
ABSTRACT

BOSTIC, KATHRYN JORDAN WEST. Dynamical Behavior of a Discrete,
One-island, Selection-migration Model with General Dominance. (Under the direc-
tion of James F. Selgrade.)

Selection and migration influence the demographic and genetic compositions of a

population. A one-island model is studied, in which the island population receives

immigrants from a continent population. Density-dependent selection takes place

within the island population and then periodic migration occurs. The research con-

ducted here studies a two-dimensional system of nonlinear difference equations that

describe the change in allele frequency and population density over generations. For

general dominance in fitness, biologically reasonable conditions ensure the existence

of polymorphic equilibria. Conditions on the degree of dominance and the frequency

of the allele migrating into the island population are necessary to prove uniqueness

and stability of the equilibrium. The movement of the equilibrium due to a change

in the degree of dominance is described. Increased prevalence of an allele associ-

ated with lower fitness in the island population due to the migration of that allele

is shown. Conditions are found for the location and existence of attractors for this

model. Approach rates to the attractor are approximated. The homeomorphic pieces

of an attractor because of periodic migration as well as the effect of the amplitude of

the oscillatory migration are discussed. A measure of allelic diversity is defined and

used to study the effect of a change in the degree of dominance on changes in attrac-

tor properties. As genetically engineered crops become more prevalent, the one-island

model may be useful for understanding the effects of transgenic escape on transgene

frequency in natural populations.
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Chapter 1

Introduction

Natural selection and migration are two primary processes in nature known to

be involved in shaping the genetic composition of populations. The two phenomena

perform different functions, whereas selection acts to remove poorly adapted individ-

uals and the genes they carry from populations, migration infuses individuals and

genetic variants into populations. Thus, selection works to move populations toward

a higher level of adaptability and, in the process, tends to reduce genetic variability.

Migration, in some circumstances, can enhance genetic variation within populations

through gene transfer between populations. Numerous models have been proposed to

study the ways these two evolutionary forces interact to alter and control the genetic

constitution of populations. The simplest of these models is the continent-island, or

one-island, model.

The continent-island model is a two population model that features unidirectional

gene flow from a source population, or collection of populations, into a single popula-

tion where natural selection may take place [15]. This model can be used to investigate

the combined effects of migration and selection in a single population or island. In

the research described here, the continent-island model is used to study previously

unexplored effects of the joint action of a specific type of selection and migration on

gene frequency and population size.
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Because of its inherent properties, the continent-island model provides a suitable

framework for the study of the undesirable spread of genetically engineered genes

(transgenes) in plant populations. The movement of these genes and their potential

persistence in non-targeted populations is of widespread interest to plant population

biologists. We consider that the continent population serves as the source population

for transgenes and use the one-island model to study how they become incorporated

in natural, or non-targeted, populations. Investigations of the dynamical behavior

for a continent-island system have the potential to provide basic information about

the entrance and persistence of these artificially introduced genes in populations for

which they are not intended.

Genetically engineered plant varieties first entered production agriculture in 1996.

When methods developed in biotechnology are employed to insert new genetic ma-

terial into the genome of an organism, a genetically engineered organism results [7].

Within ten years of the introduction of this technology, land area in the United States

devoted to genetically engineered varieties exceeded that for traditionally bred vari-

eties in commodity crops, such as corn, soybean, cotton, and canola. In fact, in 2007,

more than half of the acreage planted to soybeans and corn in the United States was

sown to genetically modified varieties [4, 35], indicating that growers of these crops

have quickly adopted and expanded the use of this new technology. Nevertheless, the

risks and rewards associated with growing these products of biotechnology are still

under debate [4, 6, 7, 36].

Several likely causes have been suggested to explain the rapid adoption of this new

system of crop production. These include the realization that genetically modified

crops require reduced usage of agricultural chemicals, reduced labor to work the

fields, and enhanced conservation of soil and water because tillage is reduced. In

addition, this production system leads to more effective management of pests and

weeds, and benefits then follow because less energy is required to produce high yields.

Nonetheless, the impressive ecological and economic gains do not dampen concerns

about possible negative effects that might result from transgenic crop culture. The full
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range of consequences that follow conversion to genetically modified based systems

of agriculture are not yet completely known. As a case in point, the issue of whether

genetically modified crops are safe for human consumption is yet to be resolved [4].

Other anxieties relate to effects resulting from gene flow into non-targeted populations

of wild or weedy relatives and also of pests. Ecological effects resulting from this type

of gene flow are currently unpredictable because of the present lack of knowledge of

the way transgenes behave in natural, feral, and other non-targeted populations and

for the environments in which these populations are found [36, 38].

Genetically modified forests present some of the same concerns as transgenic crops

but also introduce additional issues. Current forest tree improvement programs are

based on traditional breeding techniques, but there is considerable interest in applying

genetic engineering technology to develop genetically modified trees. Tree breeders

presently are considering whether to employ transgenic technology to modify various

wood traits [28], to produce faster growing trees, to enhance insect resistance in tree

populations, as well as to develop trees that do not produce pollen [17]. Concerns exist

about the consequences that engineered genes will have in natural tree populations,

as well as unknown ecological risks that could be involved [38]. Transgenes might

invade natural populations, and as a result, populations of locally adapted trees

could be displaced, possibly endangering natural populations of some tree species.

Because pollen and seeds of trees can travel large distances, genetically engineered

genes have the potential to invade non-targeted populations that are long distances

away from the original source populations [39]. Furthermore, trees have repeated and

bountiful seed and pollen production years before harvest, and forest landscapes are

typically made up of adjacent ownerships that have differing management production

objectives [39]. Tree life spans are longer than those for crop species, so the negative

effects of transgenic forestry will not be apparent as quickly as those that have surfaced

for transgenic agronomic crop systems. Models, however, can be studied to obtain

insight into how transgenes can affect forest populations.

We use a system of difference equations to study the behavior of gene frequencies
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and population sizes in island populations that are subject to migration and natural

selection. We begin by discussing the biological background for our model in Chapter

2. Characteristics of the model are described in Chapter 3. Then, in Chapter 4, we

establish the existence of polymorphic equilibria and present conditions for unique-

ness and stability of an equilibrium. More equilibrium results are given in Chapter

5, including a description of a transcritical bifurcation, as well as a discussion of the

effects of varying the degrees of dominance in gene expression. The location, exis-

tence, and approach rates of attractors are addressed in Chapter 6. Finally, an allelic

diversity measure is defined and discussed in Chapter 7.
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Chapter 2

Background

In this chapter we describe the biological background for the mathematical model

that provides the framework for the dynamics we investigate. First, we present some

basic concepts that provide a foundation for our model. We then enumerate some of

the effects caused by natural selection and migration, the two evolutionary phenomena

that interact in our model, to determine the genetic and demographic properties of

populations. Finally, we introduce the notion of dominance as a property related to

genetic control of organism performance.

2.1 General Genetics

Before proceeding to a discussion of the effects resulting from natural selection

and gene migration, we review some basic genetic terminology. For purposes of our

analysis, we consider the gene to be the fundamental unit of heredity that codes for

production of protein within a cell. We also consider the gene to be the agent by

which this code is transferred from parent to offspring. Alternate forms that genes

can take are referred to as alleles. The organized structures within cells on which

genes occur are called chromosomes, and the position that a gene occupies on a

chromosome is known as a locus. Most higher order organisms possess two copies of
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the entire complement of chromosomes characteristic of their species (excluding sex

chromosomes) and are said to have the property of diploidy. Genes on the autosomes

- all chromosomes except the sex chromosomes - in these organisms are the focus of

the behavior we study. A gamete is a mature reproductive cell produced by sexually

mature individuals; for diploid individuals, they have a single copy of each autosomal

gene. Following mating, the gametes contributed by each parent combine to form a

zygote which develops into a multicellular individual. In general usage, an organism’s

genotype is considered to be its entire assemblage of genes. However, for our model

and our discussion, we use this term to indicate the pair of alleles occurring at a single

locus. The observable form that results from the interaction of the genotype with its

environment is known as its phenotype. When the two alleles at a locus are identical

in an organism, the individual is said to be homozygous at that locus, and when the

two alleles are of different types, the individual is said to be heterozygous [13, 19].

In population genetics, a primary area of focus in research has been to study the

effects that evolutionary forces have on genetic variability within and among pop-

ulations. An effective method to evaluate the impact of these processes on genetic

variability is to investigate their effect on the change in allele frequencies over gen-

erations. Allele frequency is a measure that indicates the proportion of the copies of

all alleles at a locus occurring in a population’s gene pool that are of a given type.

When an allele at a locus occurs at a frequency between zero and one, a genetic

polymorphism is said to exist. The appearance of a genetic polymorphism within a

population indicates that the potential for genetic variability exists in the population.

2.2 Natural Selection

Natural selection is one of the major driving forces that causes evolution to take

place. It can lead to rapid transformation of properties of individuals in a few gen-

erations or to gradual modification of traits over an extended number of generations.

This process occurs when there is differential adaptation of phenotypes to the envi-
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ronmental conditions of their habitat. Alleles involved in expression of characteristics

associated with well-adapted phenotypes will be more prevalent in succeeding genera-

tions because the more maladapted phenotypes are removed from populations, either

due to poor survival capabilities or inability to reproduce adequately. Although cer-

tain forms of natural selection can act to preserve genetic variability, commonly this

process reduces genetic diversity as alleles that lead to high viability and fecundity

reach high frequencies [8, 13].

Natural selection in which the size of the population is the ecological factor that

influences the viability and fecundity of individuals is known as density-dependent

selection. Initial investigations of effects that can result from this type of selection are

reported in Roughgarden [26] and Anderson [1]. With density-dependent selection,

population size is allowed to vary and is considered to be the environmental compo-

nent that alters survival capabilities and reproductive success. Thus, population size

is viewed both as a result of selection and as a factor that determines which genes are

passed on to the subsequent generation. The influence of this type of selection on the

genetic constitution of populations is studied by assuming that genotypes produce

phenotypes that vary in fitness, a concept discussed in detail in the next section. For

the majority of density-dependent selection models, fitnesses are assumed to decrease

as population sizes increase [31].

2.3 Fitness

Evolutionary biologists have found it necessary to introduce the concept of fitness

to effectively model the way natural selection causes change. Fitness is the single

measure of the capacity of organisms to survive and contribute offspring to the next

generation [19, 27]. As such, fitness may be viewed as a property of individuals,

although it occasionally reflects properties of populations and even species [23]. As

a result of this survival and reproduction process, some individuals have a higher

fitness, because they are more successful in passing on genes to the subsequent gen-
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eration than other individuals. For change to occur as a result of natural selection,

it is essential that individuals within a population vary in fitness and that the differ-

ences are at least partially caused by differences in genetic composition. Therefore, a

prerequisite for natural selection to be an effective evolutionary force is that fitness

must have a heritable component [23].

In the density-dependent selection model we study, fitness values are assigned

to each genotype. These values represent the total fitness of individuals having the

same genotype and include the ability to survive and to produce offspring successfully.

Consequently, they reflect the per capita contribution of individuals of the genotype

to the population of individuals in the next generation. In evolutionary biology, these

measures are often referred to as absolute fitnesses [13, 15, 23].

2.4 Migration

Regardless of whether populations occur naturally or in a controlled system, they

rarely are isolated from others of the same species. Organisms, or their gametes,

often migrate from one population to another, introducing their genes into different

populations - a process evolutionary geneticists refer to as gene flow. Without the

presence of opposing forces, this behavior causes populations to move towards iden-

tical genetic compositions. When other factors result in reduced genetic variability

within populations, gene flow can lead to increased genetic diversity. As might be

expected, the flow of transgenes into natural populations can be investigated using

the models developed to study the effects of gene migration [7].

Migration models have been developed to study the interactions between two pop-

ulations as well as more complex relationships that involve multiple populations. In

these models, the flow of genes and individuals between populations can be either uni-

directional or multi-directional. As already noted, the most basic of these paradigms

is the continent-island model, where migration in each generation occurs from a conti-

nent population to an insular population [14, 15]. This model provides the framework
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for the research reported here, where we consider that either transgenes or conven-

tional genes are transmitted to an island population from a source population. We

investigate allele frequency and population size changes that occur in the recipient

population.

Allele frequency behavior in an island population undergoing constant migration

has been studied previously for the basic two-allele genetics model in which population

size is not included as a factor [14, 15]. Under these conditions, the allele frequency

for the island populations approaches an equilibrium value that is equal to the allele

frequency of the migrants. The rate of this approach depends upon the proportion of

individuals in the island population that is contributed by the migrating population.

These results can be interpreted to represent behavior of transgenes that repeatedly

enter a population, provided the introduced genes do not affect fitness.

Most mathematical models in population dynamics and population genetics are

autonomous [2], i.e. functional relationships in the models do not explicitly depend

on time. However, in the research reported here, we assume that migration is pe-

riodic in time. The life cycles of insects, natural life cycle of various species, food

availability, or seasonal weather could result in periodic migration [3, 9, 18]. The

effects of environmental periodicity have been observed in a laboratory setting. For

example, Jillson [18] experimented with a periodic food supply for the flour beetle,

Tribolium castaneum, and noted fluctuations in population size. Henson and Cushing

[16] studied Jillson’s experiment and proved the existence and stability of periodic

solutions. Costantino et al. [2] validated their results in laboratory experiments.

Franke and Selgrade [9] investigated mathematical issues associated with periodic

immigration and devised an approach to study nonautonomous (time-dependent)

dynamical systems by examining corresponding autonomous ones. Concepts they

introduced will be used in our analysis of a periodic migration model.
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2.5 Selection and Migration

Natural selection and migration frequently occur in the same population, making it

important to study their combined effects on its genetic and demographic properties.

Both processes are likely to be involved in determining the fate of transgenes that

have entered natural populations. Our research focuses on dynamics for an island

population considered in the context of the continent-island model that is undergoing

natural selection and migration.

Natural selection and migration can have differing effects on populations with, for

example, selection acting to reduce genetic variability and migration working to in-

crease it up to a point. When the effects of both selection and migration are included

in the basic, single locus two-allele genetics model, the dynamics that result differ from

those generated by models that treat either of these forces as single factors. For ex-

ample, in a model that includes selection as the sole active evolutionary force, a stable

feasible allele frequency equilibrium is found only when the heterozygote phenotypic

fitness is greater than the fitness value for each of the homozygotes. When migration

is included in this model, stable equilibria exist for other fitness relationships among

genotypes [15, 27, 32]. Similar results have been found for density-dependent selection

models [24, 29, 30].

Allele frequency dynamics resulting from the interaction of selection and migration

in an island population model were reported first in Haldane [11] and Wright [40].

Equilibrium results were described and determined to be influenced by the strength

of selection compared to the strength of migration and the degree of dominance in

phenotypic expression [11, 22, 40]. These analyses demonstrated that under certain

circumstances, a deleterious allele, i.e. one that acts to reduce fitness, can remain in a

population because of immigration [14]. Furthermore, with a high migration rate, an

allele that promotes high fitness can disappear from an island population even though

it is favored by selection. The possibility of such an elimination was first noticed and

reported by Haldane [12]. Our Example 5.2 illustrates this phenomenon when the
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degree of dominance of the deleterious allele is large enough.

2.6 Dominance in the Expression of Phenotypes

In the field of genetics, the concept of dominance refers to the influence that an

allele has on phenotypic expressions for genotypes at a single locus. More specifically,

it indicates the effect of an allele in the heterozygous state as compared to the effect

of an allele occurring in the homozygous condition. An allele is said to be completely

dominant when it has the same phenotypic effect in the heterozygous state as it does

in the homozygous state. In contrast, an allele is said to be recessive when its effect

in the heterozygous state is masked by the effect of a dominant allele. No dominance

is the condition that occurs when the heterozygote phenotype is exactly intermediate

between those two homozygotes. Overdominance, or heterozygote superiority, occurs

when the heterozygote phenotype is greater than the phenotypes of the homozygotes.

A range of other phenotypic dominance relationships also can occur for alleles. The

degree of dominance is a quantitative measure that indicates the magnitude of allelic

effects observed for the heterozygous state relative to those observed for homozygotes

[8, 10].

For the model we analyze, the phenotypic expressions of interest are values for

fitness, and we consider the effect of the degree of dominance on fitness relationships

among genotypes. We introduce equations that define the degree of dominance for

fitness functions in Chapter 3. As already noted, the degree of dominance for fitness

has been shown to influence allele frequency equilibrium behavior arising in the basic

genetic version of the continent-island model where population size effects are not

included. Selgrade and Roberds [33, 34] have studied a density-dependent selection

continent-island model and shown how complete dominance and no dominance can

affect allele frequency and population size dynamics. We extend their analyses to

include a wider range of dominance relationships and to study additional dynamics

for that model.
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Chapter 3

The Model

In this chapter, we introduce notation for the terminology discussed in the previous

chapter. Then we incorporate the concepts to develop a system of difference equations

for a postselection, density-dependent migration model. This system was proposed

and previously studied by Roberds and Selgrade [24, 33]. We describe the phase space

for the system of difference equations and present formulas that define the degree of

dominance. We also compute partial derivatives of fitnesses with respect to the state

variables.

3.1 Notation

We consider a diploid population with two alleles, A and a, at a single locus. In

the transgene case, the A allele represents the transgene, and the a allele refers to the

null allele. The population is composed of individuals with genotypes AA, Aa, and

aa. We use a continent-island model in which density-dependent selection occurs in

the island population. We denote the island population size by x and the frequency

of the A allele in the island population by p, where 0 ≤ p ≤ 1. The frequency of the

a allele is 1− p.
Genotypic fitnesses, denoted by fAA, fAa, and faa, are nonnegative functions of
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population size. Allelic fitnesses are defined as linear combinations of genotypic fit-

nesses and are given by

fA(p, x) ≡ pfAA(x) + (1− p)fAa(x) and

fa(p, x) ≡ pfAa(x) + (1− p)faa(x).

The population mean fitness is defined by

f(p, x) ≡ pfA(p, x) + (1− p)fa(p, x) = p2fAA(x) + 2p(1− p)fAa(x) + (1− p)2faa(x).

3.2 Model Development

The model we study tracks the frequency p of allele A in the population and the

population size x from one generation to the next, as described by Roughgarden [27].

Other models consider the numbers of each genotype present in the population. For

instance, Li [20, 21] has studied the effect of mixing of transgenic mosquitoes that

resist malaria with non-resistant mosquitoes in models without migration terms. He

studied a two dimensional system that keeps track of the number of transgenic alleles

as well as the number of null alleles [20]. Another model investigated by Li is a

three dimensional system that depicts the number of wild genotypes, the number of

homozygous transgenes as well as the number of heterozygous transgenes [21]. He

reported stability and equilibrium results for these systems.

The model we use was first developed by Roberds and Selgrade [24]. Following

selection in each generation, we assume g gametes immigrate to the island population

from the continent population. The immigration process is illustrated in Figure 3.1.

The frequency of the A allele in the migrant gametes is represented by q, a constant

where 0 ≤ q ≤ 1. After migration, random mating occurs. The number of gametes

that unite to produce zygotes in the next generation is

2p2fAA(x)x+ 4p(1− p)fAa(x)x+ 2(1− p)2faa(x)x+ g,
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and, hence, the population size in the next generation is

xf(p, x) +
g

2
.

The number of the gametes in the next generation that possess the A allele is

2p2fAA(x)x+ 2p(1− p)fAa(x)x+ qg.

Hence, the frequency of the A allele in the next generation is

p2fAA(x)x+ p(1− p)fAa(x)x+ q g
2

p2fAA(x)x+ 2p(1− p)fAa(x)x+ (1− p)2faa(x)x+ g
2

.

The number of additional zygotes in the next generation due to immigration is de-

noted by y =
g

2
. Making this substitution, we have the following system of difference

equations that describe the change in allele frequency and population size from gen-

eration n to generation n+ 1

pn+1 =
pnxnfA(pn, xn) + qy

xnf(pn, xn) + y

xn+1 = xnf(pn, xn) + y.

(3.1)

Selgrade and Roberds [33] described how periodic migration can be introduced into

this system of equations. To follow how this can be accomplished, assume periodic

migration into the island population from a continent population with period k, where

k is a nonnegative integer. For α ∈ R, such that 0 ≤ α < 1, we multiply the constant

immigration y by the factor 1 + αgk(n) where −1 ≤ gk(n) ≤ 1 and gk(n+ k) = gk(n)

for n = 0, 1, 2, . . . , for example, gk(n) = cos
(

2πn
k

)
. This produces immigration of

period k that varies between y(1−α) and y(1 +α) and αy is the maximum variation

in migration from y. To restrict the amount of migrants in the population, we assume

that y(1 + α) ≤ x. Thus, in any generation, the migrating population is less than

what is already present in the population. Including the immigration of period k,
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                                                     IMMIGRATION 

          
               A             y = migra0ng popula0on size                AA     

                  q = frequency of A in migrants                

                                                                               Aa 

                     a                                                                                      aa 

 CONTINENT POPULATION                  ISLAND POPULATION                                                                                              
                 x = island popula0on size                                                                                           
                            p = frequency of A on island 

Figure 3.1: Schematic illustration of migration in the continent-island model

system (3.1) becomes

pn+1 =
pnxnfA(pn, xn) + qy(1 + αgk(n))

xnf(pn, xn) + y(1 + αgk(n))

xn+1 = xnf(pn, xn) + y(1 + αgk(n)).

(3.2)

We introduce a per capita migration rate per generation relative to the island

population size x > 0 given by h(x) =
y

x
. The migration rate is a decreasing function

of population size since h′(x) = − y

x2
< 0. Replacing y by xh(x) in (3.2), the system
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becomes

pn+1 =
pnfA(pn, xn) + qh(xn)(1 + αgk(n))

f(pn, xn) + h(xn)(1 + αgk(n))

xn+1 = xn(f(pn, xn) + h(xn)(1 + αgk(n))),

(3.3)

which is the two-dimensional time-dependent dynamical system that we study.

3.3 Phase Space

When α = 0, the transition equations become

pn+1 =
pnfA(pn, xn) + qh(xn)

f(pn, xn) + h(xn)

xn+1 = xn(f(pn, xn) + h(xn)).

(3.4)

The phase space for the system (3.4) is the slot in the (p, x)-plane defined by

S ≡ {(p, x) : 0 ≤ p ≤ 1, 0 < x}.

