ABSTRACT

EARLY, MORGAN LEIGH. Engineering Professors’ Preferences for the Learning of
Differential Equations. (Under the direction of Dr. Karen Allen Keene.)

A first semester course in ordinary differential equations is often described as a
service course to engineering and hard science majors; how engineering professors
envision the course content and tools is important. Additionally, reform efforts in
differential equations courses have focused on enhancing students’ conceptual
understanding of the material. To this end, mathematicians and mathematics
educators have developed the notion of relational understanding, which connects
procedural and conceptual knowledge. This study reports the results of a
nationwide survey of engineering professors who articulate their opinions on the
topics in the differential equations curricula, the relational understanding of
differential equations students, and how technological advances have impacted the

study of differential equations.
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Chapter 1
Introduction

Mathematics departments provide a service to many science and engineering
fields by teaching prerequisite mathematics courses for these areas. Some of the
major participants of mathematics courses are engineering students (Ahmad et. al,
2001, Committee of the MAA, 1967). If we seek to improve the value of engineering
students’ education, we inevitably must seek to improve their mathematics
education. Mathematics professors and engineering professors must work together
to meet the needs of engineering students’ mathematical understanding, in order to
make them more effective learners of engineering.

More specifically, differential equations present themselves very useful for
solving different types of systems in various types of engineering. In many cases, a
strong understanding of differential equations will also provide students a gateway
to avoid rote memorization. One dynamics professor notes that in “most dynamics
books all of the equations that are used in dynamics books come from 2 or 3
governing differential equations” (personal communication). He goes on to describe
that his students “don’t understand the differential equations well enough [and if
they try to] memorize all this stuff, they just get balled up...when all they really need
to do is understand how to take, for example, F=ma, express it as a differential

equation and integrate it twice to get position, but they won’t do that” (personal



communication). He suggested that his students do not derive solutions because
they did not have a strong enough understanding of differential equations.

Since mathematics courses serve a wide variety of science and engineering
majors, the demands upon those teaching these courses often change with other
fields, and is not limited to the trends in mathematics and mathematics education.
With the onslaught of technology in engineering (Boyce, 1994), there have been
several shifts in the way one can approach a differential equations problem. Many
engineering departments are changing their coursework, as there is “a shift in
emphasis from teaching focused on knowledge ... toward teaching about the
process of engineering” (Kent and Noss, 2003, p. 19). In some cases, engineering
mathematics is beginning to be taught in engineering departments (Ahmad et. al,

1967).

The process of engineering makes problem solving skills and analysis more
critical for today’s students than ever before. Thus, since differential equations
services many engineering students and the engineering education needs seem to
be changing, there is also a need for differential equations curriculum evaluation to
see if this course is helping students with the process of engineering. This study
incorporates Skemp’s (1976) “relational understanding” notion to apply to not only
understanding concepts, but also using these concepts in conjunction with other
concepts and procedures. Engineers must take knowledge from many areas and

combine them to suit their needs in an application setting. There seems to be a



strong need for relational understanding among engineers, and this study will seek
to explore the opinions of engineering professors about students’ relational

understanding of differential equations.

We know that engineers need to understand mathematical concepts for
modeling purposes so that they may connect those models to their science courses
(Blockley, 2002). However, we do not know which topics in ordinary differential
equations that are essential to these engineers with the onslaught of new
technology. Do engineers need to have relational understanding of science but only
procedural or instrumental understanding of ordinary differential equations? This
study seeks to identify prevalent opinions of various engineering professors at
different universities in order to interpret the most important curriculum topics, the
depth of student understanding that engineering students need to grasp in a first
year course in differential equations, as well as discuss the importance of

technology to engineering students in differential equations.

The content of the first semester course in differential equations must be re-
assessed to best meet the needs of our students. To do so, we must assess students’
current understandings (see Rasmussen, 2001; Keene, Early, and Gonzalez, in
preparation for examples of this), what they need to understand, and how best to

teach what they do need to know with the tools at hand in light of the engineering

needs. Thus, the following research questions seek to best determine how to meet



the future needs of engineering students in an ordinary differential equations

course:

e According to engineering educators, what topics in differential equations are
most crucial for engineering education and practical engineering?

e What types of relational understanding do engineering educators wish to see
in their students’ differential equations classes?

e According to engineering educators, how should technology be used in the
mathematical education (especially the differential equations education) of

engineers?

Once we better understanding the directions that engineering professors
desire, we can use their ideas to help see what topics to cover in differential
equations and how we should present this information for engineers to be able
to utilize the topics in their future courses and careers. We can then design a
more effective differential equations curriculum, or if necessary, different

curricula for various majors.



Chapter 2
Literature Review

Differential equations courses serve many different types of engineering
fields (see Chapter 1 for further detail). In this chapter, [ will seek to review the
literature discussing the mathematics content which best serves students in
engineering, as well as discuss the work that has been done on students’ conceptual
understanding of mathematics at the undergraduate level. The last several decades
have altered the day-to-day operations of an engineer due to the available
technologies of our current culture. I will also discuss the known benefits and
concerns that have risen from the introduction of new technologies in
undergraduate mathematics, specifically the benefits and concerns of technology to

the first course in differential equations.

University Mathematics Content for Engineers

Curriculum content should continually be assessed for any mathematics
course at the university level to ensure that it is best serving the students who are to
benefit from the material. One issue directly related to curriculum development for
engineering is that new technologies are being introduced into the engineering
workforce. This bears the question of whether or not mathematics curricula are
best serving 21st century engineering students. In 1962, the committee on the
undergraduate program in mathematics of the Mathematical Association of America

met to discuss mathematics curriculum needs of engineering and physics students.



They revised their work, and in 1967, they included the following topics as being
important to the first course in differential equations: “linear differential equations
with constant coefficients and first order linear systems—Ilinear algebra (including
eigenvalue theory) should be used to treat both homogeneous and nonhomogenous
problems; first order linear and nonlinear equations with Picard’s method and an
introduction to numerical techniques” (p.7). They placed transform methods in a
course they entitled “functions of a complex variable,” (p. 32) and also in the partial
differential equations course, (p.34) which was separate from the first course in
calculus and differential equations. They also included a more extensive study of
numerical methods in the partial differential equations course, where students
would learn the “replacement of differential equations by difference equations;
iterative methods; the method of characteristics [as well as] convergence and error

analysis” (p. 35).

Differential equations courses serve many different types of engineering, all
of which need to be able to apply these mathematical concepts. In 2003, Kent and
Noss were commissioned by the Ove Arup foundation to examine the mathematics
being taught to engineers, specifically civil engineers. They noted that while there is
a shift in university engineering education, the mathematics courses for these
engineers are not necessarily following suit. They note that “engineering
mathematics curricula often contain topics that are present for historical reasons,

which are no longer used in engineering courses as in the past” (Kent and Noss, p.



36). They suggest more open dialogue between mathematics and engineering
faculty in order to address content as well as pedagogical methodology. Thus, the
focus for mathematics instructors at the university level should be how to shift our
teaching as well from just focusing on knowledge to focusing on collaborating with

engineering professors to enhance learning of the problem-solving process.

A working group of the Undergraduate Mathematics Teaching Conference
discussed that, as mathematicians, we must note that the goals of the engineering
community are different than the goals of the mathematics community (Ahmad et.
al, 2001). This working group suggests that if mathematicians teach engineering
mathematics, then they “should encourage understanding and thoughtful use, and
may communicate...the generality and power of the subject, the range of methods
available, and links to other subjects within and outside engineering” (p. 38).
However, if engineers teach the mathematics content, the committee suggests that
they “allow sufficient time for methods to be understood...ensure pre-requisites are
covered, [and should] avoid using [computer] packages as a ‘quick fix"” (p. 39). In
both cases, they note that engineering professors and mathematics professors must
work together to best achieve the usefulness of the mathematics and the
understanding of the content being used.

While we often think of engineers as being strong math students who are
confident enough in mathematics to go into the engineering field, Kent and Noss

(2003) found that many engineers feel uncertain about their mathematics



backgrounds, and this may be largely due to their lack of “symbol sense,” (Arcavi,
2005) or their conceptual understanding of symbols. Even strong students have to
struggle through learning mathematics, and thus, research should continue to

explore the need for understanding common pitfalls for these engineering students.

If mathematicians and engineering professors work together to meet
curriculum needs, hopefully the mathematics coursework of engineers will align
more closely with the mathematics they will eventually use in the workforce.
Engineers often proceed into careers that typically use mathematics differently than
the way they learned to use mathematics in the classroom. In 2007, the disposition
of structural engineers was analyzed at one particular engineering firm. The
researcher observed engineers at work and found that they adhere to the rules of
the industry, prefer more supporting elements in their buildings/structures.
Expertise often meant the ability to make judgment calls, not perform mathematics.
Engineering solutions do not have one “right” solution, and many cannot be
deductively proven. Sometimes deductively sound arguments were rejected
because they were impractical. The author suggests allowing students to reason
with elements of a certain context and uncover the mathematics problem
(Gainsburg, 2007).

In engineering education at the undergraduate level, there is a growing
emphasis on problem-based and project-based learning (Mills and Treagust, 2003),

which aids in this preparation of students for a problem-solving career. The main



difference between these two approaches is whether or not professors are looking
at short-term or long-term goals. Problem-based learning focuses on the acquisition
of knowledge and is a short-term problem presented to a class. This may be an
activity or problem that takes students a day or two to complete on their own in

class.

Project-based learning focuses on students’ application of the knowledge
they have learned. This type of learning is usually presented as a long term
assignment, such as a senior design project, where students have more time to
demonstrate knowledge acquired, but must manage their time wisely as they will in
their careers. Also, students often have an opportunity to demonstrate knowledge
gained in a variety of their different engineering courses when they are assigned
project-based learning activities. At least one university is implementing project-
based learning in a freshman-level course. An upperclassman works as a project
supervisor, but he underclassmen form a team to complete the class. The
researchers have found that this course is beneficial to preparing students for later
tasks since “70% [of students] thought that the project introduced them to real-
world engineering issues [and] 60% of the students taking the course in fall 2007
said they felt more comfortable doing engineering design as a result of the project”

(Frank and Mason, 2008, p.10).



Even if students do not spend the whole semester on one project,
engineering courses often offer problem-based learning initiatives. Problem-based
learning “promotes students active engagement with learning [and its] main goal is
to apply knowledge, not just acquire it” (Brodeur, Young, and Blair, 2002, p.2). The
problem that students are given is encountered first, learning as they work through
the problem. The problems are typically described as lecture substitutes, and may

be worked “independently or as part of a group” (Brown and Brown, 2004, p.11).

Engineering educators ask for mathematicians to also incorporate these
problem-based and project-based methods into their classrooms. Mills and Treagust
(2003) claim that engineers need more teamwork and communication experience,
and that engineering professors lack background experience in careers outside of
academia. They claim that problem-based learning may be insufficient for students
because they do not include a wide range of activities. They instead advocate for
teachers to use more project-based learning because they can see a more holistic

view of the students’ capabilities.

Teaching differential equations to engineers.

Engineering educators have been discussing the importance of various topics
in differential equations for years. Engineering departments have often disagreed
with each other on the importance of certain differential equations topics because of

their specific differential equations applications. We have evidence of at least one

10



specific differential equations topic that creates differing view amongst engineering
professors—the Laplace transform. Holmberg and Berhnhard (2008) interviewed
22 professors from 5 universities concerning their opinions about the difficulty of
the Laplace transform in differential equations. They split teachers into three
categories—those who consider the topic difficult for students to learn, teachers
that say it may or may not be too difficult for students to learn, and teachers that
consider that the transform is not difficult for students to learn. They found
teachers in all 3 categories and found that there is no unified view about the student
difficulties with the transform or the importance of the Laplace transform to their
students’ education. They also found that these teachers have different opinions

about the links between mathematics, physics, and technology.

While there are differing opinions about the Laplace transform, there seems
to be common opinion about approximation methods. For some engineers,
nonlinear differential equations have shown to be more common mathematical
objects in their engineering work than linear differential equations. A Boston
University project sought to embrace the “nonlinear revolution” in engineering—
which seeks to “present nonlinear systems on the same footing as linear systems”
(Blanchard, 1992, p. 1). Blanchard and associates developed a new textbook,
focusing on a wider variety of topics. They sought to “balance between analytic,
numeric, and graphical techniques [and] stress qualitative theory” (p. 2). They hope

that through their new approach that differential equations will better suit the

11



needs of the engineering community that uses more nonlinear equations than linear
ones. These reform efforts in differential equations have started to take hold in
many American universities. The reform effort in differential equations is showing
to be beneficial to students’ conceptual understanding of rate (Rasmussen and King,

2000).

Students’ Relational Understanding of Mathematics Content

Differential equations courses traditionally focus on procedures. Students
are shown different types of differential equations, and then shown how to solve
them (Boyce, 1994). The ways in which we solve these differential equations are
referred to as analytic methods. These methods provide exact solutions to
differential equations. While these analytic solutions are important, by focusing our
attention solely on these many analytical methods without visualization and
discussion about function behavior, students are often losing conceptual

understanding of many of these topics (Rasmussen and Whitehead, 2003).

