concentrations all appeared similar. Groundwater NO₃⁻-N concentrations were the exception – they appeared similar at the field edge Zone 3 only. The concentrations decreased as the groundwater moved through the buffer into Zone 1, while concentrations of the other ions remained within a stable range.

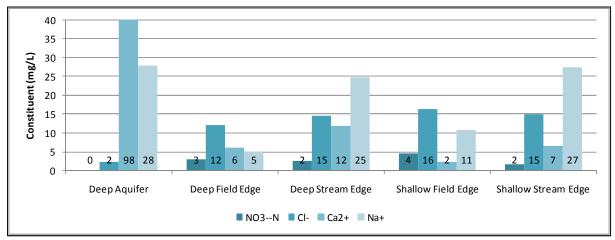


Figure 3. 40: Means deeper aquifer compared to means of shallow, and deep water quality constituents at the stream and field edge of the riparian buffer treatment system (1.5 m, 3 m, 8 m, and 11 m were 78, 120, 60, and 20 respectively for NO₃-N and Chloride; 1.5 m, 3 m, 8 m, and 11 m were 53, 87, 60, and 20 respectively for calcium and sodium). Make note that the calcium quantity in the deep aquifer was cut off for viewing purposes.

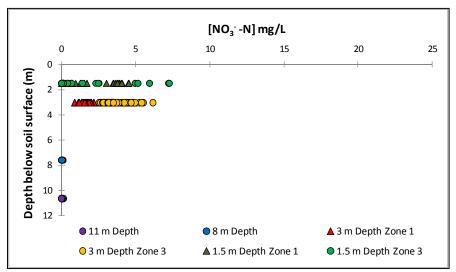


Figure 3. $41:NO_3$ -N concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 78, 120, 60, and 20 respectively.

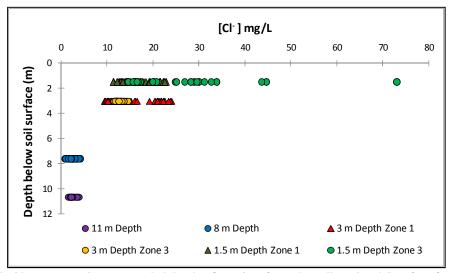


Figure 3. 42: Chloride concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 78, 120, 60, and 20 respectively.

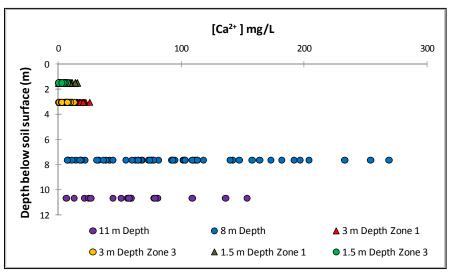


Figure 3. 43: Calcium concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 53, 87, 60, and 20 respectively.

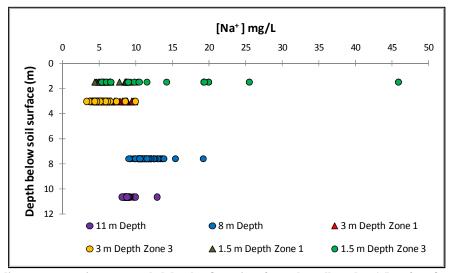


Figure 3. 44: Sodium concentrations at sampled depths. Quantity of samples collected at 1.5 m, 3 m, 8 m, and 11 m were 53, 87, 60, and 20 respectively.

Additional evidence of these waters being separated can be seen in paired bivariate plots (Figure 3. 45 and Figure 3. 46). The comparison of NO₃⁻-N to Ca²⁺ and Na⁺ concentrations display that as NO₃⁻-N concentrations are decreasing the Ca²⁺ and Na⁺ remained constant at both

the field edge and stream edge in the surficial aquifer. Ca²⁺ concentrations were significantly different between the deeper and surficial aquifers, while the Na⁺ concentrations were inconclusive. However, if dilution would have been the predominant reducing mechanism within the riparian buffer system, the Ca²⁺ would have increased as approaching the stream. Since the Ca²⁺ remained constant at both the 1.5 m and 3 m depths, dilution appears minimal from these results.

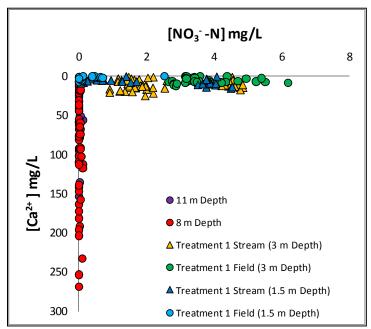


Figure 3. 45: NO₃-N concentrations compared to calcium concentrations. Quantity of samples collected at 1.5 m, 3 m, and the deeper aquifer were 53, 87, and 80 respectively.

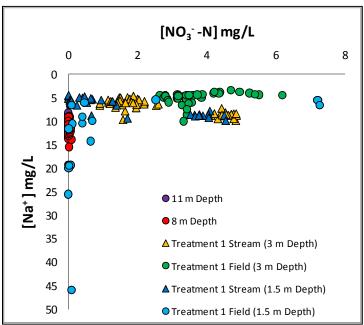


Figure 3. 46: NO₃-N concentrations compared to sodium concentrations. Quantity of samples collected at 1.5 m, 3 m, and the deeper aquifer were 53, 87, and 80 respectively.

All water quality observations from the chemical analysis of the surficial and deeper aquifers supported our hypothesis that the two waters are ultimately separated. Therefore, the groundwater signatures further support that biological activity, presumably denitrification, was the primary mechanism for groundwater NO₃-N reduction in this buffer. The hydrology assessment, soil redox, and groundwater DOC measurements discussed in the previous sections also support the hypothesis that denitrification was the primary groundwater NO₃-N reducing mechanism in this buffer system.

NO₃-N Removal Evaluation through Riparian System

The overall measured groundwater NO₃⁻-N mass removal at the 1.5 m and 3 m water quality monitoring depths was calculated using Darcy's Law and the Dupuit-Forchhiemer equation to determine the mass of groundwater NO₃⁻-N discharged each year to the stream on a per area basis. Nitrogen was applied to the upland fields at agronomic rates as shown in Table 1 in Appendix E. The total removed groundwater NO₃⁻-N mass estimations through Zones 3 through 1 were calculated and can be found in Table 3. 13.

Table 3. 13: NO₃-N removal per year for varying depths and zones of the studied riparian buffer treatment system.

Depth (cm)	90 cm Soil Layer	240 cm Soil Layer	Total
Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kg N yr ⁻¹)	12	-2	10
Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kg N yr ⁻¹ m ²)	0.003	-0.0004	0.0026

Groundwater NO₃⁻-N entering Zone 3 of the buffer was estimated to be 17 kg N yr⁻¹ and 14 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. Groundwater NO₃⁻-N leaving the buffer and discharging into the stream was 4 kg N yr⁻¹ and 15 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. The monitored depths in Section 1 were reducing groundwater NO₃⁻-N by 0.003 kg N yr⁻¹ m⁻² (76 %) for the 90 cm depth soil layer and 240 cm depth soil layer. These results were similar compared to results that Lowrance *et al.* (1995) reported with removal rates of approximately 20 to 39 kg N ha⁻¹ yr⁻¹

 $(0.002 - 0.0039 \text{ kg N m}^{-2} \text{ yr}^{-1})$. All of these results indicate the buffer was effectively reducing incoming groundwater NO_3^--N and removing NO_3^--N prior to groundwater entry into the stream.

CONCLUSIONS

Hydrologic and groundwater quality results of this buffer indicated that the buffer was NO₃-N limited, therefore constraining denitrification rates within the system. However, at the 3 m depth, mean groundwater NO₃-N levels decreased by 15% from Zone 3 to Zone 1, while at the 1.5 m depth groundwater NO₃-N levels decreased by 63% indicating the buffer was reducing groundwater NO₃-N. Although these percent differences seemed large, the mass of groundwater NO₃-N reduction was low for the size of this buffer due to the low concentrations entering the buffer. Hydrologic evaluations supported that NO₃-N laden groundwater from the adjacent field was often bypassing the riparian buffer and flowing to a lower topographic location periods of the year. Water table elevations were high (within 3 m of the soil surface) throughout the year, but wetland hydrology was absent throughout the entire system.

The topographic location of the buffer had a noteworthy effect on the groundwater NO₃⁻-N concentrations entering the buffer due to a small groundwater contributing area from the adjacent agricultural field. Since the topographic location was at a higher elevation relative to other buffer locations at the site, the concentrations of NO₃⁻-N laden groundwater entering the buffer was lower than expected. Furthermore, the higher topographic location resulted in variability in flow direction of NO₃⁻-N laden groundwater allowing groundwater from the adjacent field to intermittently bypass the buffer. Although the groundwater NO₃⁻-N concentrations were lower than expected, the buffer did often have high water table elevations

and groundwater flowing toward the stream during other portions of the year allowing groundwater NO₃⁻-N to reach denitrifying microsites, particularly in Zones 1 and 2.

Regardless of the low concentrations of NO₃⁻-N laden groundwater entering the buffer treatment, water quality data indicated denitrification was the predominant groundwater NO₃⁻-N reduction mechanism. Redox readings were found to be below 200 mV in lower Zone 2 and Zone 1 throughout the year indicating reduced conditions critical for denitrification. Residence time and groundwater flow velocity were within suitable ranges for denitrification to occur within the system. DOC concentrations were found to not be limiting during the summer for denitrification to occur within both the 1.5 m and 3 m soil depths. NO₃⁻-N and NO₃⁻-N/Cl⁻ ratios had similar decreases from Zone 3 to Zone 1 and NO₃⁻-N/Cl⁻ ratios indicated that 12 of 18 groundwater monitoring areas had reductions in groundwater NO₃⁻-N within the buffer most likely due to denitrification. The surficial and deeper aquifer water quality assessment indicated dilution to be minimal as well. The two waters were found to have different water quality signatures.

Groundwater NO₃⁻-N mass removal in the riparian buffer was estimated to be 10 kgN yr⁻¹ (0.003 kg N m⁻² yr⁻¹). Groundwater NO₃⁻-N leaving the buffer and discharging into the stream was estimated to be 4 kg N yr⁻¹ and 15 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively indicating the buffer was reducing groundwater NO₃⁻-N by 76 % at the 90 cm depth soil layer and 240 cm depth soil layer.

High water table elevations along with groundwater NO₃⁻-N concentration reductions, redox readings, and sufficient DOC concentrations during warmer seasons all lead to ideal soil environments for denitrification to occur. Although all these results indicate groundwater NO₃⁻-N was being reduced by denitrification in 1.5 m depth, low groundwater NO₃⁻-N concentrations entering the buffer further verified the buffer was NO₃⁻-N limited. Therefore, future buffer enrollments in locations receiving low groundwater NO₃⁻-N concentrations could be more narrow than this buffer. The buffer had all of the required components to enhance denitrification, but due to the limitation of groundwater NO₃⁻-N entering the system, the system most likely could have just as effectively worked at a much smaller width. Assessments must be completed to identify hydrologic and biogeochemical traits of future buffer locations and design buffers to meet water quality goals. Completing these assessments and enrolling and designing buffers to meet water quality goals will maximize the groundwater NO₃⁻-N removal impact of buffers enrolled in these conservation programs, while minimizing lands removed from agricultural production.

REFERENCES

Altman, S.J. and R.R. Parizek. 1995. Dilution of Nonpoint-Source Nitrate in Groundwater. *J. Environ. Qual.* 24:707-718.

Bailey, L.D. and E.G. Beauchamp. 1973. Effects of Temperature on NO₃ and NO₂ Reduction, Nitrogenous Gas Productions, and Redox Potential in a Saturate Soil. *Can. J. Soil Sci.* 53(2): 213-218.

Davis, J.H., S.M. Griffith, W.R. Horwath, J.J. Steiner, and D.D. Myrold. 2007. Mitigation of Shallow Groundwater Nitrate in a Poorly Drained Riparian Area and Adjacent Cropland. *J. Environ. Qual.* 36(3): 638-637.

Dettmann, E.H. 2001. Effect of Water Residence Time on Annual Export and Denitrification of Nitrogen in Estuaries: A Model Analysis. *Estuaries* 24(4): 481-490.

Devlin, J.F. 2003. A Spreadsheet Method of Estimating Best-Fit Hydraulic Gradients Using Head Data from Multiple Wells. *Groundwater*. 41(3): 316-320.

Dukes, M.D. R.O. Evans, J.W. Gilliam, S.H. Kunickis. 2002. Effect of riparian buffer width and vegetation type on shallow groundwater quality in the Middle Coastal Plain of North Carolina. *Trans. of the ASAE*. 45(2):327-336.

Evans, R.O., K.L. Bass, M.R. Burchell, R.D. Hinson, R. Johnson, and M. Doxey. 2007. Management alternatives to enhance water quality and ecological function of channelized streams and drainage canals. *J. Soil and Water Conserv.* 62(4):308-320.

Fangmeier, D.D., W.J. Elliot, S.R. Workman, R.L. Huffman, and G.O. Schwab. 2006. Soil Water Conservation Engineering 5th ed. Clifton Park, NY: Thomson.

Fiedler, S., M.J. Vepraskas, J.L., and Richardson. 2007. Soil Redox Potential: Importance, Field Measurements, and Observations. *Advanc. Agron.* 94:1-54.

Gilliam, J.W. 1994. Riparian Wetlands and Water Qulaity. J. Environ. Qual. 23: 896-900.

Golden Software, 1999. Surfer 7. Golden Software, Inc, Golden, Colorado 80401-1866, USA.

Gu, C., G.M. Hornberger, J.S. Herman, and A.L. Mills. 2008. Influence of stream-groundwater interactions in the streambed sediments on NO₃⁻ flux to a low relief coastal stream. Water Resources Research. 44: 1-13.

Hefting, M. M., J. Clement, P. Bienkowski, D. Dowrick, C. Guenat, A. Butturini, S. Topa, G.Pinay and J. T. A. Verhoeven. 2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. *Ecol. Eng.* 24(5): 465-482.

Hubbard, R.K. and R. Lowrance. 1997. Assessment of Forest Management Effects on Nitrate Removal by Riparian Buffer Systems. *Trans. of ASAE*. 40(2): 383-391.

Humenik, F.J., A.A. Szogi, P.G. Hunt, S. Broome, and M. Rice. 1999. Wastewater Utilization: A Place for Managed Wetlands – Review-. A.A. J. of Ani. Sci. 12(4): 629-632.

Hunt, P.G., T.A. Matheny, and K.C. Stone. 2004. Denitrification in a Coastal Plan Riparian Zone Contiguous to a Heavily Loaded Swine Wastewater Spray Field. J. Environ. Qual. 33:2367-2374.

Jacobs, T.C. and J.W. Gilliam. 1985. Riparian Losses of Nitrate from Agricultural Drainage Waters. *J. Environ. Qual.* 14(4): 473-478.

Johnson, S.R., M.R. Burchell, R.O. Evans, D. Osmond, and W. Gilliam. 2007. Implications of Establishing a Pine Conservation Buffer Upslope of an Established Buffer on Nitrate Reduction. *ASAE Annual Meeting*. 072226.

Knies, S.V. 2009. Riparian Buffer Effectiveness at Removal of NO₃-N from Groundwater in the Middle Coastal Plain of North Carolina. M.S. Thesis. North Carolina State University: Raleigh, NC.

Knowles, R. 1982. Denitrification. *MicroBio. Rev.*: 46(1): 43-70.

Koskiaho, J., P. Ekholm, M. Raty, J. Riihimaki, and M. Puustinen. 2003. Retaining agricultural nutrients in constructed wetlands – experiences under boreal conditions. *Eco. Eng.* 20(1): 80-103.

Lowrance, R., G. Vellidis, and R.K. Hubbard. 1995. Wetlands and Aquatic Processes. J. Environ. Qual. 24: 808-815.

Lowrance, R.R. 1992. Groundwater Nitrate and Denitrification in a Coastal Plain Riparian Forest. *J. Environ. Qual.* 21: 401-405.

Lowrance, R.R., R. Leonard, J. Sheridan. 1985. Managing riparian ecosystems to control nonpoint pollution. *J. Soil and Water Conserv*.: 40(1): 87-91.

Lowrance, R., R. Todd, J. Fail, O. Hendrickson, R. Leonard, L. Asmussen. 1984. Riparian Forests as Nutrient Filters in Agricultural Watersheds. *Bioscience*. 34(6): 374-377.

Maítre, V., A.C. Cosandey, A. Parriaux. And C. Guenat. 2005. A Methodology to Estimate the Denitrifying Capacity of a Riparian Wetland. *J. Environ. Qual.* 34:707-716.

Mayer, P.M., S.K. Reynolds, Jr., M.D. McCutchen, T.J. Canfield. 2007. Meta-Analysis of Nitrogen Removal in Riparian Buffers. *J. Environ.Qual.* 36(4): 1172-1180.

NC CREP and USDA. 2008. USDA and North Carolina Expand CREP Program. Washington, D.C.: USDA. Available at: http://www.enr.state.nc.us/DSWC/pages/crepfactsheet.pdf. Accessed 31 October 2008.

NCDWQ. 2002. Neuse Nutrient Strategy: Background. Raleigh, NCL North Carolina Division of Water Quality. Available at: http://h2o.enr.state.nc.us/nps/neuse_back.htm. Accessed 31 October 2008.

NRCS. 1997. Riparian Forest Buffer Conservation Practice Job Sheet. Washington, D.C.: United States Department of Agriculture-Natural Resources Conservation Service.

NC State Climate Office. 2010. NC Climate Retrieval and Observations Network Of the Southeast Database. Raleigh, NC: NC SCO. Available at: http://www.nc-climate.ncsu.edu/cronos/normals.php?station=312827. Accessed 19 July 2010.

NRDC. 1998. America's Animal Factories: How States Fail to Prevent Pollution From Livestock Waste. Available at: http://www.nrdc.org/water/pollution/factor/aafinx.asp. Accessed 13 April 2009.

Ocampo, C. J., C. E. Oldham, and M. Sivapalan (2006), Nitrate attenuation in agricultural catchments: Shifting balances between transport and reaction, *Water Resources Research*, 42.

Osmond, D.L., J.W. Gilliam, and R.O. Evans. 2002. Riparian Buffers and Controlled Drainage to Reduce Agricultural Nonpoint Source Pollution, North Carolina Agricultural Research Service Technical Bulletin 318, North Carolina State University, Raleigh, NC.

Patrick, W.H, Jr. 1960. Nitrate Reduction in a Submerged Soil as Affected by Redox Potential. *Trans. Seventh Inter. Cong. Soil Sci. II.* 494-500.

Peterjohn, W.T., and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. *Ecology*. 65(5): 1466-1475.

Pinay, G., B. Gumiero, E. Tabacchi, O. Gimenez, A.M. Tabbachi-Planty, M.M. Hefting, T.P. Burt, V.A. Black, C. Nilsson, V. Iordache, F. Bureau, L. Vought, and H. Décamps. 2007. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. *Freshwater Bio.* 52:252-266.

Puckett, L.J. and W.B. Hughes. 2005. Transport and Fate of Nitrate and Pesticides: Hydrogeology and Riparian Zone Processes. *J. Environ. Qual.* 34:2278-2292.

Puckett, L.J. 2004. Hydrogeologic controls on the transport and fate of nitrate in groundwater beneath riparian buffer zones: results from thirteen studies across the United States. *Water Sci. and Technol.* 49(3): 47-53.

Richardson, J.L. and M.J. Vepraskas. 2001. Wetland Soils. Boca Raton, FL.: CRC Press LLC.

Rotkin-Ellman, M., K. Addy, A.J. Gold, and P.M. Groffman. 2004. Tree species, root decomposition and subsurface denitrification potential in riparian wetlands. *Plant and Soil*. 263: 333-344.

Spruill, T.B., J.L Eimers, A.E. Morey. 1997. Nitrate-Nitrogen Concentrations in Shallow Ground Water of the Coastal Plain of the Albemarle-Pamlico Drainage Study Unit, North Carolina and Virginia. USGS - FS-241-96, Raleigh, NC.

Spruill, T.B. 2004. Effectiveness of riparian buffers in controlling ground-water discharge of nitrate to streams in selected hydrogeologic settings of the North Carolina Coastal Plain. *Water Sci. Technol.* 49(3): 63-70.

Tesoriero, A.J., T.B. Spruill, H.E. Mew Jr., K.M. Farrell, and S.L. Harden. 2005. Nitrogen transport and transformations in a coastal plain watershed: Influence of geomorphology on flow paths and residence times. *Water Resources Research*, 41.

USDA-NRCS Soil Survey Staff. 2006. Keys to Soil Taxonomy, 10th ed. USDA-Natural Resources Conservation Service, Washington, DC.

U.S. ACE. 1987. Corps of Engineers Wetlands Delineation Manual. WRP Reference No. Y-87-1. Vicksburg, MS: Waterways Experiment Station Environmental Laboratory.

U.S. EPA. 1984. Report to Congress: Nonpoint Source Pollution in the U.S. Office of Water Program Operations. Washington, D.C.: Water Planning Division.

Woodward, K.B., C.S. Fellows, C.L. Conway, and H.M. Hunter. 2009. Nitrate removal, denitrification, and nitrous oxide production in the riparian zone of an ephemeral stream. *Soil Bio. Biochem.* 41: 671-680.

CHAPTER 4: GROUNDWATER NITRATE REDUCTIONS WITHIN UPSTREAM AND DOWNSTREAM SECTIONS OF A RIPARIAN BUFFER

ABSTRACT

Defining ideal design and placement of riparian buffers enrolled in conservation programs could maximize stream miles protected and improve downstream water quality in sensitive streams and estuaries. During the past five years, effects on nitrate reduction efficiency of two riparian buffers with differing widths and landscape positions enrolled in the North Carolina Reserve Enhancement Program (NC CREP) have been assessed. The average buffer widths were 60 m (Section 1) and 43 m (Section 2). Well nests were installed in three transects within each buffer to monitor shallow (1.5-2.3 m) and deep (2.7-3.6 m) groundwater nitrate levels. Upslope agricultural practices have included soybeans, peanuts, cotton and corn production.

Nitrate decreased at the 1.5 m depth through the buffers from Zone 3 (grassed filter strip near the field) to Zone 1(stream edge) with average nitrate concentrations of 4.5 to 1.7 mg/L and 12.9 to 1.4 mg/L in Section 1 and Section 2 respectively. Likewise, nitrate decreased through the buffers from Zone 3 to Zone 1 at the 3 m depth with average nitrate concentrations of 2.9 to 2.5 mg/L and 12.8 to 6.0 mg/L for Section 1 and Section 2 respectively. Water table measurements, topographic surveys, groundwater velocities, residence times, redox measurements, dissolved

organic carbon (DOC), nitrate to chloride ratios, and deep groundwater quality analyses indicated the primary mechanism for these decreases in both sections was likely denitrification rather than groundwater dilution. The nitrate mass removal was also calculated to determine the effectiveness of each section of the riparian buffer.

The groundwater nitrate concentrations entering each section's Zone 3 were significantly different and had a significant impact on overall nitrate mass removal at the 1.5 m and 3 m depths. Therefore, the study provides a comparison of the critical impacts of differences in pollutant source concentrations entering the buffer sections, and provides recommendations as to how to design buffers to account for these differences. The study illustrates that an understanding of local hydrologic and biogeochemical factors are important to buffer design prior to buffer installation for these systems to meet effectively and efficiently water quality goals.

INTRODUCTION

Riparian buffers are important BMPs for protecting streams from pollution by treating surface runoff and shallow groundwater. They can be effective in treating NO₃-N laden groundwater only if it slowly moves through buffers at soil depths where conditions are ideal for denitrification. Therefore, designing and implementing buffers at sites with hydrologic and biogeochemical regimes ideal for denitrification is imperative to maximize NO₃-N removal potential.

Requirements for denitrification within buffer soils include a source of nitrate, anoxic conditions (indicated by low redox values), a carbon source that can act as an electron donor, suitable temperature, and suitable pH conditions (Postma *et al.*, 1991; Puckett, 2004; Korom, 1992). Optimal NO₃⁻-N removal by denitrification in these systems requires groundwater rich in NO₃⁻-N flowing through these soil layers with all required components that enhance denitrification. Several studies have investigated the physical, hydrological, and biogeochemical properties that increase reductions of NO₃⁻-N through denitrification in these systems (Spruill, 2004; Evans *et. al*, 2007; Gilliam, 1994).

The physical makeup of riparian buffers and the effects of increased buffer widths on NO₃⁻-N reduction have been increasingly studied to investigate the benefits of taking these areas out of agricultural production. Dukes' *et al.* (2002) study on four riparian buffers with differing widths concluded that a wider plot (15 m) had a 15% larger reduction of NO₃⁻-N concentrations compared to the narrower plot (8 m), with differences attributed to increased residence times

through the buffer. Mayer *et.* al (2007) estimated buffer NO₃⁻-N reduction through a metaanalysis of 89 buffers with variable widths. NO₃⁻-N reduction was found to significantly increase as widths increased from 0-25 m. However, increasing width from 25-50 m did not significantly increase NO₃⁻-N removal. Findings were attributed to higher water tables and carbon availability in buffer portions that were closest to the stream, resulting in more suitable conditions for denitrification to occur. Angier's *et al.* (2008) study of a riparian buffer examined widths varying from 60 to 250 m. Topographic differences along the buffer's field edge allowed one portion of the buffer to receive higher concentrations of NO₃⁻-N than upstream portions making comparisons difficult. The study concluded that NO₃⁻-N reduction is not only dependent on buffer width, but also groundwater flow direction and depth.

Additional studies have reported that ideal buffer placement is highly dependent on not only the physical dimensions of the buffer, but also on topographic location relative to adjacent pollutant sources, soil zones, water table elevation, and dissolved organic carbon availability (Devito *et al.*, 2000; Hill *et al.*, 2000; Dukes *et. al*, 2002; Clément *et al.*, 2002; Lowrance *et al.*, 1995, 1992; Hefting *et. al*, 2005; Böhlke *et al.*, 2007; Puckett and Hughes, 2005; Vidon *et al.*, 2004; Schiff *et. al*, 2002). The importance of buffer width therefore cannot be assumed the solitary answer to increasing NO₃-N reduction efficiency within these systems. Buffer placement in locations that are hydrologically and biogeochemically adequate for denitrification to take place is equally, if not more, critical for NO₃-N reduction.

The fundamentals of riparian buffers performance are understood well enough for conservation programs to encourage their use as BMPs to protect water quality. However, research is still needed to identify and study riparian buffer locations that have suitable hydrologic and biogeochemical conditions to maximize denitrification. Once these sites are identified, research is also needed to help determine minimum widths required to provide adequate NO₃-N treatment. Site specific NO₃-N concentrations, denitrification potential, and water quality goals should determine the widths of riparian buffers, rather than allowing widths to be determined from site conditions alone.

A detailed evaluation of the hydrology and attenuation of groundwater NO₃-N was conducted in this study on two sections of buffer along the same stream. These sections had two distinct widths, but were also in two distinct landscape positions. Originally, a comparison of the effects of buffer width on NO₃-N reductions within these sections was to be evaluated. However, significant differences in both the hydrology within each buffer section and the groundwater NO₃-N concentrations entering the two buffer sections prohibited a direct evaluation of width effects. Therefore, an evaluation of the physical, hydrological, and biogeochemical characteristics influencing the potential for groundwater NO₃-N reduction was completed within each of the two buffer sections. This chapter attempts to compare the differences between these buffer sections to provide a clear illustration of the necessity of preliminary evaluations prior to buffer installation. Although often logistically challenging in

conservation programs, initial site evaluations could result in the protection of more stream miles if buffers are designed with respect to current and future incoming pollutant concentrations.

MATERIALS AND METHODS

Comparisons of the two buffer sections are presented with respect to landscape position, width, hydrology (groundwater elevations, direction, and velocity), groundwater NO₃⁻-N concentrations entering and leaving, soil biogeochemistry (soil redox, DOC, cations), groundwater mixing/dilution, and NO₃⁻-N mass removal estimates. The following sections highlight the methods used to collect data at the site and how the two buffer sections were analyzed. Please refer to the MATERIALS and METHODS sections in Chapters 2 and 3 for more detailed information on equipment installation, sampling procedures, and data analyses for each of the buffer sections.

Site Description

The research buffers were designed and installed in 1999 by members of the North Carolina Division of Soil and Water, who oversee the CREP program, prior to initiation of this study (Figure 4. 1). The total length of the combined buffer sections was approximately 304 m (1000 ft). Section 1 (discussed in Chapter 3) had an average width of 60 m (197 ft), while Section 2 (discussed in Chapter 2) had an average width of 43 m (141 ft). Vegetation and soils within Sections 1 and 2 were relatively similar. However, Zone 2 of Section 2 had poor tree survival and higher quantities of herbaceous wetland vegetation than in Zone 2 of Section 1.

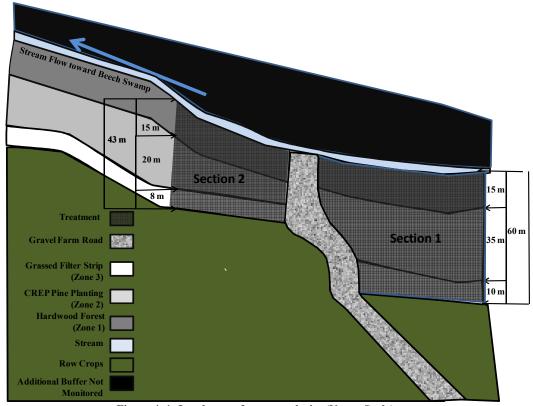


Figure 4. 1: Land cover for research site (Not to Scale).

Instrumentation Installation

Surficial groundwater monitoring well nests (12 in Section 1 and 9 in Section 2) were installed in three transects 15 m (50 ft) apart within each section in December 2004 (Figure 4. 2). Each well nest contained a shallow and deep well with maximum depths ranging between 1.5 to 2.3 m (5 to 7 ft) and 2.7 to 3.6 m (9 to 12 ft) respectively and screened 0.6 m (2ft) above the maximum depth. Section 1 had an upslope additional well nest in each transect to account for its wider width. In June 2008, four deeper aquifer wells were installed at the site to further monitor deep groundwater to assess any mixing with the surficial groundwater in both Section 1 and

Section 2. Three water table elevation data loggers (Infinities USA, Inc., Port Orange, FL) with built in pressure sensors were installed in the center transect of each section next to each water quality well nest. Locations of well nests and the water table elevation data loggers can be found in Table 4. 1 and Table 4. 2 (distances are relative to the stream edge).

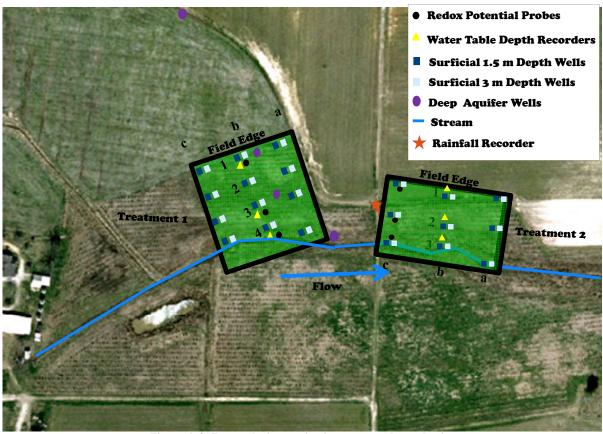


Figure 4. 2: Research site monitoring setup at the study site.

Table 4. 1: Transect layout from Zone 3 to Zone 1 in Section 1. Distances are relative to the stream.

Zone 3 (Grassed Filter Strip)	Zone 2 (Upper Mid Buffer)	Zone 2 (Lower Mid Buffer)	Zone 1 (Stream Edge)	Transect Spacing
55-60 m	45-50 m	25-30 m	1.5 m	15 m
(180-197 ft)	(148-164 ft)	(82- 98 ft)	(5 ft)	(50 ft)

Table 4. 2: Transect layout from Zone 3 to Zone 1 in Section 2. Distances are relative to the stream.

Zone 3	Zone 2	Zone 1	Transect Spacing
(Grassed Filter Strip)	(Mid Buffer)	(Stream Edge)	
40-45 m	25-30 m	1.5 m	15 m
(131-148 ft)	(82- 98 ft)	(5 ft)	(50 ft)

Additionally, redox potential probes were installed next to each of the surficial groundwater monitoring wells in the center transect of Section 1, and the upstream transect of Section 2 (due to the excessive wetness of the center transect). The probes were placed at the same depths as the surficial shallow (1.5-2.3 m) and deep (2.7-3.6 m) water quality wells, so Section 1 had an additional redox monitoring location upslope since it was wider.

Monitoring and Data Collection

Monthly manual water table profiles across the buffer were completed from August 2008 to May 2010 by measuring depth in the surficial groundwater monitoring wells. The water table elevation data loggers were used to monitor water table elevations hourly from November 2005 to May 2010. Soil samples collected at the time of well installation were analyzed for particle size to determine soil hydraulic conductivity at these depths using SPAW 6.0 (NRCS, Pullman, WA). Hydrology and soil data were used for determining groundwater flow direction and residence time within each buffer section.