When y = 0 (i.e. h = 0), the vertical boundary lines of S are invariant and the alleles

are fixed. If y > 0 and 0 < q < 1, then points on {p = 0} and {p = 1} are mapped

into the interior of S. An orbit {(pn, xn) : n = 0, 1, 2, . . . } is obtained after repeated

iteration of (3.4). The line {p = q} divides the region S into two subregions

S+ ≡ {(p, x) : q ≤ p ≤ 1, 0 < x} and

S− ≡ {(p, x) : 0 ≤ p ≤ q, 0 < x}.

The system (3.3) has periodic migration and is time-dependent. When plotting

orbits of (3.3) in S, different orbits may intersect. Including time as a phase variable

will remedy this problem. Franke and Selgrade [9] studied a time-periodic system by

looking at a corresponding time-independent dynamical system defined on the cylin-

der spaceH which is the Cartesian product of S and the discrete space {0, 1, . . . k−1},
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i.e.

H ≡ {0, 1, . . . , k − 1} × S.

The plane {p = q} divides the region H into two subregions

H+ ≡ {(n, p, x) : 0 ≤ n ≤ k − 1, q ≤ p ≤ 1, 0 < x} and

H− ≡ {(n, p, x) : 0 ≤ n ≤ k − 1, 0 ≤ p ≤ q, 0 < x}.

3.4 Degree of Dominance for Fitness

As discussed in the previous chapter, we are interested in the effects of varying

the degree of dominance on the dynamical behavior produced by our model. The

fitness for the heterozygote genotype can be expressed as a linear combination of the

two homozygotic fitnesses, i.e. general dominance. For a real parameter δ, we have

fAa(x) = δfAA(x) + (1− δ)faa(x) = faa(x) + δ(fAA(x)− faa(x)) (3.5)

for all x > 0.

Complete dominance in fitness occurs when the heterozygote fitness is the same

as one of the homozygote fitnesses. Clearly then, when δ = 1, the A allele has the

property of complete dominance, but when δ = 0, it is the a allele that possesses this

property. No dominance in fitness occurs when δ =
1

2
, so fAa(x) =

1

2
(fAA(x)+faa(x)).

Selgrade and Roberds [33] studied the two-dimensional time-dependent dynamical

system for the case of complete dominance and no dominance. For the case when

fAA(x) > faa(x) and when δ > 1, the phenomenon of overdominance occurs. Over-

dominance is thought to be irrelevant for investigations that treat transgenes. Partial

dominance occurs when 0 < δ < 1. General dominance occurs when 0 ≤ δ ≤ 1 and

is the major focus of our studies.

After substitution of expression (3.5) for fAa(x) and rearranging terms, the allele
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and mean fitnesses become

fA(p, x) = faa(x) + (p+ δ − δp)(fAA(x)− faa(x))

fa(p, x) = faa(x) + δp(fAA(x)− faa(x))

f(p, x) = faa(x) + p(p+ 2δ − 2δp)(fAA(x)− faa(x)).

(3.6)

And the partial derivatives of the allele and mean fitnesses are found to be:

∂fA
∂p

= (1− δ)(fAA(x)− faa(x))

∂fA
∂x

= f ′aa(x) + (p+ δ − δp)(f ′AA(x)− f ′aa(x))

∂fa
∂p

= δ(fAA(x)− faa(x))

∂fa
∂x

= f ′aa(x) + δp(f ′AA(x)− f ′aa(x))

∂f

∂p
= 2(p+ δ − 2δp)(fAA(x)− faa(x)) = 2(fA(p, x)− fa(p, x))

∂f

∂x
= f ′aa(x) + p(p+ 2δ − 2δp)(f ′AA(x)− f ′aa(x)).

(3.7)
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Chapter 4

Equilibria

In this chapter, we discuss properties of equilibria. We first define what an equilib-

rium is, in particular, a polymorphic equilibrium. We demonstrate that polymorphic

equilibria exist for our model. Then, we give conditions that ensure an equilibrium is

unique. Finally, we state conditions needed to ensure that the equilibrium is stable.

4.1 Definition

An equilibrium E = (p̄, x̄) occurs when both allele frequency p̄, 0 ≤ p̄ ≤ 1, and

population density x̄, x̄ > 0, are constant across generations, i.e. pn = p̄ and xn = x̄.

Furthermore, an equilibrium E is said to be polymorphic if 0 < p̄ < 1, i.e. both

alleles persist in the population [8, 27]. From (3.3), an equilibrium E = (p̄, x̄) must

satisfy the following system for all n:

p̄ = p̄fA(p̄, x̄) + qh(x̄)(1 + αgk(n))

1 = f(p̄, x̄) + h(x̄)(1 + αgk(n)).
(4.1)

Since (4.1) has to hold for all n, the system in (3.3) has equilibria only if gk(n) is

constant, i.e. the immigration is constant. Without loss of generality, we assume

α = 0 and examine the system of difference equations given in (3.4). Thus, at
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equilibria,

p̄ = p̄fA(p̄, x̄) + qh(x̄)

1 = f(p̄, x̄) + h(x̄).
(4.2)

Moreover, at an equilibrium, the frequency of allele a is constant, i.e., 1− pn = 1− p̄,
and

1− p̄ = (1− p̄)fa(p̄, x̄) + (1− q)h(x̄) (4.3)

must be satisfied. A polymorphic equilibrium is a point of intersection of the three

isocline curves:

C ≡ {(p, x) : f(p, x) + h(x) = 1}

CA ≡ {(p, x) : p[fA(p, x)− 1] + qh(x) = 0}

Ca ≡ {(p, x) : (1− p)[fa(p, x)− 1] + (1− q)h(x) = 0}.

(4.4)

The intersection of any pair of equations in (4.4) will determine E.

We assume fertility and survival rates are high when the population size is small,

i.e. fij(0) > 1 for i, j = A, a. Due to crowding, genotypic fitnesses approach zero as

the population size increases, so the genotypic fitnesses are decreasing functions of the

population density. Accordingly, for i, j = A, a we make the following assumption:

f ′ij(x) < 0 for all x > 0, fij(0) > 1 and fij(x)→ 0 as x→∞. (4.5)

From (4.5), it follows that ∂fA

∂x
< 0, ∂fa

∂x
< 0, and ∂f

∂x
< 0. The implicit function

theorem says that the curves defined in (4.4) may be considered as the graphs of x

as functions of p. We denote these by x̃(p), x̃A(p), and x̃a(p), respectively. In fact,
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we compute

dx̃

dp
=
−∂f
∂p

∂f
∂x

+ h′
,

dx̃A
dp

=
1− fA − p∂fA

∂p

p∂fA

∂x
+ qh′

, and

dx̃a
dp

=
fa − 1− (1− p)∂fa

∂p

(1− p)∂fa

∂x
+ (1− q)h′

.

(4.6)

4.2 Existence

From (4.5) and the fact that h(x) → 0 as x → ∞, Roberds and Selgrade [24]

showed that x̃(p) exists for each p, 0 ≤ p ≤ 1, and C separates S into two subsets.

For each p, 0 < p < 1, x̃A(p) exists and there is a vertical asymptote at p = 0. Also,

x̃(1) > x̃A(1). Thus, near p = 0, CA is above C and at p = 1, CA is below C. Roberds

and Selgrade concluded that the isoclines must intersect at least once and there is

at least one polymorphic equilibrium. The only assumption they made about the

fitnesses was (4.5), so their proof holds for the case of general dominance as well.

Theorem 4.1. Fix 0 < q < 1. Assume that genotype fitnesses satisfy (4.5), (3.5),

0 ≤ δ ≤ 1, and that h(x) =
y

x
where y > 0 is constant. Then (3.4) has at least one

polymorphic equilibrium, E = (p̄, x̄), 0 < p̄ < 1 and x̄ > 0.

We can make conclusions concerning the position of the allele frequency of the

polymorphic equilibrium with respect to allele frequency of the migrants by looking

at the equations in (4.2) satisfied at equilibrium. Multiplying the second equation in

(4.2) by p̄ and subtracting from the first equation gives

0 = p̄[fA(p̄, x̄)− f(p̄, x̄)] + (q − p̄)h(x̄).

Thus, using (3.6) yields,

(p̄− q)h(x̄) = p̄[fAA(x̄)− faa(x̄)](1− p̄)[p̄(1− δ) + δ(1− p̄)]. (4.7)
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If fAA(x̄) ≥ faa(x̄), the right hand side of (4.7) is nonnegative and thus p̄ ≥ q. If

fAA(x̄) ≤ faa(x̄), the right hand side of (4.7) is not positive and hence p̄ ≤ q.

Proposition 4.2. Assume that each genotype fitness satisfies (4.5), (3.5) and

0 ≤ δ ≤ 1. Let E = (p̄, x̄) be a polymorphic equilibrium. If fAA(x̄) ≥ faa(x̄), then

q ≤ p̄ < 1. If fAA(x̄) ≤ faa(x̄), then 0 < p̄ ≤ q.

4.3 Uniqueness

Selgrade and Roberds [34] found conditions for which the polymorphic equilibrium

is unique for the cases of complete dominance and no dominance. In addition, they

made conclusions about the size of p̄ compared to q.

Selgrade, Bostic, and Roberds [29] extended the conditions to show uniqueness

for general dominance where we assumed fAA(x) > faa(x). We discuss these results

and then extend and improve these conditions to show the polymorphic equilibrium

is unique for the case of general dominance when fAA(x̄) < faa(x̄) .

4.3.1 Assume fAA(x̄) > faa(x̄) at each equilibrium

To show that the the polymorphic equilibrium is unique, we will show that the

isoclines can cross at most once. For fAA(x̄) > faa(x̄) at each equilibrium, we will

show that where the isoclines C and CA cross,

dx̃A
dp

<
dx̃

dp
. (4.8)

Thus, for 0 < p < 1, as p increases, C crosses CA from below to above and this

can happen at most once. There will be one intersection of the isoclines, i.e. the

polymorphic equilibrium is unique.
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Using (4.6), for 0 < p < 1, (4.8) is equivalent to

p
(

1− fA − p∂fA

∂p

)
p∂fA

∂x
+ qh′

= p
dx̃A
dp

< p
dx̃

dp
=
−2p(fA − fa)

∂f
∂x

+ h′
. (4.9)

By cross multiplying the first and last terms in (4.9) and moving all the terms to one

side, we get the inequality{
p

(
1− fA − p

∂fA
∂p

)}{
∂f

∂x
+ h′

}
− {−2p(fA − fa)}

{
p
∂fA
∂x

+ qh′
}
< 0. (4.10)

We want to show (4.10) holds at each equilibrium E = (p̄, x̄). We will use the first

equation in (4.2) and substitute qh(x̄) for p̄(1 − fA) in (4.10). Using (3.6) and (3.7)

and rearranging the terms according to the factors f ′AA(x̄), f ′aa(x̄), and h′(x̄) (see

Appendix A.1 for details of the computation), we obtain the inequality

f ′AA(x̄){(fAA(x̄)− faa(x̄))p̄2[p̄2(1− δ) + 2δp̄(1− p̄)(1− δ) + 2δ2(1− p̄)]}

+ f ′AA(x̄){qp̄h(x̄)(p̄+ 2δ(1− p̄))}+ f ′aa(x̄){qh(x̄)(1− p̄)(1− δp̄+ p̄(1− δ))}

+ f ′aa(x̄){(fAA(x̄)− faa(x̄))p̄2(1− δ)(1− p̄)2(2δ − 1)}

+ h′(x̄){qh(x̄) + (fAA(x̄)− faa(x̄))p̄[2δq(1− p̄) + p̄(1− δ)(2q − 1)]} < 0.

(4.11)

Since we are assuming (4.5), all the terms are negative or zero except possibly the

term on the third line and the final term. The term in the third line is not positive if
1

2
≤ δ ≤ 1. The last term is not positive if

1

2
≤ q ≤ 1. We have for fAA(x̄) > faa(x̄)

that (4.11) holds if
1

2
≤ δ ≤ 1 and

1

2
≤ q ≤ 1 that the polymorphic equilibrium is

unique.
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4.3.2 Assume fAA(x̄) < faa(x̄) at each equilibrium

For fAA(x̄) < faa(x̄) at each equilibrium, to show that the polymorphic equilibrium

is unique, we will show that where the isoclines C and Ca cross,

dx̃

dp
<
dx̃a
dp

. (4.12)

Hence C will cross Ca from above to below as p increases for 0 < p < 1 and this can

happen at most once. Therefore, there will be one intersection of the isoclines and

the equilibrium is unique.

For 0 < p < 1, (4.12) is equivalent to showing

−2(1− p)(fA − fa)
∂f
∂x

+ h′
= (1− p)dx̃

dp
< (1− p)dx̃a

dp
=

(1− p)
(
fa − 1− (1− p)∂fa

∂p

)
(1− p)∂fa

∂x
+ (1− q)h′

.

(4.13)

Cross multiplying the first and last terms in (4.13) and moving all the terms to one

side, we obtain the inequality

{−2(1−p)(fA−fa)}{(1−p)
∂fa
∂x

+(1−q)h′}−{∂f
∂x

+h′}{(1−p)(fa−1−(1−p)∂fa
∂p

)} < 0.

(4.14)

We use (4.3) to substitute (q− 1)h(x̄) for (1− p̄)(fa− 1) in (4.14) to show that (4.14)

holds at each equilibrium E = (p̄, x̄). We use the fitnesses and their derivatives given

in (3.6) and (3.7) and rearrange terms by factors of f ′AA(x̄), f ′aa(x̄), and h′(x̄) (see
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details in Appendix A.2) to obtain the inequality

f ′AA(x̄){((fAA(x̄)− faa(x̄))δp̄2(1− p̄)2(2δ − 1)}

+ f ′AA(x̄){p̄(1− q)(p̄+ 2δ(1− p̄))h(x̄)}

+ f ′aa(x̄){(1− p̄)(1− δp̄+ p̄(1− δ))(1− q)h(x̄)}

+ f ′aa(x̄){((fAA(x̄)− faa(x̄))(1− p̄)2[−δ(1− p̄)2 − 2p̄(1− δ)(1− δp̄)]}

+ h′(x̄)[(1− q)h(x̄) + (fAA(x̄)− faa(x̄))(1− p̄)[2p̄(δ − 1)(1− q) + δ(p̄− 1)(1− 2q)]]

< 0.

(4.15)

Assuming (4.5), all the terms in (4.15) are negative or zero except possibly the

first term and the last term. The first term is negative if 0 ≤ δ ≤ 1

2
. The last term

is negative if 0 ≤ q ≤ 1

2
. For fAA(x̄) < faa(x̄), we have that (4.15) holds and the

polymorphic equilibrium is unique if 0 ≤ δ ≤ 1

2
and 0 ≤ q ≤ 1

2
.

We have the following result:

Theorem 4.3. Assume that each genotype fitness satisfies (4.5) and (3.5). For

fAA(x̄) > faa(x̄), if
1

2
≤ δ ≤ 1 and

1

2
≤ q ≤ 1 then the polymorphic equilibrium

is unique and q < p̄ < 1. For fAA(x̄) < faa(x̄) if 0 ≤ δ ≤ 1

2
and 0 ≤ q ≤ 1

2
then the

polymorphic equilibrium is unique and 0 < p̄ < q.

4.4 Stability

To determine whether a polymorphic equilibrium is locally stable, we examine the

Jury conditions [5]. We evaluate Jacobian matrix of the right hand side of (3.4) at

E = (p̄, x̄) to obtain D(E). The polymorphic equilibrium is locally stable if both

eigenvalues of D(E), λ1 and λ2, are inside the unit circle. The Jury conditions state

that the equilibrium is locally stable if and only if |tr[D(E)]| < 1 + det[D(E)] < 2.

We consider this condition in pieces to arrive at results related to local stability.
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The Jacobian at equilibrium is

D(E) =

fA + p̄
(
∂fA

∂p
− ∂f

∂p

)
p̄(1− p̄)

(
∂fA

∂x
− ∂fa

∂x

)
+ h′(x̄)(q − p̄)

x̄∂f
∂p

1 + x̄
(
∂f
∂x

+ h′(x̄)
)

 . (4.16)

4.4.1 Determinant

We first derive an expression for the determinant of the Jacobian. We propose

that det[D(E)] < 1. If the eigenvalues are complex and det[D(E)] < 1 then the

equilibrium is locally stable. Using (3.6) and (3.7), for 0 ≤ δ ≤ 1, we compute that

the determinant of D(E) in terms of the derivatives of the genotype fitnesses is (see

Appendix A.3.1 for details of the computation)

det[D(E)] =fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)p̄(p̄(1− δ) + 2δ(1− p̄))]

+ x̄f ′aa(x̄)[fAA(x̄)(1− p̄)(2p̄(1− δ) + δ(1− p̄)) + faa(x̄)(1− p̄)2(1− δ)]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq − 2p̄q − 2δp̄+ 4δp̄q)(fAA(x̄)− faa(x̄))].

(4.17)

We define the term multiplied by x̄h′(x̄), as

H(q, δ) = faa(x̄) + (2p̄+ δ − 2δq − 2p̄q − 2δp̄+ 4δp̄q)(fAA(x̄)− faa(x̄)). (4.18)

4.4.1.1 Assume fAA(x̄) > faa(x̄)

For fAA(x̄) > faa(x̄), assuming (4.5) and using p̄ > q, we rewrite H(q, δ) (4.18) as

H(q, δ) = faa(x̄) + (p̄− δq + δ − δq + p̄− 2p̄q − 2δp̄+ 4δp̄q)(fAA(x̄)− faa(x̄))

> faa(x̄) + [q − δq + δ − δq + p̄(1− 2q)(1− 2δ)](fAA(x̄)− faa(x̄))

= faa(x̄) + [q(1− δ) + δ(1− q) + p̄(1− 2δ)(1− 2q)](fAA(x̄)− faa(x̄)).
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Thus, we have that

det[D(E)] <fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)p̄[δp̄fAA(x̄) + (p̄(1− δ) + 2δ(1− p̄))faa(x̄)]

+ x̄f ′aa(x̄)(1− p̄)[(2p̄(1− δ) + δ(1− p̄))fAA(x̄) + (1− p̄)(1− δ)faa(x̄)]

+ x̄h′(x̄)[(q(1− δ) + δ(1− q))(fAA(x̄)− faa(x̄)) + faa(x̄)

+ p̄(1− 2δ)(1− 2q)(fAA(x̄)− faa(x̄))].

(4.19)

Rewriting the first equation in (4.2), we have p̄(1 − fA(p̄, x̄)) = qh(x̄). The right

hand side is positive and hence fA(p̄, x̄) < 1. Also, using (3.6),

1 > fA(p̄, x̄) = p̄fAA(x̄) + (1− p̄)fAa(x̄) = p̄(fAA(x̄)− fAa(x̄)) + fAa(x̄).

Using (3.5) and (4.2), the first term in (4.19) is less than one. The second term is

not positive if
1

2
≤ δ ≤ 1. Since we are assuming (4.5), the last term is not positive

if
1

2
≤ δ ≤ 1 and

1

2
≤ q ≤ 1. The other terms in the determinant are negative. Thus,

for fAA(x̄) > faa(x̄), det[D(E)] < 1 if
1

2
≤ δ ≤ 1 and

1

2
≤ q ≤ 1.

4.4.1.2 Assume fAA(x̄) < faa(x̄)

For fAA(x̄) < faa(x̄), we assume (4.5) and p̄ < q.

We want to determine conditions where H(q, δ) is positive. We use that at equi-
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librium p̄ < q to obtain

H(q, δ) =[2p̄+ δ − 2δq − 2p̄q − 2δp̄+ 4δp̄q − 1](fAA(x̄)− faa(x̄)) + fAA(x̄)

>[−1 + δ − 2δq + 2p̄− 2p̄q − 2δp̄+ 4δp̄q](fAA(x̄)− faa(x̄))

=[−1 + 2q + 2δ − 4δq + p̄− 2p̄q − 2δp̄+ 4δp̄q − 2q − δ + p̄+ 2δq]

∗ (fAA(x̄)− faa(x̄))

=[(2q − 1)(1− 2δ) + p̄(1− 2q)(1− 2δ) + 2q(δ − 1) + p̄− δ](fAA(x̄)− faa(x̄))

>[(1− 2q)(1− 2δ)(p̄− 1) + 2p̄(δ − 1) + p̄− δ](fAA(x̄)− faa(x̄))

=[(1− 2q)(1− 2δ)(p̄− 1) + 2δp̄− p̄− δ](fAA(x̄)− faa(x̄))

=[(1− 2q)(1− 2δ)(p̄− 1) + (δ(p̄− 1) + p̄(δ − 1)](fAA(x̄)− faa(x̄)).

Hence,

det[D(E)] < fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)p̄[δp̄fAA(x̄) + (p̄(1− δ) + 2δ(1− p̄))faa(x̄)]

+ x̄f ′aa(x̄)(1− p̄)[(2p̄(1− δ) + δ(1− p̄))fAA(x̄) + (1− p̄)(1− δ)faa(x̄)]

+ x̄h′(x̄)[(1− 2q)(1− 2δ)(p̄− 1) + (δ(p̄− 1) + p̄(δ − 1)](fAA(x̄)− faa(x̄)).

(4.20)

Using (4.3), we have that (1− p̄)(1− fa(p̄, x̄)) = (1− q)h(x̄). The right hand side

is positive, so fa(p̄, x̄) < 1. Also, using (3.5), we know that faa(x̄) > fAa(x̄). We have

fa(p̄, x̄) = p̄fAa(x̄) + (1 − p̄)faa(x̄) = (1 − p̄)(faa(x̄) − fAa(x̄)) + fAa(x̄) < 1. Hence,

fAa(x̄) < 1.

For fAA(x̄) < faa(x̄), the second term is not positive if 0 ≤ δ ≤ 1

2
. The last term

is not positive if both 0 ≤ δ ≤ 1

2
and 0 ≤ q ≤ 1

2
. The other terms in the determinant

are negative.

We have established the following result:

Lemma 4.4. For a polymorphic equilibrium E = (p̄, x̄) exhibiting (3.5) and (4.5)
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if fAA(x̄) > faa(x̄) and if
1

2
≤ q ≤ 1 and

1

2
≤ δ ≤ 1 then det(D(E)) < 1. If

fAA(x̄) < faa(x̄) and if 0 ≤ q ≤ 1

2
and 0 ≤ δ ≤ 1

2
then det(D(E)) < 1.