As we look to make the differential equations curriculum more applicable to
the engineering community, we must also consider if these engineering students
correctly understand these new applications. There has been an ongoing discussion
over the importance of conceptual versus procedural understanding in the
mathematics education community for several years (Thompson and Thompson,

1994; Star, 2005; Pirie and Kieren, 1994). The differential equations course is

12



important to this conversation, as many professors who traditionally teach

differential equations only present analytical procedures.

Several researchers have also created new interpretations of student
understanding. Donovan (2008) expanded Sfard’s (1991, 1992) dichotomy of
structural and pseudo-structural understanding. A pseudo-object is an object that
can be manipulated, but is not fully connected to a compact whole notion. Donovan
used this dichotomy to describe two interviewed students who were given
differential equations tasks and asked to work back and forth between function
graphs and analytical differential equations. He described three essential elements,
according to Sfard, that would describe a student with structural understanding.
First, the student with structural understand can recognize the same concept in
different situations. Second, he can provide different representations of the same
object, and finally, the student with structural understanding will be able to
recognize basic ideas or concepts at a glance without a need for solving a procedure.
Donovan found that he was able to classify differential equations students with this
dichotomy. While both worked back and forth between graphs and equations, the
student that he classified as having pseudo-structural understanding was unable to
formulate different representations of the concept and had to perform procedures

in order to discuss the concept.

13



Hasenbank and Hodgson (2007) showed in their algebra study that their
students needed to connect conceptual ideas to procedural ideas. Instead of
promoting conceptual or procedural understanding, they worked under the premise
of students developing deep procedural knowledge and developed a framework that
assesses a student’s deep procedural knowledge. The framework shows that a
student with deep procedural knowledge understands the goal/outcome of the
procedure and is able to execute procedures that would elicit a solution. The
framework also mentions that students with deep procedural understanding will be
able to assess the validity of the procedure, compare it to other procedures, and
explain where you can use certain procedures and when these procedures are best

to utilize.

Similar to deep procedural knowledge, Skemp (1976) also noted that there
was an inevitable connection between concepts and procedures in mathematics.
Instead of discussing deep procedural understanding, he instead presented a new
dichotomy of student understanding of mathematical concepts—instrumental and
relational understanding. He notes in his article that loosely using the term
“understanding,” may imply different meanings in the mathematics community.
Instrumental understanding is loosely related to procedural understanding.
Typically, instrumental understanding refers to the implementation of a few

principles. The student with instrumental understanding has learned to carry out a

14



procedure, but is unsure of where this procedure applies and where it does not

apply.

Relational understanding requires students to make connections between
different mathematical schemas. This understanding is not fully void of the need for
procedures. A student in differential equations will need to learn some procedures,
and understand how to do these rightly in order to correctly solve engineering
problems. Relational understanding involves rich connections among different
concepts, and involves students not only understanding procedures, but also
understanding why these procedures are necessary and how they were derived.
Students with relational understanding of differential equations will be able to work
different types of analytical techniques, but will also be able to compare and
contrast these different techniques, explaining why differential equations are
classified as they are, and why certain procedures work for certain types of
equations. Skemp proposes that if students and teachers are mismatched based on
their preferences for instrumental or relational understanding, there will be
temporary or long-term disappointment for one or both parties. Thus, if relational
understanding is a teaching goal for the differential equations course, we must find
if the instructors are also interested in presenting differential equations in a way

that would elicit relational understanding.
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Others agree that students will understand mathematics better if concepts
are part of an internal network of connections. Educational psychologists have
found that networks are built gradually and tighten over time. Students have to
develop their own understanding and once a student does understand a concept,
there is a reduction in the amount that must be remembered. In his review of
literature, Hiebert (1992) impressed that students should be taught meaning first
before practicing execution. He also suggests that teachers note connections among
different representations. Otherwise, misconceptions will exist despite
understanding properties because students will separate those incorrect notions
into separate islands of knowledge. If teachers make connections clear and help
students separate incorrect notions, hopefully students will leave a course with

more relational understanding.

Conceptions and Misconceptions in ordinary differential equations.

Any curriculum change is unsuccessful unless it offers a way for students to
understand the material presented. Habre (2000) noted that “assessing the success
of the new ODE curriculum is incomplete if not complemented by research into
student thinking” (p. 456). In order to better assist his students’ understanding of
the behavior of the solutions to differential equations, Habre conducted a course in
which he focused on qualitative approaches to solutions. At the end of the semester,

he conducted interviews with several of his students and asked them to work two

16



different problems. He found that even with qualitative tools in their minds, most of
them had the tendency to try analytic solutions first. Some of the students noted

that the graphs did not seem as sufficient as the analytic solutions. Habre also found
that students had a difficult time working fluidly with both types of representations,

and did not think about the other representation when working with one.

Rasmussen (2001) interviewed 6 students and developed a framework that
shows where students in differential equations need assistance. He found that
students need assistance with developing the notion of functions being solutions to
differential equations. He also found that students need stronger intuitions and
images of differential equations. In his framework, students’ understanding of
functions as solutions to differential equations includes interpreting solutions as
being functions instead of having “mindless graphical manipulation” of symbols. His
framework also discusses interpreting equilibrium solutions as being constant
solutions that may or may not be found by substituting a “0” into the equation for y
and dy/dt. Instead, he says students should focus on equilibrium solutions being
seen as quantities. Students’ were found to have some intuitions concerning
equilibrium solutions, numerical approximations, and stability. However,
developing stronger schemas of differential equation solutions and visualization

need attention for students to develop stronger conceptualizations of DE solutions.
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Keene, Early, and Gonzalez also (in progress) found several student
misconceptions. Similar to Rasmussen’s findings, they found that some students
were unaware that functions were solutions for all differential equations. Some felt
that “equation” was a better answer for solutions to ODEs. The students in this study
had a poor understanding of equilibrium solutions as well. Many students did not
even have a working definition of an equilibrium solution. Beyond having a weak
understanding of the algebraic creation of an equilibrium solution, students did not
recognize or acknowledge that equilibrium solutions were specific to separable

differential equations because of the division action in the method.

The same researchers also investigated students’ understandings of the
derivative. In separation of variables, as often presented in textbooks, students can
simply separate the derivative into two differentials, and then integrate both sides
of the equation with respect to two different variables. This method is accurate
because of the justification of the chain rule, although in general, integrating with
respect to one variable is not an equal operation as integrating with respect to
another variable. When examining the separation of variables method, most
students had some concern with integrating with respect to 2 different variables,
but some of them said that they just accepted it because the teacher taught them to
solve the problems this shortcut way. Students accepted what they had been told,
even though they always thought it odd or “didn’t see clear justification” of the

separation of dy/dt.
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These researchers also investigated students’ understandings of Euler’s
method. When investigating numerical methods, few students in this study knew
whether there would be an over or underestimate depending on the concavity of the
actual function. Artigue (1992) and Rasmussen (2001) both found evidence that
some students see Euler’s method as a “track” of the exact solution curve. Thus,
there is a possibility that some students will be unaware of the error created from

numerical approximations.

There is limited research concerning misconceptions in differential
equations. The common misconceptions that we do know exist may or may not be
of importance to engineers. Thus, this study seeks to address which, if any, of these
known misconceptions cause major roadblocks in later engineering courses. Once
we identify more misconceptions, we also need to focus on how to best address
them. Habre (2002) built on research that has shown benefit in writing in calculus
classes and examined the effects of writing in an ordinary differential equations
course. Students were asked to justify their answers and discuss effects of changing
parameters. By the end of the writing-centered course, students widely agreed that
writing was essential to the course and that “writing complements the geometrical
approach” (p. 7). This survey’s aim was to identify the most important
misconceptions to the engineering academic community so that we could then later
look into efforts other than writing that might be helpful for teaching the relational

understanding of differential equations content to engineering students.
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Technological Effects on Engineering Students’ Mathematical Understanding

Differential equations research has become more popular in the past couple
of decades with the onslaught of technologies such as Maple, Mathematica, and
MATLAB. Students’ understandings of differential equations may be enriched by the
use of various technologies at our disposal (Kallaher, 1999). In their literature
review on the learning and teaching of ordinary differential equations, Rasmussen
and Whitehead (2003) noted that “students’ visual understanding of phase
portraits, slope fields, and solutions of differential equations is an area where we

might consider integrating technology into students’ experiences in the classroom”

(p. 7).

Beyond visualization, Boyce (1994) noted that technology called for
differential equations students to have 3 kinds of experiences: “conceptualization,
exploration, and higher-level problem solving” (p. 364). Boyce notes that
technology keeps students from thinking about rote action, and instead they have
more opportunity to focus on the conceptual understanding, since they don’t have to
worry as much with manipulative skills. Technology aids in students’ explorations
as they manipulate to experience the effects of different parameters in systems of
differential equations (i.e. determining crucial values). He notes that computer
programs can also be used as a reference to discover new mathematical concepts

through discovery learning of interpreting computer outputs. Differential equations
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also offer students a chance to model mathematically. This requires higher-level
problem solving and is more directly applicable to engineering than other
mathematics topics. Modeling practice increases the higher-order thinking skills of
engineers, and preparing them for applying mathematics is the goal of an
engineering student’s university education. He concluded that technology “will not
change the need for men and women who can think clearly, critically, constructively,

and creatively about the problems of the day” (p. 371).

While technology seems to have benefits, there may also be drawbacks to the
use of technology in the undergraduate classroom. Kent and Noss (2003) note that
the increased availability of technology may actually be a detriment to students in
engineering. Engineering educators agree that students in their courses graduate
“with good knowledge of fundamental engineering science and computer literacy,

but they don’t know how to apply that in practice” (Mills and Treagust, 2003, p.3).

Puga (2001) investigated the use of several software packages and computer
algebra systems in a differential equations course and its effect on modeling. Puga
suggests that students could be introduced to modeling differential equations in
calculus by using certain software packages. He thinks that this discovery learning
could then be continued in a differential equations course. Overall, the students’
consensus about using the software was positive. They claimed that it increased

their understanding of the course concepts. Yet, there were some new challenges
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that using the technology introduced. In population modeling, the students

continued working despite having negative or non-whole numbers for population.

Technology has shown to be important for the visualization of students in
differential equations and is usually well-received by the students. However, we
must also be careful how we implement technology into the classroom so that its

purpose is aid instead of crutch.

Summary of Literature

Engineering students need to be able to perform procedures in differential
equations, but they also need to be able to connect concepts together in order to
have a more tightly defined schema of ideas. Skemp (1976) refers to this connection

among procedures and concepts as relational understanding.

Engineering educators have shown a need for more opportunities for their
students to explore and create their own mathematical models. They want them to
be able to bridge various different concepts from different engineering courses.
However, little is known about engineering professors’ opinions on how students’
bridge mathematical understanding with their engineering knowledge. There is no
research to indicate whether or not relational understanding of differential
equations content is of importance to these engineering professors. Thus, we need

to investigate the importance of relational understanding of mathematical
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knowledge to the engineering community, especially in differential equations, since

it is a course that is so widely used by the engineering community.
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Chapter 3
Methodology

This study is structured to address the research questions. In this chapter, |
describe the construction of the survey, including the decisions I made on what
questions to ask and how I chose participants. I then discuss data collection and

data analysis.

Survey Construction

[ designed a cross-sectional survey that was a comparative analysis among
engineering professors (Creswell, 2009). I formed a stratified sample in order to
compare various demographics associated with engineering professors. By using
this strategy, [ was able to analyze engineering professors’ overall responses about
curriculum, student understanding, and technology, but [ was also able to determine
if a specific demographic would tend to lend itself to a particular response about any

of these three areas of interest.

[ also wanted to elicit the curriculum preferences for the professors, so |
decided to blend traditional topics and reform topics in the survey. In order to
objectively present this information, I studied both a reform text, Differential
Equations (Blanchard, Devaney, and Hall, 2002) and a traditional text, Fundamentals
of Differential Equations and Boundary Value Problems (Nagle, Saff, and Snider,

2004). I chose major topics from both of these books and blended them into the

24



survey with the help of a research advisor. The analytical techniques that I chose to
include are based on the types of differential equations that a student might

encounter.

Both of these textbooks introduce the separation of variables method and

first order linear equations before the other topics. Separation of variables is used

d
for differential equations of the form d_}t} = p(y)- f(¢), where p(y) is a function of y

and f(t) is a function of t. First Order linear equations must be able to be written in
dy .
the form of 7 + P(t)y = O(t), where P(t) and Q(t) are functions of t. In general, P(t)
t

and Q(t) are different functions.

The method of undetermined coefficients and variation of parameters are
both used for nonhomogeneous differential equations, while auxiliary equations are
used for homogeneous equations. Homogeneous equations that can be solved with
auxiliary equations are written in the form ay”+by’+cy=0, while nonhomogeneous
equations that are solved with the other methods take the form ay” + by’ +cy = f(t).

Substitution methods are often used for differential equations that are nonlinear.