Groundwater samples were collected monthly from the surficial and deep aquifer wells beginning in January 2005 and August 2008 respectively. All water quality samples from the surficial and deeper aquifer wells were analyzed for nitrate (NO₃-N), chloride (Cl⁻), ortho-

phosphate (O-PO₄), and ammonium (NH₄-N) monthly, while dissolved organic carbon (DOC) was analyzed from bimonthly samples. Monthly sodium (Na⁺) and calcium (Ca²⁺) analyses began in July 2008. Redox measurements were recorded monthly starting in May of 2006.

Data Analysis

Water Table Analysis

The water table elevations were determined using the site topographic survey, continuously monitored water table elevation data, and monthly manual water table depth measurements. Microsoft Excel 2007 was used for data analysis and to determine the average water table elevation and the average water table difference between buffer zones using the following equation.

$$AD = \frac{1}{n} \sum_{i=1}^{n} (WTE_{upslope_i} - WTE_{downslope_i})$$
(4. 1)

Where,

AD = Average Difference (m)

 $WTE_{upslopei}\!\!=\!Water\ table\ elevation\ at\ upslope\ location\ for\ day\ i.$

 $WTE_{downslopei} = Water \ table \ elevation \ at \ downslope \ location \ for \ day \ i.$

n =Number of daily water table readings collected during study period

The USACE minimum jurisdictional wetland hydrology criteria, in association with continuous water table data, were used to determine the buffers status. The percentage of

consecutive days during the growing season (March 20th thru November 6th) that the water table was within 30 cm of the soil surface at the three water table monitoring locations was computed to test for jurisdictional status.

Groundwater Flow Direction Modeling

The hydraulic data analysis and groundwater flow direction model were completed using spreadsheet methods developed by Devlin (2003) along with Golden Surfer 7 mapping software (Golden, CO). Particle size analysis was used to estimate hydraulic conductivities through the buffer sections for determination of residence times and flow velocities using Darcy's Law.

Nitrate-Nitrogen Removal Efficiency and Nitrate/Chloride Ratios

Groundwater NO₃-N removal efficiency was calculated between each zone and transect as well as the overall area of the buffer at the research site using the following equation.

$$\% Removal = \frac{C_I - C_E}{C_I} * 100\%$$

$$(4.2)$$

Where.

% Removal = percentage of groundwater NO₃-N removed through the buffer (%)

 C_I = Concentration (mg/L) of the groundwater entering the buffer

 C_E = Concentration (mg/L) of the groundwater discharging to the stream

In an attempt to define whether denitrification or dilution was the cause for groundwater NO₃⁻-N concentration reductions observed in the buffer, NO₃⁻-N to Cl⁻ ratios were also

monitored in the groundwater. Lowrance (1992) along with other researchers have used Cl⁻ a conservative ion (i.e. having minimal plant uptake and not undergoing microbial transformations in soil), to provide evidence that denitrification and not dilution was responsible for observed groundwater NO₃⁻-N losses. Essentially dilution was indicated if NO₃⁻-N decreased and ratios remained constant through the buffer towards the stream, while removal by denitrification or other biological activity was supported if NO₃⁻-N and ratios decreased through the buffer.

Measured Nitrate-Nitrogen Mass Removal

The groundwater NO₃⁻-N loads were estimated to evaluate the change and/or transformations of groundwater NO₃⁻-N from the field edge to the stream within the buffer. Monthly NO₃⁻-N load was calculated using hydraulic conductivities estimated from soil data, hydraulic gradients estimated from hourly monitored water table elevation data, and NO₃⁻-N concentrations from water quality samples from each well.

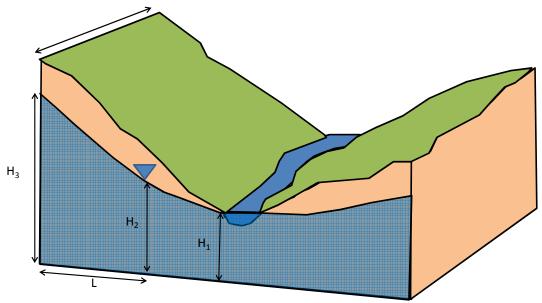


Figure 4. 3: Water table visual for reference for Equation 4.3.

$$Load_{\text{NO3-N}} = \frac{2.4X10^{-2} * (H_{Zone3}^2 - H_{Zone2}^2) * K * T * W * C}{2 * L}$$
(4. 3)

Where,

Load $_{NO3-N}$ = Groundwater NO_3 -N flux for each month (kg N)

H = Level of groundwater elevation above datum at position i (m)

 K_s = Hydraulic conductivity at well location (m/hr)

T = Days within each month conversion (days)

C = Influent concentration (mg/L)

W = Length of the buffer (m)

L = Distance between each groundwater well (m)

Statistical Analysis

A statistical analysis was completed to define significant differences in NO_3 -N concentrations throughout the buffer treatment system using SAS PROC MIXED ® (SAS Institute, Cary, NC). A log transformation was required to normalize the groundwater NO_3 -N concentrations and the fixed effect was depth.

Redox readings, Cl⁻, NO₃⁻-N/Cl⁻ ratios, Na⁺, and Ca²⁺ concentrations were considered individual response variables and evaluated with the same procedure as NO₃⁻-N concentrations. Evaluations between the buffer sections and the deeper aquifer water quality signatures were completed using a mean separation SAS T-test with NO₃⁻-N, Cl⁻, NO₃⁻-N /Cl⁻, Na⁺, and Ca²⁺ concentrations being the individual response variables and the class variable being the depth and well position (SAS PROC MIXED ®, Cary, NC).

RESULTS AND DISCUSSION

Overall Summary of Results

NO₃⁻-N removal and factors that may have influenced that removal are summarized in Table 4. 3 for both buffer sections. The greatest differences between the two sections appeared to be in groundwater NO₃⁻-N concentrations entering the buffer and in contouring. Section 2 appeared to be a wetter buffer section overall, and received high concentrations of NO₃⁻-N laden groundwater compared to Section 1. Results also indicated that highly concentrated NO₃⁻-N

laden groundwater moved more slowly through Section 2 than through the wider buffer section, Section 1. Variations of components that may enhance denitrification between the two buffer sections were investigated to develop recommendations as to how to account for these differences in buffer designs prior to installation. Results from this analysis will be discussed in detail throughout the following sections.

Table 4. 3: Overall comparisons of Section 1 and Section 2				
Section		Section 1	Section 2	
Depth	1.5 m	3 m	1.5 m	3 m
Width		55-60 m	40-	45 m
Mean Nitrate Entering	4.5 mg/L	2.9 mg/L	12.9 mg/L	12.8 mg/L
Mean Nitrate Leaving	1.7 mg/L	2.5 mg/L	1.4 mg/L	6.0 mg/L
Nitrate Reduction Efficiency	63%	15%	89%	54%
Minimum Wetland Hydrology Criteria Met		in Zones 3 and 1 of 5 years in Zone 2	Present 4 of 5	years in Zone 1 years in Zone 2 in Zone 3
Meets Jurisdictional Wetland Criteria	Abso	ent in all zones	Present	in Zone 2
Field Edge Average Elevation (relative to 30 m Benchmark)		30.1 m	28	.8 m
Groundwater Gradients	0.00	3 – 0.036 m/m	0.003 - 0	0.010 m/m
Average Groundwater Velocity	1.6 cm/day	3.0 cm/day	1.3 cm/day	2.8 cm/day
Median Residence Time	11 years	8 years	7 years	4 years
Mean Redox	Average close	e or below 200 mV at all locations	Average close or below	v 200 mV at all locations
Mean DOC	2.9 - 12.2 mg/L		2.8 - 14.5 mg/L	
Nitrate/Chloride Ratios Reduction Efficiency	74%	36%	84%	34%
Measured Nitrate Removed per year (soil layer at monitored depth)	10 kgN year ⁻¹		225 kgN year ⁻¹	
Measured Nitrate Removed per year over area (soil layer at monitored depth)	0.002	6 kgN year ⁻¹ m ⁻²	0.06 kgN	N year-1m-2

Overall Groundwater Quality NO₃-N Results

Mean groundwater NO_3 -N concentrations entering the field edge of Section 1 and 2 at both depths were significantly different (α =0.05). Groundwater NO_3 -N concentrations entering Section 2 were approximately 3 times higher than concentrations entering Section 1 (Figure 4. 4 and Figure 4. 5). Additionally the mean groundwater NO_3 -N concentrations at the 1.5 m depth entering the stream from Sections 1 and 2 were not significantly different (α =0.05).

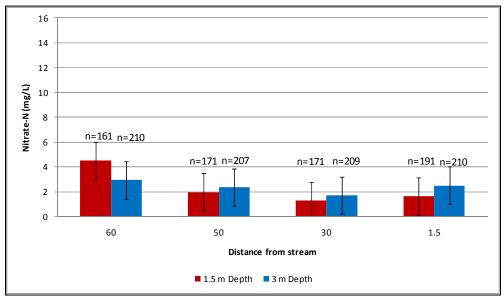


Figure 4. 4: Section 1 overall mean groundwater NO_3 -N concentrations at the 1.5 m and 3 m depths ($n_{1.5m}$ =694 and n_{3m} = 836 water quality samples). Note – error bars represent standard error.

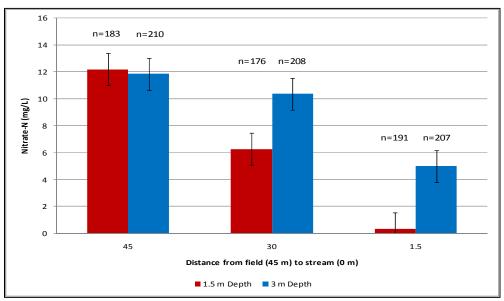


Figure 4. 5: Section 2 overall mean groundwater NO_3 -N concentrations at the 1.5 m and 3 m depths ($n_{1.5m}$ =550 and n_{3m} = 625 water quality samples). Note – error bars represent standard error.

Statistically, groundwater NO₃⁻-N at the 1.5 m depth in Section 1 and the 1.5 m and 3 m depths in Section 2 were significantly reduced through the buffer (α=0.05). The percent NO₃⁻-N reductions observed in each buffer section were related to incoming groundwater NO₃⁻-N concentrations (Table 4. 3). Since the groundwater NO₃⁻-N concentrations entering Section 1 were low, the observed percent NO₃⁻-N reductions were also lower than in Section 2. The mean groundwater NO₃⁻-N concentrations in Section 1 at the 1.5 m depth in Zone 3 and Zone 1 were 4.5 and 1.7 mg/l respectively (63% reduction). Mean groundwater NO₃⁻-N concentrations at the 1.5 m depth in Section 2 in Zone 3 and Zone 1 were 12.9 and 1.4 mg/l respectively (89% reduction). Of note are the similar Zone 1 concentrations in each section, which may imply some sort of biogeochemical limitation for NO₃⁻-N reduction as approaching the stream. Mean groundwater NO₃⁻-N concentrations in Zone 3 to Zone 1 in the 3 m depth groundwater in Section

1 decreased from 2.9 to 2.5 mg/l respectively (15% reduction), while NO₃-N concentrations in the same zones in Section 2 decreased from 12.8 and 6.0 mg/l respectively (54% reduction).

Significant differences in NO₃⁻-N concentrations at the field edge of both buffers made it difficult to make performance comparisons with respect to the widths. However, the other factors such as landscape setting (i.e. position of each section with respect to the stream and upland source), hydrology (i.e. groundwater flow and direction), and biogeochemistry of the buffer soils were evaluated to access factors that may have influenced entering groundwater NO₃⁻-N concentrations and groundwater NO₃⁻-N reductions through buffer sections.

Groundwater Hydrology

Riparian Buffer Relative Wetness

The water table was closer to the soil surface in Section 2 on average (Figure 4. 6 and Figure 4. 7). Average water table distances from the soil surface were approximately 0.25 m closer in Zone 3 in Section 2 compared to Section 1, while Zone 2 and 1 in Section 1 and 2 had similar average water table depths (Table 4. 4).

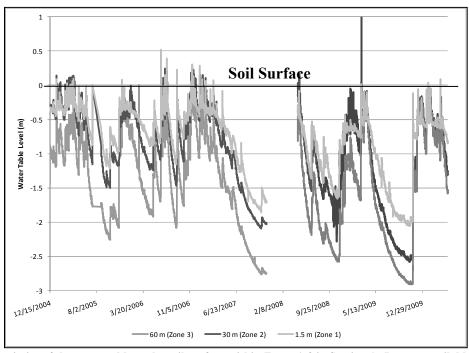


Figure 4.6: Proximity of the water table to the soil surface within Zones 1-3 in Section 1. Data unavailable from January 2005 to April 2008 due to equipment malfunction.

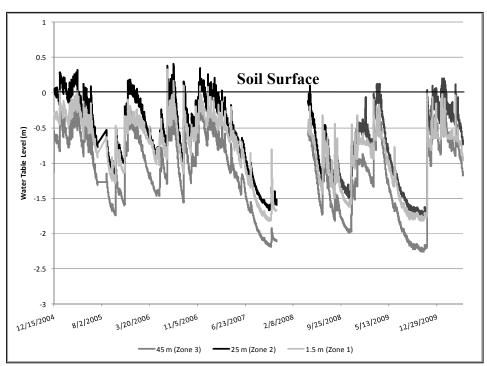


Figure 4. 7: Proximity of the water table to the soil surface within Zones 1-3 in Section 2. Data unavailable from November 20007 to April 2008 due to equipment malfunction.

Table 4. 4: a.) Average annual water table depths in Section 1. b.) Average annual water table depths in Section 2. Note data was unavailable from November 2007 to April 2008 due to equipment malfunction.

<u>a.)</u>

••)	1		1
Year	Zone 3 (m)	Zone 2 (m)	Zone 1 (m)
2005	1.09	0.61	0.51
2006	1.06	0.61	0.51
2007	1.69	1.17	0.99
2008	1.75	1.19	1.03
2009	1.70	1.44	1.16
Average (m)	1.44	0.99	0.83

b.)

Year	Zone 3 (m)	Zone 2 (m)	Zone 1 (m)
2005	1.16	0.69	0.57
2006	0.86	0.73	0.58
2007	1.37	1.24	1.04
2008	1.39	1.29	1.10
2009	1.40	1.32	1.16
Average (m)	1.16	1.03	0.88

The water tables levels became lower beginning in 2007 in both Sections 1 and 2, because North Carolina experienced a major drought during 2007 and 2008 (NCSCO, 2010). Despite this drought, water table levels on average were within 1.5 m (5 ft) of the soil surface each year in Zone 2 (30 m from the stream) and Zone 1 (1.5 m from the stream) of Section 1, and in all zones in Section 2. The Zone 2 monitoring location (30 m from the stream) to the stream edge of Section 1 and entire Section 2 were approximately the same width, so the similarities between the water tables relative to the soil surface of these zones were not surprising.

Riparian areas that have water tables near the soil surface for extended durations can often be classified as riparian wetlands. Wetlands, in general, have been shown to be effective sinks of NO₃⁻-N (Peterjohn *et al.*, 1984; Humenik et. al, 1999; Koskiaho et. al, 2002). A wetland hydrology assessment was completed on each zone (Zone 3-grassed filter strip, Zone 2-mid buffer, and Zone-1 stream edge) at the monitoring locations of the buffer sections to determine which portions of these buffers could be considered riparian wetlands, in order to assess the potential of these buffers to remove groundwater NO₃⁻-N.

Minimum jurisdictional wetland hydrology is defined as the water table being within 30 cm of the soil surface consecutively more than 5% (11 days) of the growing season (March 20th thru November 6th for Halifax County, NC) in 50% of the years evaluated (USACE, 1987). Section 1 did not meet the criteria because Zone 2 only met jurisdictional wetland hydrology in one out of five years (Table 4. 5). Section 2 met the jurisdictional wetland hydrology criteria in Zone 2 in four out of five years and Zone 1 was close, as it met jurisdictional wetland hydrology

in two out of five years (Table 4. 5). This was not surprising, as Zone 2 displayed characteristics of a riparian floodplain marsh, as the soil surface was often wet, planted pine tree survival was low, and herbaceous wetland vegetation was present (Figure 4. 8 and Figure 4. 9). These results suggested that Section 2 was overall hydrologically better suited for denitrification since the system was wetter more frequently and for longer periods of time, supporting the high groundwater NO₃⁻-N removal rates observed.

Table 4. 5: Maximum consecutive days water table was within 30 cm of the soil surface during growing season (March 20th thru November 6th). Highlighted cells are years that wetland hydrology was present at monitored zones. Data was

missing in July through August of 2005 and March through April 2008. Section 1 Section 2 Zone 2 Zone 3 Zone 2 Zone 1 Zone 3 Zone 1 2005 (days) 2006 (days) 2007 (days) 2008 (days) 2009 (days)

Figure 4. 8: Vegetation in Section 1 Zones 1 and 2 (higher pine tree survival).

Figure 4. 9: Vegetation in Section 2 Zones 1 and 2 (lower pine tree survival and more herbaceous wetland plants present).

Despite the wetter conditions observed in Section 2, the area was not mapped as a hydric area on the GIS hydric map (NRCS, 2010; NCSU Library Geodata Server, 2010), while areas in Section 1 were indicated as partially hydric locations. Inconsistencies between the GIS hydric map and site evaluations further exhibit the critical need for site evaluations to determine

accurate buffer placement and dimensions prior to buffer installation on these hydrologically sensitive sites (Figure 4. 10).

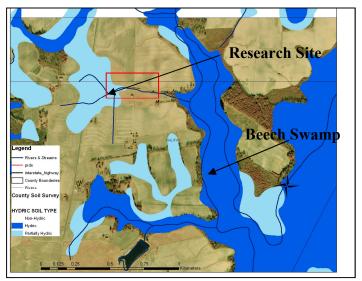


Figure 4. 10: GIS hydric soil map for Halifax County (NRCS, 2010 and NSCU Library Geodata server, 2010).

Groundwater Gradients

Buffer slope and elevation influenced the differences in water table depth and wetland hydrology between the two buffer sections. Figure 4. 10 shows the ground elevation decreased monotonically with a slope of 1.67% through Section 1, while Figure 4. 12 shows that the ground elevation in Section 2 decreased substantially to a 4% slope between Zones 3 to 2 and flattened out with a 0.3% slope between Zones 2 to 1. The slope variations in Section 2, at a lower surface elevation relative to Section 1, resulted in ground surface elevation being closer to the water table.

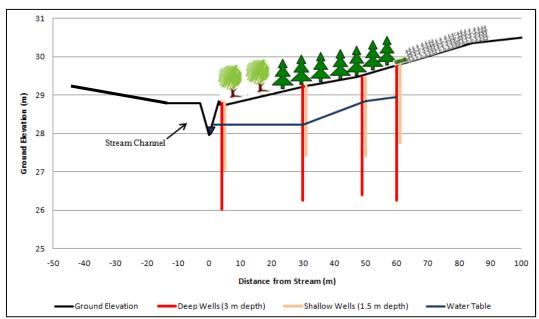


Figure 4. 11: Center transect cross section of Section 1 and surficial monitoring wells.

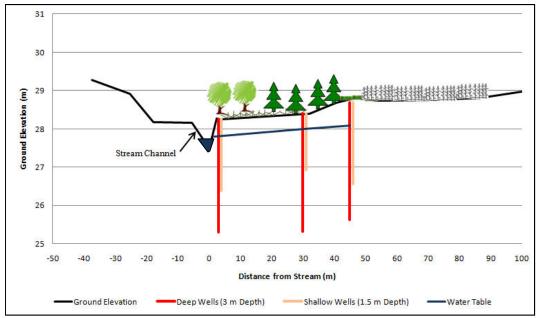


Figure 4. 12: Downstream transect cross section of Section 2 and surficial monitoring wells.

Water table elevations and gradients were evaluated to investigate the general groundwater movement from Zone 3 to Zone 1 in Sections 1 and 2. Average water table elevations were higher in Section 1 than in Section 2 during wetter years, while during dryer years the water table elevations were much more similar (Figure 4. 13 and Figure 4. 14). Lower water table elevations in Section 2 indicated local groundwater flow downstream of the buffer. During 2006, a considerably wet year at the site, the water table elevations were highest during the growing season, while during 2009 water table elevations began to decrease in the spring and continued into the summer and fall seasons in both buffer sections. During July 2006 the water table elevation had an average of approximately 30.5 m across all zones, while in July 2009 water tables were approximately 2 m lower (28.5 m) in Section 1. The water table elevation was approximately 29.1 m in Section 2 in July 2006, while in July 2009 the water tables were approximately 1 m lower (28.3 m). These results indicate that the water table elevations in Section 2 were not as dramatically influenced by dry periods as in Section 1.

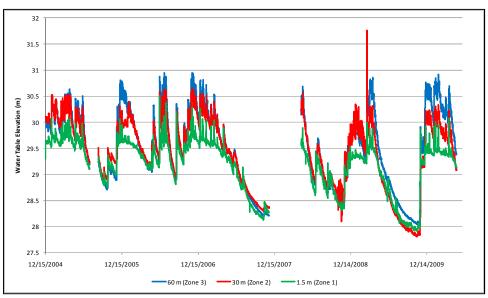


Figure 4. 13: Water table elevations for each zone of Section 1 during the study period (December 2004-May 2010).

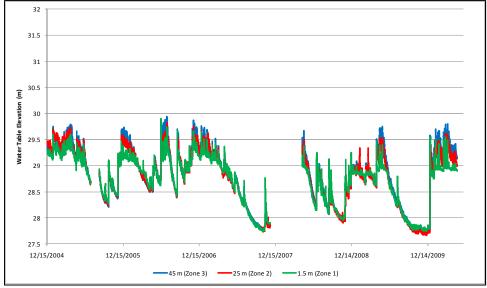


Figure 4. 14: Water table elevations for each zone of Section 2 during the study period (December 2004-May 2010).

The average difference in water table elevations was smaller in Section 2 from Zones 2 to 1 compared to Section 1, while Zones 2 to 3 were similar in Section 2 compared to Section 1. The average water table difference from the field edge to the stream was 0.2 m lower in Section

2, suggesting smaller flow gradients between zones through the buffer. Possible causes for these differences could be attributed to Sections 2's lower topographic placement and flatness. Negative groundwater elevation differences between Zones 3 and 2 in Section 1 were during the drought as discussed in the last section. During this period groundwater appeared to flow to downstream buffer areas and Beech Swamp, both of which were at lower elevations and therefore had lower water table elevations.

Table 4. 6: Average yearly groundwater elevation differences between zones in Section 1. Note data was unavailable from November 2007 to April 2008 due to equipment malfunction.

November 2007 to April 2006 due to equipment manufaction.					
	Average Difference (m)	Average Difference (m)	Average Difference (m)		
Year	(Zone 3 – Zone 2)	(Zone 2 – Zone 1)	(Zone 3 – Zone 1)		
2005	0.03	0.31	0.34		
2006	0.06	0.30	0.37		
2007	-0.01	0.23	0.22		
2008	-0.06	0.24	0.19		
2009	0.25	0.13	0.38		
Average	0.07	0.25	0.31		
(m)					

Table 4. 7: Average yearly groundwater elevation differences between zones in Section 2. Note data was unavailable from November 2007 to April 2008 due to equipment malfunction.

Year	Average Difference (m) (Zone 3 – Zone 2)	Average Difference (m) (Zone 2 – Zone 1)	Average Difference (m) (Zone 3 – Zone 1)
2005	0.01	0.09	0.1
2006	0.04	0.05	0.09
2007	0.03	0.00	0.04
2008	0.06	0.01	0.07
2009	0.08	0.04	0.12
Average (m)	0.04	0.04	0.08

Groundwater contours indicated Section 2 as a major discharge area. Furthermore, the overall site map and groundwater contour maps clearly show that the downstream Section 2 had a larger groundwater contributing area from the adjacent field than Section 1, as majority of the groundwater was flowing toward the lower topographic location (Section 2), regardless of season (Figure 4. 15 and Figure 4. 17). The implications of this larger contributing groundwater area was that more farmland was draining towards Section 2 than Section 1. This resulted in groundwater with high NO₃⁻-N concentrations being routed to Section 2, as was observed in the field edge groundwater samples.

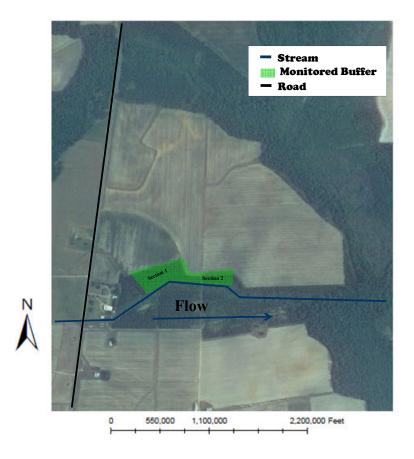


Figure 4. 15: Overall site map.

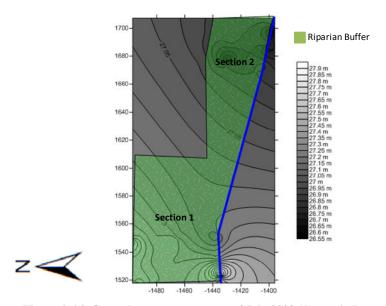


Figure 4. 16: Groundwater contour map of July 2009 (dry period).

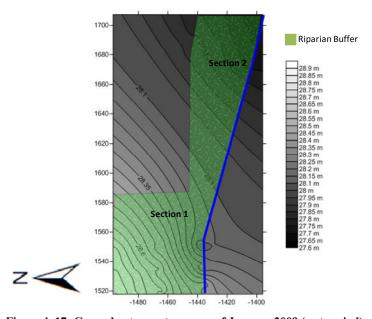


Figure 4. 17: Groundwater contour map of January 2009 (wet period).

The hydraulic gradient was modeled monthly starting in June 2008 using monthly piezometric readings from the water quality wells, a spreadsheet analysis designed by Devlin (2003), and mapping software. Gradients represented water table elevation differences over horizontal distance through the buffer sections. Section 1 had higher gradients than Section 2; gradients varied between 0.003-0.036 m/m in Section 1 and 0.003-0.010 m/m in Section 2 depending on month. Lower gradients in Section 2 generally caused water to move slower through the buffer, increasing opportunities for NO₃-N laden groundwater to reach denitrifying sites. Therefore, Section 1, although a wider buffer section, appeared to have the potential for groundwater to move faster through the system than Section 2, the narrower buffer section.

This was verified when groundwater seepage velocities were estimated for the buffers. The larger gradients in Section 1 allowed groundwater velocities to be higher at both the 1.5 m and 3 m depths. K_s in Section 1 ranged from 1.94 cm/hr to 3.42 cm/hr at the 1.5 m depth and 3.06 cm/hr to 7.21 cm/hr at the 3 m depth, while K_s ranged in Section 2 from 3.4 cm/hr to 4.2 cm/hr at the 1.5 m depth and 5.1 cm/hr to 7.9 cm/hr at the 3 m depth. Groundwater velocity averaged 1.6 cm d^{-1} and 3.0 cm d^{-1} in Section 1 at the 1.5 m and 3 m depths respectively. Groundwater velocities averaged 1.3 cm d^{-1} and 2.8 cm d^{-1} in Section 2 at the 1.5 m and 3 m depths. The velocities were higher at the deeper depths due to a decrease in effective porosity.

Median travel times were similar between the sections even though Section 1 was wider. Section 1 had travel times of 11 years at the 1.5 m depth and 8 years at the 3 m depth over an average length of 60 m. The median travel times of Section 2 were 7 and 4 years at the 1.5 m

and 3 m depths, respectively. These similar values were due to higher groundwater gradients allowing groundwater to move faster in the wider Section 1, compared to the more narrow Section 2. Additionally groundwater spent more time moving from Zone 2 to Zone 1 in Section 2 than found in Section 1 at the 3 m depth, which is the area denitrification proceeds at its highest rates (Table 4. 8). Due to these difference NO₃-N laden groundwater had more time per unit area in Section 2 to find denitrifying sites compared to Section 1.

Table 4. 8: Travel times using the Devlin (2003) and Dupuit-Forchheimer methods between each monitoring location in the buffer zones for Sections 1 and 2 based on groundwater angle.

Section	Sect	ion 1	Section 2		
	1.5 m depth	3 m Depth	1.5 m depth	3 m Depth	
Travel time of groundwater from Zone 3 to 2 (years)	0.5 to 7	0.3 to 4.5	0.3 to 12	0.25 to 8	
Travel time of groundwater from Zone 2 to 1 (years)	0.75 to 9	0.3 to 6.5	0.7 to 10	0.2 to 7	
Travel time of groundwater from Zone 3 to 1 (years)	1.25 to 16	0.6 to 11	1.0 to 22	0.45 to 13	

Redox Potential and Dissolved Organic Carbon

Denitrification occurs in soils with low oxidation/reduction (redox) potentials and high dissolved organic carbon (DOC) concentrations. Both sections had low average redox readings and suitable DOC concentrations for denitrification, as described below.

Mean redox values for the study period were predominately below 200 mV in Section 1 and Section 2 indicating soil conditions favorable for denitrification for most periods (Patrick,

1960; Bailey and Beauchamp, 1973, Fielder *et. al*, 2007) and therefore potential for NO₃⁻-N reductions in both sections was also high (Figure 4. 18 and Figure 4. 19).

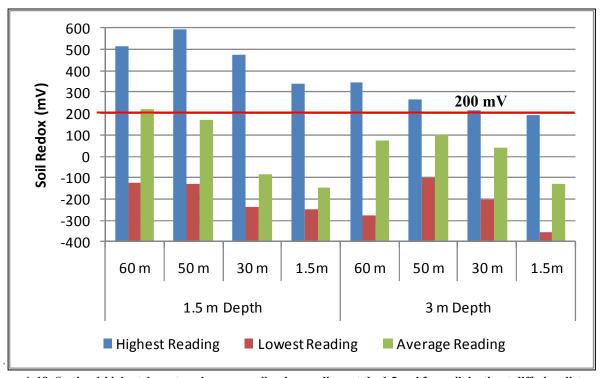


Figure 4. 18: Section 1 highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at differing distances relative to the stream from June 2005 to April 2010 (n=60 total samples from each location).

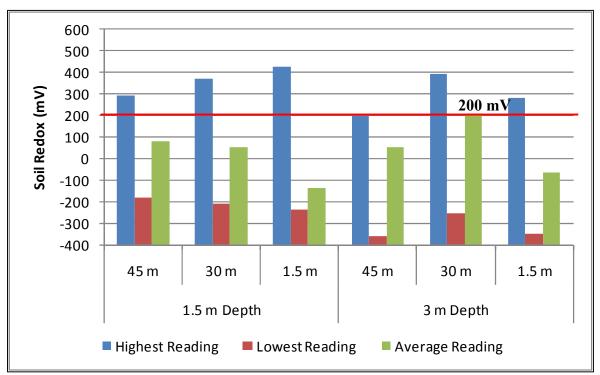


Figure 4. 19: Section 2 highest, lowest, and average soil redox readings at the 1.5 and 3 m soil depths at differing distances relative to the stream from June 2005 to April 2010 (n=60 total samples from each location).

Redox readings were comparable in Sections 1 and 2. Zone 1 (1.5 m) at both depths did not show significant differences in mean redox readings between the two sections (α =0.05). The 1.5 m depth had a significant difference in mean redox readings at the field edge (60 m for Section 1 and 45 m for Section 2 from the stream) (α =0.05), while Section 2 had lower mean redox readings because the water table was nearer to the soil surface. Section 1 had significantly lower mean redox values at both the 1.5 m and 3 m depths at the lower Zone 2 monitoring location (30 m from the stream) of Section 1 compared to Zone 2 in Section 2, despite the wetter conditions observed in Section 2. The cause for these differences remains unexplained.

Regardless of these differences, redox readings were low indicating the soil was not limited for denitrification to proceed if other required conditions were met.

A DOC assessment was used to evaluate whether carbon availability in the groundwater differed between Sections 1 and 2 (Figure 4. 20 -Figure 4. 23). Mean DOC concentrations were found to not be statistically different between the two buffer sections in all zones. DOC concentrations were found to vary seasonally through both buffer sections with both sections showing the highest concentrations during the summer and winter seasons.

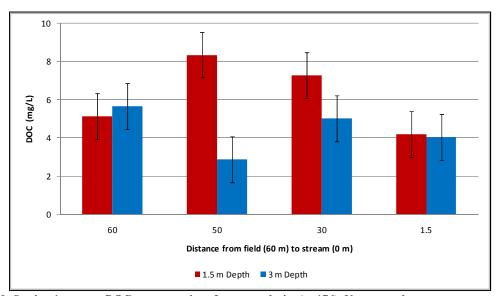


Figure 4. 20: Section 1 average DOC concentrations for research site (n=176). Note error bars represent standard error and outliers from suspected well contamination by dead animal or plant material were removed.