If the respective conditions on q and δ are met, and if the eigenvalues of D(E)

are complex then they are both inside the unit circle and E is locally asymptotically

stable.

4.4.2 1− tr[D(E)] + det[D(E)]

Next, we want to find conditions so that 1 − tr[D(E)] + det[D(E)] > 0. If we

can prove this, then if det[D(E)] < 1, we can guarantee an upper bound on the

eigenvalues of D(E) because

1− tr[D(E)] + det[D(E)] = 1− (λ1 + λ2) + λ1λ2 = (1− λ1)(1− λ2).

Thus, if eigenvalues are real, they both must be less than 1. However, we still need a

lower bound on the eigenvalues to make a conclusion about stability.

We compute (see details of the computation in Appendix A.3.2, equation (A.14))

1− tr[D(E)] + det[D(E)]

= x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)(p̄2 + 2δp̄− 3δp̄2)− p̄2 − 2δp̄+ 2δp̄2]

+ x̄f ′aa(x̄)[fAA(x̄)(2p̄+ δ − 4δp̄− 2p̄2 + 3δp̄2)

+ faa(x̄)(−2p̄− δ + 2δp̄+ p̄2 − δp̄2 + 1) + p̄2 + 2δp̄− 2δp̄2 − 1]

+ x̄h′(x̄)[fAA(x̄)(2p̄− 2δp̄+ δ − 2p̄q − 2δq + 4δp̄q)

+ faa(x̄)(−2p̄+ 2δp̄− δ + 2p̄q + 2δq − 4δp̄q + 1)− 1].

(4.21)

We examine terms that are multipliers for the various derivatives. The terms that

are multiplied by x̄f ′AA(x̄) are denoted by A(δ) where

A(δ) = fAA(x̄)δp̄2 + faa(x̄)(p̄2 + 2δp̄− 3δp̄2)− 2δp̄− p̄2 + 2δp̄2.
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The terms multiplied by x̄f ′aa(x̄) are denoted as B(δ) where

B(δ) =fAA(x̄)(2p̄+ δ − 4δp̄− 2p̄2 + 3δp̄2) + faa(x̄)(−2p̄− δ + 2δp̄+ p̄2 − δp̄2 + 1)

+ 2δp̄− 2δp̄2 − 1 + p̄2.

And finally, the terms multiplied by x̄h′(x̄) are represented as C(q, δ), giving

C(q, δ) =fAA(x̄)(2p̄− 2δp̄+ δ − 2p̄q − 2δq + 4δp̄q)

+ faa(x̄)(−2p̄+ 2δp̄− δ + 2p̄q + 2δq − 4δp̄q + 1)− 1.

4.4.2.1 Assume fAA(x̄) > faa(x̄)

For fAA(x̄) > faa(x̄), we rewrite the terms multiplied by x̄f ′AA(x̄) (see equation

(A.15)) as

A(δ) = p̄[p̄(fAa(x̄)− 1) + 2δ(1− p̄)(faa(x̄)− 1)].

Since fAa(x̄) < 1 and faa(x̄) < 1 when fAA(x̄) > faa(x̄), then A(δ) < 0 for all δ,

0 ≤ δ ≤ 1.

For the terms multiplied by x̄f ′aa(x̄), we consider the cases for fAA(x̄) ≤ 1 and

fAA(x̄) > 1 separately. First, when fAA(x̄) ≤ 1, we compute (see equation (A.16))

B(δ) =(1− p̄)[(2p̄(1− δ) + δ(1− p̄))(fAA(x̄)− 1) + (1− p̄)(1− δ)(faa(x̄)− 1)].

Because we assume fAA(x̄) ≤ 1, B(δ) < 0 for all δ, 0 ≤ δ ≤ 1. For the case fAA(x̄) > 1,

we use that at equilibrium, fA(p̄, x̄) − faa(x̄) = (p̄ + δ − δp̄)(fAA(x̄) − faa(x̄)) and

fA(p̄, x̄)− 1 < 0. As computed in (A.17),

B(δ) < (1− p̄)p̄(1− 2δ)(fAA(x̄)− 1).

When fAA(x̄) > 1 and
1

2
≤ δ ≤ 1, B(δ) < 0. Therefore, for fAA(x̄) > 1 or fAA(x̄) < 1,

when
1

2
≤ δ ≤ 1 then B(δ) < 0.
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For the terms multiplied by x̄h′(x̄), (see (A.18) for details) we compute

C(q, δ) < [p̄(1− δ)(1− 2q)− 2δq(1− p̄)](fAA(x̄)− faa(x̄)).

And, C(q, δ) < 0 when
1

2
≤ q ≤ 1 for all δ, 0 ≤ δ ≤ 1.

Thus for fAA(x̄) > faa(x̄) since we are assuming (4.5), when
1

2
≤ δ ≤ 1 and

1

2
≤ q ≤ 1, then 1− tr[D(E)] + det[D(E)] > 0.

4.4.2.2 Assume fAA(x̄) < faa(x̄)

When fAA(x̄) < faa(x̄), for terms multiplied by x̄f ′AA(x̄), we examine the cases

faa(x̄) ≤ 1 and faa(x̄) > 1 individually. First, we consider the condition faa(x̄) ≤ 1,

we compute (see (A.19)) that

A(δ) = p̄2(fAa(x̄)− 1) + 2δp̄(1− p̄)(faa(x̄)− 1).

And A(δ) ≤ 0 if faa(x̄) < 1 for all δ, 0 ≤ δ ≤ 1. When faa(x̄) > 1, we compute (see

(A.20))

A(δ) < p̄(1− p̄)(2δ − 1)(faa(x̄)− 1).

If faa(x̄) > 1, A(δ) < 0 when 0 ≤ δ ≤ 1

2
. If faa(x̄) ≤ 1 or faa(x̄) > 1 when 0 ≤ δ ≤ 1

2
,

then A(δ) < 0.

For the terms multiplied by x̄f ′aa(x̄), we showed (see (A.21)) that

B(δ) < (1− p̄)p̄(1− 2δ)(fAA(x̄)− 1)

When fAA(x̄) < faa(x̄), we have that fAA(x̄) < 1. Thus, B(δ) < 0 when 0 ≤ δ ≤ 1

2
.

For the terms multiplied by x̄h′(x̄), we compute (see (A.22))

C(q, δ) < [(p̄(1− δ) + δ(1− p̄))(1− 2q) + p̄(1− δ)](fAA(x̄)− faa(x̄)).
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For fAA(x) < faa(x), when 0 ≤ q ≤ 1

2
, C(q, δ) < 0.

Thus, with Lemma 4.4, we have the following result:

Proposition 4.5. Let E = (p̄, x̄) be a polymorphic equilibrium exhibiting (3.5) and

(4.5). For fAA(x̄) > faa(x̄), if
1

2
≤ q ≤ 1 and

1

2
≤ δ ≤ 1 then the real eigenvalues

of D(E) are less than 1 and the complex eigenvalues are inside the unit circle. For

fAA(x̄) < faa(x̄), if 0 ≤ q ≤ 1

2
and 0 ≤ δ ≤ 1

2
then the real eigenvalues of D(E)

are less than 1 and the complex eigenvalues are inside the unit circle. In both cases,

1− tr[D(E)] + det[D(E)] > 0.

In Roberds and Selgrade [24] where complete dominance was assumed, it was

shown that the additional assumption

0 < 1 + tr[D(E)] + det[D(E)]

guarantees real eigenvalues are inside the unit circle. Their argument applies equally

well to the case of general dominance.

4.5 Summary

Roberds and Selgrade [24] proved that for 0 < q < 1 polymorphic equilibria exist

for our model. We found conditions for which the polymorphic equilibrium is unique.

We have results about uniqueness and conditions for stability if the fitness for the

genotype AA is superior to the fitness for the genotype aa at equilibrium. If the

heterozygote fitness is midway between the fitnesses of the homozygotes or closer to

the fitness of homozygote AA (
1

2
≤ δ ≤ 1) and if at least half of the migrants into the

island population are the A allele (
1

2
≤ q ≤ 1), then there is an unique equilibrium,

which is stable under additional assumptions. Also, the frequency of allele A at

equilibrium will be greater than the frequency of A in the migrant population (i.e.

p̄ > q).
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We proved similar results if the genotypic fitnesses have the reverse relationship,

i.e. fAA(x̄) < faa(x̄). If the heterozygote is halfway between the two homozygote

fitnesses or closer to that fitness of homozygote aa (0 ≤ δ ≤ 1

2
) and at most half of

the migrants are the A allele (0 ≤ q ≤ 1

2
), then the polymorphic equilibrium is unique,

and with additional assumptions is stable. Also, we proved that the allele frequency

of A at equilibrium is less than the frequency of A in the migrant population (i.e.

p̄ < q).
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Chapter 5

Additional Equilibrium Results

Additional equilibrium results are presented in this chapter. First, we investigate

the effects resulting from varying the degree of dominance. Then, we demonstrate

that under particular conditions a transcritical bifurcation occurs.

5.1 Varying the Degree of Dominance

In this section, we study how both the allele frequency of the polymorphism and

the island population size change as the degree of dominance varies, i.e. how p̄ and x̄

values are affected by shifts in δ.

We use the system satisfied at equilibrium, (4.2), to define functions F and G as

follows:
F (p, x, δ) = pfA + qh− p

G(p, x, δ) = f + h− 1.

The values of p, x, and δ at equilibrium are simultaneous solutions of F = 0 and

G = 0. The Implicit Function Theorem permits us to express the p and x coordinates
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of a solution in terms of the parameter δ in a neighborhood of a solution provided

det

[
∂F
∂p

∂F
∂x

∂G
∂p

∂G
∂x

]
6= 0.

Hence, for an equilibrium E = (p̄, x̄), p̄ and x̄ may be considered functions of δ and

the derivatives can be expressed in terms of the appropriate Jacobian determinants

(see Taylor and Mann [37] for details on formulas). Therefore, the derivative of p̄

with respect to δ is:

dp̄

dδ
= − det

[
∂F
∂δ

∂F
∂x

∂G
∂δ

∂G
∂x

]/
det

[
∂F
∂p

∂F
∂x

∂G
∂p

∂G
∂x

]
. (5.1)

And the derivative of x̄ with respect to δ is

dx̄

dδ
= − det

[
∂F
∂p

∂F
∂δ

∂G
∂p

∂G
∂δ

]/
det

[
∂F
∂p

∂F
∂x

∂G
∂p

∂G
∂x

]
. (5.2)

The component partial derivatives for the determinants are

∂F

∂δ
= p̄

dfA
dδ

= p̄(1− δ)(fAA(x̄)− faa(x̄))

∂F

∂x
= p̄

dfA
dx

+ qh′(x̄)

∂F

∂p
= fA + p̄

∂fA
∂p
− 1

∂G

∂δ
= 2p̄(1− p̄)(fAA(x̄)− faa(x̄))

∂G

∂x
=
df

dx
+ h′(x̄)

∂G

∂p
=
∂f

∂p

(5.3)

(see Appendix B for details).
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The numerator of (5.1) is computed (see equation (B.2) to be

−∂F
∂δ

∂G

∂x
+
∂F

∂x

∂G

∂δ
= p̄(1−p̄)(fAA(x̄)−faa(x̄))[p̄2f ′AA(x̄)−(1−p̄)2f ′aa(x̄)+(2q−1)h′(x̄)].

(5.4)

For fAA(x̄) > faa(x̄), the sign of (5.4) is determined the the term in brackets. For

fAA(x̄) < faa(x̄), the sign of (5.4) will be opposite the term in brackets as

fAA(x̄)− faa(x̄) < 0. Because we assume (4.5), for any x̄, the sign of the first term is

negative and the sign of the second term is positive. For 0 ≤ q ≤ 1

2
, the third term is

positive. For
1

2
≤ q ≤ 1, the third term is negative. Without having more knowledge

of the relationship of the derivatives of genotypic fitnesses, no general conclusion can

be made about the sign of (5.4).

The numerator of (5.2) is computed (see equation B.5) to be

−∂F
∂p

∂G

∂δ
+
∂F

∂δ

∂G

∂p
=2p̄(fAA(x̄)− faa(x̄))2[2p̄2 − 2δp̄2 − p̄− δ2 + 2δ2p̄]

+ 2p̄(1− p̄)(fAA(x̄)− faa(x̄))(1− faa(x̄)).

(5.5)

For fAA(x̄) > faa(x̄), if we can show the term in brackets in (5.5) is positive then

we can conclude that (5.5) is positive. Without additional restrictions, no general

conclusions can be made. Similarly, for fAA(x̄) < faa(x̄), if we can show the term in

brackets is negative, then we could conclude that (5.5) is negative. Without additional

assumptions, no conclusion can be made on the sign of (5.5).
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The denominator of both (5.1) and (5.2) is computed (see equation (B.3)) as

∂F

∂p

∂G

∂x
− ∂F

∂x

∂G

∂p
=f ′AA(x̄)[δp̄2fAA(x̄) + (p̄2 + 2δp̄− 3δp̄2)faa(x̄)− p̄2 − 2δp̄+ 2δp̄2]

+ f ′aa(x̄)[(2p̄− 2p̄2 + δ − 4δp̄+ 3δp̄2)fAA(x̄)

+ (−2p̄+ p̄2 − δ + 2δp̄− δp̄2 + 1)faa(x̄)

+ (p̄2 + 2δp̄− 2δp̄2 − 1)]

+ h′(x̄)[(2p̄+ δ − 2δp̄+ 4δp̄q − 2p̄q − 2δq)fAA(x̄)

+ (1− 2p̄− δ + 2δp̄− 4δp̄q + 2p̄q + 2δq)faa(x̄)− 1]

(5.6)

We examine terms grouped according to the derivatives for fAA, faa, and h. For terms

multiplied by f ′AA(x̄), we denote them by A(δ) where

A(δ) = fAA(x̄)δp̄2 + faa(x̄)(p̄2 + 2δp̄− 3δp̄2)− 2δp̄− p̄2 + 2δp̄2.

The terms multiplied by f ′aa(x̄) are denoted as B(δ) where

B(δ) =fAA(x̄)(2p̄+ δ − 4δp̄− 2p̄2 + 3δp̄2) + faa(x̄)(−2p̄− δ + 2δp̄+ p̄2 − δp̄2 + 1)

+ 2δp̄− 2δp̄2 − 1 + p̄2.

Denote the terms that are multiplied by h′(x̄) as C(q, δ), with

C(q, δ) =fAA(x̄)(2p̄− 2δp̄+ δ − 2p̄q − 2δq + 4δp̄q)

+ faa(x̄)(−2p̄+ 2δp̄− δ + 2p̄q + 2δq − 4δp̄q + 1)− 1.

These are the same expressions we obtained for 1 − tr[D(E)] + det[D(E)] (see Sub-

section 4.4.2). As proven in the stability computations (see Appendix A.3.2.1), we

can show that for fAA(x̄) > faa(x̄) when x > 0 and assuming (4.5), if
1

2
≤ q ≤ 1 and

1

2
≤ δ ≤ 1, then (5.6) is greater than zero. Similarly, for fAA(x̄) < faa(x̄), assuming

(4.5) and if 0 ≤ q ≤ 1

2
and 0 ≤ δ ≤ 1

2
then (5.6) is greater than zero (see Appendix
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A.3.2.2 for details).

The following example illustrates how p̄ and x̄ change as δ increases from 0 to 1.

Example 5.1. Take y = 1 and genotype fitnesses

fAA(x) = e1−x and faa(x) = e1−4x.

Clearly fAA(x) > faa(x) for all x > 0. For q = 0.8, the first and last terms in

brackets of (5.4) are both negative and the middle term is positive for any x̄. When

δ = 0, then E = (p̄, x̄) ≈ (0.879, 1.664). We calculate that
dp̄

dδ
≈ −0.0481 < 0 and

dx̄

dδ
≈ 0.599 > 0. Hence, p̄ decreases as δ increases and x̄ increases as δ increases (see

Figure 5.1(a)). At equilibrium, from Proposition 4.2, when fAA(x̄) > faa(x̄) we have

p̄ > q. Numerical simulations indicate that p̄ decreases monotonically from 0.879 to

0.821 and x̄ increases monotonically from 1.664 to 1.787 (see Table 5.1). In fact, as

δ increases from 0 to 1, p̄ approaches q.

Table 5.1: Equilibrium movement as δ varies when q = 0.8 in Example 5.1. For
fAA(x) = e1−x, faa(x) = e1−4x and y = 1, p̄ decreases and x̄ increases as δ increases
from 0 to 1.

δ (p̄, x̄)
dp̄

dδ

dx̄

dδ
0 (0.879, 1.664) -0.0481 0.599

0.2 (0.869, 1.682) -0.0528 0.430
0.4 (0.858, 1.704) -0.0572 0.297
0.6 (0.846, 1.728) -0.0608 0.205
0.8 (0.834, 1.756) -0.0632 0.155
1 (0.821, 1.787) -0.0642 0.141

When 0 < q <
1

2
, the first term in (5.4) is negative and the second and third terms

are positive for any x̄. For q = 0.4 and δ = 0, then E = (p̄, x̄) ≈ (0.524, 1.28). We

compute
dp̄

dδ
≈ −0.0239 < 0 and

dx̄

dδ
≈ 0.694 > 0. Hence, p̄ decreases and x̄ increases

as δ increases (see Figure 5.1(b)). Numerical simulations indicate that p̄ decreases
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monotonically from 0.524 to 0.506 and x̄ increases monotonically from 1.280 to 1.652

(see Table 5.2). As δ increases from 0 to 1, p̄ approaches 0.5.

Table 5.2: Equilibrium movement as δ varies when q = 0.4 in Example 5.1. For
fAA(x) = e1−x, faa(x) = e1−4x and y = 1, p̄ decreases and x̄ increases as δ increases
from 0 to 1.

δ (p̄, x̄)
dp̄

dδ

dx̄

dδ
0 (0.524, 1.280) -0.0239 0.694

0.2 (0.519, 1.360) -0.0215 0.540
0.4 (0.515, 1.438) -0.0190 0.424
0.6 (0.511, 1.513) -0.0166 0.336
0.8 (0.508, 1.584) -0.0145 0.268
1 (0.506, 1.652) -0.0126 0.215

For q = 0.3 and δ = 0, then E = (p̄, x̄) ≈ (0.388, 1.174). We calculate that
dp̄

dδ
≈ 0.0703 > 0 and

dx̄

dδ
≈ 0.602 > 0. Hence, both p̄ and x̄ increase as δ increases

(see Figure 5.1(c)). Numerical simulations indicate that p̄ increases monotonically

from 0.388 to 0.423 and x̄ increases monotonically from 1.174 to 1.590 (see Table

5.3). As δ increases from 0 to 1, p̄ approaches 0.5.

Table 5.3: Equilibrium movement as δ varies when q = 0.3 in Example 5.1. For
fAA(x) = e1−x, faa(x) = e1−4x and y = 1, p̄ increases and x̄ increases as δ increases
from 0 to 1.

δ (p̄, x̄)
dp̄

dδ

dx̄

dδ
0 (0.388, 1.174) 0.0703 0.602

0.2 (0.400, 1.265) 0.0500 0.522
0.4 (0.409, 1.353) 0.0359 0.432
0.6 (0.415, 1.437) 0.0264 0.348
0.8 (0.420, 1.516) 0.0199 0.274
1 (0.423, 1.590) 0.0154 0.210

When
1

2
≤ q ≤ 1, numerical simulations show that as δ increases, p̄ decreases. No

conclusion can be made about how p̄ moves with respect to δ when 0 ≤ q <
1

2
as we
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Figure 5.1: Equilibrium movement for various values of q as δ varies in Example 5.1.
For fAA(x) = e1−x, faa(x) = e1−4x, and y = 1, the movement of (p̄, x̄) as δ increases
from from 0 to 1.
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have an example where x̄ increases as well as one where x̄ decreases. Regardless the

value of q, numerical simulations indicate that x̄ increases as δ increases.

We offer a possible explanation for what was seen in the previous example when

fAA(x̄) > faa(x̄). When
1

2
≤ q ≤ 1, the immigration rate of A into the island popu-

lation is high. When δ = 0, the heterozygote fitness is the same as the homozygote

aa fitness, but the high migration rate means that there is a high frequency for the A

allele in the population and thus the value of p̄ is large. As δ increases to 1, the het-

erozygote fitness becomes larger as it is more similar to the homozygote AA fitness.

This results in an increase in frequency for the heterozygote Aa genotype and thus

an increase in the frequency of the a allele. Thus, there is a decrease in the frequency

of the A allele which means a decrease in p̄. In fact, as δ increases from 0 to 1, p̄

decreases (
dp̄

dδ
< 0) and moves towards q.

We also note that for fAA(x̄) > faa(x̄), when q is small, the immigration rate of

the A allele into the island population is low. When δ = 0, the heterozygote fitness

is equal to the fitness of the homozygote aa. There is a small representation of the

A allele in the population, so p̄ is small. As δ increases to 1, the heterozygote fitness

improves, so there is an increase in the heterozygote inventory within the population,

resulting in an increase in the frequency of the A allele. Hence, p̄ increases.

For fAA(x̄) > faa(x̄), when q <
1

2
, but close to

1

2
, the movement of p̄ with

respect to δ can be determined depending on the value for p̄. Migration contributes

slightly greater numbers for the a allele than the A allele at these q values. When

p̄ >
1

2
, as δ increases toward 1, heterozygote fitness increases leading to a greater

heterozygote presence. Therefore, the a allele increases in the population and the

value of p̄ decreases. If, however, p̄ <
1

2
when δ = 0, as δ increases to 1, heterozygote

fitness improves, leading to an increase in the number of heterozygotes. Thus, there

is an increase in the A allele and p̄ increases.

Regardless of the value for q, when fAA(x̄) > faa(x̄), x̄ seems to increase as δ

increases. Mean fitness becomes larger as δ increases because
∂f

∂δ
= 2p̄(1− p̄)(fAA(x̄)− faa(x̄)) > 0. Thus, because x̄ = x̄f(p̄, x̄) + y, at equilibrium
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x̄ increases as δ increases.