Matrix methods are widely used in order to solve large dynamical systems of
linear differential equations. Scientists may need several differential equations to
depict the model of their physical situation. Matrices handle large amounts of data

easily and quickly.
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Laplace transforms map functions from one domain into another domain
that is simpler algebraically. They are often desired more than other methods for
nonhomogenous differential equations because you are not required to find a
general and particular solution. Instead, using transforms, one may find the
solutions quickly. They may also be used to solve homogeneous differential

equations, but usually this method is not preferred over auxiliary equations.

Finally, series solutions are helpful for solving linear differential equations
with non-constant coefficients. One may use numerical approximations of the series
portions of these solutions to approximate the entire solution to the differential

equation.

[ decided that to best understand the differential equations curriculum, I
should separate the analytical techniques from other types of approaches. I split
the rankings into two categories: one where professors rank analytical techniques,
and another where professors rank types of approaches to solving and analyzing

differential equations.

The second research question aims to determine if research professors’
prefer a relational understanding of differential equations, a procedural
understanding, or a conceptual understanding. Professors were asked to determine
if misconceptions posed problems for them in their engineering curricula. The four

misconceptions that were chosen were based on previous research concerning
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student pitfalls in differential equations (Rasmussen, 2001; Keene, et. al, in
progress). I also asked about professors’ own preferences concerning student

understanding by using the following question:

Which of the following would you prefer?

1. A student who can’t remember the formula for a numerical technique, but
has a general idea of why that technique works. This student has an
incorrect solution.

2. A student who remembers the formula for the technique, but does not
know why this method works. This student has a correct solution.

Finally, I wanted to explore the effects of technology to the learning of
differential equations for engineering situations. This led to questions designed,
with the help of an advisor, to elicit responses about the changes in engineering for
the professors and their students due to the technology that is readily available. See

Appendix B for the full survey.

Data Collection

[ submitted an application to the institutional review board for an exemption
to proceed with the research study and was approved for this exemption (See

Appendix G). I proceeded to contact professors once I gained this approval.

[ first began to contact professors at my own university through personal
contacts. Some engineering departments became aware that [ was conducting this
survey by word of mouth or email from colleagues. The pilot survey included 9

professors from the university. The wording of various questions was modified for
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clarification purposes, and several items that provided unnecessary results were
omitted from the final survey. This pilot survey was closed before I began the actual

survey.

Engineering professors from across the United States were contacted to be a
part of the data collection online survey. I wanted a wide base of engineering types
and engineering schools. [ searched for schools with high-ranking engineering
programs in both the public and private sectors. High-ranking engineering
programs were found through various news sources such as U.S. News and World
Report in the last several years. I compiled a list of at least one school from every
state that had an engineering program. [ used public access emails that were
available on the universities’ websites in order to contact a wide range of professors
from various departments. The specifics of the demographic layouts of these

professors may be found in data analysis below.

More than one thousand professors were contacted by email either through
the recommendation of other professors or through public access contact
information available on university websites. Each professor was emailed
individually with a personal address. The email asked them to complete the survey
if desired on a volunteer basis. The survey was made available online at the
following address using a survey builder created by NC State University’s college of

agriculture and life sciences:
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http://ceres.cals.ncsu.edu/surveybuilder/Form.cfm?TestID=8762

[ collected data over a three-month period. Afterwards, I closed the survey.
Eighty-three engineering professors completed the survey, yielding a 7.59% return
rate. This low return was most likely caused because I only sent one email to each
professor chosen. There were no follow-up emails reminding the professors about

the survey.

Professors who did complete the survey and gave permission and contact
information were contacted for follow up questions about some of the items. [ only
emailed those professors that indicated in the first survey that they were willing to
be contacted with follow-up questions about their responses. I structured the
follow-up protocols in such a way that [ might gain more insight into the reasons
that some of my results had risen. Five professors completed the follow-up survey

and 2 of these professors also volunteered to participate in a phone interview.

In the follow-up interviews, | hoped to gain even more information about
these same issues. As part of the follow-up survey, I asked for professors who were
willing to conduct a phone semi-structured interview to note this on their follow-up
survey. Two professors left their information and I conducted 45-minute interviews
with both professors at their convenience. Since there had been several months
between their original survey and the follow-up survey, [ reminded them of some of

their pertinent answers in both surveys. [ had separate protocols for these follow-
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up interviews because of their varying responses. These protocols may be found in

Appendices E and F.

Information is available concerning the two interviewees—one of these
professors is a mechanical engineering professor at a private institution, while the
other professor is a civil engineering professor at a public institution. Both
participants had many years of teaching experience, and the civil engineering

professor also had experience working with industries as a consultant.

Data Analysis

The data was analyzed as a whole and also separated and analyzed based on
the following demographics: type of engineering field, public or private university
teacher, age, years of experience teaching engineering, and years of experience as a
career engineer. These demographics were chosen with the help of an advisor. I
hypothesized that these demographics would be significant factors that would cause
engineering professors to think differently than their peers about the learning of
differential equations. My research advisor also helped me to determine the

categories for each of the demographics that follow.

The different types of engineering are as follows: biological /biomedical,
chemical, civil (environmental), civil (structural), electrical/computer,
mechanical/aerospace, and miscellaneous/other. These groups were determined

after the surveys were completed. We discussed key words in the surveys that
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suggested which professors taught similar concepts and applications of differential
equations. There were a large number of civil engineering responses, but the main
deciding factor to split this group was this qualitative analysis of the types of
concepts taught by these professors. While they will most certainly have some
overlap in their coursework, we found the responses of “What courses do you
teach?” and “Where do you use differential equations in your coursework?” to be
different enough to warrant separating the groups. The numbers of respondents in

each category were as follows:

Table 1

Number of Respondents in Each Engineering Field
Biological/Biomedical 5
Chemical 13
Civil (Environmental) 12
Civil (Structural) 10
Electrical/Computer 19
Mechanical/Aerospace 18
Other 6

Twenty of the professors are from private schools, and sixty-three of
professors are from public institutions. While I did analyze this data, I had no
rationale or consistency amongst the data to draw conclusions. Thus, no

information will be reported in the results concerning this demographic.

The age groups of the professors were separated as follows: 20s-30s, 40s,

50s, 60s-70s. The 20s-30s and 60s-70s were grouped together because we typically
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find few professors in the 20s or 70s age groups in the university. Thus, we decided
to have more data in the high end and low end of age range data. Some respondents

chose not to enter their age. These respondents were not included in the analysis.

The number of respondents in each category were as follows:

Table 2

Number of Respondents for Each Age Bracket

20s-30s 18
40s 20
50s 30

60s-70s 9

The years of experience teaching engineering were determined in 10-year
intervals and the years of experience as a career engineer was separated out in 5-
year intervals. [ anticipated that more professors would have more experience
teaching than working in an engineering field. Thus, I decided to have wider
intervals for academic experience than field experience. Specifically, the years of
experience teaching engineering were separated out from 0-10 years, 11-20 years,
21-30 years, and greater than 30 years. The years of experience as a career
engineer were separated out 0-5 years, 6-10 years, 11-15 years, and greater than 15

years.

The numbers of respondents with the respective years of experience

teaching engineering were as follows:
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Table 3

Number of Respondents for Each Category of Teaching Experience

0-10 26
11-20 26
21-30 22
>30 5

The numbers of respondents in each of the categories under years of

experience in an engineering career were as follows:

Table 4

Number of Respondents for Each Category of Career Experience

0-5 42
6-10 23
11-15 10
>15 5

[ decided to first analyze my data by putting all of the survey answers into a
master Excel spreadsheet. This quantitative data was later used for both
“quantizing” of the frequency of response and “linkage” (Miles and Huberman, 1994,
p.42) between the quantitative data from the open-ended questions and interviews.
[ then compiled all of the data into separate Excel spreadsheets by demographic.
For each demographic, the data was separated into the predetermined categories as
listed above. After the surveys had been arranged based on demographic category,
each of the questions was analyzed. The survey asked for engineering professors to
rank curriculum topics and misconceptions’ level importance on a scale from 1 to 4,

with 1 being very important to their coursework and 4 being of very little to no
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importance to their coursework. I chose this 4-point scale because I did not wish to
have an option that was undecided or neutral. I believed that a 4-point scale would
create a clear separation of “yes” and “no” responses of significance. For each of the
categories/questions, the results were averaged in order to rank the importance of
the topic or misconception to that particular group. Once all of the topics were
averaged, the topics were arranged in order from greatest importance (which
corresponded to the lowest score) to the least importance (which corresponded to
the highest score).

The survey questions about misconceptions being important to engineering
curricula were asked as “yes” versus “no” questions. The null hypothesis was that
the number of yes responses would equal the number of no responses. Then tests of
significance were performed to determine if the number of “yes” responses was
significantly lower than the number of “no” responses at the o = .05 significance

level.

The question that asked professors about a preference for correctness versus
student understanding was analyzed in a similar fashion as the misconception
questions. Instead of “yes” or “no,” they chose whether they preferred a correct
answer without understanding or incorrect answer with understanding. I noted in
these in my spreadsheet as “correct” and “incorrect,” and had each Excel
demographic spreadsheet count the number of “correct” and “incorrect” responses

in each of my predetermined categories.
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Each of the technology questions were open-ended questions. I used open
coding for concepts to be “identified and their properties and dimensions to be
discovered in the data” (Strauss and Corbin, 1998, p. 101). I searched for key words
and phrases among this data, such as “numerical techniques” or “Maple” in all of the
questions about technology and then recorded the frequencies of these most
popular words. Many people chose not to respond to these questions, or wrote very
little about these questions, so there are low frequencies for many of the common
phrases. 1 decided to only analyze this data as a whole and not by different
demographics. I did this because [ was more concerned in the overall perception in
technology, whereas the demographic analysis was intended from the writing of the
survey to tell information about engineering professors’ opinions of curriculum

topics and their students’ relational understanding.

The follow-up surveys and interviews were conducted so that [ might gain
more insight into the survey questions. I was alarmed at the low number of
professors who were interested in the misconceptions, but were interested in the
conceptual understanding of a numerical method. [ was also interested why there
was a high emphasis on matrix methods. In order to answer these subtopics, | sent

these follow-up surveys via email.

For both the follow-up surveys and the interviews, I again used open-coding

to find pieces of information that spoke directly to my research questions. These
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responses were largely used for quotations within my results. Thus, I identified
which of the responses addressed each research question. Many responses, or
partial responses, were omitted from the results because they did not directly
address the research questions at hand. I tried to match the interviewee responses
with my other data in order to create a more complete picture of their opinions.
Once [ organized the interview responses based on research question, [ identified

commonalities with the two responses and noted common responses in my results.

36



Chapter 4
Results and Discussion

As previously stated in Chapters 1 and 2, differential equations have
traditionally been taught as a series of different analytical techniques. If we are to
proceed with reform efforts and incorporate different types of solution strategies,
we must first ask which of the analytical techniques must remain in the curriculum,
and which techniques we can afford to replace with reform-based curriculum
materials. Since the differential equations course serves many engineering
departments, asking these professors about differential equations is a good start for
determining which topics should be most emphasized in the reform-based
curriculum. We must also take a look at the new types of solution strategies that a
reform-based curriculum might offer, and analyze which of these are most

important as well.

The reform-based curriculum in differential equations seeks to enhance
students’ conceptual understanding of the material, as well as provide opportunities
to connect these ideas with visual representations of the solutions. The reformers
speak of addressing the “nonlinear revolution” (Boyce, 1994) in differential
equations with these computer-generated visualizations. However, there has been
no research on whether or not the engineering professors are concerned about

students’ understanding of this mathematics content, and very little research has
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been done concerning how they would like to see technology incorporated into the

differential equations classroom.

In the following results, [ will discuss my findings concerning engineering
professors’ opinions of the differential equations curriculum topics. Then I will
discuss their opinions of students’ understanding of this content. Finally, [ will
discuss engineering professors opinions about their use and their students’ use of

technology to solve differential equations.

Differential Equations Curricula for Engineers

In the following section, I will discuss which analytic techniques and which
solution strategies are deemed most important by the eighty-three engineering
professors that completed my survey. I also include information from follow-up
surveys and interviews with several of these professors that offer greater insight
into the overall opinions concerning the curriculum content. There will be no

results concerning public versus private universities (see Chapter 3).

Analytical techniques.