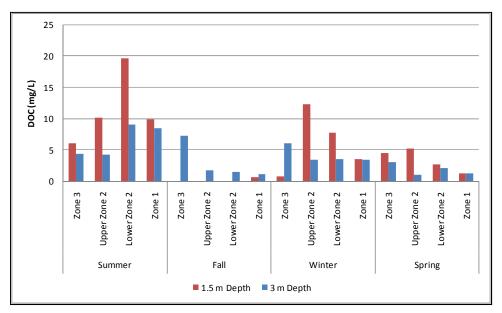


Figure 4. 21: Section 1 seasonal evaluation of DOC (n=176) from March 2008-May 2010. 1.5 m depth results for Zone 3 and Zone 2 for fall were unattainable due to low water table elevations at the research site at the time of sampling. Note outliers removed.

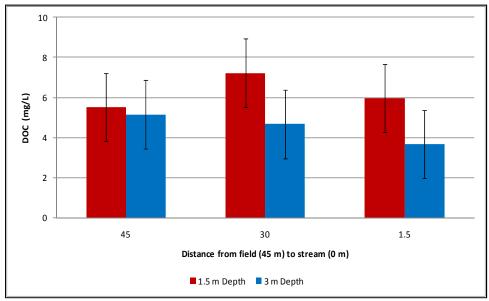


Figure 4. 22: Section 2 average DOC concentrations for research site (n=187). Note: error bars represent standard error.

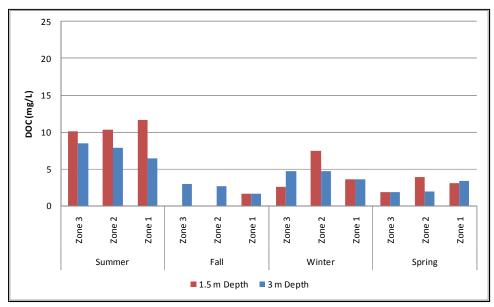


Figure 4. 23: Section 2 seasonal evaluation of DOC (n=187) from March 2008-May 2010. 1.5 m and 3 m results for Zone 3 and Zone 2 for fall were unattainable due to low water table elevations at the research site at the time of sampling.

Both sections had high DOC concentrations, higher than 4-8 mg/L, during the warm seasons, which was sufficient to support denitrification (Knies, 2009; Spruill *et.* al, 1997). DOC concentrations in the 1.5 m depths were higher than in 3 m depths in both sections at most locations. These differences may have caused the higher NO₃-N concentrations at the 3 m depth.

Overall, both sections had all the needed components for denitrification to proceed at high rates, including high water tables, low redox readings, and suitable DOC concentrations. The one exception was incoming groundwater NO₃⁻-N entering Section 1 that appeared to limit denitrification of that buffer section.

Denitrification / Dilution Assessment

Soil borings indicated a restrictive layer at about 4.6 m (15 ft) below the ground surface that likely separated the surficial and the deeper aquifers. However, since restrictive layers can be non-homogeneous the effect of dilution was examined. Nitrate-N/Cl⁻ ratios were monitored in the groundwater as discussed in Chapters 2 and 3.

Section 1 had higher percent differences in mean NO₃⁻-N/Cl⁻ ratios from Zone 3 to Zone 1 than NO₃⁻-N percent differences, while Section 2 had similar percent differences in mean NO₃⁻-N/Cl⁻ ratios from Zone 3 to Zone 1 as mean NO₃⁻-N percent differences (Table 4. 3). Mean NO₃⁻-N/Cl⁻ ratios in Section 1 from Zone 3 to Zone 1 had a 74% reduction at the 1.5 m depth and a 36% reduction at the 3 m depth. Mean NO₃⁻-N/Cl⁻ ratios in Section 2 decreased by 84% at the 1.5 m depth and 34% at the 3 m depth. Mean groundwater NO₃⁻-N concentration percent reductions along with similar mean NO₃⁻-N/Cl⁻ ratio percent reductions support denitrification as the primary reduction mechanism for NO₃⁻-N reductions in both buffer sections.

Additional evidence of minimum groundwater mixing was completed through a groundwater quality investigation of the surficial and deeper aquifers to identify mixing potential between the two layers. The chemical analysis of the waters indicated significant differences between the surficial and deeper aquifers. Water in the deeper aquifer (monitored 8-11 m deep) was significantly lower in Cl⁻ and higher in Ca²⁺ than in the surficial aquifer (1.5 and 3 m deep) in Section 1 and Section 2 ($\alpha = 0.05$). Therefore, the low Cl⁻ concentrations further support that biological activity, presumably denitrification, was the predominant reducing mechanism since

NO₃-N/Cl⁻ decreased while Cl⁻ concentrations remained relatively constant. These differences in groundwater signatures provided additional strong evidence that mixing was unlikely between waters in the deeper and surficial aquifers.

However, groundwater within 1.5 m and 3 m of the surface in each section appeared to have the same chemistry, because Cl⁻, Na⁺, and Ca²⁺ concentrations were similar particularly in Zone 1. The 3 m depths in Sections 1 and 2 were found to have sandier soils that could have allowed for mixing with both the 1.5 m depth and the stream. Stream water quality results indicated an increase in mean NO₃⁻-N concentrations from 1.2 mg/L upstream to 5.9 mg/L downstream. These concentrations were similar to groundwater NO₃⁻-N concentrations in Zone 1 in Section 1 (upstream) and Section 2 (downstream) at the 3 m depth. Therefore, mixing between the 1.5 m and 3 m depth groundwater and the stream appeared possible.

Groundwater quality data suggests that the groundwater NO₃⁻-N reductions through the buffer were presumably due to denitrification, and with some potential mixing of the shallow groundwater near the stream in Zone 1. Groundwater quality results, along with high water tables, low redox readings, and high DOC concentrations all supported the hypothesis that biological activity, presumably denitrification, was the primary mechanism for NO₃⁻-N reduction in both buffer sections. Differences in the NO₃⁻-N reduction performance between the two buffer sections were due to differences in groundwater entering Zone 3 of each section, delivering more highly concentrated NO₃⁻-N groundwater to Section 2 - the more downstream buffer section.

NO₃-N Removal Evaluation through Riparian System

Mean groundwater NO₃⁻-N concentrations, Darcy's Law, groundwater gradients, and porosity were used to estimate the overall NO₃⁻-N mass removal at the 90 cm depth soil layer and 240 cm depth soil layer (Table 4.9). NO₃⁻-N entering Zone 3 of Section 1 was estimated to be 17 kg N yr⁻¹ and 14 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. NO₃⁻-N leaving Section 1 and discharging into the stream was 4 kg N yr⁻¹ and 15 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. Groundwater NO₃⁻-N concentrations were elevated near the stream at the 3 m depth compared to upslope groundwater NO₃⁻-N concentrations in Section 1, thus resulting overall increases of NO₃⁻-N within the buffer. NO₃⁻-N entering Zone 3 of Section 2 was 80 kg N yr⁻¹ and 176 kg N yr⁻¹ for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. NO₃⁻-N leaving Section 2 and discharging into the stream was 5 kg N yr⁻¹ and 25 kg N yr⁻¹ for the 90 cm depth soil layer, respectively.

Table 4. 9: Potential NO₃-N removal per year for varying depths and zones of the studied riparian buffer section system.

Section	Depth (cm)	90 cm Soil Layer	240 cm Soil Layer	Total
1	Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kgN yr ⁻¹)	12	-2	10
	Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kgN yr ⁻¹ m ⁻²)	0.003	-0.0004	0.0026
2	Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kgN yr ⁻¹)	75	150	225
	Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kgN yr ⁻¹ m ⁻²)	0.02	0.04	0.06

The monitored depths in Section 1 was reducing groundwater NO₃⁻-N by 0.003 kg N yr⁻¹ m⁻² (76 %) for the 90 cm depth soil layer and no change in the 240 depth soil layer, while Section 2 was reducing groundwater NO₃⁻-N by 0.02 kg N yr⁻¹ m⁻² (94 %) and 0.04 kg N yr⁻¹ m⁻² (86%) for the 90 cm depth soil layer and 240 cm depth soil layer, respectively. Percent reductions were higher at the 1.5 m depth in Section 1 and the 1.5 m and 3 m depths in Section 2 compared to the percent reductions found in measured groundwater NO₃⁻-N concentration samples. These differences can be attributed to taking into account the hydraulic conductivity and gradient differences in the two buffer sections. Section 2 results were similar compared to results that Nelson *et al.* (1995) reported with removal rates of approximately 120 kg N ha⁻¹ yr⁻¹

 $(0.012 \text{ kg N m}^{-2} \text{ yr}^{-1})$. Lowrance *et al.* (1995) estimated removal rates similar to Section 1 ranging from 20 to 39 kg N ha⁻¹ yr⁻¹ (0.002 – 0.0039 kg N m⁻² yr⁻¹) in an analysis that included removal of NO₃⁻-N through all mechanisms, not only denitrification.

The mass of groundwater NO₃⁻-N leaving the system in Sections 1 and 2 were similar at the 1.5 m depths possibly indicating an irreducible concentration due to mineralization and nitrification that may contribute NO₃⁻-N to the system. Section 2 exhibited larger magnitudes of NO₃⁻-N reduction from Zone 3 to Zone 1 on a per area basis most likely due to having a larger groundwater contributing area from the adjacent field producing a larger mass of NO₃⁻-N entering the section. Most importantly, these results indicate that Section 2, although thinner than Section 1, was effectively reducing NO₃⁻-N concentrations through the system. Although Section 1 was a wider buffer, low NO₃⁻-N concentrations entering the section due to a smaller groundwater contributing area from the adjacent field relative to Section 2, most likely constrained the buffer from its maximum removal potential. Due to these limitations, Section 1 might have removed more NO₃⁻-N if higher NO₃⁻-N concentrations were entering the system. As such, it is likely that less width could have been used in the design for the buffer in Section 1, taking less farmland out of production, while allowing payments by NC CREP for this additional acreage to be used elsewhere at another site.

CONCLUSIONS

Discerning the exact buffer width for future installations must be determined dependent on the incoming groundwater NO₃⁻-N concentrations and research is still needed to determine these designs. Section 2 appeared to reduce groundwater NO₃⁻-N concentrations effectively even though it had a smaller width than Section 1, and appeared to be designed adequately to meet NO₃⁻-N reduction goals. Based on observed decreases in concentrations, the groundwater NO₃⁻-N treatment efficiency of both buffer sections appeared to be high even with low groundwater NO₃⁻-N concentrations entering Section 1. Most likely Section 1 had the potential to reduce groundwater NO₃⁻-N concentrations as high as entering Section 2, but due to limited NO₃⁻-N concentrations entering the system this evaluation could not be completed. Additionally, Section 1 appeared to be oversized relative to the groundwater NO₃⁻-N concentrations entering the buffer section.

Results from hydrology and water quality data supported denitrification as the predominant NO₃-N reduction mechanism in both sections. The relative wetness of Zone 2 and Zone 1 in both sections indicated the potential for denitrification was high. Furthermore, low redox readings and high DOC concentrations during the summer months indicated the buffer was not carbon limited. A confining layer at 4.6 m below the soil surface within the buffers indicated dilution was at most minimal. Dilution was further determined to be minimal as NO₃-N and NO₃-N/Cl⁻ ratios had similar decreases from Zone 3 to Zone 1 and the surficial and deeper aquifer water quality assessment found the water quality signatures to be significantly different

in both sections. Therefore, high water table elevations along with NO₃-N concentration reductions, redox readings, and DOC concentrations during warmer seasons all lead to ideal soil environments for denitrification.

The groundwater contributing areas entering the buffer sections from the adjacent field had an evident influence on the NO₃-N concentrations entering the two sections. Results indicate that the buffer section placed in the lower topographic location received groundwater from a larger contributing area from adjacent agricultural practices resulting in higher NO₃-N concentrations. Furthermore, Section 2 had smaller groundwater gradients resulting in groundwater moving slower through the buffer system and having more time to encounter denitrifying sites.

The overall estimated groundwater NO₃-N mass removal from hydrology and groundwater monitoring data was higher in Section 2 than Section 1. However, Section 1 was constrained from its maximum removal potential due to low NO₃-N concentrations entering the buffer.

Many buffer widths and placements are dependent on the landowner and the allowable buffer width supported by conservation programs, as found at this site. Therefore, installed buffer width is rarely a function of meeting NO₃⁻-N reduction goals for groundwater entering the buffer. During this study, the buffer section located at the lower elevation (Section 2) was receiving higher concentrations of groundwater NO₃⁻-N, while the wider buffer was receiving significantly lower NO₃⁻-N concentrations. One recommendation, based on findings of this

study, would be to place narrow buffers in areas having smaller groundwater contributing areas from agricultural practices, as concentrations of groundwater NO₃-N enter systems are likely lower.

All results further indicate the importance of site evaluations prior to buffer installations. To maximize the groundwater NO₃⁻-N removal impact of buffers enrolled in conservation programs, hydrologic and groundwater quality evaluations could be completed prior to land enrollment. Designing riparian buffers relative to groundwater contributing areas, available denitrification enhancing conditions (water table depths close to the soil surface, low redox readings, and available DOC), and entering groundwater NO₃⁻-N concentrations will improve NO₃⁻-N removal within the systems, while preserving valuable land for agricultural practices instead of unnecessarily taking it out of production. Although logistically challenging and initially expensive, buffers specifically designed to meet water quality goals, by taking into account these critical site attributes, will improve overall water quality leaving agricultural sites, while protecting sensitive streams and estuaries cost effectively.

REFERENCES

Angier, J.T. and G.W. McCarty. 2008. Variations in Base-Flow Nitrate Flux in a First-Order Stream and Riparian Zone. *J. American Water Sources Assoc.* 44(2): 367-380.

Bailey, L.D. and E.G. Beauchamp. 1973. Effects of Temperature on NO₃⁻ and NO₂⁻ Reduction, Nitrogenous Gas Productions, and Redox Potential in a Saturate Soil. *Can. J. Soil Sci.* 53(2): 213-218.

Böhlke, J.K., J.W. Harvey, and M.A. Voytek. 2004. Reach-Scale Isotope Tracer Experiment to Quantify Denitrification and Related Processes in a Nitrate-Rich Stream, Midcontinent United States. *Amer. Soc. Limn. Oceano.* 49(3): 821-838.

Clément, J.C., G. Pinay, and P. Marmonier. 2002. Seasonal Dynamics of Denitrification along Topohydrosequences in Three Different Riparian Areas. *J. Environ. Qual.* 31:1025-1037.

Devito, K.J., D. Fitzgerald, A.R. Hill, and R. Aravena. 2000. Nitrate Dynamics in Relation to Lithology and Hydrologic Flow Path in a River Riparian Zone. *J. Environ. Qual.* 29: 1075-1084.

Devlin, J.F. 2003. A Spreadsheet Method of Estimating Best-Fit Hydraulic Gradients Using Head Data from Multiple Wells. *Groundwater*. 41(3): 316-320.

Dukes, M.D. R.O. Evans, J.W. Gilliam, S.H. Kunickis. 2002. Effect of riparian buffer width and vegetation type on shallow groundwater quality in the Middle Coastal Plain of North Carolina. *Trans. of the ASAE*. 45(2):327-336.

Evans, R.O., K.L. Bass, M.R. Burchell, R.D. Hinson, R. Johnson, and M. Doxey. 2007. Management alternatives to enhance water quality and ecological function of channelized streams and drainage canals. *J. Soil and Water Conserv.* 62(4):308-320.

Fiedler, S., M.J. Vepraskas, J.L., and Richardson. 2007. Soil Redox Potential: Importance, Field Measurements, and Observations. *Advanc. Agron.* 94:1-54.

Gilliam, J.W. 1994. Riparian Wetlands and Water Qulaity. J. Environ. Qual. 23: 896-900.

Golden Software, 1999. Surfer 7. Golden Software, Inc, Golden, Colorado 80401-1866, USA.

Hefting, M. M., J. Clement, P. Bienkowski, D. Dowrick, C. Guenat, A. Butturini, S. Topa, G.Pinay and J. T. A. Verhoeven. 2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. *Ecol. Eng.* 24(5): 465-482.

Hill, A.R., K.J. Devito, S. Campagnolo, and K. Sanmugadas. 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. *Biogeochem.* 51: 193-223.

Humenik, F.J., A.A. Szogi, P.G. Hunt, S. Broome, and M. Rice. 1999. Wastewater Utilization: A Place for Managed Wetlands – Review-. A.A. J. of Ani. Sci. 12(4): 629-632.

Knies, S.V. 2009. Riparian Buffer Effectiveness at Removal of NO₃-N from Groundwater in the Middle Coastal Plain of North Carolina. M.S. Thesis. North Carolina State University: Raleigh, NC.

Korom, S.F. 1992. Natural Denitrification in Saturated Zone: A Review. Water Resour. Assoc. 28(6): 1657-1668.

Koskiaho, J., P. Ekholm, M. Raty, J. Riihimaki, and M. Puustinen. 2003. Retaining agricultural nutrients in constructed wetlands – experiences under boreal conditions. *Eco. Eng.* 20(1): 80-103.

Lowrance, R., G. Vellidis, and R.K. Hubbard. 1995. Wetlands and Aquatic Processes. J. Environ. Qual. 24: 808-815.

Lowrance, R.R. 1992. Groundwater Nitrate and Denitrification in a Coastal Plain Riparian Forest. *J. Environ. Qual.* 21: 401-405.

Maítre, V., A.C. Cosandey, A. Parriaux. And C. Guenat. 2005. A Methodology to Estimate the Denitrifying Capacity of a Riparian Wetland. *J. Environ. Qual.* 34:707-716.

Mayer, P.M., S.K. Reynolds, Jr., M.D. McCutchen, T.J. Canfield. 2007. Meta-Analysis of Nitrogen Removal in Riparian Buffers. *J. Environ.Qual.* 36(4): 1172-1180.

NC State Climate Office. 2010. NC Climate Retrieval and Observations Network Of the Southeast Database. Raleigh, NC: NC SCO. Available at: http://www.nc-climate.ncsu.edu/cronos/normals.php?station=312827. Accessed 19 July 2010.

NCSU – Library Geodata Server. 2010. USDA-NRCS Soil Data Mart. Raleigh, NC: NCSU Libraries.

Patrick, W.H, Jr. 1960. Nitrate Reduction in a Submerged Soil as Affected by Redox Potential. *Trans. Seventh Inter. Cong. Soil Sci. II.* 494-500.

Peterjohn, W.T., and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. *Ecology*. 65(5): 1466-1475.

Postma, D., Boesen, C., Kristiansen, H. and Larsen, F. 1991. Nitrate reduction in an unconfined aquifer: water chemistry, reduction processes, and geochemical modeling. *Water Resour. Res.* 27: 2027–2045.

Puckett, L.J. 2004. Hydrogeologic controls on the transport and fate of nitrate in groundwater beneath riparian buffer zones: results from thirteen studies across the United States. *Water Sci. and Technol.* 49(3): 47-53.

Puckett, L.J. and W.B. Hughes. 2005. Transport and Fate of Nitrate and Pesticides: Hydrogeology and Riparian Zone Processes. *J. Environ. Qual.* 34:2278-2292.

Schiff, S.L., K.J. Devito, R.J. Elgood, P.M. McCrindle, J. Spoelstra, and P. Dillon. 2002. Two adjacent forested catchments: Dramatically different NO₃⁻ export. *Water Resour. Res.* 38(12): 1-13.

Spruill, T.B., J.L Eimers, A.E. Morey. 1997. Nitrate-Nitrogen Concentrations in Shallow Ground Water of the Coastal Plain of the Albemarle-Pamlico Drainage Study Unit, North Carolina and Virginia. USGS - FS-241-96, Raleigh, NC.

Spruill, T.B. 2004. Effectiveness of riparian buffers in controlling ground-water discharge of nitrate to streams in selected hydrogeologic settings of the North Carolina Coastal Plain. *Water Sci. Technol.* 49(3): 63-70.

U.S. ACE. 1987. Corps of Engineers Wetlands Delineation Manual. WRP Reference No. Y-87-1. Vicksburg, MS: Waterways Experiment Station Environmental Laboratory.

USDA-NRCS. 2010. Soil Data Mart. Raleigh, NC: North Carolina State Office.

Vidon, P.F. and A.R. Hill. 2004. Landscape controls on the hydrology of stream riparian zones. *J. Hydrol.* 292: 210-228.

APPENDICES

APPENDIX A: Vegetation Assessment

Vegetation Overview

A vegetation assessment was completed in November 2009 to access the species and health of the trees and plants at the riparian buffer site. Zone 3 (filter strip) in Section 1 consisted of *Panicum clandestinum* (deertongue) and *Trifolium spp.* (clover). Section 1 had a clear understory in Zone 2 with prevalent *Ligustrum* sinense (Chinese privet), *Rubus argustus* (blackberry), and *Microstegium*. Section 1 had *Pinus taeda* (loblolly pine) as the dominant tree in Zone 2. Zone 1 consisted of *Quercus phellos* (willow oak) *Salix nigra* (black willow), and *Quercus spp.* (oak). Ground vegetation in Zone 1 was *Festuca spp.* (fescue) on the banks and *Rubus argustus* (blackberry).

Section 2 had a similar Zone 3 (filter strip) as seen in Section 1. The *Pinus taeda* (loblolly pines) in Zone 2 was thinner and were not growing as well as seen in Section 1. The Zone 2 canopy had closed and *Rubus argustus* (blackberry) and *Sambucus nigra* ssp. *Canadensis* (common elderberry) were identified in the canopy as well. Zone 1 consisted of *Sambucus nigra* ssp. *canadensis* (elderberry), *Juglans nigra* (black walnut), *Salix nigra* (black willow), *Quercus phellos* (willow oak), and *Quercus spp.* (oak). There was evidence of deer rubbing on the trees, which hinders the health of the trees. The *Quercus spp.* (oak) grew closer together in Section 2 than in Section 1. The area indicated swampy vegetated features. Additional plant species identified in Section 2 included *Solidago* spp. (goldenrod) and *Solanum carolinense* (horse

nettle). The *Pinus taeda* (loblolly pines) in Section 1 and Section 2 were similar even though visually Section 1's *Pinus taeda* (loblolly pines) looked healthier. The average diameter and average height for Section 1 and 2 were 7.6 m and 7.74 m and 16.9 cm and 17.0 cm respectively. Additional plant species identified by a plant specialist from the NCSU Biological and Agricultural Engineering Department can be found in Table A. 1.

Table A. 1: Plant species for Sections 1 and 2 at the research buffer site

-	es for sections I and 2 at the I		
Scientific Name	Common Name	Form	Type
Allium vineale	wild garlic	forb	exotic
Daucus carota	wild carrot	forb	exotic
Festuca spp.	fescue	grass	exotic
Ilex opaca	American holly	tree	native
Juglans nigra	black walnut	tree	native
Ligustrum sinense	Chinese privet	shrub	exotic
Liquidambar styraciflua	sweetgum	tree	native
	Japanese		
Lonicera japonica	honeysuckle	vine	exotic
Panicum clandestinum	deertongue	grass	native
Panicum virgatum	switchgrass	grass	native
Phytolacca americana	pokeweed	shrub	native
Pinus taeda	loblolly pine	tree	native
Prunus serotina	black cherry	tree	native
Quercus phellos	willow oak	tree	native
Quercus spp.	oak	tree	native
Rubus argustus	blackberry	shrub	native
Salix nigra	black willow	tree	native
Sambucus nigra ssp.			
canadensis	common elderberry	shrub	native
Solanum carolinense	horsenettle	forb	native
Solidago spp.	goldenrod	forb	native
Trifolium spp.	clover	forb	exotic
Vitis spp.	grape	vine	native

APPENDIX B: Soil Analysis

Section 1 Soil Chemical Analysis

A soil chemical analysis was completed to determine if the soil layers had an effect on NO₃⁻-N reduction within the buffer due to carbon availability. Results showed trends in NO₃⁻-N. The highest NO₃⁻-N concentrations were found in the top layer of soil. Carbon percentages were highest in the top layer as well. Carbon availability increased through the buffer most likely due to vegetation providing increased carbon availability from leaf litter.

Table B. 1: Section 1 soil chemical analysis completed in the BAE Environmental Analysis Laboratory for the three soil layers closest to the soil surface.

Depth Beneath Soil Surface (cm)	Location	TKN (mg/L)	TP (mg/L)	NH3-H (mg/L)	NO3-N (mg/L)	PH	Bulk Densiy	% C	% N
15	Field	319.13	68.74	1.88	4.01	4.99	1.01	0.29	0.03
23.4	Field	252.48	59.45	0.98	2.39	5.14	1.05	0.23	0.02
29	Field	312.87	68.54	1.28	2.37	5.12	1.05	0.25	0.03
13	Field Edge	410.36	74.84	1.48	5.11	5.2	1	0.44	0.04
21	Field Edge	275.61	50.42	2.16	2.03	5.62	1.05	0.28	0.03
26	Field Edge	259.71	64.29	2.13	0.79	5.45	0.94	0.22	0.02
11.4	Mid Buffer	462.47	78.15	1.31	4.52	5.55	1.01	0.76	0.04
20	Mid Buffer	254.75	27.43	0.87	1.35	5.8	1.06	0.29	0.02
28	Mid Buffer	250.3	34.89	1.18	0.6	5.29	1.03	0.20	0.02
11.4	Stream Edge	644.46	172.92	3.44	1.78	5.36	1.01	0.87	0.06
20	Stream Edge	367.75	62.91	1.75	0.87	5.49	0.99	0.73	0.04

Section 2 Soil Chemical Analysis

A soil chemical analysis was completed to determine if the soil layers had an effect on NO₃⁻-N reduction within the buffer due to carbon availability. Results showed that the chemical composition of soil did not show any observed trends in NO₃⁻-N. The results indicated that NO₃⁻-N was present in all soil zones along with carbon. Carbon was highest within the buffer most likely due to vegetation providing increased carbon availability from leaf litter decomposition.

Table B. 2: Section 2 soil chemical analysis completed in the BAE Environmental Analysis Laboratory for the three soil layers closest to the soil surface.

Depth Beneath Soil Surface (cm)	Location	TKN (mg/L)	TP (mg/L)	NH ₃ -H (mg/L)	NO ₃ -N (mg/L)	PH	Bulk Densiy	% C	% N
11	Field	191.04	140.04	0.37	1.95	5.53	1.14	0.22	0.02
18	Field	63.6	74.53	0.6	1.14	5.26	1.13	0.08	0.01
25	Field	54.1	62.37	0.18	1.49	4.8	1.02	0.06	0.01
15	Field Edge	69.75	46.99	0.93	2.95	5.12	1.16	0.12	0.01
20	Field Edge	151.09	63.91	1.32	3.44	4.9	1.2	0.14	0.02
30	Field Edge	190.62	57	1.57	4.3	4.8	1.16	0.15	0.02
10	Mid Buffer	417.12	101.81	2.14	1.47	4.96	1.03	0.69	0.04
20	Mid Buffer	192.99	72.8	1.14	1.08	4.92	1.16	0.23	0.02
28	Mid Buffer	122.34	46.3	1.09	1.09	4.92	1.03	0.20	0.02
11	Stream Edge	225.04	116.4	0.64	1.59	5.12	1.05	0.37	0.03
15	Stream Edge	411.25	220.79	0.52	2.49	5.23	1.15	0.67	0.05
32	Stream Edge	556.17	111.58	1.42	0.95	5.15	1.11	0.86	0.05

DEA Procedures (Provided by Amey Tilak, NCSU 2009)

DENITRIFICATION PROCEDURES May, 2009

Note: These have been edited to reflect changes in DEA measurements, but not to reflect changes for the new GC or new standards methods

Steps in making up nitrous oxide standards

General: Standards can be made up in either air or nitrogen. If standards are to be used for slurries which are incubated under nitrogen atmosphere, make up standards in nitrogen. If standards are to be used for cores incubated under air atmosphere, make up in air. If standards to be used for both cores and slurries, make up in air.

- 1. Make up a 5000 ppm stock standard: Evacuate round flask three times, refill with air or N, withdraw 15 mL from flask, add 15 mL pure nitrous oxide. Mix by hand 1 min with beads swirling.
- 2. Make up 5, 10, 25, 50 ppm standards from stock standard. Evacuate flasks three times, refill with air or N, withdraw 3, 6, 15, 30 mL from the flasks. Add 3, 6, 15, and 30 mL of 5000ppm standard. One (1) PPM standard is in gas bottle.
- 3. If you need complete sets of higher standards (125 ppm, 250 ppm,etc) start with 10000 ppm stock by using 30 mL of pure nitrous oxide.
- 4. If you just need a few higher standards, you can make them up by carefully doing dilutions in the crimp top vials. Always use the glass syringe (marked standards only) to do these. All dilutions are based on (vol of standard or sample)/total volume of standard or sample plus diluent).
- 5. When making standards, be very careful not to leave the nitrous oxide tank on and let the gas escape into the room. This can contaminate the room air for a number of hours and make good standards difficult to obtain.
- 6. Fill vials with standards after checking one set to see if you have a good linear standardization.

Standardization of Gas Chromatograph

General: These GC standards tend to have a good bit of what seems like random variation. In general, we have used the means of all standards to calculate the line segments used for standardization. The lowest line segment goes through the origin.

- 1. Compile all standards for a run
- 2. Calculate mean area for each standard. Discard ones that are more than 10% different from the mean.
- 3. Determine line segments for calculation of unknowns. These are generally 0, air (0.3) 1, 5, 10 ppm then 10, 25 50 ppm, then 50, 125, 250 ppm, etc.
- 4. When you have the conc vs area relationships, calculate PPM of unknowns using line segments.

Gas sampling for nitrous oxide analysis

- 1. Generally, you will want to store mL samples in the crimp top vials. If you use a 5 mL sample, use 5 mL of standard. Make sure the sample volume and standard volume are the same.
- 2. For either cores or slurries, there will generally be two gas samples per incubation. The nitrous oxide production rate will be figured by the change in concentration over the time period between samples.
- 3. When taking samples from cores, pump the head space three times with the sampling syringe before sampling. Do not pull enough vacuum so that the core is sucked up into the top of the incubation syringe. Flush the syringe by pumping some room air between pumping the incubation syringes.

Core and slurry incubations

Cores

- 1. Before going to the field, number all incubation syringes and store in boxes in order that they will be taken. Core samples will come in from the field in the incubation syringe. Adjust the headspace on each one to 30 mL by either pushing the core up from the bottom or removing soil from the bottom and letting the core move down.
- 2. Place small red serum stopper firmly on tip of incubation syringe. Withdraw 3 mL from headspace, add mL acetylene. This should be done with the glass "acetylene only" syringe three at a time can be done. Whenever you are injecting through these small serum stoppers, use a 23 G 1 inch needle.

- 3. Using 21 G 1 inch needle, pump each core three times with 50 mL syringe labeled pump. Be careful not to pull the core up so only pull about 10 mL.
- 4. Incubate for four hours, taking samples at 1 hour and four hours. Incubate at 25 C or room temp if incubator not available.
- 5. After incubation, measure the length (L) and headspace (HS) of each core and then store cores in freezer.

Slurries

- 1. Soils should be well mixed in the field, stored in whirlpak or ziplock bags with minimal headspace (squeeze air out). Store soil on ice from field and refrigerate in lab.
- 2. Before experiment starts, number and weigh all serum bottles you will use. Weigh bottles with grey serum stopper. Record weights on data sheets.
- 3. Place approximately 20 or 40 g of soil in the tared serum bottle. For soils expected to be high DEA, use 20g. For low DEA use 40 g. Either scoop soil into the bottle with a scoopula or use the 5 mL cutoff syringes (15mL = approx 20 g, 30mL = 40g). Get approximately 20 or 40 g in each bottle. Place grey serum stopper into serum bottle after soil is added to avoid drying.
- 4. Re-weigh bottle plus soil with serum stopper. Record weight on data sheets
- 5. Add 20 mL (or 40mL) of solution to each bottle from repipet. Slurries will be made with 20 mL (or 40 mL) of one or more of the following solutions:
- a) solution1 1 g/L chloramphenicol (chl)
- b) solution 2 1 g/L chl and 200 mg NO3-N/L (1.444 g KNO3/L)
- c) solution 3 1 g/L chl and 2 g glucose-C/L (5.505 g Glucose/L)
- d) solution 4 1 g/L chl, 200 mg NO3-N/L, 2 g Glucose-C/L DEA

Solution 4 is used to measure actual denitrification potential or denitrifier enzyme assay.