5.2 Transcritical Bifurcation

We now consider a scenario in which a less fit allele migrates into an island popu-

lation. In this case, only the less fit allele migrates into the population. If the degree

of dominance is large enough, then we show that the island population has a stable

equilibrium. Such an equilibrium occurs as a result of a transcritical bifurcation in

which the degree of dominance is the parameter. In terms of a transgenic model,

we assume that the transgene A is less fit than the a allele and is the only allele

migrating into the population. If the degree of dominance is large enough, then a

stable equilibrium exists at which the frequency of the A is 1.

To set the stage for this case, we assume that faa > fAA, q = 1 and that the

fitnesses are constant, i.e., do not vary with x. Using the equations satisfied at

equilibrium, (4.2), we rewrite the second equation of (4.2) as h(x̄) = 1− f(p̄). Using

this equality to substitute for h(x) in the first equation of (4.2) and moving the

nonzero terms to the right hand side gives

0 = p̄(fA(p̄)− 1) + 1− f(p̄)

= p̄[faa + (p̄+ δ − δp̄)(fAA − faa)− 1] + 1− faa − (p̄2 + 2δp̄− 2δp̄2)(fAA − faa)

= 1− p̄− faa + p̄faa + (p̄2 + δp̄− δp̄2 − p̄2 − 2δp̄+ 2δp̄2)(fAA − faa)

= 1− p̄− faa + p̄faa + (−δp̄+ δp̄2)(fAA − faa)

= (1− p̄)− faa(1− p̄)− δp̄(1− p̄)(fAA − faa)

= (1− p̄)(1− faa − δp̄(fAA − faa)).
(5.7)

Thus, there are two solutions for p̄. The equilibrium frequency for the A allele is

either p̄ = 1 or p̄ =
1− faa

δ(fAA − faa)
.

Substituting p̄ = 1 into the second equation of (4.2) yields x̄ =
y

1− fAA
. In order
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to have a positive population size, we need 0 < fAA < 1. Considering the solution

p̄ =
1− faa

δ(fAA − faa)
, we note that to have p̄ > 0, we require faa > 1. Also, it is clear

that the two solutions for p̄ are identical when δ = δ1 =
1− faa
fAA − faa

.

To determine results about local stability for E = (p̄, x̄) when p̄ = 1, substitute

q = 1 and p̄ = 1 into the Jacobian matrix (4.16), to obtain

D(E) =

fA +
(
∂fA

∂p
− ∂f

∂p

)
0

x̄∂f
∂p

1 + x̄h′(x̄)


=

[
faa + (fAA − faa) + (1− δ)(fAA − faa)− 2(1− δ)(fAA − faa)) 0

x̄∂f
∂p

1− x̄ y
x̄2

]

=

[
fAA − (1− δ)(fAA − faa) 0

x̄∂f
∂p

1− y
x̄

]

=

[
δfAA + (1− δ)faa 0

x̄∂f
∂p

f

]

=

[
fAa 0

x̄∂f
∂p

fAA

]
.

(5.8)

Thus, when p̄ = 1, the eigenvalues are λ1(δ) = fAa and λ2(δ) = fAA. To have a

positive population size at equilibrium, we have established that 0 < fAA = λ2(δ) < 1.

Thus the stability of E = (p̄, x̄) = (p̄(δ), x̄(δ)) at p̄ = 1 will be determined by λ1(δ).

When δ = δ1, clearly λ1 = fAa = 1. Because fAa decreases as a function of δ,

fAa > 1 for δ < δ1, and fAa < 1 for δ > δ1. If we consider the stability of equilibrium

E = (1, x̄) as a function of the parameter δ, then E(δ) = (1, x̄(δ)) is unstable when

δ < δ1 and stable when δ > δ1.

To determine the stability of E = (p̄, x̄) = (p̄(δ), x̄(δ)) when p̄ =
1− faa

δ(fAA − faa)
, we

apply the Jury conditions (see Section 4.4). For δ > δ1, we break the Jury conditions

into parts to prove that the equilibrium is unstable. Since we are considering the
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fitnesses to be constant with respect to x, we can rewrite (4.21) as

1− tr[D(E)] + det[D(E)]

= x̄h′(x̄) [fAA(2δp̄− δ) + faa(δ − 2δp̄+ 1)− 1]

= x̄h′(x̄) [faa − 1 + (2δp̄− δ)(fAA − faa)]

= x̄h′(x̄)[faa − 1− δ(fAA − faa) + 2δ
1− faa

δ(fAA − faa)
(fAA − faa)]

= x̄h′(x̄) [faa − 1 + 2− 2faa − δfAA + δfaa]

= x̄h′(x̄) [1− fAa] .

(5.9)

When δ > δ1, 1− fAa > 0 and

1−tr[D(E)]+det[D(E)] = 1−(λ1(δ)+λ2(δ))+λ1(δ)λ2(δ) = (1−λ1(δ))(1−λ2(δ)) < 0.

(5.10)

This implies that one eigenvalue is larger than 1. Hence, for p̄ =
1− faa

δ(fAA − faa)
, the

equilibrium E(δ) is unstable when δ > δ1.

To prove that E is stable when p̄ =
1− faa

δ(fAA − faa)
and δ < δ1, we apply the Jury

conditions to a sufficiently small neighborhood around (p̄, x̄) = (1, x̄(δ1)). First, note

that when δ = δ1, fAa = 1 and the Jacobian (5.8) becomes

D(E) =

[
1 0

x̄∂f
∂p

fAA

]
.

At δ = δ1, λ1(δ1) = fAa = 1 and 0 < λ2(δ1) = fAA < 1. Because of the continuity

of eigenvalues as functions of δ, for δ near δ1, λ1(δ) ≈ 1 and 0 < λ2(δ) < 1. Thus,

in a neighborhood of δ1, tr[D(E)] = λ1(δ) + λ2(δ) > 0 and |tr[D(E)]| = tr[D(E)].

Also, the determinant is a continuous function of δ. At δ = δ1, det[D(E)] = fAA < 1.

Thus, in a neighborhood of δ1, det[D(E)] < 1 and hence

1 + det[D(E)] < 2. (5.11)
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When δ < δ1, we have fAa > 1, and from (5.9),

1− tr[D(E)] + det[D(E)] = x̄h′(x̄)(1− fAa) > 0.

Thus, rearranging terms and using |tr[D(E)]| = tr[D(E)], for δ < δ1,

|tr[D(E)]| < 1 + det[D(E)]. (5.12)

For δ near δ1, δ < δ1, when p̄ =
1− faa

δ(fAA − faa)
using (5.11) and (5.12)

|tr[D(E)]| < 1 + det[D(E)] < 2 (5.13)

and the Jury conditions hold. Thus, when p̄ =
1− faa

δ(fAA − faa)
the equilibrium E is

stable when δ is near δ1 with δ < δ1.

For E = (p̄(δ), x̄(δ)), when p̄ = 1, we have shown that as δ increases through δ1,

the equilibrium goes from an unstable to stable. When p̄ =
1− faa

δ(fAA − faa)
, E changes

from a stable to an unstable equilibrium. For faa > fAA, q = 1, and constant fitnesses,

a transcritical bifurcation occurs at (δ, p̄) = (δ1, 1) =

(
1− faa
fAA − faa

, 1

)
.

Example 5.2. Take y = 1, q = 1, and genotype fitnesses

fAA = 0.7 and faa = 1.5.

Clearly, fAA(x) < faa(x) for all x > 0. As defined above,

δ1 =
1− faa

(fAA − faa)
=

1− 1.5

0.7− 1.5
=
−0.5

−0.8
=

5

8
= 0.625.

There are two equilibrium values for p̄(δ), p̄(δ) = 1 and p̄(δ) =
1− faa

δ(fAA − faa)
=

5

8δ
.

When p̄ = 1, we have x̄ =
y

1− fAA
=

1

1− 0.7
≈ 3.333. Clearly,

0 < λ2(δ) = fAA = 0.7 < 1. The stability of E ≈ (1, 3.333) will be determined

by λ1(δ) = fAa = faa + δ(fAA − faa) = 1.5 − 0.8δ. When δ = 0.4, λ2(δ) = 1.18
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and E = (p̄, x̄) ≈ (1, 3.333) is unstable. When δ = 0.8, λ2(δ) = 0.86 < 1 and

E = (p̄, x̄) ≈ (1, 3.333) is stable. For δ < δ1, E = (p̄, x̄) ≈ (1, 3.333) is unstable. For

δ > δ1, E = (p̄, x̄) ≈ (1, 3.333) is stable.

The other equilibriums value for p̄ is p̄(δ) =
1− 1.5

δ(0.7− 1.5)
=

5

8δ
. Using (4.2), we

compute

x̄(δ) =
y

1− f(p̄(δ))

=
y

1− faa − p̄(δ)(p̄(δ) + 2δ − 2δp̄(δ))(fAA − faa)

=
1

1− 1.5− 5
8δ

(
5
8δ

+ 2δ − 2δ 5
8δ

)
(0.7− 1.5)

=
1

−0.5 +
(

1
2δ

) (
5
8δ

+ 2δ − 5
4

)
=

1

−0.5 +
(

5
16δ2

+ 1− 5
8δ

)
=

16δ2

8δ2 − 10δ + 5
.

When δ = 0.4, p̄(0.4) =
25

16
≈ 1.563 and x̄(0.4) =

64

57
=

2.56

2.28
≈ 1.123. When δ = 0.8,

p̄(0.8) =
25

32
≈ 0.781 and x̄(0.8) =

256

53
=

10.24

2.12
≈ 4.830.

In order to determine the stability of E, we look at the eigenvalues. Using constant

fitnesses and q = 1, (4.16) becomes

D(E) =

fA + p̄
(
∂fA

∂p
− ∂f

∂p

)
h′(x̄)(1− p̄)

x̄∂f
∂p

1 + x̄
(
∂f
∂x

+ h′(x̄)
)


=

[
faa + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA − faa) y(p̄−1)

x̄2

2x̄(p̄+ δ − 2δp̄)(fAA − faa) 1− y
x̄

]
.

(5.14)

When δ = 0.4, the Jacobian (5.14) for E(0.4) ≈ (1.563, 1.123) is

D(E(0.4)) =

[
1169
800

−32
25

29241
65536

7
64

]
.
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The eigenvalues are
2513

3200
± 3

3200

√
−129959. And,

|λ1| = |λ2| =

√√√√(2513

3200

)2

+

(
3
√

129959

3200

)2

≈ 0.855.

Thus, when δ = 0.4, E = (p̄(δ), x̄(δ)) ≈ (1.563, 1.123) is a stable equilibrium. There-

fore, for δ < 0.625, when p̄ =
5

8δ
, E is a stable equilibrium.

For δ = 0.8, the Jacobian for E(0.8) ≈ (0.781, 4.830) is

D(E(0.8)) =

[
3277
3200

−64
25

− 19663
2097152

203
256

]
.

The eigenvalues are
11629

12800
± 1

12800

√
6120041. So, λ1 ≈ 1.102 and λ2 ≈ 0.715. When

δ = 0.8, E = (p̄(δ), x̄(δ)) ≈ (0.781, 4.830) is an unstable equilibrium. Thus, for

δ > 0.625, when p̄(δ) =
5

8δ
, E is an unstable equilibrium. And a bifurcation occurs

at (δ, p̄) = (0.625, 1).

0 0.4 0.625 0.8 10

0.5

1

1.5

2

2.5

3

δ

p̄

stable

unstable

stableunstable

Figure 5.2: Transcritical bifurcation in Example 5.2. For fAA = 0.7, faa = 1.5, y = 1,
and q = 1, the bifurcation occurs at (δ, p) = (0.625, 1).



Chapter 5. Additional Equilibrium Results 48

5.3 Summary

We examined how the degree of dominance affects the position of the equilibrium.

We took the derivatives of p̄ and x̄ with respect to δ to determine how increasing δ

would change p̄ and x̄. Without enforcing other assumptions, a proof to show general

behavior was not possible.

From numerical simulations, when the fitness of the homozygote AA is greater

than the fitness of the homozygote aa we noted what happened to the equilibrium

E = (p̄, x̄) as δ increased and offered some possible explanations. From our examples,

we saw that the population size at equilibrium increases as the degree of dominance

increases. When more than half of the migrant population is A (
1

2
≤ q ≤ 1), examples

showed that as the degree of dominance increased, the frequency of A in the island

population decreased to q. When slightly less than half of the migrant population was

the A allele (0 ≤ q ≤ 1

2
, but q close to

1

2
), we found examples for which p̄ increased

as well as examples for which p̄ decreased as δ increased. For small q, our examples

demonstrated that an increase in the degree of dominance leads to an increase in p̄.

The migration of a less fit allele may lead to the prevalence of that allele in the

island population. This phenomenon is the result of a transcritical bifurcation. We

assume that the A allele is the less fit allele and it is the only allele migrating into

the island population. If the degree of dominance is large enough, then there is a

stable equilibrium that appears as a result of a transcritical bifurcation. In fact, the

frequency of the allele at equilibrium is 1. Hence, after many generations, the less fit

allele excludes the other allele.
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Chapter 6

Attracting Regions

In this chapter, we study the existence of attractors. The results are similar to

those found by Selgrade and Roberds [33] for complete dominance (δ = 1) and no

dominance (δ = 0.5) and extend to the case of periodic immigration the results found

by Selgrade, Bostic, and Roberds [29] for general dominance. We assume that either

fAA(x) ≥ faa(x) or fAA(x) ≤ faa(x). To save space, we will suppress some state

variables when it will not cause confusion. For results in this chapter, (4.5) does not

need to be assumed.

6.1 Location of Attractor

For any set Λ, the topological interior of Λ is denoted by Int Λ and the closure of

Λ is denoted by Cl Λ. A set Λ is invariant if for each (p0, x0) ∈ Λ then (pn, xn) ∈ Λ for

all n ≥ 0. Equilibria and cycles are examples of invariant sets. A compact invariant

set Λ is an attractor [25] if there is an open set U ⊃ Λ where ClU is compact and so

that for each (p0, x0) ∈ ClU then lim
n→∞

(pn, xn) ∈ Λ.

It is biologically reasonable to assume that one homozygote is more fit than the

other, i.e., either fAA ≥ faa or fAA ≤ faa. This is typically the case considering

the effects of transgenes in natural populations. When we assume the fitness of the
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homozygote AA is greater than the fitness of the homozygote aa and that the A allele

enters the island population at a frequency q, we show that where the frequency of A

in the island population initially is above q, it never falls below q. If the homozygote

AA is less fit, we show that if the frequency of A starts below q, then it will remain

below q.

Lemma 6.1. Assume (3.5) for all x > 0 and 0 ≤ δ ≤ 1 and 0 < q < 1. If

fAA(x) ≥ faa(x) for all x > 0, then IntS+ and S+ are invariant regions. If

fAA(x) ≤ faa(x) for all x > 0, then IntS− and S− are invariant regions.

Proof. We want to show that for fAA(x) ≥ faa(x), IntS+ and S+ are invariant

regions. To show IntS+ is an invariant region we first need to show that if pn > q

then pn+1 > q for n ≥ 0. From (3.3), we have

pn+1 =
pnfA + qh(1 + αgk(n))

f + h(1 + αgk(n))
= q

[
pn

q
fA + h(1 + αgk(n))

f + h(1 + αgk(n))

]
. (6.1)

We want pn+1 > q, so we need the bracketed term in (6.1) to be greater than 1.

Hence, we should show
pn
q
fA > f , which is equivalent to showing

pn
q
fA − f > 0.

Since we assumed pn > q, then
pn
q
fA − f > fA − f . And,

fA − f =faa + (pn + δ − δpn)(fAA − faa)− [faa + pn(pn + 2δ − 2δpn)(fAA − faa)]

=(pn + δ − δpn)(fAA − faa) + (−p2
n − 2δpn + 2δp2

n)(fAA − faa)

=(pn − p2
n + δ − δpn − 2δpn + 2δp2

n)(fAA − faa)

=(1− pn)(pn + δ − 2δpn)(fAA − faa)

=(1− pn)(pn(1− δ) + δ(1− pn))(fAA − faa).

Since fAA ≥ faa, we have fA − f ≥ 0 and thus pn+1 > q. Also, if pn < 1, then

pn+1 < 1. Thus IntS+ is invariant. Similarly, if pn ≥ q, then pn+1 ≥ q and S+ is

invariant.
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For fAA(x) ≤ faa(x), we want to prove that IntS− and S− are invariant regions.

We need to show that if pn < q then pn+1 < q for n ≥ 0. We need the bracketed term

in

pn+1 =
pnfA + qh(1 + αgk(n))

f + h(1 + αgk(n))
= q

[
pn

q
fA + h(1 + αgk(n))

f + h(1 + αgk(n))

]

to be less than 1. Hence, we should show
pn
q
fA < f , which is equivalent to showing

pn
q
fA − f < 0. Since pn > q, then

pn
q
fA − f < fA − f . And, as before,

fA − f = (1− pn)(pn(1− δ) + δ(1− pn))(fAA − faa).

Since faa ≥ fAA, we have fA − f ≤ 0 and thus pn+1 < q. Also, if pn > 0, then

pn+1 > 0. Thus, IntS− is invariant. Similarly, if pn ≤ q then pn+1 ≤ q, and S− is

invariant.

Note that because of immigration, xn ≥ y(1− α) for n ≥ 1. Thus, after the first

iterate we need the inequalities on fitnesses to hold only for x ≥ y(1 − α), as shown

in the following corollary.

Corollary 6.2. Assume (3.5) for all x > 0 and 0 ≤ δ ≤ 1 and 0 < q < 1. If

fAA(x) ≥ faa(x) for all x ≥ y(1− α) and q < pn < 1, then pn+1 > q for all n ≥ 1. If

fAA(x) ≤ faa(x) for all x ≥ y(1− α) and 0 < pn < q, then pn+1 < q for all n ≥ 1.

Solution orbits in the complement of S+ or S− iterate monotonically towards S+

or S− as we now demonstrate.

Lemma 6.3. Assume (3.5) for all x > 0 and 0 ≤ δ ≤ 1 and 0 < q < 1. If

fAA(x) ≥ faa(x) for all x ≥ y(1 − α) and pn < q for n ≥ 1 then pn < pn+1. If

faa(x) ≥ fAA(x) for all x ≥ y(1− α) and pn > q for n ≥ 1 then pn > pn+1.

Proof. For fAA ≥ faa, we want to prove that for all x ≥ y(1 − α) and pn < q for
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n ≥ 1, pn < pn+1. Thus, we want to show that

pn+1 =
pnfA + qh(1 + αgk(n))

f + h(1 + αgk(n))
= pn

[
fA + q

pn
h (1 + αgk(n))

f + h (1 + αgk(n))

]
> pn. (6.2)

We require the bracketed term in equation (6.2) to be greater than 1. So, we need to

verify that fA +
q

pn
h (1 + αgk(n)) > f + h (1 + α gk(n)) and, thus,

fA − f +

(
q

pn
− 1

)
h(1 + αgk(n)) > 0. (6.3)

In the previous lemma, we proved that fA− f ≥ 0 when fAA(x) ≥ faa(x). Also, since

q > pn,
q

pn
− 1 > 0, we see that (6.3) holds and thus pn < pn+1.

For fAA ≤ faa, we want to show for all x ≥ y(1 − α) and pn > q for n ≥ 1 that

pn > pn+1. We want to demonstrate that

pn+1 = pn

[
fA + q

pn
h (1 + α gk(n))

f + h (1 + α gk(n))

]
< pn. (6.4)

We propose to verify that the bracketed term in equation (6.4) is less than 1. This is

equivalent to showing fA +
q

pn
h (1 + α gk(n)) < f + h (1 + α gk(n)) and thus,

f − fA + (1− q

pn
) h (1 + α gk(n)) > 0. (6.5)

From the previous lemma, fA − f ≤ 0 when fAA(x) ≤ faa(x) and hence f − fA ≥ 0.

Also, since q < pn then 1− q

pn
> 0. Therefore, we have demonstrated that (6.5) holds

and pn+1 < pn.

Biologically it makes sense to assume that the population size x is bounded for

all generations. More specifically, the assumption we make on genotypic fitnesses is:

There exists B > 0 so that xfAA < B and xfaa < B for all x > 0. (6.6)
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From (6.6), we see that the genotype fitnesses are bounded and that they approach

zero as the x→∞. Also, (6.6) implies that xnf(pn, xn)+y(1+αgk(n)) ≤ B+y(1+α)

for all n and solutions to (3.3) are bounded. For the closed interval

J ≡ [y(1− α), y(1 + α) +B], it follows that:

Lemma 6.4. Assume (6.6), (3.5), 0 ≤ δ ≤ 1, and 0 < q < 1. Then each solution

(pn, xn) to (3.3) is contained in the rectangle R = [0, 1]× J for all n ≥ 1.

Example 6.5. Take y = 1, δ = 0.5, k = 5, gk(n) = cos

(
2πn

k

)
and genotype

fitnesses

fAA(x) = e1.8−0.5x and faa(x) = e1−0.5x.

Clearly, fAA(x) > faa(x) for all x > 0. We can determine B ≈ 4.451. For α = 0 and

q = 0.2, there is an equilibrium point at (p̄, x̄) ≈ (0.4484, 3.5399). We have that the

p-coordinate of the fixed point is greater than q. Also, we compute J ≈ [1, 5.451].

Clearly, the attractor is contained in the rectangle R.

For α = 0.5, the attractor is a 5-cycle. We compute J ≈ [0.5, 5.951]. The points

in the five cycle are in Table 6.1 and Figure 6.1(a), and we see that the attractor is

contained in the rectangle R. Also, all the p-coordinates are greater than q = 0.2.

Table 6.1: Points in 5-cycle when q = 0.2 for Example 6.5. For fAA(x) = e1.8−0.5x,

faa(x) = e1−0.5x, y = 1, δ = 0.5, k = 5, gk(n) = cos

(
2πn

k

)
, and α = 0.5 the p values

in the attractor are greater than q = 0.2.

p x

0.4706 3.8720
0.4259 3.8943
0.4159 3.4532
0.4544 3.1164
0.4898 3.3719

For α = 0 and q = 0.8, there is an equilibrium point at (p̄, x̄) ≈ (0.8884, 4.0417).