Engineering professors were asked in the survey to rank eight different
analytical methods for solving differential equations on a scale from 1 to 4, with 1
being most important and 4 being least important. For a description of these
analytical methods, please see Chapter 3. Table 5 shows the results of these

averages. For information on compilation of averages, see Chapter 3.
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Table 5
Comparison of Analytic Technique Preferences with Engineering Field

Biological/ Civil Civil | Electrical/ Mechanical/

Biomedical | Chemical (E) S) Computer Aerospace Other | Overall
Separation of
Variables 1.60 1.31 1.33 | 1.60 2.05 1.78 1.50 1.65
First Order
Linear/
Integrating
Factor 1.60 1.46 1.92 | 2.70 2.11 2.11 2.00 2.01
Method of
Undetermined
Coefficients/
Variation of
Parameters 1.80 2.00 2.58 | 2.50 2.53 2.28 1.83 2.30
Auxiliary
Equations 2.60 2.08 245 | 2.80 2.26 2.06 2.40 2.31
Change of
Variables/
Substitutions 1.80 1.38 1.82 | 2.44 1.79 2.28 2.00 1.93
Matrix Methods 1.60 2.08 2.25 | 2.10 1.74 1.78 1.83 1.92
Laplace
Transforms 1.80 2.08 2.83 | 2.70 1.44 1.83 1.83 2.04
Series Solutions 2.60 2.69 2.83 | 3.00 2.05 2.83 2.50 2.65

After averaging these results, the overall topics of greatest to least importance were:

Separation of Variables

Matrix methods

Substitution methods

First order linear method/Integrating Factor
Laplace transforms

Variation of parameters*

Auxiliary equations™

Series methods

*Denotes equal ranking

PN W
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Trends among different types of engineering became apparent when looking
at these analytic solutions. The chemical engineers ranked matrix methods below
substitution methods, first order linear, and variation of parameters. Electrical
engineers ranked Laplace transforms in first place, and were also the only group to
rank series solutions anything other than last place. Their average shows that series
solutions were tied with separation of variables in fourth place. [ was interested
about the importance of transform methods to electrical engineers by asking about

these methods with an electrical engineer in his interview:

[ think [ wouldn’t want other topics to get shorted in the mathematics class
because you felt like you had to get to the Laplace transforms because it’s
what the engineers need. I feel like if a student is well grounded in what a
differential equation is doing, then the best place to introduce the transform

method is in the context of the engineering class.

Transform methods are often found at the end of a first course in differential
equations. Instead of rushing to complete this material, this professor suggests that,
while his students do need transforms, he would rather lose their exposure to this in
order for them to gain a firmer foundation in the basics of differential equations.
Thus, mathematicians who say that they have to cover too much material may be
over-generalizing the opinions of the engineering departments at their universities.

The mathematics department may be able to move transform methods to an
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engineering course. Similarly, the same may be done for series solutions since they
were ranked lowest of all. Engineering professors with specific requests for
mathematicians to cover these topics may find that their students will be better
prepared if they learn these particular methods in their courses or in a second

course of differential equations.

Matrix methods, unlike transform methods and series solutions, were ranked
high on the overall results list. I asked professors in the interview why they thought
this high ranking for matrix methods probably occurred in my data. One of my

interviewees explained the importance of matrix methods to engineers as follows:

When they get to applied engineering courses, matrices simply make things
easier. Rather than doing all of this stuff longhand, you can do it in matrix
format and take all the work out of it. For that reason, I find them very
useful... For example, let’s say in a structures problem where you have a
frame, and you want to analyze that frame and determine the force of all the
members. Well, you could do that by writ[ing] the equations in a form of a
matrix. Then, you know, you have to invert the set of equations to get the

answer.

Matrices not only make differential equations easier for engineers, but they
also are used “for a large number of problems,” according to one professor. Thus,

matrices are used in many instances and can handle large amounts of seemingly
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complicated data. Instead of lengthening the number of analytical methods into the
differential equations course, this finding concerning the importance of matrices
suggests that we instead spend more time on more widely used analytical methods.
If we eliminate some of the less frequently used analytic methods, instructors will
have more time to invest in matrix methods, which are used by a wider variety of

engineers.

One professor noted in the follow-up survey that while matrix methods were
important, he thought they could be “introduced as needed” in the differential
equations course. However, we still must consider that if this topic is used on a
more widespread basis, we may be making more efficient use of our time and our
students’ time by introducing the common topics in depth in the first course in
differential equations. If students have a firmer grasp on these more common
methods, then they may use technology in a more effective way for other types of

differential equations. [ address this issue more in Chapter 5.

There is some difference in the ranking of importance of these analytical
topics to the electrical and mechanical/aerospace engineering categories, but the
overall trend remained fairly constant when analyzed among the other

demographics of type of university, age, and levels of experience.

While the ranking may be the same across demographics, age may be a factor

for engineering professors’ opinions concerning the importance of all types of
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analytical methods for solving differential equations. Older professors tended to
rank each of the different techniques with lower scores (more importance) than the
younger professors. In Table 6, note that the older professors had lower averages
than the younger professors, indicating a desire for emphasis for all of the analytical

differential equations topics.

Table 6
Comparison of Analytical Technique Preferences with Age
20s-30s 40s 50s 60s-70s

Separation of
Variables 1.94 1.70 1.47 1.56
First Order
Linear/
Integrating Factor 2.39 2.05 1.93 1.67
Method of
Undetermined
Coefficients/ 2.61 2.65 2.07 1.89
Variation of
Parameters
Auxiliary
Equations 2.53 2.35 2.20 1.89
Change of
Variables/ 2.35 1.60 1.83 1.63
Substitutions

2.22 1.55 2.10 1.78
Matrix Methods
Laplace 2.44 2.00 1.90 1.89
Transforms
Series Solutions 3.17 2.55 2.57 2.00

Similar to the increase of importance to professors with an older age, there is

also a trend that the importance of each topic increases with each group according
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to years of teaching and years of field experience as shown below. With the
exception of variation of parameters and undetermined coefficients for the years of
career experience, all of the categories show decreased numbers from the least
experienced categories to the greatest experience categories. The differences in the
values of the less experienced and more experienced is smaller than the difference
in the age category, but this may be a result of the small sampling size of the groups

of professors with the most experience.

Table 7
Comparison of Analytical Technique Preferences with Years of Teaching Experience
0-10 11-20 21-30 >30

1.77 1.69 1.64 1.25
Separation of Variables
First Order Linear/ 2.23 1.88 2.05 1.75
Integrating Factor
Method of Undetermined
Coefficients/ Variation of 2.58 2.54 191 1.63
Parameters

2.40 2.42 2.18 2.14
Auxiliary Equations
Change of Variables/ 2.04 1.88 191 1.86
Substitutions

1.88 2.08 1.86 1.75
Matrix Methods

2.19 2.08 1.86 2.00
Laplace Transforms

2.96 2.54 2.55 2.43
Series Solutions
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Table 8
Comparison of Analytical Technique Preferences with Years of Career Experience

0-5 6-10 11-15 >15
Separation of Variables 1.69 1.55 2.00 1.00
First Order Linear/ Integrating Factor 2.00 2.18 1.90 1.40
Method of Undetermined Coefficients/
Variation of Parameters 2.19 2.45 2.10 2.80
Auxiliary Equations 2.35 2.45 1.90 2.20
Change of Variables/ Substitutions 2.05 2.00 1.80 1.20
Matrix Methods 1.98 2.09 1.60 1.60
Laplace Transforms 2.17 2.09 1.50 2.00
Series Solutions 2.63 2.82 2.50 2.40

Thus, those who are older and more experienced seem to think that all
analytic techniques in differential equations pertain to their curricula more than the
younger and less professors. This finding was consistent with results from the next
section, where professors who were older and more experienced ranked each of the
solution strategies overall as being more important than their younger and less
experienced counterparts.

Solution strategies.

Analytical methods are not the only way that information may be obtained from
differential equations. Thus, the differential equations curricula must consider

various other approaches to the analysis of differential equations or systems of
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differential equations. The approaches to differential equations were ranked of

greatest (smallest ranking) to least importance (highest ranking) by engineering

professors as follows:

Sl W

Modeling scenarios
Numerical analysis
Analytical methods
Systems of differential equations
Qualitative analysis

Mathematical theory

This ranking was mostly consistent across the different types of engineering

departments, which is evident in Table 9, as modeling typically has the lowest

average number and mathematical theory typically has the highest average number.

Table 9

Comparison of Solution Strategy Preferences with Engineering Field

Applications

Biological/ Civil Civil Electrical/ Mechanical/

Biomedical | Chemical (E) S) Computer Aerospace Other Overall
Mathematical 1.80 3.00 2.50 2.80 2.21 2.65 2.50 2.54
Theory
Qualitative 2.00 2.62 2.42 1.90 2.00 2.28 2.00 2.20
Analysis
Analytical 1.60 1.54 1.67 2.00 1.68 2.12 1.67 1.78
Techniques
Numerical 2.20 1.23 1.50 1.60 1.74 1.83 1.83 1.66
Methods
Modeling & 1.80 1.23 1.17 1.70 1.47 1.61 1.67 1.48
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Table 9 (continued)

Biological/ Civil Civil Electrical/ Mechanical/

Biomedical | Chemical (E) S) Computer Aerospace Other Overall
Combination
of Methods
and Graphs
to study
Dynamical 1.80 2.08 2.08 2.00 2.26 2.33 2.00 2.14
Systems

Bioengineers differed most from the overall list, as is evidenced by the low
average bioengineers gave for mathematical theory. They placed analytical
approaches first and numerical approaches last. Biological engineers appear to
need more focus on mathematical theory and traditional analytic methods. Thus,
mathematics majors and biological engineers may benefit from studying differential
equations together.

Numerical analysis and qualitative analysis are both seen in reform efforts in
mathematics education research. However, differences in importance for
engineering educators became obvious in this study. An engineering professor
describes talking to a friend of his who is a chemical engineer: “[my friend] said to
get a good analytic solution that came out of a problem I was doing, I'd be dead in
the water without a computer for getting real results. So he stresses that when he
teaches the class, he throws in a few nonlinear equations that you can only get at
numerically.” From the data, we can see that chemical engineers ranked numerical

methods as having more significance than any of the other engineering categories.
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From the engineering perspective, the numerical methods are important for
solving many differential equations that are unsolvable without approximation
methods. A civil engineer stated that in his field, “there are very few useful

analytical solutions.”

Numerical techniques and qualitative analysis were placed in separate
categories because numerical techniques actually help to find a solution to a
differential equation, while qualitative analysis can just tell us about certain aspects
of the differential equation or how systems of differential equations interact. While
engineering professors agree that we must continue to focus on emphasizing
numerical techniques in differential equations courses, the emphasis on qualitative
analysis may not be as important to the engineering community, which was ranked
fifth out of the six options for solution strategies. Other than qualitative analysis, we
will also see that mathematical theory is of little importance directly to the
engineering curriculum. Thus, engineering professors tend to want differential
equations to emphasize numerical techniques more than qualitative analysis and
mathematical theory. In the interviews, one professor noted that theory that is
necessary for applications often comes up in engineering graduate school and that

undergraduate mathematics needs to focus on other concepts.

The interviewed engineering professors also commented that they would

like for their students to be more comfortable with seeing problems of varying types
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before coming to engineering courses. Thus, they would like for their students to be
exposed to approaching novel problems in mathematics courses as well as in
engineering courses. There exists a great disconnect between the differential
equations curriculum'’s typical emphasis and the emphasis engineers place on
modeling and applications. Students are presented in differential equations courses
with several engineering applications problems (the brine problem, for example).
However, project-based learning is finding itself more in engineering education
curricula and not in mathematics education curricula. In order to aid the
engineering community, project-based learning during differential equations may
be helpful preparation for modeling they will do in a higher-level course such as
partial differential equations.

Yet again, professors who were older typically ranked all categories as being
more important than the younger professors, as evidenced by the lower scores for

older groups below:

Table 10

Comparison of Solution Strategy Preferences with Age

20s-30s 40s 50s 60s-70s
Mathematical Theory 2.94 2.16 2.60 2.44
Qualitative Analysis 2.39 1.95 2.33 2.22
Analytical Techniques 2.28 1.84 1.60 1.78
Numerical Methods 1.89 1.55 1.70 1.56

49



Table 10 (continued)

20s-30s 40s 50s 60s-70s
Modeling & Applications 2.00 1.45 1.40 1.11
Combination of Methods and
Graphs to study Dynamical
Systems 2.50 2.20 1.93 1.89

The importance in difference among older and younger professors
concerning the importance of analytical techniques has already been discussed in
the first section of the results. Overall, for the ordering of all topics, there are
similarities among each age group, with all groups finding that modeling, numerical
methods, and analytical techniques as being the three most important solution

strategies.

For teaching and career experience of engineers, the differences among older
and younger professors are not as clear. Among the oldest and youngest groups,
there is a lower score for all categories except for mathematical theory. For those
with the most teaching experience and for those with the most career experience,
we see higher values for teaching mathematical theory than among the younger and
less experienced professors. Since the older and more experienced professors have
lower scores for the other topics, we may assume that these professors feel strongly
that mathematical theory is the least important way for engineering students to
obtain the most applicable information for success in their other engineering

courses.
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Table 11

Comparison of Solution Strategy Preferences with Years of Teaching Experience
0-10 11-20 21-30 >30

Mathematical Theory 2.6 2.5 2.45 2.75

Qualitative Analysis 2.27 2.23 2.05 2.38

Analytical Techniques 1.92 1.85 1.55 1.88

Numerical Methods 1.65 1.73 1.77 1.13

Modeling & Applications 1.69 1.5 1.36 1.13

Combination of Methods and Graphs

to study Dynamical Systems 2.23 2.19 2.14 1.88

This low importance for mathematical theory is even more prevalent among
those who have more career experience. These professors show a large gap
between mathematical theory and the other strategies. Those with more field
experience also greatly show that they care more about dynamical systems than

their less experienced colleagues.