6. Crimp top onto bottle. They are now ready to evacuate and gas.

- 7. Evacuate and gas in sets of twelve. Evacuate and add N_2 twice. Evacuate third time and add N_2 /acetylene mixture. To take off bottles follow these steps: 1) turn three way valve back to the N_2 tank; 2) relieve overpressure by taking off bottle #1 leaving needle in the bottle; 3) take off other bottles; 4) turn valve to vacuum and turn vacuum off. DO NOT TURN VACUUM OFF WHILE IT IS PULLING A VACUUM.
- 8. Slurries should be incubated in the orbital shaker so that the slurry will remain well mixed. Incubate at room temp and record temp in your lab notebook.
- 9. Take samples at 1 hour and 4 hours after start of incubation. Record start and end times for a sampling in your lab notebook.
- 10. After gas sampling is done, weigh bottle, measure headspace in bottles by filling with water and re-weighing

Processing cores

When ready to process, allow to thaw, put entire core into weighed soil moisture can and then weigh entire core plus can. The core is now ready for subsampling for nitrate/ammonium extraction, gravimetric soil moisture determination, and any other measurements that will be done on the soil. Check with Dr. Mbuya to see what he wants you to do besides the KCl extract for nitrate/ammonium determination and the gravimetric soil moisture. This is how we would do these things: From the entire thawed core, weigh 12 grams of soil into bottle that can be placed on a shaker. Add 20 mL of a 2 M KCl solution and shake for one hour. Filter the solution into 20 mL scintillation vials and analyze the filtrate for nitrate and ammonium by standard colorimetric techniques. Take the remaining thawed soil and dry for three days at 105 C to a constant weight. Record the dry weight. This will allow calculation of gravimetric soil moisture. Please note, if total C or N needs to be determined on the soil, it needs to be done on an air-dried soil.

Processing bagged soils after they are used for slurries

Processing the bagged soils is similar to the cores except that the total weight of the bag of soil is not needed. After slurries are started, store bags in freezer. When ready to process, allow to thaw. From the thawed bag of soil, weigh 12 grams of soil into bottle that can be placed on a shaker. Add 20 mL of a 2 M KCl solution and shake for one hour. Filter the solution into 20mL scintillation vials and analyze the filtrate for nitrate and ammonium by standard colorimetric techniques. Take about 50 g (49-50 g) of the remaining thawed soil and dry for three days at 105 C to a constant weight. Record the dry weight. This will allow calculation of gravimetric soil moisture (SM). Please note, if total C or N needs to be determined on the soil, it needs to be done on an air-dried soil.

Calculations for cores

Determine bulk density of cores based on the total mass of dried soil (including the portion removed for KCl extraction) and the volume of the core ($V=pi*r^2*L$). Bulk Density (BD) = mass (g)/volume (cubic centimeters). Total porosity (TP) is:

TP=(1-(bulk density/particle density)

%Water Filled pore space = [SM/(TP*V)]*100

See Lowrance and Smittle (1988) paper for proper equations.

The denitrification calculations are shown here:

Need gravimetric soil moisture (SM), Headspace (HS); Total weight of core (TWC) incubation bottle.

Time 2 - Time 1 = delta T (DT)

SoilWater = SM*TWC

SoilDry = TWC - SoilWater;

Concentration Change (CC) = N2O(Time2) - N2O(Time1);

Volume N2O = CC*HS + CC*Soilwater*0.667 - this converts concentration to volume and accounts for dissolved N2O

MassN2O (ng) = Volume N2O*1.842 - converts volume to mass.

Rate = (MassN2O/SoilDry)*(24/DT) - This converts to a daily rate. Can also express as hourly rate

Calculations for denitrification potential

Determine fraction gravimetric soil moisture (SM);

Determine Headspace (HS) - usually = 130 ml for 20g samples and 100mL for 40g samples;

Record Soil Wet Weight (SoilWet) - the amount put into the incubation bottle.

Time 2 - Time 1 = delta T (DT)

SoilWater = SM*SoilWet

TotalWater = SoilWater + 20 (volume of solution added);

SoilDry = SoilWet - SoilWater:

Concentration Change (CC) = N2O(Time2) - N2O(Time1);

Volume N2O = CC*HS + CC*TotalWater*0.667 - this converts concentration to volume and accounts for dissolved N2O

MassN2O (ng) = Volume N2O*1.842 - converts volume to mass.

Rate = (MassN2O/SoilDry)*(24/DT) - This converts to a daily rate. Can also express as hourly rate

Calculations for denitrification potential

Determine fraction gravimetric soil moisture (SM);

Determine Headspace (HS) - usually = 140 mL;

Record Soil Wet Weight (SoilWet) - the amount put into the incubation bottle.

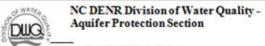
Time 2 - Time 1 = delta T (DT)

SoilWater = SM*SoilWet

TotalWater = SoilWater + 20 (volume of solution added);

SoilDry = SoilWet - SoilWater;

Concentration Change (CC) = N2O(Time2) - N2O(Time1);


Volume N2O = CC*HS + CC*TotalWater*0.667 - this converts concentration to volume and accounts for dissolved N2O

MassN2O (ng) = Volume N2O*1.842 - converts volume to mass.

Rate = (MassN2O/SoilDry)*(24/DT) - This converts to a daily rate. Can also express as hourly rate

NC CREP Boring Log Evaluations (NC DENR Div. of Water Quality)

	BORING LOG	County Halifax
l Eq	CREP JC WileyRegion _ RRO Hydro/ nipment & MethodGeoprobeStart Date _ 5/21/08 MethodBoring Diameter _ 2" Total Dep	Completion Date5/21/08
De pth (ft. bls)	evation TOC Elevation Groundwater(ft	btoc) 0 Hours 24 Hours Notes/W Descripti
1	Tan/brown silty sand	
	Tan/orange fine to med sandy silt – water table	0-17 ft
-	Gray, orange and red silty fine sandy clay - mottled	0.75"pv
2000		S. Communication of the Commun
5		Casing
	Same as above with 3" layer of slightly rounded quartz gr	avels
1	Same as above with 6" layer of light gray coarse sandy cl	av 17-19 ft
	3" layers of orange and beige fine to coarse sandy clayey silt with m	
	BUT DIED VON STEIL EUROSE. THE FORM VENERAL THE STEIL PROBLEM COMPANIES AND ASSESSED ASSESSED AND ASSESSED AND ASSESSED AND ASSESSED ASSESSED.	as commented as a succession
10	Same as above with decreasing clay and decreasing grave	19-24
-	White and orange silty fine gravelly coarse sand in 3" lay	corean
-	White and orange sary line gravery coarse sanding hay	
-	Tan fine to medium sand	
	Same as above but becoming coarser	
15	Tan and black and orange and red clayey silt in very fine h	noriz hands
	Hard contact with dark gray micaceous clayey silt	
-	Hard contact with dark gray fileaceous crayey six	II
		
20		
		I
	Same as above, but becoming more clayey andmore shel	ls and tighter
	8	
25		II
2.		————II
1	II .	

Page_l__of__ Boring#__Fl

BORING LOG

County Halifax

Samp	le Meth	odBoring Diameter2" Total Depth32 Screen Interval	27-32
Land	Elevation	on TOC Elevation Groundwater (ft btoc) 0 Hours 24 Ho	urs
Elev.	Depth (ft. bls)		Notes/Well Description
	1	Beige silty fine sand	0-21 ft
		Light brown very fine sandy silt	casing
		Brown/gray and orange mottled fine sandy silty clay	21-27 ft
			Bentonite
	5		27-32 ft
			Screen
		6" of pale yellow and orange silty clay	
		Light gray silty clay	Used .75"
			pvc well
	10	Light gray sandy silty clay	
		6" of black and white sand - water table at 10 ft bls	111
		Black, white, orange and tan fine sandy clay in thin horiz layers	111
			1
	15	Brown, orange, off white and dark red silty fine to medium sand	
		Hard contact with tan ight gray and orange silty clay in fine horiz layers	\parallel
		Light gray silty clay	111
-		Orange, tan and off white medium to a oarse sand with many rounded gravels	111
	20	Hard contact with tan/orange clayey silt	111
	-	Dark orange silty sand	111
-		White silt in gravelly coarse sand	111
-			111
		2" black and white and orange silt in fine horiz layers	111
	25	Dark gray clayey silt	111
-		CONTROL OF	111
			111
			1
			1
	30	Dark gray clayey silt until 32 feet deep	111

Form GW-2 (B) Revised 5/4/2004

NC DENR Division of Water Quality -Aquifer Protection Section

Page_l__of__ Boring#__Hl

BORING LOG

County Halifax

	evation TOC Elevation Groundwater (ft btoc) 0 Hours 24	
De pth	Lithology Description	Notes/We Description
1	Dark tan silty fine sand with organic material	1
	O	0-17 ft
	Orange sandy clayey silt Red and orange and gray mottled very fine sandy clayey silt	0.75"p
5	Red and orange and gray motued very line sandy clayey sut	Casing
	Same as above with distinct bands of color and coarser sand	8
	Same as above with distinct bands of color and coarser sand	17-19 ft
	Pink and tan fine fine to coarse sandy silt – wet	bentonit
	and and the mice of coalse sainly sair the	3
10	Light orange and tan coarse sandy silt with rounded quartz gravels – water table	19-24
	Fine gravelly white silty coarse sand in fine horiz layers with coarse gravels	screen
-	Same as above with distinct horiz bands of black sand	
	Black and white and orange clayey silt in fine horizontal layers	
15	Hard contact with dark gray silty clay with very fine sand and mica	
20		
	Dark gray silty clay with marine shells	
25		
25		
	Began to collect 2 ft cores with discrete sampler due to sloughing in	
1	Deganto concer 2 it cores with discrete sampler due to stoughting in	Ш

Form GW-2 (B) Revised 5/4/2004

NG LOG (Continuation Sheet) Bo	ring#	
Lithology Description		Notes/V
	\rightarrow	Descrip
Sampled from 32-34: Same as above but becoming more silty		
Ease of advancing probe remained unchanged. Likely the same as above		
	-	
	-	
	$\neg \neg$	
Sampled form 40-42: same as above, but with layer of medium sandy claye	ey silt	
	-	
	\neg	
III		
	-	
	-	
	$\overline{}$	
	-	
#		
II.		1.1
	County Hydro/Tech Lithology Description Sampled from 32-34: Same as above but becoming more silty Ease of advancing probe remained unchanged. Likely the same as above	County Hydro/Tech Lithology Description Sampled from 32-34: Same as above but becoming more silty Ease of advancing probe remained unchanged. Likely the same as above Sampled form 40-42: same as above, but with layer of mediums andy clayey silt Drilling got harder at 51-54 ft. Sampled 52-54: light blue silt, dry Tight grained many colored silt saprolite

Form GW-2 (B) [Continuation Sheet]

Revised 5/4/2004

NC DENR Division of Water Quality -Aquifer Protection Section BORING LOG

Page_l__of_l_ Boring#__M-l__ County__Halifax__

	Depth (ft. bls)	Sample			
-	(IL. DIS)		Lithology Description	Well Diagram	Notes/W Descripti
	10		Direct push with no samples until 22 feet. Softer material from 9 to 12 feet. Harder from 12 to 15 feet. Softer from 15 to 24 feet (Yorktown?).	Diagain	Well set with 5 fo of prepack ½" 10 sl screen from 19 to 24 feet; bentonin from 0- 19 feet.
	20				
1		S-1	Dark grey clayey SILT & shell fragments; nearly horizontal		
			laminations; slightly dense; water around shell frags; no odor;	ř.	
			moist to wet.		
	25	3		Š.	
					l .

Form GW-2 (B) Revised 5/4/2004

Survey Completed by Soil Surveyor (Erik Severson)

1. Field edge

A—0-10 inches; very dark grayish brown (10YR 3/2) loamy sand, loose consistency.

E—10-19 inches; very pale brown (10YR 7/4) loamy sand, friable.

Bt1—19-33 inches; light olive brown (2.5Y 5/6) sandy clay loam; 5% brownish yellow (10YR 5/8) Fe concentrations.

Bt2—33-50 inches; light olive brown (2.5Y 5/6) clay; 10% strong brown (7.5YR 5/6) concentrations, 10% gray (5Y 6/1) depletions.

C1—50-73 inches; reddish yellow (7.5YR 6/6) sticky sandy loam, medium to coarse sand grains evident.

C2—73-87 inches; olive yellow (2.5Y 6/6) light (~21% clay) sandy clay loam; 15% light bluish gray (8/5PB), and 5%yellowish red (5YR 5/8) concentrations.

C3—87-110 inches, variegated sandy clay loam; 40% light bluish gray (8/5PB), 30% pale brown (10YR 6/3), 20 % light olive brown (2.5Y 5/6), and 10% yellowish red (5YR 5/8) concentrations (color looks overall duller than previous horizon).

C4—110-131 inches; very pale brown (10YR 7/4) sandy loam; 30% grayish brown (2.5Y 5/2) faint organic bodies surrounded by a pale yellow (5Y 7/4) Fe depleted rim.

C5—131-136 inches; olive (2.5Y 5/4) sandy loam.

Cg1—136-144 inches; gray (10YR 6/1) sand.

Cg2—144-150 inches; gray (5Y 6/1) clay lenses surrounded by 30% pale yellow (5Y 8/4) relatively thick Fe depleted rims, and olive yellow (2.5Y 6/8) sandy loam.

2C1—150-158 inches; light yellowish brown (10YR 6/4) sand.

2C2—158-166 inches; yellowish brown (10YR 5/4) sandy clay; 10% gray (5Y 6/1) clay lenses, 5% dark yellowish brown (10YR 3/4) organic streaks; 10% gravel.

3C—166-173 inches; yellowish brown (10YR 5/6) silty clay loam; 10%strong brown (7.5YR 5/6) Fe conc.

4C—173-228 inches; bluish gray (5/10B) and greenish gray (4/10BG) soft marine silty clay.

Recommended Monitoring Well Depths: Shallow: 6-8 feet Deep: 10-14 feet

2. Footslope

A—0-15 inches; brown (10YR 3/3) sandy loam.

E—15-26 inches; very pale brown (10YR 7/4) sandy loam.

Bt—26-43 inches; olive yellow (2.5Y 6/6) sandy clay loam; yellowish brown (10YR 5/8) concentrations, 10% gray (2.5Y 7/1) depletions.

BC—43-60 inches; light yellowish brown (10YR 6/4) sandy loam; 7% light gray (2.5Y 7/2) depletions, 5% brownish yellow (10YR 5/8) concentrations.

C1—60-80 inches; yellowish brown (10YR 5/4) sticky sandy clay loam; saturated.

2C2—80-98 inches; light brown (7.5YR 6/4) sandy clay loam; 15% brownish yellow (10YR 5/8) concentrations; 10% bluish gray (5/BP) depletions; 2% gravel.

2C3—98-107 inches; reddish yellow (7.5YR 6/6) tight sandy clay; 12% rounded gravel.

2Cg4—107-127 inches; white (2.5Y 8/1) gravelly sandy loam, 15% .5 cm diameter gravels. (Fe depleted zone, same depositional event is likely).

2C5—127-136 inches; strong brown (7.5YR 5/8) coarse loamy sand.

3C6—136-155 inches; pale yellow (2.5 7/4) gravelly coarse sand; 25% bluish gray (5/BP) depletions.

3C7—155-160 inches; gray (5Y 6/1) clay lenses surrounded by 30% pale brown (10YR 6/3) and 20% strong brown (7.5YR 4/6) concentrations.

3C8—160-180 inches; pale yellow (2.5Y 7/4)sandy clay loam; 35% gray (5Y 6/1) depletions, 10% gravel.

4C9—180-192 inches; yellowish brown (10YR 5/6) and reddish yellow (7.5YR 6/6) silt loam.

5C10—192-200 inches; yellowish brown (10YR 4/4)sandy loam.

6C11—200-240 inches; greenish gray (5/5G) marine silty clay, 5% gravels.

Recommended Monitoring Well Depths: Shallow: 4-6 feet Deep: 10-13 feet

APPENDIX C: Statistical Evaluation Results

Code for Statistical Evaluations

NO₃ N Evaluation Example Code (adapted from Grabow, 2010)

```
options ls=85 nodate nocenter formdlim="+";
data one;
 infile "C:\Users\Tiffany Messer\Desktop\Stats2\Treatment1.csv"
 firstobs=2 dlm="," dsd;
 input SampleID $ Date: mmddyy10. Treatment Transect WellPosition Depth $ NO3 Cl NCl Na Ca DOC;
 week=week(date);
 day=day(date);
 lno3 = log(no3 + .01);
run;
data two;
 infile "C:\Users\Tiffany Messer\Desktop\Stats2\Treatment2.csv"
  firstobs=2 dlm="," dsd;
 input SampleID $ Date: mmddyy10. Treatment Transect WellPosition Depth $ NO3 Cl NCl Na Ca DOC;
 week=week(date);
 day=day(date);
 lno3 = log(no3 + .01);
run;
data both;
 set one two;
run;
proc sort data=both;
 by treatment depth;
run;
data sorttime;
set both;
run;
proc sort data=sorttime;
by treatment SampleID Date;
proc print data=sorttime;
run;
proc sort;
 by treatment depth;
run;
```

```
data one;
 set one;
 if treatment > .;
 if depth < "T" and depth > " ";
run;
proc sort;
 by depth;
proc mixed data=both method=type3;
 by treatment;
 class depth wellposition transect week treatment day date;
 model lno3=wellposition|depth / outp=two;
 random transect transect*wellposition date;
 Ismeans wellposition|depth/slice=(wellposition depth);
 run;
proc gplot data=both;
by treatment;
plot lno3*wellposition=depth;
proc mixed data=sorttime COVTEST;
 by treatment;
 class SampleID depth wellposition transect week treatment day date;
 model lno3=wellposition|depth / outp=two;
 random transect transect*wellposition date:
 repeated/subject=SampleID type=ar(1);
 lsmeans wellposition|depth/slice=(wellposition depth);
 run;
proc gplot data=two;
by treatment;
plot resid*Date;
by SampleID;
run;
Redox Evaluation Example Code
options ls=85 nodate nocenter formdlim="+";
data one;
 infile "C:\Users\Tiffany Messer\Desktop\Stats2\redox1.csv"
```

input Treatment Location Date: mmddyy10. depth \$ redox;

firstobs=2 dlm="," dsd;

week=week(date);
day=day(date);

```
lredox=log(redox+400);
run;
data two;
 infile "C:\Users\Tiffany Messer\Desktop\Stats2\redox2.csv"
  firstobs=2 dlm="," dsd;
   input Treatment Location Date: mmddyy10. depth $ redox;
 week=week(date);
 day=day(date);
 lredox=log(redox+400);
run;
data both;
 set one two;
run;
proc sort data=both;
 by treatment depth;
run;
data sorttime;
set both;
run;
proc sort data=sorttime;
by treatment location;
proc print data=sorttime;
run;
proc sort data=both;
 by treatment depth;
run;
data one;
 set one;
 if treatment > .;
 if depth < "T" and depth > " ";
run;
proc sort;
 by depth;
proc mixed data=both method=type3;
   by treatment;
 class location depth treatment;
 model lredox=location|depth / outp=two;
 lsmeans location|depth/slice=(location depth);
 run;
```

NO₃-N Statistical Analysis Results using PROC MIXED

Least Squares Means												
Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr → [t]					
WellPosition WellPosition WellPosition WellPosition Depth Depth Depth*WellPosition	D S D D D S S S S S	1 2 3 4 1 2 3 4 1 2 3 4	1.0955 0.5169 0.1173 0.1487 0.7703 0.1690 1.0314 0.8267 0.4515 0.7715 1.1596 0.2071 -0.2168 -0.4741	0.3510 0.3510 0.3508 0.06131 0.06334 0.3531 0.3532 0.3531 0.3531 0.3546 0.3544 0.3544	6 6 6 1424 1424 1424 1424 1424 1424 1424	3.12 1.47 0.33 0.42 12.56 2.67 2.92 2.34 1.28 2.18 2.18 -0.58	0.1913 0.7495 0.6864 <.0001 0.0077 0.0035 0.0194 0.2013 0.0291 0.0011 0.5590					
The SAS System								74				
Treatment=1												
The Mixed Procedure	•											
		Tests of	Effect S1	ices								
Effect	Dept	Well h Posit	Nu ion [ım Den DF DF	F۷	alue I	Pr > F					
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3 4		1 1424 1 1424 1 1424 1 1424 3 1424 3 1424	4 5	8.89 57.15 2.16 0.36	0.1522 <.0001 <.0001 <.0001 0.7836 0.0233					

Figure C. 1: Treatment 1 NO₃-N statistical analysis results

The SAS System								78					
•													
Treatment=2													
The Mixed Procedure	•												
Least Squares Means													
Well Standard													
Effect	Depth	Position	Estimate	Error	DF	t Value	Pr > t						
Depth	S		1.0798	0.09997	1077	10.80	<.0001						
Depth*WellPosition	D	1	2.4713	0.1699	1077	14.55	< .0001						
Depth*WellPosition	D	2	2.3393	0.1700	1077	13.76	< .0001						
Depth*WellPosition	D	3	1.6055	0.1700	1077	9.44	< .0001						
Depth*WellPosition	S	1	2.4934	0.1715	1077	14.54	< .0001						
Depth*WellPosition	S	2	1.8339	0.1720	1077	10.66	< .0001						
Depth*WellPosition	S	3	-1.0879	0.1709	1077	-6.37	<.0001						
		Tests of	Effect Sli	ces									
		Well	Nu	ım Den									
Effect	Dept			F DF	F U	alue I	Pr > F						
211000	ВСР					arac i							
Depth*WellPosition		1		1 1077		0.06	0.8008						
Depth*WellPosition				1 1077			C.0001						
Depth*WellPosition		2 3		1 1077			(.0001						
Depth*WellPosition	D	3		2 1077	30		0.0005						
Depth*WellPosition	S			2 1077	19		C.0005						
vepui~we ilrosition	0			2 1011	12	3.20							

Figure C. 2: Treatment 2 NO₃-N statistical analysis results

Cl Statistical Analysis Results using PROC MIXED

Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr → [t]	
0800008888	1 2 3 4 1 2 3 4 1 1 2 3 4	2.5865 2.5371 2.3296 2.5947 2.4237 2.6002 2.4615 2.4226 2.2256 2.5851 2.7115 2.6515 2.4335 2.6043	0.1056 0.1056 0.1056 0.1056 0.04887 0.04915 0.1062 0.1062 0.1062 0.1066 0.1066 0.1066	6 6 6 1309 1309 1309 1309 1309 1309 1309	24.49 24.02 22.06 24.58 49.59 52.91 23.18 20.96 24.35 25.42 24.88 22.83	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	
*****	******	******	******	*****	+++++++	*******	****
							159
:							
	Tests of	Effect Sli	ces				
Dept	Well h Posit			FV	alue I	Pr → F	
D S	1 2 3 4		1 1309 1 1309 1 1309 3 1309	7 6	9.74 6.17 0.61 1.88	(.0001 (.0001 0.4348 0.1316	
	D S D D D D S S S S S D D D D D D D D D	Depth Position 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tests of Effect Sline Depth Position Estimate	Tests of Effect Slices	Tests of Effect Slices	Tests of Effect Slices	Tests of Effect Slices

Figure C. 3: Treatment 1 Cl statistical analysis results

Trea	Treatment=2									
The	Mixed	Procedure								

Least Squares Means												
Well Standard Effect Depth Position Estimate Error DF t Value Pr > t												
Depth Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D D	1 2 3 1	3.3013 3.5292 3.4175 3.0262 3.3393	0.03865 0.1185 0.1185 0.1185 0.1190	993 993 993 993 993	85.42 29.79 28.85 25.54 28.07	<.0001 <.0001 <.0001 <.0001 <.0001					
Depth*WellPosition		2	3.6220	0.1191	993	30.41	<.0001					

Tests of Effect Slices

Effect	Depth	Well Position	Num DF	Den DF	F Value	Pr > F
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3	1 1 1 2 2	993 993 993 993 993	26.43 29.89 5.29 3.70 6.14	<.0001 <.0001 0.0216 0.0252 0.0022

Figure C. 4: Treatment 2 Cl⁻ statistical analysis results

NO₃-N/Cl Statistical Analysis Results using PROC MIXED

Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr → [t]				
WellPosition WellPosition WellPosition WellPosition Depth Depth Depth*WellPosition	D S D D D S S S S	1 2 3 4 4 1 2 2 3 4 4 1 2 2 3 4 4	-1.3823 -1.8730 -2.0523 -2.2459 -1.6068 -2.1700 -1.3780 -1.5571 -1.7293 -1.7627 -1.3867 -2.1888 -2.3754 -2.7291	0.2127 0.2127 0.2127 0.2125 0.03980 0.04194 0.2147 0.2147 0.2147 0.2161 0.2160 0.2153	6 6 6 1309 1309 1309 1309 1309 1309 1309	-6.50 -8.81 -9.65 -10.57 -40.38 -51.74 -6.42 -7.25 -8.05 -8.21 -6.41 -10.13 -10.99 -12.68	0.0006 0.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001				
••••••											
The SAS System								245			
Treatment=1											
The Mixed Procedure											
		Tests of	Effect Sli	ces							
Effect	Dept	Well h Posit	Nu ion D		F۷	alue I	Pr > F				
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3 4		1 1309 1 1309 1 1309 1 1309 3 1309 3 1309	8 8 21	5.53 9.92 6.83 0.53	0.9003 <.0001 <.0001 <.0001 0.6626 0.0011				

Figure C. 5: Treatment 1 NO₃⁻-N/Cl⁻ Statistical Analysis Results

Treatment=2													
The Mixed Procedure	:												
	Least Squares Means												
Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr → [t]						
Depth Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	S D D S S S	1 2 3 1 2 3	-1.9448 -0.9776 -1.0474 -1.3896 -0.8084 -1.6760 -3.3500	0.06517 0.1525 0.1525 0.1526 0.1537 0.1540 0.1532	993 993 993 993 993 993	-29.84 -6.41 -6.87 -9.11 -5.26 -10.88 -21.86	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001						
		Tests of	Effect Sli	ces									
Effect	Dept	Well h Posit	Nu ion D		FV	alue f	Pr → F						
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3		1 993 1 993 1 993 2 993 2 993	88 88	6.92 9.66 1.69	0.0112 (.0001 (.0001 0.1846 (.0001						
***************************************	******	*********	**********	*******	*****	******							

Figure C. 6: Treatment 2 NO₃-N/Cl Statistical Analysis Results

DOC Statistical Analysis Results using PROC MIXED

Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr > t	
WellPosition		1	0.2913	0.1740	6	1.67	0.1451	
WellPosition		2	0.2037	0.1740	6	1.17	0.1451	
WellPosition WellPosition		3	0.2037	0.1740	6	0.64	0.5488	
WellPosition		4	0.07035	0.1734	6	0.41	0.6990	
Depth	D		-0.06324	0.1392	1013	-0.45	0.6497	
Depth	S		0.4012	0.1401	1013	2.86	0.0043	
Depth*WellPosition	D	1	0.1386	0.1784	1013	0.78	0.4372	
Depth*WellPosition	D	2	-0.06719	0.1786	1013	-0.38	0.7068	
Depth*WellPosition	D	3	-0.1278	0.1784	1013	-0.72	0.4741	
Depth*WellPosition	D	4	-0.1966	0.1781	1013	-1.10	0.2698	
Depth*WellPosition	S	1	0.4440	0.1814	1013	2.45	0.0145	
Depth*WellPosition	S	2	0.4746	0.1809	1013	2.62	0.0088	
Depth*WellPosition	S	3	0.3488	0.1811	1013	1.93	0.0544	
Depth*WellPosition	S	4	0.3373	0.1791	1013	1.88	0.0600	
***************************************	•••••	*********	*******	*********	*****	******	*********	****
The SAS System			***					331
Treatment=1								
The Mixed Procedure	•							
		Tests of	Effect Sli	ces				
		Well						
F66	ъ.		Nu					
Effect	Dept	h Posit	ion D	F DF	FV	alue P	γr → F	
B .1 #11 11B								
Depth*WellPosition		1		1 1013			0.0008	
Depth*WellPosition		2		1 1013			.0001	
Depth*WellPosition		3		1 1013			.0001	
Depth*WellPosition	_	4		1 1013			.0001	
Depth*WellPosition	D			3 1013			.2858	
Depth*WellPosition	S			3 1013		0.27 0	.8460	
***************************************	******	*********	*********	*********	*****	******	**********	++++

Figure C. 7: Treatment 1 DOC Statistical Analysis Results

***************************************	*****	*****	• • • • • • • • • • • • • • • • • • • •	*******	*****	******	**********					
The SAS System												
Treatment=2												
The Mixed Procedure												
Least Squares Means												
Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr > [t]					
Depth Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	S D D S S S	1 2 3 1 2 3	1.0488 0.8076 0.5928 0.02821 0.6689 1.3151 1.1624	0.5201 0.5447 0.5436 0.5396 0.5617 0.5670 0.5489	134 134 134 134 134 134 134	2.02 1.48 1.09 0.05 1.19 2.32 2.12	0.0457 0.1405 0.2774 0.9584 0.2358 0.0219 0.0360					
		Tests of	Effect Sli	ces								
Effect	Dept	Well h Posi	Nu tion D		F V	alue P	r > F					
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3		1 134 1 134 1 134 2 134 2 134	1	5.78 0 8.84 0 3.42 0	.6349 .0176 .0001 .0357					
E.*	C 0	TD 4 4	2 DOC Ct 45			14						

Figure C. 8: Treatment 2 DOC Statistical Analysis Results

Na⁺ Statistical Analysis Results using PROC MIXED

The SAS System							486
Treatment=1							
The Mixed Procedure							
	Te	sts of Effec	t Slices				
Effect	Depth	Well Position	Num DF	Den DF	F Value	Pr → F	
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3 4	1 0 0 1 3	140 140 140 140	137.15 0.43 0.68 1.94	<.0001 0.5141 0.5672 0.1662	

Figure C. 9: Treatment 1 Na⁺ Statistical Analysis Results

		Least	Squares Me	ans			
Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr → [t]
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D D S S	1 3 1 3	1.1402 1.8718 1.2326 1.8534	0.2127 0.2116 0.2145 0.2127	144 144 144 144	5.36 8.85 5.75 8.71	
		Tests of	Effect Sli	ces			
Effect	Dept	Well h Posit	Nu ion D		F۷	alue I	Pr → F
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 3		1 144 1 144 1 144 1 144	1	0.14 3.79	0.1079 0.7113 0.0003 0.0022

Figure C. 10: Treatment 2 Na⁺ Statistical Analysis Results

Ca²⁺ Statistical Analysis Results using PROC MIXED

Treatment=1

The Mixed Procedure

Tests of Effect Slices

Effect	Depth	Well Position	Num DF	Den DF	F Value	Pr > F
Depth*WellPosition		1	1	137	79.53	<.0001
Depth*WellPosition		2	0			
Depth*WellPosition		3	0			
Depth*WellPosition		4	1	137	52.10	<.0001
Depth*WellPosition	D		2	137	5.30	0.0061
Depth*WellPosition	S		1	137	17.26	< .0001

Figure C. 11: Treatment 1 Ca²⁺ Statistical Analysis Results

Treatment=2							
The Mixed Procedure	ı						
		Least	Squares M	eans			
Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	e Pr > [t]
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D D S S	1 3 1 3	3.5151 2.2307 3.4226 2.5130	0.1599 0.1584 0.1624 0.1601	142 142 142 142	21.98 14.08 21.07 15.70	3 <.0001 7 <.0001
		Tests of	Effect S1	ices			
Effect	Dept	Well h Posit		um Den DF DF	FΨ	alue	Pr → F
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 3		1 142 1 142 1 142 1 142	3 77 25	2.48 0.09 4.53 8.89	0.1172 <.0001 <.0001 <.0001
Fig	ure C. 12	2: Treatmen	t 2 Ca ²⁺ Sta	tistical Analy	sis Res	ults	

T-tests for Difference in NO₃-N Concentrations at the Field Edge

NO₃-N differences depending on treatment

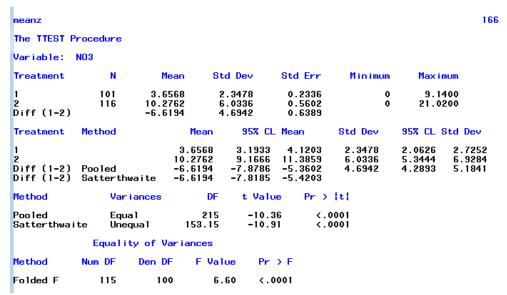


Figure C. 13: NO₃-N differences between Treatments 1 and 2

meanz							167
The TTEST F	Procedure						
Variable:	NO3						
Depth	N	Mean	Std Dev	Std Err	Minimum	Maximum	
D S Diff (1-2)	64 37	3.4797 3.9632 -0.4836	0.7656 3.7595 2.3479	0.0957 0.6181 0.4849	2.5400 0	6.1800 9.1400	
Depth	Method	h	lean 95%	CL Mean	Std Dev	95% CL Std C)ev
D S Diff (1-2) Diff (1-2)	Pooled Satterthy	3.9 -0.4		8 5.2167 7 0.4786	0.7656 3.7595 2.3479	3.0572 4.8	1273 1834 7275
Method	Vari	ances	DF t Va	lue Pr >	[t]		
Pooled Satterthwai	Equa ite Uned				3211 144 2		
	Equalit	y of Varian	nces				
Method	Num DF	Den DF	F Value F	r → F			
Folded F	36	63	24.11	.0001			