We have that the p-coordinate of the fixed point is greater than q = 0.8. Also, we

compute J ≈ [1, 5.451]. Clearly, the attractor is contained in the rectangle R.



Chapter 6. Attracting Regions 54

For α = 0.5, the attractor is a 5-cycle. We compute J ≈ [0.5, 5.951]. The points

in the five cycle are in Table 6.2 and Figure 6.1(b). The attractor is contained in the

rectangle R. Also, all the p-coordinates are greater than q = 0.8.

Table 6.2: Points in 5-cycle when q = 0.8 for Example 6.5. For fAA(x) = e1.8−0.5x,

faa(x) = e1−0.5x, y = 1, δ = 0.5, k = 5, gk(n) = cos

(
2πn

k

)
, and α = 0.5, the p values

in the attractor are greater than q = 0.8.

p x

0.8936 4.3175
0.8794 4.3393
0.8784 3.9538
0.8921 3.6864
0.9020 3.9164

6.2 Approach Rates of Attractors

Since solutions to (3.3) are bounded and the orbits are monotonic, we can prove

the behavior of pn in the complement of IntS+ or IntS− is exponential.

Lemma 6.6. Assume (6.6), (3.5) for all x > 0, 0 ≤ δ ≤ 1, and 0 < q < 1. If

fAA(x) > faa(x) for all x ∈ J then there is r > 0 so that pn ≤ q where n ≥ 1 implies

that pn+1 ≥ pn(1 + r). If fAA(x) < faa(x) for all x ∈ J then there is s > 0 so that

pn ≥ q where n ≥ 1 implies that 1− pn+1 ≥ (1− pn)(1 + s).

Proof. Part 1: fAA(x) > faa(x)

Assume that fAA(x) > faa(x) for all x ∈ J . From (3.3) we have

pn+1 = pn

[
1 +

fA − f + ( q
pn
− 1)h(1 + αgk(n))

f + h(1 + αgk(n))

]
. (6.7)

For the fraction in (6.7), we want to make it as small as possible, so we will minimize

the numerator and maximize the denominator. Let min1 denote min
x∈J

(fAA(x)−faa(x)).
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Figure 6.1: Global attractors in Example 6.5. For fAA(x) = e1.8−0.5x, faa(x) = e1−0.5x,

y = 1, δ = 0.5, k = 5, gk(n) = cos

(
2πn

k

)
, α = 0.5, the attractor is a 5-cycle. When

q = 0.2 and when q = 0.8, the attractor is contained in the rectangle [0, 1]×[0.5, 5.951].

Since (pn, xn) ∈ R for n ≥ 1 and pn ≤ q, for 0 < δ ≤ 1 and ignoring the non-negative

h term, we have

fA − f +

(
q

pn
− 1

)
h(1 + αgk(n)) ≥ (1− pn)(pn + δ − 2 δ pn)(fAA(xn)− faa(xn))

≥ (1− pn)(pn(1− δ) + δ (1− pn))min1

= (δ(1− pn)2 + pn(1− pn)(1− δ))min1

≥ δ(1− pn)2min1

≥ δ(1− q)2min1.
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When δ = 0, for n ≥ 1, note that a lower bound for pn is found by

pn+1 =
xn(pnfA + qh(1 + αgk(n)))

xn(f + h(1 + αgk(n)))

=
xnpnfA + qxnh(1 + αgk(n))

xnf + xnh(1 + αgk(n))

≥ qy(1 + αgk(n))

xnf + y(1 + αgk(n))

≥ qy(1− α)

B + y(1 + α)
.

(6.8)

Thus, using (6.8), the numerator of the fraction in (6.7) becomes

fA − f +

(
q

pn
− 1

)
h(1 + αgk(n)) = pn(1− pn)(fAA − faa) +

(
q

pn
− 1

)
h(1 + αgk(n))

≥ pn(1− pn)(fAA − faa)

≥ qy(1− α)

B + y(1 + α)
(1− q)min1

=
q(1− q)y(1− α)min1

B + y(1 + α)
.

In the denominator, because x ∈ J we have that

h(1 + α gk(n)) =
y

xn
(1 + αgk(n)) ≤ y

xn
(1 + α) ≤ 1 + α

1− α
. (6.9)

since y(1− α) ≤ xn. Also, note that

f = (p2
n + 2δpn − 2δp2

n)fAA + (1− p2
n − 2δpn + 2δp2

n)faa

= (p2
n + 2δpn − 2δp2

n)fAA + (1− pn)(1 + pn − 2δpn)faa

≤ (p2
n + 2δpn − 2δp2

n)fAA + (1− pn)(1 + pn − 2δpn)fAA

= (p2
n + 2δpn − 2δp2

n)fAA + (1− p2
n − 2δpn + 2δp2

n)fAA

= fAA

≤ max
x∈J

fAA(x).



Chapter 6. Attracting Regions 57

Hence,

f + h (1 + α gk(n)) ≤ 1 + α

1− α
+ max

x∈J
fAA(x). (6.10)

Thus, for 0 < δ ≤ 1, r > 0 is defined by

r =
δ(1− q)2min1

1+α
1−α + maxx∈J fAA(x)

. (6.11)

And for δ = 0, r > 0 can be expressed as

r =
q(1− q)y(1− α)min1

(B + y(1 + α))
(

1+α
1−α + maxx∈J fAA(x)

) .
We then have pn+1 ≥ pn(1 + r) for 0 ≤ δ ≤ 1.

Part II: fAA(x) < faa(x)

Assume that faa(x) > fAA(x) for all x ∈ J . Define vn = 1 − pn which is the

frequency of a. The difference equation we require is

vn+1 =
vnfa + (1− q)h (1 + α gk(n))

f + h (1 + α gk(n))
. (6.12)

We can rewrite (6.12) as

vn+1 = vn

1 +
fa − f +

(
1−q
vn
− 1
)
h(1 + α gk(n))

f + h(1 + α gk(n))

 . (6.13)

We now proceed to minimize the fraction in (6.13). Let min2 denote

min
x∈J

(faa(x)− fAA(x)). Since (pn, xn) ∈ R for n ≥ 1 and pn ≥ q which is equivalent to
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1− vn ≥ q, when 0 ≤ δ < 1, by ignoring the non-negative h term, we obtain

fa − f+

(
1− q
vn
− 1

)
h(1 + αgk(n))

= fa − f +

(
1− q − vn

vn

)
h(1 + αgk(n))

≥ fa − f

= (−(1− vn)2 − δ(1− vn) + 2δ(1− vn)2)(fAA − faa)

= (1− vn)((1− vn) + δ − 2δ(1− vn))(faa − fAA)

= (1− vn)((1− vn)− δ(1− vn) + δ − δ(1− vn))(faa − fAA)

≥ (1− vn)((1− vn)(1− δ) + δ − δ + δvn)min2

≥ (1− vn)((1− vn)(1− δ) + δvn)min2

≥ (1− vn)2(1− δ)min2

≥ q2(1− δ)min2.

Furthermore, when δ = 1, note that

vn+1 =
vnfa + (1− q)h(1 + αgk(n))

f + h(1 + αgk(n))

=
xnvnfa + (1− q)xnh(1 + αgk(n))

xnf + xnh(1 + αgk(n))

≥ xnvnfa + (1− q)y(1− α)

xnf + y(1 + α)

≥ (1− q)y(1− α)

B + y(1 + α)
.
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Therefore, for δ = 1, the numerator of the fraction in (6.12) becomes

fa − f +

(
1− q
vn
− 1

)
h(1 + αgk(n)) ≥ fa − f

≥ (1− vn)(1− vn − 1)(fAA − faa)

≥ (1− vn)vnmin2

≥ q
(1− q)y(1− α)

B + y(1 + α)
min2

=
q(1− q)y(1− α)min2

B + y(1 + α)
.

It is also clear that

f = (p2
n + 2δ pn − 2δp2

n)fAA + (1− p2
n − 2δpn + 2δp2

n)faa

≤ (p2
n + 2δ pn − 2δp2

n)faa + (1− p2
n − 2δpn + 2δp2

n)fAA

= faa

≤ max
x∈J

faa(x).

(6.14)

Hence, for 0 ≤ δ < 1, using (6.9), s > 0 is defined by

s =
q2(1− δ)min2

1+α
1−α + maxx∈J faa(x)

.

And for δ = 0, s > 0 is defined by

s =
q(1− q)y(1− α)min2

(B + y(1 + α))
(

1+α
1−α + maxx∈J faa(x)

)
and vn+1 ≥ vn(1 + s) so 1− pn+1 ≥ (1− pn)(1 + s).

This completes the proof of Lemma 6.6.

Example 6.7. Take y = 1, q = 0.9, δ = 0.6, k = 2, gk(n) = (−1)n and genotype

fitnesses

fAA(x) = e1.5−0.5x and faa(x) = e1−0.5x.
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Clearly, fAA(x) > faa(x) for all x > 0. Take α = 0. We assume that the population

originally consists of only the aa genotype, i.e. p0 = 0. Then, using (3.1), we see

p1 =
qy

x0faa(x0) + y
≥ qy

y + maxx≥0 xfaa(x)
, (6.15)

and find that max
x≥0

xfaa(x) = 2. Thus, from (6.15), p1 ≥ 0.3. From (6.11), we compute

r ≈ 0.00332. An orbit starting with p = 0.3 would require 3311 iterates before pn

is larger than q = 0.9. However, numerical simulations indicate that an orbit with

initial frequency p0 = 0 reaches frequency 0.9 in about 9 iterations.

For α = 0.4, we again assume that p0 = 0. Using (3.2),

p1 =
qy(1 + αgk(n))

x0faa(x0) + y(1 + αgk(n))
≥ qy(1− α)

y(1 + α) + maxx≥0 xfaa(x)
. (6.16)

Since max
x≥0

xfaa(x) = 2, from (6.16), p1 > 0.159. Using (6.11), we compute

r ≈ 0.000179. An orbit starting with p = 0.16 would require 9707 iterates before

pn is greater than q = 0.9. Numerical simulations indicate that an orbit with initial

frequency p0 = 0 reaches frequency 0.9 in about 9 iterations.

6.3 Existence of Global Attractors

The existence of the bounds r and s in Lemma 6.6 allows us to prove the existence

of global attractors. An open set U for a dynamical system F is a trapping region if

F (ClU) ⊂ U [25].

Theorem 6.8. Assume (6.6), (3.5), 0 ≤ δ ≤ 1, and 0 < q < 1 . If fAA(x) > faa(x)

for all x ∈ J then (3.3) has a global attractor in IntS+. If fAA(x) < faa(x) for all

x ∈ J then (3.3) has a global attractor in IntS−.

Proof. Lemma 6.4 ensures that (pn, xn) ∈ R for all n ≥ 1. Assume fAA(x) > faa(x)

and pn ≤ q for all n. Lemma 6.6 says that there is r > 0 so that pn grows like (1+r)n.

This is a contradiction to pn being bounded above by 1. Hence, there exists N so
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Figure 6.2: Nine iterates of three orbits with p0 = 0 approaching the attractor for
both α = 0 and α = 0.4 in Example 6.7. For fAA(x) = e1.5−0.5x, faa(x) = e1−0.5x,
y = 1, q = 0.9, δ = 0.6, k = 2, gk(n) = (−1)n for p0 = 0 with x0 = 1 (�), x0 = 2 (◦),
and x0 = 4 (4), the approach to the attractor is shown. When α = 0, the fixed point
is (p̄, x̄) = (0.9287, 3.6038). When α = 0.4, there exists a two cycle that oscillates
between (p, x) = (0.9308, 2.6945) and (p, x) = (0.9285, 4.4696).

that pN > q. By Corollary 6.2, it follows that pn > q for all n ≥ N . Thus, the open

set U = (q, 1) ∗ (y(1 − α), y(1 + α) + B) is a trapping region and the intersection of

all forward iterates of Cl U is the global attractor and is contained in Int S+ [25].

Assume fAA(x) < faa(x) and pn ≥ q for all n. Lemma 6.6 says that pn decreases

exponentially, which is not possible. Hence, there is N so that pN < q. By Corollary

6.2, it follows that pn < q for all n ≥ N . Thus, the open set

V = (0, q) ∗ (y(1 − α), y(1 + α) + B) is a trapping region and the intersection of all

forward iterates of Cl V is the global attractor Int S−.
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6.4 Summary

In this chapter, we have demonstrated the existence of attractors. When the

fitness of the homozygote AA is superior to the fitness of the homozygote aa, we have

developed results that indicate the position of such an attractor. We showed that if

the frequency of allele A in the island population is ever above the frequency in which

it is carried by migration into the population, then the frequency of A can not fall

below its migration frequency. Also, if the frequency of A in the island population

is initially below q, the solution orbit will monotonically increase. We developed a

method to approximate approach rates of the solution orbits to these attractors. We

proved that for all degrees of dominance, a global attractor exists and is in the region

defined by p > q. These results assert that if the transgenic allele homozygote is

more fit than the nontransgenic homozygote, the transgene will persist in a natural

population at an allele frequency higher than the allele frequency at which it migrates.

When the homozygote AA is inferior in fitness to the fitness of the homozygote aa,

we found analogous results. If the frequency of A in the island population is initially

below q, then it never rises above q. If the initial frequency of A is above q, then the

solution orbit for the frequency of A will monotonically decrease. Approach rates of

solution orbits to these attractors were approximated. Approximations indicate that

these attractors are fairly rapidly approached in solution orbits. For all degrees of

dominance that we studied, we were able to prove that a global attractor exists in

the region where p < q.
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Chapter 7

Allelic Diversity

We examine how the amplitude of the oscillatory migration factor affects the

attractor. Then, we investigate how for periodic migration, the attractor decomposes

into multiple pieces. We also introduce the concept of allelic diversity and investigate

how changing the degree of dominance affects allelic diversity.

7.1 Amplitude of Oscillatory Migration

We explore the effect of changing the amplitude of oscillatory migration on the

attractor. As introduced in Section 3.2, for α ∈ R, 0 ≤ α < 1, we multiply the

constant immigration y by a factor of 1 + αgk(n) where −1 ≤ gk(n) ≤ 1 and

gk(n+k) = gk(n) for n = 0, 1, 2, . . . . We know that the constant migration factor of y

varies between y(1−α) and y(1 +α) and the maximum variation from y is αy. Thus,

for a given gk(n), the larger the α, the more variation in the amount of migration. For

a k-periodic dynamical system the attractor is the union of k attractor subsets. Each

of these subsets is the attractor of an autonomous system and may be homeomorphic

to the attractor from the corresponding system that does not have periodic migration

[9], i.e. where α = 0.

Including periodic migration in the model changes the attractor. From the second
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equation in our system of difference equations (3.2), we see that the population size

has more variation for larger α values. The parameter α occurs in both the numerator

and denominator of the computation of the allele frequency in the next generation.

No general conclusion can be made about how α affects allele frequency. Graphical

simulations demonstrate how the amplitude of the oscillatory migration can affect

the position and dynamics of the attractor.

Example 7.1. Take k = 2 and gk(n) = (−1)n and genotype fitnesses

fAA(x) = e3.1−0.5x and faa(x) = e1−0.5x.

Clearly, fAA(x) > faa(x) for all x > 0. Fix δ = 0 to examine how varying α changes

the attractor.

For y = 1, q = 0.6, and α = 0, the attractor is a 4-cycle. When α = 0.4, there is

an 8-cycle. The x values and p values expand in both directions when compared to

their values when α = 0. When α = 0.5, the behavior of the attractor is more chaotic.

The p and x values expand from when α = 0.4. When α = 0.95, the attractor appears

even more chaotic. The x values expanded but the p values contracted from their

values at α = 0.5 (see Table 7.1). As the amplitude of the oscillatory migration factor

increases, the attractor expands in the x direction. The allele frequency expands and

then contracts as the amplitude increases. The attractor has a higher degree of chaos

as α increases (see Figure 7.1).

Table 7.1: Minimum and maximum values of allele frequency and population size
for attractor as α varies for y = 1, q = 0.6 in Example 7.1. For fAA(x) = e3.1−0.5x,
faa(x) = e1−0.5x, δ = 0, k = 2, and gk(n) = (−1)n, the population size interval in-
creases as α increases. The allele frequency both expands and contracts as α increases.

α min p value max p value min x value max x value

0 0.756 0.928 1.670 11.652
0.4 0.705 0.947 0.818 14.378
0.5 0.699 0.948 0.668 14.986
0.95 0.759 0.978 0.103 17.641
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When y = 0.1, q = 0.1, and α = 0, there is a chaotic attractor. When α = 0.2,

there is migration of period two and there are two pieces of the attractor. When

α = 0.5, the attractor expands in both the p and x directions. The pieces of the

chaotic attractor also spread apart. When α = 0.95, the shape of the attractor

changes, but the two pieces of the attractor can still be seen. In this particular

example, the attractor has more variation in both the p and x direction as α increases

(see Table 7.2 and Figure 7.2).

Table 7.2: Minimum and maximum values of allele frequency and population size for
attractor as α varies for y = 0.1, q = 0.1 in Example 7.1. For fAA(x) = e3.1−0.5x,
faa(x) = e1−0.5x, δ = 0, k = 2, and gk(n) = (−1)n, the population size interval and
the allele frequency interval increase as α increases.

α min p value max p value min x value max x value

0 0.662 0.9896 0.267 15.175
0.2 0.646 0.9902 0.230 15.422
0.5 0.630 0.9915 0.177 15.800
0.95 0.621 0.9957 0.103 16.392

7.2 Subsets Comprising the Attractor

The periodic migration produces subsets in the structure of the attractor. As

seen in the previous example, including period 2 migration can produce additional

pieces in the attractor that are similar in form to what the attractor looked like when

there was no periodic migration (i.e. when α = 0). The attractor of the system that

incorporates the period two migration is the union of these subsets of attractors [9].

When we include period two migration, we can get two similar copies of the

attractor as compared to what occurs when α = 0 creating one attractor with two

homeomorphic pieces. We can view the even iterates and odd iterates separately

and see the parts of the attractor that are due to the periodicity of the migration.

If the attractor is a j-cycle when α = 0, this period two migration can lead to an



Chapter 7. Allelic Diversity 66

0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(a) α = 0

0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(b) α = 0.4

0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(c) α = 0.5

0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(d) α = 0.95

Figure 7.1: Attractor movement as α varies for y = 1, q = 0.6 in Example 7.1. For
fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, δ = 0, k = 2, and gk(n) = (−1)n, the attractor
changes from a 4-cycle to a chaotic attractor as α increases from 0 to 0.95.



Chapter 7. Allelic Diversity 67

0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(a) α = 0

0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(b) α = 0.2

0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(c) α = 0.5

0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

p

x

(d) α = 0.95

Figure 7.2: Attractor movement as α varies for y = 0.1, q = 0.1 in Example 7.1. For
fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, δ = 0, k = 2, and gk(n) = (−1)n, the attractor
can be viewed as two subsets when α 6= 0 and it expands in both directions as α
increases from 0 to 0.95.
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attractor composed of a 2j-cycle. If viewed in terms of even and odd iterates, there

are two separate j-cycles that when considered together form the attractor. Likewise,

when we include period two oscillatory migration for what was a chaotic attractor

when α = 0, two chaotic pieces that are homeomorphic to the original are formed.

Even and odd iterates form two separate pieces of the attractor. These findings are

demonstrated in the following example.

Example 7.2. Take y = 0.1, q = 0.1, δ = 0.5, α = 0.2, k = 2, gk(n) = (−1)n, and

genotype fitnesses

fAA(x) = e3.1−0.5x and faa(x) = e1−0.5x.

Clearly, fAA(x) > faa(x) for all x > 0. This example illustrates the effects that

result from period two migration. The pieces of the attractor exist apart from each

other. We view the odd iterates as the blue curve (Figure 7.3(a)) and the even iterates

as the red curve (Figure 7.3(b)). The union of the two subsets gives the attractor for

this system (Figure 7.3(c)).

When we include period k migration, we can get k similar copies of the attractor

that was obtained when α = 0. We examine the iterates of the attractor using a

modulo argument. We let n mod k ≡ a so n = mk + a for an integer m where

0 ≤ a < k. We look at the iterates based on the various values of a and can see the

different attractor for each of these. Again, the result of putting all these iterations

together is the attractor for the whole system.

Example 7.3. Take y = 0.1, q = 0.3, α = 0.3, k = 3, gk(n) = cos

(
2πn

k

)
, δ = 0.8,

and genotype fitnesses

fAA(x) = e2.1−0.7x and faa(x) = e1.1−0.7x.

Clearly, fAA(x) > faa(x) for all x > 0. When α = 0, the attractor for this system is

a 2-cycle. We have included period three migration as a factor and get an example
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(c) even and odd iterates

Figure 7.3: Two subsets of attractor for system with period 2 migration in Example
7.2. For fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, y = 0.1, q = 0.1, δ = 0.5, α = 0.2, k = 2,
and gk(n) = (−1)n, the even and odd iterates can be interpreted as two separate
subsets of attractors or considered together as the overall attractor.
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Figure 7.4: Three subsets of attractor for system with period 2 migration in Example
7.3. For fAA(x) = e2.1−0.7x, faa(x) = e1.1−0.7x, y = 0.1, q = 0.3, δ = 0.8, α = 0.3,

k = 3, and gk(n) = cos

(
2πn

k

)
, the attractor is a 6-cycle that can also be viewed as

three 2-cycles for the appropriate compositions.

that is a 6-cycle. We can also interpret this attractor as three 2-cycles by using the

appropriate compositions [9]. We take the attractor that is produced from the iterates

that are modulo 0 and plot them in red, the iterates that are modulo 1 and plot them

in green and the iterates that are modulo 2 and plot them blue (Figure 7.4). We

can see the individual 2-cycles. Taking the union of these three subsets, we get the

attractor for the original system.

7.3 Allelic Diversity

The maximal allelic diversity for a population at equilibrium occurs when p̄ = 0.5

because there are equal frequencies for the A and a alleles. We will consider a measure

allelic diversity (AD) that yields a number between 0 and 1, scaled so the 0 indicates

no diversity and 1 indicates the highest level of diversity. For an equilibrium,
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E = (p̄, x̄), we define allelic diversity as

AD(E) = 1− 2|p̄− 0.5|.