Table 12
Comparison of Solution Strategy Preferences with Years of Career Experience

0-5 6-10 11-15 >15
Mathematical Theory 2.44 2.73 2.10 3.00
Qualitative Analysis 2.24 2.27 2.20 1.80
Analytical Techniques 1.88 1.64 1.70 1.60
Numerical Methods 1.76 1.55 1.80 1.60
Modeling & Applications 1.60 1.36 1.20 1.40
Combination of Methods
and Graphs to study
Dynamical Systems 2.43 2.00 1.90 1.40
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The topics other than mathematical theory also show that career experience
causes professors to rank strategies more important, but the margin of difference is
smaller for the other categories. Dynamical systems are less important to those
with very little career experience. This same difference was less in the teaching
experience scenario than the career experience scenario. Thus, we may conclude
that dynamical systems may be more important for those in engineering careers
than for engineering researchers. More research needs to be done to confirm this

hypothesis.

Engineers’ Relational Understanding of Differential Equations

We have information from the previous section about specific content that
needs to have greater emphasis for engineering students in differential equations.
In this section I discuss the results of the participant’s responses concerning the
understanding students have of specific content within some of the important

analytical techniques.

Several different common differential equations misconceptions made by
students were listed. Professors then decided if these misconceptions were
important to their specific curricula or not. If they checked “yes,” then this indicated
that the misconception was a concern for their curricula and if they checked “no,”
this indicated the misconception was not important to address for their specific

curricula. I decided to analyze the number of “yes” responses and “no” responses by
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using hypothesis testing. My null hypothesis for my analysis was that there would
be an equal proportion of yes and no responses from the professors as to whether
or not these misconceptions were significant. The alternative hypothesis was that

the proportion of “yes” responses was lower than the proportion of “no” responses.

H,:p =p,

H,:p <p,

[ chose this alternative hypothesis because I assumed that there would be
more “no” responses from professors than “yes” responses if there was any
difference. Since there is limited research on this issue, I wanted to assume that
relational understanding is of little importance to the professors. Thus, having the
hypothesis test constructed this way would tell me which categories had more “no”
responses than other categories, even if they both had more “no” responses than
“yes” responses. I believed this would help cause topics that were least helpful to
engineers to surface more clearly.

From this point on, I will refer to the misconceptions by the following labels.
The order of the number was determined by the order in which I presented the

misconceptions in the survey.

Misconception 1: Students sometimes show that they do not realize that the
solution of a differential equation is the function in the original differential
equation.
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Misconception 2: In separation of variables, students sometimes think that
they are permitted to separate dy and dt because it is a fraction.

Misconception 3: Students sometimes cannot make the distinction that
equilibrium solutions exist in separable differential equations but not linear
differential equations.

Misconception 4: Students sometimes show that they do not understand that
approximation methods do not follow the exact solution curve exactly, and
based on the error of the approximation, the approximation may deviate
from the actual function solution at an increasingly large rate as t tends
toward infinity.

In the analysis of every one of these misconceptions, the number of “yes”
(significant to their curricula) responses was lower than the number of “no” (not
significant to their curricula) responses for the overall category. All four of the
misconceptions had a significant p-value at the « = .05 significance level, indicating
that the number of “yes” responses for the whole population will likely be smaller
than the number of “no” responses. However, the analysis of specific categories is
more telling of which misconceptions are more important to certain types of

engineering professors.

In the follow-up survey, one professor noted that Misconception 1 and
Misconception 4 alarmed him the most, and found it surprising that these two were
not ranked higher by engineering professors. These results are especially
surprising since separation of variables and numerical methods were both ranked
high in the curriculum portion of this survey. In the misconception data, one may
notice that certain types of engineering professors may have skewed the overall

ranking of important curriculum topics in the earlier portion of the survey. Also,
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more research needs to be done to investigate the important subtopics within the
curriculum topics that do need to be covered, and in what context these

misconceptions should be addressed.

Misconception 1: Students’ lack of understanding of function as
solution.

This misconception seems to be the most basic of the four presented because
it involves the goal of solving any type of differential equation. However, the

importance of this misconception to engineering professors is not clear.

The number of “no” and “yes” responses, and the approximate p-values for
the hypothesis tests for significant difference in number of responses were as

follows:

Table 13

Comparison of Misconception 1 Importance by Engineering Field

Biological | Chemical Civil (E) | Civil (S) Electrical | Mechanical Other Overall
No 2 8 5 6 11 11 4 47
Yes 2 3 6 4 8 7 2 32
p-values .5000 .0655 6179 .2643 .2451 1131 .0516 .0455

There were no significant differences in “yes” and “no” responses for any of
the different engineering categories. While there were typically more “no”
responses, these were not significant. However, civil engineering professors and
electrical engineers showed that they had higher p-values, which indicates less

difference in the number of “yes” and “no” responses. Environmental civil engineers
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actually had more “yes” responses than “no” responses, indicating that they may
have more concern for the function as solution problem than other types of
engineers. The chemical engineering professors and miscellaneous group had the
lowest p-values, suggesting that they may care less than the other professors about
this particular misconception. There is no evidence from my qualitative data as to
why this difference occurs for this misconception.

Overall, the results were statistically significant that the number of “yes”
responses would be lower than the number of “no” responses. The hypothesis test
for the proportion of “yes” responses being less than half has an overall p-value of
.0455, indicating that the number of “yes” responses is significantly lower for this
misconception, even though there was no significant difference in each category.

This particular misconception seems to be more important to those in their
40s and those in their 60s and 70s (see Table 14). There is no significant difference
between “yes” and “no” responses for these two age groups. There are a
significantly lower number of “yes” responses than “no” responses for the 20s-30s
age group. Since there is this up and down shift, the years of experience seems to be

more telling of how one may distinguish importance as one progresses as a teacher.
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Table 14

Comparison of Misconception 1 Importance by Age

20s-30s 40s 50s 60s-70s
No 12 9 18 4
Yes 5 11 10 4
p-values .0446 .6736 .0655 .5

Teaching experience shows a similar trend to age, but it is more distinctive.
The least experienced teachers and younger teachers having the greatest percentage
of “no” responses. However, responses from professors with varying years of
teaching experience also shows that those with little and those with the greatest
number of experience have significantly fewer “no” responses than the other

groups. The middle groups are very closely split on this misconception.

Table 15

Comparison of Misconception 1 Importance by Teaching Experience

0-10 11-20 21-30 >30
No 18 13 11 4
Yes 7 12 11 2
p-values .0139 4207 .5000 .0516

Teachers seem to go through a shift as to whether or not this misconception
is important. As they start and end their careers, they are less likely to be concerned
with students explicitly stating that a solution is a function. Mid-career, however,

half of these professors found that this distinction was important. As stated above
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in the transcript, this split may have occurred because of the interpretation of the

wording of the misconception.

Career experience, on the other hand, seems to be the biggest indicator of
concern for the function as solution misconception. With more career experience,
we see an increased percentage in the number of “yes” percentages, with the least
career experience exhibiting a 44% rate for the number of “yes” answers to an 80%
rate for the group with the most field experience. There is also a major distinction
among the p-values for this group as evidenced below, showing that the youngest
group has a significant p-value, indicating the number of “yes” responses is lower
than the number of “no” responses. The high p-value of the most experienced group
actually indicates that the results for this group would show significance if the
alternative hypothesis was that number of “yes” responses would be greater than
the number of “no” responses. Thus, there is strong evidence to indicate that those
with more career experience care more about the function as solution

misconception.

Table 16

Comparison of Misconception 1 Importance by Career Experience

0-5 6-10 11-15 >15
No 27 12 5 1
Yes 12 9 5 4
p-values .0082 .2578 .5000 .9099
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More than any other misconception, this one seems to be where the
professors have the greatest split in number of “yes” the concept is important
responses and “no” the concept is not important responses, which I will discuss
further with Table 13. This distinction was clarified by the interviews with the two
professors who responded with different answers.

One professor noted why he thought the misconception was important: “It’s
only when they get to classes like the ones I and other faculty members of us that
teach in engineering where it becomes important to know that the solution to a
differential equation is another equation, and the reason it is if you don’t know that,
you don’t know whether you have to solve a differential equation or not.” The
following professor explains why he chose that understanding the solution to be a

function was not imperative:

So, if a student says I solved the differential equation and here’s the curve
that represents the position of the map over time, and I said oh, now is that a
function? And they said, oh, well, I guess so, I guess I wouldn’t worry too
much about that because they solved the problem, they understand the

position of the map of the function of time, they read the graph and interpret

the result. Whether or not they’re sort of consciously coming out with the
result, oh this is a function x(t) and pairing along with everything we know

about functions, you know continuous, single value, or whatever, [ guess |
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wouldn’t worry too much about that because I kind of think that all the
mathematics of what is a function has kind of receded into the background
because now what they’re doing is focusing on what they are doing to the

result.

He then went on to describe the main distinction he had in his mind about the major

misconception concerning solutions of differential equations:

On the other hand, if a student says they solved the differential equation and
they got a number, they didn’t get x(t), they got a number, probably that the
solution of the differential equation was a constant, with no time dependence
whatever, [ would say let’s talk about what differential equations are

supposed to be telling us here and that I think would be a real problem.

While the second professor didn’t mark that “yes” this misconception is
important on his survey, he still has inclinations that students need to understand
time dependence, which is the nature of the function solution. The same reasoning
came from the other interviewee who marked “yes”: “What I do try to point out and
the misconception that I'm talking about is very often if [ say what is a solution if I
write a differential equation on the board and say what is the solution and students
will give me answers as though it was a number.” Thus, the wording of the question

may have resulted in different answers if | had written in the survey that students

think that the result of a differential equation is a number and not a function. Thus,
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the emphasis on a solution not being a number was the same response for both

professors, despite their differing answers on the survey.

Misconception 2: Thinking of dy/dt only as a finite entity.

The second misconception arises from just the separation of variables

technique, and is not a problem for all differential equations like the first
misconception. In separation of variables solutions with a derivative dy/dt, we offer

to our students a shortcut that demonstrates that we can place all of the y values on

one side of the equation, and all of the t values on the other side of the equation.

However, splitting dy/dt is not a mathematical generalization. The limit has already

been taken when we are looking at the definition of dy/dt, and is not the same as Ay

divided by Ar. The number of “no” and “yes” responses, and the approximate p-

values for the hypothesis tests for significant difference in number of responses

were as follows:

Table 17

Comparison of Misconception 2 Importance by Engineering Field

Biological Chemical | Civil (E) Civil (S) Electrical Mechanical Other Overall
No 2 8 7 8 10 13 4 52
Yes 2 5 5 2 9 5 2 30
p-values .5000 .2033 .2810 .0287 4090 .0294 .2061 .0075

There were significantly fewer “yes” responses than “no” responses for the

structural civil engineers and the mechanical engineers. There is no evidence to

show why this distinction has occurred in these two groups. Biological engineers
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had the highest p-values of .5, which indicates an even split in “yes” and “no”
responses. This group ranked analytical techniques higher on their solution
strategies list than some of the other strategies. Thus, doing a by-hand calculation of
the separation of variables method probably occurs more often with biological

engineers than some of the other groups.

In the other demographic categories, there were typically more “no”
responses in all categories and there was very little variability among the different
categories. Thus, the only group that I found that indicates that the fraction

misconception is of significant concern is for biological engineers.

During one of the phone interviews, [ explained that while dy/dt splitting in
separation of variables is a legitimate shortcut to a correct solution, students

sometimes take away the notion that dy is the same as the difference Ay. While this

nuance does not hinder understanding of the separation of variables method, there

may be other situations where this distinction is necessary to make.

Some engineering professors may inadvertently encourage this

mathematically incorrect notion:

On that method of modeling, what we’re doing here is say it’s this part
delta x and as delta x gets small low and behold we have the partial

derivative, and we do that carefully. With experience, instead of
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calling that thickness delta x, you start calling it dx because you kind
of know that that’s where you’re going in the end because you’ve done
it enough times you sort of know... The problem can be that when
you're learning that, if you conflate the steps too soon and the student
reduces it to an algorithm before they really catch on, then I think they
can get into the business of mistaking delta x for dx.

A
Students may be attaining this incorrect notion of equality between Xy
t

dy Lo : :
and Z because of engineering professors’ examples. In many cases, the engineers
t

begin to think of these mathematical representations as being the same thing,
because in their situations, doing so yields a correct answer, even if the notion is

slightly incorrect. One professor notes on his follow-up survey: “The genius of the
I . dy : . :
Leibnitz’s notation Z is that it CAN be treated as a fraction in all practical
t

situations I can think of. And even in calculus we ENCOURAGE students to treat it as

such, for it is very helpful in manipulation.”

More work needs to be done concerning this misconception to see if the
misconception causes problems in other topics in engineering other than for
separation of variables. Upon talking with one of the engineering professors, I

found that some of the respondents were thinking about whether or not the
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misconception causes problems in the ability to do a separation of variables
problem. We know that the fraction concept does not result in a wrong answer

here. However, more work needs to be done to determine if there are problems in

o : . dy o
other topics with students incorrectly splitting a Z expression into finite elements.
t

Misconception 3: Students’ lack of understanding of the production of
equilibrium solutions.