Figure C. 14: Nitrate differences depending on well depth for Treatment 1

meanz							168
The TTEST P	rocedure						
Variable:	NO3						
Depth	N	Mean	Std Dev	Std Err	Minimum	Max i mum	
D S Diff (1-2)	64 52	10.7714 9.6667 1.1047	4.9872 7.1187 6.0346	0.6234 0.9872 1.1266	2.1900 0	15.8400 21.0200	
Depth	Method		Mean 95%	CL Mean	Std Dev	95% CL Std D	lev
D S Diff (1-2) Diff (1-2)	Pooled Satterthu	9. 1.	7714 9.52 6667 7.68 1047 -1.12 1047 -1.21	49 11.6486 72 3.3365	4.9872 7.1187 6.0346	5.9658 8.8	1401 1281 1340
Method	Vari	ances	DF t V	alue Pr >	[t]		
Pooled Satterthwai	Equa te Unec				3289 3467		
	Equal i t	y of Varia	nces				
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	51	63	2.04	0.0075			
1							

Figure C. 15: Nitrate differences depending on well depth for Treatment 2

Evaluation of Treatment 1 and 2 Depth and Deep Aquifer Interactions using PROC MIXED

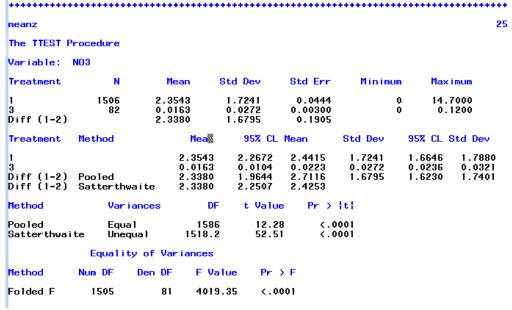


Figure C. 16: T-test of the NO₃-N concentrations between Treatment 1 surficial and confined aquifers

meanz							35
The TTEST P	rocedure						
Variable:	NO3						
Treatment	N	Mean	Std Dev	Std Err	Minimum	Max	imum
2 3 Diff (1-2)	1156 82	8.5707 0.0163 8.5543	5.1604 0.0272 4.9884	0.1518 0.00300 0.5701	0		5000 1200
Treatment	Method	Меап	95% CL	Mean	Std Dev	95% CL	Std Dev
2 3 Diff (1-2) Diff (1-2)	Pooled Satterthwaite	8.5707 0.0163 8.5543 e 8.5543	0.0104 7.4359	8.8685 0.0223 9.6728 8.8522	5.1604 0.0272 4.9884	4.9583 0.0236 4.7993	5.3798 0.0321 5.1932
Method	Variance	es D	F t Value	e Pr >	[t]		
Pooled Satterthwai	Equal te Unequal	123 1155.					
	Equality o	f Variances					
Method	Num DF Der	n DF F V	alue Pr	> F			
Folded F	1155	81 360	08.2 <.0	001			

Figure C. 17: T-test of the NO₃-N concentrations between Treatment 2 surficial and confined aquifers

meanz								40	1
The TTEST F	Procedure								
Variable:	Ca								
Treatment	N	Mean	Std D	ev St	d Err	Minimum	Max	imum	
1 3 Diff (1-2)	166 73	7.6702 87.6060 -79.9358	59.56	75 6	.4181 .9719 .6539	0 7.4600		7000 69.0	
Treatment	Method		Mean	95% CL Me	an	Std Dev	95% CL	Std Dev	
1 3 Diff (1-2) Diff (1-2)		87 -79	.6060 73 .9358 - 89			5.3870 59.5675 33.1386	4.8632 51.2273 30.4049	6.0383 71.1771 36.4166	
Method	Var	iances	DF	t Value	Pr >	[t]			
Pooled Satterthwa	Equ ite Une		237 72.518	-17.18 -11.44		0001 0001			
	Equal i	ty of Vari	ances						
Method	Num DF	Den DF	F Value	Pr → F					
Folded F	72	165	122.27	<.0001					

Figure C. 18: T-test of the Ca²⁺ concentrations between Treatment 1 surficial and confined aquifers

L							6.
meanz							3:
The TTEST P	rocedure						
Variable:	Ca						
Treatment	N	Mean	Std Dev	Std Err	Minimum	Maximum	
2 3	169	21.7231	16.0804	1.2370	0.8600	80.7000	
3 Diff (1-2)	73	87.6060 -65.8829	∭59.5675 35.2915	6.9719 4.9428	7.4600	269.0	
Treatment	Method		1ean 95%	CL Mean	Std Dev	95% CL Std	Dev
2 3			7231 19.281		16.0804		.0050
3 Diff (1-2)	Poo led	87.0 -65.3	6060 73.707 8829 - 75 619	9 101.5 7 - 56.1461	59.5675 35.2915		. 1771 . 7585
Diff (1-2)	Satterthw			7 -51.7821	03.2313	32.3310 30	.1303
Method	Vari	ances	DF t Va	lue Pr >	[t]		
n1_1	-		040 10	00 (
Pooled Satterthwai	Equa ite Uneq				0001 0001		
	Equalit	y of Varia	nces				
L	-						
Method	Num DF	Den DF	F Value P	r > F			
Folded F	72	168	13.72 <	.0001			

Figure C. 19: T-test of the Ca²⁺concentrations between Treatment 2 surficial and confined aquifers

meanz							44
The TTEST P	rocedure						
Variable:	Na						
Treatment	N	Mean	Std Dev	Std Err	Minimum	Maximum	
1 3 Diff (1-2)	169 73	18.8556 21.0684 -2.2127	62.7442 47.1394 58.5015	4.8265 5.5172 8.1935	3.3200 8.1100	415.0 348.0	
Treatment	Method	Me	ean 95% CL	. Mean	Std Dev	95% CL Std	Dev
1 3 Diff (1-2) Diff (1-2)	Pooled Satterthw	18.85 21.06 -2.21 aite -2.21	84 10.0699 27 -18.3531	28.3840 32.0668 13.9276 12.2522	62.7442 47.1394 58.5015	40.5392 56	. 2539 . 3268 . 2486
Method	Vari	ances	DF t Valu	ie Pr >	[t]		
Pooled Satterthwai	Equa te Uneq		240 -0.2 0.35 -0.3		7873 7631		
	Equalit	y of Variand	es				
Method	Num DF	Den DF F	Value Pr	> F			
Folded F	168	72	1.77 0.0	0066			

Figure C. 20: T-test of the Na⁺ concentrations between Treatment 1 surficial and confined aquifers

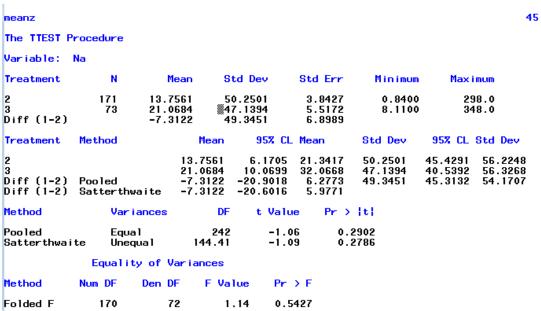


Figure C. 21: T-test of the Na⁺ concentrations between Treatment 2 surficial and confined aquifers

Redox Interactions using PROC MIXED

Treatment=1							
The Mixed Proce	dure						
		Lea	st Squares	Means			
				Standard			
Effect	depth	Location	Estimate	Error	DF	t Value	Pr > t
Location		1	6.2141	0.04541	280	136.86	<.0001
Location		2	6.2409	0.04541	280	137.45	< .0001
Location		2 3	5.8395	0.04541	280	128.61	< .0001
Location		4	5.4644	0.04541	280	120.34	< .0001
depth	D		5.9350	0.03211	280	184.85	< .0001
depth	S		5.9444	0.03211	280	185.14	< .0001
Location*depth	D	1	6.0573	0.06421	280	94.33	< .0001
Location*depth	S	1	6.3708	0.06421	280	99.21	< .0001
Location*depth	D	2	6.2014	0.06421	280	96.57	< .0001
Location*depth	S	2 2 3	6.2805	0.06421	280	97.81	< .0001
Location*depth	D	3	6.0350	0.06421	280	93.98	< .0001
Location*depth	S	3	5.6441	0.06421	280	87.90	₹.0001
Location*depth	D	4	5.4465	0.06421	280	84.82	< .0001
Location*depth	Š	4	5.4822	0.06421	280	85.37	<.0001
zoodvion dopon	Ū	•	0.1022	******	201	00101	
		Tests of E	ffect Slice	s			
			Num	Den			
Effect	depth	Location			F Value	Pr → F	
ETTECT	ueptii	Lucation	DF	DF	value	FF 7 F	
Location*depth		1	1	280	11.92	0.0006	
Location*depth			i	280	0.76	0.3845	
Location*depth		2 3	i	280	18.52	<.0001	
Location*depth		4	i	280	0.15	0.6947	
Location*depth	D	7	3	280	27.04	<.0001	
Location*depth	S		3	280	48.39	<.0001	
Local Toll*uchtil	9			200			

Figure C. 22: Treatment 1 redox statistical analysis results

Treatment=2							
The Mixed Proced	lure						
		Lea	st Squares	Means			
Effect	depth	Location	Estimate	Standard Error	DF	t Value	Pr → [t]
Location Location Location depth depth Location*depth Location*depth Location*depth Location*depth Location*depth Location*depth Location*depth	D S D S D S D S	1 2 3 1 1 2 2 2 3 3	6.0995 6.2125 5.5529 6.0070 5.9028 6.0710 6.1279 6.3686 6.0563 5.5815	0.05341 0.05341 0.05341 0.04361 0.04361 0.07553 0.07553 0.07553 0.07553	210 210 210 210 210 210 210 210 210 210	114.20 116.32 103.97 137.75 135.36 80.38 81.13 84.32 80.18 73.89	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
		Tests of E	ffect Slice	s			
Effect	depth	Location	Num DF	Den DF F	Value	Pr > F	
Location*depth Location*depth Location*depth Location*depth Location*depth	D S	1 2 3	1 1 1 2 2	210 210 210 210 210 210	0.28 8.55 0.29 27.69 19.06	0.5950 0.0038 0.5931 <.0001 <.0001	

Figure C. 23: Treatment 2 redox statistical analysis results

Code for statistical evaluations using means to take into account day to day variations (Not used in this study)

NO₃ N Evaluation Example Code

```
options ls=85 nodate nocenter formdlim="+";

data one;
   infile "Treatment1.csv" firstobs=4 dlm="," dsd;
   input SampleID $ Date : mmddyy10. Treatment Transect WellPosition Depth $
NO3 Cl NCl Na Ca DOC;
   week=week(date);
   day=day(date);
   lno3=log(no3+.01);

run;
data two;
   infile "Treatment2.csv" firstobs=4 dlm="," dsd;
```

```
input SampleID $ Date : mmddyy10. Treatment Transect WellPosition Depth $
NO3 Cl NCl Na Ca DOC;
  week=week(date);
   day=day(date);
  lno3 = log(no3 + .01);
run:
data both;
   set one two;
run;
proc means data=both noprint nway;
  class treatment wellposition transect depth;
  var no3 lno3;
  output out=meanz mean=no3mean lno3mean;
proc print data=meanz;
   title "meanz";
run;
proc sort data=both;
  by treatment depth;
run;
symbol value=dot i=rl;
proc sort;
  by treatment depth;
run;
data one;
   set one;
   if treatment > . ;
   if depth < "T" and depth > " ";
run;
proc sort;
  by depth;
run;
proc mixed data=meanz method=type3;
  by treatment;
  class depth wellposition transect treatment ;
  model lno3mean=wellposition|depth / outp=two;
   random transect transect*wellposition;
   lsmeans wellposition|depth/slice=(wellposition depth);
run;
proc gplot data=meanz;
by treatment;
plot lno3mean*wellposition=depth;
run;
```

Redox Evaluation Example Code

```
options ls=85 nodate nocenter formdlim="+";
data one;
  infile "redox1.csv" firstobs=4 dlm="," dsd;
   input Treatment Location Date : mmddyy10. Depth $ redox;
  week=week(date);
  day=day(date);
  lredox=log(redox+400);
  run;
data two;
  infile "redox2.csv" firstobs=4 dlm="," dsd;
  input Treatment Location Date : mmddyy10. Depth $ redox;
  week=week(date);
  day=day(date);
  lredox=log(redox+400);
  run;
data both;
  set one two;
run;
proc means data=both noprint nway;
  class treatment location depth date;
  var redox lredox;
  output out=meanz mean=redoxmean lredoxmean;
run;
proc print data=meanz;
     title "meanz";
run;
proc sort;
  by treatment location;
run;
symbol value=dot i=rl;
proc gplot data=meanz;
  by treatment location;
  plot lredoxmean*date=depth;
run;
proc sort data=both;
  by treatment depth;
run:
data both;
   set one;
```

```
if treatment > .;
  if depth < "T" and depth > " ";
run;

proc sort;
    by depth;
run;

proc mixed data=meanz method=type3;
    by treatment;
    class location depth treatment;
    model lredoxmean=location|depth / outp=two;
    lsmeans location|depth/slice=(location depth);
run;
```

Confined and Surficial Aquifer Evaluation Example Code

```
options ls=85 nodate nocenter formdlim="+";
data one;
  infile "Treatment1.csv" firstobs=4 dlm="," dsd;
   input SampleID $ Date : mmddyy10. Treatment Transect WellPosition Depth $
NO3 Cl NCl Na Ca DOC;
  week=week(date);
   day=day(date);
   lno3=log(no3+.01);
run;
data two;
  infile "Deep1.csv" firstobs=4 dlm="," dsd;
   input SampleID $ Date : mmddyy10. Treatment Transect WellPosition Depth $
NO3 Cl NCl Na Ca DOC;
  week=week(date);
  day=day(date);
  lno3=log(no3+.01);
run:
data both;
  set one two;
run:
proc ttest data=both;
class treatment;
var NO3;
run;
```

NO₃-N Statistical Analysis Results using PROC MIXED

Effect	DF	DF	F Value	$Pr \rightarrow F$			
WellPosition	3	6	1.25	0.3722			
Depth	i	8	7.91	0.0227			
Depth*WellPosition	3	å	1.86	0.2141			
Depth-wellFosition	3	0	1.00	0.2141			
		Least	Squares Me	ans			
		Well		Standard			
Effect		Position	Estimate	Error	DF	t Value	Pr > [t]
Errect	Depth	rosition	Estimate	Error	DF	t value	5 FF 7 [6]
WellPosition		1	1.1010	0.3559	6	3.09	9 0.0213
WellPosition		2	0.5166	0.3559	6	1.4	5 0.1969
WellPosition		3	0.1388	0.3559	6	0.39	9 0.7100
WellPosition		4	0.1383	0.3559	6	0.39	9 0.7110
Depth	D		0.7697	0.1169	8	6.59	9 0.0002
Depth	S		0.1776	0.1169	8	1.5	2 0.1670
Depth*WellPosition	D	1	1.0314	0.4135	8	2.49	0.0373
Depth*WellPosition	D	2	0.8271	0.4135	8	2.00	0.0805
Depth*WellPosition	D	3	0.4490	0.4135	8	1.09	0.3092
Depth*WellPosition	D	4	0.7715	0.4135	8	1.8	7 0.0991
Depth*WellPosition	S	1	1.1706	0.4135	8	2.8	3 0.0221
Depth*WellPosition	S	2	0.2061	0.4135	8	0.50	0.6315
Depth*WellPosition	Š	3	-0.1714	0.4135	8	-0.4	0.6894
Depth*WellPosition	Š	4	-0.4948	0.4135	8	-1.20	
•							
		Tests of	Effect Sli	ces			
		Well	Nu	m Den			
Effect	Depth				F V	alue	Pr → F
Depth*WellPosition		1		1 8		0.11	0.7495
Depth*WellPosition		2		1 8		2.18	0.1785
Depth*WellPosition		3		1 8		2.17	0.1788
Depth*WellPosition		4		1 8		9.05	0.0169
Depth*WellPosition	D			3 8		0.28	0.8402
Depth*WellPosition	S			3 8		2.48	0.1354
***************************************	******	******	******	• • • • • • • • • • • • • • • • • • • •		*****	

Figure C. 24: Section 1 NO₂-N statistical analysis results

rigure c.	2 Section	11103 11	Statistical	unui y 515	Loguito

Type 3	Tests of	Fixed Ef	fects				
Effect	Num DF	Den DF	F Value	Pr > F			
WellPosition Depth Depth*WellPosition	2 1 2	4 6 6	46.99 14.59 9.01	0.0017 0.0088 0.0156			
		Least So	quares Mea	ans			
Effect		ell osition l	Estimate	Standard Error	DF	t Value	Pr → [t]
WellPosition WellPosition WellPosition Depth Depth Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	1 2 3 D S D 1 D 2 D 3 S S 1 S 2 S 3		2.4843 2.0845 0.2481 2.1367 1.0745 2.4716 2.3390 1.5996 2.4969 1.8301 -1.1034	0.1740 0.1740 0.1740 0.1715 0.1715 0.2971 0.2971 0.2971 0.2971 0.2971	4 4 6 6 6 6 6 6 6	14.28 11.98 1.43 12.46 6.26 8.32 7.87 5.38 8.40 6.16	0.0003 0.2269 <.0001 0.0008 0.0002 0.0002 0.0017 0.0002 0.0008
	Te	ests of E	ffect Slic	es			
Effect	Depth	Well Positio	Num on DE		FV	alue	Pr > F
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3	1 1 2 2	6 6 2 6	_	1.12 1.50 2.50	0.9599 0.3314 0.0014 0.1621 0.0003

Cl Statistical Analysis Results using PROC MIXED

Effect	Num DF	Den DF	F Value	Pr → F		
lellPosition	3	6	1.42	0.3265		
)epth)epth*WellPosition	1 3	8 8	58.55 5.32	<.0001 0.0262		
		Least	Squares Mea	ans		
		Well		Standard		
ffect	Depth	Position	Estimate	Error	DF t Va	lue Pr⇒¦t¦
le11Position		1	2.5874	0.09969	6 25	.95 <.0001
le11Position		2	2.5394	0.09969	6 25	.47 < .0001
ellPosition		3	2.3275	0.09969		.35 < .0001
le11Position		4	2.5948	0.09969		.03 < .0001
epth	D		2.4243	0.04157		.32 <.0001
epth	S		2.6003	0.04157		.56 <.0001
epth*WellPosition	D	1	2.4615	0.1023		.06 <.0001
epth*WellPosition	D	2	2.4250	0.1023		.70 <.0001
epth*WellPosition	D	3	2.2255	0.1023		.75 <.0001
epth*WellPosition	D	4	2.5851	0.1023		.27 <.0001
epth*WellPosition	S	1	2.7133	0.1023		.52 < .0001
epth*WellPosition	S	2	2.6538	0.1023		.94 <.0001
epth*WellPosition	S	3 4	2.4295	0.1023		.75 < .0001
epth*WellPosition	S	4	2.6046	0.1023	8 25	.46 <.0001
		Tests of	Effect Slic	ces		
		Well	Nui			
ffect	Depth	n Posit	ion Di	F DF	F Value	$Pr \rightarrow F$
epth*WellPosition		1		1 8	29.94	0.0006
epth*WellPosition		2		18	24.73	0.0011
epth*WellPosition		3		18	19.66	0.0022
epth*WellPosition		4		18	0.18	0.6821
epth*WellPosition	D		;	3 8 3 8	1.91	0.2065
Depth*WellPosition	S			3 8	1.28	0.3447

Figure C. 26: Section 1 Cl statistical analysis results

Type 3	Tests	of Fixed E	ffects				
Effect	Num DF	Den DF	F Value	Pr → F			
WellPosition Depth Depth*WellPosition	2 1 2	4 6 6	4.66 0.12 3.71	0.0902 0.7442 0.0892			
		Least	Squares Mea	ans			
Effect	Depth	Well Position	Estimate	Standard Error	DF	t Value	Pr → [t]
WellPosition		1	3.4356	0.1125	4	30.53	<.0001
WellPosition		2	3.5225	0.1125	4	31.31 26.52	< .0001
√ellPosition Depth	D	3	2.9839 3.3245	0.1125 0.04063	4 6	81.82	<.0001 <.0001
Depth	Š		3.3035	0.04063	6	81.30	₹.0001
epth*WellPosition	Ď	1	3.5298	0.1246	Ğ.	28.34	< .0001
epth*WellPosition	D	2	3.4180	0.1246	6	27.44	<.0001
epth*WellPosition	D	3	3.0258	0.1246	6	24.29	<.0001
Depth*WellPosition	S S	1	3.3414 3.6269	0.1246 0.1246	6 6	26.82 29.12	<.0001 <.0001
Depth*WellPosition Depth*WellPosition	S	2 3	2.9421	0.1246	6	23.62	<.0001
		Tests of	Effect Slic	ces			
Effect	Depti	Well n Posit	Nui ion Di		F۷	alue F	r → F
Depth*WellPosition		1				3.11 (. 1283
Depth*WellPosition				16 16).1283).0984
Depth*WellPosition		2 3		i 6			.4632
Depth*WellPosition	D	•		. 6			. 1045

Depth*HellPosition D 2 6 3.37 0.1045
Depth*HellPosition S 2 6 5.69 0.0411
Figure C. 27: Section 2 Cl statistical analysis results

NO₃⁻-N/Cl⁻ Statistical Analysis Results using PROC MIXED

Effect	Num DF	Den DF	F Value	Pr → F			
lellPosition	3	6	2.20	0.1893			
)epth)epth*WellPosition	1 3	8 8	11.63 1.54	0.0092 0.2778			
Jeptn-wellFosition	3		1.54	0.2116			
		Least S	quares Mea	ans			
		ell		Standard			
Effect			Estimate	Error	DF	t Value	Pr > [t]
	Deptil 1	DS I C I OII	Latinate	Live		t varue	11 / 101
4ellPosition	1		-1.3796	0.2187	6	-6.31	
le Il Position	2		-1.8783	0.2187	6	-8.59	
lellPosition	3		-2.0421	0.2187	6	-9.34	
√ellPosition Depth	D 4		-2.2565 -1.6078	0.2187 0.08398	6 8	-10.32 -19.14	
)epth	S		-2.1704	0.08398	8	-25.84	
Depth*WellPosition	Ď 1		-1.3780	0.2739	8	-5.03	
Depth*WellPosition	Ď ż		-1.5592	0.2739	8	-5.69	
Depth*WellPosition	D 3		-1.7313	0.2739	8	-6.32	
Depth*WellPosition	D 4		-1.7627	0.2739	8	-6.44	
Depth*WellPosition	8 1		-1.3812	0.2739	8	-5.04	
Depth*WellPosition	S 2		-2.1973	0.2739	8	-8.02	
Depth*WellPosition	S 3 S 4		-2.3530	0.2739	8	-8.59	
)epth*WellPosition	5 4		-2.7502	0.2739	8	-10.04	< .0001
	т.	ests of F	ffect Slic	ces			
	•			300			
		We 11	Nui				
Effect	Depth	Positi	on Di	= DF	FV	alue	Pr → F
Depth*WellPosition		1		1 8		0.00	0.9926
Depth*WellPosition		2		1 8			0.0892
Depth*WellPosition		3		1 8			0.0963
Depth*WellPosition	_	4		1 8			0.0173
Depth*WellPosition	D			3 8			0.7924
Depth*WellPosition	S		- 37/07-0			3.65	0.0635

Figure C. 28: Section 1 NO₃-N/Cl⁻ Statistical Analysis Results

The Mixed Procedure							
Туре 3	Tests o	f Fixed E	ffects				
Fee .	Num	Den		в . г			
Effect	DF	DF	F Value	$Pr \rightarrow F$			
WellPosition	2	4	18.63	0.0094			
Depth	1	6	20.00	0.0042			
Depth*WellPosition	2	6	11.68	0.0085			
		Least	Squares Me	eans			
		Well		Standard			
Effect	Depth	Position	Estimate	Error	DF	t Value	e Pr > t
le11Position		1	-0.8960	0.1566	4	-5.72	
le I I Position		2	-1.3662	0.1566	4	-8.73	
le11Position		3	-2.3764	0.1566	4	-15.18	
Depth	D		-1.1387	0.1111	6	-10.25	
Depth	S	_	-1.9537	0.1111	6	-17.59	
Depth*WellPosition	D	1	-0.9775	0.2223	6	-4.40	
Depth*WellPosition	D D	2 3	-1.0482 -1.3903	0.2223 0.2223	6 6	-4.71 -6.29	
Depth*WellPosition Depth*WellPosition	S	3 1	-0.8144	0.2223	6	-8.23	
Depth*WellPosition	S	2	-1.6842	0.2223	6	-7.58	
Depth*WellPosition	S	3	-3.3625	0.2223	6	-15.18	
zeptil we'll da't toll	_	_			·	-13.11	
		Tests of	Effect Sli	ces			
		Well	Nu				
Effect	Depth	Posit	ion D	OF DF	FV	alue	$Pr \rightarrow F$
Depth*WellPosition		1		1 6		0.27	0.6238
Depth*WellPosition		2		1 6		4.06	0.0905
Depth*WellPosition		3		1 6	3	9.03	0.0008
Depth*WellPosition	D			2 6		0.88	0.4636
Depth*WellPosition	S		- NI/CI- C	2 6	3	0.16	0.0007

Figure C. 29: Section 2 NO₃-N/Cl⁻ Statistical Analysis Results

DOC Statistical Analysis Results using PROC MIXED

	Num	Den					
Effect	DF	DF	F Value	$Pr \rightarrow F$			
WellPosition	3	6	0.74	0.5653			
Depth Depth*WellPosition	1 3	8 8	17.42 0.70	0.0031 0.5757			
		Least	Squares Me	ans			
		Well		Standard			
Effect	Depth	Position	Estimate	Error	DF	t Value	$Pr \rightarrow t $
WellPosition		1	0.2856	0.1200	6	2.38	0.0548
WellPosition WellPosition		2	0.2140 0.08101	0.1200 0.1200	6 6	1.78 0.68	0.1248 0.5248
WellPosition		4	0.04044	0.1200	6	0.34	0.7476
Depth Depth	D S		-0.02418 0.3347	0.05513 0.05513	8	-0.44 6.07	0.6725 0.0003
Depth*WellPosition	D	1	0.1951	0.1476	8	1.32	0.2229
Depth*WellPosition Depth*WellPosition	D D	2	-0.01481 -0.07082	0.1476 0.1476	8	-0.10 -0.48	0.9226 0.6443
Depth*WellPosition	D	4	-0.2062	0.1476	8	-1.40	0.2000
Depth*WellPosition	S	1	0.3762	0.1476	8	2.55	0.0343
Depth*WellPosition Depth*WellPosition	S S	2	0.4429 0.2328	0.1476 0.1476	8	3.00 1.58	0.0171 0.1534
Depth*WellPosition	Š	4	0.2871	0.1476	8	1.94	0.0877
		T	Effect Sli				
Effect	Depti	Well n Posit	Nu tion D		FΨ	Value P	r → F
Depth*WellPosition		1		1 8		1.11 0	. 3232
Depth*WellPosition		2 3		1 8			.0288
Depth*WellPosition Depth*WellPosition		3 4		1 8 1 8).1154).0209
Depth*WellPosition	D	•		3 8		1.11 0	.3993
Depth*WellPosition	S	n 1	DOC CL	3 8		0.35 0	.7922

Figure C. 30: Section 1 DOC Statistical Analysis Results

Туре 3	Tests of	Fixed E	ffects				
Effect	Num DF	Den DF	F Value	Pr → F			
WellPosition Depth Depth*WellPosition	2 1 2	4 6 6	0.88 5.88 7.35	0.4814 0.0514 0.0244			
		Least	Squares Mea	ans			
Effect		ell osition	Estimate	Standard Error	DF	t Value	Pr → [t]
WellPosition WellPosition WellPosition Depth Depth Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0.7445 0.8691 0.5175 0.5421 0.8786 0.9062 0.6919 0.02821 0.5827 1.0464 1.0068	0.2148 0.2148 0.2148 0.1641 0.1641 0.2461 0.2461 0.2461 0.2461 0.2461	4 4 6 6 6 6 6 6 6	3.47 4.05 2.41 3.30 5.35 3.68 2.81 0.11 2.37 4.25 4.09	0.0257 0.0155 0.0736 0.0163 0.0017 0.0103 0.0307 0.9125 0.0557 0.0054 0.0064
	Te	ests of	Effect Slic	ces			
Effect	Depth	Well Posit	Nur ion DF		F۷	alue P	r → F
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 2 3	1	1 6	1	2.18 0 6.59 0 4.15 0	0.2268 0.1905 0.0066 0.0738 0.3373

Figure C. 31: Section 2 DOC Statistical Analysis Results

${\bf Na}^{^+}$ Statistical Analysis Results using PROC MIXED

		_					
Effect	Num DF	Den DF	F Value	$Pr \rightarrow F$			
WellPosition	3	2	0.28	0.8379			
Depth	1	4	11.83	0.0263			
Depth*WellPosition	1	4	10.37	0.0323			
		Least	Squares Me	ans			
		Well		Standard			
Effect	Depth	Position	Estimate	Error	DF	t Value	e Pr > t
WellPosition		1	1.9134	0.1720	2	11.1	3 0.0080
WellPosition		2 3	Non-est				
√ellPosition √ellPosition		3 4	Non-est 2.1400	A 170A	÷	10.4	5 0.0064
veliposition Depth	D	4	1.8098	0.1720 0.1123	2	12.4! 16.1	
Depth	S		Non-est	V.1123	7	10.1	2 (.000
Depth*WellPosition		1	1.5842	0.1856	4	8.5	4 0.0010
Depth*WellPosition		ż	1.7311	0.3094	4	5.6	
Depth*WellPosition	D	3	1.7947	0.3094	4	5.8	0.004
Depth*WellPosition		4	2.1292	0.1856	4	11.4	7 0.000
Depth*WellPosition		1	2.2425	0.1856	4	12.0	
Depth*WellPosition	S	4	2.1508	0.1856	4	11.5	9 0.0003
		Tests of	Effect Sli	ces			
		Well	Nu				
Effect	Depth	Posit	tion [DF DF	FV	/alue	Pr > F
Depth*WellPosition		1		1 4	2	22.18	0.0092
Depth*WellPosition		2		0 .			
Depth*WellPosition		3		0 :			
Depth*WellPosition		4		1 4		0.02	0.8849
Depth*WellPosition	D S			3 4		1.25	0.4027
Depth*WellPosition Figur		a	+ a	ı 4 stical Anal			0.7649

Figure C. 32: Section 1 Na⁺ Statistical Analysis Results

Treatment=2							
The Mixed Procedure							
Type 3	Tests of	Fixed E	ffects				
Effect	Num DF	Den DF	F Value	Pr → F			
WellPosition Depth Depth*WellPosition	1 1 1	2 4 4	21.01 0.36 0.03	0.0444 0.5796 0.8662			
		Least	Squares Mea	ans			
Effect	We Depth Po	ll sition	Estimate	Standard Error	DF t	t Value	Pr > [t]
WellPosition WellPosition Depth Depth Depth*WellPosition Depth*WellPosition	1 3 D S D 1 D 3		0.9708 1.9052 1.4142 1.4617 0.9399 1.8885	0.1368 0.1368 0.09940 0.09940 0.1477	2 2 4 4 4 4	7.10 13.93 14.23 14.71 6.36 12.78	0.0193 0.0051 0.0001 0.0001 0.0031
Depth*WellPosition Depth*WellPosition	S 1 S 3		1.0016	0.1477 0.1477	4	6.78	0.0025
	Те	sts of	Effect Slic	ces			
Effect	Depth	Well Posit	Nur ion DF		F Val	lue P	r > F
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 3		1 4 1 4 1 4	0. 18.	.09 0 .83 0	.6099 .7800 .0123 .0136

Figure C. 33: Section 2 Na⁺ Statistical Analysis Results

Ca²⁺ Statistical Analysis Results using PROC MIXED

Туре 3	Tests of	Fixed E	ffects				
Effect	Num DE	Den DF	F Value	Pr → F			
Effect	DF	DF	r value	FF 2 F			
WellPosition	1	2	8.15	0.1039			
Depth	1	4	8.97	0.0401			
Depth*WellPosition	1	4	0.53	0.5063			
		Least	Squares Me	ans			
		ell		Standard			
Effect	Depth P	osition	Estimate	Error	DF	t Value	Pr > t
WellPosition	1		0.9884	0.1667	2	5.93	0.0273
WellPosition	2	!	Non-est				
WellPosition	3		Non-est				
WellPosition	_ 4		1.9267	0.1667	2	11.56	
Depth	D		2.3869	0	4	Infty	< .0001
Depth	S		Non-est	:	:		
Depth*WellPosition	D 1		1.5953	0.2844	4	5.61	0.0050
Depth*WellPosition	D 2		2.0992	0	4	Infty	
Depth*WellPosition	D 3		3.5573	0	4	Infty	
Depth*WellPosition Depth*WellPosition	D 4		2.2959 0.3815	0.2844 0.2844	4	8.07 1.34	0.0013 0.2509
Depth*WellPosition	S 1		1.5574	0.2844	4	5.48	0.2505
·	1	ests of	Effect Sli	ces			
		Well	Nu	n Den			
Effect	Depth	Posit			F V	alue I	Pr > F
Depth*WellPosition		1		1 4		6.93	0.0580
Depth*WellPosition		2		0.			
Depth*WellPosition		3		0.			
Depth*WellPosition		4		1 4			0.1844
Depth*WellPosition	D			14			0.2046
Depth*WellPosition	S		2.	1 4		6.46	0.0639