If p̄ = 0 or p̄ = 1, then AD(E) = 0 and there is no allelic diversity as only either the

A allele or the a allele exists in the population. If p̄ = 0.5 then AD(E) = 1 and there

is maximal allelic diversity as equal numbers of the A allele and the a allele occur in

the population.

As in Selgrade, Bostic, and Roberds [29], we extend this notion to an invariant

set Λ by considering the time-average of the distance to 0.5 along a solution orbit in

Λ and scaling it to be between 0 and 1, i.e.,

AD(Λ) = 1− lim
k→∞

2

k

k−1∑
n=0

|pn − 0.5| (7.1)

provided this limit exists and is the same for almost all initial points in Λ.

This nonnegative number, AD(Λ) measures the departure from maximal allelic

diversity for Λ. The closer AD(Λ) is to 1, the more allelic diverse Λ is. If E = (p̄, x̄)

is the equilibrium solution, then clearly AD(Λ) = 1− 2|p̄− 0.5|.
If Λ is a j-cycle, then we show AD(Λ) is the average distance to 0.5 scaled between

0 and 1.

Proposition 7.4. If Λ is a j-cycle, then

AD(Λ) = 1− 2

j
[|p0 − 0.5|+ |p1 − 0.5|+ . . . |pj−1 − 0.5|].

Proof. We use a modulo argument to prove this. We let k mod j ≡ a so k = Mj+a
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for an integer M where 0 ≤ a < j. Thus, we compute

AD(Λ) = 1− lim
k→∞

2

k

k−1∑
n=0

|pn − 0.5|

= 1− lim
k→∞

2

k
[|p0 − 0.5|+ |p1 − 0.5|+ · · ·+ |pj−1 − 0.5|+ |pj − 0.5|+ . . .

+ |pk−1 − 0.5|]

= 1− 2 lim
k→∞

1

k
[|p0 − 0.5|+ |p1 − 0.5|+ · · ·+ |pj−1 − 0.5|+ |p0 − 0.5|+ . . .

+ |p0 − 0.5|+ · · ·+ |pa−1 − 0.5|]

= 1− 2 lim
k→∞

1

k
[|p0 − 0.5|

(
k − a
j

)
+ |p1 − 0.5|

(
k − a
j

)
+ . . .

+ |pj−1 − 0.5|
(
k − a
j

)
+ |p0 − 0.5|+ · · ·+ |pa−1 − 0.5|]

= 1− 2 lim
k→∞

[|p0 − 0.5|
(
k

jk

)
+ |p1 − 0.5|

(
k

jk

)
+ · · ·+ |pj−1 − 0.5|

(
k

jk

)
− |p0 − 0.5|

(
a

jk

)
− |p1 − 0.5|

(
a

jk

)
− · · · − |pj−1 − 0.5|

(
a

jk

)
+ |p0 − 0.5|

(
1

k

)
+ · · ·+ |pa−1 − 0.5|

(
1

k

)
]

= 1− 2[|p0 − 0.5|
(

1

j

)
+ |p1 − 0.5|

(
1

j

)
+ · · ·+ |pj−1 − 0.5|

(
1

j

)
]

Example 7.5. Take y = 0.1, q = 0.3, and genotype fitnesses

fAA(x) = e2.1−0.7x and faa(x) = e1.1−0.7x.

Clearly, fAA(x) > faa(x) for all x > 0. Let gk(n) = cos
(

2πn
k

)
. First, we examine the

attractor when there is no periodic migration with the system (α = 0). For δ = 0, the

attractor is a 2-cycle. The attractor oscillates between the points (0.964, 3.580) and

(0.957, 2.379). Using Proposition 7.4, we compute AD(Λ) ≈ 0.0782. Clearly, with

the high values of p, there is not much allelic diversity because of the high frequency

of the A allele (Figure 7.5(a)).
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For δ = 1 (Figure 7.5(d)), the attractor oscillates between (0.804, 2.053) and

(0.811, 3.986). And, AD(Λ) ≈ 0.386. When there is no periodic migration, we see

in Figure 7.5 that as δ increases, the 2-cycle moves to the left (p decreases) and the

allelic diversity increases. In addition, the interval between the x values increases (see

Table 7.3).

Table 7.3: Allelic Diversity for various δ when α = 0 in Example 7.5. For
fAA(x) = e2.1−0.7x, faa(x) = e1.1−0.7x, y = 0.1, q = 0.3, allelic diversity increases as
δ increases. Allele frequency decreases and the interval between the population sizes
expands as δ increases.

δ AD(Λ) min p value max p value min x value max x value

0 0.078 0.957 0.964 2.379 3.580
0.5 0.151 0.921 0.928 2.252 3.712
0.8 0.267 0.863 0.870 2.164 3.823
1 0.386 0.804 0.811 2.053 3.986

We now include period three migration with the same fitnesses. Letting k = 3,

gk(n) = cos
(

2πn
k

)
, and α = 0.3, the attractor is a 6-cycle. For δ = 0, we compute

AD(Λ) ≈ 0.0782. The attractor is within the p-interval 0.950 < p < 0.968 and within

the x-interval 2.340 < x < 3.614 (see Figure 7.6 and Table 7.4).

For δ = 1, the attractor is a 6-cycle. The attractor is within the p-interval

0.799 < p < 0.814 and the x-interval 2.021 < x < 4.006. In addition, AD(Λ) ≈ 0.386

(see Table 7.4). Note that as δ increases from 0 to 1, allele frequency values in the

attractor decrease and allelic diversity increases. Also, the interval that contains the

population sizes expands (see Table 7.4 and Figure 7.6).

Numerical simulations indicate that for a j-cycle when fAA(x) > faa(x) for all

x > 0 regardless of if periodic migration is included or not that as δ increases, the

attractor moves to the left and allelic diversity increases. Also, the interval that

includes the population size expands in both directions as δ increases.
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Figure 7.5: Location of 2-cycle for various δ when α = 0 in Example 7.5. For
fAA(x) = e2.1−0.7x, faa(x) = e1.1−0.7x, y = 0.1, q = 0.3, the 2-cycle moves left as δ
increases.
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Figure 7.6: Location of 6-cycle for various δ when α = 0.3 in Example 7.5. For
fAA(x) = e2.1−0.7x, faa(x) = e1.1−0.7x, y = 0.1, q = 0.3, k = 3, and gk(n) = cos

(
2πn
k

)
the 6-cycle moves left as δ increases.
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Table 7.4: Allelic Diversity for various δ when α = 0.3 in Example 7.5. For

fAA(x) = e2.1−0.7x, faa(x) = e1.1−0.7x, y = 0.1, q = 0.3, k = 3,gk(n) = cos

(
2πn

k

)
allelic diversity increases as δ increases. Allele frequency decreases and the interval
that contains the population size expands as δ increases.

δ AD(Λ) min p value max p value min x value max x value

0 0.078 0.950 0.968 2.340 3.614
0.5 0.151 0.916 0.932 2.218 3.734
0.8 0.266 0.859 0.874 2.131 3.841
1 0.386 0.799 0.814 2.021 4.006

Example 7.6. Take y = 0.1, q = 0.1, k = 2, gk(n) = (−1)n, and genotype fitnesses

fAA(x) = e3.1−0.5x and faa(x) = e1−0.5x.

Clearly, fAA(x) > faa(x) for all x > 0. For α = 0 and δ = 0, we have a chaotic

attractor which is within the p-interval 0.662 < p < 0.990, the x-interval

0.267 < x < 15.175, and AD(Λ) ≈ 0.148. As δ increases, the attractor moves to the

left. When δ = 0.7, the attractor is an island grouping. The p-interval and x-interval

which contain the attractor have decreased in size. When δ = 1, the attractor moves

to the left and the region that contains the attractor expands. For α = 0, as δ

increases from 0 to 1, the attractor moves left (except δ = 0.7) and allelic diversity

increases (see Figure 7.7 and Table 7.5).

Table 7.5: Allelic Diversity for various δ when α = 0 in Example 7.6. For
fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, y = 0.1, q = 0.1, k = 2, gk(n) = (−1)n allelic
diversity increases as δ increases.

δ AD(Λ) min p value max p value min x value max x value

0 0.148 0.662 0.990 0.267 15.175
0.2 0.184 0.643 0.984 0.255 15.331
0.5 0.280 0.613 0.970 0.240 15.541
0.7 0.443 0.627 0.882 0.285 14.828
1 0.560 0.510 0.865 0.216 16.009



Chapter 7. Allelic Diversity 77

0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

p

x

(a) δ = 0

0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

p

(b) δ = 0.2

0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

p

x

(c) δ = 0.5

0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

p

x

(d) δ = 0.7
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Figure 7.7: Attractor for various δ when α = 0 in Example 7.6. For fAA(x) = e3.1−0.5x,
faa(x) = e1−0.5x, y = 0.1, q = 0.1, k = 2, and gk(n) = (−1)n, as δ increases the
attractor moves left and the region that contains the attractor expands (except when
δ = 0.7 when the attractor is an island grouping).
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When α = 0.5, period two migration is included in the model. When δ = 0, there

are two homeomorphic copies of the attractor. The p-interval is 0.630 < p < 0.992, the

x-interval is 0.177 < x < 15.800, and AD(Λ) ≈ 0.136. As δ increases, the attractor

expands in both the p and x direction and the pieces of the attractor separate. When

δ = 1, the attractor is a 12-cycle that is in the p-interval is 0.442 < p < 0.860, the

x-interval is 0.163 < x < 16.091 and AD(Λ) ≈ 0.591. As δ increases, the attractor

moves left and allelic diversity increases (see Figure 7.8 and Table 7.6).

Table 7.6: Allelic Diversity for various δ when α = 0.5 in Example 7.6. For
fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, y = 0.1, q = 0.1, k = 2, gk(n) = (−1)n allelic
diversity increases as δ increases.

δ AD(Λ) min p value max p value min x value max x value

0 0.136 0.630 0.992 0.177 15.800
0.2 0.193 0.599 0.985 0.175 15.839
0.5 0.282 0.554 0.972 0.174 15.844
0.7 0.376 0.519 0.951 0.174 15.825
1 0.591 0.442 0.860 0.163 16.091

When α = 0.95, the amplitude of the oscillatory migration is high. When δ = 0,

the p-interval is 0.621 < p < 0.996, the x-interval is 0.103 < x < 16.389 and

AD(Λ) ≈ 0.138. As δ increases, the attractor moves left and the allelic diversity

increases. There is not much difference in the interval that contains the population

size. When δ = 1, the p-interval is 0.398 < p < 0.889, the x-interval is

0.107 < x < 16.233 and AD(Λ) ≈ 0.534.

From the previous examples, we have seen that for fAA(x) > faa(x) for all x > 0

that regardless of whether periodic migration is included and whether the attractor

is a j-cycle or chaotic, that as the degree of dominance increases, the allelic diversity

of the attractor increases. A possible explanation for this is that as δ increases, the

heterozygote fitness becomes more similar to the homozygote AA fitness. Thus, the

heterozygote fitness is increasing, leading to an increase in the heterozygote Aa in

the population and an increase in allelic diversity.
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Figure 7.8: Attractor for various δ when α = 0.5 in Example 7.6. For
fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, y = 0.1, q = 0.1, k = 2, and gk(n) = (−1)n the
attractor moves left and the region that contains the attractor expands as δ increases.
The attractor is chaotic until δ = 1 when it becomes a 12-cycle.
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Figure 7.9: Attractor for various δ when α = 0.95 in Example 7.6. For
fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, y = 0.1, q = 0.1, k = 2, and gk(n) = (−1)n the
attractor moves left as δ increases.
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Table 7.7: Allelic Diversity for various δ when α = 0.95 in Example 7.6. For
fAA(x) = e3.1−0.5x, faa(x) = e1−0.5x, y = 0.1, q = 0.1, k = 2, gk(n) = (−1)n allelic
diversity increases as δ increases.

δ AD(Λ) min p value max p value min x value max x value

0 0.138 0.621 0.996 0.103 16.389
0.2 0.169 0.581 0.991 0.107 16.318
0.5 0.250 0.520 0.980 0.110 16.239
0.7 0.349 0.478 0.966 0.112 16.200
1 0.534 0.398 0.889 0.107 16.327

7.4 Summary

We investigated the effect that the magnitude of oscillatory migration has on

the attractor. From examples, we noted that when the fitness for the homozygote

AA is greater than the fitness for the homozygote aa, the population size has more

variation as the amplitude increases. No general conclusion can be made about how

allele frequency is affected.

Often the attractor expands in both the x and p directions and the pieces of the

attractor separate as the amplitude of the oscillatory migration increases. When k-

periodic migration is included in the model, an attractor results that is composed of

k subsets, each of which is an attractor for a corresponding autonomous system.

We devised a method to measure allelic diversity for an attractor that is a j-cycle.

We found that we could scale the average of the distances the allele frequency of each

of the j points deviates from p = 0.5. For the case when the fitness of the homozygote

AA is superior to that of the homozygote aa, we studied various examples of attractors

and observed that allelic diversity increases as the degree of dominance increases. As

the degree of dominance improves, the fitness of the heterozygote improves, leading

to increased frequency of the Aa genotype. Therefore the value of p moves toward
1

2
and the value of the defined allelic diversity measure increases.
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Chapter 8

Conclusion and Future Directions

8.1 Summary

In this research, we used a two-dimensional time-dependent dynamical system

to study the behavior of gene frequencies and population size in island populations

that undergo both selection and migration. We expanded the results of Selgrade and

Roberds [24, 34, 32, 33] to include the effects that result when the degree of dominance

is allowed to widely vary.

Let E = (p̄, x̄) denote a polymorphic equilibrium. We found conditions that

ensure that a polymorphic equilibrium is unique and stable. When the fitness of the

homozygote AA is greater than the fitness of the homozygote aa (fAA(x̄) > faa(x̄)),

if the frequency q of A in the population of migrants is greater than 0.5 and if

the heterozygote fitness is closer to the fitness of the homozygote AA than to the

homozygote aa (0.5 ≤ δ ≤ 1), then there is a unique polymorphic equilibrium which

is stable under additional conditions.

These results can be applied to a study of transgenes. If A represents a transgene

which imparts greater fitness than its null state and the heterozygote carrying the

transgene has fitness closer to the fitness of the transgenic homozygote, and the

transgene makes up more than half of the migrating alleles, then a unique equilibrium
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exists. This equilibrium will have an allele frequency that is greater than the allele

frequency at which the transgene enters the population (p̄ > q).

Formulas for how E varies as the degree of dominance δ changes (i.e. dp̄/dδ and

dx̄/dδ) were derived. When the AA homozygote is more fit than the aa homozygote

(fAA > faa), examples demonstrated that an increase in δ causes the equilibrium

population size (x̄) to increase. If the frequency of the A allele at equilibrium starts

above the frequency of the A allele migrating into the population (i.e. p̄ > q), then p̄

decreases toward the migrant frequency q as the degree of dominance increases. Also,

examples showed that if q < 0.5, then the equilibrium allele frequency goes to 0.5 as

the degree of dominance increases.

We proved how the migration of a less fit allele can lead to the exclusion of the

alternate allele in the island population because of a transcritical bifurcation. If the

transgene is the less fit allele and is the only allele migrating into the population,

then, provided the degree of dominance is high enough, the transgene is the only

allele remaining in the population.

Positions for global attractors as well as approximate approach rates to these

attractors were established. We proved that a global attractor exists and is in the

region where the allele frequency is greater than the allele frequency of the migrants

(i.e. p > q) when fAA(x) > faa(x). These results can also be expanded to the

behavior of transgenes. If the transgene homozygote has greater fitness than the null

allele homozygote, then the transgene will persist in the population at a frequency

higher than that at which it enters the population.

The amplitude of oscillatory migration leads to increased variation in population

size. Including periodic migration in our model leads to the attractor consisting

of similar attractor subsets (corresponding in number to the period), the union of

which forms the overall attractor. The notion of allelic diversity was defined. If

fAA(x) > faa(x), an increase in the degree of dominance appears to lead to an increase

in the allelic diversity for the population. As the heterozygote fitness becomes more

similar to the fitness of the homozygote with the highest fitness, allelic diversity
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increases. Therefore we conclude that a reasonably fit heterozygote is important for

allelic diversity.

8.2 Future Directions

In future work, there is a need to expand the conditions that ensure a unique poly-

morphic equilibrium or find counterexamples to uniqueness. For a global attractor,

when the fitness for the homozygote AA is greater than the fitness for the homozygote

aa, the lower bound for the p-coordinate of the attractor is q. In many, if not all cases,

this bound can be improved and will probably depend on the degree of dominance.

In Example 6.7, we compute that it will take over 3000 iterations for a solution to

reach the attractor, but numerical simulations show that it takes about nine iterates.

Thus, improving the rate of approach of a solution to an attractor given by Lemma

6.6 is also an area for further research.

The theory behind the notion of allelic diversity needs to be developed. How

changes in the degree of dominance affect the position of a chaotic attractor and its

allelic diversity needs to be investigated in general.

Finally, it would be interesting to determine how migration occurring prior to

selection affects the model. Removing the dominance relationship would also be of

interest.
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Appendix A

Chapter 4 Computations

In this appendix, we give details for the computations made in Chapter 4.

A.1 Uniqueness for fAA(x̄) > faa(x̄) at each equilib-

rium

In order to prove uniqueness of the equilibrium for the case where fAA(x̄) > faa(x̄)

at each equilibrium, we want to show that where the isoclines C and CA cross,

dx̃A
dp

<
dx̃

dp
.

For 0 < p < 1, this is equivalent to showing

p
(

1− fA − p∂fA

∂p

)
p∂fA

∂x
+ qh′

= p
dx̃A
dp

< p
dx̃

dp
<
dx̃

dp
=
−2p(fA − fa)

∂f
∂x

+ h′
.

We cross multiply the first and last terms to obtain[
p

(
1− fA − p

∂fA
∂p

)][
∂f

∂x
+ h′

]
< [−2p(fA − fa)]

[
p
∂fA
∂x

+ qh′
]
.
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Then moving all terms to one side we obtain the inequality[
p

(
1− fA − p

∂fA
∂p

)][
∂f

∂x
+ h′

]
− [−2p(fA − fa)]

[
p
∂fA
∂x

+ qh′
]
< 0.

We want to show that this inequality holds at each equilibrium E = (p̄, x̄). Using

(4.10) to substitute qh(x̄) for p̄(1− fA(p̄, x̄)), the inequality we want to show is[
qh(x̄)− p̄2∂fA

∂p

] [
∂f

∂x
+ h′

]
+ [2p(fA − fa)]

[
p̄
∂fA
∂x

+ qh′
]
< 0.

Using (3.6) and (3.7), we substitute for the allelic and mean fitnesses and their deriva-

tives and rearrange terms by genotype fitness derivatives to obtain

[qh(x̄)− p̄2(1− δ)(fAA(x̄)− faa(x̄))]

∗ [(p̄2 + 2δp̄− 2δp̄2)f ′AA(x̄) + (1− p̄2 − 2δp̄+ 2δp̄2)f ′aa(x̄) + h′(x̄)]

+ 2p̄[(p̄+ δ − 2δp̄)(fAA(x̄)− faa(x̄))]

∗ [p̄(p̄+ δ − δp̄)f ′AA(x̄) + p̄(1− p̄− δ + δp̄)f ′aa(x̄) + qh′(x̄)]

= f ′AA(x̄){(fAA(x̄)− faa(x̄))p̄2[(δ − 1)(p̄2 + 2δp̄− 2δp̄2) + 2(p̄+ δ − 2δp̄)(p̄+ δ − δp̄)]

+ qp̄h(x̄)(p̄+ 2δ − 2δp̄)}

+ f ′aa(x̄){(fAA(x̄)− faa(x̄))[(1− p̄2 − 2δp̄+ 2δp̄2)(−p̄2(1− δ))

+ 2(p̄+ δ − 2δp̄)p̄2(1− p̄)(1− δ)] + (1− p̄2 − 2δp̄+ 2δp̄2)qh(x̄)}

+ h′(x̄){qh(x̄) + (fAA(x̄)− faa(x̄))(−p̄2(1− δ) + 2p̄q(p̄+ δ − 2δp̄))} < 0.

(A.1)

We assume (4.5), so we want to show that each of the terms in curly brackets in (A.1)

is positive.
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First, the terms multiplied by f ′AA(x̄) can be rewritten as

(fAA(x̄)− faa(x̄))p̄2[(δ − 1)(p̄2 + 2δp̄− 2δp̄2) + 2(p̄+ δ − 2δp̄)(p̄+ δ − δp̄)]

+ qp̄h(x̄)(p̄+ 2δ − 2δp̄)

= (fAA(x̄)− faa(x̄))p̄2[δp̄2 + 2δ2p̄− 2δ2p̄2 − p̄2 − 2δp̄+ 2δp̄2

+ 2p̄2 + 4δp̄− 6δ2p̄− 6δp̄2 + 2δ2 + 4δ2p̄2]

+ qp̄h(x̄)(p̄+ 2δ − 2δp̄)

= (fAA(x̄)− faa(x̄))p̄2[p̄2 − 3δp̄2 + 2δp̄+ 2δ2 − 4δ2p̄+ 2δ2p̄2]

+ qp̄h(x̄)(p̄+ 2δ − 2δp̄)

= (fAA(x̄)− faa(x̄))p̄2[p̄2 − δp̄2 + 2δp̄− 2δp̄2 + 2δ2 − 2δ2p̄− 2δ2p̄+ 2δ2p̄2]

+ qp̄h(x̄)(p̄+ 2δ − 2δp̄)

= (fAA(x̄)− faa(x̄))p̄2[p̄2(1− δ) + 2δp̄(1− p̄) + 2δ2(1− p̄) + 2δ2p̄(p̄− 1)]

+ qp̄h(x̄)(p̄+ 2δ − 2δp̄)

= (fAA(x̄)− faa(x̄))p̄2[p̄2(1− δ) + 2δp̄(1− p̄)(1− δ) + 2δ2(1− p̄)]

+ qp̄h(x̄)(p̄+ 2δ(1− p̄))

(A.2)

Since we are assuming fAA(x̄) > faa(x̄) at each equilibrium, 0 < p̄ < 1, 0 ≤ δ ≤ 1,

and 0 ≤ q ≤ 1 clearly (A.2) is positive. These appear in the first two lines in (A.5)

and (4.11).
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Similarly, for the terms multiplied by f ′aa(x̄), we simplify and obtain

(fAA(x̄)− faa(x̄))p̄2(1− δ)[(−1 + p̄2 + 2δp̄− 2δp̄2)

+ 2(p̄+ δ − 2δp̄)(1− p̄)]

+ (1− p̄2 − 2δp̄+ 2δp̄2)qh(x̄)

= (fAA(x̄)− faa(x̄))p̄2(1− δ)[−1 + p̄2 + 2δp̄− 2δp̄2

+ 2(p̄+ δ − 2δp̄− p̄2 − δp̄+ 2δp̄2)]

+ (1− p̄2 − 2δp̄+ 2δp̄2)qh(x̄)

= (fAA(x̄)− faa(x̄))p̄2(1− δ)[−1 + p̄2 + 2δp̄− 2δp̄2 + 2p̄+ 2δ − 6δp̄− 2p̄2 + 4δp̄2]

+ (1− p̄2 − 2δp̄+ 2δp̄2)qh(x̄)

= (fAA(x̄)− faa(x̄))p̄2(1− δ)[−1 + 2p̄− p̄2 + 2δ − 4δp̄+ 2δp̄2]

+ (1− p̄)(1 + p̄− 2δp̄)qh(x̄)

= (fAA(x̄)− faa(x̄))p̄2(1− δ)[−(1− p̄)2 + 2δ(1− p̄)2]

+ (1− p̄)(1− δp̄+ p̄1− δp̄)qh(x̄)

= (fAA(x̄)− faa(x̄))p̄2(1− δ)(1− p̄)2(2δ − 1) + (1− p̄)(1− δp̄+ p̄(1− δ))qh(x̄).