Another misconception, or lack of conception, that was found with the
separation of variables technique specifically was that students were not able to
distinguish that equilibrium solutions were only created if a differential equation
was separable. This misconception seemed to be noticed more by biological,
chemical, and civil engineers more than electrical/computer and

mechanical/aerospace engineers.

The number of “no” and “yes” responses, and the approximate p-values for
the hypothesis tests for significant difference in number of responses were as

follows:

Table 18

Comparison of Misconception 3 Importance by Engineering Field

Biological | Chemical Civil (E) Civil (S) Electrical Mechanical Other Overall
No 2 5 5 5 12 12 4 45
Yes 2 6 5 5 6 5 1 30
p-values | .5000 .6179 .5000 .5000 .0793 .0446 .0901 .0418
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Thus, there is significant evidence to show that mechanical engineers, and
perhaps electrical engineers, care less about equilibrium solutions than the other
types of engineers. After conducting my interview with the electrical engineer, I
realized that this is due to the differential equations that arise in electrical and
mechanical engineering problems, and the lack of times that separation of variables

is needed to solve their application problems.

[ was discussing with an electrical engineer in the following transcript about
the necessity (or lack of necessity) of distinguishing that equilibrium solutions can

only be found if a differential equation is separable.

Interviewer: So I was curious with you guys if it kind of mattered if students
understand that that division right there is what’s creating that equilibrium

solution?

Professor: Yeah, truthfully, it’s not a problem I've encountered a lot in my
teaching because in the classes I teach we don’t get equations like this

[separation of variables].

He had previously mentioned that in electrical engineering, many times “a lot
of differential equations that [they] solve have constant coefficients.” He described
what they encounter as having “df/dt plus constant times f equals right hand side,

not df/dt plus g(t)f(t) equals right hand side.” Having constant coefficients was, in
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his opinion, beneficial because he says, “a lot of nasty business disappears, and that

was where [ was thinking, well in my context, I see a lot of equilibrium solutions.”

While he sees equilibrium solutions, these apparently come from differential
equations that are both linear and separable. In general, however, he does not have
equations that are just separation of variables problems. He admitted that he
himself did not have a strong distinction between these 2 methods and equilibrium
solutions in his mind, and would have to think more if this notion would really be
helpful for his own students’ understanding. Thus, he had never found this

equilibrium solution creation misconception to be a problem in his courses.

Increased age may also be an indicator of the importance of misconceptions
to engineering professors. The first three age groups had similar percentages of
“yes” responses (.4, .37, and .41, respectively). However, the final age group had a
higher percentage rate of “yes” responses, yet again, of .625, which means they had
more “yes” responses than “no” responses, unlike the other categories. This
indicates that those of the highest age may care more than the younger professors

about this distinction for equilibrium solutions.
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Table 19
Comparison of Misconception 3 Importance by Age
20s-30s 40s 50s 60s-70s
No 9 12 16
Yes 6 7 11
p-values .2206 1335 .1685 7611

As professors get older and gain more experience, they may see a greater
number of different types of differential equations in their field. Thus, this
particular misconception may not happen often, but once professors get older, they
may begin to note that this could be a helpful distinction for students to make in a
differential equations course. This is confirmed by the analysis on teaching

experience in the table below:

Table 20
Comparison of Misconception 3 Importance by Teaching Experience

0-10 11-20 21-30 >30
No 28 16 13 3
Yes 11 7 9 3
p-values .0033 .0301 4129 .5000
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The two groups with less teaching experience have significantly more “no”
responses than “yes” responses. Thus, those with more teaching experience show

more interest in making a distinction about the creation of equilibrium solutions.

More teaching experience and more field experience result in a greater
number of professors indicating the importance of this distinction about
equilibrium solutions. However, as with other misconceptions, there is more
support that field experience is more telling of the importance of this misconception

than teaching experience.

Table 21
Comparison of Misconception 3 Importance by Career Experience

0-5 6-10 11-15 >15
No 26 11 4 2
Yes 11 9 5 3
p-values .0068 3264 .6293 .6736

Thus, knowledge of equilibrium solutions may be more important in an
engineering career than an engineering course. More research needs to be done to
investigate the opinions of career engineers and how they may use equilibrium

solutions in their work.
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Misconception 4: Students’ lack of recognition in the flaws of numerical
methods.

In both the surveys and in the interviews, the engineering professors
continually emphasized the importance of numerical methods to their coursework.
However, as noted earlier in this section on misconceptions, the data shows that
numerical methods are more important based on the types of application that an
engineer encounters. The number of “no” and “yes” responses, and the approximate
p-values for the hypothesis tests for significant difference in number of responses

were as follows:

Table 22
Comparison of Misconception 4 Importance by Engineering Field
Biological Chemical Civil Civil Electrical Mechanical Other Overall
(E) )
No 2 5 6 7 14 11 5 50
Yes 2 7 5 3 5 6 1 29
p-values | .5000 .7190 .3821 | .1038 .0197 1131 .0516 .0091

Chemical engineers actually showed more “yes” responses than “no”
responses. In interviewing, I found that chemical engineers use numerical solutions
for many of the nonlinear differential equations that come up in their applications.
Biological engineers and civil engineers had a more even split among their
responses, while electrical, mechanical, and miscellaneous engineering professors

find this misconception less important. These responses seem to correlate directly
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with the amount that each of these types of engineering use approximation methods

for nonlinear differential equations.

Those who were older yet again showed more interest in this misconception,
with the younger two groups having significantly more “no” responses than “yes”

responses.

Table 23

Comparison of Misconception 4 Importance by Age

20s-30s 40s 50s 60s-70s
No 12 14 15 4
Yes 5 6 13 4
p-values .0446 .0367 .3520 .5000

)

Again, those with more field experience have more “yes” responses than “no’
responses for this misconception. This finding was even more distinctive than that
of the comparison between teaching experience categories. The interviewed
professors noted that they were wary of students of the future not recognizing the
errors that may result from using technology. Thus, they wanted to create very
analytically astute students who used technology with extreme caution. The data
below may support that those with career experience also find that this caution of

approximation error is necessary in the workforce:
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Table 24

Comparison of Misconception 4 Importance by Years of Career Experience

0-5

6-10

11-15

>15

26

15

Yes

13

p-values

.0188

.0250

2643

.6736

The importance of misconceptions to distinctive groups of engineering
professors.

In all of the misconceptions data, the overall results showed that the number
of “yes” responses were significantly smaller than the number of “no” responses.
Overall, this leads me to believe that these particular misconceptions are not
considered serious problems for engineering students. However, this does not
cause me to conclude that the engineering professors do not care about these

misconceptions at all.

Those who were older, had more teaching experience, and especially those
who had more career experience, showed that these misconceptions are more
important than the overall data would suggest. The specific misconceptions also
showed different results among different types of engineering. The second and
third misconception both focused on the separation of variables technique, and
those who do not use this technique obviously did not find it as important as the

first and fourth more general misconceptions. While numerical methods were
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seemingly important overall, [ became aware in the misconceptions study that some
engineers use these more than others depending on the types of differential
equations that arise in application problems. Thus, the large number of “no”
responses cannot allow us to conclude that engineering professors do not care
about the misconceptions. Instead, researchers might realize that misconceptions
will be important based on the content of the misconception to certain types of
engineers. Also, the younger and less experienced engineering professors need to
be educated on the research about misconceptions in differential equations so that

they may reach these conclusions about students’ understanding more quickly.

Engineering professors’ preference for relational understanding of
approximation methods.

One may not conclude that relational understanding is insignificant to the
engineering community, as previously discussed. This is further evidenced below in
my specific question addressing the relational understanding of numerical methods.
By a wide margin, the engineering professors chose that they preferred a student
who can’t remember the formula for a numerical technique, but has a general idea
of why that technique works over a student who remembers the formula for the
technique, but does not know why this method works. The latter was also said to
have a correct answer, whereas the former had an incorrect solution. Thus, most
preferred an incorrect solution with understanding more than a correct solution

without understanding.

72



One of the interviewed professors made this comment after discussing the
discomfort some engineers had felt about the calculus reform movement: “I know I
want them to understand what they’re doing, but I also want them to be able to
solve problems. I don’t want them to just be algorithmic about it so that they just do
silly things—apply a method when it isn’t legitimate.” This comment encourages
the notion that engineers are not simply focused on procedural; they have a
necessity for correct answers, but also understand the need for interpreting that
correct answer. Thus, procedural understanding seems to be a better descriptor of
the desire of these engineering professors. Their students do need to have some
understanding of procedures to understand the correctness of their solutions. Yet,

they also need to be analytical with those solutions.

Table 25

Number of Respondents Preferring Understanding to Correctness

Incorrect
Response, but Correct Response, Little or

Understanding No Understanding

All Respondents 70 10

[ made my null hypothesis that the preferences would be equal, and my
alternative hypothesis was that the number of correct responses would be less than
the number of incorrect responses. The p-value for this situation is approximately 0.

Thus, there is very strong evidence that more professors prefer an incorrect
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response with understanding than a correct response with little or no

understanding.

The only professors who chose that they would prefer a correct solution
from a student with little or no understanding of a numerical method to a student
with an incorrect solution who had strong understanding were all age 50 or above.
This initially seemed alarming since more of the older professors indicated that they

were concerned with the four misconceptions.

Table 26

Comparison of Preference for Understanding/Correctness with Age

20s-30s 40s 50s 60s-70s
Correct Response,
0 0 8 2
Little or No Understanding
Incorrect Response, but Understanding 18 18 22 7

During interviews, | became aware of the weightiness of a correct solution
upon older professors. Ideally, the professors would have students who both
understand and have a correct solution. However, for some professors the correct
solution has more importance because of the dangers of an incorrect solution.
Understanding the physics of a structure may be more important than
understanding the differential equation’s numerical method that models the

structural system. Many professors noted that they need students to be wary of
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their solutions. Some address this by saying they want them to be wary of the limits
of a numerical method. Others say they want them to be wary of the actual outputs
of their differential equation solution and be able to interpret the correctness of the

model to the physical situation.

The misconceptions data indicated that increased career experience was an
indicator that a professor would be more concerned about students’ relational
understanding of differential equations. Increased career experience seems to be an
even stronger indicator of a preference for an incorrect response with
understanding. The greatest number of correct responses occurred with those who
had little or no career experience, and those with the most career experience had no

one respond that they would prefer a correct response.

Table 27
Comparison of Preference for Understanding/Correctness with Career Experience

0-5 6-10 11-15 >15
Correct Response, Little or
No Understanding 5 2 3 0
Incorrect Response, but
Understanding 36 19 6 5

Technological Impact on Differential Equations in Engineering Education

Career engineers, engineering professors, and engineering students have

seen a change in engineering in the past 20 or 30 years due to the growing
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popularity of computer programs such as Mathematica, MatLab, Maple, and
MathCad, to name a few. Once engineers had personal computers at their fingertips,
the software followed suit, and the practice of engineering became visualization of

mathematical and physical models became more quickly and precisely generated.

The majority of the surveys showed that technology was seen as having an
impact on how both professors now teach their engineering courses and also how
they themselves approach engineering problems. The following software programs
were cited by the participants as being used by themselves and/or their students, in

decreasing order of use.

Table 28

Number of Respondents Noting Software

MatLab 22
Mathematica 5
Maple 5
MathCad 2

Twenty-nine professors noted in their open-ended responses spoke of
numerical solutions or techniques being easily accessed due to these technologies.
Thus, most of the time when I dialogued with these professors, they spoke of using
these types of technology for numerical solutions as opposed to using technology for
differential equations in general. They use computer software more for numerical

techniques than any other type of solution method. Twenty-three professors noted
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that students have the ability to do more involved problems and provide more
detailed answers due to technological approximations of differential equations. One
professor notes, “It’s now possible for an undergraduate to develop a sophisticated
numerical simulation of a complex structure or flow using commercial software.”
Four professors noted that technology also makes differential equations easier for

their students to solve.

Similar to the research cited in the literature review, technology has had a
similar impact on these engineering professors as it has had for mathematics
professors. The same professor goes on to say, “It’s dangerous as well because
sophisticated analyses can often appear authoritative but be wrong in ways that are
trickier to sort out than simple ones.” Students have a greater capacity to store and
manipulate large amounts of data. They can easily find a solution to a differential
equation or system of equations. However, their ability to interpret this data may

be hindered by technology.

Engineering professors noted that not only were students less likely to be
familiar with even simple analytic methods such as separation of variables, but they
also failed to note that they had erratic results that were more obviously noted by
students of the past. Four professors wrote in their surveys about a harmful
reliance on technology, specifically calculators, and nine professors stated that their

students either could not interpret solutions and/or they don’t understand the
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importance of what the software is computing for them. In the phone interviews
one professor noted, “My concern is you've got a bunch of engineers out there using
software that will do this stuff for you and generate solutions, but they have no clue
and don’t know how to determine if that solution is correct. Now, there’s a

problem.”