Figure C. 34: Section 1 Ca²⁺ Statistical Analysis Results

Treatment=2							
The Mixed Procedure	•						
Туре 3	3 Tests o	f Fixed E	ffects				
Effect	Num DF	Den DF	F Value	Pr → F			
WellPosition Depth Depth*WellPosition	1 1 1	2 4 4	724.82 0.29 23.38	0.0014 0.6169 0.0084			
		Least	Squares Me	ans			
Effect		Well Position	Estimate	Standard Error	DF	t Value	Pr → t
WellPosition WellPosition Depth Depth Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S D D S	1 3 1 3 1 3	3.3444 2.3043 2.8363 2.8124 3.4628 2.2097 3.2261 2.3988	0.07555 0.07555 0.07629 0.07629 0.08172 0.08172 0.08172	2 4 4 4 4 4	44.27 30.50 37.18 36.87 42.38 27.04 39.48 29.36	0.0005 0.0011 <.0001 <.0001 <.0001 <.0001 <.0001
		Tests of	Effect Sli	ces			
Effect	Depth	Well Posit	Nu ion D		FV	Value F	Pr → F
Depth*WellPosition Depth*WellPosition Depth*WellPosition Depth*WellPosition	D S	1 3		1 4 1 4 1 4	45	9.22 57.62	0.0191 0.0385 (.0001 0.0001

Figure C. 35: Section 2 Ca²⁺ Statistical Analysis Results

T-tests for Difference in NO_3 -N Concentrations at the Field Edge

Effect	Num DF	Den DF F	Value	Pr > F							
Depth	1	190	0.15	0.6971							
Treatment	1		134.49	<.0001							
Depth*Treatment	1	190	1.97	0.1624							
Least Squares Means											
Standard											
Effect	Depth	Treatment	Estimate	e Error	DF	t Value	$Pr \rightarrow t $				
Depth	D		7.879			5.66	<.0001				
Depth	S		7.642			5.39	< .0001				
Treatment Treatment		1 2	3.810 11.712			2.72 8.22	0.0072 <.0001				
Depth*Treatment	D	1	3.502			2.44	0.0157				
Depth*Treatment	Ď	ż	12.256			8.34	<.0001				
Depth*Treatment	S	1	4.118	0 1.5102	190	2.73	0.0070				
Depth*Treatment	S	2	11.167	8 1.4936	190	7.48	<.0001				
***************	• • • • • • • • • • • • • • • • • • • •	**********	******	******	******	• • • • • • • • • • • • • • • • • • • •	•••••				
meanz							171				
The Mixed Procedu	ure										
		Tests of E	ffect Sli	ces							
F66	D11	-	Num	Den	E 11-1	D- 3 E					
Effect	Depth	Treatmen	t DF	■ DF	F Value	Pr > F					
Depth*Treatment	D		1	190	109.99	< .0001					
Depth*Treatment	Š		i	190	51.23	₹.0001					
Depth*Treatment		1	1	190	0.47	0.4958					
Depth*Treatment		2	1	190	1.79	0.1829					

Figure C. 36: T test of NO_3 -N Concentration differences at the field edge of Section 1 and Section 2

NO₃-N, Ca²⁺, and Na⁺ differences depending on aquifer

*********	•••••	•••••	•••••	•••••	•••••	•••••	***	****	•••••	•••
meanz										25
The TTEST I	Procedure									
Variable:	NO3									
Treatment	N	Mean	Std	Dev	Std Err	Minimu	ım	Ma	ximum	
1 3 Diff (1-2)	1506 82	2.3543 0.0163 2.3380	0.0	7241 0272 6795	0.0444 0.00300 0.1905		0		.7000 .1200	
Treatment	Method	Mea		95% CL 1	1ean	Std Dev	9	5% CL	Std Dev	
1 3 Diff (1-2) Diff (1-2)		2.354 0.010 2.330 2.330	33 (30	2.2672 0.0104 1.9644 2.2507	2.4415 0.0223 2.7116 2.4253	1.7241 0.0272 1.6795	0	.6646 .0236 .6230	0.0321	1
Method	Variance	es	DF	t Value	Pr >	[t]				
Pooled Satterthwa	Equal ite Unequal	1! 1518	586 3.2	12.28 52.51	<.0 <.0					
	Equality o	f Variance	es							
Method	Num DF Der	n DF F	Value	Pr >	F					
Folded F	1505	81 40	19.35	< .00	01					

Figure C. 37: T-test of the NO₃-N concentrations between Section 1 surficial and confined aquifers

meanz							35
The TTEST F	Procedure						
Variable:	NO3						
Treatment	N	Mean	Std Dev	Std Err	Minimum	Max	x i mum
2 3 Diff (1-2)	1156 82	8.5707 0.0163 8.5543	5.1604 0.0272 4.9884	0.1518 0.00300 0.5701	0		.5000 .1200
Treatment	Method	Mea	n 95% C	L Mean	Std Dev	95% CL	Std Dev
2 3 Diff (1-2) Diff (1-2)	Pooled Satterthwaite	8.570 0.016 8.554 8.554	3 0.0104 3 7.4359	0.0223 9.6728	5.1604 0.0272 4.9884	4.9583 0.0236 4.7993	5.3798 0.0321 5.1932
Method	Variance	es	DF t Val	ue Pr >	[t]		
Pooled Satterthwai	Equal ite Unequal	12 1155	36 15. .9 56.		001 001		
	Equality of	f Variance	S				
Method	Num DF Der	n DF F	Value Pr	> F			
Folded F	1155	81 36	008.2 <.	0001			

Figure C. 38: T-test of the NO₃-N concentrations between Section 2 surficial and confined aquifers

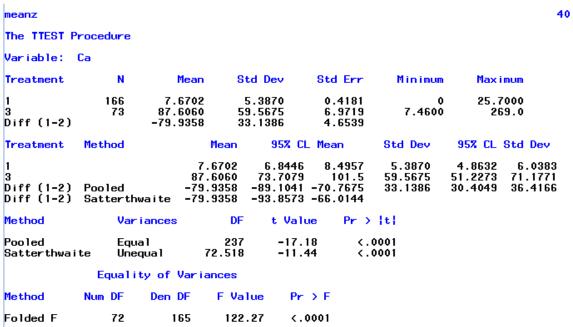


Figure C. 39: T-test of the Ca²⁺ concentrations between Section 1 surficial and confined aquifers

meanz							3:
The TTEST F	Procedure						
Variable:	Са						
Treatment	N	Mean	Std De	v Std Er	r Minimum	Maximum	
2 3 Diff (1-2)	169 73	21.7231 87.6060 -65.8829	16.080 ∭59.567 35.291	5 6.971	9 7.4600	80.7000 269.0	
Treatment	Method		Mean 9	5% CL Mean	Std Dev	95% CL Std	Dev
2 3 Diff (1-2) Diff (1-2)	Pooled Satterth	87 -65	.6060 73. .8829 - 75.	2812 24.165 7079 101. 6197 -56.146 9837 -51.782	5 59.5675 1 35.2915	51.2273 71.	. 0050 . 1771 . 7585
Method	Var	iances	DF t	Value Pr	> [t]		
Pooled Satterthwai	Equa i te Unec		240 76.572		<.0001 <.0001		
	Equal i	ty of Varia	ances				
Method	Num DF	Den DF	F Value	$Pr \rightarrow F$			
Folded F	72	168	13.72	<.0001			

Figure C. 40: T-test of the Ca²⁺concentrations between Section 2 surficial and confined aquifers

meanz							4
The TTEST P	rocedure						
Variable:	Na						
Treatment	N	Mean	Std Dev	Std Err	Minimum	Maxim	um
1	169	18.8556	62.7442	4.8265	3.3200	415	
3 Diff (1-2)	73	21.0684 -2.2127	47.1394 58.5015	5.5172 8.1935	8.1100	348	.0
Treatment	Method	Me	ean 95% C	L Mean	Std Dev	95% CL 9	td Dev
1 3		18.8			62.7442		70.2539
Diff (1-2) Diff (1-2)	Pooled Satterthw	21.00 -2.21 aite -2.21	127 -18.3531	13.9276	47.1394 58.5015		56.3268 64.2486
Method	Vari	ances	DF t Val	ue Pr >	[t]		
Pooled Satterthwai	Equa te Uneq		240 -0. 3.35 -0.		7873 7631		
	Equalit	y of Variand	ces				
Method	Num DF	Den DF F	Value Pr	> F			
Folded F	168	72	1.77 0.	0066			

Figure C. 41: T-test of the Na⁺ concentrations between Section 1 surficial and confined aquifers

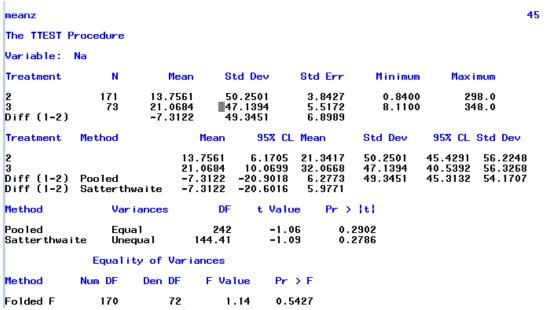


Figure C. 42: T-test of the Na⁺ concentrations between Section 2 surficial and confined aquifers

Redox Interactions using PROC MIXED

Treatment=1										
The Mixed Procee	dure									
Least Squares Means										
				Standard						
Effect	Depth	Location	Estimate	Error	DF	t Value	$Pr \rightarrow t $			
Location		1	6.2214	0.04598	278	135.30	<.0001			
Location		2 3	6.2409	0.04532	278	137.70	< .0001			
Location		3	5.8395	0.04532	278	128.85	< .0001			
Location		4	5.4644	0.04532	278	120.57	< .0001			
Depth	D		5.9387	0.03228	278	183.96	< .0001			
Depth	S		5.9444	0.03205	278	185.49	<.0001			
Location*Depth	D S	1	6.0720	0.06595	278	92.07	< .0001			
Location*Depth	S	1	6.3708	0.06410	278	99.40	< .0001			
Location*Depth	D	2	6.2014	0.06410	278	96.75	< .0001			
Location*Depth	S	2 2 3 3	6.2805	0.06410	278	97.99	<.0001			
Location*Depth	D	3	6.0350	0.06410	278	94.16	<.0001			
Location*Depth	S	3	5.6441	0.06410	278	88.06	<.0001			
Location*Depth	D	4	5.4465	0.06410	278	84.98	<.0001			
Location*Depth	ទ	4	5.4822	0.06410	278	85.53	<.0001			
		Tests of E	ffect Slice	s						
			Num	Den						
Effect	Depth	Location			Value	Pr → F				
Lilect	Deptii	LUCATION	ы	DI 1	varue	11 / 1				
Location*Depth		1 ****	1	278	10.56	0.0013				
Location*Depth			i	278	0.76	0.3836				
Location*Depth		2 3	i	278	18.59	<.0001				
Location*Depth		4	i	278	0.15	0.6942				
Location*Depth	D	-	3	278	27.37	< .0001				
Location*Depth	Š		3	278	48.57	₹.0001				

Figure C. 43: Proc mixed of redox interactions in Section 1

Treatment=2											
The Mixed Proces	dure										
Least Squares Means											
Effect	Depth	Location	Estimate	Standard Error	DF	t Value	Pr → [t]				
Location Location Depth Depth Location*Depth Location*Depth Location*Pepth Location*Depth Location*Depth Location*Depth	D S D S D S D S	1 2 3 1 1 2 2 2 3 3	6.0984 6.2125 5.5529 6.0063 5.9028 6.0689 6.1279 6.3686 6.0563 5.5815	0.05438 0.05360 0.05360 0.04419 0.04376 0.07799 0.07580 0.07580 0.07580 0.07580	208 208 208 208 208 208 208 208 208 208	112.15 115.91 103.61 135.93 134.89 77.81 80.85 84.02 79.90 73.64 72.88	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001				
		Tests of E	ffect Slice	s							
Effect	Depth	Location	Num DF	Den DF F	- Value	Pr > F					
Location*Depth Location*Depth Location*Depth Location*Depth Location*Depth	D S	1 2 3	1 1 1 2 2	208 208 208 208 208	0.29 8.49 0.28 27.45 18.93	0.5879 0.0040 0.5944 <.0001 <.0001					

Figure C. 44: Proc mixed of redox interactions in Section 2

APPENDIX D: Hydraulic Gradient and Flow Direction Modeling

and Calculations

Table D. 1: Calculated hydraulic gradient and flow direction angle for each month water table elevation was monitored in monitoring wells.

monitoring wells.											
9	Section 1		S	Section 2							
Date	Gradient	Angle	Date	Gradient	Angle						
6/10/2008	0.006	-60.0	6/10/2008	0.004	-31.8						
8/6/2008	0.006	-79.4	8/6/2008	0.003	-42.9						
9/3/2008	0.007	54.0	9/3/2008	0.004	54.1						
10/1/2008	0.007	71.3	10/1/2008	0.001	77.2						
11/5/2008	0.008	61.6	11/5/2008	0.002	51.1						
12/3/2008	0.009	-83.6	12/3/2008	0.003	70.4						
1/13/2009	0.011	-37.2	1/13/2009	0.004	-26.7						
2/3/2009	0.008	-61.4	2/3/2009	0.003	-80.4						
3/3/2009	0.015	-37.8	3/3/2009	0.010	-29.3						
4/7/2009	0.015	-40.7	4/7/2009	0.010	-18.3						
5/6/2009	0.006	-61.3	5/6/2009	0.002	-30.3						
6/9/2009	0.006	-70.2	6/9/2009	0.003	-68.1						
7/7/2009	0.011	86.3	7/7/2009	0.005	-78.7						
8/4/2009	0.003	-81.6	8/4/2009	0.005	-70.1						
9/1/2009	0.013	86.3	9/1/2009	0.004	-73.4						
10/6/2009	0.018	74.1	10/6/2009	0.003	-63.1						
11/3/2009	0.007	59.2	11/3/2009	0.002	13.0						
12/1/2009	0.006	-67.1	12/1/2009	0.005	-34.2						
1/7/2010	0.013	-34.4	1/7/2010	0.007	-15.7						
2/2/2010	0.036	-82.2	2/2/2010	0.013	-42.3						
3/2/2010	0.012	-30.8	3/2/2010	0.006	-12.6						
4/15/2010	0.010	-29.5	4/15/2010	0.006	-12.4						
5/4/2010	0.004	-56.9	5/4/2010	0.004	-26.7						

Flow Velocity and Residence Time Calculations

Table D. 2: Section 1 1.5 m depth flow velocity and residence time calculations water table elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

				Porosit	, 01 0100	iiei eioi e use					
	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond.	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
8/1/2008	0.08	1.30	0.31	30.00	0.67	0.12	1.00	0.33	0.62	470.03	1.29
9/1/2008	0.08	1.30	0.29	30.00	0.72	0.09	1.00	0.26	0.78	548.10	1.50
10/1/2008	0.07	1.30	0.26	30.00	0.79	0.09	1.00	0.25	0.81	583.91	1.60
11/1/2008	0.07	1.30	0.27	30.00	0.75	0.08	1.00	0.24	0.85	586.16	1.61
12/1/2008	0.11	1.30	0.42	30.00	0.49	0.09	1.00	0.27	0.78	463.16	1.27
1/1/2009	0.10	1.30	0.37	30.00	0.55	0.15	1.00	0.42	0.48	377.33	1.03
2/1/2009	0.09	1.30	0.32	30.00	0.65	0.17	1.00	0.49	0.42	389.37	1.07
3/1/2009	0.20	1.30	0.73	30.00	0.28	0.14	1.00	0.40	0.51	289.45	0.79
4/1/2009	0.17	1.30	0.63	30.00	0.33	0.18	1.00	0.52	0.40	264.26	0.72
5/1/2009	0.13	1.30	0.48	30.00	0.43	0.12	1.00	0.35	0.59	373.43	1.02
6/1/2009	0.12	1.30	0.43	30.00	0.48	0.08	1.00	0.23	0.91	506.50	1.39
7/1/2009	0.10	1.30	0.39	30.00	0.53	0.07	1.00	0.19	1.07	586.64	1.61
8/1/2009	0.09	1.30	0.35	30.00	0.59	0.06	1.00	0.16	1.26	672.64	1.84
9/1/2009	0.09	1.30	0.32	30.00	0.64	0.05	1.00	0.15	1.40	745.20	2.04
10/1/2009	0.08	1.30	0.31	30.00	0.66	0.05	1.00	0.13	1.53	799.92	2.19
11/1/2009	0.13	1.30	0.47	30.00	0.43	0.04	1.00	0.12	1.64	758.45	2.08
12/1/2009	0.21	1.30	0.76	30.00	0.27	0.07	1.00	0.20	1.01	467.63	1.28
1/1/2010	0.19	1.30	0.72	30.00	0.28	0.17	1.00	0.48	0.42	258.75	0.71
2/1/2010	0.20	1.30	0.75	30.00	0.27	0.17	1.00	0.48	0.43	255.96	0.70
3/1/2010	0.18	1.30	0.69	30.00	0.30	0.17	1.00	0.48	0.42	264.00	0.72
4/1/2010	0.17	1.30	0.63	30.00	0.33	0.15	1.00	0.42	0.49	298.01	0.82
5/1/2010	0.14	1.30	0.51	30.00	0.40	0.12	1.00	0.36	0.58	357.86	0.98

Table D. 3: Section 1 1.5 m depth flow velocity and residence time calculations using Devlin (2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond.	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
6/1/2008	0.01	1.30	0.02	30.00	9.21	0.01	1.00	0.02	11.98	7733.32	21.19
8/1/2008	0.01	1.30	0.02	30.00	9.75	0.01	1.00	0.02	12.67	8184.73	22.42
9/1/2008	0.01	1.30	0.03	30.00	7.74	0.01	1.00	0.02	10.06	6499.06	17.81
10/1/2008	0.01	1.30	0.03	30.00	7.73	0.01	1.00	0.02	10.05	6487.33	17.77
11/1/2008	0.01	1.30	0.03	30.00	7.26	0.01	1.00	0.02	9.44	6096.16	16.70
12/1/2008	0.01	1.30	0.03	30.00	6.23	0.01	1.00	0.03	8.10	5231.72	14.33
1/1/2009	0.01	1.30	0.04	30.00	5.18	0.01	1.00	0.03	6.74	4349.81	11.92
2/1/2009	0.01	1.30	0.03	30.00	7.11	0.01	1.00	0.02	9.25	5970.32	16.36
3/1/2009	0.02	1.30	0.06	30.00	3.62	0.02	1.00	0.04	4.70	3035.20	8.32
4/1/2009	0.01	1.30	0.05	30.00	3.80	0.01	1.00	0.04	4.94	3192.01	8.75
5/1/2009	0.01	1.30	0.02	30.00	9.90	0.01	1.00	0.02	12.87	8309.53	22.77
6/1/2009	0.01	1.30	0.02	30.00	9.78	0.01	1.00	0.02	12.72	8214.42	22.51
7/1/2009	0.01	1.30	0.04	30.00	4.96	0.01	1.00	0.03	6.45	4164.88	11.41
8/1/2009	0.00	1.30	0.01	30.00	16.65	0.00	1.00	0.01	21.64	13973.67	38.28
9/1/2009	0.01	1.30	0.05	30.00	4.25	0.01	1.00	0.04	5.52	3566.34	9.77
10/1/2009	0.02	1.30	0.07	30.00	3.12	0.02	1.00	0.05	4.06	2619.10	7.18
11/1/2009	0.01	1.30	0.02	30.00	8.35	0.01	1.00	0.02	10.86	7011.63	19.21
12/1/2009	0.01	1.30	0.02	30.00	9.93	0.01	1.00	0.02	12.91	8334.05	22.83
1/1/2010	0.01	1.30	0.05	30.00	4.22	0.01	1.00	0.04	5.49	3543.27	9.71
2/1/2010	0.04	1.30	0.13	30.00	1.55	0.04	1.00	0.10	2.01	1300.02	3.56
3/1/2010	0.01	1.30	0.04	30.00	4.71	0.01	1.00	0.03	6.12	3951.53	10.83
4/1/2010	0.01	1.30	0.04	30.00	5.75	0.01	1.00	0.03	7.48	4830.06	13.23
5/1/2010	0.00	1.30	0.01	30.00	13.87	0.00	1.00	0.01	18.04	11647.38	31.91

Table D. 4: Section 3m depth flow velocity and residence time calculations using water table elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

				and a porosi	ey or old on the	,	uscu.				
	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond.	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
6/1/2008	0.09	2.00	0.51	30.00	0.40	0.15	2.35	1.02	0.20	220.47	0.60
7/1/2008	0.11	2.00	0.61	30.00	0.34	0.11	2.35	0.71	0.29	229.49	0.63
8/1/2008	0.08	2.00	0.47	30.00	0.44	0.12	2.35	0.78	0.26	255.08	0.70
9/1/2008	0.08	2.00	0.44	30.00	0.47	0.09	2.35	0.62	0.33	292.15	0.80
10/1/2008	0.07	2.00	0.40	30.00	0.51	0.09	2.35	0.60	0.34	313.15	0.86
11/1/2008	0.07	2.00	0.42	30.00	0.49	0.08	2.35	0.57	0.36	311.16	0.85
12/1/2008	0.11	2.00	0.64	30.00	0.32	0.09	2.35	0.62	0.33	237.56	0.65
1/1/2009	0.10	2.00	0.57	30.00	0.36	0.15	2.35	1.00	0.21	205.62	0.56
2/1/2009	0.09	2.00	0.49	30.00	0.42	0.17	2.35	1.16	0.18	218.91	0.60
3/1/2009	0.20	2.00	1.12	30.00	0.18	0.14	2.35	0.94	0.22	146.25	0.40
4/1/2009	0.17	2.00	0.97	30.00	0.21	0.18	2.35	1.21	0.17	139.20	0.38
5/1/2009	0.13	2.00	0.74	30.00	0.28	0.12	2.35	0.81	0.25	194.08	0.53
6/1/2009	0.12	2.00	0.66	30.00	0.31	0.08	2.35	0.53	0.39	254.84	0.70
7/1/2009	0.10	2.00	0.59	30.00	0.35	0.07	2.35	0.45	0.46	293.27	0.80
8/1/2009	0.09	2.00	0.54	30.00	0.38	0.06	2.35	0.38	0.53	334.34	0.92
9/1/2009	0.09	2.00	0.49	30.00	0.42	0.05	2.35	0.34	0.60	369.53	1.01
10/1/2009	0.08	2.00	0.48	30.00	0.43	0.05	2.35	0.32	0.65	394.87	1.08
11/1/2009	0.13	2.00	0.73	30.00	0.28	0.04	2.35	0.29	0.70	358.30	0.98
12/1/2009	0.21	2.00	1.17	30.00	0.18	0.07	2.35	0.48	0.43	221.10	0.61
1/1/2010	0.19	2.00	1.11	30.00	0.18	0.17	2.35	1.14	0.18	133.40	0.37
2/1/2010	0.20	2.00	1.15	30.00	0.18	0.17	2.35	1.13	0.18	131.39	0.36
3/1/2010	0.18	2.00	1.06	30.00	0.19	0.17	2.35	1.14	0.18	136.89	0.38
4/1/2010	0.17	2.00	0.97	30.00	0.21	0.15	2.35	0.99	0.21	153.56	0.42
5/1/2010	0.14	2.00	0.78	30.00	0.26	0.12	2.35	0.84	0.25	185.35	0.51

Table D. 5: Section 3 m depth flow velocity and residence time calculations using Devlin (2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

				01 0	os was thereiv	ore useu.					
	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond/	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
8/1/2008	0.01	2.00	0.03	30.00	6.34	0.01	2.35	0.04	8.99	5594.03	15.33
9/1/2008	0.01	2.00	0.04	30.00	5.03	0.01	2.35	0.05	7.14	4441.93	12.17
10/1/2008	0.01	2.00	0.04	30.00	5.02	0.01	2.35	0.05	7.12	4433.91	12.15
11/1/2008	0.01	2.00	0.04	30.00	4.72	0.01	2.35	0.05	6.70	4166.56	11.42
12/1/2008	0.01	2.00	0.05	30.00	4.05	0.01	2.35	0.06	5.75	3575.74	9.80
1/1/2009	0.01	2.00	0.06	30.00	3.37	0.01	2.35	0.07	4.78	2972.98	8.15
2/1/2009	0.01	2.00	0.04	30.00	4.62	0.01	2.35	0.05	6.56	4080.55	11.18
3/1/2009	0.02	2.00	0.09	30.00	2.35	0.02	2.35	0.10	3.33	2074.47	5.68
4/1/2009	0.01	2.00	0.08	30.00	2.47	0.01	2.35	0.10	3.51	2181.65	5.98
5/1/2009	0.01	2.00	0.03	30.00	6.43	0.01	2.35	0.04	9.13	5679.33	15.56
6/1/2009	0.01	2.00	0.03	30.00	6.36	0.01	2.35	0.04	9.02	5614.33	15.38
7/1/2009	0.01	2.00	0.06	30.00	3.22	0.01	2.35	0.07	4.57	2846.58	7.80
8/1/2009	0.00	2.00	0.02	30.00	10.82	0.00	2.35	0.02	15.35	9550.62	26.17
9/1/2009	0.01	2.00	0.07	30.00	2.76	0.01	2.35	0.09	3.92	2437.50	6.68
10/1/2009	0.02	2.00	0.10	30.00	2.03	0.02	2.35	0.12	2.88	1790.08	4.90
11/1/2009	0.01	2.00	0.04	30.00	5.43	0.01	2.35	0.04	7.70	4792.26	13.13
12/1/2009	0.01	2.00	0.03	30.00	6.45	0.01	2.35	0.04	9.15	5696.09	15.61
1/1/2010	0.01	2.00	0.07	30.00	2.74	0.01	2.35	0.09	3.89	2421.73	6.63
2/1/2010	0.04	2.00	0.20	30.00	1.01	0.04	2.35	0.24	1.43	888.52	2.43
3/1/2010	0.01	2.00	0.07	30.00	3.06	0.01	2.35	0.08	4.34	2700.76	7.40
4/1/2010	0.01	2.00	0.05	30.00	3.74	0.01	2.35	0.06	5.30	3301.21	9.04
5/1/2010	0.00	2.00	0.02	30.00	9.02	0.00	2.35	0.03	12.79	7960.66	21.81

Table D. 6: Section 21.5m depth flow velocity and residence time calculations using water table elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

				una a por	, , , , , , , , , , , , , , , , , , ,	as therefore	uscu.				
	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond.	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
6/10/2008	0.13	1.80	0.67	30.00	0.31	0.05	2.02	0.30	0.68	358.66	0.98
8/6/2008	0.12	1.80	0.62	30.00	0.33	0.05	2.02	0.27	0.77	401.17	1.10
9/3/2008	0.12	1.80	0.61	30.00	0.34	0.04	2.02	0.25	0.81	420.80	1.15
10/1/2008	0.11	1.80	0.55	30.00	0.38	0.04	2.02	0.24	0.87	455.57	1.25
11/5/2008	0.12	1.80	0.61	30.00	0.34	0.04	2.02	0.24	0.86	436.94	1.20
12/3/2008	0.15	1.80	0.78	30.00	0.26	0.06	2.02	0.36	0.57	304.91	0.84
1/13/2009	0.15	1.80	0.79	30.00	0.26	0.07	2.02	0.39	0.53	286.60	0.79
2/3/2009	0.14	1.80	0.73	30.00	0.28	0.06	2.02	0.32	0.64	337.81	0.93
3/3/2009	0.20	1.80	1.03	30.00	0.20	0.11	2.02	0.61	0.34	196.16	0.54
4/7/2009	0.18	1.80	0.92	30.00	0.22	0.08	2.02	0.46	0.45	245.35	0.67
5/6/2009	0.14	1.80	0.73	30.00	0.28	0.05	2.02	0.31	0.66	343.40	0.94
6/9/2009	0.12	1.80	0.64	30.00	0.32	0.04	2.02	0.25	0.84	422.66	1.16
7/7/2009	0.11	1.80	0.56	30.00	0.37	0.04	2.02	0.22	0.93	475.03	1.30
8/4/2009	0.10	1.80	0.50	30.00	0.41	0.03	2.02	0.19	1.09	546.70	1.50
9/1/2009	0.09	1.80	0.48	30.00	0.43	0.03	2.02	0.17	1.19	591.70	1.62
10/6/2009	0.09	1.80	0.47	30.00	0.44	0.03	2.02	0.17	1.23	610.34	1.67
11/3/2009	0.15	1.80	0.78	30.00	0.26	0.06	2.02	0.36	0.57	303.43	0.83
12/1/2009	0.20	1.80	1.03	30.00	0.20	0.10	2.02	0.58	0.36	202.95	0.56
1/7/2010	0.20	1.80	1.00	30.00	0.20	0.10	2.02	0.56	0.37	209.57	0.57
2/2/2010	0.20	1.80	1.04	30.00	0.20	0.10	2.02	0.60	0.34	197.77	0.54
3/2/2010	0.19	1.80	0.95	30.00	0.22	0.09	2.02	0.49	0.42	231.66	0.63
4/15/2010	0.18	1.80	0.93	30.00	0.22	0.08	2.02	0.46	0.44	242.35	0.66
5/4/2010	0.16	1.80	0.81	30.00	0.25	0.06	2.02	0.37	0.55	295.00	0.81

Table D. 7: Section 21.5m depth flow velocity and residence time calculations using Devlin (2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

					•						
	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond.	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
6/10/2008	0.00	1.80	0.02	30.00	10.23	0.00	2.02	0.02	9.11	7057.90	19.34
8/6/2008	0.00	1.80	0.01	30.00	15.03	0.00	2.02	0.02	13.39	10373.25	28.42
9/3/2008	0.00	1.80	0.02	30.00	9.26	0.00	2.02	0.02	8.25	6393.10	17.52
10/1/2008	0.00	1.80	0.01	30.00	32.08	0.00	2.02	0.01	28.59	22144.61	60.67
11/5/2008	0.00	1.80	0.01	30.00	19.66	0.00	2.02	0.01	17.52	13567.55	37.17
12/3/2008	0.00	1.80	0.02	30.00	11.73	0.00	2.02	0.02	10.45	8096.53	22.18
1/13/2009	0.00	1.80	0.02	30.00	10.02	0.00	2.02	0.02	8.93	6916.20	18.95
2/3/2009	0.00	1.80	0.01	30.00	15.16	0.00	2.02	0.02	13.51	10463.39	28.67
3/3/2009	0.01	1.80	0.05	30.00	3.90	0.01	2.02	0.06	3.47	2690.61	7.37
4/7/2009	0.01	1.80	0.05	30.00	4.13	0.01	2.02	0.06	3.68	2852.36	7.81
5/6/2009	0.00	1.80	0.01	30.00	18.47	0.00	2.02	0.01	16.46	12751.96	34.94
6/9/2009	0.00	1.80	0.02	30.00	13.49	0.00	2.02	0.02	12.02	9312.99	25.52
7/7/2009	0.01	1.80	0.03	30.00	7.62	0.01	2.02	0.03	6.79	5257.76	14.40
8/4/2009	0.01	1.80	0.03	30.00	7.98	0.01	2.02	0.03	7.11	5506.82	15.09
9/1/2009	0.00	1.80	0.02	30.00	10.48	0.00	2.02	0.02	9.34	7236.49	19.83
10/6/2009	0.00	1.80	0.02	30.00	13.30	0.00	2.02	0.02	11.85	9178.21	25.15
11/3/2009	0.00	1.80	0.01	30.00	26.33	0.00	2.02	0.01	23.47	18176.58	49.80
12/1/2009	0.00	1.80	0.02	30.00	8.22	0.00	2.02	0.03	7.33	5675.29	15.55
1/7/2010	0.01	1.80	0.04	30.00	5.61	0.01	2.02	0.04	5.00	3873.41	10.61
2/2/2010	0.01	1.80	0.07	30.00	2.99	0.01	2.02	0.08	2.66	2060.62	5.65
3/2/2010	0.01	1.80	0.03	30.00	6.96	0.01	2.02	0.03	6.21	4806.57	13.17
4/15/2010	0.01	1.80	0.03	30.00	6.46	0.01	2.02	0.04	5.76	4459.90	12.22
5/4/2010	0.00	1.80	0.02	30.00	10.33	0.00	2.02	0.02	9.21	7131.74	19.54

Table D. 8: Section 2 3m depth flow velocity and residence time calculations using water table elevation data. Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

				una a por osio	, 01 0100						
	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond.	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
8/6/2008	0.12	3.70	1.28	30.00	0.27	0.05	3.10	0.41	0.25	189.12	0.52
9/3/2008	0.12	3.70	1.25	30.00	0.27	0.04	3.10	0.39	0.27	196.92	0.54
10/1/2008	0.11	3.70	1.12	30.00	0.31	0.04	3.10	0.36	0.28	215.06	0.59
11/5/2008	0.12	3.70	1.25	30.00	0.27	0.04	3.10	0.37	0.28	202.03	0.55
12/3/2008	0.15	3.70	1.61	30.00	0.21	0.06	3.10	0.55	0.19	145.92	0.40
1/13/2009	0.15	3.70	1.62	30.00	0.21	0.07	3.10	0.60	0.17	139.39	0.38
2/3/2009	0.14	3.70	1.50	30.00	0.23	0.06	3.10	0.49	0.21	160.00	0.44
3/3/2009	0.20	3.70	2.11	30.00	0.16	0.11	3.10	0.93	0.11	99.34	0.27
4/7/2009	0.18	3.70	1.90	30.00	0.18	0.08	3.10	0.70	0.15	119.38	0.33
5/6/2009	0.14	3.70	1.49	30.00	0.23	0.05	3.10	0.48	0.21	161.90	0.44
6/9/2009	0.12	3.70	1.31	30.00	0.26	0.04	3.10	0.38	0.27	194.63	0.53
7/7/2009	0.11	3.70	1.14	30.00	0.30	0.04	3.10	0.34	0.30	220.18	0.60
8/4/2009	0.10	3.70	1.03	30.00	0.33	0.03	3.10	0.29	0.35	250.46	0.69
9/1/2009	0.09	3.70	0.99	30.00	0.35	0.03	3.10	0.26	0.39	268.67	0.74
10/6/2009	0.09	3.70	0.96	30.00	0.36	0.03	3.10	0.26	0.40	276.84	0.76
11/3/2009	0.15	3.70	1.60	30.00	0.21	0.06	3.10	0.56	0.18	145.72	0.40
12/1/2009	0.20	3.70	2.12	30.00	0.16	0.10	3.10	0.88	0.12	101.44	0.28
1/7/2010	0.20	3.70	2.06	30.00	0.17	0.10	3.10	0.85	0.12	104.53	0.29
2/2/2010	0.20	3.70	2.14	30.00	0.16	0.10	3.10	0.91	0.11	99.32	0.27
3/2/2010	0.19	3.70	1.96	30.00	0.18	0.09	3.10	0.75	0.14	113.69	0.31
4/15/2010	0.18	3.70	1.91	30.00	0.18	0.08	3.10	0.71	0.14	118.04	0.32
5/4/2010	0.16	3.70	1.67	30.00	0.21	0.06	3.10	0.57	0.18	140.98	0.39

Table D. 9: Section 2 3m depth flow velocity and residence time calculations using Devlin (2003). Soil type was assumed sandy loam based on soil samples and a porosity of 0.35 was therefore used.