(A.3)

With the assumptions of fAA(x̄) > faa(x̄) at each equilibrium, 0 < p̄ < 1, 0 ≤ q ≤ 1,

then (A.3) is positive if
1

2
≤ δ ≤ 1. These terms appear in the second and third lines

of (A.5) and (4.11).

Looking at all the terms multiplied by h′(x̄), we simplify and get

(fAA(x̄)− faa(x̄))p̄[−p̄(1− δ) + 2q(p̄+ δ − 2δp̄)] + qh(x̄)

= fAA(x̄)− faa(x̄))p̄[−p̄+ δp̄+ 2p̄q + 2δq − 4δp̄q] + qh(x̄)

= (fAA(x̄)− faa(x̄))p̄[2p̄q − p̄+ δp̄− 2δp̄q + 2δq − 2δp̄q] + qh(x̄)

= (fAA(x̄)− faa(x̄))p̄[p̄(2q − 1) + δp̄(1− 2q) + 2δq(1− p̄)] + qh(x̄)

= (fAA(x̄)− faa(x̄))p̄[p̄(1− δ)(2q − 1) + 2δq(1− p̄)] + qh(x̄).

(A.4)
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For fAA(x̄) > faa(x̄) at each equilibrium, (A.4) is positive if we assume 0 < p̄ < 1,

0 ≤ δ ≤ 1, and
1

2
≤ q ≤ 1. These terms appear as the final line in (A.5) and (4.11).

Therefore, the inequality we want to hold is

f ′AA(x̄){(fAA(x̄)− faa(x̄))p̄2[p̄2(1− δ) + 2δp̄(1− p̄)(1− δ) + 2δ2(1− p̄)]}

+ f ′AA(x̄){qp̄h(x̄)(p̄+ 2δ(1− p̄))}+ f ′aa(x̄){qh(x̄)(1− p̄)(1− δp̄+ p̄(1− δ))}

+ f ′aa(x̄){(fAA(x̄)− faa(x̄))p̄2(1− δ)(1− p̄)2(2δ − 1)}

+ h′(x̄){qh(x̄) + (fAA(x̄)− faa(x̄))p̄[p̄(1− δ)(2q − 1) + 2δq(1− p̄)]} < 0.

(A.5)

We have if fAA(x̄) > faa(x̄) that (A.5) holds if
1

2
≤ δ ≤ 1 and

1

2
≤ q ≤ 1 and that

the polymorphic equilibrium is unique.

A.2 Uniqueness for fAA(x̄) < faa(x̄) at each equilib-

rium

In order to prove uniqueness of the equilibrium for the case where fAA(x̄) < faa(x̄)

at each equilibrium, we want to show that where the isoclines C and Ca cross,

dx̃

dp
<
dx̃a
dp

. (A.6)

Equivalently, we look at

(1− p)dx̃
dp

< (1− p)dx̃a
dp

. (A.7)

For 0 < p < 1, substituting (3.7), (A.7) is the same as showing

−2(1− p)(fA − fa)
∂f
∂x

+ h′
= (1− p)dx̃

dp
< (1− p)dx̃a

dp
=

(1− p)
(
fa − 1− (1− p)∂fa

∂p

)
(1− p)∂fa

∂x
+ (1− q)h′

.

(A.8)
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Cross multiplying the first and last terms in (A.8) we obtain the inequality

[−2(1− p)(fA − fa)]
[
(1− p)∂fa

∂x
+ (1− q)h′

]
<

[
(1− p)

(
fa − 1− (1− p)∂fa

∂p

)][
∂f

∂x
+ h′

]
.

Then moving all terms to one side, we obtain the inequality

[−2(1− p)(fA − fa)]
[
(1− p)∂fa

∂x
+ (1− q)h′

]
−
[
(1− p)

(
fa − 1− (1− p)∂fa

∂p

)][
∂f

∂x
+ h′

]
< 0.

We want to show that this inequality holds at each equilibrium E = (p̄, x̄). Using

(4.3) to substitute (q−1)h(x̄) for (1− p̄)(fa(p̄, x̄)−1), the inequality we want to show

is

[2(1− p̄)(fA(p̄, x̄)− fa(p̄, x̄))]

[
(1− p̄)∂fa

∂x
+ (1− q)h′(x̄)

]
−
[(

(q − 1)h(x̄)− (1− p̄)2∂fa
∂p

)][
∂f

∂x
+ h′(x̄)

]
< 0.
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Using (3.6) and (3.7), we substitute for the allelic and mean fitnesses and their deriva-

tives and rearrange terms by genotype fitness derivatives to obtain

[−2(1− p̄)(p̄+ δ − 2δp̄)(fAA(x̄)− faa(x̄))]

∗ [(1− p̄)δp̄f ′AA(x̄) + (1− p̄)(1− δp̄)f ′aa(x̄) + (1− q)h′(x̄)]

+ [p̄(p̄+ 2δ − 2δp̄)f ′AA(x̄) + (1− p̄2 − 2δp̄+ 2δp̄2)f ′aa(x̄) + h′(x̄)]

∗ [(1− q)h(x̄) + (1− p̄)2δ(fAA(x̄)− faa(x̄))]

= f ′AA(x̄){−2(p̄+ δ − 2δp̄)δp̄(1− p̄)2 + (1− p̄)2δp̄(p̄+ 2δ − 2δp̄)](fAA(x̄)− faa(x̄))

+ p̄(1− q)(p̄+ 2δ − 2δp̄)h(x̄)}

+ f ′aa(x̄){[−2(1− p̄)2(1− δp̄)(p̄+ δ − 2δp̄)

+ δ(1− p̄)2(1− p̄2 − 2δp̄+ 2δp̄2)](fAA(x̄)− faa(x̄))

+ (1− p̄2 − 2δp̄+ 2δp̄2)(1− q)h(x̄)}

+ h′(x̄){[−2(p̄+ δ − 2δp̄)(1− q)(1− p̄) + (1− p̄)2δ](fAA(x̄)− faa(x̄))

+ (1− q)h(x̄)}.
(A.9)

We assume (4.5), so we want to show that each of the terms in curly brackets in (A.9)

are positive.

The terms multiplied by f ′AA(x̄) can be rewritten as

(fAA(x̄)− faa(x̄))[−2(p̄+ δ − 2δp̄)δp̄(1− p̄)2 + (1− p̄)2δp̄(p̄+ 2δ − 2δp̄)]

+ p̄(1− q)(p̄+ 2δ − 2δp̄)h(x̄)

= (fAA(x̄)− faa(x̄))δp̄(1− p̄)2[−2p̄− 2δ + 4δp̄+ p̄+ 2δ − 2δp̄]

+ p̄(1− q)(p̄+ 2δ − 2δp̄)h(x̄)

= (fAA(x̄)− faa(x̄))δp̄(1− p̄)2[−p̄+ 2δp̄] + p̄(1− q)(p̄+ 2δ − 2δp̄)h(x̄)

= (fAA(x̄)− faa(x̄))δp̄2(1− p̄)2(2δ − 1) + p̄(1− q)(p̄+ 2δ(1− p̄))h(x̄)

(A.10)

Since we are assuming fAA(x̄) < faa(x̄) at each equilibrium, 0 < p̄ < 1, 0 ≤ q ≤ 1, if

0 ≤ δ ≤ 1

2
then (A.10) is positive. These terms appear in the first two lines of (A.13)
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and (4.15).

The f ′aa(x̄) terms can be rewritten as

(fAA(x̄)− faa(x̄))[−2(1− p̄)2(p̄+ δ − 2δp̄)(1− δp̄) + (1− p̄)2δ(1− p̄2 − 2δp̄+ 2δp̄2)]

+ (1− p̄2 − 2δp̄+ 2δp̄2)(1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)2[−2(p̄+ δ − 2δp̄− δp̄2 − δ2 + 2δ2p̄2)

+ δ − δp̄2 − 2δ2p̄+ 2δ2p̄2]

+ (1− p̄2 − 2δp̄+ 2δp̄2)(1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)2[−2p̄− 2δ + 4δp̄+ 2δp̄2 + 2δ2 − 4δ2p̄2

+ δ − δp̄2 − 2δ2p̄+ 2δ2p̄2]

+ (1− p̄2 − 2δp̄+ 2δp̄2)(1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)2[−2p̄− δ + 4δp̄+ δp̄2 − 2δ2p̄2]

+ ((1− p̄)(1 + p̄)− 2δp̄(1− p̄))(1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)2[−δ + 2δp̄− δp̄2 − 2p̄+ 2δp̄+ 2δp̄2 − 2δ2p̄2]

+ (1− p̄)(1 + p̄− 2δp̄)(1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)2[−δ(1− p̄)2 − 2p̄(1− δ) + 2δp̄2(1− δ)]

+ (1− p̄)(1− δp̄+ p̄− δp̄)(1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)2[−δ(1− p̄)2 − 2p̄(1− δ)(1− δp̄)]

+ (1− p̄)(1− δp̄+ p̄(1− δ))(1− q)h(x̄).

(A.11)

With the assumptions of fAA(x̄) < faa(x̄) at each equilibrium, 0 < p̄ < 1, 0 ≤ δ ≤ 1,

and 0 ≤ q ≤ 1 then (A.11) is positive. These terms appear on lines three and four of

(A.13) and (4.15).
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The terms multiplied by h′(x̄) can be rewritten as

(fAA(x̄)− faa(x̄))[−2(p̄+ δ − 2δp̄)(1− p̄)(1− q) + (1− p̄)2δ] + (1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)[−2(p̄+ δ − 2δp̄− p̄q − δq + 2δp̄q) + δ − δp̄]

+ (1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)[−2p̄− 2δ + 4δp̄+ 2p̄q + 2δq − 4δp̄q + δ − δp̄]

+ (1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)[−2p̄+ 3δp̄− δ + 2p̄q + 2δq − 4δp̄q]

+ (1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)[2p̄(δ − 1) + δ(p̄− 1) + 2p̄q(1− δ) + 2δq(1− p̄)]

+ (1− q)h(x̄)

= (fAA(x̄)− faa(x̄))(1− p̄)[2p̄(δ − 1)(1− q) + δ(p̄− 1)(1− 2q)] + (1− q)h(x̄).

(A.12)

Since we assume fAA(x̄) < faa(x̄) at each equilibrium, 0 < p̄ < 1 and 0 ≤ δ ≤ 1

(A.12) is positive if 0 ≤ q ≤ 1

2
. These terms appear as the fifth line in (A.13) and

(4.15).

Thus, the inequality we want to hold is

f ′AA(x̄){((fAA(x̄)− faa(x̄))δp̄2(1− p̄)2(2δ − 1)}

+ f ′AA(x̄){p̄(1− q)(p̄+ 2δ(1− p̄))h(x̄)}

+ f ′aa(x̄){(1− p̄)(1− δp̄+ p̄(1− δ))(1− q)h(x̄)}

+ f ′aa(x̄){((fAA(x̄)− faa(x̄))(1− p̄)2[−δ(1− p̄)2 − 2p̄(1− δ)(1− δp̄)]}

+ h′(x̄)[(1− q)h(x̄) + (fAA(x̄)− faa(x̄))(1− p̄)[2p̄(δ − 1)(1− q) + δ(p̄− 1)(1− 2q)]]

< 0.

(A.13)

For fAA(x̄) < faa(x̄) at each equilibrium, we have that (A.13) holds if 0 ≤ δ ≤ 1

2

and 0 ≤ q ≤ 1

2
and the polymorphic equilibrium is unique.
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A.3 Jury Conditions

In order to determine the local stability of the polymorphic equilibrium, we need

to examine the Jury conditions. We examine these conditions in parts.

A.3.1 Determinant of Jacobian

To determine the local stability of the polymorphic equilibrium, we need to look

at the Jacobian matrix, D(E), of the right hand side of (3.4). The Jacobian is

D(E) =

 fA + p̄
(
∂fA

∂p
− ∂f

∂p

)
p̄(1− p̄)

(
∂fA

∂x
− ∂fa

∂x

)
+ h′(x̄)(q − p̄)

x̄∂f
∂p

1 + x̄
(
∂f
∂x

+ h′(x̄)
)

 .
Using

∂fA
∂p
− ∂f

∂p
= (1− 3δ − 2p̄+ 4δp̄)(fAA(x̄)− faa(x̄)) and

∂fA
∂x
− ∂fa
∂x

= (p̄+ δ − 2δp̄)(f ′AA(x̄)− f ′aa(x̄)).

Using (3.6) and (3.7), for any δ, we compute that the determinant of D(E) in

terms of genotype fitness derivatives is

det[D(E)] =

[
fA + p̄

(
∂fA
∂p
− ∂f

∂p

)][
1 + x̄

(
∂f

∂x
+ h′(x̄)

)]
− x̄∂f

∂p

[
p̄(1− p̄)

(
∂fA
∂x
− ∂fa
∂x

)
+ h′(x̄)(q − p̄)

]
=fA + p̄

(
∂fA
∂p
− ∂f

∂p

)
+ x

∂f

∂x

(
fA + p̄

(
∂fA
∂p
− ∂f

∂p

))
− xp(1− p)∂f

∂p

(
∂fA
∂x
− ∂fa
∂x

)
+ xh′(x)

(
fA + p̄

(
∂fA
∂p
− ∂f

∂p

))
+ xh′(x)

∂f

∂p
(p− q)
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=faa(x̄) + (p̄+ δ − δp̄)(fAA(x̄)− faa(x̄))

+ p̄(1− 2p̄− 3δ + 4δp̄)(fAA(x̄)− faa(x̄))

+ x̄[f ′aa(x̄) + p̄(p̄+ 2δ − 2δp̄)(f ′AA(x̄)− f ′aa(x̄))]

∗ [faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄))]

− x̄(f ′AA(x̄)− f ′aa(x̄))p̄(1− p̄)2(p̄+ δ − 2δp̄)2(fAA(x̄)− faa(x̄))

+ x̄h′(x̄)[faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄))

+ 2(p̄+ δ − 2δp̄)(p̄− q)(fAA(x̄)− faa(x̄))]

=faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄))

+ x̄(f ′AA(x̄)− f ′aa(x̄))(fAA(x̄)− faa(x̄))[−2p̄(1− p̄)(p̄+ δ − 2δp̄)2

+ p̄(p̄+ 2δ − 2δp̄)(2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)]

+ x̄(f ′AA(x̄)− f ′aa(x̄))faa(x̄)p̄(p̄+ 2δ − 2δp̄)

+ x̄f ′aa(x̄)[faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄))]

+ x̄h′(x̄)[faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2

+ 2p̄2 + 2δp̄− 4δp̄2 + 4δp̄q − 2p̄q − 2δq)(fAA(x̄)− faa(x̄))]

=faa(x̄) + δ(fAA(x̄)− faa(x̄)) + (2p̄− 2p̄2 − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄))

+ x̄(f ′AA(x̄)− f ′aa(x̄))(fAA(x̄)− faa(x̄))[p̄(p̄+ δ − 2δp̄)(2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2

− 2p̄− 2δ + 4δp̄+ 2p̄2 + 2δp̄− 4δp̄2)

+ δp̄(2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)]

+ x̄(f ′AA(x̄)− f ′aa(x̄))faa(x̄)p̄(p̄+ 2δ − 2δp̄)

+ x̄f ′aa(x̄)[faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄))]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄− 2δp̄− 2p̄q + 4δp̄q)(fAA(x̄)− faa(x̄))]
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=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄(f ′AA(x̄)− f ′aa(x̄))(fAA(x̄)− faa(x̄))[p̄(p̄+ δ − 2δp̄)(−δ + 2δp̄)

+ δp̄(2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)]

+ x̄(f ′AA(x̄)− f ′aa(x̄))faa(x̄)p̄(p̄+ 2δ − 2δp̄)

+ x̄f ′aa(x̄)(faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄)))

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ − 2q + 4δq))(fAA(x̄)− faa(x̄))]

=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄(f ′AA(x̄)− f ′aa(x̄))(fAA(x̄)− faa(x̄))p̄(δp̄+ 2δp̄2 − δ2 + 2δ2p̄+ 2δ2p̄− 4δ2p̄2

+ 2δp̄− 2δp̄2 + δ2 − 4δ2p̄+ 4δ2p̄2)

+ x̄(f ′AA(x̄)− f ′aa(x̄))faa(x̄)p̄(p̄+ 2δ − 2δp̄)

+ x̄f ′aa(x̄)(faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄)))

+ x̄h′(x)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))]

=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄(f ′AA(x̄)− f ′aa(x̄))(fAA(x̄)− faa(x̄))p̄(δp̄)

+ x̄(f ′AA(x̄)− f ′aa(x̄))faa(x̄)p̄(p̄+ 2δ − 2δp̄)

+ x̄f ′aa(x̄)(faa(x̄) + (2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)(fAA(x̄)− faa(x̄)))

+ x̄h′(x)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))]

=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)(p̄2 + 2δp̄− 3δp̄2)]

+ x̄f ′aa(x̄)[fAA(x̄)(−δp̄2 + 2p̄− 2p̄2 + δ − 4δp̄+ 4δp̄2)

+ faa(x̄)(δp̄2 − p̄2 − 2δp̄+ 2δp̄2 + 1− 2p̄+ 2p̄2 − δ + 4δp̄− 4δp̄2)]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))]
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=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)(p̄2 + 2δp̄− 3δp̄2)]

+ x̄f ′aa(x̄)[fAA(x̄)(2p̄− 2p̄2 + δ − 4δp̄+ 3δp̄2)

+ faa(x̄)(1− 2p̄+ p̄2 − δ + 2δp̄− δp̄2)]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))]

=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)p̄(p̄(1− δ) + 2δ(1− p̄))]

+ x̄f ′aa(x̄)[fAA(x̄)(2p̄(1− p̄) + δ(1− p̄)− 3δp̄(1− p̄))

+ faa(x̄)((1− p̄)2 − δ(1− p̄)2)]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))]

=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)p̄(p̄(1− δ) + 2δ(1− p̄))]

+ x̄f ′aa(x̄)[fAA(x̄)(1− p̄)(2p̄+ δ − 3δp̄) + faa(x̄)(1− p̄)2(1− δ)]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))]

=fAa(x̄) + 2p̄(1− p̄)(1− 2δ)(fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)p̄(p̄(1− δ) + 2δ(1− p̄))]

+ x̄f ′aa(x̄)[fAA(x̄)(1− p̄)(2p̄(1− δ) + δ(1− p̄)) + faa(x̄)(1− p̄)2(1− δ)]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))].

We will use det[D(E)] to help determine the stability of the equilibrium.

A.3.2 1− tr[D(E)] + det[D(E)]

We also need to look at 1− tr[D(E)] + det[D(E)] to help determine the stability

of the equilibrium.
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1− tr[D(E)] + det[D(E)]

= 1−
[
fA + p̄

(
∂fA
∂p
− ∂f

∂p

)
+ 1 + x̄

(
∂f

∂x
+ h′(x̄)

)]
+ det[D(E)]

= −fA − p̄
(
∂fA
∂p
− ∂f

∂p

)
− x̄

(
∂f

∂x
+ h′(x̄)

)
+ det[D(E)]

= −faa(x̄)− (p̄+ δ − δp̄)(fAA(x̄)− faa(x̄))− p̄(1− 2p̄− 3δ + 4δp̄)(fAA(x̄)− faa(x̄))

− x̄f ′aa(x̄)− x̄p̄(p̄+ 2δ − 2δp̄)(f ′AA(x̄)− f ′aa(x̄))− x̄h′(x̄) + det[D(E)]

= −faa(x̄) + (−p̄− δ + δp̄− p̄+ 2p̄2 + 3δp̄− 4δp̄2)(fAA(x̄)− faa(x̄))

+ x̄(−p̄2 − 2δp̄+ 2δp̄2)(f ′AA(x̄)− f ′aa(x̄))− x̄f ′aa(x̄)− x̄h′(x̄)

+ faa(x̄) + [δ + 2p̄− 2p̄2 − 4δp̄+ 4δp̄2](fAA(x̄)− faa(x̄))

+ x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)p̄(p̄(1− δ) + 2δ(1− p̄))]

+ x̄f ′aa(x̄)[fAA(x̄)(1− p̄)(2p̄(1− δ) + δ(1− p̄)) + faa(x̄)(1− p̄)2(1− δ)]

+ x̄h′(x̄)[faa(x̄) + (p̄+ δ − 2δq + p̄(1− 2δ)(1− 2q))(fAA(x̄)− faa(x̄))]

= x̄f ′AA(x̄)[fAA(x̄)δp̄2 + faa(x̄)(p̄2 + 2δp̄− 3δp̄2)− p̄2 − 2δp̄+ 2δp̄2]

+ x̄f ′aa(x̄)[fAA(x̄)(2p̄+ δ − 4δp̄− 2p̄2 + 3δp̄2)

+ faa(x̄)(−2p̄− δ + 2δp̄+ p̄2 − δp̄2 + 1) + p̄2 + 2δp̄− 2δp̄2 − 1]

+ x̄h′(x̄)[fAA(x̄)(2p̄− 2δp̄+ δ − 2p̄q − 2δq + 4δp̄q)

+ faa(x̄)(−2p̄+ 2δp̄− δ + 2p̄q + 2δq − 4δp̄q + 1)− 1].