Students may not note these incorrect results for various reasons. Some
students may notice and correct their program, but others may turn in their
incorrect result. I consulted with an engineering professor on this matter. He

classified students into 3 different categories:

There’s one group that will kill themselves to get the right answer.
They will fight to get that right answer, whatever itis. There’s the
other group that doesn’t even know enough to know how to even
make sense of the answer that they get. There’s 2 groups and it’s hard
to distinguish between the 2 groups. One is the students are so weak
that they don’t even realize what they answer ought to look like...The
other one is more devious. They know the answer is wrong, but
they’re too lazy to figure it out so they’re going to turn it anyway
hoping that you won'’t see it or that there’s some kind of partial

credit...A lot of that is laziness, quite frankly. They know the answer’s
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wrong, but they’re not going to spend the time to make the answer

right.

Mathematics technology research has shown us that the first two groups
exist. As discussed in the literature review, researchers have been aware for several
years that technology can possibly hinder one from analyzing a result. However,
there has not been evidence to suggest that the third case may be a possibility when
considering teaching mathematics with technology. In a school environment,
students may be unconcerned with a correct answer as long as they know they will
receive partial credit for their work. Thus, professors need to emphasize in their
grade reflection the necessity of using technology to properly assist us in giving

precise mathematical solutions.

Both interviewees noted that they use computer-generated demonstrations
when they are able to do so and both noted the importance of students’
visualization, as noted in the research (Rasmussen and Whitehead, 2003).
Professors often noted things such as “We visualize more and more.” In showing
visualization, qualitative analysis will become a natural outflow in classroom

discussions.

While the types of solution strategies showed that engineering professors

ranked qualitative methods low on the list, these approaches are still found to be
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important for engineers in some areas, even if they are not the most important

strategies overall. In one of the phone interviews, another professor notes:

It’s still valuable for a student to be able to look at a function and get a
qualitative idea of what it does. The good old sinc function—sinx over x, we
call it sinc, I don’t know what mathematicians call it—sin of pi x over pi x, it
shows up a lot in electronics, and you know a student ought to be able to look
at thing and sketch it. They ought to be able to look at it and say, these are
the 0 crossings because I think it conveys intuition also about what’s going
on with the underlying physics, and it’s that intuition that ultimately we want
the mathematics to reveal something about the physics and it’s that

connection, that fire in the equation, that we want the students to have.

These qualitative methods are inherently tied in with the visualization aspect
of differential equations, and should not be eliminated from the course, but simply
added to the discussion of graphs of differential equations. The amount of time
spent discussing qualitative methods may not need to be emphasized as much, but

there is value in their presence in the curricula.

While technology offers very important visual information for engineers, as
noted in the literature, students need to be wary of the outputs created by
technology and be able to interpret the correctness of a result (Rasmussen and

Whitehead, 2003). Due to this need for alertness to a correct solution, one professor
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describes his hesitance to move away from emphasizing analytic methods: “I think
we [engineering professors] have this uneasy feeling that there are these automated
methods, but we’re worried that students are losing something in the process that
they will start trusting what the computer tells them without being properly critical

of the result. “

Technology should be incorporated for various different curriculum topics
that were shown to be important in the first section of the results. Once educators
establish which topics are important, and begin to incorporate technology into the
differential equations classroom they must remember to only do so if this is
beneficial to students’ relational understanding. We know from previous research
(see Chapter 2) that technology aids in students’ visualization of differential
equations situations. We now also know that most engineering professors would
like for technology to be implemented with the study of numerical methods. We
should remember, however, to treat technology as a dangerous friend—an aid that
must be used with careful supervision. Otherwise, results will go unchecked, and
students will see technology as a crutch instead of as a tool that requires analytic

interpretation.
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Chapter 5
Discussion and Conclusion

Engineering professors, like mathematicians, want students to make rich
connections among techniques to solve differential equations. A significant number
of responses showed that engineering professors prefer strong mathematical
understanding to a correct answer. They also want students to have a critical eye as
they analyze graphical and approximate solutions. Unfortunately, many professors
have noted that their students do not come away from differential equations with
the ability to make these connections and critically analyze solutions. One of the
professors noted the following about his students’ understanding of undergraduate-
level mathematics currently: “They [the students] will argue that the way it's done
in math, they get very little out of. They simply don’t develop an appreciation for
this stuff, or are not developing an appreciation for it until they get to my class. In

some cases, by the time they figure out that it's important, it’s too late.”

This same professor said he did not think that this was the fault of the
mathematics department, but we as educators must consider that we could always
try to teach deeper cognitive thinking in our courses. Students should leave a
differential equations course confident in the mathematics that they have learned
and comfortable with applying this knowledge in various scenarios. The ability to

apply this knowledge and interpret various situations shows that students can not
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only do differential equations, but can interpret differential equations, which also

means they have relational understanding of the differential equations concepts.

Differential equations material will continue to appear in engineering students’
courses. Thus, the responsibility of the first semester differential equations teacher
should not be taken lightly due to the amount of applications for this material. In
this study, I sought to see how the mathematics community can better serve

engineering students by asking the following research questions:

e According to engineering educators, what topics in differential equations are
most crucial for engineering education and practical engineering?

e What types of relational understanding do engineering educators wish to see
in their students’ differential equations classes?

e According to engineering educators, how should technology be used in the
mathematical education (especially the differential equations education) of

engineers?

Summary of Results

[ addressed these research questions through surveys, follow-up surveys, and
phone interviews. In the following summary, I will discuss the major findings from

each of the three research questions.
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Differential equations course curriculum.

The engineering professors ranked the following analytical techniques as being
very important to their curricula or not very important at all to their curricula. The
averages of their rankings indicate the following ranking from greatest to least

importance:

Separation of Variables

Matrix methods

Substitution methods

First order linear method/Integrating Factor
Laplace transforms

Variation of parameters*

Auxiliary equations™

Series methods

*Denotes equal ranking

PN W

[ learned that matrix methods should be emphasized more in the differential
equations course and that transform methods and series methods may be misplaced
if taught in the first semester of differential equations. Many different engineering
departments use matrix methods, and often, engineering applications will result in
systems of differential equations that are easily modeled by matrix methods.
Transform methods and series methods are only emphasized by a few engineering
departments. These departments may wish to take on these topics and incorporate
them in engineering courses. If not, then they could also be placed in a second

course of differential equations.
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The analytical methods are not the only concepts covered in differential
equations courses. Engineering professors ranked modeling scenarios and
numerical analysis as being more important solution strategies than analytical
techniques. The notion that engineering professors just want students to be able to
use mathematics to get an answer in the midst of engineering is short-sided.
Engineering professors noted that their students also need intuition about the

correctness of a mathematical output.

Engineering students’ understanding of differential equations.

The misconceptions that [ studied all showed overall that there were
significantly less “yes” this misconception is important to my curriculum responses
than “no” this is not important to my curriculum responses. However, there was
more interest shown from older and more experienced professors and the overall
results showed lower p-values, which indicated that engineering professors are
concerned more about misconceptions as a collective whole. Experience was
examined as teaching experience and experience in an engineering career.
Typically, both showed that more experience led to an increased interest in the
misconception, but the career experience showed this even more than the teaching
experience. Some of the misconceptions were more important to certain types of
engineers, but this data needs to be investigated further as to why certain types of

engineers care more about certain misconceptions.
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From the survey data and from the qualitative data of this study, one may see
that engineering professors, like mathematics educators, desire for students to have
relational understanding of mathematics material. The most significant finding,
statistically speaking, was the finding that professors preferred having a student
who had an incorrect numerical solution, but understood the basic idea of the
numerical approximation. This was in comparison with a student who had a correct

numerical solution, but did not understand the mathematical process.

Mathematicians and engineers must continue their discussions with one
another in the university setting. They must keep re-assessing the important topics
in mathematics, and which topics should be eliminated or placed in a different type
of course to best meet the needs of all students in that course. The goals of the
mathematics and engineering educator should be united in students’ relational
understanding of the mathematics material. This is especially important in the
differential equations course because of the amount of applications of differential

equations to a vast variety of engineering problems.

Teaching differential equations with technology.

Many engineering professors said they used technology to solve numerical
approximations of differential equations. Thus, their views of using technology for
engineering widely focused on using technology to approximate differential

equations with numerical techniques. When approximating differential equations
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numerically with software packages, engineering professors discussed that they
wanted their students to be cautious of the results of the software packages.
Engineering students need to recognize when they have made an input error, based
on the mathematical outputs. Thus, engineering professors said they are wary of
using too much technology because they want students to recognize correct
mathematics before they have a computer calculate a result. This way, if an answer
is illogical, they will be able to recognize the error and correct it. The professors
said this allowed undergraduate students to solve more difficult problems now that
only graduate-level students would have attempted in the past. Yet, more than ever,

students need a critical eye once they have computer-generated solutions.

The professors also noted that technology was important for the
visualization of the differential equations at hand and that having a qualitative look
at differential equations was also helpful for building intuition. So while qualitative
methods were ranked lower in the curriculum portion of important solution
strategies, engineering professors still see value in qualitative methods. Thus, these
methods may not need to be a large portion of the curriculum, but they are an

important part of the curriculum.

Limitations of the Results

There were only 83 total responses to the differential equations survey. For

analyzing the whole group, this was a large enough data set in order to be able to
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assume a normal distribution. However, for many of the smaller categories, an
assumption that the categories followed a normal distribution may be inaccurate.
More survey data would have been helpful, but due to limited time and taking
volunteers, [ decided that | wanted at least 50 responses in order to draw more
precise conclusions so that at least the overall data would have been more likely to
represent the whole population of engineering professors. This study also operated
on a volunteer basis. Thus, there is a possibility that the population of engineering
professors interviewed here may skew the data because they are more interested in
student understanding of differential equations and took the survey because of their

interest.

Further investigation still needs to be done to investigate which types of
mathematical misconceptions in differential equations matter the most to
engineering professors. There may be more distinctions than were made evident in
this study between types of engineering. The contents of this survey may have also
been too narrow for the true opinions of the professors to come out. Professors
often responded that the misconceptions were not pertinent to their courses, but
that by the end of the senior year, their students should have conquered these

misconceptions.

Also, some of the survey data may be skewed if the professors did not

understand the survey questions. Some of the professors noted in the follow-up
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surveys and in the interviews that the misconception concerning equilibrium
solutions was somewhat confusing. They were considering a differential equation
that was both separable and linear and thinking that a differential equation did not
have to be separable to have an equilibrium solution because they were classifying
these cases that were both separable and linear as linear. Mathematically, my
intention was to discuss separable equations in general, but engineering professors
were not reading it as being in general, but saying that there were some linear
differential equations that did have equilibrium solutions. So, while I had changed
many problems with the pilot survey, there still were some problems with the

wording of the actual survey that could have altered some responses.

The nature of the survey itself was also narrow. Professors had to choose
“yes” the misconception is important/relevant or “no” it is not. “It depends” was not
an option in order to help rank the level of importance of these misconceptions, if
possible. Yet, in the interviews, “it depends” became a very legitimate answer.
Some professors noted that the misconceptions are important but that
“these...misunderstandings are not common among the students [they] teach,” so
some may have chosen “no” because the misconceptions do not occur often enough
for them to be overly concerned. This is not to demean the importance of the
misconceptions, but more may have chosen “no” because of reasons such as this

one. While professors did have a chance to expand upon their choices, they did not
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always choose to do so, and thus, further insight needs to be gained about the effects

of misconceptions in ordinary differential equations.

Suggestions for the First Course in Differential Equations

The survey did show that there are some different needs for differential
equations among different engineering departments. Thus, educators need to
assess how to best serve all students at once in the differential course, or alter the
types of differential equations courses we offer to our students. As previously
discussed, transform methods and series solutions should be left to specific
engineering departments to teach or they should be placed in another differential

equations course.

If a university decides to only offer one first course in differential equations,
mathematics and electrical engineering departments at some universities should
consider allowing the electrical engineering departments to teach transform
methods in the engineering coursework as needed. This would allow for more time
to focus on matrix methods and systems of differential equations in further detail in

the first semester differential equations course.

However, universities may consider forming two or more differential
equations courses, depending on a students’ major. Mathematicians and
engineering faculty should continue to work together to discuss the best topics to

cover in a first semester differential equations for engineering students. Pure
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mathematics majors and bioengineering may require a course with a more
analytical approach, electrical and mechanical engineering may wish to have a
course that includes transforms if this will not be taught in their departments,
and/or the other engineering departments may want to focus more on numerical

methods for solving differential equations.

Mathematicians need to focus more on the understanding of engineering
students in differential equations. While they may seem to be strong mathematics
students, a teacher should not assume that these students will automatically
understand differential equations content. Mathematicians need to continue to
work with engineering professors to determine which misconceptions are most

important for engineering students.

Mathematics professors should also give students visualization opportunities
when possible with technology that is available. They should also give students
opportunities to explore more in-depth problems that require modeling skills. This
will be helpful to those in applied fields in their later coursework and career paths.
They should familiarize themselves with software packages that can calculate

and/or approximate differential equations.

Similar types of research need to be conducted to determine the needs of
other majors such as mathematics, physics, and chemistry majors, which are also

typically required to take a first course in differential equations. This would help
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gain a better picture of how the first course in differential equations can best serve

the whole university community.