				01 0.	os was there	ore useu.					
	Gradient	Cond.	Seepage Velocity	Area to Stream	Time	Gradient	Cond.	Seepage Velocity	Time	Time	Time
Date	$3-2 (m^2/m)$	3-2 (cm/hr)	(m*cm/hr)	(m^2)	(3-2) (years)	$1-2 (m^2/m)$	2-1 (cm/hr)	(m*cm/hr)	1-2 (years)	(days)	1-3 (years)
8/6/2008	0.00	3.70	0.03	30.00	7.31	0.00	3.10	0.02	8.73	5853.57	16.04
9/3/2008	0.00	3.70	0.05	30.00	4.51	0.00	3.10	0.04	5.38	3607.60	9.88
10/1/2008	0.00	3.70	0.01	30.00	15.87	0.00	3.10	0.01	18.63	12591.03	34.50
11/5/2008	0.00	3.70	0.02	30.00	9.56	0.00	3.10	0.02	11.41	7656.10	20.98
12/3/2008	0.00	3.70	0.04	30.00	5.71	0.00	3.10	0.03	6.81	4568.83	12.52
1/13/2009	0.00	3.70	0.04	30.00	4.87	0.00	3.10	0.04	5.82	3902.78	10.69
2/3/2009	0.00	3.70	0.03	30.00	7.37	0.00	3.10	0.02	8.80	5904.44	16.18
3/3/2009	0.01	3.70	0.11	30.00	1.90	0.01	3.10	0.09	2.26	1518.30	4.16
4/7/2009	0.01	3.70	0.10	30.00	2.01	0.01	3.10	0.09	2.40	1609.57	4.41
5/6/2009	0.00	3.70	0.02	30.00	8.99	0.00	3.10	0.02	10.73	7195.86	19.71
6/9/2009	0.00	3.70	0.03	30.00	6.56	0.00	3.10	0.03	7.83	5255.27	14.40
7/7/2009	0.01	3.70	0.06	30.00	3.71	0.01	3.10	0.05	4.42	2966.92	8.13
8/4/2009	0.01	3.70	0.05	30.00	3.88	0.01	3.10	0.04	4.63	3107.47	8.51
9/1/2009	0.00	3.70	0.04	30.00	5.10	0.00	3.10	0.03	6.09	4083.51	11.19
10/6/2009	0.00	3.70	0.03	30.00	6.47	0.00	3.10	0.03	7.72	5179.21	14.19
11/3/2009	0.00	3.70	0.02	30.00	12.81	0.00	3.10	0.01	15.29	10256.95	28.10
12/1/2009	0.00	3.70	0.05	30.00	4.00	0.00	3.10	0.04	4.77	3202.54	8.77
1/7/2010	0.01	3.70	0.08	30.00	2.73	0.01	3.10	0.06	3.26	2185.74	5.99
2/2/2010	0.01	3.70	0.14	30.00	1.45	0.01	3.10	0.12	1.73	1162.80	3.19
3/2/2010	0.01	3.70	0.06	30.00	3.39	0.01	3.10	0.05	4.04	2712.32	7.43
4/15/2010	0.01	3.70	0.07	30.00	3.14	0.01	3.10	0.05	3.75	2516.70	6.90
5/4/2010	0.00	3.70	0.04	30.00	5.03	0.00	3.10	0.03	6.00	4024.40	11.03

Table D. 10: Example sheet of Devlin (2003) for determining groundwater flow angles and gradient

	[2	X] matrix		[D] matrix	
#	X	y	Z	D	
2A1D	4725.7	5601.3	90.4	1	27.55
2A1S	4726.3	5596.1	90.5	1	27.59
2A2D	4677.2	5595.2	90.2	1	27.51
2A2S	4676.9	5590.3	90.1	1	27.49
2A3D	4579.4	5579.1	90.0	1	27.45
2A3S	4579.5	5576.1	89.8	1	27.39
2B1D	4732.9	5556.1	90.5	1	27.59
2B1S	4734.2	5552.6	90.6	1	27.62
2B2D	4682.4	5550.1	90.3	1	27.53
2B2S	4682.6	5544.1	90.2	1	27.49
2B3D	4599.8	5536.5	90.2	1	27.50
2B3S	4600.5	5531.9	89.9	1	27.42
2C1D	4741.0	5508.1	90.6	1	27.63
2C1S	4741.0	5504.5	90.6	1	27.63
2C2D	4691.8	5499.0	90.5	1	27.59
2C2S	4690.7	5495.1	90.3	1	27.53
2C3D	4609.9	5483.9	90.3	1	27.52
2C3S	4610.1	5479.4	90.1	1	27.47

Table D. 11: Additional example sheet of Devlin (2003) for determining groundwater flow angles and gradient

			1 able 1	<u>D.</u> 11; A	auruo	nai ex	ampie	sneet or	Deviiii (2003) 101	ueterm	ming gro	Junuwan	er now a	ngies and	i grauien	ll		
{[P]t[P]}																			
3928309	4661034	63	7595585	5															
35																			
4661034	5531461	54	9013359)															
63																			
7595585	9013359		146879																
{[P]t[P]}																			
2.52E-05	3.34E-06	,	-0.0015																
3.34E-06	2.87E-05	,	-0.0019																
-0.0015	-0.0019		0.1970																
{[P]t[P]} '[P]t																			
0.0014	0.001	0.0	000	0.0005	-0.00	01 -0	0.001	0.0012	0.001	0.000	0.000 4	- 0.001 6	-0.001	0.001	0.001	8.1E-5	0.000	-0.001	-0.001
0.0016	0.001	0.0	001	0.0016	0.00	1 0.	001	0.0001	0	0.000	0.000	0	0.000	-0.001	-0.001	-0.002	-0.001	-0.001	-0.001
-0.18	-0.14	-0.	12	-0.13	-0.02	2 -0	0.01	-0.076	-0.053	-0.029	-0.042	0.102 3	0.060 8	0.028	0.037	0.092 9	0.064 8	0.202	0.181
Pt																			
4725.70	4726.3 1	4677	4676.9	4579		4579. 5	4732	.9	4734. 2	4682. 4	4682. 6	4599. 8	4600. 5	4741. 0	4741. 0	4691. 8	4690. 7	4609. 9	4610. 1
5601.30	5596.1 9	5595	5590.3 0	5579	.1 :	5576. 1	5556	.1	5552. 6	5550. 1	5544. 1	5536. 5	5531. 9	5508. 1	5504. 5	5499. 0	5495. 1	5483. 9	5479. 4
90.41	90.54	90.3	90.19	90.00	5	89.89	90.54	1	90.63	90.33	90.21	90.23	89.98	90.66	90.67	90.52	90.33	90.30	90.15

${[P]t[P]}'[P]t[D] = [A] matrix$

 A
 -4.12411E-05
 gradient
 0.00386
 m/m

 B
 2.06981E-05
 angle off x axis
 -26.6512011
 degrees

C 0.011932718

Groundwater Flow Vectors Modeled in Surfer 9 (Golden Software, 2010)

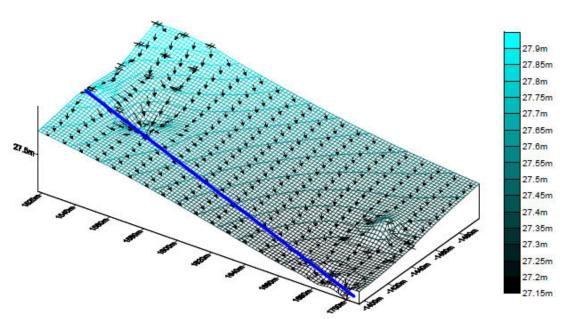


Figure D. 1: Groundwater flow vectors during June 2008

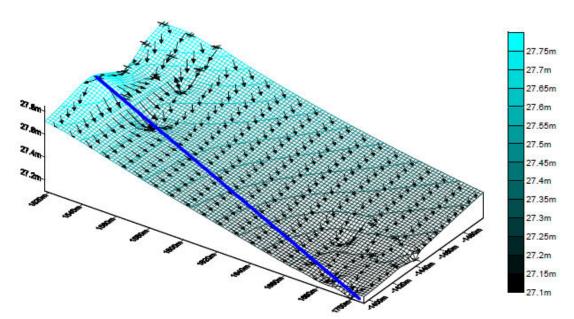


Figure D. 2: Groundwater flow vectors during August 2008

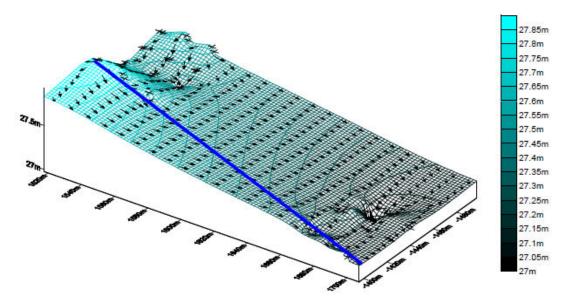


Figure D. 3: Groundwater flow vectors during September 2008

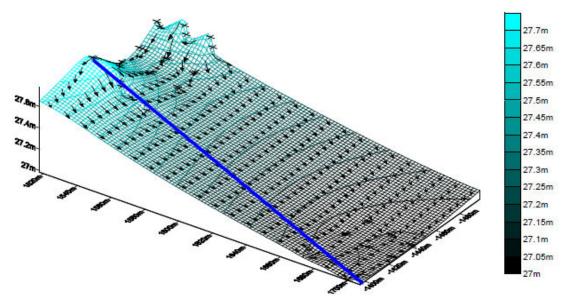


Figure D. 4: Groundwater flow vectors during October 2008

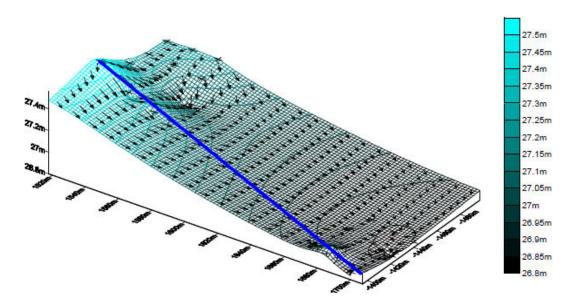


Figure D. 5: Groundwater flow vectors during November 2008

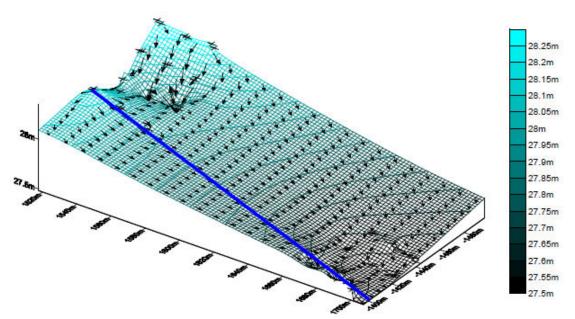


Figure D. 6: Groundwater flow vectors during December 2008

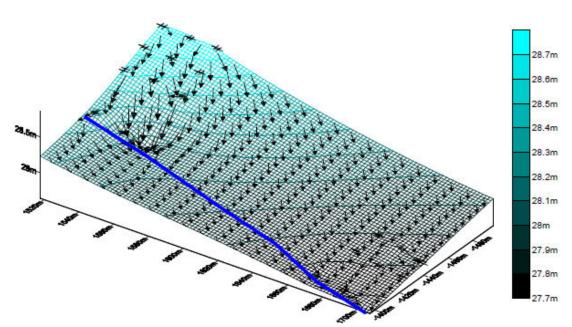


Figure D. 7: Groundwater flow vectors during January 2009

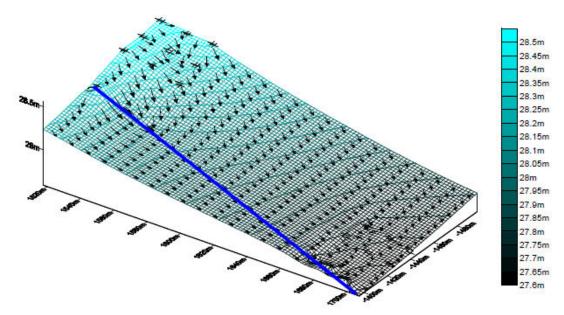


Figure D. 8: Groundwater flow vectors during February 2009

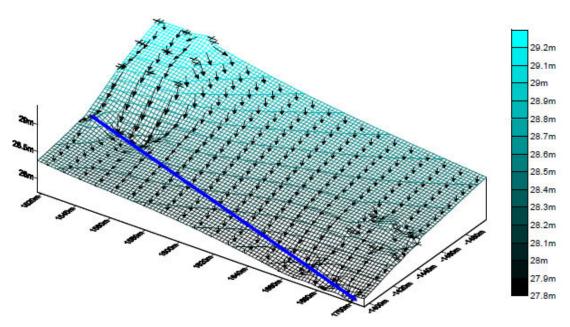


Figure D. 9: Groundwater flow vectors during March 2009

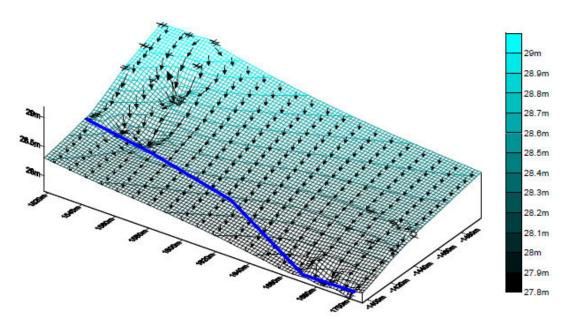


Figure D. 10: Groundwater flow vectors during April 2009

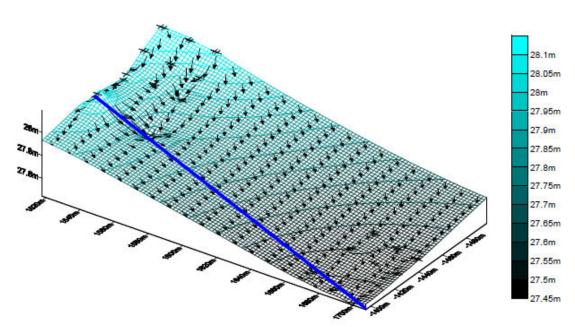


Figure D. 11: Groundwater flow vectors during May 2009

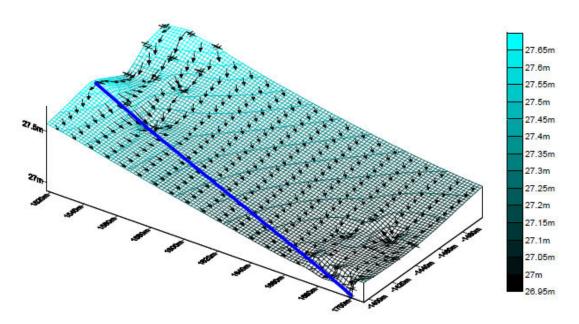


Figure D. 12: Groundwater flow vectors during June 2009

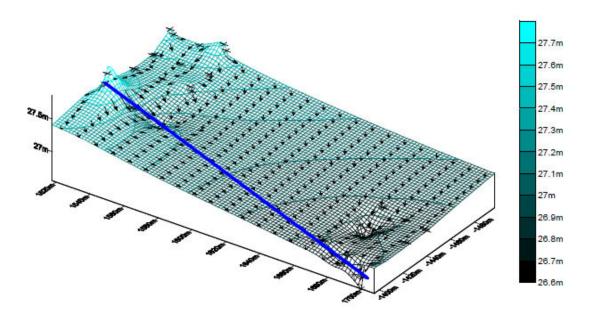


Figure D. 13: Groundwater flow vectors during July 2009

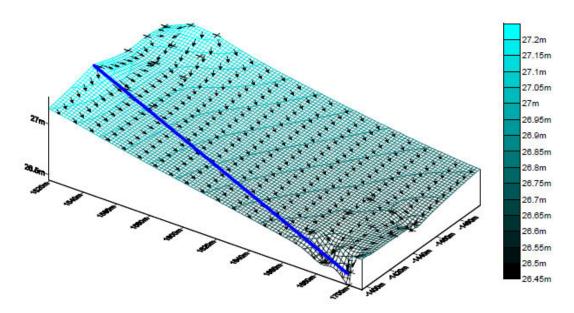


Figure D. 14: Groundwater flow vectors during August 2009

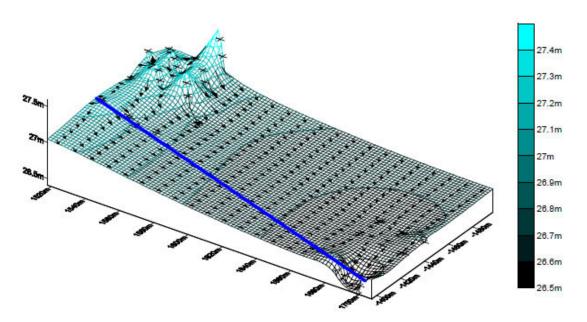


Figure D. 15: Groundwater flow vectors during September 2009

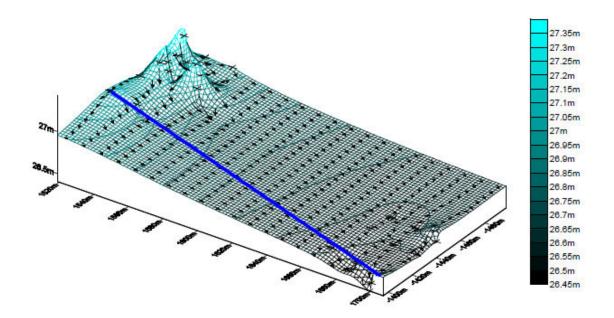


Figure D. 16: Groundwater flow vectors during October 2009

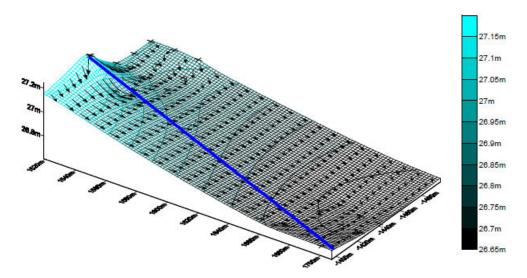


Figure D. 17: Groundwater flow vectors during November 2009

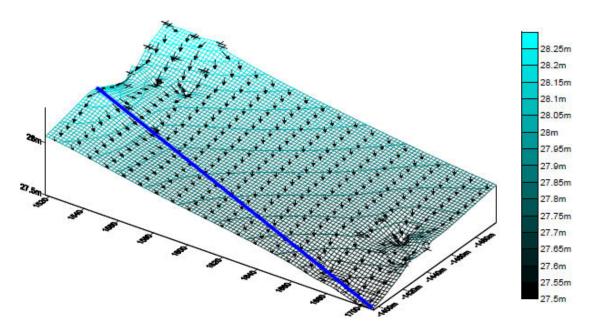


Figure D. 18: Groundwater flow vectors during December 2009

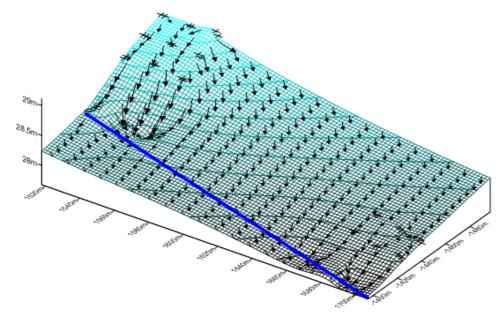


Figure D. 19: Groundwater flow vectors during January 2010

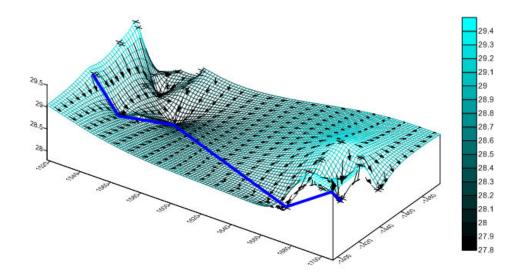


Figure D. 20: Groundwater flow vectors during February 2010

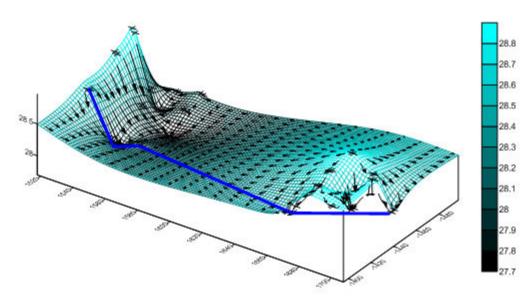


Figure D. 21: Groundwater flow vectors during March 2010

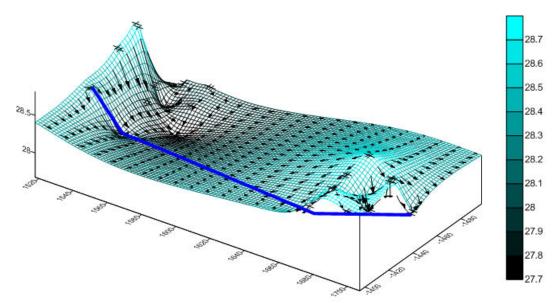


Figure D. 22: Groundwater flow vectors during April 2010

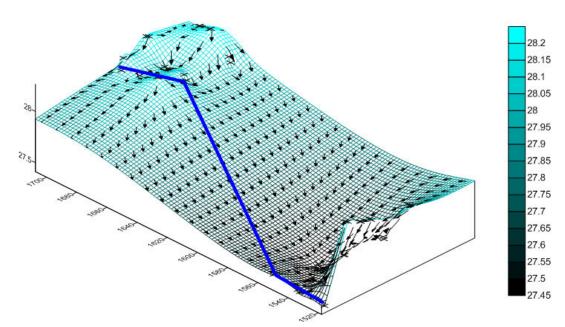


Figure D. 23: Groundwater flow vectors during May 2010

APPENDIX E: Nitrogen Application and Removal Calculations

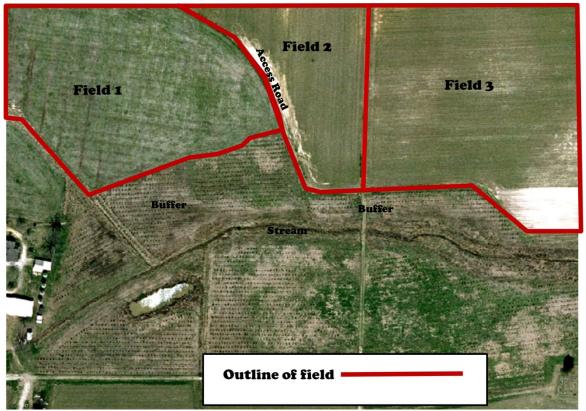


Figure E. 1: Layout of applications to adjacent field.

Table E. 1: Nitrogen Application each year on the research study site's field 1.

Year	Crop(s)	Dates Fertilizer	Type of Fertilizer	Amount of Fertilizer
		Applied	Applied	Applied
	1.strip till corn	1.4/3/07	1.4-11-32	1.300lb. per acre
2007	2.	2.4/2/07	2.10-34-0	2.10 gal. per acre
	3.	3.4/2/07	3.anhydrous	3.120 units
	1.strip till corn	1.4/4/08	1.4-11-32	1.300lbs.
2008	2.	2.4/3/08	2.10-34-0	2.10 gal. per acre
	3.	3.4/3/08	3.anhydrous	3.120 units
	1.no till soybeans	1.5/26/09	1.4-11-32	1.300lbs. per acre
2009	2.	2.	2.	2.
	3.	3.	3.	3.
	1.plans to plant	1.	1.	1.
2010	cotton			
	2.	2.	2.	2.
	3.	3.	3.	3.

Table E. 2: Nitrogen Application each year on the research study site's field 2.

Year	Crop(s)	Dates Fertilizer	Type of Fertilizer	Amount of Fertilizer
		Applied	Applied	Applied
	1.striptill cotton	1.4/24/07	1.potash	1.200 lbs.
2007	2."	2.4/26/07	2.anhydrous	2. 80 units
	3.	3.4/26/07	3.10-34-0	3.10 gal. per acre
	1.striptill cotton	1.4/21/08	1.potash	1.200lbs.
2008	2."	2.4/22/08	2.10-34-0	2.10 gal. per acre
	3.	3.6/6/08	3.27%	3.300 lbs per acre
	1.striptill cotton	1.4/29/09	1. potash	1.200lbs.
2009	2."	2.4/30/09	2.10-34-0	2.10 gal. per acre
	3.	3.6/10/09	3.27%	3.300lbs
	1.plan to plant strip	1.	1.	1.
2010	till cotton			
	2.	2.	2.	2.
	3.	3.	3.	3.

Table E. 3: Nitrogen Application each year on the research study site's field 3.

Year	Crop(s)	Dates Fertilizer	Type of Fertilizer	Amount of Fertilizer
		Applied	Applied	Applied
	1.striptill cotton	1.same as field 2	1.	1.
2007		2007		
	2.	2.	2.	2.
	3.	3.	3.	3.
	1.striptill cotton	1.4/21/08	1.potash	1.200 lbs per acre
2008	2."	2.4/22/08	2.10-34-0	2.10 gal per acre
	3.	3.6/06/08	3.27%	3.300 lbs.
	1.striptill cotton	1.4/30/09	1.10-34-0	1.10 gal per acre
2009	2.	2.6/10/09	2.27%	2.300 lbs. per acre
	3.	3.4/29/09	3.potash	3.200 lbs. per acre
	1.plan to plant	1.	1.potash	1.200lbs. per acre
2010	peanuts			
	2.	2.	2.	2.
	3.	3.	3.	3.

Potential Nitrate-Nitrogen Mass Removal

Highest rates of denitrification have been reported to occur at the soil surface where root density, organic matter, and microbial activity are highest and reduce quickly with depth (Lowrance *et al.*, 1995; Lowrance, 1992; Hunt *et al.*, 2004). Therefore, to report a complete estimate of the overall *potential* capacity of groundwater NO₃⁻-N being reduced through denitrification within the riparian zone the denitrifying removal capacity was estimated for higher soil layers.

A denitrification enzyme activity (DEA) analysis was completed within each buffer section to estimate the *potential* groundwater NO₃⁻-N that could be reduced in higher soil layers within the buffer treatment by the method proposed by Maítre *et. al* (2005). DEA is the denitrification rates that occurs in an incubated slurry and is used to predict the *potential* of denitrification occurring within soils. Soil from the three soil layers closest to the soil surface in each zone of Sections 1 and 2 and adjacent field was collected during February 2009 to evaluate denitrification enzyme activity (DEA) through the buffer site. Samples were taken at depths ranging from 38 to 74 cm, 29 to 71 cm, 51 to 71 cm, and 33 to 67 cm from the adjacent field to Zone 1 respectively in Sections 1, while samples were taken at depths ranging from 21 to 69 cm, 18 to 69 cm, 17 to 80 cm, and 19 to 75 cm from the adjacent field to Zone 1 respectively in Section 2. Soil was sampled using an auger and approximately 20-40 mL soil cores were placed in a plastic bag, iced, and shipped to USDA-ARS in Tifton, GA for processing.

Maître *et al.* (2005) estimated the denitrifying removal capacity using soil properties, water table elevation monitoring, and DEA soil analyses. The following equation was used from Maître *et al.* (2005) to determine the denitrifying removal capacity in the higher soils layers of the studied riparian buffer. The DRC was then converted to a per area basis (m²) based on the area of the buffer section.

$$DRC = Vol_{Soil\ layer} * \%_{Interaction} * \rho * DEA * (365 \text{x} 10^{-6}\ days/year)$$
 (E. 1)

Where,

DRC = Denitrifying removal capacity (kg N/yr)

Vol_{Soil Layer} = Volume in soil horizon interacting with groundwater (m³)

%_{Interaction} = Percentage of volume of soil interacting with the water table

 ρ = Bulk density of soil (Mg/m³)

DEA = Denitrification enzyme activity for investigated soil layer (μ gN/kgday)

A denitrification enzyme activity (DEA) analysis was completed center transect to estimate the *potential* mass of possible groundwater NO₃⁻-N reduction in higher soil layers within Section 1. DEA is the measured amount of denitrification rates that occur in an incubated slurry and is used to predict the potential of denitrification occurring within soils. The highest rates of DEA were found in the top soil zone locations (Figure E. 2 and Figure E. 30). These results were lower than compared to results found in Maître *et. al* (2005) who had evaluated wetlands. DEA results during the winter in the highest soil layer of the Maître *et. al* (2005) study

had mean values of 604, 212, and 24 ng N g⁻¹ h⁻¹ over a one hour incubation period for the 3 soil horizons beginning with the top soil horizon respectively. The DEA rates increased as incubation time increases and anoxic conditions become present (Figure E.2 and Figure E.3).

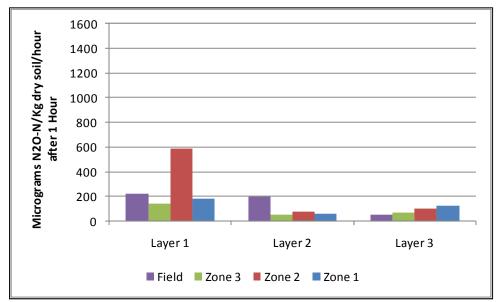


Figure E. 2: DEA after one hour of incubation.

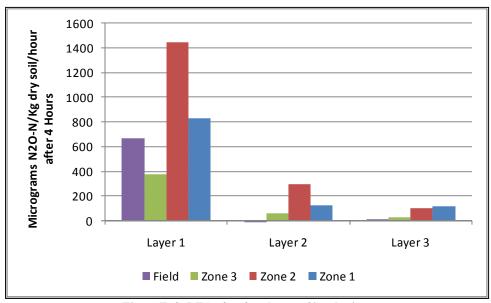


Figure E. 3: DEA after four hours of incubation.

A denitrification enzyme activity (DEA) analysis was completed in the upstream and downstream transects of Section 2 to estimate the *potential* mass of possible NO₃⁻-N reduction in higher soil layers within the buffer treatment. The highest rates of DEA were found in the top soil zone locations (Figure E. 4 - Figure E. 7), and rates were measured slightly lower in the downstream transect (Transect A) than measured in the upstream transect (Transect C), indicating high potential for denitrification near the soil surface. These results were lower than compared to results found in Maítre *et. al* (2005) who had evaluated wetlands. DEA results during the winter in the highest soil layer of the Maítre *et. al* (2005) study had mean values of 604, 212, and 24 ng N g⁻¹ h⁻¹ over a one hour incubation period for the 3 soil horizons beginning with the top soil horizon respectively. The DEA rates increase as incubation time increases and anoxic conditions become present as seen in Figure E.4 thru Figure E.7.