(A.14)

In order to have results about stability of the equilibrium, we want

1− tr[D(E)] + det[D(E)] to be positive. We will look at terms based on their deriva-

tives. For the terms that are multiplied by x̄f ′AA(x̄), we denote them by A(δ) where

A(δ) = fAA(x̄)δp̄2 + faa(x̄)(p̄2 + 2δp̄− 3δp̄2)− 2δp̄− p̄2 + 2δp̄2.
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The terms that are multiplied by x̄f ′aa(x̄), we denote as B(δ) where

B(δ) =fAA(x̄)(2p̄+ δ − 4δp̄− 2p̄2 + 3δp̄2) + faa(x̄)(−2p̄− δ + 2δp̄+ p̄2 − δp̄2 + 1)

+ 2δp̄− 2δp̄2 − 1 + p̄2.

Denote the terms that are multiplied by x̄h′(x̄) as C(q, δ), with

C(q, δ) =fAA(x̄)(2p̄− 2δp̄+ δ − 2p̄q − 2δq + 4δp̄q)

+ faa(x̄)(−2p̄+ 2δp̄− δ + 2p̄q + 2δq − 4δp̄q + 1)− 1.

A.3.2.1 Assume fAA(x̄) > faa(x̄)

For fAA(x̄) > faa(x̄), we rewrite the terms multiplied by x̄f ′AA(x̄) as

A(δ) = p̄[fAA(x̄)δp̄+ faa(x̄)p̄(1− δ)− p̄+ faa(x̄)2δ(1− p̄)− 2δ(1− p̄)]

= p̄[p̄(fAA(x̄)δ + faa(x̄)(1− δ)− 1) + 2δ(1− p̄)(faa(x̄)− 1)]

= p̄[p̄(fAa(x̄)− 1) + 2δ(1− p̄)(faa(x̄)− 1)].

(A.15)

Since fAa(x̄) < 1 and faa(x̄) < 1 when fAA(x̄) > faa(x̄), then A(δ) < 0 for all δ,

0 ≤ δ ≤ 1.

For the terms multiplied by x̄f ′aa(x̄), we have to look both when fAA(x̄) ≤ 1 and

when fAA(x̄) > 1. First, when fAA(x̄) ≤ 1, we can rewrite B(δ) as

B(δ) =(1− p̄)[fAA(x̄)(2p̄+ δ − 3δp̄) + faa(x̄)(1− p̄− δ + δp̄) + (−1− p̄+ 2δp̄)]

=(1− p̄)[fAA(x̄)(2p̄+ δ − 3δp̄) + (−2p̄− δ + 3δp̄)

+ faa(x̄)(1− p̄− δ + δp̄) + (−1 + p̄+ δ − δp̄)]

=(1− p̄)[(2p̄+ δ − 3δp̄)(fAA(x̄)− 1) + (1− p̄− δ + δp̄)(faa(x̄)− 1)]

=(1− p̄)[(2p̄(1− δ) + δ(1− p̄))(fAA(x̄)− 1) + (1− p̄)(1− δ)(faa(x̄)− 1)].

(A.16)

We have for fAA(x̄) > faa(x̄) that faa(x̄) and we assume fAA(x̄) ≤ 1, thus B(δ) < 0

for all δ, 0 ≤ δ ≤ 1. We also need to show that B(δ) < 0 when fAA(x̄) > 1. We will
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use that at equilibrium, fA(p̄, x̄)−faa(x̄) = (p̄+ δ− δp̄)(fAA(x̄)−faa(x̄)) and the fact

that fA(p̄, x̄)− 1 < 0.

B(δ) = (1− p̄)[fAA(x̄)(2p̄+ δ − 3δp̄) + faa(x̄)(1− p̄− δ + δp̄) + (−1− p̄+ 2δp̄)]

= (1− p̄)[(p̄+ δ − δp̄)(fAA(x̄)− faa(x̄)) + (p̄− 2δp̄)fAA(x̄) + faa(x̄)

+ 2δp̄− 1− p̄]

= (1− p̄)[(fA(x̄)− faa(x̄)) + p̄(1− 2δ)fAA(x̄) + p̄(2δ − 1) + faa(x̄)− 1]

< (1− p̄)[1− faa(x̄) + p̄(1− 2δ)(fAA(x̄)− 1) + faa(x̄)− 1]

= (1− p̄)p̄(1− 2δ)(fAA(x̄)− 1).

(A.17)

When fAA(x̄) > 1, B(δ) < 0 when
1

2
≤ δ ≤ 1. If fAA(x̄) > 1 or if fAA(x̄) ≤ 1, for

1

2
≤ δ ≤ 1 then B(δ) < 0.

For the terms multiplied by x̄h′(x̄), we have

C(q, δ) =(2p̄+ δ − 2δp̄− 2p̄q − 2δq + 4δp̄q)(fAA(x̄)− faa(x̄))− 1

=(p̄+ δ − δp̄)(fAA(x̄)− faa(x̄)) + faa(x̄)− 1

+ (p̄− δp̄− 2p̄q − 2δq + 4δp̄q)(fAA(x̄)− faa(x̄))

=− p̄− faa(x̄)) + faa(x̄)− 1

+ [p̄(1− δ) + 2p̄q(δ − 1) + 2δq(p̄− 1)](fAA(x̄)− faa(x̄))

<1− faa(x̄) + faa(x̄)− 1

+ [p̄(1− δ)(1− 2q)− 2δq(1− p̄)](fAA(x̄)− faa(x̄))

=[p̄(1− δ)(1− 2q)− 2δq(1− p̄)](fAA(x̄)− faa(x̄)).

(A.18)

And, C(q, δ) < 0 when
1

2
≤ q ≤ 1 for all δ, 0 ≤ δ ≤ 1.

Thus for fAA(x̄) > faa(x̄) since we are assuming (4.5), when
1

2
≤ δ ≤ 1 and

1

2
≤ q ≤ 1, then 1− tr[D(E)] + det[D(E)] > 0.
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A.3.2.2 Assume fAA(x̄) < faa(x̄)

When fAA(x̄) < faa(x̄), we use that at equilibrium,

δp̄(fAA(x̄)−faa(x̄)) = fa(p̄, x̄)−faa(x̄) and the fact that fa(p̄, x̄)−1 < 0. For the terms

multiplied by x̄f ′AA(x̄), we need to look both when faa(x̄) ≤ 1 and when faa(x̄) > 1.

First, when faa(x̄) ≤ 1,

A(δ) = p̄2(δfAA(x̄) + (1− δ)faa(x̄))− p̄2 + (2δp̄− 2δp̄2)faa(x̄)− 2δp̄+ 2δp̄2

= p̄2fAa(x̄)− p̄2 + (2δp̄(1− p̄)faa(x̄)− 2δp(1− p̄)

= p̄2(fAa(x̄)− 1) + 2δp̄(1− p̄)(faa(x̄)− 1).

(A.19)

And A(δ) < 0 if faa(x̄) < 1 for all δ, 0 ≤ δ ≤ 1. When faa(x̄) > 1, we rewrite A(δ) as

A(δ) = δp̄2(fAA(x̄)− faa(x̄)) + (p̄2 + 2δp̄− 2δp̄2)faa(x̄) + (−p̄2 − 2δp̄+ 2δp̄2)

= p̄(fa(p̄, x̄)− faa(x̄)) + (p̄2 + 2δp̄− 2δp̄2)faa(x̄) + (−p̄2 − 2δp̄+ 2δp̄2)

< p̄(1− faa(x̄)) + p̄(p̄+ 2δ − 2δp̄)faa(x̄) + p̄(−p̄− 2δ + 2δp̄)

= p̄(−1 + p̄+ 2δ − 2δp̄)(faa(x̄)− 1)

= p̄(1− p̄)(2δ − 1)(faa(x̄)− 1).

(A.20)

When faa(x̄) > 1, A(δ) < 0 for all δ, 0 ≤ δ ≤ 1

2
. If faa(x̄) ≤ 1 or faa(x̄) > 1 when

0 ≤ δ ≤ 1

2
, then A(δ) < 0.
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For the terms multiplied by x̄f ′aa(x̄), we can rewrite them as

B(δ) = (1− p̄)[fAA(x̄)(2p̄+ δ − 3δp̄) + faa(x̄)(1− p̄− δ + δp̄) + (−1− p̄+ 2δp̄)]

= (1− p̄)[(p̄+ δ − δp̄)(fAA(x̄)− faa(x̄)) + fAA(x̄)(p̄− 2δp̄) + faa(x̄)

+ (−1− p̄+ 2δp̄)]

= (1− p̄)[fA(p̄, x̄)− faa(x̄) + fAA(x̄)p̄(1− 2δ) + faa(x̄)− 1− p̄(1− 2δ)]

< (1− p̄)[1− faa(x̄) + p̄(1− 2δ)(fAA(x̄)− 1) + faa(x̄)− 1]

= (1− p̄)p̄(1− 2δ)(fAA(x̄)− 1).

(A.21)

When fAA(x̄) < faa(x̄), we have that fAA(x̄) < 1. Thus, B(δ) < 0 when 0 ≤ δ ≤ 1

2
.

For the terms multiplied by x̄h′(x̄), we can rewrite them as

C(q, δ) =faa(x̄) + δp̄(fAA(x̄)− faa(x̄))− 1

+ (2p̄− 3δp̄+ δ − 2p̄q − 2δq + 4δp̄q)(fAA(x̄)− faa(x̄))

=fa(p̄, x̄)− 1 + (p̄+ δ − 2δp̄− 2p̄q − 2δq + 4δp̄q + p̄− δp̄)(fAA(x̄)− faa(x̄))

<((p̄+ δ − 2δp̄)(1− 2q) + p̄(1− δ))(fAA(x̄)− faa(x̄))

=[(p̄(1− δ) + δ(1− p̄))(1− 2q) + p̄(1− δ)](fAA(x̄)− faa(x̄)).

(A.22)

For fAA(x̄) < faa(x̄), when 0 ≤ q ≤ 1

2
, C(q, δ) < 0.

Thus, for fAA(x̄) < faa(x̄), since we are assuming (4.5) when 0 ≤ δ ≤ 1

2
and

0 ≤ q ≤ 1

2
, 1− tr[D(E)] + det[D(E)] > 0
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Appendix B

Chapter 5 Computations

In this appendix, we give details for the computations made in chapter (5).

B.1 Derivative of p̄ with respect to δ

We use the system satisfied at equilibrium, (4.2), to define functions F and G as

follows:
F (p, x, δ) = pfA + qh− p

G(p, x, δ) = f + h− 1.

The values of p, x, and δ at equilibrium are simultaneous solutions of F = 0 and

G = 0. The Implicit Function Theorem permits us to express the p and x coordinates

of a solution in terms of the parameter δ in a neighborhood of a solution provided

det

[
∂F
∂p

∂F
∂x

∂G
∂p

∂G
∂x

]
6= 0.

The derivative of p̄ with respect to δ is

dp̄

dδ
= − det

[
∂F
∂δ

∂F
∂x

∂G
∂δ

∂G
∂x

]
/ det

[
∂F
∂p

∂F
∂x

∂G
∂p

∂G
∂x

]
. (B.1)



Appendix B. Chapter 5 Computations 109

We will use
∂F

∂δ
= p̄

dfA
dδ

= p̄(1− δ)(fAA(x̄)− faa(x̄))

∂F

∂x
= p̄

dfA
dx

+ qh′(x̄)

∂F

∂p
= fA + p̄

∂fA
∂p
− 1

∂G

∂δ
= 2p̄(1− p̄)(fAA(x̄)− faa(x̄))

∂G

∂x
=
∂f

∂x
+ h′(x̄)

∂G

∂p
=
∂f

∂p

to simplify.

The numerator of (B.1) is

−∂F
∂δ

∂G

∂x
+
∂F

∂x

∂G

∂δ

=− [p̄(1− p̄)(fAA(x̄)− faa(x̄))]

[
∂f

∂x
+ h′(x̄)

]
+ [2p̄(1− p̄)(fAA(x̄)− faa(x̄))]

[
p̄
∂fA
∂x

+ qh′(x̄)

]
=p̄(1− p̄)(fAA(x̄)− faa(x̄))

[
−∂f
∂x
− h′(x̄) + 2p̄

∂fA
∂x

+ 2qh′(x̄)

]
=p̄(1− p̄)(fAA(x̄)− faa(x̄))

[
2p̄
∂fA
∂x
− ∂f

∂x
+ (2q − 1)h′(x̄)

]
=p̄(1− p̄)(fAA(x̄)− faa(x̄))[2p̄f ′aa(x̄) + 2p̄(p̄+ δ − δp̄)(f ′AA(x̄)− f ′aa(x̄))

− f ′aa(x̄)− p̄(p̄+ 2δ − 2δp̄)(f ′AA(x̄)− f ′aa(x̄)) + (2q − 1)h′(x̄)]

=p̄(1− p̄)(fAA(x̄)− faa(x̄))[(2q − 1)h′(x̄) + (2p̄− 1)f ′aa(x̄)

+ (2p̄2 + 2δp̄− 2δp̄2 − p̄2 − 2δp̄+ 2δp̄2)(f ′AA(x̄)− f ′aa(x̄))]

=p̄(1− p̄)(fAA(x̄)− faa(x̄))[(2q − 1)h′(x̄) + (2p̄− 1)f ′aa(x̄) + p̄2(f ′AA(x̄)− f ′aa(x̄))]

=p̄(1− p̄)(fAA(x̄)− faa(x̄))[p̄2f ′AA(x̄) + (−p̄2 + 2p̄− 1)f ′aa(x̄) + (2q − 1)h′(x̄)]

=p̄(1− p̄)(fAA(x̄)− faa(x̄))[p̄2f ′AA(x̄)− (1− p̄)2f ′aa(x̄) + (2q − 1)h′(x̄)].

(B.2)
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And the denominator of (B.1) is

∂F

∂p

∂G

∂x
+
∂F

∂x

∂G

∂p

=

[
fA + p̄

∂fA
∂p
− 1

] [
∂f

∂x
+ h′(x̄)

]
−
[
p̄
∂fA
∂x

+ qh′(x̄)

] [
∂f

∂p

]
=[faa(x̄) + (p̄+ δ − δp̄)(fAA(x̄)− faa(x̄)) + p̄(1− δ)(fAA(x̄)− faa(x̄))− 1]

∗ [f ′aa(x̄) + p̄(p̄+ 2δ − 2δp̄)(f ′AA(x̄)− f ′aa(x̄)) + h′(x̄)]

− [p̄f ′aa(x̄) + p̄(p̄+ δ − δp̄)(f ′AA(x̄)− f ′aa(x̄)) + qh′(x̄)]

∗ [2(p̄+ δ − 2δp̄)(fAA(x̄)− faa(x̄))]

=[faa(x̄) + (2p̄+ δ − 2δp̄)(fAA(x̄)− faa(x̄))− 1]

∗ [f ′aa(x̄) + (p̄2 + 2δp̄− 2δp̄2)(f ′AA(x̄)− f ′aa(x̄)) + h′(x̄)]

+ [p̄f ′aa(x̄) + (p̄2 + δp̄− δp̄2)(f ′AA(x̄)− f ′aa(x̄)) + qh′(x̄)]

∗ [2(2δp̄− p̄− δ)(fAA(x̄)− faa(x̄))]

=(f ′AA(x̄)− f ′aa(x̄))[(p̄2 + 2δp̄− 2δp̄2)(faa(x̄)− 1) + (fAA(x̄)− faa(x̄))

∗ ((2p̄+ δ − 2δp̄)(p̄2 + 2δp̄− 2δp̄2) + (p̄2 + δp̄− δp̄2)(4δp̄− 2p̄− 2δ))]

+ f ′aa(x̄)[faa(x̄)− 1 + (fAA(x̄)− faa(x̄))(2p̄+ δ − 2δp̄+ 4δp̄2 − 2p̄2 − 2δp̄)]

+ h′(x̄)[faa(x̄)− 1 + (fAA(x̄)− faa(x̄))(2p̄+ δ − 2δp̄+ q(4δp̄− 2p̄− 2δ))]

=(f ′AA(x̄)− f ′aa(x̄))[(p̄2 + 2δp̄− 2δp̄2)(faa(x̄)− 1) + (fAA(x̄)− faa(x̄))

∗ (2p̄3 + 4δp̄2 − 4δp̄3 + δp̄2 + 2δ2p̄− 2δ2p̄2 − 2δp̄3 − 4δ2p̄2 + 4δ2p̄3

+ 4δp̄3 − 2p̄3 − 2δp̄2 + 4δ2p̄2 − 2δp̄2 − 2δ2p̄− 4δ2p̄3 + 2δp̄3 + 2δ2p̄2)]

+ f ′aa(x̄)[faa(x̄)− 1 + (fAA(x̄)− faa(x̄))(2p̄+ δ − 2δp̄+ 4δp̄2 − 2p̄2 − 2δp̄)]

+ h′(x̄)[faa(x̄)− 1 + (fAA(x̄)− faa(x̄))(2p̄+ δ − 2δp̄+ 4δp̄q − 2p̄q − 2δq)]

=(f ′AA(x̄)− f ′aa(x̄))[(p̄2 + 2δp̄− 2δp̄2)(faa(x̄)− 1) + (fAA(x̄)− faa(x̄))(δp̄2)]

+ f ′aa(x̄)[faa(x̄)− 1 + (fAA(x̄)− faa(x̄))(2p̄+ δ − 2δp̄+ 4δp̄2 − 2p̄2 − 2δp̄)]

+ h′(x̄)[faa(x̄)− 1 + (fAA(x̄)− faa(x̄))(2p̄+ δ − 2δp̄+ 4δp̄q − 2p̄q − 2δq)]
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=f ′AA(x̄)[δp̄2fAA(x̄) + (p̄2 + 2δp̄− 3δp̄2)faa(x̄)− p̄2 − 2δp̄+ 2δp̄2]

+ f ′aa(x̄)[(p̄2 + 2δp̄− 2δp̄2 − 1)(1− faa(x̄))

+ (fAA(x̄)− faa(x̄))(−δp̄2 + 2p̄+ δ − 2δp̄+ 4δp̄2 − 2p̄2 − 2δp̄)]

+ h′(x̄)[faa(x̄)− 1 + (fAA(x̄)− faa(x̄))(2p̄+ δ − 2δp̄+ 4δp̄q − 2p̄q − 2δq)]

=f ′AA(x̄)[δp̄2fAA(x̄) + (p̄2 + 2δp̄− 3δp̄2)faa(x̄)− p̄2 − 2δp̄+ 2δp̄2]

+ f ′aa(x̄)[(2p̄− 2p̄2 + δ − 4δp̄+ 3δp̄2)fAA(x̄)

+ (−2p̄+ p̄2 − δ + 2δp̄− δp̄2 + 1)faa(x̄) + (p̄2 + 2δp̄− 2δp̄2 − 1)]

+ h′(x̄)[(2p̄+ δ − 2δp̄+ 4δp̄q − 2p̄q − 2δq)fAA(x̄)

+ (1− 2p̄− δ + 2δp̄− 4δp̄q + 2p̄q + 2δq)faa(x̄)− 1].

(B.3)

B.2 Derivative of x̄ with respect to δ

The derivative of x̄ with respect to δ is

dx̄

dδ
= − det

[
∂F
∂p

∂F
∂δ

∂G
∂p

∂G
∂δ

]/
det

[
∂F
∂p

∂F
∂x

∂G
∂p

∂G
∂x

]
. (B.4)
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The numerator of (B.4) is

−∂F
∂p

∂G

∂δ
+
∂F

∂δ

∂G

∂p

=−
[
fA + p̄

∂fA
∂p
− 1

]
[2p̄(1− p̄)(fAA(x̄)− faa(x̄))]

+ [p(1− δ)(fAA(x̄)− faa(x̄))]

[
∂f

∂p

]
=− [faa(x̄) + (p̄+ δ − δp̄)(fAA(x̄)− faa(x̄)) + p(1− δ)(fAA(x̄)− faa(x̄))− 1]

∗ [2p̄(1− p̄)(fAA(x̄)− faa(x̄))]

+ [p̄(1− δ)(fAA(x̄)− faa(x̄))][2(p̄+ δ − 2δp̄)(fAA(x̄)− faa(x̄))]

=− [faa(x̄) + (2p̄+ δ − 2δp̄)(fAA(x̄)− faa(x̄))− 1][2p̄(1− p̄)(fAA(x̄)− faa(x̄))]

+ [p̄(1− δ)(fAA(x̄)− faa(x̄))][2(p̄+ δ − 2δp̄)(fAA(x̄)− faa(x̄))]

=2p̄(fAA(x̄)− faa(x̄))2[(2p̄+ δ − 2δp̄)(p̄− 1) + (1− δ)(p̄+ δ − 2δp̄)]

+ 2p̄(1− p̄)(fAA(x̄)− faa(x̄))(1− faa(x̄))

=2p̄(fAA(x̄)− faa(x̄))2[2p̄2 + δp̄− 2δp̄2 − 2p̄− δ + 2δp̄+ p̄+ δ − 2δp̄− δp̄− δ2

+ 2δ2p̄]

+ 2p̄(1− p̄)(fAA(x̄)− faa(x̄))(1− faa(x̄))

=2p̄(fAA(x̄)− faa(x̄))2[2p̄2 − 2δp̄2 − p̄− δ2 + 2δ2p̄]

+ 2p̄(1− p̄)(fAA(x̄)− faa(x̄))(1− faa(x̄)).

(B.5)

The denominator for the derivative of x̄ with respect to δ is the same as the

denominator for the derivative of p̄ with respect to δ and can be simplified as the last

five lines of (B.3).