Each university will need to decide how best to offer differential equations
content based on its population of students. Due to the nature of differential
equations and its use by so many different types of fields, discussions about the
curricula and students’ understanding of the content will need to continue to take

precedence in course directors’ discussions in the future.
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Appendix A: Pilot Differential Equations Survey
Title: Differential Equations in Engineering

Actual survey was originally made available online:
http://ceres.cals.ncsu.edu/surveybuilder/Form.cfm?TestID=8451

We appreciate your thoughtful responses to the following questions.

Thank you for taking the time to complete this survey. By taking this survey, you
are consenting to allowing your responses to be used in research, which may result
in publication. Your responses will help in our understanding of how best to revise
the teaching of differential equations to best suit the needs of those in engineering
fields. Please note that the first several questions are demographic questions for
analysis purposes only and any connection with you or your university specifically
will not be included in research findings.

If you would like to comment on any of the problems, there is a designated space at
the end of the survey. Please include the question number with your comments.

Demographics

University:

Particular Engineering Field:

Age:

Years of Experience Teaching Engineering:

Years of Engineering Experience in a Non-academic setting:
Specific Courses you are currently teaching:

General Questions

1. Explain to a mathematician how and when you use ordinary differential equations
in the engineering courses that you teach.

2. Rank the 5 techniques that are most important to your curricula, with 1 being
what you consider the most important method for students to learn for applications in
your field. For those past 5, please select “None.”

Separation of Variables

Solving Linear ODEs with an Integrating Factor
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Method of Undetermined Coefficients and/or Variation of Parameters for solving
nonhomogenous linear equations of higher order

Using Auxiliary Equations for solving homogeneous first and second order linear
Change of Variables and Substitutions

Matrix Methods from Linear Algebra to solve systems/Eigenvalues and Eigenvectors
Laplace Transforms

Series Solutions (Power Series, Cauchy-Euler, Frobenius, etc.)

Other

3. Differential equations is changing as a course in many universities. There is
increasing use of technology and approximation techniques for gathering general
information about differential equation solutions. We would like to know whether
you find these types of strategies more useful than straight computation for
solutions. Rank the following with 1 being most important to you in your field.

Mathematical Theory that provides insight for possible ODE solutions
(Existence/Uniqueness Theorem)

Qualitative Analysis (slope fields, stability, equilibria, bifurcations, long term
behavior)

Analytical Techniques (methods as described in Question number 2)

Numerical Methods (approximations of differential equation solutions either by
hand or with technology; examples include Euler, Taylor, and Runge-Kutta Methods)

Modeling and Applications (simple engineering problems that use differential
equations in order to derive a final solution)

Combining Methods and Graphs to analyze Dynamical Systems
Other

4. Do you find teaching applications and modeling in differential equations courses
useful to your particular area of interest? Explain if desired.

5. Are differential equations modeling problems too limited and simple? Are they
too “cookie cutter”? Explain if desired.
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6. Please provide suggestions for helpful modeling questions for differential
equations.

7. Do the following misconceptions cause problems in the engineering coursework
that you teach?

a. not knowing that the solution of a differential equation is the function in
the original differential equation

yes/no

b. in separation of variables, thinking that it is okay to separate dy and dt
because they think it is like a fraction

yes/no

c. not knowing that equilibrium solutions exist in separable differential
equations but not linear differential equations

yes/no

d. not understanding that approximation methods do not follow the exact
solution curve

yes/no

8. Which of the following would you prefer?

1. A student who can’t remember the formula for a numerical technique, but
has a general idea of why that technique works. This student has an incorrect
solution.

2. A student who remembers the formula for the technique, but does not
know why this method works. This student has a correct solution.

9. Has technology altered the math curricula that your engineers need or the content
that you teach? If so, how?

10. Has technology affected the way you approach engineering problems? If so,
how?

Extra explanations or comments about any of the survey items:

Would you be willing to be contacted for clarification on any of these survey items?
If so, please include your email address and/or phone number.
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Appendix B: Updated Differential Equations Survey
Title: Engineering Professors' Differential Equations Course Preferences

Actual survey was originally made available online:
http://ceres.cals.ncsu.edu/surveybuilder/Form.cfm?TestID=8762

Thank you for taking the time to complete this survey. By taking this survey, you
are consenting to allowing your responses to be used in research, which may result
in publication. Your responses will help in our understanding of how best to revise
the teaching of differential equations to best suit the needs of those in engineering
fields. Please note that the first several questions are demographic questions for
analysis purposes only and any connection with you or your university specifically
will not be included in research findings.

If you would like to comment on any of the problems, there is a designated space at
the end of the survey. Please include the question number with your comments.

Demographics

University:

Particular Engineering Field:

Age:

Years of Experience Teaching Engineering:

Years of Engineering Experience in a Non-academic setting:
Specific Courses you are currently teaching:

General Questions

1. Explain to a mathematician how and when you use ordinary differential equations
in the engineering courses that you teach.

2. Rank the following techniques, with 1 being what you consider a very important
method for students to learn for applications in your field and 4 being a technique
that is not important at all to your field.

Separation of Variables

Solving Linear ODEs with an Integrating Factor
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Method of Undetermined Coefficients and/or Variation of Parameters for solving
nonhomogenous linear equations of higher order

Using Auxiliary Equations for solving homogeneous first and second order linear
Change of Variables and Substitutions

Matrix Methods from Linear Algebra to solve systems/Eigenvalues and Eigenvectors
Laplace Transforms

Series Solutions (Power Series, Cauchy-Euler, Frobenius, etc.)

3. Please note any other analytic techniques that you feel are important to your
curricula.

4. Differential equations is changing as a course in many universities. There is
increasing use of technology and approximation techniques for gathering general
information about differential equation solutions. We would like to know whether
you find these types of strategies more useful than straight computation for
solutions. Rank each of the following with 1 being very important for coursework in
your field and 4 being irrelevant to coursework in your field.

Mathematical Theory that provides insight for possible ODE solutions
(Existence/Uniqueness Theorem)

Qualitative Analysis (slope fields, stability, equilibria, bifurcations, long term
behavior)

Analytical Techniques (methods as described in Question number 2)

Numerical Methods (approximations of differential equation solutions either by
hand or with technology; examples include Euler, Taylor, and Runge-Kutta Methods)

Modeling and Applications (simple engineering problems that use differential
equations in order to derive a final solution)

Combining Methods and Graphs to analyze Dynamical Systems

5. Do the following misconceptions cause problems in the engineering coursework
that you teach?

a. not knowing that the solution of a differential equation is the function in
the original differential equation

yes/no

b. in separation of variables, thinking that it is okay to separate dy and dt

103



because they think it is like a fraction

yes/no

c. not knowing that equilibrium solutions exist in separable differential
equations but not linear differential equations

yes/no

d. not understanding that approximation methods do not follow the exact
solution curve

yes/no

6. Which of the following would you prefer?

1. A student who can’t remember the formula for a numerical technique, but
has a general idea of why that technique works. This student has an incorrect
solution.

2. A student who remembers the formula for the technique, but does not
know why this method works. This student has a correct solution.

7. Has technology altered the math curricula that your engineers need or the content
that you teach? If so, how?

8. Has technology affected the way you approach engineering problems? If so, how?
9. Extra explanations or comments about any of the survey items:

10. Would you be willing to be contacted for clarification on any of these survey
items? If so, please include your email address and/or phone number.
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Appendix C: Example Email
Dr. (INSERT NAME)-

My name is Morgan Early and I'm a Masters student in Math education at NC State
University. I am writing to you because I am doing research that I believe may be of
interest to you.

[ am looking for various engineering professors' opinions about topics in a typical
differential equations course and how those topics are currently taught. If you

would be willing to take the survey, please visit this website:

http://ceres.cals.ncsu.edu/surveybuilder/Form.cfm?TestID=8762

The survey should take 10-20 minutes to complete, depending on how much you
wish to say. If you have any questions, please feel free to contact me. Also, if you
have any contacts at other universities in the U.S. that you think may be helpful, you
may add these in this section as well.

Thank you so much for all you do!

Morgan Early,
M.S. Candidate, Math Education

105



Appendix D: Follow-Up Email Survey

[ contacted you in the fall semester and you completed a study on engineering
professors’ opinions of differential equations. Thank you very much for completing
this survey!

You indicated on the survey that you would be available for follow-up questions on
this survey. If you are interested, please respond to the follow-up questions below:

1. You were given 2 scenarios.

A: A student who can’t remember the formula for a numerical technique, but has a
general idea of why that technique works. This student has an incorrect solution.

B: A student who remembers the formula for the technique, but does not know why
this method works. This student has a correct solution.

Preliminary results of this study have shown that engineers preferred scenario A
with statistical significance. Yet, there is insufficient evidence that engineering
professors will answer yes or no to the following misconceptions being problematic
to their engineering courses:

-not knowing that the solution to a differential equation is a function

-splitting dy/dt because they think it is a fraction

-not knowing the equilbrium solutions exist for separable differential equations but
not linear differential equations

-not understanding that approximation methods do not follow the exact solution
curve

Please share your thoughts on why you believe these specific misconceptions are of
less importance than the first scenario.

2. What misconceptions (misunderstandings) in differential equations do you find
most prevalent and/or troublesome?

3. Matrix methods were ranked very high in importance among all engineering
professors. Why do you believe that matrix methods were listed as being so
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important and do you believe they are underrepresented in the ordinary differential
equations curricula?

4. If you are willing to participate in a phone interview, please list a phone number
and times that you might be available.

Thanks so much for your time!

Morgan Early,
North Carolina State University
M.S. Candidate, Math Education
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Appendix E: First Phone Interview Protocol

You noted that you have 1 year of experience in a non-academic engineering setting.
Tell me about this experience.

[ would like to talk about some misconceptions in DE classes.

DE solution being a function: You said that it depends on “how [students]
understand the physics of the solution”

Splitting dy/dt: You said it’s ok to treat it like a fraction. In separation of variables,
splitting like a fraction will give you a correct solution. Do you think that this notion
causes problems with students in other situations that may not involve DEs? Do
they try to separate it when they shouldn’t?

Have him compare/contrast delta y, dy, and dy/dt.

Clarify that the survey meant to refer to sep. and linear “in general.” Thus, you can
have equilibrium solutions to a DE that is linear and separable. Then ask if he thinks
this is an important misconception. If not, ask if there’s anything about equilibrium
solutions that is problematic.

You also added some important misconceptions. Tell me more about why initial and
boundary value problems are important.

You also said you wanted students to draw information directly from the DE system
at hand. Can you provide of an example of when you have them do this?

[ don’t know anything about a zero state solution. Can you briefly explain this and
how it’s used in your course? Is the important misconception determining the
difference between particular vs. homogeneous solutions?

You suggested having engineering courses take transform methods. How do you
feel about engineers teaching the whole introductory course to DEs?

How often do you use power series?
What technology software packages do your students use the most to compute DEs?

You mentioned that technology enables students to visualize more. Can you explain
how this is especially important for your courses?

What math courses do you think are most crucial for electrical engineers?

In your first survey you said, “Perhaps if more calculus profs knew a few
engineering applications, even reading a few engineering books, students would be
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able to nail things down sooner.” Can you give 1 or 2 examples of applications that
could be presented in a DE course?
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Appendix F: Second Phone Interview Protocol
You noted that you are a consultant. Tell me a little bit about what this entails.

You said that students don’t get that a solution of a DE is another equation. Do you
make a distinction between function and equation? If no, ask how he would explain
the difference, if there is one.

In the survey you noted that all the misconceptions were problems in your classes.
(Read them all again.) Can you give some scenarios where these misconceptions
have come into play and been problematic to your course material?

You noted in your survey that DE knowledge reduces memorization in your classes.
[s this analytical knowledge that is needed or would familiarity with technology that
computes DEs be sufficient?

You said that matrix methods are not part of the DE course at Louisiana Tech.
Would you like for them to be? If yes, ask why.

What kinds of problems would you like to see in a DE course that would utilize
matrix methods?

How do you feel about engineers teaching the whole introductory course to DEs?

What technology software packages do your students use the most to compute and
visualize DE systems?

What math courses do you think are most crucial for civil engineers?
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Appendix G: IRB Approval

North Carolina State University is a land-grant Research and Graduate Studies
university and a constituent institution of the Division of Research Administration

Nc STATE UNIVERS'TY University of North Carolina

Campus Box 7514

Raleigh, North Carolina 27695-7514
919.515.2444 (phone)
919.515.7721 (fax)

From: Debra A. Paxton, Regulatory Compliance Administrator
North Carolina State University
Institutional Review Board

Date: October 19, 2009

Project Title: Differential Equations Course Preferences for Engineering
Professors

IRB#: 1149-09-10

Dear Dr. Keene and Dr. Early:

The research proposal named above has received administrative review and has been
approved as exempt from the policy as outlined in the Code of Federal Regulations
(Exemption: 46.101.b.2). Provided that the only participation of the subjects is as
described in the proposal narrative, this project is exempt from further review.

NOTE:

1. This committee complies with requirements found in Title 45 part 46 of The
Code of Federal Regulations. For NCSU projects, the Assurance Number
is: FWA00003429.

2. Any changes to the research must be submitted and approved by the IRB
prior to implementation.

3. If any unanticipated problems occur, they must be reported to the IRB office
within 5 business days.

Thank you.
Sincerely,
Debra A. Paxton, NCSU IRB
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