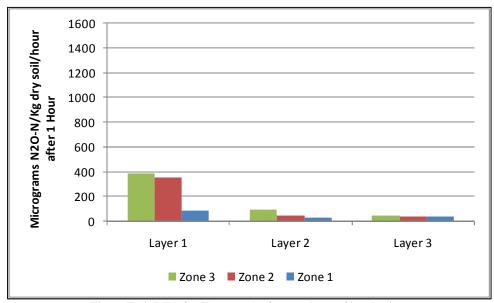


Figure E. 4: DEA for Transect A after one hour of incubation.

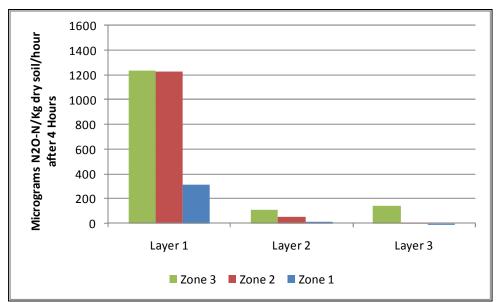


Figure E. 5: DEA for Transect A after four hours of incubation.

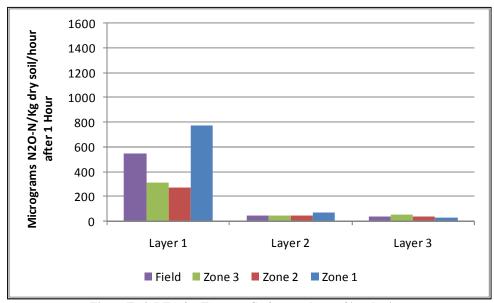


Figure E. 6: DEA for Transect C after one hour of incubation.

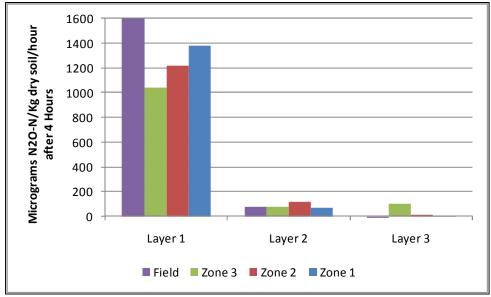


Figure E. 7: DEA for Transect C after four hours of incubation

Section 1 was estimated to *potentially* remove more NO₃-N than Section 2 (Table E.4). Section 1 was estimated to *potentially* remove 2690 kg N yr⁻¹, while Section 2 was estimated to

potentially remove 2210 kg N yr⁻¹ in the upper 70 cm of the soil. Therefore, Section 1 had the potential to remove approximately 0.04 to 0.16 kg N yr⁻¹m⁻², while Section 2 had the potential to remove 0.03 to 0.18 kg N yr⁻¹ m⁻³ dependent on soil depth. These estimates were the maximum possible NO₃⁻-N removal at the 0 -70 cm depths of the two buffer sections based on hydrology and that the system was not NO₃⁻-N or carbon limited. Higher potential removal rates were found in Section 1 due to higher DEA measurements in the soil samples.

Table E. 4:Potential NO₃-N removal based on DEA analysis

1404	2. 4.1 otentiai 1103-11 Tem		itial NO ₃ -N i	
Section	Depth (cm)	0 – 30 cm	30 – 50 cm	50 – 70 cm
1	Total NO ₃ ⁻ -N Removed in Buffer Treatment System (kgN yr ⁻¹)	1480	390	820
	Total NO ₃ -N Removed in Buffer Treatment System (kgN yr ⁻¹ m ²)	0.16	0.04	0.09
2	Total NO ₃ -N Removed in Buffer Treatment System (kgN yr ⁻¹)	1670	265	275
	Total NO ₃ -N Removed in Buffer Treatment System (kgN yr ⁻¹ m ²)	0.18	0.03	0.03

APPENDIX F: Installation Procedures and Laboratory Procedures

BAE Environmental Analysis Laboratory at NCSU Analytical Procedures

Table F. 1: Analytical Procedures followed by the BAE Environmental Analysis Laboratory

Pollutant	Analysis	References
NO ₃ -N + NO ₂ -N (Nitrate Nitrogen)	Ammonia-salicylate method for automated analysis. Emerald green color formed by reaction with ammounia, sodium salicylate, sodium hypochlorite in a buffered alkaline medium.	EPA Method 351.2 (1979) or Standard Method 4500-NH3 G (1998), with slight modifications including dialysis.
Cl ⁻ (Chloride)	Ferricyanide method for automated analysis.	EPA Method 325.2 (1979) or Standard Method 4500-Cl-E (1998) with slight modifications including dialysis.
O-PO ₄ -P (Orthophosphate Phosphorus)	Ascorbic acid method for automated analysis.	EPA Method 365.1 (1979) or Standard Method 4500-P F (1998) with slight modifications including dialysis.
TP (Total Phosphorus)	Persulfate digestion, and ascorbic acid method for automated analysis.	EPA Method (1979) or Stand Method 4500-P F (1998) with slight modifications including dialysis.
TKN (Total Kjeldahl Nitrogen)	Persulfate Digestion, and ammonia salicylate method for automated analysis.	EPA Manual 351.2 (1979) with slight modifications including dialysis or Stand Methods 4500N _{org} B (1998).
FSS (Total Suspended Solids)	Gravimetric Method.	EPA Methods 160.1 – 160.4 (1979) or Standard Methods 2540 (1998).
Metals: Calcium and Sodium (Ca ²⁺ and Na ⁺)	Nitric acid digestion for total metals followed by direct aspiration atomic absorption spectroscopy, Na and K by emission spectroscopy.	EPA (1979) or Standard Methods 3111-B (1998).

Water Quality Monitoring Well Installation Procedure

Prior to the installation of water quality monitoring wells, the Three Point Method verified the groundwater flow progressing through the future buffer location was acceptable for the study (Todd and Mays, 2005; Schwartz and Zhang, 2003; Kashef, 1986). Completion of the

evaluation required measuring the hydraulic head following the installation of three piezometers in 2004 and measuring the distance between each of the piezometers. The calculations for the hydraulic gradient used the measurements to verify ground water flow proceeded through the proposed buffer location as completed in past studies (Todd and Mays, 2005). The installation of the full-scale monitoring well design followed the verification of groundwater flow direction (Figure F. 1).

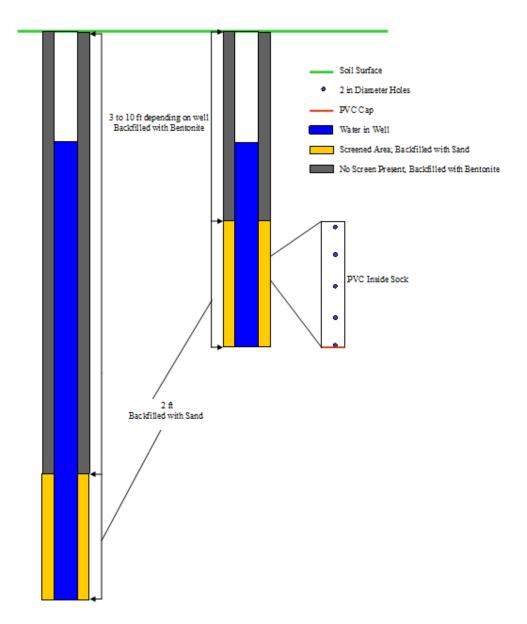


Figure F. 1: Well Installation

APPENDIX G: Other Water Quality Constituents

Section 1 NH₄-N and O-PO₄

 NH_4 -N and O-PO₄ were compared to NO_3 -N to define any correlations that may have existed during the study period. Averages were taken within each buffer section for the 1.5 m and 3 m depths and were modeled. No significant relationships were seen. The NH_4 -N and O-PO₄ concentrations were relatively low. There were some outliers as seen in the figures below (Figure G.1 and Figure G.2).

The low NH₄-N concentrations exhibit nitrification had transformed most NH₄-N into NO₃⁻-N relatively quickly, which could then undergo the process of denitrification. In addition, most of the nitrogen found in the groundwater was in the form of NO₃⁻-N. Furthermore, the investigation exhibited that the concentrations of both NH₄-N and O-PO₄ were both similar in the 1.5 m and 3 m depths at the field edge and stream. These results once again indicate that groundwater dilution was minimal.

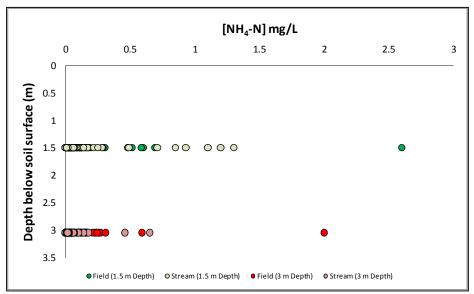


Figure G. 1: NH₄-N to NO₃-N at water quality monitoring depths 1.5 m and 3m ($n_{shallow} = 50$ and $n_{deep} = 64$)

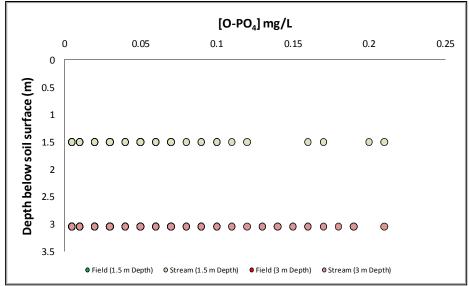


Figure G. 2: O-PO₄ NO₃-N at water quality monitoring depths 1.5 m and 3m ($n_{shallow} = 50$ and $n_{deep} = 64$)

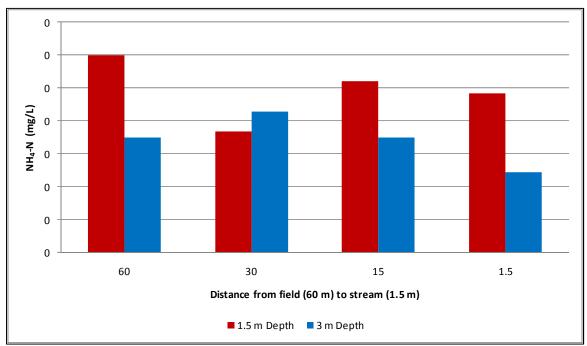


Figure G. 3: Section 1 average NH₄-N at the 1.5 m and 3 m monitoring depths (n_{shallow} = 50 and n_{deep} = 64)

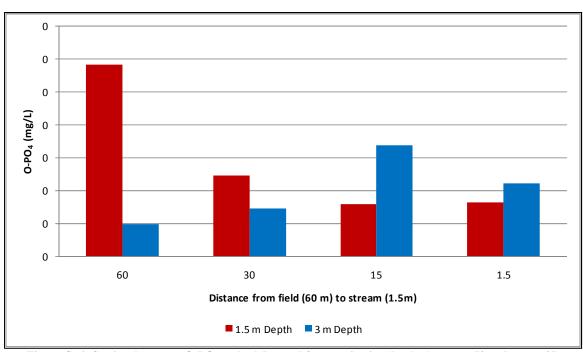


Figure G. 4: Section 1 average O-PO₄ at the 1.5 m and 3 m monitoring depths (n_{shallow} = 50 and n_{deep} = 64)

Section 2 NH₄-N and O-PO₄

NH₄-N and O-PO₄ were compared to NO₃⁻-N to define any correlations that may have existed during the study period. Averages were taken within each buffer section for the 1.5 m and 3 m depths and were modeled (Figure G. 5 and Figure G. 6). No significant relationships were seen. The NH₄-N and O-PO₄ concentrations were relatively low. There were some outliers as seen in the figures below (Figure G. 7 and Figure G. 8).

The low NH₄-N concentrations exhibit nitrification had transformed most NH₄-N into NO₃⁻-N relatively quickly, which could then undergo the process of denitrification. In addition, most of the nitrogen found in the groundwater was in the form of NO₃⁻-N. Furthermore, the NH₄-N and O-PO₄ being similar in both the shallow and deep wells at the field and stream edge indicates once again that the water chemistries are not being diluted by ground water dilution.

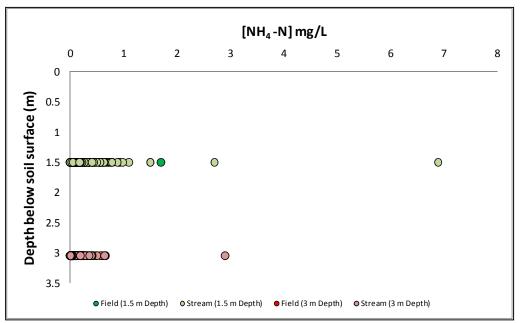


Figure G. 5: NH₄-N to NO₃-N concentrations at the 1.5 m and 3 m monitoring depths ($n_{1.5 \text{ m}}$ = 50 and $n_{3 \text{m}}$ =64)

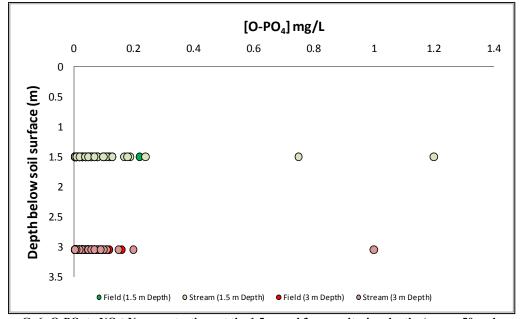


Figure G. 6: O-PO₄ to NO₃-N concentrations at the 1.5 m and 3 m monitoring depths ($n_{1.5 \text{ m}} = 50$ and $n_{3 \text{m}} = 64$)

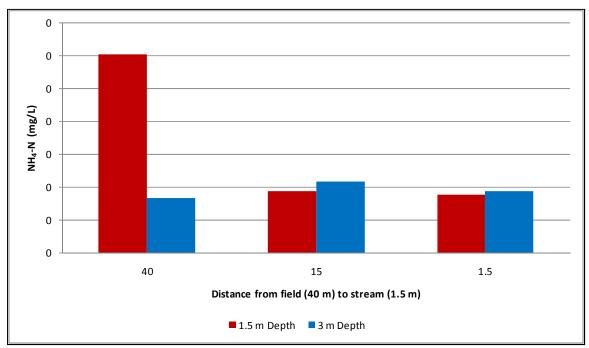


Figure G. 7: Section 2 average NH₄-N at the 1.5 m and 3 m monitoring depths (n_{1.5 m}= 50 and n_{3m}=64)

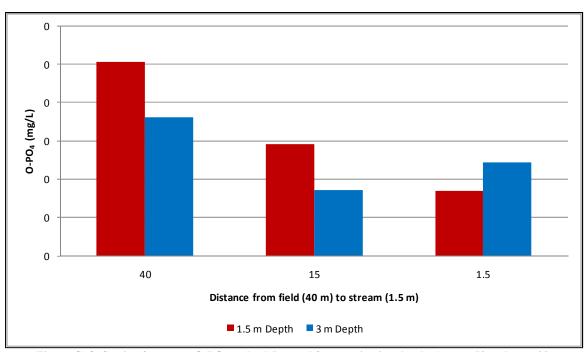


Figure G. 8: Section 2 average O-PO₄ at the 1.5 m and 3 m monitoring depths ($n_{1.5 \text{ m}}$ = 50 and n_{3m} =64)

NO₃-N concentrations to DOC and DOC over Time

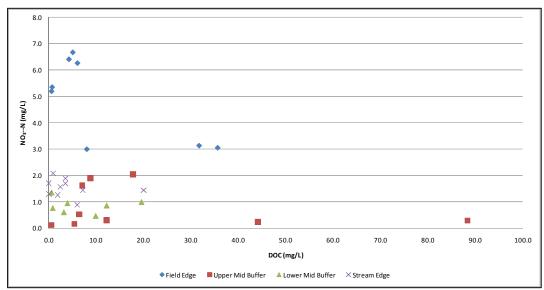


Figure G. 9: Section 1 NO₃-N concentrations to DOC at 1.5 m below the soil surface.

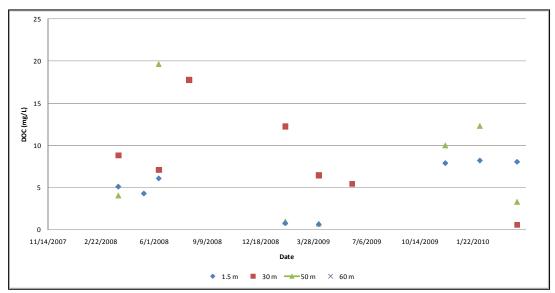


Figure G. 10: Section 1 DOC at 1.5 m below the soil surface.

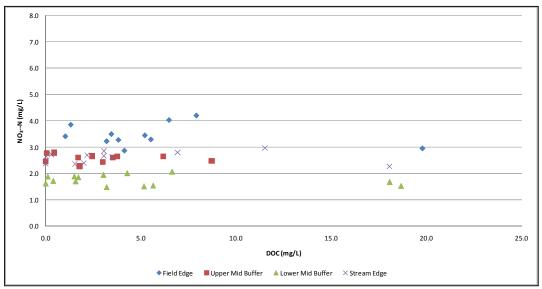


Figure G. 11: Section 1 NO₃-N concentrations to DOC at 3 m below soil surface

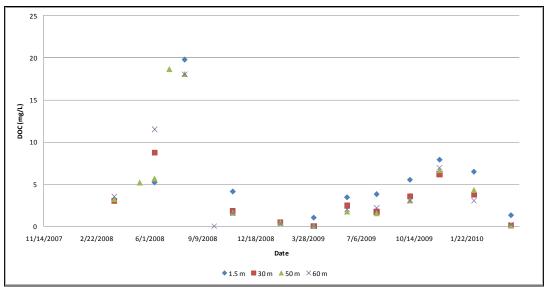


Figure G. 12: Section 1 DOC at 3 m below the soil surface.

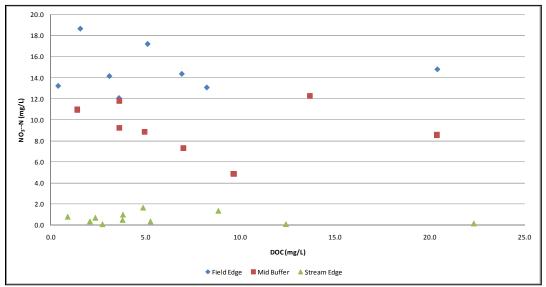


Figure G. 13: Section 2 NO₃-N concentrations to DOC at 1.5 m below the soil surface.

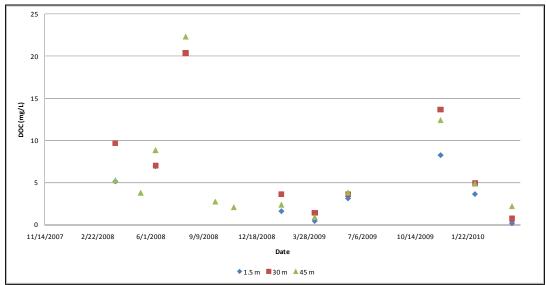


Figure G. 14: Section 2 DOC at 1.5 m below the soil surface.

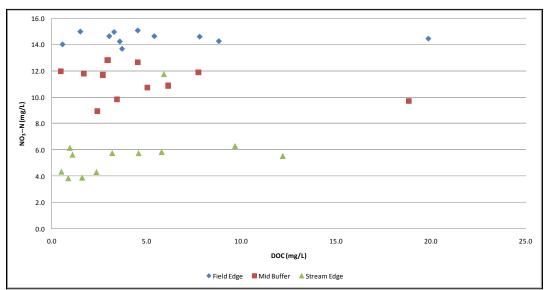


Figure G. 15: Section 2 NO₃-N concentrations to DOC at 3 m below soil surface

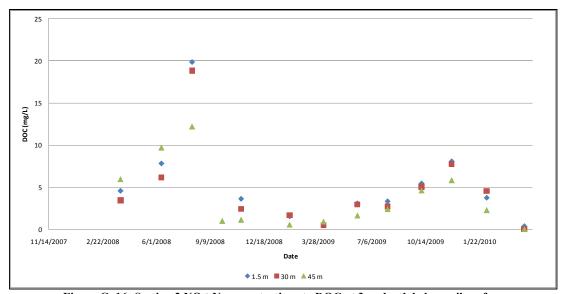


Figure G. 16: Section 2 NO₃-N concentrations to DOC at 3 m depth below soil surface

APPENDIX H: Water Table Elevation and Rainfall Evaluations

Section 1 Evaluations

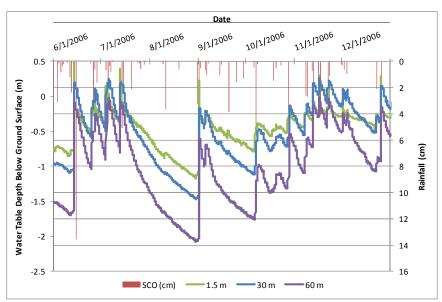
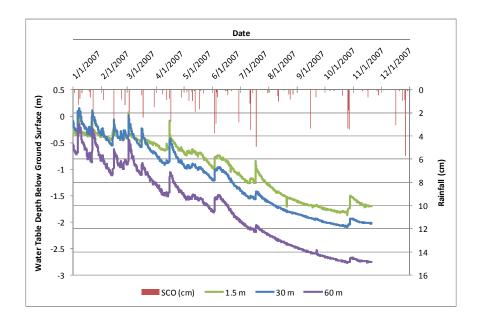



Figure H. 1: Rainfall and water table elevations during 2006

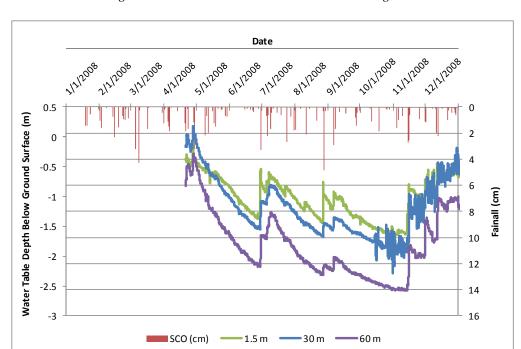


Figure H. 2: Rainfall and water table elevations during 2007

Figure H. 3: Rainfall and water table elevations during 2008

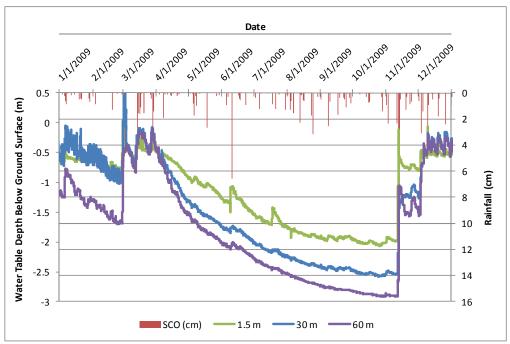


Figure H. 4: Rainfall and water table elevations during 2009

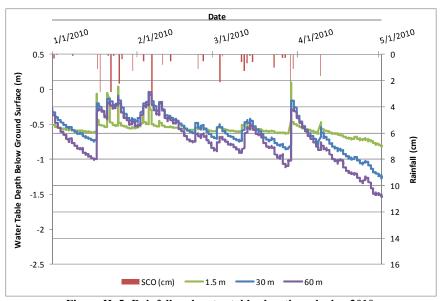


Figure H. 5: Rainfall and water table elevations during 2010

Section 2 Evaluations

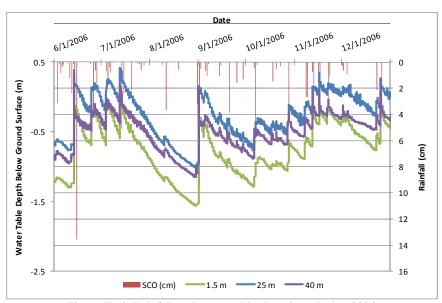


Figure H. 6: Rainfall and water table elevations during 2006

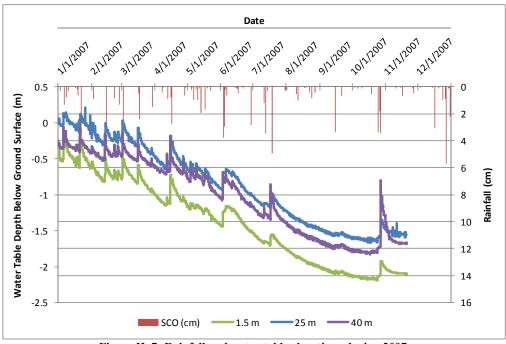


Figure H. 7: Rainfall and water table elevations during 2007

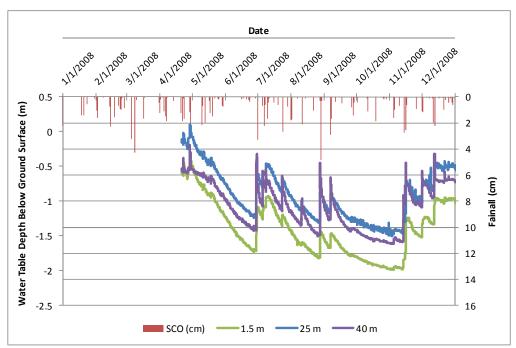


Figure H. 8: Rainfall and water table elevations during 2008

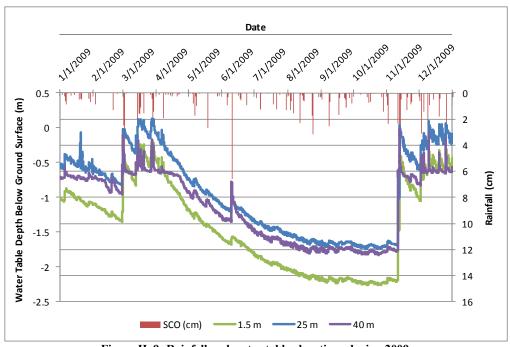


Figure H. 9: Rainfall and water table elevations during 2009

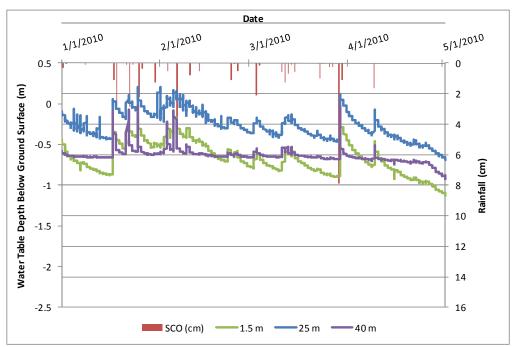


Figure H. 10: Rainfall and water table elevations during 2010

APPENDIX I: Surface Water Analysis

Surface water sampling was completed using an upstream and downstream design. The flow at the upstream station was less than the downstream station. The upstream station had a Doppler velocity meter installed in a culvert approximately 75 m (250 ft) downstream of the station, while the downstream station had a weir installed. The Doppler velocity meter was removed once the data collected was used to develop the stage-discharge curves for upstream and downstream of the buffer. Stage was then used to determine the discharge using bubblers at each surface water sampling location. 6712 Portable Teledyne ISCO automated samplers with integrated 730 Bubbler Flow Modules (Teledyne ISCO, Lincoln, NE) were installed at the upstream and downstream stations to take flow-proportional surface water samples.

NO₃-N, Cl⁻, O-PO₄, and FSS were investigated to determine if relationships existed between groundwater and upstream and downstream surface water. NO₃-N concentrations increased by 380% from the upstream to downstream monitoring locations (Figure H.1). This was most likely due to majority of the NO₃-N laden groundwater flowing toward the downstream discharge locations in Section 2 throughout majority of the year. NO₃-N concentrations tended to be higher during the drier periods of the year when groundwater was flowing parallel to the stream toward Beech Swamp and most likely came from unknown upstream pollutant sources. Furthermore, NO₃-N concentrations were similar to concentrations found at the stream edge (Zone 1) of Section 1 location indicating the possibility of the surface water mixing with the groundwater.

Likewise, Cl⁻ concentrations in the surface water at the upstream monitoring location were similar to the groundwater at the stream edge (Zone 1) in Section 1 further indicating surface water mixing with groundwater within Section 1. Cl⁻ concentrations did not show significant variability in the water qualities upstream and downstream and were overall similar throughout the year (Figure H.2). O-PO₄ concentrations were higher at the upstream locations compared to the downstream locations. This indicated that the buffers were intercepting surface water runoff from adjacent fields (Figure H.3). O-PO₄ pollutants enter streams through surface runoff attached to soil particles; therefore, the filter strip of the buffer was working appropriately and reducing the O-PO₄ pollutants entering the stream.

FSS did not show significant variability between the upstream and downstream locations throughout the year, except during the fall (Figure H.4). This period was the driest period of the year and often the upstream location would go dry not allowing water quality samples to be taken. These periods were during hurricane season as well. Heavy rains after long dry periods allowed large amounts of sediment to enter the stream and go quickly to the downstream location. Therefore, the increase was most likely due to heavy rains after long dry periods causing significant volumes of runoff to flow quickly into the stream.

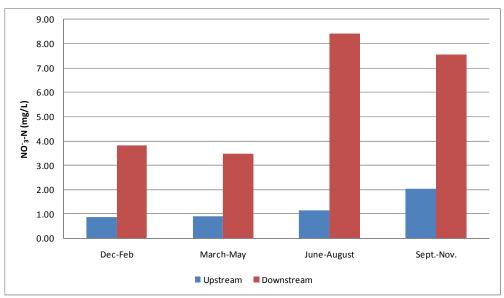


Figure I. 1: NO₃-N seasonality in upstream to downstream surface water evaluation

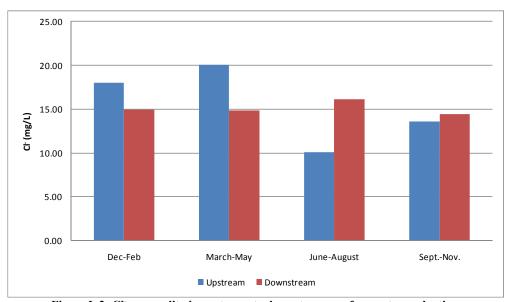


Figure I. 2: $C\Gamma$ seasonality in upstream to downstream surface water evaluation

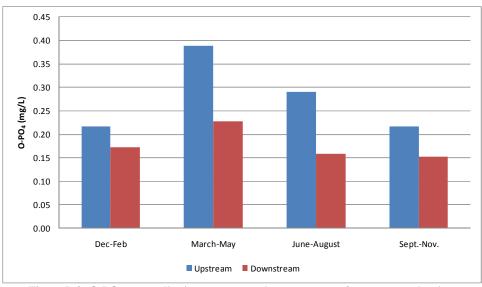


Figure I. 3: O-PO₄ seasonality in upstream to downstream surface water evaluation

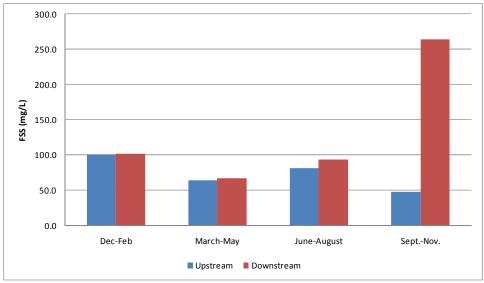


Figure I. 4: FSS seasonality in upstream to downstream surface water evaluation

A visual evaluation indicated a possible correlation between groundwater NO_3 -N concentrations and redox potential readings in Zone 3 at both the 1.5 and 3 m depth. Zones 1 and 2 did not appear to have correlations to (Figure H.5 and Figure H.6). These correlations

were observed most likely due to the deeper water table depths in Zone 3 allowing aerobic conditions to be present more often than found in other zones where the water tables were closer to the soil surface throughout the year.

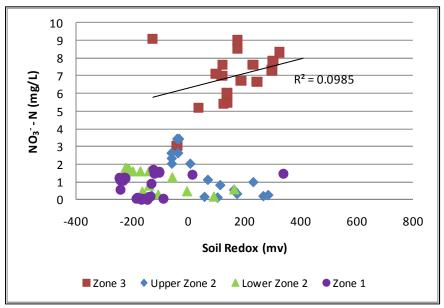


Figure I. 5: Soil redox compared to groundwater NO₃-N in center transect at the 1.5 m depth wells (June 2005 to April 2010).

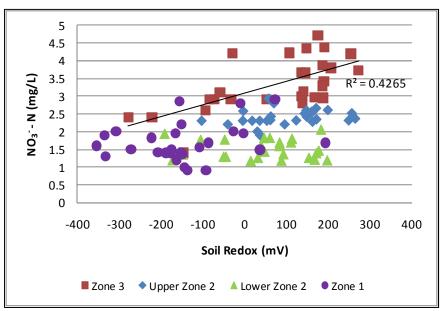


Figure I. 6: Soil redox compared to groundwater NO_3 -N in center transect at the 3 m depth well (June 2005 to April 2010).